Measuring, simulating and exploiting the head concavity phenomenon in BKZ

Shi Bai¹ Damien Stehlé² Weiqiang Wen³

¹Florida Atlantic University. USA.
²École Normale Supérieure de Lyon. France.
³IRISA, Université Rennes 1. France.

ASIACRYPT 2018, BRISBANE, AUSTRALIA.

1. Explain and quantify the shorter-than-expected phenomenon in the head region in BKZ.

- 1. Explain and quantify the shorter-than-expected phenomenon in the head region in BKZ.
- 2. A more accurate simulator for BKZ.

- 1. Explain and quantify the shorter-than-expected phenomenon in the head region in BKZ.
- 2. A more accurate simulator for BKZ.
- 3. A new BKZ variant that exploits the shorter-than-expected phenomenon.

Definition

Given a set of linearly independent vectors $\{\mathbf{b}_1, \cdots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$, the lattice \mathcal{L} spanned by the \mathbf{b}_i 's is

$$\mathcal{L}(\{\mathbf{b}_1,\cdots,\mathbf{b}_n\}) = \bigg\{\sum_{i=1}^n z_i \mathbf{b}_i \mid z_i \in \mathbb{Z}\bigg\}.$$

Let **B** be the column matrix of $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and denote the lattice by $\mathcal{L}(\mathbf{B})$.

Lattice minimum

Given a lattice \mathcal{L} , the minimum $\lambda_1(\mathcal{L})$ is the norm of a shortest non-zero vector in \mathcal{L} .

Bases of a lattice

Given $\mathbf{B}_1, \mathbf{B}_2 \in \mathbb{Q}^{m \times n}$, then $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$ iff $\mathbf{B}_2 = \mathbf{B}_1 \mathbf{U}$ for some unimodular matrix $\mathbf{U} \in \mathbb{Z}^{n \times n}$.

The BKZ lattice reduction algorithm helps to find bases like $(\mathbf{b}_1, \mathbf{b}_2)$.

Bases of a lattice

Given $\mathbf{B}_1, \mathbf{B}_2 \in \mathbb{Q}^{m \times n}$, then $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$ iff $\mathbf{B}_2 = \mathbf{B}_1 \mathbf{U}$ for some unimodular matrix $\mathbf{U} \in \mathbb{Z}^{n \times n}$.

Gram-Schmidt orthogonalization

Let $\mathbf{B}^* = (\mathbf{b}_1^*, \cdots, \mathbf{b}_n^*)$ denote the Gram–Schmidt orthogonalization of \mathbf{B} . The determinant of a lattice \mathcal{L} is $\det(\mathcal{L}) = \prod_i \|\mathbf{b}_i^*\|$.

$\mathsf{BKZ}\text{-}\beta \,\, \mathsf{reduced}$

Given $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n)$, let $\mathbf{b}_i^{(j)}$ denote the orthogonal projection of \mathbf{b}_i onto the subspace $(\mathbf{b}_1, \cdots, \mathbf{b}_{j-1})^{\perp}$.

For $i < j \le n$, let $\mathbf{B}_{[i,j]}$ denote the (matrix) local block $(\mathbf{b}_i^{(i)}, \dots, \mathbf{b}_j^{(i)})$ and $\mathcal{L}_{[i,j]}$ denote the lattice generated by $\mathbf{B}_{[i,j]}$.

Definition

A basis **B** is BKZ- β reduced for block size $\beta \ge 2$ if it is size-reduced^{*} and satisfies:

$$\|\mathbf{b}_i^*\| = \lambda_1(\mathcal{L}_{[i,\min(i+\beta-1,n)]}), \ \forall i \leq n.$$

* A basis **B** is size-reduced, if it satisfies $|\mu_{i,j}| \le 1/2$ for $j < i \le n$ where $\mu_{i,j} = \frac{\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle}{\|\mathbf{b}_i^*\|^2}$.

The BKZ algorithm

The algorithm attempts to make all local blocks satisfy above the minimality condition simultaneously.

