
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

85

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part II

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15485
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part II

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0887-4 ISBN 978-981-96-0888-1 (eBook)
https://doi.org/10.1007/978-981-96-0888-1

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0888-1

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACR Distinguished Lecture
delivered by Paul Kocher and one invited talk, nominated and voted by the PC. The
invited speaker had not yet been determined when this preface was written. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Outstanding PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo

(Japan) and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part II

Digital Signatures

On Security Proofs of Existing Equivalence Class Signature Schemes 3
Balthazar Bauer, Georg Fuchsbauer, and Fabian Regen

Dual Support Decomposition in the Head: Shorter Signatures from Rank
SD and MinRank . 38

Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu,
and Matthieu Rivain

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 70
Foteini Baldimtsi, Jiaqi Cheng, Rishab Goyal, and Aayush Yadav

Dictators? Friends? Forgers: Breaking and Fixing Unforgeability
Definitions for Anamorphic Signature Schemes . 105

Joseph Jaeger and Roy Stracovsky

Digital Signatures with Outsourced Hashing . 138
Bertram Poettering and Simon Rastikian

Adaptor Signatures: New Security Definition and a Generic Construction
for NP Relations . 168

Xiangyu Liu, Ioannis Tzannetos, and Vassilis Zikas

Public-Key Cryptography

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 197
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch,
and Sacha Servan-Schreiber

Constrained PRFs for Inner-Product Predicates from Weaker Assumptions 232
Sacha Servan-Schreiber

Mild Asymmetric Message Franking: Illegal-Messages-Only
and Retrospective Content Moderation . 266

Zhengan Huang, Junzuo Lai, Gongxian Zeng, and Jian Weng

xviii Contents – Part II

Delegatable Anonymous Credentials from Mercurial Signatures
with Stronger Privacy . 296

Scott Griffy, Anna Lysyanskaya, Omid Mir, Octavio Perez Kempner,
and Daniel Slamanig

Count Corruptions, Not Users: Improved Tightness for Signatures,
Encryption and Authenticated Key Exchange . 326

Mihir Bellare, Doreen Riepel, Stefano Tessaro, and Yizhao Zhang

Interval Key-Encapsulation Mechanism . 361
Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, and Daniel Wichs

Pairing-based Cryptography

Tightly Secure Non-interactive BLS Multi-signatures . 397
Renas Bacho and Benedikt Wagner

Extractable Witness Encryption for KZG Commitments and Efficient
Laconic OT . 423

Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 454
Yu Dai, Debiao He, Cong Peng, Zhijian Yang, and Chang-an Zhao

Author Index . 487

Digital Signatures

On Security Proofs of Existing
Equivalence Class Signature Schemes

Balthazar Bauer1(B), Georg Fuchsbauer2, and Fabian Regen2

1 UVSQ, Paris, France
balthazar.bauer@ens.fr

2 TU Wien, Vienna, Austria
georg.fuchsbauer@ens.fr, fabian.regen@tuwien.ac.at

Abstract. Equivalence class signatures (EQS; Asiacrypt ’14), sign vec-
tors of elements from a bilinear group. Anyone can transform a signature
on a vector to a signature on any multiple of that vector; signatures thus
authenticate equivalence classes. A transformed signature/message pair
is indistinguishable from a random signature on a random message. EQS
have been used to efficiently instantiate (delegatable) anonymous cre-
dentials, (round-optimal) blind signatures, ring and group signatures,
anonymous tokens and contact-tracing schemes, to name a few.

The original EQS construction (J. Crypto ’19) is proven secure in the
generic group model, and the first scheme from standard assumptions
(PKC ’18) satisfies a weaker model insufficient for most applications. Two
works (Asiacrypt ’19, PKC ’22) propose applicable schemes that assume
trusted parameters. Their unforgeability is argued via a security proof
from standard (or non-interactive) assumptions.

We show that their security proofs are flawed and explain the subtle
issue. While the schemes might be provable in the algebraic group model
(AGM), we instead show that the original construction, which is more
efficient and has found applications in many works, is secure in the AGM
under a parametrized non-interactive hardness assumption.

Keywords: Equivalence class signatures · flaw in existing analysis ·
security proof · algebraic group model

1 Introduction

Structure-preserving Signatures (SPS) [AFG+10] are defined over a bilinear
group, which consists of three groups (Gt,+), for t ∈ {1, 2, T}, of prime order
p and a (non-degenerate) bilinear map e : G1 × G2 → GT . In SPS, messages,
as well as public verification keys and signatures, consist of elements from G1

and G2.
The concept of SPS on equivalence classes, or equivalence class signatures

(EQS) for short, was introduced by Hanser and Slamanig [HS14] and later
securely instantiated [Fuc14,FHS19]. EQS have message space M = (G∗

t)
�, for

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 3–37, 2025.
https://doi.org/10.1007/978-981-96-0888-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_1&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_1

4 B. Bauer et al.

some t ∈ {1, 2}, � > 1, where G
∗
t := Gt \{0t}, on which one defines the following

equivalence relation:

M ∼ M ′ :⇔ ∃μ ∈ Z
∗
p : M ′ = μ · M . (1)

EQS provide an additional functionality ChgRep: given a public key pk, a signa-
ture σ on M ∈ M under pk, and a value μ ∈ Z

∗
p, ChgRep returns a signature

on the message μ · M , without requiring the secret key. A signature on M thus
authenticates the entire equivalence class [M]∼ of M w.r.t. the relation in (1),
and ChgRep lets one change the representative of that class.

Accordingly, unforgeability is defined w.r.t. classes, that is, for all efficient
adversaries, given pk and an oracle for signatures on messages M1,M2, . . .
of their choice, it is infeasible to compute a signature on any M∗ for which
M∗ /∈ [M1]∼ ∪ [M2]∼ ∪ . . . In addition, EQS must be class-hiding: it is hard
to distinguish random message pairs (M ,M ′) with M ∼ M ′ from random
pairs (M ,M ′) ←$ M × M, which is equivalent to the decisional Diffie-Hellman
(DDH) problem being hard in Gt.

The last security notion is signature adaptation , requiring that for any
(possibly maliciously generated) public key pk, any M ∈ M, any σ that ver-
ifies on M under pk, and any μ ∈ Z

∗
p, running ChgRep(pk,M , σ, μ) returns

a uniform element in the set of all valid signatures on μ · M . This notion,
together with class-hiding, implies that a malicious signer that is given some
M and generates a signature σ on M cannot distinguish the following: either
σ′ ← ChgRep(pk,M , σ, μ) and μ · M for μ ←$ Z

∗
p; or a uniformly random signa-

ture on a message M ′ ← M under pk.

Applications of EQS. Equivalence class signatures have found numerous appli-
cations in concepts related to anonymous authentication. The resulting instan-
tiations are particularly efficient, since both messages and signatures can be re-
randomized, after which they can be given (and verified) “in the clear”, where in
other constructions they need to be hidden and shown valid using zero-knowledge
proofs.

Anonymous Credentials. The first application of EQS was the construction of
attribute-based credentials [CL03], which let users obtain credentials for a set of
attributes, of which they can later selectively disclose any subset. Such show-
ings of attributes should be unlinkable and reveal only the disclosed attributes.
The EQS-based credential construction [FHS19] is the first for which the com-
munication complexity of showing a credential is independent of the number
of disclosed attributes. Moreover, it achieves strong anonymity guarantees even
against malicious credential issuers. Slamanig and others added revocation of
users [DHS15] and give a scheme that enables outsourcing of sensitive computa-
tion to a restricted device [HS21].

“Signatures with flexible public key” [BHKS18] adapt the concept of adap-
tation within equivalence classes from messages to public keys, and “mer-
curial signatures” [CL19,CL21,CLP22] let one adapt signatures to equiva-
lent keys and equivalent messages. The initial motivation of mercurial signa-

On Security Proofs of Existing Equivalence Class Signature Schemes 5

tures was the construction of (non-interactively) delegatable anonymous creden-
tials [BCC+09,Fuc11], which were later improved [MSBM23]. Multi-authority
anonymous credentials have also been constructed from mercurial signatures
[MBG+23].

Blind Signatures. Building on earlier work [FV10] that uses randomizable zero-
knowledge proofs [FP09], another line of research [FHS15,FHKS16] constructs
blind signatures from EQS. These allow a user to obtain a signature from a signer,
who learns nothing about the message nor the signature. These EQS-based
schemes do not assume a common reference string, achieve blindness against
malicious signers and are round-optimal and thus concurrently secure.

Group Signatures. Derler and Slamanig [DS16] and Clarisse and Sanders [CS20]
use EQS to construct very efficient group signatures schemes. The former also
added dynamic adding of members [DS18].

Further applications of EQS include verifiably encrypted signatures [HRS15],
access-control encryption [FGKO17], sanitizable signatures [BLL+19], privacy-
preserving incentive systems [BEK+20], policy-compliant signatures [BSW23],
e-voting [Poi23], and many more.

The FHS Scheme. The first EQS scheme [FHS19], to which we will refer
as FHS, has signatures in G

2
1 × G2. This is optimal, since any EQS scheme

can be transformed into a structure-preserving signature (SPS) scheme without
changing the signature format [FHS15], and SPS signatures must have at least
3 group elements [AGHO11]. Concretely, e.g., when instantiating FHS over the
BLS curve [BLS04] BLS12-381 [Bow17,SKSW22], which is conjectured to have
128-bit security, an FHS signature is 192 bytes long.

In addition to yielding optimal instantiations of the aforementioned EQS
applications, FHS has seen further applications, such as building highly scal-
able mix nets [HPP20]. Benhamouda, Raykova and Seth [BRS23] use FHS for
the currently most efficient instantiation of anonymous counting tokens; Hanz-
lik [Han23] has recently used FHS to construct the first non-interactive blind
signatures on random messages; and Mir et al. [MSBM23] extended the scheme
for their practical delegatable credentials. FHS has been also been proposed
for authentication of commercial drones [WTSD23], in the context of e-health
[ZYY+23], for whistleblowing reporting systems [SYF+23] and e-voting [Poi24].

Furthermore, FHS underlies the mercurial signature construction by Crites
and Lysyanskaya [CL19], which have themselves found many applications,
some of which are: Protego [CDLP22], a credential scheme for permissioned
blockchains (like Hyperledger Fabric) and PACIFIC [GL23], a privacy-preserving
contact tracing scheme. Putman and Martin [PM23] use a modification to
construct a delegatable credential scheme that lets users selectively delegate
attributes.

The major downside of FHS is that the only proof of its unforgeability to
date is directly in the (bilinear) generic group model (GGM) [Nec94,Sho97,
Mau05,BBG05], which only captures generic attacks (i.e., ones that work in any

6 B. Bauer et al.

group). In security games in the GGM, the adversary does not see any actual
group elements but is given (random) labels for them; to compute the group
operation, the adversary has access to an oracle which, when given two labels of
two elements, returns the label of the sum of these elements.

Constructions from Falsifiable Assumptions. A computational hardness
assumption is falsifiable [Nao03] if the challenger that runs the security game
with an adversary can efficiently decide whether the adversary has broken the
assumption. The FHS scheme [FHS19] can be considered based on an (interactive
and) non-falsifiable assumption: namely its unforgeability, justified via a proof in
the generic group model (GGM). Recall that to determine whether the adversary
broke unforgeability, one needs to check whether the message M∗ returned by
the adversary is in the same equivalence class as one of the queried messages
(in which case the adversary could efficiently compute a signature on M∗ via
ChgRep). Now, by the class-hiding property, this is hard to decide.

The first EQS scheme from standard assumptions, namely Matrix-Diffie-
Hellman assumptions [EHK+13], was proposed by Fuchsbauer and Gay [FG18],
but the scheme has some drawbacks: its signatures can only be adapted once
and it only satisfies a weaker notion called existential unforgeability under cho-
sen open message attack (EUF-CoMA): when the adversary makes a signing
query, it must provide the discrete logarithms of the components of the queried
message. Note that EUF-CoMA is efficiently decidable: For simplicity, consider
� = 2 and for all i, let (mi,1,mi,2) ∈ (Z∗

p)
2 be the adversary’s queries (i.e., the

logarithms of the components of the queried message M i). Then the message
M∗ = (M∗

1 ,M∗
2) returned by the adversary is not in any of the queried classes

if and only if mi,2 · M∗
1 	= mi,1 · M∗

2 for all i.
Khalili, Slamanig and Dakhilalian [KSD19] show that the notion of signature

adaption achieved by the scheme [FG18] must assume honest keys and signa-
tures, which makes it inadequate for most applications. To construct a scheme
appropriate for applications with standard-model security, they first propose
more syntax modifications: in addition to a signature, the signing algorithm also
creates a tag, which is required by ChgRep (but not needed for signature veri-
fication). As with the previous scheme [FG18], signatures can only be adapted
once (which does not affect the considered applications).

Moreover, they consider a trusted setup, which generates a common reference
string (CRS) in addition to setting up the bilinear group. Signature adaptation
is then defined w.r.t. honestly generated parameters. This change weakens the
anonymity guarantees in applications such as anonymous credentials, which did
not require trust assumptions in the original model [FHS19].

Building on an SPS scheme by Gay et al. [GHKP18], Khalili et al. [KSD19]
propose an EQS construction in their new model with signatures in G

8
1 × G

9
2.

Their construction is (claimed to be) secure under the SXDH assumption, which
states that DDH is hard in both G1 and G2. Building on this work, Con-
nolly, Lafourcade and Perez-Kempner [CLP22] propose a more efficient scheme
(with signatures in G

9
1 × G

4
2), which requires as additional assumption extKer-

MDH [CH20].

On Security Proofs of Existing Equivalence Class Signature Schemes 7

A Flaw in the Security Proof of the CRS-Based Schemes. We report a
flaw in the security proofs of the two CRS-based schemes [KSD19,CLP22]. In
particular, a game hop in the unforgeability proof changes the distribution of
the signatures given to the adversary. The change in the adversary’s winning
probability is then bounded by the advantage of a reduction in solving a compu-
tational problem. However, since EQS-unforgeability is not efficiently decidable,
the resulting reduction would not be efficient, and the security bound of the
underlying problem can thus not be applied. In fact, the authors do specify
an efficient reduction, but its winning probability is not the difference of the
adversary’s winning probabilities.

In more detail, the hop from Game 0 to Game 1 [KSD19, Theorem 2] modifies
the way the purported forgery, i.e., the signature on M∗ output by the adversary
A is verified. The authors then argue that from a forgery that verifies in Game 0
but not Game 1 (which is a property that can be checked efficiently), a reduc-
tion B can extract a solution to a computational problem (KerMDH [MRV16]).
From this, the authors deduce that Adv0 − Adv1 ≤ AdvKerMDH

B . This reason-
ing is correct, because (though not stated by the authors) A’s view is equally
distributed in both games and thus the probability that M∗ does not fall in a
class of a queried message (which is not efficiently verifiable) is the same.

In contrast, an analogous argument cannot be made for the hop from Game 2
to Game 3. Here the distribution of the signatures output by the signing oracle
changes. (Note that we do not claim that the two games are efficiently dis-
tinguishable.) Since the games are different, the probability that M∗ falls in
a queried class can change in arbitrary ways, but, by class-hiding, this is not
efficiently detectable. A change can therefore not be leveraged by an efficient
reduction. In fact, the constructed reduction B1 (to their “core lemma”, which
relies on the computational hardness of MDDH [EHK+17]) only checks an (effi-
ciently testable) property of A’s forgery (but not whether A was successful).
Since whether M∗ falls in a queried class determines whether the adversary wins,
one can therefore not deduce that Adv2 −Adv3 ≤ Advcore

B1
, as the authors do.

We detail our argument in Sect. 3.
The proof of the second CRS-based scheme [CLP22, eprint, Appendix D] is

virtually identical, so the same issue arises. The security of both schemes is thus
currently unclear. We believe the schemes cannot be proved from non-interactive
assumptions in the standard model. They were derived from a signature scheme
[GHKP18] built with proof techniques in mind that crucially rely on the winning
condition being efficiently checkable, which is the case for signatures but not for
EQS.

Unforgeability of FHS in the Algebraic Group Model. A recent result
[BFR24] shows it is unlikely that EQS can be constructed from non-interactive
(falsifiable) assumptions in the standard model (that is, without assuming a
trusted CRS). Concretely, for any EQS scheme Σ, if there is a reduction that
breaks a non-interactive computational assumption after running an adversary
that breaks unforgeability of Σ, then there exist efficient meta-reductions that
either break the assumption or break class-hiding of Σ. For FHS [FHS19], it was

8 B. Bauer et al.

already known that it cannot be proved from non-interactive assumptions via an
algebraic reduction, since this is the case for all 3-element SPS, and thus EQS,
schemes [AGO11].

In light of this result, what we can still hope for is an EQS scheme with a
security proof in the algebraic group model [FKL18], which is a “weaker” idealized
model than the generic group model. In contrast to the latter, in the AGM
the adversary has access to the group elements, but the adversary is assumed
to be algebraic in the following sense: whenever it outputs an element Y of a
group Gt, for t ∈ {1, 2}, it also provides a representation (α1, α2, . . .) so that
Y = α1Y1 + α2Y2 + · · · , where Y1, Y2, . . . are the Gt-elements the adversary has
previously received.

Our positive result is a security proof of FHS [FHS19] in the algebraic group
model. We focus on FHS due to its optimal efficiency and its many applications
discussed above. While the CRS-based schemes [KSD19,CLP22] might be sal-
vageable in the AGM, trying to would be moot, as the signatures of the more
efficient scheme [CLP22] are more than 4 times longer than for FHS. Moreover,
FHS requires no CRS, an assumption that bars some of the applications of EQS.

We reduce unforgeability of FHS to a parametrized assumption related to
the q-strong Diffie-Hellman assumption in bilinear groups [BB08]. The latter
states that given G1, xG1, x

2G1, . . . , x
qG1, G2, xG2, where Gi is a generator of

Gi and x is uniform in Zp, it is hard to find any c ∈ Zp together with 1
x+cG1.

Boneh and Boyen [BB08] show that if G1 and G2 are random generators, this
implies security of their weakly secure signature scheme, which corresponds to
being given a public key xG2 and signatures 1

x+ci
G1 on messages c1, . . . , cq and

having to find 1
x+cG1 for c /∈ {c1, . . . , cq}.

Our assumption combines the above two but is weaker in the sense that
it would correspond to security only against key-recovery attacks, where the
adversary must find x. In particular, we assume that given xiG1 for i = 1, . . . , 2q
and xG2 as well as 1

x+ci
Gt for random ci for i = 1, . . . , q and t = 1, 2, it must

be hard to find x. Following Boneh and Boyen, we show that, assuming random
generators, for q1 := 3q and q2 := q+1 our assumption is implied by the (q1, q2)-
“power”-DL assumption [Lip12], which requires finding x when given xiGt for
t = 1, 2 and i = 1, . . . , qt. (We note that separation results [BFL20] show it is
implausible that power-DL can be shown from DL.)

When setting up the group for an FHS instantiation, one can simply sample
random generators; in this case, our results imply AGM-security under power-
DL, which now underlies the majority of AGM proofs in the literature, in
particular for zk-SNARK schemes [FKL18,MBKM19,GWC19,CHM+20,RZ21,
CFF+21,LSZ22]. (On the other hand, if generators are fixed, we still get security
under our new assumption.)

Discussion. One might wonder about the value of a proof in the AGM when we
already have a GGM proof. First, the AGM is closer to reality, as the adversary
attacks the actual scheme and not an ideal simulation of it like in the GGM;
the AGM just restricts how the adversary manipulates group elements, which is
enforced in the GGM as well. Given the EQS impossibility result [BFR24], an

On Security Proofs of Existing Equivalence Class Signature Schemes 9

AGM proof from a non-interactive assumption is arguably the best one can hope
for. (The situation is similar for zk-SNARKs, for which there are impossibility
results [GW11], and the AGM has become a common model for security analysis;
see citations above.) While our proof may be more complex than the GGM proof
[FHS19], we improve the result, since a proof in the AGM from an assumption
that holds in the GGM implies security in the GGM. (Conversely, there are
hardness assumptions, such as one-more DL [BNPS03,BFP21], that hold in the
GGM but cannot be shown in the AGM from power-DL [BFL20].)

We thus establish a new state of the art for EQS: There are currently no
EQS schemes assuming a trusted CRS with a security proof in the standard
model. Moreover, our negative result indicates that new proof techniques would
be required, instead of starting from existing standard-model SPS schemes like
[GHKP18]. Many applications (blind signatures, credentials, etc.) without semi-
honesty assumptions require fully secure EQS (without a CRS), for which FHS
is the most efficient scheme and has seen many applications. We improve the
security guarantees of FHS.

2 Preliminaries

Notation. Assigning a value x to a variable var is denoted by var := x. All
algorithms are randomized unless otherwise indicated. By y ← A(x1, . . . , xn) we
denote the operation of running algorithm A on inputs x1, . . . , xn and letting
y denote the output; by [A(x1, . . . , xn)] we denote the set of values that have
positive probability of being output. If S is a finite set then x ←$ S denotes
picking an element uniformly from S and assigning it to x. For n ∈ N, we let
[n] denote the set {1, . . . , n}. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Z

n
p , we

denote x � y = (x1y1, . . . , xnyn) the Hadamard product of x and y.

Polynomials. In our proof the FHS scheme in Sect. 4 we will make extensive use
of multivariate polynomials in Zp[X1, . . . ,Xn], for prime p, and use the following
two lemmas.

Lemma 1 (Schwartz-Zippel). Let p be prime and let P ∈ Zp[X1, . . . ,Xn] be
a non-zero polynomial of total degree d. Then

Pr
r1,...,rn ←$ Z∗

p

[P(r1, . . . , rn) = 0] ≤ d

p − 1
.

The next lemma [BFL20, Lemma 2.1] has become a standard tool in AGM
proofs. It implies that when embedding an indeterminate Y (which will represent
the solution of a computational problem) into many indeterminates X1, . . . ,Xn

of an adversarially chosen non-zero polynomial P by “randomizing” Y as Xi :=
ziY+vi for random zi, vi then the polynomial P′(Y) := P(z1Y+v1, . . . , znY+vn)
will be non-zero with overwhelming probability. (This relies on the fact that the
values zi are perfectly hidden from the adversary’s view.)

10 B. Bauer et al.

Lemma 2. Let P be a non-zero multivariate polynomial in Zp[X1, . . . ,Xn] of
total degree d. If we define Q(Y) ∈ (

Zp[Z1, . . . ,Zm,V1, . . . ,Vn]
)
[Y] as

Q(Y) := P
(
Z1Y + V1, . . . ,ZnY + Vn

)
,

then the coefficient of maximal degree of Q is a polynomial in Zp[Z1, . . . ,Zn] of
degree d.

Bilinear Groups. EQS schemes are defined over an (asymmetric) bilinear group
grp = (G1,G2,GT , p,G1, G2, e), where G1, G2 and GT are (additively denoted)
groups of prime order p, G1 and G2 are generators of G1 and G2, resp., and
e : G1 × G2 → GT is a bilinear map so that GT := e(G1, G2) generates GT . For
t ∈ {1, 2, T}, we let G

∗
t := Gt \ {0t}. We assume that there exists a probabilis-

tic polynomial-time (p.p.t.) algorithm BGGen, which on input 1λ, the security
parameter in unary, returns the description of a bilinear group grp so that the
bit length of p is λ.

Following the examined work [KSD19], we use “implicit” representation of
group elements: for A = (ai,j)i,j ∈ Z

m×n
p and t ∈ {1, 2, T}, we let [A]t denote

the matrix (ai,jGt)i,j ∈ G
m×n
t and define e([A]1, [B]2) as [AB]T , which can

be computed efficiently. We use upper-case slanted font G,G to denote group
elements and vectors of group elements and use a,a,A to denote scalars, vectors
and matrices of elements from Zp.

EQS. An equivalence class signature (EQS) scheme Σ specifies an algorithm
ParGen(1λ), which on input the security parameter returns general parameters
par, which specify a bilinear group (G1,G2,GT , p,G1, G2, e). KeyGen(par, 1�),
on input the parameters and the message length � > 1, returns a key pair
(sk,pk), which defines the message space M := (G∗

t)
� for a fixed t ∈ {1, 2}. The

message space is partitioned into equivalence classes by the following relation
for M ,M ′ ∈ M:

M ∼ M ′ :⇔ ∃μ ∈ Z
∗
p : M ′ = μ · M . (1)

A tag-based EQS scheme [KSD19] moreover consists of the following algorithms:

– Sign(sk,M), on input a secret key and a message M ∈ M, returns a signature
σ and (possibly) a tag τ .

– ChgRep(pk,M , (σ, τ), μ), on input a public key, a message M ∈ M, a signa-
ture σ (and possibly a tag τ) on M , as well as a scalar μ ∈ Z

∗
p, returns a

signature σ′ on the message μ · M .
– Verify(pk,M , (σ, τ)) is deterministic and, on input a public key, a message

M ∈ M, a signature σ (and possibly a tag τ), returns a bit indicated accep-
tance.

Sign and ChgRep must generate valid signatures, as defined next.

On Security Proofs of Existing Equivalence Class Signature Schemes 11

Definition 1. An EQS scheme is correct if for all λ ∈ N, � > 1, any par ∈
[ParGen(1λ)], (sk,pk) ∈ [KeyGen(par, 1�)], M ∈ M and μ ∈ Z

∗
p:

Pr
[
Verify

(
pk,M ,Sign(sk,M)

)
= 1

]
= 1 and

Pr
[
Verify

(
pk, μ · M ,ChgRep(pk,M ,Sign(sk,M), μ)

)
= 1

]
= 1.

Unforgeability requires that after receiving the public key and signatures (and
tags) on messages of its choice, the adversary cannot produce a valid signature
on a message that is not contained in any of the classes of the queried signatures.

Definition 2. An EQS scheme Σ with message length � > 1 is existentially
unforgeable under chosen-message attack if

AdvUNF
Σ,A (λ) := Pr[UNFΣ,A(λ) = 1]

is negligible for all p.p.t. adversaries A, where game UNF is defined as follows:

UNFΣ,A(λ)

1 : par ← ParGen(1λ)

2 : (sk, pk) ← KeyGen(par, 1�)

3 : Q := ∅
4 : (M ∗, σ∗) ← AO(·)(pk)

5 : return
(
M ∗ /∈ Q ∧ Verify(pk, M ∗, σ∗)

)

O(M)

1 : Q := Q ∪ [M]∼
2 : return Sign(sk, M)

where [M]∼ := {M ′ ∈ M | M ∼ M ′} is the equivalence class of M for ∼
defined in (1).

A further security requirement is that signatures generated by ChgRep should
either be indistinguishable from signatures output by Sign or uniformly random
in the space of all valid signatures. As these notions are not relevant for our
results, we refrain from stating them and refer to the original work [FHS19].

3 A Flaw in the Security Proofs of KSD19 and CLP22

The proof of unforgeability [KSD19] defines Game 0 as the game UNF from
Definition 2 instantiated with their construction as Σ, and, in a series of “hops”,
the games are gradually modified until Game 6 can only be won with proba-
bility 1/p, even by an unbounded adversary. The difference between the adver-
sary’s advantage Advi in winning Game i and its advantage Advi+1 in winning
Game (i + 1) is then bounded. Of these bounds, two depend on the hardness of
a computational problem.

Define event Ni as M∗ /∈ Q when running Game i (where M∗ is from A’s
output and Q is the union of all classes of queried messages). Moreover, let Vi be

12 B. Bauer et al.

the event that when running Game i, we have Verifyi(pk,M
∗, σ∗), where Verifyi

is how verification of A’s signature is defined in Game i. (The details of Verifyi

are not relevant here.) We thus have Advi = Pr[Ni ∧ Vi].

The First Hop. In Game 0 and Game 1 the adversary’s view remains the
same, and we therefore have N0 = N1. The only thing that changes is that
when verifying A’s forgery, which contains group-element vectors [u∗

1]1 and [t∗]1,
against pk = ([A]2, [K0A]2, [KA]2), instead of checking

e([u∗
1]

�
1 , [A]2) − e([t∗]�1 , [K0A]2) − e([m∗]�1 , [KA]2) = 0,

one checks if S := [u∗
1]1 − K�

0 [t∗]1 − K�[m∗]1 = 0, which implies the above.
We thus have V1 ⊆ V0 and if V0 occurs but V1 does not, then A has found

a non-zero vector S in the kernel of A. The authors construct a reduction B
which uses this to break KerMDH [MRV16] in G2. We have

Adv0 − Adv1 = Pr[N0 ∧ V0] − Pr[N1 ∧ V1]
= Pr[N0 ∧ V0 ∧ V1] + Pr[N0 ∧ V0 ∧ ¬V1]

− Pr[N1 ∧ V1 ∧ V0] − Pr[N1 ∧ V1 ∧ ¬V0]
= Pr[N0 ∧ V0 ∧ ¬V1] (since N0 = N1 and V1 ⊆ V0)

≤ Pr[V0 ∧ ¬V1] ≤ AdvKerMDH
B .

Note that for this argument it was essential that N0, N1, V0 and V1 are all
events in the same probability space (which will not be the case in the hop from
Game 2 to Game 3).

The Bad Hop. In the hop from Game 2 to Game 3, the distribution of the game
changes and thus we do not have N2 = N3 (which is also syntactically meaning-
less). The authors construct a reduction B1 which bounds Pr[V2] − Pr[V3] ≤
Advcore

B1
, where the latter is B1’s probability in winning the game from their “core

lemma” [KSD19, Sect. 4.1], which is bounded by breaking another computational
problem (Matrix-DDH [EHK+17]). However, it is not clear how to use this to
bound the change in advantage from Game 2 to Game 3. We have

Adv2 − Adv3 = Pr[N2 ∧ V2] − Pr[N3 ∧ V3]

= Pr[N2 |V2] · (
Pr[V2] − Pr[V3]︸ ︷︷ ︸

(1)

)
+

(
Pr[N2 |V2] − Pr[N3 |V3]︸ ︷︷ ︸

(2)

) · Pr[V3].

So while we can bound (1) by B1’s advantage of breaking the “core lemma”, it is
unclear how to bound (2). In particular, Ni is an event that cannot be efficiently
checked, and moreover, in contrast to N0 and N1, the events N2 and N3 are not
equivalent, since the adversary’s view is different on Game 2 and Game 3.

To show this, we spell out Game i for i ∈ {2, 3} in Fig. 1, where Verifyi denotes
how verification is defined in Game i (both Verify2 and Verify3 are efficient, but
their details not relevant here). Moreover, D1 is a distribution of matrices from
Z
2×1
p for which the MDDH assumption must hold; PGen and PPro belong to

On Security Proofs of Existing Equivalence Class Signature Schemes 13

Fig. 1. Games 2 and 3 in the unforgeability proof of [KSD19]. Changes w.r.t. game
UNF are denoted in gray, the differences between Games 2 and 3 are highlighted in
blue. The line in red is our interpretation, since the distribution of a⊥ is not specified.

a proof system for statements ([t]1, [w]1) which are true if [t]1 = [Ab]1r1 and
[w]1 = [Ab]1r2 for some b ∈ {0, 1} and r1, r2 ∈ Zp (again, the details are not
relevant here); and F : Zp → Z

2
p is a random function.

To argue that A’s view changes from Game 2 to Game 3, an easy way is
to have A query the signing oracle O twice on the same (arbitrary) message.
For the i-th query, let r

(i)
1 and r

(i)
2 be the randomness sampled by O and let

u(i)
1 , t(i),u(i)

2 ,w(i) ∈ Z
2
p be the logarithms of the respective components returned

by O.
Since A0 ∈ Z

2×1
p is from a “matrix distribution” [KSD19, Definition 1],

it has full rank and is thus non-zero. The value t(i) = A0r
(i)
1 thus uniquely

determines r
(i)
1 and w(i) = A0r

(i)
2 uniquely determines r

(i)
2 . Let r′

1 := r
(1)
1 − r

(2)
1

and r′
2 := r

(1)
2 − r

(2)
2 , and thus t(1) − t(2) = A0r

′
1 and w(1) − w(2) = A0r

′
2, and

consider these further differences:

u′
1 := u

(1)
1 − u

(2)
1 = K�

0 A0r
′
1 + a⊥k�

0 A0r
′
1 + β · a⊥(

F(1)�A0r
(1)
1 − F(2)�A0r

(2)
1

)

u′
2 := u

(1)
2 − u

(2)
2 = K�

0 A0r
′
2 + a⊥k�

0 A0r
′
2 + β · a⊥k�

1 A0r
′
2

In Game 2, where β = 0, we thus have

u′
1r

′
2 = u′

2r
′
1. (2)

14 B. Bauer et al.

On the other hand, for (2) to hold in Game 3, we would have to have

a⊥(
F(1)�A0r

(1)
1 − F(2)�A0r

(2)
1

)
r′
2 = a⊥k�

1 A0r
′
2(r

(1)
1 − r

(2)
1),

or equivalently

a⊥(
F(1)�r

(1)
1 − F(2)�r

(2)
1 − k�

1 (r(1)1 − r
(2)
1)

︸ ︷︷ ︸
=:U�

)
A0r

′
2 = 0. (3)

Since F(1) is independent and uniformly distributed in Z
2
p, the term U is uniform

in Z
2
p, except with negligible probability (when r

(1)
1 = 0). As argued above, A0 is

non-zero and thus U�A0 is uniform in Zp (except with negligible probability).
The authors [GHKP18,KSD19] do not specify how a⊥ is distributed, but for
their last argument in the proof to work, namely that Game 6 can only be won
with probability 1/p (or with negligible probability), we must have a⊥ 	= 0 (with
overwhelming probability). Thus for (3) (and thus (2)) to hold, we must either
have a⊥ = 0 or U�A0 = 0 or r′

2 = 0, which happens with negligible probability
only.

Thus, the view of the adversary changes between Games 2 and 3, and there-
fore so can its probability of returning a messages that is in the class of a queried
message, i.e., we can have that Pr[N2] and Pr[N3] differ by a non-negligible
amount. The argument which worked for bounding Adv0 − Adv1 (a reduction
that only considers the events V0 and V1), and which the authors also apply to
bound Adv2 − Adv3, can thus not be made again.

4 The Security of FHS in the AGM

With the FHS EQS scheme remaining the only scheme with some security proof
[FHS19], we will strengthen its security guarantees by giving a proof in the
algebraic group model (AGM) under a parametrized hardness assumption. We
start with defining the scheme.

Definition 3 ([FHS19]). Let grp = (G1,G2,GT , p,G, Ĝ, e) be a bilinear group
output by BGGen = ParGen. Let � > 1 and M := (G∗

1)
�. The EQS scheme FHS

is defined as follows:

– KeyGen(grp, 1�): sample x ←$ (Z∗
p)

�, set sk := x, pk := X̂ =
(
x1Ĝ, . . . , x�Ĝ

)
.

– Sign(x,M): sample r ←$ Z
∗
p and return σ :=

(
r
∑�

i=1 xiMi,
1
r G, 1

r Ĝ
)
.

– ChgRep(X̂,M , (Z,R, R̂), μ) sample r ←$ Z
∗
p and return σ′ :=

(
μrZ, 1

r R, 1
r R̂

)

– Verify(X̂,M , (Z,R, R̂)): return 1 if and only if

∑�

i=1
e
(
Mi, X̂i

)
= e

(
Z, R̂

)
and (4)

e
(
R, Ĝ

)
= e

(
G, R̂

)
. (5)

On Security Proofs of Existing Equivalence Class Signature Schemes 15

Correctness is immediate (cf. [FHS19]). While, so far, the scheme has only been
proven secure in the generic group model, we will give a proof in the AGM.

Definition 4 (EQS-unforgeability in the AGM). The algebraic unforge-
ability game UNFAGM is obtained from the UNF game from Definition 2 with
the following changes: whenever the adversary A outputs an element Y of a
group Gt, for t ∈ {1, 2}, it also provides a representation α s.t. Y =

∑
αiYi,

where {Yi} is the set of previously received elements from Gt.

The (q1, q2)-DL assumption [Lip12] in a bilinear group grp = (G1,G2,GT ,
p,G, Ĝ, e) states that for a randomly sampled y ←$ Zp, no efficient adversary,
that is given grp as well as yiG for i ∈ [q1] and yiĜ for i ∈ [q2], can find y.

We introduce a variant of this assumption, where in addition to powers of
the challenge value yi (in the form yiGt), the adversary receives denominators
1/(y + ci) for random known values ci. This is reminiscent of the assumption
corresponding to the weakly secure Boneh-Boyen signatures [BB04], which is
implied by their strong Diffie-Hellman assumption. Analogously, we show that,
under similar conditions, our assumption is implied by the standard (q1, q2)-DL
assumption for appropriate q1 and q2.

Definition 5. The q-PowDenDL assumption holds with respect to BGGen if
Advq-PowDenDL

BGGen,A (λ) := Pr[q-PowDenDLBGGen,A(λ) = 1] is negligible for all p.p.t.
adversaries A, where game q-PowDenDL is defined as follows:

q-PowDenDLBGGen,A(λ)

1 : grp = (G1,G2,GT , p, G, Ĝ, e) ← BGGen(1λ)

2 : y ←$ Zp ; (c1, . . . , cq) ←$ Z
q
p

3 : if (−y mod p) ∈ {c1, . . . , cq} then return 1

4 : y′ ← A
(
grp,

(
yiG

)2q

i=1
, yĜ,

(
1

y+ci
G, 1

y+ci
Ĝ, ci

)q

i=1

)

5 : return y = y′

We show that, assuming that BGGen returns random generators, q-
PowDenDL is implied by (q1, q2)-DL for q1 := 3q and q2 := q + 1; we follow
Boneh and Boyen’s proof [BB04] (who for their scheme also assume that gener-
ators are randomly sampled).

Lemma 3. Let q be arbitrary and BGGen be such that G and Ĝ are uniformly
random. If (3q, q + 1)-DL holds then q-PowDenDL holds; concretely, for every
A there exists B with essentially the same running time such that

Adv
(3q,q+1)-DL
BGGen,B (λ) ≥ Advq-PowDenDL

BGGen,A (λ) .

Proof. Let A be an adversary against q-PowDenDL. We construct an adversary
B against (3q, q + 1)-DL. Let

(
G1,G2,GT , p,G, Ĝ, e,X(1), . . . , X(3q), X̂(1), . . . , X̂(q+1)

)

16 B. Bauer et al.

be an instance of (3q, q + 1)-DL, that is, for some x, we have X(i) = xiG and
X̂(i) = xiĜ. Reduction B chooses c1, . . . , cq ←$ Zp; if for any i ∈ [q] : −ciG =
X(1) then B stops and returns −ci.

Otherwise, B defines the polynomial

q∏

j=1

(X + cj) =
q∑

j=0

γjXj =: P(X)

for some γ0, . . . , γq ∈ Zp. It defines new generators H :=
∑q

j=0 γjX
(j) =

(∏q
j=1(x + cj)

)
G and Ĥ :=

∑q
j=0 γjX̂

(j). If H = 01 then B factors P(X) and
returns the root x that satisfies xG = X(1). Since G and Ĝ were uniform, so are
H and Ĥ. The reduction then completes a q-PowDenDL challenge

(
G1,G2,GT , p,H, Ĥ, e, Y (1), . . . , Y (2q), Ŷ (1), Y1, . . . , Yq, Ŷ1, . . . , Ŷq, c1, . . . c1

)

for secret x as follows:

– for i ∈ [2q]: Y (i) :=
∑q

j=0 γjX
(j+i) =

(
xi

∏q
j=1(x + cj)

)
G = xiH; and analo-

gously Ŷ (1) =
(
x

∏q
j=1(x + cj)

)
Ĝ = xĤ;

– for i ∈ [q]: let δi,j be such that
∑q−1

j=0 δi,jXj =
∏q

j=1,j 	=i(X + cj);
set Yi :=

∑q−1
j=0 δi,jX

(j) =
(∏q

j=1,j 	=i(x + cj)
)
G = 1

x+ci
H and, likewise,

Ŷi :=
∑q−1

j=0 δi,jX̂
(j).

Reduction B runs A on the (correctly distributed) q-PowDenDL instance and
forwards the solution x if A finds it. Whenever A finds it, B also solves its
(3q, q + 1)-DL challenge.

Theorem 1. Let q ∈ N and let A be an algebraic adversary attacking UNFAGM

of FHS that makes q signing queries. Then there exists a reduction B against
q-PowDenDL for BGGen such that

Advq-PowDenDL
BGGen,B ≥ AdvUNFAGM

FHS,A − 4q + 1
p − 1

.

Proof Idea. We will construct a reduction that essentially views the discrete
logarithm z of any group element Z as a polynomial Z(Y) in indeterminate Y,
such that when evaluated on the solution y of the given q-PowDenDL challenge,
we have Z(y) = z. In particular, the reduction embeds y into the public key X̂
given to the adversary, as well as into the randomness ri that is sampled for the
i-th signing query.

In order to guarantee independence of the adversary’s behavior from y , we
hide y by both multiplying with and adding a uniform element from Zp. In par-
ticular, components of the secret key will have the form xjy + x′

j for random
xj , x

′
j . This ensures that even an unbounded adversary that can compute dis-

crete logarithms is unable to reason about y, since it is information-theoretically
hidden (the values xj and x′

j are not used anywhere else). Using the element

On Security Proofs of Existing Equivalence Class Signature Schemes 17

Ŷ (1) = yĜ from its q-PowDenDL instance, the reduction can compute the pub-
lic key elements X̂j = xj Ŷ

(1) + x′
jĜ.

Analogously, y will be embedded into the randomness ri of each signing query.
We now show how the reduction answers its i-th signing query. Let (Zk, Rk, R̂k),
k < i, be the signatures given to the adversary A so far, for which the reduction
knows the polynomials representing their discrete logarithms. When A queries
the signing oracle on a message M , since A is algebraic, it accompanies each
Mj with a representation (μ(j), μ

(j)
z,1, . . . , μ

(j)
z,i−1,, μ

(j)
r,1, . . . , μ

(j)
r,i−1) such that

Mj := μ(j)G +
i−1∑

k=1

μ
(j)
z,kZk +

i−1∑

k=1

μ
(j)
r,kRk , (6)

since G,Z1, . . . , Zi−1, R1, . . . , Ri−1 are all the G1 elements that A has seen so
far. As the reduction knows the polynomials associated to these group elements,
from (6) it can compute the polynomial associated to Mj , and, from this, the
polynomial associated to the signature element Z = r

∑
(xiy + x′

i)Mi. Even
though the reduction does not know y, it can evaluate these polynomials on y
“in the exponent” by performing group operations in G1 on the elements given
in the q-PowDenDL challenge and thereby compute Z (and analogously R and
R̂).

Once the adversary submits its forgery (Z,R, R̂),M , the reduction considers
the two EQS verification equations (4) and (5) “in the exponent”, and repre-
sents them in the “homogenious” form e(R, Ĝ) − e(G, R̂) = 0 (for (5)). The
algebraic adversary A accompanies its forgery with representations, from which
the reduction can compute the polynomials associated to each element. Plugging
these into the verification equations, B computes two “verification polynomials”
Q1 and Q2, which evaluate to 0 at y if and only if A’s forgery satisfies the
corresponding equation.

If the adversary succeeds, there are two cases: (1) At least one of the verifi-
cation polynomials is not the zero polynomial: Qi 	≡ 0. Then the q-PowDenDL
solution y is a root of Qi. By factoring Qi, we therefore obtain the solution y.
(2) Both polynomials are identically zero: we show that in this case the message
on which the adversary provided a forgery was in fact a multiple of a previously
asked query. This contradicts that the adversary wins the game. This will be
accomplished by reasoning about the coefficients that the algebraic adversary
provides by equating coefficients of the verification polynomial.

Proof. Consider the UNFAGM game instantiated with FHS as shown in Fig. 2.
(We omit the group elements from A’s outputs, since they are determined by
their representations.) We follow the convention that for an uppercase Latin
letter A the coefficients will be represented by its greek lowercase analog α,
where subscripts like αz,k are to be read as “the coefficient that gets multiplied
with Zk”. The elements Zi, Ri and R̂i are the answers to the i-th signing query.
For example, the element Z is represented by the coefficients ζ, ζz,k and ζr,k for
k ∈ [q], as can be seen in Fig. 2 on Line 7.

18 B. Bauer et al.

Fig. 2. The game UNFAGM for the EQS scheme FHS.

We will construct a reduction B in Fig. 3 that breaks q-PowDenDL using an
algebraic adversary A against UNFAGM that makes up to q queries to the signing
oracle. The reduction works as follows: it gets the q-PowDenDL challenge

(
Y (i)

)2q

i=1
, Ŷ (1),

(
Yi, Ŷi, ci

)q

i=1

with the aim of computing the discrete logarithm y of Y (1). For the sake of con-
venience define Y (0) := G. Sampling uniform vectors x,x′ the reduction embeds
y into the secret key by setting the public key elements X̂j := xj Ŷ

(1) + x′
jĜ.

On Security Proofs of Existing Equivalence Class Signature Schemes 19

If for any j we have X̂j = 02 then B stops and returns y = −x−1
j x′

j mod p.
Note that the public key elements are distributed correctly, since the reduction
B essentially implements rejection sampling. The secret key elements, which cor-
respond to the discrete logarithm of the public key, are thus of the form xjy+x′

j .
The reduction can therefore, without knowing y, evaluate a polynomial at y “in
the exponent” by using the elements of the q-PowDenDL challenge. These poly-
nomials will be represented in sans-serif font, e.g. Mj , and their indeterminates
in Roman font, e.g. Y.

The vectors x and x′ are required so the adversary’s behavior is independent
of y. Even if it is unbounded and is able to obtain discrete logarithms of elements,
since y is hidden information-theoretically, it cannot reason about y. Similarly,
y is embedded in the randomness r that gets introduced during a signing query.
The signing randomness will be of the form as ri(y + ci) where ri gets drawn
uniformly and ci is part of the q-PowDenDL challenge. Due to the randomness
r appearing both as r and its reciprocal 1

r , the reduction will in fact consider
Laurent polynomials. The elements Yi and Ŷi from its challenge enable the reduc-
tion to also evaluate (very specific) Laurent polynomials “in the exponent” at
y and compute corresponding group elements. Since y is embedded in both the
secret key and the signature randomness, the reduction considers multivariate
Laurent polynomials in indeterminates X and R, which models the adversary’s
view more closely and simplifies our reasoning. Only at a later stage these mul-
tivariate Laurent polynomials will be transformed into univariate polynomials
in Y.

When A makes the i-th signing query, for j ∈ [�] the reduction will receive
coefficients

μ(i,j),
(
μ
(i,j)
z,k

)i−1

k=1
,
(
μ
(i,j)
r,k

)i−1

k=1

that represent the j-th component of the queried message

Mj := μ(i,j)G +
i−1∑

k=1

μ
(i,j)
z,k Zk +

i−1∑

k=1

μ
(i,j)
r,k Rk.

Since Zk and Rk were the answers to previous signing queries, the reduction has
Laurent polynomials that represent their respective logarithms. This fact will be
used to find a Laurent polynomial that represents the logarithm of the answer to
the i-th query Zi. The following lemma will give a detailed description on how
the reduction answers the adversaries signing queries.

Lemma 4. There exist coefficients a
(i)
k , k ∈ {0, . . . , 2i}, and b

(i)
k , k ∈ [i − 1],

such that the polynomial Zi representing the signature element Zi from the i-th
signing query is of the form

Zi(Y) =
2i∑

k=0

a
(i)
k Yk +

i−1∑

k=1

b
(i)
k

1
rk(Y + ck)

.

Moreover B can compute these coefficients efficiently.

20 B. Bauer et al.

Fig. 3. Reduction from FHS unforgeability in the AGM to q-PowDenDL

Proof. We will prove this by induction on the signing queries. Consider i = 1,
the first signing query. As the previously seen G1 element is G, for the message
we have M

(1)
j = μ(1,j)G for some μ(1,j), which we represent as a polynomial

On Security Proofs of Existing Equivalence Class Signature Schemes 21

M
(1)
j = μ(1,j) for j ∈ [�]. Therefore the reduction will consider the Laurent

polynomial

Z1(X,R) = R1

�∑

j=1

μ(1,j)Xj

evaluated on Xj = xjY+x′
j for j ∈ [�] and R1 = r1(Y+c1), which can be parsed

as (recall that � denotes componentwise multiplication)

Z1(xY + x′, rY + r � c) = r1(Y + c1)
∑

j

μ(1,j)(xjY + x′
j)

= Y2
∑

j

μ(1,j)r1xj + Y
∑

j

μ(1,j)r1
(
xjc1 + x′

j

)
+

∑

j

μ(1,j)r1c1x
′
j

=

2∑

k=0

a
(1)
k Yk,

for appropriate coefficients a
(1)
k . Observe that degY Z1 ≤ 2. The reduction then

sends the group elements Z1 :=
∑2

k=0 a
(1)
k Y (k) and R1 := 1

r1
Y1 = 1

r1(y+c1)
G and

R̂1 := 1
r1

Ŷ1 answering the query. Note that the fractional part of Z1 being zero is

in accordance with the statement of this lemma, since
∑0

k=1 b
(1)
k (rk(Y+ck))−1 =

0 holds for the empty sum.
Now consider the i-th query, after the reduction has answered all queries k < i

represented by polynomials Zk for which degY Zk ≤ 2k holds. The previously
seen G1 elements additionally contain Zk and Rk for k < i, therefore the message
is provided with coefficients such that for j ∈ [�] its polynomial representation is

M
(i)
j = μ(i,j) +

i−1∑

k

μ
(i,j)
z,k Zk(X,R) +

i−1∑

k

μ
(i,j)
r,k R−1

k .

The reduction then considers the Laurent polynomial

Zi(X,R) = Ri

∑

j

Xj

(
μ(i,j) +

i−1∑

k

μ
(i,j)
z,k Zk(X,R) +

i−1∑

k

μ
(i,j)
r,k R−1

k

)

and evaluates it on Xj = xjY + x′
j for j ∈ [�] and Ri = ri(Y + ci) for i ∈ [q]. By

the induction hypothesis we know that for k < i there exist coefficients a
(k)
j and

b
(k)
j such that

Zk(xY + x′, rY + r � c) =
2k∑

j=0

a
(k)
j Yj +

k−1∑

j=1

b
(k)
j

1
rj(Y + cj)

.

The reduction now considers Zi(xY + x′, rY + r � c) = P(Y) + F(Y) where
P denotes the polynomial part, while F denotes the fractional part of Zi. The
polynomial part can be parsed as

22 B. Bauer et al.

P(Y) = ri(Y + ci)
∑

j

(xjY + x′
j)

(

μ(i,j) +
i−1∑

k

μ
(i,j)
z,k

2k∑

j=0

a
(k)
j Yj

)

=
2i∑

j=0

pjYj ,

for appropriate coefficients pj . For the fractional part

F(Y) = ri(Y + ci)
∑

j

(xjY + x′
j)

(
i−1∑

k

μ
(i,j)
z,k

k−1∑

m

b(k)m

1
rm(Y + cm)

+
i−1∑

k

μ
(i,j)
r,k

1
rk(Y + ck)

)

,

the reduction can find coefficients fj for j ∈ {1, 0, . . . ,−i+1} via partial fraction
decomposition such that

F(Y) = f1Y + f0 +
i−1∑

j=1

f−j
1

rj(Y + cj)
.

Therefore

Zi(xY + x′, rY + r � c) = P(Y) + F(Y)

=
2i∑

j=0

pjYj + f1Y + f0 +
i−1∑

j=1

f−j
1

rj(Y + cj)

=
2i∑

j=0

a
(i)
j Yj +

i−1∑

j=1

b
(i)
j

1
rj(Y + cj)

,

for appropriate a
(i)
j , b

(i)
j . The reduction answers the signing query with Zi :=

∑2i
j=0 a

(i)
j Y (j) +

∑i−1
j=1 b

(i)
j Yj and Ri := 1

ri
Yi and R̂i := 1

ri
Ŷi. Note that since

Zi =
2i∑

j=0

a
(i)
j Y (j) +

i−1∑

j=1

b
(i)
j Yj

= Zi(xy + x′, ry + r � c)G

= (riy + rici)
∑

j

M
(i)
j (xjy + x′

j)

= r̃
∑

j

x̃jM
(i)
j ,

with r̃ being uniform in Z
∗
p, x̃j being consistent with X̂, and Ri = 1

r̃ G, the
signatures are distributed identically to signatures from FHS. ��
Since the q-PowDenDL challenge contains “powers” up to 2q and q different
“denominators” we obtain the following corollary.

On Security Proofs of Existing Equivalence Class Signature Schemes 23

Corollary 1. Using the q-PowDenDL challenge, the reduction can answer q
queries to the signing oracle.

The following observation directly follows from the definition of Zi, and not-
ing that there do not exist reciprocal terms in X in any of the Laurent polyno-
mials that we consider.

Remark 1. Let i ∈ [q]. Then for every monomial m of Zi there exists a j ∈ [q]
such that Xj divides m.

At some point the adversary A will output coefficients that represent a
forgery consisting of a message M and the signature (Z,R, R̂). Figure 2 describes
how these coefficients relate to the elements. B then defines polynomials V1 and
V2 that correspond to the two verification equations in the UNFAGM game. If
the verification equation (5) e(G, R̂) = e(R, Ĝ) holds, then the logarithms of R
and R̂ are equivalent. Therefore the polynomial V1 has y as a zero if R and R̂
satisfy that verification equation of the game.

Recall the definitions of the Laurent polynomials (Fig. 3, lines 5 and 6):

R(X,R) := ρ +
q∑

k=1

ρz,kZk(X,R) +
q∑

k=1

ρr,kR−1
k

R̂(X,R) := ρ̂ +
�∑

k=1

ρ̂x,kXk +
q∑

k=1

ρ̂r,kR−1
k ,

clearly, R̂ has denominators of maximum degree 1. Recall also that every Laurent
polynomial we consider only has reciprocal terms in R. Consider how Zi is
formed inductively, then Z1 does not have any reciprocal terms (and insofar
denominators with a maximum degree of 1), while when Zi is formed from the
previous Zk for k < i, there might be reciprocal terms of degree 1 that are
added. Therefore Zi only has denominators with a maximum degree of 1, and
so R only has denominators with a maximum degree of 1. Therefore, the factor∏

i Ri ensures that V1 is a polynomial.
Analogously, V2 has y as a root if and only if the verification equation (4)∑

j e(Mj , X̂j) = e(Z, R̂) holds. Since multiplying R̂ by R−1
k potentially contained

in the polynomial associated with Z creates denominators of degree 2, the factor∏
i R2

i ensures that V2 is a polynomial. Observing that Zk has a total degree
upper-bounded by 2k, the following corollary summarizes this argument.

Corollary 2. Both V1 and V2 are polynomials of total degree upper-bounded by
4q + 1.

The following convention will simplify the remainder of the proof.

Remark 2. Since for fixed k the coefficient ζz,k only occurs as a factor of Zk,
whenever Zk ≡ 0 the adversary A can choose ζz,k arbitrarily. Since this choice
does not change the system of equations, the reduction will set ζz,k := 0 whenever
Zk ≡ 0.

24 B. Bauer et al.

Note that this remark is not limited to ζz,k but also applies to other coefficients
for example ρz,k among others.

We will briefly discuss the technique used in the following proofs. Recall
that if R is a ring, then an ideal I is an additive subgroup of R such that for
P ∈ R and Q ∈ I it holds that PQ ∈ I � QP. For a subset S of R, the ideal
generated by S is defined as the smallest ideal I such that S ⊆ I. If I is an ideal
then R/I is a ring, the so-called quotient ring or factor ring. Conceptually, the
ideal “defines” which elements we identify with 0 in the quotient ring. Since we
consider V1 ≡ 0, that is, for all inputs it vanishes, viewing this equation in the
quotient ring corresponds to fixing specific terms (the ones in the ideal) to zero.
This greatly simplifies notation when we equate coefficients of polynomials.

The following lemma states that given polynomials Pj in X such that (7)
holds, then all Pj must vanish. Since we will apply this lemma to polynomials
Pj of degree less than two, this means that they must be the zero polynomial.
Equations of the form (7) emerge in the proof by considering Vt ≡ 0, for t ∈ [2],
in an appropriate quotient ring. Remark 2 motivates that we merely need to
consider the non-zero polynomials Zj .

Lemma 5. Let J := {j | Zj 	≡ 0} ⊆ [q] be the set of indices such that Zj

is a non-zero Laurent polynomial, and for j ∈ J let Pj ∈ Zp[X] be arbitrary
polynomials. Then whenever

(∏

k

Rk

) ∑

j∈J

PjZj ≡ 0, (7)

as a polynomial in X and R, we have Pj ≡ 0 for all j ∈ J .

Proof. For j ∈ J let Kj be the ideal generated by {R2
i | j < i ≤ q}. We will

consider equations in the factor rings Zp[X,R]/Kj , where we will denote equality
by ≡Kj

.
We will prove the claim inductively on the size of J . Assume J 	= ∅ and let

j := min J . Consider (7) modulo Kj . Since Ri divides Zi, and thus R2
i divides(∏

k Rk

)
Zi, all the summands PiZi for i > j vanish:

(∏

k

Rk

)
PjZj ≡Kj

0. (8)

Now since Zj 	≡ 0, and Zj does not contain any Ri for i > j, we get

degRi

(∏

k

Rk

)
Zj = 1.

Since Pj does not depend on R, the only way that the left-hand side of (8)
always vanishes is for Pj ≡ 0. Considering J ′ := J \{j} we can inductively apply
this reasoning eventually yielding the statement. ��

We will now consider what it means if either verification polynomial Vt is the
zero polynomial. This essentially models an adversary that tries to “outsmart”

On Security Proofs of Existing Equivalence Class Signature Schemes 25

the reduction, by choosing coefficients in a way such that the polynomials V1 and
V2 leak no information about y. In particular, if V1 ≡ 0 then A was (partly) suc-
cessful in forging a signature but our reduction cannot obtain the q-PowDenDL
solution y from the corresponding equation. The following lemma captures that
the only way for A to enforce V1 ≡ 0 is to represent both R and R̂ by the same
coefficients.

Lemma 6. If V1 ≡ 0, then the following holds for the coefficients of R and R̂:

ρ = ρ̂,

ρz,j = ρ̂x,j = 0 ∀j ∈ [q],
ρr,j = ρ̂r,j ∀j ∈ [q].

Proof. Let j ∈ [q] and let J denote the ideal generated by {X1, . . . ,X�,Rj}. We
will look at V1 in the quotient ring Zp[X,R]/J. By ≡J we denote equivalence in
the quotient ring. Recall that

V1(X,R) =
(∏

i

Ri

)(
R(X,R) − R̂(X,R)

)

=
(∏

i

Ri

)(
ρ +

∑

k

ρz,kZk(X,R) +
∑

k

ρr,kR−1
k

− ρ̂ −
∑

k

ρ̂x,kXk −
∑

k

ρ̂r,kR−1
k

)
.

Now since ρ
∏

i Ri ≡J 0 and ρ̂
∏

i Ri ≡J 0, and all monomials of Zk contain some
Xj (as noted in Remark 1), which implies Zk = Rk

∑
j XjM

(k)
j ≡J 0, we get

0 ≡ V1(X,R) ≡J

(∏

i

Ri

)(∑

k

(ρr,k − ρ̂r,k)R−1
k

)

≡J

(∏

i	=j

Ri

)
(ρr,j − ρ̂r,j),

where the second equivalence follows from Rj ≡J 0. Equating coefficients yields
ρr,j = ρ̂r,j . As j was arbitrary, this result holds for every j ∈ [q].

Since V1 ≡ 0 implies that V1/
∏

i Ri ≡ 0 where it is defined, viewing this
equation in the factor ring obtained by factoring the ideal X generated by
{X1, . . . ,X�} and using what we deduced about ρr,j and ρ̂r,j we get

V1(X,R)
∏

i Ri
≡ ρ − ρ̂ +

∑

k

ρz,kZk(X,R) −
∑

k

ρ̂x,kXk

≡X ρ − ρ̂,

where by Remark 1 we have Zk = Rk

∑
j XjM

(k)
j ≡X 0. We thus obtain ρ = ρ̂.

26 B. Bauer et al.

Now consider the ideal R generated by {R1, . . . ,Rq}. Together with what we
deduced so far we have

0 ≡ V1(X,R)
∏

i Ri
≡

∑

k

ρz,kZk(X,R) −
∑

k

ρ̂x,kXk

≡
∑

k

ρz,kRk

∑

j

XjM
(k)
j (X,R) −

∑

k

ρ̂x,kXk

≡R −
∑

k

ρ̂x,kXk,

where we used that M(k)
j only depends on Ri for i < k, and thus does not contain

any inverses of Rk. By equating coefficients for Xk we obtain ρ̂x,k = 0 for all
k ∈ [�]. We therefore showed that

V1(X,R) =
(∏

i

Ri

) ∑

k

ρz,kZk(X,R).

Analogously to Remark 2, the reduction can set ρz,k = 0 whenever Zk ≡ 0
without loss of generality. Thus, applying Lemma 5 yields ρz,j = 0 for j ∈ [q].
This concludes the proof. ��

The next lemma captures that if both polynomials representing the verifi-
cation equations are zero, then A must have provided a forgery on a message
that is a multiple of a previously queried message. The idea here is to consider
V2 ≡ 0 and iteratively compare coefficients in various quotient rings to simplify
the equation such that we can reason about the coefficients provided by A.

Lemma 7. If V1 ≡ 0 and V2 ≡ 0, then the message returned by A is a multiple
of a message queried to the signing oracle, in particular

∃i∗ ∈ [q] ∀j ∈ [�] : Mj = ρr,i∗ζz,i∗M
(i∗)
j .

Proof. By Lemma 6 we have

R̂(X,R) = ρ +
∑

k

ρr,kR−1
k ,

and therefore V2 has the form

V2(X,R) =
(∏

i

R2
i

)(∑

k

XkMk(X,R) − (
ρ +

∑

k

ρr,kR−1
k

) · Z(X,R)
)
.

Let j ∈ [q] and denote by I the ideal generated by {X1, . . . ,X�,Rj}. Recall

Z(X,R) = ζ +
∑

i

ζz,iZi(X,R) +
∑

i

ζr,iR−1
i .

On Security Proofs of Existing Equivalence Class Signature Schemes 27

Viewing V2 modulo I, all the terms containing Xk vanish (cf. Remark 1), and
the only terms that remain are the ones where R2

j cancels. We obtain

0 ≡ V2 ≡J −ρr,jζr,j , (9)

where j was arbitrary. We will start by showing that ζr,k = 0 for all k ∈ [q].
Assume towards a contradiction that there exists k ∈ [q] such that ζr,k 	= 0.
Using this consider j 	= k ∈ [q] and let J denote the ideal generated by {X1, . . . ,
X�,Rk,Rj}. Then, analogously to the previous step where we considered the
ideal I, all the terms containing Xk vanish, and the only terms that remain are
ones that don’t contain Rk or Rj either:

0 ≡ −V2∏
i Ri

≡J

(∏

i

Ri

)(∑

m

∑

m′ 	=m

ρr,mζr,m′R−1
m R−1

m′

)

≡J

(∏

i	=k,i 	=j

Ri

)(
ρr,kζr,j + ρr,jζr,k

)
,

and thus

ρr,kζr,j + ρr,jζr,k = 0 for all j ∈ [q]. (9a)

Now since we assumed ζr,k 	= 0 from (9) we get ρr,k = 0, which with (9a) yields
ρr,jζr,k = 0 and thus ρr,j = 0 for all j ∈ [q]. Again let k ∈ [q] and denote by J
the ideal generated by {X1, . . . ,X�,Rk}. We have that

0 ≡ V2(X,R)
∏

i Ri
≡J

(∏

i

Ri

)(
− ρ

(
ζ +

∑

j

ζr,jR−1
j

)) ≡J −ρζr,k

∏

i	=k

Ri,

and therefore ρ = 0. With ρr,j = 0 for all j ∈ [q], Lemma 6 now implies R ≡ 0,
which contradicts A providing a valid forgery. Therefore ζr,k = 0 for k ∈ [q], and
thus

Z(X,R) = ζ +
∑

k

ζz,kZk(X,R). (10)

Denote by L the ideal generated by {X1, . . . ,X�}. Then, by Remark 1, we
have Z(X,R) ≡L ζ and therefore

0 ≡ −V2(X,R)
∏

i Ri
≡L

(∏

i

Ri

)(
ζρ +

∑

j

ζρr,iR−1
j

) ≡L

(∏

i

Ri

)
ζR̂(X,R).

Since both R̂ 	≡ 0 and
∏

k Rk 	≡ 0 modulo L, we get ζ = 0. We therefore showed
that (10) has the form

Z(X,R) =
∑

k

ζz,kZk(X,R).

28 B. Bauer et al.

We will now show that merely one summand is non-zero. Define i∗ := max{i |
ζz,i 	= 0}, and note that by Remark 2 we have Zi∗ 	≡ 0. Recall that we deduced

V2(X,R) =
(∏

i

R2
i

)
(∑

k

Mk(X,R)Xk −
(
ρ +

∑

k

ρr,kR−1
k

) i∗
∑

k

ζz,kZk(X,R)
)

and that Mk is defined as

Mk(X,R) := μ(k) +
∑

j

μ
(k)
z,jZj(X,R) +

∑

j

μ
(k)
r,j R−1

j . (11)

We will show that μ
(k)
z,j = 0 for j > i∗. Let k∗ := sup{k | ∃j : μ

(j)
z,k 	= 0}. Again,

similarly to Remark 2, we have Zk∗ 	≡ 0. Suppose k∗ > i∗ and consider all the
monomials of V2 that are divisible by R3

k∗ , that is, all the terms in which Zk∗

appears
(∏

i

R2
i

)(∑

j

μ
(j)
z,k∗Zk∗(X,R)Xj

)
≡ 0.

Since Zk∗ 	≡ 0, equating coefficients we obtain μ
(j)
z,k∗ = 0 for all j, therefore

k∗ ≤ i∗.
Now consider all the monomials of V2 that are divisible by R3

i∗ , that is, all the
terms in which Zi∗ appears, and equate coefficients with the zero polynomial:

Zi∗(X,R)
(∏

i

R2
i

)
(∑

j

μ
(j)
z,i∗Xj −

(
ρ +

∑

k 	=i∗
ρr,kR−1

k

)
ζz,i∗

)
≡ 0.

Since Zi∗ 	≡ 0, we can equate coefficients of Xj to obtain μ
(j)
z,i∗ = 0 for j ∈ [�].

This leaves us with the subtrahend, where due to ζz,i∗ 	= 0 equating coefficients
yields ρ = 0 and ρr,k = 0 for k ∈ [q] \ {i∗}. Now since R 	≡ 0, we have ρr,i∗ 	= 0.
This leaves us with

V2(X,R) =
(∏

i

R2
i

)
(∑

k

Mk(X,R)Xk − ρr,i∗R−1
i∗

i∗
∑

k

ζz,kZk(X,R)
)

, (12)

and (11) becomes

Mk(X,R) = μ(k) +
i∗−1∑

j

μ
(k)
z,jZk(X,R) +

∑

j

μ
(k)
r,j R−1

j .

Now consider the ideal I generated by {R2
1, . . . ,R

2
i∗−1,Ri∗}. Recall that Zk :=

Rk

∑
j M

(k)
j Xj , and that for j ∈ [�] the Laurent polynomial M(k)

j only has recip-
rocal terms in Rk′ for k > k′. Then in this ideal the subtrahend of (12) vanishes,
and the only remaining terms are those where Ri∗ cancels:

0 ≡ V2(X,R)
∏

k Rk
≡J

(∏

k 	=i∗
Rk

)∑

j

μ
(j)
r,i∗Xj .

On Security Proofs of Existing Equivalence Class Signature Schemes 29

Equating coefficients for Xj , we obtain μ
(j)
r,i∗ = 0 for j ∈ [�].

Consider the ideal J generated by Ri∗ . Then in the corresponding factor ring
the non-zero terms will be those where Ri∗ cancels. Since we just showed that
Mk does not contain any inverses of Ri∗ , this can only happen in the subtrahend
of (12) and thus

0 ≡ −V2(X,R)
∏

i Ri
≡J

(∏

i	=i∗
Ri

)
ρr,i∗

i∗−1∑

k

ζz,kZk(X,R).

Since ρr,i∗ 	= 0 and the right-hand side is constant in Ri∗ , multiplying by Ri∗

yields

(∏

k

Rk

) i∗−1∑

j

ζz,jZj(X,R) ≡ 0.

Now by Remark 2, Lemma 5 applies, and therefore ζz,j = 0 for j < i∗. We
therefore showed that there is exactly one index i∗ such that ζz,i∗ 	= 0.

Now by expanding the representation of Mk, (12) simplifies to

V2(X,R) =
(∏

i

R2
i

)(∑

k

(
μ(k) +

i∗−1∑

j

μ
(k)
z,jZk(X,R) +

∑

j 	=i∗
μ
(k)
r,j R−1

j

)
Xk

− ρr,i∗R−1
i∗ ζz,i∗Zi∗(X,R)

)
. (13)

For j > i∗ consider this equation in the factor ring obtained by factoring the
ideal J generated by R2

j . Then since for k < j we have that degRj
Zk = 0, in this

factor ring the only terms remaining are those of (13) that contain R−1
j . We get

0 ≡ V2(X,R) ≡J Rj

(∏

i	=j

R2
i

) ∑

k

μ
(k)
r,j Xk,

and equating coefficients yields μ
(k)
r,j = 0 for j > i∗.

Denote by I the ideal generated by {XiXj | 1 ≤ i ≤ j ≤ �}. Recall the
definition

Zi∗(X,R) := Ri∗
∑

j

(
μ(i∗,j) +

i∗−1∑

k

μ
(i∗,j)
z,k Zk(X,R) +

i∗−1∑

k

μ
(i∗,j)
r,k R−1

k

)
Xj .

30 B. Bauer et al.

Consider (13)≡ 0 in the corresponding factor ring, where by Remark 1 the terms
containing ZkXj vanish:

0 ≡ V2(X,R) ≡J

(∏

i

R2
i

)(∑

j

(
μ(j) +

i∗−1∑

k

μ
(j)
r,kR−1

k

)
Xj

− ρr,i∗R−1
i∗ ζz,i∗

∑

j

(
μ(i∗,j) +

i∗−1∑

k

μ
(i∗,j)
r,k R−1

k

)
Xj

)

≡J

(∏

i

R2
i

)∑

j

Xj

(
μ(j) − ρr,i∗ζz,i∗μ(i∗,j)

+
i∗−1∑

k

(
μ
(j)
r,k − ρr,i∗ζz,i∗μ

(i∗,j)
r,k

)
R−1

k

)
.

Equating coefficients yields μ
(j)
r,k = ρr,i∗ζz,i∗μ

(i∗,j)
r,k for j ∈ [�] and k < i∗, and

μ(j) = ρr,i∗ζz,i∗μ(i∗,j) for j ∈ [�]. Therefore (13) simplifies to

V2(X,R) =
(∏

i

R2
i

)
(

i∗−1∑

k

(∑

j

(
μ
(j)
z,k − ρr,i∗ζz,i∗μ

(i∗,j)
z,k

)
Xj

)
Zk

)

.

For k < i∗ define the polynomial

Pk(X) :=
∑

j

(
μ
(j)
z,k − ρr,i∗ζz,i∗μ

(i∗,j)
z,k

)
Xj .

Whenever Zk = 0, similarly to Remark 2, we can suppose that μ
(j)
z,k = 0 and

μ
(i∗,j)
z,k = 0 for all j ∈ [�], which implies Pk = 0. Lemma 5 is therefore applicable,

yielding Pk ≡ 0 for k < i∗. Equating coefficients yields μ
(j)
z,k = ρr,i∗ζz,i∗μ

(i∗,j)
z,k for

j ∈ [�] and k < i∗. Thus, for all j ∈ [�] we derived

Mj = μ(j)G +
i∗−1∑

k

μ
(j)
z,kZj +

i∗−1∑

k

μ
(j)
r,kRk

= ρr,i∗ζz,i∗μ(i∗,j)G +
i∗−1∑

k

ρr,i∗ζz,i∗μ
(i∗,j)
z,k Zj +

i∗−1∑

k

ρr,i∗ζz,i∗μ
(i∗,j)
r,k Rk

= ρr,i∗ζz,i∗

(
μ(i∗,j)G +

i∗−1∑

k

μ
(i∗,j)
z,k Zj +

i∗−1∑

k

μ
(i∗,j)
r,k Rk

)

= ρr,i∗ζz,i∗M i∗
j .

��
So far, we reasoned about the multivariate verification polynomials V1 and V2

where each indeterminate corresponds to one secret value that gets embedded.

On Security Proofs of Existing Equivalence Class Signature Schemes 31

B transforms these multivariate verification polynomials into univariate polyno-
mials in Y by evaluating the indeterminates by specifying how y was embedded.
This yields the univariate polynomials Q1 and Q2 with indeterminate Y.

This transformation from multivariate to univariate polynomials might turn
a non-zero polynomial into the zero polynomial. The following lemma will show
that in our specific setting this is unlikely to occur.

Lemma 8. Conditioned on A winning UNFAGM we have that the probability
that one of the univariate polynomials Q1 and Q2 is non-zero is overwhelming:

Pr
[
Q1 	≡ 0 ∨ Q2 	≡ 0

∣
∣ UNFAGM

A = 1
] ≥ 1 − 4q + 1

p − 1
.

Proof. Assuming that A wins UNFAGM, Lemma 7 yields V1 	≡ 0 ∨ V2 	≡ 0.
Assume the case V2 	≡ 0. From Corollary 2 we have that V2 is a polynomial of
total degree upper-bounded by 4q + 1. We can therefore apply the BFL Lemma
(Lemma 2) to conclude that given V2 	≡ 0, the leading coefficient in Y of

V′
2

(
U,V,U′,V′,Y

)
:= V2

(
UY + U′,VY + V′)

is a polynomial in indeterminates U,V of degree upper-bounded by 4q +1. Call
this polynomial V′

2,max ∈ Zp[U,V]. Recall that for i ∈ [q], ri and ci are drawn
uniformly from Z

∗
p and Zp, respectively. Let r′ := r � c and note that

Q2(Y) = V′
2 (x, r,x′, r′,Y) . (14)

Then by (14), it suffices to show V′
2,max 	≡ 0 with overwhelming probability.

Since (Zp,+) and (Z∗
p, ·) are both cyclic, r′

i is uniformly distributed over Zp.
Moreover, (ri, r

′
i) is uniformly distributed over Z

∗
p × Zp since the function

f : Z∗
p × Zp → Z

∗
p × Zp

(x, y) �→ (x, x · y)

is a bijection. This implies that the vector r′ = (r � c) is independent from the
vector r, and therefore (x′, r′) is independent of (x, r).

Furthermore, since (x, r) is completely hidden from the adversary’s view (due
to the additive mask (x′, r′) added after the multiplication), it is independent
from the coefficients of V′

2 (determined by A), and thus independent of the
coefficients of V2,max (still fully determined by A). Thus the Schwartz-Zippel
Lemma (Lemma 1) applied to V2,max on uniform inputs x, r yields

Pr
[
V2,max 	≡ 0

∣
∣ UNFAGM

A = 1
] ≥ 1 − 4q + 1

p − 1
.

Overall, we get

Pr
[
Q1 	≡ 0 ∨ Q2 	≡ 0

∣
∣ UNFAGM

A = 1
] ≥ Pr

[
Q2 	≡ 0

∣
∣ UNFAGM

A = 1
]

= Pr
[
V2,max 	≡ 0

∣
∣ UNFAGM

A = 1
]

≥ 1 − 4q + 1
p − 1

.

Noticing that the case V1 	≡ 0 follows analogously concludes the proof. ��

32 B. Bauer et al.

We will proceed with the proof of Theorem 1. We will show that reduction
B’s advantage is close to A’s advantage.

We know that B wins if A wins and (Q1 	≡ 0 or Q2 	≡ 0), since A win-
ning implies Verify (pk,M , σ) = 1, which means e

(
R∗, G2

)
= e

(
G, R̂∗) and

∑q
i=1 e

(
M∗

i ,pki

)
= e

(
Z, R̂∗). Therefore the logarithm y of Y (1) is a root of

both Q1 and Q2. Since at least one of them is not identically zero, with its
degree upper-bounded by 4q + 1, reduction B can efficiently factor the non-zero
one to obtain y among its roots, and therefore solve q-PowDenDL. This yields

Advq-PowDenDL
BGGen,B ≥ Pr

[
UNFAGM

A = 1 ∧ (Q1 	≡ 0 ∨ Q2 	≡ 0)
]

= Pr
[
UNFAGM

A = 1
]
Pr

[
Q1 	≡ 0 ∨ Q2 	≡ 0

∣
∣ UNFAGM

A = 1
]
,

and applying Lemma 8 yields

≥ AdvUNFAGM

A
(
1 − 4q + 1

p − 1

)
≥ AdvUNFAGM

A − 4q + 1
p − 1

.

This concludes the proof of Theorem 1. ��

Acknowledgments. The authors would like to thank the anonymous reviewers for
ASIACRYPT 2024 for their very valuable comments. This work was funded by the
Vienna Science and Technology Fund (WWTF) [10.47379/VRG18002] and by the Aus-
trian Science Fund (FWF) [10.55776/F8515-N].

References

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 209–236. Springer, Heidelberg, August 2010.

[AGHO11] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Optimal structure-preserving signatures in asymmetric bilinear groups. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
649–666. Springer, Heidelberg, August 2011.

[AGO11] Masayuki Abe, Jens Groth, and Miyako Ohkubo. Separating short
structure-preserving signatures from non-interactive assumptions. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 628–646. Springer, Heidelberg, December 2011.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 56–73. Springer, Heidelberg, May 2004.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles and the SDH assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, April 2008.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Hei-
delberg, May 2005.

On Security Proofs of Existing Equivalence Class Signature Schemes 33

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108–125. Springer, Heidelberg, August 2009.

[BEK+20] Jan Bobolz, Fabian Eidens, Stephan Krenn, Daniel Slamanig, and
Christoph Striecks. Privacy-preserving incentive systems with highly effi-
cient point-collection. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu,
and Giuseppe Ateniese, editors, ASIACCS 20, pages 319–333. ACM Press,
October 2020.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of
computational assumptions in the algebraic group model. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 121–151. Springer, Heidelberg, August 2020.

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-
more discrete logarithm assumption in the generic group model. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, vol-
ume 13093 of LNCS, pages 587–617. Springer, Heidelberg, December 2021.

[BFR24] Balthazar Bauer, Georg Fuchsbauer, and Fabian Regen. On proving equiv-
alence class signatures secure from non-interactive assumptions. In Qiang
Tang and Vanessa Teague, editors, PKC 2024, Part I, volume 14601 of
LNCS, pages 3–36. Springer, Heidelberg, April 2024.

[BHKS18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schnei-
der.Signatures with flexible public key: Introducing equivalence classes
for public keys. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 405–434. Springer,
Heidelberg, December 2018.

[BLL+19] Xavier Bultel, Pascal Lafourcade, Russell W. F. Lai, Giulio Malavolta,
Dominique Schröder, and Sri Aravinda Krishnan Thyagarajan. Efficient
invisible and unlinkable sanitizable signatures. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 159–189.
Springer, Heidelberg, April 2019.

[BLS04] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of
pairing-friendly groups. In Mitsuru Matsui and Robert J. Zuccherato, edi-
tors, SAC 2003, volume 3006 of LNCS, pages 17–25. Springer, Heidelberg,
August 2004.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko.The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215,
June 2003.

[Bow17] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction, 2017.
https://electriccoin.co/blog/new-snark-curve/.

[BRS23] Fabrice Benhamouda, Mariana Raykova, and Karn Seth. Anony-
mous counting tokens. In Jian Guo and Ron Steinfeld, editors, ASI-
ACRYPT 2023, Part II, volume 14439 of LNCS, pages 245–278. Springer,
Heidelberg, December 2023.

[BSW23] Christian Badertscher, Mahdi Sedaghat, and Hendrik Waldner.Unlinkable
policy-compliant signatures for compliant and decentralized anonymous
payments.Cryptology ePrint Archive, Paper 2023/1070, 2023. https://
eprint.iacr.org/2023/1070.

https://electriccoin.co/blog/new-snark-curve/
https://eprint.iacr.org/2023/1070
https://eprint.iacr.org/2023/1070

34 B. Bauer et al.

[CDLP22] Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade, and Octavio
Perez-Kempner. Protego: Efficient, revocable and auditable anonymous
credentials with applications to Hyperledger Fabric. In Takanori Isobe and
Santanu Sarkar, editors, INDOCRYPT 2022, volume 13774 of LNCS, pages
249–271. Springer, 2022.

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and
Hadrián Rodŕıguez. Lunar: A toolbox for more efficient universal
and updatable zkSNARKs and commit-and-prove extensions. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.

[CH20] Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS.In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, edi-
tors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer, Heidelberg,
September 2003.

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous
credentials from mercurial signatures. In Mitsuru Matsui, editor, CT-
RSA 2019, volume 11405 of LNCS, pages 535–555. Springer, Heidelberg,
March 2019.

[CL21] Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for
variable-length messages. PoPETs, 2021(4):441–463, October 2021.

[CLP22] Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner.
Improved constructions of anonymous credentials from structure-
preserving signatures on equivalence classes. In Goichiro Hanaoka, Junji
Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177
of LNCS, pages 409–438. Springer, 2022.

[CS20] Remi Clarisse and Olivier Sanders. Group signature without random ora-
cles from randomizable signatures. In Khoa Nguyen, Wenling Wu, Kwok-
Yan Lam, and Huaxiong Wang, editors, ProvSec 2020, volume 12505 of
LNCS, pages 3–23. Springer, Heidelberg, November / December 2020.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. A new approach to
efficient revocable attribute-based anonymous credentials. In Jens Groth,
editor, 15th IMA International Conference on Cryptography and Coding,
volume 9496 of LNCS, pages 57–74. Springer, Heidelberg, December 2015.

[DS16] David Derler and Daniel Slamanig. Fully-anonymous short dynamic
group signatures without encryption. Cryptology ePrint Archive, Report
2016/154, 2016.https://eprint.iacr.org/2016/154.

[DS18] David Derler and Daniel Slamanig. Highly-efficient fully-anonymous
dynamic group signatures. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages
551–565. ACM Press, April 2018.

https://eprint.iacr.org/2016/154

On Security Proofs of Existing Equivalence Class Signature Schemes 35

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge
Villar.An algebraic framework for Diffie-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis
Villar. An algebraic framework for Diffie-Hellman assumptions. Journal of
Cryptology, 30(1):242–288, January 2017.

[FG18] Georg Fuchsbauer and Romain Gay. Weakly secure equivalence-class signa-
tures from standard assumptions. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part II, volume 10770 of LNCS, pages 153–183.
Springer, Heidelberg, March 2018.

[FGKO17] Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk, and Claudio
Orlandi.Access control encryption for equality, comparison, and more. In
Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 88–
118. Springer, Heidelberg, March 2017.

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Sla-
manig.Practical round-optimal blind signatures in the standard model
from weaker assumptions. In Vassilis Zikas and Roberto De Prisco, edi-
tors, SCN 16, volume 9841 of LNCS, pages 391–408. Springer, Heidelberg,
August / September 2016.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 233–253. Springer, Heidelberg, August 2015.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in
bilinear groups and an application to anonymity of signatures. In Hovav
Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of
LNCS, pages 132–149. Springer, Heidelberg, August 2009.

[Fuc11] Georg Fuchsbauer. Commuting signatures and verifiable encryption. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 224–245. Springer, Heidelberg, May 2011.

[Fuc14] Georg Fuchsbauer. Breaking existential unforgeability of a signature
scheme from asiacrypt 2014. Cryptology ePrint Archive, Report 2014/892,
2014. https://eprint.iacr.org/2014/892.

[FV10] Georg Fuchsbauer and Damien Vergnaud. Fair blind signatures with-
out random oracles. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT 10, volume 6055 of LNCS, pages 16–33. Springer, Hei-
delberg, May 2010.

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More efficient
(almost) tightly secure structure-preserving signatures. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 230–258. Springer, Heidelberg, April / May
2018.

https://eprint.iacr.org/2014/892

36 B. Bauer et al.

[GL23] Scott Griffy and Anna Lysyanskaya. Pacific: Privacy-preserving automated
contact tracing scheme featuring integrity against cloning. Cryptology
ePrint Archive, Paper 2023/371, 2023. https://eprint.iacr.org/2023/371.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In Lance Fortnow and Salil P. Vad-
han, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019.

[Han23] Lucjan Hanzlik. Non-interactive blind signatures for random messages. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 722–752. Springer, Heidelberg, April 2023.

[HPP20] Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-
homomorphic signatures and scalable mix-nets. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 597–627. Springer, Heidelberg, May
2020.

[HRS15] Christian Hanser, Max Rabkin, and Dominique Schröder.Verifiably
encrypted signatures: Security revisited and a new construction. In
Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors,
ESORICS 2015, Part I, volume 9326 of LNCS, pages 146–164. Springer,
Heidelberg, September 2015.

[HS14] Christian Hanser and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and their application to anonymous credentials. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 491–511. Springer, Heidelberg, December 2014.

[HS21] Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2004–2023. ACM Press, Novem-
ber 2021.

[KSD19] Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian.Structure-
preserving signatures on equivalence classes from standard assumptions.
In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 63–93. Springer, Heidelberg,
December 2019.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012.

[LSZ22] Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires: From
univariate sumcheck to updatable ZK-SNARK. Cryptology ePrint Archive,
Paper 2022/406, 2022.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

[MBG+23] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel
Slamanig. Aggregate signatures with versatile randomization and issuer-
hiding multi-authority anonymous credentials. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM
CCS 2023, pages 30–44. ACM Press, November 2023.

https://eprint.iacr.org/2023/371

On Security Proofs of Existing Equivalence Class Signature Schemes 37

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix
Diffie-Hellman assumption. In Jung Hee Cheon and Tsuyoshi Takagi, edi-
tors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–758.
Springer, Heidelberg, December 2016.

[MSBM23] Omid Mir, Daniel Slamanig, Balthazar Bauer, and René
Mayrhofer.Practical delegatable anonymous credentials from equiva-
lence class signatures. Proc. Priv. Enhancing Technol., 2023(3):488–513,
2023.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk).In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109.
Springer, Heidelberg, August 2003.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

[PM23] Colin Putman and Keith M. Martin. Selective delegation of attributes in
mercurial signature credentials. In Elizabeth A. Quaglia, editor, IMACC
2023, volume 14421 of LNCS, pages 181–196. Springer, 2023.

[Poi23] David Pointcheval. Linearly-homomorphic signatures for short randomiz-
able proofs of subset membership. In Eighth International Joint Confer-
ence on Electronic Voting (E-Vote-ID’23), 2023.

[Poi24] David Pointcheval. Efficient universally-verifiable electronic voting with
everlasting privacy. Cryptology ePrint Archive, 2024.

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for univer-
sal and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Heidelberg.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

[SKSW22] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S.
Wahby.Pairing-Friendly Curves. Internet-Draft draft-irtf-cfrg-pairing-
friendly-curves-11, Internet Engineering Task Force, November 2022. Work
in Progress.

[SYF+23] Rui Shi, Yang Yang, Huamin Feng, Feng Yuan, Huiqin Xie, and Jianyi
Zhang. Prirpt: Practical blockchain-based privacy-preserving reporting
system with rewards. Journal of Systems Architecture, 143:102985, 2023.

[WTSD23] Eva Wisse, Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro.A
2rid-anonymous direct authentication and remote identification of com-
mercial drones. IEEE Internet of Things Journal, 2023.

[ZYY+23] Yonghua Zhan, Bixia Yi, Yang Yang, Rui Shi, Chen Dong, and Minming
Huang.A privilege-constrained sanitizable signature scheme for e-health
systems. Journal of Systems Architecture, 142:102939, 2023.

Dual Support Decomposition in the Head:
Shorter Signatures from Rank SD

and MinRank

Loïc Bidoux1(B), Thibauld Feneuil2, Philippe Gaborit3, Romaric Neveu3,
and Matthieu Rivain2

1 Technology Innovation Institute, Abu Dhabi, UAE
loic.bidoux@tii.ae

2 CryptoExperts, Paris, France
3 University of Limoges, Limoges, France

Abstract. The MPC-in-the-Head (MPCitH) paradigm is widely used
for building post-quantum signature schemes, as it provides a versatile
way to design proofs of knowledge based on hard problems. Over the
years, the MPCitH landscape has changed significantly, with the most
recent improvements coming from VOLE-in-the-Head (VOLEitH) and
Threshold-Computation-in-the-Head (TCitH).

While a straightforward application of these frameworks already
improve the existing MPCitH-based signatures, we show in this work
that we can adapt the arithmetic constraints representing the underlying
security assumptions (here called the modeling) to achieve smaller sizes
using these new techniques. More precisely, we explore existing model-
ings for the rank syndrome decoding (RSD) and MinRank problems and
we introduce a new modeling, named dual support decomposition, which
achieves better sizes with the VOLEitH and TCitH frameworks by min-
imizing the size of the witnesses. While this modeling is naturally more
efficient than the other ones for a large set of parameters, we show that it
is possible to go even further and explore new areas of parameters. With
these new modeling and parameters, we obtain low-size witnesses which
drastically reduces the size of the “arithmetic part” of the signature.

We apply the TCitH and VOLEitH frameworks to our new modeling
for both RSD and MinRank and compare our results to the NIST can-
didates RYDE, MiRitH, and MIRA (MPCitH-based schemes from RSD
and MinRank). We also note that recent techniques optimizing the sizes
of GGM trees are applicable to our schemes and further reduce the sig-
nature sizes by a few hundred bytes. We obtain signature sizes below
3.5 kB for 128 bits of security with N = 256 parties (a.k.a. leaves in the
GGM trees) and going as low as ≈ 2.8 kB with N = 2048, for both RSD
and MinRank. This represents an improvement of more than 2 kB com-
pared to the original submissions to the 2023 NIST call for additional
signatures.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 38–69, 2025.
https://doi.org/10.1007/978-981-96-0888-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_2&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_2

Dual Support Decomposition in the Head 39

1 Introduction

The MPC-in-the-Head (MPCitH) paradigm is a popular framework to build
post-quantum signatures. After sharing the secret key, the signer emulates “in
his head” an MPC protocol and commits each party’s view independently. He
then reveals the views of a pseudo-random subset of parties, where this subset is
given by the hash digest of the commitments (in the setting of the Fiat-Shamir
heuristic). By the privacy of the MPC protocol, nothing is revealed about the
secret key, which implies the zero-knowledge property. On the other hand, a
malicious signer needs to cheat for at least one party, which shall be discovered
by the verifier with high probability, hence ensuring the unforgeability property.

In the new NIST call for additional post-quantum signatures [33], many sub-
missions rely on the MPCitH paradigm applied on a large range of security
assumptions. Three MPCitH candidates fall in the rank-based cryptography cat-
egory:

– RYDE [4], for which the security relies on the hardness of solving the rank
syndrome decoding problem;

– MIRA [5] and MiRitH [1], for which the security relies on the hardness of
solving the MinRank problem (MIRA and MiRitH rely on the same security
assumption, but use different modelings and MPC protocols).

Recently, new techniques of MPC-in-the-Head have been proposed:

– the VOLE-in-the-Head (VOLEitH) framework [12] released in Summer 2023;1
– the TC-in-the-Head (TCitH) framework [22] released in Autumn 2023.2

As shown in [22] a simple application of these frameworks leads to shorter and
faster signature schemes compared to those submitted to the NIST call (for
similar underlying security assumption).

For MPCitH-based schemes (including those based on VOLEitH and TCitH),
the signatures are composed of two parts, a “symmetric part” made of seeds and
hash digests and an “arithmetic part” composed of the open party views and
broadcast shares of the MPC protocol. While for a given security level the sym-
metric part is of rather fixed size (for the considered MPCitH framework), the
arithmetic part depends on the modeling of the used security assumption and
the associated MPC protocol. In the traditional broadcast-based MPCitH frame-
work (i.e. the MPCitH framework widely used before VOLEitH and TCitH), to
minimize the signature size, the designers had minimize the sum of the sizes of
the MPC input and of the broadcasted values while considering only linear mul-
tiparty computation. With the VOLEitH and TCitH frameworks, the game rules
have changed. These frameworks enable quadratic (or higher degree) multiparty
1 While VOLEitH has not been introduced as an MPCitH technique, [22] showed that

it can be considered as such.
2 The original version of the TCitH framework was released in Autumn 2022 [23] (and

published at Asiacrypt 2023), we refer here to the improved version of the TCitH
framework [22].

40 L. Bidoux et al.

computation, which implies that minimizing the signature size is achieved only
by minimizing the MPC protocol input (i.e., the witness of the modeling).

In rank-based cryptography, several modelings for the rank syndrome decod-
ing problem and the MinRank problem have been proposed. The first one is
derived from [37] and consists in working with a permuted version and an
additively-masked version of the secret. The best scheme relying on it is pro-
posed in [15]. The second modeling is based on q-polynomials and is first used
in such a context in [20]. The third modeling consists in writing the low-rank
object as the product of two small matrices and is first used in such a context
in [2] and [20]. The last modeling relies on Kipnis-Shamir technique, initially
proposed for the cryptanalysis of the MinRank problem [29] and used to build
a scheme in [1]. We sum up the different techniques to handle the rank metric
in Table 1.

Table 1. Techniques used in MPCitH-based signatures for RSD and MinRank.

ProblemPermuted
Secret

q-Polynomial
Evaluation
(q-pol)

Matrix Rank
Decomposition
(MRD)

Kipnis
Shamir
(KS)

Dual Support
Decomposition
(DSD)

RSD BG23 [15] RYDE [4,20] Fen24 [20] - This work
MinRank - MIRA [5,20] Fen24 [20] MiRitH [1] This work

In this work, we explore modelings for the rank syndrome decoding problem
and the MinRank problems to identify the best option with the new VOLEitH
and TCitH techniques. We show that the shortest signatures with RSD and
MinRank are obtained thanks to the dual support decomposition modeling, which
consists in finding a basis (e1, . . . , er) and coefficients c1,1, . . . , cn,r such that

y = Hx and ∀i, xi =
r∑

j=1

ci,r · ej .

While this modeling is quite natural for the rank syndrome decoding problem,
it requires to work with a dual matrix of a code in the MinRank problem: we
need to consider the syndrome decoding problem for matrix codes. In fact, the
MinRank problem being the message decoding problem for such codes, we define
in this work the MinRank Syndrome problem, which is a equivalent variant of
the MinRank problem which has not been previously used in cryptosystems.
Working in the dual has the advantage to remove the encoded message from the
witness of the code-based problem, leading to a shorter witness. With the dual
support decomposition modeling, the witness size (and thus the signature size)
is independent of the code dimension, thanks to the definition of the syndrome
version of the MinRank problem. This enables us to optimize the parameters by
taking codes of larger dimensions.

We then apply the TCitH and VOLEitH frameworks on the optimal model-
ing, yielding new signature schemes with smaller sizes as summarized in Table 2.
We also put the signature sizes of the NIST candidates based on the same security

Dual Support Decomposition in the Head 41

assumptions (namely RYDE, MIRA and MiRitH) in the column “MPCitH” and
their signature sizes when performing a straightforward application of VOLEitH
and TCitH. We observe that the difference in signature sizes between VOLEitH
and TCitH tends to disappear while increasing the parameter N , i.e., the num-
ber of leaves in GGM seed trees used for the commitment (a.k.a. the number
of parties in standard MPCitH schemes). Since these two frameworks are faster
than previous MPCitH schemes, it becomes natural to consider larger values of
N . We obtain signature sizes down to 3.7 kB for TCitH with N = 256 leaves, and
down to 2.9 kB for VOLEitH and TCitH with N = 2048 leaves (more details are
given in Tables 7 and 10). The ranges of sizes reported in Table 2 correspond to a
parameter N ranging between 256 and 2048. Let us note that new generic opti-
mizations for MPCitH-based signatures have been proposed in [11] very recently.
We applied these optimisations to our new signature schemes, enabling us to save
an additional few hundred bytes. The obtained sizes are reported in Table 2 with
the label “optimized”.

Table 2. Comparison of our schemes based on dual support decomposition (DSD)
with the NIST candidates based on the same security assumptions. The sizes in the
column “MPCitH” are given when using seed trees with 256 leaves, while the size range
in columns “VOLEitH” and “TCitH” are given when using seed trees with between 256
and 2048 leaves.

Security
Assumption

Scheme MPCitH VOLEitH TCitH

Rank SD RYDE (q-pol) 5 956 B 4 133–4 720 B 4 274–5 281 B
Our scheme (DSD), optimized - 2 851–3 450 B 2 937–3 708 B

MinRank MIRA (q-pol) 5 640 B 4 170–4 770 B 4 314–5 340 B
MiRitH-Ia (KS) 5 665 B 3 762–4 226 B 3 873–4 694 B
MiRitH-Ib (KS) 6 298 B 4 110–4 690 B 4 250–5 245 B

Our scheme (DSD), optimized - 2 813–3 396 B 2 896–3 640 B

Paper Organization. The paper is organized as follows: In Sect. 2, we introduce
the necessary background on the rank metric and sharing schemes. We present
the existing attacks against RSD and MinRank in Sect. 3. We explore the pos-
sible modelings for rank-based cryptography in Sect. 4. We recall the TCitH
and VOLEitH frameworks in Sect. 5 and we apply these frameworks to the dual
support decomposition modeling to obtain new signature schemes in Sect. 6.

2 Preliminaries

2.1 Notations

We denote by Fq the finite field of size q. The set of vectors with n coordinates
in Fq is referred as F

n
q , the set of matrices with m rows and n columns in

42 L. Bidoux et al.

Fq is referred as F
m×n
q . We use lowercase bold letters to represent vectors and

uppercase bold letters for matrices (E ∈ F
m×n
q , x ∈ F

k
q , x ∈ Fq). The subset of

integers from 1 to n is represented with [1, n]. If S is a set, we write x
$←− S the

uniform sampling of a random element x in S. We note the Fq-linear subspace of
Fqm generated by (x1, . . . , xn) ∈ F

n
qm as 〈x1, . . . , xn〉. Let us define the gaussian

coefficient
[
m
r

]

q

=
∏r−1

i=0
qm−qi

qr−qi ≈ qr(m−r), it corresponds to the number of

different dimension-r Fq-linear subspaces of Fqm .

2.2 Secret Sharing

A threshold secret sharing scheme is a method to share a value v into a sharing
[[v]] := ([[v]]1, . . . , [[v]]N) such that v can be reconstructed from any �+1 shares
while no information is revealed on the secret from the knowledge of � shares.
We note by [[x]]i the ith share of [[x]] (i.e. the share of the ith party). We can also
note [[x]]I where I is a set of indices, to denote all the shares of the parties in
the set I.

Let us define Shamir’s secret sharing scheme [36], since the frameworks we
will consider rely on it. Let � and N two integers such that 1 ≤ � ≤ N . Let
e, ω1, . . . , ωN be N + 1 distinct elements of F ∪ {∞}. To share a value v ∈ F

using Shamir’s secret sharing scheme, one should

1. sample � randoms values r1, . . . , r� of F;
2. compute the polynomial P by interpolation such that

P (e) = v and ∀i ∈ [1, �], P (ωi) = ri;

3. build the N shares [[v]]1, . . . , [[v]]N as

∀i ∈ [1, N], [[v]]i := P (ωi).

To recover the secret value from � + 1 shares, we re-compute the polynomial P
by interpolation and we just deduce P (e). Let us stress that P (∞) refers to the
leading coefficient of the polynomial P . The most classical choice is to set e to
zero but we may consider alternative choices depending on the context (and in
particular e = ∞).

We define the degree of a Shamir’s secret sharing as the degree of the under-
lying polynomial. A sharing generated using the above process is of degree �.
The sum of a d1-degree sharing and a d2-degree sharing is of degree max(d1, d2),
while the multiplication is of degree d1 + d2.

2.3 Rank Metric and Hard Problems for Cryptography

We will first recall some background on the Rank Metric, and we will then define
hard problems we will use (RSD and MinRank).

Dual Support Decomposition in the Head 43

Definition 1 (Rank Metric over F
n
qm). Let x = (x1, . . . , xn) ∈ F

n
qm , and

B = (b1, . . . , bm) ∈ F
m
qm an Fq-basis of Fqm . Each coordinate xj can be associated

with a vector (xj,1, . . . , xj,m) ∈ F
m
q such that xj =

∑m
i=1 xj,ibi. Let us define the

following notations:

– Mx = (xj,i)(j,i)∈[1,n]×[1,m] is the matrix associated to the vector x;
– the rank weight is defined as: wR

(
x
)

= rank(Mx);
– the distance between two vectors x and y in F

n
qm is: d(x, y) = wR

(
x − y

)
;

– the support of a vector Supp (x) is the Fq-linear subspace of Fqm generated
by its coordinates: Supp (x) = 〈x1, . . . , xn〉.

Definition 2. A linear code C over Fqm of dimension k and length n is a linear
subspace of Fn

qm of dimension k. The elements of C are called codewords. The
code C can be represented in two ways:

– by a generator matrix G, where C = {mG,m ∈ F
k
qm}, or

– by a parity-check matrix H ∈ F
(n−k)×n
qm where C = {x ∈ F

n
qm : Hx� = 0�}

We now continue by formally recalling the definition of the rank syndrome
decoding (RSD) problem.

Definition 3 (RSD problem). Let q, m, n, k and r be positive integers. Let
H

$←− F
(n−k)×n
qm and x

$←− F
n
qm such that wR

(
x
)

= r. Let y� = Hx�. Given
(H,y), the computational RSD(q,m, n, k, r) problem asks to find a vector x̃ ∈
F

n
qm such that Hx̃� = y� and wR

(
x̃
)

= r.

We now introduce a variant of the above problem, the RSDs problem and
later argue that it is as hard as the standard RSD problem.

Definition 4 (RSDs problem). Let q, m, n, k and r be positive integers. Let
H

$←− F
(n−k)×n
qm and x = (xi)

$←− F
n
qm such that wR

(
x
)

= r, x1 = 1 ∈ Fqm and
〈x1, . . . , xr〉Fq

= Supp (x). Let y� = Hx�. Given (H,y), the computational
RSDs(q,m, n, k, r) problem asks to find a vector x̃ ∈ F

n
qm such that Hx̃� = y�

and wR

(
x̃
)

= r.

The last problem we will rely on is the well-known MinRank problem:

Definition 5 (MinRank problem). Let q, m, n, k and r be positive integers.
Let M1, . . . ,Mk,E ∈ F

m×n
q and x := (x1, . . . , xk) ∈ F

k
q be uniformly sampled

such that

rank(E) ≤ r with M := E −
k∑

i=1

xiMi.

Given M ,M1 . . . ,Mk, the computational MinRank(q,m, n, k, r) problem asks to
retrieve the vector x.

The last notion to recall is the Gilbert-Varshamov bound for the rank metric
and for MinRank. This bound in rank metric has been introduced in [30]. It can
be seen as the probable minimum weight of a random code.

44 L. Bidoux et al.

Definition 6 (Rank Gilbert-Varshamov Bound). Let Sr be the number of
elements of the sphere in F

n
qm of radius r centered in 0, i.e., the number of

elements in F
n
qm of weight exactly r. We have S0 = 1, and for r ≥ 1,

Sr =
r−1∏

j=0

(qn − qj)(qm − qj)
qr − qj

.

Let Br :=
∑r

i=0 Sr be the number of elements of the ball in F
n
qm of radius r

centered in 0. The Rank Gilbert-Varshamov (RGV) bound for an [n, k] linear
code over Fqm is the smallest integer r such that

qm(n−k) ≤ Br

Using the approximation Br ≈ q(m+n−r)r, one can say the RGV bound is the
smallest r such that m(n − k) ≤ (m − r)r + nr. We call this value dRGV. The
same bound exists for matrix codes (i.e., for MinRank) as they are simply Fq-
linear codes. Courtois described this bound in [17, Section 24.2], and it can also
be derived from the one above easily (consider a [m × n, k] linear code over
Fq instead of [n, k] linear over Fqm). This bound is also mentioned in attacks
on MinRank ([8,9] for instance). Concretely, this states that, for an instance of
MinRank with parameters (q,m, n, k, r), we do not expect to obtain more than
one solution if r is chosen such that k + 1 ≤ (m − r)(n − r).

Complexity of Attacks for Parameters on the GV Bound. For RSD, the parame-
ter r is taken as dRGV −1, i.e., the highest r such that (m− r)r +nr < m(n−k).
With this parameter, if H and y were to be randomly sampled, one would expect
to have a solution with probability q(m+n−r)r−m(n−k). Since y is set so there is a
solution and since we are below RGV, it is not expected to have another solution.
For MinRank, we take parameters on the RGV bound, with k+1 = (m−r)(n−r).
For k+1 matrices randomly sampled (M ,M1, . . . ,Mk), the probability to have
a solution to the MinRank instance is q(m+n−r)r−(mn−k). Since M is set so that
there is a solution and since we are on GV, it is not expected to have another
solution for the instance. Let us now explain why in addition to having only one
solution, it is important to take parameters according to these bounds. Since the
combinatorial attacks from [34] for RSD and [26] for MinRank, very few improve-
ments have been made in the complexity. For MinRank, the kernel attack is still
the best combinatorial attack, and for RSD, the exponential part of the complex-
ities is still quadratic and has known almost no improvement for over 20 years
(with the exception of [6], which slightly improved the complexity). Regarding
the algebraic attacks, introduced in [7] and improved in [10] and [8], they man-
aged to greatly reduce the complexity for the RQC and LRPC schemes. However,
this came from the fact that these parameters were not on RGV. The attacked
parameters were in O (√

n − k
)
, which made them easier to attack, whereas

we will considerparameters around the RGV bound, in O (n). In practice, for

Dual Support Decomposition in the Head 45

parameters taken at the RGV bound, or just below, the algebraic attacks have
roughly the same complexity as the combinatorial ones ([8]). Overall, this means
that, for parameters taken on the Rank Gilbert-Varshamov bound, the attacks
have known no significant amelioration for the last 20 years.

3 Security and Parameters for RSDs and MinRank

We give here the well known reduction from RSD to RSDs, and then the attacks
considered against RSD and MinRank, which we will use in order to establish
parameters for the signature schemes. We will also use these attacks in order to
establish parameters to compare the different modelings in Sect. 4.

3.1 Security of the Rank Syndrome Decoding Problem

We deal here with the RSD problem, first by explaining the relation between
RSD and RSDs, and then the attacks on RSD.

Security Reduction. The RSDs problem was most notably used in the RQC
scheme in order to optimize it [31]. In the following, we show that the RSDs
problem is as hard as the standard RSD problem. More precisely, we show that
any RSD instance can be solved by an RSDs solver. This is the same reduction
as in [6,7,34], and others, used to specialize some variables. We exhibit below
the reduction which has not formally been described in previous works (as part
of the folklore of rank-based cryptography).
Proposition 1. Let q, m, n, k, r be positive integers such that n > k. Let As
be an algorithm which solves a (q,m, n, k+1, r)-instance of the RSDs problem in
time t with success probability εs. Then there exists an algorithm A which solves
a (q,m, n, k, r)-instance of the RSD problem in time t with probability ε, where

ε ≥
(

r−1∏

i=0

qn − qn−r+i

qn − qi

)
· εs

under the assumption that the code C associated to the parity-check matrix H of
the RSD instance contains no words of weight r.

Proof. See the full version [16].

Remark 1. In practice, the loss factor in Proposition 1 tends to 1 when q grows.
For our considered parameters, with q = 2, its value is around 0.3. Moreover,
one can get the average number of codewords of C of weight r to justify our
assumption. Let Sr =

∏r−1
i=0

(qn−qi)(qm−qi)
qr−qi be the number of words in F

n
qm of

weight exactly r. Then, on average, there are Sr

qm(n−k) words of rank r in the code.
When below RGV, this makes the probability that a random code C contains no
codeword of weight r close to 1.

Remark 2. The best known attacks on RSD use the reduction to RSDs in order
to solve the instance [6,8,10,34], meaning that in practice we consider the best
attacks on RSD to evaluate the security of RSDs.

46 L. Bidoux et al.

3.2 Parameters Choice for RSDs

Because of the space constraints, we recall the best attacks on RSD in the full
version [16]. According to these attacks, we give in Table 3 the parameters which
we will use for our RSDs instances.

Table 3. Choice of parameters for RSDs

NIST Security level q m n k r

I 2 53 53 45 4
III 2 79 75 67 4
V 2 97 95 87 4

3.3 Parameters Choice for MinRank

Because of the space constraints, we recall the attacks on MinRank in the full
version [16]. According to these attacks, we give in Table 4 the parameters which
we will use for our MinRank instances.

Table 4. Choice of parameters for MinRank

NIST Security level q m n k r

I 2 43 43 1520 4
III 2 60 60 3135 4
V 2 75 75 5040 4

4 MPCitH Modeling for RSDs and MinRank

A zero-knowledge proof constructed using the MPCitH paradigm is composed
of two parts, a “symmetric part” made of GGM trees (or Merkle trees) and an
“arithmetic part” composed of the open party views and broadcast shares of the
MPC protocol. While for a given security level the symmetric part is of rather
fixed size (e.g., around 2kB for GGM trees and 4kB for Merkle trees at a 128-bit
security level), the arithmetic part depends on the modeling (i.e., the way the
problem instance is verified) and the associated MPC protocol. For the recent
TCitH and VOLEitH techniques, the arithmetic part is actually mainly impacted
by the size of the witness, which favors modelings with low-size witnesses.

In this section, we study different modelings for RSD and MinRank with
respect to the witness size criterion. For the RSD problem, we recall the per-
muted secret, q-polynomial and Kipnis-Shamir modelings. We propose an other

Dual Support Decomposition in the Head 47

modeling, named dual support decomposition, which can be seen as an improve-
ment of the rank decomposition from [20]. We also slightly improve all the mod-
elings by relying on the RSDs variant. For the MinRank problem, we recall the
q-polynomial and Kipnis-Shamir modelings and propose an adaptation of the
dual support decomposition modeling for MinRank.

4.1 Modelings for the RSDs Problem

Permuted Secret. We start by recalling the permuted secret technique, which
was used for RSD in [15]. The idea of this technique consists in revealing a
“permuted” and a “masked” versions of the secret: let us denote σ an isometry
in the rank metric (such a isometry consists of multiplying the secret matrix by
a invertible matrices on both sides) and u a vector of the left kernel of H, one
reveals v := σ(x) and x̃ := x + u and the goal is to find such values σ and u.
More precisely, the rank syndrome decoding problem consists, from two vectors
v, x̃ ∈ F

n
qm satisfying wR(v) = r and Hx̃� = y�, in finding an isometry σ and

a vector u ∈ F
n
qm such that

{
Hu� = 0�,

σ(x̃) = v + σ(u).

Indeed, if we get both σ and u, we can easily restore the initial secret as x :=
x̃ − u: we have Hx� = y� − 0� and wR(x) = wR(σ(x)) = wR(σ(x̃) − σ(u)) =
wR(v) = r.

Unfortunately, this modeling is not compatible with the recent MPCitH tech-
niques as TCitH or VOLEitH. Such techniques requires at least additive sharings
over a commutative group (or for the more recent techniques, Shamir’s secret
sharing over a ring). However, the isometry σ lives in a non-commutative group,
so it requires to rely on a special form of MPCitH named the shared-permutation
framework [15,21].

Rank Decomposition. The Rank Decomposition protocol proposed in [20] aims
to verify the rank of the witness by using the rank decomposition theorem. In
this modeling, the rank syndrome decoding problem consists in finding a vector
x ∈ F

n
qm and two matrices T ∈ F

m×r
q and R ∈ F

r×n
q such that

Hx� = y� and X = TR,

where X ∈ F
m×n
q is the matrix associated to x. Concretely, the MPC protocol

takes as input some shares of x, of T and of R. The protocol then checks that
X = TR, where the shares of X is derived from those of x. Using the standard
representation H =

(
In−k ||H ′), one can send only the right part of x of size k,

denoted as xB . Furthermore, it is possible to send one less column of the matrix
T , since 1 ∈ Supp (x) (see [4] for the optimization) and as a result the size of
witness is (in bits):

(k · m︸ ︷︷ ︸
xB

+ (r − 1) · m︸ ︷︷ ︸
T

+ r · (n − r)︸ ︷︷ ︸
R

) · log2(q).

48 L. Bidoux et al.

q-Polynomial. The q-polynomial technique proposed in [20] to check the rank
metric constitutes an improvement compared to a number of previous methods.
Let us first recall the definition of a q-polynomial.

Definition 7 (q-polynomial). A q-polynomial of q-degree r is a polynomial in
Fqm [X] of the form:

P (X) = Xqr

+
r−1∑

i=0

pi · Xqi

with pi ∈ Fqm .

The roots of a q-polynomial of q-degree r form a linear subspace of Fqm of
dimension at most r. Moreover, for each linear subspace of Fqm of dimension at
most r, there exists a unique monic q-polynomial of q-degree r annihilating all
the elements of the subspace. Let x = (x1, . . . , xn) ∈ F

n
qm of rank wR

(
x
)

= r
and let Px(X) the monic q-polynomial annihilating Supp (x). In this modeling,
the rank syndrome decoding problem consists in finding a vector x ∈ F

n
qm and a

q-polynomial Px ∈ Fqm [X] of q-degree r such that

Hx� = y� and ∀i , Px(xi) = 0.

Concretely, the MPC protocol based on the q-polynomial technique takes as
input some shares of x and some shares of Px(X). The protocol then checks
that Px(xi) = 0 for all i ∈ [1, n]. As previously, one can send only the right part
of x of size k using the standard representation of H. Furthermore, it is possible
to send one less coefficient of the polynomial Px when relying on RSDs. As a
result the size of witness is (in bits):

(k · m︸ ︷︷ ︸
xB

+ (r − 1) · m︸ ︷︷ ︸
Px

) · log2(q).

This modeling based on q-polynomials currently leads to the shortest communi-
cations for RSD when considering linear multiparty computation, but it is not
the best one when considering non-linear multiparty computation as in the new
MPCitH frameworks.

Kipnis-Shamir. Historically, the Kipnis-Shamir modeling was introduced in the
cryptanalysis of the MinRank problem [29]. We can use the same idea to have a
modeling of RSD. It consists in giving the right-kernel of the matrix of x. We
denote this matrix in F

m×n
q by X. If wR

(
x
)

= r, then the right-kernel of X is
of dimension n − r and can be represented by an r × (n − r) matrix.

In the RSDs case, the witness is composed of x and of the matrix A ∈
F

r×(n−r)
q . The MPC protocol takes as input K =

(
In−r

A

)
, and then checks

that XK = 0. It is possible to send only xB , as previously with q-polynomials,
and since 1 is in the support, the size of the witness is:

(k · m︸ ︷︷ ︸
xB

+ (r − 1) · (n − r)︸ ︷︷ ︸
A

) · log2(q) .

Dual Support Decomposition in the Head 49

Note that transmitting A costs (r − 1) · (n − r) only since we know that 1 is in
x. This approach is slightly better than the q-polynomial technique in terms of
witness size.

Dual Support Decomposition. Finally, we introduce an other modeling for RSDs,
using only the support and the coordinates. This can be seen as an improvement
of the rank decomposition from [20], as our new modeling does not rely on having
xB ∈ F

k
qm as input. To that end, one has as inputs:

– The support of x, Supp (x) = 〈1, x2, . . . , xr〉;
– The coordinates of x in this basis, i.e., C ∈ F

r×(n−r)
q such that

(1, x2, . . . , xr) · (
Ir C

)
= (1, x2, . . . , xn) = x

More precisely, in this modeling, the RSDs problem consists in finding
x2, . . . , xr ∈ Fqm and C ∈ F

r×(n−r)
q such that

Hx� = y� where x := (1, x2, . . . , xr) · (
Ir C

)
.

Concretely, after computing x = (x1, . . . , xr) · (
Ir C

)
, one verifies that HxT is

indeed equal to yT . Since 1 is in the support of x, it is possible to transmit only
r − 1 elements for Supp (x), and we can have a gain on the matrix C as well
since the r first coordinates are linearly independent. This results in an efficient
protocol, where the inputs are of size

((r − 1) · m︸ ︷︷ ︸
Supp (x)

+ r · (n − r)︸ ︷︷ ︸
C

) · log2(q)

We see here that the input size does not depend on k anymore, allowing us to
take more efficient parameters.

Global Comparison. Table 5 provides a global comparison of the different mod-
elings in terms of witness size for the RSD problem. For each of the described
modelings, we provide the size formula as well as the obtained concrete size for
optimized parameters reaching a 128-bit security according to the attacks in
Sect. 3.2.

Table 5. Witness size for different MPCitH modelings for the RSDs problem.

Modeling Witness size Parameters for λ = 128

(q, m, n, k, r) Size

Rank Decomposition [km + (r − 1)m + r(n − r)] · log2(q) (2, 31, 33, 15, 10) 122 B
q-polynomial [km + (r − 1)m] · log2(q) (2, 31, 33, 15, 10) 93 B
Kipnis-Shamir [km + (r − 1)(n − r)] · log2(q) (2, 31, 33, 15, 10) 86 B
Dual Support Decomp. [(r − 1)m + r(n − r)] · log2(q) (2, 53, 53, 45, 4) 45 B

50 L. Bidoux et al.

4.2 Modelings for the MinRank Problem

The MinRank problem is closely related to the RSD problem. The two problems
indeed share a number of similarities as evidence of the algebraic attacks applying
to both problems (see, e.g., [8,10]). Quite naturally, most of the above modelings
for RSD can be adapted for MinRank.

Rank Decomposition. Similar to RSDs, the Rank Decomposition protocol was
introduced in [20]. This protocol takes as input (shares of) x ∈ F

k
q , T ∈ F

m×r
q ,

and R ∈ F
r×n
q . Then, after building E = M +

∑k
i=1 xiMi, the protocol checks

that E = TR. This leads to a witness size (in bits) of

(k︸︷︷︸
x

+ r · (m − r)︸ ︷︷ ︸
T

+ r · n︸︷︷︸
R

) · log2(q).

q-Polynomial. The q-polynomial technique of [20] can be also applied to
MinRank: the witness is composed of the shares of x ∈ F

k
q and the coefficients

β ∈ F
r
qm of the q-polynomial associated to E. The MPC protocol computes

E = M +
∑k

i=1 xiMi and verifies that PE (X) :=
∑r−1

i=0 βiX
qi

+ Xqr

is the
annihilator polynomial of E. This verification relies on the isomorphism between
Fqm and F

m
q , and associates each column of E, denoted as ei, to an element of

Fqm , ei. The protocol hence simply checks that PE (ei) = 0 for i ∈ [1, n].
With this modeling, the size of the witness size is (in bits):

(k︸︷︷︸
x

+ r · m︸ ︷︷ ︸
PE

) · log2(q) .

Kipnis-Shamir. This is the modeling used in MiRitH [1], which is an improve-
ment of MinRank-in-the-Head [2]. The goal of this modeling is to use the right

kernel of E in order to prove its rank. Let K =
[
In−r

A

]
a matrix of rank n−r rep-

resenting the right kernel of E. The witness is composed of x and A ∈ F
r×(n−r)
q .

The protocol recomputes E = M +
∑k

i=1 xiMi and verifies that E · K = 0. If
the verification succeeds, one deduces that E is indeed of rank r since it has a
kernel of rank n − r.

With this modeling, the witness is of size:

(k︸︷︷︸
x

+ r · (n − r)︸ ︷︷ ︸
A

) · log2(q) .

As for RSDs, the witness is smaller with this modeling than with the q-
polynomials technique.

New Modeling for the MinRank Problem: Dual Support Decomposition. We intro-
duce hereafter a new MPCitH modeling for the MinRank problem which achieves
smaller witness sizes than the previous modelings. To build our modeling, we will

Dual Support Decomposition in the Head 51

rely on an alternative formulation of this problem, namely, its syndrome version,
which has not been previously used to build cryptosystems. More precisely, this
problem can be expressed in a syndrome decoding way by using the dual of the
matrix code generated by M1, . . . ,Mk. First, one can define the map

ρ : F
m×n
q → F

mn
q⎛

⎜⎝
a1,1 . . . a1,n

...
...

am,1 . . . am,n

⎞

⎟⎠ �→ (
a1,1, . . . , a1,n, . . . , am,1, . . . , am,n

)
.

The generator matrix of the code 〈M1, . . . ,Mk〉 is the matrix G ∈ F
k×mn
q whose

lines are ρ(M1), . . . , ρ(Mk), i.e.,

G =

⎛

⎜⎝
ρ(M1)

...
ρ(Mk)

⎞

⎟⎠ .

Solving the MinRank problem then consists, given G and M , in finding x and
E such that ρ(M) = −xG + ρ(E) and rank(E) ≤ r. The dual matrix of this
code is, as usual, a full-rank matrix H ∈ F

(mn−k)×mn
q such that GH� = 0.

Then, the MinRank Syndrome problem can be defined by applying H� in the
linear constraint: given H and y := ρ(M)H�, the MinRank Syndrome problem
consists in finding E such that y = 0 + ρ(E)H� and rank(E) ≤ r.

Definition 8 (MinRank Syndrome problem). Let q, m, n, k and r be positive
integers. Let H :=

[
Imn−k H ′] ∈ F

(mn−k)×mn
q where H ′ ∈ F

(mn−k)×k
q , and y ∈

F
mn−k
q . The MinRank Syndrome problem asks to find E such that ρ(E)H� = y

and rank(E) ≤ r.

Proposition 2. The MinRank problem and the MinRank Syndrome problem are
equivalent.

Proof. The proof is similar to the proof of equivalence between the decoding
problem and the syndrome decoding problem for the Hamming metric.

– Let us explain how to solve a MinRank Syndrome instance (H, y) using a
MinRank solver. The first step consists in finding a solution ρ(M) to the linear
system ρ(M)H� = y without any constraint on the rank of M . Then, we
consider a dual matrix G of H, where we interpret each row as a flatten matrix
among M1, . . . ,Mk. We can then find x and E such that M +

∑k
i=1 xiMi =

E and rank(E) ≤ r using the MinRank solver. Such an E is directly a solution
of our MinRank Syndrome instance, since

ρ(E)H� = [−xG + ρ(E)]H� = ρ(M)H� = y.

52 L. Bidoux et al.

– Let us now explain how to solve a MinRank instance (M ,M1, . . . ,Mk) using
a MinRank Syndrome solver. First, we can build the dual matrix H from
M1, . . . ,Mk, such that GH� = 0 where the rows of G are defined as
ρ(M1), . . . , ρ(Mk). We can then find E such that ρ(E)H� = ρ(M)H� and
rank(E) ≤ r using the MinRank Syndrome solver (defining the syndrome as
y = ρ(M)H�). Therefore, ρ(E −M) is in the right kernel of H, for which a
basis is described by the rows of G. By Gaussian elimination, we can thus find
x such that ρ(E − M) = xG, i.e., such that ρ(E − M) =

∑k
i=1 xi · ρ(Mi).

Such an x, together with E, forms a solution of our MinRank instance.

�

In the Dual Support Decomposition modeling, we rely on the MinRank Syn-
drome problem instead of the standard MinRank problem. In this modeling,
the protocol aims at verifying that a matrix E is solution of the constraints
ρ(E)H� = y and rank(E) ≤ r for some H ∈ F

(mn−k)×mn
q and y ∈ F

mn−k
q . As

in the rank decomposition method from [20], one can view E as a product of
two matrices, E = SC, with S ∈ F

m×r
q and C ∈ F

r×n
q . Furthermore, one can

write without loss of generality S as
[
Ir

S′

]
for some matrix S′ ∈ F

(m−r)×r
q (this

is always possible up to a permutation of the lines). Then, one can simply set

E =
[
Ir

S′

]
· C. Therefore, given S′ and C, the protocol simply checks:

ρ(SC)H� = y with S =
[
Ir

S′

]
.

The use of the dual form of the MinRank matrix code makes a significant
difference compared to the Rank Decomposition, as the scheme now avoids rely-
ing on the vector x ∈ F

k
q , leading to a much smaller witness. Overall, with the

identity in S, the inputs are of size

(r · (m − r)︸ ︷︷ ︸
S

+ r · n︸︷︷︸
C

) · log2(q).

As for RSD, the size does not depend on k anymore, which allows a better
selection of the parameters.

Global Comparison. Table 6 provides a global comparison of the different model-
ings in terms of witness size for the MinRank problem. For each of the described
modelings, we provide the size formula as well as the obtained concrete size for
optimized parameters reaching a 128-bit security for the attacks described in
Sect. 3.3.

Dual Support Decomposition in the Head 53

Table 6. Modeling for MinRank and resulting witness size in MPC protocols.

Modeling Witness size Parameters for λ = 128

(q, m, n, k, r) Size

Rank Decomposition [k + r(m − r) + rn] · log2(q) (16, 15, 15, 78, 6) 111 B
q-polynomial [k + rm] · log2(q) (16, 15, 15, 78, 6) 76 B
Kipnis-Shamir [k + r(n − r)] · log2(q) (16, 15, 15, 78, 6) 66 B
Dual Support Decomp. [r(m − r) + rn] · log2(q) (2, 43, 43, 1520, 4) 41 B

5 The TCitH and VOLEitH Frameworks

The MPCitH paradigm [27] is a versatile method introduced in 2007 to build
zero-knowledge proof systems using techniques from secure multi-party com-
putation (MPC). This paradigm has been drastically practically improved in
recent years (see, e.g., [3,19,23,28]) and is particularly efficient to build zero-
knowledge proofs for small circuits such as those involved in (post-quantum)
signature schemes. The MPCitH paradigm can be summarized as follows. The
prover emulates “in his head” an �-private MPC protocol with N parties and com-
mits each party’s view independently. The verifier then challenges the prover to
reveal the views of a random subset of � parties. By the privacy of the MPC proto-
col, nothing is revealed about the plain input, which implies the zero-knowledge
property. On the other hand, a malicious prover needs to cheat for at least
one party, which shall be discovered by the verifier with high probability, hence
ensuring the soundness property.

In what follows, we describe two recently introduced MPCitH-based frame-
works, namely the VOLE-in-the-Head (VOLEitH) framework from [12] and the
Threshold-Computation-in-the-Head (TCitH) framework from [22,23]. We then
present the recent optimisations proposed by [11].

5.1 Threshold-Computation-in-the-Head Framework

The TCitH framework has been recently introduced in [22] as an extension of
a previous work [23] published at Asiacrypt 2023. While almost all the former
MPCitH-based proof system relied on additive sharings, the TCitH framework
shows how using Shamir’s secret sharings (instead of additives sharings) lead to
faster schemes with shorter communication.

We refer the reader to [22,23] for a detailed exposition of the TCitH frame-
work which is only briefly abstracted here. In a nutshell, the TCitH framework
relies on MPC protocols with broadcasting, randomness oracle and hint oracle
(as previous MPCitH schemes) but using Shamir’s secret sharing unlocks the use
of non-linear multiparty computation (whereas previous MPCitH schemes are
based on linear multiparty computation). More precisely, in the considered MPC
protocols, one can compute a sharing [[a·b]] of a product a·b from the sharings [[a]]
and [[b]] of the operands by share-wise multiplication (for all i, [[a·b]]i ← [[a]]i ·[[b]]i).

54 L. Bidoux et al.

The TCitH framework comes with two variants depending on how one com-
mits the input shares: either relying on GGM trees [25] or on Merkle trees [32]. In
the present work, we focus on the GGM-tree variant which leads to shorter sig-
nature sizes for the considered statements. Moreover, we only consider 1-private
Shamir’s secret sharings, i.e. � = 1, which gives the best results in our context.

Given some degree-d polynomials f1, . . . , fm from F[X1, . . . , X|w|], we want
a zero-knowledge proof of knowledge of a witness w satisfying

∀j ∈ [1,m], fj(w) = 0.

We shall use the proof system TCitH-Πpc described in [22, Section 5.2]. We recall
the underlying MPC protocol Πpc in Protocol 1. The sharing [[0]] used in Step 4
of the MPC protocol is a publicly-known degree-1 sharing of zero (for example,
[[0]]i = ωi when e = 0). This MPC protocol is �-private and sound with false
positive probability 1

|F| (see [22, Lemma 2]). In practice, the MPC protocol is
repeated ρ times in parallel to achieve a false positive probability of 1

|F|ρ . The
soundness error of TCitH-Πpc (when � = 1) is

ε =
1

|F|ρ +
(

1 − 1
|F|ρ

)
· d

N
.

1. The parties receive a sharing [[w]], with deg[[w]] = 1.
2. The parties get a uniformly-random degree-(d − 1) sharing [[v]] of a random

value v ∈ F from OH .
3. The parties receive random values γ1, . . . , γm ∈ F from OR.
4. The parties locally compute

[[α]] = [[v]] · [[0]] +
m∑

j=1

γj · fj([[w]]) .

5. The parties open [[α]] to publicly recompute α.
6. The parties output Accept if and only if α = 0.

Protocol 1: Πpc – Verification of polynomial constraints. OR is an oracle which
provides public trusted randomness to the parties: in a MPCitH setting, this
randomness is provided by the verifier. OH is an oracle which provides sharings of
untrusted values named hints: in a MPCitH setting, these sharings are provided
by the prover.

To obtain a signature scheme, we first transform the above MPC protocol
into a proof of knowledge (PoK) of soundness error ε by applying the TCitH
transform. We then perform τ parallel repetitions of this PoK and apply the
Fiat-Shamir transform [24]. To achieve a λ-bit security, we take the number ρ
of MPC repetitions such that 1

|F|ρ ≤ 2−λ and the number τ of PoK repetitions
such that

(
d
N

)τ ≤ 2−λ.

Dual Support Decomposition in the Head 55

The proof transcript (i.e. the signature) includes:

– The opened shares [[w]]I of the witness w ∈ F
|w|, for each of the τ PoK

repetitions. In practice, the sent values are the auxiliary values Δw.
– The opened shares of [[v]]I : because v is uniformly-sampled, these shares are

communication-free since we rely on the TCitH-GGM variant.
– The degree-d sharing [[α]], for each of the ρ MPC repetitions of the τ PoK

repetitions. Since [[α]]I can be recomputed by the verifier and since the α
should be zero, the prover just needs to send (d + 1) − 1 − 1 = (d − 1) shares.

– The sibling paths in the GGM trees, together with the unopened seed com-
mitments.

Moreover, the signature includes a 2λ-bit salt and a 2λ-bit commitment digest
that correspond to the last verifier challenge (in the Fiat-Shamir heuristic).
Therefore, the signature size when using the TCitH framework in the above
setting is (in bits):

SizeTCitH = 4λ + τ ·

⎛

⎜⎝|w| · log2 |F|︸ ︷︷ ︸
[[w]]I

+ (d − 1) · ρ · log2 |F|︸ ︷︷ ︸
[[α]]

+λ · log2 N︸ ︷︷ ︸
GGM tree

+2λ

⎞

⎟⎠ .

5.2 VOLE-in-the-Head Framework

The VOLEitH framework has been introduced at Crypto 2023 [12]. This work
provides a way to compile any zero-knowledge protocol in the VOLE-hybrid
model into a publicly verifiable protocol. While it has not been introduced as a
MPCitH construction, it can yet be interpreted as such. Specifically, [22] shows
that the VOLEitH framework can be described in the TCitH syntax. Indeed,
this framework is similar to the TCitH framework with � = 1 and GGM trees,
up to several details:

– The secret is stored at P (∞) when sharing, meaning that e = ∞. As a result,
to share a value v, one samples a random value r and builds the Shamir’s
polynomial P as P (X) := vX + r. While multiplying two Shamir’s sharings
when e = ∞ is similar than when e �= ∞, the addition operation is slightly
different: to add two Shamir’s sharings [[a]] and [[b]] of degrees respectively
d1 and d2 (such that d1 ≤ d2) when e = ∞, the parties can compute the
following d2-degree sharing

∀i, [[a + b]]i ← [[a]]i · ωd2−d1
i + [[b]]i,

where ωi is the evaluation point of the ith party.
– The VOLEitH framework relies on a large field embedding : in the commitment

phase, the prover commits τ N -sharings [[w]](1), . . . , [[w]](τ) of the witness w.
In the basic TCitH framework, the prover runs τ MPC protocols in parallel,
each of them on a different sharing [[w]](j). In the VOLEitH framework, these
N sharings are merged to obtain a Nτ -sharing [[w]](φ) living in a large field

56 L. Bidoux et al.

extension K such that the extension degree [K : F] is ρ, then the prover runs
a unique MPC protocol which takes as input this Nτ -sharing. More precisely,
the ith share of [[w]](φ) is computed as

[[w]](φ)i ← φ
(
[[w]](1)i1

, . . . , [[w]](τ)iτ

)

where i1, . . . , iτ ∈ [1, N] satisfy (i−1) = (i1−1)+(i2−1)·N+. . .+(iτ−1)·Nτ−1

and φ is an one-to-one ring homomorphism between F
τ and K (ρ ≥ τ). If the

sharings [[w]](1), . . . , [[w]](τ) encode the same witness w, then we get that [[w]](φ)

is a valid Shamir’s secret sharing of w for which the evaluation point of the ith

party is φ(ωi1 , . . . , ωiτ
) (with ωi the ith party evaluation point in the standard

TCitH setting). The main advantage of this large field embedding is that the
resulting soundness error of the proof system is d

Nτ instead of being
(

d
N

)τ

(up to the false positive probability).
– The above optimisation requires that the prover ensures that the τ sharings

encode the same value (without revealing this value). To ensure this prop-
erty, the VOLEitH framework introduces an additional prover-verifier pair of
rounds. After committing the input shares (including the hint sharings),

• the prover commits τ additional uniformly-random sharings [[u]](1),. . . ,
[[u]](τ) of the same random value u ∈ F

ρ+B , for B ≥ 0 an additional
parameter,

• the verifier sends a challenge (H1|H2) ∈ F
(ρ+B)×(n+ρ),

• for all j ∈ [1, τ], the prover reveals the digest sharing [[α′]](j) := H1[[w]](j)+
H2[[v]](j) + [[u]](j), where α′ ∈ F

ρ+B .
The idea behind this process is that the prover computes the digests of all
the plain values encoded in [[w]](1), . . . , [[w]](τ) (and in [[v]](1), . . . , [[v]](τ)) and
compares them. If ([[w]](i), [[v]](i)) and ([[w]](j), [[v]](j)) encode different values,
then their digests [[α′]](i) and [[α′]](j) will differ with high probability. In prac-
tice, the parameters ρ and B are chosen such that the probability that two
different plain values lead to the same digest is negligible. We further note
that taking (H1|H2) uniformly at random gives the smallest probability but
requires to perform matrix-vector multiplications. Other strategies are pos-
sible for (H1|H2) such as relying on a polynomial-based hash: this increases
a bit the collision probability (so one needs to increase B to compensate)
but lightens the computation. This strategy is used in the FAEST signature
scheme [13].

We use the VOLEitH framework with the same MPC protocol than with the
TCitH framework, namely the MPC protocol Πpc described in Protocol 1, which
is equivalent to the QuickSilver VOLE-based protocol [39] in the VOLE setting.
The publicly-known degree-1 sharing [[0]] in Protocol 1 when e = ∞ can be built
as [[0]]i = 1 for all i.

To achieve a PoK with λ-bit security (i.e. 2−λ soundness error), we take the
field extension K of degree ρ such that 1

|F|ρ ≤ 2−λ, the number τ of sharings [[w]](j)

such that d
Nτ ≤ 2−λ and the additional parameter B such3 that B · log2 |F| ≥ 16

3 As explained previously, the parameter B aims to compensate the security loss due
to the use of a polynomial-based hash. Such a hash consists in evaluating in a large

Dual Support Decomposition in the Head 57

(the latter choice corresponds to the choice in the specification of FAEST [13]).
Then we obtain a signature scheme by applying the Fiat-Shamir transform [24]
as previously.

The proof transcript (i.e. the signature) includes:

– The opened shares [[w]]I of the witness w ∈ F
|w|. In practice, one sends the

auxiliary values of the sub-sharings [[w]](1), . . . , [[w]](τ).
– The opened shares of [[v]]I . When v is uniformly-sampled, the shares are

usually communication-free. However, we need τ sub-sharings of the same
(uniformly-random) value v. While the first sharing is communication-free,
the τ − 1 others require an auxiliary value to ensure that all the sub-sharings
encode the same value.

– The degree-d sharing [[α]], for the single MPC execution. Since [[α]]I can be
recomputed by the verifier and since the α should be zero, the prover just
needs to send (d + 1) − 1 − 1 = d − 1 shares.

– The sibling paths in the GGM trees, together with the unopened seed com-
mitments.

– The opened shares [[u]]I . As for [[v]]I , since all the τ sub-sharings must encode
the same random value u, only the first sharing is communication-free and
the τ − 1 others require an auxiliary value.

– The degree-1 sharings [[α′]](1), . . . , [[α′]](τ). Since the plaintext value α′ is the
same for all these sharings and since [[α]](j)I can be recomputed by the verifier
for all j, sending all these sharings costs only (ρ + B) field elements.

Moreover, the signature includes a 2λ-bit salt and a 2λ-bit commitment digest
that correspond to the last verifier challenge (in the Fiat-Shamir heuristic).
Therefore, the signature size when using the VOLEitH framework is (in bits):

SizeVOLEitH =

4λ + τ ·

⎛

⎜⎝|w| · log2 |F|︸ ︷︷ ︸
[[w]]I

+λ · log2 N︸ ︷︷ ︸
GGM tree

+2λ

⎞

⎟⎠ + (d − 1)ρ · log2 |F|︸ ︷︷ ︸
[[α]]

+ (τ − 1) ·

⎛

⎜⎝(d − 1)ρ · log2 |F|︸ ︷︷ ︸
[[v]]I

+ (ρ + B) log2 |F|︸ ︷︷ ︸
[[u]]I

⎞

⎟⎠ + (ρ + B) · log2 |F|︸ ︷︷ ︸
[[α′]]

.

5.3 Additional MPCitH Optimisations

New generic optimizations for MPCitH-based schemes relying on GGM trees
have been proposed in a recent work [11]. The improvements are threefold:

domain the polynomial which has the hashed values as coefficients. Thanks to the
Schwartz-Zippel lemma, we get that the security loss is of a factor n + ρ (which is
the length of the hashed vector). By taking B · log2 |F| ≥ 16 as in the specification
of FAEST, we can securely hash vectors of length at most 216.

58 L. Bidoux et al.

1. Instead of considering τ independent GGM trees of N leaves in parallel, the
authors propose to rely on a unique large GGM tree of τ ·N leaves where the
ith share of the eth PoK repetition is associated to the (e ·N + i)th leaf of the
large GGM tree. As explained in [11], “opening all but τ leaves of the big tree
is more efficient than opening all but one leaf in each of the τ smaller trees,
because with high probability some of the active paths in the tree will merge
relatively close to the leaves, which reduces the number of internal nodes that
need to be revealed.”

2. The authors further propose to improve the previous approach using the prin-
ciple of grinding. When the last Fiat-Shamir challenge is such that the number
of revealed nodes in the revealed sibling paths exceed a threshold Topen, the
signer rejects the challenge and recompute the hash with an incremented
counter. This process is done until the number of revealed nodes is ≤ Topen.
For example, if we consider N = 256 and τ = 16, the number of revealed
nodes is smaller than (or equal to) Topen := 110 with probability ≈ 0.2. The
selected value of Topen induces a rejection probability prej = 1−1/θ, for some
θ ∈ (0,∞), and the signer hence needs to perform an average of θ hash com-
putations for the challenge (instead of 1). While this strategy decreases the
challenge space by a factor θ, it does not change the average number of hashes
that must be computed to succeed an attack (since the latter is multiplied
by θ). As noticed by the authors of [11], this strategy can be thought of as
loosing log2 θ bit of security (because of a smaller challenge space) which are
regained thanks to a proof-of-work (performing an average of θ hash compu-
tations before getting a valid challenge).

3. Finally, [11] proposes to add another explicit proof-of-work to the Fiat-Shamir
hash computation of the last challenge. The signer must get a hash digest for
which the w last bits are zero, for w a parameter of the scheme. The same
counter as for the previous improvement is used as a nonce in this hash and
increased until the w-zeros property is satisfied. This strategy increases the
cost of hashing the last challenge by a factor 2w and hence increases the
security of w bits. This thus allows to take smaller parameters (N, τ) for the
large tree, namely parameters achieving λ − w bits of security instead of λ.

While the authors of [11] focus on VOLEitH, the same optimisations also
apply to TCitH. In summary, for a given w, one picks parameters (N, τ) ensur-
ing λ − w bits of security. Then fixing Topen for these (N, τ) yields a rejection
probability prej = 1 − 1/θ. The gain in size comes from the smaller parameters
(N, τ) on the one hand, and the smaller sibling paths (of size ≤ Topen instead
of ≈ τ log2 N) on the other hand. This gain in size is traded for an increased
number of Fiat-Shamir hash attempts (θ · 2w on average instead of 1).

6 New Signatures Based on RSDs and MinRank

In this section, we propose new signature schemes based on the rank syn-
drome decoding problem and on the MinRank problem. To proceed, we rely on
the TCitH and VOLEitH frameworks to obtain non-interactive zero-knowledge

Dual Support Decomposition in the Head 59

proofs of knowledge for these two problems using the new Dual Support Decom-
position model described in Sect. 4 and we use the recent MPCitH optimisation
presented in Sect. 5.3. Moreover, to have more granularity in the choice of the
parameters, we consider that the τ emulations of the MPC protocol might not
involve the same number of parties: there will be τ1 emulations with N1 parties
and τ2 := τ − τ1 emulations with N2 parties. The schemes are then secure if(

d
N1

)τ1 ·
(

d
N2

)τ2
for TCitH and d

N
τ1
1 ·Nτ2

2
for VOLEitH are negligible (instead of

simply
(

d
N

)τ
and d

Nτ).

6.1 New Signatures Based on RSDs

The TCitH and VOLEitH frameworks enable us to prove the knowledge of a
witness that satisfies some polynomial constraints. In order to get a signature
scheme based on the rank syndrome decoding problem, one just needs to exhibit
the polynomial constraints which is satisfied by a rank syndrome decoding solu-
tion. As shown in Sect. 4.1, solving an RSDs instance for y and H is equivalent
to finding s = (x2, . . . , xr) where xi ∈ Fqm for i ∈ {2, . . . , r} and C ∈ F

r×(n−r)
q

such that
xHT − y = 0 with x :=

(
1 s

) · (
Ir C

) ∈ F
n
qm (1)

Equation 1 directly gives degree-2 polynomial constraints into the coefficients of
s and C. Let us assume that the H is in standard form, meaning it can be written
as H =

(
In−k H ′), where H ′ ∈ F

(n−k)×k
qm . Given the inputs [[s]] and [[C]], the

hint [[v]] with v ∈ F
ρ
qm and the MPC randomness Γ = (γi,j)i,j ∈ F

(n−k)×ρ
qm , the

emulated MPC protocol (repeated ρ times) described in Protocol 1 thus consists
of computing

[[α]] ← [[v]] · [[0]] + ([[xA]] + [[xB]]H ′T − y)Γ

where [[xA]] and [[xB]] are built such as [[
(
xA xB

)
]] =

(
1 [[s]]

) · (
Ir [[C]]

)
.

Signature Size. According to Sect. 5, the signature size using the TCitH frame-
work is (in bits):

SizeTCitH = 4λ + λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

⎛

⎜⎝|w| · log2 q︸ ︷︷ ︸
[[s]]I ,[[C]]I

+ (d − 1) · ρ · log2 q︸ ︷︷ ︸
[[α]]

+2λ

⎞

⎟⎠ ,

while the signature size using the VOLEitH framework is (in bits):

SizeVOLEitH =4λ + λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

⎛

⎜⎝|w| · log2 q︸ ︷︷ ︸
[[s]]I ,[[C]]I

+2λ

⎞

⎟⎠ + (d − 1) · ρ · log2 q︸ ︷︷ ︸
[[α]]

+ (τ − 1) ·

⎛

⎜⎝ρ · log2 q︸ ︷︷ ︸
[[v]]I

+ (ρ + B) log2 q︸ ︷︷ ︸
[[u]]I

⎞

⎟⎠ + (ρ + B) · log2 q︸ ︷︷ ︸
[[α′]]

,

where |w| := (r − 1)m + r(n − r).

60 L. Bidoux et al.

Computational Cost. The running time of the signing algorithm can be split in
three main parts:

1. The generation of the input shares using seed trees and their commitment.
The computational cost scales linearly with the number of input shares. When
there are τ1 MPC emulations with N1 parties and τ2 MPC emulations with
N2 parties, the total number of input shares is τ1 · N1 + τ2 + N2.

2. The MPC emulation. This step consists in computing the degree-2 broadcast
sharing [[α]], knowing that α = 0. Let us estimate the cost of emulating
the MPC protocol. We only count multiplications which are predominant
(compared to additions) for the considered extension fields. We recall that
multiplying two degree-1 sharings costs 2 multiplications in the underlying
field, assuming we already know the plain value.

– With TCitH, the MPC emulation will be repeated τ := τ1 + τ2 times.
Each repetition includes 2 vector-matrix multiplications with a matrix
F
(r−1)×(n−r)
qm to compute [[x]] := [[

(
xA xB

)
]], 2 vector-matrix multiplica-

tions with a matrix of Fk×(n−k)
qm to compute [[r]] := [[xA]] + [[xB]]H ′T − y,

and 2 vector-matrix multiplications with matrix of F(n−k)×ρ
qm to compute

[[α]].
– With VOLEitH, the MPC emulation is executed only once, but in a larger

extension field K where [K : Fqm] = ρ. The emulation includes 2 vector-
matrix multiplications with a matrix K

(r−1)×(n−r) to compute [[x]] :=
[[
(
xA xB

)
]], 2ρ vector-matrix multiplications with a matrix of Fk×(n−k)

qm to
compute [[r]] := [[xA]]+[[xB]]H ′T −y, and 2 vector-matrix multiplications
with matrix of K(n−k)×1 to compute [[α]].

3. The global proof-of-work, composed of the grinding process on the seed trees
and the explicit proof-of-work on the Fiat-Shamir hash computation. Its aver-
age cost is θ · 2w Fiat-Shamir hash computations.

The running time of the other parts of the signing algorithm is negligible com-
pared to those three components. Regarding the running time of the verification
algorithm, since the verifier should also expand the seed trees and emulate some
parties, the verification time will be similar (a bit smaller) than the signing time.

Parameter Selection. We select some parameter sets for our signature schemes.
To have a fair comparison between both frameworks (TCitH and VOLEitH),
we chose the parameters such that the cost of generating the input shares and
the cost of the proof-of-work are similar (namely, we chose parameters such that
τ2 · N1 + τ2 · τ2 and θ · 2w are roughly equal). We present in Table 7 the sizes
obtained for the signature scheme.

While proposing optimized implementations of our signature scheme is left
for future work, we provide some (upper bound) estimates for its running time in
Table 8. The timings of the symmetric components (generation and commitment
of the input shares and proof of work) are estimated based on the benchmarks
from [11]. Since we rely on the same parameters for the symmetric components
(same τ1 · N1 + τ2 · N2 and same log2 θ + w), we can use their timings as upper

Dual Support Decomposition in the Head 61

bounds. For example, their scheme MandaRain-3-128 s includes a generation and
commitment of 22 528 input shares and has a total proof-of-work of 14 bits as
our “short” instances. Since it runs in 2.8 ms on a 5GHz CPU, we deduce that
the symmetric components cost is at most 14 Mcycles.4 Then, we derived and
benchmarked a naive implementation of the MPC emulation, which gives us
an upper bound for the emulation cost. Despite this pessimistic estimation, the
results presented in Table 8 show that our scheme is competitive with the NIST
candidate RYDE. In particular, all our variants relying on VOLEitH are faster
than RYDE.

Comparison. Table 9 summarizes the state of the art of signature schemes based
on RSD. We include in the comparison only short parameters, i.e., with N = 256
for MPCitH-based signatures, and N = 32 for [15]. We include the schemes of
Stern [37] and Véron [38] applied to the rank metric. For 128 bits of security,
these two schemes have signature sizes of around 30 kB. These sizes were roughly
halved in [21] and [15]. Finally, [20] reduced it below 6 kB and our work achieves
sizes below 4 kB.

Resilience Property. One should note that our scheme is highly resilient to hypo-
thetical cryptanalytic progress on RSDs. Indeed, if we were to take the set of
parameters for RSDs corresponding to NIST III, applied to the proof of knowl-
edge for NIST I, i.e., a security of λ = 192 for RSDs and λ = 128 for the protocol,
we would get an increase of only 0.4 kB (for N = 512) or 0.3 kB (for N = 2048)

Table 7. Parameters and resulting sizes for the new signature scheme based on RSDs.
The used parameters for the rank syndrome decoding problem are those of Table 3.

Security Trade-off Framework Scheme Parameters Computational Cost Signature
τ (τ1, N1) (τ2, N2) Topen #Leaves log2 θ w

NIST I Short TCitH 12 (10, 211) (2, 210) 111 22528 5.0 9 2 937 B
VOLEitH 11 (0, 212) (11, 211) 99 22528 7.2 7 2 851 B

Fast TCitH 20 (4, 28) (16, 27) 113 3072 7.1 3 3 708 B
VOLEitH 16 (8, 28) (8, 27) 102 3072 2.9 8 3 450 B

NIST III Short TCitH 18 (2, 212) (16, 211) 174 40960 4.9 9 6 713 B
VOLEitH 16 (4, 212) (12, 211) 162 40960 2.7 12 6 566 B

Fast TCitH 30 (10, 28) (20, 27) 178 5120 6.9 1 8 454 B
VOLEitH 24 (16, 28) (8, 27) 176 5120 0.0 8 8 207 B

NIST V Short TCitH 25 (5, 212) (20, 211) 245 61440 5.6 0 12 371 B
VOLEitH 22 (8, 212) (14, 211) 248 61440 0.0 6 12 682 B

Fast TCitH 39 (17, 28) (22, 27) 247 7168 3.7 4 14 926 B
VOLEitH 32 (24, 28) (8, 27) 247 7168 0.0 8 14 768 B

4 In making this consideration, we include the overhead of emulating their MPC pro-
tocol to our estimates of the symmetric part.

62 L. Bidoux et al.

in the signature size. Namely, we can take a large margin of security for the
parameters of RSDs at a moderate cost.

6.2 New Signatures Based on MinRank

The TCitH and VOLEitH frameworks enable us to prove the knowledge of a
witness that satisfies some polynomial constraints. In order to get a signature
scheme based on MinRank, one just needs to exhibit the polynomial constraints
which that a MinRank solution should satisfy. As shown in Sect. 4.2, we can use
the MinRank Syndrome problem, which asks to find S′ ∈ F

(m−r)×r
q and C ∈ F

r×n
q

such that
ρ(E) · HT − y = 0 with E :=

(
Ir

S′

)
· C, (2)

where H ∈ F
(mn−k)×mn
q and y ∈ F

mn−k
q . Equation (2) directly gives degree-2

polynomial constraints into the coefficients of S′ and C. Let us assume that the
matrix H is in standard form, meaning it can be written as H =

(
In·m−k H ′),

where H ′ ∈ F
(n·m−k)×k
q . Given the inputs [[S′]] and [[C]], the hint [[v]] with v ∈ F

ρ
q

and the MPC randomness Γ = (γi,j)i,j ∈ F
(n−k)×ρ
q , the emulated MPC protocol

(repeated ρ times) described in Protocol 1 thus consists in computing

[[α]] ← [[v]] · [[0]] + ([[xA]] + [[xB]]H ′T − y)Γ

where [[xA]] and [[xB]] are built such as [[
(
xA xB

)
]] = ρ

((
Ir

[[S′]]

)
· [[C]]

)
.

