Simple and efficient PRFs with tighter Security via All-Prefix Universal Hash Functions

Tibor Jager
Paderborn University

Rafael Kurek
Paderborn University

Jiaxin Pan Karlsruhe Institute of Technology

This talk

- New notion for Hash Functions
 - All-Prefix Universality
 - Examples

This talk

- New notion for Hash Functions
 - All-Prefix Universality
 - Examples
- New framework for tightly secure Pseudorandom Functions
 - very simple, small keys, efficient
 - covering Matrix-DDH (MDDH) and learning with errors (LWE)

This talk

- New notion for Hash Functions
 - All-Prefix Universality
 - Examples
- New framework for tightly secure Pseudorandom Functions
 - very simple, small keys, efficient
 - covering Matrix-DDH (MDDH) and learning with errors (LWE)
- LWE-based PRF
 - Currently most efficient construction with weaker security assumption and super-poly modulus

Pseudorandom Functions (PRFs)

We call F a pseudorandom Function if both worlds are computationally indistinguishable.

Cryptographic Reduction

Tightness in reductions

We say that reduction B loses a factor L, if

$$\frac{t(B)}{e(B)} = L \frac{t(A)}{e(A)}$$

• t: running time

• e: advantage

We say the reduction is "tight", if L is small (i.e. constant or logarithmic).

Tightness in reductions

We say that reduction B loses a factor L, if

$$\frac{t(B)}{e(B)} = L \frac{t(A)}{e(A)}$$

• t: running time

• e: advantage

We say the reduction is "tight", if L is small (i.e. constant or logarithmic).

Loss might depend on input length!

PRFs with loss depending on input length

- GGM PRF [FOCS84]
- Matrix-DDH-based PRFs [Escala et al. CRYPTO13]
 - Naor-Reingold PRF [FOCS97]
 - Lewko-Waters PRF [CCS09]
- LWE-based PRFs
 - BPR PRF [Banerjee et al. EUROCRYPT12]

Naïve approach

1. Hash input x with cryptographic Hash Function

$$H: \{0,1\}^* \to \{0,1\}^n$$
$$\mathsf{x} \mapsto h(\mathsf{x})$$

2. Evaluate PRF on hash

$$F_k(h(x))$$

Naïve approach

1. Hash input x with cryptographic Hash Function

$$H: \{0,1\}^* \to \{0,1\}^n$$
$$\mathsf{x} \mapsto h(\mathsf{x})$$

2. Evaluate PRF on hash

$$F_k(h(x))$$

 $n=2\lambda$, where λ security parameter

 \Rightarrow Security Loss $O(\lambda)$ and $|sk| = O(\lambda)$

On-the-fly adaption

[Döttling and Schröder CRYPTO15]

On-the-fly adaption

[Döttling and Schröder CRYPTO15]

On-the-fly adaption

[Döttling and Schröder CRYPTO15]

Döttling and Schröder [CRYPTO15]

- Works especially well for PRFs with loss in input length
- Tight security loss in framework
- Smaller keys
- $\lambda \cdot \omega(\log \lambda)$ invocations of underlying PRF (in the generic framework)

Döttling and Schröder [CRYPTO15]

- Works especially well for PRFs with loss in input length
- Tight security loss in framework
- Smaller keys
- $\lambda \cdot \omega(\log \lambda)$ invocations of underlying PRF (in the generic framework)

Can we do it with a single invocation?

Augmented cascade PRF

[Boneh at al. ACM CCS 2010]

Let
$$F: S \times K \times \{0,1\} \rightarrow K$$
 be a PRF.

Key space

Augmented cascade PRF

[Boneh at al. ACM CCS 2010]

Let
$$F: S \times K \times \{0,1\} \rightarrow K$$
 be a PRF.

Key space

Augmented cascade PRF Fm

Augmented cascade PRF

[Boneh at al. ACM CCS 2010]

Let
$$F: S \times K \times \{0,1\} \rightarrow K$$
 be a PRF.