Algorithm 1 BKZ algorithm (Schnorr and Euchner)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n)$, a block size β . **Output:** A BKZ- β reduced basis of $\mathcal{L}(\mathbf{B})$. 1: repeat 2: for i = 1 to n - 1 do 3. SVP_{β}: find **b** such that $\|\mathbf{b}^{(i)}\| = \lambda_1(\mathcal{L}(\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)})).$ if $\|\mathbf{b}_{i}^{*}\| > \lambda_{1}(\mathcal{L}(\mathbf{b}_{i}^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)}))$ then 4: LLL-reduce $(\mathbf{b}_1, \cdots, \mathbf{b}_{i-1}, \mathbf{b}, \mathbf{b}_i, \cdots, \mathbf{b}_{\min(n, i+\beta)})$. 5: 6: else LLL-reduce $(\mathbf{b}_1, \cdots, \mathbf{b}_{\min(n, i+\beta)})$. 7: 8: end if end for Q٠ 10: until no change occurs.

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In FCT'91.

The BKZ algorithm

The algorithm attempts to make all local blocks satisfy above the minimality condition simultaneously.

Algorithm 1 BKZ algorithm (Schnorr and Euchner)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n)$, a block size β . **Output:** A BKZ- β reduced basis of $\mathcal{L}(\mathbf{B})$. 1: repeat 2: for i = 1 to n - 1 do 3. SVP_{β}: find **b** such that $\|\mathbf{b}^{(i)}\| = \lambda_1(\mathcal{L}(\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)})).$ if $\|\mathbf{b}_i^*\| > \lambda_1(\mathcal{L}(\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)}))$ then 4: LLL-reduce $(\mathbf{b}_1, \cdots, \mathbf{b}_{i-1}, \mathbf{b}, \mathbf{b}_i, \cdots, \mathbf{b}_{\min(n, i+\beta)})$. 5: 6: else LLL-reduce $(\mathbf{b}_1, \cdots, \mathbf{b}_{\min(n, i+\beta)})$. 7: 8: end if end for Q٠ 10: until no change occurs.

 [Line 3] In practice, SVP solver can be pruned enumeration or sieving.

SVP Challenge. https://www.latticechallenge.org/svp-challenge/.

Quality of BKZ- β reduced basis

A concrete cryptanalysis relies on the BKZ simulator of Chen and Nguyen (ASIACRYPT'11).

It uses the Gaussian heuristic on local blocks, with a modification for the tail blocks.

Gaussian heuristic

For any random *n*-dimensional lattice \mathcal{L} , we have

$$\lambda_1(\mathcal{L}) pprox \operatorname{GH}(\mathcal{L}) = rac{1}{v_n^{1/n}} \cdot \operatorname{det}(\mathcal{L})^{1/n}$$

where v_n is the volume of a unit *n*-ball.

Y. Chen and P.Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT'11.

Algorithm 2 (Simplified) Chen-Nguyen simulator.

Input: G-S norms $(||\mathbf{b}_1^*||, \cdots, ||\mathbf{b}_n^*||)$, a block size β . **Output:** Simulated G-S norms of BKZ_{β} -reduced basis of $\mathcal{L}(\mathbf{B})$. 1: repeat 2: for i = 1 to n - 1 do SVP_{β}: find **b** such that $\|\mathbf{b}^{(i)}\| = \lambda_1(\mathcal{L}(\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)}))$. 3: if $\|\mathbf{b}_i^*\| > \operatorname{GH}(\mathcal{L}((\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n,i+\beta)}^{(i)})))$ then 4: Update $\|\mathbf{b}_i^*\| = \operatorname{GH}(\mathcal{L}((\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta)}^{(i)}))).$ 5: 6: else 7: Keep $\|\mathbf{b}_i^*\|$ unchanged. 8. end if Q٠ end for 10: until no change occurs.

Practical behavior of Chen-Nguyen's simulator

Gram–S. log-norms of BKZ_{45} at tour 50.

Same as left hand side, but zoomed in.

Such "head concavity" phenomenon has been reported in

Practical behavior of Chen-Nguyen's simulator

Gram–S. log-norms of BKZ_{45} at tour 50.

