Practical Attacks on the Walnut Signature Scheme

Ward Beullens Simon R. Blackburn

KU Leuven
Royal Holloway
December 2, 2018
WalnutDSA is a Signature Scheme submitted to the NIST PQC project.

Small signatures and keys (best combined size of all submissions)

Very fast key generation and verification

Is used in the real world!
1 Preliminaries
 • Braid groups
 • WalnutDSA

2 Attacks
 • Collision search attack
 • Factorization attack
 • Inverting the group action attack

3 Conclusion
1 Preliminaries
 • Braid groups
 • WalnutDSA

2 Attacks
 • Collision search attack
 • Factorization attack
 • Inverting the group action attack

3 Conclusion
A braid of order N is a collection of strings connecting N upper points to N lower points.

Two braids are equivalent if one can be deformed continuously into the other.

Figure: A braid

Figure: Equivalence of braids
We can compose braids and invert them. Equivalence classes of braids of order N form a group B_N.

Figure: Composition of braids

Figure: Inverse of a braid
Braid group B_N is generated by a set of $N - 1$ generators.

Figure: The three Artin generators b_1, b_2 and b_3 that generate B_4.

Figure: The braid $b_1 b_2^{-1} b_3 b_2 b_1^{-1}$
Theorem (Artin and Bohnenblust, 1946)
These are the only relations between the generators. The braid groups have a purely algebraic definition.

\[B_N = \left\langle b_1, \ldots, b_{N-1} \bigg| \begin{array}{c}
 b_i b_j = b_j b_i \\
 b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}
\end{array} \text{ for } 1 \leq i < j < N \text{ and } j - i \geq 2, \right. \]
\[\left. \text{ for } 1 \leq i < N - 1 \right\rangle. \]
There is a natural homomorphism $\sigma : B_N \to S_N$ that assigns a permutation to each braid.

A braid that maps to the identity permutation is called pure.

Figure: A braid with underlying permutation $(124)(35)$.

Figure: A pure braid.
WalnutDSA uses a new (right) group action
\(\star : B_N \ltimes GL(\mathbb{Z}_p, N) \times S_N \), called E-multiplication.

\[
(M, \pi) \star b := (M \cdot Mat(b, \pi), \pi \sigma(b))
\]

We define \(\mathcal{P} : B_N \rightarrow GL(\mathbb{Z}_p, N) \times S_N \) by acting on \((1_N, e)\)

\[
\mathcal{P}(b) := (1_N, e) \star b,
\]

When restricted to \(P_N \), \(\mathcal{P} : P_N \rightarrow GL(\mathbb{Z}_p, N) \) is a group morphism.
For all N, there is a braid groups B_N, which has a subgroup P_N.

We saw 3 objects:

1. σ, a group morphism that takes a braid and outputs a permutation

2. E-multiplication (\star), a group action of B_N on $GL(\mathbb{Z}_p, N) \times S_N$.

3. $\mathcal{P}(s) := (1_N, e) \star s$ is a group morphism when restricted to pure braids.
Secret key

Two random secret braids s_1, s_2.

Public key

The result of acting on $(1_N, e)$ with s_1, s_2 i.e. $\mathcal{P}(s_1), \mathcal{P}(s_2)$

Signature

A signature for document d is a braid s such that

\[\mathcal{P}(s_1) \star s = \mathcal{P}(E(d)) \star s_2 \]

where E is an encoding function that takes a document and outputs a pure braid.

Remark: This can be verified from public information.
1 Preliminaries
 • Braid groups
 • WalnutDSA

2 Attacks
 • Collision search attack
 • Factorization attack
 • Inverting the group action attack

3 Conclusion
A signature sig is valid for document d if

$$P(s_1) \ast \text{sig} = P(E(d)) \ast s_2.$$

The only dependence on d is through $P(E(d))$. If we can find d_1, d_2 such that $P(E(d_1)) = P(E(d_2))$ we can break EUF-CMA security of the signature scheme.

The first step in calculating E is a cryptographic hash function

↓

Nothing better than a generic collision search.
Distinguished point method: (Van Oorschot, Wiener)

Collision search in a function $f : D \rightarrow D$ takes $|D|^{\frac{1}{2}}$ function evaluations.

$|\mathcal{P}(E(\{0, 1\}^*))| \approx q^{13}$

Collision search in $q^{6.5}$ function evaluations

$2^{37.5}$ for SL1
2^{60} for SL5
Finding the following collision took 1 hour on a desktop PC.

\[d_1 = "I \text{ would like to receive } 9156659270109667494 \text{ free samples of chocolate chip cookies.}\"

\[d_2 = "I \text{ would like to receive } 10213941738370235726 \text{ free samples of gluten-free raisin cookies.}\"

Adversaries can use this attack if they can hide \(\pm 50\) bits of entropy in plausible looking messages.
The designers of Walnut adopted 2 countermeasures:

1. Change the encoding mechanism E

 \[\dim(\mathcal{P}(E(0,1^*))) \text{ is now } (N - 2)^2 + 1 \text{ instead of 13.} \]

2. Increase N from 8 to 10

 this results in:
 - Key size +50%
 - Signature size +25%
The idea is to collect signatures $\text{sig}_1, \cdots, \text{sig}_k$ for some documents d_1, \cdots, d_k. Compute the matrices $M_i = \mathcal{P}(E(d_i))$.

