
Picnic	Post-Quantum	Signatures	
from	Zero	Knowledge	Proofs
MELISSA	CHASE, 	MSR THE	PICNIC	TEAM

DAV ID 	DER L ER

STEVEN 	GOLDFEDER

JONATHAN 	 KATZ

V LAD 	 KOLESN I KOV

CLAUD IO 	OR LAND I

S EBAST I AN 	 RAMACHER

CHR I S T I AN 	 R ECHBERGER

DAN I E L 	 S LAMAN IG

X IAO 	WANG

GREG 	 ZAVERUCHA

Post-quantum	cryptography
A	sufficiently	powerful	quantum	computer	could	factor	numbers	and	compute	discrete	
logarithms
◦ Breaks	essentially	all	standardized	public	key	crypto
◦ E.g.	RSA,	DSA,	ECDSA	are	insecure

Post-quantum	cryptography:	Design	new	schemes	that	
◦ can	be	run	on	classical	machines	
◦ Remain	secure	even	if	adversary	has	a	quantum	computer

Why	now?		Existing	quantum	computers	only	handle	a	few	bits!
◦ Designing	and	deploying	cryptography	is	slow!

◦ Propose	assumptions	and	schemes
◦ Determine	candidate	parameters
◦ Analyze	and	attack	schemes/assumptions
◦ Optimize	surviving	candidates
◦ Implement	and	deploy	new	schemes
◦ Deprecate	old	algorithms

If	quantum	computers	can	break	factoring	and	discrete	log	based	crypto,	is	anything	still	hard?

Some	proposed	quantum	hard	problems:
◦ Lattice-based	problems	
◦ Supersingular isogeny	Diffie–Hellman	(SIDH)
◦ Code-based	problems	
◦ Multi-variate	polynomial	problems
◦ Symmetric	key	primitives	(hash	functions,	block	ciphers)

Post-quantum	cryptography

Post-quantum	cryptography

Public	key	size Signature	size Signing	time Verification	time

Lattice	(LWE) Very	large Small Fast Fast

Lattice	(Ring-LWE) Large Small Fast Fast

SIDH Moderate Large Very	slow Very	slow

Multivariate Small Moderate Moderate Moderate

Hash	(stateful) Small Small Fast Fast

Hash	(stateless) Small Moderate Moderate Fast

ECDSA	gives	us	small	keys,	small	signatures	and	fast	signing	and	verification
◦ But	it	is	insecure	against	a	quantum	adversary

Are	there	any	comparable	post-quantum	proposals?

Picnic:	Our	post-quantum	signature	scheme
Based	on	symmetric	primitives:	a	hash	function	+	a	block	cipher
◦ Concretely	we	suggest:	SHAKE	and	LowMC

Efficiency
◦ Small	keys,	moderate	signature	size,	moderate	signing	and	verification	time

New	approach
◦ Significant	opportunity	for	further	optimization
◦ Diversity	of	approaches	for	non-number-theoretic	assumptions

Roadmap
Picnic:	Basic	approach

Picnic:	Building	blocks

Performance	

Picnic	2.0

Conclusion

Picnic:	basic	approach
Signature	from	identification	scheme	(similar	to	DSA/ECDSA):

Public	key	=	F(sk)

Signature=	proof	of	knowledge	of	sk (using	message	as	nonce)
◦ *Proof	must	not	leak	sk,	so	we	need	a	zero	knowledge proof

Challenge:	we	need	a	hard	to	invert	function	F,	and	a	zero	knowledge	proof	system
◦ Both	need	to	be	secure	against	quantum	adversary

For	example,	
F:	hash	function

Picnic	building	blocks:	ZKBoo

𝑥"𝑥#

𝑥$
𝑥%

𝑥&𝑥'

𝑦"

𝑦#

𝑦$

Signer sk Hard	to	
invert	F

pk

Public	circuit	
with	AND	and
XOR	gates

ZKBoo [GMO16]:	zero	knowledge	proofs	for	statements	about	circuits.

