Multi-Key Homomorphic Signatures
Unforgeable under Insider Corruption

Russell W. F. Lai1,2, Raymond K. H. Tai2, Harry W. H. Wong2, Sherman S. M. Chow2

1Friedrich-Alexander University Erlangen-Nuremberg
2Chinese University of Hong Kong
Useful multi-key homomorphic signatures likely require strong assumptions.
We introduce a strong but natural unforgeability notion of (multi-key) homomorphic signatures.
We introduce a strong but natural unforgeability notion of (multi-key) homomorphic signatures.

The property is essential for natural applications, e.g., verifiable MPC.
We introduce a strong but natural unforgeability notion of (multi-key) homomorphic signatures.

The property is essential for natural applications, e.g., verifiable MPC.

We draw connections of the notion to zk-SNARG/Ks.
Homomorphic Signatures

I signed m.

Alice σ^A_m

Verifier
Homomorphic Signatures

You can evaluate any function on it.
Homomorphic Signatures

Let’s do $f(m)$.

Alice
Evaluator
Verifier

$\sigma^A_{f(m), f}$
Homomorphic Signatures

\[\sigma^A_{f(m), t} \]

Looks legit.
Unforgeability of Homomorphic Signatures

Alice

\[\sigma_m^A \]

Adversary

Verifier

I signed \(m \).
Unforgeability of Homomorphic Signatures

You can evaluate any function on it.

Alice → Adversary σ^A_m → Verifier
Let’s pretend \(m^* = f(m) \).
Unforgeability of Homomorphic Signatures

Alice

Adversary

Verifier

Smells fishy.

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption

Russell W. F. Lai
Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

I signed m_A.

I signed m_B.

σ_{mA}

σ_{mB}

Verifier

Evaluator

Alice

Bob
Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

You can evaluate any function on them.

Alice

Bob

Evaluator

Verifier
Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

Let's do $f(m_A, m_B)$.

Alice

Bob

Evaluator

Verifier

$\sigma^A_B f(m_A, m_B), f$
Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

Looks legit.

Verifier

\[\sigma_{f(m_A, m_B), f} \]

Evaluator

Alice

Bob
Unforgeability of Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

I signed m_A.

I signed m_B.

Alice

σ^A_{mA}

Bob

σ^B_{mB}

Adversary

Verifier
Unforgeability of Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

You can evaluate any function on them.
Unforgeability of Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

Let's pretend $m^* = f(m_A, m_B)$.

Alice

Bob

Adversary

Verifier

$\sigma_{m^*, A, B}$
Unforgeability of Multi-key Homomorphic Signatures [FMNP, Asiacrypt16]

Smells fishy.

Alice

Bob

Adversary

Verifier

\[\sigma_{m^A,t}^{A,B} \]
Insider Attack?

I signed m_A.

Here is my secret key sk_B.

Alice

σ_{mA}

σ_{mA}^A

Adversary

Verifier

Bob
Insider Attack?

You can evaluate any function on them.

Let's mess with Alice.

Alice

Bob

Verifer

Adversary

\[\sigma_{mA} \]

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption

Russell W. F. Lai

7/16
Let's pretend $m^* = f(m_A, m_B)$.

Insider Attack?

Alice

Bob

Adversary

Verifier

Let's pretend $m^* = f(m_A, m_B)$.

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption

Russell W. F. Lai
Insider Attack?

Alice

Bob

Adversary

Verifier

 Sounds...... legit?

\[\sigma_{m', f}^{A, B} \]
Unforgeability of (Multi-Key) Homomorphic Signatures under Insider Corruption

- \(\mathcal{A} \) can query sign oracle on \((\text{id}, m)\), which does the following:
 - Generate \((\text{pk}_\text{id}, \text{sk}_\text{id})\) and record id as honest if not done already.
 - Sign \(m\) using \(\text{sk}_\text{id}\) as \(\sigma^\text{id}_m\) and record \(m\) in the set \(M_\text{id}\).
 - Return \((\text{pk}_\text{id}, \sigma^\text{id}_m)\).
Unforgeability of (Multi-Key) Homomorphic Signatures under Insider Corruption