To forge a signature for a document d, write $M = \mathcal{P}(E(d))$ as a product of the M_i, and use this factorization to combine the signatures sig_i into a signature sig for d.

We adapted an attack by Hart, Kim, Micheli, Perez, Petit and Quek (Oxford & Birmingham) on an earlier version of Walnut.

The attack works fast in practice, but the signatures are much longer than honest signatures (2^{32} vs 2^{12}) \Rightarrow not useful in practice.

Simple countermeasure: Impose a length limit on signatures.
A signature sig is valid for document d if

$$\mathcal{P}(s_1) \star \text{sig} = \mathcal{P}(E(d)) \star s_2.$$

Hard problem

Given (M_1, π_1) and (M_2, π_2) find a (short) braid s such that

$$(M_1, \pi_1) \star s = (M_2, \pi_2).$$

Solution

Step 1 : Reduce to the case $(M, \pi) \star s = (1_N, e)$

Step 2 : Solve the problem using the chain of subgroups.

$$\{e\} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N$$
Inverting group action

\[(M, \pi) = (\begin{pmatrix}
\ast & \ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast & \ast \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}, \pi)\]

\[\{e\} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N\]

Step 0: Pick \(s'\) in \(B_N\) whose permutation is \(\pi^{-1}\).
Inverting group action

\[(M, \pi) \star s' = \begin{pmatrix}
\begin{pmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
o & 0 & 0 & * & * & * \\
o & 0 & 0 & 0 & * & * \\
o & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}, e
\end{pmatrix}\]

We got three rows of zeros for free!

\[\{e\} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N\]

Step 1: Find \(s_1\) that kills the last column. \(O(q^{N/2})\)
Observation: A braid in P_i acts as multiplication by a matrix that only differs from the identity matrix in the upper left i-by-i matrix.

$$(M, \pi) \star s' \cdot s_1 = \begin{pmatrix} * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, e$$

$${e} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N$$

Step 2: Pick s_2 that kills the $(N-1)$-th column. $O\left(q^{N-1 \over 2}\right)$
Observation: A braid in P_i acts as multiplication by a matrix that only differs from the identity matrix in the upper left i-by-i matrix.

$$(M, \pi) \ast s' \cdot s_1 \cdot s_2 = \left(\begin{pmatrix} * & * & * & * & 0 & 0 \\ * & * & * & * & 0 & 0 \\ * & * & * & * & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} , e \right)$$

$$\{e\} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N$$

Step i: Pick s_i that kills the $(N + 1 - i)$-th column. $O\left(q^{N-i/2}\right)$
Observation: A braid in P_i acts as multiplication by a matrix that only differs from the identity matrix in the upper left i-by-i matrix.

$$(M, \pi) \star s' \cdot s_1 \cdot \ldots \cdot s_N = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, e$$

$\{e\} = P_1 \subset P_2 \subset \cdots \subset P_{N-1} \subset P_N \subset B_N$

Most expensive step is $O\left(q^{N-3/2}\right)$, but we can improve this to $O\left(q^{N/2-1}\right)$ at cost of slightly larger signatures (but still small enough).
forging signature for 128-bit secure parameters: < 1s
forging signature for 256-bit secure parameters: 39s

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Original</th>
<th>New</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td>10</td>
<td>×9.4</td>
</tr>
<tr>
<td>q</td>
<td>2^5</td>
<td>$2^{31} - 1$</td>
<td>+83%</td>
</tr>
<tr>
<td>Public key length</td>
<td>83 Bytes</td>
<td>780 Bytes</td>
<td>+50%</td>
</tr>
<tr>
<td>Signature length</td>
<td>713 Bytes</td>
<td>1308 Bytes</td>
<td>+80%</td>
</tr>
<tr>
<td>Signing time</td>
<td>39.5 ms</td>
<td>59.2 ms</td>
<td></td>
</tr>
<tr>
<td>Verification time</td>
<td>0.05 ms</td>
<td>0.09 ms</td>
<td></td>
</tr>
</tbody>
</table>
1 Preliminaries
 • Braid groups
 • WalnutDSA
2 Attacks
 • Collision search attack
 • Factorization attack
 • Inverting the group action attack
3 Conclusion
Original parameters are totally broken

New sizes are comparable to lattice signature schemes.

Latest iteration of Walnut seems broken by the Kotov, Menshow and Ushakov attack.

Despite this Walnut is still being pushed into the wild ⚠️

Figure: Updated key and signature sizes.