IMPROVED (ALMOST) TIGHTLY-SECURE SIMULATION-SOUND QA-NIZK WITH APPLICATIONS

Masayuki Abe, Charanjit Jutla, Miyako Ohkubo and <u>Arnab Roy</u> NTT Labs, IBM Research, NICT and Fujitsu Labs

Blum, Feldman, Micali 1988

NIZK PROOF SYSTEMS

- Objective: To prove whether x ∈ NP language L without revealing its witness w
- Components:

NIZK: PROPERTIES

Completeness

if $x \in L$ then V accepts with 'high' probability

Soundness

if $x \notin L$ then V rejects with 'high' probability, even with a cheating prover

ZERO-KNOWLEDGE

Proofs from adversary are sound

Proofs from adversary are sound

UNBOUNDED SIMULATION-SOUND NIZK

Proofs from adversary are sound

Proofs from adversary are sound

(NON)-TIGHT SECURITY

(ALMOST)-TIGHT SECURITY

Many proofs are transformed in one go.

 $O(\lambda, \log Q)$ reduction to DDH.

WHY IS THIS CHALLENGING?

Signatures

PKEs

NIZK

QUASI-ADAPTIVE NIZKS

Smooth Projective Hash Functions [CS98]

$$y = [Mx]$$
$$y^T = [x^T M^T]$$

Proj. Hash Key $\lceil M^T K \rceil$

Public Hash

 $x^T[M^TK]$

Hash Key K

Private Hash

CRSp $[M^TK]_1$ Trapdoor K

 $y = [Mx]_1$ $y^T = [x^T M^T]_1$

QA-NIZKs

CRSv $[KA]_2, [A]_2$

Proof $p = x^T [M^T K]_1$ $y^T K$

Simulator $y^T K$

Verify $y^T[KA]_2$ $= p[A]_2$

USS-QA-NIZK

QA-NIZKs

$$y = [Mx]_1$$
$$y^T = [x^T M^T]_1$$

$$\begin{array}{c}
\text{Proof} \\
p = x^T [M^T K]_1
\end{array}$$

PR-MAC $+[r^{T}(P_{0}+\tau P_{1})]_{1}, [r^{T}B^{T}]_{1}$

Non-tight O(Q) reduction

TIGHTLY-SECURE USS-QA-NIZK

- [LPJY15] achieved this first
 - #proof independent of λ
 - $O(\lambda)$ security reduction to DLIN
 - Public key size $O(\lambda)$
 - Static partitioning [CW13, ...]
- We improve in the following ways
 - $O(\log Q)$ security reduction to any MDDH including SXDH
 - #Public key also independent of λ
 - Adaptive partitioning [Hof17, used by: AHN+17, JOR18, GHKP18, ...]

ADAPTIVE PARTITIONING

TIGHT USS-QA-NIZK CONSTRUCTION

- Our AsiaCrypt version had a bug
- Jiaxin Pan discovered an attack and informed us
 - Thanks Jiaxin!
- Today I will present a fixed construction
 - On the negative side it is longer
 - On the positive side, the structure-preserving version is also $O(\log Q)$ -tight
 - Previously it was only $O(\lambda)$ -tight
 - The designated prover version is not impacted by this bug, so SPS is OK.
 - Ongoing work:
 - While working on the fixes, we could reduce the tight-SPS size from 12 to 10
 - Revised version will be updated in eprint soon

CONSTRUCTION

 π_0 , π_1 Partition bit [Raf15] correct OR · ρ , $\hat{\rho}$ correct π_3 OR proof Fix

used to

introduce

seed

randomness

into γ

Inspired by [Hof17]

PROOF STRATEGY

 $ho, \hat{
ho}, \gamma$ Encrypted QA-NIZK

 π_0, π_1 Partition bit correct
OR $ho, \hat{
ho}$ correct

SUMMARY

- First USS-QA-NIZK where both CRS and proofs have number of group elements independent of the security parameter
- Shortest tightly secure SPS with 12 group elements under SXDH
 - Ongoing optimization work on 10 group elements
- Shortest public-verifiable tightly-secure CCA scheme
- Plugging our USS-QA-NIZK gives short tightly-secure primitives
 - Blind Structure-Preserving Signatures
 - Group Structure-Preserving Signatures
 - USS Groth-Sahai Proof System

Questions?