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Context
NIST standardization of post-quantum cryptography: 

Need to convince security estimates for lattice-based cryptosystems (especially in the quantum 
setting) 

Typical attacks rely on a lattice reduction algorithm (BKZ)            uses SVP as a subroutine 

Main approaches to solve SVP 

Sieving:          time and          space 

Best known classical heuristic time 

Best known quantum heuristic time 

Enumeration:                  time and poly(n) space  

Speed-up in quantum setting?

2O(n) 2O(n)

2O(n log(n))

20.265n+o(n)

20.292n+o(n) SVP: the Shortest Vector Problem 

n: dim of the lattice
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Contribution

Quasi-quadratic quantum speed-up for cylinder pruning and discrete pruning 

Optimizing discrete pruning preprocessing (open problem in [AN17]) 



What is a lattice?

 where                     is a basis of         ℝn(b1, ⋯, bn)

L(b1, ⋯, bn) = {
n

∑
i=1

xibi |xi ∈ ℤ, ∀1 ≤ i ≤ n}
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xn=-R/||bn*|| xn=0

(*,...,*,xn)

Xn-1=…

…

(*,...,*,xn-1,xn)

…

Leaf

(*,...,*,*)

Enumeration Algorithm 
        : a centered n-dimension 
ball of radius R 

Search for all vectors 
x=x1b1+x2b2…+xnbn  in  

    :the orthogonal projection on  

Given                     ,      

        the integer      belongs to an 
interval of small length.

S(R)

xi

∥πi(x)∥ ≤ Rxn, ⋯, xi+1

⇒

(*,...,*,xn)

(*,...,*,xn-1,xn)(*,...,*,xn-1,xn)(*,...,*,xn-1,xn) (*,...,*,xn-1,xn)

(*,...,*,xn-2,xn-1,xn)(*,...,*,xn-2,xn-1,xn)

(x1,...,xn-1,xn)
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πi

𝚜𝚙𝚊𝚗(b1, ⋯, bi−1)⊥

… …

… …

S(R)

(b1*,…bn*) Gram-Schmidt 
orthogonalization of  (b1,…,bn)

xn=R/||bn*||

Xn-1=0 Xn-1=… Xn-1=… Xn-1=…

Xn-2=… Xn-2=…
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Quantum Speed-up for Enumeration 
Implicit in [Alkim et al 2016] [Alkim et al 2017] [del Pino et al 2016] 

Quantum backtracking [Montanaro 2015]: 

A tree of size T, of depth n, of constant max degree, with marked nodes 

A blackbox which specifies the local structure of the tree 

                         queries for finding a marked node 

Application to the previous enumeration algorithm: (Quantum Lattice Enumeration) 

Difficulties: If the basis is only LLL-reduced, max degree can be 2O(n) 
                       
Idea: Transform the tree into a binary one                             
                                                       
                        time for finding one vector in     

O*( T )

O*( T ) L ∩ S(R)

⇒

⇒
O*(#(L ∩ S(R)) T ) L ∩ S(R)time for finding all vectors in ⇒
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Enumeration with Pruning 
[ScEu94, ScHo95, GNR10]
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Enumeration with Pruning 
[ScEu94, ScHo95, GNR10]

Previous Enumeration algorithm: 

Running-time depends on the quality of the basis 

Running-time typically superexponential, much larger than #(L∩S(R)).
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Enumeration with Pruning 
[ScEu94, ScHo95, GNR10]

Enumeration with Pruning: 

             a pruning set 

Search only the vectors in L∩S(R)∩P     

Pros: Enumerating Tree  L∩S(R)∩P  

can be much smaller than the one of L∩S(R) 

Cons: Maybe L∩S(R)∩P= ∅

P ⊆ ℝn

Previous Enumeration algorithm: 

Running-time depends on the quality of the basis 

Running-time typically superexponential, much larger than #(L∩S(R)).
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Extreme Pruning 
[GNR10]

Repeat until a vector is found 

Generate a « random » basis and a pruning set P based on it 

Enumeration(L∩S(R)∩P) 

Even if Pr(L∩S(R)∩P≠∅) is tiny, what matters is the trade-off: 

   Cost(Enumeration(L∩S(R)∩P))/Pr(L∩S(R)∩P≠∅)



Cylinder Pruning 
[ScEu94, ScHo95, GNR10]

Each level 

                                           where  

∥πi(x)∥ ≤ R ∥πi(x)∥ ≤ RiR

0 < Ri ≤ 1

(*,...,*,xn)

Xn-1

…

Xn-1 Xn-1 Xn-1 Xn-1

(*,...,*,xn-1,xn)

Xn-2 Xn-2

…

Leaf

(*,...,*,*)

(*,...,*,xn)

(*,...,*,xn-1,xn)(*,...,*,xn-1,xn)(*,...,*,xn-1,xn) (*,...,*,xn-1,xn)

(*,...,*,xn-2,xn-1,xn) (*,...,*,xn-2,xn-1,xn)

(x1,...,xn-1,xn)
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xn=-R/||bn*|| xn=0 xn=R/||bn*||
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xn=-R/||bn*|| xn=0 xn=R/||bn*||
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Quantum Speed-up for Cylinder Pruning 