Table 8. Estimation of the signing times of the new signature scheme based on RSDs

(in mega-cycles).

Security Trade-off Framework Symmetric Part MPC Emulation Total RYDE
From [11] [[x]] [[r]] [[α]]

NIST I Short TCitH 14 0.38 1.42 0.19 16.0 23.4
VOLEitH 14 0.43 0.36 0.07 14.9

Fast TCitH 1.8 0.62 2.36 0.24 5.0 5.4
VOLEitH 1.8 0.43 0.36 0.07 2.7

NIST III Short TCitH 37 3.9 12.8 0.6 54.3 49.6
VOLEitH 37 1.3 2.1 0.2 40.6

Fast TCitH 4.4 6.5 21.3 1.1 33.3 12.2
VOLEitH 4.4 1.3 2.1 0.2 8.0

NIST V Short TCitH 45 9.5 24.4 0.9 79.8 94.9
VOLEitH 45 2.0 2.9 0.2 50.1

Fast TCitH 6.8 14.8 37.8 1.4 60.8 22.7
VOLEitH 6.8 1.9 2.9 0.17 11.8

Dual Support Decomposition in the Head 63

Table 9. Comparison of the signatures relying on RSD, restricting to the schemes using
the Fiat-Shamir transform.

RSD Parameters Scheme N M τ η ρ Signature Size

q = 2

m = 31

n = 33

k = 15

r = 10

[37] - - 219 - - 33 886 B

[38] - - 219 - - 28 794 B
[21] 32 389 28 - - 14 792 B
[15] 32 389 28 - - 12 816 B

[20] RD 256 - 21 24 - 8 990 B
[20] LP and [4] (RSDs) 256 - 20 1 - 5 956 B

q = 2, m = 53, n = 53

k = 45, r = 4
Our scheme (TCitH) 256 - 20 - 3 3 708 B

Our scheme (VOLEitH) 256 - 16 - 128 3 450 B

Signature Size. According to Sect. 5, the signature size using the TCitH frame-
work is (in bits):

SizeTCitH = 4λ + λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

⎛

⎜⎝|w| · log2 q︸ ︷︷ ︸
[[S ′]]I ,[[C]]I

+ (d − 1) · ρ · log2 q︸ ︷︷ ︸
[[α]]

+2λ

⎞

⎟⎠ ,

while the signature size using the VOLEitH framework is (in bits):

SizeVOLEitH =4λ + λ · Topen︸ ︷︷ ︸
GGM tree

+τ ·

⎛

⎜⎝|w| · log2 q︸ ︷︷ ︸
[[S ′]]I ,[[C]]I

+2λ

⎞

⎟⎠ + (d − 1) · ρ · log2 q︸ ︷︷ ︸
[[α]]

+ (τ − 1) ·

⎛

⎜⎝ρ · log2 q︸ ︷︷ ︸
[[v]]I

+ (ρ + B) log2 q︸ ︷︷ ︸
[[u]]I

⎞

⎟⎠ + (ρ + B) · log2 q︸ ︷︷ ︸
[[α′]]

,

where |w| := r(m − r) + rn.

64 L. Bidoux et al.

Computational Cost. As in the previous section, the running time of the signing
algorithm can be split in three main parts:

1. The generation of the input share using seed trees and their commitment. The
computational cost scales linearly with the number of input shares. When
there are τ1 MPC emulations with N1 parties and τ2 MPC emulations with
N2 parties, the total number of input shares is τ1 · N1 + τ2 + N2.

2. The MPC emulation. This step consists in computing the degree-2 broadcast
sharing [[α]], knowing that α = 0. Let us estimate the cost of emulating the
MPC protocol (while only counting multiplications as above).

– With TCitH, the MPC emulation will be repeated τ := τ1 + τ2 times.
Each repetition includes 2 multiplications between matrices of F(m−r)×r

N

and F
r×n
N to compute [[x]], 2 · [FN : Fq] vector-matrix multiplications with

a matrix of Fk×(n·m−k)
q to compute [[xA]] + [[xB]]H ′T − y, and 2 vector-

matrix multiplications with matrix of F(n·m−k)×ρ
N to compute [[α]].

– With VOLEitH, the MPC emulation is executed only once, but in a larger
extension field K where [K : FN] = ρ. The emulation includes 2 matrix
multiplications of K

(m−r)×r and K
r×n to compute [[x]], 2ρ · [FN : Fq]

vector-matrix multiplications with a matrix of F
k×(n·m−k)
q to compute

[[xA]]+ [[xB]]H ′T −y, and 2 vector-matrix multiplications with matrix of
K

(n·m−k)×1 to compute [[α]].
3. The global proof-of-work, composed of the grinding process on the seed trees

and the explicit proof-of-work on the Fiat-Shamir hash computation. Its aver-
age cost is θ · 2w Fiat-Shamir hash computations.

The running time of the other parts of the signing algorithm is negligible com-
pared to those three components. Regarding the running time of the verification
algorithm, since the verifier should also expand the seed trees and emulate some
parties, the verification time will be similar (a bit smaller) than the signing time.

Parameter Selection. We select some parameter sets for our signature schemes.
To have a fair comparison between both frameworks (TCitH and VOLEitH),
we chose the parameters such that the cost of generating the input shares and
the cost of the proof-of-work are similar (namely, we chose parameters such that
τ2 · N1 + τ2 · τ2 and θ · 2w are roughly equal). We present in Table 10 the sizes
obtained for the signature scheme.

As previously, we leave optimized implementations for future work and pro-
vide (upper bound) estimates of the running time in Table 11 based on the
benchmarks from [11] and a naive implementation of the MPC emulation of our
scheme. Despite this pessimistic estimation, the results of Table 11 show that
our scheme is competitive with the NIST sublmissions MIRA and MiRitH (both
applying MPC-in-the-Head to MinRank). In particular, all our variants relying
on TCitH are faster than MIRA and the short instances of MiRitH.

Dual Support Decomposition in the Head 65

Table 10. Parameters and resulting sizes for the new signature scheme based on
MinRank. The used parameters for the MinRank problem are those of Table 4.

Security Trade-off Framework Scheme Parameters Computational Cost Signature
τ (τ1, N1) (τ2, N2) Topen #Leaves log2 θ w

NIST I Short TCitH 12 (10, 211) (2, 210) 111 22528 5.0 9 2 896 B
VOLEitH 11 (0, 212) (11, 211) 99 22528 7.0 7 2 813 B

Fast TCitH 20 (4, 28) (16, 27) 113 3072 7.0 3 3 640 B
VOLEitH 16 (8, 28) (8, 27) 102 3072 2.8 8 3 396 B

NIST III Short TCitH 18 (2, 212) (16, 211) 174 40960 5.0 9 6 584 B
VOLEitH 16 (4, 212) (12, 211) 162 40960 2.7 12 6 452 B

Fast TCitH 30 (10, 28) (20, 27) 178 5120 6.9 1 8 240 B
VOLEitH 24 (16, 28) (8, 27) 176 5120 0.0 8 8 036 B

NIST V Short TCitH 25 (5, 212) (20, 211) 245 61440 5.6 0 12 149 B
VOLEitH 22 (8, 212) (14, 211) 248 61440 0.0 6 12 486 B

Fast TCitH 39 (17, 28) (22, 27) 247 7168 3.8 4 14 579 B
VOLEitH 32 (24, 28) (8, 27) 247 7168 0.0 8 14 484 B

Comparison. Table 12 summarizes the state of the art of signature schemes based
on MinRank. We include in the comparison only short parameters, i.e., with
N = 256 for MPCitH-based signatures, and N = 32 for [15]. For the MinRank
parameters, we use q = 16,m = 16, n = 16, k = 142, r = 4. Historically, the first
schemes from [18,35], and [14] obtained signature sizes no less than 26 kB for
128 bits of security. Then, the technique from [15] applied to MinRank achieved
∼10 kB, and [2] reduced it even below 7 kB. The recent work from [20] reduces
it below 6 kB, and the MIRA and MiRitH submissions to the NIST have sizes
below 6 kB as well. Finally, our work achieves sizes below 4 kB.

Resilience Property. As for our scheme based on RSDs, our above scheme is
highly resilient to hypothetical cryptanalytic progress on MinRank. Indeed, if
we were to take the set of parameters for MinRank corresponding to NIST III,
applied to the proof of knowledge for NIST I, i.e., a security of λ = 192 for
MinRank and λ = 128 for the protocol, we would get an increase of only 0.4 kB
(for N = 512) or 0.3 kB (for N = 2048) in the signature size. Namely, we can
take a large margin of security for the parameters of MinRank at a moderate
cost.

66 L. Bidoux et al.

Table 11. Estimation of the running times of the new signature scheme based on
MinRank (in mega-cycles).

Security Trade-off Framework Symmetric Part MPC Emulation Total MIRA MiRitH
From [11] [[x]] [[r]] [[α]]

NIST I Short TCitH 14 12.6 4.6 4.5 35.7 46.8 76.5
VOLEitH 14 54.8 1.4 2.7 72.9

Fast TCitH 1.8 3.7 5.1 1.9 12.5 37.4 8.7
VOLEitH 1.8 54.8 1.4 2.7 60.7

NIST III Short TCitH 37 37.6 22.0 14.4 111.0 119.7 192.9
VOLEitH 37 217.8 8.2 7.5 270.5

Fast TCitH 4.4 9.8 23.4 5.2 42.8 107.2 22.5
VOLEitH 4.4 217.8 8.2 7.5 237.9

NIST V Short TCitH 45 82.4 60.2 33.3 220.9 337.7 308.6
VOLEitH 45 695.2 3.9 19.1 763.2

Fast TCitH 6.8 15.2 61.7 9.7 93.4 322.3 36.4
VOLEitH 6.8 694.4 14.6 19.1 734.9

Table 12. Comparison of the signatures relying on MinRank, restricting to the schemes
using the Fiat-Shamir transform.

MinRank Parameters Scheme N M τ η ρ Signature Size

q = 16

m = 16

n = 16

k = 142

r = 4

[18] - - 219 - - 28 575 B

[35] - - 128 - - 28 128 B
[14] - 256 128 - - 26 405 B
[15] 32 389 28 - - 10 937 B
[2] 256 - 18 - - 7 422 B

[20] RD 256 - 19 9 - 7 122 B
q = 16, m = 16, n = 16

k = 120, r = 5
[20] LP and MIRA [5] 256 - 18 1 - 5 640 B

q = 16, m = 15, n = 15

k = 78, r = 6
MiRitH [1] 256 - 19 9 - 5 673 B

q = 2, m = 43, n = 43

k = 1520, r = 4
Our scheme (TCitH) 256 - 20 - 130 3 640 B

Our scheme (VOLEitH) 256 - 16 - 128 3 396 B

Dual Support Decomposition in the Head 67

References

1. Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa,
Carlo Sanna, Javier Verbel, and Floyd Zweydinger. MiRitH. NIST’s Post-Quantum
Cryptography Standardization of Additional Digital Signature Schemes Project
(Round 1), https://pqc-mirith.org/, 2023.

2. Gora Adj, Luis Rivera-Zamarripa, and Javier Verbel. Minrank in the head. In Nadia
El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, Progress in Cryptology -
AFRICACRYPT 2023, pages 3–27, Cham, 2023. Springer Nature Switzerland.

3. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue. The Return of the SDitH. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part V, volume 14008 of Lecture
Notes in Computer Science, pages 564–596. Springer, 2023.

4. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Vic-
tor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain,
Jean-Pierre Tillich, and Adrien Vincotte. RYDE. NIST’s Post-Quantum Cryptog-
raphy Standardization of Additional Digital Signature Schemes Project (Round 1),
https://pqc-ryde.org/, 2023.

5. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor
Dyseryn, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain,
and Jean-Pierre Tillich. MIRA. NIST’s Post-Quantum Cryptography Standard-
ization of Additional Digital Signature Schemes Project (Round 1), https://pqc-
mira.org/, 2023.

6. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A
New Algorithm for Solving the Rank Syndrome Decoding Problem. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 2421–2425, 2018.

7. Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger,
Olivier Ruatta, and Jean-Pierre Tillich. An Algebraic Attack on Rank Metric Code-
Based Cryptosystems. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, pages 64–93, Cham, 2020. Springer International
Publishing.

8. Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, and Jean-Pierre
Tillich. Revisiting algebraic attacks on MinRank and on the rank decoding prob-
lem. Designs, Codes and Cryptography, 91:3671-3707, 2023.

9. Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner,
Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improvements of Alge-
braic Attacks for Solving the Rank Decoding and MinRank Problems. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
pages 507–536, Cham, 2020. Springer International Publishing.

10. Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner,
Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improvements of Alge-
braic Attacks for Solving the Rank Decoding and MinRank Problems. In Advances
in Cryptology – ASIACRYPT 2020, pages 507–536. Springer International Pub-
lishing, 2020.

11. Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Sebastian
Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl. One tree to rule
them all: Optimizing ggm trees and owfs for post-quantum signatures. Cryptology
ePrint Archive, Paper 2024/490, 2024. https://eprint.iacr.org/2024/490.

https://pqc-mirith.org/
https://pqc-ryde.org/
https://pqc-mira.org/
https://pqc-mira.org/
https://eprint.iacr.org/2024/490

68 L. Bidoux et al.

12. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-
knowledge and post-quantum signatures from vole-in-the-head. In Helena Hand-
schuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
pages 581–615, Cham, 2023. Springer Nature Switzerland.

13. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher,
Christian Rechberger, Lawrence Roy, and Peter Scholl. FAEST. NIST’s Post-
Quantum Cryptography Standardization of Additional Digital Signature Schemes
Project (Round 1), https://faest.info/, 2023.

14. Emanuele Bellini, Andre Esser, Carlo Sanna, and Javier Verbel. Mr-dss - smaller
minrank-based (ring-)signatures. In Post-Quantum Cryptography: 13th Interna-
tional Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceed-
ings, page 144-169, Berlin, Heidelberg, 2022. Springer-Verlag.

15. Loïc Bidoux and Philippe Gaborit. Compact Post-quantum Signatures from Proofs
of Knowledge Leveraging Structure for the PKP, SD and RSD Problems. In Codes,
Cryptology and Information Security (C2SI), 2023.

16. Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, and Matthieu
Rivain. Dual support decomposition in the head: Shorter signatures from rank SD
and MinRank. Cryptology ePrint Archive, Paper 2024/541, 2024.

17. Nicolas Courtois. La sécurité des primitives cryptographiques basées sur des prob-
lèmes algébriques multivariables mq, ip, minrank, hfe, 2001.

18. Nicolas T. Courtois. Efficient zero-knowledge authentication based on a linear
algebra problem minrank. In Colin Boyd, editor, Advances in Cryptology — ASI-
ACRYPT 2001, pages 402–421, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

19. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: Efficient Zero-knowledge MPCitH-based Arguments. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 3022–3036. ACM, 2021.

20. Thibauld Feneuil. Building MPCitH-based signatures from MQ, MinRank, Rank
SD and PKP. In International Conference on Applied Cryptography and Network
Security (ACNS), 2024.

21. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syn-
drome decoding: new zero-knowledge protocol and code-based signature. Designs,
Codes and Cryptography, 91:563–608, 2022.

22. Thibauld Feneuil and Matthieu Rivain. Threshold Computation in the Head:
Improved Framework for Post-Quantum Signatures and Zero-Knowledge Argu-
ments. Cryptology ePrint Archive, Report 2023/1573, 2023.

23. Thibauld Feneuil and Matthieu Rivain. Threshold Linear Secret Sharing to the
Rescue of MPC-in-the-Head. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security (Asiacrypt), 2023.

24. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

25. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792-807, aug 1986.

https://faest.info/

Dual Support Decomposition in the Head 69

26. Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM Cryptosystem. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, 2000.

27. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC ’07, page 21-30, New York, NY,
USA, 2007. Association for Computing Machinery.

28. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive
Zero Knowledge with Applications to Post-Quantum Signatures. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 525–537. ACM, 2018.

29. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosys-
tem by relinearization. In crypto ’99, volume 1666 of LNCS, pages 19–30, Santa
Barbara, California, USA, August 1999. Springer.

30. P. Loidreau. Properties of codes in rank metric, 2006.
31. Carlos Aguilar Melchior, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville, Philippe
Gaborit, Adrien Hauteville, and Gilles Zémor. RQC. NIST’s Post-Quantum Cryp-
tography Standardization Process, https://pqc-rqc.org/, 2017.

32. Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–
378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

33. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process, 2022. https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

34. A. V. Ourivski and T. Johansson. New Technique for Decoding Codes in the Rank
Metric and Its Cryptography Applications. Probl. Inf. Transm., 38(3):237-246, jul
2002.

35. Bagus Santoso, Yasuhiko Ikematsu, Shuhei Nakamura, and Takanori Yasuda.
Three-pass identification scheme based on minrank problem with half cheating
probability, 2022.

36. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, nov 1979.
37. Jacques Stern. A new identification scheme based on syndrome decoding. In Inter-

national Cryptology Conference (CRYPTO), 1993.
38. Pascal Véron. Improved Identification Schemes Based on Error-Correcting Codes.

Applicable Algebra in Engineering, Communication and Computing, 8(1), January
1997.

39. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’21, page 2986-3001, New York, NY, USA, 2021. Association
for Computing Machinery.

https://pqc-rqc.org/
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

Non-Interactive Blind Signatures:
Post-Quantum and Stronger Security

Foteini Baldimtsi1, Jiaqi Cheng2, Rishab Goyal2, and Aayush Yadav1(B)

1 George Mason University, Fairfax, USA
{foteini,ayadav5}@gmu.edu

2 University of Wisconsin–Madison, Madison, USA
{jiaqicheng,rishab}@cs.wisc.edu

Abstract. Blind signatures enable a receiver to obtain signatures on
messages of its choice without revealing any message to the signer.
Round-optimal blind signatures are designed as a two-round interac-
tive protocol between a signer and receiver. Coincidentally, the choice of
message is not important in many applications, and is routinely set as a
random (unstructured) message by a receiver.

With the goal of designing more efficient blind signatures for such
applications, Hanzlik (Eurocrypt ’23) introduced a new variant called
non-interactive blind signatures (NIBS). These allow a signer to asyn-
chronously generate partial signatures for any recipient such that only
the intended recipient can extract a blinded signature for a random mes-
sage. This bypasses the two-round barrier for traditional blind signatures,
yet enables many known applications. Hanzlik provided new practical
designs for NIBS from bilinear pairings.

In this work, we propose new enhanced security properties for NIBS as
well as provide multiple constructions with varying levels of security and
concrete efficiency. We propose a new generic paradigm for NIBS from
circuit-private leveled homomorphic encryption achieving optimal-sized
signatures (i.e., same as any non-blind signature) at the cost of large pub-
lic keys. We also investigate concretely efficient NIBS with post-quantum
security, satisfying weaker level of privacy as proposed by Hanzlik.

Keywords: blind signatures · non-interactive schemes · post-quantum
cryptography

1 Introduction

A blind signature scheme is a special class of digital signatures that allows a
receiver to obtain a signature on a message of the receiver’s choice without
revealing this message to the signer. Typically, blind signatures are implemented
as an interactive protocol between the signer (holding a secret key sk) and the
receiver (holding the message m to be signed and the signer’s public verifica-
tion key vk). At the end of their interaction, the receiver should obtain a valid
signature σ on m. The protocol needs to be correct (i.e., the output signature
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 70–104, 2025.
https://doi.org/10.1007/978-981-96-0888-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_3&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_3

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 71

can be verified using vk and m) and additionally, it needs to satisfy two secu-
rity properties: blindness (i.e., the signer does not obtain any information with
respect to m) and one-more unforgeability (i.e., the receiver cannot create more
valid signatures beyond the ones received after interacting with the signer).

Blind signatures were first introduced by Chaum [Cha83] and have been
used as a main building block in numerous privacy-preserving applications.
One of the most prominent applications, and the one originally considered by
Chaum [Cha83] is private electronic payments (e-cash). The idea is that in an e-
cash system, a bank (a.k.a. the signer) creates electronic coins through the use of
blind signatures. Each coin is associated with a unique serial number selected by
the user, and the bank’s signature on it serves as proof of its validity. The blind-
ness property guarantees that nobody (including the bank) can trace the spend-
ing of user coins, while the unforgeability property guarantees that users cannot
forge coins. Beyond e-cash, blind signatures have found applications in e-voting
systems [CGT06], anonymous credentials/tokens [PZ13,BL13,FHS15,DGS+18],
direct anonymous attestation [BCC04] and coin tumblers for cryptocurrencies
[HBG16,HAB+17].

Two-move Barrier. The original blind signature scheme by Chaum [Cha83]
requires two-moves of interaction: the recipient sends the blinded message to
the signer and the signer responds with a signature on the blinded message. The
recipient locally un-blinds the signature and outputs the final message/signature
pair. It is easy to see that blind signatures are impossible unless the recipi-
ent and signer both send at least one message. Thus, two-move blind signa-
tures are considered round-optimal and are particularly interesting for real-world
applications. Beyond their optimal communication efficiency, their unforgeabil-
ity automatically extends to the concurrent setting [Lin08,HKKL07] (i.e. even
when the adversary engages in multiple concurrent sessions with the signer).
There has been a long line of research on round-optimal blind signatures under
different models and assumptions [BNPS02,Bol03,Fis06,GRS+11,SC12,FHS15,
FHKS16,Gha17,KNYY21,AKSY22,BLNS23a].

Non-interactive Blind Signatures: Beyond the Two-move Barrier. In a
two-move blind signature scheme, the first message originates from the receiver
and typically includes a blinded version of the message to be signed. Interestingly
though, in many applications, the signed message is selected randomly and does
not come from a specific distribution or has a specific structure. Consider e-cash
as an example, where the signed message is a random value denoting the e-coin
ID, arbitrarily selected by a user. This observation was recently made explicit
by Hanzlik [Han23] who put forward a new notion called non-interactive blind
signatures (NIBS).

In a NIBS system, each receiver is associated with a public-secret key pair
(pkR, skR) such that any signer can asynchronously create partial signatures psig,
called presignatures, given only the receiver’s public key pkR. The receiver can
extract a pair of blinded signature σ and message μ from presignature psig using
its corresponding secret key skR. Completeness states that σ is a valid signature
for message μ, and can be verified given only signer’s verification key vk. The
message μ should be an unpredictable message for the receiver and the signer.

72 F. Baldimtsi et al.

In terms of security, a NIBS scheme should satisfy the properties of (one-
more) unforgeability and blindness similar to the interactive setting. As pointed
out in [Han23], using some secret input from the receiver (i.e. skR) during the
computation of the final signature is crucial to achieve blindness without incur-
ring two-moves. Additionally, Hanzlik also extended the idea of NIBS to tagged
non-interactive blind signatures (TNIBS) to resemble the functionality of par-
tially blind signatures. That is, signatures that allow for the inclusion of some
un-blinded metadata, called the ‘tag’, along with the blinded signature. For
example, the tag could contain application specific public information such as
date, time, purpose, etc.

Non-interactive blind signatures could replace traditional blind signatures in
any application where the choice of message is not important, and could be set
as a random (unstructured) message. This would lead to protocols with mini-
mal communication complexity. Beyond the case of e-cash, (tagged) NIBS can
be used to implement anonymous token systems, à la Privacy Pass [DGS+18],
and lottery systems—we refer to [Han23] for a longer discussion on applications.
Interestingly, if we consider the PKI model, then a recipient never needs to inter-
act with a signer to send its public key. Thus, a signer can issue and publish
presignatures for users without ever interacting with them. This property makes
NIBS suitable for many modern applications. As an example, consider cryp-
tocurrency airdrops which is a mechanism to gift coins to users (typically used
to bootstrap interest in a new coin). A cryptocurrency could distribute coins to
registered user public keys by creating and publishing presignatures, and then
users could obtain the final signatures (i.e., the actual coins) in a privacy pre-
serving way.

Existing Constructions. [Han23] provided a generic template for building
(T)NIBS in the random oracle (RO) model from verifiable random functions,
digital signatures, and general purpose dual-mode non-interactive witness indis-
tinguishable proofs. They also designed a practically efficient NIBS scheme from
signatures on equivalence classes [HS14,FHS19], and a TNIBS from tag-based
equivalence class signatures [HS21]. Both schemes crucially rely on the use of
bilinear pairings for instantiating the underlying equivalence-class signature.
Moreover, their security proofs are carried out in the generic group model.

This Work. The goal of this work is two-fold: pushing the barriers both on
the definitional framework and on constructions. Since NIBS is a newly intro-
duced primitive, our first focus is to examine the definitional framework proposed
in [Han23] and to ask the following natural question:

Is the definitional framework proposed by [Han23] correctly capturing the
desired properties?

As it turns out, the blindness properties defined by [Han23] only capture a
weaker level of privacy, which is not adequate for all the applications NIBS
was proposed for. Thus, in this work, we revisit the definitional framework and
provide blindness definitions that better capture the intended level of privacy
and which should be considered the basis for future NIBS development.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 73

On the construction side, the current state-of-the-art is that we do not have
efficient post-quantum NIBS, even with only conjectured security. This was left
as an important open problem in [Han23] and brings us to the following question:

Can we design efficient (tagged) NIBS from post-quantum assumptions?

We answer the above question in the affirmative, and believe this will lead to
further progress in the emerging area of practical (round-optimal) blind signa-
ture schemes with post-quantum security (see [LNP22a,AKSY22] and references
therein). We summarize our contributions below.

1. We address the privacy shortcomings of the existing NIBS definition frame-
work, and present new stronger blindness properties for NIBS. Our study of
stronger blindness definitions is motivated by scenarios in which a blindness
attacker might be able to get a hold of some presignatures along with their cor-
responding message-signature pairs.1 We also provide a new feasibility result
by extending the folklore Fischlin’s paradigm [Fis06] to the non-interactive
setting, while proving security in our stronger corruption model.

2. We propose a new generic paradigm for designing (non-interactive) blind sig-
natures with optimal-sized signatures from any circuit-private leveled homo-
morphic encryption (LHE) scheme. We show that LHE can upgrade any reg-
ular (non-blind) signature into a NIBS without increasing the size of the
final signature. We believe that our LHE-based template could serve as an
alternative to the famous Fischlin’s paradigm. With great ongoing research in
the realm of (somewhat/leveled) homomorphic encryption, we further believe
that our proposed template might lead to alternate approaches to efficient
(non-interactive) blind signatures in the future. As we discuss later, our LHE-
based construction enables a new interesting tradeoff leading to optimal-sized
signature with large public keys and pre-signatures; while a general NIZK-
based solution enables the opposite tradeoff.

3. We also design a practical lattice-based (T)NIBS scheme that satisfies a
weaker level of privacy, as proposed in [Han23]. As we discuss later, this is
still adequate for a subset of applications mentioned in [Han23]. The concrete
costs and overhead of our NIBS scheme are similar to that for state-of-the-art
interactive (round-optimal) blind signatures from lattices. We introduce, and
prove security of our system under, a more robust variant of the one-more-
ISIS assumption [AKSY22], that we call randomized one-more-ISIS assump-
tion which may be of independent interest. We do preliminary cryptanalysis
of our assumption, and show that all known attacks on the one-more-ISIS
assumption [AKSY22] are unsuccessful in breaking our variant.

Related Work on Lattice-based Blind Signatures. Recently, many new
round-optimal schemes for lattice-based blind signatures have been pro-
posed [LNP22a,dK22,AKSY22,BLNS23a]. Lyubashevsky et al. [LNP22a] use
1 At a very high level, one could view our definitions providing a stronger CCA-style

blindness guarantee, while existing definitions provide only a CPA-style blindness
guarantee.

74 F. Baldimtsi et al.

Table 1. Our construction compared with state of the art two-move lattice-based
blind signatures. R → S communication is 0 bytes if a PKI exists, else it is a one-time
cost unlike the two-move schemes that have a linear dependence.

Communication Complexity

Scheme Assumption R → S S → R |σ|
[AKSY22] OM-ISIS 0.96 KB 0.56 KB 45 KB

[BLNS23a] MSIS and MLWE > 100 KB ∼ 60 KB 22 KB

Our Construction (7.1) rOM-ISIS 0 B 0.96 KB 68 KB

one-time signatures, and build blind signatures under standard lattice assump-
tions (MSIS, MLWE). However, their scheme only supports bounded polyno-
mial number of signatures per public key with each signature being around
150 KB in size. This was improved by del Pino and Katsumata [dK22] who
adapted Fischlin’s paradigm [Fis06] to the lattice setting. The resulting scheme
allows for an unbounded number of signatures, of around 102 KB each, and is
also secure under standard lattice assumptions. Agrawal et al. [AKSY22] sig-
nificantly improved both the signature, as well as the transcript size, by also
leveraging Fischlin’s paradigm, but relying on efficient lattice-based NIZK for
linear relations [LNP22b]. Their final signature size is 45 KB and the total tran-
script is just over 1 KB. The security of their scheme is based on the one-more
ISIS assumption [AKSY22]. Most recently, Beullens et al. [BLNS23a] improved
the Agrawal et al. scheme by off-loading some inefficient computation to the
receiver’s first message. This has the twin benefit of simultaneously allowing a
reduction to standard lattice assumption, as well as reducing the signature size
to just 22 KB. However, this came at the cost of the receiver having to prove
the validity of cryptographic hash function input-output pair in its first mes-
sage. This makes the first message significantly less efficient at a few hundred
kilobytes. We compare the concrete cost of our lattice-based NIBS construction
with the current state-of-the-art round-optimal blind signatures from lattices in
Table 1.

2 Technical Overview

In this section, we provide a high-level technical overview and summarize our
main contributions. We start by recalling the notion of non-interactive blind
signatures.

2.1 Defining Non-Interactive Blind Signatures

In a NIBS system, the Setup algorithm generates the system’s (global) public
parameters pp (viewed as CRS in-the-sky). There are two key generation algo-
rithms, KeyGenS → (sk, vk),KeyGenR → (skR, pkR), for the signer and receiver,
respectively. Given sk, the signer runs a (randomized) Issue algorithm for any
receiver’s public key pkR to compute a presignature, psig and nonce. Here nonce

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 75

roughly denotes the randomness used by the signer. The receiver then runs
the Obtain algorithm on the above presignature to compute the final message-
signature pair (μ, σ) using secret key skR

2.
[Han23] also extended the above basic notion to tagged NIBS (TNIBS). The

goal was to capture the notion of partially blind signatures [AF96] which allow a
signer and recipient to jointly agree on a public metadata/value to be included
as part of the signed message. This is captured by allowing such a common
metadata/value, called a tag, to be chosen explicitly by the signer, and shared
with the receiver along with the presignature. Syntactically, TNIBS is defined
identically to NIBS, except Issue, Obtain, and Verify algorithms take tag τ as an
additional input.

The Need for Reusability. An essential property of NIBS is reusability, which
says that a signer can issue multiple distinct presignatures (leading to multiple
distinct message-signature pairs) for the same receiver public key pkR. Hanzlik
[Han23] attempted to capture this property by providing a random nonce value as
input to the Issue algorithm. Unfortunately, as we explain in Sect. 4, the existing
formulation is insufficient in capturing the desired reusability property. The issue
is that, under the current formulation, there can exist trivial NIBS scheme where
Issue and Obtain algorithms simply ignore nonce, thus lead to a limited one-use
system. To fix this, we formalize reusability as its own property. Informally, it
says that any receiver should obtain two distinct message-signature pairs for
two distinct presignature-nonce pairs for any given receiver. Fortunately, the
bilinear-based NIBS schemes [Han23] already satisfy reusability, but just did
not prove/define it formally.

NIBS Security. For security, we want NIBS to satisfy one-more unforgeability
and blindness. One-more unforgeability for NIBS can be defined as a natural
extension of the one-more unforgeability for traditional blind signatures [PS96]:
the adversary gets access to a presignature oracle, and after receiving � presig-
natures for recipient public keys specified by the adversary, the adversary must
return � + 1 valid signatures.

On the other hand, defining blindness for NIBS is much more nuanced than
for traditional blind signatures3. Intuitively, it is captured by defining unlinkabil-
ity between presignatures and final signatures. More formally, Hanzlik [Han23]
proposes the following experiment: the adversary receives two recipient public
keys pkR0

, pkR1
, and outputs two presignatures psig0, psig1 (one for each). The

challenger extracts the final signature-message pairs (μ0, σ0), (μ1, σ1) from these,
and the scheme is said to satisfy receiver blindness if the attacker cannot link the
final signature-message pairs to the presignatures. Abstractly, receiver blindness
could be thought of as an ‘inter-receiver’ blindness property, since it guaran-
tees that a malicious signer cannot figure out the recipient of a final (blinded)
signature between two possible options.

2 Our syntax is nearly identical to that proposed in [Han23]. We deviate slightly in
the handling of nonce as we discuss in this section, and also later in Sect. 4.

3 Essentially, this is because the receiver does not choose the message in the non-
interactive setting.

76 F. Baldimtsi et al.

Hanzlik [Han23] also proposed a secondary blindness notion, called nonce
blindness. This can be viewed as an intra-recipient blindness property, where
what we want is that a signer issuing more than one presignature to a spe-
cific user should not be able to link the final message-signature pairs to the
corresponding presignatures. Essentially, this provides some flavor of “ordering”
unlinkability. This was formalized by Hanzlik [Han23] via an experiment similar
to that of receiver blindness with the difference that the adversary is only given
one recipient public key pkR, while it still outputs two presignatures psig0, psig1.
The challenger extracts the final signature-message pairs (μ0, σ0), (μ1, σ1) from
these, and the scheme is said to satisfy nonce blindness if the attacker cannot
link the final signature-message pairs to the original presignatures.

The Issues with [Han23] Blindness. Unfortunately, the two blindness defini-
tions given by Hanzlik [Han23] do not really capture a sufficient level of privacy
that would be required in most NIBS applications.

The core issue is that both definitions only guarantee unlinkability of two
presignatures with their corresponding message-signature pairs. That is, a NIBS
scheme secure under the existing nonce blindness might not satisfy unlinkability
when given three (or more) presignatures to different users. To showcase the
problem consider a concrete scenario wherein an adversary issues two presigna-
tures to a user with pkR0

and one presignature to a user with pkR1
. Once the

adversary learns two signatures of a user (through a verifier), they will know
with certainty4 that this must have been the user with pkR0

.

New Stronger Blindness Definitions. To capture such practical attacks
described above, we propose a new stronger security framework for NIBS blind-
ness properties. The motivation is to capture scenarios where an adversary is
able to learn some correlation between presignature-nonce pairs and their cor-
responding blind signature-message pairs. We formulate this by providing an
adversary oracle access to the receiver’s secret key in the form of Obtain queries.
To ensure this is not trivially impossible, we restrict the adversary to not make
an Obtain query on any of the two challenge presignatures psig0, psig1.

We call these the strong receiver (resp. nonce) blindness properties. At a
high level, these can be viewed as CCA-version of blindness (since adversary
gets query access to the secret key like in IND-CCA). These definitions guaran-
tee blindness to hold even when a malicious signer is able to bypass blindness of
signatures from previous sessions. Now any NIBS scheme that is secure under the
above stronger definitions protects against the attacks described earlier. This is
because we are letting an adversary break blindness of all non-challenge presigna-
tures, and still ask that the blindness of the challenge presignatures is unaffected.
We discuss our definitions in detail later in Sect. 4.

When is Basic-blindness [Han23] Sufficient? There are many applications,
as discussed in the introduction as well as [Han23], where the basic-blindness
4 We note that this is not a problem in regular blind signatures, where blindness is

indeed defined as an indistinguishability game. However the creation of user assigned
presignatures in NIBS complicates the definition of blindness.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 77

receiver and nonce blindness properties as defined by [Han23] are not sufficient.
Thus, one of our main assertions and contributions is that for typical applica-
tions of NIBS, where multiple presignatures are issued to multiple recipients, the
strong blindness definitions should be used.

We also remark that there are some applications where the notion of basic
blindness will be sufficient. As a concrete application, consider one-per user
anonymous airdrops or e-voting tokens, where only a single presignature will be
generated for each recipient. In such applications the notion of (basic) receiver-
blindness alone, as defined by [Han23], is sufficient. More broadly, any NIBS
scheme satisfying only basic receiver blindness implies a round-optimal (inter-
active) blind signature scheme for random messages. Thus, any NIBS scheme
with basic blindness already covers all known applications of traditional blind
signatures where messages are selected randomly. Therefore, we believe that a
NIBS scheme satisfying only receiver-blindness is interesting for some applica-
tions. Since achieving basic-blindness is relatively easier than achieving strong-
blindness, a NIBS scheme secure as per the basic blindness can lead to schemes
with better concrete efficiency.

In this work, we provide new constructions and templates for designing NIBS
that are secure as per our stronger blindness definitions. We also design new
practically efficient NIBS scheme secure as per the basic blindness definitions
[Han23]. This leads to first post-quantum NIBS scheme. We leave the problem
of designing practically efficient NIBS with strong blindness as an interesting
open problem.

2.2 Extending Fischlin’s Paradigm to NIBS

In this section, we start describing our main technical ideas. Our starting point
is the well-known Fischlin’s paradigm [Fis06] for constructing traditional blind
signatures. At a high level, Fischlin’s scheme assumes a common reference string
(CRS), a standard signature scheme S, an encryption scheme E , a commitment
scheme COM and general NIZK proofs.

The CRS contains an encryption public key pkE , while each signer simply
generates its key pair (sk, vk) by running the setup of the signature scheme. The
user computes c = COM(m) and sends c to the signer. The signer runs Sign(sk, c)
to produce σ′ and sends σ′ to the user. If the signature verifies, the user com-
putes ct = EncpkE (c ‖ σ′) and outputs ct,m and a NIZK π proving knowledge of
signature σ′ and message m such that σ′ is a signature on a commitment of m.
Intuitively, the one-more unforgeability follows from binding of the commitment
scheme and unforgeability of the signature scheme, via straight-line extraction
enabled by the trapdoor key skE corresponding to pkE . Further, blindness fol-
lows from the semantic security of the encryption scheme, zero-knowledge of the
NIZK, and hiding property of the commitment. Consider the following natural
extension of Fischlin’s paradigm to the non-interactive setting.

Adapting Fischlin’s Paradigm to NIBS. Given that there is no interaction
between the signer and the user, the receiver’s public key will, in a sense, replace

78 F. Baldimtsi et al.

the commitment submitted in the first move. The challenge now is that the
commitment can no longer represent a commitment of a single message but has
to be a succinct commitment of an exponential number of messages at once. The
hope is that signer can sign the commitment in a way such that the signature
obliviously binds to exactly one of those messages at random. This binding to
one message from an exponential set is important for one-more unforgeability as
otherwise the receiver could cheat. Lastly, the receiver can use NIZKs to prove
knowledge of the signature and reveals the choice of message that was obliviously
selected.

Thus, to extend the above template, we need to overcome two challenges: (a)
how to commit to an exponential number of messages efficiently, and (b) how
can the signer obliviously select one of those messages. Our approach is to set
the receiver’s public key pkR as a commitment to a PRF key K, and the key
K (along with its opening) as the secret key. Note that this implicitly defines
the exponential set of messages as all the outputs of the PRF. Then, during the
issuance of a presignature, the signer can obliviously sample one of the messages
by selecting a random input r and signing it along with pkR. The user obtains
a final signature on the message m = FK(r) and along with m it outputs σ to
be a NIZK proof of knowledge of a (pre)signature on pkR and r corresponding
to the message m.

Given that the PRF is a deterministic function and commitment is bind-
ing, our approach guarantees that the receiver can only obtain a single final
signature from a presignature which allows us to prove one-more unforgeability.
Further, blindness properties can be reduced to the zero-knowledge property of
the underlying NIZK and hiding of the commitment scheme. Moreover, as we
discuss in detail in the full version, we can prove our scheme to be secure under
our stronger blindness definitions. The core intuition is that the NIZK proof
systems are multi-theorem zero-knowledge, thus they can be used to simulate
responses to all Obtain queries including the challenge queries, thus each blinded
signature is completely unlinkable to its presignature, since the blinded signature
is simulated without any information about the presignature.

Remark 1. Hanzlik [Han23] proposed a similar generic template for NIBS using
verifiable random functions and general-purpose dual mode witness indistin-
guishable proofs, but only proved security under his restricted blindness notions.
Our construction is notably simpler as it only requires a PRF and general-
purpose NIZK, and provides stronger blindness security. Please refer the full
version for the complete construction satisfying our strong blindness definitions.

2.3 A New Template: Circuit-Private LHE to NIBS

We now describe a new template for designing NIBS with stronger blindness
based on circuit-private LHE. We already know that homomorphic encryption
with special properties [AJL+12,MW16] are useful in designing round-optimal
MPC protocols. Moreover, such protocols can be client-optimized where the
communication complexity of a client is extremely low. Our main observation is

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 79

that we can instantiate a NIBS scheme as a specialized two-round MPC protocol
where the first round message can be reused [IKO+11,AMPR14,MR17,BJOV18,
CDI+19], and by using FHE to instantiate the protocol, we can optimize the
communication complexity for the receiver to nearly optimal. Let us elaborate
on our main ideas below.

Our key idea is that rather than using NIZKs to hide the receiver’s secrets, we
can leverage the fact that leveled homomorphic encryption (LHE) enables arbi-
trary homomorphic operations on the receiver’s commitment. Specifically, the
receiver commits to a PRF secret key K by encrypting it under LHE. Using this
commitment, a signer issues a presignature as follows: it first homomorphically
evaluates the PRF FK(·) on some randomness r of its choice and then homo-
morphically generates a signature on FK(r) treated as a message. The resulting
ciphertext ̂ct is, therefore, an encryption of the signature on FK(r). Under the
mild assumption that the LHE is circuit-private [OPP14], the signer can simply
send ̂ct as the presignature along with an argument of knowledge that ̂ct was
evaluated using the signing key as input to the circuit, and randomness r as
the nonce. The receiver sets its message to FK(r) and obtains the corresponding
signature by decrypting ̂ct. Notably, the final signature is just a regular signa-
ture and is thus optimal in size. Moreover, beyond optimality, this construction
satisfies our stronger notion of blindness: strong receiver and nonce blindness.

At a high level, both strong-receiver/nonce blindness follow from the
IND-CPA security of the encryption scheme which ensures that ct does not reveal
anything about K, and the pseudorandomness of F , which ensures that two
messages on different nonces look random. The one-more unforgeability of the
protocol follows from the unforgeability of the underlying signature scheme and
the circuit-privacy of the LHE. For the proof to go through, we additionally
require that both parties also prove knowledge of their secret keys. That is, our
proof is in the knowledge of secret key (KOSK) model [MOR01,Bol03]. As a
supplementary contribution, we also prove that any NIBS scheme secure in the
KOSK model is also secure in the standard model, assuming existence of NIZKs.

Our LHE-based NIBS construction is described in Sect. 5, and the generic
compiler to upgrade security in KOSK model to standard model is provided
in Appendix A. We highlight that our construction explores a new interesting
trade-off that yields optimal-sized signatures while paying in terms of higher
setup and computation costs. We believe this could lead to alternate approaches
to practical NIBS (and round-optimal interactive blind signatures) in the future.

2.4 Making Fischlin-Based NIBS Practical and Post-Quantum

The next contribution of our work is a practically efficient NIBS scheme that
satisfies basic-blindness definitions [Han23]. Moreover, we provide a proof-of-
concept estimate of all the parameters sizes of our NIBS construction. Let us
start by revisiting the Fischlin-based NIBS construction that we explained earlier
in Sect. 2.2. We show how to adapt our construction by combining with new ideas
such that it makes the design concretely efficient, yet it satisfies (basic) receiver-
blindness.

80 F. Baldimtsi et al.

With the above goal, we look back to the recent work by Agrawal et al.
[AKSY22] on desgining practical round-optimal (interactive) lattice-based blind
signatures. Agrawal et al. suggested that the usage of NIZKs is somewhat
unavoidable when designing round-optimal blind signatures from lattices5. Thus,
their main insight was that, by optimizing the NP language for which NIZKs
are needed, one could instantiate Fischlin’s paradigm efficiently. In particular,
they showed that NIZKs for linear relations, which are already known to be
efficiently implementable from lattice assumptions [LNP22b], are sufficient for
building practically efficient round-optimal blind signatures.

Our initial attempt is to follow a similar approach. We start by optimizing
our NIZK-based template for designing NIBS, similar to how [AKSY22] opti-
mized Fischlin’s paradigm. The challenge here is to remove all inefficient generic
cryptographic components currently used in our NIZK relation, and implement
them via just linear relations. As a starting point, consider the standard hash-
then-sign paradigm. A signer samples lattice trapdoor as (C,TC) and outputs
C as verification key vk. Receiver starts by randomly selecting a PRF key K,
and sets its public key pkR = Com(K; s) as a commitment of K with its secret
key skR = (K, s), for some random string s. Signer then assigns presignatures
to receiver: it uniformly samples randomness r as nonce, and provides a short
preimage of H(pkR||r) as the presignature, where C ·z = H(pkR||r) and psig = z,
nonce = r. Finally, receiver generates message μ as FK(r), and signature π as a
NIZK proof establishing that z = C−1 (H(pkR||r)), μ = FK(r) and z is short.

Such a design essentially instantiates our NIBS template with the lattice-
based signature scheme in [GPV08]. Observe that the major source of inefficiency
in the NIZK arises from the hash evaluation and the PRF evaluation. These
evaluations are extremely heavy and thus not very practical to prove in a NIZK.
Our strategy is to entirely exclude both computations from the NIZK relation.
Following from the blueprint of [AKSY22], it is possible to remove the hash
evaluation (from the NIZK relation) if we fix the receiver’s public key as pkR =
A·x+H(δ) for some randomly sampled x and hash input δ, where A is a random
matrix part of the CRS. Evaluations of H(δ) could then be performed outside
of the NIZK proof system, if the signature contains δ in the clear. This removes
the need to prove costly hash evaluations using the NIZK. The reason this does
not break blindness is that even if the signer learns δ, it still cannot link δ with
pkR as x contains enough entropy so that A ·x statistically hides all information
about H(δ).

However, at this point, the parallels between our design and the interactive
blind signature scheme in [AKSY22] start to diminish. This is because, in the
interactive setting, a receiver can simply select δ as a fresh message in each
new session. But, in NIBS, we need to create multiple signatures for the same
receiver key pkR. And, the issue is pkR binds to a fixed value for the lifetime of the
system. Thus, unlike [AKSY22], we cannot set δ as the final signed message. This

5 This is due to the fact that all existing practical lattice-based signature schemes do
not support simple algebraic homomorphisms in a practically efficient way, unlike
signatures from pairings or factoring-based assumptions.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 81

is because this will violate reusability, and make the NIBS scheme only single-
use. Therefore, it will not be any more advantageous than a regular two-round
blind signature scheme. Basically, this suggests that we cannot simply replace
the usage of a PRF within our generic template as easily! Moreover, if we keep
on using the PRF to generate a fresh message from each distinct presignature
computed by the signer, then the receiver will have to prove it using the NIZK
which will be extremely inefficient.

In summary, this means we can no longer use δ (inside each receiver’s key),
or the PRF trick to generate a fresh message from each distinct presignature
computed by the signer. To this end, we propose an entirely different approach
to generate the final messages from presignatures. Our insight here is that the
extracted final messages need not be ‘truly random messages’, but it is enough
to have (1) the messages be just uncorrelated amongst different receivers, and
(2) be distinct for any two distinct valid presignatures for the same receiver.

Our idea is to set the final message as A ·
[

x⊥
z⊥

]

instead of FK(r), where

C · z = pkR. Here we write x� and x⊥ to be the top and bottom halves of x
(respectively), and the same notation applies to z. The intuition is that, while
the receiver’s public key contains the entire x vector, if we set the parameters
appropriately, then we can argue by the leftover hash lemma that x⊥ is sta-
tistically hidden from the signer’s view. We point out that it is important in
our design that the signer implicitly assigns nonce to be z⊥ (with presignature
z�) where C · z = pkR, instead of sampling r as randomness and z as preim-
age of pkR||r. This ensures that NIZKs for linear relations are still sufficient as
well as makes the design even more optimal. For ensuring this property from
preimage sampling, we rely on the Bonsai trick [CHKP10,ABB10b] for lattice
trapdoors. Using the standard Bonsai trick, one can generate a preimage z with
the above special property, i.e. z⊥ is sampled as a random Gaussian vector with
appropriate norm.

The above serves as the core skeleton of our efficient construction in Sect. 7
however, as we discuss next, we need to make a few more slight modifications to
ensure that we can prove desired unforgeability and blindness security properties
for our NIBS scheme.

2.5 Security and the Randomized OM-ISIS Assumption

Since the lattice-based core of our optimized NIBS scheme shares many similari-
ties with interactive blind signature scheme of [AKSY22], a natural first attempt
is to prove unforgeability of our NIBS scheme using the same proof strategy as
used in their work. Now, to prove security of their round-optimal blind signature
scheme, Agrawal et al. [AKSY22] proposed a new ISIS-like assumption, called the
one-more ISIS assumption (OM-ISIS)6. Below we briefly recall the assumption7.

6 The “one-more” name inspired from one-more-RSA assumption [BNPS03].
7 For ease of exposition, we present a simplified assumption here. In the original

assumption, the set of target vectors T can be chosen adaptively by the challenger.

82 F. Baldimtsi et al.

1. The challenger samples a challenge matrix A ∈ Z
n×m
q along with a large set

of random target vectors T ⊂ Z
n
q . It provides the attacker with A and T .

2. A can make preimage queries for any target vector ̂t ∈ Z
n
q to which the

challenger replies with a short8 vector x̂ such that A · x̂ = ̂t.
3. OM-ISIS assumption says that A, having made at most � preimage queries,

cannot output �+1 distinct vector pairs {(xj , tj)}j∈[�+1] such that A·xj = tj ,
tj ∈ T , xj is sufficiently short.

Intuitively, the assumption says that an adversary cannot find good (i.e., rea-
sonably short) preimages for a set of �+1 randomly selected vectors, even when
it has access to a preimage sampling algorithm that can generate at most �
preimages for adversarially selected target vectors.

Agrawal et al. also performed some preliminary cryptanalysis of their assump-
tion. While they were able to design practical attacks [AKSY22, § 4.5] for certain
parameter settings, they suggested that, by carefully selecting the parameters
in the above assumption, all known attacks fail. Moreover, they proved that
their two-round blind signature scheme can be proven secure under the above
assumption with those parameters.

However, the presence of efficient practical attacks on a wide range of param-
eters on the OM-ISIS assumption suggests that this assumption is not very stable
and robust. On a technical level, the assumption appears quite strong since an
attacker can ask for short preimages for “any” target vector of its choice. In more
detail, an attacker can simply ask for multiple short preimages for the all-zeros
vector. Given such preimage vectors, an attacker can combine them to create an
approximate lattice trapdoor. As Agrawal et al. discussed, the quality of such
a trapdoor computed is worse than the actual trapdoor, thus such a trapdoor
would be useless if the � + 1 preimage vectors that the attacker must compute
have to be as short as the preimage vectors it received.

Unfortunately, setting the parameters carefully sidesteps just one limitation
of the OM-ISIS assumption, but does not make the assumption truly robust.
Simply put, we believe that providing an unrestricted preimage query access to
the attacker is too strong. To further illustrate this, consider an even simpler
attack that finds short preimage vectors without creating a lattice trapdoor.
The attacker just makes two preimage queries (which correspond to preimage
queries)—one on vector 0 and other on any non-zero vector t ∈ T (T is the
target set). Let z1 and z2 be the respective preimage vectors. That is, A ·z1 = 0
and A ·z2 = t. Given z1 and z2, an attacker simply output three distinct vectors
z2, z2 − z1, and z2 + z1 as the preimages for the same target vector t ∈ T .

Abstractly, the issue is that an adversary can perform simple linear combina-
tions on preimage vectors, and such linear combinations map to appropriate lin-
ear combination of the corresponding target vectors. While this does not qualify
as an attack on the two-round blind signature scheme of Agrawal et al. [AKSY22]
(since any admissible attacker in their system must be generating preimages on

8 As in typical lattice settings, by short vectors we mean vectors with small norms.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 83

�+1 distinct vectors), this highlights that the OM-ISIS assumption is susceptible
to arbitrary linear combination attacks.

Existence of such linear combination attack strategies are a big barrier to
designing reusable non-interactive blind signatures. Our initial attempt to build
NIBS as a generalization of the Agrawal et al. scheme turns out to be insecure.
The attack is basically the same as the one described above. To ensure reusability,

we set the final message as A·
[

x⊥
z⊥

]

rather than just δ (where δ is was used in the

receiver’s public key). An attacker simply makes one presignature query for some
receiver public key pkR, and one presignature query for the all-zeros vector (as
the public key), and combines them linearly to obtain > 2 valid presignatures for
pkR. One can easily show that the resulting final messages for all these preimage
vectors will also be different, thereby constituting an efficient attack on one-more
unforgeability of our basic NIBS scheme.

Randomized OM-ISIS Assumption. To thwart the aforementioned linear-
combination style attacks on the OM-ISIS assumption, we propose a new variant
that we call randomized one-more ISIS assumption rOM-ISIS. Our goal here is
twofold— (a) we want to turn OM-ISIS assumption into a more robust assump-
tion such that there do not exist any efficient/practical attacks (irrespective of
how the parameters are set), (b) we can design a non-interactive (as well as two-
round) blind signature scheme which can be proven under the new assumption.

Our strategy is to prevent an attacker from learning preimages on arbitrary
target vectors of its choice. This was the central property that was exploited by
Agrawal et al. [AKSY22] in their practical attacks/cryptanalytic efforts. To this
end, we make the challenger “re-randomize” each target vector (independently
for each query) before computing its preimage. In turn, this takes away the
attacker’s prior advantage from obtaining distinct short preimages for the same
target vector (or any target of its choice more generally). Moroever, by carefully
selecting how the per-query re-randomization happens, we can also avoid all
known affine attacks that we discussed. Below we summarize our new randomized
one-more ISIS assumption rOM-ISIS.

1. The challenger samples a challenge matrix A ∈ Z
n×m
q and a randomization

matrix B ∈ Z
n×m
q along with a large set of random target vectors T ⊂ Z

n
q . It

provides the attacker with A, B and the vector set T .
2. A can make preimage queries for any target vector ̂t ∈ Z

n
q such that the

challenger replies with a short vector x̂ and a ±1 vector ŷ ∈ {±1}m such
that A · x̂ +B · ŷ = ̂t.

3. rOM-ISIS assumption says that A cannot output � + 1 distinct vector tuples
{

(xj ,yj , tj)
}

j∈[�+1]
such that A · xj +B · yj = tj , tj ∈ T , xj is sufficiently

short, yj is a ± 1 vector, and A made at most � preimage queries.

Intuitively, the attacker now cannot truly select the preimage vector arbi-
trarily since the challenger randomizes the actual target vector as (t − B · y),
where y is a random ±1 vector. Since the attacker receives the vector ŷ used

84 F. Baldimtsi et al.

for randomization, it is unclear whether we can reduce it to the standard ISIS
assumption.9 However, our preliminary cryptanalysis (cf. full version shows that
it is more robust when compared with the OM-ISIS assumption. We believe that
this new formulation could serve as a better lattice analogue of the one-more RSA
assumption [BNPS03]. For example, we can also prove that a mild adaptation
of the Agrawal et al. [AKSY22] two-round blind signature scheme is still secure
under rOM-ISIS assumption, and now we no longer have set the parameters as
carefully to avoid simple attacks as was done in [AKSY22]. This further illus-
trates the flexibility of our new assumption. Later, in Sect. 6, we describe the
assumption in full detail and also provide some preliminary cryptanalysis.

Our Final NIBS Construction. With the above strengthening of the one-
more ISIS assumption, we make some slight changes to our core design. Each
signer additionally samples a random ±1 vector y, and computes the preimage
for the syndrome for (pkR − B · y), instead of just pkR, i.e., it samples z such
that C · z = pkR − B · y. The signer then explicitly sets z as the presignature
and y as the nonce. Given this, the receiver creates a NIZK proof π stating
that, given A,B,C,w, δ, there exist vectors x,y and z such that the following
relation holds:

C · z + B · y = A · x + H(δ) ∧ w = A ·
[

x⊥
z⊥

]

∧

y =
[

y1 y2 · · ·]T , ∀i : yi ∈ {±1} ∧ ‖x‖ , ‖z‖ are short.

We describe our NIBS construction in detail in Sect. 7.1. We prove one-more
unforgeability of our NIBS protocol under the rOM-ISIS assumption. Here, we
run into a slight technical issue. Namely, when proving one-more unforgeabil-
ity, the reduction will need to extract the adversary’s � + 1 forgeries from the
NIZK proof, but rewinding � + 1 times results in an exponential (in �) sound-
ness loss. Fortunately, one can easily apply the so-called “encryption-to-the-
sky” trick [AKSY22,BLNS23a] to get straight-line extraction. More concretely,
we modify the proof system to also require a proof of encryption to the wit-
ness (x,y, z). Therefore the precise relation that the receiver must prove also
includes ct = PKE.Enc(pke.pk,x||y||z; r), where the ciphertext ct and the PKE
public key pke.pk also form part of the instance, and the encryption random-
ness r is included in the witness. As done is prior works, this can be efficiently
proved using a linear relation. Finally, the receiver sets (w, δ) as its message and
(π, ct) as the corresponding signature. To verify a signature, one simply runs the
verification algorithm for the NIZK.

In the security proof, the reduction now retains access to the PKE secret key.
This allows the reduction to extract xi, yi and zi for all of the adversary’s � + 1
forgeries. If the hash function is modeled as a random oracle, the reduction can
simply answer all hash queries for H(δ) from the challenge set T ; if it further

9 Interestingly, one can easily show by a simple application of the leftover hash lemma
[HILL99,DRS04,DORS08], that if the attacker does not receive ŷ, then this is as
hard as the standard ISIS assumption.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 85

sets the public matrix A as a matrix-matrix product of the rOM-ISIS challenge
matrix C, it can break rOM-ISIS. Observe that the matrix A, statistically hides
the receiver’s secret x (by the leftover hash lemma). In the security proof, we
combine this fact with the zero-knowledge property of the NIZK proof system,
and the semantic security of the encryption scheme to prove receiver blindness.

Remark 2. Independently, Bootle et al. [BLNS23b] proposed the ISISf assump-
tion. Under this assumption, the adversary is given access to a preimage oracle
that outputs a randomly chosen ŷ ∈ D (D some domain) and a short vector
x̂ ∈ Z

n
q such that for (public) matrix A ∈ Z

n×m
q sampled from some distribu-

tion and (public) function f : D → Z
n
q , A · x̂ = f(ŷ). The assumption then

requires that it is hard for an adversary to output a value y ∈ D and a short
vector x (�= x̂) satisfying A · x = f(y). Importantly, this assumption is depen-
dent on the choice of f . For instance, if f is the linear map y 	→ B · y for
B ∈ Z

n×m
q and y ←$Z

m
q , then the ISISf is trivially broken by linearly combin-

ing the query responses. [BLNS23b] also define an interactive version (that is
reducible to the non-interactive ISISf) where the adversary is allowed to query for
preimages under specific targets ̂t ∈ Z

l
q and the oracle outputs (ŷ, x̂) such that

A·x̂ = f(ŷ)+C·̂t for matrix C ∈ Z
n×l
q of the challenger’s choice. Under this char-

acterization, one might hope to abstractly view the rOM-ISIS assumption as an
instantiation of interactive-ISISf where the function f linearly maps ŷ ∈ {±1}m

to −B · ŷ. However, if C is the n × n identity matrix as in rOM-ISIS, there is a
non-negligible probability that outputs under this map can be efficiently linearly
combined to give an arbitrary valid solution, so the ISISf problem is actually not
hard for this function. On the other hand, the rOM-ISIS assumption remains
hard as the adversary is also restricted to providing its (one-more) forgeries on
a set T of target vectors chosen by the challenger.

Tagging Our NIBS Construction. We also discuss a simple modification to
our NIBS construction to make it tagged. Recall that in tagged NIBS, the signer
and receiver jointly agree on a value that will be treated as a public part of
the signed message. To add such a public value τ to each blind signature, the
signer computes a short preimage z such that C · z = pkR −B ·y +H(τ) using a
secret trapdoor for C. It then sends τ along with the preimage z and nonce y to
the receiver. The receiver now includes τ in the instance of the NIZK relation,
and generates an appropriate NIZK proof. The one-more unforgeability of this
protocol follows by a similar reduction to rOM-ISIS (in the random oracle model).
Of course, here we have the additional H(τ) term, but notice that the one-more
unforgeability reduction, both models the hash function to the adversary and
chooses the tag τ . Thus the challenger can choose H(τ) in a way that later
allows it to extract a short preimage for its rOM-ISIS challenge using the (one-
more) forgery. The argument for receiver blindness follows directly from receiver
blindness of the NIBS counterpart.

86 F. Baldimtsi et al.

2.6 Efficiency Comparisons for Our NIBS Schemes

As a proof-of-concept, we provide estimates for the various parameter sizes in
our scheme. Just as [AKSY22], we instantiate our construction 7.1 with Falcon
[FHK+17] for signatures, [LPS10] for Regev-style encryption and [LNP22b] for
the NIZK for linear relations. In Table 2, we provide the public key, transcript
and signature sizes for all our NIBS constructions. By weak blindness, we mean
basic blindness [Han23], and by strong blindness, we mean our newly introduced
definitions.

Table 2. Public key, transcript and signature sizes of our constructions.

Construction |pkR| |psig|+
|nonce| |σ| Blindness

Lattice-based (7.1) 1.6 KB 0.96 KB 68 KB Weak

Circuit-private LHE (5.1) poly(λ) poly(λ) ∼ 0.5 KB Strong

General-purpose NIZKs (full version) ∼ 2 KB ∼ 0.5 KB poly(λ) Strong

3 Preliminaries

We assume the reader is familiar with the standard cryptographic notions of
PRFs, commitment schemes, PKE and digital signatures.

Notation. Let λ denote the security parameter, and PPT denote probabilistic
polynomial-time. We denote the set of real numbers by R and the integers by
Z. We denote the set of all positive integers up to n as [n] := {1, . . . , n} and the
set of all non-negative integers up to n as [0, n] := {0} ∪ [n].

For a vector x of even length, we write x� and x⊥ to be the top and bottom

halves of x respectively, i.e. x =
[

x�
x⊥

]

. Similarly, for any matrix A = [AL | AR] ∈
Z

n×2m
q , we denote its left and right halves as AL and AR, respectively.

For a vector x, we write its �2 norm as ‖x‖2, often dropping the subscript
and writing it simply as ‖x‖. We write the �∞ norm of x as ‖x‖∞.

3.1 Lattice Preliminaries

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive
integers n,m, q and a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denote the lattice {x ∈
Z

m : A ·x = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A) denote the coset {x ∈ Z
m :

A · x = u mod q}.

Discrete Gaussians. Let ς be any positive real number. The Gaussian distri-
bution Dς with parameter ς is defined by the probability distribution function
ρς(x) = exp(−π ‖x‖2 /ς2). For any set L ⊂ R

m, define ρς(L) =
∑

x∈L ρς(x).
The discrete Gaussian distribution DL,ς over L with parameter ς is defined by
the probability distribution function ρL,ς(x) = ρς(x)/ρς(L) for all x ∈ L.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 87

The following lemma (Lemma 4.4 of [MR04,GPV08]) shows that if the
parameter ς of a discrete Gaussian distribution is small, then any vector drawn
from this distribution will be short (with high probability).

Lemma 1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Z
n×m
q

be a matrix of dimensions n × m, ς = Ω̃(n) and L = Λ⊥
q (A). Then

Pr[‖x‖ >
√

m · ς : x ←$DL,ς] ≤ negl(n).

We will also require the following lemma (Lemma 4.4 of [Lyu12]) concerning
the minimum-entropy of the discrete Gaussian distribution.

Lemma 2. Let DZm,ς be the discrete Gaussian distribution over Z
m for any

m > 1, with variance ς. Then, for any ς ≥ 3/
√

2π we have that H∞ (DZm,ς) ≥ m.

Lattice Trapdoors. Lattices with trapdoors are lattices that are statistically
indistinguishable from randomly chosen lattices, but have certain ‘trapdoors’
that allow efficient solutions to hard lattice problems.

Definition 1 ([Ajt96,GPV08]). For lattice parameters n,m, q with m ≥
O(n log q), a trapdoor lattice sampler consists of algorithms TrapGen and
SamplePre with the following syntax:

– TrapGen(1n, 1m, q) → (A, TA): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n,m, modulus q, and
outputs a matrix A ∈ Z

n×m
q together with a trapdoor TA.

– SamplePre(A, TA,u, ς) → s: The presampling algorithm takes as input a
matrix A, trapdoor TA, a vector u ∈ Z

n
q and a parameter ς ∈ R (which

determines the length of the output vectors). It outputs a vector s ∈ Z
m
q such

that A · s = u and ‖s‖ ≤ √
m · ς.

These algorithms must satisfy the following properties:

1. Well-Distributedness of Matrix. The following distributions are statistically
indistinguishable:

{A : (A, TA) ←$TrapGen(1n, 1m, q)} ≈s {A : A ←$Z
n×m
q }.

2. Preimage Sampling: For all (A, TA) ←$TrapGen(1n, 1m, q), if ς =
ω(

√
n · log q · log m), then the following distributions are statistically indis-

tinguishable:

{s : u ←$Z
n
q , s ←$SamplePre(A, TA,u, ς)} ≈s DZm,ς .

These properties are satisfied by the gadget-based trapdoor lattice sampler of
[MP12] for parameters m such that m = Ω(n · log q).

88 F. Baldimtsi et al.

Bonsai Lattice Trapdoors. In this work, we will rely on the bonsai trick for
lattice trapdoors [ABB10a,CHKP10]. Briefly, using the standard Bonsai trick,
one can sample preimage vectors with a special property that a portion of the
preimage vector will be sampled as a random Gaussian vector with appropriate
norm, rather than from a pre-defined lattice coset. Throughout the sequel, we
will routinely sample matrices of dimensions n×2m such as A ∈ Z

n×2m
q , where

(AL, TAL
) ←$TrapGen(1n, 1m, q), AR ←$Z

n×m
q .

To create a preimage s ∈ Z
2m
q , for any vector u ∈ Z

n
q , such that A · s = u, we

simply sample s⊥ ←$DZm,ς , and s� ←$SamplePre(AL, TAL
,u − AR · s⊥, ς).

We refer to the above bonsai-based lattice trapdoors as bLT =
(bLT.TrapGen, bLT.SamplePre), where the trapdoor generation and preimage
sampling algorithms are defined as above. Clearly, the algorithms for bLT sat-
isfy the standard well-distributedness property, as well as the preimage sampling
property. Moreover, it satisfies the following stronger half-preimage well distri-
bution property:

Half-Preimage Well Distributedness. For all (A, TA) ←$ bLT.TrapGen(1n, 12m, q),
every vector u ∈ Z

n
q , every ς, the following distributions are identical:

{s⊥ : s ←$SamplePre(A, TA,u, ς)} ≡ DZm,ς .

4 A Stronger Model for Non-Interactive Blind Signatures

In a NIBS system, a signer issues a random presignature psig for any receiver R
with public key pkR, such that the receiver R can extract a blind signature σ
for a random message μ using its secret key skR. Syntactically, a non-interactive
blind signature scheme consists of the following polynomial-time algorithms:

Setup(1λ) → pp. On input the security parameter λ, the global setup algorithm
outputs a set of public parameters pp. All the remaining algorithms take pp
as an input, but for notational clarity, we usually omit it as an explicit input.

KeyGenS(pp) → (sk, vk). This corresponds to the signer’s key generation algo-
rithm. On input pp, it samples a public-secret key pair (sk, vk).

KeyGenR(pp) → (skR, pkR). This corresponds to the receiver’s key generation
algorithm. On input pp, it samples a public-secret key pair (skR, pkR).

Issue(sk, pkR) → (psig, nonce). This is a randomized algorithm that is run by
the signer. It takes as input the signer’s secret key sk as well as a receiver’s
public key pkR. It then outputs a presignature psig along with nonce which
represents (a portion of) the signer’s random coins.

Obtain(skR, vk, (psig, nonce)) → (μ, σ). This algorithm corresponds to the
receiver’s blind signature extraction algorithm. Given the receiver’s secret
key skR as an input, along with a verification key vk and presignature-nonce
pair (psig, nonce), it outputs a message-signature pair (μ, σ) or aborts (in
which case it outputs ⊥).

Verify(vk, μ, σ) → {0, 1}. This is the signature scheme verification algorithm that
takes as input a verification key and message-signature pair, and outputs 0/1.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 89

Correctness. A non-interactive blind signature scheme satisfies correctness if
for every security parameter λ ∈ N, pp ←$Setup(1λ), (sk, vk) ←$KeyGenS(pp),
(skR, pkR) ←$KeyGenR(pp), the following holds:

Pr[Verify(vk,Obtain(skR, vk, Issue(sk, pkR))) = 1] = 1,

where the probability is taken over the random coins of Issue and Obtain.

Remark 3 (Comparing with [Han23], and the reusability property). The above
formalization of non-interactive blind signatures is nearly identical to the syntax
introduced by Hanzlik, except we do not regard nonce as an input supplied to the
Issue algorithm but as an output. We essentially simplify the syntax by viewing
nonce as a signer’s public (random) coins. The Obtain algorithm receives both
(psig, nonce) (as in [Han23]).

Paraphrasing [Han23], the purpose of nonce is to ensure reusability of a
receiver’s public key for obtaining multiple message-signature pairs from a sin-
gle signer. We emphasize that both formulations are equivalent, and moreover,
our formulation seems syntactically cleaner (and closer to syntax for traditional
blind signatures) as well as helps defining an important reusability property that
is necessary to avoid vacuous solutions. Further, we do not see any advantage in
defining nonce as anything other than signer’s public randomness since the goal
here is to have the signing process be non-interactive, and treating nonce as an
extra input is inconsistent with that goal.

Equivalence of both formalizations. It is straightforward to see that NIBS
scheme satisfying the above syntax can be generically translated into satisfy-
ing the syntax from [Han23]. The idea is to generate the randomness for our
Issue algorithm by evaluating a PRF on the nonce value and the public key
pkR provided as input in Hanzlik’s version.10 We describe this in detail in the
full version.

A vacuous NIBS scheme. Consider a NIBS scheme where the Issue algorithm
is deterministic and it always outputs the same nonce value (or, following
Hanzlik’s notation, the Issue algorithm ignores the nonce value entirely). Such
a NIBS scheme clearly does not satisfy any meaningful notion of reusability,
since for each receiver’s public key a signer generates at most one presignature.
Unfortunately, this is still a valid NIBS scheme as per existing definitions, and
furthermore, it satisfies the nonce blindness property [Han23, Definition 17]
vacuously, i.e. even if the adversary outputs (psig0, nonce0) �= (psig1, nonce1)
it would still not be able to distinguish for (μb, σb). The main issue is that
the existing definitions do not disallow schemes where the Issue and Obtain
algorithms ignore the nonce parameter.

A simple and sound approach to capture reusability. Our proposal is
to simply define reusability of NIBS schemes directly. Rather than making
the nonce parameter explicit, we view it as a portion of the signer’s random

10 Concretely, IssueHanzlik(sk, pkR, nonce) outputs the presignature as (psig′, nonce′)
where (psig′, nonce′) ← IssueOurs(sk, pkR; FK(nonce, pkR)).

90 F. Baldimtsi et al.

coins. Thus, we define reusability of a NIBS scheme as the property that any
receiver can obtain two distinct messages (along with valid signatures) for two
randomly generated presignature-nonce pairs (for the same receiver’s public
key) with all but negligible probability. Formally:

Definition 2 (Reusability). A NIBS scheme S satisfies the reusability prop-
erty, if there exists a negligible function negl(·) such that for every λ ∈ N, the
following holds:

Pr

⎡
⎢⎢⎣
nonce0 = nonce1
∨ μ0 = μ1

:

pp ←$ Setup(1λ)
(sk, vk) ←$KeyGenS(pp), (skR, pkR) ←$KeyGenR(pp)

∀b ∈ {0, 1} : (psigb, nonceb) ←$ Issue(sk, pkR)
∀b ∈ {0, 1} : (μb, σb) ←$Obtain(skR, vk, (psigb, nonceb))

⎤
⎥⎥⎦ ≤ negl(λ).

Next, we provide the standard notion of one-more unforgeability for blind
signatures, specialized for the NIBS setting [Han23].11

Definition 3 (One-more unforgeability). A NIBS scheme S satisfies one-
more unforgeability, if for every stateful admissible PPT adversary A, there
exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

⎡

⎣

∧

i∈[�+1] Verify(vk, μi, σi) = 1

∧
(

∧

i�=j∈[�+1] μi �= μj

) :
pp ←$Setup(1λ)

(sk, vk) ←$KeyGenS(pp)
{(μi, σi)}�+1

i=1 ←$AOsk(·)(vk)

⎤

⎦ ≤ negl(λ),

where Osk(·) takes as input a receiver’s public key pkRi
, and outputs a

presignature-nonce pair (psigi, noncei) by running Issue(sk, pkRi
), and A is an

admissible adversary iff A makes at most � queries to Osk.

In this work, we propose stronger notions of inter/intra-receiver blindness for
NIBS schemes. The existing approaches to capture blindness for NIBS do not
allow an adversary to learn any correlation between presignature-nonce pairs
and their corresponding blind signature-message pairs. Unfortunately, if a server
learns the receiver’s identity for just one blind signature, then existing definitions
are insufficient in providing any notion of blindness from such attacks. In order
to protect from such advanced attackers that can bypass the blindness property
for receivers on some selected blind signatures, we introduce stronger notions of
inter/intra-receiver blindness properties that we refer to as strong receiver/nonce
blindness.

Definition 4 (Strong receiver blindness). A NIBS scheme S satisfies
strong receiver blindness, if for every stateful admissible PPT adversary A,

11 We want to remark that in [Han23], in the one-more unforgeability security exper-
iment, the adversary can select nonce during each Issue query. In our definition,
the challenger samples nonce since it is treated as randomness of Issue. However,
both definitions are equivalent since a signer can use a PRF to generate the actual
randomness from an input nonce as described in Remark 3.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 91

there exists a negligible function negl(·) such that for every λ ∈ N, the following
holds:

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AOskR0
,skR1

(·,·,·)(μb̂, σb̂, μ1−b̂, σ1−b̂) = b̂ :

pp ←$ Setup(1λ), b̂ ←$ {0, 1},
∀b ∈ {0, 1} : (skRb

, pkRb
) ←$KeyGenR(pp)

(vk, (psigb, nonceb)b) ←$AOskR0
,skR1

(·,·,·)(pkR0
, pkR1

)
∀b ∈ {0, 1} : (μb, σb) ←$Obtain(skRb

, vk, (psigb, nonceb))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ),

where oracle OskR0 ,skR1
, on the i-th query (b(i), vk(i), (psig(i), nonce(i))), out-

puts Obtain(skR
b(i)

, vk(i), (psig(i), nonce(i))). That is, OskR0 ,skR1
provides A oracle

access to the Obtain algorithm w.r.t. skR0 , skR1 . We say that A is an admissible
adversary iff:

– σ0, σ1 �=⊥ (i.e., Obtain algorithm does not abort), and
– nonce0 �= nonce(i) and nonce1 �= nonce(i) for all i. (That is, A cannot make

an Obtain query with nonce value to be either of the challenge nonce values.)

Definition 5 (Strong nonce blindness). A NIBS scheme S satisfies nonce
blindness, if for every stateful admissible PPT adversary A, there exists a neg-
ligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

⎡

⎢

⎢

⎢

⎣

AOskR
(·,·)(μb̂, σb̂, μ1−b̂, σ1−b̂) = b̂ :

pp ←$Setup(1λ), (skR, pkR) ←$KeyGenR(pp)
(vk, (psigb, nonceb)b) ←$AOskR

(·,·)(pkR), b̂ ←$ {0, 1}
∀b ∈ {0, 1} : (μb, σb) ←$Obtain(skR, vk, (psigb, nonceb))

⎤

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ),

where oracle OskR , on the i-th query (vk(i), (psig(i), nonce(i))), outputs
Obtain(skR, vk(i), (psig(i), nonce(i))). That is, OskR provides A oracle access to
the Obtain algorithm w.r.t. skR. We say that A is an admissible adversary iff:

– σ0, σ1 �=⊥ (i.e., Obtain algorithm does not abort), and
– nonce0 �= nonce(i) and nonce1 �= nonce(i) for all i. (That is, A cannot make

an Obtain query with nonce value to be either of the challenge nonce values.)

Additional Definitions. The above unforgeability and blindness definitions
are defined in the general chosen-key model where the attacker can specify arbi-
trary (possibly malformed) receiver and verification keys. In Appendix A we
additionally consider definitions under the knowledge of secret keys (KOSK)
model [MOR01,Bol03] for NIBS.

5 NIBS from Circuit Private LHE

We now describe our NIBS scheme from circuit-private LHE. The resulting con-
struction has optimal-size signatures and strong security.

92 F. Baldimtsi et al.

Tools Required. The construction relies on a pseudorandom function F , a
signature scheme S = (S.Setup,S.Sign,S.Verify), a leveled homomorphic encryp-
tion scheme LHE = (LHE.Setup, LHE.Enc, LHE.Eval, LHE.Dec) and a NIZKAoK
proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) for the following
language:

Language L1

Instance: Each instance x is interpreted as an LHE evalu-
ation key lhe.ek, LHE ciphertexts ct and ̂ct and randomness
r ∈ {0, 1}λ.
Witness: Witness ω consists of a secret signing key sk and
randomness ρ.
Membership: Let Csk,r encode the circuit S.Sign(sk, F·(r)) for
a public pseudorandom function F . Then ω is a valid witness
for x if the following is satisfied:

– ̂ct is the homomorphic evaluation of the ciphertext ct over
the circuit Csk,r, ie., ̂ct = LHE.Eval(lhe.ek, Csk,r, ct; ρ).

5.1 Construction

Below we describe our NIBS from circuit private LHE.

Setup(1λ) → pp. It runs the setup algorithms for NIZK (for language L1):

nizk.crs ←$NIZK.Setup(1λ),

and outputs pp = nizk.crs.
KeyGenS(pp) → (sk, vk). The signer’s setup algorithm runs the setup

algorithm for the signature scheme S. Namely, it generates keys as
(sk, vk) ←$S.Setup(1λ).

KeyGenR(pp) → (skR, pkR). The receiver’s setup algorithm first samples a
LHE key pair (lhe.sk, lhe.ek) ←$ LHE.Setup(1λ, 1d), and random PRF key
K ←$ {0, 1}λ. (Here depth d is defined during the issue algorithm.) Next, it
encrypts K as ct ←$ LHE.Enc(lhe.sk,K). Finally, it outputs receiver’s secret
key and public key as skR := (lhe.sk,K) and pkR := (lhe.ek, ct).

Issue(sk, pkR) → (psig, nonce). The issue algorithm first samples a random mes-
sage r ←$ {0, 1}λ. Let Csk,r(·) be the following circuit (with key sk and mes-
sage r hardwired)—Csk,r(K) def= S.Sign(sk, FK(r)). That is, Csk,r runs the PRF
function using the circuit input as the PRF key on message r, and then runs
the signing algorithm to sign the output of the PRF. Let d denote the depth
of the circuit Csk,r. (This is the depth we set during the setup of the LHE
scheme.)

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 93

The algorithm runs the homomorphic evaluation algorithm under uniformly
random ρ ←$ {0, 1}λ12, and (lhe.ek, ct) := pkR, as follows:

̂ct ← LHE.Eval(lhe.ek, Csk,r, ct; ρ),

and creates a NIZK proof π for the language L1 as

π ←$NIZK.Prove(nizk.crs, x = (pkR, ̂ct, r), ω = (sk, ρ))

Finally, it outputs the presignature psig := (̂ct, π) and nonce nonce := r.
Obtain(skR, vk, psig, nonce) → (μ, σ). The receiver parses (̂ct, π) := psig and runs

the NIZK verifier as NIZK.Verify(nizk.crs, x = (pkR, ̂ct, nonce), π) and aborts
if it outputs 0. Otherwise it continues by computing the message as μ =
FK(r), where (lhe.sk,K) := skR and nonce := r. It then runs LHE decryption
algorithm to compute the signature σ ←$ LHE.Dec(lhe.sk, ̂ct), and it runs the
signature verification algorithm to check that σ is a valid signature for μ
under vk. That is, S.Verify(vk, μ, σ) = 1. If the check fails, then it aborts.
Otherwise, it outputs μ and σ as the corresponding message-signature pair.

Verify(vk, μ, σ) → {0, 1}. The verification algorithm runs the signature scheme
verifier and outputs whether S.Verify(vk, μ, σ) = 1.

We now state the main theorem for this construction. The proof is given in
the full version of this article.

Theorem 1 (Security).

1. If NIZK satisfies zero knowledge, LHE is a circuit private LHE and S is a
secure signature scheme, then Construction 5.1 is one-more unforgeable NIBS
protocol in the KOSK model.

2. If NIZK is a NIZKAoK, LHE is a IND-CPA secure encryption scheme and F
is a secure pseudorandom function, then Construction 5.1 is a strong receiver-
blind NIBS protocol.

3. If NIZK is a NIZKAoK, LHE is a IND-CPA secure encryption scheme and F
is a secure pseudorandom function, then Construction 5.1 is a strong nonce
blind NIBS protocol.

6 The Randomized One-More ISIS Assumption

In this work, we introduce a new variant of the OM-ISIS assumption with two
goals—(i) protect from attackers that can ask for preimage queries on the same
target vector more than once, and (ii) allow for re-randomization of the target
vectors before answering the preimage query phase to make the assumption more
robust. As discussed in [AKSY22, § 4.5], there are polynomial time attacks on
the OM-ISIS assumptions for certain parameter regimes. At its core, all crypt-
analysis efforts on OM-ISIS exploit the fact that the attacker can submit any

12 This randomness is needed for circuit privacy.

94 F. Baldimtsi et al.

target vector of its choice as a preimage query. Thus, an attacker can potentially
request for preimage queries for short vectors, and use those to create an approx-
imate trapdoor. However, the quality of trapdoor computed this way is much
worse than the actual trapdoor, thus if the parameter β is set appropriately
(i.e., sufficiently small), then an attacker cannot break the assumption since the
approximate trapdoor will not give as short preimage vectors.

While existing cryptanalytic efforts do not succeed in breaking the assump-
tion for the desired parameter regimes, we view the combinatorial and lattice-
based attacks provided by [AKSY22] as partial evidence of existing assumption
not being as robust. Moreover, we believe that while OM-ISIS is a very natu-
ral step towards defining lattice-analogue of the one-more-RSA assumption by
Bellare et al. [BNPS03], there exists more robust instantiations for a family of
one-more assumptions in lattice-based cryptography. To that end, we propose a
strengthening of the OM-ISIS assumption that we call as randomized OM-ISIS
(or, rOM-ISIS for short) assumption.

Our intuition is to draw more inspiration from GPV signatures. Recall that
in GPV signatures, a signature is computed as a preimage of the output of a hash
function (modeled as a random oracle). While modeling the hash function as a
random oracle enables a reduction to plain ISIS by a standard RO programming
argument, usage of any specific hash function (such as SHA-3) is not known
to enable any efficient attacks. At a high level, the hash function protects the
signer from simple algebraic manipulations of multiple preimage vectors to create
a new valid preimage vector for a fresh hash output. A little more abstractly,
this means that given preimage vectors {ti = A−1

ς (H(μi))}i, it is unclear how to
find short coefficients αi s.t.

∑

αiti = A−1
ς (H(μ∗)). That is, the hash function

prevents from creating a valid preimage to the hash function which is a short
linear combination of other hash values.

Inspired by the intuitive structural guarantee provided by a hash function,
we propose the following generalization of the OM-ISIS assumption.

Assumption 2 (randomized OM-ISIS). Let q, n,m, ς, β be functions of security
parameter λ. Consider the following experiment:

1. The challenger uniformly samples two matrices A,B ∈ Z
n×m
q , and sends

A,B to adversary A.
2. A adaptively makes queries of the following types to the challenger, in any

order.
Syndrome queries. A requests for a challenge vector, to which the chal-

lenger replies with a uniformly sampled vector t ←$Z
n
q . We denote the

set of received vectors by S.
Preimage queries. A queries a vector ̂t ∈ Z

n
q , to which the challenger

replies with a short vector x̂ ∈ Z
m
q and a ±1 vector ŷ ∈ {±1}m such

that A · x̂ + B · ŷ = ̂t and ‖x̂‖ ≤ ς
√

m. Let � denote the total number of
preimage queries.

3. Finally, A outputs � + 1 tuples of the form
{

(xj ,yj , tj)
}

j∈[�+1]
. A wins if

∀j ∈ [�+1], A ·xj +B ·yj = tj , and ‖xj‖ ≤ β,yj ∈ {±1}m and tj ∈ S.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 95

The rOM-ISISq,n,m,ς,β assumption states that for every PPT adversary A, the
probability that A wins is negl(λ).

Intuitively, the new assumption says an attacker does not receive preimages
for arbitrary target vectors ̂t that it selects, but for publicly re-randomized vector
t′ = ̂t − B · y, where y is a random ±1 vector (chosen by the challenger). We
even provide the attacker with the vector y. The point is that the ability to
re-randomize the target vector, gives the challenger more flexibility in answering
preimage queries. Now an attacker can win as long as it creates preimage vectors
for any re-randomization of the random syndrome vectors. That is, we allow the
attacker to also select any arbitrary ±1 vector and use it to re-randomize each
syndrome vector. The only constraint is that the vectors yj are ±1 vectors.

Unlike [AKSY22], we do not make any additional parameter restrictions. This
is primarily due to the fact that we have been unable to find any practical attacks
for any standard ISIS parameter regimes for the rOM-ISIS assumption. In our
perspective, the condition that yj must be ±1 vectors prevents the algebraic
attacks that were mounted on the OM-ISIS assumption. Additionally, one could
view the B · y term as enforcing a structural property, on the target vectors,
that a hash function enforces for GPV signatures.

In order to analyse the robustness of the randomized one-more ISIS assump-
tion, we performed cryptanalysis for two categories of attacks presented against
the one-more ISIS assumption by Agrawal et al. [AKSY22], and find that each
of these attacks is in fact harder in the randomized one-more ISIS setting. We
summarize our results below, and direct the reader to full version of this article
for the complete analysis.

– For the lattice-based attack strategy, we are able to show a partial reduction
to SIS (under certain conditions).

– For the combinatorial attack strategy, we give an exponential time algorithm
for β = Θ

(

√

m/n · ς
)

. In contrast, the OM-ISIS assumption with has (i)

a Ω(nq) time algorithm for β = Θ

(√

m ·
(

1 + n log q
log(Q/n2)

)

· ς

)

; and (ii) a

Ω(n �log q�) time algorithm for β = Θ(
√

nm log q · ς).

7 Lattice-Based NIBS

We begin this section by describing our NIBS scheme that we prove secure under
the rOM-ISIS assumption.

Let parameters n,m, ς, β = ς
√

m, a prime number q be functions of
the security parameter λ such that the randomized one-more ISIS instance
rOM-ISISq,n,2m,ς,3

√
2β is hard. These parameters must satisfy the following con-

straints:
n = poly(λ), m > n log q + λ, ς/m = Ω (1) , β < mς (1)

96 F. Baldimtsi et al.

Tools Required. Our construction relies on a public key encryption scheme
PKE = (KeyGen,Enc,Dec), a lattice trapdoor bLT = (TrapGen,SamplePre), and
a NIZK proof system NIZK = (Setup,Prove,Verify) for the following language:

Language L2

Instance: Each instance x is interpreted matrices C,A and B, PKE public
key pke.pk, ciphertext ct, vector w and random string δ.
Witness: Witness ω consists of a secret vector x, nonce vector y, presigna-
ture vector z and randomness r.
Membership: ω is a valid witness for x if the following are satisfied:

– ‖z‖ ≤ √
2β and ‖x‖ ≤ √

2β/m and y ∈ {±1}2m.
– ct is an encryption of x||y||z using randomness r, s.t. ct =
PKE.Enc(pke.pk,x||y||z; r)

– C · z + B · y = A · x + H(δ) and w = AL · x⊥ + AR · z⊥

7.1 Construction

Below we describe our non-interactive blind signature scheme.

Setup(1λ, n,m, q, ς,H) → pp. It samples A,B ←$Z
n×2m
q . Next, it runs the key

generating algorithm of PKE and generates the public and secret key pair as

(pke.pk, pke.sk) ←$PKE.KeyGen(1λ).

Next, it generates nizk.crs ←$NIZK.Setup(1λ) and outputs:

pp := (A,B, pke.pk, nizk.crs).

Note that H is the hash function which we model as a random oracle.
KeyGenS(pp) → (sk, vk). Runs the setup algorithm of lattice trapdoor and

obtains
(TC,C) ←$ bLT.TrapGen(1λ, n, 2m, q).

It outputs signer’s secret key and verification key as sk := TC and vk := C.
KeyGenR(pp) → (skR, pkR). It samples x ←$DZ2m

q ,ς/m and δ ←$ {0, 1}λ. Next, it
computes

t = A · x + H(δ).

It outputs user’s secret key and public key as (skR := (x, δ), pkR := t).
Issue(sk, pkR) → (psig, nonce). The issue algorithm samples a random ±1 vector

y ←$ {±1}2m. Next, using the signing key sk = TC and the receiver’s public
key pkR = t, it generates

z ← bLT.SamplePre(C,TC, t − B · y, ς),

and outputs the presignature psig := z, and nonce as nonce := y.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 97

Obtain(skR, vk, psig, nonce) → (μ, σ). It parses skR as (x, δ). Then, assigns C :=
vk, z := psig, and y := nonce. It checks if C · z + B · y = A · x + H(δ),
‖z‖ ≤ √

2β and y ∈ {±1}2m. If any check fails it aborts and outputs ⊥.
Otherwise, it generates

ct ← PKE.Enc(pke.pk,x||y||z; r)

from uniformly sampled randomness r ←$ {0, 1}λ. The obtain algorithm sets

w as w = A ·
[

x⊥
z⊥

]

, where x⊥, z⊥ ∈ Z
m
q and generates NIZK proof

π ← NIZK.Prove
(

nizk.crs, x := (C,A,B, pke.pk, ct,w, δ), ω := (x,y, z, r)
)

Finally, it outputs message μ := (w, δ) and signature σ := (π, ct).
Verify(vk, μ, σ) → {0, 1}. It parses μ as (w, δ) and σ as (π, ct). The verification

algorithm accepts and outputs 1 if and only if

NIZK.Verify
(

nizk.crs, x := (C,A,B, pke.pk, ct,w, δ), π
)

= 1.

Otherwise, it outputs 0.

We now state the main theorem for this construction. The proof is given in
the full version of this article.

Theorem 3 (Security).

1. Assume that NIZK proof system NIZK satisfies soundness, lattice trapdoor
bLT satisfies well-distributedness, and the rOM-ISIS assumption holds, then
our Construction 7.1 is one-more unforgeable.

2. Assume that NIZK proof system NIZK satisfies zero knowledge property, and
public key encryption scheme PKE is IND-CPA secure, then our construc-
tion 7.1 is receiver blind.

Efficiency of Concrete Instantiation. We instantiated the protocol in Con-
struction 7.1 using the same building blocks as [AKSY22]. Based on our analysis,
we estimate the resulting signature size to be 67.7 KB. Please refer the full ver-
sion for details.

Acknowledgements. We thank Shweta Agrawal, Elena Kirshanova, Damien Stehlé,
and Anshu Yadav for answering questions about the OM-ISIS assumption. We also
thank Lucjan Hanzlik for helpful discussions on the motivation behind NIBS, potential
applications enabled by varying levels of blindness security as well as pointing out a
subtle issue in an earlier version of our NIBS definition.

Funding. Foteini Baldimtsi and Aayush Yadav were supported by NSF #2143287 and

#2247304. Rishab Goyal was supported by OVCRGE at UW–Madison with funding

from the Wisconsin Alumni Research Foundation.

98 F. Baldimtsi et al.

A Knowledge of Secret Key Assumption

In the subsequent section, we will leverage the KOSK model [MOR01,Bol03]
to prove the one-more unforgeability of our FHE-based Construction 5.1. Infor-
mally, this requires the attacker to specify the corresponding secret keys along
with the respective verification/public keys. That is, the attacker supplies the
receiver’s secret key in unforgeability experiment and the signer’s signing key in
blindness experiments, respectively. We give the precise definitions next.

Definition 6 (Strong receiver blindness in KOSK). Recall the strong
receiver blindness security experiment from Definition 4. Consider another secu-
rity experiment where A additionally provides a secret key sk(i) along with its cor-
responding vk(i) at the time of each oracle query. Moreover, A provides a secret
key sk along with vk when declaring the challenge presignature-nonce pairs. We
say A is admissible if sk(i) (sk) is a valid secret key for vk(i) (vk, respectively).
Note that admissibility can be checked efficiently as the secret key sk(i) can be
regarded as the random coins of the setup algorithm.

A NIBS scheme S satisfies strong receiver blindness in the KOSK model if
no admissible PPT adversary A wins in the above adapted security experiment
with non-negligible probability.

Definition 7 (Strong nonce blindness in KOSK). A NIBS scheme S sat-
isfies strong nonce blindness in the KOSK model if no admissible PPT adver-
sary A wins in the adapted security experiment similar to in Definition 6 with
non-negligible probability. Briefly, the adaptation is that the adversary provides
a valid secret key associated with each verification key it outputs.

Definition 8 (One-more unforgeability in KOSK). A NIBS scheme S sat-
isfies one-more unforgeability in the KOSK model if no admissible PPT adver-
sary A wins in the adapted security experiment similar to in Definition 6 with
non-negligible probability. Briefly, the adaptation is that the adversary provides
a valid secret key associated with each receiver key it outputs.

Our claim is that any NIBS scheme that is secure in the KOSK model
can be generically upgraded to a fully secure scheme, i.e., one without the
KOSK assumption using a NIZKAoK. We show this formally by building
a secure NIBS scheme (without KOSK) given a NIBS scheme, NIBS′ =
(Setup′,KeyGen′

S ,KeyGen′
R, Issue′,Obtain′,Verify′) that is secure in the KOSK

model.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 99

Language L′

Instance: Each instance x is interpreted as a public key pk′ and
a bit b ∈ {0, 1}.
Witness: Witness ω consists of a secret key sk′, and randomness
ρ ∈ {0, 1}λ.
Membership: Let C0, C1 be two circuits encoding
KeyGen′

S(pp′, 1λ; ·) and KeyGen′
R(pp′, 1λ; ·) respectively. Then

ω is a valid witness for x if the following is satisfied:

– (sk′, pk′) = Cb(ρ)

Setup(1λ) → pp. The setup algorithm generates pp′ ←$Setup′(1λ), and
then runs the setup algorithms for NIZK (for language L′) to generate
nizk.crs ←$NIZK.Setup(pp′, 1λ) and outputs it as the public parameter pp of
the protocol.

KeyGenS(pp) → (sk, vk). The signer’s setup algorithm samples a random value
rS ←$ {0, 1}λ and runs (sk′, pk′) ← KeyGen′

S(pp′, 1λ; rS). It creates a NIZK
proof πS ←$NIZK.Prove(nizk.crs, x := (pk′, 0), ω := (sk′, rS)) for the language
L′. It outputs sk := sk′ and vk := (pk′, πS).

KeyGenR(pp) → (skR, pkR). The receiver’s setup algorithm samples a random
value rR ←$ {0, 1}λ and runs (sk′, pk′) = KeyGen′

R(pp′, 1λ; rR). It creates a
NIZK proof πS ←$NIZK.Prove(nizk.crs, x := (pk′, 1), ω := (sk′, rR)) for the
language L′. It outputs sk := sk′ and vk := (pk′, πR).

Issue(sk, pkR) → (psig, nonce). The issue algorithm parses the receiver’s public
key as (pk′, π) := pkR and runs the NIZK verifier NIZK.Verify(nizk.crs, x :=
(pk′, 1), π). If the verifier outputs 0, the signer aborts. Otherwise it continues
to execute the issue algorithm.

Obtain(skR, vk, psig, nonce) → (μ, σ). The obtain algorithm parses the
signer’s public key as (pk′, π) := vk and runs the NIZK verifier
NIZK.Verify(nizk.crs, x := (pk′, 0), πS). If the verifier outputs 0, the receiver
aborts. Otherwise it continues to execute the obtain algorithm.

Verify(vk, μ, σ) → {0, 1}. The verification algorithm runs Verify′(vk, μ, σ) and
outputs whatever it outputs.

It is intuitively obvious that if NIBS′ is a secure NIBS in the KOSK model
and NIZK is an argument of knowledge, then the above construction NIBS =
(Setup,KeyGenS ,KeyGenR, Issue,Obtain,Verify) is secure in the standard model.
Essentially, in the security proof, instead of receiving the adversary’s secret key
(as in the KOSK model), the challenger must now run the NIZK extractor to
obtain the adversary’s secret. The rest of the proof would then proceed identically
to that of NIBS′.

100 F. Baldimtsi et al.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in
the standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 553–572, French Riviera, May 30 – June 3, 2010.
Springer, Heidelberg, Germany.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in
fixed dimension and shorter-ciphertext hierarchical IBE. In Tal Rabin, edi-
tor, CRYPTO 2010, volume 6223 of LNCS, pages 98–115, Santa Barbara,
CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In
Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, vol-
ume 1163 of LNCS, pages 244–251, Kyongju, Korea, November 3–7, 1996.
Springer, Heidelberg, Germany.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended
abstract). In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 99-108, New York, NY, USA,
1996. Association for Computing Machinery.

[AKSY22] Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav.
Practical, round-optimal lattice-based blind signatures. In Heng Yin, Ange-
los Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
39–53, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 387–404, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anony-
mous attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick
McDaniel, editors, ACM CCS 2004, pages 132–145, Washington, DC, USA,
October 25–29, 2004. ACM Press.

[BJOV18] Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan
Visconti. Non-interactive secure computation from one-way functions.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 118–138, Brisbane, Queensland,
Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 1087–1098, Berlin, Germany, November 4–8, 2013. ACM
Press.

[BLNS23a] Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. Lattice-based blind signatures: Short, efficient, and round-optimal.
Cryptology ePrint Archive, Report 2023/077, 2023. https://eprint.iacr.
org/2023/077.

https://eprint.iacr.org/2023/077
https://eprint.iacr.org/2023/077

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 101

[BLNS23b] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessan-
dro Sorniotti. A framework for practical anonymous credentials from lat-
tices. In CRYPTO 2023, Part II, LNCS, pages 384–417, Santa Barbara,
CA, USA, August 2023. Springer, Heidelberg, Germany.

[BNPS02] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme. In Paul F. Syverson, editor, FC 2001,
volume 2339 of LNCS, pages 319–338, Grand Cayman, British West Indies,
February 19–22, 2002. Springer, Heidelberg, Germany.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215,
June 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46, Miami,
FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tian-
ren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-
interactive secure computation. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
462–488, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidel-
berg, Germany.

[CGT06] Sébastien Canard, Matthieu Gaud, and Jacques Traoré. Defeating mali-
cious servers in a blind signatures based voting system. In Giovanni Di
Crescenzo and Avi Rubin, editors, FC 2006, volume 4107 of LNCS, pages
148–153, Anguilla, British West Indies, February 27 – March 2, 2006.
Springer, Heidelberg, Germany.

[Cha83] David Chaum. Blind signature system. In David Chaum, editor,
CRYPTO’83, page 153, Santa Barbara, CA, USA, 1983. Plenum Press,
New York, USA.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees,
or how to delegate a lattice basis. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, pages 523–552, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
PoPETs, 2018(3):164–180, July 2018.

[dK22] Rafaël del Pino and Shuichi Katsumata. A new framework for more efficient
round-optimal lattice-based (partially) blind signature via trapdoor sam-
pling. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 306–336, Santa Barbara, CA, USA,
August 15–18, 2022. Springer, Heidelberg, Germany.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 523–540, Interlaken, Switzerland, May 2–6, 2004. Springer,
Heidelberg, Germany.

102 F. Baldimtsi et al.

[FHK+17] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based com-
pact signatures over ntru. Technical report, 2017.

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Sla-
manig. Practical round-optimal blind signatures in the standard model
from weaker assumptions. In Vassilis Zikas and Roberto De Prisco, editors,
SCN 16, volume 9841 of LNCS, pages 391–408, Amalfi, Italy, August 31 –
September 2, 2016. Springer, Heidelberg, Germany.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 233–253, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 60–77, Santa Barbara, CA, USA, August 20–24, 2006.
Springer, Heidelberg, Germany.

[Gha17] Essam Ghadafi. Efficient round-optimal blind signatures in the standard
model. In Aggelos Kiayias, editor, FC 2017, volume 10322 of LNCS, pages
455–473, Sliema, Malta, April 3–7, 2017. Springer, Heidelberg, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206, Victoria,
BC, Canada, May 17–20, 2008. ACM Press.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and
Dominique Unruh. Round optimal blind signatures. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 630–648, Santa Bar-
bara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro,
and Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anony-
mous payment hub. In NDSS 2017, San Diego, CA, USA, February 26 –
March 1, 2017. The Internet Society.

[Han23] Lucjan Hanzlik. Non-interactive blind signatures for random messages. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 722–752, Lyon, France, April 23–27, 2023.
Springer, Heidelberg, Germany.

[HBG16] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed
contracts: Anonymous on-blockchain and off-blockchain bitcoin transac-
tions. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wal-
lach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography
and Data Security - FC 2016 International Workshops, BITCOIN, VOT-
ING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages
43–60. Springer, 2016.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

Non-Interactive Blind Signatures: Post-Quantum and Stronger Security 103

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell.
Concurrently-secure blind signatures without random oracles or setup
assumptions. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 323–341, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg, Germany.

[HS14] Christian Hanser and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and their application to anonymous credentials. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 491–511, Kaoshiung, Taiwan, R.O.C., December 7–
11, 2014. Springer, Heidelberg, Germany.

[HS21] Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2004–2023, Virtual Event,
Republic of Korea, November 15–19, 2021. ACM Press.

[IKO+11] Christian Hanser and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and their application to anonymous credentials. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 491–511, Kaoshiung, Taiwan, R.O.C., December 7–
11, 2014. Springer, Heidelberg, Germany.

[KNYY21] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Round-optimal blind signatures in the plain model from clas-
sical and quantum standard assumptions. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 404–434, Zagreb, Croatia, October 17–21, 2021. Springer,
Heidelberg, Germany.

[Lin08] Yehuda Lindell. Lower bounds and impossibility results for concurrent self
composition. Journal of Cryptology, 21(2):200–249, April 2008.

[LNP22a] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Efficient
lattice-based blind signatures via gaussian one-time signatures. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II,
volume 13178 of LNCS, pages 498–527, Virtual Event, March 8–11, 2022.
Springer, Heidelberg, Germany.

[LNP22b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon.
Lattice-based zero-knowledge proofs and applications: Shorter, simpler,
and more general. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101, Santa Bar-
bara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.

[LPS10] Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key crypto-
graphic primitives provably as secure as subset sum. In Daniele Micciancio,
editor, Theory of Cryptography, pages 382–400, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup
multisignatures: Extended abstract. In Michael K. Reiter and Pierangela
Samarati, editors, ACM CCS 2001, pages 245–254, Philadelphia, PA, USA,
November 5–8, 2001. ACM Press.

104 F. Baldimtsi et al.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718, Cam-
bridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based
on gaussian measures. In 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 372–381, 2004.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the
offline/online and batch settings. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 425–455, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg,
Germany.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763,
Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 536–553,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Ger-
many.

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signa-
ture schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, ASI-
ACRYPT’96, volume 1163 of LNCS, pages 252–265, Kyongju, Korea,
November 3–7, 1996. Springer, Heidelberg, Germany.

[PZ13] Christian Paquin and Greg Zaverucha. U-prove cryptographic specification
v1.1 (revision 3). Technical report, Microsoft Corporation, December 2013.

[SC12] Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order
bilinear groups, and round optimal blind signatures. In Ronald Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 133–150, Taormina, Sicily,
Italy, March 19–21, 2012. Springer, Heidelberg, Germany.

Dictators? Friends? Forgers.
Breaking and Fixing Unforgeability Definitions for

Anamorphic Signature Schemes

Joseph Jaeger(B) and Roy Stracovsky

School of Cybersecurity and Privacy, Georgia Institute of Technology, Atlanta,
GA, USA

{josephjaeger,rstracovsky3}@gatech.edu

Abstract. Anamorphic signature schemes (KPPYZ, Crypto 2023) allow
users to hide encrypted messages in signatures to allow covert commu-
nication in a hypothesized scenario where encryption is outlawed by a
“dictator” but authentication is permitted. We enhance the security of
anamorphic signatures by proposing two parallel notions of unforgeabil-
ity which close gaps in existing security definitions. The first notion
considers a dictator who wishes to forge anamorphic signatures. This
notion patches a divide between the definition and a stated security goal
of robustness (BGHMR, Eurocrypt 2024). We port two related BGHMR
constructions to the signature scheme setting and show that one is secure
when built from unpredictable signature schemes while the other is bro-
ken. The second notion considers a recipient who wishes to forge signa-
tures. To motivate this notion, we identify a gap in an existing security
definition from KPPYZ and present attacks that allow parties to be
impersonated when using schemes erroneously deemed secure. We then
formalize our new unforgeability definition to close this gap. Interest-
ingly, while the new definition is only modestly different from the old one,
the change introduces subtle technical challenges that arise when prov-
ing security. We overcome these challenges in our reanalysis of existing
anamorphic signature schemes by showing they achieve our new notion
when built from chosen-randomness secure signatures or with encryption
that satisfies a novel ideal-model simulatability property.

1 Introduction

Cryptography provides a diverse set of tools and techniques that afford privacy,
confidentiality, authenticity, and anonymity, among a myriad of other goals.
Each goal can foster people’s security, allowing them to focus on other needs
and ultimately empowering them. This empowerment protects people from those
who wish to violate their security, which can include governments. A controlling
government may thus want to screen, monitor, or restrict the use of cryptography.

Persiano, Phan, and Yung [18] recently introduced a theoretical technique
called anamorphic cryptography aimed at subverting or even dissuading such

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 105–137, 2025.
https://doi.org/10.1007/978-981-96-0888-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_4&domain=pdf
http://orcid.org/0000-0002-4934-3405
http://orcid.org/0009-0000-0662-6061
https://doi.org/10.1007/978-981-96-0888-1_4

106 J. Jaeger and R. Stracovsky

government control. Anamorphic cryptography envisions the dire setting of par-
ties under the domain of a dictator who permits only limited forms of cryp-
tography and can monitor all communication or force parties to give up their
cryptographic keys in order to check for compliance. The authors then provide
techniques for covert communication by hiding secret ciphertexts inside of other
honestly generated ciphertexts. This work was followed up by [2,9,15,16,20]
which refine and extend the original idea. Of note is [2] by Banfi, Gegier, Hirt,
Maurer, and Rito (BGHMR), which proposes a notion of robustness (and many
constructions achieving it) that allows parties using anamorphic cryptography to
determine whether or not the outputs of a cryptosystem contain covert messages.

We focus on the notion of anamorphic signature schemes introduced by Kuty-
lowski, Persiano, Phan, Yung, and Zawada (KPPYZ) [15]. They hypothesize a
particularly restrictive setting in which the dictator bans encryption (or nullifies
it by acting as a middlebox that decrypts and reencrypts all communication)
but allows authentication, again with the caveat that they may coerce parties to
surrender their signing keys. The authors show that covert communication is still
possible, this time via anamorphic signature schemes which hide encrypted mes-
sages inside of innocuous signatures. Additionally, the authors provide schemes
where the parties communicating covertly fully trust each other and schemes
where that trust is eroded.

In this work, we improve the security of anamorphic signatures by proposing
two parallel unforgeability definitions that comprehensively capture the anamor-
phic setting. The first notion considers unforgeability from the perspective of a
dictator who knows each party’s signing keys, while the second notion considers
unforgeability from the perspective of an untrusted recipient privy to the hid-
den communication channel. As motivation for each notion, we first revisit two
previously proposed security definitions from BGHMR and KPPYZ and observe
crucial mismatches between the mathematical formalization of security and the
expected deployment scenario. These mismatches allow natural (or even pre-
viously proposed) schemes that provably fulfill the old security definitions but
would be trivially insecure in practice due to attacks we identify. Both of our
new security definitions mend these gaps, and we show (with new definitions and
proofs) conditions in which existing schemes satisfy our new security notions.

Provable Stealthiness. From an operational perspective, anamorphic cryp-
tography is another theoretical tool in the basket of stealthy communication
techniques. It is not meant to replace these techniques, but instead add another
medium within which users can communicate covertly. This expands the stealthy
bandwidth available to parties. From a security perspective, however, anamor-
phic cryptography provides strong provable security guarantees. One can con-
sider (as Persiano, Phan, and Yung did in [18]) a simple stealthiness game in
which a “dictator” (or simply any adversarial observer) is given access to either
an honest channel or one with covert messages hidden inside, and they must
identify which one they see. Anamorphic cryptosystems can easily achieve this
definition because they (mis)use existing cryptographic primitives which them-

Dictators? Friends? Forgers. 107

selves have provable security guarantees – anamorphic schemes can then derive
provable stealthiness from properties that lead to these very guarantees. In con-
trast, analysis of traditional steganography per the definition above can rely on
unrealistic or difficult-to-model assumptions about a channel distribution. For
instance, a steganographic channel which takes images and replaces the least
significant bits of pixel colors with pseudorandom encryptions is only provably
secure under the tenuous assumption that the least significant bits are uniformly
distributed (and that they even exhibit a distribution that can be easily modeled
in the first place).

The way anamorphic cryptosystems naturally “inherit” provable stealthi-
ness guarantees also allows us to study and construct anamorphic schemes
that achieve extended provable security properties against broader attacks. For
instance, as CCA notions of security extend CPA by considering active adver-
saries, we can explore stealthy channels in the presence of active censors or
malicious recipients. This analysis has already been initiated with the nascent
notions of robustness (discussed above) from BGHMR and private anamorphism
(discussed later) from KPPYZ. It is these security notions that we critique and
develop.

Anamorphic Signatures. An anamorphic signature scheme specifies (in addi-
tion to normal signature functionality) an anamorphic signing algorithm asig ←
aSign(sk, dk,msg, amsg) which uses a signing key sk to sign a benign message msg
and “double key” dk to hide an anamorphic message amsg inside the anamor-
phic signature asig. A recipient knowing dk should be able to extract amsg from
asig, while one not knowing dk should not be able to distinguish asig from a real
signature even if they know sk. This stealthiness property is formalized via a real-
or-anamorphic (RoA-CAMA) game and knowledge of sk is motivated by viewing
the attacker as a “dictator” who can compel disclosure of sk from citizens.

KPPYZ construct anamorphic signature schemes for many well-studied or
deployed signature schemes. We view several of their constructions as instan-
tiations of a transform we call RRep (“randomness replacement”) which uti-
lizes signatures from which one can extract the randomness used to sign. To
sign anamorphically, amsg is encrypted with dk using a pseudorandom encryp-
tion scheme prE and the resulting ciphertext is used as the randomness for
the signature scheme S’s signing procedure. The recipient extracts randomness
from signatures and decrypts. This complete procedure forms an anamorphic
signature scheme denoted aS = RRep[S, prE]. Since prE produces pseudoran-
dom ciphertexts, the anamorphic signatures will be indistinguishable from hon-
est signatures. For some signature schemes the signing randomness is directly
extractable from a signature, while in others the signing key is needed to
extract the randomness. These schemes are labeled ∅-(randomness)-recoverable
and sk-(randomness)-recoverable respectively. When RRep is applied to an sk-
(randomness-)recoverable signature scheme, the recipient must know sk. Such
an anamorphic scheme is called “symmetric” and can only be used in a setting
where the recipient is trusted to not use knowledge of sk to maliciously forge

108 J. Jaeger and R. Stracovsky

signatures. For non-symmetric schemes (e.g., RRep applied to ∅-recoverable sig-
nature schemes), KPPYZ define a natural security goal termed private anamor-
phism (that should hold in addition to RoA-CAMA security), which asks that
a malicious recipient, given dk and honest signatures but not sk, should not be
able to forge new signatures of their own. KPPYZ prove that any anamorphic
signature scheme in which dk is independent of the signing key is necessarily
private anamorphic (assuming the starting signature scheme was unforgeable).
This captures RRep applied to ∅-recoverable schemes as a special case.

1.1 Strengthening Robustness to Dictator Unforgeability

Robustness for Anamorphic Signatures. We begin by adapting BGHMR’s
robustness definition to the signature scheme setting. At a high level, robustness
asks that one cannot anamorphically decrypt honest ciphertexts (or signatures).
This property holds in addition to RoA-CAMA stealthiness (rather than instead
of it). The benefits, as stated by BGHMR, are twofold. The first is practical.

“It is intuitively desirable that a special symbol ⊥ is output indicating that
the ciphertext (intentionally) contains no covert message ... [as the schemes
are] potentially already being actively used for regular communication (and
only occasionally required to transmit covert messages, from some point
in time onward).” [2]

The second is for security.

“The dictator could trick receivers into reveling that they are indeed in
possession of a double key by sending them normally encrypted messages
and observing whether they show any reaction.” [2]

With robustness codified for anamorphic signature schemes, we then introduce
the necessary formalism to allow two of BGHMR’s proposed transforms to act
on signature schemes. The first we call RIdP (randomness identification with
PRF) and the second we call RIdPX (randomness identification with PRF and
XOR). These transforms are both stealthy (RoA-CAMA secure) and robust.

A Gap in Robustness. We reflect on the security motivation for robustness
in the austere dictator setting envisioned for anamorphic cryptography and find
that the robustness definition excludes reasonable attacks a dictator may per-
form. Specifically, there is no reason for the dictator to restrict themselves to
sending normally encrypted messages to observe a reaction. The dictator knows
the secret cryptographic key and can compute ciphertexts or signatures using
whatever randomness they want (rather than using fresh randomness like in the
honest case). More problematically, the dictator can take existing ciphertexts
or signatures which may hide encrypted anamorphic messages and modify them
before sending them to the recipient. We introduce a strengthened security defi-
nition called dictator unforgeability under chosen anamorphic signature attack to

Dictators? Friends? Forgers. 109

capture these scenarios. In the DUF-CASA game, the dictator is given the verifica-
tion and signing keys and separate anamorphic signing and anamorphic decryp-
tion oracles which they can query however they want. The dictator’s goal is to
forge a new message-signature pair that contains an anamorphic message hidden
within it. Table 1 summarizes BGHMR’s robustness notion (denoted ROB-CMA)
and our proposed dictator unforgeability security notion (DUF-CASA). From the
table, it is evident that DUF-CASA comprehensively addresses the limitations in
robustness.

Table 1. Existing security notions for anamorphic signatures compared to our pro-
posed notions. Check marks (✓) denote inputs and oracle access given to adversaries.
Starred check marks (✓*) denote that the adversary accesses one of two oracles in a
distinguishing game. Daggered check marks (✓†) denote that the oracle only accepts
arguments output by other oracles

vk skdkOSignOaSignOaDec

Stealthiness (RoA-CAMA) [15,18] ✓ ✓ ✓* � ✓*

Robustness (ROB-CMA) [2] ✓ ✓ ✓†

Dictator Unforgeability (DUF-CASA) Our Work (Sect. 4) ✓ ✓ N/A ✓ ✓

Private Anamorphism (PA-CMA) [15] ✓ ✓ ✓ N/A
Recipient Unforgeability (RUF-CAMA)Our Work (Sect. 5) ✓ ✓ ✓ ✓ N/A

Positive and Negative Results. We reanalyze the RIdP and RIdPX trans-
forms ported from BGHMR with our proposed (DUF-CASA) dictator unforge-
ability notion and find that RIdP is secure provided the underlying signature
scheme satisfies a security notion we term unpredictability under key compro-
mise. In contrast, RIdPX is broken as a dictator can easily modify an anamorphic
signature to contain a different (and potentially meaningful) anamorphic mes-
sage! These results are summarized in Table 2. This separation indicates that our
dictator unforgeability definition can parse out nuanced differences in schemes
previously thought to have the same security.

1.2 Strengthening Private Anamorphism to Recipient
Unforgeability

A Gap in Private Anamorphism. The second portion of our paper switches
from the view of a dictator to the view of a malicious recipient. Our first con-
tribution in this section shows the insufficiency of the KPPYZ notion of pri-
vate anamorphism (discussed above as a property that may hold in addition to
RoA-CAMA stealthiness). Recall that private anamorphism considers a recipient
who is given dk and honest signatures and we desire that they cannot forge new

110 J. Jaeger and R. Stracovsky

signatures of their own. KPPYZ propose this definition so that the following
holds.

“Anamorphic messages . . . come with an implicit origin authentication as
they are part of a signature that can only be produced by the owner of
the signing key.” [15]

There is a crucial gap between the definition of private anamorphism and this
envisioned deployment scenario. In the former, the recipient only receives real
signatures while over the course of the latter they also see anamorphic signa-
tures. Motivated by this, we introduce a strengthened definition called recipient
unforgeability under chosen anamorphic message attack. In the RUF-CAMA
game, the attacker is given the double key and oracles for requesting both real
and anamorphic signatures. Their goal is to produce forgeries. Table 1 sum-
marizes KPPYZ’s private anamorphism (formally denoted PA-CMA) and our
(RUF-CAMA) recipient unforgeability security notions. From the table, we can
see that RUF-CAMA patches an artificial limitation present in the definition of
private anamorphism.

Breaking RRep. We start by asking whether (RUF-CAMA) recipient unforge-
ability is different than private anamorphism. As a simple separating example,
consider an anamorphic signature scheme that appends its signing key to an
anamorphic message before encrypting it. Upon seeing a single anamorphic sig-
nature, any recipient trivially recovers the sender’s signing key, even though this
scheme is private anamorphic. This result, however, does not resolve whether
recipient unforgeability is meaningfully different from private anamorphism for
realistic schemes. To address this, we investigate whether randomness replace-
ment RRep applied to ∅-recoverable schemes is always recipient unforgeable.

Damningly, we find this is not the case. Consider using stateful counter-
mode encryption prEcm in RRep (a natural choice of scheme which provides
pseudorandom ciphertexts). Then an attacker, knowing dk and the current
counter value, can compute the pseudorandom pad prF(k, ctr) ahead of time and
thus maliciously select an anamorphic message so that the resulting ciphertext
ct = prF(k, ctr) ⊕ amsg equals any string of its choice. Consequently, an anamor-
phic signature scheme aS = RRep[S, prEcm] using this encryption scheme is cer-
tainly insecure with any digital signature scheme S that is insecure against chosen
randomness attacks. CRA security extends the typical unforgeability notion to
allow the attacker to pick the randomness when requesting signatures.

Recovering Positive Results. Next, we ask whether positive results can be
recovered for the recipient unforgeability of aS = RRep[S, prE] with ∅-recoverable
schemes by restricting the choice of signature S or encryption scheme prE. We
provide two such results by requiring a stronger security property of either the
signature scheme or the encryption scheme, while assuming nothing additional
of the other scheme. The first is a natural complement to our counter-mode
encryption attack; if the signature scheme S is CRA secure, then RRep is recipient
unforgeable. As dk is independent of sk, all that it and the anamorphic signing

Dictators? Friends? Forgers. 111

can do is allow the attacker to influence the randomness used by the signing
algorithm. We prove CRA security of RSA-PSS (considered in KPPYZ) here
and Rabin signatures in the full version of this work.

This leaves unclear whether ∅-recoverable schemes like Boneh-Boyen (con-
sidered in KPPYZ), which are not known to be CRA secure, can be recip-
ient unforgeable when used in RRep. For such schemes, we take the oppo-
site approach and assume a strong ideal-model simulatability property of the
encryption scheme prE. As an example, consider the encryption scheme where
ct = (r,msg ⊕ H(k, r)). If H is modeled as a random oracle, then using this
in RRep with any ∅-recoverable, unforgeable signature scheme S (which doesn’t
itself use H) will be recipient-unforgeable. The forging reduction adversary sim-
ulates H internally and can emulate anamorphic signatures using normal sig-
natures by extracting ct from the normal signature and reprogramming H to
be consistent. We make this ideal-model analysis modular by extracting this
core reprogrammability property to define a new notion of simulatability with
random ciphertexts (SIM-$CT) which will be achieved by appropriate idealiza-
tions of typical randomized encryption schemes like counter-mode encryption or
cipher block chaining. Our positive results for RRep are included in Table 2.

Dictator and Recipient Unforgeable Schemes. It is sensible to construct
anamorphic signature schemes that are both dictator unforgeable and recipient
unforgeable. We show that randomness identification with PRF transform RIdP
ported from BGHMR is secure when instantiated with ∅-recoverable schemes
(previously only considered with RRep). This result is shown in Table 2. On the
flip side, we touch on schemes that are forgeable by dictators and recipients,
even though they satisfy robustness and private anamorphism! This serves as a
final demonstration of the value of our definitions.

Table 2. The security of anamorphic signature scheme transforms (adapted from
BGHMR and KPPYZ) under our proposed notions. The ✓ symbol indicates secu-
rity while ✗ indicates insecurity. The ✓* symbol indicates we provide positive results
as long as the underlying components satisfy additional security requirements

RoA-CAMADUF-CASARUF-CAMA
RIdP[S, prF] ✓ ✓* ✓*

RIdPX[S, prF] ✓ ✗ –
RRep[S, prE] ✓ ✗ ✓*

1.3 Related Work

Conceptually, anamorphic cryptography (broadly construed) is deeply related
to a variety of research areas such as steganography and subliminal channels

112 J. Jaeger and R. Stracovsky

[10,19,22] and kleptography/algorithmic substitution attacks [1,3,4,21]. These
connections can be useful for inspiring positive results (e.g. RRep is reminiscent
of the IV-replacement attack of [4]). In the other direction, negative results could
also likely be ported over. For example, its possible that anamorphic signatures
could be somewhat prevented if users are required to use signature schemes with
unique signatures [4,11] or for which cryptographic reverse firewalls [17] are
known. While techniques transfer between these areas, the change in high level
perspective also inspires different low level technical insights (e.g. CRA-secure
signatures and SIM-$CT-secure encryption).

1.4 Outline of This Paper

In Sect. 2, we introduce our notation and discuss cryptographic background rel-
evant to our work. We then discuss anamorphic signature schemes in Sect. 3 and
highlight the randomness replacement transform RRep. We begin in Sect. 4 by
adapting and strengthening robustness to a dictator unforgeability notion and
prove that a previously proposed scheme is secure while another is not. In Sect. 5,
we provide two private anamorphic schemes which are insecure in practical set-
tings, highlighting a gap in the existing definition. We supply two results that
show that RRep is still secure in a new recipient unforgeability notion, provided
updated security requirements on the underlying primitives.

2 Notation and Preliminaries

2.1 Pseudocode, Sets, and Tables

We leverage pseudocode formalism [6]. For an algorithm A, we write y ← AO(x)
to denote running A with oracle access to O on input x and assigning the output
to y. If an input set (or space) is specified for x, we assume only values from
that set can be passed into A. When A is stateful, A(x : st) denotes running A
on input x and state st, where the state st is passed by reference and can be
updated by A. When A is probabilistic, A(x; r) denotes running A on input x
and seed r. Omitting r indicates that the seed is sampled uniformly. We write
PPT for probabilistic polynomial time.

Adversaries (e.g. A, B) are algorithms which may make up to q(λ) oracle
queries given a security parameter λ. We will write q(λ) as q. Due to identically
named oracles in some proofs, we notationally clarify them by writing OA

Func to
denote the Func oracle that an adversary A accesses. Given a security notion
SEC, we may consider modified notions where the adversary can access oracles
for underlying primitives (e.g. in the random oracle model). We notate this as
SEC(O1, O2, . . .). For a game G, we let Pr[G(λ) ⇒ 1] denote the probability G
outputs 1 for a security parameter λ.

For a scheme C, parameters pp (which we discuss shortly), and associated
class of objects X (e.g. keys, messages, or signatures), we call the set of possible
values the X space (key space, message space, signature space) and denote these

Dictators? Friends? Forgers. 113

with double struck capital letters (C.Kpp, C.Mpp, C.Spp). For a stateful algorithm
C.Alg(. . . : st), we denote the set of possible states st with C.ST

Alg
pp . For a prob-

abilistic algorithm C.Alg(. . . ; r), we denote the set of possible random seeds r
with C.RAlg

pp .
For a distribution χ over a set S, we write s ←$ χ(S) to denote that s is

sampled from χ or s ←$ S χ is uniform over S.

2.2 Cryptographic Primitives and Preliminaries

We proceed with the understanding that the reader is familiar with digital sig-
nature schemes, pseudorandom encryption, and pseudorandom functions. For
digital signature schemes we consider strong unforgeability under chosen mes-
sage attack (SUF-CMA). Pseudorandom encryption refers to a (randomized or
stateful) symmetric encryption scheme that has ciphertexts indistinguishable
from random under chosen plaintext attack (IND$-CPA). Lastly, for pseudoran-
dom functions we consider pseudorandom function security (PRF). Full details
are provided in the full version of this work.

Several of the schemes we discuss require public parameters. Due to inter-
dependence between the parameter generation of schemes used together, we
simplify notation by defining a PPT global parameter generation algorithm
PublicParamGen(1λ) that takes in a security parameter λ and outputs public
parameters pp usable by all of the primitives and constructions in this work.
One can think of pp capturing specifications like concrete groups and lengths of
hash function inputs and outputs that are baked into global standards outside
of any individual’s control.

We analyze multiple anamorphic signature schemes arrived at by applying
generic transformations to the ElGamal signature scheme [12] and RSA-PSS [5].
Their plain versions are specified below.

ElGamal Signature Scheme. For a security parameter λ, suppose that the
public parameter generation algorithm PublicParamGen(1λ) outputs pp contain-
ing a prime p where log(p) ∈ Θ(λ), a generator g of Z

∗
p, and a hash function

H : {0, 1}∗ ×Z
∗
p → Zp. The ElGamal signature scheme ElG is as defined in Fig. 1.

RSA-PSS. Let Pλ�
denote the set of λ�-bit primes and RSA.eGen output RSA

public exponents. Suppose PublicParamGen(1λ) outputs pp containing λ� ∈ Θ(λ),
positive integers λ0, λ1 such that λ0 + λ1 ≤ λ − 1, as well as hash functions
H : {0, 1}∗ × {0, 1}λ0 → {0, 1}λ1 and G : {0, 1}λ1 → {0, 1}λ−λ1−1. We consider
G as separate G1 and G2 which output the first λ0 and remaining λ−λ0 −λ1 −1
bits of G’s outputs respectively. Then RSA-PSS is as defined in Fig. 1.

114 J. Jaeger and R. Stracovsky

3 Background on Anamorphic Signatures

3.1 Anamorphic Signature Schemes

We now review anamorphic signature schemes [15] (KPPYZ). At a high level,
the objective of anamorphic signatures is to appear like regular signatures except
that a user knowing a secret symmetric key, called a double key dk, can encrypt a
covert message into a signature asig. This covert message, called the anamorphic
message amsg, can be recovered from the asig using dk.

These anamorphic messages should be undetectable by a “dictator” who can
see all signatures, force parties to hand over their secret signing keys, and ask
parties sign messages of the dictator’s choosing. To realize this, the signature
scheme must still sign and verify like a standard signature scheme. Furthermore,
the verification key, signing key, and signatures must be indistinguishable from
honestly generated ones.

Fig. 1. ElGamal signature scheme ElG and RSA-PSS

Dictators? Friends? Forgers. 115

We provide syntax and security definitions for stateless anamorphic signa-
ture schemes below (and for all subsequent definitions in this work) but note
that some of our results consider stateful constructions. For these constructions,
stateful syntax and security definitions are straightforward or we provide details
if necessary. Full definitions and results for stateful anamorphic signatures can
be found in the full version of this work.

Definition 1. An anamorphic signature scheme aS is a signature scheme (spec-
ifying aS.KeyGen, aS.Sign, and aS.Verify) with three additional PPT algorithms.
– aS.aKeyGen(pp) takes public parameters pp and generates the signing key sk ∈

aS.SKpp, verification key vk ∈ aS.VKpp, and double key dk ∈ aS.DKpp. It then
outputs (vk, sk, dk).

– aS.aSign(sk, dk,msg, amsg) takes the signing key sk ∈ aS.SKpp, double key
dk ∈ aS.DKpp, message msg ∈ aS.Mpp, and anamorphic message amsg ∈
aS.AMpp and outputs an anamorphic signature asig ∈ aS.ASpp.

– aS.aDec(dk,msg, asig) takes the double key dk ∈ aS.DKpp, message msg ∈
aS.Mpp, and anamorphic signature sig ∈ aS.ASpp and outputs an anamorphic
message amsg ∈ aS.AMpp.

In addition to standard signature scheme correctness, anamorphic schemes
must satisfy the additional requirement that anamorphic messages are properly
decryptable from anamorphic signatures.

Definition 2. An anamorphic signature scheme aS is correct if standard sig-
nature scheme correctness holds and aS.aDec(dk,msg, asig) outputs amsg for
all pp ← PublicParamGen(1λ), (vk, sk, dk) ← aS.aKeyGen(pp), msg ∈ aS.Mpp,
amsg ∈ aS.AMpp, and asig ← aS.aSign(sk, dk,msg, amsg).

Fig. 2. Real-or-anamorphic game GRoA-CAMA from KPPYZ

As mentioned prior, a dictator should not be able to tell whether signing or
anamorphic signing is employed. This is formalized in KPPYZ via the real-or-
anamorphic game GRoA-CAMA defined in Fig. 2. The RoA-CAMA advantage for an

116 J. Jaeger and R. Stracovsky

anamorphic signature scheme aS is defined as

AdvRoA-CAMA
aS,A (λ) = 2 Pr[GRoA-CAMA

aS,A (λ) ⇒ 1] − 1.

Definition 3. An anamorphic signature scheme aS is stealthy (in the
RoA-CAMA sense) if, for all PPT adversaries A, the function AdvRoA-CAMA

aS,A (λ)
is negligible.

3.2 Constructing Anamorphic Signatures

KPPYZ introduces a diverse collection of ways to construct anamorphic signa-
tures, including the Fiat-Shamir transform, rejection sampling, and the Naor-
Yung paradigm. We view many of their proposed signature schemes as instan-
tiations of a randomness replacement transform which constructs anamorphic
signature schemes from a myriad of well-studied and deployed signature schemes.

Randomness replacement exploits the probabilistic nature of many signature
schemes by encoding covert messages in the random coins used to generate signa-
tures. We say signature schemes are randomness recoverable if they allow these
random coins to be recovered by a recipient with sufficient knowledge and hence
enable extraction of the covert message.

Randomness Recovery. While KPPYZ formulate randomness recovery in
regard to Sigma protocols, we define it directly for signature schemes.

Definition 4. A signature scheme S is randomness recoverable if it additionally
specifies a PPT algorithm S.RRecov such that, for all pp ← PublicParamGen(1λ),
(vk, sk) ← S.KeyGen(pp), msg ∈ S.Mpp, r ∈ S.RSign

pp , and sig ← S.Sign(sk,msg; r),
r can be recovered by computing r ← S.RRecov(sig,msg, vk, sk).

When S.RRecov requires sk to extract the randomness r, we label S as sk-
(randomness)-recoverable. For some schemes, S.RRecov can recover the random-
ness without sk. In this case, we label S as ∅-(randomness)-recoverable and omit
sk as an input to the algorithm.

Anamorphism via Randomness Replacement. The key idea for construct-
ing anamorphic signature schemes via randomness replacement is to encrypt an
anamorphic message into a pseudorandom ciphertext which is then used as the
randomness when generating a signature. The randomness can then be recov-
ered by a recipient through the randomness recovery function and decrypted to
produce the anamorphic message. The formal construction is as follows.

Construction 1. Consider the following needed to construct an anamorphic
signature scheme via randomness replacement.

– Let S be a randomness recoverable signature scheme with randomness recovery
function S.RRecov.

Dictators? Friends? Forgers. 117

– Let prE be a pseudorandom encryption scheme.
– Let PublicParamGen output parameters pp such that S.RSign

pp = prE.Cpp.

The anamorphic signature scheme aS = RRep[S, prE] is constructed as shown in
Fig. 3, where the highlighted code is included if S is sk-recoverable.

Fig. 3. Randomness replacement transform RRep

Note that Construction 1 requires that the given encryption scheme is pseu-
dorandom with respect to the signature scheme’s randomness space. This can
be realized using encoding and rejection sampling techniques. The randomness
replacement transform results in stealthy anamorphic signature schemes per Def-
inition 3 (RoA-CAMA). Since we describe the construction slightly differently
from KPPYZ, we accordingly provide adapted versions of Theorem 9 and 10 in
KPPYZ (which prove stealthiness) in the full version of this work.

KPPYZ propose several anamorphic signature schemes that are instanti-
ations of the randomness replacement transform. One symmetric anamorphic
signature scheme is built on ElGamal. The scheme has a double key dk = (k, x)
where sk = x is the ElGamal signing key. Given an anamorphic signature (r, s)
where κ ← prE.Enc(k, amsg), r ← gκ, and s ← (H(msg, r) − xr)κ−1, a trusted
recipient who knows sk = x can extract κ ← (H(msg, r) − xr)s−1 and decrypt κ
with k to obtain amsg. KPPYZ also propose a non-symmetric anamorphic sig-
nature scheme based on RSA-PSS. Given a signature sig, a recipient computes
b‖w‖α‖γ ← sige (mod N) and r ← G1(w) ⊕ α. Thus parties can anamorphi-
cally communicate by replacing r with pseudorandom encryptions of amsg. No
knowledge of the signing key sk is necessary to anamorphically decrypt.

118 J. Jaeger and R. Stracovsky

Other Transforms. Anamorphic signature schemes can be constructed with-
out RRep. For example, rejection sampling, touched on in KPPYZ, can generi-
cally construct a non-symmetric anamorphic signature scheme aS from any (suf-
ficiently) probabilistic signature scheme. The core idea is to sample signatures
sig until prF(k, sig) = amsg for some pseudorandom function prF. This signature
is returned as the anamorphic signature asig. Anamorphic decryption evalu-
ates amsg ← prF(k, asig). Note that the size of the anamorphic message space
aS.AMpp must be small for anamorphic signing to run in polynomial time.

In Sect. 4 we will adapt and discuss in detail two transforms from BGHMR
to the signature scheme setting, neither of which can be expressed as instantia-
tions of RRep. In contrast to rejection sampling, in which the sender “searches”
for a signature that encrypts the anamorphic message they want to send, the
transforms from BGHMR transfer this workload to the recipient who, given a
signature, “searches” for the right anamorphic message encrypted within the
signature.

4 Strengthening Robustness to Dictator Unforgeability

Following the introduction of anamorphic encryption in PPY [18], BGHMR [2]
proposed a security notion dubbed robustness which allows parties communi-
cating via anamorphic encryption to identify ciphertexts containing anamorphic
messages. As discussed prior, BGHMR presents both practical and security con-
siderations as motivation for robustness. A network with anamorphic channels
presumably contains both honest and anamorphic ciphertexts, so an anamorphic
party must be able to systematically distinguish such ciphertexts. Furthermore,
a dictator may attempt to discern whether a party is using an anamorphic chan-
nel by sending them fresh ciphertexts, and hence a party should only decrypt
anamorphic messages that were truly sent.

As robustness was only proposed for anamorphic encryption schemes, we
begin by adapting and formalizing robustness and two constructions from
BGHMR to the anamorphic signature scheme setting, before proposing a
stronger notion and reanalyzing the two constructions.

4.1 Robustness (for Anamorphic Signatures)

The anamorphic signature scheme variant of robustness is captured by the
GROB-CMA game shown in Fig. 4. Following BGHMR, we present it as distinguish-
ing game and consequently define the ROB-CMA advantage for an anamorphic
signature scheme aS by

AdvROB-CMA
aS,A (λ) = 2 Pr[GROB-CMA

aS,A (λ) ⇒ 1] − 1.

Definition 5. An anamorphic signature scheme aS is robust (in the ROB-CMA
sense) if, for all PPT adversaries A, the function AdvROB-CMA

aS,A (λ) is negligible.

Dictators? Friends? Forgers. 119

Fig. 4. Robustness game GROB-CMA adapted from BGHMR

The BGHMR robustness notion considers an adversary not privy to secret
keys that views fresh, honest ciphertexts that a party tries to anamorphically
decrypt. The GROB-CMA game captures this by giving the adversary the public
verification key vk and access to an equivalent combined oracle OSign,aDec that
signs new signatures and attempts to anamorphically decrypt them.1 An adver-
sary easily wins if any decryption is successful as it trivially sees that b = 1.

Neither the randomness replacement transform RRep nor rejection sampling
achieve robustness as presented. While RRep can be modified to use an authen-
ticated pseudorandom encryption scheme (though this may be difficult in the
atomic setting due to size constraints), the nature of rejection sampling prohibits
it from achieving robustness. This is because providing a signature as input
to a pseudorandom function always results in some sort of output anamorphic
message, and the inherent restriction on anamorphic message space size makes
message authentication difficult.

4.2 Constructing Robust Anamorphic Signatures

BGHMR propose four transforms (and additional variants) to construct robust
anamorphic encryption schemes. We describe one construction and variant and
adapt them to signature schemes.

Randomness Identification with PRF. The first construction transforms
any IND$-CPA-secure public-key encryption scheme PKE to a stateful robust
anamorphic encryption scheme aPKE and roughly follows a decrypt-reencrypt
paradigm. The double key dk consists of a pseudorandom function key k and
public key pk. Users also maintain synchronized counters ctrEnc and ctrDec. To
perform anamorphic encryption, the sender computes r ← prF(k, (ctrEnc, amsg))
and returns act ← PKE.Enc(pk,msg, r). It also updates its counter ctrEnc ←
ctrEnc+1. To perform anamorphic decryption of act, the receiver decrypts using sk
to obtain msg and reencrypts msg using randomness r′ ← prF(k, (ctrDec, amsg′))
for all amsg′ ∈ aPKE.AMpp. Once the receiver finds an amsg′ that encrypts to
1 In Table 1 we presented this oracle as separate OSign and OaDec oracles where the latter

only takes signatures output by the former. The formulation in Fig. 4 is equivalent.

120 J. Jaeger and R. Stracovsky

act, it returns this amsg′ or ⊥ if no such amsg′ exists, after which it updates
ctrDec ← ctrDec + 1. Note that, similar to rejection sampling, the anamorphic
message space aPKE.AMpp must be sufficiently small for the scheme to run in
polynomial time. Furthermore, both sender and receiver must ensure that their
counters ctrEnc and ctrDec are synchronized for correctness to hold.

In the anamorphic signature scheme setting, the recipient of an anamorphic
signature may not have access to the sender’s signing key (i.e. non-symmetric
anamorphism) and hence cannot directly perform a resigning procedure anal-
ogous to reencryption. However, the transform above still works even if the
recipient only identifies whether a given seed was used as encryption random-
ness (reencryption is simply a way to realize this). This technique, which we call
randomness identification, is possible in many signature schemes.

Definition 6. A signature scheme S is randomness identifying if it additionally
specifies a PPT algorithm S.RIdtfy where S.RIdtfy(vk,msg, sig, r′) outputs 1 if
and only if r′ = r for all pp ← PublicParamGen(1λ), (vk, sk) ← S.KeyGen(pp),
msg ∈ S.Mpp, r, r′ ∈ S.RSign

pp , and sig ← S.Sign(sk,msg; r).

It is clear that ∅-recoverable signature schemes (where signing randomness
is recoverable from sig without sk) are trivially randomness identifying. Of more
interest is that ElGamal (and related signature schemes such as Schnorr) are also
randomness identifying. Given a signature sig = (r, s) ← ElG.Sign(sk,msg; κ),
once can simply verify whether randomness κ′ was used to generate sig by check-
ing that gκ′ = r and also ensuring that ElG.Verify(vk,msg, sig) outputs 1.

We can now construct robust anamorphic signature schemes by modifying the
first transform from BGHMR, which we denote as randomness identification with
PRF (RIdP). We also adapt a variant of the RIdP transform that doesn’t input
the anamorphic message into the pseudorandom function but instead XORs it.
We denote this as randomness identification with PRF and XOR (RIdPX).

Construction 2. Consider the following needed to construct an anamorphic
signature scheme via randomness identification with PRF (and XOR).

– Let S be a randomness identifying signature scheme with randomness identi-
fication function S.RIdtfy.

– Let prF be a pseudorandom function that takes in 3-tuple or 2-tuple mes-
sages where the first element of the tuple is an integer.

– Let PublicParamGen output parameters pp such that S.RSign
pp = prF.Rpp and

S.Mpp = B for prF.Mpp = Zn × B × C where n is a positive integer defined
in pp.

The anamorphic signature schemes aS = RIdP[S, prF] and aS = RIdPX[S, prF]
are constructed as shown in Fig. 5.

Both the RIdP and RIdPX transforms achieve stealthiness (in the RoA-CAMA
sense) and robustness. These results follow the proofs of security for the equiva-
lent transforms in BGHMR, namely Lemma 4.1, 4.2, and 4.3. For completeness

Dictators? Friends? Forgers. 121

Fig. 5. Randomness identification transforms RIdP and RIdPX

(as our presentations of the transforms deal with a different underlying crypto-
graphic object) we provide full ported proofs in the full version of this work.

4.3 Dictator Unforgeability

We now revisit the rationale behind robustness as discussed in BGHMR, specifi-
cally keeping in mind the dictator setting within which anamorphic cryptography
aims to be secure. To reiterate, the first motivation is practical – many honest
and anamorphic cryptographic outputs will be transmitted in a given network
so parties should be able to systematically identify when a given ciphertext
(or signature in our case) contains an anamorphic message encrypted within
it. Robustness, combined with correctness, fully captures this goal. The second
motivation is for security – a party should only be able to perform anamor-
phic decryption on ciphertexts (or signatures) which were truly anamorphically
encrypted by another party, as a dictator might send ciphertexts or signatures
to parties and see how they react. Robustness falls short of capturing this by
excluding many practical actions a dictator may take.

In the public-key encryption setting considered in BGHMR, a dictator knows
the public key and can encrypt messages themselves using randomness of their
own choosing before sending them to users. The robustness game only computes
fresh encryptions, hence precluding any attacks where a dictator selects particu-

122 J. Jaeger and R. Stracovsky

lar randomness knowing that anamorphic parties may be inserting anamorphic
messages into this randomness. This form of attack also applies to signature
schemes as the anamorphic setting considers a dictator who obtains secret keys
and can thus sign messages with randomness of their choosing.

Even more critically, it is unreasonable for a dictator to restrict themselves
solely to encrypting new ciphertexts or signing new signatures. Instead, the
dictator may take existing ciphertexts or signatures, which may contain hid-
den anamorphic messages that they have influenced, and maul them into other
ciphertexts or signatures the dictator then uses for an attack. For instance, con-
sider a situation where a dictator’s actions have caused an anamorphic party to
covertly send the message “Let’s meet at 2:00 PM” via an anamorphic signature.
The dictator who audits the signature may modify it so that the anamorphic
message says “Let’s meet at 4:00 PM” without even needing conclusive knowl-
edge that the message is hidden inside.

To address these gaps between the robustness notion and desired security in
the anamorphic setting, we introduce a new ciphertext-integrity-inspired security
notion which we call dictator unforgeability under chosen anamorphic signature
attack (DUF-CASA). In this notion a dictator gets access to an anamorphic
signing oracle and may request anamorphic decryptions on any (real or anamor-
phic) signatures it obtains or generates itself with the goal of producing a new
signature that doesn’t anamorphically decrypt to ⊥. This is formalized in the
GDUF-CASA game in Fig. 6. Note that as the dictator now has access to an anamor-
phic signing oracle, they may try to return an unmodified anamorphic signature
as their forgery.

Fig. 6. Dictator unforgeability game GDUF-CASA

Unlike robustness which is defined as an indistinguishability notion, we cap-
ture our security goal as an unforgeability game, thus we define the DUF-CASA
advantage for an anamorphic signature scheme aS by

AdvDUF-CASA
aS,A (λ) = Pr[GDUF-CASA

aS,A (λ) ⇒ 1].

Dictators? Friends? Forgers. 123

Definition 7. An anamorphic signature scheme aS is dictator unforgeable
(in the DUF-CASA sense) if, for all PPT adversaries A, the function
AdvDUF-CASA

aS,A (λ) is negligible.

It is clear that dictator unforgeability for anamorphic signature schemes is
a strictly stronger property than robustness. We formally capture this in the
following theorem with full details in the full version of this work. The non-
tight bound derives from the fact robustness allows the adversary to make many
queries to the sign-then-anamorphic-decryption oracle while dictator unforge-
ability only allows the adversary to submit one forgery.

Theorem 1. Let aS be an anamorphic signature scheme. Then for all PPT
adversaries A that make qD sign-then-anamorphic-decryption queries there exists
a PPT adversary B such that

AdvROB-CMA
aS,A (λ) ≤ qDAdvDUF-CASA

aS,B (λ).

4.4 RIdP with UP-KC-Secure Signatures

We now reexamine the security of both the randomness identification with PRF
transform RIdP and randomness identification with PRF and XOR transform
RIdPX (Fig. 5) in our comprehensive dictator unforgeability notion. We find that
while the former is secure, the latter is not! This further motivates dictator
unforgeability, showing that it can discriminate subtle security guarantees of
previously proposed anamorphic schemes designed to have the same security.

In this section we focus on the dictator unforgeability of RIdP. To achieve
this we require that the underlying signature scheme satisfy a property termed
unpredictability under key compromise (UP-KC), which asks that an adversary
with access to a both the verification and secret signing keys of a signature
scheme cannot predict a future signature on a message of their choice. This
property is necessary for anamorphic signature schemes produced by the RIdP
transform since its decryption procedure identifies amsg by looping through
(effectively) fresh signatures and checking whether the input anamorphic sig-
nature equals the fresh signature computed in a given iteration of the loop. A
dictator who (knowing sk) is able to predict a future signature can send this
signature to the anamorphic decryption oracle. This would trigger the random-
ness identification check during the decryption loop, returning an anamorphic
message and not ⊥.

We introduce the formal notion of unpredictability under key compromise in
Definition 8 which requires the GUP-KC game in in Fig. 7 which has the following
UP-KC advantage defined by

AdvUP-KC
S,A (λ) = Pr[GUP-KC

S,A (λ) ⇒ 1].

Definition 8. An signature scheme S is unpredictable under key compromise
(in the UP-KC sense) if, for all PPT adversaries A, the function AdvUP-KC

S,A (λ)
is negligible.

124 J. Jaeger and R. Stracovsky

Fig. 7. Unpredictability under key compromise game GUP-KC

We are now ready to show that RIdP produces anamorphic signature schemes
that are dictator unforgeable. We provide the theorem statement and a proof
sketch below and defer a full proof to the full version of this work.

Theorem 2. Let S be a randomness-identifying UP-KC-secure signature scheme
and prF be a pseudorandom function. In addition, let aS = RIdP[S, prF] per Con-
struction 2. Finally, let A(λ) denote |aS.AMpp| for pp ← PublicParamGen(1λ).
Then for all PPT adversaries A that make qD anamorphic decryption queries
there exist PPT adversaries B0 and B1 such that

AdvDUF-CASA
aSA (λ) ≤ AdvPRF

prF,B0(λ) + (qD + 1)A(λ)AdvUP-KC
S,B1 (λ)

where the GDUF-CASA game is modified so that A’s forgery is only not new if it
was the ith output of OaSign and A has made i − 1 queries to OaDec.

Proof Sketch. The proof proceeds by a series of game hops from the GDUF-CASA

game on aS to a final game that is bounded by the unpredictability advantage.
The pseudorandomness of prF is used to transition to a game where signatures are
seeded by a truly random function. Careful analysis shows that, if an adversary
submits a query or forgery that would reuse an input to prF, a different check
catches this before prF is called or the adversary loses the game by submitting
a signature they have already seen as their forgery. Hence an adversary cannot
distinguish between the GDUF-CASA game on aS and one where the signatures
are all fresh. Finally, in this game with fresh signatures, an adversary who can
submit a signature that will independently be computed during the anamorphic
decryption loop can predict signatures under key compromise. Over the course
of the game (qD + 1)A(λ) signatures are generated.
�
Corollary 1. Consider the ElGamal signature scheme ElG from Fig. 1 and let
prF be an appropriate pseudorandom function. Then the anamorphic ElGamal
signature scheme aElG = RIdP[ElG, prF] is dictator unforgeable.

4.5 An Attack on RIdPX
We have shown that RIdP, originally proposed to satisfy robustness in BGHMR,
achieves the stronger dictator unforgeability notion (given a new security require-
ment) with ElGamal signatures as an example instantiation. We now show that

Dictators? Friends? Forgers. 125

Fig. 8. Private anamorphism game GPA-CMA from KPPYZ

RIdPX, also proposed to satisfy robustness in BGHMR, does not achieve the
dictator unforgeability notion when instantiated with ElGamal.

Let aSRIdPX-bad = RIdPX[ElG, prF]. An anamorphic signature of aSRIdPX-bad
on a message msg and anamorphic message amsg is the signature asig = (r, s)
with r ← gκ and s ← (H(msg) − xr)κ−1 (mod p − 1) where κ ← amsg ⊕
prF(k, (msg, ctrEnc)). A dictator knows the signing key x and with this signa-
ture can extract κ ← (H(msg) − xr)s−1. They then compute κ∗ ← κ + κ′ =
(amsg ⊕ κ′) ⊕ prF(k, (msg, ctr)) and resign the same message msg with x to pro-
duce a signature asig∗ which they submit as their forgery without querying the
decryption oracle (allowing the counters ctrEnc and ctrDec stay synchronized).
Clearly asig∗ decrypts to amsg ⊕ κ′ and not ⊥! This is a complete and practical
break of a reasonable instantiation of RIdPX and demonstrates the value of our
proposed dictator unforgeability notion.

5 Strengthening Private Anamorphism to Recipient
Unforgeability

We now turn to a different security notion for anamorphic signatures. This
notion, called private anamorphism, was proposed in KPPYZ [15] and codifies
a desired form of security for non-symmetric anamorphic schemes (ones where
a recipient does not obtain sk as part of dk). Motivated through our analysis
of this security definition, we will propose a new unforgeability definition – this
time from the perspective of a recipient rather than a dictator. To begin our
analysis, we identify a gap in the formal definition of private anamorphism and
present an attack against a scheme that satisfies this definition.

5.1 Private Anamorphism

Private anamorphism aims to allow two parties to covertly communicate via
anamorphic signatures without the need to give up their signing keys. Otherwise
a malicious anamorphic party could conceivably forge signatures on messages of

126 J. Jaeger and R. Stracovsky

their choosing for any one of their correspondents, and in the case where the
double key is shared between multiple users (which is mentioned in KPPYZ),
they may insert their own anamorphic messages as well.