• \mathcal{A} can query sign oracle on (id, m), which does the following:
 • Generate (pk_{id}, sk_{id}) and record id as honest if not done already.
 • Sign m using sk_{id} as σ_{id}^m and record m in the set M_{id}.
 • Return (pk_{id}, σ_{id}^m).
• \mathcal{A} produces $(f^*, \{pk_{id_1}^*, \ldots, pk_{id_k}^*\}, m^*, \sigma^*)$.
Unforgeability of (Multi-Key) Homomorphic Signatures under Insider Corruption

- \mathcal{A} can query sign oracle on (id, m), which does the following:
 - Generate $(pk_{\text{id}}, sk_{\text{id}})$ and record id as honest if not done already.
 - Sign m using sk_{id} as σ_m^{id} and record m in the set M_{id}.
 - Return $(pk_{\text{id}}, \sigma_m^{\text{id}})$.
- \mathcal{A} produces $(f^*, \{pk_{\text{id}_1}^*, \ldots, pk_{\text{id}_k}^*\}, m^*, \sigma^*)$.
- \mathcal{A} wins if the following hold:
 - $V_f(f^*, \{pk_{\text{id}_1}^*, \ldots, pk_{\text{id}_k}^*\}, m^*, \sigma^*) = 1$.
 - If id is honest, then $pk_{\text{id}}^* = pk_{\text{id}}$.
 - m^* is not in the range of f^*, when the inputs of honest id are restricted to those recorded in M_{id},
 i.e., $m^* \notin \left\{ f^*(m_1, \ldots, m_k) : \begin{cases} m_i \in \mathcal{M} & \text{id}_i \text{ is malicious} \\ m_i \in M_{\text{id}_i} & \text{id}_i \text{ is honest} \end{cases} \right\}$.

Remark
- The definition still makes sense even with one key, i.e., $k = 1$.
- It means that even the signer cannot produce σ_m^f for m not in the range of f.

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption
Unforgeability of (Multi-Key) Homomorphic Signatures under Insider Corruption

\(\mathcal{A} \) can query sign oracle on \((id, m)\), which does the following:

- Generate \((pk_{id}, sk_{id})\) and record id as honest if not done already.
- Sign \(m\) using \(sk_{id}\) as \(\sigma_{id}^m\) and record \(m\) in the set \(M_{id}\).
- Return \((pk_{id}, \sigma_{id}^m)\).

\(\mathcal{A} \) produces \((f^*, \{pk_{id_1}^*, \ldots, pk_{id_k}^*\}, m^*, \sigma^*)\).

\(\mathcal{A} \) wins if the following hold:

- \(V(f^*, \{pk_{id_1}^*, \ldots, pk_{id_k}^*\}, m^*, \sigma^*) = 1\).
- If id is honest, then \(pk_{id}^* = pk_{id}\).
- \(m^*\) is not in the range of \(f^*\), when the inputs of honest id are restricted to those recorded in \(M_{id}\), i.e., \(m^* \notin \{f^*(m_1, \ldots, m_k) : \begin{cases} m_i \in \mathcal{M} & \text{id}_i \text{ is malicious} \\ m_i \in M_{id_i} & \text{id}_i \text{ is honest} \end{cases} \}\)

Remark

- The definition still makes sense even with one key, i.e., \(k = 1\).
- It means that even the signer cannot produce \(\sigma_{m, f}\) for \(m\) not in the range of \(f\).
Why is the notion meaningful?

Example 1: Number of keys $k > 1$

- $f^*(m_1, \ldots, m_k) = \text{MAJORITY}(m_1, \ldots, m_k)$
- id_k malicious
- id_i honest, $M_{id_i} = \{\text{NO}\}$, for all $i = 1, \ldots, k - 1$
- Infeasible to forge $(\text{MAJORITY}, \{pk_{id_1}^*, \ldots, pk_{id_k}^*\}, m^* = \text{YES}, \sigma^*)$
Why is the notion meaningful?

Example 1: Number of keys $k > 1$

- $f^*(m_1, \ldots, m_k) = \text{MAJORITY}(m_1, \ldots, m_k)$
- id$_k$ malicious
- id$_i$ honest, $M_{id_i} = \{\text{NO}\}$, for all $i = 1, \ldots, k - 1$
- Infeasible to forge $(\text{MAJORITY}, \{pk_{id_1}^*, \ldots, pk_{id_k}^*\}, m^* = \text{YES}, \sigma^*)$

Example 2: Number of keys $k = 1$

- C: Unsatisfiable Boolean circuit
- $f^*(m) = C(m)$
- Infeasible to forge $(C, pk, m^* = 1, \sigma^*)$
Other Properties of (Multi-key) Homomorphic Signatures

(Weakly) Context-Hiding \(\sigma_{f(m),f} \) reveals nothing about \(m \).

