

Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions

<u>Akinori Hosoyamada (NTT / Nagoya University)</u> and Kan Yasuda(NTT)

2018.12.3 Asiacrypt 2018 @ Brisbane

Backgrounds

- Post-quantum security of sym-key schemes
- Are hash functions post-quantum secure?
- •Our Results
- •Summary

Backgrounds

Post-quantum security of sym-key schemes

- Are hash functions post-quantum secure?
- Our Results
- •Summary

Symmetric-key & quantum: backgrounds

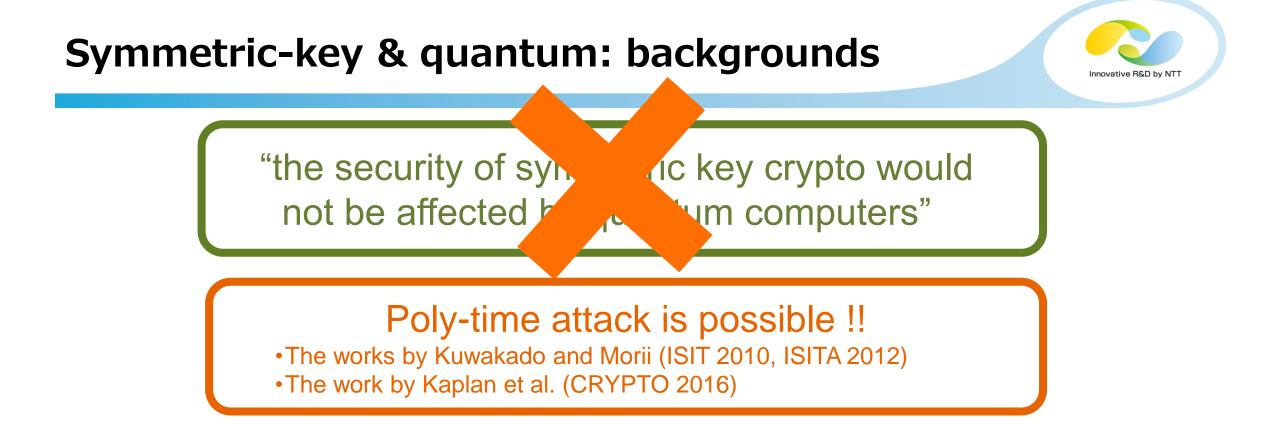
"the security of symmetric key crypto will not be affected by quantum computers"

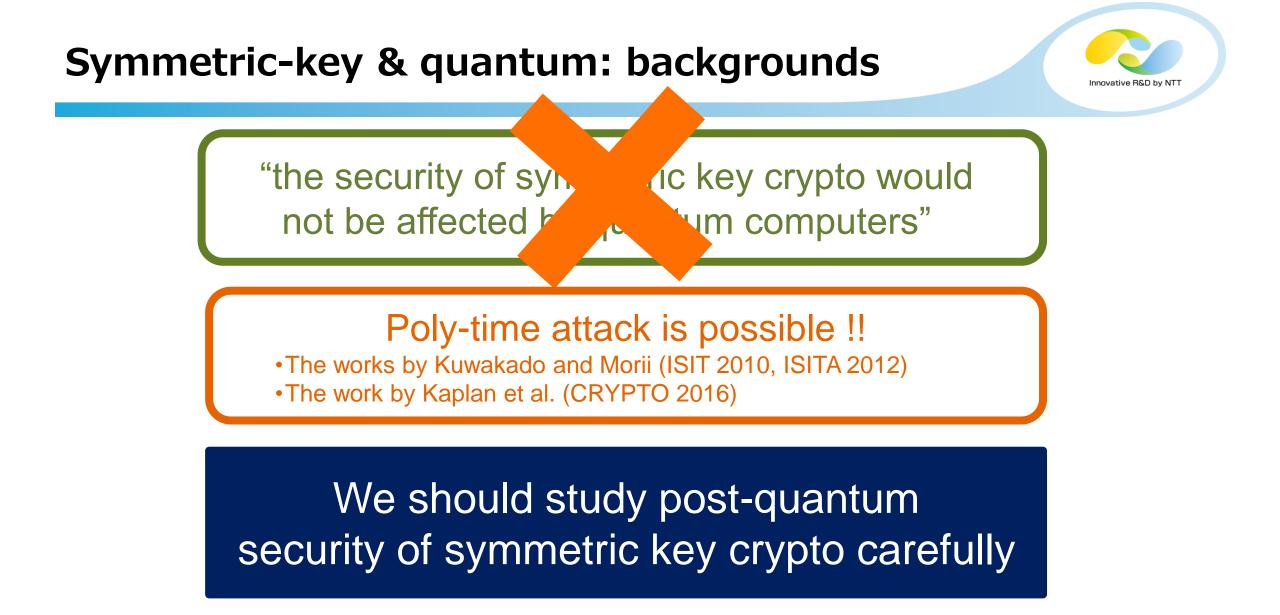
	Classical	Quantum
Exhaustive Key search	$O(2^{n})$	$O(2^{n/2})$
Collision search	$O(2^{n/2})$	$O(2^{n/3})$

"It is sufficient to use 2n-bit keys instead of n-bit keys"

	Classical	Quantum
Exhaustive Key search	$O(2^{n})$	$O(2^{n/2})$
Collision search	$O(2^{n/2})$	$O(2^{n/3})$
Key recovery attack against Even-Mansour	$O(2^{n/2})$	Poly-time
Forgery attack against CBC-like MACs	$O(2^{n/2})$	Poly-time

Note: We assume that quantum oracles are available





Backgrounds

- Post-quantum security of sym-key schemes
- Are hash functions post-quantum secure?
- •Our Results
- •Summary

Backgrounds

Post-quantum security of sym-key schemes

• Are hash functions post-quantum secure?