The definition of private anamorphism formulated in KPPYZ affords an
even stronger security guarantee than simply preventing signing key recovery.
It requires that a PPT adversary with a plain signing oracle cannot produce
a forgery on any message whatsoever, even when given both the verification
and double keys. KPPYZ’s notion of private anamorphism, which we denote
as PA-CMA, is captured by the GPA-CMA game shown in Fig. 8. We define the
PA-CMA advantage for an anamorphic signature scheme aS by

AdvPA-CMA
aS,A (λ) = Pr[GPA-CMA

aS,A (λ) ⇒ 1].

Definition 9. An anamorphic signature scheme aS is private anamorphic (in
the PA-CMA sense) if, for all PPT adversaries A, the function AdvPA-CMA

aS,A (λ)
is negligible.

KPPYZ proved the following sufficiency result for private anamorphism.

Theorem 3 (Theorem 11 of KPPYZ [15]). Let aS be an SUF-CMA-secure
anamorphic signature scheme where aS.aKeyGen is separable into the parallel
and independent composition of algorithms that generate the signing keypair and
double key. Then for all PPT adversaries A there exists a PPT adversary B
such that

AdvPA-CMA
aS,A (λ) ≤ AdvSUF-CMA

aS,B (λ).

In the following subsection, we present a simple attack against a scheme
which satisfies Definition 9 and is hence private anamorphic before proposing
a new definition called recipient unforgeability which better captures the abili-
ties and knowledge of parties using anamorphic signatures. We then revisit the
randomness replacement transform RRep which forms the basis of many anamor-
phic signature schemes proposed in KPPYZ and show that it is susceptible to a
similar practical attack. We rectify this by providing new sufficiency results for
anamorphic signatures arrived at via randomness replacement.

5.2 A Simple Attack

The attack we provide is contrived but nonetheless illustrates a gap between
the definition of private anamorphism and reasonable abilities of an adversary.
Suppose that Alice and Bob communicate using private anamorphic signatures
to evade the watchful eye of a dictator, and Bob would like to steal Alice’s signing
key to impersonate her.

Alice and Bob construct their private anamorphic signature scheme aSSmpl-bad
from an existing private anamorphic signature scheme aS. The two operate
identically, except for aSSmpl-bad’s anamorphic signing procedure which, upon
input anamorphic message amsg, outputs asig ← aS.aSign(sk, dk,msg, amsg‖sk).
Observe that aSSmpl-bad is stealthy (in the RoA-CAMA-sense) as aS is itself

Dictators? Friends? Forgers. 127

stealthy and anamorphic signature schemes are stealthy regardless of what
anamorphic messages are sent. Furthermore, aSSmpl-bad is private anamorphic
because its plain signing oracle is identical to that of aS; we have only changed
anamorphic signing. However, aSSmpl-bad is trivially broken in anamorphic set-
tings. When Alice sends a single anamorphic signature asig to Bob, he is able to
obtain her signing key sk by simply decrypting asig.

5.3 Recipient Unforgeability

The attack discussed above relies on the fact both real and anamorphic signa-
tures are sent. Recall the goal of private anamorphism: protecting the signature
scheme integrity of a sender Alice against a malicious recipient Bob. In the course
of their covert communication, Alice will send Bob many anamorphic messages
hidden within signatures. In fact, Bob may even influence the messages Alice
sends (e.g. he might ask her to perform computation he may have rigged).

As a result, we argue that a new security notion, which we call recipient
unforgeability under chosen anamorphic message attack (RUF-CAMA), is nec-
essary to replace private anamorphism. The difference of RUF-CAMA from the
existing PA-CMA notion of private anamorphism is that the adversary receives
access to both a real signing and anamorphic signing oracle. Let aS be an anamor-
phic signature scheme, then the GRUF-CAMA is as shown in Fig. 9. The RUF-CAMA
advantage for an anamorphic signature scheme aS is defined by

AdvRUF-CAMA
aS,A (λ) = Pr[GRUF-CAMA

aS,A (λ) ⇒ 1].

Definition 10. An anamorphic signature scheme aS is recipient unforge-
able (in the RUF-CAMA sense) if, for all PPT adversaries A, the function
AdvRUF-CAMA

aS,A (λ) is negligible.

Fig. 9. Recipient unforgeability game GRUF-CAMA

It is clear that recipient unforgeability for anamorphic signature schemes is
a strictly stronger property than private anamorphism, since the adversary gets

128 J. Jaeger and R. Stracovsky

access to an additional oracle in the former over the latter. We formally capture
this in the following theorem.

Theorem 4. Let aS be an anamorphic signature scheme. Then for all PPT
adversaries A there exists a PPT adversary B such that

AdvPA-CMA
aS,A (λ) ≤ AdvRUF-CAMA

aS,B (λ).

5.4 An Attack on RRep

Given the simple attack, we reexamine the randomness replacement transform
RRep and find that it too is not necessarily secure in the envisioned deploy-
ment setting. Additionally, since the weakness relies on the transmission of a
chosen anamorphic message, this further motivates our proposed new recipient
unforgeability definition.

Like before, let Alice and Bob communicate using PA-CMA-secure private
anamorphic signatures, where Bob would like to steal Alice’s signing key. This
time Alice and Bob have chosen an anamorphic signature scheme arrived at via
randomness replacement on a ∅-recoverable scheme (i.e. the signing randomness
is replaced with pseudorandom encryptions of amsg, which Bob can extract and
decrypt without sk). Alice believes this scheme protects her against malicious
Bob as it is provably private anamorphic. However, the signature scheme contains
a fatal flaw: when the randomness is equal to zero, the signing algorithm outputs
its own secret key instead. Bob is then able to choose an anamorphic message
that encrypts to the desired randomness and ask Alice to send it to him.

Stating the attack more concretely, let S be a ∅-recoverable signature scheme
with signing key size equal to the size of signature randomness. S contains the
weak point that signing with randomness equal to 0 outputs the secret key.
Furthermore, let prEcm be a pseudorandom encryption scheme built from a λ-bit
pseudorandom function prF used in counter mode. That is, prEcm.Enc(k,msg :
ctrEnc) outputs prF(k, ctrEnc)⊕msg and sets ctrEnc ← ctrEnc+1 starting at ctrEnc =
0. We construct the anamorphic signature scheme aSRRep-bad = RRep[S, prEcm]
(with RRep defined in Fig. 3).

Straightforward reductions and and the separable and independent key gen-
eration framework from KPPYZ show that aSRRep-bad is stealthy and private
anamorphic. Details and full proofs can be found in the full version of this work.

Theorem 5. For all PPT adversaries A that make qS ≤ 2λ signing queries
there exists a PPT adversary B such that

AdvRoA-CAMA
aSRRep-bad,A(λ) ≤ AdvPRF

prF,B(λ).

Theorem 6. For all PPT adversaries A there exists a PPT algorithm B such
that

AdvPA-CMA
aSRRep-bad,A(λ) ≤ AdvSUF-CMA

S,B (λ).

Dictators? Friends? Forgers. 129

We now show that Bob can obtain Alice’s signing key by asking her to send
him a message of his choosing. Suppose that Alice has already sent � messages
to Bob. Bob first assigns ctr∗Enc ← � + 1, then, knowing k, computes amsg∗ ←
prF(k, ctr∗Enc)⊕(0λ). Observe that prEcm.Enc(dk, amsg∗) = prF(k, �+1)⊕prF(k, �+
1) ⊕ (0λ) = 0. Bob then asks Alice to send him amsg∗, triggering the weak point
in the signature scheme allowing him to uncover her signing key.

Bob’s chosen message attack involves two sources of weakness: he exploits the
symmetric scheme by controlling the structure of the output and triggers an inse-
cure point in the signature scheme. We discuss ways to mitigate either of these
weaknesses in Sects. 5.5 and 5.6. More broadly, with a new recipient unforge-
ability definition, the sufficiency results of KPPYZ for private anamorphism
no longer apply to desired settings. We show that the randomness replacement
transform RRep is still secure against malicious recipients, provided updated
assumptions for the underlying primitives.

5.5 RRep with SUF-CRA-Secure Signatures

The chosen message attack on RRep chiefly relies on the signature scheme’s
insecurity when randomness is chosen, as well as specific exploits of the pseu-
dorandom encryption scheme by those who know the symmetric key. Here, we
focus on the former by exploring signature schemes that are secure even when
the signing randomness is chosen by an adversary.

Fig. 10. Existential forging under chosen randomness attack game GSUF-CRA

Let S be a signature scheme signed using randomness space S.RSign
pp for some

parameters pp. Then the strong unforgeability under chosen randomness attack
game GSUF-CRA is as defined in Fig. 10. The SUF-CRA advantage for a signature
scheme S is defined as

AdvSUF-CRA
S,A (λ) = Pr[GSUF-CRA

S,A (λ) ⇒ 1].

130 J. Jaeger and R. Stracovsky

Definition 11. A signature scheme S is strongly unforgeable under chosen ran-
domness attack (or SUF-CRA-secure) if, for all PPT adversaries A, the function
AdvSUF-CRA

S,A (λ) is negligible.

We now show that randomness replacement can construct recipient unforge-
able signatures from a large class of ∅-recoverable schemes with minimal assump-
tions needed for the pseudorandom encryption scheme. In particular, we prove
that the anamorphic signature scheme formed from RRep[S, prE] is private
anamorphic if S is SUF-CRA-secure and prE is pseudorandom. Full details are in
the full version of this work.

Theorem 7. Let S be an SUF-CRA-secure ∅-recoverable signature scheme and
prE be a pseudorandom encryption scheme. In addition, let aS = RRep[S, prE] as
described in Construction 1. Then for all PPT adversaries A there exists a PPT
adversary B such that

AdvRUF-CAMA
aS,A (λ) ≤ AdvSUF-CRA

S,B (λ).

Proof. Given A against the RUF-CAMA security of aS we can construct an adver-
sary B against the SUF-CRA security of S that simulates the RUF-CAMA game
to A by computing all prE operations (prE.KeyGen and prE.Enc) internally to
compute the relevant r, which it then queries (along with the corresponding
message) to its signing oracle.
�

Private Anamorphism from RSA-PSS. We show that the anamorphic vari-
ant of RSA-PSS (Fig. 1) derived via RRep is recipient unforgeable by showing
that the SUF-CRA security of RSA-PSS is implied by the standard SUF-CMA
security of RSA-PSS proved in [5]. We provide intuition for this below and a full
proof in the full version of this work.

Lemma 1. Let hash functions H and G that RSA-PSS uses be modeled as ran-
dom oracles. Then for all PPT adversaries A that make up to qS signing queries
and qH and qG hash queries (to hash functions H and G respectively) there exists
a PPT adversary B such that

AdvSUF-CRA
RSA-PSS,A(λ) ≤ (qH + 1)

(
AdvSUF-CMA

RSA-PSS,B(λ) + qT (qT + qG)(2−λ0 + 2−λ1)
)

for λ0, λ1 in parameters pp ← PublicParamGen(1λ) and qT = qH + qS.

Proof Sketch. Given an SUF-CRA forger A, we construct a PPT SUF-CMA forger
B using a technique from the proof of full-domain hash signatures [5]. Since A
is fully contained in B, the latter can respond to A’s queries how it chooses.
However, from A’s perspective it should be playing the SUF-CRA game, otherwise
there is no guarantee it will output a correct forgery.

When A makes a signing query with randomness r, B is unable to make its
own signing query for that particular randomness and instead makes a signing
query to get a signature sig′ on some randomness r′. The reduction B then

Dictators? Friends? Forgers. 131

simulates H and G to A so that they are consistent with sig′ using randomness
r. If A queries its random oracles on inputs not previously used during signing, B
runs the signing procedure to create hash responses consistent with signatures.

Eventually, A will produce a forgery (msg∗, sig∗). If A has non-negligible
advantage then msg∗ must have somehow been queried to the appropriate hash
oracle previously, otherwise A would have no information on how to produce the
forgery (since the hash is required for verification to work). Thus if B called its
own signing oracle on every A hash query, then A’s eventual forged signature
could be on a signature B has received from its own signing oracle, even though
A never saw this signature. That is, B loses its game if it forwards A’s forgery,
even if A itself wins. To rectify this, B selects one hash query to not respond to
using a signing query, and hopes that A never queries the signing oracle on the
corresponding message.
�
Corollary 2. Consider RSA-PSS from Fig. 1 and let prE be an appropriate
pseudorandom encryption scheme. Then anamorphic RSA-PSS aRSA-PSS =
RRep[RSA-PSS, prE] is recipient unforgeable provided the RSA assumption holds.

Tight proofs are known for RSA-PSS in the chosen message attack setting,
but the (qH + 1) factor seems inherent when considering chosen randomness
attacks for RSA-PSS. In the full version of this work we show that Rabin signa-
tures are tightly chosen-randomness secure.

5.6 RRep with SUF-CMA-Secure Signatures

Again recall that the chosen anamorphic message attack on RRep (Sect. 5.4)
leveraged both an insecurity in the underlying signature scheme and the pseu-
dorandom encryption scheme. Having shown that signature schemes that satisfy
a strong form of security can produce recipient unforgeable schemes via the RRep
transform, we now show that standard ∅-recoverable signature schemes can still
achieve private anamorphism with the right choice of pseudorandom encryption
scheme.

Intuitively, Bob’s ability to mount the chosen anamorphic message attack
relied on his ability to choose anamorphic messages that encrypt to ciphertexts of
his choice. Typical security definitions for symmetric encryption schemes cannot
mitigate these attacks. For instance, indistinguishability from random bits does
not capture this kind of attack because it only considers an adversary who does
not have access to the symmetric key. Instead, we desire that the ciphertext
distribution in some way appears independent of the symmetric key, even to
those who know this key. In the standard model such a property seems ill-
defined because of course the distribution must depend on the key by the fact
that decryption must be correct. However, this kind of property is achievable in
ideal models. Let us illustrate the core idea with an example.

We recall the example pseudorandom encryption scheme discussed in
KPPYZ, which we refer to as randomized hash then XOR (RHtX). The scheme
operates on λ-bit keys and messages and outputs 2λ-bit ciphertexts. Let H :

132 J. Jaeger and R. Stracovsky

{0, 1}2λ → {0, 1}λ be a hash function. Then RHtX.Enc(k,msg) outputs ct ← r‖γ
where r is a random λ-bit string and γ ← msg ⊕ H(k‖r).

Let aS = RRep[S,RHtX]. Then we claim aS is recipient unforgeable if S is
unforgeable (and ∅-recoverable), provided we model H as a random oracle which
is not used by S. Given A against the recipient unforgeability of aS we can build
a PPT B against the unforgeability of S. This B internally simulates H via
lazy sampling and forwards non-anamorphic signing queries to its own signing
oracle. Upon receiving an anamorphic signing query, B queries its own signing
oracle to receive a signature, from which it extracts the randomness act = r‖γ.
It programs H so that H(k‖r) = msg⊕γ to ensure that RHtX decrypts properly.
This reprogramming is undetectable unless H(k‖r) was already defined.

Note that RHtX is simply one fixed encryption scheme. For modularity, we
wish to extract the core idea from above as a property to ask of (ideal model)
encryption schemes. In practice, encryption schemes are built on block ciphers
(possibly together with a hash function) which may be modeled as ideal ciphers,
so we use a general syntax for an ideal primitive Prim (which we notate with
syntax inspired by [13,14]). Prim specifies the following three PPT algorithms:
Prim.Init initializes the primitive’s state, Prim.LS defines lazy sampling, and
Prim.Prog defines programming. In security games, honest scheme algorithms
use the primitive’s lazy sampling procedure Prim.LS while simulators and adver-
saries additionally use Prim.Prog.

The simulatability with random ciphertexts game GSIM-$CT on a symmetric
encryption scheme SE is as defined in Fig. 11. In this game the adversary must
distinguish between a real world where the adversary receives honest encryp-
tions and a simulated one where SE calls a simulation algorithm SE.Sim which
attempts to program Prim to be consistent with randomly sampled ciphertexts.
The adversary receives access to an SE encryption oracle and oracles Prim.LS
and Prim.Prog for the underlying ideal primitive. Access to Prim.Prog is some-
what unnatural and is not essential to our results but is given for composability
reasons identified by [8,13]. We notate the SIM-$CT advantage for a symmetric
encryption scheme SE built on ideal primitive Prim with

AdvSIM-$CT
SE,Prim,A(λ) = 2 Pr[GSIM-$CT

SE,Prim,A(λ) ⇒ 1] − 1.

Definition 12. Let SE be a symmetric encryption scheme built on an ideal
primitive Prim. It is simulatable with random ciphertexts (in the SIM-$CT sense)
if it specifies a PPT simulator SE.Sim such that, for all PPT adversaries A, the
function AdvSIM-$CT

SE,Prim,A(λ) is negligible.

A full specification in our generalized notation and security proof of SIM-$CT
security for RHtX is given in the full version of this work. The key ideas in
the proof extend to typical randomized modes of operation for block ciphers
such as counter mode and cipher block chaining mode, though these modes
exhibit ciphertext expansion due to the randomization which may be undesirable
when trying to fit a ciphertext into signing randomness. Unfortunately, succinct
symmetric encryption schemes are unrandomized, making them susceptible to
the attack given in Sect. 5.4.

Dictators? Friends? Forgers. 133

Fig. 11. Ciphertext simulatability game GSIM-$CT

We are now ready to construct private anamorphic signature schemes from
SUF-CMA-secure ∅-recoverable signature schemes. We present the theorem and
proof sketch below and provide full details in the full version of this work.

Theorem 8. Let S be a SUF-CMA-secure ∅-recoverable signature scheme and
prE be a pseudorandom encryption scheme constructed from ideal primitive Prim
that is simulatable with random ciphertexts. In addition, let aS = RRep[S, prE].
Then for all PPT adversaries A there exist PPT adversaries B0 and B1 such
that

AdvRUF-CAMA(OLS,OProg)
aS,Prim,A (λ) ≤ AdvSIM-$CT

prE,Prim,B0(λ) + AdvSUF-CMA
S,B1 (λ).

S is independent of Prim so the last advantage function does not include it.

Proof Sketch. The proof begins in the game G0 = GRUF-CAMA(OLS,OProg) on aS,
where each anamorphic signing query encrypts amsg to obtain act which is used
as randomness during the signing process. We transition to a hybrid G1 where
act is instead randomly sampled and SE.Sim is run. Distinguishing G0 and G1 is
bounded by the SIM-$CT advantage for SE and Prim. Finally, given an A against
G1 we construct a PPT B1 against the SUF-CMA security of S that responds to
anamorphic signing queries by querying its own signing oracle, recovering the
randomness act, and running SE.Sim.
�

Private Anamorphism from Boneh-Boyen Signatures. We briefly discuss
Anamorphic Boneh-Boyen signatures proposed in KPPYZ. The Boneh-Boyen
signature scheme [7] operates over groups G1, G2, GT of order p and a bilinear
pairing e : G1 × G2 → GT . Signatures are of the form (r, s) where r ←$ Zp and s
is derived from r and the signing key. The Anamorphic Boneh-Boyen signature
scheme simply replaces r with a pseudorandom encryption of the anamorphic
message (i.e. RRep). Since Boneh-Boyen is ∅-recoverable, Anamorphic Boneh-
Boyen is private anamorphic (PA-CMA secure).

134 J. Jaeger and R. Stracovsky

Studying Anamorphic Boneh-Boyen signatures in the context of our stronger
proposed RUF-CAMA recipient unforgeability definition, we are unaware of any
proof that plain Boneh-Boyen signatures are SUF-CRA-secure. This is because
[7] proves the SUF-CMA-security of their scheme from a non-adaptive unforge-
ability notion of an unrandomized scheme where r = 0. With (adaptive) chosen
randomness, the adversary can query for signatures with randomness r = 0.

This gap can be remedied applying our second result regarding RRep. Specif-
ically, [7] introduces a strong Diffie-Hellman assumption and proves that, given
this assumption, Boneh-Boyen signatures are SUF-CMA-secure. We need only
instantiate the anamorphic variant aBB with prE satisfying our simulatability
property.

Corollary 3. Consider Boneh-Boyen signature scheme BB and let prE be an
appropriate pseudorandom encryption scheme that is simulatable with random
ciphertexts. Then aBB = RRep[BB, prE] is recipient unforgeable provided strong
Diffie-Hellman assumption holds.

5.7 Dictator and Recipient Unforgeable Schemes

We conclude by revisiting the RIdP transform discussed in Sect. 4, which replaces
the signing randomness with r ← prF(k, (ctrEnc,msg, amsg)) for a synchronized
counter ctrEnc. Recall that we have already shown that RIdP is stealthy and
dictator unforgeable (i.e. a dictator who knows sk cannot adapt or create a
new anamorphic signature that contains a valid anamorphic message). We now
prove that it produces recipient unforgeable anamorphic signature schemes if
the underlying plain signature scheme is chosen-randomness secure. As a result,
we have shown how to construct anamorphic signature schemes that achieve all
the unforgeability properties we have proposed.

Theorem 9. Let S be a SUF-CRA-secure signature scheme and prF be a pseu-
dorandom function. In addition, let aS = RIdP[S, prF] as described in Construc-
tion 2. Then for all PPT adversaries A there exists a PPT adversary B such
that

AdvRUF-CAMA
aS,A (λ) ≤ AdvSUF-CRA

S,B (λ).

Corollary 4. Consider RSA-PSS from Fig. 1 and let prF be an appropri-
ate pseudorandom function. Then anamorphic RSA-PSS derived via RIdP i.e.
aRSA-PSS = RIdP[RSA-PSS, prF], is stealthy (in the RoA-CAMA sense), dic-
tator unforgeable (in the DUF-CASA sense), and recipient unforgeable (in the
RUF-CAMA sense).

We conclude by noting that even though RIdP does not include the signing key
sk in the double key dk and all instantiations are private anamorphic as a result,
not all instantiations are recipient unforgeable! We give known anamorphic mes-
sage attacks that recover signing keys (including against RIdP and RIdPX applied
to ElGamal) in the full version of this work. In particular, this result shows that
there are reasonable instantiations of RIdPX that are both robust and private

Dictators? Friends? Forgers. 135

anamorphic, but are neither dictator unforgeable (due to the attack we propose
in Sect. 4.5) nor recipient unforgeable. This is, active dictators and malicious
recipients could easily impersonate parties using RIdPX-derived anamorphic sig-
nature schemes even though it was (in essence) intended to be secure against
both.

References

1. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signatures: Defini-
tions, constructions and applications. Theoretical Computer Science 820, 91–
122 (2020). https://doi.org/10.1016/j.tcs.2020.03.021, https://www.sciencedirect.
com/science/article/pii/S0304397520301808

2. Banfi, F., Gegier, K., Hirt, M., Maurer, U., Rito, G.: Anamorphic encryption,
revisited. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EURO-
CRYPT 2024, Part II. Lecture Notes in Computer Science, vol. 14652, pp. 3–32.
Springer, Cham, Switzerland, Zurich, Switzerland (May 26–30, 2024). https://doi.
org/10.1007/978-3-031-58723-8_1

3. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015: 22nd Conference on Computer and Communications Security. pp.
1431–1440. ACM Press, Denver, CO, USA (Oct 12–16, 2015). https://doi.org/10.
1145/2810103.2813681

4. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology –
CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 1–
19. Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2014). https://doi.org/10.1007/978-3-662-44371-2_1

5. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign
with RSA and Rabin. In: Maurer, U.M. (ed.) Advances in Cryptology – EURO-
CRYPT’96. Lecture Notes in Computer Science, vol. 1070, pp. 399–416. Springer,
Berlin, Heidelberg, Germany, Saragossa, Spain (May 12–16, 1996). https://doi.
org/10.1007/3-540-68339-9_34

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology –
EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer, Berlin, Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1,
2006). https://doi.org/10.1007/11761679_25

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 2004. Lecture Notes
in Computer Science, vol. 3027, pp. 56–73. Springer, Berlin, Heidelberg, Ger-
many, Interlaken, Switzerland (May 2–6, 2004). https://doi.org/10.1007/978-3-
540-24676-3_4

8. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonder-
ful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2018, Part I. Lecture Notes in Computer Science, vol.
10820, pp. 280–312. Springer, Cham, Switzerland, Tel Aviv, Israel (Apr 29 – May 3,
2018). https://doi.org/10.1007/978-3-319-78381-9_11

https://doi.org/10.1016/j.tcs.2020.03.021
https://www.sciencedirect.com/science/article/pii/S0304397520301808
https://www.sciencedirect.com/science/article/pii/S0304397520301808
https://doi.org/10.1007/978-3-031-58723-8_1
https://doi.org/10.1007/978-3-031-58723-8_1
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-319-78381-9_11

136 J. Jaeger and R. Stracovsky

9. Catalano, D., Giunta, E., Migliaro, F.: Anamorphic encryption: New constructions
and homomorphic realizations. In: Joye, M., Leander, G. (eds.) Advances in Cryp-
tology – EUROCRYPT 2024, Part II. Lecture Notes in Computer Science, vol.
14652, pp. 33–62. Springer, Cham, Switzerland, Zurich, Switzerland (May 26–30,
2024). https://doi.org/10.1007/978-3-031-58723-8_2

10. Craver, S.: On public-key steganography in the presence of an active warden. In:
Aucsmith, D. (ed.) Information Hiding. pp. 355–368. Springer Berlin Heidelberg,
Berlin, Heidelberg (1998)

11. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to secu-
rity against mass surveillance. In: Leander, G. (ed.) Fast Software Encryption –
FSE 2015. Lecture Notes in Computer Science, vol. 9054, pp. 579–598. Springer,
Berlin, Heidelberg, Germany, Istanbul, Turkey (Mar 8–11, 2015). https://doi.org/
10.1007/978-3-662-48116-5_28

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology –
CRYPTO’84. Lecture Notes in Computer Science, vol. 196, pp. 10–18. Springer,
Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 1984). https://
doi.org/10.1007/3-540-39568-7_2

13. Jaeger, J.: Let attackers program ideal models: Modularity and composability for
adaptive compromise. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology –
EUROCRYPT 2023, Part III. Lecture Notes in Computer Science, vol. 14006, pp.
101–131. Springer, Cham, Switzerland, Lyon, France (Apr 23–27, 2023). https://
doi.org/10.1007/978-3-031-30620-4_4

14. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption
schemes. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020, Part I. Lecture Notes in Computer Science, vol. 12170, pp. 3–
32. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 17–21, 2020).
https://doi.org/10.1007/978-3-030-56784-2_1

15. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: Anamorphic sig-
natures: Secrecy from a dictator who only permits authentication! In: Handschuh,
H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part II. Lec-
ture Notes in Computer Science, vol. 14082, pp. 759–790. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/978-
3-031-38545-2_25

16. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: The self-anti-
censorship nature of encryption: On the prevalence of anamorphic cryptogra-
phy. Proc. Priv. Enhancing Technol. 2023(4), 170–183 (2023). https://doi.org/
10.56553/POPETS-2023-0104, https://doi.org/10.56553/popets-2023-0104

17. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II.
Lecture Notes in Computer Science, vol. 9057, pp. 657–686. Springer, Berlin, Hei-
delberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/978-
3-662-46803-6_22

18. Persiano, G., Phan, D.H., Yung, M.: Anamorphic encryption: Private communi-
cation against a dictator. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022, Part II. Lecture Notes in Computer Science,
vol. 13276, pp. 34–63. Springer, Cham, Switzerland, Trondheim, Norway (May 30 –
Jun 3, 2022). https://doi.org/10.1007/978-3-031-07085-3_2

https://doi.org/10.1007/978-3-031-58723-8_2
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-031-38545-2_25
https://doi.org/10.1007/978-3-031-38545-2_25
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/popets-2023-0104
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-031-07085-3_2

Dictators? Friends? Forgers. 137

19. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology – CRYPTO’83. pp. 51–67. Plenum Press, New York,
USA, Santa Barbara, CA, USA (1983). https://doi.org/10.1007/978-1-4684-4730-
9_5

20. Wang, Y., Chen, R., Huang, X., Yung, M.: Sender-anamorphic encryption reformu-
lated: Achieving robust and generic constructions. In: Guo, J., Steinfeld, R. (eds.)
Advances in Cryptology – ASIACRYPT 2023, Part VI. Lecture Notes in Com-
puter Science, vol. 14443, pp. 135–167. Springer, Singapore, Singapore, Guangzhou,
China (Dec 4–8, 2023). https://doi.org/10.1007/978-981-99-8736-8_5

21. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography.
In: Fumy, W. (ed.) Advances in Cryptology – EUROCRYPT’97. Lecture Notes
in Computer Science, vol. 1233, pp. 62–74. Springer, Berlin, Heidelberg, Germany,
Konstanz, Germany (May 11–15, 1997). https://doi.org/10.1007/3-540-69053-0_6

22. Young, A., Yung, M.: A subliminal channel in secret block ciphers. In: Handschuh,
H., Hasan, A. (eds.) SAC 2004: 11th Annual International Workshop on Selected
Areas in Cryptography. Lecture Notes in Computer Science, vol. 3357, pp. 198–
211. Springer, Berlin, Heidelberg, Germany, Waterloo, Ontario, Canada (Aug 9–10,
2004). https://doi.org/10.1007/978-3-540-30564-4_14

https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-981-99-8736-8_5
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/978-3-540-30564-4_14

Digital Signatures with Outsourced
Hashing

Bertram Poettering1 and Simon Rastikian1,2(B)

1 IBM Research Europe – Zurich, Rüschlikon, Switzerland
2 ETH Zurich, Zurich, Switzerland

sra@zurich.ibm.com

Abstract. Most practical signature schemes follow the hash-then-sign
paradigm: First the (arbitrarily long) message is mapped to a fixed-
length hash value, then a signing core derives the signature from the lat-
ter. As it is implementationally attractive, practitioners routinely exploit
this structure by decoupling the two steps and distributing them among
different entities; for instance, industry standards like PKCS#11 spec-
ify how security smartcards implement exclusively the core, leaving the
hashing to the (untrusted) environment. At the same time, the classic
security notions for signature schemes don’t consider such a decoupling,
and thus don’t cover attacks involving, for instance, providing the core
with maliciously chosen hash values. A first work that studied this gap
appeared only recently (PKC 2024). While it could confirm for a few
candidates that they remain secure when split according to PKCS#11,
its syntactical abstractions and security definitions are too limited to
cover many other practical signature schemes (e.g., the many variants of
Fiat–Shamir/Schnorr).

This article studies how the functional separation of hashing and
core in signature schemes can be systematized, so that implementational
demands (in the spirit of PKCS#11) and, hopefully, security can be
met simultaneously. We accompany this foundational work with a case
study of a variety of standardized (EC)DLP based signatures. Surpris-
ingly, as we show, their security varies across the full spectrum between
universally forgeable and provably unforgeable. For instance, for the
same scheme, we demonstrate universal forgeries when instantiated with
224-bit ECC (using an attack that completes in milliseconds), while we
establish strong unforgeability for the 256-bit ECC case. Many schemes
become completely insecure when the hash function is instantiated with
SHA3 instead of with SHA2.

1 Introduction

Fig. 1. API of a DSS

The Hash-then-Sign (HtS) Paradigm.

Digital signature schemes (DSS) provide sign-
ers with a mechanism to convince remote ver-
ifiers of the authenticity of messages. Most

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 138–167, 2025.
https://doi.org/10.1007/978-981-96-0888-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_5&domain=pdf
http://orcid.org/0000-0001-6525-5141
https://doi.org/10.1007/978-981-96-0888-1_5

Digital Signatures with Outsourced Hashing 139

security protocols depend on a DSS, be it directly (e.g., when signing an email
with OpenPGP [13] or X.509 [16]) or indirectly (e.g., in a PKI to authenti-
cally distribute long-term public keys for use in some unrelated cryptographic
protocol). The central role played by DSS in the cryptographic landscape is
also visible in the large number of international standards covering the prim-
itive [4,5,7,8,17,18]. Figure 1 suggests the DSS syntax that we assume in this
article.

In order to satisfy the diverse demands of practical settings, the message
space M supported by a DSS should be as general as possible; in practice we can
think of M = Σ∗ for some convenient alphabet Σ, e.g., Σ = {0, 1} (bits) or Σ =
{0, 1}8 (bytes). That is, practical DSS are able to deal with messages of a priori
unknown lengths, i.e., they represent variable input-length (VIL) primitives.
On the other hand, the core from which such a DSS is built typically resides
in the fixed input-length (FIL) domain, i.e., is involved only with constant-size
data structures.1 The technical component bridging the VIL and FIL worlds
is typically a cryptographic hash function. The general paradigm behind this
is loosely referred to as hash-then-sign (HtS), but details depend on the DSS
under consideration. For instance, while in ECDSA a message m is signed by
first compressing it down to a hash value h = H(m) and then invoking the
DSS core on just h, in Fiat–Shamir inspired signatures the message is hashed as
per h = H(CMT,m) where CMT is the commitment of the underlying Sigma
protocol and contributed by the FIL core before the hash value is returned to
it. (That is, there is a two-way interaction between the signing core and the
hash function.) Intuitively, the above two cases correspond with the algorithm
decompositions illustrated in Figs. 2 and 3. We refer to them with the terms
Strict HtS and Interactive HtS, respectively.

Fig. 2. Strict HtS (intuitively) Fig. 3. Interactive HtS (intuitively)

The (Mis-)Use of HtS in Practice. So far we described the use of a hash
function to translate the VIL to the FIL setting as a pure construction artifact.
In particular, the decomposition of algorithms in the spirit of Figs. 2 and 3 would
not be visible at the API level. (The API remains as in Fig. 1). However, in prac-
tice, (Strict) HtS signature schemes are often used in a different way, e.g., with
the core and hashing components implemented at different levels of a software
stack or in different pieces of hardware. For instance, if the focus is on effective

1 For instance, once security parameters are fixed, the field and exponent sizes used
in ECDSA are set for good, independently of the lengths of signed messages.

140 B. Poettering and S. Rastikian

software engineering, the sgn.core algorithm could be implemented in a low-level
system library while the H component could be implemented in a high-level lan-
guage. (Such a separation is often quite natural in practice, as efficiently and
safely implementing number-theoretic structures as found in sgn.core typically
requires CPU-dependent machine instructions, while hash functions like SHA2
and SHA3 are designed such that they also perform fairly well ‘where the data is’,
i.e., at a higher level of the software hierarchy.) As another example, if implemen-
tational security is a priority, the sgn.core component could be implemented in a
specially protected smartcard, a hardware security module (HSM), or a trusted
platform module (TPM), while the H component could remain implemented in
a less trusted environment like a desktop computer. This type of separation is
indeed suggested and mandated by the prominent industry standard PKCS#11
that regulates APIs for cryptographic tokens and smartcards: Already in its first
version (PKCS#11v1.0, from 1995) [3] it demands that smartcards only imple-
ment the signing core of DSA and RSA, rather than the atomic operation that
would include the hashing.2

Prior Academic Work on HtS Schemes. As the established unforgeability
notions for DSS only consider atomic signing, from the perspective of provable
security, the decoupled invocation of the subcomponents of an HtS design as
described above and suggested by PKCS#11 is by default prohibitive. That is,
DSS cannot be assumed safe in the HtS sense until a dedicated analysis confirms
their security. To appreciate how security models for HtS have to reach beyond
the standard EUF/SUF notions for DSS, consider that one of the above examples
specifically assumed that the environment in which H is executed is less trusted
than the hardened environment in which sgn.core is operated. An appropriate
security model has to reflect this difference of trustworthiness, e.g., by letting
the adversary influence, or take control of, the H implementation.3

Perhaps surprisingly given the practical relevance of HtS schemes, formal
HtS security definitions and analyses have been lacking so far, with the one
recent exception of [21] (PKC 2024) which exclusively covers the Strict HtS
case (Fig. 2). In a nutshell, [21] studies (and confirms) the security of a number
of common (EC)DLP-based HtS signatures in a setting where the adversary
controls the hash function implementation.4 The Interactive HtS case (Fig. 3) is
not considered in [21].

2 See, for instance, “This [CKM_DSA] mechanism corresponds only to the part of
DSA that processes the [SHA1] hash value; it does not compute the hash value.”
in [3, Sect. 10.6] or “This [RSA] mechanism corresponds only to the part [. . .] that
involves RSA; it does not compute a message digest” in [3, Sect. 10.2].

3 Indeed, [21] reports on a DSS of the Strict HtS type (of Fig. 2) that is, when used
atomically, unforgeable in the classic sense, but trivially fails if an adversary controls
the H implementation.

4 Specifically, the analyzed schemes are ECDSA and its Russian GOST and Chinese
SM2 counterparts.

Digital Signatures with Outsourced Hashing 141

1.1 Contributions

As already noted: While the HtS structure of signatures is regularly exploited
in practice, and is even suggested by relevant industry standards, correspond-
ing academic support is, so far, restricted to results that consider the Strict
HtS case (Fig. 2, [21]). Observing that modern DSS proposals (e.g., EdDSA [18],
ECSDSA [5], ML-DSA/Dilithium [9], Falcon [6]) are not Strict HtS but Inter-
active HtS schemes (Fig. 3), in this work we first lay the formal foundations
of the latter class of schemes, and then verify for a number of Interactive HtS
candidates whether they meet these notions. In more detail, we first propose
a syntax (“API”) for Interactive HtS schemes, then develop and study suitable
security notions, and finally provide security proofs for some HtS candidates
while demonstrating attacks on others. We discuss these contributions one by
one in the following.

Syntax Definition. We start with introducing the DSS with Outsourced
Hashing (DSSwOH) syntactical abstraction of a DSS where hashing is made
explicit. (The subtle difference between DSSwOH and Interactive HtS will
become clear in the subsequent paragraph.) As illustrated in Fig. 4, we model
the signing core as the (stateful) consecutive execution of first an initialization
and then a finalization algorithm (sgn.ini → sgn.fin): The initialization algo-
rithm creates a hash seed hs for the hashing algorithm hash which translates
hash seed and message into a hash value hv that is consumed by the finalization
algorithm to generate the signature. The verifier is modeled analogously.5

Fig. 4. Illustration of the DSSwOH syntax. Note the outer API is as in Fig. 1. The
horizontal dashed lines illustrate the conceptual separation of the message hashing
entity from the signing/verification core.

Importantly, and in contrast with what Fig. 3 might suggest, our DSSwOH
abstraction does not demand that the boundaries between core algorithms and
hashing necessarily coincide with where the operations of, say, SHA2 or SHA3,
begin and end. Our syntax is more general than that, as is best illustrated at hand
of an example. (The following high-level exposition is tuned towards accessibility,
brushing off a large number of details; see the paper body, in particular Sect. 2.4

5 As signature verification is a public operation, it is security-wise less relevant
whether its core and hashing are implemented atomically or separately. While the
focus of this work is hence on the signing part, it is conceptionally and notationally
convenient to allow also verifiers to separate-off their hashing.

142 B. Poettering and S. Rastikian

and Fig. 9, for precise definitions.) Consider the case of Schnorr signatures where
a signature consists of a pair σ = (R, s) satisfying gs = RXH(R,m), with X rep-
resenting the verification key and H a hash function. Assume H is instantiated
with a Merkle–Damgård construction (like SHA2) which computes hash values
by processing its inputs online, i.e., in a stateful left-to-right fashion. It is then
implied that the value H(R,m) can be computed, iteratively in three stages, as
per H(R,m) = h3(h2(h1(R),m)) for suitably defined functions h1, h2, h3. In this
setting, a natural and promising way to fit the Schnorr DSS into our DSSwOH
syntax is as follows: The sgn.ini algorithm prepares signature value R and out-
puts hs = h1(R) as the hash seed; the hash algorithm proceeds with computing
hv = h2(hs,m); the sgn.fin algorithm completes the hash function evaluation
by computing h3(hv), obtaining the value H(R,m) required to derive the signa-
ture σ. Note that this way of distributing the Merkle–Damgård iterations of a
single hash function evaluation among the three sgn.ini,hash, sgn.fin algorithms
is just one way to consider the Schnorr DSS in the DSSwOH framework; other
interesting options might exist.

Security Definitions. Now that we have fixed a DSSwOH syntax, the next
step is to develop suitable security definitions. Our specifications are game-based
and extend the standard EUF/SUF notions (and the notions introduced in [21])
by new concepts along two different dimensions: (1) Our models make the two-
way interaction between the core operations and the hashing in the spirit of Fig. 3
explicit; so that we are able to analyze cases where the entity performing the
hashing is less trusted than the core entity (desktop computer vs. smartcard),
some variants of our games assume that the hash component is fully controlled
by the adversary; (2) As signing and verifying are now stateful operations (see
Fig. 4), aspects like the concurrent invocation of several sgn.ini → hash → sgn.fin
sessions have to be taken into account; our games hence implement a session
concept and allow the adversary to interact with multiple parallel sessions.

At the formal level, we introduce a family of security games, double-
subindexed by indications of the considered hashing trustworthiness for the
signer and verifier, respectively. For instance, our unforgeability game UFe

MB

models existential unforgeability (superindex ‘e’) where the signer’s hashing
implementation is malicious (first subindex ‘M’) and the verifier’s hashing imple-
mentation is benign (second subindex ‘B’). Here, hashing is considered malicious
if the adversary fully controls the hash value computation, while hashing is
benign if the (passive) adversary just sees, but cannot tamper with, the exter-
nalized hashing operations. In addition to ‘M’ and ‘B’, we use the symbol ‘A’
to denote the atomic case where signing (resp. verifying) is executed as a sin-
gle operation without involving the adversary. Note the UFe

AA game coincides
with the classic EUF-CMA definition for DSS. As the A/B/M variants form a
sequence of increasing strength, overall we obtain a lattice of implications as
indicated in Fig. 5 (a).

Relations Among Security Notions. We make two general observations on
the relations between the notions of Fig. 5 (a): (1) For DSS with a deterministic
verification algorithm (i.e., for all standardized DSS), we have that xA ⇒ xB for

Digital Signatures with Outsourced Hashing 143

Fig. 5. Left: Implications between different levels of hashing trustworthiness, where
UFe

MM is the strongest notion and UFe
AA is the weakest. Middle: Sublattice relevant

for Fiat–Shamir based signatures. Right: Compact version of (b).

any x ∈ {A,B,M}, meaning that if a DSSwOH is secure according to game UFxA

then it is also secure according to game UFxB. This is so because oracle access to
a deterministically evaluated public function is simulatable by the adversary, i.e.,
reveals no information.6 (2) No DSSwOH derived via the Fiat–Shamir transform
from a ZK proof system can reach MM or BM or AM security. By Fig. 5 (a)
we only need to argue for the AM case where the following blueprint lays the
basis of an attack on UFAM that always succeeds (and doesn’t even require a
signing query): The adversary first invokes the ZK simulator to obtain a valid ZK
transcript (CMT,CH,RSP), then exploits the control over the verifier’s hashing
algorithm to ensure that CMT � m∗ maps to CH, where m∗ is the message forged
on.

An important class of standardized DSS are instantiations of the scheme of
Schnorr [23]. These meet the conditions of (1) and (2) above, meaning that, for
them, the lattice of Fig. 5 (a) collapses to the lattice of Fig. 5 (b), which can be
written more compactly as in Fig. 5 (c). To conclude: The three most relevant
security notions considered in this article are AA,BA,MA (sorted by increasing
strength), where the first coincides with the standard EUF-CMA notion, the
second outsources the hashing of the signer but doesn’t allow tampering with
it, and the third assumes a malicious implementation of the signer’s hashing
routine.

Analyses of Existing DSS. For a set of standardized DSS we study whether
they retain security when operated with outsourced hashing, i.e., as a DSSwOH.
Specifically we analyzed the schemes SDSA [5], ECSDSA [4], ECSDSA Opti-
mized [5], BIP 340 [25], and ECFSDSA [5], which have been standardized by
different international bodies, and which all can be seen as real-world instantia-
tions of the Schnorr signature scheme [23], but with details implemented slightly

6 By Fig. 5 (a) we also have xB ⇒ xA, meaning that deterministic verification actually
implies xA ⇔ xB.

144 B. Poettering and S. Rastikian

differently.7,8 Our analyses start with formatting the schemes according to the
DSSwOH syntax, where we exploit, in the way suggested towards the beginning
of Sect. 1.1, that the approved hash functions of all standards are iterated, i.e.,
are either Merkle–Damgård or sponge based.

We then turn to security analyses in our models. (Recall from above that
in the case of Schnorr signatures the pivotal notions are BA and MA, see also
Fig. 5c.) While one could expect a certain level of similarity among the results
for each scheme—at the end of the day, all are Schnorr-based!— the security
profiles turn out to be largely diverse. Figure 6 provides a first overview, where a

mark indicates that a variant is provably secure (even in the strong MA sense),
a mark indicates that a variant is insecure (with an efficient universal forgery
attack, even in the weak BA sense), a mark indicates that it is unlikely that
one can prove security (but we don’t have an attack), and a mark indicates
that a candidate is ‘almost broken’ (our attacks don’t apply, but it is conceivable
to likely that simple variations would do). As visible in Fig. 6, whether a specific
candidate DSSwOH turns out to be secure or forgeable critically depends on the
choice of underlying cyclic group and hash function. For instance, we present
universal attacks on ECSDSA signatures when instantiated with SHA256 and
160-bit, 192-bit, or 224-bit ECC, while we prove security for 256-bit and 512-bit
ECC. If SHA256 is replaced by SHA3, all ECC choices are insecure.

Details on Attacks/Proofs. We provide insight on why the security status
of fairly similar configurations of a single scheme may vary so strongly (from
universally forgeable to provably secure). Our attacks make use of three prop-
erties that are specific to the DSSwOH setting: (1) The signing core publicly
commits to the hash seed before the adversary commits to the message. (See in
Fig. 4 that every signing operation starts with sgn.ini outputting hs, while m is
required only later.) (2) In the case of Fiat–Shamir signatures (in particular:
Schnorr signatures), the hash function is evaluated as per H(CMT,m), where
CMT is the ZK commitment. That is, necessarily, value CMT will in some form
be reflected in hash seed hs, and the hash algorithm will only ‘add’ the mes-
sage m. Assume for now that CMT can always be extracted from hs. (3) As
argued above, concurrent signing sessions have to be assumed in the DSSwOH
setting. (That is, in the terms of Fig. 4, there may be multiple independent
states st at the same time.) Now, as worked out in [11], if the ZK-commitments
of concurrent interactive Schnorr signing sessions are known before the messages

7 The five standards are pairwise incompatible with each other, and differ with respect
to at least the following: The groups and hash functions that may be used; whether
point compression is used and how; whether public keys, or even PKI certificates,
are included in the hash operation.

8 Regarding BIP 340 we observe that [25] specifies a number of different options
to implement the signing algorithm; some of these are randomized and others are
deterministic. In this work we only analyze the fully randomized case. As the deter-
ministic (derandomized) case requires two hashing passes over the message, it is not
compatible with our DSSwOH abstraction.

Digital Signatures with Outsourced Hashing 145

Fig. 6. Legend: : broken : almost broken : secure : less secure. Security of
configurations of five standardized DLP-based signature schemes.

need to be committed to, then forgeries are efficiently possible.9 These forgeries
also represent forgeries in the DSSwOH setting.

A prerequisite of the above attack is that the ZK-commitment CMT can
always be extracted from hs. Whether this condition is actually fulfilled very
much depends on the hash function used. For instance, the internals of SHA3-
256 are such that the sponge permutation is executed once every 1088 bits of
input. If a Schnorr signature like ECSDSA is instantiated with 256-bit ECC, then
the ZK-commitment will be at most 2 · 256 = 512 bit in length (whether point
compression is used or not). That is, as 512 � 1088, the sponge permutation will
not have been executed when hs was prepared, meaning that CMT can indeed

9 The language and attacks of [11] are not as generic as we need them to be to achieve
our results; hence, in Sect. 5 we first generalize and re-prove the findings of [11] before
we use them in our attacks.

146 B. Poettering and S. Rastikian

be extracted from its internal buffer, ultimately leading to a successful forgery
attack. All the marks of Fig. 6 result from an argument in this spirit.

But note that not in all cases it is possible to extract CMT from hs. For
instance, consider that SHA2-256 invokes its compression function once every
512 bits, and the compressed (respectively, uncompressed) encoding length of
512-bit ECC curve points is 512 bits (resp. 2 · 512 = 1024 bits). In this case,
hs is precisely the output of a (double) evaluation of the Merkle–Damgård com-
pression function on CMT, practically meaning that no information on CMT
can be extracted from hs. In fact, as we show, this is sufficient to make a formal
security argument possible. All marks of Fig. 6 result from an argument in
this spirit. (The remaining / marks result from partial-extraction cases, see
body of the article.)

1.2 Motivation and More Related Work

The Hash-then-Sign paradigm is folklore among theoreticians and practitioners.
On the academic side, while textbooks regularly state and prove that hashing
a message and then signing the hash value results in a secure DSS, the focus
is never specifically on outsourcing hashing to a separate entity, e.g., to fit a
smartcard setting.

In industry, the advantages of outsourced hashing have been recognized early,
see [22]. Strict HtS schemes like DSA, ECDSA and PKCS#1 v1.5 are naturally
attractive for outsourcing the hashing, simply as a DSSwOH implementation
wouldn’t leak information to the adversary. Common cryptographic libraries
such as BoringSSL [15], PyCryptoDome [1] and Gcrypt [14] implement these
schemes with the option to outsource the hashing. Industry discussions in the
context of the standardization of post-quantum replacements of (EC)DSA also
pointed out that these replacement ideally would be Strict HtS (but likely will
not be) [19,20,24]. Strict HtS schemes (ECDSA along with the Russian, Chinese
and Korean analogues) have been previously covered in [21].

The dominant industry standard in the domain of HSMs, security tokens,
and smartcards is PKCS#11 [26]. We note that this standard explicitly defines
signature mechanisms where hashing is removed from the signing procedure
and outsourced to an external entity, e.g. under the name of “raw RSA” [26,
Sect. 2.2.12], “DSA without hashing” [26, Sect. 2.2.11], or “ECDSA without hash-
ing” [26, Sect. 2.3.12]. The standard makes no statements about the security of
these schemes and the required trustworthiness of the hashing implementation.

2 Preliminaries

We expand in Appendix A on the vertical arrows used in some of the pseudo-code
figures.

Digital Signatures with Outsourced Hashing 147

2.1 Notation

When, in this article, we use pseudo-code, ‘ ← ’ refers to the assign operator, and
‘ $← ’ refers to a (uniformly) random assignment. We use the symbol ‘ ε ’ to denote
the empty string and ‘ := ’ as an alias-creating operator: The instruction x := A
introduces x as a symbolic alias for the expression A. When x is assigned any
value, A is automatically assigned this same value, and vice versa. We write
y ← alg〈st〉(x) for the case where algorithm alg takes (its state st and) x on
input, updates its internal state st , and outputs y.

In our figures, variables written in capital letters (roman font) generally
denote arrays or sets depending on the context, and elements in arrays are
designated by an index between square brackets. We use the diamond 	 as a
special character that symbolizes the empty element and the dot in brackets A[·]
to denote all the elements in an array A. If X and Y are two sets, then we denote
X ∪← Y shorthand for X ← X ∪ Y.

We formalize security properties with games written in pseudo-code. These
games invoke an efficient adversary A that may be provided with access to
oracles. The games terminate when executing Stop with · command where · rep-
resents a Boolean constant. We write Pr[G(A)] for the probability that game G
invoked with adversary A stops with �. We call this probability the accepting
probability. We introduce the instructions Lose as a shorthand for ‘Stop with
⊥’, Require · which stands for ‘if not · then Lose’ and Promise · to summarize ‘if
not · then Stop with �’. In some games, we use the word Share to mean that the
next variable is made public (particularly delivered to the adversary) without
returning the overall algorithm. A cryptographic scheme algorithm may fail or
Abort, in particular, if a scheme algorithm aborts, then the corresponding oracle
immediately aborts as well returning to the adversary.

2.2 Hash Function APIs

Iterative Hashing. Practical cryptographic hash functions {0, 1}∗ → {0, 1}l

handle variable-length inputs by feeding them into an internal iteratively-
invoked fixed-length building block. For Merkle–Damgård (MD) constructions
like SHA1 and the members of the SHA2 family, this building block is a com-
pression function CF that maps a κ-bit chaining value and an ρ-bit input block
to an updated κ-bit chaining value. For sponge-based hash functions like the
members of the SHA3 family, this building block is a permutation Π that maps
a ρ-bit input block (‘rate’) and a κ-bit chaining value (‘capacity’) to a ρ-bit
output block and an updated κ-bit chaining value. In both cases, quantities κ
and ρ are specific to the hash function. Quantity ρ is also referred to as the hash
function’s block size as it indicates the number of input bits that are compressed
at a time. Practical values of ρ range from 64 bytes to 144 bytes; see the full
version for an overview.

Stream-Oriented APIs. Despite internally working with constant-length data
units, the typically implemented API of a hash function is not block-oriented

148 B. Poettering and S. Rastikian

but stream-oriented: After initializing an instance state, applications advance
the hash computation by serially providing arbitrary-length fragments of the
message. The hash function implementation will then arrange the fragments
into ρ-bit blocks and apply the fixed-length primitive (i.e., compression function
or permutation) to only those. This stream-oriented approach fully hides the
(purely technical) block size ρ from the application, ensuring versatility and
cryptographic agility.

In Fig. 7 we reproduce a typical API and implementation of an MD hash
function. (The very same principle as described here also holds for sponge based
hash functions; just details differ, for instance how the final message digest is
computed. See also the full version.) While the procedure names and their pre-
cise semantics are based on those of the Python standard library [2], the same
approach is used in virtually all other SHA1, SHA2, and SHA3 implementations
as well. Invoking procedure new initiates a new hash value computation by cre-
ating a fresh state st which consists of three components: the chaining value cv
(initialized to some constant value IV), a ρ-bit string buffer B (initialized to ε),
and the number cnt of processed bits (initialized to zero). Input fragments m can
then be fed into the hash state by invoking the update procedure. The latter is
concerned with arranging the fragments into a sequence of full blocks, and invok-
ing the compression function CF as required. Note that, at any time, for any
two message fragments m1,m2, invoking update〈st〉(m1) and update〈st〉(m2)
in direct succession has precisely the same effect as the single-shot invoca-
tion update〈st〉(m1 � m2). To conclude a hash computation, procedure digest
appends a representation of the overall message length to the message, invoking
the compression function whenever required, and outputs (a possibly truncated
copy of) the last chaining value.

Fig. 7. Blueprint of stream-oriented Merkle–Damgård implementations. Line 09
splits m into m′ and (updated) m such that |B � m′| = ρ. Line 12 splits m into
m′ and (updated) m such that |m′| = ρ. Length padding m̄ in line 15 is such that
|B � m̄| ∈ {ρ, 2 · ρ}. Line 17 splits B � m̄ such that |B1| = |B2| = ρ.

Digital Signatures with Outsourced Hashing 149

Message Extraction from Hash States. In the context of this article, a
crucial property of stream-oriented hash function implementations (both MD
and sponge based) is that message fragments are buffered in the hash instance
state and may remain recoverable from it. This is visible in lines 07 and 14
of Fig. 7 where message inputs are recorded in B but are not cryptographically
processed. For instance, for any message m of size one bit shorter than a multiple
of the block size, i.e., with |m|+1 ≡ 0 (mod ρ), after st ← new(); update〈st〉(m)
is invoked, the first ρ − 1 bits of B coincide with the last ρ − 1 bits of m.

The above is an unavoidable property of MD implementations. In contrast,
for sponge based hash functions like SHA3 the situation might be slightly differ-
ent, as for the latter the incoming message fragments are not necessarily buffered
but instead may be XORed into the chaining value cv . That is, unless the out-
put of the last Π invocation is known, only masked versions of the message
fragments can be extracted from the hash state st . We note, however, that com-
mon SHA3 implementations don’t XOR directly but instead follow a buffer-then-
XOR schema. This is, for instance, the case for OpenSSL’s SHA3 implementation
which serves also as the default SHA3 implementation of many high-level lan-
guages.10 We refer the reader to the full version for more details about MD based
and sponge-based constructions.

Partial Hashing and Random Oracles. The observed extractability prop-
erty holds for message fragments that are buffered and thus not cryptographi-
cally processed, and hence remain extractable from the hashing state. For mes-
sage parts that are cryptographically processed, a complementary observation
can be made: The hashing state hides them in an ideal way (if the compres-
sion function behaves like a random oracle). In more detail: Assuming an MD
hash function, for any multi-block message m = m1 � . . . � mn consider the
state st = (cvm,Bm, cntm) resulting from invoking first st ← new() and then
update〈st〉(m). Let Hn : {0, 1}nρ → {0, 1}κ; m �→ cvm be the function induced
by this, i.e., that maps messages to corresponding intermediate chaining values.
Then, for any fixed n, if the compression function CF: {0, 1}κ×{0, 1}ρ → {0, 1}κ

is modeled as a random oracle, then Hn is (indifferentiable from) a random ora-
cle. We formally state this in Lemma 2.

Note that a corresponding statement cannot be made for sponge construc-
tions. The reason is that the permutation Π is invertible and hence doesn’t hide
its input. Concretely, if cvm of an unknown one-block message m is known, then
computing Π−1(cvm) immediately recovers m which is a property incompatible
with a random oracle.

10 OpenSSL’s SHA3 code can be found at https://github.com/openssl/openssl/blob/
1c0eede9/crypto/sha/sha3.c. It precisely follows the blueprint of Fig. 7. Python uses
a copy of this code since version 3.9, see “Hashlib [. . .] uses SHA3 [. . .] from OpenSSL”
in https://docs.python.org/3/library/hashlib.html.

https://github.com/openssl/openssl/blob/1c0eede9/crypto/sha/sha3.c
https://github.com/openssl/openssl/blob/1c0eede9/crypto/sha/sha3.c
https://docs.python.org/3/library/hashlib.html

150 B. Poettering and S. Rastikian

2.3 Signature Schemes

We recall the established notions of DSS. Our definitions of existential and strong
unforgeability (UFe and UFs) are equivalent with the textbook notions, but, for
alignment with the peculiarities of the generalized DSS that we study in the
upcoming sections, we use a slightly unusual game notation that assumes an
explicit verification oracle.

DSS. A digital signature scheme (DSS) for a message space M consists of
a signing key space SK, a verification key space VK, a signature space S, a
key generation algorithm gen → SK × VK, a signing algorithm SK × M →
sgn → S, and a verification algorithm VK × M × S → vfy → {0, 1}. Intuitively,
for correctness we expect that for all m ∈ M after (sk , vk) ← gen and σ ←
sgn(sk ,m) and v ← vfy(vk ,m, σ) we have v = 1.

Definition 1 (Unforgeability). Consider the UFe and UFs games of Fig. 8.
We define unforgeability advantages of an adversary A as per Advuf-e(A) :=
Pr[UFe(A)] and Advuf-s(A) := Pr[UFs(A)], respectively. Intuitively, we say
that a DSS is existentially (respectively, strongly) unforgeable if Advuf-e(A)
(resp., Advuf-s(A)) is negligible for all realistic A.11

Fig. 8. Games UFe,UFs for Definition 1: Line 02 is part of UFe but not of UFs, while
line 03 is part of UFs but not of UFe. Set variable A records the authentic messages
(i.e., considered by the signer) while set variable V records the verified messages (i.e.,
accepted by the verifier). By line 02 the adversary wins the UFe game if there exists
a verified message that is not authentic. The winning condition of the UFs game is
similar, just that it is based on message-signature pairs which are recorded in the
punctured sets A·,V·.

11 Practical DSS don’t have a security parameter ‘λ’ that could scale security arbi-
trarily, and hence an asymptotic notion of a ‘ppt adversary’ is not meaningful for
their analysis. Our use of the word ‘realistic adversary’ can be seen as an intuitive
replacement of the ppt notion. We only use it in informal statements and hence don’t
need to defined it.

Digital Signatures with Outsourced Hashing 151

2.4 Schnorr Proofs, Schnorr Signatures

Let G = 〈g〉 be a cyclic group of prime order p. Denote the ‘exponent space’
with Zp. Consider G and Zp a statement and witness space, respectively, such
that x acts as the witness for X = gx. The interactive ZK-PoK proof system by
Schnorr lets the prover compute a commitment R as per R ← gr (for a uniform
r ∈ Zp), lets the verifier pick a high-entropy challenge c, and lets the prover
compute a response s as per s ← r + xc. The verifier accepts the resulting tran-
script τ = (R, c, s) iff gs = RXc. Applying the Fiat–Shamir transform, Schnorr
signatures assume a hash function H : G × M → Zp, let c := H(R,m), and
use a compressed version of the transcript τ as the signature σ. More precisely,
instead of letting σ := τ , all standardized versions of Schnorr DSS let σ = (c, s)
(equivalently σ = (R, s)) as τ can be uniquely reconstructed from σ and public
information. The resulting DSS algorithms are in Fig. 9 (left).

Fig. 9. Left: Schnorr DSS. Right: Construction of H from an iterative hash function.

Practical hash functions don’t natively implement the required G×M → Zp

mapping, but instead a mapping of the form H̃ : {0, 1}∗ → {0, 1}l for some
fixed l. To obtain a practical scheme from the algorithms of Fig. 9 (left) stan-
dards of Schnorr DSS also specify—at least implicitly— a fixed-length encoding
ϕ : G → {0, 1}L and a conversion function ψ : {0, 1}l → Zp and set(12Some
specifications (like BIP 340 [25]) generalize the right-hand side by computing
ψ(H̃(aux1 � ϕ(R) � aux2 � m � aux3)), where the (public) auxiliary inputs
aux1, aux2, aux3 may include a copy of the verification key, a cryptographic cer-
tificate on the key, or similar.)

H : G × M → Zp; (R,m) �→ ψ(H̃(ϕ(R) � m)) .12

That is, using our hash function notation from Fig. 7 for H̃, H is implemented
as in Fig. 9 (right).12 In practice, roughly, for ECC based versions defined over

12 Following Footnote 12, update〈stH〉(aux1) might have to be added to Fig. 9 in
line 18, update〈stH〉(aux2) in line 20, and/or update〈stH〉(aux3) in line 22. Corre-
spondingly, aux1, aux2 and aux3 should be appended to sk and vk .

152 B. Poettering and S. Rastikian

Weierstrass curves where group elements coincide with curve points R repre-
sented by two finite-field coordinates (Rx, Ry), function ϕ will output a bit seri-
alization of either (Rx, Ry) or just Rx,13 and function ψ will convert its l-bit
input, or a truncation thereof, to a non-negative integer and output the latter
reduced modulo p. The finite-field based versions are even simpler: ψ is as above,
and ϕ does nothing beyond serializing the finite field element R to a bit-string.

3 Digital Signatures with Outsourced Hashing

As motivated in Sect. 1, the DSS with outsourced hashing (DSSwOH) notion for-
malizes the idea of distinguishing between the (VIL) hashing component and the
(FIL) core signing components of a DSS. Here, the term hashing does not nec-
essarily have to 1:1 correspond with invoking a cryptographic hash function like
SHA2 or SHA3. Rather, as we shall see in the examples, it may make sense to
let the core signing routine initiate and/or finalize a SHA computation. We start
with formalizing the DSSwOH syntax illustrated in Fig. 4.

DSSwOH. A digital signature scheme with outsourced hashing (DSSwOH)
for a message space M consists of a signing key space SK, a verification key
space VK, a signature space S, a hash seed space HS, a hash value space HV,
a state space ST , a key generation algorithm gen → SK × VK, a hash function
hash : HS × M → HV, and algorithms SK → sgn.ini → ST × HS and ST ×
HV → sgn.fin → S and VK×S → vfy.ini → ST ×HS and ST ×HV → vfy.fin →
{0, 1}. By composing the latter components in the way specified in Fig. 10 we
obtain the associated signing algorithm SK × M → sgn → S and verification
algorithm VK × M × S → vfy → {0, 1}.

For correctness we expect the same of a DSSwOH as of a DSS, i.e., that for
all m ∈ M after (sk , vk) ← gen and σ ← sgn(sk ,m) and v ← vfy(vk ,m, σ) we
have v = 1, where the sgn and vfy algorithms are those of Fig. 10. Similarly, as
a first security notion we let UFe,s

AA := UFe,s (with the latter referring to the
games of Fig. 8). Note this notion assumes atomic execution of signing and veri-
fying, and doesn’t capture the DSSwOH peculiarities. We present corresponding
refinements in Sects. 2 and 3.

Fig. 10. Algorithms sgn, vfy associated with a DSSwOH scheme. Note how the two
algorithms correspond with the outer boxes of Fig. 4.

13 Note that ϕ is 1:1 in the former case and 2:1 in the latter case. Precisely, in the 2:1
case we have ϕ(R′) = ϕ(R) ⇐⇒ R′ ∈ {R, R−1}.

Digital Signatures with Outsourced Hashing 153

To exercise our definition, we specify a DSSwOH version of the (Interactive
HtS) Schnorr DSS, where we distribute the initial and final steps of the H spec-
ification of Fig. 9 (right) to the sgn.ini, vfy.ini, sgn.fin, vfy.fin algorithms. While
technically there might be different ways to do this, the version we present below
is the most natural one as: (a) the outsourced hash component does not ‘have
to get involved with number theory’; specifically: it neither has to encode group
elements, serialize finite field elements, compress elliptic curve points, etc. as
part of a ϕ implementation, nor does it have to implement modular reduction
for the ‘mod p’ operation of a ψ implementation. And (b) leakage to a potential
adversary is minimized, as a maximum of information is hashed before being
provided to the outsourced party. In Sect. 5 we will prove that this DSSwOH is
generally insecure, even if hashing is done honestly. In contrast, surprisingly, in
Sect. 6 we prove that the security can be salvaged for very specific configurations
of parameters, even if honest hashing cannot be assumed.

Starting with the Schnorr DSS with iterative hashing of Fig. 9 (left+right),
in Fig. 11 we specify corresponding DSSwOH algorithms. Note that compos-
ing the DSSwOH algorithms as in Fig. 10 yields precisely the algorithms of the
Schnorr DSS of Fig. 9.

Fig. 11. Schnorr DSS with outsourced hashing. 17(17 Extending Footnotes 12,13,
update〈stH〉(aux1) might have to be added in lines 14,27, update〈stH〉(aux2) in lines
16,29, and/or update〈stH〉(aux3) in line 06. Correspondingly, aux1, aux2 and aux3

should be appended to sk and vk in lines 02 and 03.)

4 DSSwOH Security with Benign Hashing

After introducing a formal syntax for DSS with outsourced hashing (DSSwOH)
in Sect. 3, we move on to defining the security of this primitive. Akin to the

154 B. Poettering and S. Rastikian

differentiation between passive (CPA) and active (CCA) adversaries in the PKE
world, our diverse DSSwOH security models differentiate between benign hash-
ing and malicious hashing. When hashing is benign, the adversary can influence
message inputs and observe the exchange of hash seeds hs and hash values hv
in Fig. 4. When hashing is malicious, the adversary takes control of the hash-
ing implementation and can return arbitrary hash values to the signing core.
Sufficiency of the benign model could be claimed for cases where hashing is
implemented on the same computer as the signing core, just at a different level
of the software stack. However, in deployment scenarios involving trusted hard-
ware, i.e., where applications outside of specifically protected computing cores
are assumed non-trustworthy by default, relying on the benign model doesn’t
make sense and the malicious model has to be used. The current section is focused
on the benign setting. Our treatment of the malicious setting is in Sect. 6.

Our security games for DSSwOH are based on those of regular DSS of Fig. 8
(and of [21]), with three major differences (two compared to [21]): (1) As a
DSSwOH consists of more algorithms than a regular DSS, our games reflect
this by adding the corresponding additional oracles, maintaining a 1:1 relation-
ship between algorithms and oracles; (2) As signing and verifying in a DSSwOH
is stateful, and multiple messages could be signed concurrently, this has to be
reflected in our games by introducing a session concept. Without the support of
concurrent sessions, attacks wouldn’t be covered where an adversary opens mul-
tiple sessions in parallel and lets them interact with each other in a malicious
way. (Our attack on the Schnorr DSSwOH depends precisely on this capabil-
ity.) We implement sessions via in-game session identifiers that the adversary
can pick arbitrarily. (3) While we define existential and strong unforgeability
notions (UF) for DSSwOH as we did for DSS, we also import two more tech-
nical notions from [21] (HUF) that are based on the hashes of messages rather
than on the messages themselves. In a nutshell, an adversary wins the HUF
game for DSSwOH if it comes up with a valid fresh hash-seed/hash-value pair
in the weaker case (existential unforgeability) and a valid fresh hash-seed/hash-
value/signature triplet in the stronger case (strong unforgeability).

We specify our UFe
BB,UFs

BB,HUFe
BB,HUFs

BB games in Fig. 12, where the
BB subindex (benign-benign) indicates that the hashing in both signing and
verifying is required to be benign. The benign behavior is technically enforced by
lines 14,25 of Fig. 12 that ensure that any hash value provided by the adversary to
the SgnFin and VfyFin oracles was indeed first generated by hashing a message
in line 12 or 23, respectively.

Our games use session identifiers sid to distinguish sessions. The session
management is not explicit in Fig. 12, but indicated by the curly top-down
arrows. Precisely, the session management guarantees that (1) for each ses-
sion identifier sid , the oracles are strictly called in the indicated order, i.e.,
SgnIni → Hash → SgnFin and VfyIni → Hash → VfyFin; this rule could explic-
itly be enforced with additional code that implements a state machine; (2) for
each session identifier sid , variables st , hs, hv ,m are state-persistent; that is:
hs in line 12 is the one of lines 10,11 for the same sid ; and hv in lines 14,15

Digital Signatures with Outsourced Hashing 155

is the one of lines 12,13 for the same sid ; this could be explicitly implemented
with additional array variables that map session identifiers to variables. We use
this compact game notation as it cleanly puts the focus on what really matters,
namely the very spirit of the security notions. Readers who prefer a fully explicit
presentation are referred to Appendix A and Fig. 17, which are equivalent but
explicit.

Fig. 12. DSSwOH security games for benign hashing. Line 02 is part of UFe
BB but not

of UFs
BB, while line 03 is part of UFs

BB but not of UFe
BB, and similarly lines 07,08 for

games HUFe
BB,HUFs

BB. The top-down arrows represent the session management (see
text, and the explicit version in Fig. 17). The semantics of the set variables A,V,A·,V·

is as in Fig. 8. The semantics of the set variables B,W,B·,W· is corresponding, but for
hash values instead of messages.

Definition 2 (Unforgeability of DSSwOH, BB case). Consider the
UFe

BB,UFs
BB,HUFe

BB,HUFs
BB games of Fig. 12. We define unforgeability

advantages of an adversary A as per Advuf-e-bb(A) := Pr[UFe
BB(A)],

Advuf-s-bb(A) := Pr[UFs
BB(A)], Advhuf-e-bb(A) := Pr[HUFe

BB(A)] and
Advhuf-s-bb(A) := Pr[HUFs

BB(A)], respectively. Intuitively, we say that a
DSSwOH is existentially (resp., strongly) unforgeable if Advuf-e-bb(A) (resp.,
Advuf-s-bb(A)) is negligible for all realistic A.

The UFe
BB,UFs

BB games are in clear correspondence with the DSS games
of Fig. 8, just that they replace the atomic operations with the outsourced ones.
The HUFe

BB,HUFs
BB notions are new for DSSwOH, and make the separation of

hashing from the core signing more explicit. Concretely, where in UFe
BB a forgery

requires a valid signature on a fresh message, in HUFe
BB a forgery requires a

156 B. Poettering and S. Rastikian

valid signature on a fresh hash-seed/hash-value pair. The conceptual difference
is that if the adversary finds m,m′ that hash with the same hash seed to the
same hash value, i.e., if the problem is solely with the hash function, then this
counts as a forgery in UFe

BB but not in HUFe
BB. That is, HUFe

BB captures
precisely what it means to forge from the point of view of a signing core.

Unforgeability of DSSwOH, AB and BA cases. It is meaningful to also
formalize mixed-case security definitions, i.e., where signing is atomic and veri-
fication uses benign hashing, and vice versa. Our game notations are such that
deriving the mixed-case variants (AB and BA) is immediate by just cherry-
picking the right oracle definitions from Figs. 8 and 12. For instance, game UFe

BA

is like game UFe
AA = UFe (see Fig. 8 and Sect. 3) but with the signing oracle

replaced with the middle column of Fig. 12.

5 Universal Forgeries for Schnorr DSSwOH with Benign
Hashing

We show negative results for Schnorr signatures in the benign hashing setting (for
positive results see Sect. 6.1). We demonstrate that many standardized versions
of the Schnorr DSS become forgeable when operated with outsourced benign
iterated hashing. Concretely, our attack consists of opening multiple concurrent
signing sessions and letting them interact in a particular way so that attackers
can craft universal forgeries, i.e., valid signatures on arbitrary messages. A key
condition for this attack to succeed, is to extract sufficiently much information
from the hash seed communicated to the outsourced hash implementation. As
we will see, for many configurations of the Schnorr DSS this condition is fulfilled.

5.1 Attack on Concurrent Schnorr ZK-PoK

We start with making a closely related observation on the interactive Schnorr
ZK-PoK proof system (see Sect. 2.4). Roughly, if the latter is implemented over
an n-bit group (i.e., of order about 2n), an adversary engaging with a prover
in l ≥ n concurrent sessions can output, in addition to the l authentic hence
valid proof transcripts {(Ri, ci, si)}1≤i≤l, one additional non-authentic yet valid
proof transcript (R∗, c∗, s∗). What differentiates this from just generating the
additional transcript with the zero-knowledge simulator, is that the components
R∗, c∗, s∗ emerge in the same order as in regular protocol transcripts. Precisely:
The adversary first outputs R∗, then fixes an arbitrary c∗, then completes the
transcript by outputting s∗.14

The core of our attack is heavily inspired by recent work [11] on the (un-)
forgeability of interactive versions of the Schnorr DSS, most prominently of blind
Schnorr signatures. The authors of [11] propose a solver for the so-called ROS
14 A simulator for the Schnorr protocol would typically first fix c∗ and s∗, and then

derive R∗ = gs∗
/Xc∗

from them. This deviates from the order in which the values
emerge in regular protocol runs.

Digital Signatures with Outsourced Hashing 157

problem, and show how this solver can be transformed into an effective attacker
against the signature schemes. The ROS problem itself combines linear algebra
with a random oracle: The challenge is to solve a system of linear equations some
coefficients of which are derived via a random oracle from the very solution.15
While the core of our attack reads almost the same as the one of [11], we feel that
the ROS formalization of [11] is not general enough to imply our result, for at
least two reasons: (1) While the ROS problem revolves around a random oracle,
there is no random oracle in the Schnorr ZK-PoK system; and (2) while a crucial
attack component in [11] is that the adversary modifies transcript components Ri

by exposing them to multiplicative blinding, our attack on Schnorr signatures
leaves these components intact. (In fact it has to leave them intact: Neither does
our security model tolerate active adversaries, nor does the Schnorr ZK-PoK
protocol provide an opportunity for applying blinding.)

Our attacker A against Schnorr’s interactive ZK-PoK protocol is specified
in Fig. 13, together with its subroutines A1,A2,A3. We explain the details in
the following. Lines 00–03 open l concurrent sessions with the prover, receive
the corresponding commitments Ri, and propose arbitrary two challenge values
c0
i , c

1
i for each of them. (At this point in time the latter are just selected; they

are not yet sent.) In line 04, subroutine A1 derives from its Ri and c0
i , c

1
i inputs

the commitment R∗ that will be part of the forged transcript. The adversary, in
line 05, then picks an arbitrary challenge c∗ for this commitment. This value is
forwarded to subroutine A2 which continues the computation of A1, this time
outputting a bit vector b1, . . . , bl that indicates for each session which of the two
earlier-proposed challenge values c0

i , c
1
i shall be sent to the prover. (In line 08,

the symbol c̄i is introduced to explicitly indicate the selected challenge.) Lines
07–11 complete the sessions, and record their transcripts in variables τ1, . . . , τl.
The sessions’ response values si are, in line 12, also provided to subroutine A3

so that the latter can contribute the response s∗ that completes the forged tran-
script τ∗. Because the used attack techniques overlap with those of [11] we defer
the explanation of subroutines A1,A2,A3, and the proof that transcript τ∗ is
always valid, to Appendix B.16

Lemma 1. The attack in Fig. 13 derives a fresh Schnorr ZK proof transcript
(R∗, c∗, s∗) in the order R∗ → c∗ → s∗ by interacting with l ≥ n concurrently
executed transcript generators.

5.2 Attack on Schnorr DSSwOH with Benign Hashing

We lift the attack algorithm A of Sect. 5.1 to an attack algorithm Ā against
Schnorr DSSwOH in the UFe

BB model of Sect. 4 and the UFe
BA. The core com-

putational steps of Ā and A are the same; what differs is how Ā derives the
values Ri, si and fixes the values cb

i , c
∗, i.e., how it implements the steps that

15 For a precise formulation see Definition 4 in Appendix B.
16 There are no such subroutines in [11]. While the attack techniques overlap, the

abstractions used in [11] and by us are disjoint.

158 B. Poettering and S. Rastikian

Fig. 13. Attack on Schnorr ZK-PoK. Weights w1, . . . , wl of line 17 are such that the
subset-sum problem of line 22 can be efficiently solved. A natural choice is requiring
l = n and setting wi = 2l−i; in this case line 22 reduces to computing a binary
expansion. See [11] for a discussion of other possible choices (that also might get along
with l < n).

remained unspecified on the left hand side of Fig. 13. The full attack specifi-
cation in Fig. 14 shows how Ā extracts Ri, si from sgn.ini and sgn.fin queries,
respectively. Ā then chooses values cb

i , c
∗ in the c ← H(R,m) spirit of line 07 of

Fig. 9, where the underlying messages mb
i are arbitrary but distinct, and m∗ is

the target message to (universally) forge on. By Lemma 1 this always leads to a
valid ZK transcript τ∗ = (R∗, c∗, s∗) from which the forgery σ∗ = (s∗, c∗) on m∗

is readily extracted.
A technical precondition for this attack to succeed is the ability to extract

the ZK commitment Ri from the hash seed hsi in line 03. (Recall the extraction
principle from Sect. 2.2.) Whether this is possible or not depends on implemen-
tational details.

The following combines the above discussion with the results of Lemma 1.

Theorem 1. Consider a Schnorr DSSwOH implementation as of Fig. 11 over
a group G and assume the ZK commitment R can always be extracted from the
hash seeds hs output by the sgn.ini algorithm. Then the attack of Fig. 14, when
engaging with l ≥ �log2|G|� concurrent sessions in the UFe

BB game, always
comes up with a valid (universal) forgery.

On the and marks of Fig. 6. The previous theorem lays the basis on
which we compute part of Fig. 6, namely, the and the marks. In this figure,
we study five variants of Schnorr signature schemes (SDSA [5], ECSDSA [4],

Digital Signatures with Outsourced Hashing 159

Fig. 14. Lifting of Fig. 13 to an attack against Schnorr DSSwOH in the UFe
BB security

model. The subroutines A1,A2,A3 are as in Fig. 13. Formally, delivering the forgery
(m∗, σ∗) entails one extra VfyIni(σ∗) → VfyHash(m∗) → VfyFin(hv∗) cycle.

ECSDSA Optimized [5], BIP 340 [25] (see Footnote 8), and ECFSDSA [5])17
when the hashing is outsourced as in Fig. 11.

We look into 252 different configurations (a.k.a. instantiations) in total: each
column specifies a size of the finite field over which the DSSwOH scheme is
defined and each row specifies which hash function is included in the scheme. We
use four colors to label the ‘security levels’ of these instantiations. We clarify what
we mean by the security levels throughout the paper and dedicate this section
only to the levels represented with and marks. As an example, the upper-
left mark of ECSDSA (b) reads as: “The security level of the outsourced ECSDSA
defined over a 160-bit finite field and instantiated with SHA1 is represented with

.”
The mark symbolizes a specific instantiation that is broken in the UFe

BB

security model. Breaking such instantiation is an artifact of Theorem 1 which
assumes that the commitment R is extractable from the hash seed hs. Three
key factors essential for the extractability of R from hs := (cv ,B , cnt) are: (1)
the invertibility of ϕ, (2) the aggregated bit-length of the update inputs in the
sgn.ini algorithm (i.e., |ϕ(Ri)|18), and the blocksize ρ of the hash function.

With the correct configurations, one way to extract R is to invert ϕ and
apply ϕ−1 over B ’s content. Some instantiations marked with define ϕ as an
encoding function that serializes its input in an injective manner19 and allow
L (the output size of ϕ) to be smaller than the rate ρ. The latter condition
means that the procedure update stores ϕ(R) in the buffer B . The former con-
dition implies that it is possible to recover R by inverting ϕ(R). Together, these
conditions allow the extraction of R from hs.

17 In a nutshell, the EC-based variants differ from one another with the definition of
the encoding function ϕ and with the auxiliary inputs included in the hashing. For
instance, they all define aux1, aux2, aux3 to be resp. ε, ε, ε except for BIP 340 which
defines aux2 as vkx, the x coordinate of the public key vk .

18 Extending Footnotes 12, 13, the adapted criterion would be |aux1 � ϕ(Ri) � aux2|.
19 For instance, ϕ maps an EC point to the bitstring representation of its coordinates.

160 B. Poettering and S. Rastikian

Another method to extract R from hs is by inverting the hashing steps leading
to cv . Looking into sponge-based hash functions, we notice that if the chaining
value is an outcome of a single evaluation of the underlying permutation, then
it is possible to recover the input string on which the hash function has been
evaluated. More specifically, having cv = Π(IV ⊕ X1 � 0κ) where Π is a public
permutation, X1 is a private string and IV is a public initialization vector, it is
possible recover X1 by computing X1 � 0κ = Π−1(cv) ⊕ IV. This case actually
occurs (in 13 instantiations of Fig. 6 where SHA3 is used) when L ∈�ρ, 2ρ� (cor-
respondingly |aux1| + L + |aux2| is in this set). Thus the recovered X1 would be
the ρ prefix bits of ϕ(R) and the value stored in B would correspond to the L−ρ
suffix bits of ϕ(R). Now, that ϕ(R) is restored, it is possible to extract R if ϕ is
invertible. We refer the reader to the full version for a visual representation of
sponge constructions.

As for the marks, Theorem 1 does not apply straightforwardly: In these
instantiations, ϕ is defined as a 2:1 function mapping an elliptic curve point
to the bitstring describing its x coordinate. This means that it is possible to
extract Rx of hs but not Ry and thus not the entire element R. Guessing the y
coordinate sums up to recovering two different y coordinates using the elliptic
curve equation, then guessing a single bit that determines which of the two is
used. If this bit is known to the attacker (e.g. assuming all the managed EC points
are “positive”), then extracting R of hs would be possible and the instantiation
would be broken in the UFe

BB security model by Theorem 1.

6 DSSwOH Security with Malicious Hashing

The security definitions of Sect. 4 assumed that the message hashing of Fig. 4
is executed honestly. (The adversary controls the messages and observes the
resulting hash seeds/values, but the hash values are always properly computed.)
In this section, we define models that drop this condition and assume dishon-
est hashing, i.e., assume the message hashing is performed by the adversary.
As explained in Sect. 4 these security models are indispensable in environments
involving trusted hardware.

Lines 14,25 of UFe,s
BB (Fig. 12) ensure that there exists an honest hashing

operation for every hash value provided by the adversary. However, remov-
ing these lines is insufficient to convert a benign hashing setting into a mali-
cious one. Indeed, in the malicious hashing setting, the recorded messages in
lines 17,18,28,29 do not necessarily exist or might not be communicated by the
adversary. We hence resort to defining only the hash value centric HUF notions in
the malicious hashing setting.

We specify HUFe
MM,HUFs

MM games in Fig. 15, where the MM subindices
(malicious-malicious) indicate that the hashing in both signing and verifying is
allowed to be malicious.

Definition 3 (Unforgeability of DSSwOH, MM case). Consider the
HUFe

MM,HUFs
MM games of Fig. 15. We define unforgeability advantages of an

Digital Signatures with Outsourced Hashing 161

adversary A as per Advhuf-e-mm(A) := Pr[HUFe
MM(A)] and Advhuf-s-mm(A) :=

Pr[HUFs
MM(A)], respectively. Intuitively, we say that a DSSwOH is existen-

tially (respectively, strongly) unforgeable in the malicious-malicious setting if
Advhuf-e-mm(A) (resp., Advhuf-s-mm(A)) is negligible for all realistic A.

Fig. 15. DSSwOH security games for malicious hashing. See Fig. 12 for further expla-
nations of the notation.

Security notions where one party is benign and the other is malicious can be
straightforwardly defined by considering hybrids of Figs. 12 and 15. In continu-
ation of the heading after Definition 2 we formalize this in the following.

Unforgeability of DSSwOH, MB and BM cases. Define games HUFe
BM,

HUFs
BM by combining the middle column of Fig. 12 with the right column

of Fig. 15, and games HUFe
MB,HUFs

MB by combining the middle column of
Fig. 15 with the right column of Fig. 12. Also define corresponding symbols for
the advantage terms, following the pattern of Definitions 2 and 3.

Remark 1. Schnorr signature schemes can be trivially broken when the out-
sourced hashing on the verifier’s side is malicious. The attacker computes a valid
hash value and corresponding signature without querying the signing oracle.
One interpretation of this attack is that security in the face of malicious hashing
of verification cannot be reached. Another interpretation is that our HUFe,s

AM,
HUFe,s

BM and HUFe,s
MM models are unnecessarily strong. Indeed, while in the

secure hardware deployment scenarios it makes sense to assume malicious hash-
ing on the signer side, the same does not have to hold on the verifier side. It is
hence meaningful to focus on HUFe,s

MB notions (matching the secure hardware
case).

6.1 Security of Schnorr DSSwOH in the MB Case

We prove positive results for many Schnorr DSSwOH configurations (of Fig. 11)
in the HUFe,s

MB setting. These results do not contradict the negative findings

162 B. Poettering and S. Rastikian

of Sect. 5 as the latter only apply if R is extractable from the hash seed hs,
while here we consider configurations where the contrary holds. Specifically, our
positive results cover all the Schnorr DSSwOH instantiations where |ϕ(R)| (cor-
respondingly, |aux1 � ϕ(R) � aux2|) is a multiple of the rate ρ, and where the
iterative hash function is a Merkle–Damgård (MD) based construction.20 These
instantiations are marked with in Fig. 6.

Intuitively, the above conditions ensure that the inputs hashed in the sig-
nature initialization phase are well-aligned with MD block boundaries: In the
terms of Fig. 7, after hashing the ϕ(R) prefix, the buffer B in the hash seed hs
is empty and the counter cnt in hs is a public constant (aux1 and aux2 are
public strings, and the output size of ϕ is the constant L). Further, the input is
properly processed by the hash function and fully compressed into the chaining
value cv of hs.

As B and cnt are simulatable (public constants), then proving the security of
the previous instantiations boils down to showing that the compressed chaining
value cv contains no information about the input. Going back to Fig. 11, we
notice that the sequence of steps that allow the computation of cv are equivalent
to running h1 of Fig. 16 (left) and that the steps that allow the computation of
a digest can be regrouped into h2 of Fig. 16 (left). We then notice that if the
alignment property holds, then h1 is equivalent to a fixed length MD chain Fig. 16
(right) which, in its turn, can be modeled as a random oracle. (Lemma 2 states
that the fixed-length MD construction is indifferentiable from a random oracle
when the underlying compression function is modeled as ideal.21) Having h1 be
modeled as a random oracle means that cv leaks no information about the input.
We give a short version of our result in Theorem 2 along with a simple proof,
and a detailed version in the full version.

Fig. 16. Functions h1, h2 used in Theorem 2. h1 (left) regroups lines 13–16 of Fig. 11
and h2 regroups lines 05–07. The missing lines refer in this figure are referred to by
those in footnote 17. It is helpful to think of R̃ as the encoded group element ϕ(R), and
L as the output length of ϕ (see Sect. 2.4). The right hand side version of this figure is
a rewriting of h1 as a fixed length MD construction.

20 Our proofs can be extended to sponge-based constructions where |ϕ(R)| ≥ 2ρ,
however, none of the real-world instantiations in Fig. 6 meets this condition.

21 Indifferentiability results on similar MD variants have been shown in [12] and [10]
etc. However, to our knowledge, no positive result for the exact variant we use has
been shown in literature.

Digital Signatures with Outsourced Hashing 163

Lemma 2. Let CF be an ideal compression function for a fixed length MD con-
struction. Modeling CF as ideal, we have that the fixed length MD construction
is indifferentiable from a random oracle.

Proof. In short, we construct a simulator that outputs randomly picked chaining
values when queried. The simulator monitors the chain length and outputs the
random oracle evaluation on the chained message input only when the chain is
completed. The details of the proof and the simulator construction can be found
in the full version.

Theorem 2. Let S be the Schnorr DSS with outsourced hashing described in
Fig. 11. Assuming that the discrete logarithm problem is hard and that finding
collisions in ψ ◦ h2 (defined in Fig. 16) is hard, then modeling h1 (of Fig. 16) as
a random oracle implies that S meets HUFe,s

MB security.

Proof. In brief, we build a reduction that receives a group element and invokes
our adversary on this same element (as a public key). It then harvests the output
forgery, rewinds the adversary to the forgery point then invokes it with different
random oracle outputs. If the forgeries are valid, then the reduction extracts the
discrete logarithm correspondent to the group element. The success probabil-
ity of this rewinding process is covered by the Forking Lemma. Some specific
cases occur where the reduction is capable to extract the secret key with a sin-
gle adversarial forgery and without rewinding: this happens when the provided
forgery is correlated to a simulated signature. Additionally, the analysis takes
care of the collisions between values computed by ψ ◦ h2 (when rewinding) by
requiring that the composition meets a mild collision resistance security notion
(see full version). The proof details can be found in the full version.

Lemma 2 and Theorem 2 both yield the following corollary:

Corollary 1. Let S be defined in Fig. 11. If the inputs to the hashing steps in
the signature initialization are well aligned with the hash function block size, then
S is unforgeable in the HUFe,s

MB sense.

On the marks of Fig. 6. Back to Fig. 6, the marks refer to instantiations
that are unforgeable in the HUFe,s

MB sense. The previous corollary helps deter-
mine whether an instantiation should be marked with : if |aux1|+L+|aux2| = 0
mod ρ then the instantiation is secure (see Sect. 2.4 for the definitions of L and
ρ). Many instantiations immediately fit into this criterion: the hash function
defines ρ, the scheme defines aux1 and aux2, and L can be decided by looking
into.

Concerning BIP 340 (see Footnote 8), notable configurations emerge when
the underlying field is ECC 384 and the hash function is either SHA1, SHA2-
224 or SHA2-256. Recalling footnote 21, BIP 340 defines (aux1, aux2) as (ε, vkx)
and ϕ as the mapping from an EC point input to its x coordinate. This implies
that when the field size is 384 bits long, |aux1| + L + |aux2| = 768 bits. Because
ρ = 512 for those hash functions, the first 512 input-bits are compressed into

164 B. Poettering and S. Rastikian

the chaining value and the last 256 input-bits are stored in the buffer of the
hash seed. Since the latter 256 bits correspond to the suffix of the public value
aux2 = vkx, the security of the scheme holds in the HUFe,s

MB model.

On the marks of Fig. 6. The marks in Fig. 6 refer to instantiations where
neither Theorem 1 nor Theorem 2 apply. In other words, it is neither possible
to efficiently extract the full ZK-PoK commitment R, nor possible to have the
alignment property. For instance, this is reflected by having part of R hashed
into cv of hs (namely the x coordinate Rx and a prefix of the y coordinate Ry),
and a very few bits of the y coordinate Ry stored in the buffer in clear. The
instances marked with require further cryptanalysis in order to (possibly) be
deemed broken.

A More on Vertical Session Management Arrows

As an illustration of the semantics of the vertical session management arrows,
we provide an equivalent explicit version of Figs. 12 in 17. Note that many extra
lines of code are required to (1) implement a state machine for each session that
ensures the oracles are invoked strictly in the right order, and (2) implement the
persistence of state variables of each session. These changes implement precisely
what the (now dashed) vertical arrows promise to be doing.

B Details Deferred from Sect. 5

We provide further information on our attack against the Schnorr ZK-PoK pro-
tocol. All line references are with respect to Fig. 13.

Description of Subroutines. A1,A2,A3. Regarding A1 observe that the λi

defined in line 16 are (Lagrange) polynomials Z
l
p → Zp that have, for all 1 ≤ i ≤ l

and b ∈ {0, 1}, the property xi = cb
i =⇒ λi(. . . xi . . .) = b. Polynomial P is

defined in line 17 as a weighted sum of the λi’s; as all the latter are degree-one
polynomials, finding suitable coefficients α0, . . . , αl in line 18 is a well-defined
operation and always possible. See the caption of Fig. 13 for a strategy for how
the weights wi can be chosen such that line 22 always succeeds efficiently. The
remaining parts of A1,A2,A3 should be clear from the instructions.

Proof of Validity of Transcript τ∗
of Line 13. We need to argue that

gs∗
= R∗Xc∗

. Observe that, once line 13 of adversary A is reached, for the values
αi, c̄i, bi, c

∗ we have

α0 +
∑l

i=1 αic̄i = P (c̄1 .. c̄l) =
∑l

i=1 wiλi(c̄1 .. c̄l) =
∑l

i=1 wibi = α0 + c∗ , (1)

where the first, second, and fourth equalities are by lines 18, 17, and 22, respec-
tively. (The third equality was already discussed.) This implies

gs∗
=

∏
(gsi)αi =

∏
(RiX

c̄i)αi = R∗XΣαic̄i = R∗Xc∗
,

Digital Signatures with Outsourced Hashing 165

Fig. 17. Explicit version of Fig. 12. The colons between lines 13,14 serve no purpose
beyond visually aligning the middle and right columns. Array SST stores session states.

where the first and third equalities are by lines 24 and 19, respectively, the
second equality follows from the validity of the τi, and the fourth equality follows
from (1). Overall this shows the claim. ��
ROS Problem. Purely for reference we recall the definition of the ROS problem.
Note that 〈· , ·〉 stands for the (inner) dot product.

Definition 4 (ROS Problem [11]). Given a prime number p, a positive inte-
ger l, and a random oracle H : Z

l
p → Zp, find vectors v0, . . . , vl, c ∈ Z

l
p such that

i �= j ⇒ vi �= vj and 0 ≤ i ≤ l ⇒ 〈vi, c〉 = H(vi).

166 B. Poettering and S. Rastikian

References

1. PyCryptodome’s documentation. https://pycryptodome.readthedocs.io/en/
latest/src/signature/signature.html

2. Secure hashes and message digests. https://docs.python.org/3/library/hashlib.
html

3. PKCS#11: Cryptographic Token Interface Standard. An RSA Laboratories
Technical Note (1995), https://github.com/Pkcs11Interop/PKCS11-SPECS/blob/
master/v1.0/pkcs-11.pdf

4. Elliptic curve cryptography (June 2018), https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-
2-1_pdf.pdf?__blob=publicationFile&v=2

5. IT Security techniques - Digital signatures with appendix - Part 3: Discrete loga-
rithm based mechanisms. ISO14888-3 (2018)

6. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU (2020),
https://falcon-sign.info/falcon.pdf

7. Guide de sélection d’algorithmes cryptographiques. Guide ANSSI (March 2021),
https://www.ssi.gouv.fr/uploads/2021/03/anssi-guide-selection_crypto-1.0.pdf

8. Digital signature standard (DSS). FIPS 186-5 (February 2023), https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

9. Module-Lattice-Based Digital Signature Standard. Federal Information Process-
ing Standards Publication (2023), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.204.ipd.pdf

10. Backes, M., Barthe, G., Berg, M., Grégoire, B., Kunz, C., Skoruppa, M., Zanella-
Béguelin, S.: Verified security of merkle-Damgård. In: Zdancewic, S., Cortier, V.
(eds.) CSF 2012 Computer Security Foundations Symposium. pp. 354–368. IEEE
Computer Society Press (2012). https://doi.org/10.1109/CSF.2012.14

11. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 33–53. Springer, Heidelberg (Oct 2021). https://doi.org/
10.1007/978-3-030-77870-5_2

12. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited:
How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 430–448. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/
11535218_26

13. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP Message
Format. RFC 4880 (Nov 2007). https://doi.org/10.17487/RFC4880, https://www.
rfc-editor.org/info/rfc4880

14. GnuPG: Cryptographic Functions. https://www.gnupg.org/documentation/
manuals/gcrypt/Cryptographic-Functions.html#index-gcry_005fpk_005fhash_
005fsign

15. Google: BoringSSL. https://commondatastorage.googleapis.com/chromium-
boringssl-docs/ecdsa.h.html#Signing-and-verifying

16. Housley, R.: Cryptographic Message Syntax (CMS). RFC 5652 (Sep 2009). https://
doi.org/10.17487/RFC5652, https://www.rfc-editor.org/info/rfc5652

17. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447 (Feb 2003). https://doi.org/
10.17487/RFC3447

18. Josefsson, S., Liusvaara, I.: Edwards-Curve Digital Signature Algorithm (EdDSA).
RFC 8032 (Jan 2017). https://doi.org/10.17487/RFC8032, https://www.rfc-
editor.org/info/rfc8032

https://pycryptodome.readthedocs.io/en/latest/src/signature/signature.html
https://pycryptodome.readthedocs.io/en/latest/src/signature/signature.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
https://github.com/Pkcs11Interop/PKCS11-SPECS/blob/master/v1.0/pkcs-11.pdf
https://github.com/Pkcs11Interop/PKCS11-SPECS/blob/master/v1.0/pkcs-11.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=2
https://falcon-sign.info/falcon.pdf
https://www.ssi.gouv.fr/uploads/2021/03/anssi-guide-selection_crypto-1.0.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://doi.org/10.1109/CSF.2012.14
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.17487/RFC4880
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://www.gnupg.org/documentation/manuals/gcrypt/Cryptographic-Functions.html#index-gcry_005fpk_005fhash_005fsign
https://www.gnupg.org/documentation/manuals/gcrypt/Cryptographic-Functions.html#index-gcry_005fpk_005fhash_005fsign
https://www.gnupg.org/documentation/manuals/gcrypt/Cryptographic-Functions.html#index-gcry_005fpk_005fhash_005fsign
https://commondatastorage.googleapis.com/chromium-boringssl-docs/ecdsa.h.html#Signing-and-verifying
https://commondatastorage.googleapis.com/chromium-boringssl-docs/ecdsa.h.html#Signing-and-verifying
https://doi.org/10.17487/RFC5652
https://doi.org/10.17487/RFC5652
https://www.rfc-editor.org/info/rfc5652
https://doi.org/10.17487/RFC3447
https://doi.org/10.17487/RFC3447
https://doi.org/10.17487/RFC8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032

Digital Signatures with Outsourced Hashing 167

19. Ounsworth, M.: Design rationale for keyed message digests in SPHINCS+,
Dilithium, FALCON? https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
cIsc6tUY9Rw

20. Ounsworth, M.: Whether to hash-then-sign with Dilithium and Falcon? https://
groups.google.com/a/list.nist.gov/g/pqc-forum/c/yg9z4keaEf4

21. Poettering, B., Rastikian, S.: Formalizing hash-then-sign signatures. In: Public Key
Cryptography (1). LNCS, vol. 14601, pp. 289–315. Springer (2024), https://link.
springer.com/chapter/10.1007/978-3-031-57718-5_10

22. Schneier, B.: Applied Cryptography. John Wiley & Sons, New York, second edn.
(1996)

23. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0_22

24. Tadahiko Ito (SECOM CO., L.: Considerations on separation of hash. https://
datatracker.ietf.org/meeting/interim-2021-lamps-01/materials/slides-interim-
2021-lamps-01-sessa-position-presentation-by-tadahiko-ito-00

25. Wuille, P., Nick, J., Ruffing, T.: Schnorr Signatures for secp256k1. BIP 340 (Jan
2020), https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

26. Zimman, C., Bong, D.: Pkcs #11 cryptographic token interface current mechanisms
specification version 3.0 (June 2020), https://docs.oasis-open.org/pkcs11/pkcs11-
curr/v3.0/os/pkcs11-curr-v3.0-os.html

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cIsc6tUY9Rw
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cIsc6tUY9Rw
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yg9z4keaEf4
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yg9z4keaEf4
https://link.springer.com/chapter/10.1007/978-3-031-57718-5_10
https://link.springer.com/chapter/10.1007/978-3-031-57718-5_10
https://doi.org/10.1007/0-387-34805-0_22
https://datatracker.ietf.org/meeting/interim-2021-lamps-01/materials/slides-interim-2021-lamps-01-sessa-position-presentation-by-tadahiko-ito-00
https://datatracker.ietf.org/meeting/interim-2021-lamps-01/materials/slides-interim-2021-lamps-01-sessa-position-presentation-by-tadahiko-ito-00
https://datatracker.ietf.org/meeting/interim-2021-lamps-01/materials/slides-interim-2021-lamps-01-sessa-position-presentation-by-tadahiko-ito-00
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html

Adaptor Signatures: New Security
Definition and a Generic Construction

for NP Relations

Xiangyu Liu1,2(B), Ioannis Tzannetos1,3, and Vassilis Zikas2

1 Purdue University, West Lafayette, USA
{liu3894,itzannet}@purdue.edu

2 Georgia Institute of Technology, Atlanta, USA
vzikas@gatech.edu

3 National Technical University of Athens, Athens, Greece

Abstract. An adaptor signatures (AS) scheme is an extension of dig-
ital signatures that allows the signer to generate a pre-signature for an
instance of a hard relation. This pre-signature can later be adapted to
a full signature with a corresponding witness. Meanwhile, the signer can
extract a witness from both the pre-signature and the signature. AS have
recently garnered more attention due to its scalability and interoperabil-
ity. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed
for any NP relation using a generic construction. However, their con-
struction has a shortcoming: the associated witness is exposed by the
adapted signature. This flaw poses limits the applications of AS, even
in its motivating setting, i.e., blockchain, where the adapted signature is
typically uploaded to the blockchain and is public to everyone.

To address this issue, in this work we augment the security defini-
tion of AS by a natural property which we call witness hiding. We then
prove the existence of AS for any NP relation, assuming the existence
of one-way functions. Concretely, we propose a generic construction of
witness-hiding AS from signatures and a weak variant of trapdoor com-
mitments, which we term trapdoor commitments with a specific adaptable
message. We instantiate the latter based on the Hamiltonian cycle prob-
lem. Since the Hamiltonian cycle problem is NP-complete, we can obtain
witness hiding adaptor signatures for any NP relation.

1 Introduction

Blockchain technology has emerged as a disruptor, offering decentralized frame-
works for various applications. Each transaction on the blockchain operates
within a scripting language validated by nodes through a decentralized con-
sensus protocol. Cryptocurrencies like Bitcoin and Ethereum utilize blockchain
technologies to power their operations. However, executing transactions on
blockchains often incurs significant costs, as users are required to pay fees to

Work done while the authors were at Purdue University.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 168–193, 2025.
https://doi.org/10.1007/978-981-96-0888-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_6&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_6

Adaptor Signatures: New Security Definition 169

entities that run the consensus protocol. These fees are determined by the stor-
age and computational costs associated with transaction scripts. To mitigate
this issue, the utilization of adaptor signatures has been proposed as a means
to reduce on-chain fees paid to nodes in a wide range of decentralized finance
(DeFi) applications (see some examples below).

The notation of adaptor signatures (AS, a.k.a. scriptless scripts) was pro-
posed by Poelstra in 2017 [22,23] and later formalized by Aumayr et al. [2,3].
An AS scheme is related to a hard relation R such that the signer, holding the
signing secret key, can pre-sign a message (e.g., a transaction) with respect to
some instance Y to obtain a pre-signature σ̃, which can later be adapted to a
full signature σ with the knowledge of y, the witness of Y such that (Y, y) ∈ R.
Moreover, from both the pre-signature σ̃ and the adapted signature σ, the signer
can extract a witness of Y . AS can be viewed as an extension of (ordinary)
signatures by additionally addressing mutual trust between the signer and the
receiver, since the secret witness is exposed to the signer once the full signature
has been published.

AS are widely applied in fair exchanges [8], atomic swaps [13,23], and pay-
ment channel networks [2,13] to reduce on-chain computations and improve the
fungibility of transactions. We briefly discuss the applications of AS as follows.

Fair Exchange of a Witness. Assume Alice, who holds a token c for some
cryptocurrency, e.g., some amount of ETH for Ethereum, wants to trade it
for a witness y of some instance Y held by Bob (where y may be some secret
information accessing some digital services). Alice can post to the blockchain
a timeout transaction transferring c to Bob, which however requires a full
AS signature (with respect to Y) to be claimed; then, off-chain, Alice can
pre-sign a transaction tx using Y and send the pre-signature σ̃ to Bob. AS
allow then Bob to adapt σ̃ to a full signature σ using y, and upload it to
the blockchain to receive c. Once σ has been published, Alice can extract the
witness y which completes the exchange.

Atomic Swaps. Atomic swaps [13,23] allow two parties, Alice and Bob, to
exchange assets in two different cryptocurrencies cA and cB . First, both Alice
and Bob lock cA and cB on the blockchain as deposits (a.k.a. collateral).
Then, Alice randomly samples an instance-witness pair (Y, y), generates a
pre-signature σ̃A on message txA and instance Y , and sends txA, Y , σ̃A to
Bob. Here, txA is a transaction for transferring cA to Bob. Then, Bob also
generates a pre-signature σ̃B on message txB and instance Y , and sends txB,
σ̃B to Alice, where txB is a transaction for transferring cB to Alice. After
receiving σ̃B , Alice can adapt it to a full signature σB with the knowledge
of y, and upload it to the blockchain to obtain cB . Meanwhile, Bob can also
extract y from σ̃B and σB, adapt σ̃A to σA, and hence obtain cA.

Multi-hop Payments. Multi-hop payments [13] allow multiple parties to
route payments between them, provided that they have a payment chan-
nel with a common intermediate1. Consider four parties Alice, Bob, Charlie

1 In the original protocol in [13], each party is sampling a new pair of instance-witness
and they are using it once for each payment. Here we simplify the protocol by

170 X. Liu et al.

and David, where Alice wants to pay cryptocurrency (say c) to David. First,
Alice and Bob lock some funds on the blockchain on a payment channel as
deposits/collateral, Bob with Charlie, and Charlie with David do likewise.
Then, David randomly samples an instance/witness pair (Y, y) and forwards
Y to Alice, Bob, and Charlie. Subsequently, Alice generates a pre-signature
σ̃A on message txA and instance Y , and then sends txA, σ̃A to Bob. Here
txA is a transaction for transferring c to Bob. Then Bob also generates a
pre-signature σ̃B on message txB (transaction for transferring c to Charlie)
and instance Y and sends txB, σ̃B to Charlie. After that, Charlie generates
a pre-signature σ̃C on message txC (transaction for transferring c to David)
and instance Y , and sends txC , σ̃C to David. After receiving σ̃C , David can
adapt it to a full signature σC with the knowledge of y, and upload it to the
blockchain to obtain c. Meanwhile, Charlie can also extract y from σ̃C and
σC , adapt σ̃B to σB and hence obtain c. Finally Bob can follow the same
procedure to obtain c.

Security of Adaptor Signatures. The security definition of AS was formalized by
Aumayr et al. [2,3] and adopted by almost all subsequent works2 ([12,13,18,26–
28], to name a few). We give the formal security definition of AS in Sect. 2.3.
Nonetheless, as finding an issue with the existing definition (and repairing it) is
one of our contributions, we provide here an informal discussion.

As an extension of signatures, AS inherits the classical unforgeability prop-
erty of signatures. Namely, only the owner of the secret key can generate a valid
pre-signature (and a regular signature, of course). Besides classical unforgeabil-
ity, two additional properties are required for the security of the sender and the
receiver.

Security for the the Sender (a.k.a. Witness Extractability). The sender
can extract a witness from the valid pre-signature and the valid adapted
signature.

Security for the Receiver (a.k.a. Pre-signature Adaptability). The
receiver can adapt a valid pre-signature into a valid (full) signature with
the knowledge of a witness.

Notice that an AS scheme is defined with respect to a hard relation R, which
can vary from simple discrete logarithm relations to more complex relations
based on a blockchain scripting language. Therefore, a natural question is:

What relation R can an adaptor signature scheme support?

allowing every party to take the same instance. The security still holds assuming
that the intermediate parties do not collude.

2 Dai et al. [10] identified that Aumayr et al.’s definition [2,3] does not consider the
case of multiple pre-sign queries by the adversary, and fixed it by proposing a so-
called full extractability property.

Adaptor Signatures: New Security Definition 171

Adaptor Signatures for NP Relations. Most previous works [2,13,18,26,28] focus
on constructing AS schemes based on particular signatures schemes (like the
ECDSA and Schnorr) and for script-related relations (like the public/secret
key relation of signatures). The more recent work by Dai, Okamoto, and
Yamamoto [10] gave a generic constructions of AS for general NP relations. They
showed that AS can be constructed from any signature scheme and any NP-hard
relation, and therefore, adaptor signatures are implied by one-way functions.

An advantage of the construction from [10] is its simplicity: Let SIG be a
signature scheme, and R be an NP relation. In Dai et al.’s generic construction
GAS1, a pre-signature of message m w.r.t. instance Y is in the form of σ̃ = (σ̄, Y),
where σ̄ is a signature of SIG for message (m,Y). To adapt σ̃ into a full signature,
one just attaches the witness y to σ̃ and obtains σ = (σ̄, Y, y). The verification
algorithm of AS checks both the validity of σ̄ w.r.t. message (m,Y) and that
(Y, y) ∈ R.

However, as it turns out the above simplicity comes at a high cost: the
witness y is exposed in the adapted signature in plain text. This poses serious
security risks in many applications. For example, in the fair exchange application
above, the adapted signature σ is uploaded to the blockchain, making the witness
accessible to everyone on the network. However, y should only be known to the
buyer (Alice) since she has made a payment to the seller (Bob).

Similar security issues also arise in multi-hop payments when the construction
by [10] is used. Consider the case that Alice wants to pay to David via two
intermediary nodes, Bob and Charlie. If y is contained in plain in an adapted
signature, then after David uploads σC , Bob is able to get y and adapt σ̃A into
σA, thus skipping Charlie and receiving his money, which is conflict with the
fairness of multi-hop payments.

As it turns out, the above issue is not just an issue of the construction
in [10], but rather a deeper issue with the definition of security of AS. Intu-
itively, the functionality of AS requires that a witness can be extracted from
both the pre-signature σ̃ and the adapted signature σ, but not from either of
them individually. In almost all existing AS schemes [2,11,13,18,28], both σ̃
and σ are essential for extracting a witness. However, the generic construction
GAS1 from [10] satisfies all security requirements of the formal AS security def-
inition by Aumayr et al. [2,3]—including unforgeability, witness extractability,
and pre-signature adaptability—but still fails in satisfying the above intuition.
This demonstrates that previous security definition does not cover all security
properties needed for the applications of AS, and points to a new hole in the
literature (which we fill in) of a generic AS construction for any NP relation.

To solve the first (definitional) problem, we introduce a new security property
called witness hiding. Informally, it requires that the witness y can be extracted
from both a pre-signature and an adapted signature (jointly), but not from only
one of them alone. Thus the key open question now is:

Question: Can witness hiding adaptor signatures support any NP relation, and,
if so, what is the minimal assumption for such a construction?

172 X. Liu et al.

In this work, we propose a generic construction of AS from any signature
scheme and for any NP relation. Since signatures can be constructed from one-
way functions [15], we obtain the following theorem.

Theorem 1. Assuming one-way functions exist, then there exist witness hiding
adaptor signatures for any NP language.

We summarize our contributions as follows:

– We introduce witness hiding, a new security property for adaptor signatures.
This property requires that the witness y can be extracted from both a pre-
signature and an adapted signature, but not from only one of them. Witness
hiding is crucial in most applications of AS, including fair exchanges [8],
atomic swaps [13,23], and payment channel networks [2,13], where the pre-
signature remains private while the adapted signature is uploaded to the
blockchain and is public to everyone. Witness hiding helps prevent an eaves-
dropper from extracting a witness from only the adapted signature. We
observe that the only existing adaptor signature scheme for any NP rela-
tion [10] does not satisfy witness hiding, as the witness is exposed in plain in
the adapted signature3.

– We propose a generic construction of witness-hiding adaptor signatures from
(ordinary) signatures and a new type of trapdor commitment which we term
trapdoor commitments with a specific adaptable message. The latter is a
weaker version of classical trapdoor commitments, where there is a specific
message m0, and with the knowledge of the trapdoor, one can open a com-
mitment of m0 to another message m.

– We propose a trapdoor commitment scheme with a specific adaptable mes-
sage based on the Hamiltonian cycle problem, where the commitment key is
the Hamiltonian problem instance and the trapdoor is a Hamiltonian cycle
(witness). Since the Hamiltonian cycle problem is NP-complete, we obtain
adaptor signatures for any NP language. See Fig. 1 for a framework of adap-
tor signatures.

1.1 Related Work

The concept of adaptor signatures (AS) was introduced by Poelstra [22,23]
(referred as scriptless scripts in [22]). In 2020, Aumayr et al. [2,3] first formalized
adaptor signatures, and proposed three security properties for AS: unforgeability,
pre-signature adaptability, and witness extractability. All subsequent follow-up
works on AS can be categorized into two main directions.

The first direction focuses on designing AS from known underlying signa-
ture schemes. For example, the ECDSA-based adaptor signature scheme [2], the
Schnorr-based scheme [2,28], the LWE/SIS-based scheme LAS [13], the isogeny-
based scheme IAS [26], the code-based scheme [18], etc. Note that the supported
3 Almost all previous constructions ([2,11,13,18,26,28]), except GAS1 [10] satisfy

witness hiding property.

Adaptor Signatures: New Security Definition 173

One-way Functions

Commitments Signatures

Hamiltonian Cycle
Relations

Trapdoor Commitments
with a Specific

Adaptable Message

NP
Relations

Witness Hiding
Adaptor Signatures
for NP Relations

+

+

[14] [15]

Sec. 5

Sec. 4

Karp Reduc. [17]

Fig. 1. A framework of witness hiding adaptor signatures for NP relations

languages (e.g., the discrete logarithm language) in these schemes are fixed, due
to the specific structures of the underlying signature schemes.

The second direction focuses on generic constructions of AS [10,11]. Erwig et
al. [11] showed that identification (ID) schemes with additional homomorphic
properties can be transformed into adaptor signatures. However, the transform
requires the supporting language to be highly related with the format of the
commitment in the ID scheme, limiting the instantiations to the DL-based or
the RSA-based ID schemes and their corresponding languages.

Dai et al. [10] proposed the first truly generic construction of AS, called
GAS1, from any signature scheme and any NP language. As discussed however
the (overly-)simple construction GAS1, despite satisfying the security require-
ments according to [2], has the significant issue: that the witness y is exposed in
the adapted signature, which poses a serious security vulnerability in blockchain
applications.

In fact, [10] also proposed a second generic construction called GAS2 from any
signature scheme and any strongly random-self reducible relation. Compared to
GAS1, GAS2 is unlinkable, i.e., the adapted signature is indistinguishable from
a normally generated signature, and hence the witness is hidden from only the
adapted one. However, GAS2 requires the strong random-self reducibility of the
underlying relation. Therefore, similar to [11], the instantiations of GAS2 are
limited to standard number theoretical problems such as DL, RSA, and LWE.

1.2 Technical Overview

In this subsection, we provide a brief overview of our techniques.

Defining Witness Hiding. The witness hiding property requires that the witness
y is extractable from both the pre-signature σ̃ and the adapted signature σ
(jointly), but not from either of them alone. Note that y is inherently hidden in σ̃
since the pre-sign algorithms takes only the message, the instance and the secret
key as inputs, and it is independent of y. More formally, we say an AS scheme

174 X. Liu et al.

has the witness hiding property, if there exists an simulator that, given the
secret key (of AS), the message, and the instance as inputs, outputs a signature
which is indistinguishable from a signature adapted from a pre-signature using
witness y.

Generic Construction. Next we illustrate our generic construction of AS from
any signature scheme and for any NP relation. Our approach draws inspiration
from the simplicity of [10] but significantly modifies their paradigm with novel
ideas to achieve the witness-hiding property.

More concretely, let SIG be an ordinary signature scheme and R be a hard
relation. Recall that in GAS1, a pre-signature for message m and instance Y is
in the form of σ̃ = (σ̄, Y), where σ̄ is a signature of SIG for message (m,Y). And
the adapted signature is just σ = (σ̄, Y, y) by attaching the witness to σ̃.

One might be tempted to use the following idea to avoid the exposure of y
in σ: replace y with a zero-knowledge proof, and show that the adaptor knows a
witness of Y . However, in such a modification, y cannot be extracted from both
σ̃ and σ, and the witness extractability is violated.

Our key insight here is the observation that the witness extractability prop-
erty of AS has similarities in spirit with the special soundness property of Sigma
protocols. To demonstrate this, let us first recall this property. A Sigma protocol
for a hard relation R is a three-move protocol between a prover P and a verifier
V, where the prover holds a witness y of some instance Y and wants to prove to
the verifier in a zero-knowledge way. A complete transcript of a protocol execu-
tion consists of three parts: the first move is a commitment cmt sent from P to
V; the second move is a random challenge ch from V to P; and the third move
is a response rsp from P to V.

– Special soundness of Sigma protocols. From two valid transcripts with
the same commitment but different challenges, one can extract a witness of
the instance.

– Witness extractability of AS. From a valid pre-signature and an adapted
signature one can extract a witness.

Inspired by this analogy observation, we modify the pre-signature of AS
to be σ̃ = (σ̄, Y, (cmt, ch′, rsp′)), where σ̄ is a signature of (m,Y, cmt), and
(cmt, ch′, rsp′) is a valid transcript of a Sigma protocol w.r.t. instance Y . To
adapt it to a (full) signature, the adaptor, with the knowledge of y, has to
generate rsp for another challenge ch �= ch′ such that (cmt, ch, rsp) is also a
valid transcript. This is feasible due to the completeness of the Sigma protocol,
since a prover knowing a witness y is able to answer any challenge and reply
a response to make the transcript valid. Meanwhile, the witness extractability
of AS is guaranteed by the special soundness of the Sigma protocol, since from
σ̃ = (σ̄, Y, (cmt, ch, rsp)) and σ = (σ̄, Y, (cmt, ch′ �= ch, rsp′)) one can extract a
witness of Y .

We formally describe our generic construction using trapdoor commitments
(TC, a.k.a. chameleon hashes [19], which are equivalent to Sigma protocols [4]).

Adaptor Signatures: New Security Definition 175

In a TC scheme, with the public commitment key, one can commit a message
m′ to get a commitment c and an opening d′, and with the trapdoor one can
open c to another m �= m′ and get a corresponding d. Meanwhile, trapdoor
extractability requires that from a collision (c,m′, d′) and (c,m �= m′, d) one
can extract the trapdoor. In our generic construction of AS, we first transfer
the instance-witness pair (Y, y) into a commitment-trapdoor key pair of a TC
scheme. Now, a pre-signature w.r.t. message m and instance Y is in the form of

σ̃ = (σ̄, Y, c,m′ �= m, d′),

where σ̄ is a signature for (m,Y, c), and d′ is an opening of c for a “dummy”
message m′ �= m. Given σ̃ and witness y (the trapdoor of the underlying TC
scheme), the adapted signature is in the form of

σ = (σ̄, Y, c,m, d),

where d is another opening for the signed message m, adapted from (c,m′, d′)
using trapdoor (witness) y.

Functionality and security of the generic construction are analyzed as follows.

– Functionality of adaption. This is guaranteed by the trapdoor adaption
property of TC.

– Unforgeability. This is inherited from the underlying signature scheme.
– Witness extractability. This is guaranteed by the trapdoor extractability

of TC. Namely, from a collision (c,m′, d′) and (c,m �= m′, d) one can extract
the trapdoor.

– Pre-signature adaptability. This is guaranteed by the functionality of TC,
i.e., with the trapdoor one can open a commitment to any message, and
therefore the adapted signature σ = (σ̄, Y, c,m, d) is valid.

– Witness hiding. This is due to the fact that from only a tuple of commit-
ment (c,m, d) nothing about the trapdoor is leaked.

We notice that in the pre-sign process, the dummy message m′ in the pre-
signature can be a fixed value m0, as long as it differs from the message m to
be signed. Moreover, to construct AS schemes, we only require a property that
a commitment of the fixed m0 (but not necessarily an arbitrary commitment)
can be opened to another message. Based on this observation, we propose a
weakened notation of trapdoor commitments, termed trapdoor commitments
with a specific adaptable message, where there exists a specific message m0, and
with the trapdoor one can (only) open a commitment of m0 to another message.
Next we will see, such a weakening enables constructions from any NP relation,
where the instance Y and the witness y serve as the commitment key and the
trapdoor, respectively.

Constructing TC with a Specific Adaptable Message. We now turn to construct
a trapdoor commitment scheme with a specific adaptable message for any NP
relation R. Bellare and Ristov [4] proved the equivalence of Sigma protocols

176 X. Liu et al.

and chameleon hashes (and hence trapdoor commitments), where the commit-
ment, the challenge, and the response in a Sigma protocol correspond to the
commitment, the message, and the opening in a trapdoor commitment scheme.
However, one must exercise caution when transferring one to another, since their
security definitions are not perfectly matched. For example, to transfer a Sigma
protocol into a trapdoor commitment scheme, we must additionally ensure that
there is a simulator for the Sigma protocol, which can generate a simulated
transcript given a fixed challenge, and the commitment can be recovered from
the challenge, the response, and the instance. However, this is not a universally
applicable property for all Sigma protocols.

Following the framework by Bellare and Ristov [4], we found that the Sigma
(zero-knowledge) protocol for the Hamiltonian cycle problem by Blum [7,14]
can be perfectly transferred into a trapdoor commitment scheme with a specific
adaptable message m0 = 0. We recall the protocol and present the corresponding
trapdoor commitment scheme in Fig. 2.

Fig. 2. The zero-knowledge proof protocol for the Hamiltonian cycle problem [7,14]
(left) and the trapdoor commitment scheme from it (right). Here (G,H ⊆ G) is an
instance-witness pair of the Hamiltonian cycle problem, and com and d are commit-
ments and openings of a bit commitment scheme with statistical biding and computa-
tional hiding.

Let G be a graph, and H ⊆ G be a Hamiltonian cycle, i.e., a witness of
Hamiltonian graph instance G. First, the prover P randomly samples a permu-
tation π and commits G′ = π(G), and then sends the commitments comG′4 to
the verifier V. Here com denotes standard commitments with statistical biding
and computational hiding (cf. Definition 1). Then the verifier V sends a ran-

dom challenge ch
$← {0, 1}. If ch = 0, then P sends all openings of comG′ and

the permutation π to V, and V checks comG′ are commitments of π(G). And if
ch = 1, then P sends all openings of comH′ to V, and V checks comG′ include
commitments of a Hamiltonian cycle H ′(= π(H)).

The Sigma protocol described above has a zero-knowledge simulator that,
given the challenge ch, can perfectly simulate a transcript (cmt, ch, rsp). More-
over, if ch = 0, then the simulated transcript is identical to the transcript from

4 More precisely, comG′ is a group of bit commitments for the adjacency matrix of G′.

Adaptor Signatures: New Security Definition 177

an honest execution. And with the knowledge of a witness, it is easy to get a
response for ch = 1 under the same commitment, which is exactly the function-
ality of adaption in the trapdoor commitment scheme.

Our trapdoor commitment scheme with specific adaptable message m0 = 0
is shown in Fig. 2 (right). If m = 0, then the commitment is comπ(G) and the
corresponding opening is (π, dπ(G)), where π is a random permutation and dπ(G)

is the corresponding openings of the underlying (standard) commitment scheme.
If m = 1, then the commitment is comG′ and the corresponding opening is dH′ ,
where G′ is a randomly generated Hamiltonian graph with a Hamiltonian cycle
H ′.

Given that the Hamiltonian cycle problem is NP-complete [17], we know any
NP relation R can be transferred into a trapdoor commitment scheme with a
specific adaptable message. Therefore, we get witness hiding adaptor signature
schemes from any signature scheme and for any NP relation. Combined with the
fact that signature schemes and (standard) bit commitment schemes are implied
by one-way functions [14,15], Theorem 1 holds consequently.

1.3 Organization of the Paper

This rest of the paper is organized as follows. In Sect. 2, we present prelimi-
naries and define trapdoor commitments with a specific adaptable message. In
Sect. 3, we introduce adaptor signatures and their security properties, including
the witness hiding property. Section 4 details the generic construction of AS.
The trapdoor commitment scheme with a specific adaptable message for the
Hamiltonian cycle problem is shown in Sect. 5. Finally, we conclude this paper
in Sect. 6.

2 Preliminaries

Throughout this paper, we use λ ∈ N to denote the security parameter. For
μ ∈ N, define [μ] := {1, 2, ..., μ}. Denote by x := y the operation of assigning

y to x. Denote by x
$← S the operation of sampling x uniformly at random

from a set S. For a distribution D, denote by x ← D the operation of sampling x
according to D. For an algorithm A, denote by y ← A(x; r), or simply y ← A(x),
the operation of running A with input x and randomness r and assigning the
output to y. For deterministic algorithms A, we also write as y := A(x) or
y := A(x; r). “PPT” is short for probabilistic polynomial-time.

2.1 Commitments

Definition 1 (Commitments). A commitment scheme consists of the follow-
ing three algorithms. Namely, COM = (Gen,Com,Ver).

– ck ← Gen(1λ). The key generation algorithm takes as input the security
parameter λ, and outputs a commitment key ck.

178 X. Liu et al.

– (c, d) ← Com(ck,m). The commitment algorithm takes as input ck and a
message m ∈ M, and outputs a commitment c and an opening d.

– 0/1 ← Ver(ck, c,m, d). The verification algorithm takes as input ck, c, m and
d, and outputs a bit.

Correctness. For any ck ← Gen(1λ), any message m ∈ M and (c, d) ←
Com(ck,m), it holds that Ver(ck, c,m, d) = 1.

Definition 2 (Statistical Biding of Commitments). A commitment
scheme COM has statistical biding, if for any unbounded adversary A, the
advantage

Advbiding
COM,A(λ) :=

∣
∣
∣
∣
∣
∣

Pr

⎡

⎣
ck ← Gen(1λ)

(c,m0,m1, d0, d1) ← A(ck) :
m0 �= m1

∧ Ver(ck, c,m0, d0) = 1
∧ Ver(ck, c,m1, d1) = 1

⎤

⎦

∣
∣
∣
∣
∣
∣

is negligible over λ.

Definition 3 (Hiding of Commitments). A commitment scheme COM has
hiding, if for any PPT adversary A, the advantage

Advhiding
COM,A(λ) :=

∣
∣
∣
∣
Pr

[

ck ← Gen(1λ); (m0,m1, st) ← A(ck)
(c, d) ← Com(ck,m0)

: A(st, c) = 1
]

− Pr
[

ck ← Gen(1λ); (m0,m1, st) ← A(ck)
(c, d) ← Com(ck,m1)

: A(st, c) = 1
]∣
∣
∣
∣

is negligible over λ.

Bit commitment schemes (i.e., the message is one bit) with statistical biding
can be constructed from one-way functions [14].

2.2 Trapdoor Commitments

Definition 4 (Trapdoor Commitments with Specific Adaptable Mes-
sage). Let M be a message space and m0 ∈ M. A trapdoor commitment (TC)
scheme with specific adaptable message m0 consists of the following four algo-
rithms. Namely, TC = (Gen,Com,Ver,TdOpen).

– (ck, td) ← Gen(1λ). The key generation algorithm takes as input the security
parameter λ, and outputs a commitment key ck and a trapdoor td.
We implicitly assume ck is contained in td, and there exists an efficient
function to check the validity of a trapdoor w.r.t. a commitment key, i.e.,
fTC(ck, td) = 1 if td is valid w.r.t. ck.

– (c, d) ← Com(ck,m). The commitment algorithm takes as input ck and a
message m ∈ M, and outputs a commitment c and an opening d.

– 0/1 ← Ver(ck, c,m, d). The verification algorithm takes as input ck, c, m and
d, and outputs a bit.

Adaptor Signatures: New Security Definition 179

– d ← TdOpen(td, c,m0, d0,m). The trapdoor open algorithm takes as input td,
c, m0, d0, and another message m, and outputs an adapted opening d.

Correctness. For any (ck, td) ← Gen(1λ), any message m ∈ M, the followings
two hold.

1. If (c, d) ← Com(ck,m), then Ver(ck, c,m, d) = 1.
2. If (c, d0) ← Com(ck,m0) and d ← TdOpen(td, c,m0, d0,m), then

Ver(ck, c,m, d) = 1.

Definition 5 (Hiding of Trapdoor Commitments). A trapdoor commit-
ment scheme TC with specific adaptable message m0 has hiding, if for any PPT
adversary A, the advantage

Advhiding
TC,A (λ) :=

∣
∣
∣
∣
Pr

[

(ck, td) ← Gen(1λ); (m, st) ← A(ck)
(c, d0) ← Com(ck,m0) : A(st, c) = 1

]

− Pr
[

(ck, td) ← Gen(1λ); (m, st) ← A(ck)
(c, d) ← Com(ck,m) : A(st, c) = 1

]∣
∣
∣
∣

is negligible over λ.

Definition 6 (Trapdoor Extractability of Trapdoor Commitments). A
trapdoor commitment scheme TC with specific adaptable message m0 is trap-
door extractable, if there is an efficient extract algorithm Ext that can extract
a trapdoor from a collision with high probability. More precisely, for (ck, td) ←
Gen(1λ), any (c,m0, d0) and (c,m, d) s.t. m �= m0 and Ver(ck, c,m0, d0) =
Ver(ck, c,m, d) = 1, it holds that

Pr[fTC(ck,Ext(ck, c,m0, d0,m, d)) = 0] ≤ negl(λ),

where the probability is taken over the random choice of key generation.

Definition 7 (Adaption Indistinguishability of Trapdoor Commit-
ments). A trapdoor commitment scheme TC with a specific adaptable message
m0 has adaption indistinguishability, if for any m, any PPT adversary A, the
advantage

Advaind
TC,A(λ) :=

∣
∣
∣
∣
∣
∣

Pr

⎡

⎣

(ck, td) ← Gen(1λ)
(c, d0) ← Com(ck,m0)

d ← TdOpen(td, c,m0, d0,m)
: A(ck,m0,m, c, d) = 1

⎤

⎦

− Pr
[

(ck, td) ← Gen(1λ)
(c, d) ← Com(ck,m) : A(ck,m0,m, c, d) = 1

]∣
∣
∣
∣

is negligible over λ.

Remark 1 (Classical Trapdoor Commitments). If m0 in the above definitions
is replaced with an arbitrary message m, then we define the classical trap-
door commitment schemes, and the corresponding properties of hiding, trapdoor

180 X. Liu et al.

extractability, and adaption indistinguishability. Jumping ahead, the commit-
ment c of the specific adaptable message m0 serves as one part of the message
to be signed in the pre-sign process of adaptor signatures. With the knowledge
of the witness y, which is the trapdoor in the commitment scheme, one can open
this commitment c to the real message to be signed and hence form a valid
adapted signature.

2.3 Signatures

Definition 8 (Signatures). A signature scheme consists of the following three
algorithms. Namely, SIG = (Gen,Sign,Ver).

– (pk, sk) ← Gen(1λ). The key generation algorithm takes as input the security
parameter λ, and outputs a public key pk and a secret key sk.

– σ ← Sign(sk,m). The signing algorithm takes as input sk and a message m,
and outputs a signature σ.

– 0/1 ← Ver(pk,m, σ). The verification algorithm takes as input pk, m, and σ,
and outputs a bit b indicating the validity of σ (w.r.t. m).

Correctness. For any (pk, sk) ← Gen(1λ), any message m and σ ←
Sign(sk,m), it holds that Ver(pk,m, σ) = 1.

Definition 9 (Unforgeability of Signatures). A signature scheme SIG is
unforgeable under chosen message attacks (UF-CMA secure), if for any PPT
adversary A, Advuf

SIG,A(λ) := Pr[Expuf
SIG,A(λ) ⇒ 1] is negligible over λ, where

Expuf
SIG,A(λ) is defined in Fig. 3.

Fig. 3. The UF-CMA security experiment of signatures

2.4 NP Languages

Let {Rλ} ⊆ ({0, 1}∗ × {0, 1}∗)λ be a series of binary relations indexed by param-
eter λ. If λ is fixed then we simply denote Rλ as R. We call R an NP relation
if there is an efficient algorithm to check whether (Y, y) ∈ R. The relation R
defines an NP language LR := {Y ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ s.t. (Y, y) ∈ R}. We
call Y the instance (not necessarily in LR), and y a witness of Y if (Y, y) ∈ R.
Usually, there is an efficient sample algorithm that returns an instance-witness
pair. Formally, (Y, y) ← Sample(R).

Adaptor Signatures: New Security Definition 181

Definition 10 (Hard Relations). A binary relation R is hard (one-way) if
for any PPT adversary A, its advantage

Advow
R,A(λ) := Pr[(Y, y) ← Sample(R); y′ ← A(R, Y) : (Y, y′) ∈ R]

is negligible over λ.

3 Adaptor Signatures

In this section, we present the definition of adaptor signatures and the security
requirements, including the newly proposed witness hiding property.

Definition 11 (Adaptor Signatures). An adaptor signature scheme w.r.t.
a relation R consists of seven algorithms AS = (Gen,Sign,Ver, pSign,
pVer,Adapt,Ext), where the first three algorithms are defined as regular signa-
tures (cf. Def. 8), and the last four are defined as follows.

– σ̃ ← pSign(sk,m, Y). The pre-sign algorithm takes as input sk, m and an
instance Y , and outputs a pre-signature σ̃.

– b ← pVer(pk,m, Y, σ̃). The pre-verification algorithm takes as input pk, m, Y
and σ̃, and outputs a bit indicating the validity of σ̃.

– σ ← Adapt(pk,m, σ̃, y). The adaption algorithm takes as input pk, m, σ̃ and
a witness y as input, and outputs an adapted signature σ.

– y/ ⊥← Ext(pk,m, Y, σ̃, σ). The extraction algorithm takes as input pk, m, Y ,
σ̃ and σ, and outputs a witness y, or a failure symbol ⊥.

Except the correctness as defined in Def. 8, we additionally require the pre-
signature correctness and extraction correctness.

Pre-signature Correctness and Extraction Correctness. For any
(pk, sk) ← Gen(1λ), any message m, any (Y, y) ∈ R, σ̃ ← pSign(sk,m, Y),
and σ ← Adapt(pk,m, σ̃, y), it holds that

1. (Pre-signature correctness) pVer(pk,m, Y, σ̃) = 1, and
2. (Extraction correctness) Ver(pk,m, σ) = 1.

We require unforgeability, witness extractability and pre-signature adaptabil-
ity for the security of adaptor signatures. Here, we mainly follow the definition by
Dai et al. [10] which allows multiple queries to the pre-sign oracle. Meanwhile, we
divide the full extractability in [10] into unforgeability and witness extractability
(as [2]) for better presenting the different security aspects of adaptor signatures.

Definition 12 (Unforgeability of Adaptor Signatures). An adaptor sig-
nature scheme AS w.r.t. binary relation R is unforgeable under chosen mes-
sage attacks (UF-CMA secure), if for any PPT adversary A, Advuf

AS,A(λ) :=
Pr[Expuf

AS,A(λ) ⇒ 1] is negligible over λ, where Expuf
AS,A(λ) is defined in Fig. 4.

182 X. Liu et al.

Fig. 4. The UF-CMA security experiment of adaptor signatures

Fig. 5. The witness extractability experiment of adaptor signatures

Definition 13 (Witness Extractability). An adaptor signature scheme
AS w.r.t. relation R is witness extractable, if for any PPT adversary A,
Advwe

AS,A(λ) := Pr[Expwe
AS,A(λ) ⇒ 1] is negligible over λ, where Expwe

AS,A(λ) is
defined in Fig. 5.

Remark 2 (Stronger Definition of Witness Extractability). A stronger defini-
tion of witness extractability is that the extraction will not fail as long as
pVer(pk,m, Y, σ̃) = 1. Combined with the correctness, the difference between
this stronger definition and Def. 13 lies in whether one can extract a witness
from a valid signatureσ̃ and an adapted signature σ, such that σ̃ is not gener-
ated via pSign.

However, such a stronger definition is not practical in the real world, since
witness extractability is meant to guarantee Alice’s right to extract y once Bob
publishes the adapted signature, assuming Alice generates the pre-signature via
(normal) pSign, but not other ways.

Definition 14 (Pre-signature Adaptability). An adaptor signature scheme
AS w.r.t. relation R has pre-signature adaptability, if for any public key pk, any

Adaptor Signatures: New Security Definition 183

message m, any (Y, y) ∈ R and pre-signature σ̃ s.t. pVer(pk,m, Y, σ̃) = 1, it
holds that Ver(pk,m,Adapt(pk,m, σ̃, y)) = 1.

Now we formally define the property that y can be extracted from both the
pre-signature σ̃ and the adapted signature σ, but not just σ. In other words, σ
leaks no additional information about y.

Definition 15 (Witness Hiding of Adaptor Signatures). An adaptor sig-
nature scheme AS w.r.t. relation R is witness hiding, if there exists a simulator
Sim such that, for any PPT adversary A,

Advwh
AS,SimA(λ) := |Pr[Expwh

AS,Sim,A,0(λ) ⇒ 1] − Pr[Expwh
AS,Sim,A,1(λ) ⇒ 1]|

is negligible over λ, where Expwh
AS,Sim,A,b(λ) (b ∈ {0, 1}) are defined in Fig. 6.

Fig. 6. The witness hiding experiments of adaptor signatures

Remark 3 (On the Formalization of Witness Hiding). Witness hiding property
requires that the witness is exposed from both the pre-signature σ̃ and the
adapted signature σ, but not from either of them. One might wonder why we
only ask the adapted signature σ to leak no information about the witness in
the above definition, but do not impose restrictions on the pre-signature σ̃.
Actually, the witness hiding property for σ̃ is naturally established, since the
pre-sign algorithm takes only the secret key sk, the message m, and the instance
Y as input, and hence it is independent of y.

The motivation of introducingwitness hiding is to prevent a malicious eaves-
dropper who has access to blockchains from extracting the witness using an
adapted signature. From this point, the eavesdropper Aeav has no knowledge of
the (signing) secret key, and it should be unable to distinguish a pre-sign-and-
adapt signature (using y) and a simulated signature. This can be formalized by an
experiment where Aeav has access to oracles Chall0 (the pre-sign-and-adaption
oracle) and Chall1 (the simulation oracle), and the secret key is sampled by
the challenger/experiment and not known to Aeav. In the definition above, we
consider a stronger adversary A who is able to select the signing secret key by
itself, and A degrades into an eavesdropper adversary Aeav if it generates sk
honestly and discards it immediately after the query. Therefore, Definition 15 is
stronger than the definition which considers just the eavesdropping case.

184 X. Liu et al.

Remark 4 (On the Relationship with Unlinkability [10]). The unlinkability prop-
erty, as defined in [10], requires that a signature obtained by first pre-signing
and then adapting is indistinguishable from a signature obtained by directly
signing the message. Unlinkability implies witness hiding, as the simulator Sim
can be replaced by the signing algorithm. However, witness hiding does not imply
unlinkability. To see this, consider a witness hiding adaptor signature scheme AS
with a simulator Sim. If we modify the pre-sign algorithm so that it signs (m||0)
instead of m, and adjust the verification and adaptation algorithms accordingly,
then the scheme still satisfies witness hiding. However, the unlinkability prop-
erty does not hold in this modified scheme, since the pre-sign-then-adapt mode
returns a signature for (m||0), while the direct sign mode returns a signature
for m.

Though unlinkability [10] is strictly stronger than the witness hiding property
defined in this work, it is still reasonable to introduce the weaker definition of
witness hiding.

– In some applications, we may want to make a pre-sign-and-adapt signature be
distinguishable from a directly signed signature (while hiding the witness from
just the adapted signature at the same time). For example, Alice may use the
same signing secret key in both a blockchain transaction system (where Alice
pre-signs transactions only) and a daily authentication system (where Alice
signs messages directly only), and she wants to distinguish all signatures in
the blockchain systems so that she can trace and analyze her behaviors. The
unlinkability property is overengineered in this scenario.

– It is essential to explore the minimal requirement for practical AS where
the witness is hidden from just the adapted signatures. As shown in this
work, such weaker definition allows us to design witness hiding AS for all NP
relations.

– The unlinkability defined in [10] is very strong, since the adversary is able
to select (Y, y) by itself. To achieve unlinkability, [10] requires the strong
random-self reducibility of the underlying NP relations, and therefore the
instantiations are limited to number theoretical problems (DL, LWE, etc.).
It is very challenging to design unlinked AS schemes for arbitrary relations,
where the pre-sign-and-adapt signature (in which the instance is specified
by the adversary, i.e., PreSignAdapt(sk,m, Y, y)) is indistinguishable from a
normal one (in which there is no instance as input at all, i.e., Sign(sk,m)).
This means that the instance Y can be re-randomized or eliminated during
the adaption, which seems inherently requires some special structure of the
underlying NP relation. It is unknown whether unlinked AS schemes for any
NP relations exist.

Adaptor Signatures: New Security Definition 185

4 Generic Construction of Adaptor Signatures
from Signatures and Trapdoor Commitments
with a Specific Adaptable Message

Let M be a message space, and there is a fixed message m0 ∈ M (e.g., the
all-zero bit string). Let SIG = (Gen,Sign,Ver) be a signature scheme with the
message space M. Let R be an NP relation, and any (Y, y) ∈ R forms a trap-
door commitment scheme TC = (Gen,Com,Ver,TdOpen) with a specific adapt-
able message m0, where Y is the commitment key and y is the trapdoor, and
TC.Gen(1λ) just returns (Y, y) ← Sample(R).

Our adaptor signature scheme AS with the message space M\{m0} is shown
in Fig. 7.

Fig. 7. Generic construction of adaptor signatures from signatures and trapdoor com-
mitments with a specific adaptable message m0

Correctness. The correctness of AS consists of three aspects.

– Signature correctness & Pre-signature correctness. These are guaranteed by
the correctness of SIG and the correctness of TC (the first property of TC).

– Extraction correctness. This is guaranteed by the trapdoor extractability of
TC.

Theorem 2. If SIG has UF-CMA security, TC has hiding and trapdoor
extractability and R is a hard relation, then the adaptor signature scheme AS
in Fig. 7 has UF-CMA security, witness extractability, pre-signature adaptability
and witness hiding.

186 X. Liu et al.

Proof. UF-CMA security. Let (m∗, σ∗ = (σ̄∗, Y ∗, c∗, d∗)) be A’s final forgery
in the unforgeability experiment (cf. Def. 12), and m∗ ∈ M \ {m0}. Recall that
for A to win, it must hold that

1. SIG.Ver(pk, (m∗, Y ∗, c∗), σ̄∗) = 1 and TC.Ver(Y ∗, c∗,m∗, d∗) = 1, and
2. A never queries Sign(m∗), and
3. (a) either T [m∗] = ∅ (i.e., A never asks pSign(m∗, Y) for any Y), or

(b) for all (Y, σ̃ = (σ̄, Y, c, d)) ∈ T [m∗], it holds that Y ∈ Y (i.e., A only
queries pSign(m∗, Y) for Y whose witness is unknown to it).

We first analyze the case 1 ∧ 2 ∧ (a). It is easy to see that in this case, the
challenger C does not sign a message of the form (m∗, ·, ·) when answering the
pre-signing oracle pSign and the signing oracle Sign. Therefore, we can easily
construct a reduction algorithm to break the UF-CMA security of the underlying
SIG.

Then we analyze the case 1 ∧ 2 ∧ (b). We divide it into the following two
subcases.

(i) For all (Y, σ̃ = (σ̄, Y, c, d)) ∈ T [m∗], (Y, c) �= (Y ∗, c∗).
Similarly, this means that C does not sign a message in the form of
(m∗, Y ∗, c∗) when answering the pre-signing oracle pSign. Therefore, A
breaks the UF-CMA security of the underlying SIG.

(ii) There exists (Y, σ̃ = (σ̄, Y, c, d0)) ∈ T [m∗] such that (Y, c) = (Y ∗, c∗).
Recall that the message space defined in AS is M \ {m0}. Therefore m∗ �=
m0. Besides, we have TC.Ver(Y, c,m0, d0) = 1 due to the correctness of
AS. Combined with the fact that TC.Ver(Y ∗, c∗,m∗, d∗) = 1 and (Y, c) =
(Y ∗, c∗), we can extract a witness y′ via TC.Ext(Y ∗, c∗,m0, d0,m

∗, d∗). Since
Y ∗ ∈ Y (i.e., the corresponding witness of Y ∗ is unknown to A), A breaks
the one-wayness of the hard relation R.

The UF-CMA security holds as a result.

Witness Extractability. Let (m∗, σ∗) be A’s final output in the witness
extractability experiment (cf. Def. 13), and σ∗ = (σ̄∗, Y ∗, c∗, d∗). Recall that
for A to win, we have

1. SIG.Ver(pk, (m∗, Y ∗, c∗), σ̄∗) = 1 and TC.Ver(Y ∗, c∗,m∗, d∗) = 1, and A never
asks Sign(m∗).

2. For all (Y, σ̃ = (σ̄, Y, c, d0)) ∈ T [m∗], (Y ∗,TC.Ext(Y, c,m0, d0,m∗, d∗)) /∈ R
(i.e., the witness extraction fails for all (Y, σ̃) ∈ T [m∗]).

Since A never queries Sign(m∗), and σ̄∗ is a valid signature w.r.t. (m∗, Y ∗, c∗),
there must exist an item (Y, σ̃ = (σ̄, Y, c, d0)) ∈ T [m∗] s.t., Y = Y ∗ and c =
c∗, as otherwise A would break the UF-CMA security of the underlying SIG
scheme. Then, for that (Y, σ̃) ∈ T [m∗], we have SIG.Ver(pk, (m∗, Y, c), σ̄) = 1
and TC.Ver(Y, c,m0, d0) = 1 due to the correctness of AS. Therefore, from the
fact that TC.Ver(Y ∗, c∗,m∗, d∗) = 1, TC.Ver(Y = Y ∗, c = c∗,m0, d0) = 1 and
m∗ �= m0, the extraction algorithm TC.Ext(Y ∗, c∗,m0, d0,m

∗, d∗) will always

Adaptor Signatures: New Security Definition 187

return a witness y satisfying (Y ∗, y) ∈ R, which completes the proof of witness
extractability.
Pre-signature Adaptability. Let σ̃ = (σ̄, Y, c, d0) be a pre-signature
such that pVer(pk,m, Y, σ̃) = 1. Namely, SIG.Ver(pk, (m,Y, c), σ̄) = 1 and
TC.Ver(Y, c,m0, d0) = 1. Assume (Y, y) ∈ R, the adaption algorithm will
return σ = (σ̄, Y, c, d) where d ← TC.TdOpen(y, c,m0, d0,m). Obviously
SIG.Ver(pk, (m,Y, c), σ̄) = 1 still holds. Furthermore, due to the correctness of
TC, we have TC.Ver(Y, c,m, d) = 1, and the pre-signature adaptability holds
consequently.

Witness Hiding. To prove the witness hiding property, we have to design a
simulator Sim such that it can simulate an adapted signature given (m,Y), which
is indistinguishable from a signature generated by the pre-sign-and-adaption
paradigm with the knowledge of y. (Recall that the witness hiding property
assumes that the secret key sk for signing is also given to Sim as an input.)

We design Sim similarly to the signing algorithm Sign, with the only difference
being that Sim uses a fixed Y instead of sampling a new Y .

Then we argue that a simulated signature σ1 = (σ̄1, Y, c1, d1) is indistin-
guishable from a pre-sign-and-adapt signature σ0 = (σ̄0, Y, c0, d0). Notice that
σ̄1 ← SIG.Sign(sk, (m,Y, c1)) and σ̄0 ← SIG.Sign(sk, (m,Y, c0)). Therefore, it is
sufficient to prove that (c1, d1) is indistinguishable from (c0, d0).

– In the simulated signature, (c1, d1) is computed via (c1, d1) ← TC.Com(Y,m).
– In the pre-sign-and-adaption signature, (c0, d0) is computed via (c0, d0) ←

Com(Y,m0) and d0 ← TC.TdOpen(y, c0,m0, d0,m).

According to the adaption indistinguishability of TC, (c1, d1) and (c0, d0) are
indistinguishable, and the witness hiding of AS holds consequently. ��

5 Trapdoor Commitments for Any NP Relation

In this section we show a trapdoor commitment with a specific adaptable mes-
sage for the Hamiltonian cycle problem, a well-known NP complete problem.
Combined with Theorem 2, we obtain adaptor signatures for any NP relation.

Zero-Knowledge Proof for the Hamiltonian Cycle Problem. Let us
first recall the zero-knowledge protocol for the Hamiltonian cycle problems by
Blum [7,14]. Let G be a graph, and H ⊆ G be a Hamiltonian cycle, i.e., a wit-
ness of Hamiltonian graph instance G. The zero-knowledge protocol between the
prover P and the verifier V is shown as follows.

1. P randomly samples a permutation π and gets G′ := π(G). Then P commits
the adjacency matrix of G′ and sends the commitments comG′ to V.

2. After receiving comG′ , V sends a random bit b
$← {0, 1}.

3. P responses as follows.
– If b = 0, then P sends all openings of comG′ , and the permutation π to

V.

188 X. Liu et al.

– If b = 1, then P sends all openings of comH′ to V, where H ′ := π(H) is
a Hamiltonian cycle of G′.

4. V checks as follows.
– If b = 0, then V checks comG′ are commitments of the adjacency matrix

of π(G).
– If b = 1, then V checks comG′ include commitments of the adjacency

matrix of H ′, and H ′ is a Hamiltonian cycle.

Theorem 3 ([7,14]). If the commitment scheme has statistical biding and (com-
putational) hiding, then the above protocol is a zero-knowledge proof protocol with
soundness error 1/2.

Now we show the zero-knowledge proof (Sigma) protocol can be transferred
into a bit trapdoor commitment with special adaptable message m0 = 0. At a
high-level, the transform follows the proof of the equivalence of Sigma protocols
and chameleon hashes by Bellare and Ristov [4]. Specifically, the commitment,
challenge, and response in a sigma protocol correspond to the commitment,
message, and opening in a trapdoor commitment scheme, respectively, with the
witness of the Sigma protocol serving as the trapdoor in the trapdoor commit-
ment scheme. In more detail, the bit trapdoor commitment scheme is as follows.
Here, M = {0, 1} and m0 = 0.

– Gen(1λ). Randomly sample a Hamiltonian graph G with a Hamiltonian cycle
H ⊆ G as its witness. Return (ck, td) := (G,H).

– Com(ck,m ∈ {0, 1}).
• If m = 0, then randomly sample a permutation π, and commit the adja-

cency matrix of G′ := π(G) to get comG′ and the corresponding openings
dG′ . Return (c, d) := (comG′ , (π, dG′)).

• If m = 1, then randomly generate a Hamiltonian graph G′ with a Hamil-
tonian cycle H ′, and commit the adjacency matrix of G′ to get comG′

and the corresponding openings dG′ . Return (c, d) := (comG′ , (H ′, dH′)).
– Ver(ck, c,m, d).

