
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

84

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part I

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15484
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part I

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0874-4 ISBN 978-981-96-0875-1 (eBook)
https://doi.org/10.1007/978-981-96-0875-1

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0875-1

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACRDistinguished Lecture,
delivered by Paul Kocher, as well as an invited talk by Dakshita Khurana. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Distinguished PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo

(Japan) and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent Researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part I

Advanced Primitives

Signature-Based Witness Encryption with Compact Ciphertext 3
Gennaro Avitabile, Nico Döttling, Bernardo Magri, Christos Sakkas,
and Stella Wohnig

Bounded Collusion-Resistant Registered Functional Encryption
for Circuits . 32

Yijian Zhang, Jie Chen, Debiao He, and Yuqing Zhang

Registered FE Beyond Predicates: (Attribute-Based) Linear Functions
and More . 65

Pratish Datta, Tapas Pal, and Shota Yamada

Updatable Privacy-Preserving Blueprints . 105
Bernardo David, Felix Engelmann, Tore Frederiksen,
Markulf Kohlweiss, Elena Pagnin, and Mikhail Volkhov

Homomorphic Encryption

Faster BGV Bootstrapping for Power-of-Two Cyclotomics Through
Homomorphic NTT . 143

Shihe Ma, Tairong Huang, Anyu Wang, and Xiaoyun Wang

Revisiting Key Decomposition Techniques for FHE: Simpler, Faster
and More Generic . 176

M. G. Belorgey, S. Carpov, N. Gama, S. Guasch, and D. Jetchev

Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV
Bootstrapping . 208

Zeyu Liu and Yunhao Wang

NTRU-Based Bootstrapping for MK-FHEs Without Using Overstretched
Parameters . 241

Binwu Xiang, Jiang Zhang, Kaixing Wang, Yi Deng, and Dengguo Feng

Homomorphic Sign Evaluation with a RNS Representation of Integers 271
Philippe Chartier, Michel Koskas, Mohammed Lemou,
and Florian Méhats

xviii Contents – Part I

Low Communication Threshold Fully Homomorphic Encryption 297
Alain Passelègue and Damien Stehlé

Bootstrapping Small Integers With CKKS . 330
Youngjin Bae, Jaehyung Kim, Damien Stehlé, and Elias Suvanto

Digital Signatures

Practical Blind Signatures in Pairing-Free Groups . 363
Michael Klooß, Michael Reichle, and Benedikt Wagner

Faster Signatures from MPC-in-the-Head . 396
Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi,
and Antoine Joux

One-More Unforgeability for Multi - and Threshold Signatures 429
Sela Navot and Stefano Tessaro

One Tree to Rule Them All: Optimizing GGM Trees and OWFs
for Post-Quantum Signatures . 463

Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini,
Sebastian Ramacher, Christian Rechberger, Lawrence Roy,
and Peter Scholl

Author Index . 495

Advanced Primitives

Signature-Based Witness Encryption
with Compact Ciphertext

Gennaro Avitabile1 , Nico Döttling2 , Bernardo Magri3,4 ,
Christos Sakkas3 , and Stella Wohnig2,5(B)

1 IMDEA Software Institute, Madrid, Spain
gennaro.avitabile@imdea.org

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
doettling@cispa.de, stella.wohnig.crypto@gmail.com

3 University of Manchester, Manchester, UK
{bernardo.magri,christos.sakkas}@manchester.ac.uk

4 Primev, Manchester, UK
5 Saarland University, Saarbrücken, Germany

Abstract. Signature-based witness encryption (SWE) is a recently pro-
posed notion that allows to encrypt a message with respect to a tag T and
a set of signature verification keys. The resulting ciphertext can only be
decrypted by a party who holds at least k different valid signatures w.r.t.
T and k different verification keys out of the n keys specified at encryp-
tion time. Natural applications of this primitive involve distributed set-
tings (e.g., blockchains), where multiple parties sign predictable mes-
sages, such as polling or randomness beacons. However, known SWE
schemes without trusted setup have ciphertexts that scale linearly in the
number of verification keys. This quickly becomes a major bottleneck as
the system gets more distributed and the number of parties increases.

Towards showing the feasibility of SWE with ciphertext size sub-linear
in the number of keys, we give a construction based on indistinguisha-
bility obfuscation (iO) for Turing machines and strongly puncturable
signatures (SPS).

1 Introduction

Threshold cryptography focuses on distributing the security of a cryptosys-
tem among multiple parties, ensuring that a minimum number of these par-
ties, known as the threshold, is required to operate the system. In recent
years, threshold schemes have garnered significant attention from the commu-
nity [5,7,9,16,24,27], primarily due to their applications in decentralized systems
like blockchains. A recent example is the notion of threshold signature-based wit-
ness encryption (SWE) that was first introduced by Döttling et al. [9]. It allows
to encrypt a plaintext with respect to a tag and a set of verification keys for a
signature scheme. Once a sufficient number of signatures of this tag under these
verification keys are provided, these signatures can be used to efficiently decrypt
the SWE ciphertext. The main application of SWE described in [9] is to build a
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 3–31, 2025.
https://doi.org/10.1007/978-981-96-0875-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_1&domain=pdf
http://orcid.org/0009-0004-6975-0851
http://orcid.org/0000-0002-5914-7635
http://orcid.org/0000-0003-4537-7023
http://orcid.org/0000-0002-3955-5594
http://orcid.org/0009-0006-4609-6599
https://doi.org/10.1007/978-981-96-0875-1_1

4 G. Avitabile et al.

time-release encryption scheme by combining SWE with a proof-of-stake (PoS)
blockchain: The idea is to use the verification keys of the blockchain committee
members that sign every new block created in the chain as the SWE verification
keys, and the block number of a block in the chain as the tag; then, once a block
with that number is built the signatures of the committee members on that
number can be used to decrypt the SWE ciphertext. Madathil et al. [27] con-
struct an almost equivalent primitive called verifiable witness encryption based
on threshold signatures (VweTS), and provide another compelling use-case for
such a scheme: They facilitate blockchain transactions conditioned on “real life”
events that happen outside of the blockchain system, by requiring a thresh-
old number of oracles’ signatures (third-party services that certify real-world
events like weather data, outcomes of bets etc.) to unlock data to complete the
transaction.

Conceptually, the notion of SWE can be seen as an interesting special case
of witness encryption [15] which allows one to encrypt a message under any NP
statement such that a witness for that statement allows to decrypt the ciphertext.

Another seemingly related notion is the one of threshold encryption schemes
[8,12]. They are encryption schemes where decryption takes place with the help
of a threshold of decryption servers. A significant difference w.r.t. SWE is that in
threshold encryption a setup phase is assumed. During this setup, a public key
for the scheme and correlated secret keys for the decryption servers are computed
via a protocol. Furthermore, it is necessary to communicate with these servers
in order to decrypt the message. A simple approach to threshold encryption
[8] is to create the correlated secret keys as t-of-n linear secret shares ai of an
ElGamal secret key a, the corresponding public key is ga. When a client gets
an encryption (gr,mgar) of m under ga, they send gr to each of the decryption
servers and receive back decryption shares gr(a−1

i). The client then recombines
the shares to get gr(a−1) given that at least t servers participate.

A big advantage of SWE over the above approach is that SWE does not
require to setup correlated keys or communication between decryptors and sign-
ers. In fact, the servers may even be unaware that encryptions are being made
w.r.t. signatures they may release in the future. This requirement is in line
with the original application of SWE in the blockchain setting, as no additional
load should be put on the blockchain committee other than simply producing a
signature.

A common feature of the applications of SWE is the potentially large set
of signers, as it is desirable that the members of blockchain committees or the
number of trusted oracles can increase as much as possible to tackle centraliza-
tion. Therefore, a critical drawback of the SWE/VweTS constructions in [9,27]
is that the size of their ciphertexts grows linearly with the number of verifica-
tion keys used in the signing procedure. A natural question to ask is whether
it is possible to construct an SWE scheme that does not suffer from this limi-
tation, and neither relies on a (long) trusted setup nor on strong ideal models
(such as the programmable generic group model [33]). In this work, we answer
this question in the affirmative by introducing the notion of compact signature-

Signature-Based Witness Encryption with Compact Ciphertext 5

based witness encryption (cSWE). In a cSWE scheme, the size of the ciphertext
only grows poly-logarithmically in the number of verification keys. We provide a
formal definition of cSWE and present a construction based on Turing-machine
indistinguishability obfuscation and strongly puncturable signatures. In the next
section, we describe our contributions in more detail.

1.1 Our Contributions

Compact SWE. In this work, we construct the first cSWE scheme that allows
one to encrypt a message m with respect to a reference tag T and a set of
verification keys V = (vk1, . . . , vkn) such that the ciphertext size only scales poly-
logarithmically in n. Importantly, our construction does not rely on a trusted
setup. The construction is based on indistinguishability obfuscation for Turing
Machines [17,25] and it achieves ciphertext size in the order of O(poly(λ · log n)).
We prove security of our construction w.r.t. non-adaptive adversaries where the
reference tag T and the indices of the corrupt verification keys are known ahead
of time. Our result establishes principal feasibility of this notion in the non-
adaptive setting and may pave the way towards a more efficient implementation
of cSWE in the future.

1.2 Technical Overview

We will now provide an outline of our constructions and techniques.

Compact SWE. We start by reviewing the high-level idea of the SWE con-
struction given in [9]. To encrypt a message m w.r.t. a reference tag T and a
set of verification keys V = (vk1, . . . , vkn), the message m is first encrypted
under a symmetric encryption scheme using a freshly sampled key K. The key
K is then secret-shared using a t-of-n linear secret sharing scheme, in the case
of [9] this is the Shamir scheme [32]1 where the shares s1, . . . , sn of K satisfy∑t

j=1 sij
· Lij

= K for Lagrange coefficients Lij
. The ciphertext is structured

in a way such that for each individual share, two elements are added to the
ciphertext to ensure that the share si can be retrieved given a valid signature of
T under the verification key vki.

In a bit more detail, the SWE construction of [9] uses BLS [2] as the underly-
ing signature scheme. In BLS, a valid signature σ on T under vk must satisfy the
equation e(σ, g2) = e(H(T), vk), where e is a bilinear map from groups G1, G2

into GT , and g2 is a generator of G2. Then, for each share si, they create an
encryption of that share by choosing some randomness ri ∈ Zp, and outputting
(gri

2 , e(H(T), vk)ri · si). Note that, having a signature σi of message T under key
vki, a decryptor can compute e(H(T), vk)ri = e(σi, g

ri
2), and thus easily get si.

However, without such a signature the value e(H(T), vk)ri is indistinguishable
from random under the bilinear Diffie-Hellman assumption.
1 This means si = K +

∑t
j=1 rj(ξi)

j mod p for a prime p, random rj and distinct
evaluation points ξi ∈ Zp.

6 G. Avitabile et al.

We will base our techniques on the above idea of encrypting each share si,
such that it can be individually retrieved if a signature of T under vki is given.
However, we will need to depart from the BLS-based approach [9] to achieve a
ciphertext size independent of n.

The (non-compact) SWE construction of [9] achieves adaptive fully malicious
security ; the adversary can corrupt any unqualified set of signers and even choose
their verification keys in a fully malicious manner.

Compact SWE and Adaptive Security. There seems, however, to be a substantial
barrier for achieving adaptive security for compact SWE, and in fact it seems that
a heuristic such as e.g. programmable random oracle model or the programmable
generic group model may be necessary in this setting (see the discussion on [16]
in the related works section below). From an information theoretic perspective,
e.g. for a threshold of k = n/2, a ciphertext of size o(n) is too small to even
encode the set of corrupted parties, which requires Ω(n) bits. Hence, it seems
hard to make a ciphertext behave differently for honest and corrupted keys as
the ciphertext cannot “know” which keys are corrupted and which are not.

Hence, somewhat expectedly guessing-based transformations from non-
adaptive to adaptive security fail in this setting. If we guess the set of corrupted
parties ahead of time, we need to compensate for a security loss of order 2Ω(n).
But this means that the underlying primitives need to at least provide Ω(n)
bits of security, which in turn results in a ciphertext of size Ω(n), which is not
compact by our definition.

A similar situation occurs in the setting of adaptively secure succinct non-
interactive arguments of knowledge (SNARGs): The object in question, in this
case a certificate π, is so small that it cannot encode a sufficient amount of
information about an adaptively chosen false statement x, hence the guessing-
based non-adaptive to adaptive security transformation incurs a security loss
incompatible with the succinctness requirement.

Gentry and Wichs [18] provided a formal barrier result which shows that
there is no construction of adaptive SNARGs with a black-box security reduction
from any falsifiable assumption [28]. While we do not provide a formal argument
as this is beyond the scope of our work, the basic idea of this argument (likely)
carries over to the setting of compact SWE. In fact, the Gentry-Wichs result [18]
holds even for designated verifier SNARGs, and any succinct witness encryption
scheme immediately gives rise to a designated verifier SNARG for the same
language.

Somewhat surprisingly, a recent work by Wu and Waters [34] showed that
this security loss can be “pushed into a CRS”. That is by making the CRS scale
with the logarithm of the security loss, the size of the certificate π can be kept
small. Since we are interested in compact SWE constructions without setup, this
is not an option in our setting.

Signature-Based Witness Encryption with Compact Ciphertext 7

Non-adaptive Security. Hence, we will focus on a notion of non-adaptive security
in this work. Specifically, in this notion we require that the adversary chooses the
reference message T and the indices of the corrupted keys ahead of time. Only
after that does the adversary get t − 1 honestly generated pairs of verification
and signing keys (at the corrupted positions) and n − t − 1 honestly chosen
verification keys for the honest parties. We then give the adversary access to a
signing oracle which will sign for all honest keys and all messages except the
challenge tag T . Under these constraints we ask for indistinguishability security
for the signature witness encryption, i.e. the adversary should not be able to
distinguish SWE encryptions with respect to vk1, . . . , vkn and T of two distinct
messages m0 �= m1.

Constructions with Structured Common Reference String. Before we discuss our
construction in the plain model, we will briefly discuss how we can construct
compact SWE if we are allowed to shift the burden into a long and structured
CRS. The basic idea is similar to the construction of zero-knowledge SNARGs
of Sahai and Waters [31]: We can delegate the task of generating and decrypting
compact SWE ciphertexts to a pair of (large) obfuscated circuits given in the
CRS. The first circuit takes verification keys vk1, . . . , vkn, the tag T , the message
m as well as additional random coins and produces a ciphertext c and a succinct
commitment h binding to the vki and c. The second obfuscated circuit takes as
input vk1, . . . , vkn and c, an opening of h to these values, as well as signatures
σi for some I ⊂ [n] of size at least k. The circuit checks if each σi is a valid
signature of T under vki and if so returns the message m. We can establish
security of this construction using a standard puncturing argument and relying
on standard tools such as puncturable PRFs and SSB hashing. This construction
uses a long and structured CRS (consisting of obfuscated programs) in a critical
way.

A First Attempt. In order to achieve a compact SWE construction without
trusted setup, we have to depart from the above blueprint. Our basic idea is
to adapt the construction of witness encryption from iO [14] to the setting of
compact SWE, but this raises several challenges. Hence, consider the follow-
ing attempt to construct a cSWE. The ciphertext consists of a symmetric key
encryption of the message m under key K and an obfuscated circuit C. The cir-
cuit C pseudorandomly generates the secret shares under say the Shamir scheme
of key K on demand; on input an index i and a valid signature σ for T under vki,
the circuit produces the i-th share of the key K. The randomness for generating
shares is taken from a puncturable PRF.

There are two evident issues with this approach. (1) A minor issue is that
we cannot hardwire all the verification keys vki into the circuit C, as this would
require the circuit size growing linearly with n, contradicting our compactness
requirement. (2) Computing individual Shamir shares inside the circuit C implies
evaluating a degree t − 1 polynomial (that takes time Θ(n)), requiring a circuit
of size Ω(n), again contradicting our compactness requirement.

8 G. Avitabile et al.

There will be, however a more subtle third issue which surfaces when trying
to prove security of this construction: If we were to rely on standard puncturing
techniques to erase the shares of honest parties in the challenge ciphertext, we
would need to puncture the above circuit n − k times. But this would again
require an obfuscated circuit of size Ω(n)!

Our Basic Approach. Starting from the above sketch, we will address issues (1)
and (2) above as follows. To address the issue (1), we will rely on somewhere
statistically binding (SSB) hashing [22]. An SSB hash function is a keyed com-
mitment scheme, which allows to succinctly produce a committing hash h of a
database of size n. The key generation algorithm takes an index i ∈ [n], and
outputs a hashing key guaranteeing that the hash is computationally binding
on all indices and statistically binding on i. The binding index is hidden by the
commitment scheme. We use the SSB scheme to commit to all verification keys
(i, vki)i∈[n] and force the decryptor to input (i, vki, σ) and a valid opening τ for
the SSB hash. This ensures, that except with negligible probability, on input
(i, vk, σ, τ), vk actually is the i-th key and σ is a signature for vki, so outputting
si is justified. To address issue (2), we will rely on iO for Turing machines [17,25]
(TM). The size of an obfuscated Turing machine depends polynomially on its
description size, but only poly-logarithmically on its runtime.

Towards Proving Security. The intuition for the security proof is that we want to
replace the obfuscated TM M with an equivalent TM M ′ which has no informa-
tion about the shares or the shared key. The basic idea of the hybrid argument
is as follows.

Since we are in a setting of non-adaptive security, the security reduction
knows which signers will be corrupted even before their corresponding verifica-
tion keys are generated. We will use a standard SSB argument to go through
a sequence of hybrids, where in hybrid i we make the SSB hash statistically
binding to the i-th uncorrupted verification key, call this key vki. We would
like to argue that since the adversary never obtains a signature σi of T under
vki, he cannot make the obfuscated TM output a share si of the message mi.
However, standard EUF-CMA security seems far too weak to guarantee this:
In order to use indistinguishability security of iO, we need to move into a sit-
uation where it is impossible (rather than computationally hard) to make the
TM accept some signature σi for T under vki and output the corresponding
share si. To address this issue, we use strongly puncturable signatures (Sect. 3).
These allow a special key generation PKeyGen(T), which outputs a punctured
key pair (vk, sk) at message T . With overwhelming probability, no valid signature
exists for message T , while the verification key remains indistinguishable from
a standard non-punctured key. This type of signatures was introduced under
the name of all-but-one signatures in [20] where various instantiations based on
different number-theoretic assumptions (e.g., RSA, pairing-based assumptions,
LWE) were proposed. Equipped with this tool, the reduction can now replace all
honest keys with punctured keys, punctured at T . Hence, by additionally rely-
ing on SSB hashing as explained above we can rely on iO security to gradually

Signature-Based Witness Encryption with Compact Ciphertext 9

replace the TM M by a TM M ′ which never outputs shares si for indices i of
honest parties.

The Final Scheme. However, this transformation does not quite suffice to estab-
lish security. Recall that the shares si of the message m are generated pseu-
dorandomly, that is an adversary with access to a plain description of the TM
M ′ described above could still easily recover the PRF key K̃ used to generate
the shares and just generate them by himself. Note also that iO security by
itself does not guarantee that K̃ is hidden. The standard tool commonly used to
argue security in this setting is puncturing: If we were to puncture the key K̃ in
a suitable manner, then we might be able to ensure that this punctured key does
not leak information about the shares of honest parties. While there are some
minor issues with this idea, such as the fact that the shares si are correlated and
a contrived puncturing argument would be necessary, the big issue here is we
would need to puncture at n − k = Ω(n) points, which once again contradicts
our compactness requirement! The reason why we need to remove all honest
shares simultaneously is that otherwise Shamir secret sharing offers no security!
Removing one share at a time is useless, as this share could easily be recomputed
from the other shares. Hence, puncturing will not help us, and we need to depart
from the puncturing approach. But where could we store shares of the message
m instead? Observe that our ciphertext already includes an SSB commitment
to all the verification keys vki, and we will precisely leverage this feature in our
solution: We will augment the verification keys vki by some additional auxiliary
information which contains a sufficiently large slot to encode a Shamir share. In
the real world this auxiliary information is just a random string. But in the secu-
rity reduction we can embed an encryption of the corresponding share si into
vki. We then use iO security to switch to a machine M ′ that reads its shares from
the input, limiting its internal computation to checking the validity of the input
SSB opening and the signature. Upon success, it decrypts and outputs the share
in vki; otherwise, it aborts. This switch between computational models is feasible
because we bind the SSB hash to each index i∗ ∈ [n]. This ensures that on input
(i∗, vk, σ, τ), if the obfuscated machine produces an output, then vk = vki∗ must
hold. Consequently, the correct share is obtained by decrypting vk, and the out-
put remains consistent whether the shares are computed internally or decrypted
from the public keys.

While this outlines our main technical ideas, there are other subtle technical
challenges which our construction in Sect. 4 needs to address.

On the Use of iO. Our construction uses iO for Turing Machines in a crucial
way. Specifically, we use iO to delegate the generation of shares to the decrypter,
the ciphertexts in our scheme constitute compressed versions of a pseudorandom
share vector. This type of compression is currently beyond the scope of other
compact delegation techniques (e.g. Laconic Function Evaluation [30]), and in
fact general purpose delegation schemes with even a weak amount of output
compression imply iO [26].

10 G. Avitabile et al.

1.3 Related Work

Signature-Based Witness Encryption. The only known construction of signature-
based witness encryption [9] grows linearly in the number of verification keys
input to the encryption procedure. The same is true for verifiable witness encryp-
tion based on threshold signatures [27]. While the ciphertext’s size of these con-
structions is asymptotically worse than ours, their main focus is on concrete
efficiency. However, both [9,27] rely on specific assumptions in idealized models,
i.e. the bilinear Diffie-Hellman assumption and the random oracle model, whereas
we focus on a compact-ciphertext construction in the plain model. Furthermore,
we point out that these previous works achieve fully adaptive security notions, as
opposed to our non-adaptive security as discussed in Sect. 1.2. There exist also
concretely efficient schemes (in the ROM) with constant-size ciphertexts [13],
but they can handle only the special case of t = n.

Threshold Encryption. Threshold encryption schemes [8,12] are encryption
schemes where decryption can take part only with the cooperation of a threshold
number of decryption servers. These constructions achieve constant ciphertext
size. However, they require a correlated set up of decryptors’ secret keys. Further-
more, decryption requires communicating with t servers to get partial decryp-
tions that are then aggregated to get the plaintext. Recently, [7] a scheme with
efficient batch-decryption for threshold encryption was proposed. This solution
still requires a correlated set up of secret keys, but a server can output partial
decryptions for many ciphertexts at once, reducing the communication overhead.
In their scheme, the keys are generated by a trusted dealer.

In [16] the notion of silent setup for threshold encryption is introduced. This
means, that the involved decryption servers are now able to choose their key
pairs independently and encryptors can deterministically aggregate the public
keys of their chosen decryption servers into a single succinct encryption key,
which can be used to encrypt a message. Dropping correlated key creation is
achieved by pushing the complexity into a highly structured CRS and “hints”,
which can be seen as extensions of the public keys of each party. Both the CRS
and the hints are linear in the size of maximum decryption servers. For each
decryption procedure direct communication with the decryption servers is still
required. Their scheme achieves adaptive security in the programmable generic
group model.

Witness Encryption and Committe-Based Witness Encryption. Witness Encryp-
tion [15] is defined for an NP language L with poly-time relation R. Encryption
of a message m is w.r.t a statement x and decryption is possible with a witness
w s.t. (x,w) ∈ R. Security intuitively says that a ciphertext does not reveal
any information about m if x �∈ L. Security is extended in [19] in the form of
extractable witness encryption, which also offers security guarantees even when
x ∈ L. In [21] extractable witness encryption on the blockchain (eWEB) is
introduced. In this scheme, a message encrypted with respect to a statement
x is secret-shared among several committee members and labeled with x. The

Signature-Based Witness Encryption with Compact Ciphertext 11

decryptor must interact with a threshold number of committee members, proving
they have a valid witness to collect the shares and decrypt the message. However,
the storage complexity for each committee member increases with the number
of shares they hold. This limitation is addressed by [10], which proposes creating
a joint public key for encryption while giving each committee member a share
of a correlated secret key. Another work [11] further improves this by hiding the
statement w.r.t. encryption is done. Their ciphertext size is independent of the
number of keys. However, they require a correlated key setup where the com-
mittee has a single public key and the secret key is shared among the members.
In another work, [4], blockchain witness encryption is independently introduced,
serving a similar function to [21], but it requires deploying a smart contract on
the blockchain for each encryption. The critical difference between SWE and
these works is that in SWE committee keys are independently sampled, and
decryption relies solely on the availability of signatures from the committee.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by x ← A(in; r) the
output of the algorithm A on input in where A is randomized with r ← {0, 1}∗

as its randomness. We omit this randomness when it is obvious or not explicitly
required. By AO we denote, that we run A with oracle access to O, that is it
may query the oracle on inputs of its choice and only receives the corresponding
outputs. We denote by x ←$ S an output x being chosen uniformly at random
from a set S. We denote the set {1, . . . , n} by [n] and x[i] denotes the i-th bit of
x. PPT denotes probabilistic polynomial time. Also, poly(x), negl(x) respectively
denote any polynomial or negligible function in parameter x.

In the following, we define the cryptographic building blocks necessary for
our protocol.

Symmetric Encryption Scheme. A symmetric encryption scheme SKE is a tuple
of three efficient algorithms SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) such that

– K ←$ SKE.KeyGen(1λ): The probabilistic key generation algorithm on input
the security parameter 1λ outputs a key K ∈ {0, 1}∗.

– ct ←$ SKE.Enc(K,m): The probabilistic encryption algorithm takes as input
the key K and a message m ∈ {0, 1}∗ and outputs a ciphertext ct ∈ {0, 1}∗.

– m ← SKE.Dec(K, ct): The deterministic decryption algorithm takes as input
the key K and a ciphertext ct and outputs a message m.

We require a symmetric encryption scheme to fulfill correctness, IND-CPA
security and pseudorandom ciphertexts as defined below:

Definition 1 (Correctness). We say that a symmetric encryption scheme is
correct, if for all λ ∈ N and all m ∈ {0, 1}∗, we have

Pr
[
SKE.Dec(K,SKE.Enc(K,m)) = m | K ←$ SKE.KeyGen(1λ)

]
= 1.

12 G. Avitabile et al.

Definition 2 (Security). We say that a symmetric encryption scheme is IND-
CPA secure, if no adversary A has more than negligible advantage in the follow-
ing experiment ExpIND-CPA(A, 1λ):

– The experiment samples b ←$ {0, 1} and K ←$ SKE.KeyGen(1λ).
– A gets access to an encryption oracle O(K, ·), which on input m outputs

Enc(K,m), which it may use during the whole experiment.
– A chooses two challenge messages m0,m1 with |m0| = |m1|.
– The challenger sends ct = SKE.Enc(K,mb) to A.
– A outputs a bit b′.

The advantage of A is defined as

AdvA
IND-CPA :=

∣
∣
∣
∣Pr

[
ExpIND-CPA(A, 1λ)

]
− 1

2

∣
∣
∣
∣ .

Pseudo-Random Functions. A keyed family of functions PRFK : {0, 1}μ →
{0, 1}ν for keys K ∈ {0, 1}∗ and some μ, ν = poly(|K|) is a pseudo-random
function (PRF) family, if

– given K,m the function PRFK(m) is efficiently computable and
– for every PPT distinguisher D, it holds DPRFK(.) ≈c DF (.), where

K ←$ {0, 1}λ and F is chosen randomly from all functions from {0, 1}μ(λ)

to {0, 1}ν(λ).

We also write PRF(K,m) for PRFK(m).

Puncturable Pseudo-Random Functions. A puncturable family of PRFs PPRF
mapping strings of length μ(·) to ν(·) is given by a triple of algorithms
(KeyGen,Puncture,Eval), satisfying the following conditions:

Definition 3 (Pseudorandomness). For every PPT distinguisher D, it holds
DEval(K,.) ≈c DF (.), where K ←$ KeyGen and F is chosen randomly from all
functions from {0, 1}μ(λ) to {0, 1}ν(λ).

Definition 4 (Functionality Preserved Under Puncturing). For every
PPT adversary A such that A

(
1λ

)
outputs a set S ⊆ {0, 1}μ(λ), then for all

x ∈ {0, 1}μ(λ) where x /∈ S, we have that:

Pr
[
Eval(K,x) = Eval(KS , x) : K ← KeyGen(1λ),KS ← Puncture(K,S)

]
= 1

Definition 5 (Pseudorandom at Punctured Points). For every PPT
adversary (A1, A2) such that A1(1λ) outputs a set S ⊆ {0, 1}μ(λ) and state σ,
consider an experiment where K ← KeyGen(1λ) and KS ← Puncture(K,S).
Then, the following is negligible in λ:

∣
∣Pr [A2 (σ,KS , S,Eval(K,S)) = 1] − Pr

[
A2

(
σ,KS , S, Uν(λ)·|S|

)
= 1

]∣
∣

Here, S = {x1, . . . , xk} is the enumeration of the elements of S in lexico-
graphic order, U� denotes the uniform distribution over 	 bits and Eval(K,S)
denotes the concatenation of (Eval(K,x1), . . . ,Eval(K,xk)).

Signature-Based Witness Encryption with Compact Ciphertext 13

In abuse of notation, we write PPRF(K,m) to denote PPRF.Eval(K,m). The
construction given in [3] fulfills the following efficiency guarantees:

– A key punctured at a single point is of size μ · poly(λ).
– Evaluation of PPRF at a key punctured at most a single point runs in O(μ ·
poly(λ)).

Somewhere Statistically Binding Hashing. Somewhere statistically binding
(SSB) hashing was initially introduced by [22] and several constructions of SSB
hashing followed. [29]

Definition 6. A somewhere statistically binding (SSB) scheme SSB is composed
of the following algorithms:

– hk ← KeyGen(1λ, n, i) takes as input the security parameter λ, n ∈ N and an
index i ∈ [n]. It outputs a hashing key hk.

– h ← Hash(hk,D) takes as input a hashing key hk and a database D = (xi)i∈[n].
It outputs a digest h.

– τ ← Open(hk,D, i) takes as input a hashing key hk, a database D = (xi)i∈[n]

and an index i. It outputs a proof τ .
– b ← Vrfy(hk, h, i, x, τ) takes as input a hashing key hk, a digest h, an index

i ∈ [n], a value x and a proof τ . It outputs a bit b.

We require that an SSB hashing scheme fulfills the following efficiency
guarantees:

1. The length 	hk of the hashing key hk and the length 	τ of proof τ are both of
size O(poly(λ) · log n);

2. The Vrfy algorithm can be represented by a Turing machine of description
size and runtime O(poly(λ) · log n).

3. The hash h is of size 	h(λ) = O(poly(λ)).

Additionally, an SSB hashing scheme fulfills the following properties.

Definition 7 (Correctness). We say that an SSB hashing scheme is correct
if for all λ ∈ N, all n = poly(λ), all databases D of size n, all indices j, i ∈ [n]
we have that

Pr

⎡

⎣1 ← Vrfy(hk, h, i, x, τ) :
hk ← KeyGen(1λ, n, j)

h ← Hash(hk,D)
τ ← Open(hk,D, i)

⎤

⎦ = 1.

14 G. Avitabile et al.

Definition 8 (Somewhere Statistically Binding). We say that an SSB
hashing scheme is somewhere statistically binding if for all λ ∈ N, all n =
poly(λ), all databases D of size n, all indices i ∈ [n], all database values x and
all proofs τ we have that

Pr

⎡

⎣Di = x :
hk ← KeyGen(1λ, n, i)

h ← Hash(hk,D)
1 ← Vrfy(hk, h, i, x, τ)

⎤

⎦ = 1.

Definition 9 (Index Hiding). We say that an SSB hashing scheme is index
hiding if for all λ ∈ N and all PPT adversaries A = (A1,A2) we have that

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣b ← A2(hk, aux) :
(n, i0, i1, aux) ← A1(1λ)

b ←$ {0, 1}
hk ← KeyGen(1λ, n, ib)

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣
= negl(λ).

Secret Sharing. We will introduce linear secret sharings and the well-known
Shamir secret sharing [32].

Definition 10 (Linear Secret Sharing). Let t ≤ n. A (t, n)-linear secret
sharing (LSS) LSS scheme is composed of the following algorithms:

– (s1, . . . , sn) ← Share(m) takes as input a message m. It outputs n shares
(s1, . . . , sn).

– m ← Reconstruct(si1 , . . . , sit
) takes as input t shares (si1 , . . . , sit

). It outputs
a message m.

We expect an (t, n)-LSS to be correct and t-private.

Definition 11 (Correctness). An LSS scheme LSS is said to be correct if for
all messages m and all subsets {i1, . . . , it} ⊆ [n]

Pr [m = Reconstruct(si1 , . . . , sit
) : (s1, . . . , sn) ← Share(m)] = 1.

Definition 12 (Privacy). We say that a (t, n)-LSS scheme LSS is t-private if
for all subsets {i1, . . . , iz} ⊂ [n] where z < t, all pairs of messages (m0,m1) and
all PPT adversaries A we have that

∣
∣
∣
∣
Pr [1 ← A(s0,i1 , . . . , s0,iz

) : (s0,1, . . . , s0,n) ← Share(m0)]−
Pr [1 ← A(s1,i1 , . . . , s1,iz

) : (s1,1, . . . , s1,n) ← Share(m1)]

∣
∣
∣
∣ = negl(λ).

One such LSS scheme is the popular Shamir secret sharing [32]. Let Zp be
the finite field of prime order p and fix distinct elements ξ = ξ1, . . . , ξn ∈ Zp.

Shamir.Share(m) picks a random degree t − 1 polynomial f with f(0) = m
and sets si = f(ξi) for i ∈ [n] as its shares.

To reconstruct, we use Lagrange Interpolation: For a set of supporting
points χ1, . . . , χk from a finite field Zp, where p ∈ N is prime, the Lagrange basis
polynomials are given by L1, . . . , Lk, where

Li(x) =
∏

j∈[k];j �=i

x − χj

χi − χj
.

Signature-Based Witness Encryption with Compact Ciphertext 15

These are chosen such that Li(χj) = 1 iff i = j and 0 otherwise. Con-
sequently, given a set of k data points (ξi, yi), we can output a polynomial
fL(x) = Σi∈[k]Li(x) · yi that will run through these points and which has degree
at most k-1. This process is called Lagrange Interpolation. Hence, if k > t−1, we
will get back the original polynomial used in sharing and can evaluate f(0) = m.

Indistinguishability Obfuscation for Turing Machines. Indistinguishability
Obfuscation (iO) [14] is a primitive to encode functionalities (usually repre-
sented as circuits) in a way such that the encodings of functionally equivalent
circuits are indistinguishable.

In this work we need indistinguishability obfuscation for Turing Machines as
constructed in [17,25]. This is defined in [17] as follows:

Definition 13 (Succinct Indistinguishability Obfuscator). A succinct
indistinguishability obfuscator for a machine class {Mλ}λ∈N

consists of a uni-
form PPT machine iOM as follows:

– obM ← iOM
(
1λ, 1n, t,M

)
: iOM takes as input the security parameter 1λ, a

description M of the Turing machine to obfuscate, and an input length n and
time bound t for M .

– iOM outputs a machine obM , which is an obfuscation of M corresponding to
input length n and time bound t. obM takes as input x ∈ {0, 1}n and t′ ≤ t.

The scheme should satisfy the following three requirements:

– Correctness: For all security parameters λ ∈ N, for all M ∈ Mλ, for all
inputs x ∈ {0, 1}n, time bounds t and t′ ≤ t, let y be the output of M on t′

steps, then we have that:

Pr
[
obM (x, t′) = y : obM ← iOM

(
1λ, 1n, t,M

)]
= 1

– Security: For any (not necessarily uniform) PPT distinguisher D, there
exists a negligible function α such that the following holds: For all security
parameters λ ∈ N, time bounds t, and pairs of machines M0,M1 ∈ Mλ of
the same size such that for all running times t′ ≤ t and for all inputs x,
M0(x) = M1(x) when M0 and M1 are executed for time t′, we have that for
obMb ← iOM

(
1λ, 1n, t,Mb

)
for b ∈ {0, 1}:

|Pr [D(obM0) = 1] − Pr [D(obM1) = 1]| ≤ α(λ)

– Efficiency and Succinctness: We require that the running time of iOM
and the length of its output, namely the obfuscated machine obM , is in
O(poly(|M |, log t, n, λ)). We also require that the obfuscated machine on input
x and t′ runs in time O(poly (|M |, t′, n, log t, λ)).

16 G. Avitabile et al.

3 Strongly Puncturable Signatures

Strongly puncturable signature (SPS) schemes are signature schemes with addi-
tional features and were introduced in [20] under the name of all-but-one sig-
natures. In particular, such a scheme comes with a punctured key generation
algorithm that, on input a message m∗, generates a pair of punctured keys
(vk∗, sk∗) at message m∗. A SPS scheme has to satisfy: (1) puncturability, mean-
ing that given a punctured key (vk∗, sk∗) w.r.t. a message m∗ there does not
exist, except with negligible probability, a valid signature for m∗ w.r.t. the key
vk∗; (2) punctured-key indistinguishability ensuring that punctured verification
keys are indistinguishable from regular verification keys, as long as no signature
on m∗ is requested. Additionally, an SPS has to satisfy the usual correctness and
EUF-CMA unforgeability properties of digital signatures.

We call this type of signature strongly puncturable to remark the difference
with other notions of puncturable signatures [1,6,23] where a verifying signature
for the punctured message m∗ might exist, but it is infeasible to compute (given
e.g. a punctured signing key).

In [20], various instantiations that can be based on different number-theoretic
assumptions (e.g., RSA, pairing-based assumptions, LWE) were proposed. In
the full version of this paper, we propose an alternative instantiation based on
simulation-sound non-interactive zero-knowledge (NIZK) proofs and pseudoran-
dom generators (PRGs).

Definition 14 (Strongly Puncturable Signature Scheme).
A strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy)

consists of the following algorithms:

– (vk, sk) ←$ KeyGen(1λ): On input the security parameter 1λ, the key genera-
tion algorithm KeyGen returns a verification key vk and a signing key sk.

– (vk, sk) ←$ PKeyGen(1λ,m∗): On input the security parameter 1λ, a message
m∗ to puncture at, the punctured key generation algorithm PKeyGen returns
a verification key vk and a signing key sk, that allows to sign any message
except m∗.

– σ ←$ Sign(sk,m): On input a signing key sk and a message m, it outputs a
signature σ.

– d ←− Vrfy(vk, σ,m), d ∈ {0, 1}: On input a verification key vk, a signature σ
and a message m, the verification algorithm Vrfy returns a bit d ∈ {0, 1}.

A strongly puncturable signature scheme has the following properties:

Definition 15 (Correctness). For all λ and all messages m in the underlying
message space

Pr
[
Vrfy(vk,Sign(sk,m),m) = 1

∣
∣ (vk, sk) ←$ KeyGen(1λ)

]
= 1.

Definition 16 (Puncturability). For all λ and for all messages m∗, we
require that the following probability is negligible in λ:

Pr
[
∃σ s.t. Vrfy(vk∗, σ,m∗) = 1

∣
∣ (vk∗, sk∗) ←$ PKeyGen(1λ,m∗)

]

Signature-Based Witness Encryption with Compact Ciphertext 17

Definition 17 (Punctured-Key Indistinguishability). We say that a
strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy) has
key indistinguishability, if no PPT adversary A has more than negligible advan-
tage in the experiment ExpIND-SPS(A, 1λ). We define A’s advantage by

AdvA
IND-SPS :=

∣
∣
∣
∣Pr[ExpIND-SPS(A, 1λ) = 1] − 1

2

∣
∣
∣
∣ .

Experiment ExpIND-SPS(A, 1λ)

1. Adversary A provides a message m∗ to puncture at.
2. The challenger picks a challenge bit b ←$ {0, 1}. If b = 0, then

(vk, sk) ←$ KeyGen(1λ). If b = 1, then (vk, sk) ←$ PKeyGen(1λ,m∗). The
verification key vk is returned to A.

3. A gets oracle-access to Signm∗(sk, ·). The oracle signs any message under
the secret key sk, except m∗.

4. A returns a guess bit b′ and wins iff b′ = b.

Note that we can leverage punctured-key indistinguishability combined with a
guessing argument to achieve standard EUF-CMA security. We omit this defi-
nition as it is not necessary for our work.

4 Compact Threshold SWE

In this section we introduce a compact t-of-n SWE scheme. This is a spe-
cial purpose (threshold) witness encryption where we encrypt with regard to
a set of signature verification keys V = (vk1, . . . , vkn) and a reference mes-
sage T , such that decryption becomes available upon receiving t signatures
(σij

)j∈[t] which verify for the reference message under t of the verification keys
i.e. Sig.Vrfy(vkij

, σij
, T) = 1. We say that such a scheme is compact if its cipher-

text size grows polylogarithmically in the number of verification keys n, and
we say it is secure if IND-CPA security holds in the absence of at least t such
signatures.

4.1 Definition

Compared to the original proposal of SWE in [9], we have relaxed the definitions
here in the following ways:

– The security is non-adaptive as discussed in Sect. 1.2.
– The underlying signature in this work needs to be puncturable and we take

multiple signatures instead of one aggregated signature2 as arguments.
2 The original paper uses BLS signatures, which allow to compress multiple signatures

on different messages and from different signers into a single aggregated signature,
that can be efficiently checked against all messages/signers in one step.

18 G. Avitabile et al.

Definition 18 (Compact Signature-Based Witness Encryption). A
t-out-of-n cSWE for a strongly puncturable signature scheme Sig =
(KeyGen,PKeyGen,Sign,Vrfy) is a tuple of two algorithms (Enc,Dec) where:

– ct ← Enc(1λ, V = (vk1, . . . , vkn), T,m): Encryption takes as input a security
parameter λ, a set V of n verification keys of the underlying scheme Sig, a
reference signing message T and a message m of arbitrary length 	 ∈ poly(λ).
It outputs a ciphertext ct.

– m ← Dec(ct, (σi)i∈I , I, V): Decryption takes as input a ciphertext ct, a list of
signatures (σi)i∈I , an index set I ⊆ [n] and a set V of verification keys of the
underlying scheme Sig. It outputs a message m.

We require such a scheme to fulfill three properties: correctness, compactness
and security.

Definition 19 (Correctness). A t-out-of-n cSWE scheme cSWE = (Enc,Dec)
for a strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy)
is correct if ∀λ ∈ N, sets of keys V = (vk1, . . . , vkn), index sets I ⊆ [n] with
|I| ≥ t, messages m,T and signatures (σi)i∈I with Sig.Vrfy(vki, σi, T) = 1 for all
i ∈ I, it holds Dec(Enc(1λ, V, T,m), (σi)i∈I , I, V) = m.

Definition 20 (Compactness). Given ct ← Enc(1λ, V, T,m), its size |ct| is
O(poly(λ, log n)), where n = |V |.
Definition 21 (Security). A t-out-of-n cSWE scheme cSWE = (Enc,Dec) for
a strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy) is
secure if for all λ ∈ N, all t, n = poly(λ), t < n, there is no PPT adversary A
that has more than negligible advantage in the experiment ExpSec(A, 1λ).

Experiment ExpSec(A, 1λ)

1. The adversary A specifies signing reference message T ∗ and indices J ⊂
[n] with |J | ≤ t − 1.

2. The experiment generates n key pairs for i ∈ [n] as (vki, ski) ←
Sig.KeyGen(1λ) and provides V = (vk1, . . . , vkn) to A, as well as all
ski for i ∈ J .

3. A gets to make signing queries for pairs (i, T). If i ∈ J or T = T ∗, the
experiment aborts, else it returns Sig.Sign(ski, T).

4. A announces challenge messages m0,m1 with |m0| = |m1|.
5. The experiment flips a bit b ←$ {0, 1}, and sends Enc(1λ, V, T ∗,mb) to

A.
6. A gets to make further signing queries for pairs (i, T). If i ∈ J or

T = T ∗, the experiment aborts, else it returns Sig.Sign(ski, T).
7. Finally, A outputs a guess b′.
8. If b = b′, the experiment outputs 1, else 0.

We define A’s advantage by AdvA
Sec :=

∣
∣Pr

[
ExpSec(A, 1λ) = 1

]
− 1

2

∣
∣.

Signature-Based Witness Encryption with Compact Ciphertext 19

4.2 Construction

Our construction relies on indistinguishability obfuscation for Turing Machines
and a Strongly Puncturable Signature scheme. The following scheme works for
n = poly(λ) potential signers and requires t-of-n signatures to decrypt. Given a
strongly puncturable signature scheme Sig, our protocol will work for a slightly
altered signature scheme Sig′. We define Sig′ to behave exactly as Sig, but addi-
tionally the public keys vk output by (vk, sk) ← Sig′.KeyGen(1λ) have a random
part Ri ←$ Zp appended to vki, hence its keys are of the form (vki, Ri). Let
	vk = |(vki, Ri)| be the size of its keys, M its message space, and 	σ be the
length of its signatures. Let

– p > 2λ be a prime number.
– PRF : {0, 1}λ × {0, 1}μ → Zp be a PRF with log n ≤ μ ≤ log p.
– PPRF = (KeyGen,Puncture,Eval) with Eval : {0, 1}λ × {0, 1}μ → Zp be a

PPRF and 	pkey be the size of any key punctured at most one point.
– SKE be a symmetric key encryption scheme
– SSB be an SSB-hashing scheme and 	hk, 	τ , 	h be the length of the hashing

keys hk, proofs τ and hashes h of SSB on input a database D with length n
and with a maximum size of its entries of 	vk.

– obM be an indistinguishability obfuscator for the class of machines
T Mλ = {Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′)} where each such
machine takes: indices i∗, ind2 ∈ {0, . . . , n + 1}, values K,K1 ∈ {0, 1}λ, h ∈
{0, 1}�h , T ∈ M, hk ∈ {0, 1}�hk , a PPRF key K2 ∈ {0, 1}�

pkey and a value
U ∈ Zp as hardwired inputs and an index ind ∈ [n], values vk, R of combined
length 	vk, as well as τ ∈ {0, 1}�τ and σ ∈ {0, 1}�σ as run-time inputs.
Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′) is defined as:

• If ind < 1 or ind > n, abort and output ⊥.
• If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.
• If 0 = Sig.Vrfy(vk, σ′, T), abort and output ⊥.
• If ind = ind2: Output R + U mod p and halt.
• If ind ≤ i∗: Output R + PPRF(K2, ind) mod p and halt.
• Else if ind > i∗:

∗ Write on the tape variables i = 1, R = 0,X = 1, S = K.
∗ While i < t : Set R = PRF(K1, i), X = X · ind mod p, S = S +X · R
mod p, i = i + 1.

∗ Output S.
Note that all these machines have the same description size. Let 	inp be
shorthand for its input size and TT M denote the maximum runtime within
this machine class. It is syntactically clear that these machines always halt,
so TT M is well-defined.

20 G. Avitabile et al.

Protocol Compact cSWE for Sig′ - from iO

cSWE.Enc(1λ, V = (vki, Ri)i∈[n], T,m):
– Generate PRF key K1 ← PRF.KeyGen(1λ)
– Generate symmetric key K ← SKE.KeyGen(1λ)
– Generate PPRF key K2 ← PPRF.KeyGen(1λ)
– Generate a hashing key hk ← SSB.KeyGen(1λ, n, 1)
– Set h = SSB.Hash(hk, (vki, Ri)i∈[n])
– Choose U ←$ Zp.
– Let M ′ = M0[K,K1, h, T, hk,K2, U, 0](·, (·, ·), ·, ·).
– Compute obM ← iOM(1λ,M ′, 	inp, TT M).
– Compute ct′ = SKE.Enc(K,m)
– Output (obM, ct′, hk)

cSWE.Dec(ct, (σ), I, V = (vki, Ri)i∈[n]):
– Parse ct = (obM, ct′, hk)
– If |I| < t, abort.
– Parse σ = (σi)i∈I .
– For i ∈ I:

• Compute τi = Open(hk, V, i)
• Run ci = obM(i, (vki, Ri), τ, σi)
• Notice ci = K + Σt−1

j=1PRF(K1, j) · ij i.e. evaluations Si = f(i)
on polynomial f = K + Σt−1

j=1PRF(K1, j) · xj .
– Compute K ′ =

∑
i∈I ci · Li where Li =

∏
j∈I;j �=i

−j
i−j .

– Output m = SKE.Dec(K ′, ct′).

We point out that by encrypting a symmetric encryption key, we can get an
encryption scheme that allows messages m of arbitrary length without impacting
the size of obM .

4.3 Proofs

Theorem 1. Our construction cSWE is correct, given that the underlying prim-
itives Sig′, SKE, SSB and obM are correct.

Proof. Let λ ∈ N, a set of keys V = (vk1, . . . , vkn), an index set
I ⊆ [n] with |I| ≥ t, messages m,T and signatures (σi)i∈I be given
such that for all i ∈ I, we have Sig.Vrfy(vki, σi, T) = 1. Let us show
Dec(Enc(1λ, V, T,m), (σi)i∈I , I, V) = m. Enc(1λ, V, T,m) yields an output
(obM, ct′, hk). In Dec((obM, ct′, hk), (σi)i∈I , I, V), we do not abort before call-
ing obM , as |I| ≥ t by requirement. We compute for i ∈ I: τi = Open(hk, V, i),
ci = obM(i, (vki, Ri), τ, σi). By correctness of obM , this outputs the value gener-
ated by M0[K,K1, h, T, hk,K2, U, 0](i, (vki, Ri), τ, σi), which runs the following
code:

– If i < 1 or i > n, abort and output ⊥.

Signature-Based Witness Encryption with Compact Ciphertext 21

– If 0 = SSB.Vrfy(hk, h, i, (vki, Ri), τ), abort and output ⊥.
– If 0 = Sig.Vrfy(vki, σi, T), abort and output ⊥.
– If i = 0: Output R + U mod p and halt.
– If i ≤ 0: Output R + PPRF(K2, i) mod p and halt.
– Else if i > 0:

• Write on the tape variables j = 1, R = 0,X = 1, S = K
• While j < t :

∗ Set R = PRF(K1, j), X = X · i mod p, S = S + X · R mod p,
j = j + 1.

• Output S

And has hardcoded values K1 ← PRF.KeyGen(1λ), K ← SKE.KeyGen(1λ), K2 ←
PPRF.KeyGen(1λ), hk ← SSB.KeyGen(1λ, n, 1), h = SSB.Hash(hk, (vki, Ri)i∈[n]).

Clearly 1 ≤ i ≤ n. SSB.Vrfy(hk, h, i, (vki, Ri), τ) = 1 holds by correctness of
SSB since hk, V in Dec are the same as in the call to Enc. Sig.Vrfy(vki, σi, T)
holds by definition.

This means we get for i ∈ I ci = K+Σt−1
j=1PRF(K1, j) · ij i.e. evaluations ci =

f(i) of a polynomial f = K+Σt−1
j=1PRF(K1, j) ·xj with f(0) = K. By computing

K ′ =
∑

i∈I ci · Li with Li =
∏

j∈I;j �=i
−j
i−j being the Langrange polynomials for

supporting points i ∈ I evaluated at 0, we are guaranteed K ′ = f(0) = K.
So Dec finally outputs SKE.Dec(K, ct′), but since ct′ = SKE.Enc(K,m), by

the correctness of SKE, we output the original message m. ��

Theorem 2. Our construction cSWE is compact.

Proof. The bottleneck of our ciphertext size is the size of the obfuscated Turing
machine, which depends polynomially on its description size and polylogarithmi-
cally on its runtime. We notice, that we can describe all inputs (runtime as well
as hardwired ones) in O(poly(λ) · log n). All operations (comparisons, modular
arithmetic in Zp, SSB verification, signature verification and (P)PRF evalua-
tions) can be described and evaluated in size/time O(poly(λ) · log n) and we can
describe the whole code including the while-loop in O(poly(log n · λ)), while the
maximum runtime is in O(n · poly(log n · λ)), leading to the desired size.

In more detail, the output of cSWE′.Enc(1λ, V = (vki, Ri)i∈[n], T,m) is
(obM, ct′, hk), where hk = SSB.Hash(hk, (vki, Ri)i∈[n]), |hk| = 	hk = O(poly(λ) ·
log n) by the efficiency guarantees on SSB.

And ct′ = SKE.Enc(K,m), so |ct′| = O(poly(λ)·|m|) = O(poly(λ)). It remains
to show that obM is in O(poly(λ, log n)).

obM ← iOM(1λ,M ′, 	inp, TT M) with M ′ = Mi∗=0[K,K1, h, T, hk,
K2, U, ind2 = 0] By the efficiency requirements on iOM, |obM | is in
O(poly(|M ′|, log TT M, 	inp, λ)), where |M ′| is the description size, TT M the max-
imum runtime and 	inp the maximum input size of machines in T Mλ. The
machines in this class are defined as
Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′):

– If ind < 1 or ind > n, abort and output ⊥.
– If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.

22 G. Avitabile et al.

– If 0 = Sig.Vrfy(vk, σ′, T), abort and output ⊥.
– If ind = ind2: Output R + U mod p and halt.
– If ind ≤ i∗: Output R + PPRF(K2, ind) mod p and halt.
– Else if ind > i∗:

• Write on the tape variables i = 1, R = 0,X = 1, S = K
• While i < t : Set R = PRF(K1, i), X = X · ind mod p, S = S + X · R

mod p, i = i + 1.
• Output S

By construction, the sizes of hardwired inputs are as follows:
|i∗|, |ind2| = log n, |K|, |K1| = λ, |h| = 	h = O(poly(λ)) by efficiency of SSB,
|T | = O(poly(λ)) as T ∈ M is from the message space of Sig with security
parameter λ, |hk| = 	hk = O(poly(λ) · log n) by the efficiency guarantees on SSB,
|K2| = 	pkey = μ · poly(λ) by the efficiency guarantees of PPRF and |U | = log p.

The runtime inputs are bounded in size as follows: ind = log n, |(vk, R)| =
	vk = λ + log p, |τ | = 	τ = O(poly(λ)) · log n by efficiency of SSB and |σ| = 	σ =
poly(λ).

We can bound μ, log p = O(poly(log n, λ)), as we only required log p >
λ, log p ≥ μ ≥ log n. So, we see directly that the input size is bounded as

	inp = O(poly(λ · log n)).

Towards analysing the maximum runtime TT M: Comparisons with
ind, i∗ can be executed in time O(poly(log n)). The Turing machine code for
SSB.Vrfy(hk, h, ind, (vk, R), τ) has runtime O(poly(λ) · log n) by efficiency of SSB.
The code for Sig.Vrfy(vk, σ′, T) has runtime O(poly(λ)). Modular arithmetic in
Zp can be executed in time poly(log p) = O(poly(λ, log n)). PPRF(K2, ind) can
be executed in O(μ · poly(λ)) = O(poly(log n · λ)) by our efficiency requirements
on PPRF and so can PRF(K1, i). Since t ≤ n, the while-loop has runtime in
O(n · poly(log n · λ)). So the maximum runtime is bounded by

TT M = O(n · poly(log n · λ)).

Towards analysing the description size |M ′|: Comparisons with ind, i∗

can be described in size O(poly(log n)). The Turing machine code for
SSB.Vrfy(hk, h, ind, (vk, R), τ) has size O(poly(λ) · log n) by efficiency of SSB.
The code for Sig.Vrfy(vk, σ′, T) has size O(poly(λ)). Modular arithmetic in Zp

can be described in size poly(log p) = O(poly(λ, log n)). PPRF(K2, ind) can be
described in O(μ ·poly(λ)) = O(poly(log n ·λ)) by our efficiency requirements on
PPRF and so can PRF(K1, i). Since log t ≤ log n, the while-loop can be described
in size log n+O(poly(log n ·λ)). We conclude that the description size is bounded
by

|M ′| = O(poly(log n · λ)).

Thus, |obM | = O(poly(|M ′|, log TT M, 	inp, λ)) = O(poly(poly(log n·λ), log(n·
poly(log n · λ)), poly(λ · log n), λ)) = O(poly(log n, λ)).

So the whole ciphertext is in size O(poly(log n, λ)). ��

Signature-Based Witness Encryption with Compact Ciphertext 23

Theorem 3. Our construction of cSWE is secure, given that Sig is punctured
key indistinguishable and puncturable, SSB is index hiding and somewhere per-
fectly binding, obM is secure, SKE is correct, IND-CPA secure and has pseudo-
random ciphertexts, PRF is a pseudorandom function and PPRF is a puncturable
pseudorandom function.

Proof. We define a series of indistinguishable hybrids and show, that an adver-
sary A with non-negligible advantage in the last hybrid could break IND-CPA
security of SKE. Our strategy is to puncture all honest keys at message T ∗,
then gradually move each party’s shares from being computed inside the Turing
machine into being embedded in the key part Ri in encrypted form. The Turing
machine should in the end only have to decrypt the shares from its input and
can forget the key K that it was supposed to share. Then, we can observe, that
it never decrypts the honest parties’ shares, as there is no accepting signature
due to puncturability of our signing scheme. We bind the SSB hash to each hon-
est position i∗, puncture the PPRF at i∗ to forget the decryption key, hardwire
the output share si∗ into the machine instead and replace the share si∗ with an
encryption of garbage inside Ri∗ . Then, we observe, that by SSB binding and
puncturability, no input exists anymore for which si∗ is output and we can forget
the hardwired value again. Lastly, we notice that we now need less than t shares
of K to run this experiment and can therefore replace them with shares of an
unrelated key K ′ by t-privacy. What remains is a single encryption of m under
K, where K is not known or used in any other part of the output.

Full Proof: Let λ ∈ N, such that t = poly(λ). Let A be an adversary for
ExpSec(A, 1λ) with more than negligible advantage.

H0 = H0
1: This game is identical to ExpSec(A, 1λ).

To recap, we get indices J ⊂ [n], |J | ≤ t − 1 and reference message T ∗

from A, then the experiment generates key pairs for i ∈ [n] as (vki, ski) ←
Sig.KeyGen(1λ), Ri ← Zp and provides V = ((vk1, R1), . . . , (vkn, Rn)) to A, as
well as all ski for i ∈ J . We allow any signing queries for honest keys vki, i ∈ [n]\J
on any message except T ∗, before and after the adversary announces chal-
lenge messages m0,m1 and the experiment replies to this challenge by choosing
b ←$ {0, 1}, and sending Enc(1λ, V, T ∗,mb) to A.

In the end, A outputs a guess b′ to our choice bit b.

Hi∗
1 for i∗ ∈ {1, . . . , n}:

– If i∗ ∈ J , this is identical to Hi∗−1
1 .

– Else, it is identical to Hi∗−1
1 , except that the key vki∗ is created as a punc-

tured key as (vki∗ , ski∗) ←$ Sig.PKeyGen(1λ, T ∗) for the signing reference
messsage T ∗ specified by A instead of (vki∗ , ski∗) ←$ Sig.KeyGen(1λ).

We observe that our experiment never needs to compute signatures of T ∗ for
honest keys vki with i �∈ J . So clearly, Hi∗

1 and Hi∗−1
1 are indistinguishable by

the punctured-key indistinguishability of Sig′. In the last hybrid Hn
1 , all honest

keys will be chosen punctured at message T ∗.

24 G. Avitabile et al.

We define an event

bad = {∃σ, i ∈ [n] \ J such that Sig.Vrfy(vki, σ, T ∗) = 1}.

Note that by puncturability of Sig, it holds

Pr [bad] ≤ Σi∈[n]\J Pr
[

∃σ s.t. Vrfy(vk∗, σ, T ∗) = 1 :
(vk∗, sk∗) ←$ PKeyGen(1λ, T ∗)

]

≤ n · negl(λ),

which is negligble. In the following we condition on bad not happening.

H2: This is identical to Hn
1 except for conceptual changes:

– The reduction computes already at the start of the experiment the keys
K,K1,K2 it will use in the call to Enc(1λ, V, T ∗,mb).

– We define the polynomial f ′ = K + Σt−1
j=1PRF(K1, j) · xj and

si = f ′(i) for i ∈ [n]. Note that sind corresponds to the out-
put of M ′ on an accepting input (ind, (vkind, Rind), τ, σ′), where 1 =
SSB.Vrfy(hk, h, ind, (vkind, Rind), τ) and 1 = Sig.Vrfy(vkind, σ′, T) for ind ∈
[n]. The shares si for i ∈ J correspond to the outputs the adversary is
guaranteed to get by just signing T ∗ himself and following the decryption
procedure.

We will now loop through Hi
3,Hi

4, . . . ,Hi
7 to gradually replace all honest

verification keys by punctured ones and switch to a setting where the obfuscated
machine pulls all of its outputs out of the Ri key parts instead of computing them
itself. We start with H0

7 = H2 for notational convenience.

Hi∗
3 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗−1

7 (with H0
7 = H2) except that

we generate hk ← SSB.KeyGen(1λ, n, i∗) binding to i∗.

This is clearly indistinguishable from Hi∗−1
7 by SSB being index hiding.

Hi∗
4 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

3 except in the way we choose Ri∗

in vki∗ . We sample ui∗ ←$ Zp and set Ri∗ = si∗ −ui∗ mod p with si∗ defined
as above instead of Ri∗ ← Zp.

This is indistinguishable from Hi∗
3 as si∗ − ui∗ is still uniform in Zp.

Hi∗
5 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

4 except we generate
K{i∗} ← PPRF.Puncture(K2, {i∗}) the machine M ′ we use is replaced by
M ′ = Mi∗ [K,K1, h, T ∗, hk,K{i∗}, ui∗ , i∗] instead of M ′ = Mi∗−1[K,K1,
h, T ∗, hk,K2, U, 0].

This is indistinguishable from Hi∗
4 by security of obM . To show this,

let us argue, that M0 := Mi∗ [K,K1, h, T ∗, hk,K{i∗}, ui∗ , i∗] and M1 :=
Mi∗−1[K,K1, h, T ∗, hk,K2, U, 0] are functionally equivalent.
We recall that Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′) is defined as
follows:

Signature-Based Witness Encryption with Compact Ciphertext 25

– If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.
– If 0 = Sig.Vrfy(vk, σ′, T), abort and output ⊥.
– If ind = ind2: Output R + U mod p and halt.
– If ind ≤ i∗: Output R + PPRF(K2, ind) mod p and halt.
– Else if ind > i∗:

• Write on the tape variables i = 1, R = 0,X = 1, S = K
• While i < t :

∗ Set R = PRF(K1, i), X = X · ind mod p, S = S + X · R mod p,
i = i + 1.

• Output S (Note that S = f ′(ind) = sind.)

Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1

produce different outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 =
Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must hold. Otherwise they both output ⊥.
We distinguish 3 cases:

ind∗ > i∗ In this case both machines output s∗
ind.

ind∗ = i∗ In this case M1 outputs s∗
ind, but M0 outputs R∗ + ui∗ mod p.

We note that hk ← SSB.KeyGen(1λ, n, i∗) and h = SSB.Hash(hk, (vki,
Ri)i∈[n]) are honestly created by the reduction and so since SSB is
somewhere statistically binding, we know that vk∗ = vki∗ , R∗ = Ri∗ .
That means that M0 outputs Ri∗ +ui∗ = si∗ , which is the same output
as in M1.

ind∗ < i∗ In this case M0 outputs R∗ + PPRF(K{i∗}, ind
∗) mod p, while M1

outputs R∗ + PPRF(K2, ind
∗) mod p.

As ind �= i∗ and K{i∗} ← PPRF.Puncture(K2, {i∗}), we can conclude
that these outputs are identical by the PPRF preserving functionality
under puncturing.

It follows that there does not exist an input that makes M0 and M1 have a
different output, thus Hi∗

5 and Hi∗
4 are indistinguishable.

Hi∗
6 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

5 except that we now choose
Ri∗ = si∗ − PPRF(K2, i

∗) mod p instead of Ri∗ = si∗ − ui∗ mod p and
M ′ = Mi∗ [K,K1, h, T ∗, hk,K{i∗},PPRF(K2, i

∗), i∗] instead of M ′ = Mi∗

[K,K1, h, T ∗, hk,K{i∗}, ui∗ , i∗]

Hi∗
6 and Hi∗

5 are indistinguishable as PPRF is pseudorandom at the punctured
point i∗. Given K{i∗}, i

∗ and either a uniform value ū ← Zp or PPRF(K2, i
∗),

we can obliviously emulate either Hi∗
5 or Hi∗

6 to build a distinguisher for pseu-
dorandomness at punctured points of PPRF.

Hi∗
7 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

6 except that we
now choose M ′ = Mi∗ [K,K1, h, T ∗, hk,K2, U, 0] instead of M ′ =
Mi∗ [K,K1, h, T ∗, hk,K{i∗},PPRF(K2, i

∗), i∗]

26 G. Avitabile et al.

This is indistinguishable from Hi∗
6 by security of obM .

To show this, let us argue, that M0 := Mi∗ [K,K1, h, T ∗, hk,K2, U, 0] and
M1 := Mi∗ [K,K1, h, T ∗, hk,K{i∗},PPRF(K2, i

∗), i∗] are functionally equivalent.
Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1

produce different outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 =
Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must hold.

We distinguish 3 cases:

ind∗ > i∗ In this case both machines output s∗
ind.

ind∗ = i∗ In this case both machines output R∗ + PPRF(K2, i
∗) mod p.

ind∗ < i∗ In this case M0 outputs R∗+PPRF(K2, ind
∗) mod p, while M1 outputs

R∗ + PPRF(K{i∗}, ind
∗) mod p.

As ind �= i∗ and K{i∗} ← PPRF.Puncture(K2, {i∗}), we can conclude
that these outputs are identical by the PPRF preserving functionality
under puncturing.

This means such a resulting in different outputs can not exist - Hi∗
6 and Hi∗

7

are indeed indistinguishable.

H8: This is identical to Hn
7 , except that we use M ′ = Mn[∅, ∅, h, T ∗, hk,K2, U, 0]

which is the same as the previous machine, except of it having dummy inputs
instead of K,K1.

As the output of M ′ does no longer depend on K,K1 in Hn
7 , this is indistin-

guishable from the previous hybrid by security of obM .

H9 =: This is identical to H8 except that we set the s∗
i = (K + Σt−1

j=1rj · (i)j))
in Ri = s∗

i − PPRF(K2, i) mod p for i ∈ [n], where we pick rj ← {0, 1}μ

randomly instead of s∗
i = (K + Σt−1

j=1PRF(K1, j) · (i)j)).

This is indistinguishable from H8 by pseudorandomness of PRF.
Now we will almost “revert" the moves in H3 to H7 again to put random

values into Ri for i �∈ J , but this time we do not let M ′ keep the information to
decrypt them - we rely on the puncturability of Sig to make sure that the case
of decryptions would never have been reached anyways and invoke security of
obM . This deletes all traces of honest shares in Ri.

Hi∗
10 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗−1

13 (with H0
13 = H9) except that

we generate hk ← SSB.KeyGen(1λ, n, i∗) binding to i∗.

This is clearly indistinguishable from Hi∗−1
13 by SSB being index hiding.

Hi∗
11 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

10.
Else, this is identical to Hi∗

10 except that the machine M ′ we use is
replaced by M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗},PPRF(K2, i

∗), i∗] instead of M ′ =
Mn[∅, ∅, h, T ∗, hk,K2, U, 0].

This is indistinguishable from Hi∗
10 by security of obM and the argument is

analogous to Hi∗
7 and Hi∗

6 being indistinguishable.

Signature-Based Witness Encryption with Compact Ciphertext 27

Hi∗
12 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

11.
Else this is identical to Hi∗

11 except that we now choose Ri∗ = si∗ −
ui∗ mod p instead of Ri∗ = si∗ − PPRF(K2, i

∗) mod p and M ′ =
Mn[∅, ∅, h, T ∗, hk,K{i∗}, ui∗ , i∗] instead of M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗},
PPRF(K2, i

∗), i∗].

Hi∗
12 and Hi∗

11 are indistinguishable by PPRF being pseudorandom at punctured
points and the argument is analogous to Hi∗

6 and Hi∗
5 being indistinguishable.

Hi∗
13 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

12.
This is identical to Hi∗

12 except that we now choose M ′ = Mn[∅, ∅, h,
T ∗, hk,K2, U, 0] instead of M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗}, ui∗ , i∗].

This is indistinguishable from Hi∗
12 by security of obM .

To show this, let us argue, that M0 := Mn[∅, ∅, h, T ∗, hk,K2, U, 0] and M1 :=
Mn[∅, ∅, h, T ∗, hk,K{i∗}, ui∗ , i∗] are functionally equivalent.

Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1

produce different outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 =
Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must hold.

We distinguish 2 cases:

ind∗ �= i∗ In this case M0 outputs R∗+PPRF(K2, ind
∗) mod p, while M1 outputs

R∗ + PPRF(K{i∗}, ind
∗) mod p. We can conclude that these outputs

are identical by the PPRF preserving functionality under puncturing.
ind∗ = i∗ We claim, that no input (i∗, (vk∗, R∗), τ∗, σ∗) exists where 1 =

SSB.Vrfy(hk, h, i∗, (vk∗, R∗), τ∗) and 1 = Sig.Vrfy(vk∗, σ∗, T ∗) hold,
hence the output is always ⊥ in both machines.
Let us assume towards contradiction, that such an input exists. By SSB
being somewhere statistically binding, we know vk∗ = vki∗ , R∗ = Ri∗ .
So, it must hold 1 = Sig.Vrfy(vki∗ , σ∗, T ∗) for i∗ ∈ J - As the event
bad has not happened, no such σ∗ can exist.

This means such an input with differing output can not exist - Hi∗
12 and Hi∗

13

are indeed indistinguishable.

H14 This is identical to Hn
13 except that we now compute Ri ←$ Zp for all i ∈

[n]\J instead of Ri = si −ui mod p for ui ←$ Zp being a fresh uniform value
for each i ∈ [n] \ J .

As the ui∗ are not re-used anywhere in the experiment, this is indistinguishable
from Hn

13 as both distributions lead to uniform Ri for all honest indices i ∈ [n]\J .
It is clear now, that we only ever compute |J | ≤ t − 1 shares of the key K,

which are of the from Ri = K +Σt−1
j=1rj · (i)j +PPRF(K2, i) mod p. This clearly

corresponds to |J | Shamir shares corresponding to interpolation points i ∈ J out
of a t-of-n sharing for points i ∈ [n]. So in the next hybrid, we can make the key
K disappear.

28 G. Avitabile et al.

H15: This is identical to H14, except that we choose a random K ′ ← {0, 1}λ and
make Ri = K ′+Σt−1

j=1rj · (i)j +PPRF(K2, i) mod p for i ∈ J . Where rj ← Zp

randomly.

This is indistinguishable from H14 by the t-privacy of the Shamir secret sharing
scheme. Let us assume that there is an adversary A which breaks security of
cSWE with probability ε. Conditioned on bad not happening, A has negligible
advantage n′(λ) of distinguishing the real experiment from H15. In hybrid H15,
there is no information about K except in the ciphertext ct′ = SKE.Enc(K,mb).
So we can make an IND-CPA distinguisher D, that simulates H15 by asking
the IND-CPA security game of SKE for an encryption with challenge messages
m0,m1, receiving a ciphertext ct∗ and then making all the outputs in H15 hon-
estly, except setting ciphertext part ct′ = ct∗ and outputting whatever A does.

The advantage we get from this distinguisher in the IND-CPA game is guar-
anteed to be Adv(D) ≥ ε − n′(λ) − Pr [bad] = ε − negl(λ). This means that ε
must be negligible due to SKE being IND-CPA secure. ��

Acknowledgements. We thank the reviewer B of Asiacrypt 2024 for pointing out the
existence of the notion and constructions of all-but-one signatures. Gennaro Avitabile
received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under project PICOCRYPT
(grant agreement No. 101001283), and from the Spanish Government under projects
PRODIGY (TED2021-132464B-I00) and ESPADA (PID2022-142290OB-I00). The last
two projects are co-funded by European Union EIE, and NextGenerationEU/PRTR
funds. Nico Döttling: Funded by the European Union (ERC, LACONIC, 101041207).
Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for
them.

References

1. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, JS. (eds.) Advances in Cryptology, EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 792–821. Springer, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5_28

2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_30

3. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

4. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryp-
tion to the future : a paradigm for sending secret messages to future (anonymous)
committees. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS,
vol. 13793, pp. 151–180. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-22969-5_6

https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22969-5_6

Signature-Based Witness Encryption with Compact Ciphertext 29

5. Cerulli, A., Connolly, A., Neven, G., Preiss, F.S., Shoup, V.: VETKeys: how a
blockchain can keep many secrets. Cryptology ePrint Archive, Paper 2023/616
(2023). https://eprint.iacr.org/2023/616

6. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 220–246. Springer, Heidelberg (May 2020). https://doi.org/
10.1007/978-3-030-45374-9_8

7. Choudhuri, A.R., Garg, S., Piet, J., Policharla, G.V.: Mempool privacy via
batched threshold encryption: attacks and defenses. In: 33rd USENIX Secu-
rity Symposium (USENIX Security 24), pp. 3513–3529. USENIX Association,
Philadelphia, PA (2024). https://www.usenix.org/conference/usenixsecurity24/
presentation/choudhuri

8. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990). https://
doi.org/10.1007/0-387-34805-0_28

9. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: verifiable encryption to
the future made practical. In: Baldimtsi, F., Cachin, C. (eds.) Financial Cryptog-
raphy and Data Security, FC 2023. LNCS, vol. 13950, pp. 252–269. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-47754-6_15

10. Erwig, A., Faust, S., Riahi, S.: Large-scale non-interactive threshold cryptosystems
through anonymity. Cryptology ePrint Archive, Report 2021/1290 (2021). https://
eprint.iacr.org/2021/1290

11. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Statement-oblivious threshold
witness encryption. In: CSF 2023 Computer Security Foundations Symposium, pp.
17–32. IEEE Computer Society Press (2023). https://doi.org/10.1109/CSF57540.
2023.00026

12. Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater,
J.J., Vandewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 56–61. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_8

13. Gailly, N., Melissaris, K., Romailler, Y.: tlock: practical timelock encryption from
threshold BLS. Cryptology ePrint Archive, Paper 2023/189 (2023). https://eprint.
iacr.org/2023/189

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (2013). https://doi.org/10.1109/
FOCS.2013.13

15. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press (2013). https://doi.org/10.1145/2488608.2488667

16. Garg, S., Kolonelos, D., Policharla, G.V., Wang, M.: Threshold encryption with
silent setup. Cryptology ePrint Archive, Paper 2024/263 (2024). https://eprint.
iacr.org/2024/263

17. Garg, S., Srinivasan, A.: A simple construction of iO for Turing machines. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 425–
454. Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/978-3-030-03810-
6_16

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (2011). https://doi.org/10.1145/1993636.1993651

https://eprint.iacr.org/2023/616
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/978-3-030-45374-9_8
https://www.usenix.org/conference/usenixsecurity24/presentation/choudhuri
https://www.usenix.org/conference/usenixsecurity24/presentation/choudhuri
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-031-47754-6_15
https://eprint.iacr.org/2021/1290
https://eprint.iacr.org/2021/1290
https://doi.org/10.1109/CSF57540.2023.00026
https://doi.org/10.1109/CSF57540.2023.00026
https://doi.org/10.1007/3-540-46885-4_8
https://eprint.iacr.org/2023/189
https://eprint.iacr.org/2023/189
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1145/2488608.2488667
https://eprint.iacr.org/2024/263
https://eprint.iacr.org/2024/263
https://doi.org/10.1007/978-3-030-03810-6_16
https://doi.org/10.1007/978-3-030-03810-6_16
https://doi.org/10.1145/1993636.1993651

30 G. Avitabile et al.

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run Turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1_30

20. Goyal, R., Vusirikala, S., Waters, B.: Collusion resistant broadcast and trace from
positional witness encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 3–33. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-17259-6_1

21. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part I. LNCS, vol. 13177, pp. 252–282. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-030-97121-2_10

22. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015, pp. 163–172. ACM
(2015). https://doi.org/10.1145/2688073.2688105

23. Jiang, M., Duong, D.H., Susilo, W.: Puncturable signature: a generic construc-
tion and instantiations. In: Computer Security - ESORICS 2022: 27th European
Symposium on Research in Computer Security, Copenhagen, Denmark, September
26–30, 2022, Proceedings, Part II, pp. 507–527. Springer-Verlag, Berlin, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-17146-8_25

24. Kondi, Y., Magri, B., Orlandi, C., Shlomovits, O.: Refresh when you wake up:
proactive threshold wallets with offline devices. In: 2021 IEEE Symposium on Secu-
rity and Privacy, pp. 608–625. IEEE Computer Society Press (2021). https://doi.
org/10.1109/SP40001.2021.00067

25. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for Turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC, pp. 419–428. ACM Press (2015). https://doi.org/10.1145/2746539.
2746614

26. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8_17

27. Madathil, V., Thyagarajan, S.A.K., Vasilopoulos, D., Fournier, L., Malavolta,
G., Moreno-Sanchez, P.: Cryptographic Oracle-based conditional payments. In:
30th Annual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27–March 3, 2023. The Internet Soci-
ety (2023). https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-
based-conditional-payments/

28. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_6

29. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6

30. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press (2018).
https://doi.org/10.1109/FOCS.2018.00086

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press
(2014). https://doi.org/10.1145/2591796.2591825

https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1007/978-3-031-17146-8_25
https://doi.org/10.1109/SP40001.2021.00067
https://doi.org/10.1109/SP40001.2021.00067
https://doi.org/10.1145/2746539.2746614
https://doi.org/10.1145/2746539.2746614
https://doi.org/10.1007/978-3-662-49387-8_17
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1109/FOCS.2018.00086
https://doi.org/10.1145/2591796.2591825

Signature-Based Witness Encryption with Compact Ciphertext 31

32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,

W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

34. Waters, B., Wu, D.J.: Adaptively-sound succinct arguments for np from indis-
tinguishability obfuscation. Cryptology ePrint Archive, Paper 2024/165 (2024).
https://eprint.iacr.org/2024/165

https://doi.org/10.1007/3-540-69053-0_18
https://eprint.iacr.org/2024/165

Bounded Collusion-Resistant Registered
Functional Encryption for Circuits

Yijian Zhang1,3, Jie Chen1,2(B), Debiao He4, and Yuqing Zhang5,6

1 Shanghai Key Laboratory of Trustworthy Computing, School of Software
Engineering, East China Normal University, Shanghai, China
2 Institute for Math & AI, Wuhan University, Wuhan, China

s080001@e.ntu.edu.sg
3 Institute of Cybersecurity and Cryptology, School of Computing and Information

Technology, University of Wollongong, Wollongong NSW, Australia
4 School of Cyber Science and Engineering, Wuhan University, Wuhan, China

5 National Computer Network Intrusion Protection Center, University of Chinese
Academy of Sciences, Beijing, China

6 School of Cyberspace Security, Hainan University, Haikou, China

Abstract. As an emerging primitive, Registered Functional Encryption
(RFE) eliminates the key-escrow issue that threatens numerous works for
functional encryption, by replacing the trusted authority with a trans-
parent key curator and allowing each user to sample their decryption
keys locally. In this work, we present a new black-box approach to
construct RFE for all polynomial-sized circuits. It considers adaptive
simulation-based security in the bounded collusion model (Gorbunov et
al. - CRYPTO’12), where the security can be ensured only if there are
no more than Q ≥ 1 corrupted users and Q is fixed at the setup phase.
Unlike earlier works, we do not employ unpractical Indistinguishability
Obfuscation (iO). Conversely, it can be extended to support unbounded
users, which is previously only known from iO.

Technically, our general compiler exploits garbled circuits and a novel
variant of slotted Registered Broadcast Encryption (RBE), namely global
slotted RBE. This primitive is similar to slotted RBE, but needs opti-
mally compact public parameters and ciphertext, so as to satisfy the
efficiency requirement of the resulting RFE. Then we present two con-
crete global slotted RBE from pairings and lattices, respectively. With
proposed compiler, we hence obtain two bounded collusion-resistant RFE
schemes. Here, the first scheme relies on k-Lin assumption, while the sec-
ond one supports unbounded users under LWE and evasive LWE assump-
tions.

Keywords: Functional Encryption · Registered Encryption · Bounded
Collusion Model · Simulation-Based Security

1 Introduction

Registered Functional Encryption (RFE) [22,25] has emerged as a rising public-
key cryptographic primitive recently. Unlike standard Functional Encryption
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 32–64, 2025.
https://doi.org/10.1007/978-981-96-0875-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_2&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_2

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 33

(FE) [17], RFE is particularly initiated to eliminate key-escrow problem that
a lot of FE schemes have suffered for many years. In RFE, a common random
string crs is initialized by the key curator who broadcasts crs to all users later.
Then this curator is just responsible for providing registration service for each
user, without holding any secret. With crs, a newly joined user can produce a
pair of public key pk and secret key sk locally, then he submits a specified func-
tion f along with pk to the curator for registration. After receiving (f, pk), the
curator updates current master public key mpk and helper secret key hsk for the
new user. For encryption, the data provider uses mpk to generate a ciphertext ct
associated with private data x, and the user can perform decryption algorithm
over ct with (sk, hsk) to learn f(x) and nothing else. During this process, it is
required that (i) all registration procedures are deterministic and auditable, and
(ii) mpk and hsk must be compact (i.e., polylogarithmic in the total number of
user) and updates for mpk and hsk should be efficient.

Previously, lots of significant progress have been made on constructing RFE
for various kinds of limited functionality. Focusing on identity-based policy, Garg
et al. [29] put forth the first registration-based encryption construction, which
inspired a line of subsequent works enhancing the security [23,33] and efficiency
[31] of this primitive. In addition, a more generic subclass of RFE, i.e., registered
attribute-based encryption (RABE), was built relying on general assumptions
over bilinear groups [34,45], and then it was also achieved from lattice-based
assumptions [26].

In light of these notable achievements, it is natural to ask how to construct
RFE for more powerful and generic functionality, i.e., polynomial-sized circuits.
Unfortunately, all existing constructions [22,25] are built upon the existence
of Indistinguishability Obfuscation (iO). An exception is Branco et al.’s work
[18], which proposed a generic framework based on RFE for linear function
(also called linear RFE in short), but we observe the security of their result is
pretty weak, only achieving selective indistinguishablility-based (IND) security
against adversary with single corrupt key. In their definition, the adversary is
forced to submit the challenge message and specify the corrupted user set in
advance, and IND security is actually inadequate for some cases as noted in
[17]. For FE, stronger simulation-based (SIM) security is more desirable and up
to now has facilitated a series of beneficial applications [3,13,35,36]. Thus, Zhu
et al. [44] formalized the definition of SIM secure RFE and presented concrete
realizations, whereas they also considered the selective setting and only focused
on linear/quadratic function. Given all these, an open question that arises is

Can we construct a registered functional encryption for all polynomial-sized
circuits that achieves SIM security without assistance of iO?

Bounded Collusion Model. In this work, we will focus on bounded collusion-
resistant RFE for circuits from weak assumptions, and consider stronger adap-
tive SIM security. Compared to plain RFE, bounded collusion-resistant RFE

34 Y. Zhang et al.

additionally requires that a prior-bound Q1 of the number of corrupted users
should be declared at the setup phase. The adversary cannot extract any useful
information about encrypted data x (except for C1(x), . . . ,CQ(x)) even when he
is able to adaptively query secret keys with respect to circuits C1, . . . ,CQ.

Bounded collusion-resistant FE has been studied extensively, and a number
of works gained satisfactory results from general cryptographic tools, including
public-key encryption (PKE) [39], multi-party computation (MPC) [11,32] and
FE for linear/quadratic function [6,8]. This model is firstly proposed to construct
FE for circuits without iO, since several works [10,16] have shown that fully
collusion-resistant FE for circuits exactly implies iO, making itself difficult to
be deduced from weak assumptions. This rule may also work on RFE, imagine
that RFE can trivially simulate FE if the key curator acts as central authority
by preparing sufficient secret keys for all possible functions and then distributing
each to matched users.

1.1 Results

As a matter of fact, the notion of RFE should be naturally “bounded” since
the user number L is fixed during initialization. A crucial point is the size of
master public key and helper secret key, which should be poly(C, log L) (here, C
denotes the size of circuit), namely compactness. However, if we think of that in
bounded collusion model, the overhead of all parameters could be poly(L). Such
fact contradicts to compactness, so we decide to slightly relax it by considering
a lower collusion bound Q � L and allowing master public key and helper key
of size poly(C,Q, log L).

In this work, we manage to answer above question and conclude our contri-
butions as follows:

– We propose a new black-box approach to construct bounded collusion-resilient
RFE for all polynomial-sized circuits. It mainly contains two ingredients, i.e.,
garbled circuits and global slotted registered broadcast encryption, where the
latter can be regarded as a compact variant of slotted registered broadcast
encryption. Furthermore, our approach would also be useful when construct-
ing RFE with unbounded users property, i.e., all parameters of size not scaling
with L. Prior to this work, only iO-based works [22,25] are known to realize
unbounded users.

– With above general compiler, we obtain two bounded collusion-resistant RFE
constructions, both of which are adaptively SIM secure (without malicious
case). The first one is provably secure under k-Lin assumption in the standard
model. Another one is secure in the random oracle model, relying on LWE
and evasive LWE assumptions [40]. The second RFE could be extended to

1 Generally speaking, the collusion bound Q is implied by the security parameter 1λ.
Since [32] defined bounded collusion-resistant FE, it has been widely accepted that
Q is an integer much less than the total number of system users, which means not
many users collude with adversary. In this work, our bounded collusion-resistant
RFE also inherits this assumption as default.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 35

support unbounded users. Compared to selective security, adaptive security
does not require the adversary commit any challenge information, as well as
the queried input to oracles.

Table 1. Comparison among existing RFE for circuits. In the column of “Security”,
“AD” and “SEL” denote adaptive and selective security, respectively. In the column
of “Assumption”, “SSB” represents somewhere statistically binding hash functions,
and “RO” represents random oracle. The column “Unbounded” and “Full” denote
unbounded users and full collusion-resistance.

ReferenceSecurity Assumption UnboundedFull

[22,25] AD-IND SSB + iO � �
[18] SEL-IND q-type DDH ✗ ✗

Ours AD-SIM k-Lin ✗ ✗

AD-SIM LWE + evasive LWE + RO � ✗

As shown in Table 1, it is clear that our technique greatly differs from cur-
rent works. Instead of unpractical iO, our results are based on more general
assumptions, and achieve adaptive SIM security.

Prior to this work, adaptively secure RFE for circuits can also be gained from
a generic framework introduced by Branco et al. [18]. Nevertheless, following
this line, it would at least require a linear RFE with same security level. As we
mentioned before, Zhu et al. [44] provided several schemes with SIM security,
whereas they considered weaker selective settings. On the other hand, if post-
quantum security or unbounded users are additionally required, linear RFE with
comparable features ought to be ready. However, all existing linear RFE rely on
pairing-based assumptions and only support a finite number of users.

1.2 Technique Overview

As introduced in [25,34], RFE can be generically derived from slotted RFE via
“power-of-two” transformation. In slotted RFE, the key curator is replaced by
a stateless aggregator who aggregates all public keys and functions to generates
mpk and hsk’s at once. In a similar sense, bounded collusion RFE can be gained
from bounded collusion slotted RFE using the same method.

We adopt the notion of Q-bound L-slot RFE, i.e., slotted RFE support-
ing L users and against collusion attack from Q users. In Q-bound L-slot RFE
for circuits, after collecting all {(pki,Ci)}i∈[L], the aggregator would publish
master public key mpk and helper secret keys {hskj}j∈[L]. Assume the adver-
sary holds the set of secret keys skc1 , . . . , skcQ

(where c1, . . . , cQ ∈ [L]), SIM
security requires that it cannot distinguish the challenge ciphertext ct∗ that is
either normally generated from message x∗, or simulated using (mpk, {hskj}j∈[L],
{skcj

}j∈[Q], {Ccj
(x∗)}j∈[Q]). If we additionally consider malicious case, ct∗ should

be simulated without {skcj
}j∈[Q]. Here, we ignore this stringent case. For effi-

ciency, we require mpk and hsk of size poly(C,Q, log L), where C denotes the
circuit size.

36 Y. Zhang et al.

Roadmap. Our technical line somewhat deviates from current RFE for limited
functionality where they always start from 1-slot case and then generalize to
L-slot. We will follow the roadmap:

1-bound 1-slot RFE
Step 1−−−−→
[26,45]

1-bound L-slot RFE
Step 2−−−−→
[32]

Q-bound L-slot RFE

Start Point: 1-Bound 1-Slot RFE. First, we propose a new and straight-
forward construction for 1-bound 1-slot RFE supporting all polynomial circuits.
Initially, Sahai et al. [39] built the first 1-bound FE for circuits from standard
assumptions, which was later evolved into Q-bound FE by Gorbunov et al. [32].
Here, we also start from [39], but stand by a new perspective. Our first obser-
vation is: the worry-free encryption in [39] will yield a 1-bound 1-slot RFE after
slight adaptions. An overview is depicted as below.

In 1-bound 1-slot RFE, only single user is going to register his circuit
C. Suppose C can be translated into a bit string of length n, given pub-
lic key encryption scheme PKE = (Setup,Enc,Dec) and garbled circuit algo-
rithms (Garble,Eval, ˜Garble) [15,42], the aggregator initially samples a sequence
of public keys {̂pkw}w∈[n] by running algorithm PKE.Setup n times. Then it
sets crs = ({̂pkw}w∈[n]). To register circuit C, the user samples public key
pairs {(pkw, skw)}w∈[n]. He keeps sk = ({skw}w∈[n]) as decryption key and
sends (C, {pkw}w∈[n]) to aggregator. Thereafter, the aggregator would produce
(mpk, hsk) in the following form:

mpk =
(

pk1,0 · · · pkn,0

pk1,1 · · · pkn,1

)

and hsk =⊥,

where for each w ∈ [n] and b ∈ {0, 1}, set pkw,b = pkw when C[w] = b; otherwise,
set pkw,b =̂pkw.

Next, to encrypt data x, let U(·, ·) be the universal circuit such that U(C, x) =
C(x) for any circuit C and data x. Then run (Ũ, {labw,b}w∈[n],b∈{0,1}) ←
Garble(1λ,U[x]) where U[x] is a universal circuit with x hard-wired. With mpk,
the ciphertext is defined as:

ct =
(

Ũ,

(

PKE.Enc(pk1,0, lab1,0) · · · PKE.Enc(pkn,0, labn,0)
PKE.Enc(pk1,1, lab1,1) · · · PKE.Enc(pkn,1, labn,1)

))

.

For decryption, since pkw,b = pkw when C[w] = b, the user can recover labels
{labw,C[w]}w∈[n] by performing algorithm PKE.Dec n times. Finally, he obtains
C(x) ← Eval(Ũ, {labw,C[w]}w∈[n]). As for security, our analysis is listed as follows:

– In corrupt case, the registered user has colluded with adversary. Then adver-
sary obtains labels {labw,C[w]}w∈[n], whereas he is unable to acquire other
labels which are encrypted by public keys issued from aggregator. Thus, fol-
lowing the security of garbled circuits, the adversary cannot learn any infor-
mation about x except for C(x);

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 37

– In honest case, the adversary has no idea about sk, so he cannot obtain any
label according to the semantic security of PKE. Thus, the privacy of x is
preserved.

Actually, above construction would immediately lead to 1-bound FE enduring
multiple users, by rendering a trusted authority to generate all public keys
{pkw,b} and then distributing secret key corresponding to each user’s circuit.
However, in the context of registration, such idea is unrealistic since the aggre-
gator must store no long-term secret. Most importantly, L users will generate
L different public keys by themselves, so our problem is how to adapt above
construction to accommodate more than one user.

Step 1: 1-Bound L-Slot RFE. Next, we proceed to convert 1-bound 1-slot
RFE into 1-bound L-slot RFE that allows L users to register their circuits
C1, . . . ,CL. Apparently, public key encryption is insufficient to accommodate
all these circuits in mpk, so our idea is to replace it with a more powerful tool,
i.e., slotted registered broadcast encryption (RBE). In slotted RBE, each user
will register his slot index into mpk, and ciphertext is associated with a broad-
cast set (that is denoted by a bit string S ∈ {0, 1}L) and a message m. For a
user indexed by i, the decryption algorithm will recover m properly only when
S[i] = 1. As for security, we just need “minimal” IND security, which states
that the adversary cannot distinguish the ciphertext encrypted by either m0 or
m1 given public parameters. The reason why we call minimal security is that
the adversary is assumed to be unable to collude with any registered user. Let
sRBE = (Setup,Gen,Ver,Agg,Enc,Dec) be a slotted RBE with minimal security,
we depict 1-bound L-slot RFE as follows.

First, the aggregator initializes 2n instances of sRBE and obtains a sequence
of common random strings {crsw,b}w∈[n],b∈{0,1}. For each instance, it runs
sRBE.Gen to generate L public keys {̂pki,w,b}i∈[L],w∈[n],b∈{0,1}. Then set

crs = ({crsw,b}w∈[n],b∈{0,1}, {̂pki,w,b}i∈[L],w∈[n],b∈{0,1}).

For a user with slot index i, he samples (pki,w,b, ski,w,b) ← sRBE.Gen(crsw,b, i)
for each instance. Then set public key and secret key as

pki = ({pki,w,b}w∈[n],b∈{0,1}), ski = ({ski,w,b}w∈[n],b∈{0,1}).

Upon receiving {pki,Ci}i∈[L], the aggregator will initialize broadcast sets Sw,b ∈
{0, 1}L for each w ∈ [n] and b ∈ {0, 1}, then define master public key mpk and
helper secret key hskj (for slot j ∈ [L]) as follows:

mpk =
(

mpk1,0 · · · mpkn,0

mpk1,1 · · · mpkn,1

)

and hskj =
(

hskj,1,0 · · · hskj,n,0

hskj,1,1 · · · hskj,n,1

)

,

where for each w ∈ [n] and b ∈ {0, 1}, it involves two steps:

(i) for all i ∈ [L], set

(pki,w,b, Sw,b[i]) :=

{

(pki,w,b, 1), when Ci[w] = b,

(̂pki,w,b, 0), otherwise.

38 Y. Zhang et al.

(ii) run (mpk′
w,b, {hskj,w,b}j∈[L]) ← sRBE.Agg(crsw,b, {i, pki,w,b}i∈[L]) and set

mpkw,b = (mpk′
w,b, Sw,b).

The encryption algorithm works in a similar way. Briefly, we run algorithm
sRBE.Enc to generate the ciphertext:

ct =
(

Ũ,

(

sRBE.Enc(mpk1,0, lab1,0) · · · sRBE.Enc(mpkn,0, labn,0)
sRBE.Enc(mpk1,1, lab1,1) · · · sRBE.Enc(mpkn,1, labn,1)

))

,

where
(

Ũ, {labw,b}w∈[n],b∈{0,1}

)

← Garble(1λ,U[x]) and note that broadcast set
Sw,b has been contained in mpkw,b. The decryption follows algorithms sRBE.Dec
and Eval. At last, the security analysis is as follows:

– In corrupt case, suppose C∗ is the unique corrupted circuit, let bw = C∗[w]
and bw = 1 − C∗[w], then we have

Ũ,
{
sRBE.Enc(mpkw,bw

labw,bw)
}

w∈[n]
,
{
sRBE.Enc(mpkw,bw

, labw,bw
)
}

w∈[n]

≈ Ũ,
{
sRBE.Enc(mpkw,bw

, labw,bw)
}

w∈[n]
,
{
sRBE.Enc(mpkw,bw

, Random)
}

w∈[n]

≈ Ũ ,
{
sRBE.Enc(mpkw,bw

, l̃abw,bw)
}

w∈[n]
,
{
sRBE.Enc(mpkw,bw

,Random)
}

w∈[n]

where
(

˜U, {˜labw,bw
}w∈[n]

)

← ˜Garble(1λ,C∗(x)). The first ≈ follows the IND
security of slotted RBE, and the second ≈ follows the simulation security of
garbled circuits.

– In honest case, since the adversary has no idea about the secret key for some
honest circuit Ci �= C∗, he cannot acquire all labels {labw,Ci[w]}w∈[n]. Thus, it
is impossible to learn other information about x, including Ci(x).

Efficiency. It seems that 1-bound L-slot RFE is almost accomplished, because
slotted RBE with minimal security can be directly obtained from recent works
[26,34,45]. However, we observe above transformation has a vital drawback.
Recall that the compactness of slotted RBE requires mpk and hsk of size
poly(P, log L) where P denotes the size of broadcast space. Considering broad-
cast space is exactly [L] and broadcast set for encryption contains L bits, it is
completely reasonable that slotted RBE has the following properties:

|mpk| = poly(L), |hsk| = poly(L)
︸ ︷︷ ︸

Real compactness

, |ct| = poly(L)
︸ ︷︷ ︸

Real encryption

.

Unfortunately, applying such slotted RBE will immediately lead to mpk and
hsk of size poly(L) in our resulting construction since it does not reach the
compactness goal of slotted RFE, i.e.,

|mpk| = poly(C, log L), |hsk| = poly(C, log L)
︸ ︷︷ ︸

Ideal compactness

.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 39

Besides, the encryption algorithm would be extremely inefficient when L is a
large number.

To address this issue, we have to severely restrict the efficiency of underlying
slotted RBE. Specifically, we expect that the underlying slotted RBE provides

– Optimal compactness. It means |mpk| = poly(log L), |hsk| = poly(log L) and
ct = poly(log L). Thus, our 1-bound L-slot RFE naturally enjoys mpk and
hsk of size poly(C, log L), as well as compact ciphertext.

However, it seems rather tough to carry above thought into practice, because
such efficiency requirement (especially compact ciphertext) is too restrictive. As
an alternative solution, we pay attention to a weaker variant of RBE, called
global slotted RBE. Concretely, this primitive is identical to slotted RBE except
that its encryption always sets S = 1L as default. This is inspired by the fact
that the aggregator is generally assumed to be honest and transparent (implied
by common reference string model [34]). Therefore, it is unnecessary to assign
broadcast sets {Sw,b}w∈[n],b∈{0,1} for each component in ct, so we can directly
fixed them at 1L, which relieves us of the difficult task of designing broadcast
strategy in highly compact ciphertext.

In summary, a global slotted RBE with optimal compactness will yield a
1-bound L-slot RFE for circuits through our transformation (in Sect. 5). Then
the next question is how to obtain a concrete global slotted RBE. We claim
that this thing is not technically harder than constructing an RABE scheme.
In particular, global slotted RBE can be derived from RABE by applying the
generic transformation in [26] which was used to build flexible BE. This reflects
the universality of the primitive we proposed because several RABE schemes [26,
45] from suitable assumptions have been provided. Nevertheless, we remark that
this transformation seems a bit cumbersome, requiring a pair of dummy attribute
and policy for functionality and thus causing extra overhead on performance. In
this work, we present two global slotted RBE schemes (in Sects. 3 and 4) that do
not need any dummy attribute/policy while still achieving optimal compactness
and adaptive security.

As a result, we obtain two concrete 1-bound L-slot RFE for circuits that are
adaptively SIM secure under k-Lin assumption and (evasive) LWE assumption,
respectively2. Comparatively, although [18] has given a concrete 1-bound L-slot
RFE for circuits, it just achieves weaker selective IND security, relying on q-type
DDH assumption.

Step 2: Q-Bound L-Slot RFE. Here, we adopt Gorbunov et al.’s generic
transformation [32]. In essence, it exploits a reusable dynamic MPC protocol [11]
to upgrade 1-bound FE to Q-bound FE. This methodology is as well suitable
for the conversion from 1-bound L-slot RFE to Q-bound L-slot RFE (without
malicious case).

2 Our pairing-based construction has the same structure as the k-Lin distributed BE
in [37], because both of them are based on the BE scheme in [30]. Our lattice-based
construction can also be seen as a new application of witness encryption.

40 Y. Zhang et al.

Roughly speaking, we improves 1-bound security to Q-bound security by
implementing N instances of 1-bound slotted RFE in parallel, where N is a
system parameter dependent on Q. To resist the adversary colluding with Q
users, the encryption algorithm will divide data x into N secret shares, then use
these instances to encrypt each share. In the meantime, we restrict each user
only register into a part of N instances. For decryption, the user first computes
multiple local parts of C(x) using secret keys, then recovers the whole C(x) by
aggregating these local parts. In security reduction, Q-bound security are based
on the security of underlying 1-bound L-slot RFE and MPC protocol. Finally,
we manage to build a Q-bound L-slot RFE for circuits (in Sect. 6) which can be
later transformed into a full-fledged Q-bound RFE via “power-of-two” [25,34].

Towards Unbounded Users. As we can see, above generic construction only
supports a finite number of users, due to crs of size poly(L). Even so, we point out
that it can also be utilized to construct RFE supporting an arbitrary number of
users, as long as the underlying global slotted RBE supports unbounded users as
well. This can be done in Step 1 by removing all public keys {̂pki,w,b} in crs and
directly aggregating all public keys from users to generate mpk and hsk. In this
way, crs only consists of a limited number of global slotted RBE instances, so the
size of crs will naturally not scale with L if the crs of global slotted RBE does not
grow with L. Thereby, we obtain a concrete RFE for circuits enjoying unbounded
users property. Considering all parameters of size unavoidably growing with Q,
our unbounded notion is a bit weaker than earlier works [26,34], but this will
not be an issue due to the fact that Q � L.

1.3 Disscussion

Malicious Case. The technical barrier to tackle malicious case in Q-bound
slotted RFE lies on the fact that the challenger cannot ensure adversary gener-
ates secret key with right randomness. Although non-interactive zero-knowledge
arguments (NIZK) [18,45] would be helpful in simulating challenge ciphertext
with only public keys, the adversary can still control the generation of random-
ness which is essential to the upgradation from 1-bound security to Q-bound
security. Previously, only iO-based solution is known to resist malicious users,
and it aims at weak IND security. Therefore, we leave seeking new technology
to tackle malicious case in RFE for circuits without iO as a future work.
Dynamic Bounded Collusion Model. Recently, Agrawal et al. [7] and Garg
et al. [28] initiated the notion of dynamic bounded collusion model, where Q is
given in the encryption algorithm (instead of setup algorithm) and hence enable
to more flexibly select collusion bound while balancing performance. Compara-
tively, our RFE is static bounded collusion-resistant. At a high level, it is feasible
to spread the concept of dynamic bounded collusion-resistance to the registering
setting, then there is no need to require all parameters of size relevant to Q.
However, to our best knowledge, it seems necessary to build a dynamic bounded
RFE based on the existence of static bounded RFE [27]. Therefore, we believe
this work will motivate the study of dynamic bounded collusion-resistant RFE.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 41

Succinctness. One may want to ask whether it is possible to achieve succinct
RFE, i.e., the encryption overhead sublinear in the size of the circuit. Intuitively,
we can build a succinct 1-bound slotted RFE from our 1-bound slotted RFE
and a Laconic Function Evaluation (LFE). It is analogous to Quach et al.’s
transformation [38] applying on non-succinct 1-bound FE. Concretely, LFE can
be used to deterministically compress the large-sized registered circuit into a
short digest, then succinctness is guaranteed by performing RFE encryption
with respect to LFE encryption, as the overhead of LFE encryption is small.

1.4 Related Work

We mention other works to remove the trusted authority in FE. Chandran et
al. [19] introduced the notion of multi-authority functional encryption (MAFE),
then proposed a MAFE for arbitrary polynomial-time function based on subex-
ponentially secure iO and injective one-way functions. On the other hand,
Chotard et al. [20] formalized the notion of decentralized muliti-client functional
encryption (DMCFE) and gave the first instance supporting inner-product com-
putation, afterwards an elegant line of work [1,2,4] are devoted to this filed,
while all of them only focus on linear function. Furthermore, Chotard et al. [21]
formalized a new extension called dynamic decentralized functional encryption
(DDFE) that allows multiple users to join the system dynamically and generate
secret keys in a decentralized fashion. Beyond linear function, a recent work [9]
provided the first DDFE for attributed-weighted sums that includes arithmetic
branch programs. In addition, Agrawal et al. [5] initiated the study of multi-
party functional encryption (MPFE) that unifies a wide range of FE variants,
including but not limited to MAFE, DMCFE and DDFE.

2 Preliminaries

For a finite set S, we write s ← S to denote that s is picked uniformly from finite
set S. Then, we use |S| to denote the size of S. Let ≈s stand for two distribu-
tions being statistically indistinguishable, and ≈c denote two distributions being
computationally indistinguishable. For any x ∈ {0, 1}n, we use x[w] to denote
the w-th bit of x.

2.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description
G := (p, G1, G2, GT , e), where p is a prime, G1, G2 and GT are cyclic groups
of order p, and e : G1 × G2 → GT is a non-degenerate bilinear map. Group
operations in G1, G2, GT and bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the
respective generators, we employ implicit representation of group elements: for
a matrix M over Zp, we define [M]s = gMs ,∀s ∈ {1, 2, T}, where exponentiation
is carried out component-wise. Given [A]1, [B]2 where A and B have proper

42 Y. Zhang et al.

sizes, we let e([A]1, [B]2) = [AB]T . We review matrix decisional Diffie-Hellman
(MDDH) assumption, which is implied by k-Lin [24].

Assumption 1 ((k, �, d)-MDDH over Gs, s ∈ {1, 2}). Let k, �, d ∈ N with
k < �. We say that the (k, �, d)-MDDH assumption holds in Gs if for all efficient
adversaries A, the following advantage function is negligible in λ.

AdvMDDH
A,s,k,�,d(λ) =

∣

∣Pr[A(G, [M]s, [SM]s) = 1] − Pr[A(G, [M]s, [U]s) = 1]
∣

∣

where G := (p, G1, G2, GT , e) ← G(1λ), M ← Z

k×�
p , S ← Z

d×k
p and U ← Z

d×�
p .

2.2 Garbled Circuits

Algorithms. A garbled circuit scheme [15,42] (with input x ∈ {0, 1}n and
circuit family C) consists of two efficient algorithms as follows:

– Garble(1λ,C) → (C̃, {labw,b}w∈[n],b∈{0,1}). It takes as input security parameter
1λ and a circuit C ∈ C, and then outputs a garbled circuit C̃ and labels
{labw,b}w∈[n],b∈{0,1}.

– Eval(C̃, {labw,x[w]}w∈[n]) → z. It takes as input a garbled circuit C̃ and a
sequence of input labels {labw,x[w]}w∈[n], and then deterministically outputs
a value z.

Without loss of generality, we assume that the size of each label labw,b is O(λ).
Note that above definition from Yao’s garbled circuits suffices for our construc-
tion, while the performance of garbled circuits may be further improved through
the techniques of [14,43].
Correctness. For all λ, for any circuit C and input x ∈ {0, 1}n, we have

Pr[Eval(C̃, {labw,x[w]}w∈[n]) = C(x) | (C̃, {labw,b}w∈[n],b∈{0,1}) ← Garble(1λ,C)] = 1.

Security. There exists a simulator ˜Garble such that for any circuit C and input
x ∈ {0, 1}n, we have

(

C̃, {labw,x[w]}w∈[n]

)

≈c
˜Garble(1λ,C(x))

where (C̃, {labw,b}w∈[n],b∈{0,1}) ← Garble(1λ,C).

2.3 Global Slotted Registered Broadcast Encryption

Algorithms. A global slotted registered broadcast encryption (global slotted
RBE for short) consists of six efficient algorithms as follows:

– Setup(1λ, 1L) → crs. It takes as input the security parameter 1λ, the upper
bound 1L of the number of slots, outputs a common reference string crs.

– Gen(crs, i) → (pki, ski). It takes as input crs and i ∈ [L], outputs a key pair
(pki, ski).

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 43

– Ver(crs, i, pki) → 0/1. It takes as input crs, i, pki, outputs a bit indicating
whether pki is valid.

– Agg(crs, {i, pki}i∈[L]) → (mpk, {hskj}j∈[L]). It takes as input crs and a series
of pki with slot index i for all i ∈ [L], outputs master public key mpk and a
series of helper keys hskj for all j ∈ [L].

– Enc(mpk,m) → ct. It takes as input mpk and a message m, outputs a cipher-
text ct.

– Dec(hski∗ , ski∗ , ct) → m/ ⊥ . It takes as input hski∗ , ski∗ , ct, outputs m or an
empty symbol ⊥.

Completeness. For all λ,L ∈ N, and all i ∈ [L], we have

Pr
[

Ver(crs, i, pki) = 1|crs ← Setup(1λ, 1L); (pki, ski) ← Gen(crs, i)
]

= 1.

Correctness. For all λ,L ∈ N, and all i∗ ∈ [L], all crs ← Setup(1λ, 1L), all
(pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that Ver(crs, i, pki) = 1, and
all m, we have

Pr

[

Dec(hski∗ , ski∗ , ct) = m

∣

∣

∣

∣

∣

(mpk, {hskj}j∈[L]) ← Agg(crs, {i, pki}i∈[L])
ct ← Enc(mpk,m)

]

= 1.

Optimal Compactness. For all λ,L ∈ N, and all i ∈ [L], it holds that

|mpk| = poly(λ, log L) and |hski| = poly(λ, log L).

In addition, it requires |ct| = poly(λ, log L).
Indistinguishability-Based (IND) Security. For all λ ∈ N and all efficient
adversaries A, the indistinguishability-based security requires the advantage

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

L ← A(1λ); crs ← Setup(1λ, 1L)
({i, pk∗

i }i∈[L],m
∗
0,m

∗
1) ← AOGen(·).OCor(·)(crs)

(mpk, {hskj}j∈[L]) ← Agg(crs, {i, pk∗
i }i∈L)

b ← {0, 1}; ct∗ ← Enc(mpk,m∗
b); b

′ ← A(ct∗)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

is negligible in λ, where oracles OGen,OCor work with initial setting {Di =
∅}i∈[L], C = ∅ as follows:

– OGen(i): run (pk, sk) ← Gen(crs, i), set Di[pk] = sk and return pk.
– OCor(i, pk): return Di[pk] and update C = C ∪ {(i, pk)}.

and for all i ∈ [L], we require Di[pk∗
i] �=⊥ and (i, pk∗

i) /∈ C.
Indeed, global slotted RBE can be seen as a plain slotted RBE which always

set broadcast set as 1L and achieves the minimal security, i.e., IND security only
under honest case.

44 Y. Zhang et al.

2.4 Q-Bound Slotted Registered Functional Encryption

Algorithms. A Q-bound slotted registered functional encryption (Q-bound
slotted RFE for short) for circuit family C : X → Z consists of six efficient
algorithms as follows:

– Setup(1λ, 1L, 1Q, C) → crs. It takes as input the security parameter 1λ, upper
bound 1L of the number of slots, collusion bound 1Q and circuit family C,
outputs a common reference string crs.

– Gen(crs, i) → (pki, ski). It takes as input crs and slot index i ∈ [L], outputs a
key pair (pki, ski).

– Ver(crs, i, pki) → 0/1. It takes as input crs, i, pki, outputs a bit indicating
whether pki is valid.

– Agg(crs, {pki,Ci}i∈[L]) → (mpk, {hskj}j∈[L]). It takes as input crs and a series
of pki with Ci ∈ C for all i ∈ [L], outputs master public key mpk and a series
of helper keys hskj for all j ∈ [L]. This algorithm is deterministic.

– Enc(mpk, x) → ct. It takes as input mpk, x ∈ X, outputs a ciphertext ct.
– Dec(hski∗ , ski∗ , ct) → z/ ⊥ . It takes as input hski∗ , ski∗ , ct, outputs z ∈ Z or

an empty symbol ⊥.

Completeness. For all λ,L ∈ N, all Q � L and all C, and all i ∈ [L], we have

Pr
[

Ver(crs, i, pki) = 1|crs ← Setup(1λ, 1L, 1Q, C); (pki, ski) ← Gen(crs, i)
]

= 1.

Correctness. For all λ,L ∈ N, all Q � L and all C, and all i∗ ∈ [L], all
crs ← Setup(1λ, 1L, 1Q, C), all (pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such
that Ver(crs, i, pki) = 1, all x ∈ X and C1, . . . ,CL ∈ C, we have

Pr

[

Dec(hski∗ , ski∗ , ct) = Ci∗ (x)

∣∣
∣∣
∣

(mpk, {hskj}j∈[L]) ← Agg(crs, {pki,Ci}i∈[L])

ct ← Enc(mpk, x)

]

= 1.

Compactness. For all λ,L ∈ N, all Q � L and all C, and all i ∈ [L], it
holds that

|mpk| = poly(λ,C,Q, log L) and |hski| = poly(λ,C,Q, log L).

Simulation-Based (SIM) Security. For all λ ∈ N and all efficient adversaries
A, the adaptive simulation-based security requires that there exists simulator
˜Enc such that:

∣
∣
∣
∣
∣
∣
∣
∣
∣

(L, Q) ← A(1λ); crs ← Setup(1λ, 1L, 1Q, C)

({pk∗
i ,C∗

i }i∈[L], x∗) ← AOGen(·),OCor(·)(crs)
(mpk, {hskj}j∈[L]) ← Agg(crs, {pk∗

i ,C∗
i }i∈L)

ct∗ ← Enc(mpk, x∗);α ← A(ct∗)

∣
∣
∣
∣
∣
∣
∣
∣
∣

≈c

∣
∣
∣
∣
∣
∣
∣
∣
∣

(L, Q) ← A(1λ); crs ← Setup(1λ, 1L, 1Q, C)

({pk∗
i ,C∗

i }i∈[L], x∗) ← AOGen(·),OCor(·)(crs)
(mpk, {hskj}j∈[L]) ← Agg(crs, {pk∗

i ,C∗
i }i∈L)

c̃t
∗ ← Ẽnc(mpk, K);α ← A(c̃t

∗
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

where oracles OGen,OCor work with initial setting {Di = ∅}i∈[L], C = ∅ and
K = ∅ as follows:

– OGen(i): run (pk, sk) ← Gen(crs, i), set Di[pk] = sk and return pk.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 45

– OCor(i, pk): return Di[pk] and update C = C ∪ {(i, pk)}.

Here, We consider the notion of Q-bound SIM security without malicious case.
More concretely, it requires (i) Di[pk∗

i] �=⊥ for all i ∈ [L]; (ii) for each (i, pk∗
i) ∈ C

where |C| ≤ Q3, set K = K ∪ {(i,C∗
i ,C

∗
i (x

∗),Di[pk∗
i])}.

2.5 Q-Bound Registered Functional Encryption

Algorithms. A Q-bound registered functional encryption (Q-bound RFE for
short) for circuit family C : X → Z consists of six efficient algorithms as follows:

– Setup(1λ, 1L, 1Q, C) → crs. It takes as input the security parameter 1λ, the
maximum number of users 1L, collusion bound 1Q and circuit family C, out-
puts a common reference string crs.

– Gen(crs, aux) → (pk, sk). It takes as input crs and state aux, outputs key pair
(pk, sk).

– Reg(crs, aux, pk,C) → (mpk, aux′). It takes as input crs, aux, pk along with
C ∈ C, outputs master public key mpk and updated state aux′.

– Upd(crs, aux, pk) → hsk. It takes as input crs, aux, pk, outputs a helper key
hsk.

– Enc(mpk, x) → ct. It takes as input mpk, x ∈ X, outputs a ciphertext ct.
– Dec(hsk, sk, ct) → z/ ⊥ /getupd. It takes as input hsk, sk, ct, outputs z ∈ Z

or an empty symbol ⊥ to indicate a decryption failure, or a symbol getupd
to indicate the need of an updated helper key.

Correctness. For all stateful adversary A, the following advantage function is
negligible in λ:

Pr[b = 1|crs ← Setup(1λ, 1L, 1Q, C); b = 0;AORegNT(·,·),ORegT(·),OEnc(·,·),ODec(·)(crs)]

where the oracles work as follows with initial setting aux = ⊥, E = ∅, R = ∅ and
t = ⊥:

– ORegNT(pk,C): run (mpk, aux′) ← Reg(crs, aux, pk,C), update aux = aux′,
append (mpk, aux) to R and return (|R|,mpk, aux);

– ORegT(C∗):
run (pk∗, sk∗) ← Gen(crs, aux), (mpk, aux′) ← Reg(crs, aux, pk∗,C∗), update
aux = aux′, compute hsk∗ ← Upd(crs, aux, pk∗), append (mpk, aux) to R,
return (t = |R|,mpk, aux, pk∗, sk∗, hsk∗);

– OEnc(i, x): let R[i] = (mpk, ·) and run ct ← Enc(mpk, x), append (x, ct) to E
and return (|E|, ct);

– ODec(j): let E [j] = (xj , ctj), compute zj ← Dec(hsk∗, sk∗, ctj). If
zj = getupd, run hsk∗ ← Upd(crs, aux, pk∗) and recompute zj ←
Dec(hsk∗, sk∗, ctj). Set b = 1 when zj �= C∗(xj).

3 Here, we consider the bounded collusion model in a weak sense, i.e., the number
of corruption queries is restricted. Nevertheless, our 1-bound RFE construction is
still secure, even allowing arbitrary polynomial number of corruption queries and
the existence of malicious user.

46 Y. Zhang et al.

with the following restrictions:

– there exists one query to ORegT;
– for query (i, x) to OEnc, it holds that t ≥ i,R[i] �= ⊥;
– for query (j) to ODec, it holds that E [j] �= ⊥.

Compactness and Update Efficiency. For all λ,L ∈ N, all Q � L and all
C, it holds that

|mpk| = poly(λ,C,Q, log L) and |hsk| = poly(λ,C,Q, log L).

Furthermore, the number of invocations of Upd in ODec is at most O(log |R|)
and each invocation costs poly(log |R|) time.
Simulation-Based (SIM) Security. For all λ ∈ N and all efficient adversaries
A, the adaptive simulation-based security requires that there exists simulator
˜Enc such that:

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Setup(1λ, 1L, 1Q, C)
x∗ ← AORegHK(·),OCorHK(·)(crs)
ct∗ ← Enc(mpk, x∗)
AOCorHK(·)(ct∗);α ← A(ct∗)

∣

∣

∣

∣

∣

∣

∣

∣

≈c

∣

∣

∣

∣

∣

∣

∣

∣

∣

crs ← Setup(1λ, 1L, 1Q, C)
x∗ ← AORegHK(·),OCorHK(·)(crs)
˜ct

∗ ← ˜Enc(mpk,K);
AOCorHK(·)(˜ct

∗
);α ← A(˜ct

∗
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

where oracles ORegHK,OCorHK work with initial setting mpk =⊥, aux =⊥,R =
∅, C = ∅,K = ∅ and D being a dictionary with D[pk] = ∅ for all possible pk:

– ORegHK(C):
run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk,C), update
mpk = mpk′, aux = aux′,D[pk] = D[pk] ∪ {C}, append (pk, sk) to R and
return (|R|,mpk, aux, pk);

– OCorHK(i): let R[i] = (pk, sk) and C = D[pk], append pk to C and return sk.

Similarly, we require the Q-bound SIM security without malicious case. More
concretely, it requires (i) R[i] �=⊥ for each query i to OCorHK; (ii) for each
(i, pk∗

i) ∈ C where |C| ≤ Q, let R[i] = (pk∗
i , sk

∗
i) and Ci = D[pk∗

i], set K =
K ∪ {(i,C∗

i ,C
∗
i (x

∗), sk∗
i)}.

3 Pairing-Based Global Slotted RBE

In this section, we present a global slotted RBE relying on MDDH assumption.

3.1 Construction

Our construction works as follows:

– Setup(1λ, 1L) : Generate G := (p, G1, G2, GT , e) ← G(1λ) and sample

A ← Z

k×(k+1)
p ,B ← Z

(k+1)×k
p ,k ← Z

1×(k+1)
p .

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 47

For all i ∈ [L], sample Vi ← Z

(k+1)×(k+1)
p , ri ← Z

1×k
p . Output

crs =

(

[A]1, {[AVi]1, [Br�
i ,ViBr�

i + k�]2}i∈[L],

{[ViBr�
j]2}j∈[L],i∈[L]\{j}, [Ak�]T

)

.

– Gen(crs, i) : Sample Ui ← Z

(k+1)×(k+1)
p , output pki = ([AUi]1,

{[UiBr�
j]2}j∈[L]\{i}) and ski = Ui.

– Ver(crs, i, pki) : Parse the public key pki = ([AUi]1, {[UiBr�
j]2}j∈[L]\{i}). For

each j ∈ [L] \ {i}, check

e([A]1, [UiBr�
j]2)

?= e([AUi]1, [Br�
j]2).

If above checks pass, output 1; otherwise, output 0.
– Agg(crs, {i, pki}i∈[L]) : For all i ∈ [L], parse pki = ([AUi]1,

{[UiBr�
j]2}j∈[L]\{i}). Output

mpk =

⎛

⎝[A]1, [Ak�]T ,

⎡

⎣

∑

j∈[L]

(AVj + AUj)

⎤

⎦

1

⎞

⎠ ,

and for all i ∈ [L], output

hski =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[Br�
i

︸︷︷︸

k�
0

]2, [ViBr�
i + k�

︸ ︷︷ ︸

k�
1

]2,

[

∑

j∈[L]\{i}
(VjBr�

i + UjBr�
i)

︸ ︷︷ ︸

k�
2

]

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

– Enc(mpk,m) : Parse mpk =
(

[A]1, [Ak�]T ,
[

∑

j∈[L](AVj + AUj)
]

1

)

. Sample

s ← Z

1×k
p , output

ct =

⎛

⎜

⎜

⎜

⎜

⎝

[sA
︸︷︷︸

c0

]1,

[

∑

j∈[L]

(sAVj + sAUj)

︸ ︷︷ ︸

c1

]

1

, [sAk�]T · m
︸ ︷︷ ︸

C

⎞

⎟

⎟

⎟

⎟

⎠

.

– Dec(hski∗ , ski∗ , ct) : Parse ski∗ = Ui∗ , hski∗ = ([k�
0]2, [k

�
1]2, [k

�
2]2) and ct =

([c0]1, [c1]1, C). Compute

[z1]T = e([c1]1, [k�
0]2), [z2]T = e([c0]1, [k�

2]2),
[z3]T = e([c0Ui∗]1, [k�

0]2), [z4]T = e([c0]1, [k�
1]2),

[z5]T = [z1 − z2 − z3 − z4]T ,

and output z = C · [z5]T .

48 Y. Zhang et al.

Completeness and Optimal Compactness. For completeness, it just fol-
lows the definition of bilinear map e and the fact A · UiBr�

j = AUi · Br�
j .

As for optimal compactness, it is easy to see that the above construction sat-
isfies our requirements, i.e., |mpk| = poly(λ, log L), |hski| = poly(λ, log L) and
|ct| = poly(λ, log L).

Correctness. For all λ,L ∈ N, all P , all i∗ ∈ [L], all crs ← Setup(1λ, 1L), all
(pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that Ver(crs, i, pki) = 1, for all
m, we have

hski∗ = ([k�
0]2, [k

�
1]2, [k

�
2]2), ct = ([c0]1, [c1]1, C).

We obtain

z1 =
∑

i∈[L](sAViBr�
i∗ + sAUiBr�

i∗),
z2 =

∑

i∈[L]\{i∗}(sAViBr�
i∗ + sAUiBr�

i∗),
z3 = sAUi∗Br�

i∗ ,

z4 = sAVi∗Br�
i∗ + sAk�,

and then

z5 = z1 − z2 − z3 − z4 = −sAk�.

Finally, we have z = C · [z5]T = m. This proves the correctness.

3.2 Security

Theorem 1. Assume MDDH assumption holds, our pairing-based global slotted
RBE achieves the IND security in the standard model as defined in Sect. 2.3.

Proof. The proof is presented in the full version. ��

4 Lattice-Based Global Slotted RBE

In this section, we give a global slotted RBE construction based on function-
binding hash function (relying on LWE assumption) [26] and witness encryption
(relying on evasive LWE assumption) [40]. This construction is adapted from
slotted RABE (with a public randomized aggregation procedure) in [26]. Con-
cretely, we initially construct a global slotted RBE construction that achieves
adaptive security subject to the restriction that adversary does not make any
corruption queries. Then we use the “two-key” technology [30] to remove this
restriction and obtain a global slotted RBE that achieves the adaptive security
(as defined in Sect. 2) in the random oracle.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 49

4.1 Construction Without Corruption

Assume a public key encryption PKE = (Setup,Enc,Dec) with all parameters
of size poly(λ), a function-binding hash function FBH = (Setup,Hash,Open,Ver)
with block size min = λ + log L, and a witness encryption WE = (Enc,Dec) for
a NP language L with witness relation R defined as follows:

R((hk, pk, dig), (i, ct, r, π)) = 1
⇔ ct = PKE.Enc(pk, 1; r) ∧ FBH.Ver(hk, dig, {i}, {(i, (i, ct))}, π) = 1

our construction is as follows:

– Setup(1λ, 1L) : Run (pk, sk) ← PKE.Setup(1λ) and hk ← FBH.Setup(1λ, L),
and output the common reference string crs = (pk, hk).

– Gen(crs, i) : Parse crs = (pk, hk). Sample r ← {0, 1}λ and run ct ←
PKE.Enc(pk, 1; r), then output pki = ct and ski = r.

– Ver(crs, i, pki) : Check whether pki is a valid ciphertext of PKE. If so, output
1; otherwise, output 0.

– Agg(crs, {i, pki}i∈[L]) : Parse crs = (pk, hk). Then run

dig ← FBH.Hash(hk, ((1, pk1), . . . , (L, pkL))),
πi ← FBH.Open(hk, ((1, pk1), . . . , (L, pkL)), {i}),∀ i = 1, . . . , L.

Output the master public key mpk = (crs, dig) and the helper secret key
hskj = (j, πj , pkj) for all j ∈ [L].

– Enc(mpk,m) : Parse mpk = ((pk, hk), dig). Output the ciphertext

ct ← WE.Enc(1λ, (hk, pk, dig),m).

– Dec(hski∗ , ski∗ , ct) : Parse hski∗ = (i∗, πi∗ , pki∗). Output

m = WE.Dec(ct, (i∗, pki∗ , ski∗ , πi∗)).

Optimal Compactness and Unbounded Users. Note that |crs| = |pk| +
|hk| = poly(λ, log L), |mpk| = |crs| + |dig| = poly(λ, log L), |hskj | = |j| + |πj | +
|pkj | = poly(λ, log L), and the runtime for algorithms PKE.Enc and FBH.Ver are
at most poly(λ, log L), so above construction supports optimal compactness and
unbounded users.

Correctness. For all λ,L ∈ N, all C, and all i∗ ∈ [L], all crs ← Setup(1λ, 1L, C)
where crs = (pk, hk), all (pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that
Ver(crs, i, pki) = 1, and all message m, we have mpk = (crs, dig) and hski∗ =
(i∗, πi∗ , pki∗), where

dig ← FBH.Hash(hk, ((1, pk1), . . . , (L, pkL))),
πi∗ ← FBH.Open(hk, ((1, pk1), . . . , (L, pkL)), {i∗}).

50 Y. Zhang et al.

Then the ciphertext is computed as

ct ← WE.Enc(1λ, (hk, pk, dig),m).

For decryption, we state that hski∗ = (i∗, πi∗ , pki∗) along with ski∗ is a valid wit-
ness for the statement (hk, pk, dig), because pki∗ = PKE.Enc(pk, 1; ski∗), and
FBH.Ver(hk, dig, {i∗}, {(i∗, (i∗, pki∗))}, πi∗) = 1 by the completeness of FBH.
Thus, by the correctness of witness encryption, we have

WE.Dec(ct, (i∗, pki∗ , ski∗ , πi∗)) = m.

4.2 Security

Theorem 2. Assume PKE = (Setup,Enc,Dec) is a public key encryption with
semantic security, FBH = (Setup,Hash,Open,Ver) is a function-binding hash
function with function hiding and function bind properties, and WE = (Enc,Dec)
is a secure witness encryption, our global slotted RBE achieves the adaptive IND
security without corruption.

Proof. The proof is presented in the full version. ��

4.3 Final Construction

Assume a hash function H : {0, 1}∗ → {0, 1}L that can be modeled
as random oracle, a global slotted RBE without corruption gsRBEwc =
(Setup,Gen,Ver,Agg,Enc,Dec) that all parameters are of size poly(λ), our final
construction is as follows:

– Setup(1λ, 1L) : Run crs ← gsRBEwc.Setup(1λ) and output the common refer-
ence string crs.

– Gen(crs, i) : Sample two pairs of public key and secret

(pk0, sk0) ← gsRBEwc.Gen(crs, i), (pk1, sk1) ← gsRBEwc.Gen(crs, i).

Then sample a random bit β ← {0, 1} and s ← {0, 1}λ, output pki =
(pk0, pk1, s), ski = (β, skβ).

– Ver(crs, i, pki) : Parse pki = (pki,0, pki,1, si). If both pki,0 and pki,1 pass the
check of algorithm gsRBEwc.Ver, and si ∈ {0, 1}λ, output 1; otherwise, output
0.

– Agg(crs, {i, pki}i∈[L]) : Parse pki = (pki,0, pki,1, si). Compute (h1, . . . , hL) ←
H(crs, (1, pk1), . . . , (L, pkL)) and let hi = 1 − hi for all i ∈ [L]. Then run

(mpk0, {hskj,0}j∈[L]) ← gsRBEwc.Agg(crs, ((1, pk1,h1
), . . . , (L, pkL,hL

))),

(mpk1, {hskj,1}j∈[L]) ← gsRBEwc.Agg(crs, ((1, pk1,h1
), . . . , (L, pkL,hL

))).

Output the master public key mpk = (mpk0,mpk1) and the helper secret key
hskj = (hj , hskj,0, hskj,1) for all j ∈ [L].

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 51

– Enc(mpk,m) : Parse mpk = (mpk0,mpk1), output ct = (ct0, ct1), where ct0 ←
gsRBEwc.Enc(mpk0,m) and ct1 ← gsRBEwc.Enc(mpk1,m).

– Dec(hski∗ , ski∗ , ct) : Parse hski∗ = (hi∗ , hski∗,0, hski∗,1), ski∗ = (βi∗ , skβi∗) and
ct = (ct0, ct1). If βi∗ = hi∗ , output m = gsRBEwc.Dec(hski∗,0, ski∗,βi∗ , ct0);
otherwise, output m = gsRBEwc.Dec(hski∗,1, ski∗,βi∗ , ct1).

Optimal Compactness and Unbounded Users. Note that the final con-
struction consists of two instances for gsRBEwc, so it will meet optimal compact-
ness (resp., unbounded users) as long as gsRBEwc meets optimal compactness
(resp., unbounded users).

Correctness. Informally, the public key pki∗,βi∗ corresponding to secret key
ski∗,βi∗ is either registered into mpk0 (when βi∗ = hi∗) or mpk1 (when βi∗ = hi∗),
then it can recover message m properly following the correctness of gsRBEwc.

As for security, this construction achieves the adaptive IND security in ran-
dom oracle model and it allows the query to corruption oracle OCor. The proof
strategy is analogous to [26]. The difference lies on the fact that we do not require
any challenge policy, so our construction is naturally adaptively IND secure.

Finally, we obtain an Q-bound slotted RFE for circuits via the compiler in
Sects. 5 and 6, and we can modify the compiler to achieve unbounded users
by eliminating all {̂pki,w,b} of crs and just setting pki,w,b = pki,w,b only when
Ci[w] = b. Here, due to the good traits of FBH, algorithm sRBE.Agg still works
as usual when the number of registered public keys is less than L.

5 1-Bound Slotted RFE for Circuits

With global slotted RBE, we present a slotted RFE scheme for circuits with
adaptive 1-bound SIM security.

5.1 Construction

For some circuit family C : X → Z, let U(·, ·) be the universal circuit such
that U(C, x) = C(x) for any circuit C ∈ C and input x ∈ X. Assume a garbled
circuit scheme GC = (Garble,Eval) where n is the input length of the circuit,
and a global slotted registered broadcast encryption gsRBE = (Setup,Gen,Ver,
Agg,Enc,Dec), then our 1-bound slotted RFE for circuits (set Q = 1 as default)
works as follows:

– Setup(1λ, 1L, C) : Run gsRBE.Setup(1λ, 1L) 2n times and obtain
{crsw,b}w∈[n],b∈{0,1}. For all w ∈ [n] and b ∈ {0, 1}, run gsRBE.Gen(crsw,b, i)
for all i ∈ [L], omit secret keys and obtain valid public keys
{̂pki,w,b}i∈[L],w∈[n],b∈{0,1}. Output

crs = ({crsw,b}w∈[n],b∈{0,1}, {̂pki,w,b}i∈[L],w∈[n],b∈{0,1}).

52 Y. Zhang et al.

– Gen(crs, i) : For all w ∈ [n] and b ∈ {0, 1}, run (pki,w,b, ski,w,b) ←
gsRBE.Gen(crsw,b, i). Output

pki = ({pki,w,b}w∈[n],b∈{0,1}), ski = ({ski,w,b}w∈[n],b∈{0,1}).

– Ver(crs, i, pki) : For all w ∈ [n] and b ∈ {0, 1}, run βw,b ←
gsRBE.Ver(crsw,b, i, pki,w,b), and if βw,b = 0, output 0 and abort. Otherwise,
output 1.

– Agg(crs, {pki,Ci}i∈[L]) : Parse Ci = (Ci[1], . . . ,Ci[n]) ∈ {0, 1}n and pki =
({pki,w,b}w∈[n],b∈{0,1}). For all i ∈ [L] and all w ∈ [n], b ∈ {0, 1}, set

pki,w,b :=

{

pki,w,b, when Ci[w] = b,
̂pki,w,b, otherwise.

Then run (mpkw,b, {hskj,w,b}j∈[L]) ← gsRBE.Agg(crsw,b, {i, pki,w,b}i∈[L]).
Output

mpk = ({mpkw,b}w∈[n],b∈{0,1}), hskj = (Cj , {hskj,w,b}w∈[n],b∈{0,1}).

– Enc(mpk, x) : Let U[x] be the universal circuit with x hard-wired. Run

(Ũ, {labw,b}w∈[n],b∈{0,1}) ← GC.Garble(1λ,U[x]).

For all w ∈ [n], b ∈ {0, 1}, run

ctw,b ← gsRBE.Enc(mpkw,b, labw,b).

Output ct = (Ũ, {ctw,b}w∈[n],b∈{0,1}).
– Dec(hski∗ , ski∗ , ct) : Parse hski∗ = (Ci∗ , {hski∗,w,b}w∈[n],b∈{0,1}) and ski∗ =

({ski∗,w,b}w∈[n],b∈{0,1}). For all w ∈ [n], let bw = Ci∗ [w] and run

mw,bw
← gsRBE.Dec(hski∗,w,bw

, ski∗,w,bw
, ctw,bw

).

Thus, we output

z ← GC.Eval(Ũ, {mw,bw
}w∈[n]).

Remark. The above generic construction can be instantiated by any global slotted
RBE scheme, but it does not support unbounded users, i.e., crs not scaling with
L. Indeed, if we adopt the construction in Sect. 4, we can improve it into the one
supporting unbounded users by removing all public keys {̂pki,w,b} in algorithm
Setup and directly letting pki,w,b = pki,w,b when Ci[w] = b.

Completeness and Compactness. For completeness, it follows the underly-
ing slotted RBE. In other words, if slotted RBE in above construction meets
completeness, then it holds that

Pr [gsRBE.Ver(crsw,b, i, pki) = 1] = 1

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 53

for all w ∈ [n] and all b ∈ {0, 1}. Thus, the completeness of our construction
follows readily.

For compactness, thanks to the optimal compactness of gsRBE, our 1-bound
slotted RFE scheme has the following properties:

|mpk| = 2n · poly(λ, log L), |hskj | = 2n · poly(λ, log L)

where n is related to circuit family C. Thus, our construction meets the com-
pactness requirement.

Correctness. For all λ,L ∈ N, all C, and all i∗ ∈ [L], all crs ← Setup(1λ, 1L, C),
all (pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that Ver(crs, i, pki) = 1, all
x ∈ X and C1, . . . ,CL ∈ C, we have ski∗ = ({ski,w,b}w∈[n],b∈{0,1}) and

ct =
(

Ũ,

(

gsRBE.Enc(mpk1,0, lab1,0) · · · gsRBE.Enc(mpkn,0, labn,0)
gsRBE.Enc(mpk1,1, lab1,1) · · · gsRBE.Enc(mpkn,1, labn,1)

))

.

Here, each mpkw,b is generated from {i, pki,w,b}i∈[L]. Note that in algorithm Enc,
we have

pki,w,b :=

{

pki,w,b, when Ci[w] = b,
̂pki,w,b, otherwise.

Here, ski∗,w,b is the secret key of pki∗,w,b only when Ci∗ [w] = b. Thus, after
computing all mw,b, nothing else can be obtained except for {labi∗,w,bw

}w∈[n].
Then it follows the correctness of garbled circuits to compute z = U(Ci∗ , x) =
Ci∗(x). Therefore, the correctness follows readily.

5.2 Security

Theorem 3. Assume GC = (Garble,Eval) is a secure garbled circuits scheme
and gsRBE = (Setup,Gen,Ver,Agg,Enc,Dec) is a global slotted RBE scheme
with optimal compactness which achieves the IND security defined in Sect. 2.3,
our construction achieves the 1-bound SIM security defined in Sect. 2.4.

Proof. let C∗ be the circuit corresponding to the unique corrupted user. Just
as the security analysis presented in Sect. 1.2, our proof strategy follows the
security of underlying global slotted RBE and garbled circuits. Concretely, we
randomize all labels {˜labw,1−C∗[w]}w∈[n] one by one (from Game1,κ−1 to Game1,κ),
via the IND security of global slotted RBE. Then we can simulate rest labels
(from Game1,n to Game2) via the security of garbled circuits. In final game, the
challenge ciphertext will only disclose C∗(x∗) and nothing else. Here, we define
the simulator ˜Enc that works as follows:

– ˜Enc(mpk, (i∗,C∗,C∗(x∗), ski∗)): Parse mpk = ({mpkw,b}w∈[n],b∈{0,1}). Run
(

C̃∗, {˜labw,C∗[w]}w∈[n]

)

← ˜Garble(1λ,C∗(x)).

54 Y. Zhang et al.

Then sample ˜labw,1−C∗[w] ← {0, 1}λ for all w ∈ [n]. Set

ct∗ =
(

C̃∗,

(

ct∗1,0 · · · ct∗n,0

ct∗1,1 · · · ct∗n,1

))

=

(

C̃∗,

(

gsRBE.Enc(mpk1,0,
˜lab1,0) · · · gsRBE.Enc(mpkn,0,

˜labn,0)
gsRBE.Enc(mpk1,1,

˜lab1,1) · · · gsRBE.Enc(mpkn,1,
˜labn,1)

))

.

The algorithm ˜Enc actually does not need ski∗ , so our resulting construction can
resist single malicious user.

Game Sequence. We prove Theorem 3 via a sequence of games as follows:

– Game0: this game is identical to the real experiment of adaptive 1-SIM secu-
rity. Recall that

• crs has the form:

crs = ({crsw,b}w∈[n],b∈{0,1}, {̂pki,w,b}i∈[L],w∈[n],b∈{0,1}).

where crsw,b and ̂pki,w,b are generated from the underlying slotted RBE
algorithms gsRBE.Setup and gsRBE.Gen, respectively.

• For each i ∈ [L], (pki, ski) are in the form:

pki = ({pki,w,b}w∈[n],b∈{0,1}), ski = ({ski,w,b}w∈[n],b∈{0,1}).

where (pki,w,b, ski,w,b) are sampled from algorithm gsRBE.Gen.
• The master public key mpk and helper secret key hskj has the form

mpk =
(

mpk1,0 · · · mpkn,0

mpk1,1 · · · mpkn,1

)

, hskj =
(

Cj ,

(

hskj,1,0 · · · hskj,n,0

hskj,1,1 · · · hskj,n,1

))

,

where for each w ∈ [n], b ∈ {0, 1}, mpkw,b is computed as

pki,w,b :=

{

pki,w,b, when Ci[w] = b
̂pki,w,b, otherwise.

Then obtain (mpkw,b, {hskj,w,b}j∈[L]) ← gsRBE.Agg(crsw,b,

{i, pki,w,b}i∈[L]).
• The challenge ciphertext ct∗ has the form

ct∗ =
(

Ũ,

(

ct∗1,0 · · · ct∗n,0

ct∗1,1 · · · ct∗n,1

))

=
(

Ũ,

(

gsRBE.Enc(mpk1,0, lab1,0) · · · gsRBE.Enc(mpkn,0, labn,0)
gsRBE.Enc(mpk1,1, lab1,1) · · · gsRBE.Enc(mpkn,1, labn,1)

))

,

where (Ũ, {labw,b}w∈[n],b∈{0,1}) ← GC.Garble(1λ,U[x∗]).

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 55

– Game1.κ(κ ∈ [n]): Game1.κ is identical to Game0 except that for each w ≤ κ,
set bw = C∗[w] and bw = 1 − C∗[w], we have

ct∗w,bw
← gsRBE.Enc(mpkw,bw

, sw,bw
, labw,bw

),

ct∗
w,bw

← gsRBE.Enc(mpkw,bw
, sw,bw

, ˜labw,bw
),

where ˜labw,bw
is randomly sampled from {0, 1}λ.

– Game2: this game is identical to Game1,n except that it replaces Enc with
˜Enc to generate the challenge ciphertext ct∗.

Lemma 1 (Game1,κ−1 ≈c Game1,κ). For any efficient adversary A, there exists
an algorithm B1 with close running time to A such that

|Adv1,κ−1
A (λ) − Adv1,κ

A (λ)| ≤ 2 · AdvgsRBEB1
(λ) + negl(λ).

Proof. Initially, B1 receives upper bound L from A. Then B1 flips a coin β ←
{0, 1} and sends L to the challenger of gsRBE. Then B1 proceeds following phases:

Setup. After receiving the crsκ,β from the challenger of gsRBE, initialize 2n − 1
slotted RBE instances by itself, and obtain {crsw,b}w∈[n],b∈{0,1}. For all w ∈
[n] and all b ∈ {0, 1}, if w = κ and b = β, query the oracle OGen(i) of
gsRBE to obtain ̂pki,κ,β for all i ∈ [L]; otherwise, run gsRBE.Gen(crsw,b, i)
by itself for all i ∈ [L]. Then omit all secret keys and obtain public keys
{̂pki,w,b}i∈[L],w∈[n],b∈{0,1}. Output

crs = ({crsw,b}w∈[n],b∈{0,1}, {̂pki,w,b}i∈[L],w∈[n],b∈{0,1}).

Query. Here, A can query oracles as below:
– OGen(i) : For all w ∈ [n] and all b ∈ {0, 1}, if w = κ and

b = β, query the oracle OGen(i) of gsRBE to obtain pki,κ,β ; oth-
erwise, run (pki,w,b, ski,w,b) ← gsRBE.Gen(crsw,b, i) by itself. Output
pk = ({pki,w,b}w∈[n],b∈{0,1}) and set Di[pk] = {ski,w,b}w∈[n]\{κ},b∈{0,1} ∪
{ski,κ,1−β}.

– OCor(i, pk) : Parse pk = ({pki,w,b}w∈[n],b∈{0,1}). Query the oracle
OCor(i, pkκ,β) of gsRBE to obtain ski,κ,β . Then return Di[pk] ∪ {ski,κ,β}.
Update C = C ∪ {(i, pk)}.

Challenge. B1 receives challenge public keys {pk∗
i }i∈[L] where pk∗

i =
{pk∗

i,w,b}w∈[n],b∈{0,1}. Combining with challenge circuits {C∗
i }i∈[L], we assume

that the unique corrupted user registering the circuit C∗ ∈ {C∗
i }i∈[L], and C∗ is

linked to the public key pk∗ ∈ {pk∗
i }i∈[L]. If C∗[κ] = β, then abort the experi-

ment immediately; otherwise, it means that all public keys that has registered
in gsRBE are not corrupted. Thus, for all i ∈ [L] and all w ∈ [n], b ∈ {0, 1}, set

pki,w,b :=

{

pk∗
i,w,b, when Ci[w] = b,

̂pki,w,b, otherwise.

56 Y. Zhang et al.

After that, run (Ũ, {labw,b}w∈[n],b∈{0,1}) ← GC.Garble(1λ,U[x∗]) and for
each w ≤ κ, pick ˜labw,1−C∗[w] ← {0, 1}λ. For all w ∈ [n], b ∈ {0, 1}, if
w = κ and b = β, send ({i, pki,κ,β}i∈[L], labκ,β ,˜labκ,β) to the challenger, and
obtain (mpkκ,β , {hskj,κ,β}j∈[L]); otherwise, run (mpkw,b, {hskj,w,b}j∈[L]) ←
gsRBE.Agg(crsw,b, {i, pki,w,b}i∈[L]). Set

mpk = ({mpkw,b}w∈[n],b∈{0,1}), hskj = (C∗
j , {hskj,w,b}w∈[n],b∈{0,1}).

Then B1 receives the challenge ciphertext ct∗κ,β and computes other ct∗w,b as
follows:

ct∗w,b =

{

gsRBE.Enc(mpkw,b,
˜labw,b), when w < κ ∧ C∗[w] = 1 − b,

gsRBE.Enc(mpkw,b, labw,b), otherwise.

Finally, return the challenge ciphertext

ct∗ =
(

Ũ,

(

ct∗1,0 · · · ct∗n,0

ct∗1,1 · · · ct∗n,1

))

.

Observe that if ct∗κ,β is generated under message ˜labκ,β , B1 simulates Game1,κ;
otherwise, it simulates Game1,κ−1. Thus, this readily proves the lemma. ��

Lemma 2 (Game1,n ≈c Game2). For any efficient adversary A, there exists an
algorithm B2 with close running time to A such that

|Adv1,n
A (λ) − Adv2A(λ)| ≤ AdvGCB2

(λ) + negl(λ).

Proof. The only difference between Game1,n and Game2 is the generation of ct∗.
Obviously, if the underlying garbled circuits scheme is secure, the output of
algorithm Enc in Game1,n is indistinguishable from the output of algorithm ˜Enc
in Game2 from the view of A. ��

Analysis for Honest and Corrupt Cases. Without loss of generality, we
assume that all challenge circuits are different from each other. Let C∗ be the
corrupted circuit for slot i∗. For some honest slot i, there must exist at least a
different bit (assume index w′) between C∗

i and C∗. In this way, even if A owns
the secret key of slot i∗, it will only obtain {˜labw,C∗

i [w]}w∈[n]\{w′} ∪{˜labw′,C∗
i [w

′]}.
Here, {˜labw,C∗

i [w]}w∈[n]\{w′} are simulated using 1λ and C∗(x∗), while ˜labw′,C∗
i [w

′]
is a random string independent from other labels. According to the privacy of
garbled circuits, A cannot extract any useful information about C∗

i (x
∗).

For corrupt case, A can only obtain
(

C̃∗, {˜labw,C∗[w]}w∈[n]

)

that are simu-

lated using just 1λ and C∗(x∗). Thus, only C∗(x∗) is revealed. At last, the proof
of Theorem 3 is completed. ��

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 57

6 Q-Bound Slotted RFE for Circuits

In this section, we roughly follow the approach of [32] in order to upgrade the
construction in Sect. 5 from 1-bound security to Q-bound security. Here, we
only present an Q-bound secure RFE for NC1 circuits because it can be trivially
bootstrapped into RFE for all polynomial-sized circuits using computational
randomized encodings [12]. With slotted RFE for circuits, we can convert it into
a full-fledged RFE construction via “power-of-two” approach (presented in the
full version).

6.1 Construction

Let C := NC1 be a circuit family with circuits of degree D and size n. Our
construction is additionally parameterized with S,N, t and v. For any circuit
C ∈ C and set Δ ⊆ [S], we define a new circuit G ∈ G takes as input x =
(x, r1, . . . , rS) as follows:

G(x) = C(x) +
∑

j∈Δ

rj . (1)

Assume a 1-bound slotted registered function encryption osRFE =
(Setup,Gen, Ver,Agg,Enc,Dec), our Q-bound slotted RFE for circuit family C
works as follows:

– Setup(1λ, 1L, 1Q, C) : Initialize N 1-bound slotted RFE instances by running
osRFE.Setup(1λ, 1L, G) for N times, and obtain {crsk}k∈[N]. Output

crs = ({crsk}k∈[N]).

– Gen(crs, i) : Parse crs = ({crsk}k∈[N]), then it proceeds as follows:
• Sample uniformly random set Γi ⊆ [N] of size tD + 1 and random set

Δi ⊆ [S] of size v, where Δi can be translated into a bit string δi of length
v log S. Set n′ = n + v log S;

• For all k ∈ [N], run (pkk,i, skk,i) ← osRFE.Gen(crsk, i). Here, based
on the construction presented in Sect. 5, for each k ∈ [N], we have
pkk,i = ({pkk,i,w,b}w∈[n′],b∈{0,1}) and skk,i = ({skk,i,w,b}w∈[n′],b∈{0,1}),
where (pkk,i,w,b, skk,i,w,b) are sampled from the key-generation algorithm
of global slotted RBE. Then omit secret keys skk,i for all k /∈ Γi, and for
all k ∈ Γi, update

skk,i = ({skk,i,w,b}w≤n ∪ {skk,i,w,δi[w]}w>n).

Output
pki = ({pkk,i}k∈[N]), ski = ({skk,i}k∈Γi

, Γi,Δi).

– Ver(crs, i, pki) : For all k ∈ [N], run βk ← osRFE.Ver(crsk, i, pkk,i), and if
βk = 0, output 0 and abort; otherwise, output 1.

58 Y. Zhang et al.

– Agg(crs, {pki,Ci}i∈[L]) : Parse pki = ({pkk,i}k∈[N]) for each i ∈ [L]. For all
k ∈ [N], run (mpkk, {hskk,j}j∈[L]) ← osRFE.Agg(crsk, {pkk,i,Gi}i∈[L]), where
Gi is defined as in (1) given constant Ci and Δi. Here, algorithm osRFE.Agg
works as in construction 5.1 except that all submitted public keys associated
with Δi are directly registered into {mpkk}k∈[N] to ensure the cover freeness.
Then output

mpk = ({mpkk}k∈[N]), hskj = ({hskk,j}k∈[N])

– Enc(mpk, x) : It proceeds as follows:
• Sample a random degree t polynomial μ(·) whose constant term is x;
• For all j ∈ [S], sample a random degree Dt polynomial ζj(·) whose con-

stant term is 0;
• For all k ∈ [N], compute xk = (μ(k), ζ1(k), . . . , ζS(k)) and run ctk ←

osRFE.Enc(mpkk,xk).
Then output

ct = (ct1, . . . , ctN).

– Dec(hski∗ , ski∗ , ct) : Parse
hski∗ = ({hskk,i∗}k∈[N]), ski∗ = ({skk,i∗}k∈Γi∗ , Γi∗ ,Δi∗). For all k ∈ Γi∗ , run

zk ← osRFE.Dec(hskk,i∗ , skk,i∗ , ctk).

Then use {zk}k∈Γi∗ to recover a degree Dt polynomial ψ(·) such that ψ(k) =
zk. Output ψ(0).

Remark. For the range of parameters S,N, t and v, we let v = O(λ). Sup-
pose there are Q corrupted users whose slot numbers are collected in set
{c1, . . . , cQ} ⊆ [L], then we set t = O(Q2λ) and N = O(D2Q2t) to ensure small
pairwise intersections [32]. In other words, for all Γc1 , . . . , ΓcQ

, it holds that

Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

⋃

i	=j

(Γci
∩ Γcj

)

∣

∣

∣

∣

∣

∣

> t

⎤

⎦ ≤ negl(λ).

Besides, we set S = O(Q2v) to ensure cover freeness [32]. In other words, for all
Δc1 , . . . , ΔcQ

and all i ∈ [Q], it holds that

Pr

⎡

⎣Δci
\

⎛

⎝

⋃

j 	=i

Δcj

⎞

⎠ = ∅

⎤

⎦ ≤ negl(λ).

On the other hand, we can trivially bootstrap above construction into RFE
for all polynomial-sized circuits instead of NC1 circuits. For any polynomial-
sized circuit Ci, this can be done by modifying the definition of circuit Gi into
generating a randomized encoding of Ci that is computable by a constant-degree
circuit with fresh randomness generated from weak pseudo-random function.
Here, we omit more details and only discuss the NC1 case.

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 59

Completeness and Compactness. For completeness, it follows the underly-
ing 1-bound slotted RFE. For compactness, combining the compactness analysis
of osRFE, it holds that

|mpk| = N · 2n · poly(λ, log L), |hskj | = N · 2n · poly(λ, log L)

where N depends on the corruption bound Q, and n is related to circuit family
C. Thus, our construction meets the compactness requirement.

Correctness. By the correctness of underlying 1-bound slotted RFE, for all
k ∈ Γi∗ we have

ψ(k) = Gi∗(xk) = Ci∗(μ(k)) +
∑

j∈Δi∗

ζj(k).

Since |Γi∗ | = Dt + 1, we can recover the polynomial ψ(·) of degree Dt, and then
evaluate ψ(0) = Ci∗(μ(0)) = Ci∗(x). Indeed, above computation exactly corre-
sponds to BGW MPC protocol [41]. Therefore, the correctness follows readily.

6.2 Security

Theorem 4. Assume osRFE = (Setup,Gen,Ver,Agg,Enc,Dec) is a slotted RFE
scheme which achieves the 1-bound SIM security, the above construction achieves
the Q-bound SIM security.

Proof. Our proof strategy is analogous to [32]. Suppose the adversary A colludes
with Q corrupted users whose slot indices are collected in set {c1, . . . , cQ} ⊆
[L]. Let T denote the set

⋃

i	=j(Γci
∩ Γcj

), and note that A has no idea about
other Γi /∈ {Γc1 , . . . , ΓcQ

} under honest slots. With challenge ciphertext ct∗ =
(ct∗1, . . . , ct

∗
N) and secret key ski = ({skk,i}k∈Γi

, Γi,Δi) for k ∈ [N], then the
proof strategy is organized as follows:

– If k /∈ T , it means there exists at most a set Γci
such that k ∈ Γci

and k /∈ Γcj

for other j. In particular, ct∗k can be just decrypted correctly by a corrupted
user with slot i. Thus, it can rely on the 1-bound SIM security of underlying
construction;

– Otherwise, it means that A holds more than one secret keys that are used
to decrypt ct∗k correctly. In this way, 1-bound SIM security would be broken,
and the security would in turn rely on the underlying MPC protocol. In this
case, A will obtain no valid information about the challenge message x∗ as
long as small pairwise intersections and cover freeness hold.

Then we define the simulator ˜Enc that works as follows:

– ˜Enc(mpk,K): Parse K = {(ci,C
∗
ci

,C∗
ci

(x∗), skci
)}i∈[Q]. Here, we obtain Γc1 , . . .,

ΓcQ
,Δc1 , . . . , ΔcQ

from ski. Then it proceeds as follows:
• Sample a uniformly random degree t polynomial μ(·) whose constant term

is 0;

60 Y. Zhang et al.

• For all j ∈ [Q], fix some a∗
j ∈ Δcj

\
(

⋃

j 	=k Δck

)

based on the cover
freeness. For other a ∈ (Δc1 ∪ · · · ∪ ΔcQ

) \ {a∗
j}j∈[Q], sample a uniformly

random degree Dt polynomial ζa(·) whose constant term is 0. For all
j ∈ [Q], pick a random degree Dt polynomial ψcj

(·) whose constant term
is Ccj

(x∗) and adjust the evaluation of ζa∗
j

such that for all k ∈ T , we
have

ψcj
(k) = Ccj

(μ(k)) +
∑

a∈Δcj

ζa(k).

• For all k /∈ T , suppose there is at most a set Γci
such that k ∈ Γci

and
k /∈ Γcj

for all j �= i, then we simulate ct∗k as follows:

ct∗k ← osRFE.˜Enc(mpkk, (ci,Gci
, ψci

(k), skci
)).

• For all k ∈ T , we generate ct∗k as in real experiment:

ct∗k ← osRFE.Enc(mpkk, (μ(k), ζ1(k), . . . , ζS(k))).

Finally, output

ct∗ = (ct∗1, . . . , ct
∗
N).

Game Sequence. We prove Theorem 4 via a sequence of games as follows:

– Game0: Real Game.
– Game1: this game is identical to Game0 except that it samples

ζ1, . . . , ζS , ψ1, . . . , ψQ as in ˜Enc and simulates all {ct∗k}k/∈T as in algorithm
˜Enc.

– Game2: this game is identical to Game1 except that it replaces Enc with ˜Enc
to generate the challenge ciphertext ct∗.

Lemma 3 (Game0 ≈c Game1). For any adversary A, there exists an algorithm
B with close running time to A such that

|Adv0A(λ) − Adv1A(λ)| ≤ AdvosRFEB (λ) + negl(λ).

Proof. Informally, thanks to cover freeness, we observe that the distribution of
ζ1, . . . , ζS , ψ1, . . . , ψQ in ˜Enc are essentially identical to those in Enc, and then
we can follow the 1-bound SIM security of underlying slotted RFE scheme to
simulate all {ct∗k}k/∈T as in ˜Enc. Thus, it holds that Game0 is computationally
indistinguishable from Game1. ��

Lemma 4 (Game1 ≈s Game2). For any adversary A, we have

|Adv1A(λ) − Adv2A(λ)| ≤ negl(λ).

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 61

Proof. The only difference between Game1 and Game2 is the distributions of μ.
We claim that the distributions of {μ(k)}k∈T in Game1 are essentially identical
to those in Game2 as long as small pairwise intersections holds, i.e., |T | ≤ t.
Thus, this readily proves the lemma. ��

Acknowledgements. Thank Yin Zhu for his useful advice. We also thank all anony-
mous reviewers for their helpful comments. This work was supported in part by
National Natural Science Foundation of China (62372180, 62325209, U2336203), Inno-
vation Program of Shanghai Municipal Education Commission (2021-01-07-00-08-
E00101), the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy
Intelligent Software (22510750100), the Australian Research Council Discovery Early
Career Researcher Award DE240100282, the Major Program (JD) of Hubei Province
(No. 2023BAA027), and the Key Research and Development Science and Technology
of Hainan Province (GHYF2022010).

References

1. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to
multi-client inner-product functional encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–
582. Springer, Heidelberg, 2019.

2. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner.
Decentralizing inner-product functional encryption. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer,
Heidelberg, 2019.

3. Shashank Agrawal and David J. Wu. Functional encryption: Deterministic to ran-
domized functions from simple assumptions. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 30–61. Springer, Heidelberg, April / May 2017.

4. Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill, and
Justin Thaler. Ad hoc multi-input functional encryption. In Thomas Vidick, editor,
ITCS 2020, volume 151, pages 40:1–40:41. LIPIcs, January 2020.

5. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional
encryption. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 224–255. Springer, Heidelberg, 2021.

6. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryp-
tion for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, 2016.

7. Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada.
Functional encryption for turing machines with dynamic bounded collusion from
LWE. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 239–269, Virtual Event, August 2021. Springer, Heidelberg.

8. Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 173–205. Springer, Heidelberg, 2017.

9. Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input
fe (and more) for attribute-weighted sums. In Annual International Cryptology
Conference, pages 464–497. Springer, 2023.

62 Y. Zhang et al.

10. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Hei-
delberg, August 2015.

11. Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part I, volume 11891 of LNCS, pages 174–198. Springer, Heidelberg, 2019.

12. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. computational complexity,
15(2):115–162, 2006.

13. Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. Match me
if you can: Matchmaking encryption and its applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 701–731. Springer, Heidelberg, 2019.

14. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 503–513, 1990.

15. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012.

16. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–
190. IEEE Computer Society Press, October 2015.

17. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, 2011.

18. Pedro Branco, Russell WF Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza
Rahimi, and Ivy KY Woo. Traitor tracing without trusted authority from registered
functional encryption. Cryptology ePrint Archive, 2024.

19. Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional
encryption: Decentralised and delegatable. Cryptology ePrint Archive, Report
2015/1017, 2015. https://eprint.iacr.org/2015/1017.

20. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 703–732. Springer, Heidelberg, 2018.

21. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and
David Pointcheval. Dynamic decentralized functional encryption. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 747–775. Springer, Heidelberg, 2020.

