Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption

by Pratish Datta¹

joint work with

Tatsuaki Okamoto¹ and Katsuyuki Takashima²

¹NTT Secure Platform Laboratories 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

> ²Mitsubishi Electric 5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan

ASIACRYPT 2018 December 02–06, 2018

3 The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme

Introduction •00000000000	Preliminaries 00000000	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme 0000	Conclusion
Functional E	ncryption (FE)	

- Setup authority holds a master secret key MSK and publishes public system parameters MPK.
- An encrypter uses MPK to encrypt message $M \in \mathbb{M}$, creating ciphertext CT.
- A decrypter obtains a private decryption key SK(F) for function $F \in \mathcal{F}$, generated using MSK by the authority.
- SK(F) can be used to decrypt CT to recover F(M), but nothing more about M.

Various Security Notions for FE

- Indistinguishability-based (IND) Security: Distinguishing encryptions of any two messages is infeasible for a group of colluders which do not have a decryption key that decrypts the ciphertexts to distinct values.
- Simulation-based (SIM) Security: There exists a polynomial-time simulator that given $F_1(M), \ldots, F_{q_{\text{KEY}}}(M)$ for $M \in \mathbb{M}$, $F_1, \ldots, F_{q_{\text{KEY}}} \in \mathcal{F}$, outputs the view of the colluders given encryption of M and $SK(F_1), \ldots, SK(F_{q_{\text{KEY}}})$.
- In general, SIM security is *stronger* than IND security.

Various Security Notions for FE

- Adaptive (AD) Security: The adversary is allowed to make ciphertext and decryption key queries at any point of time during the security experiment.
- Semi-Adaptive (S-AD) Security: The adversary is restricted to submit its ciphertext queries immediately after viewing the public parameters, and can make decryption key queries only after that.
- Selective (SEL) Security: The adversary is bound to declare its ciphertext queries even before the public parameters are generated.

- Predicate family: $R = \{R(Y, \cdot) : \mathcal{X} \to \{0, 1\} \mid Y \in \mathcal{Y}\}$, $\mathcal{X}, \mathcal{Y} = \text{sets of attributes}$.
- Message space $\mathbb{M} = \mathcal{X} \times \mathcal{M}$, where \mathcal{M} contains the actual payloads.
- Functionality F_{R_Y} associated with predicate $R(Y, \cdot) \in R$:

$$F_{R_Y}(X,\mathsf{msg}) = \left\{ \begin{array}{ll} \mathsf{msg} & \mathsf{if} \ R(Y,X) = 1 \\ \bot & \mathsf{if} \ R(Y,X) = 0 \end{array} \right\} \forall (X,\mathsf{msg}) \in \mathbb{M} = \mathcal{X} \times \mathcal{M}.$$

Various Security Notions for PE

• Strong Attribute Hiding (S-AH):

- Recovering the payload from a ciphertext generated w.r.t $X \in \mathcal{X}$ should be infeasible for a group of colluders not having an authorized decryption key.
- The ciphertext should conceal ${\cal X}$ from any group of colluders, even those with authorized decryption keys.
- Weak Attribute Hiding (W-AH): The payload and X should only remain hidden to colluders in possession of unauthorized keys.
- **Payload Hiding (PLH)**: The payload should remain hidden to colluders with unauthorized keys. Also known as attribute-based encryption (ABE).

State of the Art in Attribute-Hiding PE

- Several works developed ABE and W-AH PE schemes supporting *unbounded* collusions even for *general circuits* under *standard* computational assumptions.
- Known *standard*-assumption-based S-AH PE schemes supporting *unbounded* number of *au-thorized* colluders are restricted to *inner products*.
- It is known that S-AH PE scheme for NC¹ predicates implies indistinguishability obfuscation (IO) for general circuits.

Introduction 000000000000	Preliminaries 00000000	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme 0000	Conclusion

A Motivating Question

Can we design PE scheme for some sufficiently expressive predicate family (e.g., NC¹) that is secure against an unbounded number of colluders under standard computational assumption such that the S-AH guarantee holds for a limited segment (e.g., belonging to some subclass of NC¹) of each predicate in the predicate family?