Same as left hand side, but zoomed in.

Such "head concavity" phenomenon has been reported in

experiments of BKZ 2.0 (Chen and Nguyen, ASIACRYPT'11);

Practical behavior of Chen-Nguyen's simulator

Gram–S. log-norms of BKZ_{45} at tour 50.

Same as left hand side, but zoomed in.

Such "head concavity" phenomenon has been reported in

- experiments of BKZ 2.0 (Chen and Nguyen, ASIACRYPT'11);
- and modeled by Yu and Ducas (SAC'17).

Y. Yu and L. Ducas. Second Order Statistical Behavior of LLL and BKZ. In SAC'17.

A better simulator using the distribution of λ_1 in random lattices.

Tools

Let $\Gamma_n = \{\mathcal{L} \in \mathbb{R}^n \mid \operatorname{vol}(\mathcal{L}) = 1\}$ be the set of all full rank-*n* lattices with unit volume.

Chen [Cor. 3.1.4] and Södergren [Thm. 1]:

Distribution of minimum in random lattices

Sample \mathcal{L} uniformly in Γ_n . The distribution of $v_n \cdot \lambda_1(\mathcal{L})^n$ converges in distribution to $\operatorname{Expo}(1/2)$ as $n \to \infty$.

Take $\lambda_1(\mathcal{L})$ as a random variable Y, then $Y = X^{1/n} \cdot \operatorname{GH}(\mathcal{L})$ for X sampled from $\operatorname{Expo}(1/2)$.

Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. PhD thesis, Université Paris Diderot, 2013.

A. Södergren. On the poisson distribution of lengths of lattice vectors in a random lattice. Mathematische Zeitschrift, 2011.

Algorithm 3 The new BKZ simulator (simplified)

Input: G-S norms $(||\mathbf{b}_1^*||, \cdots, ||\mathbf{b}_n^*||)$, a block size β . **Output:** Simulated G-S norms of BKZ- β -reduced basis of $\mathcal{L}(\mathbf{B})$. 1: repeat 2: for i = 1 to n - 1 do 3: Sample X from Expo[1/2]. if $\|\mathbf{b}_i^*\| > X^{1/\beta} \cdot \operatorname{GH}(\mathcal{L}(\mathbf{b}_i^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta-1)}^{(i)}))$ then 4: Update $\|\mathbf{b}_{i}^{*}\| = X^{1/\beta} \cdot \operatorname{GH}(\mathcal{L}(\mathbf{b}_{i}^{(i)}, \cdots, \mathbf{b}_{\min(n, i+\beta)}^{(i)})).$ 5: 6: else 7: Keep $\|\mathbf{b}_i^*\|$ unchanged. 8: end if 9: end for 10: until no change occurs.

Quality of our simulator

Gram–S. log-norms of BKZ_{45} at tour 50.

Same as left hand side, but zoomed in.

Quality of our simulator (more)

Gram–S. log-norms of BKZ₆₀ at tour 20000.

Same as left hand side, but zoomed in.

Quality of our simulator (RHF)

Evolution of RHF during BKZ_{45} (no pruned enumeration) on SVP-100.

Evolution of RHF during BKZ₆₀ (pruned enumeration) on SVP-150.

Given a lattice $\mathcal{L}(\mathbf{B})$ of rank *n*, the Root Hermite Factor of **B** is $\mathsf{RHF}(\mathbf{B}) = \left(\|\mathbf{b}_1\| / \det(\mathcal{L})^{1/n} \right)^{1/n}.$

Limit of the head concavity

Here the dimension is 3β .

For large block sizes, the discrepancy vanishes: both simulators converge to the same root Hermite factors.

Exploit the head concavity phenomenon!

Algorithm 4 The pressed-BKZ algorithm

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$, a block size β . **Output:** A pressed-BKZ- β reduced basis of $\mathcal{L}(\mathbf{B})$. 1: for start = 1 to $n - \beta + 1$ do 2: Re-randomize $\mathcal{L}(\mathbf{b}_{start}^{(start)}, \dots, \mathbf{b}_n^{(start)})$. 3: BKZ- β on the block from start to n. 4: end for

Experiments: BKZ-60

Gram-Schmidt log-norms of BKZ₆₀.