- Our Results
- •Summary

Hash functions should be secure against quantum superposition query attacks

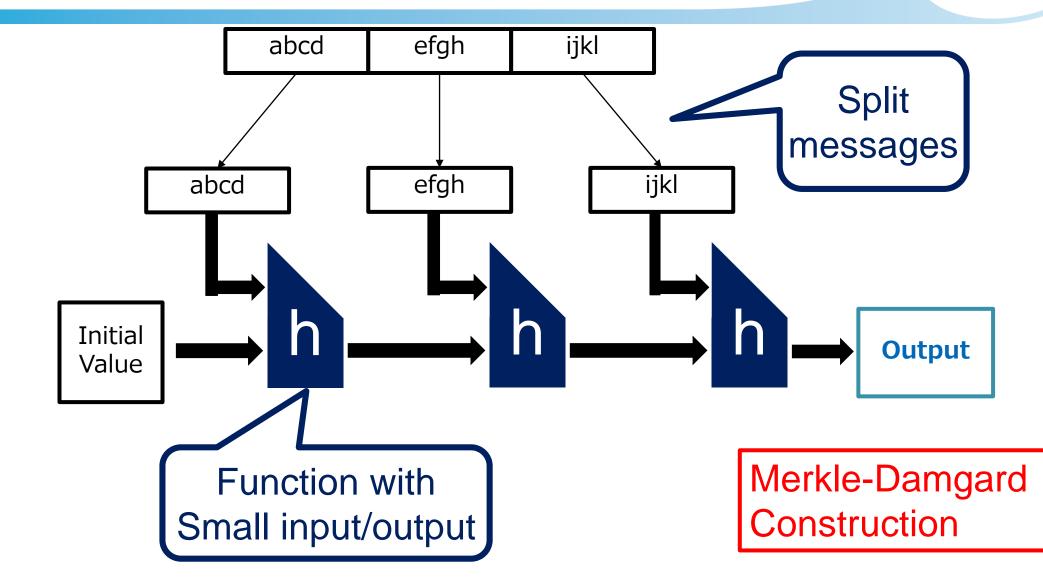
- Reason: Hash functions are public and used
 - to instantiate QRO (Quantum Random Oracle)
 - •Many post-quantum public-key schemes are proven to be secure in the quantum random oracle model

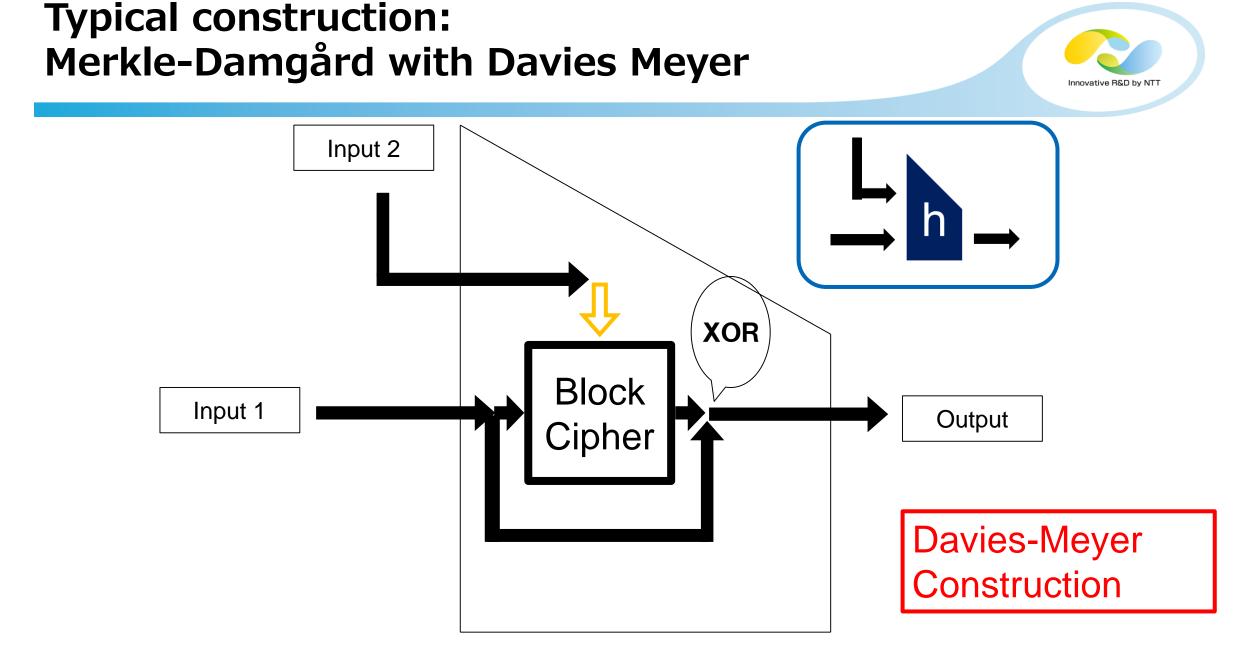
Hash-based signature, Key Exchange,...

