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Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,
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Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACR Distinguished Lecture
delivered by Paul Kocher and one invited talk, nominated and voted by the PC. The
invited speaker had not yet been determined when this preface was written. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Outstanding PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/
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Non-malleable Subvector Commitments
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Abstract. Vector commitments are compressing commitments to vec-
tors allowing for short local openings. Rotem and Segev (TCC’21) formal-
ized a notion of non-malleability for vector commitments, which accounts
for the information revealed by local openings when an adversary out-
puts its own commitment and attempts to open it to messages related
to those of honest parties. They left open the problem of extending their
non-malleable construction to the scenario of subvector commitments,
where a committer can compactly open a significant fraction of commit-
ted vectors. In this paper, we construct non-malleable subvector commit-
ments by generalizing Garay et al.’s notion of tag-based simulation-sound
trapdoor commitments (Eurocrypt’03) to the subvector commitment set-
ting. We then construct simulation-sound subvector commitments from
the Bilinear Diffie-Hellman assumption as well as the Strong RSA and
Bilinear Strong Diffie-Hellman assumptions. These constructions allow
the adversary to see equivocations on multiple tags, and thus yield re-
usable (as defined by Damg̊ard and Groth) non-malleable commitments.

Keywords: Vector commitments · subvector openings ·
non-malleability

1 Introduction

Vector commitments (VCs) [14,46] allow one to commit to a vector m by means
of a short commitment string. Later on, the committer can locally open each
component of m = (m1, . . . , mn) by revealing a short opening. Importantly, both
the commitment and its position-wise openings should have sub-linear (ideally,
constant) size in the vector dimension n.

Like ordinary commitments, a vector commitment scheme should be binding
(i.e., no efficient adversary can open a commitment to two distinct messages
mi,m

′
i at the same position i ∈ [n]) and hiding (meaning that commitments to

distinct vectors should be indistinguishable).
Vector commitments have found a number of applications in zero-knowledge

databases [46], verifiable data streaming [43], authenticated dictionaries [45,64],
de-centralized storage [12], succinct arguments [8,44], cryptocurrencies [63] and
stateless blockchains [8,37].

Subvector commitments (SVCs) [8,44] extend vector commitments by allow-
ing the committer to open an entire subvector via a sublinear or even constant-
size opening, no matter how large the committed vector or the opened subvector
are. The compactness of subvector openings is useful in all applications of VCs
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15486, pp. 3–32, 2025.
https://doi.org/10.1007/978-981-96-0891-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0891-1_1&domain=pdf
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where many positions can be opened for a given commitment. In particular, it
allows reducing communication costs in PCP/PIOP-based succinct arguments
[8,44], keyless proofs of retrievability [25], and decentralized storage [12]. In zero-
knowledge databases [55], it can also enable further bandwidth savings [16] when
multiple proofs are generated for database entries in the same region.

Number-theoretic constructions [8,12,44] of (sub)vector commitments often
provide constant-size openings. On the downside, their homomorphic property
(while necessary to support public updates [14]) comes with the potential threat
of malleability attacks. As mentioned by Rotem and Segev [58], this malleabil-
ity may become problematic when VCs are used in the context of blockchain
transactions or multi-round sealed-bid auctions.

For example, in blockchain transactions and smart contracts, vector commit-
ments can be stored by validators and contain compressed versions of a current
state (e.g., account balances or user-specific properties). If the VC scheme in
use is malleable, malicious users may be able to observe commitments and their
local openings and maul them into a VC commitment to a related state (thus
preventing transaction non-malleability [4]) with malleated local openings. In
simultaneous multi-round sealed-bid auctions [5], bidders can bid for multiple
items at each round. If an item is not sold at some round, a malicious bidder can
attempt to maul honest bidders’ commitments and local openings at this round
so as to overbid in the next round.

Rotem and Segev [58] formalized a notion of non-malleability for vector com-
mitments along the lines of non-interactive non-malleable commitments [20,21].
They gave a generic construction of non-malleable vector commitment from ordi-
nary VCs and a primitive called all-but-one binding locally equivocable commit-
ment. Rotem and Segev [58] left open the problem of realizing their notion of
non-malleability in subvector commitments. In this paper, we address this ques-
tion and provide several constructions of non-malleable SVCs based on long-lived
hardness assumptions. We prove them non-malleable in the standard model in
the sense of a definition that extends the one of [58] to the SVC setting.

We note that subvector openings (in particular those obtained by aggregating
individual openings) may be desirable in the applications suggested in [58]. In
sealed-bid auctions, when bidders want to buid for many items, they can send
the auctioneer a subvector opening to these items in order to save space. Then,
when an individual winning bid is to be publicly revealed, the bidder can send
the initial (pre-aggregation) local openings. In the blockchain/cryptocurrencies
use case, (aggregatable) subvector openings were considered in [8,37,63]. Our
schemes can be used to compress the local openings describing the state of an
account memory, as suggested by PointProofs [37, Section 5]. In [37, Figure 3], it
is assumed that accounts have around 1000 memory locations and up to 256 of
them can be simultaneously opened. For such values, even subvector openings
or same-commitment aggregation can lead to substantial savings.

Our Contributions. We provide three constructions of non-malleable sub-
vector commitments based on specific number theoretic problems. The first one
relies on the bilinear Diffie-Hellman assumption [9] (note that discrete-logarithm-
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based VCs in the standard model can hardly avoid the use of pairings, as shown
in [15]). This construction is a derivative of the Diffie-Hellman-based VC put
forth by Catalano and Fiore [14] and performs about as well. In particular, it
inherits its quadratic-size common reference string (CRS).

We give a second SVC based on the Strong RSA assumption [2] where the
CRS size is constant. This construction actually trades an O(n2)-size CRS for
an asymptotically slower commitment algorithm computing O(n · log n) expo-
nentiations. This scheme has a natural analogue based on the Bilinear Strong
Diffie-Hellman assumption [7] with an O(n)-size CRS and where the committer
computes O(n · log3 n) field operations but only O(n) exponentiations.

Our constructions based on BDH and Strong RSA (or Bilinear Strong Diffie-
Hellman) enable re-usability [18] in the sense that they still guarantee non-
malleability in an experiment where the adversary is given a polynomial number
of honestly generated commitments (while the definition and the construction
of [58] only allow the adversary to obtain one honestly generated commitment).

At the expense of giving up re-usability, we provide a third, more efficient
realization based on the standard RSA assumption. In this construction, the
CRS and the commitment time are both strictly linear in the vector dimension.
We leave it as an interesting open problem to simultaneously obtain a linear-time
commitment phase and a CRS of size at most O(n) while retaining reusability.

Technical Overview. We first explain why the technique of Rotem and
Segev [58] does not extend to subvector commitments. As pointed out in [58,
Section 3.2], non-malleable VCs cannot be generically built by sequentially com-
posing an ordinary VC and a standard non-malleable commitment (in this order)
in a straightforward way. The reason is that, in their definition, the adversary is
allowed to see local openings (which would contain an inner, possibly malleable
vector commitment) of the honestly generated VC before outputting its own
commitment. Instead, the generic construction of [58] sequentially combines an
inner non-interactive tag-based commitment and an outer standard vector com-
mitment. Each individual vector element mi is committed to using a tag-based
commitment labeled with a tag consisting of a one-time signature verification
key. The obtained commitments (ci)i∈[n] are then compressed into a vector com-
mitment which is finally signed using the one-time signature secret key.

Rotem and Segev [58] proved that the above construction works if the under-
lying tag-based commitment is locally equivocable and provides a property called
all-but-one binding (its properties resemble Fischlin’s notion of identity-based
trapdoor commitment [26]). This equivocability of the inner commitment implies
that it must be randomized, meaning that each of the commitments (ci)i∈[n] has
a non-trivial de-commitment information di that should be part of the local
openings in the non-malleable VC. So, if we simply modify the construction
of [58] and replace the outer VC by an SVC, the resulting construction is no
longer compact: If the committer wants to open the first half (m1, . . . , mn/2) of
the committed vector m, it has to reveal the de-commitments (di)i∈[n/2] of the
inner layer of locally equivocable commitments, thus ending up with O(n)-size
local openings even if the outer VC supports compact subvector openings.
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To avoid the above hurdle, we cannot hope to combine standard SVCs and
standard tag-based commitments. Instead, we consider a notion of tag-based
sometimes-binding equivocable subvector commitments. We actually extend
the notion of simulation-sound trapdoor commitment (SSTC) [31,52] into
simulation-sound SVCs. We then show that the standard technique of build-
ing non-malleable commitments from simulation-sound ones extends to SVCs.

We note that we do not realize simulation-sound SVCs from any SVC. Infor-
mally, SSTCs are tag-based commitments where an adversary that observes
equivocations of commitments for tags of its choice remains unable to equivo-
cate commitments on a different tag. While standard SSTCs can be obtained
from any signature [52] by using a Σ-protocol that allows proving knowledge of
a signature,1 this approach does not extend to commit to vectors while retain-
ing short local openings. Although we cannot generically build simulation-sound
SVCs, we can still realize them under fairly standard assumptions. Informally,
our approach is to plug the verification mechanism of a signature scheme into
the one of an SVC scheme in a non-generic (but still efficient) way.

Our BDH-based scheme is a non-malleable variant of a subvector commit-
ment proposed by Gorbunov et al. [37], which is itself inspired by a construction
of Lai and Malavolta [44] and obtained from the CDH-based VC of Catalano
and Fiore [14]. In symmetric pairings e : G × G → GT (which we assume in
this overview for simplicity), the CRS contains groups elements (gui , gvi)n

i=1

and (gui·vj )i�=j . A deterministic commitment to (m1, . . . , mn) is obtained as
C = g

∑n
i=1 ui·mi . To open C to a subvector (mi)i∈S , the sender can use the CRS

components (gui·vj )i�=j to compute πS ∈ G such that

e(C, g
∑

j∈S vj ) = e(πS , g) ·
∏

i∈S

e(gui , gvi)mi . (1)

Intuitively, the scheme is binding since (gui·vi)n
i=1 are not available in the CRS.

As a result, when we expand the product (
∑n

i=1 ui · mi) · (
∑

j∈S vj) in the
left-hand-side member of (1), the terms (mi · ui · vi)i∈S are only computable
in the exponent in GT (and not in G). If we randomize the commitment into
C = gγ+

∑n
i=1 mi·ui for a random γ ∈ Zp, this suggests that a commitment C = gγ

to the zero-vector 0n can be equivocated by using (gui·vi)n
i=1 to trapdoor-open

C to any subvector (mi)i∈[S]. In order to obtain an SSTC, we replace the Diffie-
Hellman values (gui·vi)n

i=1 by Waters signatures. A Waters signature [65] on
a tag is a pair (σi,1, σi,2) = (gui·vi · H(tag)r, gr), for some number-theoretic
hash function H : {0, 1}∗ → G, which satisfies a verification equation of the
form e(σi,1, g) = e(gui , gvi) · e(H(tag), σi,2). By exploiting the special shape of
verification equations, we can fold the one of the signature scheme into (1) and

1 A message m is committed to by using it as the challenge of a Σ-protocol in an
HVZK-simulated execution of the Σ-protocol allowing to prove knowledge of a sig-
nature on the tag. The commitment is the simulated “first prover message” and its
opening is the simulated response.
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replace the local opening πS by a pair (πS,1, πS,2) ∈ G
2 satisfying

e(C, g
∑

j∈S vj ) = e(πS,1, g) · e(πS,2,H(tag)) ·
∏

i∈S

e(gui , gvi)mi . (2)

This allows equivocating (C, tag) by using (gui·vi · H(tag)r, gr) without know-
ing guivi itself. A similar technique was used in [46] to build a multi-trapdoor
mercurial [17] commitment.2

In the security proof, we cannot generically turn a simulation-soundness
adversary into a signature forger.3 Instead, we have to combine the proof tech-
niques of Waters signatures and that of the subvector commitment of Gorbunov
et al. (like [37], we need a stronger assumption than the CDH assumption implied
by the unforgeability of Waters signatures).

Our construction from the Strong RSA assumption is based on the RSA-based
VC of [14] and its subvector variant proposed by Lai and Malavolta [44]. In [14],
the CRS contains a set of prime exponents {ei}n

i=1 that do not divide ϕ(N) and

a set of elements (g0, g1, . . . , gn) ∈ (Z∗
N )n where gi = g

∏
j∈[n]\{i} ej

0 mod N for
each i ∈ [n]. A deterministic commitment to (m1, . . . , mn) is then obtained as
C =

∏n
i=1 gmi

i . In order to open a subvector (mi)i∈S , the committer of [44] reveals
an opening πS = (C ·

∏
i∈S g−mi

i )1/eS mod N ,4 where eS =
∏

i∈S ei, which sat-
isfies the verification equation C = πeS

S ·
∏

i∈S gmi
i mod N . To obtain an SSTC

from this commitment, we first need to randomize it while preserving its local
openability. A simple solution is to commit to (m1, . . . , mn) as C = gγ ·

∏n
i=1 gmi

i ,

where g = g
∏

i∈S ei

0 mod N , for a random γ ∈ Z(N−1)/4. We note that the dis-
crete logarithm ei = loggi

(g) is publicly known. However, it does not affect the
binding property (what matters is that logg(gi) = e−1

i mod ord(g) be hidden).
We next have to find a way to introduce tags in the scheme in a way that pro-
vides simulation-soundness. To do this, we adapt a technique used in [33], which
uses Gennaro-Halevi-Rabin signatures [34] as equivocation trapdoors to equiv-
ocate Strong-RSA-based commitments.5 Here, we apply the same technique in
parallel to each gi and derive the prime exponents {ei}n

i=1 from tags by applying
a hash function outputting prime numbers. For each tag tag, we derive a different
set of primes {etag,i = H(tag, i)}n

i=1 that defines a different tag-based commit-
ment key. Since an ei-th root of gi can be used to equivocate the i-th position, the
reduction programs the CRS so as to know an etag,i-th root of gi for each i ∈ [n]
and each tag involved in equivocation queries. Under the Strong RSA assump-
tion, we can prove that the scheme is unbounded simulation-sound binding under
non-adaptive-tag queries, which is sufficient to construct non-malleable SVCs.
2 The above scheme can actually be turned into a multi-trapdoor [33] SVC.
3 One reason is that the binding adversary can output a commitment C and subvector

openings m[S1] �= m[S2] for two sets S1, S2 that are not identical but just have a
non-empty intersection. A direct reduction from the security of Waters signatures
would be possible if we had S1 = S2.

4 This is computable as πS = g
∑

i∈[n]\S mi·∏j∈[n]\(S∪{i}) ej

0 mod N without knowing the
factorization.

5 Namely, a commitment C = gm · retag mod N can be equivocated knowing an etag-th
root of a fixed g.
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In our RSA-based one-time-simulation-binding variant, we do not need a
hash function that outputs prime numbers. Instead, we use a technique previ-
ously used by Di Crescenzo et al. [21] (and also in the number-theoretic all-
but-one-binding equivocable commitments of Rotem and Segev [59, Appendix
B.2]) to program the common reference string in such a way that the reduc-
tion can answer equivocation queries for exactly one tag. At the same time, an
equivocation on any other tag reveals a solution to the given problem instance.

Related Work. Subvector commitments were independently formalized by Lai
and Malavolta [44] and Boneh et al. [8] who gave instantiations in hidden-order
groups. Lai and Malavolta [44] also showed that a variant of the CDH-based VC
of [14] allows subvector openings. Back in 2015, subvector commitments were
implicitly described by Camenisch et al. [11, Section 3.1] who realized it from
polynomial commitments with batch openings [42].

Vector commitments that support proof aggregation [8,12,37,62,63] immedi-
ately imply SVCs, by simply aggregating same-commitment proofs. Campanelli
et al. [12] defined incrementally aggregatable VCs, where different subvector
openings can be merged into a short opening for the union of their subvectors.
Moreover, aggregated proofs support further aggregation. They realized incre-
mentally aggregatable VCs in hidden-order groups.

Gorbunov et al. [37] extended the Libert-Yung VC [46] to enable cross-
commitment aggregation. They also showed [37, Appendix A] that a variant
of Catalano and Fiore’s CDH-based VC [14] supports same-commitment aggre-
gation. Their construction is the basis of our first simulation-sound SVC scheme.

Non-malleable cryptography was first introduced in the seminal work of
Dolev, Dwork and Naor [22,23]. Since then a very large body of work (see,
e.g., [10,13,18,20,21,27,28,32,33,38–40,47–50,52,57]) was devoted to the study
of non-malleable commitments. In the context of vector commitments, the prob-
lem was addressed for the first time in the work of Gennaro and Micali [35]
on independent zero-knowledge databases [55]. ZK-EDBs [55] can be seen as a
generalized form of size-hiding vector commitments supporting non-membership
proofs. They may be overkill for applications that do not require to hide the size
of committed vectors. Non-malleability thus deserves investigation in the case of
standard VCs themselves, as pointed out in [58].

Camenisch et al. [11, Section 3.1] consider a notion of opening non-
malleability in VCs, which requires that multiple local openings of a commitment
cannot be combined and mauled into an opening for a different subvector. As
such, it prevents aggregating proofs for the same commitment (which is allowed
in our setting and in [58]) but does not prevent an adversary from creating
commitments and openings to messages related to honest parties’ (which we
disallow).

Rotem and Segev [58] showed that Merkle-tree-based VCs [54] are non-
malleable in the random oracle model. They also showed that the same result
does not hold in the standard model in general. They gave a generic construction
of non-malleable VC that combines any VC and a primitive called locally equiv-
ocable commitment with all-but-one binding, which resembles simulation-sound
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trapdoor commitments. Their construction thus inherits its equivocability and
local opening properties from separate building blocks. As mentioned earlier,
this approach does not extend to the SVC scenario and we thus rely on a single
building block (i.e., simulation-sound SVCs) endowed with both properties.

Fleischhacker et al. [29] consider simulation-extractability [19,60] (which is
a strong form of non-malleability ensuring knowledge extraction even when the
adversary has seen simulated proofs) in aggregatable vector commitments. Their
primitive does not imply subvector commitments since it allows aggregating
openings for multiple commitments on the same vector positions (instead of
multiple positions of the same commitment). Also, it can only be realized in
idealized models like the combined algebraic group [30] and random oracle model.
In this work, we do not target extractability, which is impossible with succinct
proofs in the standard model [36].

2 Background and Definitions

Notations. For positive integers a, b, the notation [a] denotes the set {1, . . . , a}
while [a, b] stands for {a, . . . , b}. When D is a distribution, x ←↩ D denotes the
action of sampling x according to the distribution D. When S is a finite set, we
also denote by x R← S the action of sampling x from the uniform distribution
over S. We denote by Pk,l the set of prime numbers in the interval (2k, 2l).

When m = (m1, . . . , mn) ∈ Mn is a vector of messages in some space M
and S = {i1, . . . , i|S|} ⊆ [n] is a subset of indices, mS = (mi1 , . . . , mi|S|) ∈ M|S|

denotes the subvector of m containing only the positions in S. We denote by
m[S] ∈ Mn the vector obtained from m ∈ Mn when replacing all positions
in [n] \ S by zeroes. For an index i ∈ [n], we also denote by m[S][i] the i-th
coordinate of m[S] ∈ Mn.

2.1 Hardness Assumptions

Our first construction makes use of asymmetric bilinear maps e : G × Ĝ → GT

in groups of prime order p. We rely on a variant of the computational Bilinear
Diffie-Hellman assumption introduced in [9].

Definition 1. In bilinear map groups (G, Ĝ, GT ) of prime order p, the co-
squared Bilinear Diffie-Hellman Problem (co-sqBDH) consists in com-
puting e(g, ĝ)ab2 given (g, ĝ, ga, gb, ĝb) for random a, b R← Zp. The co-sqBDH
assumption is the intractability of co-sqBDH for any PPT algorithm.

The hardness of co-sqBDH is implied by that of the standard co-BDH problem.

Definition 2. In bilinear map groups (G, Ĝ, GT ) of prime order p, the co-
Bilinear Diffie-Hellman Problem (co-BDH) consists in computing e(g, ĝ)abc

given (g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc) for random a, b, c R← Zp.
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Indeed, if we have an oracle that solves co-sqBDH, we can use it to solve a
co-BDH instance via three queries on (g, ĝ, ga+b, ĝc, ĝa+b), (g, ĝ, ga, gc, ĝa) and
(g, ĝ, gb, gc, ĝb), which yield e(g, ĝ)(a+b)2c, e(g, ĝ)a2c and e(g, ĝ)b2c, respectively.6

In our second construction, we rely on the Strong RSA assumption for an
RSA modulus N = pq that is a product of safe primes = 2p′ + 1 and q = 2q′ + 1
(i.e., where p′ and q′ are also primes).

Definition 3 ([2]). Let a safe-prime product N = pq where p, q are primes of
at least l(λ) bits for some polynomial l : N → N. The Strong RSA assumption
states that, for any PPT algorithm A, we have

Pr[y = xe mod N ∧ e > 1 | y R← Z
∗
N , (x, e) ← A(N, y)] = negl(λ)

Our thid construction relies on the bilinear version of the Strong Diffie-Hellman
assumption, where the solution lives in the target group of the pairing.

Definition 4. Let asymmetric bilinear groups (G, Ĝ, GT ) of prime order p. For
an integer q ∈ poly(λ), the q-Bilinear Strong Diffie-Hellman (q-BSDH)
problem is, given (g, gα, g(α

2), . . . , g(α
q), ĝ, ĝα, ĝ(α

2), . . . , ĝ(α
q)), where α R← Zp,

g R← G, ĝ R← Ĝ, to find a pair (c, e(g, ĝ)1/(α+c)) ∈ Zp × GT .

2.2 Subvector Commitments

We first recall the syntax of vector commitments [14,46] with the extension of
Lai and Malavolta [44], which allows for subvector openings.

Definition 5. A subvector commitment scheme (SVC) (Setup,Commit,Open,
Verify) is a tuple of (possibly randomized) algorithms where:

• Setup inputs a security parameter and a vector dimension n. It outputs a
common reference string crs that specifies the message space M where the
vector components live and (optionally) a simulation trapdoor tk. The refer-
ence string crs is implicitly taken as input by all other algorithms hereunder.

• Commit is a (possibly randomized) algorithm that inputs a vector m ∈ Mn

and outputs a commitment C to m, together with the state information st
allowing to open C later on.

• Open is a (possibly randomized) algorithm that inputs a commitment C
together its the corresponding state information st and a subset S ⊆ [n].
It outputs an opening πS.

• Verify is a (usually deterministic) algorithm that inputs a commitment C, a
subset S ⊆ [n], a claimed subvector mS ∈ M|S|, and a candidate proof πS. It
outputs 0 or 1.

6 Similar reductions for variants of the Diffie-Hellman problem were given in [1,53].
In the different calls to the co-sqBDH oracle, the reduction has to randomize the
exponents to create independent instances but the idea remains the same.
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Definition 6 (Correctness). A subvector commitment is correct if, for any
security parameter and dimension λ, n ∈ N, any (crs, tk) ← Setup(1λ, 1n), any
vector m ∈ Mn, any subset S ⊆ [n], any commitment/state pair obtained as
(C, st) ← Commit(crs,m), any opening πS ← Open(crs, C, S, st), there is a neg-
ligible function ε(λ) such that Pr[Verify(crs, S,mS , C, πS) = 1] ≥ 1 − ε(λ).

The compactness property requires that the size of commitments and openings
be short, regardless of the dimension of committed vectors and opened subsets.

Definition 7 (Compactness). A subvector commitment is compact if there
exists a universal p(λ) ∈ poly(λ) such that, for any n ∈ poly(λ), any (crs, tk) ←
Setup(1λ, 1n), any vector m ∈ Mn, any subset S ⊆ [n], any commitment/state
pair obtained as (C, st) ← Commit(crs,m), any opening πS ← Open(crs, C, S, st),
we have |C| ≤ p(λ) and |πS | ≤ p(λ).

Definition 8 (Position-binding). A subvector commitment is position-
binding if, for any PPT adversary A, we have

Pr[(crs, tk) ← Setup(1λ, 1n); (C,S1, S2,mS1 ,mS2 , πS,1, πS,2) ← A(crs) :
S1, S2 ⊆ [n] ∧ ∃i ∈ S1 ∩ S2 s.t. m[S1][i] �= m[S2][i]

∧ Verify(crs, S1,mS1 , C, πS,1) = 1
∧ Verify(crs, S2,mS2 , C, πS,2) = 1] ≤ negl(λ).

So far, the above definitions did not use the trapdoor tk. The trapdoor will
come into play when we formalize the simulation-sound flavor of subvector com-
mitments, which explicitly requires equivocability.

The definition of non-malleable subvector commitment is a direct adapta-
tion of the definition given by Rotem and Segev [58] in the case of vector
commitments. Analogously to [18,20,21,33,52], this definition considers non-
malleability with respect to openings (rather than w.r.t. commitments [23]).
This is inevitable in the context of non-interactive VCs, where we cannot prop-
erly speak of the “content of a commitment” since commitments are compress-
ing. The main difference with ordinary non-interactive commitments is that the
adversary can obtain local openings before outputting its own commitment v̂com
at step 6.

Definition 9. An SVC is non-malleable if, for any n ∈ poly(λ), and any PPT
adversary A, there is a PPT simulator S such that the following holds: For any
PPT algorithm R and any valid distribution D over Mn, there exists a negligible
function ν(λ) such that

Advnmvc
A,S,R,D(λ) � |Pr[RealnmVC,n,A,D(λ)] − Pr[IdealnmVC,n,S,D(λ)]| ≤ ν(λ)

where the real and ideal experiments are defined as follows.
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RealnmVC,n,A,D(λ) :
1. (crs, tk) ← Setup(1λ, 1n)
2. m = (m1, . . . , mn) ←↩ D
3. (vcom, st) ← Commit(crs, m)
4. ({Si}t

i=1, stA) ← A(crs, vcom)
5. For each i ∈ [t],

πS,i ← Open(crs, vcom, Si, st)
6.

(
v̂com, {Ji}s

i=1, stA
)

← A(stA, {mSi}t
i=1, πS,i)

7. Let S = ∪t
i=1Si and S̄ = [n] \ S.

8. For each j ∈ S̄,
πj ← Open(crs, vcom, {j}, st)

9.
({m̂Ji , π̂Ji}s

i=1

)

← A(
stA, (mj)j∈S̄ , (πj)j∈S̄

)

10. If v̂com = vcom or ∃j ∈ [s] s.t.
Verify

(
crs, Ji, m̂Ji , v̂com, π̂Ji

)
= 0,

output(
(m1, . . . , mn), (⊥)

∑s
i=1 |Ji|,

(⊥)n−| ⋃s
i=1 Ji|, (Si)

t
i=1

)
.

Otherwise, output(
(m1, . . . , mn), (m̂Ji)

s
i=1,

(⊥)n−| ⋃s
i=1 Ji|, (Si)

t
i=1

)
.

IdealnmVC,n,S,D(λ) :
1. m = (m1, . . . , mn) ←↩ D
2. ({Si}t

i=1, stS) ← S(1λ, D)
3.

({m̂Ji , π̂Ji}s
i=1

)

← S(stS , {m[Si]}t
i=1)

4. Output(
m, (m̂Ji)

s
i=1,

(⊥)n−| ⋃s
i=1 Ji|, (Ji)

s
i=1

)
.

As in [58], Definition 9 imposes a restriction on the distribution of committed
vectors. A distribution D over Mn is called valid if it supports efficient con-
ditional re-sampling: For every m = (m1, . . . , mn) in the support of D and
every subset S = {i1, . . . , i|S|} ⊆ [n], there is an efficient algorithm that can
sample m′ ∈ Mn from the conditional distribution D| (∀i ∈ S : m′[i] = m[i]).
As observed in [35,58], this restriction is necessary since we are facing a selec-
tive decommitment problem [24] and we would run into impossibility results [3]
without this restriction.

On openings for positions outside ∪t
i=1Si. At step 9 of the real experiment,

the adversary is given openings {πj}j∈S̄ for all positions j ∈ S̄ = [n] \ ∪t
i=1Si

that have not been opened before A declared its subsets {Ji}s
i=1 at step 6.

Alternatively, we could allow A to choose an arbitrary collection of subsets of S̄
(as part of its output at step 6) and obtain the corresponding openings at step
9. Our schemes remain secure under such a modified definition.

Re-usability. In Definition 9 and the definition of [58], the adversary is only
given a single commitment vcom at step 4. As pointed out in [18,33,52], this is
not equivalent to a definition of re-usable non-malleable commitments (in the
terminology of Damg̊ard and Groth [18]) where the adversary is given multiple
honestly generated commitments and tries to open a commitment of its own to
messages that are somehow related to honest users’ messages.

As mentioned by Rotem and Segev [58] in the context of vector commitments,
Definition 9 can be strengthened by giving A a set of Q ∈ poly(λ) commitments
{vcomi}i∈[Q] to vectors {mi}i∈[Q] independently sampled from D at step 4. For
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each of these commitments, A then has to choose subsets {Si,j}i∈[Q],j∈[t] for
which it obtains openings (mi,Si,j

,πi,Si,j
)i∈[Q],j∈[t] at step 6. At step 6, A is

then required to output a commitment of its own v̂com together with subsets
{Ji}s

i=1. At step 9, A obtains openings for all positions S̄i = [n] \ ∪t
j=1Si,j

that have not been opened for each committed vector mi. Then, A is asked to
open v̂com to subvectors {m̂Ji

}s
i=1 that are non-trivially related to {mi}Q

i=1.
The ideal experiment is modified accordingly by having Ideal sample Q vectors
{mi}Q

i=1 from D and allowing S to choose t subsets {Si,j}j∈[t] for each i ∈ [Q].
An SVC scheme that satisfies such a definition is called re-usable.

2.3 Simulation-Sound Subvector Commitments

As a building block for non-malleable SVCs, we consider an extension of the
notion of simulation-sound trapdoor commitments [31,52] to the context of sub-
vector commitments. As in SSTCs, simulation-sound subvector commitments are
vector commitments where each commitment is labeled with a tag. In contrast
with standard subvector commitments, they are explicitly required to be hiding
since they must be equivocable.

Their main additional security property is called simulation-sound binding (or
sometimes “simulation-binding” for short). It captures that, even if the adversary
can see equivocations of commitments to possibly distinct subsets for several tags
tag1, . . . , tagQ, it will not be able to break the binding property for a new tag
tag �∈ {tag1, . . . , tagQ}.

Definition 10 ([52]). A simulation-sound subvector commitment consists
of a tuple of efficient algorithms (ssVC.Setup, ssVC.Commit, ssVC.Open,
ssVC.FakeCom, ssVC.FakeOpen, ssVC.Verify) where

(ssVC.Setup, ssVC.Commit, ssVC.Open,SimC.Verify)

forms a subvector commitment scheme and (ssVC.FakeCom, ssVC.FakeOpen) are
PPT algorithms with the following properties

Trapdoor: for any tag ∈ T and any message vector m ∈ Mn and any subsets
S1, . . . , St ⊆ [n], the following two distributions are at most 2−λ apart in
terms of statistical distance:

Dfake := {(crs, tk) ← ssVC.Setup(1λ, 1n);
(ṽcom, aux) ← ssVC.FakeCom(crs, tk, tag);
∀i ∈ [t] : π̃S,i ← ssVC.FakeOpen(crs, tk, tag, ṽcom, Si,mS,i, aux) :

(crs, tag, ṽcom, {mS,i, π̃S,i}t
i=1)}

Dreal := {(crs, tk) ← ssVC.Setup(1λ, 1n); (vcom, st) ← ssVC.Commit(crs, tag, m),

∀i ∈ [t] : πS,i ← ssVC.Open(crs, tag, vcom, Si, st) :

(crs, tag, vcom, {mS,i, πS,i}t
i=1)}.
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Simulation-sound binding: for any PPT adversary A, the following proba-
bility is negligible

Pr[(crs, tk) ← ssVC.Setup(1λ, 1n);

(vcom, tag, S1, S2,mS1 ,mS2 , πS,1, πS,2) ← AOtk,crs(crs) :
tag �∈ Q ∧ S1, S2 ⊆ [n] ∧ ∃i ∈ S1 ∩ S2 s.t. m[S1][i] �= m[S2][i]

∧ ssVC.Verify(crs, tag, S1,mS1 , vcom, πS,1) = 1
∧ ssVC.Verify(crs, tag, S2,mS2 , vcom, πS,2) = 1],

where Otk,crs is an oracle that maintains an initially empty set Q and operates
as follows:
– On input (commit, tag), it runs (ṽcom, aux) ← ssVC.FakeCom(crs, tk, tag),

stores (ṽcom, tag, aux), returns ṽcom and adds tag in a set Q (which is
initially empty).

– On input (open, ṽcom,m[S], S): if a tuple (ṽcom, tag, aux) was previously
stored, it computes π̃S ← ssVC.FakeOpen(crs, tk, tag, ṽcom, S,mS , aux)
and returns π̃S. Otherwise, Otk,pk returns ⊥.

Importantly, in the simulation-sound binding experiment, the adversary can
make multiple queries (open, ṽcom, ·, ·) for the same fake commitment ṽcom and
arbitrary subsets S ⊆ [n] and subvectors mS ∈ M|S| that may be inconsistent
with one another.

Non-Adaptive-tag queries. We also consider a relaxation of the above defini-
tion with a non-adaptive-tag queries, where the adversary has to declare the set
of tags tag1, . . . , tagQ for which it wants to query the Otk,crs oracle before seeing
the CRS. Gennaro [33] used such a relaxed notion to achieve non-malleability
from similar-looking multi-trapdoor commitments. In our setting, it will be suf-
ficient as well.

On unbounded vs one-time simulation-binding. Definition 10 is adapted
from the definition of simulation-sound binding of [52], which is well-suited to
the construction of re-usable non-malleable commitments. The reason is that the
adversary is allowed to obtain equivocations on an a priori unbounded number
of tags {tagi}Q

i=1 in the learning phase. A relaxed definition can be obtained
by fixing Q = 1 and only allowing A to see equivocations for a single tag.
This relaxed property, which we call one-time simulation-binding, is sufficient to
construct non-malleable SVC that are not re-usable.

On the choice of the sets S1, S2. In the simulation-sound binding experi-
ment, the adversary’s final output is allowed to contain distinct sets S1 �= S2 as
long as they have a non-empty intersection and m[S1] �= m[S2]. For the purpose
of constructing non-malleable SVCs, we could relax the definition and impose
S1 = S2, which reflects the notion of same-set binding defined in [66]. This
allows the possibility of achieving a form of non-malleability in SVCs satisfying
the weaker notion of same-set binding. Still, our constructions will satisfy the
stronger notion of simulation-sound binding captured by Definition 10.
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3 Constructions of Simulation-Sound Subvector
Commitments

3.1 A Construction from the Co-bilinear Diffie-Hellman
Assumption

We describe a simulation-sound version of the subvector commitment proposed
by Gorbunov et al. [37, Appendix A]

ssVC.Setup(1λ, 1n): On input of a security parameter λ and a vector dimension
n ∈ poly(λ), let � = O(λ) and generate the CRS as follows:
1. Choose bilinear groups (G, Ĝ, GT ) of prime order p > 2l(λ), for some

function l : N → N, and g R← G, ĝ R← Ĝ.
2. Choose u1, . . . , un

R← Zp and compute Ui = gui for each i ∈ [n].
3. Choose v1, . . . , vn

R← Zp and compute V̂i = ĝvi , Vi = gvi for each i ∈ [n].
4. For each pair (i, j) ∈ [n] × [n] such that i �= j, compute Wi,j = gui·vj .
5. Choose α0, α1, . . . , α�

R← Zp and compute Hi = gαi , Ĥi = ĝαi for each
i ∈ [0, �]. Define the hash functions HG : {0, 1}� → G and H

Ĝ
: {0, 1}� →

Ĝ that map a string tag ∈ {0, 1}� to

HG(tag) = H0 ·
�∏

i=1

H
tag[i]
i , H

Ĝ
(tag) = Ĥ0 ·

�∏

i=1

Ĥ
tag[i]
i

which satisfy e(HG(tag), ĝ) = e(g,H
Ĝ
(tag)) for any tag ∈ {0, 1}�.

6. Define the tag space as T = {0, 1}�.
Output the common reference string

crs =
(
(G, Ĝ, GT ), g, ĝ, {Ui}i∈[n], {Vi}i∈[n], {V̂i}i∈[n],

{Hi}i∈[0,�], {Ĥi}i∈[0,�], {Wi,j}(i,j)∈[n]2\{(i,i)}n
i=1

, T
)

(3)

and a simulation trapdoor tk = {(ui, vi)}n
i=1.

ssVC.Commit(crs, tag,m = (m1, . . . , mn)): In order to commit to a vector m =
(m1, . . . , mn) ∈ Z

n
p , parse the CRS as in (3). Choose γ R← Zp and compute

C = gγ ·
n∏

i=1

Umi
i ∈ G.

Output vcom = C ∈ G together with the state information st = (γ,m).
ssVC.FakeCom(crs, tk, tag): Parse the CRS as in (3). Choose a random γ R← Zp

and compute
C = gγ ∈ G.

Output the fake commitment ṽcom = C and the state aux = γ ∈ Zp.
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ssVC.Open
(
crs, tag, vcom, S, st

)
: given a commitment vcom = C ∈ G, a tag

tag ∈ T , a state information st = (γ,m), and a subset S ⊆ [n], choose
r R← Zp and compute

π1 = HG(tag)r ·
( ∏

j∈S

V γ
j

∏

i∈[n]\{j}
Wmi

i,j

)
, π2 = g−r

Return the opening πS =
(
π1, π2

)
∈ G

2.

ssVC.FakeOpen
(
crs, tk, tag, ṽcom, S,mS , aux

)
: given a tag tag ∈ T , a fake com-

mitment ṽcom = C, a state information aux = γ ∈ Zp, a subset S ⊆ [n],
a target subvector mS = (mi)i∈S ∈ M|S|, and an equivocation trapdoor
tk = {(ui, vi)}n

i=1, choose r R← Zp and compute

π1 = HG(tag)r ·
∏

j∈S

V γ
j · g− ∑

i∈S ui·vi·mi , π2 = g−r (4)

Return the simulated opening πS =
(
π1, π2

)
∈ G

2.

ssVC.Verify
(
crs, tag, S,mS , vcom,πS

)
: given a commitment vcom = C ∈ G, a

tag tag ∈ {0, 1}�, a subset S ⊆ [n], a candidate subvector mS = (mj)j∈S ,
and a proof πS = (π1, π2) ∈ G

2, return 1 if the following equality is satisfied
and 0 otherwise:

e
(
C,

∏

j∈S

V̂j

)
= e(π1, ĝ) · e

(
π2,HĜ

(tag)
)

·
∏

j∈S

e(Uj , V̂j)mj (5)

We note that the commitment algorithm does not use the input tag tag.
As shown in the proof of Theorem 1, this does not affect the simulation-sound
binding property.

Correctness. The scheme is correct since we have

e
(
C,

∏

j∈S

V̂j

)
= e

(
gγ · g

∑n
i=1 mi·ui , ĝ

∑
j∈S vj

)
(6)

= e
( ∏

j∈S

V γ
j , ĝ

)
· e

(
g

∑n
i=1 mi·ui , ĝ

∑
j∈S vj

)

= e
( ∏

j∈S

V γ
j , ĝ

)
· e

( ∏

j∈S

n∏

i∈[n]\{j}
gmi·ui·vj , ĝ

)
·
∏

j∈S

e(Uj , V̂j)mj

= e
( ∏

j∈[S]

V γ
i

∏

i∈[n]\{j}
Wmi

i,j , ĝ
)

·
∏

j∈S

e(Uj , V̂j)mj
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If we now introduce the factors HG(tag)r and g−r into (6), we obtain the verifi-
cation equation (5) since

e
(
C,

∏

j∈S

V̂j

)
= e

( ∏

j∈[S]

V γ
i

∏

i∈[n]\{j}
Wmi

i,j , ĝ
)

·
∏

j∈S

e(Uj , V̂j)mj

= e
(
HG(tag)r ·

∏

j∈S

V γ
i

∏

i∈[n]\{j}
Wmi

i,j , ĝ
)

· e(g−r,H
Ĝ
(tag))

·
∏

j∈S

e(Uj , V̂j)mj

= e
(
π1, ĝ

)
· e(π2,HĜ

(tag)) ·
∏

j∈S

e(Uj , V̂j)mj

We now prove that the above scheme is unbounded simulation-sound binding:
i.e., it remains secure when the adversary obtains equivocations on polynomially
many tags before attempting to break the binding property on a different tag.
If we just consider the weaker notion of one-time simulation-sound binding, the
reduction becomes tighter as the exact security bound (7) is linearly affected by
the number of equivocation queries.

Theorem 1. The above construction is a simulation-sound subvector commit-
ment for non-adaptive tag queries under the co-squared Bilinear Diffie-Hellman
assumption. For any non-adaptive simulation-sound binding adversary A making
Q equivocation queries, there is a PPT co-sqBDH solver B such that

Advssvc
A (λ) ≤ Q · � · n · Advco-sqBDH

B (λ) (7)

Proof. The trapdoor property is straightforward to verify since the distribution
of fake commitments and their equivocations is exactly the same as that of real
commitments and openings. We thus focus on the simulation-binding property.

The proof is inspired by the simplified security proof given in [41, Theorem
6.1] for Waters signatures [65] when signing queries are non-adaptive.

The reduction B is given a co-sqBDH instance (g, ĝ, ga, gb, ĝb) and uses a
simulation-sound binding adversary A with advantage ε to compute e(g, ĝ)ab2

with probability ε/(Q · n · �).
At the onset of the experiment, the adversary A first commits to the tags

tag1, . . . , tagQ ∈ {0, 1}� for which it plans to ask for equivocations of commit-
ments. Then, B chooses μ� R← [Q] as a guess that tagμ� will be the queried tag
with the longest common prefix with the target tag tag�. In addition, B chooses
k R← [�] as a guess for the length of the longest common prefix between one of the
{tagi}Q

i=1 and tag�. If B’ guesses are correct (which is the case with probability
1/(Q ·�)), we will thus have tagμ� [1, k] = tag�[1, k] and tagμ� [k+1] �= tag�[k+1].
Finally, B draws an index i� R← [n] as a guess that i� will be the smallest index
such that i� ∈ S1∩S2 and m[S1][i�] �= m[S2][i�] in the simulation-sound binding
experiment of Definition 10. Having made these guesses, B prepares the CRS by
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choosing α0, . . . , α�
R← Zp and setting

H0 = gα0 · (gb)
∑k

i=1 tagμ� [i],

Hi = gαi · (gb)(−1)
tagμ� [i]

i ∈ [1, k + 1]
Hi = gαi i ∈ [k + 2, �]

Ĥ0 = ĝα0 · (ĝb)
∑k

i=1 tagμ� [i]

Ĥi = ĝαi · (ĝb)(−1)
tagμ� [i]

i ∈ [1, k + 1]

Ĥi = ĝαi i ∈ [k + 2, �]

Then, B generates the rest of the CRS by setting Ui� = ga, Vi� = gb, V̂i� = ĝb

and Ui = gui , Vi = gvi , V̂i = ĝvi with ui, vi
R← Zp for each i ∈ [n] \ {i�}. This

implicitly defines ui� = a and vi� = b, where a, b are unknown to B. However,
from (Ui� , Vi�) and {(ui, vi)}i�=i� , B can compute Wi,j = gui·vj for each pair
(i, j) ∈ [n]2 with i �= j. It then provides A with a CRS containing

(
g, ĝ, {Ui}i∈[n], {Vi}i∈[n], {V̂i}i∈[n],

{Hi}i∈[0,�], {Ĥi}i∈[0,�], {Wi,j}(i,j)∈[n]2\{(i,i)}n
i=1

)
,

which have the correct distribution.
When A makes a query (commit, tagi) for one of the tags {tagi}Q

i=1 that it
declared at the very beginning of the game, B computes C = gγ for a random
γ R← Zp, returns ṽcom = C to A and retains aux = γ for later use. When
A sends a query (open, ṽcom,m[S], S), B recalls that corresponding tag tagi. If
i� �∈ S, B can run the real ssVC.FakeOpen algorithm since it knows {(ui, vi)}i�=i� .
Otherwise (i.e., if i� ∈ S), it has to simulate ssVC.FakeOpen by exploiting the
fact that

HG(tagi) = H0 ·
�∏

τ=1

H
tagi[τ ]
i

= gα0+
∑�

τ=1 ατ ·tagi[τ ] · (gb)
∑k

τ=1 tagμ� [τ ]+(−1)
tagμ� [τ]·tagi[τ ]

= gα0+
∑�

τ=1 ατ ·tagi[τ ] · (gb)δ[tagμ� ,tagi]

where δ[tagμ� , tagi] =
∑k+1

τ=1 tagμ� [τ ] + (−1)tagμ� [τ ] · tagi[τ ] ∈ {0, �} is the Ham-
ming distance between tagμ� [1, k + 1] ∈ {0, 1}k+1 and tagi[1, k + 1] ∈ {0, 1}k+1.
In the event that δ[tagμ� , tagi] = 0, B aborts and reports failure. Otherwise, it
can compute a pair (σ1, σ2) = (gab · HG(tag)r̃, g−r̃) using the technique of [6].
To do this, it picks r R← Zp and computes

σ1 = HG(tag)r · (ga)
− α0+

∑�
τ=1 ατ ·tagi[τ]

δ[tagμ� ,tagi] , σ2 = g−r · (ga)
1

δ[tagμ� ,tagi]

which has the required distribution if we define r̃ = r − a
δ[tagμ� ,tagi]

. Armed with
the pair (σ1, σ2), B can simulate a valid output of ssVC.FakeOpen by choosing
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r′ R← Zp and computing

π1 = σ−mi�

1 HG(tag)r′ ·
( ∏

j∈S\{i�}
V γ

j

)
· g− ∑

i∈S\{i�} ui·vi·mi

π2 = σ−mi�

2 · g−r′

When A halts, it outputs a tuple (vcom, tag�, S1, S2,mS1 ,mS2 , πS,1, πS,2)
comprised of a commitment vcom = C ∈ G, a tag tag� and possibly distinct sets
S1, S2 ⊆ [n] with subvectors mS1 ∈ Z

|S1|
p , mS2 ∈ Z

|S2|
p such that there exists

i ∈ S1 ∩ S2 satisfying m[S1][i] �= m[S2][i] and πS,1, πS,2 are valid subvector
openings. At this point, B fails if tag�[1, k + 1] �= tagμ� [1, k + 1] (which happens
if it incorrectly guessed the longest common prefix between tag� and {tagi}Q

i=1)
or m[S1][i�] �= m[S2][i�] (which means that it incorrectly guessed the smallest
index i� that would satisfy A’s winning conditions). If B does not fail, we have
HG(tag�) = gα0+

∑�
τ=1 ατ ·tag�[τ ] and B managed to embed its co-sqBDH input in

the correct Ui� = ga, Vi� = gb such that i� ∈ S1 ∩ S2.
Since πS,1 = (π1, π2) ∈ G

2 and πS,2 = (π′
1, π

′
2) ∈ G

2 are valid openings, we
have

e
(
C,

∏

j∈S1

V̂j

)
= e(π1, ĝ) · e

(
π2,HĜ

(tag�)
)

·
∏

j∈S1

e(Uj , V̂j)m [S1][j]

e
(
C,

∏

j∈S2

V̂j

)
= e(π′

1, ĝ) · e
(
π′
2,HĜ

(tag�)
)

·
∏

j∈S2

e(Uj , V̂j)m [S2][j].

Since H
Ĝ
(tag�) = ĝα0+

∑�
τ=1 ατ ·tag�[τ ], this can be written

e
(
C,

∏

j∈S1

V̂j

)
= e(π, ĝ) ·

∏

j∈S1

e(Uj , V̂j)m [S1][j] (8)

e
(
C,

∏

j∈S2

V̂j

)
= e(π′, ĝ) ·

∏

j∈S2

e(Uj , V̂j)m [S2][j]. (9)

where π = π1 · π
α0+

∑�
τ=1 ατ ·tag�[τ ]

2 and π′ = π′
1 · π′

2
α0+

∑�
τ=1 ατ ·tag�[τ ]. If we raise

(8) to the power
∑

i∈S2
vi and (9) to the power

∑
i∈S1

vi, we get

e(π
∑

i∈S2
vi , ĝ) ·

∏

j∈S1

e(Uj ,V̂j)
m [S1][j]·(

∑
i∈S2

vi)

= e(π′
∑

i∈S1
vi , ĝ) ·

∏

j∈S2

e(Uj , V̂j)
m [S2][j]·(

∑
i∈S1

vi)

If we now isolate the term i� ∈ S1 ∩ S2 from other terms, the previous equality
becomes

e(π
∑

i∈S2
vi , ĝ) · e(Ui� , V̂i�)m [S1][i

�]·(∑i∈S2
vi) ·

∏

j∈S1\{i�}
e(Uj , V̂j)

m [S1][j]·(
∑

i∈S2
vi)

= e(π′
∑

i∈S1
vi , ĝ) · e(Ui� , V̂i�)m [S2][i

�]·(∑i∈S1
vi) ·

∏

j∈S2\{i�}
e(Uj , V̂j)

m [S2][j]·(
∑

i∈S1
vi)
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or, equivalently,

e(π
∑

i∈S2
vi , ĝ) · e(Ui� , V̂i�)m [S1][i

�]·(∑i∈S2\{i�} vi) · e(Ui� , V̂i�)m [S1][i
�]·vi�

·
∏

j∈S1\{i�}
e(Uj , V̂j)

m [S1][j]·(
∑

i∈S2
vi)

= e(π′
∑

i∈S1
vi , ĝ) · e(Ui� , V̂i�)m [S2][i

�]·(∑i∈S1\{i�} vi) · e(Ui� , V̂i�)m [S2][i
�]·vi�

·
∏

j∈S2\{i�}
e(Uj , V̂j)

m [S2][j]·(
∑

i∈S1
vi)

Since m[S1][i�] �= m[S2][i�] by hypothesis, the above equality allows B to com-
pute e(Ui� , V̂i�)vi� = e(g, ĝ)ab2 as

e(g, ĝ)ab2 =
(
e
(
π

∑
i∈S2

vi/π′
∑

i∈S1
vi , ĝ

)

· e(Ui� , V̂i�)m [S1][i
�]·(∑i∈S2\{i�} vi)−m [S2][i

�]·(∑i∈S1\{i�} vi)

·
∏

j∈S1\{i�}
e(Uj , V̂j)

m [S1][j]·(
∑

i∈S2
vi)

·
∏

j∈S2\{i�}
e(Uj , V̂j)

−m [S2][j]·(
∑

i∈S1
vi)

)1/(m [S1][i
�]−m [S2][i

�])

,

where the factors of the right-hand-side member are all computable since

e
(
π

∑
i∈S2

vi , ĝ
)

= e
(
π

∑
i∈S2\{i�} vi , ĝ

)
· e(π, V̂i�)

e
(
π′

∑
i∈S1

vi , ĝ
)

= e
(
π′

∑
i∈S1\{i�} vi , ĝ

)
· e(π′, V̂i�),

∏

j∈S1\{i�}
e(Uj , V̂j)

m [S1][j]·(
∑

i∈S2
vi) = e(Vi� , ĝ)(

∑
j∈S1\{i�} m [S1][j]·uj ·vj)

·
∏

j∈S1\{i�}
e(Uj , V̂j)

m [S1][j]·(
∑

i∈S2\{i�} vi),

and
∏

j∈S2\{i�}
e(Uj , V̂j)

m [S2][j]·(
∑

i∈S1
vi) = e(Vi� , ĝ)(

∑
j∈S2\{i�} m [S2][j]·uj ·vj)

·
∏

j∈S1\{i�}
e(Uj , V̂j)

m [S2][j]·(
∑

i∈S1\{i�} vi)

To conclude the proof, we note that B does not fail as long as it correctly
guesses μ� ∈ [Q], k ∈ [�] and i� ∈ [n]. Since these indexes are chosen uniformly
and independently of A’s view, they are correct with probability 1/(Q · � · n),
which yields the stated upper bound on A’s advantage. ��
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Same-Commitment Aggregation. We note that the scheme retains the same-
commitment aggregation property of the scheme described by Gorbunov et al.
[37, Appendix A]. Namely, on input of openings of a given commitment C for
disjoint subsets S1, S2 ⊆ [n], it is possible to publicly compute a merged proof
for the union S1 ∪ S2 and the same commitment C.

