
Secure	Computation	with	Low	
Communication	from	Cross-checking	

Dov	Gordon	(George	Mason	U.)
Samuel	Ranellucci (Unbound	Tech)
Xiao	Wang	(MIT	&	Boston	U.)

Secure	Computation

• 4	parties	each	hold	private	data.	
• They	wish	to	compute	C(x1,	x2,	x3,	x4)
• Nobody	should	learn	anything	more	than	the	
output.		

• We	assume	honest	majority:	at	most	1	
malicious	actor.		
– The	adversary	can	behave	arbitrarily.		

Why	4PC?

• Existing	protocols	support	n	parties,	with	n-1	
maliciously	colluding.

• Weaker	assumptions	lead	to	better	performance!	
• As	MPC	has	become	more	practical,	a	common	
use-case	that	appears	is	one	of	out-sourced	
computation:	
– many	parties	secret	share	their	data	among	a	few	
computing	servers.	

– This	has	most	often	been	done	with	3	servers,	
because	the	honest	majority	assumption	leads	to	
more	efficient	protocols.		

Results

• We	provide	a	4-party	protocol	requiring	just	
6|C|log|F|	+O(𝜅)	total	communication.

• We	can	compute	over	arbitrary	fields,	
including	GF2 (Boolean	circuits).	

• We	can	even	compute	over	arbitrary	rings,	
such	as	GF2^32.

• We	demonstrate	a	robust	variant	of	our	
protocol,	guaranteeing	output.	

Related	Work
• Best	2	party	protocols	require	about	2300	bits	of	

communication	per	gate	[1,2].
• Furukawa	et	al.	demonstrate	a	protocol	in	the	3-party	

setting	that	requires	21	bits	of	communication	per	gate	[3].		

[1]	Wang	et	al.	Authenticated	garbling	and	efficient	maliciously	secure	2-party	computation,	2017
[2]	Nielsen	et	al.		A	new	approach	to	practical	active-secure	two-party	computation,	2012.
[3]	Furukawa	et	al.	High-throughput	secure	three-party	computation	for	malicious	adversaries	and	an	honest	
majority,	2017.

Masked	Evaluations

ma =	xa +	λa

mb =	xb +	λb

mc =	xc +	λc

2	parties	hold:		
masked	input	wire	values,	ma and	mb,	and	
secret	shares	of		λa,	λb,	λc and λaλb.
They	compute	masked	output	mc.

ma⋅mb – ma·⟨λb⟩ −	mb·⟨λa⟩ +	⟨λaλb⟩ +	⟨λc⟩ =
[(xa+λa)(xb+λb)	– ma·⟨λb⟩−mb·⟨λa⟩]+⟨λaλb⟩ +	⟨λc⟩ =
[⟨xaxb - λaλb⟩] +	⟨λc⟩+⟨λaλb⟩ =	⟨xaxb +λc⟩

The	parties	open	their	shares	to	obtain	mc.
Communication	cost:	4|C|

Masked	Evaluations

ma =	xa +	λa

mb =	xb +	λb

mc =	xc +	λc

2	parties	hold:		
masked	input	wire	values,	ma and	mb,	and	
secret	shares	of		λa,	λb,	λc and λaλb.
They	compute	masked	output	mc.

ma⋅mb – ma·⟨λb⟩ −	mb·⟨λa⟩ +	⟨λaλb⟩ +	⟨λc⟩ =
[(xa+λa)(xb+λb)	– ma·⟨λb⟩−mb·⟨λa⟩]+⟨λaλb⟩ +	⟨λc⟩ =
[⟨xaxb - λaλb⟩] +	⟨λc⟩+⟨λaλb⟩ =	⟨xaxb +λc⟩

The	parties	open	their	shares	to	obtain	mc.

Beaver	triples,	but	we	
open	shares	of	a	blinded
product.

Masked	Evaluations

ma =	xa +	λa

mb =	xb +	λb

mc =	xc +	λc

2	parties	hold:		
masked	input	wire	values,	ma and	mb,	and	
secret	shares	of		λa,	λb,	λc and λaλb.
They	compute	masked	output	mc.

ma⋅mb – ma·⟨λb⟩ −	mb·⟨λa⟩ +	⟨λaλb⟩ +	⟨λc⟩ =
[(xa+λa)(xb+λb)	– ma·⟨λb⟩−mb·⟨λa⟩]+⟨λaλb⟩ +	⟨λc⟩ =
[⟨xaxb - λaλb⟩] +	⟨λc⟩+⟨λaλb⟩ =	⟨xaxb +λc⟩

The	parties	open	their	shares	to	obtain	mc.
Adversary	can	add	
arbitrary	value	to	mc.

Preprocessing

• One	pair	of	parties	creates	2	identical	copies	
of	the	preprocessing	for	the	other	pair	to	use.

r1

{⟨λa1⟩,	⟨λb1⟩,	⟨λc1⟩
⟨λa1λb1⟩}

{⟨λa1⟩,	⟨λb1⟩,	⟨λc1⟩
⟨λa1λb1⟩}

Preprocessing

• One	pair	of	parties	creates	2	identical	copies	
of	the	preprocessing	for	the	other	pair	to	use.

