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Outline

The Blockwise-Korkine-Zolotarev (BKZ) lattice reduction algorithm is
central in cryptanalysis for lattice-based cryptography.

1. Explain and quantify the shorter-than-expected phenomenon in the
head region in BKZ.

2. A more accurate simulator for BKZ.

3. A new BKZ variant that exploits the shorter-than-expected
phenomenon.
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0

Definition
Given a set of linearly independent vectors {b1, · · · ,bn} ⊆ Qm, the lattice L
spanned by the bi ’s is

L({b1, · · · , bn}) =
{ n∑

i=1

zi bi | zi ∈ Z
}
.

Let B be the column matrix of {b1, · · · ,bn} and denote the lattice by L(B).
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Lattice

b̂2b̂2

b2b1

λ 1 0

Lattice minimum
Given a lattice L, the minimum λ1(L) is the norm of a shortest non-zero
vector in L.
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Bases of a lattice
Given B1,B2 ∈ Qm×n, then L(B1) = L(B2) iff B2 = B1U for some
unimodular matrix U ∈ Zn×n.
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The BKZ lattice reduction algorithm helps to find bases like (b1, b2).

Bases of a lattice
Given B1,B2 ∈ Qm×n, then L(B1) = L(B2) iff B2 = B1U for some
unimodular matrix U ∈ Zn×n.
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Lattice
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Gram-Schmidt orthogonalization
Let B∗ = (b∗1, · · · ,b∗n) denote the Gram–Schmidt orthogonalization of B.
The determinant of a lattice L is det(L) =

∏
i‖b∗i ‖.
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BKZ-β reduced
Given B = (b1, · · · ,bn), let b(j)

i denote the orthogonal projection of bi
onto the subspace (b1, · · · ,bj−1)⊥.

For i < j ≤ n, let B[i ,j] denote the (matrix) local block (b(i)
i , · · · ,b(i)

j ) and
L[i ,j] denote the lattice generated by B[i ,j].

Definition
A basis B is BKZ-β reduced for block size β ≥ 2 if it is size-reduced∗ and
satisfies:

‖b∗i ‖= λ1(L[i ,min(i+β−1,n)]), ∀i ≤ n.

* A basis B is size-reduced, if it satisfies |µi,j |≤ 1/2 for j < i ≤ n where µi,j =
〈bi ,b∗j 〉

‖b∗j ‖
2 .
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The BKZ algorithm
The algorithm attempts to make all local blocks satisfy above the
minimality condition simultaneously.

Algorithm 1 BKZ algorithm (Schnorr and Euchner)
Input: A basis B = (b1, · · · ,bn), a block size β.
Output: A BKZ-β reduced basis of L(B).

1: repeat
2: for i = 1 to n − 1 do
3: SVPβ: find b such that ‖b(i)‖= λ1(L(b(i)

i , · · · , b(i)
min(n,i+β−1))).

4: if ‖b∗i ‖> λ1(L(b(i)
i , · · · , b(i)

min(n,i+β−1))) then
5: LLL-reduce(b1, · · · , bi−1, b, bi , · · · , bmin(n,i+β)).
6: else
7: LLL-reduce(b1, · · · , bmin(n,i+β)).
8: end if
9: end for

10: until no change occurs.

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In FCT’91.
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• [Line 3] In practice, SVP solver can be pruned enumeration or
sieving.

SVP Challenge. https://www.latticechallenge.org/svp-challenge/.
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Quality of BKZ-β reduced basis
A concrete cryptanalysis relies on the BKZ simulator of Chen and Nguyen
(ASIACRYPT’11).

It uses the Gaussian heuristic on local blocks, with a modification for the
tail blocks.
Gaussian heuristic
For any random n-dimensional lattice L, we have

λ1(L) ≈ GH(L) = 1
v1/n

n
· det(L)1/n

where vn is the volume of a unit n-ball.

Y. Chen and P.Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT’11.
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(Simplified) Chen-Nguyen simulator

Algorithm 2 (Simplified) Chen-Nguyen simulator.
Input: G-S norms (‖b∗

1‖, · · · , ‖b∗
n‖), a block size β.

Output: Simulated G-S norms of BKZβ-reduced basis of L(B).
1: repeat
2: for i = 1 to n − 1 do
3: SVPβ: find b such that ‖b(i)‖= λ1(L(b(i)

i , · · · , b(i)
min(n,i+β−1))).

4: if ‖b∗i ‖> GH(L((b(i)
i , · · · , b(i)

min(n,i+β)))) then

5: Update ‖b∗i ‖= GH(L((b(i)
i , · · · , b(i)

min(n,i+β)))).
6: else
7: Keep ‖b∗i ‖ unchanged.
8: end if
9: end for

10: until no change occurs.
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Practical behavior of Chen-Nguyen’s simulator
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Same as left hand side, but zoomed in.