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme 0000	Conclusion
0000000000000	0000000		00
The Effort	of Wee		

• In TCC 2017, Wee presented a PE scheme in bilinear groups of prime order secure under the *k*-LIN assumption.

•
$$\mathcal{X} = \mathbb{F}_q^{n'} imes \mathbb{F}_q^n$$
, $\mathcal{Y} = \mathcal{F}_{ ext{ABPoIP}}^{(q,n',n)}$.

• For any
$$f\in\mathcal{F}^{(q,n',n)}_{\scriptscriptstyle\mathrm{ABP\circ IP}}$$
 and $(ec{x},ec{z})\in\mathbb{F}^{n'}_q imes\mathbb{F}^n_q$,

$$f(\vec{x}, \vec{z}) = (f_1(\vec{x}), \dots, f_n(\vec{x})) \cdot \vec{z},$$

where $f_1, \ldots, f_n : \mathbb{F}_q^{n'} \to \mathbb{F}_q$ are arithmetic branching programs (ABP).

The Attribute-Hiding Characteristics of Wee's PE Scheme

• The predicate family: $R^{\text{ABPoIP}} = \{ R^{\text{ABPoIP}}(f, (\cdot, \cdot)) : \mathbb{F}_q^{n'} \times \mathbb{F}_q^n \to \{0, 1\} \mid f \in \mathcal{F}_{\text{ABPoIP}}^{(q, n', n)} \}$, where

$$R^{\text{ABPoIP}}(f,(\vec{x},\vec{z})) = \begin{cases} 1 & \text{if } f(\vec{x},\vec{z}) = 0, \\ 0 & \text{if } f(\vec{x},\vec{z}) \neq 0. \end{cases}$$

- Other than hiding the payload, CT generated for $(\vec{x}, \vec{z}) \in \mathbb{F}_q^{n'} \times \mathbb{F}_q^n$ conceals \vec{z} but not \vec{x} .
- The concealment of \vec{z} is strong, i.e., even against colluders possessing authorized keys.
- This security notion is termed as strongly partially-hiding security.

The Advantages and Limitations of Wee's PE Scheme

- This PE scheme simultaneously generalizes ABE for boolean formulas and ABP's, and S-AH inner-product PE (IPE).
- The scheme is strongly partially-hiding against an unbounded number of authorized colluders.
- The security is proven in the SIM framework.
- The downside of this scheme is that it only achieves semi-adaptive security.
- Semi-adaptive security is known to be essentially equivalent to the selective security.
- The known generic conversion from selective to adaptive security does not work for PE schemes not supporting general circuits.

Introduction 000000000000000	Preliminaries 00000000	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme	Conclusion 00
Our Results			

- We design a PE scheme for the predicate family R^{ABPOIP} that achieves SIM-based adaptively strongly partially hiding security.
- The scheme supports *any a priori bounded* number of ciphertext queries and *unbounded* number of authorized decryption key queries.
- This is the *best* possible in the SIM-based adaptive security framework.
- This resolves an open problem posed by Wee in TCC 2017.
- The scheme is also *adaptively strongly partially-hiding* in the IND framework against *unbounded* number of ciphertext and authorized decryption key queries.

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme 0000	Conclusion
00000000000000	00000000		00
Our Results			

- Our construction is built in asymmetric bilinear groups of prime order.
- The security is derived under the *simultaneous external decisional linear* (SXDLIN) assumption.
- As a byproduct, we also obtain the *first* SIM-based *adaptively* S-AH IPE scheme supporting unbounded number of authorized colluders.
- We extend the IND-based S-AH methodology of [OT12a, OT12b] to the framework of SIM security and beyond inner products.

[[]OT12a] : Tatsuaki Okamoto and Katsuyuki Takashima. In EUROCRYPT 2012.

[[]OT12b] : Tatsuaki Okamoto and Katsuyuki Takashima. In ASIACRYPT 2012.

