# Constructing Ideal Secret Sharing Schemes based on Chinese Remainder Theorem

Yu Ning, Fuyou Miao\*,...

University of Science and Technology of China

#### Contributions

- ✓ Generalization of existing CRT-based (t,n)-SS from Integer Ring to Polynomial Ring
- ✓ Ideal (t,n)-SS based on CRT for Poly. Ring
- ✓ Shamir's (t,n)-SS : a special case
- ✓ Weighted (t,n)-SS

#### **Outline**

- ✓ (t,n)-Threshold Secret Sharing (i.e., (t,n)-SS)
- ▼ Two Typical Secret Sharing Schemes
- ✓ Secret Sharing based on Polynomial Ring over F<sub>p</sub>
- ✓ Both Types of SS as Special Cases
- ✓ Weighted (t,n)-SS
- ✓ Conclusion

# (t,n)-Threshold Secret Sharing

- ✓ t-Threshold, n- number of all shareholders
- ✓ A dealer divides a secret s into n pieces, allocates each piece to a shareholder as the share such that
  - 1) any t or more than t shares can recover the secret;
  - 2) less than t shares cannot obtain the secret;

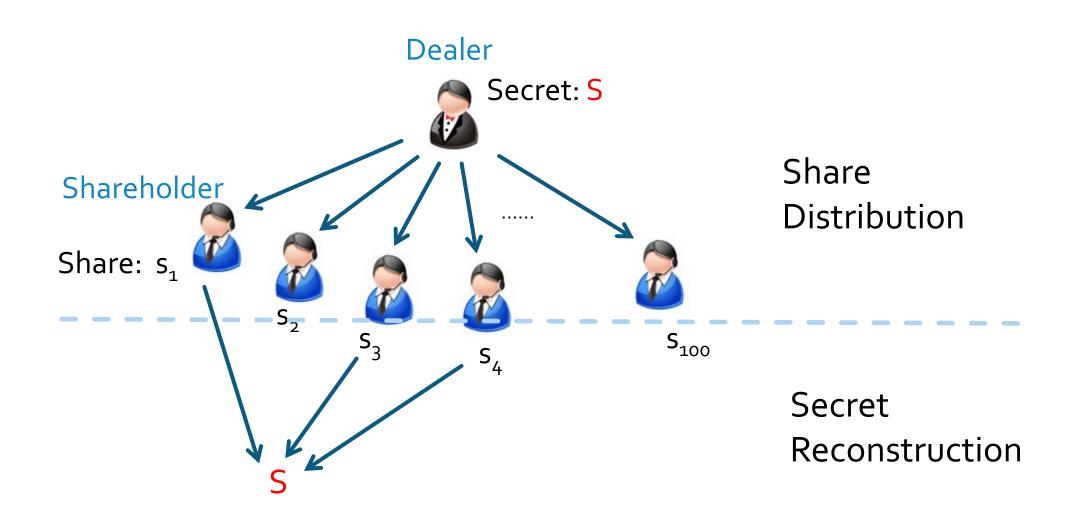


Fig 1. An example of (3,100)-SS

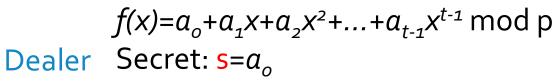
# Applications of (t,n)-SS

- ▼ Threshold Encryption
- ✓ Threshold Signature
- ✓ Secure Multiparty Computation
- ✓ Many security-related application protocols...

# 2 Typical (t,n)-SSs

- ✓ Shamir's (t,n)-SS [23]\*
  - Share Distribution
    - $f(x)=a_o+a_1x+a_2x^2+...+a_{t-1}x^{t-1} \mod p$ Secret:  $s=a_o$
    - $\triangleright$  Each Shareholder  $U_i$ : Public information- $x_i \in F_p$ , private share-- $f(x_i)$
  - Secret Reconstruction
    - $\triangleright$  m  $(m \ge t)$  shareholders, e.g.  $\{U_1, U_2, ..., U_m\}$ , compute the secret as:

$$s = \sum_{i=1}^{m} f(x_i) \prod_{\substack{j=1, \ j \neq i}}^{m} \frac{x_j}{x_j - x_i} \mod p, \qquad (m \ge t)$$





Secret: 
$$\mathbf{S} = \sum_{i=1}^{m} f(x_i) \prod_{\substack{j=1, \ j \neq i}}^{m} \frac{x_j}{x_i - x_i} \mod p$$
,  $(m \ge t)$ 

Fig 1. Shamir's (t,n)-SS

Share distribution

Secret Reconstruction

### ✓ Remarks

- Shamir's (t,n)-SS uses Lagrange Interpolation over finite field  $F_{D}$  to recover the secret.
- Ideal scheme:
  - Information rate 1;
  - ➤ No information leaks to t-1 participants
- Most popular (t,n)-SS scheme cited over 13000 times -google scholar