Such “head concavity” phenomenon has been reported in

I experiments of BKZ 2.0 (Chen and Nguyen, ASIACRYPT’11);
I and modeled by Yu and Ducas (SAC’17).

Y. Yu and L. Ducas. Second Order Statistical Behavior of LLL and BKZ. In SAC’17.
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A better simulator using the distribution of λ1 in random lattices.
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Tools

Let Γn = {L ∈ Rn | vol(L) = 1} be the set of all full rank-n lattices with
unit volume.

Chen [Cor. 3.1.4] and Södergren [Thm. 1]:

Distribution of minimum in random lattices
Sample L uniformly in Γn. The distribution of vn · λ1(L)n converges in
distribution to Expo(1/2) as n→∞.

Take λ1(L) as a random variable Y , then Y = X 1/n ·GH(L) for X
sampled from Expo(1/2).

Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. PhD thesis, Université Paris
Diderot, 2013.
A. Södergren. On the poisson distribution of lengths of lattice vectors in a random lattice. Mathematische Zeitschrift, 2011.
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A probabilistic BKZ simulator

Algorithm 3 The new BKZ simulator (simplified)
Input: G-S norms (‖b∗

1‖, · · · , ‖b∗
n‖), a block size β.

Output: Simulated G-S norms of BKZ-β-reduced basis of L(B).
1: repeat
2: for i = 1 to n − 1 do
3: Sample X from Expo[1/2].
4: if ‖b∗i ‖> X1/β ·GH(L(b(i)

i , · · · , b(i)
min(n,i+β−1))) then

5: Update ‖b∗i ‖= X1/β ·GH(L(b(i)
i , · · · , b(i)

min(n,i+β))).
6: else
7: Keep ‖b∗i ‖ unchanged.
8: end if
9: end for

10: until no change occurs.
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Quality of our simulator
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Quality of our simulator (more)
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Gram–S. log-norms of BKZ60 at tour 20000.
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Quality of our simulator (RHF)
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Given a lattice L(B) of rank n, the Root Hermite Factor of B is

RHF(B) =
(
‖b1‖/det(L)1/n

)1/n
.
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Limit of the head concavity
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Simulated RHF for β ∈ {50, 60, · · · , 300}.
Here the dimension is 3β.

For large block sizes, the discrepancy vanishes: both simulators converge
to the same root Hermite factors.
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Exploit the head concavity phenomenon!
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A new BKZ variant: “Pressed BKZ”

Algorithm 4 The pressed-BKZ algorithm
Input: A basis B = (b1, · · · ,bn), a block size β.
Output: A pressed-BKZ-β reduced basis of L(B).

1: for start = 1 to n − β + 1 do
2: Re-randomize L(b(start)

start , · · · ,b(start)
n ).

3: BKZ-β on the block from start to n.
4: end for

17 / 21



Experiments: BKZ-60
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Experiments: Pressed-BKZ-60 (2− n)
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Experiments: Pressed-BKZ-60 (3− n)
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Experiments: Pressed-BKZ-60 (4− n)
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Experiments: Pressed-BKZ-60 (5− n)
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Experiments: Pressed-BKZ-60 (6− n)
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Experiments: Pressed-BKZ-60 (7− n)
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Experiments: Pressed-BKZ-60 (8− n)
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Experiments: Pressed-BKZ-60 (9− n)
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Experiments: Pressed-BKZ-60 (10− n)
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Comparison with standard BKZ (in preprocessing)
Input: a SVP-120 challenge

I Quality of pressed-BKZ-60 ≈ BKZ-80 ∼ 90 (after certain #tours).
Pressed-BKZ-60 takes less time;

I Solving SVP-120 using the preprocessed pressed-BKZ-60 and a
variant of progressive-BKZ in the bkz2 sweet spot branch of fplll.
Faster (in experiments) than the lower-bound estimates in the
Progressive BKZ (Aono et al. EUROCRYPT’16).

Limitation: strategy is not guaranteed to be optimal.

Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ algorithms and their precise cost estimation by sharp
simulator. EUROCRYPT’16.
https://github.com/fplll/fpylll/tree/bkz2_sweet_spot
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Conclusion

Impacts:

I Better estimate for concrete cryptanalysis;
I No impact for NIST security parameters.
I Pressed-BKZ improves quality for limited block-sizes;

Future work:
I Better strategies for Pressed-BKZ?
I Impact of Pressed-BKZ for larger blocks?
I Rigorous (or less heuristic) analysis of practical behavior of BKZ?
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Thank you!
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