
Parameter-Hiding Order
Revealing Encryption

Cong Zhang
Rutgers University

Joint work with David Cash, Feng-Hao Liu, Adam O’Neill and Mark Zhandry

1

“because it would hurt Yahoo’s ability to index and
search messages to provide new user services”

~Be Jeff Bonfort(Yahoo SVP)

Order-Revealing Encryption (ORE) [BCLO’09]

Order Revealing Encryption (ORE): Three algorithms:

(𝑠𝑘, 𝑝𝑘) ← 𝖦𝖾𝗇 outputs a secret key and a public “comparison” key

𝑐 ← 𝖤-.(𝑥) outputs ciphertext

𝑏 ← 𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝑝𝑘, 𝑐7, 𝑐8)outputs a bit

In this talk, message domain is always some integer interval [𝑀] = {0,1, … ,𝑀}

Correctness: 𝑥7 ≤ 𝑥8 ⟺ 𝖢𝗈𝗆𝗉𝖺𝗋𝖾(𝐸-.(𝑥7), 𝐸-.(𝑥8)) = 1(w.h.p.)

Order Preserving Encryption (OPE): Is an ORE scheme where ciphertexts are
also integers and comparison is simple integer comparison.

‣ If encryption is deterministic, then OPE encryption is an increasing function

‣ pk is emptystring in OPE, and often in ORE as well

𝑥7 < 𝑥8 ⟺ 𝐸-.(𝑥7) < 𝐸-.(𝑥8)(w.h.p.)Correctness:

Decryption: Not required to be useful, but always possible using comparison.

3

First Name Last Name Zip D.O.B.

6d9737 a22844 08k065 5ad287

9d8ea6 753996 26861e abd94c

10eca7 b6b59c 2hc36e 405702

d99ff8 a2e2a0 48eb42 0abd94

First Name Last Name Zip D.O.B.

Bob Rogers 08904 Aug 18 1982

Dana Brown 10010 Feb 12 1988

Emma Smith 10021 Jan 22 1970

Fran Jones 12209 May 30 1968

First Name Last Name Zip D.O.B.

6d9737 Rogers 08904 Aug 18 1982

9d8ea6 Brown 10010 Feb 12 1988

10eca7 Smith 10021 Jan 22 1970

d99ff8 Jones 12209 May 30 1968

ORE in Encrypted Databases

First Name Last Name Zip D.O.B.

6d9737 a22844 08904 Aug 18 1982

9d8ea6 753996 10010 Feb 12 1988

10eca7 b6b59c 10021 Jan 22 1970

d99ff8 a2e2a0 12209 May 30 1968

‣Enables range queries: To query a range from x to y, we rewrite
the query as from Esk(x) to Esk(y).

Zip

08904

10010

10021

12209

Zip

08k065

26861e

2hc36e

48eb42

query between
10000 and 11104

query between
26861e and 2hc36evs.

encrypted columnplaintext column

deployed by:

prototyped by:

academic projects:

CryptDB[PRZB’11]
4

Two Flavors of ORE: Ideal and Leaky

Zip Code

68k065

48eb42

26861e

01c36e

Encrypted column: ideal ORE:

Zip Code

4

3

2

1

leaky ORE (example):

Zip Code

98211

10761

10065

10028

order
+

extra info
revealed

‣ fast, block cipher based
constructions
[BCLO’09, CLWW’16]
‣extra info includes:

some plaintext bits,
statistics, or more.

only
order

revealed

5

‣only known way achieved via iO,
multilinear maps [BLRSZZ’15]
‣ interactive protocols

[PLZ’13,KS’14,Ker’15]

ORE
Inference attacks [NKW’15]

Known attacks on ORE

Non-crossing attacks [GSBNR’17]

Correlation attacks [DDC’16, BGCRS’18]

Semantically meaningful privacy notion?

Security does not imply Privacy!!!