22. Pratish Datta and Tapas Pal. Registration-based functional encryption. IACR
Cryptol. ePrint Arch., 2023:457, 2023.

23. Nico Döttling, Dimitris Kolonelos, Russell WF Lai, Chuanwei Lin, Giulio Mala-
volta, and Ahmadreza Rahimi. Efficient laconic cryptography from learning with
errors. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 417–446. Springer, 2023.

24. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An alge-
braic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, 2013.

https://eprint.iacr.org/2015/1017

Bounded Collusion-Resistant Registered Functional Encryption for Circuits 63

25. Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza
Rahimi, and Daniele Venturi. Registered (inner-product) functional encryption. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 98–133. Springer, 2023.

26. Cody Freitag, Brent Waters, and David J Wu. How to use (plain) witness encryp-
tion: Registered abe, flexible broadcast, and more. In Annual International Cryp-
tology Conference, pages 498–531. Springer, 2023.

27. Rachit Garg, Rishab Goyal, and George Lu. Dynamic collusion functional encryp-
tion and multi-authority attribute-based encryption. In IACR International Con-
ference on Public-Key Cryptography, pages 69–104. Springer, 2024.

28. Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion
bounded functional encryption from identity-based encryption. In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 736–763. Springer, Heidelberg, May / June 2022.

29. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239
of LNCS, pages 689–718. Springer, Heidelberg, 2018.

30. Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems
(with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 171–188. Springer, Heidelberg, 2009.

31. Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi.
Efficient registration-based encryption. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, pages 1065–1079, 2023.

32. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.
Springer, Heidelberg, 2012.

33. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryp-
tion. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 621–651. Springer, Heidelberg, 2020.

34. Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered
attribute-based encryption. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part III, volume 14006 of LNCS, pages 511–542. Springer, Heidel-
berg, 2023.

35. Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle
model and ideal obfuscation. In Annual International Cryptology Conference, pages
233–262. Springer, 2023.

36. Sam Kim and David J. Wu. Access control encryption for general policies from
standard assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 471–501. Springer, Hei-
delberg, 2017.

37. Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast
encryption from bilinear groups. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 407–441. Springer, 2023.

38. Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and
applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Com-
puter Society Press, October 2018.

39. Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 463–472. ACM Press, October 2010.

64 Y. Zhang et al.

40. Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lat-
tice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer, Heidel-
berg, May / June 2022.

41. Avi Wigderson, MB Or, and S Goldwasser. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In Proceedings of the 20th Annual
Symposium on the Theory of Computing (STOC’88), pages 1–10, 1988.

42. Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th annual
symposium on foundations of computer science (Sfcs 1986), pages 162–167. IEEE,
1986.

43. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–
250. Springer, Heidelberg, 2015.

44. Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered
functional encryptions from pairings. In EUROCRYPT, 2024.

45. Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered abe via pred-
icate encodings. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 66–97. Springer, 2023.

Registered FE Beyond Predicates:
(Attribute-Based) Linear Functions

and More

Pratish Datta1(B), Tapas Pal2(B), and Shota Yamada3

1 NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com

2 Karlsruhe Institute of Technology, KASTEL SRL, 76131 Karlsruhe, Germany
tapas.pal@kit.edu

3 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo 135-0064, Japan

yamada-shota@aist.go.jp

Abstract. This paper introduces the first registered functional encryp-
tion RFE scheme tailored for linear functions. Distinctly different from
classical functional encryption (FE), RFE addresses the key-escrow issue
and negates the master key exfiltration attack. Instead of relying on
a centralized trusted authority, it introduces a “key curator” - a fully
transparent entity that does not retain secrets. In an RFE framework,
users independently generate secret keys and subsequently register their
respective public keys, along with their authorized functions, with the
key curator. This curator consolidates public keys from various users into
a unified, concise master public key. For decryption, users occasionally
secure helper decryption keys from the key curator, which they use in
conjunction way with their private keys. It is imperative that the aggre-
gate public key, helper decryption keys, ciphertexts, and the times for
encryption/decryption are polylogarithmic in the number of registered
users.

All existing RFE designs were confined to predicates where given the
correct credentials a user can retrieve the entire payload from a ciphertext
or gain no information about it otherwise. Contrarily, our RFE scheme
facilitates the computation of linear functions on encrypted content and
extraction of only the computation results. Recognizing potential leaks
from linear functions, we further enhance our RFE by incorporating an
attribute-based access control mechanism. The outcome is the first reg-
istered attribute-based linear FE (RABIPFE), which supports access
policies depicted as linear secret sharing schemes LSSS. Our proposed
schemes are realized in the common reference string (CRS) model as
introduced by Hohenberger et al.[EUROCRYPT 2023], employ simple
tools and black-box methods. Specifically, our constructions operate in
asymmetric prime-order bilinear group setting and are proven secure in
the generic bilinear group model. Aligning with all pre-existing black-box
RFE designs within the CRS model, our schemes cater to a predeter-
mined maximum user count. A notable variant of our RABIPFE scheme

T. Pal—This work was done while the author was affiliated with NTT Social Infor-
matics Laboratories, Tokyo, Japan.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 65–104, 2025.
https://doi.org/10.1007/978-981-96-0875-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_3&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_3

66 P. Datta et al.

also yields the first efficient registered ABE (RABE) system for LSSS
access policies in asymmetric prime-order bilinear groups. Conclusively,
demonstrating feasibility, we formulated an RFE blueprint that sup-
ports general functionalities and an infinite user base, leveraging indis-
tinguishability obfuscation and one-way functions.

1 Introduction

Functional Encryption: Functional Encryption (FE) [32,101] expands upon
the traditional public-key encryption paradigm by introducing fine-grained
access control over encrypted data. In an FE scheme, a central authority pos-
sesses a master secret key and issues a corresponding master public key. Lever-
aging its master secret key, this authority furnishes users with secret keys corre-
sponding to diverse legitimate functions. Conversely, any party can encrypt data
using the master public key. Given a secret key for a function f and a ciphertext
of a message x, decryption unveils f(x) without revealing further details about
x.

The FE paradigm holds vast potential, presenting myriad applications,
both as a standalone solution and as a foundational element for other cryp-
tographic primitives [15,16,20,26,27,58,60,67,72,97]. Given its broad util-
ity, FE and its various subclasses have garnered significant attention in the
research community. Below is a non-exhaustive list of notable results in the
field [2,3,5–11,13,14,17–19,21,24,25,28–31,34–37,40–42,44,54,59,62–66,68,70,
75,76,79,81,84,87,88,90–93,99,100,104,107,109,111,113–118]

The Key-Escrow Challenge: While FE offers a powerful means for achieving
precise control over encrypted data, it distinctly alters the trust dynamic when
juxtaposed with standard public-key encryption. Specifically, in FE, a central,
trusted entity is tasked with distributing the secret decryption keys tailored
to each user. This central entity must safely maintain a long-term master secret
key. A compromise of this authority could grant adversaries the power to decrypt
every ciphertext in the system, revealing all encrypted messages. This inherent
vulnerability to key exfiltration attacks necessitates meticulous protection of
the master secret key for the system’s duration. By contrast, with traditional
public-key encryption, users autonomously generate their own key pairs without
entrusting their secret keys to a central figure. This decentralization eliminates
a single point of failure. The amalgamation of inherent key escrow and suscep-
tibility to key exfiltration remains a significant barrier to FE adoption.

Registered FE: Addressing the key-escrow and master key exfiltration vulner-
abilities inherent in FE, recent efforts have delved into an innovative encryption
framework known as Registered FE (RFE). RFE replaces the central author-
ity with a fully transparent entity known as a “key curator”, which does not
retain any secrets. Contrary to issuing secret decryption keys, the key curator’s
primary role revolves around consolidating public keys from registered users
into a concise master public key. Elaborating, within an RFE framework, users

Registered FE Beyond Predicates 67

autonomously generate their public and secret key pairs (mirroring traditional
public-key encryption practices). They subsequently register their public keys,
along with the functions they are sanctioned for, with the key curator. This
entity, in turn, refreshes the scheme’s master public key. Analogous to conven-
tional FE, this master public key can encrypt any message x in the system.
A registered user, authorized for a specific function f , can decrypt the cipher-
text, gleaning solely f(x), utilizing their secret key. This is aided by a publicly
computable helper decryption key, which connects the user’s public key with
the prevailing master public key. Given the dynamic nature of the RFE system,
where the master public key evolves as new users are onboarded, it is imperative
for users to intermittently update their helper decryption keys throughout the
system’s lifespan. It is worth noting that these updates for each user can be
determined publicly. From an efficiency perspective, if L users are registered,
each user should only be tasked with updating their decryption key a maximum
of O(log L) times throughout the system’s existence. Further, the magnitude of
each update must remain succinct, preferably within the realm of poly(λ, log L),
where λ symbolizes a security parameter. Aligning with standard FE, it is also
crucial that the master public key maintains a compact footprint, sized approx-
imately poly(λ, log L).

Initial Results: Non-black-Box Constructions: Early research work spear-
headed by Garg et al. [38,56,57,69], established RFE schemes within the context
of Identity-Based Encryption (IBE), a subclass of FE. These were developed
using well-studied computational assumptions, including CDH, factoring, and
LWE. This new primitive was named Registration-Based Encryption (RBE) in
those works. However, these constructions extensively relied on non-black-box
cryptographic techniques, making them largely infeasible, even when considering
subsequent optimization efforts [38].

Non-black-Box Constructions and the CRS Model: A seminal advance-
ment in the domain of RFE was marked by the recent contributions of Hohen-
berger et al. [73]. Their work elucidated the concept of Registered ABE (RABE),
examining RFE within the broader framework of Attribute-Based Encryption
(ABE).

Moreover, the research devised innovative techniques for realizing RABE
(with RBE as a specific case) using purely black-box cryptographic methods.
Impressively, they designed an efficient RABE scheme for access structures rep-
resented as Linear Secret Sharing Schemes (LSSS) in composite order bilinear
groups, based on the same established static assumptions for IBE [88] and ABE
[87].

Yet, this black-box approach did require one significant trade-off: the one-
time trusted generation of a structured Common Reference String (CRS). At
a cursory look, this might seem like a mere transposition of trust. However, it
is crucial to underscore that this CRS setup is a one-off process, potentially
executed via a multi-party computation protocol, and remains reusable across
diverse systems. Importantly, post this setup, the CRS remains the sole trusted
element. All subsequent activities of the key curator are both deterministic and

68 P. Datta et al.

auditable. The system’s security remains intact unless the initial CRS setup
is jeopardized. This is markedly different from conventional FE wherein the
central authority’s long-term master secret key demands perpetual trust. Any
breach, resulting in the unauthorized acquisition of this secret key, grants the
perpetrator unfettered access to decrypt every system ciphertext. Hence, this
CRS-based RFE framework considerably reduces the inherent trust requisites
compared to its traditional FE counterpart.

This innovative approach, focusing on creating efficient black-box RFE archi-
tectures within the CRS paradigm using simple cryptographic tools, has cat-
alyzed a renaissance of interest in the cryptographic sphere. This has culmi-
nated in a flurry of very recent findings [46,51–53,82,120], majority of which
are actually concurrent to our work [51,52,82,120]. These investigations have
spearheaded the development of registration-adapted variants of assorted FE
subclasses, such as broadcast encryption [53,82], IBE (tailored for large iden-
tities) [46]([51]), ABE designed for access policies represented as LSSS and
arithmetic branching programs [120], and Inner-Product Predicate Encryption
(IPE) [52,120]. Notably, these constructions [51,52,82,120] are characterized by
their black-box nature, efficiency, and reliance on simple tools like bilinear pair-
ings.

Limitation of the State of the Art: While the advancements in the field have
been commendable, the subclasses of FE for which registration-based variations
have been constructed predominantly fall within the realm of predicate encryp-
tion (PE). PE, a subclass of FE, associates a secret key with an ID/attribute
string, while a ciphertext encrypts a predicate-payload pair (or vice-versa).
The decryption process unveils the payload only if the predicate is satisfied by
the attribute string; otherwise, a unique null symbol, ⊥, is revealed. Although
PE facilitates fine-grained access controls to encrypted content, its capabilities
are restricted. Specifically, it can only expose encrypted data entirely or par-
tially to eligible users and keep concealed from unauthorized ones. In contrast,
more potent FE subclasses permit privacy-focused computations on encrypted
data, emphasizing the extraction of computational outcomes over the raw data.
Despite the massive developments in the field, currently, constructing RFE for
functionalities beyond predicates remains an unresolved challenge.

Inner-Product FE: This study pivots to what is arguably one of the simplest
function classes richly covered in literature: linear functions or inner-products [1–
3,10,11,24,25,34,40,48,80,94,106,108–110,115]. An Inner-Product FE (IPFE)
scheme involves encrypting vectors over a specific finite field, with secret keys also
devised for vectors within that field. The decryption process discloses the inner
product of the message and secret key vectors. The practicality of inner product
functions spans diverse applications, from computing weighted means in descrip-
tive statistics, evaluating polynomials, determining exact thresholds [2], facili-
tating hidden-weight coin flips [39], to biometric authentication and encrypted
data’s nearest-neighbour search [80]. Moreover, IPFE can serve as foundational
for creating FE schemes that support advanced function categories, such as

Registered FE Beyond Predicates 69

quadratic functions [21,59]. Regrettably, as with other FE subclasses, the key-
escrow issue poses a significant challenge to the deployment of IPFE.

Attribute-Based IPFE: FE has further evolved to support even more
advanced function classes, merging the attribute-based access control of PE with
the evaluation of linear functions on encrypted data. Although IPFE offers broad
practical applications, its underlying nature is fragile, with each new secret key
release leaking sensitive information. To counteract this vulnerability, Abdalla
et al. [3] proposed attribute-based IPFE (ABIPFE), a concept that embeds
access policies into ciphertext while facilitating linear function evaluations. In an
ABIPFE framework, each vector is encrypted under certain access policies, while
its secret key corresponds to a combination of an attribute stream and a vector.
Successful decryption unveils the inner product of the message and key vector,
contingent upon the access policy being met by the attribute. Numerous subse-
quent studies [5,42–44,47,85,102] have explored ABIPFE across diverse access
policy categories using established tools such as bilinear groups and lattices.
Despite such advancements, the threat of master key exfiltration attacks con-
tinues to overshadow ABIPFE. Hence, in this work, we pose a pivotal question
that has largely remained elusive.

Open Problem. Is it possible to design efficient black-box RFE schemes for
function classes beyond predicates, such as for Attribute-Based Linear Function
Evaluation?

Our Results

In this paper, we offer a positive response to the aforementioned open ques-
tion. Indeed, for the first time in the literature, we formulate the notion of
RFE1, and the design of the primitive for function classes that transcend sim-
ple predicates. Specifically, we presented the first registered IPFE (RIPFE) and
ABIPFE (RABIPFE) schemes. Developed within the CRS model and leveraging
simple tools and black-box methodologies, our designs operate within asymmet-
ric prime-order bilinear group setting, which is known to be faster and more
secure compared to its other variants [23,61,77,78]. Security is assured within
the generic bilinear group model (GGM) [105]. The proposed RABIPFE system
incorporates LSSS access policies, the zenith of policy expressiveness achieved by
current ABE/ABIPFE constructions rooted in bilinear groups, even within con-
ventional centralized frameworks. As a special case of our RABIPFE construc-
1 All existing studies in this field have specifically defined the concept of RFE in

accordance with the particular function classes they explored, often under varied
terminologies. For instance, Garg et al. [56] utilized the term “registration-based
encryption (RBE)”. Hohenberger et al. [73] introduced the term “registered ABE
(RABE)”. Kolonelos et al. [82] put forth the concept of “distributed broadcast
encryption (DBE)”. Similarly, Freitag et al. [53] coined the term “flexible broadcast
encryption (FBE)”, and the list goes on. What distinguishes our work is the formal
definition of RFE in its broadest sense, encompassing all existing registration-based
primitives as particular instances of this overarching notion.

70 P. Datta et al.

tion, we also present the first registered ABE (RABE) system in a prime-order
bilinear group setting.

Our schemes are tailored to accommodate a pre-determined number of users.
Specifically, the structured CRS dimensions are quadratically proportional to
user numbers, while registration performance is linearly dependent on user count,
aligning with existing black-box RFE structures within the CRS model. Further,
analogous to the current CRS-based RFE schemes, we necessitate a thorough
verification of user public keys before their registration in the system to address
concerns regarding malicious public keys. Similar to the existing RABE scheme,
our RABIPFE system can accommodate an attribute within access policies
either singularly or within set limitations, with parameter dimensions expand-
ing linearly based on repetition limits via a simple encoding technique similar to
this [89,112]. Existing techniques for handling arbitrary repetitions of the same
attributes within an access policy from centralized ABE literature [83,91,92]
seemingly lack direct applicability in the registration-based context, leaving
ample room for future investigation.

As our objective veers towards designing RFEs with functionalities surpass-
ing predicates, we have to devise a different randomization strategy than existing
works. While prior works like [73] naturally separated the masking component
from the CRS into random shares to oversee predicate validation and member-
ship verification, this does not work in our setting. Broadly speaking, the chal-
lenge arises from the distinction that, in the context of predicates, each user’s
decryption result is either zero or one. However, in our setting, the decryption
results for different users can diverge significantly. To resolve this issue, our
approach directly randomizes the component concealing the inner-product value
during decryption. This novel process however, inherently risks the intermin-
gling of decryption threads, potentially leading to vulnerabilities. To navigate
these challenges, our refined randomization process, in essence, links the key
vector to pertinent users while concurrently managing functional evaluation and
membership validation in an integrated fashion. Such technique was previously
used implicitly by Waters [112] in the context of centralized ABE for handling
separation of computation threads arising from multi-use of attributes within
policies. We not only extend this method beyond predicates but also adapt it to
the registration-based framework, while presenting it in a more explicit manner
(see Sect. 2 for further details).

Further, beyond the prime-order bilinear group-centric schemes, we also
detail the blueprint for an RFE system catering to an indefinite number of
users and supporting general functionalities via indistinguishability obfuscation
(IO) and one-way functions (OWFs). An obfuscator, as defined in [22], is a tool
that converts a circuit into an equivalent one, i.e. preserving its input-output
behaviour, while concealing the original circuit’s confidential data. Indistin-
guishability obfuscator [22] is a specific type of obfuscator ensuring that any two
equivalent circuits’ obfuscations are indistinguishable. Coupled with the seminal
work of Jain et al. [75,76], realizing IO from falsifiable assumptions, this leads to
an RFE system for arbitrary functionalities and user counts grounded in falsifi-

Registered FE Beyond Predicates 71

able assumptions. This latter achievement stands as a testament to the potential
of RFE systems to accommodate versatile functionalities and an expansive user
base.

Concurrent Works: Concurrently to our work, Francati et al. [52] also formu-
lated the notion of RFE2. They additionally provided robust attribute hiding
registered zero inner-product PE scheme, in prime-order bilinear group under
the generic bilinear group model (GGM). However, this RFE remains within the
context of RFE for predicates as previously described, and fully discloses pay-
load data to authorized individuals. Contrasting this, our RFE scheme for linear
or inner-product functionality does not just reveal encrypted data. Instead, it
computes and outputs the inner-product of encrypted content.

Further, just like our work, Francati et al. [52] also presented an RFE scheme
for general functionalities and supporting an arbitrary number of users from
IO and OWFs. The differences between the two constructions are as follows.
Francati et al. [52] essentially observed that the construction of RABE due to
Hohenberger et al. [73] for general access policies and an arbitrary number of
users from IO and OWFs actually works as a full pleaded RFE that can support
arbitrary functionalities beyond predicates. On the other hand, we tweak the
RABE scheme of [73] by introducing a Naor-Yung style [95] “double-encryption”
mechanism inspired by the techniques of Garg et al. [56]. However, rather than
using a simulation sound non-interactive zero-knowledge (NIZK) proof system
as [56,95], our construction only employs Lamport’s one-time signatures [86]
which can be realized from OWFs.

In another synchronized study, Zhu et al. [120] constructed RABE schemes
suitable for access policies expressed by LSSS and arithmetic branching programs
(ABP) as well as attribute-hiding inner-product predicates. They utilized asym-
metric prime-order bilinear groups and proved security in the standard model
under the k-linear assumption [49]. Again, while both of their schemes primar-
ily address predicates, our registration-based renditions of IPFE and ABIPFE
surpass this scope, facilitating the evaluation of linear functions on encrypted
data.

Subsequent Works: Subsequently to our work, Zhu et al. [119] proposed RFE
schemes for linear and quadratic function in prime-order bilinear groups. The
security of those constructions was proven in the standard model under the k-
linear and bilateral k-linear assumptions, respectively. In another subsequent
work, Branco et al. [33] constructed RFE schemes for quadratic and linear func-
tions, proving their security in weak/selective models within GGM and the stan-
dard model under a static q-type assumption respectively.

2 To provide further context on concurrency, please note that the current version
of our paper is a major upgrade of an initial version of [45] with new additional
results, namely, the RIPFE and RABIPFE constructions. The initial version of [45],
which appeared at the same time as [52], nevertheless already contained the same
notions of RFE as [52]. The initial version also contained our RFE scheme for general
functionalities from IO.

72 P. Datta et al.

Other Related Works: As different line of works [37,96] studied another
decentralized variants of FE called dynamic decentralized functional encryption
(DDFE). DDFE combines multi-client and multi-authority FE in a decentral-
ized setting. In DDFE, there are several clients/encrypters who generate their
master secret keys independently and they have to use those secret keys to
encrypt messages at the slots under their control. When a user wants to eval-
uate some (multi-input) function on the data encrypted by a set of encrypters,
those encrypters acting as authorities provide partial secret keys to that user.
The user then combines those partial secret keys to obtain its full secret key
for the function. Thus, if there exists only one encrypter in a DDFE system it
essentially boils down to a standard single-input secret-key centralized FE. In
contrast, in RFE, there is no designated authority or encrypter. Rather in RFE,
when a user wants to evaluate some function on encrypted data it independently
generates its public/secret key pair and then registers its public key along with
its desired functionality to a key curator. Most importantly, the key curator
holds no secret. Moreover, encryption does not require any secret information
and can be performed by anyone even by parties having no contribution to the
aggregated master public key. Thus RFE remains decentralized irrespective of
whether the supported functionality is single or multi-input.

2 Technical Overview

In this work, we construct registration-based FE schemes for general as well
as specific function classes. Regarding the specific classes, in the registration-
based setting, we consider FE for linear functions which is known as IPFE [2]
and FE for linear functions with access control which is noted as ABIPFE [4].
Before going to the technical descriptions of the designing of these primitives in
the registration-based setting, we first provide an overview of the definition of
registered FE for general functions.

2.1 Definition of Registered FE

Let UF be the universe of functions and M be the set of messages supported
by the scheme. We also assume that UF contains only polynomial-size functions
having maximum size �f in bit-length. There is a one-time trusted setup which
samples a common reference string (CRS) crs depending on the security param-
eter and the bound �f . We allow the size of crs to be poly(λ, �f , L). The key
curator first initializes an empty master public key MPK when there is no user
in the system at the beginning. If a user wants to join the system then it first
samples a public-secret key pair (pk, sk) using crs, and then sends the public
key pk along with a function fpk ∈ UF to the key curator for registration. The
key curator then aggregates the pair (pk, fpk) into the current master public key
MPK and outputs an updated one MPK′. Additionally, the user also receives a
helper decryption key hsk from the key curator.

The key curator does not hold any secret and the role can be played by
anyone in the system as well since the process of aggregation is deterministic.

Registered FE Beyond Predicates 73

The key generation and registration are both allowed to run in time poly(λ, �f , L).
However, in our actual constructions, the key generation process does not depend
on �f . On the other hand, we require that the size of the secret key sk, the
master public key MPK (at any stage) and the helper decryption key hsk for each
user must be polylogarithmic in the total number of users, i.e., poly(λ, �f , log L).
Whenever a new user joins the system, the master public key is updated and as
a result, the existing users might need an updated helper decryption key from
the key curator. As in existing registration-based systems, we require that the
actual number of updates needed for a helper decryption key of each user is
essentially O(log L) throughout the existence of the system.

In our setting, the knowledge of MPK is sufficient for encrypting a message
m ∈ M. Any registered users whose public key-function pair (pk, fpk) is inte-
grated into the master public key MPK can decrypt the ciphertext ct using their
secret keys sk and the helper decryption keys hsk. It is important to note that the
large crs is not required at all during encryption or decryption, the information
of crs is requested for generating keys of users and at the time of registering a
user. This makes the encryption and decryption algorithm much more efficient,
both of which run in time poly(λ, �f , log L) and are comparable to exiting (non-
registered) FEs for specific class of functions such as IPFE. We formally define
registered FE in Sect. 4.

Slotted Registered FE: We followed the blueprint of Hohenberger et al. [73]
for constructing a registered encryption scheme. In particular, we first define and
construct a slotted registered FE (SlotRFE) scheme and then use a transforma-
tion to achieve the full-fledged RFE scheme described above. A SlotRFE scheme
is basically an RFE scheme where the total number of users L is fixed at the
time of setup, and each user of the system is identified via a slot index i ∈ [L].
Therefore, each slot i is associated with a user-sampled key pair (pki, ski) and
a function fi ∈ UF . The aggregation algorithm can be run only when a list of
public key-function pair (pki, fi) for all i ∈ [L] is available. It uses the list to
output the aggregated master public key MPK and a helper decryption key hski

for each user i ∈ [L], that is all the users are registered in one shot. Note that, no
update of the master public key or helper decryption keys is needed since no new
user is allowed to join the system once the registration is over. For a SlotRFE,
we require that the sizes of the master public key and helper decryption keys
must grow at most poly-logarithmically with the total number of users in the
system. The formal definition of SLotRFE is given in Sect. 5.

We present a transformation to go from SlotRFE to RFE. The idea of the
conversion essentially follows from the similar transformation used for RABE
by Hohenberger et al. [73]. The full detail of how we adapt their transformation
into the setting of FE to construct RFE from our SlotRFE is provided in the full
version [45]. It depends on a power-of-two approach that uses �+1 many SlotRFE
schemes for building an RFE scheme with L = 2� users. Just like the RABE,
the public parameters (crs,MPK, hsk), ciphertext size and encryption time of
the resulting RFE carry an overhead of O(log L) compared to the underlying
SlotRFE scheme. This means that if the CRS of the SlotRFE scales with at

74 P. Datta et al.

most O(log L) then the RFE can support an exponential number of users. It is
exactly the case for our IO-based RFE scheme for general functions. However, our
pairing-based RFE schemes can only support a (polynomially) bounded number
of users3 since corresponding slotted versions produce a CRS of size O(L2).

2.2 Registered FE for (Attribute-Based) Linear Functions

In this subsection, we first provide technical ideas of our registered IPFE where
functions and messages are vectors and decryption recovers the inner product
between the vectors. Then, we discuss the technical ideas of constructing a reg-
istered ABIPFE.

Recap of plain IPFE [2]: Let us first describe the IPFE construction by
Abdalla et al. [2], which is not registration-based, but serves as our starting point.
Their construction works over groups of prime order without pairings. In their
construction, the master public key consists of group elements MPK = (g, gα),
where α ∈ Z

n
p and n is the dimension of the vectors supported by the scheme.

The ciphertext encrypting a vector x ∈ Z
n
p is of the form ct = (gsα+x , gs), where

s ← Zp, and a secret key associated with a vector y ∈ Z
n
p is sk = 〈α,y〉. To

decrypt a ciphertext, we first compute gs〈α+x,y〉 = gs〈α ,y〉+〈x,y〉 from gsα+x and
remove the masking term gs〈α ,y〉 using gs and the secret key 〈α,y〉. Then, we
recover 〈x,y〉 from g〈x,y〉 by the brute-force computation.

Let us briefly discuss the intuition behind the security of the construction.
Suppose that the adversary is given secret keys {〈α,yi〉}i corresponding to vec-
tors {yi}i. Intuitively, only meaningful way to get information of x from the
ciphertext is to take linear combination between the ciphertext components to
compute gs〈α+x,z〉 = gs〈α ,z〉+〈x,z〉 for some vector z and remove the masking
term gs〈α ,z〉 to recover the information of 〈x,z〉. Since the adversary is given only
{〈α,yi〉}i, it is impossible for her to obtain any information of 〈α,z〉 when z is
outside of the span of the vectors {yi}i. This in turn means that the information
of 〈x,z〉 cannot be obtained if z is outside of the span, as desired.

Attempt 1: In our first attempt, we consider a construction that supports only
a single user. Even in this setting, we face the challenge that there is no obvious
way to generate a secret key, because the secret key generation of the plain IPFE
construction we explained above crucially requires the knowledge of the master
secret key. Translated into the setting of registration-based IPFE, this means
that the key generation requires the knowledge of a trapdoor corresponding to
the CRS, which is not known to the user. To resolve the problem, we observe that
what is necessary for the decryption is actually the masking term gs〈α ,y〉. We
construct the scheme so that the masking term can be recovered by the decryptor
by exploiting the fact that the master public key can depend on the vector y in
the registration-based setting.

3 In fact, all existing pairing-based RABEs have the limitation of supporting only a
bounded number of users.

Registered FE Beyond Predicates 75

Concretely, the CRS of the construction is the same as the master public key
of the IPFE we explained. Namely, we set crs = (g, gα). A user who joins the
system chooses random r ← Zp and sets the public key as pk = gr and the secret
key as sk = r. We set the master public key as MPK = (g, gα ,W = gr+〈α ,y〉),
where y is the vector associated with the user. The ciphertext encrypting x is
ct = (gsα+x , gs,W s = gsr+s〈α ,y〉). A user can therefore recover gs〈α ,y〉 by com-
puting gsr from gs and r and then compute W s/gsr. The rest of the decryption
algorithm is the same as the plain IPFE construction explained above.

While the construction works for the single-user setting, the apparent prob-
lem is that there is no obvious way to extend the construction to the multi-user
case. One could consider a natural attempt where we set pki = gri for each
user indexed with i and aggregate the public keys to set the master public key
as MPK = (g, gα ,W =

∏
i gri+〈α ,yi〉 = g

∑
i ri+

∑
i〈α ,yi〉). Suppose that we were

able to set the ciphertext and helper decryption key so that the decryption is
possible. Then, a collusion of two users should be able to recover 〈x,y1 + z〉
and 〈x,y1 − z〉 for arbitrary z, which breaks the security of the scheme. This is
because sk1 = r1 and sk2 = r2 are valid secret keys for vectors y1 +z and y2 −z
respectively, since we have W = gr1+〈α ,y1+z〉 · gr2+〈α ,y2−z〉 · g

∑
i�=1,2 ri+

∑
i〈α ,yi〉.

At a high level, the construction is insecure, since each vector yi is not bound
to the corresponding index i.

Attempt 2: Based on the above observation, in our second attempt, we com-
putationally bind each vector with the corresponding index. Namely, we set
crs = (g, gα , gβ1 , . . . , gβL , gβ1α , . . . gβLα), where L is the number of users in the
system and βi ← Zp for each i. We set the secret key for user i as ski = ri

and the corresponding public key as pki = gβiri . Given the set of public keys
{pki}i∈[L] and corresponding vectors {yi}i∈[L], the master public key is set as
MPK = (g, gα ,W =

∏
i∈[L] pki · gβi〈α ,yi〉 =

∏
i∈[L] g

βi(ri+〈α ,yi〉)). The difference
from the previous attempt is that we separate the thread of the computation for
each user by the individual randomness βi. To encrypt the vector x, we com-
pute ct = (gs, gsα+x ,MPKs =

∏
i gsβi(ri+〈α ,yi〉)). Although it seems that now

the construction is secure, we do not know how to decrypt the ciphertext. During
the decryption, a user indexed with i may want to unmask gsβiri , but she only
knows gs, gβi , and ri and thus this task is impossible. This motivates us to use
the (symmetric) pairings in our next attempt.

Attempt 3: In our third attempt, we construct the scheme so that a user who
knows ri can remove the masking term. Towards this goal, we change the CRS
as crs = (g, gα

T , gβ1 , . . . , gβL , gβ1α , . . . , gβLα , g1/β1 , . . . , g1/βL). The forms of the
public keys, secret keys, and master public key are the same as the previous
attempt except that now the group components are in the source group. We
change the form of the ciphertext as ct = (gs

T , gsα+x
T ,W s =

∏
j gsβj(rj+〈α ,yj〉)),

where gT = e(g, g). To decrypt the ciphertext, user i computes

76 P. Datta et al.

e(W s, g1/βi) = e(
∏

j

gsβj(rj+〈α ,yj〉), g1/βi)

= gsri

T · g
s〈α ,yi〉
T ·

∏

j �=i

g
sβjrj/βi

T ·
∏

j �=i

g
sβj〈α ,yj〉/βi

T

︸ ︷︷ ︸
=Cross term

.

Here, the user can unmask the term gsri

T using gs
T and her secret key ri. However,

to retrieve the desired term g
s〈α ,yi〉
T , she also has to remove the cross term.

In our next attempt, we enforce the users to compute extra components and
include them into the public key when they register into the system. These
extra components will enable the decryptor to compute the cross term.

Attempt 4: In our fourth attempt, we set crs = (g, g1/γ , gα
T , {gβj , gβjα , g1/βj }j ,

{gγβj/βk , gγβjα/βk}j �=k), where γ ← Zq and the extra components will be used
for computing the cross terms. We then enforce user i to compute and publicize
{gγβiri/βj }j �=i when it registers. Namely, we set pki = (gβiri , {gγβiri/βj }j �=i) and
ski = ri. The aggregation algorithm is going to be a bit more complex since
it computes helper decryption keys {hski}i in addition to MPK. Concretely,
given the public keys {pki}i and corresponding vectors {yi}i, the aggregation
algorithm computes

MPK =

(
gT , g

α
T , g

1/γ
, W =

∏
i∈[L]

g
βi(ri+〈α ,y i〉)

)
, hski =

∏
j �=i

(
g

βjγrj/βi · g
βjγ〈α ,y j〉/βi

)
.

The ciphertext is now ct = (gs
T , gs/γ , gsα+x

T ,W s). The cross term then can be
recovered by computing

e(gs/γ , hski) =
∏
j �=i

e
(
gs/γ , gβjγrj/βi · gβjγ〈α ,yj〉/βi

)
=

∏
j �=i

g
sβjrj/βi

T ·
∏
j �=i

g
sβj〈α ,yj〉/βi

T

as desired.
One thing missing from the above discussion is how to check the validity of

the public key registered by the user. Given the public key pki = (Ui, {Vi,j}j �=i),
we can check that it is in the valid form in the sense that there exists ri such
that Ui = gβiri and Vi,j = gγβiri/βj by checking e(Ui, g

1/βj) = e(Vi,j , g
1/γ)

for all j �= i. However, this check does not ensure that the user actually fol-
lowed the protocol to compute Ui: a malicious user might have deviated from
the protocol and still have passed the verification. For example, the user might
have used gβi and gβiα to compute Ui as Ui = gβiri+βi〈α ,z〉 for some z and
computed corresponding Vi,j = gγβiri/βj+γβi〈α ,z〉/βj from gγβi/βj and gγβiα/βj .
Such a user can certainly pass the verification. However, the user is able to
decrypt the ciphertext with respect to the vector yi + z, namely, it can recover
〈x,yi + z〉, even though it registered into the system with the vector yi, since
we have W = gβi(ri+〈α ,yi+z〉) · ∏j �=i gβj(rj+〈α ,yj〉), which is problematic. There-
fore, it is not enough to check that the public key is in a valid form. Rather,

Registered FE Beyond Predicates 77

we have to check that the public key is computed following the exact procedure
specified by the protocol. A straightforward solution to ensure this is to use
non-interactive zero-knowledge proof of knowledge (NIZK-PoK), where we add
the CRS of NIZK-PoK to the CRS (of registration-based IPFE) and let the user
i prove the knowledge of ri when it registers. While this idea may work, it is
somewhat indirect and/or introduces additional idealized assumptions. In more
detail, if we use Fiat-Shamir [50] transformation for instantiating the NIZK-PoK,
it requires random oracle models in addition to GGM, which is not desirable.
Another possible way of instantiating the NIZK-PoK is to use the Groth-Sahai
proofs [71]. However, this is inefficient and indirect, since the Groth-Sahai proofs
cannot handle knowledge of exponent efficiently and requires bit-decomposition.
In the next step, we provide a much more direct solution to the problem using
asymmetric pairings.

Our Final Construction: We then explain our final construction. In the con-
struction, we use the asymmetric pairing e : G1 × G2 → GT with generators
g1 ∈ G1 and g2 ∈ G2. In the construction, Ui resides in G1 and is computed as
Ui = gβiri

1 . We let the user compute the copy Ũi = gβiri

2 of Ui in G2 when it
registers, which is meant to serve as a proof that Ui is generated following the
honest procedure of the protocol. By carefully placing the group components into
G1 and G2, we can prevent the above attack. In more detail, we place {gβi

1 }i

and {g
γβi/βj

2 }i,j in the CRS so that the user can compute Ui and Vi,j . The CRS
also includes {gβiα

1 }i, which is used for computing the master public key. We
further include {gβi

2 }i in the CRS so that the copy Ũi of Ui can be computed.
However, we do not include {gβiα

2 }i in the CRS and thus the adversary is not
able to mount the above attack.

Here, we provide a concrete description of our construction. First, we set

crs =
(
g1, g2, g

α
T , g

1/γ
1 , {gβiα

1 , gβi

1 , gβi

2 , g
1/βi

2 }i, {g
γβi/βj

2 , g
γβiα/βj

2 }i�=j

)
. (1)

When a user with index i registers, it sets the public key as pki = (Ui =
gβiri

1 , Ũi = gβiri

2 , {Vi,j = g
γriβi/βj

2 }j �=i) and ski = ri. The verification of the pub-
lic key is done by checking e(Ui, g2) = e(g1, Ũi) and e(Ui, g

1/βj

2) = e(g1/γ
1 , Vi,j)

for all j �= i. The aggregation algorithm computes

MPK =

(

gT , g
α
T , g

1/γ
1 , W =

∏

i∈[L]
g

βi(ri+〈α ,y i〉)
1

)

, hski =
∏

j �=i

(
g

βjγrj/βi
2 · g

βjγ〈α ,y j〉/βi
2

)
.

(2)
A ciphertext encrypting a vector x is

ct = (gs
T , gsα+x

T , g
−s/γ
1 ,W s).

We omit the description of the decryption algorithm here. We observe that the
sizes of MPK and hski are compact, both of which are poly(λ, n, log L)4.

4 We assume that the master public key MPK is implicitly included in each user’s
helper decryption key hski.

78 P. Datta et al.

Overview of the Security Proof: We prove the security of our construction
in the generic group model. Roughly speaking, in the generic group model, the
only way for the adversary to obtain non-trivial information encoded on the
exponents of the group elements is to find a non-trivial linear combination of
pairing products that equals zero. In the first step of the proof, we show that
(1) the only way for the adversary to pass the verification when it registers
the public key is to follow the honest key generation procedure. We then show
that (2) the only way for the adversary to obtain non-trivial information on the
encrypted vectors (i.e., messages) is to follow the honest decryption procedure
or take a linear combination between them. These two facts immediately imply
the security of the construction.

We first show (1). In particular, we show that when the adversary passes the
verification, it should have computed Ui as Ui = gβiri

1 using ri. In the proof,
we show that if the adversary deviates from the correct procedure of computing
Ui, then it cannot compute the associating copy Ũi or {Vi,j}j �=i. For example,
suppose that the adversary inserts the term g

1/γ
1 into Ui as Ui = gβiri

1 · g
t/γ
1

for some t ∈ Zq. Then, in order to pass the verification, the adversary has to
compute Ũi = gβiri

2 ·gt/γ
2 . However, the term g

1/γ
2 is missing from the CRS, there

is no way for the adversary to compute Ũi. Other cases can be dealt with in a
similar manner.5

We then explain the overview of the proof of (2), which is shown in several
steps. In the first step, we show that the ciphertext component W s should be
paired with (linear combination of) {g

1/βi

2 }i terms, since otherwise the result
of the pairing computation includes terms that can never be cancelled by any
other pairing products. For example, if we pair W s with gβi

2 , the pairing product
includes the term of the form g

sβiβjri

T . However, this term cannot be cancelled
inside the linear combination of the pairing products, since any other combi-
nation of the terms does not yield g

sβiβjri

T as a result of the pairing computa-
tion. This means at a high level that there is no non-trivial information that is
obtained by inserting e(W s, gβi

2) into the linear combination.
We then focus on the term e(W s, g

1/βi

2). By (1), all the public keys should
be correctly generated including the ones that are generated by the adversary.
In particular, we have W =

∏
i∈[L] Wi =

∏
i∈[L] g

βi(ri+〈yi,α〉)
1 for some {ri}. We

therefore have

e(W s, g
1/βi

2) = gsri

T · g
s〈α ,yi〉
T ·

∏

j �=i

g
sβjrj/βi

T ·
∏

j �=i

g
sβj〈α ,yj〉/βi

T

︸ ︷︷ ︸
=Cross term

. (3)

Ignoring the cross terms, the above component is similar to the message-carrying
part of the plain IPFE we first introduced. Indeed, our proof from here closely
5 Actually, the adversary can pass the verification by randomizing an honestly gener-

ated public key. However, there is no gain for the adversary to perform this type of
malicious key generation as we will show in the formal proof. We ignore this subtle
point in this overview and defer the full details to the formal proof.

Registered FE Beyond Predicates 79

follows the intuition of why the plain IPFE scheme is secure. First, we show that
if ri is not known to the adversary, then it cannot unmask the term gsri

T . This
means that the adversary can insert e(W s, g

1/βi

2) into the linear combination
only when the index i is corrupted or the public key for this index is generated
by the adversary herself. In both cases, the adversary can unmask the term gsri

T

using the knowledge of ri. However, she still has to compute and unmask the
term g

s〈α ,yi〉
T . By inspection, we can show that the only possible way to unmask

g
s〈α ,yi〉
T is to compute g

s〈α ,yi〉+〈x,yi〉
T using gsα+x

T and then subtract the term
from it. As a result, we will obtain g

〈x,yi〉
T , which only contains the information

of 〈x,yi〉. To sum up, if the adversary wants to obtain non-trivial information of
the encrypted vector x from the ciphertext, it should take the linear combination
among the ciphertext components in a way that the information of x is lost
except for 〈x,yi〉, where i is an index that is corrupted or the corresponding
public key is generated by the adversary herself. This means that the information
of x does not leak to the adversary more than necessary, since 〈x,yi〉 for such i
is revealed to the adversary anyway by the correctness of the protocol. The full
construction and analysis are provided in Sect. 6.

Barriers for Proving the Security Under Standard Assumptions: Before
moving to the overview of the construction of the registered ABIPFE, we briefly
discuss the barriers for proving the security of our registered IPFE scheme under
standard assumptions. First, even though the IPFE scheme by [2] can be proven
secure from the standard assumption, we cannot hope the same for our scheme
at least trivially. One obstacle is the usage of the randomness {βi}i∈[L] intro-
duced for separating the threads of computation (Please see Attempts 2 and 3
in this subsection). For this randomness to work effectively, we need that they
are not known to the reduction algorithm in the clear and should come from the
problem instance. However, if this is the case, the security problem on which our
scheme depends should be a q-type assumption, where the size of the problem
instance is parameterized by L (i.e., the number of randomness βi). Furthermore,
even using non-standard q-type assumptions, we do not know how to prove the
security of our scheme because of the following reasons. First, we observe that
our proof relies on the argument that the decryption result should be masked
by the term gsri

T for user index i corresponding to an honest user when we com-
pute e(W s, g

1/βi

2) (Please refer to Eq. (3)). Translating this discussion into the
standard model case, we may want the term gsri

T to be pseudorandom to mask
the decryption result, which makes the entire term e(W s, g

1/βi

2) pseudorandom
as well. On the other hand, for an index i that is corrupted, e(W s, g

1/βi

2) should
give the decryption result and thus should be structured. Combining these two
observations, in the reduction, we need to simulate W s so that e(W s, g

1/βi

2)
should be pseudorandom for honest user index i and should be structured for
corrupted user index i. It seems that these two contradicting requirements can-
not be satisfied simultaneously in the standard model. To resolve this, a possible
approach is to replace W s and g

1/βi

2 with an IPFE ciphertext and secret key
respectively and to program the decryption results into it in the security proof.

80 P. Datta et al.

However, this requires the size of the ciphertext to be at least linear in the num-
ber of users in the system, which ruins the compactness of the ciphertexts. In
the GGM, we only have to argue that the adversary cannot cancel the term gsri

T ,
which is enough for arguing that the decryption result is masked.

Registered ABIPFE: Our pairing-based registered ABIPFE scheme provides
attribute-based access control over IPFE. In the slotted version, each user is
registered with a vector yi and an attribute set Atti whereas the encryption of
x is performed under an access policy P which is represented by a linear secret
sharing scheme (LSSS). We recall that an access structure of LSSS is specified
by a matrix M ∈ Z

K×N
p and a mapping ρ which associates distinct attributes

to the row indices of M. To share a secret s, we first sample a random vector
v = (s, v2, . . . , vN) and compute the shares u = Mv. The i-th component of u
is the share associated with the attribute ρ(i). The reconstruction of the secret
is possible with a set of attributes Att that satisfies the access structure. More
specifically, there exists a vector ω such that ω�uAtt = MAttv = s where MAtt

is the matrix formed by the rows of M associated with the attributes in Att via
the mapping ρ and uAtt is the components of u associated with Att.

At a very high level, our slotted registered ABIPFE is a combination of the
registered ABE of [73] and our registered IPFE discussed above. Combining the
primitives ABE and IPFE, even in the non-registration-based setting, in a com-
pletely generic way might be insecure [3,103] since the ABE adversary is not
allowed to query any secret key that decrypts the challenge ciphertext. How-
ever, this is crucial for the security of ABIPFE. Our approach aims to blend the
attribute-aggregation procedure devised for the registered ABE of [73] with the
function-aggregation technique developed in this work for our registered IPFE.
The aggregated master public key consists of two aggregated components—one
for attributes and another for function vectors—which are randomized using a
newly sampled group element during encryption. This additional randomization
adds an extra layer of security to the encryption process, making it (compu-
tationally) difficult for unauthorized users to gain access to the inner product
values, even if they possess secret keys.

Let Uatt be the universe of attributes. Then, for each attribute w ∈
Uatt and slot i ∈ [L], the setup randomly samples ti,w ← Zp and adds
the additional elements {g

1/π
1 , {g

βiti,w

1 }i,w, {g
πβiti,w/βj

2 }i�=j} to the crs (given
in Eq. 1) of the registered IPFE. The users can sample their individual
key pairs similar to our registered IPFE. At the aggregation step, each
user submits a pair (yi,Atti) comprising of a vector and an attribute set
along with its public key pki. The aggregation algorithm follows exactly
the same way as in IPFE except it adds new components: {Tw =
∏

i∈[L],w �∈Atti
g

βiti,w

1 }w to MPK and
∏

j �=i:w �∈Attj
g

πβjtj,w/βi

2 to hski of Eq. 2.
Therefore, the sizes of MPK and hski both are bounded by poly(λ, |Uatt|, n, log L),
meeting the efficiency requirement of a slotted registered FE scheme. A cipher-
text encrypting a vector x under a policy (M, ρ) is computed as follows. Our
idea is to randomize the ciphertext component W s of IPFE with a random ele-
ment h ← G1 as hs · W s. At the time of decryption, it eventually produces an

Registered FE Beyond Predicates 81

additional masking factor e(h, g2)s/βi which can only be cancelled using a secret
key ski that corresponds to Atti satisfying the policy (M, ρ). More specifically,
we first sample a random vector v = (s, v2, . . . , vN) and then set the ciphertext

ct = (gs
T , gsα+x

T , g
−s/γ
1 , g

−s/π
1 , hsW s, h〈v ,m k〉T s

ρ(k))

where mk denotes the k-th row of M. To decrypt the ciphertext the i-th user
first computes a slot-specific component e(h, g2)s/βi · e(g1, g2)s〈α ,yi〉 using the
ciphertext components hsW s, g

−s/γ
1 , secret key ski and a component (same as

the i-th helper decryption key of IPFE shown in Eq. 2) of hski. Next, assuming
that Atti satisfies the policy, the user reconstruct the secret s in the form of
e(h, g2)s/βi via pairing the ciphertext components h〈v ,m k〉T s

ρ(k), g
−s/π
1 with g

1/βi

2

and the newly added helper decryption key component
∏

j �=i:w �∈Attj
g

πβjtj,w/βi

2

respectively. In this step, we avail a cross-terms cancellation approach similar to
[73]. Finally, the user recovers the inner product value 〈x,yi〉 from g

s〈α ,yi〉+〈x,yi〉
T

by unmasking it using the term g
s〈α ,yi〉
T . To prove the generic security of the

scheme, we show that the only way for an adversary to recover the masking
term g

s〈α ,yi〉
T is to make use of a secret key ski which corresponds to an attribute

set satisfying the challenge policy. We refer to Sect. 7 for a formal description of
the construction and analysis of the slotted registered ABIPFE.

2.3 Registered FE for Polynomial-Size Circuits

In this work, we build a registered FE for all polynomial-size circuits from indis-
tinguishability obfuscation and one-way functions. While our pairing-based reg-
istered FEs for specific functionalities could only support a bounded number
of users, the registered FE for general functions allows an arbitrary number of
users to join the system. Our registered FE for all circuits generalizes the IO-
based registered ABE of Hohenberger et al. [73] that provides access control
using any arbitrary circuit predicates. In particular, it is based on IO [22,55]
and somewhere statistically binding hash functions (SSB) [74,98]. An overview
of the slotted registered FE is as follows. The crs is an SSB hash key hk. In
the key generation phase, each user samples a seed si and sets the public key
as pki = PRG(si) where PRG is a pseudorandom generator. To register a set of
L users, the key curator hashes the list of public key-function pairs {(pki, fi)}i

using hk and sets the hash value h to be the master public key MPK. Addi-
tionally, it computes an SSB opening πi for each slot index i, which serves as
the helper decryption key hski of the user. The ciphertext of the slotted scheme
consists of a ciphertext CT encrypting the message m under a freshly sampled
(symmetric) encryption key SK and an obfuscated circuit which is consistent
with MPK and SK. The circuit first verifies (a) the opening π using MPK and
(b) the public key pki by re-computing PRG(ski), and if the checks pass then it
outputs the message m by decrypting the ciphertext CT using SK. The correct-
ness is immediate by the definition of the obfuscated circuit. The compactness of
MPK and hski follows from the succinctness of SSB. Since the size of crs (or the

82 P. Datta et al.

hash key) scales with O(log L), our slotted registered FE can be transformed into
a registered FE supporting any arbitrary number of users. We give a detailed
description of the scheme in Sect. 8.

3 Preliminaries

Notations: Throughout this paper, we use λ as the security parameter. Let
n,m ∈ Z be two non-negative integers. Then [n] denotes the set {1, 2, . . . , n} if
n > 0 and [n,m] denotes the set {n, n + 1, . . . ,m}. We use the bold uppercase
letters (e.g. M) to denote matrices and the bold lowercase letters (e.g. x) to
denote vectors. The components of the vectors are denoted by non-boldface
letters (e.g. x = (x1, . . . , xn)). We write poly(λ) as a polynomial function of λ
if it is of the form O(λc) for some constant c ∈ N. We say a function negl(λ) is
negligible function of λ if it is of the form O(λ−c) for all c > 0.

Bilinear Groups: Assume a bilinear group generator algorithm GG that takes
as input 1λ and outputs a tuple G = (G1,G2,GT , p, g1, g2, e), where G1,G2 are
the source groups and GT is the target group of the same prime order p = p(λ)
with generators g1, g2 respectively. The map e : G1 × G2 → GT satisfies non-
degeneracy, meaning that e(g1, g2) = gT generates GT . It also satisfies bilinearity,
i.e., for all a, b ∈ Zp it holds that e(ga

1 , gb
2) = e(g1, g2)ab. We require that the

group operations and the bilinear map are efficiently computable. The back-
grounds of the generic bilinear group model can be found in the full version
[45].

4 Registered Functional Encryption

In this section, we introduce the notion of registered FE for general class of func-
tions. We generalize the registration-based ABE notion of [73] into the setting
of FE which goes beyond the all-or-nothing type paradigm.

Definition 1 (Registered Functional Encryption). Let UF = {Fλ}λ∈N be
the universe of functions and M be the set of messages. A registered functional
encryption scheme with function universe UF and message space M is a tuple of
efficient algorithms RFE = (Setup,KeyGen,RegPK,Enc,Update,Dec) that work
as follows:

Setup(1λ, 1�f) → crs: The setup algorithm takes the security parameter λ, the
(maximum) size �f of the functions in UF as inputs and outputs a common
reference string crs.

KeyGen(crs, aux) → (pk, sk): The key generation algorithm takes the common
reference string crs, and a (possibly empty) state aux as inputs and outputs
a public key pk and a secret key sk.

Registered FE Beyond Predicates 83

RegPK(crs, aux, pk, fpk) → (MPK, aux′): The registration algorithm takes a com-
mon reference string crs, a (possibly empty) state aux, a public key pk and
a function fpk ∈ Fλ as inputs and outputs a master public key MPK and an
updated state aux′. This is a deterministic algorithm. Here the subscript pk
in fpk simply underlies the fact that the function fpk is associated with the
user whose public key is pk.

Enc(MPK,m) → ct: The encryption algorithm takes a master public key MPK
and a message m ∈ M as inputs and outputs a ciphertext ct.

Update(crs, aux, pk) → hsk: The update algorithm takes a common reference
string crs, a state aux and a public key pk as inputs, and outputs a helper
decryption key hsk. This is a deterministic algorithm.

Dec(sk, hsk, ct) ∈ M∪{GetUpdate,⊥}: The decryption algorithm takes a secret
key sk, a helper decryption key hsk and ciphertext ct as inputs. The algorithm
either outputs a message m′ ∈ M, a special symbol ⊥ indicating decryption
failure, or a special message GetUpdate indicating an updated helper decryp-
tion key is needed to decrypt the ciphertext. This is a deterministic algorithm.

The algorithms must satisfy the following properties:

Correctness, Compactness and Update Efficiency: For all security param-
eters λ ∈ N, all messages m ∈ M, all functions f ∈ Fλ, we define the following
experiment between an adversary A and a challenger:

• Setup phase: The challenger starts by sampling the common reference string
crs ← Setup(1λ, 1�f). It then initializes the auxiliary input aux ← ⊥ and
initial master public key MPK0 ← ⊥. It also initializes a counter ctr[reg] ←
0 to keep track of the number of registration queries and another counter
ctr[enc] ← 0 to keep track of the number of encryption queries. Finally, it
initializes ctr[reg]∗ ← ∞ as the index for the target key. It gives crs to A.

• Query phase: During the query phase, the adversary A is able to make the
following queries:

– Register non-target key query: In a non-target-key registration query,
the adversary A specifies a public key pk and a function f ∈ UF . The
challenger first increments the counter ctr[reg] ← ctr[reg] + 1 and then
registers the key by computing (MPKctr[reg],aux′) ← RegPK(crs, aux, pk, f).
The challenger updates its auxiliary data by setting aux ← aux′ and
replies A with (ctr[reg],MPKctr[reg], aux).

– Register target key query: In a target-key registration query, the
adversary specifies a function f∗ ∈ UF . If the adversary has previously
made a target-key registration query, then the challenger replies with ⊥.
Otherwise, the challenger increments the counter ctr[reg] ← ctr[reg] + 1,
samples (pk∗, sk∗) ← KeyGen(1λ, aux), and registers (MPKctr[reg],aux′) ←
RegPK(crs, aux, pk∗, f∗). It computes the helper decryption key hsk∗ ←
Update(crs, aux, pk∗). The challenger updates its auxiliary data by setting
aux ← aux′, stores the index of the target identity ctr[reg]∗ ← ctr[reg],
and replies to A with (ctr[reg],MPKctr[reg], aux, pk

∗, hsk∗, sk∗).

84 P. Datta et al.

– Encryption query: In an encryption query, the adversary submits
the index ctr[reg]∗ ≤ i ≤ ctr[reg] of a public key6 and a message
mctr[enc] ∈ M. If the adversary has not yet registered a target key the chal-
lenger replies with ⊥. Otherwise, the challenger increments the counter
ctr[enc] ← ctr[enc] + 1 and computes ctctr[enc] ← Enc(MPKi,m). The chal-
lenger replies to A with (ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a
ciphertext index 1 ≤ j ≤ ctr[enc]. The challenger computes m′

j ←
Dec(sk∗, hsk∗, ctj). If m′

j = GetUpdate, then the challenger computes an
updated helper decryption key hsk∗ ← Update(crs, aux, pk∗) and recom-
putes m′

j ← Dec(sk∗, hsk∗, ctj). If m′
j �= f∗(mj), the experiment halts

with outputs b = 1.
If A has finished making queries and the experiment has not halted (as a
result of a decryption query), then the experiment outputs b = 0.

We say that RFE is correct, compact and update efficient if for all adversaries A
making at most polynomial number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all λ ∈
N, Pr[b = 1] = negl(λ) in the above experiment. We say that the scheme
satisfies perfect correctness if Pr[b = 1] = 0.

• Compactness: Let N be the number of registration queries the adversary
makes in the above experiment. There exists a universal polynomial poly(·, ·, ·)
such that for i ∈ [N], |MPKi| = poly(λ, �f , log i). We also require that the size
of the helper decryption key hsk∗ satisfy hsk∗ = poly(λ, �f , log N) (at all point
of the experiment).

• Update efficiency: Let N be the number of registration queries made by
A. Then, in the course of the above experiment, the challenger invokes the
update algorithm Update at most O(log N) times where each invocation runs
in poly(log N) time in the RAM model of computation. Specially, we model
Update as a RAM program that has random access to its input; thus, the
running time of Update in the RAM model can be smaller than the input
length.

Security: Let coin ∈ {0, 1} be a bit. We define the following security experiment
ExptRFEA (1λ, coin) played between an adversary A and a challenger.

• Setup phase: The challenger samples a common reference string crs ←
Setup(1λ, 1�f). It then initializes the auxiliary input aux ← ⊥, the initial
master public key MPK ← ⊥, a counter ctr ← 0 for the number of honest-
key-registration queries the adversary has made, an empty set of keys Cor ← ∅
for tracking the honestly generated keys that are corrupted in course of the
experiment, an empty set of keys Mal ← ∅ which will be filled with the keys

6 The message is encrypted under a master public key which is registered only after
the adversary registers a target key since we require the correctness to hold only for
the target key.

Registered FE Beyond Predicates 85

generated by the adversary and an empty dictionary D ← ∅ mapping public
keys to registered function. For notational convenience, if pk �∈ D, then we
define D[pk] := ∅. The challenger gives the crs to A.

• Query phase: The adversary A is allowed to query the following queries:
– Registered malicious key query: In a corrupted key query, A specifies

a public key pk and a function f ∈ UF . The challenger registers the key by
computing (MPK′, aux′) ← RegPK(crs, aux, pk, f). The challenger updates
its copy of the public key MPK ← MPK′, its auxiliary data aux ← aux′,
adds pk to Mal, and updates D[pk] ← D[pk] ∪ {f}. It replies to A with
(MPK′, aux′).

– Registered honest key query: In an honest key query, A speci-
fies a function f ∈ UF . The challenger increments ctr ← ctr + 1 and
samples (pkctr, skctr) ← KeyGen(crs, aux), and registers the key by com-
puting (MPK′, aux′) ← RegPK(crs, aux, pkctr, f). The challenger updates
its public key MPK ← MPK′, its auxiliary data aux ← aux′, adds
D[pkctr] ← D[pkctr] ∪ {f}. It replies to A with (ctr,MPK′, aux′, pkctr).

– Corrupt honest key query: In a corrupt-honest key query, A specifies
an index 1 ≤ i ≤ ctr. Let (pki, ski) be the i-th public/secret key the
challenger samples when responding to the i-th honest-key-registration
query. The challenger adds pki to Cor and replies to A with ski.

• Challenge phase: The adversary A chooses two messages m∗
0,m

∗
1 ∈ M. The

challenger replies with the challenge ciphertext ct∗ ← Enc(MPK,m∗
coin).

• Output phase: At the end of the experiment, A outputs a bit coin′ ∈ {0, 1},
which is the output of the experiment.

Let S = {fpk ∈ D[pk] : pk ∈ Cor∪Mal}. We say an adversary A is admissible
if for all functions fpk ∈ S, it holds that fpk(m∗

0) = fpk(m∗
1). The registration-

based functional encryption scheme RFE is said to be secure if for all admissible
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,

|Pr[ExptRFEA (1λ, 0) = 1] − Pr[ExptRFEA (1λ, 1) = 1]| = negl(λ).

Definition 2 (Bounded Registered FE). We say that a registered FE
scheme RFE is bounded if there is an a-priori bound on the number of regis-
tered users in the system. In a bounded RFE, the setup additionally takes a
bound parameter 1L which specifies the maximum number of registered users
that can be joined to the system. Similarly, in the correctness and security def-
inition, the adversary is asked to submit the bound 1L at the beginning and it
is restricted to query up to L queries.

Specific function classes of RFE: In this work, we construct RFE schemes
for general (polynomial-size) functions from obfuscation as well as bounded RFE
schemes for specific function classes from pairings. We consider the following
class of registered FEs:

• Registered Inner Product FE. The inner product FE or IPFE [2,12] is a spe-
cific class of FE which only allows linear computation over the encrypted data.

86 P. Datta et al.

The function space UF and the message space M are vectors from the set Zn

for an integer n ∈ N. In particular, a user registers the public key pk along
with a function fpk = y ∈ Z

n and a message m = x ∈ Z
n is encrypted using

the master public key. During decryption a user recovers the inner product
〈x,y〉 between the vectors. As in all existing pairing-based IPFE schemes of
the literature, our registered IPFE scheme also requires that the inner prod-
uct value to lie in a polynomial range for efficient extraction of it from the
exponent of the target group.

• Registered Attribute-Based Inner Product FE. We consider the attribute-
based IPFE or ABIPFE [3] which provides attribute-based access control
over IPFE. The secret key and message vectors are additionally associated
with an attribute set Att ⊆ Uatt and a policy P ∈ P where Uatt and P are
attribute universe and a set of supported policies respectively, and the recov-
ery of the inner product during decryption depends on whether the attribute
set is satisfying the policy. In our registration-based setting, a user registers
a public key pk with a function fpk = (Att,y) ∈ PSet(Uatt) × Z

n(= UF)7 and
the encryption of the message m = (P,x) ∈ P ×Z

n yields a ciphertext where
P is made available with it in the clear. The decryption procedure computes
〈x,y〉 (also belonging to a polynomial range) using the secret key sk of the
user if the associated attribute set Att satisfies the policy, i.e., if P (Att) = 1
holds.

5 Slotted Registered Functional Encryption

In this section, we introduce the notion of slotted registered FE which is the core
building block for building the full-fledged registered FE scheme.

Definition 3 (Slotted Registered Functional Encryption). Let UF =
{Fλ}λ∈N be the universe of functions and M be the set of messages. A slotted
registered functional encryption scheme with function universe UF and message
space M is a tuple of efficient algorithms SlotRFE = (Setup,KeyGen, IsValid,
Aggregate,Enc,Dec) that work as follows:

Setup(1λ, 1‖UF ‖, 1L) → crs: The setup algorithm takes the security parameter
λ, the (maximum) size ‖UF ‖ of the functions in UF and the number of slots
L (in unary) as inputs and outputs a common reference string crs.

KeyGen(crs, i) → (pki, ski): The key generation algorithm takes the common
reference string crs, and a slot index i ∈ [L] as inputs and outputs a public
key pki and a secret key ski for the slot i.

IsValid(crs, i, pki) ∈ {0, 1}: The key-validation algorithm takes a common refer-
ence string crs, a slot index i ∈ [L] and a public key pki as inputs and outputs
a bit b ∈ {0, 1}. This is a deterministic algorithm.

Aggregate(crs, (pk1, f1), . . . , (pkL, fL)) → (MPK, hsk1, . . . , hskL): The aggregate
algorithm takes a common reference string crs, a list of L public key-function

7 Here, PSet(X) denotes the power set of the set X.

Registered FE Beyond Predicates 87

pairs (pk1, f1), . . . , (pkL, fL) as inputs such that fi ∈ Fλ for all i ∈ [L] and
outputs a master public key MPK and a collection of helper decryption keys
hsk1, . . . , hskL. We assume that the master public key is implicitly provided
to the users along with their helper decryption keys. This is a deterministic
algorithm.

Enc(MPK,m) → ct: The encryption algorithm takes a master public key MPK
and a message m ∈ M as inputs and outputs a ciphertext ct.

Dec(sk, hsk, ct) ∈ M ∪ {⊥}: The decryption algorithm takes a secret key sk, a
helper decryption key hsk and ciphertext ct as inputs and outputs a message
m′. This is a deterministic algorithm.

The algorithms must satisfy the following properties:

Completeness: For all λ ∈ N, all function classes UF , and all indices i ∈ [L],

Pr

[
IsValid(crs, i, pki) = 1 : crs ← Setup(1λ, 1|UF |, 1L); (pki, ski) ← KeyGen(crs, i)

]
= 1.

Correctness: The SlotRFE is said to be correct if for all security parameters
λ ∈ N, all possible lengths L ∈ N, all indices i ∈ [L], if we sample crs ←
Setup(1λ, 1‖UF ‖,1L

), (pki, ski) ← KeyGen(crs, i) and for all collections of public
keys {pkj}j �=i (which may be correlated to pki) where IsValid(crs, j, pkj) = 1, all
messages m ∈ M, all functions f ∈ Fλ, the following holds

Pr

[

Dec(ski, hski, ct) = f(m) :
(MPK, hsk1, . . . , hskL) ← Aggregate(MPK, (pk1, f1), . . . , (pkL, fL));

ct ← Enc(MPK, m)

]

= 1.

Compactness: The SlotRFE is said to be compact if there exists a universal
polynomial poly(·, ·, ·) such that the length of the master public key and individ-
ual helper secret keys output by Aggregate are bounded by poly(λ, ‖UF ‖ , log L).

The security model essentially stays the same as in our registered FE scheme
(Definition 1) except that the adversary is asked to submit a list of L public key-
function pair during the challenge phase and the malicious public keys qualify for
aggregation only if they pass the validity check. We present the security model
of SlotRFE formally in the full version [45].

Theorem 1. Assuming SlotRFE is a secure slotted registered functional encryp-
tion scheme then there exists a RFE which is secure as per Definition 1.

6 Slotted Registered IPFE from Pairings

The slotted registered inner product functional encryption SlotRIPFE = (Setup,
KeyGen, IsValid,Aggregate,Enc,Dec) for a function universe UF = Z

n, and mes-
sage space M = Z

n works as follows:

88 P. Datta et al.

Setup(1λ, 1n, L): The setup algorithm takes the security parameter λ, the length
n of vectors (in unary) and the number of users L (in binary) as inputs and
samples G = (G1,G2,GT , p, g1, g2, e) ← GG(1λ). The algorithm computes the
following terms:
1. Sample α ← Z

n
p , γ, βi ← Zp for all i ∈ [L].

2. Compute Z := gα
T and Γ := g

1/γ
1 where gT = e(g1, g2).

3. For each i ∈ [L], compute Ai := gβiα
1 , Bi := gβi

1 , B̃i := gβi

2 ,Di := g
1/βi

2 .
4. For each slot i, j ∈ [L] and i �= j, compute Ri,j := g

γβi/βj

2 ,Si,j := g
γβiα/βj

2 .
5. Output the common reference string as

crs :=

⎛

⎜
⎝

G, Z = gα
T , Γ = g

1/γ
1 ,

{Ai = gβiα
1 , Bi = gβi

1 , B̃i = gβi

2 , Di = g
1/βi

2 }i∈[L],�∈[n],

{Ri,j = g
γβi/βj

2 , Si,j = g
γβiα/βj

2 }i,j∈[L],i �=j

⎞

⎟
⎠ .

KeyGen(crs, i): The key generation algorithm takes the common reference string
crs, and a slot index i ∈ [L] as inputs and works as follows:
1. Sample ri ← Zp and compute Ui := Bri

i , Ũi = B̃ri
i , Pi,j := Rri

i,j for all
j ∈ [L] and j �= i.

2. Output the public and secret keys as

pki :=
(

Ui = g
βiri
1 , Ũi = g

βiri
2 , {Pi,j = g

γβiri/βj

2 }j∈[L],j �=i

)
and ski := ri.

IsValid(crs, i, pki): The public key verification algorithm takes the common ref-
erence string crs, a slot index i ∈ [L] and a public key pki = (Ui, Ũi,
{Pi,j}j∈[L],j �=i), and checks the following:

e(Ui, g2)
?= e(g1, Ũi) and e(Ui,Dj)

?= e(Γ, Pi,j) ∀j ∈ [L] \ {i}.

If the check passes then it outputs 1; otherwise 0.
Aggregate(crs, (pk1,y1), . . . , (pkL,yL)): The aggregate algorithm takes a com-

mon reference string crs, a list of L public key-function pairs (pk1,y1), . . . ,
(pkL,yL) as inputs such that yi ∈ Z

n and pki = (Ui, Ũi, {Pi,j}j∈[L],j �=i) for
all i ∈ [L]. It proceeds as follows:
1. Using Ai, Ui and yi, compute Wi := Ui ·

∏
�∈[n] A

yi,�

i,� = Ui ·gβi〈yi,α〉
1 , where

Ai,� denotes the �-th entry of Ai.
2. Using Si,j and yi, compute Sj,i =

∏
�∈[n] S

yj,�

j,i,� = g
γβj〈yj ,α〉/βi

2 for all
i, j ∈ [L] and j �= i, where Sj,i,� denotes the �-th entry of Sj,i.

3. Compute the component of MPK as W :=
∏

i∈[L] Wi.

4. Compute the components of hski as Si :=
∏

j∈[L]\{i} Sj,i and Pi :=
∏

j∈[L]\{i} Pj,i.
5. Output the master public key and slot-specific helper decryption keys as

MPK := (G, Z, Γ, W) and hski := Si · Pi.

Registered FE Beyond Predicates 89

Enc(MPK,x): The encryption algorithm takes a master public key MPK and a
message x ∈ Z

n as inputs and proceeds as follows:
1. Sample s ← Zp.
2. Compute C0 := gs

T and C1 = (gx1
T · Zs

1 , . . . , gxn

T · Zs
n) = gx+sα

T where Z�

denotes the �-th entry of Z.
3. Compute C2 := W−s and C3 := Γ s.
4. Output the ciphertext

ct := (C0,C1, C2, C3).

Dec(sk, hsk, ct): The decryption algorithm takes a secret key sk = r, a helper
decryption key hsk for the i-th slot and a ciphertext ct := (C0,C1, C2, C3) as
inputs and works as follows:
1. Compute the following terms

E := e(C2,Di) · e(C3, hsk) and C =
∏

�∈[n]

C
yi,�

1,�

where C1,� denotes the �-th entry of C1.
2. Output the message as loggT

(
C · Csk

0 · E
)
.

Completeness: Consider a key pair (pki, ski) generated using KeyGen(crs, i; r).
Then by construction, we have pk = (Ui, Ũi, {Pi,j}j∈[L],j �=i) where

Ui = Bri
i = gβiri

1 , Ũi = B̃ri
i = gβiri

2 and Pi,j = Rri
i,j = g

γβiri/βj

2 .

Therefore, the validity of pki is verified using

e(Ui, g2) = e(g1, g2)βiri = e(g1, Ũi) and

e(Ui,Dj) = e(g1, g2)βiri/βj = e(Γ, Pi,j) ∀j ∈ [L] \ {i}

since Dj = g
1/βj

2 and Γ = g
1/γ
1 . The RIPFE satisfies completeness since the

public key passes all the pairing equations defined by the IsValid algorithm, i.e.
IsValid(crs, pki) outputs 1.

Correctness: Consider a secret key sk = ri, a helper decryption key hsk = Si ·Pi

and a ciphertext ct = (C0,C1, C2, C3). Then, by construction, we have

hsk =
∏

j �=i

g
γrjβj/βi

2 ·
∏

�∈[n]

∏

j �=i

g
γyj,�α�βj/βi

2 =
∏

j �=i

g
γrjβj/βi

2 ·
∏

j �=i

g
γ〈yj ,α〉βj/βi

2 ,

C2 =
∏

i∈[L]

W−s
i =

∏

i∈[L]

U−s
i

∏

i∈[L]

·
∏

�∈[n]

A
−syi,�

i,� =
∏

i∈[L]

g−sriβi

1 ·
∏

i∈[L]

g
−s〈yi,α〉βi

1 ,

90 P. Datta et al.

e(C2,Di) =
∏

j∈[L]

e(g1, g2)−srjβj/βi ·
∏

j∈[L]

e(g1, g2)−s〈yj ,α〉βj/βi ,

e(C3, hsk) =
∏

j �=i

e(g1, g2)srjβj/βi ·
∏

j �=i

e(g1, g2)s〈yj ,α〉βj/βi ,

C =
∏

�∈[n]

C
yi,�

1,� = g
〈x,yi〉+s〈yi,α〉
T , Csk

0 = gsri

T .

Therefore, E = e(C2,Di) · e(C3, hsk) = e(g1, g2)−s(ri+〈yi,α〉). Hence, the inner
product value is obtained as loggT

(
C · Csk

0 · E
)

= 〈x,yi〉.
Compactness: The master public key contains O(n) group elements and each
group element can be represented using poly(λ) bits. Therefore, the master public
key size is bounded by poly(λ, |UF |, log L) where |UF | = n. The helper decryption
key contains a single group element. Since the information of the aggregated
master public key is given with the helper decryption key the size is also bounded
by poly(λ, |UF |, log L).

Security Analysis: We refer to the full version [45] for detailed security analysis
in GGM.

7 Slotted Registered ABIPFE from Pairings

In this section, we present our slotted registered attribute-based IPFE scheme
based on pairing. The attribute-based access control is provided by the policies
represented by linear secret sharing access structures (LSSS). We present the
formal definitions of access structures and linear secret-sharing schemes in the
full version [45].

The slotted registered attribute-based IPFE SlotRABIPFE = (Setup,KeyGen,
IsValid,Aggregate,Enc,Dec) for an attribute universe Uatt, a set of policies P
which contains (one-use) LSSS policies of a monotone access structure on Uatt,
and a function space UF = PSet(Uatt) × Z

n, message space M = P × Z
n works

as follows:

Setup(1λ, 1n,Uatt, L): The setup algorithm takes the security parameter λ, the
length n of vectors (in unary), the attribute universe Uatt and the number
of users L (in binary) as inputs and samples G = (G1,G2,GT , p, g1, g2, e) ←
GG(1λ). The algorithm computes the following terms:
1. Sample α ← Z

n
p , γ, π, βi ← Zp for all i ∈ [L].

2. Compute Z := gα
T and Γ := g

1/γ
1 ,Π := g

1/π
1 where gT = e(g1, g2).

3. For each i ∈ [L], compute Ai := gβiα
1 , Bi := gβi

1 , B̃i := gβi

2 ,Di := g
1/βi

2 .
4. For each slot i, j ∈ [L] and i �= j, compute Ri,j := g

γβi/βj

2 ,Si,j := g
γβiα/βj

2 .
5. Sample ti,w ← Zp for all i ∈ [L], w ∈ Uatt.
6. For all i, j ∈ [L] with i �= j and w ∈ Uatt, compute

Ti,w := B
ti,w

i ,Hi,j,w := g
πβiti,w/βj

2 .

Registered FE Beyond Predicates 91

7. Output the common reference string as

crs :=

⎛
⎜⎜⎜⎝

G, Z = gα
T , Γ = g

1/γ
1 , Π = g

1/π
1 ,{

Ai = g
βiα
1 , Bi = g

βi
1 , {Ti,w = g

βiti,w
1 }w∈Uatt , B̃i = g

βi
2 , Di = g

1/βi
2

}

i∈[L]
,

{
Ri,j = g

γβi/βj
2 , Si,j = g

γβiα /βj
2 , Hi,j,w = g

πβiti,w/βj
2

}

i,j∈[L],i�=j,
w∈Uatt

⎞
⎟⎟⎟⎠

KeyGen(crs, i): The key generation algorithm takes the common reference string
crs, and a slot index i ∈ [L] as inputs and works as follows:
1. Sample ri ← Zp and compute Ui := Bri

i , Ũ = B̃ri
i , Pi,j := Rri

i,j for all
j ∈ [L] and j �= i.

2. Output the public and secret keys as

pki :=
(

Ui = g
βiri
1 , Ũi = g

βiri
2 , {Pi,j = g

γβiri/βj

2 }j∈[L],j �=i

)
and ski := ri.

IsValid(crs, i, pki): The public key verification algorithm takes the common
reference string crs, a slot index i ∈ [L] and a public key pki =
(Ui, Ũi, {Pi,j}j∈[L],j �=i), and checks the following:

e(Ui, g2)
?= e(g1, Ũi) and e(Ui,Dj)

?= e(Γ, Pi,j) ∀j ∈ [L] \ {i}.

If the check passes then it outputs 1; otherwise 0.
Aggregate(crs, (pk1,Att1,y1), . . . , (pkL,AttL,yL)): The aggregate algorithm

takes a common reference string crs, a list of L public key, attribute, function
tuple (pk1,Att1,y1), . . . , (pkL,AttL,yL) as inputs such that Atti ⊆ Uatt,yi ∈
Z

n and pki = (Ui, Ũi, {Pi,j}j∈[L],j �=i) for all i ∈ [L]. It proceeds as follows:
1. Using Ai, Ui and yi, compute Wi := Ui

∏
�∈[n] A

yi,�

i,� = g
βi(ri+〈yi,α〉)
1 , where

Ai,� denotes the �-th entry of Ai.
2. Using Si,j and yi, compute Sj,i =

∏
�∈[n] S

yj,�

j,i,� = g
γβj〈yj ,α〉/βi

2 for all
i, j ∈ [L] and j �= i, where Sj,i,� denotes the �-th entry of Sj,i.

3. Compute the component of MPK as W =
∏

i∈[L] Wi =
∏

i∈[L] g
βi(ri+〈yi,α〉)
1 .

4. Compute the component of hski as Fi = Si · Pi where

Si :=
∏

j∈[L]\{i}
Sj,i =

∏
j∈[L]\{i}

g
γβj〈y i,α 〉/βi

2 , Pi :=
∏

j∈[L]\{i}
Pj,i =

∏
j∈[L]\{i}

g
γβiri/βj

2

.
5. For each w ∈ Uatt, i ∈ [L], compute

Tw =
∏

j∈[L]:w �∈Attj

Tj,w =
∏

j∈[L]:w �∈Attj

g
βjtj,w
1 , Hi,w =

∏

j �=i:w �∈Attj

Hj,i,w =
∏

j �=i:w �∈Attj

g
πβjtj,w/βi
2 .

6. Output the master public key and slot-specific helper decryption keys as

MPK := (G, Z, Γ, W, {Tw}w∈U) and hski := (Atti, Di, Fi, {Hi,w}w∈Uatt) .

92 P. Datta et al.

Enc(MPK, (M, ρ),x): The encryption algorithm takes a master public key MPK,
a policy (M ∈ Z

K×N
p , ρ : [K] → Uatt) where ρ is an injective function mapping

the row indices of M into the attributes in Uatt and a message x ∈ Z
n as inputs

and proceeds as follows:
1. Sample h ← G1 and s ← Zp.
2. Compute C0 := gs

T and C1 := (gx1
T · Zs

1 , . . . , gxn

T · Zs
n) = gx+sα

T where Z�

denotes the �-th entry of Z.
3. Compute C2 := h−sW−s, C3 := Γ s and C4 := Πs.
4. Sample v2, . . . , vN and set v := (s, v2, . . . , vN).
5. For each k ∈ [K], compute C5,k := h〈v ,m k〉T−s

ρ(k).
6. Output the ciphertext ct :=

(
(M, ρ), C0,C1, C2, C3, C4, {C5,k}k∈[K]

)
.

Dec(sk, hsk, ct): The decryption algorithm takes a secret key sk = r, a helper
decryption key hsk = (Atti,Di, Fi, {Hi,w}w∈Uatt) for the i-th slot and a cipher-
text ct := ((M, ρ), C0,C1, C2, C3, C4, {C5,k}k∈[K]) as inputs and works as
follows. If Atti does not satisfy the policy (M, ρ) then output ⊥. Otherwise,
there exists ω ∈ Z

|I|
p such that ω�MAtti = e�

1 where I = {k ∈ [K] : ρ(k) ∈
Atti} = {kι : ι ∈ [|I|]} and MAtti is formed by taking the subset of rows of
M indexed by I.
1. Compute the following terms

Eslot = e(C2,Di) · e(C3, Fi) · Csk
0 ,

Eatt =
∏

ι∈[|I|]

(
e(C5,kι

,Di) · e(C4,Hi,ρ(kι))
)ωι and C =

∏

�∈[n]

C
yi,�

1,�

where C1,� denotes the �-th entry of C1.
2. Output the message as loggT

(C · Eslot · Eatt).

We discuss the completeness, correctness, compactness and security analysis
in GGM of the slotted registered ABIPFE in the full version [45].

8 Slotted Registered FE from Indistinguishability
Obfuscation

8.1 Construction

Construction: We use the following cryptographic tools as building blocks:

– A length doubling PRG PRG : {0, 1}λ → {0, 1}2λ.
– A secret key encryption scheme SKE = (Setup,Enc,Dec).
– A somewhere statistically binding hash function SSB = (Setup,Hash,
Open,Vrfy).

– An indistinguishability obfuscation iO for P/poly.

We provide necessary details about these cryptographic building blocks in the
full version [45]. The slotted registered functional encryption SlotRFE = (Setup,
KeyGen, IsValid,Aggregate,Enc,Dec) for a function universe UF = {0, 1}�f , and
message space M works as follows:

Registered FE Beyond Predicates 93

Fig. 1. The circuit Cj = Cj [MPK, SKj , V] for j ∈ {0, 1}

Setup(1λ, 1�f , L): The setup algorithm takes the security parameter λ, the bit-
length �f of a function in UF (in unary) and the number of users L (in binary)
as inputs and sets �blk = �f +2λ, computes hk ← SSB.Setup(1λ, 1�blk , L, 1) and
sets crs := hk. It outputs crs.

Keygen(crs, i): The key generation algorithm takes the common reference string
crs, and a slot index i ∈ [L] as inputs and samples si ← {0, 1}λ. It outputs
the public key as pki := PRG(si) and the secret key as ski := si.

IsValid(crs, i, pki): The key-validation algorithm takes a common reference string
crs, a slot index i ∈ [L] and a public key pki as inputs and outputs 1 if
pki ∈ {0, 1}2λ; otherwise outputs 0.

Aggregate(crs, (pk1, f1), . . . , (pkL, fL)): The aggregate algorithm takes a com-
mon reference string crs, a list of L public key-function pairs (pk1, f1), . . . ,
(pkL, fL) as inputs such that fi ∈ UF for all i ∈ [L]. It computes

h ← SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL))

and sets MPK := (hk, h). For each user i ∈ [L], the aggregate algorithm
computes

πi ← SSB.Open(hk, ((pk1, f1), . . . , (pkL, fL)), i)

where we treat each pair (pki, fi) ∈ {0, 1}�blk as one SSB hash-block. It sets
hski := (i, pki, fi, πi) and outputs MPK, hsk1, . . . , hskL.

Enc(MPK,m): The encryption algorithm takes MPK, and a message m ∈ M as
inputs and samples SK0,SK1 ← SKE.Setup(1λ), computes

CT0 ← SKE.Enc(SK0,m) and CT1 ← SKE.Enc(SK1,0|m|).

It writes (CT0,CT1) = (β1, . . . , β�c
, β�c+1, . . . , β2�c

) ∈ {0, 1}2�c . The algo-
rithm samples uk,β ← {0, 1}λ for all k ∈ [2�c], β ∈ {0, 1}. It computes
V = (vk,β := PRG(uk,β))k∈[2�c],β∈{0,1}. It constructs the circuit C0 =
C[MPK,SK0, V] as defined in Fig. 1 and computes C̃0 ← iO(1λ, C0). It out-
puts the ciphertext ct := (CT0,CT1, C̃0, σCT := (uk,βk

)k∈[2�c]).

94 P. Datta et al.

Dec(ski, hski, ct): The decryption algorithm takes a secret key ski, a helper
decryption key hski = (i, pki, fi, πi) and ciphertext ct = (CT0,CT1, C̃0, σCT)
as inputs and outputs C̃0(ski, i, pki, fi, πi,CT0,CT1, σCT).

We discuss the completeness, correctness, compactness and security analysis
of the slotted registered FE in the full version [45].

Acknowledgement. The third author was partly supported by JST AIP Acceleration
Research JPMJCR22U5 and JST CREST Grant Number JPMJCR22M1.

References

1. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019: 22nd Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part II.
Lecture Notes in Computer Science, vol. 11443, pp. 128–157. Springer, Heidelberg
(Apr 2019). https://doi.org/10.1007/978-3-030-17259-6 5

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryp-
tion schemes for inner products. In: Katz, J. (ed.) PKC 2015: 18th International
Conference on Theory and Practice of Public Key Cryptography. Lecture Notes
in Computer Science, vol. 9020, pp. 733–751. Springer, Heidelberg (Mar / Apr
2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. In: Moriai, S., Wang, H. (eds.) Advances
in Cryptology – ASIACRYPT 2020, Part III. Lecture Notes in Computer Sci-
ence, vol. 12493, pp. 467–497. Springer, Heidelberg (Dec 2020). https://doi.org/
10.1007/978-3-030-64840-4 16

4. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. IACR Cryptology ePrint Archive, Report
2020/577 (2020)

5. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted
sums from k-Lin. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
– CRYPTO 2020, Part I. Lecture Notes in Computer Science, vol. 12170, pp. 685–
716. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-
2 23

6. Agrawal, S.: Stronger security for reusable garbled circuits, general defini-
tions and attacks. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology –
CRYPTO 2017, Part I. Lecture Notes in Computer Science, vol. 10401, pp. 3–35.
Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63688-7 1

7. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. Lecture Notes
in Computer Science, vol. 6110, pp. 553–572. Springer, Heidelberg (May / Jun
2010). https://doi.org/10.1007/978-3-642-13190-5 28

8. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) Advances in Cryptology
– CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 98–115.
Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7 6

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6

Registered FE Beyond Predicates 95

9. Agrawal, S., Kitagawa, F., Modi, A., Nishimaki, R., Yamada, S., Yamakawa,
T.: Bounded functional encryption for turing machines: Adaptive security from
general assumptions. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022: 20th
Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science,
vol. 13747, pp. 618–647. Springer, Heidelberg (Nov 2022). https://doi.org/10.
1007/978-3-031-22318-1 22

10. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020: 23rd International Conference on Theory and Practice
of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol.
12110, pp. 34–64. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-
3-030-45374-9 2

11. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for
inner products, from standard assumptions. Cryptology ePrint Archive, Report
2015/608 (2015), https://eprint.iacr.org/2015/608

12. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) Advances
in Cryptology – CRYPTO 2016, Part III. Lecture Notes in Computer Science,
vol. 9816, pp. 333–362. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-662-53015-3 12

13. Agrawal, S., Maitra, M., Vempati, N.S., Yamada, S.: Functional encryption for
turing machines with dynamic bounded collusion from LWE. In: Malkin, T., Peik-
ert, C. (eds.) Advances in Cryptology – CRYPTO 2021, Part IV. Lecture Notes in
Computer Science, vol. 12828, pp. 239–269. Springer, Heidelberg, Virtual Event
(Aug 2021). https://doi.org/10.1007/978-3-030-84259-8 9

14. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020,
Part I. Lecture Notes in Computer Science, vol. 12105, pp. 13–43. Springer, Hei-
delberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1 2

15. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology –
CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 308–
326. Springer, Heidelberg (Aug 2015). https://doi.org/10.1007/978-3-662-47989-
6 15

16. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730
(2015), https://eprint.iacr.org/2015/730

17. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptog-
raphy Conference, Part I. Lecture Notes in Computer Science, vol. 11891, pp. 174–
198. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-36030-
6 8

18. Ananth, P.V., Sahai, A.: Functional encryption for turing machines. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016-A: 13th Theory of Cryptography Conference,
Part I. Lecture Notes in Computer Science, vol. 9562, pp. 125–153. Springer, Hei-
delberg (Jan 2016). https://doi.org/10.1007/978-3-662-49096-9 6

19. Attrapadung, N.: Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014.

https://doi.org/10.1007/978-3-031-22318-1_22
https://doi.org/10.1007/978-3-031-22318-1_22
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-030-45374-9_2
https://eprint.iacr.org/2015/608
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-84259-8_9
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://eprint.iacr.org/2015/730
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-662-49096-9_6

96 P. Datta et al.

Lecture Notes in Computer Science, vol. 8441, pp. 557–577. Springer, Heidelberg
(May 2014). https://doi.org/10.1007/978-3-642-55220-5 31

20. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: A note on VRFs from verifi-
able functional encryption. Cryptology ePrint Archive, Report 2017/051 (2017),
https://eprint.iacr.org/2017/051

21. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) Advances in Cryptology – CRYPTO 2017, Part I. Lecture
Notes in Computer Science, vol. 10401, pp. 67–98. Springer, Heidelberg (Aug
2017). https://doi.org/10.1007/978-3-319-63688-7 3

22. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
Advances in Cryptology – CRYPTO 2001. Lecture Notes in Computer Science,
vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001). https://doi.org/10.1007/3-
540-44647-8 1

23. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture
Notes in Computer Science, vol. 8441, pp. 1–16. Springer, Heidelberg (May 2014).
https://doi.org/10.1007/978-3-642-55220-5 1

24. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional
encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017: 20th
International Conference on Theory and Practice of Public Key Cryptography,
Part II. Lecture Notes in Computer Science, vol. 10175, pp. 36–66. Springer,
Heidelberg (Mar 2017). https://doi.org/10.1007/978-3-662-54388-7 2

25. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption.
In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015,
Part I. Lecture Notes in Computer Science, vol. 9452, pp. 470–491. Springer,
Heidelberg (Nov / Dec 2015). https://doi.org/10.1007/978-3-662-48797-6 20

26. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017: 15th Theory
of Cryptography Conference, Part II. Lecture Notes in Computer Science, vol.
10678, pp. 567–594. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/
978-3-319-70503-3 19

27. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from func-
tional encryption. In: Guruswami, V. (ed.) 56th Annual Symposium on Foun-
dations of Computer Science. pp. 171–190. IEEE Computer Society Press (Oct
2015). https://doi.org/10.1109/FOCS.2015.20

28. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004. Lecture Notes
in Computer Science, vol. 3152, pp. 443–459. Springer, Heidelberg (Aug 2004).
https://doi.org/10.1007/978-3-540-28628-8 27

29. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture Notes in Com-
puter Science, vol. 2139, pp. 213–229. Springer, Heidelberg (Aug 2001). https://
doi.org/10.1007/3-540-44647-8 13

30. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture Notes in Com-

https://doi.org/10.1007/978-3-642-55220-5_31
https://eprint.iacr.org/2017/051
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-55220-5_1
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13

Registered FE Beyond Predicates 97

puter Science, vol. 8441, pp. 533–556. Springer, Heidelberg (May 2014). https://
doi.org/10.1007/978-3-642-55220-5 30

31. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) Advances in Cryptology
– CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621, pp. 258–275.
Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218 16

32. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and chal-
lenges. In: Ishai, Y. (ed.) TCC 2011: 8th Theory of Cryptography Conference.
Lecture Notes in Computer Science, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19571-6 16

33. Branco, P., Lai, R.W.F., Maitra, M., Malavolta, G., Rahimi, A., Woo, I.K.Y.:
Traitor tracing without trusted authority from registered functional encryption.
Cryptology ePrint Archive, Paper 2024/179 (2024), https://eprint.iacr.org/2024/
179

34. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted
inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018, Part II. Lecture Notes in Computer
Science, vol. 11273, pp. 733–764. Springer, Heidelberg (Dec 2018). https://doi.
org/10.1007/978-3-030-03329-3 25

35. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015, Part II. Lecture Notes in Computer Science, vol. 9057,
pp. 595–624. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-
662-46803-6 20

36. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology
– EUROCRYPT 2018, Part I. Lecture Notes in Computer Science, vol. 10820, pp.
503–534. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-
319-78381-9 19

37. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic
decentralized functional encryption. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology – CRYPTO 2020, Part I. Lecture Notes in Computer
Science, vol. 12170, pp. 747–775. Springer, Heidelberg (Aug 2020). https://doi.
org/10.1007/978-3-030-56784-2 25

38. Cong, K., Eldefrawy, K., Smart, N.P.: Optimizing registration based encryp-
tion. Cryptology ePrint Archive, Report 2021/499 (2021), https://eprint.iacr.org/
2021/499

39. Connor, R.J., Schuchard, M.: Blind bernoulli trials: A noninteractive protocol for
hidden-weight coin flips. In: Heninger, N., Traynor, P. (eds.) USENIX Security
2019: 28th USENIX Security Symposium. pp. 1483–1500. USENIX Association
(Aug 2019)

40. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang,
B.Y. (eds.) PKC 2016: 19th International Conference on Theory and Practice of
Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614,
pp. 164–195. Springer, Heidelberg (Mar 2016). https://doi.org/10.1007/978-3-
662-49384-7 7

41. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-
hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryp-
tology – ASIACRYPT 2018, Part II. Lecture Notes in Computer Science, vol.

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://eprint.iacr.org/2024/179
https://eprint.iacr.org/2024/179
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/978-3-030-56784-2_25
https://eprint.iacr.org/2021/499
https://eprint.iacr.org/2021/499
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-662-49384-7_7

98 P. Datta et al.

11273, pp. 640–672. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03329-3 22

42. Datta, P., Pal, T.: (Compact) adaptively secure FE for attribute-weighted sums
from k-lin. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASI-
ACRYPT 2021, Part IV. Lecture Notes in Computer Science, vol. 13093, pp. 434–
467. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92068-
5 15

43. Datta, P., Pal, T.: Decentralized multi-authority attribute-based inner-product
FE: Large universe and unbounded. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023: 26th International Conference on Theory and Practice of Public Key
Cryptography, Part I. Lecture Notes in Computer Science, vol. 13940, pp. 587–
621. Springer, Heidelberg (May 2023). https://doi.org/10.1007/978-3-031-31368-
4 21

44. Datta, P., Pal, T., Takashima, K.: Compact FE for unbounded attribute-weighted
sums for logspace from SXDH. In: Agrawal, S., Lin, D. (eds.) Advances in Cryp-
tology – ASIACRYPT 2022, Part I. Lecture Notes in Computer Science, vol.
13791, pp. 126–159. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/
978-3-031-22963-3 5

45. Datta, P., Pal, T., Yamada, S.: Registered FE beyond predicates: (attribute-
based) linear functions and more. Cryptology ePrint Archive, Paper 2023/457
(2023), https://eprint.iacr.org/2023/457

46. Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.:
Efficient laconic cryptography from learning with errors. In: Hazay, C., Stam, M.
(eds.) Advances in Cryptology – EUROCRYPT 2023, Part III. Lecture Notes
in Computer Science, vol. 14006, pp. 417–446. Springer, Heidelberg (Apr 2023).
https://doi.org/10.1007/978-3-031-30620-4 14

47. Dowerah, U., Dutta, S., Mitrokotsa, A., Mukherjee, S., Pal, T.: Unbounded pred-
icate inner product functional encryption from pairings. Journal of Cryptology
36 (2023). https://doi.org/10.1007/s00145-023-09458-2

48. Dufour Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption
with succinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 19: 17th International Conference on Applied Cryptography and
Network Security. Lecture Notes in Computer Science, vol. 11464, pp. 426–441.
Springer, Heidelberg (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2 21

49. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryp-
tology – CRYPTO 2013, Part II. Lecture Notes in Computer Science, vol. 8043,
pp. 129–147. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-
642-40084-1 8

50. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifica-
tion and signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology –
CRYPTO’86. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer,
Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7 12

51. Fiore, D., Kolonelos, D., de Perthuis, P.: Cuckoo commitments: Registration-
based encryption and key-value map commitments for large spaces. Springer-
Verlag (2023)

52. Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Reg-
istered (inner-product) functional encryption. In: Guo, J., Steinfeld, R. (eds.)
Advances in Cryptology – ASIACRYPT 2023. pp. 98–133. Springer Nature Sin-
gapore, Singapore (2023)

https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-030-92068-5_15
https://doi.org/10.1007/978-3-030-92068-5_15
https://doi.org/10.1007/978-3-031-31368-4_21
https://doi.org/10.1007/978-3-031-31368-4_21
https://doi.org/10.1007/978-3-031-22963-3_5
https://doi.org/10.1007/978-3-031-22963-3_5
https://eprint.iacr.org/2023/457
https://doi.org/10.1007/978-3-031-30620-4_14
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-47721-7_12

Registered FE Beyond Predicates 99

53. Freitag, C., Waters, B., Wu, D.J.: How to use (plain) witness encryption: Regis-
tered abe, flexible broadcast, and more. Springer-Verlag (2023). https://doi.org/
10.1007/978-3-031-38551-3 16

54. Garg, R., Goyal, R., Lu, G., Waters, B.: Dynamic collusion bounded functional
encryption from identity-based encryption. In: Dunkelman, O., Dziembowski, S.
(eds.) Advances in Cryptology – EUROCRYPT 2022, Part II. Lecture Notes in
Computer Science, vol. 13276, pp. 736–763. Springer, Heidelberg (May / Jun
2022). https://doi.org/10.1007/978-3-031-07085-3 25

55. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science. pp. 40–49. IEEE Com-
puter Society Press (Oct 2013). https://doi.org/10.1109/FOCS.2013.13

56. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: Removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018: 16th Theory of Cryptography Conference, Part I. Lecture Notes
in Computer Science, vol. 11239, pp. 689–718. Springer, Heidelberg (Nov 2018).
https://doi.org/10.1007/978-3-030-03807-6 25

57. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019:
22nd International Conference on Theory and Practice of Public Key Cryptogra-
phy, Part II. Lecture Notes in Computer Science, vol. 11443, pp. 63–93. Springer,
Heidelberg (Apr 2019). https://doi.org/10.1007/978-3-030-17259-6 3

58. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology
– EUROCRYPT 2017, Part III. Lecture Notes in Computer Science, vol. 10212,
pp. 156–181. Springer, Heidelberg (Apr / May 2017). https://doi.org/10.1007/
978-3-319-56617-7 6

59. Gay, R.: A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020:
23rd International Conference on Theory and Practice of Public Key Cryptogra-
phy, Part I. Lecture Notes in Computer Science, vol. 12110, pp. 95–120. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45374-9 4

60. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on The-
ory of Computing. pp. 555–564. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488678

61. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities — application to discrete loga-
rithms in F21971 and F23164 . In: Canetti, R., Garay, J.A. (eds.) Advances in Cryp-
tology – CRYPTO 2013, Part II. Lecture Notes in Computer Science, vol. 8043,
pp. 109–128. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-
642-40084-1 7

62. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A.,
Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019, Part II. Lecture
Notes in Computer Science, vol. 11693, pp. 732–764. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26951-7 25

63. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020,

https://doi.org/10.1007/978-3-031-38551-3_16
https://doi.org/10.1007/978-3-031-38551-3_16
https://doi.org/10.1007/978-3-031-07085-3_25
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-642-40084-1_7
https://doi.org/10.1007/978-3-642-40084-1_7
https://doi.org/10.1007/978-3-030-26951-7_25

100 P. Datta et al.

Part III. Lecture Notes in Computer Science, vol. 12107, pp. 278–308. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45727-3 10

64. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science,
vol. 7417, pp. 162–179. Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/
978-3-642-32009-5 11

65. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing. pp. 545–554. ACM Press (Jun 2013).
https://doi.org/10.1145/2488608.2488677

66. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits
from LWE. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology –
CRYPTO 2015, Part II. Lecture Notes in Computer Science, vol. 9216, pp. 503–
523. Springer, Heidelberg (Aug 2015). https://doi.org/10.1007/978-3-662-48000-
7 25

67. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017: 15th Theory of Cryptography Conference, Part II. Lecture Notes in
Computer Science, vol. 10678, pp. 537–566. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70503-3 18

68. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.)
58th Annual Symposium on Foundations of Computer Science. pp. 612–621. IEEE
Computer Society Press (Oct 2017). https://doi.org/10.1109/FOCS.2017.62

69. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio,
D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020, Part I. Lecture
Notes in Computer Science, vol. 12170, pp. 621–651. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56784-2 21

70. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capi-
tani di Vimercati, S. (eds.) ACM CCS 2006: 13th Conference on Computer and
Communications Security. pp. 89–98. ACM Press (Oct / Nov 2006). https://
doi.org/10.1145/1180405.1180418, available as Cryptology ePrint Archive Report
2006/309

71. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes
in Computer Science, vol. 4965, pp. 415–432. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-78967-3 24

72. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
Advances in Cryptology – CRYPTO 2016, Part III. Lecture Notes in Computer
Science, vol. 9816, pp. 149–178. Springer, Heidelberg (Aug 2016). https://doi.org/
10.1007/978-3-662-53015-3 6

73. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based
encryption. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2023, Part III. Lecture Notes in Computer Science, vol. 14006, pp. 511–
542. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-3-031-30620-
4 17

74. Hubacek, P., Wichs, D.: On the communication complexity of secure function
evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference

https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-030-56784-2_21
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-031-30620-4_17
https://doi.org/10.1007/978-3-031-30620-4_17

Registered FE Beyond Predicates 101

on Innovations in Theoretical Computer Science. pp. 163–172. Association for
Computing Machinery (Jan 2015). https://doi.org/10.1145/2688073.2688105

75. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd Annual ACM Symposium
on Theory of Computing. pp. 60–73. ACM Press (Jun 2021). https://doi.org/10.
1145/3406325.3451093

76. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over Fp,
DLIN, and PRGs in NC0. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022, Part I. Lecture Notes in Computer Science,
vol. 13275, pp. 670–699. Springer, Heidelberg (May / Jun 2022). https://doi.org/
10.1007/978-3-031-06944-4 23

77. Joux, A.: Faster index calculus for the medium prime case application to 1175-
bit and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881,
pp. 177–193. Springer, Heidelberg (May 2013). https://doi.org/10.1007/978-3-
642-38348-9 11

78. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in
small characteristic. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC 2013: 20th
Annual International Workshop on Selected Areas in Cryptography. Lecture Notes
in Computer Science, vol. 8282, pp. 355–379. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-43414-7 18

79. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N.P. (ed.) Advances in
Cryptology – EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965,
pp. 146–162. Springer, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-
540-78967-3 9

80. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 18: 11th International Conference on Security in Communication Networks.
Lecture Notes in Computer Science, vol. 11035, pp. 544–562. Springer, Heidelberg
(Sep 2018). https://doi.org/10.1007/978-3-319-98113-0 29

81. Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of suc-
cinct functional encryption. Journal of Cryptology 34(3), 25 (Jul 2021). https://
doi.org/10.1007/s00145-021-09396-x

82. Kolonelos, D., Malavolta, G., Wee, H.: Distributed broadcast encryption from
bilinear groups. Springer-Verlag (2023)

83. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. In:
Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I.
Lecture Notes in Computer Science, vol. 11476, pp. 3–33. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2 1

84. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-
Lin. Journal of Cryptology 33(3), 954–1002 (Jul 2020). https://doi.org/10.1007/
s00145-019-09335-x

85. Lai, Q., Liu, F.H., Wang, Z.: New lattice two-stage sampling technique and
its applications to functional encryption - stronger security and smaller cipher-
texts. In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EURO-
CRYPT 2021, Part I. Lecture Notes in Computer Science, vol. 12696, pp. 498–527.
Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5 18

86. Lamport, L.: Constructing digital signatures from a one way function.
Tech. Rep. CSL-98 (October 1979), https://www.microsoft.com/en-us/research/

https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-642-38348-9_11
https://doi.org/10.1007/978-3-642-38348-9_11
https://doi.org/10.1007/978-3-662-43414-7_18
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/s00145-021-09396-x
https://doi.org/10.1007/s00145-021-09396-x
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/978-3-030-77870-5_18
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/

102 P. Datta et al.

publication/constructing-digital-signatures-one-way-function/, this paper was
published by IEEE in the Proceedings of HICSS-43 in January, 2010.

87. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption. In: Gilbert, H. (ed.) Advances in Cryptology – EURO-
CRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 62–91. Springer,
Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-5 4

88. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010: 7th The-
ory of Cryptography Conference. Lecture Notes in Computer Science, vol. 5978,
pp. 455–479. Springer, Heidelberg (Feb 2010). https://doi.org/10.1007/978-3-
642-11799-2 27

89. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Com-
puter Science, vol. 6632, pp. 568–588. Springer, Heidelberg (May 2011). https://
doi.org/10.1007/978-3-642-20465-4 31

90. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In: Safavi-Naini, R., Canetti,
R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer
Science, vol. 7417, pp. 180–198. Springer, Heidelberg (Aug 2012). https://doi.org/
10.1007/978-3-642-32009-5 12

91. Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: Beyond NC1 and
towards NL. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EURO-
CRYPT 2020, Part III. Lecture Notes in Computer Science, vol. 12107, pp. 247–
277. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45727-
3 9

92. Lin, H., Luo, J.: Succinct and adaptively secure ABE for ABP from k-lin. In:
Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020, Part III.
Lecture Notes in Computer Science, vol. 12493, pp. 437–466. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64840-4 15

93. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th Annual
Symposium on Foundations of Computer Science. pp. 11–20. IEEE Computer
Society Press (Oct 2016). https://doi.org/10.1109/FOCS.2016.11

94. Mera, J.M.B., Karmakar, A., Marc, T., Soleimanian, A.: Efficient lattice-based
inner-product functional encryption. Cryptology ePrint Archive, Report 2021/046
(2021), https://eprint.iacr.org/2021/046

95. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing.
pp. 427–437. ACM Press (May 1990). https://doi.org/10.1145/100216.100273

96. Nguyen, K., Pointcheval, D., Schädlich, R.: Dynamic decentralized functional
encryption with strong security. Cryptology ePrint Archive, Paper 2022/1532
(2022), https://eprint.iacr.org/2022/1532, https://eprint.iacr.org/2022/1532

97. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: How to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.S. (eds.) Advances in
Cryptology – EUROCRYPT 2016, Part II. Lecture Notes in Computer Science,
vol. 9666, pp. 388–419. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5 14

98. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Iwata, T., Cheon,

https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-64840-4_15
https://doi.org/10.1109/FOCS.2016.11
https://eprint.iacr.org/2021/046
https://doi.org/10.1145/100216.100273
https://eprint.iacr.org/2022/1532
https://eprint.iacr.org/2022/1532
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14

Registered FE Beyond Predicates 103

J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015, Part I. Lecture Notes
in Computer Science, vol. 9452, pp. 121–145. Springer, Heidelberg (Nov / Dec
2015). https://doi.org/10.1007/978-3-662-48797-6 6

99. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) Advances in
Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp.
191–208. Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-
14623-7 11

100. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryp-
tology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp.
591–608. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4 35

101. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010), https://eprint.iacr.org/2010/556

102. Pal, T., Dutta, R.: Attribute-based access control for inner product functional
encryption from LWE. In: Longa, P., Ràfols, C. (eds.) Progress in Cryptology -
LATINCRYPT 2021: 7th International Conference on Cryptology and Informa-
tion Security in Latin America. Lecture Notes in Computer Science, vol. 12912,
pp. 127–148. Springer, Heidelberg, Bogotá, Colombia (Oct 2021). https://doi.org/
10.1007/978-3-030-88238-9 7

103. Pal, T., Dutta, R.: Attribute-based access control for inner product functional
encryption from LWE. In: Longa, P., Ràfols, C. (eds.) Progress in Cryptol-
ogy - LATINCRYPT 2021 - 7th International Conference on Cryptology and
Information Security in Latin America, Bogotá, Colombia, October 6-8, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12912, pp. 127–148.
Springer (2021). https://doi.org/10.1007/978-3-030-88238-9 7, https://doi.org/
10.1007/978-3-030-88238-9 7

104. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
Advances in Cryptology – EUROCRYPT 2005. Lecture Notes in Computer Sci-
ence, vol. 3494, pp. 457–473. Springer, Heidelberg (May 2005). https://doi.org/
10.1007/11426639 27

105. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) Advances in Cryptology – EUROCRYPT’97. Lecture Notes in Computer
Science, vol. 1233, pp. 256–266. Springer, Heidelberg (May 1997). https://doi.org/
10.1007/3-540-69053-0 18

106. Tomida, J.: Tightly secure inner product functional encryption: Multi-input and
function-hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology – ASIACRYPT 2019, Part III. Lecture Notes in Computer Sci-
ence, vol. 11923, pp. 459–488. Springer, Heidelberg (Dec 2019). https://doi.org/
10.1007/978-3-030-34618-8 16

107. Tomida, J.: Unbounded quadratic functional encryption and more from pairings.
In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023,
Part III. Lecture Notes in Computer Science, vol. 14006, pp. 543–572. Springer,
Heidelberg (Apr 2023). https://doi.org/10.1007/978-3-031-30620-4 18

108. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-
product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016: 19th International Conference on Information Security. Lecture Notes
in Computer Science, vol. 9866, pp. 408–425. Springer, Heidelberg (Sep 2016).
https://doi.org/10.1007/978-3-319-45871-7 24

https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-319-45871-7_24

104 P. Datta et al.

109. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from
bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASI-
ACRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 11273, pp. 609–
639. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03329-
3 21

110. Wang, Z., Fan, X., Liu, F.H.: FE for inner products and its application to decen-
tralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019: 22nd International Confer-
ence on Theory and Practice of Public Key Cryptography, Part II. Lecture Notes
in Computer Science, vol. 11443, pp. 97–127. Springer, Heidelberg (Apr 2019).
https://doi.org/10.1007/978-3-030-17259-6 4

111. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009.
Lecture Notes in Computer Science, vol. 5677, pp. 619–636. Springer, Heidelberg
(Aug 2009). https://doi.org/10.1007/978-3-642-03356-8 36

112. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011: 14th International Conference on Theory and Practice of
Public Key Cryptography. Lecture Notes in Computer Science, vol. 6571, pp. 53–
70. Springer, Heidelberg (Mar 2011). https://doi.org/10.1007/978-3-642-19379-
8 4

113. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in
Computer Science, vol. 7417, pp. 218–235. Springer, Heidelberg (Aug 2012).
https://doi.org/10.1007/978-3-642-32009-5 14

114. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014: 11th Theory of Cryptography Conference. Lecture Notes in Computer
Science, vol. 8349, pp. 616–637. Springer, Heidelberg (Feb 2014). https://doi.org/
10.1007/978-3-642-54242-8 26

115. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017: 15th Theory of Cryptography Conference,
Part I. Lecture Notes in Computer Science, vol. 10677, pp. 206–233. Springer,
Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70500-2 8

116. Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptography Conference,
Part I. Lecture Notes in Computer Science, vol. 12550, pp. 210–228. Springer,
Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-030-64375-1 8

117. Wee, H.: Broadcast encryption with size N1/3 and more from k-lin. In: Malkin,
T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021, Part IV. Lecture
Notes in Computer Science, vol. 12828, pp. 155–178. Springer, Heidelberg, Virtual
Event (Aug 2021). https://doi.org/10.1007/978-3-030-84259-8 6

118. Wee, H.: Optimal broadcast encryption and CP-ABE from evasive lattice assump-
tions. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology –
EUROCRYPT 2022, Part II. Lecture Notes in Computer Science, vol. 13276,
pp. 217–241. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/
978-3-031-07085-3 8

119. Zhu, Z., Li, J., Zhang, K., Gong, J., Qian, H.: Registered functional encryptions
from pairings. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EURO-
CRYPT 2024. pp. 373–402. Springer Nature Switzerland, Cham (2024)

120. Zhu, Z., Zhang, K., Gong, J., Qian, H.: Registered abe via predicate encodings.
Springer-Verlag (2023)

https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-17259-6_4
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-84259-8_6
https://doi.org/10.1007/978-3-031-07085-3_8
https://doi.org/10.1007/978-3-031-07085-3_8

Updatable Privacy-Preserving Blueprints

Bernardo David1(B), Felix Engelmann2 , Tore Frederiksen3,
Markulf Kohlweiss4 , Elena Pagnin5 , and Mikhail Volkhov4,6

1 IT University of Copenhagen, Copenhagen, Denmark
beda@itu.dk

2 Lund University, Lund, Sweden
fe-research@nlogn.org
3 Zama, Paris, France

tore.frederiksen@zama.ai
4 University of Edinburgh, IOG, Edinburgh, UK

mkohlwei@ed.ac.uk, misha@o1labs.org
5 Chalmers University of Technology and University of Gothenburg,

Gothenburg, Sweden
elenap@chalmers.se

6 O1Labs, Edinburgh, UK

Abstract. Privacy-preserving blueprint schemes (Kohlweiss et al.,
EUROCRYPT’23) offer a mechanism for safeguarding user’s privacy
while allowing for specific legitimate controls by a designated auditor
agent. These schemes enable users to create escrows encrypting the result
of evaluating a function y = P (t,x), with P being publicly known, t a
secret used during the auditor’s key generation, and x the user’s private
input. Crucially, escrows only disclose the blueprinting result y = P (t,x)
to the designated auditor, even in cases where the auditor is fully com-
promised. The original definition and construction only support the eval-
uation of functions P on an input x provided by a single user.

We address this limitation by introducing updatable privacy-
preserving blueprint schemes (UPPB), which enhance the original notion
with the ability for multiple users to non-interactively update the private
user input x while blueprinting. Moreover, UPPBs contain a proof that
y is the result of a sequence of valid updates, while revealing nothing
else about the private inputs {xi} of updates. As in the case of privacy-
preserving blueprints, we first observe that UPPBs can be realized via a
generic construction for arbitrary predicates P based on FHE and NIZKs.
Our main result is uBlu, an efficient instantiation for a specific predicate
comparing the values x and t, where x is the cumulative sum of users’
private inputs and t is a fixed private value provided by the auditor in the
setup phase. This rather specific setting already finds interesting appli-
cations such as privacy-preserving anti-money laundering and location
tracking, and can be extended to support more generic predicates.

B. David—Work supported by DIREC and by Independent Research Fund Denmark
grants number 9040-00399B (TrA2C)and 0165-00079B.
F. Engelmann—Part of this work was done while at the IT University of Copenhagen.
T. Frederiksen—Part of this work was done while at the Alexandra Institute.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 105–139, 2025.
https://doi.org/10.1007/978-981-96-0875-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_4&domain=pdf
http://orcid.org/0000-0001-9356-0231
http://orcid.org/0000-0002-8660-9663
http://orcid.org/0000-0002-7804-6696
https://doi.org/10.1007/978-981-96-0875-1_4

106 B. David et al.

From the technical perspective, we devise a novel technique to keep
the escrow size concise, independent of the number of updates, and rea-
sonable for practical applications. We achieve this via a novel characteri-
zation of malleability for the algebraic NIZK by Couteau and Hartmann
(CRYPTO’20) that allows for an additive update function.

Keywords: Updatable NIZKs · Privacy-Preserving Blueprints

1 Introduction

Data protection often demands that the actions and personal information of
individual users be kept private. At the same time, regulatory organizations
should be able to learn about potential violations evidenced by the combined
actions of multiple users and track down the misbehaving parties. In such sce-
narios, cryptographic techniques such as multiparty computation come to mind
as potential solutions. While such techniques may trivially reconcile the paradox
of privacy vs. accountability, they often impose performance overheads and trust
assumptions that are incompatible with the original scenario.

Multiparty computation (MPC) [21,40] is a natural solution for auditing
private data without undermining the privacy of users or jeopardizing the audit
process by revealing sensitive audit parameters. An auditor could execute an effi-
cient MPC protocol (e.g., [28]) together with users to audit their data while only
revealing the final audit result. However, traditional MPC requires all participat-
ing parties to interact in each computation.It is unrealistic to require all users to
interact with each other at once, as opposed to only interacting when generating
the audit data, as parties may simply be unavailable or technically incapable of
executing long-running complex protocols. Moreover, processing large volumes
of audit data via traditional MPC would prove prohibitively expensive due to
the network interaction required from all participating parties.

Privacy-Preserving Blueprints: Adding Updates. A privacy-preserving
blueprint scheme [43,48] allows a user to create an escrow that encodes the out-
put of a function P (t,x) from a “recipe” data posted earlier by the auditor (called
a blueprint1),but reveals nothing else about the blueprint inputs. In this setting,
P is public, t is a private input from the auditor, and x is a private input from the
user. This notion allows an auditor, who sees an escrow for the value y = P (t,x),
to non-interactively learn y, allowing for asynchronous audits. However, P (t,x)
can only be computed on an input x that is fully known to a single party who
generates the escrow. This is clearly insufficient when inputs come from multiple
mutually distrusting users and the original constructions of blueprints cannot be
efficiently extended to this case. We focus on overcoming this limitation with the
notion of updatable privacy-preserving blueprints, which allow a party departing
1 We use the term “blueprint” quite informally. The concrete data in our protocol is

hints, tags, and escrows, where hints are semantically the closest term to “blueprint”.

Updatable Privacy-Preserving Blueprints 107

from an initial blueprint for P (t,x) to obtain an updated blueprint for P (t,x′),
where x′ is an output of a function of the current x and the party’s private
input xi, without learning anything about t or x. Moreover, our notion allows
for parties to check that a sequence of blueprints has been obtained by successive
updates done by different parties using their respective private inputs, without
learning anything else. Our main construction supports evaluating predicates of
the form “output 1 if x1+ · · ·+xn ∈ [t, t+ d), and 0 otherwise”, where each xi is
added to the blueprint as an update by a different party. Furthermore, we show
how updatable blueprints can work with more generic predicates (expressible
via multivariate polynomials) and non-binary outputs, allowing more elaborate
applications including privacy-preserving location testing.

Applications of Updatable Privacy-Preserving Blueprints. Our new
notion can be seen as a type of MPC and therefore can be used in different
areas, such as privacy-preserving auditing, financial accountability, reputation
systems, private auctions, or voting. The common trait in these applications is
that they involve both sensitive audit parameters provided by authorities (or a
collective of users) and the private data of multiple individual parties. Current
approaches, especially in financial regulation-compliance, sacrifice either privacy
(when legally possible) or accuracy, which is lost as a result of auditing incom-
plete data.

While the notion of updatable privacy-preserving blueprints is generic, our
running motivational example is implementing anti-money laundering (AML)
policies. Traditional banks mostly do AML by manually inspecting an account
if its suspiciousness score (expressing how risky the account is) is above a cer-
tain threshold [6]. The score is first computed from private account metadata
and updated based only on local account activity, which precludes using valu-
able information held by other banks (e.g., the reputation of parties transferring
money into the account) and results in high false-positive rates. In decentralized
finance, AML schemes for privacy-preserving cryptocurrencies either only sup-
port auditing users in isolation [32,54] or rely on revocable anonymity [2,26,47],
requiring the auditor to learn all information about users’ activities, severely
undermining their privacy. Updatable blueprints can address these issues in both
scenarios by enabling privacy-preserving AML audits on joint data from multiple
users.

Intuitively, an updatable blueprint scheme can be used to securely compute
and validate a suspiciousness score for the users’ bank accounts based on the
features of transactions between multiple banks—and the private information
these banks hold about their customers. A blueprint is attached to each account
to accumulate a score that is based on the reputation of customers at other
banks transferring funds into the account. Before such a transfer, the sending
bank must receive the up-to-date blueprint of the suspiciousness score from the
receiving bank. It then sends, along with the transfer, an updated blueprint that
includes the new value xi corresponding to the transaction and the reputation
of the sending account owner. Upon receiving the transfer, the receiving bank

108 B. David et al.

records the updated blueprint as the new up-to-date blueprint. At any moment,
an auditor (e.g. a tax authority) can validate the correctness of this procedure
and check if a user’s score exceeds a certain threshold without learning the score.
If so, the auditor can further request the opening of related commitments held
by other banks. Crucially, none of these operations require users or banks to
perform any extra rounds of communication, i.e., updatable blueprints only add
minimal overhead to the existing communication and computation involved in
transfers. A similar idea can be used to enforce limits on the amount of funds
transferred in decentralized finance applications using cryptocurrencies.

1.1 Our Contributions

In this work, we introduce the notion of updatable privacy-preserving blueprints,
constructions, and applications. Our main results are summarized as follows:

Updatable Privacy-Preserving Blueprint: In Sect. 4, we introduce our new
notion, extending privacy-preserving blueprints [48] to allow for an auditor
to learn a predicate P (t,x) of their own private input t and users’ private
inputs x such that users can update x in an existing blueprint.

Efficient Construction for Range Predicates: In Sect. 5, we present uBlu,
an efficient realization of UPPB for a comparison predicate between private
user inputs and a private threshold set by the auditor.This includes an update
mechanism that allows users to update the current input value.

Succinct Updatable Algebraic NIZK: As a core technique in our construc-
tion, we show in Sect. 3 that we can extend the NIZK proof system of [23]
to allow for updating the witness and the instance of an existing NIZK while
maintaining its efficiency and security. More details in the full version [29]

Prototype Implementation and Benchmarks: In Sect. 6, we present bench-
marks obtained with a prototype implementation of our uBlu construction,
which showcase its performance and scalability.

In the full version of this work [29] we further discuss application venues for
UPPB, and possible extensions, we provide an overview in Sect. 5.6.

We remark that the main technical contribution of this work is a mecha-
nism for updatable range predicates. At the core of this construction, we per-
form homomorphic computation of polynomials with coefficients contained in
ElGamal ciphertexts (which encode a private threshold t) on a point contained
in a Pedersen commitment, which may be updated as needed. Our techniques
allow us to construct sound blueprints that do not grow with the number of
updates, and are reasonably sized for practical applications. By investigating
and employing the updatability of CH20 NIZK [23], we construct efficient and
concise proofs that a given ElGamal ciphertext contains a correct evaluation of
a polynomial whose coefficients are contained in other ElGamal ciphertexts on a
point x contained in a Pedersen commitment. Furthermore, when the value x in
the commitment is updated, our NIZKs can also be updated without revealing
the previous x or the polynomial coefficients, while retaining its conciseness and
efficiency.

Updatable Privacy-Preserving Blueprints 109

1.2 Overview of Our Techniques

The Notion of Updatable Privacy-Preserving Blueprints. A UPPB
scheme is defined in terms of a base commitment scheme and a public pred-
icate P (t,x) taking two private inputs: a fixed value t generated by a desig-
nated auditor party; and an aggregate value x = fold(x1, . . . ,xn) where fold
is an online streaming algorithm. In our concrete instantiation we employ
fold(x1, . . . ,xn) =

∑n
i=1 xi. Each xi is provided by a potential different user

in committed form. UPPBs implement a mechanism that allows users to con-
tribute in generating a sequence of hints and tags, where each hint-tag pair
encodes—among other things—the blueprint value P (t,x). Given a hint, a user
can then generate a corresponding escrow that proves—to a designated auditor—
the blueprint value P (t, fold(x1, . . . ,xn)) encoded in the hint, as well as the valid-
ity of the sequence of updates applied to the hint (according to fold). Hence, the
updatable functionality for blueprints requires several components: escrows esc,
tags tag, hints hint, and commitments C. Usually, one escrow is connected to an
ordered sequence of tags, hints and commitments, that we informally refer to as
history. Next, we elaborate on how these components interact.

Given an escrow esc for a history of commitments {Ci} to the values {xi},
the auditor learns the value of P (t, fold(x1, ...,xn)) but nothing else, and third
parties learn nothing. The auditor generates a key pair (sk, pk) and an initial
blueprint hint0 for the predicate P (t, 0), where sk and t remain private, pk is
published, and hint0 is passed to the first user. Blueprint hints store the so-far
aggregated x, and can be verified against a history of commitments. Specifi-
cally, using pk and hinti−1, a user can extend the history with their value xi,
each time deriving an updated hinti. In our construction, hinti−1 will contain
an aggregate value

∑i−1
j=1 xj that users can update via homomorphic operations

to add their private input xi. A hinti can be transformed into an escrow, esc,
which reveals nothing to the users but can be used by an auditor who knows
sk to learn only whether P (t,

∑i
j=1 xj) = 1, while keeping the xj values pri-

vate. When a user updates hinti−1 to hinti, they obtain an updated tagi for
verifying the validity and consistency of the commitment history by running
VfHistorypk({tagj ,Cj}i

j=1), of the hint by running VfHintpk(hinti, tagi), and of
esc by running VfEscrowpk(esci, tagi). We have the following three properties: (i)
tagi can only verify for a single history, i.e.., valid histories do not collide in their
tags; (ii) we can extract the openings xj of all base commitments from a valid
history; (iii) if esc verifies with respect to tagi, then it indeed is an escrow of
predicate value P (t,

∑i
j=1 xj) for the openings xj of these base commitments.

We require hints, escrows, and tags derived from valid hints to be hiding.
However, as hints contain the aggregate value,

∑i
j=1 xj , hints are only hiding

against adversaries who do not know sk. Thus, hints should only be used for
updates between users who cooperate to gain privacy, but must not be given
to the auditor as this would leak the current aggregate value. We assume that
users trust each other enough to not collude with the auditor, but are otherwise
distrusting, e.g. they do not want to share their secret {xi} with each other and

110 B. David et al.

want to be able to verify the validity of hints themselves. Finally, our scheme
preserves the hiding and binding properties of the base commitment scheme.

A Generic but Inefficient Construction. Building on fully homomorphic
encryption (FHE) and generic NIZKs for NP, we can construct a UPPB scheme
for arbitrary predicates P and update functions fold as follows. The auditor
generates an key pair (pk, sk) for a circuit private FHE scheme [55], and publishes
pk, along with an encryption of t under pk, and an encryption of 0 as the initial
hint0. For any i > 0, users can update the blueprint value contained in the
hint by first encrypting their private input xi under pk, and then using the
resulting ciphertext ci to homomorphically evaluate the update function fold on
hinti−1 and ci, obtaining a new hinti. The corresponding update tagi can be
obtained by generating a NIZK proof showing that hinti was correctly computed
by evaluating the update function fold on hinti−1 and the ciphertext containing
xi. To generate an escrow esc, a user homomorphically evaluates the predicate
P (t, fold(x1, . . . ,xi)) using hinti and the ciphertext containing t published by
the auditor; and computes the corresponding tag as a NIZK showing that the
predicate was correctly evaluated. Using sk, the auditor can decrypt esc and
learn only the output of P (t, fold(x1, . . . ,xi)) but nothing else; while the validity
of esc can be checked by verifying the NIZK proof in tag. This construction
supports arbitrary predicates and updates (beyond additive ones), however, it
relies on heavy primitives which are not efficiently instantiatable to date. This
is a serious caveat in a setting such as that of AML and location privacy, where
hundreds of thousands of updates must be processed per second.

An Efficient Construction for Range Predicates. Range predicates
P (t,X) are evaluated over ordered sets and output 1 iff X ≥ t. To construct a
concretely efficient UPPB scheme called uBlu, we will consider the subclass of
range predicates Pd(t,X) that can be expressed as a degree d polynomial over Zq

(for an opportune module q and degree d) with roots at positions [t, . . . , t+d−1].
Here d is the size of the range for which P (t,X) = 1 and t is the auditor’s secret
threshold. The core of our scheme is a mechanism that relies on Pedersen com-
mitments, ElGamal ciphertexts, and NIZKs with updatable witness/instances
for predicate evaluations in the multi-user scenario, guaranteeing the soundness
of the updates.

In detail, the auditor ElGamal encrypts the powers (−t)i for i ∈ [d], in
the exponent. The ciphertexts are included in the initial hint hint0.Users can
combine the ciphertexts to homomorphically evaluate the polynomial Pd(t,x) at
their input x, in the exponent. Moreover, given hinti−1 (containing an encryption
of Pd(t,x)) a user with input x′ can update the hint to hinti containing an
encryption of Pd(t,x + x′). This is achieved by an algebraic transformation on
the polynomial representation, as described in Sect. 5.1.

When converting hints to escrows esc, users homomorphically reconstruct
the ElGamal ciphertext for the value Pd(t,x), and then exponentiate it by a
random β obtaining an encryption of β · Pd(t,x). If the polynomial evaluates to

Updatable Privacy-Preserving Blueprints 111

0, the randomization has no effect and the auditor is able to decrypt the message
G0 (this is the case where the predicate P (T ,X) = [Pd(T ,X) ?= 0] outputs 1).
Otherwise, if the polynomial evaluation is not a root, the auditor learns nothing.

The main technical achievement of this work is the design of hints that do not
grow with the number of updates, and are reasonably sized for practical applica-
tions. We make hints linear in the degree d of the polynomial and endow them
with updatable proofs that attest to hint consistency. Intuitively, this is achieved
by including witness-products in the witness and checking the consistency of
those products w.r.t. the minimal witness values by using Pedersen commit-
ments and adding extra checks in the relation to ensure input consistency based
on these commitments. Thanks to the homomorphic property of Pedersen com-
mitments, our witness and instance are updatable: randomnesses and x values
accumulate additively (see Sect. 5.3 for further details).

For the many use cases which do require a linear history of proofs-of-updates,
we provide a very concise “update history” consisting of update tags tag, which
naturally grows in the number of updates, but allows enforcing update account-
ability.In addition, as we use Pedersen as base commitment, it is easy to integrate
our uBlu construction with applications such as credentials and private payment
systems: one simply proves extra statements about base commitments, e.g., that
their values are equal to a credential attribute or a payment transaction value.

1.3 Related Work

Homomorphic commitments [16,25] and functional commitments [17] could
potentially support general updates and predicate evaluations for UPPB
schemes. However, these operations require knowledge of individual commit-
ment openings, making such schemes unfit for our multi-user setting, where
users’ inputs must be kept private. The threshold predicate for which we present
an efficient uBlu scheme is closely related to Yao’s Millionaire’s Problem, i.e.
performing secure comparison. While there are many protocols for secure com-
parison (e.g., [27,39]) that could be used in this setting, they require continuous
online involvement of parties and many rounds of interaction. In our setting,
no interaction is required from the auditor or users (after they update commit-
ments).

Updatable NIZKs, such as CH20 [23] used as our prime technical tool, have
been previously investigated in [7,18,20,46]. While recursive approach to NIZK
updatability becomes more practical over time [8,9,11,13–15,19,51], direct mal-
leability without recursion is more lightweight and thus more suitable for tailored
application, such as various signature schemes [10,30,36,46], anonymous cre-
dentials [1], scalable mix-nets [45] etc. The malleability of CH20 was observed
in [22] to build anonymous credentials and structure-preserving signatures on
equivalence classes. It is also worth noting that RO-based NIZKs are essentially
non-malleable, unless via recursion [33,38,49]. This is why the CH20 NIZK com-
bining the simplicity of a Schnorr-like proof with a bilinear setup avoiding the
ROM limitation, stands out as a natural candidate for direct updatability.

112 B. David et al.

Table 1. Notation used throughout the paper.

Notation Definition

λ ∈ N Security parameter (often implicitly used)
PPT Probabilistic polynomial time

$←−,� $ Sampling from distribution, uniform if implicit
x

$←− Alg(y) Probabilistic execution with uniform randomness
x ← Alg(y; r) Specifies algorithm’s random coins
(x, ·) ← Alg(y) Leaves the second output undefined
F (X,Y) ∈ Z[X,Y]Polynomials and variables are in capital letters
[m,n], (resp.[n]) Discrete interval {m,m + 1, . . . ,n}, (resp.[1,n])
?
=, (resp. �=) (resp. negation of) Boolean result of an equality check
[a = b] Predicate evaluation, boolean value
1, (resp. 0) Generic for boolean values 1, (resp. 0)

∧, (resp. ∨) Logic AND (resp. OR) operator
assert b In pseudocode: “if not b, then return 0”
(G1,G2,G3, ê) Type-III bilinear group
�x or x, (resp. [�x]b) Vector of Z (resp. Gb for b ∈ {1, 2, 3}) elements

A series of recent papers explored accountable law enforcement access sys-
tem [5,35,41,42,48,59]. A different approach to privacy-preserving AML securely
computing similarity scores of transaction graphs [37,57]. However, as comput-
ing similarity among many accounts is expensive, the authors of [57] suggest
that banks pre-select accounts, which can be done utilizing our techniques for
computing aggregate suspiciousness scores. Other approaches [31] take advan-
tage of specific structures of a transaction graph to limit the interaction during
an MPC computation of a AML algorithm. However, this limited interaction
is only achieved for specific graphs and communication/round complexities are
still impractical for very large number of users. Our applications are most closely
related to a subcategory of these works on abuse-resistant regulation compli-
ance [5,35,48] where users have full privacy against a malicious auditor. As a
consequence the auditor’s detection policy must be kept private since users can
adapt their behavior to avoid detection. Hence, it is necessary to securely com-
pute a function on private inputs from the user and the regulator.

2 Preliminaries

For conciseness, we present our notation in Table 1. Our protocols are in the
type-III bilinear group setup. Whenever clear from the context G = G1 = 〈G〉.

Secure Commitments. Following [48] we use non-interactive commitments to
bind inputs to externally committed values.

Updatable Privacy-Preserving Blueprints 113

Definition 1 (Statistically Hiding Non-interactive Commitment). A
pair of algorithms (Setup,Commit), defined over message space V and ran-
domness space R, constitutes a statistically hiding non-interactive commitment
scheme if it satisfies:

– Statistical hiding, i.e., for any pp output by Setup(1λ), for any m0,m1 ∈
V, the distributions D(pp,m0) and D(pp,m1) are statistically close, where
D(pp,m) = {r

$←− R : Commitpp(m; r)}; and
– Computational binding, i.e. for any PPT adversary A, there exists a negligible

function negl(λ) such that Pr[Commitpp(m0; r0) = Commitpp(m1; r1) ∧ m0 �=
m1 : pp $←− Setup(1λ); (m0, r0,m1, r1)←A(pp)] = negl(λ).

3 Updatable NIZK Proof Systems

Zero-knowledge proofs enable a prover to convince a verifier of the validity of a
statement, without revealing any additional information beyond the truth of the
statement itself. Further, non-interactive zero-knowledge proofs (NIZK) remove
the need for interaction between prover and verifier: the prover simply outputs
a publicly verifiable proof generated from her (secret) witness and a common
reference string (crs) [58].

Notation-wise, we will denote languages and relations interchangeably in
the following manner: LR = {x |∃ w. (x,w) ∈ RL }, where x ∈ X is a (public)
instance, w ∈ W is a (secret) witness, and the relation RL is a subset of X ×W .
Defining R also determines LR uniquely; furthermore we implicitly assume L
uniquely defines RL.

Definition 2 (Updatable Language). A language L is updatable w.r.t. the
class of transformations T if for all T ∈ T , T = (Tx,Tw), and for all (x,w) ∈ RL
it holds that (Tx(x),Tw(w)) ∈ RL. We call such T valid transformations for L.

Note that the functions Tx : X → X,Tw : W → W are defined independently
of any particular instance and witness, i.e. in Tx the symbol “x” is only used as
a label. All the relations and functions we consider can be evaluated in PPT in
the security parameter.

We recall the definitions of standard and updatable NIZK proofs. Updatable
NIZKs are known as malleable proofs [7,18] and allow transforming a proof for
x into a proof for Tx(x). We prefer the term updatable and make this feature
explicit in our syntax.

Definition 3 (Standard and Updatable NIZKs). An updatable NIZK
proof system for a language L and a set of transformations T is defined by:

– Setup(1λ) $−→ (crs, td): generates a common reference string crs and a trapdoor
td which is used for security definitions;

– Prove(crs, x,w) $−→ π: produces a proof for (x,w) ∈ RL;
– Verify(crs,π, x) → 0/1: verifies π w.r.t. the public instance x;
– Update(crs,π, x,T) $−→ π′: updates the proof π for x into π′ for Tx(x).

114 B. David et al.

A standard non-updatable NIZK proof system is defined only by the first
three algorithms. For conciseness, in what follows we sometimes drop crs from
the explicit inputs and separate the proof and instance by a semicolon, e.g.,
Verify(π; x).

Our NIZKs need to satisfy the standard security definitions—completeness,
soundness, and zero-knowledge, given e.g., in [44]—which we defer to. An updat-
able NIZK must additionally satisfy the following two properties. First, the
updated proof must be valid for the updated instance:

Definition 4 (Update Completeness). An updatable NIZK proof system
for L satisfies update completeness w.r.t. a set of transformations T , if given
(crs, ·) $←− Setup(1λ), for all x,π such that Verify(π, x) = 1, and all T = (Tx, ·) ∈ T
it holds that: Pr

[
Verify(crs,Update(crs,π, x,T),Tx(x)) = 1

]
= 1.

Second, derivation privacy states that updated proofs are distributed simi-
larly to fresh proofs for the new instance.

Definition 5 (Derivation Privacy). An updatable NIZK proof system for L
satisfies derivation privacy w.r.t. T , if given (crs, ·) $←− Setup(1λ), for all (x,w) ∈
RL, all π such that Verify(crs,π, x) = 1, and all T = (Tx,Tw) ∈ T it holds that:{

Update(crs,π, x,T)
}

p=
{

Prove(crs,Tx(x),Tw(w))
}
, i.e., the two collections are

perfectly indistinguishable.

Because updated proofs are distributed as fresh ones, they can be simulated
using the standard simulator guaranteed by zero-knowledge; therefore trans-
formed proofs are also zero-knowledge. This property is inspired by derivation
privacy in [18].

NIZKs Used in this Work. We use two NIZK proof systems that work with
the same class of languages.

– Π: The standard non-updatable Σ-protocol proof system for equality of dis-
crete logarithm relations [52,60]. It is assumed to be straight-line knowledge-
sound after non-interactive transformation, e.g. by encrypting witnesses or
using Fischlin’s technique [34].

– Πu: The CH20 NIZK [23], which is Σ-like, but is updatable, works in the
bilinear setting, and has a uniform CRS. We discuss CH20 and investigate its
updatability in [29].

The Common Algebraic Language. Let G be a prime ordered group. Define
the set of linear polynomials P ⊂ G[X1 . . . Xl] in l variables with coefficients in
G as P = {a0 +

∑l
i=1 aiXi |a0 ∈ G, a1 . . . al ∈ Zq }. Both Π and Πu work with

the so-called algebraic language2 LM :

LM =
{

�x ∈ G
l
∣
∣∃ �w ∈ Z

t
p : M(�x) · �w = �x

}
, where M(�X) ∈ P l×t.

2 For simplicity, and contrast with [23], we do not consider arbitrary Θ(�x) such that
M(�x) · �w = Θ(�x).

Updatable Privacy-Preserving Blueprints 115

In other words, it is a set of DLOG-like linear equations with a common instance
and bases in M(�X) that can potentially depend on the instance x itself. We define
the corresponding relation RM to be the set {(�x, �w) ∈ G

l × Z
t
p |M(�x) · �w = �x}.

Updatability for algebraic languages LM , due to their group structure, means
that there exist four matrices (Txm, Txa, Twm, Twa) such that for all (�x, �w) ∈ RM

it holds that:
(Txm ·�x + Txa,Twm · �w + Twa) ∈ RM .

The functions Tx,Tw required in Definition 2 are defined as follows: Tx(x) :=
Txm ·�x+Txa and Tw(w) := Twm ·�w+Twa. We will show that the algebraic languages
we define in this work are updatable by explicitly providing the matrices and
proving they satisfy the equation. For more details see [29].

4 Updatable Privacy-Preserving Blueprints

Updatable privacy-preserving blueprints are like privacy-preserving blueprints
[48, Definition 3], in the sense that they are defined for a given function (in our
case an efficiently computable predicate) and a given non-interactive commit-
ment scheme. In addition to the basic algorithms, updatable privacy-preserving
blueprints have three new algorithms that are necessary for our functionality:
Update, VfHistory, and VfHint. Finally, to enable proving external properties
about update values we require the commitment scheme to be statistically hiding
and computationally binding (see Definition 1). For integration, the commitment
scheme additionally has to be compatible with our updatable NIZK system. We
also introduce hints and tags which repackage and augment some of the variables
used in the original syntax of [48, Definition 3]. For convenience, we will refer to
updatable privacy-preserving blueprint schemes as updatable blueprints (UPPB),
and to the statistically hiding non-interactive NIZK-friendly commitment scheme
as the base commitment scheme and denote it as BC = (Setup,Commit) (with
gothic font). We will also employ binary predicates, i.e. functions of the form
P (T ,X) : V × V → {0, 1}.

For a concrete example, consider Pedersen commitments, the CH20 NIZK,
V = Zq, and the predicate family PV of range checks, i.e., binary predicates
that are parameterized by a public distance value d ∈ Zq that return 1 if x ∈
[t, t + d − 1], and 0 otherwise.

Definition 6 (Updatable Privacy-Preserving Blueprints). Let BC =
(Setup,Commit) be a statistically hiding non-interactive commitment scheme
defined over (V,R), and P (T ,X) ∈ PV be an efficiently computable binary pred-
icate defined over V. An updatable blueprint scheme (UPPB) for (BC,P (T ,X))
is defined by the following set of PPT algorithms:

Setup(1λ, pp) $−→ (pp, td): takes as input the security parameter λ, and base com-
mitment parameters pp output by Setup(1λ). It returns public parameters that
contain at least a description of a special value denoted by 0. It also returns
a trapdoor td that is only used in security definitions. pp and pp are implicit
inputs to all other algorithms.

116 B. David et al.

Fig. 1. Illustration of semantics of updatable blueprints in a potential application sce-
nario with a public bulletin board.

KeyGen(t) $−→ (sk, pk, hint0): takes as input a value t ∈ V. It outputs a key pair
(sk, pk); a hint hint0 implicitly encoding 0—this first hint is also the only
public one.

VfKeyGen(pk, hint0) → 1/0 : verifies the validity of the public output of KeyGen.
Updatepk(hint, tag,x, r) $−→ (hint′, tag′): takes as input a hint and its tag, a value,

and external base commitment randomness. When hint = hint0, tag = ⊥. It
returns an updated hint′ and the new update tag′. To keep track of the update
history (also called trace) of a commitment we introduce an epoch index ι ≥ 1,
e.g., Updatepk(hintι−1, tagι−1,xι, rι)

$−→ (hintι, tagι).
VfHistorypk({tagi,Ci}ι

i=1) → 1/0 : takes as input an ordered sequence of update
tags and base commitments and verifies the consistency of the update history
(also called trace, see Definition 7).

VfHintpk(hint, tag) → 1/0 : takes as input a hint and the last corresponding update
tag. It returns 1 if the inputs are deemed to be consistent (see Definition 7),
and 0 otherwise.

Escrowpk(hint) $−→ esc: takes as input a hint for the last tag of a history. It returns
a predicate escrow esc that prepares the history for audit evaluation.

VfEscrowpk(esc, tag) → 1/0: takes as input a predicate escrow esc, and the update
tag tag used in the last update. It returns 1 if the inputs are consistent, and
0 otherwise.

Decryptsk(esc) → /⊥: takes as input the auditor’s secret key sk and a predicate
escrow. It returns if the escrow contains values that satisfy the predicate
P (t, ·), where t is determined by sk.

Figure 1 illustrates the semantics of the protocol on the example where his-
tory is stored on a public bulletin board. Alternatively, histories can be queried
and verified directly by the authority.

The notion of correctness covers the honest execution of the protocol. It
ensures that: (1) the honestly generated key always verifies, (2) honestly updated
histories of base commitments verify, and (3) the result of decrypted escrow is
consistent with the evaluation of the predicate on the sum of update values.

Updatable Privacy-Preserving Blueprints 117

Definition 7 (Correctness). Let BC and P ∈ PV be as in Definition 6, and
λ ∈ N. A UPPB scheme for (BC,P) is correct if the following statements hold
for all pp $←− Setup(1λ), (pp, ·) $←− Setup(1λ, pp) (remember these are implicit in
all the algorithms):

– Full correctness: for all t ∈ V, all poly-sized sequences of values x1, . . . ,xn ∈ V

and r1, . . . , rn ∈ R:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

VfKeyGen(pk, hint0) = 1 ∧
for all i ∈ [n] :

VfHintpk(hinti, tagi) = 1 ∧
VfHistorypk({tagj ,Cj}i

j=1) = 1 ∧
VfEscrowpk(esci, tagi) = 1 ∧
Decryptsk(esci) = P (t,

∑i
j=1 xj)

:

(sk, pk, hint0)
$←− KeyGen(t)

for i ∈ [n] :
(hinti, tagi) � $

Updatepk(hinti−1, tagi−1,xi, ri)

esci
$←− Escrowpk(hinti)

Ci ← Commit(xi; ri)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 1

– Update correctness: for all pk, hint0 s.t. VfKeyGen(pk, hint0) = 1, and all
hintn, {tagj ,Cj}n

i=1 such that VfHintpk(hintn, tagn) = 1 and
VfHistorypk({tagj ,Cj}n

j=1) = 1, and for all x ∈ V, r ∈ R:

Pr

⎡

⎢
⎢
⎣

VfHintpk(hintn+1, tagn+1) = 1 ∧
VfHistorypk({tagj ,Cj}n+1

j=1) = 1 ∧
VfEscrowpk(escn+1, tagn+1) = 1

:

(hintn+1, tagn+1) � $

Updatepk(hintn, tagn,x, r)
escn+1

$←− Escrowpk(hintn+1)
Cn+1 ← Commit(x; r)

⎤

⎥
⎥
⎦ = 1

In both statements, the probability is taken over the random coins internally
sampled by the randomized algorithms of UPPB.

4.1 Security Properties

We say that a history and predicate escrows are valid if they verify under a
verifying public key. Valid histories and escrows must satisfy two properties:
history binding and soundness.

History binding enforces that for any valid history, its prefix must also be
valid, and no alternative prefix can ever be valid. This means that after verifying
a commitment history one can use the last tag as a commitment to the whole
history and is guaranteed the validity of each step in the history.

Definition 8 (History Binding). A UPPB scheme for (BC,P) is history
binding if for all PPT A, it holds that Pr[GA(1λ) = 1] ≤ negl(λ), where game
GA(1λ) is as follows:

118 B. David et al.

1: pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

2: (pk, hint0, {{tag
(b)
i ,C(b)

i }ι
i=1}b∈{0,1})

$←− A(pp)
3: return VfKeyGen(pk, hint0) = 1 ∧
4: VfHistorypk({tag

(0)
i ,C(0)

i }ι
i=1) = 1 ∧

5:

(
VfHistorypk({tag

(0)
i ,C(0)

i }ι−1
i=1) �= 1 ∨

6: VfHistorypk({tag
(1)
i ,C(1)

i }ι
i=1) = 1 ∧

7: tag
(0)
ι = tag

(1)
ι ∧ ∃i. (tag(0)i ,C(0)

i) �= (tag(1)i ,C(1)
i)

)

In practice, history binding prevents history manipulation: assuming an updater
that produced tag as a “receipt” of their update is later approached by the
regulator for presenting their esc, the updater will not be able to deceive the
regulator by saying “this tag I produced for a different history”. So history binding
is crucial for “tracking back” the history of changes done to the esc; it enforces
history linearity.

Soundness focuses on what VfEscrow and VfHistory functions mean together :
(1) any verifying history “contains” a set of update values, and (2) if esc verifies
w.r.t. the last tag of this history, it must decrypt to the value of predicate P
evaluated on t and the sum of committed values in the history.

Definition 9 (Soundness). A UPPB scheme for (BC,P) is sound if there
exists a deterministic poly-time black-box extractor Ext, such that for all PPT
A:

1. Valid history can be explained in terms of base commitments: for all ι > 0,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

VfKeyGen(pk, hint0) = 1 ∧
VfHistorypk({tagi,Ci}ι

i=1) = 1 ∧
Cι �= Commit(xι, rι)

:

pp
$←− Setup(1λ)

(pp, td) $←− Setup(1λ, pp)
(pk, hint0, {tagi,Ci}ι

i=1) � $

A(pp)
(xι, rι) ← Ext(td, tagι)

⎤

⎥
⎥
⎥
⎥
⎦

≤ negl(λ)

2. Decryption always reveals the predicate computed for the sum of update values:
for all t ∈ V, ι > 0,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VfHistorypk({tagi,Ci}ι
i=1) = 1 ∧

VfEscrowpk(esc
�, tagι) = 1 ∧

Decryptsk(esc
�) �= P (t,

∑ι
i=1 xi)

:

pp
$←− Setup(1λ)

(pp, td)
$←− Setup(1λ, pp)

(sk, pk, hint0)
$←− KeyGen(t)

(esc�, {tagi,Ci}ι
i=1) � $

A(pp, pk, hint0)
for i ∈ [1, ι] :

(xi, ri) ← Ext(td, tagi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ)

The extractor is the same in both clauses of the definition and works the same
given the same inputs. This means that the two parts are composable: the

Updatable Privacy-Preserving Blueprints 119

extracted value in the second part satisfies ∀i.Ci = Commit(xi, ri) with over-
whelming probability. Together with the binding property of BC, this guarantees
that any values xι that are opened, by revealing rι or that are used externally
in proofs of knowledge about Cι, must be the same as that used to evaluate P .

The first part of soundness considers dishonest keys (emulating a view of a
third party observing the history, e.g. on the bulletin board), while the second
part has honest keys because it is viewed from the honest regulator’s perspective.

Our hiding definitions provide privacy guarantees, capturing the following
properties: (1) output of KeyGen does not leak the threshold value t (Defini-
tion 10), (2) tags do not leak the update value (Definition 11), (3) hints do not
leak the update value, without sk (Definition 12), and (4) escrow values only
leak the result of the evaluated predicate (Definition 13).

Threshold hiding states that it is computationally impossible to determine
the threshold value t chosen upon key generation from the public key, without
the secret key.

Definition 10 (Threshold Hiding). A UPPB scheme for (BC,P) is thresh-
old hiding if for all PPT A it holds that:

Pr

⎡

⎢
⎢
⎢
⎣

b
?= b� :

pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

(t0, t1) ← A(pp), b
$←− {0, 1}

(·, pk, hint0)
$←− KeyGen(tb)

b� ← A(pk, hint0)

⎤

⎥
⎥
⎥
⎦

≤ 1
2
+ negl(λ)

Tag hiding states that tags do not reveal any additional information than
already revealed by C itself.

Definition 11 (Tag Hiding). A UPPB scheme for BC defined over (V,R)
and P (T ,X) ∈ PV is (perfectly) hiding in tags if, for (pp, td) $←− Setup(1λ,V,P)
all t ∈ V, all pk, all pairs (hint, tag) such that VfHintpk(hint, tag) = 1, and for
all x ∈ V, r ∈ R, there exists a PPT S such that:
{

tag′ | (·, tag′) $←− Updatepk(hint, tag,x, r)
}
=

{
S(td, pk, tag,C := Commit(x, r))

}

where distributions are over the internal randomness of the Update algorithm
and the simulator. For the first update, this holds conditioned on hint := hint0,
tag := ⊥.

Note that the simulation-style definition here is dictated by tags being ver-
ifiable w.r.t. base commitments in histories. This allows composable reasoning:
tags are hiding regardless of the base commitments hiding property; whereas
IND-style definition would imply that the base scheme needs to be hiding which
we avoid. Tag hiding also implies hiding for any sequence of tags, and thus for
any history {tagi,Ci}ι

i=1: using S and {Ci} we can simulate all the tags one by
one, without any hints.

Hint hiding states that without the secret key, hints do not leak information
update values.

120 B. David et al.

Definition 12 (Hint Hiding). A UPPB scheme for BC defined over (V,R)
and P (T ,X) ∈ PV is (computationally value) hiding in hints if, for all t ∈ V and
all PPT A, it holds that Pr[GA(1λ) = 1] ≤ 1/2+ negl(λ), where game GA(1λ) is:

1: pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

2: (·, pk, hint0)
$←− KeyGen(t); b

$←− {0, 1}
3: (hint�, tag�,x(0),x(1), r) $←− A(pp, pk, hint0)
4: (hint, ·) $←− Updatepk(hint�, tag�,x(b), r)

5: b� $←− A(hint)
6: return b� ?= b ∧ VfHintpk(hint�, tag�) ?= 1

Escrow hiding models that even with the knowledge of the secret key, the
escrow esc does not leak anything about the values inside the history besides the
predicate result itself.

Definition 13 (Escrow Hiding). A UPPB scheme for BC defined over
(V,R) and P (T ,X) ∈ PV is escrow hiding if there exists a PPT sim-
ulator S such that for all PPT A, it holds that Pr[GA(1λ) = 1] ≤
1/2 + negl(λ), where game GA(1λ) is as follows:

1: (pp, td) $←− Setup(1λ,V,P).
2: (t, pk, hint0, {tagi,xi, ri}ι

i=1, hintι)
$←− A(pp)

3: b
$←− {0, 1}

4: esc ← if b = 0 then Escrowpk(hintι) else S(td, pk,P (t,
∑

i∈[ι] xi), tagι)

5: b� $←− A(esc)
6: return b� = b ∧
7: VfKeyGen(pk, hint0) = 1 ∧
8: VfHistorypk({tagi,Commit(xi, ri)}ι

i=1) = 1 ∧
9: VfHint(hintι, tagι) = 1

5 uBlu: Efficient Realization of Updatable Blueprints

Our efficient uBlu construction is presented in Figs. 3 (main algorithms), 2 (helper
functions), and 4 (verification algorithms). The construction is instantiated with
Pedersen commitment scheme PedersenC as a base commitment, and the predi-
cate Pd(T ,X) that returns 1 if and only if x is in the range {t, t+1, . . . , t+d−1}. It
also uses the updatable proof system Πu instantiated by CH20, and a straight-line
simulation-extractable Π (instantiated by Fiat-Shamir transformed Σ-protocols
for proofs of equality of discrete logarithm representations with encryptions of
witnesses). Next, we proceed with an overview that gradually builds intuition on
the techniques employed in our construction, and conclude with how to achieve
privacy and soundness.

Updatable Privacy-Preserving Blueprints 121

Fig. 2. Helper functions for the main uBlu protocol. The values {Wi}i∈[d] are indepen-
dent bases, being part of the public parameters, and {Vi,j}, {Ui}i∈[d] are public values
as defined in Sect. 5.1.

5.1 Achieving Updatable Functionality

The Predicate. We consider the predicate that returns if the value x con-
cealed in the escrow is above the given threshold t. For efficiency, we limit the
check to a reasonable interval, i.e. the escrow is only decryptable if the value x is
in [t, t+d−1] for a small value d: for generic X and T the predicate is defined as

Pd = Pd(T ,X) =

[
d−1∏

δ=0

(X − T − δ) ?= 0

]

∈ {0, 1}. (1)

Clearly, when evaluated, the predicate Pd(t,x) returns 1 if and only if x is in the
“critical range” [t, t + d − 1] on which the core polynomial evaluates to 0. The
polynomial is built in such a way as to allow for efficient updates as discussed
next.

Setup and Key Generation. The setup takes as input a group G, of order q
generated by Setup of the base commitment scheme (Pedersen), together with
generator G1 = G and H. It finishes the bilinear group setup, creating ppBLG
w.r.t. G1. It also sets up common reference strings and trapdoors for the NIZK
proofs (more on this in Sect. 5.3). Most importantly, it generates d random mask-
ing values W1, . . . ,Wd

$←− G which are needed for blinding ElGamal ciphertexts
in the hints.

To run the key generation process, the regulator needs to choose a threshold
value t. In a nutshell, KeyGen samples sk

$←− Zq and computes its corresponding
DH public key H ← Gsk. The public key consists of H and some additional
data to prove consistency. The key generation process additionally returns a
hint consisting of: 1) a sequence of d ElGamal ciphertexts encrypting the powers
of t, t2, . . . , td under the public key H; 2) a NIZK consistency proof πc for these
powers; and 3) additional dummy information for correct hint formatting. This
allows public verifiability of the correctness of the key generation procedure and
of the hints in epoch ι = 0.

122 B. David et al.

Fig. 3. Our uBlu protocol for BC = PedersenC = (Setup,Commit), the predicate
Pd(T ,X) =

[∏d−1
δ=0(X − T − δ)

?
= 0

]
, and CH20 updatable NIZK. Main Algorithms.

Updatable Privacy-Preserving Blueprints 123

Fig. 4. Verification Algorithms for the uBlu protocol. Continuation of Fig. 3.

Hints and Updatability. Hints are used to update the value concealed in an
updatable blueprint.

At each epoch ι hints have two main components: 1) a sequence of d ElGamal
ciphertexts in the exponent for a public key H (see Eq. (5) for definition); and
2) a base Pedersen commitment X for the accumulated value x̂ =

∑
i∈[ι] xi

embedded in the ciphertexts (the meaning of “embedded” will become clear in a
moment).

To understand the mechanics behind updatability, we need to look back at
the polynomial in our predicates Pd (see Eq. (1)). This is a product of expressions
consisting of a sum of a private/unknown value (X − T) and a public value δ.
Hence, the polynomial in Eq. (1) can be written as a linear combination of powers
of (X − T), namely:

d−1∏

δ=0

((X − T) − δ) =
d∑

i=0

Ui(X − T)i (2)

where all Ui are well-determined public coefficients that depend solely on i and
d.3 By the binomial theorem, it is possible to rewrite terms on the right side of
Eq. (2) as:

(X − T + Y)i =
i∑

j=0

((
i

j

)

Y i−j

)

· (X − T)j . (3)

3 To be precise, the Ui are the Stirling coefficients, i.e., Stirling numbers of the first
kind are defined as the coefficients in the expansion of the falling factorial polynomial

(x)n =
∏n−1

i=0 (x − i) =
∑n

k=0 s(n, k)xk, and have closed form s(n, k) =

[
n
k

]
=

(−1)n−k · ∑
1≤i1<...<in−k≤n−1

(
∏n−k

j=1 ij) [50].

124 B. David et al.

Equation (3) shows that we can always build ((x + y) − t)i linearly from (lower
powers) (x − t)j and y. This property is exploited by the UpdatePowers helper
function (Fig. 2) to compute hints for x + y as a linear combination of the old
hints values (dependent only on x and t), and values dependent only on the new
(known) input y = xι. For easy reference, we define the y-dependent values as

Vi,j(y) :=
(

i

j

)

yi−j ∈ Zq. (4)

Recall that hints contain a sequence of ElGamal ciphertexts, in our construc-
tion the initial hint, produced at epoch ι = 0 during key generation, contains
encryptions of powers of −ti, i.e. {A0,i = Gr0,i ,B0,i = G(−t)i

Hr0,i}i∈[d] where
the {r0,i}i∈[d] are the random values and t is the regulator’s secret threshold for
the predicate. Hints get progressively updated (as we show momentarily) into
the following form:

{Aι,i = Gr̂ι,i ,Bι,i = G(x̂−t)i

H r̂ι,i}i∈[d], (5)

where r̂0,i denotes accumulated randomness, x̂ =
∑

i∈[ι] xi is the committed
value accumulated at epoch ι. (Note that when ι = 0 the ciphertexts conceal the
value (0 − t)i).

By linear homomorphism, it is possible to add a new known value y to the
quantity (x − t) that is concealed in the hints of the previous epoch via the
expression:

Bι+1,i =
i∏

j=0

B
Vi,j(y)
ι,j = G

∑i
j=0(x−t)j ·Vi,j(y) · (Hrι,i)Vi,j(y) = G(x+y−t)i

Hrι,iVi,j(y)

where the last equality comes for Eq. (3) and the definition in Eq. (4) and
B0,0 = Gt0H0. Noting that Vi,0(y) = yi, each Bι+1,i can be computed solely
from hints of epoch ι with j > 0 in the following way:

Bι+1,i = Gyi
i∏

j=1

B
Vi,j(y)
ι,j

where we isolate the j = 0 term Gyi

= B
Vi,0(y)
ι,0 to the left.

