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Symmetric-key & quantum: backgrounds

“the security of symmetric key crypto will 

not be affected by quantum computers”   
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Known quantum attacks：～２０１０

Classical Quantum

Exhaustive
Key search

𝑂(2𝑛) 𝑂(2𝑛/2)

Collision search 𝑂(2𝑛/2) 𝑂(2𝑛/3)

“It is sufficient to use 2n-bit keys instead of n-bit keys”
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Known attacks : 2018

Classical Quantum

Exhaustive
Key search

𝑂(2𝑛) 𝑂(2𝑛/2)

Collision search 𝑂(2𝑛/2) 𝑂(2𝑛/3)

Key recovery attack 
against Even-Mansour

𝑂(2𝑛/2) Poly-time

Forgery attack
against CBC-like MACs

𝑂(2𝑛/2) Poly-time

Note：We assume that quantum oracles are available
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“the security of symmetric key crypto would 

not be affected by quantum computers”   

Poly-time attack is possible !!
・The works by Kuwakado and Morii (ISIT 2010, ISITA 2012)

・The work by Kaplan et al. (CRYPTO 2016)

Symmetric-key & quantum: backgrounds
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“the security of symmetric key crypto would 

not be affected by quantum computers”   

Poly-time attack is possible !!
・The works by Kuwakado and Morii (ISIT 2010, ISITA 2012)

・The work by Kaplan et al. (CRYPTO 2016)

We should study post-quantum

security of symmetric key crypto carefully

Symmetric-key & quantum: backgrounds
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•Reason: Hash functions are public and used

to instantiate QRO (Quantum Random Oracle)

•Many post-quantum public-key schemes are proven 
to be secure in the quantum random oracle model

Hash-based signature, Key Exchange,…

Post-quantum security requirement for hash

Hash functions should be secure against

quantum superposition query attacks
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•Reason: Hash functions are public and used

to instantiate QRO (Quantum Random Oracle)

•Many post-quantum public-key schemes are proven 
to be secure in the quantum random oracle model

Hash-based signature, Key Exchange,…

Post-quantum security requirement for hash

Hash functions should be secure against

quantum superposition query attacks

We study security of

typical hash constructions:

Merkle-Damgård with Davies-Meyer
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Typical construction:
Merkle-Damgård with Davies Meyer

abcd efgh ijkl

abcd efgh ijkl

Split

messages

h

Function with

Small input/output

h h Output
Initial
Value

Merkle-Damgard

Construction



14Copyright©2018  NTT corp. All Rights Reserved.

Typical construction:
Merkle-Damgård with Davies Meyer

Block

Cipher

Input 2

Input 1

ＸＯＲ

Output

Davies-Meyer 

Construction
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Typical construction:
Merkle-Damgård with Davies Meyer

Block

Cipher

Fix

Input 1

ＸＯＲ

Output
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Typical construction:
Merkle-Damgård with Davies Meyer

Permutation

PInput 1

ＸＯＲ

Output
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Typical construction:
Merkle-Damgård with Davies Meyer

Input 1 Output
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Quantum insecure construction:
Even-Mansour cipher

Quantum insecure

Permutation & XOR
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Typical construction: 
Merkle-Damgård with Davies Meyer

Input 1 Output

Permutation & XOR

Simplified Hash function
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Typical construction: 
Merkle-Damgård with Davies Meyer

Input 1 Output

Permutation & XOR

Simplified Hash function
Is this

secure????
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Is this

secure???? Simplified Hash function

Typical construction:
Merkle-Damgård with Davies Meyer

Input 1 Output

Permutation & XOR

Let’s try to come up with a Poly-time attack !! 


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Is this

secure???? Simplified Hash function

Typical construction:
Merkle-Damgård with Davies Meyer

Input 1 Output

Permutation & XOR

Let’s try to come up with a Poly-time attack !! 


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Is this

secure???? Simplified Hash function

Typical construction:
Merkle-Damgård with Davies Meyer

Input 1 Output

Permutation & XOR

Let’s try to come up with a Poly-time attack !! 


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It is hard to make poly-time attacks…

Why impossible?
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•Strategy of quantum poly-time attacks:

1. Make a periodic function with a secret period

2. Apply Simon’s period finding algorithm

It is hard to make poly-time attacks…

Hash functions have no secret information!!

Why impossible?
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•Strategy of quantum poly-time attacks:

1. Make a periodic function with a secret period

2. Apply Simon’s period finding algorithm

It is hard to make poly-time attacks…

Hash functions have no secret information!!

Why impossible?

If attack is impossible,

let’s give a security proof



27Copyright©2018  NTT corp. All Rights Reserved.

1. Preimage resistance (One-wayness)

2. Second preimage resistance

3. Collision resistance

“Post-quantum secure” hash functions 
must satisfy all of them against quantum 
superposition attackers

Security notions for hash functions



28Copyright©2018  NTT corp. All Rights Reserved.

