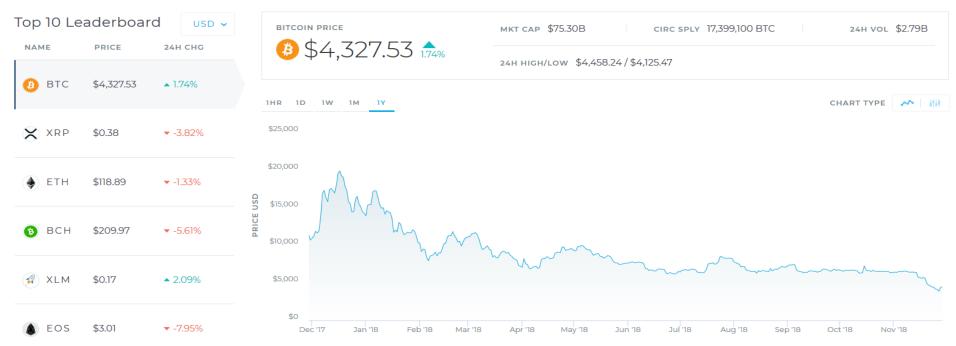


Analysis of the Blockchain Protocol with Long Delays

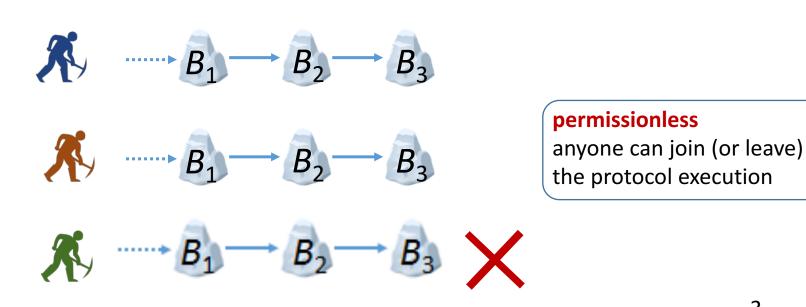
Puwen Wei¹, Quan Yuan¹, Yuliang Zheng²


1. Shandong University

Key Lab of Cryptologic Technology and Information Security, Ministry of Education

2. University of Alabama at Birmingham

Nakamoto's blockchain


- Bitcoin introduced by Nakamoto in 2008
 - Decentralized payment system
 - Ledger maintained by the public in a decentralized manner
 - Attractive properties
 - Decentralization, Pseudonymity, Robustness ...

Nakamoto's blockchain

Blockchain

- Chain-structured ledger maintained by all the participants (miners)
 - Blocks can only be added to the end of the chain
- Basic security requirement
 - All the miners maintain the same record
 - Achieve **consensus** in the **permissionless** setting

Nakamoto's blockchain

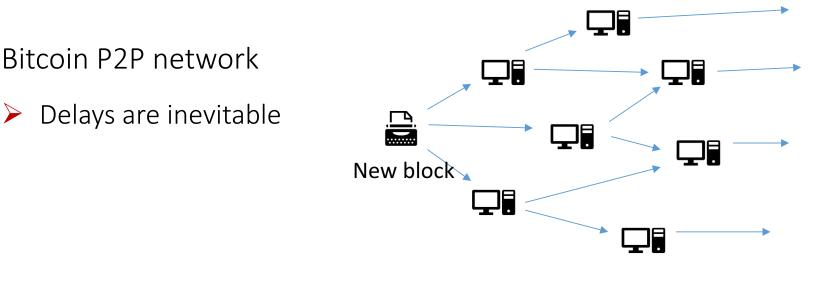
- Proof of work (POW)
 - Solve a "cryptographic puzzle"

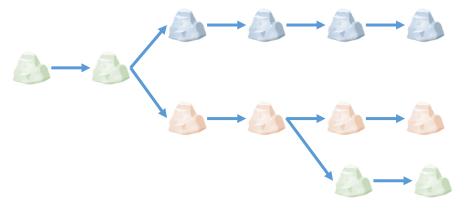
H(h||m||?) < D

- Integrity : More difficult for the adversary to modify the chain
- Synchronism : help the distributed miners to synchronize
 - Slowdown the generation of blocks
 - Longest chain rule

Bitcoin Backbone Protocol [GKL15] blockchain $C=(B_0, B_1, ..., B_l)$ block $B_i = (h_{i-1}, m_i, r_i, h_i)$ $h_i = H(h_{i-1}||m_i||r_i)$, s.t. $h_i < D$