Comparison with Existing Attribute-Hiding PE Schemes

Schomos	Supported		SIM	Attribute	Computational
Schemes	Predicates				Assumptions
[OT10]			N N	Weak	
	IF~3F	(poly, poly, poly)-AD	×	(IP-part)	DLIN
[OT12a]	IP	(poly, poly, poly)-AD	×	Strong	DLIN
[Agr17]		(- poly bdd)-S-AD	(-1 bdd)-S-AD	Strong	1\\/E
		(-, poly, bdd)-3-AD	(-, 1, bud)-5-AD	(IP-part)	
[\//oo17]		(- poly poly) S AD	(-1 poly) S A D	Strong	$k \perp N$
[weer/]	ADFOIF	(-, poly, poly)-3-AD	$(-, 1, \operatorname{poly})$ -3-AD	(IP-part)	
Ours		(noly poly poly) AD	(poly bdd poly)-AD	Strong	SYDUN
Ours	ADEOLE		(poly, bud, poly)-AD	(IP-part)	SADEIN

[OT10] : Tatsuaki Okamoto and Katsuyuki Takashima. In CRYPTO 2010.

[OT12a] : Tatsuaki Okamoto and Katsuyuki Takashima. In EUROCRYPT 2012.

[Agr17] : Shweta Agrawal. In CRYPTO 2017.

[Wee17] : Hoeteck Wee. In TCC 2017.

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme	Conclusion
	0000000		

Arithmetic Branching Program ABP

- ABP $\Gamma = (V, E, v_0, v_1, \phi)$ computing $f : \mathbb{F}_q^d \to \mathbb{F}_q$:
- (V, E): A directed acyclic graph.
- $v_0, v_1 \in V$: Special vertices called the source and the sink respectively.
- ϕ : A labeling function assigning to each edge in E an affine function in one of the input variables with coefficients in \mathbb{F}_q .

• For any
$$\vec{w} \in \mathbb{F}_q^d$$
, $f(\vec{w}) = \sum_{P \in \wp} \left[\prod_{e \in P} \phi(e) |_{\vec{w}} \right]$, where \wp is the set of all $v_0 - v_1$ paths P in Γ .

Algorithm $\mathsf{PGB}(f)$ for $f: \mathbb{F}_q^{n'} \times \mathbb{F}_q^n \to \mathbb{F}_q \in \mathcal{F}_{ABP \circ IP}^{(q,n',n)'}$

- Construct the ABP Γ' computing f such that:
 - Γ' has m + n + 1 vertices.
 - The variables z_j 's only appear on edges leading into the sink vertex.
 - Any vertex has at most one outgoing edge with a label of degree one.
- Using the algorithm of [IK02], compute the matrix representation of Γ' ,

$$\boldsymbol{L} = \begin{pmatrix} \star & \star & \star & \cdots & \star & \star & \cdots & \star & 0 \\ -1 & \star & \star & \cdots & \star & \star & \cdots & \star & 0 \\ 0 & -1 & \star & \cdots & \star & \star & \cdots & \star & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & \star & \cdots & \star & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & \cdots & 0 & z_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & -1 & z_n \end{pmatrix}_{(m+n) \times (m+n)}$$

with $f(\vec{x}, \vec{z}) = \det(\boldsymbol{L}(\vec{x}, \vec{z})) \forall (\vec{x}, \vec{z}) \in \mathbb{F}_q^{n'} \times \mathbb{F}_q^n$, and \bigstar 's in the j'^{th} row indicating affine functions in $x_{\rho(j')}$ for all $j' \in [m]$, where $\rho : [m] \to [n']$.

[[]IK02] : Yuval Ishai and Eyal Kushilevitz. In ICALP 2002.

