



#### Homomorphic Secret Sharing for Low Degree Polynomials

Russell W. F. Lai, <u>Giulio Malavolta</u>, and Dominique Schröder Friedrich-Alexander University Erlangen-Nürnberg







#### **Homomorphic Secret Sharing**

A secret-sharing scheme allows a client to share his data across several servers

A secret-sharing scheme is **homomorphic** if the servers can compute functions over the shares and the client can reconstruct the function output

Efficiency: The communication must be **independent** from the size of the function





Analogy: "Distributed" FHE





## **Security Definitions**

1) A corrupt set of servers should not learn anything about the data



2) The client should learn nothing beyond the **output** of the function







#### **State-of-the-art**

|          | # Clients | # Servers | # Corrupt | Function                | Assump. | Model       |
|----------|-----------|-----------|-----------|-------------------------|---------|-------------|
| [Sha79]  | n         | m         | m - 1     | poly <sup>(m - 1)</sup> | -       | plain       |
| [Ben87]  | n         | m         | m - 1     | affine                  | -       | plain       |
| [DHR+16] | n         | m         | m         | Р                       | LWE     | plain       |
| [BGI15]  | n         | 2         | 1         | point                   | OWF     | plain       |
| [BGI16]  | n         | 2         | 1         | NC <sup>1</sup>         | DDH     | PKI (mult.) |
| [CF15]   | n         | 2         | 1         | poly <sup>2k</sup>      | k-HE    | plain       |





#### **Our Results**

**Theorem:** For all integers n > 0,  $k \ge 0$ , and m = O(log(n) / loglog(n)), if there exists a k-homomorphic public-key encryption scheme, then there exists a n-client m-server homomorphic secret sharing for polynomials of degree (k + 1) \* m - 1.

Homomorphic encryption for

k = 1 => (lifted) ElGamal, Paillier k = 2 => [BGN05] Pairings k > 2 => Lattices

Example: Homomorphic secret-sharing for **degree-3 polynomials** from DDH (setting k = 1 and m = 2)

Randomized Encodings





#### **Our Results**

|          | # Clients | # Servers | # Corrupt | Function                 | Assump. | Model       |
|----------|-----------|-----------|-----------|--------------------------|---------|-------------|
| [Sha79]  | n         | m         | m - 1     | poly <sup>(m - 1)</sup>  | -       | plain       |
| [Ben87]  | n         | m         | m - 1     | affine                   | -       | plain       |
| [DHR+16] | n         | m         | m         | Ρ                        | LWE     | plain       |
| [BGI15]  | n         | 2         | 1         | point                    | OWF     | plain       |
| [BGI16]  | n         | 2         | 1         | NC <sup>1</sup>          | DDH     | PKI (mult.) |
| [CF15]   | n         | 2         | 1         | poly <sup>2k</sup>       | k-HE    | plain       |
| THIS     | n         | m         | 1         | poly <sup>(k+1)m-1</sup> | k-HE    | plain       |





# **Toy Example**

A 2-server scheme from linearly homomorphic encryption to computed the function f(x,y,z) = x \* y \* z.

#### Sharing: Encode each input as







## **Toy Example (continued)**

**Eval:** Expand the product

$$x * y * z = (x_1 + x_2) (y_1 + y_2) (z_1 + z_2) = \sum_i \sum_j \sum_i x_i y_j z_i$$

By the pigeonhole principle, for all (i, j, l) there exists at least one server that can compute the corresponding monomial by treating the plaintexts as constants, e.g.,

$$Enc(x_1) * (y_2 * z_2) = Enc(x_1 * y_2 * z_2)$$

Let A be the set of monomials computable by the first server and B the set computable by the second

$$c_1 = Enc(\Sigma_A m_A)$$
 and  $c_2 = Enc(\Sigma_B m_B)$ 





## **Toy Example (continued)**

**Decode:** Decrypt  $c_1$  and  $c_2$  and sum the plaintexts to obtain

$$\Sigma_A m_A + \Sigma_B m_B = \Sigma_i \Sigma_j \Sigma_l x_i y_j z_l = x * y * z_l$$

