
FREE	IF:
HOW	TO	OMIT	INACTIVE	BRANCHES	
AND	IMPLEMENT	S-UNIVERSAL	
GARBLED	CIRCUIT	ALMOST	FOR	FREE

V L AD 	 KO L E SN I KOV
G EORG I A 	 T E CH

HIGH-LEVEL	OVERVIEW	OF	THE	RESULT

Sel

c

f1(x,y) f3(x,y)f2(x,y) f30(x,y)

…

In	GC,	if	garbler	knows	the	evaluated	clause,	don’t	need	to	generate/send	inactive	clauses

DATA	PRIVACY	AND	SECURE	COMPUTATION

Protocol 𝜋
a b

F(a,b) F(a,b)

Secure Function Evaluation (SFE)

SFE How-to:
1) Given F, generate Boolean circuit C computing F
2) Securely evaluate C gate-by-gate

GARBLED	CIRCUIT

1

000

§Compute any function securely
§Represent the function as a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

GARBLED	CIRCUIT

5

Overview:
1. Alice	prepares	“garbled”	version	C’ of	C
2. Sends	“encrypted”	form	x’ of	her	input	x
3. Allows	bob	to	obtain	“encrypted”	form	y’ of	his	input	y
4. Bob	can	compute	from	C’,x’,y’ the	“encryption”	z’ of	z=C(x,y)

Think	“Evaluation	under	encryption”
5. Bob	sends	z’ to	Alice	and	she	decrypts	and	reveals	to	him	z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

BOOLEAN	CIRCUITS

• Circuit representation is inefficient
• Random access (lots of work)

• ORAM
• Duplicate if/switch clauses

• Universal circuit
• [KKW17] – circuit embeddings
• today

CIRCUITS	WITH	BRANCHES

• F(c,x,y) = fc(x,y), where f1(x,y) = y/2<x<y
f2(x,y) = xy > 9000
f3(x,y) = Ham(x,y) < 30
…
f30(x,y) = x2+y2<9000

CIRCUITS	WITH	BRANCHES

Sel

c

f1(x,y) f3(x,y)f2(x,y) f30(x,y)

…

• F(c,x,y) = fc(y), where f1(x,y) = y/2<x<y
f2(x,y) = xy > 9000
f3(x,y) = Ham(x,y) < 30

…
f30(x,y) = x2+y2<9000

EVALUATION	VIA	CIRCUIT	EMBEDDING

Sel

c

…
GC Generator will program the
gates according to its input
choice c. Any of C1…C30 is
programmable in D0

C1 C2

C3

C30

D0
In GC gate function is hidden and
can be set by Generator to anything.

EMBED	HOW?

• Previous work:

• Theorem: finding optimal embedding is NP-hard
• Naïve evaluation of all C1…Ck works
• Universal circuit works

• Too expensive for smaller switches (≈
5	𝑛 log 𝑛, where 𝑛	is max circuit size)

• Hand-designs [PSS09]
• Doable only for trivial circuit combinations

KEY:	VIEW	GC	AS	A	STRING	PARSED	AS	A	
COLLECTION	OF	GARBLED	TABLES

Sel

c

…

C1 C2

C3

C30

D0

If	Garbler	knows	which	target	branch	𝐶* is	to	be	evaluated:
- Garble	and	send	𝐺𝐶 = 𝐺𝐶* and	input	labels	𝑋
- To	Evaluator,	𝐺𝐶* ≈ 𝐺𝐶. (if	pad	the	size)

Evaluator	(on	message		𝐺𝐶):
For	i:=1	to	30
parse	𝐺𝐶 as	𝐺𝐶.	
set	𝐹. = (𝑇., 𝐺𝐶)
compute	𝑌. 	= 	𝐸𝑣𝑎𝑙	(𝐹., 𝑋)

Postprocess	𝑌′* = 𝑆𝑒𝑙𝑅𝑒𝑐𝑜𝑑𝑒	(𝑡, 𝑌.)

Constr.	1:

SO	WHAT	DID	WE	GET

Only	works	if	Gen	knows	the	evaluated	branch

Now Before

Work	(Gen)	 ≈ 𝑂 max
.

𝐶. ≈ 𝑂 ∑ 𝐶.
Work	(Eval)	 ≈ 𝑂 ∑ 𝐶. ≈ 𝑂 ∑ 𝐶.
Comm ≈ 𝑂 max

.
𝐶. ≈ 𝑂 ∑ 𝐶.

PERFORMANCE

Only	works	if	Gen	knows	the	evaluated	branch

Num	branches Performance	improvement

5 ≈ 5×
20 ≈ 20×
100 ≈ 100×

Need	one	extra	round	of	comm	to	run	𝑌′* = 𝑆𝑒𝑙𝑅𝑒𝑐𝑜𝑑𝑒	(𝑡, 𝑌.).		Its	cost	is	
independent	of	circuit	size	and	is	concretely	small

MOTIVATION	FOR	PRIVATE	FUNCTION	SFE	(PF-SFE)

Private	DB:
-Policy	allows	for	query	types	𝑇J, . . , 𝑇LM,	Client	wants	to	hide	which	
query	type	is	being	run

CPU	emulation:
- CPU	evaluates	instructions	one	by	one,	implemented	via	SFE.	We	want	
to	hide	the	program	being	run.		[WGMK17]	implemented	MIPS	CPU	
using	36	different	instructions	(and	each	step	generates	and	sends	36	
GCs,	only	one	of	which	is	used).		

PRESENTATION	IN	THE	BHR	FRAMEWORK

We	slightly	depart	from	the	standard	GC	syntax	and	semantics.
Goal:	reuse	all	accumulated	(and	future)	body	of	work	in	BHR	
terminology.

Result:	we	extend	Bellare-Hoang-Rogaway framework	to	accommodate	
the	change.		

Main	difference:	Separation	of	circuit	topology	T	from	cryptographic	
material	E.		

PRESENTATION	IN	THE	BHR	FRAMEWORK

1. Let F be a BHR GC. We syntactically separate topology T from
cryptographic material E (garbled tables). We write F = (T;E), thus enabling
consideration of a GC (T’;E).
2. Adjust the definitions to support evaluation under a “wrong” function
encoding, and further, to require that Eval will not detect whether it operates
with a “right” or “wrong" encoding.

2a. A BHR circuit garbling scheme is Topology-decoupling circuit
garbling scheme if above holds.
3. Some additional low-level adjustments (e.g. handling bitwise output
decoding).

REUSING	BHR	MACHINERY

Main point:
We restrict BHR. The only generalization is the F = (T;E) parsing, which was
not exercised before. => all BHR theorems apply.

Our	notion	is	a	special	case	of	BHR	garbling	scheme,	and	thus	we	can	keep	
the	BHR	function	definitions	and	correctness	and	security	requirements	as	
is.	This	is	because	we	restricted	the	syntax	of	the	BHR	notions.	Our	only	
generalization	(allowing	to	evaluate	under	different	topology),	is	not	
exercised	in	BHR	definitions.	Therefore,	all	BHR	notation	and	definitions	
retain	their	meaning	and	are	reused.

REUSING	BHR	MACHINERY

Theorems (informal):

Theorem 1: Construction 1 is a secure SFE protocol in the semi-honest
model, if the employed garbling scheme is topology-decoupling circuit
garbling.

Theorem 2: Half-gates scheme is topology-decoupling circuit garbling.
Theorem 3: Free-XOR scheme is topology-decoupling circuit garbling.

To use any BHR scheme with our approach:
1. Prove (amend if necessary) that scheme is topology –decoupling.