Prover	wants	to	prove	he	knows	𝑥" …𝑥* such	that	the	circuit	evaluates	to	𝑦" …𝑦+

Built	on	hash	functions	and	PRNG

Cost	depends	on	the	number	of	AND	gates	in	the	circuit	and	security	level

Picnic	building	blocks:	ZKBoo (intuition)
A	toy	example: Prover	wants	to	prove	knowledge	of	𝑎, 𝑏 such	that	𝑎 ⊕ 𝑏 = 𝑐

Prover:
◦ Step	1:	XOR	secret	share	inputs

◦ Pick	random	bits	𝑎", 𝑎# that	XOR	to	𝑎 and	𝑏", 𝑏# for	𝑏
◦ 𝒂𝟏 ⊕ 𝒂𝟐 = 𝒂	,	 𝒃𝟏 ⊕ 𝒃𝟐 = 𝒃

◦ Step	2:	compute	output	shares	for	⊕ gate
◦ 𝒄𝟏 = 𝒂𝟏 ⊕ 𝒃𝟏,	𝒄𝟐 = 𝒂𝟐 ⊕ 𝒃𝟐

◦ Step	3:	commit	to	shares	
◦ Pick	random	strings	𝑟", 𝑟#
◦ Compute	ℎ" = 𝐻 𝒂𝟏, 𝒃𝟏, 𝑟" , 			ℎ#= 𝐻(𝒂𝟐, 𝒃𝟐, 𝑟#)

XOR𝑎
𝑏

c

Obviously	
trivial:	just	a	
toy	example!	

Verifier:

◦ Step	4:	Pick	1	or	2	at	random	

◦ Step	5:	
Check	that	𝑐" ⊕ 𝑐# = 𝑐 and	𝒂𝟏 ⊕ 𝒃𝟏 = 𝑐"
Check	that	ℎ" = 𝐻 𝑎", 𝑏", 𝑟"

𝑐", 𝑐#
ℎ", ℎ#
1

𝒂𝟏, 𝒃𝟏, 𝑟"

Why	is	this	convincing?
◦ If	Prover	computes	ℎ", ℎ# using	𝑎", 𝑎#, 𝑏", 𝑏# such	that	𝑎" ⊕ 𝑏" = 𝑐",	
𝑎# ⊕ 𝑏# = 𝑐#, and	𝑐" ⊕ 𝑐# = 𝑐 we’re	done:	
◦ 𝒂𝟏 ⊕ 𝒂𝟐 ⊕ 𝒃𝟏 ⊕ 𝒃𝟐 = 𝒂𝟏 ⊕ 𝒃𝟏 ⊕ 𝒂𝟐 ⊕ 𝒃𝟐 = 𝒄𝟏 ⊕ 𝒄𝟐 = 𝒄

◦ If	not,	Prover	gets	caught	with	probability	at	least	1/2

Picnic	building	blocks:	ZKBoo (intuition)
A	toy	example: Prover	wants	to	prove	knowledge	of	𝑎, 𝑏 such	that	𝑎 ⊕ 𝑏 = 𝑐

Prover:
◦ Step	1:	XOR	secret	share	inputs

◦ Pick	random	bits	𝑎", 𝑎# that	XOR	to	𝑎 and	𝑏", 𝑏# for	𝑏
◦ 𝒂𝟏 ⊕ 𝒂𝟐 = 𝒂	,	 𝒃𝟏 ⊕ 𝒃𝟐 = 𝒃

◦ Step	2:	compute	output	shares	for	⊕ gate
◦ 𝒄𝟏 = 𝒂𝟏 ⊕ 𝒃𝟏,	𝒄𝟐 = 𝒂𝟐 ⊕ 𝒃𝟐

◦ Step	3:	commit	to	shares	
◦ Pick	random	strings	𝑟", 𝑟#
◦ Compute	ℎ" = 𝐻 𝒂𝟏, 𝒃𝟏, 𝑟" , 			ℎ#= 𝐻(𝒂𝟐, 𝒃𝟐, 𝑟#)

XOR𝑎
𝑏

c

Obviously	
trivial:	just	a	
toy	example!	

