Secure Computation with Low Communication from Cross-checking

Dov Gordon (George Mason U.) Samuel Ranellucci (Unbound Tech) Xiao Wang (MIT & Boston U.)

Secure Computation

- 4 parties each hold private data.
- They wish to compute $C(x_1, x_2, x_3, x_4)$
- Nobody should learn anything more than the output.
- We assume honest majority: at most 1 malicious actor.

- The adversary can behave arbitrarily.

Why 4PC?

- Existing protocols support n parties, with n-1 maliciously colluding.
- Weaker assumptions lead to better performance!
- As MPC has become more practical, a common use-case that appears is one of out-sourced computation:
 - many parties secret share their data among a few computing servers.
 - This has most often been done with 3 servers, because the honest majority assumption leads to more efficient protocols.

Results

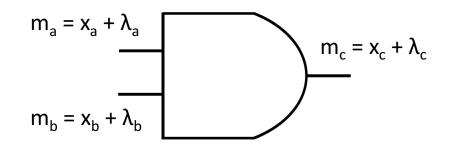
- We provide a 4-party protocol requiring just $6|C|\log|F| + O(\kappa)$ total communication.
- We can compute over arbitrary fields, including GF₂ (Boolean circuits).
- We can even compute over arbitrary rings, such as $GF_{2^{32}}$.
- We demonstrate a robust variant of our protocol, guaranteeing output.

Related Work

- Best 2 party protocols require about 2300 bits of communication per gate [1,2].
- Furukawa et al. demonstrate a protocol in the 3-party setting that requires 21 bits of communication per gate [3].

Wang et al. Authenticated garbling and efficient maliciously secure 2-party computation, 2017
 Nielsen et al. A new approach to practical active-secure two-party computation, 2012.
 Furukawa et al. High-throughput secure three-party computation for malicious adversaries and an honest majority, 2017.

Masked Evaluations

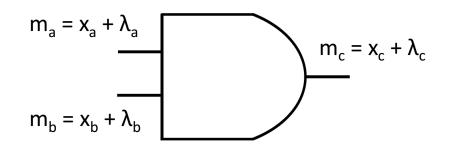


2 parties hold: masked input wire values, m_a and m_b, and secret shares of λ_a , λ_b , λ_c and $\lambda_a \lambda_b$. They compute masked output m_c.

$$\begin{split} m_{a} \cdot m_{b} - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle &= \\ [(x_{a} + \lambda_{a})(x_{b} + \lambda_{b}) - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle] + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle &= \\ [\langle x_{a} x_{b} - \lambda_{a} \lambda_{b} \rangle] + \langle \lambda_{c} \rangle + \langle \lambda_{a} \lambda_{b} \rangle &= \langle x_{a} x_{b} + \lambda_{c} \rangle \end{split}$$

The parties open their shares to obtain m_c . Communication cost: 4|C|

Masked Evaluations



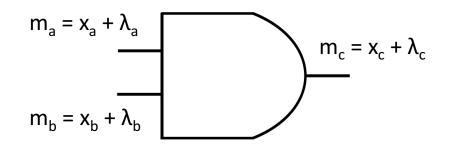
2 parties hold: masked input wire values, m_a and m_b, and secret shares of λ_a , λ_b , λ_c and $\lambda_a \lambda_b$. They compute masked output m_c.

Beaver triples, but we open shares of a blinded product.

$$\begin{split} m_{a} \cdot m_{b} - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle &= \\ [(x_{a} + \lambda_{a})(x_{b} + \lambda_{b}) - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle] + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle &= \\ [\langle x_{a} x_{b} - \lambda_{a} \lambda_{b} \rangle] + \langle \lambda_{c} \rangle + \langle \lambda_{a} \lambda_{b} \rangle &= \langle x_{a} x_{b} + \lambda_{c} \rangle \end{split}$$

The parties open their shares to obtain m_c .