**Increasing the degree:** Increasing the number of servers also increases the degree of the polynomial the can be computed, setting the i-th share as

allows one to compute polynomials of degree m-1





#### **Main Construction and Efficiency**

Important to choose a suitable **Split** function to split the monomials across the servers to avoid duplicates

**Greedy:** Each server computes as many monomials as he can (taking care of avoiding duplicates)

=> Efficient for m = O(log(n) / loglog(n))

 $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KGen}(1^{\lambda})$  $(s_{i,1},\ldots,s_{i,m}) \leftarrow \mathsf{Share}(\mathsf{pk},i,x_i)$  $(x_{i,1},\ldots,x_{i,m}) \leftarrow R^m \ s.t. \ \sum_{j \in [m]} x_{i,j} = x_i$  $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{HE}.\mathsf{KGen}(1^{\lambda})$ return (pk, sk)  $(z_{i,1},\ldots,z_{i,m}) \leftarrow R^m \ s.t. \ \sum_{i \in [m]} z_{i,j} = 0$  $y \leftarrow \mathsf{Dec}(\mathsf{sk}, y_1, \ldots, y_m)$  $\tilde{x}_{i,j} \leftarrow \mathsf{HE}.\mathsf{Enc}(\mathsf{pk}, x_{i,j}) \ \forall j \in [m]$  $c \leftarrow \mathsf{HE}.\mathsf{Eval}(\mathsf{pk}, f_{\mathrm{Add}}, (y_1, \dots, y_m))$  $x_i^{-j} := (x_{i,1}, \dots, x_{i,j-1}, x_{i,j+1}, \dots, x_{i,m})$  $y \leftarrow \mathsf{HE}.\mathsf{Dec}(\mathsf{sk}, c)$  $s_{i,j} := (x_i^{-j}, \tilde{x}_{i,j}, z_{i,j})$ return u**return**  $(s_{i,1}, ..., s_{i,m})$  $y_j \leftarrow \mathsf{Eval}(j, f, (s_{1,j}, \dots, s_{n,j}))$ parse  $s_{i,j}$  as  $(x_i^{-j}, \tilde{x}_{i,j}, z_{i,j})$  $f_j := \mathsf{Split}_d(j, f, (x_1^{-j}, \dots, x_n^{-j})) + \sum_{i \in [n]} z_{i,j}$  $y_i \leftarrow \mathsf{HE.Eval}(\mathsf{pk}, f_i, (\tilde{x}_{1,i}, \dots, \tilde{x}_{n,i}))$ return  $y_i$ 

**Fair:** Weights are assigned to each monomial

=> For k = 1, efficient for m = O(log(n))





### **Multi-Key and Collusion Resistance**

**Multi-Key:** Our construction naturally extends to support function evaluation over shares from different client

=> Replace the homomorphic encryption with a multi-key homomorphic encryption

**Collusion Resistance:** The vanilla version of our construction is resilient against the corruption of a single server

=> We show how to trade expressiveness for corruption threshold t





## **Applications**

Our scheme has several appealing features:

- Simple assumptions
- Perfect correctness
- Efficient output client

**Outsourced Computation:** Our scheme can be used off-the-shelf to compute statistical measure over encrypted data (e.g., mean and variance)

**Multi-Server PIR:** An m-server PIR with communication dominated by a factor |DB|/2<sup>d</sup> (where d depends on k, m, and t)

**Round-Optimal MPC:** Applying the generic transform of [BGI+18] we can turn a homomorphic secret sharing for degree-3 polynomials into a 2-round semi-honest MPC (in a weak corruption model)





## **Open Problems**

1) Other applications of our techniques?

2) Increasing the degree of the polynomials? Better Split functions? Bootstrapping?

3) Homomorphic secret-sharing for P from more assumptions? (only known from lattices)





**TECHNISCHE FAKULTÄT** 

#### Thank you for your attention!

Questions?