Succinctness Size of \(\sigma_{f(m),f} \) is independent of the size of \(m \) and \(f \).
Preliminary: zk-(O-)SNARG/Ks

Argument systems which allow a prover to prove to the verifier:

There exists a witness w such that the relation $R(x, w) = 1$ holds for the statement x.

- **zero-knowledge**: Proofs reveal nothing about witnesses.
- **Oracle**: Sound even if the prover has access to certain (e.g., signing) oracles.
- **Succinct**: Proof size is independent of witness size.
- **Non-Interactive**: The prover only sends 1 message to the verifier.
- **ARGuments**: The system is computationally sound.
- **ARGuments of Knowledge**: There exists an extractor which extracts witnesses from provers.
Roadmap

• zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
Roadmap

• zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
• 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs

Theorem (Gentry-Wichs, STOC11)

No SNARGs can be proven adaptive sound via a black-box reduction from any falsifiable assumption.
Roadmap

- zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
- 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs
- 2-key 1-hop Insider Unforgeable Homomorphic Signatures \implies Functional Signatures
- Functional Signatures \implies zk-SNARGs [Boyle-Goldwasser-Ivan, PKC14]
Roadmap

- zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
- 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs
- 2-key 1-hop Insider Unforgeable Homomorphic Signatures \implies Functional Signatures
- Functional Signatures \implies zk-SNARGs [Boyle-Goldwasser-Ivan, PKC14]
Roadmap

- zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
- 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs
- 2-key 1-hop Insider Unforgeable Homomorphic Signatures \implies Functional Signatures
- Functional Signatures \implies zk-SNARGs [Boyle-Goldwasser-Ivan, PKC14]

Theorem (Gentry-Wichs, STOC11)

No SNARGs can be proven adaptive sound via a black-box reduction from any falsifiable assumption.
Roadmap

- zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
- 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs
- 2-key 1-hop Insider Unforgeable Homomorphic Signatures \implies Functional Signatures
- Functional Signatures \implies zk-SNARGs [Boyle-Goldwasser-Ivan, PKC14]

Theorem (Gentry-Wichs, STOC11)

No SNARGs can be proven adaptive sound via a black-box reduction from any falsifiable assumption.

Corollary

Homomorphic signatures cannot be proven unforgeable under insider corruption via a black-box reduction from any falsifiable assumption.
Roadmap

- zk-(O-)SNARKs + Signatures \implies Insider Unforgeable Multi-key Homomorphic Signatures.
- 1-key 1-hop Insider Unforgeable Homomorphic Signatures \implies zk-SNARGs
- 2-key 1-hop Insider Unforgeable Homomorphic Signatures \implies Functional Signatures
- Functional Signatures \implies zk-SNARGs [Boyle-Goldwasser-Ivan, PKC14]

Theorem (Gentry-Wichs, STOC11)

No SNARGs can be proven adaptive sound via a black-box reduction from any falsifiable assumption.

Corollary

Homomorphic signatures cannot be proven unforgeable under insider corruption via a black-box reduction from any falsifiable assumption (assuming messages can depend on public parameters).
Construction of Homomorphic Signatures

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ

Public Parameters: Common reference string for Π.

Key Generation: Each user generates (pk, sk) for Σ.

Signing: Sign using $\sigma \leftarrow \Sigma.Sig(sk, m)$.

Evaluation: Given g, $\{(f_i, pk_i, m_i, \sigma_{im_i}, f_i)\}_{i=1}^k$.

Let $h = g(f_1, ..., f_k)$.

Compute $m = g(m_1, ..., m_k)$.

Produce a zk-SNARK proof for the following statement: “I know g and $\{(f_i, m_i, \sigma_{im_i}, f_i)\}_{i=1}^k$ such that $h = g(f_1, ..., f_k)$, $m = g(m_1, ..., m_k)$, and for $i \in [k]$, σ_{im_i}, f_i is valid under pk_i.”

Verification: If signature is fresh, use verification of Σ. If signature is evaluated, use verification of Π.
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ

• Let $h = g(f_1, \ldots, f_k)$.

• Compute $m = g(m_1, \ldots, m_k)$.