Garay, Kiayias and Leonardos [GKL15] provide a rigorous analysis of blockchain protocol

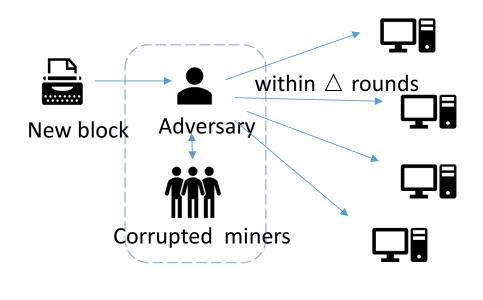

- Synchronous model
- Pass, Seeman and shelat [PSS17] analyze the security in an


asynchronous network with a-priori bounded delay

Asynchronous model

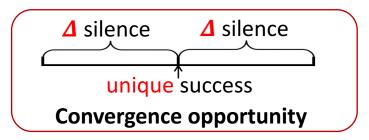
Why consider the delay?

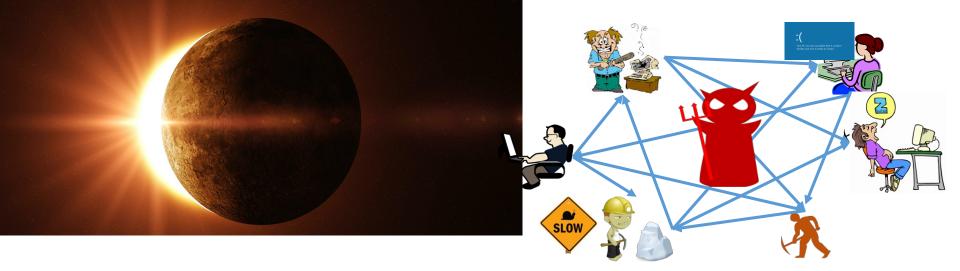
Blockchain protocol with delays



The propagation delay in the network is the primary cause for blockchain forks [DW13]

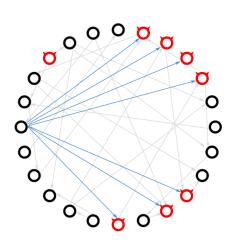
Blockchain protocol with delays


- Adversary in [PSS17]
- Responsible for the all message delivery
 - All the message can be delayed within Δ rounds
- Has certain factions of hash power



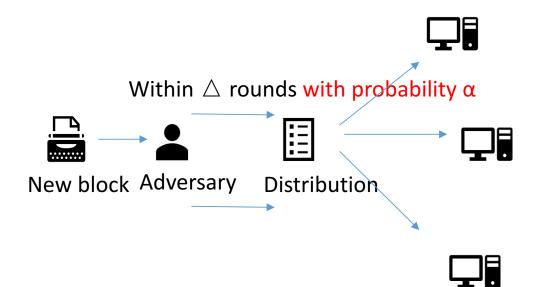
- Chain growth: $\frac{(1-\epsilon)f}{1+f\Delta}$, where f pprox np
- Consistency: T with probability 1 negl(T)

• Chain quality:
$$1-(1+\epsilon)rac{tp(1+f\Delta)}{f}$$


- Limitation: $\varDelta \ll O(1/np)$ The proof holds for a relatively small delay only
- *n*: the number of miners
- p: the probability that a miner succeeds in mining a block at a round

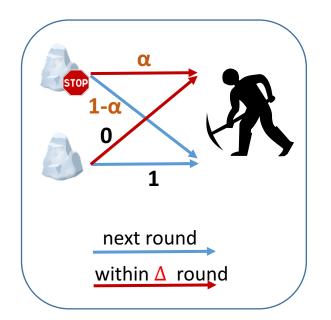
In the real world, long delays, say $\Delta \ge 1/np$, could be caused easily!

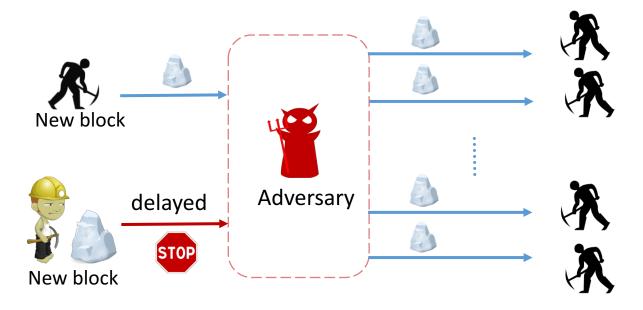
- "bad" asynchronous networks, equipment failure,...
- malicious attacks
 - eclipse attacks [HKZG15], which allow an adversary to control 32 IP addresses to monopolize all connections to and from a target bitcoin node with 85% probability



Eclipse attacks [HKZG15]

Is the blockchain protocol based on POW still secure in the asynchronous network, where long delay, say $\Delta \ge 1/np$, is allowed?


