
Non-Interactive	Secure	Computation	
from	One-Way	Functions

Saikrishna	Badrinarayanan		 Abhishek Jain
(UCLA)	 (JHU)	

Rafail Ostrovsky Ivan	Visconti
(UCLA)	 (University	of	Salerno)	



Secure	Two	Party	Computation

P1 P2

Input	x Input	y

Function	f

Goal:	Both	parties	wish	to	run	a	protocol	at	
the	end	of	which	they	both	learn	the	output	
of	the	function	on	their	joint	inputs.



Secure	Two	Party	Computation

P1 P2

Input	x Input	y

Function	f

Security:	Informally,	adversary	should	not	
learn	anything	about	y	other	than	f(x,	y)	!



UC-Secure	Computation	[Canetti	01]

P1 P2
Input	x1 Input	x2

P3
Input	z3

Input	y1

Input	y3

Input	z2

P4

Input	w4

Input	w2

Many	sessions	are	executed	in	parallel

Function	f

Function	g Function	p



UC-Secure	Computation	[Canetti	01]

P1 P2
Input	x1 Input	x2

P3
Input	z3

Input	y1

Input	y3

Input	z2

P4

Input	w4

Input	w2

Informally,	adversary	should	not	learn	
anything	other	than	function	outputs!

Function	f

Function	g Function	p



Continued..

• Numerous	applications
• Unfortunately,	impossible	to	construct	without	a	setup	

assumption!



Setup	Assumptions
• Common	Reference	String	[Canetti-Lindell-

Ostrovsky-Sahai 02]

• Physical	Assumptions
– Hardware	Tokens	[Katz	07]

– Physically	Uncloneable Functions	(PUFs)

Focus	of	
this	paper



Hardware	Tokens	[Katz07]

• A	piece	of	hardware	that	can	evaluate	any	function	
(embedded	inside	it)	on	input	queries.

• Physical	manifestation	of	ideal	obfuscation?
• Difference:	Need	the	hardware	object	in	hand	to	be	able	to	

query	and	recover	output.

Input	x Output	f(x)Function	f



Types	of	Hardware	Tokens

• Stateless:	
– Honest	token	does	not	have	any	memory	across	
invocations.

• Stateful:	
– Token	can	maintain	memory.
– Harder	to	design	such	tokens.
– Easier	to	design	protocols	using	them.

Focus	of	this	talk

Challenge:	Adversarial	tokens	can	be	stateful!



Motivating	Scenario

Input:	DNA	Data	x

Encrypt	(x)

Encrypt	f(x)

Decrypt	and	learn	
f(x)	=	list	of	relativesGoal:	Alice	wants	to	publish	an	encryption	of	her	

private	DNA	data	to	an	organization	that	can	compute	
the	set	of	relatives	of	a	given	DNA	sample.

Security	requirement:	Alice’s	private	data	
and	company’s	data	should	be	hidden.

Reusable	
message

Input:	DNA	matching	
algorithm



Non-interactive	secure	computation	(NISC)
[IKOPS’11]

• Formalizes	the	scenario	in	the	previous	slide.

Input:	x
Encrypt	(x)

Input:	y

Encrypt	f(x,	y)

Decrypt	and	learn	
f(x,	y)

Security	requirement:	as	in	standard	two	
party	computation

Reusable	message	
for	input	x



Prior	work

• [IKOPS11]	:	NISC	in	OT	Hybrid	model.
• [AMPR14,MR17]	: NISC	in	CRS	model	from	OT	+	one	
way	functions.

• [CJS14]:	UC-secure	NISC	in	Global	Random	Oracle	
model	from	OT	+	one	way	functions.

• [BGISW17]:	NISC	in	plain	model	from	sub-exponentially	
secure	OT	+	one	way	functions.



Question

• Can	we	achieve	NISC	from	the	minimal	
assumption	of	One-Way	Functions?

• Further,	can	we	achieve	UC	security?



Our	Result

• UC-secure	non-interactive	secure	computation	
assuming	one-way	functions	using	a	single	
stateless	hardware	token.	

• Optimal	in	terms	of	assumptions	and		
number	of	tokens.

• Achieves	UC	security	unlike	all	prior	
work	except	CJS14.



Our	Results:	Corollary

• Two	message	UC-secure	two	party	
computation	where	both	parties	receive	
output,	assuming	one	way	functions using	a	
single	stateless	hardware	token.



Techniques



Token	direction:	Prior	works

Receiver:	input	xSender:	input	y

.

.

.

Issues	in	our	setting:
1. Need	a	fresh	token	for	each	new	interaction	with	a	

fixed	reusable	receiver	message.
2. All	prior	works	require	atleast two	rounds	of	

interaction	after	sender	token.

In	all	prior	works,	token	sent	by	the	sender.



Solution:	Token	from	Receiver

Receiver:	input	xSender:	input	y

message

Reusable
x



Main	Challenge:	Resetting	Attacks

1. How	to	prevent	sender	from	resetting	the	token	and	trying	
different	inputs	y?

2. Need	the	receiver	to	authenticate	the	sender’s	input	to	the	
token	before	it	processed	by	the	token.

3. But	that	will	take	at	least	2	rounds!

Solution:
1. We	allow	the	sender	to	reset	the	token!
2. However,	token	is	carefully	designed	to	perform	only	

“encrypted”	computation	that	is	later	decrypted	by	the	
receiver.

3. Hence,	even	on	trying	different	inputs,	sender	doesn’t	
learn	anything	meaningful	from	the	token.



Other	Challenges

• Selective	abort	attacks.
• Subliminal	channel	information	through	
token.

• Achieving	straight	line	simulation	to	get	UC	
security.

• Please	refer	to	the	paper	for	more	
details!
https://eprint.iacr.org/2018/1020