• Produce a zk-SNARK proof for the following statement:
 "I know g and $\{(f_i, m_i, \sigma_i m_i, f_i)\}_{k_i=1}$ such that $h = g(f_1, \ldots, f_k)$, $m = g(m_1, \ldots, m_k)$, and for $i \in [k]$, $\sigma_i m_i, f_i$ is valid under pk_i."
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.
- Key Generation: Each user generates (pk, sk) for Σ.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.
- Key Generation: Each user generates (pk, sk) for Σ.
- Signing: Sign using $\sigma \leftarrow \Sigma . \text{Sig}(sk, m)$.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.
- Key Generation: Each user generates (pk, sk) for Σ.
- Signing: Sign using $\sigma \leftarrow \Sigma \cdot \text{Sig}(sk, m)$.
- Evaluation: Given g, $\{(f_i, pk_i, m_i, \sigma_{m_i, f_i})\}_{i=1}^k$,
 - Let $h = g(f_1, \ldots, f_k)$.
 - Compute $m = g(m_1, \ldots, m_k)$.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.
- Key Generation: Each user generates (pk, sk) for Σ.
- Signing: Sign using $\sigma \leftarrow \Sigma . \text{Sig}(sk, m)$.
- Evaluation: Given g, $\{(f_i, pk_i, m_i, \sigma_{m_i, f_i}^i)\}_{i=1}^k$,
 - Let $h = g(f_1, \ldots, f_k)$.
 - Compute $m = g(m_1, \ldots, m_k)$.
 - Produce a zk-SNARK proof for the following statement:

 "I know g and $\{(f_i, m_i, \sigma_{m_i, f_i}^i)\}_{i=1}^k$ such that

 $h = g(f_1, \ldots, f_k)$,

 $m = g(m_1, \ldots, m_k)$, and

 for $i \in [k]$, σ_{m_i, f_i}^i is valid under pk_i.”

- Verification: If signature is fresh, use verification of Σ. If signature is evaluated, use verification of Π.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ
Construction of Homomorphic Signatures

- Public Parameters: Common reference string for Π.
- Key Generation: Each user generates (pk, sk) for Σ.
- Signing: Sign using $\sigma \leftarrow \Sigma.\text{Sig}(sk, m)$.
- Evaluation: Given $g, \{(f_i, pk_i, m_i, \sigma_{m_i,f_i}^i)\}_{i=1}^k$,
 - Let $h = g(f_1, \ldots, f_k)$.
 - Compute $m = g(m_1, \ldots, m_k)$.
 - Produce a zk-SNARK proof for the following statement:

 "I know g and $\{(f_i, m_i, \sigma_{m_i,f_i}^i)\}_{i=1}^k$ such that

 $h = g(f_1, \ldots, f_k)$,

 $m = g(m_1, \ldots, m_k)$, and

 for $i \in [k]$, σ_{m_i,f_i}^i is valid under pk_i."

- Verification: If signature is fresh, use verification of Σ. If signature is evaluated, use verification of Π.

Ingredients

- zk-(O-)SNARK Π
- Digital signature scheme Σ
Caution

• On the number of hops of evaluation:
 × “Poly-hop” evaluation requires “strong” zk-SNARK extractor whose runtime is independent of that of the prover. As far as we know, no candidate construction exists.
Caution

- On the number of hops of evaluation:
 - “Poly-hop” evaluation requires “strong” zk-SNARK extractor whose runtime is independent of that of the prover. As far as we know, no candidate construction exists.
 - 1-hop is sufficient for the construction of zk-SNARG.
Caution

- On the number of hops of evaluation:
 - “Poly-hop” evaluation requires “strong” zk-SNARK extractor whose runtime is independent of that of the prover. As far as we know, no candidate construction exists.
 - 1-hop is sufficient for the construction of zk-SNARG.

- On the existence of O-SNARKs:
 - There exists Σ s.t. no candidate construction of O-SNARK satisfies proof of knowledge with respect to the signing oracle of Σ. [Fiore-Nitulescu, TCC16B]
Caution

- On the number of hops of evaluation:
 - “Poly-hop” evaluation requires “strong” zk-SNARK extractor whose runtime is independent of that of the prover. As far as we know, no candidate construction exists.
 - ✔ 1-hop is sufficient for the construction of zk-SNARG.