3.2 A Construction from the Strong RSA Assumption

We describe a construction from the Strong RSA assumption. The scheme is
based on the Lai-Malavolta subvector commitment [44], which builds itself on
the RSA-based VC of Catalano and Fiore [14]. In order to achieve simulation-
soundness, we adapt a technique used by Gennaro [33].

ssVC.Setup(1λ, 1n): On input of a security parameter λ and a vector dimension
n ∈ poly(λ), generate the CRS as follows:
1. Choose a safe prime product N = pq where p = 2p′ + 1, q = 2q′ + 1 for

primes p, q, p′q′ > 2l(λ) for some polynomial l ∈ poly(λ).
2. Choose a random quadratic residue g0

R← QRN .
3. Define the message space as M = {0, 1}k and the tag space as T = {0, 1}�,

for some integers k, � ∈ poly(λ) such that k < l.
4. Choose a hash function H : T × [n] → Pk,l that maps inputs to prime

numbers in the interval (2k, 2l), where k ∈ poly(λ).
Output the common reference string

crs =
(
N, g0,H,M, T

)
(10)

and a simulation trapdoor tk = (p, q).
ssVC.Commit(crs, tag,m = (m1, . . . , mn)): In order to commit to a vector m =

(m1, . . . , mn) ∈ Mn, parse the CRS as in (10) and do the following.
1. For each i ∈ [n], compute ei = H(tag, i) ∈ Pk,l to obtain a set of primes

{ei}n
i=1 such that ei ∈ (2k, 2l) for each i ∈ [n].

2. Compute g = g
∏n

i=1 ei

0 mod N . For each i ∈ [n], compute

gi = g
∏

j∈[n]\{i} ej

0 mod N.

3. Choose a random γ R← Z(N−1)/4 and compute

C = gγ ·
n∏

i=1

gmi
i mod N.

Output the commitment vcom = C ∈ Z
∗
N together with the state information

st = (γ,m, (ei)i∈[n]).
ssVC.FakeCom(crs, tk, tag): Parse the CRS as in (10) and do the following.

1. For each i ∈ [n], compute a prime ei = H(tag, i) ∈ Pk,l. Then, compute
g = g

∏n
i=1 ei

0 mod N .
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2. Choose a random γ R← Z(N−1)/4 and compute

C = gγ mod N.

Output the fake commitment ṽcom = C ∈ Z
∗
N as well as the state information

aux = (γ, (ei)i∈[n]).
ssVC.Open

(
crs, tag, vcom, S, st

)
: given a commitment vcom = C ∈ Z

∗
N , a tag

tag ∈ T , a state information st = (γ,m, (ei)i∈[n]), and a subset S ⊆ [n],
1. Define eS =

∏
i∈S ei.

2. Compute πS =
(
C ·

∏
i∈S g−mi

i

)1/eS mod N as

πS = g
γ·∏i∈[n]\S ei

0 ·
∏

i∈[n]\S

g
mi·(

∏
j∈[n]\(S∪{i}) ej)

0 mod N (11)

Return the opening πS ∈ Z
∗
N .

ssVC.FakeOpen
(
crs, tk, tag, ṽcom, S,mS , aux

)
: given a tag tag ∈ T , a fake com-

mitment ṽcom = C ∈ Z
∗
N with its state information aux = (γ, {ei}i∈[n]), a

subset S ⊆ [n], a target subvector mS = (mi)i∈S ∈ M|S|, and an equivoca-
tion trapdoor tk = (p, q),

1. Define eS =
∏

i∈S ei. For each i ∈ S, compute gi = g
∏

j∈[n]\{i} ej

0 mod N .
2. Use tk = (p, q) to compute and return

πS =
(
C ·

∏

i∈S

g−mi
i

)1/eS mod N (12)

ssVC.Verify
(
crs, tag, S,mS , vcom, πS

)
: given a commitment vcom = C ∈ Z

∗
N , a

tag tag ∈ {0, 1}�, a subset S ⊆ [n], a candidate subvector mS = (mj)j∈S ,
and a candidate proof πS ∈ Z

∗
N ,

1. For each i ∈ [n], compute ei = H(tag, i) ∈ Pk,l. Define eS =
∏

i∈S ei.

2. For each i ∈ S, compute gi = g
∏

j∈[n]\{i} ej

0 mod N .
3. Return 1 if and only if the following equality is satisfied:

C = πeS

S ·
∏

i∈S

gmi
i mod N (13)

Correctness. We note that the equivocation algorithm ssVC.FakeOpen can
always compute an eS-th root in (12) since gcd(eS , ϕ(N)) = 1 (due the require-
ment that 2k < ei < 2l < min(p′, q′) for each i ∈ [n]).

The correctness of ssVC.Open follows from the fact that honestly generated
commitments satisfy

C ·
∏

i∈S

g−mi
i = gγ ·

∏

i∈[n]\S

gmi
i mod N

= g
γ·∏i∈[n] ei

0 ·
∏

i∈[n]\S

g
mi·

∏
j∈[n]\{i} ej

0 mod N,
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which immediately shows that (11) is the valid opening.
We now prove that the scheme is unbounded simulation-binding under the

Strong RSA assumption and assuming the collision resistance of H.
The proof relies on Lemma 1, which is sometimes attributed to [61], but

follows from a standard application of the extended Euclidean algorithm.

Lemma 1 ([61]). Let G be a group. Suppose that e1, e2 ∈ Z are co-prime inte-
gers. Given a, b ∈ G such that ae1 = be2 , one can compute g such that ge2 = a
using O(log(e1 + e2)) group and arithmetic operations.

Theorem 2. The above construction is a simulation-sound subvector commit-
ment for non-adaptive tag queries under the Strong RSA assumption and assum-
ing that H is collision-resistant. For any non-adaptive simulation-sound binding
adversary A, there exists either a PPT algorithm B0 that computes collisions on
H or a PPT algorithm B1 that solves the Strong RSA problem such that

Advssvc
A (λ) ≤ AdvColl

B0
(λ) + AdvSRSA

B1
(λ)

Proof. We first consider the trapdoor property and observe that fake commit-
ments (just like real commitments) are statistically uniform in the cyclic sub-
group QRN of quadratic residues. Moreover, for any real or fake commitment
C, any subset S ⊆ [n] and any subvector mS , there is only one proof πS (deter-
mined by (17)) satisfying the verification equation (13) since gcd(eS , ϕ(N)) = 1.
We now turn to the simulation-sound binding property and prove it assuming
the collision-resistance of H and under the strong RSA assumption.

Algorithm B is given (keys for) a hash function H and a strong RSA instance
(N, y), with a random y ∈ Z

∗
N . It uses a simulation-sound binding adversary A

with non-negligible advantage ε to compute a non-trivial root of y with advantage
ε/2 or a collision on H with advantage ε/2.

At the outset of the experiment, the adversary A first announces the tags
tag1, . . . , tagQ ∈ {0, 1}� on which it will make equivocation queries. For each
tagi ∈ T , B computes etagi,τ = H(tagi, τ) for all τ ∈ [n] and uses these sets
primes {(etagi,τ )τ∈[n]}Q

i=1 to define

g0 = y2U mod N

where U =
∏Q

i=1

∏n
τ=1 etagi,τ ∈ Z. It then includes (N, g0,H) in crs, which is

returned to A at the beginning of the game.
Whenever A makes a query (commit, tagi) for one of the tags {tagi}Q

i=1
chosen upfront, B runs the real ssVC.FakeCom algorithm. Namely, it defines
g = g

∏n
τ=1 etagi,τ

0 , computes C = gγ mod N for a random γ R← Z(N−1)/4, returns
ṽcom = C to A and retains aux = γ for later use. When A sends a query
(open, ṽcom,m[S], S), B recalls that corresponding tag tagi and the primes
(etagi,τ )τ∈[n]. Let eS,i =

∏
τ∈S etagi,τ . We remark that B can efficiently compute

πS =
(
C ·

∏

i∈S

g−mi
i

)1/eS,i =
(
g

γ·∏n
τ=1 etagi,τ

0 ·
∏

i∈S

g
−mi·∏τ∈[n]\{i} etagi,τ

0

)1/eS,i

mod N
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since it knows

g
1/eS,i

0 = y2(
∏

τ∈[n]\S etagi,τ )·(
∏

j∈[Q]\{i}
∏n

τ=1 etagj ,τ ) mod N.

Hence, due to the way g0 was set up in the preparation phase, B is always able
to consistently answer equivocation queries.

When A terminates, its output (vcom, tag�, S1, S2,mS1 ,mS2 , πS,1, πS,2) is
expected to contain a commitment vcom = C ∈ Z

∗
N , a fresh tag tag� and possibly

distinct sets S1, S2 ⊆ [n] with subvectors mS1 ∈ M|S1|, mS2 ∈ M|S2| for which
πS,1, πS,2 are valid subvector openings although there exists i ∈ S1∩S2 satisfying
m[S1][i] �= m[S2][i].

At this point, B computes etag�,τ = H(tag�, τ) for each τ ∈ [n]. If there exists
(i, j) ∈ [Q] × [n] such that H(tagi, j) = H(tag�, τ) for some τ ∈ [n], then B has
found a collision on H since A’s winning conditions impose that tag� �∈ {tagi}Q

i=1.
Otherwise, we have gcd(

∏n
τ=1 etag�,τ , U) = 1.

Since πS,1, πS,2 are valid proofs, we must have

C = π
eS1
S,1 ·

∏

i∈S1

g
m [S1][i]
i mod N = π

eS2
S,2 ·

∏

i∈S2

g
m [S2][i]
i mod N (14)

where eS,1 =
∏

i∈S1
etag�,i, eS,2 =

∏
i∈S2

etag�,i and gi = g
∏

j∈[n]\{i} etag�,j

0 mod N
for each i ∈ [n]. Let an arbitrary i� ∈ S1 ∩ S2 such that m[S1][i�] �= m[S2][i�].
We assume w.l.o.g. that m[S1][i�] < m[S2][i�] when they are interpreted as
integers, so that 0 < m[S2][i�] − m[S1][i�] < 2k. Then, (14) implies

g
m [S2][i

�]−m [S1][i
�]

i�

= π
eS1
S,1 ·

∏

i∈S1\{i�}
g

m [S1][i]
i · π

−eS2
S,2 ·

∏

i∈S2\{i�}
g

−m [S2][i]
i mod N

=
(
π

∏
i∈S1\{i�} etag�,i

S,1 ·
∏

i∈S1\{i�}
g

m [S1][i]·
∏

j∈[n]\{i,i�} etag�,j

0

· π
− ∏

i∈S2\{i�} etag�,i

S,2 ·
∏

i∈S2\{i�}
g

−m [S2][i]·
∏

j∈[n]\{i,i�} etag�,j

0

)etag�,i�

(15)

We then observe that

Λtag� � π
∏

i∈S1\{i�} etag�,i

S,1 ·
∏

i∈S1\{i�}
g

m [S1][i]·
∏

j∈[n]\{i,i�} etag�,j

0

· π
− ∏

i∈S2\{i�} etag�,i

S,2 ·
∏

i∈S2\{i�}
g

−m [S2][i]·
∏

j∈[n]\{i,i�} etag�,j

0 ,

is computable by B from A’s output and satisfies

g
(m [S2][i

�]−m [S1][i
�])·∏j∈[n]\{i�} etag�,j

0 = Λ
etag�,i�

tag� mod N.
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Since gcd
(
etag�,i� , (m[S2][i�] − m[S1][i�]) ·

∏
j∈[n]\{i�} etag�,j

)
= 1, B can apply

Lemma 1 to compute Ωtag� such that

g0 = Ω
etag�,i�

tag� mod N

Next, recalling the way g0 was defined, we see that the obtained Ωtag� satisfies

y2U = Ω
etag�,i�

tag� mod N

where U =
∏Q

i=1

∏n
τ=1 etagi,τ is such that gcd(

∏n
τ=1 etag�,τ , 2U) = 1 (and thus

gcd(etag�,i� , 2U) = 1). By applying Lemma 1 one more time, B eventually obtains
ztag� ∈ Z

∗
N such that

y = z
etag�,i�

tag� mod N,

which yields a valid solution (etag�,i� , ztag�) to the strong RSA instance. ��

Remark. The requirement of N being a safe-prime product can be relaxed
modulo slight changes. For the functionality of ssVC.FakeOpen and the proof of
Theorem 2, we need to make sure that: (i) All outputs of H are co-prime with
ϕ(N); (ii) Z

∗
N contains a sufficiently large cyclic subgroup of odd order, where

g0 should be efficiently samplable without knowing the factors of N .

Efficiency. As in [14], the scheme has a constant-size CRS. On the other hand,
its commitment algorithm requires O(n·log n) exponentiations with exponents of
size maxi∈[n] |ei| if the recursive multi-exponentiation algorithm of [8, Section 3.3]
is used. The opening algorithm can be optimized in the same way as mentioned
in [8, Section 5.3].

In the full version of the paper, we show a more efficient construction satis-
fying the weaker notion of one-time simulation-binding under the RSA assump-
tion. In this variant, the CRS size is O(n) and the commitment phase has linear
complexity in n as well.

Incremental Aggregation. The scheme retains the incremental aggregation
property of [12] (albeit without constant verification time). Given openings πI ,
πJ of a commitment to subsets I, J ∈ [n], the technique of [12, Section 5.2] still
allows publicly computing an opening πI∪J to the union I ∪ J .

3.3 A Construction from the Bilinear Strong Diffie-Hellman
Assumption

We provide a description of the (Bilinear) Strong Diffie-Hellman [7] analogue of
our Strong-RSA-based commitment.

The resulting scheme has an O(n)-size CRS, but the commitment and open-
ing algorithms require O(n · log3 n) field multiplications. However, the number
of exponentiations to compute a commitment or an opening is only linear in n.
Also, the online complexity of the commitment algorithm is O(n).
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The main advantage over the scheme of Sect. 3.1 is to provide a linear-size
CRS instead of a quadratic-size one (as well as shorter openings comprised of only
one element of G). On the other hand, it relies on a stronger q-type assumption,
where the parameter q of Definition 4 is q = n ·(Q+1) if the adversary is allowed
to make equivocation queries for Q distinct tags.

ssVC.Setup(1λ, 1n): On input of a security parameter λ and a vector dimension
n ∈ poly(λ), generate the CRS as follows:
1. Choose pairing-friendly groups (G, Ĝ, GT ) of prime order p > 2l(λ), for

some polynomial l ∈ poly(λ).
2. Choose generators g R← G, ĝ R← Ĝ. Then, choose a random α R← Zp and

compute g(α
i), ĝ(α

i) for each i ∈ [n].
3. Define the message space as M = Zp and the tag space as T = Zp.
4. Choose a collision-resistant hash function H : T × [n] → Z

∗
p.

Output the common reference string

crs =
(
(G, Ĝ, GT ), g, ĝ, (g(α

i))i∈[n], (ĝ(α
i))i∈[n],H,M, T

)
(16)

and a simulation trapdoor tk = α.
ssVC.Commit(crs, tag,m = (m1, . . . , mn)): Given m = (m1, . . . , mn) ∈ Z

n
p ,

parse the CRS as in (16) and do the following.
1. Compute the polynomial p[X] =

∏
i∈[n](X + H(tag, i))

2. For each i ∈ [n], compute the quotient polynomial

pi[X] = p[X]
/
(X + H(tag, i)) =

∏

j∈[n]\{i}
(X + H(tag, j)).

3. Choose γ R← Zp and compute

C = gγ·p(α)+
∑n

i=1 mi·pi(α)

using
(
g, (g(α

i))i∈[n]

)
.

Output the commitment vcom = C ∈ G together with the state information
st = (γ,m).7

ssVC.FakeCom(crs, tk, tag): Parse the CRS as in (16) and do the following.
1. Compute the polynomial p[X] =

∏
i∈[n](X + H(tag, i))

2. Choose a random γ R← Zp and compute C = gγ·p(α).
Output the fake commitment ṽcom = C ∈ G as well as aux = γ.

ssVC.Open
(
crs, tag, vcom, S, st

)
: given a commitment vcom = C ∈ G, a tag

tag ∈ T , a state information st = (γ,m), and a subset S ⊆ [n],
1. Compute pS [X] =

∏
i∈S(X + H(tag, i)) and p0,S [X] = p[X]/pS [X].

7 We may also store the coefficients of γ · p[X] +
∑n

i=1 mi · pi[X] in the state st.
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2. For each i ∈ [n], compute

pi,S [X] =
∏

j∈[n]\(S∪{i})
(X + H(tag, j)) = p0,S [X]/(X + H(tag, i)).

3. Compute πS = gγ·p0,S(α)+
∑

i∈[n]\S mi·pi,S(α).
Return the proof πS ∈ G.

ssVC.FakeOpen
(
crs, tk, tag, ṽcom, S,mS , aux

)
: given a tag tag ∈ T , a fake com-

mitment ṽcom = C ∈ G with its state information aux = γ, a subset S ⊆ [n],
a target subvector mS = (mi)i∈S ∈ Z

|S|
p , and tk = α,

1. Define pS [X] =
∏

i∈S(X + H(tag, i)). For each i ∈ [S], compute

pi[X] =
∏

j∈[n]\{i}
(X + H(tag, j)).

2. Compute
πS =

(
C ·

∏

i∈S

g−mi·pi(α)
)1/pS(α) (17)

Return the proof πS ∈ G.
ssVC.Verify

(
crs, tag, S,mS , vcom, πS

)
: given a commitment vcom = C ∈ G, a

tag tag ∈ T , a subset S ⊆ [n], a candidate subvector mS = (mi)i∈S , and a
candidate proof πS ∈ G,
1. For each i ∈ [n], compute pi[X] =

∏
j∈[n]\{i}(X + H(tag, j)). Compute

pS [X] =
∏

i∈S(X + H(tag, i)).
2. For each i ∈ S, compute gi = g

∏
j∈[n]\{i}(α+H(tag,j)).

3. Return 0 if the following equality is not satisfied:

e(C ·
∏

i∈S

g−mi
i , ĝ) = e(πS , ĝpS(α)) (18)

Otherwise, return 1.

Correctness follows from a simple inspection of the scheme.

Theorem 3. The above construction is a simulation-sound subvector commit-
ment for non-adaptive tag queries under the Bilinear Strong Diffie-Hellman
assumption and assuming that H is collision-resistant. For any non-adaptive
simulation-binding adversary A making up to Q equivocation queries, there exists
either a PPT algorithm B0 that computes collisions on H or a PPT algorithm
B1 that solves the n(Q + 1)-BSDH problem such that

Advssvc
A (λ) ≤ AdvColl

B0
(λ) + Adv(n·(Q+1))-BSDH

B1
(λ)

(The proof is given in the full version of the paper.)
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Efficiency. In the Commit algorithm, each of the polynomials (p[X], {pi

[X]}n
i=1) can be computed in time O(n · log2 n) (as computing the coefficients of

a polynomial from its roots can be done in O(n · log2 n) time using the FFT).
Naively computing the linear combination γ · p[X] +

∑n
i=1 mi · pi[X] would

take O(n2) multiplications. Fortunately, it is possible to adapt the divide-and-
conquer approach of the MultiExp algorithm of Boneh et al. [8, Section 3.3] so as
to compute γ · p[X] +

∑n
i=1 mi · pi[X] using O(n · log3 n) multiplications8 in Zp.

This optimization also applies to the Open algorithm.

Speeding-Up Verification. In the random oracle model, it is possible to
reduce the verifier’s workload to O(n · log3 n) field operations, and O(1) expo-
nentiations or pairings (and thus eliminate the O(n) exponentiations). To do
this, we can outsource the computation of

∏
i∈S g−mi

i and ĝpS(α) to the prover.
The prover can convince the verifier that these exponentiations were cor-

rectly computed by interpreting them as KZG commitments [42] to polynomials
−

∑
i∈S −mi·pi[X] and pS [X], which it evaluates on a random input derived from

a random oracle. Since the verifier knows the polynomials −
∑

i∈S −mi · pi[X]
and pS [X], it can evaluate them itself and check the prover’s KZG evaluation
proofs for these evaluations. In the security proof, we can rely on the result of
[51], which shows that KZG commitments are knowledge-sound in the random
oracle model (under a q-type assumption) when evaluated on random inputs.

4 Non-malleable Subvector Commitments
from Simulation-Sound Ones

We now describe a construction of non-malleable subvector commitment. It
resembles the generic construction of non-malleable VC from [58] with the differ-
ence that it does not use an all-but-one binding locally equivocable commitment.
Instead, it uses a tag-based simulation-sound SVC. It relies on the following
building blocks.

• A strongly unforgeable one-time signature Σ = (Sig.Gen,Sig.Sign,Sig.Verify)
with verification key space VK.

• A family H = {h : VK → {0, 1}�} of target collision-resistant hash functions
[56] with output length � ∈ poly(λ).

• A simulation-sound subvector commitment with tag space T = {0, 1}� for
some � ∈ poly(λ).

nmVC.Setup(1λ, 1n): On input of a security parameter λ and a vector dimension
n ∈ poly(λ), let � = O(λ) and generate the CRS as follows:
1. Run (crsssvc, tkssvc) ← ssVC.Setup(1λ, 1n) to generate a CRS and a simu-

lation trapdoor for the simulation-sound subvector commitment with tag
space T = {0, 1}�, with � = poly(λ).

8 Each of the log n recursive steps computes two multi-products of at most n/2 linear
polynomials using O(n · log2 n) multiplications, followed by two multiplications with
polynomials obtained from earlier recursive steps.
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2. Choose the specification of a one-time signature scheme Σ = (Sig.Gen,
Sig.Sign,Sig.Verify) with key space VK.

3. Choose a target collision-resistant hash function h R← H with domain VK
and range T = {0, 1}�.

Output the common reference string crs =
(
crsssvc, Σ, h

)
and a simulation

trapdoor tkssvc.
nmVC.Commit(crs,m = (m1, . . . , mn)): To commit to m = (m1, . . . , mn) ∈

Mn, parse the CRS as above and do the following.
1. Generate a one-time signature key pair (vk, sk) ← Sig.Gen(1λ) and com-

pute a tag τ = h(vk) ∈ T .
2. Compute (vcomssvc, stssvc) ← ssVC.Commit(crsssvc, τ,m).

Then, output the commitment vcom = (vk, vcomssvc) and the state informa-
tion st = (stssvc, sk).

nmVC.Open
(
1λ, crs, vcom, S, st

)
: given vcom = (vk, vcomssvc), a state informa-

tion st = (stssvc, sk), and a subset S ⊆ [n], do the following:
1. Compute πS ← ssVC.Open(crs, τ, vcomssvc, S, st), where τ = h(vk) ∈ T .
2. Compute σS ← Sig.Sign(sk, vcomssvc)

Return the proof πS =
(
πS , σS

)
.

nmVC.Verify
(
crs, S,mS = (mi)i∈S , vcom,πS

)
: given vcom = (vk, vcomssvc), a

subset S ⊆ [n], a candidate subvector mS = (mi)i∈S , and a proof πS ,
1. Compute τ = h(vk) ∈ T and return 0 if

ssVC.Verify
(
crs, τ, S,mS , vcomssvc, πS

)
= 0.

2. Return 1 if Sig.Verify(vk, vcomssvc) = 1 and 0 otherwise.

The proof of Theorem 4 is given in the full version of the paper. It follows
closely the proof of Rotem and Segev [58], but it extends to provide re-usability
if the underlying SSVC is unbounded simulation-sound binding (instead of just
one-time simulation-sound binding).

Theorem 4. The above subvector commitment construction is non-malleable
assuming that: (i) The underlying SSVC scheme is one-time simulation-sound
binding; (ii) Σ is a strongly unforgeable one-time signature; (iii) H is a target
collision-resistant hash family. For any PPT adversary A and any n ∈ poly(λ),
there exists a PPT simulator SA such that: For any PPT distinguisher R, there
are PPT algorithms B1, B2, B3 such that

Advnmvc
A,SA,R,D(λ) ≤ Advforge

B1
(λ) + AdvColl

B2
(λ) + 2 · Advssvc

B3
(λ) + 2−λ

Moreover, if the SSVC scheme is unbounded simulation-binding, the resulting
non-malleable subvector commitment is re-usable.

Acknowledgements. The author thanks the anonymous reviewers for useful
comments.
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Abstract. Traitor-tracing systems allow identifying the users who con-
tributed to building a rogue decoder in a broadcast environment. In a tra-
ditional traitor-tracing system, a key authority is responsible for generat-
ing the global public parameters and issuing secret keys to users. All secu-
rity is lost if the key authority itself is corrupt. This raises the question:
Can we construct a traitor-tracing scheme, without a trusted authority?

In this work, we propose a new model for traitor-tracing systems where,
instead of having a key authority, users could generate and register their
own public keys. The public parameters are computed by aggregating all
user public keys. Crucially, the aggregation process is public, thus elim-
inating the need of any trusted authority. We present two new traitor-
tracing systems in this model based on bilinear pairings. Our first scheme
is proven adaptively secure in the generic group model. This scheme fea-
tures a transparent setup, ciphertexts consisting of 6

√
L + 4 group ele-

ments, and a public tracing algorithm. Our second scheme supports a
bounded collusion of traitors and is proven selectively secure in the stan-
dard model. Our main technical ingredients are new registered functional
encryption (RFE) schemes for quadratic and linear functions which, prior
to this work, were known only from indistinguishability obfuscation.

To substantiate the practicality of our approach, we evaluate the per-
formance a proof of concept implementation. For a group of L = 1024
users, encryption and decryption take roughly 50 ms and 4 ms, respec-
tively, whereas a ciphertext is of size 6.7 KB.

1 Introduction

Traitor-tracing systems [10] allow identifying the users who contributed to build-
ing a rogue decoder in a broadcast environment. In a traditional traitor-tracing
system, a key authority is responsible for generating the global public parame-
ters and issuing user secret keys. Given the public parameters, it is possible to
encrypt a message so that any user in possession of a secret key can decrypt
it. As in standard broadcast encryption, the encrypted message is hidden from
any unauthorized user, i.e. those who do not have access to any secret key.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15486, pp. 33–66, 2025.
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The most important property of a traitor-tracing system, however, is the pres-
ence of a tracing algorithm which identifies corrupt users. More specifically, if an
attacker produces a device that can decrypt ciphertexts with some non-negligible
probability, then the tracing algorithm, given black-box access to the device, is
guaranteed to identify at least one corrupt user, i.e. a member of those who
contributed to the creation of the decryption device.

Traditional traitor-tracing systems [3,7–9,23–25,30,36,41] focus on the set-
tings where an arbitrary set of users can be corrupt, assuming that the key
authority is honest. Notably, all guarantees are lost if the key authority itself is
corrupt. This limits the use cases of traditional traitor-tracing systems in the
sense that the key authority must either be the same party as the encryptor or
trusted by the latter. Even in the latter case, this limitation is clearly undesir-
able from a security perspective, as it introduces a single point of failure. In fact,
we speculate that this limitation has played a significant role in preventing the
adoption of traitor-tracing systems in practice, as it is identical in spirit to the
key-escrow problem of identity-based encryption [37].

In light of the above limitation of traditional traitor-tracing systems, a natu-
ral question is whether we can remove the trust assumption on the key authority.

Can we construct efficient traitor-tracing without a trusted authority?

Specifically, we are interested in constructions that achieve non-trivial efficiency
(i.e. ciphertext size sublinear in the number of users L) and are based on simple
and well-understood cryptographic structure, such as bilinear groups.

A New Model For Traitor Tracing. We envision a new model for traitor tracing
without any trusted authority, that we refer to as registered traitor-tracing. In our
model, each user samples its own pair of public and secret keys locally (relative to
a preferably unstructured common reference string), without needing any interac-
tion with any other users. Upon collecting all the public keys (pk1, . . . , pkL), for
instance in a public directory or bulletin-board, it is possible to aggregate them
into a short master public key mpk. Given mpk, anyone can encrypt a message
m in such a way that only the registered users are able to recover it. Crucially,
the aggregation of the public keys is a completely transparent and deterministic
process, and therefore no trusted party is needed to perform this operation.1

This model is directly inspired by recent works on registration-based encryption
[12,15–17,19,20,22,27,43] and distributed broadcast [9,18,31,40] that adopt a
similar paradigm to solve the key escrow problem in related settings.

The distinguishing property of traitor tracing system is (public) traceability:
If a malicious user i∗ builds a decryption box D, it should be possible (for anyone)
to track i∗ given only black-box access to D. To substantiate the usefulness of
this primitive, we discuss how it can be useful in some recurrent scenarios below.

1 Anyone can re-evaluate the aggregation process and check if the output is identical
to what is claimed.



Traitor Tracing Without Trusted Authority 35

Application: Traceable Group Messaging. In a group messaging system, a group
of L users wants to broadcast messages to each other privately. Given that
messages are constantly exchanged, it is important that the size of the ciphertext
should be sublinear in L, especially for large groups. As the simplest notion of
security, we want that an external observer learns no information about the
messages exchanged within the group. Furthermore, we want to protect against
users leaking their secret key, for instance by having their device compromised:
To this end, one needs to be able to trace the users corresponding to the leaked
key, in order to exclude them from the group.2

Superficially, it may appear that group messaging is the killer application
for traitor-tracing systems. However, at present, no existing system uses traitor-
tracing techniques to build their protocols. We speculate that this is due to the
presence of a trusted authority: The cost of adding the tracing property to the
system is to insert a trusted authority that can potentially decrypt all messages
of all groups! On the other hand, in registered traitor-tracing no such tradeoff is
present, and we can add traceability to groups without introducing any backdoor.
We envision that register-traitor tracing can be used as a cryptographic building
block in messaging schemes to add a traceability guarantee, which is not present
in current systems. At the time of writing, the maximum size of a Whatsapp
group is L = 1024, which is well within the range of practicality of our scheme.

We remark that secure messaging systems are complex ecosystems that
involve substantial research effort to build. Tracing traitors (particularly without
a trusted setup) in any such system adds to its complexity. Therefore, we do not
claim that integrating (registered) traitor-tracing into such a system would solve
all of its related challenges. Rather, it would further need a holistic analysis of
the overall system with different trade-offs. However, we view building registered
traitor-tracing as an important milestone opening the possibility of using it in
real-world secure messaging.

1.1 Our Contributions

We construct traitor-tracing systems without a trusted authority, where users
can sample their own keys locally without interaction. Formally, we introduce a
new primitive called registered traitor-tracing (RTT) supporting an unbounded
collusion of traitors. We then present two constructions in the bounded and
unbounded collusion settings.

Our main technical ingredients are new constructions of registered functional
encryption (RFE) for quadratic and linear functions from bilinear groups. Prior
works either built general-purpose RFE based on indistinguishability obfusca-
tion (iO) [12,17], or specialised RFE for inner-product predicates from bilinear
groups [17,42].3 In more detail, our contributions are summarised as follows:
2 Our definition applies to cases where the key is publicly leaked, or sold over the

Internet. In which case, one could buy the key and easily implement the decoder
box by just running the decryption algorithm.

3 We note that there have been some concurrent works in this direction which we will
discuss in Sect. 1.2.



36 P. Branco et al.

(1) A New Model for Traitor-Tracing. We introduce the notion of registered
traitor-tracing (RTT) as a new model to build traitor-tracing systems without
a trusted authority. We propose appropriate security definitions for RTT and
show compilers (inspired by the literature in non-registered setting) that allows
us to reduce the problem of constructing RTT to building a weak form of RFE
for quadratic functions and an RFE for linear functions. We also discuss efficient
strategies to revoke traitors.4

(2) Unbounded-Collusion RTT. We propose a new RFE for quadratic functions
(RQFE), in a weaker setting where all functions to be registered are known
during setup. This weaker form of RQFE is nevertheless sufficient for RTT sup-
porting an unbounded collusion of traitors. The resulting RTT scheme has a
transparent setup, ciphertext size 6

√
L + 4 in number of group elements, and

a public tracing algorithm. The scheme is based on prime-order groups and is
adaptively secure in the generic (bilinear) group model (GGM).

(3) Bounded-Collusion RTT. We present an RFE for linear functions (RLFE),
in the ordinary setting where functions to be registered can be adaptively chosen
after setup. This scheme is sufficient for RTT supporting a bounded collusion,
where the maximum number of traitors is fixed at setup. We prove that our
RLFE is secure, against an arbitrary subset of selectively corrupted users, in the
standard model. The security of this scheme rests upon a static q-type assump-
tion, which we show to hold in the GGM. As a bonus, we further show how our
RLFE enables other new applications, such as registered threshold encryption
(RTE) for t-out-of-L thresholds, where ciphertexts are of size O(t) in number of
group elements. RTE generalises the notion of distributed broadcast [9,18,31,40]
to t-out-of-L thresholds. Our RLFE, however, has a non-transparent setup. This
yields structured crs in all our RLFE applications.5

(4) Prototype Implementation. We provide an open-source prototype implemen-
tation of our RTT scheme with unbounded collusion. For a group of L = 1024
users (which is currently the maximum size of a Whatsapp group chat), our
benchmarks demonstrate that our scheme is quite practical: The key generation,
encryption, and decryption algorithms take 553 ms, 51 ms, and 4 ms, respectively,
whereas a ciphertext is of size 6.7 KB.

1.2 Related Work

Traitor Tracing. Traitor tracing was first introduced in [10], and ever since it
has become one of the most studied topics in cryptography, with a large body of
literature improving on the original proposal. Works on traitor tracing, e.g. [3,

4 Supporting revocation is not our main focus in this work; we only discuss some
revocation strategies informally.

5 We note that one can use our RQFE to instantiate all these applications with a
transparent setup.
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7–9,23–25,30,36,41], focus on constructing schemes with sublinear6 efficiency,
in terms of size of public parameters and/or ciphertexts. This is possible by
leveraging computational assumptions in bilinear groups or lattices.

To the best of our knowledge, essentially all prior traitor tracing schemes
require a trusted setup to generate the public parameters and secret keys. An
exception is a very recent work of Luo [33] that constructs a Broadcast, Trace
and Revoke (or simply Trace and Revoke) system in the setting without a trusted
authority, where each party samples its own keys. Trace and Revoke systems aug-
ment traitor-tracing with the ability to revoke decryption rights for any subset of
users whose secret keys have been compromised. These systems have been exten-
sively studied [3,8,14,29,34,35] in the setting with a centrally trusted authority.
[33] builds a Trace and Revoke scheme without any such central authority that
also achieves essentially asymptotically optimal parameters, but relies on indis-
tinguishability obfuscation (iO) [6,28] and thus it is not concretely efficient.
Though our work stems from a similar motivation, the model we consider is
somewhat incomparable with that of [33]. In a nutshell, the key differences are
as follows: (i) We allow for a (preferably transparent) setup outputting a com-
mon reference string, whereas [33] does not, (ii) we require compact master public
keys, whereas the size of mpk in [33] is linear in the number of users, and (iii)
the decryption in [33] requires random access to public keys and ciphertext,
unlike ours that has a short, deterministically computed helper secret key (hsk).
These differences in the model allow us to give concretely-efficient pairing-based
constructions, instead of relying on the heavy machinery of iO.

Besides all the above, a series of work has explored the related notion of dis-
tributed broadcast encryption [9,18,31,40], which does not concern traceability.

Registered Cryptography. Registered cryptography is a paradigm introduced by
Garg et al. [19,20] to remove the key-escrow from advanced forms of encryption
that require a trusted setup. The paradigm has recently gained attention and
a series of works have improved its functionality [26] and efficiency [11], ulti-
mately leading to practical constructions from pairings [16,22] and lattices [15].
The notion of registration-based encryption (RBE) was recently extended to the
settings of attribute-based [27,43] and functional encryption [12,17].

Concurrent Work. Concurrently with our work, two other papers [13,42] make
independent progress on registered functional encryption. We discuss these works
next.

First, [13] (a revised version of [12]) presents an RLFE scheme (with a non-
transparent setup) from bilinear pairings and proves it secure in the GGM. On
the other hand, [42] improves state of the art by presenting new RLFE and RQFE
schemes from bilinear pairings, and proving them secure under different variants

6 There exists a “trivial” traitor-tracing scheme where each party samples a public-key
encryption individually, the master public key consists of the concatenation of the
L public keys, and the ciphertext is simply the concatenation of encryptions under
each individual key.
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of standard k-Lin assumption. In particular, their RQFE and RLFE schemes
satisfy very-selective simulation-based and adaptive indistinguishability-based
security respectively. We note that the registered functional encryption schemes
from [42] can be used to instantiate our main results in the standard model
with different security trade-offs. However, their constructions suffer from the
drawback of having non-transparent setup (i.e., their schemes have structured
crs). We emphasize that one of our central aims in this work is to build an
unbounded-collusion RTT with a transparent setup that is also concretely effi-
cient. Additionally, our RLFE scheme with non-transparent setup (that we use
to instantiate the bounded-collusion RTT), is proven selectively secure under a
new parametrized assumption which we prove to hold in GGM. We note that,
compared to [13,42], our RLFE scheme achieves comparable asymptotic (or,
in some cases, better concrete) parameters. In particular, Table 1 compares the
concrete parameters of our RLFE scheme with that of the concurrent works
[13,42].

Table 1. Comparing concrete parameters (in terms of total number of group elements)
of our slotted RLFE scheme with the same from concurrent works [13,42]. L and
n denote the number of slots and vector length of RLFE respectively. The notation
d-(Zp) denotes d elements of Zp. The figures for RLFE from [42] are obtained by setting
k = 2 in the k-Lin assumption. For k > 2, the scheme of [42] would base on weaker
assumptions, but at the cost of a strictly increasing number of group elements. For
simplicity, we avoid accounting all extra group elements due to QA-NIZK from [42].

crs pk� sk� mpk hsk� ct

RLFE [13] (n + 1)L2 + n + 2L + 1 L + 1 1-(Zp) n + 2 1 n + 3

RLFE [42] 25nL2 − 15nL + 35L + 20 5L + 35 25-(Zp) 10n + 30 5n + 10 5n + 15

RLFE (Sect. 4.3) nL2 + L nL n-(Zp) n + 1 n + 2 n + 2

1.3 Discussion

Interactive vs Non-interactive Solution. An alternative (generic) solution to
remove trusted authorities in traitor-tracing systems, or in general any cryp-
tographic systems, is to let participants simulate the trusted authority with a
secure multi-party computation (MPC) protocol: All users run an MPC where
they jointly sample the master secret key, and the output of each user consist
of its tracing key, as well as the master public parameters. While this solution
effectively bypasses the need for a trusted authority, it is undesirable for several
reasons: (i) All users must be simultaneously online to run the MPC. Even a
single user failing would stall the entire process. As the number of users in the
system grows, this solution scales poorly. (ii) It is harder to support dynamic
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joins of new users, since for every new user that joins a new MPC protocol must
be jointly run by all participants. (iii) MPC protocols require interaction, which
adds latency to the key registration process. (iv) Running the key generation
of a traitor-tracing scheme as an MPC is computationally intense, making this
solution computationally very expensive.

In this work we focus on the non-interactive settings, where users sample
their own keys locally, and simply upload it to a public bulletin board once they
are done. Different users do not even have to be aware of each other’s existence,
and it is much easier to support a dynamic set of participants (more discussion
on this later). For these reasons, we believe that the non-interactive setting is
both theoretically more elegant and preferable from a practical standpoint.

Common Reference String vs Trusted Authority. We acknowledge that, in line
with the literature on registered/distributed cryptography, our schemes are in
the common reference string model, where all parties are assumed to receive a
common reference string (CRS) that was sampled in a trusted manner. However,
we highlight the fact that our RQFE scheme has a transparent setup, meaning
that the CRS is just a collection of random bits.7 In practice, this is desirable
since one can substitute the CRS with a fixed seed for a hash function, which
is then used to obliviously compute the required group elements.8 On the other
hand, our RLFE has a structured setup. We claim that, even for the case of a
non-transparent setup, this model is substantially better than having a trusted
authority, since there is no long-term secret that needs to be stored. It also
resolves questions about the availability of the trusted authority, and how parties
can establish secure communication channels for receiving their keys.

Static Joins vs Dynamic Joins. Throughout this work, we will always assume
that the set of users that register their keys is fixed ahead of time, and the public
parameters are aggregated only after all users have registered their keys. That
is, we assume that the set of users participating in the protocol is static, and if
a new user joins the system, the master public key needs to be recomputed and
all users have to be notified of this change, and (possibly) must update their
information. [27] refers to this as the slotted setting.

In practice, it is desirable to allow users to join the system dynamically,
and one does not want to re-initialise the public parameters and/or to notify
all existing users. Fortunately, it is possible to generically move from the slot-
ted/static settings to support dynamic joins, while minimising the number of
updates. Informally, the transformation works by partitioning the users in sets
of exponentially increasing cardinality, e.g. {Si : |Si| = 2i}i∈[log(L)], and filling
those sets as users join, starting from the smaller ones. Updates then only need
to be issued when a set is filled up and needs to be transferred to the next empty
set. It is easy to see that each user receives at most log(L) updates throughout

7 Looking ahead, this immediately endows our final RTT with a transparent setup.
8 Hashing into groups with a bilinear pairing is a well-studied problem in the literature,

see e.g. [38].
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its lifetime. Variants of this transformation have been described many times in
the literature [17,19,20,22,27,31] and we refer the reader to these works for
more details. In what follows, we will only describe schemes in the slotted/static
settings, with the understanding that dynamic joins can be supported with this
transformation.

2 Technical Overview

We highlight the technical innovations of our work. We begin by showing how
constructing RTT boils down to building the right notion of RQFE, then we
present our RFE schemes. We conclude by outlining registered threshold encryp-
tion as another new application of RFEs.

2.1 Registered Traitor-Tracing

To set some context, let us make more concrete the desiderata for an RTT
scheme. In an RTT scheme, the setup outputs a (preferably unstructured) com-
mon reference string crs. Each party i starts by generating its own pair of public
and secret keys (pki, ski) relative to crs. Upon collecting all the public keys
(pk1, . . . , pkL), anyone can use the crs to deterministically compute a short mas-
ter public key mpk and the helper decryption key hski for each user i. Note
that hski is not a replacement for the user secret key, but rather an additional
(publicly computable) information needed to complete decryption. Given mpk,
anyone can encrypt m in such a way that only a registered user i is able to
obtain the message, using its secret key ski and helper key hski. Additionally,
RTT should fulfill a strong traceability property: If a malicious user i∗ builds
a decryption box D (which receives ciphertexts and outputs the corresponding
message with non-negligible probability), then the user i∗ can be caught given
only black-box access to D. The RTT scheme is said to be bounded-collusion
secure if the setup additionally inputs the maximum number of traitors, else it
supports an unbounded collusion.

TT via Functional Encryption. To better understand the challenge of construct-
ing (R)TT, it is useful to recall how to construct traditional traitor-tracing
schemes (with a trusted authority). The work of Boneh, Sahai, and Waters [7]
reduces this problem to a simpler cryptographic primitive called private linear
broadcast encryption (PLBE) and shows how to generically turn a PLBE scheme
into a traitor-tracing scheme. In a nutshell, a PLBE is a broadcast encryption
scheme with an additional trace-encrypt algorithm. This algorithm takes as input
an index i ∈ [L] and a message, and generates an ordinary-looking ciphertext
of the message which can only be decrypted by user � ≥ i. Importantly, this
ciphertext must keep the index i hidden (except to users i and i + 1, who can
trivially test the position of the index). The trace-encrypt algorithm can be used
in a linear scan to identify the user with the smallest index who contributed to
creating a rogue decryption device.
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Abstracting even further, it turns out that PLBE is nothing but a special
case of functional encryption (FE) [21], where keys are associated with an index
� and a predicate F�(i,m) such that

F�(i,m) :=

{
m if i ≤ �

0 otherwise

whereas ciphertexts contain information about the message m and the index i.
This connection is made explicit in [21] which shows that an FE for quadratic
functions (QFE) is sufficient to implement the above comparison predicate, and
consequently PLBE, with ciphertext size O(

√
L). Thus, the problem of traitor

tracing is nothing but QFE in disguise.9

For the (weaker) bounded-collusion setting, Agrawal et al. [2] show how to
reduce the problem of traitor-tracing (with revocation) to that of bounded-
collusion FE for linear functions (LFE).

Registered FE: Removing the Authority. Via the aforementioned series of trans-
formations, we have reduced the task of constructing traitor-tracing without
authority to that of constructing QFE/LFE without authority. This notion
was recently introduced under the name of registered functional encryption
(RFE) [12,17] as a natural generalisation of registration-based encryption [19].
In short, RFE provides a mechanism to publicly aggregate L independent key-
function tuples (pk1, f1), . . . , (pkL, fL) into a digest, so that a ciphertext of m
generated with respect to the digest can be decrypted by skj to recover fj(m).

For the remainder of this overview, we will focus on describing our RFE
schemes (for quadratic and linear functions), along with other applications.
Extending the transformation from QFE/LFE to traitor-tracing in the registered
settings require some care, but the main ideas are analogous to the traditional
settings. Therefore, we omit them here and refer the reader to Sect. 5 for more
details.

2.2 RQFE in the GGM

Our first observation that facilitates our task is that one does not need the full
power of (R)QFE to build traitor tracing. Since the functions f1, . . . , fL depend
only on the identity of each user, it suffices to build a scheme where all functions
associated with secret keys are known ahead of time. In other words, we can
assume that each user knows all the other functions during key generation. With
this observation in mind, we describe our RQFE below.

Conceptually, we build our RQFE by compiling a traditional QFE into a
registered one, provided that it satisfies a master secret key homomorphism. In

9 Note that linearising a quadratic polynomial achieves the desired functionality, but
nullifies the efficiency of the transformation. In particular, the resulting PLBE
scheme would have ciphertexts linear in L, which does not improve over trivial
constructions.
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other words, we want the master public key of the scheme to be some encoding
of the master secret key, that satisfies the following homomorphic relation:

Encode(msk0)︸ ︷︷ ︸
mpk0

∗Encode(msk1)︸ ︷︷ ︸
mpk1

= Encode(msk0 + msk1)

and furthermore for all functions f :

KGen(msk0, f)︸ ︷︷ ︸
sk

(0)
f

∗KGen(msk1, f)︸ ︷︷ ︸
sk

(1)
f

= KGen(msk0 + msk1, f).

The exact specifications of the encoding function Encode and the group operation
∗ are irrelevant for this explanation. To define the master public key of the
scheme, each user samples a local key pair (mpki,mski) and we define the global
master public key as

m̃pk = mpk1 ∗ . . . ∗ mpkL = Encode(msk1 + . . . + mskL)

which can be computed publicly using the master public keys published by each
user. In effect, the L users are sharing (in the sense of additive secret-sharing)
the master secret key of the new combined key m̃pk. The users will then also
publish enough information to help the i-th user computing a functional secret
key under the new master public key. Here is where we leverage the fact that
all functions are known in advance, and we ask each user to publish, along with
their mpkj all functional keys, except for their own function. In other words, the
j-th user also outputs {

sk
(j)
fi

= KGen(mskj , fi)
}

i�=j
.

Arranging all of these public information in matrix form, and applying the homo-
morphic operator row-wise, we obtain:⎛

⎜⎜⎜⎜⎝
⊥ sk

(1)
f2

. . . sk
(1)
fL

sk
(2)
f1

⊥ . . . sk
(2)
fL

...
...

. . .
...

sk
(L)
f1

sk
(L)
f2

. . . ⊥

⎞
⎟⎟⎟⎟⎠

∗−−→

⎛
⎜⎜⎜⎝

KGen(
∑

j �=1 mskj , f1)
KGen(

∑
j �=2 mskj , f2)

...
KGen(

∑
j �=L mskj , fL)

⎞
⎟⎟⎟⎠

Note that the i-th combined key is almost a valid functional secret key for fi

under m̃pk, except that it is missing the contribution of mski. However, the i-th
user is the one that sampled mski in the first place, and therefore it can easily
fill the missing value to obtain

s̃kfi
= KGen

⎛
⎝∑

j �=i

mskj , fi

⎞
⎠ ∗ KGen(mski, fi)

= KGen

⎛
⎝∑

j

mskj , fi

⎞
⎠ .
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At this point, decryption and encryption correctness simply follow by the cor-
rectness of the original FE scheme, except that we now have substituted the key
authority with a fully distributed setup.

Instantiating the Transformation. Given this general template outlined above,
all that is left is to look into the literature of traditional QFE schemes, and find a
compatible one. It turns out that a handful of schemes satisfy this homomorphic
property. However, while all schemes obtained via this transform are correct,
not all of them can be proven secure while having a transparent setup. For
instance, the RQFE scheme obtained by transforming the QFE of Wee [39] is
unfortunately broken due to linear attacks.10 The only QFE scheme which we are
aware of that survives the transformation (with a transparent setup) is that of
Baltico et al. [5], which was only proven to be secure in the GGM. Consequently,
our RQFE inherits the security in the GGM. Proving security of this template
turns out to be a nuanced task, since we have to deal with potentially malformed
keys11 and adaptive corruption queries. We refer to Sect. 4.2 for more technical
details.

2.3 RLFE in the Standard Model

Our RFE construction for linear functions is conceptually similar to the recent
works of [27,43] on registered attribute-based encryption (RABE) and can be
summarised by the following idea. Starting with a base FE scheme, the major
challenge is to construct a one-user RFE which is correct and secure. Given this,
we can construct an L-user RFE by running L parallel instances of the one-user
RFE, where the digest mpk aggregates all individual mpki from the L instances.
To ensure decryption correctness, the Aggr algorithm outputs helper keys which
correspond to the cross-terms due to

(
mpkj

)
j �=i

in mpk for each user i.

Our RLFE. While the above general strategy can be applied to various existing
linear FEs, adapting their security proofs to the registered setting is tricky. We
settle at basing on the scheme of [1] due to its simplicity, which we recall:

mpk = [wT], msk = wT, sky = wTy, ctx =
(
[s], [swT + xT]

)

10 We note that the concurrent work of [42] builds pairing-based RQFE in the standard
model following [39] techniques, which is a different approach than ours. Notably,
their RQFE has a large, structured crs that was also required to program to prove
security, thus bypassing the possibility of having a transparent setup.

11 In RFE, an adversary can register its own (potentially malformed) keys. We handle
security against such keys in various generic and non-generic ways for our RFE
schemes. Specifically, the generic technique employs NIZK which works for any
RFE scheme, whereas we also show tailor-made techniques that work for our RQFE
scheme. However, we avoid discussing those here for readability. We refer to Remark
1 and subsequent detailed discussions on this.
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for some w,x,y ∈ Z
n
p and s ∈ Zp, where [·] represents component-wise exponen-

tiations in some respective group. To decrypt, compute

[swT + xT]y − [s]wTy = [xTy].

We turn this into a one-user RLFE for a given function y with the following
steps. Fix [wT] in the crs and let mpk′ = [wTy]. Correspondingly, let ctx =
([swTy], [swT + xT]), so that the same decryption equation (and both correctness
and security of the base scheme) applies:

[swT + xT]y − [swTy] = [xTy].

Crucially, mpk′ “Pedersen-commits” the function y using the “key” wT, which
is then inherited in ct, so that no one can decrypt to xTy′ for y′ 	= y. This yields
a “public RLFE” that anyone can decrypt via the above equation, and to make
this available only to the registered user, the idea is to (additively) secret-share
the commitment key. We let pk = [v], sk = v, and the new commitment key be
w + v, shared by crs and the user. The resulting one-user RLFE has

crs = [wT], mpk =
(
[wT], [(wT + vT)y]

)
, pk = [vT],

sk = vT, ctx =
(
[s], [s(wT + vT)y], [swT + xT]

)
and decryption follows from

[swT + xT]y + [s]vTy − [s(wT + vT)y] = [xTy].

In a nutshell, security follows from two facts: Only the user who knows the
share v can access the “public RLFE”; furthermore decrypting to only xTy is
safeguarded by the other share w. From here, we apply the L-parallel-instances
compiler to obtain an L-user RLFE. To prevent mix-and-match of helper keys,
i.e. cross-terms across the L instances, a randomisation factor for each user is
introduced and bound to their helper keys, which is done via pairing. Our final
RLFE has a non-transparent setup. The scheme of [1] is proven from DDH with
selective-security. Our scheme also inherits the same security and the randomi-
sation in helper keys lead to our q-type assumption (for q = L number of users),
which is essentially a q-type variant of DDH generalised into the pairing set-
ting.12 We present our full RLFE construction in Sect. 4.3 and show in the full
version, how this yields a single-key RFE for all circuits.

2.4 Registered Threshold Encryption

As one of the bonus applications, we discuss how RLFE helps in removing the
trusted setup in threshold encryption. In other words, we show how to build

12 We note that the concurrent work in [42] improve the state of the art by building an
adaptively secure RLFE scheme from a static assumption on bilinear maps in the
standard model.
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registered threshold encryption (RTE). Recall that, in traditional threshold
encryption, the public parameters of the system are generated together with
L users’ secret keys. Given an encryption ct of a message m, each user can
compute partial decryption shares using its secret key. Once we have t partial
decryption shares, where the recovery threshold t ≤ L is specified in the public
parameters, the message m can be recovered. In terms of security, we want that
an adversary holding less than t secret keys is unable to break semantic security
of the scheme. In RTE, parties generate their own public keys and these are
later aggregated into a short master public key. The system should preserve the
“threshold decryption” functionality as in traditional threshold encryption.

