Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols

Amos Beimel and Naty Peter

Ben-Gurion University

Asiacrypt 2018

December 6, 2018

Conditional Disclosure of Secrets (CDS)

[GertnerIshaiKushilevitzMalkin98]

- A function: $f: [N]^k \rightarrow \{0, 1\}$
- Each party has a private input
- The parties know a secret s
- Common randomness r
- Referee knows x_1, \dots, x_k
- Each party sends one message
- Correctness: If $f(x_1, ..., x_k) = 1$, Ref learns s
- Privacy: If $f(x_1, ..., x_k) = 0$, Ref learns nothing

Learns s if and only if $f(x_1, ..., x_k) = 1$

Motivation for Multiparty CDS Protocols

A simple and interesting primitive

Used to construct:

- Secret-sharing for uniform access structures
- Secret-sharing for general access structures
- Attribute-based encryption (ABE)
- Symmetric private information retrieval (SPIR)
- And more

Our Results

- We study linear multiparty CDS protocols
 - Many applications require linear protocols
 - Used to construct linear secret sharing with share size $O(2^{0.999n})$ [LiuVaikuntanathan18]
- We construct optimal CDS protocols for general functions
- We construct efficient CDS protocols for sparse and dense functions
 - Sparse = the number of 1-inputs of f is at most N^{γ}
 - Dense = the number of $\mathbf{0}$ -inputs of \mathbf{f} is at most N^{γ}
- We show a transformation from CDS protocols to secret sharing for uniform access structures
- We present lower bounds for linear CDS protocols and for linear secret sharing schemes for uniform access structures
 - Our protocols for general functions are optimal

Linear CDS Protocols: Definition

- A CDS protocol is linear if every message sent to the referee is a linear combination of the secret and the randomness
- Input: A secret s ∈ F
- Common randomness: Field elements $r_1, ..., r_\ell \in \mathbb{F}$
- The message of P_i:
 - A vector over F
 - Each coordinate is a linear combination of s and r_1, \dots, r_ℓ
 - The combination can depend on x_i
- Equivalently, a CDS protocol is linear if the reconstruction function of the secret is a linear combination of the elements in the messages it gets

Example: A Simple Linear CDS Protocol

- A secret $s \in \mathbb{F}_2$
- A function $f: \{0, 1\}^k \to \{0, 1\}$ s.t. $f(x_1, ..., x_k) = x_1 \land \cdots \land x_k$
- Common randomness $r_1, ..., r_{k-1} \in \mathbb{F}_2$
- 1. For $1 \le i \le k 1$, the message of P_i on input x_i is $m_i = x_i \cdot r_i$
- 2. Message of P_k on input x_k is $m_k = x_k \cdot r_1 \oplus \cdots \oplus x_k \cdot r_{k-1} \oplus x_k \cdot s$
- If $x_1 = \cdots = x_k = 1$ then Ref computes

$$\bigoplus_{i=1}^{k} m_i = \bigoplus_{i=1}^{k-1} x_i \cdot r_i \oplus x_k \cdot r_1 \oplus \cdots \oplus x_k \cdot r_{k-1} \oplus x_k \cdot s = s$$

Message size k

Known Upper Bounds for CDS Protocols

- Let $f: [N]^k \to \{0, 1\}$ be a function
- There is a *linear* CDS protocol for every function with message size $O(N^k)$ [GertnerIshaiKushilevitzMalkin98]
- For k=2, there is a *linear* CDS protocol for every function with message size $O(N^{1/2})$ [GayKerenidisWee15]
- There is a *non-linear* CDS protocol for every function with message size $2^{\widetilde{O}(\sqrt{k \log N})}$ [LiuVaikuntanathanWee18]
- For k=2, the message size is $2^{\widetilde{O}(\sqrt{\log N})} \ll O(N)$

Questions

- Can we construct more efficient linear CDS protocols for general functions?
- Can we construct efficient linear CDS protocols for a sparse or a dense function f?