Our contribution

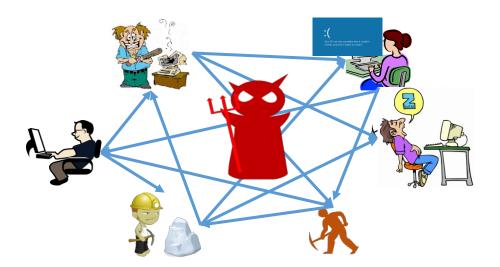

- Focus on the effect of long delay, especially $\Delta \ge 1/np$
 - Prove that the common prefix property and the chain growth property can still hold in our model when considering long delay
 - define chain growth and common prefix in a more subtle way
 - simplified proof method for POW based blockchain

Our blockchain model

- The adversary A
 - Deliver all messages sent by miners
 - \blacktriangleright Delay the target chains with probability α
 - Within Δ rounds
 - > Do not have any hash power

Our blockchain model

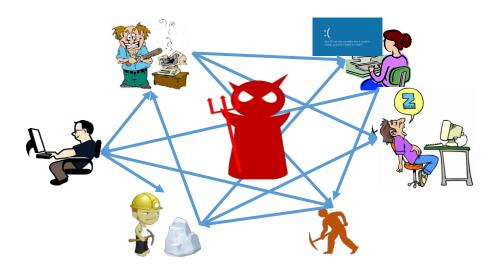
- Modification to blockchain protocol
 - Consecutive blocks cannot be mined by the same miner (not the same mining pool)
 - a single miner
 - > an independent communication node of the network
 - has a unit computational power
 - May lead to possible forks
 - In practice It is unlikely that a miner can mine two consecutive blocks
 - large number of miners n
 - small difficulty parameter p


Our blockchain model

Honest miners setting

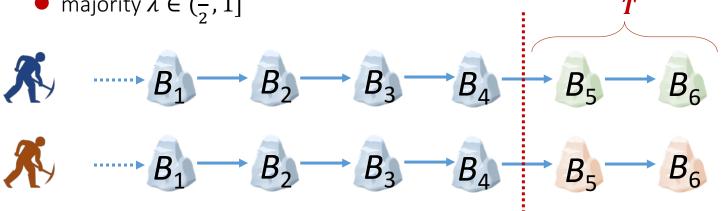
- The adversary does not corrupt any miners (No hash power)
- Our model captures a class of practical attacks in the real world
- For the adversary in a large-scaled blockchain protocol
 - More difficult to control a sizable fraction of hashing power
 - Much easier to disrupt communications among miners
 - Present a concrete attack in which an adversary without any hash power may threaten the common prefix property

Security requirements


Chain Growth

Previous work: the minimum length increase of all honest miners' chains

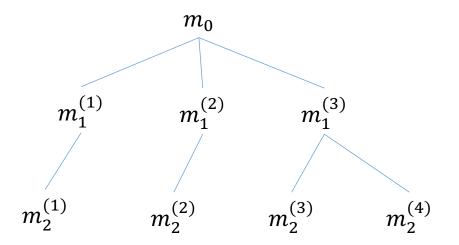
- Our work: the length increase of the majority of honest miners' chains
 - majority $\lambda \in (\frac{1}{2}, 1]$
 - Exclude the "bad" honest minority
 - Chain growth in [PSS17] is a special case of ours when $\lambda = 1$


Security requirements

Common Prefix

Previous work: All the honest miners have the same history (prefix) \succ

- Our work: The majority of the honest miners have the same history \succ
 - Allow some miners' chains to be inconsistent with the main chain
 - majority $\lambda \in (\frac{1}{2}, 1]$



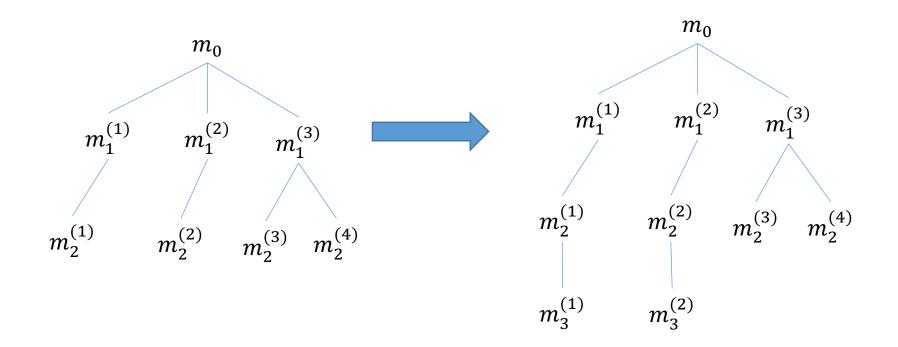
How to capture the evolution of the main chains?