Verifier:

◦ Step	4:	Pick	1	or	2	at	random	

◦ Step	5:	
Check	that	𝑐" ⊕ 𝑐# = 𝑐 and	𝒂𝟏 ⊕ 𝒃𝟏 = 𝑐"
Check	that	ℎ" = 𝐻 𝑎", 𝑏", 𝑟"

𝑐", 𝑐#
ℎ", ℎ#
1

𝒂𝟏, 𝒃𝟏, 𝑟"

Why	does	this	hide	𝒂, 𝒃?
◦ Verifier	gets	to	see:

◦ 𝑎", 𝑏": reveals	no	information	about	𝑎, 𝑏
◦ 𝑐" = 𝑎" ⊕ 𝑏"	,	 𝑐# = 𝑐 ⊕ 𝑐" ,	
◦ ℎ#:	hash	of	randomized	inputs

Picnic	building	blocks:	ZKBoo (intuition)
Decrease	cheating	probability
◦ Run	𝑡 copies	of	proof	with	fresh	randomness,	verifier	picks	a	challenge	for	each
◦ Probability	of	cheating	decreases	exponentially.		(1/3B)

Eliminate	interaction
◦ Fiat-Shamir:	Choose	challenge	by	hashing		(𝑐", 𝑐#, ℎ", ℎ#)	from	all	copies.
◦ If	1/3B is	small	enough,	cheating	prover	can	try	hashing	many	sets	of	messages,	will	never	find	one	he	can	
correctly	respond	to

◦ Also	include	signature	message	in	the	hash.

What	if	we	want	a	circuit	with	
◦ ANDs
◦ More	gates?

Foundation	for	ZKBoo:	MPC-in-the-head	[IKOS07]
◦ Approach	for	constructing	ZK	proofs	from	Multi	Party	Computation
◦ Multi	Party	Computation

◦ N	parties	with	private	input	𝑥C
◦ Want	to	compute	f 𝑥", … , 𝑥* 	
◦ Even	if	𝑛 − 1	parties	combine	their	information,	they	learn	nothing	else

◦ To	prove	“I	know	x	such	that	F(x)=1”
◦ Choose	random	values	such	that		𝑥" ⊕⋯⊕ 𝑥* = 𝑥
◦ Imagine	N	parties	each	with	input	𝑥C.	
◦ Internally	run	MPC	between	them	to	compute	𝐹(𝑥" ⊕⋯⊕ 𝑥*).
◦ Record	all	messages	sent	and	received.		
◦ For	each	party	commit	to	“view”:

◦ input	𝑥C,	randomness,	messages	sent,	messages	received
◦ Verifier	chooses	𝑖
◦ Prover	reveals	views	for	all	parties	except	𝑖

Picnic	building	blocks:	ZKBoo

Commit

i
Views	j ≠ 𝑖

Picnic	building	blocks:	ZKBoo
Foundation	for	ZKBoo:	MPC-in-the-head	[IKOS07]
◦ Approach	for	constructing	ZK	proofs	from	Multi	Party	Computation
◦ Multi	Party	Computation

◦ N	parties	with	private	input	𝑥C
◦ Want	to	compute	f 𝑥", … , 𝑥* 	
◦ Even	if	𝑛 − 1	parties	combine	their	information,	they	learn	nothing	else

◦ To	prove	“I	know	x	such	that	F(x)=1”
◦ Choose	random	values	such	that		𝑥" ⊕⋯⊕ 𝑥* = 𝑥
◦ Imagine	N	parties	each	with	input	𝑥C.	
◦ Internally	run	MPC	between	them	to	compute	𝐹(𝑥" ⊕⋯⊕ 𝑥*).
◦ Record	all	messages	sent	and	received.		
◦ For	each	party	commit	to	“view”:

◦ input	𝑥C,	randomness,	messages	sent,	messages	received
◦ Verifier	chooses	𝑖
◦ Prover	reveals	views	for	all	parties	except	𝑖

Commit

i
Views	j ≠ 𝑖

Zero	Knowledge
Verifier	gets	to	see	views	of	all	

parties	except	𝑖

MPC	guarantees	it	learns	nothing	
besides	F(x)

Picnic	building	blocks:	ZKBoo
Foundation	for	ZKBoo:	MPC-in-the-head	[IKOS07]
◦ Approach	for	constructing	ZK	proofs	from	Multi	Party	Computation
◦ Multi	Party	Computation

