Attribute-Based Signatures for Unbounded Languages from Standard Assumptions

Yusuke Sakai (AIST, Japan)

Shuichi Katsumata (AIST, Japan / U. Tokyo, Japan) Nuttapong Attrapadung (AIST, Japan) Goichiro Hanaoka (AIST, Japan)

Our Contribution

- Propose attribute-based signature scheme for <u>Turing machines</u>
 - A key-policy variant
 - The policy is described by a Turing machine (TM)
 - The attribute is an input to a TM

The scheme allows policies that accept <u>unbounded</u> inputs!

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

Attribute-Based Signatures (ABS)

Attribute-Based Signatures

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

 $sk_{P} = \theta_{P} = Sign(msk, P)$

Difficulty

Prove knowledge of (P, θ_P): (1) Verify(P, θ_x) = 1 (2) P(x) = 1

How to prove the complex condition
 P(x) = 1

– Remind that P is a Turing machine

 General zero-knowledge is inefficient, so we will <u>decompose</u> the statement

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

- While a TM's computation is complex, the computation proceeds sequentially
- The computation defines a sequence of "snapshots" of the machine

- While a TM's computation is complex, the computation proceeds sequentially
- The computation defines a sequence of "snapshots" of the machine

- While a TM's computation is complex, the computation proceeds sequentially
- The computation defines a sequence of "snapshots" of the machine

- While a TM's computation is complex, the computation proceeds sequentially
- The computation defines a sequence of "snapshots" of the machine

Implement the Certificate Approach

• Using the sequence of the snapshot $(s_1, ..., s_T)$ we can rephrase the proof as follows:

Prove knowledge of $(s_1, ..., s_T)$: (1) $s_i \rightarrow s_{i+1}$ follows the transition function

• To enforce validity of transition, the KGC signs on all possible valid transition:

 $\theta[s,s'] \leftarrow \text{Sign}(\text{msk}, (s,s'))$ $\forall s \rightarrow s': \text{ valid transition}$

Signing Every Possible Transition

Signing Every Possible Transition

Signing Every Possible Transition

Main Difficulty

- Possible pairs of snapshots are infinitely many,
 since snapshots have unbounded lengths
- We further decompose this condition

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

Configuration

 A snapshot is encoded into a single string, <u>configuration</u>

 Consists of (1) the content of the tape interleaved with (2) the state symbol q

- the position of q encodes the position of the head d_{r}

Locality of Rewriting

- step t: w_1 w_2 q w_3 w_4 w_5 step t+1: w_1 q' w_2 w'_3 w_4 w_5
- Each symbol in a new configuration is determined by <u>neighbors in the old</u> <u>configuration</u>
- Four neighbors are sufficient for any case

The General Cases

• Each cell will be determined by the four neighbors in the old configuration

- To enforce validity of transition KGC signs on every valid 5-tuple:
 θ[w₁, w₂, w₃, w₄, u] ← Sign(msk, (w₁, w₂, w₃, w₄, u))
- The signer proves the knowledge of signature for <u>every</u> symbol in the new configuration

old:

$$w_1$$
 w_2
 q
 w_3
 w_4
 w_5

 new:
 w_1
 q'
 w_2
 w'_3
 w_4
 w_5

W₃

 W_4

 W_2

U

 To enforce validity of transition KGC signs on every valid 5-tuple: θ[w₁, w₂, w₃, w₄, u]

Prove knowledge of $(w_1, w_2, q, w_3, q', \theta_1)$: Verify(vk, $(w_1, w_2, q, w_3, q'), \theta_1$) = 1

old:
$$w_1 w_2 q w_3 w_4 w_5$$

new: $w_1 q' w_2 w_3' w_4 w_5$

To enforce validity of transition
 KGC signs on every valid 5-tuple:
 θ[w₁, w₂, w₃, w₄, u]

• Prove knowledge of
$$(w_2, q, w_3, w_4, w_2, \theta_2)$$
:
Verify(vk, $(w_2, q, w_3, w_4, w_2), \theta_2$) = 1
old: $w_1 \quad w_2 \quad q \quad w_3 \quad w_4 \quad w_5$
new: $w_1 \quad q' \quad w_2 \quad w'_3 \quad w_4 \quad w_5$

 To enforce validity of transition KGC signs on every valid 5-tuple:

 $\theta[w_1, w_2, w_3, w_4, u]$

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

- Proves the knowledge of signatures on the neighbors (quadratic in running time of TM)
- Every symbol is hidden as a witness

The Scheme

- Setup:

 crs ← CRSGen(1^k), (vk, sk) ← SigKg(1^k)
 KeyGen:
 - for overy valid 5-tuple (w
 - for every valid 5-tuple (w_1, w_2, w_3, w_4, u) :
 - $\theta_{[w_1, w_2, w_3, w_4, u]} \leftarrow SigSign(sk, (w_1, w_2, w_3, w_4, u))$
- Sign: $\{w_{i,j}\}_{i,j}$: 2D arrangement of configurations $-\pi_{i,j} \leftarrow Prove(crs, (w_{i-1,j-2}, w_{i-1,j-1}, w_{i-1,j}, w_{i+1,j}, w_{i,j}, \theta))$
- Verify: for all (i,j) verify $\pi_{i,j}$

Main Theorem

<u>Theorem</u> If the non-interactive proof system is witness-indistinguishable and extractable, the signature scheme is unforgeable, the proposed scheme is anonymous and unforgeable

Instantiate this with GS proofs in SXDH setting and structure-preserving signatures

<u>Theorem</u> If SXDH assumption holds, the proposed scheme satisfies anonymity and unforgeability

Efficiency

Signing key	Signature	Verification
length	length	time
O(Γ ⁴)	O(T ²)	O(T ²)

|Γ|: The size of the tape alphabetT: The running time of the TM

• The scheme is reasonably efficient!

- Attribute-Based Signatures
- Security Requirement
- Certificate Approach
- Idea 1: History of Computation
- Idea 2: Locality of Rewriting
- Overview of the Scheme
- Conclusion

Summary

- Proposed attribute-based signature scheme for <u>unbounded languages (Turing machines)</u>
 - Uniform model of computation as the policy
 - No bound on the sizes of both TMs and attributes
 - Can be instantiated from the SXDH assumption in bilinear groups