Simple and Efficient Two-Server ORAM

Dov Gordon (George Mason U.)
Jonathan Katz (U. of Maryland)
Xiao Wang (MIT & Boston U.)
What is ORAM

• Outsourced memory storage, allowing oblivious memory access (read and write).
 – Any 2 sequences of operations are indistinguishable from the server(s) perspectives.

• Parameters of interest (per memory access):
 – communication complexity
 – rounds of interaction
 – storage requirements (server and client)
 – computational requirements.
Results

• Parameters of interest (per memory access):
 – communication complexity $O(B \log N)$
 – rounds of interaction
 – storage requirements
 – computational requirements.

$O(B \log N)$ total, worst-case communication.
• Small constant: 10-20, depending on parameters. Compare to 160 in [LO].
• [A+] achieve $O(\log N / \log \log N)$ when $B = \Omega(\lambda \log^2 N)$

[LO] Lu-Ostrovsky. Distributed oblivious RAM for secure two-party computation.
[A+] Abraham et al. Asymptotically tight bounds for composing ORAM with PIR.
Results

- Parameters of interest (per memory access):
 - communication complexity $O(B \log N)$
 - rounds of interaction 2 rounds
 - storage requirements
 - computational requirements.

2 rounds!
- Can reduce to 1 if we moderately increase the client storage.
- Big open question in single server setting, while maintaining $O(B \log N)$ worst-case communication.
Results

• Parameters of interest (per memory access):
 – communication complexity \(O(B \log N) \)
 – rounds of interaction 2 rounds
 – storage requirements 4N
 – computational requirements.

Servers store 4N encrypted blocks.
[LO] estimate server storage of \(O(N\log^9 N) \) blocks.

• Most single server ORAMs require the server to store \(O(N\log^2 N) \) blocks.

[LO] Lu-Ostrovsky. Distributed oblivious RAM for secure two-party computation.
Results

- Parameters of interest (per memory access):
 - communication complexity \(O(B \log N) \)
 - rounds of interaction 2 rounds
 - storage requirements 4N
 - computational requirements. \(O(N) \)

Our servers have to do \(O(N) \) symmetric key operations for each query, which is a drawback to our construction.

- Computation time is not likely to be the bottleneck on reasonable data sizes.
- [DS] Demonstrate this empirically in another \(O(N) \) protocol.

Private Information Retrieval

1. Client wants to read data block B_i in data array $B_1, ..., B_N$

$(q_0, q_1) \leftarrow \text{PIR.C}(1^\kappa, B, |D|, i)$
Private Information Retrieval

1. Client wants to read data block B_i in data array $B_1, ..., B_N$

 $\langle q_0, q_1 \rangle \leftarrow \text{PIR.C}(1^k, B, |D|, i)$

2. Servers reply with r_0 and r_1, such that $r_0 \oplus r_1 = B_i$

 $(r_b) \leftarrow \text{PIR.S}(B_1, ..., B_N, q_b)$
Private Information Retrieval

1. Client wants to read data block B_i in data array $B_1, ..., B_N$
 $(q_0, q_1) \leftarrow \text{PIR.C}(1^k, B, |D|, i)$

2. Servers reply with r_0 and r_1, such that $r_0 \oplus r_1 = B_i$
 $(r_b) \leftarrow \text{PIR.S}(B_1, ..., B_N, q_b)$

$\lambda_0[1] = 0$
$\lambda_0[2] = 1$
$\lambda_0[3] = 1$
$\lambda_0[4] = 0$

$\lambda_1[1] = 0$
$\lambda_1[2] = 1$
$\lambda_1[3] = 0$
$\lambda_1[4] = 0$
Private Information Retrieval

1. Client wants to read data block B_i in data array B_1, \ldots, B_N
 $(q_0, q_1) \leftarrow \text{PIR.C}(1^\kappa, B, |D|, i)$
2. Servers reply with r_0 and r_1, such that $r_0 \oplus r_1 = B_i$
 $(r_b) \leftarrow \text{PIR.S}(B_1, \ldots, B_N, q_b)$

Security requirement: Servers learn nothing about i.
Structural Assumption ([BGI]): $r_b = \bigoplus_j \lambda_b[j] \cdot B_j$, where
$\lambda_0[j] \oplus \lambda_1[j] = 1 \iff j = i$

[BGI] Boyle, Gilboa, Ishai. Function secret sharing: Improvements and extensions
1. Client wants to read data path to leaf node i in data tree T.
 \[(q_0, q_1) \leftarrow \text{PIR.C}(1^\kappa, \mathcal{B}, |T|, i) \]
2. Servers reply with $r_0[1] \ldots r_0[L]$ and $r_1[1] \ldots r_1[L]$, one random value for each layer, such that $r_0[j] \oplus r_1[j] = T_j \leftrightarrow j$ lies on the path to leaf i.
 \[(r_b[1] \ldots r_b[L]) \leftarrow \text{PPR.S}(T, q_b) \]

Security requirement: Servers learn nothing about i.

Duplicate B_1, \ldots, B_N
Private Path Retrieval
(Naïve Solution)

Each layer of the tree can be treated as its own, independent instance of a PIR scheme.

To query the path to leaf node B_i, the client makes L independent PIR queries, one for each layer of the tree.