In practice, L is an integer lattice. The basis is LLL-reduced                 

Quantum Lattice Enumeration on the truncated tree:   

                  time for finding one vector L∩S(R)∩P, if it’s not empty 

+ dichotomy on R 

                  time for finding the shortest vector in L∩S(R)∩P, if it’s not empty 

R = ∥b1∥ ≤ 2n − 1
2 λ1(L)

→ O*( T )

→ O*( T )
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Quantum Speed-up for Cylinder Pruning 

In practice, L is an integer lattice. The basis is LLL-reduced                 

Quantum Lattice Enumeration on the truncated tree:   

                  time for finding one vector L∩S(R)∩P, if it’s not empty 

+ dichotomy on R 

                  time for finding the shortest vector in L∩S(R)∩P, if it’s not empty 

R = ∥b1∥ ≤ 2n − 1
2 λ1(L)

→ O*( T )

→ O*( T )

O*(
m

∑
i=1

Ti)

Extreme Cylinder Pruning: Given m LLL-reduced bases of the same lattice, T1,…,Tm  the 

corresponding enumeration tree sizes,                    time for finding the shortest vector among all 

the pruning sets. 
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Discrete Pruning 
[AN 2017]

Lattice partition:                                                 

Two examples: 

The pruning set:

ℝn = ∪t=(t1,⋯,tn)∈ℤn C(t) 1 cell<-> 1 lattice vector  

P = ∪t∈U Cℕ(t), U ⊂ ℤn, |U | = 𝚙𝚘𝚕𝚢(n) ⋅ M

Babai’s partition The natural partition
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Discrete Pruning 
[AN17]

Step 1: Find the pruning set 

Find approximatively M best cells minimizing                         where 

Roughly, the smaller                        , the shorter the vector x inside   

Equivalent to find R such that #Solutions of                               is close to M.  

Step 2: Find the shortest vector among these cells  

Step 2 can also be seen as a depth-first search of a tree. 

n

∑
i=1

f(ti)∥b*i ∥2

n

∑
i=1

f(ti)∥b*i ∥2 ≤ R

f(ti) =
t2
i

4
+

ti
4

+
1
12

1 lattice vector <-> 1 cell

n

∑
i=1

f(ti)∥b*i ∥2

Cℕ(t)
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Quantum Speed-up for Discrete Pruning 

Step 1: Find R such that #Sol of                                is close to M  (up to poly(n) factor).   

TreeSizeEstimation [Ambainis and Kokainis 2017]:  

A blackbox which specifies the local structure of the tree 

An estimation T of  #nodes, δ: precision parameter 

                    queries to give an estimate of #nodes within δ precision when T≤#nodes, or output 
T>#nodes 

Additional tweak:                                                                    

Consequence: linear relation between #nodes and #leaves 

By dichotomy, we can find R such that M≤#Sol≤32n²M  in               time. 

n

∑
i=1

f(ti)∥b*i ∥2 ≤ R

→ O*( T )

O*( M)

n

∑
i=1

f(ti)∥b*i ∥ =
n

∑
i=1 ( t2

i

4
+

ti
4

+
1
12 ) ∥b*i ∥2 → C

n

∑
i=1

(t2
i + ti) ∥b*i ∥2
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Quantum Speed-up for Discrete Pruning 

Step 2: Find the shortest vector among the cells corresponding to leaves satisfying 

Same as before: Quantum backtracking + binary tree transformation + dichotomy 

Step 1+ Step 2                In total,                 time to find a shortest non-zero vector in  

             

C
n

∑
i=1

(t2
i + ti) ∥ ⃗b *i ∥2 ≤ R

L∩PO*( M)
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Quantum Speed-up for Discrete Pruning 

Step 2: Find the shortest vector among the cells corresponding to leaves satisfying 

Same as before: Quantum backtracking + binary tree transformation + dichotomy 

Step 1+ Step 2                In total,                 time to find a shortest non-zero vector in  

             

C
n

∑
i=1

(t2
i + ti) ∥ ⃗b *i ∥2 ≤ R

L∩P

C
n

∑
i=1

(t2
i + ti) ∥ ⃗b *i ∥2 ≤ R

O*( M)

→ O*( M)

Extreme Discrete Pruning: Given m LLL-reduced bases of the same lattice, we can find a R 

such that the total number of cells such that at least one                                        is satisfied is close to 
M, then find the shortest non-zero vector inside these cells.    

                   times in total
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Our results
In this talk: 

Quasi-quadratic speed-up for both cylinder and discrete pruning for SVP (for integer lattice) 

Speed-up applicable in the extreme pruning setting 

In the paper: 

Quasi-quadratic speed-up for cylinder pruning for CVP (same as for SVP) 

Tweak which adapts discrete pruning to CVP 

                Quasi-quadratic speed-up for discrete pruning for CVP when the target has integer 
coordinates 
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Revisiting Q-sieve vs Q-enum

Complexity:                       , N: upper bound of the number of nodes of enumeration with extreme pruning 
with probability 1/#bases [ANSS18] 

Quantum enumeration with extreme pruning would be faster than quantum sieve up to higher 
dimensions than previously thought! 

Our results affect the security estimates of between 11 and 17 NIST submissions.

quasi-HKZ bases Rankin bases 

#bases * N



Thank you for your attention!
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