State of the Main Chain

- Tree_{MC} to capture the evolution of the main chains
 - Inspired by F_{tree} model [PSS17], record all the branches (or forks)
 - Tree_{MC} in our model
 - Only store the current state of the main chains
 - Delayed chains are not recorded in Tree_{MC}
 - Basic operations: AddBlock, DeleteBlock

$$C_{1} = (m_{0}, m_{1}^{(1)}, m_{1}^{(1)})$$

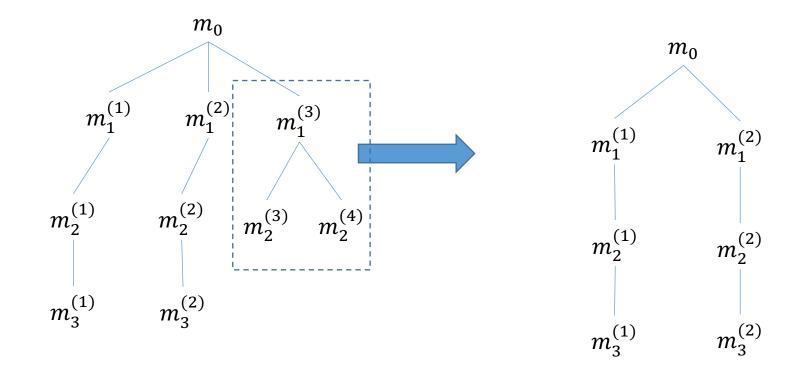
$$C_{2} = (m_{0}, m_{1}^{(2)}, m_{2}^{(2)})$$


$$C_{3} = (m_{0}, m_{1}^{(3)}, m_{2}^{(3)})$$

$$C_{4} = (m_{0}, m_{1}^{(3)}, m_{2}^{(4)})$$

State of the Main Chain

AddBlock:


• When the adversary broadcasts $C_1 = (m_0, m_1^{(1)}, m_2^{(1)}, m_3^{(1)})$ and $C_2 = (m_0, m_1^{(2)}, m_2^{(2)}, m_3^{(2)})$

State of the Main Chain

DeleteBlock:

Remove the useless nodes

Difference between Tree_{MC} and the miners' view

- Each miner has their own view of the main chain, which may be different with Tree_{MC}
- In terms of chain growth and common prefix, the difference is negligible
 - Reduced to the security of Tree_{MC}
 - Simple proof for Tree_{MC}
 - Useful properties on the depth of Tree_{MC}

Lemma 1. Properties of Tree_{MC}.

- 1. If new blocks are successfully added to Tree_{MC} at the end of a round, then the depth of Tree_{MC} increases.
- 2. The depth of $Tree_{MC}$ increases by at most 1 at each round.
- 3. If only one block is added to $Tree_{MC}$ at the end of a round, then $Tree_{MC}$ has only one branch and the depth increases by 1.

Chain Growth

Theorem 1 (Chain growth). Assume $1/2 < \lambda \leq 1 - 8\alpha p\Delta$. The blockchain protocol (Π, C) has the chain growth rate $g = \frac{(1-\delta)f}{1+fE[R_{delay}^i]}$ with majority λ , where $f = 1 - (1-p)^n$, $E[R_{delay}^i] = \frac{\alpha - \alpha \omega^{\Delta - 1}[\omega + \Delta(1-\omega^2)]}{1-\omega}$ and $\omega = 1 - (1-\alpha)f$.