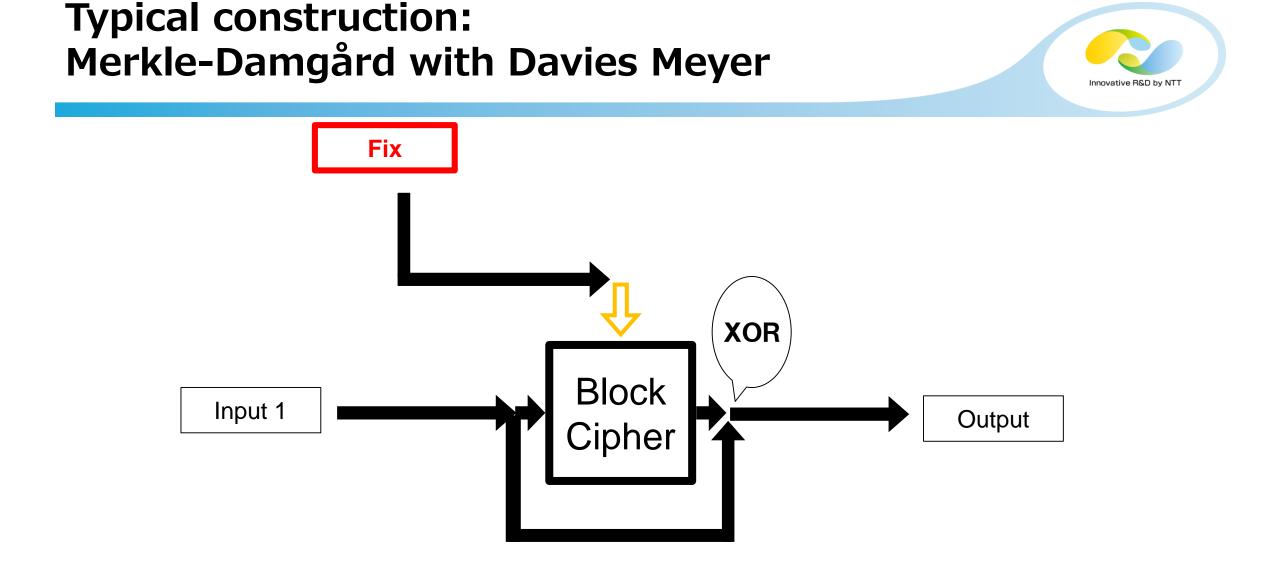
Post-quantum security requirement for hash

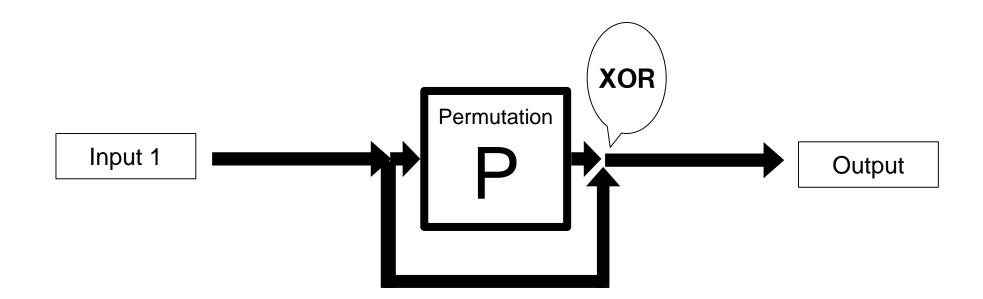
Hash functions should be secure against quantum superposition query attacks

We study security of typical hash constructions: <u>Merkle-Damgård with Davies-Meyer</u>

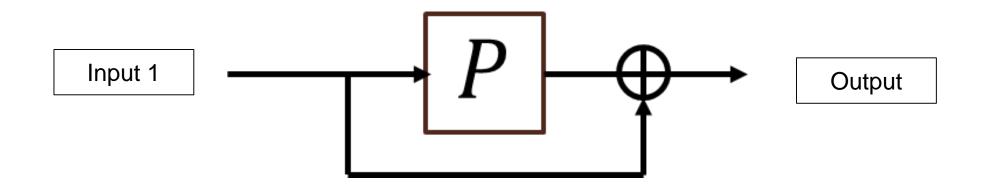






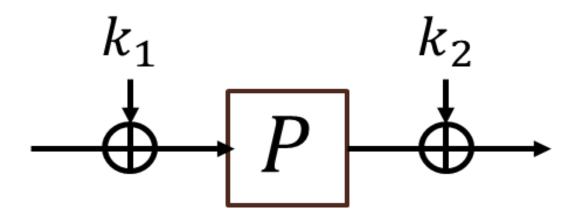


Innovative R&D by NT



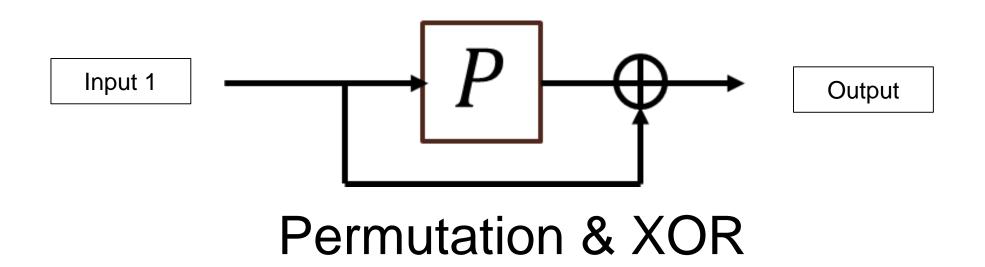
Quantum insecure construction: Even-Mansour cipher