Preparing Hints for Escrow. This procedure is performed by the Escrow
algorithm (Fig. 3). Intuitively, the ElGamal ciphertexts are extracted from the
hint, and “evaluated”. The Evaluate algorithm raises both ciphertext components
to Ui ·β, where β is a random non-zero value (used for masking non-escrow data),
and the Ui are the Stirling coefficients described in Sect. 5.1. Specifically:

E1 =
∏

i∈[d]

(AUi
i)β = G

β·(∑

i∈[d]
rι,i·Ui)

E2 =
∏

i∈[d]

(BUi
i)β =

(

G

∑

i∈[d]
Ui(x−t)i

H

∑

i∈[d]
rι,i·Ui

)β

= G
β·(

d−1∏

δ=0
(x−t−δ))

H
β·(∑

i∈[d]
rι,i·Ui)

Updatable Privacy-Preserving Blueprints 125

where the last equality comes for Eq. (2). As a result, the holder of the ElGa-
mal secret key cannot efficiently decrypt the evaluated ciphertext. Decryption
corresponds to solving the discrete logarithm problem since β is random (and
unknown to the authority) unless the ciphertext encrypts the value “0”. Note
that we built the predicate in such a way that the ciphertext encodes 0 only on
the roots of the polynomial, which correspond to values in the “critical range”.
The Escrow procedure outputs the predicate escrow which, in addition to the
evaluated ElGamal ciphertext, contains additional components needed to prove
consistency and verify the correctness of the procedure.

Testing the Predicate. This procedure is run by the regulator and sim-
ply attempts to decrypt the ciphertext (E1,E2) using the secret key sk cor-
responding to the ElGamal encryption public key H. This entails computing
M = E2 · (E1)−sk, which by construction is M = Gβ·(∏d−1

δ=0 (X−T−δ)), where the
reader should recognize the core polynomial of the predicate (see Eq. (1)). Note
that β (unknown to the regulator) acts as a random mask that prevents effi-
cient decryption whenever the polynomial evaluates to a value other than 0.
This makes M gibberish unless the predicate Pd evaluates to 1 (the polynomial
evaluates to 0), which yields M = G0 = 1G.

5.2 Achieving Privacy

Up to this point, we discussed the correctness of our construction. Now we focus
on how to achieve privacy, i.e., the authority only learns Pd(t,x) and nothing
else, and updaters learn nothing about the concealed value.

The IND-CPA property of ElGamal ciphertexts {Ai = Gri ,Bi = G(x−t)i

Hri}i∈[d] prevents updaters from seeing the concealed value. The regulator how-
ever can obtain {G(x−t)i}i∈[d] by decrypting the ciphertexts, and even though
encoding values in the exponent makes generic decryption inefficient, it does not
prevent the regulator from obtaining x by when the encoded values are in small,
predictable ranges (which is the setting of our application). To hide x properly,
updaters will blind hints before sending them to the regulator with the escrow.

The blinding is performed by BlindPowers and consists of multiplying each
Bi component by a value Wα

i , where the {Wi}d
i=1 are public group elements

generated upon system setup, and α is a freshly sampled random value. Specif-
ically, blinded ciphertexts are of the form: {Ai,Di := Bi · Wα

i }i∈[d]. To achieve
efficient updatable proofs, the α component will be zero while the hints are
updated, which means parties will exchange unblinded hints; and α will only
be set while the hints are converted to an escrow (more details on this in the
upcoming description of updatable proofs).

5.3 Achieving Soundness Using NIZKs

Intuitively speaking, soundness means that whenever the data (primarily hints
and escrows) is valid, it must be “good” – bind to the history, contain only

126 B. David et al.

updates that are relevant to commitments, etc. As of now, hints and escrows can
be malformed and lack these guarantees. We overcome these issues by employing
NIZKs to ensure data correctness.

Our construction employs four kinds of proofs. The key proof (πpk) will show
that the public key was built correctly. The consistency proof (πc) will show the
consistency of all the components in a hint, and it will be updatable (details of
which are the main technical contribution of the construction). The trace proof
(πt) will show that the new hint—obtained updating a hint from the previous
epoch—is computed correctly and that the update value is the same as in the
external commitment C. Trace proofs are included in tags tag and form the trace.
The escrow proof (πe) will show that the escrow esc was produced correctly from
a tag and its hint.

Key Proof (πpk). During the key generation phase, the regulator produces the
ElGamal encryptions of the powers of the threshold (as explained in Sect. 5.1), in
particular, we will use the first ciphertext (A0,1,B0,1) := (Gr0,1 ,GtHr0,1) that is
a standard ElGamal encryption of t for the auditor’s public key H. In addition,
the regulator computes a Pedersen commitment to the threshold T = GtHrt

(which is included in the public key pk). The public key additionally contains
πpk that proves knowledge of the sk corresponding to the ElGamal public key
H = Gsk, and knowledge of a threshold value t and randomnesses that realize
the public components B0,1 (contained in hint0) and T. Specifically, the language
Lpk is defined by:

x = (H,B0,1,T) ∈ G
3

w = (sk, t, r0,1, rt) ∈ Z
4
q

and M(x) =

⎡

⎣
G 0 0 0
0 G H 0
0 G 0 H

⎤

⎦ .

where witness here and in the following is highlighted in gray.

Consistency Proof (πc). This proof shows that all the hint values (including
the {A0,i,B0,i} produced by KeyGen) are indeed encodings of (x̂ − t)i, where x̂
and t are the current accumulated value and the original threshold selected by
the regulator. It works for both unblinded (Bi) and blinded (Di) hints. This proof
is produced (1) originally by the regulator in KeyGen to prove the consistency of
powers in hintpk, and (2) by updating parties to prove that the hints they send
further are still consistent, (3) by updating parties to prove to the regulator that
the blinded hints in the escrow are consistent. The consistency proof will always
refer to T (the Pedersen commitment to the threshold included in pk) to make
sure that the witness t used in all proof iterations is the same as the initial one.

At epoch ι, the consistency proof πc proves the following statement: for an
instance

x = (H, {Aι,i,Dι,i}i∈[d],T,Xι,A) ∈ G
2d+4

there exists a witness

w =
(

t, rt, x̂ι, r̂x,ι,α, rα, {r̂ι,i}i∈[d],
(x̂ι − t), {rι,i(x̂ι − t)}i∈[d−1],α(x̂ι − t), rα(x̂ι − t)

)

∈ Z
2d+8
q

such that the following relations are satisfied:

Updatable Privacy-Preserving Blueprints 127

1. T = G tHrt (rt is the randomness used to create T, the Pedersen commitment
to the threshold)

2. Xι = G x̂ι H r̂x,ι (Pedersen commitment to x̂ι, the accumulated value)
3. Aι = GαHrα (Pedersen commitment to the randomness for blinding factors)
4. Aι,1 = G r̂ι,1 (rι,i is the randomness used to create the ElGamal ciphertext)

5. Dι,1 = G x̂ι − t H r̂ι,1 W α
1 (the blinded ciphertext encrypts (x̂ − t))

6. ∀ i ∈ [2, d]:
(a) Aι,i = G r̂ι,i

(b) Dι,i = (Dι,i−1) x̂ι − t (H−1) r̂ι,i−1(x̂ι − t)H r̂ι,i (W−1
i−1)

α(x̂ι − t)W α
i

7. Witness products (needed for step 6):
(a) 1 = G x̂ι (G−1) t (G−1) x̂ι − t

(b) 1 = A
x̂ι − t
ι (G−1)α(x̂ι − t) (H−1)rα(x̂ι − t)

(c) 1 = A
x̂ι − t
ι,i (G−1) r̂ι,i(x̂ι − t) , for i ∈ [d − 1]:

The complexity of this formula is due to the fact that we need to prove the
relationship between the powers of (x̂ − t)i, which we do recursively. Note that
we do not store powers as additional witnesses; the only witness is the first power
(x̂ι − t).

When simplified, the recursive formulas reduce to the following four relations:

T = G tHrt X = G x̂H r̂x

A = GαHrα (Ai,Di) = (G r̂i ,G(x̂− t)i

H r̂i W α
i) for i ∈ [d]

As briefly mentioned before, we use α in two different ways depending on the
scenario: (1) while updating the hints blinding is disabled: users will set α =
rα = 0, and thus A = 1; thus Di will be actually just Bi; (2) while creating
escrow, the blinding values α, rα will be introduced, A �= 1 will be sent to the
regulator, but α, rα will not, which will ensure hiding of the blinding approach.

Therefore, to verify the consistency proof, the party (user or regulator) needs
an instance x, which consists of the original D0,1 produced during key generation;
a collection of ciphertexts {(Aι,i,Dι,i)}i∈[d] (unblinded or blinded); a tag tagι

containing a commitment X to the accumulated x̂ι; and a special commitment
A to the blinding randomness α (either trivial A = 1 for users, or nontrivial for
regulator).

Consistency proofs are instantiated by Πu, which is linear in the size of the
hints but is also updatable, meaning that the proof for new hints is a transfor-
mation of the previous consistency proof. Practically, this is quite efficient, since
otherwise consistency proofs would need to be aggregated, and hints would thus
grow in size; this is especially expensive given that the consistency language is
linear in d. Because of updatability, no updating party (except for the regulator,
who creates the initial proof) ever knows the whole witness “contained” in the
proof.

128 B. David et al.

Updating Hints and Consistency Proof. The consistency proof language Lc is
structured in such a way, that it supports a transformation that we will call
Tupd, which can change all the necessary witnesses, including our target aggre-
gated commitment value x̂ι. To fit within the algebraic language updatability
framework, we must be able to represent the new instance and witness as a linear
combination of the old instance and witness values correspondingly.

We first start with the instance, which implicitly defines Txm,Txa:

– Using the (plaintext) update value xι, sample rerandomisation factors rι,i,
and compute the new hints:

• Aι,i =
(∏i

j=1(Aι−1,j)Vi,j(xι)
)
Grι,i .

• Bι,i = Gxi
ι

(∏i
j=1(Bι−1,j)Vi,j(xι)

)
Hrι,i , where Gxi

ι covers the role of

implicit (Bι−1,0)Vi,0(xι).
– Sample rx,ι, update the tag commitment Xι = Xι−1G

xιHrx,ι .
– Sample α, rα, create the special commitment A = GαHrα (optionally, or still

assume A = 1).

Next, we show how to update the witness, which implicitly defines Twm,Twa:

x̂ι := x̂ι−1 + xι x̂ι − t := x̂ι−1 − t + xι

r̂ι,i :=
i∑

j=1

r̂ι−1,i · Vi,j(xι) + rι,i r̂ι,i(x̂ι − t) :=
i∑

j=1

r̂ι−1,i(x̂ι−1 − t) · Vi,j(xι)+

i∑

j=1

r̂ι−1,i · xι · Vi,j(xι)+

rι,i · (x̂ι−1 − t) + rι,ixι
r̂x,ι := r̂x,ι−1 + rx,ι

α̂ := α α̂(x̂ι − t) := α · (x̂ι−1 − t) + α · xι

r̂α := rα r̂α(x̂ι − t) := rα · (x̂ι−1 − t) + rα · xι

The language transformation Tupd is formally a set of matrices
(Txm,Txa,Twm,Twa) as implicitly defined above, that is parameterized by a vec-
tor of update values wupd,c = (xι, {rι,i}i∈[d], rx,ι,α, rα), where all the “product
witnesses” can be defined in terms of this tuple.

Note that we do not describe the last four witnesses as “accumulatable”—
if we try to update w with (α, rα) more than once, α̂ will not be equal to
the sum of previous α unlike e.g. r̂x,ι. This is due to our setup: (1) we apply
Tupd incrementally parameterized with (xι, {rι,i}i∈[d], rx,ι,α = 0, rα = 0) with
blinding turned off ; (2) and then, given α = rα = 0 and A = 1, we can introduce
blinding, applying Tupd parameterized with α, rα �= 0 only once. This separation
is a result of a deeper limitation of Πu, discussion of which we defer to [29]:

Theorem 1 (Validity of Tupd (Informal)). The transformation Tupd is
valid w.r.t. Lc, and the Πu proof system for Lc satisfies update completeness

Updatable Privacy-Preserving Blueprints 129

and derivation privacy w.r.t. Tupd when applied according to the two distinct
parametrizations described above.

Trace Proof (πt). Trace proofs are small aggregatable proofs that allow par-
ties to linearise their updates. At epoch ι, the party performing an update
with local value xι will prove the following statement. For an instance x =
(H,Xι−1,Xι,Cι,πt,ι−1) (where Cι = GxιHr), there exists a witness w =
(xι, rx,ι, rι) such that:

1. Xι = Xι−1 · Gxι Hrx,ι (the new tag is computed form the previous one, and
the updating information is completely known to the updater).

2. Cι = Commit(xι , rι)(the updated value xι is the same as in Cι).

Note that the value πt,ι−1 is in the instance, and thus bound by the NIZK being
a signature of knowledge, but it does not appear in any equations. In practice,
this translates with hashing the additional value when computing a Fiat-Shamir
challenge, but not using it otherwise. This proof will be instantiated with a
standard non-updatable Π Σ-protocol.

As a potential future-work extension of our scheme, one can consider parties
including their signatures on these elements, to sign the update act, which can
be used for extending updater accountability w.r.t. the regulator.

Escrow Proof (πe). This proof is produced upon conversion of a hint into
an escrow esc. The esc contains an ElGamal encryption E = (E1,E2) of β ·
Pd(x̂, t) for some masking value β (random), an escrow proof, a consistency
proof (rerandomized, and with α introduced), and information needed to check
the proofs: a commitment X to the accumulated value, a commitment B to
the randomness β, a commitment A to the introduced accumulated blinding
exponent α, and, most importantly, blinded ElGamal ciphertexts {Ai,Di}i∈[d]

(with α).
The escrow proof for Le proves the following statement. For an instance x =

(E1,E2,B,A,
∏

AUi
i ,

∏
DUi

i), there exists a witness w = (α, rα,β, rβ,βα, rβα)
such that the following conditions are satisfied:

1. A = GαHrα

2. B = Gβ Hrβ

3. 1 = Bα (G−1)βα (H−1)rβα

4. E1 =
∏

i(A
Ui
i)β

5. E2 =
∏

i(D
Ui
i)β ·

∏
i(W

−Ui
i)βα

The language is compact, so the proof πe can be created from scratch, and
since it doesn’t need to be updatable performance-wise we can also use standard
Π as a proof system.

130 B. David et al.

5.4 Security of the uBlu Construction

The main security statement of our construction can be summarized as follows.

Theorem 2. The uBlu protocol w.r.t. (PedersenC,Pd(T ,X)) introduced in
Sect. 5 is secure according to the security Definitions 8–13 (all in Sect. 4.1) under:
hiding and binding of PedersenC; DDH in G1 that in particular implies ElGa-
mal IND-CPA; completeness, strong simulation-extractability, and ZK of Π; and
(update) completeness, soundness, derivation privacy, and ZK of Πu.

Proof (Summary). The detailed statement of the theorem and its proof are
deferred to [29]. Here we present the summary and main intuition.

History Binding is proven by unfolding simulation-extractability of Π, instan-
tiating trace proofs, along the history.

Soundness reduces to KS of Π, soundness of Πu, and binding of PedersenC.
The first part of soundness is a trivial application of Π KS, while for the second
part, we need to unpack all the NIZKs, using the fact that they are “connected”
by binding commitments, to arrive at the statement about correct decryptability
of esc.

Threshold Hiding is, first, by ZK of both Π and Πu—and after proofs in
pk, hint0 are simulated, we reduce the property directly to IND-CPA of ElGamal,
holding under DDH in G1. Hint hiding is very similar to threshold hiding: it
holds by IND-CPA of Pedersen (Ai,Di are hiding), ZK of the NIZKs, but also
by derivation privacy of Πu, since Update uses Πu.Update internally. Similarly,
Tag hiding is a direct consequence of ZK of trace proof and hiding of PedersenC.

Escrow hiding holds under DDH in G1, security of PedersenC, ZK of Π,Πu,
KS of Π, and soundness of Πu. The hardest part in simulating esc is arguing
that encryption (E1,E2) has a “correct” form, which is similar to the soundness
proof. ��

5.5 Adding Range Proofs for Improved Accuracy

For efficiency, construction approximates the predicate [x > t] with a polynomial
that has roots in the range [t, t + d − 1], for a reasonably small value d. For the
approximation to be accurate, however, we need to ensure that an update does
not jump over the range or cause an overflow. In other words, we need an extra
range proof ensuring that the value xι added during the update is not too large.

Range proofs can be conveniently integrated into our protocol which already
exposes Ci = GxιHri for exactly this purpose. Among the existing approaches to
range proofs on Pedersen commitments, we recall Bulletproofs [12] or “adjusted”
Pedersen commitments and square decomposition [24]. These are efficient, with
the latter only requiring a constant amount of exponentiations and group ele-
ments in the proof.

Here we present a much simpler approach than the aforementioned: commit-
ting to bits of xι, and using Π to prove that (1) C contains bit-reconstructed
values; and (2) commitments are actually to the bit values ∈ {0, 1}. The latter

Updatable Privacy-Preserving Blueprints 131

can be done as follows: given C = GxHr for H being chosen uniformly at ran-
dom, note that condition x ∈ {0, 1} is equivalent to (x − 1)x = 0, therefore it is
enough to prove that Cx−1 = Hr′

for some (known to the prover but private) r′.
This requires O(log(d)) exponentiations and group elements, which is practically
efficient for our choice of d.

With this in mind, every updater can only “adjust” the aggregated rating x̂
by xι ∈ [0, d], which makes our uBlu construction a proper score aggregation
system. Other more complicated predicates can be proven similarly about xι;
commitment Ci is used precisely for this kind of external integration of a uBlu
scheme with other applications.

5.6 Extensions and Applications

The uBlu protocol we presented in this section is designed for a limited class of
predicates (range predicates) to keep the core construction simple. In this section
we suggest generalizations of our construction to support arbitrary polynomial
predicates and non-binary escrow values.

Arbitrary Polynomial Predicates. Our uBlu protocol targets the “range
polynomial” Pd(T ,X), that is zero in [t, t + d − 1]. We leverage the special
structure of Pd to design hints linear in d. Clearly, the uBlu construction can
easily be adapted to the case of polynomials P (T ,X) that capture r > 1 disjoint
ranges (e.g. [t1, t1 + d1] and [t2, t2 + d2]). The cost is r sets of hints that are
linear in the corresponding range length.

However, the algebraic trick used in our protocol to construct and update
hints can be generalized to any polynomial predicate P (T ,X) at the cost of a
quadratic number of hints, each encoding {xitj}i,j:i+j≤d, which are updatable in
a similar way our linear hints are. An example of using non-interval predicates
could be designing P to encode a certain few excluded revealing points, for
example representing a certain blocklist of public key hashes.

In detail, assuming P (T ,X) =
∑

i,j Ci,jX
iT j , we can always construct the

evaluation of the updated polynomial P (T ,X +Y) =
∑

i,j Ci,j(X +Y)iT j from
the hints, if we can transform old hints {(xitj)}i,j into the new ones {(x +
y)itj}i,j . The latter is always possible since (x+y)itj =

∑i
k=0

(
i
k

)
yi−k(tjxk) is a

linear combination of the previous (tjxk), which are known. Quadratic number
of hints makes many algorithms much less efficient and generally imposes much
stricter upper bounds on d.

Multi-variate Polynomial Predicates. It is possible to extend updatable
blueprints to support evaluations of predicates described by multi-variate poly-
nomials, by considering all the necessary cross-term monomials {

∏n
i=1 Xji

i } as
hints.

For example, assume the polynomial is of the form P (T ,X1, . . . ,Xn) =∑n
i Pi(T ,Xi), and we are running uBlu in parallel for each Pi independently,

132 B. David et al.

however with the same starting commitment to t. Updates and the evaluation
can still be done in a manner similar to the core protocol. The only significant
difference now is the escrow proof will now have to attest to the evaluation of
joint P (T ,X1, . . . ,Xn) instead of independent Pi(T ,Xi) as in the basic scheme.
This, however, can still be encoded as an algebraic relation—now it will take
{Ai}n

i=1 (one element per each “parallel” run), which will lead to the introduc-
tion of {βαi}s

i=1 witnesses and the statement for E2 will have to change to
E2 = (

∏d
i=1

∏n
j=1 DUi

j,i)
β · (

∏d
i=1 Wi)

∑n
j=1 βαj .

As a slightly different but instructive example, let us consider evaluating
the polynomial corresponding to the computation of the squared Euclidean dis-
tance. In this case, we manage the two-variate polynomial P (TX ,TY ,X,Y) =
(X − TX)2 + (Y − TY)2, where (TX ,TY) are the coordinates of a departure
point, and X, Y are updates on the respective latitude and longitude deviation
from the previous (or initial) position. The regulator needs to commit to TX ,TY

separately. In order to evaluate P (tX , tY ,x + x′, y + y′) it is sufficient to notice
that:

((x′ + x) − tX)2 + ((y′ − y) − ty)2 =
= x′2 + x2 + t2X + 2(x′(x + tX) + xtX) + y′2 + y2 + t2Y + 2(y′(y + tY) + ytY)
= x′2 + 2x′(x + tX) + (x2 + t2X + 2xtX) + y′2 + 2y′(y + tY) + (y2 + t2Y + 2ytY)

where in the last line, all terms in parenthesis are computable from the previous
hints.

Non-binary Predicate Value. In some applications, e.g., when users are
anonymous, it is desirable for Escrowpk to return not only a binary value but also
information about the user (e.g. their identity) to enable further investigations.
Our uBlu scheme can be modified to achieve this functionality. The core idea is
to construct Escrowpk so that instead of returning an encryption of βP1(x), the
algorithm returns (β1P1(x),β2P1(x) + P2(x)) for random β1,β2, which in case
P1(x) �= 0 produces two random points and in the case P1(x) = 0 (i.e. if the
escrow is decryptable) returns (0,P2(x)). The extra information y = P2(x) can
also be proven to be coming from the pre-computed commitment Cy (e.g. coming
from an external identity scheme). Since P1 and P2 are different predicates, they
will have different sets of hints; but assuming that degP2 is low, the previous
paragraph explained how we can extend the uBlu scheme to support polynomial
reconstructions for arbitrary P2. Naturally, the escrow proof must be modified
to attest to the correct evaluation of the escrow.

6 Instantiation and Performance

In this section, we summarise the implementation and performance details of
the uBlu construction. We consider an instantiation of our updatable blueprint
schemes in the “standard model”, with a caveat that we apply the Fiat-Shamir
heuristic for the non-updatable proof system Π. The updatable proof system Πu,
which is instantiated by the CH20 [23] NIZK, is non-interactive by design.

Updatable Privacy-Preserving Blueprints 133

Table 2. Complexity of our uBlu construction in terms of the number P of pairing
operations and E1/E2 the number of multiplicative group scalar exponentiations in
G1/G2. Constant d is defining the “explosion” range [t, t + d − 1]. Value ιcur stands for
the current epoch (history length).

Algorithm#P #E1 #E2

Setup 0 O(1) O(1)

KeyGen 0 9d + O(1) 4d + O(1)

Update 0 4d2 + O(d) 1.5d2 + O(d)

Escrow 0 14d + O(1) 4d + O(1)

Decrypt 0 O(1) 0
VfKeyGen 2d + O(1) 10d + O(1) 6d + O(1)

VfHint 2d + O(1) 10d + O(1) 6d + O(1)

VfHistory 0 O(ιcur) O(ιcur)

VfEscrow 2d + O(1) 10d + O(1) 6d + O(1)

Table 3. Size complexity of the different components of our uBlu construction in terms
of the number of group elements (or elements of equivalent size).

Object pp sk pk hint tag esc

#G1 O(d2) 1 O(1) 4d + 5O(1) 4d + O(1)

#G2 O(1) 0 0 2d + 8 0 2d + 8

Asymptotic Summary. We start our performance evaluation by summarising
the minimal computational complexity of the different algorithms of uBlu in
Table 2 and the sizes of the different components in Table 3. For this we assume
that the public combinatorial values (binomial coefficients for Vi,j and Stirling
coefficients for Ui) are pre-computed, which requires total auxiliary storage of
2d2 elements (added into the cost for Setup). For more details on the asymptotic
performance estimates, especially w.r.t. the NIZKs, see [29].

Implementation. We implemented a proof-of-concept prototype4 of our uBlu
scheme using the Rust programming language and benchmark it on a clean bare
metal server with a 6 core (12 thread) Xeon R© E-2286G CPU @ 4.00GHz, on
the fully updated version of Ubuntu 24.04. The choice of Rust is motivated
by type safety (which helps prevent bugs), memory safety (preventing most
buffer or heap overflow attacks), extensive possibility for static analysis, and
relatively high performance; all of which are features valuable for cryptographic
implementations, should our code be used in production in the future.

We used the ark_ec library from Arkworks for elliptic curve operations since
it contains a well-maintained and optimized implementation of common curves

4 Available at https://anonymous.4open.science/r/ublu-impl-20A7/ (anonymized).

https://anonymous.4open.science/r/ublu-impl-20A7/

134 B. David et al.

such as BLS and Barreto-Naehrig [4]. For our concrete implementation we use
BLS12-381 [3] as it is a type III pairing friendly elliptic curve and gives a reason-
able compromise between speed and security. We also use this curve to realize
the base commitment BC using Pedersen’s scheme [56] over G1.

Code Design. To provide a compromise between readability and ease of efficiency
evaluation, our code is implemented generally verbatim from the specification.
However, since preliminary benchmarks unsurprisingly showed the main bot-
tleneck in the pairing operations needed for the CH20 proof verifications, we
did introduce relevant optimizations. More specifically, since the computation of
ê([M(x)]1, [d]2)

?= ê(x, [z]2) · ê([a]1, [1]2) requires the multiplication of the result
of multiple pairings, we take advantage of the fact that this can be reduced sig-
nificantly using a Miller loop [53]. Even so, checking the statement above still
requires l = |x| uses of the Miller loop trick. Thus, instead of checking each of the
l results of the Miller loop, we instead check a single, randomized linear combi-
nation (in the target group). That is, we pick a random scalar coefficient for each
of the l rows in M and multiply this with all G1 pairing inputs and then execute
a single Miller loop over everything. Thus the result will be a random linear
combination of the coefficients in the target group. This yields an improvement
of close to ×10. Along the single-threaded evaluation, we also parallelized the
point-scalar exponentiations per row of all matrices using par_iter from rayon.

Fig. 5. Benchmark of uBlu, without and with parallelism enabled. VfHistory requires
1.15 ms per update and Decrypt takes below 1 ms, so both are not shown on the figure.

Updatable Privacy-Preserving Blueprints 135

We show the benchmark results in Fig. 5 for all algorithms (except VfHistory
and Decrypt which are idependent of d) with d as the variability point on the
x-axis. VfHistory scales linearly with 1.15ms per ι and Decrypt takes less than
1ms. The benchmarks were run using ‘cargo bench’ with the criterion library
and the error-bars represent the standard deviation from at least 10 iterations.
From the graphs we see that Update and Escrow are the slowest, mostly updat-
ing and generating proofs, with Update clearly exhibiting the quadratic pattern
pointed out in the asymptotic analysis. The parallelization approximately allows
doubling d while keeping the same runtime compared to single-threaded. The
memory usage during any benchmark is low under 50 MB. Finally, we note that
there is still space for optimisation in our implementation, promising a constant
factor decrease on most expensive timings.

References

1. T. Acar and L. Nguyen. “Revocation for Delegatable Anonymous Credentials”. In:
PKC 2011. Ed. by D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi. Vol. 6571.
LNCS. Springer, Heidelberg, Mar. 2011, pp. 423–440. https://doi.org/10.1007/978-
3-642-19379-8_26.

2. E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya, K. Elkhiyaoui, and
B. Tackmann. “Privacy-preserving auditable token payments in a permissioned
blockchain system”. In: AFT ’20: 2nd ACM Conference on Advances in Financial
Technologies, New York, NY, USA, October 21-23, 2020. ACM, 2020, pp. 255–
267. https://doi.org/10.1145/3419614.3423259. https://doi.org/10.1145/3419614.
3423259.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. “Constructing Elliptic Curves with
Prescribed Embedding Degrees”. In: SCN 02. Ed. by S. Cimato, C. Galdi, and G.
Persiano. Vol. 2576. LNCS. Springer, Heidelberg, Sept. 2003, pp. 257–267. https://
doi.org/10.1007/3-540-36413-7_19.

4. P. S. L. M. Barreto and M. Naehrig. “Pairing-Friendly Elliptic Curves of Prime
Order”. In: SAC 2005. Ed. by B. Preneel and S. Tavares. Vol. 3897. LNCS. Springer,
Heidelberg, Aug. 2006, pp. 319–331. https://doi.org/10.1007/11693383_22.

5. J. Bartusek, S. Garg, A. Jain, and G.-V. Policharla. “End-to-End Secure Messaging
with Traceability Only for Illegal Content”. In: EUROCRYPT 2023, Part V. Ed.
by C. Hazay and M. Stam. Vol. 14008. LNCS. Springer, Heidelberg, Apr. 2023, pp.
35–66. https://doi.org/10.1007/978-3-031-30589-4_2.

6. C. Baum, J. H. Chiang, B. David, and T. K. Frederiksen. “SoK: PrivacyEnhancing
Technologies in Finance”. In: 5th Conference on Advances in Financial Technolo-
gies, AFT 2023, October 23-25, 2023, Princeton, NJ, USA. Ed. by J. Bonneau and
S. M. Weinberg. Vol. 282. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2023, 12:1-12:30. https://doi.org/10.4230/LIPICS.AFT.2023.12. https://
doi.org/10.4230/LIPIcs.AFT.2023.12.

7. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H.
Shacham. “Randomizable Proofs and Delegatable Anonymous Credentials”. In:
CRYPTO 2009. Ed. by S. Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug.
2009, pp. 108–125. https://doi.org/10.1007/978-3-642-03356-8_7.

8. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via
Cycles of Elliptic Curves”. In: CRYPTO 2014, Part II. Ed. by J. A. Garay and R.
Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014, pp. 276–294. https://
doi.org/10.1007/978-3-662-44381-1_16.

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-031-30589-4_2
https://doi.org/10.4230/LIPICS.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16

136 B. David et al.

9. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive composition and
bootstrapping for SNARKS and proof-carrying data”. In: 45th ACM STOC. Ed.
by D. Boneh, T. Roughgarden, and J. Feigenbaum. ACM Press, June 2013, pp.
111–120. https://doi.org/10.1145/2488608.2488623.

10. O. Blazy, G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. “Signatures on Ran-
domizable Ciphertexts”. In: PKC 2011. Ed. by D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi. Vol. 6571. LNCS. Springer, Heidelberg, Mar. 2011, pp. 403–422.
https://doi.org/10.1007/978-3-642-19379-8_25.

11. S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive Proof Composition without a
Trusted Setup. Cryptology ePrint Archive, Report 2019/1021. https://eprint.iacr.
org/2019/1021. 2019.

12. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bullet-
proofs: Short Proofs for Confidential Transactions and More”. In: 2018 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2018, pp.
315–334. https://doi.org/10.1109/SP.2018.00020.

13. B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-Carrying Data with-
out Succinct Arguments. Cryptology ePrint Archive, Report 2020/1618. https://
eprint.iacr.org/2020/1618. 2020.

14. B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-Carrying Data
Without Succinct Arguments”. In: CRYPTO 2021, Part I. Ed. by T. Malkin and
C. Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp.
681–710. https://doi.org/10.1007/978-3-030-84242-0_24.

15. B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Recursive Proof Composition from
Accumulation Schemes”. In: TCC 2020, Part II. Ed. by R. Pass and K. Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–18. https://doi.org/10.
1007/978-3-030-64378-2_1.

16. I. Cascudo, I. Damgård, B. David, N. Döttling, R. Dowsley, and I. Giacomelli.
“Efficient UC Commitment Extension with Homomorphism for Free (and Appli-
cations)”. In: ASIACRYPT 2019, Part II. Ed. by S. D. Galbraith and S. Moriai.
Vol. 11922. LNCS. Springer, Heidelberg, Dec. 2019, pp. 606–635. https://doi.org/
10.1007/978-3-030-34621-8_22.

17. D. Catalano, D. Fiore, and I. Tucker. “Additive-Homomorphic Functional Com-
mitments and Applications to Homomorphic Signatures”. In: ASIACRYPT 2022,
Part IV. Ed. by S. Agrawal and D. Lin. Vol. 13794. LNCS. Springer, Heidelberg,
Dec. 2022, pp. 159–188. https://doi.org/10.1007/978-3-031-22972-5_6.

18. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable Proof
Systems and Applications”. In: EUROCRYPT 2012. Ed. by D. Pointcheval and
T. Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 281–300.
https://doi.org/10.1007/978-3-642-29011-4_18.

19. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable Signa-
tures: New Definitions and Delegatable Anonymous Credentials”. In: CSF 2014
Computer Security Foundations Symposium. Ed. by A. Datta and C. Fournet.
IEEE Computer Society Press, 2014, pp. 199–213. https://doi.org/10.1109/CSF.
2014.22.

20. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Succinct Malleable
NIZKs and an Application to Compact Shuffles”. In: TCC 2013. Ed. by A. Sahai.
Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 100–119. https://doi.org/
10.1007/978-3-642-36594-2_6.

https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-19379-8_25
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/1618
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/978-3-642-36594-2_6

Updatable Privacy-Preserving Blueprints 137

21. D. Chaum, C. Crépeau, and I. Damgård. “Multiparty Unconditionally Secure Pro-
tocols (Abstract) (Informal Contribution)”. In: CRYPTO’87. Ed. by C. Pomerance.
Vol. 293. LNCS. Springer, Heidelberg, Aug. 1988, p. 462. https://doi.org/10.1007/
3-540-48184-2_43.

22. A. Connolly, P. Lafourcade, and O. Perez-Kempner. “Improved Constructions
of Anonymous Credentials from Structure-Preserving Signatures on Equivalence
Classes”. In: PKC 2022, Part I. Ed. by G. Hanaoka, J. Shikata, and Y. Watanabe.
Vol. 13177. LNCS. Springer, Heidelberg, Mar. 2022, pp. 409–438. https://doi.org/
10.1007/978-3-030-97121-2_15.

23. G. Couteau and D. Hartmann. “Shorter Non-interactive Zero-Knowledge Argu-
ments and ZAPs for Algebraic Languages”. In: CRYPTO 2020, Part III. Ed. by
D. Micciancio and T. Ristenpart. Vol. 12172. LNCS. Springer, Heidelberg, Aug.
2020, pp. 768–798. https://doi.org/10.1007/978-3-030-56877-1_27.

24. G. Couteau, M. Klooß, H. Lin, and M. Reichle. “Efficient Range Proofs with Trans-
parent Setup from Bounded Integer Commitments”. In: EUROCRYPT 2021, Part
III. Ed. by A. Canteaut and F.-X. Standaert. Vol. 12698. LNCS. Springer, Heidel-
berg, Oct. 2021, pp. 247–277. https://doi.org/10.1007/978-3-030-77883-5_9.

25. I. Damgård, B. M. David, I. Giacomelli, and J. B. Nielsen. “Compact VSS and
Efficient Homomorphic UC Commitments”. In: ASIACRYPT 2014, Part II. Ed.
by P. Sarkar and T. Iwata. Vol. 8874. LNCS. Springer, Heidelberg, Dec. 2014, pp.
213–232. https://doi.org/10.1007/978-3-662-45608-8_12.

26. I. Damgård, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and L. Siniscalchi. “Balanc-
ing Privacy and Accountability in Blockchain Identity Management”. In: CT-RSA
2021. Ed. by K. G. Paterson. Vol. 12704. LNCS. Springer, Heidelberg, May 2021,
pp. 552–576. https://doi.org/10.1007/978-3-030-75539-3_23

27. I. Damgard, M. Geisler, and M. Kroigard. “Homomorphic encryption and secure
comparison”. In: International Journal of Applied Cryptography 1.1 (2008), pp.
22–31.

28. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. “Multiparty Computation
from Somewhat Homomorphic Encryption”. In: CRYPTO 2012. Ed. by R. Safavi-
Naini and R. Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 643–
662. https://doi.org/10.1007/978-3-642-32009-5_38.

29. B. David, F. Engelmann, T. Frederiksen, M. Kohlweiss, E. Pagnin, and M.
Volkhov. Updatable Privacy-Preserving Blueprints. Cryptology ePrint Archive,
Paper 2023/1787. 2023. url: https://print.iacr.org/2023/1787.

30. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. “Cryptography against
Continuous Memory Attacks”. In: 51st FOCS. IEEE Computer Society Press, Oct.
2010, pp. 511–520. https://doi.org/10.1109/FOCS.2010.56.

31. M. B. van Egmond et al. Privacy-preserving Anti-Money Laundering using Secure
Multi-Party Computation. Cryptology ePrint Archive, Paper 2024/065 (To appear
in Financial Cryptography 2024). https://eprint.iacr.org/2024/065. 2024. url:
https://eprint.iacr.org/2024/065

32. M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. “MatRiCT: Efficient,
Scalable and Post-Quantum Blockchain Confidential Transactions Protocol”. In:
ACM CCS 2019. Ed. by L. Cavallaro, J. Kinder, X. Wang, and J. Katz. ACM
Press, Nov. 2019, pp. 567–584. https://doi.org/10.1145/3319535.3354200.

33. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. “On the Nonmalleability of
the Fiat-Shamir Transform”. In: INDOCRYPT 2012. Ed. by S. D. Galbraith and
M. Nandi. Vol. 7668. LNCS. Springer, Heidelberg, Dec. 2012, pp. 60–79. https://
doi.org/10.1007/978-3-642-34931-7_5.

https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-56877-1_27
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://print.iacr.org/2023/1787
https://doi.org/10.1109/FOCS.2010.56
https://eprint.iacr.org/2024/065
https://eprint.iacr.org/2024/065
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5

138 B. David et al.

34. M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge
with Online Extractors”. In: CRYPTO 2005. Ed. by V. Shoup. Vol. 3621.
LNCS. Springer, Heidelberg, Aug. 2005, pp. 152–168. https://doi.org/10.1007/
11535218_10.

35. J. Frankle, S. Park, D. Shaar, S. Goldwasser, and D. J.Weitzner. “Practical
Accountability of Secret Processes”. In: USENIX Security 2018. Ed. by W. Enck
and A. P. Felt. USENIX Association, Aug. 2018, pp. 657–674.

36. G. Fuchsbauer. “Commuting Signatures and Verifiable Encryption”. In: EURO-
CRYPT 2011. Ed. by K. G. Paterson. Vol. 6632. LNCS. Springer, Heidelberg, May
2011, pp. 224–245. https://doi.org/10.1007/978-3-642-20465-4_14.

37. N. Gama et al. “Detecting money laundering activities via secure multiparty com-
putation for structural similarities in flow networks”. In: Real World Cryptography.
2020. url: https://www.youtube.com/watch?v=4hryY6cMPaM&t=2558s.

38. C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zając. “What
Makes Fiat–Shamir zkSNARKs (Updatable SRS) Simulation Extractable?” In:
International Conference on Security and Cryptography for Networks. Springer.
2022, pp. 735–760.

39. J. A. Garay, B. Schoenmakers, and J. Villegas. “Practical and Secure Solutions for
Integer Comparison”. In: PKC 2007. Ed. by T. Okamoto and X. Wang. Vol. 4450.
LNCS. Springer, Heidelberg, Apr. 2007, pp. 330–342. https://doi.org/10.1007/978-
3-540-71677-8_22.

40. O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority”. In: 19th ACM
STOC. Ed. by A. Aho. ACM Press, May 1987, pp. 218–229. https://doi.org/10.
1145/28395.28420.

41. S. Goldwasser and S. Park. Public Accountability vs. Secret Laws: Can They Coex-
ist? Cryptology ePrint Archive, Report 2018/664. https://eprint.iacr.org/2018/
664. 2018.

42. M. Green, G. Kaptchuk, and G. V. Laer. “Abuse Resistant Law Enforcement Access
Systems”. In: EUROCRYPT 2021, Part III. Ed. by A. Canteaut and F.-X. Stan-
daert. Vol. 12698. LNCS. Springer, Heidelberg, Oct. 2021, pp. 553–583. https://
doi.org/10.1007/978-3-030-77883-5_19.

43. S. Griffy, M. Kohlweiss, A. Lysyanskaya, and M. Sengupta. Privacy-Preserving
Blueprints via Succinctly Verifiable Computation over Additively-Homomorphically
Encrypted Data. Cryptology ePrint Archive, Paper 2024/675. 2024. url: https://
eprint.iacr.org/2024/675.

44. J. Groth and A. Sahai. “Efficient Non-interactive Proof Systems for Bilinear
Groups”. In: EUROCRYPT 2008. Ed. by N. P. Smart. Vol. 4965. LNCS. Springer,
Heidelberg, Apr. 2008, pp. 415–432. https://doi.org/10.1007/978-3-540-78967-
3_24.

45. C. Hébant, D. H. Phan, and D. Pointcheval. “Linearly-Homomorphic Signatures
and Scalable Mix-Nets”. In: PKC 2020, Part II. Ed. by A. Kiayias, M. Kohlweiss,
P. Wallden, and V. Zikas. Vol. 12111. LNCS. Springer, Heidelberg, May 2020, pp.
597–627. https://doi.org/10.1007/978-3-030-45388-6_21.

46. M. Khalili, D. Slamanig, and M. Dakhilalian. “Structure-Preserving Signatures on
Equivalence Classes from Standard Assumptions”. In: ASIACRYPT 2019, Part
III. Ed. by S. D. Galbraith and S. Moriai. Vol. 11923. LNCS. Springer, Heidelberg,
Dec. 2019, pp. 63–93. https://doi.org/10.1007/978-3-030-34618-8_3.

https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-642-20465-4_14
https://www.youtube.com/watch?v=4hryY6cMPaM&t=2558s
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2018/664
https://eprint.iacr.org/2018/664
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-030-77883-5_19
https://eprint.iacr.org/2024/675
https://eprint.iacr.org/2024/675
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-45388-6_21
https://doi.org/10.1007/978-3-030-34618-8_3

Updatable Privacy-Preserving Blueprints 139

47. A. Kiayias, M. Kohlweiss, and A. Sarencheh. “PEReDi: Privacy-Enhanced, Reg-
ulated and Distributed Central Bank Digital Currencies”. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022. Ed. by H. Yin, A. Stavrou, C.
Cremers, and E. Shi. ACM, 2022, pp. 1739–1752. https://doi.org/10.1145/3548606.
3560707. url: https://doi.org/10.1145/3548606.3560707.

48. M. Kohlweiss, A. Lysyanskaya, and A. Nguyen. “Privacy-Preserving Blueprints”.
In: EUROCRYPT 2023, Part II. Ed. by C. Hazay and M. Stam. Vol. 14005. LNCS.
Springer, Heidelberg, Apr. 2023, pp. 594–625. https://doi.org/10.1007/978-3-031-
30617-4_20.

49. M. Kohlweiss and M. Zając. On Simulation-Extractability of Universal zk-SNARKs.
Cryptology ePrint Archive, Report 2021/511. https://eprint.iacr.org/2021/511.
2021.

50. J. Konvalina. “A unified interpretation of the binomial coefficients, the Stirling
numbers, and the Gaussian coefficients”. In: The American Mathematical Monthly
107.10 (2000), pp. 901–910.

51. A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes. Cryptology ePrint Archive, Report 2021/370. https://
eprint.iacr.org/2021/370. 2021.

52. U. M. Maurer. “Unifying Zero-Knowledge Proofs of Knowledge”. In:
AFRICACRYPT 09. Ed. by B. Preneel. Vol. 5580. LNCS. Springer, Heidel-
berg, June 2009, pp. 272–286.

53. V. S. Miller. “The Weil Pairing, and Its Efficient Calculation”. In: Journal of Cryp-
tology 17.4 (Sept. 2004), pp. 235–261. https://doi.org/10.1007/s00145-004-0315-
8.

54. N. Narula, W. Vasquez, and M. Virza. “zkLedger: Privacy-Preserving Auditing for
Distributed Ledgers”. In: 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018. Ed. by S.
Banerjee and S. Seshan. USENIX Association, 2018, pp. 65–80. url: https://www.
usenix.org/conference/nsdi18/presentation/narula.

55. R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. “Maliciously
Circuit-Private FHE”. In: CRYPTO 2014, Part I. Ed. by J. A. Garay and R.
Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014, pp. 536–553. https://
doi.org/10.1007/978-3-662-44371-2_30.

56. T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: CRYPTO’91. Ed. by J. Feigenbaum. Vol. 576. LNCS. Springer,
Heidelberg, Aug. 1992, pp. 129–140. https://doi.org/10.1007/3-540-46766-1_9.

57. P. de Perthuis and D. Pointcheval. “Two-Client Inner-Product Functional Encryp-
tion with an Application to Money-Laundering Detection”. In: ACM CCS 2022.
Ed. by H. Yin, A. Stavrou, C. Cremers, and E. Shi. ACM Press, Nov. 2022, pp.
725–737. https://doi.org/10.1145/3548606.3559374.

58. C. Rackoff and D. R. Simon. “Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack”. In: CRYPTO’91. Ed. by J. Feigenbaum. Vol. 576.
LNCS. Springer, Heidelberg, Aug. 1992, pp. 433–444. https://doi.org/10.1007/3-
540-46766-1_35.

59. A. Scafuro. “Break-glass Encryption”. In: PKC 2019, Part II. Ed. by D. Lin and
K. Sako. Vol. 11443. LNCS. Springer, Heidelberg, Apr. 2019, pp. 34–62. https://
doi.org/10.1007/978-3-030-17259-6_2.

60. C.-P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In:
CRYPTO’89. Ed. by G. Brassard. Vol. 435. LNCS. Springer, Heidelberg, Aug.
1990, pp. 239–252. https://doi.org/10.1007/0-387-34805-0_22.

https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/s00145-004-0315-8
https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3548606.3559374
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/0-387-34805-0_22

Homomorphic Encryption

Faster BGV Bootstrapping
for Power-of-Two Cyclotomics Through

Homomorphic NTT

Shihe Ma1, Tairong Huang2, Anyu Wang2,3,4(B) , and Xiaoyun Wang2,3,4,5,6

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
msh24@mails.tsinghua.edu.cn

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
huangtr@mail.tsinghua.edu.cn, {anyuwang,xiaoyunwang}@tsinghua.edu.cn

3 Zhongguancun Laboratory, Beijing, China
4 National Financial Cryptography Research Center, Beijing, China

5 Shandong Institute of Blockchain, Jinan, Shandong, China
6 Key Laboratory of Cryptologic Technology and Information Security (Ministry of

Education), School of Cyber Science and Technology, Shandong University, Qingdao,
Shandong, China

Abstract. Power-of-two cyclotomics is a popular choice when instan-
tiating the BGV scheme because of its efficiency and compliance with
the FHE standard. However, in power-of-two cyclotomics, the linear
transformations in BGV bootstrapping cannot be decomposed into sub-
transformations for acceleration with existing techniques. Thus, they can
be highly time-consuming when the number of slots is large, degrading
the advantage brought by the SIMD property of the plaintext space. By
exploiting the algebraic structure of power-of-two cyclotomics, this paper
derives explicit decomposition of the linear transformations in BGV
bootstrapping into NTT-like sub-transformations, which are highly effi-
cient to compute homomorphically. Moreover, multiple optimizations are
made to evaluate homomorphic linear transformations, including mod-
ified BSGS algorithms, trade-offs between level and time, and specific
simplifications for thin and general bootstrapping. We implement our
method on HElib. With the number of slots ranging from 4096 to 32768,
we obtain a 2.4x–55.1x improvement in bootstrapping throughput, com-
pared to previous works or the naive approach.

Keywords: Fully Homomorphic Encryption · BGV · Bootstrapping ·
NTT

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 143–175, 2025.
https://doi.org/10.1007/978-981-96-0875-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_5&domain=pdf
http://orcid.org/0000-0002-1086-0288
https://doi.org/10.1007/978-981-96-0875-1_5

144 S. Ma et al.

1 Introduction

Fully homomorphic encryption (FHE) allows anyone to compute over encrypted
data without access to the decryption key or the underlying plaintext. Thus,
FHE is useful in privacy-preserving computing like outsourced computation and
privacy-preserving machine learning [5,28]. Among the various FHE schemes,
when the data to be computed homomorphically are represented as integers,
the common choice of the underlying FHE scheme is BGV [7] or BFV [14].
BGV/BFV offers the single instruction multiple data (SIMD) functionality, in
which a plaintext encodes an array of elements and homomorphic operations are
performed simultaneously on each slot of the array.

The bootstrapping technique first proposed by Gentry [18] plays an impor-
tant role in FHE. By homomorphically decrypting the ciphertext, it refreshes the
noise in the ciphertext before the validity of the ciphertext is corrupted, thus
allowing for an unlimited number of homomorphic operations. The bootstrap-
ping of BGV has been studied extensively in the past years [11,16,17,19,22,30],
leading to significant improvements in its performance.

From an implementation standpoint, power-of-two cyclotomics are frequently
employed to instantiate BGV. A majority of FHE libraries, including SEAL [34],
OpenFHE [4], and lattigo [26], exclusively use power-of-two cyclotomics, which is
also the only cyclotomics recommended in the FHE standard [1]. However, in the
context of power-of-two cyclotomics, the existing techniques [11,17,22] for com-
puting the linear transformations in BGV bootstrapping are highly inefficient
when dealing with a large number of slots.

Let M denote the cyclotomic order and p the prime of the plaintext modu-
lus in the BGV scheme. Halevi and Shoup [22] propose a method for enabling
fast linear transformations in bootstrapping, which requires M to have multiple
distinct prime factors so that the linear transformations can be decomposed into
multiple sub-transformations by leveraging the structure of the powerful basis.
Each sub-transformation has a dimension much smaller than the entire transfor-
mation, making it more computationally efficient. However, this decomposition
is impossible when M is a power of two, as M only has a single prime factor 2
and a trivial powerful basis structure. Furthermore, Halevi and Shoup’s method
requires that Z∗

M/〈p〉 is a cyclic group, which is not the case when M is a power
of two and p ≡ 1 mod 4.

To circumvent the cyclicity constraint on Z
∗
M/〈p〉 when M is a power of two,

Chen and Han [11] design a linear transformation tailored for thin bootstrapping
where each slot stores only an integer. The algorithm is later revised by Geelen
and Vercauteren [17]. However, this method still computes the linear transfor-
mations as a whole, which means it still suffers from long running time when
the number of slots is large.

FHE applications over integers typically seek a large number of slots to
fully exploit the SIMD property [12,32]. Given that the dimension of the linear
transformations is equal to the number of slots, the poor performance of lin-
ear transformations with a large dimension in power-of-two cyclotomics greatly
limits the flexibility of BGV bootstrapping, resulting in diminished compatibil-

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 145

ity with the SIMD feature. This may account for why previous works opt for
parameters supporting at most 128 slots for BGV bootstrapping in power-of-two
cyclotomics [11,33] and why most FHE libraries (except HElib) do not support
BGV/BFV bootstrapping. Therefore, accelerating the linear transformations in
BGV bootstrapping is crucial if we want to exploit both the NTT efficiency of
power-of-two cyclotomics and the SIMD property of BGV.

1.1 Our Techniques and Results

Our basic observation is that the primary component of the linear transfor-
mation in BGV bootstrapping can be interpreted as an NTT, and thus can be
decomposed into linear sub-transformations based on fast-NTT algorithms (such
as the Cooley-Tukey algorithm [13]). This opens up the potential for an accel-
erated linear transformation in BGV bootstrapping by considering the homo-
morphic evaluation of these sub-transformations. Although NTT in plaintext
has been extensively studied and various fast-NTT algorithms are known, the
scope of homomorphic evaluation presents unique challenges. General BGV lin-
ear transformations are typically implemented using a combination of funda-
mental transformations (i.e., one-dimensional linear transformations [20]). The
evaluation complexity of a general linear transformation is determined by its
specific form. Therefore, to achieve an efficient linear transformation in BGV
bootstrapping, it is essential to first ascertain the feasibility of decomposing the
NTT into multiple linear sub-transformations that can be evaluated efficiently.
This paper addresses this problem by proposing a concrete construction for such
a decomposition. Furthermore, we introduce several novel optimizations to both
the decomposition and the evaluation of sub-transformations. Our contributions
can be summarized as follows.

(1) We provide an explicit framework for homomorphic NTT in BGV boot-
strapping by leveraging the algebraic properties of power-of-two cyclotomics.
Specifically, we demonstrate that for any power-of-two M and prime p > 2,
both the NTT and its inverse can be decomposed into one-dimensional lin-
ear sub-transformations. These sub-transformations exhibit different forms
for different p, as p affects the hypercube structure and the number of
non-zero coefficients in each factor of XM/2 + 1. For p ≡ 1 mod 4, these
one-dimensional linear transformations all fall within the MatMul1D type
as defined in [20]. Furthermore, we show that, based on the specific vec-
tor representation of each slot, the matrix for each one-dimensional linear
transformation is tridiagonal, which allows for highly efficient homomor-
phic evaluation. For p ≡ 3 mod 4, we demonstrate that all but the first
one of these one-dimensional linear transformations are of the MatMul1D
type, which can be represented as matrices with six or seven diagonals. For
further optimization, we illustrate how we can ‘fold’ multiple non-zero diag-
onals of the matrices inside a single slot, thereby producing new tridiagonal
matrices that correspond to one-dimensional linear transformations of the
BlockMatMul1D type. This leads to reduced running time in most cases.

146 S. Ma et al.

(2) We propose several further optimizations for the homomorphic evaluation
of linear transformations. Firstly, we show that the level-collapsing method
used in CKKS bootstrapping [10,23] can be adapted to our framework, which
allows for a trade-off between the time and depth consumption of homomor-
phic linear transformations. Secondly, we introduce a modified Baby-Step
Giant-Step (BSGS) technique, which accelerates the homomorphic linear
transformations under certain conditions. Lastly, we demonstrate that our
framework is applicable to both thin and general bootstrapping, each with
different optimizations. For thin bootstrapping, where each slot stores an
integer, we observe that some sub-transformations can either be omitted
or computed on a subfield (or subring) of each slot, thereby reducing the
running time. For general bootstrapping, where each slot stores a Galois
field/ring element, we reorder the final transformation that moves slot coef-
ficients from the power basis to the normal basis, resulting in improved
performance.

(3) We implement our approach for both general and thin bootstrapping
based on HElib with the optimization in [30]. The parameters have slot
numbers ranging from 4096 to 32768. The performance indicator is the
bootstrapping throughput, the ratio between the after-bootstrap capac-
ity and the bootstrapping time. The capacity of a ciphertext is defined
as log2(ciphertext modulus/ bound of ciphertext noise). For thin bootstrap-
ping, we obtain a bootstrapping throughput 2.4x–13.4x that of prior works or
the naive approach. For general bootstrapping, the improvement in through-
put is 15.2x–55.1x.

1.2 Related Works

FFT Based Linear Transformations in CKKS Bootstrapping. In [10,23],
it was shown that the homomorphic linear transformations in CKKS bootstrap-
ping can be decomposed into FFT-like matrices for acceleration. Our idea can
be viewed as an analogue of this approach for BGV bootstrapping. However, the
decomposition of linear transformations in BGV bootstrapping into NTT-like
matrices is significantly more complex than in CKKS. Firstly, as the cyclotomic
polynomial XM/2 + 1 splits in C, the linear transformations evaluated during
CKKS bootstrapping closely resemble the standard FFT. Conversely, in BGV,
XM/2 + 1 can be factorized into binomials or trinomials of degrees greater than
one, which correspond to incomplete Cooley-Tukey NTT or incomplete Bruun-
like NTT [8]. Secondly, each slot in a CKKS ciphertext stores a scalar value in C,
while a slot in BGV may store an element in a Galois field or Galois ring, which
can be interpreted as a vector of integers modulo the plaintext modulus. Conse-
quently, the linear transformations are purely inter-slot in CKKS bootstrapping,
while they are both inter-slot and intra-slot in BGV bootstrapping. This fact
complicates the form of the linear transformations and provides multiple design
possibilities. Thirdly, the slots in CKKS always form a one-dimensional vector,
while slots in BGV can form a hypercube with multiple dimensions. This fur-
ther complicates the linear transformations in BGV compared to those in CKKS.

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 147

Finally, when the plaintext modulus of BGV is a prime power pr and each slot
stores an element in a Galois ring, it remains unexplored whether the factoriza-
tion of XM/2 +1 modulo pr still enables efficient homomorphic NTT. Although
NTT in arbitrary algebras has been investigated by Cantor and Kaltofen, it is
realized through root adjoining [9], which is infeasible in the FHE setting.

Optimized Digit Removal for Large Plaintext Prime. In BGV bootstrap-
ping, the digit removal procedure is also a computationally expensive component.
This is particularly true when facilitating SIMD for power-of-two cyclotomics,
where the plaintext prime p scales with the number of slots. For instance, to
achieve 2A slots, p should be at least 2A+1+1 if p ≡ 1 mod 4, or at least 2A+1−1
if p ≡ 3 mod 4 [31]. As a result, it is necessary to leverage the technique intro-
duced in [30] to expedite the digit removal procedure in BGV bootstrapping
with a large p. However, in [30], the powerful basis decomposition method of
HElib [22] is employed to compute linear transformations, implying that the
linear transformations will dominate the running time of BGV bootstrapping
when the slot number is large. Therefore, our approach to accelerate the linear
transformations contributes to completing the final piece for efficient BGV boot-
strapping for highly-SIMD integer arithmetic in power-of-two cylotomics (e.g.,
p = 65537 with 215 slots for M = 216 cyclotomics).

1.3 Concurrent Works

Since there is an easy and efficient conversion between BGV and BFV cipher-
texts [3], advances in BGV bootstrapping directly apply to BFV bootstrapping,
and vice versa. Thus, a comparison between concurrent works on BGV/BFV
bootstrapping and this work is necessary.

Comparison with Functional BFV Bootstrapping. Both the works by Lee
et al. [27] and by Liu and Wang [29] focus on performing functional bootstrap-
ping on BFV ciphertext. The former work achieves functional bootstrapping
by decomposing a lookup table as the sum of step functions and computing
each step function separately. The latter work achieves functional bootstrapping
through Lagrange interpolation. It requires that only a small subset of the plain-
text space is used, and exploits such sparsity of plaintext for better efficiency.
In contrast, our work focuses on general (non-functional) BGV bootstrapping
without imposing any constraints on the plaintext. Since these works have dif-
ferent purposes and constraints from our work, we do not conduct experimental
comparisons between them.

Comparison with CKKS-Based BFV Bootstrapping. Kim et al. propose
to bootstrap BFV ciphertexts using CKKS bootstrapping [25]. Their method
has two main advantages. First, a CKKS plaintext always has M/4 slots, which
can be larger than that of a BGV/BFV ciphertext if each slot has an extension

148 S. Ma et al.

degree greater than two. This means fewer digit-removal-like operations during
bootstrapping and better efficiency. Second, their bootstrapping time and usable
levels after bootstrapping are independent of the size or number-theoretic prop-
erties of the BGV/BFV plaintext modulus.

The major drawback of their method is that the bootstrapping time is pro-
portional to the ‘denoising factor’, which is the capacity gained through boot-
strapping. In contrast, the running time of our method is only determined by
the number-theoretic properties (not the size) of the plaintext modulus. More-
over, in traditional BGV/BFV bootstrapping (including ours), a decrease in
the plaintext modulus results in an increase in the denoising factor. Therefore,
when comparing the two methods, a decrease in the plaintext modulus implies
a larger denoising factor for our method, leading to a longer running time for
their method to achieve the same denoising factor.

This is demonstrated by our experiments under plaintext moduli of vari-
ous sizes. We observe that: their method performs best for very large plain-
text modulus, while our method is faster for medium-sized plaintext modu-
lus (e.g., <54bits). We believe these medium-sized moduli are adequate for
most BGV/BFV applications. Specifically, our experiments adopt the same ring
dimension and security level as Table 4 and 5 in their paper, with a plaintext
modulus ranging from 22 bits to 54 bits. The results confirm that our method
has a bootstrapping throughput 6.00 times (1.32 times) that of theirs under a
plaintext modulus of 22 bits (54 bits). The benchmarking results are available
in Supplementary Materials A in the full version of this paper.

1.4 Comparison with Another NTT-Based BGV/BFV
Bootstrapping

A recent parallel work by Geelen [15] also accelerates the linear transforma-
tions in BGV/BFV bootstrapping in power-of-two cyclotomics by decomposing
them into NTT-like matrices. Their and our methods have some slight technical
differences, and thus are suitable for different scenarios.

For p ≡ 1 mod 4, as the only difference between the two methods, the last
2D transformation in CoeffToSlot is a MatMul in our method while it is a Block-
MatMul in their method, meaning our method is faster.

For p ≡ 3 mod 4, their method is faster than our Radix-2 method since their
middle matrices are MatMul1D while ours are BlockMatMul1D. Compared with
our Bruun method, matrices in their method also have fewer nonzero diagonals,
but their final matrix is a BlockMatMul1D while it is a MatMul1D in our Bruun
method. Thus, in the case of p ≡ 3 mod 4, it can be difficult to predict if their
method or our Bruun method is faster.

2 Preliminary

2.1 Notations

– Let ΦM (X) represent the M -th cyclotomic polynomial, and let Rq be the
quotient ring Zq[X]/(ΦM (X)), where q ≥ 2 is an integer. The Euler function

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 149

is denoted by ϕ(·), and thus deg(ΦM) = ϕ(M). This paper primarily focuses
on the case where M is a power of two, i.e., ΦM (X) = XM/2 + 1.

– Let G be a finite group. The order of any g ∈ G is denoted by ordG(g), and
the subgroup generated by g1, . . . , gl ∈ G is represented as 〈g1, . . . , gl〉.

– For positive integers a and b, we denote the set {0, 1, . . . , a−1} as [a] and the
remainder of a modulo b as [a]b ∈ [b]. For a set S and an integer a, we denote
a × S for {a · s | s ∈ S}, a + S for {a + s | s ∈ S} and [S]a for {[s]a | s ∈ S}.
We use [a, b] to denote the integer interval [a, b]

⋂
Z for simplicity.

– Let a =
∑k−1

i=0 ai2i be the bit decomposition of a k-bit nonnegative integer
a, we define BitRevk,t(a) = [a]2t +

∑k−1
i=t ak−1−i+t2i for 0 ≤ t ≤ k, and

BitRev′
k,t(a) = [a]2t+ak−12k−1+

∑k−2
i=t ak−2−i+t2i for t ∈ [k]. In other words,

BitRevk,t reverses all but the lowest t bits in a, while BitRev′
k,t preserves the

highest bit and the lowest t bits in a, reversing all other bits.
– Given an array of size 2k with elements ai, i ∈ [2k], we define BRk,t(ai) =

aBitRevk,t(i) and BR′
k,t(ai) = aBitRev′

k,t(i)
. Both BRk,t and BR′

k,t are order-two
permutations on the array.

– All vectors are assumed to be column vectors, and all linear transformations
correspond to left-multiplying a column vector by a matrix. For a vector v
of length n, its i-th entry is denoted as v[i] for i ∈ [n], and the notation
v[i +: Δ] stands for the Δ-sized subvector (v[i],v[i + 1], . . . ,v[i + Δ − 1]).
For a polynomial m(x) =

∑n−1
i=0 mix

i, the notation m[i +: Δ] stands for the
coefficient vector (mi,mi+1, . . . ,mi+Δ−1).

– For an n × n matrix N, the entry at the i-th row and j-th column is denoted
by N[i, j], with i, j ∈ [n]. The i-th diagonal of N is the vector whose j-th entry
is N[j, [i+ j]n]. Note that the i-th and j-th diagonals coincide if i ≡ j mod n.
Let In be the identity matrix of size n.

– The power (standard) basis of Rq consists of Xi for i ∈ [ϕ(M)]. Let M =
M1M2 . . . Mk be the factorization of M into prime powers. The powerful basis
of Rq consists of

∏k
i=1 Xei

i , where Xi = XM/Mi and ei ∈ [ϕ(Mi)]. We note
that the powerful basis is identical to the standard basis when M is a power
of 2.

2.2 Galois Fields and Rings

Let p be a prime number. The Galois field with characteristic p and cardinality pd

is denoted by GF(pd), and the Galois ring with characteristic pr and cardinality
prd is denoted by GR(pr; d). In the special case where r = 1, it has GR(p; d) =
GF(pd). We introduce some conclusions about Galois rings that will be used in
subsequent proofs. Refer to [35] for the details of the following conclusions.

Hensel’s Lemma. Let f be a monic polynomial in Zpr [X], and denote f̄ =
f mod p ∈ Zp[X]. Assume that f̄ = g1g2 . . . gn, where g1, g2, . . . , gn ∈ Zp[X]
are pairwise coprime monic polynomials. Then Hensel’s lemma guarantees that
there exist pairwise coprime monic polynomials f1, f2, . . . , fn ∈ Zpr [x] such that
f = f1f2 . . . fn and f̄i = gi for 1 ≤ i ≤ n.

150 S. Ma et al.

Hensel’s Lemma can be generalized to extension rings. Let f be a monic
polynomial in GR(pr; d)[X], and denote f̄ = f mod p ∈ GF(pd)[X]. Assume
that f̄ = g1g2 . . . gn ∈ GF(pd)[X], where g1, g2, . . . , gn ∈ GF(pd)[X] be pairwise
coprime monic polynomials. Then there exist pairwise coprime monic polyno-
mials f1, f2, . . . , fn ∈ GR(pr; d)[X] such that f = f1f2 . . . fn and f̄i = gi for
1 ≤ i ≤ n.

The Group of Units. Assume p is an odd prime number. Let R = GR(pr; d)
and let R∗ denote the group of multiplicative units in R. Then it has R∗ =
G1 × G2, where G1 is a cyclic group of order pd − 1 and G2 is a direct product
of d cyclic groups each of order pr−1.

Primitive Element. There exists a nonzero element γ ∈ GR(pr;ml) such that

a) γ has multiplicative order pml − 1;
b) γ is a root of a basic primitive polynomial1 h(X) of degree l over GR(pr;m),

where h(X) divides Xpml−1 − 1 over GR(pr;m);
c) GR(pr;ml) = GR(pr;m)[γ] = {a0 + a1γ + . . . + al−1γ

l−1 : ai ∈ GR(pr;m)}.

Frobenius Automorphism. Let R = GR(pr;m) and R′ = GR(pr;ml) = R[γ],
where γ ∈ R′ is a primitive element. Define a map π : R′ → R′ by

π(a0 + a1γ + . . . + al−1γ
l−1) = a0 + a1γ

pm

+ . . . + al−1γ
(l−1)pm

for all a0, a1, . . . , al−1 ∈ R. Then π is an automorphism of R′ leaving R fixed
elementwise. Moreover, for α ∈ R′, π(α) = α if and only if α ∈ R.

Throughout the remainder of this paper, the symbol E will always denote
the Galois ring GR(pr; d). If GF(pd) is represented as Zp[X]/f(X) for some
irreducible polynomial f(X), its power basis is defined as Xi for i ∈ [d]. The
power basis of a Galois ring is defined similarly. The normal basis of GF(pd) is
{βpi | i ∈ [d]} for some β ∈ GF(pd) where {βpi | i ∈ [d]} is Fp-linear indepen-
dent. The notion of normal basis can also be generalized to Galois rings using
the Frobenius automorphism.

2.3 BGV Plaintext Space

The BGV plaintext space is Rpr = Zpr [X]/(ΦM (X)), where p is a prime num-
ber, M is coprime to p, and r is a positive integer (known as the Hensel lift-
ing parameter). Let d = ordZ

∗
M
(p). It is known that ΦM (X) factorizes into

L = ϕ(M)/d irreducible and pairewise coprime monic polynomials of degree
d over Zpr , i.e., ΦM (X) =

∏L−1
i=0 Fi(X). The Chinese Reminder Theorem pro-

vides an isomorphism between Rpr and
∏

0≤i<L Zpr [X]/(Fi(X)). Specifically, let

1 A non-constant monic polynomial h(X) over GR(pr;m) is a monic basic primitive
polynomial if h̄(X) is a primitive polynomial over GF(pm).

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 151

η = X mod F0(X) and let S ⊆ Z
∗
M be a set of representatives of Z∗

M/〈p〉, then
for any m(X) ∈ Rpr the isomorphism can be explicitly expressed as

Decode(m(X)) = (m(ηs0), . . . , m(ηsL−1))si∈S .

Note that Zpr [X]/(Fi(X)) ∼= GR(pr; d). By denoting E = GR(pr; d), Decode
eventually induces an isomorphism between Rpr and EL, and the L coordinates
of EL are referred to as slots in the plaintext.

In the context of rotation operations in BGV, S is typically expressed as the
products of several generators, i.e., S = {∏n

i=1 gei
i | ei ∈ [Li]}, where Li is the

order of gi in Z
∗
M/〈p, g1, · · · , gi−1〉. By assigning the index (e1, . . . , en) to the

slot
∏n

i=1 gei
i , the L slots can be organized into an n-dimensional hypercube. A

hypercolumn along the s-th dimension is composed of Ls slots, where ej remains
constant for j �= s and es varies from 0 to Ls − 1. It is evident that there are
L/Ls hypercolumns in the s-th dimension.

A dimension s is referred to as a good dimension if ordZ
∗
M
(gs) = Ls, other-

wise, it is termed a bad dimension. It is known that we can rotate all the L/Ls

hypercolumns along the s-th dimension simultaneously with one Galois auto-
morphism in a good dimension, or two in a bad dimension. Specifically, let ρs be
the rotation-up-by-one-slot operation along the s-th dimension that moves the
slot at index (e1, . . . , en) to (e1, . . . , es−1, [es − 1]Ls

, es+1, . . . , en). Let θs be the
Galois automorphism that sends m(X) to m(Xgs). If this dimension is good, it
has ρs = θs. Otherwise, for i ∈ [Ls], it has ρi

s(m) = θi
s(m)·μs(i)+θi−Ls

s (m)·μs(i)′

for some constants μs(i) and μs(i)′ [20,21]. This rotation operation plays a piv-
otal role in executing homomorphic linear transformations on the slots.

2.4 Homomorphic Linear Transformations

Let T be a linear transformation from EL to EL. We say that T is a one-
dimensional linear transformation along the s-th dimension if the value in any
slot of T(α) only depends on the slots of the same hypercolumn along the s-
th dimension of α. One-dimensional linear transformations have been studied
extensively due to their role as fundamental building blocks of arbitrary linear
transformations on slots [20].

The one-dimensional transformations fall into two categories. The first type,
called MatMul1D in HElib, is the one-dimensional E-linear transformation. A
MatMul1D transformation T along the s-th dimension can be expressed as

T(m) =
∑

i∈[Ls]

κ(i)ρi
s(m), for m ∈ Rpr , (1)

where κ(i) ∈ Rpr are constants determined by T. When considering the restric-
tion of T on a hypercolumn k along the s-th dimension, it can be represented
as a matrix Tk ∈ ELs×Ls . Decode(κ(i)) is composed of the i-th diagonals of all
Tk’s.

152 S. Ma et al.

The other type, called BlockMatMul1D, is the one-dimensional Zpr -linear
transformation. Specifically, a BlockMatMul1D transformation T′ along the s-th
dimension can be expressed as

T′(m) =
∑

j∈[d]

∑

i∈[Ls]

κ(i, j)σj(ρi
s(m)), for m ∈ Rpr , (2)

where κ(i, j) ∈ Rpr are constants determined by T′, and σ is the Frobenius
automorphism. When considering the restriction of T′ on a hypercolumn k along
the s-th dimension, it can be represented as an Ls×Ls matrix T′

k such that each
of its entries is a Zpr -linear transformation on E . Such an entry can be represented
as either a matrix in Z

d×d
pr or a linearized polynomial f(v) =

∑
j∈[d] ajσ

j(v),
where aj ∈ E . Again, Decode(κ(i, j)) is composed of the j-th coefficients of the
i-th diagonals in all T′

k’s (in the linearized polynomial form).
For a MatMul1D or BlockMatMul1D type one-dimensional linear transforma-

tion T along the s-th dimension, define DiagSets(T) ⊆ [Ls] as the union of the sets
of the indices of nonzero diagonals in Tk for k ∈ [L/Ls], where Tk is the restric-
tion of T on a hypercolumn k. Since κ(i) in Eq. 1 and κ(i, j) in Eq. 2 are composed
of the i-th diagonals in all Tk, we can replace ‘i ∈ [Ls]’ with ‘i ∈ DiagSets(T)’
by omitting the zero diagonals. Moreover, for two one-dimensional linear trans-
formations T and T′ on the s-th dimension, their composition satisfies

DiagSets(T
′ ◦ T)⊆{[a + b]Ls

| a ∈ DiagSets(T), b ∈ DiagSets(T
′)}

due to Eq. 1 and Eq. 2.

Hoisting. When computing multiple automorphisms on the same ciphertext,
the hoisting technique could be used to significantly speed up the computa-
tion [11,20]. In an ordinary automorphism, the decomposition of the cipher-
text before re-linearization is the most expensive part because it requires NTTs.
When hoisting is applied, the ciphertext is decomposed and moved into the NTT
domain in the first step. Then, we can perform multiple automorphisms on this
ciphertext without further decomposition or NTTs.

2.5 BGV Bootstrapping

BGV bootstrapping is categorized into two types, general bootstrapping [19,22]
and thin bootstrapping [11]. The general bootstrapping consists of four steps:
(1) decryption formula simplification; (2) CoeffToSlot transformation; (3) digit
removal; (4) SlotToCoeff. Given m ∈ Rpr , the CoeffToSlot moves the powerful
basis coefficients of m into the slots, where each slot is identified as a d-dimension
vector space w.r.t. the normal basis of E . In contrast, the SlotToCoeff is almost
the inverse of CoeffToSlot, moving the coefficients in slots (w.r.t. the power basis
of E) into the powerful basis in Rpr . We omit the descriptions of (1) and (3)
because they are not the focus of this work. We can consider a simplified version
of CoeffToSlot that homomorphically computes the encoding map Encode(·) =

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 153

Decode−1(·), which is the most complicated part of CoeffToSlot and only needs
to be composed with lightweight transformations to be converted to the actual
CoeffToSlot. SlotToCoeff is also simplified as the decoding map Decode(·).

If each slot stores only an integer instead of a Galois ring/field element, the
bootstrapping is called a thin bootstrapping. In thin bootstrapping, the steps
come in a different order, namely (4)(1)(2)(3). The input ciphertext to SlotTo-
Coeff now encrypts a plaintext whose slots store integers instead of Galois ring
elements, which reduces the cost of SlotToCoeff. Since step (1) adds undesired
coefficients into the plaintext polynomial, an extra linear map is needed to clear
these extra coefficients. This map can be performed after CoeffToSlot in general
cyclotomics [22] or before CoeffToSlot in power-of-two cyclotomics [11].

2.6 Number Theoretic Transform (NTT)

In this paper, we focus on the NTT mapping which maps m ∈ Rpr to
(m mod F0(X), . . . , m mod FL−1(X)) ∈ ∏

i∈[L] Zpr [X]/Fi(X), where Fi(X)’s
are the irreducible factors of ΦM (X) defined in Sect. 2.3. The inverse NTT
(iNTT) is defined as the inverse of this map. There has been plenty of research
about the NTT/iNTT on the plaintext [24], and various fast NTT algorithms
have been proposed, such as Cooley-Tukey [13] and Bruun [8]. These algorithms
typically decompose NTT/iNTT into multiple layers to speed up the computa-
tion. We do not delve into their details here, as we will present explicit decom-
positions of NTT/iNTT within the framework of BGV linear transformations.

3 The Decomposition of Linear Transformations

As discussed previously, this section focuses on the decomposition of Decode and
Encode. Let ΦM (X) =

∏L−1
i=0 Fi(X), where Fi(X) is the minimal polynomial of

ηsi and {si}i∈[L] ⊆ Z
∗
M is a set of representatives of Z∗

M/〈p〉. Then Decode can
be decomposed into two sub-maps Red and Eval, i.e., Decode = Eval ◦ Red,
where Red is an NTT map from Rpr to

∏
i∈[L] Zpr [X]/Fi(X) such that

Red(m) = (m mod F0,m mod F1, . . . ,m mod FL−1), for m ∈ Rpr ,

and Eval is a map from
∏

i∈[L] Zpr [X]/Fi(X) to EL such that

Eval(m0(X), . . . , mL−1(X)) = (m0(ηs0), . . . ,mL−1(ηsL−1)).

Both Red and Eval are Zpr -linear transformations, and they can be represented
as matrices in (Zd×d

pr)L×L by identifying the input and output as vectors in (Zd
pr)L

via coefficient embedding. Specifically, for m(X) ∈ Rpr , the i-th entry is the
vector m[id +: d] for i ∈ [L]. For (mi(X))i∈[L] ∈ ∏

i∈[L] Zpr [X]/Fi(X), the i-th
entry is the coefficient vector of mi(X). For EL, the i-th entry is the coefficient
vector of the i-th slot with respect to the power basis of E = Zpr [X]/F0(X).
When we represent a homomorphic linear transformation as a matrix, each of
its entries is an element in Z

d×d
pr .

154 S. Ma et al.

Clearly Eval is a BlockMatMul1D type one-dimensional linear transformation
such that its main diagonal is the only nonzero diagonal (in terms of an L × L
block matrix). Thus Eval and Eval−1 can be computed by evaluating a linearized
polynomial in Eq. 2 with i = 0. In the remainder of this section, we focus on the
decomposition of Red (and Red−1) into linear sub-transformations for power-of-
two cyclotomics.

In the case when M is a power of two, it is known that Z
∗
M = 〈−1, 5〉 ∼=

Z2 × ZM/4. If p ≡ 1 mod 4, Z∗
M/〈p〉 = 〈−1, 5〉 ∼= Z2 × ZM/(4d), implying a 2-

by-M
4d sized hypercube generated by g1 = −1, g2 = 5. The slots are indexed

into a 1D array by concatenating the second D-sized hypercolumn to the end
of the first one. If p ≡ 3 mod 4, Z∗

M/〈p〉 = 〈5〉 ∼= ZM/(2d). The hypercube has
a single generator g1 = 5 and collapses into a single dimension of size M

2d . We
call the dimension generated by 5 (in both cases of p) the major dimension and
denote its size as D, i.e., D = L/2 = M/(4d) for p = 1 mod 4 and D = L =
M/(2d) for p ≡ 3 mod 4. We call the dimension generated by −1 (in case of
p ≡ 1 mod 4) the minor dimension, which has a size of 2. We omit the subscript
s in ρs, θs, μs, μ

′
s,DiagSets when they are related to the one-dimensional linear

transformations on the major dimension. The main result of this section can be
summarized as follows.

Theorem 1. (1) If p ≡ 1 mod 4, we have the decomposition

Red−1 = BR′
log2(2dD),log2(d)

◦ Red−1
BR and

Red−1
BR = Nlog2(D)+1 ◦ . . . ◦ N1,

where BR′ is interpreted as a permutation on (Zd
pr)2D in the natural manner. For

j ∈ [1, log2(D)], both Nj and N−1
j are MatMul1D transformations on the major

dimension with nonzero diagonals indexed by 2−jD × {−1, 0, 1}. Nlog2(D)+1 and
its inverse are MatMul1D transformations on the minor dimension.

(2) If p ≡ 3 mod 4, we have the Bruun-style decomposition

Red−1 = BRlog2(dD),log2(d)
◦ Red−1

BR and

Red−1
BR = Nlog2(D) ◦ . . . ◦ N1,

where N1 and N−1
1 are BlockMatMul1D transformations with nonzero diagonals

indexed by D/2×{−1, 0, 1}. For j ∈ [2, log2(D)], Nj is a MatMul1D transforma-
tion with nonzero diagonals indexed by 2−jD × [−3, 3], and N−1

j is a MatMul1D
transformation with nonzero diagonals indexed by 2−jD × [−3, 2]. Alternatively,
Red−1 can also be decomposed in Radix-2 style into

Red−1 = BRlog2(dD),log2(d)−1 ◦ Red′−1
BR and

Red′−1
BR = N′

log2(D) ◦ . . . ◦ N′
1,

where both N′
j and N′−1

j are BlockMatMul1D transformations with nonzero diag-
onals indexed by 2−jD × {−1, 0, 1} for j ∈ [1, log2(D)].

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 155

Recall that for a one-dimensional linear transformation N along the s-th
dimension, the number of rotations required to evaluate it equals |DiagSet(N)|.
According to Theorem 1, both |DiagSet(Nj)| and |DiagSet(N−1

j)| are small (usu-
ally two to three) because they have only a few diagonals. Therefore, the compu-
tation time for the linear transformations in bootstrapping can be significantly
reduced by utilizing the decomposition presented in Theorem 1. In the subse-
quent discussion, we provide the derivation of Theorem 1 for two cases of p.
Moreover, in Sect. 3.1 and Sect. 3.2 we make the assumption that r = 1 in the
plaintext modulus, implying that each slot corresponds to the Galois field GF(pd).
The general case where r > 1 (corresponding to the Galois ring case) will be
addressed in Sect. 3.3.

3.1 The Case of p ≡ 1 mod 4

The set of representatives {si}i∈[L] is chosen to be se1D+e2 = (−1)e15e2 for
e1 ∈ [2], e2 ∈ [D]. We note that the minor dimension is always good, while the
major dimension is good whenever p ≡ 1 mod M . By [31], it has ΦM (X) =∏

i∈Z
∗
4D

(Xd − ζi) over Zp, where ζ ∈ Zp is a primitive 4D-th root of unity and
each factor is irreducible over Zp. Without loss of generality, we can assume that
F0(X) = Xd − ζ, which leads to Fi(X) = Xd − ζsi for i ∈ [L]. To begin with,
we prove the following lemma.

Lemma 1. Let F
(0)
i = Fi(X) for i ∈ [L], and F

(j)
i = F

(j−1)
i F

(j−1)
i+2−jD for 1 ≤

j ≤ log2(D) and i ∈ [0, 2−jD) ∪ [D,D + 2−jD), then it has

F
(j)
i = Xd·2j − ζsi·2j , for j ∈ [0, log2(D)], i ∈ [0, 2−jD) ∪ [D,D + 2−jD).

Proof. Clearly, the statement is true for j = 0. Now let 1 ≤ j ≤ log2(D) and
suppose the statement holds for j −1 and i ∈ [0, 2−(j−1)D)∪ [D,D+2−(j−1)D).
By the definition of F

(j)
i it has

F
(j)
i = F

(j−1)
i F

(j−1)
i+2−jD = (Xd·2j−1 − ζsi·2j−1

)(Xd·2j−1 − ζsi+2−jD·2j−1
)

for i ∈ [0, 2−jD) ∪ [D,D + 2−jD). Denote i = e1D + e2 for 0 ≤ e1 ≤ 1 and
0 ≤ e2 < 2−jD, then si = (−1)e15e2 and si+2−jD = (−1)e15e2+2−jD. Since ζ is
a primitive 4D-th root of unity and 52

−jD · 2j−1 ≡ 2D + 2j−1 mod 4D, we have
ζsi+2−jD·2j−1

= −ζsi·2j−1
. Then it follows directly that F

(j)
i = Xd·2j − ζsi·2j . ��

In addition, we denote F
(log2(D)+1)
0 =

∏
i∈[2D] F

(0)
i = ΦM (X).

The Definition of Nj . Suppose m ∈ Rpr , then Nj can be roughly viewed as
the linear transformation that maps (m mod F

(j−1)
i)i∈Ij−1 to (m mod F

(j)
i)i∈Ij ,

where Ij is the range of i defined in Lemma 1. For the specific definition of Nj ,
we need to handle the bit-reversal phenomenon to design matrices that can be
homomorphic evaluated efficiently. In our case, the bit-reversal primarily arises
due to the slots occupied by the two factors that combine into F

(j)
i are in an

156 S. Ma et al.

interleaving order. As an example, we illustrate the bit-reversal phenomenon in
the computation of m mod F

(2)
i from m mod F

(1)
i and m mod F

(1)
i+D/4 in Fig. 1.

Taking this into consideration, we first define vectors αj ∈ (Zd
pr)L for 0 ≤ j ≤

log2(D) + 1 as follows. The vector α0 corresponds to α = Red(m) ∈ EL. For
1 ≤ j ≤ log2(D), we define αj such that

αj [i + k · 2−jD] = (m mod F
(j)
i)[BitRevj,0(k) · d +: d]

for i ∈ [0, 2−jD) ∪ [D,D + 2−jD), k ∈ [2j]. For j = log2(D) + 1, we define

αlog2(D)+1[k] = m[BitRev′
log2(D)+1,0(k) · d +: d]

for k ∈ [2D].

Fig. 1. An example of the butterfly structures in Red−1
BR that leads to bit-reversal. ai,bi

and cij are degree d − 1 polynomials in Zp[X].

For 1 ≤ j ≤ log2(D)+1, we define Nj as the linear transformation that maps
αj−1 to αj , where the coefficients of m are regarded as independent variables.
Denote Red−1

BR = Nlog2(D)+1 ◦ . . . ◦ N1, then it can be readily checked that

BR′
log2(2dD),log2(d)

(Red−1
BR(α))) = m.

Notably, the output of Red−1
BR(α) is a permutated version of m’s coefficients,

which is a common phenomenon in fast NTT algorithms. As in [10,23], we will
not reorder the slots into their ordinary order by computing the inverse per-
mutation homomorphically. Instead, we directly pass the output of RedBR and
Red−1

BR to the next stage of bootstrapping. This will not affect the correctness
of bootstrapping, similar to the observations in previous works on CKKS boot-
strapping. This is because: (1) the digit removal step is performed in a SIMD
manner and is insensitive to the order of the values in the slots; (2) the coeffi-
cients in each slot remain as a whole group during the permutation, which makes
it possible to repack the output ciphertexts of digit removal.

Let Nj ∈ (Zd×d
pr)L×L denote the matrix corresponding to Nj . In Lemma 2,

we discuss the structure of the Njs. The proof can be found in Supplementary
Materials B in the full version of this paper. An example illustrating the Nj ’s
for D = 4 is provided in Fig. 2 for a better understanding.

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 157

Fig. 2. An illustration of Red−1
BR for D = 4 and p ≡ 1 mod 4. A ‘∗’ in matrices stands

for a nonzero entry that is a multiple of Id, while a ‘∗’ in the vectors means log2(d) bits
ranging from all zeros to all ones. Each slot stores part of the coefficients of m mod
F

(j)
i . The (binary format of) indices of the coefficients are displayed along with the

corresponding F
(j)
i . E.g., ‘01∗, F

(2)
0 ’ means that this slot stores (m mod F

(2)
0)[d +: d].

Lemma 2. (1) For j ∈ [1, log2(D)], Nj can be viewed as a 2j ×2j diagonal block
matrix. Each block has a size of 2−j+1D × 2−j+1D, which has three non-zero
diagonals indexed by 2−jD × {−1, 0, 1}.

(2) When viewed as an L × L block matrix, Nlog2(D)+1 has three non-zero
diagonals indexed by D × {−1, 0, 1}.

For j ∈ [1, log2(D) + 1], all non-zero entries of Nj in Z
d×d
pr are multiples of

Id. All the above properties also hold for N−1
j .

Proof of (1) in Theorem 1. According to Lemma 2, for j ∈ [1, log2(D)], Nj

and N−1
j can be viewed as

[
A0 0
0 A1

]

,

where A0 and A1 are D × D matrices, and At is a linear transformation on the
t-th hypercolumn of the major dimension for 0 ≤ t ≤ 1. Thus Nj and N−1

j are
linear transformations on the major dimension.

For Nlog2(D)+1 and its inverse, the t-th hypercolumn of the minor dimension
consists of the t-th and (t + D)-th slot, where t ∈ [D]. The 2 × 2 submatrix

[
Nlog2(D)+1[t, t] Nlog2(D)+1[t, t + D]

Nlog2(D)+1[t, t + D] Nlog2(D)+1[t + D, t + D]

]

is a linear transformation on the t-th hypercolumn of the minor dimension.
Thus both Nlog2(D)+1 and its inverse are linear transformations on the minor
dimension.

158 S. Ma et al.

For j ∈ [1, log2(D)+1], Nj is a MatMul1D transformation because each entry
of Nj is a multiple of Id. The indices of nonzero diagonals in Nj and N−1

j follow
directly from Lemma 2.

3.2 The Case of p ≡ 3 mod 4

In this case, we have se1 = 5e1 for e1 ∈ [D], and the only dimension in the hyper-
cube is good only if D = M

4 . According to [31], φM (X) factors into trinomials
for d ≥ 2, i.e.,

ΦM (X) =
∏

i∈Z
∗
4D/〈p〉

(Xd − (ζi + ζip)Xd/2 + ζi(p+1)),

where ζ ∈ GF(p2) is a primitive 4D-th root of unity, and each factor is an
irreducible polynomial in Zp[X]. Without loss of generality, we can assume that
F0(X) = Xd−(ζ+ζp)Xd/2+ζp+1, which leads to Fi(X) = Xd−(ζsi+ζsip)Xd/2+
ζsi(p+1) for i ∈ [D]. Similarly, we have the following lemma.

Lemma 3. Let F
(0)
i = Fi for i ∈ [D], and F

(j)
i = F

(j−1)
i F

(j−1)
i+2−jD for 1 ≤ j ≤

log2(D), i ∈ [2−jD]. Then it has

F
(j)
i = X2jd − (ζ2

j ·si + ζ2
j ·sip)X2j−1d + ζ2

j ·si(p+1),

for 0 ≤ j ≤ log2(D) and i ∈ [2−jD]. Moreover, the middle term is nonzero
except for j = log2(D).

Proof. The proof of the expression of F
(j)
i is similar to Lemma 1.

For the middle term, ζ2
j ·si + ζ2

j ·sip = 0 ⇐⇒ ζ2
j ·si(p−1) = −1 ⇐⇒

2j · 5i(p − 1) ≡ 2D mod 4D. The remaining is easy to verify. ��

The Definition of Nj . Suppose m ∈ Rpr , we first define vectors αj ∈ (Zd
pr)L

for 0 ≤ j ≤ log2(D) as follows. The vector α0 corresponds to α = Red(m) ∈ EL.
For 1 ≤ j ≤ log2(D), we define αj such that

αj [i + k · 2−jD] = (m mod F
(j)
i)[BitRevj,0(k) · d +: d]

for i ∈ [2−jD], k ∈ [2j].
For 1 ≤ j ≤ log2(D), we define Nj as the linear transformation that maps

αj−1 to αj . Denote Red−1
BR = Nlog2(D) ◦ . . . ◦ N1, then it can be checked that

BRlog2(2dD),log2(d)
(Red−1

BR(α))) = m.

In contrast to the case of p ≡ 1 mod 4, the fact the F
(j)
i s are trinomials com-

plicates the butterfly structure, turning its outputs from linear combinations of
two terms into linear combinations of four terms. For example, given two poly-
nomials f0(X) = X2k + sXk + t and f1(X) = X2k − sXk + t of degree 2k,

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 159

let l + hXk ∈ Zp[X]/f0(X) and l′ + h′XK ∈ Zp[X]/f1(X), where s, t ∈ Zp

and l, h, l′, h′ ∈ Zp[X] with degrees less than k. Denote the polynomial recon-
structed from l + hXk and l′ + h′Xk as a00 + a01X

k + a10X
2k + a11X

3k ∈
Zp[X]/(f1(X)f2(X)), where a00, . . . , a11 are polynomials with degree less than
k. Then we have the following Bruun butterfly structure, where ‘∗’ represents a
non-zero entry in Zp.

⎡

⎢
⎢
⎣

a00

a01

a10

a11

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

l
h
l′

h′

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

l
h
l′

h′

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

a00

a01

a10

a11

⎤

⎥
⎥
⎦ . (3)

In the first layer of Red−1
BR, the i-th Bruun butterfly has two input slots α0[i]

and α0[i + D/2], where the former stores l and h while the latter stores l′ and
h′. The output of this butterfly is stored in α1[i] and α1[i + D/2].

The natural approach is to store the lower coefficients a00 and a01 in α1[i],
while the higher ones a10 and a11 are stored in α1[i+D], i.e., in a non-bit-reversed
order. In this case, for j ≥ 2, the four inputs to each Bruun butterfly in Nj lie
in four distinct slots, which means each entry in αj are Zp-linear combinations
of entries in αj−1 and each entry of Nj is a multiple of Id. We call this way of
constructing Nj as the Bruun style. An example of Nj ’s for D = 8 is given in
Fig. 3 for better illustration, while the formal statements about the structure of
Nj are given in Lemma 4 and proved in Supplementary Material B in the full
version of this paper.

Fig. 3. An illustration of Red−1
BR in Bruun-style for D = 8 and p ≡ 3 mod 4. A ‘#’ in

matrices stands for a nonzero entry with the form of
[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for ai ∈ Zp. Other

symbols have the same meaning as in Fig. 2.

160 S. Ma et al.

Lemma 4. (1) In the Bruun-style decomposition, when viewed as D × D
matrices, N1 and its inverse have only three non-zero diagonals indexed by

D/2 × {−1, 0, 1}. Each entry in N1 and N−1
1 has the form of

[
a0Id/2 a1Id/2

a2Id/2 a3Id/2

]

for ai ∈ Zp that may vary for each entry.
(2) For j ∈ [2, log2(D)], Nj can be viewed as a 2j−2 × 2j−2 diagonal block

matrix. Each block has a size of 22−jD×22−jD, which has 7 non-zero diagonals
indexed by 2−jD× [−3, 3]. Each entry in Nj is a multiple of Id. These properties
also hold for N−1

j , except that the nonzero diagonals of N−1
j are indexed by

2−jD × [−3, 2].

Reducing the Number of Nonzero Diagonals. As an optimization, we can
reduce the number of nonzero diagonals in the Bruun-style decomposition from
six or seven to only three by folding some nonzero diagonals inside each entry
of Nj .

To achieve this effect, we need to modify the output of the i-th Bruun butter-
fly in the first layer by storing a00 and a10 in α1[i] with a01 and a11 in α1[i+D/2],
i.e., in a bit-reversed order.

Suppose m ∈ Rpr , we first define vectors αj ∈ (Zd
pr)L and α′

j ∈ (Zd/2
pr)2L for

0 ≤ j ≤ log2(D) as follows. The vector α0 corresponds to α = Red(m) ∈ EL.
α′

0 is defined by α′
0[2i] = α0[i][0 +: d/2] and α′

0[2i + 1] = α0[i][d/2 +: d/2] for
i ∈ [D]. For 1 ≤ j ≤ log2(D), we define α′

j such that

α′
j [2(i + k · 2−jD) + k0] = (m mod F

(j)
i)[BitRevj+1,0(2k + k0)d/2 +: d/2]

for i ∈ [2−jD], k ∈ [2j] and k0 ∈ [2]. Moreover, αj is defined by αj [i][0 +: d/2] =
α′

j [2i] and αj [i][d/2 +: d/2] = α′
j [2i + 1] for i ∈ [D].

For 1 ≤ j ≤ log2(D), we define N′
j as the linear transformation that maps

αj−1 to αj . Denote Red′−1
BR = N′

log2(D) ◦ · · · ◦ N′
1, then

Red′−1
BR = BRlog2(dD),log2(d)−1 ◦ Red−1.

We call this kind of Red′
BR as a Radix-2-style one. An example of N′

j ’s for D = 8
is shown in Fig. 4 while the formal statements about the structure of N′

j are given
in Lemma 5 and its proof is provided in Supplementary Material B in the full
version of this paper.

Lemma 5. In the Radix-2-style Red′−1
BR , for j ∈ [1, log2(D)], N′

j can be viewed as
a 2j−1 ×2j−1 diagonal block matrix. Each block has a size of 2−j+1D ×2−j+1D,
which has three non-zero diagonals indexed by 2−jD × {−1, 0, 1}. Each entry in

N′
j has the form of

[
a0Id/2 a1Id/2

a2Id/2 a3Id/2

]

for ai ∈ Zp that may vary for each entry.

These properties also hold for N′−1
j .

Proof of (2) in Theorem 1. Clearly, all Nj , N′
j and their inverses are linear

transformations on the major dimension because it is the only dimension. The

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 161

Fig. 4. An illustration of Red′−1
BR in Radix-2 style for D = 8 and p ≡ 1 mod 4. A

‘∗’ in vectors means log2(d) − 1 bits ranging from all zeros to all ones while a ‘X’
means a single bit running from 0 to 1. For example, when d = 8, ‘X0∗’ stands for
(0000, 0001, 0010, 0011, 1000, 1001, 1010, 1011). Other symbols have the same meaning
as in Fig. 2 and Fig. 3.

indices of the nonzero diagonals stated in Theorem 1 can be directly derived
from Lemma 4 and Lemma 5.

According to Lemma 4, the entries of Nj and N−1
j are multiples of Id if

j ∈ [2, log2(D)]. Consequently, these linear transformations are in MatMul1D
type. The entries of N1 and N−1

1 have the form
[
a0Id/2 a1Id/2

a2Id/2 a3Id/2

]

for ai ∈ Zp. These entries generally cannot be represented as a E-linear map.
Therefore, these matrices should be implemented as BlockMatMul1D type trans-
formations.

On the other hand, according to Lemma 5, the entries of N′
j and N′−1

j have
the same form as N1 in the Bruun-style decomposition. Thus, they should be
implemented as BlockMatMul1D as well.

3.3 The Galois Ring Case

In this subsection, we give the proof of Theorem 1 for the case r > 1. Again, the
derivation is different for the two cases of p.

The Case of p ≡ 1mod4. To begin with, we provide the factorization of
ΦM (X) over Zpr using Hensel’s lifting.

Lemma 6. For p ≡ 1 mod 4, it has ΦM (X) =
∏

i∈Z
∗
4D

(Xd − ζi), where ζ ∈ Zpr

is a 4D-th primitive root of unity.

162 S. Ma et al.

Proof. Let ΦM (X) =
∏

i∈Z
∗
4D

(Xd −ζi
0) be the factorization into irreducible poly-

nomials over Zp, where ζ0 ∈ Zp is a primitive 4D-th root of unity. By substituting
Y = Xd, we obtain ΦM/d(Y) =

∏
i∈Z

∗
4D

(Y − ζi
0). This factorization can be lifted

to Zpr using Hensel’s lemma, giving

ΦM/d(Y) =
∏

i∈Z
∗
4D

(Y − ui) for some distinct ui ∈ GR(pr).

Note that u4D
i − 1 = ΦM/d(ui) = 0. Furthermore, the ui’s are primitive 4D-th

root of unity due to ui ≡ ζi
0 mod p and ζi

0 ∈ Zp is a primitive 4D-th root of
unity. Since Z

∗
pr is a cyclic group, we can assume that ui = ζi for i ∈ Z

∗
4D, where

ζ ∈ Zpr is a 4D-th primitive root of unity. The lemma then follows directly by
replacing Y with Xd. ��

Note that the hypercube structure for the Galois ring case is identical to that
of r = 1. Based on the factorization presented in Lemma 6, we can define F

(j)
i

and prove properties that are analogous to those stated in Lemma 1. Then by
defining the linear transformation Nj in the same manner as in Sect. 3.1, we can
prove statement (1) of Theorem 1 using the method outlined in Lemma 2.

The Case of p ≡ 3mod4. Again, we first provide the factorization of ΦM (X)
over Zpr using Hensel’s lifting.

Lemma 7. For p ≡ 3 mod 4, it has ΦM (X) =
∏

i∈Z
∗
4D/〈p〉(X

d−(ζi+ζip)Xd/2+

ζi(p+1)), where ζ ∈ GR(p2; 2) is a 4D-th primitive root of unity and each factor
is a polynomial in Zpr [X].

Proof. Let ΦM (X) =
∏

i∈Z
∗
4D

(Xd/2 − ζi
0) be the factorization into irreduible

polynomials over GF(p2), where ζ0 ∈ GF(p2) is a primitive 4D-th root of unity.
By substituting Y = Xd/2, we get Φ2M/d(Y) =

∏
i∈Z

∗
4D

(Y − ζi
0) over GF(p2).

This factorization can be lifted from GF(p2) to GR(pr; 2) using Hensel’s lemma,
i.e.,

Φ2M/d(Y) =
∏

i∈Z
∗
4D

(Y − ui), ui ∈ GR(pr; 2).

Similarly, the ui’s form the complete set of 4D-th primitive roots of unity in
GR(pr; 2), and we can assume that ui = ζi for a primitive 4D-th root of unity
ζ ∈ GF(p2). It only remains to prove that (Y i − ζi)(Y i − ζip) ∈ Zpr [X], which is
equivalent to proving both −(ζi + ζip) and ζi(p+1) are in Zpr .

Let γ be a primitive element such that GR(pr; 2) = Zpr [γ]. According to
Sect. 2.2, the unit group GR(pr; 2)∗ is isomorphic to Cp2−1 × Cpr−1 × Cpr−1 ,
where Ci denotes a cyclic group of order i. Given that ordGR(pr;2)∗(γ) = p2 − 1
and ordGR(pr ;2)∗(ζ) = 4D are both coprime to p, it follows that ζ is a power of γ.
Furthermore, as 4D divides p2−1, we can deduce that ζ = γk for some integer k
that is divisible by (p2 − 1)/4D. Let π be the Frobenius automorphism, we have

π(ζi + ζip) = π(γki + γkip) = γkip + γkip2
= γkip + γki = ζi + ζip,

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 163

π(ζi(p+1)) = π(γki(p+1)) = γki(p2+p) = γki(p+1) = ζi(p+1).

Thus, (ζi + ζip) and ζi(p+1) are in Zpr , and the lemma follows directly. ��
Drawing upon the factorization presented in Lemma 7, we are able to define

F
(j)
i and establish properties that are same to those stated in Lemma 3. Sub-

sequently, we can construct the linear transformation Nj in a manner consistent
with Sect. 3.2, and validate properties that are same to those in Lemma 4. In
addition, it can be verified that the methodology presented in Lemma 5 is still
applicable, thereby enabling us to prove statement (2) of Theorem 1.

4 Algorithmic Optimizations of Homomorphic NTT

In this section, we introduce multiple optimizations based on the decomposi-
tion in Theorem 1. In Sect. 4.1, we combine consecutive Njs to realize a trade-
off between level consumption and running time. In Sect. 4.2, we modify the
logic of the BSGS-style linear transformation to reduce the number of unhoisted
automorphisms for better efficiency. In Sect. 4.3, we discuss the interaction of
our decomposed CoeffToSlot/SlotToCoeff with general and thin bootstrapping.
Finally, we analyze and compare the asymptotic complexity of the previous and
our method in Sect. 4.4.

4.1 Combining Consecutive Njs

Note that the evaluation of each MatMul1D or BlockMatMul1D consumes a
multiply-by-constant depth. Thus evaluating all the Nis one by one will con-
sume a depth of log2(L), which can significantly diminish the remaining depth
after bootstrapping when L is large. This issue can be mitigated by combining
several consecutive Nis and evaluating the resulting composite linear transfor-
mations as a whole. We note that a similar technique, known as level-collapsing,
has been proposed for FFT-based CKKS bootstrapping in [10,23].

The properties of the composite linear transformations can be stated as fol-
lows.

Lemma 8. Let k ∈ [1, log2(D)] and 1 ≤ j ≤ k.
If p ≡ 1 mod 4, then it has

DiagSet(Nk . . . Nj),DiagSet(N−1
j . . . N−1

k)⊆2−kD × [−21+k−j + 1, 21+k−j − 1]2k .

If p ≡ 3 mod 4, then it has

DiagSet(Nk . . . Nj)⊆2−kD × [−3(21+k−j − 1), 3(21+k−j − 1)]2k ,

DiagSet(N−1
j . . . N−1

k)⊆2−kD × [−3(21+k−j − 1), 2(21+k−j − 1)]2k ,

DiagSet(N′
k . . . N′

j),DiagSet(N′−1
j . . . N′−1

k)⊆2−kD × [−21+k−j − 1, 21+k−j − 1]2k .

Specifically, if j = 1, all the RHS become 2−kD × [2k].

164 S. Ma et al.

Proof. We prove the conclusions about DiagSet(Nk . . . Nj) by induction on k.
When k = j, the conclusions are true due to Theorem 1. Suppose they hold for
some k0 with j ≤ k = k0 < log2(D), we prove they still hold for k + 1. Since

DiagSet(Nk+1 . . . Nj)⊆
⋃

a∈DiagSet(Nk+1)

[a + DiagSet(Nk . . . Nj)]D,

substituting DiagSet(Nk+1) and DiagSet(Nk . . . Nj) with the corresponding values
in each case will lead to the desired results.

For the inverse transformations, the conclusions can be obtained similarly. ��
In the case of p ≡ 1 mod 4, the composition of multiple Ni may not be a one-

dimensional linear transformation if Nlog2(D)+1 is included. Let ρ1 be the rota-
tion operation along the minor dimension. According to Theorem 1, Nlog2(D)+1

represents a MatMul1D in the minor dimension, which can be implemented as
Nlog2(D)+1(m) = κ0(0)m + κ0(1)ρ1(m) for some κ0(0), κ0(1) ∈ Rpr . Thus, for
N = Nk ◦· · ·◦Nj with 1 ≤ k ≤ log2(D) as in Lemma 8, which is a one-dimensional
linear transformation along the major dimension, the cross-dimensional trans-
formation Nlog2(D)+1 ◦ N can be computed in the form of

Nlog2(D)+1 ◦ N(m) =
∑

i∈DiagSet(N)

κ1(i)ρi(m) + ρ1

⎛

⎝
∑

i∈DiagSet(N)

κ2(i)ρi(m)

⎞

⎠

for some κ1(i) and κ2(i) ∈ Rpr . This is called a MatMulFull transformation [20].

4.2 Modified BSGS Style Linear Transformations

We note that a large number of slots L implies that the size D of the main
dimension is large. Thus the rotation keys for the main dimension should be
generated in a baby-step-giant-step (BSGS) way, which can reduce the number
of rotation keys from D to about 2

√
D. As stated in [20], the BSGS method

chooses g = �√D� as the ‘giant step’. Denote h = �D/g�, it generates the
rotation keys for Galois rotations θi, where either i ∈ [g] (i.e., the baby steps)
or i ∈ g · [h] (i.e., the giant steps). Then for a good dimension, it has ρ = θ and
MatMul1D is implemented as

TN (m) =
∑

k∈[h]

ρgk

⎛

⎝
∑

j∈[g]

κ′(j + gk)ρj(m)

⎞

⎠ , for m ∈ Rpr , (4)

where κ′(j+gk) = ρ−gk(κ(j+gk)). The ρj(m)’s are computed using the hoisting
technique, while the ρgks cannot be computed with hoisting because they have
different inputs. For a bad dimension, MatMul1D is implemented as

TN (m) =
∑

k∈[h]

θgk

⎛

⎝
∑

j∈[g]

κ′(j + gk)θj(m) + κ′′(j + gk)θj−D(m)

⎞

⎠ (5)

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 165

for m ∈ Rpr , where κ′(j + gk) = θ−gk(μ(j + gk)κ(j + gk)) and κ′′(j + gk) =
θ−gk(μ′(j+gk)κ(j+gk)). Again, θj(m) and θj−D(m) are computed with hoisting
on m and θ−D(m) while θgk are computed without hoisting.

Modified BSGS Method for MatMul1D. For a MatMul1D map N along
the major dimension, define GiantSet(N) = {� [i]D

g � | i ∈ DiagSet(N)} and
BabySet(N) = {[i]D mod g | i ∈ DiagSet(N)}. Then, we can replace ‘[h]’ with
‘GiantSet(N)’ and ‘[g]’ with ‘BabySet(N)’ in Eq. 4 and Eq. 5.

Our key observation is that the matrices that Red−1
BR splits into usually

have either a small GiantSet or a small BabySet. For example, consider the
case of p ≡ 1 mod 4 and D = 22k for some integer k. Using Theorem 1
and Lemma 8, consider two composite linear transformations N(1) = Nk . . . N1
and N(2) = N2k . . . Nk+1. We have DiagSet(N(2)) = [−2k + 1, 2k − 1] and
DiagSet(N(1)) = 2k × [2k]. Since g = h = 2k, we have GiantSet(N(2)) = {−1, 0, 1},
BabySet(N(2)) = [2k] and GiantSet(N(1)) = [2k], BabySet(N(1)) = {0}. If
|GiantSet(N)| is small for a linear transformation N, the number of unhoisted
automorphisms (i.e., ρgk and θgk) in Eq. 4 and Eq. 5 is greatly reduced.

In the other case where BabySet(N) is small, we exchange the role of j, k to
obtain the revised MatMul1D in a good dimension

N(m) =
∑

j∈BabySet(N)

ρj

⎛

⎝
∑

k∈GiantSet(N)

κ′(j + gk)ρgk(m)

⎞

⎠ , (6)

where κ′(j + gk) = ρ−jκ(j + gk), and the revised MatMul1D in a bad dimension

N(m) =
∑

j∈BabySet(N)
θj

(
∑

k∈GiantSet(N)
κ′(j + gk)θgk(m) + κ′′(j + gk)θgk−D(m)

)

,

where κ′(j+gk) = θ−j(μ(j+gk)κ(j+gk)), κ′′(j+gk) = θ−j(μ′(j+gk)κ(j+gk)).
Swapping the roles of j and k whenever |GiantSet(N)| > |BabySet(N)| ensures

that the number of unhoisted automorphisms is minimized while the total num-
ber of automorphisms is fixed. This reduces the running time since hoisted auto-
morphisms are cheaper than unhoisted ones.

In our example above, the sparsity of BabySet(N(1)) relies on the fact that
g =

√
D is a power of 2. However, this is not true if D = 22k+1 for some integer

k. Thus, in this case, we choose g = 2k+1 and h = 2k so that the previous
optimizations are still valid. Compared to the original choice of g, such choice
of g will slightly increase the number of rotation keys from 21.5 · 2k to 3 · 2k by
about 6%.

Modified BSGS Method for BlockMatMul1D. The tricks for MatMul1D
can be applied to the computation of BlockMatMul1D in either good or bad
dimensions.

When HElib computes a BlockMatMul1D transformation, ρi(m)’s in Eq. 2
are computed for all i ∈ [D] if the dimension is good. In a bad dimension,
θi(m)’s are computed for all i ∈ [D]. Let j = [i]g and k = � i

g �, these ciphertexts

166 S. Ma et al.

are generated in two steps, (1) θgk(m) are generated from m with hoisting for
k ∈ [h], (2) θi(m) = θj(θgk(m)) are generated from θgk(m) with hoisting for
j ∈ [g]. Thus, we can still replace [g] with BabySet(N) and [h] with GiantSet(N)
for faster computation. The role of giant and baby steps can also be swapped if
|BabySet(N)| < |GiantSet(N)|, which reduces the number of hoisting precompu-
tations from |GiantSet(N)| + 1 to |BabySet(N)| + 1. If they are swapped, θj(m)
will be generated from m and θj+gk(m) will be computed from θj(m).

4.3 Applying the Decomposition to BGV Bootstrapping

In this subsection, we describe how the decomposition of linear transformations
can be deployed into general or thin bootstrapping, including some modifications
to them for better efficiency.

Recall that Decode = Eval ◦ Red and Red−1 = BR ◦ Red−1
BR, where BR is an

order-two permutation of the L · d slot coefficients induced by some bit-reversal
map. Then the polynomial m ∈ Rpr and its slot values α are related as

α = Decode(m) = Eval ◦ Red(m) = Eval ◦ RedBR ◦ BR−1(m).

Fig. 5. Workflow of general BGV bootstrapping. The slot values in BR(m) after
CoeffToSlot are identified with Z

d
pr with respect to the normal basis of E . Other slot

values are represented with respect to the power basis of E .

Applying to General Bootstrapping. The workflow of general bootstrap-
ping is illustrated in Fig. 5. Note that the output of CoeffToSlot and the input of
SlotToCoeff is a permutated version of m or m0. This helps to avoid computing
BR and its inverse homomorphically, which will be rather expensive.

The CoeffToSlot transformation (corresponding to the Red−1
BR ◦ Eval−1) is

followed by a BlockMatMul1D transformation that moves the power basis coef-
ficients of each slot into the normal basis [22]. Denoting this transformation
as PtoN, the overall transformation applied is PtoN ◦ Red−1

BR ◦ Eval−1, where
PtoN and Eval−1 are slot-wise BlockMatMul1D. Denote the split Red−1

BR as
Red−1

BR = N(k) . . . N(1). As the first optimization, we merge Eval−1 with N(1) to
save a multiply-by-constant level, which is a tradeoff between level and time.

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 167

Moreover, this is free if N(1) is already a BlockMatMul1D. This trick is applied to
both SlotToCoeff and CoeffToSlot transformations, whether the bootstrapping
is a general one or a thin one.

As the second optimization, we merge PtoN with the N(k) to save a multiply-
by-constant level, again increasing its running time if it is not a BlockMatMul1D.
However, we can avoid the extra cost by reordering N(k). If p ≡ 1 mod 4, all
N(i)s are either MatMul1D or MatMulFull. For p ≡ 3 mod 4, N(1) is a BlockMat-
Mul1D and other N(i)s are either MatMul1D (for Bruun-style decomposition) or
BlockMatMul1D (for Radix-2-style decomposition). Each entry of a MatMul1D
or MatMulFull used here is a multiple of Id, which is a linear transformation that
multiplies the input v ∈ E by some constant in Zpr . Note that such a multiply-
by-integer map remains the same regardless of the basis we use for E (i.e., the
power basis or the normal basis). Thus, PtoN commutes with all N(i)s that are
MatMul1D or MatMulFull. It is easy to see that there exists some integer j such
that N(i) is a BlockMatMul1D ⇐⇒ i ≤ j. Then we can rewrite the overall linear
transformation as

N(k) ◦ . . . ◦ N(j+1) ◦ (PtoN ◦ N(j)) ◦ N(j−1) ◦ . . . ◦ N(2) ◦ (N(1) ◦ Eval−1).

In this way, we ensure that the number of BlockMatMul1D transformations dur-
ing SlotToCoeff is minimized to max(j, 1). Since BlockMatMul1D is usually more
time-consuming than MatMul1D, running time is saved by the reordering of
transformations.

Fig. 6. Workflow of thin BGV bootstrapping. The SlotToCoeff and CoeffToSlot trans-
formations are compositions of different sub-transformations for different parameters.
All slot values are represented with respect to the power basis of E .

The workflow of thin bootstrapping is illustrated in Fig. 6. The permutation
BR is also not computed homomorphically, similar to that in general bootstrap-
ping.

SlotToCoeff (corresponding to Eval ◦ RedBR) is performed first on a thin
ciphertext, where each slot contains an integer instead of a Galois ring element.

168 S. Ma et al.

Let the slot values of the input to SlotToCoeff be α ∈ EL. If p ≡ 1 mod 4, each
slot in RedBR(α0) still stores an integer because the entry in RedBR is a multiple
of Id. This means the restriction of Eval on RedBR(α0) is an identity map and
can be omitted. For p ≡ 3 mod 4, the value in each slot during the computation
of RedBR lies in the subring F ⊂ E satisfying [F : GR(pr)] = 2 because each entry

of Nj has the form of
[
a0Id/2 a1Id/2

a2Id/2 a3Id/2

]

for ai ∈ Zp. This means the linearized

polynomials in the BlockMatMul1D maps of RedBR and in Eval can be built on
F instead of on E , reducing the highest power of σ in the linearized polynomials
from d − 1 to 1.

Another feature of thin bootstrapping is that a trace-like map needs to be
applied to the ciphertext to clear the extra coefficients introduced by the decryp-
tion formula simplification. For a power-of-2 M , Chen and Han found that such
a map can be computed efficiently before CoeffToSlot [11]. As their core obser-
vation, for m ∈ Rpr and 0 ≤ k ≤ log2(M/2), there is a map RMk : Rpr → Rpr ,
satisfying RMk(m)[i] = 0 for [i]2k �= 0 and RMk(m)[i] = m[i] otherwise. The cost
of RMk is dominated by k homomorphic automorphisms.

In Fig. 6, Rm and Rm′ clear the extra coefficients in BR(α∗) introduced by
decryption formula simplification into BR(α0). Using our FFT-like linear trans-
formations, the permutation BR satisfies

BR =

⎧
⎪⎨

⎪⎩

BR′
log2(D)+1,log2(d)

, if p ≡ 1 mod 4
BRlog2(D),log2(d)

, if p ≡ 3 mod 4, Bruun-style decomposition
BRlog2(D),log2(d)−1, if p ≡ 3 mod 4, Radix-2-style decomposition

.

For p ≡ 1 mod 4, the indices of the coefficients of BR(α0) in Fig. 6 form the set
d× [2D]. I.e., BR(α∗)[i] should be kept by RM if and only if the lowest log2(d) bits
of i are all zeros. Thus, we let RM = RMlog2(d)

and RM′ be the identity map. Note
that we abuse the notation of RMk : Rpr → Rpr here to denote its corresponding
map on the slots, which is a EL → EL map.

For p ≡ 3 mod 4 and Bruun-style decomposition, the indices of coefficients
of BR(α0) form d × [D] and RM = RMlog2(d)

suffices to clear the extra coefficients.
For Radix-2-style decomposition, the indices of the coefficients of BR(α0) form
the set {BRlog2(D),log2(d)−1(i) | i ∈ d × [D]} = d/2 × [D]. Thus, BR(α∗)[i] should
be kept by RM if and only if the highest bit and the lowest log2(d) − 1 bits of i
are all zeros. In this case, although we can clear BR(α∗)[i] with [i]d/2 �= 0 using
RM = RMlog2(d)−1, those undesired coefficients with indices in d/2 × [D/2,D − 1]
cannot be cleared. This means that the first D/2 slots in Red−1

BR◦Eval−1◦RM(β)
will have the form of αi + bXd/2, with b being the undesired coefficient. Thus,
an extra map Rm′ needs to be applied slot-wise to clear b in these slots. We note
that Rm′ can also be represented as a linearized polynomial in the subring F ⊂ E
and can be incorporated into the last BlockMatMul1D in Red−1

BR for free.
The optimizations for SlotToCoeff can also be applied to CoeffToSlot. For

p ≡ 1 mod 4, Eval−1 in CoeffToSlot can be omitted because Rm(β) stores an
integer in each of its slots. For p ≡ 3 mod 4, Rm(β) and the intermediate results
during the computation of Red−1

BR store an element in the subring F in each

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 169

of their slots. Again, this means the linearized polynomials of Eval−1 and the
BlockMatMul1D maps that Red−1

BR splits into can be built on F instead of on E .

4.4 Asymptotic Complexity Analysis

In this subsection, we discuss the asymptotic complexity of linear transforma-
tions in BGV bootstrapping for both our method and the baseline approach. The
results are summarized in Table 1. For our method, the depth-time tradeoff of
combining Eval, Nj , and PtoN can be ignored because the maximum number of
decompositions is logarithmic in L, rendering the depth consumption negligible
in the asymptotic analysis. For the baseline method, we assume that the rotation
keys are generated in the BSGS manner, and CoeffToSlot/SlotToCoeff is eval-
uated without decomposition. The complexity of both methods is estimated by
counting the number of unhoisted automorphisms and hoisting precomputation,
which are the most computationally expensive operations.

Table 1. Asymptotic complexity of linear transformations in BGV bootstrapping for
our method and the baseline method

Complexity Thin Bootstrapping General Bootstrapping

Baseline O(log2(d) +
√

L) O(d +
√

L)

Ours O(log2(d) + log2(L))O(d · log2(L)) for Radix-2-style decomposition
O(d + log2(L)) for other cases

For the baseline method, the whole CoeffToSlot/SlotToCoeff in thin boot-
strapping is a MatMul1D [17,20], requiring a complexity of O(

√
L). For both

methods, the complexity of RM and RM′ is O(log2(d)). In general bootstrapping,
CoeffToSlot and SlotToCoeff become BlockMatMul1D, thus having a complexity
of O(d +

√
L) according to [20]. Thus, the total complexity is O(log2(d) +

√
L)

for thin bootstrapping and O(d +
√

L) for general bootstrapping.
For our method, the complexity of PtoN is O(d) for general bootstrapping,

while the complexity of Eval and its inverse is O(1) for thin bootstrapping and
O(d) for general bootstrapping. Each Nj in our method has a computational com-
plexity of O(d) with the Radix-2-style decomposition in general bootstrapping,
and O(1) with other styles in general bootstrapping (as the only exception, N1 in
general bootstrapping with p ≡ 3 mod 4 costs O(d)) and in thin bootstrapping.

5 Implementation

5.1 Experiment Setup

We implemented our approach in BGV bootstrapping based on HElib (commit id
3e337a6) with the optimization in [30]. The code is available at https://github.
com/msh086/bgv-bootstrapping-with-homomorphic-NTT. The security level of

https://github.com/msh086/bgv-bootstrapping-with-homomorphic-NTT
https://github.com/msh086/bgv-bootstrapping-with-homomorphic-NTT

170 S. Ma et al.

BGV parameter sets is estimated using the lattice estimator [2] with commit
id fd4a460. The experiments are conducted on a machine running Fedora 33
(Workstation Edition) equipped with a 3GHz Intel Xeon Gold 6248R CPU and
1006 GB of RAM. The compiled program is executed in a single thread, as in
previous works on BGV bootstrapping [22,30].

Parameter Selection. We set p to be of the form 2i ± 1 for friendly integer
arithmetic, and choose it to correspond to a large number of slots L, ranging
from 4096 to 32768. The Hamming weight h of the main secret key is set to
120, aligning with the default value used in HElib. In accordance with previous
works [16,22,30], we choose the maximum ciphertext modulus Q to guarantee
a security level of at least 80 bits. The Hamming weight of the encapsulated
bootstrapping key [6] is chosen to have a security level of at least 128 bits to
defend against potential attacks on sparse secrets, which is consistent with the
choice in [30]. The selected parameter sets are displayed in Table 2.

Table 2. The parameter sets. h and λ are the Hamming weight and the security level
of the main secret key, while h′ and λ′ are those for the encapsulated bootstrapping
key.

ID p r M L D d log2(Q) h λ h′ λ′

I 65537

1

65536 32768 16384 1

1332 120 81.13

26 134.4

II 8191 65536 4096 4096 8 24 129.8

III 131071 65536 16384 16384 2 26 133.81

The Decomposition of Red−1
bfBR. Recall that we combine consecutive NTT

matrices Nj to reduce the number of levels consumed by homomorphic NTT. We
use a list P to represent a partition of Nj ’s. The list stores nmats+1 integers in an
increasing order with P [0] = 1 and N(i) =

∏
P [i]≤j<P [i+1] Nj for 0 ≤ i < nmats.

We use the same P for CoeffToSlot and SlotToCoeff, although we could use
different P for more fined-grained performance tuning.

The optimal partition for a fixed nmats can be obtained using the dynamic
programming method of Chen et al. [10]. However, their method requires an accu-
rate estimation of the running time, which means one may have to benchmark the
running time of a series of basic operations, including hoisting precomputation,
hoisted automorphism, non-hoisted automorphism, plaintext-ciphertext multi-
plication (with plaintext in both double-CRT and non-double-CRT form), and
ciphertext summation. Thus, considering the difficulty of obtaining an accurate
model of the running time, we choose to determine the partitions experimentally
through trial and error, which we believe suffices to demonstrate the effectiveness
of our method. The obtained partitions are listed in Table 3.

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 171

Table 3. The partitions for general and thin bootstrapping.

Bootstrapping Type I Style II III

Partition
Thin (1, 6, 12, 16)

Bruun (1, 6, 10, 13) (1, 7, 12, 15)
Radix-2 (1, 5, 9, 13) (1, 6, 10, 15)

General (1, 6, 12, 16)
Bruun (1, 5, 10, 13) (1, 7, 12, 15)
Radix-2 (1, 5, 9, 13) (1, 6, 10, 15)

Table 4. Benchmark results for thin bootstrapping. Capacity refers to the capacity
consumed by each stage of bootstrapping. The speedup is computed as the ratio of
throughput with respect to the baseline case

Parameter Set I II III

Method Baseline Ours Baseline OursBruun Ours Radix2 Baseline OursBruun OursRadix2

Capacity (bits)

Initial 941 941 947 947 947 939 939 939
SlotToCoeff 39 79 33 70 69 39 85 85
CoeffToSlot 62 134 56 120 118 64 144 143

Digit removal 265 264 232 231 232 277 276 277
Remaining 556 446 610 511 513 540 415 415

Time (sec)

SlotToCoeff 58 4.2 11 3.8 3.1 33 4.8 3.8
CoeffToSlot 317 12.4 54 14.8 11.6 170 16.1 13.9

Digit removal 6.0 5.7 5.9 5.9 5.9 6.1 5.5 5.6
Total 381 22.8 71.5 25.1 21.1 210 26.9 23.7

Throughput (bps) 1.46 19.6 8.53 20.4 24.4 2.57 15.4 17.5
Speedup 1x 13.4x 1x 2.4x 2.9x 1x 6.0x 6.8x

Memory Usage (GB) 398 31 52 9.7 8.8 201 24 24

5.2 Experimental Results

The benchmark results for thin bootstrapping are shown in Table 4 while
those for general bootstrapping are in Table 5. For thin bootstrapping, the algo-
rithm proposed in [11] and refined in [17] is chosen as the baseline of comparison.
Since the method in [11] only applies to thin bootstrapping, the HElib imple-
mentation [22] is taken as the baseline for general bootstrapping. For general
bootstrapping, the running time of CoeffToSlot and SlotToCoeff includes the
unpacking/repacking procedure before/after digit removal. The capacity needed
by the next bootstrapping is subtracted from the remaining capacity, e.g., the
capacity required by SlotToCoeff in thin bootstrapping or the decryption for-
mula simplification process. The throughput of the bootstrapping procedure is
defined as the remaining capacity divided by the running time, as in [16].

HElib stores the ring constants of a linear transformation (e.g., κ(i) in (Eq. 1)
in two ways, either as plain Rpr elements or in the double-CRT form. The former
format has lower memory cost while the latter leads to faster homomorphic
computation at the cost of memory overhead. All constants in baselines and
our methods are represented in the double-CRT format. With these constants

172 S. Ma et al.

in double-CRT format, the baselines incur much heavier memory overhead than
our method due to the larger number of constants in the baselines.

As shown in the tables, the throughput of thin bootstrapping is improved by
2.4x–13.4x and the throughput of general bootstrapping is improved by 15.2x–
55.1x. Although the cases using our method consume more capacity than the
baseline cases, they have much shorter running times, outweighing the extra
capacity consumption and leading to a higher throughput.

For p ≡ 3 mod 4, Bruun-style and Radix-2-style decompositions exhibit dif-
ferent running times. For general bootstrapping with a small d or thin bootstrap-
ping (i.e., except for the parameter set II in Table 5), the Radix-2-style decom-
position is faster than the Bruun-style decomposition because the NTT/INTT
matrices in Radix-2 style have fewer nonzero diagonals. In general bootstrap-
ping with a larger d (i.e., the parameter set II in Table 5), the Bruun-style
one is faster than the Radix-2-style one because the computational overhead of
BlockMatMul1D over MatMul1D grows with d. Only one of the split NTT/INTT
matrices in Brunn style is BlockMatMul1D, while all the NTT/INTT matrices in
Radix-2 style are BlockMatMul1D. Thus, the disadvantage of having more Block-
MatMul1D outweighs the advantage of having fewer diagonals in each matrix,
making the Radix-2-style transformation slower than the Bruun-style one.

Table 5. Benchmark results for general bootstrapping. Capacity refers to the capacity
consumed by each stage of bootstrapping. The speedup is computed as the ratio of
throughput with respect to the baseline case.

Parameter Set I II III
Method Baseline Ours Baseline Ours Bruun OursRadix2 Baseline Ours Bruun Ours Radix2

Capacity (bits)

Initial 918 918 927 927 927 915 915 915
CoeffToSlot† 54 126 86 148 157 91 169 169
SlotToCoeff† 54 126 97 159 154 90 168 168
Digit extract 281 282 245 246 244 294 293 293
Remaining 526 382 511 371 370 438 282 282

Time (sec)

CoeffToSlot 321 12.5 1035 20.7 25.3 1636 16.1 14.1
SlotToCoeff 321 12.5 1035 19.0 21.1 1642 15.8 13.9
Digit extract 5.9 5.5 46 44 45 11.2 9.8 10.0

Total 649 31 2116 85 92 3289 42 38
Throughput (bps) 0.81 12.3 0.23 4.4 4.0 0.13 6.7 7.3

Speedup 1x 15.2x 1x 18.7x 17.1x 1x 50.3x 55.1x
Memory Usage (GB) 398 31 744 11.8 13.6 392 24.1 23.6

† Currently, SlotToCoeff and CoeffToSlot have similar capacity consumption because
they have the same plaintext modulus pr+t. By using the optimization remarked at
the end of Sect. 4.3 in [30], the plaintext modulus of SlotToCoeff can be reduced to
pr, leading to a lower capacity cost than CoeffToSlot, as expected in a normal general
bootstrapping. The updated benchmark results will be included in the full version of
this paper.

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 173

Acknowledgments. We thank Mr. Robin Geelen at KU Leuven for identifying
the issue with the capacity consumption in Table 5. We also thank the anonymous
reviewers for their insightful comments that greatly improved this manuscript. The
study is supported by the National Key R&D Program of China (2018YFA0704701,
2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09),
the Major Scientific and Technological Innovation Project of Shandong, China
(2019JZZY010133), the Major Program of Guangdong Basic and Applied Research
(2019B030302008), Tsinghua University Dushi Program, and the Key Laboratory of
Data Protection and Intelligent Management, Ministry of Education, Sichuan Univer-
sity.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Security
Standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015). https://doi.org/
10.1515/jmc-2015-0016

3. Alperin-Sheriff, J., Peikert, C.: Practical Bootstrapping in Quasilinear Time. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 1–
20. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4_1

4. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/2022/
915

5. Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Optimized
homomorphic encryption solution for secure genome-wide association studies. BMC
Medical Genomics 13(7), 83 (Jul 2020). https://doi.org/10.1186/s12920-020-0719-
9

6. Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for Approx-
imate Homomorphic Encryption with Negligible Failure-Probability by Using
Sparse-Secret Encapsulation. In: Ateniese, G., Venturi, D. (eds.) Applied Cryp-
tography and Network Security. pp. 521–541. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_26

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic
Encryption without Bootstrapping. ACM Trans. Comput. Theory 6(3) (jul 2014).
https://doi.org/10.1145/2633600

8. Bruun, G.: z-transform DFT filters and FFT’s. IEEE Transactions on Acous-
tics, Speech, and Signal Processing 26(1), 56–63 (1978). https://doi.org/10.1109/
TASSP.1978.1163036

9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28(7), 693–701 (Jul 1991). https://doi.org/10.1007/
BF01178683

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1145/2633600
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683

174 S. Ma et al.

10. Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Homo-
morphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. pp. 34–54. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3_2

11. Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE
Bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018. pp. 315–337. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9_12

12. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from Homomorphic Encryption with Reduced Computa-
tion and Communication. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. p. 1135–1150. CCS ’21, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484760

13. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation 19(90), 297–301 (1965), http://www.
jstor.org/stable/2003354

14. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144

15. Geelen, R.: Revisiting the slot-to-coefficient transformation for BGV and BFV.
Cryptology ePrint Archive, Paper 2024/153 (2024). https://cic.iacr.org/i/1/3

16. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On Polynomial Functions
Modulo pe and Faster Bootstrapping for Homomorphic Encryption. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 257–286.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-
30620-4_9

17. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal
of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6

18. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. p. 169–178.
STOC ’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1536414.1536440

19. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology – EUROCRYPT 2015. pp. 641–670. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25

20. Halevi, S., Shoup, V.: Faster Homomorphic Linear Transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
93–120. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-96884-1_4

21. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryp-
tion library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https://eprint.
iacr.org/2020/1481

22. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal
of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6

23. Han, K., Hhan, M., Cheon, J.H.: Improved Homomorphic Discrete Fourier Trans-
forms and FHE Bootstrapping. IEEE Access 7, 57361–57370 (2019). https://doi.
org/10.1109/ACCESS.2019.2913850

24. Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic Views of Vectorized Polynomial
Multipliers – NTRU Prime. In: Pöpper, C., Batina, L. (eds.) Applied Cryptogra-

https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://cic.iacr.org/i/1/3
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850

Faster BGV Bootstrapping in Power-of-Two Cyclotomics 175

phy and Network Security. pp. 24–46. Springer Nature Switzerland, Cham (2024).
https://doi.org/10.1007/978-3-031-54773-7_2

25. Kim, J., Seo, J., Song, Y.: Simpler and Faster BFV Bootstrapping for Arbi-
trary Plaintext Modulus from CKKS. Cryptology ePrint Archive, Paper 2024/109
(2024). https://www.sigsac.org/ccs/CCS2024/program/accepted-papers.html

26. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023), ePFL-
LDS, Tune Insight SA

27. Lee, D., Min, S., Song, Y.: Functional Bootstrapping for Packed Ciphertexts
via Homomorphic LUT Evaluation. Cryptology ePrint Archive, Paper 2024/181
(2024), https://eprint.iacr.org/2024/181

28. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption for Deep Neural Network. IEEE Access 10, 30039–30054
(2022). https://doi.org/10.1109/ACCESS.2022.3159694

29. Liu, Z., Wang, Y.: Relaxed Functional Bootstrapping: A New Perspective on
BGV/BFV Bootstrapping. In: Chung, K., Sasaki, Y. (eds.) ASIACRYPT 2024.
LNCS, vol. 15484, pp. 208–240. Springer, Cham (2024). https://doi.org/10.1007/
978-981-96-0875-1_7

30. Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV Bootstrapping for
Large p Using Null Polynomials over Zpe . In: Joye, M., Leander, G. (eds.) Advances
in Cryptology – EUROCRYPT 2024. pp. 403–432. Springer Nature Switzerland,
Cham (2024). https://doi.org/10.1007/978-3-031-58723-8_14

31. Meyn, H.: Factorization of the Cyclotomic Polynomialx2n+ 1 over Finite Fields.
Finite Fields and Their Applications 2(4), 439–442 (1996). https://doi.org/10.
1006/ffta.1996.0026

32. Ng, L.K.L., Chow, S.S.M.: GForce: GPU-Friendly Oblivious and Rapid Neural Net-
work Inference. In: 30th USENIX Security Symposium (USENIX Security 21). pp.
2147–2164. USENIX Association (Aug 2021), https://www.usenix.org/conference/
usenixsecurity21/presentation/ng

33. Okada, H., Player, R., Pohmann, S.: Homomorphic Polynomial Evaluation Using
Galois Structure and Applications to BFV Bootstrapping. In: Guo, J., Steinfeld, R.
(eds.) Advances in Cryptology – ASIACRYPT 2023. pp. 69–100. Springer Nature
Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-8736-8_3

34. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),
microsoft Research, Redmond, WA

35. Wan, Z.: Lectures on Finite Fields and Galois Rings. G - Reference,Information and
Interdisciplinary Subjects Series, World Scientific (2003), https://books.google.
com.hk/books?id=uCSVbYMljNIC

https://doi.org/10.1007/978-3-031-54773-7_2
https://www.sigsac.org/ccs/CCS2024/program/accepted-papers.html
https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2024/181
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1007/978-981-96-0875-1_7
https://doi.org/10.1007/978-981-96-0875-1_7
https://doi.org/10.1007/978-3-031-58723-8_14
https://doi.org/10.1006/ffta.1996.0026
https://doi.org/10.1006/ffta.1996.0026
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://doi.org/10.1007/978-981-99-8736-8_3
https://github.com/Microsoft/SEAL
https://books.google.com.hk/books?id=uCSVbYMljNIC
https://books.google.com.hk/books?id=uCSVbYMljNIC

Revisiting Key Decomposition Techniques
for FHE: Simpler, Faster and More

Generic

M. G. Belorgey1(B), S. Carpov2, N. Gama3(B), S. Guasch3, and D. Jetchev2,4,5

1 Tune Insight, Lausanne, Switzerland
mariya@tuneinsight.com

2 Arcium, Baar, Switzerland
3 SandboxAQ, Palo-Alto, USA
nicolas.gama@sandboxaq.com
4 IOG, Colorado, Costa Rica

5 EPFL, Lausanne, Switzerland

Abstract. Ring-LWE based homomorphic encryption computations in
large depth use a combination of two techniques: 1) decomposition of
big numbers into small limbs/digits, and 2) efficient cyclotomic multipli-
cations modulo XN + 1. It was long believed that the two mechanisms
had to be strongly related, like in the full-RNS setting that uses a CRT
decomposition of big numbers over an NTT-friendly family of prime num-
bers, and NTT over the same primes for multiplications. However, in this
setting, NTT was the bottleneck of all large-depth FHE computations.
A breakthrough result from Kim et al. (Crypto’2023) managed to over-
come this limitation by introducing a second gadget decomposition and
showing that it indeed shifts the bottleneck and renders the cost of NTT
computations negligible compared to the rest of the computation. In this
paper, we extend this result (far) beyond the Full-RNS settings and show
that we can completely decouple the big number decomposition from
the cyclotomic arithmetic aspects. As a result, we get modulus switch-
ing/rescaling for free. We verify both in theory and in practice that the
performance of key-switching, external and internal products and auto-
morphisms using our representation are faster than the one achieved by
Kim et al., and we discuss the high impact of these results for low-level
or hardware optimizations as well as the benefits of the new parametriza-
tions for FHE compilers. We even manage to lower the running time of
the gate bootstrapping of TFHE by eliminating one eighth of the FFTs
and one sixth of the linear operations, which lowers the running time
below 5.5ms on recent CPUs.

Keyword: homomorphic encryption, gadget decomposition, key switch-
ing, bivariate representation, bootstrapping

M. G. Belorgey, S. Carpov, and D. Jetchev—This work has been done by the authors
while they were employed at Inpher.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 176–207, 2025.
https://doi.org/10.1007/978-981-96-0875-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_6&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_6

Revisiting Key Decomposition Techniques for FHE 177

1 Introduction

Homomorphic encryption allows computations on encrypted data without
decrypting it. Since the first fully homomorphic encryption (FHE) scheme intro-
duced by Gentry in [18], several improvements, implementations and new designs
have been proposed. Most of them are based on the ring version of the Learning-
With-Error problem (RingLWE) defined in [30]. Among the most popular schemes
today are BFV [17], BGV [5], CKKS [8], FHEW [16] and TFHE [9,10]. Subsequent
work [4] has been done on the interoperability of TFHE with the other two schemes
(BFV and CKKS).

Most of the basic building blocks of the practical homomorphic encryption
schemes (e.g., homomorphic multiplication and relinearization, key switching,
automorphisms or bootstrapping) reduce to efficient homomorphic external prod-
ucts. The latter are basic operations that are combinations of decompositions
of one of the inputs into higher-dimensional tensor with entries of small norms
(gadget decompositions) and polynomial multiplications in order to control the
accumulation of noise in the ciphertexts and ensure correct decryption (see, e.g.,
[4, Defn.1] and [10, Defn.3.12] for typical examples of external product).

A major line of research has been undertaken on using Residue Number Sys-
tems (RNS) in the acceleration of the basic underlying polynomial multiplication
operations used for computing external products [19]. The full-RNS approach of
[2], originally introduced to accelerate BFV operations (see also [22]) and subse-
quently applied to other schemes too such as CKKS [7], allows for manipulating
large numbers using smaller machine-size moduli and expressing the homomor-
phic products (internal products) as well as the gadget decompositions of the
BFV and CKKS in the NTT domain. Subsequent hardware acceleration efforts have
been made to accelerate RNS-variants of NTT for GPU architectures [29,35] and
FPGA architectures [15,27,31,34].

One can thus conceptually differentiate two important aspects of optimiza-
tion of FHE operations: 1) efficient large integer arithmetic (frontend aspect)
that is addressed via mathematical techniques such as gadget decompositions;
2) cyclotomic arithmetic (backend aspects) - the need for efficient arithmetic on
the backend to support the basic cyclotomic operations - the choice of floating-
point arithmetic or integer arithmetic on the backend. Unfortunately, in most
practical implementations, the two aspects are often coupled together, thus,
limiting the flexibility for optimization techniques. For instance, by nature, the
full-RNS approach to gadget decomposition requires modular arithmetic opera-
tions on the backend and thus, is bound to NTT leaving little room for really
fast FFT-favored operations (such as the optical FFT approach from [24]).

Note that there are essentially two classical approaches to 1): decomposition
in base 2K and CRT decomposition over primes of K bits. Assuming that single
elementary operations operate natively over K-bit numbers (e.g., 32-bit or 64-bit
integers or floating point numbers with 53-bits of mantissa), the fact that CRT
arithmetic is exempt from any carry propagation yields very efficient parallel
additions and multiplications of � K-bit numbers in O(�) operations, whereas the
base-2K counterpart would struggle between O(� log �) and O(�2) multiplications

178 M. G. Belorgey et al.

and force these elementary operations in sequential mode. For this reason, a
natural choice for homomorphic encryption was to prefer CRT representations
for efficient implementations of CKKS and BFV.

A recent breakthrough has been made by Kim et al. towards decoupling 1)
and 2) by an approach based on an auxiliary gadget decomposition that replaces
expensive modular arithmetic in the computation of the external product by pure
arithmetic with small integers via gadget decompositions based on RNS [23].

Note that the RNS-type approach to 1) often has the following drawbacks:

1. Arithmetic modulo different primes. The arithmetic has to be carried out
modulo different prime numbers of same size, even if they are selected to be
as friendly as possible, numbers modulo which arithmetic is really efficient
are rare (e.g., Mersenne primes, Fermat primes). There is also a small loss
from hardware aspects such as the necessity to have one hardware multiplier
per prime.

2. Unfeasibility of bit extraction/coarse noise granularity. Bit extraction is not
possible in CRT domain modulo a product of small primes, the best granular-
ity of HE noise levels is those of the primes: e.g., 16 to 40 bits. As explained
in the analysis of the Hecate compiler [25] this impacts negatively the opti-
mal use of homomorphic budget for CRT-based CKKS - one often needs to
re-scale the noise to the nearest available level before attempting a homo-
morphic product after an operation producing less noise (such as a sum, a
small linear combination or a trace).

3. Sub-optimal memory usage with respect to truncations. Restrictions from
high-precision representations to low-precision representations are not simple
truncations of limbs (as in the natural base-2K representation), but require
a separate RNS representation.

The above-mentioned carry-less nature and efficiency of parallel CRT multi-
plications would have been perfect if most homomorphic operations were actual
ring operations. However, internal ring multiplications over large numbers never
come standalone: first of all, in a BFV or CKKS internal product they always come
in packs of N (giving a O(N�) complexity to multiply two polynomials modulo
XN +1), and second, they are always followed by an external product that com-
prises at least � NTTs (so at least O(�N(� + log N)) if we use the latest double
gadget decomposition of [23] and O(�2N log N) before). In other words, since
N � �: typically, N is between 1024 and 65536 and � is lower than 100, the
complexity of an internal BFV or CKKS product remains bounded both asymptot-
ically and practically by the complexity of its underlying external product. This
means that as long as we make the external product more efficient, we have some
margin to degrade the complexity of the internal multiplication of polynomials
up to O(N�2) and still accelerating in almost all cases the running time of CKKS
and BFV operations.

It is thus desirable to extend the auxiliary gadget decomposition approach
of 1) to the natural 2K-base large integer representation to overcome the above
drawbacks.

Revisiting Key Decomposition Techniques for FHE 179

Our Contributions
In this work, this is exactly what we achieve - we show how to adapt the auxiliary
gadget decomposition of [23] to the natural base-2K representation of numbers
and thus, obtain an external product that is simpler and faster.

Our starting point is a common plaintext representation space for all the
practical RingLWE-based schemes (BFV, CKKS and TFHE) described in [4]: Let
T = R/Z be the real torus (which is the set of real numbers modulo 1) and
R = Z[X]/〈XN + 1〉 be the ring of polynomials of degree N − 1 and coefficients
in Z. Then we define the common plaintext representation space to be the R-
module TN [X] := R[X]/〈XN + 1〉/R (also thought of as formal polynomials of
degree N−1 whose coefficients are in T). We can add torus polynomials together,
or multiply them by integer polynomials.

Inspired by the classical Schoenhage–Strassen algorithm for large integer
multiplication based on FFT [32], in Sect. 3, we propose a bivariate integral
polynomial representation with small coefficients of these formal polynomials
where the evaluation on Y = 2−K (K is the limb size) yields a sufficiently accu-
rate approximation of the toric coefficients. Introducing the auxiliary variable
implicitly corresponds to having the second gadget decomposition: on one hand,
it yields the natural decomposition in base 2K of toric elements (evaluation at
Y = 2−K); on the other hand, it provides a plenitude of choice of bivariate
polynomials to approximate the given toric polynomial. A careful normalization
and reduction yields a representative with small coefficients - the bivariate poly-
nomial representation that is used for efficient external product (see Sect. 3.2),
thus making it specifically tuned for TRLWE operations.

Since the space of TRLWE ciphertexts is TN [X]2, we express the external
product in terms of multiplications of bivariate polynomials with small integer
coefficients. It is this reduction that decouples 1) and 2) above - the multipli-
cation can be performed using either FFT or NTT backend arithmetic which
we explain in Sect. 6, thus, enabling optimal use of different architectures for
hardware optimization.

A major advantage of our representation is that it addresses challenges 1–3.
Indeed, our representation supports efficient sums, normalizations, reductions
modulo Z, left and right shifts in O(�) and products in O(� log �) (only bilinear
expressions are needed, we do not need higher degree terms in FHE operations!),
bit-decompositions and bit-extraction. In addition, the prefix property of the
natural base-2K representation yields a memory-efficient way to pass from a
higher-precision representation to a lower precision representation. It provides
a single-bit noise granularity, thus, enabling efficient compositions as proposed
in [4]. The asymptotic complexity matches the best available full-RNS algorithms
for both external products of TFHE, and also internal products of CKKS and BFV.

The sequential nature of carry propagation is mitigated by the parallelism
induced by the fact that the operations in our external product occur in a
SIMD (Single Instruction/Multiple Data) manner over N elements each time.
We increase the complexities of the internal multiplications from O(N�) to
O(N� log �), keeping them negligible compared to an external product, and

180 M. G. Belorgey et al.

hence, due to the speed-up of the latter ones, also accelerate internal products
of CKKS and BFV, so that at the end of the day, by not using any of the CRT
of full-RNS techniques, and instead, applying the double-gadget decomposition
to old-school base-2K representations directly, we end up speeding up all the
existing homomorphic operations of TFHE, CKKS and BFV.

Our practical experiments and benchmarks support the theoretical evidence:
first, Table 1 provides evidence for the number of elementary operations (SIMD
products and Discrete Fourier Transforms (DFTs)) in an external product com-
putation in the context of the various FHE building blocks (or more specifically,
in the more efficient approach via HalfRGSW introduced in Sect. 3.2). The exper-
iments demonstrate that for FHE parameters N = 65536, � ∼ 100 and K ∼ 20,
the cost of SIMD products largely dominates the cost of DFTs, an already strong
indication of the parallelization-friendly nature of our approach. Second, we com-
pare our bivariate representation (using both FFT and NTT) to the approach
from [23] to demonstrate that, prior to any parallelization or hardware accel-
eration efforts, we get a better performance (see Table 5). Finally, in Sect. 4 we
even manage to lower the running time of the gate bootstrapping of TFHE by
eliminating 12.5% of the FFTs and 16.6% of the linear operations.

Future Directions
One of the most important contributions of our work is the flexibility it provides
for future hardware acceleration efforts. Everything that we have done in this
work is single-core optimizations.

First of all, the normalization and reduction Algorithm 1 (and its extension
presented in the full version of the paper [3]) allows for fast AVX and GPU-
friendly implementations. The bivariate representation yields several advantages
making the parallelization very natural. First, as mentioned, it is directly inspired
by the Schoenhage–Strassen algorithm for large integer multiplication based on
NTT with complexity O(n log n log log n), where n is the number of bits of the
inputs [32]. In fact, the case of large integer multiplication is recovered directly
from our bivariate representation by setting N = 1 via the evaluation map
R[Y] → R given by f(Y) �→ f(2K). In this work, we use the opposite exponent
f(Y) �→ f(2−K), whose output is dense in RN [X], since we care more about high
precision approximations of products between bounded real-valued polynomials.
Note that the Schoenhage–Strassen is an NTT version of the DFT-based fast
polynomial multiplication. Even if the original Schoenhage–Strassen algorithm
is not completely easy to parallelize, the large degree N on the variable X makes
our bivariate polynomial multiplication friendlier for parallel architectures.

Second, a recursive version of DFT or more generally, a Cooley–Tukey trans-
form [12] allows for parallelization on both X and Y variables. The well-known
in-place and in-order variants of the Cooley–Tukey transform opens the door
for highly optimized memory usage as well. When the degree on Y is too small,
the alternative näıve multiplication, or single iteration of Karatsuba algorithms
discussed here can also be performed in-place.

Revisiting Key Decomposition Techniques for FHE 181

As already mentioned, the trade-off of using FFT and NTT can benefit
from the various hardware acceleration initiatives such as GPU acceleration [29],
FPGA acceleration [27,34], optical computing [24] (particularly favorable for the
FFT approach), ASICs [13] as well as the outcome of the DPRIVE program [14],
especially the recent work [6].

Finally, our work opens up the possibility for an efficient implementation
of the scheme switching framework Chimera [4] that allows to mix TFHE, CKKS,
BFV arithmetic using continuous homomorphic levels. The original proposal was
suggesting the use of large numbers fixed-point arithmetic in order to perform
efficient additions, multiplication and bit-extraction. Unfortunately, none of the
available representations of big numbers in GMP, MPFR are sufficiently efficient
in practice, and a CRT representation would not allow efficient bit-extraction
either, thus leading to the same setbacks as Full-RNS. For these reasons, the early
attempts to implement Chimera were, thus, slow in practice for multiplicative
levels ≥ 3. The efficient multi-precision arithmetic we propose in this work, while
being compatible with cyclotomic multiplication, bit extraction, and lazy carry
propagation make the whole concept practical.

In conclusion, our approach supports the following general principle: instead
of one trying to find a numerical representation (e.g., RNS representation) with a
gadget decomposition that is not too convoluted, it is more natural to start from
the gadget decomposition (e.g., base-2K representation) and take the output of
the gadget decomposition directly as the numerical representation.

2 Preliminaries

Notation

Let T = R/Z be the real torus. For a ring A (e.g., A = Z,R,C), let AN [X] :=
A[X]/〈XN + 1〉 be the ring of polynomials modulo XN + 1 with coefficients in
A and N a power of 2. In particular, let R = ZN [X], which is also the ring of
integers of the cyclotomic field Q(ζ2N).

Let TN [X] = RN [X]/R (a.k.a R[X] mod XN + 1 mod Z) which we view
as an R-module (it has no ring structure). Elements of this module can for-
mally be represented using notations borrowed from polynomials, i.e., a(X) =
∑N−1

i=0 aiX
i where ai ∈ T. Since the coefficient space T is not a ring, we

cannot evaluate these polynomials over any non-integer value, nor multiply
two such elements together. However, the notation allows coefficient-wise addi-
tion/subtraction of polynomials, projection from and lifts to the continuous
ring RN [X], and most importantly, we often refer to the module action of R
on TN [X] as an external multiplication of a by integer polynomial u(x) =
∑N−1

i=0 uiX
i ∈ R where ui ∈ Z via the natural Cauchy product formula:

(u · a)(X) =
∑2N−2

i=0

(∑i
j=0 uj · ai−j

)
Xi mod XN + 1.

We denote by ‖.‖p and ‖.‖∞ the standard norms for scalars and vectors over
real field or over the integers. By extension, the norms ‖P (X)‖p and ‖P (X)‖∞
of a real or integer polynomial P are the norms of their coefficient vectors. The

182 M. G. Belorgey et al.

norm of an element of TN [X] is the norm of its centered lift in RN [X] with
coefficients in [−1/2, 1/2).

Historically, there have been two different lattice-based encryption scheme
designs. The first, Learning With Errors (LWE) [30], encrypts modular numbers
or even continuous reals modulo 1. The second, Gentry-Sahai-Waters (GSW) [20],
focuses on encrypting small integer plaintexts. Polynomial ring extensions were
independently added to both schemes: for LWE as early as 2009 [26], and for
GSW in 2015 [16]. Later, the formalization of external products established the
interconnection between plaintexts of LWE and GSW ciphertexts [9], leading to
simplifications in GSW ciphertexts that preserved the external product morphism.

The TRLWE and TRGSW ciphertexts are fundamental to almost all fully homo-
morphic encryption schemes, including BFV, CGGI (also known under the name
TFHE), and CKKS. These ciphertexts can be represented either over integers (with-
out the T in the name) or over real numbers modulo 1 (with the T in the name).
TFHE has used both types of ciphertexts since its inception, whereas the orig-
inal descriptions of BFV and CKKS used only RLWE ciphertexts with ad-hoc key
switches for products.

In the Chimera framework [4], the authors explain how to unify and switch
between CKKS, BFV, and TFHE using common notations, as well as the minimal
set of operations over TRLWE and TRGSW ciphertexts necessary for comprehensive
arithmetic. We introduce and use this minimal set of operations as the starting
point in our paper.

2.1 TRLWE

TRLWE encrypts elements of a subset of the R-module TN [X] called the plaintext
space, and which can be finite (TFHE), a discrete subgroup (BFV) or a continuous
set of small elements (CKKS). The ciphertexts of μ are of the form c = (a, b =
s ·a+μ+e), where s ∈ B is the secret key, a ∈R TN [X] is uniformly random and
the e ∈ TN [X] is chosen randomly from an error distribution with mean zero
and suitably chosen standard deviation. Without loss of generality, the keyset
B in this work can refer to binary, ternary keys or small keys. The decryption
procedure starts by evaluating the phase function on the ciphertext, that is, by
computing ϕs(a, b) := b−s ·a. Since ϕs(a, b) = μ+e, the plaintext μ is the mean
of the phase (the mean being computed over the random coins in the generation
of the noise e during encryption).

– Parameters: A security level λ and a minimal noise parameter α.
– KeyGenTRLWE(λ, α): A uniformly random binary or ternary key s ∈ B ⊂ R.
– EncTRLWE(μ, s, α): Choose a uniform random element a ∈ TN [X] and a small

Gaussian error e ∈ TN [X] and return c = (a, b = s · a + μ + e)
– DecTRLWE(c, s): Compute the phase ϕs(c) and round ϕs(c) to the nearest point

in the plaintext space (when it is discrete), or returns a close approximation
(CKKS).

Revisiting Key Decomposition Techniques for FHE 183

2.2 Approximate Gadget Decompositions and TRGSW Ciphertexts

A common challenge with various FHE constructions (e.g., GSW) is the control on
the accumulation of noise after homomorphic operations. A general technique
from lattice-based cryptography to address this problem is a concept known
as flattening gadget or gadget decomposition, that is, a map that transforms a
ciphertext into a higher dimensional vector with small ‖.‖∞ while preserving
some linear-algebraic properties.

Two classical examples of gadget decompositions are numerical base represen-
tations and RNS representations. Since most of the FHE literature uses gadget
decompositions on integral values, the decompositions themselves are exact. A
notable exception to this principle is TFHE where one uses floating point arith-
metic and therefore, an approximate gadget decomposition. Below we recall the
basic definition (see also [10, Defn.3.6]):
Definition 2.1 (approximate gadget decomposition for TRLWE samples).
We say that an algorithm DecompH,β,ε is a valid gadget decomposition on gadget
H ∈ (TN [X]2)2�, quality (or ‖‖∞-bound) β, and precision ε > 0 if for any input
v ∈ TN [X]2, it outputs an element u ∈ R2�, ‖u‖∞ ≤ β such that ‖u·H−v‖∞ < ε.

As already mentioned in [10], there is a canonical approximate gadget decom-
positions coming from numerical base representations for any base Bg:

HT =
(

B−1
g . . . B−�

g 0 . . . 0
0 . . . 0 B−1

g . . . B−�
g

)

The above notion is important for two main reasons: 1) it allows us to define
TRGSW ciphertexts; 2) it allows us to define an external product between TRGSW
ciphertexts and TRLWE ciphertexts.

We first recall the TRGSW ciphertexts: the TRGSW encrypts elements of the ring
R with bounded infinity norm. Intuitively, the idea of the original GSW scheme
[20] is to encrypt a small plaintext μ ∈ Z into a ciphertext that is a matrix Cμ

such that the secret key s is an approximate eigenvector of Cμ with eigenvalue μ.
Such an encryption scheme leads to natural homomorphic addition and multipli-
cation operations that are simply matrix additions and matrix multiplications.
The näıve idea does not quite work without gadget decompositions since one can-
not control the propagation of the errors in the approximate eigenvalues under
homomorphic multiplications. The schemes FHEW and TFHE use a ring-variant of
the original scheme, the last one with an approximate gadget decomposition:

Definition 2.2 (TRGSW ciphertexts). Let H ∈ (TN [X]2)2� be a gadget and let
μ ∈ R be a plaintext with bounded �∞-norm. The space of valid TRGSW ciphertexts
for μ is TRGSW(μ) := {Z +μH}, where each element of Z ∈ (TN [X]2)2� is a valid
TRLWE ciphertext of zero.

2.3 External Products, Relinearization Keys and Internal Products

For the purposes of the current work, we will need a relatively uniform treatment
of the various RLWE-based FHE frameworks, most notably, BFV, CKKS and TFHE,
as well as their internal products.

184 M. G. Belorgey et al.

It is explained in [4, §2.5] (as well as the particular discussion of BFV and
CKKS in Sects. 3 and 4, respectively, of loc.cit.) how to uniformize the plaintext
spaces for all these schemes and view them as various subgroups of the R-module
TN [X]. Once this is done, the homomorphic internal products of BFV and CKKS
are expressed in terms of the following basic primitive, the external product, a
major operation of interest in the current work:

Definition 2.3 (TFHE external product). Given a flattening gadget H and
an approximate gadget decomposition DecompH,β,ε, the external product in TFHE

is a map
� : TRGSW× TRLWE → TRLWE

defined by
C � c := DecompH,β,ε(c) · C,

where C ∈ TRGSW(μ1) and c ∈ TRLWE(μ2).

One can show [10, Thm.3.13] that under certain specific noise conditions, the
above external product C � c is a valid ciphertext for μ1μ2.

Once we have defined this primitive, we use it to express the various internal
products, the major idea being the concept of relinearization and relineariza-
tion keys - we refer the reader to [4, pp.325–326] for a more detailed explana-
tion. The important point is that by using extra key material (relinearization
key), one can express the internal product of the BFV scheme in terms of the
above external product. More specifically, if we define1 the relinearization key
as RK = TRGSW(s), then for 	 ∈ {BFV, CKKS} the homomorphic internal prod-
uct � : TN [X]2 × TN [X]2 → TN [X]2 of two ciphertexts (a1, b1) and (a2, b2) of
plaintexts μ1 and μ2, respectively becomes

(a1, b1) � (a2, b2) = (C1, C0) − RK�(C2, 0), (1)

where C0 = b1 ⊗� b2, C1 = a1 ⊗� b2 + a2 ⊗� b1, C2 = a1 ⊗� a2, the important
point being that this ciphertext is a valid encryption of the plaintext μ1 ⊗� μ2.
Here, ⊗� : TN [X]×TN [X] → TN [X] indicates a certain product map (depending
on the scheme) whose restriction to the plaintext subgroup of TN [X] yields the
plaintext product.

For instance, if for • ∈ TN [X], •̃ ∈ R[X]/〈XN + 1〉 denotes the unique
lift with coefficients in the interval [−1/2, 1/2) then the BFV product ⊗BFV with
plaintext modulo p (Montgomery product) is:

⊗BFV : TN [X] × TN [X] → TN [X], (u, v) �→ p · ũ ∗ ṽ. (2)

Similarly, CKKS plaintext products at input level Lin are:

⊗CKKS : TN [X] × TN [X] →TN [X],

(u, v) �→ 2Lin · Round2−Lin (ũ) ∗ Round2−Lin (ṽ) (3)
1 There are many equivalent ways to define the relinearization key. Here, we use an

external product and a zero term in the TRLWE ciphertext, which can be propagated in
the algorithm and simplified, the original references of Fan–Vercauteren [17] present
a key-switching that substitute a key s2 by s.

Revisiting Key Decomposition Techniques for FHE 185

In both formulas for (BFV and CKKS product), the symbol · is the external
product by an integer, and ∗ represents multiplication in RN [X]: the input coef-
ficients are first lifted to the real interval [−1/2, 1/2) and in the second case,
also rounded to the nearest exact multiple of 2−L. None of these functions is an
actual product over the entire space - one needs to restrict the inputs to the sub-
groups p−1R/R and 2−LR/R of TN [X], respectively to obtain products. Yet,
the function ⊗BFV has the property that if u and v are close from i/p and j/p
where i and j are integers, their product is close to (ij mod p)/p, which is handy
to encode plaintext arithmetic modulo p. The product ⊗CKKS has the property
that if u and v are at distance ≤ 2L+1 away from i/2L and j/2L where i and
j are smaller than 2ρ, then their product is at distance 2L−ρ away from ij/2L,
which is good to encode fixed-point number arithmetic on ρ-bits numbers.