# 2 Typical (t,n)-SS

- ✓ Asmuth-Bloom's (t,n)-SS[1] over 600 times of citation
  - Share distribution:

```
secret: s \in Z_{m_0}, modulus of shareholder<sub>i</sub>: m_i \in Z
```

$$m_0 < m_1 < m_2 < \ldots < m_n$$
,  $\gcd(m_i, m_j) = 1$ , (Increasing sequence, pairwise coprime)

$$m_0 m_{n-t+2} \bullet \dots \bullet m_n \le m_1 m_2 \bullet \dots \bullet m_t$$
 (gap creation)

$$B = s + \alpha m_0 < m_1 m_2 \cdot ... \cdot m_t$$
 (range extension )

$$s_i = B \mod m_i;$$
 (share evaluation)

[1] Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE transactions on information theory **29**(2), 208-210 (1983)

Secret Reconstruction

For authorized subset 
$$A$$
,  $|A| \ge t$   $B = \sum_{i \in A} s_i \frac{M}{m_i} (\frac{M}{m_i})^{-1} \mod m_i \mod M$ 

secret:  $s = B \mod m_0$ ;

- ✓ Remark:
  - Based on Chinese Remainder Theorem(CRT) for Integer Ring
  - Not Ideal—information rate < 1
  - Hard to choose moduli due to the condition

$$m_0 m_{n-t+2} \bullet \dots \bullet m_n \le m_1 m_2 \bullet \dots \bullet m_t$$
 (\*)

✓ Awkward scheme → [13-20][33]...

#### Questions

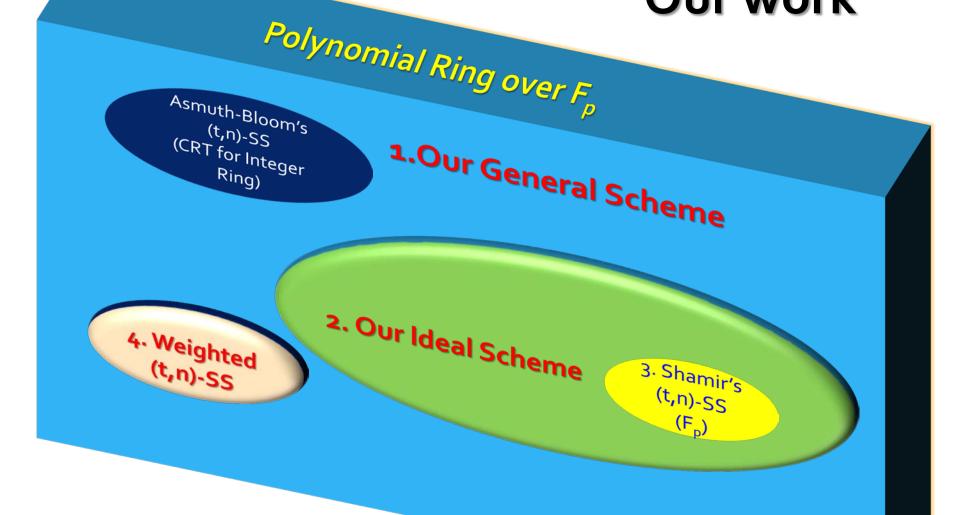
- ✓ Can we use CRT to build a (t,n)-SS as ideal as Shamir's scheme?
- ✓ What is the connection between CRT based (t,n)-SSs and Shamir's (t,n)-SS?



#### Our work

- ✓ Generalize Asmuth-Bloom's (t,n)-SS from Integer Ring to Polynomial Ring
  - General Scheme
  - Ideal Scheme
  - Prove Shamir's (t,n)-SS is a **special case** of our **Ideal Scheme**
  - Construct a weighted (t,n)-SS from General Scheme

### Our work



# (t,n)-SS based on CRT for Polynomial Ring over F<sub>p</sub>

- ✓ General scheme
- ✓ Ideal scheme

#### **Our General Scheme**

## **√** Setup

prime p, an integer  $d_0 \ge 1$ ,  $m_0(x) = x^{d_0}$ , pairwise coprime polynomials  $m_i(x) \in F_p[x]$ ,  $d_i = \deg(m_i(x))$  for  $i \in [0, n]$  such that

$$d_0 \le d_1 \le d_2 \le ... \le d_n$$
 and  $d_0 + \sum_{i=n-t+2}^n d_i \le \sum_{i=1}^t d_i$  (ascending sequence, gap production)