To compile an RLFE into an RTE, each party i simply runs the RLFE key
generation on a vector i = (1, i, . . . , it−1) ∈ Z

t
p. To encrypt a message m ∈ {0, 1},

the encryptor first performs Shamir secret sharing, i.e. sampling a random degree
(t − 1) polynomial P over Zp such that P (0) = m. Let p ∈ Z

t
p be the coefficient

vector of P . The encryptor encrypts p using the underlying RLFE scheme. By
the security of the RLFE, a party holding a secret key ski learns 〈i,p〉 = P (i)
and nothing else about the polynomial P . Once we have t different evaluations of
the polynomial, we can recover P (0) = m by Lagrange interpolation. Since our
RLFE has a non-transparent setup, this is also inherited by our RTE. However,
we can use our RQFE to instantiate the RTE with a transparent setup. In the
full version, we sketch how this yields a distributed broadcast encryption with
transparent setup. In the full version we detail our RTE construction.

One subtle issue that we omitted so far is that the RLFE decryption actually
allows a party i to recover the inner product 〈i,p〉 = P (i) in the exponent of a
target group GT element [P (i)]T from the underlying bilinear pairing. This does
not create an issue as Lagrange interpolation is a linear function and thus, we
can perform it in the exponent to recover [P (0)]T. Since P (0) = m ∈ {0, 1}, we
can brute-force m from [m]T.

3 Preliminaries

Notation. We denote the security parameter by λ ∈ N throughout this paper
and assume it as an implicit input to all algorithms. We write [n] = {1, . . . , n}
and [0, n] = {0} ∪ [n] for any n ∈ N. Capital and small bold-face letters (like
M and x) denote matrices and (column) vectors respectively. Capital and small
letters (such as S and x) in general denote sets and concrete algebraic variables
respectively (with any exceptions being stated explicitly). A tuple T = (ti)i∈[n]

defines an ordered set with elements indexed from [n] for any n ∈ N. Accordingly,
|S| and |x| respectively denotes the cardinality of set S and the length of a
vector x. We write x ←$ X to denote sampling an element x from X uniformly
at random. We write A for a probabilistic polynomial time (PPT) adversary that
runs in time polynomial in λ. A function in λ, denoted by negl(λ) : N �→ R, is
called negligible if it vanishes faster than the inverse of any polynomial in λ, i.e.
negl(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).



46 P. Branco et al.

Prime-Order Bilinear Groups. Throughout this work, we use cyclic groups of
prime order p with an asymmetric bilinear map endowed on them. We assume
a PPT bilinear group generator algorithm GGen that takes λ ∈ N as input
and outputs G = (G1,G2,GT, p, g1, g2, e), where p is a prime of Θ(λ) bits, G1 =
〈g1〉,G2 = 〈g2〉,GT = 〈gT〉 = 〈e(g1, g2)〉 are cyclic groups of order p with e : G1×
G2 → GT being a non-degenerate bilinear map. We use the implicit (bracket)
notation for group elements: for M,M′ ∈ Z

k1×k2
p , define [M]t = gMt :=

(
g

mi,j

t

)
and [M]t + [M′]t := [M + M′ mod p]t for t ∈ {1, 2,T} and k1, k2 ∈ N. We
also denote [1]1 := g1, [1]2 := g2, and abbreviate “e” with “·”, i.e. for matrices
M1,M2 of appropriate dimensions, e ([M1]1 , [M2]2) is written as [M1]1 [M2]2 =
[M1M2]T = gM1M2

T . We express sampling a bilinear group instance as G :=
(G1,G2,GT, p, [1]1 , [1]2 , ·) ← GGen(1λ).

4 Registered Functional Encryption

We define and construct the core building blocks for our applications, namely
registered functional encryption (RFE) for quadratic and linear functions. In par-
ticular, we define the syntax and security of RFE in Sect. 4.1. Then, Sects. 4.2 and
4.3 provide schemes for weak RFE and RFE for quadratic and linear functions
respectively. Both our RFE schemes are proven secure in presence of well-formed
keys. The full version describes generic and concrete ways of tackling malicious
keys to transcend this limitation.

4.1 Definitions

We define RFE and a variant which we call weak RFE. The main difference
between the two is that, in the weak variant, the set of functions to be registered
is known already at setup time. Below we primarily define RFE and describe
the difference of the weak variant inline.

Definition 1 (Registered Functional Encryption). A registered functional
encryption (RFE) scheme for message space M, ciphertext space C, function
class F and number of users L consists of the following tuple of PPT algorithms
(Setup,KGen,Aggr,Enc,Dec):

– crs ← Setup(1λ): On input the security parameter 1λ, the setup algorithm
outputs a common reference string crs.

– (pk�, sk�) ← KGen(crs, � ∈ [L]): The key generation algorithm outputs a pair
of public and secret keys (pk�, sk�) for user �.

– (mpk, (hsk�)�∈[L]) ← Aggr(crs, (pk�, f�)�∈[L]): On input crs and the tuple of
public key pk� and function f� ∈ F of all users � ∈ [L], the deterministic
aggregation algorithm outputs a master public key mpk and a tuple of helper
secret keys (hsk�)�∈[L].

– ct ← Enc(mpk, μ): On input mpk and a message μ ∈ M, the encryption
algorithm outputs a ciphertext ct ∈ C.
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– μ′ ← Dec(sk�, hsk�, ct): On input a ciphertext ct together with a secret key sk�

and a helper secret key hsk�, the decryption algorithm outputs μ′.

A weak RFE has the same syntax as an RFE, except that the tuple of functions
(f�)�∈[L] is input to Setup instead of to Aggr.

Definition 2 (Correctness). An RFE scheme is said to be correct, if for all
λ ∈ N, L ∈ poly, μ ∈ M, k ∈ [L], (f�)�∈[L] ∈ FL, crs ∈ Setup(1λ), (pkk, skk) ∈
KGen(crs, k), it holds that

Pr

⎡
⎢⎣μ′ = fk(μ)

∣∣∣∣∣∣∣
(mpk, (hsk�)�∈[L]) ← Aggr(crs, (pk�, f�)�∈[L])

ct ← Enc(mpk, μ)
μ′ ← Dec(skk, hskk, ct)

⎤
⎥⎦ = 1.

Correctness of a weak RFE is defined analogously with the only differences being
that (f�)�∈[L] is input to Setup instead of to Aggr.

Definition 3 (Strong Compactness). An RFE is said to be strongly com-
pact, if for all λ ∈ N, L ∈ poly, (f�)�∈[L] ∈ FL, crs ∈ Setup(1λ), (pk�, sk�) ∈
KGen(crs, �), and (mpk, (hsk�)�∈[L]) ∈ Aggr(crs, (pk�, f�)�∈[L]), it holds that |mpk|,
|hsk�|, |ct| are of size poly[λ, log L].13 Strong compact weak RFEs are defined
analogously.

Definition 4 (Security). An RFE scheme Π is said to be secure, if for any
PPT A it holds that∣∣Pr

[
Exp0Π,A(1λ) = 1

] − Pr
[
Exp1Π,A(1λ) = 1

]∣∣ ≤ negl(λ),

where Expb
Π,A is defined in Fig. 1. The security of a weak RFE is defined analo-

gously, with the only difference that (f�)�∈[L] is declared by A upfront and input
to Setup instead of to Aggr.

We also consider the notion of selective-security with static corruption,
where the experiment is same as that in Fig. 1, except that A declares the mes-
sages (μ0, μ1) and the set of corrupt users C ⊆ [L] at the beginning of the
experiment (i.e. the corruption oracle CorrO is withheld from A).

Remark 1 (On Malicious Keys and Key Queries). In Definition 4 we require A
to output the randomness (r�)�∈M for keys generated by A, the setting which
our RFEs will be proven secure. We defer handling malicious keys without this
requirement to the full version, where the relevant IsValid algorithm and com-
pleteness property are also introduced. For simplicity we only allow a single key
query per user �. The mildly stronger notion of allowing multiple key queries
per user is implied so long as KGen is stateless (so that the same reduction still
applies when simulating multiple keys for the same user) and holds true for both
of our RFE schemes.
13 Our definition is stronger than existing RFE compactness [17], since it additionally

requires succinct ciphertexts. We note that the concurrent work of [42] also specifies
this property in their definition.
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Fig. 1. Security experiment for RFE.

4.2 Weak RFE for Quadratic Functions

We build a weak RFE scheme for quadratic functions with a transparent setup
in Fig. 2, i.e. the crs is constructed with public randomness.

Let n1, n2, L ∈ poly. For any (G1,G2,GT, p, [1]1 , [1]2 , ·) output by GGen(1λ),
we construct an RFE for the message space M = Z

n1
p ×Z

n2
p , the class of quadratic

functions F being

{(f : M → [Zp]T , f(x,y) �→ [
xTFy mod p

]
T

)
: F ∈ Z

n1×n2
p },

and (an upper bound of) L number of users. Since for any f ∈ F , f(x,y) �→
[xTFy mod p]T is fully described by F,GT and p whereas GT, p are publicly fixed,
we simply write F for such. Further, for any � ∈ N and F� ∈ F we denote its
(i, j)-th entry as f

(�)
i,j ∈ Zp.

The analysis of the scheme can be found in the full version.

4.3 RFE for Linear Functions

Let n,L ∈ poly. For any (G1,G2,GT, p, [1]1 , [1]2 , ·) output by GGen(1λ), we
construct in Fig. 3 an RFE for the message space M = Z

n
p , the class of linear

functions F being

{(f : Zn
p → [Zp]T , f(x) �→ [

xTy mod p
]
T

)
: y ∈ Z

n
p},

and (an upper bound of) L users. Since any f ∈ F , f(x) �→ [xTy mod p]T is fully
described by y,GT and p whereas GT, p are publicly fixed, we simply write y
for such. Our RFE for linear functions has a non-transparent setup. We remark
that the scheme can be trivially extended to one supporting the function class
mapping to xTy mod p, i.e. in plain instead of as target group element, with
appropriate bound B on the image space, by letting the decryption algorithm
solving for the discrete log solution.
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Fig. 2. Weak RQFE construction.

Fig. 3. RLFE construction.
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Theorem 1. RLFE (Fig. 3) is strongly compact (Definition 3).

Proof. Assuming the groups description G and each element in Zp,G1,G2,GT

are of description size poly, we count the size of mpk, hsk�, and ct. We have
|mpk| , |hsk�| , |ct| = n · poly. Notably, they are of size independent of L.

Theorem 2. RLFE (Fig. 3) has relaxed correctness14 (cf. Definition 2).

Proof. Observe that for any decryptor k ∈ [L],

[d0]� =

⎡
⎣s

∑
�∈[L]

(wT
� + vT

�)y�

⎤
⎦
1

[rk]2 − [s]1

⎡
⎣rk

∑
�∈[L]\{k}

(wT
� + vT

�)y�

⎤
⎦
2

=

⎡
⎣srk

∑
�∈[L]

(wT
� + vT

�)y�

⎤
⎦

�

−
⎡
⎣srk

∑
�∈[L]\{k}

(wT
� + vT

�)y�

⎤
⎦

�
=
[
srk(wT

k + vT
k)yk

]
,

[d1]� = [s]1 [rk]2 v
T
kyk =

[
srkvT

kyk

]
,

[dT
2]� =

⎡
⎣s

∑
�∈[L]

wT
� + xT

⎤
⎦
1

[rk]2 − [s]1

⎡
⎣rk

∑
�∈[L]\{k}

wT
�

⎤
⎦
2

=

⎡
⎣srk

∑
�∈[L]

wT
� + rkxT

⎤
⎦

�

−
⎡
⎣srk

∑
�∈[L]\{k}

wT
�

⎤
⎦

�

=
[
srkwT

k + rkxT
]
� .

Therefore decryption outputs[
dT
2

]
� · yk − ([d0]� − [d1]�)

=
[
srkwT

k + rkxT
]
� · yk − (

[
srk(wT

k + vT
k)yk

]
� − [

srkvT
kyk

]
�)

=
[
srkwT

kyk + rkxTyk

]
� − [

srkwT
kyk

]
� =

[
rkxTyk

]
� ,

as desired.

Our security proof relies on the following assumption.

Assumption 3. Let (G1,G2,GT, p, [1]1 , [1]2) ← GGen(1λ). For any PPT A∣∣∣∣∣∣∣
Pr

[
A

(
[s]1 , ([a�]1 , [r�]2)�∈[L] , ([rka�]2)k,�∈[L],k �=� ,

[
s
∑

�∈[L] a�

]
1

)
= 1

]
− Pr

[
A

(
[s]1 , ([a�]1 , [r�]2)�∈[L] , ([rka�]2)k,�∈[L],k �=� , [u]1

)
= 1

]
∣∣∣∣∣∣∣

is negligible in λ, where s, u, a�, r� ←$Zp for all � ∈ [L].
14 Here, by relaxed, we mean that instead of

[
xTyk

]
T

the k-th decryptor would obtain[
rkx

Tyk

]
T
, which is perfectly bound to

[
xTyk

]
T

by the crs. We note that this relax-
ation does not affect the application of the RLFE to the bounded collusion RTT.
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The above can be seen as a q-type variant (where q = L) of the DDH assump-
tion generalised into the bilinear group setting: Removing all elements in G2, the
statement is implied by DDH (over G1) which says that [s]1 [a�]1 ≈c $ for any
� ∈ [L].

Remark 2. In Assumption 3, it is important that
[
s
∑

�∈[L] a�

]
1

sums over all

� ∈ [L] instead of any subset S ⊂ [L]. Otherwise, picking any k /∈ S, one can dis-
tinguish

[
s
∑

�∈S a�

]
1

from random via the pairing equation
[
s
∑

�∈S a�

]
1
[rk]2

?=∑
�∈S [s]1 [rka�]2. With

[
s
∑

�∈[L] a�

]
1

instead, since [rkak]2 for any k ∈ [L] is
not given out, the same attack does not apply.

In the full version, we prove that Assumption 3 holds in the generic group
model.

Theorem 4. RLFE (Fig. 3) is selectively secure with static corruption (Defini-
tion 4) under Assumption 3.

Proof. We define the following hybrids:

– Hb,0: This is same as the selective-security experiment for b ∈ {0, 1}, i.e. the
distribution as in Fig. 3 encrypting xT

b.
– Hb,1: Same as Hb,1, except that we compute [cT2]1 as⎡

⎣txT
1 + (1 − t)xT

0 + s
∑
�∈[L]

kT
�Z

⎤
⎦
1

,

where (x0,x1) are the challenge messages from the adversary interacting with
the experiment, t, s ∈ Zp and k� ∈ Z

n−1
p are uniformly random, and Z ∈

Z
n−1×n
p independent of b (defined below).

Notice that H0,1 ≡ H1,1, since the distribution of all terms in [cT2]1, hence
also [cT2]1, are independent of b. We show in the remaining that Hb,0 ≈c Hb,1

under Assumption 3, which completes the proof.
Suppose there exists a PPT A that distinguishes Hb,0 and Hb,1 with non-

negligible probability. We construction a PPT B against Assumption 3.
On input problem instance

(
[s]1 , ([a�]1 , [r�]2)�∈[L]

, ([rka�]2)k,�∈[L],k �=�
, [u]1

)
where [u]1 is either

[
s
∑

�∈[L] a�

]
1

or uniformly random, B proceeds as follows:

– Receive the pair of challenge messages (x0,x1) and the set of corrupt users
C ⊆ [L] from A.

– Let x̂ := x1 − x0, let B := (x̂ | Z) a basis of Zn
p , where Z is arbitrary basis of

the kernel space x̂⊥ of x̂.
– Sample random k� ← Z

n−1
p for all � ∈ [L].

– Pass crs to A which is simulated as follows:
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• For each � ∈ [L], fetch [a�]1 and ([rk]2)k∈[L]\{�} from input and let

[w�]1 :=([a�]1 | [kT
�

]
1
)B−1,[

rkwT
�

]
2

:=([rka�]2 | [rk]2 k
T
�)B

−1 for all k ∈ [L] \ {�}.

• Let crs :=
(G, {[w�]1}�∈[L], {[r�]2}�∈[L], {[rkw�]2}k,�∈[L],k �=�

)
.

– For key query on user � ∈ [L], if K[�] = ⊥, same keys as follows:
• If � ∈ [L] \ C is not corrupt: Sample random d� ← Z

n
p , fetch [a�]1 and

([rk]2)k∈[L]\{�} from input, and compute pk� :=
(
[vT

� ]1 , [rkvT
� ]2

)
as[

vT
�

]
1

:=
[
dT

�

]
1

− [
(a�|kT

�)
]
1
B−1,[

rkvT
�

]
2

:= [rk]2 d
T
� − ([rka�]2 | [rk]2 k

T
�)B

−1.

• If � ∈ C is corrupt: Sample random v� ∈ Z
n
p , fetch ([rk]2)k∈[L]\{�} from

input, let pk� :=
(
[vT

� ]1 , [rkvT
� ]2

)
and sk� := v�.

Write the above to K[�] and answer accordingly.
– Receive the message (x0,x1), the registrations (pk�,y�)�∈[L], and randomness

(v�)�∈M for malicious parties from A. Verify that (1) [L] \ M ⊆ K, (2) for
each � ∈ M it holds that pk� =

(
[vT

� ]1 , [rkvT
� ]2

)
for v� provided by A, and (3)

for all � ∈ C ∪ M it holds that xT
0y = xT

1y. If all checks pass, let sk� = v� for
the malicious � ∈ M , and simulate the challenge ciphertext ct∗ as follows:

• For each � ∈ C ∪ M , write y� =: B
(

0
ỹ�

)
where ỹ� ∈ Z

n−1
p (which is

possible since xT
0y� = xT

1y�, equivalently y� ∈ x̂⊥).
• Fetch [s]1 and [u]1 from input, let ct∗ := ([c0]1 , [c1]1 , [c2]1) where [c0]1 :=

[s]1 and

[c1]1 := [s]1
∑

�∈[L]\C∪M

dT
�y� + [s]1

∑
�∈C∪M

(kT
�ỹ� + vT

�y�),

[
cT2

]
1

:=

⎛
⎝[u]1

∣∣∣ [s]1 ∑
�∈[L]

kT
�

⎞
⎠B−1 +

[
xT

b

]
1
.

– Pass ct∗ to A and return whatever A returns.

We analyse the outputs of B. First, notice that the simulated outputs can be
expressed as setting

wT
� = (a� | kT

�)B
−1 for all � ∈ [L]

vT
� = dT

� − (a� | kT
�)B

−1 for all � ∈ [L] \ (C ∪ M),

then computing all components except [c2]1 in the same way as in the scheme.
In more details, using the above two equations, the outputs can be expressed as

crs :
[
rkwT

�

]
2

=
[
rk(a� | kT

�)B
−1

]
2

= ([rka�]2 | [rk]2 k
T
�)B

−1

pk�, � ∈ [L] \ (C ∪ M) :
[
rkvT

�

]
2

=
[
rk(dT

� − (a� | kT
�))B

−1
]
2

= [rk]2 d
T
� − ([rka�]2 | [rk]2 k

T
�)B

−1
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and for the challenge ciphertext ct∗, we have [c1]1 being

[s]1
∑

�∈[L]\(C∪M)

dT
�y� + [s]1

∑
�∈(C∪M)

(kT
�ỹ� + vT

�y�)

= [s]1
∑

�∈[L]\(C∪M)

(vT
� + (a� | kT

�)B
−1)y� + [s]1

∑
�∈(C∪M)

((a�|kT
�)B

−1y� + vT
�y�)

=

⎡
⎣s

∑
�∈[L]

((a�|kT
�)B

−1 + vT
�)y�

⎤
⎦
1

=

⎡
⎣s

∑
�∈[L]

(wT
� + vT

�)y�

⎤
⎦
1

where the second term in the second equality is by kT
�ỹ� = (a�|kT

�)B
−1B

(
0
ỹ�

)
=

(a�|kT
�)B

−1y�.
Since (a�)�∈[L] , (k�)�∈[L] and (d�)�∈[L]\C are all uniformly random, so are

(w�)�∈[L] and (v�)�∈[L]\C . The keys (pk�, sk�) for the corrupt users � ∈ C are
computed honestly. Therefore, all components of the simulated crs, pk�, sk� as
well as [c0]1 , [c1]1 in ct∗ are distributed same as in the scheme.

Finally we inspect [cT2]1. Suppose [u]1 =
[
s
∑

�∈[L] a�

]
1
, then

[
cT2

]
1

=

⎛
⎝
⎡
⎣s

∑
�∈[L]

a�

⎤
⎦
1

∣∣∣∣∣ [s]1
∑
�∈[L]

kT
�

⎞
⎠B−1 +

[
xT

b

]
1

=

⎡
⎣s

∑
�∈[L]

(a�|kT
�)B

−1 + xT
b

⎤
⎦
1

=

⎡
⎣s

∑
�∈[L]

wT
� + xT

b

⎤
⎦
1

which is exactly the ciphertext component encrypting xb as in the real scheme,

or Hb,0. Else if [u]1 is uniform, then write B−1 =:
(
xT

Z

)
, and we have [cT2]1 being

⎛
⎝[u]1

∣∣∣ [s]1 ∑
�∈[L]

kT
�

⎞
⎠B−1 +

[
xT

b

]
1

=

⎡
⎣uxT + s

∑
�∈[L]

kT
�Z + xT

0 + b(xT
1 − xT

0)

⎤
⎦
1

.

Now observe x̂T = x̂T(x̂ | Z)
(
xT

Z

)
= (‖x̂‖2 | x̂TZ)

(
xT

Z

)
= ‖x̂‖2 xT + x̂TZZ︸ ︷︷ ︸

=0

,

where ‖x̂‖ denotes the L2-norm of x̂. Equivalently xT = cx̂T = c(xT
1 −xT

0) where
c := ‖x̂‖−2. Hence

[
cT2

]
1

=

⎡
⎣uc(xT

1 − xT
0) + xT

0 + b(xT
1 − xT

0) + s
∑
�∈[L]

kT
�Z

⎤
⎦
1

=

⎡
⎣txT

1 + (1 − t)xT
0 + s

∑
�∈[L]

kT
�Z

⎤
⎦
1

,



54 P. Branco et al.

where t := uc + b is uniform over Zp since u is uniform and c 	= 0 (since w.l.o.g.
x̂ 	= 0). Therefore [cT2]1 is distributed same as in Hb,1.15

We conclude that B perfectly simulates Hb,0 if the input [u]1 =
[
s
∑

�∈[L] a�

]
1
,

and perfectly simulates Hb,1 if [u]1 is uniformly random. The proof is completed.

5 Registered Traitor-Tracing

Traitor-tracing [10] is a cryptographic primitive that allows to identify users
involved in illegal distribution of content. Below, we define and construct a reg-
istered version of traitor-tracing (RTT).

Our scheme is obtained by adapting existing transformations from quadratic
functional encryption to traitor-tracing to the registered setting. We first show
that the RQFE scheme of Sect. 4.2 implies predicate encryption for comparison
(PEC) following [21]. The next step is just to recast PEC as a private linear
broadcast encryption, a primitive first introduced in [7]. This in turn yields
RTT by adapting the transformation presented in [7] to the registered setting.

In the full version, we have more results on RTT. Particularly, we show in how
our RLFE scheme of Sect. 4.3 can be used to build an RTT scheme secure against
bounded collusions. Further, we informally discuss revocation mechanisms for
our RTT schemes.

5.1 Registered Private Linear Broadcast Encryption

We define and build a registered version of private linear broadcast encryption
(PLBE), a primitive that was first defined in [7].

Definition 5 (Registered Private Linear Broadcast Encryption). A reg-
istered private linear broadcast encryption (RPLBE) scheme for message space
M, ciphertext space C and number of users L is a tuple of PPT algorithms
(Setup,KGen,Aggr,Enc,TrEnc,Dec):

– Setup(1λ) inputs the security parameter. It outputs a crs.
– KGen(crs, �) inputs the crs and an index � ∈ [L]. It outputs a pair of public

and secret keys (pk�, sk�) associated with the index �.
– Aggr(crs, (pk�)�∈[L]) inputs crs and public keys (pk�)�∈[L]. It outputs a master

public key mpk and helper secret keys (hsk�)�∈[L].
– Enc(mpk,m) inputs mpk and a message m ∈ M. It outputs a ciphertext

ct ∈ C.
– TrEnc(mpk, i,m) inputs mpk an index i ∈ [L], and a message m ∈ M. It

outputs a ciphertext ct ∈ C.
– Dec(sk�, hsk�, ct) inputs a secret key sk�, a helper secret key hsk� and a cipher-

text ct. It outputs a message m′.
15 For any malicious user � ∈ M , decrypting

[
cT2

]
1

in this case correctly yields xT
0y� =

xT
1y� since (xT

1−xT
0)y� = Zy� = 0 and cT2y� =

(
xT
0 + t(xT

1 − xT
0) + s

∑
�∈[L] k

T
�Z

)
y� =

xT
0y�.
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Fig. 4. Security experiments for RPLBE.

Definition 6 (Correctness). An RPLBE is correct if for all λ ∈ N, L ∈ poly,
m ∈ M, crs ∈ Setup(1λ), (pk�, sk�) ∈ KGen(crs, �) where � ∈ [L], and all i, j ∈ [L]
such that i ≤ j ≤ L,

Pr

⎡
⎢⎣m = m′

∣∣∣∣∣∣∣
(mpk, (hsk�)�∈[L]) ← Aggr(crs, (pk�)�∈[L])

ct ← TrEnc(mpk, i,m)
m′ ← Dec(skj , hskj , ct)

⎤
⎥⎦ = 1.

Definition 7 (Indistinguishability, Message-Hiding, Index-Hidin). An
RPLBE scheme Π is said to be indistinguishable, message-hiding, and index-
hiding respectivelyg [7], if for all PPT A it holds that∣∣∣Pr

[
ExpRBLPEx,0

Π,A(1λ) = 1
]

− Pr
[
ExpRBLPEx,1

Π,A(1λ) = 1
]∣∣∣

is negligible in λ, for x ∈ {Ind, MsgHide, IndexHide} respectively, where Expx,bΠ,A
is defined in Fig. 4.

To construct RPLBE, we first recall a lemma from [21] expressing the com-
parison predicate as a quadratic function.

Lemma 1 ([21]). Let L ∈ poly[λ], � ∈ [L]. Define the predicate F� : [L + 1] ×
{1, 2} → {0, 1, 2},

F�(i,m) =

{
m, if i ≤ �

0, else
.
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Then F�(i,m) = xT
i,mM�yi,m for some M� ∈ {0, 1}2

√
L×(

√
L+1) and

xi,m ∈ {0, 1, 2}2
√

L and yi,m ∈ {0, 1, 2}
√

L+1.

Moreover, M� is efficiently computable given �, and xi,m,yi,m are efficiently
computable given (i,m). The latter is denoted by (xi,m,yi,m) ← Z(i,m).

We sketch the proof and refer to [21] for a detailed analysis.

Proof (Proof Sketch). Let us assume that L ∈ N is a perfect square for con-
venience and let Z output (02

√
L, 0

√
L+1) if the input is (L + 1,m) for any m.

Clearly this yields F�(L + 1,m) = 0 as wanted. In the rest we consider i ∈ [L].
Fix any i ∈ [L]. Let (i1, i2) ∈ [

√
L] × [

√
L] be such that i = (i1 − 1)

√
L + i2

and define (�1, �2) analogously for �. Let

ṽ = (0i1 ,1
√

L−i1) ∈ {0, 1}
√

L and v̂ = ei1 ∈ {0, 1}
√

L

where ei1 is the i1-th unit vector. Furthermore, let

v = (0i2−1,1
√

L−i2+1) ∈ {0, 1}
√

L.

For any j ∈ [
√

L], denote ṽj the j-th entry of ṽ and analogously for v̂j , vj . Now
F�(i,m) = m if and only if i ≤ �, which implies either (1) i1 < �1, equivalently
ṽ�1 = 1, or (2) i1 = �1 and i2 ≤ �2, equivalently v̂�1 · v�2 = 1. That is, ṽ�1 +
v̂�1v�2 = 1. Thus, for any m ∈ {1, 2} and (�1, �2), we can express m as m =
m(ṽ�1 + v̂�1v�2) = xT

i,mM�yi,m, for xT
i,m := (mṽT,mv̂T) ∈ {0, 1, 2}2

√
L,yT

i,m :=
(1,vT) ∈ {0, 1, 2}

√
L+1 and M� ∈ {0, 1}2

√
L×(

√
L+1) is as follows:

M�(r, c) =

{
1, if (r, c) = (�1, 1) or (r, c) = (�1 +

√
L, �2 + 1)

0, else
.

We show that an RPLBE can be constructed using our weak RQFE in Fig. 2.
Let L ∈ poly and M = {1, 2}. For each � ∈ [L], let function F� and its correspond-
ing matrix M� be as defined in Lemma 1. Also let Z be as defined in Lemma 1.
Let RQFE be the weak RQFE constructed in Fig. 2, with parameters n1 = 2

√
L,

n2 =
√

L + 1, p > 2, and number of users L. In Fig. 5 we describe an RPLBE
for the message space M and L users.

Correctness of our construction follows directly from Lemma 1 and the cor-
rectness of RQFE. The next theorem states its security.

Theorem 5 (Security). RPLBE (Fig. 5) is indistinguishable, message-hiding
and index-hiding (Definition 7) if RQFE is secure.

Proof. Indistinguishability follows trivially as both algorithms TrEnc(mpk, 1,m)
and Enc(mpk,m) are exactly the same.

Message-hiding follows from the security of RQFE: By definition of FL+1

from Lemma 1, for any messages m0,m1 ∈ M and � ∈ [L] we have F�(L +
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Fig. 5. RPLBE construction.

1,m0) = F�(L + 1,m1) = 0, hence by security of RQFE, the adversary learns
nothing more than 0 in either experiment.

Index-hiding also follows from the security of RQFE: The index i or i + 1 is
encoded only in the RQFE message as (xi,m,yi,m) or (xi+1,m,yi+1,m). For any
index � ∈ C ∪ M of which the adversary has the secret key, it holds that i 	= �,
therefore either i < i+1 ≤ � so that F�(i,m) = F�(i+1,m) = m, or i+1 > i > �
so that F�(i) = F�(i+1) = 0. Thus by security of RQFE, a ciphertext encrypting
(xi,m,yi,m) is indistinguishable from one encrypting (xi+1,m,yi+1,m).

Message Space for RPLBE: Recall the proof of Lemma 1 at a high level. A
registered user for any slot � in our RPLBE (Fig. 5) computes a comparison
predicate P� (outputting a bit). Note that the message m ∈ {1, 2} is embedded
in the function evaluation as m ·P�(x). If M = {0, 1}, we cannot distinguish the
two cases: i)P�(x) = 0 with m = 1 and ii)P�(x) = 1 with m = 0. Hence, we set
M = {1, 2} in order to distinguish the above cases if the predicate P� is satisfied
or not.

Supporting Large Message Spaces: As explained above, our RPLBE decryption
(Fig. 5) for any slot � yields m ·P�(x) for a message m ∈ {1, 2} and a comparison
predicate P�. The message space is set to M = {1, 2} for conceptual simplicity.
However, our scheme can easily support larger messages with a standard trans-
formation: The encryptor samples m ← Zq and uses [m] as a one-time symmetric
key to encrypt an arbitrarily long message. Decryptor recovers [m] if P�(x) = 1.
The only overhead is that of a symmetric encryption scheme (e.g., AES), which
is very fast.

Optimizations. In practice, a short, random seed ∈ {0, 1}λ can be used as the
crs along with a pseudorandom generator with a sufficient stretch, which gives
a transparent setup for the RQFE.

Further, our RPLBE requires RQFE to compute quadratic functions asso-
ciated to highly sparse, binary matrices. Lemma 1 explicitly characterises this:
∀k ∈ [L], Mk contains exactly two 1s at positions (k1, 1) and (k1+

√
L, k2+1) for

the natural map k �→ (k1, k2) as specified above. We show how this significantly
reduces the number of operations in the KGen and Dec algorithms:
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The KGen algorithm (Fig. 2) for each user � ∈ [L] can compute the terms

[dk�,k]2 = s�,k1 [t1]2 + s�,k1+
√

L [tk2+1]2 + w� [γk]2

for matrix Mk with randomness

(s�, w�) ∈ Z
2
√

L+1
p ,

where s�,i, [tj ]2 denote the i-th and j-th elements in s� and [t]2 respectively.
This reduces computing each cross-term to only a constant number of operations
(precisely, 3 exponentiations and 2 group operations in G2). Similarly, the slot
k decryptor (Fig. 2) can avoid computing the full pairing-product in the term
[D2]T. Instead, it can simply compute it as([

CT
3,k1

]
1
[C4,1]2

)
+

([
CT

3,k1+
√

L

]
1
[C4,k2+1]2

)
.

So the decryptor also need not parse the full ciphertext (that grows with
√

L).
Rather, it needs to parse only 10 group elements, namely:

[C1]1 , [C2]1 ,
(
[C3,k1 ]1 ,

[
C3,k1+

√
L

]
1

)
,
(
[C4,1]2 , [C4,k2+1]2

)
Computing [D2]T requires just 4 pairings reducing its total count to only 6 during
decryption (along with 5 group operations in GT and 1 in G2). Crucially, the
total number of operations is independent of all

√
L factors and is a constant.

Further, note that an index i ∈ [L] is encoded during encryption using binary
vectors (xi,m,yi,m) (where xi,m is also scaled with the message m ∈ {1, 2}).
Hence, one can further optimise the number of operations in the Enc,TrEnc
algorithms based on i and its equivalently encoded vectors ṽ, v̂ and v as shown
in Lemma 1.

5.2 Registered Traitor-Tracing

We are now ready to define and build registered traitor-tracing. The definitions
and construction from RPLBE largely follow the one from [7], except that we
now work in the registered setting. We provide the definitions, construction and
proofs below.

Definition 8 (Registered Traitor-Tracing). A registered traitor-tracing
(RTT) scheme for a message space M, ciphertext space C and number of users
L consists of the tuple of PPT algorithms (Setup,KGen,Aggr,Enc,TraceD,Dec):

– Setup(1λ) inputs the security parameter. It outputs a crs.
– KGen(crs, �) inputs the crs and an index � ∈ [L]. It outputs a pair of public

and secret keys (pk�, sk�) associated with the index �.
– Aggr(crs, (pk�)�∈[L]) inputs the crs and public keys (pk�)�∈[L]. It outputs a

master public key mpk and helper secret keys (hsk�)�∈[L].
– Enc(mpk,m) inputs mpk and a message m ∈ M. It outputs a ciphertext

ct ∈ C.
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– TraceD(mpk, ε) inputs mpk and a parameter ε. It has oracle access to a decoder
D. It outputs an identity i ∈ [L].

– Dec(sk�, hsk�, ct) inputs a secret key sk�, a helper secret key hsk� and a cipher-
text ct. It outputs a message m′.

Definition 9 (Correctness). An RTT is said to be correct if for all λ ∈ N,
L ∈ poly, m ∈ M, k ∈ [L], crs ∈ Setup(1λ), (pk�, sk�) ∈ KGen(crs, �) where
� ∈ [L], it holds that

Pr

⎡
⎢⎣m = m′

∣∣∣∣∣∣∣
(mpk, (hsk�)�∈[L]) ← Aggr(crs, (pk�)�∈[L])

ct ← Enc(mpk,m)
m′ ← Dec(skk, hskk, ct)

⎤
⎥⎦ = 1.

Definition 10 (Semantic Security and Traceability). An RTT is said to
be semantically secure, if for any PPT A it holds that∣∣Pr

[
ExpRTT-Security0Π,A(1λ) = 1

] − Pr
[
ExpRTT-Security1Π,A(1λ) = 1

]∣∣
is negligible in λ, and traceable against arbitrary collusion, if for any PPT A

Pr
[
ExpRTT-TraceabilityΠ,A(1λ) = 1

] ≤ negl(λ),

where ExpRTT-Securityb
Π,A and ExpRTT-TraceabilityΠ,A are defined in Fig. 6.

We also consider a selective security with static corruption version of the
ExpRTT-Securityb

Π,A(1λ) experiment, where the adversary A announces the mes-
sages (m0,m1) and the corruption set at the beginning of the experiment, i.e.
before seeing crs. Similarly, a scheme is said to be traceable with static corrup-
tion if the adversary in ExpRTT-TraceabilityΠ,A announces the corruption set at
the beginning of the experiment.

In Fig. 7 we present an RTT scheme based on an RPLBE scheme RPLBE,
which is similar to that in [7] but recast in the registered setting. Its correctness
follows directly from that of RPLBE.

Theorem 6 (Semantic security). RTT (Fig. 7) is semantically secure (Defi-
nition 10) if RPLBE is indistinguishable, message-hiding and index-hiding.

Proof. The proof follows the same reasoning as the one from [7].

Hybrid H0. In this hybrid, the challenger sets b = 0.

Hybrid H1. This hybrid is identical to the previous one except that we set
ct ← RPLBE.TrEnc(mpk, 1,m0). Indistinguishability of hybrids follow from the
indistinguishability of RPLBE.

Hybrid H2. This hybrid is identical to the previous one except that we set ct ←
RPLBE.TrEnc(mpk, L+1,m0). This is done via a sequence of sub-hybrids, where
we replace ct ← RPLBE.TrEnc(mpk, i,m0) by ct ← RPLBE.TrEnc(mpk, i+1,m0),
for all i ∈ [L]. Indistinguishability follow from the RPLBE index-hiding security.
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Fig. 6. Security experiments for RTT.

Fig. 7. TraceD algorithm of the RTT construction from RPLBE. Other algorithms
(Setup,KGen,Enc,Dec,Aggr) of the RTT are identical to those of RPLBE.

Hybrid H3. This hybrid is identical to the previous one except that we set ct ←
RPLBE.TrEnc(mpk, L + 1,m1). Indistinguishability of hybrids follow from the
message-hiding of RPLBE.

Hybrid H4. This hybrid is identical to the previous one except that we set ct ←
RPLBE.TrEnc(mpk, 1,m1). Indistinguishability of hybrids follow from the index-
hiding of RPLBE.
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Hybrid H5. This hybrid is identical to the previous one except that we set
ct ← RPLBE.Enc(mpk,m1). Indistinguishability of hybrids follow from the indis-
tinguishability of RPLBE.

Theorem 7 (Traceability). RTT (Fig. 7) is traceable against arbitrary collu-
sion (Definition 10) if RPLBE is indistinguishable, message-hiding and index-
hiding.

Proof. The proof follows the same reasoning as the one from [7]. We sketch the
main ideas here and refer to [7] for a more detailed analysis (it is straightforward
to adapt their proof to the registered setting).

Let ε > 0 be a constant. Denote by pi = Pr [D(RPLBE.TrEnc(mpk, i,m)) = m]
and p = Pr [D(RPLBE.Enc(mpk,m)) = m]. The proof is divided into 3 different
types of adversaries.

– Type 1: D is a ε-useful decoder for which |p − p1| > 1/P (λ) for some polyno-
mial P .

– Type 2: D is a ε-useful decoder for which |p−p1| ≤ negl(λ) but Trace outputs
an empty set.

– Type 3: D is a ε-useful decoder for which |p−p1| ≤ negl(λ) but Trace outputs
a set which is not contained in the set of colluders.

An adversary of type 1 can be used to break indistinguishability of the underlying
RPLBE. An adversary of type 2 can be used to break message-hiding of the
underlying RPLBE. Finally, an adversary of type 3 can be used to break the
index-hiding of the underlying RPLBE.

Efficiency. Instantiating Fig. 7 with the RPLBE in Fig. 5 via our weak RQFE
(Fig. 2), we obtain a concretely efficient RTT scheme. Recall that the functions
F� used for RTT can be succinctly described from Lemma 1. Moreover, the crs
consists of random elements that can be succinctly described by a short seed to
be expanded using a random oracle.

6 Benchmarks

We implemented a prototype16 of our RPLBE scheme (Sect. 5.1) in Python. As
explained in Sect. 5, RPLBE immediately implies a registered traitor-tracing,
without any modification to the algorithms. For the implementation we set L
to be a perfect square, and we ran our benchmarks with different values of
L ∈ {16, 64, 256, 1024}. We calculated the time it took to run the Setup and
Aggr for each L. For the KGen and Enc and Dec we calculated the average
times for each slot, over 100 repetitions of the experiment. The benchmarks were
conducted on a personal computer with a AMD Ryzen 5 5600X 3.7 GHz CPU
and 32 GB of RAM running Arch Linux with kernel 6.7.1-arch1-1. In Table 2 we
report the measurements for our benchmarks plotted in Fig. 8.
16 https://github.com/ahmadrezarahimi/RPLBE.

https://github.com/ahmadrezarahimi/RPLBE


62 P. Branco et al.

Storage. The storage requirement of our RPLBE is quite modest: In the RPLBE
scheme with L = 1024, we calculated the sizes of the expanded crs, mpk, and the
ciphertext, and they were 135 KB, 6.6 KB and 6.7 KB respectively. Furthermore,
the sizes of a user’s public key, secret key, and helper secret key are 102.5 KB,
97B, and 194B, respectively.

Group Operations. For the choice of pairings, we used the BLS12-381 elliptic
curve via the petrelic [32] Python wrapper around RELIC [4]: each element
in G1,G2,GT is represented with 49, 97, and 384 bytes, respectively. On our
machine, exponentiation in G1 and G2 takes an average of 6.6 and 5.8µs, respec-
tively, and each pairing evaluation takes 0.64 ms.

Table 2. Runtimes of our RPLBE algorithms for different L.

Time (ms)

L Setup KGen Aggr Enc Dec

16 3.86 9.04 1.06 7.26 4.04

64 13.31 35.14 14.56 13.53 4.04

256 48.94 138.17226.93 26.11 4.04

1024 189.57 553.873576.3751.24284.04

Fig. 8. Runtime plots of RPLBE algorithms with a growing number of users, inter-
polated from the measurements taken from L = {16, 64, 256, 1024}. Both axes are in
log-scale.
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Abstract. Mercurial signatures are an extension of equivalence class sig-
natures that allow malleability for the public keys, messages, and signa-
tures within the respective classes. Unfortunately, the most efficient con-
struction to date suffers from a weak public key class-hiding property,
where the original signer with the signing key can link the public keys in
the same class. This is a severe limitation in their applications, where the
signer is often considered untrustworthy of privacy.

This paper presents two-party and multi-party interactive threshold
mercurial signatures that overcome the above limitation by eliminating
the single entity who knows the signing key. For the general case, we pro-
pose two constructions. The first follows the same interactive structure
as the two-party case, avoiding complex distributed computations such as
randomness generation, inversion, and multiplication, and even eliminates
the need for private communication between parties. The second is based
on a blueprint for general multi-party computation using verifiable secret
sharing, but adopting optimizations.

We show applications in anonymous credential systems that individ-
ually fit the two-party and multi-party constructions. In particular, in
the two-party case, our approach provides stronger privacy by completely
removing the trust in the authorities. We also discuss more applications,
from blind signatures to multi-signatures and threshold ring signatures.

Finally, to showcase the practicality of our approach, we implement our
interactive constructions and compare them against related alternatives.

Keywords: Mercurial Signatures · Equivalence Class Signatures ·
Threshold Signatures · Class-Hiding · Anonymous Credentials

1 Introduction

Equivalence Class Signatures (EQS) [43,45] are malleable signatures [23] defined
over a vector of group elements. They are structure-preserving [3,4] and, thus,
equipped with a bilinear pairing so that public keys and signatures also consist
of group elements. This allows them to be verified evaluating pairing-product
equations without requiring any specific encoding. They have been extensively
used as a building block for many cryptographic primitives, including anonymous
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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credentials (e.g., [28,35,43,45,46]), blind signatures [41,42], group signatures
[8,9,36] and sanitizable signatures [21] to name a few. Related primitives include
signatures with flexible public keys [8] and Mercurial Signatures (MS) [28,32,33,
50], which is the main focus of this paper.

EQS allow one to randomize a signature, adapting it to a new message and
a new public key in the same equivalence class. Security requires adapted signa-
tures to look like freshly computed ones (signature adaption) and some notion
of unlinkability when adapting messages and public keys (also referred to as
class-hiding). In many applications, the adversary does not know the discrete
logarithms of the message vector, and thus, message class-hiding is implied by
the decisional Diffie-Hellman assumption. Recently, Bauer and Fuchsbauer [10]
proposed an EQS construction based on the idea of signatures on randomizable
ciphertexts [14], achieving a stronger notion of message class-hiding covering the
case in which the adversary knows the discrete logarithms of the message vector.
Consequently, for message class-hiding, all possible scenarios are well-studied.

Regarding public key class-hiding, however, no satisfactory solution has been
put forth so far. All known constructions only provide public key class-hiding
as long as the adversary does not know the signing key. In other words, the
original signer must be trusted. This is most evident for anonymous credentials
where MS have been used to provide issuer-hiding features [27,28,50] and to
build delegatable schemes [32,33] where the issuer has to be trusted for issuer-
hiding. That is, given a valid key pair (sk,pk) and a randomized public key
pk’ of pk, the issuer with sk can determine whether pk’ is related to pk. Thus,
issuers can identify if a credential has been issued to a user belonging to their
organization, even if they do not know specifically to whom. While this can be
tolerated in some scenarios, it can suffice to fully de-anonymize users in others.
The situation is even worse for delegatable credentials because every user in the
credential chain must be trusted. Otherwise, an adversary can identify chains
containing a corrupted user by recognizing randomized keys.

1.1 Our Contributions

We propose Threshold Mercurial Signature (TMS) schemes where signing keys
are distributed among signers, and a quorum cooperates to produce mercurial
signatures. With secure distributed key generation, no signer below the threshold
knows the key. This ensures no sub-threshold parties can access the secret key,
justifying the weak public key class-hiding property and broadening the privacy-
preserving applications of MS. Our contributions are summarized as follows.

1. Two-party Mercurial Signature Scheme (Sect. 4): We develop a dis-
tributed two-party signing protocol for the MS scheme described in [32,43].
Two signers with additively shared signing keys interact with each other to
generate a mercurial signature on a given message. The protocol consists of
three sequenced moves and is secure against static corruption. This minimal
setting is not only essential for illustrating our ideas for eliminating expensive
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distributed computations but also serves a crucial role in issuer-hiding anony-
mous credentials, eliminating the need for trustworthy issuers (see Sect. 1.2
and 4.4 for more discussion and details). This solves an open problem of
anonymous credentials based on EQS [28].

2. Multi-party Mercurial Signature Scheme (Sect. 5): We generalize the
two-party protocol to the t-out-of-n threshold setting. It is not a straightfor-
ward task due to the asymmetric nature of our two-party protocol. In this
protocol, the three moves of interaction in the two-party case are simulated
with the signers lined up in order, taking input from the previous signer and
sending the result of local computation to the next one. A malicious signer
in the sequence complicates security analysis, but the essential idea remains
unchanged. As an application, we demonstrate how this t-out-of-n scheme is
useful for delegatable credentials (see Sect. 5.3 for details)1.

3. Experimental Evaluation (Sect. 6): The actual efficiency depends on the
instantiation of underlying zero-knowledge proofs of knowledge and optimiza-
tion of the group operations. Besides, the computational complexity scales
linearly with the number of parties. For this reason, we implement our pro-
tocols and report benchmarks considering different numbers of parties and
application settings. The overhead is relatively minor compared to the imple-
mentation of the original MS, allowing us to produce signatures in less than
0.5 s for practical scenarios involving ten parties.

1.2 Technical Overview

Distributed Signing: In the MS from [32], defined over pairing groups gen-
erated by G and Ĝ, a signature (Z, Y, Ŷ ) on message M is computed as
Z = Mxy, Y = G1/y, Ŷ = Ĝ1/y with signing key x and ephemeral random-
ness y. Let [x] denote additive (or polynomial) shares of x, and consider the
signers having [x] collaborate to compute a signature. A naive approach would
be to generate shared randomness [y], compute shared product [xy] and shared
inverse [1/y], and reconstruct xy and 1/y on the exponent of M , G and Ĝ. This
would require three invocations of distributed key generation (DKG) protocols
involving commitments or verifiable secret sharing to avoid rushing adversaries
that attempt to bias the resulting signature. Since this can be a cumbersome
task for both two-party and multi-party cases, we first consider constructions
that do not require such machinery. Instead, we observe that the bias caused by
a rushing adversary can be ignored since mercurial signatures are malleable. In
brief, the recipient can remove the bias by adapting the signature. In light of
this observation, our first proposal incorporates the following techniques:

– We generate ephemeral randomness y in a multiplicative manner. Denote
the multiplicative sharing by 〈y〉. This makes shared inversion 〈1/y〉 a local
computation. Computing Mxy could be done first by computing Mx using
[x] and then compute (Mx)y using 〈y〉 in sequence.

1 More applications are discussed in the full version ([5], Appendix B).
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– However, the above method leaks intermediate value Mx that prevents the
security proof from going through. We develop efficient blind computation
of Mxy where Mx is blinded by random factor Y r and unblinded with Gr.
Namely, the signers first compute Y rMx and then (Y rMx)y, which can be
done efficiently by the sequence of local computations. Since (Y rMx)y =
GrMxy, unblinding it with Gr results in Mxy as desired.

– In the threshold case, where more than two parties are involved in the signing
process, we found that the randomness r mentioned above is insufficient to
simulate more than two honest parties simultaneously. To address this issue,
we introduce additional randomness into the signing protocol without altering
its fundamental structure. This is achieved by incorporating random additive
shares of zero into the intermediate computations, which cancel out when
Y rMx is computed correctly. We develop a technique to generate these shares
solely through public communication between the parties.

We also consider several optimizations to the naive approach based on multi-
party computation and propose a second construction based on Abe’s multipli-
cation protocol [1], which nicely fits our needs as explained in Sect. 5.2.

Enhancing Issuer-Hiding in Anonymous Credentials: The authorities’ role in a
credential system with MS is to issue a signature on the user’s attributes. As
discussed earlier, however, authorities are trusted for privacy in the sense that
they do not abuse their signing key to trace the signatures. Plug-in replacement
of MS with our TMS immediately raises the bar for violating users’ privacy.
Nevertheless, threshold authorities are assumed to not collude to retain privacy.

We eliminate such an unverifiable trust using our TMS. In our issuing pro-
tocol, the authority and user Alice engage in the two-party TMS. The resulting
signature verifies with the joint public key from the authority and Alice. When
Alice anonymously shows the credential, she proves in zero knowledge that the
randomized joint key properly includes a valid, authoritative public key, and she
knows the randomized secret key for the remainder. This way, Alice can protect
her privacy by herself without trusting the authority.

1.3 Related Work

Mercurial Signatures. There are two constructions of MS in the literature:
one by Crites and Lysyanskaya [32] and another by Connolly et al. [28]. The MS
from [28] was recently shown to be flawed in [11,12], and it is broken. In Sect. 2.2,
we recall the construction from [32]. As mentioned, it presents a major drawback,
as any signer can track randomizations of previously issued signatures. This is
because a public key pk is a vector of elements, and any randomization is just
a multiplication in the exponent by the same randomization factor ρ. Hence,
given knowledge of a secret key sk and any pk′, it suffices to multiply pk′ in the
exponent by the inverse of sk. Consequently, if all elements are the same, it must
be the case that pk′ is a randomization of pk for some ρ. Our work presents a
threshold version for [32] that, instead of getting a multiplicative share in the
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exponent of each element in the public key, we get an additive share. As a result,
we can provide a stronger class-hiding notion, as further discussed in Sect. 4.4.

Pointcheval-Sanders Signatures. Very recently, Sanders and Traoré [59] pro-
posed a modified version of Pointcheval-Sanders (PS) signatures [56,57] to build
an efficient issuer-hiding mechanism for anonymous credentials with strong secu-
rity guarantees. Their approach consists of letting credential verifiers define an
access policy for a set of issuers. More precisely, users take the verifier’s access
policy to adapt their signature to verify if and only if the policy is satisfied (i.e.,
the user’s signature/credential was signed by one of the issuers in the set). For
security, verifiers must compute a zero-knowledge proof attesting to the correct
computation of their access policy for the issuers’ set. In other words, this app-
roach can be seen as letting each verifier define a custom common reference string
(CRS) as their access policy, and the zero-knowledge proof attests to the correct
computation of said CRS. Our approach to anonymous credentials resembles [59],
and we borrow their NIKZ proof. However, in our case, verifiers only specify the
issuer’s set as their access policy, and our solution does not require any proof of
knowledge for the hidden attributes during the showing. Furthermore, we provide
backward compatibility with previous attribute-based credentials constructions
from EQS that provide revocation and auditability features [27,35], potentially
covering a more comprehensive range of functionalities.