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme	Conclusio
	0000000		

An Illustrative Example

Algorithm
$$\mathsf{PGB}(f)$$
 for $f: \mathbb{F}_q^{n'} \times \mathbb{F}_q^n \to \mathbb{F}_q \in \mathcal{F}_{ABP \circ IP}^{(q,n',n)}$ Contd

• Choose $\vec{r} \xleftarrow{\mathsf{U}}{\leftarrow} \mathbb{F}_q^{m+n-1}$, and compute

$$\boldsymbol{L}\begin{pmatrix} \boldsymbol{\bar{r}}^{\mathsf{T}}\\ 1 \end{pmatrix} = (\alpha_1 x_{\rho(1)} + \gamma_1, \dots, \alpha_m x_{\rho(m)} + \gamma_m, z_1 + \sigma_1, \dots, z_n + \sigma_n)^{\mathsf{T}}.$$

- Output $((\{\sigma_j\}_{j\in[n]}, \{\alpha_{j'}, \gamma_{j'}\}_{j'\in[m]}), \rho: [m] \to [n']).$
- Each of $\{\sigma_j\}_{j\in[n]}, \{\alpha_{j'}, \gamma_{j'}\}_{j'\in[m]}$ are linear functions of \vec{r} .

Algorithm
$$\mathsf{REC}(f, \vec{x})$$
 for $f : \mathbb{F}_q^{n'} \times \mathbb{F}_q^n \to \mathbb{F}_q \in \mathcal{F}_{ABP \circ IP}^{(q,n',n)}, \vec{x} \in \mathbb{F}_q^{n'}$

- Generate the matrix representation $L \in \mathbb{F}_q^{(m+n) \times (m+n)}$ of the ABP Γ' computing f.
- Output the cofactors $({\Omega'_{j'}}_{j' \in [m]}, {\Omega_j}_{j \in [n]}) \in \mathbb{F}_q^{m+n}$ of all the entries in the last column of L in order.
- The first m + n 1 columns of L involve only $\{x_{\iota'}\}_{\iota' \in [n']}$. Hence, all the cofactors are computable.
- Given $({\Omega_j}_{j\in[n]}, {\Omega'_{j'}}_{j'\in[m]})$ and $({z_j + \sigma_j}_{j\in[n]}, {\alpha_{j'}x_{\rho(j')} + \gamma_{j'}}_{j'\in[m]})$ for any $\vec{z} \in \mathbb{F}_q^n$, recover

$$f(\vec{x}, \vec{z}) = \sum_{j' \in [m]} \Omega'_{j'}(\alpha_{j'} x_{\rho(j')} + \gamma_{j'}) + \sum_{j \in [n]} \Omega_j(z_j + \sigma_j).$$

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme 0000	Conclusion
000000000000	00000●00		00
Bilinear Gro	ups		

- $\mathsf{Bilinear\ group\ params}_{\mathbb{G}} = (q, \mathbb{G}_1, \mathbb{G}_2, \ \mathbb{G}_T, g_1, g_2, e) \xleftarrow{\mathsf{R}} \mathcal{G}_{\scriptscriptstyle \mathrm{BPG}}(1^\lambda):$
- $q \in \mathbb{N}$: Prime integer.
- $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$: Cyclic multiplicative groups of order q with polynomial-time computable group operations.
- $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$: Generators.
- $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$: Mapping satisfying the following:
 - Bilinearity : $e(g_1^{\delta}, g_2^{\hat{\delta}}) = e(g_1, g_2)^{\delta \hat{\delta}}$ for all $\delta, \hat{\delta} \in \mathbb{F}_q$.
 - Non-degeneracy : $e(g_1, g_2) \neq 1_{\mathbb{G}_T}$, where $1_{\mathbb{G}_T}$ denotes the identity element of the group \mathbb{G}_T .
- params $_{\mathbb{G}}$ is said to be asymmetric if no efficiently computable isomorphism exists between \mathbb{G}_1 and \mathbb{G}_2 .