Quantum insecure

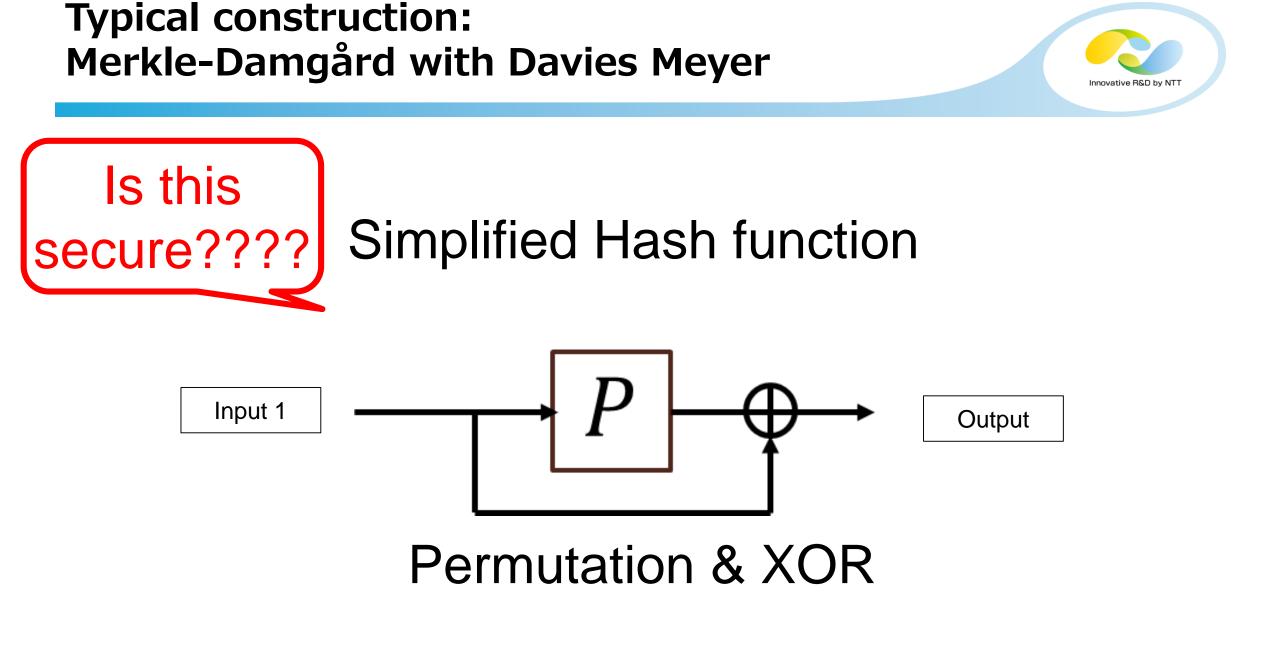


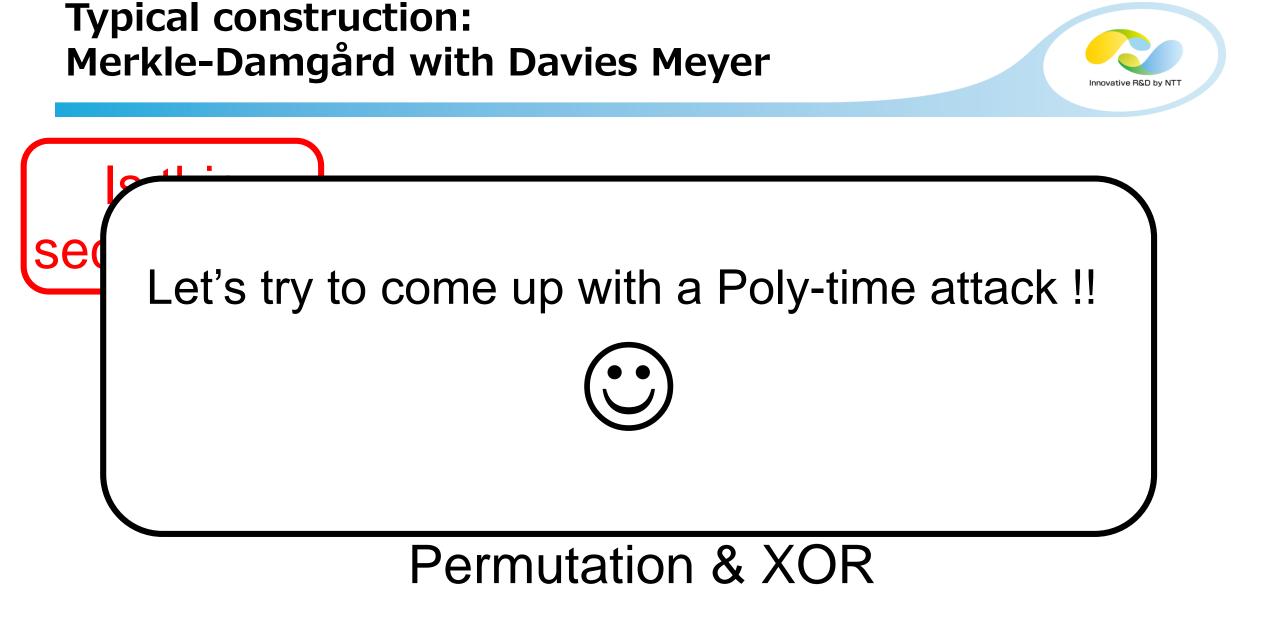
Permutation & XOR

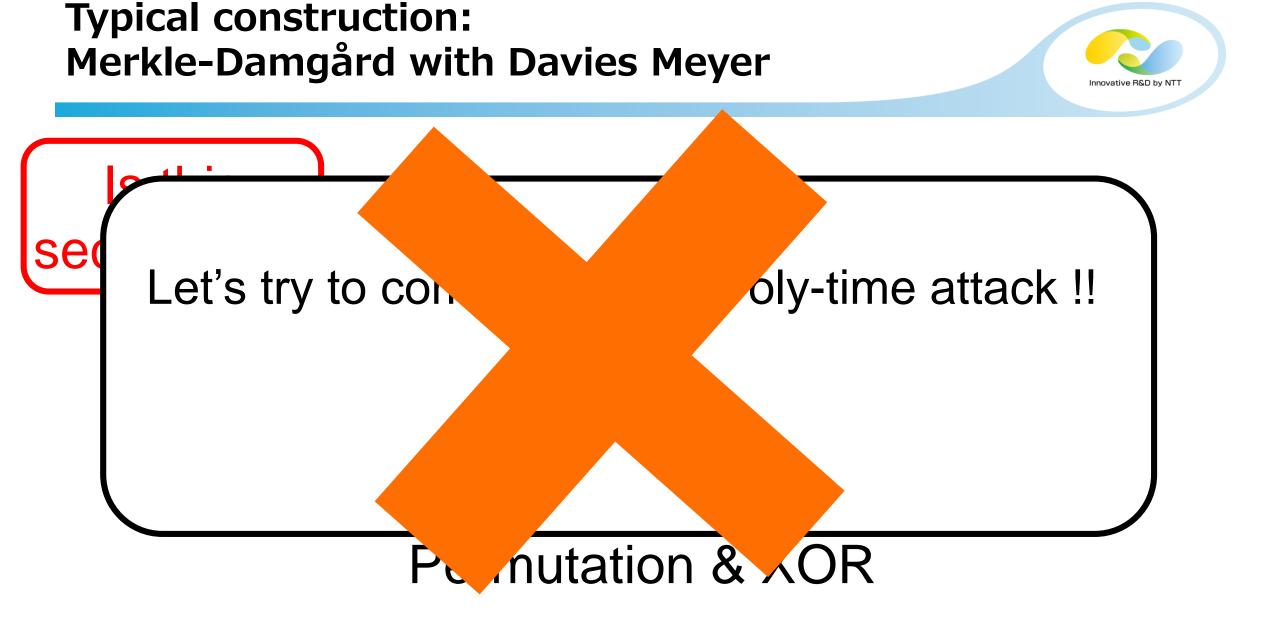
Simplified Hash function

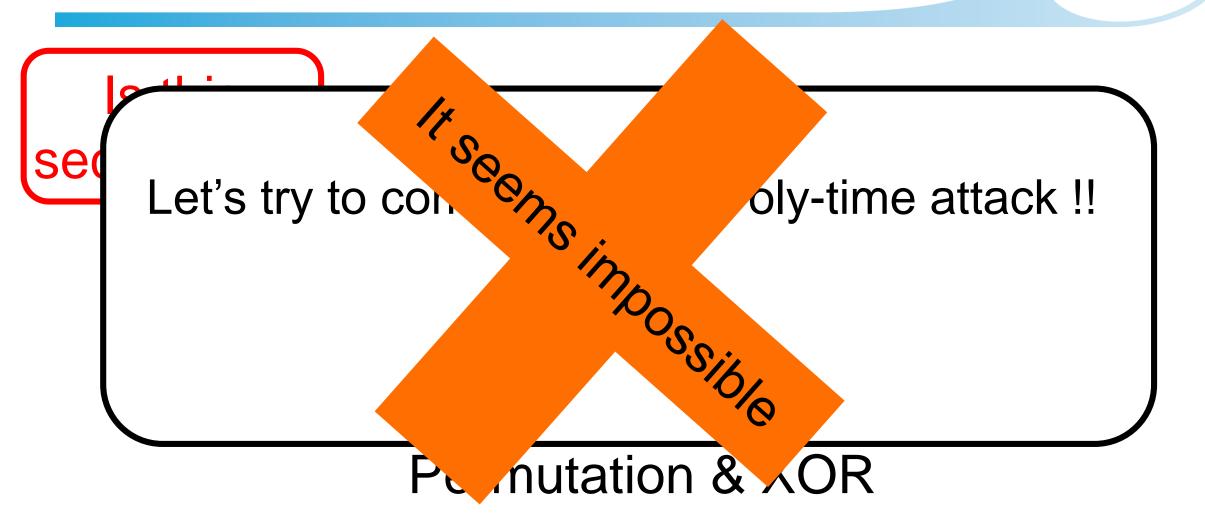


Innovative R&D by N1









Innovative R&D by N

It is hard to make poly-time attacks…

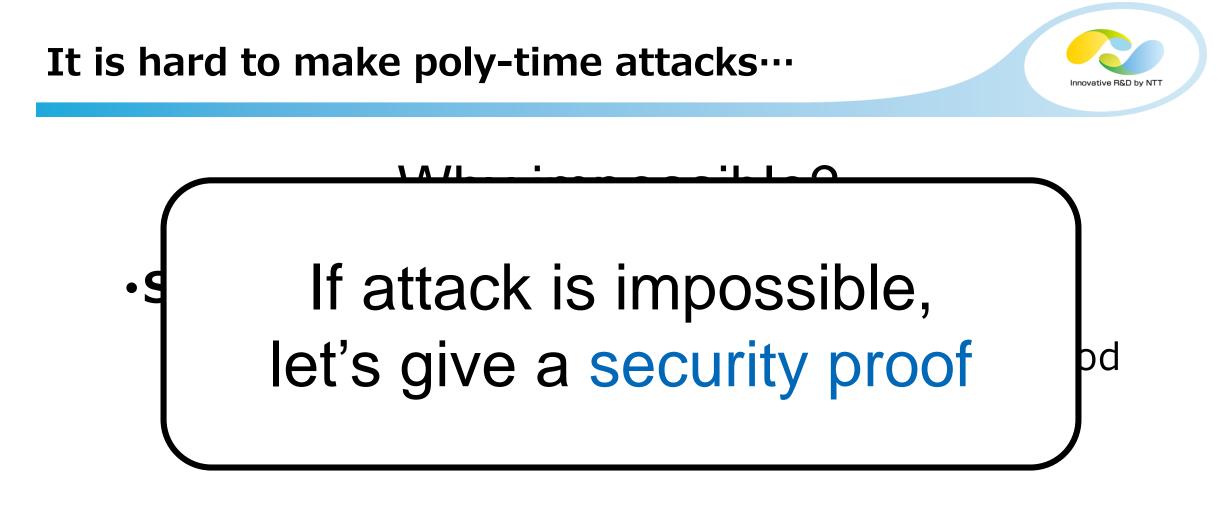
Why impossible?

Why impossible?

Strategy of quantum poly-time attacks:

- 1. Make a periodic function with a <u>Secret</u> period
- 2. Apply Simon's period finding algorithm

Hash functions have no secret information!!



Hash functions have no secret information!!

- 1. Preimage resistance (One-wayness)
- 2. Second preimage resistance
- **3. Collision resistance**

"Post-quantum secure" hash functions must satisfy all of them <u>against quantum</u> <u>superposition attackers</u>

Security notions for hash functions 1. Preimage resistance (One-wayness) 2. Secon iade resistance **3.** Cc Our focus ctions must satisfy all of them *against quantum* superposition attackers

Backgrounds

- Post-quantum security of sym-key schemes