ORE

Privacy Notions

‣ Distribution-Hiding

‣ Parameter-Hiding

Privacy Notions

‣ Distribution-Hiding

‣ Parameter-Hiding

(𝑚7,… ,𝑚K) (𝑚7
L , … ,𝑚K

L)

Can be achieved only by Ideal ORE

‣ Parameter-Hiding

“Mean” and “Variance” are hidden

Why does parameter-hiding matter?

‣ Parameter-Hiding is the current strongest privacy
notion achieved efficiently;

‣ It captures potential real world application

‣Adversary only have the curve information of message
distribution;
‣Statistics (mean, variance etc.) are important.

Security and Privacy

C
om

pl
ex

ity
 o

f T
oo

ls

[BCLO’09]

[BLRSZZ’15, GGGJKLSSZ’14]

[CLWW’16]

[LW’16]

[CLOZ’16, JP’16]

idealleak even
less

leak less
than half

leak half

blockciphers/
hash functions

discrete log

pairings/LWE

m-maps/iO

This work: Construct PH-ORE based on bi-linear maps

parameter-hiding

Main Result

Theorem: Assuming bilinear map, it is possible to construct
parameter-hiding ORE for any “smooth” distribution D,
provided the scaling term is large enough.

‣ smoothness is define as having bounded derivative except
constant points

‣ large scaling term means D has high min-entropy;

Outline

1. ORE Security Definition

2. EP-MSDB-secure Constructions and Leakage Profile

3. High-level Intuition

4. Bonus: Impossibility results on OPE

5. Conclusion

12

Outline

1. ORE Security Definition

2. EP-MSDB-secure Constructions and Leakage Profile

3. High-level Intuition

4. Bonus: Impossibility results on OPE

5. Conclusion

13

Pr[𝒜outputs	1	in	REAL] ≈
Pr[𝒜outputs	1in	IDEALℒ,𝒮]

Def.	An	ORE	schemeΠis	ℒ−secure	if	∀𝒜∃𝒮:

ORE Security Definition

‣ “Leakage function” and simulator are stateful, randomizedℒ 𝒮

14

Formal security model games

challenger

Output: Bit b

(𝑠𝑘, 𝑝𝑘) ← 𝖪𝖾𝗒𝗀𝖾𝗇
𝑥m ∈ [𝑀]

𝑐m

𝑝𝑘

𝑐m ← 𝖤-.(𝑥m)

challenger

Output: Bit b

𝑝𝑘 ← 𝒮
𝑥m ∈ [𝑀]

𝑐m

𝑝𝑘

𝑐m ← 𝒮(ℒ(𝑥7, … , 𝑥m))

REAL

IDEALℒ,𝒮

15

Outline

1. ORE Security Definition

2. EP-MSBD—secure Constructions and Leakage Profile

3. High-level Intuition

4. Bonus: Impossibility results on OPE

5. Conclusion

16

New Leakage Profile

‣ For every pair of ciphertexts ,scheme reveals𝑐 = 𝖤-.(𝑥), 𝑐L = 𝖤-.(𝑥L)

MSDB(𝑥, 𝑥L) = 𝑚𝑖𝑛{𝑖: 𝑥m ≠ 𝑥mL}
plaintexts

xi = 1110110
xj = 1101000
xk= 1001100

xi = x11xxxx
xj = x10xxxx
xk= x0xxxxx

leaked bits

xi = xx1xxxx
xj = xx0xxxx
xk= xxxxxxx

leaked bits

‣ The order for every pair of plaintexts.

17

Inspired by MSDB leakage profile [CLWW’16]

Equality Pattern of Most Significant Differ-Bit (EP-MSDB)

EP-MSDB Leakage Profile

‣ For every pair of ciphertexts 𝑐 = 𝖤-.(𝑥), 𝑐L = 𝖤-.(𝑥L), 𝑐LL = 𝖤-.(𝑥LL)

MSDB(𝑥, 𝑥L) =? MSDB(𝑥, 𝑥LL)

‣ The order for every pair of plaintexts.