Same as left hand side, but zoomed in.

Experiments: Pressed-BKZ-60 (2 - n)

 $\label{eq:Gram-Schmidt log-norms of} Gram-Schmidt log-norms of (Pressed-)BKZ_{60}.$

Experiments: Pressed-BKZ-60 (3 - n)

 $\label{eq:Gram-Schmidt log-norms of} Gram-Schmidt log-norms of (Pressed-)BKZ_{60}.$

Experiments: Pressed-BKZ-60 (4 - n)

 $\begin{array}{l} {\sf Gram-Schmidt\ log-norms\ of}\\ {\sf (Pressed-)BKZ_{60}}. \end{array}$

Experiments: Pressed-BKZ-60 (5 - n)

 $\begin{array}{l} {\sf Gram-Schmidt\ log-norms\ of}\\ {\sf (Pressed-)BKZ_{60}}. \end{array}$

Experiments: Pressed-BKZ-60 (6 - n)

 $\label{eq:Gram-Schmidt log-norms of} Gram-Schmidt log-norms of (Pressed-)BKZ_{60}.$

Experiments: Pressed-BKZ-60 (7 - n)

 $\label{eq:Gram-Schmidt log-norms of} Gram-Schmidt log-norms of (Pressed-)BKZ_{60}.$

Experiments: Pressed-BKZ-60 (8 - n)

 $\begin{array}{l} {\sf Gram-Schmidt\ log-norms\ of}\\ {\sf (Pressed-)BKZ_{60}}. \end{array}$

Experiments: Pressed-BKZ-60 (9 - n)

 $\begin{array}{l} {\sf Gram-Schmidt\ log-norms\ of}\\ {\sf (Pressed-)BKZ_{60}}. \end{array}$

Experiments: Pressed-BKZ-60 (10 - n)

 $\begin{array}{l} {\sf Gram-Schmidt\ log-norms\ of}\\ {\sf (Pressed-)BKZ_{60}}. \end{array}$

Input: a SVP-120 challenge

- ▶ Quality of pressed-BKZ-60 \approx BKZ-80 \sim 90 (after certain #tours). Pressed-BKZ-60 takes less time;
- Solving SVP-120 using the preprocessed pressed-BKZ-60 and a variant of progressive-BKZ in the bkz2_sweet_spot branch of *fplll*. Faster (in experiments) than the lower-bound estimates in the Progressive BKZ (Aono et al. EUROCRYPT'16).

Limitation: strategy is not guaranteed to be optimal.

https://github.com/fplll/fpylll/tree/bkz2_sweet_spot

Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. EUROCRYPT'16.

Conclusion

Impacts:

Better estimate for concrete cryptanalysis;

- Better estimate for concrete cryptanalysis;
- ► No impact for NIST security parameters.

- Better estimate for concrete cryptanalysis;
- ► No impact for NIST security parameters.
- Pressed-BKZ improves quality for *limited* block-sizes;

- Better estimate for concrete cryptanalysis;
- ▶ No impact for NIST security parameters.
- Pressed-BKZ improves quality for *limited* block-sizes;

Future work:

- Better estimate for concrete cryptanalysis;
- ► No impact for NIST security parameters.
- Pressed-BKZ improves quality for *limited* block-sizes;

Future work:

Better strategies for Pressed-BKZ?

- Better estimate for concrete cryptanalysis;
- No impact for NIST security parameters.
- Pressed-BKZ improves quality for *limited* block-sizes;

Future work:

- Better strategies for Pressed-BKZ?
- Impact of Pressed-BKZ for larger blocks?

- Better estimate for concrete cryptanalysis;
- ► No impact for NIST security parameters.
- Pressed-BKZ improves quality for *limited* block-sizes;

Future work:

- Better strategies for Pressed-BKZ?
- Impact of Pressed-BKZ for larger blocks?
- Rigorous (or less heuristic) analysis of practical behavior of BKZ?

THANK YOU!