Threshold Signatures. The ongoing NIST standardization effort related to
threshold signatures [19] motivated many recent works tackling different settings,
e.g., [13,29–31,60]. Considering pairing-based constructions, threshold versions
of the BLS signature [17,18] such as [16] have gained significant attention over the
past years, with security proven in the adaptive setting [7,13,34]. Threshold ver-
sions of BLS can be verified as a regular signature and are key-randomizable [37].
However, they are not structure-preserving and cannot be used as an alterna-
tive for EQS/MS. This is the first work to address the construction of threshold
schemes for EQS. Closely related work to ours by Crites et al. [29] presented
(non-interactive) Threshold Structure-Preserving Signatures. Their motivation
was to have a drop-in replacement for standard SPS in the threshold setting.
While the non-interactive setting is attractive and allows the authors to pro-
pose constructions compatible with the UC framework, this comes at the cost
of using an indexed message space. In particular, a relatively new assumption
called Indexed Diffie-Hellman Message Space is required to prove security. Very
recent work by Mitrokotsa et al. [51] overcomes the previous limitation of [29]
by removing the need of an indexed space. However, we stress that none of these
works are EQS (let alone MS). Moreover, the constructions provided are not
even randomizable. The indexed message space used in [29] defines an equiva-
lence class, but this does not carry over to the TSPS construction (for a message
m, Ĝm always stays as is, and thus, m is fixed). Looking at [51], it is a tag-based
construction whose tag is not randomizable (see σ1 in [51]).
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We take a different approach considering an interactive signing process. As
we show, our approach offers several advantages for different applications where
non-interactive TSPS fall short. Thus, our contribution broadens the scope of
threshold SPS to include EQS, opening new research directions (see, for instance,
the case of threshold ring signatures [20] from TMS discussed in the full version.

Multi-signatures. Multi-signatures are a special case of threshold signatures
where the threshold t = n. Recent work mostly focuses on pairing-free and non-
interactive constructions (e.g., [6,13,38,53]), compatible with existing deploy-
ments in the blockchain sphere. Our approach is more general and focused on
privacy-preserving applications that could benefit from malleable signatures with
added functionalities and stronger security properties.

2 Preliminaries

Notation. The set of integers 1, 2, ..., n is denoted [n]. We call Zp the ring of
integers modulus p if p ∈ N. For a set S and r ∈ S, r ←$ S denotes that r has been
sampled uniformly randomly from S. The security parameter κ is usually passed
in unary form. We use λ for Lagrange coefficients, and we denote the adversary’s
state by st. Let BGGen be a PPT algorithm that on input 1κ, returns public
parameters pp = (p, G, Ĝ, GT, G, Ĝ, e) describing an asymmetric bilinear group
where G, Ĝ, GT are cyclic groups of prime order p with �log2 p� = κ, G and Ĝ are
generators of G and Ĝ, and e : G × Ĝ → GT is an efficiently computable (non-
degenerate) bilinear map. pp is considered Type-III if no efficiently computable
isomorphism between G and Ĝ is known. We then assume that the following
DDH assumption in G holds for BGGen, as well as Ĝ.

DDH Assumption. Let BGGen be a bilinear group generator that outputs
public parameters pp. The decisional Diffie-Hellman assumption holds relative to
G for BGGen, if for all p.p.t adversaries A the following probability is negligible,

Pr
[
pp ←$BGGen(1κ); r, s, t ←$ Zp; b ←$ {0, 1}
b∗ ←$ A(pp, Gr, Gs, G(1−b)t+brs)

: b∗ = b

]
− 1

2

2.1 Zero-Knowledge Proofs of Knowledge

We require secure Zero-Knowledge Proofs of Knowledge (ZKPoK) that are com-
plete, zero-knowledge, and knowledge sound. Many instantiations are available
in different models and with different assumptions, directly affecting our pro-
tocols’ security. In this paper, for presentation and performance, we consider a
non-interactive form of zero-knowledge proofs that allows online witness extrac-
tion. It is available in the random oracle model for a stand-alone execution where
our implementation resorts. Alternatively, the ZKPoK’s can be instantiated via
interactive five-round PoK’s in the standard model [44]. We leave the evaluation
of other variants, such as using Fischlin’s transform [26,40], for future research.
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2.2 Mercurial Signatures

We recap syntax and security notions of MS as presented in [32]. We recall
that MS are EQS that support key randomization. Let R be an equivalence
relation where [x]R = {y|R(x, y)} denotes the equivalence class of which x is
a representative. As in [32], we will loosely consider parametrized relations and
say they are well-defined as long as the corresponding parameters are.

Definition 1 (Mercurial signature). A MS scheme for parametrized equiva-
lence relations RM , Rpk, Rsk is a tuple of the following polynomial-time algo-
rithms, which are deterministic algorithms unless otherwise stated:

PGen(1κ) → pp: On input the security parameter 1κ, this PPT algorithm out-
puts the public parameters pp. This includes parameters for the parametrized
equivalence relations RM , Rpk, and Rsk so they are well-defined. It also
includes parameters for the algorithms sampleρ and sampleμ, which sample
key and message converters, respectively.
KGen(pp, �) → (pk, sk): On input the public parameters pp and a length param-
eter �, this PPT algorithm outputs a key pair (pk,sk). The message space M
is well-defined from pp and �. This algorithm also defines a correspondence
between public and secret keys: we write (pk, sk) ∈ KGen(pp, �) if there exists
a set of random choices that KGen could make to output (pk, sk).
Sign(pp, sk,M) → σ: On input the signing key sk and a message M ∈ M, this
PPT algorithm outputs a signature σ.
Verify(pp,M, σ, pk) → 0/1: On input the public key pk, a message M ∈ M,
and a purported signature σ, output 0 or 1.
ConvertSK(sk, ρ) → sk′: On input sk and a key converter ρ ∈ sampleρ, output
a new secret key sk′ ∈ [sk]Rsk

.
ConvertPK(pk, ρ) → pk′: On input pk and a key converter ρ ∈ sampleρ, output
a new public key pk′ ∈ [pk]Rpk

.
ConvertSig(pk,M, σ, ρ) → σ′: On input pk, a message M ∈ M, a signature σ,
and key converter ρ ∈ sampleρ, this PPT algorithm returns a new signature σ′.
ChgRep(pk,M, σ, μ) → (M ′, σ′): On input pk, a message M ∈ M, a signature
σ, and a message converter μ ∈ sampleμ, this PPT algorithm computes a new
message M ′ ∈ [M ]RM

and a new signature σ′ and outputs (M ′, σ′).

Definition 2 (Correctness). A MS scheme for parametrized equivalence rela-
tions RM ,Rpk,Rsk is correct if it satisfies the following conditions for all κ, for
all pp ∈ PGen(1κ), for all � > 1, for all (pk, sk) ∈ KGen(pp, �):

– Verification: ∀ M ∈ M, ∀ σ ∈ Sign(sk,M), Verify(pk,M, σ) = 1.
– Key conversion: ∀ ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ)) ∈

KGen(pp, �). Moreover, ConvertSK(sk, ρ) ∈ [sk]Rsk
and ConvertPK (pk, ρ) ∈

[pk]Rpk
.

– Signature conversion: ∀ M ∈ M,∀ σ such that Verify(pk,M, σ) = 1, ∀ ρ ∈
sampleρ,∀ σ′ ∈ ConvertSig(pk,M, σ, ρ), Verify(ConvertPK (pk, ρ),M, σ′) = 1.

– Change of message representative: ∀ M ∈ M,∀ σ such that Verify(pk,M, σ)
= 1, ∀ μ ∈ sampleμ, Verify(pk,M ′, σ′) = 1, where (M ′, σ′) = ChgRep(pk,M,
σ, μ). Moreover, M ′ ∈ [M ]RM

.
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Definition 3 (Unforgeability). A MS scheme for parametrized equivalence
relations RM ,Rpk,Rsk is unforgeable if for all polynomial-length parameters �(κ)
and any PPT adversary A having access to a signing oracle, the following prob-
ability is negligible,

Pr

⎡
⎣pp ←$PGen(1κ)
(sk, pk) ←$KGen(pp, �(κ))
(pk∗,M∗, σ∗) ← ASign(sk,·)(pk)

:
∀M ∈ Q, [M∗]RM


= [M ]RM

∧ [pk∗]Rpk
= [pk]Rpk

∧ Verify(M∗, σ∗, pk∗) = 1

⎤
⎦ ,

where Q is the set of queries that A has issued to the signing oracle.

Definition 4 (Class-Hiding). A MS scheme is class-hiding if it satisfies the
following two properties:

– Message class-hiding: if the advantage of any PPT adversary A defined by
AdvMSG-CH

MS,A (κ) := 2 · Pr
[
ExpMSG-CH

MS,A (κ) ⇒ true
]
− 1 = ε(κ).

– Public key class-hiding: if the advantage of any PPT adversary A defined by
AdvPK-CH

MS,A (κ) := 2 · Pr
[
ExpPK-CH

MS,A (κ) ⇒ true
]
− 1 = ε(κ).

The experiments ExpMSG-CH
MS,A (κ) and ExpPK-CH

MS,A (κ) are defined as follows:
Experiment ExpMSG-CH

MS,A (κ)

pp ←$PGen(1κ); b ←$ {0, 1};M1 ←$ M;M0
2 ←$ M;M1

2 ←$ [M1]RM

b′ ←$ A(pp, M1, m
b
2); returnb = b′

Experiment ExpPK-CH
MS,A (κ)

pp ←$PGen(1κ); b ←$ {0, 1}; ρ ←$ sampleρ(pp); (sk1, pk1) ←$KGen(pp, �(κ))
(sk02, pk

0
2) ←$KGen(pp, �(κ)); pk12 ← ConvertPK(pk1, ρ); sk

1
2 ← ConvertSK(sk1, ρ)

b′ ←$ ASign(pp,sk1,·),Sign(pp,skb
2,·)(pk1, pk

b
2); returnb = b′

Definition 5 (Origin-hiding). A MS scheme is origin-hiding if for all κ, pp ∈
PGen(1κ), pk∗, m, and σ, the following two properties hold:

1. if Verify(pk,M, σ) = 1 and μ ←$ sampleμ, then ChgRep(pk∗,m, σ, μ) outputs
uniformly random M ′ ∈ [M ]RM

and σ′ ∈ {σ̂|Verify(pk∗,M ′, σ̂) = 1}.
2. if Verify(pk,M, σ) = 1 and ρ ←$ sampleρ, then ConvertSig(pk∗, M,σ, ρ) out-

puts a uniformly random σ′ ∈ {σ̂|Verify(ConvertPK (pk∗, ρ),M, σ̂) = 1} and
ConvertPK(pk∗, ρ) outputs a uniformly random element of [pk∗]Rpk

.

In the following, we present the MS by Crites and Lysyanskaya [32], which
is an extension of the EQS from [43]. It’s the state-of-the-art signature in terms
of efficiency and has its security proven in the generic group model for Type-III
pairings. The message space is (G∗)� where � is the length of the message vector.
We recall that all elements of a vector (M)i∈[�] ∈ (G∗)� share different mutual
ratios that depend on their discrete logarithms. Hence, it is possible to partition
(G∗)� into equivalence classes given by: R = {(M,M ′) ∈ (G∗)� × (G∗)�|∃s ∈
Z

∗
p : M ′ = Ms} ⊆ (G∗)�. Moreover, an analogous relation can be defined for the

public keys, inducing equivalence classes on the key space as well.
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PGen(1κ) → pp: returnBGGen(1κ).
KGen(pp, �) → (pk, sk): ∀ 1 ≤ i ≤ � : xi ←$ Z

∗
p.; sk ← (xi)i∈[�]; pk ← (Ĝxi)i∈[�]

return(pk, sk).
Sign(pp, sk,M) → σ: y ←$ Z

∗
p; Z ← (Π�

i=1M
xi
i )y; Y ← G

1
y ; Ŷ ← Ĝ

1
y

return(Z, Y, Ŷ ).
Verify(pp,M, σ, pk = (X̂)i∈[�]) → 0/1:

return Π�
i=1e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, Ĝ) = e(G, Ŷ ).

ConvertSK(sk, ρ) → sk′: sk′ ← ρ · sk; returnsk′.
ConvertPK(pk, ρ) → pk′: pk′ ← pkρ; returnpk′.
ConvertSig(pk,M, σ, ρ) → σ′: ψ ←$ Z

∗
p; return(Zψρ, Y

1
ψ , Ŷ

1
ψ ).

ChgRep(pk,M, σ, μ) → (M ′, σ′): ψ ←$ Z
∗
p; M ′ ← Mμ; σ′ ← (Zψμ, Y

1
ψ , Ŷ

1
ψ )

return(M ′, σ′).

Theorem 1 ([32]). The above MS scheme is unforgeable, public key class-hiding
and origin-hiding in the generic group model for Type-III bilinear groups. More-
over, it is message class-hiding if the DDH assumption holds in G.

2.3 Verifiable Secret Sharing

Our construction from Sect. 5.2 uses the verifiable secret sharing scheme by
Pedersen [55]. In this paper we follow the notation in [1]. Let G and H be
two elements of G s.t. the discrete logarithm of H with base G is unknown.
To share a secret y in Zp, a dealer first chooses two t-degree random polyno-
mials Fy(X) and Dy(X) from Zp[X] s.t. Fy(0) = y. Let Ry denote the ran-
dom free term of Dy(X). The dealer sends a pair (yj , Rj

y) := (Fy(j),Dy(j)) to
party Pj via a private channel. Subsequently, it broadcasts EY k := GakHbk

(a Pedersen commitment) for k = 0, ..., t where ak and bk are the k-degree
coefficients of Fy(X) and Dy(X) respectively. Given EY k, correctness of a

share (yj , Rj
y) can be verified by checking Gyj

+ HRj
y =

∏t
k=0 EY kik

. Here-
inafter, we denote the execution of this verifiable secret sharing protocol by
VSS(y,Ry)[G,H]

Fy,Dy−−−−→ (yj , Rj
y)[EY 0, EY 1, . . . , EY n].

3 Threshold Mercurial Signatures

We follow the notation from [29] to present the syntax and security properties.

Definition 6 (Threshold mercurial signature). A TMS scheme is a MS
scheme where KGen and Sign, are replaced with:

TKGen(pp, �, t, n) → (
sk, 
pk, pk): On input the public parameters pp, a length
parameter �, and two integers t, n ∈ poly(1κ) such that 1 ≤ t ≤ n, thisPPT algo-
rithm outputs two vectors of size n of signing and public keys along with the
global (threshold) public key pk. Both, the signing keys 
sk = (sk1, ..., skn) and
the public keys 
pk = (pk1, ..., pkn) are distributed among parties such that party
Pi gets (ski, 
pk, pk). The message space M is well-defined from pp and �.
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TSign(pp, {skj}j∈T ,M) → σ: On input {skj}j∈T for some T ⊆ [n], |T | ≥ t
and a message M ∈ M, this PPT algorithm is run interactively by a set of
parties in T . At the end, they either abort or output a signature σ.

We also consider threshold key converter versions for shared keys (ConvertTPK
and ConvertTSK) that are analogous to ConvertPK and ConvertSK (now acting
on the global keys). For convenience, we include an algorithm SimTKGen that
given a key pair (pk, sk), on input pk, n and a subset of corrupted parties C � [n]
of size t−1, outputs C shares for sk and n shares of pk according to Definition 7.

Security Properties. A public key of our TMS consists of independent random
group elements, and distributed TKGen can be instantiated with a DKG protocol.
Since many DKG protocols are available with various security properties, e.g.,
[2,25,39,54] (we also refer to a recent survey on the history and state of the art on
DKG [47]), we consider construction of distributed TKGen an independent topic
and consider TKGen being done by a single trusted party throughout the paper.
Nevertheless, we state the security of TKGen required in this work as follows.

Definition 7 (Security of key generation). TKGen is secure if it out-
puts pk with the same distribution as KGen does, and there exists a simula-
tor, SimTKGen that, for any sufficiently large κ, any pp ∈ PGen(1κ), � ∈ N,
(pk, sk) ∈ KGen(pp, �), t, n ∈ N, C � [n] of size t − 1, SimTKGen(pk, n, C) out-
puts {skj}j∈C and {pkj}j∈[n]. The joint distribution of (pk, {pkj}j∈[n], {skj}j∈C)
is indistinguishable from that of TKGen(pp, �, t, n).

Correctness of TMS follows the usual notion for MS. Thus, we defer its for-
mal definition to the full version of this work. For unforgeability and unlinka-
bility (class-hiding) we follow the definitions from [29,32], adapting them to the
threshold setting (the adversary can corrupt up to t − 1 parties). To that end,
we consider a signing oracle OTSign that internally executes TSign as a step
function in a sequentially interactive protocol where computations are executed
by a party while obtaining input from the previous and passing the output to
the next one. Consequently, TSign can be seen as a sequence of step functions
TSignj for j ∈ [k] where k is the total number of steps of the protocol, i.e.,
k = 3(t − 2) + 2 × 2 = 3t − 2. We define a function φ : [k] → [n] that maps the
index of a step to the id of the party executing the step. On receiving a query
(M, T ), oracle OTSign executes TSignj for j = 1 to k in sequence. If party φ(j)
is corrupted, OTSign consults adversary A and obtains the output of TSignj .
Otherwise, OTSign executes TSignj and sends the output to A. OTSign finally
outputs σ that TSignk outputs. For ease of exposition, we define an auxiliary
internal procedure (Steps()) in OTSign to capture it.

Definition 8 (Unforgeability). A TMS scheme is unforgeable if the advantage
of any PPT adversary A defined by AdvUNF

TMS,�,t,n
(1κ,A) := Pr

[
ExpUNF

TMS,�,t,n
(1κ,A)

⇒ true] ≤ ε(κ), where ExpUNF
TMS,�,t,n

(1κ,A) is shown in Fig. 1.

Unlike the original class-hiding definition for mercurial signatures (Definition
4), we aim to capture a stronger definition in which the adversary is given access



Interactive Threshold Mercurial Signatures and Applications 79

Fig. 1. Unforgeability experiment. C and H are the sets of corrupt and honest signers.

to the challenge public keys and shares of the corresponding secret keys associ-
ated to corrupted parties for one of them. Our approach is to consider a scenario
under key leakage where the adversary gets to know a subset of the secret key
shares, similar to the class-hiding definition from [8]. Our notion is in-between
the class-hiding notion from [32] that only considers honestly generated keys with
no key leakage and the one from [8] (which is strictly weaker than (·, 1, 3)-UNL
from [22]). We refer to it as public key unlinkability to make a distinction. For
n = t = 1, our definition seamlessly gives the notion of public key unlinkability
for MS, implied by public key class-hiding and fulfilled by the instantiation of
MS in [32]. We will use these facts to prove public key unlinkability.

Definition 9 (Public Key Unlinkability). A TMS scheme is public key
unlinkable if the advantage of any PPT adversary A defined by AdvPK-UNL

TMS,�,t,n
(1κ,A)

:= 2 · Pr
[
ExpPK-UNL

TMS,�,t,n
(1κ,A) ⇒ true

]
− 1 ≤ ε(κ), where ExpPK-UNL

TMS,�,t,n
(1κ, A) is shown

in Fig. 2.

Remark 1. We stress that the above definition serves two purposes. First, it
provides backward compatibility with the original MS formalization, assuming
the usual single-party signing process where the adversary cannot corrupt a
party and thus is not given any secret key shares. Secondly, as discussed in the
context of anonymous credentials (Sect. 4.4), when a signature is distributively
computed, no adversary can distinguish if an adapted signature that verifies
under an adapted public key is related or not to the original public key, even if
it knows a subset of shares for the corresponding secret key. Before, since the
adversary knew the full secret key, it was trivial to distinguish an adapted public
key from one from a different equivalence class.
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Fig. 2. Public key unlinkability experiment.

4 Two-Party Case

We present the two-party case as a (2-2)-TMS scheme. This decision will become
clearer when we discuss the applications of this setting.

Our approach to building a (2-2)-TMS is to modify the scheme from [32] so
that the signing protocol runs interactively between two parties. Intuitively, a
signature that verifies under a jointly computed public key is obtained at the
end. The resulting signature has the same structure as the one from [32] and it
can work as a drop-in replacement. In particular, we assume one honest party
for public key unlinkability (if they collude they can recognize the public key).

4.1 Construction 1

We assume that PGen(1κ) and TKGen(pp, �, 2, 2) are run honestly. Every signer
j is given pp = (p, G, Ĝ, GT, G, Ĝ, e),

# »

pk := {Ĝxi
j }i∈[�]

j∈[0,1], pk, and 
skj := {xi
j}i∈[�].

The (global) signing key xi for i ∈ [�] is implicitly set to xi := xi
0 + xi

1 ∈ Zp.
In Fig. 3, we present our main protocol for instantiating TSign. The protocol’s

goal is to compute (Z, Y, Ŷ ) for a given message M . It consists of two parts; one
to compute Y and Ŷ , and another to compute Z. Below we give an intuition
and subsequently discuss the technical details required to prove security.



Interactive Threshold Mercurial Signatures and Applications 81

Fig. 3. TSign(pp, {xi
j}j∈{0,1},i∈[�], M)

Computing Y = G
1
y and Ŷ = Ĝ

1
y for y = y0y1 is done straightforwardly in

sequence. Computing Z = (
∏

M
xi
0+xi

1
i )y for i ∈ [�] could be done first by com-

puting Z1 =
∏

M
xi
1

i at signer P1, then Z0 = Z1

∏
M

xi
0

i at signer P0, and finally
(Z0)y0y1 with y0 and y1 in sequence. However, Z1 is computed deterministically,
requiring full knowledge about P1’s signing key, while we have to simulate P1

without knowing the signing keys for the case where P0 is corrupted.
Our approach to getting around the above problem is to blind Z1 by using

Y0 = G
1

y0 , obtained in the first part of the protocol as the basis of a blinding
factor. Computing Z1 = Y r

0

∏
M

xi
1

i with random r perfectly blinds it. Once P0

computes Z0 = (Z1

∏
M

xi
0

i )y0 , factor Y0 in Z1 is cancelled out since (Y r
0 )

y0 =
(G

r
y0 )y0 = Gr. Thus, P1, who holds r, can easily unblind Z0 by multiplying

G−r. This blinding of Z1 causes another problem in the opposite case where P1

is corrupted; It makes it hard for the simulator to control the resulting signature.
We address it by extracting the randomization factor r from the zero-knowledge
proof of well-formedness of blinded Z1. Since the unblinding is deterministic with
respect to r, the simulator knowing r can embed an intended signature to Z0.

As previously mentioned, we require zero-knowledge proofs to prove the right
computation of the values sent by each party. In particular, we require knowl-
edge soundness of π

(1)
1 and zero-knowledge of π

(1)
0 and π

(2)
0 to simulate P0. Anal-

ogously, to simulate P1. Below we discuss how each ZKPoK can be implemented.

– π
(1)
0 := ZKPoK[y0 : Y0 = G1/y0 ∧ Ŷ0 = Ĝ1/y0 ]: This can be done with the

standard Chaum-Pedersen protocol [24] with witness 1/y0 instead of y0.
– π

(1)
1 := ZKPoK[(r, {xi

1}i∈�) : Z1 = Y r
0

∏�
i=1 M

xi
1

i ∧i∈[�] X̂
i
1 = Ĝxi

1 ]: as above.

– π
(2)
0 := ZKPoK[(y0, {xi

0}i∈[�]) : Z0 = (Z1

∏�
i=i M

xi
0

i )y0 ∧ G = Y y0
0 ∧i∈[�] X̂i

0 =
Ĝxi

0 ]: The first clause involves a witness product in the exponent. The proof
must not expose intermediate value Z1

∏�
i=i M

xi
0

i to the verifier. We thus
translate the statement to the following equivalent one:



82 M. Abe et al.

Table 1. Costs of ZKPoK protocols. Computation counts number of exponentiations
in the relevant groups without optimization for multi-base exponentiations.

Proof Computation Proof Size
Prover Verifier

π
(1)
0 1|G| + 1|Ĝ| 2|G| + 2|Ĝ| 1|G| + 1|Ĝ| + 2|Zp|

π
(1)
1 (� + 1)|G| + �|Ĝ| (� + 2)|G| + 2�|Ĝ| 1|G| + �|Ĝ| + (� + 1)|Zp|

π
(2)
0 (� + 2)|G| + �|Ĝ| (� + 4)|G| + 2�|Ĝ| 2|G| + �|Ĝ| + (� + 1)|Zp|

π
(2)
1 3|G| 5|G| 2|G| + 3|Zp|

π
(2)
0 := ZKPoK

[(
{xi

0}i∈[�], 1/y0
)
: Z1 = Z

1/y0
0

∏l
i=1 M

−xi
0

i

∧ Y0 = G1/y0 ∧i∈[�] X̂i
0 = Ĝxi

0

]

– π
(2)
1 := ZKPoK[(r, y1) : Z = (Z0G

−r)y1 ∧Y = Y
1/y1
0 ]: This statement involves

a witness product as well, and is translated into π
(2)
1 := ZKPoK[(1/y1, r) :

Z0 = Z1/y1Gr ∧ Y = Y
1/y1
0 ]. It is worth noting that r is not guaranteed

to be the same as the one used in π
(1)
1 since the final output is accepted if it

verifies as a signature. Nevertheless, π
(2)
1 is needed for the proper link between

the resulting signature and the inputs from honest P0.

Each proof is verified by the respective recipient. The same for σ. If any
verification fails, the party aborts and TSign outputs ⊥.

4.2 Efficiency

Except for ZKPoK’s, computation and communication complexity at each party
are the same as those for the original MS. Party P1 has three extra exponentia-
tions in G for blinding and unblinding.

Table 1 presents the computational and communication costs of each ZKPoK
when instantiating them using sigma protocols. Computation costs count the
number of exponentiations in the respective groups, and the proof size is in
terms of scalar values and group elements. We defer the full presentation of
each protocol to the full version ([5], Appendix A). We note that � is usually
instantiated for short vectors. Considering the applications, � = 2 for blind
signatures, � = 3 for the basic attribute-based credential scheme from [43], � = 5
considering revocation [35], and � = 7 for adding auditability [27].

4.3 Security

Correctness is proven in the full version of this work [5]. Unforgeability is consid-
ered for static corruptions in the stand-alone execution model. We first explain
our proof strategy and key technical points. In mercurial signatures [32], unforge-
ability (Definition 3) is proved by contradiction. If there were a PPT algorithm
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that could break unforgeability through accessing the signing oracle, one could
construct a reduction breaking the unforgeability of the base SPS-EQ [43].

For TMS, the security assurance of unforgeability slightly alters the one from
[32]. Since we have an interactive signing protocol, we must prove that the adver-
sary’s advantage when interacting with TSign is no greater than its advantage in
the original unforgeability game. Moreover, we give strong power to the adver-
sary allowing it to run the (interactive) signing oracle on behalf of any corrupted
party of its choice instead of just leaking the key share of its choice. Hence, care
should be taken when instantiating the signing oracle from Definition 8 as it can
be run between the adversary and the environment. We have three cases:

1. A calls the oracle for two honest parties (honest signing). In this case, the
environment runs the honest protocol, and it is easy to see that the A’s
advantage is the same as in the original game due to the zero-knowledge
property of the ZKPoK’s and the fact that the signatures computed by the
interactive protocol are identically distributed as the signatures from [32].

2. A controls P0. We simulate P1 so that it ignores inputs from P0 and outputs
signatures following the same distribution as in the original game.

3. A controls P1. We simulate P0 based on P1’s knowledge extraction.

In either case, we show that the joint view of the adversary and the corrupted
party is essentially the same as that of the adversary in the original unforgeability
game of MS due to the security of the zero-knowledge proofs involved.

Theorem 2 (Unforgeability). Construction 1 is unforgeable against static
corruption of at most one party if TKGen is secure, all ZKPoK’s are secure,
and the original MS is unforgeable.

Proof. Given access to adversary A playing the unforgeability game against
TMS as in Fig. 1, we construct a simulator that plays the role of the adver-
sary in the unforgeability game against MS as in Definition 3. Let (sk, pk) :=
({xi}i∈[�], {X̂i}i∈[�]) be a key pair of MS generated by KGen(pp, �). Given pp as
input, the simulator first invokes A and outputs C obtained from A. Here, C
is either 0 or 1 meaning P0 or P1 is corrupted, respectively. Then, given pk as
input, the simulator executes SimTKGen(pk, 2, C) to obtain skj := {xi

j}i∈[�] for
j ∈ C and pkj := {X̂i

j}i∈[�] for j ∈ [n]. Shared signing keys {xi
j}i∈[�] for j 
∈ C

are not given to the simulator but implicitly set so that xi
0 + xi

1 = xi holds. The
simulator then invokes A with {skj}j∈C , {pkj}j∈[n], and pk as input.

Recall that A is allowed to make signing queries to OTSign that internally
executes TSign in the presence of a corrupted party. Thus, the simulator has to
simulate the honest party in TSign. Whenever A queries message M to OTSign,
the simulator forwards M to signing oracle Sign of MS and obtains signature
(Z ′, Y ′, Ŷ ′). From here, the simulator works along with the possible corruption
scenarios. The first case considers corruption of P0, as shown in Fig. 4. The case
in which P1 is corrupted is shown in Fig. 5.



84 M. Abe et al.

Fig. 4. Simulator’s algorithm considering corruption of P0.

Fig. 5. Simulator’s algorithm considering corruption of P1.

We show that, for both cases of corruption, the honest party can be simu-
lated indistinguishably from the real execution of the corresponding algorithm
in TSign. For the first case (Fig. 4), the real computation of Z1 and the simu-
lated one in the first round are perfectly indistinguishable because the real one
includes a uniformly random factor and the simulated one is chosen uniformly.
It implicitly determines random factor r := logY0

Z1(
∏�

i=1 M
xi
1

i )−1 for xi
1 also

implicitly determined by X̂i
1. Furthermore, the quality of simulated π

(1)
1 is due

to its zero-knowledge property. Moving into the second round, we claim that
P0 cannot distinguish the difference between the original computation of σ and
the simulated one provided that both π

(1)
0 and π

(2)
0 are sound. Observe that the

proper computation of (Z, Y, Ŷ ) is deterministic from Z0, r and y1 implicitly
determined by y1 = logY Y0 = logŶ Ŷ0. Therefore, if π

(1)
0 and π

(2)
0 are sound and

Sign is correct, the simulated (Z, Y, Ŷ ) distributes perfectly in the same way as
the original one does. The quality of simulated π

(2)
1 is due to its zero-knowledge

property, hiding how Z was computed.
We now consider corruption of P1 (Fig. 5). During the first round, Y0 and

Ŷ0 are distributed identically as their original computation and π
(1)
0 is zero-
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knowledge. Looking at the second round, we claim that Z0 is perfectly simulated
if π

(1)
1 is knowledge sound. That is, the knowledge soundness of π

(1)
1 assures

that Z1 has been correctly computed as Z1 = Y r
0

∏�
i=1 M

xi
1

i with the extracted
r. Thus, for Z ′ = (

∏�
i=1 Mxi

i )y where xi = (xi
0 + xi

1) for i ∈ [�] and y =

y0 = logG Y ′, we have: Z0 = Z ′Gr = (
∏�

i=1 M
xi
0+xi

1
i )y0Gr = (Y r

0

∏�
i=1 M

xi
1

i )y0

(
∏�

i=1 M
xi
0

i )y0 = (Z1

∏�
i=1 M

xi
0

i )y0 . Accordingly, the simulation of P0 is perfect
modulo the knowledge soundness of π

(1)
1 and zero-knowledge of π

(1)
0 and π

(2)
0 .

The simulator outputs whatever A outputs. As TKGen is assumed secure
and the honest party within OTSign is correctly simulated, the view of AOTSign

is indistinguishable from that of the real unforgeability game in the pres-
ence of corrupt party C. Thus, whenever A is successful in forging TMS, so
is the simulator in forging MS. Finally, we evaluate the advantage based on
the error bounds for the sub-procedures. Let maximum error bounds for the
zero-knowledge part be: ESnd and EZK for the soundness and zero-knowledge of
each proof, respectively, and EKSnd for the knowledge soundness of π

(1)
1 . Also

let ETKG denote the error bound for SimTKGen. We obtain that the adver-
sary’s advantage when executing q queries to the signing oracle is given by
AdvUNF

TMS,�,2,2
(1κ,A) < AdvUNF

MS,�
(1κ,A) + q · (2ESnd + 2EZK + EKSnd) + ETKG. ��

We prove unlinkability assuming at least one honest signer and consider a
signing oracle in the presence of the corrupted party.

Theorem 3 (Public Key Unlinkability). Construction 1 is public key
unlinkable against static corruption of at most one party if TKGen is secure,
all ZKPoK’s are secure, and MS is origin and public key class-hiding.

Proof. The proof strategy considers a similar simulator from Theorem 2. Given
access to adversary A playing the unlinkability game against TMS, we construct
a simulator that plays the role of the adversary in the unlinkability game against
MS (public key class-hiding). Given pp as input, the simulator invokes A and
outputs C obtained from A. Then, given (pk1, pk

b
2) as input, the simulator runs

SimTKGen for pk1 with C to obtain, for sk(j)1 for j ∈ C and pk
(j)
1 for j ∈ [n]. The

simulator then invokes A with {sk(j)1 }j∈C , {pk(j)1 }j∈[n], and pkb
2 as input. The

validity of the simulation up to this point is due to the security of TKGen.
On receiving a query from A to OTSign on pkb

2 and M , the simulator forwards
it to its oracle and returns the response to A. This part of the simulation is
perfect due to the origin-hiding property of MS.

On receiving a query from A to OTSign on pk1 and M , the simulator for-
wards it to its oracle to obtain an MS signature for M . Subsequently, it uses the
obtained signature to simulate an invocation of TSign (using Steps) on pk1 with
M as explained in the proof of Theorem 2. Validity of this part of the simulation
is due to the security of ZKPoK’s as before. If Steps’s simulation results in ⊥
(due to misbehaviour of a corrupted party), it returns ⊥. Finally, the simulator
outputs b′ that A outputs. Since the view of A is correctly simulated, the output
is correct whenever A wins the game against TMS. This concludes the proof. ��
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4.4 Application to Anonymous Credentials

Attribute-based anonymous credentials (ABC) allow users to authenticate them-
selves with respect to a set of attributes while hiding their identity. A prominent
framework in this setting based on EQS originated with the work by Fuchsbauer,
Hanser and Slamanig [43] (hereinafter FHS19). FHS19 provides constant-size
credentials (i.e., the credential size as well as the bandwidth required to show it
are constant-size irrespectively of the attributes shown) supporting a selective-
disclosure of attributes (users can decide which attributes to show each time).

Subsequent works extended FHS19 to consider revocation [35], auditability
[27], more expressiveness, and issuer-hiding features [15,28]. In particular, [27]
proposes to use the MS from [32] to provide issuer-hiding features based on an
OR-Proof for the correct randomization of the issuer’s public key relative to a
list of authorized issuers. Recall that using MS, users can adapt their signature
to a randomized public key. A downside of this approach is that now the show-
ing is linear in the number of issuers because of the OR-Proof. Furthermore,
since the MS used only provides a weak issuer-hiding feature (i.e., an issuer can
recognize randomizations of its own public key), the ABC from [27] is limited to
settings where partial trust can be tolerated. Put differently, a verifier colluding
with an issuer can determine if the authenticated user belongs to the issuer’s
organization, severely reducing the user’s anonymity set.

A Closer Look at FHS19’s Framework. The ABC from FHS19 enables
anonymous and unlinkable credential showings. In terms of security, unforge-
ability of their credential scheme ensures that users can only authenticate with
respect to attributes they possess. Besides, it also prevents any collusion among
malicious users to collectively perform valid showings for attributes that none
of them hold. Anonymity assures users that neither a verifier nor a malicious
organization can collude to identify them. Additionally, it ensures that multiple
showings of the same credential cannot be linked together (i.e., credentials are
multi-show). To realize an efficient ABC, FHS19 uses EQS on set-commitments
where the latter primitive is basically an accumulator supporting subset member-
ship proofs. Moreover, its public parameters are given by (Gai

, Gai

)i∈[t], where
t is the maximum cardinality of an attribute set (to be accumulated) and a is
randomly picked and used as the accumulator’s evaluation point.

Each user produces a set commitment C to her set of attributes A ⊂ Zp,
whose randomness is the user’s secret key. Sppsc = {S ⊂ Zp : 0 < |S| ≤ t}
defines the set of valid attributes sets and fS(X) :=

∏
s∈S

(X − s) its polynomial
representation, allowing everyone to efficiently compute GfA(a) using Gai

without
knowledge of a itself. Following the original notation, a set commitment scheme
includes a Commit algorithm that takes as input public parameters ppsc, a set of
attributes A, and the user’s secret key as randomness. It returns a commitment
C to the user’s attributes and opening information O. To obtain a credential,
users interact with the issuer in the following way: they compute a commitment
C to their attribute set and request a signature on (C,Cr0 , G). The second and
third elements in (C,Cr0 , G) are required to prove the scheme’s unforgeability.
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Fig. 6. FHS19’s credential issuing protocol instantiated with our TMS.

Improving Issuer-Hiding. Our idea is to replace the signing protocol used in
FHS19 to issue credentials with our interactive signing protocol for TMS. To that
end, looking at Fig. 3, the user will play the role of P1 while the issuer will play
the role of P0. Moreover, since only the user needs to obtain the signature, we can
remove the last step from P1. In Fig. 6, we show how to instantiate the original
issuing protocol from [43] (Fig. 2) considering a user Alice who runs TSign with
an issuer IA. For simplicity, we split TSign into TSigni for i ∈ {1, 2, 3, 4} where
each i abstracts the computation corresponding to the i-th round. As a result, we
obtain a three-round protocol when using non-interactive ZKPoK instantiations.

Unlike the original protocol, in our case Alice obtains a signature σIA+Alice,
which verifies under pk = pkIA · pkAlice. Subsequently, Alice can produce a show-
ing proof randomizing the signature-message pair with μ (using ChgRep as in
FHS19), ρ (using ConvertSig to hide pk), and giving a NIZK proof for statement
{(ρ, skAlice) : pk′ = (pkIA · pkAlice)ρ}. Such type of NIZK, whose idea we borrow
from [59], can be efficiently implemented in the ROM from Schnorr proofs. Intu-
itively, it attest that Alice generated her credential with the authority and thus
the signature is valid. Note that Alice could produce the NIZK proof without
having the TMS but that alone is useless. While this approach attest correct-
ness, it is not yet issuer-hiding because it leaks the issuer’s public key pkIA . The
user can generate an OR-Proof for the same previous statement for every key in
the issuers’ set to make it (fully) issuer-hiding. Now, thanks to the public key
unlinkability of TMS, issuers cannot link their public key with a randomized one
(this was possible in all previous works from EQS [27]).

Comparison with [59]. The recent work by Sanders and Traoré [59] provides a
strong issuer-hiding notion with different trade-offs compared to our approach.
A showing proof for [59] will be shorter when the attribute set is small and the
use of PS signatures provides richer functionalities in terms of expressiveness
(e.g., one can easily prove relations between attributes). However, their showing
is linear in the number of attributes encoded in a credential (ours is linear in the
number of issuers), and the policies that are defined by each verifier to authorize
a set of issuers are also linear in the number of attributes and the number of
issuers. Besides, we provide backwards compatibility with all of the prior work
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under the same framework, obtaining an ABC scheme with all its extensions
(some of which are not considered in [59]).

5 Threshold Case

This section describes n-party protocols where keys are distributed in a (t, n)-
threshold manner among n users P1, . . . ,Pn. Consequently, we focus on threshold
signing protocols where a subset of users P1, . . . ,Pt engage to produce a signa-
ture. We assume the key generation is done by a single honest party and only
describe the syntax and relation satisfied by the keys. Concretely, for given t
and n such that 1 ≤ t ≤ n, TKGen generates local key pairs skj := (x1

j , . . . , x
�
j),

pkj := (Ĝx1
j , . . . , Ĝx�

j ) for j ∈ [n], and global public key. The global signing key
is implicitly set to sk := (x1, . . . , x�) where each xi is shared into (xi

1, . . . , x
i
n)

by (t, n)-threshold scheme over Zp. For any set of indices, T ⊆ [n], of size t, it
holds that xi =

∑
j∈T λjx

i
j mod p where λj is a Lagrange coefficient defined as

λj :=
∏

t∈T \{j}
t

t−j mod p.

5.1 Construction 2

Our first protocol follows the structure of the two-party case; parties work in
sequence, from P1 to Pt communicating only over the public broadcast channel.
The first P1 and the last Pt do the same as P0 and P1 did in the two-party
case, respectively. However, each intermediate participant, P2, . . . ,Pt−1, must
independently take on the roles of P0 and P1, bringing forth new considerations
to both the protocol and its security analysis. We present our construction in the
preprocessing model where participaring parties join the preprocessing procedure
and then engage in the main signing protocol.

Zero-Sharing over Public Channel. In the preprocessing phase, participating
parties set up shares of zero. We do this via Pedersen’s commitments, and
thus, extend the pp by adding H ∈ G (H 
= G) so that PPGen outputs
pp = (G, Ĝ, GT,H,G, Ĝ, e). At the beginning, each party Pj picks rj ←$ Z

∗
p,

which is shared into rji so that Pj broadcasts rji, tji for all i 
= j and a com-
mitment Tii := GriHti of i = j. Commitments Tij := Grij Htij for i 
= j are
computed publicly. Thereafter, each Pj locally computes its share of zero as
wj := rj −

∑
rij and commits to it computing Wj := Gwj Hsj . It also computes

t′j :=
∑

tji. The last steps consists in broadcasting a NIKZ proof for the state-
ment πj := [wj , sj , t

′
j : Wj = Gwj Hsi ∧

∏
Tji = Gwj Ht′

j ], whose verification
confirms correctness of all shares.

Protocol Description. Without loss of generality, let T = (1, . . . , t), i.e., (P1, . . . ,
Pt) = (1, . . . , t) be the parties engaging in TSign(pp, {skj}j∈T ,M) as presented
in Fig. 7. Fully general description is recoverable by replacing λj ·xi

j with λPj
·xi

Pj

in the following. We follow the template of the two-party case, which operates
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Fig. 7. t-party protocol for TSign(pp, {skj}j∈J , M). Products are taken for i = 1 to �.

sequentially. The initial party P1 communicates with the first intermediate party
P2, and all intermediate parties behave the same until the last one, Pt−1, com-
municates with the final party Pt. The protocol proceeds backward until P1

is reached. Subsequently, P1 triggers the last round, which concludes when Pt

broadcasts the signature. All proofs and the resulting signature are received and
verified by everyone. If any party rejects, the output of the protocol is defined
as ⊥. Zero-knowledge proofs in Fig. 7 are defined as follows:

– π
(1)
j := ZKPoK

(1)
j [yj : Yj = Y

1
yj

j−1 ∧ Ŷj = Ŷ
1

yj

j−1] where Y0 = G and Ŷ0 = Ĝ at
j = 1.

– π
(2)
j := ZKPoK

(2)
j [(rj , wj , sj , {xi

j}i∈[�]) : Ij = Ij+1 · Y
rj

j−1

∏�
i=1 M

λj ·xi
j

i Gwj

∧ Wj = Gwj Hsj ∧i∈[�] X̂
i
j = Ĝxi

j ] where It+1 = 1 at j = t.

– π
(3)
1 := ZKPoK

(3)
1 [({xi

1}i∈[�], y1, w1, s1) : Z1 = (I2·
∏�

i=1 M
λ1·xi

1
i Gw1)y1∧Y y1

1 =
G ∧ W1 = Gw1Hs1 ∧i∈[�] X

i
1 = Ĝxi

1 ]
– π

(3)
j := ZKPoK

(3)
j [yj : Zj = (Zj−1 · G−rj )yj ∧ Y

yj

j = Yj−1]
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An obvious difference from the two-party case is the presence of the interme-
diate parties, P2, . . . ,Pt−1. Computing Y = G

1
y and Ŷ = Ĝ

1
y is done sequentially

from P1 to Pt, and y is defined by y =
∏t

j=1 yj . If all parties are honest, the
following holds for Z1 (recall that at Z1 all Gwj are cancelled out):

Z1 = (I2 ·
∏�

i=1 M
λ1·xi

1
i )y1 = (G

r2
y1

+
r3

y2y1
+···+ rt

yt−1···y1 ·
∏�

i=1 M
∑t

j=1 λj ·xi
j

i )y1 (1)

The reason why Z1 is computed in the second stage is the same as the two-
party case: the blinding is useful for constructing the simulator in the presence
of corrupted parties. It allows computing Z by sequentially unblinding Z1 in the
reverse order from P2 to Pt. To see that the blinding factors are canceled as
expected, observe that

Z = (Zt−1 · G−rt)yt = (· · · (Z1 · G−r2)y2 · · · )yt−1 · G−rt)yt

= (· · · (G
r2
y1

+
r3

y2y1
+···+ rt

yt−1···y1 ·
∏�

i=1 M
∑t

j=1 λj ·xi
j

i )y1G−r2)y2 · · · )yt−1 · G−rt)yt

holds. Concerning the exponent of G, we have:

(· · · ( r2
y1

+
r3

y2y1
+ · · · + rt

yt−1···y1

)y1 − r2) · · · )yt−1 − rt)yt

=(· · · ( rt

yt−1
+ rt−1)

1
yut−2

· · · ) 1
y3

+ r3)
1
y2

+ r2)
1
y1

· y1 − r2) · · · )yt−1 − rt)yt

=
(
0 + · · · + 0

)
yt = 0.

Therefore: Z = (
∏�

i=1 M
∑t

j=1 λj ·xi
j

i )
∏t

j=1 yj = (
∏�

i=1 Mxi
i )y.

Efficiency. We first note that the two-move pre-processing phase can be inter-
leaved with the interactive signing protocol from Fig. 7 for a total of 5 moves.
Besides, computation at this stage is cheap and most of the communication
involves transmitting elements in Zp. The ZKPoK’s are analogous to the two-
party case as shown in the full version ([5], Appendix A). Communication and
computation increase linearly with t. In many cases, however, the number of
signers does not grow beyond one order of magnitude so t can stay relatively
small. Furthermore, considering other applications such as multi-signatures and
threshold ring signatures, � will be small, meaning the ZKPoK’s will be efficient
and short.

Security. The key observation for correctness was given above. The strategies
to prove unforgeability and unlinkability are similar to their two-party counter-
parts. An essential difference, however, is the presence of intermediate parties to
simulate, considering a situation in which at most t−1 signers can be corrupted.

Theorem 4 (Unforgeability). Construction 2 is unforgeable against static
corruption of at most t − 1 parties if TKGen is secure, all ZKPoK’s are adaptive
zero-knowledge, simulation extractable, and the original MS is unforgeable.
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Fig. 8. Simulator for intermediate party Pj . A manages its internal state. At k = j+1,
product

∏k−1
ι=j+1 y−1

ι is defined as 1.

Proof. As the overall proof structure is the same as the two-party case, we focus
on describing the simulation of the signing oracle in the presence of corrupted
parties. We begin by considering the simplest case where there is only one honest
party among the participating parties, P1, . . . ,Pt. Depending on the position of
the player, the simulation differs as follows:

– If the initial party, P1, is the honest one, it is simulated similarly as simulating
P0 in the two-party case considering the random factor in an accumulated
form. Precisely, in the first step, it sets (Y1, Ŷ1) := (Y ′, Ŷ ′) and simulates
π
(1)
1 . In the second step, it extracts rj and yj from all other parties and

computes their accumulated random factor

r′ := r2 +
r3
y2

+ · · · + rt

yt−1 · · · y2
=

t∑
k=2

(
rk

k−1∏
ι=2

y−1
ι

)
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where product
∏k−1

ι=2 y−1
ι is defined as 1 at k = 2. (Note that yt is

unnecessary.) It then outputs Z1 = Gr′
Z ′ and simulates π

(3)
1 . Provided

that π
(1)
j and π

(2)
j for j > 1 allow knowledge extraction, Z1 distributes

the same as in the real protocol run. Indeed, as we argued for correct-
ness (see Eq. (1)), if all parties are honest, Z1 = (G

r2
y1

+
r3

y2y1
+···+ rt

yt−1···y1 ·∏�
i=1 M

∑t
j=1 λj ·xi

j

i )y1 = G
r2+

r3
y2

+···+ rt
yt−1···y2 (

∏�
i=1 M

∑t
j=1 λj ·xi

j

i )y1 = Gr′
Z ′

where y1 is implicitly determined by 1/ logG Y1. Thus, the output from
P1 is perfectly simulated modulo the simulation extractability errors of
π
(1)
2 , . . . , π

(1)
t−1 and π

(2)
t , . . . , π

(2)
2 , and zero-knowledge of π

(1)
1 and π

(3)
1 .

– If the tail party, Pt, is the honest one, the simulation is the same as that of
simulating P1 in the two-party case except for the obvious notational adjust-
ment. In the first step, it sets (Y, Ŷ ) by (Y ′, Ŷ ′), samples It uniformly from
G, and simulates π

(2)
t . In the second step, it sets Z := Z ′ and simulates

π
(3)
t . The simulation is perfect modulo the soundness errors of π

(1)
1 , . . . , π

(1)
t−1,

π
(2)
t−1, . . . , π

(2)
2 , π

(3)
1 , . . . , π

(3)
t−1, (that assure that (Yt−1, Ŷt−1) and (Y, Ŷ ) are in

the same distribution), and zero-knowledge of π
(2)
t and π

(3)
t .

– If an intermediate party, Pj , j ∈ [2, t − 1], is the honest one, the simulation
is done as shown in Fig. 8. It is a mixture of the above simulation strategies.
It works like the initial party for the right (ascending) parties in the first
and third steps, and like the tail party for the left (descending) parties in
the second step. For the same reason for above cases, the simulation in this
case is perfect modulo the soundness errors of π

(1)
1 , . . . , π

(1)
j−1, π

(2)
j−1, . . . , π

(2)
1 ,

and π
(3)
1 , . . . , π

(3)
j−1, and simulation extractability errors of π

(1)
j+1, . . . , π

(1)
t−1 and

π
(2)
t , . . . , π

(2)
j+1, and zero-knowledge of π

(1)
j , π

(2)
j , and π

(3)
j .

The above procedure relies on the proof π(1) and π(2) for simulation and extrac-
tion, which requires simulation extractability.For the simulation extractability
error (ESimExt), the soundness errors (ESnd), and zero-knowledge errors (EZK) we
obtain that the adversary’s advantage when executing q queries to the signing
oracle is given by AdvUNF

TMS,�,t,n
(1κ,A) < AdvUNF

MS,�
(1κ,A)+q((t−1)(2ESimExt+2ESnd)+

3EZK). This concludes the case where only one honest party is participating.
As the next step, we consider the case where only two parties, Pu and Pv for
u < v, are honest and all others are corrupted. The simulation is as follows:

– Simulate the right-hand honest party, Pv, in the same way as the single honest
party case as above.

– For the left-hand honest party, Pu, first follow the protocol to output Yu, Ŷu,
and π

(1)
u in the first round. Then, in the second round, pick Iu uniformly from

G and simulate π
(2)
u . Finally, in the third round, pick Zu uniformly from G

and simulate π
(3)
u .

We claim that the simulation is perfect modulo the simulations of the relevant
zero-knowledge proofs, which we ignore in the following. We follow the game
transition argument as follows:
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– Let θ0 be a joint view of corrupted parties in a protocol run.
– We first replace the right-hand honest party, Pv, with the above simulation.

Let θ1 be the joint view obtained during the protocol. Since the single honest
party case is the perfect simulation, θ0 and θ1 distributes identically.

– Next we replace the left-hand honest party, Pu, with the simulation. Let the
resulting view as θ2. We claim that θ1 and θ2 distribute identically and prove
it in the full version of this work ([5], Claim 1).

From the above, we conclude the two-honest-party case. Since the simulation is
perfect, it straightforwardly extends to the most general case where an arbitrary
number of honest parties are present in the signing process:

– Simulate the rightmost honest party as done for the single honest party case.
– For each of other left-located honest parties, follow the simulation procedure

of the left-hand honest party in the two honest party case.

To show that the simulation remains perfect, we follow the same procedure where
we first replace the rightmost party with the simulation, and then replace other
honest parties one by one in the descending order, i.e., from the right to left. In
every transition, the output from the simulated party distributes identically to
the original one. This concludes the proof of Theorem 4. ��

The following theorem can be proven similarly to the two-party case.

Theorem 5 (Public Key Unlinkability) Construction 2 is public key unlink-
able against static corruption of at most t − 1 parties if TKGen is secure, all
ZKPoK’s are secure, and the original MS is origin and public key class-hiding.

Proof. We proceed as in Theorem 3 except that we make use of the simula-
tion strategies addressed in the above proof of unforgeability (Theorem 4). We
construct a simulator that plays the role of the adversary in the unlinkability
game against MS given access to an adversary A who plays the unlinkability
game against TMS. As before, given pp as input, the simulator invokes A and
outputs C obtained from A. Then, given (pk1, pk

b
2) as input, the simulator runs

SimTKGen for pk1 with C to obtain, for sk
(j)
1 for j ∈ C and pk

(j)
1 for j ∈ T . The

simulator then invokes A with {sk(j)1 }j∈C , {pk(j)1 }j∈T , and pkb
2 as input. Again,

validity of the simulation up to this point is due to the security of TKGen.
On receiving a query from A to OTSign on pkb

2 and M , the simulator forwards
it to its oracle and returns the response to A. This part of the simulation is
perfect due to the origin-hiding property of MS.