◦ N	parties	with	private	input	𝑥C
◦ Want	to	compute	f 𝑥", … , 𝑥* 	
◦ Even	if	𝑛 − 1	parties	combine	their	information,	they	learn	nothing	else

◦ To	prove	“I	know	x	such	that	F(x)=y”
◦ Choose	random	values	such	that		𝑥" ⊕⋯⊕ 𝑥* = 𝑥
◦ Imagine	N	parties	each	with	input	𝑥C.	
◦ Internally	run	MPC	between	them	to	compute	𝐹(𝑥" ⊕⋯⊕ 𝑥*).
◦ Record	all	messages	sent	and	received.		
◦ For	each	party	commit	to	“view”:

◦ input	𝑥C,	randomness,	messages	sent,	messages	received
◦ Verifier	chooses	𝑖
◦ Prover	reveals	views	for	all	parties	except	𝑖

Commit

i
Views	j ≠ 𝑖

Soundness
If	all	parties	behave	correctly,	
output	will	be	F(𝑥" ⊕⋯⊕ 𝑥*)	
If	𝐹 𝑥 ≠ 𝑦 either
• A	party	misbehaved
• Views	are	inconsistent
• Catch	this	with	probability	p
• Repeat	many	times	

Picnic	building	blocks:	ZKBoo (intuition)
A	toy	example: Prover	wants	to	prove	knowledge	of	𝑎, 𝑏 such	that	𝑎 ⊕ 𝑏 = 𝑐

Prover:
◦ Step	1:	XOR	secret	share	inputs

◦ Pick	random	bits	𝑎", 𝑎# that	XOR	to	𝑎 and	𝑏", 𝑏# for	𝑏
◦ 𝒂𝟏 ⊕ 𝒂𝟐 = 𝒂	,	 𝒃𝟏 ⊕ 𝒃𝟐 = 𝒃

◦ Step	2:	compute	output	shares	for	⊕ gate
◦ 𝒄𝟏 = 𝒂𝟏 ⊕ 𝒃𝟏,	𝒄𝟐 = 𝒂𝟐 ⊕ 𝒃𝟐

◦ Step	3:	commit	to	shares	
◦ Pick	random	strings	𝑟", 𝑟#
◦ Compute	ℎ" = 𝐻 𝒂𝟏, 𝒃𝟏, 𝑟" , 			ℎ#= 𝐻(𝒂𝟐, 𝒃𝟐, 𝑟#)

XOR𝑎
𝑏

c

Obviously	
trivial:	just	a	
toy	example!	

Verifier:

◦ Step	4:	Pick	1	or	2	at	random	

◦ Step	5:	
Check	that	𝑐" ⊕ 𝑐# = 𝑐 and	𝒂𝟏 ⊕ 𝒃𝟏 = 𝑐"
Check	that	ℎ" = 𝐻 𝑎", 𝑏", 𝑟"

𝑐", 𝑐#
ℎ", ℎ#
1

𝒂𝟏, 𝒃𝟏, 𝑟"

Inputs
𝑃":	𝒂𝟏, 𝒃𝟏
𝑃#:	𝒂𝟐, 𝒃𝟐

MPC

𝑃" 𝑃#

Picnic	building	blocks:	ZKBoo (intuition)
A	toy	example: Prover	wants	to	prove	knowledge	of	𝑎, 𝑏 such	that	𝑎 ⊕ 𝑏 = 𝑐

Prover:
◦ Step	1:	XOR	secret	share	inputs

◦ Pick	random	bits	𝑎", 𝑎# that	XOR	to	𝑎 and	𝑏", 𝑏# for	𝑏
◦ 𝒂𝟏 ⊕ 𝒂𝟐 = 𝒂	,	 𝒃𝟏 ⊕ 𝒃𝟐 = 𝒃

◦ Step	2:	compute	output	shares	for	⊕ gate
◦ 𝒄𝟏 = 𝒂𝟏 ⊕ 𝒃𝟏,	𝒄𝟐 = 𝒂𝟐 ⊕ 𝒃𝟐

◦ Step	3:	commit	to	shares	
◦ Pick	random	strings	𝑟", 𝑟#
◦ Compute	ℎ" = 𝐻 𝒂𝟏, 𝒃𝟏, 𝑟" , 			ℎ#= 𝐻(𝒂𝟐, 𝒃𝟐, 𝑟#)

XOR𝑎
𝑏

c

Obviously	
trivial:	just	a	
toy	example!	