1. Preimage resistance (One-wayness)

2. Second preimage resistance

3. Collision resistance

“Post-quantum secure” hash functions must 
satisfy all of them against quantum 
superposition attackers

Security notions for hash functions

Our focus
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1. Proposal of a quantum version of the ideal  cipher 
model

2. Proof of optimal one-wayness (2𝑛/2 quantum queries 
are required to break one-wayness) of the combination of 
Merkle-Damgård with Davies-Meyer (fixed block length, 

with a specific padding)

3. A proof technique to show quantum oracle 

indistinguishability

Our results

Results
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•Quantum ideal cipher model

• Permutation      is chosen at random for each key K, 
and given to the adversary as a quantum black-box 
oracle

• Adversary can make quantum superposition queries to 
both Enc oracle and Dec oracle

Quantum ideal cipher model

𝐸𝐾

𝐸(・,・)

𝐷(・, ・)

Adversary
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Quantum oracles

𝑂𝐸 ∶
0 |𝑘⟩ 𝑥 𝑦 ↦ 0 𝑥 |𝑘⟩|𝑦 ⊕ 𝐸𝑘 𝑥 ⟩

1 |𝑘⟩ 𝑥 𝑦 ↦ 1 |𝑘⟩ 𝑥 |𝑦 ⊕ 𝐷𝑘 𝑥 ⟩

Quantum ideal cipher model

𝐸𝐾 ←
$ Perm {0,1}𝑛 for each 𝐾

Oracle
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Our Construction:Merkle-Damgård with Davies-Meyer
(fixed block-length, with a specific padding)

Input:     𝑥 = 𝑥0| 𝑥1 |⋯ ||𝑥ℓ (𝑥0 ∈ 0,1
𝑛 and 𝑥1, … , 𝑥ℓ ∈ 0,1

𝑛′, 𝑛′ < 𝑛)
Output:  𝑦 ∈ 0,1 𝑛

𝑛 𝑛 𝑛

𝑚 𝑚 𝑚
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Our second result

For any quantum q-query adversary A,

Adv
𝐻𝐸
ow 𝐴 ≤ 𝑂 𝑞/2𝑛/2 + small terms

holds.
𝐻𝐸 is Merkle-Damgård with Davies-Meyer

(fixed block length and specific padding)

Theorem 5.2
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Our second result

For any quantum q-query adversary A,

Adv
𝐻𝐸
ow 𝐴 ≤ 𝑂 𝑞/2𝑛/2 + small terms

holds.
𝐻𝐸 is Merkle-Damgård with Davies-Meyer

(fixed block length and specific padding)

Theorem 5.2

Giving a proof

=  giving a quantum query lower bound
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Remarks on query lower bound

Area [Model] Problems Backward query?

Quantum computation Worst case ×

Cryptography [(Q)ROM]
(Quantum) Random Oracle Model

Average case
(randomized)

×

Cryptography [(Q)ICM]
(Quantum) Ideal Cipher Model

Average case
(randomized)

○

Our theorem is the first result on quantum query lower bound

that takes backward queries to public permutations / BCs into 

account without any algebraic assumptions
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Remarks on query lower bound

Area [Model] Problems Backward query?

Quantum computation Worst case ×

Cryptography [(Q)ROM]
(Quantum) Random Oracle Model

Average case
(randomized)

×

Cryptography [(Q)ICM]
(Quantum) Ideal Cipher Model

Average case
(randomized)

〇

Our theorem is the first result on quantum query lower bound

that takes backward queries to public permutations / BCs into 

account without any algebraic assumptions
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Our Construction:Merkle-Damgård with Davies-Meyer
(fixed block-length, with a specific padding)

𝑛 𝑛 𝑛

𝑚 𝑚 𝑚

Somewhat complex…
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Merkle-Damgård with Davies-Meyer
(with a specific padding)

Lets’ show this simplified function is one-way

𝑦𝑥
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One-wayness: proof strategy

Breaking one-wayness of 

is almost as hard as 

It can be easily shown that:
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One-wayness: proof strategy

Breaking one-wayness of 

is almost as hard as 

Finding a fixed point of 𝑃

(An element x s.t. P(x)=x)

It can be easily shown that:
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One-wayness: proof strategy

to

Finding a fixed point of 𝑃

Next: I want to reduce
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One-wayness: proof strategy

to

Finding a fixed point of 𝑃

Next: I want to reduce

Since Boolean functions are much simpler than permutations

Distinguishing two distributions 𝐷1, 𝐷2
on Func({0,1}n, {0,1} )
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•Define 𝐷1 on Func({0,1}n , {0,1} ) as the distribution 
which corresponds to the following sampling:

1. 𝑃 ←$ Perm {0,1}𝑛

2. Define 𝑓: {0,1}𝑛 → {0,1} by 𝑓 𝑥 = 1 iff 𝑃 𝑥 = 𝑥

3. Return 𝑓

•𝐷1 is the “distribution of fixed points of RP”

