Quantum Lattice Enumeration
and Tweaking Discrete Pruning

Yoshinori Aono Phong Q. Nguyen Yixin Shen

université

T I i
gDIDEROT

Context

o NIST standardization of post-quantum cryptography:

~ Need to convince security estimates for lattice-based cryptosystems (especially in the quantum
setting)

~ Typical attacks rely on a lattice reduction algorithm (BKZ) — uses SVP as a subroutine
~ Main approaches to solve SVP
o Sieving: 29" time and 2°") space
o Best known classical heuristic time 2"-272+0(SVP: the Shortest Vector Problem
o Best known quantum heuristic time 20-205n+0() n: dim of the lattice
o Enumeration: 20010¢) time and poly(n) space

~ Speed-up in quantum setting?

2/17

Contributon

© Quasi-quadratic quantum speed-up for cylinder pruning and discrete pruning

o Optimizing discrete pruning preprocessing (open problem in [AN17])

3/17

Whatis a lattace?

L(by, . b,) = {), xb;|x, € ZV1 <i<n}
i=1

where (b, -+, b,) is a basis of [R"

Enumeration Algorithm
S(R) : a centered n-dimension Xj—/‘RM(\XW

ball of radius R

Search for all vectors

x=X1b1+X2bs...+Xnbn in SR) xn-1=../ xn- 15\0\ i\\\

7; :the orthogonal projection on EXne1Xn) 5o Xe1,X0) (5o X1, Xn) e % X1, Xn) (e X1, Xn)
Span(bla "t bi_l)l ‘i 2_/ \\

Given xn? ...9xi+1) Hﬂl(x)H S R ("“, . ,Xn 2,Xn- 1,Xn .y ,Xn 2y Xn- 1,Xn)

—> the integer X; belongs to an (b1*,...bn*) Gram-Schmidt
interval of small length. \ orthogonalization of (bi,...,bn)

(X1,...,Xn-1,Xn) Leaf

5/17

Quantum Speed-up for Enumeration
Implicitin [Alkim etal 2016] [Alkim etal 2017] [del Pino etal 2016]

Quantum backtracking [Montanaro 2015]:
o A tree of size T, of depth n, of constant max degree, with marked nodes
© A blackbox which specifies the local structure of the tree

$ 0*(\/T) queries for finding a marked node

Application to the previous enumeration algorithm: (Quantum Lattice Enumeration)

Difficulties: If the basis is only LLL-reduced, max degree can be 20()

Idea: Transform the tree into a binary one

$ 0*(\/T) time for finding one vector in L N S(R)

—> O*#(L N S(R)\/T) time for finding all vectors in L N S(R)

6/17

Enumeraton with Pruning
|ScEu94., ScHo95, GNR10]

Enumeraton with Pruning
[ScEu94., ScH095, GNR10]

Previous Enumeration algorithm:
© Runnming-time depends on the quality of the basis

o Runnming-time typically superexponential, much larger than #(LNS(R)).

7/17

Enumeraton with Pruning
[ScEu94., ScHo95., GNR10]

Previous Enumeration algorithm:

© Running-time depends on the quality of the basis
o Running-time typically superexponential, much larger than #(LNS(R)).
Enumeration with Pruning:

P C R" a pruning set

Search only the vectors in LOS(R)NP
o Pros: Enumerating Tree LNS(R)NP

o can be much smaller than the one of LNS(R)

o Cons: Maybe LNS(R)N\P=

7/17

Extreme Pruning
[GNR10}

~ Repeat until a vector 1s found

o Generate a « random » basis and a pruning set P based on it

o Enumeration(LNS(R)NP)
o Even if Pr(LNS(R)NP+J) is tiny, what matters is the trade-off:

Cost(Enumeration(LNS(R)NP))/Pr(LNS(R)NP+J)

8/17

hy Cvlinder Prunin
[Sc u94. ScHo95, GNR10]

/ X“\l\ \\\

*,Xn-1,Xn) (¥,...,,Xn-1,Xn) “,Xn-1,Xn)(*,Xn-1,Xn) (° *,Xn-1,Xn) i
s :
v R
Xng2 Xn\Z2
“,Xn-2,Xn-1,Xn) (*,...,*,Xn-2,Xn-1,Xn)

Each level Hﬁ'l(X)“ <R > H]Z'Z(X)H < RZ-R

\ where 0 < R, <1

(X1,...,Xn-1,Xn) Leaf

9/17

(ol I
PAY
, | B B | , ,

Cvlinder Prunin

[Sclzyu94 ScHo095, GNR10]

Each level Hﬁ',(x)” <R

where 0 < R, <1

> |l (0]l < R;R

9/17

Quantum Speed-up for Cylinder Pruning

In practice, L is an integer lattice. The basis is LLL-reduced » R=[|5]] £ 2n_51/11(L)
Quantum Lattice Enumeration on the truncated tree:

— 0%(\/T) time for finding one vector LNS(R)NP, if it’s not empty

+ dichotomy on R

— 0*(\/T) time for finding the shortest vector in LONS(R)NP, if it’s not empty

10/17

Quantum Speed-up for Cylinder Pruning

In practice, L is an integer lattice. The basis is LLL-reduced » R=[|5]] £ 2n_51/11(L)
Quantum Lattice Enumeration on the truncated tree:

— 0%(\/T) time for finding one vector LNS(R)NP, if it’s not empty

+ dichotomy on R

— 0*(\/T) time for finding the shortest vector in LOS(R)NP, if it’s not empty

Extreme Cylinder Pruning: Given m LLL-reduced bases of the same lattice, Ti,...,Tm the

i=1

corresponding enumeration tree sizes, e / i 1) time for finding the shortest vector among all

the pruning sets.