• If m = 0, parse (c, d) = (comG′ , (π, dG′)). Return 1 if comG′ are the
commitments of π(G), and 0 otherwise.

• If m = 1, parse (c, d) = (comG′ , (H ′, dH′)). Return 1 if comG′ includes
commitments of a Hamiltonian cycle H ′, and 0 otherwise.

– TdOpen(td = H, c,m0 = 0, d0,m).
• If m = 0, return d0 directly.
• If m = 1, parse (c, d0) := (comG′ , (π, dG′)). Return ⊥ if comG′ are not

the commitments of π(G). Otherwise, let H ′ := π(H), and dH′ ⊆ dG′ be
the openings w.r.t. the adjacency matrix of H ′. Return d := (H ′, dH′).

The correctness is implied by the completeness of the zero-knowledge protocol
for the Hamiltonian cycle problem.

Adaptor Signatures: New Security Definition 189

Theorem 4. If the underlying commitment scheme has statistical biding and
computational hiding, then the above constructed trapdoor commitment scheme
with specific adaptable message m0 = 0 has (computational) hiding, trapdoor
extractability, and adaption indistinguishability.

Proof. Hiding. This follows directly from the hiding property of the underlying
commitment scheme. Namely, for any two graphs G0 and G1 of the same size
(i.e., with the same number of vertices and edges), the commitments comG0 and
comG1 are computationally indistinguishable.

Trapdoor Extractability. Let (c = comG′ ,m0 = 0, d0 = (π, dG′)) and
(c = comG′ ,m = 1, d = (H ′, dH′)) be two commitment-message-opening tuples.
On one hand, Ver(ck, c,m0, d0) = 1 implies that comG′ is a commitment of
graph π(G). On the other hand, Ver(ck, c,m, d) = 1 implies that comG′ con-
tains a commitment of Hamiltonian cycle H ′. Since the commitment scheme
is statistically biding, H ′ ⊆ π(G) holds with overwhelming probability. There-
fore, π−1(H ′) ⊆ G is a Hamiltonian cycle, which finishes the proof of trapdoor
extractability.

Adaption Indistinguishability. The adaption indistinguishability property
requires that the distribution (c, d), where (c, d0) ← Com(ck,m0) and d ←
TdOpen(td, c,m0, d0,m = 1), is indistinguishable from the distribution (c, d),
where (c, d) ← Com(ck,m = 1).

Recall that in both cases (c, d) is in the form of (comG′ , (H ′, dH′)).

– In the first case, G′ = π(G) and H ′ = π(H), where π is a random permutation.
– In the second case, G′ is a randomly sampled graph with a Hamiltonian cycle

H ′.

Since π is a random permutation, (H ′, dH′) distributed identically in both cases.
The only difference lies in the parts of comG′\H′ , which are computationally
indistinguishable due to the hiding property of the underlying commitment
scheme. ��

Extension for Large Message Space . Via the standard hybrid argument, it is
easy to extend the message space from {0, 1} to {0, 1}� for any polynomial �,
and the specific adaptable message m0 is 0�.

Further Discussion . Though the above-mentioned construction works for any
NP relation R, it involves a heavy Karp reduction [17] from R to the Hamil-
tonian cycle problem. For commonly used relations in cryptography such as
the DL relation, the RSA relation, the LWE relation, and the SIS relation,
more efficient trapdoor commitments (with a specific adaptable message) can
be constructed from the Schnorr identification scheme [24,25], the RSA-based
Sigma protocol/chameleon hashes [1], the LWE-based Sigma protocols [5,9] and
the SIS-based Sigma protocols [6,21], respectively. Furthermore, in the full ver-
sion [20], we show a direct construction of trapdoor commitments for any NP
relation with random self-reducibility.

190 X. Liu et al.

6 Conclusion

In this work we introduce witness hiding for adaptor signatures (AS), which
requires that the witness y can be extracted from both a pre-signature and an
adapted signature, but not from either of them individually. We propose a generic
construction of witness-hiding AS from signatures and trapdoor commitments
with a specific adaptable message, a weaker version of trapdoor commitments.
Based on the Hamiltonian cycle problem, we also propose a trapdoor commit-
ment scheme with a specific adaptable message, where the commitment key is
the Hamiltonian problem instance and the trapdoor is the Hamiltonian cycle
witness. Therefore, we prove that the existence of one-way functions implies the
existence of witness hiding adaptor signatures for any NP relation.

Further Work. One potential approach to circumvent the heavy Karp reduc-
tion [17] is to leverage the multi-party computation in the head (MPCitH)
paradigm [16]. Namely, let Π be a secure MPC protocol for f(·), where
f(Y, y1, ..., yn) is a function with public input Y and private inputs yi from users
Ui for i ∈ [n], and f(Y, y1, ..., yn) outputs 1 if and only if (Y,

⊕

i∈[n] yi) ∈ R. Tak-
ing the MPCitH paradigm, we immediately obtain a Sigma (zero-knowledge) pro-
tocol with special soundness, which is closely related to the witness extractabil-
ity of AS as discussed earlier. However, converting such a Sigma protocol into a
trapdoor commitment scheme with a special adaptable message is not straight-
forward. In the Sigma protocol, a witness is necessary for generating the com-
mitment (the first message in the protocol) to ensure that there exists a valid
response for every possible challenge. On the other hand, in a trapdoor com-
mitment scheme, there is no trapdoor (witness) when generating a commitment
for a message. In fact, to construct AS, we require a Sigma protocol of which
the commitment does not rely on the witness, which cannot be satisfied by the
MPCitH paradigm. We leave constructing more efficient AS for NP relations
from MPCitH as a further work.

Acknowledgements. We thank all anonymous reviewers for their valuable com-
ments. This work was done while the authors were at Purdue University. Xiangyu
Liu and Ioannis Tzannetos were funded by AnalytiXIN and Sunday Group, Inc. Vas-
silis Zikas was funded in part by NSF grant No. 2055599, AnalytiXIN, and Sunday
Group, Inc.

References

1. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications.
In: Juels, A. (ed.) FC 2004, Key West, FL, USA, February 9-12, 2004. Revised
Papers. Lecture Notes in Computer Science, vol. 3110, pp. 164–180. Springer
(2004). https://doi.org/10.1007/978-3-540-27809-2 19, https://doi.org/10.1007/
978-3-540-27809-2 19

2. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostáková, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. IACR Cryptol.
ePrint Arch. p. 476 (2020), https://eprint.iacr.org/2020/476

https://doi.org/10.1007/978-3-540-27809-2_19
https://doi.org/10.1007/978-3-540-27809-2_19
https://doi.org/10.1007/978-3-540-27809-2_19
https://eprint.iacr.org/2020/476

Adaptor Signatures: New Security Definition 191

3. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostáková, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized channels from limited blockchain scripts and
adaptor signatures. In: ASIACRYPT 2021. vol. 13091, pp. 635–664. Springer
(2021). https://doi.org/10.1007/978-3-030-92075-3 22, https://doi.org/10.1007/
978-3-030-92075-3 22

4. Bellare, M., Ristov, T.: A characterization of chameleon hash functions and
new, efficient designs. J. Cryptol. 27(4), 799–823 (2014). https://doi.org/10.1007/
S00145-013-9155-8, https://doi.org/10.1007/s00145-013-9155-8

5. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 9326, pp. 305–325. Springer (2015). https://
doi.org/10.1007/978-3-319-24174-6 16, https://doi.org/10.1007/978-3-319-24174-
6 16

6. Beullens, W.: Sigma protocols for mq, PKP and sis, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12107, pp.
183–211. Springer (2020). https://doi.org/10.1007/978-3-030-45727-3 7, https://
doi.org/10.1007/978-3-030-45727-3 7

7. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. vol. 1, p. 2. Citeseer (1986)

8. Bursuc, S., Mauw, S.: Contingent payments from two-party signing and verifica-
tion for abelian groups. In: CSF 2022, Haifa, Israel, August 7-10, 2022. pp. 195–
210. IEEE (2022). https://doi.org/10.1109/CSF54842.2022.9919674, https://doi.
org/10.1109/CSF54842.2022.9919674

9. Corrigan-Gibbs, H.: Lattice-based signatures. Presentation Slides (3 2024),
https://65610.csail.mit.edu/2024/lec/l14-latsig.pdf, accessed on May 2024

10. Dai, W., Okamoto, T., Yamamoto, G.: Stronger security and generic constructions
for adaptor signatures. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022, Kolkata,
India, December 11-14, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13774, pp. 52–77. Springer (2022). https://doi.org/10.1007/978-3-031-22912-1 3,
https://doi.org/10.1007/978-3-031-22912-1 3

11. Erwig, A., Faust, S., Hostáková, K., Maitra, M., Riahi, S.: Two-party adaptor
signatures from identification schemes. In: Garay, J.A. (ed.) PKC 2021, Virtual
Event, May 10-13, 2021, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 12710, pp. 451–480. Springer (2021). https://doi.org/10.1007/978-3-030-
75245-3 17, https://doi.org/10.1007/978-3-030-75245-3 17

12. Erwig, A., Riahi, S.: Deterministic wallets for adaptor signatures. In: Atluri,
V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.) ESORICS 2022, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13555, pp. 487–506. Springer
(2022). https://doi.org/10.1007/978-3-031-17146-8 24, https://doi.org/10.1007/
978-3-031-17146-8 24

13. Esgin, M.F., Ersoy, O., Erkin, Z.: Post-quantum adaptor signatures and payment
channel networks. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ESORICS
2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 12309, pp. 378–397. Springer (2020). https://doi.org/10.
1007/978-3-030-59013-0 19, https://doi.org/10.1007/978-3-030-59013-0 19

14. Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press (2001). https://doi.org/10.1017/CBO9780511546891,
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html

https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/S00145-013-9155-8
https://doi.org/10.1007/S00145-013-9155-8
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1109/CSF54842.2022.9919674
https://doi.org/10.1109/CSF54842.2022.9919674
https://doi.org/10.1109/CSF54842.2022.9919674
https://65610.csail.mit.edu/2024/lec/l14-latsig.pdf
https://doi.org/10.1007/978-3-031-22912-1_3
https://doi.org/10.1007/978-3-031-22912-1_3
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-031-17146-8_24
https://doi.org/10.1007/978-3-031-17146-8_24
https://doi.org/10.1007/978-3-031-17146-8_24
https://doi.org/10.1007/978-3-030-59013-0_19
https://doi.org/10.1007/978-3-030-59013-0_19
https://doi.org/10.1007/978-3-030-59013-0_19
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html

192 X. Liu et al.

15. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511721656,
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html

16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009).
https://doi.org/10.1137/080725398, https://doi.org/10.1137/080725398

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. pp. 85–103. The IBM Research Sym-
posia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9, https://doi.org/10.1007/978-1-4684-2001-2 9

18. Klamti, J.B., Hasan, M.A.: Post-quantum two-party adaptor signature based
on coding theory. Cryptogr. 6(1), 6 (2022). https://doi.org/10.3390/
CRYPTOGRAPHY6010006, https://doi.org/10.3390/cryptography6010006

19. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptol. ePrint
Arch. p. 10 (1998), http://eprint.iacr.org/1998/010

20. Liu, X., Ioannis, T., Zikas, V.: Adaptor signatures: New security definition and A
generic construction for NP relations. IACR Cryptol. ePrint Arch. p. 1051 (2024),
https://eprint.iacr.org/2024/1051

21. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008, Barcelona, Spain, March 9-12, 2008. Pro-
ceedings. Lecture Notes in Computer Science, vol. 4939, pp. 162–179. Springer
(2008). https://doi.org/10.1007/978-3-540-78440-1 10, https://doi.org/10.1007/
978-3-540-78440-1 10

22. Poelstra, A.: Scriptless scripts. Presentation Slides (3 2017), https://download.
wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf,
accessed on May 2024

23. Poelstra, A.: Mimblewimble and scriptless scripts. Presentation Slides (1
2018), https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2018-01-10-
rwc/slides.pdf, accessed on May 2024

24. Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO ’89, Santa Barbara, California, USA, August 20-24, 1989, Pro-
ceedings. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer
(1989). https://doi.org/10.1007/0-387-34805-0 22, https://doi.org/10.1007/0-387-
34805-0 22

25. Schnorr, C.: Efficient identification and signatures for smart cards (abstract). In:
Quisquater, J., Vandewalle, J. (eds.) EUROCRYPT ’89, Houthalen, Belgium, April
10-13, 1989, Proceedings. Lecture Notes in Computer Science, vol. 434, pp. 688–
689. Springer (1989). https://doi.org/10.1007/3-540-46885-4 68, https://doi.org/
10.1007/3-540-46885-4 68

26. Tairi, E., Moreno-Sanchez, P., Maffei, M.: Post-quantum adaptor signature for
privacy-preserving off-chain payments. In: Borisov, N., Dı́az, C. (eds.) FC 2021,
Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II. Lecture Notes
in Computer Science, vol. 12675, pp. 131–150. Springer (2021). https://doi.org/10.
1007/978-3-662-64331-0 7, https://doi.org/10.1007/978-3-662-64331-0 7

27. Tairi, E., Moreno-Sanchez, P., Schneidewind, C.: Ledgerlocks: A security frame-
work for blockchain protocols based on adaptor signatures. In: Meng, W., Jensen,
C.D., Cremers, C., Kirda, E. (eds.) CCS 2023, Copenhagen, Denmark, November
26-30, 2023. pp. 859–873. ACM (2023). https://doi.org/10.1145/3576915.3623149,
https://doi.org/10.1145/3576915.3623149

https://doi.org/10.1017/CBO9780511721656
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
https://doi.org/10.1137/080725398
https://doi.org/10.1137/080725398
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.3390/CRYPTOGRAPHY6010006
https://doi.org/10.3390/CRYPTOGRAPHY6010006
https://doi.org/10.3390/cryptography6010006
http://eprint.iacr.org/1998/010
https://eprint.iacr.org/2024/1051
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-540-78440-1_10
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2018-01-10-rwc/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2018-01-10-rwc/slides.pdf
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/978-3-662-64331-0_7
https://doi.org/10.1007/978-3-662-64331-0_7
https://doi.org/10.1007/978-3-662-64331-0_7
https://doi.org/10.1145/3576915.3623149
https://doi.org/10.1145/3576915.3623149

Adaptor Signatures: New Security Definition 193

28. Tu, B., Zhang, M., Yu, C.: Efficient ecdsa-based adaptor signature for batched
atomic swaps. In: Susilo, W., Chen, X., Guo, F., Zhang, Y., Intan, R. (eds.) ISC
2022, Bali, Indonesia, December 18-22, 2022, Proceedings. Lecture Notes in Com-
puter Science, vol. 13640, pp. 175–193. Springer (2022). https://doi.org/10.1007/
978-3-031-22390-7 12, https://doi.org/10.1007/978-3-031-22390-7 12

https://doi.org/10.1007/978-3-031-22390-7_12
https://doi.org/10.1007/978-3-031-22390-7_12
https://doi.org/10.1007/978-3-031-22390-7_12

Public-Key Cryptography

QuietOT: Lightweight Oblivious Transfer
with a Public-Key Setup

Geoffroy Couteau1,2(B), Lalita Devadas3, Srinivas Devadas3,
Alexander Koch1,2, and Sacha Servan-Schreiber3

1 CNRS, Paris, France
2 IRIF, Université Paris Cité, Paris, France

couteau@irif.fr
3 MIT, Cambridge, MA, USA

Abstract. Oblivious Transfer (OT) is at the heart of secure computa-
tion and is a foundation for many applications in cryptography. Over two
decades of work have led to extremely efficient protocols for evaluating
OT instances in the preprocessing model, through a paradigm called OT
extension. A few OT instances generated in an offline phase can be used
to perform many OTs in an online phase efficiently, i.e., with very low
communication and computational overheads.

Specifically, traditional OT extension protocols use a small number
of “base” OTs, generated using any black-box OT protocol, and con-
vert them into many OT instances using only lightweight symmetric-key
primitives. Recently, a new paradigm of OT with a public-key setup has
emerged, which replaces the base OTs with a non-interactive setup: Using
only the public key of the other party, two parties can efficiently compute
a virtually unbounded number of OT instances on-the-fly.

In this paper, we put forth a novel framework for OT extension with a
public-key setup (henceforth, “public-key OT”) and concretely efficient
instantiations. Implementations of our framework are 30–100× faster
when compared to the previous state-of-the-art public-key OT proto-
cols, and remain competitive even when compared to OT protocols that
do not offer a public-key setup. Additionally, our instantiations result in
the first public-key schemes with plausible post-quantum security.

In summary, this paper contributes:
– QuietOT: A framework for OT extension with a public-key setup

that uses fast, symmetric-key primitives to generate OT instances
following a one-time public-key setup, and offering additional fea-
tures such as precomputability.

– A public-key setup for QuietOT from the RingLWE assumption,
resulting in the first post-quantum construction of OT extension
with a public-key setup.

– An optimized, open-source implementation of our construction that
can generate up to 1M OT extensions per second on commodity
hardware. In contrast, the state-of-the-art public-key OT protocol is
limited to approximately 20K OTs per second.

– The first formal treatment of the security of OT with a public-key
setup in a multi-party setting, which addresses several subtleties that
were overlooked in prior work.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 197–231, 2025.
https://doi.org/10.1007/978-981-96-0888-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_7&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_7

198 G. Couteau et al.

1 Introduction

In its simplest form, Oblivious Transfer (OT) allows a party (called the receiver)
to privately retrieve one out of two messages from another party (called the
sender). The receiver has a choice bit b and the sender has a pair of messages
(m0,m1). Using OT, the receiver learns mb but learns nothing about m1−b.
Moreover, the sender is guaranteed to learn nothing about b. OT is a founda-
tional building block for secure multiparty computation [50], and its applications
typically require a large number of oblivious transfers (in the millions or billions).
Unfortunately, all existing protocols for OT require public-key cryptography,
making them concretely inefficient in many applications. Since it is known that
OT cannot be constructed in a black-box manner using only symmetric-key prim-
itives [45], this inefficiency is somewhat inherent to the OT problem. Fortunately,
however, since the seminal work of Beaver [11] and the efficient construction of
Ishai, Kilian, Nissim, and Petrank [47] (henceforth, IKNP), lightweight OT can
be realized by performing a small number of expensive “base” OTs that are then
extended (using only lightweight, symmetric-key cryptography) or “reused” to
perform any number of regular OTs. Despite its concrete computational effi-
ciency, the original paradigm of IKNP induces a large communication overhead
(λ bits of communication per extended OT). To address this overhead, new
paradigms have recently emerged that enable extending OTs using much less
communication. Protocols like SoftSpoken OT [59] directly improve the commu-
nication efficiency of IKNP by a small factor k (e.g., k = 5) at the cost of some
increased computation. Silent OT extension protocols [17,18,20,33,55,57,60,65]
achieve optimal communication (3 bits of communication per OT), but come
with a concrete computational overhead that is noticeably larger than SoftSpo-
ken OT (e.g., RRT, the state-of-the-art silent OT [57], being about 8× slower
than SoftSpoken OT on machines with AVX instructions).

Our goal: “Diffie-Hellman” for Secure Computation. The state-of-the-art
techniques for efficiently evaluating a large number of OT instances all require
the sender and the receiver to initially interact in a distributed setup phase. Con-
trast this with the simpler task of establishing a secure communication channel
on the Internet. Thanks to the breakthrough key-agreement protocol of Diffie
and Hellman [37] in 1976, any pair of parties can locally derive a shared symmet-
ric encryption key directly from the public key of the other party. This approach
to securing communication has proven to be highly effective, and is now widely
deployed [62]. Concretely, this means that over a large network of N parties, all
pairs of parties can securely communicate following a one-time public-key setup
with O(N) communication, where all parties broadcast their public keys.

The goal of oblivious transfer with a public-key setup, first explicitly put
forth by Orlandi, Scholl, and Yakoubov [55], is to achieve a similar feature for
the task of secure computation on the Internet. Concretely, over a large network
of N parties, if all pairs of parties want to be able to jointly run secure com-
putation protocols (which typically requires evaluating many OTs), they must
all run the distributed setup pair-wise, resulting in O(N2) communication and

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 199

simultaneous interactions. However, with a public-key setup (or non-interactive
“public-key OT” for short), each pair of parties can instead efficiently generate
an arbitrary number of pseudorandom OT instances, given only the public key of
the other party! These pseudorandom OT instances can then be derandomized
in one round to perform a regular OT [12,25,55]. Unfortunately, despite being
very desirable, this feature is not achievable with any of the state-of-the-art OT
extension protocols, even in the semi-honest model.

Very recently, however, the work of Bui, Couteau, Meyer, Passelègue, and
Riahinia [25] (henceforth, BCMPR) achieved the first practically efficient candi-
date construction of public-key OT by building a new Pseudorandom Correlation
Function (PCF) for the OT correlation, and showing that it admits a public-
key setup. Concretely, with a public-key PCF, two parties can, given only each
other’s public key, locally generate an arbitrary amount of pseudorandom OTs.
In turn, these pseudorandom OTs can be used to perform a regular bit-OT in
one round of interaction and three bits of communication). While this represents
significant progress, their result falls short of providing a fully satisfactory solu-
tion to the problem of efficient public-key OT. For one, their protocol is not an
OT extension, given that it requires (local) public-key operations for every OT
that it generates. Consequently, it is considerably less efficient than state-of-the-
art OT extension protocols. Concretely, BCMPR can generate up to 21K OTs
per second, whereas state-of-the-art OT extension protocols can generate several
million OTs per second [59]. Additionally, BCMPR is built around group-based
primitives, making it not post-quantum secure, and relies on a new assumption
they call “Sparse-power DDH” (or SPDDH for short) which is only proven secure
in the generic group model.

1.1 Our Contributions

In this paper, we make several contributions, which we highlight here and
describe in depth in our technical overview of Sect. 2. The primary contribu-
tion of this paper is QuietOT: a novel framework for fast OT extension with a
public-key setup. With QuietOT, given only each other’s public key, two parties
can generate an arbitrary amount of pseudorandom “ListOTs,” a variant of OT
which we introduce, which can be converted into pseudorandom (resp. regular)
OTs in one round and a small overhead in communication, e.g., using 4 bits/OT
(resp. 7 bits/OT) in one of our instantiations. The only difference between our
approach via ListOT and a standard PCF for OT is that the derandomization
step incurs slightly more communication (e.g., 7 bits instead of 3 bits). Unlike
all prior public-key OT protocols, QuietOT does not require public-key opera-
tions when generating OTs, making the concrete performance one to six orders
of magnitude faster compared to the state-of-the-art OT protocols that offer a
public-key setup. Moreover, the public-key setup of QuietOT can be replaced by
a simple two-round setup using any black-box base OTs, yielding new construc-
tions of two-round OT extension. Additionally, we show that the base OTs can be
replaced with a public-key setup under the standard RingLWE assumption (with

200 G. Couteau et al.

a superpolynomial modulus-to-noise ratio), allowing parties to non-interactively
derive a shared key from which they can generate OT extensions.

We note that state-of-the-art OT extension protocols, such as SoftSpo-
ken [59], remain significantly faster than QuietOT (e.g., about 7× faster in the
regime where SoftSpoken communicates 16 bits/OT). The core advantage of
QuietOT over these alternatives lies in its public-key setup: concretely, using
QuietOT, two parties can execute the vast majority of the computation before
they even interact, given only each other’s public key. The interactive phase that
follows involves solely cheap, non-cryptographic operations (a few XORs per
OT). In contrast, using SoftSpoken or any state-of-the-art OT extension, the
parties must first interact (to generate base OTs) before they can run the bulk
of the computation and interact again to complete the protocol; this can cause
significant delays during which both parties have to stay online. We believe that
this precomputation feature of QuietOT is highly desirable in the setting of on-
demand pairwise secure computation over a large network. As a bonus, QuietOT
communicates less than SoftSpoken, and requires less rounds of interaction.

Under the hood, our framework combines any “Inner-Product Membership”
weak PRF (ipm-wprf) [25] with a Shiftable Constrained Pseudorandom Func-
tion (ShCPRF), a new primitive that we introduce in Sect. 5. Prior work [25,55]
requires using public-key operations for each OT, translating to expensive group
operations under either the Quadratic Residuosity (QR) or DDH assumption
(the construction of Orlandi, Scholl, and Yakoubov [55], henceforth OSY, is
mostly of theoretical interest due to the large number of group exponentiations
required). In contrast, we show that a ShCPRF can be constructed uncondition-
ally in the random oracle model by exploiting a recent CPRF construction [61].
In addition, because ipm-wprf are lightweight symmetric-key primitives (i.e.,
they do not require public-key operations to evaluate), our overall OT extension
protocol is very efficient. We provide a comparison to related work in Table 1.

Table 1. An overview of OT extension protocols and their maximum throughput
observed across different hardware and parameter settings (full evaluation results pro-
vided in Sect. 7). PKS and PQ indicate whether the construction has a public-key setup
and is plausibly post-quantum secure, respectively. For efficiency, nearly all OT exten-
sion protocols are instantiated in the Random Oracle Model (ROM). Note that in
these constructions, the random oracle assumption can be generically replaced with a
suitable correlation-robust hash function. †PKS not implemented.

OT/s
Max. Throughput

Bits/OT
CommunicationPKS†PQ Assumptions

IKNP 34,000,000 128 ✗ ✓ ROM

SoftSpoken (k = 2) 53,000,000 64 ✗ ✓ ROM

SoftSpoken (k = 8) 9,500,000 16 ✗ ✓ ROM

RRT 6,900,000 3 ✗ ✓ EC-LPN+ROM

OSY 1 3 ✓ ✗ QR+ROM

BCMPR 21,000 3 ✓ ✗ IPM-wPRF+SPDDH+ROM

QuietOT 1,200,000 7 ✓ ✓ IPM-wPRF+ROM

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 201

Additional Contributions. In addition to the main contribution of the
QuietOT framework, this paper contributes:

– The first formal treatment of public-key OT when used in a secure multi-party
computation over a large network. Our definitions and analysis address several
subtle issues with using any public-key OT constructions (including BCMPR
and OSY) in a multi-party setting where security must be guaranteed with
respect to an adversary corrupting a subset of parties.

– A definition and construction of shiftable CPRFs, a twist on CPRFs where
the master key holder can efficiently “shift” the constraint when evaluating
the CPRF. This construction plays a crucial role in our framework and may
be of independent interest.

– An open-source, optimized implementation of the BCMPR protocol (Bui
et al. [25] do not provide an implementation of their public-key PCF), which
we evaluate and compare to QuietOT in Sect. 7.

2 Technical Overview

In this section, we provide a detailed overview of our results. In Sect. 2.1, we start
by covering the state-of-the-art BCMPR framework for public-key OT. Then,
in Sect. 2.2, we cover the main ideas behind our QuietOT framework and the
different realizations of it. In Sect. 2.3, we show how QuietOT implies two-round
OT extension and full pre-computability for either the sender or the receiver.
In Sect. 2.4, we explain our approach to non-interactive public-key setup under
the RingLWE assumption. In Sect. 2.5, we overview our definitions of public-key
setup with multi-instance security, which becomes a crucial building block for
applying public-key OT to a multi-party computation setting.

2.1 Background on the BCMPR Framework

The BCMPR framework constructs a pseudorandom correlation function (PCF)
for OT correlations using an ipm-wprf. In addition to the ipm-wprf requirement,
they also require the Sparse-Power DDH (SPDDH) assumption and instantiate
their public-key setup from the DCR assumption. In their PCF construction,
the sender and receiver can compute OT correlations on-demand: The sender
outputs two pseudorandom bits (s0, s1) while the receiver outputs (b, sb), where
b ∈ {0, 1} is a pseudorandom choice bit. This correlation can then be converted
into a chosen-bit OT with 3 bits of communication in one round of interaction
using the transformation of Beaver [12].

At the heart of the BCMPR framework is a Constrained PRF (CPRF) F =
(F.KeyGen, F.Eval, F.Constrain, F.CEval) with the constraint predicate set to a
weak PRF1 fz that outputs a pseudorandom bit. At a high level, a CPRF has
two keys: a master key and a constrained key. The constrained key only allows
evaluating the PRF when the constraint predicate is satisfied. Hence, the weak
1 A weak PRF is only pseudorandom on uniformly random inputs.

202 G. Couteau et al.

PRF f indicates if the input to F is constrained or not, making roughly half the
inputs to F constrained. It was known (somewhat folklore) that any CPRF with
a weak PRF as a constraint predicate can be used to construct a PCF for OT
correlations [10]. However, prior to BCMPR, all existing CPRF constructions
were either not sufficiently expressive to evaluate a weak PRF as a predicate
or not concretely efficient enough to result in practical solutions [6,23,24,26,
27,32,56]. Therefore, at the core of BCMPR is a construction of a CPRF just
powerful enough to evaluate a suitable weak PRF candidate as the constraint
predicate while remaining concretely efficient in practice. They realize such a
CPRF by adapting the classical Naor-Reingold PRF [54]. In a nutshell, the
BCMPR framework for OT correlations combines:

– A CPRF supporting a special class of Inner-Product Membership (IPM)
constraints (the constrained key can evaluate the PRF on x if and only if
〈z, x〉 ∈ S, for some constraint vector z ∈ Rn defined over a finite ring R and
fixed set S partitioning the ring elements)2, and

– Any weak PRF fz : {0, 1}n → {0, 1} having an evaluation function that can
be described as an inner-product membership predicate (which they call an
ipm-wprf). That is, fz(x) = 0 iff 〈z, x〉 ∈ S0 and fz(x) = 1 iff 〈z, x〉 ∈ S1,
for a partitioning S0 ∪ S1 of the finite ring R over which the inner product is
defined, and a vector z ∈ Rn.

Building on the Naor-Reingold PRF, BCMPR constructs a CPRF supporting
IPM predicates in the Random Oracle Model (ROM) [13]. In particular, using
any ipm-wprf (which can be realized from a handful of assumptions), coupled
with their CPRF construction supporting IPM predicates, allows them to instan-
tiate the following generic template for building a PCF for OT correlations,
which will serve as inspiration for our framework as well.

A General PCF Template from CPRFs for IPM Predicates. The tem-
plate of BCMPR uses a CPRF F with IPM constraints that evaluates an ipm-
wprf fz as the predicate, for a vector z ∈ Rn that we will call the wPRF
key. The sender gets two master keys (msk0,msk1) for F , while the receiver
obtains two constrained keys (csk0, csk1). The master keys can be used to eval-
uate the PRF on the entire domain. In contrast, the constrained key can only
be used to evaluate the PRF when the constraint predicate is satisfied. The
idea is to have the constrained key csk0 have fz as the predicate, and csk1 have
the opposite predicate 1 − fz. Notice that given the two constrained keys, the
receiver can only evaluate the CPRF using one of the two keys for an input
x (depending on the value of fz(x), which is pseudorandom). Moreover, given
the ipm-wprf key z, the receiver can determine which of the two evaluations is
constrained for an input x by evaluating the “predicate” fz(x). The receiver can
then compute and output the correlation (b, sb), consisting of the pseudorandom
bit b = fz(x) and the string sb = F.CEval(cskb, x). The sender, in contrast, only
obtains the master keys (msk0,msk1), which are independent of the ipm-wprf
key z. As such, the sender can only compute the strings s0 = F.Eval(msk0, x)

2 We slightly abuse notation by interpreting the bit string x as a vector of bits.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 203

and s1 = F.Eval(msk1, x), consisting of the sender’s correlation (s0, s1), without
learning the pseudorandom bit b computed by the receiver.

Limitations of the General Template. The core difficulty associated with the
above template (and the BCMPR framework by extension) is finding a CPRF
with a predicate class that is sufficiently powerful to evaluate fz. The most
efficient construction to date is the constrained Naor-Reingold PRF construc-
tion of BCMPR, which (1) requires a new cryptographic assumption, (2) is not
post-quantum secure and, (3) necessitates concretely expensive group opera-
tions to evaluate, placing an upper limit on practical efficiency of BCMPR (e.g.,
21K correlations per second in our optimized implementation). In contrast, OT
extension protocols like SoftSpoken OT [59] (which generalizes IKNP) use only
lightweight symmetric-key primitives, are post-quantum secure, and are incred-
ibly fast (e.g., achieving several million correlations per second), but do not
offer public-key setups. Unfortunately, improving the efficiency of the BCMPR
framework hinges on developing more efficient CPRF constructions for IPM
predicates, which appears to be the weakest class of predicates sufficiently pow-
erful to evaluate any wPRF. Note that a pseudorandom function cannot have a
linear evaluation, and therefore inner-product equality predicates are inherently
insufficient.

2.2 Our Approach

Intuition. The starting point of our approach is the template construction of
BCMPR. As with BCMPR, in our framework, the receiver holds the key z ∈ Rn

of an ipm-wprf and we let the (pseudorandom) selection bit of the receiver be
defined as the output fz(x) of the wPRF f on a random input x. Recall that
fz(x) = b iff 〈z, x〉 ∈ Sb (where S0, S1 are a public partitioning of the inner-
product range, associated with the ipm-wprf). The main limitation of BCMPR
is their reliance on a CPRF for a class of constraints that contains fz. While
they provide an optimized construction, it still requires public-key operations
(group exponentiation) for every evaluation, and hence for every OT instance.

At this point, we diverge significantly from the BCMPR framework by replac-
ing their CPRF with a far more efficient primitive. Our starting point is a
recent CPRF construction of Servan-Schreiber [61], which uses only symmetric-
key primitives. Concretely, evaluating the CPRF involves computing an inner
product and hashing the result; furthermore, the CPRF was shown to be uncon-
ditionally secure in the ROM. However, the catch is that the CPRF of Servan-
Schreiber only handles inner-product predicates: That is, given a constraint z,
the constrained evaluation with csk on x matches the evaluation with the master
key if and only if 〈z, x〉 = 0 ∈ R. Observe that using this much weaker CPRF, the
receiver is now only able to evaluate F on all inputs where 〈z, x〉 = 03 (roughly
1

|Sb| of all inputs assuming f(x) = b, and where |Sb| ≈ |R|/2), which is too weak
to instantiate the BCMPR template.

3 We follow the convention of letting P (x) = 0 when the predicate P is satisfied.

204 G. Couteau et al.

Shiftable CPRFs to the Rescue. Our first key observation is that (a slight
modification of) the CPRF framework of Servan-Schreiber enjoys an additional
shiftability property. Concretely, the CPRF evaluation with the master key msk
can take an additional shift α as input, and provides the following guarantee:
The constrained evaluation F.CEval(csk, x) is equal to F.Eval(msk, x, α) whenever
〈z, x〉−α = 0. That is, the constraint is shifted by α. Given such a shiftable CPRF
for inner products, the sender can now compute F.Eval(msk, x, α) for all possible
shifts α ∈ S0 ∪ S1. This yields two lists of values: L0 = (F.Eval(msk, x, α))α∈S0

and L1 = (F.Eval(msk, x, α))α∈S1 . Our next core observation is that the value
F.CEval(csk, x) computed by the receiver belongs to exactly one of the two lists,
and furthermore, the index b of the list Lb it belongs to is simply fz(x). That is,
the receiver knows a pseudorandom value v and pseudorandom “selection bit”
b = fz(x) such that v ∈ Lb. Additionally, by using the constraint z, the receiver
can determine the index i in Lb in which v is located (i.e., such that v = Lb[i]).

Oblivious Transfer from ListOT. So far, we have seen that given a shiftable
CPRF for inner-product predicates, the sender and the receiver can generate
many instances of the following “correlation:” The sender gets as output two
(pseudorandom) lists (L0, L1), and the receiver obtains (v, b, i) where v = Lb[i],
and b is pseudorandom from the viewpoint of the sender (however, importantly, i
is not pseudorandom, which prevents this from being a true OT correlation). We
call “ListOT” this weaker variant of the OT correlation. The name is inspired
from list decoding [39], where a decoding algorithm for a code is allowed to output
a list of code words from which the word can be decoded.4 Hence, for ListOT,
the sender outputs two lists of messages, L0, L1, and the receiver outputs a bit
b, value v, and an index key i, such that v is located at Lb[i]. (Later, for ease of
notation, L0 and L1 will be treated as key-value stores/dictionaries.)

While the pseudorandom ListOT instances are not correlations in the strict
technical sense (because the distribution of i depends on the secret wPRF key), it
is not too hard to see that it still suffices to instantiate a random OT using some
additional communication. To see this, observe that given OT inputs (m0,m1),
the sender simply sends (L0[j] ⊕ m0)j∈S0 and (L1[j] ⊕ m1)j∈S1 to the receiver.
The receiver recovers mb by unmasking Lb[i] ⊕ mb using v = Lb[i].5

We now explain how we construct efficient ShCPRFs by adapting the frame-
work of Servan-Schreibe [61] building CPRFs for inner-product predicates from
RKA-secure PRFs [14] in the standard model (or in the random oracle model).

Constructing ShCPRFs. We make the observation that in all existing CPRF
constructions for inner-product predicates [25,35,61], the master key holder can
efficiently compute the set of all possible pseudorandom values evaluated under
4 We note that ListOT is not related to “list two-party computation” [28], which defines

list OT as a security definition for the standard oblivious transfer functionality.
5 When generating (pseudo)random OTs, this simple approach can be further

improved by letting m0 and m1 be the first element of L0 and L1 respectively,
which allows communicating two elements less, for a total of |S0| + |S1| − 2 bits
of communication. Concretely, with our most communication-efficient instance, this
translates to only 4 bits of communication per random OT.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 205

the constrained key csk. We will focus on the CPRF construction of Servan-
Schreiber, instantiated unconditionally using a hash function H modeled as a
random oracle. In this construction, the master key msk consists of a random
vector z0 of length n, with elements from some sufficiently large field F.6 For
a constraint vector z ∈ F

n, the constrained key is defined as z1 = z0 − Δ · z,
where Δ ∈ F \ {0} is random. Simplifying slightly,7 the evaluation and the con-
strained evaluation algorithms are defined as H(〈z0, x〉 , x) and H(〈z1, x〉 , x),
respectively. Note that when 〈z, x〉 = 0, it holds that H(〈z0, x〉 , x) is equal
to H(〈z1, x〉 , x), which guarantees the master key and constrained key eval-
uations agree. In contrast, when 〈z, x〉 	= 0, then H(〈z1, x〉 , x) is equal to
H(〈z0, x〉 − Δ 〈z, x〉 , x), which is independent of H(〈z0, x〉 , x) due to Δ. In
particular, we observe that when 〈z, x〉 	= 0, using z0 and Δ allows the mas-
ter key holder to evaluate all possible constrained evaluations by computing
H(〈z1, x〉 + Δα, x), for all possible inner products α ∈ {〈z, x〉 | x ∈ {0, 1}n}
associated with the constraint class given by z. We point to Sect. 4 for more
details on this ShCPRF construction. Abstractly, we define the master key eval-
uation algorithm F.Eval(msk, x, α) to take a shift α as an additional input while
leaving the remaining CPRF algorithms unchanged.

Putting Things Together: A “PCF” for ListOT. Using the ShCPRF con-
struction sketched above, coupled with an ipm-wprf fz with partitioning S0∪S1,
the sender with the master secret key msk computes the two lists, L0 and L1,
corresponding to b = 0 and b = 1, respectively, as L0 = (F.Eval(msk, x, α))α∈S0 ,
L1 = (F.Eval(msk, x, β))β∈S1 , using a random x. Importantly, note that given
the constrained key csk for a constraint vector z, the receiver obtains one value
in Lb, where b = fz(x). All other values, in both lists, remain pseudorandom
from the viewpoint of the receiver. At this stage, our framework can be instan-
tiated using any choice of ShCPRF and any choice of ipm-wprf. We choose
to instantiate the ShCPRF in the random oracle model, as it offers the most
concretely-efficient solution. The ipm-wprf can be realized from several assump-
tions, as detailed in BCMPR. Indeed, many wPRFs fit the ipm-wprf framework,
including the Learning-with-Rounding (LWR)-based wPRF [8], the Goldreich-
Applebaum-Raykov (GAR) [4,41], and several other low-complexity wPRF can-
didates, including the Boneh, Ishai, Passelègue, Sahai, and Wu (BIPSW) [15],
and LPN-based candidates [19]. (Bui et al. [25] provide an overview of these dif-
ferent candidates and others). The BIPSW wPRF candidate is especially well-
suited to this framework given that the evaluation (defined in Equation (1)) is
essentially just a rounded inner product computed in Z6:

fz(x) =
〈z, x〉 mod 6�2 . (1)

Note that when fz(x) = 0, then it holds that 〈z, x〉 (mod 6) ∈ {0, 1, 2} and when
fz(x) = 1 it holds that 〈z, x〉 (mod 6) ∈ {3, 4, 5}. By instantiating the ShCPRF
to compute predicates over an extension of Z6, we can achieve incredibly efficient
evaluations using the BIPSW ipm-wprf (see Sect. 7 for our evaluation).
6 Our actual ShCPRF construction is defined using a ring extension for efficiency.
7 The full construction has an extra additive term to handle the all-zero input x = 0n.

206 G. Couteau et al.

2.3 Two-Round OT Extension

Using our framework, we obtain a two-round OT extension protocol. Observe
that the sender can independently generate the ShCPRF master secret key,
consisting of z0 and Δ, while the receiver can independently generate the ipm-
wprf key z. For the case where z ∈ {0, 1}n, we can use any two-round string
OT protocol repeated in parallel n times as follows. For i ∈ [n], the sender sets
mi,0 = z0i and mi,1 = z0i − Δ. The receiver uses zi ∈ {0, 1} as its choice
bit to retrieve mi,zi

= z0i − Δzi, and in this way can recover csk := z0 − Δz
using n parallel calls to the two-round OT functionality (indeed, because Δ is
the same across messages, any correlated OT protocol [5] is sufficient). In the
general case, when z ∈ Rn, we can use any two round “reverse” Vector Oblivious
Linear Evaluation (VOLE) protocol [2,18], which directly generalizes correlated
OT to work over a ring R. In reverse VOLE, the sender inputs (b, x) ∈ Rn × R
and the receiver inputs a ∈ Rn. The sender receives no output while the receiver
obtains ax+b. By letting the sender input (z0,Δ) and the receiver input −z, we
immediately have that the receiver obtains z1 = z0−Δz. See the full version [29]
for more details.

Two-round OT extension is known to be impossible under black-box
symmetric-key primitives [40] making our use of an ipm-wprf a rather weak
assumption to circumvent the impossibility result of Garg et al. [40] (in fact, an
IPM-PRG suffices). In contrast, protocols like IKNP and SoftSpoken inherently
require three rounds of interaction due to their unconditional instantiations in
the random oracle model, and all previous two-round OT extensions (with the
exception of Beaver [11], which is not black-box and not concretely efficient)
required variants of the LPN assumptions [17,18,57,65].

Precomputability. A nice feature of our two-round setup is the ability for
one party to precompute all correlations before even knowing the identity of the
other party. To see this, note that the receiver can precompute all choice bits
just using the ipm-wprf key z without needing to know the constrained key.
Additionally, the receiver can sample a uniformly random constrained key z1 for
the ShCPRF and use it to generate ahead-of-time all its ListOT triples (b, i, v).
Later, once the identity of the sender is known, the sender can engage with the
receiver in a two-round OT protocol to compute the master key z0 = z1 + Δz
from the “constrained key” z1. Similarly, the sender can alternatively generate
all its ListOT instances (L0, L1) without needing to know the identity of the
receiver by locally sampling Δ and z0. We provide details on precomputability
and more motivation for the notion in the full version [29].

2.4 Public-Key Setup from Ring-LWE

We present a non-interactive distributed setup protocol from RingLWE. To the
best of our knowledge, this forms the first distributed setup protocol for PCF for
ListOT based on a plausibly post-quantum assumption. The goal of this protocol
is for the sender with input Δ and receiver with input z to distributively derive

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 207

keys z0 (part of the master secret key) and z1 (the constrained key), which can
be viewed as additive shares of Δ · z in a ring R.

Parameters. In order to rely on the security of RingLWE, the receiver will
“encode” the bits of z ∈ Rn into the coefficients of an element z of a suitable
polynomial ring P. The protocol is executed over P and then, at the end of
the protocol, the sender and receiver each “decode” their result back into the
ring R to obtain vectors z0 and z1, by parsing each polynomial as a vector of n
coefficients (and disregarding any extra coefficients).

Assume that R = Zt is an integer ring, and let q := n·t·B ·2ω(log λ) (B is some
bound on the noise that we compute later). We define P := Zq[X]/(Xη + 1),
where η is a power of 2 that is larger than n. Let χ = χ(P) be a suitable noise
distribution over P, such that for e0, e1

R← χ, it holds that ‖e0e1‖∞ ≤ B/3, with
overwhelming probability.

The protocol proceeds in two phases as follows. During the public-key gener-
ation phase, the sender and receiver each broadcast a public key, which is used
by the other party in the ShCPRF evaluation key derivation phase.

Step 1: Generating Public Keys. Fix random a0, a1 ∈ P as part of the public
parameters. To generate public keys, the sender and receiver proceed as follows.
These public keys can then be posted to a bulletin board or broadcasted.

Sender
1: Sample secret s0

R← χ.
2: Sample error e0

R← χ.
3: Set pkS = Δ · a0 + s0a1 + e0.

Receiver
1: Encode q

t · z as z ∈ P.

2: Sample secret s1
R← χ.

3: Sample errors e1, e
′
1

R← χ.
4: Set pkR = (z+s1a0+e1, s1a1+e′

1).

Step 2: Deriving ShCPRF keys. To derive a master key msk and constrained
key csk, respectively, the sender and receiver use the other party’s public key to
proceed as follows. (Here and throughout, we overload rounding �·�t notation to
include “rounding” a polynomial coefficient-by-coefficient.)

Sender
1: Compute z0 := �〈pkR, (Δ, s0)〉�t.
2: Decode z0 ∈ P as z0 ∈ Rn.
3: Set msk := (z0,Δ).

Receiver
1: Compute z1 := �pkS · s1�t.
2: Decode z1 ∈ P as z1 ∈ Rn.
3: Set csk := z1.

Correctness.. The inner products computed in the key derivation phase are, in
fact, noisy additive shares of Δ · z ∈ P, since we have that

〈pkR, (Δ, s0)〉 − (pkS · s1)
= Δ · z + Δ · a0s1 + Δ · e1 + s0a1s1 + s0e

′
1 − Δ · a0s1 − s0a1s1 − e0s1

= Δ · z + Δ · e1 + s0e
′
1 − e0s1

︸ ︷︷ ︸

noise

≈ Δ · z.

208 G. Couteau et al.

Note that Δ ∈ Zt has low norm, so we can bound the magnitude of the noise
term Δ · e1 + s0e

′
1 − e0s1 by B. Hence, by a standard rounding lemma [22,38],

z0 − z1 = �〈pkR, (Δ, s0)〉�t − �pkS · s1�t = Δ · z mod t. After parsing as vectors
over Rn, we have z0 − z1 = Δ · z.

Security.. Pseudorandomness of the public keys follows from the RingLWE
assumption with short secrets (i.e., normal form RingLWE).8 In the sender pub-
lic key, the RingLWE sample s0a1 + e0 masks Δ · a0 and thus the secret key Δ.
Similarly, in the receiver public key, the RingLWE sample s1a0 +e1 masks z and
thus the secret key z. For a complete description of our protocol, its parameters,
and proof of security, we refer to the full version [29].

2.5 Multi-instance Security

An immediate application of QuietOT (and public-key OT schemes in gen-
eral [25,55]) is for efficient large-scale MPC. At a high level, with QuietOT,
parties can, using just the public keys of all other parties, create pair-wise OT
channels for the purpose of running a secure computation (e.g., as in the GMW
protocol [42]). This application was also described in prior public-key OT con-
structions [25,55] but was never formalized. We make the rather subtle obser-
vation that existing definitions [25,55] for public-key OT only require one-time
security—i.e., privacy for the sender or receiver is not considered when the same
public keys are reused with different parties.

To address this gap and properly define public-key OT, we formalize the
notion of “multi-instance security” in the full version of this work [29]. In a
nutshell, our definition captures a setting where parties (re)use a long-term secret
(that depends on the public-key) and an ephemeral secret that is generated for
each new session. We then prove that our public-key setup satisfies multi-instance
security.

3 Preliminaries

Notation. We let N denote the set of natural numbers and Fp denote a finite
field of order p. We denote a vector v = (v1, . . . , vn) using bold letters. We
denote by poly(·) any polynomial and by negl(·) any negligible function. We let
x

R← S denote a uniformly random sample drawn from S. We let x ← A denote
assignment and x := y denote initialization of x to the value of y. By an efficient
algorithm A we mean that A is modeled by a (possibly non-uniform) Turing
Machine that runs in probabilistic polynomial time. We write D0 ≈c D1 to
mean that two distributions D0 and D1 are computationally indistinguishable
to all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are
statistically indistinguishable.
8 Normal form RingLWE is a standard variant of RingLWE where the secret is sampled

from the noise distribution instead of uniformly. It is known to be as hard as regular
RingLWE and is often used for practical schemes [1,36,51,53].

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 209

3.1 Cryptographic Definitions

Here, we recall the cryptographic definitions that we will use throughout the
paper. In Sect. 3.1.1, we define the notion of an ipm-wprf. In Sect. 3.1.2, we
cover the definition of Ring-LWE and the basics of modular rounding.

3.1.1 Inner-Product Membership wPRF

We define the notion of a weak PRF (wPRF)9 that can be evaluated using the
“inner-product membership” formalism introduced by Bui et al. [25].

Definition 1 (Inner-Product Membership wPRF (IPM-wPRF) [25]).
Let λ be the security parameter and R = R be a finite ring. Let S0 = S

(λ)
0

be a (polynomially-sized) subset of Rλ, and set S1 := R \ S0. Then, f :=
fλ : Kλ × Xλ → {0, 1} is an inner-product membership weak PRF (IPM-wPRF)
family with respect to the partitioning (S0, S1), if it satisfies the following three
properties:

(1) Kλ = Xλ = Rn
λ for some n = n(λ),

(2) its evaluation can be expressed as an inner product membership, i.e., for each
λ ∈ N, z ∈ Kλ, x ∈ Xλ, we have that

fz(x) =

{

0, if 〈z,x〉 ∈ S0

1, otherwise (i.e., 〈z,x〉 ∈ S1),

where 〈·, ·〉 is the standard (simple) inner product on Rn, and
(3) it achieves the standard notion of a secure (weak) PRF [48].

3.1.2 Ring Learning with Errors and Rounding

We recall the standard Ring Learning-with-Errors (RingLWE) assumption of
Lyubashevsky, Peikert, and Regev [52] and its normal form.

Definition 2 (The RingLWE assumption [52]). Let η = η(λ), q = q(λ) ∈
N. Define the polynomial ring P = Zq[X]/(Xη +1) and let χ = χ(λ) be an error
distribution over P. The RingLWEη,q,χ assumption states that for any t = t(λ) ∈
poly(λ), it holds that

(a, s · a + e) ≈c (a,u),

where s
R← P,a R← Pt, e R← χt,u R← Pt. The “normal form” RingLWEη,q,χ

assumption states that this holds even when s
R← χ, and has the same hardness

as the original formulation [51, Lemma 2.24].

Modular Rounding. We let
x� denote the rounding of a real number x to the
nearest integer. For integers q > p ≥ 2, we define the modular rounding function

·�p : Zq → Zp as
v�p =
(p/q) · v�.
Rounding Lemma.. We recall the following “rounding lemma” [22,34,38]:
9 A weak PRF is pseudorandom on uniformly random inputs.

210 G. Couteau et al.

Lemma 1 (Rounding of Noisy Secret Shares). Let (t, q) be two integers
such that t divides q. Fix any z ∈ Zq and let (z0, z1) be any two random elements
of Zq subject to z0 + z1 = (q/t) · z + e mod q, where e is such that q/(t · |e|) ≥
λω(1). Then, with probability at least 1 − (|e| + 1) · t/q ≥ 1 − λ−ω(1), it holds
that
z0�t +
z1�t = z mod t, and the probability is over the random choice of
(z0, z1) ∈ Zq × Zq.

4 Shiftable CPRFs

In this section, we start by defining the notion of Shiftable CPRFs in Sect. 4.1.
Then, in Sect. 4.2, we construct ShCPRFs for inner-product predicates by adapt-
ing the framework of Servan-Schreiber [61].

4.1 Defining Shiftable CPRFs

For simplicity, we restrict the definition to 1-key (rather than multi-key)
ShCPRFs and selective security, which is the definition that is satisfied by our
construction. The definition overlaps significantly with the definition of (non-
shiftable) CPRFs [16,21,49] but using the classic PRF-style “real-or-random”
security game, where all evaluations are either computed using the master key
or using a truly random function.

Remark 1 (Relation to Shift-Hiding Shiftable Functions (SHSF)). SHSF are an
extension to CPRFs introduced by Peikert and Shiehian [56]. In a SHSF, the con-
strained CPRF evaluation computes F.Eval(msk, x) + f(x), for a hidden “shift”
function f embedded into the constrained key. In contrast, our notion of Shiftable
CPRFs only allows the master key holder to shift the constraint when evaluating
the CPRF (using the master key) and does not affect the constrained key.

Definition 3 (Shiftable Constrained Pseudorandom Functions). Let
λ ∈ N be a security parameter. A Shiftable Constrained Pseudorandom Func-
tion (ShCPRF) with domain X = Xλ, range Y, and a finite set of shifts S that
supports constraints represented by the class of circuits C = {Cλ}λ∈N

, where
Cλ : X × S → {0, 1}, consists of the following four algorithms. We highlight the
parts that are specific to shiftable CPRFs.

– KeyGen(1λ) → msk. Takes as input a security parameter λ. Outputs a master
secret key msk.

– Eval(msk, x, α) → y. Takes as input the master secret key msk, an input
x ∈ X , and a shift α ∈ S. Outputs y ∈ Y.

– Constrain(msk, C) → csk. Takes as input the master secret key msk and a
constraint circuit C ∈ C. Outputs a constrained key csk.

– CEval(csk, x) → y. Takes as input the constrained key csk and an input x ∈ X .
Outputs y ∈ Y.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 211

We let any public parameters PP be an implicit input to all algorithms. A
ShCPRF must satisfy the following correctness, security, and pseudorandomness
properties. We let ˜F = ˜Fλ denote the set of all functions from X × S to Y.

Correctness. For all security parameters λ, all constraints C ∈ C, and all
inputs x ∈ X , there exists an efficiently computable α ∈ S such that C(x, α) = 0
(authorized), and for all α ∈ S where C(x, α) = 0 it holds that:

Pr

[

msk ← KeyGen(1λ),
csk ← Constrain(msk, C)

: Eval(msk, x, α) = CEval(csk, x)

]

= 1 − negl(λ),

where the probability space is over the randomness used in KeyGen and Constrain.

(1-Key, Selective) Security. A ShCPRF is (1-key, selectively)-secure if for all
efficient adversaries A, the advantage of A in the following security experiment
Expshcprf

A,b (λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger
– runs A(1λ) who outputs a constraint C ∈ C,
– computes msk ← KeyGen(1λ) and csk ← Constrain(msk, C),
– samples a uniformly random function R

R← ˜Fλ, and
– sends csk to A.

2. Evaluation Queries: A adaptively sends arbitrary inputs x ∈ X and shifts
α ∈ S to the challenger. For each pair (x, α), if C(x, α) = 0, then the chal-
lenger returns ⊥. Otherwise, the challenger proceeds as follows:
– If b = 0, it computes y ← Eval(msk, x, α) and returns y.
– If b = 1, it computes y ← R(x, α) and returns y.

3. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage Advshcprf
A (λ) is defined as

Advshcprf
A (λ) :=

∣

∣

∣Pr[Expshcprf
A,0 (λ) = 1] − Pr[Expshcprf

A,1 (λ) = 1]
∣

∣

∣ ,

where the probability is over the randomness of A and KeyGen.

Pseudorandomness. A ShCPRF is said to be pseudorandom if for all efficient
adversaries A, it holds that

∣

∣

∣

∣

∣

Pr
msk←KeyGen(1λ)

[AEval(msk,·,·)(1λ) = 1] − Pr
R

R← ˜Fλ

[AR(·,·)(1λ) = 1]

∣

∣

∣

∣

∣

= 1 − negl(λ).

Remark 2 (The Requirement for the Pseudorandomness Property). We note that
while the pseudorandomness property is implicit in standard CPRF definition
(which has a polynomial loss in security) [16], in the real-or-random style defini-
tion for CPRFs (as in Definition 3), this property is not immediately satisfied,
since the challenger outputs ⊥ when given an unconstrained query. Hence, we
require the separate pseudorandomness property to capture the requirement that
the function being constrained is indeed a standard PRF.

212 G. Couteau et al.

4.2 Constructing Shiftable CPRFs

In this section, we adapt the framework of Servan-Schreiber [61] constructing
CPRFs for inner-product predicates from RKA-secure PRFs. We make the obser-
vation that the construction can be easily adapted to fit the shiftable CPRF def-
inition (Definition 3). In the process, we additionally generalize the construction
of Servan-Schreiber to work over a small ring as opposed to a large field, which
makes it integrate better with an IPM-wPRF as the predicate.

The CPRF Framework of Servan-Schreiber in a Nutshell. The CPRF
of [61] is parameterized by a security parameter λ, finite field F of order at least
2λ, and a vector length parameter n ≥ 1. The master secret key msk consists
of a random vector z0 ∈ F

n. The constrained key csk for a constraint z ∈ F
n is

then defined as z1 := z0 − Δz, with Δ ∈ F \ {0} a random non-zero scalar. The
main insight behind the framework of [61] is that for an input x ∈ F

n, when
〈z,x〉 = 0 (i.e., when the constraint is satisfied), then the inner product 〈z0,x〉
is equal to 〈z1,x〉. This fact can be used to derive identical PRF keys k and k′

under both msk and csk:

k = 〈z0,x〉 = 〈z1,x〉 −����Δ 〈z,x〉 = 〈z1,x〉 = k′.

In contrast, when 〈z,x〉 	= 0, the Δ 〈z,x〉-term makes k 	= k′. Moreover, because
Δ is uniformly random over F \ {0} (where F has order at least 2λ), z1 cannot
be used to recover z0, even with knowledge of the constraint z. The evaluation
of the CPRF is then defined as Fk0+k(x) (resp. Fk0+k′(x) for the constrained
evaluation), where k0 is a “zero” PRF key used to handle the case where x =
0n. One caveat, however, is that the derived PRF keys are highly correlated,
which necessitates choosing F to be a suitable RKA-secure PRF. The work of
Servan-Schreiber shows that when the PRF F is RKA-secure for affine key-
derivation functions (see the full version of our paper [29] for a definition), then
the CPRF instantiated with the PRF F is secure. (We note that a random
oracle H : F×F

n → {0, 1}∗ is RKA-secure PRF for all non-trivial key-derivation
functions.)

Adding Shiftability. We make the simple observation that if we make the
master secret key msk also contain Δ, then the we can easily turn the above
framework into a shiftable CPRF as follows. Specifically, when 〈z,x〉 	= 0, the
constrained key computes k′ = 〈z0,x〉 − Δ 〈z,x〉. The master key holder, with
knowledge of Δ, can compute k = 〈z0,x〉 − Δ · α = k′, where α = 〈z,x〉. This
is enough to satisfy the correctness property of Definition 3 (Shiftable CPRFs).
In particular, here the constraint predicate C(x, α) is 0 if 〈z,x〉 − α = 0 and 1
otherwise.

Moving to the Ring Setting. We require instantiating the ShCPRF with a
small ring R (e.g., R = Z6) for efficiency purposes. However, to ensure each
derived key is still at least λ-bits, we must extend the small ring to a sufficiently
large ring R′. As such, we replace the large field F with a large R′ = Rm where
m ≥ λ to guarantee λ bits of security (we prove the security of this modification

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 213

in the full version [29]). Doing so, however, makes the vectors z0 and z1 (now
sampled in (R′)n) better denoted as matrices from Rm×n. While this induces
notational changes, the CPRF construction itself remains almost identical to
the one of Servan-Schreiber. In particular, for a constraint z ∈ Rn, we now have
CPRF keys k,k′ ∈ Rm (as opposed to k, k′ ∈ F above) derived for an input
x ∈ Rn as k = Z0x = Z1x + (Δz�)x which is equal to k′ = Z1x, when the
constraint 〈z,x〉 = 0 ∈ R. We present our ring-based ShCPRF framework in
Fig. 1 and show security in Sect. 4.3 and the full version [29].

Fig. 1. ShCPRF framework for inner-product predicates based on RKA-secure PRFs.

To state more exactly the special type of Shiftable CPRF we obtain, we have
the following definition.

Definition 4 (Shiftable CPRFs for Inner-Product Predicates). Let R =
Rλ be a finite ring. Let ShCPRF be a Shiftable CPRF with domain X = Rn for
an n = n(λ), range R, and finite set of shifts S = R that supports constraints
represented by a class of circuits {Cλ}λ∈N

, such that Cλ = {Cz : z ∈ Rn}, where
the Cz : X × S → {0, 1} are given via

(x, α) �→
{

0, if 〈z,x〉 − α = 0,

1, otherwise.

Then we identify the constraint circuit Cz with z, i.e. we just write that the
constraint is a vector z, and call ShCPRF a (ring-based) Shiftable CPRF for
inner-product predicates (with domain Rn).

214 G. Couteau et al.

4.3 Security Analysis

Here, we analyze the security of the ShCPRF framework using the proof tem-
plate of Servan-Schreiber [61]. The proof follows the proof of [61, Theorem 2],
however, we adapt it in several key locations to handle the shiftability property
and operations in the ring R.

Theorem 1. If F is a family of RKA-secure pseudorandom functions with
respect to affine related-key derivation functions Φaff , as defined in the full ver-
sion, then Fig. 1 instantiated with F is a (1-key, selectively-secure) ShCPRF for
inner-product constraint predicates.

Proof. Deferred to the full version [29]. �

5 PCFs for ListOT: Framework

In this section, we formalize our PCF for ListOT framework using the Shiftable
CPRF framework from Sect. 4. As mentioned in Sect. 2, ListOT does not fulfill
the definition of a “correlation” as defined by Boyle et al. [20]. Therefore, we
cannot use existing definitions of a Pseudorandom Correlation Function (PCF),
since the correlation is only partially defined. In particular, the problem is that
the output of the receiver in ListOT has an additional lookup key i that depends
directly on the wPRF key used to compute the pseudorandom bit b, which
cannot be efficiently sampled given just the output of the sender. We sidestep
these issues by adapting the standard definition of a PCF [19] to work with
the “partial correlation” that is ListOT. In Sect. 5.1, we define the notion of
a PCF for ListOT. Then, in Sect. 5.2, we describe our general framework for
constructing a PCF for ListOT. Finally, in Sect. 5.3, we explain how a PCF for
ListOT is used to instantiate QuietOT.

5.1 Defining PCFs for ListOT

Here, we give a formal definition of (weak) PCF for ListOT. For convenience,
we use of the following distribution of lists notation.

Definition 5 (Distribution of Lists). Let λ be a security parameter, Y be a
finite set, and I be an arbitrary finite index set. We denote by Dlist

Y (I) the dis-
tribution that outputs a list (vi)i∈I , where each vi

R← Y is independently sampled
at random.

Definition 6 (Pseudorandom Correlation Function for ListOT). Let
λ be a security parameter and λ ≤ n = n(λ) ∈ poly(λ) be an input length. A
Pseudorandom Correlation Function (PCF) for ListOT with domain X = Xλ

is defined by a pair of algorithms (PCF.KeyGen,PCF.Eval) with the following
functionality:

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 215

– PCF.KeyGen(1λ) → (KS ,KR). Takes as input the security parameter λ. Out-
puts a pair of keys (KS ,KR).

– PCF.Eval(σ,Kσ, x) → yσ. Takes as input σ ∈ {S,R}, a key Kσ, and input
x ∈ X . Outputs a string yσ ∈ {0, 1}∗, where

• if σ = S then yσ = (L0, L1) for two lists L0, L1, and
• if σ = R then yσ = (b, v, α) for a bit b ∈ {0, 1}, a list entry v ∈ L0 ∪ L1,

and a lookup key α.

We will use PCF.EvalS(KS , x) and PCF.EvalR(KR, x) as shorthand for the Eval
algorithm used by the sender and receiver, respectively. We leave any public
parameters PP as an implicit input to all algorithms.
A PCF = (PCF.KeyGen,PCF.Eval) is a (weak) PCF for ListOT with domain
X = Xλ, if the following correctness, sender security, and receiver security
properties hold. In each case, the adversary is given access to N(λ) ∈ poly(λ)
samples.

– Pseudorandomness. For all efficient adversaries A, and all N ∈ poly(λ),
there exists a negligible function negl such that for all sufficiently large λ,

Advpr
A,N (λ) =

∣

∣

∣Pr[Exppr
A,N,0(λ) = 1] − Pr[Exppr

A,N,1(λ) = 1]
∣

∣

∣ ≤ negl(λ),

where Exppr
A,N,b(λ), for b ∈ {0, 1}, is as defined in Fig. 2.

– Correctness. Moreover, we want that for any λ ∈ N the following probability
is negligible in λ:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

(KS ,KR) ← PCF.KeyGen(1λ),
x

R← Xλ,

(L0, L1) ← PCF.EvalS(KS , x),
(b, v, α) ← PCF.EvalR(KR, x)

: v 	= Lb[α]

⎤

⎥

⎥

⎥

⎥

⎦

,

i.e., that the (relevant) entry v is at position α of list Lb with a probability
that is overwhelming in λ.

– Sender Security. For all efficient adversaries A, there exists a negligible
function negl such that for all sufficiently large λ,

AdvSsec
A,N (λ) =

∣

∣

∣Pr[ExpSsec
A,N,0(λ) = 1] − Pr[ExpSsec

A,N,1(λ) = 1]
∣

∣

∣ ≤ negl(λ),

where ExpSsec
A,N,b(λ), for b ∈ {0, 1}, is as defined in Fig. 3.

– Receiver Security. For all efficient adversaries A, there exists a negligible
function negl such that for all sufficiently large λ,

AdvRsec
A,N (λ) =

∣

∣

∣Pr[ExpRsec
A,N,0(λ) = 1] − Pr[ExpRsec

A,N,1(λ) = 1]
∣

∣

∣ ≤ negl(λ),

where ExpRsec
A,N,b(λ), for b ∈ {0, 1}, is as defined in Fig. 4.

216 G. Couteau et al.

Fig. 2. (Partially) Pseudorandom outputs of a PCF for ListOT. The distribution
Dlist

Y (·) is defined in Definition 5.

Fig. 3. Sender security game of a PCF for ListOT. The distribution Dlist
Y (·) is defined

in Definition 5.

5.2 Framework: PCF for ListOT from IPM-wPRFs

In Fig. 5, we describe the framework for constructing a PCF for ListOT by
combining a Shiftable CPRF with any ipm-wprf.

Theorem 2. Let n = n(λ) ∈ poly(λ) and R be a finite ring of order q, with
extension parameter m ≥ λ. Let ShCPRF = (KeyGen,Eval,Constrain,CEval) be
a shiftable CPRF for inner-product predicates with domain Rn, and f : Rn ×
Rn → {0, 1} a weak PRF family for inner-product membership with partitioning
S0 ∪ S1 = R. Then, PCF = (KeyGen,Eval) from Fig. 5 is a PCF for ListOT.

Proof. Deferred to the full version. �

5.3 Realizing QuietOT from a PCF for ListOT

To generate random OT correlations, the sender and receiver use the PCF for
ListOT to generate pseudorandom ListOT instances. We use the template of
Beaver [12] for converting a random ListOT instance into a chosen-bit OT pro-
tocol. We describe this transformation in Fig. 6.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 217

Fig. 4. Receiver security game of a PCF for ListOT.

Proposition 1. Let PCF = (PCF.KeyGen,PCF.Eval) be a PCF for ListOT.
Then the protocol given in Fig. 6 securely realizes the OT functionality.

Proof. The OT functionality is defined in the full version. By the pseudorandom-
ness property of the PCF for ListOT we have that L0 and L1 are pseudorandom
lists and b′ is a pseudorandom bit if x (input to the PCF) is uniformly random.
For an arbitrary choice bit b ∈ {0, 1} we consider the two possible cases to prove
correctness.

– Case 1: b = 0. In this case, c = b′ and so L′
0 = Lb′ ⊕m0 and L′

1 = L1−b′ ⊕m1.
It then follows that the receiver outputs (L′

0[α] ⊕ m0) ⊕ v, which equals m0

by the correctness property of the PCF.
– Case 2: b = 1. In this case, c = 1 − b′ and so L′

0 = L1−b′ ⊕ m0 and L′
1 =

Lb′ ⊕ m1. It then follows that the receiver outputs m1 = (L′
1[α] ⊕ m1) ⊕ v,

since we have v = Lb′ [α] = L′
1[α] by the correctness property of the PCF.

Note that in both cases, the equality holds with overwhelming probability, because
correctness of the PCF holds with overwhelming probability ((Definition 6).

Sender security follows directly from the sender security of the PCF which
guarantees that (1) the receiver only obtains Lb′ [α] and (2) all other values in
both lists are pseudorandom from the viewpoint of the receiver and therefore
guarantees that the receiver only obtains mb.

Receiver security follows from the fact that b′ is a pseudorandom bit (by
receiver security of the PCF) and therefore a pseudorandom mask for the
receiver’s choice bit b. Therefore, the sender learns nothing. �

6 PCFs for ListOT: Instantiations

In this section, we instantiate the framework from Sect. 5 using either the BIPSW
or GAR IPM-wPRF candidate, coupled with the “RKA-PRF” Fk(x) := H(k, x)
for a hash function H modeled as a random oracle. For the sake of completeness,
we prove in the full version [29] that Fk is indeed an RKA-PRF for all affine
relations x �→ αx + β with α ∈ R∗ and β ∈ Rm, as long as minα(|α · Rm|) ≥ 2λ.

218 G. Couteau et al.

Fig. 5. Framework for a PCF for ListOT from any ShCPRF and ipm-wprf.

Looking ahead, both our instantiations will satisfy minα(|α ·Rm|) = 2m, and we
will therefore set m = λ.

These two instantiations result in our concretely efficient constructions (see
Sect. 7). We also describe other instantiations from different assumptions (in
particular, replacing the random oracle using an RKA-secure PRF), which have
interesting theoretical implications but do not currently result in concretely effi-
cient constructions.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 219

Fig. 6. QuietOT using a (weak) PCF for ListOT. Note that x (input to the PCF known
by both the sender and receiver) is uniformly random, as specified in Definition 6.

6.1 BIPSW IPM-wPRF Instantiation

Our main instantiation is based on the BIPSW wPRF candidate which can be
easily viewed as an IPM-wPRF. For a key z ∈ Z

n
6 with n = n(λ) ∈ poly(λ),

and x ∈ Z
n
6 , the BIPSW wPRF is defined as: fz(x) =
〈z,x〉 mod 6�2, where

α�2 = 0 for all α ∈ {0, 1, 2} and
α�2 = 1 for all α ∈ {3, 4, 5}. For a partitioning
of Z6 consisting of S0 := {0, 1, 2} and S1 := {3, 4, 5}, we get that 〈z,x〉 mod 6 ∈
Sb ⇐⇒ fz(x) = b.

We instantiate the framework using the ring R = Z6 and set m ≥ λ (see
the full version [29]). We interpret {0, 1} as elements of Z6 in the natural way
(mapping 0 to the additive identity and 1 to the multiplicative identity of Z6)
and define map to be the canonical embedding from {0, 1}n to Z

n
6 . The full

construction is presented in Fig. 7 and closely follows the general framework
from Fig. 5 with the exception that we use the specific ShCPRF construction of
Fig. 1, and fix the RKA-secure PRF to be the random oracle H, and additionally
explicitly work over the ring Z6.

6.2 GAR IPM-wPRF Instantiation

Unlike for the BIPSW wPRF, converting the GAR wPRF into an ipm-wprf is
more challenging. For completeness, we describe how Bui et al. [25] express the
evaluation function as an IPM and discuss concrete parameters that we use for
our instantiation, which differ from the parameters used to instantiate BCMPR.

The GAR Construction. In a nutshell, the GAR construction (when instan-
tiated with the XOR-MAJ predicate [3,31]) has a key K ∈ {0, 1}n and takes as
input a string x that is parsed as a tuple of disjoint sets (Xxor,Xmaj) ⊂ [n]2 such

220 G. Couteau et al.

Fig. 7. PCF for ListOT from the BIPSW ipm-wprf

that |Xxor| = k and |Xmaj| = 	, for integers k = k(λ), 	 = 	(λ). The evaluation of
fK is then computed as: (

⊕

i∈Xxor
K[i])⊕MAJ((K[j])j∈Xmaj), where MAJ outputs

the majority bit.

The GAR construction as an IPM-wPRF. Converting this evaluation into
an inner-product membership can be done as follows. View the evaluation as two
separate components: an XOR component and a MAJ component. For each index
i ∈ Xxor, let ei be the one-hot vector of length n with 1 in its i-th coordinate.
First, interpret K as zxor ∈ Z

n
2 and as zmaj ∈ Z

n
	 by mapping 0 to 0 ∈ Z2 (resp. Z)

and 1 to 1 ∈ Z2 (resp. Z)). Then, compute vxor =
∑

i∈Xxor
〈zxor, ei〉. Similarly, for

each index j ∈ Xmaj, let ej be the corresponding one-hot vector. Then, compute
vmaj =

∑

j∈Xmaj
〈zmaj, ej〉. Observe that vmaj ≥ � 	

2� ⇐⇒ MAJ((zmaj[j])j∈Xmaj) = 1.
We define R = Z2 × Z	, which intuitively allows for computing the “XOR” and
“MAJ” components in separate subrings. Therefore, we can view f as an ipm-
wprf with partition:

S0 =
{

(u, v) ∈ R | (u = 0 ∧ v >
 	
2�) ∨ (u = 1 ∧ v ≤
 	

2�)} and S1 = R \ S0.

Parameters. We follow the parameter selection process of Bui et al. [25], which
builds upon the state-of-the-art cryptanalysis of Goldreich’s PRG from [3,31,63,
64]. To achieve λ bits of security with a key of length n = λδ and a bound n1+e

on the number of queries, the analysis of Bui et al. [25] suggests to use the XOR-
MAJ predicate with 	1 = 2 · e+1 terms in the XOR, and 	2 = (2δ/(δ −1)) · e+1
terms in the MAJ. Concretely, we set e = 2 to get a stretch n3 (looking ahead,

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 221

we will choose n = 211, hence this corresponds to generating up to 233 OTs)
and δ = 7/5 (hence δ/(δ − 1) = 7/2). This implies that we can set 	1 = 5
and 	2 = 15. With these parameters, we must set 	 = 	2 + 1 = 16 to ensure
no wraparound when computing the MAJ predicate on the sum modulo 	 of
the 	2 entries in the corresponding subset. While this analysis indicates that
a seed size of n ≥ 128δ = 892 suffices, we set n = 2048 which allows us to
more efficiently parse uniformly random inputs x into the index sets Xxor and
Xmaj, and generate a larger number λδ = 233 of oblivious transfers. This results
in an extremely conservative parameter set: The estimated bit security of this
parameter set, using the state-of-the-art cryptanalysis [3,31,63,64], is 2232.

Fig. 8. PCF for ListOT from the GAR ipm-wprf

6.3 Other Instantiations

While we focus on the BIPSW and GAR ipm-wprf constructions when instan-
tiating our framework, several other instantiations are possible. First, we can
instantiate the framework using a different ipm-wprf candidate. While BIPSW
and GAR appear to be the most efficient candidates to fit the ipm-wprf template,
future wPRF candidates or improved parameters for the LWR wPRF resulting
from tighter reductions for the LWR problem, could lead to new instantiations.
For example, with the VDLPN wPRF candidate [19] (which can be cast as an

222 G. Couteau et al.

ipm-wprf [25]) and whose concrete security is beginning to be analyzed [30], we
could potentially have an additional practical instantiation.

Additionally, our framework is not restricted to the random oracle model
(albeit, assuming a random oracle can lead to the most practical instantiations,
as is the case for other OT extension protocols). As with prior OT extension
protocols, we can replace the random oracle with a suitable correlation-robust
hash function [47]. However, we can even go one step further. Note that because
the security relies on the security of the ShCPRF, and the CPRF construction
of Servan-Schreiber [61] relies only any suitable RKA-secure PRF (a property
inherited by our construction of shiftable CPRFs), we can instantiate it using
other assumptions such as DDH, DCR, or VDLPN. We discuss these (currently
purely theoretical) instantiations in the full version [29].

7 Implementation and Evaluation

Implementation. We implement QuietOT in C with roughly 1200 lines of
code for the BIPSW and GAR implementations combined. Our implementation
is open source.10 We additionally implement the BCMPR silent OT protocol
in C in roughly 600 lines of code using the P-256 elliptic curve implementa-
tion available in the OpenSSL library [62]. For OSY, we estimate their runtime
by benchmarking the dominant cost of their construction: computing λ = 128
modular exponentiations in a 3200-bit RSA group. To heuristically instantiate
the random oracle H(·), we use fixed-key AES, operating with 128-bit inputs,
and truncate the output to a single bit (such an instantiation is shown to be
correlation-robust in the idea cipher model [43]). To generate pseudorandom
inputs for the PCF, we stretch a short seed (common to both the sender and
receiver) using AES in CTR mode. Our implementations make use of several
optimizations, which are described further in Sect. 7.1. We use the state-of-the-
art implementation of existing OT extension protocols (IKNP, SoftSpoken, RRT)
available in libOTe [58] to compare to other OT extension protocols. In order
to provide a fairer comparison to existing OT extension protocols, we do not
include the base OT costs required in SoftSpoken and IKNP.

Environment. We run our benchmarks on an AWS c5.metal and t2.small
instances, and on an Apple M1 Pro laptop computer, using a single core. Because
network latency and bandwidth can fluctuate leading to high variance, our
benchmarks take into account only the processing time required by the sender
and receiver. We compare the network overhead between each protocol using
the “bits/OT” measure, which provides an objective and consistent comparison
between protocols, avoiding network-specific or implementation differences.11

Parameters. We fix the security parameter λ = 128. For BIPSW, we set
n = 768 and pre-compute inner products with CPRF keys in blocks of 16 bits
10 https://github.com/sachaservan/QuietOT.
11 The libOTe implementation is evaluated on localhost, and therefore is somewhat

limited by the kernel when transferring data making IKNP slower than SoftSpoken.

https://github.com/sachaservan/QuietOT

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 223

(see Sect. 7.1). We operate over the ring Z6, which allows us to use CRT decom-
position and pack 128 elements of Z2 into one machine word. For GAR, we set
n = 2048, 	1 = 5 and 	2 = 15. This allows us to work over the ring R = Z2×Z16.
The choice of n = 2048 is very conservative but allows us to sample indices in
{1, . . . , 2048} efficiently without rejection sampling. In turn, this improves con-
crete performance by allowing us to efficiently generate inputs for the wPRF (all
we require is checking that the sampled set of random indices consist of distinct
elements). SoftSpoken has a tunable tradeoff between communication and com-
putational efficiency parameterized by k. For a given k SoftSpoken requires λ/k
communication but increases computation by a factor of 2k/k. Small values of
k (e.g., k = 4) provide a good tradeoff in practice, resulting in 32 bits/OT at an
increase of 4× in computation.

Communication Costs and Comparison. QuietOT with BIPSW as the ipm-
wprf requires 7 bits of communication per chosen-bit OT. For random choice
bits, communication is only 6 bits since the receiver does not need to send
its masked bit. Moreover, for random OT (when the sender inputs are also
random), the messages m0 and m1 can be set to the first elements of L0 and
L1, respectively, reducing communication to |S0|+ |S1|−2 (or 4 bits when using
the BIPSW ipm-wprf). QuietOT with GAR as the ipm-wprf requires 33 bits
of communication per chosen-bit OT. However, the same logic above reduces
communication to 32 bits/OT when the choice bit is random and 30 bits/OT
for random OT. QuietOT beats SoftSpoken on communication (for reasonable
choices of k) when instantiated with BIPSW and remains on-par with SoftSpoken
in terms of communication when instantiated with GAR. Silent OT protocols
(i.e., RRT, BCMPR, OSY) have an optimal 3 bits/OT of communication and 2
bits/OT when the receiver’s choice bit is random. This makes QuietOT roughly
2-10× worse in terms of communication when compared to Silent OT (Table 2).

Computational Costs and Comparison. The state-of-the-art OT extension
protocol is SoftSpoken. To provide an apples-to-apples comparison of the compu-
tational costs while fixing the communication overhead in SoftSpoken, we could
set k = 18 and k = 4 in SoftSpoken, leading to 7.1 bits/OT and 32 bits/OT,
respectively. However, SoftSpoken becomes very inefficient with large k which
does not make the comparison fair when QuietOT is instantiated using BIPSW.
Comparing to SoftSpoken with small k and QuietOT (when instantiated with
either BIPSW or GAR) shows that QuietOT is roughly one to two orders of
magnitude slower. However, we stress that SoftSpoken benefits a lot more from
advanced hardware instructions than QuietOT, potentially making QuietOT
outshine SoftSpoken on weak(er) devices. This is evidenced by QuietOT out-
performing the SoftSpoken implementation on the M1 (where AVX512 is not
available). Unfortunately, since the libOTe implementation is not optimized for
performance when AVX is disabled, performing a head-to-head comparison diffi-
cult. Comparing QuietOT to BCMPR (state-of-the-art public-key OT protocol)
shows that QuietOT is up to 100× faster in terms of computation while only
increasing communication by a few bits.

224 G. Couteau et al.

Table 2. OTs per second on a single core generated by the sender. Note that libOTe
is not optimized for M1 since the AVX instructions are not available on M1 processors,
hence we report these numbers in gray. The GAR ipm-wprf cannot benefit from AVX
due to limited bit-slicing opportunities. Setup costs are excluded.

|pksender| |pkreceiver| OT/s
(M1 Pro)

OT/s
(c5.metal)

OT/s
(t2.small)

Bits/OT

IKNP 2,592,00034,174,00012,264,000 128

SoftSpoken (k = 2) 2,732,00052,676,00033,121,000 64

SoftSpoken (k = 4) 1,636,00044,443,00027,504,000 32

SoftSpoken (k = 8) 249,000 9,500,000 5,891,000 16

SoftSpoken (k = 16) 2,000 76,000 49,000 8

RRT 1,230,000 6,856,000 2,492,000 3

OSY 50 kB 1 kB 0.6 0.5 0.3 3

BCMPR (BIPSW) 63 kB 72 kB 15,000 12,000 8,000 3

BCMPR (GAR) 33 kB 38 kB 21,000 17,000 11,000 3

QuietOT (BIPSW) 5.4 MB 84 MB 1,165,000 561,000 362,000 7

with AVX512 support N/A 1,265,000 N/A 7

QuietOT (GAR) 5.6 MB 88 KB 1,198,000 526,000 336,000 33

Public Key Size. Our public key setup has public keys that are roughly 20
to 60 times larger compared to the public keys in BCMPR and OSY. This is
primarily due to the parameters required for the RingLWE assumption (see the
full version [29]). However, as a consequence, we obtain plausible post-quantum
security. In practical terms, however, the average web page size is roughly 2 MB
as of 2023 [46], making the overall key size very reasonable for use on the Internet.
Additionally, we note that this is the sender ’s public key size—the receiver’s
public key in our construction is only around 90kB, which could potentially be
beneficial to some applications.

7.1 Optimizations in the Implementation

Our implementation makes use of several optimizations which we detail here.

Optimizing the BIPSW Instantiation. We make several observations allow-
ing us to concretely optimize the BIPSW instantiation from Fig. 7.

Working Over the CRT Decomposition.. All computations over R = Z6 can we
computed over the CRT decomposition Z2 ×Z3 � Z6. This enables applying the
following two optimizations:

– Bit-Sliced Arithmetic in .Z2. We can pack the m elements of Z2 into
m/64�
machine words (on 64-bit word processors). This allows parallelizing the Z2

component of all operations over Rm by using a single machine instruction
for each batch of
m/64� elements of Rm.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 225

– Bit-Sliced Arithmetic in .Z3. While we can also pack the Z3 elements into

2m/64� machine words (using two bits for each element of Z3 on a 64-bit
machine), such a packing requires computing operations in Z3 over the bit-
sliced representation. Fortunately, this very problem was explored in WAVE
[7, Appendix B.1], where they provide an efficient bit-sliced representation for
computing fast bit-sliced arithmetic over Z3. In particular, each arithmetic
operation in Z3 requires using only 7 machine instructions.

Our Implementation in C. Concretely, we pack ring elements into uint128 t
types in C (which represent two 64-bit machine words). This allows us to pack
the 128 Z2 elements into one uint128 t type and pack the high and low order
bits of the 128 Z3 elements into two uint128 t types. We can then perform
bit-sliced arithmetic over this packed representation.

Preprocessing Inner Products. A separate optimization, which we find also
applies to the construction of BCMPR (when instantiated with the BIPSW
ipm-wprf), is to preprocess the inner products over small chunks of the key.
When using the BIPSW wPRF, each matrix-vector product Z0x can be equiv-
alently written as a sum of smaller matrix-vector products. More precisely, let
x = (x1, . . . ,xn/t) such that |xi| ∈ {0, 1}t (we assume that t divides n) and let
Z0 = (Z01, . . . ,Z0n/t). Then, by preprocessing all possible 2t matrix-vector
products associated with the i-th column block matrix Z0i and storing the
results, we can efficiently look up the result for any input block xi, saving a
factor t in computation at a cost of 2t in extra storage.

Optimizing the GAR Instantiation Unfortunately, we find fewer ways to
optimize the GAR instantation compared to our BIPSW instantiation. In par-
ticular, the GAR instantiation does not benefit from preprocessing opportunities
that we identify for our BIPSW instantiation. However, we note that we can still
take advantage of bit-sliced operations to compute the m operations over Z2 in
parallel. Performing bit-sliced arithmetic over Z16 (when 	 = 16), in contrast, is
more challenging.

Fast Arithmetic Over Z16. We found it to be more efficient to not pack the
Z16 elements and instead just use one byte for each of the 128 elements of Z128

16 .
This allows us to sum modulo 16 by first computing the sum over the integers
and then using a bit-mask to reduce modulo 16. In particular, we can sum two
elements of Z16 via integer addition (summing two bytes) followed by a bit-wise
AND with 0b00001111, which zeroes-out the carry bit. This optimization makes
summation modulo 16 fast, mitigating the impact of not being able to perform
bit-sliced arithmetic for the Z16 elements.

General Optimization: Compressing Hash Inputs via Universal Hash-
ing. In the ring element representations of both the BIPSW and GAR instan-
tiations, we end up with a tightly packed representation of the Z2 elements but
only a “loosely-packed” representation of the Z3 elements (resp. Z16 elements).
The naive approach would be to feed the entire bit-string representation of the
ring elements (the ShCPRF key) and input x into the random oracle, which is

226 G. Couteau et al.

heuristically instantiated using fixed-key AES [43]. However, this would require
breaking up the input string into blocks of 128 bits and then xoring all the
resulting AES outputs together. While this solution does not introduce notice-
able slowdowns for the BIPSW instantiation, it is not ideal for the GAR instan-
tiation. For the GAR implementation, this approach would require packing all
the elements of Z128

16 into four AES blocks which is inefficient since the packing
itself is slow (recall that each element is represented as a byte for fast arith-
metic operations). However, we additionally need to pack the ShCPRF input
x, which would lead to even more overheads. To avoid these inefficiencies, we
instead choose to compress the representation of the ring elements and input
x into tightly packed λ-bit strings by using a universal hash, which acts as a
randomness extractor for the input to the random oracle. Specifically, we can
make use of the leftover hash lemma [44] to extract λ ≈ 128 bits from the rep-
resentation of the ring elements. This allows us to then only perform one AES
call, using the compressed 128-bit representation as input. We do the same for
the ShCPRF input x and the Z

128
2 block, leading to a total of three independent

AES calls that we then truncate and xor together. The standard LHL bound
requires 128 + 2κ bits of entropy to extract 128-bits that are statistically close
to uniform in the worst-case [44], where κ is a statistical security parameter.
However, the generalized LHL bound of Barak et al. [9] allows us to do better.
Specifically, they prove that when extracting randomness to use as a key for a
weak PRF (we assume that our ShCPRF takes uniformly random inputs and
thus is a weak PRF) the LHL bound can be improved to 128 + κ, which saves
a factor of two in the entropy loss. Therefore, we can increase the ring dimen-
sion m to 128 + 64 to ensure the universal hashing produces a near-uniform
128 bit key for the ShCPRF, with ≥ 64-bits of statistical security. As for the
input x, universal hashing provides 128-bits with even more statistical security
since under our concrete parameter choice for GAR, we already have 308 bits
of entropy in the input x, which already give more than 64-bits of statistical
security under the basic LHL bound. Finally, to further improve efficiency, we
use an almost-universal (as opposed to perfectly universal) hash function, which
results in faster implementations while only sacrificing a few bits of statistical
security [9].

Acknowledgements. We thank the anonymous reviewers for helpful comments and
pointing out a flaw in a previous version of our ShCPRF parameter choices. We thank
Peter Rindal for help with running the libOTe library. We thank Sheela Devadas for
helpful discussions on RingLWE. Geoffroy Couteau and Alexander Koch acknowl-
edge the support of the French Agence Nationale de la Recherche (ANR), under
grant ANR-20-CE39-0001 (project SCENE) and under the France 2030 ANR Project
ANR-22-PECY-003 SecureCompute. This work is supported by ERC grant OBELiSC
(101115790), and NSF grant 2330065.

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 227

References

1. M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J.
Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison, A.
Sahai, and V. Vaikuntanathan. Homomorphic Encryption Security Standard. Tech.
rep. HomomorphicEncryption.org, 2018. url: https://homomorphicencryption.org/
wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf

2. B. Applebaum, I. Damg̊ard, Y. Ishai, M. Nielsen, and L. Zichron. “Secure arith-
metic computation with constant computational overhead”. In: CRYPTO 2017.
Ed. by J. Katz and H. Shacham. LNCS 10401. Springer,2017, pp. 223–254. https://
doi.org/10.1007/978-3-319-63688-7 8.

3. B. Applebaum and S. Lovett. “Algebraic attacks against random local functions
and their countermeasures”. In:STOC 2016. Ed. by D. Wichs and Y. Mansour.
ACM, 2016, pp. 1087–1100. https://doi.org/10.1145/2897518.2897554.

4. B. Applebaum and P. Raykov. “Fast pseudorandom functions based on expander
graphs”. In: TCC 2016-B. Ed. by M. Hirt and A. D. Smith. LNCS 9985. Springer,
2016, pp. 27–56. https://doi.org/10.1007/978-3-662-53641-4 2.

5. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. “More efficient oblivious
transfer and extensions for faster secure computation”. In:CCS 2013. Ed. by A.
Sadeghi, V. D. Gligor, and M. Yung. ACM, 2013, pp. 535–548. https://doi.org/10.
1145/2508859.2516738.

6. N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, and T. Yamakawa. “Con-
strained PRFs for NC1 in traditional groups”. In: CRYPTO 2018. Ed. by H.
Shacham and A. Boldyreva. LNCS 10992. Springer, 2018, pp. 543–574. https://
doi.org/10.1007/978-3-319-96881-0 19.

7. G. Banegas, K. Carrier, A. Chailloux, A. Couvreur, T. Debris-Alazard, P.
Gaborit, P. Karpman, J. Loyer, R. Niederhagen, N. Sendrier, B. Smith, and J.-
P. Tilich. WAVE: Round 1Submission. Version 1. 2023. url:https://wave-sign.org/
wavedocumentation.pdf (visited on 01/21/2024).

8. A. Banerjee, C. Peikert, and A. Rosen. “Pseudorandom functions and lattices”.
In:EUROCRYPT 2012. Ed. by D. Pointcheval and T. Johansson. LNCS 7237.
Springer, 2012, pp. 719–737. https://doi.org/10.1007/978-3-642-29011-4 42.

9. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and
Y. Yu. “Leftover Hash Lemma, Revisited”. In:CRYPTO 2011. Ed. by P. Rogaway.
LNCS 6841. Springer, 2011, pp. 1–20. https://doi.org/10.1007/978-3-642-22792-
9 1.

10. J. Bartusek, S. Garg, D. Masny, and P. Mukherjee. “Reusable two-round MPC
from DDH”. In: TCC 2020. Ed. by R. Pass and K. Pietrzak. LNCS 12551. Springer,
2020, pp. 320–348. https://doi.org/10.1007/978-3-030-64378-2 12.

11. D. Beaver. “Correlated pseudorandomness and the complexity of private compu-
tations”. In: STOC 1996. Ed. by G. L. Miller. ACM, 1996, pp. 479–488. https://
doi.org/10.1145/237814.237996.

12. D. Beaver. “Precomputing oblivious transfer”. In: CRYPTO 1995. Ed. by D. Cop-
persmith. LNCS 963. Springer, 1995, pp. 97–109. https://doi.org/10.1007/3-540-
44750-4 8.

13. M. Bellare and P. Rogaway. “Random oracles are practical: A paradigm for design-
ing efficient protocols”. In: CCS 1993. 1993, pp. 62–73. https://doi.org/10.1201/
9781420010756.

14. E. Biham. “New types of cryptanalytic attacks using related keys”. In: EURO-
CRYPT 1993. Ed. by T. Helleseth. LNCS 765. Springer, 1994, pp. 398–409. https://
doi.org/10.1007/3-540-48285-7 34.

https://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
https://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1145/2897518.2897554
https://doi.org/10.1007/978-3-662-53641-4_2
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-319-96881-0_19
https://wave-sign.org/wave documentation.pdf
https://wave-sign.org/wave documentation.pdf
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1201/9781420010756
https://doi.org/10.1201/9781420010756
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-48285-7_34

228 G. Couteau et al.

15. D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu. “Exploring crypto
dark matter: New simple PRF candidates and their applications”. In: TCC 2018.
Ed. by A. Beimel and S. Dziembowski. LNCS 11240.Springer, 2018, pp. 699–729.
https://doi.org/10.1007/978-3-030-03810-6 25

16. D. Boneh and B. Waters. “Constrained pseudorandom functions and their applica-
tions”. In:ASIACRYPT 2013. Ed. by K. Sako and P. Sarkar. LNCS 8270. Springer,
2013, pp. 280–300. https://doi.org/10.1007/978-3-642-42045-0 15.

17. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. “Corre-
lated pseudorandomness from expand-accumulate codes”.In: CRYPTO 2022. Ed.
by Y. Dodis and T. Shrimpton. LNCS 13508.Springer, 2022, pp. 603–633. https://
doi.org/10.1007/978-3-031-15979-4 21.

18. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
“Efficient two-round OT extension and silent non-interactive secure computation”.
In: CCS 2019. Ed. by L. Cavallaro, J. Kinder, X.Wang, and J. Katz. ACM, 2019,
pp. 291–308. https://doi.org/10.1145/3319535.3354255.

19. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. “Correlated pseu-
dorandom functions from variable-density LPN”. In:FOCS 2020. Ed. by S. Irani.
IEEE, 2020, pp. 1069–1080. https://doi.org/10.1109/FOCS46700.2020.00103.

20. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. “Efficient pseu-
dorandom correlation generators: Silent OT extension and more”. In: CRYPTO
2019. Ed. by A. Boldyreva and D. Micciancio. LNCS 11694. Springer, 2019, pp.
489–518. https://doi.org/10.1007/978-3-030-26954-8 16.

21. E. Boyle, S. Goldwasser, and I. Ivan.“Functional signatures and pseudorandom
functions”. In: PKC 2014. Ed. by H. Krawczyk. LNCS 8383. Springer, 2014, pp.
501–519. https://doi.org/10.1007/978-3-642-54631-0 29

22. E. Boyle, L. Kohl, and P. Scholl. “Homomorphic secret sharing from lattices with-
out FHE”. In:EUROCRYPT 2019. Ed. by Y. Ishai and V. Rijmen. LNCS 11477.
Springer, 2019, pp. 3–33. https://doi.org/10.1007/978-3-030-17656-3 1.

23. Z. Brakerski, R. Tsabary, V. Vaikuntanathan, and H. Wee. “Private constrained
PRFs (and more) from LWE”. In: TCC 2017. Ed. by Y. Kalai and L. Reyzin.
LNCS 10677. Springer, 2017, pp. 264–302. https://doi.org/10.1007/978-3-319-
70500-2 10.

24. Z. Brakerski and V. Vaikuntanathan. “Constrained Key-Homomorphic PRFs from
Standard Lattice Assumptions: Or: How to Secretly Embed a Circuit in Your
PRF”. In: TCC 2015. Ed. by Y. Dodis and J. B. Nielsen. LNCS 9015. Springer,
2015, pp. 1–30. https://doi.org/10.1007/978-3-662-46497-7 1.

25. D. Bui, G. Couteau, P. Meyer, A. Passel‘egue, and M. Riahinia. “Fast Public-Key
Silent OT and More from Constrained Naor-Reingold”. In: EUROCRYPT 2024.
Ed. by M. Joye and G. Leander. LNCS 14656. Springer, 2024, pp. 88–118. https://
doi.org/10.1007/978-3-031-58751-1 4.

26. R. Canetti and Y. Chen. “Constraint-hiding constrained PRFs for NC1 from
LWE”. In: EUROCRYPT 2017. Ed. by J. Coron and J. B. Nielsen. LNCS 10210.
Springer, 2017, pp. 446–476. https://doi.org/10.1007/978-3-319-56620-7 16.

27. Y. Chen, V. Vaikuntanathan, and H. Wee. “GGH15 beyond permutation branching
programs: proofs, attacks, and candidates”. In: CRYPTO 2018. Ed. by H. Shacham
and A. Boldyreva. LNCS 10992. Springer, 2018, pp. 577–607. https://doi.org/10.
1007/978-3-319-96881-0 20.

28. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and H. Waldner. “List oblivious trans-
fer and applications to round-optimal black-box multiparty coin tossing”. In:
CRYPTO 2023. Ed. by H. Handschuh and A. Lysyanskaya. LNCS 14081. Springer,
2023, pp. 459–488. https://doi.org/10.1007/978-3-031-38557-5 15.

https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-031-58751-1_4
https://doi.org/10.1007/978-3-031-58751-1_4
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-031-38557-5_15

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 229

29. G. Couteau, L. Devadas, S. Devadas, A. Koch, and S. Servan-Schreiber. QuietOT:
Lightweight Oblivious Transfer with a Public-Key Setup. Full version. 2024. Cryp-
tology ePrint Archive, Report 2024/1079.

30. G. Couteau and C. Ducros. “Pseudorandom Correlation Functions from Variable-
Density LPN, Revisited”. In: PKC 2023. Ed. by A. Boldyreva and V. Kolesnikov.
LNCS 13941. Springer, 2023, pp. 221–250. https://doi.org/10.1007/978-3-031-
31371-4 8.

31. G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. “On the concrete
security of Goldreich’s pseudorandom generator”. In: ASIACRYPT 2018. Ed. by
T. Peyrin and S. D. Galbraith. LNCS 11273. Springer, 2018, pp. 96–124. https://
doi.org/10.1007/978-3-030-03329-3 4.

32. G. Couteau, P. Meyer, A. Passel‘egue, and M. Riahinia. “Constrained Pseudoran-
dom Functions from Homomorphic Secret Sharing”. In: EUROCRYPT 2023. Ed.
by C. Hazay and M. Stam. LNCS 14006. Springer, 2023, pp. 194–224. https://doi.
org/10.1007/978-3-031-30620-4 7.

33. G. Couteau, P. Rindal, and S. Raghuraman. “Silver: Silent VOLE and Oblivious
Transfer from Hardness of Decoding Structured LDPC Codes”. In: CRYPTO 2021.
Ed. by T. Malkin and C. Peikert. LNCS 12827. Springer,2021, pp. 502–534. https://
doi.org/10.1007/978-3-030-84252-9 17.

34. G. Couteau and M. Zarezadeh. “Non-interactive Secure Computation of Inner-
Product from LPN and LWE”. In: ASIACRYPT 2022. Ed. by S. Agrawal and
D. Lin. LNCS 13791. Springer, 2022, pp. 474–503. https://doi.org/10.1007/978-3-
031-22963-3 16.

35. A. Davidson, S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. “Adap-
tively secure constrained pseudorandom functions in the standard model”. In:
CRYPTO 2020. Ed. by D. Micciancio and T. Ristenpart. LNCS 12170. Springer,
2020, pp. 559–589. https://doi.org/10.1007/978-3-030-56784-2 19.

36. L. de Castro, C. Juvekar, and V. Vaikuntanathan. “Fast vector oblivious linear eval-
uation from ring learning with errors”. In: WAHC 2021: Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. 2021, pp. 29–41. https://doi.
org/10.1145/3474366.3486928

37. W. Diffie and M. Hellman. “New directions in cryptography”. In:IEEE Transac-
tions on Information Theory 22.6 (1976), pp. 644–654. https://doi.org/10.1109/
TIT.1976.1055638.

38. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. “Spooky encryption and its
applications”. In: CRYPTO 2016. Ed. by M. Robshaw and J. Katz. LNCS 9816.
Springer, 2016, pp. 93–122. https://doi.org/10.1007/978-3-662-53015-3 4.

39. P. Elias. “Error-correcting codes for list decoding”. In: IEEE Transactions on Infor-
mation Theory 37.1 (1991), pp. 5–12. https://doi.org/10.1109/18.61123.

40. S. Garg, M. Mahmoody, D. Masny, and I. Meckler. “On the round complexity of OT
extension”. In: CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva. LNCS 10993.
Springer, 2018, pp. 545–574. https://doi.org/10.1007/978-3-319-96878-0 19.

41. O. Goldreich. “Candidate one-way functions based on expander graphs”. In:Studies
in Complexity and Cryptography. Ed. by O. Goldreich. LNCS 6650. Springer, 2011,
pp. 76–87. https://doi.org/10.1007/978-3-642-22670-0 10.

42. O. Goldreich, S. Micali, and A. Wigderson. “How to play any mental game, or
a completeness theorem for protocols with honest majority”. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali.
Ed. by O. Goldreich. ACM, 2019, pp. 307–328.https://doi.org/10.1145/3335741.
3335755.

https://eprint.iacr.org/2024/1079
https://doi.org/10.1007/978-3-031-31371-4_8
https://doi.org/10.1007/978-3-031-31371-4_8
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-030-84252-9_17.
https://doi.org/10.1007/978-3-030-84252-9_17.
https://doi.org/10.1007/978-3-031-22963-3_16
https://doi.org/10.1007/978-3-031-22963-3_16
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1145/3474366.3486928
https://doi.org/10.1145/3474366.3486928
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1109/18.61123
https://doi.org/10.1007/978-3-319-96878-0_19
https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755

230 G. Couteau et al.

43. C. Guo, J. Katz, X. Wang, and Y. Yu. “Efficient and Secure Multiparty Com-
putation from Fixed-Key Block Ciphers”. In: SP 2020. IEEE, 2020, pp. 825–841.
https://doi.org/10.1109/SP40000.2020.00016.

44. J. HÅstad, R. Impagliazzo, L. A. Levin, and M. Luby. “A Pseudorandom Generator
from any One-way Function”. In: SIAM Journal on Computing 28.4 (1999), pp.
1364–1396. https://doi.org/10.1137/S0097539793244708.

45. R. Impagliazzo and S. Rudich. “Limits on the provable consequences of one-way
permutations”. In:STOC 1989. Ed. by D. S. Johnson. ACM, 1989, pp. 44–61.
https://doi.org/10.1145/73007.73012.

46. J. Indigo and D. Smart. Page Weight: 2022: The Web Almanac by HTTP
Archive. 2022. url: https://almanac.httparchive.org/en/2022/page-weight (visited
on 02/29/2024).

47. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending oblivious transfers
efficiently”. In: CRYPTO 2003. Ed. by D. Boneh. LNCS 2729. Springer, 2003, pp.
145–161. https://doi.org/10.1007/978-3-540-45146-4 9.

48. book J. Katz and Y. Lindell. Introduction to modern cryptography: principles
and protocols. 1st ed. Chapman and Hall/CRC, 2007. https://doi.org/10.1201/
9781420010756.

49. . A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. “Delegatable
pseudorandom functions and applications”. In: CCS 2013. Ed. by A. Sadeghi, V. D.
Gligor, and M. Yung. ACM, 2013, pp. 669–684. https://doi.org/10.1145/2508859.
2516668.

50. J. Kilian. “Founding cryptography on oblivious transfer”. In: STOC 1988. Ed. by
J. Simon. ACM, 1988, pp. 20–31. https://doi.org/10.1145/62212.62215.

51. V. Lyubashevsky, C. Peikert, and O. Regev. “A toolkit for ring-LWE cryptogra-
phy”. In: EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen. LNCS 7881.
Springer, 2013, pp. 35–54. https://doi.org/10.1007/978-3-642-38348-9 3.

52. V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal lattices and learning
with errors over rings”. In: EUROCRYPT 2010. Ed. by H. Gilbert. LNCS 6110.
Springer, 2010, pp. 1–23. https://doi.org/10.1007/978-3-642-13190-5 1.

53. S. J. Menon and D. J. Wu. “SPIRAL: Fast, high-rate single-server PIR via FHE
composition”. In: SP 2022. IEEE, 2022, pp. 930–947. https://doi.org/10.1109/
SP46214.2022.9833700.

54. M. Naor and O. Reingold. “Number-theoretic constructions of efficient pseudo-
random functions”. In: Journal of the ACM 51.2 (2004), pp. 231–262. https://doi.
org/10.1145/972639.972643.

55. C. Orlandi, P. Scholl, and S. Yakoubov. “The rise of Paillier: homomorphic secret
sharing and public-key silent OT”. In:EUROCRYPT 2021. Ed. by A. Canteaut
and F. Standaert. LNCS 12696. Springer, 2021, pp. 678–708. https://doi.org/10.
1007/978-3-030-77870-5 24.

56. C. Peikert and S. Shiehian. “Privately constraining and programming PRFs, the
LWE way”. In: PKC 2018. Ed. by M. Abdalla and R. Dahab. LNCS 10770.
Springer, 2018, pp. 675–701. https://doi.org/10.1007/978-3-319-76581-5 23.

57. S. Raghuraman, P. Rindal, and T. Tanguy. “Expand-Convolute Codes for Pseudo-
random Correlation Generators from LPN”. In: CRYPTO 2023. Ed. by H. Hand-
schuh and A. Lysyanskaya. LNCS 14084. Springer, 2023,pp. 602–632. https://doi.
org/10.1007/978-3-031-38551-3 19.

58. P. Rindal and L. Roy. libOTe: an efficient, portable, and easy to use Obliv-
ious Transfer Library. url: https://github.com/osu-crypto/libOTe (visited on
01/31/2024).

https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1145/73007.73012
https://almanac.httparchive.org/en/2022/page-weight
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1201/9781420010756
https://doi.org/10.1201/9781420010756
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1145/972639.972643
https://doi.org/10.1145/972639.972643
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1007/978-3-031-38551-3_19
https://github.com/osu-crypto/libOTe

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup 231

59. L. Roy. “SoftSpokenOT: Quieter OT extension from small-field silent VOLE in
the Minicrypt model”. In: CRYPTO 2022. Ed. by Y. Dodis and T. Shrimp-
ton. LNCS 12507. Springer, 2022, pp. 657–687. https://doi.org/10.1007/978-3-031-
15802-5 23.

60. P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. “Distributed Vector-
OLE: Improved constructions and implementation”. In: CCS 2019.Ed. by L. Cav-
allaro, J. Kinder, X.Wang, and J. Katz. ACM, 2019, pp. 1055–1072. https://doi.
org/10.1145/3319535.3363228.

61. S. Servan-Schreiber. Constrained Pseudorandom Functions for Inner-Product
Predicates from Weaker Assumptions. 2024. Cryptology ePrint Archive, Report
2024/058.

62. The OpenSSL Project.OpenSSL: Cryptography and SSL/TLS Toolkit. 2024. url:
https://www.openssl.org/ (visited on 02/12/2024).

63. A. Ünal. New Baselines for Local Pseudorandom Number Generators by Field
Extensions. 2023. Cryptology ePrint Archive, Report 2023/550.

64. J. Yang, Q. Guo, T. Johansson, and M. Lentmaier. “Revisiting the concrete security
of Goldreich’s pseudorandom generator”. In:IEEE Transactions on Information
Theory 68.2 (2021), pp. 1329–1354. https://doi.org/10.1109/TIT.2021.3128315.

65. K. Yang, C.Weng, X. Lan, J. Zhang, and X. Wang. “Ferret: Fast extension for
correlated OT with small communication”. In: CCS 2020. Ed. by J. Ligatti, X.
Ou, J. Katz, and G. Vigna. ACM, 2020, pp. 1607–1626. https://doi.org/10.1145/
3372297.3417276.

https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://www.openssl.org/
https://doi.org/10.1109/TIT.2021.3128315
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276

Constrained Pseudorandom Functions for
Inner-Product Predicates from Weaker

Assumptions

Sacha Servan-Schreiber(B)

MIT, Cambridge, MA, USA

3s@mit.edu

Abstract. In this paper, we provide a novel framework for construct-
ing Constrained Pseudorandom Functions (CPRFs) with inner-product
constraint predicates, using ideas from subtractive secret sharing and
related-key-attack security.

Our framework can be instantiated using a random oracle or any
suitable Related-Key-Attack (RKA) secure pseudorandom function. This
results in three new CPRF constructions:
1. an adaptively-secure construction in the random oracle model;
2. a selectively-secure construction under the DDH assumption; and
3. a selectively-secure construction with a polynomial domain under

the assumption that one-way functions exist.
All three instantiations are constraint-hiding and support inner-product
predicates, leading to the first constructions of such expressive CPRFs
under each corresponding assumption. Moreover, while the OWF-based
construction is primarily of theoretical interest, the random oracle and
DDH-based constructions are concretely efficient.

1 Introduction

Constrained pseudorandom functions (CPRFs) [11,17,48] are pseudorandom
functions (PRFs) with a “default mode” associated with a master key msk,
and a “constrained mode” associated with a constrained key csk defined over a
predicate C. The constrained key csk can be used to compute the same “default
mode” value of the PRF for all inputs x where C(x) = 0. However, for all inputs
x where C(x) �= 0, the constrained key csk can only be used to compute a pseu-
dorandom value that is computationally independent of the PRF value under
msk.

In the basic definition of CPRFs, the constrained key csk can reveal the pred-
icate C (i.e., all inputs x where C(x) = 0). For example, the GGM PRF [42],
admits puncturing constraints [11,17,48], where the constraint C is a point func-
tion that outputs 0 on all-but-one input. In the GGM PRF, csk reveals the punc-
tured point to the constraint key holder. An enhanced definition of CPRFs, first

This work was done in part while at Microsoft Research, New England.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 232–265, 2025.
https://doi.org/10.1007/978-981-96-0888-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_8&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_8

Constrained Pseudorandom Functions for Inner-Product Predicates 233

formalized by Boneh, Lewi, and Wu [15] (PKC 2017), requires csk to hide C,
and is much more challenging to achieve, even for simple constraints [15,28,36].

Constructing CPRFs for expressive constraint classes under standard
assumptions has proven to be a challenging task. Several constructions exist
for simple constraint classes, such as prefix-matching, bit-fixing, and constraints
expressible by t-CNF formulas (with constant t) under various assumptions,
including the minimal assumption that one-way functions exist (see the excellent
survey of related works in [36, Appendix A]). However, even slightly more expres-
sive constraints, such as constraints represented by inner products, constant-
degree polynomials, or circuits in NC1 (the class of functions computable by
logarithmic-depth circuits), appear to be much more challenging to construct
from standard assumptions [3,28,30,32].

In a recent work, Couteau, Meyer, Passelègue, and Riahinia [32] (Eurocrypt
2023) were able to realize CPRFs for NC1 from DCR (but without the constraint-
hiding property), as well as constraint-hiding CPRF with inner-product con-
straint predicates, through an elegant connection to homomorphic secret shar-
ing [19,20,22,54]. In contrast, constraint-hiding CPRFs for NC1 are only known
under LWE [28,30,55] (or indistinguishability obfuscation [15,29]) and can even
imply indistinguishability obfuscation in certain cases [28]. Therefore, the result
of Couteau et al. significantly pushes the constraint expressivity of CPRFs under
the Decisional Composite Residuosity (DCR) assumption. Prior to their result,
the only known constructions for constraint-hiding CPRFs with sufficiently
powerful constraint predicates to evaluate inner-product constraints required
either the learning with errors (LWE) assumption or non-standard assump-
tions [15,28,55]. However, in contrast to other constraint predicates that can
be realized from one-way functions [11,17,36,48], there is still a significant gap
in our understanding of which assumptions are necessary for realizing CPRFs for
more expressive constraint classes, such as inner-product and NC1 predicates.

Motivation. In this paper, we revisit the assumptions required to construct
constraint-hiding CPRFs for inner-product constraint classes. This is motivated
by the existence of CPRFs for NC1 from Diffie-Hellman-style assumptions [3], as
well as constraint-hiding CPRFs for bit-fixing and (constant sized) t-CNF formu-
las from the minimal assumption that one-way functions exist [36]. Understand-
ing what assumptions are required to realize sufficiently expressive CPRFs can
shed light on realizing closely related “high-end” cryptographic primitives such
as functional encryption [28,39], searchable symmetric encryption [15], attribute-
based encryption [3], and even obfuscation [28]. Specifically, in this paper, we
ask:

Under what assumptions do constrained PRFs with inner-product predi-
cates exist?

The motivation for studying inner-product constraints is that they can be
used to construct CPRFs with constraint predicates represented by constant-
degree polynomials and extensions thereof (see the full version of this work [60]),
and are of interest both as a theoretical object and as a practical tool.

234 S. Servan-Schreiber

From a theoretical lens, the fact that inner-product predicates lie somewhere
in between t-CNF and NC1 predicates in terms of expressivity, motivates the
study of CPRFs for inner-product predicates under weaker assumptions, with
the goal of potentially finding new techniques that could lead to more expres-
sive constraints under weaker assumptions. This was also the motivation behind
Attrapadung et al. [3] and other works examining the assumptions required to
build CPRFs. Indeed, Davidson et al. [36] prove that CPRFs for inner-product
predicates imply CPRFs for constant t-CNFs predicates (see [36, Appendix C]),
which in turn imply CPRFs for bit-fixing predicates.

From a practical perspective, the current lack of any concretely efficient
CPRF constructions for inner-product predicates,1 motivates the quest of find-
ing assumptions under which efficient constructions can be realized. This is espe-
cially motivated by the hope that concretely efficient constructions of CPRFs
for inner-product predicates will lead to interesting real-world applications, as
has been the case for the concretely efficient constructions of CPRFs admitting
puncturing constraints (e.g., [5,6,16,23,38,44,50,52,58,59,61]).

Contributions. In this paper, we make the following three contributions:

New Constructions from New Assumptions. We construct the first CPRFs for
inner-product predicates with (1) adaptive security in the random oracle model,
(2) selective security under the Decisional Diffie-Hellman (DDH) assumption,
and (3) selective security with a polynomial input domain under the minimal
assumption that One-way Functions (OWFs) exist. All three of our results push
the frontier of what was previously known theoretically on CPRFs. Moreover,
our constructions are all constraint-hiding by default.

A Simple Framework. We provide a simple framework that exploits the proper-
ties of subtractive secret sharing to construct CPRFs for inner-product predi-
cates. Our framework makes explicit several ideas that have been used implicitly
in many prior works on CPRFs (e.g., [3,25,26,55]), and may prove useful in
obtaining more results in the future.

An Implementation. Due to the simplicity of our building blocks, we show that
our constructions result in the first practical constraint-hiding CPRFs under
standard assumptions. We implement and benchmark our constructions, proving
that they are concretely efficient. (All prior constructions of CPRFs for inner-
product predicates, including the DCR-based construction of Couteau et al.,
require computationally-expensive machinery, making them impractical.)

Extensions and Applications. Our framework has the following applications
and extensions.

1. More complex predicates. From inner-product constraints, we can build
CPRFs for more complex predicates via generic transformations, including

1 To the best of our knowledge, no constraint-hiding CPRF constructions have been
implemented to date.

Constrained Pseudorandom Functions for Inner-Product Predicates 235

constraints represented by constant degree polynomials and CPRFs for the
“AND” of d distinct inner-product predicates. In particular, the latter allows
us to construct matrix-product constraint predicates, where the constraint is
satisfied if and only if Ax = 0, for a constraint matrix A.

2. Lower-bounds in learning theory. In learning theory, Membership Query (MQ)
learning provides a model for quantifying the “learnability” or complexity of
a certain class of functions [62]. Informally, in the MQ learning framework,
a learner gets oracle access to a function and must approximate the func-
tion after making a sufficient number of queries. Cohen, Goldwasser, and
Vaikuntanathan [31] introduce a model they call MQ with Restriction Access
(MQRA), where in addition to black-box membership queries, the learner
obtains non-black-box access to a restricted subset of the function. Obtaining
(negative) results on the learnability of a particular class in the MQRA model
can be done using a connection to constrained PRFs.

We discuss these applications further in the full version [60].

Followup Work. In a followup work, Couteau, Devadas, Devadas, Koch, and
Servan-Schreiber [33] extend our CPRF construction to realize a shiftable CPRF,
which allows the master key holder to emulate the PRF evaluation on the con-
strained key for different potential constraints. They then show how to use
this extended CPRF to realize an efficient OT extension protocol with pre-
computability and a non-interactive public-key setup, which heavily exploits the
concrete efficiency of our CPRF construction.

1.1 Related Work

In Table 1, we summarize known constructions of CPRFs for inner-product pred-
icates (including existing constructions for more general predicates such as NC1

and P/poly) and highlight our results.

CPRFs for Inner-Product Predicates. Attrapadung et al. [3] construct con-
strained PRFs for NC1 (which includes inner-product predicates) from the L-
decisional Diffie-Hellman inversion (L-DDHI) in combination with DDH over the
quadratic residue subgroup QRp (they can make their construction adaptively-
secure by using a random oracle instead of DDH in QRp), but their construc-
tion is not constraint-hiding. Similarly, Couteau et al. [32] also show how to
construct CPRFs for NC1 predicates from the DCR assumption through homo-
morphic secret sharing (but also fail to achieve constraint privacy). Couteau
et al. [32] additionally show that their techniques can be used to construct a
CPRF from DDH with a polynomially-bounded input domain. CPRFs for more
general predicates are known from multi-linear maps [11,14], indistinguishability
obfuscation [4,12,15,36,45,46], and LWE [25,26,28,30,55], and can be used to
instantiate CPRFs with inner-product constraints under those assumptions.

Constraint-Hiding CPRFs for Inner-Product Predicates. Davidson et
al. [36] (Crypto 2020) construct (weakly) constraint hiding CPRFs for inner-
product predicates from the LWE assumption. Specifically, their construction

236 S. Servan-Schreiber

Table 1. Related work on CPRFs for Inner-Product (IP) predicates from standard
assumptions. Additional details are provided in the full version [60].

Assumption Security Hiding Predicate Practical Comments

[25,26,28,30,55] LWE Selective ✓/ ✗ ⊇ NC1 ✗ [25] is not constraint hiding

AMNYY18 [3] L-DDHI Selective ✗ NC1 ✗ L-DDHI in QRp ∧ DDH in G

AMNYY18 [3] L-DDHI Adaptive ✗ NC1 ✗ L-DDHI in QRp ∧ ROM

DKNYY20 [36] LWE Adaptive ✗ IP ✗ Is weakly constraint hiding

CMPR23 [32] DCR Selective ✓ IP ✗

CMPR23 [32] DDH Selective ✓ IP ✗ Polynomial input domain

vs.pace-0.2cm

Theorem 1 ROM Adaptive ✓ IP ✓

Theorem 3 DDH Selective ✓ IP ✓

Theorem 5 VDLPN Selective ✓ IP ✗ Only for weak CPRFs

Theorem 8 OWF Selective ✓ IP ✗ Polynomial input domain

satisfies a weaker privacy definition, in which the adversary does not get access
to an evaluation oracle. Constraint-hiding CPRFs for more general predicates
(that include inner-product predicates) are known from the LWE assumption [26,
28,30,55] and indistinguishability obfuscation [15]. To the best of our knowledge,
Couteau et al. [32] are the first realize constraint-hiding CPRFs for inner-product
predicates from a non-lattice assumption, specifically from DCR.

One-One CPRFs. Our framework (as well as some prior constructions of
CPRFs [3,32,36]) shares some conceptual similarities to the construction of
one-one constrained PRFs [56]—an information-theoretic primitive that can be
viewed as a CPRF in the “no-evaluation security” model [3], with applications
to conditional disclosure of secrets. However, their constructions cannot be used
to realize the standard notion of CPRFs from standard assumptions.

1.2 Organization

In Sect. 2, we provide a technical overview highlighting the main ideas behind
our framework and constructions. In Sect. 3, we cover the necessary preliminaries
on CPRFs and RKA-secure PRFs. In Sect. 4, we present our framework and
provide an adaptively secure CPRF construction for inner-product predicates
in the random oracle model. In Sect. 5, we show that we can instantiate our
framework from RKA-secure PRFs, without the need for a random oracle. In
Sect. 6, we show how to instantiate our framework from one-way functions. In
Sect. 7, we discuss the practical efficiency of our constructions.

2 Technical Overview

In this section, we provide an overview of our framework and constructions.

Background on CPRFs. Following prior works [26,32], for PRF domain X
and a constraint C : X → {0, 1}, we write C(x) = 0 for “true” (authorized),

Constrained Pseudorandom Functions for Inner-Product Predicates 237

and C(x) �= 0 for “false” (unauthorized). CPRFs consist of a master secret key
msk, which can be used to evaluate the PRF on all inputs in the domain. From
msk, it must then be possible to efficiently sample a constrained key csk for a
given constraint C, which can be used to evaluate the PRF on all inputs x in
the domain where C(x) = 0. Constraint hiding CPRFs have the added property
that C remains hidden given csk. See Sect. 3 for formal definitions.

2.1 Our Approach

We now explain the main technical ideas that underpin our framework for con-
structing CPRFs for inner-product predicates. We start by explaining how we
can use the idea of subtractive secret sharing to construct a constraint predicate
C for inner-product predicates, inspired by Couteau et al.

The Power of Subtractive Secret Sharing. Subtractive secret shares of a
value s, which we denote by s0 and s1, have the property that s0 − s1 = s
(over Z). By splitting s into two random shares s0 and s1, individually each
share is independent of the secret s. To use subtractive secret sharing to con-
struct CPRFs, the main idea is to exploit the symmetry between the two shares.
Specifically, consider what happens when the secret s is zero. Because we have
that s0 − s1 = 0, it follows that s0 = s1. This symmetry present in subtractive
secret shares has enabled many efficient techniques for distributed computa-
tions [18–22,24,40,54], and surprisingly, also applies to CPRFs [32]. Specifically,
consider the inner-product constraint Cz parameterized by a vector z and defined
as Cz(x) = 〈z,x〉. Next, denote subtractive secret shares of the constraint vector
z by z0 and z1, such that z0 − z1 = z. Thanks to the aforementioned symmetry
property, for all input vectors x:
– If 〈z,x〉 = 0 (i.e., Cz(x) = 0, authorized), then 〈z0,x〉 = 〈z1,x〉, and
– If 〈z,x〉 �= 0 (i.e., Cz(x) �= 0, unauthorized), then 〈z0,x〉 �= 〈z1,x〉.
In words, the constraint is satisfied if and only if both shares of the inner product
are equal. Moreover, note that z1 can be sampled after z0, because z0 is a
random value independent of the “secret” constraint z. We now describe how we
can use these properties of subtractive secret sharing to construct a CPRF.

Initial Attempt (Not Secure). Our first idea, which unfortunately turns out
to be not secure, is to let the master secret key msk = z0, for a random z0. Then,
for a given constraint vector z, the constrained key is computed (on-the-fly) as
csk = z1, where z1 = z0 −z. The intuition is that for all x where 〈z,x〉 = 0 (i.e.,
for all authorized x), both the master secret key and the constrained key can
be used to derive the same key k. Specifically, we can simply let k = 〈z0,x〉 =
〈z1,x〉. Using the key k, in conjunction with any PRF F , we can define the
output of the evaluation on the input x to be Fk(x). Additionally, for all x
where 〈z,x〉 �= 0 (i.e., for all unauthorized x), the master key and constrained
key derive different PRF keys, which results in the constrained key outputting
a pseudorandom value.

238 S. Servan-Schreiber

Unfortunately, while this initial attempt provides the necessary correctness prop-
erties, it is not secure for the following two reasons:

1. the CPRF adversary, knowing the constraint z and given z1 can trivially
recover z0 (the master secret key) simply by computing z0 = z1 + z, and

2. in the case where 〈z,x〉 �= 0, the derived key is still related to the master key
msk, in that 〈z1,x〉 = 〈z0,x〉 − 〈z,x〉.
Couteau et al. [32] resolves these two issues by resorting to HSS. In particular,

they only use the value of 〈z,x〉 (which each party can compute a share of
given z0 and z1, respectively) as a conditional mask in a HSS computation that
computes a PRF. As such, they require evaluating a PRF inside of HSS which
makes their construction impractical. This is where our approach diverges from
the one of Couteau et al., which we explain next.

Second Attempt (Secure). To fix our initial attempt, we must first prevent
the adversary from recovering z0 (the master secret key) from the constrained
key z1, while still guaranteeing the necessary property that 〈z0,x〉 = 〈z1,x〉
whenever 〈z,x〉 = 0. To achieve this, we exploit the linearity of inner products.
Specifically, let F be a finite field of order at least 2λ, for a security parameter
λ. As before, we let msk := z0, for a random z0 ∈ F

�. However, now we let
csk := z1, where z1 := z0 − Δz, for a random scalar “shift” Δ ∈ F. Notice that
when 〈z,x〉 = 0,

〈z0,x〉 = 〈z0,x〉 − Δ 〈z,x〉 = 〈z0,x〉 − 〈Δz,x〉
By linearity of

inner products

= 〈z1,x〉 ,

which still guarantees that the master secret key and constrained key can be
used to derive the same PRF key k, whenever C(x) = 0. Moreover, because Δ
is uniformly random over F (which has order at least 2λ), z1 cannot be used
to recover z0, even with knowledge of the constraint z, thereby preventing the
CPRF adversary from recovering the master secret key msk from the constrained
key csk.

Now, with the random shift Δ, we ensure that the constrained key csk does
not leak the master secret key, and forms the basis for our framework described
in Sect. 4. However, we are still left with the second problem we identified in our
initial attempt: The derived PRF keys are still related to the master secret key,
which does not guarantee that the resulting PRF evaluation is pseudorandom
to the adversary. To deal with this, we can use the random oracle model.

Construction in the Random Oracle Model. One simple way to instantiate
the CPRF with correlated keys is to instantiate the PRF with a random oracle
H. This forms the basis for our first instantiation, which we describe in Sect. 4.1.
In a nutshell, we show that, if we use the derived key k = 〈z1,x〉 with a random
oracle H as the PRF, then the construction Fk(x) := H(k,x) is a secure CPRF.
Specifically, the random oracle ensures that each evaluation is uniformly random,
while still guaranteeing both the master secret key and the constrained key derive
the same k when the constraint is satisfied.

Constrained Pseudorandom Functions for Inner-Product Predicates 239

Removing the Random Oracle with an RKA-Secure PRF. To remove
the random oracle requirement, we show that we can use a “special” PRF that
remains provably secure when evaluated with different related keys. Such PRFs
are known as Related-Key-Attack (RKA) secure PRFs [8,9] and have been
studied extensively [1,2,7,8,13,23,34,41,43,51], yielding several constructions
to choose from. This result is rather surprising, since prior works that require
notions of correlation-robustness (e.g., [47,49,57]) could only be constructed
from more powerful assumptions. In contrast, we show that constructing CPRFs
with inner-product constraints requires a much weaker flavor of correlation-
robustness satisfied by RKA-secure PRFs with affine key-derivation functions.
In particular, this weaker notion of correlation-robustness can be instantiated
unconditionally leading to our one-way function based CPRF construction in
Sect. 6.

Suitable RKA-Secure PRFs. As we have informally shown above, a fully “RKA-
secure” PRF can be realized with a random oracle to remove correlations in
the keys. However, constructions of RKA-secure PRFs exist from several stan-
dard assumptions. These constructions achieve security against adversaries that
can adaptively query the PRF when keyed on arbitrary functions of the secret
key. In particular, we require RKA-security against affine functions of the key
(see Sect. 3 for definitions), which is a stronger notion compared to standard
RKA-security against additive functions that is often considered in the liter-
ature. The affine function requirement eliminates many RKA-secure PRF con-
structions (e.g., [2,7,8,13,34,41,51]), leaving us only with the DDH-based RKA-
secure PRF for affine functions of Abdalla et al. [1].

The DDH-based RKA-secure PRF forms the basis for our first instantiation
in the standard model. However, we also show that we can use any (weak) PRF2

that is RKA-secure against additive functions to instantiate our framework and
obtain a (weak) CPRF for inner-product predicates. In particular, this allows us
to use the VDLPN-based RKA-secure (weak) PRF of Boyle et al. [23].

Additionally, we show that we can adapt the one-way function based RKA-
secure PRF of Applebaum and Widder [2] to instantiate our framework (under
certain restrictions). Specifically, the PRF of Applebaum and Widder [2] is only
secure against additive functions and requires the number of related keys that
the adversary queries to be apriori bounded by some polynomial t (in the security
parameter). While these restriction makes their RKA-secure PRF construction
have limited applications elsewhere, we find that it is just sufficiently powerful
to apply to our framework provided that we bound the magnitude of the input
vectors to be polynomial in t and restrict the CPRF to a polynomially-sized
domain. However, a problem is that their construction is only proven RKA-
secure for additive functions of the key, which is not suitable to instantiate our
framework. Fortunately, however, we can easily adapt their result to the case of
affine functions, making it compatible with our framework and leading to the
first Minicrypt CPRF construction for inner-product predicates.

2 A weak PRF is secure if the adversary only queries it on random inputs.

240 S. Servan-Schreiber

3 Preliminaries

3.1 Notation

We let λ denote the security parameter. We let F denote a finite field (e.g.,
integers mod p), Z denote the set of integers, and N denote the set of nat-
ural numbers. We let F

× denote the set F \ {0}. A vector v = (v1, . . . , vn)
is denoted using bold lowercase letters. Scalar multiplication with a vector is
denoted av = (av1, . . . , avn) and the inner product between two vectors a and
b is denoted 〈a,b〉. We let poly(·) denote any polynomial and negl(·) denote a
negligible function. We say an algorithm A is efficient if it runs in probabilistic
polynomial time. For a finite set S, we let x

R← S denote a uniformly random
sample from S. Assignment from a possibly randomized algorithm A on input x
is denoted y ← A(x) and intialization of y to the value x is denoted as y := x.

3.2 Constrained Pseudorandom Functions

We start by recalling the syntax and properties of constrained pseudorandom
functions (CPRFs). For simplicity, we restrict the definition to 1-key, constraint-
hiding CPRFs, which is the definition satisfied by our constructions. We point
to Boneh et al. [15] for a more general definition of constraint-hiding CPRFs
(i.e., with polynomial-key security).

Definition 1 (Constrained Pseudorandom Functions; adapted from
[15,32]). Let λ ∈ N be a security parameter. A Constrained Pseudorandom
Function (CPRF) with key space K = Kλ, domain X = Xλ, and range Y, that
supports constraints represented by the class of circuits C = {Cλ}λ∈N

, where
Cλ : X → {0, 1}, consists of the following four algorithms.

– KeyGen(1λ) → msk. Takes as input a security parameter λ. Outputs a master
secret key msk ∈ K.

– Eval(msk, x) → y. Takes as input the master secret key msk and input x ∈ X .
Outputs y ∈ Y.

– Constrain(msk, C) → csk. Takes as input the master secret key msk and a
constraint circuit C ∈ C. Outputs a constrained key csk.

– CEval(csk, x) → y. Takes as input the constrained key csk and an input x ∈ X .
Outputs y ∈ Y.

We let any auxiliary public parameters pp be an implicit input to all algorithms.
A CPRF must satisfy the following correctness and security properties.

Correctness. For all security parameters λ, all constraints C ∈ C, and all
inputs x ∈ X such that C(x) = 0 (authorized), it holds that:

Pr

[
Eval(msk, x) = CEval(csk, x)

msk ← KeyGen(1λ),
csk ← Constrain(msk, C)

]
= 1 − negl(λ).

Constrained Pseudorandom Functions for Inner-Product Predicates 241

(1-key, Adaptive) Security. A CPRF is (1-key, adaptively)-secure if for all
efficient adversaries A, the advantage of A in the following security experiment
Expsec

A,b(λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk ← KeyGen(1λ), initializes the
set Q := ∅, and runs A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary inputs x ∈ X to the
challenger. For each x, the challenger computes y ← Eval(msk, x), sends y to
A, and proceeds to update Q ← Q ∪ {x}.

3. Constrain query: A sends one constraint C ∈ C to the challenger. The
challenger computes csk ← Constrain(msk, C), and sends csk to A.

4. Challenge query: For the single challenge query, A sends input x∗ ∈ X as
its challenge query, subject to the restriction that x∗ �∈ Q and C(x∗) �= 0.
If b = 0, the challenger computes y∗ ← Eval(msk, x∗). Else, if b = 1, the
challenger picks y∗ R← Y. The challenger sends y∗ to A.

5. Post-challenge queries: A continues to adaptively query the challenger on
inputs x ∈ X , subject to the restriction that x �= x∗. For each x, the challenger
computes y ← Eval(msk, x) and sends y to A.

6. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage Advsec
A (λ) is defined as

Advsec
A (λ) :=

∣∣Pr[Expsec
A,0(λ) = 1] − Pr[Expsec

A,1(λ) = 1]
∣∣ ,

where the probability is over the randomness of A and KeyGen.

Definition 2 (Constraint Privacy; adapted from [15,32]). A CPRF is (1-
key, adaptive)-constraint-hiding if for all efficient adversaries A, the advantage
of A in the following security experiment Exppriv

A,b(λ) is negligible in λ. Here, b
denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk ← KeyGen(1λ), initializes the
set Q := ∅, and runs A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary input values x ∈ X to
the challenger. For each x, the challenger computes y ← Eval(msk, x), sends
y to A, and proceeds to update Q ← Q ∪ {x}.

3. Constrain query: A sends a pair of constraints (C0, C1) ∈ C2 to the chal-
lenger, subject to the restriction that C0(x) = C1(x), for all x ∈ Q. The
challenger computes csk∗ ← Constrain(msk, Cb), and sends csk∗ to A.

4. Post-challenge queries: A adaptively sends arbitrary input values x ∈ X
to the challenger, subject to the restriction that C0(x) = C1(x). For each x,
the challenger computes y ← Eval(msk, x), and sends y to A.

5. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage Advpriv
A (λ) is defined as

Advpriv
A (λ) :=

∣∣∣Pr[Exppriv
A,0(λ) = 1] − Pr[Exppriv

A,1(λ) = 1]
∣∣∣ ,

where the probability is over the randomness of A and KeyGen.

242 S. Servan-Schreiber

Definition 3 ((1-key, selective) Security). A CPRF as defined in Defini-
tion 1 is said to be (1-key, selectively)-secure if the adversary commits to the
constraint C before querying the challenger [15]. That is, A sends the constraint
C to the challenger before issuing any pre-challenge queries. The same applies
to the constraint-privacy definition (Definition 2).

Remark 1 (Unique evaluation queries). Without loss of generality, we can
restrict the PRF adversary A to issuing only unique evaluation queries (as was
also done in prior PRF formalizations [2,3]). Note that the adversary is already
restricted to a unique challenge query in the above definition.

3.3 RKA-Secure PRFs

Here, we formalize the notion of related-key attack (RKA)-secure PRFs.

Remark 2 (Find-then-Guess Security). We slightly modify the standard defini-
tion of RKA-secure PRFs (e.g., [8]) to better align with the syntax of constrained
PRFs. In the basic definition, the adversary does not obtain evaluation queries
from what is guaranteed to be the output of the PRF F on some key. However,
we note that this extra evaluation oracle is without loss of generality, and is only
added to syntactically simplify our proofs. This definition is known as the find-
then-guess PRF security game [32, Definition 10] and implies the real-or-random
PRF security game, albeit with a polynomial loss in security.

Definition 4 (Φ-restricted Adversaries). An efficient RKA-PRF adversary
A is said to be Φ-restricted if its oracle queries have a related-key derivation
function φ chosen arbitrarily from a set of valid key derivation functions Φ.

Definition 5 (Related-Key-Attack Secure PRFs [8]). Let λ ∈ N be a
security parameter and � = �(λ) ∈ poly(λ). Let F = {Fk : Xλ → Y}k∈Kλ

be
a family of functions and Φ : Kλ → Kλ be a family of related-key derivation
functions. F is said to be an RKA-secure PRF family if for all efficient Φ-
restricted adversaries A, the advantage of A in the following security experiment
Exprka

A,b(λ) is negligible in λ. Here, b denotes the challenge bit.

– Setup: On input 1λ, the challenger samples k
R← Kλ, initializes the set Q :=

∅, and runs A(1λ).
– Pre-challenge queries: For each query (φ, x), the challenger computes y ←

Fφ(k)(x), sends y to A, and proceeds to update Q ← Q ∪ {(φ, x)}.
– Challenge query: For the single challenge query (φ∗, x∗), subject to the

restriction that (φ∗, x∗) �∈ Q, the challenger proceeds based on the bit b as
follows. If b = 0, the challenger computes y ← Fφ∗(k)(x∗). If b = 1, the

challenger samples y
R← Y. The challenger then sends y to A.

– Post-challenge queries: For each query (φ, x), subject to the restriction
that (φ, x) �= (φ∗, x∗), the challenger computes y ← Fφ∗(k)(x), and sends y
to A.

Constrained Pseudorandom Functions for Inner-Product Predicates 243

– Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage Advrka
A (λ) is defined as

Advrka
A (λ) :=

∣∣∣Pr[Exprka
A,0(λ) = 1] − Pr[Exprka

A,1(λ) = 1]
∣∣∣ ,

where the probability is over the randomness of A and choice of k.

Definition 6 (Affine Related-Key Derivation Functions [1]). Let F be a
finite field and let n ≥ 1 be an integer, let the class Φaff (aff for affine) denote
the class of functions from F

n to F
n that can be separated into n component

functions consisting of degree-1 univariate polynomials. That is,

Φaff :=

{
φ : Fn → F

n | φ = (φ1, . . . , φn);
∀i ∈ [n], φi(ki) = γiki + δi, γi �= 0

}
.

Note that γi �= 0 is necessary to make the derivation function non-trivial.

Remark 3. Note that Φaff captures additive and multiplicative relations, which
we denote by Φ+ ⊂ Φaff and Φ× ⊂ Φaff , respectively.

4 The Basic Framework and Construction

In Construction 1, we present our basic framework for constructing CPRFs for
inner-product predicates, and present an instantiation of it in the random oracle
model in Sect. 4.1. We extend this framework and use it in conjunction with
RKA-secure PRFs in Sect. 5 to realize CPRFs for inner-product predicates under
DDH, VDLPN, and OWFs.

Construction 1 (The basic framework).
Let λ be a security parameter, � ≥ 1 be an integer, and F be a finite field
of order at least 2λ. For a key space K and range Y, a suitable choice of
efficiently computable deterministic function map : F → K, and a PRF family
F =

{
Fk : F� → Y}

k∈K, the CPRF algorithms are defined as:

KeyGen(1λ, �):

1 : k0
R← F

2 : z0
R← F

�

3 : msk := (k0, z0)

Constrain(msk, z):
1 : parse msk = (k0, z0)

2 : Δ
R← F

×

3 : z1 := z0 − Δz

4 : return csk := (k0, z1)

Eval(msk,x):
1 : parse msk = (k0, z0)

2 : δx := 〈z0,x〉
3 : k ← map(k0 + δx)

4 : return Fk(x)

CEval(csk,x):
1 : parse csk = (k0, z1)

2 : δx := 〈z1,x〉
3 : k ← map(k0 + δx)

4 : return Fk(x)

244 S. Servan-Schreiber

4.1 Instantiation via a Random Oracle

The simplest instantiation of Construction 1 is to let Fk(x) := H(k,x) where
H : K × F

� → Y is a random oracle. Doing so ensures that when 〈z,x〉 �= 0, the
output is uniformly random and independent of the constrained key csk, which
guarantees that the evaluation under msk is independent of csk. We prove the
following theorem.

Theorem 1. Let λ be a security parameter, � ≥ 1 be any integer, F be a finite
field of order at least 2λ, and map be any entropy-preserving map. Construction 1
is a (1-key, adaptively-secure, constraint-hiding) CPRF in the random oracle
model when F =

{
Fk : F� → Y}

k∈K is a PRF family, where Fk(x) := H(k,x)
for all k ∈ K and x ∈ F

�, and where H : K × F
� → Y is a random oracle.

Proof. We prove each required property in turn.

Correctness. Correctness follows from the intuition presented in Sect. 2. For
all constraints z and inputs x, whenever 〈z,x〉 = 0, we have that

δx = 〈z0,x〉 = 〈z0,x〉 + 〈z,x〉 = 〈z0,x〉 + 〈Δz,x〉 = 〈z1,x〉 .

Therefore, Eval and CEval (of Construction 1) compute the same key k, because
both Eval and CEval add the same shift δx to the starting key k0. It then follows
that the evaluation is identical under the master key and the constrained key
given that Fk is deterministic.

(1-key, Adaptive) Security. We prove security by a reduction to the security
of the (non-constrained) PRF Fk(·) used to instantiate Construction 1. Our proof
consists of a sequence of hybrid games.

Hybrid H0. This hybrid consists of the (1-key, adaptive) CPRF security game.
We note that here, the challenger provides an oracle OH via which the adversary
A queries the random oracle H.

Hybrid H1. In this hybrid game, we place the following restrictions on the
adversary: (1) Each query issued by A to the challenger (including queries to
OH) must be unique, and (2) after issuing the constraint query, the adversary is
only allowed to query the pre- and post-challenge oracles on constrained inputs.

These restrictions are without loss of generality in the 1-key setting, and
have been used in prior work (e.g., [3,36]). It follows that A’s advantage in H1

is identical to its advantage in H0.

Hybrid H2. In this hybrid game, the challenger starts by sampling responses to
the pre-challenge evaluation queries until the constraint query is issued. That is,
for a bound q0 on the number of pre-challenge queries issued by A, the challenger
samples v1, . . . , vq0

R← Y. Then, the challenger responds to the i-th pre-challenge
query xi with vi, and programs the random oracle OH to output vi on all future
queries r where it holds that r = k0 + 〈z0,xi〉, for some i ∈ [q0]. After the
constrain query, the challenger responds to pre-challenge queries as in H1.

Constrained Pseudorandom Functions for Inner-Product Predicates 245

Claim. A’s advantage in H2 is at most negl(λ) larger compared to H1.

Proof. Let qH be the total number of random oracle queries issued by the adver-
sary prior to the constrain query, and let {ri}i∈[q0]

be the queries to OH . We
define the event bad0 as:

∃(i, j) ∈ [qH] × [q0] such that ri = (k0 + 〈z0,xj〉 ,xj) ∧ H(ri) �= vj .

The event bad0 corresponds to the case where the adversary happens to query the
random oracle OH on a “bad” input ri prior to the challenger programming OH

to output vi, causing the response to be inconsistent with respect to H1. For any
given pre-challenge query xj, issued before the constrain query, the probability
that A issues an ri query to OH such that ri = (k0 + 〈z0,xj〉 ,xj) is equivalent
to the probability of guessing k0, which is bounded by 1

|F| . Hence, by a union
bound, we get that

Pr
k0

R←F

[bad0] ≤ qH · q0
|F| ≤ qH · q0

2λ
≤ negl(λ),

which bounds A’s advantage in H1 to a negligible function in λ. �

Hybrid H3. In this hybrid game, we swap the definition of the constrained key
and master key. Specifically, in this game, the challenger responds to A’s con-
strain query z by sampling z1

R← F
� and sending back csk = z1. The challenger

then samples Δ
R← F, computes z0 = z1+Δz, and responds to future evaluation

queries using z0 as the master key.

Claim. A’s advantage in H3 is equivalent to its advantage in H2.

Proof. This change is purely syntactic and therefore does not affect the distri-
bution of the keys. In particular, note that in H2, all evaluation queries prior
to the constrain query are sampled independently of the master key. As such, it
can be sampled at the time of the constrain query. �

Hybrid H4. In this hybrid game, the challenger samples w1, . . . , wq1
R← Y as the

responses to the q1 pre- and post-challenge evaluation queries issued following
the constrain query. Then, the challenger responds to A’s i-th evaluation query
xi, where 〈z,xi〉 �= 0 (recall the restriction in H0), with wi.

Claim. A’s advantage in H4 is at most negl(λ) larger compared to H3.

Proof. Here, we let qH be a bound on the total number of random oracle queries
issued by the adversary throughout the game and let q1 be a bound on the
number of pre- and post-challenge evaluation queries issued after the constrain
query. We then define the event bad1 as:

∃(i, j) ∈ [qH] × [q1] such that ri = (k0 + 〈z0,xj〉 ,xj) ∧ H(ri) �= wj ,

246 S. Servan-Schreiber

where ri is a query to OH issued by A and each xj is constrained by assumption.
The event bad1 corresponds to the case where the adversary happens to query
OH on an input corresponding to a constrained evaluation under the master
key msk, causing the response to be inconsistent with respect to the distribu-
tion in H3. For all post-constraint evaluation queries xj, where j ∈ [q1], define
yj = H(k0+〈z0,xj〉 ,xj), which is computed identically to a post-constraint eval-
uation response in hybrid H3. We claim that yj is computed independently of
the constrained key csk = z1. To see this, note that we can equivalently express
yj in terms of z1 as yj = H(k0 + 〈z1,xj〉 + Δ 〈z,xj〉 ,xj), where 〈z,xj〉 �= 0 by
assumption. Then, because Δ is uniformly random and independent of z1 in
H3, each yj is computed using a random oracle H that is “seeded” by Δ 〈z,xj〉,
which makes the response independent of z1. Then, to compute the probability
of the event bad1, over the choice of Δ ∈ F, we can apply a union bound over
all q1 post-constraint evaluation queries issued by A to get

Pr
Δ

R←F

[bad1] ≤ qH · q1
|F| ≤ qH · q1

2λ
= negl(λ),

which bounds the adversary’s advantage in H4 to a negligible function in λ. �

Hybrid H5. In this hybrid game, the challenger samples a uniformly random
key k to answer the challenge query when the challenge bit is set to b = 0.

Claim. A’s advantage in H5 is equivalent to its advantage in H4.

Proof. Note that all evaluation queries in H4 are sampled independently of Δ.
Therefore, Δ is only used by the challenger in H4 to respond to the challenge
query, which is equivalent to sampling a uniformly random and independent key
k to answer the challenge query x∗, given that k0 + 〈z0,x∗〉 = k0 + 〈z1,x∗〉 +
Δ 〈z,x∗〉 is a uniformly random value in F. �

Claim. If Fk is a secure PRF, then there does not exist an efficient A that wins
game defined in H5 with better than negligible advantage.

Proof. Suppose, towards contradiction, that there exists an efficient A that wins
the game defined in H5 with non-negligible advantage, then there exists an effi-
cient B that wins the find-then-guess PRF security game with the same advan-
tage: B simply plays the role of the challenger in H5 and forwards the challenge
query from the adversary to its own PRF challenger, responding to A as its
own challenger does. Since the only dependence on the PRF key in H5 is in the
challenge phase, B wins the PRF security game with the same advantage. �

Finally, noting that Fk(x) := H(k,x) trivially satisfies the definition of a
pseudorandom function when H is a random oracle and k has sufficient entropy
proves (1-key, adaptive) security.

Constraint Privacy. We must prove that for all z and z′ provided by the
adversary A, the constrained key, and all evaluation and challenge queries, do
not reveal whether the constraint z or z′ is used by the challenger.

Constrained Pseudorandom Functions for Inner-Product Predicates 247

First, we begin by noting that, even given (z, z′,Δ), z0 + Δz is distributed
identically to z0 + Δz′ because z0 is uniformly random and independent of z
and z′. Therefore, the constrained key, absent the evaluation queries, is efficiently
simulatable regardless of the constraint chosen by the challenger.

Now, we must show that this remains the case even when the adversary
is given access to the evaluation and challenge oracles. Observe that we can
proceed via the same sequence of hybrids used in the security proof. Note that
in the game defined in Hybrid H5, we can view each constrained query as being
answered using a uniformly random key ki ∈ K. As such, the evaluation queries
on constrained inputs (including the challenge query) are independent of the
constraint, which guarantees that A cannot distinguish between z and z′ with
better than negligible advantage.

This concludes the proof constraint privacy and the proof of the theorem. �
Remark 4 (Replacing the random oracle with a correlated-input secure hash).
As noted by several prior works (e.g., [37,43,47]), the random oracle model
is an overkill when all that is required is a notion of “correlation-robustness.”
Specifically, in our case, all we require is that H removes specific types of cor-
relations present in its inputs. With this in mind, we can replace the random
oracle H with a correlated-input secure hash (CIH) function [3,37,43,47]. At a
high level, a CIH is a publicly parameterized function H whose outputs “look
random and independent” to a computationally-bounded adversary, even when
the inputs are correlated. Specifically, we require the CIH to be secure against
affine correlations between the inputs. The proof of security for Theorem 1 then
follows the same blueprint, but instead hinges on the correlated-input security
of H to ensure that the outputs are computationally indistinguishable from uni-
form. Unfortunately, we are not aware of an adaptively-secure CIH function
construction (to the best of our knowledge, all existing constructions are in the
selective-security regime). However, we note that there exist strong connections
between CIH functions and RKA-PRFs, as discussed in-depth by Goyal, O’Neill,
and Rao [43].

5 Generalized Framework and Constructions

In this section, we instantiate our framework via RKA-secure PRFs. In Sect. 5.1,
we start by extending the basic framework from Sect. 4 to make it more amenable
with RKA-secure PRF constructions. We then prove that this framework yields
constraint-hiding CPRFs from any RKA-secure PRF supporting Φaff key deriva-
tion functions. In Sect. 5.2 and 5.3, we plug in the DDH-based and VDLPN-based
RKA-secure PRF constructions into the framework. We defer instantiating the
framework with our OWF-based RKA-secure PRF to Sect. 6, as there we must
first construct a Φaff -RKA-secure PRF from OWFs.

5.1 Extended Framework

Existing constructions of RKA-secure PRFs (e.g., [1,2,7,23]) have a key that is a
vector of n field elements. As such, we cannot directly instantiate Construction 1

248 S. Servan-Schreiber

because the inner products are performed in F but the keys live in the vector
space F

n (or subfield thereof). We therefore provide an extended version of our
framework in Construction 2, that can be instantiated with the parameters of
existing RKA-secure PRFs. At a high level, to accommodate keys that consist of
vectors of n elements, we apply Construction 1 independently n times to derive
a key for each coordinate. Formally, we capture this in Construction 2.