Verifier:

◦ Step	4:	Pick	1	or	2	at	random	

◦ Step	5:	
Check	that	𝑐" ⊕ 𝑐# = 𝑐 and	𝒂𝟏 ⊕ 𝒃𝟏 = 𝑐"
Check	that	ℎ" = 𝐻 𝑎", 𝑏", 𝑟"

𝑐", 𝑐#
ℎ", ℎ#
1

𝒂𝟏, 𝒃𝟏, 𝑟"

Inputs
𝑃":	𝒂𝟏, 𝒃𝟏
𝑃#:	𝒂𝟐, 𝒃𝟐

MPC

Commit	
to	views

𝑃" 𝑃#

Check	
𝑃"’s	
work

Picnic	building	blocks:	ZKBoo
ZKBoo	makes	MPC-in-the-head	practical

Minimize	communication
◦ Fix	3	parties	(in	general	commication is	𝑛#)
◦ 𝑃C	only	receives	messages	from	𝑃C_"	

Observation	:	
◦ we	said	V	checks	that	messages	sent	=	messages	received
◦ Instead,	could	check	any	function	on	views	of	𝑃C and	𝑃C_" up	to	that	point
◦ Message	received	can	be	function	of	current	state	of	𝑃C_" and	previous	state	of		𝑃C
◦ Optimize	MPC	in	this	model	

TP

TP

TP

Picnic	building	blocks:	ZKB++
ZKB++:	Optimized	ZKBoo [CDGORRSZ17]
◦ Identify	places	where	e.g.	values	can	safely	be	recomputed	by	the	verifier,	or	represented	by	a	short	
seed

◦ Reduces	signature	size	by	more	than	factor	of	2
◦ Security	analysis	in	random	oracle	model

Variant	based	on	Unruh’s	transform	[Unruh	15]	
◦ Security	analysis	in	quantum	random	oracle	model
◦ Our	optimized	implementation	increases	signature	size	by	1.6x	over	basic	ZKBoo++

◦ Still	shorter	than	original	ZKBoo

Picnic:	basic	approach
Signature	from	identification	scheme	(similar	to	DSA/ECDSA):

Public	key	=	F(sk)

Signature=	proof	of	knowledge	of	sk (using	message	as	nonce)
◦ *Proof	must	not	leak	sk,	so	we	need	a	zero	knowledge proof

Challenge:	we	need	a	hard	to	invert	function	F,	and	a	zero	knowledge	proof	system
◦ Both	need	to	be	secure	against	quantum	adversary

For	example,	
F:	hash	function

Picnic	building	blocks:	choosing	F
ZKBoo++:	Prover/signer	can	prove	he	knows	sk such	that	the	
circuit	F	evaluates	to	pk

What	F	should	we	choose?
◦ F	must	be	hard	to	invert		
◦ Proof/signature	size	depends	on	number	of	AND	gates	in	circuit	
for	F

We	can	use	a	block	cipher	as	well:
◦ PK: 𝑅, 𝐸𝑛𝑐bc(𝑅)

Sec	level AND	gates

AES 128 5440

SHA-2 256 >	25000	

SHA-3	 256 38400

Noekeon 128 2048

Trivium 80	 1536	

PRINCE 1920

Fantomas 128	 2112

Kreyvium 128 1536

FLIP	 128 >	100000	

MIMC 128 10337

MIMC 256 41349

LowMC 128 <	800	

LowMC 256 	<	1400

Picnic	building	blocks:	LowMC
New	block	cipher	introduced	by	[ARSTZ15]

Substitution-permutation-network	design

Parameterizable:	
◦ allows	for	minimizing	AND	gates	or	AND	depth
◦ Tradeoffs	between	#s	of	AND	gates	and	XOR	gates
◦ Variable	key	and	block	sizes
◦ Allows	for	different	security	levels	and	#of	plaintext	ciphertext	pairs	the	attacker	will	be	given