•Define 𝐷2 as the degenerate distribution on the zero 
function

distributions 𝐷1, 𝐷2 on the set of
boolean functions
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One-wayness: proof strategy

is almost as hard as 

Finding a fixed point of 𝑃

Intuitively,

Distinguishing two distributions 𝐷1, 𝐷2
on Func({0,1}n, {0,1} )
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One-wayness: proof strategy

It is sufficient to show that

to show

Breaking one-wayness of is hard

Distinguishing two distributions 𝐷1, 𝐷2
on Func({0,1}n, {0,1} ) is hard
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One-wayness: proof strategy

It is sufficient to show that

to show

Breaking one-wayness of is hard

Distinguishing two distributions 𝐷1, 𝐷2
on Func({0,1}n, {0,1} ) is hard

How to show it is hard?

→our third result
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1. Proposal of a quantum version of the ideal  cipher 
model

2. Proof of optimal one-wayness (2𝑛/2 quantum queries 
are required to break one-wayness) of the combination of 
Merkle-Damgård with Davies-Meyer (fixed block length, 

with a specific padding)

3. A proof technique to show quantum oracle  

indistinguishability

Our results

Results
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Our third result

Let 𝐷1 be arbitrary distribution on Func {0,1}𝑛, {0,1} , and 𝐷2 be 

the degenerate distribution on the zero function. Then 

Adv𝐷1,𝐷2
dist 𝐴 ≤ 2𝑞 

𝛼

𝑝1
good𝛼 𝑝1

𝑓|good𝛼max
𝑥
𝑓 ∈ good𝛼|𝑓 𝑥 = 1

+ Pr
𝐹∼𝐷1
𝐹 ∈ bad holds.

Proposition 3.2

good𝛼 𝛼⋯a set of subsets of Func {0,1}
𝑛
, {0,1}

bad ≔ Func {0,1}𝑛, {0,1} ∖ ∪𝛼 good𝛼
𝑝1
good𝛼 ≔ Pr

F∼𝐷1
𝐹 ∈ good𝛼 , 𝑝1

𝑓|good𝛼 ≔ Pr
F∼𝐷1
𝐹 = 𝑓|𝐹 ∈ good𝛼

Condition: good𝛼 ∩ good𝛽 = ∅ ,and 𝑝1
𝑓|good𝛼 is independendet of 𝑓
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Our third result

Let 𝐷1 be arbitrary distribution on Func {0,1}𝑛, {0,1} , and 𝐷2 be 

the degenerate distribution on the zero function. Then 

Adv𝐷1,𝐷2
dist 𝐴 ≤ 2𝑞 

𝛼

𝑝1
good𝛼 𝑝1

𝑓|good𝛼max
𝑥
𝑓 ∈ good𝛼|𝑓 𝑥 = 1

+ Pr
𝐹∼𝐷1
𝐹 ∈ bad holds.

Proposition 3.2

good𝛼 𝛼⋯a set of subsets of Func {0,1}
𝑛
, {0,1}

bad ≔ Func {0,1}𝑛, {0,1} ∖ ∪𝛼 good𝛼
𝑝1
good𝛼 ≔ Pr

F∼𝐷1
𝐹 ∈ good𝛼 , 𝑝1

𝑓|good𝛼 ≔ Pr
F∼𝐷1
𝐹 = 𝑓|𝐹 ∈ good𝛼

Condition: good𝛼 ∩ good𝛽 = ∅ ,and 𝑝1
𝑓|good𝛼 is independendet of 𝑓

We can give an upper bound of the advantage with only 

calculations of classical probabilities, if we can choose 

some “good” subsets of Func {0,1}𝑛, {0,1}
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Recall arguments on our
second result…

It is sufficient to show that

to show

Breaking one-wayness of is hard

Distinguishing two distributions 𝐷1, 𝐷2
on Func({0,1}n, {0,1} ) is hard
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Recall arguments on our
second result…

With our third result, we can show

Distinguishing two distributions 𝐷1, 𝐷2 on 

the set of boolean functions Func({0,1}n, {0,1} )
is hard

𝑂(2𝑛/2) queries are required to distinguish

𝐷1, 𝐷2 with a constant probability

Breaking one-wayness of is hard
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Recall arguments on our
second result…

Distinguishing two distributions 𝐷1, 𝐷2 on 

the set of boolean functions Func({0,1}n, {0,1} )
is hard

thus

With our third result, we can show

Breaking one-wayness of is hard

𝑂(2𝑛/2) queries are required to distinguish

𝐷1, 𝐷2 with a constant probability
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・The combination of Merkle-Damgård with Davies-Meyer is 
one-way in  “quantum ideal cipher model” (fixed block-length, 

with specific padding)

・ The first result on quantum query lower bound that takes 

backward queries to public permutations or block ciphers 

into account w/o any algebraic assumptions

・ A technique to show quantum oracle indistinguishability

Thank you!

Summary


