Quantum Algorithms for the k-xor Problem

Lorenzo Grassi¹, María Naya-Plasencia², André Schrottenloher²

1 IAIK, Graz University of Technology, Austria 2 Inria, France

December 3, 2018

Outline

2 Low-qubits k [-xor algorithms](#page-20-0)

3 k[-xor algorithms with qRAM](#page-0-0)

[Context](#page-2-0)

L. Grassi, M. Naya-Plasencia, A. Schrottenloher [Quantum Algorithms for](#page-0-1) k-xor 3/23

The Birthday Problem

Collision search

Let $H : \{0,1\}^n \rightarrow \{0,1\}^n$ be a random function, find a collision of *H*, i.e a pair $x_1, x_2 \in \{0, 1\}^n$ such that $H(x_1) = H(x_2)$.

- Classical queries (to L_1 , L_2 or H) $\mathcal{O}(2^{n/2})$, time $\mathcal{O}(2^{n/2})$ and memory $\mathcal{O}(1)$ (Pollard's rho method).
- $\Omega(2^{n/2})$ is a query lower bound.

The Generalized Birthday problem

k-xor for a random function

Let $H : \{0,1\}^n \rightarrow \{0,1\}^n$ be a random function, find x_1, \ldots, x_k such that $H(x_1) \oplus \ldots \oplus H(x_k) = 0$.

- Many applications in cryptanalysis: (R)FSB, SWIFFT. . .
- Applications for *k*-sums: \oplus is replaced by modular $+$

Wagner, "A Generalized Birthday Problem", 2002

L. Grassi, M. Naya-Plasencia, A. Schrottenloher [Quantum Algorithms for](#page-0-1) k-xor 5/23

Classical Results

To get a k -xor on *n* bits:

- The query complexity is $\Omega(2^{n/k})$
- The time complexity is $\mathcal{O}\left(2^{n/(1+\lfloor \log_2(k) \rfloor)}\right)$
- The memory complexity is $\mathcal{O}\left(2^{n/(1+\lfloor\log_2(k)\rfloor)}\right)$
- \bullet ... unless $\mathbf{k} = 2$, in which case memory is $\mathcal{O}(1)$
- \bullet ... when $\mathbf{k} = 3$, logarithmic improvements are available

Wagner's Algorithm

Generic method for the k-xor or k-sum with a general k: works at best when **k** is a power of 2.

Quantum results

To get a k -xor on *n* bits:

- The query complexity is $\Omega(2^{n/(\mathbf{k}+1)})$
- With $\mathcal{O}(n)$ qubits, the time complexity for $\mathbf{k} = 2$ is $\mathcal{O}(2^{2n/5})$

With qRAM, the time complexity for $\mathbf{k} = 2$ is $\tilde{\mathcal{O}}(2^{n/3})$. 0 $n/5$ $n/4$ $n/3$ $k = 2$ $k = 4$ $k = 3$ n/2 0 $2n/5$? $k = 2$ Ω ? $n/3$

Brassard, Høyer, and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", 1998

Belovs and Spalek, "Adversary lower bound for the k-sum problem", 2013

This work

We propose time-efficient quantum algorithms in two scenarios:

- **1** Using $\mathcal{O}(n)$ qubits;
- 2 Allowing read-write quantum memory in the qRAM model.

Formalization

- All elements are produced by a random function H and we access the superposition oracle O_{H} .
- A query to O_H costs $\mathcal{O}(1)$ time.

Results

Low-qubits scenario

- 3-xor is exponentially faster than collision search;
- A quantum time speedup (or memory improvement) over Wagner exists for $k \leq 7$.

qRAM scenario

- 3-xor is exponentially faster than collision search;
- k-xor can be solved in time $\tilde{\mathcal{O}}(2^{n/(2+\lfloor \log_2(k) \rfloor)})$, using $\widetilde{\mathcal{O}}\left(2^{n/(2+\lfloor\log_2(\mathbf{k})\rfloor)}\right)$ qRAM (instead of $\mathcal{O}\left(2^{n/(1+\lfloor\log_2(\mathbf{k})\rfloor)}\right)$).

Low-qubits k [-xor algorithms](#page-10-0)

L. Grassi, M. Naya-Plasencia, A. Schrottenloher [Quantum Algorithms for](#page-0-1) k-xor 11/23

Quantum toolbox

Grover's algorithm

- $f : \{0,1\}^n \rightarrow \{0,1\}$ is a test function.
- We look for x such that $f(x) = 1$ (there are 2^t solutions).
- \bullet We implement f as a quantum circuit.
- With Grover: $\mathcal{O}\left(2^{(n-t)/2}\right)$ calls to f instead of 2^{n-t} classically.
- Grover improves exhaustive search by a quadratic factor when the oracle f is fast.

