Quantum Algorithms for the *k*-xor Problem

Lorenzo Grassi¹, María Naya-Plasencia², André Schrottenloher²

¹ IAIK, Graz University of Technology, Austria ² Inria, France

December 3, 2018

Outline

2 Low-qubits k-xor algorithms

3 *k*-xor algorithms with qRAM

L. Grassi, M. Nava-Plasencia, A. Schrottenloher

Context

L. Grassi, M. Naya-Plasencia, A. Schrottenloher

Quantum Algorithms for *k*-xor 3/23

The Birthday Problem

Collision search

Let $H : \{0,1\}^n \to \{0,1\}^n$ be a random function, find a collision of H, i.e a pair $x_1, x_2 \in \{0,1\}^n$ such that $H(x_1) = H(x_2)$.

- $\Omega(2^{n/2})$ is a query lower bound.

The Generalized Birthday problem

k-xor for a random function

Let $H : \{0,1\}^n \to \{0,1\}^n$ be a random function, find x_1, \ldots, x_k such that $H(x_1) \oplus \ldots \oplus H(x_k) = 0$.

- Many applications in cryptanalysis: (R)FSB, SWIFFT...
- Applications for k-sums: \oplus is replaced by modular +

Wagner, "A Generalized Birthday Problem", 2002

L. Grassi, M. Naya-Plasencia, A. Schrottenloher

Classical Results

To get a \mathbf{k} -xor on \mathbf{n} bits:

- The query complexity is $\Omega(2^{n/k})$
- The time complexity is $\mathcal{O}\left(2^{n/(1+\lfloor \log_2(\mathbf{k}) \rfloor)}\right)$
- The memory complexity is $\mathcal{O}\left(2^{n/(1+\lfloor \log_2(k) \rfloor)}\right)$
- ... unless $\mathbf{k}=$ 2, in which case memory is $\widetilde{\mathcal{O}}\left(1
 ight)$
- ullet . . . when old k=3, logarithmic improvements are available

Wagner's Algorithm

Generic method for the k-xor or k-sum with a general k: works at best when k is a power of 2.

Quantum results

To get a \mathbf{k} -xor on \mathbf{n} bits:

- The query complexity is $\Omega(2^{n/(k+1)})$
- With $\mathcal{O}(n)$ qubits, the time complexity for $\mathbf{k} = 2$ is $\mathcal{O}(2^{2n/5})$

• With qRAM, the time complexity for $\mathbf{k} = 2$ is $\tilde{\mathcal{O}}(2^{n/3})$. n/5 n/4 n/3 n/2 $\mathbf{k} = 4 \mathbf{k} = 3$ $\mathbf{k} = 2$ n/3 $\mathbf{k} = 2$ n/3 $\mathbf{k} = 2$ n/3 $\mathbf{k} = 2$ n/3 $\mathbf{k} = 2$

Brassard, Høyer, and Tapp, "Quantum Cryptanalysis of Hash and Claw-Free Functions", 1998 Belovs and Spalek, "Adversary lower bound for the k-sum problem", 2013

This work

We propose time-efficient quantum algorithms in two scenarios:

- **1** Using $\mathcal{O}(n)$ qubits;
- 2 Allowing read-write quantum memory in the qRAM model.

Formalization

- All elements are produced by a random function H and we access the superposition oracle O_H .
- A query to O_H costs $\mathcal{O}(1)$ time.

Results

Low-qubits scenario

- 3-xor is exponentially faster than collision search;
- A quantum time speedup (or memory improvement) over Wagner exists for k ≤ 7.

qRAM scenario

- 3-xor is exponentially faster than collision search;
- *k*-xor can be solved in time $\widetilde{\mathcal{O}}(2^{n/(2+\lfloor \log_2(k) \rfloor)})$, using $\widetilde{\mathcal{O}}(2^{n/(2+\lfloor \log_2(k) \rfloor)})$ qRAM (instead of $\mathcal{O}(2^{n/(1+\lfloor \log_2(k) \rfloor)}))$.

