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The context

Context: Crypto implementation on observable devices

Objective: secure finite-field multiplication w/ leakage
▸ Implement (a,b) ↦ c = a × b, a, b, c ∈ K

▸ Used in non-linear ops in sym. crypto (e.g. S-boxes)
▸ Input/outputs usually secret!

▸ Problem: computations leak information

▸ ↝ Need a way to compute a product w/o leaking (too much)
the operands & the result

▸ Our focus: higher-order (many shares) software schemes (no
glitches)



Pierre Karpman
New CR’17 masking instances 2018–12–05 5/21

Basic idea

▸ Split a, b, c into shares (i.e. use a secret-sharing scheme)
▸ Typically simple and additive:

x = ∑d
i=0 xi , x0,...,d−1

$←Ð K, xd = x −∑d−1
i=0 xi

▸ Compute the operation over the shared operands; obtain a
shared result

▸ Ensure that neither of a, b, c can be (easily) recovered

Prove security e.g. in:

▸ The probing model ↝ d-privacy (Ishai, Sahai & Wagner,
2003) / d-(S)NI (Beläıd et al., 2016)

▸ The noisy leakage model (Chari et al. ’99, Prouff & Rivain,
2013)

▸ (For relations between the two, see e.g. Dahmoun’s talk this
afternoon)
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First attempt

▸ We want to compute c = ∑k ck = ∑i ai ×∑j bj = ∑i ,j aibj

▸ So maybe define ci = ai ∑d
j=0 bj?

▸ Problem: any single ci reveals information about b
▸ One solution (ISW, 2003): rerandomize using fresh

randomness
▸ For instance (for d = 3):
▸ c0 = a0b0 + r0,1 + r0,2 + r0,3
▸ c1 = a1b1 + (r0,1 + a0b1 + a1b0) + r1,2 + r1,3
▸ c2 = a2b2 + (r0,2 + a0b2 + a2b0) + (r1,2 + a1b2 + a2b1) + r2,3
▸ c3 =

a3b3+(r0,3+a0b3+a3b0)+(r1,3+a1b3+a3b1)+(r2,3+a2b3+a3b2)
▸ Prove security in the probing model

▸ ‽ Scheduling of the operations is important (impacts the
probes available to the adversary), hence the (⋅)s
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Masking complexity

▸ ISW provides a practical solution for masking a multiplication
▸ But the cost is quadratic in d : d-privacy requires:

▸ 2d(d + 1) sums
▸ (d + 1)2 products
▸ d(d + 1)/2 fresh random masks

▸ Decreasing the cost/overhead of masking is a major problem
▸ Use block ciphers that need few multiplications (e.g. ZORRO,

Gérard et al., 2013 (broken))
▸ Amortize the cost of masking several mult. (e.g. Coron et al.,

2016)
▸ Decrease the cost of masking a single mult. (e.g. Beläıd et al.,

2016, 2017)
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Schemes from CRYPTO 2017

Two schemes introduced by Beläıd et al. (2017):
▸ “Alg. 4”, with linear bilinear multiplication complexity,

requiring:
▸ 9d2 + d sums
▸ 2d2 linear products
▸ 2d + 1 products
▸ 2d2 + d(d − 1)/2 fresh random masks

▸ “Alg. 5”, with linear randomness complexity, requiring:
▸ 2d(d + 1) sums
▸ d(d + 1) linear products
▸ (d + 1)2 products
▸ d fresh random masks
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Focus on Alg. 4

This scheme uses shares of three kinds:

▸ c0 ∶= (a0 +∑d
i=1(ri + ai)) ⋅ (b0 +∑d

i=1(si + bi));
▸ ci ∶= −ri ⋅ (b0 +∑d

j=1(δi ,jsj + bj)), 1 ≤ i ≤ d ;

▸ ci+d ∶= −si ⋅ (a0 +∑d
j=1(γi ,j rj + aj)), 1 ≤ i ≤ d .

With:

▸ γ = (γi ,j) ∈ Kd×d

▸ δ = (δi ,j) ∈ Kd×d s.t. γ + δ is the all-one matrix

(Plus an additional post-processing, not studied here)
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Instantiation issues

Problem: finding γ so that the scheme is secure is hard. Beläıd et
al.:

▸ Found an explicit γ for d = 2 over F22 (and other larger fields)

▸ Proved (non-constructively) the existence of good γ at order
d over Fq when q > O(d)d+1

Our results: we give constructions/examples for:

▸ d = 3 over F2k , k ≥ 3

▸ d = 4 over F2k , 5 ≤ k ≤ 16

▸ d = 5 over F2k , 10 ≤ k ≤ 16

▸ d = 6 over F2k , 15 ≤ k ≤ 16
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What’s a good γ anyways?