On receiving a query from A to OTSign on pk1 and M , the simulator for-
wards it to its oracle to obtain an MS signature for M . Subsequently, it uses the
obtained signature to simulate an invocation of TSign (using Steps) on pk1 with
M as explained in the proof of Theorem 4. Validity of this part of the simulation
is due to the security of ZKPoK’s as before. If Steps’s simulation results in ⊥
(due to misbehavior of a corrupted party), it returns ⊥.

The simulator outputs whatever A outputs. Since the view of A is correctly
simulated, the output is correct whenever A wins the game against TMS. ��
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5.2 Construction 3

Our second protocol builds on more general results and thus follows a different
strategy compared to the previous constructions. Specifically, we observe that the
(non-interactive) distributed multiplication protocol proposed by Abe [1] aligns
well with the signing requirements. This protocol enables parties to compute
the product of x and y (the key operation in the MS signing algorithm) using
the Pedersen VSS scheme presented in Sect. 2.3. Abe’s protocol tolerates up to
n/2 corrupt players, resulting in a four-move interactive signing process that
eliminates the need for any zero-knowledge proofs as we describe next.

As before, we let T = (1, . . . , t), i.e., (P1, . . . ,Pt) = (1, . . . , t). Recall that
our goal is to compute Z =

∏�
i=1 Mxiy

i , Y = G
1
y and Ŷ = Ĝ

1
y . This can be

done by having each party deliver verifiable shares wjk
i := xjk

i yjk, allowing to
reconstruct the share of product xk

i yk without revealing any hidden shares. It
remains to compute the final 1

y but this becomes cumbersome given only shares
of y. Our approach is the use of an auxiliary value C (whose shares Cj are also
distributed via VSS) that can be used to compute Cy easily following Abe’s
method. In brief, any party that gets Cy ∈ Zp can compute dj := (Cy)−1Cj

from the values they hold. This translates into a share for 1
y that can restore 1

y

by Lagrange interpolation. Finally, upon obtaining {xiy}i∈[�] and 1
y , parties can

compute their partial signatures and gather them to output the full signature as
shown below (analogous for Ŷ ):

Z =
∏
j∈T

Zj =
�∏

i=1

M
∑

j∈T λjwj
i

i =
�∏

i=1

Mxiy
i = (

�∏
i=1

Mxi
i )y

Y =
∏
j∈T

Y j = G
∑

j∈T λjdj

= G
∑

j∈T (Cy)−1λjCj

= G
C

Cy = G
1
y

(2)

Successively, recall that TKGen generates local keys skj := (x1
j , . . . , x

�
j) and

pkj := (Ĝx1
j , . . . , Ĝx�

j ) for j ∈ T , and global public key pk. As before, the global
signing key is implicitly set to sk := (x1, . . . , x�) where each xi is shared into
(xi

1, . . . , x
i
n) using (t, n)-threshold scheme over Zp. This can be done with Ped-

ersen’s VSS to obtain ({xi
j}

i∈[�]
j∈T {Ĝxi

j }i∈[�]
j∈T , pk) ← TKGen(pp, �, t, n) such that for

each xi a unique random value Rxi

$←− Zp is computed from polynomials Fxi
(X)

and Dxi
(X) alongside the corresponding commitments as shown below:

VSS(xi, Rxi
)[G,H]

Fxi
,Dxi−−−−−→ ({xi

j}, {Rj
xi

})i∈[�]
j∈T [EX0

i , EX1
i , . . . , EXn

i ] (3)

As a result, every party Pj obtains ({xi
j}i∈[�]{Ĝxi

j }i∈[�], {Rj
xi

, EXj
i }j∈T

i∈[�], pk),
where each EXj

i is needed to verify the validity of the shares xi
j and Rj

xi
. The

next step is to do the same for the value Y:

VSS(y,Ry)[G,H]
Fy,Dy−−−−→ (yj , Rj

y)[EY 0, EY 1, . . . , EY n]
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Table 2. Costs of construction 2. Computation counts number of exponentiations in
the relevant groups without optimization for multi-base exponentiations.

MPC Round Computation Communication

Round I - Pj - 6t|G| + 5(� + 1)

Round II - Pk 6(� + 1)(t + 3)|G| � + 1

Round III - Pj (� + 1)|G| + |Ĝ| 2|G| + |Ĝ|
Round IV - Pk 2|G| + |Ĝ| -

For ease of exposition, we also assume a dealer who computes the VSS for y
and C. Once that all parties have shares for x and y, Abe’s protocol proceeds
with each Pj picking a t-degree random polynomial to share xjyj . The share Cji

is privately sent to party i.
The resulting non-interactive protocol TSign({skj}j∈T ,M) for M = (M1, . . . ,

M�) as run by parties Pj (1 ≤ j ≤ t) is given in Fig. 9. We denote by V Y j

the product
∏t

m=0 EY mjm

and 〈. . . 〉 is used for variables that every party can
compute locally. We observe that parties Party j, k can be selected in any way.
When Pj prepares the shares for Pk, wjk

i denotes xjk
i yjk and vjk denotes Cjkyjk.

In addition, K is the subgroup of [�] including enough number to restore Cy and
T is the subgroup of n including more than t − 1 numbers to compute the full
signature. Security of this protocol directly follows from that of the underlying
VSS and Abe’s multiplication protocol. We analyse its efficiency on Table 5.2.

5.3 Application to Delegatable Credentials

The first work on delegatable anonymous credentials from MS by Crites and
Lysyanskaya [32] was based on the following idea: a root authority (or CA)
produces a signature on Alice’s public key, who can subsequently do the same
to delegate her credential to Bob. More in detail, the CA produces a signature
σCA→Alice for a message M = pkAlice, which Alice can use to authenticate herself
by proving knowledge of skAlice. To delegate her credential, Alice signs Bob’s
public key pkBob, producing σAlice→Bob. This approach works for any regular
signature scheme. However, as observed in [32], when the signatures are MS,
they can be adapted to provide stronger privacy guarantees. In brief, if Alice
is known to Bob under a pseudonymous public key pkAlice′ , she can consistently
adapt the signatures in the delegation chain to produce σCA→Alice′ and σAlice′→Bob.
this way, Bob can prove knowledge of his secret key for a valid chain (i.e., a chain
that goes all the way back to a valid signature from the CA).

Subsequent work by Crites and Lysyanskaya [33] and Putman and Martin
[58] improved the original construction to support attributes. In all cases, it is
essential that the CA’s signature is a MS so that it can be adapted to a new
user pseudonym (even if the root key is never randomized). Because of this, all
previous work assume a single trusted issuer as the CA. Our TMS construction
can be used as a drop-in replacement for the CA’s signature to distribute trust.
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Fig. 9. Non-interactive TSign
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With this in mind, any threshold of authorized issuers could produce a signature
on the user’s public key, enabling more use cases for this primitive as in the case
where users get credentials from certain government authorities discussed in [32].

6 Experimental Evaluation

We prototyped our (interactive) constructions in Rust based on the mercurial
signature implementation from [27]. However, we replaced the BLS12-381 crate
by Filecoin’s BLS12-381 crate (blasters [49], a Rust wrapper around the blst
library [48]). Our implementation and related documentation is available in [52].
As previously mentioned, we only considered cases where � ∈ {2, 5, 10}, which
cover all known applications. We also implemented our schemes switching the
message and public key groups. However, since the ZKPoK’s require parties to
prove knowledge of their secret key when computing the multi-exponentiations
to the message part, no significant change in performance is gained. Nonethe-
less, if one relaxes the security requirement for semi-honest parties, switching
groups would improve performance at the cost of a slightly bigger signature size
(elements in G1 and G2 are of size 48 and 96 bytes, respectively).

Table 3 summarizes the execution times for the signing algorithm of our TMS
and the original MS. Verification times are the same for all variants (1.8ms for
� = 2, 3ms for � = 5 and 5ms for � = 10). We used the nightly compiler, the
Criterion library, and all the benchmarks were run on a MacBook Pro M3 with
32 GB of RAM with no extra optimizations. In all cases, the standard deviation
was below 1ms. For TMS we considered the two-party and threshold cases with
five and ten parties. As expected, the computational complexity of our interac-
tive signing process scales linearly with the number of parties. This is also the
case for communication. More concretely, the initial and final parties broadcast
two ZKPoK’s and receive 3n − 4. Similarly, intermediate parties broadcast three
messages and receive 3n − 5. Nevertheless, considering that all the applications
discussed require a few parties, and the additional features offered by TMS, we
find the overhead compared to standard MS well justified.

The most closely related work to ours is the threshold SPS from [29], but, to
the best of our knowledge, it has not been implemented. This leave us with few
options to compare the performance of TMS. One option could be to consider
the multi-signature MuSig2 from [53], but their work is incomparable to ours as
it works in a pairing-free group and focuses on other functionalities.

Table 3. Timing of signature generation for messages of size � in milliseconds.

Scheme # of Signing (ms)
Parties � = 2 � = 5 � = 10

MS [43] 1 0.3 0.4 0.5
TMS (Sect. 4) 2 3.9 6.2 10.1
TMS (Sect. 5.1) 5 13.3 19.3 29.6
TMS (Sect. 5.1) 10 28.0 40.8 60.5
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7 Conclusion

In this work, we develop interactive threshold mercurial signatures (TMS). To
showcase the power of this primitive, we presented constructions for both the
two-party and multi-party cases, discussing their instantiation under different
scenarios. Our experimental evaluation suggests that our constructions are prac-
tical when instantiated in the ROM. Most importantly, our interactive approach
allows us to generate signatures with an affine linear transformation in the public
key structure, translating into stronger privacy properties for many applications.
Something that previous works in the setting were unable to achieve.

We also explored the instantiation of TMS from standard building blocks,
finding it practical. Compared to the existing threshold structure-preserving sig-
natures for the generalized case, our constructions are very competitive in terms
of efficiency while covering other use cases.

All in all, interactive TMS offer greater flexibility than standard MS with rel-
atively little overhead. Therefore, revising existing applications of MS (and more
in general EQS) through the optics of TMS can be a very promising direction for
future work. Another is the study of alternatives that could offer straight-line
knowledge extraction to obtain concurrently secure schemes.

Acknowledgements. The authors thank the anonymous reviewers of Asiacrypt 2024
for their insightful comments and very helpful suggestions.
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Abstract. Threshold variants of the Schnorr signature scheme have
recently been at the center of attention due to their applications to cryp-
tocurrencies. However, existing constructions for threshold Schnorr sig-
natures among a set of n parties with corruption threshold tc suffer from
at least one of the following drawbacks: (i) security only against static
(i.e., non-adaptive) adversaries, (ii) cubic or higher communication cost
to generate a single signature, (iii) strong synchrony assumptions on the
network, or (iv) tc + 1 are sufficient to generate a signature, i.e., the cor-
ruption threshold of the scheme equals its reconstruction threshold. Espe-
cially (iv) turns out to be a severe limitation for many asynchronous real-
world applications where tc < n/3 is necessary to maintain liveness, but
a higher signing threshold of n − tc is needed. A recent scheme, ROAST,
proposed by Ruffing et al. (ACM CCS ‘22) addresses (iii) and (iv), but
still falls short of obtaining subcubic complexity and adaptive security.

In this work, we present HARTS, the first threshold Schnorr signature
scheme to incorporate all these desiderata. More concretely:

– HARTS is adaptively secure and remains fully secure and operational
even under asynchronous network conditions in the presence of up to
tc < n/3 malicious parties. This is optimal.

– HARTS outputs a Schnorr signature of size λ with a near-optimal
amortized communication cost of O(λn2 logn) bits and a single online
round per signature.

– HARTS is a high-threshold scheme: no fewer than tr + 1 signature
shares can be combined to yield a full signature, where any tr ∈ [tc, n−
tc) is supported. This especially covers the case tr ≥ 2n/3 > 2tc. This
is optimal.

We prove our result in a modular fashion in the algebraic group model. At
the core of our construction, we design a new simple and adaptively secure
high-threshold asynchronous verifiable secret sharing (AVSS) scheme
which may be of independent interest.
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1 Introduction

A threshold signature [45,46] scheme is a special type of digital signature scheme
that allows any set of tr +1 signers in a system of n parties to jointly generate a
compact signature σ on a message m. On the other hand, this should be infeasible
for tr or less signers. Over the last two decades, many threshold versions of the
Schnorr signature scheme [74] have been proposed [23,32,38,55,65,68,73,80–82].
Collectively, these schemes offer a great variety of trade-offs between efficiency
and robustness to adverse signer behaviour and network conditions. A recent
work, ROAST [73], combines several of these desirable features into a single
scheme which supports high reconstruction threshold (see below) and maintains
liveness even under full asynchrony. Unfortunately, the scheme is rather inef-
ficient: creating a single signature costs O(λn3 + n4) bits and O(n) rounds of
communication, where λ denotes the size of a signature.

Our Contribution. In this work, we propose HARTS, a novel threshold
Schnorr signature scheme that improves significantly over prior works. Con-
cretely, HARTS has the following properties:

• Adaptive Security: HARTS is secure against strongly adaptive corruptions.
• Asynchrony: HARTS remains fully secure and operational against up to

(optimal) tc < n/3 corrupted parties in a fully asynchronous network where
message delivery between honest parties can take longer than expected [66].

• Efficiency: HARTS allows for message-independent, offline generation of
(ephemeral) nonces with an amortized communication cost of O(λn2 log n)
bits per nonce and O(1) round complexity. Upon a signing request, it pro-
duces a Schnorr signature in a single round with a total communication cost
of O(λn2) bits, where each party only sends a single field element.

• High-threshold: HARTS is a high-threshold signature scheme satisfying the
following features: (i) a signing session results in a valid signature even in the
presence of up to tc malicious parties that try to prevent the other parties
from generating a signature, (ii) a signature cannot be created given less
than tr + 1 signature shares, where any tr ∈ [tc, n − tc) is supported. In
particular, this also covers the case tr ≥ 2n/3 > 2tc and thus offers more
flexibility. This notion of enhanced security has found many applications and
real-world significance in recent years, especially in the context of consensus
and blockchain systems [12,52,83] where signatures from a Byzantine quorum
of size n − tc ≥ 2tc + 1 > tc + 1 are needed.

We refer to Table 1 for a complete overview and comparison of our scheme’s
properties with existing schemes from the literature. A caveat is that we need to
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Table 1. Comparison table of some relevant threshold Schnorr signatures.

Scheme RobustCorrupt Reconst Adapt Commun Rounds

FROST [65] ✗ tc < n tr = tc ✗ O(λn2) 2
Sparkle [38] ✗ tc < n tr = tc ✓ O(λn2) 3
GJKR [55] (✓) tc < n/2 tr = tc ✗ O(λn3) 3 BC

ROAST [73] ✓ tc < n† tr < n − tc ✗ O(λn3 + n4) O(n)

SPRINT [18] ✓ tc < n/3 tr = tc ✗ O(λn2) 3 BC

GS23 [57] ✓ tc < n/3 tr = tc ✗ O(λn) O(1)

Our work ✓ tc < n/3 tr < n − tc ✓ O(λn2) O(1)

Robust denotes robustness, i.e., signing sessions always produce valid
signatures. The work [55] assumes a synchronous network and thus is
not robust in our sense. The protocols [38,65] are not robust in syn-
chrony, as a malicious signer in the signing set can cause the session to
abort or the final signature to be invalid, and do not necessarily ter-
minate in full asynchrony (we refer to [73] for a discussion on that).
However, we note that both protocols still remain unforgeable in asyn-
chrony. Corrupt denotes corruption threshold. † ROAST has a weaker
notion of robustness and does not guarantee signature generation for
tc ≥ n/3. Reconst denotes reconstruction threshold. Adapt denotes
adaptive security. Commun denotes (amortized) communication cost
per signature in bits. Rounds denotes number of rounds per signature.
The works [18,55] assume an (atomic) broadcast channel BC that par-
ties can access: the former employs a blockchain for this, while the latter
does not specify how to implement it. The work [57] and ours can gen-
erate many batches of O(n) ephemeral nonces in a message-independent
offline phase with round complexity O(1) per batch and a single message-
dependent online round per signature upon a signing request.

make minimal use of secure erasures for our security proof. The reason is that
without secure erasures, we would need to explain simulated zero-knowledge
arguments by revealing appropriate random coins. We leave it as an interesting
problem for future work to analyze if the arguments we employ are explainable
(cf. Remark 6 for more details). In that case, our protocol would work without
assuming erasures. We emphasize, however, that secure erasures do not trivialize
the task of achieving adaptive security at all [27,34,35,49].

A Modular Approach. We build HARTS by following a modular approach,
which is summarized in Fig. 1 and outlined in more detail below.

• Threshold Schnorr Signatures from ADKG. Building upon the tech-
nique of Gennaro et al. [54], we construct a generic high-threshold and robust
threshold Schnorr signature scheme. As a building block, we use a (packed)
high-threshold asynchronous distributed key generation (ADKG) protocol.
We prove unforgeability of this scheme against an adaptive adversary in the
algebraic group model (AGM) [50] based on the security of the (packed)
ADKG protocol and the one-more discrete logarithm assumption.

• Packed ADKG from AVSS. We give a generic construction (cf. Fig. 2) for
an efficient packed high-threshold ADKG from a high-threshold asynchronous



HARTS Threshold Schnorr Signatures 107

Fig. 1. Overview of our framework to construct high-threshold and robust threshold
Schnorr signatures.

verifiable secret sharing (AVSS) scheme using the technique of superinvertible
matrices [60]. We prove the adaptive security of this construction by reduction
to the security of the AVSS scheme and the underlying consensus primitives.

• New High-Threshold AVSS. We design a simple high-threshold AVSS
scheme and give an adaptive security proof. This gives the first pairing-
free, adaptively secure AVSS scheme with quadratic communication cost
(cf. Table 2 for a comparison with existing schemes). With our new AVSS
scheme and building blocks from the literature, we instantiate our framework,
yielding a threshold Schnorr signature scheme with (amortized) communica-
tion cost of O(λn2 log n) bits per signature.

1.1 Technical Overview

In the following, we provide a technical overview of our work.

Starting Point: Robust Threshold Schnorr Signatures. Our starting point
is the construction for robust threshold Schnorr signatures by Gennaro et al. [54].
First, we recall the (single-party) Schnorr signature scheme. For this, let G = 〈g〉
be a group of prime order p with generator g. The secret key is a random element
sk←$Zp and the public key is pk := gsk. To sign a message m, the party samples
a random element r ←$Zp and computes the signature on m as σ := (R, s)
where s = H(pk, R,m) · sk+ r ∈ Zp and R = gr. Here, H : {0, 1}∗ → Zp is a hash
function (modeled as a random oracle). Verification of the signature (R, s) is done
by checking gs = R · pkc where c := H(pk, R,m). Now let us switch to the multi-
party setting in which n parties P1, . . . , Pn want to jointly create a signature
σ on m. For convenience we assume that parties have already established a
(tr, n)-threshold key setup, e.g., by running a distributed key generation (DKG)
protocol. Concretely, this means that each party Pi has a share ski of the secret
key sk such that any set of tr + 1 shares uniquely determine the secret key and
the public key shares pki := gski are known to all parties. In order to transform
the Schnorr signature scheme into a (tr, n)-threshold signature scheme, Gennaro
et al.’s insight was to run a DKG protocol to generate shares ri of a secret
nonce r for parties along with associated public shares Ri = gri and R = gr.
To sign a message m, each party Pi computes its share of the signature on m
as σi := (Ri, si) where si = H(pk, R,m) · ski + ri. Verification of a signature
share σi is done with respect to the public key share pki and the public nonce
share Ri. It can be seen that any tr + 1 valid signature shares recover the full
signature σ = (R, s). However, a major drawback of this approach is its efficiency:
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parties need to run a DKG protocol each time they want to sign a new message.
Using a state-of-the-art asynchronous DKG protocol in terms of efficiency [2,42],
this yields a communication cost of O(λn3) bits per signature. On the other
hand, assuming nonce shares have already been generated, each party can locally
compute its signature share and send it to all other parties, which costs only
O(λn2) bits of communication and a single asynchronous round.

Regaining Efficiency: Superinvertible Matrices. Introduced by Hirt and
Nielsen [60] in the context of multi-party computation (MPC) protocols, we use
the technique of superinvertible (SI) matrices to construct an (�, tc, tr, n)-packed
ADKG protocol for more efficient multi-nonce generation. Informally, such a
protocol executed by n parties has the following property in the presence of up to
tc malicious parties: it outputs � independent keys distributed among the parties
such that each of them can be reconstructed independently from the others with
reconstruction threshold tr. Our construction has the following parameters: it
generates � = tc +1 keys with (arbitrary) reconstruction threshold tr < n− tc in
the presence of tc < n/3 malicious parties. Our construction (cf. Fig. 2) follows
the usual flow of an ADKG protocol with some tweaks in the parameters in
order to apply an SI matrix at the end. We briefly elaborate on this. Each party
Pi samples a random element si ←$Zp and shares it via an (tc, tr, n)-threshold
asynchronous verifiable secret sharing (AVSS) scheme where si lies on some
polynomial fi ∈ Zp[X] of degree tr. Then, parties agree on a set I ⊂ [n] of
n − tc dealers whose AVSS sharings completed successfully using a consensus
tool. Say I = {1, . . . , n − tc} so that after this phase, each party Pi has shares
f1(i), . . . , fn−tc

(i). Instead of just summing up these shares, as is done usually
in an ADKG, parties take different linear combinations given by the rows of
an (�, n − tc)-dimensional SI matrix SI to obtain � new shares r1(i), . . . , r�(i).
The describing property of an SI matrix now tells us that if at least � input
secrets are independent and uniformly random, then the � output secrets are
also guaranteed to be independent and uniformly random. Since there are at
most tc malicious parties, we know that |I| − tc ≥ tc + 1 of the dealers specified
by the set I are honest. Thus, we can set � := tc +1. Similar constructions were
recently introduced in [18,57,77] for the same purpose of efficient multi-nonce
generation. These constructions, however, employ low-threshold AVSS schemes
with tr = tc < n/3. To the best of our knowledge, the only existing high-
threshold AVSS schemes are [2,5,44,64], each of them with its own limitations.
Kokoris-Kogias et al.’s AVSS [64] has cubic communication cost, resulting in
prohibitive Ω(λn4) communication to share tc + 1 nonces. Alhaddad et al. [5]
provide a generic construction for AVSS with quadratic communication cost, but
lacking a proof of adaptive security. Das et al.’s AVSS [44] is based on publicly
verifiable secret sharing (PVSS) and has quadratic communication cost, but also
lacking a proof of adaptive security1. Abraham et al.’s AVSS [2] relies on the
KZG polynomial commitment scheme [62] that requires pairings (and trusted
setup) which is not suitable for Schnorr signatures.

1 Crucially, no adaptively secure PVSS for field elements is known to date.
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HAVSS: New AVSS Scheme to the Rescue. We take insights from both
protocols, Bingo [2] and HAVEN [5], and combine certain aspects to obtain a
simple high-threshold AVSS scheme called HAVSS. On a high level, our AVSS
scheme works as follows. The designated dealer Pd holds a secret s ∈ Zp as
input that it wants to share among all parties. For this, it samples a bivariate
polynomial S ∈ Zp[X,Y ] of degree tr in X and tc in Y such that S(0, 0) = s.
The goal is to let each party Pi receive the column polynomial Ci(Y ) := S(i, Y )
assigned to it so that it can recover its share si := S(i, 0) ∈ Zp of the secret s.
Note that the shares si lie on a polynomial S(X, 0) ∈ Zp[X] of degree tr. We
follow a simple two-step approach which results in an (n×n)-dimensional matrix
whose entry at coordinates a, b ∈ [n] is S(a, b). First, the dealer reliably broad-
casts Pedersen commitments {com1, . . . , comtr+1} on the column polynomials
C1(Y ), . . . , Ctr+1(Y ), from which parties can locally (by interpolation) derive the
commitments {com1, . . . , comn} to all n column polynomials C1(Y ), . . . , Cn(Y ).
Following this, Pd sends each party Pi shares {C1(i), C2(i), . . . , Cn(i)} on each
other party’s assigned column polynomial, along with proofs that the openings
are correct. This can be thought of as sending to Pi the evaluations along the
row Ri(X) := S(X, i). Whenever a party Pi receives a row with correct opening
proofs, it sends every other party Pj the share Cj(i) (along with the proof sent
by the dealer) on its column polynomial Cj(Y ). In this way, it is guaranteed that
each party Pi obtains at least tc +1 shares on its column polynomial Ci(Y ) and
can recover its share si = Ci(0) = S(i, 0) of the dealer’s initial secret s. To guar-
antee unanimous termination, we employ a Bracha-style termination gadget [22]
in which parties send their approval to all parties upon receiving a correct row,
and echo other parties’ approvals upon seeing a total of n− tc approvals. HAVSS
has a near-optimal communication cost of O(λn2 log n) per sharing (cf. Table 2).
In combination with the aforementioned technique of superinvertible matrices,
we are able to construct a packed ADKG protocol that outputs � = tc+1 ∈ O(n)
nonces with O(λn3 log n) bits and O(1) rounds of communication. As a result, we
achieve an amortized communication cost of O(λn2 log n) per generated nonce
and Schnorr signature.

Handling Adaptive Corruptions. To prove adaptive security, our starting
point is the recent work of Bacho and Loss [8] who introduced a new security
notion for DKG protocols called oracle-aided simulatability. Loosely speaking,
this notion states the existence of an efficient simulator Sim that on input k
group elements ξ1, . . . , ξk ∈ G can simulate an execution of the DKG protocol
under adaptive corruptions while having (k − 1)-time access to a discrete loga-
rithm oracle DLG,g. With this notion of security for DKG, they show a reduction
from the one-more discrete logarithm (OMDL) assumption [15] of degree k to
the unforgeability of the threshold BLS signature scheme against an adaptive
adversary. Their reduction internally runs Sim (on input the OMDL challenge
ξ1, . . . , ξk ∈ G) in order to simulate an execution of the DKG protocol as part
of the broader simulation of the unforgeability experiment. To emulate the ora-
cle DLG,g for the simulator Sim, the reduction simply forwards any query Sim
makes to its own oracle. We want to employ a similar strategy to simulate the
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Table 2. Comparison table of some relevant AVSS schemes.

Scheme AdaptiveHigh-ThreshPairing-FreeNo Trust Commun

Backes et al. [11] ✗ ✗ ✗ ✗ O(λn2)

hbACSS [84] ✗ ✗ ✓ ✓ O(λn2 logn)

GoAVSS [78] ✗ ✗ ✓ ✓ O(λn2)

Cachin et al. [25] ✗ (✓)� ✓ ✓ O(λn3)

Das et al. [44] ✗ ✓ ✓ ✓ O(λn2)

HAVEN [5] ✗ ✓ ✓ ✓ O(λn2 logn)

HAVEN++ [4] (concurrent) ✗ ✓ ✓ ✓ O(λn2 logn)

Bingo [2] ✓ ✓ ✗ ✗ O(λn2)

Kokoris et al. [64] ✓ ✓ ✓ ✓ O(λn3)

HAVSS (our work) ✓ ✓ ✓ ✓ O(λn2 logn)

Adaptive denotes adaptive security. High-Thresh denotes support for high
reconstruction threshold. �The work [25] only achieves suboptimal corrup-
tion threshold tc < n/4 (in asynchrony). Pairing-Free denotes suitability for
pairing-free groups. No Trust denotes no trusted setup other than a uniform
reference string (URS). The works [2,11] rely on the structured powers-of-tau
setup [72]. Commun denotes communication cost per sharing in bits.

executions for multi-nonce and key generation. However, we encounter several
challenges when trying to adopt this strategy naively. For the remainder of this
overview, we assume for simplicity that parties employ a regular single-output
ADKG protocol for nonce generation instead of a packed one.

Challenges in Our Context. Very recently, Crites et al. [38] gave an adaptive
security proof for their threshold Schnorr signature scheme under the algebraic
OMDL assumption. This assumption is widely used in the context of multi-
party Schnorr signatures [16,70]. So far, the scheme by Crites et al. is the only
threshold Schnorr signature with adaptive security. In their proof, corruption
queries are simulated using the oracle DLG,g and signing queries are simulated
using honest-verifier zero-knowledge and by programming the random oracle
suitably. Omitting details, their simulator essentially samples random signature
shares σi ←$Zp for honest parties and retroactively defines the public nonce
shares Ri by suitably programming the random oracle. To make this strategy
work in our context, the (packed) ADKG protocol NDKG for nonce generation
would have to be fully secret in the sense of Gennaro et al. [54], i.e., there
exists an efficient simulator that on input a group element R ∈ G can simulate
an execution of NDKG that terminates with R as public nonce. While there
are constructions [1,61] relying on the single-inconsistent player (SIP) technique
that achieve this kind of property, these fail to work in our setting. On a high
level, the SIP technique allows to reveal the internal state of all but one single
party which is chosen randomly at the beginning of the protocol execution. For
this to work, the sharing of the single-inconsistent party has to be included in
the final transcript of the DKG. However, in an asynchronous DKG, there is
only the guarantee that the sharings of at most n − tc parties are included2, of

2 This feature is specific to the asynchronous network model and necessary to maintain
liveness of protocols. For more details, we refer to [3,44].
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which tc may be corrupted. Therefore, the probability that the sharing of the
single-inconsistent party is included is bounded by (n − 2tc)/(n − tc) ≤ 1/2.
Multiple applications of an ADKG would therefore lead to a negligible success
probability of the reduction. Therefore, to deal with adaptive corruptions in our
setting, a new approach is required.

Combining Different Proof Strategies. In their work, Bellare et al. [16]
provide a security reduction from the OMDL assumption to the security of the
FROST1 and FROST2 schemes under a static adversary. Their reduction uses
the discrete logarithm oracle DLG,g to answer certain signing queries. Essentially,
the values for the nonce Rj , the challenge cj , and the public key shares pki = gski

are fixed and determine the signature shares σj,i by the relation gσj,i = Rj ·pkcj

i .
We observe that a similar strategy could be useful for our scheme, in particular in
combination with previously explained oracle-aided simulatability. And indeed,
combining these two proof strategies [8,16] (almost!) succeeds: using oracle-aided
simulators to simulate executions of IDKG and NDKG along with corruption
queries3, and at the same time using the oracle DLG,g separately to answer
signing queries. However, trying to employ this approach as it currently stands,
we exceed the number of allowed queries to the oracle DLG,g prescribed by the
OMDL challenge: assume the reduction simulating the unforgeability game uses
DLG,g on input gσj,i to answer a signing query for party Pi and nonce Rj . If
Pi gets corrupted later on, the simulators for IDKG and the j-th execution of
NDKG that generated Rj might make discrete logarithm queries such that they
can internally compute the secret key share ski and the secret nonce share rj,i,
respectively. Three discrete logarithm oracle queries have been made to return
the values σj,i, ski, rj,i, although by the identity σj,i = cj · ski + rj,i two queries
would suffice. To resolve this issue we have to (i) adapt the original definition
of oracle-aided simulatability delicately and (ii) cleverly design the reduction to
limit the number of its queries to DLG,g.

1.2 More on Related Work

We discuss related work on threshold signatures and DKG, and give a brief
overview on other asynchronous threshold Schnorr signatures. In the full version,
we discuss related work on AVSS and further threshold Schnorr signatures with
a focus on robustness, high-threshold, and efficiency. Additionally, in Sect. 6.3,
we provide a detailed comparison to previous (and concurrent) AVSS schemes
relevant to our work.

Threshold Signatures. Most of the threshold signature schemes [14,39,63,
69] focus on threshold DSA/ECDSA and threshold Schnorr [28,37,38,40,53,
65], mainly due to their significance in blockchain systems and cryptocurrency
wallets. Among the threshold Schnorr signatures, only the work [38] provides
adaptive security. Further, several protocols for threshold RSA signatures were
proposed [6,63,76] from which only [6] provides adaptive security. In the domain

3 Here, IDKG denotes the initial ADKG protocol employed for key generation.
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of pairing-based threshold signatures, there are several constructions [21,36,41,
67] from which [21,41,67] provide adaptive security. A recent work [10] studies
rewinding-free, adaptively secure threshold signatures without pairings. For a
comprehensive survey on threshold signatures, we further refer to [75].

Asynchronous Threshold Schnorr Signatures. In recent years, several con-
structions for robust threshold Schnorr signatures have been proposed [18,57,73].
Closest to our work are the constructions in [18,57], which follow the same high-
level idea of running an ADKG protocol in combination with a superinvertible
matrix for nonce generation. However, these protocols only provide low-threshold
reconstruction with tr = tc < n/3. Essentially, the reason for this is that both
rely on a low-threshold AVSS, which cannot be used in the high-threshold setting
without sacrificing security. Further, the protocol in [77] uses online error correc-
tion [31] which inherently requires tr < n/3. For security reasons, the protocol
in [18] only allows parties to sign batches of tc +1 messages (and not individual
messages). On the other hand, ROAST [73] supports high-threshold reconstruc-
tion and works fundamentally different. Essentially, it transforms FROST [65]
into a protocol for robust and asynchronous threshold signatures by running
n − tc +1 concurrent signing sessions of FROST in such a clever way that guar-
antees successful termination of at least one of these sessions. In particular, it
inherits the high-threshold property of FROST. Finally, we stress that none of
the works in this category achieve adaptive security.

Distributed Key Generation. Most of the DKG protocols assume an underly-
ing synchronous network [7,29,55,58,61,65,79]. Among these protocols, only the
ones in [7,29,61] provide adaptive security. On the other hand, DKGs in the asyn-
chronous setting have only recently attracted attention [2,3,42,44,64]. Among
these, only the works of Abraham et al. [2] and Kokoris-Kogias et al. [64] pro-
vide adaptive security. The protocols in [2,42,64] provide high-threshold recon-
struction of the key with optimal resilience threshold, but we note that [64] is
substantially less efficient than the other two protocols [2,42]. The asynchronous
DKG protocols have cubic communication cost except the one in [64] which has
quartic communication cost.

Concurrent Work. Concurrent with our work, another work on AVSS has
appeared [4]. While their construction is very similar to ours and has the same
properties as HAVEN (cf. Table 2), the authors do not consider adaptive security
and especially not in the context of adaptive security for asynchronous DKG
protocols or threshold Schnorr signatures.

1.3 Outline of the Paper

The paper is organized as follows. In Sect. 2, we define relevant preliminaries.
In Sect. 3, we define the model of syntax and security of a robust threshold
signature scheme relevant for this work. In Sect. 4, we give a generic construction
for a high-threshold, robust, and efficient threshold Schnorr signature scheme and
prove it adaptively secure in the AGM. In Sect. 5, we give a generic construction
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Fig. 2. Overview of our protocol to generate threshold Schnorr signatures.

for an efficient packed ADKG protocol and prove it adaptively secure from its
building blocks. In Sect. 6, we present our new high-threshold AVSS scheme and
prove it adaptively secure. In Sect. 7, we instantiate our framework to obtain
HARTS, and evaluate the communication and round complexity of it. In the full
version, we discuss further related work on AVSS schemes and threshold Schnorr
signatures. Also, we cover there additional preliminaries and definitions relevant
for the paper. Due to space constraints, we defer security proofs and additional
figures to the full version.

2 Preliminaries and Model

In this section, we fix notation and preliminaries for our paper.

General Notation. Let λ denote the security parameter. Throughout the
paper, we assume that global parameters par := (G, p, g) implicitly param-
eterized by λ are fixed and known to all parties. Here, G is a cyclic group
of prime order p generated by g. For two integers a ≤ b, we define the set
[a, b] := {a, . . . , b}; if a = 1, we denote this set by [b], and if a = 0, we denote
it by �b�. For an element x in a finite set S, we write x←$ S to denote that x
was sampled from S uniformly at random. All our algorithms may be random-
ized, unless stated otherwise. We use the acronym PPT to mean probabilistic
polynomial-time. By x ← A(x1, . . . , xn) we denote running algorithm A on inputs
(x1, . . . , xn) and uniformly random coins and then assigning its output to x.
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Adversarial and Network Model. We consider a complete network of n
parties P1, . . . , Pn (modeled as PPT machines) connected by bilateral private
and authenticated channels4. We consider an asynchronous network model, i.e.,
any message can be delayed arbitrarily under the constraint that messages sent
between correct parties must eventually be delivered. We consider an adversary
who can corrupt up to tc < n/3 parties maliciously and may cause them to
deviate from the protocol arbitrarily. We refer to tc as the corruption threshold
and to tr ∈ [tc, n − tc) as the reconstruction threshold. Further, the adversary is
strongly adaptive and can choose its corruptions at any time during the protocol
execution. When it corrupts a party, it can delete or substitute any undelivered
messages that this party sent while being correct. We refer to the correct parties
as honest and to the malicious parties as corrupt.

Public Key Infrastructure. As common in this line of work on distributed
cryptographic protocols [2,18], we assume that parties have established a bulletin
board public key infrastructure (PKI) before the protocol execution. Concretely,
this means that every party Pi has a verification-signing key pair (vki, siki) for
a digital signature scheme, where vki is known to all parties but siki is known
only to Pi. For this, we assume that each party generates its keys locally (where
corrupt parties may choose their keys arbitrarily) and then makes its verification
key known to everybody using a public bulletin board. These keys are used to
provide authentication. In particular, we assume that parties sign each message
before they send it to other parties.

Algebraic Group Model. In the algebraic group model (AGM) [50], all algo-
rithms are treated as algebraic: whenever an algorithm outputs a group element,
it must also provide a representation of that element with respect to all of the
inputs the algorithm has received so far. Formally, an algorithm A is called alge-
braic (over a group G) if for all group elements h ∈ G that A outputs, it addi-
tionally outputs a vector zζ = (z1, . . . , zm) of integers such that h =

∏
i∈[m] g

zi
i ,

where ζ = (g1, . . . , gm) ∈ G
m is the list of group elements A has received so far.

Computational Assumptions. We rely on the standard one-more discrete log-
arithm (OMDL) assumption [15] for our security proofs. Throughout the paper,
we denote by DLG,g an oracle that on input ξ := gz ∈ G returns the discrete
logarithm z ∈ Zp of ξ to base g.

Definition 1 (OMDL Assumption). Let G be a cyclic group of prime order
p generated by g and DLG,g as defined above. For an algorithm A and k ∈ N, we
consider the following experiment:

– Offline Phase. Sample (z1, . . . , zk)←$Z
k
p and set ξi := gzi ∈ G for all i ∈ [k].

– Online Phase. Run A on input (G, p, g) and (ξ1, . . . , ξk). Here, A gets access
to the oracle DLG,g.

4 When implementing those channels, one has to make sure that they are secure in
the presence of adaptive corruptions. For efficient implementations of these, we refer
to the early works [13,71].
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– Winning Condition. Let (z′
1, . . . , z

′
k) denote the output of A. Return 1 if (i)

z′
i = zi for all i ∈ [k], and (ii) DLG,g was queried at most k − 1 times during
the online phase. Otherwise, return 0.

We say that the one-more discrete logarithm assumption of degree k holds relative
to (G, p, g) if for any PPT algorithm A, the probability that the above experiment
outputs 1 is negligible in λ. Further, the discrete logarithm assumption (DLOG)
is the one-more discrete logarithm assumption of degree k = 1.

2.1 Cryptographic and Consensus Primitives

In this section, we formally define syntax and security notions of the crypto-
graphic and consensus primitives used in the paper.

Multivalued Validated Byzantine Agreement. A multivalued validated
Byzantine agreement (MVBA) protocol [26] allows a set of parties, each holding
an input vi ∈ V from a value set V with |V | ≥ 2, to agree on a common output
value v′ ∈ V satisfying a predefined external validity function Val : V → {0, 1}.
A value v ∈ V is said to be externally valid if Val(v) = 1. We formally define an
MVBA protocol as follows.

Definition 2 (MVBA Protocol). Let Π be a protocol executed by n parties
P1, . . . , Pn, where each party Pi holds vi ∈ V as input, and let Val : V → {0, 1} be
an external validity function. We say that Π is a (tc, n)-secure MVBA protocol if
whenever at most tc parties are corrupted the following properties hold. (i) External
Validity: If every honest party’s input is externally valid, then every honest party
Pi that outputs a value outputs an externally valid value v′

i. (ii) Consistency: If
every honest party’s input is externally valid, then all honest parties output the
same value v′. (iii) Termination: If every honest party’s input is externally valid,
then every honest party Pi terminates with an output value v′

i.

Reliable Broadcast. A reliable broadcast (RBC) protocol [22] allows a des-
ignated party Ps (called sender) to consistently distribute a message among all
parties. In contrast to synchronous broadcast, reliable broadcast does not require
full termination. We formally define an RBC protocol as follows.

Definition 3 (RBC Protocol). Let Π be a protocol executed by n parties
P1, . . . , Pn, where a designated sender Ps holds v ∈ V as input. We say that
Π is a (tc, n)-secure RBC protocol if whenever at most tc parties are corrupted
the following properties hold. (i) Validity: If the sender Ps is honest and holds v
as input, then every honest party Pi outputs v′

i = v. (ii) Consistency: All honest
parties that output a value output the same value v′. (iii) Totality: If an honest
party outputs a value, then every honest party eventually outputs a value.

Superinvertible Matrices. A superinvertible (SI) matrix of dimension (�, k)
with k ≥ � [60] is a matrix A ∈ Z

�×k
p over some field Zp with the property that

each of its (� × �)-dimensional square submatrix AI is invertible. Large classes
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of superinvertible matrices are given in [18,57]. Looking ahead, each party Pi

applies the SI matrix A of dimension (�, k) := (n − 2tc, n − tc) to its k secret
shares f1(i), . . . , fk(i) that it received from different completed AVSS sharings.
The result is � new secret shares r1(i), . . . , r�(i) with the property that if at least
� input secrets are independent and uniformly random, then the � output secrets
are also guaranteed to be independent and uniformly random.

Asynchronous Verifiable Secret Sharing. An asynchronous verifiable secret
sharing (AVSS) scheme [17,30] consists of two protocols Share and Rec which
allow a designated dealer to share a secret s over some field Zp among all par-
ties using Shamir secret sharing. Here, the threshold tr ∈ [tc, n − tc) specifies
the degree of the shared polynomial f . In our definition of an AVSS scheme,
we require a reconstruction protocol in which parties reconstruct exponentiated
evaluations of the polynomial f at the points {0, 1, . . . , n}. We formally define
an AVSS scheme over the group (G, p, g) as follows.

Definition 4 ((tc, tr, n)-Threshold AVSS Scheme). Let Π = (Share,Rec) be
a pair of protocols executed by n parties P1, . . . , Pn, where a designated dealer Pd

holds a secret s ∈ Zp as input. Upon completion of Share parties only maintain a
state and do not output anything. Parties can then call Rec with their state and
output a tuple of n + 1 elements in G and an element in Zp. We say that Π is
a complete (tc, tr, n)-threshold AVSS scheme if whenever at most tc parties are
corrupted the following properties hold:

– Correctness. Once the first honest party completes Share, there exists a unique
polynomial f ∈ Zp[X] of degree tr such that every honest party Pi upon com-
pleting Rec outputs an element f(i) ∈ Zp and the same tuple (S, S1, . . . , Sn)
of elements in G such that S = gf(0) and Sj = gf(j) for all j ∈ [n]. Further,
if Pd is honest, then it holds that f(0) = s.

– Termination. If Pd is honest and all honest parties call Share, then all honest
parties complete Share. Further, if all honest parties call Share and an honest
party completes Share, then all honest parties complete Share. Finally, if all
honest parties call Rec, then all honest parties complete Rec.

Hereafter, we write AVSS := (Share,Rec) to denote a generic complete (tc, tr, n)-
threshold asynchronous verifiable secret sharing scheme. If AVSS allows for an
arbitrary threshold tr ∈ [tc, n − tc), we call it a high-threshold AVSS scheme.

Remark 1. In this definition, we leave out a notion of secrecy and postpone it
to Sect. 6 instead. We do this for the following reasons. (i) This allows us to
provide the reader with a clearer picture of our work and not overload him
with several new technical definitions right at the beginning. (ii) Our secrecy
definition for an AVSS scheme is strongly motivated by the one we introduce for
an ADKG protocol in the next section. As we organize this work according to
a top-down structure, it makes more sense to introduce the secrecy notion after
that.

Non-interactive Zero-Knowledge Proofs. In our AVSS construction, we use
non-interactive zero-knowledge (NIZK) proofs [20]. Informally, a non-interactive
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proof system for an NP relation R with respect to a random oracle H is a pair
of PPT algorithms PS = (PProve,PVer), where PProveH takes a statement x and
a witness w with (x,w) ∈ R as input and outputs a proof π, and PVerH takes
the statement x and the proof π as input and decides to accept or reject. Com-
pleteness requires that honestly computed proofs for (x,w) ∈ R are accepted,
whereas soundness requires that no malicious prover can find an accepting proof
for a false statement x, i.e., a statement such that (x,w) /∈ R for all w. Fur-
ther, zero-knowledge requires that there is a simulator that can simulate proofs
without knowing w by programming the random oracle H. Finally, the system
is a proof of knowledge, if there is an extractor that can extract the witness
from any proof provided by the adversary. To do so, the extractor is allowed to
observe the random oracle queries made by the adversary. Our definitions hence
model online-extraction, which is reasonable in the algebraic group model. We
postpone formal definitions to the full version.

3 Packed Asynchronous DKG and Threshold Signatures

In this section, we introduce the notion of a packed asynchronous distributed key
generation (ADKG) protocol and define our model of syntax and security of a
threshold signature scheme.

3.1 Packed Asynchronous DKG

In a regular distributed key generation (DKG) protocol, a set of mutually dis-
trusting parties securely establish a public-secret key pair without relying on
a trusted dealer. At the end of the protocol, the public key is output in the
clear, whereas the secret key is kept as a virtual secret distributed among all
parties. This shared secret key can then be used for threshold cryptosystems,
such as threshold signatures or threshold encryption, without ever being explic-
itly reconstructed. When the underlying network is asynchronous, we call it
an asynchronous DKG (ADKG). In the following, we introduce and define the
notion of an (�, tc, tr, n)-packed ADKG protocol which allows n parties out of
which at most tc are corrupted to generate � ≥ 1 independent shared keys each
with reconstruction threshold tr ∈ [tc, n − tc) in a way that is potentially more
efficient than just executing � instances of an ADKG protocol in parallel. The
basic idea is to realize the same functionality as if � independent instances of
an ADKG protocol were run in parallel. For the definition, we use the group G

specified by par = (G, p, g). Hereafter, fix the parameter δa := tr + 1 − tc. The
subscript stands for asynchrony, since the two thresholds tr and tc coincide in
synchrony.

Definition 5 ((�, tc, tr, n)-Packed ADKG Protocol). Let Π be a protocol
executed by n parties P1, . . . , Pn, where for each j ∈ [�], Pi outputs a secret key
share rj,i, a vector of public key shares (Rj,1, . . . , Rj,n), and a public key Rj.
We say that Π is an oracle-aided secure (�, tc, tr, n)-packed ADKG protocol if
whenever at most tc parties are corrupted the following properties hold:
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– Consistency. For each j ∈ [�], all honest parties output the same public key
Rj = gxj and the same vector of public key shares (Rj,1, . . . , Rj,n).

– Correctness. For each j ∈ [�], there exists a unique polynomial fj ∈ Zp[X]
of degree tr such that for all i ∈ [n], rj,i = fj(i) and Rj,i = grj,i . Moreover,
Rj = gfj(0).

– Termination. If all honest parties participate in the protocol execution, then
all honest parties terminate with an output.

– Oracle-aided Simulatability. There exists k ∈ poly(λ) with k ≥ �(tr + 1) such
that for any PPT algorithm A, there exists an algebraic PPT simulator Sim
that on input ξ := (gz1 , . . . , gzk) ∈ G

k makes k′ := k − �δa queries to the
oracle DLG,g and such that:

• Syntax. Sim simulates the role of the honest parties in an execution of Π.
At the end of the simulation, Sim outputs the public keys R1, . . . , R� and
public key shares (Rj,1, . . . , Rj,n) for all j ∈ [�].

• Queries upon Corruption. Denote by C ⊂ [n] the dynamic set of corrupted
parties. Once the first honest party outputs (Rj,1, . . . , Rj,n) for all j ∈ [�],
the following holds. Upon corruption query i ∈ [n] \ C, Sim invokes DLG,g

on input Rj,i = grj,i for all j ∈ [�] among (possibly) other input elements.
Conversely, it does not query Rj,i for any j ∈ [�] before that corruption.

• Query Independence. Let C be as before and H := [n] \ C. Assume that
|C| = tc after a simulation of Π. For i ∈ [k − �δa], denote by gi ∈ G the i-
th query to DLG,g and let (âi, ai,1, . . . , ai,k) be the corresponding algebraic
vector, i.e., gi = gâi · ξai,1

1 · . . . · ξai,k

k . Further, denote by (b̂i, bi,1, . . . , bi,k)
the algebraic vector of the public key share Ri for all i = (j, i) ∈ [�] × H.
Then for all I := I� ⊂ H� with |I| = δa, the following matrix is invertible
over Zp

L(I, C) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,1 a1,2 · · · a1,k

...
...

...
ak−�δa,1 ak−�δa,2 · · · ak−�δa,k

bi1,1 bi1,2 · · · bi1,k

...
...

...
bi�δa ,1 bi�δa ,2 · · · bi�δa ,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
k×k
p ,

where the indices i(·) range over the set
⋃

j∈[�]({j} × I). Whenever Sim

completes a simulation of an execution of Π, we call L(I, C) the simu-
latability matrix of Sim (for this particular simulation and the set I).
Further, we call k a simulatability factor of Π.

• Bad Event. There is an event Bad, such that for any PPT algorithm A,
the probability of Bad in an execution of Π with adversary A is negligible.

• Indistinguishability. Denote by viewA,Π the view of A in an execution of
Π. Denote by viewA,ξ,Sim the view of A when interacting with Sim on input
ξ. Then, the distributions (ξ, viewA,Π) and (ξ, viewA,ξ,Sim) where ξ ←$G

k

and both distributions conditioned on ¬Bad are statistically close.
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For � = 1 (when the packing is trivial), we simply call Π a (tc, tr, n)-threshold
ADKG protocol (over (G, p, g)). Further, we call � ≥ 1 the packing parameter.

Remark 2. In our above definition of oracle-aided security, we do not require the
simulator Sim to terminate once it outputs the public keys, but only after it has
made the required k−�δa calls to the oracle DLG,g (conditioned on the simulation
of Π being completed). The reason for this being that adaptive corruptions can
happen even after termination of the DKG protocol, e.g., when the DKG is part
of a more complex protocol such as a threshold signature scheme.

Discussion. For simplicity, we consider only the case � = 1 in this discussion.
First, note that consistency, correctness, and termination notions are in line
with established definitions from the literature for DKG protocols. In addition,
our definition is built upon the oracle-aided algebraic security (OAAS) notion
from [8] which is defined for DKG protocols with a single threshold t. We adjust
their definition in several ways. First, we extend it to the (tc, tr)-dual-threshold
setting which is often relevant in asynchronous networks. Second, we state a more
precise requirement on the behavior of the oracle-aided simulator Sim, which
is explained below. This allows us to make the DKG definition suitable for a
more general framework of adaptively secure threshold signatures like threshold
Schnorr and threshold BLS.

We begin with our new property “Queries upon Corruption” that specifies
Sim’s behavior when a corruption i ∈ H happens after the public key shares are
defined from the protocol. Specifically, we require Sim to call DLG,g on input
Ri = gf(i) only upon that event and not before. The intuition for this being that
any reasonable simulator should not know the secret key share f(i) of that party
Pi before the corruption happens; not surprisingly, all the OAAS simulators
constructed in [8] have this property. We proceed with the property “Query
Independence” that upon [8] takes a dual-threshold (tc, tr) into consideration.
For this, we introduce the set I. To understand this, we observe that the idea
behind the invertability of the matrix L(C) as given in their paper is that the joint
secret key f(0) should not be known to the simulator even after tc corruptions
happened. In the dual-threshold setting, we want this property to hold even if
tr−tc = δa−1 additional secret key shares are leaked. That is why we require the
algebraic vectors of any |I| = δa additional public key shares to be independent
from already leaked data. Finally, note that [8] does not take computationally
indistinguishable simulations into consideration. For better composability, we
separate the computational and statistical aspects by introducing the property
“Bad Event” and making the property “Indistinguishability” statistical.