10/17

Discrete Prum
AN 2017]

ng

: (e on) .
Lattice partition: R"=U, .., ez C(?) 1 cell<-> 1 lattice vector
Two examples: c o 2 o ® c ® o
. (2,2) | (1,2)] (0,2) (1.2) 1(2,2) ‘
@ & -
(2,1 (L] (0,1) (1,1) | (2.1)
(2,0)] (1,0)] (0,0) (1,0) |(2,0)
2 & ’ lJP2 C§I

(2,1) { (L.1)] (O,1)

> ,
L 222 (02

Babai’s partition The natural partition

The pruning set: pP=u,,C\(),Uc 7", |U| = poly(n) M

(L1) |(21)

(1,2) [{2,2)

11/17

Discrete Pruning
[AN17]

Step 1: Find the pruning set

n £2 .
o Find approximatively M best cells minimizing Z fbF|I> where f(t;) = il 4; D)
n i=1
Roughly, the smaller Z f@)||b¥||* , the shorter the vector x inside Cy(1) .

=1 .
o Equivalent to find R such that #Solutions of) f@)|Ib*||><R isclosetoM. ,

i=1 &l

(1,2)
_—
(1,1)

(1,2)

(2,2)

(1,1)

(Zi)

(2,0)

Step 2: Find the shortest vector among these cells 2 +

(1,0)

~ Step 2 can also be seen as a depth-first search of a tree. s

(2,2)

1 lattice vector <-> 1 cell

(1,1)

(0, 1)

(1,0

(2,0)

(L,1)

(1,2)

(0,2)

-8
‘(L2)

12/17

(2,1)

(2,2)

Quantum Speed-up for Discrete Pruning

Step 1: Find R such that #Sol of zn:f B> < R s close to M (up to poly(n) factor).
i=1
o TreeSizeEstimation [Ambainis and Kokainis 2017]:
o A blackbox which specifies the local structure of the tree
o An estimation T of #nodes, O0: precision parameter

— 0*(\/T) queries to give an estimate of #nodes within 8§ precision when T<#nodes, or output
T>#nodes

4 no (o1 .
© Additional tweak: D, f@lbxl =) (Z T +E> 1651 = C) (8 + 1) 1b¥]|?
=1

© Consequence: linear relation between #nodes and #leaves

By dichotomy, we can find R such that M<#Sol<32n2M in 0*(/M) time.

13/17

Quantum Speed-up for Discrete Pruning

Step 2: Find the shortest vector among the cells corresponding to leaves satisfying CZ (£ +1,) ||Z’j<||2 <R
i=1
o Same as before: Quantum backtracking + binary tree transformation + dichotomy

Step 1+ Step 2 » In total, 0*(\/M) time to find a shortest non-zero vector in LNP

14/17

Quantum Speed-up for Discrete Pruning

Step 2: Find the shortest vector among the cells corresponding to leaves satisfying CZ (£ +1,) ||Z’j<||2 <R
i=1
o Same as before: Quantum backtracking + binary tree transformation + dichotomy

Step 1+ Step 2 » In total, 0*(\/M) time to find a shortest non-zero vector in LNP

Extreme Discrete Pruning: Given m LLL-reduced bases of the same lattice, we can find a R

such that the total number of cells such that at least one C Y (2 +1) b *|> < R is satisfied is close to
. L i=1
M, then find the shortest non-zero vector inside these cells.

— 0*(/M) times in total

14/17

Our results

In this talk:

o Quasi-quadratic speed-up for both cylinder and discrete pruning for SVP (for integer lattice)
~ Speed-up applicable in the extreme pruning setting

In the paper:

© Quasi-quadratic speed-up for cylinder pruning for CVP (same as for SVP)

o Tweak which adapts discrete pruning to CVP

» Quasi-quadratic speed-up for discrete pruning for CVP when the target has integer
coordinates

15/17

Revisiting ()-sieve vs)-enum

200 200

#bases=1010
#bases=1020

#bases=1010
#bases=1020

~ 150 29-20°": Quantum Sieve — — — _ - —~ 150 }29-20°": Quantum Sieve — ~ —
R 128 = i 128
c= - =
Q Q
Q Q.
c 100r . e 100r .
@) @)
O O
2 50 I ~ . S S0 - i
0 | | | | 0 | | | |
100 200 300 400 500 600 100 200 300 400 500 600
dimension dimension
quasi-HKZ bases Rankin bases

Complexity: \/#bases * N, N: upper bound of the number of nodes of enumeration with extreme pruning
with probability 1/#bases [ANSS18]

Quantum enumeration with extreme pruning would be faster than quantum sieve up to higher
dimensions than previously thought!

Our results affect the security estimates of between 11 and 17 NIST submissions. /0

Thank you for your attention!