#### ✓ Share Distribution

The Dealer pick secret s(x),  $\deg(s(x)) < d_0$ , random  $\alpha(x)$ , such that

$$f(x) = s(x) + \alpha(x)m_0(x), \ \deg(\alpha(x)) + d_0 < \sum_{i=1}^t d_i - 1$$

share for ith shareholder:

$$s_i(x) = f(x) \operatorname{mod} m_i(x)$$

#### **Our General Scheme**

## ✓ Secret Reconstruction

```
any k participants, e.g., \{1, 2, ..., k\}, k \ge t recover the secret s(x):
\begin{cases} f(x) = s_1(x) \mod m_1(x) \\ f(x) = s_2(x) \mod m_2(x) \\ \cdots \\ f(x) = s_k(x) \mod m_k(x) \end{cases} \to f(x), \text{ (by CRT for polynomial ring)}
```

$$\rightarrow s(x) = f(x) \mod m_0(x)$$

#### **Our Ideal Scheme**

✓ Only Difference in Setup

prime p, an integer  $d_0 \ge 1$ ,  $m_0(x) = x^{d_0}$ , pairwise coprime polynomials  $m_i(x) \in F_p[x]$ ,  $d_i = \deg(m_i(x))$  for  $i \in [0, n]$  such that

$$d_0 = d_1 = d_2 = \dots = d_n$$
 and  $d_0 + \sum_{i=n-t+2}^n d_i = \sum_{i=1}^t d_i$ 

$$d_0 \le d_1 \le d_2 \le ... \le d_n \text{ and } d_0 + \sum_{i=n-t+2}^n d_i \le \sum_{i=1}^t d_i$$
 (in general scheme)

# Surprising Gains from Our Ideal Scheme

- ✓ Information rate=1, no info. leak → Ideal scheme
- ✓ Quite easy to choose pairwise coprime modulus polynomials
  - e.g.  $x^{d_0} + 1$ ,  $x^{d_0} + 2$ ,...,  $x^{d_0} + n$
- ✓ Shamir's (t,n)-SS as a special case

# Shamir's (t,n)-SS as our special case

✓ An instantiation of our ideal scheme with

$$d_o=1$$

# Shamir's (t,n)-SS as our special case

# CRT for Polynomial Ring over F<sub>n</sub>

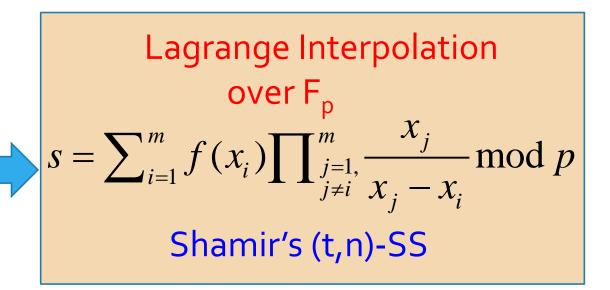
$$\begin{cases} f(x) = s_1(x) \bmod m_1(x) \\ f(x) = s_2(x) \bmod m_2(x) \end{cases}$$

•••

$$f(x) = s_k(x) \bmod m_k(x)$$

$$\rightarrow s(x) = f(x) \mod m_0(x)$$

Our Ideal scheme



 $X_i$ : Public info. of shareholder  $U_i$ 

since 
$$f(x_i) = f(x) \mod(x - x_i), \ m_i(x) = x - x_i \in F_p$$

(Remainder Theorem for Polynomial)

# Weighted (t,n)-SS based on our General Scheme

- ✓ What is Weighted (t,n)-SS
  - Each shareholder  $U_i$  in subset A has a weight  $w_i$ ;
  - secret can be recovered if

$$\sum_{i \in A} w_i \ge t$$

# Weighted (t,n)-SS based on our General Scheme

✓ More natural and easier to realize Weighted (t,n)-SS based on our scheme



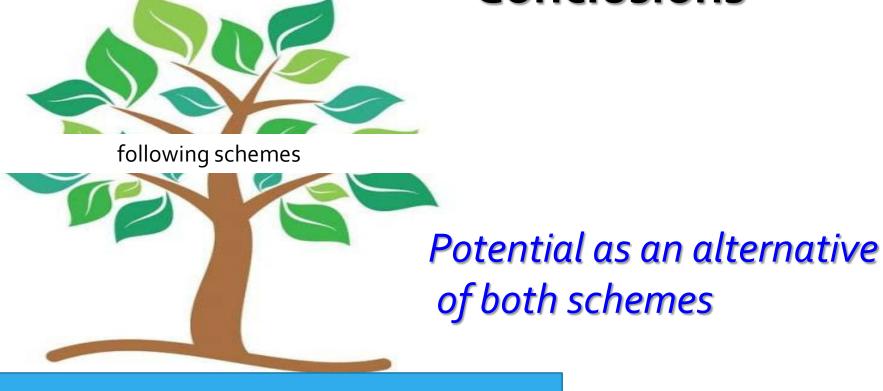
weight=
$$deg(m_i(x)) = w_i$$

Shareholder with weight  $w_i$  is allocated a modulus polynomial of degree  $w_i$ 

#### Conclusions

- ✓ **General (t,n)-SS Scheme** (Poly. Ring) ← Asmuth-Bloom's (t,n)-SS (Integer Ring)
- ✓ Ideal (t,n)-SS Scheme ← General (t,n)-SS Scheme
- ✓ Shamir's scheme as a **special case** of Ideal (t,n)-SS Scheme
- ✓ Weighted (t,n)-SS ← General (t,n)-SS Scheme





Our scheme



