New instantiations of the CRYPTO 2017 masking schemes

Pierre Karpman² Daniel S. Roche^{*}

^eUniversité Grenoble Alpes, France *United States Naval Academy, U.S.A.

ASIACRYPT —- Brisbane 2018-12-05

New CR'17 masking instances

2018-12-05 1/21 Pierre Karpman

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

2018–12–05 2/21 Pierre Karpman

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

2018–12–05 **3/21** Pierre Karpman Context: Crypto implementation on observable devices

Objective: secure finite-field multiplication w/ leakage

- ▶ Implement $(a, b) \mapsto c = a \times b$, $a, b, c \in \mathbb{K}$
 - Used in non-linear ops in sym. crypto (e.g. S-boxes)
 - Input/outputs usually secret!
- Problem: computations leak information
- Need a way to compute a product w/o leaking (too much) the operands & the result
- Our focus: higher-order (many shares) software schemes (no glitches)

Basic idea

- Split a, b, c into shares (i.e. use a secret-sharing scheme)
 - Typically simple and additive: $x = \sum_{i=0}^{d} x_i, x_{0,...,d-1} \xleftarrow{s} \mathbb{K}, x_d = x - \sum_{i=0}^{d-1} x_i$
- Compute the operation over the shared operands; obtain a shared result
- Ensure that neither of a, b, c can be (easily) recovered

Prove security e.g. in:

- The probing model ~ d-privacy (Ishai, Sahai & Wagner, 2003) / d-(S)NI (Belaïd et al., 2016)
- The noisy leakage model (Chari et al. '99, Prouff & Rivain, 2013)
- (For relations between the two, see e.g. Dahmoun's talk this afternoon)

First attempt

- We want to compute $c = \sum_k c_k = \sum_i a_i \times \sum_j b_j = \sum_{i,j} a_i b_j$
- So maybe define $c_i = a_i \sum_{j=0}^d b_j$?
- Problem: any single c_i reveals information about b
- One solution (ISW, 2003): rerandomize using fresh randomness

For instance (for
$$d = 3$$
):
 $c_0 = a_0b_0 + r_{0,1} + r_{0,2} + r_{0,3}$
 $c_1 = a_1b_1 + (r_{0,1} + a_0b_1 + a_1b_0) + r_{1,2} + r_{1,3}$
 $c_2 = a_2b_2 + (r_{0,2} + a_0b_2 + a_2b_0) + (r_{1,2} + a_1b_2 + a_2b_1) + r_{2,3}$
 $c_3 = a_3b_3 + (r_{0,3} + a_0b_3 + a_3b_0) + (r_{1,3} + a_1b_3 + a_3b_1) + (r_{2,3} + a_2b_3 + a_3b_2)$

- Prove security in the probing model
- Scheduling of the operations is important (impacts the probes available to the adversary), hence the (·)s

Masking complexity

- ISW provides a practical solution for masking a multiplication
- But the cost is quadratic in *d*: *d*-privacy requires:
 - ▶ 2*d*(*d*+1) sums
 - $(d+1)^2$ products
 - d(d+1)/2 fresh random masks
- Decreasing the cost/overhead of masking is a major problem
 - Use block ciphers that need few multiplications (e.g. ZORRO, Gérard et al., 2013 (broken))
 - Amortize the cost of masking several mult. (e.g. Coron et al., 2016)
 - Decrease the cost of masking a single mult. (e.g. Belaïd et al., 2016, 2017)

Schemes from CRYPTO 2017

Two schemes introduced by Belaïd et al. (2017):

- "Alg. 4", with linear bilinear multiplication complexity, requiring:
 - $9d^2 + d$ sums
 - 2d² linear products
 - 2d + 1 products
 - ▶ $2d^2 + d(d-1)/2$ fresh random masks
- "Alg. 5", with linear randomness complexity, requiring:
 - ▶ 2*d*(*d* + 1) sums
 - d(d+1) linear products
 - $(d+1)^2$ products
 - d fresh random masks

This scheme uses shares of three kinds:

With:

(

Problem: finding γ so that the scheme is secure is hard. Belaïd et al.:

- Found an explicit γ for d = 2 over \mathbb{F}_{2^2} (and other larger fields)
- Proved (non-constructively) the existence of good γ at order
 d over F_q when q > O(d)^{d+1}

Our results: we give constructions/examples for:

- d = 3 over \mathbb{F}_{2^k} , $k \ge 3$
- d = 4 over \mathbb{F}_{2^k} , $5 \le k \le 16$
- d = 5 over \mathbb{F}_{2^k} , $10 \le k \le 16$
- d = 6 over \mathbb{F}_{2^k} , $15 \le k \le 16$

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

2018–12–05 **11/21** Pierre Karpman To attack Alg. 4, one typically wants to:

- **1** Select *d* probes p_0, \ldots, p_{d-1} of intermediate values
- 2 Find *F* s.t. the distribution of *F*(*p*₀,...,*p*_{d-1}) depends on a (say)

In Alg. 4, the possible probes (relating to a) are:

▶
$$a_i$$
, r_i , $a_i + r_i$, $\gamma_{j,i}r_i$, $a_i + \gamma_{j,i}r_i$, for $0 \le i \le d$, $1 \le j \le d$

$$a_0 + \sum_{i=1}^k (a_i + r_i), \ 1 \le k \le d$$

• $a_0 + \sum_{i=1}^k (a_i + \gamma_{j,i} r_i), \ 1 \le k \le d, \ 1 \le j \le d$

Proposition: it is sufficient to only consider \mathcal{F} s that are linear combinations of the p_i s (cf. Belaïd et al., 2017)

Attack sets

One sub-objective: decide if a set of probes P leads to an attack

- For each probe, consider indicator vectors of I of its a_is and m of its r_is
- E.g. $a_0 + a_1 + \gamma_{1,1}r_1 \ (d = 2) \rightsquigarrow$

$$\mathbf{I} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{m} = \begin{pmatrix} 0 \\ \gamma_{1,1} \\ 0 \end{pmatrix}$$

- Gather all such vectors in larger matrices \mathbf{L}_P and \mathbf{M}_P^γ
- Attack: find x_i s s.t. $\pi := \sum x_i p_i = \sum y_i a_i + \sum z_i r_i$ with $y_i \neq 0$, $z_i = 0$ for all i
 - If π "includes an r_i " or "misses an a_i ", then it is uniform
- ▶ So there is an attack iff. $\exists u \in \ker \mathbf{M}_P^{\gamma}$ s.t. $\mathbf{L}_P u$ is of full weight

To prove security for a given γ :

- Look at all matrices \mathbf{L}_P and \mathbf{M}_P^{γ} for d probes P
- For each:
 - 1 Compute a basis **B** of the (right) kernel of \mathbf{M}_{P}^{γ}
 - **2** There is an attack with P iff. $N_P := L_P B$ has no all-zero row
 - $\leftarrow If \mathbf{N}_P \text{ has a zero row, then no linear combination of probes}$ $depends on all <math>a_i$ s and cancels all r_i s
 - ⇒ If \mathbf{N}_P has no zero row, there is at least one linear combination of probes that depends on all a_i s and cancels all r_i s
 - By a combinatorial argument, as long as #K > d (e.g. use Schwartz-Zippel-DeMillo-Lipton)

The previous algorithm allows to test the security of an instance by checking $\approx \binom{d^2}{d}$ (!) matrices \mathbf{L}_P , \mathbf{M}_P^{γ} . Some optims:

- Do early-abort
- Check "critical cases" first
- Don't check stupid choices for P
- Use batch kernel computations

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

2018–12–05 **16/21** Pierre Karpman

Finding secure instantiations

The testing algorithm can be used to find secure instantiations:

- 1 Draw γ (δ) at random
- 2 Check that there is no attack

It works, but we can do better by picking super-regular/MDS γs (δs) \leftarrow All square submatrices invertible Observations:

- If dim ker \mathbf{M}_{P}^{γ} = 0, then no attack is possible w/ probes P
 - Try to pick γ s.t. \mathbf{M}_{P}^{γ} is invertible for many Ps
- Many \mathbf{M}_{P}^{γ} 's are made of submatrices of γ
 - All invertible, if γ is MDS
- (Additionally: ensure invertibility w/ added columns of 1 \rightarrow "XMDS" matrices)

MDS precondition: small cases

- For d = 1, 2, it is sufficient for γ , δ to be XMDS for the scheme to be secure
- For d = 3, one must additionally check that no matrix of the form

$$\begin{pmatrix} \gamma_{i,1} & \gamma_{j,1} & \gamma_{k,1} \\ \gamma_{i,2} & \gamma_{j,2} & \gamma_{k,2} \\ \gamma_{i,3} & \gamma_{j,3} & 0 \end{pmatrix}, i \neq j \neq k,$$

is singular

- Not systematically ensured by the XMDS property
- Can be solved symbolically

- For $d \ge 4$, not feasible (?) to enforce invertibility of all \mathbf{M}_{P}^{γ}
- \blacktriangleright But XMDS $\gamma {\rm s}$ are still more likely to be secure than non-XMDS ones
 - E.g. w/ Pr 0.063 instead of 0.030 for d = 4 over \mathbb{F}_{2^8}
- Problem: how to ensure that both γ and δ are XMDS?
 - Use a (generalized) Cauchy construction $x_{i,j} = c_i d_j / (x_i y_j)$, viz. $\gamma_{i,j} = x_i / (x_i - y_j)$
 - Then $\delta_{i,j} = 1 x_i/(x_i y_j) = -y_j/(x_i y_j)$, so δ is Cauchy and then (X)MDS

Proving security

New instantiations of the schemes from CRYPTO 2017

Conclusion

New CR'17 masking instances

2018–12–05 20/21 Pierre Karpman

- We found more instances of the (two) masking schemes of CRYPTO 2017, at larger orders
- Still only reaching d = 4 over "useful" fields such as \mathbb{F}_{2^8}
- $ightarrow \Rightarrow$ Still room for improvements