For	our	application
◦ Few	(but	not	minimal)	AND	gates:	balance	signature	size	and	signing	time

LowMCv2:	updated	
version	(eprint16)

Picnic	building	blocks:	LowMC
New	block	cipher	introduced	by	[ARSTZ15]

Substitution-permutation-network	design

Security	for	our	application
◦ Several	different	security	levels	based	on	desired	security	for	signature
◦ Only	1	plaintext-ciphertext	pair	is	revealed
◦ Keysize =	blocksize
◦ Attackers	goal	is	key	recovery*
◦ Weaker	than	traditional	indistinguishable	security	with	many	plaintext-ciphertext	pairs
◦ Our	parameters	may	be	conservative	

LowMCv2:	updated	
version	(eprint16)

Roadmap
Picnic:	Basic	approach

Picnic:	Building	blocks

Performance	

Picnic	2.0

Conclusion

3	parameter	levels
◦ L1:	128	bits	classical,	64	bits	quantum
◦ L3:	192	bits	classical,	96	bits	quantum
◦ L5:	256	bits	classical,	128	bits	quantum

Signature	and	key	sizes	(bytes)

Picnic	1.0	Performance

LowMC parameters
#	of	repetitions

Parameter	Set Public	Key Private	Key Signature

Picnic-L1-FS 32 16 34000

Picnic-L1-UR 32 16 53929

Picnic-L3-FS 48 24 76740

Picnic-L3-UR 48 24 121813

Picnic-L5-FS 64 32 132824

Picnic-L5-UR 64 32 209474

Picnic	2.0	has	
significant	

improvements

3	parameter	levels
◦ L1:	128	bits	classical,	64	bits	quantum
◦ L3:	192	bits	classical,	96	bits	quantum
◦ L5:	256	bits	classical,	128	bits	quantum

Optimized	constant- time	implementation	(ms),	Intel(R)	Core(TM)	i7-4790	CPU	@	3.60GHz

Picnic	1.0	Performance

LowMC parameters
#	of	repetitions

Parameter	Set Keygen Sign Verify

Picnic-L1-FS 0.00 5.41 3.70

Picnic-L1-UR 0.00 6.12 4.24

Picnic-L3-FS 0.01 17.07 11.61

Picnic-L3-UR 0.01 19.01 13.08

Picnic-L5-FS 0.02 36.47 24.70

Picnic-L5-UR 0.02 39.21 26.90

Experiments
TLS	integration:
◦ What	if	we	want	to	use	Picnic	for	TLS	authentication?
◦ Added	Picnic	to	the	Open	Quantum	Safe	library (OQS),	the	OQS	fork	of	OpenSSL	and	Apache	web	server
◦ Use	Picnic	to	create	X509	certificates	certifying	Picnic	public	keys
◦ Use	resulting	certificates	to	establish	TLS	1.2	connections

HSM	implementation:
◦ What	if	a	CA	wants	to	store	Picnic	signing	keys	in	an	HSM?	
◦ Experimented	with	the	Utimaco SecurityServer Se50	LAN	V4
◦ Implemented	Picnic	key	generation	and	signing	in	an	HSM.	

See	Picnic	design	document	For	details

Roadmap
Picnic:	Basic	approach

Picnic:	Building	blocks

Performance	

Picnic	2.0

Conclusion

Picnic	2.0	building	blocks:	[KKW18	proofs]
[KKW18]	introduced	an	improved	proof	system
◦ ZKBoo soundness	for	1-round:	1/3	because	we	fully	check	1	party	of	3.		
◦ What	if	we	could	fully	check	n-1	out	of	n?
◦ We	could	run	fewer	parallel	repetitions!
◦ Need	to	guarantee:

◦ We	can	check	each	opened	parties
◦ We	can	increase	the	number	of	parties	without	increasing	communication
◦ We	can	regenerate	n-1	views	from	little	information

◦ Use	MPC	in	the	preprocessing	model
◦ Commit	to	preprocessing,	and	use	cut-and-choose	to	check	
◦ Protocol	just	has	1	broadcast	bit/AND	gate	from	each	party
◦ Just	need	to	send	broadcast	bits	from	unopened	party