2.4 Table of Symbols, Orders of Magnitudes

When reading the paper, different complexities shall intervene in the different
theorems. It is important to keep in mind the difference in orders of magnitude,
as for instance: having an arithmetic in O(N2) is prohibitive, and we must abso-
lutely stick to O(N log N), however O(�2) is perfectly realistic in some scenario.

The parameters N , K and K̃ are set once and for all during parameter and
key generation, while L, �, and �̃ evolve during a homomorphic evaluation com-
putation, following the noise rate variations: They decrease across homomorphic
operations, and are reset to a large value after a bootstrapping.

3 A Bivariate Polynomial Representation

We keep the notation and the setting from Sect. 2. Let K be a limb size. We
represent (rational) approximations of elements of R[X]/〈XN + 1〉 by elements
of the (discrete) quotient ring Z[X,Y]/〈XN +1〉 (also equal to R[Y], the polyno-
mials in Y over R) of the bivariate polynomial ring Z[X,Y]. The representations
are obtained via the evaluation map (ring homomorphism) on the Y variable

φK : R[Y] → RN [X], P (X,Y) �→ P (X, 2−K). (4)

More explicitly, the elements of R[Y] are represented by bivariate integer
polynomials P (X,Y) =

∑
ai,jX

iY j whose degrees in X are at most N − 1.
Since the ring homomorphism φK is clearly not injective, an element of RN [X]
can have multiple pre-images in R[Y]. We will use this property in a crucial way
and will be particularly interested in representatives with small coefficients.

186 M. G. Belorgey et al.

Variable Range Meaning

N [210, 216] Power-of-two polynomial modulus: XN + 1

K, ˜K [10 − 60] Multi-precision representation of Torus elements consist of
K-bit limbs (so machine words have at least 2K bits to han-

dle products), and gadget decompositions produce ˜K-bit out-

puts. ˜K is in general equal to K, but can be chosen smaller
in rare circumstances, since ˜K intervenes in the noise prop-
agation of external products.

L [20 − 2000] Targeted number of bits of precision of the multiprecision
arithmetic (to handle a RLWE ciphertext whose noise rate is
α ≈ 2−L). For a given cryptographic security parameter, each
key dimension is associated to a maximal noise level L: for
128-bit security, count Lmax = 20, 880, 1761 for respectively
N = 210, 215, 216

�, �̃, �̃A [1-100] Number of limbs per coefficient in a RLWE ciphertext (with-
out tilde) or in a gadget decomposition (with tilde, and/or
subscript depending on the context). These � can be thought
as � ≈ L/K, it is the main asymptotic parameter in all the
complexities, directly related to the number of elementary
vector operations. In practice, for the key sizes and precision
we consider above, all these �’s fall within the range [1, 100]

Definition 3.1. A bivariate polynomial P (X,Y) =
N−1∑

i=0

∑

j≥0

ai,jX
iY j is called

K-normalized if ai,j ∈ [−2K−1, 2K−1) for all i = 0, . . . , N − 1 and j ≥ 1.

As we are mainly interested in representing elements of TN [X], that is, formal
polynomials over the torus, we often reduce the coefficients of real polynomials
to the real interval [−1/2, 1/2) and hence, we give the following definition:

Definition 3.2. A bivariate polynomial P (X,Y) =
N−1∑

i=0

∑

j≥0

ai,jX
iY j is K-

normalized and reduced if, in addition to being K-normalized, it satisfies
ai,0 = 0 for all i = 0, . . . , N − 1.

We now approximate any element of the R-module TN [X] up to an arbitrary
precision with K-normalized and reduced bivariate polynomials from R[Y]. The
proofs of the lemma and the corollary below are simple consequences of the
decomposition of the coefficients in base 2K .

Lemma 3.1. For every integer L > 0 and every polynomial Q ∈ RN [X], there
exists a K-normalized polynomial P (X,Y) ∈ R[Y] of degree ≤ �L/K� in Y such
that ‖φK(P) − Q‖∞ ≤ 2−L.

Corollary 3.1. For every integer L > 0 and for all elements Q ∈ TN [X], there
exists a K-normalized and reduced polynomial P ∈ R[Y] of degree ≤ �L/K� in
Y such that

‖φK(P) mod R − Q‖∞ ≤ 2−L.

Revisiting Key Decomposition Techniques for FHE 187

Note that the above approximation of the elements Q ∈ TN [X] via bivariate
polynomials P (X,Y) ∈ R[Y] is reminiscent to a gadget decomposition in clas-
sical lattice-based cryptography. Intuitively, the presence of the variable Y cor-
responds to representing a vector in higher-dimensional space with lower ‖.‖∞-
norm - a key technique necessary for the design of various FHE schemes (e.g.,
GSW [21] and TFHE [9]).

The following lemma whose proof is rather formal shows that for any limb
size K and any polynomial in P ∈ R[Y], there is a unique K-normalized and
reduced polynomial Q with the same image under φK .

Lemma 3.2. For any limb size K and any polynomial P (X,Y) ∈ R[Y], there
exists a unique normalized polynomial Q(X,Y) of the same degree in Y such that
φK(P) = φK(Q). Additionally, there exists a unique K-normalized and reduced
polynomial Q(X,Y) such that φK(P) = φK(Q) mod R.

We are now interested in an efficient algorithm for normalization and reduc-
tion of polynomials.

Algorithm 1. Normalization and Reduction
Input: A target precision of L bits (that represents 2−L) and a limb size K

Input: An input polynomial A(X, Y) =
∑

k≥0

Ak(X)Y k satisfying ‖A‖∞ < 2M

Output: A K-normalized and reduced polynomial R(X, Y) =
∑�

k=1 Rk(X)Y k of
degree � = �L/K� in Y such that ‖φK(R) − φK(A)‖∞ ≤ 2−L.

1: acc(X) = 0
2: for k = �(L + M)/K� downto 1 do
3: acc(X) ← acc(X) + Ak(X)
4: Rk(X) ← centermod2K (acc(X))
5: acc(X) ← (acc(X) − Rk(X))/2K

6: end for
7: Return R(X, Y) =

∑�
k=1 Rk(X)Y k

Lemma 3.3. Let K be a limb size and let L > 0 be a specified precision.
Given a polynomial A(X,Y) ∈ R[Y] satisfying ‖A‖∞ < 2M for some M , Algo-
rithm 1 outputs a K-normalized and reduced polynomial R(X,Y) ∈ R[Y] such
that ‖(φK(A) − φK(R)) mod R‖ ≤ 2−L in O ((L + M)/K) element-wise opera-
tions (additions/subtractions or binary shifts) on N -length vectors of integers in(−2M+1, 2M+1

)
.

Lemma 3.2 and Algorithm 1 are actually a specialization of Lemma 3.3
and Algorithm 2 to the easier case K = K̃. A proof of the generic case Lemma 3.3
is given in appendix Sect.A.

Using a parameter value M such that M + 1 < 64, Algorithm 1 allows for
efficient AVX and GPU-friendly implementations.

188 M. G. Belorgey et al.

Since the representations that occur throughout a FHE computation can
be parameterized with different limb sizes, we are going to present the general
theorems using two limb sizes K and K̃ that are not necessarily the same. This
is why in the full version of the paper [3] we present a slightly more general
algorithm that converts a K-representation into a normalized K̃-representation.
Even if slightly more complex than Algorithm 1, it has the same performance.

3.1 Evaluation of External Products

Most homomorphic operations reduce to efficient evaluations of Lipschitz func-
tions. Recall that a function f : TN [X] → TN [X] is called κ-Lipschitz for some
parameter κ > 0 if ‖f(x) − f(y)‖∞ ≤ κ ‖x − y‖∞ for all x, t ∈ TN [X]. Any
continous R-module homomorphism is an external product and is therefore a
Lipschitz function (see proof in [3]), that is, fu : TN [X] → TN [X], x �→ u · x.
We thus explain how to evaluate efficiently external products. The lemma below
formalizes the following simple fact: evaluating fu up to a certain target preci-
sion 2−L amounts to evaluating the reduced and K-normalized representations
of the external products u · 2−K , . . . , u · 2− ˜K˜� for sufficiently large �̃.

The following technical lemma enables us to compute a sufficiently good
K-normalized and reduced representation of the external product u · • with a
prescribed target precision of L bits by providing (in a precomputation) suf-
ficiently good approximations of the external product of u with the negative
powers 2−Kj .

Lemma 3.4. Let u ∈ R be an integer polynomial and consider a target pre-
cision of L > 0 bits. Let K and K̃ be two positive integers (limb sizes).
Let B1(X,Y), . . . , B

˜�(X,Y) be K-normalized and reduced representations of
u · 2− ˜K , u · 2−2 ˜K , . . . , u · 2− ˜K˜� with precision (�̃N)−12−(˜K+L−1). For any K̃-

normalized and reduced bivariate polynomial A(X,Y) =
∑

˜�
i=1 Ai(X)Y i ∈ R[Y],

C(X,Y) =
˜�∑

i=1

Ai(X)Bi(X,Y) (5)

is a (non-reduced) K-representation of u · φ
˜K(A) of precision 2−L, i.e.,

∥
∥φK(C) − u · φ

˜K(A))
∥
∥

∞ ≤ 2−L and ‖C‖∞ ≤ �̃N2K+ ˜K−2.

Proof. The second bound on ‖C‖ comes from the fact that A and B are resp K

and K̃-normalized, thus each ‖Ai‖∞ and ‖Bi‖∞ are bounded by resp. 2K−1 and

2 ˜K−1. φK(C) =
∑�̃

i=1 AiφK(Bi) =
∑�̃

i=1 Ai(u · 2−K̃i + ei) where by definition,

each ‖ei‖∞ ≤ (�̃N)−12−(K+L−1). Therefore, φK(C) = u · φ
˜K(A) +

∑�̃
i=1 Aiei,

so the first inequality becomes
∥
∥
∥
∑�̃

i=1 Aiei

∥
∥
∥ which is ≤ ∑�̃

i=1 N ‖Ai‖∞ ‖ei‖∞ ≤
2−L. ��

Revisiting Key Decomposition Techniques for FHE 189

If we expand further the right-hand side of (5) viaBi(X,Y) =
∑�

j=1 Bi,j(X)Y j

for � ≤ L+1+K̃+ log2 �̃, we obtain C(X,Y) =
∑�

j=1

∑�̃
i=1 Ai(X)Bi,j(X)Y j that

can be computed using

– ��̃ internal polynomial products over R with inputs of infinity norm bounded
by 2K̃−1 and 2K−1, respectively and output of norm bounded by N ·2K̃+K−2.

– ��̃ additions of polynomials whose norm is bounded by N�̃ · 2K̃+K−2.

In most FHE operations with GSW ciphertexts such as key switching, relin-
earization, automorphisms and bootstrapping, u ∈ R depends only on the secret
key and is thus known in advance of the homomorphic operation. Anything that
depends only on u can thus be precomputed in an offline phase (in general dur-
ing the key generation) and only the cross-terms must be evaluated in an online
phase (HE evaluation). With this in mind, should we decide to use DFT over
only X, all the multiplications between Ai(X) and Bi,j(X) become element-wise
products on the DFT space and are performed separately for each power of Y .
Therefore, we obtain a nice offline/online phase separation:

Offline Phase (most often during keygen)
– ��̃ bounded DFT’s of Bi,j(X) precomputed and given as input

Online Phase
– �̃ bounded DFT’s of Ai(X)
– ��̃ element-wise multiplications in DFT domain
– ��̃ element-wise additions in DFT domain
– � bounded iDFT’s for the results Cj(X)
– O(�) element-wise additions, shifts or masks to normalize the result (if

needed)

Even if we have �2 products to evaluate, the online phase requires only a linear
number of DFT’s/iDFT’s instead of a quadratic number. Fundamentally, it is
the exact same root cause that lead [23] to its new asymptotic speedup compared
to full-RNS. The main advantage here is that we obtain the representation in a
natural way from the normalized gadget decomposition on TN [X].

3.2 External Products by Secret Polynomials over TRLWE

TRGSW ciphertexts have traditionally been used to multiply TRLWE ciphertexts by
a secret integer polynomial u ∈ R, which is the TRGSW-TRLWE external product
from [10]. As noted in [4, p.326], the homomorphic evaluation of the external
product v → s · v where s is the small TRLWE secret key could be used as an
alternative to the traditional relinearization of the quadratic term s2 originally
used in the CKKS and BFV products. This is done via a relinearization key RK =
TRGSWs(s) using an external product of the form RK � (a, 0) (see [4, Defn.3]).
However, once we propagate the zeros in this formula, we realize that the latter
requires only half of a TRGSW ciphertext and half of the running time. Also (a, 0)
has to be treated as a noiseless ciphertext, which seems a bit arbitrary. These
points are better formally explained below via a concept that we call HalfRGSW

190 M. G. Belorgey et al.

ciphertext2. The latter can be used to multiply a secret u ∈ R with a public
v ∈ TN [X] via the secret-public external product operation:

HalfRGSW(u) v → TRLWE(u · v)

rather than via the � and the full TRGSW ciphertext of s2.
For a secret u ∈ R and � TRLWE ciphertexts of zero Z := (A|B) ∈ TN [X]�×2,

the HalfRGSW is defined as

HalfRGSW(u) :=
(
A,B + u(B−1

g , . . . , B−�
g)

) ∈ TN [X]2×�,

Note that for all valid TRLWE encryption (a, b) ∈ TN [X]2 of v the element
HalfRGSW(u) b − HalfRGSW(us) a ∈ TN [X]2 is a valid TRLWE cipher-
text (under s) of the plaintext u · v. That yields a more flexible computation
of a ciphertext of u · v instead of computing the traditional external product
TRGSW(u)� (a, b), thus, justifying the principle that two halves make a whole. As
a bonus, a speed-up can be achieved by using different parameters for the two
halves, especially in small levels as in the bootstrapping of TFHE.

Definition 3.3 (bivariate RLWE ciphertexts). Let K be a limb size. A
bivRLWE ciphertext C under a small key S ∈ ZN [X] of the message m ∈ TN [X]
is materialized by a tuple (A,B) ∈ R[Y]2 of K-normalized and reduced represen-
tations whose phase ϕS,K(A,B) =

def
φK(B) − S · φK(A) is equal to m + e where

e ∈ TN [X] is a small Gaussian error. We will note bivRLWES,K,2−L(m) such
bivariate RLWE encryption of m with error bound 2−L

Note that bivRLWE ciphertexts satisfy the following prefix property : a higher
precision ciphertext with small error yields a lower precision one by simply
restricting the representation to the first few limbs (prefix). For instance, when
restricting a high precision ciphertext (A,B) of error norm ≤ 2−L+1 to degrees
�B = �(L+2)/K� and �A = �(L+2+log2 ‖S‖1)/K� in B and A, respectively, we
obtain an encryption of the same plaintext with error ≤ 2−L. The importance of
the prefix property is that it is a computation-free version of modulus switching.
We assume that all bivRLWE ciphertexts of precision 2−L are instantiated with
degrees �A, �B in Y . We also consider the bivariate HalfRGSW counterpart:

Definition 3.4 (bivariate HalfRGSW encryptions). Let K, K̃ be limb sizes,
let u ∈ R be a small polynomial of norm ‖u‖1 ≤ κ and let S ∈ R be a small
key. We define bivHalfRGSWS,K,K̃,2−L(u) (bivariate half RingGSW encryption of
u under S with precision L) to be a family of bivRLWES,K,2−L ciphertexts of
u · 2−K̃ , u · 2−2K̃ , . . . , u · 2−�̃K̃ . The family can be restricted to its first �̃ = �(L +
2+ log2 κ)/K̃� ciphertexts. If the bivHalfRGSW encryption is given in DFT basis,
we denote it by bivHalfRGSWDFT.

2 In [11] this ciphertext is called RLev, we could also name it RK(u) since it has the
shape of a relinearization key. However the GSW name better depicts the fact that
it is a ciphertext not some key material, and most importantly, the morphism is
half of the � operation.

Revisiting Key Decomposition Techniques for FHE 191

These ciphertexts also satisfy an even stronger prefix property: from any
bivHalfRGSW ciphertext C of high precision ≤ 2−(L+1), the truncations to
degrees �A, �B above of its first �̃ = �(L + 2 + log2(κ))/K̃� bivRLWE ciphertexts
form a bivHalfRGSW of the same message with lower precision ≤ 2−L.

Because of the prefix property, these ciphertexts can be passed to any func-
tion that require a lower precision level L′ < L: in this case, the function will
only access the terms of degree �′

A ≤ �A and �′
B ≤ �B from the first �̃′ ≤ �̃ ele-

ments. This property holds both on paper and also in efficient implementations,
where ciphertexts are passed by pointers.

Theorem 3.1 (half external product (secret×public)). Let u ∈ R be a
small polynomial of norm ‖u‖1 ≤ κ for some κ > 0, let a ∈ TN [X] and let L
an output precision parameter. Let Lα, Lβ ≥ L be parameters satisfying 2−Lα +
2−Lβ ≤ 2−L and let L1 = Lα +log2 κ, �̃ = �L1/K� and L2 = Lβ +K̃ +log2(N�̃).
If Cf = (c1, . . . , c�̃) is a bivHalfRGSWDFT

S,K,K̃,2−L2 encryption of u with precision ≤
2−L2 and A(X,Y) =

∑�̃
i=1 Ai ·Y i is a K̃-normalized and reduced representation

of a ∈ TN [X] up to 2−L1 then the ciphertext

Cf a = normalizeReduce

⎛

⎝iDFT

⎛

⎝
�̃∑

i=1

DFT(Ai) · ci

⎞

⎠

⎞

⎠

is a bivRLWES,K,2−L encryption of u · a. Homomorphic evaluation of such an
external product with �̃ = �L1/K̃� and � = �(L2 + log2 N + 2)/K� requires

– �̃ bounded DFT’s of the A′
is of norm ≤ 2K̃−1,

– 2��̃ element-wise addmul’s in DFT domain for polynomials of norm ≤
N�̃2 ˜K+K−2,

– 2� bounded iDFT’s for the results Cj(X) with norm bound N�̃2 ˜K+K−2,
– 2� element-wise additions/shifts/masks to normalize and truncate the result.

Proof. Letting e = a−∑
˜�
i=1 Ai · 2 ˜Ki, we have ‖e‖∞ ≤ 2−L1 . If c′

i = iDFT(ci) for
i = 1, . . . , �̃ then ϕS,K(c′

i) = u · 2−K̃i + ei where ‖ei‖∞ ≤ 2−L2 . Since Cf a =

normalizeRed(
∑�̃

i=1 Ai·c′
i), it follows that ϕS,K(Cf a) =

∑�̃
i=1 Ai·ϕS,K(c′

i) =

u ·
(∑�̃

i=1 Ai · 2− ˜Ki
)

+
∑�̃

i=1 Ai · ei, and therefore, ‖ϕS,K(Cf a) − u · a‖∞ ≤
‖u · e‖∞ +

∑�̃
i=1 ‖Ai · ei‖∞ ≤ 2−Lα + 2−Lβ ≤ 2−L. The rest of the theorem is a

simple count of operations, the degrees of ci being bounded by �. ��
The above theorem applies to the traditional key switching, automorphisms

and relinearization operations. To recover the traditional homomorphic prod-
uct of a secret u by a bivRLWE encrypted ciphertext (a, b) ∈ R[Y]2 under a
small key s ∈ ZN [X], we can use one bivHalfRGSW ciphertext Cu of u and
one bivHalfRGSW ciphertext Csu of su, and call the pair C = (Cu, Csu) a full
bivRGSW(u). The full external product is then

C � (a, b) = Cu b − Csu a. (6)

192 M. G. Belorgey et al.

Note that since the norms ‖u‖1 and ‖su‖1 in the two halves are distinct, The-
orem 3.1 suggests the use of distinct parameters for each half. This reflects the
natural property that in a RingLWE ciphertext (a, b), it suffices to provide the
term b up to a lower precision compared to the term a. In the next section, we
show that this speeds up the bootstrapping of TFHE by removing 12.5% of the
FFTs and 16.7% of the products and decompositions.

We also merge the final normalizations of the two half-products together to
obtain the following

Corollary 3.2 (full external product (secret×secret)). Let K, K̃, K̃ ′ be
limb sizes, let u ∈ R be a small polynomial, let v ∈ TN [X] be a message, let s ∈ R
a small key and and 2−L > 0 be a target output precision. For all Lα, Lβ , Lγ ≥ L

satisfying 2−Lα+2−Lβ +2−Lγ ≤ 2−L, let L1 = Lα+log2 ‖u‖1, �̃B = �(L1+2)/K̃�,
�̃A = �(L1 + 2 + log2 ‖s‖1)/K̃ ′�, L2 = Lβ + K̃ + log2(N�̃B) and L′

2 = Lγ + K̃ ′ +
log2(N�̃A). If (A,B) ∈ R[Y]2 is a bivRLWEs,K of v ∈ TN [X] with noise ≤ 2−L1 ,
if Cu = (c1, . . . , c�̃) is a bivHalfRGSWs,K, ˜K encryption of u with precision 2−L2

and if Csu = (d1, . . . , d�̃) is a bivHalfRGSWs, ˜K′ encryption of su with precision
2−L′

2 then

(Cu, Csu) � (a, b) =normalizeRed

⎛

⎝iDFT

⎛

⎝
�̃B∑

i=1

DFT(Bi) · ci −
�̃A∑

i=1

DFT(Ai) · di

⎞

⎠

⎞

⎠ ,

is a bivRLWES,K,2−L encryption of u · v. Here, A and B have been K̃ ′ and K̃-
normalized, respectively. In addition, computing this encryption with � = �(L′

2 +
log2 N + 2)/K� requires at most

– �̃A + �̃B bounded DFT’s of the Ai, Bi’s of norm ≤ 2K̃−1,
– 2�(�̃A + �̃B) element-wise addmul’s in DFT domain for polynomials of norm

≤ 2N�̃2 ˜K+K−2,
– 2� bounded iDFT’s for the results Cj(X) with norm bound 2N�̃2 ˜K+K−2,
– �̃A+ �̃B +2� element-wise additions/shifts or masks to normalize and truncate

the input ciphertext and the final result.

Proof. Let d′
i = iDFT(di) and c′

i = iDFT(ci), by the same proof as in Theorem 3.1,
ϕS,K(

∑�̃B

i=1 Bi · c′
i) = u · φ

˜K(B) + e1 where ‖e1‖∞ ≤ 2−Lβ and ϕS,K(
∑�̃A

i=1 Ai ·
d′

i) = su · φ
˜K′(A) + e2 where ‖e2‖∞ ≤ 2−Lγ . Therefore, ϕS,K(C � (A,B)) is the

difference u · (φ
˜K(B) − s · φ

˜K(A)) + e1 − e2 = u · ϕS,K(A,B) + e1 − e2. Since
ϕS,K(A,B) = v + e where e ≤ 2−L1 , we have ‖ϕS,K(C � (A,B)) − u · v‖∞ ≤
2−Lα + 2−Lβ + 2−Lγ ≤ 2−L. ��

3.3 Public Linear Combinations

The main difference and advantage of the bivariate representation, over the more
classical base-2K representation is the ability to decouple and delay carry prop-
agation, which leaves the opportunity to do a lot of linear algebra between two

Revisiting Key Decomposition Techniques for FHE 193

normalizations. The bivariate representation is linear over Z and ZN [X], so linear
combinations

∑k
i=1(λi · mi) of ciphertexts can primarily be evaluated termwise.

From a normalized representation, if the intent of normalization is to maintain
the base arithmetic bounded, e.g. by O(�N22K) like in the external product, it
leaves enough room to evaluate more than �N2K (so more than 100000) simple
additions and subtractions before a single normalization is needed. To evaluate
linear combinations with larger coefficients, where ‖λi‖∞ are larger than 2K , we
can use the same strategy as for the external product: decompose the integer
coefficients λi in base 2K to represent them under the form

∑p
j=1 ej2Kj , and

precompute the DFT of the ej ’s. (p = 2 or 3 terms are sufficient to represent
the constant coefficients λi that appear in a BFV or CKKS bootstrapping).
The linear combination is then easy to apply under this form, and requires only
O(p�) element-wise products, which is still negligible compared to the cost of an
external product.

3.4 Automorphisms in BFV and CKKS

Unlike external products that can operate with very short keys and large noise,
BFV and CKKS arithmetic usually operate on much larger parameters, where a
single limb is in general the optimal choice. For the rest of the section, we will
therefore consider that there is a unique limb size K (i.e. K = K̃).

Automorphisms of TN [X] are R-module homomorphisms. These are the rota-
tion/conjugation functions σk : TN [X] → TN [X] that substitutes the variable X
with Xk where k is odd. σk(a) can be computed efficiently in coefficient space
over the bivariate representations Z[X,Y]/〈XN + 1〉 by treating each power of
Y independently and mapping

∑�
i=1 Ai(X)Y i to

∑�
i=1 σk(Ai(X))Y i.

Over ciphertexts, we just need to observe that σ(b − sa) = σ(b) − σ(s) ·
σ(a), so given an bivHalfRGSW encryption of σ(s), we recover the well known
homomorphic evaluation:

Lemma 3.5 (Automorphism in BFV and CKKS). Let K be a limb size, let
v ∈ TN [X] be a message, let σ be an automorphism of TN [X] and let L be an
output precision parameter. For all Lα, Lβ ≥ L that satisfy 2−Lα +2−Lβ ≤ 2−L,
if (a, b) ∈ R[Y]2 is a bivRLWEs,K encryption of v ∈ TN [X] with noise 2−Lα and
Cσ(s) is a bivHalfRGSWs,K,K of σ(s) with noise 2−Lβ , then

σ ((a, b)) = (0, σ(b)) − Cσ(s) σ(a)

is a bivRLWEs,K encryption of σ(v) with noise ≤ 2−L. Note that we can omit
the normalizeReduce operation of the operation in Theorem 3.1 and compute
it at the end, after the subtraction. Computing this operation with �̃ = �Lα/K�
and � = �(Lβ + log2 N + 2)/K� requires, as in Theorem 3.1,

– �̃ bounded DFT’s of the A′
is, of norm ≤ 2K−1,

– 2��̃ element-wise addmul’s in DFT domain for polynomials of norm ≤
N�̃22K−2,

194 M. G. Belorgey et al.

– 2� bounded DFT’s for the results Cσ(s)(X) with norm bound N�̃22K−2,
– 2� element-wise additions/shifts/masks to normalize and truncate the final

result,
– (in addition to the computations in Theorem 3.1), 2� evaluations of σ over

the input Ai and Bi, of norm bound 2K .

Proof. We first verify that ϕs,K (σ ((a, b))) is close to σ(v). We com-
pute the noise level of the output as ‖ϕs,K (σ ((a, b)) − σ(v))‖∞ =
‖φK(σ(b)) − ϕs,K(Cσ(s) σ(a)) − σ(v))‖∞ = ‖σ(φK(b))) − σ(v) −
σ(sφk(a)) + σ(sφk(a)) − ϕs,K(C σ(a))‖∞ ≤ ‖σ(φK(b) − sφK(a) − v)‖∞ +∥
∥σ(sφK(a)) − ϕs,K(Cσ(s) σ(a))

∥
∥

∞. Per the LWE definition, and because σ

is an isometry, ‖σ(φK(b) − sφK(a) − v)‖∞ = ‖σ(e)‖∞ = ‖e‖∞ ≤ 2−Lα . Per
Theorem 3.1, the second term is a (half) external product noise bounded by∥
∥σ(s)σ(φK(a)) − ϕs,K(Cσ(s) σ(a))

∥
∥

∞ ≤ 2−Lβ . Summing the two, the output
noise is bounded by 2−Lα + 2−Lβ ≤ 2−L. ��

3.5 Internal Products in BFV and CKKS

In the previous section, we showed how to efficiently compute homomorphic
external products and automorphisms using leveled-FFT. We now discuss how
to efficiently compute homomorphic internal products between two TRLWE cipher-
texts as defined in Sect. 2 and in [4].

Using the notation of Sect. 2, to evaluate a BFV or CKKS product between two
RingLWE ciphertexts, we first apply (6) to the relinearization term of (1):

TRGSW(s) � (P2, 0) = bivHalfRGSW(s) 0 − bivHalfRGSW(s2) P2

After substituting the expression in (1), the internal product becomes

(a1, b1) � (a2, b2) = (P1, P0) + bivHalfRGSW(s2) P2, (7)

where P0 = b1 ⊗� b2, P2 = a1 ⊗� a2, P1 = a1 ⊗� b2 + b1 ⊗� a2 for 	 = {BFV, CKKS}
depending on whether one computes the BFV product (2) or the CKKS product
(3).

We compute the internal product using that formula by first approximating
the inputs by bivariate polynomials via the evaluation ring homomorphism (4).
Lifts from the torus to the real fields come for free, and rounding in CKKS is a
simple truncation and bit masking operation on the last limb. We then use DFT
bivariate polynomial multiplication (in X and Y) to evaluate the products ⊗�

and hence, compute approximations of P0, P1 and P2. We use DFT over X and Y
for the latter which runs in asymptotic complexity O(� log2 �) SIMD operations
on vectors of size N . This computation is asymptotically negligible compared
to the half TRGSW product in (7) that requires 2�2 such SIMD operations. In
practice, even for smaller dimensions where one may use polynomial multipli-
cation that is quadratic in �, the run-time of computing ⊗� never exceeds 75%
of the run-time of computing . We summarize the complexity in the theorem
below and provide detailed discussion of the optimizations in the full version of
the paper [3].

Revisiting Key Decomposition Techniques for FHE 195

Theorem 3.2 (CKKS/BFV product complexity). The homomorphic CKKS or
BFV product between two bivRLWE ciphertexts (a1, b1) and (a2, b2) ∈ R[Y]2 with
a relinearization key RK = bivHalfRGSW(s2) where s is the secret key requires:

– 8� DFT/IDFTs in X (including 3� of them for the external product)
– 2�2 + min

(
7� log2 � + 9�, 3

2�(� − 1) + 4�
)

SIMD operations (add, mul, addmul
or twiddle factors) on vectors of size N (including 2�2 for the external prod-
uct).

– 3� SIMD rounding/normalization operations on vectors of size N (including
2� of them in the external product).

This lemma shows that as � grows, the asymptotic complexity of an internal
product is exactly the same as that of the underlying external product (i.e.
O(�2N)) and the overhead induced by the rest of the operations is negligible.
In practice, since the SIMD operations dominate, the run-time is at most 1.75
times the running time of the underlying external product for small values of �.

We conclude this section with Table 1, which recalls the number of N -
dimensional DFT’s and the number of SIMD operations over vectors of N/2
complexes, for one half external product (so either one keyswitch or one auto-
morphism), as well as the number of such operations in one CKKS or BFV prod-
uct. Although the maximal levels for L for 128-bit security are 1761 and 880
for N = 65536 and 32768 respectively, we use L = 1729 and L = 865 as in the
implementation provided by the authors of [23] to facilitate the comparison with
their work. The table confirms that the larger we can choose the limb size K, the
less elementary operations are required. We will show in the following sections
that each choice of backend naturally comes with one maximal value of K it
can process: for instance, the double floating points FFT is limited to K = 19,
but other 128-bit constructions can afford larger limb sizes, which we explain in
Sect. 6 together with some benchmarks.

Table 1. Number of operations in one half-external product (i.e. one relinearization,
one keyswitch, or one automorphism) and in one BFV/CKKS internal product (IP). The
rows in bold correspond to the optimal value of K.

N = 65536, L = 1729 N = 32768, L = 865

K � # DFTs # SIMD # IP # IP SIMD � # DFTs # SIMD # IP # IP SIMD

prods DFTs prods prods DFTs prods

16 109 327 23762 763 30278 55 165 6050 385 8927

19 91 273 16562 637 22889 46 138 4232 322 7016

22 79 237 12482 553 18683 40 120 3200 280 5600

...

46 38 114 2888 266 5054 19 57 722 133 1263

49 36 108 2592 252 4536 18 54 648 126 1134

52 34 102 2312 238 4046 17 51 578 119 1011

196 M. G. Belorgey et al.

The dominant part of the computation is spent in the SIMD products (or
assimilated), the cost of the DFTs remains very small. K = 19 is the largest limb-
size achieved via float64 FFT whereas K = 52 is achieved via 120-bit NTT.
Because elementary operations are faster in the first case, it compensates the
additional number of operations, and the two backends end up give similar final
running time: SIMD products for N = 65536 are micro-benchmarked at 27μs
in the float64 scenario, whereas the equivalent counterpart for 120-bit NTT
take 93μs. The number of SIMD products per internal product in Table 1 is an
upper-bound that considers the best choice between the naive multiplication in
3�(� − 1)/2 and the DFT one in O(� log2(�)). Because � has to be rounded up
to the next power of two, some nodes in the resulting Cooley-Tuckey recursion
would compute zeros: these nodes have been eliminated from the count in this
table.

4 Accelerating TFHE Gate Bootstrapping

In this section, we show how the concept of halfTRGSW can speed-up the TFHE
library [33]. One TFHE gate bootstrapping is computing n = 630 successive
TRGSW-TRLWE external products. We defer to the noise propagation analysis in [9]
and the lattice estimator [1] for the explanations on lattice security but in sum-
mary, there are two constraints on the external products:

– Lattice security constraint. Any TRLWE or TRGSW ciphertext encrypted with
an N = 1024 dimensional key (binary or ternary) must have a noise vari-
ance parameter of at least VGSW = 2−50 (stdev 2−25) to provide 128-bits of
security.

– Correctness of bootstrapping constraint. Each individual external product out-
put shall make the noise variance grow by at most Δmax = 8.4961.10−8 to
ensure that the final ciphertext is decryptable.

Since the ratio between Δmax/VGSW is very small, we have to pick the exter-
nal product parameters with extreme care. For instance, it is unrealistic to try to
take K = K̃, instead, the choice in TFHE is to decrease K̃ as much as needed to
contain the noise growth of TRGSW ciphertexts, and maintain K to a fixed value
32, so that TRLWE use a single limb of 32-bits, and correspond to our bivRLWE
with � = 1. Also, the worst-case bounds on noise amplitude increase too fast
compared to the reality: as it is shown in LWE, we can use the average-case
noise propagation formula, which is essentially a transcription of the worst-case
theorems where all noises are assimilated to independent Gaussian samples and
the theorem operates on their variance instead of their infinity norm.

With this in mind, in TFHE, the noise propagation of a TRGSW-TRLWE external
product (adapted to use the notations of this paper), between a TRGSW ciphertext
of error variance VGSW for a decomposition in �̃ limbs of K̃ bits, and an input
TRLWE ciphertext of noise variance Vin, is:

Vout − Vin ≤ 2�̃N4 ˜K−1VGSW + (1 + N︸︷︷︸
‖S‖2

2

)4− ˜K�̃−1. (8)

Revisiting Key Decomposition Techniques for FHE 197

The choices of K̃, �̃ in TFHE library are 7 and 3, which correspond to a variance
growth of 2.2410.10−8 < Δmax per external product. As we know that the run-
ning time of TFHE is proportional to the number of FFTs per external products,
this number is 2�̃ + 2 = 8.

We can also see that any attempt to reduce the number of FFTs by setting
�̃ = 2 for instance fails, as no more limb size K̃ exists that makes Vout − Vin in
Eq. (8) smaller than Δmax. That’s precisely where the concept of HalfRGSW helps:
if the input TRLWE is (A,B), and we are allowed to pick different parameters and
dimensions K̃A, �̃A and K̃B , �̃B , the variance growth bound of Eq. (8) becomes,
by analogy with our Corollary 3.2:

(
�̃AN4 ˜KA−1VGSW + N · 4− ˜KA �̃A−1

)
+

(
�̃BN4 ˜KB−1VGSW + 1 · 4− ˜KB �̃B−1

)

Not unsurprisingly, the term in K̃A, �̃A is already tight, so the value (7, 3)
remains optimal. However the absence of the factor N in the second term (ana-
logue of ‖s‖1 in worst-case formulae, which only affects the half external product
term in A) gives us much more flexibility on the choices of K̃B , �̃B . It turns out
that we can finally reduce �̃B to 2 and use K̃B = 8. We indeed obtain the fol-
lowing variance growth: 2.986053 · 10−8 for the half external product in A and
1.1234 · 10−8 for the one in B, and we verify that the sum 4.10946 · 10−8 stays
≤ Δmax, and is thus suitable for bootstrapping.

Because of that improvement compared to the TFHE library default parameter
set, the number of FFTs in TFHE decreases to �̃A + �̃B + 2 = 7 instead of 8
per external product (so 12.5% less FFTs), and the other linear operations,
decompositions, and matrix multiplications also drop by 16.6%, since the outer
loop has only 5 iterations instead of 6.

Table 2. Performance comparison of gate bootstrapping with a n2-standard GCP
instance with 64GB of RAM and a 12-th Gen i7-1260p laptop with 64GB of RAM. All
the benchmarks are single core.

Library Instruction set n2-standard 12-Gen i7-1260p

TFHE-lib, spqlios-fma AVX2 22.4 ms 10.4 ms

TFHE-rs, TFHE LIB PARAMETERS AVX2 18.2 ms 8.6 ms

AVX512 14.4 ms not supported

TFHE-rs, DEFAULT PARAMETERS AVX2 14.4 ms 7.6 ms

AVX512 13.7 ms not supported

Our work, halfTRGSW AVX2 11.2 ms 5.3 ms

We first implemented this concept as a simple patch to the original TFHE
library by overriding the tGswExternMulToTLwe function and removing the last
iteration of the loop. On a n2-standard Xeon, we already witnessed a decrease

198 M. G. Belorgey et al.

of the NAND gate bootstrapping by 3ms which matches the expected theoret-
ical speedup. In order to compare our proof-of-concept to the fastest CPU
bootstrapping whose reference implementation is the TFHE-rs library [36], we
then extracted and re-implemented the entire blindrotate woKS loop obtaining
another 2x speedup by back-porting the following engineering improvements:
from the TFHE-rs optimizations, we used the fast AVX floating-point flooring,
conversions to and from integer and bit-decompositions that work on bounded
floating-point numbers that are never infinite, NaN, or subnormal. We also
dropped completely the round-trip to the int32/int64 and reduced the num-
bers modulo Z directly over their floating point bits, so that the entire blind
rotate procedure operates solely on the double-floating point precision domain.
Finally, we incorporated the latest improvements from fast implementations of
Falcon to the complex FFT described in [28, sec.5]: namely instead of evaluat-
ing the log2(N/2) iterations of the FFT circuit one after the other, we execute
them two by two and thus save half of the memory accesses. The last four iter-
ations, that operate contiguously on vectors of 16 complex numbers are run
entirely on registers. We did however not backport the DEFAULT PARAMETERS
optimization of TFHE-rs that consists of trading the ring dimension N against
an increase of the module dimension, nor any AVX512 optimizations. Our proto-
type uses therefore only AVX2 instructions. Finally, since we did not have access
to a Xeon Platinum, we have run our experiments on two different architectures:
one “slow” cloud instance, which is a GCP n2-standard Xeon CPU Cascade Lake
at 2.8 GHz with 4 cores, 8vCPU and 64 GB of RAM (left column of Table 2),
and one “fast” laptop with a AlderLake Core i7-1260P at 4.7 GHz with 64 GB
of RAM (right column of Table 2). The fast laptop does not have AVX512, whose
support was discontinued by Intel, but it has a much higher cache and memory
access rates than the Cascade Lake counterpart, so timings on this machine are
often very close to those published with a bare metal server with a Xeon Plat-
inum: overall, Table 2 gives a neat intuition of the range of performance we can
expect depending on the CPU. The combination of the half external product
and all the other engineering optimizations described in this paragraph make
our new bootstrapping running time as low as 5.3 milliseconds per NAND gate,
which is the new single core record, even though it sticks to a traditional ring-lwe
parameter-set and does not use any AVX512 instructions.

5 Frontend and Large Number Arithmetic: Bivariate
Versus CRT Representations

The main idea in both [23] and the present work is the decoupling of the cyclo-
tomic arithmetic (the backend representation) from the large number arith-
metic (the frontend representation) in BFV, CKKS, TFHE and Chimera which,
in turn, allows to fully benefit from the small polynomial coefficients pro-
duced by the gadget decomposition. Taking one step further, both works sug-
gest a frontend/backend separation where TRLWE ciphertexts are represented
non-uniquely by their gadget decomposition: a vector of small polynomials

Revisiting Key Decomposition Techniques for FHE 199

∈ (ZN [X])�. The content of the vector being the coefficients in Y for the bivariate
representation, the centered and reduced coefficients mod qi for CRT represen-
tations, and in general any other gadget-decomposed representation. Similarly,
half-TRGSW ciphertexts would correspond to a matrix of � × 2� small integer
polynomials. The most complex operation that arises in the external product
is an efficient vector × matrix product, where the matrix is preprocessed in an
offline phase. The online phase of the product is carried out by the backend
API using the appropriate DFTs. Cheaper operations are of course, element-
wise additions, scaling, rotations and automorphisms, as well as normalization
whose role is to keep the representation small. Depending on the frontend, the
bivariate approach benefits from the fact that modulus rescaling just requires
a prefix truncation of the normalized representation, but has a O(�. log2(�)) ⊗�

products. CRT frontends have a more expensive modulus rescaling, but faster
O(�) internal products. With the operations described in Sect. 3.2, the bivari-
ate and CRT frontends can be instantiated on the same backend API and offer
similar performance. CRT frontends should be preferred for use-cases involv-
ing large homomorphic matrix products, as the external products and modulus
rescaling can in these cases be amortized, and the frontend benefits from the
faster ⊗� products. On the opposite, the bivariate frontend is preferred when
the use cases have fewer internal products and rely on lookup-tables, trace algo-
rithms, circuit bootstrappings or when the homomorphic internal products are
sequential. These use cases benefit from the fact that ⊗CKKS can be instantiated at
any noise level L on the bivariate frontend, rather than at integer multiplicative
levels (multiples of log2(qi)) in the CRT frontend. A more in-depth comparison
is provided in [3]. Finally, since the external product is fast on both frontends
(the CRT one via [23], and the bivariate one from Sect. 3.2), the half-external
product can be used to switch dynamically between both on more complex use
cases, which is also interesting from a scheme switching perspective.

6 Backend Arithmetic and Cyclotomic Multiplications:
Approximate FFT or NTT

At a low level, we need efficient arithmetic (additions and multiplications) in
the cyclotomic ring R where the coefficients of the polynomials are integers
bounded by B′

worst = 2�N2K+ ˜K−2 in the worst case. We can get a tighter
average case bound if we pay closer attention to the expressions present in
the previous section. We then notice that it is sufficient for such arithmetic
to be able to successfully evaluate, with overwhelming probability, expressions
of the form

∑2�
i=1 ai(X) · bi(X) where a, b have their coefficients computationally

indistinguishable from uniformly distributed in respectively [−2K−1,−2K−1)
and [−2 ˜K−1,−2 ˜K−1). Indeed, these inputs are base-2K decompositions of LWE
ciphertexts or fresh GSW ciphertexts, and any computational bias against the
uniform distribution would form an attack on these schemes. In other words, if we
randomize bivRLWE ciphertexts during normalization (e.g. we can always mask
them with random ciphertexts of zero), with an overwhelming probability 1 − ε

200 M. G. Belorgey et al.

the arithmetic just needs to handle elements of size B′
avg = Cε

√
2�N2K+K′−2

instead of the worst case B′
worst = 2�N2K+K′−2. We will use Cε = 17 in this

section, that corresponds to an error probability ε < 2−40.
We present two equivalently good ways of handling such arithmetic: floating

point or fixed-point approximations of the continuous FFT on backends whose
mantissa can store B′, or NTT over a friendly modulus larger than B′. The
underlying arithmetic must be sufficiently atomic to be considered as native
operations, therefore we will limit ourselves to 64-bit or 128-bit B′.

In a nutshell, the main result is that each choice of backend is bound to a
precision B′ and lead to a maximal limb size K: for all practical HE dimensions,
the float64 backend corresponds to K ≤ 19, the float128 backend (or fixed-
point backends via 104-bit arithmetic in AVX IFMA) would correspond to K ≤ 49,
doing NTT over a 60-bits modulus corresponds to K ≤ 22, and K ≤ 52 for a 120-
bit modulus. And the key takeaway is that the most important success factor for
a backend to be FHE friendly is to support the largest machine-word arithmetic;
it is much less important if that arithmetic is modulo a power of two (fixed-point
FFT), modulo a user-friendly prime number (NTT), or floating point (FFT).

6.1 Floating Point Backends

The first choice when it comes to FFT on bounded numbers is floating point
backends. This algorithm is well studied and has been successfully used in
the TFHE library since its origins. A näıve application of the formula B′

avg =

Cε

√
2�N2K+ ˜K−2 for K = K̃ and provided that we can use the 52 bits of

mantissa without loss would bound K around 19. However, a lot of interme-
diate floating point operations occur between the start of the FFT, the prod-
ucts, the inverse FFT and we have to guarantee that the final error remains
bounded by 1/2 to be recoverable by rounding. We decided to treat the problem
experimentally, by sampling uniformly random polynomials A(X), B(X) ∈ R
with coefficients ∈ [−2K−1, 2K−1), multiplying these two polynomials via C =
iFFT (FFT (A) ∗ FFT (B)) using 64-bit double-precision floats, and measuring
the amplitude and the standard deviation of the error C − AB, as a function
of N and K. The results are provided in Table 3 and the following paragraphs
describe the experiment in more detail. From these measurements, we estimate
the probability that a sum of such terms satisfy

∥
∥
∥
∑2�

i=1 Ci − AiBi

∥
∥
∥

∞
< 1/2,

which is sufficient to recover the actual result by rounding.

Lemma 6.1. Let �,N ∈ N and ε > 0. The maximal value of σ such that with
probability ≥ 1 − ε, the sum v =

∑2�
i=1 vi of 2� independent real vectors vi ∈ R

N

with independent Gaussian coordinates of mean 0 and stdev σ is bounded by
‖v∞‖ < 1/2 is σ ≤ 1/

(√
16�erfinv

(
(1 − ε)1/N

))
.

For a target probability error ε = 2−40, N = 65536 and � = 100, the max-
imum σ is 0.00414. Experimentally we have observed that for those values the
largest limb size we can choose is K = 19 for 64-bit words. We obtain the same

Revisiting Key Decomposition Techniques for FHE 201

result with N = 32768. For completeness, we have run the same experiment with
128-bit words (float128) that have a mantissa of 112 bits. In this case we see
that we can choose K = 48, however the obtained σ is very close and we could
even choose K = 49 given that � is going to be much smaller than 100 due to
the constraints outlined in Table 1.

Table 3 shows the results of these experiments for different values of K and
N for 64-bit (double) and 128-bit (float128) words. The objective is to find
the largest value of K for a given error boundary.

Unfortunately, to this date, float128 is not a primitive type on x86 archi-
tectures and it’s not available in all targets either. Additionally, float128 oper-
ations provide a poor performance compared to AVX accelerated doubles. Our
experiment shows that due to the increased limb size K, large precision floats
have potential, but without any dedicated hardware support, quad floats are
not performant enough for our homomorphic backends. As an opening, we could
however investigate the newer AVX-IFMA extensions set, whose instructions are
already available on most recent commodity CPUs. These instructions allow
to easily emulate 104-bit fixed-point arithmetic, and seems to be a perfect
hardware-accelerated candidate for FFT computations, on a large limb sizes.

Table 3. Experimental standard deviation of floating point errors after a sum of FFT
products for given N and varying K with 64 and 128-bit floats. The columns in bold
correspond to the optimal value of K.

N 64-bit representation 128-bit representation

65536 17 18 19 20 21 47 48 49 50 51 K

0.0002 0.0008 0.0031 0.0124 0.0498 0.0003 0.0011 0.00416 0.0169 0.067 σ

32768 17 18 19 20 21 47 48 49 50 51 K

0.0001 0.0005 0.0021 0.0085 0.034 0.0002 0.0007 0.0028 0.0112 0.0448 σ

6.2 NTT Backends over a Fixed Modulus

As an alternative to FFT over the complex numbers, it is well known that
cyclotomic multiplications can also be carried out by NTT, which has been the
default choice in the Full-RNS representation and later in [23]. All we need is
a choice of one modulus or a product of moduli larger than B′ that are NTT-
friendly (unlike the frontend-ones in the CRT-representation) and replace all
DFTs by NTT. NTT over moduli that are products of 30-bit or 60-bit primes
can be accelerated on processors supporting AVX2 extensions of x86 architectures.
Note that due to the overhead necessary for modular reductions as well as the
missing support for native 64-bit SIMD integer multiplication on AVX23, one
NTT on a 30-bit modulus requires the same number of clock cycles as one FFT
on 64-bit floating points. Similarly, all NVIDIA GPUs provide native support

3 Originally, AVX2 was supporting mainly floating point operations with 32-bit floats
and 64-bit doubles - it was much later that integer operations were introduced.
Today, not all 64-bit integer operations are supported - e.g., it was only recently
that SIMD multiplications of vectors of 64-bit integers were introduced in AVX512

and recently, Intel has disabled AVX512 in AlderLake processors.

202 M. G. Belorgey et al.

for only 32-bit SIMT integer multiplication, thus, requiring emulation for larger
(64-bit or more) SIMT integer multiplication.

Therefore, the best trade-off we have under the above constraints is to target
120-bit modulus NTT since the larger supported limb size K = 52 reduces
the number of elementary operations in an external product: 120-bit NTT with
K = 52 that has approximately the same running time as the 64-bit floating
point FFT counterpart with K = 19 (the evidence for the latter can be deduced
by combining the data from Table 1 with the micro-benchmarks from Table 4
below).

Table 4. DFT and SIMD arithmetic operations on a Xeon 2.8GHz n2-standard with
64GB of RAM instance. All benchmarks are single core.

backend float64 FFT float128 FFT 60-bit NTT 120-bit NTT

K 19 49 22 52

N 64k 32k 64k 32k 64k 32k 64k 32k

DFT/iDFT 125μs 57μs 60.3ms 28.4ms 534μs 243μs 1342μs 541μs

SIMD addmul/twiddle 27μs 9μs 2.17ms 1.07ms 49μs 28μs 93μs 48μs

automorphism 58μs 29μs 68μs 33μs 68μs 33μs 92μs 45μs

Comparative micro-benchmarks between floating point and NTT elementary
operations are provided in Table 4: one DFT/iDFT operation is either an FFT
or an NTT on a consecutive array of N elements. The float64 and float128
FFT operations are self-explanatory, whereas in 60-bit or 120-bit NTT, an ele-
ment x is represented by two or four (lazily-reduced) 64-bit integers equal to x
modulo (q1, q2) or (q1, q2, q3, q4), respectively. One SIMD addmul/twiddle con-
sists of either one operation r = r + ab over vectors in C

N/2 or (Z/QZ)N or one
twiddle-factor (a, b) → (a+ω ·b, a−ω ·b) where ω is a fixed (general) root of unity,
whichever is slower. For N = 32K or 64K, the twiddle factor is in general 10%
faster than the addmul, despite the fact that it contains one more subtraction,
which indicates that these operations are memory-bound. float64, and the two
NTTs use AVX2 instructions, whereas float128 is powered by libquadmath and
does not benefit from any particular acceleration except for automorphisms that
use only copy and sign-bit flipping.

We also provide benchmarks of homomorphic elementary operations
in Table 5. We used the same parameter sets: (N = 65536, L = 1729) and
(N = 32768, L = 865) as in [23]. The fast CKKS-RNS benchmarks have been
run from the source code provided in [23] on the same machine as our own
benchmarks. We evaluated the performance on the same machines as in Sect. 4:
one n2-standard GCP instance with 64GB of RAM, and one 12-th Gen i7-1260p
laptop with 64GB of RAM (Top and Down parts of Table 5). We expect that
the performance numbers in these tables will be in constant evolution, as new
hardware tend to support larger precision arithmetic. However, unlike what was

Revisiting Key Decomposition Techniques for FHE 203

commonly believed so far, any chip or device that can: either efficiently approx-
imate the complex FFT with reasonable precision, or execute NTT on even just
one single NTT-friendly modulus of reasonable size, is suitable for fast homo-
morphic computations at any depth. The efficiency of such device is directly
related to the number of bits of mantissa or modulus it natively supports.

Table 5. Total running time per homomorphic operation over RLWE ciphertexts: CRT
representations for full-RNS and [23], bivariate representations in our case. We recall
that we use L = 1729 and L = 865 as in the implementation provided by [23].

Operation Keyswitch Automorphism CKKS product

Size N = 64k N = 32k N = 64k N = 64k

L=1729 L=865 L=1729 L=1729

Hardware n2-standard VM Xeon(R) CPU @ 2.8 GHz, 64 GB RAM

- Full-RNS (best r) 3.111 s 0.359 s 3.279 s 3.311 s

- [23] (best r) 0.965 s 0.161 s 1.134 s 1.155 s

- ours: biv + fft-f64 (K = 19) 0.589 s 0.086 s 0.602 s 0.862 s

- ours: biv + ntt120 (K = 52) 0.541 s 0.073 s 0.547 s 0.777 s

Hardware Laptop with Intel Core i7-1260P @ 4.7 GHz, 64 GB RAM

- Full-RNS (best r) 1.598 s 0.192 s 1.796 s 1.759 s

- [23] (best r) 0.521 s 0.085 s 0.578 s 0.598 s

- ours: biv + fft-f64 (K = 19) 0.228 s 0.027 s 0.233 s 0.335 s

- ours: biv + ntt120 (K = 52) 0.218 s 0.029 s 0.221 s 0.314 s

Conclusion

In this paper we extend the key decomposition techniques from [23] by using
a simpler and more natural base-2K representation. It allows a better under-
standing of the parametrization of TFHE, CKKS and BFV schemes, which in turn
speeds-up not only the main operations in CKKS and BFV schemes, but also low-
depth computations in TFHE.

A Appendix: Normalization and Reduction Lemma
Proof

Proof of Lemma 3.3. Let n = �(L + M)/K� be the number of algorithm
iterations. Let acc(i) be accumulator value after step 3 of iteration i and let
acc(n+1) = 0. At iteration i, n ≥ i ≥ 1, we have:

acc(i) = Ai + εi+1 and Ri = acc(i) − εi2K , (9)

204 M. G. Belorgey et al.

here εi =
⌊
acc(i)2−K

⌋
and has integer values. The evaluation of result polyno-

mial at 2−K gives:

φK (R) =
�∑

i=1

Ri2−iK =
�∑

i=1

(
Ai + εi+1 − εi2K

)
2−iK .

Expanding the sum and simplifying common expressions we obtain:

φK (R) =
�∑

i=1

Ai2−iK + ε�+12−�K − ε1

Now, we will prove that ‖(φK(A) − φK(R)) mod R‖∞ is smaller than 2−L. We
have:

φK(A) − φK(R) = A0 +
∑

�<i

Ai2−iK − ε(�+1)2−�K + ε1.

Observe that terms A0 and ε1 are integers and are reduced by modR operation,
we obtain:

(φK(A) − φK(R)) mod R =
∑

�<i

Ai2−iK − ε�+12−�K .

From (9) it is easy to see that Ai −εi2K ≡ Ri −εi+1. Using previous relations
we have:

(φK(A)− φK(R)) mod R = 2−(�+1)K(A�+1 − ε�+12
K) +

∑

�+1<i

Ai2
−iK

= 2−(�+1)KR�+1 +
∑

�+1<i

Ai2
−iK − ε�+22

−(�+1)K = · · · =
n

∑

i=�+1

Ri2
−iK +

∑

n<i

Ai2
−iK .

Looking at the infinity norm we have:

‖(φK(A) − φK(R)) mod R‖∞ =

∥
∥
∥
∥
∥

n∑

i=�+1

Ri2−iK +
∑

n<i

Ai2−iK

∥
∥
∥
∥
∥

∞

<

∥
∥
∥
∥
∥

n∑

i=�+1

2−iK+K +
∑

n<i

2−iK+M

∥
∥
∥
∥
∥

∞
≤ 2−�K+1 ≤ 2−L.

Element-wise operations are on integers in interval
(−2M+1, 2M+1

)
.

The accumulator variable acc (at step 3) has the largest values during algo-
rithm execution. We will prove that its magnitude (i.e. infinity norm) never
exceeds 2M+1.

Algorithm step 3 increases accumulator value by at most 2M and step 5
divides the new value by 2K . After the first iteration, we have

∥
∥acc(n)

∥
∥

∞ < 2M ,
after second iteration

∥
∥acc(n−1)

∥
∥

∞ < 2M−K + 2M and so on until the last
iteration where we have

∥
∥acc(1)

∥
∥

∞ <
∑

0≤i<n 2M−iK , which is the maximum

Revisiting Key Decomposition Techniques for FHE 205

accumulator magnitude attained during algorithm execution. We can rewrite the
last expression as:

∥
∥
∥acc(1)

∥
∥
∥

∞
<

∑

0≤i<n

2M−iK = 2M ·
∑

0≤i<n

2−iK < 2M · 2 = 2M+1,

which proves the accumulator bound.
Complexity Algorithm steps 3-5 are executed �(L + M)/K� times. In each

iteration 5 operations are performed: an addition (step 3), 3 shifts (2 in step 4 and
1 in step 5) and a subtraction (step 4). The overall complexity of the algorithm
is 5 · �(L + M)/K� element-wise operations. ��

In this paragraph we introduce Algorithm 2, a general conversion and normal-
ization with two limb size K and K̃. This algorithm is a slightly more complex
than Algorithm 1 with K = K̃, since it must handle additional binary shifts to
synchronize the limb sizes, and thus, the for loop on a single index k is replaced
by two while loops and two indexes k, k̃ that decrease at their respective speed.
Besides that, it follows the same principle as the single-limb normalization.

Algorithm 2. Conversion, Normalization and Reduction (from K to K̃).

Input: A target precision of L bits, an input limb size K and an output limb size ˜K
Input: An input polynomial A(X, Y) =

∑

k∈Z≥0
Ak(X)Y k satisfying ‖A‖∞ ≤ 2B

Output: A ˜K-normalized and reduced polynomial R(X, Y) of degree ≤ �L/K̃� in Y
such that ‖φK̃(R) − φK(A)‖∞ ≤ 2−L.

1: k = �(L + B)/K�, ˜k = �(L + B)/K̃�
2: acc(X) = �Ak(X) · 2

˜k ˜K−kK�
3: while ˜k ≥ 1 do
4: while (˜k − 1) ˜K < (k − 1)K do

5: acc(X) ← acc(X) + Ak−1(X) · 2(k−1)K−(˜k−1) ˜K

6: k ← k − 1
7: end while
8: R

˜k(X) ← centermod
2K̃ (acc(X))

9: acc(X) ← (acc(X) − R
˜k(X))/2

˜K

10: ˜k ← ˜k − 1
11: end while
12: Return R(X, Y) =

∑�L/K�
k=1 Rk(X)Y k

206 M. G. Belorgey et al.

References

1. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

2. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV like
somewhat homomorphic encryption schemes. In Selected Areas in Cryptography –
SAC 2016, pages 423–442. Springer, 2017.

3. M. G. Belorgey, S. Carpov, N. Gama, S. Guasch, and D. Jetchev. Revisiting key
decomposition techniques for FHE: Simpler, faster and more generic. Cryptology
ePrint Archive, Paper 2023/771, 2023.

4. C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: combining ring-
lwe-based fully homomorphic encryption schemes. J. Math. Cryptol., 14(1):316–
338, 2020.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Innovations in Theoretical Computer Sci-
ence 2012, pages 309–325. ACM, 2012.

6. R. Cammarota. Intel HERACLES: homomorphic encryption revolutionary accel-
erator with correctness for learning-oriented end-to-end solutions. In Proceedings
of the 2022 on Cloud Computing Security Workshop, CCSW. ACM, 2022.

7. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full rns variant of approx-
imate homomorphic encryption. Selected areas in cryptography : ... annual inter-
national workshop, SAC ... proceedings. SAC, 11349:347–368, 2018.

8. J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in Cryptology - ASIACRYPT,
Part I, pages 409–437. Springer, 2017.

9. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT 2016,
Proceedings, Part I, volume 10031 of LNCS, pages 3–33. Springer, 2016.

10. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: fast fully homo-
morphic encryption over the torus. J. Cryptol., 33(1):34–91, 2020.

11. I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap. Improved programmable bootstrap-
ping with larger precision and efficient arithmetic circuits for tfhe. In M. Tibouchi
and H. Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 670–
699, Cham, 2021. Springer International Publishing.

12. J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

13. M. Creeger. The rise of fully homomorphic encryption: Often called the holy grail
of cryptography, commercial FHE is near. ACM Queue, 20(4):39–60, 2022.

14. DARPA. DARPA:data protection in virtual environments (DPRIVE).
15. K. Derya, A. C. Mert, E. Öztürk, and E. Savas. Coha-ntt: A configurable hardware

accelerator for ntt-based polynomial multiplication. Microprocess. Microsystems,
89:104451, 2022.

16. L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in
less than a second. In EUROCRYPT 2015, Proceedings, Part I, volume 9056 of
LNCS, pages 617–640. Springer, 2015.

17. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch., page 144, 2012.

18. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages
169–178. ACM, 2009.

Revisiting Key Decomposition Techniques for FHE 207

19. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes circuit.
In Advances in Cryptology – CRYPTO 2012, pages 850–867. Springer, 2012.

20. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

21. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO
2013, Proceedings, Part I, volume 8042 of LNCS, pages 75–92. Springer, 2013.

22. S. Halevi, Y. Polyakov, and V. Shoup. An improved rns variant of the bfv homomor-
phic encryption scheme. In Topics in Cryptology – CT-RSA 2019, pages 83–105.
Springer, 2019.

23. M. Kim, D. Lee, J. Seo, and Y. Song. Accelerating he operations from key decompo-
sition technique. In Advances in Cryptology – CRYPTO 2023: 43rd Annual Inter-
national Cryptology Conference, Proceedings, Part IV. Springer-Verlag, 2023.

24. I. Kundu, E. Cottle, F. Michel, J. Wilson, and N. New. The dawn of energy efficient
computing: Optically accelerating the fast fourier transform core. In Photonics in
Switching and Computing 2021. Optica Publishing Group, 2021.

25. Y. Lee, S. Heo, S. Cheon, S. Jeong, C. Kim, E. Kim, D. Lee, and H. Kim. Hecate:
Performance-aware scale optimization for homomorphic encryption compiler. In
2022 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 193–204, 2022.

26. V. Lyubashevsky, C. Peikert, and O. Regev. EUROCRYPT, chapter On Ideal
Lattices and Learning with Errors over Rings, pages 1–23. Springer, 2010.

27. A. C. Mert, E. Öztürk, and E. Savas. FPGA implementation of a run-time config-
urable ntt-based polynomial multiplication hardware. Microprocess. Microsystems,
78:103219, 2020.

28. D. T. Nguyen and K. Gaj. Fast falcon signature generation and verification using
armv8 neon instructions. In Progress in Cryptology - AFRICACRYPT 2023, pages
417–441. Springer, 2023.

29. Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savas. Efficient number the-
oretic transform implementation on GPU for homomorphic encryption. J. Super-
comput., 78(2):2840–2872, 2022.

30. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

31. S. S. Roy, F. Turan, K. Järvinen, F. Vercauteren, and I. Verbauwhede. FPGA-based
high-performance parallel architecture for homomorphic computing on encrypted
data. In 25th IEEE International Symposium on High Performance Computer
Architecture, pages 387–398. IEEE, 2019.

32. A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing
(Arch. Elektron. Rechnen), 7:281–292, 1971.

33. TFHE-lib. TFHE: Fast Fully Homomorphic Encryption over the Torus. https://
tfhe.github.io/tfhe/.

34. F. Turan, S. S. Roy, and I. Verbauwhede. HEAWS: an accelerator for homomorphic
encryption on the amazon AWS FPGA. IEEE Trans. Computers, 2020.

35. E. R. Türkoglu, A. S. Özcan, C. Ayduman, A. C. Mert, E. Öztürk, and E. Savas. An
accelerated GPU library for homomorphic encryption operations of BFV scheme.
In IEEE International Symposium on Circuits and Systems, 2022.

36. Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data, 2024. https://github.com/zama-
ai/tfhe-rs.

https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

Relaxed Functional Bootstrapping:
A New Perspective on BGV/BFV

Bootstrapping

Zeyu Liu(B) and Yunhao Wang

Yale University, New Haven, CT, USA

zeyu.liu@yale.edu

Abstract. BGV and BFV are among the most widely used fully homo-
morphic encryption (FHE) schemes, supporting evaluations over a finite
field. To evaluate a circuit with arbitrary depth, bootstrapping is needed.
However, despite the recent progress, bootstrapping of BGV/BFV still
remains relatively impractical, compared to other FHE schemes.

In this work, we inspect the BGV/BFV bootstrapping procedure from
a different angle. We provide a generalized bootstrapping definition that
relaxes the correctness requirement of regular bootstrapping, allowing
constructions that support only certain kinds of circuits with arbitrary
depth. In addition, our definition captures a form of functional boot-
strapping. In other words, the output encrypts a function evaluation of
the input instead of the input itself.

Under this new definition, we provide a bootstrapping procedure
supporting different types of functions. Our construction is 1–2 orders
of magnitude faster than the state-of-the-art BGV/BFV bootstrapping
algorithms, depending on the evaluated function.

Of independent interest, we show that our technique can be used to
improve the batched FHEW/TFHE bootstrapping construction intro-
duced by Liu and Wang (Asiacrypt 2023). Our optimization provides a
speed-up of 6x in latency and 3x in throughput for binary gate boot-
strapping and a plaintext-space-dependent speed-up for functional boot-
strapping with plaintext space smaller than Z512.

1 Introduction

Fully Homomorphic Encryption (FHE) allows one to securely compute over
encrypted data without the knowledge of the secret key or interaction with
the owner of the data, thus resulting in a very strong primitive. FHE was first
realized by Gentry in the groundbreaking work [27]. Since then, there have been
lots of works trying to improve the efficiency of FHE [6–9,17,18,21,22,28].

These works follow a similar paradigm as Gentry’s original work: a cipher-
text contains some initial noise and each operation (e.g., multiplications and
additions) introduces some additional noise; the initial parameter provides some
noise budget, and if the noise budget is used up when carrying out operations

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 208–240, 2025.
https://doi.org/10.1007/978-981-96-0875-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_7&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_7

Relaxed Functional Bootstrapping: A New Perspective 209

(i.e., the noise has grown to be close to some threshold), computations cannot
be continued. This is thus called the Leveled Homomorphic Encryption (LHE).
To make LHE indeed FHE, one needs an additional operation: bootstrapping.

Essentially, bootstrapping takes a ciphertext with a relatively large error
(i.e., only a small amount of noise budget left) and outputs a new ciphertext
encrypting the same plaintext with a relatively small error (i.e., a large amount
of noise budget left). With bootstrapping, one can evaluate circuits of arbitrary
depths. Bootstrapping itself is very costly and a lot of work has been done to
improve the efficiency of bootstrapping (e.g., [13,16,18,21,50]).

Among all the FHE schemes, one critical line of work is BGV/BFV [6,7,22],
which has a very important property called “Same Instruction Multiple Data”
(SIMD), i.e., one BFV ciphertext encrypts a vector of D � 1 Zt elements (in
D slots). Then, any operation over a ciphertext is done over all these D Zt

elements (element-wise). The state-of-the-art framework for BGV/BFV boot-
strapping was first introduced in [32] and later improved in [14,25,26,56]. While
the most recent work [56] has asymptotically achieved a very efficient construc-
tion (requiring only a logarithmic number of ciphertext multiplications), the
practicality is still relatively limited. Concretely, to bootstrap for a single ele-
ment (amortized over D slots) in Z257, the state-of-the-art BFV bootstrapping
construction takes ∼0.17 s [56]. The main issue is that to design a suitable boot-
strapping scheme for arbitrary circuits, these works make use of some algebraic
structure to improve the efficiency and thus do not take full advantage of the
SIMD capability of BGV/BFV. Thus, the amortized cost of every slot is still
relatively large.

However, in some cases, supporting arbitrary circuits might be an overkill.
In some circuits, there might exist some sub-circuit C such that the output is
only a subset of the entire plaintext space Zt, or only a subset of Zt is taken
as input. In other words, we have C : X → Y where Y ⊂ Zt, or C ′ : X ′ → Y ′

where X ′ ⊂ Zt. This means that if the bootstrapping comes after C or before
C ′, only the plaintext values in Y or X ′ need to be bootstrapped, respectively.
Conditional branching serves as a great example here: if x ∈ [u, v],1outputs
y; if x ∈ [u′, v′], outputs y′. This branching can then be modeled as a circuit
f : Xf → Yf , where Xf := [u, v] ∪ [u′, v′] and Yf := {y, y′}. Both Xf and Yf are
only a (small) subset of Zt.

In fact, such circuits are common in many applications, like oblivious permu-
tation [23], PSI with computation [35], secure machine learning [20,36,41,42,52],
and so on. See Sect. 7 for more examples and detailed discussions. Therefore, the
first natural question we ask in this paper is:

Can we achieve better efficiency by relaxing the requirement of supporting
arbitrary circuits? In other words, if we only allow bootstrapping input to be a
subset of the entire plaintext space, can we do bootstrapping more efficiently?

Another inefficiency of regular bootstrapping comes from the fact that, as
a standalone component, the bootstrapping procedure itself does not directly
contribute to evaluating the target circuit. Every effort spent on bootstrapping
is an extra cost. Therefore, the second question we pose is:

1 [u, v] denotes {u, u + 1, . . . , v}.

210 Z. Liu and Y. Wang

Can we achieve better efficiency by embedding bootstrapping into the circuit?
In other words, can we do bootstrapping while evaluating a circuit like C or C ′

without introducing much overhead?
In this paper, we make solid progress in both directions. Due to space reasons,

please see our full version [51] for deferred details and clarifications.

1.1 Our Contribution

Definition of Generalized Functional Bootstrapping. We propose a new
generalized definition of BFV bootstrapping. The definition captures the most
fundamental requirement of bootstrapping (i.e., the output ciphertext has a
larger noise budget than the input ciphertext), but also allows some relaxation
on the functionality: the output ciphertext does not need to provide correctness
for all plaintexts, but only a predetermined subset of the plaintext space. In
other words, for the input ciphertexts encrypting invalid plaintexts (i.e., not in
that subset), the construction may output a ciphertext encrypting an arbitrary
plaintext, since an expected output is not defined. This relaxation allows us to
develop more efficient bootstrapping constructions for valid inputs.

Moreover, the definition captures a form of functional bootstrapping, which
means that the output encrypts f(x) instead of x, where x is the valid input
plaintext and f is some predetermined function. This allows the bootstrapping
itself to be embedded into the circuit for better efficiency.

As an auxiliary property, we define closeness, which captures how the output
behaves when the inputs are invalid. Instead of arbitrary output for invalid input,
the algorithm returns the expected output of some valid input points close to
the invalid input in the plaintext space. This property provides extra flexibility
and might be useful in some applications.

Constructions of Generalized Functional Bootstrapping. In addition,
we show a general framework for this (relaxed) BFV bootstrapping. While our
framework cannot be used to achieve regular bootstrapping, we show that it
can be used to efficiently achieve relaxed bootstrapping while evaluating three
different types of functions:

– Point functions: the function takes m points and maps them to m points.
This type of function is like an arbitrary lookup table, but only the specified
m points are valid inputs, where m � t for t being the plaintext modulus.
The runtime is essentially linear in c ·m (where c is some tuneable parameter)
instead of t as in regular BFV bootstrapping constructions.

– Range functions: the function takes k ranges and maps them to k points,
each range containing m consecutive points2. This type of function is more
limited, but can be evaluated more efficiently: even if there are m · k valid
input points, the runtime cost is only (m + c) · k instead of c · m · k.

– Unbalanced range functions: the function takes 2 ranges and maps them into
2 different points, where the first range contains m1 points and the second

2 Each range may contain a different amount of points, but for simplicity here, we
assume they all have m points.

Relaxed Functional Bootstrapping: A New Perspective 211

range contains m2 � m1 points. This is a special case of the range functions.
However, with m2 � m1, we construct a bootstrapping scheme running in
m1 + c + log(t) time, which is much more efficient than the m1 + m2 + 2c
(the efficiency of applying the algorithm for the general range functions). We
also extend this result to functions with k > 2 ranges, where the k-th range
is larger than all the other ranges combined. In this case, our construction
can evaluate it more efficiently than evaluating it as normal range functions.

We implement our construction as a C++ library, and show that it is indeed
concretely more efficient than regular BFV bootstrapping: the amortized cost is
about 1–2 orders of magnitude faster than regular BFV bootstrapping, depend-
ing on the function that is evaluated by our functional bootstrapping procedure.

To showcase the practicality of our construction, in Sect. 7 we specifically
demonstrate that our relaxed functional bootstrapping constructions could bring
a 20x speedup to oblivious permutation [23] compared to using the bootstrap-
ping from prior works, and also discuss some other applications that could take
advantage of our constructions.

Batched LWE Ciphertexts Bootstrapping. As an independent contribu-
tion, we show that our techniques can be applied to improve the batched func-
tional bootstrapping construction for LWE ciphertexts introduced by [50]. Our
benchmark shows that for binary-gate batched bootstrapping, our construction
is about 3x faster than [50]. Moreover, with optimizations allowing the runtime
to scale with the plaintext space, our construction greatly brings down the over-
all bootstrapping runtime for smaller plaintext space. Compared to the uniform
runtime for any plaintext space smaller than Z512 in the prior work, our work is
more efficient when considering the functional/programmable bootstrapping for
plaintext space with 3–8-bit.

1.2 Related Work

BFV Bootstrapping. All the prior works about BFV bootstrapping are regular
bootstrapping whose goal is simply to reduce the error (or equivalently increase
the noise budget) of the input ciphertexts [6,14,22,26,32]. This allows one to
evaluate circuits with arbitrary depth.

In Table 1, we compare our result with the prior works on regular BFV boot-
strapping [14,25,26,32,56]. Our protocol supports several different types of func-
tions: fpts maps a random set X to another random set Y, with |Y| ≤ |X | ≤
t/r�
(for Zt being the plaintext space, and r = O(

√
h) where h is the hamming

weight of the BFV secret key); franges represents a range-to-point mapping for
multiple ranges, while fub maps one range to some point and the other much
larger range3 to another point (i.e., an unbalanced range mapping). Note that
franges and fub both map ranges to points and both require the ranges to be
separated by r (for example, if the inputs are composed of k ranges, we need

3 Can be almost as large as all the other points in Zt.

212 Z. Liu and Y. Wang

[ui − r/2, vi + r/2]∩ [uj − r/2, vj + r/2] = ∅ for all i �= j ∈ [k]). f1 and f2 are two
additional types of functions that serve as stepping stones toward our final con-
struction, where f1 is the identity function on a subset of Zt with static intervals
r, and f2 is its generalized version with potentially small static intervals.

The closenessproperty is a new property we define additional to standard
correctness (which does not put any constraint on invalid inputs): for any invalid
input, the output still needs to be the outputs of one of the closest � valid input
points to that invalid input. This property can be useful in some applications
but is not a hard requirement as constructions may take advantage of not having
it for better efficiency. See Sect. 7 for further discussion regarding applications
(with and without closenessrequirement).

In Sect. 5.2, we provide an alternative construction to evaluate the type franges
(i.e., type (2) function of our result). This alternative construction is more effi-
cient when the k-th range is larger than the other k − 1 ranges combined and
provides k-closeness (Definition 2). Let the total size of the first k − 1 ranges
be S. The depth is log(S + r(k − 1)) + log(t); number of scalar multiplications
is S; and the number of non-scalar multiplications is S + log(t). To avoid extra
complexity, we do not include it in the table.

From Table 1, we can see that the total cost of our construction is dependent
on the functions and thus more fine-grained. For example, for fpts, if |X| = O(1),
our construction cost can also be O(1) (as r = O(

√
h) and h is viewed as a

constant in prior works [26, Section 7.2]). Note that since function f1, f2 can be
treated as special cases of fpts, they achieve the same efficiency asymptotically
as fpts. On the other hand, although fub is also a special case of franges, fub is
both asymptotically and concretely more efficient when |v1 − u1| � |v2 − u2|
(due to symmetry, it also works for functions with |v1 − u1| � |v2 − u2|).

Lastly, our construction supports a lot more slots: N compared to N/d. In
practice, d � 1. For example, for the parameters tested in [14], N/d ≈ √

N (we
refer readers to the caption of Table 1 for more detailed parameter definitions).
Thus, prior works inherently support a lot fewer slots due to their techniques
and can hardly be extended. Thus, our amortized efficiency is much better than
prior works.

Method-wise, our construction uses a different idea to reduce costs. [14,26,32]
focuses on temporarily enlarging the plaintext space to accommodate the partial
decryption value. In more detail, when computing b−〈�a, sk〉 for ciphertext (�a, b),4

instead of computing it over Zte , they compute it over Zte′ for some e′ > 1
satisfying b − 〈�a, sk〉 � te

′
when evaluated in the integer domain; thus, they

obtain k · t + m + ε < te
′

for some integer k. To recover m, one of their main
steps is then to remove k · t. In contrast, our construction directly computes the
partial decryption over Zt, and thus do not need this step.

A recent work [56] explores the algebraic structure of the plaintext space, they
can reduce the number of non-scalar multiplications from O(

√
p) to O(log(p))

(other works in the table has O(
√

p) non-scalar multiplications instead). Despite

4 Notice that for readability, we use LWE ciphertext as an illustration here, while in
the construction, we use RLWE ciphertext instead.

Relaxed Functional Bootstrapping: A New Perspective 213

Table 1. Asymptotic behavior of our construction compared to prior works on regular
BFV bootstrapping (ignoring some constants). [a, b, c] := {a, a + c, a + 2c, . . . , b} (i.e.,
the set of all the integers x ∈ [a, b] such that x − a divides c), where c divides b − a,
p is some small prime satisfying gcd(p, m) = 1, e ≥ 1, the plaintext space is given as
pe, and d the multiplicative order of p in Z

∗
2N . t is some prime satisfying t ≡ 1mod2N ,

and r = O(
√

h) is the modulus switching error range. Concretely speaking, for most
practical parameters benchmarked in our work and prior works, t ≈ pe (or t � pe for
some parameters [25,56]). h is the hamming weight of the secret key, and r = O(

√
h).

At a high level, �-closenessmeans that the output of all the out-of-the-range invalid
inputs are mapped to the evaluation result of one of their closest � valid inputs. Depth
here means the multiplicative depth of the bootstrapping circuit. Due to space reasons,
most of the pseudocode are deferred to our full version [51], so please refer to our full
version [51] for the same table with better readability and pointers.

Supported functions Depth
of scalar

multiplications

of non-scalar

multiplications

Plaintext

space
slots

Closeness

(Definition 2)

Regular BFV

Bootstrapping

[14,25,26,32,56]

Identity function

over the entire

plaintext space

log(h) + log log(pe)
logp(h) · (logp(h) + e) · p

(logp(h) · (
√

e+

logp(h)) · log p)
R(pe, d)

N/d N/A

(logp(h)·(logp(h)+e)·p)
d

(logp(h) · (
√

e+

logp(h)) · log p)/d
Zpe

Our result

(1) fpts : X → Y

X, Y ⊂ Zt

log(|X| · r) |X| · r
√|X| · r

Zt N

� = |Y|, if |X| = t−1
r

;

no, o.w.

(2) franges(m) = yi if m ∈ [ui, vi]

ui, vi, yi ∈ Zt, i ∈ [k], k ≥ 2
log(

∑
i∈[k](|vi − ui| + r))

∑
i∈[k](|vi − ui| + r)

√∑
i∈[k](|vi − ui| + r)

� = 2 with overhead

(Remark 4)

(3) fub(m) = yi if m ∈ [ui, vi]

ui, vi, yi ∈ Zt, i ∈ [2]
log(|v1 − u1| + r) + log(t) 1 |v1 − u1| + r + log(t) � = 2

Our result

(Stepping stone)

(4) f1 : identity function

over [0, t − 1, r]
log(t) t

√
t � = 2

(5) f2 : [u, v, r′] → Y

u, v, r′ ∈ Zt, Y ⊂ Zt

log(r(v − u)/r′) r(v − u)/r′ √
r(v − u)/r′ � = 2, if r′ = r;

� = |Y|, o.w.

their interesting techniques and great asymptotic improvement, it still only sup-
ports N/d slots, and concretely, the construction is only about 1.6x faster than
the prior constructions [14]. We provide a concrete comparison in Sect. 6.

Recent Concurrent Works. There are two very recent concurrent and inde-
pendent works [38,53] on regular BGV/BFV bootstrapping. They have different
pros and cons compared to our work. Another very recent work [40] also studies
BGV/BFV functional bootstrapping. They have similar functionality as ours,
but since they follow ideas from prior regular BGV/BFV bootstrapping works
(in Table 1), their construction has worse efficiency than ours. Due to space con-
straints, we discuss these works in our full version [51] in more detail, from both
an analytical and concrete point of view.

CKKS Bootstrapping. CKKS bootstrapping is another line of work [5,13,
33,34,39,43,44]. Similar to regular BFV bootstrapping, CKKS bootstrapping
also only supports (approximate) identity function. Unlike BFV, CKKS instead
computes with (approximate) real numbers. Therefore, their decryption process
takes a different strategy from our construction or the BFV bootstrapping: they
use sine to approximate a mod function, and then use a polynomial function
to approximate the sine function. This path also makes it inherently hard to
support any form of functional bootstrapping.

214 Z. Liu and Y. Wang

(Batched) FHEW/TFHE Bootstrapping. FHEW/TFHE bootstrapping
[18,21,45] focuses on bootstrapping for a single LWE ciphertext. Recently, some
works bootstrap multiple LWE ciphertexts at the same time, denoted as batched
bootstrapping [29,48–50,54,55]. This line of work also supports arbitrary func-
tion evaluation during bootstrapping. Looking ahead, some of our techniques
can be applied to improve the batched bootstrapping method proposed in [50],
as discussed in Sect. 8.

Functionality-wise, our major advantage over batched FHEW/TFHE boot-
strapping is that our bootstrapping is embedded inside BFV circuits. One can
easily perform multiplications and additions before or after our bootstrapping,
which is inherently hard in the FHEW/TFHE case.

2 Preliminary

Let N be a power of two. Let [u, v, r] denote the range from u to v with step
value r (i.e., [u, v, r] := {u, u + r, u + 2r, . . . , v} and r divides u − v). Let R =
Z[X]/(XN + 1) denote the 2N -th cyclotomic ring where N is a power-of-two,
and RQ = R/QR for some Q ∈ Z. Let [n] denote the set {1, . . . , n}. Let �a
denote a vector and �a[i] denote the i-th element of �a. Similarly, if A is a matrix,
let A[i][j] denote the element on the i-th row and j-th column of matrix A. Let
‖�x‖� denote the �-norm for vector �x (calculated as (

∑
i∈|�x| �x[i]�)1/�). If x ∈ R,

let ‖x‖� denote the �-norm of the coefficient vector of x, and let x[i] denote
the i-th coefficient of x. Unless otherwise specified, the key is taken implicitly
and correctly for functions (e.g., Dec(ct) where ct is some LWE ciphertext and
Dec is the decryption procedure of LWE scheme). All the divisions (i.e., a/b
or a

b) and roundings (i.e., �·� , �·� ,
·�) are performed in real numbers. All the
other operations (including a−1) are performed in finite field Zt for some prime
t (where t is specified if not obvious), unless otherwise noted.

2.1 B/FV Leveled Homomorphic Encryption

The BFV leveled homomorphic encryption scheme is first introduced in [6] using
standard LWE assumption, and later adapted to ring LWE assumption by [22].

Given a polynomial ∈ Rt = Zt[X]/(XN + 1), the BFV scheme encrypts it
into a ciphertext consisting of two polynomials, where each polynomial is from a
larger cyclotomic ring RQ = ZQ[X]/(XN + 1) for some Q > t. We refer t as the
plaintext modulus, Q as the ciphertext modulus, and N as the ring dimension.
t satisfies that t ≡ 1mod2N , where N is a power of two.5

Plaintext Encoding. In practice, instead of having a polynomial in Rt =
Zt[X]/(XN + 1) to encrypt, applications usually have a vector of messages �m =

5 Note that this is the relationship between t, N does not need to be satisfied in
general (e.g., see [30,31] for the general encoding). However, throughout our paper,
we suppose it holds to maximize the concrete efficiency and thus introduce it this
way for simplicity.

Relaxed Functional Bootstrapping: A New Perspective 215

(m1, . . . , mN) ∈ Z
N
t . Thus, to encrypt such input messages, BFV first encodes

it by constructing another polynomial y(X) =
∑

i∈[N] yiX
i−1 where mi = y(ζj),

ζj := ζ3
j

modt, and ζ is the 2N -th primitive root of unity of t. Such encoding
can be done using an Inverse Number Theoretic Transformation (INTT), which
is a linear transformation represented as matrix multiplication.

Encryption and Decryption. The BFV ciphertext encrypting �m under sk ←
D has the following format: ct = (a, b) ∈ R2

Q, which satisfies b−a·sk =
Q/t�·y+e
where
Q/t� · y ∈ RQ and y is the polynomial encoded in the way above, and e
is a small error term sampled from a Gaussian distribution over RQ with some
constant standard deviation.

Symmetric key encryption can be done by simply sampling a random a and
constructing b accordingly using sk. Public key encryption can also be achieved
easily but it is not relevant to our paper so we refer the readers to prior works
(e.g., [6,22,37]) for details.

Decryption is thus calculating y′ ← �(t/Q) · (b − a · sk)� ∈ Rt (note that
(b−a·sk) is done over RQ), and then decodes it by applying a procedure to revert
the encoding process (which is also a linear transformation). For simplicity, we
assume BFV.Dec also embeds the decoding procedure and thus outputs plaintext
y′ ∈ Z

N
t in the decoded form directly (instead of a polynomial y ∈ Rt). Similarly,

we assume BFV.Enc contains the encoding process, thus taking a plaintext y′ ∈
Z

N
t . In addition, define PartialDec(sk, ct = (a, b) ∈ R2

Q) := b − a · sk ∈ RQ (i.e.,
decryption without performing the rounding to Rt).

BFV Operations. BFV essentially supports addition, multiplication, rotation,
and polynomial function evaluation, satisfying the following property:

– (Addition) BFV.Dec(ct1 + ct2) = BFV.Dec(ct1) + BFV.Dec(ct2)
– (Multiplication) BFV.Dec(ct1 × ct2) = BFV.Dec(ct1) × BFV.Dec(ct2)
– (Rotation) BFV.Dec(rot(ct, j))[i] = BFV.Dec(ct)[i + j (mod N)],∀i, j ∈ [N]
– (Polynomial evaluation) BFV.Dec(BFV.Eval(ct, f)) = f(BFV.Dec(ct)), where

f : Zt → Zt is a polynomial function. Note that this is implied by addition
and multiplication.

– (Vector-matrix multiplication) BFV.Dec(ct × A) = BFV.Dec(ct) × A, where
A ∈ Z

N×D
t for any D > 0.

Given a BFV ciphertext ct and its corresponding secret key sk, we also assume
that its noise budget can be derived via interface B(sk, ct). A noise budget is
essentially the gap between the plaintext encrypted under ct and the noise inside
ct, which is used to allow operations (e.g., multiplications) over the ciphertexts.
For simplicity, B with subscripts is also used to refer to hardcoded noise budget
bounds (e.g., Bin represents the noise budget requirement of the input).

All operations are operated over the entire plaintext vector m ∈ Z
N
t (element-

wise). Thus, all messages need to be evaluated using the same polynomial f by
default. This is also known as the Single Instruction Multiple Data (SIMD) prop-
erty of BFV. Note that vector-matrix multiplication can be realized using scalar
multiplication (implied by addition) and rotation. All of these BFV operations

216 Z. Liu and Y. Wang

are used as blackboxes in our main constructions and we refer the readers to
[6,22,30,32,37] to see how these operations are accomplished in detail. In this
paper, we sometimes directly refer to the interfaces (e.g., Dec) for short without
the BFV prefix (e.g., BFV.Dec).

3 Definition of Generalized BFV Bootstrapping

We first define a more general BFV bootstrapping procedure.6 As discussed in
Sect. 1, the main goal of this generalized definition is to capture (1) the relax-
ation that not the entire plaintext space needs to be valid, and for the invalid
plaintexts, the corresponding correctness does not need to be guaranteed by
the construction; (2) the bootstrapping itself contains an evaluation of a given
function, thus making the bootstrapping procedure itself more useful and can
be embedded directly into the circuit without inducing stand-alone bootstrap-
ping overhead. These two properties are captured as follows: given a function
f : X → Y and input ciphertext encrypting x ∈ X , after the bootstrapping
procedure, the output ciphertext encrypts y = f(x) ∈ Y. If x �∈ X , the output
is not defined, and thus can be arbitrarily decided by the construction.

The definition also captures the most basic requirement of bootstrapping: the
output ciphertext has more noise budget (or equivalently less noise) compared
to the input ciphertext, such that bootstrapping can be used to support circuits
with arbitrary depth.

Formally, the general BFV bootstrapping procedure is defined as follows,
consisting of two PPT algorithms:

– pp = (N, t,Bin,Bout,F , ppaux), sk, btk ← Setup(1λ): Setup takes a security
parameter λ, and outputs a secret key sk, a bootstrapping key btk, and a
public parameter pp including ring dimension N , plaintext space t, input
noise budget Bin, output noise budget Bout, a function family F , and auxil-
iary public parameters ppaux.

– ct′ ← Boot(pp, btk, f, ct): takes the public parameter pp, a bootstrapping key
btk, a function f ∈ F , a ciphertext ct and outputs a ciphertext ct′.

Definition 1 (Correctness). The bootstrapping procedure is correct, if it sat-
isfies the following: let (pp = (N, t,Bin,Bout,F , ppaux), sk, btk) ← Setup(1λ), for
any function f : X → Y ∈ F (where X ,Y ⊆ Zt and |X | ≥ |Y| ≥ 2),7 any
honest input ciphertext ct with B(sk, ct) ≥ Bin, let ct′ ← Boot(pp, btk, f, ct),
�m ← Dec(sk, ct) ∈ Z

N
t , �m′ ← Dec(sk, ct′) ∈ Z

N
t , it holds that:

Pr
[∀ i ∈ [N], if �m[i] ∈ X , f(�m[i]) = �m′[i]

∧ B(sk, ct′) ≥ Bout > Bin

]

≥ 1 − negl(λ)

6 We focus on BFV in this work, but all our results can be directly transformed to
BGV with minimum modification (e.g., with techniques in [3, Sec A]).

7 For |Y| = |[y]| = 1, a trivial yet valid bootstrapping is to directly output a BFV
ciphertext with all slots encrypting y.

Relaxed Functional Bootstrapping: A New Perspective 217

In some cases, applications may require that even if x �∈ X , the result does not
“deviate” too much (such that the error can be predicted and algorithmically
handled). To capture this demand, we define an additional property we call
“�-closeness”. Essentially, it means that even if x �∈ X , the output ciphertext
encrypts y ∈ S, where S ⊆ Y contains the evaluation results of the � points of X
that are the “closest” to x (for a point x′ ∈ X , the smaller |x − x′| is, the closer
x′ and x are).

Note that this property is auxiliary to the regular correctness, and may not
be needed in some applications (see Sect. 7 for discussion). Looking ahead, some
of our constructions achieve the closenessproperty while some do not. The ones
that do not achieve it take advantage of such further relaxation to achieve even
better efficiency. With these in mind, we define �-closenessformally as follows.

Definition 2 (�-closeness). The bootstrapping procedure is �-close, if it satis-
fies the following: for the same quantifiers as correctness; for all x ∈ Zt \ X , let
yx,1, . . . , yx,|Y| denote all the points in Y satisfying |f−1

x (yx,1)−x| ≤ |f−1
x (yx,2)−

x| ≤ · · · ≤ |f−1
x (yx,|Y|) − x|,8,9 and Sx := {yx,1, . . . , yx,�}; it holds that for all

i ∈ [N], if �m[i] �∈ X : Pr
[
f(�m[i]) ∈ S�m[i]

]
> 1 − negl(λ)10

Remark 1. The regular BFV bootstrapping, which only supports F = {I} with
I : Zt → Zt being the identity function, is a special case of our definition.

Remark 2. Naturally, we want at least Bout > Bin + B×, where B× is the noise
budget needed for one multiplication. Thus, after every bootstrapping, the out-
put ciphertext can perform at least one multiplication (which implies one addi-
tion for BFV) before the next bootstrapping. However, for generality, we sim-
ply require Bout > Bin, the minimum requirement for a non-trivial bootstrap-
ping scheme (without evaluating a non-identity function), and leave the value of
Bout − Bin to be tuned based on applications during setup.

4 Our General Framework for Bootstrapping

In this section, we propose a (relaxed) BFV bootstrapping framework. In
Sect. 4.1, we start with a simple function (the identity function over a subset of
the plaintext space) to show how the general framework works. Then in Sect. 4.2,
we use a generalized type of function to show how the framework can be used for
more versatile functions. These two types of functions work as stepping stones
to fully introduce our framework. We later show in Sect. 5 how the framework
works for more general types of function families.

8 Let f−1
x (y) denote a point z where f(z) = y and z − x = minz′∈X ,f(z′)=y(z′ − x).

In other words, f−1
x (y) outputs a point that is (1) a valid input in X ; and (2) is the

close to x among all possible points z′ satisfying f(z′) = y.
9 If |f−1

x (yx,i) − x| = |f−1
x (yx,j) − x| for i
= j, then any order is accepted.

10 The randomness is taken over the input ciphertext and the generated keys.

218 Z. Liu and Y. Wang

4.1 Bootstrap for Identity Function f1 over [0, t − 1, r]

As a stepping stone, let us first consider the identity function. Different from
prior works that focus on identity mapping on all values in Zt, we define f1 with
input consisting of a set of points X ⊂ Zt. This allows us to construct a more
efficient bootstrapping scheme.

Let X := [0, t − 1, r], for some 1 ≤ r < t (r to-be-fixed later). Denote �m ∈
Z

N
t ← Dec(sk, ctin), where ctin is the input ciphertext, sk is the corresponding

secret key, t is the plaintext space, and N is the ring dimension. Our goal is
to compute ctout ← Boot(·, ·, ctin, f1) such that for all i ∈ [N], if �m[i] ∈ X ,
�m′[i] = �m[i], where �m′ ← Dec(sk, ctout).

Decoding the Input Ciphertext. Recall that as introduced in Sect. 2, to
encrypt a message �m ∈ Z

N
t , BFV constructs a ciphertext ct that encrypts a

polynomial y(X) encoding �m. Formally speaking, let ct = (a, b) ∈ R2
Q, it holds

that b−a · sk ≈
Q/t� ·y, where y(X) =
∑

i∈[N] y[i]Xi−1 ∈ Rt, satisfying �m[i] =

y(ζi) (where ζi := ζ3
i

) for all i ∈ [N] (ζ is the 2N -th primitive root of unity
of t). Thus, the very first step for bootstrapping (i.e., homomorphic decryption)
is to perform a decoding, homomorphically changing the encrypted y(X) into
m(X) :=

∑
i∈[N] �m[i]Xi−1 by computing ct1 ← ct · Uᵀ homomorphically with:

U :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ζ0 ζ2
0 ... ζN−1

0
...

...
...

. . .
...

1 ζ N
2 −1 ζ2

N
2 −1

... ζN−1
N
2 −1

1 ζ̄0 ζ̄2
0 ... ζ̄N−1

0
...

...
...

. . .
...

1 ζ̄ N
2 −1 ζ̄2

N
2 −1

... ζ̄N−1
N
2 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
N×N
t as the SlotToCoeff step in [50].

Switching Modulus. Now we have a ciphertext ct1 = (a1, b1) ∈ R2
Q, encrypt-

ing m(X) ∈ Rt defined above. Recall that the plaintext space of the underlying
BFV scheme is Zt. Therefore, to homomorphically decrypt ct1, we need to first
match the modulus by performing a modulus switching: ct2 ← �t · (a1, b1)/Q� ∈
R2

t . Notice that with ct1 = (a1, b1) satisfying b1 − a1 · sk = α · m + e (where
α =
Q/t�), for some small noise term e ∈ RQ. After modulus switching, we have
ct2 = (a2, b2) satisfying b2−a2·sk = m+e′, where e′(X) :=

∑
i∈[N] e

′[i]Xi−1 ∈ Rt

is some noise term dominated by the error introduced through modulus switch-
ing, which might “contaminate” the correct message m.

Fortunately, we do not need to correctly decrypt all possible values in Zt,
but instead, only consider the correct decryption of m[i] ∈ [0, t−1, r]; for invalid
values in Zt \ [0, t − 1, r], we do not need to guarantee the correctness per
Definition 1. Therefore, we fix r to be the smallest positive integer such that
Pr[‖e′[i]‖ < r/2] ≥ 1 − negl(λ) for all i ∈ [N].11

This means that for m[i] ∈ [0, t − 1, r], m[i] + e′[i] ∈ (m[i] − r/2,m[i] + r/2),
Rounding m[i]+e′[i] to the nearest value in [0, t−1, r] then gives us exactly m[i],
11 For simplicity, we assume r divides t − 1. This is w.l.o.g because we can make the

range [0, t − t′, r] where t − t′ is the largest multiple of r with t > 0. This change
does not affect the main point or technique of this paper.

Relaxed Functional Bootstrapping: A New Perspective 219

which provides the correct decryption. Formally speaking, with ct2 = (a2, b2),
let m′(X) :=

∑
m′[i]Xi−1 ← b2 − a2 · sk, it holds that r

⌈
m′[i]

r

⌋
= �m[i] ∈ Zt,

for all i ∈ [N], except with negligible probability. With these, we proceed to
introduce how the homomorphic decryption is done.
Analysis of t and r. One may wonder whether this t is always possible to
achieve given that we need t > r. Luckily, this is easy: since the modulus switch-
ing error, as mentioned in [21, Lemma 5], is O(

√
h) where h is the hamming

weight of the secret key.12 Thus, we simply need to set t = ω(
√

h). To utilize
the full SIMD power of the BFV scheme, one needs to set t > N such that
t ≡ 1mod2N (as discussed in Sect. 2), and thus t = Ω(N) = ω

√
h (for ternary

or binary secret keys). Note that prior works [14,25,26,32,56] similarly require
the keys to be ternary or binary (or more commonly a sparse key with some
fixed hamming weight), as they need to bound the wrap-around over Zt as well
to perform the digit extraction method. Furthermore, most existing implemen-
tations of BFV [1,4,57] use a ternary secret key. Thus, we believe our parameter
setting is easily achievable.

Homomorphic Decryption. The final step is to homomorphically decrypt
ct2. Note that now ct2 ∈ R2

t , and the plaintext modulus is t. Therefore, we
can simply homomorphically compute b2 − a2 · sk over Zt by utilizing the free
mod operation. Compared to prior works [14,26,32], which need to perform
plaintext space switching, our construction is much simpler. In more detail, our
homomorphic decryption is carried out in two steps:

– First, given ct2 = (a2, b2) ∈ R2
t , we evaluate a partial decryption process

PartialDec(sk, ct2), which computes b2 − ctsk ×A2, where ctsk is the encrypted

sk under BFV, A2 :=

⎛

⎜
⎜
⎝

a2[1] a2[2] a2[3] ... a2[N]
−a2[N] a2[1] a2[2] ... a2[N−1]

−a2[N−1] −a2[N] a2[1] ... a2[N−2]
...

...
...

. . .
...

−a2[2] −a2[3] −a2[4] ... a2[1]

⎞

⎟
⎟
⎠ ∈ Z

N×N
t (i.e., the

matrix representation of ring element a ∈ Rt), and ctsk × A2 is homomorphi-
cally computed as a vector-matrix multiplication. The resulting ciphertext is
denoted as ct3.

– With ciphertext ct3 encrypting (m′[1], . . . ,m′[N]) ∈ Z
N
t (recall that m′ =

m+e′ for some small error e′), we then simply need to compute r
⌈

m′
i

r

⌋
over Zt

for all i ∈ [N]. This can be done by interpolating a function fpost(x) : Zt → Zt,
s.t., for all x ∈ Zt, fpost(x) = r

⌈
x
r

⌋
via Lagrange interpolation. The resulting

ciphertext, denoted as ctout, encrypts the same message as ctin as desired.

Bootstrapping Key and Noise Setup. Lastly, we discuss what the bootstrap-
ping key contains. Since we need to homomorphically decrypt the ciphertext ct2,
12 Note that this is the modulus switching error of the LWE ciphertexts, which we can

achieve by simply transforming one RLWE ciphertext to N LWE ciphertexts using
the SampleExtract procedure as discussed incite [18]. One may also simply bound
the modulus switching error of RLWE as discussed in [37], which is O(

√
N) for

binary/ternary secrets.

220 Z. Liu and Y. Wang

Algorithm 1. BFV Bootstrapping for f1 : [0, t − 1, r] → [0, t − 1, r]
1: procedure Setup(1λ)
2: Select (N, Q, D, σ, Bin, Bout, t) satisfying the following while minimizing the over-

all computation cost of Boot below:
3: (1) RLWEN,Q,D,χσ holds.
4: (2) Select the minimum Bin such that a BFV ciphertext with ring dimension N ,

plaintext space t, and noise budget Bin, is enough to evaluate SlotToCoeff.
5: (3) Select the minimum Q such that a fresh BFV ciphertext with ring dimension

N , plaintext space t, and ciphertext space Q, after evaluating PartialDec followed
by fpost, still has Bout = Bin + 1 noise budget remaining. � Bout can be replaced by
any number dependent on applications.

6: Let r be the error bound such that Pr[|err(sk, ct3)| < r/2] ≥ 1 − negl(λ), where
ct3 is in line 16 below.

7: Let ppbfv := (N, Q, D, σ, t).
8: sk, btk ← KeyGen(1λ, ppbfv)
9: F1 := {f1(x) := x iff x ∈ [0, t − 1, r]}

10: return pp = (N, t, Bin, Bout, F1, ppaux = r), sk, btk).

11: procedure Boot(pp = (N, t, Bin, Bout, F , ppaux = r), btk, ctin, f1)
12: If f1
∈ F1, abort.
13: fpost(x) := r

⌈
x
r

⌋

14: ct1 ← ctin × Uᵀ (evaluated homomorphically)
15: � Recall that U is defined in Section 4.1 and this step is SlotToCoeff
16: ct2 ← ModSwitch(ct1, t)
17: Parse ct2 = (a2 =

∑
i∈[N] a2,iX

i−1, b2 =
∑

i∈[N] b2,iX
i−1) ∈ R2

t

18: Let A2 be the matrix representation of a2, and �b2 ← (b2,i)i∈[N] ∈ Z
N
t

19: ct3 ← �b2 − ctsk × A2 (evaluated homomorphically) � i.e., PartialDec(ct2, sk)
20: ctout ← BFV.Eval(evk, ct3, fpost)
21: return ctout.

we need to include ctsk which is the encrypted sk under BFV. Moreover, BFV
public keys pk and BFV evaluation keys evk, the keys needed to evaluate the
circuits in the construction (e.g., the relinearization key and the rotation keys13),
are all included in the bootstrapping key.

We also need to specify the input noise budget and output noise budget.
Bin is set to be enough for evaluating the SlotToCoeff step, and Q to be large
enough to evaluate fpost such that afterwards there are still at least Bout > Bin

noise budget left.
To finalize the algorithm of BFV bootstrapping for our identity function f1,

we need to do some preparation work in the Setup phase, including choosing
all public parameters such as the ring dimension N and the plaintext space
t. The bootstrapping keys are generated as discussed above. Finally, we define
fpost(x) := r

⌈
x
r

⌋
. The procedure is formalized in Algorithm 1.

13 For simplicity, we assume all possible rotation keys are generated. Later, we discuss
how to only generate the necessary ones.

Relaxed Functional Bootstrapping: A New Perspective 221

Theorem 1. Algorithm 1 is a correct BFV functional bootstrapping (Defini-
tion 1) procedure with function family F := {f(x) = x,∀x ∈ [0, t − 1, r]} where
t, r are from pp generated by Setup, assuming the correctness of BFV. Further-
more, it is 2-close(Definition 2).

Proof. Given that the underlying BFV is correct (i.e., all the homomorphic
evaluations are completed as expected given enough noise budget), let �m ←
Dec(sk, ctin) ∈ Z

N
t , ct1 = (a1, b1) ∈ R2

Q, m1 ← �(t/Q)(b1 − a1 · sk)� (i.e., BFV
decryption without the decoding process), it holds that m1 =

∑
i∈[N] �m[i]Xi−1 ∈

Rt, by condition (2) (that there is enough noise budget for SlotToCoeff). Let
ct2 = (a2, b2) ∈ R2

t , m2 :=
∑

i∈[N] m2[i]Xi−1 ← b2 − a2 · sk ∈ Rt, Then, it holds
that Pr [m2[i] ∈ (�m[i] − r/2, �m[i] + r/2)] ≥ 1 − negl(λ) for all i ∈ [N], by condi-
tion (3) (that the error range r is large enough). Thus, let �m3 ← Dec(sk, ct3) ∈
Z

N
t , for all i ∈ [N], �m3[i] = m2[i]. Lastly, let �m4 ← Dec(sk, ctout) ∈ Z

N
t , we have

�m4[i] = r ·
⌈

�m3[i]
r

⌋
= r ·

⌈
m2[i]

r

⌋
for all i ∈ [N] by fpost and condition (3) (that

there is enough noise budget to evaluate PartialDec and fpost). Since we have
m2[i] ∈ (�m[i] − r/2, �m[i] + r/2), then if �m[i] ∈ [0, t − 1, r], we have �m4[i] = �m[i]
for all i ∈ [N].

The 2-closenessproperty is straightforward. The intuition is that the invalid
input points are “rounded” to the two nearest valid input points. In more detail,
let x = �m[i], and let zx,i ← f−1

x (yx,i) for i ∈ [1, 2] and yx,i in Definition 2;
let d1 ← x − zx,1, d2 ← x − zx,2, (where zx,j are per closeness definition).
Note that we have d2 = r − d1 and d2 ≥ r/2 ≥ d1. For 2-closenessto not hold,
err(sk, ct3) > r/2 + d1, which happens with negl(λ) by condition (3).

Biased rounding for invalid inputs. In addition to 2-closeness, there is
another property of our construction with respect to invalid inputs. At a high
level, an invalid input rounds to the nearest valid input with high probability p
and rounds to the second nearest valid input with 1−p, where p � 1−p as long
as the invalid input is obviously closer to one input than the other (i.e., d1 � d2
using the notations in the proof).

4.2 Bootstrapping for f2 : [u, v, r′] → Y
We now extend the above identity function into a more general function family:
F2 = {f2 : [u, v, r′] → Y}, where u, v, r′ ∈ Zt, and Y being any subset of Zt

with |Y| ≤ |[u, v, r′]| = t−1
r .14 It is easy to see that f1 is the special form with

u = 0, v = t − 1, r′ = r and Y = [u, v, r′].
Preprocess the Input Ciphertext with fpre. The very first challenge is that
if we have r′ < r (call that r is set to be the error bound of modulus switching),
after multiplying the ciphertext with t/Q during the modulus switching step,
the encrypted messages will be contaminated by the error incurred and thus the
decryption process fails.
14 Note that if |[u, v, r′]| < t−1

r
, we can either pad dummy elements to follow the same

bootstrapping procedure or apply a more efficient way, introduced in Sect. 5.1.

222 Z. Liu and Y. Wang

To resolve this issue, we first “preprocess” the input ciphertexts by stretching
the small intervals r′ to be r the error bound: in this case the encrypted messages
would survive the modulus switching procedure. In more detail, we construct a
bijective mapping fpre(x) : [u, v, r′] → [0, t − 1, r], defined as fpre(x) := (x − u) ·
r · (r′)−1. Before we perform the original SlotToCoeff process as the first step
discussed above, we first homomorphically evaluate fpre over the input ciphertext
ctin (which means by the SIMD property we evaluate fpre(�m[i]) for all i ∈ [N]
and �m being the message vector encrypted under ctin).
A New fpost Function. As before, after preprocessing, we perform SlotToCoeff
and modulus switching. The resulting ciphertext encrypts �m′ ∈ Z

N
t such that

r · ��m′[i]/r� = fpre(�m[i]) for all i ∈ [N]. Here comes the second challenge: instead
of simple identity mapping, which requires nothing else other than output �m′

in our previous construction15, Y as the output set of f2 can be any arbitrary
subset of Zt with size ≤ | t−1

r′ |.
Thus, we need a new function fpost(x) : Zt → Zt to map �m′ onto the corre-

sponding values in Y, i.e., fpost(x) = f2(f−1
pre (r · �x/r�)). Note that since fpre is

bijective, f−1
pre always exists. The correctness is as follows:

fpost(�m′[i]) = f2(f−1
pre (r · ��m′[i]/r�)) = f2(f−1

pre (fpre(�m[i]))) = f2(�m[i])

Regarding the Setup phase, we set Bin to be large enough to evaluate any
degree one function (to accommodate the noise growth in the worst case), since

Algorithm 2. BFV Bootstrapping for f2 : [u, v, r′] → Y
1: procedure Setup(1λ)
2: Same as the Setup in Algorithm 1, except for that lines 4, 5, and 9 are changed

to the following:
3: line 4: (2) Select the minimum Bin such that a BFV ciphertext with ring dimen-

sion N , plaintext space t, and noise budget Bin, is enough to evaluate SlotToCoeff
followed by any degree-1 polynomial function.

4: line 5: (3) Select the minimum Q such that a fresh BFV ciphertext with ring
dimension N , plaintext space t, and ciphertext space Q, after evaluating PartialDec
followed by an arbitrary degree-t polynomial function, still has Bout = Bin +1 noise
budget remaining.

5: line 9: F2 := {f2(x) : [u, v, r′] → Y | (u, v, r′ ∈ Zt)∧(Y ⊂ Zt)∧(|Y| ≤ |[u, v, r′]| =
t−1

r
)}

6: procedure Boot(pp = (N, t, Bin, Bout, F2, ppaux = r), btk, ctin, f2) � For the sake of
space, we call the GeneralFramework function defined in Algorithm 3.

7: If f2
∈ F2, abort.
8: Let the input domain of f2 be [u, v, r].
9: fpre(x) := (x − u) · r · (r′)−1

10: fpost(x) = f2(f
−1
pre (r · �x/r�))

11: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
12: return ctout.

15 Note that even if we do have an identity mapping (i.e., Y = [u, v, r′]), the fpost in
the previous section is not enough as we need to revert the influence of fpre.

Relaxed Functional Bootstrapping: A New Perspective 223

fpre is at most a degree-1 polynomial. Similarly, for fpost to be at most degree-
(t − 1), we set Q large enough to accommodate an arbitrary degree-(t − 1)
function. We formalize our construction in Algorithm 2. As since the proof is
very similar to that of Theorem 1, we defer it to our full version [51] for space.

Theorem 2. Algorithm 2 is a correct BFV functional bootstrapping (Defini-
tion 1) procedure for function family F2 := {f2 := [u, v, r′] → Y | (u, v, r′ ∈
Zt) ∧ (Y ⊂ Zt) ∧ (|Y| ≤ |[u, v, r′]| = t−1

r)}, assuming the correctness of BFV.
Furthermore, if it |Y|-closeness(Definition 2).

2-Closeness. When extending f1 to f2, the 2-closenessproperty cannot be sat-
isfied easily. The reason is that now fpre maps a point �∈ X into an arbitrary
point. This point is then “rounded” to one of the two closest points in [0, t−1, r]
as for f1, when evaluating fpost. The only exception is that when r′ = r, fpre
simply shifts the inputs. In this case, |Y|-closeness is improved to 2-closeness.

4.3 General Framework

We now introduce the general framework abstracted from the constructions we
described above for the two function families. Looking ahead, the rest of the
work highly relies on this framework, and only small local changes are made for
different function families.

Fig. 1. The high-level illustration of our generalized framework

The general framework is straightforward, a visualization is provided in
Fig. 1. It is formalized in Algorithm 3, where KeyGen is used to generate boot-
strapping keys given fpre and fpost; and GeneralFramework is used to formalize our
general Boot procedure. Note that setting up the noise budgets is not included,
since it is more function-family-dependent and we leave it to the setup algorithm
for each function family. To avoid repetition, all of our procedures directly call
the ones in Algorithm 3 as sub-procedures (except for Algorithm 1 served as the
starting point).

224 Z. Liu and Y. Wang

Algorithm 3. General Framework
1: procedure KeyGen(1λ, ppbfv)
2: Prase ppbfv = (N, Q, D, σ, t).
3: Generate BFV secret key sk =

∑
i∈[N] siX

i−1 ← D, and let �s := (si)i∈[N] ∈ Z
N
t .

4: Generate fresh encryption of BFV secret key sk ← D.
5: Generate ctsk ← Enc(sk, �s) with ppbfv

16

6: Generate BFV public key pk and evaluation key evk, using sk.
7: Let btk := (pk, evk, ctsk).
8: return sk, btk.

9: procedure GeneralFramework(pp, btk = (pk, evk, ctsk), ctin, fpre, fpost)
10: ct1 ← BFV.Eval(evk, ctin, fpre)
11: ct2 ← ct1 × Uᵀ (evaluated homomorphically)
12: � Recall that U is defined in Section 4.1 and this step is SlotToCoeff
13: ct3 ← ModSwitch(ct2, t)
14: Parse ct3 = (a3 =

∑
i∈[N] a3[i]X

i−1, b2 =
∑

i∈[N] b3[i]X
i−1) ∈ R2

t

15: Let A2 be the matrix representation of a3, and �b3 ← (b3[i])i∈[N] ∈ Z
N
t

16: ct4 ← �b3 − ctsk × A3 (evaluated homomorphically) � i.e., PartialDec(ct2, sk)
17: ctout ← BFV.Eval(evk, ct4, fpost)
18: return ctout.

Optimization. For the best concrete performance, we also use some techniques
to optimize some specific steps of our framework. Due to space reasons, we move
the optimization discussion to our full version [51].17

5 A More Fine-Grained Construction

In this section, we make our construction’s efficiency more fine-grained: i.e.,
dependent on the function families it needs to support.

Recall that for all the constructions introduced in Sect. 4, the circuits for
evaluating fpost, which is of degree O(t), have O(t) multiplications. Notice that
t needs to be at least 2N + 1 to allow N slots for the best-amortized efficiency.
In some applications, t needs to be even larger to allow a larger finite field
computation. The efficiency is therefore greatly hampered. A natural question
is can we make the number of multiplications and the degree of fpost o(t)?

Unfortunately, if we are mapping O(t) of Zt elements into Zt elements (which
is indeed the case for all the functions introduced above), we need a polynomial
function of degree Ω(t). This makes it intuitively impossible to improve the
efficiency asymptotically. Thus, in this section, we discuss some other function
families with a more limited input domain (e.g., simply mapping z ∈ Zt to y ∈ Zt

and z′ �= z ∈ Zt to y′ �= y ∈ Zt), and show how to support them by evaluating
a polynomial with a much smaller degree and thus provide better efficiency.

17 Note that both our asymptotic behavior and the one in prior works shown in Table 1
assumes using the Paterson-Stockmeyer algorithm discussed in Algorithm 3.

Relaxed Functional Bootstrapping: A New Perspective 225

5.1 Point Functions

Two-Point Functions. We start with the simplest case: a function mapping
two points to two points. We formalized this two-point mapping function as

follows: f2points(x) =
{

y if x = z
y′ if x = z′ where z �= z′, y �= y′ ∈ Zt.18

We apply our generalized framework introduced in Sect. 4 by passing the
correct fpre, fpost accordingly. Similar to the general issue discussed in Sect. 4.2,
since z �= z′ can be arbitrary, fpre needs to be used to scale the intervals |z − z′|
by mapping z to v and z′ to v′ such that |v − v′| ≥ r, where r again is the error
bound. For simplicity, we choose v = 0, v′ = r. Thus, fpre(x) := r(x−z)(z′−z)−1.
If x = z, fpre(x) = 0; if x = z′, fpre(x) = r.

Then, for fpost, we simply need to (homomorphically) map the cipher-
text resulting from the partial decryption to y or y′. Formally: fpost(x) ={

y if x ∈ (−r/2, r/2)
y′ if x ∈ (r/2, 3r/2) Note that this function only has < 2r � t roots19, which

means that the degree of the function and the number of multiplications to
evaluate this polynomial are both O(r) instead of O(t).

Now we discuss how to extend this idea to support more than 2 points.
Revisiting Function Family F2. Let us first take a closer look at the function
discussed in Sect. 4.2: f2 : [u, v, r′] → Y ∈ F2, u, v, r′ ∈ Zt, and Y ⊂ Zt, and let
S := |[u, v, r′]|, we have |Y| ≤ S ≤ t−1

r . The reason why the degree of fpost for
f2 needs to be O(t) is that S = t−1

r , and by mapping all the inputs within error
bound r to their corresponding outputs, we are eventually mapping all points
∈ Zt. In other words, if we make S strictly less than t−1

r , the pre-processing and
post-processing can be evaluated by polynomials with degree < t.

To be more specific, denote f ′
2 to be this variant of f2 with S < t−1

r . To
perform functional bootstrapping for f ′

2, the preprocessing function remains
unchanged: fpre(x) := (x − u) · r · (r′)−1, and set fpost(x) = f ′

2(f
−1
pre (r ·

�x/r�)), for x ∈ [−r/2, (S − 1) · r + r/2].
The difference between the bootstrapping procedure for f2 and f ′

2 is that
now fpre has S roots and fpost has S · r roots, which largely reduces the degree
and number of multiplications needed when S is small.

Multi-Point Mapping Function Family. The above high-level idea can be
extended to a more general multi-point mapping function family Fpts = {fpts :
X → Y, X ,Y ⊆ Zt, |Y| ≤ |X |}. Denote S = |X |, and let X = {x1, . . . , xS}.
Similarly, to map the input to [0, (S − 1) · r, r]. we define fpre(m) := i · r if m =
xi. Then, the post-processing function remains mostly the same: fpost(x) :=
fpts(f−1

pre (r · �x/r�)), for x ∈ [−r/2, (S − 1) · r + r/2].
By interpolating fpre, fpost of polynomials with degree S, S · r respectively,

we have the construction for a general multi-point mapping function. For space

18 Note that if y = y′, the construction is trivial. Simply return Enc(sk, y) suffices, as the
correctness definition does not explicitly define the behavior for f(x) if x
∈ {z, z′}.

19 Recall that r = O(
√

h) where h is the hamming weight of the secret key.

226 Z. Liu and Y. Wang

reasons, we defer the pseudocode to and the proof of the following theorem is
similar to our full version [51].

Theorem 3. Algorithm 4 in our full version [51] is a correct BFV functional
bootstrapping (Definition 1) procedure for function family Fpts := {fpts : X →
Y |X ,Y ⊂ Zt, |Y| ≤ |X | = S < t−1

r }, with t is from pp generated by Setup,
assuming the correctness of BFV.

Remark 3. Notice that when S � t, i.e., the input set X is very sparse over
Zt, a low degree (with degree � S) function may already be enough to map X
to X ′ such that for all i �= j ∈ X ′, |i − j| > r. After obtaining X ′, we simply
set fpost(m) := fpts(x) for m ∈ [fpre(x) − r/2, fpre(x) + r/2], x ∈ X (thereby
fpre(x) ∈ X ′). I.e., fpost checks every possible x ∈ X , and if m is within r/2
points for any of the fpre(x), return fpts(x).

Furthermore, if ∀i �= j ∈ X , we have |i−j| > r, then there is no pre-processing
needed to scale the intervals in between. See Sect. 6 for a concrete example. For
simplicity, in the formal construction, we consider the worst-case scenario and
treat the degree of fpre to be S.

�-closeness. For fpts, �-closeness does not hold for any � unless S = t−1
r which

goes back to f2. This is because the fpost domain now only covers a subset of Zt

while the invalid input may become any point in Zt before computing fpost.

5.2 Range Functions

Now instead of only allowing points, we focus on function mapping ranges (i.e.,
[a, b] for a < b ∈ Zt) to points. Naively, we can treat a range [a, b] simply as b−a
points, a, b ∈ Zt, and we reuse the scheme of the point-to-point functions above
for range-to-point functions. However, this naive approach not only limits the
efficiency but suffers from having at most t−1

r points across all ranges.
Fortunately, it turns out that if the ranges are well-separated, we could again

construct a bootstrapping scheme with much better performance. Formally,
define Franges := {franges : (Xi)i∈[k] → Y},Xi ⊂ Zt,Y = {y1, . . . , yk} ⊂ Zt, k > 1,

and: franges(m) =

⎧
⎪⎪⎨

⎪⎪⎩

y1 if m ∈ X1

y2 if m ∈ X2

. . .
yk if m ∈ Xk

, where Xi = [ui, vi],∀i ∈ [k]; furthermore, for

all i �= j ∈ [k], [ui − r/2, vi + r/2] ∩ [uj − r/2, vj + r/2] = ∅, where r is the error
bound. Figure 2 depicts a high-level view of an example franges input X .

Notice that for such a type of function, no pre-processing is needed and we
safely set fpre to be the identity function, and then set fpost(m) := yi if m ∈
(ui − r/2, vi + r/2),∀i ∈ [k]. Let X :=

⋃ Xi∈[k]. Since fpost has |X |+k · r roots20,

20 Technically speaking, since it is (ai − r/2, bi + r/2), it only has |X | + k(r − 1) roots.
However, it is distracting to either make the range check non-symmetric (i.e., change
to (ai − r/2, bi + r/2]) or calculate the number of roots more exactly (i.e., k(r − 1)
instead of kr). Therefore, for here and also the rest of the paper, we estimate the
number of roots roughly for better readability.

Relaxed Functional Bootstrapping: A New Perspective 227

Fig. 2. Depiction of the X of an example franges over Zt.

it has degree |X | + k · r − 1. We formalize our construction in Algorithm 4 and
defer the proof of the following theorem to our full version [51] as it is similar
to the proof of Theorem 1.

Algorithm 4. BFV Bootstrapping for franges
1: Let S, k be two publicly known variables, where S denotes the size of the input

domain, and k denotes the total number of ranges.
2: procedure Setup(1λ)
3: Same as the Setup in Algorithm 1, except for that lines 4 and 9 are changed to

the following respectively:
4: line 5: (3) Select the minimum Q such that a fresh BFV ciphertext with ring

dimension N , plaintext space t, and ciphertext space Q, after evaluating homomor-
phic decryption followed by an arbitrary degree-(S + r ·k −1) polynomial function,
still has Bout = Bin + 1 noise budget remaining.

5: line 9: Franges := {franges | (franges with the following format) ∧ (k > 1) ∧ (Xi =
[ui, vi] ⊂ Zt, [ui − r/2, vi + r/2] ∩ [uj − r/2, vj + r/2] = ∅, ∀i
= j ∈ [k])}

6: franges(m) =

⎧
⎪⎪⎨

⎪⎪⎩

y1 if m ∈ X1

y2 if m ∈ X2

. . .
yk if m ∈ Xk

7: procedure Boot(pp = (N, t, Bin, Bout, Franges, ppaux = r), btk, ctin, franges)
8: If franges
∈ Franges, abort.
9: fpre(m) := m

10: fpost(m) := yi if m ∈ (ui − r/2, vi + r/2), ∀i ∈ [k] (interpolated as a polynomial
with degree at most S + k · r − 1)

11: ctout ← GeneralFramework(pp, btk, ctin, fpre, fpost)
12: return ctout.

Theorem 4. Algorithm 4 is a correct BFV functional bootstrapping (Defini-
tion 1) procedure for function family defined on line 6, assuming the correctness
of BFV.

Remark 4 (�-closeness for franges). While our construction does not naturally
support 2-closenessfor franges, it can be achieved with some overhead. We modify

fpost to be: fpost(m) =
{

yi if (ui − r/2, vi + r/2),∀i ∈ [k]
fpost(m′) Otherwise , where m′ ∈ X

satisfying m′ − m ∈ Zt = minj(j − m),∀j ∈ X . In this case, 2-closenessis

228 Z. Liu and Y. Wang

straightforward (similar to the proof of Theorem 1). The overhead with this new
fpost is then essentially t

|X |+kr , which may be relatively insignificant (depending
on the input function). The worst-case overhead is essentially bounded by t

2r
(and recall that evaluating fpost is only one component of the entire process).

Alternatively, in Sect. 5.2 provides an alternative way to evaluate franges (with
different efficiency tradeoffs) and provides k-closenessfor free.

5.3 Two Unbalanced Ranges

If we have X = X1 ∪ X2 with two ranges only, denote S1 = |X1|, S2 = |X2|, the
method above would need a degree-(S1 +S2 +2r −1) function with S1 +S2 +2r
multiplications. However, if we assume that the sizes of these two ranges are
extremely unbalanced, w.l.o.g., S2 � S1, we are able to further reduce the
computation work down to S1 + r + log(t) + 1 multiplications, which can be
much more efficient. Formally, we define: Fub := {fub : X1,X2 → y1, y2},Xi∈[2] ⊂
Zt, yi∈[2] ∈ Zt, such that: fub(m) =

{
y1 if m ∈ X1

y2 if m ∈ X2
where Xi = [ui, vi], |X | = Si

for i ∈ [2] and S1 � S2.
Regarding the more detailed construction, we again set fpre to be

the identity function, but use a new post-processing function fpost(m) :=
(
∏

i∈(u1−r/2,v1+r/2)(m − i))t−1 · (y2 − y1) + y1. The correctness analysis is as
follows: recall that after homomorphic decryption, input m[i] ∈ X1 = [u1, v1]
is mapped to (u1 − r/2, v1 + r/2). Thus, c ← ∏

i∈[u1−r/2,v1+r/2](m − i) = 0, if
m[i] ∈ [u1, v1] and c ∈ Zt, c �= 0 for m[i] �∈ X1. By Fermat’s Little Theorem,
raising a non-zero field element up to t − 1 would result in 1, i.e., ct−1 = 1 for
all c ∈ Zt, c �= 0. Therefore, ct−1 = 0 if m[i] ∈ [u1, v1] and 1 otherwise. Lastly,
we evaluate ct−1 · (y2 − y1) + y1 so that the result would be y1 if m[i] ∈ X1 and
y2 otherwise.

It is not hard to see that fpost, though with degree (S1 + r − 1) · t + 1, only
needs S1 + r + log(t) + 1 multiplications for evaluation. The pseudocode and
proof are deferred to our full version [51] (proof is similar to that of Theorem 1).

Theorem 5. Algorithm 5 in our full version [51] is a correct BFV functional
bootstrapping (Definition 1) procedure for the function family defined on line
above, assuming the correctness of BFV. Furthermore, it is 2-close (Defini-
tion 2).

Remark 5. For this construction, essentially, instead of treating the input
domain as X1,X2, we are treating it as X1 = [u1, v1],X ′

2 := Zt \ [u1 − r, v1 + r].
In other words, the actual function we evaluate is as follows:

f ′
ub(m) =

{
y1 if m ∈ X1

y2 if m ∈ X ′
2

. Since there are only two possible results, 2-closenessis

satisfied for free.

Relaxed Functional Bootstrapping: A New Perspective 229

5.4 Generalized Unbalanced Ranges

Moreover, we can extend this two-unbalanced-ranges setting to multiple ranges,
when one of them still has a dominant size. Formally, for k ranges X1, . . . Xk

that are well separated, let Xi = [ui, vi], Si = |Xi|, w.l.o.g., we assume Sk >
∑k−1

i=1 Si. By applying a similar way to evaluate this type of function, we only

need 2
(∑k−1

i=1 Si + r(k − 1)
)

+ log(t) multiplications, instead of
∑k

i=1 Si. For

Sk much larger than
∑k−1

i=1 Si, this evaluation might be more efficient. Notice
that this generalized unbalanced case evaluates the exact same function as franges
defined in Sect. 5.2, but we utilize its “unbalanced” property and thus evaluate
it with an alternative method.

The construction is as follows. Let X ′
i := (ui − r/2, vi + r/2) for all i ∈ [k].

Again fpre is the identity function. To set fpost, we first define:

h(m) :=

⎧
⎪⎪⎨

⎪⎪⎩

y1 − yk if m ∈ X ′
1

y2 − yk if m ∈ X ′
2

. . .
yk−1 − yk if m ∈ X ′

k−1

and h(m) has degree
∑k−1

i=1 (Si +r). Then, we

define g(m) :=
∏

j∈X ′
i ,i∈[k−1](x − j) g(m) also has degree

∑k−1
i=1 (Si + r). Lastly,

we define fpost(m) := h(m) · (1 − g(m)t−1) + yk. 21

For m ∈ X ′
i for all i ∈ [k − 1], h(m) = yi − yk, and g(m) = 0. Therefore,

h(m) · (1 − g(m)t−1) + yk = (yi − yk) · (1 − 0t−1) + yk = yi as expected. On
the other hand, if m ∈ X ′

k, g(m) �= 0. Therefore, h(m) · (1 − g(m)t−1) + yk =
h(m) · (1 − 1) + yk = yk.

With regard to the efficiency, both h, g requires 2
∑k−1

i=1 (Si + r) multiplica-
tions, and therefore, in total, fpost requires 2

∑k−1
i=1 (Si + r) + log(t) + 1 multipli-

cations. On the other hand, the degree of the function is (
∑k−1

i=1 (Si + r))(t − 1).
We defer the pseudocode of our construction and proof to our full version

[51].
Theorem 6. Algorithm 6 in our full version [51] is a correct BFV functional
bootstrapping (Definition 1) procedure for function family defined above, assum-
ing the correctness of BFV. Furthermore, it is k-close (Definition 2).

6 Evaluation

We implemented our algorithms proposed above in a C++ library, based on the
SEAL [57] library. We benchmark these schemes on several parameter settings
on a Google Compute Cloud e2-standard-4 with 16 GB RAM.

21 Notice that fub is a special case of this construction, as for fub in Sect. 5.2, h(m) =
y1 − y2 is simply a constant function and thus does not require any evaluation.
Therefore, the cost is S1 + r + log(t) for fub instead of 2S1 + 2r + log(t).

230 Z. Liu and Y. Wang

6.1 Performance of Our Construction

Parameter Selection. We choose BFV parameters as follows: N = 32768, t =
65537, σ = 3.2. We use ternary secret keys with a hamming weight of 512.22

The ciphertext modulus Q is chosen according to each function as specified in
Table 2. These parameters guarantee > 128-bit security by LWE estimator [2] for
all the function families we have tested (except for fub, which provides 106-bit
of security, but for better comparison, we remain N, t, σ unchanged but reduce
the security). To guarantee that the modulus switching error is bounded by r
except with 2−40 probability,23,24 we choose r = 128 (thus r/2 = 64).

We benchmark all the functions we described, including f1 (i.e., the identity
function over [0, 65536 = t − 1, 128 = r]) in Algorithm 1; f2 (i.e., mapping each
point in [a, b, r′] to an arbitrary point y ∈ Zt) in Algorithm 2; point functions fpts
(i.e., several points to several points); range functions franges (i.e., several ranges
to several points); and unbalanced range functions fub (i.e., two unbalanced
ranges to two points).

As r is fixed, the input of f2 can be at most t−1
r = 512 points. Therefore,

we choose f2 : [0, 1022, 2] → Y where Y is a random subset of Z65537 with 512
points. For fpts : X → Y where X ⊂ Z65537, we choose two different functions:
the first function maps {0, 32768} to two different random points, i.e., X and
Y only contain two points, and thus achieve the best possible performance; the
second one demonstrates a more general functionality by mapping eight random
points to eight random points. For franges, we choose two well-separated ranges
each containing 127 points. For fub, we choose two very unbalanced ranges, one
of which is of size r − 1 and the other being t − 2r + 1.

Performance Analysis. As shown in Table 2, our amortized runtime is about
1–2 orders of magnitude faster than regular BFV bootstrapping: both for the

22 Our construction replies on sparse keys in the same way as prior works. We can
extend our key to be uniform, but r needs to be increased accordingly, since r =
O(

√
h) for h being the hamming weight.

23 We choose security parameter δ = 40 which is the same as in [50], since the error
probability is statistical, and 40 is a relatively popular and reasonable statistical
security parameter. Prior works in BGV/BFV bootstrapping instead choose error
probability via evaluation: based on our private communication with the authors of
the prior works, it was chosen such that no overflow happens during benchmarking
tests. To our knowledge, other BFV bootstrapping works do not explicitly discuss
how they choose the concrete numbers, and thus we follow the parameter in [50].
Asymptotically, r = O(

√
δ) when fixing other parameters.

24 According to [15], 2−40 gives ∼50-bit of security for IND-CPA-D (introduced in [46]).
To achieve 128-bit security of IND-CPA-D, roughly a failure probability of 2−120 is
needed. To accommodate this, our error range grows from 128 to ∼216 and thus
the effective plaintext space (for f1, f2) is reduced from 512 points to ∼302 points
(and correspondingly other function families). Thus, our amortized per bit runtime
would be just slightly increased. Furthermore, note that adjusting the IND-CPA-D
security level would also affect the runtime in all prior works as well, which will thus
maintain our advantage, if not further increase.

Relaxed Functional Bootstrapping: A New Perspective 231

Table 2. Batched bootstrapping for binary gates using our technique compared to the
unoptimized construction in [50]. Notice that based on the BFV parameter we choose,
all our constructions guarantee > 128-bit security except for fub which is of 106-bit
security; all our constructions are evaluated on input with 35-bit noise budget, except
for fpts3 which needs input with 125-bit noise budget. See Sect. 6 “Parameter selection”
for details. The runtimes of prior works are taken directly from their papers. We use
a basic GCP instance which does not grant us extra advantage over the runtime. As a
comparison, for [25], our instance time is ∼1.2x slower than the numbers reported.

Function Family
Input

Domain
of slots

Ciphertext
Modulus

Output
Noise

Budget

Total Runtime
(sec)

Runtime per
slot (ms)

Runtime per
bit (ms)

Identity function f1 over

[0, t − 1, r], Algorithm1
[0, 65536, 128]

32768

830 181

370.6 11.3 1.26

f2 : [u, v, r′] → Y u, v, r′ ∈ Zt,

Y ⊂ Zt, Algorithm2
[0, 1022, 2] 370.2 11.2 1.24

fpts1 : X → Y, X , Y ⊂ Zt,

|X | = |Y| = 2
{0, 32768} 590 198 48.5 1.5 1.50

fpts2 : X → Y, X , Y ⊂ Zt, |X | = |Y| = 8,

without pre-scale on X {57004, 46969, 21931,
39030, 59092, 9965,

30013, 58301}
650

194 64.5 2.0 0.67

fpts3 : X → Y, X , Y ⊂ Zt, |X | = |Y| = 8,

with pre-scale on X 181 68.5 2.1 0.70

franges(m) = yi if m ∈ [ui, vi],

ui, vi, yi ∈ Zt, i ∈ [k], k ≥ 2,

Two ranges: [−63, 63]
& [32704, 32831]

630 205 58.4 1.8 0.23

fub(m) = yi if m ∈ [ui, vi],

ui, vi, yi ∈ Zt, i ∈ [2],

Two ranges: [−63, 63]
& Z65537 \ [−127, 127]

1070 180 89.3 2.7 0.18

Regular BFV bootstrapping [56]
128-bit security

Z257 128 881 507 22.0 173.0 21.62

Regular BFV bootstrapping [25]
66-bit security

Z1272 2268 1134 330 95.0 42.0 3.00

Regular BFV bootstrapping [14]
126-bit security

Z2572 128 806 245 42.0 328.0 20.50

runtime per slot and the runtime per effective bit (i.e., the runtime per slot
divided by the effective input plaintext space in bits). Our functionality is slightly
different from prior works: we only support correctness over a subset of the
plaintext space, but we also allow a look-up table evaluation.

[56] has the plaintext space to be much smaller than the other regular boot-
strapping constructions because enlarging the plaintext space requires some non-
trivial modification to their construction. Therefore, they also have a relatively
limited input domain (containing only 257 points). Among all of the regular BFV
bootstrapping works, [25] provides the best performance but with a relatively
low security guarantee (only 66 bits). To guarantee > 100 bit security, their per-
formance will be further reduced. As mentioned in [56], the techniques in [25,56]
might be combined to achieve a better regular BFV bootstrapping construction,
but it is still unlikely to be comparable with our constructions (again, they pro-
vide a stronger functionality by considering all values in the plaintext space as
valid inputs). The main reason we outperform the regular bootstrapping frame-
work by around 1 to 2 orders of magnitude, is that we make full use of 32768
slots per ciphertext.

f1 and f2 have roughly the same runtime and the same input noise budget
requirement, as the evaluation of fpre is combined with the SlotToCoeff step

232 Z. Liu and Y. Wang

Fig. 3. Bar chart illustration of total runtime and look-up table evaluation time per
bit. Note that [25] provides only 66-bit of security while our construction and [56] both
provide about 128-bit security.

(recall that for f2, fpre is simply a degree-1 function)25 They both evaluate over
512 different points, thus requiring fpost to have degree t−2 (as 512 · r = t−1 =
65536). Therefore, they are both the slowest among all the different types of
functions. Also, as discussed, these two types of functions can be viewed as
special cases of fpts.

For fpts, we test a function for two points, for which is the most efficient
non-trivial function our protocol works. Such a function takes only about 1.5ms
per slot. To show more generality, we also test functions with 8 points. All the
points are randomly chosen. For the points we randomly chose, no fpre is needed
as they are all separated by at least r = 128. In this case, the runtime is only
slightly slower than fpts with two points. However, to show the worst case, a
function of degree 7 is needed as the preprocessing function. We also benchmark
it to show the difference. In this case, fpre is a degree 7 function and therefore
requires the input noise budget to be 90 bits more. The runtime is roughly the
same. Note that, however, for such a small number of points (e.g., 8 points), it
is more likely that fpre does not need any preprocessing (or at least only a lower
degree function, thus introducing little overhead, if any).

For franges, each range contains 127 points. Therefore, there are a total of
254 points. However, the runtime is even faster than fpts with only 8 points.
This is because it only requires a degree-254+2r = 510 postprocessing function;
in contrast fpts with 8 points already requires the postprocessing function to
have degree 8 · r = 1024. For the unbalanced ranges, we use [−63, 63] and Zt \
[−127, 127], containing 65409 points. However, it is also easy to see that the
runtime is only slightly slower than the range function with two small ranges.
The only drawback is that log(Q) is required to be very large since fpost is a
function of degree ∼2r · t.

25 Since f2 is only degree 1, the scalar multiplication can be saved by changing the
SlotToCoeff matrix U to be multiplied with this scalar first. See detailed description
in our full version [51] paragraph “Combining SlotToCoeff and fpre”.

Relaxed Functional Bootstrapping: A New Perspective 233

Runtime Breakdown. As shown in Fig. 3, for some functions like f1, f2, the
look-up table evaluation takes the majority of time, as their fpost has a much
higher degree than the other ones. However, for all of the functions, our runtime
is still greatly better than both of the prior works (and their breakdown is taken
from the papers).

Comparison with Other FHE Bootstrapping. Since it is hard to directly
compare to other FHE bootstrapping schemes concretely (as distinct schemes
differ a lot in terms of settings), we give a brief high-level discussion. For CKKS,
functional bootstrapping is particularly challenging as during bootstrapping, a
polynomial approximation of the sine function is used. To capture functional
bootstrapping, a polynomial approximation of that function together with sine
needs to be done, which is very inefficient. Therefore, to the best of our knowl-
edge, CKKS cannot easily support (even relaxed) functional bootstrapping. On
the other hand, for FHEW/TFHE, while they natively support functional boot-
strapping, they do not naturally support additions and multiplications before or
after bootstrapping. Therefore, our method provides more flexibility (while the
performance can be comparable when |X | = p where p is the plaintext space of
FHEW/TFHE, based on our estimation with the numbers in [50] and Sect. 8).

7 Applications

In this section, we discuss some applications that can take advantage of our
constructions. We first discuss one application in very recent work in detail and
compare the result using our scheme with the results using prior works. We then
introduce some potential applications at a high level.

7.1 Oblivious Permutation via BFV

A recent work [23] proposes a way to homomorphically permute a database with
N entries. Essentially, it allows the server to obliviously permute a database
using BFV such that the decrypted result is indistinguishable from a randomly
permuted database. The permutation randomness comes from the client, but
it takes only o(N) communication: the server first uses a BFV-encrypted seed
provided by the client and a BFV-friendly PRG to generate O(N log(N)) random
bits homomorphically; then, it homomorphically evaluates the Thorp shuffle (or
equivalently, a butterfly shuffle) using these random bits. The Thorp shuffle
consists of h = O(λ) consecutive rounds, where each round divides the database
into N/2 pairs of entries and then swaps each pair using a random bit. For
example, if N = 2, the swap operation homomorphically computes DB′[1] ←
DB[1] · r + DB[2] · (r − 1) and DB′[2] = DB[2] · r + DB[1] · (r − 1). If r = 1,
DB′ = DB, and DB′ = DB[2]‖DB[1] otherwise. After performing h such rounds
(over all pairs) for some security parameter λ, the database looks like a uniformly
permuted database (when querying only q = o(N) entries).

One main nice property of the Thorp shuffle is that the whole shuffle pro-
cess only involves this homomorphic swap, which only depends on the database

234 Z. Liu and Y. Wang

entries DB[i] and the random binary bits. Thus, to perform a homomorphic
Thorp shuffle over a database, we first encode DB[i] into some valid input set
X . For example, if DB[i] has 3 bits (as used in the evaluation section of [23]),
we can encode each entry into an element in X with |X | = 8. In this case, when
bootstrapping is needed (between two rounds of swapping), we only need to
bootstrap an identity function over X instead of the entire plaintext space. This
application is thus well suited to our relaxed bootstrapping (even without the
closenessproperty).

With this high-level idea, we estimate the concrete improvement by applying
our construction to such as oblivious permutation process. As shown in [23], for
a database of length N = 223 (each entry has 3 bits), the Thorp shuffle requires
416 levels. Using our scheme, with the function being an identity function over
X of size 8 (e.g., X = {0, 2r, . . . , 14r}, where r is the error bound), and set-
ting the ciphertext modulus to be 860 bits (providing ≈ 128 bits of security),
each bootstrapping of our construction allows about 13 levels of multiplications
(about 400 bits of noise budget left). We can encode the entire database to
3N/32768/3 = 256 BFV ciphertexts. Each ciphertext requires 416/13 = 32
bootstrapping. Thus, in total, it takes 256×32×91 = 745472 s26, which is about
207 h.

On the other hand, in the prior works [56], encoding the entire database
requires 3N/128/8 = 24576 ciphertexts. Each bootstrapping gives ≈ 19 levels
of multiplications (about 507 bits of noise budget left). Thus, in total, it takes
24576×416/19×22 ≈ 11894784 s (each of their bootstrapping takes 22 s), which
is about 3304 h. Similarly, it takes about 4587 h when using [14], and about 670 h
when using [25]. Notice that [25] only offers 66-bit security, while the other two
prior works and ours provide ≈128 bit security.

With our work, under a similar security guarantee, the bootstrapping time
can be reduced by >20x. Furthermore, since our construction supports more
slots, there are less ciphertexts needed to pack the entire database. Therefore,
the homomorphic Thorp shuffle can be evaluated more efficiently by having fewer
regular (non-bootstrapping) ciphertext operations27. See [23] for a more detailed
discussion and estimation.

7.2 Other Potential Applications

We then discuss some other potential applications that benefit from our construc-
tion. We start with applications that do not require closeness. Such applications
have a hard requirement: the input must be within X .

PIR/PSI with Computation. Private information retrieval (PIR) [19] allows
one to retrieve a data entry from the database without revealing which data entry

26 In Table 2, we use ciphertext modulus of 650 bits instead of 860 bits. Using 860, which
is essentially the maximum for 128-bit security, our bootstrapping takes about 91 s
using GCP e2-standard-4.

27 Note that a more recent version of this paper uses a larger database size. However,
the analysis and our advantages remain exactly the same.

Relaxed Functional Bootstrapping: A New Perspective 235

is retrieved. PIR with computation [47] further allows computing some function
over the retrieved data entry (or multiple data entries for batch-PIR). Since the
data entry can be encoded (e.g., as a multiple of r, the error range introduced
in Sect. 4.1), we can use relaxed functional bootstrapping (e.g., Algorithm 1)
to compute this function (or at least a sub-module of this function). Such a
method can also be used for Private Set Intersection with computation [35],
whose construction indeed requires a lot of bootstrapping operations, which
can be replaced with our relaxed functional bootstrapping. Note that since PSI
requires two-sided privacy, more careful handling is required when designing the
function to not leak any database information (e.g., use noise flooding), or use
other techniques like Oblivious PRF [11].

Access Control. Within an organization, access control is needed to perform
some action (e.g., data retrieval [10]). To realize such access control, BFV can
be used in the following way. During a private data retrieval (i.e., retrieval of
some documents without revealing which document it is), the user provides
their identity, which corresponds to some permission level l. Then, the document
also has some requirements q. The server, after obtaining q (without learning
what q is) under BFV, can compute some access control function f(q, l). If
the result is 1, the returning ciphertext contains the document. Otherwise, the
returning ciphertext contains only 0. l, q, f can all be easily encoded in a way
that our relaxed functional bootstrapping supports. For example, let |l − q| > r
by encoding l, q accordingly, and let f checks whether l > q. This check can then
be realized using our range function in Algorithm 4.

We then discuss some applications that may require the additional flexibility
provided by closenessdefined in Definition 2.

Secure Machine Learning. Machine learning (ML) using FHE has been a
long-standing popular topic [20,36,41,42,52]. One major bottleneck of using
FHE for ML is bootstrapping. By the nature of the fuzziness in ML, some small
deviations from the model are tolerable. In this case, a relaxed functional boot-
strapping satisfying 2-closenesscan be used to evaluate some parts of the ML
model (e.g., evaluating the activation function): any invalid inputs are simply
rounded to the two nearest valid inputs. Furthermore, since the ML training pro-
cess is repetitive (every batch or epoch shares the same activation function for
example), our relaxed functional bootstrapping is then a perfect fit to guarantee
the error budget is increased after each activation function evaluation.

Fuzzy PSI. Another natural application is fuzzy PSI [24]. Fuzzy PSI returns the
elements that are similar instead of identical as in PSI. Therefore, if the fuzziness
definition (e.g., the correctness definition in [12,58]) allows the borderline ele-
ments to be decided either way, we can use our relaxed functional bootstrapping
in the following way. We first set a range [u, v] to be the range for the similarity.
In other words, if two elements a, b satisfying |a − b| ∈ [u, v], the functionality
should return 1; otherwise, the functionality should return 0. The issue is that
the elements within [u − r, v + r] may return either 0 or 1. However, due to
the fuzziness definition, these are borderline cases and may be decided either

236 Z. Liu and Y. Wang

way. Furthermore, with some of our constructions (Algorithm 1), the closer the
difference is to [u, v] the larger the probability our algorithm returns 1, which
may be further preferred (discussed in Sect. 4.1).

There are many other potential examples, like homomorphic comparisons,
private branching, fixed-point arithmetic using BFV/BGV, and so on. We leave
a more detailed application-based follow-up to future works.

8 Extension to Batched FHEW/TFHE Bootstrapping

Of independent interest, our techniques can be applied to improve the
batched FHEW/TFHE bootstrapping algorithm in [50]. Essentially, batched
FHEW/TFHE bootstrapping is to take 2N LWE ciphertexts each encrypting
either 0 or 1 and output the NAND result of each pair of them. Another appli-
cation is that given N LWE ciphertexts each encrypting a message x ∈ Zp for
some p ≥ 2, output an encryption of f(x)’s for some function f over Zp that
serves like a look-up table. This is called the batched functional bootstrapping.

Fig. 4. Comparison between our work on batched functional bootstrapping and [50].

Our Optimization. In [50], for both a binary gate bootstrapping and a func-
tional bootstrapping, the bootstrapping gate contains a degree-(t − 1) function.
We observe that instead, for a binary gate bootstrapping, we only need a degree-
(3r−1) function, and for a k-bit functional bootstrapping, only a degree-(k·r−1)
function is needed. We defer recalling the construction of [50] and how the opti-
mization is done in detail in our full version [51].

Benchmark and Comparison. For the NAND gate, since the degree now is
much lower, instead of using N = 32768 for the underlying BFV as in [50], we
use N = 16384 together with log(Q) ≈ 420, which further reduces the runtime.
We use other parameters exactly the same as in [50, Section 10], except that

Relaxed Functional Bootstrapping: A New Perspective 237

we are using ternary keys for the LWE secret keys. The total runtime is 24.5 s
and the amortized runtime is 1.5 ms per slot. Compared to the total runtime
of 155 s and the amortized runtime of 4.7 ms in [50][Table 2], our total runtime
(i.e., the latency) is about 6x faster than [50], and the amortized runtime (i.e.,
the throughput) is about 3x faster.

Furthermore, we show that for p being 3–8 bits for functional bootstrapping,
we achieve a speed up as shown in Fig. 4.

References

1. Lattigo v2.1.1. Online (December 2020). ePFL-LDS. http://github.com/ldsec/
lattigo

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Crypt. 9(3), 169–203 (2015)

3. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 1–
20. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

4. Badawi, A.A., et al.: OpenFHE: open-source fully homomorphic encryption library.
Cryptology ePrint Archive, Paper 2022/915 (2022). https://eprint.iacr.org/2022/
915, commit: 122f470e0dbf94688051ab852131ccc5d26be934

5. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In: Can-
teaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021.
pp. 587–617. Springer International Publishing, Cham (2021)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapsvp. In: Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology — CRYPTO 2012 - Volume 7417, p. 868–886. Springer-
Verlag (2012)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3), 1–36
(2014)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, October 22–25, 2011, pp.
97–106. IEEE Computer Society Press (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg, Germany (Aug 14–18, 2011)

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM CCS 2009, November 9–13,
2009, pp. 131–140. ACM Press (2009)

11. Casacuberta, S., Hesse, J., Lehmann, A.: SoK: oblivious pseudorandom functions.
IEEE EuroS&P 2022 (2022). https://eprint.iacr.org/2022/302

12. Chakraborti, A., Reiter, M.K., Fanti, G.C.: This paper is included in the proceed-
ings of the 32nd USENIX security symposium. In: USENIX 2023 (2023). https://
api.semanticscholar.org/CorpusID:245537395

13. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. pp. 34–54. Springer International Publishing, Cham (2019)

http://github.com/ldsec/lattigo
http://github.com/ldsec/lattigo
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/302
https://api.semanticscholar.org/CorpusID:245537395
https://api.semanticscholar.org/CorpusID:245537395

238 Z. Liu and Y. Wang

14. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS,
vol. 10820, pp. 315–337. Springer, Heidelberg, Germany (Apr 29 – May 3, 2018)

15. Cheon, J.H., Choe, H., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against the
INDCPA-D security of exact FHE schemes. In: CCS (2024)

16. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 360–384. Springer (2018)

17. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437. Springer (2017)

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016. pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

19. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS, pp. 41–50. IEEE Computer Society Press (1995)

20. Dalvi, A., Jain, A., Moradiya, S., Nirmal, R., Sanghavi, J., Siddavatam, I.: Secur-
ing neural networks using homomorphic encryption. In: 2021 International Con-
ference on Intelligent Technologies (CONIT), pp. 1–7 (2021). https://doi.org/10.
1109/CONIT51480.2021.9498376

21. Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. pp. 617–640. Springer, Berlin, Heidelberg (2015)

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://ia.cr/2012/144

23. Fisch, B., Lazzaretti, A., Liu, Z., Papamanthou, C.: ThorPIR: single server PIR via
homomorphic thorp shuffles. In: CCS 2024 (2024)

24. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg, Germany (May 2–6, 2004)

25. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions mod-
ulo pe and faster bootstrapping for homomorphic encryption. In: Eurocrypt 2023
(2023). https://eprint.iacr.org/2022/1364

26. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV revisited. J. Cryptol.
36(2) (2023)

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

28. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92, Aug. 18–
22, 2013. Springer, Heidelberg (2013)

29. Guimarães, A., Pereira, H.V.L., van Leeuwen, B.: Amortized bootstrapping revis-
ited: simpler, asymptotically-faster, implemented. In: Asiacrypt 2023 (2023).
https://eprint.iacr.org/2023/014

30. Halevi, S., Shoup, V.: HElib (2014). https://github.com/homenc/HElib
31. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryp-

tion library. Cryptology ePrint Archive, Report 2020/1481 (2020). https://eprint.
iacr.org/2020/1481

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1109/CONIT51480.2021.9498376
https://doi.org/10.1109/CONIT51480.2021.9498376
https://ia.cr/2012/144
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2023/014
https://github.com/homenc/HElib
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481

Relaxed Functional Bootstrapping: A New Perspective 239

32. Halevi, S., Shoup, V.: Bootstrapping for HElib. J. Crypt. 34(1), 7 (2021)
33. Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete Fourier trans-

forms and FHE bootstrapping. IEEE Access 7, 57361–57370 (2019). https://doi.
org/10.1109/ACCESS.2019.2913850

34. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Cryptographers’ Track at the RSA Conference. pp. 364–390. Springer (2020)

35. HU, J., Chen, J., Dai, W., Wang, H.: Fully homomorphic encryption-based pro-
tocols for enhanced private set intersection functionalities. Cryptology ePrint
Archive, Paper 2023/1407 (2023). https://eprint.iacr.org/2023/1407

36. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.)
USENIX Security 2018, pp. 1651–1669. USENIX Association (2018)

37. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for
finite fields. In: ASIACRYPT 2021. p. 608–639. Springer (2021)

38. Kim, J., Seo, J., Song, Y.: Simpler and faster BFV bootstrapping for arbitrary
plaintext modulus from CKKS. Cryptology ePrint Archive, Paper 2024/109 (2024).
https://eprint.iacr.org/2024/109

39. Kim, S., Park, M., Kim, J., Kim, T., Min, C.: Evalround algorithm in CKKS
bootstrapping. In: Asiacrypt 2022 (2022). https://eprint.iacr.org/2022/1256

40. Lee, D., Min, S., Song, Y.: Functional bootstrapping for FV-style cryptosystems.
Cryptology ePrint Archive, Paper 2024/181 (2024). https://eprint.iacr.org/2024/
181

41. Lee, J.W., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access 10, 30039–30054 (2022). https://
doi.org/10.1109/ACCESS.2022.3159694

42. Lee, J.W., Lee, E., Kim, Y.S., No, J.S.: Rotation key reduction for client-server
systems of deep neural network on fully homomorphic encryption. In: Guo, J., Ste-
infeld, R. (eds.) Advances in Cryptology, ASIACRYPT 2023, pp. 36–68. Springer,
Singapore (2023). https://doi.org/10.1007/978-981-99-8736-8 2

43. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of
RNS-CKKS homomorphic encryption using optimal minimax polynomial approx-
imation and inverse sine function. In: EUROCRYPT 2021, pp. 618–647 (2021)

44. Lee, Y., Lee, J.W., Kim, Y.S., No, J.S.: Near-optimal polynomial for modulus
reduction using l2-norm for approximate homomorphic encryption. IEEE Access
8, 144321–144330 (2020). https://doi.org/10.1109/ACCESS.2020.3014369

45. Lee, Y., et al.: Efficient FHEW bootstrapping with small evaluation keys, and
applications to threshold homomorphic encryption. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology, EUROCRYPT 2023, pp. 227–256. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30620-4 8

46. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: EUROCRYPT 2021 (2021)

47. Lin, C., Liu, Z., Malkin, T.: XSPIR: efficient symmetrically private information
retrieval from ring-LWE. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W.
(eds.) ESORICS 2022, Part I. LNCS, vol. 13554, pp. 217–236. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-17140-6 11

48. Liu, F.H., Wang, H.: Batch bootstrapping i: A new framework for simd bootstrap-
ping in polynomial modulus. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
– EUROCRYPT 2023. pp. 321–352. Springer Nature Switzerland, Cham (2023)

https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://eprint.iacr.org/2023/1407
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2022/1256
https://eprint.iacr.org/2024/181
https://eprint.iacr.org/2024/181
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1007/978-981-99-8736-8_2
https://doi.org/10.1109/ACCESS.2020.3014369
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-17140-6_11

240 Z. Liu and Y. Wang

49. Liu, F.H., Wang, H.: Batch bootstrapping i: bootstrapping in polynomial modulus
only requires o (1) FHE multiplications in amortization. In: Hazay, C., Stam, M.
(eds.) Advances in Cryptology – EUROCRYPT 2023, pp. 321–352. Springer, Cham
(2023)

50. Liu, Z., Wang, Y.: Amortized functional bootstrapping in less than 7ms, with
Õ(1) polynomial multiplications. In: Asiacrypt 2023 (2023). https://eprint.iacr.
org/2023/910

51. Liu, Z., Wang, Y.: Relaxed functional bootstrapping: a new perspective on
BGV/BFV bootstrapping. Cryptology ePrint Archive, Paper 2024/172 (2024)

52. jie Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Sym-
posium on Security and Privacy, pp. 1057–1073. IEEE Computer Society Press
(2021)

53. Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV bootstrapping for large
p using null polynomials over Zpe . Cryptology ePrint Archive, Paper 2024/115
(2024). https://eprint.iacr.org/2024/115

54. Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping.
In: 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 107.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2018)

55. Micheli, G.D., Kim, D., Micciancio, D., Suhl, A.: Faster amortized FHEW boot-
strapping using ring automorphisms. Cryptology ePrint Archive, Paper 2023/112
(2023). https://eprint.iacr.org/2023/112

56. Okada, H., Player, R., Pohmann, S.: Homomorphic polynomial evaluation using
Galois structure and applications to BFV bootstrapping. In: Asiacrypt 2023 (2023).
https://eprint.iacr.org/2023/1304

57. Microsoft SEAL (2020). https://github.com/Microsoft/SEAL
58. Uzun, E., Chung, S.P., Kolesnikov, V., Boldyreva, A., Lee, W.: Fuzzy labeled

private set intersection with applications to private real-time biometric search. In:
Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021, pp. 911–928. USENIX
Association (2021)

https://eprint.iacr.org/2023/910
https://eprint.iacr.org/2023/910
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2023/112
https://eprint.iacr.org/2023/1304
https://github.com/Microsoft/SEAL

NTRU-Based Bootstrapping
for MK-FHEs Without Using
Overstretched Parameters

Binwu Xiang1,2,3 , Jiang Zhang2(B) , Kaixing Wang2,4 , Yi Deng1,3 ,
and Dengguo Feng2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS, Beijing, China
{xiangbinwu,deng}@iie.ac.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
zhangj@sklc.org, wangkaixing22@mails.ucas.ac.cn, fengdg@263.net
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
4 School of Computer Science and Technology, University of Chinese Academy

of Sciences, Beijing, China

Abstract. Recent attacks on NTRU lattices given by Ducas and van
Woerden (ASIACRYPT 2021) showed that for moduli q larger than the
so-called fatigue point n2.484+o(1), the security of NTRU is noticeably
less than that of (ring)-LWE. Unlike NTRU-based PKE with q typically
lying in the secure regime of NTRU lattices (i.e., q < n2.484+o(1)), the
security of existing NTRU-based multi-key FHEs (MK-FHEs) requiring
q = O(nk) for k keys could be significantly affected by those attacks.

In this paper, we first propose a (matrix) NTRU-based MK-FHE for
super-constant number k of keys without using overstretched NTRU
parameters. Our scheme is essentially a combination of two components
following the two-layer framework of TFHE/FHEW:

– a simple first-layer matrix NTRU-based encryption that naturally
supports multi-key NAND operations with moduli q = O(k · n1.5)
only linear in the number k of keys;

– and a crucial second-layer NTRU-based encryption that supports
an efficient hybrid product between a single-key ciphertext and a
multi-key ciphertext for gate bootstrapping.

Then, by replacing the first-layer with a more efficient LWE-based multi-
key encryption, we obtain an improved MK-FHE scheme with better
performance. We also employ a light key-switching technique to reduce
the key-switching key size from the previous O(n2) bits to O(n) bits.