Construction 2 (The extended framework).
Let λ be a security parameter, n, � ≥ 1 be integers, and F be a finite field. For
a key space K and range Y, a suitable choice of efficiently computable deter-
ministic function map : Fn → K, and a PRF family F =

{
Fk : F� → Y}

k∈K,
the CPRF algorithms are defined as:

KeyGen(1λ, �):

1 : k0
R← F

n

2 : foreach i ∈ [n] :

3 : z0i
R← F

�

4 : msk := (k0, z01, . . . , z0n)

Constrain(msk, z):
1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : Δi
R← F

4 : z1i := z0i − Δiz

5 : return csk := (k0, z11, . . . , z1n)

Eval(msk,x):
1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : δxi := 〈z0i,x〉
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

CEval(csk,x):
1 : parse csk := (k0, z11, . . . , z1n)

2 : foreach i ∈ [n] :

3 : δxi := 〈z1i,x〉
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

Theorem 2. Let K be a subfield of F and let the PRF key space K = K
n. Fix

map to be any non-trivial ring homomorphism applied component-wise. If F is
a family of RKA-secure pseudorandom functions with respect to affine related
key derivation functions Φaff , as defined in Definition 6, then Construction 2
instantiated with F is a (1-key, selectively-secure, constraint-hiding) CPRF.

Proof. We prove the required properties in turn.

Correctness. For all constraints z and inputs x, whenever 〈z,x〉 = 0, we have
that δxi = 〈z0i,x〉 = 〈z0i,x〉 + Δi 〈z,x〉 = 〈z0i,x〉 + 〈Δiz,x〉 = 〈z1i,x〉 ∈ F.
Therefore, the resulting δx (as computed in Eval and CEval of Construction 1)
is the same. Moreover, this holds for all i ∈ [n], and because map is a ring

Constrained Pseudorandom Functions for Inner-Product Predicates 249

homomorphism to a subfield of F, the resulting keys are also identical when
〈z,x〉 = 0. It then follows that the PRF evaluation is identical under the master
key and the constrained key, because both Eval and CEval add the same δx.

(1-key, Selective) Security. We prove security by a reduction to the RKA-
security of F . Our proof consists of a sequence of hybrid games.

Hybrid H0. This hybrid consists of the (1-key, selective) CPRF security game.

Hybrid H1. In this hybrid, the challenger first samples the constrained key and
then samples the master key. Specifically, at the start of the game, given the
constraint z (we’re in the selective security regime), the challenger first samples
the constrained key csk := (k0, z11, . . . , z1n), where k0

R← F
n and z1i

R← F
�,

for all i ∈ [n]. Then, the challenger computes the master secret key as msk :=
(k0, z01, . . . , z0n), where z0i := z1i + Δiz and Δi

R← F, for all i ∈ [n].

Claim. A’s advantage in H1 is identical to A’s advantage in H0.

Proof. The claim follows immediately by observing that the distribution of msk
and csk in H1 is identical to H0, because the change is merely syntactic. �

Hybrid H2. In this hybrid game, the challenger does not sample Δ anymore.
Instead, it is given access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample Δ
R← K

n.

Evaluation. On input a affine function φ ∈ Φaff and x ∈ F
�, return

Fφ(Δ)(x).

The challenger is then defined as follows.

1. Setup: On input (1λ, z), B initializes Q := ∅, samples csk according to H1

by sampling k0
R← F

n, and z1i
R← F

�, for all i ∈ [n], and runs A on input
csk := (k0, z11, . . . , z1n).

2. Pre-challenge queries: For each query x issued by A, the challenger
updates Q ← Q ∪ {x}, then does the following to compute y:

• Compute ai := map(〈z,x〉) and bi := map(k0i + 〈z1i,x〉), for all i ∈ [n].
• Set φ : u �→ a◦u+b where a := (a1, . . . , an) and b := (b1, . . . , bn), where

◦ denotes the component wise (i.e., Hadamard) product.
• Query Orka on input (φ,x), and forward the response y to A.

	 Note that y is computed by Orka as Fk′(x) where
	 k′ = a ◦ Δ + b ∈ K

n = φ(Δ), for φ ∈ Φaff .

250 S. Servan-Schreiber

3. Challenge: For the single challenge query x∗, subject to 〈z,x∗〉 �= 0 and
x∗ �∈ Q, the challenger does the following. Sample b ∈ {0, 1}:

• If b = 0, then

– Compute ai := map(〈z,x〉) and bi := map(k0i + 〈z1i,x∗〉), for all
i ∈ [n].

– Set φ∗ : u �→ a ◦ u + b where a := (a1, . . . , an) and b := (b1, . . . , bn),
where ◦ denotes the component wise product.

– Query Orka on input (φ∗,x∗), and forward the response y∗ to A.

• Else if b = 1, then

– Sample y∗ R← Y and send y∗ to A.

4. Post-challenge queries: Answered identically to pre-challenge queries.

Claim. A’s advantage in H2 is identical to A’s advantage in H1.

Proof. The difference between H2 and H1 is again purely syntactic since each
output is computed identically in both games, with the only difference being
that the challenger now only has access to Δ via the oracle Orka �.

Claim. If F is an RKA-secure PRF for affine related key derivation functions
Φaff , then there does not exist an efficient A that wins the game defined in H2

with better than negligible advantage.

Proof. Suppose, towards contradiction, that there exits an efficient adversary
A for H2 that wins with non-negligible advantage. Construct an efficient Φaff -
restricted adversary B that wins the RKA security game for the PRF Fk with
the same advantage. B simply plays the role of the challenger in H2, forwarding
all queries to its own challenger. Note that this makes B’s queries Φaff -restricted.
Therefore, on the one hand, when B is given access to a truly random function
at the challenge phase, its answers are distributed identically to H2 when the
challenger samples b = 1. On the other hand, when B is given access to a an RKA-
PRF oracle, B’s answers are distributed identically to H2 when the challenger
samples b = 0 and queries Orka. As such, B has the same advantage as A, which
contradicts the RKA-security of F . �

This concludes the proof of (1-key, selective) security.

Constraint Privacy. For constraint privacy, we must show that if F is an
RKA-secure PRF family, then all evaluation and challenge queries remain pseu-
dorandom, regardless of whether constraint z or z′ is used by the challenger.3

Again, note that z0i + Δiz is distributed identically to z0i + Δiz′, thereby
making the constraint key, absent the evaluation queries, efficiently simulatable
regardless of the constraint chosen by the challenger. Now, we must show that
this remains the case even when the adversary is given access to the evaluation
oracles. We prove this via the following lemma. Roughly speaking, the lemma
3 Recall that the adversary provides two constraints z and z′.

Constrained Pseudorandom Functions for Inner-Product Predicates 251

states that if the underlying PRF is RKA-secure, then distinguishing between
evaluations under two different related-key derivation functions of the PRF key
contradicts the RKA security of the PRF.

Lemma 1. Let λ be a security parameter and F = {Fk : X → Y}k∈K be an
RKA-secure PRF. Then, for all efficient Φ-restricted adversaries A, the advan-
tage in the following game is negligible in λ.

– Setup: On input 1λ, the challenger samples k
R← K, samples a random bit

b ∈ {0, 1}, initializes the set Q := ∅, and runs A(1λ).
– Pre-challenge queries: For each query (φ, x), the challenger computes y ←

Fφ(k)(x), sends y to A, and proceeds to update Q ← Q ∪ {(φ, x)}.
– Challenge query: A sends challenge query (φ∗

0, φ
∗
1, x

∗), subject to the restric-
tion that (φ∗

c , x
∗) �∈ Q, ∀c ∈ {0, 1}. The challenger computes y∗ ← Fφ∗

b (k)
(x∗)

and sends y∗ to A.
– Post-challenge queries: For each query (φ, x) subject to the restriction

that (φ, x) �= (φ∗
c , x

∗),∀c ∈ {0, 1}, the challenger computes y ← Fφ(k)(x), and
sends y to A.

– Guess: A outputs its guess b′.
A wins if b′ = b and its advantage is defined as |Pr[A wins] − 1

2 |, where the
probability is over the internal coins of A and choice of k.

The lemma follows immediately from a standard hybrid argument. By RKA-
security of the PRF F we have that Fφ0(k)(x) ≈c R(x) ≈c Fφ1(k)(x), where R
is a random function. Therefore, a distinguisher would directly contradict the
security of the RKA-PRF. �

5.2 DDH-Based Construction

In this section, we describe the DDH-based RKA-secure PRF construction of Bel-
lare and Cash [7] (later extended by Abdalla et al. [1]) and describe how it fits
into Construction 2 to realize a DDH-based CPRF for inner-product predicates.

RKA-Secure PRF from DDH. The multiplicative variant [1,7] of the Naor-
Reingold PRF [53] is parameterized by an integer n ≥ 1 and a multiplicative
group G of prime order p with generator g. The PRF key k = (a1, . . . , an) ∈ Z

n
p

consists of n random elements in Z
n
p and the input x ∈ {0, 1}n \ {0n} is chosen

from the set of all non-zero n-bit strings. The PRF NR∗ is then defined as:

NR∗((a1, . . . , an), x) = g
∏n

i=1 a
xi
i . (1)

The RKA-secure version of the multiplicative Naor-Reingold PRF is param-
eterized by a collision-resistant hash function h : {0, 1}n × G

n → {0, 1}n−2 and
is defined as:4

NR∗((a1, . . . , an), 11‖h(x, ga1 , . . . , gan)). (2)
4 Note that the prefix “11” ensures that the input is never 0n, and therefore always

in the domain of NR∗ [1,7].

252 S. Servan-Schreiber

Abdalla et al. [1, Section 4] show that Eq. (2) is an RKA-secure PRF for Φaff -
restricted adversaries. We provide an informal merger of the main theorems from
Abdalla et al. [1] pertaining to this construction here, for completeness.

Proposition 1 (Merge of [1, Theorems 4.5, 5.1, & A1]). Let G be a
multiplicative group of prime order p and let NR∗ be defined as in Eq. (1). Let
h : {0, 1}n × G

n → {0, 1}n−2 be a collision-resistant hash function. Define the
PRF family F = {Fk : {0, 1}n → G}k∈Zn

p
to be as in Eq. (2). Then, if the DDH

assumption holds in G, F is RKA-secure against all efficient, Φaff-restricted
adversaries A.

Remark 5 (RKA security under DDH). Abdalla et al. [1] prove the RKA security
of their construction for Φaff -restricted adversaries under the 1-DDHI assumption
(which is known to be equivalent to the Square DDH assumption [10]). However,
they explicitly note that, by combining Theorems 4.5, 5.1, & A1 (found in the full
version of their paper), they obtain the same result under the DDH assumption.
This same result was also used by Attrapadung et al. [3].

Remark 6 (Supporting vector inputs). NR∗ takes as input a binary string x ∈
{0, 1}n as opposed to a vector x ∈ F

� as is assumed by our framework. However,
we can easily map any x ∈ F

� to a binary string of required length via any
collision-resistant hash function (CRHF), which are known from the discrete
logarithm assumption [35] (implied by DDH), making vector inputs x ∈ F

�

syntactically cleaner and without any loss of generality. In particular, for a CRHF
h, the binary string input x can be computed as h(x). Moreover, since the RKA-
secure variant of NR∗ already requires hashing the input using a CRHF, this does
not introduce additional computational complexity.

Construction from DDH-Based RKA-Secure PRF. With the RKA-secure
PRF construction of Proposition 1, we can instantiate Construction 2. To satisfy
the key space and related-key derivation requirements, we must instantiate our
extended framework with the following parameters. Let p be the order of the
DDH-hard group G. We set F to be a field extension of Fp, and let n = n(λ) ∈
poly(λ), following Eq. (2). Applying Theorem 2 in conjunction with Proposition 1
yields:

Theorem 3. Assume that the DDH assumption holds in a cyclic group G of
order p. Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF
for inner-product constraint predicates with vectors in F

�
p, for any � ≥ 1.

Remark 7 (Complexity of the DDH-based construction). The Naor-Reingold
PRF from Eq. (1) can be evaluated in NC1. Interestingly, the same is true of
the RKA-secure variant of Eq. (2), provided that the collision resistant hash
function can be evaluated in NC1 (which is the case of the discrete log based
construction [35]).

Constrained Pseudorandom Functions for Inner-Product Predicates 253

5.3 VDLPN-Based Construction

In this section, we show that we can instantiate Construction 2 from any RKA-
secure PRF supporting only additive key derivation functions Φ+ ⊂ Φaff over
the field F2. In particular, this allows us to instantiate our framework using the
weak PRF candidate of Boyle et al. [23] based on the Variable-Density Learning
Parity with Noise (VDLPN) assumption. This yields the first construction of a
(weak) CPRF for inner-product predicates under a code-based assumption.

RKA-Secure weak PRF Candidate from VDLPN. For a security param-
eter λ, the VDLPN-based weak PRF candidate of Boyle et al. [23] is parameter-
ized by integers D = D(λ), w = w(λ), input space {0, 1}n and key space {0, 1}n,
where n := w · D(D − 1)/2. The PRF FK is defined as:

FK(x) =
D⊕

i=1

w⊕
j=1

i∧
k=1

(Ki,j,k ⊕ xi,j,k). (3)

Theorem 4 (Informal; adapted from [23, Theorem 6.9]). Let λ be a secu-
rity parameter and suppose that the VDLPN assumption holds with parameters
w(λ) and D(λ). Then, the PRF in Eq. (3) is an RKA-secure weak PRF with
respect to additive key derivation functions Φ+.

We will use the following lemma which proves that for the case of F2, additive
and affine RKA security are in fact equivalent in our context:

Lemma 2. Let F be a PRF with key space F
n
2 that is secure against Φ+-

restricted adversaries. Then, Construction 2 instantiated with F is a secure
CPRF.

Proof. Consider the proof of Theorem 2. We look at the queries issued by the
CPRF challenger to the RKA oracle Orka in Hybrid H2 of the proof. For each
query x issued by the adversary to the CPRF challenger, the induced affine func-
tion φ ∈ Φaff is parameterized by vectors a,b ∈ F

n
2 . Note that a = (a1, . . . , an),

where ai ← 〈z,x〉. Moreover, ai �= 0 for all queries that do not satisfy the
constraint, which implies that ai = 1 ∈ F2. As such, each (constrained) query
issued to the RKA oracle Orka by the challenger is an affine function φ ∈ Φaff

parameterized by (1,b) and the oracle Orka responds with the PRF evaluated
using key k := 1 ◦ Δ + b. This is equivalent to an additive function φ′ ∈ Φ+

simply parameterized by b. The reduction in Theorem 2 therefore goes through
as before, concluding the lemma. �

Construction from VDLPN-Based RKA-Secure weak PRF. With the
RKA-secure weak PRF construction of Eq. (3), we can instantiate Construc-
tion 2. To satisfy the key space and related-key derivation requirements, we
must instantiate our extended framework with the following parameters. We set
F to be a field extension of F2n , n = n(λ) ∈ poly(λ), map maps from F to F

n
2 , and

� ≥ n (inputs of length � can be truncated to n before being fed into the PRF,
without loss of generality). Applying Theorem 2 in conjunction with Theorem 4
and Lemma 2 yields:

254 S. Servan-Schreiber

Theorem 5. Assume that the VDLPN assumption holds. Then, there exists a
(1-key, selectively-secure, constraint-hiding) weak CPRF for inner-product con-
straint predicates computed over vectors in F

�
2, where � ≥ n.

6 CPRFs for Inner-Product Predicates from OWFs

In this section, we instantiate our extended framework from Sect. 5.1 under the
minimal assumption that one-way functions exist. Unlike our constructions in
Sect. 5.1, here we will require that the set of possible related keys computed for
evaluation queries is bounded by a fixed polynomial t = t(λ), which forces us to
restrict the input domain of the CPRF. Specifically, we show that we can satisfy
this requirement without placing any restrictions on the CPRF adversary if the
CPRF inputs are vectors in [0, B)� with B ∈ O(1) and � = �(λ) ∈ O(log λ).
These restrictions limit the L∞-norm of each input vector and make the input
domain of the CPRF polynomial in the security parameter. We note that this
is the same class of inner-product constraints considered by Davidson et al. [36]
(inner products over Z) from the LWE assumption, albeit here we only obtain
a polynomially-sized input domain.

Our construction builds off of a result by Applebaum and Widder [2], which
constructs a restricted class of RKA-secure PRFs from any PRF and a m-wise
independent hash function. Their construction is secure against additive rela-
tions over a group, provided that the RKA adversary uses at most t = t(λ)
different related-key derivation functions φ1 . . . , φt ∈ Φ+, where t � m. (We
stress, however, that the adversary can query the PRF on an unbounded num-
ber of inputs using each of the t different RKA functions.) Because m-wise
independent hash functions can be constructed unconditionally [63], the result-
ing RKA-secure PRF can be realized from any PRF, thus relying only on the
assumption that one-way functions exist [2,42]. More formally, they prove:

Theorem 6 (Adapted from [2]). Let K = {Gλ}λ∈N
be a sequence of effi-

ciently computable additive groups, and t = t(λ) be an arbitrary fixed polynomial.
Then, assuming the existence of a PRF F = {Fk : Xλ → Y}k∈Gλ

, there exists an
RKA-secure PRF with respect to addition over K provided that the total number
of unique related-key derivation functions queried by the adversary is bounded by
t. (The adversary is allowed to query each function on any number of inputs.)

Unfortunately, we require the PRF to be RKA-secure with respect to affine
relations Φaff and therefore cannot apply Theorem 6 directly. More concretely,
the issue with affine (as opposed to additive) relations is that they are not “claw-
free,” meaning that there exist pairs of different functions φ1, φ2 ∈ Φaff such that
for a key k ∈ K, φ1(k) = φ2(k). The lack of claw-freeness poses problems in
security proofs because, if an adversary is able to find two different φ1, φ2 ∈ Φaff

such that φ1(k) = φ2(k), the adversary learns information about k and can then
break the RKA-security of the PRF [1]. To address this, we strengthen Theorem 6
for the case of Φaff -restricted adversaries by showing that the number of collisions
is bounded by a negligible factor in the security parameter, proving a stronger
theorem via their approach. We describe this next.

Constrained Pseudorandom Functions for Inner-Product Predicates 255

6.1 Affine RKA-Secure PRFs from OWFs

In this section, we show how to construct RKA-secure PRFs for affine related-key
derivation functions from one-way functions. The framework and proof closely
follows that of Applebaum and Widder [2] for constructing RKA-secure PRFs
from m-wise independent hash functions.

Immunizing PRFs Against RKA. The idea of Applebaum and Widder [2]
is to immunize any regular PRF family F with key space K = Kλ against a
bounded related-key attack, where the adversary makes at most t related key
queries (but can make an unbounded number of PRF queries under each related
key) for some apriori fixed t = t(λ) ∈ poly(λ). The high level idea is to use a long
key s from a large key space S (larger than Kt) and use a public hash function
h to derive shorter key h(s) ∈ K for F . Here, we generalize their approach to
the case of affine functions.

Definition 7 (t-good hash function). Let λ be a security parameter, F be
finite field of order at least 2λ, and K ⊆ {0, 1}λ be a set of strings. A hash
function h : F → K is said to be t-good if for any t-tuple of distinct affine function
(φ1, . . . , φt) ∈ Φt

aff , the joint distribution of (h(s), h(φ1(s)), . . . , h(φt(s)) induced

by a random choice of s
R← F, is ε-close in statistical distance to the uniform

distribution over Kt+1, for some negligible ε = ε(λ).

Definition 8 (t-good hash family). Let λ be a security parameter, F be a
finite field of order at least 2λ, and Z,K ⊆ {0, 1}λ. A family of hash functions
H = {hz : F → K}z∈Z is said to be t-good if with all-but-negligible probability,

for a randomly selected z
R← Z, the hash function hz is t-good.

Remark 8 (Relation to correlation-robustness). We note that a t-good hash func-
tion can instantiated via a suitable correlation-robust hash function (and, in par-
ticular, a random oracle), which provides an alternative strategy to constructing
CPRFs (in the selective security regime) from a random oracle.

We now prove that if we have a t-good hash family, we can “immunize” any
PRF against affine related key attacks. Later, in Lemma 3, we show how to
construct a t-good hash family from m-wise independent hash functions.

Theorem 7 (Extended from [2, Lemma 7.1]). Let λ be a security parame-
ter, t = t(λ) ∈ poly(λ), F be a finite field of order at least 2λ, and Z,K ⊆ {0, 1}λ.
Let F = {Fk : X → Y}k∈K be a PRF family and H = {hz : F → K}z∈Z be
a t-good hash family. The PRF family G = {Gs,z : X → Y}s∈F,z∈Z , parame-

terized by a secret s
R← F and public z

R← Z, and defined by the mapping
Gs,z(x) �→ Fk(x), where k ← hz(s), is an RKA-secure PRF family against t-
bounded Φaff-restricted adversaries.

256 S. Servan-Schreiber

Proof. Suppose, towards contradiction, there exists an efficient Φaff -restricted A
that has non-negligible advantage in the RKA-security game for G. Then, there
exists a non-negligible function ν such that,∣∣∣∣∣ Pr

s
R←F,z

R←Z
[AGs,z (1λ, z)] − Pr

z
R←Z

[AR(1λ, z)]

∣∣∣∣∣ ≥ ν(λ),

where R is a truly random function.
Then, consider a vector of t + 1 keys k := (k0, k1, . . . , kt) ∈ Kt+1, and define

a stateful oracle Ok as follows.

Oracle Ok

Initialize. Set Qφ := {}, define a dictionary T := [], and counter j ← 1.

Evaluation.

– For each non-RKA query x, output Fk0(x).
– For each RKA query (φ, x):

- If φ ∈ Qφ, retrieve ki ← T [φ] and output Fki
(x).

- If φ �∈ Qφ, set T [φ] ← kj , set j ← j + 1, and output Fkj
(x).

In words, Ok outputs Fki
(x), and stores the association between φ and ki to

answer all future queries involving φ using PRF key ki.
Now, because hz is t-good, for a random vector k of t + 1 keys, we have that∣∣∣∣∣ Pr

k
R←Kt+1,z

R←Z
[AOk(1λ, z)] − Pr

z
R←Z

[AGs,z (1λ, z)]

∣∣∣∣∣ ≥ ν(λ) − negl(λ).

By a straightforward hybrid argument, it follows that A has non-negligible
advantage in winning the (standard) PRF game by distinguishing between Ok

and the truly random function R, contradicting that F is a PRF. This proves
security against Φaff -restricted adversaries. �

The following lemma shows that any Ω(λ·t2)-wise independent hash function
with a sufficiently large domain is t-good in the sense of Definition 7. Moreover,
an m-wise independent hash function can be constructed unconditionally for any
m (e.g., using a universal hash based on random polynomials [63]).

Lemma 3. Let λ be a security parameter, t = t(λ) ∈ poly(λ), and H be a
family of m-wise independent hash function with domain S = {Sλ} and range
K = {Kλ} where m ≥ λ(3t + 5)(t + 1), |Kλ| = 2λ, and |Sλ| = 2λ(2t+6). Then,
H is a t-good family of hash function. In particular, for all but a 2−λ fraction
of the functions in H, the distribution of hz

R← H is 2−0.99λ-close to uniform.

Proof. The proof is deferred to the full version of the paper [60], as it closely
follows the proof strategy of Applebaum and Widder [2, Proof of Lemma 7.2]
for the case of additive key derivation functions. �

Constrained Pseudorandom Functions for Inner-Product Predicates 257

6.2 CPRF Construction from OWFs

Using the RKA-secure PRF construction from Theorem 7, we can instantiate
Construction 2 with F = Fp, for sufficiently large p ≥ 2λ(2t+6) as required by
Lemma 3, and n ≥ 1. However, we must set the input vector domain to [0, B)� ⊂
Z

� with the vector length � such that B� ≤ t. Specifically, this ensures that the
total number of unique inputs to the t-good hash when deriving affine keys is
bounded by t = t(λ) ∈ poly(λ). To see this, note that there are B� possible
values for the inner product 〈z0,x〉+Δ 〈z,x〉 given that z and z0 are fixed while
x ∈ [0, B)� is chosen by the adversary. Hence, we can simply let map be defined
by applying n different t-good hash functions component-wise to derive the PRF
key in Kn. Then, applying Theorem 2 in conjunction with Theorem 7 yields:

Theorem 8. Let λ be a security parameter and fix a polynomial t = t(λ) ∈
poly(λ). Assume that one-way functions exist. Then, there exists a (1-key,
selectively-secure, constraint-hiding) CPRF for inner-product constraint predi-
cates with � = �(λ) ∈ O(log λ) and input vectors in the range [0, B) for any
constant B such that B� ≤ t.

Proof. We recall the proof of Theorem 2, and in particular Hybrid H2. In the
game defined by H2, for each query x issued by the CPRF adversary, the chal-
lenger derives the affine function φ parameterized by vectors a,b ∈ F

n
p where:

• a := (a1, . . . , an) with ai = 〈z,x〉 for all i ∈ [n].
• b := (b1, . . . , bn) with bi = 〈z0i,x〉 for all i ∈ [n].
Note that z and z0i, for all i ∈ [n] are fixed at the start of the CPRF game.
Therefore, a,b are both entirely determined by the query vector x. The RKA
oracle Orka in H2 (when instantiated with the immunized RKA-PRF construc-
tion of Theorem 7) computes the RKA key as hi(aiΔi + bi) for all i ∈ [n], where
hi is an independent t-good hash function and Δi is an independent PRF key.
We must show that, for all possible sets of queries Q := {xj | 1 ≤ j ≤ qE} issued
by A (here qE is an arbitrary upper bound on the total number of evaluation
queries), the number of unique inputs to hi never exceeds t. This follows from
the fact that the number of possible values that ki := aiΔi + bi can take on
is bounded by the number of unique values of x, which in turn is bounded by
B� ≤ t, by construction. We stress that there are no restrictions placed on the
adversary’s queries—the adversary can adaptively query the CPRF challenger
and issue any polynomial number of evaluation queries (independently of t). �

As a corollary, we obtain an analogous result to Theorem 8 but with an
exponential input domain provided that the CPRF adversary makes at most t
unique evaluation queries on constrained inputs.

Corollary 1. Let λ be a security parameter and fix a polynomial t = t(λ) ∈
poly(λ). Assume that one-way functions exist. Then, there exists a (1-key,
selectively-secure, constraint-hiding) CPRF for inner-product constraint predi-
cates for any � ≥ 1 provided that the adversary makes at most t constrained
evaluation queries.

258 S. Servan-Schreiber

7 Evaluation

In this section, we implement5 and benchmark our CPRF constructions. For
each construction, we first analyze the complexity (in terms of multiplication,
additions, and invocations of other cryptographic primitives) and then report
the concrete performance of our Go (v1.20) implementation benchmarked on an
Apple M1 CPU. All benchmarks are performed on a single core.

7.1 Complexity and Benchmarks

Random Oracle Construction. The random oracle construction requires comput-
ing the inner product in F followed by a call to a random oracle. We heuristically
instantiate the random oracle using the SHA256 hash function. We let the F = Fp

be a finite field where p is a 128-bit prime. The bottleneck of the construction
is computing the inner product (modulo p), which requires a total of � modular
multiplications and additions. We report the concrete performance in Table 2.
Overall, evaluation requires a few microseconds of computation time, ranging
from 2μs for small vectors (� = 10) and 200μs for large vectors (� = 1000).

DDH-Based Construction. In the DDH-based construction, the bulk of the
required operations are performed modulo p, where p is the order of the DDH-
hard group. For a security parameter λ and n = n(λ), the CPRF construction
requires computing (1) n� multiplications and n� additions (mod p) to compute
the inner products between length-� vectors, (2) one invocation of a collision-
resistant hash function, and (3) n multiplications (mod p) and n + 1 group
operations in G to compute the PRF evaluation. This results in a total com-
plexity of n(�+1) multiplications (mod p), n� additions, n+1 group operations,
and one invocation of a CRHF. Using the P256 elliptic curve, letting n = 128,
and using the discrete logarithm based CRHF construction described in the full
version [60], each CPRF evaluation requires a few milliseconds to compute (note
that in practice, the DL-based CRHF can be replaced with a fixed-key AES or
SHA256 hash function for better performance). We report the concrete perfor-
mance in Table 3. The concrete performance is worse for smaller vectors due
to constant overheads of computing the CRHF and PRF relative to computing
the inner product. For larger vectors, however, the inner product computation
dominates the cost.

OWF-Based Construction. Our OWF-based construction requires comput-
ing the inner products over the integers, which requires � multiplications and
� additions in Z to compute inner products. Then, we need to evaluate an m-
wise independent hash function. This requires evaluating a random polynomial
of degree m = O(λ · t2) with O(λ · t)-bit coefficients (recall Lemma 3). Here, we
let λ = 40 as it is a statistical security parameter of the t-good hash function.
For very small values of B and �, we obtain reasonable concrete efficiency when

5 The implementation is open source: https://github.com/sachaservan/cprf.

https://github.com/sachaservan/cprf

Constrained Pseudorandom Functions for Inner-Product Predicates 259

Table 2. Concrete evaluation time for
our RO-based CPRF construction for
vectors of length �.

(�) 10 50 100 500 1000

2 µs 10 µs 19 µs 98 µs 200 µs

Table 3. Concrete evaluation time for our
DDH-based CPRF construction for vec-
tors of length �.

(�) 10 50 100 500 1000

8 ms 11 ms 16 ms 46 ms 85 ms

evaluating the m-wise independent hash function (less than one second of com-
putation for B = 2 and � = 5 and roughy 50MB public parameters). However,
for larger parameters, the concrete efficiency quickly becomes impractical. This
blowup is due to the quadratic overhead of Lemma 3. Additionally, the public
parameters quickly become impractically large (in the petabytes) as � increases,
due to the cubic factor in t description of the random polynomial. Indeed, this
description already reaches terabytes in size with B = 2 and � = 10, barring any
concretely practical instantiation.

7.2 Comparison to Other CPRF Constructions

Prior CPRF constructions for inner product (and NC1) predicates [4,32,36] do
not have implementations, and due to large parameters or heavy building blocks,
are far too inefficient to be implemented. We briefly discuss the concrete effi-
ciency roadblocks associated with these constructions.

– The LWE-based CPRF construction of Davidson et al. [36] is implementable
but very inefficient due to the large parameters required for security and
computationally expensive building blocks. Specifically, their construction
requires computing a linear (in the input size) number of matrix-matrix prod-
ucts, which poses an efficiency roadblock. Similar roadblocks are faced with
other LWE-based constructions, even if adapted to the simpler case of inner-
product constraints. While concrete efficiency can be improved by assuming
ring-LWE, the concrete costs remain high.

– The constructions of Attrapadung et al. [3] is tailored to evaluating NC1

Boolean circuits and requires computing a linear number of group exponen-
tiations in the degree of the universal NC1 circuit computing the constraint
predicate. While their construction can be theoretically applied to computing
inner-product predicates, it does yield a practical solution given the need for
emulating field operations inside of the NC1 universal circuit.

– The approach of Couteau et al. [32] based on DCR requires evaluating a
PRF using HSS (where the PRF key is encoded as an HSS input share).
This requires evaluating a linear (in the degree of the polynomial computing
the PRF) number of HSS multiplications. Using a DCR-based variant of the
Naor-Reingold PRF necessitates computing g

∏n
i a

xi
i in HSS, where the key

k = (a1, . . . , an) is the PRF key provided as input. The exceedingly high
degree of this polynomial eliminates the possibility of a concretely practical
instantiation, since even low-degree polynomials can already be concretely
expensive to evaluate in HSS schemes [20].

260 S. Servan-Schreiber

8 Conclusion and Future Work

In conclusion, this paper contributes a simple framework for constructing
constraint-hiding CPRFs with inner-product constraint predicates through sub-
tractive secret sharing and related-key-attack-secure PRFs. Through our frame-
work, we constructed the first (1-key, selectively-secure, constraint-hiding)
CPRFs with inner-product constraint predicates from DDH and from one-way
functions, and the first (1-key, adaptively-secure, constraint-hiding) CPRFs in
the random oracle model.

Finally, we note that recent work building pseudorandom correlation func-
tions (PCFs) [27,33] (which have many applications in efficient multi-party com-
putation) makes extensive use of CPRFs for inner-product predicates (and exten-
sions thereof), including some of the constructions presented in this work. This
motivates the further study of efficient CPRF instantiations, even for relatively
simple predicates, from a wider range of assumptions.

Future Work. We identify several interesting avenues for future work. The
first open problem is constructing (constraint-hiding) CPRFs for more expres-
sive constraints from new assumptions, especially for NC1 and puncturing con-
straints. Given the tight connection between our framework and RKA-secure
PRFs, an additional avenue of exploration is constructing suitable RKA-secure
PRFs from new assumptions (which will immediately enable instantiating our
framework under those assumptions as well). Second, there are currently few
practical applications of CPRFs with inner-product predicates that we are aware
of (with the exception of recent constructions of PCFs [27,33]), which we believe
is due to the previous lack of concretely efficient constructions. Finding addi-
tional practical use cases for CPRFs with inner-product predicates (whether
constraint-hiding or not), is an interesting question and worth exploring further
in light of our efficient constructions.

Acknowledgements. I’d like to thank Geoffroy Couteau for insightful discussions,
providing me with several pointers and references (especially when it came to pointing
out the relevance of [24,31]), and many invaluable suggestions. I’d like to thank Michele
Orrù for editorial advice and feedback. I’m grateful to Vinod Vaikuntanathan and Yael
Kalai for helpful discussion on early ideas surrounding this work.

Finally, I’m very thankful to the anonymous reviewers for pointing out a bug in an
earlier theorem and construction, and providing many helpful comments that improved
the presentation and readability of the paper.

References

[1] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G Pater-
son. Related-key security for pseudorandom functions beyond the linear barrier.
In Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34, pages 77–
94. Springer, 2014.

Constrained Pseudorandom Functions for Inner-Product Predicates 261

[2] Benny Applebaum and Eyal Widder. Related-key secure pseudorandom functions:
The case of additive attacks. Cryptology ePrint Archive, 2014.

[3] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Constrained PRFs for in traditional groups. In Advances
in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II, pages 543–
574. Springer, 2018.

[4] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Adaptively single-key secure constrained PRFs for NC1 .
In IACR International Workshop on Public Key Cryptography, pages 223–253.
Springer, 2019.

[5] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl.
MozZ2karella: efficient vector-OLE and zero-knowledge proofs over Z2k . In Annual
International Cryptology Conference, pages 329–358. Springer, 2022.

[6] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable
zero-knowledge and post-quantum signatures from VOLE-in-the-head. In Annual
International Cryptology Conference, pages 581–615. Springer, 2023.

[7] Mihir Bellare and David Cash. Pseudorandom functions and permutations prov-
ably secure against related-key attacks. In Annual Cryptology Conference, pages
666–684. Springer, 2010.

[8] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 491–506.
Springer, 2003.

[9] Eli Biham. New types of cryptanalytic attacks using related keys. In Workshop on
the Theory and Application of Cryptographic Techniques on Advances in Cryptol-
ogy, EUROCRYPT ’93, page 398–409, Berlin, Heidelberg, 1994. Springer-Verlag.
ISBN 3540576002.

[10] Olivier Blazy and David Pointcheval. Traceable signature with stepping capabili-
ties. In Cryptography and Security: From Theory to Applications: Essays Dedicated
to Jean-Jacques Quisquater on the Occasion of His 65th Birthday, pages 108–131.
Springer, 2012.

[11] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Advances in Cryptology-ASIACRYPT 2013: 19th International
Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II 19, pages 280–300.
Springer, 2013.

[12] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Algorithmica, 79:1233–1285, 2017.

[13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homo-
morphic PRFs and their applications. In Annual Cryptology Conference, pages
410–428. Springer, 2013.

[14] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs from
standard lattice assumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 415–445. Springer, 2017.

[15] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom functions
privately. In IACR International Workshop on Public Key Cryptography, pages
494–524. Springer, 2017.

262 S. Servan-Schreiber

[16] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1465–1482, 2017.

[17] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In International workshop on public key cryptography, pages
501–519. Springer, 2014.

[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Annual
international conference on the theory and applications of cryptographic tech-
niques, pages 337–367. Springer, 2015.

[19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In Advances in Cryptology–CRYPTO 2016: 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part I, pages 509–539. Springer, 2016.

[20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homo-
morphic secret sharing: optimizations and applications. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages
2105–2122, 2017.

[21] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators: Silent OT extension and
more. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceed-
ings, Part III 39, pages 489–518. Springer, 2019.

[22] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lat-
tices without FHE. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 3–33. Springer, 2019.

[23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Correlated pseudorandom functions from variable-density LPN. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 1069–1080. IEEE, 2020.

[24] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators from ring-LPN. In Advances
in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part
II 40, pages 387–416. Springer, 2020.

[25] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions: Or: How to secretly embed a circuit in your
PRF. In Theory of Cryptography: 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II 12, pages 1–30.
Springer, 2015.

[26] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Pri-
vate constrained PRFs (and more) from LWE. In Theory of Cryptography Con-
ference, pages 264–302. Springer, 2017.

[27] Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid
Riahinia. Fast public-key silent OT and more from constrained Naor-Reingold.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 88–118. Springer, 2024.

[28] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC from
LWE. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 446–476. Springer, 2017.

Constrained Pseudorandom Functions for Inner-Product Predicates 263

[29] Nishanth Chandran, Srinivasan Raghuraman, and Dhinakaran Vinayagamurthy.
Reducing depth in constrained PRFs: From bit-fixing to NC1 . In Public-Key
Cryptography–PKC 2016, pages 359–385. Springer, 2016.

[30] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond per-
mutation branching programs: proofs, attacks, and candidates. In Advances in
Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II 38, pages
577–607. Springer, 2018.

[31] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudo-
random functions and connections to learning. In Theory of Cryptography: 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part II 12, pages 61–89. Springer, 2015.

[32] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Con-
strained pseudorandom functions from homomorphic secret sharing. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 194–224. Springer, 2023.

[33] Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, and Sacha
Servan-Schreiber. Quietot: Lightweight oblivious transfer with a public-key setup.
Cryptology ePrint Archive, 2024.

[34] Nan Cui, Shengli Liu, Yunhua Wen, and Dawu Gu. Pseudorandom functions from
LWE: RKA security and application. In Australasian Conference on Information
Security and Privacy, pages 229–250. Springer, 2019.

[35] Ivan Bjerre Damg̊ard. Collision free hash functions and public key signature
schemes. In Workshop on the Theory and Application of of Cryptographic Tech-
niques, pages 203–216. Springer, 1987.

[36] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Adaptively secure constrained pseudorandom functions in the stan-
dard model. In Advances in Cryptology–CRYPTO 2020: 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17–21, 2020, Proceedings, Part I, pages 559–589. Springer, 2020.

[37] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and
Rafail Ostrovsky. Trapdoor hash functions and their applications. In Annual Inter-
national Cryptology Conference, pages 3–32. Springer, 2019.

[38] Thibauld Feneuil. Post-Quantum Signatures from Secure Multiparty Computation.
PhD thesis, Sorbonne Université, 2023.

[39] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure func-
tional encryption without obfuscation. IACR Cryptol. ePrint Arch., 2014:666,
2014.

[40] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings 33, pages 640–658. Springer, 2014.

[41] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In
Theory of Cryptography Conference, pages 255–272. Springer, 2010.

[42] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[43] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash
functions. In Theory of Cryptography: 8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8, pages 182–
200. Springer, 2011.

264 S. Servan-Schreiber

[44] David Heath and Vladimir Kolesnikov. One hot garbling. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 574–593, 2021.

[45] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adap-
tively secure constrained pseudorandom functions. In International Conference on
Financial Cryptography and Data Security, pages 357–376. Springer, 2019.

[46] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure punc-
turable pseudorandom functions in the standard model. In International confer-
ence on the theory and application of cryptology and information security, pages
79–102. Springer, 2015.

[47] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Annual International Cryptology Conference, pages 145–
161. Springer, 2003.

[48] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 669–684, 2013.

[49] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Automata, Languages and Programming: 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part II 35, pages 486–498. Springer, 2008.

[50] Arthur Lazzaretti and Charalampos Papamanthou. TreePIR: Sublinear-time and
polylog-bandwidth private information retrieval from DDH. Cryptology ePrint
Archive, 2023.

[51] Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Improved construc-
tions of PRFs secure against related-key attacks. In Applied Cryptography and
Network Security: 12th International Conference, ACNS 2014, Lausanne, Switzer-
land, June 10-13, 2014. Proceedings 12, pages 44–61. Springer, 2014.

[52] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental offline/online
PIR. In 31st USENIX Security Symposium (USENIX Security 22), pages 1741–
1758, 2022.

[53] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. Journal of the ACM (JACM), 51(2):231–262, 2004.

[54] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: homo-
morphic secret sharing and public-key silent OT. In Advances in Cryptology–
EUROCRYPT 2021: 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021,
Proceedings, Part I 40, pages 678–708. Springer, 2021.

[55] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs,
the LWE way. In IACR International Workshop on Public Key Cryptography,
pages 675–701. Springer, 2018.

[56] Naty Peter, Rotem Tsabary, and Hoeteck Wee. One-one constrained pseudoran-
dom functions. In 1st Conference on Information-Theoretic Cryptography (ITC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[57] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set inter-
section based on OT extension. ACM Transactions on Privacy and Security
(TOPS), 21(2):1–35, 2018.

[58] Kim Ramchen and Brent Waters. Fully secure and fast signing from obfuscation.
In Proceedings of the 2014 ACM SIGSAC conference on computer and communi-
cations security, pages 659–673, 2014.

Constrained Pseudorandom Functions for Inner-Product Predicates 265

[59] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 1055–1072, 2019.

[60] Sacha Servan-Schreiber. Constrained pseudorandom functions for inner-product
predicates from weaker assumptions. Cryptology ePrint Archive, Paper 2024/058,
2024. URL https://eprint.iacr.org/2024/058.

[61] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin Sakzad, Viet
Vo, and Surya Nepal. Practical backward-secure searchable encryption from sym-
metric puncturable encryption. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 763–780, 2018.

[62] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[63] Mark N Wegman and J Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of computer and system sciences,
22(3):265–279, 1981.

https://eprint.iacr.org/2024/058

Mild Asymmetric Message Franking:
Illegal-Messages-Only and Retrospective

Content Moderation

Zhengan Huang1 , Junzuo Lai2(B) , Gongxian Zeng1(B) , and Jian Weng2

1 Pengcheng Laboratory, Shenzhen, China
gxzeng@cs.hku.hk

2 College of Information Science and Technology, Jinan University,
Guangzhou, China

tlaijunzuo@jnu.edu.cn

Abstract. Many messaging platforms have integrated end-to-end (E2E)
encryption into their services. This widespread adoption of E2E encryp-
tion has triggered a technical tension between user privacy and illegal
content moderation. The existing solutions either support only unframe-
ability or deniability, or they are prone to abuse (the moderator can
perform content moderation for all messages, whether illegal or not), or
they lack mechanisms for retrospective content moderation.

To address the above issues, we introduce a new primitive called mild
asymmetric message franking (MAMF) to establish illegal-messages-only
and retrospective content moderation for messaging systems, supporting
unframeability and deniability simultaneously. We provide a framework
to construct MAMF, leveraging two new building blocks, which might
be of independent interest.

Keywords: Asymmetric message franking · Set pre-constrained
encryption · Hash proof system · Sigma protocol · Deniability and
unframeability

1 Introduction

In recent years, there has been a substantial surge in the adoption of messaging
applications deploying end-to-end (E2E) encryption, e.g., Facebook Messenger,
WhatsApp and Signal, ensuring that the transmitted raw information cannot be
obtained by the platforms.

Despite the security advantages, the widespread adoption of E2E encryption
has not been universally welcomed. These encryption services might be misused
for disseminating harmful content such as harassment messages, phishing links,
fake news, and other potentially illegal information. Moreover, these services
conflict with content moderation directly. Law enforcement and national security
communities contend that such encryption hampers their ability to investigate,
prosecute criminals and ensure public safety. In fact, the conflict between privacy
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 266–295, 2025.
https://doi.org/10.1007/978-981-96-0888-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_9&domain=pdf
http://orcid.org/0000-0003-3509-787X
http://orcid.org/0000-0001-5780-8463
http://orcid.org/0000-0002-8421-4916
http://orcid.org/0000-0003-4067-8230
https://doi.org/10.1007/978-981-96-0888-1_9

Mild Asymmetric Message Franking 267

and content moderation has spurred legislative proposals and policy campaigns
about discouraging the deployment of E2E encryption [7,17].

On the other hand, technical experts have voiced concerns that these pro-
posals, if implemented, might compromise the security provided by encryption
systems [1], either by requiring unsafe alterations or prohibiting the use of E2E
encryption altogether.

In recent years, many works have focused on employing cryptographic tech-
niques to strike a balance between ensuring user privacy and effectively moder-
ating illegal content within messaging systems.

One approach to uphold content moderation is through the use of message
franking (MF) [5,6,10,18], seamlessly integrating with end-to-end (E2E) encryp-
tion, as discussed in [18]. This method empowers the receiver of a message to
report it to a moderator (also referred to as the judge). In the MF framework,
a valid report by the receiver includes the sender’s identity, along with the mes-
sage and specially constructed strings (e.g., signatures or hash values). These
elements allow the moderator to verify whether the reported message originated
from the identified sender. In order to strengthen user privacy, asymmetric mes-
sage franking (AMF) [18] captures deniability. Informally, this property allows
the sender to technically deny sending the message after a compromise, aiming
to avoid potential backlash or embarrassment. AMF considers different scenarios
regarding whose secret key is compromised. One scenario is judge compromise
deniability, where a forger with the moderator’s secret key can produce a signa-
ture indistinguishable from a real one. Unfortunately, existing works [12,13,18]
do not support unframeability. Specifically, it becomes challenging for the mod-
erator to convince law enforcement of the identity of the content originator,
because judge compromise deniability allows the moderator to forge a message
in the name of the sender. More importantly, current MF solutions do not ade-
quately address a significant concern: the moderator can identify the sender of
all reported messages, regardless of the message’s intent. This extensive power
of the moderator has the potential for abuse within the existing system.

Recently, a different proposal has emerged, suggesting end-to-end secure mes-
saging with content moderation exclusively for some pre-defined illegal contents,
based on set pre-constrained (SPC) group signatures [2]. However, as demon-
strated in [2], their techniques are “tailored to obtain the strongest notion of
unframeability and no deniability”. Moreover, it remains unclear how to exe-
cute content moderation for newly identified illegal content that hasn’t been
predefined. This feature is reminiscent of “retrospective” access to encrypted
data as considered in [9], which is in a somewhat different context and relies on
extractable witness encryption [8].

In this paper, we aim to establish mild content moderation for a messaging
system.

Firstly, we restrict the moderation capabilities to illegal messages only,
while concurrently providing the capacity for retrospective content moderation.
Notably, the set of illegal messages may increase over time. To carry out con-
tent moderation for the newly added illegal messages, a straightforward approach

268 Z. Huang et al.

might involve system re-initialization; however, such a method impedes the mod-
erator’s ability to retrospectively moderate content. One objective of this paper
is to enable the moderator to retrospectively examine past reports and identify
those that qualify as illegal when new illegal messages are augmented.

Secondly, our content moderation system achieves trade-offs between deni-
ability and unframeability. In [2], Bartusek et al. discuss the technical tension
between deniability and unframeability, and claim that, while deniability [18] is
a desirable property, it conflicts with unframeability. Upon meticulous examina-
tion, we discern that the primary reason why [18] cannot achieve unframeability
is due to the fact that the scheme [18] supports judge-receiver compromise deni-
ability. To elaborate, when the receiver’s and the moderator’s keys are compro-
mised, a party possessing these keys can forge a signature that can be successfully
accepted by both the receiver and the moderator. Our approach to achieve deni-
ability and unframeability simultaneously imposes an additional constraint on
deniability. Roughly, given any forged signature (for deniability), the receiver
and the moderator can not accept it simultaneously. It then carves out space
for unframeability, indicating that when both the receiver and the moderator
identify the sender concurrently, the sender cannot deny sending the message.

1.1 Main Contributions

Our main contributions can be summarized as follows:

1. We introduce a new primitive called mild asymmetric message franking
(MAMF) to establish mild content moderation for a messaging system, and
formalize its security notions.

2. To construct MAMF, we introduce two new building blocks, universal set
pre-constrained encryption (USPCE) and dual hash proof system-based key
encapsulation mechanism supporting Sigma protocols (dual HPS-KEMΣ), and
present their concrete constructions.

3. We offer a generic framework of constructing MAMF from USPCE and dual
HPS-KEMΣ, and demonstrate that it fulfills the required security properties.
By integrating a concrete USPCE scheme and a dual HPS-KEMΣ into the
generic framework, we can obtain a concrete MAMF. We also have some
improvements to enhance the efficiency of the concrete MAMF. Due to the
space limitations, the improvements can be found in the full version of this
paper.

MAMF Primitive. In the context of MAMF, four types of participants are
involved: the sender, the receiver, the legislative agency, and the moderator (also
referred to as the judge). MAMF comprises eleven algorithms: a setup algorithm
Setup for generating global public parameters, three algorithms (KGAg, KGJ,
KGu) for generating key pairs, three algorithms (Frank, Verify, Judge) for creat-
ing and verifying genuine signatures, a token generation algorithm TKGen for
retrospective content moderation, and three forging algorithms (Forge, RForge,
JForge) for deniability.

Mild Asymmetric Message Franking 269

We offer further explanations here.
Upon receiving the public parameter generated by Setup, the legislative

agency selects a set S (representing illegal messages) and uses KGAg to gen-
erate a key pair for itself and an auxiliary parameter for the moderator. The
moderator, leveraging the auxiliary parameter, invokes KGJ to create a key pair.
The sender and receiver both utilize KGu to generate their private/public keys.

The sender employs the franking algorithm Frank to generate a designated-
verifier signature for a message m. The receiver utilizes Verify (with its secret key
as input) to validate the received signature. If the received message is deemed
illegal, and the receiver reports it to the moderator, the moderator can confirm
the report using algorithm Judge, determining that the sender indeed sent the
message. When the legislative agency intends to augment the set S with an
additional illegal message for retrospective content moderation, it invokes the
TKGen algorithm to produce a token for the new illegal message. With the
aid of this token, the moderator can retrospectively examine past reports (as
well as new reports). It’s important to note that algorithms Forge, RForge, and
JForge are not intended for execution by legitimate users. Their presence ensures
deniability under specific compromise scenarios.

We address six distinct security requirements for MAMF: unforgeability,
accountability, unframeability, deniability, untraceability, and confidentiality of
sets.

1. Unforgeability. As the fundamental security prerequisite for general signa-
tures, unforgeability in MAMF ensures prevention of successful imperson-
ation, i.e., the receiver cannot be deceived into accepting a message not gen-
uinely sent by the sender.

2. Accountability. Accountability ensures that the functionality of reporting ille-
gal messages. In line with the definition in [13,18], accountability is formal-
ized with two special properties: sender binding and receiver binding. Sender
binding ensures that the sender cannot trick the receiver into accepting unre-
portable messages, and receiver binding ensures that the receiver cannot
deceive the judge to frame an innocent sender.

3. Deniability. Deniability is formalized with three special properties: universal
deniability, receiver compromise deniability, and judge compromise deniabil-
ity. Universal deniability guarantees deniability when neither the receiver’s
secret key nor the judge’s secret key is compromised. Receiver compromise
deniability guarantees deniability when the receiver’s secret key is compro-
mised. Judge compromise deniability is formalized to guarantee deniability
when the judge’s secret key is compromised.

4. Unframeability. Unframeability of MAMF requires that no party, even given a
receiver’s secret key and the judge’s secret key, is able to produce a signature
acceptable to both the receiver and the judge. This property implies that
once both the receiver and the judge identify the originator of some illegal
message, they can generate an evidence (e.g., a NIZK proof) to convince the
other party of the originator of the message.

270 Z. Huang et al.

5. Untraceability. Ensuring untraceability restricts the capabilities of both the
legislative agency and the judge, thereby enhancing sender privacy. This con-
cept formalizes into two distinct notions: untraceability against legislative
agency and untraceability against judge. Untraceability against legislative
agency guarantees that the agency cannot determine if someone has actually
sent a message, no matter whether it is in the set of illegal message or not.
Untraceability against judge ensures that, without the assistance of the leg-
islative agency, the moderator cannot ascertain the sender’s identity when
the message is not in the set of illegal messages.

6. Confidentiality of Sets. Confidentiality of sets requires that the legislative
agency’s public key and the judge’s public key will not disclose any infor-
mation about the set of illegal messages (which should not be disclosed to
the public, e.g., child sexual abuse material).

Analogous to AMF [18], MAMF can be integrated with E2E encryption,
which guarantees the confidentiality of messages. So we do not consider confi-
dentiality of messages for MAMF. Furthermore, our MAMF could be extended
to accommodate group communications like [13]. We leave it as a future work.

Technical Overview. For MAMF construction, we introduce two new primi-
tives, USPCE and dual HPS-KEMΣ, and utilize them to show a framework of
constructing MAMF. We provide a technical overview here.

USPCE. In [2], Bartusek et al. formulate set pre-constrained encryption (SPCE).
Generally, SPCE requires the generation of a public/secret key pair for a prede-
fined (illegal message) set S. In SPCE, decryption of a ciphertext, produced by
encrypting a message with the public key and an item x, is only possible when
x ∈ S. If x /∈ S, the secret key holder gains no information about the message.

Note that SPCE is insufficient for constructing MAMF, primarily due to its
inability to handle ciphertexts produced by encrypting messages with respect to
items where x /∈ S, while in the MAMF framework, in order to carry retrospective
content moderation, the moderator should be able to handle the messages not
in the set S, as long as the legislative agency has provided the corresponding
tokens. Henceforth, we introduce a primitive, called universal set pre-constrained
encryption (USPCE), to address these challenges.

A USPCE comprises five key algorithms: (Setup,KG,Enc,TKGen, Dec), where
two kinds of entities, the authority and users, are involved. The setup algorithm
Setup, executed by the authority, takes the security parameter and a pre-defined
set S as input, and outputs public parameters, an auxiliary parameter, and a
master secret key. The users invoke KG with the public and auxiliary parameters
to generate their key pairs. The encryption algorithm Enc takes a public key, an
item x, and a message m as input, producing a ciphertext.

– If the item x belongs to the set S, the user can directly employ the decryption
algorithm Dec (with their secret key as input) to output the message m.

– If x �∈ S, the authority can execute the token generation algorithmTKGen (with
the master secret key as input) to create a token tk for the item x. Subsequently,

Mild Asymmetric Message Franking 271

the user can utilize the decryption algorithm Dec, taking their secret key, the
ciphertext and the token tk as input, to recover the message m.

It is required that there is a Sigma protocol to prove that the ciphertext is
well-formed.

For USPCE, we require the following security properties.

– Confidentiality against authority: It is required that the authority cannot
obtain meaningful information about the message from a ciphertext, no mat-
ter whether the item x belongs to the set S or not.

– Confidentiality against users: It is required that, without the token for an
item x �∈ S given by the authority, any user cannot obtain meaningful infor-
mation about the message from a ciphertext associated with x.

– Confidentiality of sets: It is required that the public parameters and a user’s
public key will not disclose any information about the pre-defined set S.

A concrete construction of USPCE based on the DBDH assumption is pro-
vided in Sect. 4.

Dual HPS-KEMΣ. We introduce another building block, called dual hash proof
system-based key encapsulation mechanism supporting Sigma protocols (dual
HPS-KEMΣ), which roughly can be seen as a dual version of the HPS-KEMΣ

proposed in [13].
In essence, in a dual HPS-KEMΣ, ciphertexts are generated in accordance

with the original HPS-KEMΣ approach, while encapsulated keys are created in
two modes: one follows the original HPS-KEMΣ method, and the other adopts
an extended version of HPS-KEMΣ where an additional tag t is included as input
during the computation of the encapsulated key. Moreover, in dual HPS-KEMΣ,
two additional algorithms are required for the uniform sampling of encapsulated
keys: one with a tag as input and the other without using a tag.

Expanding on this, a dual HPS-KEMΣ scheme consists of ten algo-
rithms: Setup,KG,Encapc,Encapk,Decap,Encap

∗
c , dEncapk,dDecap,SamEncK and

dSamEncK.
We start by concentrating on the first six algorithms, which comprise an

ordinary HPS-KEMΣ scheme. Specifically, Setup generates the public parameter,
and KG produces a pair of public/secret user keys. Given the public parameter,
but without user’s public key, Encapc outputs a well-formed ciphertext, and
Encap∗

c outputs a ciphertext that could be either well-formed or ill-formed. The
algorithm Encapk, sharing the same randomness space with Encapc, takes the
public parameter and a public key as input, and outputs an encapsulated key.
Utilizing the secret key, the algorithm Decap decapsulates the ciphertexts to
obtain the encapsulated keys. Correctness requires that given a ciphertext output
by Encapc with randomness r, Decap will return an encapsulated key equal to
that created by Encapk with the same randomness r.

The following properties inherited from HPS-KEMΣ are required:

1. Universality: Given a public key, it is difficult for any unbounded adversary
without the corresponding secret key to generate an ill-formed ciphertext c,

272 Z. Huang et al.

an encapsulated key k, and randomness r∗
c (indicating that c is generated via

Encap∗
c with randomness r∗

c), such that with the ciphertext c as input, Decap
outputs a key equal to k.

2. Ciphertext unexplainability: It is difficult to generate a ciphertext c and ran-
domness r∗

c (indicating that c is generated via Encap∗
c with randomness r∗

c),
such that c is well-formed.

3. Indistinguishability: The ciphertext output by Encap∗
c should be indistinguish-

able from the well-formed ciphertext output by Encapc.
4. SK-second-preimage resistance: Given a pair of public/secret keys, it is diffi-

cult to generate another valid secret key for this public key.
5. Smoothness: For any fixed public key, the algorithm Decap, fed with a cipher-

text generated via Encap∗
c and a secret key randomly sampled from the set

of secret keys corresponding to the public key, will output a key uniformly
distributed over the encapsulated key space.

Now, let’s shift our focus to the last four algorithms of dual HPS-KEMΣ, i.e.,
dEncapk, dDecap,SamEncK and dSamEncK.

The algorithm dEncapk, sharing the same randomness space and the same
encapsulated key space with Encapk, takes the public parameter, a public key
and a tag as input, and outputs an encapsulated key. Utilizing the secret key
and the tag, the algorithm dDecap decapsulates the ciphertexts to obtain the
encapsulated keys. Correctness requires that given a tag t and a ciphertext out-
put by Encapc with randomness r, dDecap will return an encapsulated key equal
to that generated by dEncapk using the same tag t and randomness r.

The algorithms SamEncK and dSamEncK are both used to uniformly sam-
ple encapsulated keys. In particular, SamEncK takes the public parameter as
input, and outputs an encapsulated key, while dSamEncK takes both the public
parameter and a tag as input, and outputs an encapsulated key.

The following properties are also required for dual HPS-KEMΣ:

6. Extended universality: Given a public key, it is difficult for any unbounded
adversary without the corresponding secret key to generate an ill-formed
ciphertext c, an encapsulated key k, a tag t, and randomness r∗

c (indicating
that c is generated via Encap∗

c with randomness r∗
c), such that with the

ciphertext c and the tag t as input, dDecap outputs a key equal to k.
7. Key unexplainability: Given a pair of public/secret keys, it is difficult to

generate (c, r∗
c , k, r∗

k) (where c is a ciphertext generated via Encap∗
c using

randomness r∗
c , and k is an encapsulated key generated via SamEncK using

randomness r∗
k), such that k is the result of decapsulating c by Decap.

8. Extended key unexplainability: Given a pair of public/secret keys, it is diffi-
cult to generate (c, r∗

c , k, t, r∗
k) (where c is a ciphertext generated via Encap∗

c

using randomness r∗
c , and k is an encapsulated key generated via dSamEncK

using tag t and randomness r∗
k), such that k is the result of decapsulating c

by dDecap using tag t.
9. Extended smoothness: For any fixed public key, the algorithm dDecap, fed

with a ciphertext generated via Encap∗
c , a random tag, and a secret key

randomly sampled from the set of secret keys corresponding to the public
key, will output a key uniformly distributed over the encapsulated key space.

Mild Asymmetric Message Franking 273

10. Special extended smoothness: For any fixed public/secret key pair, the algo-
rithm dDecap, fed with a ciphertext generated via Encap∗

c , a secret random
tag, and the fixed secret key, will output a key uniformly distributed over
the encapsulated key space.

Consistent with [13], we require that there exist Sigma protocols to prove
that some results are precisely output by KG, Encapc, Encapk, Encap

∗
c , dEncapk,

SamEncK and dSamEncK.
A concrete construction of dual HPS-KEMΣ based on the DDH assumption

is provided in Sect. 5. Similar to [13], our dual HPS-KEMΣ construction can also
be extended to be based on the k-linear assumption [11,16].

An MAMF Framework. Now, we briefly outline the generic construction of an
MAMF from USPCE and dual HPS-KEMΣ. The main idea is as follows.

Here, Setup algorithm directly invokes the setup algorithm of dHPS-KEMΣ,
KGAg calls the setup algorithm of USPCE, KGJ invokes the key generation algo-
rithms of dHPS-KEMΣ and USPCE (e.g., pkJ = (pk′

J, pkUSPCE) where pk′
J is output

by the key generation algorithm of dHPS-KEMΣ and pkUSPCE is output by the
key generation algorithm of USPCE), while KGu solely calls the key generation
algorithm of dHPS-KEMΣ.

The algorithm Frank, executed by the sender to generate an MAMF sig-
nature for a message m, proceeds as follows. It utilizes Encapc to generate a
well-formed encapsulated ciphertext c, and then employs Encapk to generate an
encapsulated key kr for the receiver and dEncapk to generate kJ (associated with a
randomly chosen tag t) for the judge, where Encapc, Encapk and dEncapk use the
same randomness r. Following this, it calls the encryption algorithm of USPCE
to encrypt the tag t with randomness rUSPCE, using the message m as the item,
to obtain a ciphertext ct. Finally, it outputs a signature σ = (π, c, kr, kJ, ct),
where π is a NIZK proof (generated with witness (sks, t, r,⊥,⊥, rUSPCE)) for the
relation R in Fig. 1.

In the verification process (i.e., the algorithm Verify), the receiver confirms
the signature’s validity by checking (i) if the NIZK proof is valid, and (ii) if the
decapsulated key, produced by decapsulating c via Decap, matches the key kr
provided in the signature.

In the moderation process (i.e., the algorithm Judge), if m is in the illegal
message set, or the legislative agency have provided a token (by TKGen) for m to
implement retrospective content moderation, the judge first decrypts ct with the
decryption algorithm of USPCE (with item m) to obtain a tag t. Then, he/she
checks (i) if the NIZK proof is valid, and (ii) if the decapsulated key, produced
by decapsulating c with tag t via dDecap, matches the key kJ provided in the
signature.

In the token generation process (i.e., the algorithm TKGen), the legislative
agency directly invokes the token generation algorithm of USPCE.

Now, let’s shift our focus to the forging algorithms Forge, RForge and JForge.
The relation R in Fig. 1 plays a pivotal role in the forging algorithms. Observe

that the relation comprises three sub-relations connected by “OR” operations.

274 Z. Huang et al.

Fig. 1. Relation R for MAMF, where Rs is a relation proving the validity of the
sender’s public/secret keys, Rd

c,k is a relation proving that (c, kJ) is generated via
Encapc and dEncapk with the same randomness r, R∗

c is a relation proving that c
is a ciphertext output by Encap∗

c with randomness r∗
c , Rct is a relation proving the

USPCE ciphertext is well-formed, R∗
k is to prove the encapsulated key of the receiver

is generated via SamEncK, and Rd∗
k is to prove the encapsulated key of the judge is

generated via dSamEncK. Note that the symbol “∧eq” represents an “EQUAL-ANDl”
operation between two relations, signifying that part (e.g., t) of the sub-witnesses in
the relations are equal. The formal definition and further discussions are presented in
the full version of this paper, due to the space limitations.

The first sub-relation is crafted for the sender, ensuring that the message is
genuinely sent by the sender and convincing the receiver that the judge can
successfully trace the originator once the message is reported. The second and the
third sub-relations are devised for the forging algorithms to ensure deniability.

Specifically, the algorithm Forge first invokes Encap∗
c with randomness r∗

c to
generate an ill-formed encapsulated ciphertext c, and uniformly samples two
encapsulated keys kr and kJ, where kr is sampled with SamEncK using ran-
domness r∗

k . Following this, it uniformly chooses a tag t, and then calls the
encryption algorithm of USPCE to encrypt t with randomness rUSPCE, using
the message m as the item, to obtain a ciphertext ct. Finally, it outputs a sig-
nature σ = (π, c, kr, kJ, ct), where π is a NIZK proof (generated with witness
(⊥, t,⊥, r∗

c , r
∗
k , rUSPCE)) for the relation R.

The algorithm RForge first invokes Encap∗
c with randomness r∗

c to generate
an ill-formed encapsulated ciphertext c, and computes an encapsulated key kr
by executing Decap to decapsulate c. Then, it chooses a random tag t, and
samples kJ with dSamEncK using t and randomness r∗

k . Following this, it calls
the encryption algorithm of USPCE to encrypt t with randomness rUSPCE, using
the message m as the item, to obtain a ciphertext ct. Finally, it outputs a
signature σ = (π, c, kr, kJ, ct), where π is a NIZK proof (generated with witness
(⊥, t,⊥, r∗

c , r
∗
k , rUSPCE)) for the relation R.

The algorithm JForge first invokes Encap∗
c with randomness r∗

c to gener-
ate an ill-formed encapsulated ciphertext c, and computes an encapsulated
key kJ by executing dDecap (with a random tag t) to decapsulate c. Then,
it samples kr with SamEncK using randomness r∗

k . Following this, it calls the
encryption algorithm of USPCE to encrypt t with randomness rUSPCE, using
the message m as the item, to obtain a ciphertext ct. Finally, it outputs a sig-
nature σ = (π, c, kr, kJ, ct), where π is a NIZK proof (generated with witness
(⊥, t,⊥, r∗

c , r
∗
k , rUSPCE)) for the relation R.

Mild Asymmetric Message Franking 275

In summary, we have presented a generic construction of MAMF from
USPCE and dual HPS-KEMΣ. By incorporating a concrete USPCE and a con-
crete dual HPS-KEMΣ, we can derive a specific instantiation of MAMF.

Security Analysis. We turn to show a high-level intuition that our MAMF frame-
work achieves the required unforgeability, accountability, deniability, unframe-
ability, untraceability, and confidentiality of sets.

Given the similarity in the security analysis of unforgeability and account-
ability, we will focus here on demonstrating how to achieve unforgeability.

Unforgeability requires that any adversary cannot generate a signature such
that an honest receiver accepts it. Supposing that there is an adversary gener-
ating a signature σ = (π, c, kr, kJ, ct) such that an honest receiver accepts it, we
have: (i) π is a valid proof for the relation R, and (ii) kr = Decap(pp, skr, c).
Observe that to generate the valid proof π for R, the adversary needs to know
witness (sks, t, r,⊥,⊥, rUSPCE) or (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE).

– If the adversary knows (sks, t, r,⊥,⊥, rUSPCE), it implies that sks is a valid
secret key of the sender. Since the adversary possesses no information about
the sender’s secret key beyond the knowledge of the sender’s public key, it is
contradictory to SK-second-preimage resistance of dual HPS-KEMΣ.

– If the adversary knows (⊥, t,⊥, r∗
c , r

∗
k , rUSPCE), it implies that c is generated

via Encap∗
c . The ciphertext unexplainability of dual HPS-KEMΣ guarantees

that c is not well-formed with overwhelming probability. Thus, according to
(ii), (c, kr, r∗

c) leads to a successful attack on universality of dual HPS-KEMΣ.

Now, we turn to analyze universal deniability, receiver compromise denia-
bility, and judge compromise deniability within our MAMF framework. Given
the similarity in the security analysis of these deniability aspects, we will focus
solely on demonstrating how judge compromise deniability is achieved.

Judge compromise deniability requires that any adversary with the judge’s
secret key cannot distinguish between the outputs σ = (π, c, kr, kJ, ct) of Frank
and JForge.

– Frank computes (c ← Encapc(pp; r), kr ← Encapk(pp, pkr; r), kJ ←
dEncapk(pp, pk′

J, t; r)) with the same randomness r, where t is a random
tag. On the other hand, JForge computes c ← Encap∗

c(pp; r
∗
c) and kr ←

SamEncK(pp; r∗
k) with randomness r∗

c and r∗
k , respectively, and then decapsu-

lates c by dDecap, using sk′
J and a random tag t, to obtain kJ.

Note that for c ← Encapc(pp; r), we obtain kr = Encapk(pp, pkr; r) =
Decap(pp, skr, c) and kJ = dEncapk(pp, pk′

J, t; r) = dDecap(pp, sk′
J, t, c). The

indistinguishability of dual HPS-KEMΣ guarantees that the tuple (c, kr, kJ)
output by Frank is indistinguishable from (ĉ, ̂kr, ̂kJ), where ĉ ← Encap∗

c(pp; r
∗
c),

̂kr = Decap(pp, skr, ĉ) and ̂kJ = dDecap(pp, sk′
J, t, ĉ). Due to the smoothness of

dual HPS-KEMΣ, it guarantees that the tuple (ĉ, ̂kr, ̂kJ) is indistinguishable
from (ĉ, k̃r, ̂kJ), where k̃r is uniformly distributed over the encapsulated key
space. According to the uniformity of sampled key by algorithm SamEncK of
dual HPS-KEMΣ, (ĉ, k̃r, ̂kJ) is indistinguishable from that output by JForge.

276 Z. Huang et al.

Thus, the output tuple (c, kr, kJ) from Frank and that from JForge are indis-
tinguishable.

– The ciphertext ct output by Frank and that output by JForge are distributed
identically.

– Frank generates a NIZK proof π for relation R with witness (sks, t, r,⊥,⊥,
rUSPCE), while JForge generates π for R with witness (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE).

The zero knowledge property of NIZK guarantees that anyone cannot distin-
guish the proof output by Frank from that output by JForge.

Unframeability requires that any adversary (possessing the secret keys of the
receiver, the legislative agency and the judge, but without the sender’s secret
key) cannot generate a signature such that both the receiver and the judge accept
it. Suppose that there is an adversary generating a signature σ = (π, c, kr, kJ, ct)
such that both the receiver and the judge accept it. The fact that the receiver
accepts the signature implies: (i) π is a valid proof for the relation R, and (ii) kr =
Decap(pp, skr, c). Observe that to generate the valid proof π for R, the adversary
needs to know witness (sks, t, r,⊥,⊥, rUSPCE) or (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE).

– If the adversary knows (sks, t, r,⊥,⊥, rUSPCE), it implies that sks is a valid
secret key of the sender. Similar to the previous analysis of unforgeability, it
is contradictory to SK-second-preimage resistance of dual HPS-KEMΣ.

– If the adversary knows (⊥, t,⊥, r∗
c , r

∗
k , rUSPCE), we turn our focus on the last

two sub-relations of relation R.
• If (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE) satisfies

(c, r∗
c) ∈ R∗

c ∧ (kr, r∗
k) ∈ R∗

k ∧ ((pkUSPCE,m, ct), (t, rUSPCE)) ∈ Rct,

according to (ii), (c, r∗
c , kr, r

∗
k) leads to a successful attack on the key

unexplainability of dual HPS-KEMΣ.
• If (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE) satisfies

(c, r∗
c) ∈ R∗

c ∧ (kJ, (t , r∗
k)) ∈ Rd∗

k ∧eq ((pkUSPCE, m, ct), (t , rUSPCE)) ∈ Rct,

according to the fact that the judge accepts the signature (which further
suggests kJ = dDecap(pp, sk′

J, t, c)), (c, r∗
c , kJ, t, r

∗
k) leads to a successful

attack on the extended key unexplainability of dual HPS-KEMΣ.

Next, we turn to analyze untraceability against judge and untraceability
against agency within our MAMF framework. Given the similarity in the security
analysis of these untraceability aspects, we will focus solely on demonstrating
how untraceability against judge is achieved.

Untraceability against judge requires the existence of a simulator SimFrank,
such that any adversary with the judge’s secret key cannot distinguish between
the outputs σ = (π, c, kr, kJ, ct) of Frank and SimFrank, given that the message
is not in the set of illegal messages.

– The algorithm SimFrank is constructed as follows. It computes c ← Encap∗
c(pp;

r∗
c) and kJ ← dSamEncK(pp, t; r∗

k) with randomness r∗
c and r∗

k , respectively,

Mild Asymmetric Message Franking 277

where t is a random tag, decapsulates c by Decap using skr to obtain kr, and
then computes ct via encrypting t with the encryption algorithm of USPCE,
using the message m as an item. After that, taking (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE) as

the witness, it calls the proving algorithm of NIZK to generate a proof π.
Finally, it outputs a signature σ = (π, c, kr, kJ, ct).

– Frank computes (c ← Encapc(pp; r), kr ← Encapk(pp, pkr; r), kJ ←
dEncapk(pp, pk′

J, t; r)) with the same randomness r, where t is a random tag,
and computes ct via encrypting t with the encryption algorithm of USPCE,
using the message m as an item.
Note that for c ← Encapc(pp; r), we obtain kr = Encapk(pp, pkr; r) =
Decap(pp, skr, c) and kJ = dEncapk(pp, pk′

J, t; r) = dDecap(pp, sk′
J, t, c). The

indistinguishability of dual HPS-KEMΣ and the confidentiality against users
of USPCE guarantee that the tuple (c, kr, kJ, ct) output by Frank is indistin-
guishable from (ĉ, ̂kr, ̂kJ, ĉt), where ĉ ← Encap∗

c(pp; r
∗
c), ̂kr = Decap(pp, skr, ĉ),

̂kJ = dDecap(pp, sk′
J, t, ĉ) and ĉt is the ciphertext created via encrypting

another random tag t′ with the encryption algorithm of USPCE, using the
message m as an item. Due to the special extended smoothness of dual
HPS-KEMΣ, it guarantees that the tuple (ĉ, ̂kr, ̂kJ, ĉt) is indistinguishable
from (ĉ, ̂kr, k̃J, ĉt), where k̃J is uniformly distributed over the encapsulated key
space. According to the uniformity of sampled key by algorithm dSamEncK
of dual HPS-KEMΣ, (ĉ, ̂kr, k̃J, ĉt) is indistinguishable from that (ĉ, ̂kr, kJ, ĉt),
where kJ ← dSamEncK(pp, t; r∗

k). The confidentiality against users of USPCE
ensures that (ĉ, ̂kr, kJ, ĉt) is indistinguishable from (ĉ, ̂kr, kJ, ct), which is the
tuple output by SimFrank. Thus, the output tuple (c, kr, kJ, ct) from Frank
and that from SimFrank are indistinguishable.

– Frank generates a NIZK proof π for relation R with witness (sks, t, r,⊥,⊥,
rUSPCE), while SimFrank generates π for R with witness (⊥, t,⊥, r∗

c , r
∗
k , rUSPCE).

The zero knowledge property of NIZK guarantees that anyone cannot distin-
guish the proof output by Frank from that output by SimFrank.

Roughly, confidentiality of sets requires the legislative agency’s public key and
the judge’s public key will not disclose any information about the set of illegal
messages (except for its size), which is trivially obtained from the confidentiality
of sets of USPCE.

1.2 Discussions

One-Time Token for Specific MAMF Signature. In this paper, our focus
is solely on illegal messages. It is worth noting that certain messages, like harass-
ment messages and phishing links, may not universally qualify as illegal messages
for all users. Consequently, these messages might not be encompassed within the
set designated by the legislative agency. Therefore, without the assistance of the
legislative agency, the moderator cannot ascertain the sender’s identity in such
scenarios. On the other hand, if the legislative agency provides tokens for the
messages, the moderator possesses the ability to identify all senders of these mes-
sages. To address this, a solution is to empower the legislative agency to generate

278 Z. Huang et al.

a one-time token for a specific MAMF signature and a specific message, which
is not in pre-defined set, such that the moderator can carry out content moder-
ation for that specific signature and specific message. We stress that our scheme
seamlessly accommodates this requirement, leveraging the inherent flexibility of
our USPCE. Further elaboration on this aspect can be found in the full version
of this paper.

MPC for the Token Generation. In our scheme, the token generation algo-
rithm is invoked by legislative agency, which implicitly means that we assume
that the agency would not augment message to illegal set arbitrarily. To mitigate
trust in the agency, there exist some general methods. Essentially, the secret key
used to generate tokens can be shared among multiple agencies using secret shar-
ing techniques, and then secure multi-party computation (MPC) can be invoked
to generate (one-time) tokens for messages deemed illegal by the majority.

Witness-Only Sigma Protocols. When building the Sigma protocol for the
aforementioned relation R, partially composed of sub-relations using ∧eq opera-
tions, we introduce a novel property termed “witness-only” for Sigma protocols,
which may have independent interests. Roughly speaking, if the prover in Sigma
protocols can generate the commitment and response solely based on the input
witness, without necessitating the use of the statement, then we characterize these
Sigma protocols as witness-only. It’s noteworthy that numerous Sigma protocols
inherently possess this witness-only property. Subsequently, we illustrate the con-
struction of a Sigma protocol for a relation composed of sub-relations using an ∧eq

operation, provided that there exists a witness-only Sigma protocol for each sub-
relation. Additional details are available in the full version of this paper.

Predicate-Based Primitive. Similar to the construction of [2], our MAMF
is constructed with polynomial-size sets of illegal messages. One might prefer
to constructing MAMF with sets of illegal messages expressed with predicates,
allowing the scheme to be applied to a broader range of scenarios. We leave it
as an open problem to construct a practical MAMF without using cumbersome
cryptographic tools (e.g., witness encryption or indistinguishability obfuscation).

2 Preliminaries

Throughout this paper, let λ denote the security parameter. For any k ∈ N, let
[k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number of elements
in S, and denote by a ← S the process of uniformly sampling a from S. For a
distribution X, we denote by a ← X the process of sampling a from X. For any
probabilistic polynomial-time (PPT) algorithm Alg, let RS be the randomness
space of Alg. We write Alg(x; r) for the process of Alg on input x with inner
randomness r ∈ RS, and use y ← Alg(x) to denote the process of running Alg
on input x with r ← RS, and assigning y the result. We write negl(λ) to denote
a negligible function in λ and write poly(λ) to denote a polynomial.

For a polynomial-time relation R ⊂ Y × X , where Y is the statement space
and X is the witness space, we say that x is a witness for y if (y, x) ∈ R.

Mild Asymmetric Message Franking 279

Due to space limitations, please refer the other preliminaries to the full ver-
sion of this paper, including some cryptographic assumptions, the definitions of
NIZK and Sigma protocols, the definition of cuckoo hash and a summary of set
pre-constrained encryption.

3 Mild Asymmetric Message Franking

In this section, we introduce a primitive known as mild asymmetric message
franking (MAMF), to establish mild content moderation for a messaging system,
and formally define its security notions.

3.1 MAMF Algorithms

Formally, an MAMF scheme MAMF = (Setup,KGAg,KGJ,KGu,Frank,Verify,
TKGen, Judge,Forge,RForge, JForge) is a tuple of algorithms, encompassing four
roles: a sender, a receiver, a legislative agency, and a judge. The scheme is asso-
ciated with three public key spaces (for the legislative agency, the judge, and
users, including senders and receivers, respectively), three corresponding secret
key spaces, a message space M, a token space T K, and a signature space SG.
Without loss of generality, we assume that all public key inputs are in the corre-
sponding public key space, all secret key inputs are in the corresponding secret
key space, all m inputs are in M, all tk inputs are in T K, and all σ inputs are
in SG.

The detailed descriptions of the algorithms are as follows.

• pp ← Setup(λ): The setup algorithm takes the security parameter as input,
and outputs a global public parameter pp.

• (pkAg, skAg, apAg) ← KGAg(pp,S): The key generation algorithm KGAg takes
pp and a set S ⊆ M as input, and outputs a key pair (pkAg, skAg) for the
legislative agency and an auxiliary parameter apAg for the judge’s key gener-
ation.

• (pkJ, skJ) ← KGJ(pp, pkAg, apAg): The key generation algorithm KGJ takes
(pp, pkAg, apAg) as input, and outputs a key pair (pkJ, skJ) for the judge. We
assume that the well-formedness of the public key pkJ can be verified with
the assistance of apAg and S.

• (pk, sk) ← KGu(pp): The key generation algorithm KGu takes pp as input, and
outputs a key pair (pk, sk) for users. Below we usually use (pks, sks) (resp.,
(pkr, skr)) to denote the sender’s (resp., the receiver’s) public/secret key pair.

• σ ← Frank(pp, sks, pkr, pkAg, pkJ,m): The franking algorithm takes the pub-
lic parameter pp, a sender’s secret key sks, a receiver’s public key pkr, the
agency’s public key pkAg, the judge’s public key pkJ and a message m as
input, and outputs a signature σ.

• b ← Verify(pp, pks, skr, pkAg, pkJ,m, σ): The deterministic algorithm of the
verification of the receiver takes (pp, pks, skr, pkAg, pkJ), a message m and a
signature σ as input, and returns b ∈ {0, 1}, which indicates whether the
receiver accepts the signature or not.

280 Z. Huang et al.

• tk ← TKGen(pp, skAg, pkJ,m): The token generation algorithm, run by the
agency, takes (pp, skAg, pkJ) and a message m as input, and outputs a token
tk.

• b ← Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk): The deterministic algorithm of ver-
ification of the judge takes (pp, pks, pkr, pkAg, skJ), a message m, a signature σ
and a token tk as input, and outputs a bit b ∈ {0, 1}. Note that, when m ∈ S,
the token tk can be ⊥.

• σ ← Forge(pp, pks, pkr, pkAg, pkJ,m): The universal forging algorithm, on
input (pp, pks, pkr, pkAg, pkJ) and a message m, returns a “forged” signature
σ.

• σ ← RForge(pp, pks, skr, pkAg, pkJ,m): The receiver compromise forging algo-
rithm takes (pp, pks, skr, pkAg, pkJ) and a message m as input, and returns a
“forged” signature σ.

• σ ← JForge(pp, pks, pkr, pkAg, skJ,m): The judge compromise forging algo-
rithm takes (pp, pks, pkr, pkAg, skJ) and a message m as input, and outputs a
“forged” signature σ.

Correctness. For any normal signature generated by Frank, the correctness
requires that (i) the receiver can call Verify to verify the signature successfully,
and (ii) the judge can invoke Judge to validate a report successfully once they
receive a valid report. The formal requirements are shown as follows.

Given any pp generated by Setup, any key pairs (pks, sks) and (pkr, skr) out-
put by KGu, any key pair (pkAg, skAg, apAg) for a set S ⊆ M output by KGAg

(where S is selected by some authority, e.g., the agency), and any key pair
(pkJ, skJ) output by KGJ (with (pp, pkAg, apAg) as input), we require that for
any message m ∈ M and any σ ← Frank(pp, sks, pkr, pkAg, pkJ,m), it holds with
overwhelming probability that:

(1) Verify(pp, pks, skr, pkAg, pkJ,m, σ) = 1;
(2) if m ∈ S, then Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk =⊥) = 1;
(3) if m �∈ S, then tk ← TKGen(pp, skAg, pkJ,m), and Judge(pp, pks, pkr, pkAg,

skJ,m, σ, tk) = 1.

Remark 1. For the sake of simplicity, we posit the existence of an additional key
verification algorithms WellFormu and a token verification algorithm WellFormtk.
The algorithm WellFormu takes the public parameter and the key pairs of the
receiver (or sender) as input, producing a bit b that signifies the well-formedness
of the key pairs. The algorithm WellFormtk takes the public parameter, the
judge’s public key and the token as input, producing a bit b that signifies the
well-formedness of the token.

3.2 Security Notions for MAMF

We now formalize specific security notions for MAMF, including unforgeability,
accountability, deniability, unframeability, untraceability, and confidentiality of
sets.

Mild Asymmetric Message Franking 281

Unforgeability. One of the paramount security requirements in secure messag-
ing applications is the prevention of malicious impersonation. In essence, MAMF
must guarantee that successful impersonation is thwarted, contingent upon the
non-compromise of the respective individual’s secret key.

Definition 1 (Unforgeability). An MAMF scheme MAMF is unforgeable,
if for any set S ⊆ M and any PPT adversary A, Advunforge

MAMF,S,A(λ) :=
Pr[Gunforge

MAMF,S,A(λ) = 1] ≤ negl(λ), where Gunforge
MAMF,S,A(λ) is shown in Fig. 2.

Accountability. Adhering to the terminology established in AMF [18], we sys-
tematically formalize the security requirement pertaining to accountability as
receiver binding and sender binding. Concretely, MAMF is to ensure that (i) no
receivers can deceive the judge into accepting a message not genuinely sent by
the sender, and (ii) no sender can produce a signature acceptable to the receiver
while simultaneously rejected by the judge.

Now, we present the formal definitions as below.

Definition 2 (r-BIND). An MAMF scheme MAMF is receiver-binding, if
for any set S ⊆ M and any PPT adversary A, Advr-bind

MAMF,S,A(λ) :=
Pr[Gr-bind

MAMF,S,A(λ) = 1] ≤ negl(λ), where Gr-bind
MAMF,S,A(λ) is shown in Fig. 2.

Definition 3 (s-BIND). An MAMF scheme MAMF is sender-binding, if
for any set S ⊆ M and any PPT adversary A, Advs-bind

MAMF,S,A(λ) :=
Pr[Gs-bind

MAMF,S,A(λ) = 1] ≤ negl(λ), where Gs-bind
MAMF,S,A(λ) is shown in Fig. 2.

Deniability. To uphold deniability, MAMF needs to adhere to the secure prop-
erties of universal deniability, receiver compromise deniability, and judge com-
promise deniability.

Universal deniability indicates that any non-participating entity (i.e., lacking
access to the sender’s secret key, the receiver’s secret key, or the judge’s secret
key) can generate a signature, indistinguishable from honestly-created signatures
to other non-participating entities.

For receiver compromise deniability, the property requires that an entity
with access to the receiver’s secret key can generate a signature. This generated
signature should be indistinguishable from honestly-created signatures to other
entities with access to the corrupted secret key of the receiver.

As for judge compromise deniability, an entity with access to the judge’s
secret key should be capable of creating a signature. This signature should
be indistinguishable from honestly-generated signatures for other entities with
access to the judge’s secret key.

The formal definitions are presented as follows.

Definition 4 (UnivDen). An MAMF scheme MAMF is universally deni-
able, if for any set S ⊆ M and any PPT adversary A, AdvUnivDen

MAMF,S,A(λ) :=
|Pr[GUnivDen

MAMF,S,A(λ) = 1] − 1
2 | ≤ negl(λ), where GUnivDen

MAMF,S,A(λ) is shown in Fig. 2.

282 Z. Huang et al.

Fig. 2. Games for defining unforgeability, accountability and deniability of MAMF

Definition 5 (ReComDen). An MAMF scheme MAMF is receiver-
compromise deniable, if for any set S ⊆ M and any PPT adversary A,
AdvReComDen

MAMF,S,A (λ) := |Pr[GReComDen
MAMF,S,A (λ) = 1] − 1

2 | ≤ negl(λ), where
GReComDen

MAMF,S,A (λ) is shown in Fig. 2.

Definition 6 (JuComDen). An MAMF scheme MAMF is judge-compromise
deniable, if for any set S ⊆ M and any PPT adversary A, AdvJuComDen

MAMF,S,A (λ) :=
|Pr[GJuComDen

MAMF,S,A (λ) = 1] − 1
2 | ≤ negl(λ), where GJuComDen

MAMF,S,A (λ) is shown in Fig. 2.

Mild Asymmetric Message Franking 283

Unframeability. The unframeability of MAMF requires that no party, even
given a receiver’s secret key and the judge’s secret key, is able to produce a
signature acceptable to both the receiver and the judge.

The formal definition is as follows.

Definition 7 (Unframeability). An MAMF scheme MAMF is unframeable,
if for any set S ⊆ M and any PPT adversary A, AdvUnframe

MAMF,S,A(λ) :=
|Pr[GUnframe

MAMF,S,A(λ) = 1] − 1
2 | ≤ negl(λ), where GUnframe

MAMF,S,A(λ) is shown in Fig. 3.

Untraceability. Ensuring untraceability constrains the capabilities of both the
agency and the judge, thereby enhancing the assurance of sender privacy. Infor-
mally, untraceability implies an inability to discern the exact sender of a message.
This concept is formalized into two distinct notions: untraceability against judge
and untraceability against agency.

Untraceability Against Judge. When the message is not within the set S, untrace-
ability against judge ensures that an entity possessing the judge’s secret key can-
not identify the sender of the message, without any assistance from the agency.

Definition 8 (Untraceability against judge). An MAMF scheme MAMF
has untraceability against judge, if for any set S ⊆ M and any PPT
adversary A, there is a simulator SimFrank, such that AdvUnt-J

MAMF,S,A(λ) :=
|Pr[GUnt-J

MAMF,S,A(λ) = 1] − 1
2 | ≤ negl(λ), where GUnt-J

MAMF,S,A(λ) is shown in Fig. 3.

Untraceability Against Agency. We also articulated untraceability against agency.
In essence, a party with access to the agency’s secret key is unable to discern the
sender of a given message. The formal definition is articulated as follows.

Definition 9 (Untraceability against agency). An MAMF scheme MAMF
has untraceability against agency, if for any set S ⊆ M and any PPT
adversary A, there is a simulator SimFrank, such that AdvUnt-Ag

MAMF,S,A(λ) :=
|Pr[GUnt-Ag

MAMF,S,A(λ) = 1] − 1
2 | ≤ negl(λ), where GUnt-Ag

MAMF,S,A(λ) is shown in Fig. 3.

Confidentiality of Sets. We also consider the confidentiality of sets. It means
the public parameters and the public keys will not disclose any information about
the pre-defined set S. The formal definition is outlined as follows.

Definition 10 (Confidentiality of sets). An MAMF scheme MAMF sup-
ports confidentiality of sets, if for any PPT adversary A = (A1,A2),
Advconf-set

MAMF,A(λ) := |Pr[Gconf-set
MAMF,A(λ) = 1] − 1

2 | ≤ negl(λ), where Gconf-set
MAMF,A(λ)

is shown in Fig. 3.

Remark 2. Unlike AMF [18], where receiver binding and sender binding imply
unforgeability, our notion differs. The unforgeability in [18] provides an adversary
access to a judge oracle, while ours directly provides the judge’s secret key. The
unforgeability in [18] cannot prevent the receiver from accepting a signature
forged by the judge (as discussed in [18, Appendix B], where signatures output by

284 Z. Huang et al.

Fig. 3. Games for defining unframeability, untraceability, and confidentiality of sets of
MAMF

its JForge algorithm can be accepted by the receiver). Our unforgeability ensures
that the receiver will not accept a signature forged by anyone else, including the
agency and the judge, thus preventing deception.

In [18], the adversary in the judge compromise deniability game can access to
all secret keys (including the sender’s, the receiver’s and the judge’s). It means
that the signature output by JForge can be accept by the receiver, which is
unreasonable. In our model, the adversary only has access to the sender’s and
the judge’s secret keys but not to the receiver’s secret key. More importantly, the
definition of judge compromise deniability in [18] is contradictory to unframe-
ability. Our deniability model makes space for unframeability.

Our notions have some areas to be strengthened, e.g., strong unforgeability.
We believe the current definitions have grasped the key security requirements of
MAMF. Some enhancement definitions can be considered for future work.

Mild Asymmetric Message Franking 285

4 Universal Set Pre-constrained Encryption

In this section, we introduce a new primitive, universal set pre-constrained
encryption (USPCE).

Definition. Let U denote a universe of elements, and M denote a message space.
The universal set pre-constrained encryption USPCE contains five algorithms
(Setup,KG,Enc,TKGen,Dec) and the details are as follows.

• (pp, ap,msk) ← Setup(λ,S): The setup algorithm, run by the authority, takes
as input a security parameter λ and a set S ⊆ U of size at most n, and outputs
a public parameter pp, a auxiliary parameter ap and a master secret key msk.

• (pk, sk) ← KG(pp, ap): The key generation algorithm is run by the users. It
takes (pp, ap) as input, and outputs a public key pk and a secret key sk. We
assume that the well-formedness of pk can be verified with the assistance of
ap and S.

• ct ← Enc(pp, pk, x,m): The encryption algorithm takes (pp, pk), an item x ∈
U and a message m ∈ M as input, and outputs a ciphertext ct.

• tk ← TKGen(pp,msk, x): The token generation algorithm takes (pp,msk, x)
as input, and outputs a token tk for x.

• m/Sm ← Dec(pp, sk, ct, tk): The decryption algorithm takes (pp, sk, ct, tk) as
input, and outputs either a message m or a polynomial-size set Sm ⊂ M.

Given a set S ⊆ U , for any pp and msk generated by Setup(λ,S), we define
a relation as follows:

Rct = {((pk, x, ct), (m, r)) : ct = Enc(pp, pk, x,m; r)}. (1)

We require that there is a witness-only Sigma protocol (please refer to the
definition of witness-only in the full version of this paper) for the relation Rct in
Eq. (1).

It also satisfies the following properties.

Definition 11 (Correctness). A USPCE scheme USPCE is correct, if for any
λ ∈ N, any set S ⊂ U , and any m ∈ M, it holds that

– when x ∈ S:

Pr

⎡
⎣

(pp, ap, msk) ← Setup(λ, S)
(pk, sk) ← KG(pp, ap)
ct ← Enc(pp, pk, x, m)

: m ∈ Sm = Dec(pp, sk, ct, ⊥)

⎤
⎦ = 1 − negl(λ);

– when x /∈ S:

Pr

⎡
⎢⎢⎣

(pp, ap, msk) ← Setup(λ, S)
(pk, sk) ← KG(pp, ap)
ct ← Enc(pp, pk, x, m)
tk ← TKGen(pp, msk, x)

: m = Dec(pp, sk, ct, tk)

⎤
⎥⎥⎦ = 1 − negl(λ).

Confidentiality Against Authority. Here, we address the matter of confidentiality
against the authority. In a nutshell, the authority cannot obtain meaningful
information about the message from a ciphertext.

286 Z. Huang et al.

Fig. 4. Games Gconf-au
USPCE,A,S(λ), Gconf-u

USPCE,A,S(λ) and Gconf-set
USPCE,A(λ) for USPCE

Definition 12 (Confidentiality against authority). A USPCE scheme
USPCE has confidentiality against authority, if for any set S ⊆ U and any PPT
adversary A = (A1,A2), Advconf-au

USPCE,A,S(λ) := |Pr[Gconf-au
USPCE,A,S(λ) = 1] − 1

2 | ≤
negl(λ), where Gconf-au

USPCE,A,S(λ) is shown in Fig. 4.

Confidentiality Against Users. We extend our considerations to confidentiality
against users. Informally, It is required that, without the token for an item
x �∈ S given by the authority, any user cannot obtain meaningful information
about the message from a ciphertext associated with x.

Definition 13 (Confidentiality against users). A USPCE scheme USPCE
has confidentiality against users, if for any set S ⊆ U and any PPT adversary
A = (A1,A2), Advconf-u

USPCE,A,S(λ) := |Pr[Gconf-u
USPCE,A,S(λ) = 1]− 1

2 | ≤ negl(λ), where
Gconf-u

USPCE,A,S(λ) is shown in Fig. 4.

Confidentiality of Sets. Then, we delve into the concept of confidentiality of sets.
It is required that the public parameters and a user’s public key will not disclose
any information about the pre-defined set S.

Definition 14 (Confidentiality of sets). A USPCE scheme USPCE sup-
ports confidentiality of sets, if for any PPT adversary A = (A1,A2),
Advconf-set

USPCE,A(λ) := |Pr[Gconf-set
USPCE,A(λ) = 1] − 1

2 | ≤ negl(λ), where Gconf-set
USPCE,A(λ)

is shown in Fig. 4.

Construction. Let CH(rob)
λ = (Setup, Insert, Lookup) be an ε-robust cuckoo hash-

ing scheme (which is outlined in the full version of this paper), of which the neg-
ligibility of ε is ensured. More exactly, given the security parameter λ, the setup
algorithm chooses k = λ hash functions, the size of the hash table is n′ = 2 ·λ ·n,
and the size of the stash is 0. Let GenG be a group generation algorithm for bilin-
ear maps, which takes the security parameter as input and outputs the group

Mild Asymmetric Message Franking 287

Fig. 5. A concrete USPCE scheme USPCE (M ⊆ GT .)

description (e,G,GT , g, p). Then, we provide a concrete USPCE scheme USPCE
as shown in Fig. 5.

We show how to prove the relation Rct, and the concrete relation Rct is
presented in Fig. 5. We can prove the well-formedness of Sj and V using the
Sigma protocols, which can be found in the full version of this paper, while
proving the well-formedness of Qj and U using Schnorr’s Sigma protocol [15].
Furthermore, applying the “AND-EQUALl” operations (the details of which can
be found in the full version of this paper) over these sigma protocols, we can
obtain a Sigma protocol for Rct.

Remark 3. We can construct the algorithm WellFormtk mentioned in Remark 1
in this way: if e(tk, g) �= e(H(x), Y ′), then return 0, otherwise return 1.

We analyze the correctness of USPCE as follows.
For any S ⊂ U , any (pp, ap,msk) ← Setup(λ,S), any (pk, sk) ← KG(pp, ap),

and any ct ← Enc(pp, pk, x,m),

– when x ∈ S, the properties of cuckoo hashing guarantee that x is inserted
in one of locations (e.g., H1(x), . . . ,Hk(x)) in TS. Assuming x is located at

288 Z. Huang et al.

Hj(x) in the table, we obtain ˜H(x) = ˜T [Hj(x)]. Hence,

Sj · Q−α
j

= (T [Hj(x)])γj · m · e(A′, H̃(x))−αγj = (T [Hj(x)])γj · m · e(gα′
, H̃(x))−αγj

= (T [Hj(x)])γj · m · e(g, (H̃(x))α′
)−αγj = (T [Hj(x)])γj · m · e(g, (T̃ [Hj(x)])α′

)−αγj

= (T [Hj(x)])γj · m · e(g, T ′[Hj(x)])−αγj = (T [Hj(x)])γj · m · (T [Hj(x)])−γj = m

Hence, it is affirmed that m ∈ Sm = {m1, · · · ,mk}, where k = λ is a polyno-
mial, indicating that the set Sm is polynomial.

– when x �∈ S, for tk ← TKGen(pp,msk, x), we obtain

V/e(tkβ , U) = e(H(x), Y)r · m/e((H(x))sβ , gr) = e(H(x), Y)r · m/e(H(x), (gs)β)r

= e(H(x), Y)r · m/e(H(x), (Y ′)β)r = e(H(x), Y)r · m/e(H(x), Y)r = m

Security Analysis. Now, we show that the USPCE in Fig. 5 satisfies the aforemen-
tioned security requirements. Formally, we have the following theorem, the proof
of which is given in the full version of this paper, due to the space limitations.

Theorem 1. USPCE achieves confidentiality against authority, confidentiality
against users, and confidentiality of sets.

5 Dual HPS-KEMΣ

In this section, we introduce a new primitive called dual HPS-based KEM sup-
porting Sigma protocols (dual HPS-KEMΣ). We present a dual HPS-KEMΣ

scheme based on the DDH assumption. Similar to [13], our scheme can also
be extended to be based on the k-linear assumption [11,16].

Definition. A dual HPS-KEMΣ scheme dHPS-KEMΣ = (KEMSetup,KG,
CheckKey,Encapc,Encap

∗
c ,Encapk,Decap, dEncapk, dDecap,SamEncK, dSamEncK,

CheckCwel) is a tuple of algorithms associated with a secret key space SK, an
encapsulated key space K, and a tag space T , where Encapc, Encapk and dEncapk

have the same randomness space RS. We use RS∗ to denote the randomness
space of Encap∗

c .

• pp ← KEMSetup(λ): On input a security parameter λ, it outputs a public
parameter pp.

• (pk, sk) ← KG(pp): On input the public parameter pp, it outputs a pair of
public/secret keys (pk, sk).

• b ← CheckKey(pp, sk, pk): On input the public parameter pp, a secret key
sk and a public key pk, it outputs a bit b. Let SKpp,pk := {sk ∈ SK |
CheckKey(pp, sk, pk) = 1}.

• c ← Encapc(pp; r): On input the public parameter pp with inner random-
ness r ∈ RS, it outputs a well-formed ciphertext c. Let Cwell-f

pp := {c =
Encapc(pp; r) | r ∈ RS}.

Mild Asymmetric Message Franking 289

• c ← Encap∗
c(pp; r

∗
c): On input the public parameter pp with inner randomness

r∗
c ∈ RS∗, it outputs a ciphertext c. Let C∗

pp := {Encap∗
c(pp; r

∗
c) | r∗

c ∈ RS∗}.
We require Cwell-f

pp ⊂ C∗
pp.

• k ← Encapk(pp, pk; r): On input the public parameter pp and a public key pk
with inner randomness r ∈ RS, it outputs an encapsulated key k ∈ K.

• k′ ← Decap(pp, sk, c): On input the public parameter pp, a secret key sk and
a ciphertext c, and it outputs an encapsulated key k′ ∈ K.

• kd ← dEncapk(pp, pk, t; r): On input the public parameter pp, a public key pk,
and a tag t ∈ T with inner randomness r ∈ RS, it outputs an encapsulated
key k ∈ K.

• k′
d ← dDecap(pp, sk, t, c): On input the public parameter pp, a secret key sk,

a tag t ∈ T and a ciphertext c, it outputs an encapsulated key k′
d ∈ K.

• k ← SamEncK(pp; r∗
k): On input the public parameter pp with inner random-

ness r∗
k ∈ RS∗, it outputs an encapsulated key k ∈ K.

• kd ← dSamEncK(pp, t; r∗
k): On input the public parameter pp and a tag t ∈ T

with inner randomness r∗
k ∈ RS∗, it outputs an encapsulated key kd ∈ K.

• b ← CheckCwel(pp, c, r∗
c): On input the public parameter pp, a ciphertext c

and a random number r∗
c ∈ RS∗, it outputs a bit b.

Correctness requirements are as follows.

(1) For any pp generated by KEMSetup(λ), and any (pk, sk) output by KG(pp),
CheckKey(pp, sk, pk) = 1.

(2) For any pp generated by KEMSetup(λ), any (pk, sk) satisfying CheckKey(pp,
sk, pk) = 1, any t ∈ T , any randomness r ∈ RS and c = Encapc(pp; r), it
holds that Encapk(pp, sk; r) = Decap(pp, sk, c), and dEncapk(pp, pk, t; r) =
dDecap(pp, sk, t, c).

(3) For any pp generated by KEMSetup(λ), and any c generated with
Encap∗

c(pp; r
∗
c), CheckCwel(pp, c, r

∗
c) = 1 if and only if c ∈ Cwell-f

pp .

For any pp generated by KEMSetup(λ), we define some relations as follows:

Rs = {(pk, sk) : CheckKey(pp, sk, pk) = 1}, R∗
c = {(c, r∗

c) : c = Encap∗
c(pp; r

∗
c)}

Rc,k = {((c, k, pk), r) : (c = Encapc(pp; r)) ∧ (k = Encapk(pp, pk; r))}
Rd

c,k = {((c, kd, pk), (t, r)) : (c = Encapc(pp; r)) ∧ (kd = dEncapk(pp, pk, t; r))}
R∗

k = {(k, r∗
k) : k = SamEncK(pp; r∗

k)}, Rd∗
k ={(kd, (t, r

∗
k)) : kd = dSamEncK(pp, t; r∗

k)}
(2)

We require that for each relation in Eq. (2), there is a Sigma protocol. Note
that for Rd

c,k and Rd∗
k , we further require a witness-only Sigma protocol (please

refer to the definition of witness-only in the full version of this paper)
We also require that dHPS-KEMΣ should satisfy the following properties.

Definition 15 (Universality). dHPS-KEMΣ is universal, if for any computa-
tionally unbounded adversary A, Advuniv

dHPS-KEMΣ,A(λ) := Pr[Guniv
dHPS-KEMΣ,A(λ) =

1] ≤ negl(λ), where Guniv
dHPS-KEMΣ,A(λ) is defined in Fig. 6.

290 Z. Huang et al.

Fig. 6. Games for dHPS-KEMΣ

Definition 16 (Extended universality). dHPS-KEMΣ is extended univer-
sal, if for any computationally unbounded adversary A, Advex-univ

dHPS-KEMΣ,A(λ) :=
Pr[Gex-univ

dHPS-KEMΣ,A(λ) = 1] ≤ negl(λ), where Gex-univ
dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 17 (Ciphertext unexplainability). dHPS-KEMΣ is ciphertext-
unexplainable, if for any PPT adversary A, AdvC-unexpl

dHPS-KEMΣ,A(λ) :=

Pr[GC-unexpl

dHPS-KEMΣ,A(λ) = 1] ≤ negl(λ), where GC-unexpl

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 18 (Key unexplainability). dHPS-KEMΣ is key-unexplainable, if
for any PPT adversary A, AdvK-unexpl

dHPS-KEMΣ,A(λ) := Pr[GK-unexpl

dHPS-KEMΣ,A(λ) = 1] ≤
negl(λ), where GK-unexpl

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 19 (Extended key unexplainability). dHPS-KEMΣ is extended
key-unexplainable, if for any PPT adversary A, Advex-K-unexpl

dHPS-KEMΣ,A(λ) :=

Pr[Gex-K-unexpl
dHPS-KEMΣ,A(λ) = 1] ≤ negl(λ), where Gex-K-unexpl

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 20 (Indistinguishability). dHPS-KEMΣ is indistinguishable, if
for any PPT adversary A, Advind

dHPS-KEMΣ,A(λ) := |Pr[Gind
dHPS-KEMΣ,A(λ) =

1] − 1
2 | ≤ negl(λ), where Gind

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 21 (SK-2PR). dHPS-KEMΣ is SK-second-preimage resistant, if
for any PPT adversary A, Advsk-2pr

dHPS-KEMΣ,A(λ) := Pr[Gsk-2pr

dHPS-KEMΣ,A(λ) = 1] ≤
negl(λ), where Gsk-2pr

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Mild Asymmetric Message Franking 291

Fig. 7. Algorithm descriptions of a concrete dHPS-KEMΣ. There are Sigma protocols
for relations Rs, Rc,k, R∗

c , Rd
c,k, R∗

k and Rd∗
k : Okamoto’s Sigma protocol [14] for Rs

and R∗
k, the Chaum-Pedersen protocol [4] for Rc,k, Schnorr’s Sigma protocol [15] for

R∗
c , the Chaum-Pedersen protocol [4] and the Sigma protocol for Rd

c,k (which can be
found in the full version of this paper and it requires “AND-EQUALl” operations),
and Okamoto’s Sigma protocol [14] and the Sigma protocol for Rd∗

k (which also can be
found in the full version of this paper, and the obtained Sigma protocol is witness-only).

Definition 22 (Smoothness). dHPS-KEMΣ is smooth, if for any fixed pp
generated by KEMSetup and any fixed pk generated by KG, Δ((c, k), (c, k′)) ≤
negl(λ), where c ← Encap∗

c(pp), k ← K, sk ← SKpp,pk and k′ = Decap(pp, sk, c).

Definition 23 (Extended smoothness). dHPS-KEMΣ is extended smooth,
if for any fixed pp generated by KEMSetup and any fixed pk generated by KG,
Δ((c, k, t), (c, k′, t)) ≤ negl(λ), where c ← Encap∗

c(pp), k ← K, t ← T , sk ←
SKpp,pk and k′ = dDecap(pp, sk, t, c).

Definition 24 (Special extended smoothness). dHPS-KEMΣ is special
extended smooth, if for any fixed pp generated by KEMSetup and any fixed
(pk, sk) generated by KG, Δ((c, k), (c, k′)) ≤ negl(λ), where c ← Encap∗

c(pp),
k ← K, t ← T and k′ = dDecap(pp, sk, t, c).

Definition 25 (Uniformity of sampled keys). dHPS-KEMΣ has uniformity
of sampled keys, if for any pp generated by KEMSetup and any t ∈ T , it holds
that Δ(k, k′) = 0 and Δ(k, k′′) = 0, where k ← K, k′ ← SamEncK(pp) and
k′′ ← dSamEncK(pp, t).

Construction. Here, we present a concrete construction of dual HPS-KEMΣ,
which satisfies all the aforementioned security properties. Let G be a group gen-
eration algorithm, taking λ as input and outputting (G, p, g1, g2), where G is a
prime-order group, p is the order of G, and g1, g2 are two random generators of
G. Our construction dHPS-KEMΣ is shown in Fig. 7.

It is clear that the construction in Fig. 7 satisfies correctness. The relations
Rs, Rc,k, R∗

c , Rd
c,k, R∗

k and Rd∗
k are presented in Fig. 7.

292 Z. Huang et al.

Remark 4. The algorithm WellFormu mentioned in Remark 1 can be built in this
way: given sk = (x1, x2), if pk �= gx1

1 gx2
2 , then return 0, otherwise return 1.

For security properties, we present the following theorem, the proof of which
is given in the full version of this paper, due to space limitations.

Theorem 2. The above scheme dHPS-KEMΣ achieves universality, extended
universality, smoothness, extended smoothness, special extended smoothness, and
uniformity of sampled keys. Furthermore,

– dHPS-KEMΣ is ciphertext-unexplainable, key-unexplainable and extended key-
unexplainable under the DL assumption.

– dHPS-KEMΣ is indistinguishable under the DDH assumption.
– dHPS-KEMΣ is SK-second-preimage resistant under the DL assumption.

6 General Construction of MAMF

In this section, we present a framework for constructing MAMF using USPCE
and dual HPS-KEMΣ.

Let dHPS-KEMΣ=(KEMSetup,KG,CheckKey,Encapc,Encap
∗
c ,Encapk,Decap,

dEncapk, dDecap,SamEncK, dSamEncK,CheckCwel) be a dual HPS-KEMΣ

scheme, where RS denotes the randomness space of Encapc, Encapk and dEncapk,
RS∗ denotes the randomness space of Encap∗

c , SamEncK and dSamEncK, T
denotes the tag space, and K denotes the encapsulated key space.

Let USPCE = (Setup,KG,Enc,TKGen,Dec) be a USPEC scheme with a uni-
verse of elements U , a token space T K and a message space M.

Our generic MAMF scheme MAMF = (Setup,KGAg,KGJ,KGu,Frank,Verify,
TKGen, Judge,Forge,RForge, JForge) is presented in Fig. 8. It’s worth noting that
the message space of MAMF M = USPCE.U and USPCE.M = dHPS-KEMΣ.T .

We mainly introduce the algorithm Frank. It calls Encapc, Encapk, and
dEncapk of dHPS-KEMΣ to generate a well-formed ciphertext and encapsulated
keys, respectively. Subsequently, it invokes Enc of USPCE to encrypt the tag used
for the generation of the encapsulated key of the judge. Afterward, it utilizes a
NIZK proof algorithm NIZKR.Prove to create a NIZK proof. The relation R is
defined as follows (which is also introduced in Fig. 1):

R = {((pp, pks, pkAg, pkJ, c, kr, kJ, ct, m), (sks, t, r, r
∗
c , r

∗
k , rUSPCE)) :

((pks, sks) ∈ Rs ∧ (((c, kJ, pkJ), (t , r)) ∈ Rd
c,k ∧eq ((pkUSPCE, m, ct), (t , rUSPCE)) ∈ Rct))

∨((c, r
∗
c) ∈ R∗

c ∧ (kr, r
∗
k) ∈ R∗

k ∧ ((pkUSPCE, m, ct), (t, rUSPCE)) ∈ Rct)

∨((c, r
∗
c) ∈ R∗

c ∧ ((kJ, (t , r
∗
k)) ∈ Rd∗

k ∧eq ((pkUSPCE, m, ct), (t , rUSPCE)) ∈ Rct))},

For the NIZK proof system NIZKR = (Prove,Verify) utilized in Fig. 8, we
construct it as follows. It’s noteworthy that for every sub-relation (i.e., Rs,
Rd

c,k, R∗
c , R∗

k, Rd∗
k and Rct), the dual HPS-KEMΣ scheme and USPCE ensure

the existence of a Sigma protocol. Utilizing the technique of trivially combin-
ing Sigma protocols for “AND/OR” operations [3, Sec. 19.7] and the “AND-
EQUALl” operations, a new Sigma protocol for the relation R is obtained. Sub-
sequently, employing the Fiat-Shamir transform, we derive a NIZK proof system
NIZKR = (Prove,Verify) for R in the random oracle model.

Mild Asymmetric Message Franking 293

Fig. 8. Algorithms of MAMF

Correctness Analysis. For any signature σ ← Frank(pp, sks, pkr, pkAg, pkJ,m),
we parse σ = (π, c, kr, kJ, ct), and let y := (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m).

We first analyze the output of Verify as follows: (i) the correctness of NIZKR

guarantees that NIZKR.Verify(kr, π, y) = 1; (ii) the correctness of dHPS-KEMΣ

guarantees that Decap(pp, skr, c) = kr. So, Verify will return 1.
Next, we analyze the output of Judge as follows: (i) the correctness of

NIZKR guarantees that NIZKR.Verify(kr, π, y) = 1; (ii) the correctness of
USPCE guarantees that t = USPCE.Dec(ppUSPCE, skUSPCE, ct, tk), where ct ←
USPCE.Enc(pkUSPCE, m, t; rUSPCE); (iii) the correctness of dHPS-KEMΣ guaran-
tees that Decap(pp, sk′

J, t, c) = kJ. Therefore, Judge will also return 1.
In fact, the second point (ii) of the correctness of Judge should be divided into

two cases as the definition of correctness in Sect. 3. It can be trivially guaranteed
by the correctness of USPCE, so we omit the details here.

294 Z. Huang et al.

Security Analysis. We have the following theorem, the proof of which is placed
in the full version of this paper, due to space limitations.

Theorem 3. If the USPCE scheme USPCE satisfies the properties defined in
Sect. 4, the dual HPS-KEMΣ scheme dHPS-KEMΣ satisfies the properties defined
in Sect. 5, and NIZKR = (Prove,Verify) is a Fiat-Shamir NIZK proof system for
R, then our scheme MAMF achieves the properties defined in Sect. 3.2.

Concrete Construction and Improvements. Plugging the concrete USPCE
in Sect. 4 and the concrete dual HPS-KEMΣ in Sect. 5 into our framework, we
obtain a concrete MAMF scheme. Notably, our concrete USPCE is based on the
DBDH assumption, featuring a bilinear map e : G × G → GT , and our concrete
dual HPS-KEMΣ is based on the DDH assumption. To integrate them into our
framework, we require that the concrete dual HPS-KEMΣ is built over GT .

In the full version of this paper, we present some improvements on the
concrete MAMF. Because of the algebraic structure of our USPCE and dual
HPS-KEMΣ, there exist Sigma protocols proving the well-formedness of the
USPCE ciphertext and of the encapsulated key for the judge simultaneously.
Therefore, we let the franking algorithm directly call the encryption algorithm
of USPCE to encrypt the encapsulated key for the judge, instead of the tag t,
and then change the relation R accordingly. Furthermore, by proving the same
statements in different sub-relations simultaneously, we propose an enhancement
to the Sigma protocol for the relation R. As a result, it reduces about 2/3 of the
space overhead for the response of the Sigma protocol, which implies a smaller
signature size. More exact comparison can be found in the full version of this
paper, due to space limitations.

In our MAMF scheme, if the legislative agency has provided tokens for some
messages, then the judge possesses the ability to identify all senders of these
messages. However, it may not be suitable for all scenarios, as discussed in Intro-
duction. We propose a solution in the full version of this paper, empowering the
legislative agency to generate a one-time token for a specific MAMF signature
and a specific message, such that the judge can carry out content moderation
for that specific signature and specific message.

Acknowledgements. We want to express our sincere appreciation to the anonymous
reviewers for their valuable comments and suggestions! Zhengan Huang and Gongx-
ian Zeng are supported by The Major Key Project of PCL (PCL2023A09). Junzuo
Lai is supported by National Natural Science Foundation of China under Grant Nos.
62472198 and U2001205, Guangdong Basic and Applied Basic Research Foundation
(Grant No. 2023B1515040020). Jian Weng is supported by National Natural Science
Foundation of China under Grant Nos. 62332007 and U22B2028, Major Program of
Guangdong Basic and Applied Research Project under Grant No. 2019B030302008,
Science and Technology Major Project of Tibetan Autonomous Region of China under
Grant No. XZ202201ZD0006G, Guangdong Provincial Science and Technology Project
under Grant No. 2021A0505030033, National Joint Engineering Research Center of
Network Security Detection and Protection Technology, Guangdong Key Laboratory
of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for

Mild Asymmetric Message Franking 295

Data Security and Privacy Protection, and Engineering Research Center of Trustwor-
thy AI, Ministry of Education.

References

1. Abelson, H., Anderson, R.J., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W.,
Gilmore, J., Green, M., Landau, S., Neumann, P.G., Rivest, R.L., Schiller, J.I.,
Schneier, B., Specter, M.A., Weitzner, D.J.: Keys under doormats: mandating inse-
curity by requiring government access to all data and communications. J. Cyber-
secur. 1(1), 69–79 (2015)

2. Bartusek, J., Garg, S., Jain, A., Policharla, G.V.: End-to-end secure messaging with
traceability only for illegal content. In: EUROCRYPT 2023. pp. 35–66. Springer
(2023)

3. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO 1992.

pp. 89–105. Springer (1992)
5. Facebook: Facebook messenger app (2016), https://www.messenger.com/
6. Facebook: Messenger secret conversations technical whitepaper (2016), https://

fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.
pdf

7. FBI: Going dark https://www.fbi.gov/services/operational-technology/going-
dark, accessed in January 2024

8. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to
run turing machines on encrypted data. In: CRYPTO 2013. pp. 536–553. Springer
(2013)

9. Green, M., Kaptchuk, G., Van Laer, G.: Abuse resistant law enforcement access
systems. In: EUROCRYPT 2021. pp. 553–583. Springer (2021)

10. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: CRYPTO 2017. pp. 66–97. Springer (2017)

11. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: CRYPTO 2007. pp. 553–571. Springer (2007)

12. Issa, R., Alhaddad, N., Varia, M.: Hecate: Abuse reporting in secure messengers
with sealed sender. In: USENIX Security 2022. pp. 2335–2352 (2022)

13. Lai, J., Zeng, G., Huang, Z., Yiu, S.M., Mu, X., Weng, J.: Asymmetric group
message franking: Definitions and constructions. In: EUROCRYPT 2023. pp. 67–
97. Springer (2023)

14. Okamoto, T.: An efficient divisible electronic cash scheme. In: CRYPTO 1995. pp.
438–451. Springer (1995)

15. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO
1989. pp. 239–252. Springer (1989)

16. Shacham, H.: A Cramer-Shoup Encryption Scheme from the Linear Assumption
and from Progressively Weaker Linear Variants. Cryptology ePrint Archive, Report
2007/074 (2007)

17. Tarabay, J.: Australian government passes contentious encryption law. The New
York Times (2018)

18. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: Content moderation for metadata-private end-to-end encryption. In: CRYPTO
2019. pp. 222–250. Springer (2019)

https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://www.fbi.gov/services/operational-technology/going-dark
https://www.fbi.gov/services/operational-technology/going-dark

Delegatable Anonymous Credentials from
Mercurial Signatures with Stronger

Privacy

Scott Griffy1(B) , Anna Lysyanskaya1 , Omid Mir2 ,
Octavio Perez Kempner3 , and Daniel Slamanig4

1 Brown University, Providence RI, USA
{scott griffy,anna lysyanskaya}@brown.edu

2 AIT Austrian Institute of Technology, Vienna, Austria
omid.mir@ait.ac.at

3 NTT Social Informatics Laboratories, Tokyo, Japan
octavio.perezkempner@ntt.com

4 Universität der Bundeswehr München, Munich, Germany
daniel.slamanig@unibw.de

Abstract. Delegatable anonymous credentials (DACs) enable a root
issuer to delegate credential-issuing power, allowing a delegatee to take
a delegator role. To preserve privacy, credential recipients and verifiers
should not learn anything about intermediate issuers in the delega-
tion chain. One particularly efficient approach to constructing DACs is
due to Crites and Lysyanskaya (CT-RSA ’19). In contrast to previous
approaches, it is based on mercurial signatures (a type of equivalence-
class signature), offering a conceptually simple design that does not
require extensive use of zero-knowledge proofs. Unfortunately, current
constructions of “CL-type” DACs only offer a weak form of privacy-
preserving delegation: if an adversarial issuer (even an honest-but-curious
one) is part of a user’s delegation chain, they can detect when the user
shows its credential. This is because the underlying mercurial signature
schemes allows a signer to identify his public key in a delegation chain.

We propose CL-type DACs that overcome the above limitation based
on a new mercurial signature scheme that provides adversarial public
key class hiding which ensures that adversarial signers who participate
in a user’s delegation chain cannot exploit that fact to trace users. We
achieve this introducing structured public parameters for each delega-
tion level. Since the related setup produces critical trapdoors, we discuss
techniques from updatable structured reference strings in zero-knowledge
proof systems (Groth et al. CRYPTO’18) to guarantee the required pri-
vacy needs. In addition, we propose a simple way to realize revocation
for CL-type DACs via the concept of revocation tokens. While we show-
case this approach to revocation using our DAC scheme, it is generic
and can be applied to any CL-type DAC system. Revocation is a vital
feature that is largely unexplored and notoriously hard to achieve for
DACs, thus providing it can help to make DAC schemes more attractive
in practical applications.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 296–325, 2025.
https://doi.org/10.1007/978-981-96-0888-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_10&domain=pdf
http://orcid.org/0009-0000-6016-5163
http://orcid.org/0000-0002-3567-3550
http://orcid.org/0000-0003-1691-5291
http://orcid.org/0000-0002-3377-9802
http://orcid.org/0000-0002-4181-2561
https://doi.org/10.1007/978-981-96-0888-1_10

Delegatable Anonymous Credentials 297

Keywords: Anonymous credentials · delegatable credentials ·
mercurial signatures · revocation · Public key class-hiding

1 Introduction

Anonymous credentials (ACs) allow an authority (the issuer) to issue user cre-
dentials that can then be used for anonymous authentication. This primitive
was envisioned by Chaum in [15] and later technically realized by Camenisch
and Lysyanskaya in [12]. Importantly, in an AC scheme, a verifier and a user
(also called a “credential holder”) engage in a showing (also called a “proof” or
“presentation”) which proves to the verifier that the user has a valid credential.
The scheme is anonymous if a user can show their credential multiple times in
an unlinkable fashion. Intuitively, anonymity means that after verifying the cre-
dentials of two users, an adversary should not be able to tell if the credentials
are both from a single user or from two different users.

Delegatable anonymous credentials (DACs) were introduced by Chase and
Lysyanskaya [14]. As the name suggests, DAC schemes allow a root issuer to
delegate their credential-issuing power to other “intermediate” issuers. This del-
egation allows any intermediate issuer to issue credentials on behalf of the root
issuer (or possibly, re-delegate their issuing power), creating a delegation chain
between the root issuer, the intermediate issuers, and the credential holder.
Belenkiy, Camenisch, Chase, Kohlweiss, Lysyanskaya and Shacham showed how
to realize DACs for arbitrarily long delegation chains [2].

Delegation alleviates the burden on the root issuer without revealing the
root issuer’s secrets to any other issuer, similar to a key hierarchy in a public
key infrastructure (PKI) system. Unlinkability of DACs ensures the anonymity
of credential holders, as well as the anonymity of any issuers who participated in
that credential’s delegation chain. The anonymity of intermediate issuers implies
that given the showing of two credentials, an adversarial verifier cannot deter-
mine if they were issued by the same intermediate issuer or different intermediate
issuers. Hiding the intermediate issuer is important for a DAC scheme as reveal-
ing the identities of these intermediate issuers might reveal information about
the end user. The root issuer is always identified in a showing as the verifier
must trust some key for unforgeability.

An important property when practically using ACs and DACs is non-transfer-
ability. This property ensures that users cannot easily share their credentials
with other users. One way of providing this is to ensure that a user cannot share
one of her credentials without sharing all of her credentials (and corresponding
secrets). This is known as the “all-or-nothing” approach [12] and should disincen-
tivize sharing of credentials by users’ fear of losing control over their credentials.
Another feature that is particularly important for the practical application of
(delegatable) anonymous credentials is revocation. Unfortunately, this property
is often neglected. It is quite clear that when preserving user’s privacy, standard
approaches to recovation known from classical PKI schemes do not work. While
there are various different approaches to revocation of anonymous credentials

298 S. Griffy et al.

[7,9–13,19], in the delegatable setting this seems much harder to achieve and
the topic is largely unexplored [1].

1.1 Previous Work on DAC and Motivation for Our Work

As in the recent work of Mir, Slamanig, Bauer, and Mayrhofer [28], we are par-
ticularly interested in developing practical DAC schemes. For a broader under-
standing, readers are directed to their comprehensive overview. The first practi-
cal DAC was proposed by Camenisch, Drijvers, and Dubovitskaya [8], but unfor-
tunately they do not support an anonymous delegation phase. This, however is a
crucial privacy requirement. The DACs by Blömer and Bobolz [4] as well as [28]
represent two relevant and efficient DAC candidates as they have anonymous
delegations and additionally, compact credentials. Unfortunately, [28] does not
provide the important property of non-transferability, and for both [4,28] the
delegated credential is distributed independently of any of the previous del-
egators. Consequently, it seems very hard to efficiently achieve revocation of
delegators for those schemes.

Crites and Lysyanskaya [17] came up with a simple architecture (which we
will call “CL-type DAC”) for delegatable anonymous credentials that uses mer-
curial signatures (MS). These CL-type DACs bring the use of equivalence class
signatures, extensively used in anonymous credentials [16,19,20,25,26,28], to the
DAC setting (with numerous follow up works [18,27,29,31] on various aspects).
In CL-type DACs, the “links” in a delegation chain are signatures; this chain
includes the root’s signature on the first intermediate issuer’s public key; then
for i ≥ 1, the ith intermediary’s signatures on the i + 1st intermediary’s public
key, and finally the last intermediate issuer’s signature on the credential holder’s
public key. In order to ensure unlinkability, mercurial signatures allow random-
ization of both the signer’s public key to an equivalent but unlinkable public key,
and the randomization of the message to an equivalent but unlinkable message.
As an example delegation chain in a CL-type DAC, would first require a root
(or certification) authority (CA) which holds a signing key of an MS scheme and
to issue a credential to a user, Alice. To do this, the root authority produces a
signature σCA,A on an MS public key pkA of Alice. By demonstrating knowl-
edge of the corresponding secret key to pkA along with the root’s signature on
pkA, Alice can authenticate herself. Now if Alice wants to delegate a credential
to Bob, she uses her corresponding secret key to produce a signature σA,B on
Bob’s MS public key pkB , where the signature acts as a credential for Bob. Now
Bob can authenticate himself by demonstrating knowledge of the corresponding
secret key (to pkB) and showing the signatures from both the root (σCA,A) and
from Alice (pkA, σA,B). This principle can be applied to an arbitrarily long del-
egation chain. Now assume that Bob wants to show in a privacy-preserving way
that he has been delegated a credential by CA. He can do this by demonstrating
(pkCA, pkA

′, pkB
′), (σ′

CA,A, σ′
A,B) where pkA

′ and pkB
′ are new representatives

of the respective key classes (and by the properties of MS, they are unlinkable
to the previous ones) and the signatures (σ′

CA,A, σ′
A,B) are adapted to the new

messages and public keys respectively (which are similarly unlinkable). In the

Delegatable Anonymous Credentials 299

concrete CL construction [17], the MS scheme works in a bilinear group setting
where w.l.o.g. the public key of the CA lives in the second source group, G2,
and the public key of Alice in G1. Consequently, since the public keys of the MS
scheme on the next level need to live in the message space of the MS scheme of
the previous level, one always needs to switch the groups for the MS scheme on
every level, which is an important detail to keep in mind.

One important limitation of existing DAC approaches [17,18,28,31], besides
not yet supporting revocation, is that they only satisfy a weak notion of privacy.
In particular it is not possible to guarantee anonymity even in the case of an
honest-but-curious delegator in the credential chain (or when the root authority
and a single delegator on the delegation chain collaborate, in the case of [28]). In
prior constructions of CL-type credentials [17,18,31] this is because public keys
in these constructions are traceable (using the secret key) regardless of how they
have been randomized. Thus, a malicious delegator can identify itself on a chain
and break anonymity.

When it comes to revocation in DAC, the only work so far is by Acar and
Nguyen [1], which is based on the generic DAC template in [2] from randomizable
NIZK proofs and in addition uses homomorphic NIZK proofs. While this can be
instantiated from the Groth-Sahai [24] proof system, this is not very attrac-
tive from a practical perspective due to significant costs. So having practical
DACs with revocation is an open problem.

Consequently, there exists a gap in that we do not have practical DAC
schemes with strong privacy guarantees that support practical revocation of
delegators. Our aim is to close this gap.
Our work can be seen as the continuation of the research initiated by Crites

and Lysyanskaya in [17], closing these existing gaps for practical DAC schemes.
To do this, we create a mercurial signature scheme with a stronger privacy prop-
erty called adversarial public key class-hiding. An overview of this approach is
outlined in the technical overview in Sect. 1.3. Ensuring that maliciously cre-
ated public keys in mercurial signatures are not traceable by their owners after
being randomized has been an open problem since their introduction in [17]. A
very recent work introduced the notion of interactive threshold mercurial sig-
natures [29] to overcome said limitation, but it requires an interactive signing
protocol that computes a signature from shares of a secret key that are dis-
tributed among parties. While such an approach is satisfactory for anonymous
credentials and can also be used to distribute trust of the root authority in
DAC schemes, it’s unclear how it can be used to efficiently manage delegations.
Instead, we introduce structured public parameters which we carefully glue over
the delegation levels to enable strong privacy features (and without requiring any
interaction). Since the setup of these parameters also produces trapdoors that
endanger privacy, we show how to overcome this problem by using techniques
well-known from updatable structured reference string in zero-knowledge proof
systems [23]. For revocation in DAC, we introduce a new and practical approach
that is applicable to any CL-type DAC scheme.

300 S. Griffy et al.

1.2 Our Contributions

Subsequently, we summarize our contributions:

New Mercurial Signatures. First, as our core building block, we define a
new flavor of a mercurial signature scheme which satisfies a stronger class hiding
property, namely adversarial public-key class hiding (APKCH). Unlike in the
mercurial signature definition of Crites and Lysyanskaya [17], here the adversary
comes up with a public key and signs a message of its choice; the challenge for
an adversary is to distinguish between a randomized version of his own public
key and signature and a fresh, unrelated public key and a signature on the
same message under that fresh public key. We give a construction of an APKCH
signature scheme in the generic group model. Adversarial public-key class hiding
is sufficient to construct a DAC scheme with strong privacy.

New Technique for Revocation in DAC. We introduce a new revocation
approach for DACs. The basic idea is that a revocation authority maintains a
public deny list, which verifiers can use to ensure that a credential shown to them
does not contain any revoked delegators. Thereby any user who wants to receive
a credential or obtain delegation rights (while still supporting later revocation)
must first register their key with the revocation authority. This registration is
anonymous and neither a verification of the user’s identity is needed nor a proof
of knowledge of their key needs to be performed. This gives a simple privacy-
preserving way for revocation in DAC, can be used for any CL-type DAC and
does so without resorting to heavy tools such as malleable NIZKs as done in [1].

Model and Instantiation of DAC with Strong Privacy and Revoca-
tion. We introduce a conceptually simple model for revocable DAC schemes
with strong privacy using game-based security definitions. We believe that this
notion is easier to use than the simulation-based security notions provided in
[1]. Then, using our mercurial signature scheme with � = 2, we construct a con-
ceptually simple DAC scheme with delegator revocation and without requiring
extensive use of zero-knowledge proofs. We stress that this gives a CL-type DAC
scheme, where privacy holds even when the adversary is allowed to corrupt the
root and all delegators simultaneously.

1.3 Technical Overview

Public keys in the mercurial signature from [17] are �-length vectors of group
elements and are constructed as pk = {X̂i}i∈[�] = {P̂ xi}i∈[�] where the secret
key is sk = {xi}i∈[�] ∈ (Z∗

p)
� and P̂ is the generator the second source group of a

bilinear pairing. Anyone can randomize a public key pk to a new representative
of the equivalence class to get pk′ = pkρ = {X̂ρ

i }i∈[�] for ρ ∈ Zp. Unfortunately,
such public keys are immediately recognizable to an adversary who holds the
corresponding secret key. For an adversary to recognize a public key, it suffices to
exponentiate each element in the public key by the inverse of the corresponding
element in the secret key and check that the result has the form: {P̂ ρ}i∈[�] (a
vector of equal elements).

Delegatable Anonymous Credentials 301

One approach to overcome the above limitation is to ensure that each element
in a public key is computed over a distinct generator of the group where the
discrete logarithms between these generators are random and not known. For
example, if we add a trusted setup to the scheme from [17]: Setup(1λ) → pp =
{P̂1, P̂2, ..., P̂�} where P̂i = P̂ b̂i for � randomly sampled b̂i scalars in Zp and public
keys are computed as pk = {X̂i = P̂ xi

i }i∈[�] then it can be shown that under the
DDH assumption that an adversary cannot distinguish a randomization of their
public key from a freshly sampled key.

This appears promising, especially since these P̂i values are all distinct and
can be efficiently sampled in the ROM. But, if an honest user receives a pub-
lic key, it is not immediately clear how to ensure that it wasn’t created mali-
ciously so that they are recognizable (e.g., ensure the adversary did not com-
pute the public key independent of the public parameters as pk = {P̂ xi}i∈[�]

which would be recognizable). To ensure that maliciously created public keys
are computed over these bases without the need for zero knowledge proofs, we
add what we call “verification bases” to the public parameters. The verifica-
tion bases are structured so that they can be paired with the key to prove
that it was computed using the trusted public parameters. To accomplish this,
we need to expand the size of the public key vectors to double their length
(2�). This extra half of the public key will be the result of exponentiating dif-
ferent bases in the public parameters with the same secret key as in the first
half. Specifically, our public parameters (w.r.t. public keys) consist of B̂ =
{B̂i}i∈[2�] = {P̂ b̂1 , . . . , P̂ b̂� , P̂ b̂1d̂1 , . . . , P̂ b̂�d̂�} such that dlogB̂i

(B̂�+i) = d̂i. We
then include the verification bases in the public parameters which are computed
as: V = {Vi}i∈[�] = {P v1d̂1 , . . . , P v�d̂� , P v1 , . . . , P v�} (for randomly sampled
scalars, {vi}i∈[�]) such that ∀i ∈ [�], e(Vi, B̂i) = e(V�+i, B̂�+i). Then, key pairs
are computed as sk = {xi}i∈[�] ←$Zp, pk = {X̂i}i∈[�] = {B̂xi

i }i∈[�]‖{B̂xi

�+i}i∈[�].
We can see now that ∀i ∈ [�], e(Vi, X̂i) = e(V�+i, X̂�+i). Thus, a verifier can take
this length 2� public key and use the verification bases (V) to verify it by com-
puting these pairings. If these pairing equations hold, then, because the elements
in the upper half of B̂ are the only elements in the second source group that are
exponentiated with d̂i, the adversary must have computed the upper half of the
public key with these bases. Through a similar argument, the lower half of the
public key must be computed over the lower half of the public key bases in the
public parameters. Thus, if these pairing equations hold for a public key, then
randomizations of that public key are unrecognizable to the adversary. Because
we need correlated randomness in the trapdoors (e.g. both Vi and B̂�+i are com-
puted using d̂i) we can no longer use the ROM to generate these parameters and
instead must use the common reference string (CRS) model.

We quickly run into a second problem as with these modified public keys as
correctness falls apart when we attempt to sign messages. In [17], signatures are
computed as σ = (Z, Y, Ŷ) with Z = (

∏
i∈[�] M

xi
i)y, Y = P 1/y, and Ŷ = P̂ 1/y.

Verification is done via a pairing product equation: e(Z, Ŷ) =
∏

i∈[�] e(Mi, X̂i),
which will not verify with the new structure of public keys that we’ve

302 S. Griffy et al.

introduced in this section. Therefore, we expand the message space to vec-
tors of 2� elements instead of � elements and include ∀i ∈ [�], Pi = P b̂i in the
public parameters. Messages then have the form: M = {Pmi}i∈[�]||{Pmi

i }i∈[�]

for some vector {mi}i∈[�] ∈ Z
�
p. In this modified scheme, the structure of Y

and Ŷ remains unchanged, but we then use the upper half of the message
vector in our Sign function and the lower half of the message vector in our
Verify function. This modification leads to a correct verification, now given by:

e(Z, Ŷ) = e(P, P̂)
∑

i∈[�] mixib̂i =
∏

i∈[�] e(Mi, X̂i). We also have to add more
structure to achieve a signature that yields DAC as the lower half of the mes-
sage (which will be another public key in a DAC credential chain) is recognizable.
We add this extra structure in Sect. 3.

Constructing a Strongly Private DAC. As previously mentioned, [17] works
by alternating the use of two signature schemes so that even delegation levels
are signed with one of the schemes and the odd ones with the other. This way,
the message space in one of the schemes is the public key space of the other.

Our approach is to build a structured random string so that each scheme can
sign public keys for the next level of the credential chain using unique blinding
factors taken from the CRS for each level. This poses a challenge as we need to
correlate the structure of both schemes for messages and public keys. To this
end, the keys used in our scheme are twice the size of the keys in [17]. Fortu-
nately, for CL-type DACs � = 2 and typical applications that use delegation
do not require long delegation chains (e.g., driving licenses or official identity
documents), making this approach entirely practical. To illustrate it, we con-
sider a DAC scheme for L = 3. We can generate the public parameters, pp =
{P b̂0 , P b̂1}, pp′ = {P̂ b̂′

0 , P̂ b̂′
1 , P̂ b̂0b̂′

0 , P̂ b̂1b̂′
1}, pp∗ = {P b̂∗

0 , P b̂∗
1 , P b̂′

0b̂∗
0 , P b̂′

1b̂∗
1}. We

can see that the bases from pp and pp′ have a structure that satisfies: e(P b̂i ,

P̂ b̂′
i) = e(P, P̂ b̂ib̂

′
i) and similar for pp′ and pp∗. Hence, such public parameters

can be used to build public keys for the credential chain as: pk = {P b̂0x0 , P b̂1x1},
pk′ = {P̂ b̂′

0x′
0 , P̂ b̂′

1x′
1 , P̂ b̂0b̂′

0x′
0 , P̂ b̂1b̂′

1x′
1}, pk∗ = {P b̂∗

0x∗
0 , P b̂∗

1x∗
1 , P b̂′

0b̂∗
0x∗

0 , P b̂′
1b̂∗

1x∗
1}. It

follows from inspection that if we use sk = {x0, x1} to sign the third and fourth
elements of pk′, the signature will verify using the first and second elements from
pk′. Similarly, if we use sk′ = {x′

0, x
′
1} to sign the third and fourth elements in

pk∗, the signature will verify under the first half of pk′ with the first half of
pk∗ as the message. Because these trapdoors are shared across schemes, we need
the security properties of our signature scheme to hold when multiple correlated
copies of the scheme are generated. We describe this requirement of our signa-
ture scheme further in Sect. 3.3 where we present the above example with more
detail in Fig. 5.

Removing Trust in the Parameter Generation. As it is apparent from
our above discussion, the generation of parameters in setup involves a number
of exponents that must not be available to any party. Putting trust in the party
running this setup to discard these values is typically not desirable, especially
in a DAC setting where there are numerous parties involved. One way to deal
with this issue is to run specific multi-party computation protocols to generate

Delegatable Anonymous Credentials 303

the parameters [3,6], e.g., running distributed key generation protocols. In order
to avoid interaction among many parties, one particularly appealing approach
was proposed by Groth et al. [23] in the context of zk-SNARKs, i.e., so called
updatable reference strings. This means that some (potentially malicious) party
can generate a reference string and any (potentially malicious) party in the
system can update the reference string. Thereby every party outputs a proof
that the computation was performed honestly and when the chain of proofs
from the generation until the last update of the reference string verifies and
at least one of the involved parties is honest, it is ensured that no one knows
the trapdoors. Since this process can be done strictly sequentially this seems
much more interesting for practical application, as for instance demonstrated
by the powers of tau ceremony recently run by Ethereum1, with around 95k
contributors (cf. [30]). We note that in our case this can be done very efficiently
using Fiat-Shamir transformed Schnorr proofs for discrete logarithm relations.
In the full version of this paper [22] we present the concrete relations for the
updates. In brief, the costs are 5� Pedersen commitments for the trapdoors, 8�
group elements for the Schnorr proofs for the base group elements in pp and 10�
Zp elements for the Schnorr proofs which include the trapdoors. Concretely, for
� = 2 this amounts to 26 group elements and 20 Zp elements per level (where
for usual applications L ≤ 5) being several orders of magnitude smaller than
the one run by Ethereum. We also note that the computation and verification
of these Schnorr proofs is highly efficient.

Revoking Intermediate Issuers and Users in a DAC Scheme. Concep-
tually (but not technically) our approach to revocation shares similarities with
verifier local revocation kown from group signatures [5]. In particular, to revoke
these credentials, we generate revocation tokens that verify with a given public
key and can later be provided to a trusted revocation authority (TRA). The
TRA adds these tokens to a deny list. To achieve this, the TRA first creates the
ephemeral secret and public keys. The TRA then registers the user by signing
the user’s public keys with the corresponding ephemeral secret key. This forms
a signature chain similar to the mercurial scheme described in [17].

When a user needs to prove their credentials, they present a revocation token
for each public key in their chain. Since this revocation method mirrors the
credential chain approach in [17], i.e., mercurial signatures on public keys, the
tokens can be randomized to maintain user anonymity during the presentation.

To revoke a user or issuer in a credential chain (perhaps if the credential
chain is used to perform some illegal action) these revocation tokens can be
supplied from the verifier to the TRA who can then look through all the secret
ephemeral keys they generated to recognize the credential chain and add the
respective ones to a deny list.

Later, any verifier can verify the TRA’s signature in the revocation token
and iterate through the deny list, using each secret key to attempt to match
each public key in the chain. More specifically, the verifier exponentiates the
ephemeral public key in the revocation token with the inverses of the secret keys

1 https://github.com/ethereum/kzg-ceremony-specs.

https://github.com/ethereum/kzg-ceremony-specs

304 S. Griffy et al.

in the deny list (as described earlier in Sect. 1.3). If a match is found, the verifier
can confirm that the credential has been revoked (cf. Section 4 for details).

2 Background

Notation. We use [�] to denote the set, {1, 2, . . . , �}. We use the notation x ∈
Func to mean that x is a possible output of the function, Func. When drawing
multiple values from a set, we may omit notation for products of sets, e.g. (x, y) ∈
Zp is the same as (x, y) ∈ (Zp)2 where only the latter is formally correct. For
a map from the set Z to the set S, m : Z → S, we will denote m[i] ∈ S
as the output of the map in S with input i ∈ Z. We use bold font to denote a
vector (e.g. V). For brevity, we will sometimes denote the elements in a vector as
V = {Vi}i∈[�] = {V1, . . . , V�}. For a vector, V = {V1, . . . , V�}, of group elements,
we denote the exponentiation of each element by a scalar (ρ ∈ Zp) with the
notation: Vρ = {V ρ

1 , . . . , V ρ
� }. We use “wildcards” (∗) in equations. For example,

the equation (a, b) = (a′, ∗), holds if a = a′ no matter what the value of b is. By
(m, ∗) ∈ S we mean there is a tuple in the set S such that the first element of
the tuple is m and the second element is another value which could be anything.
{(m, ∗) ∈ S : A(m)} is the set of all tuples in S with m as their first element
meeting condition A. For two distributions, A and B, we use the notation, A ∼ B,
to denote that they are computationally indistinguishable.

2.1 Bilinear Pairings

A bilinear pairing is a set of cyclic groups G1,G2,GT of prime order p, along
with a pairing function, e (where e : G1 ×G2 → GT) which preserves structure.
We call GT the “target group” and call G1 and G2 the first and second “source
groups” respectively. In this work, we use Type III pairings, which means that
there is no efficient, non-trivial homomorphism between G1 and G2. The pairing
function is efficiently computable and has a bilinearity property such that if
〈P 〉 = G1 and 〈P̂ 〉 = G2, then for a, b ∈ Z

∗
p, e(P a, P̂ b) = e(P, P̂)ab. In our

pairing groups, the Diffie-Hellman assumptions hold in the related groups, such
that for a, b, c ←$Zp, (P a, P b, P ab) ∼ (P a, P b, P c). Also, given (P a, P b) it is
difficult to compute P ab. We’ll use hats to denote elements in the second source
group, e.g. X̂ ∈ G2,X ∈ G1. We also use the generic group model in the bilinear
pairing setting [33].

2.2 Mercurial Signatures

The original scheme from [17] comprises the following algorithms: Setup, KeyGen,
Sign, Verify, ConvertPK, ConvertSK, ConvertSig, and ChangeRep. The scheme is
parametrized by a length, �, which determines the upper bound on the size of
messages that can be signed. A mercurial signature scheme is parameterized by
equivalence relations for the message, public key, and secret key spaces: RM ,
Rpk, Rsk. These relations form equivalence classes for messages and keys and

Delegatable Anonymous Credentials 305

define exactly how messages and signatures can be randomized such that their
corresponding signatures can correctly be updated to verify with the updated
keys and messages. Allowing the keys and messages to be randomized is what
gives this signature scheme its privacy-preserving properties. In this work, we
introduce auxiliary algorithms to verify the correctness of messages and public
keys with respect to the scheme parameters. These are VerifyMsg and VerifyKey,
respectively. Thus, the syntax of mercurial signatures used in this work is given
by:

– Setup(1λ, 1�) → (pp, td): Outputs public parameters pp, including parameter-
ized equivalence relations for the message, public key, and secret key spaces:
RM , Rpk, Rsk and the sample space for key and message converters. This
function also outputs a trapdoor (td) that can be used (in conjunction with
the corresponding secret key) to recognize public keys.

– KeyGen(pp) → (pk, sk): Generates a key pair.
– Sign(pp, sk,M) → σ: Signs a message M with the given secret key.
– Verify(pp, pk,M, σ) → (0 or 1): Returns 1 iff σ is a valid signature for M

w.r.t. pk.
– ConvertPK(pp, pk, ρ) → pk′: Given a key converter ρ, returns pk′ by random-

izing pk with ρ.
– ConvertSK(pp, sk, ρ) → sk′: Randomize a secret key such that it now cor-

responds to a public key which has been randomized with the same ρ
(i.e. signatures from sk′ = ConvertSK(pp, sk, ρ) verify by the randomized
pk′ = ConvertPK(pk, ρ)).

– ConvertSig(pp, pk,M, σ, ρ) → σ′: Randomize the signature so that it verifies
with a randomized pk′ (which has been randomized with the same ρ) and M ,
but σ′ is otherwise unlinkable to σ.

– ChangeRep(pp, pk,M, σ, μ) → (M ′, σ′): Randomize the message-signature
pair such that Verify(pk,M ′, σ′) = 1 (i.e., σ′ and σ are indistinguishable)
where M ′ is a new representation of the message equivalence class defined by
M .

– VerifyKey(pp, pk) → {0, 1}: Takes a public key and verifies if it is well-formed
w.r.t the public parameters pp.

– VerifyMsg(pp,M) → {0, 1}: Takes a message and verifies if it is well-formed
w.r.t the public parameters pp.

Along with defining the functions above, a mercurial signature construction also
defines the equivalence classes that are used in the correctness and security defi-
nitions. In the construction of [17], relations and equivalence classes for messages,
public keys, and secret key are defined as follows:

RM = {(M,M ′) ∈ (G∗
1)

� × (G∗
1)

�|∃r ∈ Z
∗
p s.t. M ′ = Mr}

Rpk = {(pk, pk′) ∈ (G∗
1)

� × (G∗
1)

�|∃r ∈ Z
∗
p s.t. pk′ = pkr}

Rsk = {(sk, sk′) ∈ (Z∗
p)

� × (Z∗
p)

�|∃r ∈ Z
∗
p s.t. sk′ = r · sk}

306 S. Griffy et al.

Equivalence classes are denoted as [M]RM
, [pk]Rpk

, [sk]Rsk
for messages, public

keys, and secret keys respectively, such that: [M]RM
= {M ′ : (M,M ′) ∈ RM},

[pk]Rpk
= {pk′ : (pk, pk′) ∈ Rpk}, [sk]Rsk

= {sk′ : (sk, sk′) ∈ Rsk}. Effectively, this
means that two messages (M , M ′) are in the same equivalence class if there exists
a randomizer, μ ∈ MC, such that M ′ = Mμ with a similar definition for public
keys and secret keys. Because of the properties of equivalence classes (reflexivity,
symmetry, and transitivity), the following relations hold: [M]RM

= [M ′]RM
iff

(M,M ′) ∈ RM , [pk]Rpk
= [pk′]Rpk

iff (pk, pk′) ∈ Rpk, and [sk]Rsk
= [sk′]Rsk

iff
(sk, sk′) ∈ Rsk.

Besides the usual notions for correctness and unforgeability, security of mer-
curial signatures requires message class-hiding, origin-hiding and public key
class-hiding. We recall the original definitions and provide some intuition.

Definition 1 (Correctness [17]). A mercurial signature for parameterized
equivalence relations, RM, Rpk, Rsk, message randomizer space, sampleμ, and
key randomizer space, sampleρ, is correct if for all parameters (λ, �), ∀(pp, td) ∈
Setup(1λ, 1�), and ∀(sk, pk) ∈ KGen(1λ), the following holds:

– Verification. ∀M ∈ M, σ ∈ Sign(sk,M) : Verify(pk,M, σ) = 1 ∧
VerifyMsg(pp, M) = 1 ∧ VerifyKey(pp, pk) = 1.

– Key conversion. ∀ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ)) ∈
KGen(1λ), ConvertSK(sk, ρ) ∈ [sk]Rsk

, and ConvertPK(pk, ρ) ∈ [pk]Rpk
.

– Signature
conversion. ∀M ∈ M, σ, ρ ∈ sampleρ, σ

′, pk′ s.t Verify(pk,M, σ) = 1,
σ′ = ConvertSig(pk,M, σ, ρ), and pk′ = ConvertPK(pk, ρ), then Verify(pk′

,M, σ′) = 1.
– Change of message representation. ∀M ∈ M, σ, μ ∈ sampleμ,M ′, σ′

such that Verify(pk,M, σ) = 1 and (M ′, σ′) = ChangeRep(pk,M, σ;μ) then
Verify(pk,M ′, σ′) = 1 and M ′ ∈ [M]RM

.

Unforgeability rules out forgeries on the same equivalence class for messages
that have been queried to the signing oracle and public keys as these “forgeries”
are actually guaranteed to be computable by correctness. Thus, only forgeries
on new equivalence classes are accepted as valid forgeries.

Definition 2 (Unforgeability [17]). A mercurial signature scheme for param-
eterized equivalence relations RM, Rpk, Rsk, is unforgeable if for all parameters
(λ, �) and all PPT adversaries A, having access to a signing oracle, there exists
a negligible function negl such that:

Pr

⎡

⎢
⎣

pp ← Setup(1λ, 1�)
(pk, sk) ← KeyGen(pp)

(pk∗,M∗, σ∗) ← ASign(sk,·)(pk)

∣
∣
∣
∣
∣
∣
∣

Verify(pk∗,M∗, σ∗) = 1
∧ [pk∗]Rpk

= [pk]Rpk

∧ ∀M ∈ Q, [M∗]RM
�= [M]RM

⎤

⎥
⎦ ≤ negl(λ)

Where Q is the list of messages that the adversary queried to the Sign oracle.