Masked Evaluations



2 parties hold: masked input wire values, m_a and m_b, and secret shares of λ_a , λ_b , λ_c and $\lambda_a \lambda_b$. They compute masked output m_c.

$$\begin{split} m_{a} \cdot m_{b} - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle &= \\ [(x_{a} + \lambda_{a})(x_{b} + \lambda_{b}) - m_{a} \cdot \langle \lambda_{b} \rangle - m_{b} \cdot \langle \lambda_{a} \rangle] + \langle \lambda_{a} \lambda_{b} \rangle + \langle \lambda_{c} \rangle \\ [\langle x_{a} x_{b} - \lambda_{a} \lambda_{b} \rangle] + \langle \lambda_{c} \rangle + \langle \lambda_{a} \lambda_{b} \rangle \end{split}$$

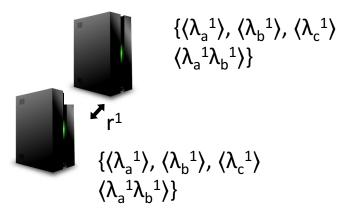
The parties open their shares to obtain m_c .

 $= \langle x_a x_b + \lambda_c \rangle$

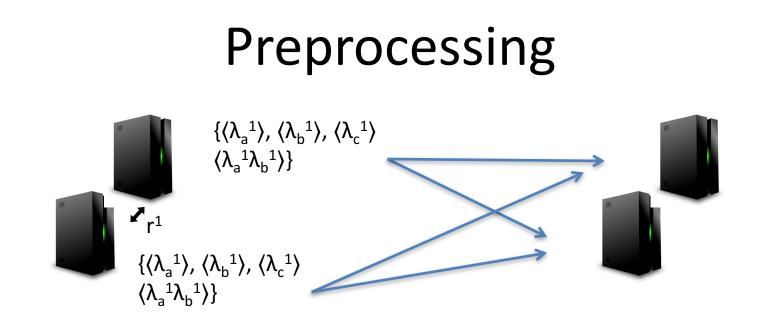
=

Adversary can add arbitrary value to m_c.

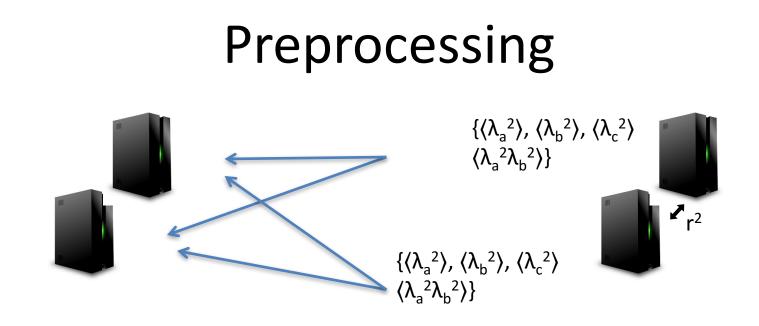
Preprocessing



 One pair of parties creates 2 identical copies of the preprocessing for the other pair to use.



- One pair of parties creates 2 identical copies of the preprocessing for the other pair to use.
- They both send the shares to the other pair, who abort if the copies aren't identical.