- Are hash functions post-quantum secure?
- •Our Results
- •Summary

Backgrounds

- Post-quantum security of sym-key schemes
- Are hash functions post-quantum secure?

•Our Results

•Summary

Results

- 1. Proposal of a quantum version of the ideal cipher model
- **2. Proof of optimal one-wayness** $(2^{n/2}$ quantum queries are required to break one-wayness) **of the combination of Merkle-Damgård with Davies-Meyer** (fixed block length, with a specific padding)
- 3. A proof technique to show quantum oracle indistinguishability

Results

1. Proposal of a quantum version of the ideal cipher model

2. Proof of optimal one-wayness $(2^{n/2}$ quantum queries are required to break one-wayness) **of the combination of Merkle-Damgård with Davies-Meyer (fixed block length, with a specific padding)**

3. A proof technique to show quantum oracle indistinguishability

Quantum ideal cipher model

- Permutation E_K is chosen at random for each key K, and given to the adversary as a quantum black-box oracle
- Adversary can make quantum superposition queries to both Enc oracle and Dec oracle



Quantum ideal cipher model

$$E_K \leftarrow^{\$} \operatorname{Perm}(\{0,1\}^n)$$
 for each K

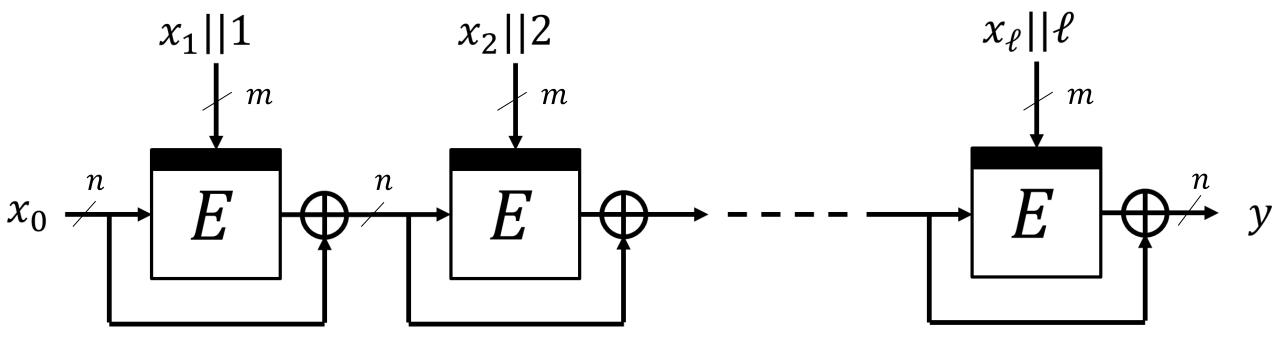
Oracle
$$O_E$$
:
$$\frac{|0\rangle|k\rangle|x\rangle|y\rangle \mapsto |0\rangle|x\rangle|k\rangle|y \oplus E_k(x)\rangle}{|1\rangle|k\rangle|x\rangle|y\rangle \mapsto |1\rangle|k\rangle|x\rangle|y \oplus D_k(x)\rangle$$

Results

- 1. Proposal of a quantum version of the ideal cipher model
- **2. Proof of optimal one-wayness** $(2^{n/2}$ quantum queries are required to break one-wayness) **of the combination of Merkle-Damgård with Davies-Meyer** (fixed block length, with a specific padding)
- 3. A proof technique to show quantum oracle indistinguishability

Our Construction:Merkle-Damgård with Davies-Meyer (fixed block-length, with a specific padding)

Input: $x = x_0 ||x_1|| \cdots ||x_\ell|$ $(x_0 \in \{0,1\}^n \text{ and } x_1, \dots, x_\ell \in \{0,1\}^{n'}, n' < n)$ Output: $y \in \{0,1\}^n$



Theorem 5.2

For any quantum q-query adversary A, $Adv_{H^E}^{ow}(A) \leq O(q/2^{n/2}) + small terms$

holds.