• They	both	send	the	shares	to	the	other	pair,	
who	abort	if	the	copies	aren’t	identical.	

r1

{⟨λa1⟩,	⟨λb1⟩,	⟨λc1⟩
⟨λa1λb1⟩}

{⟨λa1⟩,	⟨λb1⟩,	⟨λc1⟩
⟨λa1λb1⟩}

Preprocessing

• The	2nd pair	does	the	same	with	their	own	shared	
randomness.		

• Each	pair	will	execute	its	own	computation,	using	the	
preprocessing	provided	by	the	other	pair.	

• Communication:	2|C|	+	6κ.

r2

{⟨λa2⟩,	⟨λb2⟩,	⟨λc2⟩
⟨λa2λb2⟩}

{⟨λa2⟩,	⟨λb2⟩,	⟨λc2⟩
⟨λa2λb2⟩}

Cross	Checking

mw
2 +	λw1 =		mw

1 +	λw2

xw +	λw2 +	λw1 =		xw +	λw1 +	λw2

However,	the	comparison	requires	care.

Consider	this	insecure protocol:
1. The	pairs	evaluate	the	full	circuit,	each	pair	recovering	all	

doubly-masked	values,	{dw}.
2. P1	and	P3	compare	their	values,	abort	on	an	inconsistency.
3. P2	and	P4	compare	their	values,	abort	on	an	inconsistency.

?

?

Cross	Checking

r2

xw +λ’w
=	xw +λw2 +𝛿

Cross	Checking

r2

xw +λ’w
=	xw +λw2 +𝛿

xw +	λ’w +	λw1=	d’w ≠	dw =	xw +	λw1 +	λw2
abort!

Cross	Checking

r2

xw +	λ’w +	λw2=	d’w ≠	dw =	xw +	λw1 +	λw2
abort!

d’w - 𝛿=	dw
continue!

After	adding	𝛿 on	one	wire,	but	correcting	all	
{dw}	values	so	that	the	cross	check	passes:

for	any	wire	y	dependent	on	w,	the	value	d’y – dy
leaks	information	about	the	input.

Cross	Checking

r2

xw +λ’w
=	xw +λw2 +𝛿

xw +	λ’w +	λw1=	d’w ≠	dw =	xw +	λw1 +	λw2
abort!

Abort
immediately!

Cross	Checking

Cross	checking	is	secure if	we	go	wire	by	wire.	

We	don’t	want	to	send	a	field	element	for	every	wire	
during	cross	checking.	
Instead:	
1. Each	pair	computes	all	of	their	{dw}	values.
2. Each	computes	H(d1,	.	,	dC).	
3. Evaluate	a	(generic)	4pc:	

F(h1,	h2,	h3,	h4)	=	1	⬌h1 =	h3∧h2 =	h4
Communication	cost:	poly(𝜅)	(depends	on	4pc	protocol)

(better	communication)

Cross	Checking

r2

(still	better	communication)

h4

h3h1

h2

H(h2||r2,4)

eval eval

agree	on	nonce	r2,4

H(h2||r2,4)

H(h4||r2,4)

H(h4||r2,4)

Cross	Checking

r2

(still	better	communication)

h4

h3h1

h2

H(h1||r1,3)

eval eval

agree	on	nonce	r1,3

H(h1||r1,3)

H(h3||r1,3)

H(h3||r1,3)

Cross	Checking

r2

(still	better	communication)

h4

h3h1

h2

If	H(h1||r1,3)	≠	H(h3||r1,3)
veto2 =	1

If	H(h1||r1,3)	≠	H(h3||r1,3)
veto4 =	1

If	H(h2||r2,4)	≠	H(h4||r2,4)
veto1 =	1

If	H(h2||r2,4)	≠	H(h4||r2,4)
veto3 =	1

Securely	compute	3	OR	gates:
veto1∨veto2∨veto3∨veto4
Recall:	gate	by	gate	cross	checking	is	secure!	

Cross	Checking

r2

(still	better	communication)

h4

h3h1

h2

If	H(h1||r1,3)	≠	H(h3||r1,3)
veto2 =	1

If	H(h1||r1,3)	≠	H(h3||r1,3)
veto4 =	1

If	H(h2||r2,4)	≠	H(h4||r2,4)
veto1 =	1

If	H(h2||r2,4)	≠	H(h4||r2,4)
veto3 =	1

Securely	compute	3	OR	gates:
veto1∨veto2∨veto3∨veto4
Recall:	gate	by	gate	cross	checking	is	secure!	

Communication	cost:	about	10𝜅

Robustness

• Robust	Preprocessing
– Using	committing	encryption,	broadcast,	and	
signatures,	can	agree	on	who	was	inconsistent.

– One	exception:	say	P1	sent	nothing	to	P3.	
• P3	can’t	prove	that	P1	was	malicious,	rather	than	him.	
• However,	he	can	ignore	P1,	and	use	the	preprocessing	
of	P2,	knowing	it	is	honestly	generated.	

• Robust	input	sharing
– straightforward,	using	broadcast	and	signatures.		

Robustness

• Robust	cross	checking
– Go	back	to	checking	gate	by	gate.
– Say	P3 reports	an	inconsistency.		3	possible	
reasons:	
• The	masked	eval.	performed	by	P1 and	P2 is	invalid.	
• The	masked	eval.	performed	by	P3 and	P4 is	invalid.
• Both	evaluations	were	executed	correctly,	but	either	P1
modified	his	reported	masked	evaluation,	or	P3
complained	for	no	valid	reason.	

THANKS!

