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Our Contribution

• Propose attribute-based signature scheme for
Turing machines
– A key-policy variant
– The policy is described by a Turing machine (TM)
– The attribute is an input to a TM
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The scheme allows policies that accept
unbounded inputs!
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Attribute-Based Signatures (ABS)
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Attribute-Based Signatures
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σ ß AttrSign(pp,skP,M,x)
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Attribute-Based Signatures
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1/0 ß AttrVerify(pp,M,x,σ)

σ is made by someone whose 
policy P satisfy P(x) = 1 6
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Anonymity
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Cannot tell who made σ among 
signers who satisfy P(x) = 1
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Unforgeability

skP

skx

x

M, x, σ

Cannot make valid σ
if P(x) = 0

skPʹ 9



Agenda

• Attribute-Based Signatures
• Security Requirement
• Certificate Approach 
• Idea 1: History of Computation
• Idea 2: Locality of Rewriting
• Overview of the Scheme
• Conclusion

10



Certificate Approach (1/2)

skP = θP = Sign(msk, P)

skPʹ = θPʹ = Sign(msk, Pʹ)
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Each signer receives a 
signature on his policy



Certificate Approach (2/2)
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skP = θP = Sign(msk, P)

skPʹ = θPʹ = Sign(msk, Pʹ)

Prove knowledge of (P, θ):
(1) Verify(P, θ) = 1
(2) P(x) = 1



Difficulty

• How to prove the complex condition
P(x) = 1
– Remind that P is a Turing machine

• General zero-knowledge is inefficient,
so we will decompose the statement
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Prove knowledge of (P, θP):
(1) Verify(P, θx) = 1
(2) P(x) = 1
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Idea: History of Computation

• While a TM’s computation is complex, the 
computation proceeds sequentially

• The computation defines a sequence of 
“snapshots” of the machine

15

w1 w2 w3 w4 w5

q0



Idea: History of Computation
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Idea: History of Computation
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Idea: History of Computation

• While a TM’s computation is complex, the 
computation proceeds sequentially

• The computation defines a sequence of 
“snapshots” of the machine
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Implement the Certificate Approach

• Using the sequence of the snapshot (s1, …, sT)
we can rephrase the proof as follows:

• To enforce validity of transition, the KGC signs 
on all possible valid transition:

θ[s,sʹ] ß Sign(msk, (s,sʹ))
∀s à sʹ: valid transition 19

Prove knowledge of (s1, …, sT):
(1) si → si+1 follows the transition function



Signing Every Possible Transition
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s0: s1: s2:

valid
transition

valid
transition

Prove knowledge of (s0, s1, θ1):
Verify(vk, (s0, s1), θ1) = 1



Signing Every Possible Transition
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s0: s1: s2:

valid
transition

valid
transition

Prove knowledge of (s0, s1, θ1):
Verify(vk, (s0, s1), θ1) = 1

Prove knowledge of (s1, s2, θ2):
Verify(vk, (s1, s2), θ2) = 1



Signing Every Possible Transition
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s0: s1: s2:

valid
transition

valid
transition

Prove knowledge of (s1, …, sT, θ1, …, θT):
(1) Verify((si-1,si), θi) = 1



Main Difficulty

• Possible pairs of snapshots are infinitely many,

– since snapshots have unbounded lengths

• We further decompose this condition
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Prove knowledge of (s1, …, sT, θ1, …, θT):
(1) Verify((si-1,si), θi) = 1
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Configuration

• A snapshot is encoded into a single string, 
configuration

• Consists of (1) the content of the tape 
interleaved with (2) the state symbol q
– the position of q encodes the position of the head25
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Locality of Rewriting

• Each symbol in a new configuration is 
determined by neighbors in the old 
configuration

• Four neighbors are sufficient for any case
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w1 w5w4w3qw2step t:
w1 w5w4wʹ3w2qʹstep t+1:



The General Cases

• Each cell will be determined by the four 
neighbors in the old configuration
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Fig. 1. All the patterns of “local” changes when a snapshot s becomes a snapshot t via a transition ”(q, x) =
(qÕ, xÕ, left).

signs on the following five types of tuples:
( a, b, c, d, b ),
( c, d, e, q, d ),
( d, e, q, x, q

Õ ),
( e, q, x, f, e ),
( q, x, f, g, x

Õ )

(2)

for all possible choices of a, b, c, d, e, f , and g œ ≈ .8 Finally, the authority creates signatures for
all possible choices of (q, x) œ Q ◊ ≈ and provides the set of these signatures to the signer as the
signing key. Here, we did not need to consider the tuple (b, c, d, e, c), since this is captured by the
first tuple of Eq. (2).