 H^E is Merkle-Damgård with Davies-Meyer (fixed block length and specific padding)

Theorem 5.2

For any quantum q-query adversary A, $Adv_{H^{E}}^{ow}(A) \leq O(q/2^{n/2}) + small terms$

holds.

 H^E is Merkle-Damgård with Davies-Meyer (fixed block length and specific padding)

Giving a proof

= giving a quantum query lower bound

Area [Model]	Problems	Backward query?
Quantum computation	Worst case	×
Cryptography [(Q)ROM] (Quantum) Random Oracle Model	Average case (randomized)	×
Cryptography [(Q)ICM] (Quantum) Ideal Cipher Model	Average case (randomized)	\bigcirc

Our theorem is the first result on quantum query lower bound that takes <u>backward queries to public permutations / BCs</u> into account without any algebraic assumptions

Area [Model]	Problems	Backward query?
Quantum computation	Worst case	×
Cryptography [(Q)ROM] (Quantum) Random Oracle Model	Average case (randomized)	×
Cryptography [(Q)ICM] (Quantum) Ideal Cipher Model	Average case (randomized)	\bigcirc

Our theorem is the first result on quantum query lower bound that takes <u>backward queries to public permutations / BCs</u> into account without any algebraic assumptions

Area [Model]	Problems	Backward query?
Quantum computation	Worst case	×
Cryptography [(Q)ROM] (Quantum) Random Oracle Model	Average case (randomized)	×
Cryptography [(Q)ICM] (Quantum) Ideal Cipher Model	Average case (randomized)	\bigcirc

Our theorem is the first result on quantum query lower bound that takes <u>backward queries to public permutations / BCs</u> into account without any algebraic assumptions

Area [Model]	Problems	Backward query?
Quantum computation	Worst case	×
Cryptography [(Q)ROM] (Quantum) Random Oracle Model	Average case (randomized)	×
Cryptography [(Q)ICM] (Quantum) Ideal Cipher Model	Average case (randomized)	\bigcirc

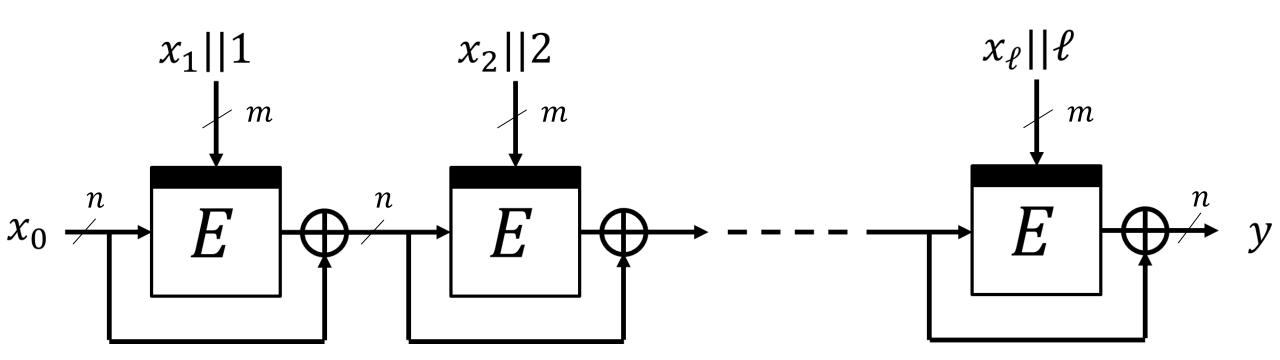
Our theorem is the first result on quantum query lower bound that takes <u>backward queries to public permutations / BCs</u> into account without any algebraic assumptions

Area [Model]	Problems	Backward query?
Quantum computation	Worst case	×
Cryptography [(Q)ROM] (Quantum) Random Oracle Model	Average case (randomized)	×
Cryptography [(Q)ICM] (Quantum) Ideal Cipher Model	Average case (randomized)	Ο

Our theorem is the first result on quantum query lower bound that takes <u>backward queries to public permutations / BCs</u> into account without any algebraic assumptions

Our Construction: Merkle-Damgård with Davies-Meyer

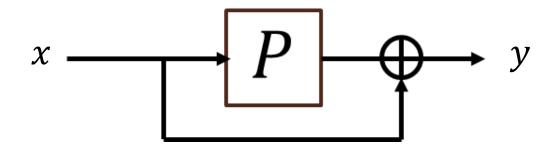
(fixed block-length, with a specific padding)



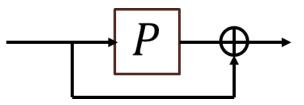
Somewhat complex...