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme	Concl
	00000000		

Dual Pairing Vector Spaces (DPVS)

$$\mathsf{DPVS} \text{ params}_{\mathbb{V}} = (q, \mathbb{V}_1, \mathbb{V}_2, \mathbb{G}_T, \mathbb{A}_1, \mathbb{A}_2, e) \xleftarrow{\mathsf{R}} \mathcal{G}_{\mathsf{DPVS}}(1^{\lambda}, d, \mathsf{params}_{\mathbb{G}}):$$

- $q \in \mathbb{N}$: Prime integer.
- $\mathbb{V}_t = \mathbb{G}_t^d$ for $t \in [2]$: d-dimensional vector spaces over \mathbb{F}_q under vector addition and scalar multiplication defined componentwise.
- $\mathbb{A}_t = \{ \mathbf{a}^{(t,\ell)} = (\overbrace{\mathbb{1}_{\mathbb{G}_t}, \dots, \mathbb{1}_{\mathbb{G}_t}}^{\ell-1}, g_t, \overbrace{\mathbb{1}_{\mathbb{G}_t}, \dots, \mathbb{1}_{\mathbb{G}_t}}^{d-\ell}) \}_{\ell \in [d]}$ of \mathbb{V}_t for $t \in [2]$: Canonical bases, where $\mathbb{1}_{\mathbb{G}_t} = \text{identity element of } \mathbb{G}_t$.

•
$$e : \mathbb{V}_1 \times \mathbb{V}_2 \to \mathbb{G}_T$$
, $e(\boldsymbol{v}, \boldsymbol{w}) = \prod_{\ell \in [d]} e(g_1^{v_\ell}, g_2^{w_\ell}) \in \mathbb{G}_T$ for all $\boldsymbol{v} = (g_1^{v_1}, \dots, g_1^{v_d}) \in \mathbb{V}_1$,

 $\boldsymbol{w} = (g_2^{w_1}, \dots, g_2^{w_d}) \in \mathbb{V}_2.$ • e satisfies the following:

• Bilinearity :
$$e(\delta \boldsymbol{v}, \widehat{\delta} \boldsymbol{w}) = e(\boldsymbol{v}, \boldsymbol{w})^{\delta \widehat{\delta}}$$
 for all $\delta, \widehat{\delta} \in \mathbb{F}_q$, $\boldsymbol{v} \in \mathbb{V}_1$, and $\boldsymbol{w} \in \mathbb{V}_2$.

• Non-degeneracy : If $e(v, w) = 1_{\mathbb{G}_T}$ for all $w \in \mathbb{V}_2$, then $v = (1_{\mathbb{G}_1}, \dots, 1_{\mathbb{G}_1})$. Similar statement also holds with the vectors v and w interchanged.

P. Datta et al

Introduction Preliminaries The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme Conclusion

Dual Orthonormal Basis Generator $\mathcal{G}_{OB}(1^{\lambda}, N, (d_1, \ldots, d_N))$

- Generate params $_{\mathbb{G}} = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, e) \xleftarrow{\mathsf{R}} \mathcal{G}_{\scriptscriptstyle \mathrm{BPG}}(1^{\lambda}).$
- Sample $\psi \xleftarrow{\cup} \mathbb{F}_q \setminus \{0\}$ and compute $g_T = e(g_1, g_2)^{\psi}$.
- For $i \in [N]$, perform the following:
 - Generate $\operatorname{params}_{\mathbb{V}_i} = (q, \mathbb{V}_{i,1}, \mathbb{V}_{i,2}, \mathbb{G}_T, \mathbb{A}_{i,1}, \mathbb{A}_{i,2}, e) \xleftarrow{\mathsf{R}}{\mathcal{G}_{\operatorname{DPVS}}}(1^{\lambda}, d_i, \operatorname{params}_{\mathbb{G}}).$
 - Sample $\boldsymbol{B}^{(i)} = (b_{\ell,k}^{(i)}) \xleftarrow{\mathsf{U}} \mathsf{GL}(d_i, \mathbb{F}_q).$
 - Compute $B^{*(i)} = (b_{\ell,k}^{*(i)}) = \psi((B^{(i)})^{-1})^{\mathsf{T}}.$
 - For all $\ell \in [d_i]$, let $\vec{b}^{(i,\ell)}$ and $\vec{b}^{*(i,\ell)}$ be the ℓ^{th} rows of $B^{(i)}$ and $B^{*(i)}$.
 - Compute $\dot{\boldsymbol{b}}^{(i,\ell)} = (\vec{b}^{(i,\ell)})_{\mathbb{A}_{i,1}}, \boldsymbol{b}^{*(i,\ell)} = (\vec{b}^{*(i,\ell)})_{\mathbb{A}_{i,2}}$ for $\ell \in [d_i]$, and set $\mathbb{B}_i = \{\boldsymbol{b}^{(i,1)}, \dots, \boldsymbol{b}^{(i,d_i)}\}, \mathbb{B}_i^* = \{\boldsymbol{b}^{*(i,1)}, \dots, \boldsymbol{b}^{*(i,d_i)}\}.$
 - \mathbb{B}_i and \mathbb{B}_i^* are dual orthonormal in the sense that for all $\ell,\ell'\in[d_i],$