Example

x = 00001010101

x’ = 00101110100

x’’= 00111111111

MSDB(𝑥, 𝑥L) = MSDB(𝑥, 𝑥LL)

MSDB(𝑥L, 𝑥) ≠ MSDB(𝑥L, 𝑥LL)

MSDB(𝑥LL, 𝑥) ≠ MSDB(𝑥LL, 𝑥L)

⇒

2x = 00010101010

2x’ = 01011101000

2x’’= 01111111110

MSDB construction [CLWW’16]

‣ Ingredient: PRF 𝐹:𝒦×{0,1}∗ → {0,1}| ∖ {1|}

(𝐾, ⊥) ← 𝖪𝖾𝗒𝗀𝖾𝗇

1. Key generation: Output PRF key as secret, and no public key

For	𝑖 = 1,… ,𝑚: 𝑐m ← (𝐹�(𝑥7, … , 𝑥m�7) + 𝑥m𝑚𝑜𝑑	2|)

2. Encryption: Input x ∈ [M], Esk(x) works as follows:
‣

‣

‣

Parse	𝑥	into	bits	𝑥7𝑥8 …𝑥�,where	𝑚 = log𝑀

Output	(𝑐7, 𝑐8, … , 𝑐�) ∈ {0,1}�|

19

Comparison Algorithm for MSDB scheme [CLWW’16]

3. Comparison: On input (𝑐7, … , 𝑐�), (𝑐7L , … , 𝑐�L)

𝑐7 = 𝐹�(𝜀) + 𝑥7

𝑐7L = 𝐹�(𝜀) + 𝑥7L

𝑐8 = 𝐹�(𝑥7) + 𝑥8 𝑐� = 𝐹�(𝑥7𝑥8) + 𝑥�

𝑐8L = 𝐹�(𝑥7L) + 𝑥8L 𝑐�L = 𝐹�(𝑥7L𝑥8L) + 𝑥�L

Equal? Equal? Equal?

…

‣ At first index i where , either or

‣ Determine which is larger by checking cases

𝑥m ≠ 𝑥mL 𝑐m = 𝑐mL + 1 𝑐mL = 𝑐m + 1

20

EP-MSDB construction

‣ Ingredient : PRF 𝐹:𝒦×{0,1}∗ → {0,1}| ∖ {1|}

(𝐾, ⊥) ← 𝖪𝖾𝗒𝗀𝖾𝗇

1. Key generation: Output PRF key as secret, and no public key

For	𝑖 = 1,… ,𝑚: 𝑐m ← (𝐹�(𝑥7, … , 𝑥m�7) + 𝑥m𝑚𝑜𝑑2|)

2. Encryption: Input x ∈ [M], Esk(x) works as follows:
‣

‣

‣

Parse	𝑥I	nto	bits	𝑥7𝑥8 …𝑥�,where	𝑚 = log𝑀

Output	(𝑐7, 𝑐8, … , 𝑐�) ∈ {0,1}�|

property-preserving hash ℋ: 𝗌𝗄×{0,1}| → Group	elements

Property-preserving Hash

ℋ𝗌𝗄(𝑥) = (𝑔7
��, 𝑔7

��⋅���𝗌𝗄(�), 𝑔8
��, 𝑔8

��⋅���𝗌𝗄(��7))

Consists of two algorithms: Hash and Testℋ 𝒯

{ if

Otherwise
𝒯(ℋ(𝑥),ℋ(𝑦)) =

1

0

𝑦 = 𝑥 + 1

Scheme:

𝑦 = 𝑥 + 1

ℋ𝗌𝗄(𝑦) = (𝑔7
��, 𝑔7

��⋅���𝗌𝗄(�), 𝑔8
��, 𝑔8

��⋅���𝗌𝗄(��7))

If

EP-MSDB construction

‣ Ingredient : PRF 𝐹:𝒦×{0,1}∗ → {0,1}| ∖ {1|}

((𝗍𝗄, 𝗌𝗄), 𝐾, ⊥) ← 𝖪𝖾𝗒𝗀𝖾𝗇

1. Key generation: Output PRF key as secret, and public key is the test key

For𝑖 = 1,… ,𝑚: 𝑐m ← (𝐹�(𝑥7, … , 𝑥m�7) + 𝑥m𝑚𝑜𝑑2|)