Low-qubits *k*-xor algorithms

L. Grassi, M. Naya-Plasencia, A. Schrottenloher

Quantum Algorithms for *k*-xor 11/23

Quantum toolbox

Grover's algorithm

- $f : \{0,1\}^n \to \{0,1\}$ is a test function.
- We look for x such that f(x) = 1 (there are 2^t solutions).
- We implement f as a quantum circuit.
- With Grover: $\mathcal{O}(2^{(n-t)/2})$ calls to f instead of 2^{n-t} classically.
- Grover improves exhaustive search by a quadratic factor when the oracle *f* is fast.

1. Testing membership with few qubits

Assume that L_1 and L_2 of sizes ℓ each are given classically. We search x such that $\exists z_1, z_2 \in L_1 \times L_2, H(z_1) \oplus H(z_2) \oplus H(x) = 0$.

- Grover requires $\sqrt{2^n/\ell^2}$ iterations.
- How to test if x is good?

Grover's test

- The lists are known classically.
- But the oracle question is asked for a **superposition** of *x*.
- A solution is to compare sequentially: ℓ^2 *n*-bit comparisons.

Chailloux, Naya-Plasencia, and Schrottenloher, "An Efficient Quantum Collision Search Algorithm and Implications on Symmetric Cryptography", 2017

L. Grassi, M. Naya-Plasencia, A. Schrottenloher

2. Distinguished solution strategy

We take specific L_1 and L_2 : images are prefixed by $\frac{n}{2}$ zeroes.

- We only need to search for a "distinguished solution" (with the same prefix): we compare pairs less often;
- Producing the lists costs 2^{n/4} × 2^{n/8} = 2^{3n/8} queries and as much for searching x.

Collision:
$$2^{\frac{1}{2} \cdot \frac{2n}{5} + \frac{n}{5}} + 2^{\frac{n}{5}} \left(2^{\frac{1}{2} \cdot \frac{2n}{5}} + 2^{\frac{n}{5}} \right)$$
 and 3-xor: $2^{\frac{1}{2} \cdot \frac{n}{2} + \frac{n}{8}} + 2^{\frac{n}{8}} \left(2^{\frac{1}{2} \cdot \frac{n}{2}} + 2^{\frac{n}{4}} \right)$

3. Merging technique

We take more specific L_1 and L_2 to reduce the checking cost.

Now to test a distinguished point *x*:

- Find a partially colliding element from L_1 ;
- Find a partially colliding element from L₂;
- Compute the xor of the three values;
- The test costs $\mathcal{O}(\ell)$ comparisons instead of $\mathcal{O}(\ell^2)$.

Optimization and results

Optimizing the lists / prefix sizes leads to $\mathcal{O}\left(2^{5n/14}\right)$ time for k=3.

General k

The same merging method can be extended to the *k*-xor. Time speedup over Wagner for $\mathbf{k} = 3, 5, 6, 7$ and memory improvement for $\mathbf{k} = 4$.

k-xor algorithms with qRAM

3-xor with qRAM

qRAM is now available.

No need for a **distinguished solution** (testing membership is efficient) but the merging technique still applies.

 $\Rightarrow \widetilde{O}(2^{3n/10})$ time with 2 lists of size $2^{n/5}$: better than quantum collision search.

General k

Combining:

- Wagner's method (successive lists of *i*-collisions with increasing zero prefixes)
- A quantum walk on the Johnson graph

We obtain a general time speedup.

Results

- Classical time (using classical memory)
- Quantum time $(\mathcal{O}(n)$ qubits and classical memory)
- Quantum time (unbounded qRAM)

Memory

- Classical (using classical memory)
- Quantum low-qubits ($\mathcal{O}(n)$ qubits and classical memory)
- Quantum (qRAM)

Conclusion and perspectives

Conclusion

Settled

- An exponential separation between quantum collision and 3-xor (with qRAM, it goes below the quantum collision lower bound)
- With $\mathcal{O}(n)$ qubits, quantum time speedups for some **k**.
- With any \mathbf{k} , a quantum time speedup using qRAM.
- This applies to **k**-sum modulo 2^{*n*} (ePrint version).

Open questions

- Can we improve the time complexity of k-xor with $\mathcal{O}(n)$ qubits, for general k?
- Are there other improvements when **k** is not a power of 2?

Thank you.

L. Grassi, M. Naya-Plasencia, A. Schrottenloher

Quantum Algorithms for k-xor