3.2 Robust Threshold Signatures

In the following, we introduce the syntax and security notions for robust thresh-
old signature schemes. These are in line with established definitions but adopted
to the structure of our protocol.
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Syntax and Completeness. In our model, a threshold signature scheme has
the following structure. First, all parties P1, . . . , Pn run a regular (tc, tr, n)-
threshold ADKG protocol denoted by IDKG (called the initial ADKG). Hav-
ing done this, each party Pi holds a secret key share ski and the public key
shares pk1, . . . , pkn of other parties along with the public key pk. Following this,
parties repeatedly run two parallel instances of an (�, tc, tr, n)-packed ADKG
protocol denoted by NDKG in the background. The keys generated by these
executions are interpreted as nonces. In particular, after each parallel execution
of the Nonce-ADKG protocol NDKG, the parties obtain 2� new and indepen-
dent nonces. To simplify matters, we assume that the nonces are output in
pairs (Rj , R

′
j). For each such public nonce Rj (respective R′

j), each party Pi

also obtains its secret nonce share rj,i (respective r′
j,i) along with the public

nonce shares (Rj,1, . . . , Rj,n) (respective (R′
j,1, . . . , R

′
j,n)) of other parties. For

signing, we adapt the double-nonce approach introduced by Komlo and Gold-
berg [65] in order to prevent concurrent session attacks [19,47]5. That is, we
assume that parties have agreement on a previously generated but never before
used nonce pair (Rj , R

′
j) and use the effective nonce R̂j = RjR

′b
j to sign a

message m where the scalar b ∈ Zp is derived from a random oracle Hnon as
b = Hnon(pk, Rj , R

′
j ,m). Upon such a signing request, each party derives the

effective nonce shares (R̂j,1, . . . , R̂j,n) and its effective secret nonce share r̂j,i

analogously. In this light, the protocol essentially becomes non-interactive: When
party Pi wants to sign message m with respect to effective nonce R̂j , it runs an
algorithm SSign using its secret key ski and its secret nonce share r̂j,i on message
m. As a result, the party obtains a signature share σi that it sends to all other
parties. This signature share can be verified with respect to the parties public
key share pki and the public nonce share R̂j,i. Upon receiving tr +1 valid signa-
ture shares, a party can locally combine them into a full signature σ on m with
randomness R̂j . This signature can now be verified with respect to the public
key pk only. From this explanation of the execution model, it is clear that we can
define such a threshold signature scheme by specifying the initial ADKG proto-
col, the packed ADKG protocol for nonce generation, and algorithms for signing
and verification similar to a non-interactive threshold signature scheme [8,67].

Definition 6 (Threshold Signature Scheme). An (�, tc, tr, n)-threshold sig-
nature scheme is a tuple of PPT protocols and algorithms Σ = (IDKG,NDKG,
SSign,SVer,Comb,Ver) with the following syntax:

– IDKG: This is a (tc, tr, n)-threshold asynchronous DKG protocol as specified
in Definition 5.

– NDKG: This is an (�, tc, tr, n)-packed asynchronous DKG protocol as specified
in Definition 5.

– SSign: The signature share generation algorithm takes as input a secret key
share ski ∈ Zp, a public key pk ∈ G, two secret nonce shares ri, r

′
i ∈ Zp, two

5 Nick et al. [70] introduced essentially the same technique at the same time to con-
struct a two-round Schnorr multi-signature with a rigorous security analysis.
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public nonces R,R′ ∈ G, and a message m ∈ {0, 1}∗. It outputs a signature
share σi.

– SVer: The signature share verification algorithm takes as input a public key
pk ∈ G, a public key share pki ∈ G, two public nonces R,R′ ∈ G, two public
nonce shares Ri, R

′
i ∈ G, a message m ∈ {0, 1}∗, and a signature share σi. It

outputs 1 (accept) or 0 (reject).
– Comb: The signature share combining algorithm takes as input two public

nonces R,R′ ∈ G, a message m ∈ {0, 1}∗, and a set S of tr + 1 signature
shares (σi, i) with corresponding indices. It outputs either a signature σ or ⊥.

– Ver: The signature verification algorithm takes as input a public key pk ∈ G,
a message m ∈ {0, 1}∗, and a signature σ. It outputs 1 (accept) or 0 (reject).

Further, we require Σ to satisfy straightforward correctness properties which are
specified in the full version (Correctness of TSS).

We emphasize that our definition models a robust threshold signing protocol [55].
The reason for this is that the protocol NDKG terminates with distributed nonces
each having reconstruction threshold tr. Since there are at least n − tc ≥ tr + 1
honest parties in the system, it is guaranteed for every honest party to obtain
enough valid signature shares (even if no corrupt party sends a valid signature
share or anything at all) and thus to compute the full signature.

Security Model. We define the security of a threshold signature scheme follow-
ing our syntax. The established security definition for non-interactive adaptively
secure threshold signatures [8,67] allows the adversary to adaptively ask for sig-
nature shares and corruptions for up to tc parties of its choice. In the end, the
adversary succeeds if it outputs a message m∗ and a valid signature σ∗ for it
such that it obtained at most tc signature shares for m∗. In the synchronous
setting, the thresholds for corruption and reconstruction coincide. As we work
in an asynchronous network, we adjust their definition to a dual-threshold: the
protocol should be resistant against tc corruptions while providing security for
even up to tr leaked signature shares. Additionally, we let the adversary freely
decide when parties execute a new (parallel) instance of the Nonce-ADKG pro-
tocol in which he also participates. Finally, signature shares are generated with
respect to a specific nonce pair that has been generated but not used previously
and is specified by the adversary.

Definition 7 (Unforgeability Under Chosen Message Attack). Let
Σ = (IDKG,NDKG,SSign,SVer,Comb,Ver) be an (�, tc, tr, n)-threshold signature
scheme. For an algorithm A, we consider the following experiment:

1. Setup. Initialize a corruption set C := ∅ and a signing query set Q := ∅. For
each party Pi, i ∈ [n], initialize an empty state Sti. Run A on input par .
At any point throughout the experiment, A can issue corruption queries by
submitting an index i ∈ [n] \ C. In this case, update C := C ∪ {i} and return
the internal state Sti of party Pi to A. Henceforth, A fully controls Pi.
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2. Initial Asynchronous DKG. Initiate an execution of IDKG among parties
P1, . . . , Pn, where at any point in time, A controls all parties Pi with i ∈ C,
and the experiment simulates all other parties following the protocol, and adds
their respective state to Sti. Denote by pk and (pk1, . . . , pkn) the public key
and public key shares determined by IDKG. Denote by ski for all i ∈ [n] \ C
the secret key shares of the honest parties. When the execution of IDKG has
terminated, add ski to Sti for all i ∈ [n] \ C.

3. Online Phase. During this phase, A gets additional access to oracles that
answer queries of the following types:
– Nonce-ADKG Query. When A queries this oracle, a new parallel protocol

execution6 of NDKG among the parties P1, . . . , Pn is initiated. As for the
initial distributed key generation, A controls all parties Pi with i ∈ C,
and the experiment simulates all other parties following the protocol, and
adds their respective state to Sti. When this protocol terminates for the
(k + 1)-th time, let (Rk�+1, R

′
k�+1), . . . , (Rk�+�, R

′
k�+�) be the respective

public nonce pairs, and let Rk�+j,1, . . . , Rk�+j,n and R′
k�+j,1, . . . , R

′
k�+j,n

for each j ∈ [�] be the respective public nonce shares. Further, for each
party Pi with i ∈ [n] \ C, let (rk�+1,i, r

′
k�+1,i), . . . , (rk�+�,i, r

′
k�+�,i) be the

respective secret nonce share pairs that party Pi obtains. These secret
nonce share pairs are added to Sti.

– Signing Query. When A submits a new tuple (i, j,m) /∈ Q for an i ∈ [n]\C
and nonce index j such that (Rj , R

′
j) is defined, then: If there is an m′ =

m and an i′ ∈ [n] such that (i′, j,m′) ∈ Q, then return ⊥. Otherwise, set
Q := Q ∪ {(i, j,m)} and return σ ← SSign(ski, pk, rj,i, r

′
j,i, Rj , R

′
j ,m).

4. Winning Condition. When A outputs a message m∗ and a signature σ∗, let
S ⊂ [n] denote the subset of parties for which A made a signing query for m∗,
i.e., let

S := {i ∈ [n] | ∃j s.t. (i, j,m∗) ∈ Q} .

Return 1 if |C| ≤ tc, |C ∪ S| ≤ tr, and Ver(pk,m∗, σ∗) = 1. Else, return 0.

We say that Σ is unforgeable under chosen message attacks (or UF-CMA secure)
if for any PPT algorithm A, the probability that the above experiment outputs 1
is negligible in λ.

Remark 3. In our security model, we assume that parties agree on which nonce
to use for which message (similar to a session identifier). The reason for this is
to make our reduction in the security proof for our protocol (cf. Theorem 1) to
go through. We note that it is also not clear to us if the protocol remains secure
otherwise. Interestingly, the reductions in prior works [18,37,38,73] also seem to
rely on this assumption without explicitly stating it in their security model; how-
ever, the works [57,77] explicitly state this requirement in their security model
and mention that on a distributed system signing requests must go through a
consensus mechanism anyway.

6 By a parallel execution, we refer to a pair of instances of NDKG.
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4 Robust Threshold Schnorr Signatures

In this section, we provide a generic construction for a high-threshold, robust,
and efficient threshold Schnorr signature scheme and analyze its security.

4.1 Our Construction

In the following, we give a generic construction for a robust threshold Schnorr
signature scheme (also refer to Fig. 2). Our construction is based on the technique
introduced by Gennaro et al. [54,55]. In their work, they observed that in order to
obtain a robust threshold Schnorr signature, the nonce itself should be computed
in a distributed threshold fashion realized via a DKG protocol. Building upon
this idea, we implement the DKG protocol for nonce generation with a packed
ADKG protocol. For this, let �, tc, tr, n ∈ N be natural numbers such that tc <
n/3 and tr ∈ [tc, n − tc).

Construction. Let IDKG be a (tc, tr, n)-threshold ADKG protocol and let NDKG
be an (�, tc, tr, n)-packed ADKG protocol. Further, let H,Hnon : {0, 1}∗ → Zp be
two hash functions (modeled as random oracles). Then, the threshold Schnorr sig-
nature scheme SchnorrTS[IDKG,NDKG] = (IDKG,NDKG,SSign,SVer,Comb,Ver)
is defined as follows:

– SSign(ski, pk, ri, r
′
i, R,R′,m): Compute b := Hnon(pk, R,R′,m) and the effec-

tive nonce R̂ := RR′b. Further, compute r̂i := ri + b · r′
i and c := H(pk, R̂,m).

Return the signature share σi := c · ski + r̂i ∈ Zp.
– SVer(pk, pki, R,R′, Ri, R

′
i,m, σi): Compute b := Hnon(pk, R,R′,m), the effec-

tive nonce R̂ := RR′b, the effective nonce share R̂i := RiR
′b
i , and further

c := H(pk, R̂,m). Return 1 if pkc
i · R̂i = gσi and 0 otherwise.

– Comb(R,R′,m,S): Parse S as a set of tr + 1 signature shares (σi, i)
with corresponding indices. Denote the set of these indices by I. Com-
pute s :=

∑
i∈I Li,Iσi where Li,I denotes the i-th Lagrange coefficient

for the set I. Further, compute the effective nonce R̂ := RR′b where
b := Hnon(pk, R,R′,m). Return the signature σ := (R̂, s).

– Ver(pk,m, σ): Parse σ as σ = (R̂, s). Return 1 if pkc · R̂ = gs and 0 otherwise.

4.2 Security Analysis

We proceed with the security proof of SchnorrTS[IDKG,NDKG] assuming oracle-
aided security of IDKG and NDKG. For this, we give a security reduction from
the hardness of the OMDL assumption to the unforgeability (cf. Definition 7) of
our threshold signature scheme SchnorrTS[IDKG,NDKG].

Proof Intuition. We give here an intuition for our proof. The key idea of our
reduction is to embed the OMDL challenge ξ into the public keys pk1, . . . , pkn of
parties that are output by IDKG and into the public nonces {Ri, R

′
i | i ∈ [�qr]}

that are output by the qr parallel executions of NDKG. Recall that each parallel
execution outputs 2� nonces that we interpret as � nonce pairs. In order to do so,
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we employ the oracle-aided simulators Sim0 for IDKG and Simj ,Sim
′
j for the j-th

parallel execution NDKGj of NDKG. Corruption queries i ∈ H are handled by
Sim0 to return its secret key share ski (along with other internal data generated
from IDKG related to Pi), and by Simj ,Sim

′
j to return its 2� secret nonce shares

from NDKGj (along with other internal data generated from NDKGj related
to Pi). Signature share queries (i, j,m) for an honest party Pi and (previously
generated) nonce pair (Rj , R

′
j) are handled in one of two ways. (i) If the reduction

already knows tr+1 signature shares for (j,m)7, then it computes the remaining
shares by Lagrange interpolation and returns the signature share σj,i of that
party. (ii) If the reduction knows tr or less signature shares for (j,m), then it calls
the discrete logarithm oracle DLG,g on input pkcj ·R̂j,i to obtain σj,i := cj ·ski+r̂j,i

and returns it. Here, it can derive the values cj := H(pk, R̂j ,m), R̂j,i := Rj,iR
′bj

j,i ,
and bj := Hnon(pk, Rj , R

′
j ,m) by itself from local computations and consistent

lazy sampling for random oracle outputs (if not yet defined).
However, this approach has the subtlety that it exceeds the number of allowed

calls to DLG,g. If the adversary A makes a signature share query (i, j,m) and
later in the course of the protocol execution corrupts that same party Pi, then
the reduction would have used DLG,g too often: once for Sim0 to return the secret
key share ski, once for Simj to return the secret nonce share rj,i, once for Sim′

j

to return the secret nonce share r′
j,i, and once to compute the signature share

σj,i. On the other hand, the identity σj,i = cj · ski + r̂j,i tells us that three calls
are enough to derive those four values. To make use of this, we carefully leverage
the “queries upon corruption” property of the simulators Simj ,Sim

′
j for j ≥ 1.

More precisely, as we know that Simj queries the discrete logarithm oracle on the
element Rj,i upon corruption of party Pi, we simply answer this query on Rj,i by
computing r̂j,i := σj,i − cj · ski and returning the value rj,i = r̂j,i − bjr

′
j,i directly

instead of calling DLG,g. In particular, we avoid redundant calls to DLG,g. At the
end of the game, we obtain a forgery (m∗, σ∗) from A which we convert into a
solution of the OMDL challenge ξ; recall that σ∗ is of the form (R∗, s∗). This is
done as follows. First, as A is an algebraic adversary, it returns the random oracle
query H(pk, R∗,m∗) together with a representation of elements in Zp. Second,
using the forgery (m∗, σ∗), known signature shares {σj,1, . . . , σj,n}j , and known
secret key shares ski from tr parties, we can compute the secret key sk. Third,
this allows us to compute all secret key shares sk1, . . . , skn and thus using the
signature shares also all secret nonce shares {r̂j,1, . . . , r̂j,n}j . Finally, by inverting
the simulatability matrices of all oracle-aided simulators Sim0,Sim1, . . . , we can
translate the aforementioned values into an OMDL solution. We provide a full
proof of the following theorem in the full version.

Theorem 1 (ADKG −→ Threshold Schnorr). Let �, tc, tr, n ∈ N be nat-
ural numbers such that tc < n/3 and tr ∈ [tc, n − tc). Let IDKG be an alge-
braic8 oracle-aided secure (tc, tr, n)-threshold ADKG protocol and let NDKG be
7 Recall that in our model, a message m ∈ {0, 1}∗ is always signed with respect to a

previously generated and agreed-upon nonce pair (Rj , R
′
j). That is, when message

m is signed, the parties have agreement on which nonce index j to use for it.
8 That is, all parties behave algebraically and can be modeled as algebraic machines.
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an algebraic oracle-aided secure (�, tc, tr, n)-packed ADKG protocol. Further, let
H,Hnon : {0, 1}∗ → Zp be two random oracles. Then, the threshold Schnorr sig-
nature scheme SchnorrTS[IDKG,NDKG] (cf. Sect. 4.1) is UF-CMA secure in the
algebraic group model under the OMDL assumption.

5 Efficient Packed ADKG Protocol

In this section, we provide a generic construction for a packed ADKG protocol
that is more efficient than naively executing many instances of a regular ADKG
protocol in parallel.

5.1 Our Construction

In the following, we give a construction PADKG of an (�, tc, tr, n)-packed ADKG
protocol over (G, p, g) where � = n−2tc and tr ∈ [tc, n−tc) is arbitrary. Our pro-
tocol PADKG relies on the following building blocks: (i) a high-threshold AVSS
scheme AVSS, (ii) an MVBA protocol MVBA with external validity function
checkValidity (cf. Eq. 1 below), and (iii) a bulletin board PKI (cf. Sect. 2). We
give an informal description of the protocol and refer to the full version for a
formal description as pseudocode.

Packed ADKG Description. Conceptually, parties agree on n − tc AVSS
sharings and use a superinvertible (SI) matrix to extract as much randomness
from these as possible. In more detail, our protocol has the following four steps:

1. Sharing. In the first step, each party Pi shares a secret si ←$Zp via AVSS.
This means that si lies on a polynomial fi ∈ Zp[X] of degree tr. Afterwards,
each party waits for n − tc AVSS sharings to complete locally and stores the
corresponding indices of the dealers in a set dealersi. Since the network is
asynchronous, each party might have a different set dealersi of locally com-
pleted sharings. Therefore, parties need to agree on exactly one such set using
an MVBA protocol MVBA. However, the problem is that these sets as are
cannot be checked via an external validity function which is needed for the
MVBA protocol. This issue is resolved as follows.

2. MVBA Execution. Once its set dealersi of completed sharings reaches size
n − tc, party Pi sends it as a proposal propi to all other parties with the aim
to collect at least tc + 1 signatures from other parties on it that it stores in
a set sigsi. Conversely, a party Pj only issues a signature on propi once all
AVSS sharings specified by propi have completed at Pj itself. Once the set
sigsi of collected signatures on propi reaches size tc + 1 (guaranteeing that
these sharings completed at an honest party and thus by completeness of
AVSS eventually also at all other honest parties), party Pi invokes MVBA on
input (propi, sigsi) with external validity function checkValidity given by:

(|prop| = n − tc) ∧ (|sigs| ≥ tc + 1) ∧ (∀(j, σj) ∈ sigs : Ver(vkj , prop, σj) = 1) . (1)
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3. AVSS Reconstruction. Once the MVBA terminates and parties have agree-
ment on a set dealers of n − tc dealers whose sharings completed (we assume
that parties order the set dealers by increasing party index), parties proceed
with the (possibly interactive) reconstruction phase. The result is that each
party Pi obtains a vector (Sj , Sj,1, . . . , Sj,n) of group elements in G such
that Sj,k = gfj(k) for k ∈ [n] along with its secret share sj,i = fj(i) for all
j ∈ dealers. While this phase comes for free for some AVSS schemes [44], it is
required for other schemes, e.g., those that build upon KZG commitments [2].
This phase comes for free with our AVSS scheme in Sect. 6.1.

4. SI Matrix Application. Having done this, each party Pi locally applies (i.e.,
matrix multiplication from the left) the (�, n−tc)-dimensional superinvertible
matrix SI to its secret shares arranged in a vector (sj,i)j∈dealers to obtain
an �-dimensional vector (r1,i, . . . , r�,i) of new private outputs. Additionally,
Pi applies SI in the exponent to the matrix with rows (Sj , Sj,1, . . . , Sj,n)
for j ∈ dealers to obtain an n-dimensional vector (Rj , Rj,1, . . . , Rj,n) of new
public outputs for each j ∈ [�]. Looking ahead, these vectors constitute the
public nonces and public nonce shares. These operations are captured by
the algorithm ApplySI. At the end of this phase, each party Pi outputs a
set {(j, rj,i, (Rj , Rj,1, . . . , Rj,n))}j∈[�]. For each j ∈ [�], Rj is the j-th public
nonce with corresponding public shares (Rj,1, . . . , Rj,n) of all parties and rj,i

is party Pi’s secret share of the nonce Rj .

The idea of the final phase is the following. Only � = n − 2tc of the poly-
nomials fj shared by the parties j ∈ dealers are guaranteed to be chosen from
honest parties and thus uniformly random. By taking � linearly independent
linear combinations specified by the superinvertible matrix SI, parties obtain �
new polynomials r1, . . . , r� ∈ Zp[X] of degree tr shared among them that are
guaranteed to be uniformly random and hidden from the adversary. By apply-
ing the SI matrix also to public output related to fj (i.e., the public elements
Sj , Sj,1, . . . , Sj,n) for all j ∈ dealers, parties obtain regular Feldman commit-
ments to the polynomials r1, . . . , r� (i.e., the public elements Rj , Rj,1, . . . , Rj,n

for each polynomial rj , j ∈ [�]) which makes subsequent threshold signing for
Schnorr signatures in the high-threshold setting possible and efficient.

5.2 Security Analysis

We proceed with the security analysis of our generic packed ADKG protocol
PADKG described before. For this, we introduce a security notion for AVSS
schemes that is very similar to the oracle-aided simulatability notion for packed
ADKG (cf. Definition 5). Due to the similarity, we provide the definition in the
full version. Then, we show that this notion for the AVSS in combination with
the (regular) security of the MVBA are sufficient to obtain an oracle-aided secure
packed ADKG protocol as given in the full version. Here, we emphasize that the
proof crucially relies on the defining property of a superinvertible matrix which
is that any square submatrix of appropriate size is invertible.
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Proof Intuition. In the following, we describe how to construct an oracle-aided
simulator Sim for PADKG given oracle-aided simulators for AVSS. For this infor-
mal overview, we omit the discussion on correctness, consistency, and termina-
tion for PADKG, since these follow from standard considerations. For each i ∈ [n],
denote by Simi the simulator for the instance AVSSi with dealer Pi. Assume that
AVSS has simulatability factor k. Then, our simulator Sim has simulatability fac-
tor kn. Let ξ := (ξ1, . . . , ξn) be elements where ξi := (ξi,1, . . . , ξi,k) ∈ G

k such
that ξi,j = gzi,j for some zi,j ∈ Zp. On input (par , ξ), our simulator Sim does the
following in an execution of PADKG described by its four phases (cf. Sect. 5.1).
First, in the AVSS sharing phase, it runs Simi on input (par , ξi) for all i ∈ [n].
Second, in the MVBA execution phase, it runs the protocol faithfully on behalf
of all honest parties. Third, the AVSS reconstruction phase is also handled by
the simulators Simi for i ∈ [n]. Finally, in the SI matrix application phase, Sim
applies SI to the reconstructed vectors from the instances AVSSi for all i ∈ dealers
to obtain (Rj,1, . . . , Rj,n) for j ∈ [�]. As a result, Sim can output all necessary
group elements in the group G and terminate the protocol.

Throughout the simulation up until the point in which the first honest party
outputs the elements {(Rj,1, . . . , Rj,n)}j∈[�], a corruption query l ∈ H is for-
warded to all Simi, i ∈ [n], simultaneously. In that case, to answer discrete
logarithm oracle queries from Simi on an element h′ ∈ G, Sim forwards it to its
oracle DLG,g and returns the result to Simi. However, once the event happens in
which the first honest party outputs {(Rj,1, . . . , Rj,n)}j∈[�], subsequent corrup-
tion queries have to be answered differently9. The subtle reason for this is that
Sim otherwise would make redundant calls to its oracle DLG,g, thus violating the
required notion of “query independence”. We see this as follows. Assuming party
Pl gets corrupted, the notion of oracle-aided simulatability for (packed) ADKG
requires the simulator Sim to query DLG,g on input Rj,l for all j ∈ [�] at this
point in time. On the other hand, by the the notion of oracle-aided simulatability
for AVSS we also know that all simulators Simi for i ∈ [n] will query the discrete
logarithm oracle on input Si,l for all i ∈ [n] at this point in time. By definition
of Rj,l, we know that for all j ∈ [�],

rj,l = mj,1s1,l + . . . + mj,n−tc
sn−tc,l, (♥)

where the mj,i ∈ Zp are the entries of the superinvertible matrix SI := (mj,i)j,i
and we assume for simplicity that dealers = {1, . . . , n − tc}. Obviously, the
required calls from Sim to its oracle DLG,g on input Rj,l, j ∈ [�], cannot be
independent from the ones the individual simulators Simi would make on input
Si,l, i ∈ [n]. In order to deal with this issue, the simulator Sim has to return
the values si,l = DLG,g(Si,l) to Simi for all i ∈ [l] differently. Concretely, it will
first query DLG,g(Rj,l) for all j ∈ [�] to obtain the values {rj,l | j ∈ [�]}. Next, it
will choose a random subset S ⊂ dealers \ C of size tc − |C ∩ dealers| and query
DLG,g(Si,l) for all i ∈ S to obtain a total of tc values {si,l | i ∈ S ∪ (C ∩dealers)}.
From knowledge of these values, the identities in (♥), and the property of SI,
9 Note that this can only happen under adaptive corruptions.
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Sim can compute the remaining values si,l from (♥) by inverting a suitable sub-
matrix of SI and return these values to the simulators Simi. Still, special care
has to be taken as the set C of corrupt parties is dynamically increasing and we
have to make the counting argument of calls to DLG,g rigorous. We provide a
full proof of the following theorem in the full version.

Theorem 2 (AVSS −→ ADKG). Let tc, tr, n ∈ N be natural numbers such
that tc < n/3 and tr ∈ [tc, n − tc). Let AVSS be an oracle-aided secure (tc, tr, n)-
threshold AVSS scheme and let MVBA be a (tc, n)-secure MVBA protocol. Fur-
ther, let SI be a superinvertible matrix over Zp of dimension (n − 2tc, n − tc).
Then, PADKG is an oracle-aided secure (�, tc, tr, n)-packed ADKG protocol with
� = n − 2tc.

Remark 4. We note that our proof does not rely on the algebraic group model.
However, if the AVSS scheme is algebraic (i.e., all parties behave algebraically)
and the adversary is algebraic, then all our reductions are also algebraic.

6 High-Threshold AVSS Scheme

In this section, we design a new high-threshold AVSS scheme and show that
it satisfies our notion of oracle-aided simulatability for AVSS under adaptive
corruptions.

6.1 Our Construction

We construct a simple high-threshold AVSS scheme HAVSS = (HAVSS.Share,
HAVSS.Rec), relying on bivariate polynomials and NIZK proofs for inner product
relations. We provide here an informal description and refer to the full version
for formal descriptions as pseudocode.

Building Blocks. For the construction, we assume additional tc + 1 random
generators g0, g1, . . . , gtc

←$G. These can for example be derived from a random
oracle. We also assume a non-interactive proof system (see full version for a
definition) PSopen = (PProveopen,PVeropen) for the relation

Ropen :=

⎧
⎨

⎩
((g, g0, . . . , gtc

, cmi, ω, y), Ci)

∣
∣
∣
∣
∣
∣
cmi =

tc∏

j=0

g
cj,i

j ∧ Ci(ω) = y

⎫
⎬

⎭
,

and a non-interactive proof system PSexp = (PProveexp,PVerexp) for the relation

Rexp :=

⎧
⎨

⎩
((g, g0, . . . , gtc

, cmi, ω, Y ), Ci)

∣
∣
∣
∣
∣
∣
cmi =

tc∏

j=0

g
cj,i

j ∧ Y = gCi(ω)

⎫
⎬

⎭
.

Note that both relations are inner-product relations, as evaluating a polynomial
at a known location is an inner product. For simplicity, we write them using the
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same random oracle H, while formally we should understand this as two separate
random oracles. Further, we omit the elements g, g0, . . . , gtc

from the statements
to avoid clutter. They are always clear from the context.
Finally, we make use of two deterministic algorithms Interpolate and
ExpInterpolate, which is Lagrange interpolation and Lagrange interpolation in
the exponent, respectively. In more detail, these algorithms work as follows:

– Interpolate: This algorithm takes as input a set of tc+1 pairs {(xi, yi)}i∈[tc+1]

of field elements where xi = xj for i = j. It outputs the unique polynomial
C ∈ Zp[X] of degree at most tc such that C(xi) = yi for all i ∈ [tc + 1]. This
can be done by computing the coefficients of the polynomial using standard
Lagrange interpolation.

– ExpInterpolate: This algorithm takes as input a vector of tr+1 group elements
(S1, . . . , Str+1). It outputs a vector of n+ 1 group elements T = (T0, . . . , Tn)
where Tj =

∏
i∈[tr+1] S

Li,j

i for all j ∈ �n� and Li,j denotes the i-th
Lagrange coefficient for the set {1, . . . , tr + 1} at the evaluation point j.
Concretely, for all polynomials F ∈ Zp[X] of degree at most tr, we have
F (j) =

∑tr+1
i=1 Li,jF (i).

Protocol Description. As said, the formal description of HAVSS from the
perspective of a party Pi is given in the full version. Conceptually, HAVSS has
the following four steps:

1. Dealer Committing Phase. The dealer Pd samples a uniform bivariate
polynomial S ∈ Zp[X,Y ] of degree tr in X and tc in Y such that S(0, 0) = s.
It then generates commitments cm1, . . . , cmtr+1 to the (univariate) column
polynomials C1(Y ) := S(1, Y ), . . . , Ctr+1(Y ) := S(tr + 1, Y ) of degree tc.
Concretely, these commitments are generalized Pedersen commitments and
have the following form:

cmi :=
tc∏

j=0

g
cj,i

j where Ci(Y ) =
tc∑

j=0

cj,iY
j ∈ Zp[Y ].

Additionally, the dealer Pd computes for all i ∈ [tr + 1] the exponentiated
evaluations Si := gS(i,0) of the polynomial S(X, 0) and NIZK proofs πexp

i

for the relation Rexp. Having done this, the dealer reliably broadcasts the
message (CM, row0) where CM = (cm1, . . . , cmtr+1) are the commitments
and row0 := ((S1, π

exp
1 ), . . . , (Str+1, π

exp
tr+1)) are the exponentiated evaluations

along with the NIZK proofs of correctness. Upon receiving this message, par-
ties can compute commitments (cm0, . . . , comn) to all column polynomials
C0(Y ), . . . , Cn(Y ) and the exponentiated evaluations Si for all i ∈ �n� using
ExpInterpolate. Here, we rely on the homomorphic properties of the commit-
ments (cf. Remark 5).

2. Dealer Distributing Rows. The dealer proceeds by sending each party Pi

the evaluations C1(i), . . . , Cn(i) along the i-th row polynomial S(X, i)10. The
10 Note that the identity Cj(i) = S(j, i) holds by definition of Cj .
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dealer also sends for all j ∈ [n] proofs πj,i for the relation Ropen attesting that
the evaluation Cj(i) is correct with respect to the commitment cmj . Upon
receiving such a row along with the evaluation proofs from the dealer, each
party Pi checks the correctness of the evaluations by verifying the proofs. Only
in case all proofs verify, the party Pi distributes the row among all parties.
This is done by sending to party Pj the evaluation Cj(i) along with the proof
πj,i in a “column” message. Additionally, it sends a “vote” message to all
parties. Upon receiving tc+1 “column” messages with valid proofs from other
parties, a party Pi interpolates these received values to obtain a polynomial
Ci(Y ) ∈ Zp[Y ] of degree tc. This constitutes its column polynomial.

3. Voting Phase. Upon receiving “vote” messages from n − tc parties, every
party knows that at least n − 2tc ≥ tc + 1 honest parties received correct
rows. These honest parties have evaluation points of other party’s column
polynomials (one evaluation point per column polynomial) which they will
forward to them. Therefore, every party will eventually receive enough points
to interpolate its column polynomial and will be able to terminate. In order
to signify that it thinks that all parties will be able to terminate, a party also
sends a “done” message (upon receiving n − tc vote messages).

4. Termination. Upon receiving “done” messages from tc + 1 parties, every
party also sends a “done” message. Upon receiving “done” messages from
n − tc parties, and acquiring its polynomial Ci(Y ) and the exponentiated
evaluations S0, . . . , Sn of the polynomial S(X, 0) of degree tr, the party Pi

terminates. This technique of echoing “done” messages is a Bracha-style ter-
mination gadget [22]. Before terminating, every party waits to receive n − tc
“done” messages. Out of those messages, at least n−2tc ≥ tc +1 were sent by
honest parties. As a consequence, every party will receive at least tc+1 “done”
messages (those sent by honest parties) and thus send a “done” message as
well. This guarantees eventual termination of all parties.

5. Reconstruction. During reconstruction, parties can simply output their
shares si := Ci(0) and the vector S = (S0, S1, . . . , Sn) from the informa-
tion collected during the sharing phase.

Remark 5. In our construction, we rely on the homomorphic properties of the
Pedersen commitment in order to compute Pedersen commitments for the
remaining column polynomials. Here, we sketch that this is possible using algo-
rithm ExpInterpolate, i.e., Lagrange interpolation in the exponent. For the first
tr + 1 column polynomials Ci(Y ) = S(i, Y ), i ∈ [tr + 1], we observe that
Ci(y) = S(i, y) =

∑tr+1
j=1 Li,jS(j, y) =

∑tr+1
j=1 Li,jCj(y) for all y ∈ Zp and all

j ∈ �n�. Since this identity holds for all y ∈ Zp, it also has to hold as an
identity of polynomials C1, . . . , Ctr+1 in Zp[Y ]. As a result, we obtain the equiv-
alent identity S(i, Y ) =

∑tr+1
j=1 Li,jS(j, Y ) for the bivariate polynomial S(X,Y ).

From this, we easily see that applying the same linear relation to the commit-
ments of S(1, Y ), . . . , S(tr +1, Y ) (which are the first tr +1 column polynomials
C1, . . . , Ctr+1) yields a commitment to S(i, Y ) for any i ∈ �n�, as required.
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6.2 Security Analysis

We proceed with the security analysis of our high-threshold AVSS scheme HAVSS
(cf. Sect. 6.1). In the following, we give an intuition for the proof of oracle-aided
simulatibility. We omit the correctness and termination properties, since these
follow from standard considerations.

Proof Intuition. The simulator Sim runs on an input of k := tr + 1 group
elements ζ := (ζ1, . . . , ζk) ∈ G

k. In order to simulate a sharing of a bivariate
polynomial S(X,Y ) ∈ Zp[X,Y ] of degree tr in X and tc in Y , the simulator Sim
embeds the given tr + 1 elements ζ1, . . . , ζk into exponentiated evaluations of
the polynomial S(X, 0) of degree tr at the points {1, . . . , tr + 1}. Since S(X, 0)
is of degree tr, these tr + 1 evaluations determine the remaining evaluations
in the exponent (to base g). By Lagrange interpolation in the exponent, Sim
obtains evaluations of S(X, 0) in the exponent at all the points {1, . . . , n}. Next,
it samples tr + 1 commitments cm1, . . . , cmtr+1 ←$G to the first tr + 1 column
polynomials Ci(Y ) := S(i, Y ) uniformly at random, and interpolates them in the
exponent to obtain the commitments cm1, . . . , cmn to all column polynomials.
From this point on, while simulating we make sure that parties’ messages are
consistent with the commitments and with the polynomial S(X, 0). This mainly
involves sending messages normally while carefully generating a corrupted party
Pi’s view upon corruption. This is done by calling the discrete logarithm oracle
(which is provided to Sim by definition of oracle-aided simulatibility) on input
element Si := gS(i,0) to obtain S(i, 0), and sampling polynomials for Pi that is
consistent with these S(i, 0) and with the previously defined polynomials for all
other corrupted parties. In this way, the simulator Sim makes at most tc = k−δa

calls to the discrete logarithm oracle which is the correct number of total calls
according to our definition of oracle-aided simulatibility. All opening proofs,
along with the exponentiated opening proofs for the Si elements can produced
by simulating the NIZKs for the relations Ropen and Rexp. We provide a full
proof of the following theorem in the full version.

Theorem 3 (AVSS). Let tc, tr, n ∈ N be natural numbers such that tc < n/3
and tr ∈ [tc, n − tc). Further, let PSopen and PSexp be zero-knowledge proofs of
knowledge and let the DLOG assumption hold relative to (G, p, g). Then, assum-
ing secure erasures, HAVSS (see full version) is an oracle-aided secure (tc, tr, n)-
threshold AVSS scheme.

Remark 6. We note that secure erasures are only used in the protocol to erase
the randomness for generating the proofs. The reason for this is as follows:
in our simulation, we simulate the proofs using the zero-knowledge property.
Upon an adaptive corruption, we would have to provide the randomness used
for generating the proofs if the protocol did not specify erasing it. Hence, if the
underlying proof system is explainable as defined in [59], we would not need to
rely on erasures for our construction. An example of an explainable proof is the
Schnorr NIZK proof, where we can compute the randomness r from the witness
w and a simulated proof σ as r := σ − c · w.
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6.3 Comparison to Other High-Threshold AVSS

In the following, we highlight how our high-threshold AVSS construction differs
from previous ones. In the full version, we elaborate on the other high-threshold
AVSS schemes [2,5,44,64]. Our high-threshold AVSS is closest to Bingo [2] and
HAVEN [5]. On a high level, we augment HAVEN with a bivariate polynomial
structure and give a more modular and cleaner design. The bivariate structure
allows us to give an adaptive security proof as in [2]. Also, we can remove the need
of tester polynomials and the vector commitment VC used in HAVEN. Further,
we note that augmenting HAVEN with a bivariate structure while making every-
thing consistent is not trivial. In particular, the adaptive security proof is highly
challenging as evident in previous works [2,8,38]. Finally, by letting the dealer
commit to column polynomials and distribute row polynomials, we avoid the
need of homomorphic proofs, pairings, and the KZG-setup as required in Bingo.
We also refer to Table 2 for a comparison of representative AVSS schemes.

7 Instantiation and Efficiency

In this section, we instantiate our framework with concrete building blocks to
obtain HARTS and evaluate its communication and round complexity.

Instantiation. For an overview of our instantiation, we refer to Fig. 1. Con-
cretely, we use an upper-triangular Pascal matrix [57] for the superinvertible
matrix. Further, we use VABA [2] for the MVBA protocol. Finally, we use our
HAVSS (cf. Sect. 6) for the AVSS scheme with the following specifications: the
protocol from [43] for the reliable broadcast, and Bulletproofs [24] for the inner
product arguments. Further, we note that online-extractability of Bulletproofs
has been studied before [51,56]. We emphasize that other inner product argu-
ments could also be used in our framework, in particular modern versions of
Bulletproofs [33,48] to improve the concrete efficiency. Our choice of Bullet-
proofs is based on the fact that it is most widely used in practical applications
to date. Finally, we note that KZG proofs [62] are not suitable for our instantia-
tion: first, KZG relies on a trusted setup and a long structured common reference
string; second, and more importantly, KZG relies on pairings. Our objective is
to obtain a Schnorr-compatible threshold signature, and thus we cannot assume
to have access to a pairing, as Schnorr is typically implemented over pairing-free
groups.

Efficiency. We evaluate the communication and round complexity of our thresh-
old Schnorr signature scheme HARTS. In our AVSS scheme HAVSS, the dealer
reliably broadcasts a vector of Pedersen commitments of size O(λn) along with
O(n) group elements and proofs of correctness. Using the reliable broadcast
protocol from [43] and Bulletproofs [24], this step has a communication cost of
O(λn2 log n). Further, the dealer privately sends n field elements and evaluation
proofs to each party, who then disperses these values among all parties. This step
also has a communication cost of O(λn2 log n). Thus, we see that HAVSS has
log-quadratic communication cost. As each party invokes it once, the overall cost
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of the AVSS sharing phase is log-cubic. Next, the MVBA protocol VABA [2] has
cubic communication cost and terminates in expected constant rounds. Obvi-
ously, the application of the matrix SI thereafter is only local and does not affect
the communication and round complexity of the protocol.

From this analysis, we see that the protocol PADKG (see the full version for
a formal protocol description) for nonce generation generates � = tc + 1 ∈ O(n)
nonces with a communication complexity of O(λn3 log n). Thus, we obtain an
amortized communication cost of O(λn2 log n) per nonce. Finally, for signature
generation, each party sends a threshold Schnorr signature share of size O(λ) to
all other parties. Since this step has a communication cost of O(λn2), we find that
a total of O(λn3 log n) communication is required to generate O(n) signatures in
expected constant rounds, as desired. We note that PADKG generates � ∈ O(n)
nonces in expected constant rounds, but only a single round is needed after
that to sign a message. In particular, our security analysis allows parties to
run any polynomially-bounded number of instances of PADKG offline (i.e., in
the background or as precomputation), whose generated nonces can then be
consumed individually (or in batches) in a single-round online phase upon a
signing request.
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Abstract. In the threshold version of Paillier’s encryption scheme, a set
of parties collectively holds the secret decryption key through a secret
sharing scheme. Whenever a ciphertext is to be decrypted, the parties
send their decryption shares, which are then verified for correctness and
combined into the plaintext. The scheme has been widely adopted in var-
ious applications, from secure voting to general purpose MPC protocols.
However, among the handful of existing proposals for a maliciously secure
scheme, one must choose between an efficient implementation that relies
on non-standard assumptions or a computationally expensive implemen-
tation that relies on widely acceptable assumptions.

In this work, we show that one can enjoy the benefits of both worlds.
Specifically, we adjust a scheme by Damg̊ard et al. (Int. J. Inf. Secur.
2010) to get a practical distributed key generation (DKG). While the
original scheme was only known to be secure under ad-hoc non-standard
assumptions, we prove that the adjusted scheme is in fact secure under
the decisional composite residuosity (DCR) assumption alone, required
for the semantic security of the Pallier encryption scheme itself. This is
possible thanks to a novel reduction technique, from computing and prov-
ing a false decryption share, to the factoring problem. Specifically, while
there may exist false decryption shares for which the zk-proof verifies with
non-negligible probability, they are computationally hard to find. Further-
more, we use similar ideas to prove that batching techniques by Aditya
et al. (ACNS 2004), which allows a prover to batch several statements
into a single proof, can be applied to our adjusted scheme. This enables
a batched threshold Paillier decryption in the fully distributed setting for
the first time.

Until now, verifying that a decryption share is correct was the bottle-
neck of threshold Paillier schemes and hindered real world deployments
(unless one is willing to rely on a trusted dealer). Our work accumulates
to shifting the bottleneck back to the plaintext reconstruction, just like
in the semi-honest setting, and renders threshold Paillier practical for the
first time, supporting large scale deployments.

We exemplify this shift by implementing the scheme and report our
evaluation with up to 1000 parties, in the dishonest majority setting. Over
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an EC2 c6i machine, we get a throughput of about 50 and 3.6 decryptions
per second, when run over a network of 100 and 1000 parties, respectively.

Keywords: Additive Homomorphic Encryption · Paillier Encryption ·
Threshold Encryption · Batched ZK Arguments

1 Introduction

The Paillier encryption scheme from 1999 [Pai99] has gained significant popu-
larity due to its advantageous properties. It is a public-key encryption scheme
renowned for its additive homomorphic property, enabling linear operations on
encrypted data without requiring decryption. Additionally, the Paillier scheme
supports a large message space, enabling useful operations on secrets.

Motivated by applications in voting systems, several authors have proposed
threshold variants of the Paillier encryption scheme [FPS01,DJN10]. These vari-
ants are based on similar constructions for RSA signatures [Sho00].

A threshold encryption scheme facilitates a set of parties utilizing a public
encryption key pk to encrypt messages while collectively maintaining the cor-
responding secret key sk for decrypting ciphertexts. In this scheme, each party
Pj possesses a secret decryption key share skj . When the parties collectively
decide to decrypt a ciphertext ct, they participate in a cryptographic proto-
col that ultimately reveals the message while ensuring the confidentiality of the
secret decryption key. Typically in such protocols, each party Pj broadcasts a
“decryption share” ctj = Decskj

(ct). If a sufficient number of parties, passing a
certain pre-defined threshold, broadcast their decryption shares, those can then
be locally combined by anyone to recover the plaintext pt = Decsk(ct).

The combination of homomorphic properties and threshold decryption capa-
bilities has rendered the Paillier encryption scheme highly appealing in systems
focused on privacy-preserving voting [KLM+20,DJN10] and data aggregation in
general [MT21,BS21]. Moreover, threshold decryption of the Paillier scheme (and
additively homomorphic encryption in general) serves as a foundational build-
ing block in other cryptographic protocols like threshold signatures [GGN16]
and secure multiparty computation (MPC) in general [DN03,DPSZ12]. In many
prior works, such as [FPS01,GGN16], the focus was primarily on the threshold
Paillier decryption feature. However, these approaches often relied on a trusted
dealer for key generation and secret key share distribution. This reliance reintro-
duced a security risk that originally prompted the use of threshold encryption in
the first place. To this end, fully-fledged threshold schemes have been proposed,
(e.g., [DK01]). In these schemes, the involvement of a trusted dealer is entirely
eliminated, and the generation and distribution of keys are carried out by the
participating parties themselves.

Similar to other RSA-based primitives, like signature [RSA78] and verifiable
delay function (VDF) [BBBF18] schemes, the public key of the Paillier encryp-
tion scheme consists of a modulus N that is the product of two large prime
numbers P and Q. Therefore, many works (see [BDF+23] and references within)
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deal with distributed RSA modulus as a stand alone and independent building
block, leaving additional necessary cryptographic material to be generated by the
specific application, be it the RSA signature, RSA encryption, VDF, or Paillier
encryption schemes. The additional cryptographic material may be different from
scheme to scheme. In the context of threshold encryption, without employing
some verifiability mechanism it might not be possible to tell whether a decryp-
tion share was computed correctly or not. To this end, proposals for threshold
Paillier devise such a verifiability mechanism, in the form of a zero knowledge
(zk) proof. That is, in addition to the aforementioned decryption share, each
party provides a zero knowledge proof for the claim that the decryption share is
computed correctly using its secret key share. In that sense, the proposed thresh-
old Paillier protocols differ mostly in the way that the zero knowledge proof is
implemented, offering a trade off between efficiency and security. Specifically,
these protocols offer a trade off in the three metrics below:

– DKG efficiency refers to whether Distributed Key Generation is practical.
– Proof efficiency refers to the size and the time it takes to generate/verify

the zero knowledge proof of the correctness of the decryption share.
– Strength of assumptions refers to the cryptographic assumptions under-

lying the soundness of the proof.

Considering only protocols with a feasible key generation phase, one has
to choose between a protocol with an efficient proof system that relies on non-
standard assumptions (such as [DJN10] using the assumptions in [DK01]), and a
protocol whose proof system is inefficient but relies on standard widely accepted
assumptions (e.g., [FS01,HMR+19]). This raises the following question:

Is it possible for a threshold Paillier encryption scheme to incorporate an
efficient key generation and proof while relying solely on standard assumptions?

In this work we answer this question in the affirmative. We depart from a pro-
tocol that has an efficient key generation and proof, but relies on non-standard
assumptions, and present a novel reduction technique for the proof of soundness
of the zk-proof of correct decryption share. This, for the first time, allows using
an efficient version of threshold Paillier without compromising on security.

1.1 Previous Work: Efficiency vs Security

In the following, we provide a more detailed overview of the trade-off discussed
above, which involves a tension between efficiency and the level of leniency asso-
ciated with relying on non-standard assumptions. On one extreme, the protocol
by Algesheimer et al. [ACS02] allows distributed generation of a bi-prime public
key N = PQ consisting of safe primes (i.e., with (P −1)/2 and (Q−1)/2 primes).
Using safe primes enables an efficient zero knowledge protocol for the correct-
ness of the threshold decryption, while also achieving security under standard
assumptions. Generating N as a product of safe primes is commonly adopted by
works that assume a trusted dealer [FPS01], since a dealer can easily generate
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such a key. However, distributed generation of safe primes remains an infeasible
task, which is evident by the fact that [ACS02] has never been implemented.

On the other extreme, [DK01] proposed a protocol for threshold RSA sig-
natures that lowers the bar by generating a public key N that is a product of
‘general’ primes1 P,Q (not necessarily safe), using the same efficient zk-proof
as [FPS01]. As mentioned in [DJN10], this also applies to threshold Paillier.
However, while avoiding safe primes, the soundness of that zero knowledge proof
relies on non-standard assumptions (which are discussed in Sect. 1.3).

In order to bridge between the above mentioned extremes, Fouque and Stern
[FS01] proposed a new protocol in which the key generation produces primes
P,Q that are only almost safe primes, meaning that P−1

2 and Q−1
2 are B-rough

numbers and co-prime. Unlike general primes, the B-roughness property facili-
tates a proof of soundness for the zk-protocol without relying on new assump-
tions. Nevertheless, while distributed generation of such primes can be done, it
is impractical for most use-cases. First, the technique incurs a degradation of
the efficiency of the zero knowledge proof. As reported by the authors, the proof
efficiency is about 30× worse compared to [DK01]. In addition, we estimate the
distributed key generation phase to be 1000x slower than [CHI+21].

Another bridging attempt is due to Hazay et al. [HMR+19]. Their protocol,
similar to [DK01], builds on a public key N that is a product of general primes,
but uses a different zero knowledge protocol (using the cut-and-choose technique)
than the one used in [DK01]. Their proof, while relying on standard assumptions,
suffers from poor soundness (1/2), which means that it has to be repeated κ times
to meet real security requirements.

Since safe prime generation as in [ACS02] is infeasible, we are left with the
choice between accepting the extra assumptions in [DK01] and getting an effi-
cient proof (and therefore threshold decryption), or sticking to the widely accepted
assumptions but suffering an inefficient proof, as in [FS01] and [HMR+19].

It is worth mentioning a different approach, proposed by Baum et al.
[BDTZ16], which removes the zero knowledge proof from threshold Paillier
decryption altogether. In order to decrypt the ciphertext c = Encpk(m; r) the
parties first reconstruct the randomness r, which enables extraction of the plain-
text m. However, apart from revealing the randomness r to the adversary, this
approach enables an attacker to anonymously cheat in the reconstruction of r
and deny decryption. Both issues above are problematic in general, yet tolerable
in some scenarios2.

Lastly we would like to mention a previous work by Seres and Burcsi [SB21]
which upgrades the security assumptions of Pietrzak’s proof of exponentiation.
While the reductions share some ideas there are meaningful differences. Most

1 We remark that distributed generation of a product of general primes is due to Boneh
and Franklin [BF97] and its improvements [DdSGMRT21,CHI+21,BDF+23].

2 Specifically, in [BDTZ16] such decryption is happening only in the pre-processing
phase of a generic MPC protocol, in which case, neither an abort nor leakage of r
gives the adversary any advantage. Alternatively, the same work proposes a method
to avoid denial of decryption at the cost of two additional rounds and assuming the
primes are safe, a property we wish to avoid in the first place.
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importantly they assume that φ(N) does not have factors in a certain range,
which is okay in their context since a single party holding the factorization of
N can provide a proof of this fact. In our context it is much more involved to
produce such a proof since the factorization of N is shared among the parties.

1.2 Our Contribution

– We present the first practical, efficient, large-scale threshold Paillier encryp-
tion protocol, supporting efficient distributed key generation and threshold
decryption, built upon the same decisional composite residuosity assumption
as the standard Paillier encryption. The protocol is secure in the presence of
a malicious adversary who statically corrupts t < n parties.

– At the heart of our contribution lies a novel proof for the correctness of
decryption shares. We make use of the standard proof system of equality of
discrete logs (EDL) over the group QRN2 of quadratic residues modulo N2.
When N is not a product of safe primes, the soundness of the EDL-proof
does not suffice to claim correctness of the decryption share. Nevertheless, we
show that finding a false decryption share that passes verification reduces to
factoring N (see Theorem 4.5 and the preceding discussion). Such a reduc-
tion may be of independent interest: First, the same technique can be used in
threshold protocols over RSA groups, such as threshold RSA signature. Sec-
ond, the requirement of safe primes in various cryptographic primitives can
be re-assessed, which is left to future work.3 The ramification of that reduc-
tion is that distributed Paillier key generation can be implemented using
any distributed bi-prime modulus generation (for ‘general’ primes), and in
particular, we can leverage recent advances, like Diogenes [CHI+21], for key
generation by thousands of parties.

– In a real-world system required to continuously process many ciphertexts, the
parties need to verify decryption shares received from other parties for each of
these ciphertexts. Verification of decryption shares from many parties across
multiple ciphertexts can easily dominate the overall cost of decryption. To
address this issue, we use a batching technique due to [APB+04], which allows
a prover to batch several decryption shares into a single proof. Specifically,
proving and verifying B statements using the batched proof system requires
a single ‘large’ exponentiation and O(B) ‘small’ exponentiations, rather than
O(B) large exponentiations (where ‘large’ refers to the size of the shares,
e.g., 4096 bits, and ‘small’ refers to the computational security parameter,
e.g., 128 bits). The original proof of this batching technique has also required
safe primes. We are able to apply our techniques to alleviate this requirement.
This results in the first batched proof system for threshold Paillier decryption
when N is not a product of safe primes. Overall it enables a significantly more
efficient proof system (as demonstrated in Sect. 5). It reduces the total time

3 That being said, while similar techniques may be applied to remove the requirement
of safe primes in other cases as well, in some protocols the requirement that the
primes are safe might be crucial, so every protocol must be analyzed on its own.
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complexity of threshold decryption to roughly that of a semi-honest model
with no proof system. E.g., for 1000 parties proof overhead is about 5%.