Innovative R&D by NT1

Lets' show this simplified function is one-way

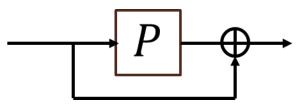


It can be easily shown that:

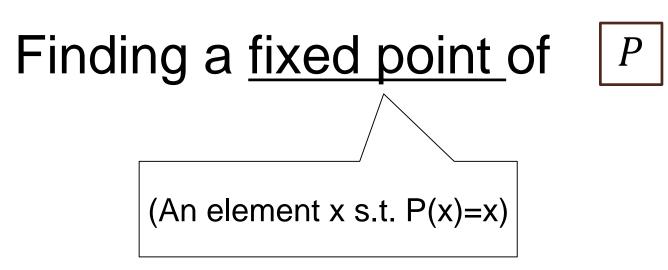


is almost as hard as

It can be easily shown that:



is almost as hard as



Next: I want to reduce

Finding a <u>fixed point of</u>

to

Next: I want to reduce

to

Distinguishing two distributions D_1 , D_2 on Func($\{0,1\}^n$, $\{0,1\}$)

Since Boolean functions are much simpler than permutations

distributions *D*₁, *D*₂ on the set of boolean functions

- Innovative R&D by NTT
- Define D_1 on $Func(\{0,1\}^n,\{0,1\})$ as the distribution which corresponds to the following sampling:
- *P* ←^{\$} Perm({0,1}ⁿ)
 Define *f*: {0,1}ⁿ → {0,1} by *f*(*x*) = 1 iff *P*(*x*) = *x* Return *f*
- D_1 is the "distribution of fixed points of RP"
- Define D_2 as the degenerate distribution on the zero function

Intuitively,

Finding a fixed point of P

is almost as hard as

Distinguishing two distributions D_1 , D_2 on Func($\{0,1\}^n$, $\{0,1\}$)

It is sufficient to show that

Distinguishing two distributions D_1, D_2 on Func($\{0,1\}^n, \{0,1\}$) is hard

to show

It is sufficient to show that

Distinguishing two distributions D_1 , D_2 on Func({0,1}ⁿ, {0,1}) is hard

Brea How to show it is hard? \rightarrow our third result

Results

- 1. Proposal of a quantum version of the ideal cipher model
- **2. Proof of optimal one-wayness** $(2^{n/2}$ quantum queries are required to break one-wayness) **of the combination of Merkle-Damgård with Davies-Meyer (fixed block length, with a specific padding)**
- 3. A proof technique to show quantum oracle indistinguishability

Proposition 3.2

Let D_1 be <u>arbitrary distribution</u> on Func($\{0,1\}^n, \{0,1\}$), and D_2 be the degenerate distribution on the zero function. Then

$$\begin{aligned} \operatorname{Adv}_{D_1,D_2}^{\operatorname{dist}}(A) &\leq 2q \sum_{\alpha} p_1^{\operatorname{good}_{\alpha}} \sqrt{p_1^{f|\operatorname{good}_{\alpha}} \max_{x}} |\{f \in \operatorname{good}_{\alpha} | f(x) = 1\}| \\ &+ \Pr_{F \sim D_1} [F \in \operatorname{bad}] \quad \text{holds.} \end{aligned}$$

 $\{\operatorname{good}_{\alpha}\}_{\alpha} \cdots \text{ a set of subsets of } \operatorname{Func}(\{0,1\}^{n},\{0,1\}) \\ \operatorname{bad} \coloneqq \operatorname{Func}(\{0,1\}^{n},\{0,1\}) \setminus (\bigcup_{\alpha} \operatorname{good}_{\alpha}) \\ p_{1}^{\operatorname{good}_{\alpha}} \coloneqq \Pr_{F \sim D_{1}}[F \in \operatorname{good}_{\alpha}], p_{1}^{f | \operatorname{good}_{\alpha}} \coloneqq \Pr_{F \sim D_{1}}[F = f | F \in \operatorname{good}_{\alpha}] \\ \end{cases}$

Condition: $\operatorname{good}_{\alpha} \cap \operatorname{good}_{\beta} = \emptyset$,and $p_1^{f | \operatorname{good}_{\alpha}}$ is independendet of f

🕐 NTT

Proposition 3.2

Let D_1 be <u>arbitrary distribution</u> on Func($\{0,1\}^n, \{0,1\}$), and D_2 be the degenerate distribution on the zero function. Then

$$\begin{aligned} \operatorname{Adv}_{D_1,D_2}^{\operatorname{dist}}(A) &\leq 2q \sum_{\alpha} p_1^{\operatorname{good}_{\alpha}} \sqrt{p_1^{f|\operatorname{good}_{\alpha}} \max_x} |\{f \in \operatorname{good}_{\alpha}|f(x) = 1\}| \\ &+ \Pr_{F \sim D_1}[F \in \operatorname{bad}] \quad \text{holds.} \end{aligned}$$

We can give an upper bound of the advantage with only calculations of <u>*classical*</u> probabilities, if we can choose some "good" subsets of $Func(\{0,1\}^n,\{0,1\})$

Recall arguments on our second result…

It is sufficient to show that

Distinguishing two distributions D_1, D_2 on Func($\{0,1\}^n, \{0,1\}$) is hard

to show

Recall arguments on our second result…

With our third result, we can show

 $O(2^{n/2})$ queries are required to distinguish D_1, D_2 with a constant probability

Breaking one-wayness of $-P \rightarrow P$ is hard

Recall arguments on our second result…

With our third result, we can show

$O(2^{n/2})$ queries are required to distinguish D_1, D_2 with a constant probability

thus

O Breaking one-wayness of $-P \rightarrow P$ is hard

Outline

Backgrounds

- Post-quantum security of sym-key schemes
- Are hash functions post-quantum secure?
- •Our Results
- •Summary

- The combination of Merkle-Damgård with Davies-Meyer is one-way in "quantum ideal cipher model" (fixed block-length, with specific padding)
- \cdot The first result on quantum query lower bound that takes backward queries to public permutations or block ciphers into account w/o any algebraic assumptions
- A technique to show quantum oracle indistinguishability