The cost of [BGI] for a single query: $(2 |B|) + O(\kappa \log n)$

The cost is $(\log n)$ (PIR),

We will show how to achieve $(2 |B| \log n) + O(\kappa \log^2 n)$

[BGI] Boyle, Gilboa, Ishai. Function secret sharing: Improvements and extensions
Private Path Retrieval

To query the path to leaf node B_i, the client makes a single PIR query for index i, over leaf nodes $B_1 \ldots B_n$.
Private Path Retrieval

To query the path to leaf node B_i, the client makes a **single** PIR query for index i, over leaf nodes $B_1 \ldots B_n$.

In PIR scheme, server responses are:

$$r_b = \bigoplus_j \lambda_b[j] \cdot B_j$$

<table>
<thead>
<tr>
<th>$\lambda_0[1]$</th>
<th>0</th>
<th>$\lambda_0[2]=1$</th>
<th>1</th>
<th>$\lambda_0[3]=0$</th>
<th>0</th>
<th>$\lambda_0[4]=0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_1[1]$</td>
<td>0</td>
<td>$\lambda_1[2]=1$</td>
<td>1</td>
<td>$\lambda_1[3]=0$</td>
<td>0</td>
<td>$\lambda_1[4]=0$</td>
</tr>
</tbody>
</table>
Private Path Retrieval

To query the path to leaf node B_i, the client makes a **single** PIR query for index i, over leaf nodes $B_1... B_n$. In the PPR scheme, server sends $r_b[j]$ for layer j, where

$$r_b[j] = \bigoplus_k \lambda_b[k] \cdot T[k], \quad \forall k: |k| = j.$$
ORAM
Oblivious RAM
(structure)

• Data is stored in a tree of depth \(L = \log N \).
• Each node in the tree contains a “bucket” of size \(Z \).
• Root node is special: stash stored at client.
• Records are of the form \(\text{Enc}(\text{flag}, i, F_k(i), B_i) \)
 – Flag indicates real or dummy.
 – \(F_k(\cdot) \) is a PRF held by the client.
Oblivious RAM
(structure)

- Data is stored in a tree of depth $L = \log N$.
- Each node in the tree contains a “bucket” of size Z.
- Root node is special: stash stored at client.
- Records are of the form $\text{Enc}(\text{flag}, i, F_k(i), B_i)$
 - Flag indicates real or dummy.
 - $F_k(\cdot)$ is a PRF held by the client.

Invariants:
1. B_i is always along the path to leaf node $F_k(i)$.
2. The most up-to-date copy of B_i is closest to the root.
Oblivious RAM
(read/write)

To read B_i:

• PPR.C(F_k(i)), and return the real record closest to the root.
 – We do NOT assign B_i a new leaf node!

To write B_i:

• Remove records of form (1, i, F_k(i), *) from stash.
• Write record (1, i, F_k(i), B_i) to stash.

Invariants:

1. B_i is always along the path to leaf node F_k(i).
2. The most up-to-date copy of B_i is closest to the root.
Oblivious RAM
(static leaf assignments)

We do **NOT** assign B_i a new leaf node!

In most prior ORAM constructions, the path to B_i is requested in the clear:

- To ensure security, every time B_i is accessed, it must lie on a new, random path.
- Requires a **dynamic** mapping between records and their leaf nodes. Typically stored recursively, requiring log N overhead.
- In contrast, we can use a **static**, pseudo-random mapping.

Invariants:

1. B_i is always along the path to leaf node $F_k(i)$.
2. The most up-to-date copy of B_i is closest to the root.
Oblivious RAM
(eviction)

As in prior work, our root node (stash) fills up. Every A operations, we choose a path, and push items down the path as far as they can go.

– Path is chosen deterministically, as in [G+], using reverse lexicographic ordering.

– Both invariants are maintained:
 • We remove duplicate real records when not the closest to root.
 • We push remaining records down, subject to the first invariant.

Invariants:

1. B_i is always along the path to leaf node $F_k(i)$.
2. The most up-to-date copy of B_i is closest to the root.
Oblivious RAM
(eviction)

- Path is chosen deterministically, as in [G+], using reverse lex. ordering.
- Easy analysis: each node at level j is on an eviction path exactly every 2^j evictions. Expected load on each node is $\frac{1}{2}$.

Security / Stash

- The security follows immediately from the security of the PPR scheme.
- We can bound the stash size as done in [R+]. Communication is minimized when $3Z/A$ is minimized.

<table>
<thead>
<tr>
<th></th>
<th>$Z = 3$</th>
<th>$Z = 4$</th>
<th>$Z = 5$</th>
<th>$Z = 6$</th>
<th>$Z = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 1$</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>$A = 2$</td>
<td>-</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>$A = 3$</td>
<td>-</td>
<td>32</td>
<td>24</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>$A = 4$</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>$A = 5$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 1: Bounds on the number of blocks in the client’s stash. These bounds hold except with probability 2^{-40} (per operation).

Further Features

- Public read/write is cheaper than oblivious operations. Simply request the whole path in the clear.
- Initialization is for free: we can share $F_k()$ with the servers, as long as the accesses don’t depend on F_k.
- Only write operations fill the root node, so eviction can be less frequent if you can reveal read vs. write.
THANKS!