Message class-hiding provides unlinkability in the message space, and it’s
implied by the DDH assumption in the original scheme from [17].

Delegatable Anonymous Credentials 307

Definition 3 (Message class-hiding [17]). For all λ, � and all PPT adver-
saries A, there exists a negligible function negl such that:

Pr

⎡

⎢
⎣

pp ← Setup(1λ, 1�)

M1 ← M;M0
2 ← M;M1

2 ← [M1]RM

b ←$ {0, 1}; b′ ← A(pp,M1,M
b
2)

∣
∣
∣
∣
∣
∣
∣

b′ = b

⎤

⎥
⎦ ≤ 1

2
+ negl(λ)

Importantly, converted signatures should look like freshly computed signa-
tures in the space of all valid ones. This notion is captured with the origin-hiding
definitions as shown below.

Definition 4 (Origin-Hiding for ConvertSig [17]). A mercurial signature
scheme is origin-hiding for ConvertSig if, given any tuple (pk, σ,M) that ver-
ifies, and given a random key randomizer ρ, ConvertSig(σ, pk, ρ) outputs a new
signature σ′ such that σ′ is a uniformly sampled signature in the set of verifying
signatures, {σ∗|Verify(ConvertPK(pk, ρ),M, σ∗) = 1}.
Definition 5 (Origin-Hiding for ChangeRep [17]). A mercurial signature
scheme is origin-hiding for ChangeRep if, given any tuple (pk, σ,M) that veri-
fies, and given a random message randomizer μ, ChangeRep(pk,M, σ, μ) outputs
a new message and signature M ′, σ′ such that M ′ is a uniform sampled message
in the equivalence class of M , [M]RM

, and σ′ is uniformly sampled verifying
signature in the set of verifying signatures for M ′, {σ∗|Verify(pk,M ′, σ∗) = 1}.

For anonymous credentials such as the attribute-based credential (ABC)
scheme from [20], the notion of message class-hiding is sufficient to provide
unlinkability alongside origin-hiding. This is because in ACs the adversary
doesn’t know the Diffie-Hellman coefficients of the message vector that is
signed to produce a credential (these coefficients are only known to the honest
user who created the message). In DAC’s schemes from mercurial signatures the
messages to be signed are public keys, which may be provided by the adversary.
Since the adversary knows the corresponding secret key, achieving a class-hiding
notion for public keys is much harder. The definition below only considers hon-
estly generated keys for which the adversary doesn’t know the secret key. This is
similar to the case of message-class hiding but it clearly restricts applications.

Definition 6 (Public key class-hiding [17]).For all λ, � and all PPT adver-
saries A, there exists a negligible function (negl) such that:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

pp ← Setup(1λ, 1�); (pk1, sk1) ← KGen(pp);

(pk02, sk
0
2) ← KGen(pp, �(λ)); ρ ←$ (pp);

pk12 = ConvertPK(pk1, ρ); sk12 = ConvertSK(sk1, ρ);

b ←$ {0, 1}; b′ ← ASign(sk1,·),Sign(skb
2,·)(pp, pk1, pk

b
2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b′ = b

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1
2

+ negl(λ)

308 S. Griffy et al.

Mercurial Signature Construction CL19 [17]. We review the mercurial
signature construction from [17] in Fig. 1, so that the differences are clear when
we present our construction in Sect. 3.

Fig. 1. CL19 Mercurial Signature Construction [17]

We note that a function (RecognizePK shown in Def. 7) can be added to this
scheme to recognize any randomization of a public key given a secret key [21].
We use this in our DAC construction to tell if users have been revoked.

Definition 7 (Recognize function for CL19 public keys [21]).

– RecognizePK(pp, sk, pk) → {0, 1} Parse pk as pk = {X̂i}i∈[�]. Parse sk =
{xi}i∈[�]. Check if ∀i ∈ [� − 1], X̂xi+1/xi

i = X̂i+1.

3 New Mercurial Signature Construction

In this section we present our core mercurial signature scheme satisfying a
stronger notion of adversarial public key class-hiding (APKCH), which will then
build the basis for our DAC construction with strong privacy.

3.1 Modified Security Definitions

Subsequently, we present security definitions for our mercurial signature scheme
that are modified (or added) when compared to previous work and before going
into details we discuss their generality.

On the Generality of our Definitions. Since our main focus in this work
is the construction of DAC, we include in our basic definitons (adversarial public-
key class hiding and unforgeability) a “levels” parameter L, which tells the chal-
lenger how many correlated schemes to construct (i.e., how many levels there
will be in the delegation chain of the DAC). In our definitions, after receiving the
public parameters for every level, the adversary picks a level, i, and the challenger
generates a public key for that level to complete the game with. This allows the

Delegatable Anonymous Credentials 309

reductions in our proofs to ensure that the DAC scheme appears correct to the
adversary while reducing APKCH to the anonymity of the DAC scheme. To
reduce to unforgeability, we need a similarly modified definition for unforgeabil-
ity where the challenger generates a number of levels and the adversary chooses
which level to continue the game with. Clearly, by setting L = i = 1 we obtain
versions of the definitions for a standalone mercurial signature scheme. In our
definitions, Setup outputs a set of correlated parameters of different signature
schemes (pp) and we use ppi to refer to the parameters that define level i.

First, we formalize the APKCH notion in Def. 8. In this definition, first the
challenger generates the public parameters and a public key and gives these
to the adversary. The adversary then constructs a message, a key pair and a
signature and returns these to the challenger. The challenger then either ran-
domizes the adversary’s public key and signature or creates a new signature on
the same message from a randomization of the challenger’s key. The random-
izers are drawn from the “key converter space”, KC, which is defined by the
construction (commonly, Z∗

p). The adversary is then challenged to determine if
the returned key/signature pair is randomized from their own key/signature that
they supplied, or if it is a signature from the randomized challenger key. Looking
ahead, this property ensures that in a DAC scheme, an adversary cannot deter-
mine if they themselves provided a credential to the prover (user) or if another
issuer created the credential.

Definition 8 (Adversarial public key class-hiding). A mercurial signa-
ture, Γ , has adversarial public key class-hiding if for all parameters (λ, �, L),
the advantage of any PPT set of algorithms A = {A0,A1,A2}, (labeled as
AdvAPKCHΓ,A (λ)) is negligible,

AdvAPKCHΓ,A (λ) :=
∣
∣
∣Pr

[
ExpAPKCH,0

Γ,A (λ) = 1
]

− Pr
[
ExpAPKCH,1

Γ,A (λ) = 1
]∣
∣
∣

where ExpAPKCH,b
Γ,A (λ) is the experiment shown in Fig. 2.

Fig. 2. Adversarial public key class-hiding experiment ExpAPKCH,b
Γ,A (λ).

310 S. Griffy et al.

Finally, we provide the unforgeability definition that also considers multiple
levels in Def. 9.

Definition 9 (Unforgeability). A mercurial signature scheme for parame-
terized equivalence relations RM, Rpk, Rsk, is unforgeable if for all parameters
(λ, �, L) and all PPT adversaries A, having access to a signing oracle, there
exists a negligible function negl such that:

Pr

⎡
⎢⎢⎢⎢⎣

pp ← Setup(1λ, 1�, 1L)

(i, st) ← A0(pp)

(sk, pk) ← KGen(ppi);

(pk∗, M∗, σ∗) ← ASign(ppi,sk,·)
1 (pk)

∣∣∣∣∣∣∣∣∣∣

Verify(ppi, pk∗, M∗, σ∗) = 1

∧ [pk∗]Rpk = [pk]Rpk

∧ ∀M ∈ Q, [M∗]RM �= [M]RM

⎤
⎥⎥⎥⎥⎦

≤ negl(λ)

Where Q is the list of messages that the adversary queried to the Sign oracle.

3.2 Construction

In Fig. 3, we construct a mercurial signature (MS) scheme which in particular
provides adversarial public key class-hiding (APKCH) as defined in Def. 8. We
fix L = 1 for this construction and explain how we can set correlated parameters
while still achieving APKCH in Sect. 3.3.

As in prior MS constructions, our equivalence classes will be parameter-
ized by the public parameters consisting of a description of the bilinear group
(G1,G2,GT , e, p, P, P̂). Unlike prior constructions, they will also be parame-
terized by several length-2� vectors that are part of the public parameters of
the system. Specifically, the public parameters will include the vectors B =
(B1, . . . , B2�), B̂ = (B̂1, . . . , B̂2�), and V̂ = (V̂1, . . . , V̂2�), V = (V1, . . . , V2�).
These public parameters have trapdoors which include b = (b1, . . . , b�), b̂ =
(b̂1, . . . , b̂�), and d̂ = (d̂1, . . . , d̂�) which are vectors in Z

�
p and sampled uniformly

randomly by Setup. The vector B will be used to define the message space (and
construct messages), while the vector B̂ defines the public key space and allows
users to create valid public keys. These public parameters are structured based on
the trapdoors, such that ∀i ∈ [�], Bi = P bi , B�+i = Bi

b̂i , ∀i ∈ [�], B̂i = P̂ b̂i and
B̂�+i = B̂d̂i

i . To verify that keys and messages are computed over these bases, we
include the verification bases (shown above as V̂ and V) in the public parameters
which are constructed as: ∀i ∈ [�], V̂i = P̂ v̂ibi , V̂�+i = P̂ v̂i , ∀i ∈ [�], Vi = P vid̂i

and V�+i = P vi . The vector V̂ is used to verify messages while the vector V is
used to verify keys as described in Sect. 1.3. Structuring the parameters in this
way ensures that our construction achieves adversarial public key class-hiding as
discussed in Sect. 1.3 and defined in Def. 8. Let pp denote the public parameters.

Our message space will consist of vectors of 2� dimensions over G1 that have
certain structure determined by pp; i.e., not every 2�-dimensional vector will be
a valid message. Specifically, our message space, Mpp,� is defined as:

Mpp,� = {(M1, . . . ,M2�) | ∃m = (m1, . . . ,m�) ∈ Z
�
p such that

∀1 ≤ i ≤ � Mi = Bi
mi ∧ M�+i = B�+i

mi}.

Delegatable Anonymous Credentials 311

Note that, using pp, it is possible to verify that a 2�-dimensional vector is in the
message space. In our scheme, the public parameters will include extra bases V̂ =
{V̂1, . . . , V̂2�} to pair with messages to verify them, i.e. ensuring that e(Mi, V̂i) =
e(Mi+�, V̂i+�)). Moreover, they include extra bases V = {V1, . . . , V2�}, to pair
with public keys in the same manner, i.e. e(Vi, X̂i) = e(Vi+�, X̂i+�). We label
messages as M = {M1, . . . ,M2�} and public keys as pk = {X̂1, . . . , X̂2�}. We are
now ready to define our equivalence class over the message space, which is the
same as in prior work [17]:

Rpp,�
M = {(M,M′) : ∃μ ∈ Zp s.t. M,M′ ∈ Mpp,� ∧ M′ = Mμ}.

Our public key space will be defined similarly to our message space, but defined
over vectors B̂ = (P̂ b̂1 , . . . , P̂ b̂� , P̂ b̂1d̂1 , . . . , P̂ b̂�d̂�) included in pp as well. Like
messages, our public key space is a strict subset of the space of 2�-dimension
vectors in G

2�
2 , defined below:

PKpp,� = {(X̂1, . . . , X̂2�) | ∃x = (x1, . . . , x�) ∈ Z
�
p such that

∀1 ≤ i ≤ � X̂i = B̂xi
i ∧ X̂�+i = B̂xi

�+i}.

We define our equivalence classes over the public key space (similarly to [17]):

Rpp,�
PK = {(pk, pk′) : ∃ρ ∈ Zp s.t. pk, pk′ ∈ PKpp,� ∧ pk′ = pkρ}.

We will see in the construction that the related structure of these messages
and public keys (i.e. the fact that they both use the values b and b̂) ensures that
randomized keys and signatures are not linkable even when the adversary holds
the secret key {x1, . . . , x�}, while also ensuring that signatures still correctly
verify.

Our secret key space takes up the entire space of �-dimensional vectors in
SKpp,� = (Zp)� and is defined identically to [17] as:

Rpp,�
sk = {(sk, sk′) : ∃ρ ∈ Zp s.t. sk, sk′ ∈ skpp,� ∧ sk′ = ρsk}

In the sequel, when clear from the context, we will omit the superscript pp, �.
In our construction, the key and message converter spaces are KC = Z

∗
p and

MC = Z
∗
p.

Our Construction. We are now ready to present our MS construction in Fig. 3
which achieves our APKCH definition for L = 1. In Sect. 3.3, we will discuss mod-
ifications to the public parameter generation, allowing the scheme’s extension for
constructing DAC. While verifying the message or public key is not required for
unforgeability, we include it in the Verify function as it is needed for public key
class-hiding and message class-hiding.

Theorem 1 (Correctness). The mercurial signature construction in Fig. 3 is
correct as described Def. 1.

Theorem 2 (Unforgeability). The mercurial signature construction in Fig. 3
meets the unforgeability definition in Def. 2 assuming that the mercurial signa-
ture construction in [17] is unforgeable in the generic group model.

312 S. Griffy et al.

Fig. 3. Our Mercurial Signature Construction.

We prove Theorem 2 by noting that the CL19 construction [17] is unforge-
able in the generic group model, and thus, by showing that our construction’s
unforgeability relies solely on the unforgeability of the construction of CL19, our
construction is also unforgeable in the generic group model.

Theorem 3 (APKCH). The mercurial signature construction in Fig. 3 meets
the APKCH definition in 8 in the generic group model.

Theorem 4 (Origin-hiding of signatures). The mercurial signature con-
struction in Fig. 3 meets the Origin-hiding of signatures definition in Def. 4.

Theorem 5 (Origin-hiding of ChangeRep). The mercurial signature con-
struction in Fig. 3 meets the Origin-hiding of ChangeRep definition in Def. 5.

Theorem 6 (Message class-hiding). The mercurial signature construction
in Fig. 3 meets the Message class-hiding definition in Def. 3.

The proofs of theorems 4, 5, and 6, follow directly from those of CL19, and
are thus omitted here. The proofs of unforgeability (Theorem 2) and APKCH
(Theorem 3) are provided in the full version of this paper [22].

3.3 Extending Our Construction to Multiple Levels

In a CL-type DAC scheme, we need chains of public keys that can sign each
other. In [17], this is achieved by alternating the source groups of the mercurial

Delegatable Anonymous Credentials 313

signature scheme for each level in the chain. For example, to sign public keys in
the highest level of the delegation chain L, if the public keys in level L are in
source group G2, then, in the level L − 1, a scheme with public keys in G1 will
be used to sign the public keys of level L.

This approach works in [17] because the scheme is symmetric, meaning the
public parameters are the same whether public keys are in G2 or G1. Unfortu-
nately, our scheme is not symmetrical. Looking at the Setup function in Fig. 3,
we see that if we split our message bases and public key bases into halves,
B = Bl‖Bu and B̂ = B̂l‖B̂u, the second half of the bases for messages includes
the trapdoors b̂i, being formed as Bu = {P bib̂i}i∈[�]. This trapdoor is included in
the first half of the bases for public keys (B̂l = {P̂ b̂i}i∈[�]). But, the upper half
of the bases for public keys includes the trapdoors, d̂i (B̂u = {P̂ b̂id̂i}i∈[�]). The
trapdoors d̂i are not seen in the lower bases for messages (Bl = {P bi}i∈[�]). Due
to this asymmetry, we cannot simply invert the groups to start signing public
keys from higher levels. At first glance, it appears we could fix this by setting
d̂i = bi (thus allowing messages to be used to sign public keys by computing the
signatures on the second half of the public key). Unfortunately, this solution
would break the APKCH property of our scheme as computing public keys over
P̂ bib̂i permits a recognition attack using the bases P bib̂i . This forces us to choose
a more involved solution.

We can solve this problem using the Setup function in Fig. 4. This function
produces L−1 levels where the message space of each scheme is exactly the public
key space of the subsequent scheme (with the equivalence classes matching as
well). To better explain this solution (and simplify our proofs) we discuss the
notion of “extending” schemes in this rest of this Section.

Fig. 4. Parameter generation for multiple levels

We will use the terms “lower” and “higher” to refer to different levels of
signature scheme that will be used to construct DAC. The root key is at level 0
which is the lowest level of the delegation chain and user’s keys are messages in
the L−1 (highest) level. In order to sign higher-level public keys with lower-level
public keys, starting from our construction in Fig. 3, we need to create multiple

314 S. Griffy et al.

levels of the signature scheme so that lower level public key bases can be used
to sign public keys from higher levels scheme. To do this, we need to create a
new scheme (with public keys in the opposite source group, G1) with similar
structure as in our original scheme in Fig. 3. We recall that in this scheme the
message bases and public key bases share the b̂i trapdoor values as described in
the above paragraph. This can be imagined as “extending” a scheme to lower
levels. When extending a scheme to enable signatures on the public keys, we’ll
treat d̂i as this shared value, setting b̂i for the lower scheme to be equal to
d̂i in the higher scheme (remember, d̂i is used in the upper half of the pub-
lic key bases, B̂ in the public parameters). For example, say we have a higher
scheme (with bases B̂ = {B̂i}i∈[2�]) with key pair (sk, pk), where sk = {xi}i∈[�],
pk = {X̂i}i∈[2�] = {B̂xi

i }i∈[�]‖{B̂xi

�+i}i∈[�], ∀i ∈ [�], B̂i = P̂ b̂i , B̂�+i = P̂ b̂id̂i and
b̂i and d̂i are randomly sampled as a trapdoor of the public parameters. We
can create a lower scheme (with bases B̂′ = {(B̂′

i)}i∈[2�]) and key pair (sk′, pk′)

where sk′ = {x′
i}i∈[�], pk

′ = {X ′
i}i∈[2�] = {(B̂′

i)
x′

i}i∈[�]‖{(B̂′
�+i)

x′
i}i∈[�] and ∀i ∈

[�], (B̂′
i) = P d̂i , (B̂′

�+i) = P d̂id̂
′
i and d̂′

i is randomly sampled as a trapdoor of the
public parameters. We can now use this lower level scheme to sign the keys in the
higher level. We can see that if we form signatures as we did in Fig. 3, these sig-
natures still verify. In Fig. 3, (if we swap the source groups) signatures are formed
as σ = (Z, Y, Ŷ) where Z = (

∏
i∈[�](X̂�+i)x′

i)y, Y = P̂ 1/y, Ŷ = P 1/y and y is ran-

domly sampled. We see that e(Ŷ , Z) =>
∑

i∈[�] d̂ib̂ixix
′
i=

∏
i∈[�] e(X̂i,X

′
i) which

means that this signature verifies. We provide Fig. 5 to make multi-level signature
schemes more clear. In Fig. 5, we can see that when the lower level bases of levels
1 and 2 are paired together, they are equal to the pairing of the higher level bases

of level 2, i.e. e(B̂2,i, B̂1,i) = e(P b̂2,i , P̂ b̂1,i) = e(P, P̂)
b̂2,ib̂1,i = e(B̂2,�+i, P̂). This

structure is what ensures that our signatures verify (as described in Sect. 1.3).
We’ve pointed out this structure by highlighting b̂1,i in orange and b̂2,i in blue
in 5. This relation holds for levels 2 and 3 as well. Note that in 5, the source
groups for level 2 are flipped, meaning that the B̂2,i elements are in G1 and the
Z2 element is in G2. For clarity, we keep the notation of the generators, P and
P̂ , correct with respect to levels 1 and 3.

In the full version of this paper [22], we introduce the formal definition of
extending parameters. This eases the readability of our proof as a generic group
model proof for L−1 sets of public parameters simultaneously might be difficult
to comprehend. Instead, we prove the APKCH security of a scheme for a single
level that reveals enough secrets about the parameters so that the scheme can
be extended to match the distribution of the parameters in Fig. 4. A simple
hybrid arugment can then be used to prove that our multi-level scheme achieves
APKCH as described in Def. 8. More specifically, in the proof of APKCH in
the full version, we use a Setup function (similar to Fig. 3) that also reveals
D = {Di}i∈[�] = {P d̂i}i∈[�] such that if the keys for this scheme live in G2,
then Di is in G1. This allows a second setup to be run to create a lower level
scheme that is compatible with the first scheme by computing: ∀i ∈ [�], (B̂′

i) =

Delegatable Anonymous Credentials 315

Fig. 5. A series of compatible mercurial signature schemes and a credential chain.

Di, (B̂′
�+i) = D

d̂′
i

i . We can see that this is exactly how the extended scheme
computed their public parameters, (B̂′

�+i) (explained earlier in this section) but
now the second scheme does not know d̂i, which prevents attacks on class-hiding.
Further, because D lives in G1 instead of G2, the adversary cannot use it to create
malicious public keys that verify for the original scheme. While the real setup
(in Fig. 4) will not reveal D to an adversary, it is important that the signatures
retain their security properties even when this is revealed. Intuitively, this is
because schemes built on top of a signature scheme requires some correlated
structure. Revealing Di = P d̂i in our security games ensures that this correlated
structure cannot be leveraged to defeat the security of the schemes at other
levels.

316 S. Griffy et al.

4 Delegatable Anonymous Credentials

In this section, we introduce a new DAC construction, showcasing advanced
features as strengthened privacy, revocation capabilities, and non-transferability,
all while preserving efficiency.

4.1 DAC Functionality

In contrast to non-revocable DAC schemes, our approach integrates a Trusted
Revocation Authority (TRA) to efficiently revoke malicious users and maintain a
deny list. We outline the high-level functionality of our DAC scheme in Def. 10.
This consists of the algorithms: Setup which initializes the scheme, TKeyGen
which generates the TRA’s keys, RootKeyGen which generates the root’s keys,
UKeyGen which generates a user’s or issuer’s keys, RegisterUser which allows the
TRA to distribute revocation tokens, and RevokeUser which allows the TRA
to revoke users. The scheme also consists of the interactive protocols to issue
and show credentials: (Issue ↔ Receive) and (Prove ↔ Verify). This scheme
begins with a trusted Setup2. Then, the TRA generates an opener secret key
and public key using TKeyGen. A root authority (who can be malicious for the
sake of anonymity) generates the root key using RootKeyGen and distributes
the root public key to users. A user who wishes to receive a credential runs
UKeyGen and then interacts with the TRA to receive a revocation token by
providing their public key to the TRA so that the TRA can run RegisterUser on
it. Subsequently the user interacts with the root (or an issuer that the root has
delegated to) using (Issue ↔ Receive) and receives a credential (which includes
their revocation token). The user then uses their credential and secret key in an
interactive protocol (Prove ↔ Verify) with any verifier. These verifications can
occur at any level within [L] (i.e. for some level, L′ such that L′ ≤ L). The verifier
can check if the user has been authorized and has not been revoked using the
TRA’s public key tpk . More specifically, the verifier receives a revocation token
for each level in the credential chain from the credential presentation. If the
verifier discovers that the prover was malicious through an out-of-band method,
they can submit these tokens to the TRA. The TRA will then update their deny
list (this deny list is included in the TRA public key for the sake of simplifying
the presentation), preventing any future showings that include the user or issuer
corresponding to the revocation token from being verified.

We note that our scheme supports a strong model for anonymity where the
holder of the root key (colluding with intermediate issuers) cannot de-anonymize
users. To model this, we allow the adversary in the anonymity game to choose
the root public key along with the corruption of any users of their choice. This
allows the adversary to choose any honest user’s delegation path from a malicious
root with all malicious delegations.

2 Note that as already discussed in practice this can be done by multiple parties in a
sequential way by using ides from updatable common reference strings and only a
single party among the set of all parties needs to be trusted.

Delegatable Anonymous Credentials 317

Definition 10 (Delegatable Anonymous Credentials). A DAC scheme
includes the following algorithms and protocols:

– Setup(1λ, 1L) → (pp, td): Initializes the scheme, outputting public parameters
and a trapdoor td .

– TKeyGen(pp) → (tsk , tpk): Takes pp and outputs a keypair (tsk , tpk) for the
TRA. The tpk includes a deny list of revoked users and is continously updated.

– RootKeyGen(pp) → (skrt , pkrt): Generates a key pair used for the root key
pkrt (i.e. for level 0) which is trusted for integrity but does not need to be
trusted for anonymity.

– UKeyGen(pp, L′) → (sk, pk): Generates a user’s key pair for a specified level.
– RegisterUser(pp, tsk , pk) → (tok): Creates a revocation token on the given

public key so that the public key can be revoked later with a deny list.
– (Issue(skI , credI , L

′) ↔ Receive(skR, tok, L′)) → credR: An interactive proto-
col to receive a signature on a pseudonym. It is run between the two users
distinguished by I for issuer or R for receiver. If L′ = 1 (issuing from the
root) then credI = ⊥.

– (Prove(skP , credP , L′) ↔ Verify(pkrt , L′, tpk)) → (b, {tok i}i∈[L′]): A user
proves they know a credential on a pseudonym that verifies under the given
root key, pkrt . If the verification is successful, the verifier outputs 1 along
with a list of revocation tokens for the prover and the chain of credentials. If
the verification is unsuccessful, the verifier outputs 0.

– RevokeUser(pp, tsk , tpk , tok) → tpk ′: Takes in the TRA’s key pair (tsk , tpk) as
well as the token for a registered public key and outputs an updated public
key tpk ′ that can be used to recognize any showings in which this public key
is part of the chain. For security reasons, this can fail, outputting ⊥. As an
example, we want this function to fail if a malicious tok is provided.

4.2 DAC Security Definitions

In Fig. 6 we formally define the oracles used in our security games. Any formal
outputs of oracles are received by the adversary and any modified internal state
of the challenger is listed in the description. When calling interactive functions
from the DAC scheme (such as Prove(·) ↔ Verify(·)), the challenger records the
transcript of the interaction in addition to the output of the function. For exam-
ple, in the VerifyCred oracle in Fig. 6, we have the challenger interact with the
adversary using the Verify function, and in addition to outputting the result of
the verification (b) and the list of revocation tokens, {tok i}i∈[L′], the protocol
also outputs a transcript (τ) of the interaction between the prover and the veri-
fier. Throughout the game, the challenger maintains some state to keep track of
honest users and credentials that were given to the adversary. This global state
is used in the unforgeability game. Specifically, the challenger keeps track of one
set, DELA to keep track of what has been delegated to the adversary. Moreover,
the challenger initializes three maps to keep track of honest user state, SK holds
user secret keys, CRED holds user credentials, and LVL records what level a user’s
credential is for. They are as follows: SK : H → SK, CRED : SK → CRED and

318 S. Griffy et al.

LVL : SK → [L], where H is the set of all honest user handles (which the adver-
sary uses to refer to honest users), SK is the set of all secret keys, and CRED is
the set of all credentials.

Fig. 6. Definition of Oracles. † The oracle uses Epk to ensure SK[id] holds a canonical
representation of the secret key.

The root key is included in SK with handle id = 0 where LVL[SK[0]] = 0 and
CRED[SK[0]] =⊥. The challenger also keeps track of what keys have been added
to the deny list with the list SKDL ⊂ SK. At the start of any game, the challenger
initializes all sets to the empty set and initializes all maps to be degenerate, such
as mapping ∀i ∈ H,SK[i] =⊥. In the unforgeability game, we give the adversary
access to all of the oracles. In the OCreateHonestUser oracle, the adversary specifies
two users with one issuing a credential to the other. We initialize users at the
same time that they are issued a credential to simplify the scheme. As an exam-
ple use of this oracle, the adversary can specify idI = 0 at the start of a game

Delegatable Anonymous Credentials 319

to have a credential be issued from the root. We do not allow the adversary
to issue to a user multiple times, and thus if the specified user already exists
when the adversary calls OCreateHonestUser, then the challenger aborts. We allow
the adversary to issue credentials to honest users using the OReceiveCred oracle. In
this oracle, the adversary specifies a user to receive a credential at a specified
level. If the adversary was never issued a credential that would allow them to
delegate this credential to the honest user, the challenger set a forgery flag in
the global state (labeled forgery) which is checked in the unforgeability game. In
the OIssueFrom oracle, the adversary receives a credential from an honest user and
the challenger records which adversarial key received this credential at which
level. In the OProveTo oracle, the adversary acts as the verifier for a user. In the
ORegisterUser oracle the adversary can receive a revocation token for one of their
public keys. In the ORevokeUser oracle, the adversary can add a user to the deny
list.

Anonymity: Our anonymity definition is shown in Def 11. The anonymity game
involves the adversary and the challenger. The adversary controls all partici-
pants, including the root credential authority (but does not control the TRA).
The game proceeds as follows: The challenger generates the public parameters,
which are given to the adversary along with the registrar’s public key and access
to a registration and revocation oracle. The adversary creates two credential
chains of the same length and provides the secret keys of the end users of these
chains to the challenger. The challenger ensures that they are valid credential
chains. The challenger randomly selects one of the users and proves possession of
the corresponding credential chain to the adversary. The adversary wins if it can
correctly identify which user the challenger picked. No honest users are created
in this game, as the adversary controls all aspects except for the registration and
revocation oracles. To model issuer privacy and showing privacy, the adversary
outputs a bit, j, to indicate whether the challenger should act as the issuer or
the shower. We formalize this game in Def. 11.

Definition 11 (Anonymity). A DAC scheme is anonymous if the advantage
any PPT adversary (A = {A0,A1}) in the following anonymity game, defined
by the chance that the game outputs 1, is 1/2 + negl(λ):
1: pp ← Setup(1λ, 1L)
2: (tsk , tpk) ← TKeyGen(pp)
3: (, , j, pkrt , sk0, cred0, sk1, cred1, L′) ← AORegisterUser(·),ORevokeUser(·)

0 (pp, tpk)
4: ∀i ∈ {0, 1} :
5: if (Prove(pp, ski, credi, L

′) ↔ Verify(pkrt , L′, tpk)) �= (1, ∗), return ⊥
6: b ←$ {0, 1}
7: if j = 0, b′ ← (Prove(pp, skb, credb, L

′) ↔ A1(st))
8: if j = 1, b′ ← (Issue(pp, skb, credb, L

′ + 1) ↔ A1(st))
9: return b′ = b

Unlike the anonymity definition in [17], we allow the adversary to partici-
pate in the challenge credential chain. Therefore, we do not need to control the

320 S. Griffy et al.

state of the game with the challenger; in the anonymity game, the challenger
only performs the role of the TRA and the challenge user. In addition, we aim
to maintain the anonymity of honest users even when the anonymity of some
adversarial users is revoked. This new definition represents a simplified and more
comprehensive anonymity model, which we present as a novel contribution.

Unforgeability: Our unforgeability game is simpler than [17], even though it is
conceptually similar. We remove oracles that reveal pseudonyms of honest users.
Revealing pseudonyms alone has no real-world use-case in DAC and the adver-
sary effectively reveals pseudonyms during a showing anyway. Also, we integrate
user creation with credential issuance, as a user’s key pair is not used until it
is associated with a credential. Otherwise, our unforgeability definition (Def.
12) is mostly unchanged from [17], but we add the RegisterUser and RevokeUser
functions that facilitate revocation.

Moreover, our unforgeability definition ensures that the adversary was cor-
rectly delegated a credential on line 10 in Def. 12, and that none of the keys
in the adversary’s credential are on the deny list, on line 11.

To ensure that the challenger can check the key classes, we parameterize
the definition with the extractor, Epk, which takes in a public key and extracts
a secret key from it. If Epk is run on the transcript of a showing, it extracts
the secret key of the credential holder. If Epk is run on the transcript of an
issuing, it extracts the secret key of the issuer. We denote these by Epk,R for
receiver and Epk,I for issuer. This extractor must extract the same secret key
no matter how the public key has been randomized. For mercurial signatures,
this means that the extractor extracts a canonical secret key which is constant
over any representation of the equivalence class of secret keys. We also assume
an extractor Ecred that can take in a credential or the transcript of a showing of
a credential and output the canonical secret keys used in the delegation chain
including the end user of the credential.

Definition 12 (Unforgeability). A DAC scheme is unforgeable if any PPT
adversary’s advantage in the following game, defined by the chance that the game
outputs 1, is negligible in λ. A is given all the oracles from Fig 6 labeled as O.
1: (pp, td) ← Setup(1λ, 1L)
2: (tsk , tpk) ← TKeyGen(pp)
3: (sk, pk) ← RootKeyGen(pp)
4: SK[0] = sk; pkrt = pk
5: (st , L) ← AO

0 (pp, pk)
6: ((b, ∗), τ) ← (Verify(pkrt , L, tpk) ↔ A1(st)
7: {ski}i∈[L′] ← Ecred(τ)
8: if forgery = 1, return 1
9: if sk0 �= skrt , return b

10: if ∀i ∈ [L′], (ski, i) �∈ DELA, return b
11: if ∃i ∈ [L′], s.t. ski ∈ SKDL, return b
12: return 0

Delegatable Anonymous Credentials 321

4.3 DAC Construction

Our DAC construction uses the multi-level setup function from Fig. 4.
To simplify our DAC construction, we add a function TracePK, which takes

in a “linker” and a revocation token and returns if this linker is associated with
the revocation token. These linker values will be stored in the deny list in the
TRA’s public key tpk .

Definition 13 (DAC construction).

– Setup(1λ, 1L) → (pp, td): Call the setup function described in Fig. 4 which
generates L correlated parameters for our signature scheme in Fig. 3,
{ppi}i∈[L] = MultiSetup(1λ, 1�=2, 1L). Then initialize extra bases for the revo-
cation authority and the root authority using the CL19 scheme, (ppCL19) ←
SetupCL19(1λ, 1�=2). Output pp = ({ppi}i∈[L], ppCL19), td = ({td i}i∈[�]).

– RootKeyGen(pp) → (skrt , pkrt): Generate a CL19 key pair using ppCL19.
– UKeyGen(pp, L′) → (sk, pk): Create a secret key for the corresponding scheme,

(sk, pk) ← KGen(ppL′). The user initializes their credential chain as chain =⊥.
– TKeyGen(pp) → (tsk , tpk): Create a CL19 key (sk, pk) of length � = 2, (tsk sk,

tpkpk) ← KGen(ppCL19). Initialize a set of linkers, tsk link = ∅. Initialize a deny
list, DL = ∅. Let tsk sk = sk, tsk = (tsk sk, tsk link), and tpk = (tpkpk,DL).

– RegisterUser(pp, tsk , pk) → (tok): Generate a new key pair (skrev , pkrev) using
ppCL19. Sign pkrev using tsk sk where tsk = (tsk sk, tsk link) yielding σ0. Then,
use skrev to sign pk, yielding σ1. This yields the revocation token, tok =
(pkrev , σ0, σ1). The secret key, skrev , will serve as the linker for this revocation
token and it is denoted as link . Save this linker in the TRA’s state, tsk ′

link =
tsk link ∪{link} and update the state: tsk ′ = (tsk sk, tsk ′

link). Output revocation
token tok .

– RevokeUser(pp, tsk , tpk , tok) → tpk ′: Iterate through the linkers (link i) in
tsk link and check if TracePK(pp, link i, tok) = 1 for each of them. If this holds
for a linker, link i, concatenate link i to the linkers in tpk (the deny list) and
output this new public key as tpk ′.

– TracePK(pp, link , tok) → {0, 1}: Parse tok as tok = (pkrev , σ0, σ1). Check if
RecognizePK(ppCL19, link , pkrev) = 1 (cf. Section 2), i.e., parse pkrev as pkrev =
(X̂1, X̂2). Parse link = (x1, x2). Check if X̂

x2/x1
1 = X̂2. If this holds, output

1. Otherwise, output 0.
– (Issue(skI , credI , L

′) ↔ Receive(skR, tok, L′)) → credR: The receiver sam-
ples ρ ← KC (from the set of key converters) and generates a ran-
domized public key from their secret key, pk′, using the randomiza-
tion factor, ρ. They also randomize their revocation token, tok , yielding,
tok = (pk′

rev , σ′
0, σ

′
1), such that VerifyCL19(ppCL19, tpk , pk′

rev , σ′
0) = 1 and

VerifyCL19(ppCL19, pk
′
rev , pk′, σ′

0) = 1. The receiver sends over pk′. The issuer
then randomizes all public keys in their credential chain along with the signa-
tures, randomizing their secret key to match. They also randomize all revo-
cation tokens in their chain as described above. They then sign pk′ yielding a
signature, σ. They send their randomized credential chain, chain, along with σ
to the receiver. The receiver computes the chain, chain ′ = chain‖(pk′, σ, tok ′).

322 S. Griffy et al.

The receiver stores their credential as cred = (chain ′, ρ). The randomizer is
also stored to ensure the receiver can correctly randomize their secret key to
match their public key in the chain.

– (Prove(skP , credP , L′) ↔ Verify(pkrt , L′, tpk)) → (b, {tok i}i∈[L′]): The prover
randomizes all public keys and signatures in their credential cred using
ρ∗ = ρ ∗ ρ′ where ρ is the randomizer found in their credential and ρ′ is
randomly sampled. They send over their randomized credential chain, chain,
and perform an interactive proof of knowledge that they know the sk that cor-
responds to the last public key in the chain. The verifier then verifies each pub-
lic key with the signatures. The verifier also iterates through the revocation
tokens in the credential chain checks that for each public key pki and tok i =
(pkrev ,i, σi,0, σi,1) in the chain it holds that VerifyCL19(tpk , pkrev ,i, σi,0) = 1
and VerifyCL19(pkrev ,i, pki, σi,1) = 1. They then also iterate through each
link j ∈ tpk and ensure that TracePK(pp, link j , tok i) = 0 for each level i
in the length of the chain. If all these checks hold, the verifier outputs 1 and
if any checks fail, the verifier outputs 0. The verifier also outputs all of the
tok i values received from the prover.

Theorem 7 (Correctness of the construction in Def. 13). Our construc-
tion in Def. 13 is correct as defined in the full version of this paper [22].

Theorem 8 (Unforgeability of the construction in Def. 13). If the under-
lying signature scheme is unforgeable with respect to Def. 2, our construction in
Def. 13 is unforgeable with respect to Def. 12.

Theorem 9 (Anonymity of the construction in Def. 13). If the underlying
signature scheme has origin-hiding and has adversarial public key-class hiding,
the DAC scheme in Def. 13 is anonymous with respect to definition 11.

We prove these theorems (and define correctness) in the full version of this
paper [22].

5 Conclusion and Future Work

In this paper, we constructed mercurial signatures with stronger security prop-
erties than seen in the literature, which could potentially be used for many
privacy-preserving schemes just as the first such signatures in [17]. We use it as
a basis for an efficient DAC scheme with strong privacy guarantees and dele-
gator revocation functionality. Our DAC construction could be further adapted
to support attributes extending its functionality, where the technique from [32]
seems promising. We leave this extension to future work.

Acknowledgments. We are very grateful to the anonymous reviewers for their many
helpful comments and suggestions. Omid Mir was supported by the European Union’s
Horizon Europe project SUNRISE (project no. 101073821), and by PREPARED, a
project funded by the Austrian security research programme KIRAS of the Federal
Ministry of Finance (BMF). Scott Griffy and Anna Lysysanskaya were supported by
NSF grants 2247305, 2154170, and 2312241 as well as the Ethereum Foundation.

Delegatable Anonymous Credentials 323

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Berlin, Heidelberg (Mar 2011). https://doi.org/10.1007/
978-3-642-19379-8 26

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Berlin, Heidelberg
(Aug 2009).https://doi.org/10.1007/978-3-642-03356-8 7

3. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Sympo-
sium on Security and Privacy. pp. 287–304. IEEE Computer Society Press (May
2015).https://doi.org/10.1109/SP.2015.25

4. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
18International Conference on Applied Cryptography and Network Security.
LNCS, vol. 10892, pp. 221–239. Springer, Cham (Jul 2018). https://doi.org/10.
1007/978-3-319-93387-0 12

5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004. pp. 168–177. ACM Press
(Oct 2004).https://doi.org/10.1145/1030083.1030106

6. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: Zohar, A., Eyal, I., Teague, V.,
Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops. LNCS,
vol. 10958, pp. 64–77. Springer, Berlin, Heidelberg (Mar 2019). https://doi.org/
10.1007/978-3-662-58820-8 5

7. Brorsson, J., David, B., Gentile, L., Pagnin, E., Wagner, P.S.: PAPR: Publicly
auditable privacy revocation for anonymous credentials. In: Rosulek, M. (ed.) CT-
RSA 2023. LNCS, vol. 13871, pp. 163–190. Springer, Cham (Apr 2023).https://
doi.org/10.1007/978-3-031-30872-7 7

8. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 683–699. ACM
Press (Oct / Nov 2017).https://doi.org/10.1145/3133956.3134025

9. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Berlin, Heidelberg (Mar 2009).
https://doi.org/10.1007/978-3-642-00468-1 27

10. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: Garay, J.A., Prisco, R.D. (eds.) SCN 10. LNCS,
vol. 6280, pp. 454–471. Springer, Berlin, Heidelberg (Sep 2010). https://doi.org/
10.1007/978-3-642-15317-4 28

11. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (Aug
2016).https://doi.org/10.1007/978-3-319-31301-6 1

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Berlin, Heidelberg
(May 2001).https://doi.org/10.1007/3-540-44987-6 7

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1109/SP.2015.25
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1145/1030083.1030106
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-031-30872-7_7
https://doi.org/10.1007/978-3-031-30872-7_7
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7

324 S. Griffy et al.

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Berlin, Heidelberg (Aug 2002).https://doi.org/10.
1007/3-540-45708-9 5

14. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Berlin, Heidelberg (Aug
2006).https://doi.org/10.1007/11818175 5

15. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (oct 1985). https://doi.org/
10.1145/4372.4373

16. Connolly, A., Lafourcade, P., Perez-Kempner, O.: Improved constructions of anony-
mous credentials from structure-preserving signatures on equivalence classes. In:
Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part I. LNCS, vol.
13177, pp. 409–438. Springer, Cham (Mar 2022). https://doi.org/10.1007/978-3-
030-97121-2 15

17. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555.
Springer, Cham (Mar 2019).https://doi.org/10.1007/978-3-030-12612-4 27

18. Crites, E.C., Lysyanskaya, A.: Mercurial signatures for variable-length messages.
PoPETs 2021(4), 441–463 (2021). https://doi.org/10.2478/popets-2021-0079

19. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials. In: Groth, J. (ed.) 15th IMA International
Conference on Cryptography and Coding. LNCS, vol. 9496, pp. 57–74. Springer,
Cham (Dec 2015). https://doi.org/10.1007/978-3-319-27239-9 4

20. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptology
32(2), 498–546 (Apr 2019). https://doi.org/10.1007/s00145-018-9281-4

21. Griffy, S., Lysyanskaya, A.: PACIFIC. IACR Communications in Cryptology 1(2)
(2024). https://doi.org/10.62056/ay11fhbmo

22. Griffy, S., Lysyanskaya, A., Mir, O., Kempner, O.P., Slamanig, D.: Delegatable
anonymous credentials from mercurial signatures with stronger privacy. Cryptology
ePrint Archive, Report 2024/1216 (2024), https://eprint.iacr.org/2024/1216

23. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96878-0 24

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Berlin, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Berlin, Heidelberg
(Dec 2014).https://doi.org/10.1007/978-3-662-45611-8 26

26. Hanzlik, L., Slamanig, D.: With a little help from my friends: Constructing prac-
tical anonymous credentials. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp.
2004–2023. ACM Press (Nov 2021).https://doi.org/10.1145/3460120.3484582

27. Mir, O., Bauer, B., Griffy, S., Lysyanskaya, A., Slamanig, D.: Aggregate signatures
with versatile randomization and issuer-hiding multi-authority anonymous creden-
tials. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023.
pp. 30–44. ACM Press (Nov 2023). https://doi.org/10.1145/3576915.3623203

https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.2478/popets-2021-0079
https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.62056/ay11fhbmo
https://eprint.iacr.org/2024/1216
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1145/3576915.3623203

Delegatable Anonymous Credentials 325

28. Mir, O., Slamanig, D., Bauer, B., Mayrhofer, R.: Practical delegatable anony-
mous credentials from equivalence class signatures. Proc. Priv. Enhancing Technol.
2023(3), 488–513 (2023). https://doi.org/10.56553/POPETS-2023-0093

29. Abe, M., Nanri, M., Perez Kempner, O., Tibouchi, M.: Interactive thresh-
old mercurial signatures and applications. Cryptology ePrint Archive, Paper
2024/625 (2024). https://doi.org/10.1007/978-981-96-0891-1 3, https://eprint.
iacr.org/2024/625

30. Nikolaenko, V., Ragsdale, S., Bonneau, J., Boneh, D.: Powers-of-tau to the people:
Decentralizing setup ceremonies. In: Pöpper, C., Batina, L. (eds.) Applied Cryp-
tography and Network Security - 22nd International Conference, ACNS 2024, Abu
Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 14585, pp. 105–134. Springer (2024). https://doi.
org/10.1007/978-3-031-54776-8 5

31. Putman, C., Martin, K.M.: Selective delegation of attributes in mercurial signature
credentials. Cryptology ePrint Archive, Report 2023/1896 (2023), https://eprint.
iacr.org/2023/1896

32. Putman, C., Martin, K.M.: Selective delegation of attributes in mercurial signa-
ture credentials. In: Quaglia, E.A. (ed.) Cryptography and Coding. pp. 181–196.
Springer Nature Switzerland, Cham (2024)

33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Proceed-
ings of the 16th Annual International Conference on Theory and Application of
Cryptographic Techniques. p. 256–266. EUROCRYPT’97, Springer-Verlag, Berlin,
Heidelberg (1997)

https://doi.org/10.56553/POPETS-2023-0093
https://doi.org/10.1007/978-981-96-0891-1_3
https://eprint.iacr.org/2024/625
https://eprint.iacr.org/2024/625
https://doi.org/10.1007/978-3-031-54776-8_5
https://doi.org/10.1007/978-3-031-54776-8_5
https://eprint.iacr.org/2023/1896
https://eprint.iacr.org/2023/1896

Count Corruptions, Not Users: Improved
Tightness for Signatures, Encryption
and Authenticated Key Exchange

Mihir Bellare1 , Doreen Riepel2(B) , Stefano Tessaro3 , and Yizhao Zhang1

1 Department of Computer Science and Engineering, University of California
San Diego, La Jolla, USA

{mbellare,yiz191}@ucsd.edu
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

doreen.riepel@gmail.com
3 Paul G. Allen School of Computer Science and Engineering, University of

Washington, Seattle, USA
tessaro@cs.washington.edu

Abstract. In the multi-user with corruptions (muc) setting there are
n ≥ 1 users, and the goal is to prove that, even in the face of an adver-
sary that adaptively corrupts users to expose their keys, un-corrupted
users retain security. This can be considered for many primitives includ-
ing signatures and encryption. Proofs of muc security, while possible,
generally suffer a factor n loss in tightness, which can be large. This
paper gives new proofs where this factor is reduced to the number c of
corruptions, which in practice is much smaller than n. We refer to this as
corruption-parametrized muc (cp-muc) security. We give a general result
showing it for a class of games that we call local. We apply this to get cp-
muc security for signature schemes (including ones in standards and in
TLS 1.3) and some forms of public-key and symmetric encryption. Then
we give dedicated cp-muc security proofs for some important schemes
whose underlying games are not local, including the Hashed ElGamal
and Fujisaki-Okamoto KEMs and authenticated key exchange. Finally,
we give negative results to show optimality of our bounds.

1 Introduction

In practice, keys can be exposed, through system infiltration by hackers or phish-
ing attacks; a striking example is the exposure of a Microsoft signing key to the
Storm-0558 threat actor in July 2023 [68]. This motivates the multi-user-with-
corruptions (muc) setting, where there are n ≥ 1 users, each holding some secret
key, and the goal is to prove that, even in the face of an adversary that adaptively
corrupts users to expose their keys, un-corrupted users retain security. (The last
means their signatures remain unforgeable, ciphertexts encrypted to them retain
privacy or whatever else the underlying primitive decrees.)

The good news is that proving muc-security is possible. The bad is that,
in general —and in particular for canonical and standardized schemes such as
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 326–360, 2025.
https://doi.org/10.1007/978-981-96-0888-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_11&domain=pdf
http://orcid.org/0000-0002-8765-5573
http://orcid.org/0000-0002-4990-0929
http://orcid.org/0000-0002-3751-8546
https://doi.org/10.1007/978-981-96-0888-1_11

Count Corruptions, Not Users 327

the Schnorr signature scheme [66]— current reductions lose a factor of the total
number n of users, which can be very large. This leaves implementations to either
use larger security parameters (inefficient), ignore corruptions (dangerous) or
turn to special schemes that, while offering tight reductions, are less efficient than
the canonical schemes [2,22,36]. And meanwhile, dauntingly and disappointingly,
negative results [3,48] appear to say that the factor n loss is unavoidable for the
canonical schemes.

Counting corruptions. In practice, corruptions certainly happen, but we
suggest that the number of successful corruptions will likely be small, much
smaller than the total number of users. Why is this? Because key-owners, recog-
nizing the loss they face if their keys are exposed, are taking significant steps to
prevent it. Important Internet services are increasingly storing their TLS sign-
ing keys in HSMs (Hardware Security Modules), which makes them harder to
expose. Breaches lead to systems being hardened to prevent further breaches.
(Microsoft, for example, has taken steps to prevent a repetition of the expo-
sure of their signing key to Storm-0558 [58].) Threshold cryptography is used
to make key-exposure more difficult, a mitigation particularly popular for the
signing keys securing digital wallets in cryptocurrencies. Employees and users
are regularly trained to not fall prey to phishing.

Contributions in brief. Based on the above, this paper brings to muc secu-
rity a new dimension, namely to view the number of corruptions as an adversary
resource parameter. Denoting it c, we then give techniques and results that prove
muc-security with tightness loss c rather than n. We refer to this as corruption-
parametrized muc (cp-muc) security. Since c is in practice much smaller than n,
cp-muc security allows theoretically-sound instantiation with practical security
parameters.

We show cp-muc security for many primitives including signatures, encryp-
tion and authenticated key exchange. Our main results are universal, applying
to all schemes, including the canonical ones. Existing negative results are not
contradicted because they implicitly assume n − 1 corruptions, and we give new
negative results to show the optimality of our new bounds.

Our inspiration and starting point is a technique of Coron [17] used to show
security with improved bounds for the RSA-FDH signature scheme of [9]. We
generalize and improve this via a modular approach. First, we define and study a
primitive we call a Hamming-Weight Determined (HWD) sampler. Using HWD
samplers, our general cp-muc security theorem then gives a reduction from multi-
user (mu) to cp-muc security that (1) loses only a factor c and (2) holds for any
security game satisfying a condition we call locality. Intuitively, this means that
the game does not make use of global secrets across users, such as a global
challenge bit. This directly yields cp-muc security for many schemes and goals,
and avoids repeating similar proofs across them. For important games that are
not local, we go on to give dedicated proofs of cp-muc security. In particular, we
do so (for security games with a global challenge bit) for the Hashed ElGamal
and Fujisaki-Okamoto KEMs.

328 M. Bellare et al.

Broader context. The idea of assuming a bound c on the number of corrup-
tions, amongst some larger number n of users, arises, and is indeed the basis for
security, in some other and prior contexts in cryptography. The most prominent
example is certainly secret sharing [13,67], where c is the threshold. Thence it
enters multi-party computation [34] and threshold cryptography [20]. With cp-
muc, we are bringing this classical perspective to a broader setting, and to basic
primitives like signatures, encryption and authenticated key exchange.

1.1 Spotlight on Signatures

Our techniques and results are general and yield improvements for many goals
and schemes. The ideas are however best introduced via a concrete example.
We’ll use signatures, for a number of reasons. First, there are, in the wild, over
250 million TLS signing keys [24]. Exposure is a real threat, making as-tight-as-
possible muc-security of immediate practical interest. Second, muc-secure signa-
tures with as-tight-as-possible security are an assumption and current bottleneck
for tightly-secure authenticated key exchange [16,19,23,36]. Our proofs of cp-
muc security for signature schemes will help to fill these gaps.

The settings. Recall that classical definitions of security consider a single-
user (su) setting. For a signature scheme Sig, recall this means that the game
(called UF, for unforgeability) generates a single pair (vk, sk) consisting of a
verification key and associated signing key. The adversary gets an oracle Sign

to sign a message of its choice under sk, and wins if it produces a new message
M and a valid signature of M under vk [35]. In the multi-user (mu) setting [4],
there are n ≥ 1 users. For signatures [57], the game generates n independent key
pairs (vk1, sk1), . . . , (vkn, skn). The signing oracle Sign now takes a user index
i in addition to a message and returns a signature of the message under ski, and
to win the adversary would point to some user i and produce a new message M ,
and a valid signature for it, under vki. The multi-user with corruptions (muc)
game augments the mu game with an oracle Corrupt that takes a user index
i and returns its secret key ski. The signing oracle Sign is as before, and the
winning forgery is required to be for an uncorrupted user.

By εuf-suSig , εuf-mu-n
Sig and εuf-muc-n

Sig we denote the adversary advantage (success
probability) in the su, mu and muc games, respectively. Of course, this quantity
depends on the running time, but we will consider reductions that preserve this
time and omit it from the notation here. The body of the paper is more precise.

Universal results. We are interested, first, in results that are universal,
meaning hold for all signature schemes Sig. Indeed, universal results are valuable
both theoretically (in terms of understanding the notions) and in practice (they
apply to all schemes, including already implemented and standardized ones). An
archetypal such result [4,57] (shown by a hybrid, also called guess-then-simulate,
argument) is that εuf-mu-n

Sig ≤ n · εuf-suSig . The proof turns out to be able to easily
handle corruptions, yielding the only known universal result for muc security:

P1 : ∀Sig : εuf-muc-n
Sig ≤ n · εuf-suSig . (1)

Count Corruptions, Not Users 329

We ask if alternative universal results are possible. Given that mu security has
been extensively studied [11,33,41,45,50,53,62], we suggest to use it, rather than
su, as the starting point. Let e be Euler’s number. Our first universal result is
then:

N1 : ∀Sig : ε
uf-muc-(n,c)
Sig ≤ e · (c + 1) · εuf-mu-n

Sig . (2)

The term on the left above is the cp-muc advantage where the adversary is
restricted to c queries to oracle Corrupt. Equation (2) says that, in moving
from the setting with no corruptions to the setting with c corruptions, adversary
advantage grows by at most a factor about c, regardless of the number n of users
and for all signature schemes Sig. But we can do better. In Eq. (2), muc security
for n users (and c corruptions) is provided assuming mu security for the same
number n of users. It turns out, curiously, that we can (substantially) reduce the
number of users, now denoted m, for which mu security is assumed. Our second
universal result (Theorem 6) is:

N2 : ∀Sig : ε
uf-muc-(n,c)
Sig ≤ e · (c + 1) · εuf-mu-m

Sig for m = �(n − 1)/(c + 1)�.
(3)

How and when the new N1, N2 results yield improvements over the prior P1
may not be obvious due to the starting points being different (mu for the former
and su for the latter). The following will clarify this.

Specialized results. These are results that hold for particular (but not all)
schemes. Let’s call Sig tightly-mu-secure if (roughly) εuf-mu-n

Sig = εuf-suSig . In an
important class of specialized results, prior work [11,33,41,45,50,53,62] shows
that many schemes —including the Schnorr scheme [11,50]— have tight mu
security. The proofs, however, exploit algebraic self-reducibility amongst keys
and cannot tolerate corruptions, so that, even for these schemes, for muc security,
Eq. (1) remains the best known bound. We offer a substantial improvement;
Eq. (2) implies that

N3 : For all tightly-mu-secure Sig : ε
uf-muc-(n,c)
Sig ≤ e · (c + 1) · εuf-suSig . (4)

That is, the muc advantage degrades by at most a factor about c even relative
to the (standard) su advantage, again regardless of n. Equation (4) holds in
particular for the Schnorr signature scheme.

While it would be desirable to show that su security implies cp-muc security
with a loss c in general and for all schemes, such a statement does not seem
possible without additional assumption about the scheme. Therefore, our results
can be viewed as a middle ground, either (using N3) applying to tightly-mu-
secure schemes or (using N2) reducing to mu security for a number of users m
substantially smaller than n.

Numerical example. Let Sig be the Schnorr scheme over a size p elliptic curve
group G. Suppose we target 128-bit security for n = 230 users with c = 210

330 M. Bellare et al.

corruptions, and let t be the running-time of the adversary. Assuming discrete-
logarithm computation over G is the best attack, we have εuf-suSig ≤ t2/p, which
by the prior P1 result of Eq. (1) yields εuf-muc-n

Sig ≤ nt2/p. Now 128-bit security
requires nt2/p ≤ t/2128 or p = 2128 · nt. This means we use a group G1 of
size p1 = 2128 · nt. Meanwhile the tight mu security of Sig implies εuf-mu-n

Sig ≤
t2/p which by our new N1 result of Eq. (2) (and ignoring the e factor) yields
ε
uf-muc-(n,c)
Sig ≤ ct2/p, and ct2/p ≤ t/2128 now yields p = 2128 · ct, so we use a

group G2 of size p2 = 2128 · ct. Now note that p2/p1 = c/n = 2−20 so we have
dropped the group size by a factor of 220 while retaining security. For example
if p1 = 2256 then p2 = 2236. Exponentiation takes time cubic in the logarithm of
the group size, so in this case we conclude that the cost of signing or verifying for
Sig over G1 is (236/256)3 = 0.78 times that in G2, meaning we have reduced the
running time of the implemented scheme by 22%, a significant gain in practice,
while retaining security.

Standards and key exchange. The best muc-security bound we have for the
standardized RSA-SSAPSS [61], EdDSA [12,49,61] and ECDSA [61] signature
schemes is the generic one of Eq. (1) with its factor n loss. This lead tight proofs
for the TLS 1.3 key exchange [19,23] to simply assume tight muc security —
meaning εuf-muc-n

Sig = εuf-suSig — for these schemes. Can we do better? Unfortunately,
Result N3 (Eq. (4)) will not help since these schemes have evaded proofs of tight
mu security. However, Result N2 (Eq. (3)) is helpful here. It says that assuming
εuf-mu-m
Sig = εuf-suSig for some small number m of users, we get ε

uf-muc-(n,c)
Sig ≤ c·εuf-suSig .

While this is still a non-standard assumption, it is better than directly assuming
εuf-muc-n
Sig = εuf-suSig . We only need to assume mu (rather than muc) security, and

that too for a small number of users m.

Tight muc security. The absence of results better than P1 (Eq. (1)) for stan-
dardized schemes lead researchers to develop new signature schemes that are
tightly muc secure [2,22,32,36,38,63]. (As above this means εuf-muc-n

Sig = εuf-suSig .)
In terms of just the bound, this is better than cp-muc security. But canonical
schemes (Schnorr and standardized ones) are not known to be in this class so
there is no improvement for in-use signatures or TLS 1.3 key exchange. More-
over, the key sizes and computation time of the new schemes is larger than that
of the canonical schemes. Hence, cp-muc security is a pragmatic alternative.

Techniques. We outline the simplest case of our proof technique, specialized to
signatures and for the weaker of our two universal results, namely N1 (Eq. (2)).
Given a cp-muc adversary A with advantage ε

uf-muc-(n,c)
Sig , we want to construct

a mu adversary B, with advantage εuf-mu-n
Sig and about the same running time as

A, such that Eq. (2) holds. Letting p be a parameter in the range 0 ≤ p ≤ 1,
adversary B picks a vector (c1, . . . , cn) of independent, p-biased bits. (That is,
each ci is 1 with probability p and 0 with probability 1−p.) We’ll say user i is red
if ci = 1 and let R ⊆ {1, . . . , n} be the set of red users; correspondingly i is blue
if ci = 0 and B is the set of blue users. Now, B runs A. In answering A’s oracle
queries, B simulates red users directly and forwards queries for blue users to its

Count Corruptions, Not Users 331

own mu game. In more detail, B generates a signing-verifying key pair (vki, ski)
for each i ∈ R, allowing it to easily answer both Sign and Corrupt queries
to i. It answers Sign queries for i ∈ B via its own Sign oracle. The difficulty
is a Corrupt(i) query for i ∈ B; adversary B has no way to answer this, and
aborts. If it does not abort, then A outputs a user j (called the forgery victim)
and a forgery under vkj . If j ∈ B then B returns this to win its mu game, else
it aborts. Let GD be the event that i ∈ R for all Corrupt(i) queries of A and
also the forgery victim j is in B. The probability of GD can be computed as
f(p) = pc(1 − p) (Theorem 2) and a careful analysis (that we make precise via
Lemma 2) shows that GD is independent of the success of A, so that εuf-mu-n

Sig ≥
f(p) · ε

uf-muc-(n,c)
Sig . Calculus shows that f(p) is maximized at p = 1 − 1/(c + 1)

where f(p) ≥ 1/(e(c + 1)) (Theorem 2), yielding Eq. (2). For some intuition,
note that with this choice the expected number of red users is (cn − 1)/(c + 1),
meaning a high number of red users are needed to successfully answer the small
number c of Corrupt queries.

This adapts Coron’s [17] proof of the security of the RSA-FDH signature
scheme. However, his setting has only one user and no secret-key exposing cor-
ruptions; what for us are “users” and “corruptions” are for Coron messages
queried to the random oracle and signing queries, respectively.

The path ahead. We generalize and improve this with a modular approach.
First, we introduce and study HWD samplers, as a way to find the best way
to sample the vector (c1, . . . , cn). Second, we give a framework and general cp-
muc security theorem that shows how to use any HWD sampler to promote mu
security to cp-muc security for a large class of games satisfying a condition we
call locality. Numerous applications, as well as improvements such as Eq. (3),
are then obtained, some directly, some with more dedicated work.

1.2 HWD Samplers and General cp-muc Theorem

HWD samplers. We ask whether the above manner of choosing (c1, . . . , cn)
is optimal. The answer is no; we can do better. To get there, we start with
an abstraction, viewing the vector (c1, . . . , cn) ←$ D(n, c) as being chosen by an
algorithm D that we call a sampler. We identify, as a sufficient condition on D
for the (above) simulation to work, that the probability of a vector (c1, . . . , cn)
depends only on its Hamming weight, and call such samplers Hamming-Weight
Determined (HWD). Section 3 associates to any HWD sampler a success proba-
bility α and an error probability β. Continuing to use signatures as an example,
Theorem 4 implies that ε

uf-muc-(n,c)
Sig ≤ (1/α) · εuf-mu-m

Sig for an m that grows with
β, so we want to make α large and β small. Now the way of sampling (c1, . . . , cn)
discussed in Sect. 1.1 corresponds to a particular choice of D, that we call the
biased-coin sampler and analyze in Theorem 2; it has good success probability
but unfortunately high error probability. We then give a new sampler that we
call the fixed-set-size sampler. Theorem 3 shows that it has not only optimal
success probability but zero error probability, which is crucial to obtaining the
improved Eq. (3). Figure 3 shows some numbers.

332 M. Bellare et al.

General framework and theorem. We now ask how far these techniques
will generalize beyond signatures. We seek to show a result of the form “For all
security games in a certain class, mu security can be promoted to cp-muc security
with loss only a factor about c.” To do this rigorously, we first (in Sect. 4) define
something we call a formal security specification (FSS). Denoted Π, it is simply
an algorithm that, given a scheme Sch, specifies the initializations and oracle-
response computations (including for Corrupt queries) for the intended target
notion of security for Sch. This leads naturally to an actual (code-based) game
GΠ

Sch defining su security (Fig. 4), and thence to games GΠ-mu-n
Sch and GΠ-muc-(n,c)

Sch

capturing mu and cp-muc security, respectively, where n is the number of users
and c the number of allowed corruptions (Fig. 5). For example, Fig. 4 shows
an FSS UF such that, when Sch = Sig is a signature scheme, the corresponding
games are exactly the standard su, mu and cp-muc games for signatures discussed
above. The su, mu and muc versions of many other notions in the literature can
in this way be recovered by simply giving a single FSS for the notion, as we
will see. Let εΠ-su

Sch , εΠ-mu-n
Sch and ε

Π-muc-(n,c)
Sch denote the su, mu and muc adversary

advantages, respectively, for FSS Π with scheme Sch.
In Sect. 4 we define a condition on an FSS that we call locality ; roughly it

means that in the mu and muc settings, different users share no common secret
unknown to the adversary. This is what is needed for our technique to work. The
main result is Theorem 4, showing how to use any HWD sampler D to promote
mu to cp-muc for any local FSS Π for a scheme Sch, and giving bounds in terms
of quantities related to D. The proof uses game playing including a crucial use
of the Second Fundamental Lemma (Lemma 2). For applications however, it is
easier to use Theorem 5, which sets D to the optimal fixed-set-size sampler to
say that for any local FSS Π for a scheme Sch, we have

ε
Π-muc-(n,c)
Sch ≤ e · (c + 1) · εΠ-mu-m

Sch for m = �(n − 1)/(c + 1)�. (5)

As an example, FSS UF for signature schemes is local, so this immediately yields
Eqs. Equations (2), (3). We now turn to further applications.

1.3 Applications

An overview of our applications is in Fig. 1. The results are of the form ε
TG-(n,c)
TS ≤

c · εSG-m
SS where TG,SG,TS,SS are the target goal, starting goal, target scheme

and starting scheme, respectively. That is, TG-security of TS for n users and c
corruptions is shown with loss c assuming SG-security for SS for m users. What
are “users” and “corruptions” depends on the goal, showcasing the breadth of our
framework. The last column indicates the application type. Direct (D) means we
show that an underlying FSS is local and apply Theorem 5. Indirect (I) means
the FSS is not local but we can nevertheless show the result via a dedicated
proof that uses the general theorem in an intermediate step.

Direct applications. D1 is the result for signatures (Theorem 6). D2 is for
IND-CCA security of KEMs in the multi-challenge-bit (mb) setting [43] (The-
orem 7). D3 is for OW-PCVA (one-way security under plaintext checking and

Count Corruptions, Not Users 333

Fig. 1. Overview of our applications: We show that ε
TG-(n,c)
TS ≤ c · εSG-m

SS where
TS, TG are the target scheme and goal, and SS, SG are the starting scheme and goal.
D1-D4 are direct applications of our general cp-muc security theorem; the rest are
indirect. SB1-SB2 relate to encryption in the single-bit setting. KE1-KE2 are for
(authenticated) key exchange. SO1-SO2 are for selective opening security.

ciphertext validity attacks) security of PKE [44] (Theorem 8), which will be
used in our results for the FO transform. D4 is for (nonce-based) authenticated
encryption in the mb setting (Theorem 9), demonstrating the generality of our
approach in that our results also apply in the symmetric setting. In each case we
observe that the underlying FSSs, denoted UF, CCA-MB, OW-PCVA and AE-MB
respectively, are local, yielding the results via Theorem 5. We stress that these
rows are purely illustrative; there are far more such applications than we can
exhaustively list.

Indirect applications. In the definition of mu security for encryption (KEM,
PKE) from [4], there is a single challenge bit across all users. Therefore, the
underlying FSS CCA-SB is not local. However, this is recognized as the lead-
ing and stronger definition [31] so rather than give up on it, we ask what
one can show. Our answer is to show cp-muc security for particular, important
schemes via dedicated proofs, making use of our general theorem for intermedi-
ate steps. We first prove such a result (SB1, Theorem 10) for the hashed ElGa-
mal KEM HEG, assuming strong computational Diffie-Hellman (St-CDH) [1].
Then, we use the modular FO transform [44] to get a more general result (SB2,
Theorem 11). In particular, we show how to turn a CPA-SB-mu PKE scheme
into a CCA-SB-muc KEM. For this, we first go tightly from CPA-SB-mu to
OW-PCVA-mu. Next, we exploit locality of the corresponding FSS OW-PCVA
and use Theorem 5 to go to OW-PCVA-muc. Finally, we go tightly from the
latter to CCA-SB-muc.

As a natural extension, we then turn to authenticated key exchange (AKE).
Security games for AKE (e. g., [8]) also use a single challenge bit and are not
local, but we can still give several cp-muc security results. The Diffie-Hellman

334 M. Bellare et al.

based CCGJJ protocol [16] is shown in [16] to achieve weak forward secrecy
(wfs) [52], with a factor n loss from St-CDH. We show (KE1) that by consider-
ing our corruption-parameterized approach for AKE, we can reduce the loss to
the number c of corruptions. Previous work on tightly-secure AKE [32,36,56],
including analyses of the TLS protocol [19,23], all use muc-secure signatures
as a building block. Our results on signatures allow AKE security based on
UF-mu secure schemes (KE2) which yields tightness improvements when using
the canonical and standardized signature schemes actually used in practice.

We then extend our indirect results to applications in a quite different setting,
looking at selective opening security for PKE. In simulation-based selective open-
ing (SIM-SO-CCA) security for PKE [5,14], the adversary can reveal randomness
underlying encrypted messages. Practical Diffie-Hellman and RSA-based PKE
schemes are shown in [42] to be SIM-SO-CCA, with loss factor the total number
n of ciphertexts encrypted. Modeling randomness reveal as a “corruption” and
each encryption as a “user” in our framework allows us (with some extra steps)
to reduce the loss to the number c of openings. Finally, of pedagogic interest
but no novelty, we show how our framework can be used to recover Coron’s
result [17].

1.4 Optimality Results

We are interested in the optimality of our results, namely to show that the factor
c loss is optimal for a number of schemes and games. Previous work studied
optimality based on non-interactive complexity assumptions [3,37], bounded-
round assumptions [59] or tailored to specific primitives or protocols [16,30,48].
However, a mu security game is mostly interactive and not bounded. Similar to
our positive result, we aim for a general result capturing a variety of games.

Witness recovery games. More concretely, we consider the goal of proving
security, via black-box reductions, for a recovery game GREC-muc-(n,c)

Rel parameter-
ized by an efficiently verifiable relation Rel. After learning n inputs x1, . . . , xn,
the adversary is allowed to learn witnesses (with respect to Rel) for up to c of
them, and finally wins if it recovers a witness for one of the remaining inputs. As
already observed by [3], several mu security games G′ allow to define a suitable
relation Rel such that GREC-muc-(n,c)

Rel can be seen as a restriction of the set of
allowable adversaries in G′. Examples include relations for PKE and signatures,
where the decryption resp. signing key serves as the witness.

Stateless games. Our first general result shows that any black-box reduction
from an interactive stateless game G to GREC-muc-(n,c)

Rel must incur a loss c + 1
when Rel is efficiently randomizable (Theorem 12). The same loss is hence also
necessary if we instead reduce to a game G′ for which GREC-muc-(n,c)

Rel can be seen
as an adversarial restriction. Here, by stateless we mean that the game initially
sets a state, but then oracle queries do not alter it. This abstraction serves a
trade-off between simplicity and generality. Indeed, several games are stateless,
such as CPA security for public-key encryption in both the multi-challenge-bit
as well as in the single-challenge-bit setting.

Count Corruptions, Not Users 335

However, since many games of interest are not stateless, we extend our result
to relax the stateless condition on G. This generalization allows the analysis of
stateful games and, more concretely, we show optimality of the loss factor c for
the IND-CCA game for PKE and the strong unforgeability game for randomized
signatures. (Assuming ciphertexts and signatures have sufficient entropy.)

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of its coordinates)
and w[i] is its i-th coordinate, where we start with i = 1. Strings are identified
with vectors over {0, 1}∗, so that |Z| denotes the length of a string Z and Z[i]
denotes its i-th bit. By ε we denote the empty string or vector. By x‖y we
denote the concatenation of strings x, y. If x, y are equal-length strings then
x⊕y denotes their bitwise xor. If S is a finite set, then |S| denotes its size. For
integers a ≤ b we let [a..b] be shorthand for {a, . . . , b}. The notation �B� for a
boolean statement B returns true if B is true and false otherwise. When we write
e, we mean Euler’s number.

If X is a finite set, we let x ←$ X denote picking an element of X uniformly
at random and assigning it to x. Algorithms may be randomized unless otherwise
indicated. If A is an algorithm, we let y ←$ A[O1, . . .](x1, . . .) denote running A
on inputs x1, . . ., with oracle access to O1, . . ., and assigning the output to y. We
let Out(A[O1, . . .](x1, . . .)) denote the set of all possible outputs of A on this
run. We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed
to not be in {0, 1}∗. We may consider an algorithm A that takes some input
in and a current state, and returns an output out and updated state, written
(out , st) ←$ A(in, st). We may refer to such an algorithm as stateful, but note
that A is, syntactically, just an algorithm like any other. There is no implicit
state maintained by the algorithm; it is the responsibility of the game executing
A to maintain the state variable st, which it will do explicitly.

Games. We use the code-based game-playing framework of BR [10]. By
Pr[G(A) ⇒ y] we denote the probability that the execution of game G with
adversary A results in the game output (what is returned by Fin) being y,
and write just Pr[G(A)] for Pr[G(A) ⇒ true]. Different games may have proce-
dures (oracles) with the same names. If we need to disambiguate, we may write
G.O to refer to oracle O of game G. In games, integer variables, set variables,
boolean variables and string variables are assumed initialized, respectively, to 0,
the empty set ∅, the boolean false and ⊥. For the following, recall that games
G,H are identical-until-bad if their code differs only in statements that follow
the setting of flag bad to true [10].

Lemma 1. [First Fundamental Lemma of Game Playing [10]] Let G,H be
identical-until-bad games. Then for any adversary A we have

|Pr[G(A)] − Pr[H(A)]| ≤ Pr[H(A) sets bad] = Pr[G(A) sets bad] .

336 M. Bellare et al.

Lemma 2. [Second Fundamental Lemma of Game Playing [6]] Let G,H be
identical-until-bad games and let GD be the event that bad is not set to true
in the execution of these games with adversary A. Then

Pr[G(A) ∧ GD] = Pr[H(A) ∧ GD] .

Signature schemes. A signature scheme Sig allows generation of a verifying
key vk and corresponding signing key sk via (vk, sk) ←$ Sig.Kg. A signature of a
message M is produced as σ ←$ Sig.Sign(sk,M). Verification returns a boolean
d ← Sig.Vf(vk,M, σ). Correctness asks that for all M we have Sig.Vf(vk,M,
Sig.Sign(sk,M)) = true with probability 1, where the probability is over the
choice of keys and the coins of the signing algorithm, if any. To measure security
we define the uf advantage of an adversary A as AdvUF-su

Sig (A) = Pr[GUF
Sig(A)]

where the game is shown on the bottom right of Fig. 4.

Public-key encryption schemes. A public-key encryption (PKE) scheme
PKE allows generation of a public encryption key ek and corresponding secret
decryption key dk via (ek,dk) ←$ PKE.Kg. We denote the message space by
PKE.MS and require that it is a length-closed set (i. e., for any m ∈ PKE.MS it
is the case that {0, 1}|m| ⊆ PKE.MS). Encryption of a message M ∈ PKE.MS is
via C ←$ PKE.Enc(ek,M). Decryption M ← PKE.Dec(ek,dk, C) returns a value
M ∈ {0, 1}∗ ∪ {⊥}. Correctness asks that Pr[PKE.Dec(dk,PKE.Enc(ek,M)) =
M] = 1 for every (ek,dk) ∈ Out(PKE.Kg) and every M ∈ PKE.MS. We will
consider several security definitions; they will be given in the full version [7].

Key-encapsulation mechanisms. A key-encapsulation mechanism (KEM)
KEM allows generation of a public encapsulation key ek and corresponding secret
decapsulation key dk via (ek,dk) ←$ KEM.Kg. There is no message. Instead,
encapsulation KEM.Encaps(ek) returns a symmetric key K ∈ {0, 1}KEM.kl and a
ciphertext C encapsulating it. Decapsulation KEM.Decaps(dk, C) returns a value
K ∈ {0, 1}KEM.kl ∪ {⊥}. Correctness asks that Pr[KEM.Decaps(dk, C) = K] = 1
for every (ek,dk) ∈ Out(KEM.Kg), where the probability is over (C,K) ←$

KEM.Encaps(ek). Security definitions are in Sect. 5.

3 HWD Samplers

We introduce and define HWD samplers and their success and error probabilities.
We give and analyze a natural HWD sampler called the biased-coin sampler and
then give an optimal HWD sampler called the fixed-set-size sampler.

HWD samplers. A sampler is an algorithm D that on input a positive integer
n and a non-negative integer c < n returns an n-bit string s ←$ D(n, c). In our
application, n will be the number of users and c will be the number of corruptions.
For s ∈ {0, 1}n, let R(s) = { i ∈ [1..n] : s[i] = 1 } and B(s) = { i ∈ [1..n] : s[i] =
0 }. We think of sampling s ←$ D(n, c) as coloring the points 1, 2, . . . , n, with
point i ∈ [1..n] colored red if s[i] = 1 and colored blue if s[i] = 0, so that R(s)
and B(s) are the sets of red and blue points, respectively.

Count Corruptions, Not Users 337

We say that sampler D is Hamming-weight determined (HWD) if for all n, c
and all s1, s2 ∈ {0, 1}n we have: if wH(s1) = wH(s2) then s1 and s2 have the
same probability of arising as outputs of D(n, c). This will allow our applications.
Note that this condition is true if and only if there is a function W such that
Pr[s = s′ : s′ ←$ D(n, c)] = W(n, c,wH(s)) for all s ∈ {0, 1}n and all n, c. We
refer to W as D’s Hamming-weight probability function.

As another way of understanding this, if π : [1..n] → [1..n] is a permutation,
let π(s) ∈ {0, 1}n denote the string whose j-th bit is s[π(j)] for j ∈ [1..n]. That
is, the bits of s are permuted according to π. Now say that D is permutation
invariant if for all n, c, all s ∈ {0, 1}n and all permutations π : [1..n] → [1..n]
we have that s and π(s) have the same probability of arising as outputs of
D(n, c). Then it is easy to see that D is permutation invariant if and only if it is
Hamming-weight determined.

For a set C ⊆ [1..n] of size c < n, and i ∈ [1..n] \ C, we let

PD,n,c(C, i) = Pr[i ∈ B(s) and C ⊆ R(s) : s ←$ D(n, c)] . (6)

This is the probability that s ←$ D(n, c) colors the points in C red and colors i
blue. (How points not in C ∪ {i} are colored does not matter.) Our applications
need a lower bound on it. Towards this, we define the sampler success probability

P∗
D(n, c) =

∑n−c−1
j=0 W(n, c, c + j) · (n−c−1

j

)
. (7)

The following says PD,n,c(C, i) is determined by the success probability and thus
in particular independent of the particular choices of C, i. The proof is in the
full version [7].

Theorem 1. Let D be a Hamming-weight determined sampler with Hamming-
weight probability function W. Suppose 0 ≤ c < n. Then for any size c set
C ⊆ [1..n] and any i ∈ [1..n] \ C we have PD,n,c(C, i) = P∗

D(n, c).

Theorem 1 will be used in the proof of Theorem 4, our general cp-muc security
result. Here it allows us to focus on the success probability as defined by Eq. (7).
Now define the error probability of sampler D via

RD(n, c,m) = Pr[|B(s)| > m : s ←$ D(n, c)] . (8)

We want to upper bound this, which in our application will allow m to be the
number of users for which mu security without corruptions is assumed.

Biased-coin sampler. We extract from the Coron technique [17] a sampler
D-BCx that we call the biased-coin sampler and show on the left in Fig. 2. Here
x ∈ [0, 1] is a probability and b ←x {0, 1} returns a x-biased coin b ∈ {0, 1},
meaning Pr[b = 1] = x and Pr[b = 0] = 1 − x. We let D-BC = D-BCx for x =
1−1/(c+1) and refer to this as the optimal biased-coin sampler. Theorem 2 below
justifies this name by showing that D-BC maximizes the success probability
across samplers in the biased-sampler class. It also gives a good lower bound on
this success probability and bounds the sampler error probability.

338 M. Bellare et al.

Fig. 2. Our Hamming-Weight Determined Samplers. Left: Biased-coin sampler with
probability parameter x ∈ [0, 1]. Right: Fixed set size sampler with set-size parameter
t ∈ [0..n − 1].

Theorem 2. Let n,m ≥ 1 and c ≥ 0 be integers such that n/(c + 1) < m
and c < n. Let D-BCx be the biased-coin sampler associated to x ∈ [0, 1] as per
Fig. 2. Then D-BCx is Hamming-weight determined and P∗

D-BCx(n, c) = xc(1−x).
Furthermore P∗

D-BC(n, c) ≥ P∗
D-BCx(n, c) for all x ∈ [0, 1] and

P∗
D-BC(n, c) =

(

1 − 1
c + 1

)c 1
c + 1

≥ 1
e

· 1
c + 1

. (9)

Letting a = m − n/(c + 1) we also have RD-BC(n, c,m) ≤ e−a2/2n if m < n and
RD-BC(n, c,m) = 0 if m ≥ n.

The proof is in the full version [7]. Here we sketch the main ideas. We observe
that D-BCx is HWD with Hamming-weight probability function W(n, c, �) =
x�(1 − x)n−�. Let f(x) = xc(1 − x) and let p = c/(c + 1) = 1 − 1/(c + 1). Then
Eq. (7) is used to show that P∗

D-BCx(n, c) = f(x). Calculus is used to show that
f is maximized at x = p, so that P∗

D-BC(n, c) = f(p) = (1−1/(c+1))c ·1/(c+1).
The well-known fact that (1−1/c)c ≈ 1/e is not enough to show the precise lower
bound (1 − 1/(c + 1))c ≥ 1/e; we arrive at it via some Taylor Series estimates.
The upper bound on RD-BC(n, c,m) uses a Chernoff Bound.

Fixed-set-size sampler. Can one do better? It turns out the success proba-
bility of D-BC is not optimal but still very good; its more important drawback
is having non-zero error probability. Our fixed-set-size sampler fills both gaps.
Its success probability is optimal, meaning maximal in the class of all HWD
samplers, and it achieves this with zero error probability.

For intuition, returning to Eq. (7), let � be such that
(
n−c−1

�

) ≥ (
n−c−1

j

)
for all

j ∈ [0..n−c−1]. Then clearly P∗
D(n, c) is maximized by setting W(n, c, c+j) = 1 if

j = � and 0 otherwise. That is, all the probability is on strings of Hamming weight
t = c + �. This leads to our fixed-set-size sampler D-FXt, which is parameterized
by an integer t ∈ [c..n−1] and shown on the right in Fig. 2. Here P(n, t) denotes
the set of all size t subsets of [1..n]. The sampler picks a random set T ⊆ [1..n]
of size t and returns as s its characteristic vector, meaning s[j] = 1 if j ∈ T and
s[j] = 0 otherwise for all j ∈ [1..n]. We let D-FX = D-FXt for t = �(cn−1)/(c+1)�
and refer to this as the optimal fixed-set-size sampler. Theorem 3 below justifies
this name by showing that D-FX maximizes the success probability, first across

Count Corruptions, Not Users 339

all samplers in the fixed-set-size class, and second across all HWD samplers, and
meanwhile has error probability is zero.

Fig. 3. Evaluation of samplers, where n is stated in millions (M) and c in thousands
(K). For D-BC we compute m such that RD-BC(n, c, m)/P∗

D-BC(n, c) ≤ 2−128 since
this will be an additive term in our main theorem (cf. Theorem 4). For D-FX we set
m = �(n − 1)/(c + 1)�. The last column is our estimate of e(c + 1) for the reciprocal of
the success probabilities.

Theorem 3. Let n,m ≥ 1 and c, t ≥ 0 be integers such that n − t ≤ m and
c ≤ t < n. Let D-FXt be the fixed-set-size sampler associated to t as per Fig. 2.
Then D-FXt is Hamming-weight determined and P∗

D-FXt(n, c) =
(
n−c−1

t−c

) · (n
t

)−1.
Furthermore P∗

D-FX(n, c) ≥ P∗
D-FXt(n, c) for all t ∈ [c..n − 1]. Also P∗

D-FX(n, c) ≥
P∗

D(n, c) for all HWD samplers D and

P∗
D-FX(n, c) ≥ 1

e
· 1
c + 1

. (10)

Finally, RD-FX(n, c,m) = 0.

The proof of Theorem 3 is in the full version [7]. Here we sketch the main
ideas. We observe that D-FXt is HWD with Hamming-weight probability function
W(n, c, �) = 1/

(
n
�

)
if � = t and 0 otherwise. Define the function f : [c..n − 1] →

[0, 1] by f(t) =
(
n−c−1

t−c

) ·(n
t

)−1. Then Eq. (7) is used to show that P∗
D-FXt(n, c) =

f(t). The function f is too complicated to maximize via calculus. Instead, we
look at ratios of consecutive terms, namely we seek t such that f(t)/f(t+1) is as
close to 1 as possible. In this way one can show that the maximum of f occurs at
t∗ = �(cn− 1)/(c+1)�, which was the choice of t used to define D-FX = D-FXt∗

.
This shows the claim in the Theorem that P∗

D-FX(n, c) ≥ P∗
D-FXt(n, c) for all

t ∈ [c..n− 1]. The broader optimality claim, namely that P∗
D-FX(n, c) ≥ P∗

D(n, c)
for all HWD samplers D, follows from Eq. (7). Equation (10) now follows from
Theorem 2. The error probability is clearly zero.

340 M. Bellare et al.

Numerical estimates. Figure 3 gives numbers for a few values of n (in mil-
lions) and c (in thousands). We see that 1/P∗

D-FX(n, c) ≤ 1/P∗
D-BC(n, c), meaning

D-FX is always better than D-BC, but the difference is small. (Intuitively this is
because in the biased coin sampler, the expected Hamming weight of the sam-
pled s is w = cn/(c + 1), which is very close to t∗ = �w − 1/(c + 1)�.) We see
that the approximation e(c + 1) is very good, which is why we will use it in our
applications. We see that e(c + 1), the factor our bounds will give up in appli-
cations, is much less than n, the factor that prior bounds gave up. In the least
conservative estimation, we set c = 1% as this already gives improvements for
concrete parameters. Depending on the application, an asymptotic improvement
can be achieved if c can be bounded by

√
n. For D-BC, we have chosen m to put

the error probability at 2−128, and see that it is already significantly less than
n, but the m = �(n − 1)/(c + 1)� for D-FX is appreciably better (lower).

Conclusion. Moving forward, we will use the fixed-set-size sampler D-FX and
Theorem 3. This may raise the question of why we have considered the biased-
coin sampler at all. One reason is that the analysis and results of Theorem 2 are
used and needed as comparison points to determine and eventually conclude that
Theorem 3 does better. The other reason is historical, namely that the biased-
coin sampler is the natural extension of Coron’s technique and thus worthy of
formulating and analyzing.

4 General Framework and cp-muc Security Theorem

Our technique works across many games (security notions) and schemes. We
want to avoid repeating similar proofs each time and also want to understand
the scope and limits of the technique: under what conditions does it work, and
when does it not work? This Section develops answers to these questions with a
general framework.

Our goal is to prove statements of the form “For all security games satisfying
a certain condition, mu security can be promoted to cp-muc security.” For this
to be mathematically sound requires a formal definition of a “security game.”
The only approach we know, code-based games [10], would require formalizing a
programming language. We suggest here a simpler approach suited to our ends.
We define an object called a formal security specification (FSS) that, formally,
is just an algorithm that functionally specifies the initializations, oracle input-
output behaviors (including what happens under corruptions) and final decision
of the game underlying the target security notion. To an FSS Π we then asso-
ciate three (standard, code-based) games capturing su, mu and muc security,
respectively. We define locality of an FSS as the condition needed for the result,
which is stated and proved in our General Theorem (Theorem 4).

Schemes. An FSS aims to define security of a scheme Sch, so we start with a
simple and general abstraction of the latter. Namely, a scheme Sch is simply
a tuple. Its entries may include algorithms as well as (descriptions of) asso-
ciated sets or numbers. An example is a signature scheme, which specifies a

Count Corruptions, Not Users 341

key-generation algorithm Sch.Kg, a signing algorithm Sch.Sign and a verifica-
tion algorithm Sch.Vf. As this indicates, we extract individual components of
the scheme tuple with dot notation. Another example is an encryption scheme,
specifying key-generation algorithm Sch.Kg, encryption algorithm Sch.Enc and
decryption algorithm Sch.Dec. It may also specify the length Sch.rl of the ran-
domness (coins) used by the encryption algorithm, and a message space Sch.MS.

In the ROM, it is often the case that the range set of the RO needed depends
on the scheme. (For example, for a KEM, it could be the set of strings of length
the desired session key.) To accommodate this, we allow schemes to name the
set Sch.ROS from which they ask their random oracle to be drawn.

Fig. 4. Top: Game associated to formal security specification Π and scheme Sch in the
single-user setting. Bottom Left: Formal security specification UF. Bottom Right:
The GUF

Sig game, rewritten in standard form.

342 M. Bellare et al.

Formal security specifications and the single-user game. A formal
security specification (FSS) Π is an algorithm whose input is a string name,
drawn from a finite set Names ⊆ {0, 1}∗ associated to Π, that serves to name
a sub-algorithm Π(name, · · ·). The names gs, init, fin ∈ Names, and in our
context also corr ∈ Names, are reserved; they stand, respectively, for “Global
Setup,” “Initialize,” “Finalize” and “Corrupt.” Particular FSSs can define more
names. Through (code-based) game GΠ

Sch shown in Fig. 4, Π specifies a notion
of security for a scheme Sch. In Init, line 1 picks, from the random oracle
space of the scheme, a function h that will serve as the random oracle. The
global setup sub-algorithm Π(gs) of the FSS is then run to produce a pair
(pp, os) ←$ Π[Sch, h](gs) whose components are called the public parameters
and oracle secrets, respectively. (An example os is a global challenge bit for an
ind-style game.) As the notation indicates, sub-algorithms of Π have access to the
scheme Sch and may thus call its algorithms, and they also have oracle access to
h. At line 2, the initialize sub-algorithm Π(init, ·) is run. It takes as input pp, os
and produces an output iout together with an initial state St. The adversary is
given (pp, iout). The GΠ

Sch game will maintain the state St and update it as nec-
essary. After that, the FSS maps to the actual game in a straightforward way.
For any name ∈ {gs, init, fin, corr}, sub-algorithm Π(name, · · ·) implements
an actual oracle Oracle(name, · · ·) in GΠ

Sch. Given an argument arg, the latter
runs Π[Sch, h](name, arg,St), where St is the current state, to get an output oout
(that is returned to the adversary) and updated state St (that is maintained by
game GΠ

Sch). Game GΠ
Sch also provides a random oracle RO that gives the adver-

sary access to h. Fin uses sub-algorithm Π(fin, · · ·) to return a game decision
dec. Beyond the argument farg provided by the adversary, Π(fin, · · ·) gets the
current state as input.

As an example, we show on the bottom left of Fig. 4 the FSS UF corresponding
to uf-security of a signature scheme Sig. To its right we show GUF

Sig re-written in
the usual way to see that it is the standard game. Of course, if one is interested
in just one notion (such as uf-security) one can give GUF

Sig directly and there is
no need for FSSs, but as we have discussed, FSSs will allow us to give precise
yet general results covering many games, and also allow us to classify games into
different types.

The GΠ
Sch game captures the single-user setting and does not use sub-

algorithm Π(corr, · · ·); it will be used below. The difference between pp and
os is that the FSS gets both but the adversary gets only the former. This dis-
tinction will allow us to distill exactly what our general result needs to work and
also let us to apply the latter broadly and in settings where “corrupt” does not
have the usual interpretation.

An FSS Π has an associated type, which is either “search” or “decision.”
The advantage of an adversary A playing GΠ

Sch is defined as AdvΠ
Sch(A) =

Pr[GΠ
Sch(A)] if Π is a search FSS and AdvΠ

Sch(A) = 2Pr[GΠ
Sch(A)] − 1 if Π

is a decision FSS. In the latter case we will make an extra technical assump-
tion, namely that for all Sch, h,St the decision dec ←$ Π[Sch, h](fin, farg,St)
is uniformly distributed over {true, false} when farg ←$ {0, 1}. This is typically
true because os is a random challenge bit and Π[Sch, h](fin, farg,St) returns

Count Corruptions, Not Users 343

Fig. 5. Game describing the execution of a formal security specification Π with scheme
Sch in the multi-user setting, both without corruptions (mu) and with corruptions
(muc). The difference is that oracle Corrupt is included only in the second game.

[[farg = os]], but it does not in general follow merely through the definition of
the advantage as 2Pr[GΠ

Sch(A)]−1. This will be used in the proof of Theorem 4.
We say that an FSS Π is local if the oracle secret os is always ε. (A bit more

formally, the probability that os = ε when (pp, os) ←$ Π[Sch, h](gs) is 1 for all
Sch, h.) Intuitively, different users in (upcoming) games GΠ-mu-n

Sch and GΠ-muc-(n,c)
Sch

will have no secret common to them all but unknown to the adversary. This
captures the condition for our general result of Theorem 4.

Multi-user security for an FSS. To FSS Π, scheme Sch, a number n ≥ 1
of users and a number c ≥ 0 of corruptions, we now associate a multi-user
(without corruptions) game GΠ-mu-n

Sch and a multi-user with corruptions game
GΠ-muc-(n,c)

Sch as shown in Fig. 5. We see here the reason to separate initialization
into the two sub-algorithms Π(gs) and Π(init, · · ·): The first is run once to
produce parameters common to all users, while the second is run once per user
and produces a state St[i] for each user i ∈ [1..n]. Oracle Oracle(name, · · ·)
now takes a user identity i in addition to arg and answers via the sub-algorithm
Π(name, · · ·) using the state of user i. Fin also takes a user identity i and returns
its decision using the state of that user. Oracle Corrupt is present only in game
GΠ-muc-(n,c)

Sch and answers as per the associated sub-algorithm, again for a given
user. The advantage AdvΠ-mu-n

Sch (A) of an adversary A playing GΠ-mu-n
Sch is defined

as Pr[GΠ-mu-n
Sch (A)] if Π is a search FSS and 2Pr[GΠ-mu-n

Sch (A)]−1 if Π is a decision
FSS, and correspondingly AdvΠ-muc-(n,c)

Sch (A) is defined as Pr[GΠ-muc-(n,c)
Sch (A)] or

2Pr[GΠ-muc-(n,c)
Sch (A)] − 1.

344 M. Bellare et al.

General cp-muc theorems. We give our main, general results that promote
mu to corruption-parameterized muc security for all local game specifications.
Later we will see many applications. Below we crucially leverage HWD samplers.

Theorem 4. Let n,m ≥ 1 and c ≥ 0 be integers such that m ≤ n and c < n.
Let D be a Hamming-weight determined sampler. Let α = P∗

D(n, c) and β =
RD(n, c,m). Let Sch be a scheme, and Π a formal security specification for it.
Assume Π is local. Let γ = 1 if Π is a search-type FSS and γ = 2 if Π is
a decision-type FSS. Let A be an adversary for game GΠ-muc-(n,c)

Sch . Then we
construct an adversary B for game GΠ-mu-m

Sch such that

AdvΠ-muc-(n,c)
Sch (A) ≤ (1/α) · AdvΠ-mu-m

Sch (B) + γ · β/α . (11)

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D.

Before discussing the proof we state a corollary obtained by plugging the fixed-
set-size sampler into the above; this is what we will most often use in applications.

Theorem 5. Let n, c be integers such that 0 ≤ c < n, and let m = �(n−1)/(c+
1)�. Let Sch be a scheme, and Π a formal security specification for it. Assume
Π is local. Let A be an adversary for game GΠ-muc-(n,c)

Sch . Then we construct an
adversary B for game GΠ-mu-m

Sch such that

AdvΠ-muc-(n,c)
Sch (A) ≤ e(c + 1) · AdvΠ-mu-m

Sch (B) . (12)

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D-FX.

Proof (Theorem 5). Let D = D-FX be the optimal fixed-set-size sampler and
apply Theorem 4. We have α = P∗

D-FX(n, c) and β = RD-FX(n, c,m) in Eq. (11).
Now Theorem 3 says that 1/α ≤ e(c + 1), while β = 0, yielding Eq. (12). ��
It remains to prove Theorem 4. A full proof is in the full version [7]. Here we
give an overview.

Adversary B (shown in detail in the full version [7]) picks s by running the
sampler D, thereby coloring each user i ∈ [1..n] as either red (s[i] = 1) or blue
(s[i] = 0). It now runs A. In answering the game-GΠ-muc-(n,c)

Sch queries that A
makes, B will simulate a red user i directly. This means it will pick and maintain
this user’s state St[i], allowing it to answer all queries to this user, including,
most importantly, a Corrupt(i) query. Meanwhile, it will aim to identify blue
users with the users in its own underlying GΠ-mu-m

Sch game, using its oracles from
that game to reply to queries of A for these users. It hopes that A runs to a win
with a Fin query to a blue user, in which case B will win its own game.

Count Corruptions, Not Users 345

There are a number of bad events, ways in which this strategy can fail. The
first is that n − wH(s) > m, meaning the number of blue users is too large
for them to be mapped to the users in game GΠ-mu-m

Sch . Letting G0 be a game
capturing B’s advantage, a first game hop will bound the probability of this bad
event via the First Fundamental Lemma of Game Playing (Lemma 1), and lead
to the β/α term in the bound while putting us now in a game G1 where the
limitation on the number of blue users has vanished. A first game hop will bound
the probability of this event via the First Fundamental Lemma of Game Playing,
leading to the cβ term in the bound and putting us now in a game where the
limitation on the number of blue users has vanished. The second source of failure
is that either there is a Corrupt query to a blue user (B has no way to answer
this) or A’s Fin query is to a red user (in which case B won’t win). Game G2 flags
this through settings of flag bad. The difficulty is that the probability (that bad
is set) is large, namely close to 1, and not small. So, while handling it again via
the First Fundamental Lemma of Game Playing is possible, it would yield a large
additive term in the bound, making the latter vacuous. Instead, letting GD be
the probability that bad is not set and W the event that B wins, we seek to lower
bound Pr[W ∧ GD] in G2. A crucial use of the Second Fundamental Lemma of
Game Playing (Lemma 2) equates this with the same probability in a game G3

where events GD and W are (unlike in G2) independent. This leaves us with the
product Pr[W] ·Pr[GD] in G3. To conclude, we will lower bound Pr[W] in terms
of the advantage of A. Then we will use Theorem 1 to lower bound Pr[GD] in
terms of the sampler success probability P∗

D(n, c) of Eq. Equation (7).
A wrinkle is that the analysis sketched above is for the case that Π is a

search-type FSS. The case of it being a decision-type FSS is more delicate. We
will need to ensure that when bad events happen, B has advantage zero, which
is done leveraging the assumption we have made that decision formal security
specifications return a random decision in this case. While the adversary B and
the games will be written to cover both cases (search and decision), the analyses
are different enough that, below, we give them separately. (And indeed the bound
in Eq. (11) is slightly different.)

Why do we need to assume that Π is local? The secret os in the GΠ-mu-n
Sch

game is not available to B, yet it has to simulate game GΠ-muc-(n,c)
Sch for A in such

a way that it is underlain by this same os. This happens correctly for blue users
because their queries are forwarded, but B cannot simulate the oracle replies for
red users to be consistent with os. If the FSS is local, however, os = ε so the
difficulty goes away.

5 Applications

We can promote mu to cp-muc for many target goals and schemes simply by
noting that the FSS is local and applying Theorem 5. We call these direct appli-
cations, and below we illustrate with a few examples, but there are many more.
However, the FSSs for some important goals, most notably ind-style games with
a single challenge bit across all users, are not local. Nonetheless, we can give

346 M. Bellare et al.

dedicated proofs for specific schemes. Since these results use Theorem 5 in an
intermediate step, we call them indirect applications.

5.1 Direct Applications

Digital Signatures. We formally state our theorem for signature schemes
underlying the informal claim of Eq. (2) in our use of signatures as an example
in the Introduction. The FSS for signatures is UF (Fig. 4), which is local. The
corresponding mu(c) games are obtained via UF as described in Fig. 5. Theorem 5
now yields:

Theorem 6. Let n, c be integers such that 0 ≤ c < n, and let m = �(n −
1)/(c + 1)�. Let A be an adversary for game GUF-muc-(n,c)

Sig . Then we construct
an adversary B for game GUF-mu-m

Sig such that

AdvUF-muc-(n,c)
Sig (A) ≤ e(c + 1) · AdvUF-mu-m

Sig (B) .

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D-FX.

As explained in Sect. 1.1: (1) for tightly mu secure schemes, this implies
AdvUF-muc-(n,c)

Sig (A) ≤ e(c + 1) · AdvUF
Sig(B), a significant improvement over the

factor n from the hybrid argument bound, and (2) this yields tightness improve-
ments for standardized schemes that are used in practical applications such as
AKE, which we will discuss in Sect. 5.2. Further, we note that the analogous
result is true for strongly-unforgeability of signatures.

Public-Key Encryption. Mu (and thus muc) security for public-key encryp-
tion and KEMs can be defined with a single challenge bit across all users [4],
which we call the single-bit (sb) setting, or with a per-user challenge bit, which
we call the multi-bit (mb) setting. The settings are asymptotically equivalent,
but we are interested in tightness. Heum and Stam [43] show that without cor-
ruptions, SB security is the stronger definition, but which is stronger in the
presence of adaptive corruptions is open.

Our framework is able to capture both settings, in the sense that we can give
FSSs for both, but interestingly, only the multi-bit one is local, so our general
result only applies in the MB setting. We discuss this here; we give results for
the SB setting in Sect. 5.2.

Our FSS CCA-MB for KEMs capturing indistinguishability under chosen-
ciphertext attacks in the MB setting is shown in Fig. 6. For completeness, we
give the muc game in the full version [7]. It picks one challenge bit for each
user which is used for encryption queries. During the game, the adversary can
adaptively learn user’s decryption keys via a corruption, thus also learning the
user’s challenge bit. In the end, the adversary has to guess the challenge bit of
an uncorrupted user. Note that CCA-MB does not need oracle secret, i. e., it is
local, and we can apply Theorem 5 to obtain the following result.

Count Corruptions, Not Users 347

Fig. 6. Left: Formal security specification CCA-MB[KEM, h] capturing security with
multiple challenge bits. Right: Formal security specification CCA-SB[KEM, h] captur-
ing security with a single challenge bit.

Theorem 7. Let n, c be integers such that 0 ≤ c < n, and let m = �(n−1)/(c+
1)�. Let A be an adversary for game GCCA-MB-muc-(n,c)

KEM . Then we construct an
adversary B for game GCCA-MB-mu-m

KEM such that

AdvCCA-MB-muc-(n,c)
KEM (A) ≤ e(c + 1) · AdvCCA-MB-mu-m

KEM (B) .

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D-FX.

As a second illustrative example, we consider one-way security of PKE under
plaintext checking and ciphertext validity attacks [21,44], which serves as a useful
intermediate notion for the Fujisaki-Okamoto (FO) transform [26,27], which we
will have a closer look at in Sect. 5.2. The FSS OW-PCVA is given in the full
version [7]. It is local, and thus we get:

Theorem 8. Let n, c be integers such that 0 ≤ c < n, and let m = �(n−1)/(c+
1)�. Let A be an adversary for game GOW-PCVA-muc-(n,c)

PKE . Then we construct an

348 M. Bellare et al.

adversary B for game GOW-PCVA-mu-m
PKE such that

AdvOW-PCVA-muc-n
PKE (A) ≤ e(c + 1) · AdvOW-PCVA-mu-m

PKE (B) .

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D-FX.

Authenticated Encryption. A (nonce-based) symmetric encryption (SE)
scheme SE specifies deterministic algorithms SE.Enc and SE.Dec, a key length
SE.kl and nonce space N . The encryption algorithm takes as input a key k ∈
{0, 1}SE.kl, a nonce N ∈ N and a message M ∈ {0, 1}∗, and returns a ciphertext
C ∈ {0, 1}SE.cl(|M |), where SE.cl is the ciphertext length function. The decryp-
tion algorithm takes as input k,N,C and returns either a message M ∈ {0, 1}∗

or ⊥ indicating failure. Correctness asks that for every k ∈ {0, 1}SE.kl, N ∈ N ,
M ∈ {0, 1}∗, if C ← SE.Enc(k,N,M), then SE.Dec(k,N,C) returns M .

Multi-user security with corruptions for authenticated encryption was studied
in [48], in both the single and the multi-bit setting. As for PKE schemes, only
the multi-bit setting can be expressed via a local FSS which we provide in the
full version [7]. We then apply our general theorem to get the following.

Theorem 9. Let n, c be integers such that 0 ≤ c < n, and let m = �(n −
1)/(c + 1)�. Let SE be an SE scheme and let A be an adversary for game
GAE-MB-muc-(n,c)

SE . Then we construct an adversary B for game GAE-MB-mu-m
SE such

that
AdvAE-MB-muc-(n,c)

SE (A) ≤ e(c + 1) · AdvAE-MB-mu-m
SE (B) .

Adversary B makes, to any oracle in its game, the same number of queries as A
made. The running time of B is about that of A plus the time for an execution
of the sampler D-FX.

5.2 Indirect Applications

Our general result does not apply to FSS which are not local, i. e., the game
depends on some global oracle secret like a single challenge bit which is used
across multiple users. This motivates us to study settings where the target game
(and possibly the starting game) are described by non-local FSS, but where we
can still achieve muc-security with a tightness loss of c via some transformation.

Here, we are also interested in settings where corruptions are not necessarily
referring to signing or decryption keys. As an example, we show how to apply our
framework to recover Coron’s result on RSA-FDH signatures in the full version
[7]. We now provide more details for our new results.

SB security for KEMs. Bellare, Boldyreva and Micali [4] introduced SB-mu
security and also showed that su security implies mu security with a loss linear
in the number of users. This initiated further study on tightly-secure PKE and
KEM schemes in the mu setting [28,29,39,45,55]. Recently, we have also seen
advances on tightly-secure schemes in the muc setting [38,40,54]. As for signature

Count Corruptions, Not Users 349

schemes, we can however observe that the latter schemes are less efficient in
terms of size (of public keys and ciphertexts) and computation complexity than
canonical schemes.

In Fig. 6, we define the FSS CCA-SB for KEM schemes capturing indistin-
guishability under chosen-ciphertext attacks in the SB setting. (The one for PKE
is similar and provided in the full version [7].) The game setup chooses a global
challenge bit (stored as oracle secret os); thus the game is not local. This also
requires to restrict queries to the challenge and corruption oracle, otherwise the
adversary can trivially learn the challenge bit.

The main motivation to study security in the presence of adaptive corruptions
for KEMs is that they are of high importance in practice. Here, the SB setting
is particularly interesting for composition using the KEM/DEM paradigm [18].
While it has already been studied in the mu setting without corruptions [31,69],
the result can be trivially extended to the muc setting using a CCA-SB-muc
secure KEM. (This composition result was recently studied for simulation-based
security definitions [46].) For these reasons, we now aim to establish CCA-SB-muc
security with improved tightness for practical encryption schemes.

Hashed ElGamal. On the left-hand side of Fig. 7, we describe the KEM under-
lying the hashed ElGamal encryption scheme, which we denote by HEG. It is
known that HEG can be proven tightly mu secure under the strong computa-
tional Diffie-Hellman (St-CDH) assumption [1] which we define in terms of game
GSt-CDH

(G,p,g) on the right-hand side of Fig. 7. We denote the advantage of an adver-

sary A in the game by AdvSt-CDH
(G,p,g)(A). For muc security, we only know the generic

result with a security loss in the number of users. Thus, we ask whether we can
do better using our technique and we provide an affirmative answer.

Fig. 7. Left: Hashed ElGamal KEM HEG for a group (G, p, g), where HEG.ROS is
the set of all H : {0, 1}∗ → {0, 1}HEG.kl. Right: Game for the strong computational
Diffie-Hellman assumption in group (G, p, g).

Theorem 10. Let HEG be the KEM defined in Fig. 7. Let n, c be integers such
that 0 ≤ c < n. Let A be an adversary for game GCCA-SB-muc-(n,c)

HEG . Then we

350 M. Bellare et al.

construct an adversary B for game GSt-CDH
(G,p,g) such that

AdvCCA-SB-muc-(n,c)
HEG (A) ≤ e(c + 1) · AdvSt-CDH

(G,p,g)(B) .

Let qro be the number of random oracle queries A makes. Then B makes at most
qro queries to oracle Ddh. The running time of B is about that of A plus the
time for an execution of the sampler D-FX, re-randomization of group elements
and maintaining lists of encryption, decryption and random oracle queries.

The proof of the theorem can be found in the full version [7], where we use a
multi-user variant of St-CDH which we can write as a local FSS.

Fujisaki-Okamoto transform. The Fujisaki-Okamoto (FO) transform [26,
27] is a generic approach that turns any cpa secure PKE scheme into one that
is cca secure in the random oracle model. (Here, we define CPA-SB in terms of
CCA-SB, by restricting attention to adversaries that do not query the decryption
oracle.) Especially since the announcement of NIST’s post-quantum competition
[60], the FO transform has seen adoption in the design of many schemes for prac-
tical use, including Kyber [15] which has been selected for standardization. The
FO has been studied in the mu setting [25], showing that CPA-SB-mu security of
the PKE scheme tightly implies CCA-SB-mu security of the transformed KEM.

Fig. 8. Left: PKE scheme PKE = T[PKE] obtained from the T-Transform, where
PKE.ROS is the set of all G : {0, 1}∗ → {0, 1}PKE.rl and PKE.Kg := PKE.Kg. Right:
KEM scheme KEM = U[PKE, s] obtained from the U-Transform, where KEM.ROS
is the set of all (G, H) such that G ∈ PKE.ROS and H : {0, 1}∗ → {0, 1}s. Further,
KEM.Kg := PKE.Kg.

Due to its practical relevance, we want to extend this analysis to the muc
setting, targeting a tightness loss in the number of corruptions. In order to do so,
we make use of the modular approach of the FO transform as considered in [44].
The two transformations T and U are described in Fig. 8 and combining them
gives us a KEM scheme KEM = U[T[PKE], s]. Our result is Theorem 11. Recall
that PKE is γ-spread [26] if maxC∈{0,1}∗ Pr[PKE.Enc(ek,M) = C] ≤ 2−γ for
every (ek,dk) ∈ Out(PKE.Kg) and every M ∈ PKE.MS, where the probability
is taken over the coins of PKE.Enc.

Count Corruptions, Not Users 351

Theorem 11. Let PKE be γ-spread and KEM = U[T[PKE], s] the KEM scheme
obtained from applying the modular FO transform as described in Fig. 8. Let
n, c be integers such that 0 ≤ c < n, and let m = �(n − 1)/(c + 1)�. Let A
be an adversary for game GCCA-SB-muc-(n,c)

KEM that issues at most qe queries to
Oracle(enc, ·), qd queries to Oracle(dec, ·) and qro queries to both random
oracles. Then we construct an adversary B for game GCPA-SB-mu-m

PKE such that

AdvCCA-SB-muc-(n,c)
KEM (A) ≤ 2e(c+1)·AdvCPA-SB-mu-m

PKE (B)+qd ·2−γ +
2nqeqro + 1
|PKE.MS| .

Adversary B makes the same number of encryption queries as A makes. The
running time of B is about that of A plus the time for maintaining lists of
encryption, decryption and random oracle queries and the time for an execution
of the sampler D-FX.

We provide the full proof in the full version [7]. Starting with a CPA-SB-mu secure
scheme PKE, step (1) applies transform T to obtain a OW-PCVA-mu secure
scheme PKE. In step (2), we apply Theorem 8 for OW-PCVA. Finally, in step (3),
we apply the second part of the transform, namely, we take the OW-PCVA-muc
secure scheme and use transform U to obtain the CCA-SB-muc scheme KEM.
We want to note that Jaeger [46] analyzes transform U in a simulation-based
setting with corruptions, focusing on step (3) only.

Corruption-parameterized security forAKE.Securitymodels forauthen-
ticated key exchange (AKE) protocols (e. g., [8]) allow for corruptions of long-term
secret keys which makes the construction of tightly-secure AKE [2,32,36,47,56,64]
non-trivial. All these works require some kind of muc security for their building
blocks. As for signatures and encryption, we propose to study AKE with the num-
ber of corruptions being an additional adversary resource. This allows us to give
improved tightness results for many AKE protocols.

In [16] Cohn-Gordon et al. analyze very efficient Diffie-Hellman based AKE
protocols. We denote their main protocol by CCGJJ which is proven secure based
on St-CDH with a loss linear in the number of users. They also show that this loss
is optimal for their and similar DH-based protocols. By considering cp security,
however, we can improve the previous bound to the number of corruptions. For
this we make use of the analysis in [51] which proves tight security of the protocol
based on the variant of St-CDH which we used for HEG. The improved bound
for CCGJJ follows from combining our general theorem with [51, Thm. 3].

A common approach to generically construct AKE protocols is to use sig-
natures for authentication, as for example in TLS. This means that long-term
keys are now signing keys of a signature scheme. When aiming for tight secu-
rity proofs, we thus require UF-muc security. We want to use our direct results
for signatures here. Combining it with the results in [19,23,32,36], we get AKE
with forward secrecy and with a security loss linear in the number of corrup-
tions, requiring a UF-mu secure signature scheme. The other assumptions made
remain untouched and their bound is already tight.

352 M. Bellare et al.

Improved bounds for selective opening security. In selective opening
security, the adversary is given multiple PKE ciphertexts and is allowed to reveal
not only the encrypted messages, but also the encryption randomness. We then
want non-revealed ciphertexts to remain secure. In this setting, cp security con-
cerns the number of opened ciphertexts. The security notion we are interested
in is simulation-based selective opening security (in the following denoted by
SIM-SO-CCA) which is considered the strongest notion of security [5,14]. While
our framework is designed for game-based rather than simulation-based security,
we show how to leverage our framework to improve the bounds of the schemes
considered in [42]. In particular, we show that their Diffie-Hellman based PKE
scheme can be proven secure assuming St-CDH with a loss linear in the number
of opened ciphertexts rather than the total number of ciphertexts. The scheme
is conceptually simpler than the scheme of [65] (which has full tightness) and
allows to save one group element in the ciphertext. Further, we show that the
improved bound also applies to the RSA-based variant of the scheme. We provide
formal definitions and theorem statements in the full version [7].

6 Optimality Results

We want to show that the loss of c is indeed optimal for a large class of schemes
and games. For this, we use the framework of Bader, Jager, Li and Schäge [3].
We adapt their definitions to our framework of formal security specifications.

Re-randomizable relations. A relation Rel specifies a generation algo-
rithm Rel.Gen that via (x, ω) ←$ Rel.Gen outputs an instance x and witness ω.
The (possibly randomized) verification algorithm d ←$ Rel.Vf(x, ω′) returns a
boolean decision d as to whether ω′ is a valid witness for x. Correctness asks
that Pr[Rel.Vf(Rel.Gen)] = 1, where the probability is over the coins of Rel.Gen
(and possibly Rel.Vf). Let Rel.WS(x) = {ω : Rel.Vf(x, ω) = true } be the witness
set of x. We say an algorithm Rel.ReRand is a re-randomizer for Rel if on input
an instance x and a witness ω such that Rel.Vf(ω, x) = true, it outputs a witness
ω′ which is uniformly distributed over Rel.WS(x) with probability 1.

We define a witness recovery game for a scheme Rel via FFS REC. Its formal
description and muc game GREC-muc-(n,c)

Rel are given in the full version [7]. The
adversary in this game gets n statements and may ask for witnesses of c of them.
Its task is then to compute a witness for an “uncorrupted” statement.

Simple adversaries and (black-box) reductions. Our optimality results
will involve a special class of “simple” adversaries issuing all corruptions at once.
More precisely, a (n, c)-simple adversary for relation Rel is a randomized and
stateful algorithm sA, which induces an adversary A = A[sA] for GREC-muc-(n,c)

Rel

as described on the left-hand side of Fig. 9.
We also consider a class of natural black-box reductions that transform an

(n, c)-simple adversary sA for Rel into an adversary for a game G. Hence, in the
following, GREC-muc-(n,c)

Rel will play the role of the security game of the considered
scheme, whereas G will be associated with some underlying assumption. More

Count Corruptions, Not Users 353

formally, an (n, c, r)-simple (G → GREC-muc-(n,c)
Rel)-reduction sR is a stateful and

randomized algorithm which, for every (n, c)-simple adversary sA, induces the
adversary R = R[sR, sA] described on the right of Fig. 9. Crucially, we require
R to be a valid adversary for game G. In particular, sR can make calls to the
oracles provided by G, except for calling its Fin procedure. Here, we do not
allow the reduction to choose the random tape of the adversary, but note that
it is easy to incorporate this into our formalization (and to extend Theorem 12
to take this into account) via standard techniques.1

Fig. 9. Left: Adversary A[sA] induced by an (n, c)-simple adversary sA for Rel. Right:
Adversary R[sR, sA] defined by an (n, c, r)-simple reduction sR.

Stateless games. We prove our first tightness result, showing that any (n, c, r)-
simple (G → GREC-muc-(n,c)

Rel)-reduction sR must incur an advantage loss of
roughly a factor c+1 for any re-randomizable relation Rel whenever the game G
is stateless. A stateless game is one for which the Init procedure sets some global
variables, and queries to all game oracles never update these global variables,
and the query output only depends on the global variables and the query input.

Our result will not require the game itself to be efficiently implementable,
and often a game can have both an inefficient stateless version, as well as an
equivalent efficient stateful version. For example, the efficient realization of the
game defining PRF security would proceed by lazy sampling a random function,
whereas an equivalent stateless version would initially sample a whole random
function table. This is an example of game for which our result applies. Other
games, such as those modeling the unforgeability of signatures under chosen mes-
sage attacks, are inherently stateful, as the validity of the final forgery depends
on previously issued signing queries.

Here, we will consider search games G (rather than distinguishing games) as
the starting point for our reductions, and thus we associate an advantage metric
1 More specifically, sR in Fig. 9 outputs the random coins to be used as input to sA.

In the proof, we then make the meta-adversary deterministic, and use an efficient
and secure pseudorandom function, with a hard coded key, to efficiently simulate
the random choices based on its input.

354 M. Bellare et al.

AdvG(A) = Pr[G(A)]. However, it is straightforward to extend our result to
distinguishing games.

Tightness result. The proof of the following theorem generalizes that of
Bader et al. [3] by extending it to stateless games and to a setting with c out of
n corruptions.

Theorem 12. Let n, c be integers such that 0 ≤ c < n. Let G be a stateless
game and let Rel be a relation with re-randomizer ReRand. There exists an (n, c)-
simple adversary sA such that AdvREC-muc-(n,c)

Rel (A[sA]) = 1, and such that for
any (n, c, r)-simple (G → GREC-muc-(n,c)

Rel)-reduction sR, there exists an adversary
B for G such that

AdvG(B) ≥ AdvG(R) − r

c + 1

for R = R[sR, sA]. The number of queries B makes to the oracles in G is at
most c times the number of queries sR makes. Further, the running time of B
is at most r · (c + 1) times the running time of sR plus running the relation’s
verification algorithm rc · (c + 1) times plus running the re-randomizer once.

We give the full proof in the full version [7]. We start by describing an inefficient
hypothetical adversary for game GREC-muc-(n,c)

Rel which selects an index i∗ of one
of the first c+1 statements, learns the remaining c witnesses and then computes
a random witness for i∗. We then describe a “meta-adversary” B which will
efficiently simulate the adversary R = R[sR, sA], running sR for each i ∈ [c + 1]
and r times. The simulation is perfect up to a failure probability r/(c+1) which
comes from the event that sR does not output a valid witness when run with
i∗. The important observation is that sR can make calls to G’s procedures, but
because the game is stateless, these calls do not affect the overall state.

Interpretation of the above result. To explain optimality, let us define
tightness more formally. Let sA be an (n, c)-simple adversary for G running in
time tA = tsA with advantage εA = AdvREC-muc-(n,c)

Rel (A[sA]). Following [3], we
say that an (n, c, r)-simple (G → GREC-muc-(n,c)

Rel)-reduction sR running in time
tsR with advantage εR = AdvG(R[sR, sA]) loses a factor � if tR/εR ≥ � · tA/εA,
where tR = tsR + r · tsA.

Now we want to look closer at Theorem 12. Applying the bound gives us

tR
εR

=
tsR + r · tsA

εR
≥ r · tsA

εB + r/(c + 1)
= r

(
εB +

r

c + 1

)−1

· tsA
1

=
r(c + 1)

εB(c + 1) + r
· tA
εA

.

In the last step we use that the reduction must work for any (n, c)-simple adver-
sary and, in particular, for the adversary sA with advantage 1 that we construct
in the proof. We conclude that if εB is small, then � ≈ c + 1 and R must lose a
factor c + 1.

Example. The above theorem naturally covers non-interactive complexity
assumptions as considered by [3] which are, by definition, stateless. As a more

Count Corruptions, Not Users 355

interesting example, the result also applies when using GCPA-SB-mu-n
KEM for KEM

schemes as a starting game G and a suitable relation, Rel[KEM], which we pro-
vide in the full version [7]. That is, if there exists an efficient re-randomizer
Rel[KEM].ReRand, then any (n, c, r)-simple (GCPA-SB-mu-n

KEM → GREC-muc-(n,c)
Rel[KEM])-

reduction must lose a factor c + 1.
All schemes for which the above relation is unique, i. e., there exists exactly

one decryption key such that the relation holds, have a trivial efficient re-
randomizer. An example is the ElGamal KEM.

In order to conclude that the optimality result also holds when the tar-
get game is the corresponding muc game (rather than the relation game), we
describe in the full version [7] how to transform any simple adversary sA for
GREC-muc-(n,c)

Rel[KEM] into an equivalent adversary A′[sA] for game GCPA-SB-muc-(n,c)
KEM .

Following [3], the existence of a black-box reduction from GCPA-SB-mu-n
KEM to

GCPA-SB-muc-(n,c)
KEM , rewinding the given adversaries r times, implies the existence

of an (n, c, r)-simple (GCPA-SB-mu-n
KEM → GREC-muc-(n,c)

Rel[KEM])-reduction sR with the same
loss. Roughly, this is because we can build sR which, when given access to sA,
behaves exactly the same as the reduction using A′[sA]. As in [3], we do not make
this argument fully formal, as it requires formalizing a more general notion of
black-box reduction.

Generalizing beyond stateless games. Since many games of interest are
not stateless, we aim to further generalize Theorem 12. For this, we introduce
the notion of a branching adversary for G which describes a pair of adversaries
(Bmain,Bside). Adversary Bmain is stateful, and proceeds in stages. At each step,
adversary Bside is also executed, but its output is ignored. We are then interested
in how much the actions of Bside alter the execution of the adversary as defined
by Bmain, which we capture as an advantage function Advbranch

G (Bmain,Bside).
If this advantage is small for a suitable branching adversary, then an adapted
version of Theorem 12 is still meaningful. We provide a formal treatment in the
full version [7].

Using this generalization, we are able to show optimality results for strongly-
unforgeable randomized signatures and IND-CCA secure KEMs, where we bound
the branching advantage by the entropy of signatures resp. ciphertexts.

Acknowledgments. Bellare was supported in part by NSF grant CNS-2154272 and
KACST. Work done while Riepel was at UCSD, supported in part by KACST. Tes-
saro was supported in part by NSF grants CNS-2026774, CNS-2154174, a JP Morgan
Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (Apr 2001). https://doi.org/10.1007/3-540-45353-
9 12

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12

356 M. Bellare et al.

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 629–658. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-
46494-6 26

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5 10

4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000). https://doi.org/
10.1007/3-540-45539-6 18

5. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (Apr 2012).
https://doi.org/10.1007/978-3-642-29011-4 38

6. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (Jul 2007). https://doi.org/10.1007/
978-3-540-73420-8 37

7. Bellare, M., Riepel, D., Tessaro, S., Zhang, Y.: Count corruptions, not users:
Improved tightness for signatures, encryption and authenticated key exchange.
Cryptology ePrint Archive, Paper 2024/1258 (2024), https://eprint.iacr.org/2024/
1258

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994). https://doi.org/10.1007/3-540-48329-2 21

9. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (May 1996). https://doi.org/10.1007/3-540-68339-
9 34

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006). https://doi.org/
10.1007/11761679 25

11. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996 (2015), https://eprint.iacr.org/2015/996

12. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of cryptographic engineering 2(2), 77–89 (2012)

13. Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979
National Computer Conference 48, 313–317 (1979)

14. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-
30057-8 31

15. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367 (2018)

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://eprint.iacr.org/2024/1258
https://eprint.iacr.org/2024/1258
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2015/996
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-642-30057-8_31

Count Corruptions, Not Users 357

16. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8 25

17. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (Aug 2000).
https://doi.org/10.1007/3-540-44598-6 14

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

19. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part II. LNCS, vol.
12727, pp. 448–479. Springer, Heidelberg (Jun 2021). https://doi.org/10.1007/978-
3-030-78375-4 18

20. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: 26th ACM STOC. pp. 522–533. ACM Press (May 1994). https://doi.org/10.
1145/195058.195405

21. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) 9th IMA Inter-
national Conference on Cryptography and Coding. LNCS, vol. 2898, pp. 133–151.
Springer, Heidelberg (Dec 2003)

22. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 1–31. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-3-030-
75248-4 1

23. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically sound
cryptographic parameters for real-world deployments. Journal of Cryptology 34(3),
30 (Jul 2021). https://doi.org/10.1007/s00145-021-09388-x

24. Dragon, S.: Top 12 revealing ssl stats you should know (May 2023), https://www.
ssldragon.com/blog/ssl-stats/

25. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-
based KEMs via a generic fujisaki-okamoto transform using prefix hashing. In:
Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2722–2737. ACM Press (Nov 2021).
https://doi.org/10.1145/3460120.3484819

26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1 34

27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. Journal of Cryptology 26(1), 80–101 (2013). https://doi.org/10.
1007/s00145-011-9114-1

28. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-
3-662-49890-3 1

29. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9 5

30. Gellert, K., Gjøsteen, K., Jacobsen, H., Jager, T.: On optimal tightness for key
exchange with full forward secrecy via key confirmation. In: Handschuh, H.,
Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 297–329.
Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38551-3 10

https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/s00145-021-09388-x
https://www.ssldragon.com/blog/ssl-stats/
https://www.ssldragon.com/blog/ssl-stats/
https://doi.org/10.1145/3460120.3484819
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-031-38551-3_10

358 M. Bellare et al.

31. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting,
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769,
pp. 159–189. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-
76578-5 6

32. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018). https://
doi.org/10.1007/978-3-319-96881-0 4

33. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. Journal of Cryptology 20(4), 493–514
(Oct 2007). https://doi.org/10.1007/s00145-007-0549-3

34. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.
28420

35. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(Apr 1988)

36. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated
key exchange and signatures with tight security in the standard model. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700.
Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-
030-84259-8 23

37. Han, S., Liu, S., Gu, D.: Key encapsulation mechanism with tight enhanced security
in the multi-user setting: Impossibility result and optimal tightness. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 483–513.
Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92075-3 17

38. Han, S., Liu, S., Gu, D.: Almost tight multi-user security under adaptive corrup-
tions & leakages in the standard model. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part III. LNCS, vol. 14006, pp. 132–162. Springer, Heidelberg (Apr
2023). https://doi.org/10.1007/978-3-031-30620-4 5

39. Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from
quasi-adaptive hash proof system. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 417–447. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26951-7 15

40. Han, S., Liu, S., Wang, Z., Gu, D.: Almost tight multi-user security under adaptive
corruptions from LWE in the standard model. In: Handschuh, H., Lysyanskaya, A.
(eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 682–715. Springer, Heidelberg
(Aug 2023). https://doi.org/10.1007/978-3-031-38554-4 22

41. Hanaoka, G., Schuldt, J.C.N.: On signatures with tight security in the multi-user
setting. In: 2016 International Symposium on Information Theory and Its Appli-
cations (ISITA). pp. 91–95 (2016)

42. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of prac-
tical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 27–51. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.1007/978-
3-662-46447-2 2

43. Heum, H., Stam, M.: Tightness subtleties for multi-user PKE notions. In: Pater-
son, M.B. (ed.) 18th IMA International Conference on Cryptography and Coding.
LNCS, vol. 13129, pp. 75–104. Springer, Heidelberg (Dec 2021). https://doi.org/
10.1007/978-3-030-92641-0 5

https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/s00145-007-0549-3
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-92075-3_17
https://doi.org/10.1007/978-3-031-30620-4_5
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-031-38554-4_22
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-030-92641-0_5
https://doi.org/10.1007/978-3-030-92641-0_5

Count Corruptions, Not Users 359

44. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/
978-3-319-70500-2 12

45. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5 35

46. Jaeger, J.: Let attackers program ideal models: Modularity and composability for
adaptive compromise. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III.
LNCS, vol. 14006, pp. 101–131. Springer, Heidelberg (Apr 2023). https://doi.org/
10.1007/978-3-031-30620-4 4

47. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https://
doi.org/10.1007/978-3-030-77870-5 5

48. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: Reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 409–441. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2 14

49. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA).
RFC 8032 (Jan 2017), https://datatracker.ietf.org/doc/html/rfc8032

50. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-662-53008-5 2

51. Kiltz, E., Pan, J., Riepel, D., Ringerud, M.: Multi-user CDH problems and the
concrete security of NAXOS and HMQV. In: Rosulek, M. (ed.) CT-RSA 2023.
LNCS, vol. 13871, pp. 645–671. Springer, Heidelberg (Apr 2023). https://doi.org/
10.1007/978-3-031-30872-7 25

52. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(Aug 2005). https://doi.org/10.1007/11535218 33

53. Lacharité, M.S.: Security of BLS and BGLS signatures in a multi-user setting.
Cryptography and Communications 10(1), 41–58 (2018). https://doi.org/10.1007/
s12095-017-0253-6

54. Lee, Y., Lee, D.H., Park, J.H.: Tightly CCA-secure encryption scheme in a multi-
user setting with corruptions. DCC 88(11), 2433–2452 (2020). https://doi.org/10.
1007/s10623-020-00794-z

55. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg
(Dec 2014). https://doi.org/10.1007/978-3-662-45608-8 1

56. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64834-3 27

57. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting.
Designs, Codes and Cryptography 33(3), 261–274 (2004)

58. Microsoft: Results of major technical investigations for storm-0558 key acquisi-
tion. Microsoft Blog (September 2023), https://msrc.microsoft.com/blog/2023/09/
results-of-major-technical-investigations-for-storm-0558-key-acquisition/

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-319-70500-2_14
https://datatracker.ietf.org/doc/html/rfc8032
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/s12095-017-0253-6
https://doi.org/10.1007/s12095-017-0253-6
https://doi.org/10.1007/s10623-020-00794-z
https://doi.org/10.1007/s10623-020-00794-z
https://doi.org/10.1007/978-3-662-45608-8_1
https://doi.org/10.1007/978-3-030-64834-3_27
https://msrc.microsoft.com/blog/2023/09/results-of-major-technical-investigations-for-storm-0558-key-acquisition/
https://msrc.microsoft.com/blog/2023/09/results-of-major-technical-investigations-for-storm-0558-key-acquisition/

360 M. Bellare et al.

59. Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 724–
753. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64837-
4 24

60. National Institute for Standards and Technology (NIST): Post-quantum cryptogra-
phy standardization, https://csrc.nist.gov/projects/post-quantum-cryptography

61. National Institute of Standards and Technology: Digital Signature Standard (DSS).
FIPS PUB 186-5 (Feb 2023), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
186-5.pdf

62. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search
assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ESORICS 2020,
Part II. LNCS, vol. 12309, pp. 485–504. Springer, Heidelberg (Sep 2020). https://
doi.org/10.1007/978-3-030-59013-0 24

63. Pan, J., Wagner, B.: Lattice-based signatures with ti ght adaptive corruptions and
more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS,
vol. 13178, pp. 347–378. Springer, Heidelberg (Mar 2022). https://doi.org/10.1007/
978-3-030-97131-1 12

64. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4 20

65. Pan, J., Zeng, R.: Compact and tightly selective-opening secure public-key encryp-
tion schemes. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS,
vol. 13793, pp. 363–393. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/
978-3-031-22969-5 13

66. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (Jan 1991). https://doi.org/10.1007/BF00196725

67. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979). https://doi.org/10.1145/359168.
359176

68. Whittacker, Z.: Microsoft lost its keys, and the government got hacked.
TechCrunch (July 2023), https://techcrunch.com/2023/07/17/microsoft-lost-
keys-government-hacked/

69. Zaverucha, G.: Hybrid encryption in the multi-user setting. Cryptology ePrint
Archive, Report 2012/159 (2012), https://eprint.iacr.org/2012/159

https://doi.org/10.1007/978-3-030-64837-4_24
https://doi.org/10.1007/978-3-030-64837-4_24
https://csrc.nist.gov/projects/post-quantum-cryptography
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-22969-5_13
https://doi.org/10.1007/978-3-031-22969-5_13
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://techcrunch.com/2023/07/17/microsoft-lost-keys-government-hacked/
https://techcrunch.com/2023/07/17/microsoft-lost-keys-government-hacked/
https://eprint.iacr.org/2012/159

Interval Key-Encapsulation Mechanism

Alexander Bienstock1(B) , Yevgeniy Dodis2 , Paul Rösler3 ,
and Daniel Wichs4

1 J.P. Morgan AI Research and J.P. Morgan AlgoCRYPT CoE, New York, USA
alex.bienstock@jpmchase.com

2 New York University, New York, USA
dodis@cs.nyu.edu

3 FAU Erlangen-Nürnberg, Erlangen, Germany
paul.roesler@fau.de

4 Northeastern University and NTT Research, Sunnyvale, USA
wichs@ccs.neu.edu

Abstract. Forward-Secure Key-Encapsulation Mechanism (FS-KEM;
Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key k to
Bob for some time t such that Bob can decapsulate it at any time t′ ≤ t.
Crucially, a corruption of Bob’s secret key after time t does not reveal k.

In this work, we generalize and extend this idea by also taking Post-
Compromise Security (PCS) into account and call it Interval Key-Encap-
sulation Mechanism (IKEM). Thus, we do not only protect confidential-
ity of previous keys against future corruptions but also confidentiality of
future keys against past corruptions. For this, Bob can regularly renew
his secret key and inform others about the corresponding public key.
IKEM enables Bob to decapsulate keys sent to him over an interval of
time extending into the past, in case senders have not obtained his lat-
est public key; forward security only needs to hold with respect to keys
encapsulated before this interval. This basic IKEM variant can be instan-
tiated based on standard KEM, which we prove to be optimal in terms
of assumptions as well as ciphertext and key sizes.

We also extend this notion of IKEM for settings in which Bob decap-
sulates (much) later than Alice encapsulates (e.g., in high-latency or
segmented networks): if a third user Charlie forwards Alice’s cipher-
text to Bob and, additionally, knows a recently renewed public key of
Bob’s, Charlie could re-encrypt the ciphertext for better PCS. We call
this extended notion IKEMR. Our first IKEMR construction based on
trapdoor permutations has (almost) constant sized ciphertexts in the
number of re-encryptions; and our second IKEMR construction based
on FS-PKE has constant sized public keys in the interval size.

Finally, to bypass our lower bound on the IKEM(R) secret key size,
which must be linear in the interval size, we develop a new Interval RAM
primitive with which Bob only stores a constant sized part of his secret
key locally, while outsourcing the rest to a (possibly adversarial) server.

The full version [8] of this article is available in the IACR eprint archive as article
2024/1454, at https://eprint.iacr.org/2024/1454.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 361–393, 2025.
https://doi.org/10.1007/978-981-96-0888-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_12&domain=pdf
http://orcid.org/0000-0001-7640-4974
http://orcid.org/0000-0003-1013-6318
http://orcid.org/0000-0002-2324-5671
http://orcid.org/0000-0002-4981-1643
https://eprint.iacr.org/2024/1454
https://eprint.iacr.org/2024/1454
https://doi.org/10.1007/978-981-96-0888-1_12

362 A. Bienstock et al.

For all our constructions, we achieve security against active adver-
saries. For this, we obtain new insights on Replayable CCA security for
KEM-type primitives, which might be of independent interest.

1 Introduction

Corruption of user secrets is an acknowledged threat in the cryptographic liter-
ature. Especially cryptographic protocols for secure long-term communication,
such as secure messaging, implement measures to mitigate the effect of tempo-
rary user corruptions. The traditional goal Forward Security (FS) requires that
prior communication remains secure even if user secrets are corrupted in the
future. Modern communication protocols additionally fulfill Post-Compromise
Security (PCS): users recover from earlier corruptions such that future com-
munication will be secure again. Intuitively, this means that a corruption only
reveals a (short) interval of secrets. To achieve these goals, protocols usually
combine two techniques: (1) evolving secrets with one-way functions and then
deleting the old secrets for FS, (2) randomly sampling fresh secrets and sharing
the corresponding public values for PCS.

Session-Based Interval Security. The most prominent instantiation of this
approach for two-party communication is the Double Ratchet Algorithm [30],
implemented in Signal, WhatsApp, and many other messaging apps. A gener-
alization based on tree-hierarchies for group communication is the Messaging
Layer Security (MLS) standard [6].

Remarkably, both protocols and all their variants (e.g., [2,3,7,26,27,31–33])
are session-based. This means that each new conversation is established indepen-
dent of existing ones such that every user stores a separate collection of secrets
for each session it participates in. Due to this, evolving and deleting old secrets as
well as sampling fresh secrets is conducted separately per session, which induces
a linear communication overhead in the number of sessions per user. For illus-
tration, consider a user Bob who is concerned that all secrets locally stored on
his device were corrupted. To recover from this corruption, Bob samples inde-
pendent, fresh secrets and shares corresponding public values in all his sessions.

To reduce this overhead, Alwen et al. [1] investigate how to merge overlapping
structures of session secrets in group communication protocols underlying MLS.
Intuitively, they exploit that the tree-hierarchy in MLS can unify overlapping
sets of members for multiple (independent) group sessions. Still, their saving is
modest for most hierarchy structures, and does not generally result in sublinear
storage in the number of sessions.

Interval Security with Single Key. In this work, we avoid any session
separation and instead let each user have a consolidated secret key with a corre-
sponding public key, which basically describes the concept of public-key encryp-
tion or, in our work, Key-Encapsulation Mechanism (KEM). Providing FS for
KEM with a static public key—via FS-KEM—has already been solved by Canetti
et al. [17]. To also achieve PCS, the public key cannot remain static but must be

Interval Key-Encapsulation Mechanism 363

updated. Thus, we will allow the recipient Bob to periodically update his public
key. While this introduces some additional complexity in fetching Bob’s latest
key before sending him a message, we will see that this relaxation has many
benefits, even beyond achieving PCS: for example, it results in noticeably more
efficient schemes, by considerably simplifying achieving the FS aspect compared
to the static public key model of [17]. Additionally, our model will be sufficiently
flexible to allow Bob to still decapsulate ciphertexts in many cases when the
senders failed to obtain Bob’s latest public key.

More concretely, our new model is the following. Bob starts by generating
a key pair (sk0, pk0) and shares pk0 with all users who want to talk to him.
Whenever Bob thinks he was corrupted, he uses his current secret key sk i−1 to
derive a new key pair (sk i, pk i) and shares the new pk i again. Using sk i, Bob can
still decapsulate keys encapsulated with pk j for j ≤ i. However, if he thinks that
all keys encapsulated with public keys pk j , j < i∗ were decapsulated already or
should not be decapsulatable any longer, Bob can shorten the secret key interval
from [0, i] to [i∗, i]. After this, Bob can only decapsulate ciphertexts encapsulated
to a public key pk j such that i∗ ≤ j ≤ i. Conversely, security requires that a
corruption of current secret key sk i will not affect ciphertexts encapsulated to
pk j for j < i∗ or j > i. Since Bob can continuously renew his key pair to start
new epochs and shorten the interval of decapsulatable old epochs, we call this
primitive Interval KEM (IKEM).

KEM-Based IKEM. Our simple KEM-based IKEM construction almost nat-
urally follows the above described abstract syntax: whenever Bob (re-)generates
his IKEM key pair, he simply generates a fresh KEM key pair, shares the new
KEM public key, and adds the new KEM secret key to his IKEM secret key.
To shorten the decapsulation interval, Bob just removes old KEM secret keys
from his IKEM secret key. Since this idea is straight forward, and to save space,
the full details of this construction and a formal security analysis are in the full
version [8].

Secret Key Lower Bound. Notice, the extremely simple KEM-based IKEM
from above has ciphertexts and public keys of constant size. However, the secret
key grows linearly in the size of the current interval. One may wonder if this
dependence is inherent. Unfortunately, as our first result we give the affirmative
answer to this question: any IKEM secret key must be proportional to the size
of the decapsulation interval.

One way to show this lower bound would be to prove that IKEM implies
the simpler symmetric-key primitive called Self Encrypted Queue from Choi
et al. [19]. This primitive also involves a secret state that can be updated for
PCS, however, it only allows the receiver to encrypt keys to itself for future
use (hence why it is symmetric-key). Self Encrypted Queue also requires the
newly updated states to be able to decrypt the keys encrypted to old states, and
thus the state of any construction seemingly needs to grow proportionally to the
number of epochs, just as with our IKEM construction. Indeed, [19] shows that
this is inherent for Self Encrypted Queues, by proving a lower bound showing
that states need to be of size f · λ, where f is the number of epochs.

364 A. Bienstock et al.

Instead, we choose to prove a direct lower bound to show that IKEM secret
keys need to grow with the size of the current interval, f , as we believe it more
directly elucidates why this is in fact the case. Indeed, we use an encoding
argument in the full version [8] to accomplish this, with intuition as follows: The
encoder’s goal is to succinctly encode and send a random bit string s to the
decoder, who then must obtain s. To this end, the encoder and decoder initially
share public randomness (independent of s) consisting of an initial IKEM key
pair, as well as two lists of f random bit strings each. To encode the ith bit of
string s, the encoder selects the ith random bit string of one of the two lists—the
first list iff si = 0. With each selected bit string, the encoder re-generates the
current IKEM key pair. The final IKEM secret key sk∗ is the code. The decoding
algorithm also starts with the initial IKEM key pair. For every bit, it re-generates
the current IKEM key pair twice: once with each next random bit string from the
two lists. Using the two resulting public keys, it encapsulates individual keys and
trial-decapsulates both resulting ciphertexts with the code sk∗. By correctness,
decapsulation of the right ciphertext yields the matching encapsulated key. By
security, decapsulation of the wrong ciphertext yields a random key (that is
independent of the encapsulated key). This procedure is repeated with the right
IKEM key pairs until string s is decoded entirely. The formal proof in the full
version [8] shows that the secret key size is linear in f · λ, where f is size of the
current decapsulation interval and λ is the security parameter.

Strengthening IKEM Security. While the lower bound on the secret key
size of IKEM is unfortunate, in many settings the receiver can afford the extra
storage, as this storage is local, and does not result in any increased network
latency. Moreover, we will shortly describe a method to reduce the secret key
storage by outsourcing. Yet, first we focus on extending the security of IKEM,
by considering several motivating application scenarios.

First, in settings with high-latency or a segmented network topology, recov-
ery by publishing a new public key for Bob may still be too slow: the new key
may reach Bob’s session partners only with a considerable delay. As an exam-
ple, consider a decentralized gossiping or mesh network in which client devices
exchange and forward traffic only with some contacts or with direct neighbors
in their physical range (e.g., via bluetooth protocols). Based on this, a cipher-
text from Alice to Bob is transmitted via multiple devices that span a delivery
route in the network between them. Bienstock et al. [11] observe that this topol-
ogy allows contacts to cooperate with each other to strengthen the security of
forwarded ciphertexts: if a user Charlie processes a ciphertext c from Alice to
Bob after Charlie received the most recent public key for Bob, Charlie can re-
encrypt c using the information contained in Bob’s latest key. Thus, even if Alice
sent c when Bob was corrupted, Charlie’s re-encryption after Bob’s key update
protects c on the remaining delivery route from Charlie to Bob.

This form of contact cooperation can also strengthen security of encrypted
cloud storage, where the cloud provider acts as Charlie. Every user Alice and
Bob can upload encrypted data to Bob’s online folder. Bob can regularly re-new
his key material and share the latest public key with the provider. Without any

Interval Key-Encapsulation Mechanism 365

further interaction, the provider can re-encrypt all files in Bob’s folder such that
they remain secure even if Bob’s old secrets are ever corrupted. Note that this
is the simplest, essential form of one of the motivating examples for Proxy Re-
Encryption (PRE) [13].1 We elaborate on the relation to PRE at the end of this
section.

More generally, contact cooperation can strengthen any high-latency delivery
or long-time storage during which ciphertexts are processed by intermediate
honest parties. For example, Alice can encapsulate a ciphertext c1 for Bob at
time t1, and leave it with an intermediary Charlie (e.g., a notary), instead of
immediately delivering it to Bob. Charlie is then instructed to deliver c1 to
Bob some time t2 in the future; e.g., if a certain condition is triggered. With
traditional encapsulation, the key in c1 would be compromised if Bob is corrupted
any time between t1 and t2. With IKEM syntax, however, it might be possible
for Charlie to update c1 into a “more secure variant” c′

1, using Bob’s latest public
key at epoch t2 > t1, and then only keep c′

1 until it is released to Bob.

Ciphertext Re-Encapsulation. Motivated by this form of contact coop-
eration, we add re-encapsulation to IKEM and call it IKEMR. A cipher-
text c1 encapsulated to Bob at time t1 and re-encapsulated in ciphertext c′

1

at time t2 > t1 remains secure even if Bob was corrupted at any time t∗ < t2
as long as the adversary only ever sees c′

1. Furthermore, when Bob shortens the
decapsulation interval of his secret key to exclude time t1 for FS, future corrup-
tions of Bob will not affect c′

1 either. Thereby, re-encapsulations do not extend
the lifetime of a ciphertext: if the epoch t1 at which a ciphertext was originally
created falls out of the decapsulation interval, it cannot be decapsulated any-
more even if it was re-encapsulated at later epochs t2 > t1. We illustrate this
security requirement with a simple example in Fig. 1. Finally, a ciphertext can
be re-encapsulated multiple times such that the first ciphertext version observed
by the adversary determines the window of harmful and harmless corruptions,
respectively. While this form of re-encapsulation ostensibly is closely related to
Proxy Re-Encryption (PRE), we discuss the crucial differences at the end of this
section.

Simple Extension Fails. Naively, one could add re-encapsulation to our
KEM-based IKEM construction from above as follows: to re-encapsulate cipher-
text c1 from time t1 with the most recent public key pk2 from time t2 > t1,
one simply uses the KEM to encapsulate a key k′ in ciphertext c′

KM and then
encrypts c1 symmetrically with key k′. Thus, c′

1 = c′
KM‖Ek′(c1) is the re-

encapsulated ciphertext, where (k′, c′
KM) = KM.enc(pk2). To shorten the decap-

sulation interval, Bob still just removes the KEM secret keys of all abandoned
epochs from his IKEMR secret key.

Now consider the case that Alice creates two ciphertexts c1 and c2 to Bob,
one at time t1 with pk1 and one at time t2 > t1 with pk2. Additionally,
Charlie re-encapsulates c1 at time t2 in ciphertext c′

1. When Bob shortens his

1 It is also a naturally useful variant of Updatable Encryption [15] for the public-key
setting.

366 A. Bienstock et al.

decapsulation interval from [0, t2] to [t2, t2], correctness requires that c2 can still
be decapsulated. Furthermore, security requires that k1 in c′

1 remains confiden-
tial if the adversary only sees c′

1 (but not c1), even if Bob is corrupted before
time t2 and/or after he shortened his decapsulation interval to [t2, t2] (the reader
can again refer to Fig. 1 for an illustration of this security requirement). Yet,
a corruption at time t1 < t2 for the above KEM-based IKEMR construction
reveals KEM secret key sk1; another corruption after the decapsulation inter-
val was shortened to [t2, t2] reveals KEM secret key sk2. Thus, the adversary
can remove the re-encapsulation layer of c′

1 using sk2 and then decapsulate the
original ciphertext c1 using sk1. Hence, this simple extension of our KEM-based
IKEM construction is insecure.

Fig. 1. Execution example for IKEMR: if the adversary only sees pk1, pk2, and c′
1, and

corrupts st1,1, and st2,2, key k is required to remain secure.

KEM-Based IKEMR. The core problem of the above IKEMR construction is
that it processes encapsulations and re-encapsulations at time t2 identically.
However, FS requires that Bob can shorten his decapsulation interval such
that only c2, originally created at time t2, can be decapsulated but not the
re-encapsulation c′

1 from time t2 of earlier ciphertext c1, originally from time t1.
To solve this problem, Bob, instead, generates multiple extra KEM key pairs

at every IKEMR key re-generation: one KEM key pair for each epoch in his
current decapsulation interval of length f . The resulting re-generated IKEMR
public key pk t = (pk t,1, . . . , pk t,f) for time t consists of f fresh KEM public
keys. (Re-)Encapsulation with IKEMR public key pk t at time t then depends on
the initial encapsulation time of a ciphertext: for ciphertext c initially created
at time t∗ ≤ t (t∗ = t for an initial encapsulation), c is (re-)encapsulated using
KEM public key pk t,t−t∗+1. Whenever Bob shortens his decapsulation interval
to [t1, t2], he first removes all secret keys generated before time t1. Then, for
each epoch t′ with t1 ≤ t′ ≤ t2, he removes every secret key sk t′,τ for which

Interval Key-Encapsulation Mechanism 367

τ > t′ − t1+1. Thus, intuitively, every epoch’s IKEMR public key contains extra
KEM public keys that are exclusively used for re-encapsulations of ciphertexts
initially created in prior epochs. As soon as such prior epochs are removed from
the decapsulation interval, all corresponding extra KEM secret keys are removed
from the IKEMR secret key.

By deriving the extra KEM secret keys at each IKEMR re-generation iter-
atively via a chain of Pseudo-Randomness Generators (PRGs), Bob only ever
needs to store one KEM secret key and one PRG seed for each epoch in his cur-
rent decapsulation interval. To shorten the decapsulation interval, Bob moves
the PRG-chain of each epoch in the interval forward, thereby derives new KEM
secret keys and deletes past KEM secret keys. Thus, the IKEMR secret key size
is optimal based on our lower bound.

IKEMR with Small Public Keys. The advantage of this secure IKEMR
construction is its mild underlying standard assumption: an ordinary KEM. Nev-
ertheless, the disadvantages are: ciphertexts grow linearly in the number of re-
encapsulations and public keys grow linearly in the decapsulation interval length.
Using FS-PKE instead of ordinary KEM, we can reduce the size of IKEMR pub-
lic keys. The intuition is that all extra KEM key pairs generated for one IKEMR
key re-generation are consolidated in a single FS-PKE key pair. This shrinks
the IKEMR public key to constant size but slightly increases the secret key to
size f log f (instead of f), where f is the current length of the decapsulation
interval. At (re-)encapsulation, instead of choosing the right extra KEM public
key from the current IKEMR public key, Alice indicates the ciphertext’s initial
creation time when encrypting to the corresponding epoch of the single FS-PKE
public key. When shortening the decapsulation interval, Bob simply updates all
FS-PKE secret keys that remain in his IKEMR secret key such that epochs out-
side the shortened interval cannot be (re-)decapsulated. The full details of this
construction are in Sect. 5.

