
Homomorphic Secret Sharing for Low Degree Polynomials

Russell W. F. Lai, Giulio Malavolta, and Dominique Schröder

Friedrich-Alexander University Erlangen-Nürnberg

Homomorphic Secret Sharing

!2

A secret-sharing scheme allows
a client to share his data across
several servers

A secret-sharing scheme is
homomorphic if the servers
can compute functions over the
shares and the client can
reconstruct the function output

Efficiency: The communication
must be independent from the
size of the function Analogy: “Distributed” FHE

x1 x3 x2

Eval(f, x1) Eval(f, x2) Eval(f, x3)

f(y)

y

Security Definitions

!3

1) A corrupt set of servers should not learn anything about the data

2) The client should learn nothing beyond the output of the function

x1 x3 x2 r1 r2

Eval(f, x1) Eval(f, x2) Eval(f, x3) s1 s3 s2

(s1, s2, s3) Simulator(f(y))

State-of-the-art

!4

Clients # Servers # Corrupt Function Assump. Model

[Sha79] n m m - 1 poly(m - 1) - plain

[Ben87] n m m - 1 affine - plain

[DHR+16] n m m P LWE plain

[BGI15] n 2 1 point OWF plain

[BGI16] n 2 1 NC1 DDH PKI (mult.)

[CF15] n 2 1 poly2k k-HE plain

Our Results

!5

Theorem: For all integers n > 0, k >= 0, and m = O(log(n) /
loglog(n)), if there exists a k-homomorphic public-key encryption
scheme, then there exists a n-client m-server homomorphic
secret sharing for polynomials of degree (k + 1) * m - 1.

Homomorphic encryption for

k = 1 => (lifted) ElGamal, Paillier
k = 2 => [BGN05] Pairings
k > 2 => Lattices

Example: Homomorphic secret-sharing for degree-3
polynomials from DDH (setting k = 1 and m = 2)

Randomized Encodings

Our Results

!6

Clients # Servers # Corrupt Function Assump. Model

[Sha79] n m m - 1 poly(m - 1) - plain

[Ben87] n m m - 1 affine - plain

[DHR+16] n m m P LWE plain

[BGI15] n 2 1 point OWF plain

[BGI16] n 2 1 NC1 DDH PKI (mult.)

[CF15] n 2 1 poly2k k-HE plain

THIS n m 1 poly(k+1)m-1 k-HE plain

Toy Example

!7

A 2-server scheme from linearly homomorphic encryption to
computed the function f(x,y,z) = x * y * z.

Sharing: Encode each input as

x1 x2
y1 y2
z1 z2

such that
x1 x2
y1 y2
z1 z2

1
1

x
y
z

=

 Define the shares as

x1, Enc(x2)
y1, Enc(y2)
z1, Enc(z2)

Enc(x1), x2
Enc(y1), y2
Enc(z1), z2

and

Toy Example (continued)

!8

Eval: Expand the product

x * y * z = (x1 + x2) (y1 + y2) (z1 + z2) = Σi Σj Σl xi yj zl

By the pigeonhole principle, for all (i, j, l) there exists at
least one server that can compute the corresponding
monomial by treating the plaintexts as constants, e.g.,

Enc(x1) * (y2 * z2) = Enc(x1 * y2 * z2)

Let A be the set of monomials computable by the first
server and B the set computable by the second

c1 = Enc(ΣA mA) and c2 = Enc(ΣB mB)

Toy Example (continued)

!9

Decode: Decrypt c1 and c2 and sum the plaintexts to obtain

ΣA mA + ΣB mB = Σi Σj Σl xi yj zl = x * y * z

Increasing the degree: Increasing the number of servers also
increases the degree of the polynomial the can be computed,
setting the i-th share as

x1, …, xi-1, Enc(xi), xi+1, … xm
 …
z1, …, zi-1, Enc(zi), zi+1, … zm

allows one to compute polynomials of degree m-1

Main Construction and Efficiency

!10

2.4 Main Construction in the Public-Key Model

(pk, sk) Ω KGen(1⁄)