1. Testing membership with few qubits

Assume that L_1 and L_2 of sizes ℓ each are given classically. We search x such that $\exists z_1, z_2 \in L_1 \times L_2$, $H(z_1) \oplus H(z_2) \oplus H(x) = 0$.

- Grover requires $\sqrt{2^n/\ell^2}$ iterations.
- \bullet How to test if x is good?

Grover's test

- The lists are known classically.
- \bullet But the oracle question is asked for a superposition of x.
- A solution is to compare sequentially: ℓ^2 n-bit comparisons.

Chailloux, Naya-Plasencia, and Schrottenloher, "An Efficient Quantum Collision Search Algorithm and Implications on Symmetric Cryptography", 2017

L. Grassi, M. Naya-Plasencia, A. Schrottenloher [Quantum Algorithms for](#page-0-1) k-xor 13/23

2. Distinguished solution strategy

We take specific L_1 and L_2 : images are prefixed by $\frac{n}{2}$ zeroes.

- We only need to search for a "distinguished solution" (with the same prefix): we compare pairs less often;
- Producing the lists costs $2^{n/4} \times 2^{n/8} = 2^{3n/8}$ queries and as much for searching x .

Collision:
$$
2^{\frac{1}{2}\cdot\frac{2n}{5}+\frac{n}{5}}+2^{\frac{n}{5}}\left(2^{\frac{1}{2}\cdot\frac{2n}{5}}+2^{\frac{n}{5}}\right)
$$
 and 3-xor: $2^{\frac{1}{2}\cdot\frac{n}{2}+\frac{n}{8}}+2^{\frac{n}{8}}\left(2^{\frac{1}{2}\cdot\frac{n}{2}}+2^{\frac{n}{4}}\right)$

3. Merging technique

We take more specific L_1 and L_2 to reduce the checking cost.

$$
\ell = 2^{n/7} \left[\begin{array}{|c|c|c|c|c|c|} \hline 2n/7 & n/7 & n/7 & 3n/7 \\ \hline 0 & 0 & y_1 & \alpha_1 \\ \hline \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & y_{2^{n/7}} & \alpha_{2^{n/7}} \\ \hline \end{array} \right] 2^{n/7} \left[\begin{array}{|c|c|c|c|c|c|} \hline 2n/7 & n/7 & n/7 & 3n/7 \\ \hline 0 & z_1 & 0 & \beta_1 \\ \hline \vdots & \vdots & \vdots & \vdots \\ 0 & z_{2^{n/7}} & 0 & \beta_{2^{n/7}} \\ \hline \end{array} \right]
$$

Now to test a distinguished point x :

- \bullet Find a partially colliding element from L_1 ;
- \bullet Find a partially colliding element from L_2 :
- Compute the xor of the three values;
- The test costs $\mathcal{O}(\ell)$ comparisons instead of $\mathcal{O}(\ell^2)$.

Optimization and results

Optimizing the lists / prefix sizes leads to $\mathcal{O}\left(2^{5n/14}\right)$ time for $k = 3$.

General k

The same merging method can be extended to the k-xor. Time speedup over Wagner for $k = 3, 5, 6, 7$ and memory improvement for $k = 4$.

k[-xor algorithms with qRAM](#page-16-0)

3-xor with qRAM

qRAM is now available.

No need for a distinguished solution (testing membership is efficient) but the merging technique still applies.

⇒ $\tilde{\mathcal{O}}(2^{3n/10})$ time with 2 lists of size $2^{n/5}$: better than quantum collision search.

General k

Combining:

- Wagner's method (successive lists of *i*-collisions with increasing zero prefixes)
- A quantum walk on the Johnson graph

We obtain a general time speedup.

Results

- Classical time (using classical memory)
- Quantum time $(O(n)$ qubits and classical memory)
- Quantum time (unbounded qRAM)

Memory

- Classical (using classical memory)
- Quantum low-qubits $(O(n))$ qubits and classical memory)
- Quantum (qRAM)

Conclusion and perspectives

Conclusion

Settled

- An exponential separation between quantum collision and 3-xor (with qRAM, it goes below the quantum collision lower bound)
- With $\mathcal{O}(n)$ qubits, quantum time speedups for some k.
- With any k, a quantum time speedup using qRAM.
- This applies to k -sum modulo 2^n (ePrint version).

Open questions

- Can we improve the time complexity of k-xor with $\mathcal{O}(n)$ qubits, for general k?
- Are there other improvements when **k** is not a power of 2?

Thank you.

L. Grassi, M. Naya-Plasencia, A. Schrottenloher **[Quantum Algorithms for](#page-0-1) k-xor**