IKEMR with Small Ciphertexts. Using Trapdoor Permutations (TDPs),
we build an IKEMR construction with (almost) constant sized ciphertexts. For
this, we begin with our KEM-based IKEMR construction from above that has
linear sized public keys in the decapsulation interval length. Then, instead of
using KEMs, we employ a family of TDPs with a common domain, where each
KEM public key is replaced with the public key of a TDP from that family and
each KEM secret key is replaced with the corresponding trapdoor. To encapsu-
late a key, this construction samples a random element from the TDP family’s
domain and evaluates the current epoch’s TDP on it, which yields the cipher-
text. The actual encapsulated key is derived by applying a randomness extractor
to the random input element. To re-encapsulate a ciphertext, another TDP from
the family is applied to this ciphertext. Since all permutations from the TDP
family share the same domain, the (cryptographic part of the) ciphertext has
constant size. Yet, for decapsulation, the receiver Bob needs to know which
trapdoors he should use. Thus, at each re-encapsulation, the index of the cur-
rent epoch is attached to the ciphertext, which increases the ciphertext linearly

368 A. Bienstock et al.

in the number of re-encapsulations—however, note that each attached index has
only logarithmic size in the security parameter.

Reducing Ciphertext Size. To further reduce the IKEMR ciphertext size
for settings with frequent re-encapsulations, we add more TDPs to the IKEMR
public key in order to avoid attaching epoch indices to re-encapsulated cipher-
texts. Note that in our KEM-based IKEMR construction, each IKEMR public
key consists of one f -sized batch of KEM public keys. For our above TDP-based
IKEMR construction, these KEM public keys are replaced with TDP public
keys. Now, for this final construction, each IKEMR public key consists of Δ
batches of f TDP public keys. These additional batches are used when Charlie,
at time t2, wants to re-encapsulate a ciphertext originally created at time t1,
where d = t2 − t1 ≤ Δ. In this case, instead of directly re-encapsulating with the
newest TDP public key and informing Bob about the re-encapsulation ‘jump’
from time t1 to time t2, Charlie continuously applies d TDP evaluations, one
after another: from t1 to t1 + 1 to t1 + 2, and so on until t2. Thus, when Bob
decapsulates, he can simply iterate over a continuous chain of trapdoor inver-
sions in reverse. Only for larger re-encapsulation jumps of size d > Δ, Charlie
attaches epoch indexes to the ciphertext. Intuitively, if f stays roughly the same
throughout the execution of the IKEMR, then public keys will be of size O(f ·Δ)
and ciphertexts will be of size O(λ + log(λ) · f/Δ), regardless of the number of
re-encapsulations; in particular, if Δ = f , then ciphertexts will always be of size
O(λ), even after several re-encapsulations.

External Key Storage. Recall from above that the secret key of any IKEM
must have size f ·λ, where f is the size of the current decapsulation interval. For
long intervals or even intervals of dynamic size, this lower bound may induce an
impractical storage overhead. Thus, we propose to split the secret key into two
components—one small component and one larger component, of which only the
former needs to be securely stored. The latter component, on the other hand, can
be stored anywhere, and can even be publicly accessible. We furthermore desire
a generic interface such that reads and writes to the original (virtual) secret key
can still be efficiently performed. Indeed, such operations should only use the
small securely-stored component, as well as small downloads from and uploads
to the larger public component. Most importantly, we still want the security
properties of IKEM to hold if the small securely-stored component is corrupted
from time to time.

The notion of securely outsourcing a database with read- and write-access
with only FS is very well-studied (e.g., [9,10,16], and references therein). Indeed,
a construction for n-entry databases satisfying this notion is known such that the
secret state is size O(1) and the read/write overhead is O(log n). However, the
security models from these prior works do not require secrecy of future writes if
at any time the secret storage is corrupted. That is, to the best of our knowledge,
no notion of securely outsourcing a database with PCS is known.

In Sect. 6, we introduce the notion of securely outsourcing a database with
read- and write-access with both FS and PCS, and call it Interval RAM (IRAM).
We then show that the construction mentioned above surprisingly satisfies this

Interval Key-Encapsulation Mechanism 369

stronger notion of security. IRAM can be combined with our IKEM constructions
to reduce the size of local secret storage, while maintaining security.

IKEMR vs. Proxy Re-Encryption. A primitive related to IKEMR is Proxy
Re-Encryption (PRE). PRE extends standard public-key encryption with a
key-based re-encryption mechanism: every secret key skA can compute a re-
encryption key rkA,B for re-encryption to another public key pkB . Using rkA,B ,
ciphertext cA, previously (re-)encrypted to public key pkA, can be re-encrypted
to cB such that cB behaves as if it was encrypted to pkB without changing the
payload.

PRE schemes can be bidirectional or unidirectional. With bidirectional PRE,
a re-encryption key rkA,B for epochs A and B can be used to re-encrypt from A
to B and vice versa. Thus, given skA and rkA,B , there are naturally no security
properties regarding ciphertexts encrypted to pkB . For unidirectional PRE, re-
encryption key rkA,B can only be used to re-encrypt from A to B, and given skA

and rkA,B , ciphertexts encrypted to pkB are still secure (see, e.g., [20,23,28]).
Bidirectional PRE is clearly insufficient for secure IKEMR. Yet, IKEMR

intuitively seems weaker than unidirectional PRE for three reasons (a formal
lower bound is a harder task, which we deem out of scope): (1) In unidirectional
PRE, re-encryption keys are only derived from the old secret key and the new
public key; in IKEMR, the public keys used for re-encapsulation are derived from
both old secret keys and the new secret key. (2) In IKEMR, ciphertexts can only
be re-encapsulated to newer public keys; in unidirectional PRE, re-encryption
keys can be derived for arbitrary public keys, which may even lead to full re-
encryption circles. (3) Unidirectional PRE offers additional security guarantees
if the re-encryption key remains secret—IKEMR public keys are, by definition,
always public.

Indeed, we achieve IKEMR with constant-size ciphertexts from TDPs, while
unidirectional PRE with constant-size ciphertexts can only be achieved from
(expensive) FHE or iO currently (see, e.g., [28, p. 11]). Furthermore, even unidi-
rectional PRE seems unsuitable for building IKEMR with FS directly: an unlim-
ited chain of PRE re-encryption keys can be used to shift an old ciphertext to a
much newer, corrupted secret key, which undermines FS.

Further Related Primitives. Like IKEM, primitives such as Updatable
PKE (UPKE) [21,25,27] and Key-Updatable KEM (KU-KEM) [5,32,34] con-
tinuously update both parts of the key pair. Yet, these primitives only achieve
FS and they are designed to work in a session-based fashion between a fixed
tuple of Alice and Bob. Thereby, since the public keys in UPKE and KU-KEM
are continuously updated by Alice, this would require synchronization when mul-
tiple Alices want to talk to the same Bob. IKEM overcomes this issue by letting
all Alices use the newest public key they are aware of.

An orthogonal security feature that we do not cover in this work is in-epoch
FS: the granularity of FS in IKEM is relatively coarse as only shrinking the
interval by deleting entire epochs yields FS with respect to these deleted, old
epochs. Using FS-KEM techniques—based on building blocks like identity-based
encryption—, each epoch could have internal sub-steps for which FS can be

370 A. Bienstock et al.

achieved by updating Bob’s secret key without invalidating the corresponding
epoch entirely. We refrain from studying this aspect as it seems to be a simple,
straight forward extension.

Active Security. For all our constructions, we prove security against active
adversaries. Before we can do so, we develop a suitable security definition that
models Chosen Ciphertext Attacks (CCA) by giving adversaries access to a
decapsulation oracle. Upon a queried ciphertext c, this oracle honestly decapsu-
lates the symmetric key k encapsulated in c using Bob’s current secret key, unless
c was posed as a challenge. Clearly, decapsulating the challenge ciphertext c∗ via
this oracle trivializes the adversary’s ability to win the security experiment.

Due to re-encapsulations, muting the decapsulation oracle upon challenge
ciphertexts is, however, non-trivial: the adversary can re-encapsulate challenge c∗

using Bob’s newer public keys, which yields c∗∗. Thus, the decapsulation ora-
cle has to reject c∗, all of its re-encapsulations c∗∗, and so on. The litera-
ture on PRE developed several approaches for identifying such re-encapsulated
challenges c∗∗ of which we consider only one suitable: employing a Replayable
CCA (RCCA) [18] definition style. However, the RCCA definition style is not
directly applicable to KEM-type primitives. For this reason, we develop a suit-
able variant of RCCA security that is implied by CCA security for KEM-type
primitives and can be used to build PKE that is RCCA-secure via standard
hybrid encryption. We also show that our RCCA notion for IKEMR can be used
to build the natural extension of this primitive that captures encryption, which
we call Interval Public Key Encryption with Re-encryptions (IPKER). We elab-
orate on our definitional choices in the full version [8]. To add RCCA security
to our constructions, we use standard techniques from the literature, which add
minimal overhead.

We also extend our IRAM security notion to withstand active adversaries.
Here, the receiver (with small local storage) must be able to detect if the adver-
sary provides them with incorrect parts of the (larger) public storage for a given
operation. To achieve this notion, we combine our original construction with
techniques from the Memory Checking literature ([10,14,22] and the references
therein), while adding minimal overhead.

Contributions. In summary, we develop a natural notion of KEM that offers
FS and PCS guarantees against active adversaries. For this, we prove a lower
bound in the full version [8] to show that the most basic construction is optimal.
We extend the initial notion of IKEM by adding re-encapsulation, which we
call IKEMR (see Sect. 3). Realizing IKEMR turns out to be more complicated:
Our first construction in Sect. 4 uses Trapdoor Permutations to keep ciphertexts
small. Our second construction in Sect. 5 uses FS-PKE to reduce the size of
public keys. Finally, in Sect. 6, we introduce Interval RAM with which secret
keys can be split into a locally stored part of constant size and a larger part that
can be outsourced to an insecure (and actively adversarial) external storage.

Interval Key-Encapsulation Mechanism 371

2 Preliminaries

Below, we present some notation we will use throughout this work and then
three important primitives which we will use in our constructions. In the full
version [8], we provide some additional definitions for basic primitives used in
our IKEM constructions, as well as some standard definitions and lemmas from
information theory.

Notation. We use x ← y for assigning value y to variable x. We use x ←$ X to
denote sampling x randomly from distribution X . Consider some algorithm A. If
A is deterministic, we use y ← A(x) to denote assigning to y the output of A(x).
If A is randomized, we use y ←$ A(x) to denote assigning to y the output of a
random run of A(x). Sometimes, we may explicitly specify the random coins r
that a randomized algorithm A uses; in this case, we use y ← A(x; r) to denote
assigning to y the output of a run of A(x) using coins r.

Family of Lossy Trapdoor Permutations with a Common Domain.
We now define families of lossy trapdoor permutations (TDPs), in which all
permutations in the family share a common domain X [4]. Lossy TDPs can be
instantiated in injective or lossy mode—in injective mode, every input x ∈ X
permuted to y ← P.eval(pk , x) can be inverted back to x ← P.inv(sk , y); in lossy
mode, the image of P.eval(pk , ·) is much smaller than X (and therefore, finding
x from P.eval(pk , x) is statistically-hard). Furthermore, for any adversary with
just the public key pk , it is hard to distinguish whether pk was sampled in
injective or lossy mode.

Syntax. A family of Lossy Trapdoor Permutations with Common Domain (TDP)
scheme P is a tuple of algorithms P = (P.gen,P.eval,P.inv) with the following
syntax:

– P.gen(1λ, b) →$ (sk , pk) generates a key-pair. Input b ∈ {0, 1} specifies
whether the generated instance is injective (b = 1) or lossy (b = 0).

– P.eval(pk , x) → y takes in a public key pk and input x and permutes x to y.
– P.inv(sk , y) → x takes in a secret key sk and permuted output y, and inverts

it to x (looking ahead, when in lossy mode, there are no properties required).

Correctness. A family of lossy TDPs is correct if for any key pair sampled in
injective mode, inputs x permuted to y can always be inverted to x.

Definition 1. Scheme P is correct if for all (sk , pk) ←$ P.gen(1λ, 1) and x ∈
X , x = P.inv(sk ,P.eval(pk , x)).

Security. For security of families of lossy TDPs, we require two properties. The
first property is that when in lossy mode, the size of the image of P.eval(pk , ·)
is much smaller than the domain X .

372 A. Bienstock et al.

Definition 2. Scheme P is L-lossy if for all (sk , pk) ←$ P.gen(1λ, 0),
|P.eval(pk , ·)| ≤ |X |/L, where |P.eval(pk , ·)| is the number of unique outputs
across x ∈ X .

The second property is that an adversary that is given some sampled pk should
not be able to tell if it was sampled in injective or lossy mode.

Definition 3. Scheme P is (T, εP)-secure if for all adversaries A running in
time T : Pr[b ←$ A(pk) : b ←$ {0, 1}; (sk , pk) ←$ P.gen(1λ, b)] ≤ 1/2 + εP.

Auerbach et al. show how to construct families of Lossy TDPs with a common
domain X = {0, 1}n from many assumptions [4]. Of note for our purposes, they
construct such a Lossy TDP family with lossiness L = 2n/4 from the Phi-Hiding
Assumption.

All-But-One Trapdoor Functions. We now define families of all-but-one
(ABO) trapdoor functions, which are a generalization of lossy trapdoor func-
tions. In an ABO family, each function has several branches. All of the branches
are injective, except for one branch that is lossy. Moreover, an adversary with
the public key pk of the ABO cannot tell which of the branches is lossy.

Syntax. A family of all-but-one trapdoor functions (ABO) scheme ABO is a tuple
of algorithms ABO = (ABO.gen,ABO.eval,ABO.inv) with the following syntax:

– ABO.gen(1λ, b) →$ (sk , pk) generates a key-pair. Input b ∈ {0, 1}v, for v ∈
poly(λ) specifies the branch that is lossy.

– ABO.eval(pk , b, x) → y takes in a public key pk , branch b, and input x and
outputs y.

– ABO.inv(sk , b, y) → x takes in a secret key sk , branch b, and output y, and
inverts it to x (for lossy branch b, there are no properties required).

Correctness. A family of ABOs is correct if for any key pair, inputs x mapped to
y for any injective branch can always be inverted to x (under the same branch).

Definition 4. Scheme ABO is correct if for all b �= b′ ∈ {0, 1}v, (sk , pk) ←$

ABO.gen(1λ, b), and x ∈ X , x = ABO.inv(sk , b′,ABO.eval(pk , b′, x)).

Security. For security of families of ABOs, we require two properties. The first
property is that for the lossy branch b of the function, the size of the image of
ABO.eval(pk , b, ·) is much smaller than the domain X .

Definition 5. Scheme ABO is L-lossy if for all b ∈ {0, 1}v and (sk , pk) ←$

ABO.gen(1λ, b), |ABO.eval(pk , b, ·)| ≤ |X |/L, where |ABO.eval(pk , b, ·)| is the
number of different outputs across all inputs x ∈ X .

The second property is that an adversary that is given some sampled pk should
not be able to tell which branch is lossy.

Interval Key-Encapsulation Mechanism 373

Definition 6. Scheme ABO is (T, εABO)-secure if for any b0, b1 ∈ {0, 1}v, for
all adversaries A running in time T : Pr[δ ←$ A(pk) : δ ←$ {0, 1}; (sk , pk) ←$

ABO.gen(1λ, bδ)] ≤ 1/2 + εABO.

Peikert and Waters, show how to construct a family of ABOs with domain
X = {0, 1}n and lossiness L = 2n/λ from the DDH assumption [29].

Forward-Secure Public-Key Encryption. We briefly define FS-PKE [17],
which is close to our definition of f -Bounded Forward-Secure Lossy TDPs with
Common Domain in Sect. 4.

Syntax Forward-Secure Public-Key Encryption (FSE) is a tuple of algorithms
FSE = (FSE.gen,FSE.up,FSE.enc,FSE.dec) with the following syntax:

– FSE.gen(1λ, f) →$ (SK 0,PK) on input f that specifies the maximal number
of update-epochs, outputs initial secret key SK 0 and public key PK .

– FSE.up(SK t) → SK t+1 updates input secret key SK t to SK t+1.
– FSE.enc(PK , t′,m) →$ c on input PK and epoch t′, encrypts m for epoch t′

in c.
– FSE.dec(SK t, t

′, c) → m on input SK t and t′, decrypts c for epoch t′ to
output m.

Note that t′ is an explicit input of FSE.dec(). For our usage of FSE.dec() within
our IKEMR construction, we will be able to extract the proper t′ from the rest
of the ciphertext.

Correctness. Correctness requires that, for t0 ≤ t1, the receiver with SK t0 can
decrypt c ← FSE.enc(PK , t1,m) to m.

Definition 7. Scheme FSE is correct if for all (SK 0,PK) ←$ FSE.gen(1λ, f),
for every t ∈ [f − 1],SK t ← FSE.up(SK t−1), all m ∈ M and any 0 ≤ t0 ≤ t1 ≤
f − 1, m = FSE.dec(SK t0 , t1,FSE.enc(PK , t1,m)).

Security. For any adversary with only the public key PK and any secret key
SK t′ for t′ > t∗, we require that it is hard to tell which of two same-length
messages was encrypted to epoch t∗:

Definition 8. Scheme FSE is (T, εFSE)-secure if for all adversaries A running
in time T :

Pr[b ←$ ADec �=t∗
�=c∗ (SK t′) : b←$ {0, 1}; f ←$A(); (SK 0,PK)←$FSE.gen(1λ, f);

(0 ≤ t∗ ≤ f − 1,m0,m1) ←$ ADec(PK); |m0| = |m1|;
c∗ ←$FSE.enc(PK , t∗,mb); (t∗ < t′ ≤ f)←$ADec �=t∗

�=c∗ (c∗);
for t ∈ [f − 1],SK t ← FSE.up(SK t−1)] ≤ 1/2 + εFSE,

where decryption oracle Dec �=t∗
�=c∗ on input (t, t◦, c) outputs FSE.dec(SK t, t

◦, c),
unless t ≤ t◦ = t∗ and c = c∗.

374 A. Bienstock et al.

3 Interval KEM with Re-Encapsulations

In this section, we introduce our Interval Key-Encapsulation Mechanism with
Re-Encapsulations (IKEMR) notion. We provide a security definition with a
decryption oracle and Replayable CCA-style security,2 but also, by simply
removing the decryption oracle, provide a CPA-style security notion. We also
explain that the secret state of IKEMR schemes must be large (following from
a lower bound of [19] for a different, simpler, symmetric-key primitive). Later,
we will present two different constructions for this IKEMR notion that provide
incomparable efficiency properties. We begin by defining the IKEMR notion:

Syntax. An Interval Key-Encapsulation Mechanism with Re-Encapsul-
ations (IKEMR) scheme IKMR is a tuple of algorithms IKMR =
(IKMR.gen, IKMR.enc, IKMR.dec, IKMR.re-gen, IKMR.del, IKMR.re-enc) with
the following syntax:

– IKMR.gen(1λ) →$ (st0,0, pk0) generates a secret state and a corresponding
public key for interval [t0, t1] with t0 = t1 = 0.

– IKMR.re-gen(st t0,t1) →$ (st t0,t1+1, pk t1+1) updates the secret state st t0,t1 to
st t0,t1+1, and outputs fresh public key pk t1+1; i.e., starting new epoch t1 + 1
and setting t1 ← t1 + 1.

– IKMR.del(st t0,t1 , �) → st t0+�,t1 on input secret state st t0,t1 , deletes from
the secret state the material needed to decapsulate keys encapsulated in the
epochs [t0, t0 + �) and outputs st t0+�,t1 ; i.e., setting t0 ← t0 + �.

– IKMR.enc(pk t1) →$ (k, c) on input public key pk t1 , encapsulates key k in
ciphertext c.

– IKMR.dec(st t0,t1 , c) → k on input secret state st t0,t1 and ciphertext c, decap-
sulates key k.

– IKMR.re-enc(pk t1 , c) →$ c′ re-encapsulates input ciphertext c with respect
to the input public key pk t1 .

Correctness. An IKEMR scheme is correct if secret state st t0,t1 can decapsulate
correctly any ciphertext that was originally created in any epoch t ∈ [t0, t1]. In
particular, even if some ciphertext is re-encapsulated during epoch t′ ∈ [t0, t1], if
the epoch in which the ciphertext was originally created (i.e., when IKMR.enc
was executed) is t < t0, then no correctness is required. In fact, as we will see
below, such ciphertexts must be secure even given st t0,t1 . More formally:

Definition 9. Given T ∈ N, and dictionary D s.t. D[i] = (ti, �i) for i ∈ [m]
containing items in [T] × [T] s.t. 0 < t1 ≤ · · · ≤ tm ≤ T and

∑i
j=1 �j ≤

ti for every i ∈ [m]: let t0 ← 0; (st0,0, pk0) ←$ IKMR.gen(1λ); and for all
t1 ∈ [T], (st t0,t1 , pk t1) ←$ IKMR.re-gen(st t0,t1−1) and for every i ∈ [m] s.t.
for (ti, �i) ← D[i], ti = t1, st t0+�i,t1 ← IKMR.del(st t0,t1 , �i). Scheme IKMR is
2 See Sect. 1 and the full version [8] for elaboration on this choice, mainly stemming

from the problem of handling decryptions of honest re-encapsulations of the challenge
ciphertext.

Interval Key-Encapsulation Mechanism 375

correct if for every such T and D, as well as r ≤ t1 − t0 +1, R = {t1ρ, . . . , t
r
ρ} ⊆

[t0, t1] s.t. t1ρ < · · · < trρ, (k, c1) ←$ IKMR.enc(pk t1ρ
), and for i ∈ [2, r], ci ←$

IKMR.re-enc(pk ti
ρ
, ci−1), k = IKMR.dec(st t0,t1 , cr).

Fig. 2. IKEMR IND-XIKMR security game, for X ∈ {CPA,RCCA}. Components only
needed for the IND-RCCAIKMR security game are written in green. (Color figure online)

Security. Now we define security for an IKEMR scheme. At a high level, this
security (i) allows for the challenge ciphertext encrypted in epoch t∗ to not be
made public (i.e., unavailable to the adversary by setting pub = 0) immediately,
(ii) allows for re-encapsulations of the challenge ciphertext before it is made
public, and (iii) is required if and only if once the challenge ciphertext is made
public (via pub = 1) after a re-encapsulation in epoch t1, for every state st t′

0,t′
1

that the adversary had exposed before the time of publication, either t∗ < t′0
or t1 > t′1 (and also the adversary waits until t0 > t∗ before exposing the state

376 A. Bienstock et al.

again). In particular, the last condition of the last item implies that even if the
adversary earlier exposed multiple states st t′

0,t′
1

such that t∗ ∈ [t′0, t
′
1], before the

challenge ciphertext was made public, then if the receiver re-generates its state
to output a fresh public key, is not exposed again until after t0 > t∗, and the
challenge ciphertext is re-encrypted with respect to the above public key, the
new ciphertext is required to be secure. Our indistinguishability notion is mildly
atypical as, once the challenge ciphertext is made public, the adversary is given
either (with equal probability 1/2) (i) the real key k0 encapsulated by the chal-
lenge ciphertext, followed by a random key k1, i.e., (k0, k1); or (ii) (k1, k0). The
adversary must guess if they are in world (i) or (ii). Additionally, for Replayable
CCA (RCCA) security, the adversary is allowed to see decryptions of ciphertexts
of its choosing, as long as they do not decrypt to k0 or k1. In the full version [8],
we provide justification for this slightly modified RCCA definition; e.g., it implies
RCCA-secure IPKER.

More formally, we define the IND-XIKMR (X ∈ {CPA,RCCA}) security game
for IKEMR in Fig. 2. The security game starts by sampling a key pair via
IKMR.gen and returning the public key to the adversary. It also initializes a
number of variables, including t0X , t1X ← −∞, which will be used to store the
endpoints of the latest state st t0X ,t1X

that the adversary exposed (these endpoints
are only updated when t1 > t1X). In addition, the game keeps track of the lat-
est epoch tR in which the challenge ciphertext was (re-)encapsulated, as well as
pub-chall which indicates if the challenge ciphertext has been made public (set
to 1 if so). Oracle Re-Gen() re-generates the state using IKMR.re-gen() and
returns the new public key. Del(�) deletes old key material for the last � epochs
from the state using IKMR.del(·, �), only if the updated interval would still be
valid; i.e., t0+ � ≤ t1. Oracle Chall(pub), if pub = 1, first checks if the receiver’s
state has not been exposed in the current epoch. If not, it runs IKMR.enc() to
obtain challenge ciphertext c∗ and encapsulated key k0, then samples random k1
and bit b, and finally returns ((kb, k1−b), c∗). If pub = 0, then no matter what,
Chall() runs IKMR.enc(), but does not output the challenge ciphertext c∗ or
keys (k0, k1); only stores them as well as the challenge epoch t∗ and tR ← t∗.
In both cases, the Chall oracle is thereafter disabled. Oracle Expose() always
returns the current state if the challenge ciphertext has not been made public
yet (pub-chall = 0). Otherwise, if the challenge ciphertext is public, Expose()
first checks that the challenge epoch t∗ is not at least t0, the lower endpoint for
which the current state remembers key material, since then the adversary can
trivially decapsulate the challenge ciphertext and win the game.

Finally, the re-encapsulation oracle: Re-Enc-Chall(pub). This oracle first
returns ⊥ if (i) the challenge ciphertext has already been made public
(pub-chall = 1), (ii) the challenge ciphertext has not already been created
(t∗ = −∞), or (iii) Re-Gen() has not been queried since the last Chall()
or Re-Enc-Chall() query. Now, if pub = 0, and the above checks have passed,
then Re-Enc-Chall() runs c∗

1 ←$ IKMR.re-enc(·, c∗
0), stores the re-encapsulated

ciphertext c∗
1, and updates tR ← t1 to the current epoch, but does not output

anything. If pub = 1, then in addition to the above checks, Re-Enc-Chall()

Interval Key-Encapsulation Mechanism 377

aborts if for the latest state st t0X ,t1X
that the adversary exposed, t1X = t1 (the

current epoch) and original challenge epoch t∗ ≥ t0X , since then the adversary
could trivially decapsulate the challenge ciphertext and win the game. Once
the checks have passed, Re-Enc-Chall() runs c∗

1 ←$ IKMR.re-enc(·, c∗
0), sets

pub-chall ← 1 and outputs ((kb, k1−b), c∗
1), where k0, k1 are the real and random

keys.
For RCCA security, there is also the Dec(c) oracle, written in green in Fig. 2.

This oracle uses the current state st t0,t1 to decrypt c using IKMR.dec() and
returns the resulting key k only if k /∈ {k0, k1}. Given this security game, we
now formally define secure IKEMR schemes:

Definition 10. For X ∈ {CPA,RCCA}, an IKEMR scheme IKMR is
(T, εind-xIKMR)-secure if for all adversaries A playing the security game IND-XIKMR

and running in time T : Pr[b ←$ IND-XIKMR(A)] ≤ 1/2 + εind-xIKMR.

Lower Bound on Secret State Size. Unfortunately, we prove a lower bound
that shows the size of the secret state of any IKEMR scheme must be propor-
tional to the current interval size, t1 − t0 (times the security parameter, λ). As
we write in Sect. 1, one way to show this would be to prove that IKEMR implies
a different and simpler symmetric-key primitive, called Self Encrypted Queue
introduced by Choi et al. [19], for which they also prove a corresponding lower
bound. Nevertheless, we provide in the full version [8] a direct lower bound proof
showing that the IKEMR secret state size must be Ω(λ · (t1 − t0)), as it more
clearly illustrates the intuition behind why this is the case. Moreover, the lower
bound holds for the simpler IKEM notion without re-encapsulations.

4 IKEMRConstruction from Lossy TDPs with Common
Domain

We now present our IKEMR construction from Lossy TDPs with Common
Domain that matches the lower bound on secret state size mentioned above.
This construction optimizes for small ciphertexts, as small as O(λ + log(T))
bits, where T is the total number of epochs, even after many re-encryptions.
We provide a RCCA-secure construction that additionally makes use of all-but-
one trapdoor functions and one-time signatures (based on a technique of [29]).
We also demonstrate that by simply removing the ABO and OTS, we obtain a
construction that is CPA-secure.

As an intermediate building block, we first define f-Bounded Forward-Secure
Lossy Trapdoor Permutations with Common Domain and instantiate it using
Lossy TDPs with Common Domain.

4.1 f-Bounded Forward-Secure Lossy Trapdoor Permutation
with Common Domain

We now introduce f -Bounded Forward-Secure Lossy TDPs (FS-TDPs) with
Common Domain. This primitive is similar to f -bounded Forward-Secure KEMs

378 A. Bienstock et al.

[17], except we require security properties corresponding to Lossy TDPs, instead
of KEMs.

Syntax. A family of f-Bounded Forward-Secure Lossy TDPs with Common
Domain (FSP) is a tuple of algorithms FSP = (FSP.gen,FSP.up,FSP.eval,
FSP.inv) with the following syntax:

– FSP.gen(1λ, f, b, t∗) →$ (SK 0,PK) on inputs b ∈ {0, 1} and t∗ that specify
whether the generated instance is always-injective (b = 1) or lossy in epoch
t∗ (b = 0), outputs initial secret key SK 0 and public key PK .

– FSP.up(SK t) → SK t+1 updates input secret key SK t to SK t+1.
– FSP.eval(PK , t′, x) → y on input PK and epoch t′, evaluates the permutation

for epoch t′ on x to give output y.
– FSP.inv(SK t, t

′, y) → x on input SK t and t′, inverts the permutation for
epoch t′ on y to give x.

Note that t′ is an explicit input of FSP.inv(). For our use of FSP.inv() within our
IKEMR construction, we will be able to extract t′ from the rest of the ciphertext.

Correctness. Correctness requires that in always-injective mode, for t0 ≤ t1, the
receiver with SK t0 can invert y ← FSP.eval(PK , t1, x) to x.

Definition 11. Scheme FSP is correct if for all (SK 0,PK) ←$ FSP.gen(1λ, f,
1, t∗), for every t ∈ [f − 1],SK t ← FSP.up(SK t−1), all x ∈ X and any 0 ≤ t0 ≤
t1 ≤ f − 1, x = FSP.inv(SK t0 , t1,FSP.eval(PK , t1, x)).

Security. For lossy mode with respect to given epoch t∗ < f , we require that the
size of the image of the evaluation algorithm with respect to epoch t∗ is much
smaller than the domain X :

Definition 12. Scheme FSP is L-lossy if for all (SK 0,PK) ←$ FSP.gen(1λ, f,
0, t∗), |FSP.eval(PK , t∗, ·)| ≤ |X |/L, where |FSP.eval(PK , t∗, ·)| is the number
of different outputs across all inputs x ∈ X .

Furthermore, for any adversary with only the public key PK and any secret key
SK t′ for t′ > t∗, we require that it is hard to distinguish whether they were
sampled in always-injective mode or lossy mode with respect to t∗ (even with t∗

known to the adversary):

Definition 13. Scheme FSP is (T, εFSP)-secure if for all adversaries A running
in time T :

Pr[b ←$ A(SK t′) : b ←$ {0, 1}; (0 ≤ t∗ ≤ f − 1) ←$ A();

(SK 0,PK) ←$ FSP.gen(1λ, f, b, t∗); (t∗ < t′ ≤ f) ←$ A(PK);
for t ∈ [f − 1],SK t ← FSP.up(SK t−1)] ≤ 1/2 + εFSP

Interval Key-Encapsulation Mechanism 379

FSP Construction. We now provide a simple construction based on a family
of Lossy TDPs with Common Domain P and PRG G. At a high level, FSP.gen
will generate f instantiations of P: for epoch t∗ and lossiness bit b, the t∗-th
instantiation of P will be generated with bit b; for all other epochs t, the t-th
instantiation of P will be generated with bit 1 (i.e., injective). The initial secret
key SK 0 will store a PRG s0 which can be expanded deterministically (in a chain)
to sample f secret keys and the public key PK will store the f corresponding
public keys. To update secret key SK t, the receiver simply expands the seed st

and deletes the output secret key corresponding to the t-th instantiation of P
(while still st+1 can be expanded to compute all future secret keys). To evaluate
with respect to epoch t, the sender simply evaluates the t-th instantiation of P
on x. Finally, to invert using SK t on input y and epoch t′, the receiver simply
expands st iteratively to get sk ′

t corresponding to the t′-th instantiation of P
and uses it to invert y. The scheme is as follows:

– FSP.gen(1λ, f, b, t∗): set t ← 0 and sample random s0 ←$ S. For i ∈ [0, f−1]\
{t∗}, compute (si+1, ri) ← G(si) and sample (sk i, pk i) ←$ P.gen(1λ, 1; ri).
For t∗, compute (st∗+1, rt∗) ← G(st∗) and sample (sk t∗ , pk t∗) ←$ P.gen(1λ, b;
rt∗). Set SK t ← (t, s0) and output PK ← {pk0, . . . , pkf−1}.

– FSP.up(SK t): Compute (st+1, ·) ← G(st) and set t ← t + 1.
– FSP.eval(PK , t, x): Compute and output y ← P.eval(pk t, x).
– FSP.inv(SK t, t

′, y): For i from t to t′: compute (si+1, ri) ←$ G(si). Then
sample (sk t′ , ·) ←$ P.gen(1λ, 1; rt′) and output x ← P.inv(sk t′ , y).

We now show that the above FSP construction is correct, L-lossy, and secure.
The correctness and L-lossiness clearly follows from that of P. Furthermore, for
security, since the FSP secret key SK t′ that the adversary receives will not
contain the lossy epoch t∗’s secret key sk t∗ of the lossy TDP family P (as it
will have been deleted), but only a random PRG seed past epoch t∗ in the
chain, security follows directly from that of P and G. The proof of the following
Theorem is provided in the full version [8].

Theorem 1. If P is correct, L-lossy, and (T, εP)-secure, and G is (T, εG)-secure
then the above FSP construction is correct, L-lossy, and (T ′, εP+T · εG)-secure,
for T ′ ≈ T .

4.2 IKMR Construction

Given the FSP primitive, we can now present our construction for IKEMR.
The construction IKMRΔ is formally presented in Fig. 3. It is parameterized by
an (efficiently computable) function Δ : N → N, such that for each input T ,
Δ(T) ≤ T . Intuitively, if the size of the active interval t1 − t0 stays roughly the
same throughout, then the public key size will be proportional to Δ(t1 − t0)
and the size of any ciphertext (regardless of the number of times it’s been (re-
)encapsulated), will be proportional to λ + β · (t1 − t0)/Δ(t1 − t0), where β =
O(log λ) is the number of bits needed to represent each epoch. In particular, if
Δ(T) = T , then all ciphertexts (no matter how many re-encapsulations) will

380 A. Bienstock et al.

be of size proportional to only λ (since β = O(log λ)). Moreover, even if Δ(T)
is small (even Δ(T) = 1), then the ciphertext grows with (almost) every re-
encapsulation, but only by a β factor, independent of λ.

In addition to the FSP primitive, our construction IKMRΔ utilizes a family
H of pairwise independent hash functions from {0, 1}n → {0, 1}�. For RCCA
security, � ≤ k − 2 log(1/εH), for some k = ω(log n) and negligible εH = negl(λ);
for CPA security, � ≤ log(L) − 2 log(1/εH), where L the lossiness of FSP. Addi-
tionally for RCCA security, we make use of an all-but-one trapdoor function
family ABO and one-time signature scheme OTS.

In IKMRΔ.gen, the receiver samples random hash function h ←$ H, gener-
ates an FSP instance (sk1, pk1) ←$ FSP.gen(1λ, t1 − t0+1, 1,⊥), sets t0, t1 ← 1,
and sets (SK [t1],PK [t1]) ← ((sk1, t0), (pk1, t0)). We will explain the choice
of instantiating FSP with f = t1 − t0 + 1 while explaining IKMRΔ.re-gen
and IKMRΔ.del below. Additionally, for RCCA security, the receiver sam-
ples an ABO instance (·, pk) ←$ ABO.gen(1λ, 0v), where v is the bit-length
of verification keys generated by OTS (ABO is only needed for security and
indeed the secret key of the ABO is not used by the receiver). For each
IKMRΔ.re-gen execution, the receiver increments t1 ← t1 + 1, samples a new
FSP instance (sk t1 , pk t1) ←$ FSP(1λ, t1 − t0 + 1, 1,⊥), sets (SK [t1],PK [t1]) ←
((sk t1 , t0), (pk t1 , t0)), and deletes from PK all entries except those for the latest
Δ(t1 − t0) + 1 ≤ t1 − t0 + 1 epochs. The reason we instantiate the FSP with
f = t1−t0+1 is that we will use the FSP epoch t′ ∈ [0, f −1] to (re-)encapsulate
IKEMR ciphertexts originally created in IKEMR epoch t0 + t′ ∈ [t0, t1] (expla-
nation continues after IKMRΔ.del below). Then in IKMRΔ.del(�), the receiver
simply deletes from the secret key SK the FSP keys sk t0 , . . . , sk t0+�−1, and
updates all other FSP keys sk t0+�, . . . , sk t1 , � times each. Therefore, even if
IKMRΔ.del(�i) is called m times such that

∑m
i=1 �i ≤ t′, the lower endpoint of

the active interval is moved from t0 to at most t0 + t′. Thus, the FSP instance
sampled when the lower endpoint was t0, having been updated at most t′ times
will still be able to decapsulate IKEMR ciphertexts originally created in IKEMR
epoch t0 + t′. However, if

∑m
i=1 �i > t′, moving the lower endpoint of the active

interval from t0 to after t0 + t′, then the FSP instance sampled when the lower
endpoint was t0, having been updated more than t′ times will no longer be able
to decapsulate IKEMR ciphertexts originally created in IKEMR epoch t0 + t′,
as required by security.

Thus, to encapsulate in epoch t1, IKMRΔ.enc samples random x ←$ {0, 1}n,
then evaluates the FSP for public key pk t1 on x and the FSP instantiation’s
epoch t1 − t0 to get output c1. For RCCA security, the encapsulator also (i)
samples OTS key pair (sk , vk); (ii) evaluates the ABO on branch vk and input
x to obtain output c2; and (iii) finally signs c2 using OTS with signing key sk to
obtain σ. The output key is h(x) and the ciphertext is (c1, vk , c2, σ) appended
with tuple (t1, t1). Note that in the RCCA-secure construction, vk , c2, σ will
remain untouched in the ciphertext even after re-encapsulations.

To re-encapsulate ciphertext (c1, vk , c2, σ, ((t0,0, t0,1), . . . , (tl−1,0, tl−1,1), (tl,0,
tl,1))) in epoch t1 on input public key with active interval [t0, t1], t0,0 is inter-

Interval Key-Encapsulation Mechanism 381

Fig. 3. TDP-based IKEM with Re-Encapsulations construction. Text written in greenis
only needed for IND-RCCAIKMR security. (Color figure online)

382 A. Bienstock et al.

preted as the epoch in which the ciphertext was originally created. Thus,
IKMRΔ.re-enc first returns ⊥ if t0 > t0,0 since if this is the case, then the receiver
must not be able to decapsulate the ciphertext anyway, as required for secu-
rity. For the RCCA-secure construction, the re-encapsulator also keeps vk , c2, σ
untouched in the eventually output ciphertext. Then, IKMRΔ.re-enc checks if
there is an FSP public key in PK for epoch tl,1+1. If so, then for t′ from tl,1+1
to t1: IKMRΔ.re-enc first retrieves (pk t′ , t′0) ← PK [t′], where t′0 was the lower
endpoint of the active interval when epoch t′ was created. Next IKMRΔ.re-enc
evaluates the FSP for public key pk t′ on c1 and the FSP instantiation’s epoch
t0,0 − t′0, as specified above, to get new output c′

1. Then, IKMRΔ.re-enc outputs
the same ciphertext as above, except c1 replaced by the final output c′

1 and tl,1
of the final evaluation epoch tuple replaced with t1. The latter is because each
of these tuples represent the evaluation intervals of epochs t′ in which the FSP
for the corresponding public key pk t′ was evaluated on c.

If there is no FSP public key in PK for epoch tl,1 + 1, then IKMRΔ.re-enc
just evaluates the FSP for public key pk t1 of epoch t1 on c1 and the FSP
instantiation’s epoch t0,0 − t0, as specified above, to get new output c′

1. Then,
IKMRΔ.re-enc outputs the same ciphertext as above, except c1 replaced by c′

1

and (t1, t1) appended to the list of evaluation epoch tuples (because we have
started a new evaluation interval).

Finally, to decapsulate ciphertext (c1, vk , c2, σ, ((t0,0, t0,1), . . . , (tl−1,0, tl−1,1),
(tl,0, tl,1))), for each tuple (ti,0, ti,0) for i from l to 0, sequentially for t′ from ti,1
to ti,0, the receiver first retrieves (sk t′ , t′0) ← SK [t′], where t′0 was the lower end-
point of the active interval when epoch t′ was created. Then, IKMRΔ.dec inverts
c1 using the FSP secret key sk t′ with respect to the FSP instantiation’s epoch
t0,0 − t′0 (the same epoch on which it was evaluated). For RCCA-security, the
receiver also verifies OTS.ver(vk , c2, σ) = 1 and recomputes c1 and c2 to check
well-formedness. Then, using the final inverse x ← c1 from above, IKMR.dec
outputs h(x) as the key.

Efficiency. Before formally analyzing the security of IKMRΔ we will provide
some bounds on the efficiency of the construction. It is clear that the size of
every public key is proportional to Δ(t1 − t0). We will now attempt to bound
the size of every (even re-encapsulated) ciphertext. First, the components needed
for RCCA security, vk , c2, σ only add O(λ) bits and stay untouched even after
several re-encapsulations. Now, for each re-encapsulation during epoch t1, if
the last epoch tl,1 in which the ciphertext was (re-)encapsulated is such that
tl,1 + 1 ∈ [t1 − Δ(t1 − t0) − 1, t1] then PK contains FSP public keys pk t′ for
t′ ∈ [tl,1 + 1, t1]. Therefore, the c part of the ciphertext can be re-evaluated
sequentially using the FSP public keys pk t′ for all such t′, and the last epoch tl,1
of the last evaluation interval of the ciphertext can be replaced with t1. Observe
that in this case, the ciphertext does not grow, assuming that each epoch can
be represented using some fixed β = O(log λ) number of bits. Indeed, only if
tl,1 + 1 /∈ [t1 − Δ(t1 − t0) − 1, t1] and therefore PK does not contain a FSP
public key for tl,1, must the ciphertext grow. In this case, IKMRΔ.re-enc skips

Interval Key-Encapsulation Mechanism 383

to evaluating the c part of the ciphertext on only pk t1 , and appends to the
ciphertext evaluation interval (t1, t1). Here, the ciphertext grows by O(β) bits.

Consider the case that some ciphertext is (re-)encapsulated in epochs t1 <
· · · < tr such that for each i ∈ [r], the active interval when epoch ti was created
was [ti0, t

i
1] (where ti1 = ti). Then, it is clear that if for any i ∈ [r], ti0 > t1,

the ciphertext size becomes 0, as the original creation epoch t1 is outside of the
active interval and thus the re-encryptor sets the ciphertext to ⊥. Otherwise, let
δi = Δ(ti1 − ti0) for i ∈ [n] and let δ∗

1 , . . . , δ
∗
r be δ1, . . . , δr sorted in ascending

order. In Lemma 1 below, we in fact show that the number of times G the
ciphertext grows is bounded by

G ≤ argmaxg

{

t1 +
g∑

i=1

δ∗
i ≤ tr

}

. (1)

Therefore, the ciphertext size is bounded by O(λ+G ·β), where β is the number
of bits used to represent each epoch.

Lemma 1. Given (re-)encapsulation epochs t1 < · · · < tr with active intervals
[ti0, t

i
1] when created, let δi = Δ(ti1 − ti0) for i ∈ [r]. Let δ∗

1 , . . . , δ
∗
r be δ1, . . . , δr

sorted in ascending order. Then, the number of times G the ciphertext can grow
is bounded by Eq. 1.

Proof. The ciphertext is first encapsulated at time t1 and last re-encapsulated at
time tr. Moreover, we know that the j-th re-encryption only grows the ciphertext
if tj1 − δj > tj−1

1 , or tj1 − tj−1
1 > δj . Thus, it must be that for those j s.t. the

above is true: t1 +
∑

j δj ≤ tr. Therefore, the maximum number G of such j

above corresponds to argmaxg{t1 +
∑g

i=1 δ∗
i ≤ tr}. �

Corollary 1. G is bounded by (tr − t1)/minj δj.

Corollary 2. If (t11 − t10) = · · · = (tr1 − tr0) = T1 − T0, then the number of times
G the ciphertext can grow is bounded by (tr − t1)/Δ(T1 − T0).

Security. Now, we show that construction IKMRΔ of Fig. 3 is correct and secure.
Before formally stating the theorem, we give some intuition on the security of the
scheme. First, recall that the ABO secret key is not stored by the receiver. Now,
let t∗ be the epoch in which the challenge ciphertext is originally created and let
tpub be the epoch in which the (re-)encapsulated challenge ciphertext is made
public. By the definition of the security game, it cannot be the case that any
st t0,t1 with t0 ≤ t∗ ≤ tpub ≤ t1 is ever leaked to the adversary. Indeed, it must
be that either t1 < tpub or t∗ < t0. In the former case, it is easy to see that no
information about the FSP secret key sk tpub generated for epoch tpub is leaked to
the adversary (beyond pk tpub). In the latter case, a version of sk tpub may be leaked
to the adversary, but only a version that has been updated past (its internal FSP
epoch for corresponding IKMRΔ) epoch t∗. Therefore, by the security of FSP
and ABO, the inverse of the final evaluations c1, c2 in the challenge ciphertext
can be many possible values, and thus the same can be said about the original

384 A. Bienstock et al.

random x ←$ {0, 1}n sampled for the challenge ciphertext. As a result, from x,
a key that is indistinguishable from random is extracted using the pair-wise
independent hash function h. Moreover, for the RCCA security proof, we are
able to always decrypt ciphertexts involving honest (re-)encapsulations using
the public key output in epoch tpub by first switching the ABO to lossy mode
on branch vk∗ before switching the FS-TDP to lossy mode, where vk∗ is the
sampled verification key for the challenge ciphertext, and then using the ABO to
decapsulate instead of the FS-TDP (in the hybrid worlds, the receiver keeps the
ABO secret key). Indeed, due to the unforgeability of the OTS scheme, the ABO
will never have to invert on branch vk∗, and thus this modified decapsulation
will always succeed. The proofs of the following Theorems are provided in the
full version [8].

Theorem 2. Let FSP be a family of correct, L-lossy, and (T, εFSP)-secure trap-
door permutations on common domain X = {0, 1}n; let H2 : {0, 1}n → {0, 1}�

be a family of pairwise independent hash functions where � ≤ k−2 log(1/εH), for
some k = ω(log n) and some negligible εH2 = negl(λ), where log(L) + log(L′) ≥
n + k; OTS be a strongly unforgeable one-time signature scheme where the ver-
ification keys are in {0, 1}v; and ABO be a family of correct, L′-lossy, and
(T, εABO)-secure all-but-one trapdoor functions on domain {0, 1}n. Then, for
T ′ ≈ T , the IKMR construction of Fig. 3 is correct and ((T ′, T 2 · (O(1/2λ) +
εOTS + 2 · (εABO + εFSP) + εH2))-secure) in game IND-RCCAIKMR of Fig. 2.

Note that given the Lossy TDP of [4] with L = 2n/4 and the ABO of [29] with
L′ = 2n/λ, we indeed have that log(L) + log(L′) = 5n/4 − log λ ≥ n + ω(lg n).

5 IKEMR Construction from FS-PKE

While the advantage of our TDP-based IKEMR construction is the small cipher-
text size, a disadvantage is the public key size. Using Forward-Secure Public-Key
Encryption (FS-PKE), we can reduce the public key to an element of constant
size at the cost of increasing the ciphertext size; furthermore, also the secret key
size is slightly increased.

IKMR Construction. Since, for our TDP-based IKEMR construction, we
already introduce FS-TDP as an abstraction layer, the primary difference
towards our FS-PKE-based construction is the omission of parameter Δ. For
security against active adversaries, we use an additional collision-resistant hash
function. This simplifies the description of our construction from Fig. 4 signifi-
cantly.

Initial key generation via IKMR.gen generates an FS-PKE key pair with one
(update-)epoch for the FS-PKE secret key as well as a key for the hash function.
Re-generating a key pair via IKMR.re-gen for interval [t0, t1] generates an FS-
PKE key pair with at most t1 − t0 + 1 update-epochs; the generated FS-PKE
public key becomes the new IKEMR public key and the new FS-PKE secret

Interval Key-Encapsulation Mechanism 385

Fig. 4. FS-PKE-based IKEM with Re-Encapsulations construction. Text written in
green is only needed for IND-RCCAIKMR security. (Color figure online)

key is added to the decapsulation interval. Consequently, the IKEMR public
key always only consists of a single FS-PKE public key. Deleting l slots from
the decapsulation interval via IKMR.del removes the oldest l FS-PKE secret
keys entirely; all remaining t1 − t0 − l FS-PKE secret keys are updated l times
each. This mechanism as well as the underlying rationale resemble those of our
FS-TDP-based construction: only decapsulation of ciphertexts initially created
after the beginning of the current decapsulation interval should be possible; in
particular, ciphertexts encapsulated earlier but re-encapsulated later than that
must not be recoverable.

At encapsulation via IKMR.enc, a randomly sampled key k is FS-PKE
encrypted to the last update-epoch t1 − t0 of the current public key; the result-
ing ciphertext is appended with the current epoch index t1. For re-encapsulation
of ciphertext c with public key PK via IKMR.re-enc, c is FS-PKE encrypted
to update-epoch t◦0 − t0, where t◦0 is the time at which the first version of c
was initially created and t0 was the oldest slot of the decapsulation interval

386 A. Bienstock et al.

Fig. 5. IRAM correctness and security game. Text written in green is only needed for
RINDIRM security. (Color figure online)

when PK was most recently re-generated. For active security, the a hash of the
history of (re-)encapsulation epochs is added to each encrypted payload. Due
to the FS-PKE re-encryption as well as the added hash value, the resulting
IKEMR ciphertext grows with the number of IKEMR re-encapsulations by the
encryption overhead of the FS-PKE scheme as well as the hash length. Addition-
ally, each (re-)encapsulation attaches the current epoch index to the ciphertext,
which is used at decapsulation via IKMR.dec to execute the matching FS-PKE
decryptions; note this epoch list is only attached once to the outmost encryption
layer.

Efficiency. Clearly, the public key size of this construction is constant for an
FS-PKE scheme with constant sized public keys. For clarity, we use the original

Interval Key-Encapsulation Mechanism 387

performance metric by Canetti et al. [17] that is based on the Gentry-Silverberg
HIBE [24], where the public key is of constant size and the overhead of secret
and public key is logarithmic in the total number of update-epochs, respectively.
Based on this, our ciphertexts grow linearly in r, which is the number of re-
encapsulations. This is increased by the ciphertext overhead of the underlying
FS-PKE as well as additional epoch indexes. In total, this yields a ciphertext
overhead of O(r·log(t1−t0)). Finally, each secret key in the decapsulation interval
is of size log(t1−t0), which yields a total secret key size of O((t1−t0)·log(t1−t0)).

Security. Intuitively, almost the same argument works to prove security of the
FS-PKE-based IKEMR construction as for our TDP-based one. For a challenge
ciphertext c∗ published at time t∗, none of the states exposed at time t′ < t∗

contains the corresponding FS-PKE secret key. Furthermore, as soon as the
initial creation time t1 of the first version of c∗ is deleted from the decapsulation
interval, the FS-PKE secret key from time t∗ was updated at least t∗ − t1 + 1
times. Based on this, instead of embedding a lossy TDP in epoch t∗, we replace
the key, respectively ciphertext, that is FS-PKE (re-)encrypted at time t∗ with
a random string of the same length. Detecting this modification breaks the FS-
PKE scheme. For security against active adversaries, we additionally bind the
attached list of re-encapsulation epochs via the encrypted hash value. Intuitively,
this yields the following Theorem that we formally prove in the full version [8].

Theorem 3. Let H be a (TH, εH)-collision-resistant hash function and FSE be a
correct and (TFSE, εFSE)-secure FS-PKE. Then the IKMR construction of Fig. 4
is correct and (T ′, εH +T 2 · εFSE)-secure in game IND-RCCAIKMR of Fig. 2, for
T ′ ≈ TH + TFSE.

Alternative via FS-KEM and AEAD. In the full version [8], we propose an
alternative construction based on FS-KEM and AEAD (instead of FS-PKE and
collision-resistant hash functions). Without a formal proof, we claim that the
security guarantees of both constructions are identical under suitable assump-
tions. The performance differences depend on the performance of the underly-
ing building blocks. As mentioned above, ciphertexts of the FS-PKE construc-
tion in Fig. 4 grow based on the FS-PKE’s encryption overhead oFSE and the
length of the hash lH: |c| = r ∗ (oFSE + lH) + |k|, where r is the number of
re-encryptions. Ciphertexts of the FS-KEM construction given in the full ver-
sion [8] grow based on the AEAD’s encryption overhead oAE and the FS-KEM’s
ciphertext length lFSK: |c| = r ∗ (lFSK + oAE) + |k|. The decryption time for
the FS-PKE based construction is linear in the number of re-encryptions times
the FS-PKE decryption time. If FS-KEM decryptions can be parallelized, the
decryption time for the FS-KEM based construction is only linear in the number
of re-encryptions times the AEAD decryption time. We also note that (without
assuming Random Oracles) collision resistant hash functions can only be built
from structured algebraic assumptions (see e.g., [12]), while AEAD can be built
from symmetric primitives.

388 A. Bienstock et al.

6 Minimizing Local State Size with External Storage

Our lower bound shows that the secret state st t0,t1 of any IKEM(R) scheme
must be of size at least t1 − t0. Storing a secret state of such large size may be
cumbersome for the receiver. Therefore, in this section, we introduce the IRAM
primitive which the receiver may use to split st t0,t1 into a small secret component
stsect0,t1 (of size O(1) in our construction) and public component stpubt0,t1 (still of size
O(t1 − t0) in our construction). Only the former needs to be securely stored by
the receiver, while the latter can be stored by a server. IRAM allows for a generic
interface to perform reads, writes, and deletions on the original state st t0,t1 , with
minimal overhead. Any data that is stored in st t0,t1 should remain secure even
if the adversary obtains several of the secret states before the data is written to
st t0,t1 and after it is removed from st t0,t1 . We provide a definition that allows the
server holding stpubt0,t1 to be actively corrupted (i.e., to deviate from the protocol
arbitrarily), and also a definition in which the server is honest-but-curious). We
call an IRAM that is secure even against an actively corrupted server, robust.
The IRAM primitive can easily be composed with IKEM(R) to yield a secure
IKEM(R) scheme with small secret state.

Interval RAM Definition. The IRAM primitive splits the storage of a
dynamically-sized database into a secret component stored by the client and
a public component stored by the server. For each read, write, and deletion
operation on some virtual location i of the database, the server first executes
a corresponding algorithm on the public state which outputs those cells C of
the new public state that are relevant for the client-side operation. The server
algorithm is deterministic based on the virtual location i of the database on
which the client is operating.3 The client then uses C received from the server to
perform the operation and possibly uploads new cells C ′ with which the server
should update the public state. In the case of an actively corrupted server, the
adversary may send incorrect cells C̃ to the client for operations, while for honest-
but-curious server, the cells sent by the server are always the correct ones, C.

Syntax. An Interval RAM (IRAM) scheme IRM is a tuple of algorithms IRM =
(IRM.init, IRM.srvr-op, IRM.read, IRM.write, IRM.del, IRM.srvr-up) with the
following syntax:

– IRM.init(1λ) →$ (stsec , stpub) initializes the secret and public state of IRAM.
– IRM.srvr-op(stpub , i, op) → (stpub , C) the server executes operation op ∈

{read,write,del} on virtual cell i of the database, updating stpub , and returns
those locations of stpub that are needed by the client to execute op, via C.

– IRM.read(stsec , C, i) → (stsec , , d) using cells C of stpub provided by the
server, the client returns the i-th entry of the database, d.

3 Deterministic server operations are common in outsourced database primitives, see
e.g., [9,10,14,22].

Interval Key-Encapsulation Mechanism 389

– IRM.write(stsec , C, i, d) →$ (stsec , C ′) using cells C of stpub provided by the
server, the client writes data d to the i-th entry of the database. In doing so,
the client returns new public cells C ′ relevant to virtual cell i with which the
server will replace the corresponding cells in stpub .

– IRM.del(stsec , C, i) →$ (stsec , C ′) using cells C provided by the server, the
client deletes the i-th database entry. In doing so, the client returns new
public cells C ′ relevant to virtual cell i with which the server will replace the
corresponding cells in stpub .

– IRM.srvr-up(stpub , C) → stpub the server places cells C in stpub (the location
of these cells in stpub are implicitly encoded in C).

Correctness and Security. Now we define the correctness and security for an
IRAM scheme. Intuitively, correctness dictates that when reading the i-th vir-
tual location of the database, the data which was last written to the i-th virtual
location must be returned. In the case of actively corrupted server, if the adver-
sary does not honestly execute IRM.srvr-op() or IRM.srvr-up at some point,
then the scheme can reject by outputting ⊥. Security dictates that if any data
d is written to cell i of the database, then it should remain private even if the
adversary obtained several of the IRAM secret states before the write operation
and obtains several secret states after data d of cell i is overwritten or deleted.

More formally, we define the correctness and security games XIND, X ∈
{R, ε} for IRAM in Fig. 5. The former is for Robust security, in which the adver-
sary may arbitrarily deviate from the protocol specification, and the latter is
for non-robust security, in which the adversary is assumed to be honest-but-
curious. The green text in Fig. 5 is only for RINDIRM. The game starts by
initializing the IRAM via IRM.init, and outputting the public state stpub to
the adversary. It also stores variable i∗ ← −1, which indicates if there is an
active challenge, and if so the cell for which this challenge has been queried
(i∗ = −1 means there is no active challenge). For each Write query, the adver-
sary specifies the virtual cell i and data d to write. The oracle first executes
(stpub , C) ← IRM.srvr-op(stpub , i,write) to perform the server-side write opera-
tion and obtain the cells C necessary for the client-side operation; in the case of
game RINDIRM, the adversary actually inputs cells C̃ to be used for the client-
side operation (which is reflected by the oracle setting C ← C̃). The oracle then
executes IRM.write on input C, i, and d to obtain new secret state stsec and
cells C ′ which it uses to update stpub via IRM.srvr-up. Then, the oracle stores
data d in its own dictionary D[i] ← d and checks if there is an active challenge
for cell i (i∗ = i), and if so resets i∗ ← −1, since this query will overwrite the
challenge data. This step is only applied in game RINDIRM if C ′ �= ⊥; i.e., only if
the IRM.write operation was successful. Finally, the oracle returns the updated
C ′ to the adversary. Oracle Del is specified in exactly the same way as Write,
except instead of executing IRM.write, it executes IRM.del on virtual cell i.

For each query to Chall, the game acts similarly as to Write, except it sets
challenge cell i∗ ← i (if C ′ �= ⊥ in the case of RINDIRM; i.e., the IRM.write oper-
ation was successful), and flips a random coin b to determine on which of d0 or d1
IRM.write should be executed. Then, the game disables the oracle. Oracle Read

390 A. Bienstock et al.

takes as input from the adversary virtual cell i to read. The oracle first executes
(stpub , C) ← IRM.srvr-op(stpub , i, read) to perform the server-side read opera-
tion and obtain the cells C necessary for the client-side operation; as with the
other oracles, in the case of game RINDIRM, the adversary actually inputs cells
C̃ to be used for the client-side operation. Also in the case of game RINDIRM,
if these adversarial cells do not match the cells from the honest IRM.srvr-op
operation, C̃ �= C, then the oracle sets att ← 1 to denote an active attack by
the adversary. Note that the deterministic nature of IRM.srvr-op, IRM.srvr-up
enables the game to detect active attacks in this way. Next, the oracle executes
IRM.read on input i and cells C to receive data d. In the case of RINDIRM, if
att = 0, the oracle checks that d is equal to D[i] which was last successfully
written to cell i of the database; if att = 1, the oracle checks that either d is
still equal to D[i] or d = ⊥ (indicating detection of the adversarial attack). For
whichever value of att, if the check fails, the adversary wins the game, denoted
by keyword win (in this case, the game just outputs the challenge bit b). In the
non-robust game INDIRM, the oracle only checks that d = D[i]. Finally, Expose
simply returns the current secret state stsec to the adversary, only if i∗ = −1,
i.e., only if there is not an active challenge.

Definition 14. For X ∈ {ε,R},4 an IRAM scheme IRM is (T, εxindIRM)-secure if
for all adversaries A playing the security game XINDIRM and running in time
T : Pr[b ←$ XINDIRM(A)] ≤ 1/2 + εxindIRM.

Due to space limitations, we defer the presentation of our tree-based IRM
construction that only uses symmetric-key cryptography to the full version [8].
Intuitively, it combines the concepts of encrypted RAM constructions for which
so far only FS guarantees were proven (e.g., [9,10,16]), with Memory Checker
constructions (e.g., [10,14,22]). For n stored entries, our construction has secret
state size of O(1) and read/write overhead of O(log n), which matches the lower
bound of [10] for FS encrypted RAM.

References

1. Alwen, J., Auerbach, B., Baig, M.A., Noval, M.C., Klein, K., Pascual-Perez, G.,
Pietrzak, K., Walter, M.: Grafting key trees: Efficient key management for over-
lapping groups. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 222–253. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/978-
3-030-90456-2_8

2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2_9

3. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/
978-3-030-64378-2_10

4 ε indicates the ‘empty string’.

https://doi.org/10.1007/978-3-030-90456-2_8
https://doi.org/10.1007/978-3-030-90456-2_8
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10

Interval Key-Encapsulation Mechanism 391

4. Auerbach, B., Kiltz, E., Poettering, B., Schoenen, S.: Lossy trapdoor permutations
with improved lossiness. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 230–250. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/978-3-030-
12612-4_12

5. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.
LNCS, vol. 12493, pp. 621–650. Springer, Heidelberg (Dec 2020). https://doi.org/
10.1007/978-3-030-64840-4_21

6. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (Jul 2023). https://
doi.org/10.17487/RFC9420, https://www.rfc-editor.org/info/rfc9420

7. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 198–228. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-030-
64378-2_8

8. Bienstock, A., Dodis, Y., Rösler, P., Wichs, D.: Interval key-encapsulation mech-
anism. IACR Cryptol. ePrint Arch. (2024), https://eprint.iacr.org/2024/1454, full
version of this article

9. Bienstock, A., Dodis, Y., Tang, Y.: Multicast key agreement, revisited. In: Gal-
braith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 1–25. Springer, Heidelberg
(Mar 2022).https://doi.org/10.1007/978-3-030-95312-6_1

10. Bienstock, A., Dodis, Y., Yeo, K.: Forward secret encrypted RAM: Lower bounds
and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 62–93. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/978-
3-030-90456-2_3

11. Bienstock, A., Rösler, P., Tang, Y.: Asmesh: Anonymous and secure messaging
in mesh networks using stronger, anonymous double ratchet. In: CCS ’23: 2023
ACM SIGSAC Conference on Computer and Communications Security 2023. ACM
(2023)

12. Bitansky, N., Degwekar, A.: On the complexity of collision resistant hash functions:
New and old black-box separations. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019,
Part I. LNCS, vol. 11891, pp. 422–450. Springer, Heidelberg (Dec 2019).https://
doi.org/10.1007/978-3-030-36030-6_17

13. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (May / Jun 1998).https://doi.org/10.1007/BFb0054122

14. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: 32nd FOCS. pp. 90–99. IEEE Computer Society Press (Oct
1991). https://doi.org/10.1109/SFCS.1991.185352

15. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013). https://
doi.org/10.1007/978-3-642-40041-4_23

16. Boneh, D., Lipton, R.J.: A revocable backup system. In: USENIX Security Sym-
posium. pp. 91–96 (1996)

17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (May 2003).https://doi.org/10.1007/3-540-39200-9_16

18. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(Aug 2003).https://doi.org/10.1007/978-3-540-45146-4_33

https://doi.org/10.1007/978-3-030-12612-4_12
https://doi.org/10.1007/978-3-030-12612-4_12
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://eprint.iacr.org/2024/1454
https://doi.org/10.1007/978-3-030-95312-6_1
https://doi.org/10.1007/978-3-030-90456-2_3
https://doi.org/10.1007/978-3-030-90456-2_3
https://doi.org/10.1007/978-3-030-36030-6_17
https://doi.org/10.1007/978-3-030-36030-6_17
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1109/SFCS.1991.185352
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-45146-4_33

392 A. Bienstock et al.

19. Choi, G., Durak, F.B., Vaudenay, S.: Post-Compromise Security in Self-Encryption.
In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptography (ITC
2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 199, pp. 25:1–
25:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITC.2021.25, https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITC.2021.25

20. Davidson, A., Deo, A., Lee, E., Martin, K.: Strong post-compromise secure proxy
re-encryption. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 19. LNCS, vol. 11547, pp.
58–77. Springer, Heidelberg (Jul 2019). https://doi.org/10.1007/978-3-030-21548-
4_4

21. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 254–285. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/978-
3-030-90456-2_9

22. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can mem-
ory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–520.
Springer, Heidelberg (Mar 2009).https://doi.org/10.1007/978-3-642-00457-5_30

23. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443,
pp. 317–346. Springer, Heidelberg (Apr 2019). https://doi.org/10.1007/978-3-030-
17259-6_11

24. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y.
(ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (Dec
2002).https://doi.org/10.1007/3-540-36178-2_34

25. Haidar, C.A., Passelègue, A., Stehlé, D.: Efficient updatable public-key encryption
from lattices. In: Advances in Cryptology - ASIACRYPT 2023 - 29th International
Conference on the Theory and Application of Cryptology and Information Security,
Guangzhou, China, December 4-8, 2023, Proceedings, Part V. Lecture Notes in
Computer Science, vol. 14442, pp. 342–373. Springer (2023)

26. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state
compromise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Heidelberg (Aug
2018).https://doi.org/10.1007/978-3-319-96884-1_2

27. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019).https://
doi.org/10.1007/978-3-030-17653-2_6

28. Miao, P., Patranabis, S., Watson, G.J.: Unidirectional updatable encryption and
proxy re-encryption from DDH. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023,
Part II. LNCS, vol. 13941, pp. 368–398. Springer, Heidelberg (May 2023).https://
doi.org/10.1007/978-3-031-31371-4_13

29. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Lad-
ner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 187–196. ACM Press (May
2008).https://doi.org/10.1145/1374376.1374406

30. Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016), https://signal.
org/docs/specifications/doubleratchet/

31. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296 (2018), https://eprint.iacr.org/2018/296

https://doi.org/10.4230/LIPIcs.ITC.2021.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.25
https://doi.org/10.1007/978-3-030-21548-4_4
https://doi.org/10.1007/978-3-030-21548-4_4
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-642-00457-5_30
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-031-31371-4_13
https://doi.org/10.1007/978-3-031-31371-4_13
https://doi.org/10.1145/1374376.1374406
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://eprint.iacr.org/2018/296

Interval Key-Encapsulation Mechanism 393

32. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
3–32. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-
1_1

33. Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of
group chats in signal, whatsapp, and threema. In: 2018 IEEE European Symposium
on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26,
2018. pp. 415–429. IEEE (2018)

34. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with
applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part V. LNCS, vol. 14008, pp. 3–34. Springer, Heidelberg (Apr
2023).https://doi.org/10.1007/978-3-031-30589-4_1

https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-031-30589-4_1

Pairing-based Cryptography

Tightly Secure Non-interactive BLS
Multi-signatures

Renas Bacho1,2(B) and Benedikt Wagner3

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
renas.bacho@cispa.de

2 Saarland University, Saarbrücken, Germany
3 Ethereum Foundation, Berlin, Germany

benedikt.wagner@ethereum.org

Abstract. Due to their simplicity, compactness, and algebraic struc-
ture, BLS signatures are among the most widely used signatures in
practice. For example, used as multi-signatures, they are integral in
Ethereum’s proof-of-stake consensus. From the perspective of concrete
security, however, BLS (multi-)signatures suffer from a security loss lin-
ear in the number of signing queries. It is well-known that this loss can
not be avoided using current proof techniques.

In this paper, we introduce a new variant of BLS multi-signatures
that achieves tight security while remaining fully compatible with regular
BLS. In particular, our signatures can be seamlessly combined with regu-
lar BLS signatures, resulting in regular BLS signatures. Moreover, it can
easily be implemented using existing BLS implementations in a black-box
way. Our scheme is also one of the most efficient non-interactive multi-
signatures, and in particular more efficient than previous tightly secure
schemes. We demonstrate the practical applicability of our scheme by
showing how proof-of-stake protocols that currently use BLS can adopt
our variant for fully compatible opt-in tight security.

Keywords: Non-Interactive · Multi-Signatures · BLS Signatures ·
Tightness · Pairings

1 Introduction

One of the most widely used digital signature schemes is due to Boneh, Lynn, and
Shacham (BLS) [17]. BLS signatures play a crucial role in many decentralized
applications such as Chia [19,33], randomness beacons [2,46], lotteries [11,30],
and Ethereum’s proof-of-stake (PoS) consensus [26]. They are not only simple
and efficient, but they also possess several attractive algebraic properties. A
particularly useful property is their support for efficient non-interactive multi-
signatures [12,14]. For instance, suppose Alice, Bob, and Charlie each have a
BLS secret key and use it to sign a message m individually. These individual
signatures can be aggregated into a single BLS signature for m, which can be
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 397–422, 2025.
https://doi.org/10.1007/978-981-96-0888-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_13&domain=pdf
http://orcid.org/0009-0007-7037-2458
http://orcid.org/0000-0002-4620-7264
https://doi.org/10.1007/978-981-96-0888-1_13

398 R. Bacho and B. Wagner

verified against a combination of their public keys. Informally, this aggregated
signature certifies that all three parties have signed m. This multi-signature
feature is central to Ethereum’s PoS mechanism, and it is also the subject of this
work. In particular, we focus on the concrete security of BLS multi-signatures,
as explained next.

Concrete Security of BLS. The security proof for BLS (multi-signatures)
follows a straightforward reduction approach: assuming an efficient adversary
A breaking BLS, one can construct an efficient reduction R that breaks the
Computational Diffie-Hellman (CDH) assumption. Specifically, if A breaks BLS
with probability ε, then R breaks CDH with probability at least ε′ = ε/Θ(qs),
where qs denotes the number of signatures that A learns. For practical values
of qs, this results in a relatively loose security bound: if qs = 230 and CDH is
128-bit hard, this proof only guarantees 98 bits of security for BLS.

Tightness and Impossibility. It would be highly desirable to have a tight secu-
rity proof, meaning a proof where ε′ ≈ ε. Unfortunately, such a tight proof is not
possible for BLS multi-signatures. This is because a tight proof for BLS multi-
signatures would imply a tight proof for single-signer BLS signatures, and exist-
ing impossibility results rule this out for unique signatures like BLS [4,21,35]. In
contrast, a certain non-unique variant of BLS signatures can be proven tightly
secure [31,36]. However, this variant sacrifices many of the desirable algebraic
properties of the original BLS scheme.

Our Goal. While BLS cannot achieve tight security, we can still explore the
following question:

Is there a tightly secure and non-interactive multi-signature compatible with
standard BLS signatures?

Here, we should clarify what we mean by compatibility. Clearly, it cannot mean
that signature verification is exactly the same as in BLS, due to the afore-
mentioned impossibility results [4,21,35]. Instead, the minimal requirement for
compatibility should be: (1) verification and signing algorithms can easily be
obtained by invoking BLS signing and verification in a black-box manner, and
(2) signers using the new scheme should be able to combine their signatures with
those of legacy signers using plain BLS, without requiring significant changes in
the verification process.

1.1 Our Contribution

We affirmatively address this question by constructing a variant of BLS multi-
signatures that is efficient, tightly secure, and compatible with standard BLS
signatures, as outlined next.

Security. Our scheme achieves tight security based on the CDH assumption in
the random oracle model (ROM). In particular, we do not rely on the algebraic
group model (AGM) [27] or the knowledge of secret key model (KOSK) [12].
We compare the security guarantees of our scheme with existing non-interactive
multi-signatures in Table 1.

Tightly Secure Non-interactive BLS Multi-signatures 399

Efficiency. We compare the efficiency of non-interactive multi-signatures in
Table 2. Our scheme is (almost) as efficient as regular BLS multi-signatures:
signing involves computing one hash followed by calling regular BLS signing,
while verification and aggregation maintain the same efficiency as regular BLS.
Notably, our scheme outperforms the previous tightly secure schemes, BNN07 [8]
and QLH12 [49], in terms of efficiency.
Compatibility and Applications. The core of our result is a new tightly
secure signature scheme. Intuitively, a signer randomly uses one of two BLS
keys for each message. Consequently, our signatures can be aggregated with
regular BLS signatures, resulting in a standard BLS signature1. Our scheme can
be implemented on top of existing BLS implementations in a black-box manner.
As an application, we consider proof-of-stake (PoS) blockchains utilizing BLS,
such as Ethereum [26]. In this context, our results demonstrate how to operate a
validator with tight security while remaining compatible with existing validators.
For further details, we refer to Sect. 5.

Remark 1 (Tightness and Compatibility). We argue that compatibility issues are
often a reason why many tight schemes are not even being considered for deploy-
ment in practice. As an example, note that a long line of research has focused on
Schnorr-compatible multi-party signatures, e.g. [1,22,43] and references therein.
Such schemes are currently being implemented in Bitcoin and even about to be
standardized. On the contrary, tightly secure variants which are not compatible
(e.g., [47,48]) are not even considered for deployment and purely academic. Our
scheme stands out as being compatible and tightly secure at the same time, which
means that it is much more likely that this will find applications in practice.

1.2 More on Related Work

In this section, we discuss related work in more detail. Especially, we discuss pre-
vious results on non-interactive multi-signatures in general, and results specifi-
cally on BLS multi-signatures.

Multi-signatures. Multi-signatures have been introduced by Itakura and Naka-
mura [34] and later formalized in the plain public key model by Bellare and
Neven [9]. In this model, each signer independently generates its own public-
secret key pair. A major concern in this setting are rogue-key attacks, in
which the adversary would choose its public key as a function of an honest
user’s key, allowing him to create forgeries easily. Such attacks have hindered
progress in early stages [37,38,41,42,45]. In order to prevent rogue-key attacks,
Boldyreva [12] has introduced the knowledge of secret key (KOSK) model for
multi-signature schemes which was adopted by many subsequent works [22,24,
39]. In this model, it is assumed that the adversary must reveal its secret keys
at public key registration directly. For a discussion on this model with its draw-
backs, we refer to [9,51]. Many multi-signature schemes with several rounds of
communication per signature have been proposed. Three-round multi-signature

1 The signature is not unique because it is valid for one of multiple possible keys.

400 R. Bacho and B. Wagner

Table 1. Comparison of non-interactive multi-signature schemes in the pairing setting.
We compare under which hardness assumption the scheme is proven secure, the asymp-
totic tightness loss of the security proof, and under which idealized model the scheme is
proven secure. Here, we do not consider proofs in the algebraic group model (AGM). We
denote the number of random oracle and signing queries by qh and qs, respectively, and
the advantage of an adversary against the scheme by ε. For LOSSW06 [39], � denotes
the bit-length of messages. Further, wBDHI denotes the weak bilinear Diffie-Hellman
inversion assumption [13], ROM denotes the random oracle model, and KOSK denotes
the knowledge of secret key model [12].

Scheme Assumption Loss Idealization
BLS [12] CDH Θ(qs) ROM
RY07 [51] CDH Θ(qs) ROM
BDN18 [14] CDH Θ(q2

h/ε) ROM
LOSSW06 [39]CDH Θ(�qs) KOSK
QX10 [50] CDH Θ(q2

sqh/ε) ROM
DGNW20 [25] wBDHI Θ(qh) ROM
BNN07 [8] CDH Θ(1) ROM
QLH12 [49] CDH Θ(1) ROM
BLSMS2 CDH Θ(1) ROM

Table 2. Comparison of non-interactive multi-signature schemes in the pairing setting.
We assume that all constructions are instantiated with a symmetric pairing e : G×G →
GT and compare the size of a public key, signature share, the size of the signature, the
computational cost per signer, and the computational cost for verification. We denote
the size of a group element by 〈G〉 (respectively 〈GT 〉), the number of signers by N ,
and the number of exponentiations, pairings, and k-multi-exponentiations for k ∈ N by
ex, pr, and exk, respectively. For LOSSW06 [39], � denotes the bit-length of messages.

Scheme Public Key Sig Share Signature Cost (Sig) Cost (Ver)
BLS [12] 1〈G〉 1〈G〉 1〈G〉 1ex 2pr
RY07 [51] 1〈G〉 1〈G〉 1〈G〉 1ex 2pr
BDN18 [14] 1〈G〉 1〈G〉 1〈G〉 1ex 2pr
LOSSW06 [39] 1〈GT 〉 2〈G〉 2〈G〉 2ex + 1ex� 2pr + 1ex�

QX10 [50] 1〈G〉 1〈G〉 1〈G〉 1ex 2pr + 1exN+1

DGNW20 [25] 1〈G〉 2〈G〉 2〈G〉 4ex 3pr + 1ex
BNN07 [8] 1〈G〉 1〈G〉 + 1 1〈G〉 + N 1ex (N + 1)pr
QLH12 [49] 1〈G〉 2〈G〉 + 1 4〈G〉 2ex 4pr
BLSMS2 2〈G〉 1〈G〉 + 1 1〈G〉 + N 1ex 2pr

schemes have been constructed in [5,9,14,28,40,41], all of which base their secu-
rity on standard assumptions, specifically the Decisional Diffie-Hellman (DDH)
assumption and the Discrete Logarithm (DLOG) assumption. Further, two-round

Tightly Secure Non-interactive BLS Multi-signatures 401

multi-signature schemes have been constructed [1,7,18,22,23,43,44,47,48,52],
some of which are partially non-interactive (i.e., the first signing round is
message-independent and can be preprocessed) [43,52], while others achieve tight
security [47,48]. In this work, we focus specifically on non-interactive multi-
signatures.

Non-interactive Multi-signatures. A non-interactive multi-signature scheme
is a multi-signature scheme which requires only a single round of communication
among a set of n parties to produce a signature. Namely, each party outputs a
signature share, and then the n signature shares can be (publicly) combined into
a single short signature. Despite its practical relevance, there are only a few non-
interactive multi-signatures in the literature, which we briefly discuss next. The
first non-interactive multi-signature scheme is the BLS multi-signature proposed
by Boldyreva [12]. As for single-signer BLS, its security is based on the Compu-
tational Diffie-Hellman (CDH) assumption and has a security loss of Θ(qs) where
qs denotes an upper bound on the number of allowed signing queries. Further, the
security proof relies on the KOSK model. Several follow-up works [6,14,51] have
proposed variants of the BLS multi-signature, eliminating the KOSK assump-
tion. We will later elaborate in more detail on these schemes. Subsequently,
several other schemes have been proposed [8,39]. The scheme proposed by Lu
et al. [39] is based on the Waters signature scheme [53]. Its security is based
on the CDH assumption and it has a security loss of Θ(�qs) where � denotes
the bit-length of messages. The security proof relies on the KOSK model. The
scheme proposed by Bellare et al. [8] is based on the aggregate signature scheme
of Boneh et al. [15]. Here, a user i’s signature σi is a key-prefixed BLS signa-
ture H(pki,m)ski with the multi-signature being simply the product of individual
signatures. Its security is based on the CDH assumption and comes with a secu-
rity loss of Θ(qs). Further, by using the Katz-Wang technique [31], the authors
obtain a tight multi-signature. Notably, their schemes do not rely on the KOSK
model. However, the final signatures require n+1 pairing evaluations for verifica-
tion. Later, Qian and Xu [50] have proposed a multi-signature scheme that only
requires two pairing evaluations (and one multi-exponentiation) for verification.
Its security is based on the CDH assumption and it has a large security loss
of Θ(q2sqh/ε) where qh denotes an upper bound on the number of allowed hash
queries. A follow-up work by Qian et al. [49] improves upon this by proposing
the first non-interactive multi-signature scheme with tight security and efficient
verification. Their scheme is based on the Waters signature scheme and uses the
Katz-Wang technique to obtain a tight security reduction from the CDH assump-
tion. Notably, their scheme does not rely on the KOSK model. Finally, Drijvers
et al. [25] have proposed a multi-signature scheme based on the Boneh-Boyen-
Goh hierarchical identity-based encryption (HIBE) scheme [13]. Its security is
based on the weak bilinear Diffie-Hellman inversion (wBDHI) assumption [13]
for type-3 pairings and has a security loss of Θ(qh). Notably, their scheme does
not rely on the KOSK model.

402 R. Bacho and B. Wagner

BLS Multi-signatures. As stated above, the proof of security for the original
BLS multi-signature by Boldyreva [12] relies on the KOSK model. This was
improved upon by the scheme of Ristenpart and Yilek [51] leveraging proofs of
possession (POPs) of secret keys to prevent rogue-key attacks without relying
on the KOSK model. Still, the security is based on the CDH assumption and has
a security loss of Θ(qs). Later, Boneh et al. [14] have proposed another variant
of the BLS multi-signature without relying on the KOSK model. Essentially,
this is achieved by rerandomization of public keys of users as pk′

i ← pkai
i where

ai := Hrand(pki, {pk1, . . . , pkN }) for a random oracle Hrand. Their security proof
is still based on the CDH assumption, but now additionally relies on rewinding
which results in a very loose bound of Θ(q2h/ε). More recently, Baldimtsi et al. [6]
gave a tight security reduction for the BLS multi-signature with rerandomization
of public keys based on the DLOG assumption. However, their security proof
relies on the algebraic group model (AGM) [27]. The recent Internet Engineering
Task Force (IETF) draft [16] specifies BLS signatures with proofs of possession
for use in practical deployments. In fact, this is how BLS signatures on the
Ethereum blockchain are used [26]. As such, none of the proposed variants for
BLS multi-signatures has a tight security proof without relying on the AGM.

1.3 Paper Organization

In Sect. 2, we give an informal but detailed technical overview of our construc-
tions and proof techniques. In Sect. 3, we formally recall relevant cryptographic
background and definitions. Then, in Sect. 4, we formally present our construc-
tion and its analysis. We conclude in Sect. 5, where we discuss an application to
proof-of-stake blockchains.

2 Technical Overview

In this section, we give an informal overview of our constructions and our proof
techniques. We do so in two steps: first, we introduce a new tightly secure variant
of standard BLS signatures. While there is already a tightly secure variant of
BLS [36], our variant is structurally more compatible with standard BLS as we
will see. In the second step, we then show how to lift this construction to the
multi-signature setting while preserving tight security.

2.1 Tightly Secure and Structured BLS Signatures

Let us first review BLS signatures and existing ways to construct tightly secure
variants thereof. For simplicity, most of this overview will be written assuming
a symmetric pairing e : G × G → GT , where G is a cyclic group of prime order
p with generator g.

BLS Signatures. A regular BLS signature for a message m with respect to
public key pk = gsk is given as σ = H(m)sk, where H : {0, 1}∗ → G is a random

Tightly Secure Non-interactive BLS Multi-signatures 403

oracle. It will be instructive to review the non-tight security proof of BLS [17]:
the goal is to give a reduction from the CDH assumption. This reduction gets as
input two group elements X = gx and Y = gy, and its goal is to compute gxy.
To this end, the reduction simulates the EUF-CMA security game with public
key pk = X for the adversary. While doing so, it splits the message space into
two partitions: (1) for most messages m, it will program H(m) := gγm , where
γm ∈ Zp is a random exponent known to the reduction. Note that for these
messages, the reduction can efficiently provide signatures to the adversary by
returning σ = Xγm , i.e., γm serves as a trapdoor; (2) for all other messages, it
will embed the challenge Y into the hash: H(m) := Y ·gγm . For these messages, the
reduction can efficiently obtain a CDH solution from a valid signature output by
the adversary. As long as the adversary only queries signatures for messages from
the first partition, and forges for a message in the second partition, the reduction
succeeds. Unfortunately, this partitioning leads to a security loss linear in the
number of signing queries. Indeed, it is known that such a loss is inherent for
unique signatures like BLS [4,21].

Random Bits for Tight Security. It is well-known that with a minimal
change, BLS signatures can be made tightly secure: to sign a message m, a
signer would pseudorandomly derive a bit βm ∈ {0, 1} from the message, and
then compute the signature as σ = H(m, βm)sk. This is often called the Katz-
Wang technique [31], and it enables the following tight security proof: for each
message m, the reduction programs H(m, βm) := gγm and H(m, 1−βm) := Y ·gγ′

m .
That is, the reduction embeds a trapdoor in one branch, and the challenge in
the second branch for each message. Obviously, the reduction can now compute
σ using the trapdoor. On the other hand, the bit βm∗ for the forgery message
m∗ remains pseudorandom for the adversary, and so with probability 1/2, the
(1 − βm∗)-branch is used in the forgery, which ultimately allows the reduction to
solve CDH. Observe that this proof does not partition the message space.

Algebraic Structure Lost. While the Katz-Wang technique gives an elegant
way to obtain tight security, we pay a price: BLS signatures have many desirable
algebraic features, which the random bit variant does not. For instance, assume
we have two BLS signatures σA = H(m)skA and σB = H(m)skB under different
keys for the same message m. Then, the product σA ·σB = H(m)skA+skB is a valid
signature under the product of the keys pkA · pkB . This observation underlies
the design of BLS multi-signatures. Now, consider the same setting for the Katz-
Wang variant: as each signer has to compute its bit pseudorandomly, the two
signatures are likely of the form σA = H(m, 0)skA and σB = H(m, 1)skB . When
we multiply them, we do not get a BLS signature under the product of keys.

Towards a Solution. The above example shows that, in order to preserve the
algebraic structure of BLS signatures, it is essential to ensure every signer uses
the same basis H(m) for a given message m. Still, resorting to standard BLS can
not lead to tight security [4,21], as already explained. To make progress towards
a solution, let us assume that we still have a pseudorandom bit βm, but use it
differently. Concretely, say a signer now holds two BLS public keys pk0 = gsk0

404 R. Bacho and B. Wagner

and pk1 = gsk1 . Then, we could define the signature to be σ = H(m)skβm . For
now, it is not clear at all that this leads to a tight security proof, but we can
already see that this is much more compatible with BLS than the Katz-Wang
variant: suppose Alice uses this variant, but Bob still uses regular BLS. Now
say we have their two signatures σA = H(m)skA,βm and σB = H(m)skB . Then,
the product σA · σB is a regular BLS signature for m with respect to the key
pkA,βm · pkB .

Proving Security. As the previous example shows, the variant above is struc-
turally compatible with regular BLS signatures. The question is if this variant is
also tightly secure. Indeed reusing the Katz-Wang proof technique does not work:
we only have one branch for each message. This means that for each message m,
we have to decide whether we would embed the challenge or a trapdoor, i.e., we
have to partition the message space. Fortunately, it turns out that we can still get
a tight security proof. Say our reduction gets as input the CDH challenge X = gx

and Y = gy. As in the proof for regular BLS signatures, we want to embed X in
the key and Y in some of the random oracle outputs. Of course, embedding X
in a fixed key, say in pk0, is not a good idea. This is because an adversary could
potentially always choose to use pk1 in its forgery and the scheme degenerates
to regular BLS. Instead, say we embed X randomly: we sample a bit β̂

$←−{0, 1}
at random and define pkβ̂ := X, and make sure that the reduction knows sk1−β̂ .
Next, the reduction partitions the message space. This has to be done in a way
that ensures that the reduction can always simulate signatures, namely:

– Trapdoor Partition. If βm = β̂, i.e., the signature is σ = H(m)x, the reduction
embeds a trapdoor into H(m).

– Challenge Partition. Otherwise, the signature is σ = H(m)sk1−β̂ , and the
reduction can embed Y into H(m) because it can always simulate such signa-
tures using sk1−β̂ .

Now, consider the adversary’s forgery (m∗, σ∗). We can argue that the bit bm∗ is
hidden from the adversary, so with probability 1/2 over the choice of this bit, the
message m∗ is in the challenge partition. Similarly, with probability 1/2 over the
choice of β̂ the forgery is with respect to pkβ̂ . This means that with probability
1/4, the forgery contains gxy, which the reduction can use to solve CDH. In this
way, we get a tight security proof.

2.2 Tightly Secure BLS Multi-signatures

Equipped with our tightly secure variant of BLS signatures, we now turn our
focus to multi-signatures. We will first recall common techniques to securely turn
BLS signatures into multi-signatures. Throughout, we consider the simplified
setting of two parties, Alice and Bob, signing a message m. Alice will generally
be assumed to be our honest party, whereas Bob is assumed to be adversarial.

BLS Multi-signatures. As we have mentioned above, we can combine the two
BLS signatures σA = H(m)skA of Alice and σB = H(m)skB of Bob into a single

Tightly Secure Non-interactive BLS Multi-signatures 405

signature σ = σA · σB for the key pkA · pkB . It is a well-established fact that
without further modification, this naive BLS multi-signature is insecure due to
so-called rogue-key attacks: Bob could choose its key as pkB := pk−1

A · gδ, which
allows him to create valid multi-signatures for public key pkA ·pkB = gδ without
talking to Alice. Prominently, there are two ways to solve this issue:

– Random Linear Combinations. Instead of defining the multi-signature as σA ·
σB, we define it as σaA

A · σaB

B and the aggregate public key as pkaA

A · pkaB

B ,
where (aA, aB) ∈ Zp are random coefficients derived using a random oracle.

– Proofs of Possession. A public key is only considered valid if it comes with
a proof of possession2 of the secret key [51]. Concretely, this proof is usually
implemented as G(pkB)skB (for Bob), i.e., as a BLS signature using a different
random oracle.

The latter approach is often used in practice, e.g., in Ethereum [26], and it
will also be our focus. Ristenpart and Yilek [51] have shown that this approach
is provably secure for regular BLS. Interestingly, their proof does not add any
additional security loss: the security loss for the multi-signature is the same
as the one for regular BLS. Luckily, their proof technique also applies to our
tightly secure variant, except for some complications in the asymmetric pairing
setting. This holds even if Alice uses our variant, and Bob uses regular BLS.
In the following, we review the challenge, the proof strategy by Ristenpart and
Yilek [51], and explain the complications when using asymmetric pairings.

A Closer Look at the Proof. When we want to prove the security of the
BLS multi-signature with proofs of possession, we have to simulate our honest
signer Alice for the adversary, and we have to turn the adversary’s forgery into
a CDH solution. While the former task did not change compared to the case of
standard signatures, the latter task is more challenging in the multi-signature
setting. This is because a forgery σ∗ is now valid for a message m∗ and some
combined key pkA · pkB , where pkB is made up by Bob. More concretely, say we
have embedded our CDH challenge (X, Y) = (gx, gy) in Alice’s key, such that
skA = x, and say we have managed that H(m∗) contains the challenge Y , i.e.,
H(m∗) = Y · gγm∗ for some γm∗ known to the reduction. For simplicity, assume
γm∗ = 0 for now. Then, the forgery has the form

σ∗ = H(m∗)skA+skB = gxy · Y skB .

So, if the reduction wants to compute the CDH solution gxy from σ∗, it has to
compute Y skB = gyskB . But the reduction does not know y and pkB = gskB is
made up by the adversary!

The Adversary Solves Our Problem. As already observed by Ristenpart and
Yilek [51], we can let the adversary solve our problem via proofs of possession:
The reduction would embed Y into random oracle G as well. In simplified terms,

2 Enforcing such a valid proof of possession can of course be modeled as just another
check in the signature verification algorithm.

406 R. Bacho and B. Wagner

assume that G(pkB) = Y . In this case, the proof of possession G(pkB)skB is
exactly the desired term Y skB , and the reduction can use it to compute gxy.
Complications in the Asymmetric Setting. So far, we have simplified nota-
tion by using the symmetric pairing setting. Indeed, the technique by Ristenpart
and Yilek [51] for regular BLS multi-signatures only works in the symmetric pair-
ing setting and the type-2 pairing setting where there is an efficiently computable
isomorphism ψ : G2 → G1. Making the analysis work for an asymmetric pairing
without such an isomorphism, also known as the type-3 setting3, leads to subtle
challenges, which we outline next. Namely, recall that above we have assumed
γm∗ = 0. In general, this will of course not be the case and the forgery will have
the form

σ∗ = H(m∗)skA+skB = (Y · gγm∗)skA+skB = gxy · Xγm∗ · Y skB · gγm∗ skB .

We have already discussed how the reduction can eliminate the term Y skB using
the proofs of possession. It can of course also eliminate the term Xγm∗ using
knowledge of X and γm∗ . In the symmetric pairing setting, the reduction can
also compute and remove the final term gγm∗ skB = pkγm∗

B . In the asymmetric
setting, however, the reduction has the adversarially chosen keys pkB only in one
group, say G2, but the signature σ∗ is in the other group G1, so the reduction
needs to compute gγm∗ skB

1 over G1. It is not clear how to do that4. Our solution
is to define the random oracles multiplicatively, namely, we set H(m) := pkγm

1−bm
for each message m. It turns out that this enables a tight proof in the type-3
setting.

3 Preliminaries

Here, we define our notation and recall relevant cryptographic primitives and
assumptions.
Notation. We denote the security parameter by λ and assume that all algo-
rithms get 1λ implicitly as input. We use standard cryptographic terminology
like negligible, overwhelming, PPT. To sample an element x uniformly at ran-
dom from a set W , we write x

$←−W . We write x ← D if D is a distribution or
a probabilistic algorithm. That is, writing y ← A(x) means that algorithm A
is run with uniformly sampled random coins on input x and y is the output. If
A is known to be deterministic, we write y := A(x) instead. We write T(A) to
denote the running time of A. We define [N] := {1, . . . , N} ⊆ N.
Computational Assumptions. Throughout this paper, we assume an algo-
rithm PGGen(1λ) that outputs cyclic groups G1,G2 of prime order p with gen-
erators g1 ∈ G1, g2 ∈ G2, and a non-degenerate5 pairing e : G1 × G2 → GT into
some target group GT .
3 The type-3 setting is indeed the most common setting in practice.
4 We could of course force Bob to additionally output its public key pkB over G1, but

this is generally not what happens in practice, so we refrain from doing so.
5 Non-degenerate means that eg1g2 is a generator of the group GT .

Tightly Secure Non-interactive BLS Multi-signatures 407

Definition 1 (CDHAssumption). We say that the CDH assumption holds rela-
tive to PGGen, if for all PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

⎡
⎣z = xy

∣∣∣∣∣∣

(G1,G2, g1, g2, p, e) ← PGGen(1λ),
x, y

$←−Zp, X1 := gx
1 , X2 := gx

2 , Y := gy
1

gz
1 ← A(G1,G2, g1, g2, p, e, X1, Y, X2)

⎤
⎦

Digital Signatures. We define the syntax of digital signatures and the standard
notion of unforgeability under chosen-message attacks [32].

Definition 2 (Signature Scheme). A signature scheme is a tuple of PPT
algorithms SIG = (Setup,Gen,Sig,Ver) with the following syntax:

– Setup(1λ) → par takes as input the security parameter 1λ and outputs global
system parameters par. We assume that par implicitly defines sets of public
keys, secret keys, messages and signatures, respectively. All algorithms related
to SIG take par at least implicitly as input.

– Gen(par) → (pk, sk) takes as input system parameters par, and outputs a
public key pk and a secret key sk.

– Sig(sk,m) → σ takes as input a secret key sk and a message m and outputs a
signature σ.

– Ver(pk,m, σ) → b is deterministic, takes as input a public key pk, a message
m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We require that SIG is complete in the following sense. For all par ∈ Setup(1λ),
all (pk, sk) ∈ Gen(par), and all messages m, we have

Pr [Ver(pk,m, σ) = 1 | σ ← Sig(sk,m)] = 1.

Definition 3 (EUF-CMASecurity for Signatures). Let SIG = (Setup,Gen,
Sig,Ver) be a signature scheme. Consider an adversary A. Further, consider the
game EUF-CMAA

SIG(λ) defined as follows:

1. Run par ← Setup(1λ) and (pk, sk) ← Gen(par).
2. Initialize Q := ∅ and let O be the following oracle:

– O(m) : Take as input m, set Q := Q ∪ {m}, and return σ ← Sig(sk,m).
3. Run A on input (par, pk) and with access to oracle O. Obtain (m∗, σ∗) from

A.
4. Output 1 if and only if Ver(pk,m∗, σ∗) = 1 and m∗ /∈ Q.

We say that SIG is EUF-CMA secure, if for all PPT adversaries A, the following
advantage is negligible:

AdvEUF-CMA
A,SIG (λ) := Pr

[
EUF-CMAA

SIG(λ) ⇒ 1
]
.

Next, we recall the signature scheme due to Boneh, Lynn, and Shacham [17].
It is well-known that it is (non-tightly) EUF-CMA secure based on the CDH
assumption [17,20]. Throughout, we assume that signatures are in G1 and public
keys are in G2. By symmetry, all of our results apply if the roles are reversed.

408 R. Bacho and B. Wagner

Definition 4 (BLS Signatures [17]). Consider a random oracle H : {0, 1}∗ →
G1. The signature scheme6 BLS = (BLS.Setup,BLS.Gen,BLS.SigH,BLS.VerH) is
defined via the following algorithms:

– BLS.Setup(1λ) → par: Define par := (G1,G2, g1, g2, p, e) ← PGGen(1λ).
– BLS.Gen(par) → (pk, sk): Sample sk $←−Zp and set pk := gsk

2 .
– BLS.SigH(sk,m) → σ: Set σ := H(m)sk.
– BLS.VerH(pk,m, σ) → b: Return b = 1 if eH(m)pk = eσg2. Otherwise, return

b = 0.

Lemma 1. If the CDH assumption holds relative to PGGen and H : {0, 1}∗ → G1
is modeled as a random oracle, then BLS is EUF-CMA secure. More precisely,
for every PPT algorithm A that makes at most Q queries to O, there is a PPT
algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLS (λ) ≤ Θ(Q) · AdvCDH

B,PGGen(λ).

Multi-signatures. Next, we give a definition for multi-signatures, specifically,
non-interactive multi-signatures. In such a scheme, each signer independently
generates its key pair via a key generation algorithm Gen. To sign a message,
each signer locally uses its secret key to compute a signature via an algorithm
Sig. A list of such signatures for the same message can then be combined into a
single signature via an algorithm Comb. As a result, one obtains a signature that
verifies for the given message and with respect to the list of public keys. Note that
trivially, we obtain a multi-signature scheme by letting Comb concatenate the
signatures. However, the goal should always be to construct non-trivial multi-
signatures in a sense that Comb outputs a signature much smaller than the
concatenation.

Definition 5 (Multi-signature Scheme). A multi-signature scheme is a
tuple of PPT algorithms MS = (Setup,Gen,Sig,Comb,Ver) with the following
syntax:

– Setup(1λ) → par takes as input the security parameter 1λ and outputs global
system parameters par. We assume that par implicitly defines sets of public
keys, secret keys, messages and signatures, respectively. All algorithms related
to MS take par at least implicitly as input.

– Gen(par) → (pk, sk) takes as input system parameters par, and outputs a
public key pk and a secret key sk.

– Sig(sk,m) → σ takes as input a secret key sk and a message m and outputs a
signature σ.

6 For BLS signatures, we make the hash function H an explicit parameter, which will
simplify notation later. Concretely, the proofs of possession in BLS multi-signatures
are implemented using BLS on a different hash function. For our constructions, we
omit adding every hash function as an explicit parameter to avoid clutter.

Tightly Secure Non-interactive BLS Multi-signatures 409

– Comb((pk1, σ1), . . . , (pkN , σN),m) → σ is deterministic, takes as input a list
of keys and signatures (pk1, σ1), . . . , (pkN , σN), and a message m, and outputs
a signature σ.

– Ver(pk1, . . . , pkN ,m, σ) → b is deterministic, takes as input a list of public
keys pk1, . . . , pkN , a message m, and a signature σ, and outputs a bit b ∈
{0, 1}.

We require that MS is complete in the following sense. For all par ∈ Setup(1λ),
all N ∈ N, all (pki, ski) ∈ Gen(par) for every i ∈ [N], and all messages m,
we have

Pr
[
Ver(pk1, . . . , pkN ,m, σ) = 1

∣∣∣∣
∀i ∈ [N] : σi ← Sig(ski,m),
σ := Comb((pk1, σ1), . . . , (pkN , σN),m)

]
= 1.

Below, we define unforgeability for multi-signatures following our syntax. As
in the unforgeability game for signatures, the adversary gets access to a target
public key and to a signing oracle. The only difference to the game for signatures
is that the forgery is now a combined signature, and is expected to come with a
list of public keys that includes the target public key.

Definition 6 (EUF-CMASecurity for Multi-Signatures). Let MS = (Setup,
Gen,Sig,Comb,Ver) be a multi-signature scheme. Consider an adversary A and
the game EUF-CMAA

MS(λ) defined as follows:

1. Run par ← Setup(1λ) and (pk, sk) ← Gen(par).
2. Initialize Q := ∅ and let O be the following oracle:

– O(m) : Take as input m, set Q := Q ∪ {m}, and return σ ← Sig(sk,m).
3. Run A on input (par, pk) and with access to oracle O. Obtain a list of keys

(pk∗
1, . . . , pk∗

N) and a pair (m∗, σ∗) from A.
4. Output 1 if and only if there is an index i ∈ [N] such that pk = pk∗

i , and it
holds that Ver(pk∗

1, . . . , pk∗
N ,m∗, σ∗) = 1, and that m∗ /∈ Q.

We say that MS is EUF-CMA secure, if for all PPT adversaries A, the following
advantage is negligible:

AdvEUF-CMA
A,MS (λ) := Pr

[
EUF-CMAA

MS(λ) ⇒ 1
]
.

4 Variants of BLS Multi-signatures

In this section, we present our new tightly secure variant of BLS multi-signatures.
To avoid repetition and to highlight the similarity to BLS, we do not only define
a single scheme, but rather a class of schemes BLSMSL, where L ∈ N is a
parameter. Informally, this parameter specifies how many instances of BLS are
combined. The interesting cases for this paper are as follows:

– L = 1: This corresponds to standard BLS multi-signatures with proofs of
possession as used for example in Ethereum [26]. Here, we give the to this
date tightest known proof without the algebraic group model. Essentially, the
security is not larger than for (single-signer) BLS signatures.

410 R. Bacho and B. Wagner

– L = 2: In this case, we obtain a tightly secure multi-signature based on CDH.

Interestingly, these constructions are fully compatible, i.e., one signer may use
L = 1 whereas a different signer may choose to use L = 2 or even7 L = 3. As
corollaries of the case L = 2, we obtain new tightly secure variants of (single-
signer) BLS signatures.

4.1 Parameterized Construction

Let H : {0, 1}∗ → G1 be a random oracle which informally takes the role of the
random oracle in BLS signatures. We first define helper algorithms KeyProve and
KeyVer. Roughly, these are used to prove possession of secret keys, which is a
common method to prevent rogue-key attacks [26]. The way they are commonly
implemented is as BLS signatures on the public key itself, using a different
random oracle G : {0, 1}∗ → G1:

– KeyProve(pk, sk) → π: Set π := BLS.SigG(sk, pk)
– KeyVer(pk, π) → {0, 1}: Return b := BLS.VerG(pk, pk, π).

Finally, we use a third random oracle Ĥ : {0, 1}∗ → {0, . . . , L − 1} that will be
used to randomly decide which key to use for signing. With these algorithms at
hand, we now define BLSMSL for L ∈ N.

– BLSMSL.Setup(1λ) → par:
1. par ← BLS.Setup(1λ)

– BLSMSL.Gen(par) → (pk, sk):
1. seed $←−{0, 1}λ

2. For all β ∈ {0, . . . , L − 1} : (pkβ , skβ) ← BLS.Gen(par)
3. sk := (sk0, . . . , skL−1, seed)
4. For all β ∈ {0, . . . , L − 1}: πβ := KeyProve(pkβ , skβ)
5. π := (π0, . . . , πL−1), pk :=

(
(pk0, π0), . . . , (pkL−1, πL−1)

)
– BLSMSL.Sig(sk,m) → σ:

1. βm := Ĥ(seed,m)
2. σ := BLS.SigH(skβm ,m)

– BLSMSL.Comb((pk1, σ1), . . . , (pkN , σN),m) → σ:
1. For all i ∈ [N]: parse pki =

(
(pki,0, . . . , pki,L−1), (πi,0, . . . , πi,L−1)

)
2. For all i ∈ [N]: βi := min{β ∈ {0, . . . , L−1} | BLS.VerH(pki,β ,m, σi) = 1}
3. σ̄ :=

∏N
i=1 σi, σ := (σ̄, β1, . . . , βN)

– BLSMSL.Ver(pk1, . . . , pkN ,m, σ) → b:
1. For all i ∈ [N]: parse pki =

(
(pki,0, . . . , pki,L−1), (πi,0, . . . , πi,L−1)

)
2. Parse σ = (σ̄, β1, . . . , βN)
3. p̄k :=

∏N
i=1 pki,βi

4. b := BLS.VerH(p̄k,m, σ̄) ∧ ∧
i∈[N] KeyVer(pki,βi

, πi,βi
)

7 One can also use our technique to prove tight security from CDH for L = 3, but we
do not see a good reason to use this scheme, so we omit presenting this proof.

Tightly Secure Non-interactive BLS Multi-signatures 411

Remark 2. In many applications, one would verify the proofs πi,β contained in
public keys once when a party registers.

Remark 3. For the case L = 1, this scheme is exactly the standard BLS multi-
signature scheme with proofs of possesion, noting that the step βm := Ĥ(seed,m)
can safely omitted as βm is fixed in this case in the signing algorithm. Similarly,
the bits βi can be omitted from the combined signature.

Remark 4. A combined signature has size size(G1) + N log L, where size(G1)
denotes the size of a single group element. That is, the size of the signature
still scales linearly with the number of signers N . However, for the interesting
parameters L ∈ {1, 2}, this means at most one bit per signer. In practice, this
can be ignored, as this only exceeds a small number of group elements for a
very large number of signers. Constructions with similar efficiency have been
proposed before [47,48].

Remark 5. One interesting feature of these multi-signatures is that they are
interoperable: one signer may decide to keep using standard BLS signatures
BLSMS1, and another signer may choose to use BLSMS2 or BLSMSL for arbi-
trary L ∈ N. The signatures can still be combined using obvious adaptations of
algorithm Comb. It is also clear that from the perspective of a single signer using
BLSMSL to sign, the security of BLSMSL applies even if the adversary may use
a different L. For example, a signer using L = 2 has tight security from CDH
even when other users use standard BLS multi-signatures.

4.2 Security with One Key: BLS Multi-signatures

Regular BLS multi-signatures correspond to the case L = 1. Ristenpart and
Yilek [51] gave a proof for this variant with a security loss similar to standard
BLS signatures (cf. Lemma 1). Their proof is in the type-2 pairing setting (fol-
lowing the well-known classification in [29]), i.e., it relies on the existence of an
efficiently computable isomorphism ψ : G2 → G1. As outlined in the technical
overview, we give a proof with the same security loss without this assumption.
In this way, our proof also applies to the type-3 pairing setting. We give the
proof in our full version [3] and note that the proof is a simplified version of the
proof of Theorem 2.

Theorem 1. Assume that H : {0, 1}∗ → G1, and G : {0, 1}∗ → G1 are ran-
dom oracles. If the CDH assumption holds relative to PGGen, then BLSMS1 is
EUF-CMA secure. More precisely, for every PPT algorithm A, there is a PPT
algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLSMS1(λ) ≤ 8QS + 4QSQH + 4QSQG

p
+ 4QS · AdvCDH

B,PGGen(λ),

where QH, QG, QS denote the number of queries to H,G, and O, respectively.

412 R. Bacho and B. Wagner

4.3 Two Keys and Tight Security

With L = 2, we get tight security from CDH, which is stated in the following
theorem.

Theorem 2. Assume that H : {0, 1}∗ → G1, G : {0, 1}∗ → G1, and Ĥ : {0, 1}∗ →
{0, 1} are random oracles. If the CDH assumption holds relative to PGGen, then
BLSMS2 is EUF-CMA secure. More precisely, for every PPT algorithm A, there
is a PPT algorithm B with T(A) ≈ T(B) and

AdvEUF-CMA
A,BLSMS2(λ) ≤ QĤ

2λ
+ 8 + 4QH + 4QG

p
+ 4 · AdvCDH

B,PGGen(λ),

where QH, QG, QĤ denote the number of queries to H,G, and Ĥ, respectively.

Proof. We present our proof as a sequence of games, where the first game G0 is
the EUF-CMA game. In games G1 to G2, we guess whether the adversary forges
with respect to public key pk0 or pk1. Say our guess is β̂ ∈ {0, 1}, meaning
we now assume that the forgery is with respect to pkβ̂ . Similarly, we ensure
that pkβ̂ is not the key that the honest signer would have used for the forgery
message. In games G3 and G4, we embed a random group element v into random
oracle outputs for oracle H and establish that we can simulate the signing oracle
efficiently without using skβ̂ . Intuitively, v and pkβ̂ will correspond to the CDH
instance. At this point, the proof for the single signer setting would end with a
reduction to the CDH assumption. As we are in the multi-signature setting, the
following steps are needed: in game G5, we establish that the proof of possession
for pkβ̂ can be simulated without using skβ̂ . In game G6, we then embed v
into the adversary’s proofs of possession. This is essential for eliminating terms
related to adversarially chosen keys in the forgery when we then reduce to CDH.
Let us now make all of this more precise.

Game G0: This is the EUF-CMA game for scheme BLSMS2 and adversary A,
with a conceptual modification in the winning condition. We recall this game to
fix notation. The game does the following to generate parameters and keys:

1. Set par := (G1,G2, g1, g2, p, e) ← PGGen(1λ).
2. Set Q := ∅ and initialize empty maps h[·], ĥ[·], and g[·].
3. Sample seed $←−{0, 1}λ and sk0, sk1

$←−Zp.
4. Set pk0 := gsk0

2 , pk1 := gsk1
2 and p̃k0 := gsk0

1 , p̃k1 := gsk1
1 .

5. Set π0 := G(pk0)sk0 and π1 := G(pk1)sk1 .
6. Set pk := ((pk0, π0), (pk1, π1))

Note that p̃k0 and p̃k1 are not used yet, but will be used in the following games.
The game gives par and pk to the adversary A. In addition, A gets access to
random oracles H, Ĥ, G, and a signing oracle O. For the proof it will be useful
that Ĥ(seed, ·) is implemented indirectly via a random oracle B : {0, 1}∗ → {0, 1}
that is implemented lazily and only known to the game. In this way, the game
will be able to distinguish queries made by A from queries it made itself. With
this in mind, the oracles are implemented as follows:

Tightly Secure Non-interactive BLS Multi-signatures 413

– H(m) : If h[m] = ⊥, sample h[m] $←−G1. Return h[m].
– Ĥ(seed′,m) : If ĥ[seed′,m] = ⊥, do:

1. If seed′ = seed, set ĥ[seed′,m] := B(m).
2. Else, sample ĥ[seed′,m] $←−{0, 1}.

Return ĥ[seed′,m].
– G(pk) : If g[pk] = ⊥, sample g[pk] $←−G1. Return g[pk].
– O(m) : Set Q := Q ∪ {m}, set βm := Ĥ(seed,m), return σ := H(m)skβm .

Finally, the adversary A outputs a list of public keys and a forgery. In the actual
EUF-CMA game for this scheme, each such public key is a pair of BLS keys with
associated proofs of possession, and the signature would contain one bit for each
such pair indicating which key is used. Without loss of generality8, we simplify
the game here by assuming that A directly outputs a set of BLS keys with their
proofs of possession. More precisely, we assume that A outputs a list of N pairs
(pk∗

i , π∗
i) ∈ G2 × G1, i ∈ [N] and a forgery (m∗, σ∗) ∈ {0, 1}∗ × G1. The game

does the following to determine if it outputs 0 or 1:

1. If m∗ ∈ Q, terminate with output 0.
2. Set V0 := {i ∈ [N] | pk∗

i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗
i = pk1}.

3. If V0 ∪ V1 = ∅, terminate with output 0.
4. If there is an i ∈ [N] with eG(pk∗

i)pk∗
i �= eπ∗

i g2, terminate with output 0.
5. Set h∗ := H(m∗) and p̄k∗ =

∏N
i=1 pk

∗
i .

6. If eh∗p̄k∗ �= eσ∗g2 terminate with output 0. Otherwise, terminate with output
1.

We have
AdvEUF-CMA

A,BLSMS2(λ) ≤ Pr [G0 ⇒ 1].

Game G1: In this game, we change the winning condition, such that the game
now additionally outputs 0 if the adversary ever queried Ĥ(seed,m∗). More pre-
cisely, the new check to evaluate the winning condition is as follows:

1. If m∗ ∈ Q, terminate with output 0.
2. If ĥ[seed,m∗] �= ⊥, terminate with output 0.
3. Set V0 := {i ∈ [N] | pk∗

i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗
i = pk1}.

4. If V0 ∪ V1 = ∅, terminate with output 0.
5. If there is an i ∈ [N] with eG(pk∗

i)pk∗
i �= eπ∗

i g2, terminate with output 0.
6. Set h∗ := H(m∗) and p̄k∗ =

∏N
i=1 pk

∗
i .

7. If eh∗p̄k∗ �= eσ∗g2 terminate with output 0. Otherwise, terminate with output
1.

8 A reduction can just drop the unused keys that it got from the adversary, and remove
the bits from the forgery.

414 R. Bacho and B. Wagner

Here, the highlighted line is what we added. If m∗ ∈ Q, the change has no
effect. Otherwise, if G0 and G1 differ in their output, then A must have queried
Ĥ(seed,m) for some m, concretely, for m∗. As A obtains no information about
seed, and seed is uniform over {0, 1}λ, the probability that this happens is at
most 1/2λ for each fixed random oracle query. With a union bound over all
random oracle queries, we get

|Pr [G0 ⇒ 1] − Pr [G1 ⇒ 1]| ≤ QĤ
2λ

.

Game G2: We let the game sample a bit β̂
$←−{0, 1} at the beginning, and again

change the winning condition. Now, it is as follows:

1. If m∗ ∈ Q, terminate with output 0.
2. If ĥ[seed,m∗] �= ⊥, terminate with output 0.
3. Set V0 := {i ∈ [N] | pk∗

i = pk0} and V1 := {i ∈ [N] \ V0 | pk∗
i = pk1}.

4. If V0 ∪ V1 = ∅, terminate with output 0.
5. Set βm∗ := Ĥ(seed,m∗). If Vβ̂ = ∅ or β̂ �= 1 − βm∗ , terminate with output 0.
6. If there is an i ∈ [N] with eG(pk∗

i)pk∗
i �= eπ∗

i g2, terminate with output 0.
7. Set h∗ := H(m∗) and p̄k∗ =

∏N
i=1 pk

∗
i .

8. If eh∗p̄k∗ �= eσ∗g2 terminate with output 0. Otherwise, terminate with output
1.

If V0 ∪ V1 = ∅ or ĥ[seed,m∗] �= ⊥, the change has no effect. Otherwise, note that
A’s view is independent of β̂ and βm∗ . Therefore, we get

Pr [G2 ⇒ 1] ≥ Pr
[
1 − βm∗ = β̂ ∧ Vβ̂ �= ∅

]
· Pr [G1 ⇒ 1].

As V0 ∪ V1 �= ∅, the probability of the event Vβ̂ �= ∅ is at least 1/2. Also, even
conditioned on a fixed β̂, the probability of 1 − βm∗ = β̂ is 1/2, as β̂ and βm∗ are
independent random variables. So we get

Pr [G2 ⇒ 1] ≥ 1
4 · Pr [G1 ⇒ 1].

Game G3: We change how oracle H is implemented. For this, we let the game
sample an element v

$←−G1 at the beginning. Further, the game now internally
holds a random oracle Γ : {0, 1}∗ → Zp, implemented lazily in the standard way,
and implements H as follows:

– H(m) : If h[m] = ⊥, do:
1. If 1 − B(m) = β̂, set h[m] := vΓ (m).
2. Else, set h[m] := g1

Γ (m).
Return h[m].

Tightly Secure Non-interactive BLS Multi-signatures 415

Assuming v �= 1 ∈ G1, the outputs of H are still uniform and independent of the
rest of the game and each other. The probability that v = 1 is at most 1/p, so
that we get9

|Pr [G2 ⇒ 1] − Pr [G3 ⇒ 1]| ≤ 1
p

.

Game G4: We change how the signing oracle O is implemented. After this
change, the secret key skβ̂ will no longer be used by the signing oracle:

– O(m) : Set Q := Q ∪ {m}, set βm := Ĥ(seed,m), and do:
1. If βm = β̂, return σ := p̃kΓ (m)

β̂
.

2. Else, return σ := H(m)sk1−β̂ .

Clearly, we did not change the signing oracle for the case that βm = 1 − β̂. For
the other case, i.e., βm = β̂, we have

H(m)skβm =
(

g1
Γ (m)

)skβm
= g

Γ (m)·skβ̂

1 = p̃kΓ (m)
β̂

.

Therefore, we get
Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: We change how the game computes πβ̂ . Namely, from now on, the
initial steps of the game are:

1. Sample β̂
$←−{0, 1} and v

$←−G1 and set par := (G1,G2, g1, g2, p, e) ←
PGGen(1λ).

2. Set Q := ∅ and initialize empty maps h[·], ĥ[·], and g[·].
3. Sample seed $←−{0, 1}λ and sk0, sk1

$←−Zp.
4. Set pk0 := gsk2

2 , pk1 := gsk1
2 and p̃k0 := gsk0

1 , p̃k1 := gsk1
1 .

5. Sample δ
$←−Zp and set g[pkβ̂] := gδ

1.
6. Set π1−β̂ := G(pk1−β̂)sk1−β̂ and πβ̂ := p̃kδ

β̂ .
7. Set pk := ((pk0, π0), (pk1, π1))

It is easy to see that the distribution of the outputs of G remains unchanged, as
δ is sampled uniformly. Also, the distribution of πβ̂ is not changed because

G(pkβ̂)skβ̂ = g
δskβ̂

1 = p̃kδ

β̂ .

We get
Pr [G4 ⇒ 1] = Pr [G5 ⇒ 1].

Note that the game can now be simulated without ever using skβ̂ , assuming pkβ̂

and p̃kβ̂ are given.
9 For the interested reader, this is where we use the indirection given by implementing
Ĥ(seed, ·) via B. If we would have queried Ĥ in the implementation of H, then A
could easily make the output of G2 and G3 differ by querying H(m∗).

416 R. Bacho and B. Wagner

Game G6: We change oracle G. Namely, the game now internally holds a ran-
dom oracle Δ : {0, 1}∗ → Zp, implemented lazily in the standard way, and imple-
ments G as follows:

– G(pk) : If g[pk] = ⊥, set g[pk] := vΔ(pk). Return g[pk].

If v �= 1 ∈ G1, the distribution remains unchanged, and the probability that
v = 1 is at most 1/p, so

|Pr [G5 ⇒ 1] − Pr [G6 ⇒ 1]| ≤ 1
p

.

Final Reduction: Before we give the final reduction breaking CDH, we examine
the forgery signature σ∗ after the changes we have made and provide intuition
how the reduction can solve CDH. To this end, assume G6 outputs 1. For ease
of notation, set x := skβ̂ and let y ∈ Zp be such that v = gy

1 . We assume that a
reduction is given gx

1 , gx
2 , and gy

1 , and its goal is to output gxy
1 . By the changes

we have made, such a reduction never explicitly needs x or y over Zp to simulate
G6. Recall that the final forgery (m∗, σ∗) of the adversary comes with a list of
pairs (pk∗

i , π∗
i) for i ∈ [N]. Denote by C ⊆ [N] the set of indices i such that

pk∗
i �= pkβ̂ . Intuitively, this corresponds to the set of indices for which the list

contains adversarially chosen public keys. For each i ∈ C, let sk∗
i ∈ Zp be such

that pk∗
i = g

sk∗
i

2 . We set � := |[N] \ C|. Due to the change in G2, we know that
� �= 0. By the verification equation, we know that

σ∗ = H(m∗)s̄k
∗

for s̄k∗ = �x +
∑
i∈C

sk∗
i .

By definition of H(m∗) (see G3) and recalling that 1 − βm∗ = β̂ (see G2), we
know that the discrete logarithm of σ∗ with respect to g1 is

Γ (m∗) · y · s̄k∗ = Γ (m∗) · y ·
(

�x +
∑
i∈C

sk∗
i

)
= Γ (m∗) ·

(
�xy + y ·

∑
i∈C

sk∗
i

)
.

Rearranging and taking to the exponent yields

gxy
1 =

(
σ∗1/Γ (m∗) ·

∏
i∈C

g
−ysk∗

i
1

)1/�

, (1)

assuming Γ (m∗) �= 0 for now. Further, for every i ∈ C, we get from the definition
of G (see G6), from v = gy

1 , and from the verification equation that

π∗
i = G(pk∗

i)sk
∗
i = g

yΔ(pk∗
i)sk∗

i
1 . (2)

Assuming Δ(pk∗
i) �= 0, rearranging Eq. (2) and plugging it into Eq. (1), we get

gxy
1 =

(
σ∗1/Γ (m∗) ·

∏
i∈C

π∗
i

−1/Δ(pk∗
i)

)1/�

. (3)

Tightly Secure Non-interactive BLS Multi-signatures 417

Now our main observation is that the right-hand side of Eq. (3) can efficiently
be computed. We now turn this into a reduction B solving the CDH problem if
G6 outputs 1 and assuming Γ (m∗) �= 0 and Δ(pk∗

i) �= 0:

1. The reduction B gets as input parameters G1,G2, g1, g2, p, e and elements
X1 = gx

1 , X2 = gx
2 , and Y = gy

1 . Its goal is to output gxy
1 .

2. The reduction sets par := (G1,G2, g1, g2, p, e) ← PGGen(1λ), samples
β̂

$←−{0, 1} as in G6, and defines pkβ̂ := X2, p̃kβ̂ := X1, and v := Y . It sets
up the remaining parameters and then simulates G6 for A, which is possible
efficiently without the knowledge of x and y.

3. When A outputs a forgery and G6 would output 1, the reduction aborts if
Γ (m∗) = 0 or Δ(pk∗

i) = 0 for any i ∈ C. Otherwise, it computes gxy
1 as in

Eq. (3) and outputs it.

We see that B perfectly simulates game G6 for A and the running time of B is
dominated by the running time of A. The probability that B has to abort before
using Eq. (3) is at most (QH + QG)/p. By the discussion above, we get

Pr [G6 ⇒ 1] ≤ QH + QG
p

+ AdvCDH
B,PGGen(λ).

��
Corollary 1. Consider the digital signature scheme obtained by fixing N = 1
signer in the multi-signature scheme BLSMS2. If the CDH assumption holds rel-
ative to PGGen, then this scheme is EUF-CMA secure, with a tight proof.

5 Application: PoS Blockchains with Opt-In Tightness

We anticipate that the insights presented in this paper will prove valuable in
the context of proof-of-stake (PoS) blockchain systems utilizing BLS multi-
signatures, such as Ethereum [26]. Within this domain, the interoperability of
our construction with regular BLS (see Remark 5) makes it particularly advan-
tageous.

PoS Blockchains and Multi-signatures. Let us begin by revisiting, in simpli-
fied terms, the relevant aspects of a proof-of-stake blockchain. In such a system,
participants can lock (aka stake) a designated quantity of coins and publicly
declare a BLS public key to register as validators. When a block is proposed, it
has to be attested by enough validators to be deemed valid. These attestations
consist of BLS signatures of the block with respect to the validators’ keys. What
ends up on chain is the combined BLS multi-signature.

Our Multi-signatures for Opt-In Tightness. Now envision a system in
which each validator can register a (small) number of BLS keys, such that sign-
ing with one of these keys means the validator attested the block. A natural
motivation to use this setup is to ensure that validators can continue function-
ing even if access to some keys is lost. We argue that such a system allows

418 R. Bacho and B. Wagner

for opt-in tightness without mandating a departure from BLS: Namely, consider
Alice taking the role of a validator. As she prioritizes concrete security, she would
register two BLS keys. Whenever she had to sign a block, she would pseudoran-
domly decide which key to use, thereby implementing our scheme. Note that
she can do so by implementing minimal logic on top of existing BLS implemen-
tations. Conversely, if Bob prefers to adhere to regular BLS signatures, he can
simply register a single key as usual. Importantly, Alice’s signatures and Bob’s
remain compatible and can be aggregated seamlessly, even without awareness
of Alice’s adoption of our scheme. Thus, each validator retains the autonomy to
independently select their preferred variant.

We remark that while some proof-of-stake chains indeed allow multiple BLS
keys [10] and can directly implement the setting above, Ethereum currently
does not10. Consequently, our research can be viewed as an argument for the
integration of such functionality in the future.

References

1. Alper, H.K., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized
witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol.
12825, pp. 157–188. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.
org/10.1007/978-3-030-84242-0_7

2. Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature
scheme. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022.
pp. 193–207. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560656

3. Bacho, R., Wagner, B.: Tightly secure non-interactive BLS multi-signatures. Cryp-
tology ePrint Archive, Paper 2024/1368 (2024), https://eprint.iacr.org/2024/1368

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5_10

5. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008. pp. 449–458. ACM Press (Oct 2008). https://
doi.org/10.1145/1455770.1455827

6. Baldimtsi, F., Chalkias, K.K., Garillot, F., Lindstrom, J., Riva, B., Roy, A.,
Sedaghat, M., Sonnino, A., Waiwitlikhit, P., Wang, J.: Subset-optimized bls multi-
signature with key aggregation. Cryptology ePrint Archive, Paper 2023/498 (2023),
https://eprint.iacr.org/2023/498, https://eprint.iacr.org/2023/498

7. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093,
pp. 650–678. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-
92068-5_22

8. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,

10 One potential workaround would involve registering multiple validators. However,
this approach necessitates locking twice the amount of funds as previously required,
underscoring the potential benefits of a native support for multiple keys.

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1145/3548606.3560656
https://eprint.iacr.org/2024/1368
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://eprint.iacr.org/2023/498
https://eprint.iacr.org/2023/498
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1007/978-3-030-92068-5_22

Tightly Secure Non-interactive BLS Multi-signatures 419

vol. 4596, pp. 411–422. Springer, Heidelberg (Jul 2007). https://doi.org/10.1007/
978-3-540-73420-8_37

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006. pp. 390–399. ACM Press (Oct / Nov 2006).https://doi.org/10.
1145/1180405.1180453

10. Blockchain, H.: Harmony – Creating A Validator. https://docs.harmony.one/
home/network/validators/creating-a-validator (2022), accessed: 2024-05-07

11. Blum, E., Leung, D., Loss, J., Katz, J., Rabin, T.: Analyzing the real-world security
of the algorand blockchain. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E.
(eds.) ACM CCS 2023. pp. 830–844. ACM Press (Nov 2023). https://doi.org/10.
1145/3576915.3623167

12. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003). https://doi.org/10.
1007/3-540-36288-6_3

13. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (May 2005). https://doi.org/10.1007/
11426639_26

14. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 435–464. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03329-3_15

15. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003).https://doi.org/10.1007/
3-540-39200-9_26

16. Boneh, D., Gorbunov, S., Wahby, R.S., Wee, H., Wood, C.A., Zhang, Z.: BLS Sig-
natures. Internet-Draft draft-irtf-cfrg-bls-signature-05, Internet Engineering Task
Force (Jun 2022), https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
05/, work in Progress

17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_30

18. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: Lattice-based multi-signature
with single-round online phase. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 276–305. Springer, Heidelberg (Aug 2022).https://
doi.org/10.1007/978-3-031-15979-4_10

19. contributors, C.: Chia network: Implementation of bls signatures. GitHub reposi-
tory (Nov 2022), https://github.com/Chia-Network/node-chia-bls, the green cryp-
tocurrency with Chialisp

20. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (Aug 2000).
https://doi.org/10.1007/3-540-44598-6_14

21. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_18

22. Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: Security
of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375
(2021), https://eprint.iacr.org/2021/1375

https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://docs.harmony.one/home/network/validators/creating-a-validator
https://docs.harmony.one/home/network/validators/creating-a-validator
https://doi.org/10.1145/3576915.3623167
https://doi.org/10.1145/3576915.3623167
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/05/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/05/
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://github.com/Chia-Network/node-chia-bls
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18
https://eprint.iacr.org/2021/1375

420 R. Bacho and B. Wagner

23. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. In: Garay, J. (ed.)
PKC 2021, Part I. LNCS, vol. 12710, pp. 99–130. Springer, Heidelberg (May 2021).
https://doi.org/10.1007/978-3-030-75245-3_5

24. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs,
I.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on
Security and Privacy. pp. 1084–1101. IEEE Computer Society Press (May 2019).
https://doi.org/10.1109/SP.2019.00050

25. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: Multi-signatures for con-
sensus. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020. pp. 2093–2110.
USENIX Association (Aug 2020)

26. Edgington, B.: Upgrading Ethereum - A technical handbook on Ethereum’s move
to proof of stake and beyond. Edition 0.3: Capella [wip] edn. (2023), https://
eth2book.info/capella/part3/helper/crypto/#bls-signatures

27. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0_2

28. Fukumitsu, M., Hasegawa, S.: A tightly secure ddh-based multisignature with
public-key aggregation. In: 2020 Eighth International Symposium on Computing
and Networking Workshops (CANDARW). pp. 321–327 (2020). https://doi.org/
10.1109/CANDARW51189.2020.00069

29. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006), https://eprint.iacr.org/2006/165

30. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. p. 51–68. SOSP ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757,
https://doi.org/10.1145/3132747.3132757

31. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. Journal of Cryptology 20(4), 493–514
(Oct 2007). https://doi.org/10.1007/s00145-007-0549-3

32. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(Apr 1988)

33. Inc., C.N.: Chialisp primer: 5. bls signatures (2024), https://chialisp.com/chialisp-
bls-signatures/

34. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development (71), 1–8 (1983)

35. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 537–553. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4_32

36. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003. pp.
155–164. ACM Press (Oct 2003). https://doi.org/10.1145/948109.948132

37. Langford, S.K.: Weakness in some threshold cryptosystems. In: Koblitz, N. (ed.)
CRYPTO’96. LNCS, vol. 1109, pp. 74–82. Springer, Heidelberg (Aug 1996).
https://doi.org/10.1007/3-540-68697-5_6

https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1109/SP.2019.00050
https://eth2book.info/capella/part3/helper/crypto/#bls-signatures
https://eth2book.info/capella/part3/helper/crypto/#bls-signatures
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1109/CANDARW51189.2020.00069
https://doi.org/10.1109/CANDARW51189.2020.00069
https://eprint.iacr.org/2006/165
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1007/s00145-007-0549-3
https://chialisp.com/chialisp-bls-signatures/
https://chialisp.com/chialisp-bls-signatures/
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1145/948109.948132
https://doi.org/10.1007/3-540-68697-5_6

Tightly Secure Non-interactive BLS Multi-signatures 421

38. Li, C.M., Hwang, T., Lee, N.Y.: Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders. In: Santis, A.D.
(ed.) EUROCRYPT’94. LNCS, vol. 950, pp. 194–204. Springer, Heidelberg (May
1995). https://doi.org/10.1007/BFb0053435

39. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate sig-
natures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (May / Jun
2006). https://doi.org/10.1007/11761679_28

40. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Designs, Codes and Cryptography 87, 2139 – 2164
(2019), https://api.semanticscholar.org/CorpusID:4053539

41. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: Extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 245–254. ACM
Press (Nov 2001). https://doi.org/10.1145/501983.502017

42. Michels, M., Horster, P.: On the risk of disruption in several multiparty signa-
ture schemes. In: Kim, K., Matsumoto, T. (eds.) Advances in Cryptology — ASI-
ACRYPT ’96. pp. 334–345. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

43. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: Simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol.
12825, pp. 189–221. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.
org/10.1007/978-3-030-84242-0_8

44. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020. pp. 1717–1731. ACM Press (Nov 2020). https://doi.org/
10.1145/3372297.3417236

45. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT’91. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (Nov 1993). https://doi.org/10.1007/
3-540-57332-1_11

46. Organization, D.: Drand - a distributed randomness beacon daemon. GitHub repos-
itory (2020), https://github.com/drand/drand

47. Pan, J., Wagner, B.: Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 597–627. Springer, Heidelberg (Apr 2023). https://
doi.org/10.1007/978-3-031-30589-4_21

48. Pan, J., Wagner, B.: Toothpicks: More efficient fork-free two-round multi-
signatures. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part I. LNCS,
vol. 14651, pp. 460–489. Springer, Heidelberg, Zurich, Switherland (May 26–30,
2024). https://doi.org/10.1007/978-3-031-58716-0_16

49. Qian, H., Li, X., Huang, X.: Tightly secure non-interactive multisignatures in
the plain public key model. Informatica (Vilnius) 3 (01 2012). https://doi.org/
10.15388/Informatica.2012.369

50. Qian, H., Xu, S.: Non-interactive multisignatures in the plain public-key
model with efficient verification. Information Processing Letters 111(2), 82–89
(2010). https://doi.org/10.1016/j.ipl.2010.10.015, https://www.sciencedirect.com/
science/article/pii/S0020019010003212

51. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (May 2007). https://doi.org/
10.1007/978-3-540-72540-4_13

https://doi.org/10.1007/BFb0053435
https://doi.org/10.1007/11761679_28
https://api.semanticscholar.org/CorpusID:4053539
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://github.com/drand/drand
https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1007/978-3-031-58716-0_16
https://doi.org/10.15388/Informatica.2012.369
https://doi.org/10.15388/Informatica.2012.369
https://doi.org/10.1016/j.ipl.2010.10.015
https://www.sciencedirect.com/science/article/pii/S0020019010003212
https://www.sciencedirect.com/science/article/pii/S0020019010003212
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13

422 R. Bacho and B. Wagner

52. Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash func-
tions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol.
14008, pp. 628–658. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-
3-031-30589-4_22

53. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (May 2005). https://doi.org/10.1007/11426639_7

https://doi.org/10.1007/978-3-031-30589-4_22
https://doi.org/10.1007/978-3-031-30589-4_22
https://doi.org/10.1007/11426639_7

Extractable Witness Encryption for KZG
Commitments and Efficient Laconic OT

Nils Fleischhacker1(B) , Mathias Hall-Andersen2 , and Mark Simkin3

1 Ruhr University Bochum, Bochum, Germany
mail@nilsfleischhacker.de

2 ZkSecurity, Bochum, Germany
mathias@zksecurity.xyz

3 Bochum, Germany

mark@univariate.org

Abstract. We present a concretely efficient and simple extractable wit-
ness encryption scheme for KZG polynomial commitments. It allows to
encrypt a message towards a triple (com, α, β), where com is a KZG
commitment for some polynomial f . Anyone with an opening for the
commitment attesting f(α) = β can decrypt, but without knowledge of
a valid opening the message is computationally hidden. Our construc-
tion is simple and highly efficient. The ciphertext is only a single group
element. Encryption and decryption both require a single pairing evalu-
ation and a constant number of group operations.

Using our witness encryption scheme, we construct a simple and highly
efficient laconic OT protocol, which significantly outperforms the state
of the art in most important metrics.

1 Introduction

The polynomial commitment scheme of Kate, Zaverucha, and Goldberg (KZG)
[24] is a powerful tool that has allowed for constructing a variety of advanced
cryptographic primitives. Many concretely efficient vector commitments [8] with
all kinds of additional functionalities or security properties are extensions of the
KZG polynomial commitment scheme [22,25,28,29,32]. Many of the currently
most efficient proof systems [9,16,26] make crucial use of KZG commitments as
part of their constructions.

In general, a polynomial commitment scheme allows for committing to a poly-
nomial f(X), such that one can later provide openings, attesting that f(α) = β
for some chosen evaluation point α. The polynomial commitment scheme should
ensure that the committed polynomial is at most of some degree d, that it is
position binding in the sense that one cannot open the commitment to two dif-
ferent evaluations at the same point α, and in some cases it may also be desirable
that the commitment itself hides the committed polynomial.

M. Simkin—Independent Researcher.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 423–453, 2025.
https://doi.org/10.1007/978-981-96-0888-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_14&domain=pdf
http://orcid.org/0000-0002-3971-9368
http://orcid.org/0000-0002-0195-6659
http://orcid.org/0000-0002-7325-5261
https://doi.org/10.1007/978-981-96-0888-1_14

424 N. Fleischhacker et al.

The KZG polynomial commitment scheme is highly efficient as both com-
mitments and openings consists of a single group element, no matter how large
the degree of the polynomial is. From a security perspective, the construction
requires a trusted setup and can be proven secure in the algebraic group model
(AGM) [15] under a q-type variant of the standard discrete logarithm assump-
tion.

Given the widespread usefulness of KZG commitments, it seems natural to
ask the following somewhat abstract questions: Can we expand the toolkit sur-
rounding KZG commitments in a fundamental way that would allow us to solve
an even larger set of problems via these polynomial commitments?

1.1 Our Contribution

In this work, we present a simple, concretely efficient extractable witness encryp-
tion [19,21] scheme for KZG commitments and show how it can be used to con-
struct concretely efficient laconic OT [10]. Concretely, we make the following
contributions:

Witness Encryption for KZG Commitments. We present an encryption
scheme that takes a KZG commitment com, evaluation point α, evaluation β,
as well as a message m as input and produces ciphertext ct. Correctness of
the encryption scheme allows anybody, who knows an opening for com that
attests that the committed polynomial evaluates to β at point α, to decrypt
the ciphertext ct. Informally, security of the encryption scheme ensures that
anybody, who can decrypt ct, can also compute a valid opening with respect
to (com, α, β). Now, if com is a commitment to polynomial f(X) and ct is an
encryption for (com, α, β), where β �= f(α), then ct computationally hides the
message, due to the evaluation binding property of the polynomial commitment
scheme.

We note that for any tuple (com, α, β), there exists an opening and for this
reason the vanilla notion of witness encryption as defined by Garg et al. [19]
would not suffice to guarantee that the message is hidden. By focusing on
extractable witness encryption as defined by Goldwasser et al. [21], we can ensure
that the message is hidden, whenever computing the opening is assumed to be
hard.

Our encryption scheme is highly efficient in terms of both ciphertext size
and computational costs. One ciphertext for the scheme as described above is
comprised of a single group element, encryption requires two group operations
and one pairing evaluation and decryption requires a single pairing evaluation.
The construction is generalized for multiple opening constraints. In that case
the costs grow linearly in the number of constraints.

Efficient Laconic Oblivious Transfer. Using our witness encryption scheme
for KZG commitments, we present a simple and highly-efficient protocol for
laconic oblivious transfer [10]. Oblivious transfer [27] is an interactive protocol

Extractable Witness Encryption for KZG Commitments 425

between a sender holding messages m0 and m1 and a receiver holding a choice
bit b. At the end of the protocol, the receiver should only learn mb and the
sender should learn nothing at all.

In laconic oblivious transfer, the receiver holds a database D ∈ {0, 1}n of n
choice bits and publishes a digest digest ← H(D), whose size is independent of
the size of D. The sender can then repeatedly choose a message pair (m0,m1),
an index i ∈ [n], and use the digest to compute a short message for the receiver,
which allows them to obtain mD[i]. As in regular OT, the receiver does not learn
anything about the other message and the sender does not learn anything about
the choice bit of the receiver.

Cho et al. [10] show that laconic OT is a useful building block for constructing
secure computation protocols that operate on large inputs and for constructing
multi-hop homomorphic encryption for RAM programs. Improving the efficiency
of laconic OT, directly translates to faster protocols for these applications.

Implementation and Benchmarks. The full laconic OT construction was
implemented1 in Rust. We provide benchmarks for various parameter regimes
and show that our laconic OT construction outperforms the state of the art in
most important metrics quite significantly.

1.2 Related Work

In the following, let us discuss related works from several research areas that
intersect with our work here.

Witness Encryption. Witness encryption was originally introduced by Garg
et al. [19], who presented a construction based on multilinear maps. Such encryp-
tion schemes take a statement x and a message m as input and produce a cipher-
text ct. Correctness guarantees that given a witness w with (x, w) ∈ R, one can
decrypt ct and security ensures that the message is computationally hidden,
if x �∈ L. It is important to note though that ct provides no explicit security
guarantees, when x ∈ L. In a different work, Garg et al. [17] showed that one can
construct general-purpose witness encryption from indistinguishability obfusca-
tion [2]. Two recent works by Tsabary [30] and Vaikuntanathan [31] present
construction based on new computational hardness assumptions. Extractable
witness encryption is a strengthening of the original notion that was introduced
by Goldwasser et al. [21]. It requires the existence of an extractor, which can
recover a witness w from any adversary that can break the semantic security
of the encryption scheme. How to construct general-purpose extractable witness
encryption is currently unclear. Garg et al. [18] show that the existence of a type
of special-purpose obfuscation would imply the non-existence of general-purpose
extractable witness encryption. Benhamouda and Lin [4] introduce the notion of
witness selectors, which lie somewhere between extractable and non-extractable

1 https://github.com/rot256/research-we-kzg.

https://github.com/rot256/research-we-kzg

426 N. Fleischhacker et al.

witness encryption. They require semantic security of the encryption to hold if
finding a witness for the relation is computationally hard.

While remotely practical general-purpose witness encryption from standard
assumptions currently seems out of reach, there are several works [3–5,7,20] that
construct different types of witness encryption for specific languages. In the work
of Garg and Srinivasan [20], they construct a primitive they call homomorphic
proof commitments with encryption. Given a commitment com and a message
m they allow for encrypting the message, such that a proof π that com is a
commitment to 0 or 1 can be used to decrypt the message. Benhamouda and
Lin [5] introduce witness encryption for NIZKs of commitments. Their scheme
allows for encrypting towards a tuple (com, G, y), where com is a commitment, G
is a function, and y is an output. The witness for decryption is a non-interactive
zero-knowledge proof for the statement “the message committed in com is m and
G(m) = y”. In the presented construction, the commitment and proof size are
at least linear in the statement size. Campanelli, Fiore, and Khoshakhlagh [7]
present succinct functional commitments with an associated witness encryption
scheme with short commitments and short openings. They introduce a new com-
putational hardness assumption and use it to prove their construction secure in
the AGM.

In contrast to these works, we construct an extractable witness encryption
scheme for a polynomial, rather than functional, commitment scheme from stan-
dard assumptions in the AGM. We rely on KZG commitments which have suc-
cinct commitments and openings and the ciphertexts of our construction are
equally succinct. Our construction is surprisingly simple and in particular much
simpler than the constructions discussed above. We believe this to be a signif-
icant advantage, when it comes to engineering and deploying a cryptographic
primitive in the real world.

Laconic OT. The concept of laconic OT was originally introduced in a work by
Cho et al. [10]. The authors presented a construction based on a special type of
encryption scheme in combination with garbled circuits. While asymptotically
interesting, their construction makes non-blackbox use of cryptographic objects
and is completely impractical when it comes to concrete performance.

Green, Jain, Van Laer [23] focus on concretely efficient laconic OT protocols,
but the security of their proposed construction relies on a new hardness assump-
tion they introduce. In addition, they require a generic and somewhat expensive
transformation via garbled circuits to achieve sender privacy. Döttling et al. [13]
present another laconic OT protocol based on the learning with errors (LWE)
with error leakage problem. They show that this problem reduces to standard
LWE for certain parameter ranges.

From a concrete efficiency perspective, our construction is highly efficient
in terms of bandwidth and computational overheads that are induced by the
individual OT executions. In comparison the work of Green, Jain, Van Laer, our
public parameters are smaller by a factor of 3-4x, our sender’s message size is
smaller by a factor ≈ 5x, and our receiver’s computation time is smaller by 1-6

Extractable Witness Encryption for KZG Commitments 427

orders of magnitude, depending on the precise setting. In comparison to the work
of Döttling et al., our sender’s OT message is smaller by 5 orders of magnitude.
We note that reducing the sender’s message size is of crucial importance, as this
is the message that needs to be sent once for every single OT invocation. Our
results are particularly surprising considering how much simpler our construction
is compared to prior works. We provide a detailed discussion of the concrete
efficiency of our construction in Sect. 6.

The main disadvantage of our construction is that it requires the same “pow-
ers of tau” trusted setup as the KZG commitment scheme. This setup needs to
be generated either by a single trusted party or by multiple separate parties via
secure computation. While needing a, rather large, trusted setup is certainly a
drawback, we note that precisely this type of distributed setup generation has
already been successfully performed in practice on a large scale with thousands
of participants2 and these setups can be reused for our scheme. We leave achiev-
ing the same efficiency, without relying on a large trusted setup as an exciting
open direction for future work.

Finally, we would like to note that the laconic private set intersection con-
struction of Aranha et al. [1] shares similarities with our final laconic OT con-
struction in this work. It is conceivable that their construction could be modified
into a labelled laconic private set intersection, which would then allow for trans-
forming it into a laconic OT construction. Even assuming all of this being true,
the resulting construction would require a setup that is at least twice as large as
ours and it would only provide security against a semi-honest sender, whereas
our construction is secure even when the sender is actively corrupt.

2 Preliminaries

In this section, we will recall some notation and standard definitions that we
will use throughout the paper.

Notation. We denote by λ ∈ N the security parameter, by poly(λ) any function
that is bounded by a polynomial in λ and by negl(λ) any negligible function in
λ. An algorithm is PPT if it is modeled by a probabilistic Turing machine with
a running time bounded by poly(λ). Let S be a set. We write x ← S for the
process of sampling an element of S uniformly at random. For n ∈ N, we write
[n] to denote the set {1, . . . , n}. For a vector v ∈ Sn and i ∈ [n], we write vi to
denote its i-th component.

2.1 Algebraic Group Model

Some of our proofs will rely on the algebraic group model, which was intro-
duced by Fuchsbauer, Kiltz, and Loss [15]. In this model, one considers alge-
braic algorithms and, in particular, an algebraic adversary. Let G of prime order

2 https://ceremony.ethereum.org.

https://ceremony.ethereum.org

428 N. Fleischhacker et al.

q. Whenever an algorithm returns a value Y ∈ G, it must also provide an alge-
braic representation of that element (e1, . . . , en), such that Y =

∏i=1
n Xei

i , where
(X1, . . . , Xn) are group elements the algorithm has previously seen.

2.2 Pairings and Assumptions

Let GGen be the parameter generation algorithm that takes the security
parameter λ as input and returns (G1,G2,GT , g1, g2, q, e) as its output, where
G1,G2,GT are groups of prime order p = p(λ), where g1 ∈ G1 and g2 ∈ G2 are
generators and where e : G1 × G2 → GT is a bilinear map. For i ∈ {1, 2, T}, we
write [α]i as a shorthand notation for gα

i and we write [α]i + [β]i = [α + β]i as
a shorthand notation for the multiplication of two group elements. The type of
pairing is irrelevant for our applications.

Definition 1 (�-DLOG Assumption). The �-DLOG assumption holds with
respect to GGen, if for any λ ∈ N and any PPT adversary A, it holds that

Pr

[

τ = τ ′ :
par ← GGen(1λ), τ ← Fp

τ ′ ← A(par, ([τ0]1, . . . , [τ �]1, [1]2, [τ]2))

]

≤ negl(λ),

where the probability is taken over the random coins of the group generation
algorithm and the adversary and over the uniform choice of τ .

Remark 1. Throughout the paper we will omit explicitly spelling out the group
parameter generation and we will assume all involved parties are always implic-
itly provided with the parameters.

2.3 Polynomial Commitments

A polynomial commitment allows for computing a short value com for a polyno-
mial f of potentially high degree over a finite field F. Later on, one can compute
short openings that certify that the polynomial committed to by com evaluates
to β ∈ F at some position α ∈ F. Polynomial commitment should be binding in
the sense that it should be impossible to open the same point to two different
values.

Definition 2 (Polynomial Commitments). A polynomial commitment over
F is a tuple of PPT algorithms PC = (Setup,Commit,Open,Verify) defined as
follows:

ck ← Setup(1λ, 1d): The setup algorithm takes security parameter λ and degree
upper bound d as input and returns commitment key ck.

com ← Commit(ck, f): The commitment algorithm takes commitment key ck and
polynomial f ∈ F[X] as input and returns commitment com.

π ← Open(ck, f, α, β): The opening algorithm takes commitment key ck, polyno-
mial f ∈ F[X], and points α, β ∈ F as input and returns openings π.

Extractable Witness Encryption for KZG Commitments 429

b ← Verify(ck, com, π, α, β): The verification algorithm takes commitment key ck,
commitment com, opening π, and points α, β ∈ F as input and returns a bit
b.

Definition 3 (Correctness). A polynomial commitment scheme PC = (Setup,
Commit,Open,Verify) over F is correct, if for all λ, d ∈ N, all ck ← Setup(1λ, 1d),
all polynomials f ∈ F[X] of degree at most d, all com ← Commit(ck, f), all
α, β ∈ F, and all π ← Open(ck, f, α, β) it holds that Verify(ck, com, π, α, β) = 1.

Definition 4 (Binding). A polynomial commitment scheme PC = (Setup,
Commit,Open,Verify) over F is binding, if for all λ, d ∈ N and all PPT adver-
saries A it holds that

Pr

⎡

⎢
⎣

β0 �= β1

∧Verify(ck, com, π0, α, β0) = 1
∧Verify(ck, com, π1, α, β1) = 1

:
ck ← Setup(1λ, 1n)

(com, α, β0, β1, π0, π1) ← A(ck)

⎤

⎥
⎦ ≤ negl(λ).

2.4 KZG Commitments

Let us recall the KZG polynomial commitment scheme. The scheme’s public
parameters are powers of a secret point τ in the exponent of a group generator.
Committing to a polynomial is done by evaluating it in the exponent at point
τ , which can be done using the public parameters, but without knowledge of τ .

Fig. 1. The KZG polynomial commitment scheme.

Theorem 1 ([9]). If the d-DLOG assumption holds with respect to GGen, then
KZG commitment scheme described in Fig. 1 is a correct and binding polynomial
commitment scheme in the AGM.

It was shown by Feist and Khovratovich [14] that it is possible to open a
KZG commitment in n positions much more efficiently than naively computing
each opening separately Specifically, it is possible to perform a batch opening at
n points in time O(n log2(n)). This can be further improved to O(n log(n)), if
the points are powers of a root of unity. We refer to this batch opening algorithm
as BatchOpen.

430 N. Fleischhacker et al.

2.5 Weakly-Hiding Vector Commitments

A vector commitment allows for computing a short value com for a potentially
long vector of messages (m1, . . . ,mn). Later on, one can compute short openings
that certify that the vector committed to by com opens to mi at some position
i ∈ [n]. Vector commitment should be binding in the usual sense, meaning that
no position can be opened to two different values. In addition, we will require a
weak form of hiding from our vector commitments.

Definition 5. A vector commitment with batch opening is a tuple of PPT algo-
rithms VC = (Setup,Commit,BatchOpen,Verify) defined as follows:

ck ← Setup(1λ, 1n): The setup algorithm takes security parameter λ and vector
length n as input and returns commitment key ck.

(com, aux) ← Commit(ck,m): The commitment algorithm takes commitment key
ck and vector m ∈ Mn as input and returns commitment com and auxiliary
output aux.