A proof-of-concept implementation shows that our two MK-FHE
schemes outperform the state-of-the-art TFHE-like MK-FHE schemes
in both computation efficiency and bootstrapping key size. Concretely,
for k = 8 at the same 100-bit security level, our improved MK-FHE
scheme can bootstrap a ciphertext in 0.54 s on a laptop and only has

This work was done while I was a visiting student in the group of Dr. Jiang Zhang
during 2021–2024 at State Key Laboratory of Cryptology, Beijing, China.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 241–270, 2025.
https://doi.org/10.1007/978-981-96-0875-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_8&domain=pdf
http://orcid.org/0009-0002-8163-3987
http://orcid.org/0000-0002-4787-0316
http://orcid.org/0009-0008-2259-1354
http://orcid.org/0000-0001-5948-0780
http://orcid.org/0000-0002-8515-7124
https://doi.org/10.1007/978-981-96-0875-1_8

242 B. Xiang et al.

a bootstrapping key of size 13.89MB, which are respectively 2.2 times
faster and 7.4 times smaller than the MK-FHE scheme (which relies on
a second-layer encryption from the ring-LWE assumption) due to Chen,
Chillotti and Song (ASIACRYPT 2019).

1 Introduction

Multi-key Fully Homomorphic Encryption (MK-FHE) has emerged as a criti-
cal cryptographic primitive, facilitating secure computations on encrypted data
contributed by multiple users in cloud environments. At STOC 2012, López-Alt,
Tromer and Vaikuntanathan constructed the first MK-FHE scheme [27] which
supported a-priori bounded number of keys. Clear and McGoldrick presented a
GSW-type MK-FHE based on the Learning With Errors (LWE) problem [14].
Subsequently, Mukherjee and Wichs streamlined this approach and obtained a
two-round Multi-Party Computation (MPC) protocol in the common random
string model by proposing another LWE-based MK-FHE [30]. Both [30] and
[14] are static in the sense that the keys involved in the homomorphic computa-
tion have to be determined at the beginning and do not support homomorphic
computation on ciphertexts under new keys.

Peikert and Shiehian [31] introduced the concept of dynamic MK-FHE,
where the resulting ciphertexts from previous homomorphic evaluations can be
employed in subsequent homomorphic computations involving additional keys.
A related concept, known as fully dynamic MK-FHE, was proposed by Braker-
ski and Perlman [8], which even does not need to know the total number of all
possible keys during the setup. Chen, Chillotti and Song [9] proposed a dynamic
TFHE-like MK-FHE scheme with efficient bootstrapping, but it requires a large
number of bootstrapping keys (approximately 90MB for each party in the two-
party case), limiting the applicability in resource-constrained environments such
as the Internet of Things (IoT), blockchain, and GPU acceleration [29,32,34].
Recently, Kwak et al. [25] presented another variant of the TFHE-like MK-FHE
scheme with asymptotically better computational efficiency but with much worse
noise growth and larger bootstrapping keys (more than 214MB for each party
in the two-party case).

Even if the first MK-FHE was based on NTRU lattices [27], the research on
NTRU-based MK-FHE schemes was indeed suffered from the sublattice attacks
in [2,10,16,20,23]. 1 In particular, the scheme in [27], adhering to the frame-
works outlined in BGV [7] or BFV [18], had an error of magnitude about Õ(nτk)
and a moduli q > Õ(nτk) for correctness, where τ is a small constant. How-
ever, Ducas and van Woerden [16] showed that the NTRU problem (including
its matrix version [19]) with large moduli q > n2.484+o(1) and ternary secret
could be significantly easier than its ring-LWE counterpart using similar parame-
ters. Recently, Hough, Sandsbr̊aten and Silde [21] showed that this conclusion still
1 One way to avoid the sublattice attacks is to increase key size, but this can cause noise

to escalate rapidly, potentially preventing even a single homomorphic multiplication.
Therefore, ternary secret keys are typically preferred for efficiency.

NTRU-Based Bootstrapping 243

Table 1. Experimental comparison between our MK-FHEs and two related ones [9,25].

Scheme Security
First layer Second layer Runtime(s) Boot. Key(MB)

Assum. Key Dist. Assum. k = 2 k = 4 k = 8 k = 16 k = 2 k = 4 k = 8 k = 16

CCS [9] 100 LWE binary RLWE 0.07 0.33 1.19 \ 89.82 96.38 102.94 \
KMS [25] 100 LWE binary RLWE 0.14 0.44 1.17 2.86 214.61 285.22 250.06 285.31

Ours (Alg. 1) 100 MNTRU ternary NTRU 0.07 0.28 0.82 2.74 38.31 38.31 38.31 38.31

Ours (Alg. 2) 100 LWE binary NTRU 0.05 0.21 0.54 2.61 13.89 13.89 13.89 13.89

Ours (Alg. 1) 128 MNTRU ternary NTRU 0.14 0.40 1.55 6.84 72.5 72.5 92.69 112.87

Ours (Alg. 2) 128 LWE binary NTRU 0.06 0.23 0.76 4.21 17.45 17.45 17.45 25.83

holds for Gaussian secret of NTRU with such overstretched parameter, which puts
a crucial limitation on the number k of keys in existing NTRU-based MK-FHEs
[13,27]. Although the problem of obtaining MK-FHE with larger k can be some-
how eased by using very sparse secrets [36], the construction of NTRU-based MK-
FHE schemes with super-constant k = ω(1) in the standard and secure parameter
regime of NTRU lattices (e.g., uniform ternary keys with q < n2.484+o(1)), to the
best of our knowledge, is still open.

1.1 Our Results

In this work, we first propose a (matrix) NTRU-based MK-FHE for super-
constant number k of keys without using overstretched NTRU parameters. Our
construction basically consists of two components following the two-layer frame-
work of the TFHE/FHEW scheme in [11,15] and the MK-FHE scheme in [9]:
a simple first-layer encryption for homomorphic NAND operations and a more
complex second-layer encryption for gate bootstrapping. Specifically, our first-
layer is an encryption scheme based on the matrix version of the NTRU problem
(a.k.a., MNTRU [19]) which naturally supports multi-key NAND operation with
moduli q = O(k ·n1.5) only linear in the number k of keys, and can thus support
a sub-linear number k of keys for q < n2.484+o(1). Our second-layer is a new and
crucial NTRU-based encryption (more precisely, a Hint-NTRU based encryption,
see technical overview below) which supports an efficient hybrid product between
a single-key ciphertext and a multi-key ciphertext for gate bootstrapping. Then,
by using our second-layer encryption as a building block, we also present an
improved MK-FHE scheme with better performance by replacing the first layer
with an LWE-based multi-key encryption. We further reduce the key-switching
key size from previous O(n2) to O(n) bits by using a light key-switching tech-
nique. As the TFHE-like MK-FHE in [9], our proposed two MK-FHEs inherently
support dynamic homomorphic computation on ciphertexts under new keys.

We implement our two schemes in experiment using the OpenFHE library [4].
In Table 1, we provide an experimental comparison of our schemes with the two
MK-FHEs by Chen, Chillotti and Song (CCS) [9] and by Kwak, Min and Song
(KMS) [25]. Since both CCS [9] and KMS [25] only choose parameters achieving
100-bit security, we select two sets of parameters achieving both 100-bit and

244 B. Xiang et al.

128-bit security for a fair comparison, where the concrete security of all set of
parameters (as well as the ones in [9,25]) is estimated by using the LWE estima-
tor in [3] and the NTRU estimator in [16] (see Sect. 7.2 for details). From Table 1
one can see that our two MK-FHE schemes are faster and have smaller boot-
strapping keys than the MK-FHE schemes in [9,25]. The efficiency improvement
over [9,25] is mainly because our NTRU-based second-layer encryption supports
a more efficient hybrid product. One can also see that our first MK-FHE scheme
with MNTRU-based first-layer ciphertexts (i.e., Algorithm 1) is less efficient than
our second one with LWE-based first-layer ciphertexts (i.e., Algorithm 2). The
main reason is that Algorithm 1 uses uniform ternary keys which requires a
more complex bootstrapping algorithm than that of Algorithm 2 using binary
keys (see the technical overview below for more details). For a concrete compar-
ison at the same 100-bit security level, our Algorithm 2 is about 1.4, 1.6 and 2.2
times faster than CCS [9], and 2.8, 2.1 and 2.2 times faster than KMS [25] for
k = 2, 4 and 8, respectively. Correspondingly, the bootstrapping key size of our
Alg. 2 is 6.5, 6.9 and 7.4 smaller than that of CCS [9], and is 15.5, 20.5 and 18
times smaller than that of KMS [25]. For k = 16, our Alg. 2 is about 1.1 times
faster and 20.5 times smaller than KMS [25] (note that CCS [9] did not provide
the parameters for k = 16).

1.2 Technical Overview

Before diving into the technical details of our constructions, we begin by recalling
the two-layer framework of FHEW/TFHE in [11,15], which was later extended
to the multi-key setting in [9]. Basically, the framework consists of two layers of
different encryption schemes: the first layer only supports a single homomorphic
NAND computation and the second layer is designed to bootstrap the first layer
ciphertext to support more NAND operations (namely, the gate bootstrapping).
For simplicity, we restricted our attention to the setting where the first layer is
an LWE-based encryption, and the second layer is an RLWE-based encryption
(namely, the whole scheme is essentially a hybrid scheme under two assump-
tions). Formally, let n, q be the dimension and moduli of the LWE problem
in the first layer, respectively. Let z ∈ {0, 1}n be the LWE secret of the first
layer, and the ciphertext of the first layer has the form of (b,a) ∈ Z

n+1
q such

that b + 〈a, z〉 ≈ �q/4� · m for m ∈ {0, 1}. Given two first-layer ciphertexts
ct1 = (b1,a1) ∈ Z

n+1
q and ct2 = (b2,a2) ∈ Z

n+1
q encrypting m1 ∈ {0, 1} and

m2 ∈ {0, 1}, respectively, the homomorphic NAND operation can be simply done
by computing ct′ = (b′,a′) = (5q

8 ,0) − ct1 − ct2 such that b′ + 〈a′, z〉 ≈ �q/2� · m
where m = m1∧̄m2. Moreover, let N,Q be the dimension and moduli of the
RLWE problem in the second layer such that N is a power of two and q = 2N . Let
R = Z[X]/(XN + 1) and its quotient ring RQ = ZQ[X]/(XN + 1). The second-
layer RLWE-based encryption is basically a GSW-like encryption under secret
key s ∈ R, which given an encryption of the first-layer secret key z ∈ {0, 1}n

under s ∈ R, supports the homomorphic computation of b′ + 〈a′, z〉 ≈ �q/2� · m
on the exponent of X (namely, Xb′+〈a′,z〉) such that the modulo q operation is
free in RQ (this is because the order of X in R is exactly q due to the choice

NTRU-Based Bootstrapping 245

of q = 2N). By multiplying a carefully designed polynomial r(X) ∈ RQ to
Xb′+〈a′,z〉, one can exactly extract an encryption of m on the constant term
of the resulting polynomial2. The above procedure is also known as blind rota-
tion [5,11,15,26,35].

To extend the above framework to the multi-key setting, it suffices to
design a first-layer encryption that supports multi-key NAND operation and
a second-layer GSW-like encryption that supports multi-key blind rotation.
Note that given a ciphertext ct1 = (b1,a1) ∈ Z

n+1
q under a single-key secret

key z1, by appending (k − 1)n zeros one can easily obtain a ciphertext ct1 =
(b,a1, · · · ,ak) = (b1,a1,0, · · · ,0) ∈ Z

kn+1
q that encrypts the same message

under the set of keys {zi}1≤i≤k because of b + 〈a1, z1〉 = b +
∑k

i=1 〈ai, zi〉.
This means that the multi-key NAND operation can be trivially done as in the
single-key setting.

The multi-key blind rotation is more complex and non-trivial because we
essentially need a way to generate the blind rotation evaluation key that
encrypts a set of first-layer secrets {zi}1≤i≤k under a set of second-layer secrets
{si}1≤i≤k on the fly (namely, the set of keys involved in the computation is not
known in the setup phase). To handle this, Chen et al. [9] presented an RGSW-
like scheme (called uni-encryption) supporting the hybrid product between an
MK-RLWE ciphertext and the uni-encryption. Specifically, for a base B ∈ Z

and d = 	logB Q�, the uni-encryption UniEnc(μ, s) = (d, f0, f1) ∈ Rd
Q ×Rd

Q ×Rd
Q

that encrypts μ ∈ RQ under the secret s ∈ R is defined as

d = r · a + μ · g + e1 ∈ Rd
Q, f0 = −s · f1 + r · g + e2 ∈ Rd

Q,

where a ∈ Rd
Q is a Common Reference String (CRS), g =

[
B0, . . . , Bd−1

] ∈ Z
d

is a gadget vector, r ∈ RQ is a random polynomial and f1, e1, e2 ∈ Rd
Q are

d-dimension polynomials in RQ.
To perform the multi-key blind rotation for an LWE-based first-layer cipher-

text ct
′ = (b′,a′

1, · · · ,a′
k) under the keys {zi}1≤i≤k for some a′

i = (a′
i,j)0≤j<n

and zi = (zi,j)0≤j<n, each party (of index i) independently generates a set of
uni-encryption ciphertexts {UniEnc(zi,j , si)}0≤j<n that encrypts zi ∈ {0, 1}n

under the secret key si ∈ RQ as the evaluation key. Let

CMUX(zi,j) = 1 + (Xa′
i,j − 1) · UniEnc(zi,j , si)

for binary zi,j . Since 1 can be designed as a noiseless uni-encryption of one and
the uni-encryption ciphertext also has homomorphic properties (see Lemma 2),
we have CMUX(zi,j) = UniEnc(Xa′

i,jzi,j , si). Then, we can initialize the accu-
mulator as a trivial MK-RLWE encryption ACCin = (r(X)Xb′

,0) ∈ Rk+1
Q and

recursively compute

ACCout = ACCin ·
k∏

i=1

n−1∏

j=0

CMUX(zi,j).

2 The details on how to set such r(X) can be found in [5,9,12,35]. We omit these
details in this paper.

246 B. Xiang et al.

By the fact that the order of X is exactly q for q = 2N , one can check that the
output ACCout is an MK-RLWE ciphertext that encrypts r(X) · Xb′+

∑k
i=1〈a′

i,zi〉
under the secret (1, s1, · · · , sk) ∈ Rk+1. And by carefully designing the rotation
polynomial r(X), the message in the constant term can be exactly �Q/4� · m.
Finally, by using the sample extraction as in [22], we can extract an MK-LWE
encryption ct

′′ = (b′′,a′′
1 , . . . ,a′′

k) ∈ Z
kN+1
Q that encrypts �Q/4� · m under the

secret (si)i∈[k] ∈ Z
kN where si is the coefficient vector of si. Then by perform-

ing the multi-key LWE modulus-switching from Q to q and key-switching from
(si)i∈[k] ∈ Z

kN to (zi)i∈[k] ∈ Z
kn, we finish the bootstrapping and get a refreshed

MK-LWE ciphertext.
As sketched above, in order to obtain a (matrix) NTRU-based MK-FHE,

it suffices to design a first-layer MNTRU-based encryption that supports multi-
key NAND operation and a second-layer NTRU-based GSW-like encryption that
supports efficient hybrid product for multi-key blind rotation.

First-Layer Matrix NTRU-Based Multi-Key Encryption. We begin by first
recalling the single-key MNTRU ciphertext in [5]. Formally, let n, q be two
positive integers. The single-key MNTRU ciphertext that encrypts a message
bit m ∈ {0, 1} in [5] is defined as c := (e +

⌊
q
4

⌉ · m) · F−1 ∈ Z
n
q where

the secret key F ∈ Z
n×n is an invertible matrix, e ∈ Z

n
q is a random vec-

tor from Z
n
q , and m = (m, 0, . . . , 0) ∈ Z

n. Note that this can be actu-
ally viewed as a standard MNTRU ciphertext that encrypts a message vector⌊

q
4

⌉ · m · F−1 = (∗, 0, . . . , 0) ∈ Z
n with a single non-zero term, whose security

can be based on either a KDM-form MNTRU assumption (which essentially
assumes that the standard MNTRU encryption is KDM-secure as in [5,35], we
refer to Sect. 2.4 for a formal definition), or the matrix inhomogeneous NTRU
(MiNTRU) assumption with a more complex distribution for error e in [19]. We
prefer to the former assumption because a circular-secure/KDM-secure assump-
tion is common for constructing FHEs with bootstrapping (e.g., [5,35]), and
designing FHEs without circular-secure/KDM-secure assumptions is actually a
long-term open problem. We now extend the above single-key ciphertext to the
multi-key setting, and naturally define the multi-key MNTRU ciphertext as a
vector of the form ct = (c1, · · · , ck) ∈ Z

kn
q such that

〈c1, col0(F1)〉 + · · · + 〈ck, col0(Fk)〉 =
⌊q

4

⌉
· m + e

where k denotes the number of involved keys, e is a small noise and col0(Fi) =
(fi,j)0≤j<n is the first column of the secret matrix Fi.

Since a constant cannot be treated as a noiseless ciphertext in our MNTRU-
based multi-key encryption (which is unlike the LWE-based one in [9]), we have
to create an additional evaluation key evki = (ei +

⌊
5q
8

⌉ · (1,0)) · F−1
i ∈ Z

n
q

encrypting the constant 5q
8 for performing the NAND gate evaluation. Now,

given two multi-key MNTRU ciphertexts ct1 = (c1, · · · , ck1) ∈ Z
k1n
q and ct =

(c1, · · · , ck2) ∈ Z
k2n
q , let k be the maximum number of different keys involved

in ct1 and ct2. By reorganizing the components and padding empty slots with

NTRU-Based Bootstrapping 247

zeros, we can extend the ciphertexts ct1 and ct2 to ct
′
1, ct

′
2 ∈ Z

kn under the secret
(Fj)j∈[k]. Then, the NAND gate operation can be done by computing

ct
′ = (0, · · · ,0

︸ ︷︷ ︸
(i−1)n zeros

, evki, 0, · · · ,0
︸ ︷︷ ︸

(k−i)n zeros

) − ct
′
1 − ct

′
2 ∈ Z

kn
q .

Second-Layer NTRU-Based Uni-Encryption. Now, we give our NTRU-based uni-
encryption scheme that supports efficient hybrid product for multi-key blind
rotation. Let B, d be two integers and d = 	logB Q�. Specifically, each party
i takes a uniformly random CRS a ∈ Rd

Q and sets the public key bi = −a ·
si + ei ∈ Rd

Q where si is the secret of the second layer for party i, ei is a d-
dimensional polynomial vectors. Party i can encrypt a plaintext μi ∈ RQ into a
uni-encryption ciphertext UniEnc(μi, si) = (di, fi) ∈ Rd

Q × Rd
Q under secret key

si such that

di = ri · a + μi · g + ei,1 ∈ Rd
Q, fi = ei,2 · s−1

i + ri · g · s−1
i ∈ Rd

Q,

where ri is a polynomial with small coefficients, ei,1, ei,2 are d-dimensional
polynomial vectors and g =

[
B0, . . . , Bd−1

] ∈ Z
d is a gadget vector. Note

that our NTRU-based uni-encryption ciphertext only contains two polynomi-
als in RQ (while the MK-FHE scheme [9] and its variant [25] have to store
three polynomials), which allows us to save both computation and storage for
a hybrid product. Because the same si is used in both bi = −a · si + ei and
fi = ei,2 · s−1

i + ri · g · s−1
i , the above construction essentially relies on the hard-

ness of a KDM-secure assumption and a variant of the NTRU problem called
Hint-NTRU [17]. As discussed in [17], with a suitable choice of secret and error
distributions, the Hint-NTRU problem is at least as hard as the inhomogeneous
NTRU problem [19].

The single-key KDM-form NTRU ciphertext that encrypts a message μ ∈ RQ

in [35] is defined as c := (g + μ)/s where the secret key s ∈ R is an invertible
polynomial, g ∈ RQ is a random polynomial from RQ. We can extend the above
single-key ciphertext to the multi-key setting, and naturally define the multi-
key NTRU (MK-NTRU) ciphertext under the secret (si)i∈[k] as a vector of the
form (ci)i∈[k] ∈ Rk

Q such that
∑k

i=1 cisi = g′ + μ where k denotes the number
of involved keys, g′ is a small noise. To homomorphically multiply the MK-
NTRU ciphertext by a uni-encryption that encrypts μi of party i, we compute
the following inner products: uj =

〈
g−1 (cj) ,di

〉
for 1 � j � k, and compute

v =
∑k

j=1

〈
g−1 (cj) ,bj

〉
. Then we output c′ = (c′

1, . . . , c
′
k) ∈ Rk

Q where c′
i =

ui +
〈
g−1(v), fi

〉
and c′

j = uj for j �= i. One can check that c′ is an MK-NTRU
ciphertext that encrypts μ·μi (we defer the proof and security analysis to Sect. 4).
It is important to note that our MK-NTRU ciphertext consists of k polynomials
in RQ, which is one less than that of the MK-RLWE ciphertext in [9,25]. This
means our hybrid product only needs d(2k + 1) multiplications in RQ, which is
2d less than that of the MK-FHE schemes in [9,25].

248 B. Xiang et al.

Bootstrapping First-Layer Matrix NTRU-Based Multi-Key Ciphertexts. Now,
we show how to bootstrap first-layer matrix NTRU-based multi-key ciphertexts.
Formally, Given a multi-key MNTRU ciphertext ct

′ = (c′
1, · · · , c′

k) ∈ Z
kn
q sat-

isfying
∑k

i=1 〈c′
i, col0(Fi)〉 ≈ ⌊

q
2

⌉
m for some c′

i = (c′
i,j)0≤j<n where col0(Fi) =

(fi,j)0≤j<n ∈ {−1, 0, 1}n is the first column of the secret matrix Fi, the gate
bootstrapping consists of three steps: blind rotation, modulus switching and
key-switching. Recall the previous multi-key blind rotation is to homomorphi-
cally decrypt an MK-LWE ciphertext with a binary secret key distribution on the
exponent [9,25]. One issue we encounter is that in our MNTRU scheme, the secret
key follows a ternary distribution. Therefore, we need to extend this method to
accommodate ternary secret key distributions. To solve this issue, we employ
the ternary CMUX gate 1 +

(
Xc′

i,j − 1
)

· f+
i,j +

(
X−c′

i,j − 1
)

· f−
i,j = Xc′

i,jfi,j

first used in [5] where
{

f+
i,j = 1, if fi,j = 1

f+
i,j = 0, otherwise

,

{
f−

i,j = 1, if fi,j = −1
f−

i,j = 0, otherwise
for 0 ≤ j < n.

Another issue is that in previous methods [9] the accumulator can be initialized
as a trivial MK-RLWE encryption. However, this feature is not satisfied for
our MK-NTRU ciphertext. Noticed that if we set the initial accumulator as
ACCin = (r(X),0) ∈ Rk

Q for some rotation polynomial r(X) ∈ RQ, we have
the fact 〈ACCin, s〉 = r(X)s1 where s = (s1, · · · , sk) ∈ Rk is the secret keys
of k keys used in hybrid product. Fortunately, we can effectively address this
challenge by carefully designing the evaluation key. Specifically, party i creates
a set of ciphertexts as follows:

– For i = 1, given secret key col0(F1) = (f1,0, . . . , f1,n−1) ∈ {−1, 0, 1}n, create
a set of ciphertexts that encrypts col0(F1) under s1 as follows:{

evk+
1,0 = UniEnc(f+

1,0/s1, s1)
evk−

1,0 = UniEnc(f−
1,0/s1, s1)

,

{
evk+

1,j = UniEnc(f+
1,j , s1)

evk−
1,j = UniEnc(f−

1,j , s1)
for 1 ≤ j < n,

– For i �= 1, given secret key col0(Fi) = (fi,0, . . . , fi,n−1) ∈ {−1, 0, 1}n, create
a set of ciphertext that encrypts col0(Fi) under si as follows:

evk+
i,j = UniEnc(f+

i,j , si), evk−
i,j = UniEnc(f−

i,j , si) for 0 ≤ j < n.

Recall that in the previous scheme [9,25], the uni-encryption ciphertexts can
be publicly generated even when the plaintext is known. This feature is cru-
cial for the CMUX gate evaluation. But our KDM-form evaluation keys evk+

1,0

and evk−
1,0 given above don’t satisfy this requirement. We address this issue

with minimal additional cost by additionally constructing an auxiliary cipher-
text evk∗

1,0 = UniEnc(1/s1, s1). In this case, the CMUX gate in the first iteration
can be computed as

CMUX(f1,0) = evk∗
1,0 +

(
Xc′

1,0 − 1
)

· evk+
1,0 +

(
X−c′

1,0 − 1
)

· evk−
1,0,

NTRU-Based Bootstrapping 249

which is a uni-encryption of Xc′
1,0f1,0/s1. In other iterations, we slightly revised

the CMUX gate as

CMUX(fi,j) = 1 +
(
Xc′

i,j − 1
)

·
(
evk+

i,j − X−c′
i,j · evk−

i,j

)
,

where 1 is a noiseless uni-encryption of one.
We now describe our bootstrapping algorithm. Firstly, we initialize the

accumulator as ACCin = (r(X),0) ∈ Rk
Q and compute the hybrid prod-

uct of ACCin and CMUX(f1,0) to obtain ACC1,0. Since CMUX(f1,0) =
UniEnc(Xc′

1,0f1,0/s1, s1), one can easily check that ACC1,0 is an MK-NTRU
ciphertext that encrypts r(X) · Xc′

1,0f1,0 . Next we compute evk′
1,1 = evk+

1,1 −
evk−

1,1 · X−c′
1,1 to obtain a uni-encryption for f+

1,1 − f−
1,1 · X−c′

1,1 . Then we com-
pute the hybrid product between (Xc′

1,1 − 1)ACC1,0 and evk′
1,1 , and ACC1,0

to obtain ACC1,1. We can check that ACC1,1 is an MK-NTRU ciphertext that
encrypts

r(X) ·Xc′
1,0f1,0

(
1 + (Xc′

1,1 − 1) · (f+
1,1 − f−

1,1 · X−c′
1,1)

)
= r(X) ·Xc′

1,0f1,0+c′
1,1f1,1 .

We can iteratively absorb Xc′
i,jfi,j for i ∈ [k] and 0 ≤ j < n to obtain an

MK-NTRU ciphertext ACCk,n−1 that encrypts r(X) · X
∑k

i=1
∑n−1

j=0 c′
i,jfi,j . Fur-

thermore, by carefully designing r(X) we can ensure that the constant term of
r(X) · X

∑k
i=1

∑n−1
j=0 c′

i,jfi,j equals
⌊

Q
4

⌉
· m.

Another issue is that after multi-key blind rotation, we obtain an MK-NTRU
ciphertext under the modulus Q instead of a multi-key MNTRU-based first-
layer ciphertext. Therefore, we use the modulus switching technique to switch
the modulus from Q back to q and we design a key-switching method to switch
the MK-NTRU ciphertext back to MNTRU first-layer ciphertext, resulting in a
refreshed multi-key MNTRU ciphertext of encryption

⌊
q
4

⌉·m, which is convenient
for the next NAND gate computation.

Bootstrapping First-Layer Multi-key LWE Ciphertexts. Recall that the multi-
key LWE ciphertext (after NAND gate) that encrypts a message bit m ∈ {0, 1}
in [9] under the secret (1, z1, · · · , zk) ∈ Z

kn+1 is defined as a vector of the form
ct

′ = (b′,a′
1, . . . ,a

′
k) ∈ Z

kn+1
q such that b′ +

∑k
i=1 〈a′

i, zi〉 ≈ �q/2� · m for some
a′

i = (a′
i,j)0�j<n ∈ Z

n
q . Our second-layer encryption scheme can also be modified

to bootstrap such a standard first-layer multi-key LWE ciphertext ct
′. Similarly,

it requires us to carefully design the evaluation key. Details can be found in
Sect. 6 and we skip it here.

After blind rotation, we get an MK-NTRU ciphertext c = (c1, · · · , ck) ∈
Rk

Q under the secret key (s1, · · · , sk) ∈ Rk instead of an MK-LWE ciphertext.
Then we can extract a multi-key LWE ciphertext ct

′′ = (0,a′′
1 , · · · ,a′′

k) ∈ Z
kN+1
Q

under the secret key (1, s1, · · · , sk) ∈ Z
kN+1 where si is the coefficient vector of

si. Subsequently, by performing a modulus switching, we can switch the modulus
from Q back to q.

250 B. Xiang et al.

Finally, we only need to perform one key-switching to switch the secret key
from (1, s1, · · · , sk) ∈ Z

kN+1 back to the secret key (1, z1, · · · , zk) ∈ Z
kn+1.

However, in previous key-switching methods [9,25] the key-switching keys are
substantially larger than the evaluation keys. For example, the evaluation key
measures 19.7 MB, whereas the key-switching keys occupy a much larger 70.1 MB
of storage space in [9]. This size discrepancy presents a significant challenge and
warrants attention. To solve this issue, we propose a light key-switching method.
Let Bks be an integer, dks =

⌈
logBks

q
⌉
. To switch an MK-LWE ciphertext under

the secret (1, s1, · · · , sk) ∈ Z
kN+1 to the secret (1, z1, · · · , zk) ∈ Z

kn+1, the previ-
ous method is to create a set of LWE ciphertexts that encrypts vBl

kssi,j under zi

for party i where i ∈ [k], j ∈ [0, · · · , N−1], l ∈ [0, · · · , dks−1], v ∈ [1, · · · , Bks−1].
Instead, we pack these LWE ciphertexts of party i into a small number of RLWE
ciphertexts, and the server can extract them as LWE ciphertexts almost for free
using sample extraction. This approach reduces the key-switching key size from
Õ(kn2) bits to Õ(kn) bits, which can be of independent interest to other schemes
(e.g., the single-key FHEs [11,12,15,26,35]) as well.

1.3 Organization

After giving some background in Sect. 2, we present a multi-key matrix NTRU-
based encryption scheme in Sect. 3. In Sect. 4, we present our new hybrid product.
We show how to use our new hybrid product to bootstrap the multi-key matrix
NTRU-based and LWE-based ciphertexts in Sect. 5 and Sect. 6, respectively.
Finally, we report our implementation in Sect. 7.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). Vectors and matri-
ces are denoted as lowercase bold letters (e.g. a, b) and uppercase bold letters
(e.g. A, B), respectively. The i + 1-th column of a matrix A is denoted by
coli(A) and Ai,j denotes the element in the i-th row and j-th column.

The inner product of two vectors a and b is denoted by the symbol 〈a,b〉. The
index set [k] represents the set of integers {1, 2, ..., k}. For positive integers q,Q
and power of two N , by R and Rq (resp., RQ) we denote the 2N -th cyclotomic
ring R = Z[X]/(XN +1) and its quotient ring Rq = R/qR (resp., RQ = R/QR).

For polynomial a =
∑N−1

i=0 aiX
i ∈ R, we use Cof(a) to denote the coefficient

vector of a, and we denote the N -dimensional anti-circulant matrix of a by

A(a) :=

⎛

⎜
⎜
⎜
⎝

a0 a1 · · · aN−1

−aN−1 a0 · · · aN−2

...
.

...
−a1 −a2 · · · a0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

(Cof(a))
(Cof(a · X))

...(
Cof(a · XN−1)

)

⎞

⎟
⎟
⎟
⎠

.

NTRU-Based Bootstrapping 251

We use ← to denote sampling an element uniformly at random from some
distribution. By ‖ · ‖ and ‖ · ‖∞, we denote the �2 and �∞ norms. By 	·�, �·� and
�·� we denote the ceiling, floor and round function, respectively.

2.2 Gadget Decomposition

For integers q, B, let d =
⌈
logq B

⌉
and gq,B =

[
B0, . . . , Bd−1

] ∈ Z
d be a gadget

vector. We write g when q and B are clear from the context. For an integer
k ≥ 1, the gadget matrix is defined as

Gk = Ik ⊗ gt =

⎡

⎢
⎢
⎢
⎣

gt 0 . . . 0
0 gt . . . 0
...

...
. . .

...
0 0 . . . gt

⎤

⎥
⎥
⎥
⎦

∈ Z
dk×k.

For any a ∈ Z, the gadget decomposition of a is defined as its signed decomposi-
tion in base B as g−1(a) = (a0, · · · , ad−1) with each ai ∈ (−B/2, B/2] such that
a = 〈g−1(a),g〉. The definition can be naturally extended to any polynomial in
Rq. For any a =

∑N−1
i=0 aiX

i, we define g−1(a) =
∑N−1

i=0 g−1(ai)Xi.
In practice, we can ignore the first element of g−1(a) and g to obtain

g−1(a) = (a1, · · · , ad−1) which satisfies a ≈ 〈g−1(a),g〉, thereby achieving opti-
mization in both computation and storage.

2.3 Multi-key Fully Homomorphic Encryption

Let M be the message space with arithmetic structure. Let k be the bound
of the involved keys. A multi-key FHE scheme is a tuple of PPT algorithms
(Setup,KeyGen,Enc,Dec,Eval) having the following properties:

• Setup
(
1λ
)
: Given the security parameter λ, outputs a public parameter pp.

• KeyGen(pp): Outputs a public key pk and secret key sk.
• Enc(m, pk): Given the public key pk and a message m ∈ M, output a cipher-

text ct. For convenience, we assume that ct contains an index to pk.
• Dec

(
ctj , {ski}i∈Tj

)
: Let Tj ⊆ [k] be a set. Given a ciphertext ctj correspond-

ing to a set of keys Tj ⊆ [k] and a tuple of secret keys {ski}i∈Tj
, outputs the

message m ∈ M.
• Eval

(C, (ct1, · · · , ctl), {pki}i∈T

)
: Let T = T1 ∪ · · · ∪ T�. Given a circuit C, a

set of public keys {pki}i∈T and a tuple of multi-key ciphertexts ct1, · · · , ctl
where each ciphertext ctj is evaluated using pkTj

= {pkd,∀d ∈ Tj} for j ∈ [l],
outputs a ciphertext ct.

Compactness. We say that a multi-key FHE scheme is compact if there exists
a polynomial poly(·, ·) such that the length of a ciphertext associated with k
keys is bounded by a polynomial poly(λ, k).

252 B. Xiang et al.

Correctness. Let ctj be a ciphertext (associated with the set Tj) such that
Dec

(
ctj , {ski}i∈Tj

)
= mj for 1 ≤ j ≤ l. Let C : M� → M be a circuit and

ct ← Eval
(C, (ct1, · · · , ctl), {pki}i∈T

)
for T = T1 ∪ · · · ∪ T�. We say that a multi-

key FHE scheme is correct if

Pr
[
Dec

(
ct, {ski}i∈T

) �= C (m1, . . . , ml)
]

= negl(λ).

2.4 Hard Problems

Let q, n,Q be three integers, and N a power of two. Let RQ = ZQ[X]/
(
XN + 1

)
.

Let χe(resp.,χ′
e) be a noise distribution over Z (resp., RQ). Let χs (resp., χ′

s) be
a secret distribution over Z (resp., R).

The LWE Problem [33]. The decisional LWEn,q,χs,χe
problem is to distinguish

the following two distributions:

– {(A,b = A · s + e)|A ← Z
k1×n
q , s ← χn

s , e ← χk1
e },

– {(U,v)|U ← Z
k1×n
q ,v ← Z

k1
q }.

The decisional LWEn,q,χs,χe
assumption says that it is hard for any PPT algo-

rithms to solve decisional LWEn,q,χs,χe
with non-negligible advantage over a

random guess.

The RLWE Problem [28]. The decisional RLWEN,Q,χ′
s,χ′

e
problem is to dis-

tinguish the following two distributions:

{(a,b = a · s + e)|a ← Rk2
Q , s ← χ′

s, e ← χ′k2
e and {(u,v)|u,v ← Rk2

Q }}.

The decisional RLWEN,Q,χ′
s,χ′

e
assumption says that it is hard for any PPT

algorithms to solve decisional RLWEN,Q,χ′
s,χ′

e
with non-negligible advantage

over a random guess.

The NTRU Problem [5,35] (in the vector form). For an integer d, the deci-
sional NTRUN,Q,χ′

s,χ′
e

problem is to distinguish the following two distributions:

– {(g0/f, · · · , gd−1/f) |f ← χ′
s, g0, · · · , gd−1 ← χ′

e},
– {(u1, · · · , ud)|u1, · · · , ud ← RQ}.

The decisional NTRU assumption (in the vector form) says that it is hard for any
PPT algorithms to solve decisional NTRUN,Q,χ′

s,χ′
e

with non-negligible advan-
tage over a random guess.

The matrix NTRU Problem [16,19]. The decisional matrix NTRUn,q,χs,χe

problem is to distinguish the following two distributions:

{G · F−1|F ← χn×n
s ,G ← χm×n

e } and {U|U ← Z
m×n
q }.

The decisional matrix NTRUn,q,χs,χe
assumption says that it is hard for any

PPT algorithms to solve decisional matrix NTRUn,q,χs,χe
with non-negligible

advantage over a random guess.

The Hint-NTRU Problem [17] (in the vector form). The decisional Hint-
NTRUN,Q,χ′

s,χ′
e

problem is to distinguish the following two distributions:

NTRU-Based Bootstrapping 253

– {(h = e1/s,a,b = a · s + e2)|s ← χ′
s, e1, e2 ← χ′d

e ,a ← Rd
Q},

– {(u,v,w)|u,v,w ← Rd
Q}.

The decisional Hint-NTRUN,Q,χ′
s,χ′

e
assumption says that it is hard for any PPT

algorithms to solve decisional Hint-NTRUN,Q,χ′
s,χ′

e
with non-negligible advan-

tage over a random guess.
In Eurocrypt 2024, Esgin, Espitau, Niot et al. [17] first introduced the Hint-

NTRU problem, asserting that an adversary against Hint-NTRU can break the
indistinguishability of the inhomogeneous NTRU instance [19] for appropriate
choices of parameters.

As the FHE schemes in [5,19,35], our MK-FHEs essentially rely on the KDM-
security of the (matrix) NTRU problems and Hint-NTRU problems. We formally
define the problems below.

The KDM-form NTRU Problem [35] (in the vector form). For an arbitrarily
chosen (and public known) m ∈ RQ and integers B, d, the decisional KDM-form
NTRUN,Q,χ′

s,χ′
e

problem is to distinguish the following two distributions:

– {((g0 + B0 · m)/f, · · · , (gd−1 + Bd−1 · m)/f
) |f ← χ′

s, g0, · · · , gd−1 ← χ′
e},

– {(u1, · · · , ud)|u1, · · · , ud ← RQ}.

The decisional KDM-form NTRUN,Q,χ′
s,χ′

e
assumption says that it is hard for

any PPT algorithms to solve decisional KDM-form NTRUN,Q,χ′
s,χ′

e
with non-

negligible advantage over a random guess.

The KDM-Form Matrix NTRU Problem. For an arbitrarily chosen (and
public known) M ∈ Z

m×n
q , the decisional KDM-form matrix NTRUn,q,χs,χe

problem is to distinguish the following two distributions:

{(G + M) · F−1|F ← χn×n
s ,G ← χm×n

e } and {U|U ← Z
m×n
q }.

The decisional KDM-form matrix NTRUn,q,χs,χe
assumption says that it

is hard for any PPT algorithms to solve decisional KDM-form matrix
NTRUn,q,χs,χe

with non-negligible advantage over a random guess.
Note that the standard (matrix) NTRU problem is essentially a special case

of the KDM-form (matrix) NTRU problem with m = 0 or M = 0. Intuitively,
the hardness of the KDM-form (matrix) NTRU problem is equivalent to the
KDM-security of the standard (matrix) NTRU encryption which encrypts m/f
or G·F−1 [5,35]. We also note that the matrix inhomogeneous NTRU (MiNTRU)
problem considered in [19] is basically a special case of our KDM-form matrix
NTRU problem with M being fixed to a gadget matrix. As shown in [19], for an
appropriate choice of error distributions, the above KDM-form matrix NTRU
problem is polynomially equivalent to the MiNTRU problem, which in turn is
not easier than a trapdoor version of the standard LWE problem [19].

254 B. Xiang et al.

The KDM-Form Hint-NTRU Problem (in the vector form). For an arbi-
trarily chosen (and public known) m ∈ RQ, integers B, d and gadget vector
g = (B0, · · · , Bd−1), the decisional KDM-form Hint-NTRUN,Q,χ′

s,χ′
e

problem is
to distinguish the following two distributions:

– {((e1 + g · m)/s,a,b = a · s + e2)|s ← χ′
s, e1, e2 ← χ′d

e ,a ← Rd
Q},

– {(u,v,w)|u,v,w ← Rd
Q}.

The decisional KDM-form Hint-NTRUN,Q,χ′
s,χ′

e
assumption says that it

is hard for any PPT algorithms to solve decisional KDM-form Hint-
NTRUN,Q,χ′

s,χ′
e

with non-negligible advantage over a random guess.
Note that the standard Hint-NTRU problem is essentially a special case of

the KDM-form Hint-NTRU problem with m = 0. Essentially, the hardness of
the KDM-form Hint-NTRU problem is equivalent to the KDM-security of the
standard Hint-NTRU encryption which encrypts m/s.

3 First-Layer Matrix NTRU-Based Multi-Key
Encryption

In this section, we propose a first-layer multi-key encryption HE that supports
multi-key NAND operation in a natural way based on the matrix NTRU assump-
tion. Formally, our construction HE = (Setup,KG,Enc,MK-Dec,MK-NAND) con-
sists of five algorithms below:

• HE.Setup(1λ): Given the security parameter λ, set the matrix dimension n,
ciphertext modulus q, secret distribution χs and error distribution χe over Z.
Return the public parameter pp = (n, q, χs, χe).

• HE.KG(pp): Sample F ← χn×n
s until F−1 exists in Z

n×n
q . Define sk := F.

Create a public evaluation key as evk := (e + �5 · q/8� · (1,0)) · F−1 ∈ Z
n
q ,

where e ← χn
e . Output (evk, sk).

• HE.Enc(m,F): Given m ∈ {0, 1}, sample e′ ← χn
e . Let Δ := �q/4� and output

c = (e′ + Δ · (m,0)) · F−1 ∈ Z
n
q .

• HE.MK-Dec(ct, {Fi}i∈[k]) : Given a ciphertext ct = (c1, · · · , ck) ∈ Z
kn
q after

NAND gate evaluation under the secret key (F1, · · · ,Fk) ∈ (Zn×n
q)k, which

satisfies
∑k

i=1 〈ci, col0(Fi)〉 ≈ ⌊
q
2

⌉
m. Compute

⌊
2 ·∑k

i=1 ci · col0(Fi)
q

⌉

∈ Z2.

• HE.MK-NAND(ct1, ct2, evki) : Given ct1 = (c1,j1 , · · · , c1,jk1
) ∈ Z

k1n
q satis-

fying
∑jk1

i=j1
〈c1,i, col0(Fi)〉 ≈ ⌊

q
4

⌉
m1, ct2 = (c2,j1 , · · · , c2,jk2

) ∈ Z
k2n
q satis-

fying
∑jk2

i=j1
〈c2,i, col0(Fi)〉 ≈ ⌊

q
4

⌉
m2 and the evaluation key evki of party

i ∈ [k] as inputs, let k be the maximum number of different keys involved

NTRU-Based Bootstrapping 255

in ct1 and ct2. Extend cti = (ci,j1 , · · · , ci,jki
) ∈ Z

kin
q to the ciphertext

ct
′
i =

(
c′

i,1, . . . , c
′
i,k

)
∈ Z

kn
q where

c′
i,j =

{
ci,� if j = j� for some � ∈ [ki]
0 otherwise

for i ∈ {1, 2} and j ∈ [k]. Compute the homomorphic NAND gate homomor-
phically as follows:

ct = (0, · · · ,0
︸ ︷︷ ︸

(i−1)n zeros

, evki, 0, · · · ,0
︸ ︷︷ ︸

(k−i)n zeros

) − ct
′
1 − ct

′
2 ∈ Z

kn
q .

By Lemma 1, we show the correctness of the NAND gate evaluation.

Lemma 1. For i ∈ {1, 2}, let cti = (ci,j1 , . . . , ci,jki
) ∈ Z

kin
q be the ciphertext

that encrypts mi under the secret key (Fj1 , . . . ,Fjki
) ∈ (Zn×n

q)ki with noise ei,
satisfying 〈ci,j1 , col0(Fj1)〉 + · · · + 〈ci,jki

, col0(Fjki
)〉 =

⌊
q
4

⌉ · mi + ei,0, where
ei,0 is the first element of ei. Let evki be the evaluation key of party i with a
noise e. Let e0 be the first element of e. Let ct = HE.MK-NAND(ct1, ct2, evki). If
|e0−e1,0−e2,0| < q−12

8 then HE.MK-Dec(ct, {Fi}i∈[k]) outputs NAND(m1,m2) =
1 − m1m2.

Proof. Let F = (col0(Fj))j∈[k]. For 1 � i � 2, let ct
′
i = (c′

i,1, · · · , c′
i,k) be the

extended ciphertext of cti. By definition, we have
〈
ct

′
i,F

〉
= ei,0 +

⌊
q
4

⌉
mi. Let

e0 be the first element of e, then

〈ct′,F〉 =
〈(

0, · · · ,0, e + �5 · q/8� · (1,0) · F−1
i ,0, · · · ,0

)− ct
′
1 − ct

′
2,F

〉

=
5q

8
+ e0 + ε −

(
e1,0 +

q

4
m1 + m1ε1

)
−
(
e2,0 +

q

4
m2 + m2ε2

)

= e0 − e1,0 − e2,0 ± q

8
+ ε − m1ε1 − m2ε2 +

q

2
(1 − m1m2) ,

where ε, ε1, ε2 are round-off errors and |ε| � 1
2 , |ε1| � 1

2 , |ε2| � 1
2 , respectively. Let

e = ε − m1ε1 − m2ε2, we have |e| � 3
2 . The output of HE.MK-Dec(ct, {Fi}i∈[k])

is ⌊
2
q

· (e + e0 − e1,0 − e2,0 ± q

8
+

q

2
(1 − m1m2))

⌉

.

Thus, the output is equal to 1−m1m2 as long as |2q ·(e+e0−e1,0−e2,0± q
8)| < 1

2 ,

which implies |e0 − e1,0 − e2,0| <
(

1
2 − 1

4 − 3
q

)
· q
2 = q−12

8 . �

Theorem 1 (Security of HE). Let pp = (n, q, χs, χe) be some parameters such
that the KDM-form matrix NTRU problem is hard. Then, for any m ∈ Zq, if
(evk,F) ← HE.KG(pp), c ← HE.Enc(m,F), it holds that the joint distribution
(evk, c) is computationally indistinguishable from uniform over Z

n
q × Z

n
q .

Note that our multi-key construction is essentially a natural extension of
the single-key MNTRU encryption based on the KDM-form MNTRU problems
in [5]. The proof is similar and directly, we omit the details.

256 B. Xiang et al.

4 Second-Layer NTRU-Based Uni-Encryption

In this section, we present a second-layer NTRU-based uni-encryption that sup-
ports an efficient hybrid product.

Our uni-encryption Π = (Setup,KG,UniEnc,HbProd) consists of four algo-
rithms:

• Setup(1λ): Given the security parameter λ, set the polynomial degree N ,
ciphertext modulus Q, gadget vector dimension d, secret distribution χ′

s and
error distribution χ′

e over R. Generate a random vector a ← Rd
Q. Return the

public parameter pp′ = (N,Q, d,a, χ′
s, χ

′
e).

• KG(pp′): Sample a polynomial s ← χ′
s uniformly at random until s−1 exists

in RQ and a noise e ← χ′d
e . Compute the public key b = −a ·s+e and output

(s,b).
• UniEnc(μ, s): For a message μ ∈ RQ and a secret key s, sample r ← χ′

s

uniformly at random, and noise e1, e2 ← χ′d
e . Compute the ciphertext d =

r · a + μ · g + e1 ∈ Rd
Q and f = e2 · s−1 + r · g · s−1 ∈ Rd

Q and output
(d, f) ∈ Rd

Q × Rd
Q.

• HbProd(c, {bj}j∈[k], (di, fi)): Given an NTRU-based multi-key ciphertext c =
(c1, · · · , ck) ∈ Rk

Q, the public keys {bj}j∈[k] of k keys involved in c, and a
uni-encryption (di, fi) of party i as inputs, return an MK-NTRU ciphertext
c′ ∈ Rk

Q as follows:
(a) Compute the following inner products:

uj =
〈
g−1 (cj) ,di

〉
for 1 � j � k,

v =
k∑

j=1

〈
g−1 (cj) ,bj

〉
.

(b) Output c′ = (c′
1, . . . , c

′
k) ∈ Rk where

c′
j =

{
ui +

〈
g−1(v), fi

〉
if j = i,

uj otherwise.

By Lemma 2, we show that our uni-encryption supports homomorphic additions.
In Lemma 3, we establish the correctness and estimate noise bound. For the
detailed formal proofs, see the full version.

Lemma 2. Let UniEnc(μ1, s) = (d1, f1),UniEnc(μ2, s) = (d2, f2) ∈ Rd
Q × Rd

Q

be two uni-encryption ciphertexts. We define the homomorphic addition between
UniEnc(μ1, s) and UniEnc(μ1, s) as

UniEnc(μ1, s) + UniEnc(μ2, s) = (d1 + d2, f1 + f2),

which is also a uni-encryption ciphertext that encrypts μ1 + μ2 under the secret
s. And for a monomial u with ternary coefficient, u ·UniEnc(μi, s) = (u ·di, u · fi)
is also a uni-encryption ciphertext that encrypts u · μi under the secret s.

Moreover, if the variance of the noise distribution used in generating uni-
encryption is V ar(e), then the noise variance of the ciphertext (d1 +d2, f1 + f2)
and u · μi is bounded by 2V ar(e) and V ar(e), respectively.

NTRU-Based Bootstrapping 257

Lemma 3 (Hybrid Product). Let c = (c1, · · · , ck) ∈ Rk
Q be an MK-NTRU

ciphertext under the secret key s = (s1, · · · , sk) ∈ Rk, and let {bj}j∈[k] be the
public keys of k keys associated with c. Let (di, fi) ← UniEnc(μi, si) be the uni-
encryption of μi ∈ RQ for party i, and let c′ ← HbProd(c, {bj}j∈[k], (di, fi)) be
the output of the hybrid product, we have that 〈c′, s〉 ≈ μi 〈c, s〉.

Moreover, if the noise variance in generating (di, fi) and {bj}j∈[k] is V ar(e)
and the variance of the secret is V ar(s), then the variance of the increased noise
in the resulting ciphertext is upper bounded by (2kNV ar(s) + 1)B2

12 dNV ar(e).

In the following, we will use σ2
HP1 = (V ar(s)kN + 1)dNB2

12 V ar(e), and σ2
HP2 =

V ar(s)kN dNB2

12 V ar(e) to denote the variance of the increased noise (with
respect to the input ciphertext) for the hybrid product.

By Theorem 2, we show that our NTRU-based Uni-Encryption is provably
IND-CPA secure in the standard model.

Theorem 2 (Security of the second-layer NTRU-based Uni-
Encryption). Let pp′ = (N,Q, d,a, χ′

s, χ′
e) ← Setup(1λ) be the parameters such

that standard RLWEN,Q,χ′
s,χ′

e
and the KDM-form Hint-NTRUN,Q,χ′

s,χ′
e

assump-
tions hold, we have that our second-layer NTRU-based Uni-Encryption is prov-
ably IND-CPA secure in the standard model.

The proof of Theorem 2 follows directly from the RLWE and the KDM-form
Hint-NTRU assumptions via a standard hybrid argument. We defer this proof
to the full version.

5 Bootstrapping First-Layer Matrix NTRU-Based
Multi-key Ciphertexts

In this section, we describe how to apply our second-layer NTRU-based hybrid
product to bootstrap a first-layer matrix NTRU-based multi-key ciphertext. In
Sect. 5.1, we described the multi-key NTRU modulus switching technique. In
Sect. 5.2, a key-switching technique is introduced to transform an MK-NTRU
ciphertext back into a multi-key matrix NTRU ciphertext. In Sect. 5.3, we
present the bootstrapping algorithm and analyze its correctness. The complete
proofs of all Lemmas and Theorems are deferred to the full version of the paper.

5.1 Modulus Switching for MK-NTRU Ciphertext

To transform an MK-NTRU ciphertext from modulus Q to q, we can multiply
it by q/Q and round the result to the nearest integer.

258 B. Xiang et al.

Lemma 4. Given an MK-NTRU ciphertext c = (c1, · · · , ck) ∈ Rk
Q that encrypts

m ∈ {0, 1} with secret key s = (s1, · · · , sk) ∈ Rk, where
∑k

i=1 cisi =
⌊

Q
4

⌉
m + e,

the MK-NTRU modulus switching procedure NModSwitch(c, q) is defined as

NModSwitch(c, q) = (c′
1, · · · , c′

k) = (
N−1∑

i=0

⌊
q

Q
c1,i

⌉

Xi, · · · ,
N−1∑

i=0

⌊
q

Q
ck,i

⌉

Xi),

where cj,i denotes the i-th coefficient for cj (j ∈ [k]). Then, (c′
1, · · · , c′

k) is an
MK-NTRU ciphertext that encrypts the same message under the secret key s ∈
Rk. Moreover, if the noise variance of c is V ar(e), then the noise variance of

the ciphertext after modulus switching is bounded by (q
Q)2V ar(e)+1+

∑k
i=1 ‖si‖
12 .

For this modulus switching, we denote σ2
NMS = 1 +

∑k
i=1 ‖si‖
12 as the variance of

the increased noise (relative to the input ciphertext).

5.2 Key-Switching from MK-NTRU Ciphertext to the Base Scheme

In this subsection, we define a pair of two algorithms (MN.KSKG,MN.KS) for key
switching the MK-NTRU ciphertext to the MNTRU-based first layer multi-key
ciphertext as follows:

• MN.KSKG(si,Fi): Given matrice Fi ∈ Z
n×n
q , polynomial si ∈ R as inputs, the

algorithm first samples matrice Ei ← Z
Ndks×n
q from some noise distribution

over Zq and outputs

KSKi = (Ei + GN · A(si) · M) · F−1
i ∈ Z

(N ·dks)×n
q ,

where A(si) denotes the anti-circulant matrix of si and M ∈ Z
N×n
q is a matrix

with entries being all zeros except for M0,0 = 1.
• MN.KS(c, {KSKi}i∈[k]): Input an NTRU-based multi-key ciphertext c =

(c1, · · · , ck) ∈ Rk
q that encrypts a polynomial with constant coefficient

m ∈ {0, 1} and the key-switching keys {KSKi}i∈[k] of keys associated with
ct, it first computes

ĉi =
(
g−1 (ci,0) , · · · ,g−1 (ci,N−1)

)

where (ci,0, · · · , ci,N−1) is the coefficient vector of ci. Then it computes

ci = ĉi · KSKi

for i ∈ [k] and outputs ct = (c1, · · · , ck).

Lemma 5 (Key-switching for MK-NTRU ciphertext). Let F1, · · · ,Fk ∈
Z

n×n
q and s1, · · · , sk ∈ R be k matrices and polynomials, respectively. Let

c = (c1, · · · , ck) ∈ Rk
q be an MK-NTRU ciphertext that encrypts a polyno-

mial with constant coefficient m ∈ {0, 1} under the secret key (s1, · · · , sk) ∈

NTRU-Based Bootstrapping 259

Rk. Then, for any KSKi = MN.KSKG(si,Fi), we have that the output of
MN.KS(c, {KSKi}i∈[k]) is a matrix NTRU based ciphertext that encrypts m ∈
{0, 1} under the secret key {F1, · · · ,Fk} ∈ Z

(n×n)k
q .

Moreover, if the variance of the noise in c is V ar(e), and the variance of
the noise distribution used in generating KSKi is V ar(eks), then the variance
of the noise in the resulting ciphertext ct is upper bounded by

k
B2

ks

12
NdksV ar(eks) + V ar(e).

We use the symbol σ2
NKS = k

B2
ks

12 NdksV ar(eks) to denote the variance of the
increased noise (with respect to the input ciphertext) for key-switching.

5.3 Bootstrapping

In this subsection, we define a pair of algorithms (MN.BSKG,MN.BSEval) for
bootstrapping an MNTRU-based first-layer multi-key ciphertext as follows:

• MN.BSKG(Fi): Given a matrix Fi ∈ Z
n×n
q as input, run (si,bi) ← KG(pp′)

and set the public key as PKi = bi. Let (fi,j)0≤j<n = col0(Fi) be the first
column of the secret matrix Fi. For (fi,j)0≤j<n, let

{
f+

i,j = 1, if fi,j = 1
f+

i,j = 0, otherwise
,

{
f−

i,j = 1, if fi,j = −1
f−

i,j = 0, otherwise
for 0 ≤ j < n.

– For i = 1, given secret key col0(F1) = (f1,0, . . . , f1,n−1) ∈ {−1, 0, 1}n,
create a set of ciphertexts that encrypts col0(F1) under s1 as follows:
{
evk+

1,0 = UniEnc(f+
1,0/s1, s1)

evk−
1,0 = UniEnc(f−

1,0/s1, s1)
,

{
evk+

1,j = UniEnc(f+
1,j , s1)

evk−
1,j = UniEnc(f−

1,j , s1)
for j �= 0,

and creates an auxiliary ciphertext evk∗
1,0 = UniEnc(1/s1, s1). The eval-

uation key is defined as EVK1 = (evk∗
1,0, {evk+

1,j , evk
−
1,j}0≤j<n).

– For i �= 1, given secret key col0(Fi) = (fi,0, . . . , fi,n−1) ∈ {−1, 0, 1}n,
create a set of ciphertext that encrypts col0(Fi) under si as follows:

evk+
i,j = UniEnc(f+

i,j , si), evk−
i,j = UniEnc(f−

i,j , si) for 0 ≤ j < n.

The evaluation key is defined as EVKi = ({evk+
i,j , evk

−
i,j}0≤j<n).

Then it computes the key-switching key KSKi = MN.KSKG(si,Fi), and out-
puts (EVKi,KSKi).

• MN.BSEval(ct, {PKi,EVKi,KSKi}i∈[k], r): Given a multi-key MNTRU
ciphertext ct = (c1, · · · , ck) ∈ Z

kn
q that encrypts m ∈ {0, 1} under the secret

key F1, · · · ,Fk ∈ Z
n×n
q , the key-triple {PKi,EVKi,KSKi}i∈[k], and a rota-

tion polynomial r ∈ RQ as inputs, computes and returns ct
′ as described in

Algorithm 1.

260 B. Xiang et al.

Algorithm 1. MN.BSEval(ct, {PKi,EVKi,KSKi}i∈[k], r)
Input:

A multi-key MNTRU ciphertext ct = (c1, · · · , ck) ∈ Z
kn
q ;

The key-triple {PKi,EVKi,KSKi}i∈[k];
A rotation polynomial r(X) ∈ RQ.

Output:
A multi-key MNTRU ciphertext ct

′ ∈ Z
kn
q .

1: ĉt = (ĉ1, · · · , ĉk) ←
⌊

2N·ct
q

⌉
∈ Z

kn
2N

2: ACC ← (r(X),0) ∈ Rk
Q

3: for i = 1; i < k + 1; i = i + 1 do
4: for j = 0; j < n; j = j + 1 do
5: if i = 1, j = 0 then
6: evk1,0 ← evk∗

1,0 + (X ĉ1,0 − 1)evk+
1,0 + (X−ĉ1,0 − 1)evk−

1,0

7: ACC ← HbProd(ACC, {PKl}l∈[k], evk1,0)
8: else
9: evki,j ← evk+

i,j − evk−
i,j · X−ĉi,j

10: ACC ← ACC + HbProd((X ĉi,j − 1)ACC, {PKl}l∈[k], evki,j)
11: end if
12: end for
13: end for
14: ACC ← NModSwitch(ACC, q)
15: ct

′ ← MN.KS(ACC, {KSKi}i∈[k])

16: return ct
′

Theorem 3 (Bootstrapping MNTRU-based Ciphertexts). Let q,Q be
two positive integers. Given a multi-key MNTRU ciphertext ct = (c1, · · · , ck) ∈
Z

kn
q that encrypts m ∈ {0, 1} under the secret key F1, · · · ,Fk ∈ Z

n×n
q , Algo-

rithm 1 outputs a refreshed multi-key MNTRU ciphertext that encrypts the same
message m ∈ {0, 1}. And the noise of the refreshed ciphertext is bounded by a
Gaussian with standard deviation

β =

√
q2

Q2
((2kn + 3)σ2

HP1 + knσ2
HP2) + σ2

NMS + σ2
NKS

where σ2
HP1, σ2

HP2 are the variance of the increased noise for the hybrid product
described in Sect. 4, σ2

NMS and σ2
NKS are the variance of the increased noise for

modulus switching and key switching for NTRU described in Sect. 5.1 and 5.2,
respectively.

Theorem 4. If the standard deviation of refreshed noise for the output in Algo-
rithm 1 satisfies Theorem 3 except with negligible probability and the modulus
satisfies q = Õ(kn1.5), then the output of Algorithm 1 can be correctly decrypted
except with negligible probability.

NTRU-Based Bootstrapping 261

6 Bootstrapping First-Layer Multi-key LWE Ciphertexts

In this section, we describe how to modify our second-layer scheme to bootstrap
a standard first-layer multi-key LWE ciphertext. In Sect. 6.1, we describe the
modulus switching for multi-key LWE ciphertext. In Sect. 6.2, we propose a light-
key switching technique. In Sect. 6.3, we present the bootstrapping algorithm
and analyze its correctness. The full proofs of all Lemmas and Theorems are
presented in the full version of the paper.

6.1 Modulus Switching for Multi-key LWE Ciphertext

The modulus switching from Q to q can be easily achieved by multiplying the
targeted ciphertext with q/Q, and rounding the results to the nearest integer.

Lemma 6 (Modulus Switching for Multi-Key LWE ciphertext). Given
as input a multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ Z

kN+1
Q under secret

key s = (1, s1, · · · , sk) ∈ Z
kN+1, the LWE modulus switching procedure is defined

as

b′ =
⌊

q

Q
b

⌉

and a′
i =

⌊
q

Q
ai

⌉

for i ∈ [k].

Then, (b′,a′
1, · · · ,a′

k) is a multi-key LWE ciphertext that encrypts the same mes-
sage under the same secret key s ∈ Z

kN+1. Moreover, if the noise variance of
ct is α2, then the noise variance of the ciphertext after modulus switching is
bounded by (q

Q)2α2 + 1+
∑k

i=1 ‖si‖
12 .

For modulus switching, we denote σ2
LMS = 1+

∑k
i=1 ‖si‖
12 as the variance of the

increased noise (relative to the input ciphertext).

6.2 Light Key Switching for Multi-key LWE Ciphertext

Let (b,a1, · · · ,ak) ∈ Z
kN+1
q be an MK-LWE ciphertext under (1, s1, · · · , sk) ∈

Z
kN+1. To switch the secret from (1, s1, · · · , sk) ∈ Z

kN+1 to (1, z1, · · · , zk) ∈
Z

kn+1 for some si = (si,j)0≤j≤N−1 and zi = (zi,j)0≤j<n. In prior methods
[9,25], each party i independently generates the key switching key as a set of LWE
ciphertexts that encrypts each value v ·Bl

ks ·si,j under the secret zi = (zi,j)0≤j<n

where j ∈ ZN , l ∈ Zdks
, v ∈ [Bks−1] (See Appendix A). Instead, we sequentially

decode those values

{B0
kssi,0, 2B0

kssi,0, · · · , (Bks − 1)Bdks−1
ks si,N−1}

into the coefficients of t polynomials m1(X), · · · ,mt(X) in Rq = Zq[X]/(XN +
1) where t = (Bks − 1)dks.

In this setting, for any value v · Bl
ks · si,j , one can check that it be decoded

in x-th coefficient my(X) polynomial where
⌈
y = (Bks−1)(jdks+l)+v

N

⌉
and x =

(Bks − 1)(jdks + l) + v − 1 mod N . To perform key-switching, we only need to

262 B. Xiang et al.

employ the sample extraction algorithm in [22] (Sec. IV, step 1), which we refer
to as SamExt for clarity, to extract the corresponding LWE ciphertext from
the RLWE ciphertext at the desired position. Notably, we only need to extract
the first n coefficients.

Formally, we define two algorithms (ML.PKSKG,ML.KS) as follows.

• ML.PKSKG(zi, si): Given two vectors zi = (zi,0, · · · , zi,n−1) ∈ Z
n, s =

(si,0, · · · , si,N−1) ∈ Z
N and two integers q, Bks as input, the algorithm com-

putes dks = 	logBks
q� and sets zi =

∑n−1
j=0 zi,jX

j + 0Xn · · · + 0XN−1 ∈ Rq.
Then it decodes the values v · Bl

kssi,j into t polynomials m1(X), · · · ,mt(X)
where j ∈ ZN , l ∈ Zdks

, v ∈ [Bks − 1] as described above. Then it samples
polynomial a′

i,j ∈ Rq uniformly at random and ei,j ∈ Rq from some noise
distribution and computes PKSKi,j = (b′

i,j , a
′
i,j) where b′

i,j = a′
i,j · zi + ei,j +

mj(X) ∈ Rq for j ∈ [t]. Finally, it outputs PKSKi = {PKSKi,j}j∈[t] as the
key-switching key of party i.

• ML.KS(ct, {PKSKi}i∈[k]): Given as input a multi-key LWE ciphertext

ct =

(

b =
k∑

i=1

〈ai, si〉 + e + �q

4
� · m,a1, · · · ,ak

)

∈ Z
kN+1
q

for ai = (ai,j)j∈ZN
∈ Z

N
q and the key-switching keys {PKSKi}i∈[k] of keys

associated with ct, the algorithm first computes g−1(ai,j) = (vi,j,l)l∈Zdks
for

each i ∈ [k] and j ∈ ZN and then computes as follows:
• Key reconstruction. Extrac LWE ciphertexts

{(b′
i,j,l,vi,j,l

,a′
i,j,l,vi,j,l

)}i∈[k],j∈Zn,l∈Zdks

where b′
i,j,l,vi,j,l

=
〈
a′

i,j,l,vi,j,l
, zi

〉
+ ei,j,l,vi,j,l

+ vi,j,l · si,j · Bl
ks from

{PKSKi}i∈[k].
• Key switching. Compute

b′
i =

N−1∑

j=0

dks−1∑

l=0,vi,j,l �=0

b′
i,j,l,vi,j,l

and a′
i =

N−1∑

j=0

dks−1∑

l=0,vi,j,l �=0

a′
i,j,l,vi,j,l

,

and let b′ = b +
∑k

i=1 b′
i. Finally, the algorithm outputs a multi-key LWE

ciphertext ct
′ = (b′,a′

1, . . . ,a
′
k) ∈ Z

kn+1.

Lemma 7 (Key-switching for MK-LWE ciphertext). Let s1, · · · , sk ∈ Z
N

and z1, · · · , zk ∈ Z
n be some vectors. Let ct = (b,a1, · · · ,ak) ∈ Z

kN+1 be
a multi-key LWE ciphertext that encrypts m ∈ {0, 1} under the secret key
(1, s1, · · · , sk) ∈ Z

kN+1. Let PKSKi = ML.PKSKG(zi, si) be the key-switching
key of party i. We have that c′ = ML.KS(ct, {PKSKi}i∈[k]) ∈ Z

kn+1
q is a valid

multi-key LWE ciphertext that encrypts the same message m ∈ {0, 1} under the
secret key (1, z1, · · · , zk) ∈ Z

kn+1.

NTRU-Based Bootstrapping 263

Moreover, if the variance of the noise in ct is V ar(e) and the variance of
the noise distribution used in generating PKSKi is V ar(eks), we have that
the variance of the noise after key-switching is upper bounded by V ar(e) +
kdksNV ar(eks).

For key switching, we denote σ2
LKS = kdksNV ar(eks) as the variance of the

increased noise.
The correctness of our light key switching for multi-key LWE ciphertexts

is guaranteed by Lemma 7. We now proceed to provide the necessary security
analysis.

Security. Our ML.PKSKG’s security can be theoretically based on the standard
RLWE and NTRU assumptions as long as the secret in PKSK has sufficient
large entropy for appropriate choices of parameters.

Specifically, the RLWE ciphertexts generated by our ML.PKSKG basically
use a secret key zi chosen from a distribution always having zeros in the last
N − n coefficients over Rq, which is different from standard RLWE ciphertexts.
However, as long as zi has sufficient large entropy for appropriate choices of
parameters, the corresponding RLWE instances well fit the setting of Entropic
RLWE problem, which in turn is provably hard under the standard RLWE and
NTRU (a.k.a DSPR) assumptions [6].

Regarding concrete security, one often translates an RLWE instance in
dimension N into N samples of LWE instances in the same dimension N , as
the best-known lattice attacks do not seem to offer additional advantages in
solving RLWE compared to standard LWE, and one can naturally treat a sin-
gle RLWE instance as N samples of LWE instances corresponding to a public
anti-circular matrix defined by the ring multiplication.

In our case, as the last N − n coefficients of the secret key are zeros, it is
equivalent to treat the last N −n columns of the public (anti-circular) matrix as
zeros when we translate the RLWE instance into LWE instances. In particular,
our RLWE instance in ML.PKSKG can be translated into N samples of LWE
instances in dimension n (instead of N for a standard RLWE instance). We have
actually taken this into account when choosing our concrete parameters using
the LWE estimator [3] in Sect. 7.

6.3 Bootstrapping

In this subsection, we define a pair of algorithms (ML.BSKG,ML.BSEval) for
bootstrapping an MK-LWE ciphertext as follows:

• ML.BSKG(zi): Given a secret key zi = (zi,j)0≤j<n ∈ {0, 1}n as input, the
algorithm first runs (si,bi) ← KG(pp′) and sets the public key as PKi = bi.

– For i = 1, given secret key z1 = (z1,j)0≤j<n ∈ {0, 1}n, create a set of
ciphertexts that encrypts z1 under s1 as follows:

evk1,0 = UniEnc(z1,0/s1, s1), evk1,j = UniEnc(z1,j , s1) for j �= 0

264 B. Xiang et al.

and creates an auxiliary ciphertext evk∗
1,0 = UniEnc(1/s1, s1). The eval-

uation key is defined as EVK1 = (evk∗
1,0, {evk1,j}0≤j<n).

– For i �= 1, given secret key zi = (zi,j)0≤j<n ∈ {0, 1}n, create a set of
ciphertexts as follows

evki,j = UniEnc(zi,j , si) for 1 ≤ j < n.

The evaluation key is defined as EVKi = ({evki,j}0≤j<n).
Then it computes the key-switching key PKSKi = ML.PKSKG(zi, si), and
outputs (EVKi,PKSKi).

• ML.BSEval(ct, {PKi,EVKi,PKSKi}i∈[k], r): Given a multi-key LWE
ciphertext ct = (b,a1, · · · , ak) ∈ Z

kn+1
q under the secret (1, z1, · · · , zk) ∈

Z
kn+1, the key-triple {PKi,EVKi,PKSKi}i∈[k], and a rotation polynomial

as inputs, computes and returns ct
′ as described in Algorithm 2.

Algorithm 2. ML.BSEval(ct, {PKi,EVKi,PKSKi}i∈[k], r)
Input:

A multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ Z
kn+1
q ;

The key-triple {PKi,EVKi,PKSKi}i∈[k];
A rotation polynomial r(X) ∈ RQ.

Output:
A multi-key LWE ciphertext ct

′ ∈ Z
kn+1
q .

1: ĉt = (b̂, â1, · · · , âk) ←
⌊

2N·ct
q

⌉
∈ Z

kn+1
2N

2: ACC ← (r(X)X b̂,0) ∈ Rk
Q

3: for i = 1; i < k + 1; i = i + 1 do
4: for j = 0; j < n; j = j + 1 do
5: if i = 1, j = 0 then
6: evk1,0 ← evk∗

1,0 + (X â1,0 − 1)evk1,0

7: ACC ← HbProd(ACC, {PKl}l∈[k], evk1,0)
8: else
9: ACC ← ACC + HbProd((X âi,j − 1)ACC, {PKl}l∈[k], evki,j)

10: end if
11: end for
12: end for
13: ct1 ← SamExt(ACC)
14: ct2 ← LModSwitch(ct1, q)
15: ct

′ ← MN.KS(ct2, {PKSKi}i∈[k])

16: return ct
′

Theorem 5 (Bootstrapping LWE-based Ciphertexts). Let q,Q be two
positive integers. Given a multi-key LWE ciphertext ct = (b,a1, · · · ,ak) ∈ Z

kn+1
q

that encrypts m ∈ {0, 1} under the secret key (1, z1, · · · , zk) ∈ Z
kn+1, Algorithm

2 outputs a refreshed multi-key LWE ciphertext that encrypts the same message
m ∈ {0, 1}. The noise of the refreshed ciphertext is bounded by a Gaussian with
standard deviation

NTRU-Based Bootstrapping 265

β =

√
q2

Q2
((kn + 1)σ2

HP1 + knσ2
HP2) + σ2

LMS + σ2
LKS ,

where σ2
HP1, σ2

HP2 are the variance of the increased noise for hybrid product
described in Sect. 4, σ2

LMS and σ2
LKS are the variance of the increased noise for

modulus switching and key switching for LWE ciphertexts described in Sect. 6.1
and Sect. 6.2, respectively.

Theorem 6. If the standard deviation of the noise for the output in Algorithm
2 satisfies Theorem 5 except with negligible probability and the modulus satisfies
q = Õ(kn1.5), then the output of Algorithm 2 can be correctly decrypted except
with negligible probability.

7 Analysis and Implementation

In this section, we first analyze the computational complexity and key size of
our algorithms proposed in Sect. 5 and Sect. 6, and then give a comparison to
the prior works. Finally, we present the implementation results.

7.1 Analysis and Comparison

In Table 2, we give a theoretical comparison of the bootstrapping algo-
rithms among our MK-FHEs, CCS [9] and its variant KMS [25], where n is lattice
dimension, k is the number of keys, d is the gadget decomposition dimension,
#mul denotes the number of multiplications in RQ for performing the bootstrap-
ping, and #RQ (resp.,#bits) denotes the number of RQ elements (resp., bits) for
storing the evaluation key (resp., key-switching key) at each party. One can see
that our Algorithm 2 outperforms CCS [9] and KMS [25] in both the evaluation
key size and the computational efficiency. Algorithm 1 and Algorithm 2 have the
same computational complexity, but the evaluation key size of Algorithm 1 is
almost twice that of Algorithm 2. This is primarily because the secret key of the
first layer in Algorithm 1 is ternary, which requires us to employ a more complex
CMUX gate. Moreover, the noise magnitude in the KMS scheme is larger, which
means that larger parameters need to be chosen in implementation, resulting in
higher costs.

7.2 Recommended Parameters

We observe that the state-of-the-art works CCS [9] and KMS [25] only achieve a
security level of 100 bits, as noticed in [1]. For a fair comparison, we first select
parameters that support 2, 4, 8, and 16 participants with a minimum security
level of 100 bits. We also give a set of parameters that support up to 2, 4, 8, and
16 participants with the standard 128-bit security. The recommended parameter
sets are presented in Table 3.

266 B. Xiang et al.

Table 2. Comparison of different bootstrapping methods among ours vs. [9,25]

Method #mul #RQ #bits noise

CCS [9] 4k(k + 1)nd 3dn nNBksdks log2 Qks Õ(kn1.5)

KMS [25] 4nkd2 + 2k(2k + 3)d (4n + 3)d nNBksdks log2 Qks Õ(kn2)

Ours (Alg. 1) (2k + 1)knd (4n + 2)d nNdks log2 Qks Õ(kn1.5)

Ours (Alg. 2) (2k + 1)knd (2n + 2)d 2N(Bks − 1)dks log2 Qks Õ(kn1.5)

For LWE instances, we use a uniform binary key distribution and set the noise
standard deviation to 1.9. We use the LWE estimator [3] to determine the con-
crete security3. For MNTRU instances, we use a uniform ternary key distribu-
tion and set the noise standard deviation to 0.5 (resp., 0.75) for 128-bit (resp.,
100-bit). For the second-layer NTRU ciphertexts, we fix the noise standard devia-
tion to 0.4 (resp., 0.25) for 128-bit (resp., 100-bit) security with a uniform ternary
secret key. To determine the concrete security, two recent types of attacks are con-
sidered. One is the Dense Sublattice Discovery (DSD) attack, which focuses on
recovering a basis vector from the dense sublattice within the NTRU lattice. The
other one is the Secret Key Recovery (SKR) attack, aiming to directly recover
a vector of the short lattice basis by the lattice attacks. Ducas and van Woer-
den identified the fatigue point at Q = N2.484+o(1), where the modulus Q is
such that for values above Q, the DSD attack becomes more efficient than SKR
[16]. They have also provided an NTRU estimator4. One can use it to determine
the BKZ block size β′ required for the DSD attack or SKR attack to break the
(M)NTRU problem. To convert β′ to the concrete security, we use the cost model
T (d, β) := 20.292·β′+16.4+log2(8·d) (in the NTRU setting d = 2N) as in [5,24].

Table 3. Parameters Sets for Our MK-FHE.

k
First layer Second layer Estimate

Assumption (n, q, Bks, dks) logn q Key Dist. Noise Dist (N, Q, B, d) logN Q Key Dist. Noise Dist. Security

2

LWE (500, 32749, 32, 3) 1.67 < 2.484 binary σ = 1.9

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.25 100
4 (2048, 227, 29, 3)

8 (2048, 227, 29, 3)

16 (2048, 227, 29, 3)

2

LWE (635, 32749, 32, 3) 1.61 < 2.484 binary σ = 1.9

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.4 128
4 (2048, 227, 29, 3)

8 (2048, 227, 29, 3)

16 (2048, 227, 27, 4)

2

MNTRU (560, 45181, 32, 4) 1.69 < 2.484 ternary σ = 0.75

(2048, 227, 29, 3)

2.45 < 2.484 ternary σ = 0.25 100
4 (2048, 227, 29, 3)

8 (2048, 227, 29, 3)

16 (2048, 227, 29, 3)

2

MNTRU (765, 45181, 32, 4) 1.61 < 2.484 ternary σ = 0.5

(2048, 227, 27, 4)

2.45 < 2.484 ternary σ = 0.4 128
4 (2048, 227, 27, 4)

8 (2048, 227, 26, 5)

16 (2048, 227, 25, 6)

3 https://github.com/malb/lattice-estimator.
4 https://github.com/WvanWoerden/NTRUFatigue.

https://github.com/malb/lattice-estimator
https://github.com/WvanWoerden/NTRUFatigue

NTRU-Based Bootstrapping 267

7.3 Experimental Results

All experiments run on the same laptop with a 12th Gen Intel(R) Core(TM) i9-
12900H @2.50 GHz and 32 GB RAM, running Ubuntu 20.04.6 LTS. We use the
OpenFHE library (v1.1.1) [4] to implement the proposed algorithms. Our codes
are publicly available at https://github.com/SKLC-FHE/MKFHE. In Table 4,
we present the implementation results with the state-of-the-art works CCS [9]
and KMS [25], as detailed below. CCS∗ is implemented in C++ with the TFHE
library5, while KMS and CCS∗∗ are implemented in Julia6.

Table 4. Timings and key sizes for bootstrapping

Scheme λ
Hybrid Runtime(s) EVK(MB) KSK

Product 2 4 8 16 2 4 8 16 (MB)

CCS∗ [9] 100 RLWE 0.07 0.33 1.09 \ 19.69 26.25 32.81 \ 70.13

CCS∗∗ [9] 100 RLWE 0.12 0.42 1.61 11.36 39.85 53.12 66.38 159.21 54.38

KMS [25] 100 RLWE 0.14 0.44 1.17 2.86 105.86 176.47 141.31 176.56 108.75

Alg. 1 100 NTRU 0.07 0.28 0.82 2.74 29.56 29.56 29.56 29.56 8.75

Alg. 2 100 NTRU 0.05 0.21 0.54 2.61 13.21 13.21 13.21 13.21 0.68

Alg. 1 128 NTRU 0.14 0.40 1.55 6.84 60.55 60.55 80.74 100.92 11.95

Alg. 2 128 NTRU 0.06 0.23 0.76 4.21 16.77 16.77 16.77 25.15 0.68

From Table 4 one can see that, for parameters at 100-bit security, the boot-
strapping time of our Alg. 1 is the same as CCS [9], and 2 times faster than KMS
[25]. Correspondingly, the bootstrapping key size of our Alg. 1 is 2.3 times smaller
than that of CCS [9], and 5.6 times smaller than that of KMS [25]. For k = 4
and 8, our Alg. 1 is about 1.2 and 1.5 times faster than CCS [9], and 1.6 and 1.4
times faster than KMS [25]. Correspondingly, the bootstrapping key size of our
Alg. 1 is 2.5 and 2.7 smaller than that of CCS [9], and is 7.4 and 6.5 times smaller
than that of KMS [25]. For k = 16, our Alg. 1 is approximately the same as KMS
[25] and 7.4 times smaller than KMS [25]. For k = 16, we did not report CCS’s
implementation in C++ because the parameters they provided only support up to
k = 8. Moreover, our Alg. 2 is about 1.4, 1.6 and 2.2 times faster than CCS [9], and
2.8, 2.1 and 2.2 times faster than KMS [25] for k = 2, 4 and 8, respectively. Corre-
spondingly, the bootstrapping key size of our Alg. 2 is 6.5, 6.9 and 7.4 smaller than
that of CCS [9], and is 15.5, 20.5 and 18 times smaller than that of KMS [25]. For
k = 16, our Alg. 2 is about 1.1 times faster and 20.5 times smaller than KMS [25].
Moreover, due to the influence of the first-layer ternary key, Algorithm 1 exhibits
slightly inferior performance compared to Algorithm 2.

5 https://github.com/ilachill/MK-FHE.
6 https://github.com/SNUCP/MKTFHE.

https://github.com/SKLC-FHE/MKFHE
https://github.com/ilachill/MK-FHE
https://github.com/SNUCP/MKTFHE

268 B. Xiang et al.

Acknowledgements. We thank the anonymous reviewers of ASIACRYPT 2024 and
Huanhuan Chen for their helpful comments and suggestions on earlier versions of our
paper. This paper is supported by the National Key Research and Development Pro-
gram of China (Grant No. 2022YFB2702000), the National Natural Science Foundation
of China (Grant Nos. 62022018, 61932019), and the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (Grant No. XDB0690200).

A Key-Switching for Multi-Key LWE Ciphertext
in [9,25]

• LWE.KSKG(zi, si): Given two vectors zi = (zi,0, · · · , zi,n−1) ∈ Z
n, s =

(si,0, · · · , si,N−1) ∈ Z
N and two integer q, Bks as input, the algorithm first

computes dks = 	logBks
q� and sets g = (B0

ks, · · · , Bdks−1
ks). Then it sam-

ples vector ai,j,l,v ← Z
n uniformly at random and ei,j,l,v ∈ Zq from some

noise distribution and computes kski,j,l,v = (bi,j,l,v,ai,j,l,v) where bi,j,l,v =
−ai,j,l,v · zi + ei,j,l,v + v · si,j · Bl

ks for all j ∈ ZN , l ∈ Zdks
, v ∈ [Bks − 1].

Finally, it outputs KSKi = {kski,j,l,v} as the key-switching key of party i.
• LWE.KS(ct, {KSKi}i∈[k]): Given as input a multi-key LWE ciphertext ct =

(b,a1, · · · ,ak) ∈ Z
kN+1 and the key-switching keys {KSKi}i∈[k] of keys asso-

ciated with ct, the algorithm computes g−1(ai,j) = (vi,j,l)l∈Zdks
for each

i ∈ [k] and j ∈ ZN and then compute

b′
i =

N−1∑

j=0

dks−1∑

l=0,vi,j,l �=0

bi,j,l,vi,j,l
and a′

i =
N−1∑

j=0

dks−1∑

l=0,vi,j,l �=0

ai,j,l,vi,j,l
,

and let b′ = b +
∑k

i=1 b′
i. Finally, the algorithm outputs a multi-key LWE

ciphertext c′ = (b′,a′
1, . . . ,a

′
k) ∈ Z

kn+1.

References

1. Akin, Y., Klemsa, J., Önen, M.: A practical TFHE-based multi-key homomorphic
encryption with linear complexity and low noise growth. In: ESORICS 2023. LNCS,
vol. 14344, pp. 3–23. Springer (2023), https://doi.org/10.1007/978-3-031-50594-2
1

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: CRYPTO 2016. LNCS, vol. 9814, pp. 153–178. Springer (2016),
https://doi.org/10.1007/978-3-662-53018-4 6

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

4. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., Saraswathy, R.V., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikun-
tanathan, V., Zucca, V.: OpenFHE: Open-source fully homomorphic encryption
library. In: Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. pp. 53–63. ACM (2022), https://doi.org/10.1145/
3560827.3563379

https://doi.org/10.1007/978-3-031-50594-2_1
https://doi.org/10.1007/978-3-031-50594-2_1
https://doi.org/10.1007/978-3-662-53018-4_6
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379

NTRU-Based Bootstrapping 269

5. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V., Smart, N.P.: Final: Faster FHE
instantiated with NTRU and LWE. In: ASIACRYPT 2022. LNCS, vol. 13792, pp.
188–215. Springer (2022), https://doi.org/10.1007/978-3-031-22966-4 7

6. Brakerski, Z., Döttling, N.: Lossiness and entropic hardness for ring-LWE. In: TCC
2020. LNCS, vol. 12550, pp. 1–27. Springer (2020), https://doi.org/10.1007/978-
3-030-64375-1 1

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ACM Trans. Comput. Theory. vol. 6, pp. 13:1–
13:36 (2014). https://doi.org/10.1145/2633600

8. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer (2016).
https://doi.org/10.1007/978-3-662-53018-4 8

9. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: ASIACRYPT 2019. LNCS, vol. 11922, pp. 446–472. Springer (2019). https://
doi.org/10.1007/978-3-030-34621-8 16

10. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016). https://doi.org/10.1112/S1461157016000371

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT 2016. LNCS,
vol. 10031, pp. 3–33 (2016). https://doi.org/10.1007/978-3-662-53887-6 1

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020). https://doi.org/
10.1007/S00145-019-09319-X

13. Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. In: PKC 2017.
LNCS, vol. 10175, pp. 241–270. Springer (2017). https://doi.org/10.1007/978-3-
662-54388-7 9

14. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer (2015).
https://doi.org/10.1007/978-3-662-48000-7 31

15. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer
(2015). https://doi.org/10.1007/978-3-662-46800-5 24

16. Ducas, L., van Woerden, W.: NTRU fatigue: How stretched is overstretched? In:
ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32. Springer (2021). https://doi.org/
10.1007/978-3-030-92068-5 1

17. Esgin, M.F., Espitau, T., Niot, G., Prest, T., Sakzad, A., Steinfeld, R.: Plover:
Masking-friendly hash-and-sign lattice signatures. In: EUROCRYPT 2024. LNCS,
vol. 14656, pp. 316–345. Springer (2024), https://doi.org/10.1007/978-3-031-
58754-2 12

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012), http://eprint.iacr.org/2012/144

19. Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryp-
tion for finite automata. In: ASIACRYPT 2019. LNCS, vol. 11922, pp. 473–502.
Springer (2019), https://doi.org/10.1007/978-3-030-34621-8 17

20. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer (2002). https://doi.
org/10.1007/3-540-46035-7 20

21. Hough, P., Sandsbr̊aten, C., Silde, T.: Concrete NTRU security and advances in
practical lattice-based electronic voting. Cryptology ePrint Archive p. 933 (2023),
https://eprint.iacr.org/2023/933

https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-030-64375-1_1
https://doi.org/10.1007/978-3-030-64375-1_1
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/978-3-662-54388-7_9
https://doi.org/10.1007/978-3-662-54388-7_9
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-031-58754-2_12
https://doi.org/10.1007/978-3-031-58754-2_12
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://eprint.iacr.org/2023/933

270 B. Xiang et al.

22. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: Gen-
eral bootstrapping approach for rlwe-based homomorphic encryption. IEEE Trans.
Computers 73(1), 86–96 (2024). https://doi.org/10.1109/TC.2023.3318405

23. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26 (2017). https://
doi.org/10.1007/978-3-319-56620-7 1

24. Kluczniak, K.: NTRU-v-um: Secure fully homomorphic encryption from NTRU
with small modulus. In: CCS 2022. pp. 1783–1797. ACM (2022), https://doi.org/
10.1145/3548606.3560700

25. Kwak, H., Min, S., Song, Y.: Towards practical multi-key TFHE: parallelizable,
key-compatible, quasi-linear complexity. In: PKC 2024. LNCS, vol. 14604, pp. 354–
385. Springer (2024), https://doi.org/10.1007/978-3-031-57728-4 12

26. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient FHEW bootstrapping with small evaluation keys, and applications to thresh-
old homomorphic encryption. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023.
LNCS, vol. 14006, pp. 227–256. Springer (2023). https://doi.org/10.1007/978-3-
031-30620-4 8

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC 2012. pp. 1219–
1234. ACM (2012), https://doi.org/10.1145/2213977.2214086

28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer (2010).
https://doi.org/10.1007/978-3-642-13190-5 1

29. Morshed, T., Aziz, M.M.A., Mohammed, N.: CPU and GPU accelerated fully
homomorphic encryption. In: HOST 2020. pp. 142–153. IEEE (2020). https://
doi.org/10.1109/HOST45689.2020.9300288

30. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

31. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: TCC 2016-B.
LNCS, vol. 9986, pp. 217–238 (2016). https://doi.org/10.1007/978-3-662-53644-
5 9

32. Peralta, G., Cid-Fuentes, R.G., Bilbao, J., Crespo, P.M.: Homomorphic encryp-
tion and network coding in IoT architectures: Advantages and future challenges.
Electronics 8(8), 827 (2019), https://doi.org/10.3390/electronics8080827

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/1568318.1568324

34. Shrestha, R., Kim, S.: Chapter ten - integration of IoT with blockchain and homo-
morphic encryption: Challenging issues and opportunities. vol. 115, pp. 293–331
(2019). https://doi.org/10.1016/BS.ADCOM.2019.06.002

35. Xiang, B., Zhang, J., Deng, Y., Dai, Y., Feng, D.: Fast blind rotation for boot-
strapping FHEs. In: CRYPTO 2023. LNCS, vol. 14084, pp. 3–36. Springer (2023),
https://doi.org/10.1007/978-3-031-38551-3 1

36. Xu, K., Tan, B.H.M., Wang, L., Aung, K.M.M., Wang, H.: Multi-key fully homo-
morphic encryption from NTRU and (R)LWE with faster bootstrapping. Theor.
Comput. Sci. 968, 114026 (2023). https://doi.org/10.1016/J.TCS.2023.114026

https://doi.org/10.1109/TC.2023.3318405
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1145/3548606.3560700
https://doi.org/10.1145/3548606.3560700
https://doi.org/10.1007/978-3-031-57728-4_12
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/HOST45689.2020.9300288
https://doi.org/10.1109/HOST45689.2020.9300288
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.3390/electronics8080827
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1016/BS.ADCOM.2019.06.002
https://doi.org/10.1007/978-3-031-38551-3_1
https://doi.org/10.1016/J.TCS.2023.114026

Homomorphic Sign Evaluation with a RNS
Representation of Integers

Philippe Chartier1,2(B), Michel Koskas1, Mohammed Lemou1,3,
and Florian Méhats1,4

1 Ravel Technologies, 75 rue de Richelieu, 75002 Paris, France
{michel.koskas,florian.mehats}@raveltech.io,

mohammed.lemou@univ-rennes.fr
2 INRIA, Rennes, France

philippe.chartier@inria.fr
3 CNRS, Rennes, France

4 University of Rennes 1, Rennes, France

Abstract. In the context of fully-homomorphic-encryption, we consider
the representation of large integers by their decomposition over a product
of rings (through the Chinese Remainder Theorem) and introduce a new
algorithm for the determination of the sign solely through the knowledge
of ring-components. Our implementation with 128 bits of security deliv-
ers a correct result with a probability higher than 1− 10−12 in less than
140 ms for 32-bit integers on a laptop.

Keywords: fully homomorphic encryption · residue number system ·
sign · functional bootstrapping

1 Introduction

On top of the two elementary arithmetic operations (addition and multiplica-
tion) included by design in all fully-homomorphic-encryption (FHE) systems,
many real-world applications require comparisons1. As a consequence, algo-
rithms aimed at computing the sign2 of a message have been developed for the
most prominent classes of FHE crypto-systems, that is to say FHEW/TFHE
schemes for boolean circuits [23], Brakerski-Gentry-Vaikuntanathan (BGV),
Brakerski/Fan-Vercauten (BFV) schemes for messages in finite fields [16,26] and
Cheon-Kim-Kim-Song (CKKS) scheme for real and complex messages [9,18,19].
We refer to [23] for an evaluation of the comparative merits of these various
algorithms and for a description of what appears, up to our knowledge, as the

P. Chartier—On leave from INRIA, M. Lemou—On leave from CNRS, F. Méhats—On
leave from University of Rennes 1.
1 This is in particular the case for training neural networks [3,17] –or more generally

statistical learning [10]– or requesting databases.
2 The comparison of two messages a and b boils down to the determination of the sign

of a − b.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 271–296, 2025.
https://doi.org/10.1007/978-981-96-0875-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_9&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_9

272 P. Chartier et al.

most recent technique for the large-precision evaluation of the sign. However,
none of the literature cited above is concerned with the sign evaluation of large-
integers from its residues (encryptions thereof). It is precisely the objective of
this work (see also [7]) to introduce a method for determining the sign for a FHE
crypto-system based on a residue number system (RNS).

Using the Chinese Remainder Theorem (CRT) in order to build a FHE library
is indeed a well-known theoretical alternative to the binary representation of
large numbers (say 32-bits or 64-bits) and their treatment by circuits (see for
instance papers on the TFHE [11] and FHEW [14] protocols). The advantage
of the representation of numbers of Z/pZ by their moduli in a product of rings
of Z/p1Z × · · · × Z/pκZ lies in the fact that each ring can be handled sepa-
rately as far as additions and multiplications are concerned. In the companion
paper and corresponding patent [6,8] by the same authors, a modification of
the bootstrap procedure is introduced which aims at allowing (without extra
computational cost) larger values of the pairwise coprime integers pi’s and thus
values of p =

∏κ
i=1 pi up to 264. However, as aforementioned, one key aspect of

the manipulation of large sets of data is the necessity to order and sort them: at
the core of all FHE-library, should lie the possibility to determine the sign of a
single number. Until now, this has prevented the use of the CRT in the context
of FHE as the homomorphic determination of the sign has long been considered
as a difficult question3.

In this paper, we present a solution of this problem in the context of
FHEW/TFHE encryption protocols. More precisely, we show how to compute
with the help of homomorphic operations and several functional bootstrappings,
an encrypted value of the sign of any element μ ∈ Z/pZ from the FHEW-
encryptions ci of its residues μi ∈ Z/piZ for i = 1, . . . , k. To this aim, we first
compute a series of scalings by p̄r, r = 0, . . . , rmax, of the reconstructed cipher-
text of the message μ

c[r] =
k∑

i=1

(p̄rvi mod pi)ci

where the vi’s are obtained in a standard way from the Bezout coefficients. A
crucial observation is that the noise embedded in c does not grow with r (owing
to the mod pi’s) and consequently becomes smaller as compared to the message
p̄rμ encrypted in c[r]. We then show that among the consecutive magnifications
of μ (again, in encrypted version), one allows to determine safely its sign. The
idea is the following: given a noisy value μ+e with μ ∈ R/pZ, its sign is ambigu-
ous as soon as μ is close to 0 (or by action of the modulo, close to ±p

2). In this
case however, computing p̄μ + e′ with |e′| ≈ |e| alleviates the ambiguity as long
as p̄μ does not approach too closely from p

2 or is larger than p
2 . If the sign can

not be determined with sufficient confidence, i.e. if p̄μ is still small, then one can
repeat the operation. The result is then carried out through a cascade of linear
combinations whose aim is to preserve the relevant information. This last trick

3 Note that the use of a RNS is not per se a particular good choice if no other homo-
morphic computation than the sign is required.

Homomorphic Sign Evaluation with a RNS Representation of Integers 273

is to a large extent similar to the one used in [4,5]. We prove rigorously the cor-
rectness of the algorithm with very high probability for appropriate parameters
and we explain how to choose them.

We finally conclude with some implementation results which demonstrate
the efficiency of our algorithm: for instance, we are able to homomorphically
compare two 32-bit integers in just 140 ms that with a probability of an incorrect
decryption smaller than 10−12 and a security level of 128 bits. In the light of the
pioneering paper [21] and its recent developments [1,2,22,28], let us stress that
the model of security envisaged in this paper achieves only indistinguishability
under chosen plaintext attacks (IND-CPA) and does not allow the adversary
to observe decryption results as in the IND-CPAD model4 introduced in [21].
Now, recalling that, to the best of our knowledge, no sign algorithm with a RNS
encoding of cleartexts is available in the literature, a direct comparison is not
possible. In that respect, one of the leading FHE libraries5 based on TFHE,
reports comparison times (93 ms) 33% smaller for 32-bit integers. However, it is
important to notice that within our implementation, addition and multiplication
are distributed over the rings and thus a lot faster (our multiplication of two 32-
bit integers takes 28 ms as compared to the 251 ms announced by TFHE-rs)6.
In applications to neural networks for instance, a weighted sum of the output
xi, i = 1, . . . , n of n neurons is passed through an activation function (say
a RELU function) to produce the output: if the data are encrypted integers,
this requires n homomorphic multiplications, n − 1 additions, a homomorphic
Heaviside function (a tiny modification of the sign) and a last multiplication.
Based on the figures given above, a crude estimate of the computational time
for one layer gives

(n + 1) × 28 + (n − 1) × 0.0014 + 140 and (n + 1) × 251 + (n − 1) × 118 + 93

milliseconds for respectively our implementation and THFE-rs, leading to a fac-
tor 10 acceleration already for n = 16. Alleviating the obstacle of the sign, even
though its computation can not be distributed over the rings, thus allows to
exploit in practice the full potential of RNS. The principal contribution of this
paper can thus be summed up as follows.

Main Result: Let p be a product of pairwise coprime integers pi, i = 1, . . . , κ.
There exists an efficient algorithm, which, given FHEW-encryptions ci of the
residues μi ∈ Z/piZ for i = 1, . . . , κ of μ ∈ Z/pZ, delivers a FHEW-encryption
4 As the algorithm proposed here relies on several bootstraps, the determination of its

IND-CPAD-security level requires further investigations and discussions. Neverthe-
less, let us already note that smaller probabilities of incorrect decryptions may be
simply obtained by considering larger cyclotomic rings, thus rendering the current
IND-CPAD-attacks more difficult.

5 Namely THFE-rs by Zama, see https://docs.zama.ai/tfhe-rs/getting-started/
benchmarks..

6 The computation of an addition is even faster as it doesn’t require any bootstrap: it
takes just 14 microseconds for 32-bits integers in the RNS representation, as com-
pared to the 118 ms claimed for TFHE-rs.

https://docs.zama.ai/tfhe-rs/getting-started/benchmarks.
https://docs.zama.ai/tfhe-rs/getting-started/benchmarks.

274 P. Chartier et al.

c of its sign, namely sign(μ) ∈ Z/3Z, with very high probability of correct decryp-
tion and in less than 100 ms for 32-bits integers.

2 Background and Setting of the Problem

2.1 Notations and Preliminaries on the Chinese Remainder
Theorem

For all integer p ≥ 2, the main representative of μ ∈ R/pZ, denoted by [μ]p, will
be taken in the interval [−p/2, p/2[, and the norm of μ is |μ| = |[μ]p|. Throughout
the paper, for all interval I ⊂ R of length smaller than p, for any μ ∈ R/pZ, we
shall say that μ ∈ I if there exists k ∈ Z such that [μ]p − kp ∈ I.

Consider an integer p of the form

p =
k∏

i=1

pi

where the integers pi ≥ 3 are assumed to be odd and pairwise coprime, i.e.

∀ 1 ≤ i < j ≤ k, pi ∧ pj = 1.

Any element μ in the set Zp may be represented unambiguously (owing to the
Chinese Remainder Theorem) by its coordinates

(μ1, . . . , μk) ∈ Zp1 × · · · × Zpk

with
μi = μ mod pi, i = 1, . . . , k.

The Chinese Remainder Theorem states that the map

Φ : Zp → Zp1 × · · · × Zpk

μ
→ (μ1, . . . , μk) = (μ mod p1, . . . , μ mod pk)

is an isomorphism with inverse

Φ−1 : Zp1 × · · · × Zpk
→ Zp

(μ1, . . . , μk)
→ μ =
∑k

i=1 p̂−1
i p̂i μi mod p

where p̂i = p/pi and where p̂−1
i denotes the inverse of p̂i in Zpi

, determined as
a Bezout coefficient by Euclide’s algorithm.

2.2 LWE Encryption and Functional Bootstrapping

In this section we recall the definition of LWE ciphertexts [27], and the properties
of the functional bootstrapping procedure needed by our algorithm. The LWE
cryptosystem is parametrized by a plaintext modulus pi, a ciphertext modulus
q and the secret dimension n. As in the BFV, FHEW and TFHE schemes, we

Homomorphic Sign Evaluation with a RNS Representation of Integers 275

shall encrypt any message in Zpi
in the most significant digits of integers of Zq.

The LWE encryption of a message μi ∈ Zpi
under (secret) key s ∈ Z

n is a vector
c = LWEn,q,pi

s (μi) = (a, b) ∈ Z
n+1
q such that7

b = 〈a, s〉 + qμi/pi� + e mod q

where e ∈ Zq is the so-called noise, which is picked from a centered Gaus-
sian distribution during secret-key encryption. For all ciphertext c = (a, b) =
LWEn,q,pi

s (μi), the so-called phase is the quantity

ϕs(c) := b − 〈a, s〉 ∈ Zq

and we shall denote the error term associated to c by

Err(c) = ϕs(c) − qμi/pi.

Introducing the rounding error

δi := qμi/pi� − qμi/pi,

we have Err(c) = e + δi ∈ Q with |δi| ≤ 1
2 . The message μi is recovered by first

computing the approximate decryption function

ϕs(c) = qμi/pi� + e = qμi/pi + Err(c) mod q

and then rounding its main representative to the closest multiple of q/pi. Decryp-
tion is correct if |Err(c)| < q

2pi
. Now, if p =

∏k
i=1 pi is as in the previous section,

the encryption of any (possibly large) integer μ ∈ Zp will be the set of encryp-
tions LWEn,q,pi

s (μi) of its components μi for 1 ≤ i ≤ k.
Homomorphic arithmetic operations intrinsically increase the level of noise

up to a point where the message can not decrypted. The bootstrapping procedure
introduced by Gentry [15] and its generalisations to the evaluation of functions
have been designed to re-encrypt a message with a lower noise without having
to decrypt it beforehand. Ducas and Micciancio [14], and later on in a faster
version, Chillotti et al. [11,12], have introduced a very efficient bootstrapping
based on the polynomial rings (see also [20,24] for further improvements), whose
details we shall not give here8. In the rest of this section, we nevertheless present
its main properties for later use in the paper.

The FHEW/TFHE functional bootstrapping algorithm uses the polyno-
mial ring

RN,p′ = Zp′ [X]/(XN + 1)

where N is a power-of-two, so that XN +1 is the 2N -th cyclotomic polynomial.
The underlying idea of this method consists in the homomorphic implementation
of a function

fv : μ ∈ Z2N
→ fv(μ) = coeff0

(
Xμv(X) mod (XN + 1)

) ∈ Zp′ (2.1)
7 When pi = q, the message μi ∈ Zq is not rescaled and the corresponding
LWEn,q,q

s (μi) ciphertext will be denoted shortly as LWEn,q
s (μi).

8 For a thorough description of the technique in the RNS context, we refer the reader
to [6].

276 P. Chartier et al.

where coeff0 selects the constant term of a polynomial and where v ∈ RN,p′ is
the so-called test-polynomial, whose choice determines the characteristics of the
functional bootstrapping. Note that this function fv defined on Z2N satisfies the
negacyclic constraint

fv(μ + N) = −fv(μ). (2.2)

Proposition 1. Let c be a LWEn,q
s ciphertext. For a given test-polynomial v ∈

RN,p′ , there exists a homomorphic evaluation of the function fv (a so-called
“blind rotation”) that provides a ciphertext

c′ = LWEn,q′,p′
s (fv(2Nϕs(c)/q + δ(c))) ,

where the term δ(c) comes from specific rounding approximations on the cipher-
text c after a rescaling. Moreover, the variance of the refreshed error associated
to the ciphertext c′ is constrained by security requirements only and does not
depend on the error of the original ciphertext c.

Owing to this result, the key feature of the functional bootstrapping is that, if
pi is odd and small enough, then for any target function F : Zpi

→ Zp′ , it is
possible to choose the test polynomial v(X) such that

∀μ ∈ Zpi
, fv (2Nμ/pi� + ε) = F (μ)

as soon as ε is small enough. This enables to obtain a LWEn,q′,p′
s (F (μ)) ciphertext

from a LWEn,q,pi
s (μ) ciphertext, with a refreshed error. In the special case where

p′ = pi, q′ = q and F is the identity function, this operation is a bootstrapping
in the usual sense.

2.3 Setting of the Problem

We define the sign of an element μ ∈ Zp for odd p as the sign of its main
representative

sign(μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 if [μ]p ∈
{

−p − 1
2

, . . . ,−1
}

,

0 if [μ]p = 0,

+1 if [μ]p ∈
{

1, . . . ,
p − 1
2

}

.

Our aim in this paper is the following.

Objective: Find the encrypted value of the sign of an element of Zp from the
encrypted values of its components. More precisely, given the k values

ci = LWEn,q,pi
s (μi) ∈ Z

n+1
q , i = 1, . . . , k,

we aim at obtaining

LWEn,q,3
s

(
sign ◦ Φ−1 (μ1, . . . , μk)

)
,

Homomorphic Sign Evaluation with a RNS Representation of Integers 277

where the sign ∈ {−1, 0, 1} has been identified with an element of Z3.

Remark 1. By linearity of LWE-encryption, the ciphertext c =
∑k

i=1[p̂
−1
i]pi

ci

is an encrypted value of μ = Φ−1(μ1, . . . , μk), i.e. c = LWEn,q,p
s (μ) with an

error Err(c). A probability estimate (see Appendix) of Err(c) shows that the
decryption of c gives a wrong value with high probability (more than 0.5) for
(p1, p2, p3, p4, p5, p6, p7, p8) = (7, 11, 13, 17, 19, 23, 25, 27) with nominal assump-
tions on the errors Err(ci), i = 1, . . . , k in the rings. This renders the determi-
nation of μ intractable as such and one should look for an algorithm to evaluate
its sign without knowing it exactly.

3 The Sign Algorithm for Plaintexts

To introduce our method, let us examine a toy problem where we want to deter-
mine the sign of an integer μ ∈ Zp, but instead of knowing its components μi,
we only have at hand some noisy values μ̃i ∈ R satisfying μ̃i = μi + ei. We
assume having an estimate on the error terms, more precisely |ei| ≤ ε/k, for
some 0 < ε ≤ 1/(2p̄ + 2), and where p̄ ≥ 3 is an odd rescaling parameter whose
role will be made precise further on. Trying to reconstruct μ from the noisy
values yields the approximate value

μ̃[0] := Φ−1(μ̃1, . . . , μ̃k) =
k∑

i=1

[p̂−1
i]pi

p̂i μ̃i = μ + e[0] mod p,

with

e[0] =
k∑

i=1

[p̂−1
i]pi

p̂i ei.

We have the estimate

|μ̃[0] − μ| = |e[0]| ≤ p

2

k∑

i=1

|ei| ≤ ε

2
p.

If ε
2 p ≥ 1, the signs of μ̃[0] and μ may be different and it is clear that knowing

μ̃[0] may not be sufficient to determine the sign of μ.
The following function will be useful (the scaling by 2N , unnatural here,

prepares its use with ciphertexts in next section).

Definition 1. Let 0 ≤ ε ≤ 1 and N ≥ 1 an integer. We introduce the function
gε on R/(2NZ) by

gε(μ) =

⎧
⎪⎨

⎪⎩

+1 if μ ∈]εN,N − εN [,
−1 if μ ∈]−N + εN,−εN [,
0 otherwise.

278 P. Chartier et al.

Note that gε is odd and satisfies the negacyclic constraint (2.2).

−εN εN0−N −N + εN N − εN N

−1 0 10 0

The function gε.

Proposition 2. For p ∈ N
∗, 3 ≤ p̄ < p and odd integer and 0 < ε < 1

2(p̄+1) , let
us consider a noisy value of μ ∈ R/pZ of the form

μ̃[0] = μ + e[0] mod p with |e[0]| ≤ ε
p

2
< 1. (3.1)

The following statements hold

(i) if gε(2Nμ̃[0]/p) = 1, then sign(μ) = 1;
(ii) if gε(2Nμ̃[0]/p) = −1, then sign(μ) = −1;
(iii) if gε(2Nμ̃[0]/p) = 0, then p̄μ and μ have the same sign.

Proof. We first assume that gε(2Nμ̃[0]/p) = 1. This means that

μ̃[0] ∈]ε
2

p,
p

2
− ε

2
p[

so that, from (3.1), we have
μ ∈]0, p

2
[,

i.e. sign(μ) = 1. Similarly, if gε(2Nμ̃[0]/p) = −1, then we have sign(μ) = −1.
We now assume that gε(2Nμ̃[0]/p) = 0. Necessarily p̄μ and μ have the same

sign: as a matter of fact, either μ = 0, or μ > 0 or μ < 0. If μ = 0, then p̄μ = 0.
If μ > 0, then

μ[0] ∈] − ε
p

2
, ε

p

2
] ∪ [

p

2
− ε

p

2
,
p

2
[∪ [−p

2
,−p

2
+ ε

p

2
[

and it stems from (3.1) and 0 < μ < p
2 (note that p

2+εp
2 < 0 owing to 0 < ε < 1),

that
μ ∈]0, εp] ∪ [

p

2
− εp,

p

2
[

If μ lies in the first interval, we have

0 < p̄μ ≤ εp̄p ≤ p̄

2(p̄ + 1)
p ≤ p

2
− εp, (3.2)

while if μ lies in the second interval (μ ∈ [p2 − εp, p
2 [), we have

p

2
− μ ∈]0, εp]

and similarly we get
0 < p̄ (

p

2
− μ) ≤ p

2
− εp,

Homomorphic Sign Evaluation with a RNS Representation of Integers 279

which is equivalent to

εp ≤ p̄μ − p̄ − 1
2

p <
p

2
.

We recall that p̄ is odd, so p̄−1
2 is an integer, which yields p̄μ ∈ [εp, p

2 [. Conse-
quently, in both cases, we have sign(p̄μ) = +1 = sign(μ). If μ < 0, by considering
−μ > 0 we get that sign(p̄μ) = −1 = sign(μ). The claim is proved.

We now consider the following approximation of p̄μ:

μ̃[1] :=
k∑

i=1

[p̄p̂−1
i]pi

p̂i μ̃i = p̄μ + e[1] mod p, with e[1] =
k∑

i=1

[p̄p̂−1
i]pi

p̂i ei.

Since we have the same estimate

|μ̃[1] − p̄μ| = |e[1]| ≤ p

2

k∑

i=1

|ei| ≤ ε

2
p, (3.3)

the same reasoning as above leads to the fact that if gε(2Nμ̃[1]/p) = +1 (resp.
= −1) then sign(p̄μ) = sign(μ) = +1 (resp. = −1). In other words, in the case
gε(2Nμ̃[0]/p) = 0, the quantity gε(2Nμ̃[1]/p) is an estimator of the sign of μ with
no false positive.

One can iterate on this method, considering all the rescalings

μ̃[r] :=
k∑

i=1

[p̄rp̂−1
i]pi

p̂i μ̃i = p̄rμ + e[r] mod p with e[r] =
k∑

i=1

[p̄rp̂−1
i]pi

p̂i ei, (3.4)

for r ∈ N. By an induction argument, one can easily generalize the above proof
and show that, if gε(2Nμ̃[0]/p) = . . . = gε(2Nμ̃[r−1]/p) = 0, then all the terms
p̄rμ, p̄r−1μ, . . . , p̄μ and μ have the same sign and, moreover, if gε(2Nμ̃[r]/p) = +1
(resp. = −1) then sign(μ) = +1 (resp. = −1).

In fact, the number of required rescalings can be bounded a priori. To see
this point, we state a technical Lemma.

Lemma 1. Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let μ ∈ R/pZ.

Consider the sequence (p̄rμ)r≥0. The following statements hold true.

(i) If μ ∈]0, εp], then there exists r∗ ∈ N
∗ such that for all 0 ≤ r < r∗, one has

p̄rμ ∈]0, εp] and p̄r∗
μ ∈]εp, p

2 − εp].
(ii) If μ ∈ [p2 − εp, p

2 [, then there exists r∗ ∈ N
∗ such that for all 0 ≤ r < r∗, one

has p̄rμ ∈ [p2 − εp, p
2 [and p̄r∗

μ ∈ [εp, p
2 − εp[.

(iii) If μ ∈ [−εp, 0[, then there exists r∗ ∈ N
∗ such that for all 0 ≤ r < r∗, one

has p̄rμ ∈ [−εp, 0[and p̄r∗
μ ∈ [−p

2 + εp,−εp[.
(iv) If μ ∈]− p

2 ,−p
2 + εp[, then there exists r∗ ∈ N

∗ such that for all 0 ≤ r < r∗,
one has p̄rμ ∈] − p

2 ,−p
2 + εp[and p̄r∗

μ ∈] − p
2 + εp,−εp].

280 P. Chartier et al.

Proof. Items (iii) and (iv) can be directly deduced from (i) and (ii) by μ → p
2+μ.

Note indeed that, p̄ being odd, we have p̄r p
2 = p

2 mod p for all r ≥ 0.
Let us prove (i). We thus assume that μ ∈]0, εp]. Let r∗ ≥ 1 be the largest

integer such that p̄rμ ∈]0, εp] for all 0 ≤ r ≤ r∗ − 1 (such an integer exists given
that p̄0μ ∈]0, εp] and that the real sequence p̄rμ → +∞ when r → +∞). By
construction, we have p̄r∗−1μ ≤ εp < p̄r∗

μ ≤ p
2 − εp, which yields

r∗ = 1 +
⌊

logp̄

(
εp

μ

)⌋

.

Moreover, replacing μ by p̄r∗−1μ ∈]0, εp] in (3.2), we obtain p̄r∗
μ ≤ p

2 − εp. We
have proved (i) (Fig. 1).

Fig. 1. Case (i) of Lemma 1.

In order to prove (ii), we now assume that μ ∈ [p2 −εp, p
2 [. Then p

2 −μ ∈]0, εp]

so Item (i) can be applied to p
2 − μ. Setting r∗ = 1 +

⌊
logp̄

(
εp

p/2−μ

)⌋
, one has

∀0 ≤ r ≤ r∗ − 1, p̄r
(p

2
− μ
)

∈]0, εp] and p̄r∗ (p

2
− μ
)

∈
]
εp,

p

2
− εp

]
.

By substracting p/2, this yields

∀0 ≤ r ≤ r∗ − 1, p̄rμ − p̄r − 1

2
p ∈

[p

2
− εp,

p

2

[
and p̄r∗

μ − p̄r∗ − 1

2
p ∈

[
εp,

p

2
− εp

[
.

Since p̄r−1
2 is an integer for all r > 0, the proof of (ii) is complete (Figs. 2, 3

and 4).

Remark 2. By considering the smallest and largest positive values in Zp, that is
to say μ = 1 and μ = p−1

2 , with ε ≤ 1
2(p̄+1) , we can bound from above r∗ by

r∗ ≤ rmax = 1 +
⌊

logp̄

(
p

p̄ + 1

)⌋

.

In order to prepare the adaptation of this algorithm to ciphertexts, we sum-
marize in the following proposition the result that we have proved.

Homomorphic Sign Evaluation with a RNS Representation of Integers 281

Fig. 2. Case (ii) of Lemma 1.

Fig. 3. Case (iii) of Lemma 1.

Proposition 3. Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Let

μ ∈ Zp and consider a sequence of real numbers μ[r] ∈ R/(2NZ), defined for
r = 0, 1, . . . , rmax = 1 +

⌊
logp̄

(
p

p̄+1

)⌋
, and satisfying

|μ[r] − 2Np̄rμ/p|| ≤ εN. (3.5)

Then, there exists r∗ ≥ 0 such that

1. if μ > 0 then gε(μ[r∗]) = 1 and for all 0 ≤ r < r∗, gε(μ[r]) = 0;
2. if μ < 0 then gε(μ[r∗]) = −1 and for all 0 ≤ r < r∗, gε(μ[r]) = 0;
3. if μ = 0 then gε(μ[r]) = 0 for all r ≥ 0,

where the function gε was introduced in Definition 1.

As a direct application of this proposition, one can directly determine the
sign of μ by a lexicographic comparison of (gε(2Nμ̃[0]/p), gε(2Nμ̃[1]/p), . . . ,
gε(2Nμ̃[rmax])/p) with (0, 0, . . . , 0). Equivalently, we can state the

Corollary 1. Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let μ ∈ Zp.

Denote μi = μ mod pi and let gε be the function given in Definition 1. If for

Fig. 4. Case (iv) of Lemma 1.

282 P. Chartier et al.

0 ≤ r ≤ rmax = 1+
⌊
logp̄

(
p

p̄+1

)⌋
, we define μ̃[r] by (3.4), where the noisy values

μ̃i ∈ R/piZ satisfy |μ̃i − μi| ≤ ε/k, then we have

sign(μ) = sign

(
rmax∑

r=0

2rmax−r gε(2Nμ̃[r]/p)

)

. (3.6)

As a matter of fact, either all values gε

(
2Nμ̃[r]/p)

)
remain null, and the sum

accordingly, or the first non-vanishing value (either 1 or −1) dominates the sum
(owing to the scaling factors 2rmax−r). We hereafter illustrate Corollary 1 with
p̄ = 13 and rmax = 8 in the case where μ ∈]0, εp] (Table 1).

Table 1. Values of the inner sum (row S) of (3.6) with M = 2rmax−r∗
and μ > 0.

r μ̃[r] Interval gε

(
2Nμ̃[r]/p

)
S

0 ≈ μ]0, εp] 0 0

...
...

...
...

...
r∗ − 1 ≈ p̄r∗−1μ]0, εp] 0 0

r∗ ≈ p̄r∗
μ]εp, p

2
− εp] 1 M

r∗ + 1 ≈ p̄r∗+1μ [− p
2
, p
2
[∈ {−1, 0, 1} ≥ M − M

2
= M

2

...
...

...
...

...
rmax ≈ p̄rmaxμ [− p

2
, p
2
[∈ {−1, 0, 1} ≥ M − M

2
− . . . − 1 = 1

4 The Homomorphic Sign Algorithm

With the notations introduced in Sect. 2, we consider a plaintext μ ∈ Zp encoded
by its CRT components μi, 1 ≤ i ≤ k, which are encrypted as ci = LWEn,q,pi

s (μi),
with errors Err(ci). Our aim is to obtain an encrypted value of sign(μ). Three
steps are necessary to adapt the above algorithm from plaintexts to ciphertexts.

4.1 Rescaling Ciphertexts

The first step consists in rescaling the ciphertexts ci by factors p̄r. The following
result is an adaptation of Proposition 3.

Proposition 4. Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Consider

the sequence

c[r] =
k∑

i=1

[p̄rp̂−1
i]pi

ci, r = 0, . . . , rmax = 1 +
⌊

logp̄

(
p

p̄ + 1

)⌋

(4.1)

Homomorphic Sign Evaluation with a RNS Representation of Integers 283

of encrypted values LWEn,q,p
s (p̄rμ) and denote, for all LWEn,q

s ciphertext c,

ϕ̃s(c) := 2Nϕs(c)/q + δ(c) ∈ Z2N , (4.2)

where δ(c) was defined in Proposition 1. Suppose that, for all r, we have the
estimate ∣

∣
∣2NErr(c[r])/q + δ(c[r])

∣
∣
∣ ≤ εN. (4.3)

Then, there exists r∗ ∈ {0, . . . , rmax} such that

1. if μ > 0 then gε(ϕ̃s(c[r
∗])) = 1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c[r])) = 0;

2. if μ < 0 then gε(ϕ̃s(c[r
∗])) = −1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c[r])) = 0;

3. if μ = 0 then gε(ϕ̃s(c[r])) = 0 for all r ≥ 0,

where the function gε was defined in Definition 1.

Proof. This result is a direct application of Proposition 3. Indeed, setting μ[r] =
ϕ̃s(c[r]), we have

μ[r] = ϕ̃s(c[r]) = 2Nϕs(c[r])/q + δ(c[r])

=
2N
q

(
qp̄rμ/p + Err(c[r])

)
+ δ(c[r])

= 2Np̄rμ/p +
2N
q

Err(c[r]) + δ(c[r]).

Therefore, (4.3) yields, for all r,

∣
∣
∣μ[r] − 2Np̄rμ/p

∣
∣
∣ =
∣
∣
∣
∣
2N
q

Err(c[r]) + δ(c[r])
∣
∣
∣
∣ ≤ εN,

which enables to apply this Proposition 3.

Remark 3. Piecewise constant functions may also be obtained through an elab-
oration of the same technique as for the sign. To this aim, it is sufficient to
notice (i), that the Heaviside function H(μ) can be emulated through the same
procedure by attributing the value 0 instead of −1 to all torus-elements in
[−p

2 + ε
2p,− ε

2p] in the definition of gε and (ii), that all piecewise constant func-
tions f on the discrete torus [−p

4 , p
4] are linear combinations of translated Heav-

iside functions f(x) =
∑

i αiH(x − βi) where the αi’s are integers and the βi’s
are elements of [−p

4 , p
4].

4.2 Emulating gε Through Bootstrapping

Having computed the rescaled ciphertexts c[r] for 0 ≤ r ≤ rmax by formula (4.1),
the second step of the sign algorithm consists in a functional bootstrapping of
each c[r] in order to compute an encrypted version of gε(ϕ̃s(c[r])). To this aim,
we have to define a suitable test-polynomial v(x).

284 P. Chartier et al.

More precisely, we aim in this subsection at constructing a test-polynomial
vκ(X) ∈ RN,2N such that the associated function defined by (2.1) satisfies

∀μ ∈ Z2N , fvκ(μ) = 2κgε(μ), (4.4)

where 0 ≤ κ ≤ logN is a scaling factor so as to emulate the function gε, rescaled,
in an encrypted form through a bootstrapping procedure (according to Propo-
sition 1).

By construction, function gε is a piecewise constant function, with disconti-
nuities only at points

μ = ±εN + αN, α ∈ Z

while function ν ∈ R/Z
→ fvκ (2Nν�) may have jumps only at points

1
2
+ β, β ∈ Z.

In order not to introduce possible biases from roundings, we thus require that

±εN + αN =
1
2
+ β, α ∈ Z, β ∈ Z i.e. ε =

1
2N

+
α

N
, α ∈ Z. (4.5)

Under the constraint that 0 < ε ≤ 1
2(p̄+1) we thus get (assuming N ≥ 3(p̄ + 1)

which is always satisfied in practice)

0 ≤ α ≤
⌊

N

2(p̄ + 1)
− 1

2

⌋

(4.6)

and we take the largest possible value for ε in order to alleviate the constraint
(4.3). Now, a key feature of functional bootstrapping based on blind rotation is
that for any function F defined from Z2N to Z and such that

∀j ∈ Z2N , F (j + N) = −F (j),

there exists a unique polynomial v ∈ Z[X]/(XN + 1) such that the function fv

defined by (2.1) satisfies

∀j ∈ Z2N , fv(j) = F (j).

Its coefficients vj are given by vj = F (−j), j = 0, . . . , N − 1.
For a given α in (4.5), it is thus enough to define F on {0, . . . , N − 1} as

follows:

∀ 0 ≤ j ≤ α, F (j) = 0,
∀α + 1 ≤ j ≤ N − α − 1, F (j) = 2κ,

∀N − α ≤ j ≤ N − 1, F (j) = 0,

so that
vκ

j := F (−j), j = 0, . . . , N − 1,

Homomorphic Sign Evaluation with a RNS Representation of Integers 285

that is to say

vκ
0 = . . . = vκ

α = 0,
vκ

α+1 = . . . = vκ
N−α−1 = −2κ,

vκ
N−α = . . . = vκ

N−1 = 0. (4.7)

For these specific choices of ε and vκ, the equality (4.4) is satisfied.

4.3 Implementing the Homomorphic Lexicographic Comparison

Arguing as for Corollary 1, it is clear from Proposition 4 that the sign of μ ∈ Zp

can be obtained from the expression

rmax∑

r=0

2rmax−rgε(ϕ̃s(c[r])). (4.8)

Assuming for a while that 2rmax ≤ N and using that the addition is homomor-
phic, an encryption of (4.8) is

rmax∑

r=0

LWEn,q,2N
s

(
2rmax−rgε(ϕ̃s(c[r]))

)
=

rmax∑

r=0

LWEn,q,2N
s

(
fvrmax−r (ϕ̃s(c[r]))

)
.

(4.9)

According to Subsect. 2.2, we can bootstrap directly c[r] onto the encryption of
fvrmax−r (ϕ̃s(c[r])), by using the test-polynomial vrmax−r(X), and sum up homo-
morphically to obtained the desired ciphertext (4.9).

However, the noise in (4.9) is determined by the output noise of the boost-
rapping procedure. This may render the decryption of (4.9) incorrect, as soon as
the noise is non zero (indeed, the smallest non zero value in (4.8) may be ±1).
In order to overcome this difficulty, we first replace the sum (4.8) into sub-sums
of m terms as follows, where we have supposed, for the sake of simplicity, that
rmax + 1 = m�, where by definition
 = logm(rmax + 1). We suppose also that
2m+1 ≤ N . Let ε̃ be defined by

ε̃ =
1
2N

+
α̃

N
with α̃ =

N

2m+1
− 1, (4.10)

and consider

gε̃

⎛
⎝

m−1∑
r0=0

2log N−r0−1gε̃

⎛
⎝

m−1∑
r1=0

2log N−r1−1gε̃

⎛
⎝. . .

m−1∑
r�−1=0

2log N−r�−1−1gε(ϕ̃s(c
[jr]))

⎞
⎠

⎞
⎠

⎞
⎠

(4.11)

with

jr =
�−1∑

i=0

rim
�−1−i, r = (r0, . . . , r�−1).

286 P. Chartier et al.

Now, the smallest non zero values in this new sum is larger than 2log N−m > 1,
which authorizes some noise in the encrypted form of (4.11). Note that the
innermost loop involves gε, while all other loops resort to gε̃. There is indeed
no reason to use the same value of ε given that the space of messages on which
we evaluate gε̃ is different. Arguing in a similar way as for ε, we require that
ε̃ = 1

2N + α̃
N with α ∈ Z and ε̃ < 1

2m+1 leading to (4.10).
It is easy to check that, by Proposition 4 and as formula (4.8), this new

expression (4.11) also gives the sign of μ. Using once again the homomorphy of
the addition and the bootstrapped version of gε, we obtain an encryption of the
sign of μ from the sequence of ciphertexts c[k] through the expression

F̂

⎛

⎝
m−1∑

r0=0

F̃r0

⎛

⎝
m−1∑

r1=0

F̃r1

⎛

⎝. . .

m−1∑

r�−1=0

Fr�−1

(
c[jr])

)
⎞

⎠

⎞

⎠

⎞

⎠

where we have denoted, for any LWE ciphertext c,

Fj(c) := LWEn,q,2N
s (fvlog N−j−1(ϕ̃s(c))) , F̃j(c) := LWEn,q,2N

s (fṽlog N−j−1(ϕ̃s(c)))

and
F̂ (c) := LWEn,q,3

s (fv̂(ϕ̃s(c)))

with ṽκ and v̂ obtained from the following adaptations of Formula (4.7):

ṽκ
0 = . . . = ṽκ

α̃ = 0, ṽκ
α̃+1 = . . . = ṽκ

N−α̃−1 = −2κ, ṽκ
N−α̃ = . . . = ṽκ

N−1 = 0,
(4.12)

v̂0 = . . . = v̂α̃ = 0, v̂α̃+1 = . . . = v̂N−α̃−1 = −1, v̂N−α̃ = . . . = v̂N−1 = 0.
(4.13)

The corresponding algorithm is illustrated in Fig. 5, in a special case.

Remark 4. Note that the factors 2j used here could be replaced by other choices.
This one is optimal in the context of the sign but is not compatible with some
other piecewise constant functions.

The following proposition states the conditions under which our algorithm
works.

Proposition 5. Let 3 ≤ p̄ < p be odd integers and let ε be given by (4.5),
where the integer α satisfies (4.6). Let μ ∈ Zp and consider encryptions of
its CRT components ci = LWEn,q,pi

s (μi). Consider the sequence c[r], for r =
0, . . . , rmax = 1 +

⌊
logp̄

(
p

p̄+1

)⌋
defined by (4.1). Assume that (4.3) is satisfied

for all r and that each LWE ciphertext Si defined in Algorithm 1 as an argument
of a function F̃j or of F̂ satisfies the estimate

|2NErr(Si)/q + δ(Si)| ≤ N/2m+1 − 1. (4.14)

Then Algorithm 1 provides an LWEn,q,3
s (sign(μ)) ciphertext with an error

bounded independently of the ci’s.

Homomorphic Sign Evaluation with a RNS Representation of Integers 287

Algorithm 1. Homomorphic determination of the sign
For r = 0, . . . , m� − 1 do

c[r] =
∑k

i=1[p̄
rp̂−1

i]pici with ci ∈ Z
n+1
2N

End
S0 = 0
For r0 = 0, . . . , m − 1 do

S1 = 0
For r1 = 0, . . . , m − 1 do

· · ·
S�−2 = 0
For r�−2 = 0, . . . , m − 1 do

S�−1 = 0
For r�−1 = 0, . . . , m − 1 do

r = r�−1 + mr�−2 + . . . + m�−2r1 + m�−1r0
S�−1 = S�−1 + Fr�−1(c

[r])
End
S�−2 = S�−2 + F̃r�−2(S�−1)

· · ·
S1 = S1 + F̃r1(S2)

End
S0 = S0 + F̃r0(S1)

End
Return F̂ (S0)

Proof. Thanks to Propositions 1 and 4, and by (4.4), we already know that the
innermost loop, the only one that involves gε, is correct. Moreover, each Si to
be bootstrapped in the next steps with the function gε̃ is an LWEn,q,2N

s (Σi)
ciphertext, where Σi is under the form

Σi =
m−1∑

j=0

2log N−j−1ξj with ξj ∈ {−1, 0, 1}.

These values belong to the set

N

2m
Z2m+1−1 = {0,±N/2m,±2N/2m,±3N/2m, . . . ,±(2m − 1)N/2m} .

Hence, owing to the formulae (4.12) or (4.13) of the test-polynomials v(X) used
in this bootstrap, only three cases have to be examined:

– if Σi = 0, then F̃j(Sj) is a correct bootstrap if |ϕ̃s(Si)| ≤ α̃;
– if Σi > 0, then F̃j(Sj) is a correct bootstrap if α̃ + 1 ≤ ϕ̃s(Si) ≤ N − α̃ − 1;
– if Σi < 0, then F̃j(Sj) is a correct bootstrap if −N+α̃+1 ≤ ϕ̃s(Si) ≤ −α̃−1.

Since α̃ = N/2m+1, it can be observed that each of these three conditions is
satisfied when (4.14) is fulfilled.

288 P. Chartier et al.

Fig. 5. Computation of the sign function for m = 2 and � = 3: each arrow represents
a bootstrap.

4.4 Correctness of the Associated Sign Function for a Specific
Implementation of Bootstrap

In this subsection, we show that our method is of practical interest by estimating
its probability of success in a typical implementation. We shall consider the
TFHE bootstrapping introduced in [11,12], extended to messages in the discrete
tori Tpi

= 1
p i
Zpi

. In order to make our Proposition 1 more precise, let us make
a few assumptions. We refer to [12] (see e.g. Algorithm 1 in this paper) for the
definition of the parameters Bg and
g involved in the gadget decomposition
(and, also, we only consider the case where the associated kg = 1). We assume
that the keys are binary for simplicity and that the ciphertext to be boostrapped
is in LWEN,q

s̃ for some parameters N and q. If B denotes the set {0, 1}, the
vectorial secret keys for LWE ciphertexts belong to B

N and the polynomial
secret keys for RLWE ciphertexts belong to B[X]/(XN + 1), where we recall
that N is a power-of-two.

Before performing a blind rotation on an LWEN,q
s̃ encryption, a keyswitching

is usually applied to bring this ciphertext to an LWEn,q
s one for some smaller n

and key s ∈ B
n. The deviation term δ(c) in Proposition 1 comes from rounding

the mask (ai)i=1,...,n of the LWEn,q
s ciphertext c = (a, b) at the beginning of the

blind rotate process. More precisely, an instanciation of blind rotation leads to9

2Nϕs(c)/q + δ(c) =

⌊

2Nb/q − 1
2

n∑

i=1

δi

⌉

−
n∑

i=1

2Nai/q� si,

9 The trick of substracting the term 1
2

∑n
i=1 δi to 2Nb/q before rounding improves the

total rounding error.

Homomorphic Sign Evaluation with a RNS Representation of Integers 289

where we have denoted δi = 2Nai/q − 2Nai/q�. Since b =
∑

i aisi + ϕs(c), we
compute

δ(c) =

⌊
n∑

i=1

(si − 1/2)δi + 2Nϕs(c)/q

⌉

− 2Nϕs(c)/q,

and denoting γ = −∑n
i=1(si − 1/2)δi − 2Nϕs(c)/q, this yields

δ(c) =
n∑

i=1

(si − 1/2)δi + γ − γ�.

Since we have assumed that si ∈ {0, 1} for all i, we finally get the estimate

|δ(c)| ≤ 1
2

(

1 +
n∑

i=1

|2Nai/q − 2Nai/q�|
)

. (4.15)

Moreover, following, [] the variance of the refreshed error of the output c′ =
LWEN,q,p′

s (we take q′ = q) can be computed as10

σ2
out := Var(Err(c′)) = n

(

1 +
N

2

)

q2
B

−2�g
g

12
+ 2nN
g

B2
g + 2
12

σ2
BK,

where σBK is the standard deviation for the noise sampled to generate the RGSW
bootstrap keys. Finally, we shall make the standard assumption [13,25] that the
Central Limit Theorem applies and that the output error Err(c′) can be well
approximated by a gaussian random variable.

A very conservative estimate of the correctness of the sign function can
be obtained by computing the probability that all the bootstraps involved in
Algorithm 1 are correct. Assuming that all the ei = Err(ci) associated to the
ci’s involved in formula (4.1) are independent sub-gaussian random variables
with parameters σ(ei), and that the terms in the sum in the right-hand side of
(4.15) are uniformly distributed independent random variables and as such sub-
gaussian with parameter 1/(2

√
3), we may obtain the following upper bound of

the probability of getting an incorrect sign by computing the probability that at
least one condition on the errors in Proposition 5 is not satisfied. In other terms,
we have

Pfail ≤ Pfr + Por (4.16)

where Pfr is the probability that one of the bootstrap of the innermost loop
of Algorithm 1 fails and Por is the probability that one of the bootstrap of the
outer loops of Algorithm 1 fails.

10 We assume here that Bg is even.

290 P. Chartier et al.

Lemma 2. Assuming that all the ei = Err(ci), i = 1, . . . , k are independent sub-
gaussian random variables with parameters σ(ei), and that each rounding error
term in (4.15) is sub-gaussian with parameter 1/(2

√
3), we have

Pfr ≤ 2
rmax∑

r=0

exp
(−(ε − 1/(2N))2/(8σ2

r)
)

(4.17)

where

σ2
r =

k∑

i=1

[p̄rp̂−1
i]2pi

(σ(ei)/q)2 + n/(192N2) + σ2
out,ks, r = 0, . . . , rmax,

(4.18)

and where σout,ks is the standard deviation of the keyswitch amplification error,
i.e. the additional error generated after transforming an encryption LWEN,q

s̃ into
an encryption LWEn,q

s . We recall that

σ2
out,ks =

N

2
B−2�ks

ks

12
+ N
ks

B2
ks + 2
12

σ2
ks,

where σks is the switching key and where Bks and
ks are the usual parameters
in a keyswitching operation.

Moreover, assuming that the sums obtained in the outer loops of Algorithm
1 and used as input of further bootstraps are LWE ciphertexts whose errors are
independent sub-gaussian variables with common parameter

√
mσout, we have

Por ≤ 2rmax

m − 1
exp
(−(1/2m − 1/N)2/(32σ̃2

r)
)

(4.19)

where
σ̃2

r = mσ2
out/q2 + n/(192N2) + σ2

out,ks.

Proof. The first statement (4.17) follows from the upper-bound

Pfr ≤
rmax∑

r=0

P

(
|Err(c[r])/q + δ(c[r])/(2N)| ≥ ε/2

)

and from Markov’s inequality. For the second statement, we have to estimate
from above the probability Pincbo that one bootstrap F̃ri

(Si), ri ∈ {0, . . . , m−1},
of a sum Si involved in the outer loops of Algorithm 1 is incorrect. Recall that
each Si is of the form Si = e+

∑m−1
j=0 2log N−j−1ξj , where the ξj ’s take their values

in {±1, 0} and e is a sub-gaussian variable with parameter
√

mσout. According
to Proposition 5, we have

Pincbo ≤ P
(|e/q + δ(Si)/(2N)| ≥ 1/2m+2

)

and using again Markov’s inequality yields (4.19). Note that the number of such
bootstraps is

m�−1 + m�−2 + . . . + m1 + m0 =
rmax

m − 1
.

Homomorphic Sign Evaluation with a RNS Representation of Integers 291

An Example

For instance, consider the situation where

p = 7 × 11 × 13 × 17 × 19 × 23 × 25 × 27 = 5019589575 > 232

and p̄ = 13. We take m = 3,
 = 2 and compute rmax = 8. Maximizing (4.6), we
obtain α = 36.

We compute successively the Bezout coefficients associated with (pi, p/pi) for
i = 1, . . . , 8 and the growth factors in (4.18). We have the following table:

pj 7 11 13 17 19 23 25 27 (
∑

j [p̄
rp̂−1

j]pj
)2

[p̂−1
j]pj

2 3 −2 1 4 6 −3 5 104

[13p̂−1
j]pj

−2 −5 0 −4 −5 9 11 11 393
[132p̂−1

j]pj
2 1 0 −1 −8 2 −7 8 187

[133p̂−1
j]pj

−2 2 0 4 −9 3 9 −4 211
[134p̂−1

j]pj
2 4 0 1 −3 −7 −8 2 147

[135p̂−1
j]pj

−2 −3 0 −4 −1 1 −4 −1 48
[136p̂−1

j]pj
2 5 0 −1 6 −10 −2 −13 339

[137p̂−1
j]pj

−2 −1 0 4 2 8 −1 −7 139
[138p̂−1

j]pj
2 −2 0 1 7 −11 12 −10 423

As cryptographic parameters, let us take the following values, corresponding to
a security11 of λ = 80 bits. For simplicity in this example, we assume that n = N
so that the contribution of the keyswitching can be removed.

N q σBK Bg
g

1024 264 1.3 × 107 213 2
We assume moreover that the ciphertexts ci have been obtained by a boot-

strap with the same parameters, i.e. for i = 1, . . . , k, we take σ(ei) = σout. This
set of parameters yields

σ2
out/q2 = 2.14× 10−11, σ̃r = 5.09× 10−6, Pfr ≤ 1.19× 10−12

Por ≤ 7.25× 10−41

so, finally,
Pfail ≤ 1.2 × 10−12.

This proves the efficiency of our method. Note that the number of bootstraps
involved in one homomorphic evaluation of the sign is rmax + 1 + rmax

m−1 = 13
here, which is less than an homomorphic multiplication (which can be done with
2k = 16 bootstraps).

5 Performance Results

In the next tableaux, we give the computational times of the sign determina-
tion for integers of various sizes (from 8 bits to 64 bits). In order to empha-
size the global interest of the RNS representation which is very beneficial for a

11 According to the lattice estimator https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator

292 P. Chartier et al.

multi-threaded execution, we also include the computational times of elementary
operations +, × obtained in our implementation12. The set of parameters used
is obviously identical for all operations ×,=,Sign,+ in each line of Figs. 6 and 7.
All the cleartext numbers under consideration are integers with various numbers
of bits, from 16 to 64, and all computations are made on an average laptop. Note
that for the sake of better readability the algorithm is used here with the same
values m = 3 and
 = 2 for all benchmarks. Better performances are obtained
by optimizing the parameters in each situation (for a given security parameter,
given size of integers and given error probability) and this work is ongoing. For
instance, as stated in the abstract, our algorithm delivers a correct result with a
probability error below 10−12 and a security of 128 bits in less than 100 ms for
32-bit integers.

Fig. 6. Computation times on milliseconds (except for the addition in microseconds)

Appendix

The sign of μ ∈ Zp can not be determined from the signs of its components
(μ1, . . . , μk). This can be easily seen on the following example with k = 2,
p1 = 3 and p2 = 5: both 2 ∈ Z15 and 7 ∈ Z15 have positive signs, while their

12 Our code includes here a keyswitch from (N + 1)-dimensional LWEs to (n + 1)-
dimensional LWEs where n depends on the security parameter (in practice, 460 ≤
n ≤ 600).

Homomorphic Sign Evaluation with a RNS Representation of Integers 293

Fig. 7. Computation times in milliseconds (except for the addition in microseconds)

components are respectively (−1, 2) ∈ Z3 × Z5 and (1, 2) ∈ Z3 × Z5 with signs
(−1, 1) and (1, 1) respectively. This shows that the value of μ has to some extent
to be computed through Φ−1 in order to evaluate its sign: denoting ci = (ai, bi)
and c = (a, b), we have

b − 〈a, s〉 =
k∑

i=1

[p̂−1
i]pi

bi −
k∑

i=1

〈
[p̂−1

i]pi
ai, s

〉
=

k∑

i=1

[p̂−1
i]pi

(bi − 〈ai, s〉)

=
k∑

i=1

[p̂−1
i]pi

((q/pi)μi + Err(ci)) mod q

= (q/p)
k∑

i=1

p̂−1
i p̂i μi +

k∑

i=1

[p̂−1
i]pi

Err(ci) mod q

= (q/p)μ + Err(c) mod q,

with

Err(c) =
k∑

i=1

[p̂−1
i]pi

Err(ci).

In practice, the errors Err(ci), for i = 1, . . . , k, are the sum of a fixed rational
(the rounding error) and of a sub-gaussian random variable ei with parameter
σ(ei), that is to say such that

E(eλei) ≤ e
1
2σ2(ei)λ

2
.

294 P. Chartier et al.

Neglecting rounding errors and using standard estimates, it is straightforward
to show that the decryption of c in Zp coincides with μ with probability

erf
(

q

2
√
2σ(e)p

)

with parameter σ(e) =
√
[p̂−1

1]2p1
σ2(e1) + . . . + ([p̂−1

k]2pk
σ2(ek). Now, assuming,

for instance, that the parameters σ(ei) = q

2
√
2piθ

have all been adjusted so as to
ensure a correct decryption in Zpi

with a given probability erf(θ), the probability
that the decryption of μ fails can be bounded from below by

1 − erf
(

q

2
√
2σp

)

≥
√

e

2π
exp
(

−2θ2p2max

kp2

)

,

where pmax = maxi=1,...,k pi. This bound shows that the decryption of c is
incorrect with a probability higher than 0.5 for (p1, p2, p3, p4, p5, p6, p7, p8) =
(7, 11, 13, 17, 19, 23, 25, 27) and 1 − erf(θ) = 10−10 in the rings. This renders the
determination of μ intractable as such and one should look for an algorithm to
evaluate its sign without knowing it exactly.

References

1. A. Alexandru, A. Al Badawi, D. Micciancio and Y. Polyakov, Application-Aware
Approximate Homomorphic Encryption: Configuring FHE for Practical Use, Cryp-
tology ePrint Archive, Paper 2024/203, 2024, https://eprint.iacr.org/2024/203

2. J.-P. Bossuat, A. Costache, C. Mouchet, L. Nürnberger and J.R. Troncoso-
Pastoriza, Practical q-IND-CPA-D-Secure Approximate Homomorphic Encryption,
Cryptology ePrint Archive, Paper 2024/853, 2024, https://eprint.iacr.org/2024/
853

3. F. Bourse, M. Minelli, M. Minihold, and Pascal Paillier, Fast homomorphic eval-
uation of deep discretized neural networks, Advances in Cryptology - CRYPTO,
483–512, Springer, 2018

4. F. Bourse, O. Sanders, and J. Traoré, Improved secure integer comparison via
homomorphic encryption, Cryptographers’ Track at the RSA Conference, 391–416,
Springer, 2020

5. Carlton, R., Essex, A., Kapulkin, K.: Threshold properties of prime power sub-
groups with application to secure integer comparisons, Cryptographers’ Track at
the RSA Conference, 137–156. Springer, Heidelberg (2018)

6. P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Fully Homomorphic Encryption
on large integers, Cryptology ePrint Archive, 2024

7. P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Method for homomorphically
determining the sign of a message by dilation, associated methods and devices,
Patent no WO2023242429 - 12/21/2023. Number and date of prority : FR2205957
- 17/06/2022

8. P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Homomorphic encryption
method and associated devices ans system. Patent no WO2022129979 - 06/23/2022.
Number and date of priority : PCT/IB2020001147 - 12/18/2020

https://eprint.iacr.org/2024/203
https://eprint.iacr.org/2024/853
https://eprint.iacr.org/2024/853

Homomorphic Sign Evaluation with a RNS Representation of Integers 295

9. J. H. Cheon, D. Kim, and D. Kim, Efficient homomorphic comparison methods
with optimal complexity, Proceedings of International Conference on the Theory
and Application of Cryptology and Information Security, 221–256, 2020

10. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter,
Logistic regression over encrypted data from fully homomorphic encryption, Cryp-
tology ePrint Archive, Report 2018/462, 2018

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_1

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

13. A. Costache, B. R. Curtis, E. Hales, S. Murphy, T. Ogilvie and R. Player, On the
precision loss in approximate homomorphic encryption, Cryptology ePrint Archive,
Report 2022/162, 2022

14. Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in Less
Than a Second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

15. C. Gentry, Fully homomorphic encryption using ideal lattices, 41st Annual ACM
Symposium on Theory of Computing, 169–178. ACM Press, 2009

16. I. Iliashenko, and V. Zucca, Faster homomorphic comparison operations for BGV
and BFV, Proceedings on Privacy Enhancing Technologies, 2021

17. M. Izabachène, R. Sirdey, and M. Zuber, Practical fully homomorphic encryption
for fully masked neural networks, Cryptology and Network Security - 18th Inter-
national Conference, CANS, 24–36. Springer, 2019

18. E. Lee, J.-W. Lee, J.-S. No, and Y.-S. Kim, Minimax approximation of sign func-
tion by composite polynomial for homomorphic comparison, IEEE Transactions on
Dependable and Secure Computing, 2021

19. Lee, E., Lee, J.-W., Kim, Y.-S., No, J.-S.: Optimization of homomorphic compar-
ison algorithm on RNS-CKKS scheme. IEEE Access 10, 26163–26176 (2022)

20. Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and D. Yoo, Efficient
FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold
Homomorphic Encryption, Advances in Cryptology – EUROCRYPT 2023

21. B. Li, D. Micciancio, On the Security of Homomorphic Encryption on Approxi-
mate Numbers, In: Canteaut, A., Standaert, FX, (eds) Advances in Cryptology,
EUROCRYPT 2021, Lecture Notes in Computer Science, vol 12696, Springer

22. B. Li, D. Micciancio, M. Schultz and J. Sorrell, Securing Approximate Homomor-
phic Encryption Using Differential Privacy, In: Dodis, Y., Shrimpton, T. (eds)
Advances in Cryptology, CRYPTO 2022, Lecture Notes in Computer Science, vol
13507, Springer

23. Z. Liu, D. Micciancio, and Y. Polyakov, Large-precision homomorphic sign evalu-
ation using FHEW/TFHE bootstrapping, IACR Cryptol. ePrint Arch., 2021/1337,
2021

24. D. Micciancio, and Y. Polyakov, Bootstrapping in FHEW-like Cryptosystems, Asso-
ciation for Computing Machinery, New York, NY, USA, 17–28, 2021

25. S. Murphy, R. Player, A Central Limit Framework for Ring-LWE Decryption, Cryp-
tology ePrint Archive, Report 2019/452, 2019

26. H. Narumanchi, D. Goyal, N. Emmadi, and P. Gauravaram, Performance analysis
of sorting of fhe data: Integer-wise comparison vs bit-wise comparison, 2017 IEEE

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24

296 P. Chartier et al.

31st International Conference on Advanced Information Networking and Applica-
tions (AINA), 902–908, 2017

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

28. R. Schwerdt, L. Benz, W. Beskorovajnov, S. Eilebrecht, J. Müller-Quade and A.
Ottenhues, Sender-binding Key Encapsulation, Cryptology ePrint Archive, Paper
2023/127, 2023, https://eprint.iacr.org/2023/127

https://eprint.iacr.org/2023/127

Low Communication Threshold Fully
Homomorphic Encryption

Alain Passelègue(B) and Damien Stehlé

CryptoLab Inc., Lyon, France
{alain.passelegue,damien.stehle}@cryptolab.co.kr

Abstract. This work investigates constructions of threshold fully homo-
morphic encryption with low communication, i.e., with small output
ciphertexts and small partial decryption shares. In this context, we
discuss in detail the technicalities for achieving full-fledged threshold
FHE, and put forward limitations regarding prior works, including an
attack against the recent construction of Boudgoust and Scholl [ASI-
ACRYPT 2023]. In light of our observations, we generalize the definition
of threshold fully homomorphic encryption by adding an algorithm which
allows to introduce additional randomness in ciphertexts before they are
decrypted by parties. In this setting, we are able to propose a construc-
tion which offers small ciphertexts and small decryption shares.

1 Introduction

Fully homomorphic encryption (FHE) [Gen09] allows to perform arbitrary com-
putations on encrypted data. It has found numerous applications in cryptogra-
phy. One of the vanilla applications is the delegation of heavy computation to
a server: by encrypting data to the server, the server can perform the compu-
tation homomorphically on encrypted data to get an encryption of the result
without learning any information about the raw input data nor the result. Yet,
the data owner, who owns the FHE decryption key, can decrypt the evaluated
ciphertext to get the plain result of the computation. Threshold fully homomor-
phic encryption [AJL+12,BGG+18] extends FHE in the multi-client setting:
the decryption key is split between N parties so that to decrypt a ciphertext,
each party must partially decrypt the ciphertext using its share of the key.1
The plaintext is recovered by combining these partial decryptions. Threshold
FHE has tremendous applications, including multi-party computation, universal
thresholdizer, and delegation of computation over private data owned by multi-
ple parties. In the latter scenario, each party can encrypt its data and upload it
on a server. Anyone can ask the server to perform (homomorphic) computation
over the joint data; yet, to learn the result of a computation, all parties must
jointly decrypt the result, which allows parties to manage access to their data
by possibly refusing decryption depending on the evaluated function.
1 We focus on the N -out-of-N case of threshold FHE, in which all N parties must

participate during decryption.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 297–329, 2025.
https://doi.org/10.1007/978-981-96-0875-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_10&domain=pdf
http://orcid.org/0009-0005-9249-3969
http://orcid.org/0000-0003-3435-2453
https://doi.org/10.1007/978-981-96-0875-1_10

298 A. Passelègue and D. Stehlé

The most basic idea to turn an FHE scheme into a threshold scheme is as
follows: FHE schemes have ciphertexts of the form (a, b) where a ∈ Z

n
q , and

where b = −aᵀs + μ + e with s ∈ Z
n
q being the secret key, μ the underlying

plaintext, and e a small error term.2 Decrypting such a ciphertext using s is
done by computing aᵀs and adding it to b to recover μ+ e which is close to μ.3
Transforming such a scheme into a threshold variant can be done by splitting the
secret key s as s = s1+ · · ·+sN mod q and giving one share si of the key to each
user Pi [BD10]. Decryption is then replaced by two algorithms (PartDec,FinDec).
The first one is run by each party using its share of the key to compute a partial
decryption share of the ciphertext, while the second one combines all partial
decryption shares to recover the actual plaintext. At a high level, PartDec consists
in computing pi := aᵀsi, and aᵀs is reconstructed in FinDec by adding all pi’s;
μ + e is then recovered by computing aᵀs+ b as in the non-threshold case.

Obviously, this approach is not secure: each of Pi’s partial decryption aᵀsi of a
ciphertext (a, b) provides a linear equation in si, therefore si can be recovered by
Gaussian elimination given sufficiently many partial decryptions. An alternative
way to see the problem is to observe that parties recover μ+ e when decrypting,
and then, if μ is known, they recover e. Given μ, e, and a ciphertext (a,aᵀs+μ+
e), one can then recover a linear equation (a,aᵀs) in s and recover the secret key
via Gaussian elimination. While this is not an issue in the non-threshold setting
since decryption requires s anyway, the global secret key s should remain hidden
to parties in the threshold setting. Hence, it is crucial that partial decryptions
hide the value of the error term of the ciphertext e.

The solution proposed in [AJL+12,BGG+18] is to add a noise term di to pi,
i.e., defining pi := aᵀsi + di where di is an independent error term. Denoting
d :=

∑
i∈[N] di, the combination of partial shares during FinDec then allows to

recover μ+ e+ d instead μ+ e. Regarding correctness of decryption, this is still
fine as long as e + d is small compared to μ and, hopefully, adding this error
term now guarantees security by hiding e and therefore s. The main question is
then: what is the minimal magnitude for di’s in order to guarantee security of the
construction? Ideally, one wants di to be as small as possible, since the larger it
gets, the larger one must set other parameters of the scheme to ensure correctness
(and also to ensure security, which decreases as the ratio q/e increases).

Prior Works. Early works have shown that adding an exponential noise term
allows to guarantee the security of the scheme. Indeed, consider di of magni-
tude Ω(2λB) where λ denotes the security parameter and B is a bound on the
magnitude of the error term e of the ciphertext (a,aᵀs+μ+ e) to be decrypted.

2 The most efficient FHE instantiations actually rely on Ring-LWE, i.e., replace a, s,
µ and e by ring elements a, s, µ and e. We use LWE notations in the introduction.

3 The plaintext µ can be a scaled version of a message. An additional rounding oper-
ation removes the error term for exact schemes (e.g., BGV [BGV12], B/FV [Bra12,
FV12], DM/CGGI [DM15,CGGI16], or discrete versions of CKKS [DMPS24,
BCKS24,BKSS24]), while approximate schemes (CKKS [CKKS17]) keep the approx-
imate result µ + e, seeing e as part of the approximation error of the computation
over R or C.

Low Communication Threshold Fully Homomorphic Encryption 299

Then, the distribution of μ + e + d is statistically close to that of μ + d, which
is independent of e. Security follows: even if parties P1, . . . , PN−1 get corrupted
by an attacker, the last partial decryption share pN of PN allows the attacker
to recover μ + e + d, which is statistically close to μ + d. The latter can be
sampled publicly given the result μ of the decryption. Hence, the attacker learns
statistically nothing about e and therefore s, or equivalently sN , remains hidden.

While this provides security, exponential noise flooding induces a significant
overhead in terms of efficiency, since the scheme must be correct even for expo-
nentially large decryption error terms. Notably, the partial decryption shares pi’s
include an exponential error term and must hence be very large, leading to high
communication cost between parties. Consequently, several recent works have
tried to reduce the magnitude of d in order to improve the efficiency of the
construction. The main work in this area is a recent paper by Boudgoust and
Scholl [BS23a], which aims to build threshold FHE using a security analysis
based on the Rényi divergence. The Rényi divergence has proven to be a pow-
erful tool to reduce the magnitude of noise terms required in security analyses
in the context of lattice-based signatures [BLL+18]. Yet, for primitives whose
security is based on indistinguishability-based games such as FHE, the Rényi
divergence has not been very successful. This contrasts with signatures, whose
unforgeability security notion is a search-based game.

Two other recent works [CSS+22,DWF22] have also attempted to provide
constructions relying on analysis based on the Rényi divergence in order to
reduce the magnitude of the noise term added during partial decryption. It
turns out that none of these works provides a valid solution to the above problem.
In [DWF22], the authors only claim an extremely weak security statement, where
security holds only for a single partial decryption. In [CSS+22], the authors pro-
pose a security analysis based on so-called public sampleability and claim secu-
rity for threshold FHE based on DM/CGGI with polynomially many decryption
queries. The security claim is again rather weak, since the adversary is selective
(the adversary must declare its encryption and evaluation queries before seeing
challenge ciphertexts). Furthermore, their argument for public sampleability (see
the proof of Theorem 2 in [CSS+22]) relies on a distribution for the random-
ness r which can depend on the error underlying an evaluated ciphertext. For
public sampleability, this distribution should be independent of the challenge bit,
but the error underlying an evaluated ciphertext could depend on the plaintexts
involved in the computation (hence on the challenge bit) even though the result
of the computation is independent of the challenge bit.

In [DDK+23], the authors provide an intermediate step to efficient thresh-
old FHE, based on DM/CGGI, by proposing the following approach: practical
parameters are used to encrypt and evaluate computation, but before partial
decryption is performed, a ciphertext is passed through a “switch-n-squash” pro-
cess. The latter bootstraps a ciphertext to sufficiently large parameters while
keeping the noise small, so that it is possible to flood the noise during thresh-
old decryption of the resulting (large) ciphertext. This allows to have half of

300 A. Passelègue and D. Stehlé

the communication reduced (communication towards the server) but decryption
shares remain large due to (exponential) noise flooding.

Finally, note that theoretical solutions to threshold FHE exist using generic
MPC techniques (e.g., [BJKL21,Shi22] implies an N -out-of-N threshold FHE
with poly(λ)-size decryption shares), but none of these results achieves prac-
tical efficiency. However, focusing only on threshold PKE instead of FHE, a
recent work by Micciancio and Suhl [MS23] provides an elegant solution (in the
N -out-of-N threshold setting) from LWE via a careful analysis of the noise dis-
tributions. Our main construction follows a similar analysis as theirs, but for
fully homomorphic encryption.

1.1 Our Contributions

First, we remark that only adding a small error term during partial decryption
cannot succeed for some classical schemes (e.g., B/FV or CKKS). This is due to
the error distribution during homomorphic computation and has already been
observed in the context of IND-CPA-D security for CKKS [LMSS22]. Hence, to
circumvent this issue, a natural direction is to further rely on techniques to
sanitize the noise during homomorphic computation, such as relying on circuit-
private FHE, as proposed in [BS23a]. Unfortunately, we show that the transform
from [BS23a] fails to provide threshold security, by proposing a circuit-private
FHE scheme which is insecure when plugged into their transform. In addition,
relying on sanitization techniques (which induce randomized evaluation) rises
a challenging question about the model: security of sanitization is guaranteed
based on the (private) internal randomness of evaluation. Relying on randomized
evaluation in the threshold setting then questions which party does the random-
ized evaluation, and what can we hope from this approach if the party doing the
evaluation (and therefore knowing its internal randomness) is corrupted?

Based on these observations, we extend the definition of threshold FHE by
adding an additional algorithm which allows an uncorrupted party (we assume it
is a server) to process on evaluated ciphertexts before parties run partial decryp-
tion. This randomized operation, termed ServerDec, uses randomness unknown
to parties. Our definition matches the standard threshold FHE definition when
ServerDec is deterministic (or, equivalently, void).

We then propose a construction guaranteeing security in this setting. Our
main construction is round optimal, and relies on two flooding steps: ServerDec
adds an exponential noise to ciphertexts after evaluation, but also compresses
them. Hence, ciphertexts fed to partial decryptions are small, and we prove that
adding a very small noise in PartDec is sufficient for security. In the context of
delegation of computation on a trusted server, this means that the communica-
tion from the server to the parties as well as between parties is small, even if
exponential noise flooding is used on the server side.