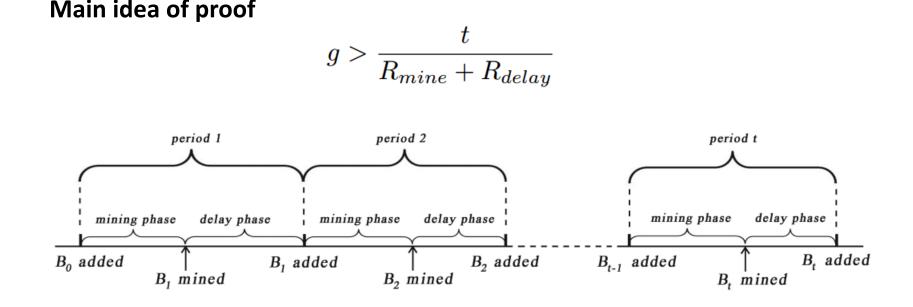


Fig. 1. The rounds during which t consecutive blocks are added to $\mathsf{Tree}_{\mathsf{MC}}$

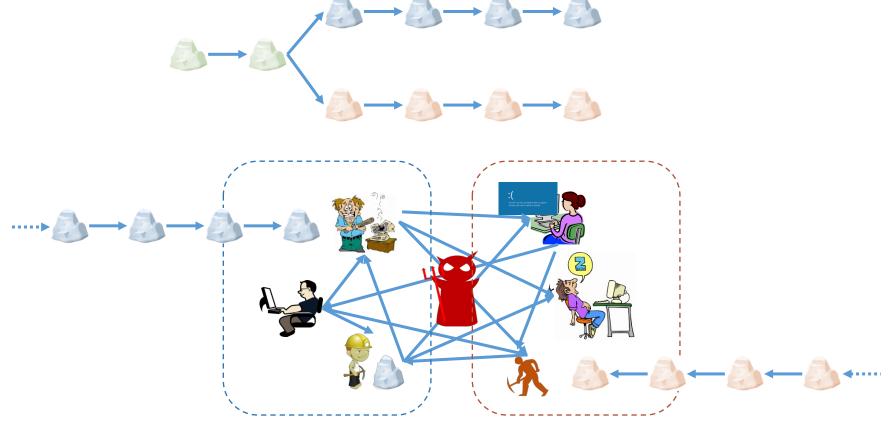
Common Prefix

Theorem 2 (Common prefix). Assume $0 < \alpha < 1 - np$ and $1/2 < \lambda \leq 1 - 8\alpha p\Delta$. The blockchain protocol (Π, C) satisfies the common prefix property with parameter λ .

Main idea of proof

The event converge

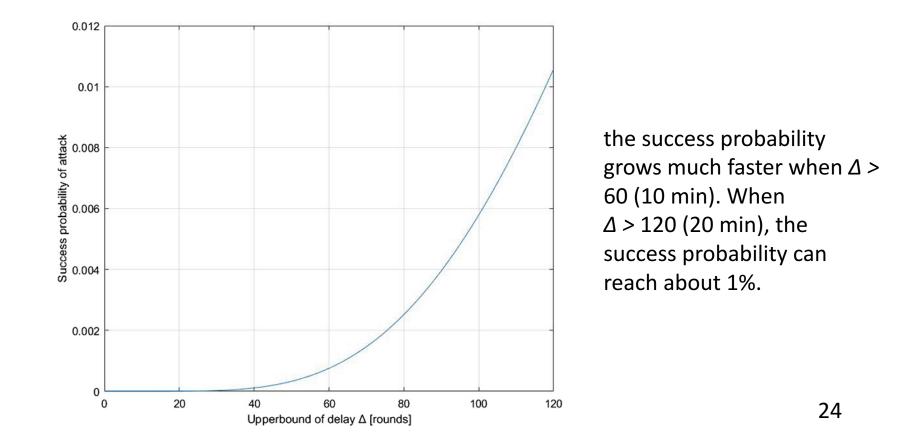
- Only one miner succeeds in mining at round *r**.
- C* is delayable while there is no new block mined in following ∆ rounds
 OR The chain C* is undelayable


```
\Pr[\mathbf{converge}] > 1 - np(1 + \alpha \Delta)
```

For Tree_{MC} with common prefix of depth d-T

$$1 - (np(1 + \alpha \Delta))^T$$

Long Delay Attack on Common Prefix


- Concrete attack on the common prefix of Tree_{MC}
 - \blacktriangleright when Δ and α are "too" large relative to a fixed T
 - Goal of attack: increase the length of the two branches by T

Long Delay Attack on Common Prefix

With inappropriate parameters, adversaries without any hash power can threaten the common prefix property

For $\alpha = 0.8$ and T = 6, the success probability increases as Δ gets larger.

Future work

- Stronger security model
 - Convert honest miner setting to regular miner setting
- Robustness of blockchain for data storage
 - Provide reliable storage with provable robustness

School of Cyber Security

Shandong University, Qingdao

Welcome to visit! & Welcome to join us!

pwei@sdu.edu.cn

Thanks! & Questions?