2. Encryption: Input x ∈ [M], Esk(x) works as follows:
‣

‣

‣

Parse𝑥into	bits𝑥7𝑥8 …𝑥�,where𝑚 = log𝑀

Output(𝑐7, 𝑐8, … , 𝑐�) ∈ {0,1}�|

property-preserving hash ℋ: 𝗌𝗄×{0,1}| → Group	elements

PK SK

For𝑖 = 1,… ,𝑚: 𝑐m ← (𝐹�(𝑥7, … , 𝑥m�7) + 𝑥m𝑚𝑜𝑑2|)

2. Encryption: Input x ∈ [M], Esk(x) works as follows:
‣

‣

‣

Parse𝑥into	bits𝑥7𝑥8 …𝑥�,where𝑚 = log𝑀

Output(𝐶7, 𝐶8, … , 𝐶�) = 𝜋(ℋ(𝑐7), … ,ℋ(𝑐�))

(𝐾, ⊥) ← 𝖪𝖾𝗒𝗀𝖾𝗇

1. Key generation: Output PRF key as secret, and no public key

Comparison EP-MSDB scheme

3. Comparison: On input (𝐶7, … , 𝐶�), (𝐶7L, … , 𝐶�L)

Identity index (i, j) such that: either or𝒯(𝐶m, 𝐶¢L) = 1 𝒯(𝐶mL, 𝐶¢) = 1

Determine which is larger by checking cases.

Thm: Under SXDH assumption, ∏ is EP-MSDB-secure.

Outline

1. ORE Security Definition

2. EP-MSDB-secure Constructions and Leakage Profile

3. High-level Intuition

4. Bonus: Impossibility results on OPE

5. Conclusion

25

High-level Intuition

If we only hide “mean”, we can add a random shift:

(𝑚7,… ,𝑚K) ∈ [0,2ℓ)

⇒ ℒ(𝑚7,… ,𝑚K) = ℒ(𝑚7 + 2ℓ, … ,𝑚K + 2ℓ)

Observations on EP-MSDB leakage profile

𝖤𝗇𝖼(𝑚) = 𝖤𝗇𝖼(𝑚 + 𝛽), 𝛽 ←
$
[0,2ℓ)

periodicity by addition

we need find an alternative periodicity

High-level Intuition

Additional observation

(𝑚7,… ,𝑚K) ∈ [0,2ℓ)

⇒ ℒ(𝑚7,… ,𝑚K) = ℒ(2𝑚7,… , 2𝑚K)

periodicity by multiplication

applying the same trick

for hiding variance 𝖤𝗇𝖼(𝑚) = 𝖤𝗇𝖼(𝛼𝑚)

for hiding both 𝖤𝗇𝖼(𝑚) = 𝖤𝗇𝖼(𝛼𝑚 + 𝛽)

𝛼 is sampled from log-uniform distribution on [2¨,2¨�7)

𝛽 is sampled from uniform distribution on [0,2¨|�|�7)

15 pages puzzle

Outline

1. ORE Security Definition

2. EP-MSDB-secure Constructions and Leakage Profile

3. High-level Intuition

4. Bonus: Impossibility results on OPE

5. Conclusion

28

Bonus: Impossibility results of OPE

Ideal ORE ⇒ ⇒EP-MSDB-secure ORE PH ORE

‣There does not exist non-interactive ideal OPE. [BCLO’09]

‣There does not exist non-interactive EP-MSDB-secure OPE.
[CLOZ’16]

‣This work: There does not exist non-interactive PH OPE.

1. Any scheme against adversary with good estimate of message
distribution, which still preserving range query? (In progress)

2. Construct PH-ORE based on cryptographic groups?

Conclusion and Open Problems

30

‣Propose two semantically meaningful privacy notions for ORE:
distribution-hiding and parameter hiding;

‣Construct PH-ORE scheme from an EP-MSDB-secure ORE;

‣Build EP-MSDB-secure ORE from bilinear maps.

Thank you!

31