Key space

Augmented cascade PRF Fm

Loss and |sk| depend on input length! => shorter input => tighter proof and shorter keys

Universal Hash functions

Denote $H = \{h \mid h: \{0,1\}^n \to \{0,1\}^m\}.$

H is a family of universal hash functions, if

$$Pr_{h \leftarrow H}[h(x) = h(x')] \le \frac{1}{2^m}$$

$$\forall x \neq x'$$

All-Prefix Universal Hash Functions

Denote
$$H = \{h \mid h: \{0,1\}^n \to \{0,1\}^m\}.$$

H is a family of all-prefix universal hash functions, if

$$Pr_{h \leftarrow H}[h(x)_{i} = h(x')_{i}] \leq \frac{1}{2^{i}}$$

$$\forall x \neq x' \ \forall i \in [m]$$

All-Prefix almost-Universal Hash Functions

Denote
$$H = \{h \mid h: \{0,1\}^n \to \{0,1\}^m\}.$$

H is a family of all-prefix almost-universal hash functions, if

$$Pr_{h \leftarrow H}[h(x)_{i} = h(x')_{i}] \leq \frac{2}{2^{i}}$$

$$\forall x \neq x' \ \forall i \in [m]$$

The Augmented Cascade with Encoded Input

1. Hash input x with All-Prefix Universal Hash Function with output length $m=\omega(\log \lambda)$

The Augmented Cascade with Encoded Input

- 1. Hash input x with All-Prefix Universal Hash Function with output length $m=\omega(\log \lambda)$
- 2. Evaluate Augmented Cascade PRF on h(x)

Proof sketch

- B breaks AC-PRF with length j, where j depends on adversary A
- Simulates security game for A, breaking AC-PRF with encoded input

Proof sketch

- B breaks AC-PRF with length j, where j depends on adversary A
- Simulates security game for A, breaking AC-PRF with encoded input

Proof sketch

APUHF:

- $R(h(\cdot)_j)$ uniformly random \Rightarrow A gains no information about h \Rightarrow information-theoretically hard to find collision
- no collision on $h(\cdot)_i \Rightarrow R(h(\cdot)_i)$ uniformly random for all queries

One additional property required!

Perfect one-time security

$$\Pr_{k \leftarrow K}[\hat{F}(s, k, x) = k'] = \frac{1}{|K|}$$

for all
$$(s, k', x) \in S \times K \times \{0, 1\}$$

Comparison MDDH-PRFs

	Key Size	Loss	Invocations	
MDDH PRFs	n	n	1	n >> m
DötSch15 PRF	$m = \omega(\log \lambda)$	$\mathcal{O}(\log \lambda)$	1	domain \mathbb{Z}_q
Our PRF	$m = \omega(\log \lambda)$	$\mathcal{O}(\log \lambda)$	1	

Comparison LWE

	Key Size	Loss	Invocations	Modulus
BPR PRFs	n	$Q \cdot N \cdot n$	1	exp in λ
DötSch15 PRF	$m = \omega(\log \lambda)$	$Q \cdot N \cdot \mathcal{O}(\log \lambda)$	$\lambda \cdot \omega(\log \lambda)$	super-poly in λ
Our PRF	$m = \omega(\log \lambda)$	$Q \cdot N \cdot \mathcal{O}(\log \lambda)$	1	super-poly in λ

Example: All-Prefix Universal HF

Pairwise-independent hash functions mapping to bits

$$h_{a,b}: GF(2^n) \to GF(2^n)$$

$$x \mapsto ax + b$$

$$H = \{h_{a,b} : a, b \in \{0,1\}^n\}$$

Example: All-Prefix almost-Universal HF

• Dietzfelbinger et al. [DHKP, J ALG97]

$$h_a: \{0,1\}^m \to \{0,1\}^n$$
$$x \mapsto (ax \mod 2^n) \operatorname{div}^{n-m}$$

$$H_{n,m} = \{h_a : a \in [2^n - 1] \text{ and } a \text{ is odd}\}$$

Comparison to Truncation Collision Resistance

Both

- Similar technical properties
- Chosen prefix length depends on adversary

<u>APUHF</u>

- Security based on secret key
- Known Construction

Tru-CR HF

- Security not based on secret key
- Additional complexity assumption for standard HF

Conclusion

- New notion for Hash Functions
 - All-Prefix Universality
 - Examples
- New framework for tightly secure Pseudorandom Functions
 - very simple, small keys, efficient
 - covering Matrix-DDH (MDDH) and learning with errors (LWE)
- LWE-based PRF
 - Currently most efficient construction with weak security assumption

Thank you for your attention!

This talk: iacr.org/2018/826 Tuesday: iacr.org/2017/061