Main Result: Linear CDS Protocols

- Thm 1: Let $f: [N]^k \to \{0, 1\}$ be a function. Then, there is a linear CDS protocol for f with message size $O(N^{(k-1)/2})$
 - Same result was independently and in parallel proven by [LiuVaikuntanathanWee18]
- Example: If k = 5 then the message size is $O(N^2)$
- Thm 2: Let $f: [N]^k \to \{0, 1\}$ be a function s.t. the number of 1-inputs of f is at most N^γ . Then, there is a linear CDS protocol for f with message size $\widetilde{O}(N^{\gamma(k-1)/(k+1)})$
 - Same result for a function f s.t. the number of f is at most N^{γ}
- Example: If k = 5, $\gamma = 2$ then the message size is $\tilde{O}(N^{4/3})$

Construction Technique

- Our linear CDS protocol for any function $f: [N]^k \to \{0, 1\}$ with message size $O(N^{(k-1)/2})$ is constructed as follows:
- 1. We start with a linear 2-party CDS protocol
- 2. We use the 2-party protocol to construct a linear 3-party CDS protocol
- 3. We simulate the 3-party protocol to get a linear **k**-party CDS protocol

Warm-up: Linear 2-party CDS

implicit in [GayKerenidisWee15]

- A secret $s \in \{0, 1\}$ and a function $f: [N] \times [N] \rightarrow \{0, 1\}$
- Common randomness $r_1, ..., r_N \in \{0, 1\}$
- Denote the 2 parties by Alice and Bob
- 1. Message of Alice on input α is

$$m_1 = s \oplus \bigoplus_{y,f(a,y)=0} r_y$$

2. Message of Bob on input **b** is

$$m_2 = r_1, ..., r_{b-1}, r_{b+1}, ..., r_N$$

- If f(a, b) = 1 then r_b does not appear in m_1
 - → The referee can unmask s
- Message size N

Example: Linear 2-party CDS

- A secret $s \in \{0, 1\}$ and a function $f: [3] \times [3] \rightarrow \{0, 1\}$
- f(a, b) = 1 if and only if a = b = 2
- Common randomness $r_1, r_2, r_3 \in \{0, 1\}$
- Recall: Alice's message is $m_1 = s \oplus \bigoplus_{v,f(a,v)=0} r_v$
- If a=b=2 then $m_1=s\oplus r_1\oplus r_3$ and $m_2=r_1,r_3$
- If a=2, b=3 then $m_1=s\oplus r_1\oplus r_3$ and $m_2=r_1$, r_2

Our Basic Protocol: Linear 3-party CDS

- A secret $s \in \{0, 1\}$ and a function $f: [N] \times [N] \times [N] \rightarrow \{0, 1\}$
- Common randomness $r_1, \dots, r_N, q_1, \dots, q_N \in \{0, 1\}$
- For every $z \in [N]$, let

$$s_z = s \oplus q_z \oplus \bigoplus_{y,f(a,y,z)=0} r_y$$

- Denote the 3 parties by Alice, Bob, and Charlie
- 1. Message of Alice on input a is $m_1 = s_1, ..., s_N$
- 2. Message of Bob on input b is $m_2 = r_1, \dots, r_{b-1}, r_{b+1}, \dots, r_N$
- 3. Message of Charlie on input c is $m_3 = q_c$
- Message size 2N

General Protocol: Linear k-party CDS

- A function $f: [N]^k \to \{0, 1\}$
- Let $\mathbf{k}' = (\mathbf{k} \mathbf{1})/2$ (assume $\mathbf{k} > \mathbf{3}$ is odd)
- We simulate the 3-party protocol:

• The message size of this protocol is $O(N^{k'}) = O(N^{(k-1)/2})$

Main Result: Lower Bounds for CDS

<u>Using the results of [BeimelFarrasMintzPeter17] we get:</u>

- Thm 3: There exists a function f such that in any linear CDS protocol for f with a one-bit secret, the size of at least one message is $\Omega(k^{-1} \cdot N^{(k-1)/2})$
- Conclusion 1: Our linear CDS protocol is optimal
- Conclusion 2: Gap between linear and non-linear CDS protocols
- Thm 4: There exists a function f s.t. the number of 1-inputs of f is at most N^{γ} s.t. in any linear CDS protocol for f with a one-bit secret, the size of at least one message is $\Omega(k^{-1} \cdot N^{\gamma(k-1)/2k})$
 - Same result for a function f in which the number of f is at most N^{γ}
- Example: If k = 5, $\gamma = 2$ then the message size is $\Omega(N^{4/5})$, compared to the message size of $O(N^{4/3})$ in our protocol

Conclusions

- CDS ⇒ ABE, SPIR, Secret sharing for uniform and general A.S.
- Linear CDS \Rightarrow Linear secret sharing with share size $O(2^{0.999n})$

Our Results:

- Optimal linear CDS protocols for general functions
- Linear CDS protocols for sparse and dense functions
- An Efficient transformation from CDS protocols to uniform A.S.
- Lower bounds on the message size in linear CDS protocols and on the total size of the shares in linear schemes for uniform A.S.

Open problems:

- Show optimal (linear) CDS protocols for sparse and dense functions
- Close the gap for the message size of non-linear CDS protocols

Thanks!