With this set of signatures, the signer can prove knowledge of a history of computations

sinit ≠æ s1 ≠æ s2 ≠æ · · · ≠æ sn

8 The other two cases right and stay are done similarly.
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Enforcing Validity of Transition

• To enforce validity of transition
KGC signs on every valid 5-tuple:

θ[w1, w2, w3, w4, u] 
ß Sign(msk, (w1, w2, w3, w4, u))

• The signer proves the knowledge of signature
for every symbol in the new configuration

28
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Enforcing Validity of Transition

• To enforce validity of transition
KGC signs on every valid 5-tuple:

θ[w1, w2, w3, w4, u] 
ß Sign(msk, (w1, w2, w3, w4, u))

• The signer proves the knowledge of θ
for every symbol in the new configuration
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old:

new:

Prove knowledge of (w1, w2, q, w3, qʹ, θ1):
Verify(vk, (w1, w2, q, w3, qʹ), θ1) = 1



Enforcing Validity of Transition

• To enforce validity of transition
KGC signs on every valid 5-tuple:

θ[w1, w2, w3, w4, u] 
ß Sign(msk, (w1, w2, w3, w4, u))

• The signer proves the knowledge of θ
for every symbol in the new configuration
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old:

new:

Prove knowledge of (w2, q, w3, w4, w2, θ2):
Verify(vk, (w2, q, w3, w4, w2), θ2) = 1



Enforcing Validity of Transition

• To enforce validity of transition
KGC signs on every valid 5-tuple:

θ[w1, w2, w3, w4, u] 

ß Sign(msk, (w1, w2, w3, w4, u))

• The signer proves the knowledge of θ
for every symbol in the new configuration
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new:

Prove knowledge of (q, w3, w4, w5, wʹ3, θ3):
Verify(vk, (q, w3, w4, w5, wʹ3), θ3) = 1
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Putting All Together

• Proves the knowledge of signatures on the
neighbors (quadratic in running time of TM)

• Every symbol is hidden as a witness 33

w1 w2 w3 w4 wʹ5 w6 w7 w8 w9 w10q2

w1 w2 w3 w4 q1 w6 w7 w8 w9 w10w5

w1 w2 w3 w4 q3 wʹʹ6 w7 w8 w9 w10wʹ5

w1 w2 w3 q4 w4 w6 w7 w8 w9 w10wʹʹ5

Verify((wʹ5, q2, w6, w7, wʹ5), θ) = 1



The Scheme

• Setup: 
– crs ß CRSGen(1k), (vk, sk) ß SigKg(1k)

• KeyGen:
– for every valid 5-tuple (w1, w2, w3, w4, u):
• θ[w1, w2, w3, w4, u] ß SigSign(sk, (w1, w2, w3, w4, u))

• Sign: {wi,j}i,j: 2D arrangement of configurations
– πi,j ß Prove(crs, (wi-1,j-2, wi-1,j-1,, wi-1,j, wi+1,j, wi,j, θ))

• Verify: for all (i,j) verify πi,j
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Main Theorem
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Theorem If the non-interactive proof system is 
witness-indistinguishable and extractable, 
the signature scheme is unforgeable, the 
proposed scheme is anonymous and unforgeable

Theorem If SXDH assumption holds,
the proposed scheme satisfies
anonymity and unforgeability

Instantiate this with
GS proofs in SXDH setting and
structure-preserving signatures

!



Efficiency

36

|Γ|: The size of the tape alphabet
T: The running time of the TM

Signing key 
length

Signature 
length

Verification 
time

O(|Γ|4) O(T2) O(T2)

• The scheme is reasonably efficient!
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Summary

• Proposed attribute-based signature scheme 
for unbounded languages (Turing machines)
– Uniform model of computation as the policy
– No bound on the sizes of both TMs and attributes
– Can be instantiated from the SXDH assumption in 

bilinear groups
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