$$e(\boldsymbol{b}^{(\imath,\ell)},\boldsymbol{b}^{*(\imath,\ell')}) = \left\{ \begin{array}{ll} g_T, & \text{if } \ell = \ell', \\ 1_{\mathbb{G}_T}, & \text{otherwise.} \end{array} \right.$$

- Set params = $({\text{params}_{V_i}}_{i \in [N]}, g_T)$.
- Return (params, $\{\mathbb{B}_i, \mathbb{B}_i^*\}_{i \in [N]}$).

Introduction	Preliminaries	The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme	Conclusion
0000000000000	0000000	●000	00
PHPE.Setur	$(1^{\lambda},1^{n'},1^n)$		

• Generate (params,
$$\{\mathbb{B}_i, \mathbb{B}_i^*\}_{i \in [n'+n]}$$
) $\xleftarrow{\mathsf{R}} \mathcal{G}_{\text{OB}}(1^{\lambda}, n' + n, (\overbrace{9, \dots, 9}^{n'+n})).$

• For $i \in [n'+n]$, set

$$\widehat{\mathbb{B}}_{\imath} = \{m{b}^{(\imath,1)},m{b}^{(\imath,2)},m{b}^{(\imath,9)}\},\ \widehat{\mathbb{B}}_{\imath}^{*} = \{m{b}^{*(\imath,1)},m{b}^{*(\imath,2)},m{b}^{*(\imath,7)},m{b}^{*(\imath,8)}\}.$$

• Output MPK = (params, $\{\widehat{\mathbb{B}}_i\}_{i \in [n'+n]}$) and MSK = $\{\widehat{\mathbb{B}}_i^*\}_{i \in [n'+n]}$.

Preliminaries

PHPE.Encrypt(MPK, $(\vec{x}, \vec{z}) \in \overline{\mathbb{F}_q^{n'} \times \mathbb{F}_q^n}$)

- Sample $\omega \xleftarrow{\mathsf{U}} \mathbb{F}_q$.
- For $\iota' \in [n']\text{, sample } \varphi_{\iota'}' \xleftarrow{\mathsf{U}} \mathbb{F}_q\text{, and compute}$

$$\boldsymbol{c}'^{(\iota')} = (\omega(1, x_{\iota'}), \vec{0}^4, \vec{0}^2, \varphi'_{\iota'})_{\mathbb{B}_{\iota'}}.$$

• For $\iota \in [n]$, sample $\varphi_{\iota} \xleftarrow{\mathsf{U}}{\leftarrow} \mathbb{F}_q$, and compute

$$\boldsymbol{c}^{(\iota)} = (\omega(1, z_{\iota}), \vec{0}^4, \vec{0}^2, \varphi_{\iota})_{\mathbb{B}_{n'+\iota}}.$$

• Output $CT = (\vec{x}, \{ \boldsymbol{c}'^{(\iota')} \}_{\iota' \in [n']}, \{ \boldsymbol{c}^{(\iota)} \}_{\iota \in [n]}).$

Preliminaries

PHPE.KeyGen(MPK, MSK, $f \in \mathcal{F}_{ABP\circ IP}^{(q,n',n)}$)