Although our contributions are concentrated around threshold decryption, we
briefly discuss the protocol for distributed key generation as well in Sect. 3.1, for
completeness of the exposition.

Performance comparison. In Table 1 we compare the performance between this
work and previous works that rely on standard assumptions only, namely [FS01]
and [HMR+19]. As the performance is dominated by exponentiations by a large
exponent (thousands bit-length) the table focuses on that metric. Note that the
large exponents in all the protocols are of the same size. Importantly, our pro-
tocol is the only one that supports batch decryption (which essentially requires
batching of proofs). Thus, in [FS01] and [HMR+19] the overhead of decrypting
a batch of ciphertexts grows linearly with the batch size, whereas in our protocol
the overhead remains constant.

Table 1. The number of exponentiations required for proof generation and verification
in each protocol, where κ represents computational security (i.e., 2κ is infeasible),
and σ represents statistical security (i.e., 2−σ is negligible). For [FS01], we utilize the
guaranteed B-roughness of P−1

2
· Q−1

2
.

Number of Exponentiations

Work In general When κ = 128, σ = 40, B = 216 Supports batching

[FS01] ≈ 2κσ
log2 B

64 No

[HMR+19] κ 128 No

This work 2 2 Yes

1.3 Technical Overview

Let us begin with the high-level overview of the threshold Paillier decryption.
As mentioned above, Paillier’s public key is a modulus N that is a product of
two large primes P and Q. The secret key d is derived from these primes, and
it is assumed to be computationally infeasible to obtain it from N . In threshold
Paillier key generation protocols, the parties first obtain a sharing of P and Q,
and then derive a sharing of d as well as the product N = PQ in plain. To be more
specific, the generated primes P and Q are required to satisfy gcd (φ(N), N) = 1,
where φ(N) = (P − 1)(Q − 1). Using this fact, the secret key is computed4 by
d = φ(N) · [φ(N)−1 mod N ] ∈ Z and shared among the parties using a secret
sharing scheme over the integers5, such that party Pj obtains a share dj . In
addition to the public modulus N , the parties generate a public verification key
4 There are several choices for the exact form of the secret key, which are all variants

of the one described above.
5 Some works assume secret sharing over the ring ZNφ(N) but this is harder to achieve

without a trusted dealer.
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vj for every Pj , such that vj = gdj for some basis element g from the group of
quadratic residues modulo N2 (denoted QRN2). Then, when the parties agree
to decrypt a ciphertext ct, party Pj sends the decryption share ctj = ctdj along
with a zero-knowledge proof that ctj is computed correctly using the public ct
and the secret dj .6 This proof is a proof of equality of discrete logs of the values
ctj and vj over QRN2 , with respect to the bases ct and g. That is, if Pj computes
its decryption share correctly then logct(ctj) = logg(vj) = dj .

In the following we present in more detail why safe primes are powerful for
efficient proofs, and later we explain how we achieve the same efficiency without
using safe primes and without resorting to additional assumptions.

Suppose that the generated modulus N is a product of two safe primes P,Q,
meaning that P ′ = P−1

2 and Q′ = Q−1
2 are primes as well. There are three main

benefits from the assumption that P ′ and Q′ are primes:

1. In the context of proofs for equality of discrete logs, it is commonly assumed
that the group is cyclic. For any pair P,Q of distinct safe primes, the group
QRN2 is guaranteed to be cyclic, since QRN2 ∼= QRP 2 ×QRQ2 and the orders
of QRP 2 and QRQ2 are co-prime. However, in the general case these orders
may share a common factor and the group QRN2 may not be cyclic.

2. When the group QRN2 happens to be cyclic, meaning that there exist an
element g, called a generator, such that every element in QRN2 equals gx for
some x. In fact, the probability of a random element g ← QRN2 to not be
a generator, is close to the probability of guessing one of the factors of N .
Having a generator helps when arguing security for zero knowledge protocols.
However, in the general case (where the primes are not safe), even when
QRN2 is cyclic, the probability of a random element to be a generator is not
negligible. This problem is exacerbated by the fact that no known algorithm
exist for finding a generator or determine if an element is one.

3. The standard proof of soundness (see [FPS01]) obtains an equation of the
form xe = 1 mod N2 for a small e (� min{P ′, Q′}), and concludes that
x = 1 since e is necessarily co-prime with φ(N2)/4 = NP ′Q′. This conclusion
cannot be made when P ′ and Q′ are allowed to be composite numbers.

These three benefits of safe primes are also drawbacks of general primes. The
work [DK01] overcomes these drawbacks and applies the same zero knowledge
proof as in [FPS01], but does not assume that the primes are safe and therefore
relies on the following non-standard assumptions:

1. It is computationally hard to compute an element a ∈ Z
∗
N such that a �= ±1

mod N and the order of a is not divisible by the largest factor of φ(N).
2. Random elements in QRN are indistinguishable from those of maximal order.

While these assumptions have not been proven insecure to date, relying on non-
standard cryptographic assumptions that have received very little attention can
potentially pose a risk in practice.
6 When the threshold is smaller than the number of parties each exponent is multiplied

by the appropriate Lagrange coefficient.
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In [FS01] mentioned earlier, which aims at avoiding extra assumptions with-
out requiring the primes to be safe, the efficiency is degraded for two reasons.
First, the protocol has to be repeated with many bases g1, g2, . . ., which together
generate QRN2 with overwhelming probability. Second, the protocol requires
P−1
2 and Q−1

2 to be B-rough (i.e., to have all prime factors larger than B), and
the soundness depends on B. Since all known practical key generation protocols
result in quite a small B, soundness must be amplified via parallel repetitions.

Our Approach. In this work we take the same approach as in [DK01] (as it
applies to the threshold Paillier cryptosystem presented in [DJN10] with s = 1),
but remove their extra assumptions. Specifically, we show that the efficient zk-
proof of equality of discrete logs over QRN2 first used in [FPS01] for a modulus
N that is product of safe-primes, suffices even when N is a product of general
primes.7 By setting minimal and practically achievable properties to the primes,
we overcome the above three drawbacks by using the following observations.

1. Even though P,Q are not safe-primes, with high (but not overwhelming)
probability P−1

2 and Q−1
2 are co-prime, and therefore QRN2 is a cyclic group

of order Nφ(N)
4 . During the key generation protocol the parties will reject

prime candidates that do not meet the requirement that P−1
2 and Q−1

2 are
co-prime. The rejection of prime candidates that do not satisfy that condition
incurs only a small constant factor overhead (about 1.5× as calculated in
Appendix E.6) to the key generation protocol.

2. Even when P,Q are not safe, the order of a random element g ∈ QRN2 is ‘close
enough’ to the order of QRN2 , and so for our purpose it can be used as if it
was a generator. Specifically, we prove that with overwhelming probability,
the order of a randomly sampled g ∈ QRN2 is at least |QRN2 | divided by a
sufficiently smooth number (whose prime factors are all small).

3. For similar reasons, instead of obtaining the equation xe = 1 mod N2 we
obtain xe ·η = 1 mod N2, where η ∈ QRN2 has a smooth order δ. This means
that xe·δ = 1 mod N2. Then, we divide the proof into two cases: If xe = 1
(as in the case where g is a generator), then we can find the factorization of e
since e is small, from which we can find the factorization of N using classical
techniques, as long as x �= 1. Otherwise, xe �= 1 mod N2 is an element of
small smooth order and so we can employ Pollard’s p − 1 method in order to
factor N .

Notice that the above ideas would result in an efficient reduction, albeit non-
polynomial, and thus would only break the sub-exponential factoring problem.
Our simulation carefully chooses challenges such that the size of e has a bound

7 We do require N = PQ to satisfy gcd(P − 1, Q − 1) = 2, which is a much weaker
condition than the common requirement that (P − 1)/2 and (Q − 1)/2 are prime.
This property has a small impact on the efficiency of the key generation protocol,
does not affect the efficiency of the threshold decryption, and does not introduce
additional cryptographic assumptions.
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dependent on the chance of success of the PPT adversary rather directly on
the security parameter, resolving this issue. Also, the smoothness of the order
of xe depends on the statistical security parameter. We reduce this to be a
constant by using multiple (c) bases g1, . . . , gc. As a result, with overwhelming
probability with respect to the statistical security parameter σ, there exist at
least one base gi with order |QRN2 | divided by a σ0-smooth number. We set σ0

to be a constant, and increase c to increase statistical security. The reduction
is analyzed such that one may estimate concrete statistical and computational
security based on different parameters of the scheme (see Table 2). Carefully
analysing the reduction, we see that setting σ0 = 40 yields an efficient reduction
when setting concrete parameters, as 240 exponentiations is feasible to date.
This means that if an efficient cheating prover exists, in concrete parameters,
our reduction suggests a practical factoring algorithm.

As we are also concerned with concrete security, we provide two reductions,
one to the uniform factoring problem and another for the non-uniform factor-
ing problem. The reason is that although we do not require non-uniformity to
prove that our scheme is secure asymptotically, when fixing concrete parameters,
the reduction against a non-uniform PPT adversary is more tight. Specifically,
an adversary P∗ that breaks our scheme in time T (κ) with probability ε(κ) is
reduced to a non-uniform adversary A that breaks the factoring game above in
expected time TNU(κ) with probability εNU(κ), such that TNU(κ)

εNU(κ)
= T (κ)

ε(κ) · poly(κ).
That is, the reduction is linear in T/ε. On the other hand, the reduction against
uniform PPTs takes TU(κ)

εU(κ)
= T (κ)

ε2(κ) · poly(κ), which is the complexity of com-
puting the advice tape for the non-uniform reduction. While this reduction is
still polynomial, when fixing concrete parameters, the computational security
parameter has to be doubled. Due to the sub-exponential hardness of factoring,
this requires increasing the modulus size by 8×, and so exponentiation will cost
at-least 64× more. It would also significantly impact DKG performance.

Another subtle issue arises when applying the Fiat-Shamir transform to the
batched proof, which is a 5-round protocol. In general this may significantly
degrade soundness. We show this is not the case for the batched protocol by
applying concepts from [AFK22] in Appendix I.

1.4 Organization

In Sect. 2 we present our notation and the mathematical background that is
necessary in order to understand the rest of the paper. A brief reminder of basic
number theoretic facts can be found in Appendix A. In Appendix B we recall
Shamir Secret Sharing (SSS) over a field along with proving improved bounds on
the size of SSS shares over the integers. Background on the Paillier encryption
scheme can be found in Appendix C. In Sect. 3 we present secure threshold
Paillier. Further details are in Appendix E, including experiments to estimate
the overhead of our adjustment to the key generation protocol, and Appendix F
describes our UC simulation. In Sect. 4 we present the zero knowledge protocol
for equality of discrete logs over QRN2 , and provide our new proof of security.
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Omitted proofs are in Appendix G. Subsects. 4.4 and 4.6 present optimization
techniques, and in Appendix H we further discuss batch verification optimization
and multi-exponentiation. Finally, we report our experiments in Sect. 5.

2 Preliminaries

General Notation. We let N,Z,Zm denote the set of natural numbers excluding
0, integers, and integers modulo m, respectively. In addition, we denote by Z

∗
m

the multiplicative group modulo m. We denote by primes and primesm the set of
all prime numbers and the set of prime numbers smaller than m, respectively.
For a, b ∈ Z we denote by [a], [a, b], [a, b) and (a, b) the sets {1, . . . , a}, {a, . . . , b},
{a, . . . , b−1} and {a+1, . . . , b−1}, respectively. We denote by X ← Ω a uniform
sampling from a set Ω. We use κ and σ to denote computational and statistical
security parameters, respectively. We denote by σ0 a preliminary statistical secu-
rity parameter which is upgraded to σ := c·σ0. We denote by time(A(x1, x2, . . .))
the run time of an algorithm A on inputs (x1, x2, . . .). We may denote a vector
of group elements by (g1, . . . , gc) := g ∈ Gc where gr := (gr

1, . . . , g
r
c ).

Mathematical Background. We refer to Appendix A for preliminary mathemat-
ical background. Below we list three useful definitions.

Definition 2.1 (β-Smooth Number). For β ∈ N, an integer k is called β-
smooth if all the prime factors of k are smaller than β.

Definition 2.2 (Safe Prime). A prime number p is called safe if p−1
2 is prime.

Definition 2.3 (Conforming Bi-Prime). An integer N is a conforming bi-
prime if there exist two primes P,Q such that N = PQ, P = Q = 3 mod 4,
gcd (N,φ(N)) = 1, and gcd (P − 1, Q − 1) = 2.

Groups. We use multiplicative notation for groups. Let G be a finite abelian
group. For g1, . . . , gk ∈ G we denote by 〈g1, . . . , gk〉 the subgroup H ⊆ G gen-
erated by g1, . . . , gk. That is, H = {Πk

i=1g
αi
i }αi∈Z,i∈[k]. We denote by |G| and

ord(g) (or |〈g〉|) the order of (number of elements in) G and 〈g〉, respectively.
An element y ∈ G is a quadratic residue if there exists an x ∈ G with x2 = y.
For abelian groups, the set of quadratic residues forms a subgroup. For an inte-
ger m > 2, we denote by QRm the subgroup of quadratic residues in Z

∗
m. By

Lagrange’s theorem, if G is a group and H ⊆ G then |H| divides |G|.
Definition 2.4 (Statistical Distance). Let X,Y : Ω → [M ] be two random
variables. The statistical distance between X,Y , denoted SD(X,Y ), is defined as
SD(X,Y ) := 1

2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|. If SD(X,Y ) = neg(κ) we say

that the distributions are statistically indistinguishable and denote X
s≡ Y .
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Hardness Assumptions. Let GenModulus be a polynomial time algorithm that,
on input 1κ, outputs (N,P,Q) where N = PQ, and N is a conforming bi-prime
except with probability negligible in κ.

Definition 2.5 (DCR). We say that the decisional composite residuosity
(DCR) problem is hard relative to GenModulus if for all probabilistic polynomial
time algorithms A there exists a negligible function neg such that

∣
∣Pr

[A (
N, [rN mod N2]

)
= 1

] − Pr [A (N, r) = 1]
∣
∣ ≤ neg(κ)

where the probabilities are taken over N ← GenModulus(1κ) and r ← Z
∗
N2 .

Definition 2.6 (Factoring). We say that the factoring problem is hard relative
to GenModulus if for all (uniform / non-uniform) probabilistic polynomial time
algorithms A there exists a negligible function neg such that

Pr
N←GenModulus(1κ),(P ′,Q′)←A(N)

[P ′ · Q′ = N ∧ P ′, Q′ /∈ {1, N}] ≤ neg(κ).

Remark 2.1. In the classic factoring problem GenModulus is defined by choos-
ing P,Q as independently, uniformly random �-bits random primes. In the case
of distributed key generation we get a different GenModulus. Notably, [BF97]
provide a reduction between the two cases.

2.1 Shamir Secret Sharing over the Integers

Shamir threshold secret sharing over a field [Sha79] is presented in Appendix B.1.
We present its extension over the integers [NS10,Rab98,VAS19] below.

Let s ∈ Z ∩ [−b,+b] be a secret. Define Δn = n! and define some bound
I(σ, n, b) on the (absolute value of the) coefficients of the polynomial. Until
recently (see, e.g., [VAS19]), the bound I(σ, n, b) = 2σ ·Δ2

n ·b was used. However,
following [BDO23], we provide a tighter bound for I(σ, n, b) in Appendix B.2.

The algorithm Sharet,n(s) picks a1, . . . , at ← [−I(σ, n, b),+I(σ, n, b)] and out-
puts ([s]1, . . . , [s]n) where [s]j = p(j) and p(x) = Δn · s +

∑t
i=1 ai · xi.

Reconstruction works as follows. Given a set T ⊂ [n] of t+1 distinct elements
and given points {(j, [s]j)}j∈T , we have p(0) =

∑
j∈T λ0

T,j · [s]j = Δns, where
λv

T,j is the Lagrange coefficient corresponding to point j ∈ T , to restore the
polynomial p evaluation at v (see Appendix B). However, since the Lagrange
coefficients might not be in Z, we multiply them first by Δn, and get

∑

j∈T

Δnλ0
T,j · [s]j = Δ2

n · s. (1)

For an (n, t)-threshold Shamir sharing over the integers of secret s ∈ [−b,+b],
we denote the upper bound on the absolute value of the shares on s by
D(σ, n, t, b), which is: D(σ, n, t, b) = Δn · b +

∑t
i=1 I(σ, n, b) · ni ≤ Δn · b +

2ntI(σ, n, b).
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2.2 Zero Knowledge

A zero knowledge protocol between a prover P and a Verifier V is a proto-
col in which the prover convinces the verifier of some fact regarding a public
instance without revealing any information to the verifier beyond the correctness
of this fact. A formulation of such property is typically done via three definitions,
namely completeness, soundness and zero-knowledge. Completeness means that
if both the prover and the verifier act according to the protocol then the verifier
will accept. Soundness means that it’s computationally infeasible for a cheating
prover to convince an honest verifier of a false fact. Lastly zero-knowledge means
that the verifier does not learn any new information about the instance except
the fact. In our context, we are specifically interested in Special honest verifier
zero-knowledge (SHVZK) defined below.

Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. Given a public
parameter τ , we call w a witness for instance x if (τ, x, w) ∈ R. We may fix
τ and write (x,w) ∈ R[τ ] for the public parameter-dependent relation. Define
LR[τ ] to be the set of inputs x for which there exists a witness w such that
(x,w) ∈ R[τ ].

Definition 2.7. A protocol π = (Setup,P,V) with a PPT setup between a
prover P and a verifier V is a zero-knowledge argument of relation R if it
satisfies:

– Completeness. For every τ ← Setup(1κ, 1σ), if P and V follow protocol π
on input τ, x and private input w to P, where (x,w) ∈ R[τ ], then V accepts.

– Soundness. For any stateful polynomial time prover P∗ = (P∗
1 ,P∗

2 ) (i.e., P∗
1

and P∗
2 have an access to the same state)

Pr
τ←Setup(1κ,1σ)
x←P∗

1 (1
κ,1σ,τ)

[∀w : (x,w) �∈ R[τ ] ∧ (P∗
2 (1κ, 1σ, τ) ↔ V(τ, x)) = 1] ≤ neg(κ).

While the standard definition of soundness requires the above to hold for every
x, here we require that it holds only for instances x that are output by the
dishonest prover P∗ itself, hinting to the difficulty of finding an instance x
for which the equation does not hold.

– Special honest verifier zero-knowledge. There exists a PPT simulator
S such that for every z ∈ {0, 1}∗ the view of the verifier ViewV [P(τ, x;w) ↔
V(τ, x; z)] is statistically indistinguishable from S(τ, x, z).

It is common to turn a zero-knowledge protocol into a non-interactive zero-
knowledge protocol using the Fiat-Shamir (FS) transform [FS87,CCH+18,
AFK22], for which it is sufficient to consider only an honest verifier. We refer
the reader to [GO94] for further discussion on ZK protocols definitions.

3 Our Construction

We refer the reader to Appendix C for the definition of the Paillier additively
homomorphic encryption scheme. In this section we present a construction for
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a threshold Paillier cryptosystem, and its comprehensive description appears in
Appendix E. As shown in Appendix F.2, the protocol realizes the ideal threshold
Paillier Functionality F.1 ([HMR+19]).

3.1 Key Generation

The key generation part of the protocol is a composition of 2 steps: (i) an
adaptation of Diogenes [CHI+21] RSA key-generation for generating N ; (ii) an
adaptation of [HMR+19] to generate the verification keys and key-shares that
are used in Paillier threshold decryption protocol. [HMR+19] first generates a
non-standard verification key, namely an El-Gamal encryption of the key share.
Nevertheless, they refer to a zk proof that ties this verification key with the tra-
ditional one that we use. A direct approach avoiding the El-Gamal encryption
could be considered, but we chose to use the protocol as-is, utilizing the uni-
versal composability guarantees. Notably, modulus generation is the bottleneck
regardless. Importantly, this zk proof does not rely on N being composed of safe-
primes (and in turn is somewhat costly, but far less than generating N). Hence,
proving validity of decryption shares with respect to the traditional verification
keys remains the core issue addressed in this work, in Sect. 4.

We henceforth give a short summary of the ideas used for key gener-
ation which are presented in further detail in Appendix E. Many proto-
cols for distributed generation of bi-prime (or RSA) modulus were proposed
(e.g. [BF97,DdSGMRT21,BDF+23]). In Diogenes the parties obtain a bi-prime
N = PQ for some large primes P and Q, but in our context (threshold
Paillier) we need N to be a conforming bi-prime (Definition 2.3). Namely,
N = PQ should satisfy: (1) P = Q = 3 mod 4, (2) gcd (N,φ(N)) = 1, and
(3) gcd (P − 1, Q − 1) = 2. Generating a conforming bi-prime requires only
a minor modification to Diogenes that will not affect security. Conditions (1)
and (2) are already satisfied by Diogenes. We ensure that condition (3) is sat-
isfied by invoking the GCD test sub-protocol, which receives one additively
shared secret and one public value as input and outputs their GCD. Since
both P − 1 and Q − 1 are secrets, we need to manipulate the inputs in order
to verify the third condition. Applying the same trick as in [FS01], we note
that gcd (P − 1, Q − 1) = gcd (P − 1 + (Q − 1)P,Q − 1) = gcd (N − 1, Q − 1).
Therefore, we run the GCD test on the secret value Q − 1 and the public value
N − 1. Notably, this additional check is efficient8 and it fails with probability
≈ 0.33, as predicted and tested in Appendix E.6. Upon failure the protocol is
restarted.

Then, using the obtained values above, the parties generate the secret key
d and the verification keys. Recall that the secret key should satisfy d = 0
mod φ(N) and d = 1 mod N . As φ(N) is already shared by the parties, such
secret key can be obtained by computing d = φ(N)[φ(N)−1 mod N ] ∈ Z, which
satisfies both constraints: d = 0 mod φ(N) as it is a multiple of φ(N), and d = 1

8 Since Diogenes protocol applies thousands of GCD tests internally, the computa-
tional overhead of gcd (N − 1, Q − 1) is negligible (< .1%).
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mod N as φ(N) ∈ Z
∗
N (guaranteed by the fact that N is a conforming bi-prime)

and so φ(N) · φ(N)−1 = 1 mod N .
The parties obtain a sharing of d using standard techniques, see Hazay et

al. [HMR+19, Appendix C.2]. In the same work [HMR+19] it is shown how the
parties obtain the verification keys vj as well; below we briefly describe how
it works. During the key generation phase the parties obtain cj = Encpk(dj)
for every j, where Enc is the El-Gamal encryption scheme and pk is a joint
encryption public key that was previously generated by the parties. Then, the
parties sample a vector of random bases g = (g1, . . . , gc) ∈ QRc

N2 . Then, each
party publishes a corresponding vector of verification keys vj = gdj , and proves
that they correspond to the plaintext dj encrypted under cj . The language
LEQ[N ] = {(c, v)}, used for binding El-Gamal encryptions to verification keys, is
formally described in [HMR+19, Section 3]. The corresponding zero-knowledge
protocol ΠEQ is presented in [CKY09]. Note that, we could have used the exact
same technique of [HMR+19] for our threshold Paillier protocol, namely, when-
ever a party sends a decryption share ctj = ctdj , it also provides a proof that
cj is an encryption of logct(ctj). This, however, would result with an inefficient
threshold decryption protocol, as such proof is at least ×64 more expensive than
the proof of the language LEDL2 that we use (see Sect. 4).

3.2 Threshold Decryption

Here we present a standard approach for secure threshold decryption of Paillier
ciphertexts by [DJN10]. Recall (see Sect. 3) that the parties securely generated
a conforming bi-prime N , hold a Shamir sharing over the integers [d] = {dj}j∈T

of the secret decryption key d satisfying d ≡ 0 mod φ(N) and d ≡ 1 mod N . In
addition, a list of random elements g ∈ QRc

N2 is generated, and the verification
keys vj = gdj for each party is also published.

In the following we assume that the parties behave honestly and later we
describe how to handle malicious behaviour. Given a ciphertext ct = Enc(pt; r) ∈
Z

∗
N2 , party Pj broadcasts its decryption share ctj = ct2Δndj (recall that Δn =

n!). Given ctj for all j ∈ T , where T ⊂ [n] and |T | = t+1, decrypt by computing:

ct′ : =

⎡

⎣
∏

j∈T

ct
2Δnλ0

T,j

j mod N2

⎤

⎦ =

⎡

⎣
∏

j∈T

(ct2Δndj )2Δnλ0
T,j mod N2

⎤

⎦ (2)

=

⎡

⎣
∏

j∈T

ct4Δ2
ndjλ0

T,j mod N2

⎤

⎦ =
[
ct4Δn

∑
j∈T Δndjλ0

T,j mod N2
]

=
[
ct4Δ3

nd mod N2
]

=
[(

ct4Δ3
n

)d

mod N2

]

= Enc
(
N, 4Δ3

npt; r
4Δ3

n

)d

,

where the first equality holds since ctj = ct2Δndj , the third follows by Lagrange

interpolation in the exponent, since we have
(∑

j∈T Δndjλ
0
T,j

)
= Δ2

nd by Eq.
(1), and the last one follows by the encryption definition.
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Then, obtain the plaintext by computing[(
ct′ − 1

N

)
· (4Δ3

n)−1 mod N

]
=

[
pt · 4Δ3

n · (4Δ3
n)−1 mod (N)

]
= pt, (3)

as the first equality is derived from the correctness of the Paillier scheme. In
the last step (3), we multiply by the multiplicative inverse of 4Δ3

n modulo N
to obtain the plaintext pt. Correctness therefore holds for any pt ∈ ZN and any
number of parties n < min{P,Q}.

Handling Corrupted Parties. To detect a malicious party Pj that sends an incor-
rect decryption share ctj , we require Pj to send a zk-proof that ctj is com-
puted correctly using the public base ct and the secret share dj . As discussed in
Sect. 1.1, several approaches were proposed in the literature, and here we follow
the one taken by [DJN10]. In more detail, each party Pj sends along with its
decryption share ctj = ct2Δndj , a proof that the discrete log of ctj in the basis
ct2 equals the discrete log of vj in the basis g. In that sense, vj is a commitment
to Pj ’s secret share dj .

We remark that the discrete logarithm equality described above does not
assure that Pj behaves honestly, and a slightly stronger claim needs to be proved.
See Sect. 4 for the exact formulation of the language.

4 Zero-Knowledge Proof of Equality of Discrete Logs

In this section we present the proof of validity of threshold decryptions by the
parties. Notably, defining the appropriate language is somewhat subtle.

4.1 Formalizing the Language

We begin by describing the näıve approach, for some intuition:

Lnaive
EDL′ [N,g′,a] = {(h′, b′;x′) | h′, b′ ∈ Z

∗
N2 ∧ a = g′x′ ∧ b′ = h′x′} (4)

where (h′, b′) is the statement, N,g′,a are public parameters, and x′ is a witness.
The meaning of these values follows:

1. g′ are the base elements chosen in the DKG phase.
2. a = vj = g′2Δndj is the verification key associated with the prover Pj .
3. x′ = 2Δndj is the decryption key-share of Pj .
4. b′ = ctj = ct2Δndj is the claimed partial decryption of the prover Pj .

The above formalization raises two issues:

1. The Paillier ciphertext h′ = ct is in Z
∗
N2 and so it would be most natu-

ral to prove equality of discrete logs over this group. However, since Z
∗
N2 is

not a cyclic group, we work over the subgroup QRN2 , which raises another
issue: deciding membership to QRN2 is assumed to be a computationally hard
problem, known as quadratic residuosity problem (QRP).
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2. The goal of the zero knowledge proof of the language is to make sure the prover
provides (h′, b′) such that b′ = h′2Δndj . Since g′ might not contain a generator
of QRN2 , we may have that for every g′ ∈ g′ ord(g′) < |QRN2 |. In such case an
adversary may find x′′ �= 2Δndj mod |QRN2 | yet g′x′′

= g′2Δndj = a. This
means that for some h′s, picking b′ = h′x′′

gives (h′, b′;x′′) in the language
although b′ �= h′2Δndj .

To solve the first issue, in the DKG and threshold decryption phases the
parties will publish the roots of the elements, and prove statements on their
squares (as in [Sho00]). This ensures the whole proof holds over QRN2 . We
stress that we do not need to roll back and prove any statement in Z

∗
N2 . Instead,

after combining the (squared) decryption shares, the reconstructed plaintext will
end up being multiplied by 2, and can then be restored by multiplying by 2−1

mod N . To be more specific, random elements g′ ← (Z∗
N2)c are sampled and

published in the DKG phase, and we set g̃ = g′Δn , and g = g̃2 = g′2Δn ∈ QRc
N2 .

Similarly, we set h̃ = ct2Δn and h = h̃2 = ct4Δn ∈ QRN2 . Finally, we define
b̃ = ctj = ct2Δndj = h̃dj and b = b̃2 = hdj . Under the new syntax, we have:

1. g′ is some vector of elements chosen from (Z∗
N2)c at DKG, and g = g′2Δn .

2. a = gdj is the verification key vj = g′2Δndj associated with the prover Pj .
3. x = dj is a witness known by the prover Pj .
4. h̃ = ct2Δn .
5. b̃ = ctj = ct2Δndj is the claimed partial decryption of the prover Pj .

We get that logh b = logg a = dj , and to make sure that g ∈ QRc
N2 , h, b ∈ QRN2

we define the language with g̃, h̃, b̃ (instead of g, h, b):

LEDL2 [N, g̃,a] = {(h̃, b̃;x) | h̃, b̃ ∈ Z
∗
N2 ∧ a = g̃2x ∧ b̃2 = h̃2x}. (5)

As a side effect of that formulation we enjoy a shorter witness, that is, in Eq.
(4) the witness was x′ = 2Δndj whereas here (Eq. (5)) the witness is x = dj .

To address the second issue, our soundness argument in Theorem 4.5 implies
that (h̃, b̃; dj) ∈ LEDL2 [N, g̃,a] for every (h̃, b̃) provided by the (potentially mali-
cious) prover. That is, we essentially prove that the prover must use dj as its
witness in order for the verifier to accept.

In Sect. 4.2 we describe the setup phase; we present and prove a zero-
knowledge protocol for LEDL2 in Sect. 4.3; in Sects. 4.4–4.6 we show how to batch
the protocol over multiple ciphertexts; and finally we present a non-interactive
version of the protocol via the Fiat-Shamir transform in Section 1.

4.2 Setup Phase

Let us define the Setup algorithm for generating the parameters of the language.
We break the setup into two separate phases Setup = (Setup1,Setup2). The first
one is responsible for generating the conforming bi-prime N ← Setup1(1κ, 1σ),
and is implemented in Protocol E.1. The second one is responsible for generating
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all the rest, given N : (g̃,a;x) ← Setup2(1κ, 1σ, N). In the corresponding Proto-
col E.2, the verification keys (vj)j for all parties are generated, and each party
receives its secret share dj . We focus on a single party j to avoid an extra index
j in the security analysis. Thus, Setup takes 1κ and 1σ as inputs and outputs:
– A conforming bi-prime N = P · Q.
– Random bases g̃, where g′ is drawn uniformly at random from (Z∗

N2)c, and
g̃ = g′Δn and g = g̃2. We stress that g does not necessarily contain a gener-
ator of QRN2 .

– The witness x drawn uniformly from [−D,+D]. In the scheme, it is a secret
share of the private key of a certain party.

– a := gx. In the scheme, it is the verification key.

We note that g′2 is a random vector of elements in QRc
N2 due to the absence

of any known algorithm for computing a generator within this group. This obser-
vation underscores the challenge previously mentioned, as conventional proto-
cols for the equality of discrete logarithms with a low soundness error typically
assume g contains a generator (e.g., [FPS01,DJN10]). We address this chal-
lenge by demonstrating that a randomly selected vector of elements contains
an “almost generator” of the group with overwhelming probability, as defined
below:

Definition 4.1. Let β ∈ N, let g ∈ G be an element. We say that g is a β-almost
generator if |G|

ord(g) is a β-smooth number.

Setting g = (g′2)Δn , Corollary 4.3 below implies that g contains a βσ0 -almost
generator with probability > 1 − 2−(σ+1) where βσ0 ≤ 2σ0+3 log N . Apparently,
assuming g contains an almost generator suffices to obtain a low soundness error.

Lemma 4.2. Let G be a cyclic group and let g ∈ G be a uniformly random
element, then |G|

ord(g) is β-smooth with probability at least 1 − log ord(G)
β log β .

By Lemma 4.2, if we let βσ0 := �2σ0+2 log(|G|)�, then |G|
ord(g) is βσ0 smooth with

probability greater than 1 − 2−(σ0+1).

Corollary 4.3. Let G be a cyclic group, g ∈ G be a uniformly random element,
and β > n, then |G|

ord(gΔn )
is β-smooth with probability at least 1 − log ord(G)

β log β .

Omitted proofs are in Appendix G. To conclude, the algorithm may fail with
probability 2−σ. Specifically, failure means that either N is not a bi-prime or g
does not contain a βσ0-almost generator. The modulus generation phase can be
taken to provide a failure probability of 2−σ+1 which by the union bound gives
the desired failure probability.

4.3 The Protocol

The formal description is given in Protocol 4.1. We prove the following.

Theorem 4.4. The protocol ΠEDL2 (Protocol 4.1) is a zero-knowledge argument
for relation EDL2 (Definition 2.7) under the factoring assumption.

Proof. We show that all properties of a zero-knowledge argument are satisfied.



158 O. Friedman et al.

PROTOCOL 4.1 ( ΠEDL2 : ZKP of Equality of Discrete Logs over QRN2 )

Inputs. P has (N, g̃,a, h̃, b̃; x) and V has (N, g̃,a, h̃, b̃) where (N, g̃,a; x) ←
Setup(1κ, 1σ) and arbitrary h̃, b̃. Denote g = [g̃2 mod N2], h = [h̃2 mod N2]
and b = [b̃2 mod N2].

Protocol.

1. P samples r ← [−22κD, +22κD) and sends u = [gr mod N2], v = [hr

mod N2] to V.
2. V samples e ← [0, 2κ) and sends e to P.
3. P sends z = r − e · x ∈ Z to V.
4. V verifies that:

– h, b, v ∈ Z
∗
N2 ,u ∈ (Z∗

N2)
c (it suffices to check that h, b, v, u1, . . . , uc �=

0 mod N as otherwise we can use these values to factor N),
– z ∈ (−D(22κ + 2κ), +D(22κ + 2κ)),
– u = gz · ae mod N2 and v = hz · be mod N2.

Completeness. Let (N, g̃,a;x) be the output of Setup(1κ, 1σ), then, for every
h̃ ∈ Z

∗
N2 and b̃ = [h̃x mod N2] the protocol’s transcript is accepting. The range

check of h̃, b̃,u and v obviously goes through, as well as the range check of z,
which follows immediately from the ranges of r, e and x. Then, we have

[gz · ae mod N2] = [gr−ex · gex mod N2] = [gr mod N2] = u, and

[hz · be mod N2] = [h(r−ex) · hex mod N2] = [hr mod N2] = v.

Special Honest-Verifier Zero-Knowledge (SHVZK). We show that there exists a
PPT simulator S, such that for every (h̃, b̃) ∈ LEDL2 [N, g̃,a] and e′ ∈ {0, 1}κ

it holds that S(N,g̃,a)(h̃, b̃, e′)
s≡

{
View(P(h̃, b̃;x) ↔ V(h̃, b̃, e′))

}
(see Defini-

tion 2.4). The simulator S samples z′ ← (−D(22κ + 2κ),+D(22κ + 2κ)), and
computes u′ = [gz′ ·ae′

mod N2] and v′ = [hz′ ·be′
mod N2]. We argue that the

statistical distance between (u, v, e′, z) (of the real execution) and (u′, v′, e′, z′)
(of the simulation) is negligible in κ. Note that (u, v) and (u′, v′) are fully deter-
mined by (N, g̃,a, h̃, b̃, e′, z) and (N, g̃,a, h̃, b̃, e′, z′), respectively. We have that
z′ (in the simulation) is uniformly distributed from (−D(22κ+2κ),+D(22κ+2κ))
independent of e′, whereas z (in the real execution) is computed by z = r − e′x,
where x ∈ [−D,+D] and r is drawn uniformly from [−22κD,+22κD). Next, we
show that z and z′ are statistically close. The distribution of z is as follows:

– x ≥ 0: z is uniformly distributed over (−D(22κ+2κ)−e|x|,D(22κ+2κ)−e|x|).
– x < 0: z is uniformly distributed over (−D(22κ+2κ)+e|x|,D(22κ+2κ)+e|x|).
In both cases there are 2D(22κ + 2κ) − e|x| values ζ in the range (−D(22κ +
2κ),+D(22κ + 2κ)) for which Pr[z = ζ] = Pr[z′ = ζ] = 1/

(
2D(22κ + 2κ)

)
. For

the rest e|x| ≤ 2κD values ζ we have Pr[z = ζ] = 0. Therefore, the distance
is 1

2

∑
ζ |Pr[z = ζ] − Pr[z′ = ζ]| ≤ 2κD

2D(22κ+2κ) < 2−κ, where ζ iterates over
(−D(22κ + 2κ) − e|x|,+D(22κ + 2κ) + e|x|).
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Soundness. In our main Theorem 4.5, we prove a stronger property. Namely,
we show that no PPT adversary can compute a statement (h̃, b̃) that passes
verification with non-negligible probability, when (h̃, b̃;x) �∈ LEDL2 . If we assume
in contradiction that an adversary breaking the soundness as in Definition 2.7
exists, namely, it can compute a statement (h̃, b̃) and pass verification with non-
neligible probability, while (h̃, b̃;x′) �∈ LEDL2 for any x′, then it also holds for
x = x′ in particular, in contradiction to Theorem 4.5. The stronger property is
needed in the UC simulation in Appendix F, since otherwise an adversary could
send a wrong decryption share yet pass verification. Notably, there may exist
statements (h̃, b̃;x′) ∈ LEDL2 such that (h̃, b̃;x) /∈ LEDL2 for which an adversary is
able to convince the verifier. However, Theorem 4.5 suggests that such statements
are computationally hard to find, as it reduces to factoring N . �

In what follows, we complete the soundness claim by proving Theorem 4.5,
which essentially provides a reduction from factoring to a PPT cheating prover.
We break the reduction into two parts. In the first part, Lemma 4.6 provides
an algorithm A(P∗)

LO that can find an element y ∈ QRN2 of low order, given
a deterministic cheating prover. Notably, this does not break the Low Order
assumption directly, which requires (a multiple of) ord(y) as an additional out-
put. Then, Theorem 4.5 provides a factoring algorithm A, given a probabilistic
cheating prover P∗. The factoring algorithm A applies several calls to A(P∗

ω)
LO ,

sampling the random tape of P∗ to make it deterministic. Upon success, it
extracts y ∈ QRN2 of low order. Using properties of conforming bi-primes, we
show that one could use this y to factor N .

Theorem 4.5. Let P∗ = (P∗
1 ,P∗

2 ) be a stateful probabilistic prover such that

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃,b̃)←P∗
1 (x)

⎡

⎢
⎢
⎣

(h̃, b̃;x) �∈ LEDL2 [N, g̃,a]
(P∗

2 (x) ↔ V(h̃, b̃)) = 1

∣
∣
∣
∣
∣

N is a conforming
bi-prime and
g̃2 contains a βσ0

almost generator

⎤

⎥
⎥
⎦ ≥ ε(κ),

where P∗
1 ,P∗

2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs, and such that
time(P∗

1 ) + time(P∗
2 ) ≤ T = T (κ). Assume further that ε(κ) > 2−κ+3. Then

there exists a non-uniform adversary ANU that solves the factorization problem
(Definition 2.6) with respect to Setup1(1κ, 1σ). The adversary ANU first applies
(g̃,a;x) ← Setup2(1κ, 1σ, N). Then, ANU factors N with probability ≥ εNU(κ)
and expected time E[time(ANU)] ≤ TNU(κ) such that TNU

εNU
≤ Õ(32κc(T

ε + βσ0)).
Moreover, there exists a uniform adversary AU that factors with probability ≥

εU(κ) and expected time E[time(AU)] ≤ TU(k) such that TU

εU
≤ Õ(16κc( T

ε2 +βσ0)).

Lemma 4.6. Let κ > 0, and let ε ≥ 22−κ. Let P∗ = (P∗
1 ,P∗

2 ) be a state-
ful deterministic prover, and let (N, g̃,a;x) ← Setup(1κ, 1σ) be an output from
Setup. Suppose N is a conforming bi-prime, g̃2 contains a βσ0-almost generator
and

Pr
(h̃,b̃)←P∗

1 (x)

[
(h̃, b̃;x) �∈ LEDL2 [N, g̃,a]
(P∗

2 (x) ↔ V(h̃, b̃)) = 1

]

≥ ε(κ),
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where P∗
1 ,P∗

2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs. Then there exists
an oracle machine A(P∗)

LO , that is given as input (N, g̃,a, ε), and outputs a non-
trivial element 1 �= y ∈ QRN2 and an exponent 0 < e′ < 2

ε such that ord(ye′
) is

a βσ0-smooth number, with probability at least 1
8c . A(P∗)

LO runs in time ≤ Õ(T
ε ),

where T = time(P∗(1κ, 1σ, N, g̃,a;x)).

We note that Theorem 4.5 and Lemma 4.6 do not assume the cheating prover
P∗ is polynomial-time. Instead, the time complexity and success probability of
the factoring reduction A are analyzed as a function of P∗ time complexity T
and success probability ε. When applying Theorem 4.5 to a PPT, and T, 1

ε ≤
poly(κ), we get a PPT reduction. However, one may also be interested in getting
a concrete bound on the time to forge a proof, given concrete parameters. To
this end, based on NIST’s estimations, we can deduce a concrete bound on the
complexity of cheating the proof, as done in Table 2.

The first reduction ALO in Lemma 4.6 requires the following Lemma:

Lemma 4.7. Let G be cyclic group and let |G| =
∏k

i=1 pri
i where pi ∈ primes

are distinct and ri ∈ N for all i ∈ [k]. Let g ∈ G be an element, and denote
ord(g) =

∏k
i=1 pαi

i where αi ≤ ri for all i. Then there exists η ∈ G such that
〈g, η〉 = G and ord(η) =

∏
i:αi �=ri

pri
i .

The proof of Lemma 4.7 is in Appendix G. We are now ready to prove the
first part of our reduction.

ALGORITHM 4.2 ( ALO: First Part of the Reduction )

Input. Algorithm ALO receives as input (N, g̃,a, ε) and is given oracle access
to a stateful deterministic prover P∗ = (P∗

1 , P∗
2 ).

Algorithm A(P∗)
LO works as follows:

1. Receiving the claim: A(P∗)
LO calls P∗

1 (1κ, 1σ, N, g̃,a; x) and receives h̃
and b̃. Since P∗

1 is deterministic and (N, g̃,a; x) is fixed, the values h̃ and
b̃ are fixed as well. Since we have (h̃, b̃; x) �∈ LEDL2 [N, g̃,a] with a positive
probability, we may deduce that b̃2 �= h̃2x. We denote b := b̃2, h := h̃2,
and y = b

hx .

2. Receiving proofs: A(P∗)
LO calls P∗

2 and receives a (deterministic) claim

u, v. A(P∗)
LO then forks the protocol and sends at most ε−1 random chal-

lenges, until receiving the first valid response. If none of the responses

is valid, then A(P∗)
LO outputs the failure symbol ⊥. Otherwise, for one of

the challenges e1 it received a valid response. In this case, A(P∗)
LO forks the

protocol and sends the challenges e1+1, e1+2, . . . , min(e1+ 2
ε
−1, 2κ −1).

If none of the responses to these challenges is valid, then A(P∗)
LO outputs

⊥. Otherwise, A(P∗)
LO has two accepting transcripts (e1, z1) and (e2, z2),

such that e1 < e2 < e1 + 2
ε
. Output (y, e2 − e1).
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Proof (of Lemma 4.6). Consider A(P∗)
LO depicted in Algorithm 4.2. The time

complexity of A(P∗)
LO is dominated by that of P∗, and is therefore bounded by

Õ (
T
ε

)
. Let us prove that whenever ALO does not return ⊥, its output is valid

with high probability. Clearly, y ∈ QRN2 , e′ ∈ (0, 2
ε ), and y �= 1, so it remains to

show that ord(ye′
) is a βσ0-smooth number.

Since the transcripts (e1, z1) and (e2, z2) are both accepting, the following
equations hold (modulo N2):

u = gz1 · ae1 , v = hz1 · be1 , u = gz2 · ae2 , and v = hz2 · be2 .

Denoting e′ = e2 − e1, z
′ = z2 − z1, we obtain

1 = gz′ · ae′
mod N2 and 1 = hz′ · be′

mod N2.

Since g contains a βσ0 -almost generator, we may pick i ← [c] and set g =
gi, a = ai, and deduce that g is a βσ0-almost generator with probability ≥ 1

c . By
Lemma 4.7, there exists an element η ∈ QRN2 such that ord(η) is βσ0 -smooth
and 〈g, η〉 = QRN2 . Therefore, there exist α, δ such that h = gαηδ and so

1 = gz′ · ae′
mod N2 and 1 = gα·z′

ηδ·z′ · be′
mod N2.

Recall that α, δ and η are unknown to ALO. Dividing the second equation by the
first equation raised to the power of α we get

1 =
gα·z′

ηδ·z′ · be′

gα·z′ · aα·e′ = ηδz′
(

b

aα

)e′

mod N2. (6)

Recall that a = gx. We may deduce that

b

aα
=

b

hx
· hx

aα
= y · gαxηδx

gαx
= yηδx mod N2.

Then, substituting b
aα = yηδx in Eq. (6), we obtain

1 = ηδz′ (
yηδx

)e′
= ηδ(z′+xe′)ye′

mod N2.

Finally, raising to the power of ord(η), we conclude that

1 =
(
ηδ(z′+xe′)ye′

mod N2
)ord(η)

= yord(η)e′
mod N2.

Since ord(ye′
)|ord(η) We may conclude that ord(ye′

) is βσ0 -smooth.
It remains to bound the probability that A(P∗)

LO succeeds. With probability
at least 1

c A(P∗)
LO picks g = gi which is a βσ0-almost generator, otherwise we

will assume that it fails. In the first part, A(P∗)
LO sends ε−1 challenges. Since P∗

is deterministic, we may define an accepting challenge to be a challenge e for
which P∗ returns a valid response. Each of the ε−1 challenges is accepting with
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probability at least ε, and the challenges are independent, so the probability that
none of them is accepting is at most (1 − ε)ε−1 ≤ e−1 ≈ 0.37. Otherwise, A(P∗)

LO

receives e1 which is sampled uniformly from the set of the accepting challenges.
In the next step, A(P∗)

LO sends the challenges e1 + 1, e1 + 2, . . . ,min(e1 + 2
ε −

1, 2κ − 1), and fails if none of them is accepting. Let us denote by � the number
of accepting challenges e1 for which all the challenges e1 +1, e1 +2, . . . ,min(e1 +
2
ε − 1, 2κ − 1) are not accepting, and bound �: The distance between any such
two accepting challenges is at least 2

ε , and they all lie in [0, 2κ), so 2
ε (� − 1) ≤

2κ, implying that � ≤ ε2κ

2 + 1. There are at least ε2κ accepting challenges, so
the probability that a uniform accepting transcript fails in this step is at most

�
ε2κ ≤ ε2κ/2+1

ε2κ = 1
2 + 1

ε2κ ≤ 3
4 .

To conclude, A(P∗)
LO succeeds with probability at least 1

c · 1
4 (1 − e−1) ≥ 1

8c . �

Before proving our main theorem, we need the following two results, related
to reducing elements of small order into factoring (proofs are in Appendix G):

Lemma 4.8. Let Factor be a factoring algorithm. There exists an algorithm
Factor′ that, given inputs N,x, e such that

– N = PQ is a conforming bi-prime; and
– x ∈ QRN2 satisfies x �= 1 mod N2, e �= 0, but xe = 1 mod N2,

outputs P,Q in time(Factor′(N,x, e)) ≤ time(Factor(e)) + polylog(N).

Lemma 4.9. There exists an algorithm Factor′′, that given N,x, β as input,
where N = PQ is a conforming bi-prime, 1 �= x ∈ QRN2 , and ord(x) is β-
smooth for some β < N , outputs P,Q in time(Factor′′(N,x, β)) ≤ β log3(N).

Notably, the reductions in Lemma 4.8 and Lemma 4.9 are polynomial with e
and β. Nevertheless, they are only applied to e, β that are poly(κ) bounded. We
now prove Theorem 4.5, which constitutes the main contribution of this work:

Proof (Proof of Theorem 4.5). Our proof is based on ideas that are derived from
the proof of Theorem 3 in [BG11].

Let P∗ be such a prover. We denote by P∗
ω = (P∗

1,ω,P∗
2,ω) the deterministic

prover obtained by fixing P∗’s random tape to ω. Then ANU works as follows:

1. Receive 1κ, N and i := advice(1κ).
2. Sample ω and (g̃,a;x) ← Setup2(1κ, 1σ, N).
3. Call (y, e′) ← A(P∗

ω)
LO (N, g̃,a, 2−i). If ⊥ is received, output ⊥.

4. If ye′
= 1 mod N2, factor N using Lemma 4.8.

5. Otherwise, factor N using Lemma 4.9.

First, we show that there exist an advice i ≤ κ − 2 such that ANU factors
N with probability at least 1

8c . Denote Ii = (2−i, 2−i+1], and denote by ωV the
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random tape of the verifier V. We further denote by P the random variable that
for each (ω,N, g̃,a, x), returns:

Pr
ωV

[
(h̃, b̃;x) �∈ LEDL2 [N, g̃,a]
(P∗

2 (x) ↔ V(h̃, b̃)) = 1

]

,

where P is defined over the product distribution over P∗’s random tape for ω,
and (N, g̃,a, x) is sampled from Setup, conditioned on it being successful (that is,
N is a conforming bi-prime and g̃ contains a βσ0 almost generator). Intuitively,
P is the success probability of P∗ to pass verification, which may depend on its
random tape and the setup.

Therefore, by definition, E(P ) ≥ ε. We claim that there exists i ≤ κ− 2 such
that Pr[P ∈ Ii] ≥ 2iε

4κ .9

Let us assume by contradiction that no i satisfies this inequality. Then

E(P ) ≤
κ−2∑

i=1

Pr[P ∈ Ii] · 2−i+1 + Pr[P ≤ 2−κ+2] · 2−κ+2 < ε/2 + 2−κ+2 < ε,

since ε > 2−κ+3, in contradiction. We may conclude that there exists a value
i ≤ κ−2 such that Pr[P ≥ 2−i] ≥ Pr[P ∈ Ii] ≥ 2iε

4κ . Fix this i as the advice tape
for ANU. Therefore, with probability ≥ 2iε

4κ , 2−i is a correct input to ALO, and
therefore by Lemma 4.6, ANU receives a correct output (y, e′) with probability
≥ 2iε

4κ × 1
8c . Then by Lemma 4.8 and Lemma 4.9, ANU outputs a non-trivial

factorization of N with this same probability ≥ 2iε
32κc .

Next, we bound the expected run-time of ANU. By Lemma 4.6, the run-time
of Line 3 is time(ALO(. . . , ε = 2−i) = Õ(T2i). Then, the run-time of Lines 4–
5 is Õ(βσ0) + timeFactor(e′), where the second term is bounded by Õ(ε−1/2).
However, these lines are entered only upon success of Line 3, and we must take
this into consideration when considering the expected run-time of ANU.

If we denote by εNU the precise success probability of ANU (in particular,
≥ 2iε

32κc ), the expected run-time of ANU is therefore TNU ≤ Õ(T2i) + εNU · βσ0 ,
since Lines 4–5 are executed only upon success, to extract the factorization.
Therefore, TNU

εNU
≤ Õ(32κcT

ε + βσ0), as desired.
Finally, we observe that advice(κ) can be computed in time Õ T

ε2 . This can be
done by running Ai for each i ≤ κ − 2 sequentially, for O(2i) sampled random
tapes (for Setup1,Setup2,P∗), and observing the first i for which ALO does not
output ⊥. Hence, we can define a uniform adversary AU that computes advice(κ)
and then calls ANU, yielding time(AU)/εU ≤ Õ(16κc( T

ε2 + βσ0)). �

9 Note that if P∗ is PPT, we have that 1/ε is poly(κ), and i < log2(1/ε) (to get
probability ≤ 1), and so 2i = poly(κ).
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4.4 Batching

Batching allows a prover to convince a verifier of the correctness of many state-
ments in an efficient way, i.e., much faster then it would take to prove (and verify)
each statement separately. In the context of threshold decryption, batching may
shift the bottleneck from the verification of the validity of a partial decryption
to the combination of the parties’ verified partial decryption into the plaintext.