(pk, sk) Ω HE.KGen(1⁄)
return (pk, sk)

y Ω Dec(sk, y1, . . . , ym)

c Ω HE.Eval(pk, fAdd, (y1, . . . , ym))
y Ω HE.Dec(sk, c)
return y

(si,1, . . . , si,m) Ω Share(pk, i, xi)

(xi,1, . . . , xi,m) Ω Rm s.t.
ÿ

jœ[m]
xi,j = xi

(zi,1, . . . , zi,m) Ω Rm s.t.
ÿ

jœ[m]
zi,j = 0

x̃i,j Ω HE.Enc(pk, xi,j) ’j œ [m]
x≠j

i := (xi,1, . . . , xi,j≠1, xi,j+1, . . . , xi,m)
si,j := (x≠j

i , x̃i,j , zi,j)
return (si,1, . . . , si,m)

yj Ω Eval(j, f, (s1,j, . . . , sn,j))

parse si,j as (x≠j
i , x̃i,j , zi,j)

fj := Splitd(j, f, (x≠j
1 , . . . , x≠j

n)) +
ÿ

iœ[n]
zi,j

yj Ω HE.Eval(pk, fj , (x̃1,j , . . . , x̃n,j))
return yj

Figure 2.2: Construction of a homomorphic secret sharing scheme HSS in the public-key setup
model. (The functions fAdd and Splitd are defined in the text description.)

is generic and relies only a public key homomorphic encryption scheme HE for degree-k
polynomials. We analyze the efficiency of our construction in Section 2.4.3 and show that it
satisfies the security definitions for an HSS scheme in Section 2.4.4. For the sake of simplicity,
we initially assume a public-key setup and we show how to upgrade it to the standard model
in Section 2.5.

2.4.1 Construction
In the following we provide the reader with an intuitive description of our main construction
and we refer to Figure 2.2 for a formal description.

Key Generation. On input the security parameter, the output client generates the keys of the
encryption HE scheme and publishes the public key.

Secret Sharing. To secret share a ring element xi œ R, the input client samples random
base secret shares xi,j Ω R for j œ [m] subject to the constraint that

q
jœ[m] xi,j = xi. It then

encrypts each share xi,j for i œ [n], j œ [m] as x̃i,j . Similarly, base shares of 0 are randomly
sampled as (zi,1, . . . , zi,m) œ Rm such that

q
jœ[m] zi,j = 0. For each jÕ

œ [m], the resulting
jÕ-th secret share of (x1, . . . , xn) consists of all plaintext base shares xi,j for all i œ [n] and
j œ [m] \ {jÕ

}, the encrypted base shares x̃i,jÕ for all i œ [n], and the plain 0-shares zi,jÕ for all
i œ [n]. The process of creating a share si,jÕ is visualized below and formalized in Figure 2.2.

15

Important to choose a suitable
Split function to split the
monomials across the servers to
avoid duplicates

Greedy: Each server computes
as many monomials as he can
(taking care of avoiding
duplicates)

=> Efficient for m = O(log(n) /
loglog(n))

Fair: Weights are assigned to
each monomial

=> For k = 1, efficient for m =
O(log(n))

Multi-Key and Collusion Resistance

!11

Multi-Key: Our construction naturally extends to support function
evaluation over shares from different client

=> Replace the homomorphic encryption with a multi-key
homomorphic encryption

Collusion Resistance: The vanilla version of our construction is
resilient against the corruption of a single server

=> We show how to trade expressiveness for corruption threshold t

Applications

!12

Outsourced Computation: Our scheme can be used off-the-shelf
to compute statistical measure over encrypted data (e.g., mean and
variance)

Multi-Server PIR: An m-server PIR with communication dominated
by a factor |DB|/2d (where d depends on k, m, and t)

Round-Optimal MPC: Applying the generic transform of [BGI+18]
we can turn a homomorphic secret sharing for degree-3
polynomials into a 2-round semi-honest MPC (in a weak corruption
model)

Our scheme has several appealing features:
- Simple assumptions
- Perfect correctness
- Efficient output client

Open Problems

!13

1) Other applications of our techniques?

2) Increasing the degree of the polynomials? Better Split functions?
Bootstrapping?

3) Homomorphic secret-sharing for P from more assumptions?
 (only known from lattices)

Thank you for your attention!

Questions?