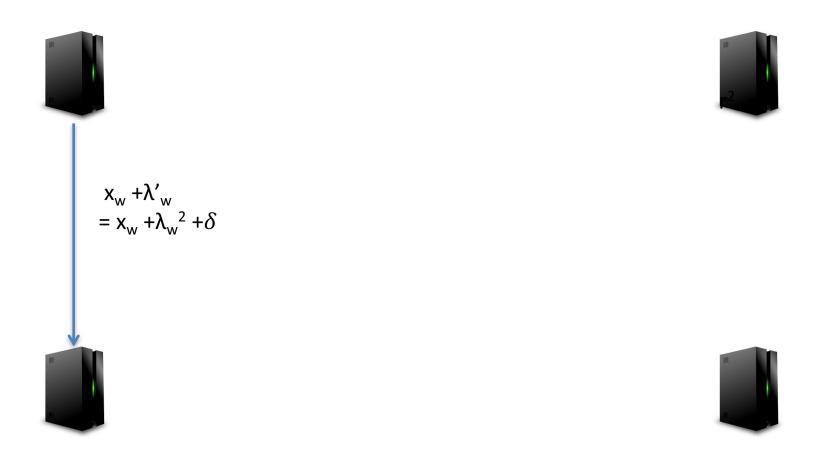


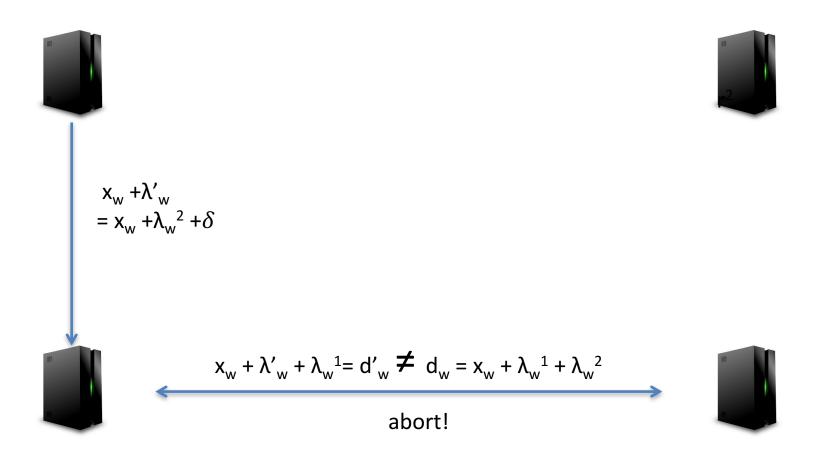
- The 2nd pair does the same with their own shared randomness.
- Each pair will execute its own computation, using the preprocessing provided by the other pair.
- Communication: $2|C| + 6\kappa$.

$$m_w^2 + \lambda_w^1 \stackrel{?}{=} m_w^1 + \lambda_w^2$$
$$x_w + \lambda_w^2 + \lambda_w^1 \stackrel{?}{=} x_w + \lambda_w^1 + \lambda_w^2$$
However, the comparison requires care.

Consider this insecure protocol:

- The pairs evaluate the full circuit, each pair recovering all doubly-masked values, {d_w}.
- 2. P1 and P3 compare their values, abort on an inconsistency.
- 3. P2 and P4 compare their values, abort on an inconsistency.





$$d'_w - \delta = d_w$$

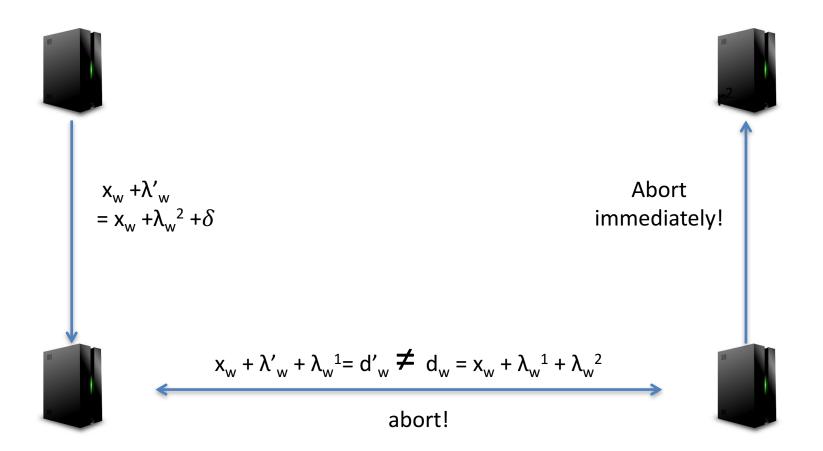
continue!

After adding δ on one wire, but correcting all $\{d_w\}$ values so that the cross check passes:

for any wire y dependent on w, the value $d'_y - d_y$ leaks information about the input.

$$x_{w} + \lambda'_{w} + \lambda_{w}^{2} = d'_{w} \neq d_{w} = x_{w} + \lambda_{w}^{1} + \lambda_{w}^{2}$$

$$abort!$$



Cross Checking (better communication)