- Generate $\left((\{\sigma_j\}_{j\in[n]}, \{\alpha_{j'}, \gamma_{j'}\}_{j'\in[m]}), \rho: [m] \to [n'] \right) \xleftarrow{\mathsf{R}} \mathsf{PGB}(f).$
- Sample $\zeta \xleftarrow{\mathsf{U}}{\leftarrow} \mathbb{F}_q$.
- For $j' \in [m],$ sample $\vec{\kappa}'^{(j')} \xleftarrow{\mathsf{U}} \mathbb{F}_q^2,$ and compute

$$\boldsymbol{k}'^{(j')} = ((\gamma_{j'}, \alpha_{j'}), \vec{0}^4, \vec{\kappa}'^{(j')}, 0)_{\mathbb{B}^*_{\rho(j')}}.$$

• For $j \in [n]$, sample $\vec{\kappa}^{(j)} \xleftarrow{\mathsf{U}} \mathbb{F}_q^2$, and compute

$$\boldsymbol{k}^{(j)} = ((\sigma_j, \zeta), \vec{0}^4, \vec{\kappa}^{(j)}, 0)_{\mathbb{B}^*_{n'+j}}.$$

• Output $SK(f) = (f, \{k'^{(j')}\}_{j' \in [m]}, \{k^{(j)}\}_{j \in [n]}).$

Preliminaries

The Proposed Strongly Partially-Hiding Predicate Encryption (PHPE) Scheme $_{000} \bullet$

Conclusion

PHPE.Decrypt(MPK, SK(f) = $(f, \{ \mathbf{k}^{\prime(j')} \}_{j' \in [m]}, \{ \mathbf{k}^{(j)} \}_{j \in [n]}),$ CT = $(\vec{x}, \{ \mathbf{c}^{\prime(\iota')} \}_{\iota' \in [n']}, \{ \mathbf{c}^{(\iota)} \}_{\iota \in [n]}))$

• Compute
$$\Lambda'_{j'} = e(\mathbf{c}'^{(\rho(j'))}, \mathbf{k}'^{(j')}) = g_T^{\omega(\alpha_{j'}x_{\rho(j')} + \gamma_{j'})}$$
 for $j' \in [m]$, and $\Lambda_j = e(\mathbf{c}^{(j)}, \mathbf{k}^{(j)}) = g_T^{\omega(\zeta z_j + \sigma_j)}$ for $j \in [n]$.

• Determine
$$({\Omega'_{j'}}_{j' \in [m]}, {\Omega_j}_{j \in [n]}) = \mathsf{REC}(f, \vec{x}).$$

• Compute
$$\Lambda = \Big(\prod_{j' \in [m]} \Lambda_{j'}^{'\Omega'_{j'}}\Big) \Big(\prod_{j \in [n]} \Lambda_j^{\Omega_j}\Big) = g_T^{\omega \zeta f(\vec{x}, \vec{z})}.$$

- If $R^{\text{ABPoIP}}(f,(\vec{x},\vec{z})) = 1$, i.e., $f(\vec{x},\vec{z}) = 0$, then $\Lambda = 1_{\mathbb{G}_T}$, while if $R^{\text{ABPoIP}}(f,(\vec{x},\vec{z})) = 0$, i.e., $f(\vec{x},\vec{z}) \neq 0$, then $\Lambda \neq 1_{\mathbb{G}_T}$ with all but negligible probability 2/q, i.e., except when $\omega = 0$ or $\zeta = 0$.
- Output 1, if $\Lambda = 1_{\mathbb{G}_T}$, and 0, otherwise.

Conclusion ●○

Concluding Remarks and Open Problems

- We achieved SIM-based S-AH security against *adaptive* adversaries for PE schemes supporting *expressive* predicate families under standard computational assumption in bilinear groups.
- We designed a SIM-based *adaptively* strongly partially-hiding PE (PHPE) scheme for predicates computing ABP's on public attributes, followed by an IP on private attributes.
- The proposed scheme is proven secure for *any a priori bounded* number of ciphertexts and *unbounded* number of authorized decryption keys.
- An intriguing *open problem* is to identify the largest predicate class for which S-AH PE scheme supporting unbounded number of authorized decryption key queries can be realized from a standard computational assumption.

Preliminaries

Thanking Note