◦ Picnic	2.0	uses	64	parties,	checks	63.
◦ Improves	signature	size	by	almost	a	factor	of	3	

Need	to	make	sure	
this	communication	
is	small:	clever	tree	

data	structure

Picnic	2.0	building	blocks:	[KKW18]	proofs

Security	
Level

Previous	
Size	(bytes)

New	Size	
(bytes)

L1-FS 32,838 12,359 2.7x

L3-FS 74,134 27,172 2.7x

L5-FS 128,176 46,282 2.8x

• Sizes	given	are	the	average	case	sizes
• The	implementation	from	ePrint 2018/475	

is	suggests	it’s	possible	to	have	the	same	
performance

• The	parameters	using	the	Unruh	
transform	are	unchanged

Signatures	sizes	for	Picnic	with	[KKW18]	proofs

Picnic	2.0	building	blocks:	Optimized	LowMC
[KPPRR17,		D18]
LowMC was	designed	to	support	arbitrary	parameter	sets	(key	size,	block	size,	#	rounds,	#	s-
boxes)

This	work	optimizes	for	the	Picnic	parameters:
◦ LowMC is	an	SPN	cipher
◦ rounds	have	a	s-box	(nonlinear)	part	and	a	linear	part
◦ Picnic:	small	nonlinear	part	and	a	large	linear	part
◦ Reorder	operations	to	combine	some	linear	steps

Gives	faster	signing/verification	by	factor	of	~2-3.

Picnic	2.0	building	blocks:	Optimized	LowMC

Parameters Sign
(ms,	old)

Sign
(ms,	new)

Verify
(ms,	old)

Verify
(new)

L1-FS 5.41 2.37 2.28x 3.70 1.89 1.96x

L1-UR 6.12 3.08 1.99x 4.24 2.47 1.72x

L3-FS 17.07 5.50 3.10x 11.61 4.49 2.59x

L3-UR 19.01 7.43 2.56x 13.08 5.98 2.19x

L5-FS 36.47 9.74 3.74x 24.70 8.05 3.07x

L5-UR 39.21 12.58 3.12x 26.90 10.25 2.62x

• This	compares	versions	of	the	
constant	time	
implementations

• Times	are	milliseconds	on	an	
Intel	Core	i7-4790	CPU	@	
3.60GHz

• Does	not	include	[KKW18]	
proofs

Running	times	with	optimized	LowMC circuit

Picnic	2.0	building	blocks:	Optimized	LowMC

Parameters Sign
(ms,	old)

Sign
(ms,	new)

Verify
(ms,	old)

Verify
(new)

L1-FS 5.41 2.37 2.28x 3.70 1.89 1.96x

L1-UR 6.12 3.08 1.99x 4.24 2.47 1.72x

L3-FS 17.07 5.50 3.10x 11.61 4.49 2.59x

L3-UR 19.01 7.43 2.56x 13.08 5.98 2.19x

L5-FS 36.47 9.74 3.74x 24.70 8.05 3.07x

L5-UR 39.21 12.58 3.12x 26.90 10.25 2.62x

• This	compares	versions	of	the	
constant	time	
implementations

• Times	are	milliseconds	on	an	
Intel	Core	i7-4790	CPU	@	
3.60GHz

• Does	not	include	[KKW18]	
proofs

Running	times	with	optimized	LowMC circuit

Conclusions
New	postquantum	signature	proposal
◦ Based	on	symmetric	primitives:	a	hash	function	+	hard-to-invert	function	(concretely	SHAKE	and	LowMC)
◦ Small	keys,	moderate	signature	size,	moderate	signing	and	verification	time
◦ Modular	construction	from	ZK	proofs

Lots	of	opportunity	for	further	optimization
◦ Further	optimize	current	proof	system?
◦ Further	design	of	MPC	protocols	for	this	setting?
◦ Propose	new	proof	system	(sublinear	proofs?)		

◦ Ligero [AHIV17]	is	work	in	this	direction

◦ Further	optimizations	for	LowMC?
◦ Security	analysis	of	LowMC for	our	parameters
◦ Or	alternative	functions	F?

More	info,	see	https://microsoft.github.io/Picnic/ .		Picnic	2.0	parameters	and	code	available	later	this	week.