We complete our work by providing a few more contributions in the full ver-
sion of this paper. First, we propose a protocol designed for threshold delegation
of computation over private data. It is not a threshold FHE scheme properly
speaking: our protocol requires an additional round before partial decryption. A

Low Communication Threshold Fully Homomorphic Encryption 301

specific party (distinct from the server, but possibly one of the partial decryp-
tors) needs to process the evaluated ciphertext before the other parties can run
partial decryption. On the positive side, our protocol is only based on circuit-
private (non-threshold) FHE and threshold public-key encryption. Hence it can
avoid any (exponential) noise flooding by relying on circuit-private transforms
(e.g., [DS16,BPMW16,Klu22,BI22]). Second, we describe connections between
various security notions for FHE, notably an indistinguishability-based notion
of threshold security, IND-CPA-D security, and a weak form of circuit-privacy.

1.2 Technical Overview

We start our technical overview by describing vulnerabilities in prior attempts
to achieve threshold FHE with small partial decryption shares.

Our first observation is a direct generalization of known results in the context
of the CKKS approximate FHE scheme. Recall that a CKKS ciphertext (a, b)
with b = aᵀs + μ + e is decrypted by returning μ + e = b + aᵀs. In [LM21],
the authors show that decryption results can be exploited to mount so-called
IND-CPA-D attacks, which simply exploit the fact that the decryption equa-
tion is a linear equation in s. It is shown in [LMSS22] that adding a Gaus-
sian noise d to the decryption result μ + e allows to prevent such attacks, but
the magnitude of the noise needs to be exponential in the security parameter.
This was generalized to the threshold variant of CKKS in [KS23]. The attack
exploits the fact that when multiplying two CKKS ciphertexts encrypting μ0, μ1

with error terms e0, e1, the error term of the resulting ciphertext is of the form
μ0e1 + μ1e0 + e′ where ‖e′‖ � ‖μ0e1 + μ1e0‖. Hence, the error distribution is
highly-dependent on the underlying plaintexts. Two computations leading to the
same result could therefore have vastly different error terms because they have
different intermediate values, and hiding the bias during decryption requires to
add an exponentially large noise term. We observe that in the context of thresh-
old FHE, this attack does not exploit any specificity of CKKS. Since B/FV has
identical noise propagation during homomorphic multiplications as CKKS, sim-
ilar lower bounds on d are also required to guarantee the security of threshold
B/FV. Hence, it seems that, in general, only adding a small error term during
partial decryption cannot be a solution to obtain threshold security. This moti-
vates the use of sanitization, to make the noise of the result independent of the
intermediate values.

An Attack Against the Boudgoust-Scholl Transform. In [BS23a], the
authors show that a circuit-private FHE scheme can be turned into a threshold
FHE scheme satisfying a one-way security notion by secret-sharing the secret
key between parties and adding an error term of magnitude growing with QD to
partial decryption, where QD is an upper bound on the number of decryptions
made. Note that QD can be much lower than exponential in the security param-
eter. This is made possible by a security analysis based on the Rényi divergence,
thanks to the fact that one-way security is a search-based security game. Then,
the authors claim that the one-way threshold FHE schemes can be turned into

302 A. Passelègue and D. Stehlé

an IND-CPA threshold FHE schemes via a transform based on hard-core bit
predicates. We refer the reader to Sect. 3 for details about the transform.

Unfortunately, we show that this transform fails to provide IND-CPA secu-
rity of the resulting threshold FHE scheme. We construct a circuit-private FHE
scheme which results in an insecure threshold FHE scheme once plugged into
the transform. Let us now provide a simplified overview of the attack. Con-
sider a (circuit-private, threshold) FHE scheme whose ciphertexts have the form
(a,aᵀs+ μ+ e). The adversary’s goal is to distinguish an encryption of μ0 from
an encryption of μ1 given access to a (partial) decryption oracle. Let (a∗, b∗)
denote the challenge ciphertext, where b∗ = a∗ᵀs+μ(β)+ e∗, where β ∈ {0, 1} is
the challenge bit. Further assume that it is possible, via the circuit-private evalu-
ation, to transform a ciphertext encrypting a plaintext μ into another ciphertext
encrypting the same plaintext, but whose error term e′ is now of the form μᵀs.
We emphasize that this does not contradict circuit-privacy.4 Our attack exploits
the fact that the adversary can ask decryption of ciphertexts whose underlying
plaintext depends on a∗. Specifically, our attacker submits an encryption query
whose plaintext encodes the most significant bits [a∗] of a∗, applies the above
circuit-private mechanism, and then asks for decryption of the result. Ignoring
the small noise term added during partial decryption, the adversary then recov-
ers an error term of the form [a∗]ᵀs with [a∗] being the most significant bits
of a∗, and putting the bits in the appropriate slots, it can then subtract the
most significant bits of a∗ᵀs from b∗ to guess the value of β, leading to a dis-
tinguishing attack and contradicting the security of the transform. The attack
being adaptive (it involves a query that depends on the challenge ciphertext),
it might be possible to prove the security of the transform in a selective case,
requiring the adversary to declare all its encryption and evaluation queries before
seeing the challenge ciphertext. However, this model is much weaker than ours
and than the model considered in [BS23a]. (At the time of writing, the current
eprint version [BS23b] of [BS23a] considers selective security, the update having
being made based on our notification of a proof flaw to the authors.)

A Generalized Definition of Threshold FHE. Given our first observation, it
seems that sanitizing evaluated ciphertexts such that the error term is indepen-
dent of the underlying plaintexts is a good start. This can be done by randomiz-
ing evaluation (e.g., using circuit-private evaluation), but it poses a definitional
issue: in threshold FHE, any party can be corrupted, hence if a party performs
the evaluation and gets corrupted, the randomness used during the evaluation is
revealed to the adversary. In this case, there is no randomness in the evaluation
and one cannot rely on it to argue about security, falling back to the prior issues.5

4 Another issue that could be noticed is that e′ has no reason to be small or might
not even be properly defined. We assume this is not the case, only for simplifying
the overview. Our actual attack avoids this issue.

5 Note that relying on randomized evaluation also induces issues for some applications
of threshold FHE to threshold cryptography. We provide an example with threshold
signatures. The construction from [BGG+18] of threshold signature from threshold
FHE requires parties to homomorphically evaluate a deterministic signing algorithm,

Low Communication Threshold Fully Homomorphic Encryption 303

To circumvent this issue, we modify the definition of threshold FHE by adding
an algorithm termed ServerDec. We define a threshold FHE scheme as a tuple
(KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) where KeyGen,Enc,Eval,PartDec,
and FinDec are the usual threshold FHE algorithms. ServerDec is an additional,
public-key, randomized algorithm, which can be performed on fresh or evalu-
ated ciphertexts, and before partial decryption. It returns a ciphertext which
fits the input format of PartDec. We suppose that ServerDec is executed by an
uncorrupted party (e.g., the server) and uses randomness that remains unknown
to all parties (and therefore to the adversary). We recover the prior syntax of
threshold FHE when ServerDec is void (or equivalently, when it is deterministic).
Note that, assuming homomomorphic evaluation is performed on an uncorrupted
server as for delegation of computation, ServerDec can be performed directly fol-
lowing the Eval algorithm by the server. It may seem that it could then be
integrated directly in Eval algorithm, but adding an explicit algorithm increases
flexibility: for instance, ServerDec might convert ciphertext into a format which
prevents further homomorphic evaluation. Also, adding an explicit ServerDec
algorithm allows Eval to possibly remain deterministic. Finally, it allows to iden-
tify precisely the sources of security. Considering an adversary which corrupts
all first N − 1 users, the security is guaranteed thanks to the remaining uncor-
rupted randomness, i.e., (1) the internal randomness of ServerDec, and (2) the
randomness held by PN (its share sN of the key and its internal randomness
of PartDec).

Speaking of security, we define a simulation-based security notion which
closely follows prior notions from [BGG+18]. It is actually slightly stronger:
adaptive queries and multi-hop evaluations are permitted. In short, our security
notion requires that an adversary corrupting at most N − 1 parties should not
learn any valuable information beyond the value of the underlying plaintext. This
is modeled by the existence of an efficient simulator which takes as input infor-
mation available to the adversary (the corrupted shares of the secret key as well
as the plaintext underlying the ciphertext to be decrypted), and returns a simu-
lated ciphertext as well as simulated partial decryption shares for all parties. We
further require that the distribution of the simulation is indistinguishable from
that of the real ciphertext produced by ServerDec and of the honestly generated
partial decryption shares.

Double-Flood-and-Round Threshold FHE. Our main result is a construc-
tion of threshold FHE with low communication. We call our technique Double-
Flood-and-Round. consider a generic FHE scheme whose ciphertexts have the
above form (a,aᵀs + μ + e) over ZQ for some (exponentially) large modu-
lus Q = p · qdec with p = Ω(2λ) and qdec = poly(λ). The key generation,
encryption, and evaluation algorithms are directly inherited from the under-

where the signing key is encrypted, and to reveal partial decryptions of the resulting
ciphertext as partial signatures. For correctness, it is crucial that all parties evaluate
the same signature (which is why it is chosen deterministic), but also the same
ciphertext: randomized evaluation is not an option. However, an analysis based on
Rényi divergence shows that a noise growing with QD suffices in this setting [ASY22].

304 A. Passelègue and D. Stehlé

lying FHE scheme, except that the secret key s is additively secret shared as
s = s1 + · · · + sN mod qdec. Our technique is to first rely on exponential noise
flooding to sanitize evaluated ciphertexts before partial decryption. This is done
by the ServerDec algorithm. It takes a ciphertext (a, b) ∈ Z

n
Q × ZQ and returns

a ciphertext (a′, b′) ∈ Z
n
qdec

× Zqdec with:

a′ =
⌊
1
p

· a
⌉

σ0

, b′ =
⌊
1
p

· (b + E)
⌉

σ1

.

where �·�σ denotes a randomized Gaussian rounding, which on input x ∈ R

returns an element from DZ,x,σ, and where E is an exponentially large Gaussian
noise term. Via standard noise flooding, the error term E statistically hides
the error term from b. Moreover, thanks to the rescaling to qdec = poly(λ), the
ciphertext (a′, b′) sent to parties to be partially decrypted is only (n+1) log(qdec)-
bit long. PartDec and FinDec then follow the same design as before.

We are able to prove that adding a very small amount of noise (whose
magnitude is even independent of the number of decryptions QD) during par-
tial decryption suffices to guarantee security. Specifically, a ciphertext (a′, b′)
returned by ServerDec is of the form (a′,a′ᵀs + μ + e′), where e′ has the form⌊
1
p · (rᵀ

0s+ E)
⌉

σ1

with r0 denoting the (Gaussian) rounding error of a, i.e.,

r0 = a− p ·a′. Therefore, following a similar approach as the proof of [BLP+13,
Lemma 3.5], one can show that e′ is statistically close from a Gaussian distri-
bution whose standard deviation is

√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 . Assuming ‖s‖
is publicly known, this distribution is publicly sampleable. Thanks to this clean
distribution of e′, the rest of the security analysis is analogous to the recent proof
of security of lattice-based threshold public-key encryption from [MS23].

A partial decryption of (a′, b′) computed by party PN owning sN is of the
form a′ᵀsi + di. Sampling dN from DZ,η, we then obtain that the view of an
adversary corrupting all parties P1, . . . , PN−1 (and therefore s1, . . . , sN−1) is a
triple (a′,a′ᵀs + μ + e′,a′ᵀsN + dN), and adding a′ᵀ ∑

i∈[N−1] sN to the third
term, it is then a triple of the form:

(a′,a′ᵀs+ μ + e′,a′ᵀs+ dN) ,

with e′ ∼ D
Z,

√
(σ0‖s‖)2+(σflood/p)2+σ2

1
and dN ∼ DZ,η. Assuming LWE, we prove

the above distribution is computationally indistinguishable from a triple:

(a′, b′, b′ + h) ,

where h ← Dσh
with σh :=

√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 + η2. The latter distri-
bution is publicly sampleable if ‖s‖ is known, which does not hurt the analysis.

We further note that the partial decryption shares can be rounded, in order
to lower communication (we do not use this for security). This explains why
the construction is called double-round-and-flood. As a final remark, note that
our input FHE ciphertexts are not compact by default, as they are defined over
a large modulus Q. This problem is solved by relying on transciphering, e.g.,

Low Communication Threshold Fully Homomorphic Encryption 305

using [BCK+23]. Hence, all communications are small, and only the steps run
by the server are dealing with large ciphertexts.

Additional Contributions. We provide a few more contributions in the full
version of this paper. First, in addition to our double-flood-and-round threshold
FHE construction, we propose an alternative protocol for delegation of compu-
tation in a threshold setting which combines threshold public key encryption
with circuit-private FHE. The idea is the following: users generate a thresh-
old PKE public key and shares of the secret key. A special party, termed the
transcryptor, which could be a trusted third party or one of the users, gener-
ates a pair of keys for a (circuit-private) FHE scheme and keeps the secret key
for itself while revealing the public key to the server and all users. We assume
that the transcryptorand the server are not colluding and that communications
between every party is done via secure channels (e.g., using authenticated sym-
metric encryption). The server receives data from each user, encrypted under the
FHE public key, via secure channels. Then, to perform a computation C over data
μ1, . . . , μN , the server homomorphically evaluates ThEnctpk◦C on the data, where
ThEnc denotes the encryption algorithm of the threshold PKE scheme and tpk
its public key. The result is an FHE encryption of a threshold PKE encryp-
tion of C(μ1, . . . , μN). Then, this ciphertext is sent to the transcryptor, which
decrypts it using the FHE secret key, and broadcasts ThEnctpk(C(μ1, . . . , μN)) to
all users. This step adds a communication round compared to approaches based
on threshold FHE in which the outputs of ServerDec computed by the server
can be directly decrypted by all parties: it is not possible to avoid this addi-
tional round since the party (here, the server) performing evaluation must be
independent of the FHE secret key holder. The protocol completes decryption of
the result by having all parties jointly decrypting the threshold PKE ciphertext
using their shares of the decryption key.

Assuming circuit-privacy of the underlying FHE scheme and simulation secu-
rity of the underlying threshold PKE scheme, this protocol achieves simulation
security. This is proven by simulating the view of an adversary by simulating
ThEnctpk(C(μ1, . . . , μN)) using the threshold PKE simulator, and by replacing
the ciphertext computed by the server with a fresh FHE encryption of this sim-
ulated threshold PKE ciphertext. Using circuit-private FHE directly allows to
avoid the use of exponential noise flooding when circuit-privacy is achieved by
mechanisms such as those from [DS16,BPMW16,Klu22,BI22].

We also complete the paper with discussions about various advanced security
notions for FHE, including threshold security, IND-CPA-D security, and circuit-
privacy, and provide connections between these notions.

Additional Related Work. In [ASY22], the authors construct threshold sig-
natures based on threshold FHE techniques, again by relying on an analysis
based on the Rényi divergence to reduce the magnitude of the added noise. We
emphasize that the authors do not build a threshold FHE scheme, but only
use FHE as a building block ina threshold flavour as part of their threshold

306 A. Passelègue and D. Stehlé

signature construction. The reduction does not rely on the security of thresh-
old FHE: the authors directly prove unforgeability (a search-based game) of the
threshold signature by arguing that a small noise is sufficient.

2 Preliminaries

Notation. For any integer N ≥ 1, we let [N] denote the set {1, . . . , N}. Vec-
tors and matrices are written in bold letters. Vectors are column vectors. For
a vector x, we let xᵀ denote its transpose. Given a finite set S, we let U(S)
denote the uniform distribution over S. The notation log refers to the natu-
ral logarithm. We use the notations negl(λ) = λ−ω(1) and poly(λ) = λO(1),
where λ refers to the security parameter. For X,Y two distributions over
a countable set Ω, the statistical distance between X and Y is defined as
Δ(X,Y) := 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

For an integer x ∈ Z, a modulus q > 0, and an integer N > 0, we let
Share denote the standard additive secret sharing algorithm which takes as
input (x,N, q), samples (x1, . . . , xN−1) ← U(ZN−1

q), and returns (x1, . . . , xN)
with xN = x − ∑

i∈[N−1] xi mod q.

2.1 Gaussian Distributions

Definitions. For an integer n > 0 and σ > 0, we define the n-dimensional
Gaussian function ρσ : Rn → (0, 1] as:

ρσ(x) :=
1
σn

exp
(−π‖x‖2

σ2

)

.

We say that a random variable X over R
n follows the Gaussian distribution

of standard deviation σ and center c ∈ R
n, denoted Dc,σ, if its density function is

ρX : x → ρσ(x− c). Similarly, a random variable X over Zn follows the discrete
Gaussian distribution of standard deviation parameter σ and center parameter c
if the probability mass function of X is given by:

Pr[X = x] =
ρσ(x − c)
ρσ(Zn)

.

We let DZn,σ,c denote the n-dimensional discrete Gaussian distribution of stan-
dard deviation parameter σ and center parameter c, and drop the index c
if c = 0. We also remark that DZn,σ = Dn

Z,σ. The definition generalizes to
shifted supports Z

n − c. These distributions are efficiently sampleable for all σ
(see, e.g., [BLP+13, Section 5.1]).

Gaussian Rounding. In our main construction, we rely on randomized Gaus-
sian roundings: for a standard deviation parameter σ > 0, we let �·�σ denote the
Gaussian rounding operation which, on input a value x ∈ R returns a sample
from DZ,x,σ, or equivalently, samples z from DZ−x,σ and returns x+z. We extend
it to vectors in a component-wise manner.

Low Communication Threshold Fully Homomorphic Encryption 307

Elementary results. We prove the following smudging lemma in the full version
of the paper.

Lemma 2.1. Let σ > 0 and c0, c1 ∈ Z. Then:

Δ (DZ,c0,σ,DZ,c1,σ) ≤ O

(|c0 − c1|
σ

)

.

In particular, for λ > 0, c ∈ Z and σ > Ω(c2λ), we have Δ(DZ,σ,DZ,c,σ) < 2−λ.

We finally recall the following results about lattice Gaussians. They are
expressed in terms of the smoothing parameter ηε(Zn), defined, for arbitrary ε >
0 and integer n ≥ 1, as the smallest s > 0 such that ρ1/s(Zn \ {0}) ≤ ε.
By [GPV08, Lemma 3.1], we know that ηε(Zn) ≤ √

log(2n(1 + 1/ε))/π.

Lemma 2.2. [Reg05, Corollary 3.10] Let n ≥ 1, a, s ∈ R
n and σ, ψ > 0.

Assume that (1/σ2 + (‖s‖/ψ)2)−1/2 ≥ ηε(Zn) for some ε < 1/2. Then, the dis-
tribution of xᵀs+ e where x ← DZn+a,σ and e ← Dψ is at statistical distance at
most 4ε from D√

(σ‖s‖)2+ψ2 .

Lemma 2.3. [Pei10, Theorem 3.1] Let n ≥ 1 and σ, ψ > 0 with σ ≥ ηε(Zn)
for some ε < 1/2. If sampling x ← Dψ and y ← DZn−x,σ, the distribution
of x + y is at statistical distance at most 8ε from the discrete Gaussian distri-
bution D

Zn,
√

σ2+ψ2 .

2.2 Hardness Assumptions

We first remind the standard LWE assumption.

Definition 2.4. Let n,m, q, ψ > 0, and χs denote a distribution over Zn. These
parameters are function of the security parameter λ. The LWEn,m,q,ψ,χs assump-
tion states that the distributions

(A,As+ e) and (A,u)

are computationally indistinguishable, where A ← U(Zm×n
q), s ← χn

s , e ←
DZm,ψ and u ← U(Zm

q) .

Our main construction relies on the following yaLWE assumption (yet another
LWE assumption), which is implied by the standard LWE assumption, as we
explain below. It combines the Reused-A LWE and Known-Norm LWE assump-
tions considered in [MS23].

Definition 2.5. Let n,m, q, σ, η > 0 and χs denote a distribution over Z
n.

These parameters are function of the security parameter λ. The yaLWEn,m,q,σ,η,χs

assumption states that the distributions

(A,As+ e,As+ d, ‖s‖) and (A,u,u+ h, ‖s‖)
are computationally indistinguishable, where A ← U(Zm×n

q), s ← χn
s , e ←

DZm,σ, d ← DZm,η,u ← U(Zm
q) and h ← D

Zm,
√

σ2+η2 .

308 A. Passelègue and D. Stehlé

Lemma 2.6. Let n,m, q, σs, σe and η > 0, with σe ≥ √
2σs ≥ Ω(

√
λ + log n)

and σs ≤ poly(λ). Assume that χs = DZn,σs . If the LWEn,m,q,ψ,χs assumption
holds for ψ = (

√
σ−2
e + η−2)−1/2, then the yaLWEn,m,q,σe,η,χs

assumption holds.

This essentially follows from [MS23, Corollary 3 and Lemma 9]. In
the latter, the authors prove that LWEn,m,q,ψ,χs implies the Reused-A
LWEn,m,q,σs,η,χs assumption. The latter assumption precisely corresponds to
our yaLWEn,m,q,σs,η,χs

except for ‖s‖ which is kept secret. (Reused-A LWE
considers χs = U(Zn

q), but the analysis from [MS23] generalizes to arbitrary
secret key distributions χs.) Then, Lemma 2.6 follows by the same observa-
tion as for Known-Norm LWE in the same work: any solver for the search
variant of yaLWEn,m,q,σs,η,χs

yields a solver for the search variant of Reused-A
LWEn,m,q,σs,η,χs , by first guessing ‖s‖ (this guess being correct with probability
1/poly(λ) as long as ‖s‖ = poly(λ)); then one can rely on [MM11] to relate the
search and decision variants. Note that [MS23, Lemma 9] requires the same dis-
tribution for the coordinates of s and e. In our application (and in the statement
of Lemma 2.6), we use larger a larger standard deviation parameter for the coef-
ficients of e than for those of s. Reducing the same-noise variant to the latter
one is achieved by adding Gaussian noise to the second and third coordinates of
the yaLWE sample. The sum of two discrete Gaussians is indeed very close to a
discrete Gaussian (see [BF11, Lemma 4.12]).

3 Limitations from Prior Works

We start by discussing prior attempts to build threshold FHE with small par-
tial decryption shares. Threshold FHE (and variants of it) has received a lot
of attention in the last few years and some works (notably [BS23a,CSS+22])
claim to obtain efficient constructions based on an analysis relying on the Rényi
divergence. We already pointed issues with [CSS+22] in the introduction and
now focus on explaining technical issues with [BS23a]. We first discuss about
the need for randomness before partial decryption happens to achieve threshold
FHE with small partial decryption shares, then detail our analysis of [BS23a].

3.1 On the Need for Randomness Before Partial Decryption

For the approximate FHE scheme CKKS, lower bounds were proven in [LMSS22]
regarding the amount of (Gaussian) noise to be added after decryption, in order
to achieve IND-CPA-D security (see full version of the paper for a precise defi-
nition) when the evaluation algorithm Eval of the scheme is deterministic. The
authors proved that decryption needs to add a noise of magnitude Ω(2λ/4), and a
similar lower bound was recently proven in the threshold setting (still for CKKS
only) in [KS23, Theorem 12]. (The result is written in the case of multi-key FHE
but extends to threshold FHE.) Our first observation is that these results do not
rely on any specificity of CKKS, except on the fact that the noise after multipli-
cation of two ciphertexts, encrypting μ1, μ2 and with noise terms e1, e2, is of the

Low Communication Threshold Fully Homomorphic Encryption 309

form μ1e2 +μ2e1 + e′ with ‖e′‖ � ‖μ1e2 + μ2e1‖. This noise propagation is also
that of the (exact) B/FV FHE scheme. The lower bound can then be extended
to any threshold FHE scheme with such a format, and in particular to B/FV.
This is not surprising, given that IND-CPA-D can be seen as a particular case of
threshold FHE security (see full version of the paper for details). In short, this
is due to the fact that CKKS decryption corresponds to (noiseless) PartDec as
defined earlier.

To obtain the lower bound, we consider four challenge queries of the form

(μ(0)
1 , μ

(1)
1) = (0, B), (μ(0)

2 , μ
(1)
1) = (0, B) ,

(μ(0)
3 , μ

(1)
3) = (0, B), (μ(0)

4 , μ
(1)
4) = (0,−B) .

We then evaluate μ1μ2 + μ3μ4, which leads to an encryption of 0 (computed
as 02+02 or as B2−B2 respectively, depending on the challenge bit β). The fact
that intermediate plaintexts are 0 is one case and of magnitude B in the other
case implies that the underlying error of the result is simply e′ for β = 0, while
it is of the form Be+ e′ with e′ small relative to Be for β = 1. This difference in
magnitude can be further amplified by making not just 4 queries but 4t queries
of the same form and evaluating

∑
i∈[t](μ1,iμ2,i + μ3,iμ4,i). As explained in the

introduction, partial decryptions allow to recover the error, up to the error added
by each partial decryption. Hence, unless partial decryption adds an exponential
error, there is an efficient distinguisher based on the evaluation error, and the
scheme is not secure. We refer the reader to [LMSS22] for more details. The
main technicality lies in the fact that, outputting a guess based on which of
the two shifted Gaussians in more likely to have generated the challenge sample
essentially provides an efficient distinguisher whose advantage is the statistical
distance between the Gaussians, and an exponential flooding is required to make
this statistical distance negligible.

As a consequence, it seems that relying on sanitization techniques to remove
dependencies between the error term and the plaintexts involved in the com-
putation is needed to obtain efficient threshold constructions without exponen-
tial noise flooding during partial decryption. This is what is done in [BS23a],
by relying on circuit-private FHE. However, adding randomness before partial
decryption rises another question: which party adds this randomness? If this is a
party, then it has to be honest, uncorrupted, and even in this case, it is not clear
that any security can be guaranteed with respect to this party, since it knows
the randomness which serves as source of security. This is what motivates our
generalization of threshold FHE, defined in the next section (Sect. 4): we add a
ServerDec operation which processes the evaluated ciphertext to add random-
ness; we assume it is run by a trusted third-party (e.g., a server), so that none
of the (possibly corrupted) parties knows the internal randomness of this step.
Before we move on to our definition, let us analyze [BS23a] in more details.

310 A. Passelègue and D. Stehlé

3.2 A Construction Based on Circuit-Private FHE

In [BS23a], the authors proposed a transformation which allows to convert a
One-Way-CPA (OW-CPA), circuit-private, threshold FHE into an IND-CPA
threshold FHE. The precise definition of OW-CPA threshold FHE is not rele-
vant for our work and we refer the reader to [BS23a] for more details. IND-CPA
threshold FHE is similar to our Definition A.1, though it suffers from minor
caveats. Indeed, in their security notions, the adversary does not have access to
two distinct oracles OEval and ODec but only to a single oracle OEvalDec which
combines evaluation of a circuit C with partial decryption of the resulting cipher-
text. While this could be fine, the issue with their definition is that this oracle
only reveals the partial decryption shares to the adversary and does not reveal
the evaluated ciphertext which was decrypted. Note that, since the ciphertext is
obtained by a circuit-private evaluation, it is not possible for the adversary to
compute the decrypted ciphertext by itself. In practice, parties (and therefore
the adversary) must know the ciphertext to be able to decrypt it, so OEvalDec
should reveal both the ciphertext and the partial decryption shares when Eval is
randomized. Yet, the fact that the ciphertext distribution is correlated to that of
partial decryptions makes it much harder to analyze security. (Also, again, this
rises the question of who does the evaluation since randomness plays a central
role in security.)

Beside this definitional issue, our main contribution in this section is an
attack against the transform. We start by briefly recalling the transform. Let
ThFHE = (KeyGen,Enc,Eval,PartDec,FinDec) be a OW-CPA, circuit-private,
threshold FHE scheme. The authors suggest to construct an IND-CPA threshold
FHE from this OW-CPA threshold FHE scheme by tweaking encryption and
evaluation as follows.

• To encrypt a message μ ∈ {0, 1}δ: sample (s1, . . . , sδ) ← U(Mδ) and x ←
U(M) where M denote the message space of the OW-CPA scheme – we
assume that x has large min-entropy (i.e., that M is large); compute ct ←
Encpk(x) and ri := 〈x, si〉 ⊕ μi for i ∈ [δ]; return (ct, (si)i∈δ, (ri)i∈δ).

• To evaluate a circuit C, one first unmasks the ri’s homomorphically using the
encryption of x (and known si’s) to compute an FHE encryption of μ, and
then performs Eval of C on the resulting ciphertext.

Let us first remark that unmasking can be done directly on ciphertexts, and
therefore one can assume that a message μ is simply encrypted using the OW-
CPA scheme (up to some changes in the noise distribution). Therefore, the above
transform would imply that a OW-CPA (circuit-private) threshold FHE scheme
is actually IND-CPA-secure without any change. In the full version of the paper,
we show that this is actually correct for non-threshold FHE schemes, assum-
ing the scheme satisfies a mild form of circuit-privacy. The proof relies on a
rewinding argument. However, if the attacker can make decryption queries (e.g.,
for threshold or IND-CPA-D security), the rewinding argument blows up the

Low Communication Threshold Fully Homomorphic Encryption 311

number of decryption queries and its seems very challenging to extend our result
without this blow-up.6

3.3 An Attack Against the [BS23a] Transform

To attack the transform, we construct a threshold circuit-private FHE scheme
which is does not satisfy their claimed security notion once plugged into their
transform.

Syntax of Our Scheme. We consider a (threshold) FHE scheme with the
following syntax. This corresponds in particular to some instantiations of B/FV
or CKKS. The scheme uses a chain of moduli q� > q�−1 > · · · > q0, providing �+1
levels of computation. Define R = Z[X]/(XN + 1)) for N a power of 2, and
Rq = R/qR for q ≥ 2. A ciphertext at level i is of the form ct = (a,−as+μ+ e)
with a, s, e ∈ Rqi , where μ ∈ R is a polynomial encoding a plaintext.

Let ct0, ct1 denote two level-(i + 1) ciphertexts with ct
(i+1)
β = (aβ ,−aβs +

μβ + eβ) for β ∈ {0, 1}. We assume that multiplying two level-(i+1) ciphertexts
leads to a level-i ciphertext ct(i) whose error term is of the form qi

qi+1
· (μ0e1 +

μ1e0 + e′) where e′ satisfies ‖e′‖ � ‖μ0e1 + μ1e0‖. In the case of B/FV and
CKKS, decreasing e′ is obtained by increasing the qi’s.

We consider a circuit-private threshold FHE scheme with the above format
and consider three consecutive moduli q2 > q1 > q0 of the modulus chain. We
assume that:

• fresh/evaluated ciphertexts are at level 0 (i.e., encryption, challenge, and
evaluation queries all return level-0 ciphertexts);

• the public parameters contain a level-2 encryption of 1, denoted ct
(2)
pp ;

• the (circuit-private) evaluation of a circuit C has the following form: it starts
by performing a circuit-private evaluation of C resulting in a level-2 ciphertext
ct

(2)
priv; then, the following post-processing is performed:

1. both level-2 ciphertexts ct(2)priv and ct
(2)
pp are rescaled to level 1 by applying

the map c → � q1
q2

· c�; this results in two level-1 ciphertexts denoted ct
(1)
priv

and ct
(1)
pp , respectively;

2. the ciphertexts ct(1)priv and ct
(1)
pp are multiplied, resulting in a level-0 cipher-

text ct
(0)
res , which is returned as the output of the evaluation.

• partial decryption of a ciphertext (a, b) with a partial key sj returns asj + d
with d being a noise of amplitude ≈ QD, where QD denote an upper bound
on the number of decryption queries made by the adversary (as suggested by
the analysis based on the Rényi divergence from [BS23a]).

6 Recall that, the OW-CPA threshold FHE construction proposed in [BS23a] requires
to add a noise term of magnitude O(QD) during partial decryption, with QD an
upper bound on the number of decryption. Hence, if the reduction blows up the
number of decryption queries to argue threshold IND-CPA security, then the amount
of flooding noise shall be increased accordingly.

312 A. Passelègue and D. Stehlé

We now add two comments on the evaluation procedure. As ct(1)pp is an encryption
of 1, the ciphertext ct(0)res properly decrypts to the result of the computation. Fur-
ther note that the evaluation process is circuit-private since the post-processing
is circuit-independent and applies to a circuit-private evaluated ciphertext ct(2)priv.

Finally, we assume that q0 ≤ poly(λ ·N ·QD), which suffices to enable correct
decryption.

The Attack. Our threshold IND-CPA attack starts as follows:

1. The attacker makes a challenge query (μ0, μ1) using scalar plaintexts. Let
ct∗ = (a∗,−a∗s + μβ + e∗) denote the resulting level-0 challenge ciphertext.

2. The attacker requests an encryption of the most significant bits of a∗ (i.e., of
a polynomial whose coefficients are the MSB of that of a∗; let us denote its
encoding as [a∗]), resulting in a level-i ciphertext ct

(0)
1 .

3. The attacker requests an evaluation of the identity circuit on ct
(0)
1 , resulting

in a level-0 ciphertext ct
(0)
2 .

4. The attacker finally requests all partial decryptions of ct(0)2 .

Note that the decryption query is valid as the underlying plaintext, which cor-
responds to the MSB of the a∗-part of ct∗, is independent of μβ and therefore
the decryption query does not reveal information about β.

Before completing the attack, let us analyze the various noise terms. By
definition, ct(0)1 is a level-0 ciphertext. When the identity circuit is evaluated,
the circuit-private evaluation of the circuit is first run, ending up with a level-2
ciphertext ct

(2)
2 of the form (a(2)

2 ,−a
(2)
2 s + [a∗] + e

(2)
2), which is then rescaled to

a level-1 ciphertext ct
(1)
2 . Finally, it is multiplied to the rescaling ct

(1)
pp of ct(2)pp .

We have, for k ∈ {2, 1}:

ct(k)pp = (a(k)
pp , b(k)pp) with a(k)

pp s + b(k)pp = [1] + e(k)pp ,

where [1] denotes the polynomial encoding of plaintext 1, and

ct
(k)
2 = (a(k)

2 , b
(k)
2) with a

(k)
2 s + b

(k)
2 = [a∗] + e

(k)
2 .

Recall that a
(1)
2 := � q1

q2
· a

(2)
2 �. Let r2 denote the rounding error r2 := q1

q2
a
(2)
2 −a

(1)
2 .

Then, the error term e
(1)
2 is �r2s + q1

q2
e
(2)
2 �. By increasing q2/q1, we can make the

error term e
(1)
2 dominated by r2s.

Similarly, letting rpp denote the rounding error rpp := q1
q2

a
(2)
pp − a

(1)
pp , we see

that the error term e
(1)
pp is dominated by rpps. Note that rpp is publicly com-

putable since a
(2)
pp is part of the public parameters and the rescaling operation

is deterministic.
Finally, by definition of the scheme, multiplying ct

(1)
pp with ct

(1)
2 leads to an

encryption ct2 = (a2, b2) of [a∗] with b2 = −a2s + [a∗] + e2 where the error
term e2 is of the form [a∗]rpps+r2s+e′, where e′ is small compared to the other
terms. This error is then approximately [a∗]rpps.

Low Communication Threshold Fully Homomorphic Encryption 313

To complete the attack, we observe that the decryption of ct2 allows the
attacker to learn a2sj+dj for j ∈ [N], with N being the number of parties. Write
d :=

∑
j∈[N] dj . Then, summing all partial decryptions with b2, the adversary

can recover [a∗]+edec where edec = qi
qi+1

·([a∗]rpps+[1]r2s+e′)+d, where ‖e′‖ �
‖[a∗]rpps + [1]r2s‖. Since the attacker knows [a∗], it can recover edec.

The attacker knows rpp, hence it can compute rppct
∗ = (a∗rpp, a∗srpp +

μβrpp+e∗rpp) and subtract a scaling of edec to the right-hand term. This has the
effect of making the term a∗srpp small, as [a∗] corresponds to the MSB of a∗. We
then obtain a polynomial μβrpp + esmall, where ‖esmall‖ � q0. As the error term
esmall is small compared to q0, which is itself ≤ poly(λ · N · Q), the error esmall is
not sufficiently large to hide μβrpp. By setting μ0 = 0 and μ1 = [1], the attacker
can guess β with non-negligible advantage based on the largeness of μβrpp+esmall.

Error in the Analysis of the [BS23a] Transform. We can trace our
attack back to an error in the analysis of [BS23a, Theorem 3]: the issue lies
in how [BS23a, Lemma 2] is applied in the proof. We borrow the notations
from [BS23a, Lemma 2]. The set Z may depend on X, the first input of the
extractor, but it cannot depend on its second input (the uniform distribution
over {0, 1}nδ). This implies that Z should not depend on the Goldreich-Levin
bits sj ’s in the proof of [BS23a, Theorem 3]. However, in that proof, it could
depend on them: the sj ’s are revealed in clear as part of the ciphertexts so the
adversary could submit an encryption (or an evaluation) query whose plaintext
(or circuit) depends on prior sj ’s.

4 A Generalized Definition of Threshold FHE

In this section, we provide a generalization of the definition of threshold fully
homomorphic encryption which allows to introduce (uncorrupted) randomness
to a ciphertext before it is fed to partial decryption. We focus on N -out-of-N
threshold FHE for readability and since our main construction (Sect. 5) han-
dles only this setting. However, our definition extends to arbitrary monotone
access structures. As already discussed, we consider that a trusted third-party
(e.g., a server performing the computation) performs a public-key randomized
pre-processing operation on ciphertexts before they can be partially decrypted.
Specifically, the server applies an algorithm termed ServerDec, transforming a
ciphertext into a form that is adequate for partial decryption by users. Using
this terminology, evaluation could be deterministic and ServerDec randomized.
We remark that, if ServerDec is void (or is deterministic), we recover the prior
definition of threshold FHE.

We consider a simulation-based security notion inspired by [BGG+18].
Specifically, assume that the attacker corrupts parties P1, . . . , PN−1 (and there-
fore knows sk1, . . . , skN−1). Let ct denote a ciphertext to be decrypted. It is first
processed through ServerDec. The result of this operation is a ciphertext ctdec
which can be partially decrypted by all parties. Our security notion requires
that ctdec and the partial decryptions of ctdec do not reveal more information

314 A. Passelègue and D. Stehlé

than the plaintext μ underlying ctdec and what is already known by the adver-
sary. This is enforced by the existence of a simulation which outputs a simu-
lated ctdec and partial decryptions whose distribution is indistinguishable from
that of the real ones. The sources of security are then clearly identified: (1) the
internal randomness of ServerDec and (2) the randomness of the uncorrupted
party PN (i.e., the partial secret key skN and the internal randomness dN used
when running PartDec).

We now formalize our generalized definition of threshold functional encryp-
tion with the additional ServerDec algorithm.

Definition 4.1 (Threshold FHE). A threshold fully homomorphic encryp-
tion scheme is a tuple of PPT algorithms ThFHE = (KeyGen,Enc,Eval,
ServerDec,PartDec,FinDec) with the following properties. Let M denote the
plaintext space, C the ciphertext space, Cdec the processed ciphertext space, and
Mshare the space of partial decryption shares.

• KeyGen(1λ, 1N) takes as input a security parameter, a number of parties N ,
and returns public parameters pp containing descriptions of M, C, Cdec, a pub-
lic key pk, an evaluation key ek, and N secret key shares sk1, . . . , skN ;

• Enc(pp, pk, μ) takes as input public parameters pp, a public key pk, and a
plaintext μ ∈ M and returns a ciphertext ct ∈ C;

• Eval(pp, ek,C, ct1, . . . , ct�) takes as input public parameters pp, an evaluation
key ek, a circuit C : M� → M of arbitrary arity � ≥ 0, and � cipher-
texts ct1, . . . , ct�, and returns a ciphertext ct ∈ C;

• ServerDec(pp, pk, ct) takes as input public parameters pp, a public key pk, and
a ciphertext ct ∈ C and returns a ciphertext ctdec ∈ Cdec;

• PartDec(pp, ski, ctdec) takes as input public parameters pp, a partial decryption
key ski, and a ciphertext ctdec ∈ Cdec, and returns a partial decryption pi ∈
Mshare.

• FinDec(pp, {pi}i∈[N]) takes as input public parameters pp and a set of partial
decryptions {pi}i∈[N] in Mshare, and returns a plaintext μ′ ∈ M ∪ {⊥}.

To ease notation, the public parameters pp are implicit for the rest of the paper.
We require the following properties.

Correctness. For any λ,N > 0, � ≥ 0, C : M� → M, and (μ1, . . . , μ�) ∈ M�,
we have:

Pr

⎡
⎢⎢⎢⎢⎣
FinDec({pi}i∈[N]) = y

∣∣∣∣∣∣∣∣∣∣

(pk, ek, (ski)i∈[N]) ← KeyGen(1λ, 1N)

ctj ← Enc(pk, μj), ∀j ∈ [�]
ct ← Eval(ek,C, ct1, . . . , ct�)
ctdec ← ServerDec(pk, ct)
pi ← PartDec(ski, ctdec), ∀i ∈ [N]

⎤
⎥⎥⎥⎥⎦

≥ 1 − negl(λ),

where y = C(μ1, . . . , μ�) and the probability is over the internal coins of the
algorithms.

Compactness. There exists a polynomial p such that, for any λ,N > 0, and
execution of KeyGen(1λ, 1N), we have:

log |C|, log |Cdec|, log |Mshare| ≤ p(λ,N) .

Low Communication Threshold Fully Homomorphic Encryption 315

Definition 4.2 (Threshold Simulation Security). A threshold FHE scheme
ThFHE = (KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) is simulation-secure if
it satisfies the following two properties:

• the sub-scheme (KeyGen,Enc) is IND-CPA-secure;
• there exists a PPT simulator Sim such that the experiments depicted in Fig. 1
are computationally indistinguishable; specifically, we require that for any
PPT adversary A = (A0,A1),

AdvSimThFHE
A :=

∣
∣
∣Pr[A(ExpThFHEreal (1λ, 1N)) = 1] −Pr[A(ExpThFHEideal (1λ, 1N)) = 1]

∣
∣
∣

is negligible.

Our definition fixes a minor issue in [BGG+18, Definition 5.5]. In the latter
definition, a state st is returned by Sim1 when simulating KeyGen and fed as
input to Sim2. With this syntax, Sim1 could run the actual KeyGen algorithm
and st could contain all shares (sk1, . . . , skN) of the secret key sk. In this case,
Sim2 can simply run the real evaluation/decryption algorithms, and simulation
is perfect, but vacuous. Therefore, this definition could be trivially satisfied. In
our definition, the public and partial keys revealed to the adversary are sampled
identically in both experiments, using the KeyGen algorithm. It is very similar to
the original definition from [JRS17] which did not suffer from the above minor
issue, but our definition is slightly more general as it is multi-hop, adaptive (and
we only require computational indistinguishability). It does not seem obvious to
us that multi-hop, adaptive security is implied by single-hop, selective security
since decryption results of multi-hop evaluation queries can be correlated.

Threshold Public-Key Encryption. We also define a Threshold PKE scheme
ThPKE = (KeyGen,Enc,PartDec,FinDec) based on our definition of Threshold
FHE by requiring Eval and ServerDec to be vacuous algorithms. A definition of
simulation-based security is also obtained from simplifying the above definition
by removing the OEval oracle and the ServerDec step in the oracle ODec (Step 4
in Fig. 1).

5 Double-Flood-and-Round Construction

In this section, we propose an N -out-of-N threshold FHE scheme with small
partial decryption shares. The design of our scheme is fairly generic and can be
adapted to most FHE schemes for exact computations. We start by specifying
some high-level structure for the underlying scheme.

316 A. Passelègue and D. Stehlé

Fig. 1. Simulation security games for Threshold FHE.

5.1 Structure of the Underlying FHE Scheme

Let λ denote a security parameter. Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,
FHE.Dec) denote an FHE scheme with the following structure.

1. The public parameters include two dimensions m ≥ n ≥ 1, a modulus Q ≥ 2,
a secret key distribution χs over Z

n whose samples have norms ≤ poly(λ),
and three distributions χe, χv and χf over Z. All these are functions of λ,
and the distributions are assumed to be efficiently sampleable.

2. The key pair is of the form:7

pk = [A|b] with b := −As+ e , sk = s ,

with A ← U(Zm×n
Q), s ← χs and e ← χm

e . We have pk · (sk, 1)ᵀ = e mod Q.

7 We ignore the evaluation key ek in our description and our proof. This is common
even for non-threshold schemes: security of FHE relies on the additional assump-
tion that security still holds given ek (which typically involves a circular security
assumption).

Low Communication Threshold Fully Homomorphic Encryption 317

3. Encrypting a plaintext μ ∈ M starts by encoding μ into some plaintext μ′ =
Encodeq(μ) ∈ ZQ (e.g., by setting μ′ = Δ ·μ for some scaling factor Δ). Then
encryption first computes ct0, ct1 with:

ct0 := vᵀA+ fᵀ , ct1 := vᵀb+ f ′ + μ′ ,

with v ← χm
v , f ← χn

f and f ′ ← χf . Note that this setting handles the case
where both f and f ′ are zero (for instance in FHE schemes where the leftover
hash lemma is relied upon for IND-CPA). The ciphertext is ct = (ct0, ct1).

4. The decryption algorithm Dec is split into two steps (Dec1,Dec2), as follows.
Let ct be its input ciphertext (which can be either a fresh ciphertext or the
result of an homomorphic computation).
(a) Dec1(sk, ct) returns z := ct0 · sk+ ct1 mod Q.
(b) Dec2(z) returns μ := DecodeQ(z). Importantly, it does not use sk; it might

be void, notably in the case of an LWE version of CKKS, whereas it
typically involves a rounding or a modular reduction in exact schemes.

We assume that z = μ′ + eeval where μ′ = EncodeQ(μ) is an encoding of
the plaintext μ corresponding to ct and eeval is an error term with bounded
magnitude |eeval| ≤ Beval for some Beval > 0. We refer to eeval as the evaluation
error.

Our framework captures most known (LWE-based) FHE schemes. It does not
directly capture GSW, in which messages are encoded as μ ·G for G the gadget
matrix and encrypted as ct = R ·pk+F+μ ·G. We could generalize our descrip-
tion to also encompass GSW but it would hurt the readability regarding the
decryption procedure, hence we chose this less general but simpler description.

5.2 Construction

As already mentioned, a simple solution to obtain a threshold FHE (even for gen-
eral access structure or when the computation is performed by parties) is to have
the parties add an exponential noise term after decryption such that no infor-
mation about their partial decryption key is revealed to other. Yet, a significant
drawback of the noise flooding approach is the size of the output ciphertexts, as
the modulus needs to be large enough to tolerate the addition of this large noise
term at decryption. To mitigate this, we propose a different approach, in which
exponential noise flooding is performed on the server side. Computation by the
server is performed with a large modulus Q which tolerates exponential noise-
flooding, and the ciphertext is then rounded to a smaller modulus qdec � Q,
before being sent to the users. This modulus remains sufficiently large for the
users to be able to add some limited noise term to guarantee security with-
out impacting decryption correctness. After performing its partial decryption, a
user can round the decryption share to an even smaller modulus: indeed, there
is no more noise that needs to be added, and it is only required that the combi-
nation of the current noises does not impact correctness. Overall, the successive
roundings allow to minimize bandwidth consumption.8

8 Another drawback of exponential flooding, which our construction does not address,
is the need for an LWE parametrization with exponential noise rate.

318 A. Passelègue and D. Stehlé

The scheme is described in Figs. 2 and 3. To ease description, our scheme
does not include the second rounding (performed after partial decryption).
We briefly discuss this optimization at the end of this section. The construc-
tion relies on a perfectly correct FHE scheme that fulfills the constraints of
Sect. 5.1. For the sake of simplicity, we consider an FHE scheme that encodes
a plaintext μ over ZQ as EncodeQ(μ) such that for Q = pqdec, it holds that:
1/p · EncodeQ(μ) = Encodeqdec(μ). For example, this holds if plaintexts are
encoded in the most significant bits of the ciphertexts, i.e., EncodeQ(μ) = Q/t·μ,
with t denoting the plaintext modulus (e.g., as done in B/FV).

We only describe the procedures KeyGen,ServerDec,PartDec,FinDec in
Figs. 2 and 3, as the encryption and evaluation procedures Enc and Eval are iden-
tical to those of the underlying FHE scheme (and operate over ZQ with Q being
the larger modulus). The scheme involves two noise flooding parameters σflood

and η. The first flooding parameter σflood is used for exponential flooding, while
the second parameter η is used for small flooding during partial decryption.
It also involves two moduli Q = pqdec and qdec with qdec � Q (we use p ≈ 2λ).
ServerDec uses randomized Gaussian roundings. We reveal the norm of the secret
key ‖sk‖ in the public parameters. This is only to ease simulation in our security
analysis. In practice, the scheme is at least as secure if ‖sk‖ is not given, since
removing it only restricts the information available to an attacker.

Fig. 2. Key generation of double-flood-and-round threshold FHE.

The communication involved between parties after the computation is lim-
ited, as only the small modulus qdec is involved. However, communication before
the computation, to provide inputs to the server, remains large as we encrypt
over ZQ. This may be solved using transciphering (see, e.g., [BCK+23] and ref-
erences therein).

The construction can be adapted to further reduce the bandwidth. The
users could apply a second rounding step after their partial decryption, e.g., by
returning �qout/qdec · pi� mod qout for qout < qdec, in order to further reduce the
size of communication with other parties.Security follows from that of the base

Low Communication Threshold Fully Homomorphic Encryption 319

Fig. 3. Decryption procedures of double-flood-and-round threshold FHE.

construction since the modified scheme provides strictly less information to the
adversary. Functionality is preserved as long as parameters are carefully selected
to ensure correctness.

5.3 Analysis of the Double-Flood-and-Round Construction

Let Beval be an upper bound on |ct · sk− EncodeQ(μ)| for any ciphertext ct that
can be produced by a combination of encryptions and evaluations, and where μ
is the underlying plaintext of ct. We assume that fresh ciphertexts also have
decryption noises that are bounded by Beval in absolute value (this follows from
the definition of Beval if FHE.Eval does not do anything for the empty circuit).

Theorem 5.1. Let ThFHE denote the above double-flood-and-round construc-
tion. It is a correct and secure threshold fully homomorphic encryption scheme,
assuming that:

• the decoding procedure of the underlying FHE scheme satisfies

Decodeqdec (Encodeqdec(μ) + e) = μ ,

for any plaintext μ and e with |e| ≤ √
λ · σdec and where σdec is defined as√

(σ0‖s‖)2 + (σflood/p)2 + σ2
1 + Nη2;

• the underlying FHE scheme is IND-CPA-secure;
• σ0, σ1 = Ω(

√
λ + log n) and σflood = Ω(p‖sk‖√λ + log n);

• σflood = Ω(2λBeval);
• yaLWEn,QD,qdec,σe,η,χs

holds for σe =
√

(σ0‖s‖)2 + (σflood/p)2 + σ2
1;

320 A. Passelègue and D. Stehlé

• LWEn,Q,χf ,χs holds.

In the above, the variable QD refers to the number of decryption queries made
by the adversary. We assume that QD ≤ poly(λ).

Proof. We prove correctness and threshold simulation security independently.
IND-CPA security follows from that of the underlying FHE scheme.

Correctness. Let ctdec = (ctdec,0, ctdec,1) denote a ciphertext obtained from the
server after it applied ServerDec. We define the rounding error r0 of ctdec,0 as:

rᵀ
0 := ctin,0 − p · ctdec,0 .

By definition, since ctdec,0 ∼ D
Zn, 1

p ·ctin,0,σ0
, we have r0 ∼ Dp{ 1

p ·ctin,0}+pZn,pσ0
,

where {·} denotes the fractional part defined as {x} := x − �x� for any x ∈ R.
Assume that ctin,1 = ctin,0 · sk + μ′ + eeval + efresh, where eeval is the decryption
noise of the input ct of ServerDec and efresh is the decryption noise of ctfresh (recall
that ctin = ct+ ctfresh). We then have, modulo qdec:

ctdec,1=
⌊
1
p

· (−(p · ctdec,0 + rᵀ
0) · sk+ μ′ + eeval + efresh + E)

⌉

σ1

= −ctdec,0 · sk+
⌊
1
p

· (−rᵀ
0 · sk+ μ′ + eeval + efresh + E)

⌉

σ1

= Encodeqdec(μ) − ctdec,0 · sk+
⌊
1
p

· (−rᵀ
0 · sk+ eeval + efresh + E)

⌉

σ1

. (1)

Let pi = PartDec(ski, ctdec), and recall that pi = ctdec,0 · ski + di, with di ←
DZ,η for i ∈ [N]. Then, we have, modulo qdec:

FinDec((pi)i∈[N]) =

⎛

⎝
∑

i∈[N]

pi

⎞

⎠ + ctdec,1

= ctdec,0 · sk+ ctdec,1 +
∑

i∈[N]

di

= Encodeqdec(μ) + e+
∑

i∈[N]

di , (2)

where e :=
⌊
1
p · (−rᵀ

0 · sk+ eeval + efresh + E)
⌉

σ1

. We finally obtain:

FinDec((pi)i∈[N]) = Encodeqdec(μ) + edec mod qdec ,

with edec = e +
∑

i∈[N] di. Correctness follows as long as |edec| is sufficiently
small to enable correct decoding to μ. In our security analysis below, we show
in the proof of Lemma 5.3 that edec follows a distribution which is statistically
close to DZ,σdec

, where σdec =
√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 + Nη2. By standard

Low Communication Threshold Fully Homomorphic Encryption 321

Gaussian tail bounds, the samples have magnitudes ≤ √
λσdec with overwhelming

probability.

Threshold Simulation. As for all known examples of LWE-based FHE scheme,
we ignore the evaluation key in our security analysis. Our actual security claim
is then obtained by additionally assuming that security still holds provided the
extra information contained in the evaluation key. This is the standard circular
security assumption underlying FHE schemes.

Our proof proceeds by a sequence of hybrids. The KeyGen,Enc and Eval
algorithms are modified in none of them and encryption and evaluation queries
are answered by running the corresponding algorithms. Hence, we only focus on
handle decryption queries.

Let A denote an adversary. Without loss of generality, assume that A corrupts
parties 1, . . . , N−1 so that it knows sk1, . . . , skN−1. Our objective is to prove that
the real experiment distribution ExpThFHEreal is computationally indistinguishable
from the simulated one ExpThFHEideal , which can be run directly given the information
of A (i.e., given the corrupted partial keys and the plaintexts underlying the
ciphertexts that are queried to the decryption oracle, but without sk nor skN).
The simulator Sim is given in Fig. 4.

Fig. 4. Simulator for the double-flooding-and-round threshold FHE.

Let ct denote a ciphertext held by the server and for which the adversary is
requesting decryption. Let μ denote the underlying plaintext. Note that ct could
be a fresh encryption of μ or the result of a homomorphic computation whose
underlying plaintext is μ. We aim to prove that ctdec ← ServerDec(pk, ct), the
ciphertext revealed by the server to all parties, and pN ← PartDec(skN , ctdec),
the partial decryption of the uncorrupted party N , are computationally indis-
tinguishable from those provided by the simulator Sim. We proceed by a hybrid
argument, first considering the real distribution in ExpThFHEreal .

Hyb0. This is the adversary’s view in ExpThFHEreal . Given the constraints we
imposed on the underlying FHE scheme, the ciphertext ct = (ct0, ct1) to be
decrypted satisfies:

ct0 · sk+ ct1 = μ′ + eeval mod Q ,

322 A. Passelègue and D. Stehlé

with μ′ = EncodeQ(μ) and |eeval| ≤ Beval.

Hyb1. In this first hybrid, we change how ctin is defined by the challenger. We
remind that, as for ct, the ciphertext ctin is held by the server and is never
revealed to the adversary. The latter only sees ctdec, which is produced from ctin.

In this hybrid, when the adversary makes a decryption query for a cipher-
text ct encrypting a plaintext μ′, the server now samples (ctin,0, ctin,1) and ctdec
as follows:

• it samples ctin,0 ← aᵀ with a ← U(Zn
Q);

• it sets ctin,1 ← −aᵀ · sk+ μ′ + E, where E ← Dσflood
;

• the rest of the decryption proceeds as before.

We claim that games Hyb0 and Hyb1 are computationally indistinguishable.
The detailed analysis is provided in Lemma 5.2.

We recall the correctness equation (Eq. (2)):
⎛

⎝
∑

i∈[N]

pi

⎞

⎠ + ctdec,1 = Encodeqdec(μ) + e+
∑

i∈[N]

di mod qdec , (3)

where e is now e :=
⌊
1
p · (−rᵀ

0 · sk+ E)
⌉

σ1

, with r0 ∼ Dp{ 1
p ·ctin,0}+pZn,pσ0

.

Hyb2. In this hybrid, we change how the partial decryption pN of the uncor-
rupted party is computed as well as how ctdec,1 is sampled. Simplifying Eq. (3)
above, we obtain that, in Hyb1, the partial decryption pN satisfies:

pN := Encodeqdec(μ) + e+ dN − ctdec,1 −
∑

i∈[N−1]

ctdec,0 · ski . (4)

Motivated by this equation, in Hyb2, we now sample ctdec,1 as ctdec,1 ← U(Zqdec)
and set pN as:

pN := Encodeqdec(μ) + h − ctdec,1 −
∑

i∈[N−1]

ctdec,0 · ski ,

with h ← Dσh
and σh :=

√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 + η2.
We claim that games Hyb1 and Hyb2 are computationally indistinguishable.

The detailed analysis is provided in Lemma 5.3. Note that the distribution in
this game no longer depends on skN and is therefore sampleable by the adversary
given its known information, since σ0, σ1, p, σflood, ‖s‖, η are public parameters.
The view is identical to the one provided by the Sim algorithm from Fig. 4.

This completes the proof of Theorem 5.1. ��
Lemma 5.2. Assuming that σflood = Ω(2λBeval) and that LWEn,Q,χf ,χs holds,
games Hyb0 and Hyb1 are computationally indistinguishable.

Low Communication Threshold Fully Homomorphic Encryption 323

Proof. For simplicity, we focus on simulating a single decryption query: the gen-
eral case where multiple decryption queries are made is obtained by a standard
hybrid argument.

Let ct = (ct0, ct1) denote a ciphertext corresponding to a decryption query
made by the adversary. First, we recall that a fresh encryption ctfresh of 0 is
added to the ciphertext ct at Step 2 of ServerDec(ct) to produce ctin. It is of the
form ctfresh = (ctfresh,0, ctfresh,1) with ctfresh,0 = vᵀA+ fᵀ and ctfresh,1 = −ctfresh,0 ·
s + efresh. Here v ← χm

v , f ← χn
f and the noise term efresh satisfies |efresh| ≤

Beval. Further, given our assumptions regarding the underlying FHE scheme, the
ciphertext ct = (ct0, ct1) to be decrypted satisfies:

ct0 · s+ ct1 = μ′ + eeval mod Q ,

with μ′ = EncodeQ(μ) and |eeval| ≤ Beval. Overall, the ciphertext ctin is of the
form (ctin,0, ctin,1) with:

ctin,0 = vᵀA+ fᵀ + ct0

and
ctin,1 = −ctin,0 · s+ efresh + eeval + E+ μ′ .

Note that |efresh + eeval| ≤ 2Beval. By Lemma 2.1, taking σflood = Ω(2λBeval), the
above distribution of ctin is statistically indistinguishable from sampling ctin as:

ctin,0 = vᵀA+ fᵀ + ct0 , ctin,1 ← −ctin,0 · s+ E+ μ′ .

Finally, note that ctin,1 no longer contains information about v, f apart from that
carried by ctin,0. In the above, we can hence replace vᵀA + fᵀ by a uniformly
random value over Zn

Q, under the LWE assumption. As a result, the distribution
of ctin is computationally indistinguishable from a pair of the form (aᵀ,−aᵀs+
E+μ′) where a ← U(Zn

Q), which is precisely the distribution of ctin in Hyb1. ��
Lemma 5.3. Assuming that yaLWEn,QD,qdec,σe,η,χs

holds, games Hyb1 and
Hyb2 are computationally indistinguishable.

Proof. We aim to prove that the view of the adversary in games Hyb1 and Hyb2

are computationally indistinguishable. In both games, the ciphertext ctin is
defined as (ctin,0, ctin,1) ← (aᵀ,aᵀsk+μ′+E). Then the vector ctdec,0 is computed
as

ctdec,0 ←
⌊
1
p

· aᵀ
⌉

σ0

mod qdec ,

which is revealed to the adversary. Note that, since a ∼ U(Zn
Q) and p divides Q,

since only ctdec is revealed to the adversary, one can directly sample ctdec,0 uni-
formly over Zn

qdec
. Using the same notation as before (in the proof of correctness),

we define the rounding error of ctdec,0 as rᵀ
0 := ctin,0 − p · ctdec,0, and recall that,

by definition, we have r0 ∼ Dp{ 1
p ·ctin,0}+pZn,pσ0

.
The adversary’s view in Hyb1 is then (ctdec,0, ctdec,1, (pi)i∈[N]) where ctdec,0

is defined as above, and (pi)i∈[N−1] can be computed directly by the adversary

324 A. Passelègue and D. Stehlé

since it knows sk1, . . . , skN−1 and ctdec,0. It remains to deal with ctdec,1 and pN .
By adapting Equation (1) to Hyb1, we have, modulo qdec:

ctdec,1 = Encodeqdec(μ) − ctdec,0 · sk+
⌊
1
p

· (−rᵀ
0 · sk+ E)

⌉

σ1

.

Further, from Eq. (4), we have, modulo qdec:

pN = Encodeqdec(μ)+
⌊
1
p

· (−rᵀ
0 · sk+ E)

⌉

σ1

+dN − ctdec,1 −
∑

i=∈[N−1]

ctdec,0 · ski .

Since μ, ctdec,0 and (ski)i∈[N−1] are known to the adversary, and replacing ctdec,1
in the second equation the right hand side of the first equation, we observe that
it suffices to focus on the quantities (defined modulo qdec):

ct′dec,1 := −ctdec,0 · sk+
⌊
1
p

· (−rᵀ
0 · sk+ E)

⌉

σ1

and p′
N := −ctdec,0 · sk − dN .

The partial decryption noise dN having a distribution that is symmetric aroung 0,
up to inverting the sign, letting a := −ctdec,0 and s := sk, we then have:

ct′dec,1 = a · s+ e mod qdec and p′
N = a · s+ dN mod qdec ,

where e :=
⌊
1
p · (−rᵀ

0 · sk+ E)
⌉

σ1

.

Recall that (1/p) · rᵀ
0 follows the distribution D{ 1

p ·ctin,0}+Zn,σ0
and E/p

follows the distribution D 1
pσflood

. Therefore, applying Lemma 2.2, assuming

(1/σ2
0 + (p‖sk‖/σflood)2)−1/2 ≥ ηε(Zn) for some ε < 1/2, the distribution of

−(1/p)·rᵀ
0 ·sk+E/p is at statistical distance at most 4ε from D√

(σ0‖s‖)2+(σflood/p)2
.

The smoothing condition is fulfilled, thanks to the assumptions on σ0 and σflood.
By definition of Gaussian rounding and thanks to the latter observation, we can
then apply Lemma 2.3. Assuming σ1 ≥ ηε(Z) for some ε < 1/2, we then obtain
that the distribution of e is within statistical distance 8ε of the discrete Gaus-
sian D

Z,
√

(σ0‖s‖)2+(σflood/p)2+σ2
1
. The smoothing condition is fulfilled, thanks to

the assumption on σ1.
Define σe :=

√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 . Now that we have proven that
e is statistically close from DZ,σe , the rest of the proof is similar to the
simulation proof for threshold PKE from [MS23], since ctdec is essentially a
fresh PKE ciphertext now. Recall that dN ∼ DZ,η. The pair (ct′dec,1, p

′
N) pre-

cisely corresponds to a sample for the yaLWE problem, for secret s. Thanks
to the privacy of Share, the adversary has no information about s (except the
knowledge of ‖s‖ which is publicly available), even given sk1, . . . , skN−1, since
the latter are identically distributed as sk′

1, . . . , sk
′
N−1 where (sk′

1, . . . , sk
′
N) ←

Share(0, N, qdec), which are independent of s. Assuming that yaLWEn,qdec,σe,η,χs

holds, we obtain that (ct′dec,1, p
′
N) from Hyb1 is computationally indistinguish-

able from a pair (ct′dec,1, p
′
N) sampled as:

ctdec,1 ← U(Zqdec) and pN ← ctdec,1 + h ,

Low Communication Threshold Fully Homomorphic Encryption 325

with h ← Dσh
where σh :=

√
(σ0‖s‖)2 + (σflood/p)2 + σ2

1 + η2.
Since σ0, σ1, p, σflood, ‖s‖ and η are public parameters, the latter distribution

is publicly sampleable and precisely corresponds to the distribution generated
by our simulator, i.e., to the distribution in Hyb2 (up to the terms known to
the adversary that we ignored above for simplicity).

We complete the proof of Lemma 5.3 by applying a hybrid argument on all
ciphertexts for which a decryption query is made. ��

5.4 Open Problems

The construction can be extended to a t-out-of-N threshold FHE, by relying
on Shamir secret sharing or linear integer secret sharing [DT06]. However, we
do not know how to adapt the security analysis, in particular how to simulate
all N − t+1 partial decryptions that are not available to the adversary. We now
describe a way to partially circumvent this difficulty, by relying on N -out-of-N
threshold FHE. For each subset S ⊆ [N] of size t, compute a t-additive secret
sharing of sk. This leads to

(
N
t

)
independent additive secret sharings of sk. Then,

the partial key of each party Pi is the union of shares of the key for each valid
set S such that i ∈ S. This induces a significative blow-up, but for small choices
of t and N , the overhead is limited.

Similarly, while the scheme can be extended to the ring setting, extending the
analysis to rely on ring-LWE [SSTX09,LPR10] seems challenging. Most of the
proof extends to the ring setting, but there is one specific difficulty that arises:
revealing ‖s‖ is sufficient to obtain a simulator in the LWE case, it does not seem
to be no longer the case in the ring setting. Letting s ∈ R = Z[X]/(XN + 1)
denote the secret key (with N a power of 2), directly extending the analysis would
require to reveal the covariance ss̄ where s̄ denotes the polynomial s(X−1). It
may however be possible to extend the security analysis to the ring setting by
relying on the extension of ring-LWE proposed in [MS23, Section 5.3] (in the
context of threshold PKE).

Acknowledgments. We thank Katharina Boudgoust and Peter Scholl for fruitful
discussions, as well as Intak Hwang, Seonghong Min and Yongsoo Song for helpful
feedback on a prior version of this work.

A Indistinguishability-Based Security for Threshold FHE

Below, we provide an indistinguishability-based security notion for threshold
FHE, termed Th-IND-CPA-security. Indistinguishability definitions for ThFHE
have been proposed in prior works (e.g., in [JRS17,BS23a,KS23]). Our definition
is similar in flavour though it is slightly more general. In particular, it is multi-
hop and adaptive.

Definition A.1 (Threshold-IND-CPA Security). We say that a thresh-
old FHEscheme ThFHE = (KeyGen,Enc,Eval,ServerDec,PartDec,FinDec) is QD-

326 A. Passelègue and D. Stehlé

Th-IND-CPA secure, if for all PPT adversaries A = (A0,A1) making at most QD

decryption queries, we have:
∣
∣
∣Pr[A(ExpTh-IND-CPA

1 (1λ, 1N)) = 1]−Pr[A(ExpTh-IND-CPA
0 (1λ, 1N)) = 1]

∣
∣
∣≤negl(λ),

where the experiment is described in Fig. 5.

Fig. 5. QD-Th-IND-CPA security game for Threshold FHE.

Lemma A.2. Let ThFHE be a simulation-secure threshold FHE scheme. Then,
ThFHE is Th-IND-CPA secure.

Proof. For any Th-IND-CPA adversary, one can run it by replacing replies to its
decryption queries by simulated answers using the simulator for ThFHE. Then,
any adversary having non-negligible advantage contradicts simulation security
of ThFHE. ��

Low Communication Threshold Fully Homomorphic Encryption 327

References

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
EUROCRYPT, 2012.

[ASY22] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-
based threshold signatures, revisited. In ICALP, 2022.

[BCK+23] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and
Damien Stehlé. HERMES: efficient ring packing using MLWE ciphertexts
and application to transciphering. In CRYPTO, 2023.

[BCKS24] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, and Damien Stehlé. Boot-
strapping bits with CKKS. In EUROCRYPT, 2024.

[BD10] Rikke Bendlin and Ivan Damgård. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In TCC, 2010.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures
over binary fields and new tools for lattice-based signatures. In PKC, 2011.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In CRYPTO, 2018.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, 2012.

[BI22] Florian Bourse and Malika Izabachène. Plug-and-play sanitization for
TFHE. IACR eprint 2022/1438, 2022.

[BJKL21] Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia
Lin.Multiparty reusable non-interactive secure computation from LWE.
In EUROCRYPT, 2021.

[BKSS24] Youngjin Bae, Jaehyung Kim, Eias Suvanto, and Damien Stehlé. Boot-
strapping small integers with CKKS. In ASIACRYPT, 2024.

[BLL+18] Shi Bai, Adeline Langlois, Tancrède Lepoint, Amin Sakzad, Damien Stehlé,
and Ron Steinfeld. Improved security proofs in lattice-based cryptography:
Using the Rényi divergence rather than the statistical distance. Journal of
Cryptology, 2018.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In STOC, 2013.

[BPMW16] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In CRYPTO, 2016.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In CRYPTO, 2012.

[BS23a] Katharina Boudgoust and Peter Scholl. Simple threshold (fully homomor-
phic) encryption from LWE with polynomial modulus. In ASIACRYPT,
2023.

[BS23b] Katharina Boudgoust and Peter Scholl. Simple threshold (fully homo-
morphic) encryption from LWE with polynomial modulus. IACR eprint
2023/016, 2023. Version dated 16 July 2024.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In ASIACRYPT, 2016.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In ASIACRYPT,
2017.

328 A. Passelègue and D. Stehlé

[CSS+22] Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra,
Chandan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika
Chatterjee, and Debdeep Mukhopadhyay. Efficient threshold FHE with
application to real-time systems. IACR eprint 2022/1625, 2022. Version
dated 18 July 2024.

[DDK+23] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and Michael
Walter. Noah’s ark: Efficient threshold-fhe using noise flooding. In WAHC,
2023.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In EUROCRYPT, 2015.

[DMPS24] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. BLEACH:
cleaning errors in discrete computations over CKKS. Journal of Cryptol-
ogy, 2024.

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In EURO-
CRYPT, 2016.

[DT06] Ivan Damgård and Rune Thorbek. Linear integer secret sharing and dis-
tributed exponentiation. In PKC, 2006.

[DWF22] Xiaokang Dai, Wenyuan Wu, and Yong Feng. Key lifting : a more efficient
weak MKFHE scheme in the plain model against rational adversary. IACR
eprint 2022/055, 2022.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR eprint 2012/144, 2012.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, 2009.
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. An efficient and

parallel gaussian sampler for lattices. In STOC, 2008.
[JRS17] Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold fully

homomorphic encryption. In eprint 2017/257, 2017.
[Klu22] Kamil Kluczniak. Circuit privacy for fhew/tfhe-style fully homomorphic

encryption in practice. IACR eprint 2022/1459, 2022.
[KS23] Kamil Kluczniak and Giacomo Santato. On circuit private, multikey

and threshold approximate homomorphic encryption. In IACR eprint
2023/301, 2023.

[LM21] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryp-
tion on approximate numbers. In EUROCRYPT, 2021.

[LMSS22] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. Secur-
ing approximate homomorphic encryption using differential privacy. In
CRYPTO, 2022.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT, 2010.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the
sample complexity of LWE search-to-decision reductions. In CRYPTO,
2011.

[MS23] Daniele Micciancio and Adam Suhl. Simulation-secure threshold PKE from
LWE with polynomial modulus. In IACR eprint 2023/1728, 2023.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In
CRYPTO, 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, 2005.

Low Communication Threshold Fully Homomorphic Encryption 329

[Shi22] Sina Shiehian. mrNISC from LWE with polynomial modulus. In SCN,
2022.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Effi-
cient public key encryption based on ideal lattices. In ASIACRYPT, 2009.

Bootstrapping Small Integers With CKKS

Youngjin Bae1(B) , Jaehyung Kim1 , Damien Stehlé2 ,
and Elias Suvanto1,3

1 CryptoLab Inc., Seoul, Republic of Korea
{youngjin.bae,elias.suvanto}@cryptolab.co.kr, jaehk@stanford.edu

2 CryptoLab Inc., Lyon, France
damien.stehle@cryptolab.co.kr

3 University of Luxembourg, Esch-sur-Alzette, Luxembourg

Abstract. The native plaintexts of the Cheon-Kim-Kim-Song (CKKS)
fully homomorphic encryption scheme are vectors of approximations to
complex numbers. Drucker et al. [J. Cryptol.’24] have showed how to
use CKKS to efficiently perform computations on bits and small bit-
length integers, by relying on their canonical embeddings into the com-
plex plane. For small bit-length integers, Chung et al. [IACR eprint’24]
recently suggested to rather rely on an embedding into complex roots of
unity, to gain numerical stability and efficiency. Both works use CKKS
in a black-box manner.

Inspired by the design by Bae et al. [Eurocrypt’24] of a dedicated
bootstrapping algorithm for ciphertexts encoding bits, we propose a
CKKS bootstrapping algorithm, SI-BTS (small-integer bootstrapping),
for ciphertexts encoding small bit-length integers. For this purpose, we
build upon the DM/CGGI-to-CKKS conversion algorithm from Boura
et al. [J. Math. Cryptol.’20], to bootstrap canonically embedded integers
to integers embedded as roots of unity. SI-BTS allows functional boot-
strapping: it can evaluate an arbitrary function of its input while boot-
strapping. It may also be used to batch-(functional-)bootstrap multiple
DM/CGGI ciphertexts. For example, its amortized cost for evaluating
an 8-bit look-up table on 212 DM/CGGI ciphertexts is 3.75ms (single-
thread CPU, 128-bit security).

We adapt SI-BTS to simultaneously bootstrap multiple CKKS cipher-
texts for bits. The resulting BB-BTS algorithm (batch-bits bootstrap-
ping) allows to decrease the amortized cost of a binary gate evaluation.
Compared to Bae et al., it gives a 2.4x speed-up.

Keywords: Fully Homomorphic Encryption · Bootstrapping · Binary
Circuits · Functional Bootstrapping

1 Introduction

The diverse Fully Homomorphic Encryption (FHE) schemes handle different
primary data types. In BGV/BFV [BGV12,Bra12,FV12], a plaintext is a vec-
tor of elements in a finite field. DM/CGGI [DM15,CGGI16a] considers bits,
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 330–360, 2025.
https://doi.org/10.1007/978-981-96-0875-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_11&domain=pdf
http://orcid.org/0000-0001-6870-4504
http://orcid.org/0000-0002-1624-6326
http://orcid.org/0000-0003-3435-2453
http://orcid.org/0009-0008-2096-4698
https://doi.org/10.1007/978-981-96-0875-1_11

Bootstrapping Small Integers With CKKS 331

and can be extended to process small bit-length integers [CJP21,KS22]. Finally,
CKKS [CKKS17] enables computations on vectors of (approximations to) com-
plex numbers. Even though computations on a second data type can be expressed
as computations on a first data type, this incurs a “data type translation” cost.
For example, simulating a multiplication between reals with a boolean circuit
may incur a large extra cost. For this reason, it can be tempting to choose an
FHE scheme whose primary data type matches the considered application, to
maximize efficiency. In this work, we go against this intuition, and consider the
efficiency of CKKS for computations on small integers, including bits.

Recently, Drucker et al. [DMPS24] used CKKS to perform computations on
vectors of bits, obtaining impressive performance in terms of throughput: thanks
to the SIMD nature of CKKS, when the computations to be performed are suf-
ficiently large, the amortized cost of homomorphically evaluating a binary gate
becomes very small. The main idea of [DMPS24] is to view the bit b ∈ {0, 1} as
a real/complex number and map a vector of such bits to a CKKS plaintext. The
latter encoding adds a small noise to the bits. By interpreting binary gates as
bivariate polynomials, one can then evaluate binary circuits with CKKS. To han-
dle the noise increase, the authors of [DMPS24] propose to use a noise-cleaning
polynomial, which implements the identity function on {0, 1} with a vanishing
derivative on those points. The vanishing derivatives allow to square the noise,
i.e., to double the accuracy. We stress that with CKKS, it is possible to reduce
the encryption noise without bootstrapping, since the noise is part of the mes-
sage. In [ADE+23], following a suggestion from [DMPS24], the authors proposed
to use such noise cleaning only after every few gates rather than after every gate,
leading to improved throughput. This was used to homomorphically evaluate
AES multiple times in parallel. The throughput was further lowered in [BCKS24],
which introduced variants of the CKKS bootstrapping algorithm [CHK+18]
specifically designed for binary data. Borrowing the figures from [BCKS24,
Table 2], evaluating a binary gate with CKKS has an amortized cost of 17.6µs in
single-thread CPU (where amortization is over slots and the multiple sequential
gates that can be applied between two consecutive bootstraps). For sufficiently
large computations, this compares favorably to [DM15,CGGI16a], which typi-
cally consumes around 10ms per binary gate [CGGI16b]. Interestingly, the boot-
strapping algorithms from [BCKS24] are compatible with DM/CGGI cipher-
texts. By relying on fast ring packing [BCK+23], one then obtains a CKKS-
based DM/CGGI bootstrapping algorithm for multiple ciphertexts which out-
performs other DM/CGGI bootstrapping when the number of ciphertexts to be
bootstrapped is around 200.

Drucker et al. [DMPS24] also considered viewing small bit-length integers as
real/complex numbers and using CKKS to perform SIMD homomorphic compu-
tations on integers. The cost increases fast with the bit-length, notably because
of the considered noise-cleaning strategy. The integer is homomorphically decom-
posed in base 2 by repeatedly computing the most significant bit. The latter is
quite costly as this discontinuous function is implemented using a precise poly-
nomial approximation of a step function. The bits are then cleaned individually

332 Y. Bae et al.

before being recombined in a cleaned integer. In [CKKL24], Chung et al. con-
sidered a different path for enabling small bit-length integer computations with
CKKS. Instead of embedding an integer m ∈ [0, t) for some small t into C using
the identity function, they exploit t-th roots of unity and send m to exp(2iπm/t).
By restricting the CKKS plaintext space to small balls around these t points,
discrete computations can be performed via numerically stable polynomial inter-
polations. Indeed, Lagrange’s interpolation on equispaced points of the real line
suffers from huge oscillations, which is known as Runge’s phenomenon. On the
contrary, roots of unity make the interpolating polynomial nicely converge to
the target function (assuming it is sufficiently smooth). Similarly to binary cir-
cuits [DMPS24], the noise grows with homomorphic operations and the data
points progressively become less separated. This is also handled with a noise-
cleaning polynomial evaluation.

The works above on small integers use CKKS bootstrapping in a black-
box manner. This raises the following questions: As in the case of bits, can
CKKS bootstrapping be adapted for small bit-length integers? Can we obtain a
CKKS-based batch-bootstrapping algorithm for multiple DM/CGGI ciphertexts
for small integers? Similarly to DM/CGGI functional/programmable bootstrap-
ping [CJP21,KS22], can we bootstrap and evaluate a function simultaneously?

Contributions. We introduce two new CKKS bootstrapping algorithms for
plaintexts respectively encoding small bit-length integers and bits.

The first algorithm, SI-BTS (for small integer bootstrapping), bootstraps
ciphertexts whose plaintexts are integers of small bit-sizes (e.g., 8 bits). It can
be combined with an arbitrary table look-up, at no extra cost, providing a
CKKS analogue to functional bootstrapping [CJP21,KS22] in the context of
the DM/CGGI fully homomorphic encryption scheme. Like in [CIM19], several
functions of the same plaintexts can be evaluated for a cost that is significantly
less than that of applying the functional bootstrap multiple times. Finally, as
the inputs and outputs of SI-BTS are compatible with DM/CGGI ciphertexts,
SI-BTS can be used to perform functional bootstraps on multiple DM/CGGI
ciphertexts at once, rather than running the DM/CGGI functional bootstrap-
ping algorithm in parallel on the multiple ciphertexts.

The second algorithm, BB-BTS (for batch-bits bootstrapping), bootstraps in
one go multiple CKKS ciphertexts for bits. For a single ciphertext, it essentially
corresponds to the BinBoot algorithm from [BCKS24]. As its cost grows slowly
with the number of batched ciphertexts (up to some integer bit-length), when
several ciphertexts are considered, it leads to a large throughput improvement
compared to [BCKS24].

Implementation. We implemented SI-BTS and BB-BTS in the C++ HEaaN
library [Cry22]. For Int-BTS, we designed parameter sets optimizing latency,
primarily focusing on obtaining an efficient algorithm for batch functional boot-
strapping of DM/CGGI ciphertexts. As showed by its multiple uses (see, e.g.,
[CJP21,CHMS22,TCBS23]) the importance of functional bootstrapping cannot
be overstated. For BB-BTS, we designed parameter sets optimizing throughput.

Bootstrapping Small Integers With CKKS 333

Table 1 illustrates the performance of CKKS-based functional bootstrapping
for integers of various bit-sizes. We compare the performance to the functional
bootstrapping algorithm of DM/CGGI [KS22] and to the BFV/BGV-based func-
tional bootstrapping algorithms of [LW23]. The DM/CGGI figures are retrieved
from the tfhe-rs benchmarks page, and correspond to a similar computing envi-
ronment (single-thread CPU).1

Table 1. Comparison for look-up table evaluations for various input bit-sizes. The
figures for [KS22] only provide 100-bit security, while all others aim at 128-bit security.

Number of input Number of Total time Amortized time
LWE ciphertexts input/output bits

[Zam24] 1

2 6.4 ms 6.4 ms
4 12.9 ms 12.9 ms
6 104 ms 104 ms
8 489 ms 489 ms

[KS22] 1 8 21 s 21 s
[LW23] 215 9 220 s 6.7 ms

This work 212

2 3.20 s 0.78 ms
4 6.41 s 1.57 ms
6 11.0 s 2.67 ms
8 15.4 s 3.75 ms
10 50.3 s 12.3 ms

Table 2 focuses on throughput for binary gate evaluations. The run-time fig-
ures for [LMSS23] and [LW24] are borrowed from the corresponding papers.
The figures for [BCKS24] and [DMPS24] are borrowed from [BCKS24], and we
included only the ‘improved version’ figures for [DMPS24]. All the experiments
were on similar computing environments (single-thread CPU). Our batch bits
bootstrapping (BB-BTS) that bootstraps 5 ciphertexts in parallel gives 2.38x
faster amortized gate evaluation time than the state-of-the-art [BCKS24]. In this
figure, we considered k = 5 batched ciphertexts in parallel because it shows the
best performance, as illustrated in Table 7. As we increase the batch number k,
the amortized bootstrapping time decreases at first but it starts to increase at
some point. This is because the cost of BB-BTS depends on k and the benefit of
simultaneously computing several bootstrappings is offset by the increased cost.
For a more detailed analysis on the effect of k, we refer to Sect. 6.2.
1 Choosing the number of input LWE ciphertexts to be as large as 212 is somewhat

necessary to reduce the amortized bootstrapping time. If one uses a smaller number
of input LWE ciphertexts instead, one may consider CKKS bootstrapping for fewer
slots (i.e., thin bootstrapping). However, as the overall bootstrapping time scales
sublinearly with the number of slots, using fewer slots is less efficient in terms of
amortized bootstrapping time.

334 Y. Bae et al.

Table 2. Throughput comparison for BB-BTS. Here number of plaintext slots refers to
the number of bits being bootstrapped per single (batched) bootstrapping. All figures
correspond to parameters aiming at 128-bit security.

Number of Amortized bootstrapping
plaintext slots time per gate

[LMSS23] 1 6.49 ms
[LW24]

216
1.5 ms

[DMPS24] 27.7µ s
[BCKS24] 17.6µ s
This work 5 · 216 7.39µ s

1.1 Technical Overview

Modulus Consumption in Bootstrapping. To explain our contributions,
we first highlight what makes conventional bootstrapping costly and how this is
handled with the bootstrapping algorithm from [BCKS24] for bits. CKKS per-
forms plaintext operations on C

N/2 by manipulating ciphertexts belonging in R2
q

where Rq = Z[X]/(XN + 1) for some power-of-two integer N . The modulus q
may vary but, for any given N , it is bounded from above as else the underly-
ing hard problem, a variant of Ring-LWE [SSTX09,LPR10], does not provide
sufficient security. The primary homomorphic operations are component-wise
addition, multiplication and complex conjugation, as well as cyclic rotations
of the vector coefficients. While many additions, conjugations and rotations
can be performed without significant difficulties, repeated multiplications are
more difficult to support. They involve a rescaling operation that decreases the
modulus q of the ciphertext by a number of bits that grows linearly with the
precision of the plaintexts considered in the computations. Therefore, the cur-
rent modulus directly limits the number of sequential multiplications that can
be subsequently performed, if one is restricted to the primary operations men-
tioned above. The CKKS bootstrapping procedure [CHK+18] takes as input a
low-modulus ciphertext and outputs a high-modulus ciphertext that decrypts
to the same message, up to some noise. Homomorphic computations can then
be run endlessly. Despite many improvements [CCS19,HK20,LLL+21,BTPH22,
KPK+22,LLK+22] (among others), CKKS bootstrapping still suffers from two
main drawbacks: first, its run-time is high; second, it itself requires significant
multiplicative depth and hence consumes a large amount of modulus. Modulus
consumption in bootstrapping is a main factor in the efficiency of CKKS: a lower
modulus consumption in bootstrapping provides more room for useful compu-
tations, helping for throughput; it may also allow to choose a smaller N , which
helps for latency.

When it comes to modulus consumption, the two main components of boot-
strapping are a linear evaluation phase called CtS (for coefficients to slots), and
a non-linear evaluation phase called EvalMod (for evaluation of modular reduc-

Bootstrapping Small Integers With CKKS 335

tion). The other linear phase called StC consumes less modulus, and the remain-
ing bootstrapping component, ModRaise, creates modulus. The input of CtS is
a ciphertext whose underlying plaintext is V · (x + I), where V is a matrix
that is closely related to the discrete Fourier transform, x is a vector containing
the message and satisfying ‖x‖∞ < 1/2, and I is a vector whose coordinates
are bounded integers. The main task of bootstrapping is to remove I. CtS is a
homomorphic multiplication by V−1: its output is a ciphertext that decrypts
to ≈ x+ I. EvalMod evaluates, on all coordinates in parallel, a polynomial that
approximates the function x + I �→ x on a relevant domain. The modulus con-
sumption is driven by two aspects. First, all computations are performed in some
precision that is larger than the bit-size of the manipulated data, i.e., x+ I with
an accuracy that provides enough meaningful bits of the message encoded in x.
Second, this per-level modulus consumption is multiplied by the multiplicative
depth of CtS and EvalMod.

The first aspect above explains why the BinBoot bootstrapping algorithm
from [BCKS24] consumes little modulus and could even be implemented with
ring degree as low as N = 214. BinBoot was designed for bootstrapping plaintexts
corresponding to bits, encoded into reals as proposed in [DMPS24]. A bit b ∈
{0, 1} is represented by a real b + ε for some ε satisfying |ε| � 1. An essential
aspect of BinBoot is that the bit b is encoded into x as x ≈ b/2. This is in sharp
contrast to using an x that satisfies |x| � 1 as is the case in most other CKKS
bootstrapping algorithms. As a result, a small precision suffices for bootstrapping
computations: one only needs to handle I and a few more bits to capture a good
estimate of b. Further, the multiplicative depth of EvalMod is itself limited as
the manipulated data has low bit-size.

As a minor contribution, we note that the cleaning strategy from [BCKS24]
can be modified to lower bootstrapping modulus consumption. Error cleaning
increases the precision of the bit b, i.e., reduces the magnitude of ε in b + ε.
In [BCKS24], cleaning is performed before bootstrapping, and the plaintext is
represented on sufficiently many bits to capture this accuracy. Instead, one can
perform bootstrapping with a lower precision and clean the error after bootstrap-
ping. Consistently, the accuracy of the plaintext can be decreased. This saves
only a few bits of modulus per multiplication level, but this saving is multiplied
by the multiplicative depth of bootstrapping.

Bootstrapping Integers with Low Modulus Consumption. To mini-
mize modulus consumption in bootstrapping, we would like that the pre-CtS
plaintext V · (x + I) is such that x contains m in its most significant bits, as
in [BCKS24]. We have two embeddings of integers m ∈ [0, t) into complex num-
bers at hand: either encode m as m ∈ C (up to some noise) or as exp(2iπm/t) ∈ C

(up to some noise). CtS works with both encodings. Oppositely, the subsequent
bootstrapping step should remove I using a polynomial evaluation, which can
be more or less difficult depending on the choice of encoding and scaling. Let us
examine the four possibilities at hand:

336 Y. Bae et al.

• map m/t + I to m/t (for all m ∈ Z ∩ [0, t) and all integer I in some range);
• map m/t + I to exp(2iπm/t);
• map exp(2iπm/t) + I to m/t (for all m ∈ Z ∩ [0, t) and all Gaussian integer

I = I1 + iI2 with I1 and I2 in some range);
• map exp(2iπm/t) + I to exp(2iπm/t).

In principle, any of these can be handled by using a polynomial approximation
around the distinguished points (interpolation may not suffice, as the distin-
guished points are noisy). For a growing value of t, the first interpolation task
converges to finding a polynomial approximation of the y �→ y mod 1 function.
For the remaining three, let us only consider the real part, to simplify: the sec-
ond function is y �→ cos y, the third is y �→ arccos(y mod 1) and the fourth
is y �→ arccos(cos y). Out of these, only the second one is differentiable, making
it more suitable for polynomial interpolation. We hence choose the second map-
ping. Conveniently, the usual EvalMod phase of CKKS bootstrapping is typically
implemented by a polynomial approximation to a trigonometric function, so that
it can be readily replaced by an “EvalExp” that sends m/t + I to

exp
(
2iπ

(m

t
+ I

))
= exp

(
2iπ

m

t

)
.

Indeed, the complex exponential can be computed with a cosine evaluation for
the real part and a sine evaluation for the complex part. Further, these can
be evaluated efficiently by relying on the double-angle formula. Overall, the
resulting bootstrapping, which we refer to as IntRootBoot, sends a ciphertext that
contains the integer m embedded as m/t ∈ C to a root of unity exp(2iπm/t) ∈ C.

Interestingly, using EvalExp to bootstrap integers stored in the most signifi-
cant bits has already been considered in [BGGJ20], in the context of converting
DM/CGGI ciphertexts to CKKS ciphertexts. Also, by taking t = 2 and consid-
ering only the real part, one recovers the BinBoot algorithm from [BCKS24].

An Improved Tool-Box for Roots of Unity. To obtain good efficiency, we
first extend the toolbox for homomorphically manipulating t-th roots of unity.
First, we revisit the analysis of the IntRootBoot algorithm from [BGGJ20]. We
focus on modulus consumption. By using the sparse-secret encapsulation tech-
nique from [BTPH22], one can ensure that |I| ≤ 15 with probability extremely
close to 1, so that 5 + log t bits of precision suffice to represent I + m/t. A few
extra bits are needed to separate the data points, and a little over (logN)/2
bits should be added to handle the inherent inaccuracy of CKKS homomorphic
computations. For moderate values of t and N = 216, this adds up to as low
as ≈ 30 bits of precision for the elementary CKKS operations, whereas other
CKKS bootstrapping algorithms often consider up to 45 or 50 bits of preci-
sion. Recall that this modulus gain is multiplied by the multiplicative depth of
bootstrapping, which is typically over 10.

We also propose improvements for interpolation from complex roots of unity,
which was studied in [CKKL24]. Note that such an interpolation seems neces-
sary for FHE based on IntRootBoot. Indeed, the input complex-plane embed-
ding is m �→ m whereas the output embedding is m �→ exp(2iπm/t). One then

Bootstrapping Small Integers With CKKS 337

needs to convert roots of unity back to integers at some stage, to be able to
use IntRootBoot again. As a first remark, we observe that any monomial xi

for 0 ≤ i < t can be replaced by xt−i, as we are only interested in t-th roots of
unity. As homomorphic conjugation does not consume modulus, this provides a
total degree reduction by a factor 2 and hence allows to save one multiplicative
depth. Second, we consider the noise-cleaning functionality. A cleaning function
of degree t + 1 was proposed in [CKKL24]. Instead, we investigate combined
interpolation and cleaning. This may be achieved using Hermite interpolation
(which extends Lagrange interpolation by imposing that the derivatives of the
polynomial vanish at all interpolation points). For t-th roots of unity, we expect
Hermite interpolation to provide polynomials of degree 2t. This would already be
interesting compared to [CKKL24], as evaluation and cleaning could be achieved
in depth 1 + log t instead of 1 + 2 log t. We decrease depth consumption further
than this by designing bivariate polynomials in x and x of degree t−1 that prop-
erly interpolate and clean (note that replacing xi by xt−i for large values of i in
the Hermite interpolation indeed decreases the degree but does not preserve the
cleaning functionality). This also saves one multiplication depth, down to log t.

New Bootstrapping Algorithms. The design rationale of our first bootstrap-
ping algorithm, SI-BTS, starts from the observation that BinBoot is wasteful. For
a single bit of interest, a multiplication consumes more than 20 bits of modu-
lus. For this consumption, we may as well consider small integers rather than
bits: the required CKKS precision is about the same, but much more data is
handled. SI-BTS hence considers an input ciphertext whose underlying plain-
text is a vector m ∈ Z

N/2 with each coefficient in [0, t) for some integer t.
It then calls IntRootBoot, to obtain a high-modulus ciphertext that decrypts
to exp(2iπm/t). If t remains small, the multiplicative depth of the approxi-
mate complex exponential evaluation does not grow, as we rely on good poly-
nomial approximations to the sine and cosine functions on a whole interval con-
taining 2 · 15 = 30 periods, even for t = 2. Once we have exp(2iπm/t), we
could keep this format and perform computations on roots of unity as described
in [CKKL24]. However, at some stage, we should switch back to integers to
apply SI-BTS again. This is achieved by a polynomial interpolation on the roots
of unity. Further, we propose to combine the first interpolation after the expo-
nential evaluation with cleaning: this consumes only one extra multiplicative
depth compared to a simple interpolation but allows to lower the precision inside
bootstrapping (as the output ciphertext is subsequently cleaned). As the app-
roach allows any interpolation from complex roots of unity to integers, we can
simultaneously evaluate an arbitrary function from [0, t) to [0, t) at no extra
cost. Finally, we note that the input format of SI-BTS closely matches that of
DM/CGGI ciphertexts and use it to provide a CKKS-based batch functional
bootstrapping algorithm for DM/CGGI.

Our second algorithm, BB-BTS, takes as input many ciphertexts for bits and
bootstraps them in a batch. More concretely, assume we have k input CKKS
ciphertexts, each of which encrypts a vector bj ∈ {0, 1}N/2. We could exe-

338 Y. Bae et al.

cute Binboot k times in parallel. Alternatively, we pack the data into a single
ciphertext by homomorphically performing a linear combination

∑
0≤j<k 2

jbj ,
resulting into a vector whose coefficients are integers in [0, 2k). We then use
IntRootBoot to obtain a high-modulus ciphertext that decrypts to the vector of
roots of unity exp(2iπ(

∑
j 2

j−kbj)) (for each slot). To recover individual high-
modulus ciphertexts that encrypt the bj ’s, we perform k polynomial interpola-
tions exp(2iπ(

∑
j 2

j−kbj)) �→ bj . Due to the recursive structure of roots of unity
of power-of-two orders, these interpolations are far from arbitrary, allowing for
an efficient implementation even for moderate k. Finally, we clean the error terms
of the individual bits in parallel. This is far thriftier than cleaning the roots of
unity and then converting to integers.

2 Background on CKKS

For a power-of-two N ≥ 1 and q ≥ 2, we define the rings R = Z[X]/(XN + 1)
and Rq = R/qR. We let i denote the complex imaginary unit. We let x denote
the complex conjugate of x ∈ C. Vectors are denoted in bold lower-case. The
notation log refers to base-2 logarithm.

2.1 Encodings

We define the Discrete Fourier Transform (DFT) DFT : R → C
N/2 as

DFT(p(X)) = (p(ζj))0≤j<N/2 ,

where ζj = ζ5
j

for a complex 2N -th root of unity ζ ∈ C. Its inverse iDFT :
C

N/2 → R is the inverse Discrete Fourier Transform (iDFT). In the CKKS
scheme, messages are elements of C

N/2, up to some accuracy quantified by a
scaling factor Δ > 0. To encode a message z ∈ C

N/2 into a plaintext pt ∈ R
with a scaling factor Δ, one uses the encoding map Ecd : CN/2 → R defined as

Ecd(z) = �Δ · iDFT(z)� .

The decoding map is defined as Dcd(m) = DFT(m)/Δ.
As put forward in [DMPS24], one may focus on a subset of C to handle

discrete data. For example, a bit b ∈ {0, 1} can be viewed as a complex num-
ber b ∈ C. Bits encoding maps a vector b ∈ {0, 1}N/2 to Ecd(b) ∈ C

N/2. For
integers in [0, t) for some arbitrary t > 0, one may extend the latter encoding of
bits by using the inclusion Z ∩ [0, t) ⊂ C: an integer vector v ∈ Z

N/2 is encoded
to a plaintext Ecd(v) ∈ C

N/2. We will refer to the latter as integers encoding.
Another way to embed small integers in the complex plane is to use complex
roots of unity. As showed in [CKKL24], such an encoding is advantageous in the
context of evaluating look-up tables in CKKS, from the perspective of numerical
stability. Let φt : Zt → C denote the map m �→ e2πi·m/t. The roots-of-unity
encoding of a vector v ∈ Z

N/2
t is Enc ◦ φ

N/2
t , where φ

N/2
t is the evaluation of φt

on all coefficients of v in parallel.

Bootstrapping Small Integers With CKKS 339

CKKS computations induce error growth. If we start with good approxima-
tions to encodings as above (for bits, integers or roots-of-unity), computations
may lead to less precise approximations. In order to keep the plaintexts close to
the expected encodings, it was suggested in [DMPS24] to use cleaning functions
to reduce the error. For instance, for bits encoding, one may consider the poly-
nomial h1(x) = 3x2 −2x3 initially introduced in [CKK20]: it has minimal degree
such that h1(0) = 0, h1(1) = 1 and h′

1(0) = h′
1(1) = 0. In particular, it satisfies

the following cleaning property.

Lemma 1. For all b ∈ {0, 1} and ε ∈ [−1, 1], we have:

|h1(b + ε) − b| ≤ 3|ε|2 + 2|ε|3 .

Note that 3|ε|2 + 2|ε|3 is much smaller than |ε|, if |ε| is sufficiently small.
In [DMPS24], the authors suggested to clean small integers by extracting

bits (with a homomorphic evaluation of binary decomposition), cleaning bits
using h1 and then recombining the cleaned bits. For roots of unity, the authors
of [CKKL24] considered the polynomial ((t + 1)x − xt+1)/t.

2.2 Ciphertexts and Elementary Operations

A CKKS ciphertext for a message z ∈ C
N/2 for a secret key s ∈ R is a

pair (a, b) ∈ Rq such that a · s + b ≈ Ecd(z). In that case, we say that the
ciphertext encrypts z in its slots. Sometimes, we have a · s+ b ≈ Δ · z′ for some
scaling factor Δ and where z′ starts with the real parts of the coefficients of z
and continues with the imaginary parts. In this case, we say that z is encrypted
in the coefficients.

The homomorphic addition algorithm add takes as input two ciphertexts
modulo q and outputs a ciphertext that decrypts to the sum of the plain-
texts underlying the input ciphertexts (for encryption with respect to both slots
and coefficients). The homomorphic conjugation algorithm conj takes as input a
ciphertext modulo q and outputs a ciphertext that decrypts to the coefficient-
wise complex conjugate of the plaintext underlying the input ciphertext (for
slots-encryption). We will not explicitly need homomorphic rotation in this work.
Note that these algorithms preserve the ciphertext modulus q.

The homomorphic multiplication algorithm mult takes as input two cipher-
texts for a common modulus q and a common scaling factor Δ. It outputs a
ciphertext whose underlying plaintext is close to the coefficient-wise product
of the plaintexts underlying the input ciphertexts (for slots-encryption). The
modulus of the output ciphertext is q′ ≈ q/Δ.

Note that for a given ring degree N , the ciphertext modulus q cannot
exceed some value if one wants to maintain sufficient security. As multiplica-
tions decrease the ciphertext modulus, the number of multiplications that one
can perform sequentially while only relying on the operations mentioned so far
is bounded. For this reason, the CKKS literature always considers a chain of
moduli q0 < q1 < . . . corresponding to multiplication levels. The integer q0 is
called the base modulus.

340 Y. Bae et al.

2.3 Bootstrapping

Bootstrapping allows one to regain modulus: it takes as input a ciphertext with a
small modulus and outputs a ciphertext with higher modulus, whose underlying
plaintext is close to the plaintext underlying the input ciphertext. Bootstrapping
consists of the following four components.

• Slots-to-Coefficients (StC). Given a ciphertext that encrypts a complex
vector z ∈ R

N/2 in its slots, we convert it to a ciphertext that encrypts z in
its coefficients. This can be realized via homomorphic evaluation of DFT.

• Modulus Raising (ModRaise). Given a ciphertext ct at the base modu-
lus q0 encrypting a plaintext m ∈ R, we regard it as a ciphertext encrypting
m + q0I ∈ R without modulus. This increases the ciphertext modulus, while
adding a small multiple of the base modulus.

• Coefficients-to-Slots (CtS). To prepare the removal of the q0I term intro-
duced in the coefficients by ModRaise, we convert the ciphertext to the slot-
encoded format. This is realized with homomorphic evaluation of iDFT.

• Homomorphic Modular Reduction (EvalMod). We remove the q0I term
by homomorphically evaluating the “modulo-q0” function (in a SIMD man-
ner). Since modular reduction is discontinuous, one may set parameters in a
way that ensures that there is a gap between m and q0, so that it suffices
to approximate the “modulo-q0” function only on small intervals around inte-
ger multiples of q0. This is achieved by a polynomial approximation to the
x �→ (q0/2π) · sin(2πx/q0) function.

In this work, we consider StC-first bootstrapping, which executes EvalMod ◦
CtS ◦ ModRaise ◦ StC. This requires to start the process at a modulus larger
than q0 so that StC is completed at the base modulus q0.

Real bootstrapping is restricted to ciphertexts whose underlying plaintexts
are in R

N/2 (in slots). Complex bootstrapping works for plaintexts in C
N/2. The

main difference lies in the EvalMod function, whose correctness holds if its input
ciphertext decrypts to a real vector. If the vector is complex, one extracts the
real and imaginary parts using homomorphic conjugation just before EvalMod,
runs EvalMod twice in parallel, and finally recombines the outputs into a single
ciphertext that encodes the desired complex vector.

In [BCKS24], the EvalMod function was adapted to handle binary data
ciphertexts (i.e., with z ∈ {0, 1}N/2). At the bottom modulus, i.e., just before
ModRaise, the ciphertexts encode z in their most significant bits, and a prop-
erly scaled version of the sine function is used to bootstrap (other variants are
considered in [BCKS24], such as evaluating a binary gate and bootstrap at once).

3 Improving the Roots-of-Unity Toolbox

In this section, we consider the efficiency of some homomorphic computations
involving roots-of-unity encodings.

Bootstrapping Small Integers With CKKS 341

We first revisit the conversion algorithm from [BGGJ20], from DM/CGGI
ciphertexts to a CKKS ciphertext. We observe that the main step of this algo-
rithm bootstraps a ciphertext for integers into a ciphertext for roots of unity.
We provide a depth-consumption analysis, based on the observation that the
data of interest is encrypted in the most significant bits. We then consider the
task of evaluating look-up-tables using roots-of-unity encodings, and decrease
the required depth compared to [CKKL24]. Finally, we introduce an extension
of interpolation that also decreases the error of a roots-of-unity encoding, for a
multiplicative depth that is twice lower than the depth required to interpolate
and clean, based on the tools from [CKKL24].

3.1 Revising Chimera’s Conversion from DM/CGGI to CKKS

Below, we study an algorithm introduced in [BGGJ20, Section 4.1], in the con-
text of converting multiple DM/CGGI ciphertexts to a CKKS ciphertext. This
conversion algorithm handles three difficulties. The first one is of a packing
nature: a DM/CGGI ciphertext contains a single small integer as plaintext,
whereas a CKKS ciphertext can store up to N (when using coefficients-encoding,
or slots-encoding with real and imaginary parts). In this subsection, we do not
consider this aspect. The second difficulty is that a DM/CGGI ciphertext has
a small modulus, typically with magnitude similar to the base modulus q0 of
CKKS. The third difficulty is of a scaling nature: in DM/CGGI, the plaintext
lies in the most significant bits of the ciphertext (sometimes with some margin
to allow for one homomorphic addition), whereas in a CKKS ciphertext, the
most significant bits are typically not used. Such a plaintext scaling prevents
the use of conventional CKKS bootstrapping, as it makes it very difficult to
approximate the discontinuous “modulo-q0” function (see Sect. 2.3). More con-
cretely, a coefficients-encoded CKKS ciphertext (a, b) ∈ R2

q with DM/CGGI
plaintext scaling would be such that a · s + b ≈ (q/t) · z, where s is the secret
key and z ∈ Rt is the plaintext. Oppositely, a typical CKKS ciphertext would
satisfy a · s + b ≈ (Δ/t) · z with Δ � q.

Putting aside the packing of multiple DM/CGGI ciphertexts, the algorithm
from [BGGJ20, Section 4.1] can be revisited as a transformation from a low-level
coefficients-encoding CKKS ciphertext for a plaintext in the most significant
bits into a high-level roots-of-unity-encoding CKKS ciphertext. We revisit it as
a CKKS bootstrapping algorithm from slots-encoded integers to slots-encoded
roots of unity for the same data.

We assume that the input ciphertext decrypts to a vector (in slots) that
corresponds to a vector m = z + ε in C

N/2 where z is an integer vector with
coefficients in [0, t) and the error term ε satisfies ‖ε‖∞ � 1. We choose the
scaling factor Δ0 at the base modulus q0 as Δ0 = q0/t, so that for cipher-
texts modulo q0, the message is coefficients-encoded in the most significant bits.
IntRootBoot, described in Algorithm 1, proceeds as follows.

• It runs StC to put the message in the coefficients. The message is then placed
in the most significant bits, by choice of Δ0.

342 Y. Bae et al.

• It runs ModRaise to increase the ciphertext modulus. The message can then be
described as (q0/t)·m+q0 ·I ∈ R for some I ∈ R. Note that it can be rewritten
as (q0/t)(m + tI): the aim of the subsequent steps is to homomorphically
reduce m + tI modulo t to remove the tI term.

• It runs CtS to put the message in the slots. It uses homomorphic conjugation
to compute the real part.

• It runs EvalExp, which is the homomorphic evaluation of the function x �→
e2πix/t. Note that after ModRaise, the message is interpreted as m + tI, and
the exponential function can be implemented using homomorphic conjugation
and the trigonometric functions x �→ sin(2πx/t) and �→ cos(2πx/t) (using the
identity eix = cos(x) + i sin(x)).

The above extends to a complex bootstrapping algorithm, i.e., for an input
plaintext m = z + ε in C

N/2 where both the real and imaginary parts of z
are integer vectors with coefficients in [0, t). This is achieved by appropriately
adapting Steps 2 and 3 of Algorithm 1, as discussed in Sect. 2.3.

Algorithm 1: IntRootBoot
Setting: Δ0 = q0/t.
Input : ct = Encsk(z+ ε) ∈ R2

q with z ∈ {0, 1, . . . , t − 1}N/2 and ‖ε‖∞ � 1.
Output: ctout ∈ R2

Q.
1 ct′ ← CtS ◦ ModRaise ◦ StC(ct);
2 ct′′ ← (conj(ct′) + ct′)/2;
3 ctout ← EvalExp(ct′′);
4 return ctout.

Let ct = Encsk(z + ε) ∈ R2
q be an input ciphertext encoding an integer

vector z ∈ {0, 1, . . . , t − 1}N/2 with an error ε satisfying ‖ε‖∞ � 1. Assume
that homomorphic operations StC, ModRaise, StC and conj and EvalExp give
sufficiently high precision. Then the output ctout of Algorithm 1 encrypts the
vector (e2πi(zj+εj)/t)0≤j<N/2, up to a tiny error. The latter is close to e2πizj/t.
Indeed, the difference can be bounded from above as follows, for all j:

|e2πi(zj+εj)/t − e2πizj/t| = |e2πizj/t| · |e2πiεj/t − 1|
= |e2πiεj/t − 1|
≤ | sin(2πεj)| + | cos(2πεj) − 1|
= | sin(2πεj)| + |2 sin2(πεj)|
≤ 2π‖ε‖∞ + 2π2‖ε‖2∞ .

Apart from EvalExp, all operations are as in CKKS bootstrapping. EvalExp
can be performed using the formula eix = cos(x) + i sin(x). Homomorphic eval-
uations of sin and cos have been extensively explored throughout the CKKS
literature (see, e.g., [CHK+18,LLL+21]), as it is a key ingredient of CKKS

Bootstrapping Small Integers With CKKS 343

bootstrapping algorithms. An approach is to perform EvalExp by homomor-
phically evaluating the sine function twice (once for sin(2πx) and once for
cos(2πx) = sin(π/4 − 2πx)). The cost is then roughly twice that of EvalMod.
As EvalMod and CtS have similar costs (the other bootstrapping steps being
less costly), the total cost of IntRootBoot is a little larger than the cost of the
conventional CKKS bootstrapping.

We now argue that IntRootBoot consumes relatively little modulus. Since
conventional CKKS bootstrapping and IntRootBoot both evaluate StC, CtS and
EvalMod/EvalExp, the multiplicative depth consumption is the same. However, as
there is no gap between message and modulus at the base level (corresponding
to modulus q0), we may use relatively smaller scaling factors during CtS and
EvalMod, leading to a reduction of modulus consumption. For concreteness, let
us assume that we are interested in integers in [0, t), with an accuracy of γacc =
log ‖ε‖∞ bits, and an FHE computing noise of γnoise. The FHE noise is typically
slightly above (logN+log h)/2, where h is the Hamming weight of the secret key
(to fix the ideas, one may consider that γnoise = 12). For each level in CtS and
EvalExp, the scaling factor must have ≈ log(2Imax)+ log t+ γacc + γnoise bits, to
represent the I term with coefficients in [−Imax, Imax], the integer vector z under
scope, the accuracy bits and the FHE computing noise. By using the sparse secret
encapsulation technique from [BTPH22], the integer I belongs to [−15, 15] with
probability extremely close to 1, leading to log(2Imax) = 5. In the StC levels,
there is no need for these first 5 bits, as the I term vanishes due to the use
of appropriate roots of unity. This gives the following rough approximation to
modulus consumption:

ModConsIntRootBoot ≈ (�CtS + �EvalExp) · (5 + log t + γacc + γnoise)
+�StC · (log t + γacc + γnoise) ,

where �CtS, �EvalExp and �StC respectively refer to the multiplicative depths of CtS,
EvalExp and StC.

By using conventional bootstrapping, one would need to consider a gap to
encode the integer to be bootstrapped, to make it small compared to the bottom
modulus, to enable a polynomial approximation to the “modulo-q0” function. In
practice, one often chooses a gap of γgap ≈ 10 bits. This gap is added to the mod-
ulus consumption of all levels of CtS and EvalExp. This implies that IntRootBoot
consumes ≈ (�CtS+�EvalExp) ·γgap fewer bits of modulus than conventional CKKS
bootstrapping. For bootstrapping techniques that are currently used, this most
often amounts to more than 100 bits.

3.2 Interpolation for Roots of Unity

We now consider the task of homomorphically evaluating a look-up table, from
the e2πij/t’s for some integer t ≥ 2 and j ∈ {0, 1, . . . , t − 1} to arbitrary com-
plex values (yj)0≤j<t. Concretely, we aim at finding a function f such that
f(e2πij/t) = yj for all 0 ≤ j < t, which can be homomorphically evaluated with
good efficiency and low modulus consumption. It was observed in [CKKL24]

344 Y. Bae et al.

that complex t-th roots of unity provide good numerical stability when it comes
to polynomial interpolation. We argue below that complex conjugation can help
performing look-up table evaluations on such points.

Suppose that f : x �→ f0+ f1x+ . . .+ ft−1x
t−1 is the Lagrange interpolation

from the e2πij/t’s to the yj ’s. In full generality, evaluating f requires depth log t.
Now, note that we may as well evaluate

g : x �→
(
f0 + f1x + . . . + f�t/2�x�t/2�

)

+
(
ft−1x + ft−2x

2 + . . . f�t/2�+1x
t−(�t/2�+1)

)
.

Indeed, on the e2πij/t’s, the values xi and xt−i coincide. Note that g requires
a homomorphic conjugation. As homomorphic conjugation does not consume
depth and g has degree twice less than f , it can be evaluated with one less
multiplicative depth.

3.3 Combined Interpolation and Cleaning for Roots of Unity

We now describe another interpolation strategy, which simultaneously interpo-
lates and increases the accuracy of the discrete data points. A first approach
would be to use Hermite interpolation, i.e., extending Lagrange interpolation
with the condition that the derivative of the polynomial cancels on the interpo-
lation points. The cancelling derivatives imply a decrease of the noise, similarly
to the h1 function from Sect. 2.1. As there are twice more conditions, this poly-
nomial has degree < 2t. Note that the complex conjugation approach of the
previous subsection does not apply. It would result in a bivariate polynomial
in x and x̄ which is not differentiable. It preserves the evaluations of the initial
polynomial, but there is no a priori reason for the noise-cleaning functionality to
be preserved. For example, the polynomial f(x) = 3x/2+x3/2 cleans for inputs
in {−1, 1}. However, the function g(x) = 3x/2 + x/2 is equal to f on {−1, 1}
but without any cleaning functionality since g(1 + e) = 1 + 3e/2 − e/2 has
non-vanishing linear terms in e and e.

We now explain how to exploit complex conjugation to obtain a combined
interpolation and noise-cleaning functionality. Let f be the Lagrange interpo-
lation polynomial, from the roots of unity to the desired yj ’s. We consider the
following function, which may be viewed as a bivariate polynomial in x and x:

h : x �→f0 +
�t/2�∑
k=1

fk

t

(
kxt−k + (t − k)(k + 1)xk − k(t − k)xk+1x

)

+
t−1∑

k=�t/2�+1

fk

t

(
(t − k)xk + k(t − k + 1)xt−k − k(t − k)xt−k+1x

)

Observe that each fi is multiplied by a trinomial in x and x such that each
monomial xaxb satisfies a − b = k mod t. The trinomials are chosen so that the

Bootstrapping Small Integers With CKKS 345

evaluation of any of these in the t-th roots of unity is equal to 1, so that the
evaluation of h is exactly the same as that of f . Further, the trinomials are such
that when evaluated in x + ε and x + ε, the partial derivatives with respect
to ε and ε cancel in the t-th roots of unity. This property provides the cleaning
functionality. We stress that there is flexibility in the choice of the monomials
appearing in the trinomials, and that we opted to have a pattern, as well as
some symmetry between the first half and the second half. The total degree of h
is max(t−1, 4), and h can be evaluated with multiplicative depth log t (when t ≥
4), i.e., one less than the polynomial obtained with Hermite interpolation.

Lemma 2. There exists a constant C > 0 such that the following holds. Let t ≥
2 and y0, . . . , yt−1 ∈ C. Let f be the univariate polynomial of degree < t such
that f(e2πij/t) = yj for all 0 ≤ j < t, and h be as above. Then, for all 0 ≤ j < t
and ε ∈ C with |ε| ≤ 1/(t − 1), we have:

∣∣∣h(e2πij/t + ε) − yj

∣∣∣ ≤ C · t3 · max
j

|fj | · |ε|2 .

Proof. Let ζ = e2πij/t for some arbitrary 0 ≤ j < t. Replacing x by ζ + ε in the
definition of h, we see that it can be expressed as a bivariate polynomial in ε
and ε. By using the relation ζ = ζ−1 and using the definition of f , we obtain
that the constant term of that bivariate polynomial is

h(ζ) = f0 + f1 · ζ + . . . + ft−1ζ
t−1 = yj ,

where the second equality is by definition of f .
It may then be checked that the terms linear in ε and ε sum to 0. Therefore,

in order to bound |h(ζ+ε)−yj |, it suffices to consider the terms of total degree 2
or more in ε and ε. For this purpose, we will use the following inequality, which
holds for all integer n ≥ 2, all x ∈ C with |x| ≤ 1 and all u ∈ C with |u| ≤ 1/n:

∣∣(x + u)n − xn − nxn−1u
∣∣ ≤ n2|u|2 .

By using the facts that |ζ| = 1 and |ε| ≤ 1/(t − 1), the triangle inequality and
the above inequality, we have:

|h(ζ + ε) − yj | ≤ C · t3 · max
j

|fj | · |ε|2 ,

for some (absolute) constant C. ��
An interesting particular case is the interpolation for the identity function.

This provides a cleaning functionality. Taking f(x) = x in the above definition
of h, we obtain the function:

x �→ 1
t

(
xt−1 + 2(t − 1)x − (t − 1)x2x

)
.

It has degree max(3, t − 1). It may be compared to the cleaning polynomial
x �→ ((t + 1)x − xt+1)/t considered in [CKKL24], of degree t + 1. For t’s chosen
as powers of two, this provides a saving of one multiplicative depth.

346 Y. Bae et al.

3.4 Polynomial Multi-evaluation

We now consider the task of evaluating the bivariate polynomials of Sects. 3.2
and 3.3, by viewing it as a variant of homomorphically evaluating several poly-
nomials on the same input.

Consider first the case of a single polynomial P = P0+P1x+. . .+Pd−1x
d−1. A

naive version of the Paterson-Stockmayer algorithm [PS73] proceeds as follows:

1. (Initialization) Compute 1, x, . . . , x
√

d−1 and x
√

d, x2
√

d, x22
√

d, . . .;
2. (Baby steps) Compute

π0 = P0 + P1x + . . . + P√
d−1x

√
d−1 ,

...
π√

d−1 = Pd−√
d + Pd−√

d+1x + . . . + Pd−1x
√

d−1 ;

3. (Giant steps) Compute π0 + . . . + xd−√
dπ√

d−1 with a binary recursion.

Homomorphically, this amounts to ≈ 2
√

d ciphertext-ciphertext multiplications,
half of them in the initialization and the other half in the giants steps. As
ciphertext-ciphertext multiplications are significantly more costly than plaintext-
ciphertext multiplications, this dominates the cost. Note further that the multi-
plicative depth is log d.

Now, consider a scenario in which we would like to homomorphically eval-
uate k polynomials P (0), . . . , P (k−1) on the same ciphertext. By applying the
above algorithm k times, one obtains a cost dominated by ≈ 2k

√
d ciphertext-

ciphertext multiplications. Now, observe that the initialization can be shared
across the polynomial evaluations, the number of ciphertext-ciphertext multi-
plications can be decreased to ≈ (k + 1)

√
d. This can be decreased further by

modifying the balance between the baby steps and giant steps, as follows.

1. (Initialization) Compute 1, x, . . . , x
√

kd−1 and x
√

kd, x2
√

kd, x22
√

kd, . . .;
2. (Baby steps) For all 0 ≤ i ≤ √

d/k and 0 ≤ j ≤ k, compute

π
(j)
i = P

(j)

i
√

kd
+ P

(j)

1+i
√

kd
x + . . . + P

(j)√
d−1+i

√
kd

x
√

kd−1 ;

3. (Giant steps) For all 0 ≤ j ≤ k, compute π
(j)
0 +x

√
kdπ

(j)
1 +. . .+xd−√

kdπ
(j)√

kd−1

using x
√

kd, x2
√

kd, x3
√

kd, . . . and a binary recursion.

The number of ciphertext-ciphertext multiplications then decreases to ≈ 2
√

kd.
At the same time, the multiplicative depth is preserved.

In Sect. 3.2, the function to be evaluated is the sum of a polynomial in x and a
polynomial in x. This may be handled similarly as above for k = 2, by computing
the baby step for x and applying homomorphic conjugation on its output. Note
that homomorphic conjugation adds a small cost that is independent of the
degree d.

Bootstrapping Small Integers With CKKS 347

The function h in Sect. 3.3 can be handled similarly, with four polynomial
evaluations. Indeed, it can be expressed as:

h(x) = f0 + (Pf (x) + Pfr(x̄)) − x̄x (Qf (x) + Qfr (x̄)) ,

where the polynomial fr is the reversal of f , i.e., with fr
k = ft−k for k ∈

{1, . . . , t − 1}, and:

Pf (x) =
t−1∑
k=1

αf,kxk with αf,k =

{
fk

t (t − k)(k + 1) if k ≤ t/2
fk

t (t − k) otherwise
,

Qf (x) =
�t/2�∑
k=1

−fk

t
k(t − k)xk .

4 Bootstrapping Small Integers

We now present our bootstrapping algorithm for small integers, as well as
its extension to multi-function functional bootstrapping and its application to
batch-bootstrapping multiple DM/CGGI ciphertexts for small integers.

4.1 SI-BTS

Assume that the plaintext underlying the input ciphertext is a vector m of
small integers, between 0 and t − 1 for some t ≥ 2, and one wants to obtain a
ciphertext whose plaintext is also a vector y of small integers, so that yj = f(mj)
for all 0 ≤ j < N/2. Here f is an arbitrary function from integers in [0, t) to
integers in [0, t). (We could consider different sets for inputs and outputs, but
keep them identical for the sake of simplicity.)

For this purpose, SI-BTS (given in Algorithm 2) first uses IntRootBoot, and
then interpolate from the t-th root of unity exp(2iπm/t) to the integer f(m)
by using the combined interpolation and cleaning from Sect. 3.3. If cleaning is
not necessary (for example, if it occurred soon earlier in the computations or is
to be performed soon after), then one may optionally rely on the interpolation
algorithm from Sect. 3.2. We however recall that it is interesting to clean together
with a polynomial interpolation on the roots of unity, as it consumes only one
additional multiplicative level compared to only interpolating (compared to ≈
log t levels for a separate cleaning).

Converting from roots-of-unity embedding to integer embedding is impor-
tant to be able to run SI-BTS again. However, in some cases, it may be inter-
esting to postpone this conversion rather than performing it in bootstrapping,
and keep the roots-of-unity embedding for a while. For example, for evaluating
table look-ups, roots-of-unity embedding has been showed quite advantageous
(see [CKKL24]). In this case, one can replace the interpolation of Step 2 by the
one that sends exp(2iπx/t) �→ exp(2iπf(x)/t) for all 0 ≤ x < t.

Correctness follows by inspection. We now adapt the modulus consumption
of the end of Sect. 3.1 to the SI-BTS algorithm. In Sect. 3.1, we already estimated

348 Y. Bae et al.

Algorithm 2: Small Integer (Functional) Bootstrapping (SI-BTS)
Input : A CKKS ciphertext decrypting to ≈ m ∈ C

N/2 in the slots,
where mj ∈ Z ∩ [0, t) for all 0 ≤ j < N/2;
a function f : Zt → Zt.

Output: A CKKS ciphertext whose modulus is no smaller, and decrypting
to ≈ (f(mj))j ∈ C

N/2 in the slots.
Keys : IntRootBoot bootstrapping, conjugation and relinearization keys.

1 Run IntRootBoot on ct;
2 Homomorphically evaluate, with cleaning, the function that maps exp(2iπx/t)

to f(x) for all 0 ≤ x < t; for this purpose, use Section 3.3; let ct be the output
ciphertext;

3 return ct.

the modulus consumption of Step 1. As seen in Sect. 3.3, we may interpolate and
clean at Step 2, with log t multiplicative levels. At that stage, we do not need to
represent the integer I any more, so that a level corresponds to the same amount
of modulus as in StC.

ModConsSI-BTS ≈ (�CtS + �EvalExp) · (5 + log t + γacc + γnoise) (1)
+(�StC + log t) · (log t + γacc + γnoise) ,

where �CtS, �EvalExp and �StC respectively refer to the multiplicative depths of CtS,
EvalExp and StC. The quantity γnoise corresponds to the bit-size of the noise
induced by homomorphic operations and γacc corresponds to the accuracy of
the representations of the (log t)-bit integers. We insist that this estimate is
rough, and we refer the reader to Sect. 6 for concrete experimental data. We
note that γacc is not constant throughout the computation: it first decreases
because of homomorphic computations, and it is then replenished at Step 2.
We do not consider this variation in (1). Similarly, the quantity γnoise varies
depending on the type of homomorphic operations performed. It can be seen
in (1) that when t is small, the modulus consumption grows very slowly, as
the terms linear in log t are ‘somewhat hidden’ by γacc + γnoise, and, to a lesser
extent, by �CtS+�StC+�EvalExp. However, as t increases, the growth rate eventually
becomes quadratic in log t.

In terms of cost, the situation is similar. For small t, the cost will be domi-
nated by Step 1, but when t increases, the cost of Step 2 will eventually become
dominant.

4.2 Multi-output SI-BTS

The SI-BTS algorithm can be extended to evaluate several functions fi for a
given input m. This may be viewed as a CKKS (and hence SIMD) analogue to
the DM/CGGI multi-output bootstrap algorithm from [CIM19].

Algorithm 2 is then modified as follows. Step 1 is run only once, while Step 2
can benefit from the multi-evaluation algorithm of Sect. 4.2. Overall, if K is the

Bootstrapping Small Integers With CKKS 349

number of functions being evaluated in parallel, the cost of Step 1 is indepen-
dent of K, while the cost of Step 2 essentially grows with

√
K (the ciphertext-

ciphertext multiplications being the most expensive component of polynomial
evaluation). For a small K and a small t, the cost of Step 2 is limited compared
to the cost of Step 1, so that several functional bootstraps can be performed
for essentially the same cost as a single one. When t and K are larger, Step 2
dominates and the cost increase is more visible.

4.3 Batch Functional Bootstrapping of DM/CGGI Ciphertexts

SI-BTS is particularly useful when one wishes to perform multiple DM/CGGI
functional bootstraps in parallel. This gives an extension of the batch DM/CGGI
bootstrapping from [BCKS24], which was restricted to evaluating a binary gate.

Recall that a CGGI/DM ciphertext can be viewed as an LWE version of
our coefficient-integer-encoded ciphertext, where the plaintext integer lies in the
most significant bits of the ciphertext. More concretely, a ciphertext ct ∈ Z

n
q

for some integers n and q decrypts to an integer m ∈ [0, t) under a key sk ∈
{−1, 0, 1}n if:

〈ct, sk〉 = q

t
m + e mod q ,

where |e| � q/t. For efficiency purposes, the modulus q is typically very small
(e.g., it can have 12 bits).

Now, assume we are given ≤ N such ciphertexts (ctj)0≤j<N , decrypt-
ing to integers (mj)0≤j<N under a common key sk. These ciphertexts can be
packed into a single coefficients-encoded CKKS ciphertext, by relying on a ring-
packing procedure (see [CGGI17,BCK+23], among others). This provides a
ciphertext (a, b) ∈ R2

q0 for the base CKKS modulus q0 and for a key s ∈ R
such that

a · s + b ≈ q′

t

(
m0 + m1 · X + . . . + mN−1X

N−1
)

.

Note that the base CKKS modulus q0 is typically larger than q. The change
of modulus from q to q0 is implemented by scaling and rounding. Ring pack-
ing requires a dedicated evaluation key (some form of CKKS encryption of sk
under s).

One then uses IntRootBoot (without StC) to bootstrap this CKKS ciphertext
and evaluate an arbitrary function by interpolation. Complex bootstrapping may
be used if there are > N/2 input ciphertexts ctj . Finally, we run StC to put the
message back in the coefficients, and by properly rearranging the coefficients of
the obtained RLWE ciphertext, we obtain the desired LWE-format DM/CGGI
ciphertexts.

5 Batch Bits Bootstrapping

In the previous section, we have seen how to bootstrap ciphertexts whose under-
lying plaintexts encode small integers, for a cost (mostly driven by bootstrapping

350 Y. Bae et al.

modulus consumption) that is not significantly higher than that of bootstrap-
ping bits. It is hence tempting to use such an approach to batch-bootstrap bits,
by packing them into integers, to increase the throughput for binary circuits.

5.1 BB-BTS

Let us assume we aim at simultaneously bootstrapping k ≥ 1 CKKS cipher-
texts whose underlying plaintexts correspond to bits, encrypted into slots. The
goal is to bootstrap these ciphertexts together, for a cost that is significantly
lower than bootstrapping them individually using the algorithm from [BCKS24].

Our approach is as follows. We first pack the data into a single ciphertext.
More concretely, we create a single ciphertext such that for any j ≤ N/2, the
j-th slot contains a k-bit integer obtained by concatenating the bits in the j-
th slots of the input ciphertexts. Then we apply IntRootBoot with 2k-th roots
of unity, to obtain a roots-of-unity slots-encoded ciphertext. The next step is
to extract the individual bits from the roots-of-unity ciphertexts by running k
interpolations (one for each bit). Finally, we decrease the noise of the resulting
slots-encoded ciphertexts for bits, by using the h1 cleaning function (see Sect. 2).
This procedure is summarized in Algorithm 3.

Algorithm 3: Batch Bits Bootstrapping (BB-BTS)
Input : k ≥ 1 slots-encoded ciphertexts ct0, . . . , ctk−1 for vectors in {0, 1}N/2.
Output: k ≥ 1 slots-encoded ciphertexts ct′0, . . . , ct

′
k−1 for the same vectors of

bits, at a higher modulus.
Keys : IntRootBoot bootstrapping, conjugation and relinearization keys.

1 Homomorphically evaluate m0, . . . , mj �→ ∑
j 2

jmj on the input ciphertexts;
let ct be the output ciphertext;

2 ct ← IntRootBoot(ct);
3 For all 0 ≤ j < k, set ct′j as the ciphertext obtained by homomorphically

interpolating from exp(2πi(
∑

0≤�<k b�2
�)/2k) to bj ;

4 For all 0 ≤ j < k, set ct′j as the ciphertext obtained by homomorphically
evaluating h1 on ct′j ;

5 return ct′0, . . . , ct
′
k−1.

Correctness follows from inspection. We now analyze modulus consumption,
by adapting the end of Sect. 3.1. Step 2 has been studied in Sect. 3.1. As seen
in Sect. 3.2, we may interpolate at Step 3 with k − 1 multiplicative levels. At
that stage, we do not need to represent the integer I any more, but we still need
to represent k-bit data points. Finally, evaluating the h1 polynomial requires
two multiplicative levels, and the data of interest has a single bit at that stage.
Overall, the modulus consumption is as follows:

ModConsBB-BTS ≈ (�CtS + �EvalExp) · (5 + k + γacc + γnoise)
+(k − 1) · (k + γacc + γnoise) (2)
+(�StC + 2) · (1 + γacc + γnoise) ,

Bootstrapping Small Integers With CKKS 351

where the variables �CtS, �EvalExp, �StC, γacc and γnoise are as before. It may seem
that cleaning the ciphertexts may not be necessary, depending on how noisy they
currently are. Indeed, if their noise is limited, then one may first evaluate some
binary gates and postpone cleaning. However, cleaning at the end of bootstrap-
ping allows us to lower the bootstrapping modulus consumption, and we argue
that it should hence be viewed as a component of bootstrapping. Concretely,
the quantity γacc is smaller for Steps 2 and 3 than it is at Step 4. When k is
small, its impact is limited, because of the terms γacc + γnoise, for the preci-
sion, and �CtS+ �EvalExp+ �StC+2, for the multiplicative depth. However, when k
increases, the modulus consumption eventually grows quadratically in k.

For the cost, the situation is similar. For small k, one expects Step 2 to
dominate the cost. When k increases, the cost of Step 2 remains almost constant,
but those of Steps 3 and 4 grow. The highest throughput is achieved when the
cost and modulus consumption of these steps is correctly balanced with the cost
and modulus consumption of Step 2.

We note that using complex bootstrapping allows to improve throughput
further, as CtS and StC can then handle twice more data for the same cost.
However, EvalExp and Steps 2 and 3 of BB-BTS are then run twice in parallel.

5.2 Extracting Bits

It could be tempting to view Step 3 as a multi-evaluation and use the algorithm
described in Sect. 4.2. One could even avoid Step 4 by cleaning the noise in
Step 3, by using the approach given in Sect. 3.3, and save one multiplicative
depth. However, it seems preferable to exploit the fact that the interpolation
polynomials for extracting bits are not generic at all. For example, the least
significant bit b0 can be obtained from exp(2iπ(

∑
0≤�<k b�2�)/2k) by raising it

to the 2k−1-th power to obtain (−1)b0 = −2b0 + 1 and then correct the result
to b0. As showed in the following lemma, the interpolation polynomials for the
subsequent bits are also very sparse.

Lemma 3. Let k ≥ 1 and 0 ≤ j < k. Define Pk,� ∈ C[x] as the minimal degree
polynomial that maps exp(2iπ(

∑
0≤�<k b�2�)/2k) to bj, for all b0, . . . , bk−1 ∈

{0, 1}. Then Pk,� has at most 1 + 2� non-zero coefficients, for monomials of
degrees 0 and odd multiples of 2k−j−1 that are < 2k.

Proof. We prove the result by induction on k. It may be checked that it holds
for k = 1, and we now assume that k ≥ 2. We now consider two cases, depending
on the value of j. Assume first that j < k−1. Note that for any bits b0, . . . , bk−1,
raising the 2k-th root of unity exp(2iπ(

∑
0≤�<k b�2�)/2k) to the power 2k−j−1

gives the 2j+1-th root of unity exp(2iπ(
∑

0≤�≤j b�2�)/2j+1). By unicity of inter-
polating polynomials of small degree, we then obtain that

Pk,j(x) = Pj+1,j(x2k−j−1
) .

352 Y. Bae et al.

The induction hypothesis gives the result. We now consider the remaining case,
i.e., j = k − 1. Using the observation that

exp

⎛
⎝2iπ

2k

⎛
⎝2k−1 +

∑
0≤�<k−1

b�2�

⎞
⎠

⎞
⎠ = − exp

⎛
⎝2iπ

2k

⎛
⎝0 +

∑
0≤�<k−1

b�2�

⎞
⎠

⎞
⎠ ,

we observe that for any θ in the set of interpolating points, we have that −θ
belongs to the set of interpolating points and one is mapped to 0 = −1/2 +
1/2 whereas the other one is mapped to 1 = 1/2 + 1/2. This implies that the
shifted interpolation polynomial Pk,k−1 − 1/2 is odd. In particular, its non-zero
coefficients can only be for odd powers of x. ��
As an illustration, we give the list of P4,�’s below.

P4,0 =
1
2

− 1
2
x8 ,

P4,1 =
1
2
+ α4x

4 + α12x
12 ,

P4,2 =
1
2
+ α2x

2 + α6x
6 + α10x

10 + α14x
14 ,

P4,3 =
1
2
+ α1x + α3x

3 + α5x
5 + α7x

7 + α9x
9 + α11x

11 + α13x
13 + α15x

15 ,

where:

[
α4
α12

]
=

[−0.25 + 0.25i
−0.25 − 0.25i

]
,

⎡
⎢⎣

α2
α6
α10
α14

⎤
⎥⎦ ≈

⎡
⎢⎣

−0.125 + 0.3018i
−0.125 + 0.0518i
−0.125 − 0.0518i
−0.125 − 0.3018i

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
α3
α5
α7
α9
α11
α13
α15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0625 + 0.3142i
−0.0625 + 0.0935i
−0.0625 + 0.0418i
−0.0625 + 0.0124i
−0.0625 − 0.0124i
−0.0625 − 0.0418i
−0.0625 − 0.0935i
−0.0625 − 0.3142i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now describe a multi-evaluation algorithm specifically designed for eval-
uating the Pk,�’s for 0 ≤ � < k. The shape of the polynomials to be evalu-
ated makes it suitable for an adapted version of the Paterson-Stockmeyer algo-
rithm [PS73]. It is possible to use the algorithm described in Sect. 4.2 to evaluate
these multiple polynomials, but such an approach wastes the potential speed-
ups stemming from the sparsity of the coefficients, as well as the fact that
αiX

i = α16−iX16−i for every i. We instead write the polynomial Pk,� as

Pk,�(X) =
1
2
+ X2k−�−1

Qk,�(X2k−�

) + X2k−�−1Qk,�(X2k−�) ,

with deg(Qk,�) ≤ 2�−1. We then sequentially use the Paterson-Stockmeyer algo-
rithm evaluating a polynomial of degree d in 2

√
d non-scalar multiplications,

for each Qk,�. The total number of non-scalar multiplications for evaluating
all polynomials follows a geometric sum of ratio 1/

√
2, since �deg(Qk,�)/2� =

Bootstrapping Small Integers With CKKS 353

deg(Qk,�−1). The resulting number of ciphertext-ciphertext multiplications is
� 3.4 · 2

√
2k−2.

To further optimize the algorithm for extracting bits, one can recycle the
setup basis to evaluate all polynomials Qk,�’s. Assume that Qk,� has degree
22u−1. The baby-step phase of the Paterson-Stockmeyer algorithm com-
putes 1, x, x2, . . ., xu−1, xu, x2u, x4u, Since Qk,�−1(X2) = Qk,�(X) mod
(X2k − 1) for 1 ≤ � < k with deg(Qk,�−1) = �deg(Qk,�)/2�, half of the baby-
step basis (the odd-indexed elements) becomes useless. The other half is still
sufficient to run the Paterson-Stockmeyer algorithm. The baby-step phase is
thus recycled across the polynomial evaluations. However, the baby-step basis
may be unbalanced compared to the giant-step basis after too many recyclings.
This strategy alone is suboptimal to minimize the number of nonscalar multi-
plications. To handle this issue, we extend the baby-steps basis, which results
in twice less recursive calls for polynomial evaluation. The halved baby-step
basis 1, x2, . . . , xu−2 becomes extended to 1, x2, . . . , xu−2, xu, . . . , x2u−2 and the
giant-step basis starts now at x2u as described in Algorithm 4.

Algorithm 4: BitExtract

Setting: Compute u ← 2�log 2(
√

t)�, bs = {1, x2, x4, x6, . . . , xu−2} and
gs = {xu, x2u, x4u, x8u, . . . , x2v−1u}.

Input : x ← Encsk(z+ ε) ∈ R2
q with z ∈ {e2iπ0/t, e2iπ1/t . . . , e2iπ(t−1)/t}N/2

and ‖ε‖∞ � 1/t.
Output: ctout ∈ R2

Q.
1 tmpk−1 ← 1

4
+ x · PS(Qk,k−1, bs, u/2, gs, v);

2 ctk−1 ← tmpk−1 + tmpk−1;
3 bs′ ← {bs2i}i;
4 tmpk−2 ← 1

4
+ x2 · PS(Qk,k−2, bs

′, u/4, gs, v);
5 ctk−2 ← tmpk−2 + tmpk−2;
6 bs′′ ← {bs′

2i}i;
7 bs′′′ =bs′′ ∪ {xu, xu+4, . . . , x2u−4};
8 gs′ = {gsi+1}i;
9 tmpk−3 ← 1

4
+ x4 · PS(Qk,k−3, bs

′′′, u/4, gs′, v − 1);
10 ctk−3 ← tmpk−3 + tmpk−3;
11 Repeat Steps 3-10 for the next bits starting from (u/4, v − 1);
12 return ctout.

BitExtract is setting the polynomials basis for the Paterson-Stockmeyer poly-
nomial evaluation of Qk,k−1. Since it is a polynomial in x2, only even exponent
monomials are computed. Step 1 calls the polynomial evaluation method, abbre-
viated as PS, taking as arguments the setup basis for baby-steps and giant-steps
and their sizes u and v. Step 2 computes the value of Pk,k−1 with respect to
the formula above. The next polynomial Qk,k−2 is smaller. Step 3 is thus halv-
ing the bs polynomial basis as explained above. Similarly, Steps 4 and 5 com-
pute Pk,k−2 from Qk,k−2. Step 6 is again halving bs as the algorithm moves to

354 Y. Bae et al.

the evaluation of Qk,k−3. To balance it with the giant-steps, Step 7 extends the
baby-steps basis, which saves a recursive level in giant-steps at Step 8. Steps 9
and 10 evaluate Qk,k−3. The next bits are recovered by continually decreasing bs
and gs to evaluate Pk,� with the formula until � = 0.

6 Experiments

We now describe proof-of-concept implementations, based upon the C++
HEaaN library [Cry22], and report experiment results based on them. These
were run on a single-threaded CPU (i.e., Intel Xeon Gold 6242 at 2.8GHz with
502GiB of RAM) running Linux. In the experiments, the variable N denotes
the ring degree of the bootstrapping parameter, NLWE denotes the dimension of
LWE samples where NLWE < N , h and h̃ denote the Hamming weights of the
dense and sparse secret keys respectively (we rely on the sparse secret encap-
sulation technique from [BTPH22]), log2(QP) denotes the maximum switching
key modulus, dnum denotes the gadget rank of the gadget decomposition, and
depth denotes the remaining multiplicative depths after IntRootBoot. All param-
eter sets considered in this section reach 128-bit security, according to [APS15].
Note that the security of our new bootstrapping can be analyzed exactly in the
same as for conventional CKKS, as we built our scheme upon CKKS without
modifying any aspect related to security.

6.1 Bypassing DM/CGGI

As described in Sect. 4.3, we combined the ring packing from [BCK+23] (i.e.,
HERMES), the IntRootBoot algorithm borrowed from [BGGJ20], and our adap-
tation of the roots-of-unity look-up table of [CKKL24], to bypass DM/CGGI
bootstrapping. We have implemented j-bits to j-bits look-up table for j ∈
{2, 4, 6, 8, 10}. As the precision for the look-up table interpolation depends on j,
we designed optimized parameters for each value of j, as shown in Table 3. Since
DM/CGGI is generally effective on processing one or a small number of inputs,
we mainly targeted the better latency on small number of inputs. When designing
the bootstrapping parameters, we minimized degrees/depths for look-up table
evaluations. We also used thin bootstrapping with complex slots, i.e., used fewer
slots than available in the ring, to obtain a further latency gain as well as an
accuracy improvement.

In Table 4, we batch-evaluated look-up tables for 212 LWE samples of dimen-
sion 212, in all experiments. The method can be generalized to look-up table
evaluations on 2� LWE ciphertexts of dimension 2k. Note that k cannot be too
small as a function of the integer bit-length j, as one needs to increase the
modulus and dimension to encrypt more bits in a DM/CGGI ciphertext.

Bootstrapping Small Integers With CKKS 355

Table 3. Parameters we used for the look-up table implementations. depth refers the
multiplicative depth after IntRootBoot. The log2(q) columns correspond to the primes
used for ciphertext modulus, with Base, StC, Mult, Extract, EvalExp and CtS referring to
bit-sizes and numbers of primes of the corresponding steps. The column log2(p) refers
to the bit-sizes and numbers of temporary primes for switching keys. Each parameter
set is designed to provide the exact depth required to evaluate an arbitrary look-up
table on the required number of bits.

N (h, h̃) log2(QP) dnum depth

Param-LUT-2-to-2 214

(256, 32)

440 16 4

Param-LUT-4-to-4 215 786 4 6

Param-LUT-6-to-6 215 799 11 8

Param-LUT-8-to-8 215 869 12 10

Param-LUT-10-to-10 216 1378 5 12

log2(q) log2(p)
Base StC Mult and Extract EvalExp CtS

Param-LUT-2-to-2 26 27 26 × 4 26 × 8 24 × 2 27

Param-LUT-4-to-4 33 25 × 2 33 × 6 33 × 8 29 × 2 61 × 3

Param-LUT-6-to-6 35 33 × 2 35 × 8 35 × 8 33 × 2 36 × 2

Param-LUT-8-to-8 35 33 × 2 35 × 10 35 × 8 33 × 2 36 × 2

Param-LUT-10-to-10 42 42 × 3 42 × 12 42 × 8 42 × 3 61 × 4

More concretely, our method for batch-evaluating look-up tables on NLWE =
2k LWEs of dimension NLWE consists of the following steps:

1. (Ring pack) Map the input LWE ciphertexts into a single NLWE-dimensional
RLWE ciphertext. Embed the NLWE-dimensional RLWE ciphertext into an
N -dimensional RLWE ciphertext. We consider the N -dimensional RLWE
ciphertext as a sparsely packed RLWE ciphertext with NLWE/2 complex slots.

2. (IntRootBoot) Apply IntRootBoot for NLWE/2 out of N slots (i.e., using thin
bootstrapping) on the result of the previous step, to get an RLWE ciphertext.

3. (Interpolation) Perform a polynomial interpolation with cleaning functional-
ity.

4. (StC and LWE extraction) Apply thinly-packed StC on the result of the
previous step. Decompose the N -dimensional RLWE ciphertext into NLWE-
dimensional ciphertexts and extract LWE ciphertexts.

To ensure compatibility with DM/CGGI parameters that have LWE dimen-
sions NLWE that are not 2k, one can perform pre-processing on the input and
post-processing on the output. For the pre-processing, we can simply embed
the given LWE ciphertexts into 2k-dimensional LWE ciphertexts by padding
with zeros. For the post-processing, we can switch from dimension 2k to dimen-
sion NLWE LWE as done in CGGI bootstrapping [CGGI16a].

356 Y. Bae et al.

Table 4. Performance evaluation for look-up-tables with various numbers of
input/output bits. The second row corresponds to the precision of the integers. The
amortized time is computed as total time divided by the number of input LWE cipher-
texts. Each reported timings is obtained by averaging over 10 experiments, whereas
the precision is maximized over all 10 experiments and all slots.

Number of bits of the input/output 2 4 6 8 10

− log ‖e‖∞ 5.4 12.5 12.8 8.7 18.8

HERMES execution time (sec) 0.671 0.717 0.72 0.757 0.76

IntRootBoot execution time (sec) 2.36 4.84 8.09 9.3 18

Interpolation time (sec) 0.09 0.66 1.95 5.1 31.1

StC and LWE extraction time (sec) 0.077 0.19 0.196 0.194 0.39

Total time for look-up table evaluation (sec) 3.2 6.4 11 15.4 50.3

Amortized look-up-table evaluation time (ms) 0.78 1.57 2.67 3.75 12.26

Table 5. Performance evaluation for multi-output look-up tables for various numbers
of look-up tables. The second row corresponds to the precision of the integers. We used
parameter Param-LUT-8-to-8 to evaluate several 8-bits to 8-bits look-up tables at once
on the same input. Each reported timings is obtained by averaging over 10 experiments,
whereas the precision is maximized over all 10 experiments and all slots.

Number of look-up tables evaluated 1 2 3 4

− log ‖e‖∞ 8.7

HERMES execution time (sec) 0.757

IntRootBoot execution time (sec) 9.3

Hermite Interpolation time (sec) 5.1 7.1 9.5 10.6

StC and LWE extraction time (sec) 0.194 0.42 0.67 0.77

Total time for look-up table evaluation (sec) 15.4 17.6 20.2 21.4

Amortized look-up-table evaluation time (ms) 3.75 2.14 1.65 1.3

In Table 5, we report experiments for multi-function evaluation (see Sect. 4.2)
in the context of batch-bootstrapping DM/CGGI ciphertexts. We used
Identity,Square,Cube,Backwards : {0, · · · , 28 − 1} → {0, · · · , 28 − 1} for the
functions, which are defined as Identity(x) = x, Square(x) = x2 (mod 28),
Cube(x) = x3 (mod 28), and Backwards(x) = 28 − 1 − x.

6.2 Batch Bits Bootstrapping

We instantiated the batch bits bootstrapping (BB-BTS) described in Sect. 5. For
bit extraction, we followed the strategy described in Sect. 3.3. Below, we report

Bootstrapping Small Integers With CKKS 357

Table 6. Parameter we used for batch bits bootstrapping. Here log2(q) denotes the
primes used for ciphertext modulus, with Base, StC, Mult, Extract, EvalExp and CtS
referring to bit-sizes and numbers of primes of the corresponding steps. log2(p) refers
to the bit-size and number of temporary primes for switching keys.

N (h, h̃) log2(QP) dnum depth

Param-BB-BTS 216 (256, 32) 1585 3 24

log2(q) log2(p)
Base StC Mult and Extract EvalExp CtS

35 60 × 1 30 × 24 35 × 7 35 × 3 60 × 7

efficiency measurements and provide a comparison to the bits bootstrapping
algorithm from [BCKS24]. For a fair comparison, we chose the same ring degree
N = 216 and measured the execution time in a similar computing environment.
BB-BTS however requires a different CKKS parametrization, which we describe
in Table 6. The number of levels reserved for cleaning is estimated as in [BCKS24]
(once after 4 sequential gate evaluations).

BB-BTS allows to bootstrap many encrypted bits for the cost of a single
(heavier) bootstrapping. In order to quantify the throughput gain, we consider
the execution time of BB-BTS and the amount of computation that can be
done between two consecutive bootstraps. The amortized gate evaluation time
is defined as

TBB-BTS

n × � × k
,

where TBB-BTS denotes the BB-BTS time, n denotes the number of slots for boot-
strapping, � denotes the number of remaining levels after BB-BTS excluding the
levels reserved for cleaning, and k denotes the number of bits. This definition
is a generalization of the amortized gate evaluation time used in [BCKS24,
Section 5.2]. The detailed results are provided in Table 7. Note that our bit
extraction method BitExtract consumes one more multiplicative level for each
additional bit. If �1 denotes the number of useful levels when k = 1, then � ≈
�1 − k, and one sees that the term 1/(� × k) decreases when k increases, until k
reaches approximately �1/2. If k further increases, then the amortized cost
increases as well, as the number of useful levels becomes too low. This phe-
nomenon limits the speedup factor. For Param-BB-BTS, the speedup factor of
BB-BTS on k bits compared to BB-BTS on 1 bit (which is slightly slower than
the method in [BCKS24]) is thus bounded from above as ≈ 4.5 = (24 − 6)/4.
This neglects the fact that run-time also grows with k.

358 Y. Bae et al.

Table 7. Performance evaluation of BB-BTS for the parametrization in Table 6 (i.e.,
Param-BB-BTS). Here ‖eBB-BTS‖∞ denotes the maximum error of BB-BTS across all
the slots and ciphertexts.

Number of ciphertexts (2 bits per slot) 1 2 3 4 5 6 7 8

Number of bits per slot 2 4 6 8 10 12 14 16
Number of levels after bit extraction 23 22 21 19 18 17 16 15

− log2(‖eBB-BTS‖∞) 12 11 10 9 8 7 6 5

Number of levels reserved for cleaning 6 6 5 5 5 5 5 4

IntRootBoot execution time (sec) 24.0 23.3 23.8 23.8 23.7 23.5 23.6 24.5

Bit extraction time (sec) 0.106 0.862 2.50 4.94 7.80 12.5 20.7 34.3

Amortized gate evaluation time (μs) 21.6 11.5 8.36 7.837.39 7.62 8.78 10.2

Regarding the amortized gate evaluation time, the experimental optimum is
obtained when bootstrapping 10 bits (i.e., 5 ciphertexts) together. In that case,
we obtain an amortized gate evaluation time of 7.39μs. Recall that [BCKS24]
reached 17.6μs per binary gate, i.e., our BB-BTS reaches an amortized gate cost
that is 2.38x smaller.

References

[ADE+23] E. Aharoni, N. Drucker, G. Ezov, E. Kushnir, H. Shaul, and
O. Soceanu.E2E near-standard and practical authenticated transciphering.
IACR eprint 2023/1040, 2023.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learn-
ing with errors. J. Math. Cryptol., 2015. Software available at https://
github.com/malb/lattice-estimator (commit fd4a460).

[BCK+23] Y. Bae, J. H. Cheon, J. Kim, J. H. Park, and D. Stehlé. HERMES: Efficient
ring packing using MLWE ciphertexts and application to transciphering.
In CRYPTO, 2023.

[BCKS24] Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé. Bootstrapping bits with CKKS.
In EUROCRYPT, 2024.

[BGGJ20] C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: combining
ring-LWE-based fully homomorphic encryption schemes. J. Math. Cryptol.,
2020.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In ITCS, 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In CRYPTO, 2012.

[BTPH22] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux. Bootstrapping for
approximate homomorphic encryption with negligible failure-probability by
using sparse-secret encapsulation. newblock In ACNS, 2022.

[CCS19] H. Chen, I. Chillotti, and Y. Song. Improved bootstrapping for approximate
homomorphic encryption. In EUROCRYPT, 2019.

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

Bootstrapping Small Integers With CKKS 359

[CGGI16a] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-
ACRYPT, 2016.

[CGGI16b] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully
homomorphic encryption library (version 1.1), 2016. Software available at
https://tfhe.github.io/tfhe/.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE. In
ASIACRYPT, 2017.

[CHK+18] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for
approximate homomorphic encryption. In EUROCRYPT, 2018.

[CHMS22] O. Cosseron, C. Hoffmann, P. Méaux, and F.-X. Standaert. Towards case-
optimized hybrid homomorphic encryption - featuring the Elisabeth stream
cipher. In ASIACRYPT, 2022.

[CIM19] S. Carpov, M. Izabachène, and V. Mollimard. New techniques for multi-
value input homomorphic evaluation and applications. In CT-RSA, 2019.

[CJP21] I. Chillotti, M. Joye, and P. Paillier. Programmable bootstrapping enables
efficient homomorphic inference of deep neural networks. In CSCML, 2021.

[CKK20] J. H. Cheon, D. Kim, and D. Kim. Efficient homomorphic comparison meth-
ods with optimal complexity. In ASIACRYPT, 2020.

[CKKL24] H. Chung, H. Kim, Y.-S. Kim, and Y. Lee. Amortized large look-up
table evaluation with multivariate polynomials for homomorphic encryp-
tion. IACR eprint 2024/274, 2024.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, 2017.

[Cry22] CryptoLab. HEaaN library, 2022. Available at https://heaan.it/.
[DM15] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryp-

tion in less than a second. In EUROCRYPT, 2015.
[DMPS24] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul. BLEACH: Cleaning

errors in discrete computations over CKKS. J. Cryptol., 2024.
[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-

tion. IACR eprint 2012/144, 2012.
[HK20] K. Han and D. Ki. Better bootstrapping for approximate homomorphic

encryption. In CT-RSA, 2020.
[KPK+22] S. Kim, M. Park, J. Kim, T. Kim, and C. Min. EvalRound algorithm in

CKKS bootstrapping. In ASIACRYPT, 2022.
[KS22] K. Kluczniak and L. Schild. FDFB: Full domain functional bootstrapping

towards practical fully homomorphic encryption. TCHES, 2022.
[LLK+22] Y. Lee, J.-W. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang. High-

precision bootstrapping for approximate homomorphic encryption by error
variance minimization. In EUROCRYPT, 2022.

[LLL+21] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No. High-precision boot-
strapping of RNS-CKKS homomorphic encryption using optimal minimax
polynomial approximation and inverse sine function. In EUROCRYPT,
2021.

[LMSS23] C. Lee, S. Min, J. Seo, and Y. Song. Faster TFHE bootstrapping with block
binary keys. In AsiaCCS, 2023.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

https://tfhe.github.io/tfhe/
https://heaan.it/

360 Y. Bae et al.

[LW23] Z. Liu and Y. Wang. Amortized functional bootstrapping in less than 7 ms,
with Õ(1) polynomial multiplications. In ASIACRYPT, 2023.

[LW24] Z. Liu and Y. Wang. Relaxed functional bootstrapping: A new perspective
on BGV/BFV bootstrapping. IACR eprint 2024/172, 2024.

[PS73] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multi-
plications necessary to evaluate polynomials. SIAM J Comput, 1973.

[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

[TCBS23] D. Trama, P.-E. Clet, A. Boudguiga, and R. Sirdey. A homomorphic AES
evaluation in less than 30 seconds by means of TFHE. In WAHC, 2023.

[Zam24] Zama. TFHE-rs: A pure rust implementation of the TFHE scheme for
boolean and integer arithmetics over encrypted data. (version 0.6.1), 2024.
Software available at https://github.com/zama-ai/tfhe-rs.

https://github.com/zama-ai/tfhe-rs

Digital Signatures

Practical Blind Signatures in Pairing-Free
Groups

Michael Klooß1(B), Michael Reichle1, and Benedikt Wagner2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{michael.klooss,michael.reichle}@inf.ethz.ch

2 Ethereum Foundation, Berlin, Germany
benedikt.wagner@ethereum.org

Abstract. Blind signatures have garnered significant attention in recent
years, with several efficient constructions in the random oracle model
relying on well-understood assumptions. However, this progress does not
apply to pairing-free cyclic groups: fully secure constructions over cyclic
groups rely on pairings, remain inefficient, or depend on the algebraic
group model or strong interactive assumptions. To address this gap,
Chairattana-Apirom, Tessaro, and Zhu (CTZ, Crypto 2024) proposed
a new scheme based on the CDH assumption. Unfortunately, their con-
struction results in large signatures and high communication complexity.
In this work, we propose a new blind signature construction in the ran-
dom oracle model that significantly improves upon the CTZ scheme.
Compared to CTZ, our scheme reduces communication complexity by a
factor of more than 10 and decreases the signature size by a factor of
more than 45, achieving a compact signature size of only 224 Bytes. The
security of our scheme is based on the DDH assumption over pairing-free
cyclic groups, and we show how to generalize it to the partially blind
setting.

1 Introduction

A blind signature scheme [17] is a special digital signature scheme with a two-
party signing process. Namely, a Signer, who possesses the secret key, interacts
with a User holding the message intended for signing. Once the signing interac-
tion terminates, the User should hold a signature for the message that can be ver-
ified with respect to the Signer’s public key. It is crucial that the scheme upholds
the following security and privacy properties [35,51]: One-More Unforgeability
asserts that the User can not generate valid signatures on its own, i.e., without
engaging in the signing protocol with the Signer; Blindness ensures that during
the signing process, the User’s message remains undisclosed to the Signer. More
precisely, the Signer can not link the message-signature pair to the interaction.
These two properties render blind signatures a versatile privacy-preserving tool.

M. Klooß—Work done at Aalto University. The author’s affiliation changed before
publication.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 363–395, 2025.
https://doi.org/10.1007/978-981-96-0875-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_12&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_12

364 M. Klooßet al.

They have found use in various domains, including but not limited to anonymous
credentials [12,13] and electronic cash [17,46].

Recent Progress. For a long time, constructions of blind signatures faced con-
siderable challenges, characterized by prohibitive inefficiency [29], reliance on
strong assumptions [5,8,17,24,31], complexity leveraging [28,29] or limited secu-
rity guarantees [3,33,36,51]. Even in the random oracle model [6], a fully secure
and efficient blind signature scheme based on well-studied assumptions remained
an elusive goal. Recently, progress in two distinct directions has been made, both
contributing significantly to the resolution of this longstanding issue: The first
line of work [15,32,41] uses cut-and-choose techniques to turn weakly secure
but efficient constructions into fully secure ones while avoiding the use of strong
assumptions. The second line of work [20,38,40] draws inspiration from a generic
construction due to Fischlin [22]. By carefully exploiting the algebraic struc-
ture of specific instantiations and with major modifications of Fischlin’s proof
technique, these works provide practical blind signatures based on established
assumptions. Notably, among the aforementioned constructions, the practical
ones heavily rely on algebraic properties of lattices [20], pairings [15,32,40], or
the RSA setting [15,38].

The Pairing-Free Setting. A long-standing goal in the realm of digital sig-
nature variants and in cryptography in general is to understand if and how
pairings can be avoided [11,14,18,30,47,54,55]. This endeavor holds both scien-
tific intrigue and practical merit: operations in pairing-friendly groups are more
expensive, and pairing-free groups enjoy a broader library support.

Unfortunately, as we have seen above, the lines of work [15,32,41] and [20,40]
so far did not yield practical blind signatures over pairing-free cyclic groups. And
while there are promising works trying to close this gap, they all fall short in
meeting the desired objectives entirely. Specifically, while some works [19,37,54]
yield very efficient pairing-free blind signature based on established assump-
tions, their analysis relies on the algebraic group model [25]. Conversely, the
very recent work by Chairattana-Apirom, Tessaro, and Zhu [16] avoids the use of
the algebraic group model. They give efficient constructions based on interactive
variants of CDH, along with a non-interactive CDH-based construction utiliz-
ing techniques from [32]. Unfortunately, this latter construction has signatures
containing Θ(λ) many group elements, where λ is the security parameter. In
contrast to that, signatures in the most efficient pairing-based construction [40]
contain only a small constant number of group elements.