- On the existence of O-SNARKs:
 - ✗ There exists Σ s.t. no candidate construction of O-SNARK satisfies proof of knowledge with respect to the signing oracle of Σ. [Fiore-Nitulescu, TCC16B]
 - ✔ Use a Σ which admits an O-SNARK. [Fiore-Nitulescu, TCC16B]
Construction of zk-SNARG

- Ingredients:
 - 1-key 1-hop homomorphic signature Σ unforgeable under insider corruption
 - A circuit g such that $g(x, w) = \begin{cases} x & R(x, w) = 1 \\ \bot & \text{otherwise} \end{cases}$.

Soundness

If x^* is a NO instance, then $g(x^*, w) = \bot$ for all w.
Construction of zk-SNARG

- Ingredients:
 - 1-key 1-hop homomorphic signature Σ unforgeable under insider corruption
 - A circuit g such that $g(x, w) = \begin{cases} x & R(x, w) = 1 \\ \bot & \text{otherwise} \end{cases}$.
 - Common Reference String: Public Parameter of Σ.

Soundness
If x^* is a NO instance, then $g(x^*, w) = \bot$ for all w.

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption
Russell W. F. Lai
Construction of zk-SNARG

• Ingredients:
 • 1-key 1-hop homomorphic signature Σ unforgeable under insider corruption
 • A circuit g such that $g(x, w) = \begin{cases} x R(x, w) = 1 \\ \bot \text{ otherwise} \end{cases}$.

• Common Reference String: Public Parameter of Σ.

• Proving that $R(x, w) = 1$:
 • Generate fresh (pk, sk) for Σ.
 • Sign x and w using sk.
 • Evaluate g on the signatures and produce $\sigma_{x,g}$.
 • Output (pk, $\sigma_{x,g}$).
Construction of zk-SNARG

- **Ingredients:**
 - 1-key 1-hop homomorphic signature Σ unforgeable under insider corruption
 - A circuit g such that $g(x, w) = \begin{cases} x \quad R(x, w) = 1 \\ \bot \quad \text{otherwise} \end{cases}$.
 - Common Reference String: Public Parameter of Σ.
- **Proving that** $R(x, w) = 1$:
 - Generate fresh (pk, sk) for Σ.
 - Sign x and w using sk.
 - Evaluate g on the signatures and produce $\sigma_{x,g}$.
 - Output $(pk, \sigma_{x,g})$.
- **Verification of statement** x and proof $\pi = (pk, \sigma)$:
 - Output $\Sigma.Vf(g, pk, x, \sigma)$.

Soundness: If x^* is a NO instance, then $g(x^*, w) = \bot$ for all w.

Multi-Key Homomorphic Signatures Unforgeable under Insider Corruption

Russell W. F. Lai
Construction of zk-SNARG

- Ingredients:
 - 1-key 1-hop homomorphic signature Σ unforgeable under insider corruption
 - A circuit g such that $g(x, w) = \begin{cases} x & R(x, w) = 1 \\ \bot & \text{otherwise} \end{cases}$.
- Common Reference String: Public Parameter of Σ.
- Proving that $R(x, w) = 1$:
 - Generate fresh (pk, sk) for Σ.
 - Sign x and w using sk.
 - Evaluate g on the signatures and produce $\sigma_{x,g}$.
 - Output $(pk, \sigma_{x,g})$.
- Verification of statement x and proof $\pi = (pk, \sigma)$:
 - Output $\Sigma.Vf(g, pk, x, \sigma)$.

Soundness

If x^* is a NO instance, then $g(x^*, w) = \bot$ for all w.
Conclusion

(Multi-key) homomorphic signatures unforgeable under insider corruption imply zk-SNARGs, which likely require non-falsifiable assumptions.
Conclusion

(Multi-key) homomorphic signatures unforgeable under insider corruption imply zk-SNARGs, which likely require non-falsifiable assumptions.

Can we construct insider unforgeable homomorphic signatures ... directly without using zk-SNARKs? for restricted functionalities (not including g) from standard assumptions?
(Multi-key) homomorphic signatures unforgeable under insider corruption imply zk-SNARGs, which likely require non-falsifiable assumptions.

Can we construct insider unforgeable homomorphic signatures ... directly without using zk-SNARKs? for restricted functionalities (not including g) from standard assumptions?

ia.cr/2016/834
Russell W. F. Lai
Friedrich-Alexander University Erlangen-Nuremberg
russell.lai@cs.fau.de