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Our Contribution

* Propose attribute-based signature scheme for
Turing machines

— A key-policy variant
— The policy is described by a Turing machine (TM)
— The attribute is an inputtoa TM

The scheme allows policies that accept

unbounded inputs!
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Attribute-Based Signatures (ABS)
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Attribute-Based Signatures
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Attribute-Based Signatures
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Anonymity
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Unforgeability
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Certificate Approach (1/2)

Each signer receives a
signature on his polic

sk, = 8, = Sign(msk, P)

8, -

sko: = Bp = Sign(msk, P’) 1




Certificate Approach (2/2)

X
% /‘S/kp Prove knowledge of (P, 0):

(1) Verify(P, 6) =1

sk, = 0, = Sign(msk, T

sko: = Bp = Sign(msk, P’) 12



Difficulty

Prove knowledge of (P, 6;):
(1) Verify(P, 0,) =1

(2) P(x) = 1

* How to prove the complex condition
P(x)=1
— Remind that P is a Turing machine

* General zero-knowledge is inefficient,
so we will decompose the statement
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ldea: History of Computation

* While a TM’s computation is complex, the
computation proceeds sequentially

 The computation defines a sequence of
“snapshots” of the machine

W1 W W3 Wy W5
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Implement the Certificate Approach

* Using the sequence of the snapshot (s, ..., s7)
we can rephrase the proof as follows:

Prove knowledge of (s, ..., s7):

(1) s; = s.,; follows the transition function

* To enforce validity of transition, the KGC signs

on all possi
0

nle valid transition:

s,s'] € Sign(msk, (s,s’))

Vs = s': valid transition 19



Signing Every Possible Transition

| T . ST ST

valid valid
transition transition

Prove knowledge of (s,, 54, 9,):

Verify(vk, (so, 51), 8,) =1
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Signing Every Possible Transition
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valid valid
transition transition

Prove knowle
Verify(vk,

Prove knowledge of (s,, s,, 0,):

Verify(vk, (s, s5), 0,) =1




Signing Every Possible Transition

PG N | NP

valid valid
transition transition

Prove knowledge of (s, ..., s, 04, ..., B5):
(1) Verify((s;.1,s:), 8;) = 1




Main Difficulty

Prove knowledge of (s, ..., s, 04, ..., B5):

(1) Verify((s;.1,5;), 6;) = 1

* Possible pairs of snapshots are infinitely many,

— since snapshots have unbounded lengths

 We further decompose this condition
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Configuration

* Asnapshot is encoded into a single string,
confiquration

W1 W W3 Wy W5

t <y

q
e Wy W, O W3 W, Wk ...

e Consists of (1) the content of the tape
interleaved with (2) the state symbol g

— the position of g encodes the position of the heaczzl5



Locality of Rewriting

step t: W; W, g W3 W, Wg
stept+l: w; q° w, w3 w,; wc

* Each symbol in a new configuration is
determined by neighbors in the old

confiquration
* Four neighbors are sufficient for any case
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The General Cases

e Each cell will be determined by the four
neighbors in the old configuration

Case 6
r - )
, Case 5 | Case 1 Case 2 Case 3
PN <~
' Case 4 a|bl|lc|d blc|d]|e c|d
v\
fC\S\ N
1 % 1 al|lbl|lcl|d blec|d]|aqg cl|ld|q | e
\f\ | \\
 Cage 2
YL | I N | | |
‘Cajasll | : : : : : Case 4 Case 5 Case 6
- ~
old: |a|v]c|a|c =[]0 a3 E 3 BN BEE
d|q | e |2 g e |2 | f el | flg
new: |a | b | c d.e 2| flyg
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Enforcing Validity of Transition

* To enforce validity of transition

~

KGC signs on every valid 5-tuple:

W:|_‘W2‘W3‘W4

O[w,, W,, W3, Wy, U]

u

J

é Sign(mSk; (Wll W21 W31 W41 U))

* The signer proves the knowledge of signature

for every symbol in the new configuration

old: W; W, q W3 W, Wg

new: w; qQ W, W53 W, W



Enforcing Validity of Transition

* To enforce validity of transition

KGC signs on every valid 5-tuple: Wi ‘ W) ‘ ws ‘ W,

O[w,, W,, W3, Wy, U] U

Prove knowledge of (w,, w,, q, ws, q’, 0,):

Verify(Vk) (W]_I WZ) q) W3) q')’ el) =1

old: W; W, q W3 W, Wg

new: w; qQ W, W53 W, W
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Enforcing Validity of Transition

* To enforce validity of transition N
KGC signs on every valid 5-tuple: e ‘ w2 ‘ Ws ‘ Wa
e[Wll WZ) W3/ W4) U] u )

Prove knowledge of (w,, q, w3, w,, w,, 6,):
Verify(vk, (WZI d, W3) Wy, WZ)) e2) =1




Enforcing Validity of Transition

* To enforce validity of transition N
KGC signs on every valid 5-tuple: - ‘ W2 ‘ Ws ‘ We

O[w,, W,, W3, Wy, U] U

Prove knowledge of (q, ws, w,, we, W';, 05):

* Thes Verify(vk, (g, ws, w,, we, W's), 0;) =1

for et

old: W, W, q W3 W, W;g

new: w; q° W, W3 W, W
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W1 W, W3 da Wy

WII5

* Proves the knowledge of signatures on the
neighbors (quadratic in running time of TM)

* Every symbol is hidden as a witness

33



The Scheme

Setup:

~

— crs € CRSGen(1X), (vk, sk) € SigKg(1¥) [ ‘ e ‘ o ‘ -

KeyGen:

u

J

— for every valid 5-tuple (wy, w,, w3, w,, U):

* e[W1, w2, w3, w4, u] < SIgS|gn(Sk; (er Wy, W3, Wy, U))

Sign: {w; ;}; ;: 2D arrangement of configurations

— T < Prove(crs, (Wi-l,j—ZI Wigi1, Wij Wisgj Wi 0))

Verify: for all (i,j) verify 1,
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Main Theorem

Theorem If the non-interactive proof system is

witness-indistinguishable and extractable,
the sighature scheme is unforgeable, the

proposed scheme is anonymous and unforgeable

Instantiate this with
GS proofs in SXDH setting and

\/ structure-preserving signatures

Theorem If SXDH assumption holds,
the proposed scheme satisfies o o

anonymity and unforgeability @
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Efficiency

Signing key Signature Verification
length length time

o(|T[*) O(T?) O(T?)

|IT'|: The size of the tape alphabet
T: The running time of the TM

 The scheme is reasonably efficient!
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Summary

* Proposed attribute-based signature scheme
for unbounded languages (Turing machines)

— Uniform model of computation as the policy
— No bound on the sizes of both TMs and attributes

— Can be instantiated from the SXDH assumption in
bilinear groups
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