Our Goal. The goal of this work is to close this gap by providing a new blind
signature scheme over pairing-free cyclic groups, that (1) is based on well-studied
cryptographic hardness assumptions, (2) avoids idealizations other than the ran-
dom oracle model, and (3) is practically efficient, without the λ overhead in
signature size.

Practical Blind Signatures in Pairing-Free Groups 365

1.1 Our Contribution

We achieve our goal by constructing a practical blind signature scheme in pairing-
free groups, which we compare with the state-of-the-art in Tables 1 and 2. To
summarize, our scheme comes with the following key characteristics:

– Unforgeability. One-more unforgeability holds based on the DDH assumption
in the random oracle model. Notably, our proof avoids the need for rewind-
ing, resulting in a tighter security bound in contrast to CTZ-3 [16], which is
the only other scheme achieving full one-more unforgeability in pairing-free
groups without the algebraic group model.

– Blindness. Our scheme is statistically blind, and we show that it naturally
generalizes to the setting of partially blind signatures [2]. This is the first
scheme supporting partial blindness in this regime1.

– Efficiency. Our scheme is both concretely and asymptotically efficient. Espe-
cially, comparing to CTZ-3 [16], we reduce the communication complexity by
a factor of more than 10, and the signature size from 10.5 Kilobytes to 224
Bytes, see Table 2).

Technically, our starting point is the pairing-based construction by Katsumata,
Reichle, and Sakai [40]. We turn this construction into a pairing-free variant by
replacing the pairing with a (blindly issued) non-interactive proof. It is worth
noting that a straightforward substitution would yield only a weaker notion of
one-more unforgeability, similar to CTZ-1 and CTZ-2 [16]. However, through
a strategically devised security proof, we can circumvent this issue, achiev-
ing full one-more unforgeability. A second twist allows us to avoid rewinding,
another improvement over CTZ-3 [16]. Further, we revist the security of Fischlin’s
straightline extractable proof to achieve statistical blindness for our scheme.
Notably, this is in contrast to [40], which is only computationally blind.

1.2 Related Work

Here, we discuss related work on blind signatures. We focus primarily on recent
efficient and secure constructions in the random oracle model [6]. We give a
comparison of blind signature schemes in pairing-free cyclic groups in Table 1.

Foundations of Blind Signatures. Blind signatures have been introduced
by Chaum in 1982 [17] in the context of electronic cash. Pioneering works are
by Juels, Luby, and Ostrovsky [35], by Fischlin [22], and by Pointcheval and
Stern [51]. Namely, Juels, Luby, and Ostrovsky have demonstrated that blind
signatures can generically (and inefficiently) be constructed from one-way trap-
door permutations via secure two-party computation. Fischlin also gave a generic
construction of round-optimal (i.e., two moves) blind signatures. On the other
hand, Pointcheval and Stern have shown the security of efficient three-move blind
signatures in the random oracle model, as long as only polylogarithmically many
signatures are issued concurrently. Since then, several impossibility results have
1 It is not obvious how to modify CTZ [16] to achieve partial blindness.

366 M. Klooßet al.

Table 1. Comparison of concurrently secure blind signature schemes in the discrete
logarithm setting without pairings. All constructions rely on the random oracle model,
and schemes above the line additionally require the algebraic group model. We compare
the assumptions and security and the communication complexity and signature size in
terms of number of group elements and number of field elements. The schemes CTZ-1
and CTZ-2 [16] only satisfy a weaker variant of one-more unforgeability.

Scheme Assumption Full OMUF Moves Communication Signature

Cl-Schnorr [26] OMDL, mROS ✓ 3 2G + 3Zp 1G + 1Zp

Abe [1,37] DLOG ✓ 3 λ + 3G + 6Zp 2G + 6Zp

TZ [54] DLOG ✓ 3 2G + 4Zp 4Zp

Snowblind [19] DLOG ✓ 3 2G + 4Zp 1G + 2Zp

CTZ-1 [16] CT-OMCDH ✗ 4 5G + 5Zp 1G + 4Zp

CTZ-2 [16] CT-OMCDH ✗ 5 5G + 5Zp 1G + 4Zp

CTZ-3 [16] CDH ✓ 4 Θ(λ)(λ + G + Zp) Θ(λ)(λ + G + Zp)

Ours DDH ✓ 4 Θ(λ)(λ + G + Zp) 2G + 5Zp

Table 2. Comparison of the concrete efficiency of concurrently secure blind signature
schemes in the discrete logarithm setting without pairings. We exclude constructions in
the algebraic group model and constructions that do not achieve full one-more unforge-
ability for this comparison. We assume λ = 128 and that group and field elements are
represented using 256 bit. See the full version [42] for the parameter script.

Scheme Assumption Full OMUF Moves Communication Signature

CTZ-3 [16] CDH ✓ 4 27.12 Kilobytes 10.50 Kilobytes
Ours DDH ✓ 4 2.46 Kilobytes 224 Bytes

been proven [4,23,49]. For example, Fischlin and Schröder have ruled out certain
statistically blind three-move constructions from non-interactive assumptions in
the standard model [23].

Strong Assumptions or Idealized Models. In addition to generic con-
structions mentioned earlier, several more direct constructions exist, relying
on complexity leveraging [28,29] or non-standard q-type or interactive assump-
tions [24,29,31,45]. Also, there are blind variants of BLS signatures and RSA-
full-domain hash signatures [5,8], which are very efficient and round-optimal.
However, these constructions rely on interactive one-more variants of the under-
lying assumptions, e.g., one-more CDH. If one is willing to rely on the algebraic
group model [25], there are several efficient constructions of blind signatures in
pairing-free groups [19,37,54]. A recent scheme due to Fuchsbauer and Wolf [27]
outputs regular Schnorr signatures [52]. In terms of assumptions, their result can
be interpreted in two ways: one can assume the security of Schnorr signatures [52]
with respect to a fixed hash function, which is an interactive assumption; alter-
natively, one can rely on the discrete logarithm assumption by treating the hash
function as a random oracle. In this latter case, however, their protocol proves

Practical Blind Signatures in Pairing-Free Groups 367

relations defined by the random oracle in generic SNARK, which has unclear
security implications and is highly non-standard.

Cut-and-Choose Constructions. The starting point of this line of work
lies in efficient constructions of blind signatures with weak security guar-
antees [3,33,34,36,51] based on witness indistinguishable linear identification
schemes [44]. Specifically, these schemes are insecure if more than polylogarith-
mically many signatures are issued concurrently. This is not only an artifact
of the security proof but can be exploited in a practical attack [7,53,56]. By
extending a classical construction of Pointcheval [50], Katz, Loss, and Rosen-
berg have introduced boosting [41], a technique to turn the aforementioned
polylogarithmically-secure blind signatures into fully secure ones: during the
Nth signing interaction, the Signer and User engage in a 1-of-N cut-and-choose,
which results in communication and computation scaling linearly in N . Subse-
quently, Chairattana-Apirom et al. [15] have improved communication to scale
logarithmically in N . They have also developed two concretely efficient con-
structions leveraging the cut-and-choose idea. Building on one of these construc-
tions (called PI-Cut-Choo), Hanzlik, Loss, and Wagner [32] have proposed a
construction called Rai-Choo. This scheme is stateless and round-optimal, and
both computation and communication are independent of N . It relies on the
CDH assumption in the pairing-setting. On the downside, signatures in Rai-
Choo contain Θ(λ) many group elements. The latest achievements in this line
of work are the pairing-free constructions by Chairattana-Apirom, Tessaro, and
Zhu [16]. While two of their constructions are very efficient, they rely on interac-
tive assumptions and only achieve a weaker version of unforgeability. The third
construction, which achieves full unforgeability and relies only on CDH has sig-
natures containing Θ(λ) many group elements due to techniques inherited from
Rai-Choo. Hence, this line of work did not yet result in a fully secure and efficient
scheme with constant2 signature size over pairing-free groups.

Fischlin and its Descendants. In addition to the line of work using cut-
and-choose outlined above, a second line of constructions managed to construct
schemes that are practical and rely on conservative assumptions. This line of
work draws inspiration from Fischlin’s generic construction [22] but introduces
several modifications to the proof technique to enable efficient implementations.
Specifically, del Pino and Katsumata [20] efficiently instantiate this framework
from lattice assumptions, while Katsumata, Reichle, and Sakai [40] give two
constructions utilizing pairings. Kastner, Nguyen, and Reichle [38] present a
construction relying on pairing-free groups and the strong RSA assumption.

However, this line of research has not yet yielded an efficient scheme with
constant signature size over pairing-free groups alone. Our contribution can be
viewed as adapting the second construction proposed by Katsumata, Reichle,
and Sakai to the pairing-free setting. Doing this naively would result in a weaker
form of unforgeability as for the first two constructions in [16]. With a clever
twist, we can prove full unforgeability.

2 Constant signature size here means a constant (in λ) number of group elements.

368 M. Klooßet al.

1.3 Technical Overview

Here, we give an informal overview of our techniques. Our starting point will be
the pairing-based blind signature scheme by Katsumata, Reichle, and Sakai [40].
As this scheme is already very efficient, our main technical goal is to eliminate
the use of pairings.

Our Starting Point: Pairing-Based Blind Signatures. Let us briefly recall
the construction by Katsumata et al. [40]. To this end, let G be a pairing-
friendly group generated by G ∈ G. The basis of the scheme is a signature
scheme obtained from the Boneh-Boyen identity-based encryption [9], for which
signatures σ = (S1, S2) have the structure

S1 = uV + s(mU + H), S2 = sG. (1)

Here, s ∈ Zp is sampled uniformly during the signing process, u ∈ Zp is the
secret key, U = uG, V , and H are public group elements, and m is a hash of the
message to be signed. Verification leverages the pairing. In the construction by
Katsumata, Reichle, and Sakai, such signatures are issued blindly as follows:

1. The User sends a Pedersen commitment C to m. It also includes a proof πPed,
proving knowledge of the commitment randomness and m;

2. The Signer homomorphically computes a blinded version σC of the signature
σ from the commitment C and sends it to the User;

3. The User can remove the commitment randomness to obtain an actual sig-
nature σ′. For blindness, it is also essential that the User rerandomizes the
signature into a fresh valid signature σ before outputting it.

In [40] and in this work, πPed has to be straightline-extractable. Due to their
instantiation of πPed, [40] relies on DDH for blindness. We follow a different
approach and instantiate πPed by revisiting the security of randomized Fischlin’s
transform [21,43]. Consequently, our instantiation is statistically blind. We refer
to the technical part of this paper for details.

Towards a Pairing-Free Scheme. We now want to eliminate the use of the
pairing from the scheme. For that, we first observe that we can port the underly-
ing signature scheme into the pairing-free setting. Essentially, we include a proof
π in the signature that proves that Eq. (1) holds. That is, the signature is now
σ = (S1, S2, π). We observe that such a proof can be constructed very efficiently
from a Σ-protocol.

While this works in the non-blind setting, computing such a signature σ
interactively and blindly turns out to be challenging: the User needs to obtain
π, but it does not know a suitable witness to do so. Especially, the witness
includes the secret key u ∈ Zp. On the other hand, we cannot just let the Signer
generate the proof π, because the statement is the rerandomized signature σ,
which we want to keep hidden from the Signer.

To overcome this first challenge, our starting point is an approach similar to
[16]. Namely, as π is constructed from an appropriate Σ-protocol, we can issue π

Practical Blind Signatures in Pairing-Free Groups 369

interactively and blindly. Roughly, we adapt the techniques of [16] to our setting,
and obtain a pairing-free variant of the construction by Katsumata et al. [40]
with blind issuance.

Full Unforgeability Fails. Equipped with (a sketch of) our scheme, let us
now move our attention to the security proof, concretely, the proof of one-more
unforgeability. The natural idea would be to translate the security proof from
the pairing-based construction [40] to our setting. Unfortunately, when doing
that naively, we can not achieve full one-more unforgeability. To understand
this, the reader may first recall that in the one-more unforgeability game, the
adversary can interact with the Signer in multiple signing sessions. It wins the
game, if it outputs valid signatures for more messages than it completed signing
interactions3. Additionally, the reader may recall the structure of our current
blind signing protocol:

1. The Signer and the User interact similarly to the pairing-based scheme
sketched above. This means that the Signer sends σC to the User which
allows the User to compute a signature (S1, S2) of the underlying pairing-
based scheme [40];

2. The Signer and the User interactively (and blindly) compute the proof π;

Now, assume that we have an adversary interacting 20 times with the Signer,
but only completing 7 interactions. Say the remaining 13 interactions end after
the first of the two stages above. Now, if an adversary outputs 8 valid message-
signature pairs, it is deemed successful in the one-more unforgeability game.
However, the reduction from [40] does not apply, as the adversary essentially
finished 13 > 8 interactions of the pairing-based protocol and learned σC . Con-
ceptually, the reduction would leak σC to the adversary too early, and σC con-
tains a solution to a hard problem (specifically, CDH). A similar issue with a
different underlying scheme also appeared in [16]. The authors manage to cir-
cumvent the issue by outputting a commitment to the signature at first, in the
second, and then opening the commitment only in the very last message of the
protocol. While this is elegant, it also causes some overhead in terms of efficiency.
As we will see next, for our scheme it is possible to prove unforgeability without
further modifying the signing protocol.

Achieving Full Unforgeability. Our high-level approach for showing full one-
more unforgeability is to eliminate information about σC from singing interac-
tions that are not finished. To this end, we observe that σC is pseudorandom
as long as the adversary never learns π, so intuitively, it should not give the
adversary any information it can use for its forgeries. To be more concrete, let
us assume for the sake of this overview that the reduction knows ahead of time
which signing interactions are not finished4. Then, the reduction will simply
3 We could show a weaker form of one-more unforgeability similar to CTZ-1 and CTZ-

2 [16], in which the adversary has to output valid signatures for more messages than
it started signing interactions.

4 Naively, this requires guessing aborted sessions which leads to an exponential security
loss. Our approach actually relies on a slightly more sophisticated argument.

370 M. Klooßet al.

send a random σC to the adversary. To get an intuition for why that works,
observe from Eq. (1) that (S1, S2) is indistinguishable from random by the DDH
assumption applied to (sG,H, sH). Coming back to our example from above,
the adversary would now only learn 7 < 8 such σC ’s, and the proof of the
pairing-based scheme applies.

Avoiding Rewinding. So far, we have omitted an important detail: the reduc-
tion of the pairing-based scheme [40] does (of course) not know the secret key,
which is part of the witness for the proof π. It is thus not clear how the reduction
can issue π to the User interactively5. A similar problem appears in [16], so let us
briefly review their solution. Roughly [16] employs an OR proof for π. That is,
π ensures that the signature is valid or the Signer knows the discrete logarithm
of some group element X ∈ G output by the random oracle. The reduction then
makes sure to know this discrete logarithm, which allows simulating π. Finally,
the reduction either obtains a valid signature, which allows to finish the proof as
before, or the discrete logarithm of X. For the latter, the reduction is required
to rewind the adversary, leading to a highly non-tight security bound.

To avoid rewinding, we make the following twist: we replace X with a Diffie-
Hellman (DH) tuple D. In particular, π now ensures that either σ is well-formed
or D is a DH tuple. Interestingly, this comes at no additional cost in signature
size. Intuitively, as we are no longer proving knowledge of a witness, but rather
membership in a language, rewinding should not be needed.

Turning this into a formal proof requires a careful sequence of hybrid games,
as outlined next. Initially, the game simulates the Signer as in the real protocol,
which means that the proof π is computed via the signature branch, i.e., using
the witness which testifies the validity of the signature. Also, D is not a DH
tuple. Then, soundness (not knowledge soundness!) of the proofs π contained
in the forgery guarantees that all signatures in the forgery are valid (because
D is not a DH tuple). Call this event E, our strategy is to preserve E while
simulating π using the DH branch. If so, we can argue as above that CDH is
solved if the adversary is successful. To carry this out, we need to switch D to
a valid DH tuple. We want to use DDH to argue that the probability of E does
not change significantly when we make this change. To do this formally, we need
to present a reduction that interpolates between the two games and efficiently
evaluates whether E occurs. Doing this naively is equivalent to solving DDH in
the first place! The crucial insight here is that this can be done efficiently using
the signing key u and the discrete logarithm h of H. Once we are in a game where
D is a valid DH tuple, we can use the corresponding DH witness to simulate π.
Then, if E occurs in this last game, we can reduce to CDH as discussed above6.

Generalizing to Partial Blindness. Partial blindness allows the Signer and
User to agree on a common message τ that is signed together with the (hid-

5 Non-interactively and without blindness, this can be done in a standard way, using
honest-verifier zero-knowledge and by programming the random oracle.

6 The final reduction does not need to check if E occurs, and hence it neither needs
the secret key u nor the discrete logarithm h of H.

Practical Blind Signatures in Pairing-Free Groups 371

den) message m. This property is useful for many privacy-preserving applica-
tions. To obtain partial blindness, we employ the design principle from Abe and
Okamoto [3]. That is, the vector D is output by a random oracle Hddh on input
τ . Otherwise, the entire protocol remains unchanged. By carefully applying the
techniques sketched above, we can prove partial blindness.

1.4 Organization of this Paper

In Sect. 2, we provide the relevant cryptographic definitions. In Sect. 3, we sketch
the pairing-free signature scheme that underlies our construction. To improve
readability, we first provide an unblinded version of our protocol in Sect. 4 and
prove one-more unforgeability. In Sect. 5, we provide the full protocol and its
blindness proof. The Signer in this protocol is the same as in Sect. 4, which
means that one-more unforgeability follows as in Sect. 4.

2 Preliminaries

Let λ ∈ N be the security parameter. We use standard notations for probabil-
ity, algorithms and distributions7. We write A(inA) ←→ B(inB) for interactive
protocols between parties A and B with input inA and inB , respectively. Within
algorithmic descriptions, we denote by req C that the algorithm outputs ⊥ if
the condition C is false. When describing games, we denote by abort if C that
the game outputs 0 if the condition C is false. Throughout, we denote by G a
group of prime order p with generator G ∈ G. We generally use additive notation
for G. Throughout, group elements G are capital, whereas elements x in N or
Zp are lowercase. Vectors of elements G or x are bold, and generally indexed
G = (G1, · · · , Gn) or x = (x1, · · · , xn), respectively.

Assumptions. Throughout the paper, we let G be a group of prime order p
with generator G ∈ G. As common, this should be understood as implicitly
being a family of groups, i.e., G = Gλ is implicitly parameterized by the security
parameter λ. We briefly recall the DL, CDH and (Q-)DDH assumptions and refer
to the full version [42] for formal definitions. While DDH implies Q-DDH,CDH
and DL tightly, these assumptions will be convenient to prove security later.
Below, let a, b, c

$← Zp. The DL assumption states that given G and aG it is hard
to compute a. The CDH assumption states that it is hard given (G, aG, bB) to
compute (ab)G. The DDH assumption states that it is hard to distinguish a real
Diffie-Hellman tuple (G, aG, bB, (ab)G) from a random tuple (G, aG, bB, cG).
The Q-DDH assumption states that it is hard to distinguish Q random Diffie-
Hellman tuples from random Q tuples.

7 We use x := v for assignment of value v to x (and x ← v if x is updated with value
v), x ← A(in) for (probabilistic) algorithms A on input in, and x

$← D for sampling
from distribution D. (If D is a set, this denotes sampling from D uniformly and
independently at random).

372 M. Klooßet al.

(Partially) Blind Signatures. We define the primitive of interest, namely,
blind signatures [17]. For convenience, we directly define partially blind signa-
tures [2] and note that plain blind signatures are the special case in which τ is
fixed, i.e., |T | = 1.

Definition 1 (Partially Blind Signature Scheme). A partially blind signa-
ture scheme with message space M and common message space T is a tuple of
PPT algorithms BS = (KeyGen,S,U,Verify) with the following syntax:

– KeyGen(1λ): outputs a pair of keys (vk, sk). We assume that sk includes vk
implicitly.

– S(sk, τ) ←→ U(vk,m, τ): S takes as input a secret key sk and common mes-
sage τ ∈ T . U takes as input a key vk, a message m ∈ M and common
message τ ∈ T . After the execution, U returns a signature σ and we write
σ ← 〈S(sk, τ),U(vk,m, τ)〉.

– Verify(vk,m, τ, σ) is deterministic and takes as input public key vk, message
m ∈ M, a common message τ , and a signature σ, and outputs b ∈ {0, 1}.

Definition 2 (Correctness). A partially blind signature BS is correct with cor-
rectness error γerr if for all (vk, sk) ∈ KeyGen(1λ) and all m ∈ M, τ ∈ T , it holds
that

Pr[σ ← 〈S(sk, τ),U(vk,m, τ)〉 : Verify(vk,m, τ, σ) = 1] ≥ 1 − γerr(λ).

Intuitively, a (partially) blind signature scheme should not allow any user
to obtain signatures without interacting with the Signer. This is modeled by
the notion of one-more unforgeability, which states that after completing k − 1
signing sessions on some common message τ∗, an adversary can not output valid
signatures on k messages with common message τ∗.

Definition 3 (One-More Unforgeability). Let BS = (KeyGen,S,U,Verify)
be a blind signature scheme. Consider an algorithm A and the following game:

1. Run (vk, sk) ← KeyGen(1λ) and let O be an interactive oracle simulating
S(sk, ·).

2. Run τ, ((m1, σ1), . . . , (mk, σk)) ← AO(vk), where A can query O in an arbi-
trarily interleaved way.

3. Output 1 if and only if all mi, i ∈ [k] are pairwise distinct, A completed at
most k − 1 interactions with O on input τ , and for each i ∈ [k] it holds that
Verify(vk,mi, τ, σi) = 1.

We denote by AdvOMUFBS
A (λ) the probability that the above game outputs 1. We

say that BS is one-more unforgeable (OMUF), if for every PPT algorithm A, it
holds that AdvOMUFBS

A (λ) = negl(λ).

To protect the privacy of users, blind signatures should satisfy blindness. Intu-
itively, blindness states that a malicious signer can not link the signing inter-
action to the message-signature pair (except for the common message τ). We
emphasize that we consider the malicious signer blindness, i.e., the malicious
signer can freely choose the public key and arbitrarily deviate from the protocol.

Practical Blind Signatures in Pairing-Free Groups 373

Definition 4 (Partial Blindness). Let BS = (KeyGen,S,U,Verify) be a blind
signature scheme. For an algorithm A and bit b ∈ {0, 1}, consider the following
game:

1. Run (vk,m0,m1, τ, st) ← A(1λ).
2. Let O0 be an interactive oracle simulating U(vk,mb, τ) and O1 be an interac-

tive oracle simulating U(vk,m1−b, τ).
3. Run st′ ← AO0,O1(st), where A has arbitrary interleaved one-time access to

O0 and O1. Let σb, σ1−b be the local outputs of O0,O1, respectively.
4. If σ0 = ⊥ or σ1 = ⊥, run b′ ← A(st′,⊥,⊥). Else, run b′ ← A(st′, σ0, σ1).
5. Output b′.

We denote by AdvPBlindBS
A (λ) difference between the probability that the above

game with b = 0 outputs 1 and the probability that the game with b = 1 outputs
1. We say that BS satisfies partial blindness if AdvPBlindBS

A (λ) = negl(λ).

Relations and Σ-Protocols. Next, we define Σ-protocols for NP-relations.
We start by defining NP-relations.

Definition 5 (NP-Relation and Language). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a
binary relation. We say that R is an NP-relation, if there are polynomials p and q
such that R can efficiently be decided and for every (x,w) ∈ R, we have |x| ≤ p(λ)
and |w| ≤ q(|x|). We denote by LR = {x ∈ {0, 1}∗ | ∃w s.t. (x,w) ∈ R} the
language induced by R.

Let R be an NP-relation with statements x and witnesses w. A Σ-protocol for
an NP-relation R for language LR with challenge space CH is a tuple of PPT
algorithms Σ = (Init,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR and a witness w, outputs a first flow
message (i.e., commitment) A and a state st, where we assume st includes
(x,w),

– Resp(st, c): given a state st and a challenge c ∈ CH, outputs a third flow
message (i.e., response) z,

– Verify(x, A, c, z): given a statement x ∈ LR, a commitment A, a challenge
c ∈ CH, and a response z, outputs a bit b ∈ {0, 1}.

We call the tuple (A, c, z) the transcript and say that they are valid for x if
Verify(x, A, c, z) outputs 1. When the context is clear, we simply say it is valid
and omit x. Next, we define the standard notions of correctness, special honest-
verifier zero-knowledge, and (2-)special soundness.

Definition 6 (Correctness). Let R be an NP-relation and Σ = (Init,Resp,
Verify) be an Σ-protocol for R. We say Σ is correct, if for all (x,w) ∈ R, (A, st) ←
Init(x,w), c ∈ CH, and z ← Resp(st, c), it holds that Verify(x, A, c, z) = 1.

Definition 7 (Special HVZK). Let R be an NP-relation and Σ = (Init,Resp,
Verify) be a Σ-protocol for R. We say that Σ is special honest-verifier zero-
knowledge (HVZK), if there exists a PPT zero-knowledge simulator Sim such

374 M. Klooßet al.

that for any (potentially unbounded) adversary A, it holds that for any (x,w) ∈ R
and c ∈ CH that Dreal = Dsim for

Dreal := {(A, c, z) | A ← Init(x,w), z ← Resp(st, c)},

Dsim := {(A, c, z) | (A, z) ← Sim(x, c)}.

In this work, we write HVZK for short.

Definition 8 (Special Soundness). Let R be an NP-relation and Σ = (Init,
Resp,Verify) be a Σ-protocol for R. We say that Σ is (2-)special sound, if there
exists a deterministic PT extractor Ext such that given two valid transcripts
{(A, cb, zb)}b∈[2] for statement x with c0 �= c1, along with x, outputs a witness
w such that (x,w) ∈ R.

Non-interactive Proof Systems. Here, we define straightline-extractable non-
interactive zero-knowledge proofs. We limit ourselves to security in the random
oracle model. Efficient constructions are known in this case, e.g., using the Fis-
chlin transformation [21], but also [39,43,48].

Definition 9 (Non-Interactive Proof System). A non-interactive proof
system NIPS for NP-relation R using a random oracle H is a pair NIPS =
(Prove,Ver) of PPT algorithms with access to a random oracle, where

– ProveH(x,w): generates a proof π given (x,w) ∈ R.
– VerH(x, π): verifies a proof π for statement x and outputs 0 or 1.

Note that out definitions of zero-knowledge simulator and knowledge extrac-
tor are independent of an adversary, in particular, they are straightline by defi-
nition.

Definition 10 (Correctness). Let NIPS = (Prove,Ver) be a non-interactive
proof system for a relation R. It has correctness error γerr if for all (x,w) ∈ R,
it holds that

Pr
[
π ← ProveH(x,w) : VerH(x, π) = 1

]
≥ 1 − γerr(λ),

where the probability is over the choice of H and the randomness of Prove,Ver.
We call NIPS correct if γerr(λ) = negl(λ). We say it is perfectly correct if γerr = 0.

Definition 11 (Witness Indistinguishability). Let NIPS = (ProveH,VerH)
be a non-interactive proof system for a relation R in the random oracle model.
Let A be an algorithm which makes at most Q = Q(λ) queries to H and let

AdvWINIPS
A (Q,λ) = Pr

[
b ← AH,O0(1λ) : b = 1

]
− Pr

[
b ← AH,O1(1λ) : b = 1

]
,

where Oi(x,w0,w1) returns ProveH(x,wi) for i ∈ {0, 1}. We call NIPS sta-
tistically (resp. computationally) witness indistinguishable (WI), if for any
unbounded (resp. PPT) adversary A, the advantage AdvWINIPS

A (λ) is negligible.

Practical Blind Signatures in Pairing-Free Groups 375

For knowledge soundness, the extractor must compute a witness from an
accepting proof and all adversarial random oracle queries. In particular, extrac-
tion is straightline. We say that knowledge soundness is relaxed if the witness is
for a relaxed relation R̃ � R. We refer to R̃ as the knowledge relation.

Definition 12 (Relaxed Knowledge Soundness). Let NIPS = (Prove,Ver)
be a non-interactive proof system for a relation R and let R̃ ⊇ R be an NP-
relation. Let Ext be a PPT algorithm. Let A be an oracle algorithm and let

RealA(λ) := Pr
[
b ← AH,OVer(1λ) : b = 1

]
,

IdealA(λ) := Pr
[
b ← AH,OExt(1λ) : b = 1

]
.

Here, A has (black-box) access to the random oracle H and to an oracle OProve

or OExt, which are as follows:

– OVer(x, π): Return Ver(x, π).
– OExt(x, π): If Ver(x, π) = 1 and (x,w) /∈ R̃ for w ← Ext(Q,x, π), return 0.

Else, return 1. Here, Q denotes the set of A’s H queries.

The advantage of A against knowledge soundness is AdvKSNIPS,R̃
A (λ) := |RealA(λ)

− IdealA(λ)|. We say that Ext is a knowledge extractor for NIPS and knowledge
relation R̃, if for every PPT algorithm A, the advantage AdvKSNIPS,R̃

A (λ) is negli-
gible in λ. We say that NIPS is knowledge sound, if there is a knowledge extractor
for NIPS.

Remark 1. Any non-interactive proof system meeting above requirements is suf-
ficient for our blind signature construction, and we present it using the proof
system in a black-box way. For concreteness, we will use a variant of the Fischlin
transformation [21,43], which is detailed in the full version [42].

3 Signatures Based on the Boneh-Boyen IBE

It is well-known that signatures can generically be constructed from identity-
based encryption (IBE) [10]. Our starting point towards constructing blind sig-
natures is the Boneh-Boyen identity-based encryption scheme [9]. Note that
without any modification this scheme would rely on pairings, and so would the
derived signature scheme. Here, we provide a pairing-free variant of this signa-
ture scheme. As this scheme is the basis for our partially blind signature, we also
provide a common message τ ∈ {0, 1}∗ as parameter.

Overview. Let HM : {0, 1}∗ → Zp be a random oracle. For any m ∈ {0, 1}∗,
denote by m := HM(m). A signature on a message m ∈ {0, 1}∗ consists of two
group elements S1 and S2 such that

S1 = uV + s(mU + H), S2 = sG, (2)

where V,H,U = uG ∈ G are part of the public key and s ∈ Zp. To verify such
a signature without a pairing, signatures in our variant also contain a proof π,
which informally shows that one of the following holds:

376 M. Klooßet al.

(i) (S1, S2) satisfy Eq. (2) for U = uG, or
(ii) D = Hddh(τ) is a DDH-tuple, where Hddh : {0, 1}∗ → G

2 is a random oracle
for common message τ ∈ {0, 1}∗.

Point (ii) is technically not required for the signature scheme itself but will be
useful for the security proof of our (partially) blind signature construction (cf.
Sect. 4), where it allows simulating the signer.

Notation. To improve readability, we introduce two functions below, where
the reader should think of the element X as representing X = m · U + H.
We define a function that captures the statement (i). For V ∈ G, we define
φBB

G,V : G × Z
2
p → G

3 as follows:

φBB
G,V (X, (s, u)) =

⎛

⎝
u · V + s · X

s · G
u · G

⎞

⎠ . (3)

If (X,G) are clear from the context, we write φ0 = φBB
G,V for short. Note that

φ0(X, ·) is linear for fixed input X. We also define Rbb with induced language
Lbb as follows:

Rbb :=
{
(x0,w0) | S = φ0(X, (s, u))

}
,

where x0 = (G,V,X,S) ∈ G
6, w0 = (s, u) ∈ Z

3
p.

We also define a linear function that captures statement (ii). That is, for D1 ∈ G,
we define φDDH

D1
: Zp → G as follows:

φDDH
G,D1

(d2) =
(

d2 · G
d2 · D1

)
. (4)

If D1 is clear from the context, we write φ1 = φDDH
G,D1

for short. Similarly, we
define Rddh with induced language Lddh as follows:

Rddh :=
{
(x1,w1) | (D2,D3) = φ1(d2)

}
,

where x1 = (G,D1,D2,D3) ∈ G
4, w1 = d2 ∈ Zp.

3.1 Construction

Let Σ0 = (Init0,Resp0,Verify0) and Σ1 = (Init1,Resp1,Verify1) be Σ-protocols
with challenge space Zp for the relations Rbb and Rddh defined above, respectively.
Denote by Sim1 the HVZK simulator of Verify1. Let HΣ,HM,Hddh be random
oracles mapping into Zp, Zp and G

2, respectively. We define the signature BBSig
in the following.

Practical Blind Signatures in Pairing-Free Groups 377

BBSig: Pairing-free signature based on Boneh-Boyen IBE [9]

– KeyGen(1λ):
1. Sample u

$← Zp and set U := uG. Sample H,V,D1
$← G.

2. Output vk := (G,U,H, V,D1) and sk := u.
– Sign(sk,m, τ):

1. Set (Dτ
2 ,Dτ

3) := Hddh(τ) and Dτ := (D1,D
τ
2 ,Dτ

3).
2. Set m := HM(m) and X := mU + H.
3. Sample s ← Zp and set S := φ0(X, (s, u)).
4. Compute a proof π as follows:

(a) Let (x0,x1) be as above a and set w0 := (s, u).
(b) Sample c1

$← Zp and set (A1, z1) ← Sim1(x1, c1).
(c) Run (A0, st0) ← Init0(x0,w0).
(d) Set c := HΣ((xb,Ab)b∈{0,1},m) and c0 := c − c1.
(e) Run z0 ← Resp0(st0, c0).
(f) Set π := (A0,A1, c, c0, z0, z1).

5. Output σbb := (S1, S2, π).
– Verify(vk,m, τ, σbb):

1. Parse σbb as σbb = (S1, S2, π) and π as π = (A0,A1, c, c0, z0, z1).
2. Set (Dτ

2 ,Dτ
3) := Hddh(τ) and Dτ := (D1,D

τ
2 ,Dτ

3).
3. Let (x0,x1) be as above a.
4. Set S := (S1, S2, U), m := HM(m) and X := mU + H.
5. Set c′ := H((xb,Ab)b∈{0,1},m) and c1 := c′ − c0.
6. Output 0 if Verify0(x0,A0, c0, z0) = 0.
7. Output 0 if Verify1(x1,A1, c1, z1) = 0.
8. Otherwise, output 1.

a That is, x0 := (G,V,X,S) and x1 := (G,Dτ).

Note that above, π functions essentially as proof for the disjunctive relation
Rbb ∪ Rddh. Also, the first flow A0,A1 can be omitted from the proof π since
these values can be recomputed given (c, c0, z0, z1).

3.2 Security Analysis

We provide a useful lemma which we employ in our proof of one-more unforge-
ability (cf. Theorem 1). Roughly, it shows that it is hard to output a tuple
(S1, S2) such that (G,V,Xm∗ , S1, S2, U) ∈ Lbb, where m∗ ∈ Zp is chosen selec-
tively and Xm∗ := m∗U + H. This even holds if the adversary is given oracle
access to an oracle that outputs (S1, S2) such that (G,V,Xm, S1, S2, U) ∈ Lbb

for m �= m∗. Note that this corresponds almost to selective unforgeability of
BBSig except that the common message τ and the proof π is ignored. This can
be shown via the puncturing strategy from [9] and we provide a formal proof in
the full version [42].

Lemma 1 (Selective Security of BBSig). For any algorithm A, let εBB
A be

the probability that the following game outputs 1:

378 M. Klooßet al.

1. Run (m∗, stA) ← A(1λ).
2. Sample u

$← Zp and set U := uG.
3. Sample (H,V) $← G and set Xm∗ := m∗U + H.
4. Run (S∗

1 , S∗
2) ← AO(G,U,H, V, stA), where O is given as:

– O(m): Output ⊥ if m = m∗. Otherwise, sample s
$← Zp, set Xm =

m · U + H, and compute S := φ0(Xm, (s, u)). Then return (S1, S2).
5. Set x∗

0 := (G,V,Xm∗ , S∗
1 , S∗

2 , U) and output 1 if and only if x∗
0 ∈ Lbb.

Then, for any PPT algorithm A, there exists some PPT algorithm B with run-
ning time similar to A such that

εBB
A ≤ AdvCDHG

B(λ).

4 Non-blind Interactive Signing Protocol

With BBSig signatures as introduced in Sect. 3 at hand, we now move closer
to our blind signature construction. The goal of this section is to define an
interactive protocol for obtaining BBSig signatures from the Signer. More pre-
cisely, what we construct here is a blind signature scheme that satisfies one-more
unforgeability, but is not blind at this point. We stress that consequently, the
protocol presented in this section is not our final blind signature scheme. We
will take care of blindness and present our final signing protocol in Sect. 5.

4.1 Construction

Let NIPSPed = (NIPSPed.ProveHPed ,NIPSPed.VerHPed) be a NIPS proof system with
random oracle HPed : {0, 1}∗ → YPed with image space YPed for the relation

RPed := {(x,w) | C = mU + tG}, where x = (C,U,G), w = (m, t). (5)

In addition, our construction makes use of random oracles HM : {0, 1}∗ → Zp, and
HΣ : {0, 1}∗ → Zp, and Hddh : {0, 1}∗ → G

2. We now present our construction.
PreBS: Unblinded interactive signing protocol for BBSig signatures

– KeyGen(1λ): Output (vk, sk) ← BBSig.KeyGen(1λ).
– S(sk, τ) ←→ U(vk,m, τ): The signing protocol proceeds in 4 moves and

is given in Fig. 1.
– Verify(vk,m, τ, σbb): Output b ← BBSig.Verify(vk,m, τ, σbb).

Remark 2 (Optimizations). The signer can omit sending T3 = U , as this value is
specified in vk. Also, as discussed in Sect. 3, the values (A0, A1) can be omitted
from the proof π within the output signature σbb.

Practical Blind Signatures in Pairing-Free Groups 379

Fig. 1. An (unblinded) signing session for PreBS for message m ∈ {0, 1}∗ and common
message τ ∈ {0, 1}∗. The signer aborts (i.e., outputs ⊥) if for condition C, req C is
evaluated for false C. Recall that HΣ maps into Zp and that Dτ := (D1, D

τ
2 , Dτ

3) for
(Dτ

2 , Dτ
3) := Hddh(τ). Also, recall that vk = (G, U, H, V, D1) ∈ G

5 and sk = u ∈ Zp.

4.2 Security Analysis

Correctness follows from inspection and we will give a correctness proof for our
final scheme later. As already mentioned, PreBS is not blind. Here, we show
one-more unforgeability. As we instantiate NIPSPed (in the full version [42]) with
a relaxed knowledge sound NIPS, the extractor ExtPed only extracts a witness

380 M. Klooßet al.

for the relaxed knowledge relation

R̃Ped := {(x,w) | wG = U ∨ (x,w) ∈ RPed}, where x = (C,U,G). (6)

In particular, we show that if NIPSPed is (straightline) knowledge sound with
knowledge relation R̃Ped, then PreBS is one-more unforgeable under the DDH
assumption.

Theorem 1 (One-More Unforgeability). Denote by p the order of group G.
For any PPT adversary A that causes at most Q random oracle queries, there
are reductions AKS,ADL,ADDH, and ACDH with running time similar to A such
that

AdvOMUFPreBS
A (λ) ≤ 4 · Q2 + 3 · Q + 4

p − 1
+ AdvKSNIPSPed,R̃Ped

AKS
(λ) + AdvDLG

AdvDL(λ)

+ Q2
(
10 · AdvDDHG

ADDH
(λ) + AdvCDHG

ACDH
(λ)

)
.

Before we give the proof, let us remark that the quadratic loss is due to
partial blindness. For standard blindness, there is only a factor Q before the
sum instead of Q2 and 4 · Q2 is replaced with 4 · Q.

Proof. Let A be a PPT adversary against one-more unforgeability of PreBS.
Denote by QΣ, QM, Qddh, QPed the number of oracle queries to HΣ,HM,Hddh,
HPed, respectively, including the queries made by the game (e.g., during sign-
ing queries or during signature verification). Denote by QS the number of A’s
signing queries. Denote by ExtPed the extractor of NIPSPed.

We proceed with a sequence of games. For each game Game i, we denote the
probability that the game outputs 1 by εi.

Game 0 (Honest). This game is the real one-more unforgeability experiment
for scheme PreBS and adversary A with random oracles Hddh,HM,HPed and HΣ.
The game first samples vk = (G,U,H, V,D1) and sk via PreBS.KeyGen. The
adversary A obtains verification key vk as input and access to the random oracles,
as well as both signing oracles OS1 ,OS2 , and outputs a common message τ∗ and
forgeries (m∗

j , σ
∗
j)j∈[k]. The game outputs 1 iff OS2 was queried at most k − 1

times with common message τ∗, all messages (m∗
j)j∈[k] are pairwise-distinct,

and all signatures verify (i.e., Verify(vk,m∗
j , τ

∗, σ∗
j) = 1). Note that each signing

session is identified by a session identifier sid which is provided as input in OS1

and OS2 . Recall that the signing oracles behave as follows:

– OS1(sid, C, πPed): Check the proof
πPed and abort if NIPSPed.VerHPed(xPed, πPed) = 0 for xPed := (C,U,G). Sam-
ple s

$← Zp and set w0 := (s, sk). Next, set T := φ0(XC ,w0) for XC := C + H
and Dτ := (D1,Hddh(τ)). Prepare both statements xC

0 := (G,V,XC ,S) and
x1 := (G,Dτ). For the Σ1 proof, sample c1

$← Zp and simulate (A1, z1) ←
Sim1(x1, c1). For the Σ0 proof, sample first flow (AC

0 , st0) ← Init0(xC
0 ,w0).

Store (z1, c1, st0) as state for session sid and output (T,AC
0 ,A1).

Practical Blind Signatures in Pairing-Free Groups 381

– OS2(sid, c): Retrieve (z1, c1, st0) from the state for sid (and abort if this is not
possible). Compute challenge c0 := c − c1 and response z0 ← Resp0(st0, c0)
for the Σ0 proof. Output (z0, z1, c0)

We provide a detailed description in the full version [42]. By definition, we have

AdvOMUFPreBS
A (λ) = ε0.

Game 1 (Abort if HM collision). The game aborts if there are collisions for
HM. More precisely, it aborts if there are queries x �= x′ such that HM(x) =
HM(x′). A standard birthday-bound argument yields that

|ε0 − ε1| ≤ Q2
M

p
.

Game 2 (Extract (m, t) from C). We change the first signer oracle OS1 .
Namely, whenever the adversary sends a commitment C with a proof πPed in
its first message of a signing interaction, the game uses the extractor of NIPSPed

to extract a preimage (m, t) ∈ Z
2
p for C, and aborts its entire execution if πPed

verifies but extraction fails. In more detail, we modify the first part of the signer
oracle (oracle OS1) as follows. Initially, it proceeds as in Game 1 until the check
NIPSPed.VerHPed(xPed, πPed) = 1. If the check fails, it outputs ⊥ as before. Else,
the game sets wPed ← ExtPed(QHPed

,xPed, πPed) and parses (m, t) := wPed. (Recall
that QHPed

denotes the queries to HPed made by A and the game.) The game
aborts its entire execution if parsing wPed fails or C �= mU + tG.

Let us analyze the advantage of A in Game 2. Roughly, we need to ensure that
extraction succeeds and that the extracted witness wPed is an opening for C, i.e.,
(xPed,wPed) ∈ RPed. But because the soundness relation is relaxed, it is possible
that (xPed,wPed) /∈ RPed. Instead, the extracted witness for relation R̃Ped might
be the discrete logarithm u of U (cf. Eq. (6)). Since the adversary A provides
the proof πPed and u is kept (computationally) hidden from A, this should occur
with negligible probability. But because u is also required to simulate the signing
oracles, we cannot immediately reduce to the DLOG assumption, and a few
intermediate games are required. Roughly, starting with Game 1, we first move
to a game where the signing oracles can be simulated without the secret key
sk = u. Then, we add an abort condition if (xPed,wPed) /∈ RPed, where we can
now upper bound the abort probability under the DL assumption. Finally, we
revert back the changes (keeping the abort condition), and obtain Game 2. This
is formalized in Lemma 2 below. We provide a proof in the full version [42].

Lemma 2. There are reductions AKS,Ai
DDH for i ∈ [2] and ADL with running

time close to that of A such that

|ε1 − ε2| ≤ AdvKSNIPSPed,R̃Ped

AKS
(λ)+AdvDLG

AdvDL(λ)+
4

p − 1
+

∑

i∈[2]

AdvDDHG

Ai
DDH

(λ).

382 M. Klooßet al.

Game 3 (Guess τ∗). Informally, we now guess the first query to Hddh such
that τ∗ is provided as input. More formally, the game samples q∗

τ
$← [Qddh] at

its start. When the adversary outputs its forgeries with common message τ∗ in
the end, the challenger additionally checks whether τ∗ was queried for the first
time to Hddh on the q∗

τ -th query to Hddh. If not, the game aborts its execution.
Recall that the challenger’s Hddh queries count towards Qddh. Furthermore,

note that the challenger sets (Dτ∗
2 ,Dτ∗

3) := Hddh(τ∗) when it verifies A’s forgeries,
so such a query exists. Next, observe that the guess q∗

τ is hidden from A, and
so the probability that the challenger guesses this query is at least 1/Qddh, even
conditioned on Game 2 outputting 1. We get that

ε2 ≤ Qddh · ε3.

Observe that the game evaluates Hddh on τ in the first signer oracle OS1 to
compute (Dτ

2 ,Dτ
3) := Hddh(τ). Thus, if A succeeds, the game knows the forgery’s

common message τ∗ when the first query to OS1 with τ∗ is made. This will be
useful later.

Game 4 (Guess unsigned m∗ in forgery). We guess the first query q∗
m to

HM such that the following two conditions hold:

1. The input mq∗
m

to the q∗
m-th HM query is part of A’s forgeries.

2. No session with common message τ∗ is completed if m = HM(mq∗
m
) is

extracted from the commitment C (see Game 2).

Again, the game aborts its execution if the guess was incorrect. If A is success-
ful, then A’s forgeries (m∗

j , σ
∗
j)j∈[k] with common message τ∗ contain k distinct

messages. Because we have ruled out collisions for HM (see Game 1), the hashed
messages (m∗

j)j∈[k] are also pairwise distinct, where m∗
j = HM(m∗

j). Further-
more, there are at most k − 1 completed sessions with common message τ∗ and
each corresponding call to the first oracle OS1 , exactly one message m ∈ Zp is
extracted from C via ExtPed. In conclusion, one of the k distinct m∗

j was never
extracted from C within a completed session. Thus, there is an index j ∈ [k]
such that mq∗

m
:= m∗

j fulfils the above conditions (also counting the challenger’s
queries).

The probability that the challenger guesses q∗
m correctly is 1/QM and the

guess q∗
m is hidden from the adversary. Thus, we have

ε3 ≤ QM · ε4.

In the following, we denote by m∗ := HM(mq∗
m
). Note that if A is successful,

we can assume that m∗ is known by the game from the start on8. Also, we
stress that the game aborts only if both signer oracles OS1 and OS2 are executed
with extracted m∗ and common message τ∗, i.e., such a signing interaction is
completed. In particular, it is possible that m∗ is extracted in OS1 if the session
will not be completed.
8 The game samples m∗ at random at the beginning of the game and outputs m∗ in

the q∗
m-th query to HM.

Practical Blind Signatures in Pairing-Free Groups 383

Game 5 (Sample DDH tuples if τ �= τ∗). From now on, the game samples
real DDH tuples in Hddh except in the q∗

τ -th query. That is, the game now holds
an initially empty table Tddh[·] := ⊥. Whenever random oracle Hddh is queried on
an input τ and the hash value is not yet defined, the game samples d2

$← Zp and
sets (Dτ

2 ,Dτ
3) := (d2G, d2D1) instead of (D2,D3)

$← G
2. Additionally, witness

d2 is stored in the table, i.e., Tddh[τ] := d2. Importantly, the output on the q∗
τ -

th Hddh query (I.e., (Dτ∗
2 ,Dτ∗

3)) and all subsequent queries on the same input
remain unchanged. Note that by design, we have Dτ ∈ Lddh for τ �= τ∗. Clearly,
there is a reduction B1 on Q-DDH with Q = Qddh with running time similar to
A such that

|ε4 − ε5| ≤ AdvQDDHG

B1
(Qddh, λ).

Game 6 (Use DDH witness for Σ1 if τ �= τ∗). Now, the game computes
the Σ1 transcript (A1, c, z1) for τ �= τ∗ via the witness Tddh[τ]. More precisely,
in OS1 with τ �= τ∗, the game samples c1

$← Zp and (A1, st1) ← Init1(x1,w1),
where w1 := Tddh[τ] and x1 := (G,Dτ). In OS2 with τ �= τ∗, the game computes
z1 ← Resp1(st1, c1).

Recall that in Game 5, the game samples c1
$← Zp and (A1, z1) ←

Sim1(x1, c1). It follows by perfect HVZK of Σ1, that the Σ1 transcripts
(A1, c1, z1) in Game 5 and Game 6 are identically distributed. Thus, we have

ε5 = ε6.

Game 7 (Simulate Σ0 if τ �= τ∗). The game now simulates the Σ0 transcript
(A0, c0, z0) via HVZK in OS1 and OS2 for all τ �= τ∗. In more detail, if τ �= τ∗

in OS1 , the game computes AC
0 via

c0
$← Zp, (AC

0 , z0) ← Sim0(x0, c0).

In OS2 for τ �= τ∗, the game sets c1 := c − c0 and outputs z0 from OS1 . The
other response z1 is computed via w1 as introduced in Game 6.

Recall that in Game 6, the game sets c1
$← Zp and c0 := c − c1. Thus, the

challenges (c0, c1) follow the same distribution in Game 6 and Game 7. Also,
observe that in Game 6, the Σ0 transcript is generated honestly. Thus, by perfect
HVZK of Σ0, we have that

ε6 = ε7.

Let us take a closer look at the signer oracle in Game 7 for two specific cases,
namely if (1) τ �= τ∗, or (2) τ = τ∗ and the game has extracted m = m∗ from C.
Recall that in the signer oracle OS1 , the game defines the vector T := φ0(XC ,w0)
for XC = C +H and w0 = (s, sk) where s ∈ Zp is random. Precisely, this means
that T = (skV + s(C +H), sG,U). Now, observe that if (1) occurs, then due to
the change in Game 7, the challenger uses the witness w0 = (s, sk) only to sample
T. Similarly, if (2) occurs, then the challenger uses the witness w0 = (s, sk) to
sample T and in OS2 to compute z0. Due to the abort condition in Game 4, OS2

384 M. Klooßet al.

is never invoked in case (2). In conclusion, if (1) or (2) occurs, the challenger
only uses w0 to sample T in the signing oracles.

Game 8 (Send random T in some sessions). We change the signer oracle
OS1 again, for the cases (1) and (2) mentioned above. Namely, recall that until
now, the signer oracle defined the vector T := φ0(XC ,w0). In this game, T is
sampled differently. Namely, if (1) or (2) occurs, then the game samples T1, T2

$←
G at random and sets T3 := U . Intuitively, since (H, sG, sH) form Diffie-Hellman
tuples and are included in the definition of T in Game 7, replacing sH by a
random element should be indistinguishable and make the first component of T
random.

More formally, we construct a reduction B2 that breaks Q-DDH if A
can distinguish between Game 7 and Game 8. The reduction B2 obtains
tuples (G,H1, (H2,i,H3,i)i∈[QS]) from the Q-DDH game and samples vk =
(G,U,H, V,D1) as in Game 7, except that H := H1. Then, B2 proceeds to sim-
ulate Game 7 to adversary A with the aforementioned vk except that in the i-th
invocation of OS1 , it also checks whether either case (1) or case (2) occurs. If so,
A sets

T := (uV + (m · sk)H2,i + tH2,i + H3,i,H2,i, U),

else it sets T = φ0(XC ,w0) for w0 = (s, sk) and random s
$← Zp as before. As

discussed above, B2 can proceed as before. That is, B2 computes AC
0 and A1

as in Game 7 and outputs (T,AC
0 ,A1). Also, B2 simulates OS2 as in Game 7.

When A outputs its forgeries, B2 outputs b′ := 1 if A succeeds, and b′ := 0
otherwise.

Note that the verification key vk that is output by B2 is identically distributed
to vk in Game 7 and Game 8. Further, if we have H = hG,H2,i = siG and
H3,i = (h · si)G for all i ∈ [QS], then if event (1) or (2) occurs in the i-th OS1

query, it holds that

T1 = uV + (m · sk)H2,i + tH2,i + H3,i

= uV + (si · m)U + (si · t)G + (h · si)G
= uV + si(mU + tG) + siH

= uV + si(C + H),

and T2 = siG,T3 = U . This is exactly the distribution of T in Game 7. Other-
wise, we have H = hG,H2,i = siG and H3,i

$← G for all i ∈ [QS]. If event (1) or
(2) occurs in the i-th OS1 query, then T follows the distribution of T in Game 8,
as H3,i functions as a one-time pad. In case neither event (1) nor (2) occurs, T
follows the distribution in Game 7 and Game 8 in OS1 by design. The running
time of B2 is roughly that of A. In conclusion, we have

|ε7 − ε8| ≤ AdvQDDHG

B2
(QS , λ).

Game 9 (Abort if forgeries not in Lbb). Now, we make the game abort
if one of the adversary’s forgeries σ∗

j = (S∗
1,j , S

∗
2,j , πj) for message m∗

j satisfies

Practical Blind Signatures in Pairing-Free Groups 385

(G,V,X∗
j , S∗

1,j , S
∗
2,j , U) /∈ Lbb with X∗

j = m∗
jU+H. Here, m∗

j := HM(m∗
j) denotes

the hashed message as before. In more detail, this is done efficiently as follows:
The game initially samples h

$← Zp and sets H = hG to set up the verification key
vk. Further, when A outputs its forgeries (m∗

j , σ
∗
j)j∈[k] with common message τ∗,

the game parses σ∗
j = (S∗

1,j , S
∗
2,j , πj). Then, the game checks that for all j ∈ [k],

it holds that
S∗
1,j = uV + (m∗

j · u)S∗
2,j + hS∗

2,j . (7)

This check is efficient using knowledge of h and u. The game aborts if the check
fails. Otherwise it proceeds as before.

Denote x∗
1 := (G,Dτ∗

) and x∗
0,j := (G,V,X∗

j , S∗
1,j , S

∗
2,j , U). Roughly, we have

x1 /∈ Lddh except with probability 1/p. Then, soundness of πj ensures except
with negligible probability that x0,j ∈ Lbb which is equivalent to Eq. (7).

More formally, let us analyze the probability that for some j ∈ [k], Eq. (7)
does not hold. First, we proof two useful claims. The first claim follows from
soundness of the Fiat-Shamir transformation and the second claim links Eq. (7)
with Lbb.

Proposition 1. For every HΣ query ((xb,Ab)b∈{0,1},m) with x0 /∈ Lbb and
x1 /∈ Lddh, there exists (c0, c1, z0, z1) such that

tr0 := (A0, c0, z0) is valid for x0 (8)
tr1 := (A1, c1, z1) is valid for x1 (9)
c∗ := HΣ((xb,Ab)b∈{0,1},m∗

j) = c0 + c1 (10)

with probability at most 1/p.

Proof (Proposition 1). Observe that due to special soundness of Σ1 and because
x1 /∈ Lddh, there is at most one challenge c1 ∈ Zp such that there exists a
response z1 with valid transcript tr1 = (A1, c1, z1) for x1. Similarly, since x0 /∈
Lbb, the same argument applies: There exists exactly one challenge c0 such that
there exists a response z1 with valid transcript tr0 = (A0, c0, z0). Thus, the
pair (c0, c1) is determined by (xb,Ab)b∈{0,1} due to Eqs. (8 and 9). Further,
because (xb,Ab)b∈{0,1} is part of the input of the HΣ query that determines c∗,
the value c∗ is distributed uniformly and independently from (c0, c1). Then, the
probability that Eq. (10) holds is at most 1/p. ��

Proposition 2. Equation 7 holds if and only if (G,V,X∗
j , S∗

1,j , S
∗
2,j , U) ∈ Lbb.

Proof (Proposition 2). Denote U = uG. The claim follows due to

Equation (7) ⇐⇒ S∗
1,j = u · V + (m∗

j · u)S∗
2,j + hS∗

2,j

⇐⇒ S∗
1,j = u · V + (m∗

j · u · s∗
j,2)G + (h · s∗

j,2)G ∧ S∗
2,j = s∗

j,2G

⇐⇒ S∗
1,j = u · V + s∗

j,2(m
∗
jU + H) ∧ S∗

2,j = s∗
j,2G

⇐⇒ S∗
1,j = u · V + s∗

j,2 · X∗
j ∧ S∗

2,j = s∗
j,2G

⇐⇒ (G,V,X∗
j , S∗

1,j , S
∗
2,j , U) ∈ Lbb

��

386 M. Klooßet al.

Let us assume that A outputs forgeries with common message τ∗ such that
Game 8 outputs 1. This occurs with probability ε8 by definition. Further, let us
assume that (G,Dτ∗

) /∈ Lddh (which holds except with probability 1/p). Denote
by x∗

0,j = (G,V,X∗
j , S∗

1,j , S
∗
2,j , U) the statements within A’s forgeries as above.

Observe that Eqs. (8) to (10) are satisfied because all k forgeries are valid. Thus,
Propostion 1 yields via a union bound over all HΣ queries that except with
probability QΣ/p, it holds for all j ∈ [k] that x∗

0,j ∈ Lbb. Due to Propostion 2
this implies that Eq. (7) holds for j ∈ [k]. In total, the above considerations
yield that

|ε8 − ε9| ≤ QΣ + 1
p

.

We emphasize that it will be essential for the following changes that the winning
condition of this game can still be evaluated efficiently.

Game 10 (Sample DDH tuple if τ = τ∗). In this game, we change how
the q∗

τ -th query to Hddh (I.e., the query with τ = τ∗) is answered. Namely, on
this query, the challenger samples d2

$← Zp and sets (Dτ∗
2 ,Dτ∗

3) := (d2G, d2D1)
instead of (Dτ∗

2 ,Dτ∗
3) $← G

2. The witness d2 is stored in the table Tddh[τ∗]. Other
outputs of Hddh remain unchanged. We can easily construct a reduction A3

DDH

against DDH with running time similar to A and with

|ε9 − ε10| ≤ AdvDDHG

A3
DDH

(λ).

Note that now, we have Dτ ∈ Lddh for all common messages τ .

Game 11 (Use DDH witness for Σ1 if τ = τ∗). We change the signer oracle
again, for the case that τ = τ∗. Namely, the Σ1 transcript (A1, c, z1) is now
computed via the witness w∗

1 := Tddh[τ∗] and is no longer simulated via HVZK.
That is, in OS1 with τ∗, the game samples c1

$← Zp and (A1, st1) ← Init1(x1,w1),
where w1 := Tddh[τ] and x1 := (G,Dτ∗

). In OS2 with τ∗, the game then computes
z1 ← Resp1(st1, c1).

It follows (as in Game 6) from HVZK of Σ1 that the Σ1 transcripts (A1, c, z1)
for τ = τ∗ in Game 10 and Game 11 are distributed identically. In conclusion,
we have

ε10 = ε11.

Game 12 (Simulate Σ0 if τ = τ∗). We change the signer oracle a final time,
for the case that τ = τ∗. Concretely, in OS1 with τ∗, the game computes c0

$← Zp

and (AC
0 , z0) ← Sim0(xC

0 , c0) for xc
0 := XC := C +H. In OS2 with τ∗, the game

sets c1 := c−c0 and outputs z0 from OS1 . The other branch (i.e., z1) is computed
via w1 as in Game 11.

It follows (as in Game 7) that in Game 11 and Game 12, the challenges c0
and c1 follow the same distribution and that the Σ0 transcripts (A0, c0, z0) are
identically distributed (by HVZK of Σ0). Thus, we have that

ε11 = ε12.

Practical Blind Signatures in Pairing-Free Groups 387

A complete description of Game 12 is given in Fig. 2. The game sets up the
verification key vk as in KeyGen, except that it knows the discrete logarithm h
of H. It also guesses a hash value m∗ = HM(m∗

j) such that m∗
j is a forgery’s

message but no signing session with common message τ∗ is finished such that
m∗ is extracted from πPed, where τ∗ is the forgeries’ common message. Roughly,
the game then simulates the signing oracles as follows. In OS1 , the game outputs
T = (T1, T2, U) computed honestly only if τ = τ∗ and m �= m∗ (otherwise
random T1, T2

$← G are chosen). The Σ1 transcripts (A1, c1, z1) in OS1 and
OS2 are computed via a DDH witness for Dτ via (Σ1.Init,Σ1.Resp), and the Σ0

transcripts (A0, c0, z0) are simulated via HVZK of Σ0. In the end, the challenger
aborts if the forgeries are not in Lbb (as in Eq. (7) via h). We stress that h is
only required to check Eq. (7) in Game 12 and this is only done after A output
its forgeries.

Reduction to CDH. Finally, there exists a reduction ACDH such that ε12 ≤
AdvCDHG

ACDH
(λ). This follows via Lemma 1. In more detail, let us construct

a reduction B3 that outputs x∗
0 ∈ Lbb for the game described in Lemma 1,

hereafter denoted by Game BB. Note that B3 has access to an oracle O(λ) that
on input m outputs values (S1, S2). First, B3 samples m∗ $← Zp and obtains
(G,U,H, V) after providing m∗ to Game BB. Next, B3 samples D1

$← G and
sets vk = (G,U,H, V,D1). Also, B3 initializes the counters ctrddh and ctrM to 0,
samples q∗

m and q∗
τ at random, and initializes τq∗

τ
:= ⊥. It then invokes A on

input vk and simulates the oracles in Game 12 to A as follows.

– HM,Hddh,HΣ,HPed,Next,OS2 : Simulated as in Game 12. We remark that for
HM, the value m∗ is output on the q∗

m-th query. Also, note that Game 12
aborts if m∗ is extracted from C in OS1 .

– OS1 : Check that πPed verifies and output ⊥ if not. Else, extract (m, t) such
that C = mU + tG from πPed. If τ �= τq∗

τ
, then set T $← G

2 × {U} as in
Game 12, else set (S1, S2) ← O(m) and T := (S1 + t · S2, S2, U). Then,
proceed as in Game 12.

When A outputs its forgeries (m∗
j , σ

∗
j) on common message τ∗, B3 checks whether

there is a message m∗
j such that HM(m∗

j) = m∗. Finally, B3 parses (S∗
1 , S∗

2 , π∗) =
σ∗

j and outputs (S∗
1 , S∗

2) to Game BB.
Clearly, the simulated vk is distributed as in Game 12. Also, it is easy to

check that B3’s simulation of Game 12 is efficient and the running time of B3 is
roughly that of A. It remains to show that T is identically distributed if τ = τq∗

τ
.

Denote by u the (unknown) discrete logarithm of U . Recall that by definition
(cf. Lemma 1), O(m) outputs values (S1, S2) with S1 = uV +sXm and S2 = sG,
where s

$← Zp and Xm = mU + H. Note that the simulated (T2, T3) follow the
distribution of Game 12, and due to

T1 = S1 + tS2 = uV + sXm + (t · s)G
= uV + s(mU + H + tG) = uV + s(C + H),

388 M. Klooßet al.

the simulated T1 is also distributed as in Game 12. In conclusion, the view of
A is as in Game 12 and with probability at least ε12, there is a message m∗

j

with HM(m∗
j) = m∗ and Eq. (7) holds (where h = DLOGG(H)). As shown in

Game 9, this implies that (G,V,Xm∗ , S∗
1 , S∗

2 , U) ∈ Lbb for Xm∗ := m∗U + H.
Due to Lemma 1, there is an adversary ACDH with running time similar to A
such that ε12 ≤ AdvCDHG

ACDH
(λ). By collecting all the bounds and using the tight

equivalence of Q-DDH and DDH, we obtain the statement. ��

5 Blind Interactive Signing Protocol

In this section, we explain how the unblinded protocol from Sect. 4 can be turned
into a partially blind signature BS.

5.1 Construction

We construct a partially blind signature BS by blinding the signing protocol of
PreBS (cf. Sect. 4). The requirements are identical to PreBS. That is, let NIPSPed

be a NIPS proof system with random oracle HPed for Pedersen openings (see
Eq. (5) for the exact relation). Also, let HM : {0, 1}∗ → Zp, and HΣ : {0, 1}∗ → Zp,
and Hddh : {0, 1}∗ → G

2 be random oracles.
Our blinding essentially follows the same approach as prior works. The blind-

ing of the statement X as XC is already present in the unblinded signature, as
the proof πPed is constructed relative to it and required for the OMUF reduc-
tion; the statement Dτ corresponding to common message τ remains unblinded
throughout. Except for the blinding, the only additional change is that the user
now verifies the signer’s response. Otherwise, it may output invalid “signatures”,
making interactions linkable.

BS: Partially blind signature

– KeyGen(1λ): Output (vk, sk) ← BBSig.KeyGen(1λ).
– S(sk, τ) ←→ U(vk,m, τ): The blinded signing protocol proceeds in 4

moves and is given in Fig. 3.
– Verify(vk,m, τ, σbb): Output b ← BBSig.Verify(vk,m, τ, σbb).

Remark 3 (Notation). In Fig. 3, we follow the convention that variables with a
star, such as A∗

0 or c∗ are sent to the signer or received by the user. Variables
with a prime, such as A′

0 and c′
0 are random masks to ensure blindness. Other

variables are usually outputs, such as A. Sometimes, this convention is broken
for consistency with the unblinded protocol, e.g., for C.

5.2 Security Analysis

We show that BS is correct and partially blind in the random oracle model.
One-more unforgeability follows via Theorem 1 under the same conditions.

Practical Blind Signatures in Pairing-Free Groups 389

Fig. 2. Description of Game 12, where the differences to Game 0 are highlighted in
gray. Note that the changes marked with Game 5, Game 10 (resp. Game 7, Game 12)
are introduced for τ �= τq∗

τ
in Game 5 (resp. Game 7), and later for τ = τq∗

τ
in Game 10

(resp. Game 12). For some condition C, abort if C makes the game output 0 if C is
true and req C makes the oracle output ⊥ if C is false.

390 M. Klooßet al.

Fig. 3. The blinded version of a signing session of BS. As in the unblinded version
(cf. Fig. 1), we have m, τ ∈ {0, 1}∗, vk = (G, U, H, V, D1) ∈ G

5 and sk = u ∈ Zp. The
signer aborts (i.e., outputs ⊥) if for condition C, req C is evaluated for false C. Recall
that HΣ maps into Zp and that Dτ := (D1, D

τ
2 , Dτ

3) for (Dτ
2 , Dτ

3) := Hddh(τ). Visually
highlighted are the parts which blind the parameters C of the map φ0, the statement
T of the map φ0, the challenge c of the OR-composition, the responses z0 and
z1 . If these parts are removed, except for parameter blinding, then one recovers the
unblinded protocol (cf. Fig. 1).

Practical Blind Signatures in Pairing-Free Groups 391

Remark 4 (OMUF of BS). Observe that in Fig. 3 only the user-side was mod-
ified compared to the protocol in Fig. 1. The signer’s code is unchanged. As a
consequence, Fig. 3 is one-more unforgeable if the unblinded version is. Indeed,
one-more unforgeability considers a malicious user, whose code is adversarial, so
only the signer’s code is specified and part of the one-more unforgeability game.

Theorem 2 (Correctness). BS is correct with error γerr, where γerr is the
correctness error of NIPSPed.

Correctness is straightforward.

Theorem 3 (Blindness). For any (unbounded) adversary A that causes at
most Q queries to the random oracle HPed (via its own queries or through the
oracles O0, O1), then there exists an adversary AWI with running time roughly
that of A, such that

AdvPBlindBS
A ≤ 2 · AdvWINIPS

AWI
(Q,λ) +

2
p
,

where p = |G| is the group order.

The very high-level idea is that enough randomness is injected to completely
randomize the transcript π (which is part of the blind signature), and also the
signature (S1, S2); here we exploit that Rbb yields perfectly randomizable signa-
tures. Moreover, the proof πPed can be simulated. We give the formal proof of
blindness in the full version [42].

Acknowledgment. This work was supported by the Helsinki Institute for Information
Technology (HIIT) and was conducted while Michael Klooß was affiliated with Aalto
University.

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (May 2001). https://doi.org/10.1007/3-540-44987-6_9

2. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T.
(eds.) ASIACRYPT’96. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (Nov
1996). https://doi.org/10.1007/BFb0034851

3. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (Aug
2000). https://doi.org/10.1007/3-540-44598-6_17

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 82–99. Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42045-0_5

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3), 185–215 (Jun 2003). https://doi.org/10.1007/s00145-002-0120-
1

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1

392 M. Klooßet al.

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

7. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 33–53. Springer, Heidelberg (Oct 2021). https://doi.org/
10.1007/978-3-030-77870-5_2

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003). https://doi.org/10.
1007/3-540-36288-6_3

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (May 2004). https://doi.org/
10.1007/978-3-540-24676-3_14

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001). https://doi.org/10.1007/3-540-44647-8_13

11. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: 48th FOCS. pp. 647–657. IEEE Computer Society Press (Oct
2007). https://doi.org/10.1109/FOCS.2007.64

12. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008. pp. 345–356. ACM Press (Oct
2008). https://doi.org/10.1145/1455770.1455814

13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May
2001). https://doi.org/10.1007/3-540-44987-6_7

14. Catalano, D., Fiore, D., Gennaro, R., Giunta, E.: On the impossibility of algebraic
vector commitments in pairing-free groups. In: Kiltz, E., Vaikuntanathan, V. (eds.)
TCC 2022, Part II. LNCS, vol. 13748, pp. 274–299. Springer, Heidelberg (Nov
2022). https://doi.org/10.1007/978-3-031-22365-5_10

15. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.
13509, pp. 3–31. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-
031-15982-4_1

16. Chairattana-Apirom, R., Tessaro, S., Zhu, C.: Pairing-free blind signatures from
CDH assumptions. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024. LNCS,
Springer, Heidelberg (Aug 18–22, 2024)

17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York,
USA (1982)

18. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 442–471. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45727-3_15

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1109/FOCS.2007.64
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-031-22365-5_10
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-030-45727-3_15

Practical Blind Signatures in Pairing-Free Groups 393

19. Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Snowblind: A threshold
blind signature in pairing-free groups. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part I. LNCS, vol. 14081, pp. 710–742. Springer, Heidelberg (Aug
2023). https://doi.org/10.1007/978-3-031-38557-5_23

20. del Pino, R., Katsumata, S.: A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 306–336.
Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_11

21. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_10

22. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (Aug 2006). https://doi.org/10.1007/11818175_4

23. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-
5_10

24. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (Aug 2015). https://
doi.org/10.1007/978-3-662-48000-7_12

25. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0_2

26. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2_3

27. Fuchsbauer, G., Wolf, M.: Concurrently secure blind schnorr signatures. In: Joye,
M., Leander, G. (eds.) EUROCRYPT 2024, Part II. LNCS, vol. 14652, pp. 124–160.
Springer, Heidelberg, Zurich, Switherland (May 26–30, 2024). https://doi.org/10.
1007/978-3-031-58723-8_5

28. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_27

29. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_36

30. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-
3-662-49890-3_1

31. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Heidelberg
(Apr 2017)

32. Hanzlik, L., Loss, J., Wagner, B.: Rai-choo! Evolving blind signatures to the next
level. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008,
pp. 753–783. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-3-031-
30589-4_26

https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-031-30589-4_26
https://doi.org/10.1007/978-3-031-30589-4_26

394 M. Klooßet al.

33. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Heidelberg (May 2019). https://doi.org/
10.1007/978-3-030-17659-4_12

34. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 500–529. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-
3-030-56880-1_18

35. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052233

36. Kastner, J., Loss, J., Xu, J.: The Abe-Okamoto partially blind signature scheme
revisited. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol.
13794, pp. 279–309. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-
3-031-22972-5_10

37. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the alge-
braic group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part II. LNCS, vol. 13178, pp. 468–497. Springer, Heidelberg (Mar 2022). https://
doi.org/10.1007/978-3-030-97131-1_16

38. Kastner, J., Nguyen, K., Reichle, M.: Pairing-free blind signatures from standard
assumptions in the rom. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024. LNCS,
Springer, Heidelberg (Aug 18–22, 2024)

39. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part II. LNCS, vol. 12826, pp. 580–610. Springer, Heidelberg, Virtual Event (Aug
2021). https://doi.org/10.1007/978-3-030-84245-1_20

40. Katsumata, S., Reichle, M., Sakai, Y.: Practical round-optimal blind signatures
in the ROM from standard assumptions. In: Guo, J., Steinfeld, R. (eds.) ASI-
ACRYPT 2023, Part II. LNCS, vol. 14439, pp. 383–417. Springer, Heidelberg (Dec
2023). https://doi.org/10.1007/978-981-99-8724-5_12

41. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093,
pp. 468–492. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-
92068-5_16

42. Klooß, M., Reichle, M., Wagner, B.: Practical blind signatures in pairing-free
groups. IACR Cryptol. ePrint Arch. p. 1378 (2024), https://eprint.iacr.org/2024/
1378

43. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part II. LNCS, vol. 13792, pp. 279–309. Springer, Heidelberg (Dec
2022). https://doi.org/10.1007/978-3-031-22966-4_10

44. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (Aug 1993). https://doi.org/10.1007/3-540-48071-4_3

45. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (Mar 2006). https://doi.org/10.1007/11681878_5

46. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (Aug 1992).
https://doi.org/10.1007/3-540-46766-1_27

https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-981-99-8724-5_12
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://eprint.iacr.org/2024/1378
https://eprint.iacr.org/2024/1378
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/3-540-46766-1_27

Practical Blind Signatures in Pairing-Free Groups 395

47. Pan, J., Wagner, B.: Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 597–627. Springer, Heidelberg (Apr 2023). https://
doi.org/10.1007/978-3-031-30589-4_21

48. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_19

49. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow,
L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 109–118. ACM Press (Jun 2011).
https://doi.org/10.1145/1993636.1993652

50. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT’98. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (May / Jun
1998). https://doi.org/10.1007/BFb0054141

51. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/10.1007/
s001450010003

52. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (Jan 1991). https://doi.org/10.1007/BF00196725

53. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 01. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (Nov 2001)

54. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 782–811. Springer, Heidelberg (May / Jun 2022). https://doi.org/
10.1007/978-3-031-07085-3_27

55. Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash func-
tions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol.
14008, pp. 628–658. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-
3-031-30589-4_22

56. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (Aug 2002). https://doi.org/
10.1007/3-540-45708-9_19

https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-30589-4_22
https://doi.org/10.1007/978-3-031-30589-4_22
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Faster Signatures from MPC-in-the-Head

Dung Bui1(B), Eliana Carozza1, Geoffroy Couteau2, Dahmun Goudarzi3,
and Antoine Joux4

1 IRIF, Université Paris Cité, Paris, France
{bui,carozza}@irif.fr

2 CNRS, IRIF, Université Paris Cité, Paris, France
couteau@irif.fr

3 Quarkslab, Paris, France
dahmun.goudarzi@gmail.com

4 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
joux@cispa.de

Abstract. We revisit the construction of signature schemes using the
MPC-in-the-head paradigm. We obtain two main contributions:

– We observe that previous signatures in the MPC-in-the-head
paradigm must rely on a salted version of the GGM puncturable
pseudorandom function (PPRF) to avoid collision attacks. We design
a new efficient PPRF construction that is provably secure in the
multi-instance setting. The security analysis of our PPRF, in the
ideal cipher model, is quite involved and forms a core technical con-
tribution of our work. While previous constructions had to rely on
a hash function, our construction uses only a fixed-key block cipher
and is considerably more efficient as a result: we observe a 12× to
55× speed improvement for a recent signature scheme (Joux and
Huth, Crypto’24). Our improved PPRF can be used to speed up
many MPC-in-the-head signatures.

– We introduce a new signature scheme from the regular syndrome
decoding assumption, based on a new protocol for the MPC-in-
the-head paradigm, which significantly reduces communication com-
pared to previous works. Our scheme is conceptually simple, though
its security analysis requires a delicate and nontrivial combinatorial
analysis.

1 Introduction

In this work, we revisit signature schemes constructed from the MPC-in-the-
head (MPCitH) paradigm. We make two contributions. Our first contribution
appeals to all MPCitH signatures, while our second contribution is in the context
of code-based MPCitH signatures:

– We introduce the notion of multi-instance puncturable pseudorandom func-
tion (PPRF) together with an extremely efficient instantiation from the AES
block cipher, which we formally prove secure in the ideal cipher model. Our

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 396–428, 2025.
https://doi.org/10.1007/978-981-96-0875-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_13&domain=pdf
https://doi.org/10.1007/978-981-96-0875-1_13

Faster Signatures from MPC-in-the-Head 397

construction can be used as a drop-in replacement to the hash-based PPRF
used in most previous MPCitH signatures, and yields significant improve-
ments in both signing time and verification time (e.g., from 12× to 55× in
our experiments with the recent scheme of [38]).

– We introduce a new MPCitH signature from the regular syndrome decoding
(RSD) problem. We formally prove that its unforgeability tightly reduces
to the multi-instance security of the underlying PPRF, showcasing how our
new primitive results in better security reduction (hence better efficiency for
a target security level). Our new signature scheme relies on a non-trivial
combinatorial analysis, and significantly improves over the state-of-the-art
scheme of [24] on all aspects (signature size, efficiency, security).

1.1 Faster MPCitH Signatures from a New Multi-instance PPRF

All state-of-the-art MPCitH signature schemes rely at their core on a puncturable
pseudorandom function, which allows to generate a large number n of pseudoran-
dom strings such that given an index i, the signer can reveal all pseudorandom
values except the i-th one using an “opening” of size λ · log n (where λ is a secu-
rity parameter). The de facto PPRF originally used in prominent works such as
Picnic [49] was the GGM PPRF [35], where the PRF evaluation on input i with
key K is the i-th leave of a full binary tree with root labeled with K. In GGM,
the labels of the two children of a node x are computed as F(x) = (F0(x),F1(x))
using a length-doubling pseudorandom generator (PRG) x �→ (F0(x),F1(x)).
The PRG is typically instantiated as x �→ (x ⊕ π0(x), x ⊕ π1(x)) for a pair
of random invertible permutations (π0, π1): this instantiation yields a provably
secure construction in the random permutation model [36] and an extremely fast
expansion when instantiating the permutations using the AES block cipher with
a fixed key (using commonly available hardware acceleration for AES). However,
it was observed in [30] that in the context of signatures, this choice allows for a
devastating multi-target attack: after 2t signature queries, an attacker can find
the root of one of the GGM trees using on average 2128−t work, and recover the
secret signing key as soon as a collision is found.

In reaction to this attack, Picnic [49] and most recent works on MPCitH
signatures, including BBQ [29], Banquet [9], all MPCitH candidates of
the recent NIST call for additional post-quantum signatures (SDitH [3],
MIRA [6], MiRitH [2], MQOM [32], PERK [1], Ryde [5], and Biscuit [11])
and more, all implement the PRG using a hash function (such as SHAKE),
as follows:Fb(x, i, salt) ← H(x‖i‖b‖salt), where i is the index of the parent node
and salt is some random salt (included in the signature). Unfortunately, because
of the hardware support for AES, replacing AES with a hash function is consid-
erably slower (up to 50× slower according to [36]).

A Faster Construction from Ideal Ciphers. The reason for choosing the
hash-based construction over the existing AES-based construction comes from
the need to add a per-signature salt at every node computation to thwart the

398 D. Bui et al.

multi-target attack; however, AES can only take a fixed 128-bit input. We make
the following simple observation: in the AES-based instantiation, instead of rely-
ing on a global fixed-key that remains identical across all instances (as was orig-
inally done in Picnic [49]), the signer can use a per-signature random AES key
that will play the role of the salt (crucially, this key needs not be changed at
every node of the tree, avoiding costly re-keying of AES), without having to
increase the block size.

A Multi-instance PPRF in the Ideal Cipher Model. The idea in itself
is surprisingly simple, and we do not claim it to be particularly novel: the idea
of rotating the key has been mentioned in the literature in other contexts, for
example, in [45]. Our main contributions here are twofold:

– We introduce the notion of multi-instance PPRFs, capturing the exact secu-
rity requirement that the PPRF must satisfy to avoid multi-target attacks (in
contrast, previous works made a direct proof of the full signature construc-
tion by modeling the hash function in the ROM; our approach is much more
modular).

– We formally prove that the PPRF instantiated with F(x,K0,K1) = (x ⊕
AESK0(x), x ⊕ AESK1(x)) is a multi-instance PPRF when AES is modeled
as an ideal cipher. Our security analysis is non-trivial and forms a core tech-
nical contribution of our work. It relies on the H-coefficient technique of
Patarin [26,42].

We further expect our new PPRF to find other applications beyond the scope of
MPCitH signatures. We sketch these applications in Appendix of our full-version
[23].

On the Security Loss of Our Construction. Our analysis induces a loss of
logD + 3 bits of security, where D is the depth of the GGM tree. For example,
if D = 8, this translates to a loss of 6 bits of security. Before we proceed, we
comment on this loss:

– The loss of 3 bits of security comes from bounding the worst-case runtime of
the attacker (i.e. proving that with probability 2−λ, the attacker must run
in time 2λ to break the scheme with high probability). If bound instead the
expected runtime of the attacker, the loss reduces to 1 bit.

– the log2 D loss comes from the D hybrids in the PRG-to-PRF reduction,
similar to [35]. This loss is inherent to the construction (i.e., the analysis is
perfectly tight on this aspect).

To mitigate the second loss, we suggest the following variant of our construc-
tion: instead of relying on a global pair of keys (K0,K1) for the full GGM tree,
use instead D pairs of keys (Ki

0,K
i
1)i≤D (stretched from some 2λ-bit signature

salt using a PRG), one for each level of the tree. Then, evaluate the GGM tree
using the key pair (Ki

0,K
i
1) for nodes that are the i-th level of the tree. This

Faster Signatures from MPC-in-the-Head 399

induces a slight increase in the number of AES rekeying (2D instead of 2), but
the cost is completely negligible compared to the rest (the reader can think of
D as an integer between 8 and 16). We put forth the conjecture that in the ideal
cipher model, this yields a multi-instance PPRF with λ − 3 bits of security (or
λ − 1 if we bound the expected runtime of the attacker instead), where λ is the
key length of the block cipher.

Unfortunately, it is not straightforward to adapt our security analysis to this
variant: our analysis proceeds via a multi-instance PPRF to multi-instance PRG
reduction, followed by a proof of security of the multi-instance PRG in the ideal
cipher model. The log2 D loss stems from the first reduction, and our variant
does not generically remove this loss for an arbitrary multi-instance PRG. We
conjecture that it does, however, remove this loss when the PRG is instantiated
in the ideal cipher model. Proving this conjecture appears to require analyzing
directly the full multi-instance PPRF in the ideal cipher model. We believe that
this is not out of reach, but it goes beyond the scope of this work, and we leave
it to future work.

Case Analysis: the Signature Scheme of [38]. We expect that replacing the
hash-based PPRF with our AES-based construction in existing MPCitH signa-
ture schemes will yield to significant efficiency improvements. The improvement
is especially noticeable if the cost of expanding the GGM tree represents a large
fraction of the overall runtime. We note that if the most optimized state-of-the-
art MPCitH signature, the GGM tree expansion indeed tends to account for
most of the running time (for both signing and verification).

To illustrate the concrete efficiency improvements one might expect from
using our PPRF, we focus on the recent scheme of [38], an extremely efficient
MPCitH signature based on the subfield bilinear collision problem. We run the
signature scheme using both the hash-based multi-instance PPRF used in previ-
ous works, and our AES-based multi-instance PPRF. In both cases, for fairness
of comparison, we include all relevant algorithmic optimizations (this includes
an algorithmic optimization introduced in [38] subsequently to our work). We
report the results on Table 1 for two sets of parameters:D = 8 (fast signing,
larger signatures) and D = 16 (slower signing, short signatures). We observe a
very significant improvement in runtime, from 12× when D = 8 up to 55× when
D = 16. We note that the authors of [38] already integrated our improved PPRF
in the latest version of their scheme, to be presented at CRYPTO’24.

1.2 A New MPCitH Signature from Regular Syndrome Decoding

We now turn to our second main contribution, a new construction of MPCitH-
based signature from the regular syndrome decoding assumption. This contri-
bution is essentially independent of our multi-instance PPRF1; however, it also

1 We initially introduced our improved PPRF and its analysis as an optimization of
our new scheme, but since it impacts all state-of-the-art MPCitH signatures, we
singled it out as an independent contribution.

400 D. Bui et al.

Table 1. Case analysis of the impact of using our faster AES-based multi-
instance PPRF on the signature scheme of [38] for two sets of parameters:D = 8
(fast signing) and D = 16 (short signatures) compared to the standard hash-
based construction. D denotes the depth of the GGM tree (equivalently, 2D

corresponds to the number of virtual parties in the MPC protocol run “in the
head”), and τ to the number of repetitions to achieve 128 bits of security. All
schemes run on one core of an AMD EPYC 9374F processor clocked at 3.85GHz.

[38] D τ |σ| signing verification

hash-based PPRF8 166.2 kB9.24 ms 9.11 ms
168 4.1 kB 1.1 s 1.1 s

AES-based PPRF8 166.2 kB0.80 ms 0.71 ms
(this work) 168 4.1 kB19.5 ms 19.2 ms

allows us to formally illustrate on a concrete signature scheme how multi-instance
PPRFs yield tight and simple proofs of existential unforgeability.

Our starting point is the recent work of [24], that relies on a share conversion
technique to build a signature scheme from the regular syndrome decoding prob-
lem (RSD). The RSD problem was originally introduced in 2003 in [7] as the
assumption underlying the FSB candidate to the NIST hash function competi-
tion, and subsequently analyzed in [10,33,40], among others (it has also been
used and analyzed in many recent works on secure computation, such as [14–
18,27,37,44,46,48]). It states that given a syndrome H · x, where x is a regular
vector (i.e., a concatenation of unit vectors) and H a random compressive matrix,
it is infeasible to recover x. To obtain improved performances compared to [24],
we encode the regular syndrome decoding instances using a sparse representa-
tion on top of the dense representation used in [24]. Encoding regular syndrome
decoding instances in a sparse manner is quite natural and relies on the use of
an indicator vector to locate the non-zero positions. However, such a representa-
tion is not compatible with the secret sharing techniques that are used to split
the key between the virtual parties that are introduced by the MPC-in-the-head
paradigm:in order to use sparse representations, we need to develop new conver-
sion techniques involving both types of representations. Along the way, we rely
on a mechanism to prevent cheating behavior in the conversion, which requires a
highly non-trivial combinatorial analysis. Overall, our signature scheme is more
than 30% shorter compared to the scheme of [24] and can use significantly more
conservative parameter sets, for similar runtimes.

Results and Comparison. We provide a full implementation of our signature
scheme. Our implementation is a proof-of-concept implementation, and did not
use any optimizations such as batching, vectorization, or bit slicing. In particular,
we note that our implementation does not include the folding optimization that

Faster Signatures from MPC-in-the-Head 401

was subsequently introduced in [38], that yields significant efficiency improve-
ments when the AES-based multi-instance PPRF is used (in contrast, it only
yields mild improvements when using a hash-based PPRF, in essence because
it shaves a cost which is dominant in the AES-based PPRF, but dominated by
the cost of hashing in the hash-based PPRF). Nevertheless, our implementation
confirms that our scheme exhibits excellent performance. Since [24] does not pro-
vide an implementation, we compare our scheme to SDitH, the state-of-the-art
MPCitH signature from syndrome decoding [3].

Even when compared to a fully-optimized scheme such as SDitH [3] that
makes use of batching techniques and advanced hardware instructions, we
observe that our scheme performs particularly well. In addition, we provide tight
estimates of the performance improvements that results from integrating the fast
folding optimization of [38] to our scheme and to SDitH (while we use the imple-
mentation of [38] to obtain runtimes for the faster folding, we note that we do
not yet have a full-fledged implementation of our scheme integrating the folding
optimization). We leave a fully-optimized implementation of our scheme, inte-
grating the optimization of [38], to future works. We outline below a sample of
parameters:

– (fast) signature size 6.5kB, signing time 1.40 ms
– (medium) signature size 5.7 kB, signing time 3.56 ms
– (compact) signature size 4.9 kB, signing time 23.9 ms.

We refer the reader to Table 3 of our full-version [23] for more details on our
parameters and implementation. We compared our scheme to SDitH [4], the
fastest known code-based signature scheme to date, by running both schemes
on the same hardware and for comparable parameter sets. To better isolate
the effect of our improved PPRF, we also benchmark SDitH with their PPRF
replaced by our improved construction,2 as well as our scheme using the hash-
based PPRF of SDitH. For both, we integrate the folding optimization of [38]. We
summarize our benchmarks on Table 2. Even when comparing our unoptimized
implementation to the optimized implementation of [3], we observe 3× to 4×
runtime improvements for D = 8 (with signatures of comparable size).

Another advantage of our signature scheme is its simplicity: while [4] requires
fast polynomial operations over large fields, our signature uses only very simple
operations on strings such as XORs and cyclic shifts. Eventually, we note that
our work and [4] use incomparable variants of syndrome decoding: we use regular
syndrome decoding over F2, while [4] uses syndrome decoding over F256. Both
variants have received much less attention than the standard syndrome decoding
assumption over F2 (though we note that RSD over F2 seems to have received
significantly more attention than the variant of [4] over the past two decades).
2 In the conference version of their work, the construction of [4] initially used an
unsalted GGM tree (instantiated using AES), which we show in Sect. 3 to be insecure
(with a concrete attack that breaks the scheme using 240 signatures in time 269).
The authors later fixed this issue in their NIST submission [3], using a proper salted
GGM tree instantiated with a hash function.

402 D. Bui et al.

Table 2. Comparison of the new signature scheme with SDitH for D = 8 and
D = 12, with and without our improved multi-instance puncturable pseudoran-
dom function (denoted AES-PPRF and hash-PPRF respectively) integrating the
folding optimization of [38]. All schemes were run on one core of an Intel Core
i7 processor 14700KF.

D τ |σ| signing time

SDitH (hash-PPRF) 8 178.2 kB 6.82 ms
12116.0 kB 46.8 ms

SDitH (AES-PPRF) 8 178.2 kB 6.03 ms
12116.0 kB 31.5 ms

Our scheme (hash-PPRF)8 177.8 kB 4.07 ms
12116.1 kB 43.83 ms

Our scheme (AES-PPRF)8 177.8 kB 0.64 ms
12116.1 kB 2.13 ms

Concurrent Work. A concurrent and independent work [28] recently intro-
duced another signature scheme based on the Regular Syndrome Decoding
assumption. On a technical level, our approaches differ significantly: [28] com-
bines the VOLE-in-the-Head technique from [8] with a sketching method of [20]
to reduce the check of the noise structure to a system of degree-2 equations, which
are then proven using the Quicksilver VOLE-based zero-knowledge proof [47].
We use the MPC-in-the-Head methodology with a dedicated share-conversion
technique. The signatures of [28] are shorter than ours, e.g., 4 kB versus 4.9 kB
for comparable runtimes. Since our techniques are incomparable, we nevertheless
expect that they could prove useful in future improved constructions of RSD-
based signature, and leave as future work the question of exploring whether our
combinatorial techniques could be used to further improve the scheme of [28].
We note that our improved PPRF can be used as a drop-in replacement for
the one used in [28] (though it uses VOLE-in-the-Head, the methodology still
relies on a similar use of a GGM-style PPRF under the hood) and its use should
improve the performances of [28].

1.3 Organization

We introduce some preliminaries in Sect. 2 and provide a technical overview of
our main two contributions in Sect. 3 (the improved GGM construction) and
Sect. 4 (the new signature scheme) respectively. These sections overview the
security analysis of our multi-instance PPRF and the combinatorial analysis
of a bound used in the analysis of our signature scheme respectively, which form
the core contributions of our work. We describe the construction of our PPRF

Faster Signatures from MPC-in-the-Head 403

in Sect. 5 and our signature scheme in Sect. 6. Due to space limitations, we refer
reader to our full-version [23] for more details.

2 Preliminaries

Given a set S, we write s ←r S to indicate that s is uniformly sampled from S.
Given a probabilistic Turing machine A and an input x, we write y ←r A(x) to
indicate that y is sampled by running A on x with a uniform random tape, or
y ← A(x; r) when we want to make the random coins explicit. Given an integer
n ∈ N, we denote by [n] the set {1, · · · , n}. We use λ = 128 for the computational
security parameter.

Vectors and Matrices. We use bold lowercase for vectors and uppercase for
matrices. We write A||B to denote the horizontal concatenation of matrices
A,B, and A//B to denote their vertical concatenation. We denote by Idn the
n × n identity matrix. By default, we always view vectors as columns. Given a
vector v, we will often write v = (v1, · · · ,vn) to indicate that v is a (vertical)
concatenation of n subvectors vi. We use this slight abuse of notation to avoid
the (more precise, but cumbersome) notation v = (vᵀ

1 , · · · ,vᵀ
n)

ᵀ. Given u,v ∈
{0, 1}n, we write u ⊕ v for the bitwise-XOR of u and v, and HW(u) for the
Hamming weight of u, i.e., its number of nonzero entries.

Permutations. We let Perm(w) denote the set of all permutations of [w]. In this
work, we typically use permutations over [w] to shuffle the entries of a length-w
vector, or even to shuffle the blocks of a vector which is the concatenation of w
blocks. For example, given a vector v ∈ [bs]w and a permutation π : [w] �→ [w], we
write π(v) to denote the vector (vπ(1), vπ(2), · · · , vπ(w)). Given a vector v which
is the concatenation of w subvectors (v1, · · · ,vw), we write π(v) to denote the
vector (vπ(1), · · · ,vπ(w)). We will typically apply this to vectors over F

K
2 , seen

as the concatenation of w vectors over F
bs
2 .

Code Parameters. In this work, K always denotes the number of columns in
the parity-check matrix H, and k denote the number of its rows. Equivalently,
K is the codeword length, and K − k is the dimension of the code. We let w
denote the weight of the noise, which will always divide K. We let bs ← K/w
denote the block size: a w-regular noise vector is sampled as a concatenation of
w random unit vectors (the blocks) of length bs. We write Regw to denote the
set of all length-K w-regular vectors.

Compact and Expanded Forms. Given an index i ∈ [n], we let ei ∈ F
n
2

denote the length-n unit F2-vector whose i-th entry is 1 given w indices
(i1, · · · , iw) ∈ [n]w, we extend the previous notation to ei = (ei1 , · · · , eiw

),
the concatenation of w unit vectors. We typically manipulate noise vectors rep-
resented in compact form, i.e., as elements (i1, · · · , iw) of [bs]w, where each entry

404 D. Bui et al.

ij ∈ [bs] indicates the position of the 1 in the j-th length-bs unit vector. We let
Expand denote the mapping which, given a noise vector x = (x1, · · · ,xw) ∈ [bs]w,
outputs the vector ex = (ex1 , · · · , exw

) ∈ F
K
2 . We call ex the expanded form of

x.

Cyclic Shifts. Given a vector u ∈ F
n
2 and i ∈ [n], we write u ↓ i to denote

the vector u cyclically shifted by i steps (in other words, u↓ i is the convolution
of u and ei). We also use notation Shift(u, i) to denote u ↓ i. We extend the
notation to a block-by-block cyclic shift of vectors:given a vector u ∈ F

K
2 , viewed

as a sequence of blocks (u1, · · · ,uw) ∈ F
K/w
2 ×· · ·×F

K/w
2 , and a vector of shifts

x ∈ [bs]w, we write u ↓ x to denote the vector obtained by shifting the blocks
of u according to x. That is u ↓ x = (v1, · · · ,vw) where each vi is the vector
obtained by cyclically shifting (downward) the vector ui by xi steps. To avoid
abusing parenthesis, we view ↓ as a “top priority” operator: by default, for any
other operation op, u↓xopv means (u↓x)opv and not u↓(xopv).

Binary Tree. Given a tree of size 2D, for each leaf i ∈ [2D], we define CoPath(i)
as co-path to i in the tree, i.e., the set of intermediate nodes that can be used to
recover all leaves except the i−th one. Denote bit-decompose i as

∑D
j=1 2

j−1 · ij
for ij ∈ {0, 1}, the associated value of i-th leaf is defined as Xi := Xi1,...,iD

.

2.1 Regular Syndrome Decoding Problem

Given a weight parameter w, the syndrome decoding problem asks to find a
solution of Hamming weight w (under the promise that it exists) to a random
system of linear equations H · x over F2. There exist several well-established
variants of the syndrome decoding problem, with different matrix distributions,
underlying fields, or noise distributions. In this work, we focus on a relatively
well-studied variant known as the regular syndrome decoding (RSD) problem,
introduced in 2003 in [7] as the assumption underlying the FSB candidate to the
NIST hash function competition. In RSD, the solution x is sampled randomly
from the set Regw of w-regular vectors (i.e., x is a concatenation of w unit
vectors of length K/w). This variant has been used (and analyzed) quite often
in the literature [7,10,14–18,27,33,37,40,44,46,48].

Definition 1 (Regular Syndrome Decoding Problem). Let K, k,w be
three integers, with K > k > w. The syndrome decoding problem with parameters
(K, k,w) is defined as follows:

– (Problem generation) Sample H ←r F
k×K
2 and x ←r Regw. Set y ← H · x.

Output (H,y).
– (Goal) Given (H,y), find x ∈ Regw such that H · x = y.

Faster Signatures from MPC-in-the-Head 405

3 Technical Overview:Optimized GGM Trees for Faster
MPCitH Signatures

Our starting point is the GGM puncturable pseudorandom function [12,22,35,
39], which is used in all modern MPC-in-the-head signatures. At a high level,
all MPC-in-the-head protocols start by letting the prover generate shares of
the witness, possibly together with shares of some appropriate preprocessing
material, to be distributed among the n virtual parties. Then, in the last round,
the prover will reveal n−1 out of n shares to the verifier. Since each share appears
random, the share of each party Pi can be locally stretched from a short seed
seedi. To maintain correctness, an auxiliary “correction word” auxn is appended
to the seed seedn of the last party Pn (e.g. to guarantee that the stretched shares
XOR to the correct witness).

Puncturable PRFs allow us to significantly optimize this step. A puncturable
pseudorandom function (PPRF) is a PRF F such that given an input x, and
a PRF key k, one can generate a punctured key, denoted k{x}, which allows
evaluating F at every point except for x, and does not reveal any information
about the value F.Eval(k, x). Using a PPRF, the prover can define all seeds
seedi as outputs of the PRF, using a master seed seed∗ as the PRF key. Then,
revealing the key seed∗ punctured at a point i suffices to succinctly reveal all
seeds (seedj)j �=i while hiding seedi. Concretely, using the GGM PPRF [35], the
prover generates n seeds seed1, · · · , seedn as the leaves of a binary tree of depth
	log2 n
, where the two children of each node are computed using length-doubling
pseudorandom generators. This way, revealing all seeds except seedi requires only
sending the seeds on the nodes along the co-path from the root to the i-th leave,
which reduces the communication from λ · (n − 1) to λ · 	log2 n
.

3.1 On the Use of Salt to Avoid Collisions

As shown in [30], MPC-in-the-head can suffer from collision attacks if the GGM
PPRF is used as is: after about 2λ/2 signature queries, the adversary is likely
to observe two signatures computed with the same master seed seed∗, an event
which leaks the secret signing key. To circumvent this issue, previous works have
relied in one way or another on a random 2λ-bit salt. However, the use of salt
within the GGM PPRF is inconsistent across existing works. As a result, some
constructions are either poorly specified or even insecure. Specifically:

– In Banquet [9], and in the more recent work of [4], the seeds (seed1, · · · , seedn)
are generated from an unsalted GGM PPRF, and the salt is only used
at the leaves, when stretching the share of each party Pi from its seed as
PRG(seedi, salt).

– In [31] and [24], the signature description loosely states that (seed1, · · · , seedn)
are generated in a tree-based fashion using the master seed seed∗ and the salt
salt. However, the way the salt is used within the GGM construction is not
specified precisely. In particular, the definition of the GGM tree in [31] does
not include the salt, and their implementation results only mention that it

406 D. Bui et al.

has been implemented “using AES in counter mode”. The work of [24] does
not have an implementation.

We observe that using the salt only at the leaves, as in [4,9], does not shield
the signature from collision attacks. The attack is relatively simple:

– The attacker queries m signatures. Each signature will contain some number
τ of 	log2 n
-tuples of intermediate PRG evaluations (corresponding to the
seeds on co-path to the unopened leave; τ corresponds to the number of
repetitions of the underlying identification scheme). Let (seed1, · · · , seedk)
denote all seeds received this way, where k = m · τ · 	log2 n
.

– The attacker locally samples random seeds seed and evaluates its two children
(seed0, seed1) ←r PRG(seed), until one of the seedb collides with some seedi.

– Since it knows the preimage of seedb, it recovers the parent seed of seedi, from
which it can compute the seed associated with the unopened leave in one of
the signatures.

– Given this seed, and using the salt salt associated to the signature (which is
public), the attacker reconstructs all virtual parties’ shares, and reconstructs
the secret witness (the AES secret key in [9], the syndrome decoding solution
in [4]. Using the witness, the attacker can now forge arbitrary signatures.

As should be clear from the above description, we note that adding salt to
the leaves has absolutely no effect on the security of the signature against this
collision attack. Efficiency-wise, after receiving m signatures, the attacker finds
a collision in time 2λ/(m · τ · 	log2 n
). For example, using λ = 128, n = 216, and
τ = 9 (this is a parameter set from [4]), after seeing only m = 240 signatures,
the attacker can break the scheme in time ≈ 269.

3.2 On the Efficiency of Salted GGM Trees

We believe that the attack pointed above is mostly an issue of the presentation
in the respective papers, and that the authors are generally aware of this issue.
For example, we observe that the implementation of Banquet3 correctly fixes the
issue, by adding salt within all intermediate computations of the tree. As for [4],
while their original implementation suffers from the attack above, the authors
recently included their scheme in a NIST submission [3] whose implementation
properly deals with this issue. However, the state of affairs remains quite unsat-
isfying on the efficiency front: unsalted GGM trees can be instantiated very
efficiently using fixed-key AES [36], which enables the use of Intel’s AES-NI
instruction set. Unfortunately, the fixed block size of AES makes it hard to add
salt. And indeed, existing implementations such as Picnic [25], BBQ [29], Ban-
quet [9], and the recent NIST submissions based on [4], all implement the PRG
using a hash function (such as SHAKE), as follows: seedb ← H(seed‖i‖j‖b‖salt),
where i is the index of the parent node, and j ≤ τ is a counter for the repetitions
of the identification scheme. Unfortunately, because of the hardware support for

3 https://github.com/dkales/banquet.

https://github.com/dkales/banquet

Faster Signatures from MPC-in-the-Head 407

AES, replacing AES with a hash function is up to 50× slower. This is especially
problematic in recent protocols that use the hypercube technique [4], where the
cost of generating the tree dominates the signing time.

3.3 A Fast Salted GGM Tree in the Ideal Cipher Model

We now turn to our contribution: we introduce a new construction of salted GGM
tree which matches the efficiency of the fastest unsalted GGM trees, but which
yields much stronger security guarantees. We provide formal security proof that
our new construction is a multi-instance secure PPRF, a notion that we intro-
duce. Multi-instance PPRFs can be used as a drop-in replacement for PPRFs in
MPCitH signatures. In contrast with standard PPRFs, whose use incurs a secu-
rity loss proportional to the number of signature queries (as illustrated by our
attack), the unforgeability of MPCitH signatures tightly reduces to the multi-
instance security of the PPRF.

In essence, our multi-instance PPRF is based on a very simple idea: use
the previous top-performing GGM construction from a fixed-key block-cipher,
and use the cipher key as the salt. While the intuition is very natural, formally
proving security is actually quite challenging. Our full proof of security, in the
ideal cipher model, is one of the core technical contributions of this work. It
relies on the H-coefficient technique of Patarin [26,42] and combines it with a
balls-and-bins analysis to measure the number of seed and cipher key collisions,
and tightly estimate their impact on security.

Starting Point: a PPRF in the Random Permutation Model. Our start-
ing point is a PPRF construction from [36]. The construction of [36] is a tweak on
the original GGM construction, where the PRG is instantiated with the following
“Davies-Meyer” function:

G : x → (π0(x) ⊕ x, π1(x) ⊕ x) .

In this construction, (π0, π1) are two fixed pseudorandom permutations. Using
this PRG, the construction of PPRF proceeds in a tree-based fashion: sample
a PPRF key K ←r {0, 1}λ. On input x = (x1, · · · , xn), the PPRF FK returns
Gxn

(Gxn−1(· · · Gx1(K) · · ·)), where G0, G1 denote the left and right half of the
output of G, respectively. Puncturing x is done by computing all values on the
co-path to x in the tree, i.e., the values Gx̄i

(Gxi−1(· · · Gx1(K) · · ·) for i = 2 to
n: knowing the values on the co-path allows reconstructing the entire tree except
for FK(x), whose values are pseudorandom under the security of G. To prove the
security of the construction, the authors of [36] rely on the random permutation
model, where (π0, π1) are modeled as two independent random permutations.

In [36], the motivation for introducing the construction is that in prac-
tice, π0, π1 can be instantiated using the AES block cipher with two fixed keys
(K0,K1). This allows to evaluate G using two calls to AES, which is extremely
fast using the AES-NI hardware instruction set (encrypting with AES using
AES-NI takes as little as 1.3 cycle per Byte according to [41]). Furthermore, the

408 D. Bui et al.

entire construction requires only two executions of the AES key schedule. This
GGM construction is to date, by a significant margin, the fastest known PPRF,
and it has been featured extensively in recent works on functions secret shar-
ing [13,19–21,34], pseudorandom correlation generators [14–18,27,46,48], and
many more. It is also the construction suggested in [4], though as we saw above
it is insecure in the context of signatures.

Observing that this fast PPRF construction is typically instantiated using
a block cipher suggests the following idea, which is very natural in retrospect:
use the above construction, but instantiate (π0, π1) using a block cipher (such
as AES) and use the block cipher keys (K0,K1) as a random salt. This means
that in each instance, the pair (K0,K1) will be sampled at random. When using
AES, this changes nothing to the efficiency of the construction, since in each
instance, one still only has to execute the AES key schedule twice. Yet, now,
there is some hope that the use of fresh cipher keys in distinct instances can
prevent the collision attack.

Multi-instance PPRF and PRGs. To formalize this idea, we introduce the
primitive of multi-instance PPRF. At a high level, we define an N -instance
PPRF as a PPRF that additionally takes as input a random salt. In the N -
instance security game, N keys (k1, · · · , kN), inputs (x1, · · · , xN), and salts
(salt1, · · · , saltN) are sampled randomly. The game also samples a bit b ←r {0, 1}.
Then, the adversary receives ((x1, salt1), · · · , (xN , saltN)) and the N punc-
tured keys (k1{x1}, · · · , kN{xN}). If b = 0, the adversary additionally receives
(Fk(x1, salt1), · · · , FK(xN , saltN)); else, if b = 1, the adversary receives N ran-
dom outputs (y1, · · · , yN) instead. The adversary outputs a guess b′ and wins if
b′ = b. The PPRF is said to be N -instance (t, ε)-secure if the advantage of any
t-time adversary in this game is at most ε. Since our constructions use τ parallel
calls to a PPRF with the same salt, we generalize the notion to (N, τ)-instance
security to capture the setting where N instances of τ repetitions of a PPRF are
used, where the salt differ across instances, but not across internal repetitions.

As a first step toward proving the security of our construction, we also intro-
duce the similar (but simpler) notion of (N, τ)-instance (t, ε)-secure PRG, which
is a PRG G : (seed, salt) → (G0(seed, salt), G1(seed, salt)) that additionally takes
some random salt. In the N -instance security game, the adversary attempts
to distinguish (G0(seedi, salti), G1(seedi, salti))i≤N from random given the salts
(salt1, · · · , saltN) (the game extends to (N, τ)-instance security in a straight-
forward way, but the description is more tedious). We show that the standard
GGM reduction extends to the multi-input setting: an (N, τ)-input (t, ε)-secure
PRG implies an (N, τ)-input (t,D · ε)-secure PPRF on input domain [2D] via a
straightforward sequence of hybrids.

A Multi-instance PRG in the Ideal Cipher Model. The crux of the
analysis is then to show that our PRG is indeed (N, τ)-instance (t, ε)-secure
(for a suitable choice of N, τ, t, ε). Since the PRG now explicitly uses a block
cipher, we cannot rely on the random permutation model anymore; instead, we

Faster Signatures from MPC-in-the-Head 409

prove security in the ideal cipher model, where each key K ∈ {0, 1}λ defines
a truly random permutation πK , and all parties are given oracle access to πK

and π−1
K for all K (we measure the running time t of the attacker as its number

of queries q to the oracles). Using the H-coefficient technique of Patarin, we
formally prove that our construction is an (N, τ)-instance (q, ε)-secure PRG for
any N up to 2λ−1, with ε ≤ 4τ ·λ

lnλ · q
2λ , where the term 4τλ/ lnλ can be replaced

by 8τ when N ≤ 2λ/2 (the above inequality is an approximation, see Theorem 7
for the formal inequality). Our analysis is non-trivial, and the bound stems from
a careful analysis of the influence of the number of collisions among seeds on
the adversarial advantage. We show that this number can be bounded using
standard lemmas on the maximum load of a bin when 2N balls are thrown into
2λ bins.

Concretely, this means that one can use our new multi-instance PPRF con-
struction as a drop-in replacement for previous (much slower) hash-based con-
struction, at the (small) cost of a security loss of 4τDλ/ lnλ (or simply 8τD
when we bound the number of signature queries by 2λ/2). For D = 16, τ = 8,
and λ = 128, this translates to a loss of 14 bits of security (when the number of
queries is up to 2127) or 10 bits of security (for up to 264 queries). Furthermore,
we can reduce this loss to 8 bits at the (mild) cost of only guaranteeing that the
expected runtime of the adversary is above 2λ.

Additionally, we introduce an optimization that converts (N, τ)-instance
(t, ε)-secure PRG to (τ · N, 1)-instance (t, ε)-secure by using a pseudorandom
generator to sample the τ salts (salti,e)e≤τ in a given instance from a global salt
salti for each i ≤ N . This shaves a factor τ from security loss, which is reduced
to 5 bits for D = 16, τ = 8, λ = 128. We believe that this is a very reasonable
tradeoff in exchange for the benefits of using a much faster AES-based construc-
tion. Eventually, we suggest a final optimization that further reduces the security
loss to 3 bits (independently of D): using a pseudorandom generator to generate
(τ · D) salts (salti,e)e≤τ,i≤D from a global salt salt, and evaluating each level of
each GGM tree with a different salt. Now all salts are sampled randomly, it leads
to collisions among (salti,e, seedi,e)e≤τ,i≤N happening with a negligible probabil-
ity. We conjecture that this variant can be proven secure with only 1 bit of loss
in the ideal cipher model. Under the hood, we expect the proof of this conjecture
to be similar to the proof of our multi-instances PRG based on the H-coefficient
technique, however, it requires a considerably more cumbersome direct analysis
of the full multi-instance PPRF in the ideal cipher model (without reducing it
first to a multi-instance PRG, which is a much simpler object). We leave proving
this last conjecture for future work.

4 Technical Overview: New Signature from RSD

We now move to our second main contribution, a new signature scheme from the
regular syndrome decoding assumption. We start with a brief high-level overview
of the RSD-based signature scheme from [24], since it serves as a starting point
for our scheme. Let H ∈ F

k×K
2 be a matrix and x ∈ F

K
2 be a w-regular vector

410 D. Bui et al.

(i.e., a concatenation of w unit vectors). We let bs ← K/w denote the block size
of x. The signature builds upon an efficient n-party protocol which, on input
shares of x, checks that (1) x is a regular vector, and (2) H ·x = y. This n-party
protocol is then compiled into a zero-knowledge proof via the MPC-in-the-head
paradigm (which we sometimes abbreviate MPCitH), and the proof is further
compiled into a signature scheme via Fiat-Shamir. The main idea underlying the
protocol of [24] is that each of (1) and (2) above can be checked very efficiently,
provided that the parties are given a suitable sharing of x in each case:

– Given (entry-wise) shares of x over Zbs, checking that a block of coordinates
x1, · · · , xbs has weight 1 boils down to checking that

∑bs
i=1 xi = 1 mod bs,

which is a linear equation over Zbs.
– Given shares of x over F2, checking H · x = y simply amounts to checking a

linear equation over F2.

Since in the MPC-in-the-head paradigm, checking linear equations is for free, the
task of building the protocol reduces to the task of designing a sharing conversion
protocol, which converts F2-shares of x into Zbs-shares. The next observation
of [24] is that converting shares mod-2 of some value x into shares mod-bs can be
done very efficiently given precomputed shares mod-2 and mod-bs of the same
random bit r, which the prover can generate by themself. The only missing
ingredient is a mechanism to ensure that the prover honestly computes mod-
2/mod-bs pairs of the same identical random bit. The last, and most involved,
observation of [24] is that the verifier can completely dispense with the need to
perform this check, by picking a random permutation π of [K] and instructing
the prover to shuffle the pairs according to π before running the protocol. Using
a careful and non-trivial combinatorial analysis, [24] showed that whenever x
is sufficiently far from being a regular vector (meaning that it has many non-
unit blocks), a malicious prover using x has negligible success probability over
the choice of π, even if they use incorrect mod-2/mod-bs pairs. Of course, this
does not prevent a malicious prover from using an incorrect but close-to-regular
witness. However, by choosing the parameters (K, k,w) in a highly injective
setting it can be guaranteed that the only close-to-regular solution to H · x = y
is a regular vector.

4.1 An Alternative Share-Conversion Approach

The approach of [24] yields a competitive signature scheme, but has its short-
comings. Its main efficiency bottleneck stems from the use of shares over Zbs:
because of that, the signature includes several (one for each of the τ repetitions
of the basic proof) length-K vectors over Zbs (using a CRT trick, this can be
reduced to Zbs/2 whenever bs/2 is odd and ≥ 3). This yields a O(K · bs) com-
munication cost, which is (by a significant margin) the dominant cost of their
protocol. To mitigate this cost, the authors set the block size bs to be the small-
est possible value bs = 6 (such that bs/2 = 3). In turn, this forces them to rely
on RSD with very high weight w = K/6, which requires significantly increasing
the parameters to compensate for the security loss.

Faster Signatures from MPC-in-the-Head 411

Our first observation is that all of these shortcomings can be eliminated
at once by relying on an alternative share conversion approach. Because x is w-
regular, it admits a compressed representation as a list of w integers in [bs], which
indicates the position of the nonzero entry in each of the w unit vectors. Now,
observe that if the parties hold shares of w integers (i1, · · · , iw) modulo bs, these
can always be interpreted as representing some regular vector x; in other words,
given such shares, condition (1) is satisfied by default. The crux of our protocol is
a conversion procedure that turns shares of this compressed representation into
shares modulo 2 of the “decompressed” regular vector (with which the parties can
check the linear equation H ·x = y for free). Furthermore, this share conversion
can again be implemented very efficiently if the parties are given shares of pairs
of the same random unit vector in compressed representation and in standard
representation. Concretely, given an integer r ∈ [bs], let er denote the length-bs
unit vector with a 1 at position r. Assume that the n parties, holding shares of
some i ∈ [bs], are given shares of r modulo bs, and shares of er over F2. Consider
the following simple protocol:

– All parties broadcast their shares of z = i − r mod bs and reconstruct z.
– All parties locally shift cyclically their share of er by z.

After this protocol, all parties end up with shares of the vector er shifted
by z, which we denote er ↓ z (we view vectors as columns, hence the shift by z
is downward). Observe that er ↓ z = er ↓ (i − r) = (er ↑ r) ↓ i = ebs ↓ i = ei.
As in [24], we will let the prover generate w random pairs (r, er) and share
them between the virtual parties. To dispense with the need to check that the
pairs were honestly generated, we rely on the same strategy and let the verifier
sample a random permutation π of [w], and instruct the prover to shuffle the
pairs according to π before using them in the protocol. The high-level structure
of the MPCitH-compiled zero-knowledge proof (without optimizations) is below:

– Parameters and input: let (K, k,w) be parameters for the syndrome decod-
ing problem, and let bs ← K/w. The prover holds a w-regular witness
x ∈ [bs]w (in compressed representation) for the relation H · x = y, where
H ∈ F

k×K
2 and y ∈ F

k
2 are public. Let n be the number of virtual parties.

– Round 1: the prover samples w pairs (ri, eri
) where ri ←r [bs]. We denote

(r, er) the vector of pairs. The prover generates n shares of er (over F2) and
of x, r (modulo bs) distributed between the virtual parties, and commits to
the local state of each party.

– Round 2: the verifier samples and sends to the prover a random permutation
π ←r Perm(w). We write π(r) (resp. π(er)) for the vector (rπ(1), · · · , rπ(w))
(resp. (erπ(1) , · · · , erπ(w))).

– Round 3: the prover runs in their head the following protocol and commits
to the views of all parties:

– All parties reconstruct z = x−π(r) and shift their shares of π(er), getting
shares of π(er)↓z (the shifting is done blockwise: each erπ(i) is cyclically
shifted by zi). Note that π(er) ↓ z = ex (i.e. the “uncompressed” repre-
sentation of the witness x).

412 D. Bui et al.

– All parties compute a share of H · (π(er) ↓ z) and broadcast them. All
parties check that the shares reconstruct to y.

– Round 4: the verifier picks i ←r [n] and challenges the prover to open the
views of all parties except i.

– Round 5: the prover sends the n − 1 openings to the verifier, who checks
that the views are consistent with the commitments, with each other, and
with the output of the protocol being y.

The soundness of the scheme is ε = p+(1/n) ·(1−p), where p = p(K, k,w) is
an upper bound on the probability (over the choice of the random permutation
π) that a cheating prover, that commits in the first round to an incorrect witness
(i.e. a compressed vector x∗ such that H ·ex∗ �= y), manages to generate a valid
MPC transcript (i.e. finds—possibly incorrect—pairs (r,u) such that H · (π(u)↓
z) = y, where z = x∗ − π(r)). The crux of our analysis lies in computing a tight
evaluation of p.

In our final signature, we incorporate multiple optimizations on top of this
basic template, including the usual optimization of generating the shares in a
tree-based fashion using the GGM puncturable pseudorandom function [12,22,
35,39], but also the more recent hypercube technique from [4], and a number of
additional optimizations tailored to our scheme.

In terms of signature size, the dominant cost stems from the size of a share of
x and of w pairs (r, er) (using standard optimizations, all shares except one can
be compressed, hence the communication is dominated by the size of a single
share, ignoring for now the number of repetitions of the identification scheme).
The size of a share of x together with w pairs (r, er) is 2w log bs + K bits4,
whereas the size of x (now shared as a vector over FK

2) and of the pairs in [24] is
K · (2 + bs/2) bits. This directly incurs a significant reduction in the signature
size. Furthermore, with this alternative conversion, using a very small block size
is not advantageous anymore, which allows us to explore a much wider range of
parameters, resulting in further savings.

4.2 Combinatorial Analysis

Although the high-level strategy—shuffling the random pairs—is the same as
in [24], the security analysis is entirely different and forms a core technical con-
tribution of our work. Shuffling the prover-generated correlated randomness is a
highly non-generic technique, where each new protocol requires a new and dedi-
cated combinatorial analysis.5 The crux of the proof lies in bounding the success
probability of a cheating adversary A in the following game:

– A holds a vector x∗ ∈ [bs]w and chooses r ∈ [bs]w and u ∈ F
K
2 , such that u

is not a regular vector.
4 As in [24], this number is multiplied by a number τ of repetition, but since it is the

same in both works, we ignore it in this discussion for simplicity.
5 To give a sense of how specific the analysis of [24] was, not only does it work only

for their type of pairs: it works exclusively for bs = 6, corresponding to pairs of bits
shared modulo 2 and modulo 3.

Faster Signatures from MPC-in-the-Head 413

– A uniformly random permutation π is sampled from Perm(w).
– A wins iff H · (π(u)↓(x∗ − π(r) mod bs)) = y.

Given a bound on A’s winning probability in this game, the rest of the proof
follows in a relatively standard way and is similar to previous security proofs of
code-based signatures schemes in the MPCitH paradigm, such as [24] (we still
provide a full proof in the paper for completeness). Above, note that for any
vector s ∈ [bs]w, π(u)↓ s is a regular vector if and only if u is a regular vector.
Note also that whether x∗ is actually a correct witness or not (i.e. whether
H ·ex∗) does not matter: as long as u is regular, if A wins the game above, then
an extractor can recover a valid regular solution π(u) ↓ (x∗ + r mod bs) to the
syndrome decoding problem (hence A “knew” a solution to the problem in the
first place). Eventually, note that

π(u)↓(x∗ − π(r) mod bs) = π(u↑r)↓x∗,

hence, the game above simplifies to the following: A chooses x∗ ∈ [bs]w and
u ∈ F

K
2 \Regw, and wins iff H ·(π(u)↓x∗) = y holds over the choice of a random

permutation π.

Eliminating Spurious Solutions. An immediate issue with the above game
is that an adversary might win with a very high probability, if the system of
equations H · x = y admits solutions that are mostly invariant by blockwise
permutation. Concretely, assume that there exists a vector u∗ which satisfies
H ·u∗ = y, and such that u∗ is not a regular vector, yet v∗ is a concatenation of w
identical vectors from F

bs
2 . If this happens, then there is an easy winning strategy:

A sets u ← u∗ and x∗ ← 0w. Since H · (π(u) ↓ x∗) = H · π(u) = H · u∗ = y,
A is guaranteed to win. More generally, if H · x = y admits a solution u whose
blocks are mostly identical, then the equation H · π(u∗) = y has a relatively
large chance to hold simply because π(u∗) has a relatively large chance to be
equal to u∗.

Setting up Some Notations. Given a vector u, we let pn(u) denote |{π(u) | π ∈
Perm([w])}|. That is, pn(u) is the number of distinct vectors in F

K
2 which can

be obtained by shuffling u blockwise; we call pn(u) the permutation number of
u. Then, given a bound B, we define PNB = {u | pn(u) > B}, the set of vectors
with a large permutation number. We let X denote the set {v ∈ F

K
2 : ∃u ∈ F

K
2 \

PNB ,∃x∗ ∈ [bs]w,v = u↓x∗}. The set X captures exactly the possible spurious
solutions: it contains the vectors v such that there exists some choice of the shift
x∗ such that v↑x∗ has a small permutation number (pn(v↑x∗) ≤ B). Denoting
Ker(H) ⊕ y the solutions to H · x = y, if there is a vector v ∈ X ∩ Ker(H) ⊕ y,
then A can pick u,x∗ such that v = u↓x∗ with pn(u) ≤ B. This guarantees that
with probability at least 1/B, a random permutation π will satisfy π(u) = u,
hence H · (π(u)↓x∗) = H · (u↓x∗) = H · v = y.

414 D. Bui et al.

Sampling Highly-Injective Instances. Fix some bound B. To eliminate spurious
solutions in X, which an adversary could use to win with probability at least 1/B,
we choose parameters (K, k,w) such that when sampling the regular syndrome
decoding instance (H,y = H · x) (for some x ∈ Regw), it holds with probability
1−1/2λ, the only element of X that also belongs to Ker(H)⊕y is the w-regular
solution x. It follows from a standard analysis that this is the case as soon as
log2 k ≥ log2 |X| + λ. To select k, we therefore compute a tight upper bound
on |X| (see Lemma 24 of [23]). Counting the number of elements of X is not
entirely straightforward due to the fact that we count “up to some blockwise
shift”, but a closed formula can be established using known bounds for counting
k-necklaces (i.e. bitstrings counted up to cyclic shifts) by leveraging Pólya’s
enumeration theorem [43]. Given the formula, we use a short Python program
to compute explicitly the bound on |X| and select a suitable parameter k (for a
fixed choice of K,w). This also faces some challenges: the formula in Lemma 24
of [23] requires summing binomial coefficients over all integer partitions of the
weight parameter w (i.e., the number of tuples of distinct positive integers that
sum to w). Because w is around 120, its number of integer partitions is too large
to simply enumerate. With some careful considerations, we observe that many
of these partitions can be eliminated from the counting procedure and leverage
this observation to reduce the runtime of the program.

Bounding the Success Probability. We now turn to the crux of the analysis:
showing that if A picks (u,x∗) where pn(u) > B, then their probability of
winning the game is at most O(1/B) over the choice of the permutation π.
What makes the analysis challenging is that in principle, it could be that some
vector u has a high permutation number, yet many of its permutations belong to
Ker(H) ⊕ y. The core technical component of the analysis is a proof that with
very high probability over the choice of a random syndrome decoding instance
(H,y), it will simultaneously hold for all vectors u with pn(u) > B that for any
choice of shift x∗, Prπ[H · (π(u)↓x∗) = y] ≤ 4/B. To state the result formally,
we define “good” syndrome decoding instances below:

Definition 2 (GOODB). Given a bound B, GOODB is defined as the set of
syndrome decoding instances (H,y) ∈ F

k×K
2 ×F

k
2 such that for every u ∈ PNB \

Regw and for all x∗ ∈ [bs]w, Prπ←rPermw
[H · (π(u)↓x∗) = y] ≤ 4/B.

Our main technical result of the analysis is stated below:

Lemma 3 (Most syndrome decoding instances are good).

Pr
H,y

[(H,y) ∈ GOODB] > 1 −
(
2B
5

)

· 2K+1

B · 23k
·
(

10 +
(K/w)w

2k

)

.

To parse the above, the reader can consider that (K/w)w � 2k will hold
for our selection of parameters, hence the probability that (H,y) ∈ GOODB is
of the order of 1 − B4 · 2K−3·k. For concreteness, the reader can think of K as
being around 1550, k as being around 820, w being around 200, and B as being
around 70, resulting in the above being around 1 − 2−630.

Faster Signatures from MPC-in-the-Head 415

Key Intuition. We outline the main idea of the proof. Given a vector u with
pn(u) = N , fix some ordering u(1), · · · ,u(N) of its distinct blockwise per-
mutations, and let x∗ ∈ [bs]w denote some shift. Sample a random matrix
H ←r F

k×K
2 , a random regular vector x ←r Regw, and set y ← H · x. Let

(v1, · · · ,vN) ← ((u(1) ↓ x∗) ⊕ x, · · · , (u(N) ↓ x∗) ⊕ x) (note that H · vi = 0 iff
H · (u(i) ↓x∗) = y). Observe that the vi are random variables, but they are set
independently of H (since x is sampled independently from H). Then, for any
subset S of t linearly independent vectors vi, it holds that

Pr
H←rF

k×K
2

[H · vi = 0 for all i ∈ S] = 2−k·t.

In other words, whenever the vi’s are linearly independent, the binary random
variables Xi equal to 1 if H · vi = 0 are independent. Building upon this obser-
vation, we show the following: fix an arbitrary subset S of five indices. Then

– S contains a size-3 linearly independent subset with probability 1, and
– S contains a size-4 linearly independent subset, except with probability at

most 10 · (K/w)−w.

Together with the previous bound on the probability that H ·vi = 0 for linearly
independent vectors, this yields a probability bound of 10·(K/w)−w/23·k+1/24·k

that H · vi = 0 for all i ∈ S. To see why this bound holds, observe that:

– The vi are pairwise distinct and nonzero by construction (because u is
assumed to be nonregular, so π(u) ↓ x∗ is never 0, and the u(i) are distinct
by definition).

– If e.g. (v1,v2,v3) are linearly dependent, they therefore need to satisfy v1 ⊕
v2 ⊕ v3 = 0. But then, v1 ⊕ v2 ⊕ v4 �= 0 (otherwise, we would have v3 = v4,
contradicting the fact that the vectors are pairwise distinct). Hence, we are
guaranteed to find a size-3 independent subset of vectors in S.

– By the same reasoning, S contains necessarily a 4-tuple of vi’s that does not
XOR to 0, say, (v1, · · · ,v4) (since if both (v1, · · · ,v4) and (v1, · · · ,v3,v5)
XOR to 0, then v4 = v5). Then, either (v1, · · · ,v4) is linearly independent
(in which case we are done, since we found a 4-independent subset), or it
must contain a size-3 subset that XORs to 0.

– For any subset of 3 vi’s, the probability that they XOR to 0 is at most
(K/w)−w. This follows from the fact that the vi’s are equal to (a ⊕ x,b ⊕
x, c ⊕ x) for some fixed vectors (a,b, c), and a uniformly random regular
vector x ∈ [bs]w. But then, v1 ⊕v2 ⊕v3 = 0 rewrites to a⊕b⊕ c = x, which
happens with probability at most bs−w = (K/w)−w over the choice of x.

Since there are 10 size-3 subsets of S, the bound follows. To summarize, we fixed
a vector u with pn(u) = N > B and a shift x∗, and showed that for every size-5
subset S of [N], the probability that H · (u(i) ↓x∗) = y holds simultaneously for
all i ∈ S is at most 10 · (K/w)−w/23·k + 1/24·k.

416 D. Bui et al.

A Careful Union Bound. To finish the proof of Lemma 3, it remains to compute a
union bound over all possible vectors u, shifts x∗, and size-5 subsets S. However,
a quick calculation shows that a naive union bound does not suffice: first, the
number of subsets is

(
N
5

)
, but since we only know that N > B is the permutation

number of u, we can only bound it by w!, which is way too large. Second, the
number of vectors u is 2K , which is also too large for the union bound to yield
a nontrivial result.

We overcome this issue by providing a more careful union bound. First, we
divide the distinct blockwise permutations of u, (u(1), · · · ,u(N)), into size-B
blocks of vectors. We apply the previous bound to all size-5 subsets inside each
block of vectors, which reduces the factor resulting from the union bound to
(N/B) · (

B
5

)
. This suffices to guarantee that in each size-B block, at most 4

vectors vi can simultaneously satisfy H · vi = 0, hence guaranteeing a success
probability for A of at most 4/B over the random choice of π. Second, instead
of enumerating over all vectors u, we enumerate over all equivalence classes of
vectors u which generate the same list (u(1), · · · ,u(N)). Each equivalence class
contains exactly N vectors, and all equivalence classes are disjoint, and we save a
factor N this way from the union bound. Eventually, we finish the union bound
by summing over all possible values of N = pn(u) from B+1 to w!. This finishes
the proof of Lemma 3.

5 Multi-instance PPRFs in the Ideal Cipher Model

In this section, we introduce the notion of multi-instance puncturable pseudo-
random function. We describe an efficient construction from a block cipher, and
formally prove its security in the ideal cipher model.

5.1 Defining Multi-instance Puncturable PRF

Pseudorandom functions [35], are families of keyed functions Fk such that no
adversary can distinguish between a black-box access to Fk for a random key k
and access to a truly random function. A puncturable pseudorandom function
(PPRF) [12,22,39] is a PRF F such that given an input x, and a PRF key k,
one can generate a punctured key, denoted k{x} = F.Punc(K,x), which allows
evaluating F at every point except for x (i.e., there is an algorithm F.Eval
such that F.Eval(k{x}, x′) = FK(x′) for all x′ �= x), and such that Fk(x) is
indistinguishable from random given k{x}. Then,

Definition 4 ((N, τ)-instance (t, ε)-secure PPRF). A function family F =
{FK} with input domain [2D], salt domain {0, 1}s, and output domain {0, 1}λ,
is an (N, τ)-instance (t, ε)-secure PPRF if it is a PPRF which additionally takes
as input a salt salt, and for every non-uniform PPT distinguisher D running in
time at most t, it holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprfD (λ) = 1] − Pr[Expiw-pprfD (λ) = 1]| ≤ ε(λ)

where the experiments Exprw-pprfD (λ) and Expiw-pprfD (λ) are defined below.

Faster Signatures from MPC-in-the-Head 417

Exprw-pprfD (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

– salt := (salt1, . . . , saltN) ←r {0, 1}s

– i := ((i1,e)e≤τ , . . . , (iN,e)e≤τ) ←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e

j,e ← F.Punc(Kj,e, ij,e)
– (yj,e)j≤N,e≤τ ← (FKj,e

(ij,e, saltj))j≤N,e≤τ

Output b ← D(
salt, i, (Kij,e

j,e , yj,e)j≤N,e≤τ

)

Expiw-pprfD (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

– salt := (salt1, . . . , saltN) ←r {0, 1}s

– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ) ←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e

j,e ← F.Punc(Kj,e, ij,e)
– (yj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

Output b ← D(
salt, i, (Kij,e

j,e , yj,e)j≤N,e≤τ

)

The motivation for adding the parameter τ in Definition 4 stems from our
use of PPRFs in signatures: our signature construction uses τ parallel instances
of the PPRF using the same salt, while distinct salts are used across distinct
signature queries.

Furthermore, we observe our actual construction satisfies a stronger property,
in which indistinguishability is preserved even the ideal world experiment does
not only sample (y1, · · · , yN) uniformly at random, but also samples “fake” punc-
tured keys Kxk

j uniformly at random over an appropriate domain. This stronger
notion is not strictly necessary in our signature construction, but its use sim-
plifies the analysis. Below, we state the definition explicitly for the punctured
key domain that corresponds to our (GGM-based) construction, but the notion
extends naturally to arbitrary domains.

Definition 5 ((N, τ)-instance strongly (t, ε)-secure PPRF). A function
family F = {FK} with input domain [2D], salt domain {0, 1}s, output domain
{0, 1}λ, and punctured key domain ({0, 1}λ)D is an (N, τ)-instance (t, ε)-secure
PPRF if it is a PPRF which additionally takes as input a salt salt, and for every
non-uniform PPT distinguisher D running in time at most t, it holds that for
all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprfD (λ) = 1] − Pr[Expiw-spprfD (λ) = 1]| ≤ ε(λ),

where the experiment Expiw-spprfD (λ) is defined as Expiw-pprfD (λ), except that the
line ∀j ≤ N, e ≤ τ : K

ij,e

j,e ← F.Punc(Kj,e, ij,e) is replaced by ∀j ≤ N, e ≤ τ :
K

ij,e

j,e ←r ({0, 1}λ)D.

5.2 Constructing Multi-instance Puncturable PRFs

In this section, we introduce the notion of (N, τ)-instance (t, ε)-secure pseudo-
random generator, which extends the notion of pseudorandom generators to the
multi-instance setting (with salt) analogously to our definition of multi-instance
PPRFs. Then, we show that the standard GGM construction extends immedi-
ately to the multi-instance setting: (length-doubling) (N, τ)-instance (t, ε)-secure
PRGs imply (N, τ)-instance strongly (t,D · ε)-secure PPRFs with input domain
[2D] and punctured key domain ({0, 1}λ)D. We start by defining (N, τ)-instance
(t, ε)-secure length-doubling PRGs. Below, to interface more easily with the tree-
based GGM construction of PPRFs, we use (F0,F1) to denote functions that
compute the left half and right half of the length-doubling PRG output.

418 D. Bui et al.

Definition 6 ((N, τ)-instance (t, ε)-secure PRG). A PRG PRG = (F0,F1)
with Fb : {0, 1}2λ → {0, 1}λ is an (N, τ)-instance (t, ε)-secure length-doubling
PRG if for every non-uniform PPT distinguisher D running in time at most t,
it holds that for all sufficiently large λ,

AdvPRG(D) = |Pr[Exprw-prgD (λ) = 1] − Pr[Expiw-prgD (λ) = 1]| ≤ ε(λ),

where Exprw-prgD (λ) and Expiw-prgD (λ) are defined below.

Exprw-prgD (λ) :

– (salt1, salt2, . . . , salt2N) ←r {0, 1}λ

– (seedi,e)i≤N,e≤τ ←r ({0, 1}λ)N ·τ

– ∀i ≤ N, e ≤ τ :
– y2i−1,e ← F0(seedi,e, salt2i−1)
– y2i,e ← F1(seedi,e, salt2i)

Output b ← D(
(salti, (yi,e)e≤τ)i≤2N

)

Expiw-prgD (λ) :

– (salt1, salt2, . . . , salt2N) ←r {0, 1}λ

– (yi,e)i≤2N,e≤τ ←r ({0, 1}λ)2N ·τ

Output b ← D(
(salti, (yi,e)e≤τ)i≤2N

)

We note that the definition extends immediately to PRGs that stretch their
seeds by a larger factor. We also remark that in the definition above, we assumed
that each of F0 and F1 takes a distinct λ-bit salt. The definition can be extended
to more general salting procedures, but we defined multi-instance PRG with
respect to the way we use salt in our actual construction for notational conve-
nience. Looking ahead, the fact that each Fb takes only λ bits of salt is actually
a crucial byproduct of our use of block ciphers, and the main reason why the
security analysis becomes highly non-trivial.

Now, given a seed seed ←r {0, 1}λ, salt salt := (salt0, salt1) ←r {0, 1}2λ, and
a multi-instance secure PRG F0,F1 : {0, 1}2λ → {0, 1}λ, we recursively define a
PPRF PPRF(seed, salt) = PPRF(seed, salt, 2D) over input domain {0, 1}D (which
we later identify with [2D]) in a tree-based fashion as follows:

– The first layer includes two nodes X0 := F0(seed, salt0), X1 := F1(seed, salt1).
– Each layer of the tree is constructed from the nodes of the previous layer

similarly, as follows:

PPRFseed(salt, i) = FiD
(PPRFseed (salt, i1, . . . , iD−1) , salt)

= FiD

(
FiD−1 (. . . (Fi1(seed, salt) , salt) , salt

)
,

where i1, · · · , iD denote the bits of i.

As with the standard GGM construction, a punctured key at i is just the co-path
to i in the tree, i.e., the set of intermediate nodes that can be used to recover
all leaves except the i−th one: CoPathseed(salt, i) = PPRFseed

(
salt, i1,...,j̄

)
j=1,...,D

.
The formal construction is presented in Fig. 1. Due to space limitations, we defer
the proof of Theorem 7 to Appendix of our full-version [23]. We note that the
proof is a natural extension of the security analysis of the GGM construction [35].

Faster Signatures from MPC-in-the-Head 419

Fig. 1. New construction PPRF(seed, salt, 2D) of Puncturable PRF

Theorem 7 (PPRF security). Assume that PRG = (F0,F1) with Fb : {0, 1}2λ

→ {0, 1}λ is an (N, τ)-instance (t, ε)-secure length-doubling PRG. Then the con-
struction PPRF(seed, salt, 2D) described in Fig. 1 is an (N, τ)-instance strongly
(t,D · ε)-secure PPRF with input domain [2D] and punctured key domain
({0, 1}λ)D.

5.3 A Multi-instance PRG in the Ideal Cipher Model

In this section, we describe the construction of multi-instance PRG in the ideal
cipher model. Our construction itself is not really new, but is a tweak on a

420 D. Bui et al.

construction of [36]. The work of [36] gives a construction of PPRF in the
random permutation model, which is obtained by applying the GGM reduc-
tion to the following “Davies-Meyer” construction of a length-doubling PRG
G : x → (π0(x) ⊕ x, π1(x) ⊕ x), where (π0, π1) are pseudorandom permutations.
The PRG is proven secure in the random permutation model (in the analysis, all
parties are given oracle access to π0, π1, and their inverses). Our core observation,
which is quite simple in hindsight, is that the most efficient instantiation of this
construction implements the permutations π0, π1 by fixing two keys (K0,K1) and
defining πb := EKB

, where EKB
is a block cipher (such as AES). This suggests

the following idea: instead of fixing the keys (K0,K1), sample them randomly and
use them as a salt for the PRG in the multi-instance setting. The candidate multi-
instance PRG becomes G = (F0,F1) : (x, salt) → (Esalt0(x)⊕x,Esalt1(x)⊕x). The
formal construction is given in Fig. 2. While the high-level intuition is straight-
forward, the formal analysis turns out to be considerably more involved. The
remainder of this section is devoted to a formal proof that the above construc-
tion is an (N, τ)-instance (t, ε)-secure PRG, for parameters (N, τ, t, ε) which will
be specified later. The proof is in the ideal cipher model : in this model, each
key K ∈ {0, 1}λ defines an independent uniformly random permutation πK . All
parties are given access to an oracle which, on input (0,K, x), outputs πK(x),
and on input (1,K, y), outputs π−1

K (y).

Definition 8 (Ideal Cipher Oracle). For every K ∈ {0, 1}λ, let πK :
{0, 1}λ → {0, 1}λ be a uniformly random permutation over {0, 1}λ. The ideal
cipher oracle Oπ is defined as follows:

– On input (x,K) ∈ {0, 1}λ × {0, 1}λ, outputs πK(x).
– On input (inv, x,K), outputs π−1

K (x).

Fig. 2. Multi-instance PRG F0,F1 in the ideal cipher model

Theorem 9. Let F0,F1 be the functions defined in Fig. 2. Let q be the number
of queries to the oracle Oπ. Then (F0,F1) is an (N, τ)-instance (q, ε)-secure PRG

Faster Signatures from MPC-in-the-Head 421

in the ideal cipher model (where the parties are given oracle access to Oπ from
Definition 8), where

ε ≤ fN (λ) · q ·
(

1
2λ−1

+
1

2λ − q

)

+
4τN

22λ
,

for some function fN such that if N ≤ 2λ−1, fN (λ) ≤ 3τλ·ln 2
lnλ+ln ln 2 , and if N ≤

2λ/2, fN (λ) ≤ 4τ .

Due to space limitations, the proof of Theorem 9 is deferred to our full-
version [23]. It relies on a careful analysis using Patarin’s H-coefficient tech-
nique [26,42] and forms one of the core technical contributions of this work.

6 A Signature Scheme from Regular Syndrome Decoding

In this section, we introduce a new signature scheme from the regular syn-
drome decoding assumption. A signature scheme is given by three algorithms
(KeyGen,Sign,Verify). KeyGen returns a key pair (pk, sk) where pk and sk are
the public and private key. Sign on an input a message m and the secret key
sk, produces a signature σ. Verify, on input a message m, a public key pk and a
signature σ, returns 0 or 1. Standard security notions for signature schemes are
existential unforgeability against key-only attacks (EUF-KO, Definition 11) and
against chosen-message attacks (EUF-CMA, Definition 10).

Definition 10 (EUF-CMA security). Given a signature scheme Sig =
(Setup,Sign,Verify) and security parameter λ, we say that Sig is EUF-CMA-secure
if any PPT algorithm A has negligible advantage in the EUF-CMA game, defined
as

AdvEUF-CMA
A = Pr

[
Verify(pk, μ∗, σ∗) = 1

∧μ∗ /∈ Q
(sk, pk) ← Setup({0, 1}λ)
(μ∗, σ∗) ← ASign(sk,·)(pk)

]

,

where ASign(sk,·) denotes A’s access to a signing oracle with private key sk and
Q denotes the set of messages μ that were queried to Sign(sk, ·) by A.

Definition 11 (EUF-KO security). Given a signature scheme Sig = (Setup,
Sign,Verify) and security parameter λ, we say that Sig is EUF-KO-secure if any
PPT algorithm A has negligible advantage in the EUF-KO game, defined as

AdvEUF-KOA = Pr
[

Verify(pk, μ∗, σ∗) = 1 (sk, pk) ← Setup({0, 1}λ)
(μ∗, σ∗) ← A(pk)

]

.

6.1 Description of the Signature Scheme

The key generation algorithm (Fig. 3) randomly samples a syndrome decod-
ing instance (H,y) with solution x. The signing algorithm with secret key
sk = (H,y,x) and message m ∈ {0, 1}∗ is described on Fig. 1. The verification
algorithm with public key pk = (H,y) (matrix H can be computed from PRG
with a random seed, the public key size is around 0.09kB), message m ∈ {0, 1}∗,
and signature σ, is described in Fig. 4 of our full-version [23].

422 D. Bui et al.

Fig. 3. Key generation algorithm of the signature scheme

An Optimization. For readability, the description of the signing and verifica-
tion algorithms ignores an optimization that slightly reduces the signature size,
but significantly complexifies the description. Concretely, because we know that
the vectors ue should be regular vectors, it suffices to share the bs−1 first entries
(u1, · · · , ubs−1) of each block of ue, since the last one can be reconstructed as⊕

ui ⊕ 1. This reduces the size of u from K = w · bs to w · (bs − 1) = K − w
bits. Consequently, the share ue

n of ue need also only be shared over F
K−w
2 .

This reduces by w the size of auxe
n for each e ≤ τ , hence overall by τ · w the

size of the signature. An additional byproduct of this optimization is that it
reduces the number of possible “cheating” vectors ue that a malicious prover
could choose, which has some positive repercussions on the size of the RSD
parameters (K, k,w) which we can choose (we elaborate in Sect. 7 of our full-
version [23] for more details).

Protocol Signing Algorithm

Inputs. A secret key sk and a message m ∈ {0, 1}∗.
Initialization. Parse sk as (seed,x).

– Let H ← PRG(seed) and y ← H · Expand(x); // H ∈ F
k×K
2 is a

(pseudo)random matrix in systematic form.
– Sample (K0,K1) ←r {0, 1}λ × {0, 1}λ. Set salt ← (K0,K1).

Phase 1. For each iteration e ∈ [τ]:
– Sample seede ←r {0, 1}λ;
– For d = 1 to D, set (Xe

d,0, R
e
d,0, U

e
d,0) ← (0, 0, 0) ∈ [bs]w × [bs]w ×

{0, 1}K ;
– Set xe

n ← x, ue
n ← 0, and re ← 0;

– For i = 1 to n − 1:
1. Compute seede

i ← PPRFsalt(seede, i); // Can be computed effi-
ciently by always storing the path to the current node: to move
from i to i + 1, start from the closest ancestor of i + 1 in the
path to leave i.

2. Set statee
i ← seede

i ;
3. (xe

i , r
e
i , u

e
i , ,

e
i) ← PRG(seede

i); // (xe
i , r

e
i , u

e
i , ,

e
i) ∈ [bs]w × [bs]w ×

{0, 1}K × {0, 1}λ.
4. xe

n ← xe
n − xe

i mod bs, ue
n ← ue

n ⊕ ue
i , and re ← re + re

i mod bs;

Faster Signatures from MPC-in-the-Head 423

5. For all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of
the integer i.

• Xe
d,0 ← Xe

d,0 + xe
i mod bs;

• Re
d,0 ← Re

d,0 + re
i mod bs;

• Ue
d,0 ← Ue

d,0 ⊕ ue
i ;

– On node n:
1. Compute seede

n ← PPRFsalt(seede, n);
2. Compute re

n ← PRG(seede
n);

3. re ← re + re
n mod bs, ue ← Expand(re), and ue

n ← ue
n ⊕ ue; //

The (xe
i)i form n pseudorandom shares of x ∈ [bs]w, the (re

i)i
form n pseudorandom shares of re ∈ [bs]w, and the (ue

i)i form n
pseudorandom shares of ue = Expand(re) ∈ {0, 1}K .

4. Define auxe
n ← (xe

n, ue
n);

5. Set statee
n ← auxe

n||seede
n and ,en ← H(statee

n).
Phase 2. 1. h1 ← H1(m, salt, ,11 , · · · , ,1n , · · · , ,τ1 , · · · , ,τn); // Accumulate

the commitments inside the hash rather than storing and hashing
all at once.

2. πe
{e∈τ} ← PRG1(h1). // πe ∈ Perm([w]).

Phase 3. For each iteration e ∈ [τ]:
1. ze ← x − πe(re) mod bs;
2. For d = 1 to D, set:

– ye
d,0 ← H · Shift(πe(Ue

d,0), z
e) and ye

d,1 ← ye
d,0 ⊕ y;

– ze
d,0 ← Xe

d − πe(Re
d,0) mod bs and ze

d,1 ← ze − ze
d,0 mod bs.

Phase 4. 1. h2 ← H2(m, salt, h1, (ye
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ);

2. Set (be
1, · · · be

D)e≤τ ← PRG2(h2) and let ie ← ∑D
d=1 be

d · 2d−1.
Phase 5. Output σ =

(
salt, h1, h2, (CoPathsalt(ie, seede), ze, ,eie , auxe

n)e≤τ

)
.

// auxe
n is not included if ie = n.

Protocol 1: Signing algorithm of the signature scheme

Protocol Verification Algorithm

Inputs. A public key pk = (H,y), a message m ∈ {0, 1}∗ and a signature
σ.
1. Split the signature as follows:

σ =
(
salt, h1, h2, (CoPathsalt(ie, seede), ze, ,eie , auxe

n)e≤τ

)
;

2. Recompute πe
{e∈τ} where πe ∈ Perm([w]) via a pseudorandom gen-

erator using h1;
3. Recompute (be

1, · · · be
D)e≤τ via a pseudorandom generator using h2

and define ie ← ∑D
d=1 be

d · 2d−1;

424 D. Bui et al.

4. For each iteration e ∈ [τ],
– For d = 1 to D:

• Denote b = 1 − be
d;

• Set (Xe
d,b, R

e
d,b, U

e
d,b) ← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

• For each i �= ie:
* Recompute seede

i from the CoPathsalt(ie, seede);
* If i �= n, recompute (xe

i , r
e
i , u

e
i , ,

e
i) ← PRG(seede

i); else,
parse auxe

n as (xe
n, ue

n), and compute re
n ← PRG(seede

n);
* If i[d] = b, update:

– Xe
d,b ← Xe

d,b + xe
i mod bs;

– Re
d,b ← Re

d,b + re
i mod bs;

– Ue
d,b ← Ue

d,b ⊕ ue
i ;

• Recompute (ye
d,b, z

e
d,b) by simulating the Phase 3 of the sign-

ing algorithm as below:
- ye

d,b ← H · Shift(πe(Ue
d,b), z

e);
- ze

d,b ← Xe
d,b − πe(Re

d,b) mod bs;
• Recompute (ye

d,1−b, z
e
d,1−b) as below:

- ye
d,1−b ← ye

d,b ⊕ y;
- ze

d,1−b ← ze − ze
d,b mod bs;

5. Check if h1 ← H1(m, salt, ,11 , · · · , ,1n , · · · , ,τ1 , · · · , ,τn);
6. Check if h2 ← H2(m, salt, h1, (ye

d,b, z
e
d,b)d≤D,b∈{0,1},e≤τ);

7. Output ACCEPT if both conditions are satisfied.

Protocol 2: Verification algorithm of the signature scheme

Theorem 12. Assume that PPRF is a (qs, τ)-instance (t, εPPRF)-secure PPRF,
that PRG is a (qs, τ)-instance (t, εPRG)-secure PRG, and that any adversary run-
ning in time t has at advantage at most εSD against the regular syndrome decoding
problem. Model the hash functions H1,H2 as random oracles with output of length
2λ-bit and the pseudorandom generator PRG2 as a random oracle. Then chosen-
message adversary against the signature scheme depicted in Fig. 1, running in
time t, making qs signing queries, and making q1, q2, q3 queries, respectively, to
the random oracles H1,H2 and PRG2, succeeds in outputting a valid forgery with
probability

Pr[Forge] ≤ qs (qs + q1 + q2 + q3)
22λ

+εPPRF+εPRG+εSD+Pr[X+Y = τ]+εG+
1
2λ

,

where ε = p + 1
n − p

n , with p = 4/B and εG = εG(K, k,w,B) is Pr[(H,y) /∈
GOODB], which is defined on Lemma 19 of [23], X = maxα∈Q1{Xα} and Y =
maxβ∈Q2{Yβ} with Xα ∼ Binomial(τ, p) and Yβ ∼ Binomial

(
τ − X, 1

n

)
where Q1

and Q2 are sets of all queries to oracles H1 and H2.

The proof of Theorem 12 is deferred to Sect. 6.3 of our full-version [23]. Comput-
ing the bound p from Theorem 12 requires a dedicated and involved combina-
torial analysis which forms a core technical contribution of this work. We cover

Faster Signatures from MPC-in-the-Head 425

it extensively in Sect. 6.2 of our full-version [23]. In Sect. 7 of [23], we provide
a detailed coverage about how to derive parameters for our scheme, which also
requires a careful combinatorial analysis, and report on our implementation.

Acknowledgement. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 945332. Dung Bui, Eliana Carozza, and Geoffroy Couteau acknowl-
edge the support of the French Agence Nationale de la Recherche (ANR), under grant
ANR-20-CE39-0001 (project SCENE). This work was also supported by the France
2030 ANR Project ANR-22-PECY-003 SecureCompute and by ERC grant OBELiSC
(101115790). The work of Dung Bui is supported by Dim Math Innov funding from
the Paris Mathematical Sciences Foundation (FSMP) funded by the Paris Ile-de-France
Region. The work of Antoine Joux has been supported by the European Union’s H2020
Programme under grant agreement number ERC-669891.

References

1. Aaraj, N., Bettaieb, S., Bidoux, L., Budroni, A., Dyseryn, V., Esser, A., Gaborit,
P., Kulkarni, M., Mateu, V., Palumbi, M., Perin, L., Tillich, J.: PERK. Tech. rep.,
National Institute of Standards and Technology (2023), available at https://csrc.
nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

2. Adj, G., Rivera-Zamarripa, L., Verbel, J., Bellini, E., Barbero, S., Esser, A., Sanna,
C., Zweydinger, F.: MiRitH — MinRank in the Head. Tech. rep., National Institute
of Standards and Technology (2023), available at https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures

3. Aguilar-Melchor, C., Feneuil, T., Gama, N., Gueron, S., Howe, J., Joseph, D.,
Joux, A., Persichetti, E., Randrianarisoa, T.H., Rivain, M., Yue, D.: SDitH —
Syndrome Decoding in the Head. Tech. rep., National Institute of Standards and
Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

4. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The
return of the SDitH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V.
LNCS, vol. 14008, pp. 564–596. Springer, Heidelberg (Apr 2023)

5. Aragon, N., Bardet, M., Bidoux, L., Chi-Domínguez, J.J., Dyseryn, V., Feneuil,
T., Gaborit, P., Joux, A., Rivain, M., Tillich, J., Vinçotte, A.: RYDE. Tech. rep.,
National Institute of Standards and Technology (2023), available at https://csrc.
nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

6. Aragon, N., Bardet, M., Bidoux, L., Chi-Domínguez, J., Dyseryn, V., Feneuil, T.,
Gaborit, P., Neveu, R., Rivain, M., Tillich, J.: MIRA. Tech. rep., National Institute
of Standards and Technology (2023), available at https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures

7. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, Report 2003/230 (2003), https://eprint.iacr.
org/2003/230

8. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L., Scholl,
P.: Publicly verifiable zero-knowledge and post-quantum signatures from vole-in-
the-head. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V. Lecture

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2003/230

426 D. Bui et al.

Notes in Computer Science, vol. 14085, pp. 581–615. Springer (2023), https://doi.
org/10.1007/978-3-031-38554-4_19

9. Baum, C., Delpech de Saint Guilhem, C., Kales, D., Orsini, E., Scholl, P.,
Zaverucha, G.: Banquet: Short and fast signatures from AES. In: Garay, J. (ed.)
PKC 2021, Part I. LNCS, vol. 12710, pp. 266–297. Springer, Heidelberg (May 2021)

10. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based
hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 11. LNCS, vol. 6737,
pp. 134–152. Springer, Heidelberg (Jul 2011)

11. Bettale, L., Kahrobaei, D., Perret, L., Verbel, J.: Biscuit. Tech. rep., National
Institute of Standards and Technology (2023), available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (Dec 2013)

13. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee,
M.: Function secret sharing for mixed-mode and fixed-point secure computation.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol.
12697, pp. 871–900. Springer, Heidelberg (Oct 2021)

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018)

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Corre-
lated pseudorandomness from expand-accumulate codes. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 603–633. Springer, Hei-
delberg (Aug 2022)

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291–
308. ACM Press (Nov 2019)

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Heidelberg (Aug 2019)

18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Heidelberg
(Aug 2020)

19. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (Apr 2015)

20. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 1292–1303. ACM Press (Oct 2016)

21. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 341–371. Springer, Heidelberg (Dec 2019)

22. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (Mar 2014)

https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

Faster Signatures from MPC-in-the-Head 427

23. Bui, D., Carozza, E., Couteau, G., Goudarzi, D., Joux, A.: Faster signatures from
MPC-in-the-head. Cryptology ePrint Archive, Paper 2024/252 (2024), https://
eprint.iacr.org/2024/252, https://eprint.iacr.org/2024/252

24. Carozza, E., Couteau, G., Joux, A.: Short signatures from regular syndrome decod-
ing in the head. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS,
vol. 14008, pp. 532–563. Springer, Heidelberg (Apr 2023)

25. Chase, M., Derler, D., Goldfeder, S., Katz, J., Kolesnikov, V., Orlandi, C.,
Ramacher, S., Rechberger, C., Slamanig, D., Wang, X., et al.: The picnic signature
scheme. Submission to NIST Post-Quantum Cryptography project (2020)

26. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (May 2014)

27. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Heidel-
berg, Virtual Event (Aug 2021)

28. Cui, H., Liu, H., Yan, D., Yang, K., Yu, Y., Zhang, K.: ReSolveD: Shorter signatures
from regular syndrome decoding and VOLE-in-the-head. In: PKC 2024, Part I. pp.
229–258. LNCS, Springer, Heidelberg (May 2024)

29. Delpech de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Using
AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 669–692. Springer, Heidelberg (Aug 2019)

30. Dinur, I., Nadler, N.: Multi-target attacks on the Picnic signature scheme and
related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 699–727. Springer, Heidelberg (May 2019)

31. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 541–572. Springer, Heidelberg (Aug
2022)

32. Feneuil, T., Rivain, M.: MQOM — MQ on my Mind. Tech. rep., National Institute
of Standards and Technology (2023), available at https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures

33. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic
hash functions. In: Proceedings of ECRYPT Hash Workshop. vol. 2007, p. 155.
Citeseer (2007)

34. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (May 2014)

35. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (Oct 1986)

36. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy.
pp. 825–841. IEEE Computer Society Press (May 2020)

37. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: A new app-
roach to efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 3–33. Springer, Heidelberg (Aug
2018)

38. Huth, J., Joux, A.: MPC in the head using the subfield bilinear collision problem.
In: CRYPTO 2024 (2024), https://eprint.iacr.org/2023/1685

https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/252
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2023/1685

428 D. Bui et al.

39. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669–684. ACM Press (Nov 2013)

40. Meziani, M., Dagdelen, Ö., Cayrel, P.L., Yousfi Alaoui, S.M.E.: S-fsb: An improved
variant of the fsb hash family. In: International Conference on Information Security
and Assurance. pp. 132–145. Springer (2011)

41. Münch, J.P., Schneider, T., Yalame, H.: Vasa: Vector aes instructions for security
applications. In: Annual Computer Security Applications Conference. pp. 131–145
(2021)

42. Patarin, J.: The “coefficients h” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) Selected Areas in Cryptography. pp. 328–345. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

43. Redfield, J.H.: The theory of group-reduced distributions. American Journal of
Mathematics 49(3), 433–455 (1927)

44. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS,
vol. 12697, pp. 901–930. Springer, Heidelberg (Oct 2021)

45. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in
the minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I.
LNCS, vol. 13507, pp. 657–687. Springer, Heidelberg (Aug 2022)

46. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091. IEEE Com-
puter Society Press (May 2021)

47. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press (Nov 2021)

48. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1607–1626. ACM Press (Nov 2020)

49. Zaverucha, G., Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher,
S., Rechberger, C., Slamanig, D., Katz, J., Wang, X., Kolesnikov, V.,
Kales, D.: Picnic. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

One-More Unforgeability for Multi -
and Threshold Signatures

Sela Navot(B) and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering, University of Washington,
Seattle, WA, USA

{senavot,tessaro}@cs.washington.edu

Abstract. This paper initiates the study of one-more unforgeability for
multi-signatures and threshold signatures as a stronger security goal,
ensuring that � executions of a signing protocol cannot result in more
than � signatures. This notion is widely used in the context of blind
signatures, but we argue that it is a convenient way to model strong
unforgeability for other types of distributed signing protocols. We provide
formal security definitions for one-more unforgeability (OMUF) and show
that the HBMS multi-signature scheme does not satisfy this definition,
whereas MuSig and MuSig2 do. In the full version of this paper, we
also show that mBCJ does not satisfy OMUF, as well as expose a subtle
issue with its existential unforgeability. For threshold signatures, FROST
satisfies OMUF, but ROAST does not.