To attack Alg. 4, one typically wants to:

1 Select d probes p0, . . . ,pd−1 of intermediate values

2 Find F s.t. the distribution of F(p0, . . . ,pd−1) depends on a
(say)

In Alg. 4, the possible probes (relating to a) are:

▸ ai , ri , ai + ri , γj ,i ri , ai + γj ,i ri , for 0 ≤ i ≤ d , 1 ≤ j ≤ d

▸ a0 +∑k
i=1(ai + ri), 1 ≤ k ≤ d

▸ a0 +∑k
i=1(ai + γj ,i ri), 1 ≤ k ≤ d , 1 ≤ j ≤ d

Proposition: it is sufficient to only consider Fs that are linear
combinations of the pi s (cf. Beläıd et al., 2017)
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Attack sets

One sub-objective: decide if a set of probes P leads to an attack

▸ For each probe, consider indicator vectors of l of its ai s and m
of its ri s

▸ E.g. a0 + a1 + γ1,1r1 (d = 2) ↝

l =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
, m =

⎛
⎜
⎝

0
γ1,1

0

⎞
⎟
⎠

▸ Gather all such vectors in larger matrices LP and Mγ
P

▸ Attack: find xi s s.t. π ∶= ∑ xipi = ∑ yiai +∑ zi ri with yi ≠ 0,
zi = 0 for all i
▸ If π “includes an ri” or “misses an ai”, then it is uniform

▸ So there is an attack iff. ∃u ∈ kerMγ
P s.t. LPu is of full weight
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Immediate algorithm

To prove security for a given γ:

▸ Look at all matrices LP and Mγ
P for d probes P

▸ For each:

1 Compute a basis B of the (right) kernel of Mγ
P

2 There is an attack with P iff. NP ∶= LPB has no all-zero row

⇐ If NP has a zero row, then no linear combination of probes
depends on all ai s and cancels all ri s

⇒ If NP has no zero row, there is at least one linear combination
of probes that depends on all ai s and cancels all ri s
▸ By a combinatorial argument, as long as #K > d (e.g. use

Schwartz-Zippel-DeMillo-Lipton)
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Testing optimizations

The previous algorithm allows to test the security of an instance by

checking ≈ (d
2

d
) (!) matrices LP , Mγ

P . Some optims:

▸ Do early-abort

▸ Check “critical cases” first

▸ Don’t check stupid choices for P

▸ Use batch kernel computations
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Finding secure instantiations

The testing algorithm can be used to find secure instantiations:

1 Draw γ (δ) at random

2 Check that there is no attack

It works, but we can do better by picking super-regular/MDS γs
(δs) ← All square submatrices invertible
Observations:

▸ If dim kerMγ
P = 0, then no attack is possible w/ probes P

▸ Try to pick γ s.t. Mγ
P is invertible for many Ps

▸ Many Mγ
P ’s are made of submatrices of γ

▸ All invertible, if γ is MDS

▸ (Additionally: ensure invertibility w/ added columns of 1 →
“XMDS” matrices)
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MDS precondition: small cases

▸ For d = 1,2, it is sufficient for γ, δ to be XMDS for the
scheme to be secure

▸ For d = 3, one must additionally check that no matrix of the
form

⎛
⎜
⎝

γi ,1 γj ,1 γk,1
γi ,2 γj ,2 γk,2
γi ,3 γj ,3 0

⎞
⎟
⎠
, i ≠ j ≠ k ,

is singular
▸ Not systematically ensured by the XMDS property
▸ Can be solved symbolically
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XMDS precondition: larger cases; enforcement

▸ For d ≥ 4, not feasible (?) to enforce invertibility of all Mγ
P

▸ But XMDS γs are still more likely to be secure than
non-XMDS ones
▸ E.g. w/ Pr 0.063 instead of 0.030 for d = 4 over F28

▸ Problem: how to ensure that both γ and δ are XMDS?
▸ Use a (generalized) Cauchy construction xi,j = cidj/(xi − yj),

viz. γi,j = xi/(xi − yj)
▸ Then δi,j = 1 − xi/(xi − yj) = −yj/(xi − yj), so δ is Cauchy and

then (X)MDS
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The end?

▸ We found more instances of the (two) masking schemes of
CRYPTO 2017, at larger orders

▸ Still only reaching d = 4 over “useful” fields such as F28

▸ ⇒ Still room for improvements
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