(π1, . . . , πn) ← BatchOpen(ck, com, aux): The batch opening algorithm takes com-
mitment key ck, a commitment com, and auxiliary input aux, as input and
returns openings π1, . . . , πn.

b ← Verify(ck, com, π, i,m):] The verification algorithm takes commitment key
ck, commitment com, opening π, index i and message m as input and returns
a bit b.

Definition 6 (Correctness). A vector commitment VC = (Setup,Commit,
BatchOpen,Verify) is correct, if for all λ, n ∈ N, all m ∈ Mn, all (com,
aux) ← Commit(ck,m), all (π1, . . . , πn) ← BatchOpen(ck, com, aux), and all
i ∈ [n] it holds that Verify(ck, com, πi, i,m) = 1.

Definition 7 (Position-Binding). A vector commitment VC = (Setup,
Commit,BatchOpen,Verify) is position binding if for all λ, n ∈ N and all PPT
adversaries A it holds that

Pr

⎡

⎢
⎣

m0 �= m1

∧Verify(ck, com, π0, i,m0) = 1
∧Verify(ck, com, π1, i,m1) = 1

:
ck ← Setup(1λ, 1n)

(com, i,m0,m1, π0, π1) ← A(ck)

⎤

⎥
⎦ ≤ negl(λ).

Definition 8 (Perfect Weak Hiding). A vector commitment VC = (Setup,
Commit,BatchOpen,Verify) is perfectly weakly hiding if for all λ, n ∈ N and
all m0,m1 ∈ Mn and all ck ← Setup(1λ, 1n) it holds that over the random
coins of the commitment algorithm, com0 and com1 computed as (com0, aux0) ←
Commit(ck,m0) and (com1, aux1) ← Commit(ck,m1) are distributed identically.

Definition 9 (Efficiency). A vector commitment VC = (Setup,Commit,
BatchOpen,Verify) is efficient, if commitments are of size independent of n, the
commitment algorithm runs in time n · poly(λ)(λ) and the batch opening algo-
rithm runs in time n · poly(λ)(log n, λ).

Extractable Witness Encryption for KZG Commitments 431

Fig. 2. Weakly-hiding vector commitments from KZG polynomial commitments.

Given a polynomial commitment, it is easy to construct a vector commitment
by encoding the message vector’s entries into distinct polynomial evaluations.
In the theorem statement below, we recall this transformation using KZG com-
mitments but add a small twist that makes the construction weakly hiding.

Theorem 2. If KZG is a binding polynomial commitment scheme, then the con-
struction specified in Fig. 2 is a correct, efficient, computationally position bind-
ing, and perfectly weakly hiding commitment scheme.

Proof. Correctness is immediate from the correctness of KZG. Efficiency sim-
ilarly follows from the definition of KZG and the batch opening algorithm of
Feist and Khovratovich [14].

It is trivial to see, that any adversary breaking position binding of the vector
commitment immediately also breaks binding of the KZG commitment scheme
with the same probability. Position binding therefore follows immediately from
the binding property of the KZG commitment. To see that the scheme is perfectly
weakly hiding, consider any λ, n ∈ N and any m0,m1 ∈ Mn and any ck ←
Setup(1λ, 1n). Any commitment to either vector has the form comb = [μb]1+[r]1,
where μb is defined by mb and independent of r. Since r is chosen uniformly
from Fp, comb is always a uniformly distributed element of G1. In particular,
this means that com0 and com1 are distributed identically.

2.6 Symmetric Encryption

We quickly recall the definition of a symmetric encryption scheme.

Definition 10. A symmetric encryption scheme with keyspace K and message
space M is a pair of PPT algorithms SE = (Encsym,Decsym) defined as follows:

ct ← Encsym(K,m): The setup algorithm takes a key k ∈ K and a message
m ∈ M as input and returns ciphertext ct.

432 N. Fleischhacker et al.

ct ← Decsym(K, ct): The setup algorithm takes a key k ∈ K and a ciphertext ct
as input and returns message m.

Definition 11 (Correctness). A symmetric encryption scheme SE = (Encsym,
Decsym) is correct, if for all k ∈ K, all m ∈ M, and all ct ← Encsym(k,m) it
holds that Decsym(k, ct) = m.

We will only require a very weak notion of security, namely indistinguishabil-
ity against eavesdroppers, also called EAV-security. This security notion is e.g.
satisfied by the one-time pad or a (nonce-less) stream cipher.

Definition 12 (EAV-Security). A symmetric encryption scheme SE =
(Encsym,Decsym) has indistinguishable encryptions in the presence of an eaves-
dropper, or is EAV-secure, if for any PPT adversary A it holds that

Pr[ExptEAVSE,A(1λ) = 1] ≤ 1
2

+ negl(λ),

where the experiment is defined as follows.

ExptEAVSE,A(1λ)

k ← K
(m0,m1) ← A(1λ)
b ← {0, 1}
ct ← Encsym(k,mb)
b′ ← A(ct)

return

{
1 if b′ = b

0 otherwise

3 Extractable Witness KEMs

As a building block for our main constructions, we first define and instantiate the
notion of an extractable witness KEM. This notion, with minor differences, has
previously been defined by Choi and Vaudenay [11]. In their work, the authors
present an instantiation of this notion for some class of problems using a new non-
falsifiable hardness assumption in a new restricted non-standard computational
model. In our work, we will focus on instantiating the notion of an extractable
witness KEM for specific relations using a standard assumption in the AGM.

We first define the notions of an indexed family of NP relations. We will later
define extractable witness KEMs relative to such a family. This is more general
than defining them for an individual relation and allows some part of the relation
to be fixed by system parameters.

Definition 13. Let I ⊆ {0, 1}∗ be a set. A set F = {RI}I∈I a family of NP
relations with index set I if for all I ∈ I, RI is an NP relation. We call I
the index of RI and RI the relation identified by I. We use LI to refer to the
corresponding NP language.

Extractable Witness Encryption for KZG Commitments 433

Relative to these families we can now define a witness KEM. The general idea
of a witness KEM is that it works like a regular key encapsulation mechanism,
but uses the pairs of statement and witness in an NP relation as a key-pair.

Definition 14. A witness key encapsulation mechanism for a family of NP rela-
tions F and a keyspace K is a pair of PPT algorithms WKEM = (Encap,Decap),
defined as follows:

(ct, k) ← Encap(I, x): The encapsulation algorithm takes as input an index I
identifying a relation RI ∈ F and a statement x and returns as output a
ciphertext ct and a key k ∈ K.

k ← Decap(I, w, ct): The deterministic decapsulation algorithm takes as input
an index I identifying a relation RI ∈ F , a witness w, and a ciphertext ct
and returns a key k ∈ K.

Definition 15 (Correctness). A witness KEM WKEM = (Encap,Decap) for
a family of NP relations F is correct, if for any RI ∈ F , any λ ∈ N, any
(x, w) ∈ RI , and any (ct, k) ← Encap(I, x) it holds that Decap(I, w, ct) = k.

The above definitions by themselves do not guarantee any kind of security. Secu-
rity will be derived from the extractability of the scheme. Extractability essen-
tially says that if any efficient adversary can distinguish between a key encap-
sulated under some statement x and a random key, then this adversary can also
be used to extract a witness w for x.

Definition 16 (Extractability). A witness KEM WKEM = (Encap,Decap)
for a family of NP-relations F is extractable, if there exists a PPT algorithm
Ext such that for any stateful PPT adversary A and any relation RI ∈ F such
that

Pr[ExptKEM−CPA
WKEM,A (1λ, I) = 1] ≥ 1

2
+ ε(λ)

for some non-negligible function ε(λ), it holds that

Pr
[

(x, w) ∈ RL :
x ← A(1λ, I)

w ← ExtA(·,·)(I, x)

]

≥ δ(λ),

for some non-negligible function δ(λ). The latter probability is taken over
the random coins of the adversary and the extractor and the experiment
ExptKEM−CPA

WKEM,A (1λ) is defined as follows.

ExptKEM−CPA
WKEM,A (1λ, I)

x ← A(1λ, I)
b ← {0, 1}
(ct, k0) ← Encap(I, x)
k1 ← K
b′ ← A(ct, kb)

return

{
1 if b′ = b

0 otherwise

434 N. Fleischhacker et al.

3.1 An Extractable Witness KEM for KZG Openings

We now proceed with constructing an extractable witness KEM as just defined
for a very specific family of relations, specifically those describing valid opening of
KZG commitments. Let (Setup,Commit,Open,Verify) be the KZG commitment
relative to the bilinear group G1,G2,GT of prime order p as specified in Fig. 1.
Let CK = {ck ∈ G

d+1
1 ×G

2
2 | d ∈ N∧ ck ∈ Setup(1λ, 1d)} be the set of valid KZG

commitment keys. We can then define the family of NP relations of valid KZG
openings as

FKZG := {Rck}ck∈CK

where

Rck =
{(

(comj , αj , βj)j∈[�], (πj)j∈[�]

) | ∀j ∈ [�]. Verify(ck, comj , πj , αj , βj) = 1
}

for any ck ∈ CK.

Fig. 3. Construction of an Extractable Witness KEM for FKZG with keyspace {0, 1}λ

in the combined Algebraic Group and Random Oracle Model.

Theorem 3. Let H : G∗
T → {0, 1}λ be a hash functioned modeled as a random

oracle. If the d-DLOG assumption holds with respect to GGen, then the construc-
tion described in Fig. 3 is an extractable witness KEM for FKZG in the algebraic
group model.

Proof. Let A be an arbitrary algebraic PPT adversary with non-negligible
advantage ε(λ) for the extractability of the construction described in Fig. 3.

We construct an extractor Ext as follows. The extractor receives as input an
index ck = ([τ0]1, . . . , [τd]1, [1]2, [τ]2) ∈ CK as well as a statement ((com1, α1, β1),
. . . , (com�, α�, β�) ∈ (G1 × F

2
p)

�. Further, since A is an algebraic algorithm, the
extractor also receives an algebraic representations of each comj in the form of
coefficients fj,0, . . . , fj,d such that

comj :=
d∑

i=0

fj,i · [τ i]1.

Extractable Witness Encryption for KZG Commitments 435

The extractor chooses r1, . . . , r� ← Fp, computes ctj := rj ·([τ]2− [αj]2) for each
j ∈ [�], sets ct := (ct1, . . . , ct�), chooses a random key k ← {0, 1}λ, initializes
an empty list Γ := ∅ and invokes A(ct, k). The adversary A expects access
to a random oracle that Ext simulates as follows. For any query s ∈ G

∗
T such

that either |s| �= � or for at least one j ∈ [�], sj �= e(rj · (com − [βj]1), [1]2),
Ext continues to simulate the random oracle via lazy sampling. That is, if there
exists an entry (s, ks) ∈ Γ it returns ks . If such an entry does not yet exist, Ext
samples ks ← {0, 1}n, adds (s, ks) to Γ , and returns ks .

If, however, |s| = � and for all j ∈ [�], sj = e(rj · (com− [βj]1), [1]2), then the
extractor aborts A and continues as follows. Since A is an algebraic algorithm
it also provides an algebraic description of each sj in the form of of coefficients3

w̃j,0, . . . , w̃j,2d, q̃j,1,0, . . . , q̃j,1,d, q̃j,2,0, . . . , q̃j,�,d, h̃j,1, . . . , h̃j,�

such that

sj :=
2d∑

i=0

w̃j,i · [τ i]T +
�∑

k=1

d∑

i=0

q̃j,k,i · [rk · (τ − αk) · τ i]T

+
�∑

k=1

h̃j,k · [rj · (τ − αj) · rk · (τ − αk)]T .

Since Ext computed each ctk, for k �= j algebraically, however, we can simplify
this representation. Specifically Ext can compute an algebraic description of each
sj in the form of coefficients wj,0, . . . , wj,2d, qj,0, . . . , qj,d, hj defined as

wj,i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̃j,i +
∑

k∈[�]\{j} q̃j,k,irkαk if i = 0
w̃j,i +

∑
k∈[�]\{j} q̃j,k,irkαk + q̃j,k,i−1rk if 0 < i ≤ d

w̃j,i +
∑

k∈[�]\{j} q̃j,k,i−1rk if i = d + 1
w̃j,i if i > d + 1

qj,i :=

⎧
⎪⎨

⎪⎩

q̃j,j,i +
∑

k∈[�]\{j} h̃j,krk if i = 0
q̃j,j,i +

∑
k∈[�]\{j} h̃j,krkαk if i = 1

q̃j,j,i if i > 1

hj := h̃j,j

such that

sj :=
2d∑

i=0

wj,i · [τ i]T +
d∑

i=0

qj,i · [rj · (τ − αj) · τ i]T + hj · [r2 · (τ − αj)2)]T

=
2d∑

i=0

wj,i · [τ i]T + rj · (τ − αj) ·
d∑

i=0

qj,i · [τ i]T + hjr
2
j · [(τ − αj)2]T

3 Note that we allow the algebraic adversary the maximum amount of freedom here
that they would only have in the context of a Type-1 pairing. In the context of
Type-2 or Type-3 pairings, many of these coefficients would necessarily be 0.

436 N. Fleischhacker et al.

For each j ∈ [�] we define the two polynomials

Fj(X) :=
d∑

i=1

fj,i · Xi

and

Gj(X,Y) :=
2d∑

i=0

wj,i · Xi + Y · (X − αj) ·
d∑

i=0

qj,i · Xi + hjY
2 · (X − αj)2.

It is easy to see that comj = [Fj(τ)]T and sj = [Gj(τ, rj)]T .
If for all j ∈ [�], Gj(X,Y) = Y (Fj(X) − βj) the extractor computes πj :=

∑d
i=1 qj,i · [τ i]1 and outputs π := (π1, . . . , π�). Otherwise the extractor outputs

⊥. If the adversary terminates without querying an s as described above, then
the extractor also outputs ⊥.

We now prove two claims about the extractor.

Claim 4. If Ext outputs π �= ⊥, then for all j ∈ [�] it holds that Verify(ck,
comj , πj , αj , βj) = 1.

Proof. The extractor only outputs π �= ⊥, if for all j ∈ [�], Gj(X,Y) =
Y (Fj(X) − βj). We observe that, this can only be true if hj = 0 and wj,i = 0
for all j ∈ [�] and 0 ≤ i ≤ 2d. Therefore,

Gj(X,Y) := Y · (X − αj) ·
d∑

i=0

qj,i · Xi.

and thus

Gj(X,Y) = Y (Fj(X) − βj)

⇐⇒ Y · (X − αj) ·
d∑

i=0

qj,i · Xi = Y (Fj(X) − βj)

⇐⇒
d∑

i=0

qj,i · Xi =
Fj(X) − βj

X − αj
.

It follows that the extractor’s output

πj =
[
Fj(τ) − βj

τ − αj

]

1

and thus the verification equation

e(πj , [τ]2 − [αj]2) = e

([
Fj(τ) − βj

τ − αj

]

1

, [τ − αj]2

)

= [Fj(τ) − βj]T
= e([Fj(τ) − βj]1, [1]2) = e(comj − [βj]1, [1]2)

holds as required. ��

Extractable Witness Encryption for KZG Commitments 437

Claim 5. Ext outputs π = ⊥ with probability at most 1 − 2ε(λ) + negl(λ).

Proof. Let Hit denote the event that s with |s| = � and sj = e(rj · (comj −
[βj]1), [1]2) for all j ∈ [�] is queried to the random oracle. The extractor outputs
⊥, either if Hit does not occur, or if Hit occurs but for at least one j ∈ [�]
Gj(X,Y) �= Y (Fj(X) − βj). Since those two events are mutually exclusive, we
thus have

Pr[π = ⊥] = Pr[Hit] + Pr[Hit ∧ ∃j ∈ [�]. Gj(X,Y) �= Y (Fj(X) − βj)]. (1)

We bound the two probabilities separately.
Let us first bound Pr[Hit]. Recall, that A is an adversary with advantage

ε(λ). Whenever Hit does not occur, the view of A remains independent of the
bit b in the KEM-CPA experiment. This is the case, since unless Hit occurs, both
k0 and k1 are uniformly distributed. Therefore we have that

1
2

+ ε(λ) = Pr[ExptKEM−CPA
WKEMKZG,A(1λ) = 1]

= Pr[b′ = b]

=

≤1
︷ ︸︸ ︷
Pr[b′ = b | Hit] Pr[Hit] +

=1/2
︷ ︸︸ ︷
Pr[b′ = b | Hit] Pr[Hit]

≤ 1 − Pr[Hit] +
1
2

Pr[Hit]

= 1 − 1
2

Pr[Hit]

and thus, we have that
Pr[Hit] ≤ 1 − 2ε(λ). (2)

Next we bound Pr[Hit∧∃j ∈ [�]. Gj(X,Y) �= Y (Fj(X)−βj)]. For each j ∈ [�],
define the bivariate polynomial Qj(X,Y) = Gj(X,Y)−Y (Fj(X)−βj). Since Hit
happened, it must hold that sj = e(rj · (comj − [βj]1), [1]2) = [rj · (Fj(τ) − βj)]T
and since sj = [Gj(τ, rj)]T , it must hold that Qj(τ, rj) = 0. However, since
Gj(X,Y) �= Y (Fj(X) − βj), it also holds that Qj(X,Y) �= 0, meaning Qj(X,Y)
is a non-zero polynomial with a root at (τ, rj).

We can rewrite Qj(X,Y) as a polynomial of the form Qj(X,Y) = Cj,0(X)+
Cj,1(X)·Y +Cj,2(X)·Y 2, where each Cj,i(X) ∈ Fp[X] is a univariate polynomial
of degree at most 2d. Since Qj(X,Y) is non-zero, at least one of Cj,0(X), Cj,1(X),
Cj,2(X) must also be non-zero.

Now consider the univariate Polynomial Pj(Y) := Qj(τ, Y). We can consider
two cases, either Pj(Y) = 0, or Pj(Y) �= 0. In the case that Pj(Y) = 0, it would
need to hold that Cj,0(τ) = Cj,1(τ) = Cj,2(τ) = 0, but at least one of these is
a non-zero polynomial. We can therefore find the roots of one of the non-zero
Cj,0(Y), Cj,1(Y), Cj,2(Y) to recover τ . On the other hand, if Pj(Y) �= 0, we can
find the roots of Pj(Y) to recover rj .

We use this to specify the following reduction to d-DLOG. On input [η0]1,
. . . , [ηd]1, [η0]2, [η1]2, the reduction B flips a bit b ← {0, 1}. If b = 0, then B

438 N. Fleischhacker et al.

defines ck = ([η0]1, . . . , [ηd]1, [η0]2, [η1]2). If b = 1, then B chooses τ ← Fq and
defines ck = ([τ0]1, . . . , [τd]1, [1]2, [τ]2). In both cases, B then invokes A(1λ, ck).
Eventually A will output ((com1, α1, β1), . . . , (com�, α�, β�)) together with the
algebraic explanation of each comj . If b = 0, then for j ∈ [�], the reduction
chooses rj ← Fp and computes ctj := rj · ([η]2 − [αj]2). If b = 1, then for j ∈ [�],
the reduction chooses zj ← Fp and computes ctj := (τ − αj) · ([η]2 + zj · [1]2).
Note, that, if we define rj := zj+η it holds that (τ−αj)·([η]2+zj ·[1]2) = (zj+η)·
([τ]2−[αj]2) = rj ·([τ]2−[αj]2). Therefore, in the case of b = 1 the ciphertexts are
computed correctly for implicitly defined but uniformly distributed rj . From this
point, B proceeds exactly as Ext until Hit occurs. It is important to verify that B
can actually check whether this query occurs, even in the case b = 1. However,
due to the bilinearity of the pairing, B can compute the relevant values as

e(comj − [βj]1, zj · [1]2 + [η]2) = e(comj − [βj]1, (zj + η) · [1]2)
= e(comj − [βj]1, rj · [1]2) = e(rj · (comj − [βj]1), [1]2)

and thus can check each query against these values. If Hit does not occur or if for
all j ∈ [�], it holds that Gj(X,Y) = Y (Fj(X) − βj), then B aborts. Otherwise,
we consider two cases.

If b = 0 and there exists an index j∗ such that Gj∗(X,Y) �= Y (Fj∗(X)−βj∗)
and Pj∗(Y) = 0, then, as discussed above, there exists a Cj∗(X) ∈ {Cj∗,0(X),
Cj∗,1(X), Cj∗,2(X)} such that Cj∗(X) is non-zero. B factors Cj∗(X) to finds all
of its at most 2d roots. For each root ξ, B checks whether ξ · [1]1 = [η]1 and
returns ξ if that’s the case. Since η must be one of the roots, B will always
correctly identify η in this case.

If b = 1 and there exists an index j∗ such that Gj∗(X,Y) = Y (Fj∗(X)−βj∗)
and Pj∗(Y) �= 0, then B factors Pj∗(Y) to find the all of its at most 2 roots. For
each root ξ, B checks whether ξ · [1]1 = zj∗ · [1]1 +[η]1 and returns ξ − zj∗ if that
is the case. Since rj∗ = zj∗ + η must be one of the roots, B will always correctly
identify η = rj∗ − zj∗ in this case. If neither of those two cases happens, then B
also aborts.

Since the view of A is independent of the value of b and for each j∗ such that
Gj∗(X,Y) �= Y (Fj∗(X) − βj∗), it must either be the case that Pj∗(Y) = 0 or
that Pj∗(Y) �= 0, it follows under the d-DLOG assumption, that

negl(λ)

≥ Pr

[

τ = τ ′ :
par ← GGen(1λ), τ ← Fp

τ ′ ← B(par, ([τ0]1, . . . , [τd]1, [1]2, [τ]2))

]

= Pr[b = 0] · Pr
[
Hit ∧ (∃j∗ ∈ [�]. Gj∗(X,Y) �= Y (Fj∗(X) − βj∗) ∧ Pj∗(Y) = 0

)]

+ Pr[b = 1] · Pr
[
Hit ∧ (∃j∗ ∈ [�]. Gj∗(X,Y) �= Y (Fj∗(X) − βj∗) ∧ Pj∗(Y) �= 0

)]

=
1
2

·
(

Pr[Hit ∧ (∃j∗ ∈ [�]. Gj∗(X,Y) �= Y (Fj∗(X) − βj∗)) ∧ Pj∗(Y) = 0)]
+ Pr[Hit ∧ (∃j∗ ∈ [�]. Gj∗(X,Y) �= Y (Fj∗(X) − βj∗)) ∧ Pj∗(Y) �= 0)]

)

≥ 1
2

Pr[Hit ∧ ∃j∗ ∈ [�]. Gj∗(X,Y) �= Y (Fj∗(X) − βj∗))].

Extractable Witness Encryption for KZG Commitments 439

The claim thus follows. ��
By combining the two claims we finally get

Pr

[

∀j ∈ [�].Verify(ck, comj , πj , αj , βj) = 1 :
(comj , αj , βj)j∈[�] ← A(1λ, ck)

π ← ExtA(·,·)(ck, (comj , αj , βj)j∈[�])

]

= Pr[π �= ⊥] = 1 − Pr[π = ⊥] = 2ε(λ) − negl(λ).

which is non-negligible for any non-negligible function ε(λ), as required. ��
We will later require an extractable witness KEM not just for plain KZG, but

in fact for the derived weakly hiding vector commitment described in Fig. 3. Let
VC be the vector commitment and let CKVC = {ck | ck ∈ VC.Setup(1λ, 1n)} be
the set of valid commitment keys. We can then define the family of NP relations
of valid VC openings as

FVC := {Rck}ck∈CKVC

where

Rck =
{(

(comj , ij ,mj)j∈[�], (πj)j∈[�]

) | ∀j ∈ [�].VC.Verify(ck, comj , πj , ij ,mj) = 1
}

for any ck ∈ CKVC.
Since VC commitments are simply KZG commitments, openings are KZG

openings, and verification is KZG verification, it follows immediately that FVC =
FKZG and we thus get the following corollary from Theorem 3.

Corollary 6. Let H : G∗
T → {0, 1}λ be a hash functioned modeled as a random

oracle. If the d-DLOG assumption holds with respect to GGen, then the construc-
tion described in Fig. 3 is an extractable witness KEM for FVC in the algebraic
group model.

4 Extractable Witness Encryption

In this section, we recall the definition of extractable witness encryption following
broadly the definitions of [21], with the extension to families of relations. We
then go on to show that one can generically construct it from any extractable
witness KEM using the standard KEM/DEM paradigm.

As is the case for regular encryption and KEMs, witness encryption and
witness KEMs are very similar, with the only difference being that a witness
encryption scheme is capable of encrypting a freely chosen message instead of a
random one. The definitions are otherwise very similar to the definitions from
the previous section.

Definition 17. A witness encryption scheme for a family of NP relations F
and a messagespace M is a pair of PPT algorithms WE = (Enc,Dec), defined
as follows:

ct ← Enc(I, x,m): The encryption algorithm takes as input an index I identify-
ing a relation RI ∈ F , a statement x, and a message m ∈ M and returns as
output a ciphertext ct.

440 N. Fleischhacker et al.

m/⊥ ← Dec(I, w, ct): The deterministic decryption algorithm takes as input an
index I identifying a relation RI ∈ F , a ciphertext ct, and a witness w and
returns a message m ∈ M or a error symbol ⊥.

Definition 18 (Correctness). A witness encryption scheme WE = (Enc,Dec)
for a family of NP relations F is correct, if for any RI ∈ F , any λ ∈ N, any
(x, w) ∈ RI , any m ∈ M, and any ct ← Enc(x) it holds that Dec(I, w, ct) = m.

Definition 19 (Extractability). A witness encryption scheme WE = (Enc,
Dec) for a family of NP-relations F is extractable, if there exists a PPT algorithm
Ext such that for any stateful PPT adversary A and any relation RI ∈ F such
that

Pr[ExptCPAWE,A(1λ, I) = 1] ≥ 1
2

+ ε(λ),

for some non-negligible function ε(λ) it holds that

Pr

[

(x, w) ∈ RL :
(x,m0,m1) ← A(1λ, I)

w ← ExtA(·)(I, x,m0,m1)

]

≥ δ(λ),

for some non-negligible function δ(λ). The latter probability is taken over the
random coins of the adversary and the extractor and the experiment ExptCPAA is
defined as follows.

ExptCPAWE,A(1λ, I)

(x,m0,m1) ← A(1λ, I)
b ← {0, 1}
ct ← Enc(I, x,mb)
b′ ← A(ct)

return

{
1 if b′ = b

0 otherwise

4.1 Extractable Witness Encryption from Extractable Witness
KEMs

We can construct extractable witness encryption for a family of NP-relations
F and a message space M from any extractable witness KEM for F and any
EAV secure symmetric encryption scheme with message space M, as long as
the two schemes share a compatible key space K. The construction, shown in
Fig. 4 essentially follows the standard KEM/DEM paradigm instantiated with an
extractable witness KEM. Even though the security of the KEM/DEM paradigm
has been proven ad nauseam, we will not skip the proof here. Since we are not
proving indistinguishability, but extractability we need to be a bit more careful.
Note that encapsulated keys are in general not indistinguishable from random
keys. In fact, since the adversary chooses the statement, they may very well know
the witness and thus be capable of distiguishing with overwhelming probability.

Extractable Witness Encryption for KZG Commitments 441

Fig. 4. Construction of an extractable witness encryption Scheme for F based on an
extractable witness KEM and an EAV secure symmetric encryption scheme.

It is merely the case in this case we are capable of extracting the witness. We need
to be careful in our proof that this capability is preserved in the KEM/DEM
paradigm. This may not always be the case, depending on how one executes the
standard hybrid argument.

Theorem 7. Let WKEM = (Encap,Decap) be an extractable witness KEM for
F and key space K. Let SE = (Encsym,Decsym) be an EAV secure symmetric
encryption scheme with key space K, message space M. Then WE = (Enc,Dec)
as specified in Fig. 4 is an extractable witness encryption scheme for F and
message space M.

Proof. We first define a modified witness encryption scheme W̃E = (Ẽnc, ·)
that, instead of using the encapsulated key k to perform the symmetric encryp-
tion, chooses a fresh key k′ ← K to do so. This scheme has no well-defined
decryption algorithm.Nevertheless, for any PPT adversary A, the probability
Pr[ExptCPA

˜WE,A(1λ, I) = 1] is still well defined. Let A be an arbitrary PPT adver-
sary such that

Pr[ExptCPAWE,A(1λ, I) = 1] =
1
2

+ ε(λ). (3)

for some non-negligible function ε(λ). We first prove the following claim.

Claim 8. For any I ∈ I, it holds that

Pr[ExptCPA
˜WE,A(1λ, I) = 1] ≤ 1

2 + negl(λ).

Proof. We construct a PPT adversary B against the EAV security of SE as
follows. Upon input 1λ, B invokes A(1λ, I), receiving x,m0,m1 in response, and
outputs m0,m1. After receiving as input the challenge ciphertext ct2, it compues
(ct1, k) ← Encap(I, x) and invokes A((ct1, ct2)). In response, A will output a
bit b′, which B also outputs.

It is easy to see that B perfectly simulates the ExptCPA
˜WEA(1λ, I) experiment for

A. Further, whenever A would be successful, so is B. It thus follows from the
EAV security of SE that

1
2

+ negl(λ) ≥ Pr[ExptEAVSE,B(1λ) = 1] = Pr[ExptCPA
˜WE,A(1λ, I) = 1]

as claimed. ��

442 N. Fleischhacker et al.

Claim 9. There exists a PPT adversary B such that for any I ∈ I, it holds that

Pr[ExptKEM−CPA
WKEM,B (1λ, I) = 1] = 1

2 + 1
2ε(λ) − negl(λ).

Proof. Upon input 1λ and I, B invokes A(1λ, I), receiving x,m0,m1 in response
and outputs x. After receiving ct1, k, B samples b′ ← {0, 1}, computes ct2 ←
Encsym(k,mb′), and invokes A((ct1, ct2)). Eventually A will output a bit b′′ and
B will output 0, if b′′ = b′ and 1 otherwise.

Let b denote the random bit of the experiment ExptKEM−CPA
WKEM,B (1λ, I). It is

then easy to see that, if b = 0, then B perfectly simulates the experiment
ExptCPAWE,A(1λ, I) and outputs 0 iff the experiment outputs 1. Similarly, if b = 1,
then B perfectly simulates the experiment ExptCPA

˜WE,A(1λ, I) and outputs 0 iff the
experiment outputs 1. It then follows from Claim 8 and Eq. 3 that

Pr[ExptKEM−CPA
WKEM,B (1λ, I) = 1]

= Pr[b = 0] · Pr[ExptKEM−CPA
WKEM,B (1λ, I) = 1 | b = 0]

+ Pr[b = 1] · Pr[ExptKEM−CPA
WKEM,B (1λ, I) = 1 | b = 1]

=
1
2

· (Pr[ExptCPAWE,A(1λ, I) = 1] + 1 − Pr[ExptCPA
˜WE,A(1λ, I) = 1]

)

≥ 1
2

·
(1

2
+ ε(λ) + 1 − 1

2
− negl(λ)

)

=
1
2

+
1
2
ε(λ) − negl(λ) ��

Finally, since WKEM is known to be extractable and 1
2ε(λ)−negl(λ) is a non-

negligible function whenever ε(λ) is non-negligible, there exists a PPT extractor
Ẽxt, such that

Pr

[

(x, w) ∈ RL :
x ← B(1λ, I)

w ← Ẽxt
B(·)

(I, x)

]

≥ δ(λ)

for some non-negligible function δ(λ). We can thus construct an extractor Ext
for WE as follows. The extractor receives as input (I, x,m0,m1) and is given

oracle access to A. It then invokes Ẽxt
B
(·)(I, x). Whenever Ẽxt queries ct1 to

its oracle, Ext samples b′ ← {0, 1}, computes ct2 ← Encsym(k,mb′), and queries
(ct1, ct2) to its own oracle, forwarding the reply to Ẽxt. It is easy to see that
this perfectly simulates oracle access to B. Therefore, it holds that

Pr

[

(x, w) ∈ RL :
(x,m0,m1) ← A(1λ, I)

w ← ExtA(·)(I, x,m0,m1)

]

≥ δ(λ)

as required. ��

Extractable Witness Encryption for KZG Commitments 443

5 Laconic OT

As discussed in the introduction, we will now show how to construct a concretely
efficient laconic OT protocol from our extractable witness encryption scheme for
KZG commitments and openings.

Definition 20 ([10]). A laconic oblivious transfer scheme is a tuple of PPT
algorithms LOT = (Setup,H,Send,Receive) defined as follows:

pp ← Setup(1λ, 1n): The setup algorithm takes security parameter λ and database
length n as input and returns public parameters pp.

(digest, aux) ← H(pp,D): The hashing algorithm takes public parameters pp
and database D as input and returns a public hash digest and some secret
auxiliary information aux.

c ← Send(pp, digest, i,m0,m1): The sender algorithm takes public parameters
pp, database hash digest, index i, and message m0 and m1 as input and
returns message c.

m ← Receive(pp, aux, c, i): The receiver algorithm takes public parameters pp,
auxiliary information aux, sender message m, and index i as input and
returns message m.

Definition 21 (Correctness). A laconic oblivious transfer scheme LOT =
(Setup,H,Send,Receive) is correct, if for all λ, n ∈ N with n = poly(λ), all
pp ← Setup(1λ, 1n), all databases D ∈ {0, 1}n, all (digest, aux) ← H(pp,D),
all i ∈ [n], all m0,m1 ∈ M, and all c ← Send(pp, digest, i,m0,m1) it holds that
Receive(pp, aux, c, i) = mD[i].

Sender privacy requires the sender’s message to the receiver to hide the message
that was not selected by the receiver’s choice bit.

Definition 22 (Sender Privacy). A laconic oblivious transfer scheme LOT =
(Setup,H,Send,Receive) is sender private against semi-honest adversaries, if for
all λ, n ∈ N with n = poly(λ), any PPT adversary A, any database D ∈ {0, 1}n,
any i ∈ [n], and any pair of messages m0,m1 ∈ M, it holds that

∣
∣
∣
∣
∣

Pr[ExptOT-S-Real
A (1λ, 1n,D,m0,m1, i) = 1]

−Pr[ExptOT-S-Sim
A (1λ, 1n,D,m0,m1, i) = 1]

∣
∣
∣
∣
∣
≤ negl(λ),

where ExptOT-S-Real
A and ExptOT-S-Sim

A are defined as follows

ExptOT-S-Real
LOT,A (1λ, 1n,D,m0,m1, i) ExptOT-S-Sim

LOT,A (1λ, 1n,D,m0,m1, i)
pp ← Setup(1λ, 1n) pp ← Setup(1λ, 1n)
(digest, aux) ← H(pp,D) c ← Sim(pp,D, i,mD[i])
c ← Send(pp, digest, i,m0,m1) b ← A(pp, c, aux)
b ← A(pp, c, aux) return b
return b

444 N. Fleischhacker et al.

In the original work of Cho et al. [10], no explicit definition for receiver privacy
was stated. The authors informally argued that any protocol that is not receiver
privacy can be transformed into one that is, via the use of generic secure compu-
tation. In our work, we do define receiver privacy and we focus on the arguably
strongest possible notion, namely that of perfect receiver privacy, where the
sender learns no information about the receivers choice bits in the information-
theoretic sense. We do not make use of generic secure computation and instead
our construction will directly satisfy this security notion.

Definition 23 (Receiver Privacy). A laconic oblivious transfer scheme
LOT = (Setup,H,Send,Receive) is receiver private against semi-honest adver-
saries, if for all λ, n ∈ N with n = poly(λ), any PPT adversary A, all databases
D ∈ {0, 1}n, it holds that

∣
∣
∣Pr[ExptOT-R-Real

LOT,A (1λ, 1n,D) = 1] − Pr[ExptOT-R-Sim
A (1λ, 1n,D) = 1]

∣
∣
∣ ,

where ExptOT-R-Real
LOT,A and ExptOT-R-Sim

LOT,A are defined as follows.

ExptOT-R-Real
LOT,A (1λ, 1n,D) ExptOT-R-Sim

LOT,A (1λ, 1n,D)
pp ← Setup(1λ, 1n) pp ← Setup(1λ, 1n)
(digest, aux) ← H(pp,D) digest ← Sim(pp)
b ← A(pp, digest) b ← A(pp, digest)
return b return b

The main property that makes laconic OT non-trivial and interesting is its effi-
ciency. The digest is required to be independent of the original database size,
the hashing should run in quasi-linear time in the database size, and both the
computational complexity of sending and receiving should have at most a poly-
logarithmic dependency on the size of the database.

Definition 24 (Efficiency). A laconic oblivious transfer scheme LOT =
(Setup,H,Send,Receive) is efficient, if |digest| ∈ poly(λ) and in particular inde-
pendent of |D|, the hashing algorithm H runs in time |D| · poly(log |D| , λ), and
both Send and Receive run in time poly(log |D| , λ).

5.1 Constructing Laconic OT

Our construction is conceptually very simple. The receiver will use a hiding vec-
tor commitment to compute a commitment com to their database D. Upon the
i-th invocation of the OT, the sender will use our extractable witness encryption
scheme to separately encrypt m0 and m1, such that they can be decrypted, if
com can be opened to 0 and 1, respectively. The sender, who will receive the
two ciphertexts, can then use their opening πi for commitment com to decrypt
the ciphertext containing mD[i]. Sender privacy effectively follows from the secu-
rity guarantees of the extractable witness encryption scheme, whereas receiver
privacy follows from the hiding properties of the vector commitment.

Extractable Witness Encryption for KZG Commitments 445

Fig. 5. Laconic OT construction.

Theorem 10. Let λ, n ∈ N with n = poly(λ). Let VC = (Setup,Commit,
BatchOpen,Verify) be a correct, efficient, position binding, and perfectly weakly-
hiding vector commitment. Let WE = (Enc,Dec) be an extractable witness
encryption scheme for FVC. Then the construction in Fig. 5 is an efficient,
sender-private, and perfectly receiver-private laconic OT.

Proof. Efficiency follows immediately from the efficiency of VC. We will prove
the other two properties separately.

Lemma 11. Let VC = (Setup,Commit,Open,Verify) be a correct and position
binding vector commitment. Let WE = (Enc,Dec) be an extractable witness
encryption scheme for FVC. Then the construction in Fig. 5 is sender private.

Proof. We specify a simulator as follows. On input pp,D, i,mD[i] the simulator
simply computes

ctD[i] ← WE.Enc(pp, (digest, i,D[i]),mD[i])
and ct1−D[i] ← WE.Enc(pp, (digest, i, 1 − D[i]), 0)

and outputs (ct0, ct1).
Let D ∈ {0, 1}n be an arbitrary database, i ∈ [n] an arbitrary index,

m0,m1 ∈ F an arbitrary pair of messages, and A an arbitrary PPT adversary
against sender privacy with

ε(λ) = Pr[ExptOT-S-Real
LOT,A (1λ, 1n,D,m0,m1, i) = 1]

− Pr[ExptOT-S-Sim
LOT,A (1λ, 1n,D,m0,m1, i) = 1].

(4)

Assume wlog, that ε(λ) ≥ 0.
We construct a PPT adversary B against the extractability of WE as follows.

On input 1λ, ck, the adversary B computes (com, aux) ← VC.Commit(pp,D) and

446 N. Fleischhacker et al.

outputs (
(com, i, 1 − D[i]
︸ ︷︷ ︸

:=x

), 0,m1−D[i]

)
.

Upon receiving ct1−D[i], B further computes

ctD[i] ← WE.Enc(ck, (digest, i,D[i]),mD[i]),

sets aux := (D, com, aux) and invokes A(ck, (ct0, ct1), aux). Eventually A will
output a bit, which B will also output.

Let b ∈ {0, 1} be the bit in the experiment ExptCPAWE,B(1λ). It is easy to see that,
if b = 1, then B perfectly simulates ExptOT-S-Real

LOT,A (1λ, 1n,D,m0,m1, i). On the
other hand, if b = 0, then B perfectly simulates ExptOT-S-Sim

LOT,A (1λ, 1n,D,m0,m1, i).
It thus follows that

Pr[ExptCPAWE,B(1λ, ck) = 1]

=
1
2
(
Pr[ExptCPAWE,A(1λ) = 1 | b = 1] + Pr[ExptCPAWE,A(1λ) = 1 | b = 0]

)

=
1
2

(
Pr[ExptOT-S-Real

LOT,A (1λ, 1n,D,m0,m1, i) = 1]

+ Pr[ExptOT-S-Sim
LOT,A (1λ, 1n,D,m0,m1, i) = 0]

)

=
1
2

(
Pr[ExptOT-S-Real

LOT,A (1λ, 1n,D,m0,m1, i) = 1]

+1 − Pr[ExptOT-S-Sim
LOT,A (1λ, 1n,D,m0,m1, i) = 1]

)

=
1
2

+
1
2
ε(λ).

Since WE is extractable, it follows that there exists a PPT algorithm Ext,
such that, if ε(λ), and thereby also ε(λ)/2 were non-negligible, it would hold that

Pr

[
Verify(ck, com, π, i, 1 − D[i]) = 1 :

((com, i, 1 − D[i]), 0, m1−D[i]) ← B(1λ, ck)

π ← ExtB(·)(ck, (com, i, 1 − D[i]), 0, m1−D[i])

]

≥ δ(λ)

for some non-negligible function δ(λ).
To show that this can’t be the case, we construct an adversary C

against the position binding of VC as follows. On input ck, the adversary
C computes (com, aux) ← VC.Commit(pp,D), and invokes ExtB(·)((com, i, 1 −
D[i]), 0,m1−D[i]). Whenever Ext queries its oracle with ct1−D[i], C further com-
putes ctD[i] ← WE.Enc(ck, (digest, i,D[i]),mD[i]), sets aux := (D, com, aux),
invokes b ← A(ck, (ct0, ct1), aux) and replies with b. Eventually, Ext will out-
put π. C will then compute π′ ← VC.Open(ck, aux, i) and output com, i, 1 −
D[i],D[i], π, π′.

It is easy to see, that C perfectly simulates B for the extractor. There-
fore, it holds with probability at least δ(λ), that Verify(ck, com, π, i, 1 −
D[i]) = 1. The correctness of the vector commitment guarantees that
Verify(ck, com, π′, i,D[i]) = 1. Since further D[i] �= 1 − D[i], it thus holds that

Extractable Witness Encryption for KZG Commitments 447

negl(λ) ≥ Pr

⎡

⎢
⎣

m0 �= m1

∧Verify(ck, com, π0, i,m0) = 1
∧Verify(ck, com, π1, i,m1) = 1

:
ck ← Setup(1λ, 1n)

(com, i,m0,m1, π0, π1) ← C(ck)

⎤

⎥
⎦

= δ(λ)

Which immediately implies that ε(λ) ≤ negl(λ) as required. ��
Lemma 12. Let VC = (Setup,Commit,Open,Verify) be a perfectly weakly hiding
vector commitment. Then the construction in Fig. 5 is perfectly receiver private.

Proof. The simulator takes as input the public parameters pp = ck, computes
(com, aux) ← VC.Commit(ck, 0n) and outputs com. The only difference between
the two experiments from the point of view of an adversary is that in one case
they receive a commitment to D, whereas in the other they receive a commitment
to 0n. However, since VC is perfectly weakly hiding, those two commitments are
distributed identically. ��
Now Theorem 10 follows directly by combining Lemmas 11 and 12. ��

On Actively Secure Laconic OT. While we do not explore this question in
our current work, we would still like to highlight that our laconic OT construc-
tion provides some active security guarantees, at least on an intuitive level. No
matter what the sender chooses as their polynomial commitment, at least one of
the sender’s messages in each invocation will always be indistinguishable from
random for the receiver. This follows from the fact that the polynomial commit-
ment scheme is binding. Whether it can be made to satisfy a simulation-based
active security notion is left as an open problem for future work.

6 Benchmarks

The laconic OT protocol from Sect. 5 was instantiated with the KZG based vec-
tor commitment from Sect. 2.5 and the extractable witness commitment derived
by combining the extractable witness KEM from Sect. 3 with the generic trans-
formation from Sect. 4. A simple one-time pad as the symmetric encryption
scheme in the transformation. The full construction was implemented4 in Rust
using arkworks [12]. The BLS12-381 [6] curve was used as the pairing-friendly
elliptic curve throughout the implementation. All involved computational costs
and bandwidth overheads were measured for various parameters. All benchmarks
were run on a personal laptop with an i7-11800H @ 2.30GHz CPU and 64 GB
of RAM.

4 https://github.com/rot256/research-we-kzg.

https://github.com/rot256/research-we-kzg

448 N. Fleischhacker et al.

As already explained in Sect. 2.5, the batch opening technique of Feist and
Khovratovich was used [14] to precompute all openings of the used vector com-
mitment during the hashing of the database of choice indices. For concreteness
the sender’s OT inputs are assumed to be 256-bit messages. A single witness
encryption for such a message consists of a 96 byte witness KEM ciphertext and
a 32 bytes large one-time pad encryption of the message itself, thus leading to a
128 byte ciphertext. The public parameters for a database of size n consists of
n + 1 many G1 elements and two G2 elements with G1 and G2 for BLS12-381
clocking in at 48 and 96 bytes respectively. The benchmark results can be found
in Table 1.

Table 1. Runtimes and bandwidth overheads of our laconic OT protocol for varying
sizes of the receiver’s database D. The computation times for |D| = 231 are extrapolated
to compare with [23].

|D| Sizes Times

ppdigestSender Msg. HashSendReceive

26 3.2 KB 48 B 256 B173 ms 4 ms 1 ms

28 12.2 KB 48 B 256 B723 ms 4 ms 1 ms

210 48.2 KB 48 B 256 B 3 s 4 ms 1 ms

212 192.2 KB 48 B 256 B 10 s 4 ms 1 ms

214 768.2 KB 48 B 256 B 43 s 4 ms 1 ms

216 3.0 MB 48 B 256 B 3 min 5 ms 1 ms

218 12.0 MB 48 B 256 B 8 min 5 ms 1 ms

231 96.0 GB 48 B 256 B — 5 ms 1 ms

Our construction is highly efficient in most parameters, in particular database
digest and the sender’s message are both not just constant in size but concretely
very small. The time to compute the sender’s message and to decode on the
receiver’s side in an OT invocation is below 5 ms. The main drawbacks of our
construction the initial one-time cost of computing the hash of the receiver’s
database and the size of the public parameters.

Weakly Laconic OT. We also examine the efficiency of a variant of our con-
struction, which does not strictly satisfy the formal efficiency requirements for
laconic OT protocols from Definition 24, but has significantly smaller public
parameters at the cost of somewhat larger digests. The idea for achieving this
trade-off is to simply partition the receiver’s database D into

√|D| smaller
databases and to then hash each of them individually. The hash returned by
the receiver is simply the concatenation of all

√|D| hashes. This construc-
tion does not formally satisfy the asymptotic efficiency requirement of a laconic
OT because the digest size now (sublinearly) depends on the size of the input

Extractable Witness Encryption for KZG Commitments 449

database. The main observation here is that all of those hashes can be com-
puted using the same trusted setup for instances of size

√|D|. This simple trick
was already observed by Green, Jain, and Van Laer in their work [23]. We cal-
culate the sizes of objects and we extrapolate the timing benchmarks for this
construction from our benchmarks for regular laconic OT. The results can be
found in Table 2.

Table 2. Runtimes and bandwidth overheads for the variant of our laconic OT protocol,
which splits the database D into

√|D| many smaller databases. The numbers are
extrapolated from our experimental results for laconic OT.

|D| Sizes Times

pp digestSender Msg. HashSendReceive

26 624 B 384 B 256 B 194 ms 4 ms 1 ms

28 1008 B 768 B 256 B 743 ms 4 ms 1 ms

210 1.7 KB 1.5 KB 256 B 3 s 4 ms 1 ms

212 3.2 KB 3.0 KB 256 B 11 s 4 ms 1 ms

214 6.2 KB 6.0 KB 256 B 44 s 4 ms 1 ms

216 12.2 KB12.0 KB 256 B 3 min 4 ms 1 ms

218 24.2 KB24.0 KB 256 B 12 min 4 ms 1 ms

231 3 MB 1.5 MB 256 B69 days 4 ms 1 ms

Comparison to Related Works. Equipped with the concrete performance
numbers for our constructions, we can compare its efficiency to that of existing
protocols. Green, Jain, Van Laer [23] provide benchmarks for a single data point
for their laconic OT construction, which does not achieve sender privacy. They
argue that one can generically obtain sender privacy by using garbled circuits,
which would incur a significant overhead on top of their provided benchmarks.
In their favour, we shall ignore this and simply compare it to our construction
that achieves both sender and receiver privacy.

For a database size of 231, their construction’s public parameters 412.3 GB,
their digest is 48 B, their sender’s message size is 1.34 KB and receiving takes
27.7 minutes. That means their public parameters are ≈ 4x larger, their digests
have the same size, their sender’s message is ≈ 5x larger, and their receiving
time is larger by 6 orders of magnitude. No further data points were provided in
their benchmarks.

The authors also provide benchmark results for a weakly laconic version of
their construction, which splits the database in

√|D| chunks as described above.
Comparing it to our weakly laconic OT construction, they have ≈ 3x larger
public parameters, comparable digest size, and ≈ 5x larger sender’s message.
Their receiver’s computational time is still ≈ 38x larger.

450 N. Fleischhacker et al.

Döttling et al. [13] only sketch how to construct laconic OT from another
cryptographic primitive, which they do provide some benchmarks for. The main
advantage of their work is that the public parameters do not grow with the
receiver’s database size. Taking the benchmarks for their lowest security levels,
their public parameters are 8 MB, their digest is 2 KB, and their sender’s message
size is 98 MB. The constant size of their public parameters makes them concretely
smaller than ours once the databases size reaches 218. Their digests are always
≈ 8x larger and their sender’s message size is 5 orders of magnitude larger.

Comparing with our weakly laconic OT protocol, our public parameters
would only become concretely larger than theirs, when the database size reaches
at least 235. For a database size of 218, our digest is ≈ 12x larger, but our sender’s
message is still 5 orders of magnitude smaller. We believe that a slightly larger
digest size in exchange for much smaller sender messages is a valuable trade-off.
The digest is sent once, but the sender’s messages need to be send for each OT
invocation.

On the Importance of Small Sender Messages. The benchmarks consider
several different parameters, each of which has its own significance when it comes
to the overall efficiency of a laconic OT protocol. It is, however, worth highlight-
ing the importance of one particular parameter, namely the sender’s message
size. Laconic OT is most useful when many OT invocations are required. The
digest is sent once, whereas the sender’s message is sent once per invocation.
Thus, it makes sense to not only look at the size of a single sender message, but
at the total communication cost over many OT invocations. For a database size
of 218, the total communication cost is ≈ 343 MB in the work of Green, Jain,
Van Laer [23] and ≈ 24.5 terabyte in the work of Döttling et al. [13]. In our
construction, the total communication cost is ≈ 64 MB.

Acknowledgements. We would like to thank Nathan Xiong for pointing out a flaw
in an earlier version of the proof of Claim 5.

References

1. Aranha, D.F., Lin, C., Orlandi, C., Simkin, M.: Laconic private set-intersection
from pairings. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022.
pp. 111–124. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560642

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Berlin, Heidelberg (Aug
2001). https://doi.org/10.1007/3-540-44647-8 1

3. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-
interactive secure computation from LWE. In: Canteaut, A., Standaert, F.X. (eds.)
EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 724–753. Springer, Cham (Oct
2021). https://doi.org/10.1007/978-3-030-77886-6 25

https://doi.org/10.1145/3548606.3560642
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-77886-6_25

Extractable Witness Encryption for KZG Commitments 451

4. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (Apr / May
2018). https://doi.org/10.1007/978-3-319-78375-8 17

5. Benhamouda, F., Lin, H.: Mr NISC: Multiparty reusable non-interactive secure
computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol.
12551, pp. 349–378. Springer, Cham (Nov 2020). https://doi.org/10.1007/978-3-
030-64378-2 13

6. Bowe, S.: Bls12-381: New zk-snark elliptic curve construction (Mar 2017), https://
electriccoin.co/blog/new-snark-curve/

7. Campanelli, M., Fiore, D., Khoshakhlagh, H.: Witness encryption for succinct
functional commitments and applications. Cryptology ePrint Archive, Report
2022/1510 (2022), https://eprint.iacr.org/2022/1510

8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Berlin,
Heidelberg (Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7 5

9. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Cham (May 2020). https://doi.org/10.1007/978-3-030-45721-1 26

10. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.:
Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (Aug 2017).
https://doi.org/10.1007/978-3-319-63715-0 2

11. Choi, G., Vaudenay, S.: Towards witness encryption without multilinear maps -
extractable witness encryption for multi-subset sum instances with no small solu-
tion to the homogeneous problem. In: Park, J.H., Seo, S.H. (eds.) ICISC 21. LNCS,
vol. 13218, pp. 28–47. Springer, Cham (Dec 2021). https://doi.org/10.1007/978-3-
031-08896-4 2

12. arkworks contributors: arkworks zksnark ecosystem (2022), https://arkworks.rs
13. Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.: Effi-

cient laconic cryptography from learning with errors. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 417–446. Springer, Cham (Apr
2023). https://doi.org/10.1007/978-3-031-30620-4 14

14. Feist, D., Khovratovich, D.: Fast amortized KZG proofs. Cryptology ePrint
Archive, Report 2023/033 (2023), https://eprint.iacr.org/2023/033

15. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96881-
0 2

16. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-64378-2_13
https://doi.org/10.1007/978-3-030-64378-2_13
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://eprint.iacr.org/2022/1510
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-031-08896-4_2
https://doi.org/10.1007/978-3-031-08896-4_2
https://arkworks.rs
https://doi.org/10.1007/978-3-031-30620-4_14
https://eprint.iacr.org/2023/033
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953

452 N. Fleischhacker et al.

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013). https://doi.org/10.
1109/FOCS.2013.13

18. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–
535. Springer, Berlin, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-
44371-2 29

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–
476. ACM Press (Jun 2013). https://doi.org/10.1145/2488608.2488667

20. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS. pp. 588–599. IEEE Computer Society Press
(Oct 2017). https://doi.org/10.1109/FOCS.2017.60

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run Turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Berlin, Heidelberg
(Aug 2013). https://doi.org/10.1007/978-3-642-40084-1 30

22. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for
multiple vector commitments. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.)
ACM CCS 2020. pp. 2007–2023. ACM Press (Nov 2020). https://doi.org/10.1145/
3372297.3417244

23. Green, M., Jain, A., Laer, G.V.: Efficient set membership encryption and applica-
tions. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023.
pp. 1080–1092. ACM Press (Nov 2023). https://doi.org/10.1145/3576915.3623131

24. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Berlin, Heidelberg (Dec 2010). https://doi.org/10.1007/978-
3-642-17373-8 11

25. Libert, B., Passelègue, A., Riahinia, M.: PointProofs, revisited. In: Agrawal, S., Lin,
D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 220–246. Springer,
Cham (Dec 2022). https://doi.org/10.1007/978-3-031-22972-5 8

26. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

27. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report
TR-81, Aiken Computation Lab, Harvard University, (1981), http://eprint.iacr.
org/2005/187

28. Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang, Y.: Hyper-
proofs: Aggregating and maintaining proofs in vector commitments. In: Butler,
K.R.B., Thomas, K. (eds.) USENIX Security 2022. pp. 3001–3018. USENIX Asso-
ciation (Aug 2022)

29. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 45–64. Springer, Cham (Sep
2020). https://doi.org/10.1007/978-3-030-57990-6 3

https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1145/3576915.3623131
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-031-22972-5_8
https://doi.org/10.1145/3319535.3339817
http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-030-57990-6_3

Extractable Witness Encryption for KZG Commitments 453

30. Tsabary, R.: Candidate witness encryption from lattice techniques. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 535–559.
Springer, Cham (Aug 2022). https://doi.org/10.1007/978-3-031-15802-5 19

31. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-IO from
evasive LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS,
vol. 13791, pp. 195–221. Springer, Cham (Dec 2022). https://doi.org/10.1007/978-
3-031-22963-3 7

32. Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: Maintainable vector
commitments with fast aggregation. In: Calandrino, J.A., Troncoso, C. (eds.)
USENIX Security 2023. pp. 4409–4426. USENIX Association (Aug 2023)

https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-031-22963-3_7

Revisiting Pairing-Friendly Curves
with Embedding Degrees 10 and 14

Yu Dai1, Debiao He2, Cong Peng2(B), Zhijian Yang1,3,
and Chang-an Zhao4,5(B)

1 School of Mathematics and Statistics, Wuhan University, Wuhan, China
eccdaiy39@gmail.com, zjyang.math@whu.edu.cn

2 School of Cyber Science and Engineering, Wuhan University, Wuhan, China
{hedebiao,cpeng}@whu.edu.cn

3 Institute for Math & AI, Wuhan University, Wuhan, China
4 School of Mathematics, Sun Yat-sen University, Guangzhou, China

zhaochan3@mail.sysu.edu.cn
5 Guangdong Key Laboratory of Information Security, Guangzhou, China

Abstract. Since 2015, there has been a significant decrease in the
asymptotic complexity of computing discrete logarithms in finite fields.
As a result, the key sizes of many mainstream pairing-friendly curves
have to be updated to maintain the desired security level. In PKC’20,
Guillevic conducted a comprehensive assessment of the security of a series
of pairing-friendly curves with embedding degrees ranging from 9 to 17.
In this paper, we focus on five pairing-friendly curves with embedding
degrees 10 and 14 at the 128-bit security level, with BW14-351 emerging
as the most competitive candidate. First, we extend the optimized for-
mula for the optimal pairing on BW13-310, a 128-bit secure curve with a
prime p in 310 bits and embedding degree 13, to our target curves. This
generalization allows us to compute the optimal pairing in approximately
log r/(2ϕ(k)) Miller iterations, where r and k are the order of pairing
groups and the embedding degree respectively. Second, we develop opti-
mized algorithms for cofactor multiplication for G1 and G2, as well as
subgroup membership testing for G2 on these curves. Finally, we provide
detailed performance comparisons between BW14-351 and other popu-
lar curves on a 64-bit platform in terms of pairing computation, hashing
to G1 and G2, group exponentiations, and subgroup membership test-
ings. Our results demonstrate that BW14-351 is a strong candidate for
building pairing-based cryptographic protocols.

Keywords: pairing-friendly curves · BW14-351 · the 128-bit security
level

1 Introduction

The past two decades have witnessed the application of elliptic curve pairings
in public-key cryptosystems, such as Direct Anonymous Attestation (DAA) [13,
51], Succinct Non-interactive Arguments of Knowledge (SNARKs) [3,21,22,30],
and Verifiable Delay Function(VDF) [20]. A cryptographic pairing is a non-
degenerate bilinear map defined as e : G1 × G2 → GT , where the three pairing
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, pp. 454–485, 2025.
https://doi.org/10.1007/978-981-96-0888-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0888-1_15&domain=pdf
https://doi.org/10.1007/978-981-96-0888-1_15

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 455

groups G1, G2, and GT have the same large prime order r. Specifically, G1 and
G2 are two independent subgroups of an elliptic curve E over a finite field Fpk ,
while GT is a subgroup of the multiplicative group F

∗
pk . The value of k is the

smallest positive integer such that E[r] ⊆ E(Fpk).
The security of pairing-based cryptographic protocols relies on the hard-

ness of the discrete logarithm problem (DLP) in the three pairing groups. The
best-known attack algorithm for solving the DLP on an elliptic curve (ECDLP)
in the two input pairing groups G1 and G2 is the Pollard rho algorithm [43],
which requires around

√
r group operations. Thus, the size of the prime r is at

least 256 bits for reaching the 128-bit security level. As for the DLP on a finite
field (FFDLP) Fpk in GT whose characteristic p is not small, the best-known
algorithm is the number field sieve (NFS) [44]. According to the standardization
reported by ENISA [1] in 2013, a 3072-bit finite field is 128-bit secure. Since
then, a series of variants of NFS have been proposed [9,36,38], resulting in a
drastic decrease for the security level of mainstream pairing-friendly curves. In
particular, Kim and Barbulescu [38] proposed the special extended tower num-
ber field sieve (SexTNFS), which is applied to a composite extension field whose
characteristic p can be parameterized by a tiny-coefficients polynomial of moder-
ate degree. This variant is almost tailored to mainstream pairing-friendly curves,
such as the Barreto-Naehrig(BN) [11] and Barreto-Lynn-Scott(BLS) [11] fami-
lies. For example, the estimates in [8,32] suggest that the updated security level
of the previous 128-bit secure BN curve has dropped down to 100 ∼ 103 bits.

In PKC’20, Guillevic [31] analyzed the consequence of the improvement of
NFS in detail and recommended a list of pairing-friendly curves with embed-
ding degrees from 10 to 16. In particular, Guillevic pointed out that the size of
the prime p on both BN and BLS12 curves has to be increased to 446 bits to
match the updated 128-bit security level, and the BLS12-446 curve is the most
efficient choice for pairing computation at this security level across different
pairing-friendly curves. However, owing to the large size of the characteristic p,
both BLS12-446 and BN446 suffer a performance penalty concerning operations
associated with G1. Therefore, two new curves derived from [24, Construction
6.6] have emerged for fast group exponentiation in G1: BW13-310 and BW19-
286 [15]. Recently, Dai, Zhang and Zhao [18] proposed a new formula for comput-
ing pairing on BW13-310. More specifically, the number of iterations in Miller’s
algorithm on the curve is only around log r/(2ϕ(k)). However, due to the lack
of twists, the trick of denominator elimination is no longer applicable. In other
words, even though the length of the Miller loop on BW13-310 is extremely short,
the computational cost for each Miller doubling/addition step is expensive. In
addition, since the group G2 on BW13-310 is defined over the full extension field
Fp13 , the operations associated with G2 are costly, such as hashing to G2 and
group exponentiation in G2. It motivates us to search for new pairing-friendly
curves such that the Miller loop can be performed in log r/(2ϕ(k)) iterations,
and the trick of denominator elimination applies as well.

456 Y. Dai et al.

1.1 Our Contributions

In this work, we revisit the cyclotomic pairing-friendly curves presented in [24]
with embedding degrees 10 and 14. A comprehensive research is presented that
aims to facilitate the implementation of pairing-based cryptographic protocols
using these curves. Our contributions are summarized as follows.

• We generalize the optimized formula for the optimal pairing on BW13-310 to
our target curves. Specifically, the automorphism action can be extracted from
the Miller function evaluation, reducing the number of Miller iterations to
approximately log r/(2ϕ(k)). In addition, we refine the best-known algorithm
for the final exponentiation to save several field multiplications.

• We develop new algorithms for key building blocks involved in implementing
pairing-based protocols on our target curves, including cofactor multiplication
for G1 and G2, and subgroup membership testing for G2.

• Utilizing the RELIC toolkit [2], we present high-speed software implementa-
tions of pairing computation, hashing to G1 and G2, group exponentiations,
and subgroup membership testings over two target curves named BW10-511
and BW14-351 on a 64-bit platform. Our results show that compared to
popular curves at the updated 128-bit security level, including BLS12-446,
BN446, and BW13-310, BW14-351 is competitive for building pairing-based
cryptographic protocols. In more detail,

– the performance of pairing computation on BW14-351 is even slightly
faster than that on BN446 and BW13-310, while about 16.2% slower
than that on BLS12-446;

– in terms of group exponentiations in G1 and GT , BW14-351 is about
49.4% and 20.4% faster than BLS12-446, 118.5% and 100% faster than
BN446, while 35.1% and 3.4% slower than BW13-310;

– compared to BW13-310, BW14-351 incurs a lighter penalty for hashing
to G2 and group exponentiation in G2, while is still slower than BN446
and BLS12-446.

Code: Our code is available at https://github.com/eccdaiy39/BW10-14.

2 Preliminaries

In this section, we recall some basic properties of ordinary elliptic curves, pairings
and endomorphisms.

2.1 Ordinary Elliptic Curves over Finite Fields

Let Fp be a prime field with characteristic p > 3. Let E be an elliptic curve over
Fp of the form y2 = x3 + ax + b, where a, b ∈ Fp such that 4a3 + 27b2 �= 0.
The j-invariant of E is defined as j(E) = 1728 4a3

4a3+27b2 . We denote by E(Fp) the
group of Fp-rational points of E, together with the identity element OE . Then
the order of E(Fp) is given by #E(Fp) = p + 1 − t, where t is the trace of the

https://github.com/eccdaiy39/BW10-14

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 457

Frobenius endomorphism π : (x, y) → (xp, yp). If t �= 0, then the curve E is
said to be ordinary, and supersingular otherwise. Let r be a large prime divisor
of #E(Fp), and let E[r] denote the r-torsion subgroup of E. The embedding
degree k of E with respect to r and p is the smallest positive integer such that
E[r] ⊆ E(Fpk). If k > 1, then k is the smallest integer such that r | pk − 1.

An endomorphism α of E over F̄p is a non-constant rational map from E
to itself over F̄p, where F̄p is the algebraic closure of Fp. The set of all endo-
morphisms of E over F̄p, together with the zero map defined by 0(P) = OE ,
forms a ring denoted as End(E). We denote by K the imaginary quadratic
field K = Q(

√−D), where D is the square-free part of 4p − t2. Let OK be
the largest subring of K. Since E is ordinary, End(E) is an order in OK , i.e.,
Z[π] ⊆ End(E) ⊆ OK . For any α ∈ End(E), the characteristic equation of α
can be represented as x2 + mx + n = 0 for two integers m and n, where n is
called the norm of α, i.e., Nrd(α) = n. In particular, the characteristic equation
of π is given as π2 − tπ + p = 0. For each endomorphism α, there is a unique
endomorphism α̂ such that α ◦ α̂ = Nrd(α), which is called the dual of α.

Let Aut(E) be the automorphism group of E, and let d = gcd(k,#Aut(E)).
If d > 1, then there exists a unique degree-d twist E′ such that r | #E′(Fpk/d)
with an untwisting isomorphism φ: E′ → E. In elliptic curve cryptography,
ordinary elliptic curves with j-invariant 0 or 1728 are particularly interesting as
they are equipped with an efficiently computable endomorphism. More precisely,

• if j(E) = 0, then we have a = 0 and p ≡ 1 mod 3 [50, Proposition 4.33].
There exists an endomorphism E → E given as τ : (x, y) → (ω · x, y), where
ω is a primitive cube root of unity in F

∗
p. The characteristic equation of τ is

τ2 + τ + 1 = 0 and the dual of τ is τ̂ : (x, y) → (ω2 · x, y);
• if j(E) = 1728, then we have b = 0 and p ≡ 1 mod 4 [50, Theorem 4.23].

There exists an endomorphism E → E given as τ : (x, y) → (−x, i · y), where
i is a primitive fourth root of unity in F

∗
p. The characteristic equation of τ is

τ2 + 1 = 0 and the dual of τ is τ̂ : (x, y) → (−x,−i · y).

For the two types of curves, there exist the following two endomorphisms on E′:

η = φ−1 ◦ τ ◦ φ, ψ = φ−1 ◦ π ◦ φ,

where η and ψ have the same characteristic equations as τ and π, respectively.

2.2 Optimal Pairing

Given a random point Q ∈ E(Fpk) and an integer m, a Miller function fm,Q is
a normalized rational function in Fpk(E) with divisor

div(fm,Q) = m(Q) − ([m]Q) − (m − 1)(OE). (1)

Let G1 and G2 be respectively 1- and p-eigenspaces of π acting on E[r], i.e.,
G1 = E(Fp)[r] and G2 = E[r] ∩ Ker(π − [p]). Let GT be the group of r-th roots
of unity in F

∗
pk . Let λ =

∑L
i=0 cip

i be a multiple of the prime r with ci ∈ Z for

458 Y. Dai et al.

each i. Then, the general expression of the optimal pairing [49, Theorem 7] on
E is given as:

e :G2 × G1 → GT ,

(Q,P)→
(

L∏

i=0

fpi

ci,Q
(P)·

L−1∏

i=0

�[si+1]Q,[cipi]Q(P)
ν[si]Q(P)

)(pk−1)
r

,

(2)

where si =
∑L

j=i cjp
j , �[i]R,[j]R is the straight line passing through [i]R and

[j]R, and ν[i+j]R is the vertical line passing through [i+j]R. The Miller function
fci,Q evaluated at the point P for each i can be obtained by executing Miller’s
algorithm [42], which is described in Alg. 1. Vercauteren [49, Theorem 7] proved
that there exists a short vector (c0, c1, · · · , cL) satisfying that max |ci| ≈ r1/ϕ(k).
Thus, the optimal pairing can be computed in approximately log r/ϕ(k) Miller
iterations. Moreover, if the embedding degree k is even, the vertical line evalu-
ations can be ignored because these values lie in the subfield Fpk/2 and can be
killed by the exponentiation by (pk − 1)/r.

Algorithm 1: Miller’s Algorithm
Input: P ∈ G1, Q ∈ G2, m =

∑L
i=0 mi2

i with mi ∈ {−1, 0, 1}
Output: fm,Q(P)
1: T ← Q, f ← 1
2: for i = L − 1 down to 0 do
3: f ← f2 · �T,T (P)

ν[2]T (P)
, T ←− [2]T

4: if mi = 1 then
5: f ← f · �T,Q(P)

νT+Q(P)
, T ← T + Q

6: elif mi = −1 then
7: f ← f · �T,−Q(P)

νT−Q(P)
, T ← T − Q

8: end if
9: end for

10: return f

3 Elliptic Curves with Embedding Degrees 10 and 14

The construction of pairing-friendly curves necessitates special methods to
ensure a small embedding degree k, which is crucial for efficient pairing compu-
tation. In addition, we also expect pairing-friendly curves have j-invariant 0 or
1728 such that they are equipped with efficiently computable endomorphisms
and efficient formulas for point operation. Using the Brezing-Weng method [12],
Freeman, Scott and Teske [24, Sect. 6] constructed a list of such curves with
embedding degrees 10 and 14, which are summarized in Table 1. The formulas

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 459

for optimal pairing on these curves are given in Table 2. It is straightforward
to see that the number of iterations in Miller’s algorithm on these curves is
approximately log r/ϕ(k).

Remark 1. Using Eq. (2), the formula for the optimal pairing for the Cyclo(6.5)-

10 family is expressed as
(
fp

z2,Q(P)
)(p10−1)/r. Since a non-degenerate power of

a pairing remains a pairing, we can replace fp
z2,Q(P) by fz2,Q(P) to save one

Frobenius map.

Table 1. Important parameters for pairing-friendly curves with embedding degrees 10
and 14 from [24, Sect. 6].

family k j(E) p r t

Cyclo(6.3) 10 1728 1
4
(z14 − 2z12 + z10 + z4 + 2z2 + 1) Φ20(z) z2 + 1

Cyclo(6.5) 10 1728 1
4
(z12−z10+z8−5z6+5z4−4z2+4) Φ20(z) −z6+z4−z2+2

Cyclo(6.6) 10 0 1
3
(z3 − 1)2(z10 − z5 + 1) + z3 Φ30(z) z3 + 1

Cyclo(6.3) 14 1728 1
4
(z18 − 2z16 + z14 + z4 + 2z2 + 1) Φ28(z) z2 + 1

Cyclo(6.6) 14 0 1
3
(z − 1)2(z14 − z7 + 1) + z15 Φ42(z) z8 − z + 1

3.1 New Formulas for Optimal Pairings on Target Curves

Recently, Dai, Zhang and Zhao [18] proposed a faster formula for pairing com-
putation on the BW13-310 curve such that the length of the Miller loop can
be reduced to around log r/(2ϕ(k)). In this subsection, we show how to gener-
alize this technique to our target curves. On this basis, we further propose an
improved algorithm to reduce the performance penalty introduced by this new
technique.

By the fact that the endomorphism ring of ordinary elliptic curves is com-
mutative, we find that τ(Q) ∈ G2 for any Q ∈ G2 as

π ◦ τ(Q) = τ ◦ π(Q) = τ([p]Q) = [p]τ(Q) and [r]τ(Q) = τ([r]Q) = OE .

Furthermore, since the group order of G2 is prime, the endomorphism τ acts on
G2 as a scalar, which is denoted as λ2. In detail, we can fix the parameter of τ
such that

λ2 =

⎧
⎪⎨

⎪⎩

− zk/2, in the Cyclo(6.3)-10, 14 and Cyclo(6.5)-10 families;

zk, in the Cyclo(6.6)-10 family;

−zk − 1, in the Cyclo(6.6)-14 family.

(3)

460 Y. Dai et al.

Table 2. Original formulas for optimal pairings on pairing-friendly curves with embed-
ding degrees 10 and 14.

family-k short vector optimal pairing

Cyclo(6.3)-10 [z2, −1, 0, 0]
(
fz2,Q(P)

)(p10−1)/r

Cyclo(6.5)-10 [−1, z2, 0, 0]
(
fz2,Q(P)

)(p10−1)/r

Cyclo(6.6)-10 [z, 0, −1, z2]
(
fz,Q(P) · fp3

z2,Q
(P) · �π7(Q),π3([z2]Q)(P)

)(p10−1)/r

Cyclo(6.3)-14 [z2, −1, 0, 0, 0, 0]
(
fz2,Q(P)

)(p14−1)/r

Cyclo(6.6)-14 [z2, z, 1, 0, 0, 0]
(
fz2,Q(P) · fp

z,Q(P) · �π2(Q),π([z]Q)(P)
)(p14−1)/r

By combining the two endomorphisms π and τ , we fortunately find that
πm ◦ τ(Q) = [z]Q for any Q ∈ G2, where

m =

⎧
⎪⎨

⎪⎩

(k + 2)/4, in the Cyclo(6.3)-10 and Cyclo(6.3)-14 families;
7, in the Cyclo(6.5)-10 and Cyclo(6.6)-10 families;
1, in the Cyclo(6.6)-14 family.

This observation enables us to rewrite the formulas for optimal pairings on
our target curves such that the number of Miller iterations can be reduced to
around log r/(2ϕ(k)), which is summarized in Lemma 1 below.

Lemma 1. Let notation be as above. Then fz2,Q = fz
z,Q · fpm

z,Q ◦ τ̂ , where τ̂ is
the dual of τ .

Proof. It can obtained from [35, Lemma 3.5] that

fz2,Q = fz
z,Q · fz,[z]Q. (4)

Since πm ◦ τ(Q) = [z]Q, it follows from [53, Theorem 1] and [17, Theorem
1] that

fz,[z]Q = fz,πm◦τ(Q) = fpm

z,τ(Q) = fpm

z,Q ◦ τ̂pm

= fpm

z,Q ◦ τ̂ . (5)

Inserting Eq. (5) into Eq. (4), we have

fz2,Q = fz
z,Q · fpm

z,Q ◦ τ̂ ,

which completes the proof. �
Based on Lemma 1, we can derive new formulas for optimal pairings on our
target curves by executing the following two steps:

-Step 1. We first replace fz2,Q(P) by fz
z,Q(P) · fpm

z,Q(τ̂(P)) in the original
formulas for optimal pairings. In particular, we can also replace the point [z]Q
by πm ◦ τ(Q) at the final line in the Cyclo(6.6)-10 and Cyclo(6.6)-14 families.

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 461

Table 3. Optimized formulas for optimal pairings on pairing-friendly curves with
embedding degrees 10 and 14.

family-k optimal pairing

Cyclo(6.3)-10
(
fz·p7

z,Q (P) · fz,Q(τ̂(P))
)(p10−1)/r

Cyclo(6.5)-10
(
fz·p3

z,Q (P) · fz,Q(τ̂(P))
)(p10−1)/r

Cyclo(6.6)-10
(
f1+z·p3

z,Q (P) · fz,Q(τ̂(P)) · (yP − yQ)p7)(p10−1)/r

Cyclo(6.3)-14
(
fz·p10

z,Q (P) · fz,Q(τ̂(P))
)(p14−1)/r

Cyclo(6.6)-14
(
f1+z·p13

z,Q (P) · fz,Q(τ̂(P)) · (yP − yQ)p
)(p14−1)/r

Table 4. Parameters of the pairing-friendly curves with embedding degrees 10 and 14
at the updated 128-bit security level.

curve family-k seed z
r

bits
p

bits
pk

bits
DL cost
in Fpk

BW10-480 Cyclo(6.5)-10 25 + 214 + 215 + 218 + 236 + 240 321 480 4791 128

BW10-511 Cyclo(6.6)-10 27 + 213 + 226 − 232 256 511 5101 150

BW10-512 Cyclo(6.3)-10 1 + 23 + 217 + 232 + 235 + 236 294 512 5111 129

BW14-351 Cyclo(6.6)-14 26 − 212 − 214 − 222 265 351 4908 149

BW14-382 Cyclo(6.3)-14 1 + 210 + 213 − 216 + 219 + 221 256 382 5338 129

-Step 2. Utilizing the property that a non-degenerate power of a pairing
remains a pairing, we then can raise the output of the Miller loop to a pk−m-
power such that the exponent of the second Miller function is equal to 1.

The new formulas for the optimal pairing for our selected curves are summa-
rized in Table 3. Clearly, the most costly part of the Miller loop is to compute
fz·pk−m

z,Q (P) · fz,Q(τ̂(P)), enabling the execution of Miller’s algorithm in around
log|z| iterations within the same loop, albeit with a slightly higher computa-
tional cost per iteration. However, compared to the original formulas, the new
ones require an additional exponentiation by z. Fortunately, the exponentiation
can be integrated with the computation of fz,Q(τ̂(P)) to share several squar-
ings. Specifically, we first calculate fz,Q(P) and store all line function evalua-
tions required for computing fz,Q(τ̂(P)) at the first loop. Subsequently, given the
initial value fpk−m

z,Q (P), we then compute fz·pk−m

z,Q (P) · fz,Q(τ̂(P)) at the second
loop. The optimized procedure for computing this value is presented in Algo-
rithm 2. Thanks to the final exponentiation, the value of g−1 can be replaced by
ḡ in Line 10 of Algorithm 2, where ḡ represents the conjugate of g.

3.2 Choice of Parameters at the 128-Bit Security Level

The choice of parameters of pairing-friendly curves should be careful for achiev-
ing high performance implementation at the desired security level. In this paper,
we focus on the performance of pairing computation at the 128-bit security
level. To this end, the size of full extension field Fpk should be large enough to

462 Y. Dai et al.

Algorithm 2: Computing fz·pk−m

z,Q (P) · fz,Q(τ̂(P))

Input: P ∈ G1, Q ∈ G2, z =
∑L

i=0 zi · 2i with zi ∈ {−1, 0, 1}
Output: fz·pk−m

z,Q (P) · fz,Q(τ̂(P))
1: T ← Q, f ← 1, tab← [], j ← 0
2: for i = L − 1 down to 0 do
3: f ← f2 · �T,T (P), tab[j] ← �T,T (τ̂(P)), T ←− 2T , j ← j + 1 // SDBL

4: if zi = 1 then
5: f ← f · �T,Q(P),tab[j] ← �T,Q(τ̂(P)), T ← T + Q, j ← j + 1 // SADD

6: elif zi = −1 then
7: f ← f ·�T,−Q(P), tab[j] ←�T,−Q(τ̂(P)), T ← T −Q, j ←j+1 // SADD

8: end if
9: end for

10: g ← fpk−m

, h ← g, j ← 0
11: for i = L − 1 down to 0 do
12: h ← h2·tab[j], j ← j + 1
13: if zi = 1 then
14: h ← h · g·tab[j], j ← j + 1
15: elif zi = −1 then
16: h ← h · ḡ·tab[j], j ← j + 1
17: end if
18: end for
19: return h

resist attacks from the variants of NFS. The concrete security can be estimated
using the source code provided by Guillevic and Singh [33], which is available at
https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage.

On this basis, to maximize the efficiency of pairing computation, we also
expect

(a) the selected prime p satisfies that p ≡ 1 mod k;
(b) the sum of bit length and Hamming weight (in non-adjacent form) of the

selected seed z is as small as possible.

In more detail, the condition (a) ensures that the full extension field Fpk

can be represented as Fp[v]/(vk − α) for some α ∈ F
∗
p [40, Theorem 3.75], which

actually can be constructed as a tower of quadratic and k/2-th extensions:

Fp
ξk/2−α−−−−−→ Fpk/2

v2−ξ−−−→ Fpk .

This construction induces fast multiplication and squaring arithmetic opera-
tions in Fpk ; the condition (b) aims to minimize the number of Miller iterations
in Alg. 2. In fact, the computation of the final exponentiation also benefits from
condition (b) since this step consists of a large number of exponentiations by
z (see Sect. 4.3). Table 4 summarizes our chosen seeds z under the above con-
ditions, together with the corresponding sizes of the curve parameters. Notably,
while Guillevic [31, Table 6] selected a seed for the Cyclo(6.6)-14 family, this
seed fails to meet the condition (a).

https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 463

Curve Name: For convenience, all the candidate curves listed in Table 4 are col-
lectively called BW curves since they are essentially generated using the Brezing-
Weng method. Moreover, we distinguish each curve by its embedding degree and
the size of the characteristic p. For instance, the BW14-351 curve is referred to
as the curve constructed from the Cyclo(6.6)-14 family defined over a 351-bit
prime field.

4 Pairing Computation

In this section, we first describe explicit formulas for Miller doubling and addition
steps. In particular, the technique of lazy reduction [6,45] has been fully exploited
to reduce the number of modular reductions required in Miller’s algorithm. Then,
we show how to perform the final exponentiation efficiently. Finally, we present
detailed operation counts for pairing computation on different curves.

Notations. The cyclotomic group GΦk(p) is defined by GΦk(p) = {a ∈ Fpk |
aΦk(p) = 1}. The notation × is used to denote field multiplication without reduc-
tion. We use the following notation to denote the cost of operations:(i) a, m,
mu, s, su, i and r denote the cost of addition, multiplication, multiplication
without reduction, squaring, squaring without reduction, inversion and modular
reduction in Fp, respectively; (ii) ã, m̃, m̃u, m̃ξ, s̃, s̃u, ĩ and r̃ represent the
cost of addition, multiplication, multiplication without reduction, multiplication
by ξ, squaring, squaring without reduction, inversion and modular reduction in
Fpk/2 , respectively; (iii) M, S, f and I represent the cost of multiplication, squar-
ing, Frobenius map and inversion in Fpk , respectively; (iv) Sc and e represent
the cost of squaring and exponentiation by z in the cyclotomic group GΦk(p),
respectively.

4.1 Miller Loop on Curves of Form y2 = x3 + b

Let E : y2 = x3 + b be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + b/ξ3 over Fpk/2 . The associated
untwisting isomorphism from E′ to E is given by

φ : (x, y) → (xξ, yξv).

To avoid field inversions when performing point operations, points can be repre-
sented in projective coordinates. For this curve shape, it is convenient to use
Jacobian coordinates, that is, an affine point (x, y) corresponds to a triplet
(X,Y,Z) with x = X/Z2 and y = Y/Z3.

Shared Doubling Step (SDBL). Let T = (X,Y,Z) ∈ E′(Fpk/2)[r] be in
Jacobian coordinates. The formula for computing the doubling point [2]T =
(X3, Y3, Z3) is derived from [7, Sect. 4.3], where

464 Y. Dai et al.

X3 = X(
9
4
X3 − 2Y 2), Y3 =

9
4
X3(2Y 2 − 3

2
X3) − Y 4, Z3 = Y Z.

By the form of the untwisting map φ, the image point φ(T) ∈ G2 can be rep-
resented as (Xξ, Y ξv, Z). Thanks to the technique of denominator elimination,
the line function lφ(T),φ(T) evaluated at P = (xP , yP) and τ̂(P) = (x̃P , yP) can
be simplified as

lφ(T),φ(T)(P) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2xP

)
v,

lφ(T),φ(T)(τ̂(P)) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2x̃P

)
v.

It is evident that the two line evaluations share a large amount of variables. In
addition, the technique of lazy reduction can be employed when computing Y3.
Thus, we can obtain the above two line evaluations using the following sequence
of operations:

A = 3X2, B = A · X,C =
B

2
,D = C +

C

2
, E = Y 2, F = 2E,U0 = D × (F − C),

U1 = E × E, Y3 = (U0 − U1) mod p,X3 = X · (D − F), Z3 = Y · Z,G = Z2,

I = G · Z3 · (2yP), J = A · G,K = (B − F) · ξ, L = J · xP ,M = J · x̃P ,

lφ(T),φ(T)(P) = I + (K − L)v, lφ(T),φ(T)(τ̂(P)) = I + (K − M)v.

The total operation count for point doubling and two line evaluations is 5m̃ +
m̃u + s̃u + m̃ξ + 3s̃ + 3k

2 m + r̃ + 13ã + a, assuming that the computation of
division by 2 and U0 − U1 requires one and two additions, respectively.

Shared Addition Step (SADD). Let T = (X,Y,Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in Jacobian coordinates with Z �= 0, Z2 = 1 and T �= Q. Then
one can compute the point T + Q = (X3, Y3, Z3) using the mixed addition
formula [7, Sect. 4.3], which is given as

θ=Y2Z
3−Y, β=X2Z

2−X,X3 =θ2−2Xβ2−β3, Y3 =θ(Xβ2−X3)−Yβ3, Z3 =Zβ.

Subsequently, the line function lφ(T),φ(Q) evaluated at P and τ̂(P) can be
expressed as

lφ(T),φ(Q)(P) = Z3yp +
(
(θX2 − Y2Z3) · ξ − θxP

)
v,

lφ(T),φ(Q)(τ̂(P)) = Z3yp +
(
(θX2 − Y2Z3) · ξ − θx̃P

)
v.

Again, by taking advantage of the technique of lazy reduction, we perform the
following sequence of operations to compute the above point addition and two

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 465

line evaluations, which costs 6m̃ + 4m̃u + m̃ξ + 3s̃ + 3k
2 m + 2r̃ + 12ã:

A = Z2, θ = Y2 · A · Z − Y, β = X2 · A − X,B = β2, C = β · B,D = X · B,

X3 = θ2 − 2D − C,U0 = θ × (D − X3), U1 = Y × C, Y3 = (U0 − U1) mod p,

Z3 = Z · β,E = Z3 · yP , F = θ · xP , G = θ · x̃P , U2 = θ × X2, U3 = Y2 × Z3,

H = (U2 − U3) mod p, I = H · ξ, lφ(T),φ(Q)(P) = E + (I − F)v,

lφ(T),φ(Q)(τ̂(P)) = E + (I − G)v.

4.2 Miller Loop on Curves of Form y2 = x3 + ax

Let E : y2 = x3 + ax be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + a′ over Fpk/2 , where a′ = a · ξ2.
As a consequence, the associated untwisting isomorphism from E′ to E can be
expressed as

φ : (x, y) → (x, y) → (x/ξ, y/(ξv)).

For this curve shape, we represent an affine point (x, y) in the weight-(1, 2)
coordinates (X,Y,Z) satisfying that x = X/Z and y = Y/Z2 [16, Sect. 4].

Shared Doubling Step (SDBL). Let T = (X,Y,Z) ∈ E′(Fpk/2)[r] be in
weight-(1, 2) coordinates. For this curve shape, the point doubling formula for
computing [2]T = (X3, Y3, Z3) is derived from [16, Sect. 4], which is expressed as

X3 = (X2 − a′Z2)2, Y3 = 2Y (X2 − a′Z2)
(
2(X2 + a′Z2)2 − X3

)
, Z3 = 4Y 2.

In this case, it is more convenient to perform line evaluations on the twisted
curve. In other words, we compute the line function lT,T evaluated at φ−1(P) =
(xP ξ, yP ξv) and φ−1 ◦ τ̂(P) = (−xP ξ, ỹP ξv). The explicit formulas are given by

lT,T (φ−1(P)) = (X3 − a′XZ2) − (3X2Z + a′Z3)xP ξ + 2Y ZyP ξv,

lT,T (φ−1 ◦ τ̂(P)) = (X3 − a′XZ2) + (3X2Z + a′Z3)xP ξ + 2Y ZỹP ξv.

Accordingly, the point doubling and two line evaluations can be accomplished
by performing the following sequences of operations at a cost of 5m̃+5s̃+ 3k

2 m+
2m̃ξ + m̃a′ + 9ã (m̃a′ denotes the cost of multiplication by a′):

A =X2, B =2Y,C =a′ ·Z2,D =A− C,E =A + C,X3 =D2, Z3 =B2, F =B · Z,

Y3 = B · D · (2E2 − X3), G= F · ξ, I = X · D,H = (2A + E) · Z · xP , J = yP · G,

J̃ = ỹP · G,K =H · ξ, lT,T (φ−1(P))=I − K + Jv, lT,T (φ−1 ◦ τ̂(P))=I + K + J̃v.

Shared Addition Step (SADD). Let T = (X,Y,Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in weight-(1, 2) coordinates with Z �= 0, Z2 = 1 and T �= Q.

466 Y. Dai et al.

We adopt the mixed addition formula [16, Sect. 4] to compute the point T +Q =
(X3, Y3, Z3), which is given by

U = X − X2Z, S = U2Z,X3 = (Y − Y2Z
2)2 − (X + X2Z)S,

Y3 =
(
(Y − Y2Z

2)(XS − X3) − Y SU
)
UZ,Z3 = (UZ)2.

Subsequently, the line function lT,Q evaluated at φ−1(P) and φ−1 ◦ τ̂(P) are
given by

lT,Q)(φ−1(P)) =
(
(Y − Y2Z

2)X2 − UZY2

) − (Y − Y2Z
2)ξxP + yP UZξv,

lT,Q(φ−1 ◦ τ̂(P)) =
(
(Y − Y2Z

2)X2 − UZY2

)
+ (Y − Y2Z

2)ξxP + ỹP UZξv.

The following sequence of operations can be used for computing the above mixed
point addition and two line evaluations at a cost of 6m̃ + 6m̃u + 2m̃ξ + 3s̃ +
3k
2 m + 3r̃ + 10ã:

A = Z2, B = X2 · Z, C = Y2 · A, D = X − B, E = Y − C, F = Z · D, G = F · D,

X3 =
(
E × E − (X + B) × G

)
mod p, H = X · G − X3, I = E · F, J = G2,

Y3 =(I×H−Y × J) mod p, Z3 =F 2, K =(E×X2−F × Y2) mod p, L =E · xP · ξ,

M = F · ξ, N = M · yP , Ñ = M · ỹP , lT,Q(φ−1(P)) = (K − L) + Nv,

lT,Q(φ−1 ◦ τ̂(P)) = (K + L) + Ñv.

4.3 The Final Exponentiation

The final exponentiation is the other time-consuming stage of pairing compu-
tation. This step aims to raise the output of the Miller loop to the power of
(pk − 1)/r. For our target curves, the large exponent can be split into two parts:

(pk−1)/r = (p + 1)(pk/2 − 1)
︸ ︷︷ ︸

easy part

·Φk(p)/r
︸ ︷︷ ︸
hard part

·

The exponentiation to the power of the easy part yields an element f ∈ GΦk(p),
which costs only I + 3M + 2f. The major bottleneck of the final exponentia-
tion arises from the exponentiation to the power of the hard part. Observing
that a non-degenerate power of a pairing remains a pairing, Fuentes-Castañeda
et al. [25] proved that it suffices to raise f to the power of a multiple h of Φk(p)/r,
where h can be written in the base p as

h = h0 + h1 · p + · · · + hϕ(k)−1 · pϕ(k)−1.

As a consequence, the LLL algorithm is applied to obtain small coefficients hi.
In essence, this method aims to minimize the number of iterations required for
the final exponentiation. Nevertheless, it may still be challenging to devise an
optimized routine of the ϕ(k) small exponentiations fhi . For example, when

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 467

applying this method to the BW14-351 curve, the six coefficients hi are given as
follows:

h0 = z13 + z12 + z11 − z6 + 3z5 + z3,

h1 = − z13 − z12 − 2z11 − z10 − z9 + z6 − 2z5 + z4 − 3z3,

h2 =(1 + z3)(z10 + z9 + z8) − z6 + 2z5 − z4 − z3 + 2z2 − z,

h3 = − z13 − z12 − z11 + z6 − 2z5 + z4 + z2 + z + 1,

h4 = z13 + z12 + z11 − z8 − z7 − 2z6 + 2z5 − z4 − 3,

h5 =z14 − z11 + 4z6 − 2z5 + z4.

Thus, the cost of computing fhi consists of 14 exponentiations by z and a large
amount of full extension field multiplications.

Based on the fact that fΦk(p) = 1, we can further substitute the exponent h

with λ = h+δΦk(p) for some integer δ. In particular, since Φk(p) =
∑ϕ(k)

i=0 (−1)ipi

in our case, the new exponent λ can be written in the base of p as

λ = λ0 + λ1 · p + · · · + λϕ(k) · pϕ(k),

where λi = hi +(−1)iδ for i ∈ {0, 1, · · · , ϕ(k)− 1} and λϕ(k) = δ. Therefore, the
careful selection of the parameter δ may facilitate faster final exponentiation.
We now revisit the final exponentiation on the BW14-351 curve. By setting
λ6 = −(z13 + z12 + z11 + 3z5) + (z6 + z5 + z4), we have

λ0 = h0 + λ6 = z5 + z4 + z3, λ1 = h1− λ6 =−z11− z10 − z9 − 3z3,

λ2 =h2 +λ6 =z10+z9+z8− z3 +2z2 − z, λ3 = h3 − λ6 = z2 + z + 1,

λ4 = h4 + λ6 = −z8 − z7 − z6 − 3, λ5 = h5− λ6 = z14 + z13 + z12 + 3z6.

It is straightforward to see that the six coefficients λi satisfy the following rela-
tions:

λ3 = z2 + z + 1, λ0 = z3λ3, λ4 = −(z3λ0 + 3), λ2 = −(z2λ4 + zλ3),

λ1 = z3λ4, λ6 = z2λ1 + zλ0, λ5 = −z3λ1.

In conclusion, the hard part exponentiation on the BW14-351 curve benefits
from the easy relation between λi. In Table 5, we list our selected coefficients
λ0, λ1, · · · , λϕ(k) and the corresponding sequence of operations on the five can-
didate curves.

4.4 Computational Cost

The construction of tower fields and the curve equations for the five candidate
pairing-friendly curves are presented in Table 6. We now discuss the operation
counts of pairing computation on these curves. To this aim, we first count the
number of finite field arithmetic operations. For the Frobenius map and the

468 Y. Dai et al.

Table 5. The exponentiation of the hard part on the five candidate pairing-friendly
curves. The values of f3 and f4 can be obtained during the computation of fz. There-
fore, we assume that the computation of f3 requires one multiplication, while the
computation of f4 is free. The notation f̄i is denoted as the conjugate of fi.

BW10-480
λ0 = z8−4z2, λ1 = z10−z8−4z4+4z2, λ2 = z6−z4−4, λ3 =−z6+4, λ4 =0

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:10e + 6M + 3f

f1 ← fz4
, f2 ← fz2

1 · f̄4, f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f2 · f̄1, f6 ← f4 · f̄3,

h ← f3 · fp
6 · fp2

5 · f̄2
p

BW10-511

λ0 = −z13 + 2z10 − z7 − 3, λ1 = −z10 + 2z7 − z4, λ2 = −z7 + 2z4 − z,
λ3 =(z14−2z11+z8+3z)−(z9−2z6+z3), λ4 =(z11−2z8+z5)−(z6−2z3+1)
Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:14e + 9M + Sc + 4f

f1 ← fz6−2z3+1, f2 ← fz
1 , f3 ← fz2

2 , f4 ← fz
3 , f5 ← fz

4 , f6 ← fz2

5 · f3,

f7 ← fz
6 · f̄3, f8 ← f5 · f̄1, h ← f̄6 · f̄4

p · f̄2
p2 · f7

p3 · f8
p4

BW10-512

λ0 = z6 − 2z4 + z2, λ1 = z4 − 2z2 + 1, λ2 = −z12 + 2z10 − z8 − 4,
λ3 = −z10 + 2z8 − z6, λ4 = −z8 + 2z6 − z4

Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:12e + 7M + Sc + 4f

f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← fz2

4 · f4,

h ← f2 · fp
1 · f̄5

p2 · f̄4
p3 · f̄3

p4

BW14-351

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:14e + 12M + 6f

f1 ←fz2+z+1, f2 ←fz
1 , f3 ←fz2

2 , f4 ← fz
3 , f5 ← fz2

4 · f3f5 ← f̄5, f6 ←fz2

5 ,

f7 ← f2 · f6, f8 ← fz
6 , f9 ← fz2

8 , f10 ← f4 · f9, f11 ← f̄9
z
,

h ← f3 · f̄8
p · f̄7

p2 · f1
p3 · f5

p4 · f11
p5 · f10

p6

BW14-382

λ0 = z10− 2z8 + z6, λ1 = z8−2z6+z4, λ2 = z6 − 2z4+ z2, λ3 = z4−2z2+1,
λ4 = −z16 + 2z14 − z12 − 4, λ5 =−z14+2z12−z10, λ6 =−z12+2z10−z8

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:16e + 7M + Sc + 4f

f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f4 · fp
3 · fp2

2 ,

f6 ← (fz6

5 · f4)p4
, h ← fp3

1 · f5 · f̄6

inversion operation, we adopt the formulas described in [32, Sect. 5]. For multi-
plication and squaring arithmetic, we combine the lazy reduction technique [6,45]
and the Karatsuba algorithm [37]. In particular, cyclotomic squaring arithmetic
can be accelerated using the formula described in [29, Sect. 2.1]. The exact oper-
ation counts for finite field arithmetic across different pairing-friendly curves are
presented in Table 7.

Recall from Sect. 3.1 that the optimized formulas for the Miller function on
our target curves are expressed as

⎧
⎨

⎩

fz·pk−m

z,Q (P) · fz,Q(τ̂(P)) · fz,Q(P) · (yP − yQ)pm

, if j(E) = 1728;

fz·pk−m

z,Q (P) · fz,Q(τ̂(P)), if j(E) = 0.

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 469

Table 6. Parameters of full extension fields and curve equations for the five candidate
pairing-friendly curves.

curve full extension field original curve E twisted curve E′

BW10-480 Fp
ξ5+11−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW10-511 Fp
ξ5+4−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 − 2 y2 = x3 − 2/ξ3

BW10-512 Fp
ξ5+17−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW14-351 Fp
ξ7−2−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + 3 y2 = x3 + 3/ξ3

BW14-382 Fp
ξ7−17−−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + x y2 = x3 + ξ2x

The computation of fz·pk−m

z,Q (P) · fz,Q(τ̂(P)) can be performed using Algo-
rithm 2, and it requires additional 2M + f + ã to complete the final step of
the Miller iteration on curves with j-invariant 1728. In conclusion, the total
operation count of Miller Loop (ML) is

ML = 2M + f + ã
︸ ︷︷ ︸
ifj(E)=1728

+ (nbits(z) − 1) · SDBL + (hw(z) − 1) · SADD
︸ ︷︷ ︸

Lines 1-9 in Alg.2

+

(
(nbits(z) − 1) + 2hw(z) − 2

) · M +
(
nbits(z) − 1

) · S + f
︸ ︷︷ ︸

Lines 10-16 in Alg.2

,
(6)

where nbits(z) and hw(z) represent the bit length and the Hamming weight in
2-non-adjacent form of the seed z, respectively. We use n1, n2, n3 and n4 to
denote the number of e, M, Sc and f required for the exponentiation to the
power of the hard part, respectively. Then the total operation count of the final
exponentiation (FE) is

FE = I+3M+2f
︸ ︷︷ ︸

easy part

+n1

(
(nbits(z)−1)Sc+(hw(z)−1)M

)
+n2M + n3Sc+n4f

︸ ︷︷ ︸
hard part

=I+
(
n1(hw(z) − 1)+n2 + 3

)
M+

(
n1(nbits(z) − 1)+n3

)
Sc+(n4+2)f.

(7)

In the following, we take BW14-351 as an example to analyze the detailed oper-
ation count of pairing computation.

Example 1. The selected seed z of BW14-351 has nbits(z) = 23 and hw(z) = 4.
Then, it follows from Eq. (6) that the cost of the Miller Loop is:

ML =22(M+ S + 5m̃+m̃u + s̃u +m̃ξ +3s̃+ 21m+ r̃+ 13ã+ a)+

3(M + 6m̃ + 4m̃u + m̃ξ + 3s̃ + 21m + 2r̃ + 12ã) + (28M + 22S + f)

=53M+44S+128m̃+34m̃u+75s̃+22s̃u+25m̃ξ+ 525m+28r̃+f+322ã+22a

=216m̃+193m̃u+219m̃ξ+75s̃+22s̃u+134r̃ + f+ 525m+966ã+22a

=537m + 11271mu + 582su + 83543a + 2975r

=11808mu + 582su + 83543a + 3512r.

470 Y. Dai et al.

Table 7. Costs of arithmetic operations in a tower extension field Fpk on the five
candidate curves.

curve m̃ = m̃u + r̃ s̃ = s̃u + r̃ ĩ m̃ξ, m̃a′

BW10-480 15mu+122a + 5r 7mu+6su+84a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW10-511 15mu + 98a + 5r 7mu+6su+60a + 5r ≈ i + 2m̃ + 22m 2a, -

BW10-512 15mu+122a + 5r 7mu+8su+84a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW14-351 24mu+162a + 7r 15mu+ 6su+106a + 7r ≈ i + 3m̃ + 38m a, -

BW14-382 24mu+210a + 7r 15mu+ 6su+154a + 7r ≈ i + 3m̃ + 38m 5a, 10a

Sc S M I f

m̃ + s̃ + 2ã 2m̃ + 5ã + 2m̃ξ 3m̃u+8ã+2m̃ξ+2r̃ ĩ+2m̃+m̃ξ+2s̃+ã (k−2)m

Furthermore, it can be obtained from Table 5 that the parameters n1, n2,
n3 and n4 are equal to 14, 12, 0 and 6, respectively. By Eq. (7), the cost of the
final exponentiation is:

FE = (I + 3M + 2f) + (14e + 12M + 6f) = I + 57M + 308Sc + 8f

= ĩ + 310m̃ + 171m̃u + 115m̃ξ + 310s̃ + 114r̃ + 96m + 1073ã
= i + 16266mu + 134m + 1860su + 5159r + 118894a
= i + 16400mu + 1860su + 118894a + 5293r.

In total, the cost of pairing computation on BW14-351 is

ML + FE = i + 28208mu + 2442su + 202437a + 8805r.

Table 8. Operation Counts of pairing computation on the five candidate pairing-
friendly curves.

curve ML FE ML+FE

BW10-480
12861mu + 1290su

+115357a + 4761r
i + 11591mu + 2412su

+111610a + 4682r
i + 24452mu + 3702su

+226967a + 9443r

BW10-511
10027mu + 822su

+71412a + 3508r
i + 12452mu + 2706su

+94203a + 5130r
i + 22479mu + 3528su

+165615a + 8638r

BW10-512
11761mu + 1170su

+105417a + 4341r
i + 12820mu + 2610su

+123314a + 5130r
i + 24581mu + 3780su

+228731a + 9471r

BW14-351
11808mu + 582su

+83543a + 3512r
i + 16400mu + 1860su

+118894a + 5293r
i + 28208mu + 2442su

+202437aa + 8805r

BW14-382
12594mu + 720su

+115874a + 3874r
i + 19883mu + 2034su

+191396a + 6137r
i +32477mu+ 2754su

+307270a + 10011r

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 471

In Table 8, we summarize the costs of pairing computation on the five candi-
date curves. It should be noted that the selected primes p for BW10-480, BW10-
511, and BW10-512 can be represented by 8 computer words in a 64-bit proces-
sor, while for BW14-351 and BW14-382 only require 6 computer words. As illus-
trated in [4, Sect 8], it is reasonable to estimate that m8 ≈ (136/78)m6 ≈ 1.74m6

and a8 ≈ (8/6)a6 ≈ 1.33a6, where mi and ai denote the costs of multipli-
cation and addition in Fp, with p a i computer word size prime in a 64-bit
processor. Based on the estimate and Table 8, we predict that BW14-351 is the
most efficient choice among the five candidate curves for pairing computation.

5 Subgroup Membership Testing

In pairing-based cryptographic protocols, subgroup membership testing plays
a critical role in defending against small subgroup attacks. [10,41]. Recent
research [17,47] has demonstrated that efficiently computable endomorphisms
are powerful tools for accelerating these testings in various pairing groups. In
this section, we describe the application of state-of-the-art technique [17] to our
specific pairing-friendly curves. Furthermore, we also introduce a faster method
for G2 membership testing.

5.1 G1 Membership Testing

Given a candidate point P , the process of verifying whether P ∈ G1 can be
divided into two phases. Concretely, one can first check whether P ∈ E(Fp),
followed by verifying that the order of P is exactly r. It is clear that the compu-
tational cost largely comes from the second phase. Let the endomorphism τ on
G1 act as scalar multiplication by λ1, and let Lτ be a two dimensional lattice as

Lτ = {(a0, a1) ∈ Z
2|a0 + a1 · λ1 ≡ 0 mod r}.

By [49, Theorem 2], the norm of the shortest vector in Lτ is about log r/2. We
let (a0, a1) be a vector in Lτ with gcd(h1, h

′
1) = 1, where h1 = #E(Fp)/r and

h′
1 =

{(
a2
0 − a0 · a1 + a2

1

)
/r, if j(E) = 0;

(
a2
0 + a2

1)/r, if j(E) = 1728.
(8)

Dai et al. [17] prove that the short vector (a0, a1) can be used to accelerate
G1 membership testing, i.e.,

P ∈ G1 ⇔ P ∈ E(Fp) and [a0]P + [a1]τ(P) = OE .

In general, the constraint gcd(h1, h
′
1) = 1 is mild and thus one can find a valid

short vector close to the shortest one on many pairing-friendly curves. It means
that the process of G1 membership testing requires about log r/2 iterations.

472 Y. Dai et al.

5.2 GT Membership Testing

In the case of GT membership testing, the Frobenius endomorphism is critical in
finding valid short vectors. To illustrate it, we first use Lπ to denote the following
ϕ(k) dimensional lattice:

Lπ = {(a0, · · · , aϕ(k)−1) ∈ Z
ϕ(k)|a0 + a1 · p + · · · + aϕ(k)−1 · pϕ(k)−1 ≡ 0 mod r}.

The norm of the shortest vector in Lπ is about log r/ϕ(k). For a given short
vector c = (c0, c1, · · · , cϕ(k)−1) ∈ Lπ, we define that

hT = Φk(p)/r and h′
T =

∑ϕ(k)−1

i=0
ci · pi.

Dai et al. found that if the short vector c satisfies gcd(hT , h′
T) = 1, then

α ∈ GT ⇔ αΦk(p) = 1 and
ϕ(k)−1∏

i=0

αci·pi

= 1.

Likewise, the condition gcd(hT , h′
T) = 1 is mild, and thus the process of GT

membership testing requires about log r/ϕ(k) iterations.

Modified Short Vector: The previous idea for optimizing the final exponen-
tiation still applies to GT membership testing such that several full extension
field multiplications can be saved. Specifically, once the candidate element α
proved to be a member of GΦk(p), one can replace the original valid vector c by
c′ = (c0 + δ, c1 − δ, · · · , cϕ(k)−1 − δ, δ) for some integer δ for our target curves as

ϕ(k)−1∏

i=0

αci·pi

= 1 ⇔ αδ·Φk(p) ·
ϕ(k)−1∏

i=0

αci·pi

= 1.

In particular, if the first i tuples of c′ are 0, we then can obtain a new vector
as (ci+1 + (−1)i+1δ, · · · , cϕ(k)−1 − δ, δ, 0, · · · , 0). For instance, using the Magma
code provided in [17, Sect. 5], a valid vector for GT membership testing on
BW14-351 is given by c = (1,−1, 1, z2 − 1,−z2 + z + 1,−z). Taking δ = −1, we
have

(c0 − 1, c1 + 1, · · · , c6 − 1, 1) = (0, 0, 0, z2,−z2 + z,−z + 1,−1).

By left-shifting the above vector, a modified short vector (z2,−z2 + z,−z +
1,−1, 0, 0, 0) is obtained. Consequently, it is equivalent to checking that

α · α(p+p3+p5)·p = αp+p3+p5
, αp3

= αz2 · α(z−z2)·p · α(1−z)·p2
.

5.3 G2 Membership Testing

Recall from Sect 2.1 that ψ and η represent two efficiently computable endo-
morphisms on E′ with j(E′) = 0 or 1728. For a given short vector c =
(c0, c1, · · · , cϕ(k)−1) ∈ Lπ, we define that

h2 = #E′(Fpk/2)/r and h′
2 =

∑ϕ(k)−1

i=0
ci · pi.

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 473

Dai et al. method for G2 membership testing is summarized as follows: If the
short vector c satisfies that gcd(h2, h

′
2) = 1, then

Q ∈ G2 ⇔ Q ∈ E′(Fpk/2) and
ϕ(k)−1∑

i=0

[ci]ψi(Q) = OE′ .

Again, the above computation requires about log r/ϕ(k) iterations. In the fol-
lowing, we develop a faster method for G2 membership testing, which is tailored
to our target curves. To this aim, we first determine the characteristic equation
of the endomorphism Φ = ψ ◦ η.

Lemma 2. Let E be an ordinary curve over Fp with #E(Fp) = p + 1 − t,
admitting a twist E′. If j(E′) = 0 or 1728, then the characteristic equation of Φ
is given as follows:

(1) j(E′) = 0 : Φ2 + t±3f
2 Φ + p = 0 with t2 − 4p = −3f2;

(2) j(E′) = 1728 : Φ2 ± fΦ + p = 0 with t2 − 4p = −f2.

Proof. We only give the proof of the case j(E′) = 0 (The proof of the remaining
case is similar). As mentioned in Sect 2.1, the characteristic equation of Φ can
be expressed as

Φ2 + mΦ + n = 0 (9)

for some integers m and n. Since Nrd(ψ) = p and Nrd(η) = 1, we have

n = Nrd(Φ) = Nrd(ψ) · Nrd(η) = p.

Furthermore, the characteristic equation of ψ and η are given as follows:

ψ2 − tψ + p = 0, η2 + η + 1 = 0.

It is easy to deduce that

ψ =
t ± √−3 · f

2
and η =

−1 ± √−3
2

.

By the fact that Φ = ψ ◦ η, we have

Φ =
t ± √−3 · f

2
· −1 ± √−3

2
=

−(t ± 3f) ± √−3 · (t − f)
4

. (10)

On the other hand, it can be obtained from Eq. (9) that

Φ =
−m ± √

m2 − 4n

2
. (11)

By comparing Eqs.(10) and (11), we conclude that m = (t ± 3f)/2, which com-
pletes the proof. �

474 Y. Dai et al.

Recall that the endomorphism η acts on G2 as scalar multiplication by λ2 that
is defined in Eq. (3). By combining the actions of ψ and η on G2 together, we
have Φ(Q) = [�]Q for any Q ∈ G2, where � = p · λ2 mod r. Since the order of Φ
restricting on the Fpk/2 rational endomorphism ring is equal to 2k or 3k on our
target curves, we have r | Φ2k(�) or r | Φ3k(�). The degree of each of the two
cyclotomic polynomials is equal to 2ϕ(k). For this reason, we can construct the
following 2ϕ(k) dimensional lattice:

LΦ = {(a0, · · · , a2ϕ(k)−1) ∈ Z
2ϕ(k)|a0+a1 ·�+· · ·+a2ϕ(k)−1 ·�2ϕ(k)−1 ≡ 0 mod r}.

Given a short vector c = (c0, c1, · · · , c2ϕ(k)−1) ∈ LΦ, we define that

g(Φ) = Φ2 − tΦΦ + p and h(Φ) =
∑2ϕ(k)−1

i=0
ciΦ

i,

where tΦ is the trace of Φ that is given in Lemma 2. By taking full advantage
of the endomorphism Φ, a new method for G2 membership testing is proposed,
which is tailored to our target curves.

Theorem 1. Let E be an ordinary curve over Fp with j-invariant 0 or 1728.
Let r be a large prime such that r | #E(Fp). Suppose E admit a twist E′ of
degree 2 such that r | #E′(Fpk/2). Let c = (c0, c1, · · · , c2ϕ(k)−1) ∈ LΦ,and let
Res(h(Φ), g(Φ)) be the resultant of h(Φ) and g(Φ). Assume that the short vector
c satisfies that

gcd(Res
(
h(Φ), g(Φ)), h2 · r

)
= r. (12)

For any non-identity point Q of E′(Fpk/2), the point Q ∈ G2 = E′(Fpk/2)[r] if
and only if

∑2ϕ(k)−1

i=0
[ci]Φi(Q) = OE′ . (13)

Proof. If Q ∈ G2, then we have Φ(Q) = [�]Q. As a result, we can easily check
that

∑2ϕ(k)−1

i=0
[ci]Φi(Q) =

∑2ϕ(k)−1

i=0
[ci�

i]Q = OE′ .

Conversely, we let b0 and b1 be two integers satisfying that b0 + b1Φ = h(Φ) mod
g(Φ). By the property of resultant, we have

Res(h(Φ), g(Φ)) = Res(b0 + b1Φ, g(Φ)) = b2
0 + b0b1tΦ + b2

1p.

Furthermore, by the fact that h(Φ)(Q) = g(Φ)(Q) = OE′ , we have

[b2
0 + b0b1tΦ + b2

1p]Q = (b0 + b1Φ̂)(b0 + b1Φ)(Q) = OE′ .

Therefore, the order of Q divides gcd(Res(h(Φ), g(Φ)), h2 · r). Since the selected
vector c is restricted by Eq. (12), we conclude that Q ∈ E′(Fpk/2)[r] = G2, which
completes the proof. �

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 475

Likewise, the new approach requires about log r/(2ϕ(k)) bit operations, which
is about 2× as fast as the previous leading work [17]. In Table 9, we list the
short vectors that can be used for G1, G2, and GT membership testings on
the five candidate pairing-friendly curves. It is straightforward to see that the
computational cost of G2 membership testing on the five candidate curves comes
largely from a scalar multiplication by z.

Table 9. Short vectors for subgroup membership testings on five candidate pairing-
friendly curves.

curve G1 (a0, a1) G2 GT

BW10-480 (z3 − z, −1 − a0 · z) (1, 0, 0, −z, 0, 0, 0, 0) (z2, 0, 0, 0, 1)

BW10-511 (a1 · z − 1, z3 + z2 − 1) (1, 0, −z − 1, −1, 0, 0, 1, 1) (1, −z2, 0, z, 0)

BW10-512 (z3−z, −a0 · z−1) (0, 1, 0, z − 1, 0, 1, −z + 1, −1) (1, z2 − 1, 0, z2 − 1)

BW14-351(z5+z4−z2−z,(1−z)·a0−1)(1, 1, 0, −1, −1, 0, 1, 0, −1, −1, 0, z+1) (z2, z−z2, 1−z,−1)

BW14-382 (z5 − z3 + z, −1 + a0 · z) (0, 1, z, −1, 0, 1, 0, −1, 1, 1, 0, z − 1) (z2, −1, z2, −1)

6 Cofactor Multiplication

Hashing a string into G1 or G2 is an important building block in pairing-based
cryptographic protocols. This operation consists of two phases: first mapping a
string into a curve point, followed by a cofactor multiplication so that the result-
ing point falls into the target subgroup. In this section, we present efficient algo-
rithms for cofactor multiplication for G1 and G2 on our chosen target curves.

6.1 Cofactor Multiplication for G1

Given a random point P ∈ E(Fp), cofactor multiplication for G1 is to map
the point P into G1. The naive way is to perform the scalar multiplication
[h1]P , where the cofactor h1 = #E(Fp)/r. EI Housni, Guillevic and Piellard [23]
observed that the cofactor h1 can be replaced by a smaller cofactor h̃1 on a large
class of cyclotomic pairing-friendly curves, where h̃1 is determined by the group
structure of E(Fp):

E(Fp) ∼= Zm1 ⊕ Zh̃1·r with m1 | h̃1 and m1 · h̃1 = h1.

In particular, if the curve E has j-invariant 0 or 1728, then m1 is the largest
integer such that m2

1 | #E(Fp) and m1 | (p − 1). Thus, it is not difficult to
determine the value of m1 on the five candidate curves. In the optimal case, we
have m1 ≈ h̃1 and thus the new method would be twice as fast as the naive one,
e.g. for the BW10-480 curve.

Faster Cofactor Multiplication for G1: The algorithm of EI Housni-
Guillevic-Piellard can be further optimized in the case that m1 � h̃1, such

476 Y. Dai et al.

as for the BW10-511, BW10-512, BW14-351 and BW14-382 curves. In fact, a
random point P ∈ E(Fp) can be mapped into G1 as follows:

E(Fp)
m1−−→ E(Fp)[n1 · r] a0+a1τ−−−−−→ E(Fp)[r] = G1.

In detail, the first step is to map the point P into the cyclic group E(Fp)[n1 · r]
by performing a scalar multiplication by m1, where n1 = h̃1/m1; the next step
is to clear the cofactor n1 using the endomorphism a0 + a1 · τ , where a0 and a1

are integers satisfying a0 + a1 · s1 ≡ 0 mod n1 and s1 denotes the scalar of the
endomorphism τ acting on E(Fp)[n1 ·r]. More specifically, the LLL algorithm can
be exploited to look for two integers a0 and a1 such that max{log|a0|, log|a1|} ≈
log n1/2. In conclusion, cofactor multiplication for G1 can always be performed
in around log m1 + log n1/2 ≈ log h1/2 iterations, which does not depend on the
group structure of E(Fp). In Table 10, we summarize the parameters h1, m1 and
h̃1, and short vectors (a0, a1) across different pairing-friendly curves.

Table 10. Important parameters for cofactor multiplication for G1 on the five candi-
date pairing-friendly curves.

curve h1 m1 h̃1 n1 (a0, a1)

BW10-480 z4

4
z2

2
z2

2
1 −

BW10-511 (z2−z+1)(z3−1)2

3
(z3−1)

3
(z2 − z + 1)(z3 − 1) 3(z2 − z + 1) (1, z)

BW10-512 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z, −1)

BW14-351 (z2−z+1)(z2+z+1)
3

1 (z2−z+1)(z2+z+1)
3

(z2−z+1)(z2+z+1)
3

(2z, z2+z−1)

BW14-382 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z, 1)

6.2 Cofactor Multiplication for G2

Cofactor multiplication for G2 aims to map a random point Q of E′(Fpk/2) into
G2. The naive way is to compute [h2]Q directly, where h2 = #E′(Fpk/2)/r. Since
the cofactor h2 is much larger than the cofactor h1 and G2 is defined over Fpk/2 ,
the computational cost of the cofactor multiplication for G2 is more expensive
than that for G1. To date, the fastest known algorithm [25] requires approx-
imately log h2/ϕ(k) iterations to clear the cofactor. Recently, Dai et al. [19]
proposed a fast method for this operation on curves with the lack of twists. In
this subsection, we show that this method can be generalized to our target curves
such that the number of iterations can be further reduced to log h2/(2ϕ(k)).

Lemma 3. Let G′
0 = {Q ∈ E′(Fpk/2)|Φk(ψ)(Q) = OE′}. Then the order of G′

0

is precisely equal to
#E′(F

pk/2)·#E(Fp)

#E(Fp2) .

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 477

Proof. Let G0 = {Q ∈ E(Fpk)|Φk(π)(Q) = OE}. It is easy to see that G0
∼= G′

0

and thus #G0 = #G′
0. By [19, Proposition 2], we have

#G0 =
#E(Fpk) · #E(Fp)

#E(Fpk/2) · #E(Fp2)
. (14)

On the other hand, it can be obtained from [34, Theorem 3] that

#E(Fpk) = #E(Fpk/2) · #E′(Fpk/2). (15)

Inserting Eq.(14) into Eq.(15), it yields that

#G′
0 = #G0 =

#E′(Fpk/2) · #E(Fp)
#E(Fp2)

, (16)

which completes the proof of this lemma. �
Since G2 is a subgroup of G′

0, we define that G′
0

∼= Zm2 ⊕ Zm2·n2·r for some
integers m2 and n2. As a consequence, the process of mapping a random point
of E′(Fpk/2) into G2 can be divided into the following three steps:

E′(Fpk/2) → G′
0 → E′(Fpk/2)[n2 · r] → G2.

Since the integer k/2 is prime for our chosen curves, a random point Q ∈
E′(Fpk/2) can be mapped into the group G′

0 under the endomorphism ψ + 1.
It is clear that the computational cost of operations largely comes from the last
step. In the following, we show how to map a random point of E′(Fpk/2)[n2 · r]
into G2. To illustrate it, we first introduce the two lemmas.

Lemma 4. Let t′ be the trace of the pk/2 power Frobenius endomorphism of E′.
Let f, f ′ ∈ Z be such that t2 − 4p = −Df2 and t′2 − 4pk/2 = −Df ′2, where −D
is the square-free part of t2 − 4p. Let H be a cyclic subgroup of G′

0 with order
n2 · r. Then ψ(P) = [a]Q for any Q ∈ H, where a = t±f(t′−2)

2f ′ mod n2 · r.

Proof. The proof is given in [25, Lemma 2]. �
As illustrated in [25], Lemma 4 induces a fast approach for cofactor multiplica-
tion for G2 in log n2/ϕ(k) iterations on a large class of pairing-friendly curves.

Lemma 5. Let H be a cyclic subgroup of G′
0 with order n2 ·r. Then η(Q) = [b]Q

for any Q ∈ H, where

b =

⎧
⎪⎪⎨

⎪⎪⎩

−f ± (2a − t)
2f

mod n2 · r, ifj(E) = 0,

±(2a − t)
f

mod n2 · r, ifj(E) = 1728.

Proof. The proof is derived from [19, Lemma 2]. �

478 Y. Dai et al.

In the following, we propose a more efficient approach for cofactor multipli-
cation for G2 suitable for curves listed in Table 1. Our main idea is summarized
in the theorem below.

Theorem 2. Let E be an ordinary elliptic curve admitting a degree-2 twist E′

over an extension field Fpk/2 , where k is the even embedding degree. Let H be
a cyclic subgroup of G′

0. If the curve E satisfies the following two conditions:
(i)j(E) ∈ {0, 1728}; (ii)3 � k and 4 � k, then there exists a polynomial

h(x) = h0 + h1x + · · · + hs−1x
s−1 ∈ Z[x]

such that h(Φ)(Q) ∈ G2 for any Q ∈ H, where s = 2ϕ(k) and |hi| < |n2|1/s for
i = 0, · · · , s − 1.

Proof. Since Φ = ψ ◦ η, it can be deduced from Lemmas 4 and 5 that Φ(Q) =
[λ2]Q, where λ2 = a · b mod n2 · r. Under the condition that 3 � k and 4 � k, we
can deduce that the order of Φ acting on the group G′

0 is 2k or 3k, which means
that {

Φ3k(λ2) ≡ 0 mod n2 · r, ifj(E) = 0;
Φ2k(λ2) ≡ 0 mod n2 · r, ifj(E) = 1728.

In both cases, the degree of the cyclotomic polynomial is 2ϕ(k). Analogous to
[25, Theorem 1], there exists a polynomial

h(x) = h0 + h1x + · · · + hϕ(k)−1x
2ϕ(k)−1 ∈ Z[x]

such that h(λ2) is a multiple of n2, where |hi| < |n|1/2ϕ(k). Therefore, we have
h(Φ)Q ∈ G2 for any Q ∈ H, which completes the proof of this theorem. �
By Theorem 2, the number of iterations for G2 cofactor multiplication can be
reduced to log n2

2ϕ(k) ≈ log h2
2ϕ(k) on the curves listed in Table 1, which is faster than

the previous leading work [25]. In the following, we take the BW14-351 curve as
an example to describe the main mechanics of the new algorithm.

Example 1 (Cofactor multiplication for G2 on BW14-351). We first can check
that gcd(#G′

0, p
7 − 1) = 1 on BW14-351, where #G′

0 can be obtained from
Lemma 3. It follows from [19, Proposition 1] that G′

0 is cyclic. Applying the
LLL algorithm, we can obtain a target vector (h0, h1, · · · , h11), where

hi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 9 ≤ i ≤ 11;
2, if i = 8;

z2 + z + 1, if i = 6;
zhi+1, if 2 ≤ i ≤ 5;
zh2 − 1, if i = 1;
h1 + h4 − h3 − h6 + z + 2, if i = 0;
− h1 − h4 + h2 + h5 + 1. if i = 7.

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 479

Given a random point Q ∈ E′(Fp7), we fist obtain the point P = (ψ + 1)(Q).
Then, we have h(Φ)P =

∑8
i=0 Φi(Ri) ∈ G2, where Ri is given as follows:

R8 = [2]P,

R6 = [z2 + z + 1]P,

Ri = [z]Ri+1, 2 ≤ i ≤ 5,

R1 = [z]R2 − P,

R7 = −(R1 + R4) + (R2 + R5) − P,

R0 = (R1 + R4) − (R3 + R6) + [z]P + R8.

In total, cofactor multiplication for G2 on BW14-351 costs seven scalar mul-
tiplications by z, twenty one point additions, one ψ map, and eight Φ maps.

7 Implementation Results

We first present Magma code to validate the correctness of our proposed algo-
rithms and formulas. Furthermore, we also provide high-speed software imple-
mentation for several important pairing group operations on BW10-511 and
BW14-351. These two target curves are the winners for pairing computation
among our chosen five candidate curves with embedding degrees 10 and 14,
respectively. Our implementation is based on the RELIC toolkit, which is a well-
known cryptographic library for building pairing-based cryptographic protocols
on popular curves at the updated 128 security level, such as BN446 and BLS12-
446. In addition, we have observed that the implementation of pairing group
operations on BW13-310 presented in [18] also relies on this library. Therefore,
we have integrated our code into RELIC to enable fair performance comparisons
between the two target curves and these popular curves. Besides our proposed
algorithms, we exploit state-of-the-art techniques to implement the following
operations.

• The indifferentiable hashing function H1 : {0, 1}∗ → G1 can be implemented
by using the SwiftEC map [14], followed by a cofactor multiplication by h1.

• Since the cofactor h2 > r for our chosen curves, the construction of the
indifferentiable hashing function H2 : {0, 1}∗ → G2 only require the map
Fpk/2 → E′(Fpk/2) to be well-distributed [39, Sect. 1.2]. Consequently, we can
use either the Shallue-van de Woestijne map [48] or the SwiftEC map.

• We employ the GLV method [27] and GLS method [26] to perform group
exponentiations in G1 and GT , respectively.

• For group exponentiation in G2 on our target curves, we fortunately find that
Dai et al. method [18, Sect. 5] can be exploited to achieve a 2ϕ(k)-dimensional
scalar decomposition.

• In terms of the computation of pairings products, we adopt the strategies
proposed [28,46,52] such that the final exponentiation step and the squaring
computations at the Lines 3 and 12 of Algorithm 2 can be shared.

480 Y. Dai et al.

Table 11. Benchmarking results of pairing group operations across different pairing-
friendly curves reported in 103 cycles averaged over 104 executions.

Operation\Curve BLS12-446 BN446 BW13-310 BW10-511 BW14-351

hashing to G1 327 149 125 621 204

hashing to G2 1630 1361 16699 11981 7236

exp in G1 541 791 268 592 362

exp in G2 918 1394 7247 4621 3531

exp in GT 1322 2243 1062 1476 1098

test in G1 389 8 269 723 345

test in G2 333 487 1176 1262 923

test in GT 372 540 223 586 384

ML 1554 2480 1719 2819 1600

FE 1835 1589 2579 3872 2337

Single pairing 3389 4069 4298 6691 3937

2-pairings 4439 5717 5640 9016 5205

5-pairings 7614 10532 9621 15621 9008

8-pairings 10790 15349 13603 22191 12811

It should be noted that RELIC supports the GLV decomposition and the
SwiftEC map once the associated curve parameters are given. Specifically, fast
constant-time evaluation of the SwiftEC map in RELIC is based on the technique
proposed in [5].

The implementations are compiled with GCC 11.4.0 and flags -O3
-funroll- loops -march=native -mtune=native. The benchmarks are exe-
cuted on an Intel Core i9-12900K processor running at @3.2 GHz with Turbo-
Boost and hyper-threading features disabled. Table 11 reports detailed perfor-
mance comparisons for each building block across different curves. The results
reveal that BW14-351 outperforms BW10-511 for all pairing group operations.
Moreover, BW14-351 exhibits competitive performance compared to mainstream
pairing-friendly curves. Specifically, single pairing computation on BW14-351 is
slightly faster than that on BN446 and BW13-310, while about 16.2% slower than
that on BLS12-446. Regarding group exponentiations in G1 and GT , BW14-351
is about 49.4% and 20.4% faster than BLS12-446, 118.5% and 100% faster than
BN446, while 35.1% and 3.4% slower than BW13-310. Moreover, compared to
BW13-310, BW14-351 benefits from a lighter performance penalty for hashing
to G2 and group exponentiation in G2, although it remains slower than BN446
and BLS12-446.

These results show that each curve has its own strengths and no one can be
said to be perfect. The selection of a curve should be based on a careful analysis
of the protocol requirements and a thorough evaluation of the performance trade-
offs. The BW14-351 curve may be an appropriate choice if a protocol pursues
fast group exponentiations in G1 and GT , while wishes to minimize the perfor-
mance penalty for group exponentiations in G2. In addition, this curve provides
the 149-bit security level on the finite field side, making it advantageous for
achieving long-term security.

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 481

8 Conclusion

In this paper, we provided a comprehensive research for a list of pairing-friendly
curves with embedding degrees 10 and 14. We generalized Dai-Zhang-Zhao algo-
rithm for pairing computation on BW13-310 to our target curves, so that the
number of Miller iterations can be reduced to approximately log r/(2ϕ(k)), while
the denominator elimination trick still can be applied. We also proposed opti-
mized algorithms for cofactor multiplication for G1 and G2, and subgroup mem-
bership testing for G2 on these curves. After checking the correctness of our
proposed algorithms via Magma code, we presented high-speed software imple-
mentations on the BW10-511 and BW14-351 curves inside the RELIC library,
and compared performance tradeoffs with other popular curves at the same
security level, including BN446, BLS12-446 and BW13-310. Our results showed
that the BW14-351 curve is competitive for building pairing-based cryptographic
protocols at the updated 128-bit security level.

Acknowledgment. We would like to thank Dmitrii Koshelev for insightful discus-
sion about hashing to G2 on pairing-friendly curves. The work was supported by the
National Key Research and Development Program of China (No. 2021YFA1000600),
the Postdoctoral Fellowship Program of CPSF (N0. GZC20231995), the National Nat-
ural Science Foundation of China (Nos. 62325209, 61972428), the Major Program(JD)
of Hubei Province (No. 2023BAA027), Guangdong Major Project of Basic and Applied
Basic Research (No. 2019B030302008), Guangdong Provincial Key Laboratory of Infor-
mation Security Technology (No. 2023B1212060026) and the Fundamental Research
Funds for the Central Universities (Nos. 2042023KF0203, 2042024kf1013).

References

1. European union agency of network and information security (ENISA): Algorithms,
key sizes and parameters report. https://www.enisa.europa.eu/publications/
algorithms-key-sizes-and-parameters-report (2013)

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
https://github.com/relic-toolkit/relic

3. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography 91(11), 3333–3378 (Nov 2023). https://
doi.org/10.1007/s10623-022-01135-y

4. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing-Based Cryptography – Pairing 2012. pp. 177–195.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36334-4 11

5. Aranha, D.F., Hvass, B.S., Spitters, B., Tibouchi, M.: Faster constant-time evalu-
ation of the kronecker symbol with application to elliptic curve hashing. In: Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. p. 3228-238. CCS ’23, Association for Computing Machinery, New York,
NY, USA (2023).https://doi.org/10.1145/3576915.3616597

https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/978-3-642-36334-4_11
https://doi.org/10.1007/978-3-642-36334-4_11
https://doi.org/10.1145/3576915.3616597

482 Y. Dai et al.

6. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
Advances in Cryptology – EUROCRYPT 2011. pp. 48–68. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 5

7. Azarderakhsh, R., Fishbein, D., Grewal, G., Hu, S., Jao, D., Longa, P., Verma,
R.: Fast software implementations of bilinear pairings. IEEE Transactions on
Dependable and Secure Computing 14(6), 605–619 (2017). https://doi.org/10.
1109/TDSC.2015.2507120

8. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-
5

9. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015. pp. 31–55.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48800-3 2

10. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology – LATINCRYPT 2015.
pp. 245–265. Springer International Publishing, Cham (2015). https://doi.org/10.
1007/978-3-319-22174-8 14

11. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) Selected Areas in Cryptography – SAC 2005. pp.
319–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).https://doi.org/10.
1007/11693383 22

12. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography 37(1), 133–141 (Oct 2005). https://doi.org/10.
1007/s10623-004-3808-4

13. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security.
pp. 132–145. Association for Computing Machinery, New York, NY, USA (2004).
https://doi.org/10.1145/1030083.1030103

14. Chavez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: SwiftEC: Shallue-van de
woestijne indifferentiable function to elliptic curves: Faster indifferentiable hash-
ing to elliptic curves. In: Advances in Cryptology – ASIACRYPT 2022. pp. 63–
92. Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-
22963-3 3

15. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the
first pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology
and Network Security – CNS2020. pp. 280–298. Springer International Publishing,
Cham (2020).https://doi.org/10.1007/978-3-030-65411-5 14

16. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptog-
raphy – PKC 2010. pp. 224–242. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010).https://doi.org/10.1007/978-3-642-13013-7 14

17. Dai, Y., Lin, K., Zhao, C.A., Zhou, Z.: Fast subgroup membership testings for G1,
G2 and GT on pairing-friendly curves. Designs, Codes and Cryptography 91(10),
3141–3166 (2023). https://doi.org/10.1007/s10623-023-01223-7

18. Dai, Y., Zhang, F., Zhao, C.A.: Don’t forget pairing-friendly curves with odd prime
embedding degrees. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2023(4), 393–419 (2023). https://doi.org/10.46586/tches.v2023.i4.
393-419

https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1109/TDSC.2015.2507120
https://doi.org/10.1109/TDSC.2015.2507120
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1007/978-3-031-22963-3_3
https://doi.org/10.1007/978-3-031-22963-3_3
https://doi.org/10.1007/978-3-030-65411-5_14
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/s10623-023-01223-7
https://doi.org/10.46586/tches.v2023.i4.393-419
https://doi.org/10.46586/tches.v2023.i4.393-419

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 483

19. Dai, Y., Zhang, F., Zhao, C.A.: Fast hashing to G2 on pairing-friendly curves
with the lack of twists. Finite Fields and Their Applications 91, 102–263 (2023).
https://doi.org/10.1016/j.ffa.2023.102263

20. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology – ASIACRYPT 2019. pp. 248–277. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 10

21. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay,
S. (eds.) Cryptology and Network Security – CANS 2020. pp. 259–279. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65411-
5 13

22. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic
curves. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology –
EUROCRYPT 2022. pp. 367–396. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3 13

23. El Housni, Y., Guillevic, A., Piellard, T.: Co-factor clearing and subgroup member-
ship testing on pairing-friendly curves. In: Batina, L., Daemen, J. (eds.) Progress
in Cryptology – AFRICACRYPT 2022. pp. 518–536. Springer Nature Switzerland,
Cham (2022).https://doi.org/10.1007/978-3-031-17433-9 22

24. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-
9048-z

25. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography – SAC 2011. pp.
412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28496-0 25

26. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 518–535. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

27. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) Advances in Cryptology
— CRYPTO 2001. pp. 190–200. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001).https://doi.org/10.1007/3-540-44647-8 11

28. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive, Paper 2006/172 (2006), https://eprint.iacr.org/2006/172

29. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptog-
raphy – PKC 2010. pp. 209–223. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010).https://doi.org/10.1007/978-3-642-13013-7 13

30. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 11

31. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 535–564. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 19

https://doi.org/10.1016/j.ffa.2023.102263
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-65411-5_13
https://doi.org/10.1007/978-3-030-65411-5_13
https://doi.org/10.1007/978-3-031-07085-3_13
https://doi.org/10.1007/978-3-031-17433-9_22
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/978-3-642-28496-0_25
https://doi.org/10.1007/978-3-642-28496-0_25
https://doi.org/10.1007/3-540-44647-8_11
https://eprint.iacr.org/2006/172
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-45388-6_19

484 Y. Dai et al.

32. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees five
to eight and optimal ate pairing computation. Designs, Codes and Cryptography
88(6), 1047–1081 (2020). https://doi.org/10.1007/s10623-020-00727-w

33. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. Mathematical Cryptology 1(1) (Feb 2021), open access at
https://journals.flvc.org/mathcryptology/article/view/125142

34. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006). https://doi.org/10.1109/
TIT.2006.881709

35. Ionica, S., Robert, D.: Pairings. In: El Mrabet, N., Joye, M. (eds.) Guide to pairing-
based cryptography. Chapman and Hall/CRC Press, BocaRaton (2016)

36. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang,
F. (eds.) Pairing-Based Cryptography – Pairing 2013. pp. 45–61. Springer Inter-
national Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 3

37. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet
physics doklady. vol. 7, pp. 595–596 (1963)

38. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 543–571. Springer Berlin Heidelberg, Berlin,Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 20

39. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves. Journal of
Computer Virology and Hacking Techniques (Mar 2024). https://doi.org/10.1007/
s11416-024-00514-4

40. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge university press (1994)

41. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski, B.S. (ed.) Advances in Cryptology — CRYPTO
1997. pp. 249–263. Springer Berlin Heidelberg, Berlin, Heidelberg (1997). https://
doi.org/10.1007/BFb0052240

42. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004). https://doi.org/10.1007/s00145-004-0315-8

43. Pollard, J.M.: A Monte Carlo method for factorization. Bit Numerical Mathematics
15(3), 331–334 (1975). https://doi.org/10.1007/BF01933667

44. Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions:
Physical Sciences and Engineering 345(1676), 409–423 (1993). https://doi.org/10.
1098/rsta.1993.0139

45. Scott, M.: Implementing cryptographic pairings. In: Proceedings of the First Inter-
national Conference on Pairing-Based Cryptography – Pairing 2007. p. 177-196.
Springer-Verlag, Berlin, Heidelberg (2007)

46. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) Cryptography and Coding. pp. 296–308. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8 18

47. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves. Cryptology ePrint Archive, Report 2021/1130 (2021), https://ia.
cr/2021/1130

48. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number
Theory Symposium– ANTS 2006. pp. 510–524. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

49. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2009).https://doi.org/10.1109/TIT.2009.2034881

https://doi.org/10.1007/s10623-020-00727-w
https://journals.flvc.org/mathcryptology/article/view/125142
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/s11416-024-00514-4
https://doi.org/10.1007/s11416-024-00514-4
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/BF01933667
https://doi.org/10.1098/rsta.1993.0139
https://doi.org/10.1098/rsta.1993.0139
https://doi.org/10.1007/978-3-642-25516-8_18
https://ia.cr/2021/1130
https://ia.cr/2021/1130
https://doi.org/10.1109/TIT.2009.2034881

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14 485

50. Washington, L.C.: Elliptic curves: number theory and cryptography. Chapman and
Hall/CRC (2008)

51. Yang, K., Chen, L., Zhang, Z., Newton, C.J., Yang, B., Xi, L.: Direct anonymous
attestation with optimal TPM signing efficiency. IEEE Transactions on Informa-
tion Forensics and Security 16, 2260–2275 (2021). https://doi.org/10.1109/TIFS.
2021.3051801

52. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels.
In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012.
pp. 412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

53. Zhao, C.A., Zhang, F., Huang, J.: A note on the ate pairing. International Journal
of Information Security 7(6), 379–382 (Nov 2008). https://doi.org/10.1007/s10207-
008-0054-1

https://doi.org/10.1109/TIFS.2021.3051801
https://doi.org/10.1109/TIFS.2021.3051801
https://doi.org/10.1007/s10207-008-0054-1
https://doi.org/10.1007/s10207-008-0054-1

Author Index

B
Bacho, Renas 397
Baldimtsi, Foteini 70
Bauer, Balthazar 3
Bellare, Mihir 326
Bidoux, Loïc 38
Bienstock, Alexander 361

C
Cheng, Jiaqi 70
Couteau, Geoffroy 197

D
Dai, Yu 454
Devadas, Lalita 197
Devadas, Srinivas 197
Dodis, Yevgeniy 361

F
Feneuil, Thibauld 38
Fleischhacker, Nils 423
Fuchsbauer, Georg 3

G
Gaborit, Philippe 38
Goyal, Rishab 70
Griffy, Scott 296

H
Hall-Andersen, Mathias 423
He, Debiao 454
Huang, Zhengan 266

J
Jaeger, Joseph 105

K
Koch, Alexander 197

L
Lai, Junzuo 266
Liu, Xiangyu 168
Lysyanskaya, Anna 296

M
Mir, Omid 296

N
Neveu, Romaric 38

P
Peng, Cong 454
Perez Kempner, Octavio 296
Poettering, Bertram 138

R
Rastikian, Simon 138
Regen, Fabian 3
Riepel, Doreen 326
Rivain, Matthieu 38
Rösler, Paul 361

S
Servan-Schreiber, Sacha 197, 232
Simkin, Mark 423
Slamanig, Daniel 296
Stracovsky, Roy 105

T
Tessaro, Stefano 326
Tzannetos, Ioannis 168

W
Wagner, Benedikt 397
Weng, Jian 266
Wichs, Daniel 361

Y
Yadav, Aayush 70
Yang, Zhijian 454

Z
Zeng, Gongxian 266
Zhang, Yizhao 326
Zhao, Chang-an 454
Zikas, Vassilis 168

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15485, p. 487, 2025.
https://doi.org/10.1007/978-981-96-0888-1

https://doi.org/10.1007/978-981-96-0888-1

	 Preface
	 Organization
	 Contents – Part II
	Digital Signatures
	On Security Proofs of Existing Equivalence Class Signature Schemes
	1 Introduction
	2 Preliminaries
	3 A Flaw in the Security Proofs of KSD19 and CLP22
	4 The Security of FHS in the AGM
	References

	Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Secret Sharing
	2.3 Rank Metric and Hard Problems for Cryptography

	3 Security and Parameters for RSDs and MinRank
	3.1 Security of the Rank Syndrome Decoding Problem
	3.2 Parameters Choice for RSDs
	3.3 Parameters Choice for MinRank

	4 MPCitH Modeling for RSDs and MinRank
	4.1 Modelings for the RSDs Problem
	4.2 Modelings for the MinRank Problem

	5 The TCitH and VOLEitH Frameworks
	5.1 Threshold-Computation-in-the-Head Framework
	5.2 VOLE-in-the-Head Framework
	5.3 Additional MPCitH Optimisations

	6 New Signatures Based on RSDs and MinRank
	6.1 New Signatures Based on RSDs
	6.2 New Signatures Based on MinRank

	References

	Non-Interactive Blind Signatures: Post-Quantum and Stronger Security
	1 Introduction
	2 Technical Overview
	2.1 Defining Non-Interactive Blind Signatures
	2.2 Extending Fischlin's Paradigm to NIBS
	2.3 A New Template: Circuit-Private LHE to NIBS
	2.4 Making Fischlin-Based NIBS Practical and Post-Quantum
	2.5 Security and the Randomized OM-ISIS Assumption
	2.6 Efficiency Comparisons for Our NIBS Schemes

	3 Preliminaries
	3.1 Lattice Preliminaries

	4 A Stronger Model for Non-Interactive Blind Signatures
	5 NIBS from Circuit Private LHE
	5.1 Construction

	6 The Randomized One-More ISIS Assumption
	7 Lattice-Based NIBS
	7.1 Construction

	A Knowledge of Secret Key Assumption
	References

	Dictators? Friends? Forgers.
	1 Introduction
	1.1 Strengthening Robustness to Dictator Unforgeability
	1.2 Strengthening Private Anamorphism to Recipient Unforgeability
	1.3 Related Work
	1.4 Outline of This Paper

	2 Notation and Preliminaries
	2.1 Pseudocode, Sets, and Tables
	2.2 Cryptographic Primitives and Preliminaries

	3 Background on Anamorphic Signatures
	3.1 Anamorphic Signature Schemes
	3.2 Constructing Anamorphic Signatures

	4 Strengthening Robustness to Dictator Unforgeability
	4.1 Robustness (for Anamorphic Signatures)
	4.2 Constructing Robust Anamorphic Signatures
	4.3 Dictator Unforgeability
	4.4 RIdP with UP-KC-Secure Signatures
	4.5 An Attack on RIdPX

	5 Strengthening Private Anamorphism to Recipient Unforgeability
	5.1 Private Anamorphism
	5.2 A Simple Attack
	5.3 Recipient Unforgeability
	5.4 An Attack on RRep
	5.5 RRep with SUF-CRA-Secure Signatures
	5.6 RRep with SUF-CMA-Secure Signatures
	5.7 Dictator and Recipient Unforgeable Schemes

	References

	Digital Signatures with Outsourced Hashing
	1 Introduction
	1.1 Contributions
	1.2 Motivation and More Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Hash Function APIs
	2.3 Signature Schemes
	2.4 Schnorr Proofs, Schnorr Signatures

	3 Digital Signatures with Outsourced Hashing
	4 DSSwOH Security with Benign Hashing
	5 Universal Forgeries for Schnorr DSSwOH with Benign Hashing
	5.1 Attack on Concurrent Schnorr ZK-PoK
	5.2 Attack on Schnorr DSSwOH with Benign Hashing

	6 DSSwOH Security with Malicious Hashing
	6.1 Security of Schnorr DSSwOH in the MB Case

	A More on Vertical Session Management Arrows
	B Details Deferred from Sect.5
	References

	Adaptor Signatures: New Security Definition and a Generic Construction for NP Relations
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Commitments
	2.2 Trapdoor Commitments
	2.3 Signatures
	2.4 NP Languages

	3 Adaptor Signatures
	4 Generic Construction of Adaptor Signatures from Signatures and Trapdoor Commitments with a Specific Adaptable Message
	5 Trapdoor Commitments for Any NP Relation
	6 Conclusion
	References

	Public-Key Cryptography
	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Background on the BCMPR Framework
	2.2 Our Approach
	2.3 Two-Round OT Extension
	2.4 Public-Key Setup from Ring-LWE
	2.5 Multi-instance Security

	3 Preliminaries
	3.1 Cryptographic Definitions

	4 Shiftable CPRFs
	4.1 Defining Shiftable CPRFs
	4.2 Constructing Shiftable CPRFs
	4.3 Security Analysis

	5 PCFs for ListOT: Framework
	5.1 Defining PCFs for ListOT
	5.2 Framework: PCF for ListOT from IPM-wPRFs
	5.3 Realizing QuietOT from a PCF for ListOT

	6 PCFs for ListOT: Instantiations
	6.1 BIPSW IPM-wPRF Instantiation
	6.2 GAR IPM-wPRF Instantiation
	6.3 Other Instantiations

	7 Implementation and Evaluation
	7.1 Optimizations in the Implementation

	References

	Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Technical Overview
	2.1 Our Approach

	3 Preliminaries
	3.1 Notation
	3.2 Constrained Pseudorandom Functions
	3.3 RKA-Secure PRFs

	4 The Basic Framework and Construction
	4.1 Instantiation via a Random Oracle

	5 Generalized Framework and Constructions
	5.1 Extended Framework
	5.2 DDH-Based Construction
	5.3 VDLPN-Based Construction

	6 CPRFs for Inner-Product Predicates from OWFs
	6.1 Affine RKA-Secure PRFs from OWFs
	6.2 CPRF Construction from OWFs

	7 Evaluation
	7.1 Complexity and Benchmarks
	7.2 Comparison to Other CPRF Constructions

	8 Conclusion and Future Work
	References

	Mild Asymmetric Message Franking: Illegal-Messages-Only and Retrospective Content Moderation
	1 Introduction
	1.1 Main Contributions
	1.2 Discussions

	2 Preliminaries
	3 Mild Asymmetric Message Franking
	3.1 MAMF Algorithms
	3.2 Security Notions for MAMF

	4 Universal Set Pre-constrained Encryption
	5 Dual HPS-KEM
	6 General Construction of MAMF
	References

	Delegatable Anonymous Credentials from Mercurial Signatures with Stronger Privacy
	1 Introduction
	1.1 Previous Work on DAC and Motivation for Our Work
	1.2 Our Contributions
	1.3 Technical Overview

	2 Background
	2.1 Bilinear Pairings
	2.2 Mercurial Signatures

	3 New Mercurial Signature Construction
	3.1 Modified Security Definitions
	3.2 Construction
	3.3 Extending Our Construction to Multiple Levels

	4 Delegatable Anonymous Credentials
	4.1 DAC Functionality
	4.2 DAC Security Definitions
	4.3 DAC Construction

	5 Conclusion and Future Work
	References

	Count Corruptions, Not Users: Improved Tightness for Signatures, Encryption and Authenticated Key Exchange
	1 Introduction
	1.1 Spotlight on Signatures
	1.2 HWD Samplers and General cp-muc Theorem
	1.3 Applications
	1.4 Optimality Results

	2 Preliminaries
	3 HWD Samplers
	4 General Framework and cp-muc Security Theorem
	5 Applications
	5.1 Direct Applications
	5.2 Indirect Applications

	6 Optimality Results
	References

	Interval Key-Encapsulation Mechanism
	1 Introduction
	2 Preliminaries
	3 Interval KEM with Re-Encapsulations
	4 IKEMRConstruction from Lossy TDPs with Common Domain
	4.1 f-Bounded Forward-Secure Lossy Trapdoor Permutation with Common Domain
	4.2 IKMR Construction

	5 IKEMRConstruction from FS-PKE
	6 Minimizing Local State Size with External Storage
	References

	Pairing-based Cryptography
	Tightly Secure Non-interactive BLS Multi-signatures
	1 Introduction
	1.1 Our Contribution
	1.2 More on Related Work
	1.3 Paper Organization

	2 Technical Overview
	2.1 Tightly Secure and Structured BLS Signatures
	2.2 Tightly Secure BLS Multi-signatures

	3 Preliminaries
	4 Variants of BLS Multi-signatures
	4.1 Parameterized Construction
	4.2 Security with One Key: BLS Multi-signatures
	4.3 Two Keys and Tight Security

	5 Application: PoS Blockchains with Opt-In Tightness
	References

	Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Algebraic Group Model
	2.2 Pairings and Assumptions
	2.3 Polynomial Commitments
	2.4 KZG Commitments
	2.5 Weakly-Hiding Vector Commitments
	2.6 Symmetric Encryption

	3 Extractable Witness KEMs
	3.1 An Extractable Witness KEM for KZG Openings

	4 Extractable Witness Encryption
	4.1 Extractable Witness Encryption from Extractable Witness KEMs

	5 Laconic OT
	5.1 Constructing Laconic OT

	6 Benchmarks
	References

	Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14*-10pt
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Ordinary Elliptic Curves over Finite Fields
	2.2 Optimal Pairing

	3 Elliptic Curves with Embedding Degrees 10 and 14
	3.1 New Formulas for Optimal Pairings on Target Curves
	3.2 Choice of Parameters at the 128-Bit Security Level

	4 Pairing Computation
	4.1 Miller Loop on Curves of Form y2=x3+b
	4.2 Miller Loop on Curves of Form y2=x3+ax
	4.3 The Final Exponentiation
	4.4 Computational Cost

	5 Subgroup Membership Testing
	5.1 G1 Membership Testing
	5.2 GT Membership Testing
	5.3 G2 Membership Testing

	6 Cofactor Multiplication
	6.1 Cofactor Multiplication for G1
	6.2 Cofactor Multiplication for G2

	7 Implementation Results
	8 Conclusion
	References

	Author Index