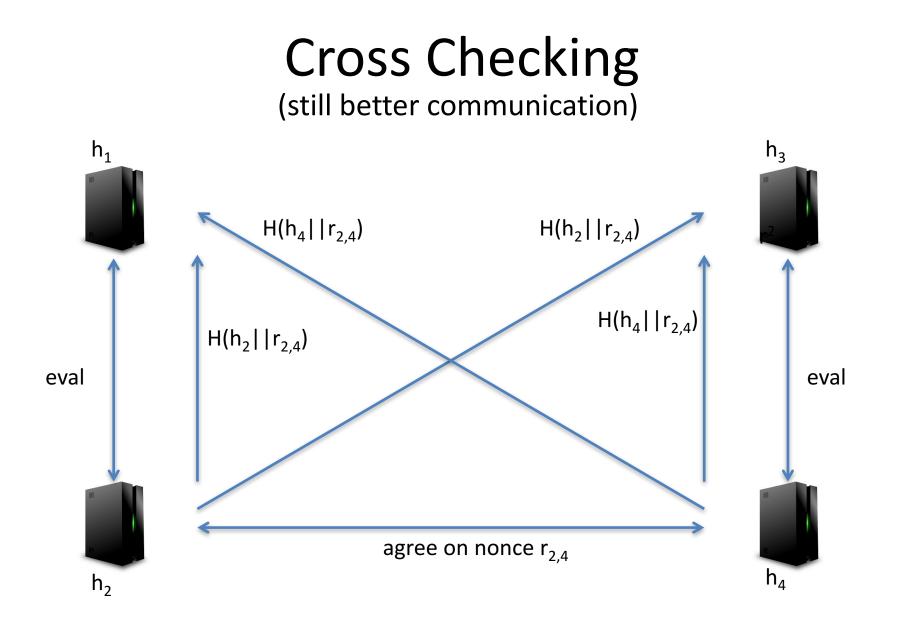
Cross checking is secure if we go wire by wire.

We don't want to send a field element for every wire during cross checking.

Instead:

- 1. Each pair computes all of their $\{d_w\}$ values.
- 2. Each computes $H(d_1, .., d_c)$.
- 3. Evaluate a (generic) 4pc: $F(h_1, h_2, h_3, h_4) = 1 \leftrightarrow h_1 = h_3 \wedge h_2 = h_4$

Communication cost: $poly(\kappa)$ (depends on 4pc protocol)



(still better communication)



Cross Checking (still better communication)

 $veto_1 = 1$

If $H(h_2||r_{2,4}) \neq H(h_4||r_{2,4})$ If $H(h_2||r_{2,4}) \neq H(h_4||r_{2,4})$ $veto_3 = 1$

h₃

h₄

Securely compute 3 OR gates: $veto_1 \lor veto_2 \lor veto_3 \lor veto_4$ Recall: gate by gate cross checking is secure!

h₂

$$\begin{array}{ll} f \ H(h_1||r_{1,3}) \neq H(h_3||r_{1,3}) & \quad \text{If } H(h_1||r_{1,3}) \neq H(h_3||r_{1,3}) \\ \text{veto}_2 = 1 & \quad \text{veto}_4 = 1 \end{array}$$

Cross Checking (still better communication)

 $\begin{array}{ll} \text{If } \mathsf{H}(\mathsf{h}_{2} \mid \mid \mathsf{r}_{2,4}) \neq \mathsf{H}(\mathsf{h}_{4} \mid \mid \mathsf{r}_{2,4}) & \quad \text{If } \mathsf{H}(\mathsf{h}_{2} \mid \mid \mathsf{r}_{2,4}) \neq \mathsf{H}(\mathsf{h}_{4} \mid \mid \mathsf{r}_{2,4}) \\ \text{veto}_{1} = 1 & \quad \text{veto}_{3} = 1 \end{array}$

Securely compute 3 OR gates: $veto_1 \lor veto_2 \lor veto_3 \lor veto_4$ Recall: gate by gate cross checking is secure!

 h_2

If
$$H(h_1||r_{1,3}) \neq H(h_3||r_{1,3})$$

veto₂ = 1
 $table = 1$
 $table = 1$

Communication cost: about 10κ

Robustness

- Robust Preprocessing
 - Using committing encryption, broadcast, and signatures, can agree on who was inconsistent.
 - One exception: say P1 sent nothing to P3.
 - P3 can't prove that P1 was malicious, rather than him.
 - However, he can ignore P1, and use the preprocessing of P2, knowing it is honestly generated.
- Robust input sharing

straightforward, using broadcast and signatures.

Robustness

- Robust cross checking
 - Go back to checking gate by gate.
 - Say P₃ reports an inconsistency. 3 possible reasons:
 - The masked eval. performed by P_1 and P_2 is invalid.
 - The masked eval. performed by P_3 and P_4 is invalid.
 - Both evaluations were executed correctly, but either P₁ modified his reported masked evaluation, or P₃ complained for no valid reason.

THANKS!