Keywords: Multi-Signatures · Threshold Signatures · Strong
Unforgeability · Provable Security

1 Introduction

There has been growing interest in protocols for distributed generation of sig-
natures, in the form of threshold signatures (TS) [21,22] and multi-signatures
(MS) [28]. While these primitives have been studied for decades, their recent
widespread use has been driven by applications in blockchain ecosystems, such
as digital wallets [26], and to enforce the need for multiple signatures to autho-
rize a transaction. Threshold signatures are also at the center of standardization
efforts by NIST [36] and IETF [17].

Recall that in a t-out-of-n threshold signature, a secret signing key, associated
with a public verification key, is secret shared amongst a set of n signers (often
as the result of running a distributed key generation protocol). Any subset of at
least t signers should be able to sign a message, whereas an adversary corrupting
fewer than t signers should not be able to come up with a signature on their own.
In multi-signatures, in contrast, parties generate their own keys, independently.
Then, any group of signers can come together to generate signature shares and
aggregate them into a signature, which can be verified using a verification key
obtained by aggregating the verification keys of all involved signers.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 429–462, 2025.
https://doi.org/10.1007/978-981-96-0875-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_14&domain=pdf
http://orcid.org/0009-0001-8002-5835
http://orcid.org/0000-0002-3751-8546
https://doi.org/10.1007/978-981-96-0875-1_14

430 S. Navot and S. Tessaro

Security definitions. Security definitions for distributed signing are far more
challenging than definitions for signatures in isolation. A key point is that
issuance of signatures generally involves an interactive protocol (this is the case
for all pairing-free schemes, such as FROST [5,29] and MuSig/MuSig2 [35,40]),
and executions are subject to adversarial corruptions. Often, the adversary can
not only corrupt a subset of the signers, but also control communication between
signers—this is the case for a common model where inter-signer communication
is mediated by a proxy.

This makes it hard to define when a signature on a message has been issued,
and, in turn, to formalize a notion of unforgeability. A number of works (for
example, [6,8,13,19,35]) sidestep this question by considering a message signed
as long as a signing session started on it. In other cases the definition is tailored to
the specific structure of the scheme (for example, in the analysis of MuSig2 [40])
or a very limited class of schemes, as in [5,11], where Bellare et al. put forward
a hierarchy of security notions for partially non-interactive threshold signatures.

Strong unforgeability. This paper considers a further challenge in the study
of security definitions for TS/MS, namely the definition of strong unforgeability.
This standard notion of security for plain signatures ensures that, in addition to
achieving regular unforgeability, an adversary cannot come up with a different
signature for a message for which it has already seen valid signatures. It is natural
to expect that a distributed signing protocol for a strongly unforgeable signature
scheme, like Schnorr signatures [42,45], should also ensure strong unforgeability.
However, somewhat jumping ahead, we will show that in general this is not
true: there are strongly unforgeable signature schemes with distributed signing
protocol that are not strongly unforgeable.

Beyond theoretical interest, this may be of practical interest in the context
of blockchain ecosystems, where multi-signatures are used to generate strongly
unforgeable plain signatures [39,50]. Lack of strong unforgeability of plain sig-
natures has attracted attention [31,49,50] and has historically been associated
with costly transaction malleability attacks [2,20], warranting the study and
prevention of similar weaknesses that may be introduced by the usage of multi-
signatures. We point out that such weakness is, to some extent, inherent in
probabilistic threshold signature schemes, since not all signers are required to
participate in each signing session. When corrupting enough signers, an adver-
sary can obtain multiple signatures for a message even if each honest signer only
signs the message once, allowing execution of a malleability attack. Moreover,
regardless of the number of corrupt signers, an adversary can obtain more sig-
natures for some message then the maximum number of signature shares that
any single signer provided.

Our work on threshold signatures, however, is motivated by NIST’s interest
in strong unforgeability, which is part of the requirements for submissions to its
threshold signatures call [14], and we seek to provide a formalization candidate
candidate schemes could use. Furthermore, system designers often assume strong
unforgeability in unpredictable ways, especially when the underlying scheme is

One-More Unforgeability for Multi - and Threshold Signatures 431

known to be strongly unforgeable, and it is prudent not to break this guarantee
when the signature is issued in a threshold setting.

It turns out that a rigorous definition of strong unforgeability for distributed
signing is challenging, as the winning condition requires defining which signa-
tures have been generated by interactive signing protocols subject to adversarial
behavior, but it is not always clear how to do this. The security notions of Bellare
et al. [5,11], for example, give definitions of strong unforgeability for a limited
class of semi non-interactive threshold signatures where the signature is uniquely
defined by the input to one of the signing rounds, but this is not a property we
expect a protocol to have, and no general definition is known.

This paper: one-more unforgeability. In order to give a generic definition
of strong unforgeability, this paper proposes the notion of one-more unforge-
ability (OMUF) as the better approach to model strong unforgeability. OMUF
requires that after a certain number � of executions of the signing protocol for
a message m, the adversary can generate no more than � signatures for that
message. A similar notion is widely used for blind signatures and was introduced
by Poitncheval and Stern [41,43], and we argue that it is natural for distributed
signing. In particular, for non-distributed plain digital signatures, OMUF and
the classical definition of strong unforgeability are in fact equivalent.

Our contributions. Concretely, we make the following contributions.
– New Definitions. We formalize the notion of one-more unforgeability for

multi-signature and threshold signature schemes.
– Attacks. We show that the HBMS multi-signature scheme [6] does not sat-

isfy one-more unforgeability using a polynomial time attack based on the
algorithm of Benhamouda et al. [12] to solve the ROS problem [46]. We also
point out that the ROAST threshold signature scheme [44] is not strongly
unforgeable using a trivial attack. This is despite the fact that the underlying
scheme to HBMS is strongly unforgeable (which we prove in the full version
of this paper)1 and that the standard instantiation of ROAST produces ordi-
nary Schnorr signatures.
In the full version, we also analyze the multi-signature scheme mBCJ [23],
showing that it doesn’t satisfy OMUF. This analysis also reveals a subtle
issue with the existential unforgeability of mBCJ: while an adversary cannot
forge a signature for an unsigned message m, they can use valid signatures
for m to forge a signature for the same message but with an arbitrary signing
set.

– Proofs of security. We prove that the MuSig [35] and MuSig2 [40] multi-
signature schemes satisfy our one-more unforgeability definition. We also show
that a previous security proof [5,11] implies that FROST [5,18,30] satisfies
one-more unforgeability, assuming idealized key generation.

On UC Security. We stress that in this paper we target game-based defini-
tions of security for distributed signing primitives. An alternative approach is to
1 The full version of this paper will soon be available in the IACR Cryptology ePrint

Archive under the same title.

432 S. Navot and S. Tessaro

consider schemes with UC Security [15], as done in [33], for example. It is not
hard to see that a UC-secure threshold signature which implements signatures
for a strongly unforgeable signature scheme has to achieve one-more unforgeabil-
ity. However, many practical threshold and multi-signatures are not UC secure,
and hence our game-based approach is meant to capture strong unforgeability
for a broader class of schemes.

2 Preliminaries

Games framework. We use the game playing framework of [10] for all security
definitions and hardness assumptions, with minor simplifications.

A game consists of an initialization algorithm (Init), finalization algorithm
(Fin), and any number of algorithms that can be queried as oracles. When a
randomized algorithm A (usually called an adversary) plays a game Gm, which
we denote by Gm(A), A is executed with the output of Init as its input. A
may query the oracles repeatedly at the cost of a single time unit per query.
When A terminates, Fin is executed with the output of A and outputs true or
false, which is the output of the game. We use Pr[Gm(A)] as a shorthand for
Pr[Gm(A) = true] where the probability is taken over the randomness of A and
Gm. A game may have parameters params, such as a group used by the game
or the number of permitted queries to some oracle.

All schemes and hardness assumptions in this paper are parameterized by
an underlying group G of publicly known prime order p, and their security
parameter is log(p).

Definition 1. We define the advantage of an adversary A against an assump-
tion ASMP defined by the game Gmasmp

params as

Advasmp
params(A) := Pr[Gmasmp

params(A)].

The assumption ASMP holds if Advasmp
params(A) is negligible for all polynomial

time adversaries A, where polynomial and negligible are in terms of the security
parameter defined by params.

Definition 2. Let S be a cryptographic scheme with scheme parameters params
and suppose DEFN is a security definition defined by the game Gdefn[S]. We
define the advantage of an adversary A against S as

Advdefn
S (A) := Pr[Gdefn[S](A)].

The scheme S is DEFN-secure if Advdefn
S (A) is negligible for all polynomial

time adversaries A, where polynomial and negligible are in terms of the security
parameter defined by params.

Definitions 1 and 2 convert a game definition to a concrete assumption or
security definition. Thus, in the rest of the paper, we only write the game defi-
nitions.

One-More Unforgeability for Multi - and Threshold Signatures 433

All of our security proofs are in the random oracle model (ROM) [9], where
hash functions are modeled as random oracles. Our security definitions do not
rely on the ROM.

Notation. We use multiplicative notation for all groups except for Zp, which
denotes the integers modulus p. Addition and multiplication operations of Zp

elements are modular. Logarithms use base 2.
In pseudocode, we use ← for assignment and ←$ for randomized assignment.

In particular, x ←$ S denotes sampling an element uniformly at random from a
finite set S and x ←$ A(x1, . . .) denotes assigning the output of a randomized
algorithm A with uniformly random tape and input x1, . . . to x. We use ⊥ to
denote an error value, and use subscripts for array indexing. All variables are
assumed to be uninitialized until assigned a value. Arrays and lists are one-
indexed.

3 Specifications and Usage

3.1 Multi-signatures

A multi-signature scheme allows a group of signers to provide a succinct joint
signature for an agreed upon message. More specifically, a valid multi-signature
by a group of n signers intends to convince verifiers that each of the n signers
have participated in the signing protocol in order to sign this message with this
group of signers.

In this paper, we primarily consider multi-signature in the plain public key
model [8], the setting where each signer has their own long-standing public key
that they generate independently (as opposed to using a distributed key gen-
eration protocol). This allows signers to use the same public key with multiple
signing groups.

Key aggregation. A multi-signature scheme supports key aggregation if a
signature can be verified using a single short key, called the aggregate key of the
group, as opposed to the public keys of all the signers. In particular, MuSig [35]
and MuSig2 [40] produce ordinary Schnorr signatures that can be verified with
respect to the aggregate key.

Broadcasting versus an aggregator node. In our syntax, the signers
broadcast the output of each round to all other signers. It is sometimes more
efficient to use an aggregator node (may be one of the signers) whose role is to
aggregate the output of each signing round and forward it to the signers, as well
as output the final multi-signature. Some authors describe schemes this way (for
example [27,40]) and every scheme can be described in this manner. Since the
aggregator is not trusted and all the information available to the aggregator is
also available to the adversary in our security model, using an aggregator node
does not affect the unforgeability of schemes.

Formal syntax and correctness. A multi-signature scheme MS is a collec-
tion of algorithms MS.Kg, (MS.Signr)MS.nr

r=1 , and MS.Verify, where nr is the num-
ber of signing rounds specified by the scheme. A scheme also specifies the last

434 S. Navot and S. Tessaro

interactive round MS.lir, after which it is possible to construct a multi-signature
without knowledge of the signers secret information. If a scheme supports key
aggregation, it also has an MS.KeyAgg algorithm accompanied by MS.AggVer
for key aggregation and for verification using the aggregated key. The intent of
the algorithms is as follows:
Key generation: The randomized algorithm MS.Kg is used for key generation

by each signing party individually. It takes no input apart from the scheme
parameters and outputs a secret-public key pair.

Signing: The collection of algorithms (MS.Signr)MS.nr
r=1 specifies the signing pro-

cedures to be run by each signing party, where MS.nr (the number of rounds)
is specified by the scheme. Each round takes a subset of the following as
input: a message, a vector of public keys along with the signer’s index in the
vector, the output of previous signing rounds, and some other information
saved in the state of at most one signer (including the secret key). The algo-
rithm produces an output and updates the state of the signing party, and the
multi-signature is the output of the last round SignMS.nr. These algorithms
may be randomized.

Key aggregation: If the scheme supports key aggregation, the algorithm
MS.KeyAgg takes a list of n public keys (vki)ni=1 as input and outputs a
single aggregated verification key.

Verification: If MS does not support key aggregation, then it has an algorithm
MS.Verify that takes a list of public keys, a signature, and a message as input
and returns a boolean value signifying whether the signature is valid. If MS
supports key aggregation, it has the algorithm MS.AggVer with the same
functionality that takes an aggregated public key as input instead of a list
of public keys. In this case, a standard Verify algorithm can be obtained by
setting MS.Verify((vki)ni=1,m, σ) = MS.AggVer(MS.KeyAgg((vki)ni=1),m, σ).
Hence, without loss of generality, we will only consider MS.Verify in the cor-
rectness and security definitions.

The signers maintain a state st which may change throughout the protocol.
In particular, using the convention from [6], each signer i has a long-standing
secret key i.st.sk and public key i.st.vk as well as information associated with
each signing session s that they participate in, denoted by i.sts. The session
state includes sts.n, (sts.vkj)sts.n

j=1 , sts.m, sts.rnd, and sts.me which refers to the
number of parties, the public keys of those signers, the message being signed,
the last completed signing round, and the index of the party within the signers.
It is required that signers refuse requests to run the algorithm Signr for a session
s if r �= sts.rnd + 1. The state may also include other information such as the
output of previous signing rounds or the discrete log of a nonce.

Figure 1 describes an honest execution of a multi-signature scheme and pro-
vides a correctness definition.

3.2 Threshold Signatures

A threshold signature scheme allows any subset of sufficient size of a group
of signers to provide succinct joint signatures for an agreed upon message. This

One-More Unforgeability for Multi - and Threshold Signatures 435

Fig. 1. Top: an honest execution of the signing protocol of a multi-signature scheme
MS. Note that signing rounds may only use a subset of the provided input. Bottom:
a game defining the correctness of a scheme. A scheme satisfies perfect correctness for
a natural number n if Pr[Gms-cor

n,m [MS]] = 1 for each supported message m.

allows the group to produce signatures even if some signers are offline, unrespon-
sive, or adversarial. The group has an aggregated group public key for signature
verification, and honestly generated signatures by any subset of the signers are
valid with respect to that key.

Idealized key generation. Typically, threshold signatures require a dis-
tributed key generation protocol or a trusted dealer of secret keys. For the sake
of simplicity, and in line with the framework of [5,11], we idealize key generation,
which allows for simpler security definitions. While this model is not represen-
tative of some applications, it is straightforward to extend our definitions to
include distributed key generation and other security goals.

Aggregator node. As with multi-signature, we require that in each signing
round the signers broadcasts the output to all other signers. It is possible to use
a single aggregator node to facilitate communication between the signers, which
does not affect the unforgeability of a scheme.

Formal syntax. A threshold signature scheme TS is a collection of algorithms
TS.Kg, (TS.Signr)TS.nr

r=1 , and TS.Verify, where TS.nr is the number of signing
rounds specified by the scheme. The scheme also specifies the last interactive
signing round TS.lir, after which it is possible to construct a threshold-signature
without knowledge of the signers secret information. The intent of the algorithms
is as follows:

436 S. Navot and S. Tessaro

Key generation: We use idealized key generation, where the randomized algo-
rithm TS.Kg takes the number of signers n and the threshold t as input and
outputs the keys for each signer (ski, vki)ni=1 and an aggregate verification
key ṽk.

Signing: The collection of algorithms (TS.Signr)TS.nr
r=1 specifies the signing pro-

cedure to be run by each participating signing party, and TS.nr (the number
of rounds) is specified by the scheme. Each round takes a subset of the fol-
lowing as input: a message, a vector of public keys who participate in the
session, the output of previous signing rounds, and other information saved
in the state of at most one signer (including the secret key). The algorithm
produces an output, as well as updates the state of the signing party. The
threshold signature is the output of the last round SignTS.nr. These algorithms
may be randomized.

Verification: The verification algorithm takes an aggregated public key ṽk, a
message, and a threshold signature as an input and returns a boolean value
signifying whether the signature is valid.

As in the case of multi-signatures, signers have a state st which is updated
through the protocol. For each signer i the state i.st includes the fields st.n
and st.t denoting the number of signers in the group and the required threshold
for signatures, st.vk and st.sk denoting the signers own public and secret keys,
(st.vkj)nj=1 denoting the public keys of all signers in the group as well as the
group verification key st.ṽk, and st.me denoting the index of signer i in the
signing group. Additionally, signers hold information for each session s that
they participate in, which includes sts.m (the message being signed) and sts.rnd
(the most recent signing round they completed). It is assumed and required that
signers refuse requests to run the algorithm Signr for a session s if r �= sts.rnd+1.

Figure 2 describes an honest execution of a threshold signature scheme and
provides a correctness definition.

4 Existential and Strong Unforgeability

Figure 3 defines existential and strong unforgeability for plain (single signer)
digital signature schemes.

In both security games, the adversary is given an input public key vk and
attempts to forge a signature σ for a message m of their choice that is valid for
the said key. The adversary also has access to a signing oracle that they can
query for signatures on adaptively chosen messages. To win, the adversary needs
to output a non-trivial forgery. For existential unforgeability, a forgery (m,σ) is
non-trivial if m was not a signing oracle query. For strong unforgeability (m,σ)
is non-trivial if σ was not a signing oracle response on query m. Thus, a strongly
unforgeable scheme guarantees that every signature that an adversary possesses
was obtained from the signing oracle, or equivalently that the adversary cannot
obtain more signatures for a message than the number of such signature produced
by the signing oracle.

One-More Unforgeability for Multi - and Threshold Signatures 437

Fig. 2. Top: an honest execution of the signing protocol of a threshold signature scheme
TS. Note that signing rounds may only use a subset of the provided input. Bottom:
a game defining the correctness of a scheme. A scheme satisfies perfect correctness for
a group size n and a threshold t if Pr[Gts-cor

n,t,m[TS]] = 1 for each message m that is
supported by TS.

In this section, we extend the definition of strong unforgeability to multi-
and threshold signature using one-more unforgeability.

4.1 Extending Strong Unforgeability to Multi-signatures

Existential unforgeability of multi-signature in the plain public key model is
an extension of the existential unforgeability definition for plain signatures. In
the standard definition, the adversary is given a public key vk of an “honest
signer” as input, and is able to query a signing oracle in which the honest signer
completes the signing algorithms for messages and signing groups chosen by the
adversary. If the scheme contains multiple signing rounds, then the adversary
may also adaptively choose the input to each signing round as well as interweave
the rounds of different signing sessions. The adversary wins if they output a non-
trivial valid signature for a message m and a group of public keys (vki)ni=1 that
contains vk, where non-trivial means that the signing oracle did not complete a
signing session to sign m with this group of signers.

Extending strong unforgeability to multi-signature schemes is more challeng-
ing. The natural security goal is the guarantee that every valid signature was
legitimately obtained, but it is unclear how to formalize this goal into a pre-
cise definition. First, an interaction with the signing oracle does not output a
multi-signature but a signature share, whereas the winning condition for the

438 S. Navot and S. Tessaro

Fig. 3. Games used to define the existential and strong unforgeability of a single signer
digital signature scheme Σ. The definition for strong unforgeability, Gsuf-cma, contains
all but the dashed box. The definition for existential unforgeability, Geuf-cma, contains
all but the solid box.

adversary includes producing a valid multi-signature. Furthermore, the single
signature share may not uniquely define the aggregate signature, which also
depends on input from signers that are controlled by the adversary. Therefore,
simply tracking the outputs of the signing oracle does not allow us to distinguish
between trivial and non-trivial forgeries.

Thus, we turn to a different approach to defining strong unforgeability. For
plain signatures, strong unforgeability is equivalent to the guarantee that an
adversary cannot obtain more valid signatures for each message than the number
of shares obtained legitimately via the signing oracle. This notion does apply
to multi-signatures, and can be formalized using one-more unforgeability. In
our strong unforgeability definition, we count how many signature shares the
adversary obtains from the signing oracles for each message and signing group,
and require that the adversary cannot compute more valid signatures. Thus,
a secure scheme guarantees that the adversary cannot obtain more signatures
than those that can be computed trivially from the shares it obtained from the
signing oracles.

We put this notion into a game definition in Fig. 4, which compares it with the
definition of existential unforgeability. Note that the only difference between the
existential and strong unforgeability games is the winning condition, and when-
ever an adversary wins the existential unforgeability game it also wins the strong
unforgeability game. Hence, strong unforgeability implies existential unforgeabil-
ity, as expected.

At which round is a message signed. Some authors (for example [6,8,13,
35]) consider a forgery for a message and a group of signers trivial if the adver-
sary initiated a signing session with those parameters. However, for multi-round
schemes, an adversary should not be able to obtain a signature unless all inter-
active signing rounds have been completed.

One-More Unforgeability for Multi - and Threshold Signatures 439

Fig. 4. Games used to define the existential and strong unforgeability of a multi-
signature scheme MS. The definition for strong unforgeability, Gsuf-ms, contains all
but the dashed box. The definition for existential unforgeability, Geuf-ms, contains all
but the solid box.

Thus, in our syntax a scheme specifies its last interactive signing round,
MS.lir. It is expected that after querying the signing oracle for the last interactive
round the adversary can produce a multi-signature, but not before, for both
existential and strong unforgeability. Therefore, our security game registers that
a legitimate multi-signature has been provided only on calls to the signing oracle
for the last interactive round.

Which signing rounds are message and group dependent. In some
multi-signature schemes, some signing rounds can be completed before the mes-
sage to sign or the identities of the signers in the group are determined (for
example, [40,47]). Our definitions support such schemes by allowing each scheme
to define the input for each signing round in our syntax and security definitions.

440 S. Navot and S. Tessaro

Toy strongly unforgeable scheme. We present a toy multi-signature
scheme in the full version of this paper to help demonstrates the difference and
separation between existential and strong unforgeability.

Comparison to OMUF of blind signatures. While we refer to our security
notion as one-more unforgeability, it is more similar to the so called strong one-
more unforgeability of blind signatures. Whereas existential one-more unforge-
ability of blind signatures typically refers to the notion that an adversary cannot
come up with � + 1 signatures for distinct messages after completing � signing
sessions, strong OMUF does not require the messages to be distinct.

Our approach to defining OMUF and strong OMUF of blind signatures are
similar. On one hand, if the number of message-signature pairs exceeds the num-
ber of signing sessions, there must be one message that has been signed fewer
times than the number of signatures the adversary produced for that message,
breaking our definition of OMUF. Conversely, if for some message the adver-
sary can produce more signatures than the number of sessions that signed it, we
can extend this to an attack producing more message-signature pairs than the
number of signing executions.

4.2 Strong Unforgeability of Threshold Signatures

As with multi-signature, we define strong unforgeability for threshold signatures
using one-more unforgeability.

One of the challenges with threshold signatures is the abundance of different
security definitions, even for existential unforgeability. In this paper, we only
formally define strong unforgeability that corresponds to the simple TS-UF-0
unforgeability definition of [5,11]. We also discuss stronger definitions of exis-
tential unforgeability, and how to extend them to strong unforgeability.

Existential and strong unforgeability. A t-out-of-n threshold signature
scheme with n signers and a signing threshold t can only provide security as long
as less than t of the signers are corrupted, since otherwise the corrupt signers
can produce signatures by following the protocol. Thus, we enforce that less than
t of the signers are corrupt in all security games. The adversary can query the
honest signers for signature shares via a signing oracle, and may also adaptively
choose the input to each signing round and interweave the rounds of different
signing sessions. The adversary wins if they obtain a non-trivial valid signature
for the group public key.

Existential unforgeability (TS-UF-0) considers signatures for a message m
trivial if the adversary has obtained some signature share for m via the signing
oracle, or more specifically if all signing rounds of the signing protocol for m
were completed by a signing oracle, up to the last interactive round (which is
defined by the scheme). As with multi-signatures, extending this notion to strong
unforgeability calls for one-more unforgeability. The strong unforgeability game
counts how many signatures shares the adversary obtains from the signing oracle
for each message, and the adversary wins if they can produce more signature
than that for some message. This corresponds to the adversary obtaining more

One-More Unforgeability for Multi - and Threshold Signatures 441

threshold signatures than the number they can trivially obtain using the signing
oracle signature shares, had the adversary corrupted t − 1 signers.

Figure 5 provides our game definition, compared with the definition of exis-
tential unforgeability. Note that as with multi-signature, whenever an adversary
wins the existential unforgeability game they also win the strong unforgeability
game, and therefore strong unforgeability implies existential unforgeability.

Other considerations. As with multi-signatures, our definition supports
schemes where the message to sign is selected after the first signing round by
allowing the scheme to define which input is taken by each signing round. Our
definition also considers a message signed by the signing oracle if it completes
the last interactive signing round, as opposed to the first round as is done in
some prior work ([19], for example).

Stronger security goals. It is natural to seek stronger security goals for
threshold signatures for the case where the adversary corrupts less than t − 1
signers. In particular, a forged signature may not be considered trivial whenever
the adversary obtained a signature share from a single honest signer for this
message; instead, a forgery should only be considered trivial if the adversary
obtained a partial signature from t − |CS | signers (where |CS | is the number
of signers corrupted by the adversary). For existential unforgeability, this is
precisely the distinction between TS-UF-0 and the stronger TS-UF-1 in [5,11].

Using one-more unforgeability, we can extend US-UF-1 to strong unforge-
ability. To do this, we require that t−|CS | signature shares from distinct signers
must be used to construct each threshold signature, and that no partial signa-
ture can be used to construct two threshold signatures. In other words, a scheme
that satisfies this security goal would guarantee that the maximum number of
signatures the adversary can obtain for a message m is no more than the max-
imum number of threshold signatures the adversary could have constructed if
each threshold signature used t − |CS | signature shares obtained via the signing
oracle from distinct signers and no signature share is used twice.

Some constructions (for example [1,3,19,32]) seek to provide security against
adversaries who adaptively choose which signers to corrupt. In the corresponding
security definition, the adversary does not have to input the set of corrupted
servers in advance, but can at any point choose to corrupt a signer and obtain
their private keys and state. These definitions can easily be generalized to strong
unforgeability using one-more unforgeability.

Lastly, it is straightforward to generalize definitions that include a concrete
distributed key generation protocol ([16], for example) to strong unforgeability
using one more unforgeability by changing the winning condition, as we have
done.

Previous strong unforgeability definitions. In [5,11], Bellare et al.
study the strong unforgeability of threshold signature schemes that are semi
non-interactive, meaning they have a single signing round that requires signers
to know the message and signing subset, and for which a signature is uniquely
defined by the input to the last interactive signing round (called the leader

442 S. Navot and S. Tessaro

request). While the class appears limited, it contains the scheme FROST and is
thus of practical interest.

They present multiple strong unforgeability definitions, the weakest of which
(TS-SUF-2) considers a forgery trivial only if there exist a leader request for
which t−|CS | honest signers replied with a signature share (where |CS | denotes
the number of corrupted signers). This definition is stronger than our definition,
and any scheme that satisfies TS-SUF-2 satisfies our strong unforgeability defi-
nition, as we show in Sect. 6.1 (where we also present their definition in detail).
Conversely, in the full version of this paper we present a toy scheme that satisfies
our strong unforgeability definition but not TS-SUF-2.

Concretely, the fact that TS-SUF-2 implies our strong unforgeability defini-
tion means that the results in [5,11] prove that FROST 1 [30] and FROST 2 [18]
are strongly unforgeable by our definition (assuming idealized key generation).

5 Multi-signature Schemes

5.1 Analysis of HBMS

In [6] Bellare and Dai present HBMS (“Hash-Based Multi-Signature”), a two
round multi-signature scheme, and prove its existential unforgeability using the
discrete log assumption in the random oracle model. We will show that HBMS
does not satisfy our definition of strong unforgeability by providing a concrete
polynomial time attack by an adversary who corrupts at least one signer and
can participate in concurrent signing sessions. The attack uses the algorithm of
Benhamouda et al. [12] to solve the ROS problem [46], which broke the unforge-
ability of many multi-signature schemes including an older variant of MuSig
[34].

In the attack the adversary completes the first signing round of � concurrent
signing sessions for some � ≥ �log2(p)�, where each session has the same group of
signers and the same message and p is the order of the underlying group. Then,
the adversary completes the signing sessions to obtain one multi-signature from
each, and uses the output of those sessions to construct an additional signature
for the same message. Thus, the adversary obtains �+1 multi-signatures, of which
� are obtained legitimately and one is a forgery, breaking strong unforgeability.

The attack is practical against a group who produces signatures together
repeatedly, and it can be carried out by a single malicious signer regardless of
the number of signers in the group. We emphasize, however, that it does not
compromise the existential unforgeability of HBMS nor violate existing security
proofs.

We point out that HBMS is strongly unforgeable against adversaries that
don’t exploit the fact that HBMS is an interactive multi-signature scheme. In
other words, if we assume an atomic execution of the signing protocol and no
corrupt signers, then HBMS is strongly unforgeable. This distinction highlights
the risk of integrating a multi-signature scheme in place of a strongly unforgeable
single signer digital signature scheme, even if the multi-signatures are indistin-
guishable from the standard signatures. In the full version of this paper we

One-More Unforgeability for Multi - and Threshold Signatures 443

Fig. 5. Game used to define the existential and strong unforgeability of a threshold-
signature scheme TS with a threshold t out of n. The definition for strong unforgeability,
Gsuf-ts, contains all but the dashed box. The definition for existential unforgeability,
Geuf-ts, contains all but the solid box.

formally define this weaker security notion (which we call non-interactive strong
unforgeability), and prove that it is satisfied by HBMS.

The HBMS scheme. We describe the scheme informally. A formal description
of the scheme is given in Figure 9 of [6].

HBMS involves three hash functions: H0 with codomain G and H1,H2 with
codomain Zp, where G is a multiplicative group of order p with a generator g
provided by the scheme parameters. For key generation, each signer i of the n
signers samples a secret key xi uniformly at random from Zp and a public key
Xi ← gxi . The aggregate key is X̃ ← ∏n

i=1 X
H2(i,X1,...,Xn)
i .

To sign a message m with a group of signers (Xi)ni=1, the scheme involves
two interactive signing rounds. In the first round, given the message and signing
group as input, each signer i calculates h ← H0(X1, . . . , Xn,m) ∈ G, samples ri

444 S. Navot and S. Tessaro

and si uniformly at random from Zp, and computes a commitment Mi ← hsigri

which is sent to every other signer. In the second round, each signer receives a list
of commitments (M1, . . . ,Mn) from all the signers and computes T ← ∏n

i=1 Mi.
Each signer then computes the challenge c ← H1(T, X̃,m) and the reply zi ←
ri + xi · c · H2(i,X1, . . . , Xn), and sends (si, zi) to every other signer. Finally,
every signer can now compute the final signature (T, s, z) where s ← ∑n

i=1 si,
z ← ∑n

i=1 zi, and T ← ∏n
i=1 Mi.

To verify a signature (T, s, z) with respect to public keys (X1, . . . , Xn)
and a message m, the verifier computes h ← H0(X1, . . . , Xn,m) and X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i , and returns true if and only if the equation

gzhs = T · X̃H1(T,X̃,m)

holds. Note that during verification the entire vector of public keys is needed for
computing h, and hence HBMS does not support key aggregation. Perfect cor-
rectness is easy to verify, and [6] proves the existential unforgeability of HBMS.

The attack. We will present an attack in the two signers setting where one
signer is corrupt, which is sufficient to break our definition of strong unforge-
ability. It is easy to generalize it to a setting with more signers, as long as at
least one signer is corrupt.

Let S1 be a corrupt signer controlled by the adversary and S2 an honest
signer (with whom the adversary can communicate via a signing oracle). Let
m be a message of the adversary’s choice and pick � ≥ �log2(p)�. Each signer
Si ∈ {S1, S2} proceeds with the key generation honestly by picking xi ←$ Zp

and Xi ← gxi and computing X̃ ← X
H2(1,X1,X2)
1 X

H2(2,X1,X2)
2 .

Now, for each j ∈ {1, . . . , �}, the adversary opens a signing session with
signing group (X1,X2) and message m, and receive a nonce Nj = hsj grj from
the honest signer S2, where h ← H0(X1,X2,m). For each j ∈ {1, . . . , �} and
b ∈ {0, 1}, the adversary samples rb

j and sb
j uniformly at random from Zp and

computes N
b

j ← hsb
j grb

j and T
b

j ← Nj · N
b

j as well as cb
j ← H1(T

b

j , X̃,m). The

adversary must also ensure that all of the T
bj

j are distinct and that c0j �= c1j for
each j by regenerating the nonces if needed.

Now, define the group homomorphisms ρ+ : (Zp)� → Zp and ρ× : G� → G

given by

ρ+(g1, . . . , g�) =
�∑

j=1

2j−1gj

c1j − c0j

and

ρ×(g1, . . . , g�) =
�∏

j=1

g

2j−1

c1
j
−c0

j

j .

Let T�+1 ← ρ×(N1, . . . , N�) and calculate c�+1 ← H1(T�+1, X̃,m). Let d ←
c�+1 − ρ+(c01, . . . , c

0
�) and write it in binary as d =

∑�
j=1 2

j−1bj for some
b1, . . . , b� ∈ {0, 1}, which is possible since � ≥ �log2(p)�.

One-More Unforgeability for Multi - and Threshold Signatures 445

Next, continue to the second round of each signing session j by sending
N

bj

j to the honest signer and obtaining the returned signature shares sj and
zj . The adversary can now obtain � legitimate signatures for the message m by
computing

σj ← (T
bj

j , sj + s
bj

j , zj + r
bj

j + x1 · c
bj

j · H2(1,X1,X2))

for each j ∈ {1, . . . , �}, as well as a forgery

σ�+1 ← (T�+1, ρ+(s1, . . . , s�), ρ+(z1, . . . , z�) + c�+1 · x1 · H2(1,X1,X2)).

We will prove below that all � + 1 signatures (σ1, . . . , σ�, σ�+1) are valid for the
message m and signing group (X1,X2), and that they are all distinct with high
probability. This implies that the adversary obtained �+1 valid signatures after
only completing � signing oracle signing sessions, breaking the strong unforge-
ability of HBMS.

Validity of σ1, . . . , σ�. Since all of the T
bj

j are distinct, all of the σj are dis-
tinct for j ∈ {1, . . . , �}. Also note that each of those signatures was obtained
legitimately with both signers following the protocol, and hence by the perfect
correctness of HBMS they are valid.

Validity of σ�+1. The signature σ�+1 = (T�+1, ρ+(s1, . . . , s�), ρ+(z1, . . . , z�) +
c�+1 · x1 · H2(1,X1,X2)) is the forged signature, and is the only one that is not
trivial to obtain.

For the distinctiveness of σ�+1, note that the collection {T
b1
1 , . . . , T

b�

� } is
selected uniformly at random from all subsets of G of cardinality �, independently
of (N1, . . . , N�). Hence, the probability that is contains T�+1 = ρ×(N1, . . . , N�)
is �

|G| ≈ log2(p)
p , which is very small. Hence, with large probability, T�+1 �= T

bj

j

and therefore σ�+1 �= σj for all j ∈ {1, . . . , �}.
We will now verify that σ�+1 is valid. To check its validity, we must verify that

gρ+(z1,...,z�)+c�+1·x1·H2(1,X1,X2) · hρ+(s1,...,s�) = T�+1 · X̃c�+1

where h ← H0(X1,X2,m). Starting from the right-hand side, we have that

T�+1 · X̃c�+1 = ρ×(N1, . . . , N�) · (XH2(1,X1,X2)
1 X

H2(2,X1,X2)
2)c�+1 =

= gρ+(r1,...,r�) · hρ+(s1,...,s�) · g(x1·H2(1,X1,X2)+x2·H2(2,X1,X2))c�+1 .

Applying Lemma 1, which states that c�+1 = ρ+(cb1
1 , . . . , cb�

�), we can simplify
the equation to

= hρ+(s1,...,s�)gx1·H2(1,X1,X2)c�+1+ρ+(r1,...,r�)+x2·H2(2,X1,X2)·ρ+(c
b1
1 ,...,c

b�
�)

and therefore, since ρ+ is homomorphic and zj = rj + x2 · H2(2,X1,X2) · cbj

j for
each j,

= hρ+(s1,...,s�)gx1·H2(1,X1,X2)c�+1+ρ+(z1,...,z�)

which is what we wanted to prove. Hence, σ�+1 is a valid signature.

446 S. Navot and S. Tessaro

Lemma 1. By the construction above, c�+1 = ρ+(cb1
1 , . . . , cb�

�).

This lemma is at the heart of the attack, and the construction allowing this
lemma to hold is precisely the algorithm of [12] to solve the ROS problem.

Proof (Lemma 1). By definition
∑�

j=1 2
j−1bj = c�−1 − ρ+(c01, . . . , c

0
�). Hence, to

prove the lemma, it is sufficient to show that

ρ+(cb1
1 , . . . , cb�

�) − ρ+(c01, . . . , c
0
�) =

�∑

j=1

2j−1bj .

Starting from the left-hand side, we have that

ρ+(cb1
1 , . . . , cb�

�) − ρ+(c01, . . . , c
0
�) =

�∑

j=1

2j−1(cbj

j − c0j)

c1j − c0j
.

For each j, we have that
2j−1(c

bj
j −c0j)

c1j−c0j
is equal to 0 whenever bj is 0 and is equal

to 2j−1 whenever bj is 1. Consequently,
2j−1(c

bj
j −c0j)

c1j−c0j
= 2j−1bj . Thus,

ρ+(cb1
1 , . . . , cb�

�) − ρ+(c01, . . . , c
0
�) =

�∑

j=1

2j−1bj

which is what we wanted to prove.

5.2 Analysis of MuSig

In this section we prove the strong unforgeability of the multi-signature scheme
MuSig which consists of three interactive signing rounds and supports key aggre-
gation, presented in [35].

We emphasize that only the 3-round version of MuSig is strongly unforgeable,
whereas the prior two-round version [34] is insecure [12,23].

The scheme. We now describe the scheme informally. A formal description of
the scheme using our syntax for multi-signatures can be found in Fig. 6.

The scheme involves a group G of prime order p with a generator g and
the hash functions Hcom, Hsign, and Hagg with codomain Zp that are used for
commitments, signing, and key aggregation respectively. In key generation, each
signing party generates a private key sk ←$ Zp and a public key vk ← gsk . The
aggregate public key for a group of n signers with public keys vk1, . . . , vkn is
computed by

ṽk ←
n∏

i=1

vk
Hagg(i,vk1,...,vkn)
i .

One-More Unforgeability for Multi - and Threshold Signatures 447

In the first signing rounds, each signer k chooses rk ←$ Zp, computes Rk ← grk ,
and sends a commitment tk ← Hcom(Rk) to all the other signers. In the second
round, each signer k receives the commitments t1, . . . , tn from all other signers,
and sends Rk to all other signers. In the third round, the signer receives nonces
R1, . . . , Rn from all the signers and verifies the commitments by checking that
ti = Hcom(Ri) for each i. Then, they compute R ← ∏n

i=1 Ri, the aggregate
public key ṽk as described above, and a challenge c ← Hsign(ṽk, R,m). Then,
they output a signature share zk ← rk + skk · c ·Hagg(k, vk1, . . . , vkn). Now, any
of the signer can output the multi-signature (R, z) where z ← ∑n

i=1 zi.
A signature (R, z) is valid with respect to an aggregated verification key ṽk

and a message m if and only if

gz = R · ṽkHsign(ṽk,R,m)
.

MuSig satisfies perfect correctness, and the verification of a MuSig multi-
signature with respect to an aggregated key ṽk is identical to the verification of
a standard Schnorr signature.

Which signing rounds are message dependent. The signers in MuSig do
not use the message in the first two signing rounds. Thus, it is natural to ask
whether it is possible to pre-execute the first two signing rounds before the
message to sign arrives. If so, the scheme would involve a single interactive
signing round when the message arrives, resulting in an almost non-interactive
signature scheme (this property is claimed by MuSig2 [40], for example). The
original MuSig paper [35] does not provide an explicit answer to this question.

The answer, however, is no. Such a shortcut leads to the scheme no longer
being existentially unforgeable [37,38]. For security, the signers must associate
each signing execution with a message and a signing group when executing the
second signing round (the “reveal” round of the nonce shares). Our security proof
only applies in this setting.

Prior security proofs for MuSig. The existential unforgeability of MuSig
is proved in [6,13,35]. These proofs, however, use a security definition that con-
siders a forgery trivial whenever the adversary opened a signing oracle signing
session with the corresponding message and group of signers, regardless of whe-
ther the signing session was completed. Consequently, these proofs do not rule
out adversaries who complete the first two signing rounds for some message and
then forge a signature without completing the third signing round. This is prob-
lematic since the third signing round is where signers verify the commitments
sent in previous rounds, and it is the only round where the signers use their
private keys.

We fill this gap by providing a security proof of strong unforgeability, and
consequently existential unforgeability, using a definition that considers a forgery
trivial only if the honest signer has completed all interactive rounds of a signing
session with the corresponding message and public keys. This stronger definition
comes at the cost of a looser reduction than the reduction in [6] by a factor of

448 S. Navot and S. Tessaro

Fig. 6. A description of the MuSig scheme over a group G of order p and generator
g. The fourth round is often omitted since it can be performed by any observer of the
protocol.

approximately qs, where qs denotes the maximum number of signing sessions
opened by the adversary.

Our result, chain reductions, and the XIDL. In [6], Bellare and Dai
construct a chain of reductions from the discrete log problem to their defini-
tion of the existential unforgeability of MuSig. One of the links in the chain is
the Random Target Identification Logarithm (XIDL) game in Fig. 7, and they
show that it is hard whenever the discrete log assumption (Fig. 7) holds, as
written in Lemma 2.2

In Lemma 3, we prove that MuSig is strongly unforgeable in the random
oracle model if winning the XIDL is hard. The combination of these lemmas
proves the strong unforgeability of MuSig in the ROM under the discrete log
assumption.

Lemma 2 (DL → XIDL in the ROM; a combination of Theorems 3.2
and 3.4 of [6]). Let G be a group of order p with generator g. Let q1, q2 be positive
2 They also achieve tighter security bounds using the algebraic group model [24], but

this is orthogonal to this paper.

One-More Unforgeability for Multi - and Threshold Signatures 449

Fig. 7. The Discrete Log (DL) and the Random Target Identification Logarithm
(XIDL) games in a group G with a generator g of prime order p.

integers. Let Axidl be an adversary against Gmxidl
G,g,q1,q2 . Then, an adversary Adl

can be constructed so that

Advxidl
G,g,q1,q2(Axidl) ≤

√

q2(
√

q1 · Advdl
G,g(Adl) +

q1
p
) +

q2
p

and the running time of Adl is approximately four times the running time of
Axidl.

We omit the proofs of Lemma 2 since it is non-trivial and can be found in
the referenced paper.

Lemma 3 (XIDL → SUF of MuSig in the ROM). Let G be a group of
prime order p. Let g be a generator of G. Let MS = MuSig[G, g] be the associated
multi-signature scheme, with its hash functions modeled as random oracles. Let
Ams be an adversary for the game Gsuf-ms[MS] and assume the execution of Ams

has at most q0, q1, q2, qs distinct queries to Hcom, Hagg, Hsign, and SignO1, the
number of signing parties in queries to signing oracle queries and Fin is at most
n, and the number of signatures it outputs is at most �. Let q = q0(q0 + n · qs) +
(qs + q1+1)2+ q2(qs + q1+1)+ qs(q2+ qs)+n · qs(q0+n · qs). Then, there exists
an adversary Axidl for the game Gmxidl

G,g,q1+qs+1,q2+� such that

Advsuf−ms
MS (Ams) ≤ (1 + qs)Advxidl

G,g,qs+q1+1,q2+�(Axidl) +
q

p

and the running time of Axidl is similar to that of Ams.

450 S. Navot and S. Tessaro

We now describe the proof idea for Lemma 3, and include a formal proof in
the full version of this paper.

Proof Idea for Lemma 3. We describe informally how to win the XIDL game
with high probability given an adversary that breaks the strong unforgeability
of MuSig in the ROM.

Session parameters and signature types. Each execution of the third
signing round of the signing oracle uses a specific aggregate public key ṽk,
aggregate nonce R, and message m. We refer this tuple (R, ṽk,m) as the session
parameter of this signing session.

Now consider an adversary Ams in the random oracle model. If they wish
to complete a signing session with the signing oracle, then for each corrupt
signer they must provide a commitment ti as input to the second signing round
and then an Ri for the third signing round satisfying Hcom(Ri) = ti. To have
a non-negligible probability of completing the signing session, they must have
called the random oracle Hcom with input Ri before providing the input to the
second signing round. Thus, whenever the adversary calls SignO2 with input
(m,X1, . . . , Xn, t1, . . . , tn), the reduction can recover all of the Ri and compute
the session parameters.

Now suppose Ams breaks the strong unforgeability of MuSig. At the end of
the game it outputs � valid signatures (Rj , zj)�j=1, where the Rj ’s are all distinct,
for some message m and a group of keys X1, . . . , Xn with aggregated key ṽk.
Each of these signatures must fall into one of the following cases:

Case 1: (Rj , ṽk,m) was the session parameters for some signing oracle signing
session that executed the third signing round.

Case 2: (Rj , ṽk,m) was the session parameters for some signing oracle signing
session that executed the second signing round, but not the third.

Case 3: (Rj , ṽk,m) was not the session parameters for any signing oracle signing
session.

Since Ams wins the strong unforgeability game, at most � − 1 signing oracle
sessions with message m and keys X1, . . . , Xn completed the third signing round.
Hence, at most � − 1 signatures fall into Case 1 and at least one signature falls
into Case 2 or 3. We refer to such signatures as “forgeries.”

Using a forgery to win XIDL. Let X denote the output of the XIDL Init

procedure, which the reduction sets to be the public key of the honest signer.
Now, suppose (R, z) is a valid multi-signature for a message m and a group

of public keys vk1, . . . , vkn with vkk = X. If the key aggregation exponent
Hagg(k, vk1, . . . , vkn) is an XIDL target3 and c = H(R, ṽk,m) is a challenge
obtained from the XIDL’s Challenge oracle with input R, then (R, z) wins

3 The above procedure works for the case where there exist a unique k such that
vkk = X. If more than one such k exists, then we can program the random oracle so
that

∑
{k:Xk=X} H(k, vki, . . . , vkn) is an XIDL target and the hash function values

appear uniformly random. See the formal proof for more details.

One-More Unforgeability for Multi - and Threshold Signatures 451

the XIDL game. Thus, we program the random oracle so that responses to
Hagg(k, vk1, . . . , vkn) queries are indeed XIDL targets and c is an XIDL challenge
corresponding to that target. It remains to show how to simulate the signing
oracle so that we can program the random oracle in such a way.

How to simulate the signing oracle. In order to construct a reduction, we
must simulate the signing oracle without knowing the secret key of the honest
signer. We use the standard technique of simulating the Schnorr signing oracle
without knowledge of the public key.

1st round: The reduction simply outputs a random commitment tk ←$ Zp.
2nd round: The reduction picks a uniformly random signature share and

challenge zk, c ←$ Zp, chooses a nonce-share Rk ← gzkX−c·Hagg(k,vk1,...,vkn),
and sets Hcom(Rk) ← tk so the commitment from the first round holds.
As explained before, the reduction can now recover the session parameters
(R, X̃,m) even though R is not yet known to the adversary. Therefore, it pro-
grams the random oracle Hsign(R, ṽk,m) ← c, and outputs the nonce share
Rk.

3rd round: The reduction outputs the partial signature zk that it generated
when simulating the second signing round. It is a valid signature share by
construction.

Guessing which session parameters are for forgery. When simulating
the signing oracle for a session with parameters (R, ṽk,m), we program the
random oracle challenge Hsign(R, ṽk,m) ← c for a c that we selected before
determining R. Therefore, the reduction cannot use that challenge to win the
XIDL game. This is why it needs a forgery.

Suppose the forgery is (R, z) and that is valid for a message m and an aggre-
gated key X̃. If the forgery falls into Case 3 (the cases are defined at the beginning
of the proof idea) we can use it to win the XIDL game, since its session param-
eters (R, X̃,m) were not used by the signing oracle and thus the corresponding
challenge is an XIDL challenge. However, if the forgery falls into Case 2, then
the reduction programmed Hsign(R, ṽk,m) ← c when simulating SignO2 and
thus we cannot use it directly to win the XIDL game.4

To win the XIDL game using this type of forgery, the reduction generates
an integer ρ uniformly at random from {1, . . . , qs, qs + 1} where qs refers to the
maximum number of signing sessions that can be opened by the adversary. Then,
it simulates all signing sessions of index different from ρ as described above. For
the ρth session, however, it runs the first two signing rounds of the signing session
honestly by picking the nonce share Rk first, then generating the commitment
and programming the signing oracle tk ← Hcom(Rk) ←$ Zp. Once the session
parameters (R, ṽk,m) are known at the initiation of the second round we can
program the random oracle Hsign(R, ṽk,m) ← c where c is an XIDL challenge.
4 Previous MuSig security proofs do not consider signatures of Case 2 as forgeries, since

they consider a forgery trivial whenever the adversary initiated a signing session with
the signing oracle for the corresponding message.

452 S. Navot and S. Tessaro

Fig. 8. The Algebraic One More Discrete Log (AOMDL) game in a group G with a
generator g of prime order p.

Note that the reduction cannot simulate the third signing round of the ρth signing
session and will have to abort if the adversary asks for it. It will, however, be
able to win the XIDL game if the adversary outputs a forgery that falls into
Case 2 with the session parameters of the ρth signing session.

Thus, if the adversary outputs a forgery that falls into Case 2, and we chose
ρ so it corresponds to the session with the same parameters as the forgery, then
we win the XIDL game. Hence, if the adversary produces a forgery that falls
into Case 2 then we win the XIDL game with probability of at least 1

qs+1 . If the
adversary outputs a forgery that falls into Case 3, then we win if we were able to
simulate all signing oracle queries, which is guaranteed if we chose ρ = qs+1 and
thus we win with a probability of at least 1

qs+1 . Since every successful adversary
against the strong unforgeability of MuSig must provide a forgery that falls into
Case 2 or 3, this means that if an adversary breaks the strong unforgeability of
MuSig then the reduction wins the XIDL game with probability of approximately

1
qs+1 .

We include a formal proof in the full version of this paper.

5.3 Analysis of MuSig2

We prove the strong unforgeability of the multi-signature scheme MuSig2 [40], a
two round multi-signature scheme, under the Algebraic One More Discrete Log
assumption of [40] (a weaker falsifiable variant of the One More Discrete Log
assumption [7], defined in Fig. 8).

MuSig2 requires only two interactive signing rounds, of which one can be pre-
processed before the message to sign and the set of signers have been determined.
It also supports key aggregation and produces ordinary Schnorr signatures with
respect to the aggregated signing key.

Our strong unforgeability proof of MuSig2 is nearly identical to its original
existential unforgeability proof [40], and we strive to use similar structure and
notation when presenting the proof as well as reuse as much of it as possible. The

One-More Unforgeability for Multi - and Threshold Signatures 453

similarity of our proof to the existential unforgeability proof serves as evidence
that our definition of strong unforgeability is straightforward to use.

The scheme. We will describe the scheme informally. A formal description using
our syntax for multi-signatures can be found in the full version of this paper.

The scheme uses a group G of prime order p with a generator g and three
hash functions Hagg, Hnonce, and Hsign with codomain Zp. Key generation and
aggregation is the same as in MuSig,5 where each signer generates the keys
sk ←$ Zp and vk ← gsk and the aggregate verification key for a group of n

signers is ṽk ← ∏n
i=1 vk

Hagg(i,X1,...,Xn)
i .

In the first signing round each signer k generates four6 random values
rk,1, . . . , rk,4 ←$ Zp and sends Rk,� ← grk,� for each � ∈ {1, . . . , 4} to all other
signers. In the second round, on input ((vki, Ri,1, . . . , Ri,4)ni=1,m), each signer k

computes R� ← ∏n
i=1 Ri,� for � ∈ {1, . . . , 4}, the aggregate verification key ṽk,

and b ← Hnonce(ṽk, R1, . . . , R4,m). Then each signer computes the aggregate
nonce R ← ∏4

�=1 R
(b�−1)
� , the challenge c ← Hsign(ṽk, R,m), and their partial

signature zk ← ∑4
�=1 rk,� · b�−1+ c · skk ·Hagg(k,X1, . . . , Xn) which they send to

all other signers. The final multi-signature is given by (R,
∑n

i=1 zi), which can
be computed by any of the signers.

A multi-signature (R, z) can be verified with respect to a message m and

an aggregate verification key ṽk by checking that gz = R · ṽkHsign(ṽk,R,m)
, which

is identical to the verification of a standard Schnorr signature. MuSig2 satisfies
perfect correctness.

Aggregator node. In the setting with an aggregator node, the communication
cost of MuSig2 can be reduced by having the aggregator compute the Rj ’s instead
of the signers. More specifically, after the first signing round the aggregator
receives (Ri,1, . . . , Ri,4)ni=1 and computes R� ← ∏n

i=1 Ri,� for � ∈ {1, . . . , 4}. The
R�’s can now be used as the input to the second signing round of each signer,
as opposed to all of the Ri,�’s.

This shortcut does not affect the existential and strong unforgeability
of MuSig2, since an adversary can compute the R�’s given the Ri,�’s, and
because given a uniformly random R� an adversary can simulate a selection of
R1,�, . . . , Rn,� that appear uniformly random and have product R�. Therefore,
without loss of generality, we do not consider this shortcut in our proof.

Strong unforgeability. The strong unforgeability of MuSig2 is given in the
following lemma, which we prove in the full version of this paper.

5 We slightly deviate from the original MuSig2 scheme by writing ṽk ←
∏n

i=1 vk
Hagg(i,X1,...,Xn)
i , as opposed to ṽk ← ∏n

i=1 vk
Hagg(Xi,X1,...,Xn)
i . This follows

the convention of [6], which views the public keys of the signing group as a list as
opposed to a multi-set in the security definitions.

6 There is a simpler variant of MuSig2 that uses only two nonces [40] that we do not
consider in this paper. Its security proof relies on the algebraic group model.

454 S. Navot and S. Tessaro

Lemma 4 (AOMDL → SUF of MuSig2 in the ROM). Let G be a group
with prime order p and generator g. Let MS = MuSig2[G, g], where its hash
functions are modeled as random oracles. Let Ams be an adversary against
Gsuf-ms[MS] making at most qs queries to the signing oracle SignO1 and qh

queries to each random oracle. Let q = 4qh + 3qs + 2. Then, there exists an
algorithm D such that

Advsuf−ms
MS (Ams) ≤

(

2q3(Advaomdl
G,g (D) +

32q2 + 12
p

)
)1/4

and D runs in approximately 4 times the runtime of Ams.

5.4 Analysis of mBCJ

We only introduce the conclusions of our analysis of mBCJ, without justification.
Readers are referred to the full version of this paper for our attacks.

In [4], Bagherzandi et al. present BCJ, a two-round multi-signature scheme.
Approximately a decade later, Drijvers et al. found an error in the security proof
of BCJ and a sub-exponential attack against its existential unforgeability when
concurrent signing sessions are permitted [23], using Wagner’s algorithm for the
generalized birthday problem [48]. The algorithm of Benhamouda et al. to solve
the ROS problem [12] improves this attack to polynomial time. In the same
paper [23], Drijvers et al. present mBCJ, a modification of the scheme which
prevents the attack.

The modified scheme mBCJ is nearly identical to BCJ, except that some
scheme parameters (the “commitment parameters”) are computed as the hash of
the message being signed, as opposed to public parameters that are the same for
every signing session. Thus, a forged mBCJ signature on an unsigned message
has to be valid for the corresponding commitment parameters, which are differ-
ent from the parameters used by the signing oracle for signing different messages.
The information gained from the signing oracle is now useless for forging a sig-
nature for an unsigned message, and the BCJ attack no longer works. Signing
oracle queries for the same message, however, use the same commitment param-
eters and can assist the adversary in forging an additional signature for the same
message. In the full version of this paper, we use this observation to modify the
attack against BCJ to break the one-more unforgeability of mBCJ.

A more surprising result is a subtlety regarding the existential unforgeability
of mBCJ. As mBCJ is originally presented [23], the commitment parameters
are a function of the message being signed, but not of the aggregate verification
key. This means that a small modification of our one-more unforgeability attack
allows the adversary to forge a signature that is valid for an arbitrary signing
set. The impact of the attack is as follows: if the adversary starts � concurrent
signing sessions for a message m with the honest signer, they can forge a multi-
signature for the same message but with a group of signers of the adversary’s
choice (which may be different from the group used for signign oracle queries).
We point out that this does not contradict the security proof of [23], since in

One-More Unforgeability for Multi - and Threshold Signatures 455

their security definition such a forgery is not considered a win for the adversary.
It does, however, render the scheme not existentially unforgeable according to
many definitions in literature (notably that of Bellare and Neven [8]). We refer
readers to the full version of this paper for the attack details.

6 Threshold Signatures Schemes

6.1 Comparison to Previous SUF-TS Definition, and FROST

In [5,11], Bellare et al. provide a hierarchy or unforgeability definitions for a
limited class of threshold signature schemes. As part of this hierarchy, they
define strong unforgeability for schemes that satisfy the following properties:

Semi non-interactive: The scheme has at most one pre-processing signing
round, which takes no input and outputs a pre-processing token pp. Addi-
tionally, the scheme has a single signing round that takes the message, the
set of participating signers, as well as the pre-processing tokens of all partic-
ipants as input. The input to the message dependent signing round is called
a leader request, denoted lr , with fields lr .m, lr .S, and (lr .ppi)i∈S .

Strong-verification: The scheme has an additional strong verification algo-
rithm SVerify, which verifies a signature with respect to a public key and a
leader request. It is required that for each leader request lr and aggregated
public key ṽk there exist at most one signature σ such that SVerify(ṽk, lr , σ) =
true. Correctness requires that SVerify(ṽk, lr , σ) = true whenever all (of the t
or more) signers in S honestly computed σ with lr as the input to the message
dependent signing round.

While this class of schemes appears limited, it contains FROST, and is therefore
of practical interest.

The hierarchy of strong unforgeability definitions in [5,11] begins at TS-SUF-
2, the weakest of their definitions, that both the FROST 1 [30] and FROST 2
[5,18] variants satisfy under the one-more discrete log assumption [7] in the
random oracle model (Theorem 5.3 and 5.1 of [11]). This definition considers
an adversary who corrupts c out of n signers, where c < t. A secure scheme
guarantees that if an adversary obtains a valid signature σ on a message m, then
there exist a leader request lr with the same message that was signed by at least
t − c honest signers and SVerify(ṽk, lr , σ) = true. Figure 9 shows this definition
using our syntax, and compares it to our strong unforgeability definition when
restricted to the same class of schemes.

Relationship between TS-SUF-2 and our definition. We claim that a
TS-SUF-2 secure scheme is also one-more unforgeable according to our defi-
nition by showing that any adversary that wins Gsuf-ts can be modified to win
Gts-suf-2-crypto22 with the same probability and no significant increase in runtime.
Note that this implies the one-more unforgeability of FROST 1 and FROST 2
under the OMDL assumption in the ROM.

456 S. Navot and S. Tessaro

Suppose there exists an adversary A that wins Gsuf-ts
n,t [TS] with probability

p. To construct an adversary A′ that plays Gts-suf-2-crypto22
n,t [TS] we can simply

execute A (since the two games have access to the same oracles, with the same
behavior) and maintain a set L of the leader requests that A inputs to SignO2

(and receives a non-⊥ response). If A wins Gsuf-ts
n,t [TS], it must come up with valid

distinct signatures (σj)�j=1 for some message m such that � ≥ |{lr ∈ L : lr .m =
m}|. Hence, there exist some σj for which SVerify(ṽk, lr , σj) = false for all lr ∈
{lr ′ ∈ L : lr ′.m = m}, and thus A′ can use σj to win Gts-suf-2-crypto22

n,t [TS]. Note
that A′ has roughly the same runtime as A, and it wins Gts-suf-2-crypto22

n,t [TS]
with probability p.

We note that TS-SUF-2 is strictly stronger than our one-more unforgeability
definition. In the full version of this paper we present a toy scheme that is one-
more unforgeable but does not satisfy TS-SUF-2.

6.2 Analysis of ROAST

In FROST-like threshold signature schemes [16,19,25,30,47] signing a message
involves selecting a signing subset (of sufficient size), after which it is required
that each signing set member participates in a signing session honestly, else
signature generation fails. This leads to a lack of robustness, losing one of the
main advantages of threshold signatures over multi-signatures.

ROAST [44] is a simple wrapper algorithm that adds robustness to such a
scheme Σ by executions the Σ signing protocol multiple times with different
signing sets until one is successful. The only requirements on the underlying
scheme are the following:

Identifiable aborts: Signers that do not participate honestly in a Σ signing
sessions can be detected with overwhelming probability.

Semi non-interactive: Σ has one signing round that requires knowing the
signing set, potentially in addition to a “pre-processing” signing round that
can be executed before the signing set is selected.

The canonical schemes that satisfy these properties are FROST 1 [25] and
FROST 3 [44]. ROAST also uses an aggregator who facilitates communication
between the signers and is trusted for robustness, but not for unforgeability.

We argue that the robustness of ROAST comes at the cost of strong unforge-
ability. ROAST does not satisfy any notion of strong or one-more unforgeability,
even if Σ is strongly unforgeable. This is in spite of the fact that ROAST does
not fit our syntax and security definition for threshold signatures. It remains an
important open problem to define strong unforgeability for a class of schemes
that contains ROAST and construct a strongly unforgeable alternative.

The scheme. We describe the scheme informally, and a formal description can
be found in Figure 4 of [44].

Suppose Σ is a non-robust and semi non-interactive threshold signature
scheme that supports identifiable aborts. Let S denote a signing group of size n

One-More Unforgeability for Multi - and Threshold Signatures 457

Fig. 9. Game Gts-suf-2-crypto22 used to define TS-SUF-2 for a threshold signature
scheme TS in [5,11] (adjusted to our syntax), compared to our strong unforgeability
definition Gsuf-ts restricted to schemes where TS-SUF-2 is defined.

with a signing threshold t. The key generation and verification in ROAST are
the same as those of Σ.

To sign a message m, the aggregator maintains a set R of available signers,
initially adding signers to R whenever they complete the pre-processing round.

458 S. Navot and S. Tessaro

Whenever |R| ≥ t, the aggregator picks a subset T ⊆ R with |T | = t, initiates a Σ
signing session with the message m for the signers of T , and removes them from
R. Whenever a signer completes a signing session and another pre-processing
round honestly, it is added back to R. The protocol terminates when one of the
signing session produces a valid Σ signature.

This protocol is guaranteed to produce a valid signature whenever t of the
signers are honest and responsive. Furthermore, since Σ supports identifiable
aborts each signer can sabotage at most one Σ signing session, and thus ROAST
terminates within a number of sessions that is at most the number of corrupt
signers.

Incompatibility with our unforgeability definitions. ROAST is inher-
ently incompatible with our unforgeability definitions. To begin, the number of
interactive signing rounds is not determined until the protocol terminates, and
our syntax does not support such schemes. This issue can be circumnavigated
with some syntactical overhead by allowing schemes to adaptively choose the
number of signing rounds. More importantly, however, the signers cannot tell
whether a signing round is the last interactive signing round. Thus, even in an
honest execution, they cannot determine at which signing round the aggregator
should be able to construct a threshold signature. In the context of our security
definition, the unforgeability game cannot tell at which signing oracle query to
increase the count of signatures obtained legitimately.

Breaking strong unforgeability. While it remains an open problem to
formally define strong unforgeability for ROAST-like schemes, we show that
ROAST does not satisfy any notion of strong unforgeability.

Consider, for instance, a group of 100 signers with a signing threshold of
67 and a corrupt aggregator that wishes to obtain many signatures for some
message m. Even if all signers are honest, the aggregator can ask each signer to
participate in multiple Σ signing sessions with various signing sets and obtain
as many as

(
100
67

) ≈ 3 × 1026 signatures for m. This is despite the fact that each
signer participated in a single ROAST session.

Acknowledgments. We thank the anonymous Asiacrypt 2024 reviewers for their
insightful feedback, and for suggesting that mBCJ is not strongly unforgeable. This
research was supported in part by NSF grants CNS-2026774, CNS-2154174, a JP Mor-
gan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

1. Almansa, J.F., Damgård, I., Nielsen, J.B.: Simplified threshold RSA with adaptive
and proactive security. In: Vaudenay, S. (ed.) Advances in Cryptology – EURO-
CRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 593–611. Springer,
Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1, 2006). https://doi.
org/10.1007/11761679_35

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł: On the malleabil-
ity of bitcoin transactions. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K.

https://doi.org/10.1007/11761679_35
https://doi.org/10.1007/11761679_35

One-More Unforgeability for Multi - and Threshold Signatures 459

(eds.) Financial Cryptography and Data Security, pp. 1–18. Springer, Berlin Hei-
delberg, Berlin, Heidelberg (2015)

3. Bacho, R., Loss, J., Tessaro, S., Wagner, B., Zhu, C.: Twinkle: Threshold signatures
from ddh with full adaptive security. In: Joye, M., Leander, G. (eds.) Advances
in Cryptology - EUROCRYPT 2024, pp. 429–459. Springer Nature Switzerland,
Cham (2024)

4. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008: 15th Conference on Computer and Communi-
cations Security. pp. 449–458. ACM Press, Alexandria, Virginia, USA (Oct 27–31,
2008). https://doi.org/10.1145/1455770.1455827

5. Bellare, M., Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Better than
advertised security for non-interactive threshold signatures. In: Dodis, Y., Shrimp-
ton, T. (eds.) Advances in Cryptology – CRYPTO 2022, Part IV. Lecture Notes in
Computer Science, vol. 13510, pp. 517–550. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 15–18, 2022). https://doi.org/10.1007/978-3-031-15985-
5_18

6. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021,
Part IV. Lecture Notes in Computer Science, vol. 13093, pp. 650–678. Springer,
Heidelberg, Germany, Singapore (Dec 6–10, 2021). https://doi.org/10.1007/978-3-
030-92068-5_22

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3), 185–215 (Jun 2003). https://doi.org/10.1007/s00145-002-0120-
1

8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006: 13th Conference on Computer and Communications Security. pp.
390–399. ACM Press, Alexandria, Virginia, USA (Oct 30 – Nov 3, 2006). https://
doi.org/10.1145/1180405.1180453

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93: 1st Conference on Computer and Communications Secu-
rity. pp. 62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993). https://doi.
org/10.1145/168588.168596

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology –
EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1, 2006).
https://doi.org/10.1007/11761679_25

11. Bellare, M., Tessaro, S., Zhu, C.: Stronger security for non-interactive threshold
signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833 (2022),
https://eprint.iacr.org/2022/833

12. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EURO-
CRYPT 2021, Part I. Lecture Notes in Computer Science, vol. 12696, pp. 33–53.
Springer, Heidelberg, Germany, Zagreb, Croatia (Oct 17–21, 2021). https://doi.
org/10.1007/978-3-030-77870-5_2

https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2022/833
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2

460 S. Navot and S. Tessaro

13. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASI-
ACRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 11273, pp. 435–
464. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2–6,
2018). https://doi.org/10.1007/978-3-030-03329-3_15

14. Brandão, L.T.A.N., Davidson, M.: Notes on threshold EdDSA/Schnorr signatures.
Tech. Rep. NIST IR 8214B ipd, National Institute of Standards and Technology,
Gaithersburg, MD (2022), https://doi.org/10.6028/NIST.IR.8214B.ipd

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001).
https://doi.org/10.1109/SFCS.2001.959888

16. Chu, H., Gerhart, P., Ruffing, T., Schröder, D.: Practical Schnorr threshold sig-
natures without the algebraic group model. In: Crypto 2023 (Aug 19–24, 2023).
https://doi.org/10.1007/978-3-031-38557-5_24

17. Connolly, D., Komlo, C., Goldberg, I., Wood, C.A.: Two-Round Threshold Schnorr
Signatures with FROST. Internet-Draft draft-irtf-cfrg-frost-10, Internet Engineer-
ing Task Force (Sep 2022), https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
10/, work in Progress

18. Crites, E., Komlo, C., Maller, M.: How to prove Schnorr assuming Schnorr: Security
of multi- and threshold signatures. Cryptology ePrint Archive, Paper 2021/1375
(2021), https://eprint.iacr.org/2021/1375

19. Crites, E., Komlo, C., Maller, M.: Fully adaptive Schnorr threshold signatures. In:
Advances in Cryptology – CRYPTO 2023 (Aug 2023)

20. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and mtgox. In:
Kutyłowski, M., Vaidya, J. (eds.) Computer Security - ESORICS 2014. pp. 313–
326. Springer International Publishing, Cham (2014)

21. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomer-
ance, C. (ed.) Advances in Cryptology – CRYPTO’87. Lecture Notes in Computer
Science, vol. 293, pp. 120–127. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-2_8

22. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
Advances in Cryptology – CRYPTO’89. Lecture Notes in Computer Science,
vol. 435, pp. 307–315. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 1990). https://doi.org/10.1007/0-387-34805-0_28

23. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs,
I.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on
Security and Privacy. pp. 1084–1101. IEEE Computer Society Press, San Francisco,
CA, USA (May 19–23, 2019). https://doi.org/10.1109/SP.2019.00050

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part II. Lecture Notes in Computer Science, vol. 10992, pp. 33–62. Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.org/
10.1007/978-3-319-96881-0_2

25. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018:
25th Conference on Computer and Communications Security. pp. 1179–1194. ACM
Press, Toronto, ON, Canada (Oct 15–19, 2018). https://doi.org/10.1145/3243734.
3243859

https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.6028/NIST.IR.8214B.ipd
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-031-38557-5_24
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/10/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/10/
https://eprint.iacr.org/2021/1375
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859

One-More Unforgeability for Multi - and Threshold Signatures 461

26. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signa-
tures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.R.,
Schneider, S. (eds.) ACNS 16: 14th International Conference on Applied Cryp-
tography and Network Security. Lecture Notes in Computer Science, vol. 9696,
pp. 156–174. Springer, Heidelberg, Germany, Guildford, UK (Jun 19–22, 2016).
https://doi.org/10.1007/978-3-319-39555-5_9

27. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s
distributed key generation protocol. In: Joye, M. (ed.) Topics in Cryptology – CT-
RSA 2003. Lecture Notes in Computer Science, vol. 2612, pp. 373–390. Springer,
Heidelberg, Germany, San Francisco, CA, USA (Apr 13–17, 2003). https://doi.
org/10.1007/3-540-36563-X_26

28. Itakura, K; Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC research & development (1983)

29. Komlo, C., Goldberg, I.: Frost: flexible round-optimized Schnorr threshold signa-
tures. In: International Conference on Selected Areas in Cryptography. pp. 34–65.
Springer (2020)

30. Komlo, C., Goldberg, I.: FROST: Flexible round-optimized Schnorr threshold
signatures. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020: 27th
Annual International Workshop on Selected Areas in Cryptography. Lecture Notes
in Computer Science, vol. 12804, pp. 34–65. Springer, Heidelberg, Germany, Hali-
fax, NS, Canada (Virtual Event) (Oct 21-23, 2020). https://doi.org/10.1007/978-
3-030-81652-0_2

31. Lau, J., Wuille, P.: Dealing with signature encoding malleability. Bitcoin Improve-
ment Proposal 146 (2016), https://github.com/bitcoin/bips/blob/master/bip-
0146.mediawiki

32. Libert, B., Joye, M., Yung, M.: Born and raised distributively: Fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In: The-
oretical Computer Science (2016)

33. Lindell, Y.: Simple three-round multiparty Schnorr signing with full simulatabil-
ity. IACR Communications in Cryptology 1(1) (2024). https://doi.org/10.62056/
a36c0l5vt

34. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin (deprecated version). Cryptology ePrint Archive,
Report 2018/068, version 1 (2018), https://eprint.iacr.org/archive/2018/068/
20180118:124757

35. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. In: Design, Code, and Cryptography. pp. 2139–2164
(September 2019)

36. National Institute of Standards and Technology: Multi-Party Threshold Cryptog-
raphy (2018–Present), https://csrc.nist.gov/Projects/threshold-cryptography

37. Navot, S.: Insecurity of musig and bn multi-signatures with delayed message selec-
tion. Cryptology ePrint Archive, Report 2024/437 (2024), https://eprint.iacr.org/
2024/437

38. Nick, J.: Insecure shortcuts in musig (2019), https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da

39. Nick, J., Ruffing, T., Jin, E.: Musig2 for bip340-compatible multi-signatures. Bit-
coin Improvement Proposal 327 (2022), https://github.com/bitcoin/bips/blob/
master/bip-0327.mediawiki

40. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: Simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –

https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://doi.org/10.62056/a36c0l5vt
https://doi.org/10.62056/a36c0l5vt
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://csrc.nist.gov/Projects/threshold-cryptography
https://eprint.iacr.org/2024/437
https://eprint.iacr.org/2024/437
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

462 S. Navot and S. Tessaro

CRYPTO 2021, Part I. Lecture Notes in Computer Science, vol. 12825, pp. 189–
221. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.
org/10.1007/978-3-030-84242-0_8

41. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034852

42. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. In: Journal of Cryptology. Journal of Cryptology (May 1998). https://doi.
org/10.1007/s001450010003

43. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/10.1007/
s001450010003

44. Ruffing, T., Ronge, V., Jin, E., Schneider-Bensch, J., Schröder, D.: ROAST: Robust
asynchronous Schnorr threshold signatures. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. p. 2551–2564.
CCS ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3548606.3560583

45. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) Advances in Cryptology – CRYPTO’89. Lecture Notes in Computer Sci-
ence, vol. 435, pp. 239–252. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 20–24, 1990). https://doi.org/10.1007/0-387-34805-0_22

46. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) Information and Communications Secu-
rity, pp. 1–12. Springer, Berlin Heidelberg, Berlin, Heidelberg (2001)

47. Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash func-
tions. In: Advances in Cryptology – EUROCRYPT 2023. Lyon, France (Apr 23–27,
2023)

48. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) Advances in Cryp-
tology – CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 288–
303. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2002).
https://doi.org/10.1007/3-540-45708-9_19

49. Wuille, P.: Dealing with malleability. Bitcoin Improvement Proposal 62 (2014),
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

50. Wuille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1. Bitcoin
Improvement Proposal 340 (2020), https://github.com/bitcoin/bips/blob/master/
bip-0340.mediawiki

https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45708-9_19
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

One Tree to Rule Them All: Optimizing
GGM Trees and OWFs for Post-Quantum

Signatures

Carsten Baum1(B) , Ward Beullens2 , Shibam Mukherjee3,4 ,
Emmanuela Orsini5 , Sebastian Ramacher6 , Christian Rechberger4 ,

Lawrence Roy7, and Peter Scholl7

1 Technical University of Denmark, Copenhagen, Denmark
cabau@dtu.dk

2 IBM Research Europe, Zürich, Switzerland
ward@beullens.com

3 Graz University of Technology, Graz, Austria
shibam.mukherjee@iaik.tugraz.at

4 Know Center, Graz, Austria
christian.rechberger@tugraz.at

5 Bocconi University, Bocconi, Italy
emmanuela.orsini@unibocconi.it

6 AIT Austrian Institute of Technology, Vienna, Austria
sebastian.ramacher@ait.ac.at
7 Aarhus University, Aarhus, Denmark

peter.scholl@cs.au.dk

Abstract. The use of MPC-in-the-Head (MPCitH) based zero knowl-
edge proofs of knowledge (ZKPoK) to prove knowledge of a preimage
of a one-way function (OWF) is a popular approach towards construct-
ing efficient post-quantum digital signatures. Starting with the Picnic
signature scheme, many optimized MPCitH signatures using a variety of
(candidate) OWFs have been proposed. Recently, Baum et al. (CRYPTO
2023) showed a fundamental improvement to MPCitH, called VOLE-in-
the-Head (VOLEitH), which can generically reduce the signature size by
at least a factor of two without decreasing computational performance or
introducing new assumptions. Based on this, they designed the FAEST
signature which uses AES as the underlying OWF. However, in compar-
ison to MPCitH, the behavior of VOLEitH when using other OWFs is
still unexplored.

In this work, we improve a crucial building block of the VOLEitH
and MPCitH approaches, the so-called all-but-one vector commitment,
thus decreasing the signature size of VOLEitH and MPCitH signature
schemes. Moreover, by introducing a small Proof of Work into the sign-
ing procedure, we can improve the parameters of VOLEitH (further
decreasing signature size) without compromising the computational per-
formance of the scheme. Based on these optimizations, we propose three
VOLEitH signature schemes FAESTER, KuMQuat, and MandaRain
based on AES, MQ, and Rain, respectively. We carefully explore the

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 463–493, 2025.
https://doi.org/10.1007/978-981-96-0875-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0875-1_15&domain=pdf
http://orcid.org/0000-0001-7905-0198
http://orcid.org/0000-0003-0888-283X
http://orcid.org/0009-0008-4399-235X
http://orcid.org/0000-0002-1917-1833
http://orcid.org/0000-0003-1957-3725
http://orcid.org/0000-0003-1280-6020
http://orcid.org/0000-0002-7937-8422
https://doi.org/10.1007/978-981-96-0875-1_15

464 C. Baum et al.

parameter space for these schemes and implement each, showcasing their
performance with benchmarks. Our experiments show that these three
signature schemes outperform MPCitH-based competitors that use com-
parable OWFs, in terms of both signature size and signing/verification
time.

Keywords: Post-Quantum · VOLEitH · Signature Schemes

1 Introduction

The threat of quantum computing has motivated cryptographers to develop dig-
ital signatures based on new, supposedly quantum-resistant, hardness assump-
tions. In order to standardize these new signature schemes, NIST started its
first post-quantum (PQ) signature standardization process1 in 2017, where
SPHINCS+ [6,16], Dilithium [30] and FALCON [43] were standardized. With
two out of three standardizations relying on hard lattice problems for their secu-
rity, NIST deemed it necessary to seek additional candidates for standardization
whose security is based on a more diverse set of hardness assumptions2.

Signatures from Zero-Knowledge Proofs. A well-known technique to build a digi-
tal signature scheme is to compile a (public-coin, honest-verifier) zero-knowledge
(ZK) proof of knowledge, used in an identification protocol, with the Fiat-
Shamir transformation (FS). In particular, a zero-knowledge proof of knowledge
(ZKPoK) for an NP relation R is an interactive protocol that allows the prover to
prove knowledge of a witness w for a statement x such that (x,w) ∈ R, without
revealing any further information. In the context of signature (and identifica-
tion) schemes, this is a proof of knowledge of a secret key k such that y = Fk(x),
for a given one-way function (OWF) Fk(·).

A powerful and efficient technique to build such ZK proofs for arbitrary
NP relations is the MPC-in-the-Head (MPCitH) framework due to Ishai et
al. [36]. However, a significant limitation of many MPCitH-based proofs lies
in their proof size which scales linearly with the size of the circuit representa-
tion of the statement being proven. Nevertheless, MPCitH is particularly effec-
tive with small to medium-sized circuits and leads to efficient post-quantum
signature schemes. These schemes are either based solely on symmetric primi-
tives, such as AES [13,29,37,45,46] and other MPC-friendly one-way functions
(OWFs) like LowMC [4], Rain [29], and AIM [39], or well-studied computational
hardness assumptions, including syndrome decoding [3,5,34], the multivariate
quadratic problem (MQ) [15,42], the permuted kernel problem [1], and the Leg-
endre PRF [19]. This second approach typically results in a more communication-
efficient scheme.

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/Call-for-Proposals.

2 https://csrc.nist.gov/Projects/pqc-dig-sig/standardization.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization

One Tree to Rule Them All 465

VOLE-ZK and FAEST. In 2018, Boyle et al. [22] proposed a new class of prover-
efficient (linear complexity) and scalable ZK proofs, which use commit-and-prove
protocols instantiated using vector oblivious linear evaluation (VOLE) correla-
tions. Follow-up works [8,12,22,23,27,49–51,53] reduced the constants of the
linear proof size, surpassing MPCitH schemes in terms of efficiency, in particular
when dealing with very large circuits. Compared to MPCitH schemes, the above
VOLE-ZK protocols are limited to the designated-verifier setting only. However,
recent work by Baum et al. [7] reconciles the advantages of both worlds, result-
ing in VOLE-ZK proofs that are publicly verifiable. To achieve this, they intro-
duce a technique called VOLE-in-the-Head (VOLEitH) which bears a surprising
resemblance to MPCitH-based protocols. Based on VOLEitH, they proposed the
FAEST [9] post-quantum signature scheme.

Similarly to MPCitH signature schemes like Banquet [13], BBQ [45], and
Helium [37], FAEST relies on AES [2] as its OWF. However, FAEST outperforms
MPCitH-based signatures, by having signatures at least twice as small and with
similar or better signing and verification times. This makes the VOLEitH-based
FAEST as performant as the most optimized MPCitH-based schemes [37], while
relying on a very conservative OWF. At the same time, VOLEitH is a rela-
tively new concept, and it remained unexplored to what extent VOLEitH-based
signatures can benefit from selecting different OWFs, such as Rain or random
multivariate quadratic maps.

1.1 Our Contributions

In this work, we present improvements to the core building blocks used in VOLE-
in-the-head proof systems, as well as alternative one-way function instantiations
that optimize prior approaches and lead to more efficient post-quantum signature
candidates.

Improved Batch Vector Commitments. VOLE-in-the-head signatures such as
those based on MPC-in-the-head, use multiple GGM-based [35] all-but-one vec-
tor commitment schemes to generate correlated randomness for the ZK proofs.
These vector commitments are then opened at random challenge points as part
of the proof, incurring a decommitment size of log(N) ·λ bits per vector commit-
ment that must be sent during the opening phase (where N is the length of the
vector and λ is the security parameter). These openings are a substantial part
of the setup cost of the ZK proof. We provide a new abstraction, called batch
all-but-one vector commitment (BAVC) schemes, which captures how multiple
vector commitments are used in VOLEitH and MPCitH. We observe that, to
instantiate the BAVC abstraction more efficiently, one can interleave multiple
vector commitments which drastically reduces the opening size. This batching
requires the signer to perform rejection sampling when selecting the points to
open, reducing the entropy of the challenge space somewhat. While it might seem
that this makes the scheme less secure, one can prove that security is actually
preserved: since each rejection sampling step requires the prover to perform a
hash function call, we can consider rejection sampling as a proof of work done

466 C. Baum et al.

during each signing operation. Any attacker must also perform this proof of work
to generate a valid signature. We believe that this technique is of independent
interest.

FAESTER. This rejection sampling/proof of work idea can be pushed further,
using a technique known as “grinding” [18,48]. Proof systems naturally have
a tradeoff between signature size, computation, and security, and reducing the
security can lead to significant improvements in both signature size and compu-
tational efficiency. We do this by further reducing the entropy of the challenge
space so that some part of the opening process does not even need to be consid-
ered. This makes the VOLEitH proof itself slightly less secure, but the overall
signature scheme retains the same security level due to the additional proof of
work caused by increased rejection probability. It might seem that this trade-off
will naturally lead to longer signing times, but the opposite can actually be the
case: reducing the challenge entropy significantly reduces the other signing costs,
so the scheme is optimized by finding a balance between the costs of the proof
of work and those of the rest of the scheme. We applied BAVC and grinding to
the FAEST signature scheme, leading to a new digital signature with a signature
size of 4KB (an improvement over all signature schemes using AES OWF) while
maintaining or improving upon the signing and verification time of FAEST. We
name this new improved signature scheme FAESTER.

MandaRain & KuMQuat. AES-based OWFs benefit from decades of public
scrutiny. However, AES was not designed for use-cases such as VOLEitH which
leaves open the possibility that other OWFs may result in faster signing and
verification times, and smaller signature sizes. We survey suitable candidate
PRFs, ranging from various recent specialized designs in symmetric cryptogra-
phy [4,29,31,33,39,44] to various instances of the MQ problem [15]. We select the
Rain [29] and MQ [15] PRFs, from which we construct the new MandaRain and
KuMQuat signature schemes using our new commitment optimization. These
signature schemes have a signature size as small as 2.6KB, lowest among all
VOLEitH and MPCitH-based signature schemes. An overview of our results can
be seen in Fig. 1.

Allowing Uniform AES Keys in FAEST(ER). In cases where the conservative
choice of AES is preferred to alternative OWFs, we show how to tweak the AES
proving algorithm so that FAEST and FAESTER can support secret keys that
cover the entirety of the AES keyspace. This avoids sampling signing keys via
rejection sampling, as done in previous works, so we obtain a simplified key gen-
eration algorithm and improve concrete security by 1–2 bits. This improvement
comes with no cost in signature size or runtime.

FAEST-d7: Higher-Degree Constraints for AES. We also present a new method
of proving AES in VOLE-ZK proof systems, using degree-7 constraints over F2.
Compared with the degree-2 constraints over F28 used in the original FAEST

One Tree to Rule Them All 467

Fig. 1. Signature size and runtime trade-off comparison between the proposed signature
schemes with FAEST and FAEST-EM. The slow and fast versions are denoted with s
and f respectively. The fast version offers smaller signing and verification time, however,
comes with a larger signature size. Similarly, in the slower version, the signature size
is smaller but both signing and verification timings are larger.

(and above), we halve the witness size in the ZK proof. Although proving higher-
degree constraints does come with some extra costs, we show that signature
sizes can be up to 5% smaller in FAEST-d7. We have not yet implemented this
variant, but expect signing and verification times to be similar to FAEST. As a
contribution of independent interest, we optimize the method for proving high-
degree constraints in the QuickSilver proof system [52], greatly improving the
efficiency of the prover.

VOLEitH Parameter Exploration. With our implementation3, we enable a sys-
tematic investigation of the parameter set within the VOLEitH paradigm for
constructing a signature scheme, providing insights into the effects of different
parameters, including those introduced in this work. These insights contribute
to further improvements and trade-offs. Table 5 summarizes our signature per-
formance for the L1 security, and in the full version of the paper4, we include
the holistic results for all the security levels. In Fig. 8, we compare our results
with the other signature schemes, including the NIST PQ Signature Round 4
candidates.

3 https://github.com/faest-sign/faest-one-tree.
4 https://eprint.iacr.org/2024/490.

https://github.com/faest-sign/faest-one-tree
https://eprint.iacr.org/2024/490

468 C. Baum et al.

2 Preliminaries

2.1 One-Way Functions

MPCitH and VOLEitH signatures are based on proving knowledge of the preim-
age to a OWF.5 In many recent signature schemes like Picnic and FAEST, OWFs
are built from a block cipher, according to the following construction.

Construction 1. A one-way-function F(k, x) can be constructed using a block
cipher Ek(x) by setting F(k, x) := (x,Ek(x)), where Ek(x) denotes the encryp-
tion of x under the key k. The OWF relation is defined as ((x, y), k) ∈ R ⇔
Ek(x) = y.

The Rain OWF Dobraunig et al. presented a block cipher called Rain [29] with
a small number of non-linear constraints, designed to optimize the signature
size and time when used as a OWF in MPCitH based signature schemes.6 The
resulting signature scheme, Rainier [29], was the first MPCitH signature scheme
with less than 5 KB of signature size.

Below we describe the Rain round function and we refer to Fig. 2 for a graph-
ical overview of Rain with 3 rounds.

The Rain keyed permutation fk(x) : Fλ
2 → F

λ
2 is defined by the concatenation

of a small number r of round functions Ri, i ∈ [r], i.e. fk(x) = Rr◦· · ·◦R2◦R1(x).
Each Ri, i ∈ [r], is in turn defined as

Ri(x) =

{
Mi · S(x + k + ci) i ∈ [1..r)
k + S(x + k + cr) i = r.

Here, S : F2λ → F2λ is the field inversion function over F2λ (mapping 0 to 0),
ci ∈ F

λ
2 is a round constant, k ∈ F

λ
2 the secret key and Mi ∈ F

λ×λ
2 an invertible

matrix.

Fig. 2. The Rain encryption function with r = 3 rounds. Mi denotes the multiplication
with an unstructured invertible matrix over F2 in the i-th round.

5 See full version for definitions.
6 Rain is not a typical block cipher like AES, but rather specifically designed

for MPCitH use cases, where it requires that an adversary has access to only
one plaintext-ciphertext (pt-ct) pair per secret key. When constructing signature
schemes, this condition is easily satisfied as pk contains the only pt-ct pair known to
an adversary.

One Tree to Rule Them All 469

In the VOLEitH setting, similar to MPCitH schemes, the linear layer has
a much smaller impact on the performance in comparison to the non-linear
layer. Thus to improve diffusion, the authors of Rain decided to use different
round constants ci and linear matrices Mi for each round. Rain comes in two
settings, namely Rain-3 with 3 rounds and Rain-4 with (more conservative) 4
rounds. Despite detailed cryptanalysis carried out by the authors, the best known
attacks [41,54] extend only to two rounds.

Multivariate Quadratic (MQ) OWF. One can also build a OWF from the
well-known Multivariate Quadratic problem.

Definition 1. (Multivariate Quadratic Problem). Let Fq be a finite field and
MQn,m,q be the set of multivariate maps over Fq with n variables and m com-
ponents of the form {xT ·Ai · x+ bT

i · x}i∈[m], where Ai ∈ F
n×n
q , are randomly

sampled upper triangular matrices and bi ∈ F
n
q are uniformly sampled vectors.

Given F ∈ MQn,m,q and y = (y1, . . . , ym) ∈ F
m
q , the MQ problem asks to find x

such that F (x) = y, i.e.
(
yi := xT · Ai · x+ bT

i · x)
i∈[m]

.

The MQ problem has been extensively used in cryptography and used to build
both trapdoor [17,40] and one-way signature schemes [15,47]. We construct the
one-way function Ex(seed) = y from the MQ problem, where seed is the input
to a pseudorandom generator G such that A1, . . . ,Am,b1, . . . ,bm ← G(seed).
Therefore, when constructing a one-way signature scheme from the MQ problem,
(x, seed) becomes the sk and (y,seed) becomes the pk (similar to MQOM [15]).

2.2 VOLEitH Signatures

We now give an overview of the VOLEitH framework as the ZK-proof system
underlying FAEST. A more detailed introduction of the VOLE-in-the-Head app-
roach is available in the full version.

A vector oblivious linear evaluation (VOLE) correlation of length m is a
two-party correlation between a prover P and a verifier V defined by a random
global key Δ ∈ F2k , a set of random bits ui ∈ F2, a random VOLE tag vi ∈
F2k and VOLE keys qi ∈ F2k such that qi = ui · Δ − vi, i = 0, . . . , m − 1. P
obtains ui, vi while V obtains Δ, qi. The correlations commit P to the ui’s as
linearly homomorphic commitments, allowing efficient proof systems (see [11]
for an overview). One of the main drawbacks of such VOLE-based ZK schemes
is that of being inherently designated verifier since the verifier V needs to know
its part of the VOLE correlation to verify the proof, which has to remain secret
from the prover for the proof to be sound.

Using VOLEitH, Baum et al. realized a delayed VOLE functionality that
allows the prover to generate values ui, vi of VOLE correlations independently
of Δ, qi and to generate them later instead. This delayed VOLE functionality
can in turn be realized from vector commitments (VCs). The main steps of the
interactive ZK proof can be computed as before, and only after these, in the
last stage of the protocol, the verifier will choose and send to the prover the
random value Δ of the correlation. At this point, P will open the homomorphic

470 C. Baum et al.

Fig. 3. Main steps of the VOLEitH-based Zero-Knowledge proof in FAEST

commitments and send to V information which allows it to reconstruct the qis in
the VOLE correlations, check the openings and thus the proof. This guarantees
public verifiability, as the final VOLE correlation is defined by the random value
Δ chosen as the last step of the proof by the verifier, after all other proof messages
have been fixed. Concretely, to obtain the desired soundness, it is necessary to
run τ instances of VOLEitH such that τ · k = λ. The main steps of the resulting
ZK proof using the VOLEitH technique are depicted in Fig. 3.

3 Improving Batch Vector Commitments

In this section, we present our result on batch vector commitments (VCs) in the
random oracle (RO) model. We start by providing a formal definition of a batch
all-but-one vector commitment scheme (BAVC) with abort in the opening phase.
This can be used in FAEST, and more generally in VOLEitH-based protocols,
as well as in most of the known MPC-in-the-head schemes. By making the prop-
erties of the used GGM-based instantiation explicit, we manage to achieve an
optimized construction that results in shorter signatures.

Informally, a batch all-but-one vector commitment scheme (BAVC) is a two-
phase protocol between two PPT machines, a sender and a receiver . In the first
phase, called the commitment phase, the sender commits to multiple vectors
of messages while keeping them secret; in the second phase, the decommitment
phase, all but one of the entries of each vector are opened. The vectors may
have different lengths. We require the binding and hiding properties of regular
commitments, and additionally also that the messages at the unopened indices
remain hidden, even after opening all other indices of each committed vector.
In addition, we do not allow the sender to choose the messages, which instead
are just random elements from the message space M. This definition captures
how vector commitments are used in MPC-in-the-head or VOLE-in-the-head
constructions.

One Tree to Rule Them All 471

Let τ be the number of vectors, and let the α-th vector have length Nα for
α ∈ [τ]. We will denote by iτ the index of vector τ that remains unopened and
by I the vector (i1, . . . , iτ) comprising all the indices that remain unopened.

Definition 2 (BAVC). Let H be a random oracle. A (non-interactive) batch all-
but-one vector commitment scheme BAVC (with message space M) in the RO
model is defined by the following PPT algorithms, where all of them have access
to a RO, and obtain the security parameter 1λ as well as τ,N1, . . . , Nτ as input:

Commit() → (com, decom, (m(α)
1 , . . . , m

(α)
Nα

)α∈[τ]): output a commitment com

with opening information decom for messages (m(α)
1 , . . . , m

(α)
N)α∈[τ] ∈

MN1+···+Nτ .
Open(decom, I) → decomI ∨⊥: On input an opening decom and the index vector

I ⊂ [N1] × · · · × [Nτ], output ⊥ or an opening decomI for I.
Verify(com, decomI , I)→((m(α)

j)j∈[Nα]\{iα})α∈[τ] ∨⊥: Given a commitment com,
an opening decomI , for an index vector I, as well as the index vector I,
either output all messages (m(α)

j)j∈[Nα]\{iα} (accept the opening) or ⊥ (reject
the opening).

We now define correctness for the commitment scheme. We allow the sender
to potentially abort for certain choices of I during Open. Looking ahead, this
does not pose any problem if the abort probability is low, as aborts only happen
during signature generation.

Definition 3 (Correctness with aborts). BAVC is correct with aborts if for
all I ⊂ [N1] × · · · × [Nτ], the following outputs True

(com, decom,M) ← Commit()
∀ decomI ← Open(decom, I)

output decomI = ⊥ ∨ Verify(com, decomI , I) = M

with all but a negligible probability, where M = (m(α)
1 , . . . , m

(α)
N)α∈[τ].

Informally, we say that a commitment scheme is extractable-binding if there
exists an extractor Ext such that for any commitment opening, the extracted
message is equal to the opened message. More formally, we have the following
definition.

Definition 4 (Extractable-Binding). Let BAVC be defined as above in the
RO-model with RO H. Let Ext be a PPT algorithm such that

– Ext(Q, com) → ((m(α)
j)j∈[Nα])α∈[τ], i.e., given a set Q of query-response pairs

of random oracle queries, and a commitment com, Ext outputs the committed
messages. (Ext may output m

(α)
j = ⊥, e.g. if committed value at this index is

invalid.)

472 C. Baum et al.

For any τ,Nα = poly(λ), define the straightline extractable-binding game for
BAVC and stateful adversary AH with oracle access to the random oracle H as
follows:

1. com ← AH(1λ)
2. ((m(α)

1 , . . . ,m
(α)
N)α∈[τ]) ← Ext(Q, com), where Q is the set {(xi,H(xi))} of

query-response pairs of queries A made to H.
3. (((m(α)

j)j∈[Nα]\{iα})α∈[τ], decomI , I)←AH(com).
4. Output 1 (success) if:

Verify(com, decomI , I) = ((m(α)
j)j∈[Nα]\{iα})α∈[τ],

but m
(α)
j �= m

(α)
j for some α ∈ [τ], j ∈ [Nα] \ {iα}.

Else output 0 (failure).

We say BAVC is straightline extractable w.r.t. Ext if any PPT adversary A has
a negligible probability of winning the extractable binding game. We denote the
advantage, i.e. probability to win, by AdvEBBAVC

A .

We define the n-hiding real-or-random game where 0 < n ≤ τ . Here, the attacker
has to guess if claimed committed values for the first n commitments at the
hidden index are correct or not. We allow for a parameter n to permit hybrids
in security proofs.

Definition 5 (Hiding (real-or-random)). Let BAVC be a vector commitment
scheme in the RO-model with random oracle H. The selective hiding experiment
for BAVC with τ,Nα = poly(λ), parameter n and stateful A is defined as follows.

1. b ← {0, 1}
2. (com, decom, (m(α)

1 , . . . ,m
(α)
N)α∈[τ]) ← Commit()

3. I ← AH(1λ, com), where I ∈ [N1] × · · · × [Nτ].
4. decomI ← Open(decom, I)
5. m

(α)
j ← m

(α)
j for j ∈ [Nα] \ {iα}, α ∈ [τ].

6. Set m
(α)
iα

←
{

random from M if b = 0 ∧ α ≤ n

m
(α)
iα

otherwise

7. b ← A((m(α)
j)j∈[Nα], decomi).

8. Output 1 (success) if: b = b, else 0 (failure).

The advantage AdvSelHideBAVCA,i of an adversary A is defined by |Pr
[A wins and n = i] − 1

2 | in the hiding experiment. We say BAVC is selec-
tively hiding if every PPT adversary A has a negligible advantage of winning
AdvSelHideBAVCA,i for all i ∈ [τ].

Note that the GGM-based VC scheme of [7] can be defined using our definitions
as well. We show this in the full version of the paper.

One Tree to Rule Them All 473

3.1 Optimized Batch All-but-One Vector Commitments

The GGM-based [35] VC construction has been extensively used both in MPCitH
based signature schemes like Picnic [24], BBQ [45], Banquet [13], Helium [37] and
also VOLEitH-based FAEST to construct the commitment scheme. It expands
a random seed into a tree of Pseudorandom values by recursively applying a
length-doubling Pseudo Random Generator (PRG) to each seed. To obtain a
VC, the prover commits to the tree leaves to represent one vector commitment
towards the verifier. Then, at a later stage, it can reveal parts of the leaves by
opening intermediate seeds (i.e. inner nodes of the tree), allowing the verifier to
check the opening against the VC. MPCitH-based signatures usually generate a
forest of τ such trees in parallel, whose roots are generated from a single seed.
This approach (which we recap in the full version) allows expressing τ VCs as
one BAVC.

One Big Tree Instead of τ Small Ones. We now describe an optimization of this
construction, where instead of generating a forest of τ trees with N1, . . . , Nτ

leaves each, we generate a single GGM tree with L =
∑τ

i=1 Ni leaves. Opening
all but τ leaves of the big tree is more efficient than opening all but one leaf
in each of the τ smaller trees, because with high probability some of the active
paths in the tree will merge relatively close to the leaves, which reduces the
number of internal nodes that need to be revealed. Importantly, we map entries
of the individual vector commitments to the leaves of the tree in an interleaved
fashion. The first τ leaves of the tree correspond to the first entry of the τ
vector commitments, the next leaves correspond to the second entries, and so
on. The other way around would force the τ unopened leaves to be spaced far
apart, which is detrimental to the number of nodes that need to be revealed.
The number of internal nodes that need to be revealed depends on I, which
would cause some variability in the size of the signature. To prevent this, we
fix a threshold Topen for the number of internal nodes in an opening, and we
let the Open algorithm abort if the number of nodes exceeds Topen. The value
of Topen controls a trade-off between the opening size of BAVC and the success
probability of BAVC.Open.

Towards formalizing our optimized BAVC scheme
BAVCopt, let PRG : {0, 1}λ → {0, 1}2λ be a PRG, H : {0, 1}∗ → {0, 1}2λ be a
collision-resistant hash function (CRHF) and G : {0, 1}λ → {0, 1}λ × {0, 1}2λ be
a PRG and CRHF. We define the scheme BAVCopt, which is parameterized by
the number of vectors τ , the lengths of the vectors N1, . . . , Nτ , and the opening
size threshold Topen. Let π : [L − 1, 2L − 2] → {(α, i)}1≤i≤Nα

be a bijective
mapping from roots of the GGM tree to positions in the vector commitment.

Commit():

1. Set k ← {0, 1}λ and let k0 ← k.
2. For i ∈ [0, L − 2], compute (k2i+1, k2i+2) ← PRG(ki) to create a tree with L

leaves kL−1, . . . , k2L−2.
3. Deinterleave the leaves:

{sd(α)
1 , . . . , sd

(α)
Nα

}α∈[τ]
π← {kL−1, · · · , k2L−2}.

474 C. Baum et al.

4. Compute (m(α)
i , com

(α)
i) ← G(sd(α)

i), for α ∈ [τ] and i ∈ [Nα].
5. Compute h(α) ← H(com(α)

1 , . . . , com
(α)
Nα

) for α ∈ [τ] and h ← H(h(1), . . . , h(τ)).
6. Output the commitment com = h, the opening decom = k and the messages

(m(α)
1 , . . . , m

(α)
Nα

)α∈[τ].

Open(decom = k, I = (i(1), . . . , i(τ))):

1. Recompute kj for and j ∈ [0, . . . , 2L − 2] from k as in Commit.
2. Let S = {kL−1, . . . , k2L−2}.
3. For each α ∈ [τ], remove kπ−1(α,i(α)) from S.
4. For i from i = L − 2 to 0:

If k2i+1 ∈ S and k2i+2 ∈ S then replace both with ki.
5. If |S| ≤ Topen output the opening information decomI = ((com(α)

i(α))α∈[τ], S),
otherwise output ⊥.

Verify(com = h, decomI = ({comi(α)}(α)
α∈[τ], S), I = (i(1), . . . , i(τ))):

1. Recompute sd(α)
i from decomI , for each α ∈ [τ] and i �= i(α) using the available

keys in S, and compute (m(α)
i , com

(α)
i) ← G(sd(α)

i).
2. Compute h(α) = H(com(α)

1 , . . . , com
(α)
Nα

) for each α ∈ [τ].
3. If h �= H(h(1), . . . , h(τ)) output ⊥.
4. Output ((m(α)

i)i∈[Nα]\{i(α)})α∈[τ].

Lemma 1 (Extractable Binding). Decompose G : {0, 1}λ → {0, 1}2λ into
G(x) := (G1(x),G2(x)) and suppose G2,H are straight-line extractable. Then
BAVCGGM is straight-line extractable-binding according to Definition 4: Given
any adversary A breaking the extractable-binding of BAVCopt with advantage
AdvEB we can construct a PPT adversary breaking extractability on G2,H with
advantage

AdvEB ≤ L · AdvG2 + (τ + 1) · AdvH.

Proof. The proof is similar to [7, Lemma 1]. We extract Ext after obtaining
com = h using the straight-line extractability of G2,H. For this, we first find
h(1), . . . , h(τ) which hash to h, and then com

(α)
i for each i ∈ [Nα], α ∈ [τ], in

both cases using extractability of H. Then, we extract sd
(α)
i from com

(α)
i using

the extractability of G2, and compute m
(α)
i using G1.

Assume A breaks extractable binding, i.e. provides values during Open which
differ from the extracted h(α), com

(α)
i , sd(α)

i . Then, our constructed adversary will
simply guess in advance at which index A will break extractability of G2,H and
play the extractability game at that index. This guess leads to the loss outlined
in the statement.

Lemma 2 (Selectively Hiding). Given any adversary A breaking the selective
hiding of BAVCGGM for parameter n with advantage AdvSelHiden we can construct
a PPT adversary breaking the pseudorandomness of G,PRG with advantage

AdvSelHiden ≤ �log2(L)� · AdvPRG + AdvG.

One Tree to Rule Them All 475

Proof. The proof is similar to [7, Lemma 2]. By using that the GGM construction
is a puncturable PRF according to [20] and since we know the unopened index
I for each commitment vector, and in particular for vector n, in advance, one
can iteratively replace the unopened PRG seeds ki on the path from the root
to sd

(n)

i(n) which are not seeds on paths to sd
(1)

i(1)
, . . . , sd

(n−1)

i(n−1) as well as the output
of G(sd(n)

i(n)) with uniformly random values. For this to be possible, we fully
randomize the seeds on the paths to sd

(1)

i(1)
, . . . , sd

(n−1)

i(n−1) first, to allow for any
hybrids distinguishing at indices n to n + 1 to be meaningful. The bound then
follows from the maximal number of hybrids possible.

4 Using BAVCs in FAEST

When generating a FAEST signature, the signing algorithm initially samples τ
independent VC instances, in order to set up the underlying VOLE-in-the-head-
based ZK proof. Then, in the last round of the ZK proof (i.e. as output of the
RO call to H3

2 which generates the last λ-bit challenge chal3), the individual
indices that are opened in each VC, i.e. the set I ∈ [N1] × · · · × [Nτ], are cho-
sen using the injective decoding function DecodeChallenge. Therefore, modifying
the FAEST scheme to work with one BAVC instance instead of τ independent
VC instances is straightforward: sample the τ vector commitments using one
instance of BAVC, and open them all simultaneously based on chal3. However,
more modifications are necessary since BAVC does not necessarily enjoy per-
fect completeness, whereas the standard GGM-based VC used in FAEST does.
Hence, it will happen that the signer cannot open a BAVC commitment based
on a challenge chal3, and hence some signing attempts will abort.

Instead, we make the following changes to the FAEST signing algorithm: To
handle aborts in the Open algorithm, we add a counter value ctr to the input
of H3

2. If the challenge chal3 decodes to a sequence of indices I for which Open
fails, then the signing algorithm repeatedly increases ctr and hashes again until
it reaches a challenge for which Open succeeds. The counter ctr is included in
the signature to allow for efficient verification.

Security of the Modification. The FAEST scheme has been proven secure both in
[7] and [9]. While the proof in [7] is more modular, arguing security by modifying
the proof of [9] is more straightforward.

The proof of [9] says that for every query to the H3
2 there are at most 2 out of

2λ challenge responses that can lead to a forgery, because challenges correspond
one-to-one with field elements Δ ∈ F2λ , and to cheat, the adversary needs Δ to
be a root of a non-zero quadratic polynomial in the Quicksilver check. The proof
then considers a union bound over all Q queries to H3

2 to obtain the term Q/2λ−1

in the bound on the forgery probability of the adversary. The same proof strategy
still works for the signing algorithm with counter, because for every query to H3

2

there are still at most two challenges that map to the roots of the Quicksilver
polynomial.

476 C. Baum et al.

Using Fewer and Shorter Vector Commitments. In the original FAEST scheme
we need to have

∏τ
α=1 Nα ≥ 2λ, because the λ-bit challenges need to map injec-

tively to index sequences I ∈ [N1] × · · · × [Nτ]. In the setting with aborts, we
only need the non-aborting challenges to map injectively to index sequences I.
Therefore, as an additional optimization, we can choose to reduce the number
and/or the length of some of the vectors (reducing the signature size or the
signing and verification time respectively), at the cost of increasing the prob-
ability of a restart (which slows down signing). Concretely, we set parameters
such that

∑τ
α=1 logNα = λ − w, and let I ← DecodeChallenge(chal3) injectively

decode the first λ − w bits of chal3. If some of the remaining w bits of chal3 are
nonzero, or if Open(I) aborts, then the signing algorithm tries again with the
next counter. The verifier rejects the signature if the last w bits of chal3 are not
all zero. Since there are still at most two challenges that map to the roots of the
Quicksilver polynomial, this optimization does not affect the security proof. The
relevant part of the original FAEST and the optimized FAEST signing algorithm
are given in Algorithm 1 and Algorithm 2 (Fig. 4). Another way to look at this
optimization is that we increase efficiency by giving up w bits of security and
that we regain security by making the prover solve a proof of 2w work for each
forgery attempt.

4.1 Benchmarking the Optimized FAEST and FAEST-EM

We call our optimized FAEST and FAEST-EM signature versions, which benefit
from the improved BAVC constructions, FAESTER and FAESTER-EM respec-
tively. They have more parameters which allow to fine-tune their efficiency, and
we describe their effects below.

When considering the non-optimized BAVC, the previous VOLEitH signa-
tures FAEST and the recently proposed ReSolved [25] are limited to the signa-
ture size and signing/verification runtime trade-off only with respect to τ , the
number of “small” VOLEs. Even though flexible, such a trade-off provides an
exponential correlation between the signature size and signing time as shown in
Fig. 5.

With the optimized BAVC, our proposed signature schemes, including
FAESTER, enjoy both improved performance and an improved signature size-
runtime trade-off. Our experiments show an improvement in the signature size of
around 10% for FAESTER when compared to FAEST, in the L1 setting, while
maintaining a similar runtime, as shown in the trade-off plot in Fig. 5. As a direct
consequence of this improvement, FAESTER is the first signature scheme using
standard AES with a signature size of 4.5KB. Similarly, FAESTER-EM enjoys
a signature size of less than 4KB, with similar signing times. We refer to the full
version for FAESTER performance for the L3 and L5 security levels.

Figure 8 shows the benefits of our new optimized BAVC for different signa-
ture schemes. Table 4 presents our recommended parameter choices for different
signature schemes. In the FAEST NIST submission [9], the slow and the fast ver-
sions represented by (s) and (f) respectively were only determined by τ as shown
in the first 4 rows. However, for the optimized FAESTER and FAESTER-EM,

One Tree to Rule Them All 477

Fig. 4. Signing with FAEST vs signing with FAESTER.

Fig. 5. FAEST(-EM) τ -signature size and signing time trade-off.

along with the proposed new signature schemes, we also consider the optimal w
and Topen parameter as described above. We refer to Table 5 for the FAESTER
optimized implementation benchmarks.

5 New VOLEitH Signature Schemes

We present three new signature schemes constructed following the footsteps
of FAESTER using the optimized BAVC, however, instantiated with different
OWFs. The first two variants take advantage of the Rain and MQ OWFs, dis-
cussed in Sect. 2.1 and 2.1 respectively, to achieve the lowest signature sizes (less

478 C. Baum et al.

than 3 KB) among all MPCitH and VOLEitH signature schemes. The third vari-
ant uses AES but with a different approach to proving the S-box, which reduces
signature sizes by up to around 5%. We also show how to tweak the original AES
proof in FAEST, to allow use of the full AES keyspace, instead of restricting to
a subset of all keys.

5.1 MandaRain: VOLEitH + Rain

The MandaRain signature scheme uses two instantiations of the Rain OWF,
namely Rain-3 and Rain-4 which use 3 and 4 rounds respectively. Rain has the
same block size as its security parameter λ, thus unlike FAEST and FAESTER,
Rain can circumvent the need for multiple evaluations of the OWF. The param-
eters of Rain that we use for MandaRain can be found in Table 1.

Table 1. Rain Parameters

Instance Security level State Rounds

Rain-3-128 L1 F
128
2 3

Rain-3-192 L3 F
192
2 3

Rain-3-256 L5 F
256
2 3

Rain-4-128 L1 F
128
2 4

Rain-4-192 L3 F
192
2 4

Rain-4-256 L5 F
256
2 4

Table 2. MQ Parameters

Instance Security level Field m = n

MQ-21-L1 L1 F21 152
MQ-28-L1 L1 F28 48

MQ-21-L3 L3 F21 224
MQ-28-L3 L3 F28 72

MQ-21-L5 L5 F21 320
MQ-28-L5 L5 F28 96

We prove Rain using the VOLEitH NIZK proof as described in Sect. 2.2,
with the optimized BAVC (Sect. 3.1). The prover uses as a witness the secret
key k together with the internal state after each round, except for the last round
which can be derived from the public key. This gives a total witness length
of l = rλ bits for r rounds, and proving consistency requires r multiplication
checks in F2λ . See Table 3 for a summary of the non-linear complexity of the
Rain-3 and Rain-4 OWFs. Compared to the other OWFs, Rain has the smallest
number of non-linear constraints that must be checked in ZK resulting in not
only a very small signature size but also a competitive signing and verification
time. Refer to Table 4 for details on the MandaRain parameters. Similarly to
FAEST, Fig. 6 presents the parameter set exploration to find the most suitable
parameter sets for signature size/runtime trade-offs with and without the BAVC
optimization. We see that the signature size can be as small as around 2.8KB
for the same or better signing runtime. Refer to Table 5 for the MandaRain
optimized implementation benchmarks at the L1 security level. For L3 and L5
benchmarks, refer to the full version.

One Tree to Rule Them All 479

Table 3. Non-linear complexity of VOLEitH signature schemes using different OWFs.

Description FAEST FAEST-EM
λ AES-128 AES-192 AES-256 AES-EM-128 AES-EM-192 AES-EM-256
No. of S-Boxes in key expansion 40 32 52 0 0 0
No. of S-Boxes in encryption 160 192 224 160 288 448
Total no. of F28 constraints 200 416 500 160 288 448

FAESTER FAESTER-EM
λ AES-128 AES-192 AES-256 AES-EM-128 AES-EM-192 AES-EM-256
No. of S-Boxes in key expansion 40 32 52 0 0 0
No. of S-Boxes in encryption 160 192 224 160 288 448
Total no. of F28 constraints 200 416 500 160 288 488

MandaRain-3 MandaRain-4
λ Rain-3-128 Rain-3-192 Rain-3-256 Rain-4-128 Rain-4-192 Rain-4-256
No. of S-Boxes in encryption 3 3 3 4 4 4
Total no. of F2λ constraints 3 3 3 4 4 4

KuMQuat-21 KuMQuat-28

λ MQ-F21 -L1 MQ-F21 -L3 MQ-F21 -L5 MQ-F28 -L1 MQ-F28 -L3 MQ-F28 -L5
Total no. of F2n constraints 152 224 320 48 72 96

5.2 KuMQuat: VOLEitH + MQ

Using a OWF relying on the MQ problem (Sect. 2.1), we obtain the smallest
witness size, and hence the smallest signature size among all VOLEitH and
MPCitH signature schemes.

Proving an MQ evaluation in VOLEitH is conceptually straightforward:
the witness is the solution x ∈ F

n
q to the system of equations, and there

are m quadratic constraints to verify. One challenge is that a naive approach
using QuickSilver would require O(mn2) multiplications in F2λ . In Sect. 2.1, we
describe some optimizations that reduce this to just O(mn2q/λ) multiplications.

Although the runtime of KuMQuat is not as fast as MandaRain, it still has
signing and verification speeds comparable to those of FAEST, for signatures of
around half the size. Table 2 shows the MQ parameter choices for our experiments
chosen according to the security estimation from [14,32]. We set m = n (as in
MQOM) and choose a field F2k for a power k.

The field size of the MQ problem and security level determines the choice of
n (see Sect. 2.1), which in turn influences the key and signature sizes and the
runtime as shown in Table 5. We refer to Table 4 for the recommended parameter
choice for the L1 security level. For L3 and L5, parameter choices, we refer to the
full version. Note that the signature size of KuMQuat depends only mildly on the
MQ parameters m,n. One could therefore choose to increase n,m to massively
increase the margin of safety against MQ-solving attacks without growing the
signature size much.

The key difference between MQOM and KuMQuat is unlike the fully-
randomized linear combination of constraints in MQOM, we take several fixed
linear combinations of constraints in KuMQuat (which can be precomputed
because they are fixed), then later take a random linear combination of these
combined constraints as part of QuickSilver. Another way of looking at this (for

480 C. Baum et al.

Table 4. VOLEitH signature schemes and their parameters. We denote the signature
schemes as SCHEME-λs/f. l is the number of VOLE correlations required for the NIZK
proof. w and Topen are the values for the optimized BAVC as described in Sect. 4. τ
is the number of VOLE repetitions determining the choice between s (slow) and f
(fast) versions. k0 and k1 are bit lengths of small VOLEs. B is the padding parameter
affecting the security of the VOLE check. Secret key (sk), public key (pk) and signature
sizes are in bytes.

Signature Scheme OWF Esk(x) l wTopen τ τ0 τ1 k0 k1 sk sizepk sizesig. size

FAEST-128s* AES128sk(x) 1600 – – 11 7 4 1211 16 32 5006
FAEST-128f* AES128sk(x) 1600 – – 16 0 16 8 8 16 32 6336

FAEST-EM-128s AES128x(sk) ⊕ sk1280 – – 11 7 4 1211 16 32 4566
FAEST-EM-128f AES128x(sk) ⊕ sk1280 – – 16 0 16 8 8 16 32 5696

FAEST-d7-128s AES128sk(x) 800 – – 11 7 4 1211 16 32 4790
FAEST-d7-128f AES128sk(x) 800 – – 16 0 16 8 8 16 32 6020

FAESTER-128s* AES128sk(x) 1600 7 102 11 0 111111 16 32 4594
FAESTER-128f* AES128sk(x) 1600 8 110 16 8 8 8 7 16 32 6052

FAESTER-EM-128s AES128x(sk) ⊕ sk1280 7 103 11 0 111111 16 32 4170
FAESTER-EM-128f AES128x(sk) ⊕ sk1280 8 112 16 8 8 8 7 16 32 5444

FAESTER-d7-128s AES128sk(x) 800 5 102 11 0 111111 16 32 4374
FAESTER-d7-128f AES128sk(x) 800 6 110 16 8 8 8 7 16 32 5732

MandaRain-3-128s Rain-3-128sk(x) 384 7 100 11 7 4 1211 16 32 2890
MandaRain-3-128f Rain-3-128sk(x) 384 8 108 16 0 16 8 8 16 32 3588
MandaRain-4-128s Rain-4-128sk(x) 512 7 101 11 7 4 1211 16 32 3082
MandaRain-4-128f Rain-4-128sk(x) 512 8 110 16 0 16 8 8 16 32 3876

KuMQuat-21-L1s MQ-21-L1sk(x) 152 7 99 11 7 4 1211 19 35 2555
KuMQuat-21-L1f MQ-21-L1sk(x) 152 4 102 16 0 16 8 8 19 35 3028
KuMQuat-28-L1s MQ-28-L1sk(x) 384 7 100 11 7 4 1211 48 64 2890
KuMQuat-28-L1f MQ-28-L1sk(x) 384 4 108 16 0 16 8 8 48 64 3588
∗The full key version of FAEST and FAESTER share the same
parameters as the reduced key version of them for all security
levels (L1, L3 and L5).

Fig. 6. MandaRain τ -signature size and signing runtime trade-off.

One Tree to Rule Them All 481

q = 2) is that we take the m-bit output of the MQ function and reinterpret it as
a sequence of (m/λ) elements of F2λ , before taking a random linear combination
like in MQOM. Having fewer constraints to randomly combine reduces the com-
putational cost (assuming a faster-than-schoolbook implementation of extension
field arithmetic) (Fig. 7).

Fig. 7. KuMQuat τ -signature size and runtime trade-off.

Optimizations. One implementation difficulty with KuMQuat is the compu-
tational cost of the OWF. The MQ function itself has mn(n + 3)/2 terms7 (see
Definition 1), each with coefficients in Fq, and evaluating the constraints with
QuickSilver requires calculating the same number of terms over F2λ . While this
seems to require Θ̃(mn2λ) work, we used an optimization to reduce this back to
just Θ̃(mn2 log2 q).

Instead of these m constraints (for i ∈ [m]) over Fq:

0 =
∑
jk

Aijk xjxk +
∑

j

bij xj − yi,

we require that F2λ is a degree r = λ
log2(q)

field extension of Fq, and group the
constraints into blocks of r:

0 =
ri′+r−1∑

i=ri′
αi−ri′

⎛
⎝∑

jk

Aijk xjxk +
∑

j

bij xj − yi

⎞
⎠ ,

where α is a generator of F2λ over Fq. These constraints are equivalent to the
original ones, because α0, α1, . . . , αr−1 are linearly independent over Fq since
7 Or mn(n+1)/2 in F2, since then x2 = x which makes the diagonal of Ai redundant.

482 C. Baum et al.

F2λ is a degree r vector space over Fq. Now, we can precompute this linear
combination of constraints

A′
i′jk =

r−1∑
i=0

αiA(ri′+i)jk

b′
i′j =

r−1∑
i=0

αib(ri′+i)j

y′
i′ =

r−1∑
i=0

αiyri′+i

to get �m/r� constraints over F2λ :

0 =
∑
jk

A′
i′jk xjxk +

∑
j

b′
i′j xj − y′

i′ .

Note that evaluating these constraints for QuickSilver now requires only
Θ(mn2/r) operations over F2λ . Assuming F2λ multiplication can be done in
Θ̃(λ) time, this is Θ̃(mn2 log2 q) time.

As a final optimization, note that if r ≤ m/r then there are exactly r Aijk ele-
ments that get mapped into a single A′

i′jk, and that the transformation between
them is bijective (and similarly for b and y). Therefore, sampling all A′

i′ uni-
formly at random from the subset of upper triangular matrices in F

n×n
2λ is equiv-

alent to sampling the original Ai elements uniformly from the upper triangular
matrices in F

n×n
q , for all except very last i′. To save computing this transfor-

mation, other than for the last i′ we sample the A′
i′ and b′

i′ directly, instead of
going through Ari′ , . . . ,Ari′+r−1. Similarly, for i′ ≤ m/r we also use y′

i′ directly
in the public key, rather than converting between them and the yis.

5.3 Uniform AES Keys in FAEST

When using one-way functions based on AES or Rijndael, as in FAEST(ER) and
FAEST(ER)-EM, the main challenge is proving consistency of the non-linear part
of the S-box. We denote this by the function

S : x �→ x254 ∈ F28

When proving AES in zero-knowledge, the committed witness is typically used
to derive an input/output pair (x, y) ∈ F

2
28 for each S-box, and the prover shows

that y = S(x) by proving the degree-2 constraint xy = 1. However, this only
works when x, y are non-zero; this meant that prior works [7,10,26] had to
restrict the set of AES keys to those where the input to every S-box is non-zero.
This requires adding a rejection sampling step to key generation, and slightly
reduces entropy of the signing key, effectively reducing security by 1–2 bits [9,
Sec. 10.3.4].

One Tree to Rule Them All 483

We observe that instead, y = S(x) can be proven for all values of x, y ∈ F28 ,
by the pair of constraints:

xy2 = y ∧ x2y = x (1)

where the first constraint guarantees that we cannot have x = 0 ∧ y �= 0, and
the second ensures against y = 0 ∧ x �= 0.

While these constraints have degree-3 over F28 , when viewed over F2, their
degree is 2 (since squaring is F2-linear). In FAEST, the witness is initially com-
mitted to over F2, and only lifted to F28 for proving the S-box. So, we can easily
modify it to prove (1) by linearly computing commitments to the bits of x2 and
y2 over F2, before lifting and proving the pair of degree-2 constraints over F28 .
This doubles the number of constraints that are proven, however, in the end,
only a random linear combination of all constraints is checked. This means that
we can support uniform AES keys with no impact on proof size.

We implemented this tweaked AES proof by modifying the FAEST implemen-
tation (FAEST(ER)-fullkey), and using the same parameters as in FAEST(ER)
noticed no change in performance when running the signing and verification
benchmarks as shown in Table 5. This is because the main cost of FAEST is the
PRG and hashing operations in the BAVC, so merely doubling the number of
constraints does not noticeably affect performance. Moreover, due to the absence
of rejection sampling when choosing the key, we get a runtime improvement in
the key generation algorithm. A similar full-key tweak is also possible for the
Rain OWF in MandaRain.

5.4 FAEST-d7: Proving AES via Degree-7 Constraints

We have also investigated an alternative approach to proving knowledge of a
preimage for the AES-based OWFs, using higher degree constraints over F2,
rather than quadratic constraints over F28 . This allows us to use an AES witness
of half the size, which in some cases reduces signature size.

FAEST-d7 is based on the variant of the QuickSilver proof system [52] that
allows for proving arbitrary degree-d constraints on the committed witness. In
particular, we use degree-7 constraints, since the AES S-box and its inverse can
both be expressed as degree-7 circuits over F2.8 We combine this with a meet-in-
the-middle idea: instead of committing to the AES state after every round, the
prover only commits to the state of every other round. Given committed states
si, si+2, we can now prove consistency by verifying that Ri(si) = R−1

i+1(si+2),
where Ri is the i-th round function. Each pair of neighbouring AES states can
thus be verified with a single degree-7 QuickSilver check. The same idea can be
applied to the S-boxes in the key schedule.

8 The non-linear part of the S-box maps x �→ x254 in F28 . Since 254 has Hamming
weight 7, and squaring in F28 is F2-linear, we get degree 7 overall.

484 C. Baum et al.

Computational Efficiency. In QuickSilver, proving a degree-d circuit
C(x1, . . . , xn) requires expressing C as a sum of polynomials

∑d
i=0 fi(x1, . . . , xn),

where each fi contains monomials only of degree i. While the fi’s need not be
computed explicitly, the prover is required to evaluate each fi. It’s not clear how
efficiently this can be done for a complex function like the AES S-box.

We observe that it’s not necessary to compute the fi’s at all. Instead, to
prove the degree-d circuit C, it suffices for the prover to compute the coefficients
of a degree-d univariate polynomial, given by g(y) = C(a1 + b1y, . . . , an + bny),
for values ai, bi ∈ F2λ known to the prover. Meanwhile, the verifier only needs
to evaluate C at a single point. When C is the AES S-box, we estimate the cost
for the prover is around 150 multiplications in F2λ . While this is a lot more than
the cost of proving 1 multiplication in F28 , it is still insignificant when compared
with all of the PRG and hash calls used in the other components of FAEST. We
include further details of this method in the full version of this paper.

Signature Size. The main advantage of this approach is that the total witness size
is halved, from e.g. l = 1600 to l = 800 at the 128-bit security level. However, this
does not come for free, since proving degree-d relations with QuickSilver incurs
a cost of dτλ bits in the signature size. Overall, when applied to FAEST variants
with an l-bit witness, we reduce the signature size by τ l/2 − 5τλ bits. For the
Even-Mansour 128-bit variants, we have l/2 = 5λ, so there is no change in size.
However, for the standard AES variants and the higher security Even-Mansour
variants, we see a reduction of up to around 5%.

We have not implemented FAEST-d7, but show in Table 4 the signature sizes
it obtains, as well as those of the FAESTER-d7 variant incorporating our GGM
tree optimizations.

6 Broader Discussion

This section compares the existing VOLEitH and MPCitH signature schemes,
including the candidates of NIST’s call for Additional Signatures, with our pro-
posed optimized signature schemes.

Benchmark Platform. To benchmark and compare all the implementations fairly,
we evaluate only the most optimized implementations of the signature schemes
that are openly available. For the NIST candidates, we refer to the submitted
optimized implementations. We measure all the run times on a system with an
AMD Ryzen 9 7900X 12-Core CPU, 128 GB memory and running Ubuntu 22.04.

Security Assumption. The choice of different OWFs allows for a wide variety
of security assumptions one can choose from when constructing a VOLEitH
signature scheme. For example, using an AES-based OWF results in a highly
conservative security guarantee at the cost of a performance penalty in terms
of signature size and runtime. This tradeoff is similar to the previous state-of-
the-art MPCitH signature schemes like BBQ, Banquet, Helium which relied on

One Tree to Rule Them All 485

Fig. 8. Signature size and runtime comparison between state-of-the-art MPCitH and
VOLEitH signature schemes. The slow and fast versions are denoted with s and f
respectively. Other special versions are denoted by their short names as per their pub-
licly available specification. Due to negligible difference in the performance between the
full key and the reduced key version of FAEST and FAESTER, the full key data points
are not explicitly included in the figure for better readability and are represented by
the reduced key data points.

486 C. Baum et al.

Table 5. Signing Time (ms), Verification Time (ms), and Signature Size (bytes) of
different VOLEitH-based signature schemes (optimized implementations). Slow and
fast versions are denoted with s and f respectively.

Scheme Runtime in ms Size in bytes
Keygen SignVerify skpkSignature

FAEST-128s 0.00064.381 4.102 16 32 5006
FAEST-128f 0.00050.404 0.395 16 32 6336
FAEST-fullkey-128s 0.00034.396 4.405 16 32 5006
FAEST-fullkey-128f 0.00030.476 0.467 16 32 6336
FAEST-EM-128s 0.00054.151 4.415 16 32 4566
FAEST-EM-128f 0.00050.446 0.474 16 32 5696

FAESTER-128s 0.00063.282 4.467 16 32 4594
FAESTER-128f 0.00050.433 0.610 16 32 6052
FAESTER-fullkey-128s 0.00032.896 5.734 16 32 4594
FAESTER-fullkey-128f 0.00030.371 0.756 16 32 6052
FAESTER-EM-128s 0.00053.005 4.386 16 32 4170
FAESTER-EM-128f 0.00050.422 0.609 16 32 5444

MandaRain-3-128s 0.00182.800 5.895 16 32 2890
MandaRain-3-128f 0.00180.346 0.807 16 32 3588
MandaRain-4-128s 0.00262.876 6.298 16 32 3052
MandaRain-4-128f 0.00260.371 0.817 16 32 3876

KuMQuat-21-L1s 0.1734.305 4.107 19 35 2555
KuMQuat-21-L1f 0.1720.539 0.736 19 35 3028
KuMQuat-28-L1s 0.1743.599 4.053 48 64 2890
KuMQuat-28-L1f 0.1720.400 0.623 48 64 3588

the standard AES OWF and naturally possessed larger signature size and run-
time than their competing schemes which relied on optimized but non-standard
OWFs like Rainier [29] or Picnic [24]. Switching to AES-EM construction for
VOLEitH signature does not give us the most conservative security guarantees
like standard AES, however, the general EM construction is already more than
two decades old, thus guaranteeing security in a similar ballpark as of AES
while still improving both the signature size and runtime considerably. On the
other side, optimized OWFs like Rain and AIM [39] are rather new and not
that well studied. For example, in 2023, AIM already witnessed two full round
attacks [41,54] which were later fixed in AIM2 [38]. Due to the mitigation, as
per the authors, the signature scheme AIMER using AIM OWF suffers around
10% runtime penalty. This work does not consider using the AIM OWF for con-
structing a VOLEitH signature scheme as we conjecture that it will lead to worse
runtime due large number of Mersenne exponentiation while still giving a signa-
ture size similar to Rain. On the other hand, when considering the KuMQuat
signature scheme, we benefit from the MQ problem which relies on a different
hardness problem, giving us more choices, when compared to the symmetric
primitives like AES, Rain, or AIM. Similarly, in the recently proposed VOLEitH
signature scheme ReSolveD [25], their OWF relies on the syndrome decoding
problem.

One Tree to Rule Them All 487

Symmetric Key Primitives. FAEST’s zero-knowledge proofs are built out of
pseudorandom generators and hash functions, and their instantiation is impor-
tant for efficiency and security. For consistency with the FAEST and FAEST-EM
proposal [9], we use AES-CTR everywhere a PRG is required, and the SHAKE
hash function for all random oracle calls, including those at the leaves of the
GGM tree.

Parameters. A careful choice of parameters, including the choice of OWF, is
crucial for achieving the best performance of the signature scheme. In the pre-
vious sections, we extensively demonstrated the impact of w, Topen, and τ on
the signature size and runtime. Additionally, when considering the MQ OWF,
the operational field (Fn) is also a crucial factor determining the performance.
For example, KuMQuat-21-λ operating in F2 leads to the smallest signature
size, however, has the largest number of non-linear constraints among the other
proposed VOLEitH signature schemes leading to a long signing and verification
runtime. Alternatively, KuMQuat-28-λ leads to a larger signature size, due to
more witness bits, however, the number of constraints is roughly 70% smaller,
leading to a faster runtime than KuMQuat-21-λ.

Key Sizes. The key sizes only depend on the underlying OWF and are not
affected by the VOLEitH parameters. With the MQ OWF, for example, the
operational field F

n
2 and λ determine the size of sk and pk. The key sizes of

MandaRain are determined only by λ.

Signature Size and Runtime. FAEST-EM requires 20–30% less non-linear con-
straints compared to FAEST, which directly influences both the signature size
and the runtime, especially for the slow signature variant with a smaller signa-
ture size as shown in Table 5. This holds also true for MandaRain which has the
smallest number of non-linear constraints enabling it to enjoy the smallest signa-
ture runtime along with the smallest signature size after our proposed KuMQuat
signature scheme. Looking at the signature size runtime trade-off, in terms of
performance we conclude that MandaRain provides a better signature size run-
time trade-off, as it has a slightly larger signature size than KuMQuat, however,
to the best of our knowledge, it has the smallest runtime among all VOLEitH and
MPCitH based signature schemes. We also looked into the possibility of using
NIST standardised Ascon9 [28] as a OWF for constructing VOLEitH signature
scheme. However, due to the design structure of Ascon, our estimates showed
us that the signature size will be much worse than that of standard AES even if
we can design an Ascon-style permutation for the OWF.10 One may also ques-
tion the fitness of other symmetric primitives which are especially designed for
9 https://csrc.nist.gov/news/2023/lightweight-cryptography-nist-selects-ascon.

10 It might be also interesting to have an analysis on the minimum number of rounds
required for security guarantees with Ascon given only one plaintext-ciphertext
pair, similar to the security assumptions of Rain or AIM. For AES, this should be
conservatively at least 6 rounds as the attack [21,29] costs 2120 time and 2120 memory
for 4.5 AES rounds, which is still worse than Rain-4 non-linear complexity.

https://csrc.nist.gov/news/2023/lightweight-cryptography-nist-selects-ascon

488 C. Baum et al.

use in MPC, Homomorphic Encryption (HE) and ZKP use-cases. Even though
several of these primitives focus on reducing the number of multiplications and
their multiplicative depth, such primitives are designed while considering adver-
saries with higher adversary data complexity. The higher the number of rounds
required to guarantee security from a key recovery attack increases the num-
ber of witness bits that must be communicated to the verifier. For MPCitH or
VOLEitH signature schemes, an adversary knows only the public key or one
plaintext-ciphertext pair, though. Hence, VOLEitH- or MPCitH-friendly sym-
metric primitives like Rain and AIM assume that an adversary knows only the
public key, requiring them to have as low as only 3 rounds to guarantee security
against key recovery attacks.

For fairness, we compare only the optimized implementations of the signature
schemes and thus could not include the recent VOLEitH signature ReSolveD [25],
as to the best of our knowledge, there exists no optimized implementation for it at
the time of writing. However, when comparing the reference implementations of
ReSolveD with FAEST and FAEST-EM, we conjecture that the optimized imple-
mentation of ReSolveD would be slower than Rain and FAESTER-EM at least,
if not also FAESTER. In Fig. 8, we compare our proposed VOLEitH signature
schemes with other competitive MPCitH and VOLEitH signature schemes. Here,
KuMQuat provides the smallest signature size at a high runtime cost. Whereas,
MandaRain provides the best signature size runtime trade-off, where it enjoys
the best runtime and gives a signature size only second to KuMQuat. Notably,
both MandaRain and KuMQuat are the first VOLEitH signature schemes with
signature sizes less than 3 KB. This is also the lowest among all the MPCitH
signature schemes. FAESTER, using the optimized BAVC, for the first time
achieves a signature size of 4.5 KB while still relying on standard AES. Simi-
larly, FAESTER-EM also enjoys a considerably smaller signature size of just 4.1
KB while relying on AES combined with the EM construction.

Acknowledgements. This work has been supported by: the Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR001120C0085, research
grant VIL53029 from VILLUM FONDEN, the Independent Research Fund Denmark
under project number 0165-00107B (C3PO), the Digital Europe Program under project
number 101091642 (“QCI-CAT”), the Horizon Europe Program under grant agreement
number 101096435 (“CONFIDENTIAL6G”), the “DDAI” COMET Module managed
by Austrian Research Promotion Agency (FFG), and the project “PREPARED” which
is funded by Austrian security research programme KIRAS of the Federal Ministry of
Finance (BMF).

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of DARPA.
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

One Tree to Rule Them All 489

References

1. Aaraj, N., Bettaieb, S., Bidoux, L., Budroni, A., Dyseryn, V., Esser, A., Gaborit,
P., Kulkarni, M., Mateu, V., Palumbi, M., et al.: Perk (2023)

2. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology, NIST FIPS PUB 197, U.S. Department of Commerce (Nov 2001)

3. Aguilar Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.:
The return of the SDitH. pp. 564–596 (2023). https://doi.org/10.1007/978-3-031-
30589-4_20

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp. 430–454.
Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_17

5. Aragon, N., Bardet, M., Bidoux, L., Chi-Domínguez, J.J., Dyseryn, V., Feneuil, T.,
Gaborit, P., Joux, A., Rivain, M., Tillich, J.P., et al.: Ryde specifications (2023)

6. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lau-
ridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe,
P., Westerbaan, B.: Sphincs+ – submission to the 3rd round of the nist post-
quantum project (2022), http://sphincs.org/data/sphincs+-r3.1-specification.pdf

7. Baum, C., Braun, L., Delpech de Saint Guilhem, C., Klooß, M., Orsini, E., Roy,
L., Scholl, P.: Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. pp. 581–615 (2023). https://doi.org/10.1007/978-3-031-38554-
4_19

8. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: Efficient vector-
ole and zero-knowledge proofs over Z2k . In: Dodis, Y., Shrimpton, T. (eds.)
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13510, pp. 329–358.
Springer (2022). https://doi.org/10.1007/978-3-031-15985-5_12

9. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Majenz, C., Mukherjee,
S., Ramacher, S., Rechberger, C., Orsini, E., Roy, L., et al.: FAEST: Algorithm
specifications (version 1.1) (2023), https://faest.info/faest-spec-v1.1.pdf

10. Baum, C., Delpech de Saint Guilhem, C., Kales, D., Orsini, E., Scholl, P.,
Zaverucha, G.: Banquet: Short and fast signatures from AES. pp. 266–297 (2021).
https://doi.org/10.1007/978-3-030-75245-3_11

11. Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: Vector ole-based zero-knowledge
protocols. Cryptology ePrint Archive, Paper 2023/857 (2023), https://eprint.iacr.
org/2023/857

12. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin,
T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-
20, 2021, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 12828,
pp. 92–122. Springer (2021). https://doi.org/10.1007/978-3-030-84259-8_4

13. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.:
Banquet: Short and fast signatures from AES. In: Garay, J.A. (ed.) Public-Key
Cryptography - PKC 2021 - 24th IACR International Conference on Practice and

https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-662-46800-5_17
http://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-15985-5_12
https://faest.info/faest-spec-v1.1.pdf
https://doi.org/10.1007/978-3-030-75245-3_11
https://eprint.iacr.org/2023/857
https://eprint.iacr.org/2023/857
https://doi.org/10.1007/978-3-030-84259-8_4

490 C. Baum et al.

Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 12710, pp. 266–297. Springer
(2021). https://doi.org/10.1007/978-3-030-75245-3_11

14. Bellini, E., Makarim, R.H., Sanna, C., Verbel, J.A.: An estimator for the hardness
of the MQ problem. In: Batina, L., Daemen, J. (eds.) Progress in Cryptology -
AFRICACRYPT 2022: 13th International Conference on Cryptology in Africa,
AFRICACRYPT 2022, Fes, Morocco, July 18-20, 2022, Proceedings. pp. 323–347.
Lecture Notes in Computer Science, Springer Nature Switzerland (2022). https://
doi.org/10.1007/978-3-031-17433-9_14

15. Benadjila, R., Feneuil, T., Rivain, M.: MQ on my Mind: Post-Quantum Signa-
tures from the Non-Structured Multivariate Quadratic Problem. Cryptology ePrint
Archive (2023)

16. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The sphincs+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019. pp.
2129–2146. ACM (2019). https://doi.org/10.1145/3319535.3363229

17. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) Selected Areas in Cryptography - 28th
International Conference, SAC 2021, Virtual Event, September 29 - October 1,
2021, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13203, pp.
355–376. Springer (2021). https://doi.org/10.1007/978-3-030-99277-4_17

18. Beullens, W., Kleinjung, T., Vercauteren, F.: Csi-fish: Efficient isogeny based sig-
natures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol.
11921, pp. 227–247. Springer (2019). https://doi.org/10.1007/978-3-030-34578-
5_9

19. Beullens, W., Delpech de Saint Guilhem, C.: Legroast: Efficient post-quantum
signatures from the legendre prf. In: International Conference on Post-Quantum
Cryptography. pp. 130–150. Springer (2020)

20. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. pp. 280–300 (2013). https://doi.org/10.1007/978-3-642-42045-0_15

21. Bouillaguet, C., Derbez, P., Fouque, P.: Automatic search of attacks on round-
reduced AES and applications. In: Rogaway, P. (ed.) Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6841,
pp. 169–187. Springer (2011). https://doi.org/10.1007/978-3-642-22792-9_10

22. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 896–912. ACM (2018). https://doi.org/10.1145/
3243734.3243868

23. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019. pp. 291–308. ACM (2019). https://doi.org/
10.1145/3319535.3354255

https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255

One Tree to Rule Them All 491

24. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D.
(eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. pp. 1825–1842. ACM (2017). https://doi.org/10.1145/3133956.3133997

25. Cui, H., Liu, H., Yan, D., Yang, K., Yu, Y., Zhang, K.: Resolved: Shorter signatures
from regular syndrome decoding and vole-in-the-head. Cryptology ePrint Archive,
Paper 2024/040 (2024), https://eprint.iacr.org/2024/040, https://eprint.iacr.org/
2024/040

26. Delpech de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Using
AES in picnic signatures. pp. 669–692 (2019). https://doi.org/10.1007/978-3-030-
38471-5_27

27. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applica-
tions. In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptogra-
phy, ITC 2021, July 23-26, 2021, Virtual Conference. LIPIcs, vol. 199, pp. 5:1–
5:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPICS.ITC.2021.5

28. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing 34(3), 33 (Jul 2021). https://doi.org/10.
1007/s00145-021-09398-9

29. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: Yin, H.,
Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. pp. 843–857. ACM (2022). https://doi.org/10.
1145/3548606.3559353

30. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). https://doi.org/
10.13154/TCHES.V2018.I1.238-268

31. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: The even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7237, pp. 336–354.
Springer (2012). https://doi.org/10.1007/978-3-642-29011-4_21

32. Esser, A., Verbel, J.A., Zweydinger, F., Bellini, E.: Cryptographic estimators: a
software library for cryptographic hardness estimation. IACR Cryptol. ePrint Arch.
p. 589 (2023)

33. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–162 (1997). https://doi.org/10.1007/
S001459900025

34. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter sig-
natures from zero-knowledge proofs. pp. 541–572 (2022). https://doi.org/10.1007/
978-3-031-15979-4_19

35. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24-26 October 1984. pp. 464–479. IEEE
Computer Society (1984). https://doi.org/10.1109/SFCS.1984.715949

https://doi.org/10.1145/3133956.3133997
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.4230/LIPICS.ITC.2021.5
https://doi.org/10.4230/LIPICS.ITC.2021.5
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/S001459900025
https://doi.org/10.1007/S001459900025
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1109/SFCS.1984.715949

492 C. Baum et al.

36. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009).
https://doi.org/10.1137/080725398

37. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. IACR Cryptol. ePrint Arch. p. 588 (2022), https://
eprint.iacr.org/2022/588

38. Kim, S., Ha, J., Son, M., Lee, B.: Mitigation on the AIM cryptanalysis. IACR
Cryptol. ePrint Arch. p. 1474 (2023), https://eprint.iacr.org/2023/1474

39. Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., Lee, S., Kwon, J., Cho, J.,
Yoon, H., Lee, J.: AIM: symmetric primitive for shorter signatures with stronger
security. IACR Cryptol. ePrint Arch. p. 1387 (2022), https://eprint.iacr.org/2022/
1387

40. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
pp. 206–222 (1999). https://doi.org/10.1007/3-540-48910-X_15

41. Liu, F., Mahzoun, M.: Algebraic attacks on RAIN and AIM using equivalent rep-
resentations. IACR Cryptol. ePrint Arch. p. 1133 (2023), https://eprint.iacr.org/
2023/1133

42. Perret, L.: Biscuit: Shorter mpc-based signature from posso
43. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,

Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptogra-
phy Project of NIST (2020)

44. Rivest, R.: DESX (1984), Never formally published.
45. de Saint Guilhem, C.D., Meyer, L.D., Orsini, E., Smart, N.P.: BBQ: using AES in

picnic signatures. IACR Cryptol. ePrint Arch. p. 781 (2019), https://eprint.iacr.
org/2019/781

46. de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: Efficient zero-knowledge
mpcith-based arguments. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021. pp. 3022–3036. ACM
(2021). https://doi.org/10.1145/3460120.3484595

47. Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.:
MQDSS. Tech. rep., National Institute of Standards and Technology
(2019), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions

48. StarkWare: ethSTARK documentation. Cryptology ePrint Archive, Report
2021/582 (2021), https://eprint.iacr.org/2021/582

49. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. pp. 1074–1091. IEEE (2021). https://doi.org/10.1109/
SP40001.2021.00056

50. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: Antman: Interactive zero-
knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,
2022. pp. 2901–2914. ACM (2022). https://doi.org/10.1145/3548606.3560667

51. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any field. In: Kim, Y., Kim, J.,
Vigna, G., Shi, E. (eds.) CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021. pp. 2986–3001. ACM (2021). https://doi.org/10.1145/3460120.3484556

https://doi.org/10.1137/080725398
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2023/1474
https://eprint.iacr.org/2022/1387
https://eprint.iacr.org/2022/1387
https://doi.org/10.1007/3-540-48910-X_15
https://eprint.iacr.org/2023/1133
https://eprint.iacr.org/2023/1133
https://eprint.iacr.org/2019/781
https://eprint.iacr.org/2019/781
https://doi.org/10.1145/3460120.3484595
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://eprint.iacr.org/2021/582
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556

One Tree to Rule Them All 493

52. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. pp. 2986–3001
(2021). https://doi.org/10.1145/3460120.3484556

53. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. pp. 1607–1626. ACM (2020).
https://doi.org/10.1145/3372297.3417276

54. Zhang, K., Wang, Q., Yu, Y., Guo, C., Cui, H.: Algebraic attacks on round-reduced
RAIN and full AIM-III. IACR Cryptol. ePrint Arch. p. 1397 (2023), https://eprint.
iacr.org/2023/1397

https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276
https://eprint.iacr.org/2023/1397
https://eprint.iacr.org/2023/1397

Author Index

A
Avitabile, Gennaro 3

B
Bae, Youngjin 330
Baum, Carsten 463
Belorgey, M. G. 176
Beullens, Ward 463
Bui, Dung 396

C
Carozza, Eliana 396
Carpov, S. 176
Chartier, Philippe 271
Chen, Jie 32
Couteau, Geoffroy 396

D
Datta, Pratish 65
David, Bernardo 105
Deng, Yi 241
Döttling, Nico 3

E
Engelmann, Felix 105

F
Feng, Dengguo 241
Frederiksen, Tore 105

G
Gama, N. 176
Goudarzi, Dahmun 396
Guasch, S. 176

H
He, Debiao 32
Huang, Tairong 143

J
Jetchev, D. 176
Joux, Antoine 396

K
Kim, Jaehyung 330
Klooß, Michael 363
Kohlweiss, Markulf 105
Koskas, Michel 271

L
Lemou, Mohammed 271
Liu, Zeyu 208

M
Ma, Shihe 143
Magri, Bernardo 3
Méhats, Florian 271
Mukherjee, Shibam 463

N
Navot, Sela 429

O
Orsini, Emmanuela 463

P
Pagnin, Elena 105
Pal, Tapas 65
Passelègue, Alain 297

R
Ramacher, Sebastian 463
Rechberger, Christian 463
Reichle, Michael 363
Roy, Lawrence 463

S
Sakkas, Christos 3
Scholl, Peter 463
Stehlé, Damien 297, 330
Suvanto, Elias 330

T
Tessaro, Stefano 429

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15484, pp. 495–496, 2025.
https://doi.org/10.1007/978-981-96-0875-1

https://doi.org/10.1007/978-981-96-0875-1

496 Author Index

V
Volkhov, Mikhail 105

W
Wagner, Benedikt 363
Wang, Anyu 143
Wang, Kaixing 241
Wang, Xiaoyun 143
Wang, Yunhao 208
Wohnig, Stella 3

X
Xiang, Binwu 241

Y
Yamada, Shota 65

Z
Zhang, Jiang 241
Zhang, Yijian 32
Zhang, Yuqing 32

	 Preface
	 Organization
	 Contents – Part I
	Advanced Primitives
	Signature-Based Witness Encryption with Compact Ciphertext
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	3 Strongly Puncturable Signatures
	4 Compact Threshold SWE
	4.1 Definition
	4.2 Construction
	4.3 Proofs

	References

	Bounded Collusion-Resistant Registered Functional Encryption for Circuits
	1 Introduction
	1.1 Results
	1.2 Technique Overview
	1.3 Disscussion
	1.4 Related Work

	2 Preliminaries
	2.1 Prime-Order Bilinear Groups
	2.2 Garbled Circuits
	2.3 Global Slotted Registered Broadcast Encryption
	2.4 Q-Bound Slotted Registered Functional Encryption
	2.5 Q-Bound Registered Functional Encryption

	3 Pairing-Based Global Slotted RBE
	3.1 Construction
	3.2 Security

	4 Lattice-Based Global Slotted RBE
	4.1 Construction Without Corruption
	4.2 Security
	4.3 Final Construction

	5 1-Bound Slotted RFE for Circuits
	5.1 Construction
	5.2 Security

	6 Q-Bound Slotted RFE for Circuits
	6.1 Construction
	6.2 Security

	References

	Registered FE Beyond Predicates: (Attribute-Based) Linear Functions and More
	1 Introduction
	2 Technical Overview
	2.1 Definition of Registered FE
	2.2 Registered FE for (Attribute-Based) Linear Functions
	2.3 Registered FE for Polynomial-Size Circuits

	3 Preliminaries
	4 Registered Functional Encryption
	5 Slotted Registered Functional Encryption
	6 Slotted Registered IPFE from Pairings
	7 Slotted Registered ABIPFE from Pairings
	8 Slotted Registered FE from Indistinguishability Obfuscation
	8.1 Construction

	References

	Updatable Privacy-Preserving Blueprints
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques
	1.3 Related Work

	2 Preliminaries
	3 Updatable NIZK Proof Systems
	4 Updatable Privacy-Preserving Blueprints
	4.1 Security Properties

	5 uBlu: Efficient Realization of Updatable Blueprints
	5.1 Achieving Updatable Functionality
	5.2 Achieving Privacy
	5.3 Achieving Soundness Using NIZKs
	5.4 Security of the uBlu Construction
	5.5 Adding Range Proofs for Improved Accuracy
	5.6 Extensions and Applications

	6 Instantiation and Performance
	References

	Homomorphic Encryption
	Faster BGV Bootstrapping for Power-of-Two Cyclotomics Through Homomorphic NTT
	1 Introduction
	1.1 Our Techniques and Results
	1.2 Related Works
	1.3 Concurrent Works
	1.4 Comparison with Another NTT-Based BGV/BFV Bootstrapping

	2 Preliminary
	2.1 Notations
	2.2 Galois Fields and Rings
	2.3 BGV Plaintext Space
	2.4 Homomorphic Linear Transformations
	2.5 BGV Bootstrapping
	2.6 Number Theoretic Transform (NTT)

	3 The Decomposition of Linear Transformations
	3.1 The Case of p1-5mumod5mu-4
	3.2 The Case of p3-5mumod5mu-4
	3.3 The Galois Ring Case

	4 Algorithmic Optimizations of Homomorphic NTT
	4.1 Combining Consecutive Njs
	4.2 Modified BSGS Style Linear Transformations
	4.3 Applying the Decomposition to BGV Bootstrapping
	4.4 Asymptotic Complexity Analysis

	5 Implementation
	5.1 Experiment Setup
	5.2 Experimental Results

	References

	Revisiting Key Decomposition Techniques for FHE: Simpler, Faster and More Generic
	1 Introduction
	2 Preliminaries
	2.1 TRLWE
	2.2 Approximate Gadget Decompositions and `3́9`42`"̇613A``45`47`"603ATRGSW Ciphertexts
	2.3 External Products, Relinearization Keys and Internal Products
	2.4 Table of Symbols, Orders of Magnitudes

	3 A Bivariate Polynomial Representation
	3.1 Evaluation of External Products
	3.2 External Products by Secret Polynomials over `3́9`42`"̇613A``45`47`"603ATRLWE
	3.3 Public Linear Combinations
	3.4 Automorphisms in `3́9`42`"̇613A``45`47`"603ABFV and `3́9`42`"̇613A``45`47`"603ACKKS
	3.5 Internal Products in `3́9`42`"̇613A``45`47`"603ABFV and `3́9`42`"̇613A``45`47`"603ACKKS

	4 Accelerating TFHE Gate Bootstrapping
	5 Frontend and Large Number Arithmetic: Bivariate Versus CRT Representations
	6 Backend Arithmetic and Cyclotomic Multiplications: Approximate FFT or NTT
	6.1 Floating Point Backends
	6.2 NTT Backends over a Fixed Modulus

	A Appendix: Normalization and Reduction Lemma Proof
	References

	Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminary
	2.1 B/FV Leveled Homomorphic Encryption

	3 Definition of Generalized BFV Bootstrapping
	4 Our General Framework for Bootstrapping
	4.1 Bootstrap for Identity Function f1 over [0, t-1, r]
	4.2 Bootstrapping for f2: [u, v, r'] Y
	4.3 General Framework

	5 A More Fine-Grained Construction
	5.1 Point Functions
	5.2 Range Functions
	5.3 Two Unbalanced Ranges
	5.4 Generalized Unbalanced Ranges

	6 Evaluation
	6.1 Performance of Our Construction

	7 Applications
	7.1 Oblivious Permutation via BFV
	7.2 Other Potential Applications

	8 Extension to Batched FHEW/TFHE Bootstrapping
	References

	NTRU-Based Bootstrapping for MK-FHEs Without Using Overstretched Parameters
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Gadget Decomposition
	2.3 Multi-key Fully Homomorphic Encryption
	2.4 Hard Problems

	3 First-Layer Matrix NTRU-Based Multi-Key Encryption.20em plus .1em minus .1em
	4 Second-Layer NTRU-Based Uni-Encryption
	5 Bootstrapping First-Layer Matrix NTRU-Based Multi-key Ciphertexts
	5.1 Modulus Switching for MK-NTRU Ciphertext
	5.2 Key-Switching from MK-NTRU Ciphertext to the Base Scheme
	5.3 Bootstrapping

	6 Bootstrapping First-Layer Multi-key LWE Ciphertexts
	6.1 Modulus Switching for Multi-key LWE Ciphertext
	6.2 Light Key Switching for Multi-key LWE Ciphertext
	6.3 Bootstrapping

	7 Analysis and Implementation
	7.1 Analysis and Comparison
	7.2 Recommended Parameters
	7.3 Experimental Results

	A Key-Switching for Multi-Key LWE Ciphertext in ch8chen2019multi,ch8kwak2022towards
	References

	Homomorphic Sign Evaluation with a RNS Representation of Integers
	1 Introduction
	2 Background and Setting of the Problem
	2.1 Notations and Preliminaries on the Chinese Remainder Theorem
	2.2 LWE Encryption and Functional Bootstrapping
	2.3 Setting of the Problem

	3 The Sign Algorithm for Plaintexts
	4 The Homomorphic Sign Algorithm
	4.1 Rescaling Ciphertexts
	4.2 Emulating g Through Bootstrapping
	4.3 Implementing the Homomorphic Lexicographic Comparison
	4.4 Correctness of the Associated Sign Function for a Specific Implementation of Bootstrap

	5 Performance Results
	References

	Low Communication Threshold Fully Homomorphic Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Gaussian Distributions
	2.2 Hardness Assumptions

	3 Limitations from Prior Works
	3.1 On the Need for Randomness Before Partial Decryption
	3.2 A Construction Based on Circuit-Private FHE
	3.3 An Attack Against the ch10AC:BS23 Transform

	4 A Generalized Definition of Threshold FHE
	5 Double-Flood-and-Round Construction
	5.1 Structure of the Underlying FHE Scheme
	5.2 Construction
	5.3 Analysis of the Double-Flood-and-Round Construction
	5.4 Open Problems

	A Indistinguishability-Based Security for Threshold FHE
	References

	Bootstrapping Small Integers With CKKS
	1 Introduction
	1.1 Technical Overview

	2 Background on CKKS
	2.1 Encodings
	2.2 Ciphertexts and Elementary Operations
	2.3 Bootstrapping

	3 Improving the Roots-of-Unity Toolbox
	3.1 Revising Chimera's Conversion from DM/CGGI to CKKS
	3.2 Interpolation for Roots of Unity
	3.3 Combined Interpolation and Cleaning for Roots of Unity
	3.4 Polynomial Multi-evaluation

	4 Bootstrapping Small Integers
	4.1 SI-BTS
	4.2 Multi-output SI-BTS
	4.3 Batch Functional Bootstrapping of DM/CGGI Ciphertexts

	5 Batch Bits Bootstrapping
	5.1 BB-BTS
	5.2 Extracting Bits

	6 Experiments
	6.1 Bypassing DM/CGGI
	6.2 Batch Bits Bootstrapping

	References

	Digital Signatures
	Practical Blind Signatures in Pairing-Free Groups
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Technical Overview
	1.4 Organization of this Paper

	2 Preliminaries
	3 Signatures Based on the Boneh-Boyen IBE
	3.1 Construction
	3.2 Security Analysis

	4 Non-blind Interactive Signing Protocol
	4.1 Construction
	4.2 Security Analysis

	5 Blind Interactive Signing Protocol
	5.1 Construction
	5.2 Security Analysis

	References

	Faster Signatures from MPC-in-the-Head
	1 Introduction
	1.1 Faster MPCitH Signatures from a New Multi-instance PPRF
	1.2 A New MPCitH Signature from Regular Syndrome Decoding
	1.3 Organization

	2 Preliminaries
	2.1 Regular Syndrome Decoding Problem

	3 Technical Overview:Optimized GGM Trees for Faster MPCitH Signatures
	3.1 On the Use of Salt to Avoid Collisions
	3.2 On the Efficiency of Salted GGM Trees
	3.3 A Fast Salted GGM Tree in the Ideal Cipher Model

	4 Technical Overview: New Signature from RSD
	4.1 An Alternative Share-Conversion Approach
	4.2 Combinatorial Analysis

	5 Multi-instance PPRFs in the Ideal Cipher Model
	5.1 Defining Multi-instance Puncturable PRF
	5.2 Constructing Multi-instance Puncturable PRFs
	5.3 A Multi-instance PRG in the Ideal Cipher Model

	6 A Signature Scheme from Regular Syndrome Decoding
	6.1 Description of the Signature Scheme

	References

	One-More Unforgeability for Multi - and Threshold Signatures
	1 Introduction
	2 Preliminaries
	3 Specifications and Usage
	3.1 Multi-signatures
	3.2 Threshold Signatures

	4 Existential and Strong Unforgeability
	4.1 Extending Strong Unforgeability to Multi-signatures
	4.2 Strong Unforgeability of Threshold Signatures

	5 Multi-signature Schemes
	5.1 Analysis of HBMS
	5.2 Analysis of MuSig
	5.3 Analysis of MuSig2
	5.4 Analysis of mBCJ

	6 Threshold Signatures Schemes
	6.1 Comparison to Previous SUF-TS Definition, and FROST
	6.2 Analysis of ROAST

	References

	One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 One-Way Functions
	2.2 VOLEitH Signatures

	3 Improving Batch Vector Commitments
	3.1 Optimized Batch All-but-One Vector Commitments

	4 Using BAVCs in FAEST
	4.1 Benchmarking the Optimized FAEST and FAEST-EM

	5 New VOLEitH Signature Schemes
	5.1 MandaRain: VOLEitH + Rain
	5.2 KuMQuat: VOLEitH + MQ
	5.3 Uniform AES Keys in FAEST
	5.4 FAEST-d7: Proving AES via Degree-7 Constraints

	6 Broader Discussion
	References

	Author Index