Recall (from Protocol 4.1) that proving (h̃, b̃;x) ∈ EDL2 requires raising g
and h to the power of r, which is a large exponents. Then, without batching,
proving B statements (h̃i, b̃i;x) requires performing 2B exponentiations with
large exponents: namely, raising g and each hi to the power of the correspond-
ing large exponent ri. To improve efficiency, we use the ‘small exponent’ (SE)
technique, introduced in [BGR98] and followed by [APB+04]. The idea of the
technique is to combine the (h̃i, b̃i) statements into a single statement (h̃, b̃)
using a random linear combination, such that h̃ =

∏
h̃ti

i and b̃ =
∏

b̃ti
i , and

then use Protocol 4.1 only once, on the combined (h̃, b̃). Hence, raising to the
power of a large exponent r happens only twice, just like in a proof of a single
statement. The efficiency gain by that combination depends on the size of the
coefficients ti, which we show can be much smaller than the size of r without
increasing the soundness error of the proof. The resulting proof of B statements
requires both the prover and the verifier only 2B small exponentiations and 2
large exponentiations (2B large exponentiations).

While our batching protocol is similar to existing protocols, our security
analysis is novel. Similarly to Theorem 4.5, we use the notion of conforming
bi-primes and present a reduction to the factoring problem, without assuming
N is a safe bi-prime. Intuitively, the soundness of the batched protocol relies on
the fact that it is not possible for the prover to pick statements (h̃i, b̃i;x), of
which at least one is incorrect, such that their random combination (h̃, b̃;x) is a
correct statement (except for a negligible probability).

We note that using the small exponents technique requires the verifier to
pick the coefficients ti only after the prover committed to its statements, which
incurs two additional rounds over Protocol 4.1. We show, however, that even this
protocol (with five rounds) can be turned non-interactive using the Fiat-Shamir
transform without significantly increasing soundness error (see Sect. 1).

Protocol 4.3 formally describes the batched proof of equality of discrete logs.

PROTOCOL 4.3 ( ΠB
EDL2 : Batched Proof for EDL2. )

Inputs. P has (N, g̃,a; x) and (h̃i, b̃i)i∈[B], and V has (N, g̃,a) and

(h̃i, b̃i)i∈[B], where (N, g̃,a; x) ← Setup(1κ, 1σ) and arbitrary (h̃i, b̃i)i∈[B].
Protocol.

1. V checks that h̃i, b̃i ∈ Z
∗
N2 , and sends ti ← [0, 2κ) to P for every i ∈ [B].

Then P and V compute h̃ =
∏

i∈[B] h̃
ti
i , b̃ =

∏
i∈[B] b̃

ti
i .

2. P and V run ΠEDL2 (Protocol 4.1) to prove (h̃, b̃; x) ∈ LEDL2 [N, g̃,a].
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Completeness follows by the fact that if b̃i = h̃x
i for all i ∈ [B] then b̃ =(∏

i∈[B] b̃
t
i

)
=

(∏
i∈[B] h̃

tx
i

)
=

(∏
i∈[B] h̃

t
i

)x

= h̃x, and so (h̃, b̃;x) ∈ EDL2.

As for HVZK, we show that for every (h̃i, b̃i)i∈[B] such that (h̃i, b̃i;x) ∈
LEDL2 [N, g̃,a] for all i, there exists a PPT simulator S, such that

S(N,g̃,a)({h̃i, b̃i}i∈[B])
c≡

{
View(P({h̃i, b̃i}i∈[B];x) ↔ V({h̃i, b̃i}i∈[B]))

}
.

The simulator S simply computes h̃ and b̃ as in the protocol, and runs the sim-
ulator associated with ΠEDL2 (Protocol 4.1) on (h̃, b̃) and outputs (u′, v′, e′, z′)
as output by that simulator. The transcript produced by S and the one under
the real execution are statistically close with the exact same analysis as in the
proof of Theorem 4.4. Next, we argue soundness:

Theorem 4.10. Let P∗ = (P∗
1 ,P∗

2 ) be a stateful prover such that:

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃i,b̃i)i∈[B]←P∗
1 (x)

⎡
⎢⎢⎣

∃i : (h̃i, b̃i; x) �∈ LEDL2 [N, g̃,a](
P∗

2 (x) ↔ V((h̃i, b̃i)i∈[B])
)

= 1

∣
∣
∣
∣
∣

N is a conforming
bi-prime and
g̃2 contains a βσ0

almost generator

⎤
⎥⎥⎦ ≥ ε,

where P∗
1 ,P∗

2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs. Then assuming
factorization is hard, ε = neg(κ).

Notably, if b̃i = −h̃x
i for some i, then (h̃i, b̃i;x) ∈ LEDL2 [N, g̃,a] (recall the

definition of LEDL2 from Sect. 4.1) and Protocol 4.3 may succeed. However, as
mentioned earlier, decryption shares are squared before being used, so multiply-
ing a decryption share by (−1) does not affect the decryption.

Proof. For brevity, denote the event that the prover attempts to cheat the verifier
(assuming a successful setup) by

Cheat = ∃i ∈ [B] : (h̃i, b̃i;x) �∈ LEDL2 [N, g̃,a],

and the event that P∗ breaks soundness by

Break = [(P∗
2 () ↔ V((h̃i, b̃i)i∈[B])) = 1]

∣
∣Cheat.

Then, the theorem states that ε = Pr[Break] is negligible, because:

Pr[Break] = Pr
[
Break|(h̃, b̃;x) �∈ LEDL2 [N, g̃,a]

]
· Pr[(h̃, b̃;x) �∈ LEDL2 |Cheat]

+ Pr
[
Break|(h̃, b̃;x) ∈ LEDL2 [N, g̃,a]

]
· Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat]

≤ Pr
[
Break|(h̃, b̃;x) �∈ LEDL2 [N, g̃,a]

]
+ Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat].

Hence, we bound Pr[Break] by the sum of ε1 := Pr
[
Break|(h̃, b̃;x) �∈

LEDL2 [N, g̃,a]
]

and ε2 := Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat]. We have ε1 = neg(κ)
by Theorem 4.5 (otherwise we can construct an adversary P∗ who breaks the
soundness of ΠEDL2 (Protocol 4.1)). In addition, ε2 ≤ 2−κ by Lemma 4.11 below,
assuming factorization is hard, which concludes the proof. �
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Lemma 4.11. Let P∗
1 be a PPT for which

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃i,b̃i)i∈[B]←P∗
1 (1κ,1σ,N,g̃,a;x),

{ti}←[0,M)

⎡
⎣∃i : (h̃i, b̃i; x) �∈ LEDL2 [N, g̃,a]

∧ (h̃, b̃; x) ∈ LEDL2 [N, g̃,a]

∣
∣
∣
∣
∣
N is a confor-
ming bi-prime

⎤
⎦ = ε,

where M ∈ N is the coefficients domain, h̃ =
∏

i∈[B] h̃
ti
i and b̃ =

∏
i∈[B] b̃

ti
i . If

ε ≥ 2
M , then there exist an algorithm that factors N in time Õ(ε−0.5).

Proof. Let (N, g̃,a;x) ← Setup(1κ, 1σ), and let (h̃i, b̃i)}i∈[B] be the statements
produced by P∗

1 . Assume that (h̃i0 , b̃i0 ;x) �∈ LEDL2 [N, g̃,a] for some index i0 and
that the probability of (h̃, b̃;x) ∈ LEDL2 [N, g̃,a] is at least ε ≥ 2

M . Following the
definition of LEDL2 , we may denote hi = h̃2

i , bi = b̃2i , h = h̃2, b = b̃2, and obtain
that hx

i0
�= bi0 and that the probability of hx = b is at least ε ≥ 2

M . W.l.o.g,
assume i0 = 1. By definition, hx = b if and only if (Πi∈[B]h

ti
i )x = Πi∈[B]b

ti
i ,

which is equivalent to Πi∈[B]

(
hx

i

bi

)ti

= 1. By isolating the i0 = 1 term we get:

(
hx
1

b1

)t1

=
∏

i∈[B]\{1}

(
hx

i

bi

)−ti

.

(7)

There exists a choice of t2, . . . , tB , for which Equation (7) holds with a proba-
bility of at least ε where t1 is uniformly distributed. Therefore, there exist at least

εM choices of t1 ∈ [0,M) such that
(

hx
1

b1

)t1
yields the same result. Assuming

ε ≥ 2
M , we may deduce that ord

(
hx
1

b1

)
≤ (

ε − 1
M

)−1 ≤ 2
ε .

To conclude, ord
(

hx
1

b1

)
= O(ε−1). While hx

1
b1

is known to A, its order may not
be known. Nevertheless, A can find the order using Pollard’s rho algorithm in
time Õ(ε−0.5). Next, A has an element hx

1
b1

∈ QRN2 with hx
1

b1
�= 1 mod N2, and

knows its order, which is O(ε−1). Therefore, A can factor ord
(

hx
1

b1

)
(naively) in

time Õ(ε−0.5). Therefore, by Lemma 4.8, A can factor N in time Õ(ε−0.5). �

4.5 Concrete Parameters

In Table 2 we refer to possible instantiations and compute the concrete statistical
and computational security ensured by following the reductions.

4.6 Batch Verification

Batch verification allows a verifier to simultaneously verify proofs from multiple
non-interactive provers, thereby reducing computational load. It is somewhat
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Table 2. Possible parameter instantiations for Tiresias with σ0 := 40. The computa-
tional security parameter is controlled by the complexity of factoring (by NIST) as a
function of the modulus size κ(log2(N)). The non-uniform reduction in Theorem 4.5
suggests a multiplicative overhead of 32cκ. Statistical security of the DKG is controlled
by c, the number of βσ0 -almost generator candidates.

Modulus Size Number of gi’s Computational Security Statistical DKG Security

log2(N) c κ − log2(32cκ) σ = σ0c

2048 1 112 – 12 = 100 40

3072 2 128 – 13 = 115 80

analogous to the batching procedure done using the ‘small exponent’ method,
however since different provers have different verification keys aj , instead of
digesting multiple exponentiation operations into a single one, we get a multi-
exponentiation [Pip80]. Essentially, instead of validating two (or more) equations
gx = 1 and hy = 1 separately, we may sample randomizers r1, r2 ∈ [0, 2κ]
and verify gr1x · hr2y = 1, and with 1 − neg(κ) probability this implies the
validity of both (or all) equations. An algorithm for computing

∏C
i=1 gti

i is called
a C-multi-exponentiation and can be computed more efficiently than performing
C individual exponentiations (namely, gti

i ) and then multiplying the results.
Importantly, if batch verification fails, the verifier does not know the identity
of the cheaters, since all claims were merged into one. However, the verifier can
then verify each proof individually. Since the technique is known and security
proof is analogous to that of batching, we refer to Appendix H for details.

5 Performance

We implemented our threshold Paillier scheme in Rust; the implementation is
released as open source at https://github.com/odsy-network/tiresias. We use
crypto-bigint10 for constant-time computations over sensitive data to avoid leak-
age. In addition, we use rayon11 for parallelism. Our evaluation demonstrates
that the scheme can greatly leverage that.

We evaluate the performance of our scheme with number of parties, n, varying
from 10 to 1000, and batch sizes, B, varying from 1 (without batching) to 1000.
In cases where it applies, we use t = (2/3)n as the threshold. All experiments are
conducted over two machine types: (1) AWS EC2 instance of type c6i.24xlarge12

with 96 3rd generation Intel Xeon Scalable vCPUs @ 3.50GHz, and (2) MacBook
Pro Apple M1 Max with 10 Cores @ 3.22GHz.

Our experiments use a 2048-bit bi-prime modulus N (equivalent to a 4096-bit
Paillier modulus N2) where the decryption key d = φ(N)[φ(N)−1 mod N ] ∈ Z

10 https://github.com/RustCrypto/crypto-bigint.
11 https://github.com/rayon-rs/rayon.
12 https://aws.amazon.com/ec2/instance-types/c6i/.

https://github.com/odsy-network/tiresias
https://github.com/RustCrypto/crypto-bigint
https://github.com/rayon-rs/rayon
https://aws.amazon.com/ec2/instance-types/c6i/
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is (t, n)-Shamir shared over Z using tighter coefficient bounds as analysed in
Appendix B.2 above. Presented run-times are averages over 10 runs. Appendix D
reports concrete run-times in tables, below we present illustrative graphs only.

As presented in Table 1, existing protocols [FS01,HMR+19] that rely on stan-
dard hardness assumptions are similar to ours but require extensive repetitions.
Therefore, we compare our performance with the “ideal” semi-honest (SH) model
with no proofs. Comparison with [FS01] and [HMR+19] can be estimated by
applying the multiplicative factors in Table 1 to the SH model’s benchmark.

Figures & Tables. In Fig. 1 and the supporting Table 3 we report the run-time
for a single party to produce B decryption shares (for B different ciphertexts).

Then, in Fig. 2 and the supporting Table 5 we report the run-time for com-
bining the decryption shares from the parties. In the malicious security model
the parties also provide a proof of equality of discrete logs to prove the correct-
ness of the decryption shares, in which case we use B-batched proofs, and the
‘Mal’ columns include the time it takes to verify these.

Finally, in Table 4 we isolate the time it takes to verify a B-batched proof.
Apart for run-time, we report on the secret decryption key size and the proof

size in bits, which both depend on the number of parties. For n = {10, 100, 1000}
parties, the size in bits of the key d (which is shared over the integers) is
{4295, 5324, 19937} and the proof size in bits is {12743, 13772, 28385}.

Explaining the Results. Note that in all figures and tables the number of parties,
n, affects the run-time. This is due to the fact that n affects the party’s key-share
size when shared over the integers (see Sect. 2.1 and Appendix B.2), which in
turn affects both prover’s and verifier’s exponent size.

The attentive reader may observe an abrupt jump in run-time from a batch
of B1 = 100 ciphertexts to a batch of B2 = 1000 in the C6i machine, and
from B1 = 10 ciphertexts to B2 = 100 in the M1 machine. This jump is due
to the parallelism of our implementation, which utilizes up to 96 cores of the
C6i machine and up to 10 cores of the M1 machine. Up to B1 ciphertexts, the
workload is quite concurrent and runs simultaneously for all ciphertexts in the
batch, whereas above B1 ciphertexts work becomes sequential.

Importantly, the figures show that adding protection against a malicious
adversary does not incur high overhead. For all n and B this overhead is a small
constant and as n and B grow (toward n = 1000 or B = 1000) this constant
reaches 1.5. We present the precise factors in the tables under the ‘×’ column.

The batching technique (along the multi exponentiation described in
Section H.1) proves itself necessary if a truly scalable solution is needed. For
decryption share computation (Table 3) with n = {10, 100, 1000}, the prover’s
time for generating a decryption share for a single ciphertext is {134, 355, 1434}
milliseconds on M1 machine, respectively. When generating decryption shares
for B = 1000 ciphertexts, the cost is only {12.5, 32.5, 144} milliseconds for each
one, respectively, which is about 10× improvement. Similar results are obtained
for combination of decryption shares (Table 2) and proof verification (Table 4).
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Fig. 1. Time in milliseconds to generate a decryption share with and without proof of
equality of discrete logs (e.g., in the presence of a malicious and semi-honest adversaries,
respectively).

Fig. 2. Time in milliseconds to combine decryption shares from t = 2n/3 parties of B
ciphertexts, with and without proof of equality of discrete logs (e.g., in the presence of
a malicious and semi-honest adversaries, respectively).

6 Conclusion

This paper introduces a novel security reduction technique, from the soundness
of the proof of equality of discrete logs to the factoring problem. Combining our
zero-knowledge proof (and its batching capabilities) with a large scale modulus
generation (e.g., Diogenes [CHI+21]), we show for the first time, that threshold
Paillier encryption scheme is practical under standard assumptions. In fact, we
demonstrate that threshold Paillier is not only practical, but also ready for a
large scale deployment with thousands of parties.
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Matematičke znanosti, (546= 25):15–31, 2021.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

Sho00. Victor Shoup. Practical threshold signatures. In Advances in
Cryptology-EUROCRYPT 2000: International Conference on the
Theory and Application of Cryptographic Techniques Bruges, Belgium,
May 14–18, 2000 Proceedings 19, pages 207–220. Springer, 2000.

VAS19. Thijs Veugen, Thomas Attema, and Gabriele Spini. An implementation
of the Paillier crypto system with threshold decryption without a trus
ted dealer. ePrint, 2019.

https://web.williams.edu/Mathematics/lg5/302/RSA.pdf
https://web.williams.edu/Mathematics/lg5/302/RSA.pdf
https://eprint.iacr.org/2020/402.pdf
https://eprint.iacr.org/2020/402.pdf
https://dl.acm.org/doi/pdf/10.1145/359168.359176
https://www.iacr.org/archive/eurocrypt2000/1807/18070209-new.pdf
https://eprint.iacr.org/2019/1136.pdf
https://eprint.iacr.org/2019/1136.pdf
https://eprint.iacr.org/2019/1136.pdf


Password-Protected Threshold Signatures

Stefan Dziembowski1,2(B) , Stanislaw Jarecki3 , Pawel Kedzior1 ,
Hugo Krawczyk4 , Chan Nam Ngo5 , and Jiayu Xu6

1 University of Warsaw, Warsaw, Poland
{p.kedzior,s.dziembowski}@mimuw.edu.pl

2 IDEAS NCBR, Warsaw, Poland
3 University of California Irvine, Irvine, USA

sjarecki@uci.com
4 Amazon Web Services, Seattle, USA

5 Privacy + Scaling Explorations, Ho Chi Minh City, Vietnam
namncc@pse.dev

6 Oregon State University, Corvallis, USA
xujiay@oregonstate.edu

Abstract. We witness an increase in applications like cryptocurrency
wallets, which involve users issuing signatures using private keys. To pro-
tect these keys from loss or compromise, users commonly outsource them
to a custodial server. This creates a new point of failure, because com-
promise of such a server leaks the user’s key, and if user authentication
is implemented with a password then this password becomes open to
an offline dictionary attack (ODA). A better solution is to secret-share
the key among a set of servers, possibly including user’s own device(s),
and implement password authentication and signature computation using
threshold cryptography.

We propose a notion of augmented password-protected threshold sig-
nature (aptSIG) scheme which captures the best possible security level
for this setting. Using standard threshold cryptography techniques, i.e.
threshold password authentication and threshold signatures, one can
guarantee that compromising up to t out of n servers reveals no informa-
tion on either the key or the password. However, we extend this with a
novel property, that compromising even all n servers also does not leak
any information, except via an unavoidable ODA attack, which reveals
the key only if the attacker guesses the password.

We define aptSIG in the Universally Composable (UC) framework and
show that it can be constructed very efficiently, using a black-box compo-
sition of any UC threshold signature [13] and a UC augmented Password-
Protected Secret Sharing (aPPSS), which we define as an extension of prior
notion of PPSS [30]. As concrete instantiations we obtain secure aptSIG
schemes for ECDSA (in the case of t = n − 1) and BLS signatures with
very small overhead over the respective threshold signature.

Finally, we note that both the notion and our generic solution for aug-
mented password-protected threshold signatures can be generalized to
password-protecting MPC for any keyed functions.
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1 Introduction

Threshold signatures have been studied for over 30 years [19]. Recently, their
practical applicability increased significantly due to the use of signatures in
blockchains and cryptocurrencies, especially for transaction authorization on
behalf of users. In particular, multiple schemes have been developed for threshold
ECDSA given the wide use of ECDSA in blockchains, e.g. [14,20,24,33]. Recall
that in a (t, n)-threshold signature the private signing key is shared between a
set of n servers, and t + 1 of them must collaborate to produce a signature;
security requires that breaking into any t servers does not allow an attacker to
forge signatures. Users that utilize a signature to authorize electronic transac-
tions, e.g., the transfer of monies between accounts, but want to protect their
keys from loss or compromise, can outsource signature generation to a trusted
service that implements a threshold signature scheme. Yet, this setting raises
the question of how a user can authorize the servers to sign on her behalf. An
attacker who impersonates the user in this authorization process can request
signatures on messages of its choice. On the other hand, if this authentication
requires a user-held cryptographic key then we have a chicken-and-egg problem:
we outsourced one user’s key but we still require the user to hold another.

We can break this loop if we consider a setting where the authorization
depends on a user’s password. However, this presents another conundrum: Asking
the user to pick an independent password for each server requires too much
memorization (without secure storage), but using the same password with each
server would create n points of failure, because an attacker who manages to
break any one of the n servers would be able to run an offline dictionary attack
against the user’s password, and then use the password to authorize all other
servers to sign any message.

Augmented Password-Protected Threshold Signatures. Our goal is a
threshold signature scheme where all the user needs to authorize messages to be
signed is a single password. The break of any t servers should leak no informa-
tion that allows to attack either the signature scheme or the password, and the
security should not rely on any secret or public keys stored or carried by the
user. We refer to this notion as Password-protected Threshold Signature (ptSIG).

But we want more: We want that even after the compromise of more than t
servers (and possibly all n servers), the only information the attacker can gain
requires finding the right password via an exhaustive offline dictionary attack
(ODA). (Note that if a password triggers correct signature generation then an
ODA on all-servers compromise is unavoidable.) In other words, the password
should not only authenticate the user to the servers, but even if all servers are
compromised they cannot produce signatures unless the attacker guesses the
password. In particular, a solution that simply secret-shares the signing key
among the servers would not work. In summary, we seek solutions that offer the
following guarantees:

1. Each protocol execution, either by the user or by the servers, allows the
attacker an online password test for only one password guess.
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2. Compromising up to t servers results in no security loss, i.e. the attacker
learns no information on either the signature key or the password.

3. Compromising t + 1 or more servers (even all n) does not give the attacker
any information either, without the attacker first succeeding in an exhaustive
offline dictionary attack (ODA) against the user’s password.

Properties 1 and 2 can be achieved by a composition of threshold Password-
Authenticated Key Exchange (tPAKE) [35] and threshold signature scheme
(tSIG) [18]. However, property 3 is not implied by such composition, and indeed
does not seem easy to achieve using any tPAKE and tSIG schemes alone.

Support for Server-Side Security Mechanisms. We add one further
requirement, and we refer to a notion which satisfies all requirements 1–4 as
Augmented Password-protected Threshold Signatures (aptSIG):

4. An attacker who knows the password, can sign only one message per each
interaction with t + 1 servers, and only if these servers agree to sign it. In
particular, if the attacker compromised t′ ≤ t servers, it can sign only one
message per each interaction with (t + 1) − t′ uncompromised servers.

Property 4 implies that the scheme cannot reveal the signing key to the user
even if they hold the right password, as this would allow an attacker who com-
promises the password to sign messages without further server involvement. In
contrast, an aptSIG scheme can limit such attacker by several mechanisms, such
as rate-limiting, i.e. allowing only a limited number of signatures per time inter-
val; implementing multi-factor authentication, which the attacker would need to
bypass even if it learns the password; and signing messages only if they are com-
pliant with an application policy, i.e. only messages with application-compliant
semantics (e.g. including the correct current date). Note that Property 4 also
protects the user in case of a break into the client machine: Such break might
leak the password, but it cannot leak the signing key.

Augmented Password-Protected Secret Sharing (aPPSS). We introduce
a protocol tool that plays an essential role in our aptSIG construction. Recall the
notion of Password-Protected Secret Sharing (PPSS) [5]. A (t, n)-PPSS scheme
allows user U to share a secret s among n servers and “protect” this sharing by a
password pw, in the sense that PPSS reconstruction will recover s if and only if
the user interacts with t + 1 servers using the same password pw. (No extra user
storage or authentication infrastructure such as PKI is assumed except during user
registration.) PPSS security requires that compromising any t servers leaks no
information on either the secret s or the password pw. However, for the purpose of
building an aptSIG scheme, we need a stronger notion of PPSS with the following
additional property: a compromise of more than t servers (even all n of them)
still does not leak s and pw immediately, but only allows the attacker to stage an
offline dictionary attack on the password, and this offline attack will leak s only
if the attacker finds pw. We formalize this notion in the Universally Composable
(UC) model [11] and refer to it as augmented PPSS (aPPSS), and we show that
an existing PPSS scheme of [30] sufficiently realizes this stronger notion.
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From aPPSS to aptSIG. Armed with the aPPSS tool, we build an aptSIG
as follows. We start with a threshold signature scheme (tSIG) which relies on
n servers and an additional entity U, called the user, where breaking the tSIG
scheme requires breaking into t+1 servers plus compromising U. A tSIG scheme
for this “1+threshold” access structure can be obtained from regular (t, n)-
threshold signature by e.g. providing multiple shares to the user, but many
threshold signatures can be adapted to this access structure more efficiently, as
we exemplify by the BLS-based construction of Sect. 2.1.

At a high level, our aptSIG scheme works as follows:

– At initialization, which we assume runs over authenticated channels, e.g. using
PKI for server authentication1, the tSIG scheme is initialized so that the
servers and the user get the information needed to later run the signing pro-
tocol. Let tsU denote the state that U needs to store to run tSIG signature
protocol (this would include the share of the signature key, but also possibly
the keys needed to authenticate/encrypt tSIG protocol messages). In addi-
tion, servers and U initialize an aPPSS instance under the user’s password
which produces a random secret sk learned by U. The user authenticates-and-
encrypts the state tsU under key sk to obtain an authenticated encryption
ciphertext aecU, and sends aecU to all servers who store it. U then erases all
information and only remembers its password.

– To sign message m, party U and the servers run aPPSS reconstruction by
which U, using its password, retrieves sk. The servers send aecU back to U
who authenticates-and-decrypts it under sk to learn its tSIG state tsU. Finally,
now that U holds its tSIG state, U and the servers run the tSIG scheme to
sign m.

Definitions, Generic Construction, Efficient aptSIG Instantiations.
Regarding the security of our construction, all of our constructions are defined in
the UC model, which is essential for security under arbitrary composition: First,
we frame the new notions of aPPSS and aptSIG as UC functionalities; second,
we generalize the UC tSIG notion of Canetti et al. [13], which was defined only
for the n-out-of-n setting, to arbitrary (t, n)-threshold and 1+threshold access
structures.

Next, we show how to efficiently realize our UC aptSIG notion: the schematic
outline above provides a generic design of UC aptSIG scheme from any UC
aPPSS and UC tSIG that supports the 1+threshold access structure. In this
construction, the only overhead incurred while compiling a tSIG to an aptSIG
is the cost of the aPPSS scheme, which can be instantiated efficiently: our UC
aPPSS scheme, which is essentially identical to the PPSS of [30], is a generic
construction from any UC Oblivious PRF (OPRF), and using the 2HashDH
OPRF of [30] it requires only two communication flows and its computational
cost is 1 exponentiation for each server and t + 2 for the user.
1 Authenticated channels between user and servers are needed at initialization in order

for the user to identify the servers it is communicating with, but such channels, or
PKI, are not needed for later signature generation.
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At first glance, it seems that this generic construction leads to a UC-secure
aptSIG implementation of ECDSA based on the UC ECDSA scheme of [13]
adapted to the 1+threshold access structure. However, that scheme was shown
secure only for the additive n-out-of-n sharing, so the result in [13] only implies
an aptSIG with t = n − 1. In the general case, one would have to carefully
verify whether the generalization of ECDSA of [13] to the (t, n)-threshold and
1+threshold settings realizes the UC tSIG functionality for these access struc-
tures. Moreover, that scheme requires several rounds of interaction.

For the general case, we instead present a concrete round-minimal and highly
practical aptSIG scheme (see Fig. 8 in Sect. 5) based on a threshold BLS signa-
ture [7,8]. It requires only 2 communication flows in signing, 3 flows in initial-
ization, uses no server-to-server communication, and takes O(1) exponentiations
per server and O(n) exponentiations and bilinear maps for the user. We prove
that this BLS-based scheme realizes the UC tSIG functionality for the 1+thresh-
old access structure for any t ≤ n s.t.

(
n
t

)
is polynomial in the security parameter;

this probably can be extended to any parameters n, t using the results of Bacho
and Loss [4] and Das and Ren [16] (see Sect. 2.1).

Extensions to Password-Protected MPC. While this paper develops defi-
nitions and mechanisms specific to the case of aptSIG, our approach and tech-
niques can be generalized to provide “password-protection” of other crypto-
graphic functions. For example, in the case of encryption, a user may want to
decrypt encrypted data only in collaboration with a threshold of servers con-
ditioned on knowledge of a password, and with additional assurances similar
to those in our aptSIG treatment (e.g., enforcing a decryption policy by the
servers, allowing for rate limits, etc.). In another example, one can consider a
variant of aptSIG where the keyed function is a blind signature scheme, to keep
messages signed hidden from the servers. In general, one can use this approach to
password-protect multi-party computation of arbitrary functions, with security
guarantees as in items 1–4 above, but with signatures replaced by an arbitrary
keyed function. We leave such extensions and generalizations as subjects for
future work.

MPC for Obfuscated Point Function. Finally, observe that aPPSS can be
seen as a distributed computation of the point function

PFpw,s(x) =
{

s if x = pw
⊥ otherwise .

The aPPSS protocol computes PFpw,s(·) in a distributed setting, by user U hold-
ing input x and the servers holding the secret-sharing of the function description
〈pw, s〉, with U computing the output y = PFpw,s(x). Moreover, the aPPSS prop-
erty that even a compromise of all servers allows for recovery of s (and pw) only
via an offline dictionary attack, implies that the server-held shares reconstruct
an obfuscated representation of point function PFpw,s, i.e. a software black-box
which allows evaluation of PFpw,s(·) on any input (e.g. password guess), but it
leaks no information on (pw, s) unless one queries it on input x = pw. Thus, an
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efficient aPPSS scheme implies an efficient evaluation of a secret-shared obfus-
cated point function, and as such it can find other applications.2

Applications to Blockchain Wallets. Some very attractive applications for
threshold cryptography come from the blockchain domain. Recall that cryp-
tocurrency coins are signature keys, spending a coin is implemented as a signing
operation, and that storage of these signature keys is one of the most sensitive
parts of the entire blockchain ecosystem. This problem is addressed by the use
of so-called hardware wallets (see, e.g., [2]), threshold wallets (see, e.g., [15]),
or MPC wallets (see, e.g., [3]). Our solution provides a stronger, practical, and
flexible alternative to these methods. Our solution implements a threshold wal-
let, enabling storing cryptocurrencies in a threshold way, but it simultaneously
protects them with a password in two ways: One way, which is standard, is that
the user must use a correct password to access their cryptocurrency stored in
a threshold wallet. The second way, which is novel, is that the shares stored
by the threshold wallet parties are effectively encrypted under the password,
so even corruption of all the threshold wallets parties does not leak the cryp-
tocurrency keys in the clear. Instead, a corruption of all threshold wallet parties
reveals an obfuscated “output-a-key-only-if-input-is-a-correct-password” black-
box, which allows only offline dictionary attacks against a password, and leaks
the cryptocurrency keys only if the adversary finds the correct password.

1.1 Further Related Works

Threshold Signatures. Threshold signatures were formalized by Desmedt and
Frankel in [19] with precursors including [9,17,18]. Since then countless papers
have studied threshold signatures for a variety of signature schemes. More recent
work in the area has been motivated by cryptocurrency applications with par-
ticular focus on Threshold ECDSA, e.g. [14,20,24,33] as a prevalent signature
scheme used in these applications. Among these works, our paper adopts the
UC formalism for threshold signatures from Canetti et al. [13] who present a
threshold ECDSA scheme that realizes this formalism.

Server-Aided Signatures. Using passwords in the context of threshold signa-
tures has been studied in the setting of server-aided signatures and their variants
[10,23,27,34,39]. These papers address the case of a user with access to a ded-
icated device that stores a strong signing key but requires user’s password to
generate signatures. The password prevents an attacker that gets hold of the
device from producing signatures at will, but an attacker can run an offline
dictionary attack by entering password guesses to the device. To prevent such
dictionary attacks these works add a remote server with whom the device shares

2 McQuoid et al. [36] made a related observation, that a (non-threshold) OPRF imple-
ments secure 2PC for evaluating (non-secret-shared) obfuscated point functions, and
used it to costruct 2PC on obfuscated inputs for a larger class of functions.
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the signing key and whose participation is required for producing signatures.
The user typically enters its password on the device, but the interaction with
the remote server limits the number of password attempts an adversary can try
once it controls the user’s device. Some of the schemes also support hiding the
message being signed from the remote server. Most schemes in the literature
consider a single remote server but e.g. the work of [39] includes distributing
the remote server into a group of servers using a threshold signature scheme.

However, in all these cases, the user depends on its own device for generating
signatures. In particular, the device stores strong cryptographic keys. Our setting
is different. We assume users that carry with them nothing but their memorized
passwords; they do not even carry high-entropy public values (such as servers’
public keys), let alone dedicated devices. In particular, in our solution, a user
can trigger signatures by logging in from an arbitrary device.

Password-Authenticated Threshold Signatures. A different line of work
that shares similarities with our paper, but targets a different application and
has different security properties, is [1,6]. These papers deal with a single sign-
on setting where an identity provider (e.g., Google) authenticates users using
passwords, and upon authentication provides users with signed tokens (which
authenticates a user to some 3rd-party service). These works distribute the iden-
tity provider operation over a set of servers and use threshold cryptography in
two ways: First, they use threshold password authentication (tPAKE) to authen-
ticate users to the servers that implement a distributed identity provider; second,
the servers use a threshold signature (tSIG) to sign the requested token.

However, in this application the signing key is the provider’s key, which is
used to sign messages for all users, and it can be reconstructed if t + 1 servers
are compromised. By contrast, in our case each user shares its own private key
across a set of servers, and neither this key nor the user’s password is leaked,
except via offline dictionary attack, even if all servers collude. Indeed, none of
the above cited works models or claims the “augmented” property we introduce
in the aptSIG notion, namely that the break of the system requires not only
that the attacker breaks into a sufficient threshold of servers, but that it also
succeeds in subsequent exhaustive offline attack against the user’s password.

Augmented Threshold PAKE and Proactive Security. In a concurrent
work, Gu et al. [28] define the notion of augmented threshold PAKE (atPAKE),
where the term “augmented” denotes the same security property as in our aug-
mented PPSS and augmented Password-protected Threshold Signatures. As the
standard notion of tPAKE [35], a (t, n)-threshold atPAKE allows the user to
authenticate using a password to a set of servers who secret-share password-
related information, and the scheme leaks nothing if up to t out of n servers are
compromised. However, if t+1 or more servers are compromised, the password
still doesn’t leak in the clear unless the attacker succeeds in an offline dictionary
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attack (ODA). Intuitively, in atPAKE servers must secret-share a (salted) hash
of the user’s password, rather than the password itself.

Apart from the fact that the work of [28] tackles a similar augmented property
in the context of a different threshold cryptosystem (threshold PAKE rather than
threshold password-protected signatures), their work also defines and constructs
a UC threshold OPRF (tOPRF), and we believe that the tOPRF-to-PPSS com-
piler of [31] offers an alternative implementation of UC aPPSS. One reason this
alternative aPPSS implementation is interesting is that all building blocks here
can be made proactively secure: the tOPRF of [28] can be proactively secure,
which leads to a proactively secure aPPSS, which (combined with a practively
secure threshold signature) in turn would result in a proactively secure aptSIG.

Paper Organization. Section 2 defines UC threshold signature (tSIG) for arbi-
trary access structures, and exemplifies it with a threshold BLS signature scheme.
Section 3 defines Augmented Password-Protected Secret Sharing (aPPSS) and
shows that the PPSS scheme of [30] realizes this notion. Section 4 defines Aug-
mented Password-protected Threshold Signature (aptSIG), and shows a generic
construction of secure aptSIG from aPPSS and tSIG schemes. Finally, in Sect. 5
we exemplify this generic compiler with an efficient and practical scheme based
on threshold BLS.

Due to space constraints we defer some material to the full version of this
paper [21]. Specifically, in the full version we include the proof of security for
the threshold BLS scheme, we include the security proof for our aPPSS scheme,
we compare our UC aPPSS model with prior PPSS definitions, we include the
security proof for our aptSIG scheme, we introduce versions of our aptSIG model
and the aptSIG protocol that add the property of Perfect Forward Security (PFS)
to the basic model (here we sketch this extension in Sect. 4.1), and we show a
concrete BLS-based instantiation of the PFS-aptSIG scheme.

2 Threshold Signatures

Figure 1 shows a generalization of the ideal functionality for threshold signature
FtSIG of Canetti et al. [13] to an arbitrary access structure S. The UC threshold
signature model of [13] extends the formalization of standard (i.e. non-threshold)
signatures as a UC functionality [12] (for prior and related work on UC signa-
tures see references therein) to the distributed setting where the signing key is
secret-shared among n servers. However, the UC formalization of [13] defined
it solely for the case of an n-out-of-n secret-sharing, where the signature is
unforgeable if the adversary corrupts up to n−1 servers, but all servers have
to participate to issue a valid signature. Here we extend the definition of [13]
to arbitrary access structures, including the (t, n)-threshold access structure the
specialized “1+threshold” access structure we use in our aptSIG application.
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Fig. 1. Threshold signature functionality FtSIG for arbitrary access structure S

The threshold signature functionality FtSIG consists of three parts, Key Gen-
eration, Signing and Verification. In contrast to [13], our functionality omits Key-
Refresh, but both versions support adaptive party compromise. Following [13],
w.l.o.g. we identify a public key V with an arbitrary deterministic algorithm, i.e.
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signature σ on message m is valid iff V(m, σ) = 1. Also following [13], we assume
that if party P participates in key generation, then P runs on an instance iden-
tifier sid of a form σ = (. . . ,P) where P is a set of parties, including P, which P
intends to involve in this instance. We denote the unique set P specified by sid
as Psid.

We use Ssid to denote access structure S instantiated over set Psid. For exam-
ple, if Psid = {P1,P2,P3} and S is a 1-out-of-3 threshold access structure then
Ssid = {{P1}, {P2}, {P3}}. Our aptSIG scheme in Sect. 4 relies on a threshold
signature for a specialized “1+threshold” access structure S, where Psid is a
sequence of n + 1 parties (P0,P1, ...,Pn), P0 has a special status, and S consists
of all subsets S ⊆ Psid s.t. (1) P0 ∈ S and (2) |S ∩ {P1, ...,Pn}| ≥ t + 1. In
other words, a valid subset S must contain the special party P0 and at least t+1
of parties P1, ...,Pn. (Looking ahead, in our aptSIG implementation servers will
play the role of parties P1, ...,Pn, and P0 will be the user.)

Threshold Signature Functionality: Discussion. To simplify notation in
the key generation phase we assume that a signature scheme instance invoked
with identifier sid generates a public key V, and a sharing of the correspond-
ing private key, only if all parties in set Psid participate in the key generation
using the same identifier sid. However, once the key generation succeeds, then
a signature valid under the generated public key can be issued as long as it is
requested by any subset S ⊆ Psid of parties s.t. S ∈ Ssid.

Functionality FtSIG of Fig. 1 simplifies the one in [13] by omitting the option
that lets all parties agree on a unique misbehaving party in each protocol phase.
Supporting this option seems to require reliable authenticated broadcast, and
since other protocols we use neither support a corresponding feature nor require
reliable broadcast, we omit it here. Following [13], our functionality FtSIG does
not support ssid’s in the signing phase and uses the message as an index of a
signing protocol instance. Functionality FtSIG can be extended so every signer
has additional input ssid, and signature is output only if for some subset S ∈ Ssid

all signers P ∈ S run on the same (ssid,m). However, a cost-minimal protocol
like the Threshold BLS scheme in Fig. 2 does not enforce such ssid-uniformity,
so we opt for a simplified version of a signature functionality which, like the
functionality of [13], doesn’t enforce that either.

2.1 Threshold BLS Signature

The UC threshold signature functionality FtSIG can be implemented for BLS
signature using the well-known protocol of Boldyreva [7]. Recall that a BLS
signature [8] assumes a group G of prime order p with a bilinear map e :
G×G→GT , and defines σ as a signature on m under public key V = gs if
e(g, σ) = e(V,H(m)), where g generates G and H is a hash onto G. BLS sig-
nature is CMA-unforgeable in ROM under the Gap DH assumption, i.e. if the
computational Diffie-Hellman is hard in G even on access to a DDH oracle [8].
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Fig. 2. Threshold BLS scheme for the “1+threshold” access structure

Figure 2 shows a threshold BLS signature scheme that realizes functional-
ity FtSIG for the “1+threshold” access structure, for any threshold t < n. We
support this access structure by combining a 2-out-of-2 sharing with a stan-
dard threshold sharing. Namely, sharing �s = (s0, s1, ..., sn) is formed by picking
s0 ←$ Zp, setting (s1, ..., sn) as a (t, n)-threshold secret-sharing of random s′ in
Zp, and setting the shared secret as s = s0 + s′ mod p. This way for any set S
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consisting of P0 and some t + 1 parties in {P1, ...,Pn}, secret s can be recon-
structed as s = s0 +

∑
Pi∈S− λi·si mod p where S− = S \ {P0} and λi’s are

Lagrange interpolation coefficients corresponding to set S−.

Standard Threshold Access Structure. Note that setting s0 = 0 and remov-
ing P0 from signing transforms the protocol in Fig. 2 to a tSIG scheme which
supports the standard (t, n)-threshold access structure. Moving in the other
direction, we believe that most threshold signature schemes based on Shamir
secret-sharing which realize FtSIG for the (t, n)-threshold access structure, can
be transformed to support the “1+threshold” access structure using the above
approach, but unfortunately it is not a black-box transformation and must be
verified case by case.

Distributed Key Generation. The protocol in Fig. 2 realizes FtSIG in the
presence of secure point-to-point channels in the Key Generation phase, and
assuming that party P0 in list Psid = {P0, ...,Pn} is honest in that phase. The
assumption on authenticated channels in key generation is unavoidable because
FtSIG enforces that a shared key is generated only if all parties in Psid execute
(tsig.keygen, sid), and using arbitrary key exchange protocol allows the partici-
pants to upgrade authenticated channels to secure point-to-point channels. As
for the assumption on one honest party in key generation, this suffices for our
aptSIG application, but this assumption can be easily eliminated by using any
Distributed Key Generation (DKG) protocol for a discrete-log-based cryptosys-
tem, e.g. [25,38]. The analysis of the protocol in Fig. 2, presented in the full
version of the paper [21], can be upgraded to this more general setting, e.g.,
by modeling the DKG subprotocol using the UC DKG functionality FDKG of
Wikstrom [38], adapted to the 1+threshold access structure.

Theorem 1. If BLS signature is CMA-unforgeable then the threshold signature
scheme in Fig. 2 realizes functionality FtSIG for the “1+threshold” access struc-
ture for parameters t, n s.t.

(
n
t

)
is polynomial in the security parameter, assuming

secure point-to-point channels and honest party P0 in the Key Generation phase.

Proof of Theorem 1 is presented in the full version of the paper [21]:

Security for Arbitrary t, n Parameters. First, as sketched above, the scheme
of Fig. 2 can be strengthened by replacing honest P0 with a secure DKG pro-
tocol. Moreover, Theorem 1 can be extended to arbitrary (t, n) values if the
environment is restricted to static corruptions, i.e. all corruptions are made at
the outset. This can be easily verified by inspecting the proof of Theorem 1 in
the full version of the paper: the current reduction needs to guess a subset of
corrupted parties, causing it to fail except with 1/

(
n
t

)
probability; however, in

the static corruption setting, the reduction no longer has to make such a guess.
Furthermore, Theorem 1 can be extended to arbitrary (t, n) values while

allowing adaptive corruptions, following the analysis of threshold BLS by Bacho
and Loss [4] in the Algebraic Group Model (AGM) [22], under the One-More
Discrete Logarithm (OMDL) assumption. The analysis of [4] was done for the
standard (t, n)-threshold BLS but we believe that it can be extended to BLS
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which supports the 1+threshold access structure. The result of [4] also applies
to several instantiations of a DKG protocol, including Pedersen’s JF-DKG [37]
and New-DKG by Gennaro et al. [25]. In a recent work Das and Ren [16]
showed a (t, n)-threshold BLS protocol which they show adaptively secure in
the standard model, without AGM, and this protocol can also be extended to
the 1+threshold setting. We note that the analysis of both [4] and [16] was
arguing tSIG security defined via a game-based notion, so one also has to verify
that they extend to the UC notion of tSIG captured by functionality FtSIG.

3 Augmented Password-Protected Secret Sharing

Augmented Password-Protected Secret Sharing (aPPSS) is a main component
in our aptSIG scheme construction. Here we follow the informal description of
aPPSS in the introduction with a formalization of this notion in the UC model.
We then show how to instantiate this primitive with the PPSS construction of
[29]. The latter masks shares of a threshold secret-sharing with outputs of Obliv-
ious Pseudorandom Functions (OPRF) computed on the password. Since UC
OPRF can be realized very inexpensively with protocol 2HashDH, this OPRF-
based scheme leads to aPPSS with a retrieval cost of only 1 exponentiation per
server and t + 2 exponentiations per user. Concrete instantiation of aPPSS is
shown in Fig. 8 as part of aptSIG protocol.

3.1 Modeling Augmented Password-Protected Secret Sharing

The augmented PPSS functionality FaPPSS presented in Fig. 3 has four phases. In
the initialization phase, user U can use command ppss.uinit on input a password
pw ([I.U]), to initialize a PPSS instance with a set of n servers whose identities
Psid = {P1, . . . ,Pn} are assumed to be encoded in the session identifier, i.e.
sid = (sid′,Psid). The servers in Psid join this initialization using command
ppss.sinit for matching sid and U ([I.S]). Finally, command ppss.fininit from the
ideal adversary A∗ corresponds to successful initialization, which allows U to
output a secret random key sk which will be protected using this aPPSS instance
([I.F]). (Observe that this random key sk can be used to authenticate-and-encrypt
arbitrary data, and indeed this is how we use it in the aptSIG protocol of Sect. 4).

The reconstruction command ppss.urec represents a user U′ at a potentially
different network entity, attempting to recover the secret key sk using password
pw′, which may or may not be equal to pw used in initialization ([R.U]). The
reconstruction operation is directed to a set of t + 1 servers S. We emphasize
that the user maintains no state between the initialization and the reconstruction
operations except for memorizing password pw and its username sid (although we
also model the user forgetting pw and causing a failure during reconstruction—
see below). In particular, the user might connect to a different set of servers
in initialization and in reconstruction. Hence, for example, if a user executes
the reconstruction protocol with a set of corrupted servers S, the FaPPSS func-
tionality guarantees that even in this case, the adversary can only perform an
inevitable on-line guessing attack—which we explain below.
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Fig. 3. Augmented PPSS functionality FaPPSS



188 S. Dziembowski et al.

Similar to the ppss.uinit and ppss.sinit commands in the initialization phase,
the ppss.urec and ppss.srec queries control resp. user and server entering into
the reconstruction subprotocol. The crucial rule enforced by FaPPSS is that each
server S ∈ Psid which joined the initialization is associated with a ticket counter
tx(S), and this ticket counter is incremented only if S enters into the aPPSS
reconstruction instance. (Which in particular means that corrupt S can increase
these tickets at will, see below.) Since we do not assume authenticated links,
U′ session can be “routed” by the adversary to arbitrary servers; hence in the
ppss.finrec command, A∗ specifies a set C of servers of its choice for participation
in this reconstruction ([R.F]). The protocol finalization command ppss.fininit can
result in three possible outcomes:

– In a successful reconstruction session ([R.F.1]), U′ outputs key sk created
in the initialization, which can happen only if (I) pw′ = pw, i.e., U′ runs
on the correct password, (II) tx(S) > 0 for all S ∈ C, i.e., an adversary
connected U′ to servers who participated in the initialization and these servers
engaged in PPSS reconstruction (note that each of these ticket is decremented
at ppss.fininit, hence each PPSS reconstruction can be “used” only once),
and (III) the adversary allowed all these reconstructions to proceed without
interference, which is modeled by setting flag= 1.

– The adversary can connect U′ only to corrupt servers ([R.F.2]), which offers A∗

an ability to perform an on-line guessing attack on the user, because w.l.o.g.
the adversary could execute the reconstruction protocol on behalf of corrupt
servers on password pw∗ and secret sk∗ of its choice, and if pw∗ = pw this
would cause U′ to reconstruct the adversarially chosen value sk∗. An on-line
guessing attack is modeled by A∗ setting flag= 2.

– In all other cases the reconstruction fails and U′ outputs ⊥ ([R.F.3]).

Adaptive Compromise and Password Tests. Command ppss.compromise
allows A∗ to adaptively compromise any party P ([SC]). The only effect this
has is if P = S for some S ∈ Psid, i.e. if A∗ compromises one of the servers
participating in the initialization. Moreover, the effect of such compromise is
not a leakage of any data (password pw or secret sk), but an ability for A∗ to
create unlimited “tickets” for A∗, i.e. to increment tx(A∗) at will. Such tickets
can be used in the test password command ppss.testpw ([PT]): This query lets
A∗ specify a password guess pw∗ and a server S, and FaPPSS adds S to the set of
servers for which A∗ tests pw∗, but each such action “costs” one ticket because
FaPPSS decrements tx(S). If the adversary tests the same pw∗ on t + 1 servers
then if pw∗ �= pw, FaPPSS responds ⊥, but if pw∗ = pw then FaPPSS leaks the
aPPSS-protected secret sk. Note that the ticket-counting mechanism of FaPPSS

enforces that any aPPSS instance completed by a server can be used either for a
single instance of the honest user reconstructing a secret, or for a single instance
of an adversary who uses ppss.testpw to attempt to reconstruct sk using a guessed
password pw∗.
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On Authenticated Channels. Functionality FaPPSS assumes authenticated
channels during initialization: When user U specifies, via command ppss.uinit,
a set Psid of servers to initialize a secret-sharing instance, the adversary can
only decide whether or not to allow this protocol to complete. This means that
the adversary can block any party from communicating with the user, but it
cannot divert this initialization to a different set of parties. In particular, only
the corruption of parties in Psid may have an effect on the security of the protocol
with consequences as described above. To enforce these conditions, U needs the
means to authenticate each P ∈ Psid during initialization which is modeled via
the authenticated channel functionality FAUTH. Importantly, we do not assume
authenticated channels in the reconstruction phase of FaPPSS.

3.2 aPPSS Protocol

In Fig. 4 we show a UC aPPSS scheme, denoted ΠaPPSS, based on the PPSS
scheme of Jarecki et al. [30]. Protocol ΠaPPSS uses UC OPRF, modeled by
functionality FOPRF, and it assumes authenticated channels, modeled by func-
tionality FAUTH, but it uses the latter only in the Initialization phase. At a high
level the protocol proceeds as follows:

Initialization: User U asks for an OPRF evaluation ρ from each server S’s
FOPRF using its password pw, and uses those evaluations as encryption keys
for encrypting the threshold shares {si} generated with the Shamir’s secret
sharing scheme from a random secret s. Together with the user’s password pw,
and the encrypted shares e = {ei}, U creates a cryptographic commitment
[C||sk] = H(pw, e, s) and uses sk as the secret key. The ciphertexts e = {ei}
and C are then sent via the authenticated channel (via FAUTH) and kept at
the servers. The user keeps nothing besides remembering the password pw.

Reconstruction: To reconstruct, user U starts with asking for the OPRF eval-
uation ρ from each server S’s FOPRF using its password pw along with the
ciphertexts e = {ei} and commitment C. The OPRF evaluations {ρi} are
used to decrypt the ciphertexts to Shamir’s shares {si} which can be used
to reconstruct the secret s via interpolation. Finally the user U can recreate
[C||sk] = H(pw, e, s) and obtain sk, after checking that C matches the ones
sent by the servers.

Protocol ΠaPPSS in Fig. 4 is, up to some small differences (e.g., using a global
OPRF functionality) the same as the PPSS of Jarecki et al. [30], except that we
replace generic non-malleable commitment used in [30] with a specific RO-based
implementation H. However, the novelty here with respect to the PPSS protocol
of [30] is its analysis as an augmented PPSS.

Theorem 2. If H is a random oracle, then the protocol in Fig. 4 UC-realizes the
FaPPSS functionality assuming access to the OPRF functionality FOPRF and the
message authentication functionality FAUTH.

Proof of Theorem 2 is shown in the full version of the paper [21].
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Fig. 4. Protocol ΠaPPSS which realizes FaPPSS in (FOPRF,FAUTH)-hybrid world
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4 Augmented Password-Protected Threshold Signature

We introduce our model for Augmented Password-protected Threshold Signa-
ture (aptSIG), and we show a secure construction of aptSIG scheme by generic
composition of aPPSS and a Threshold Signature (tSIG).

4.1 Modeling Augmented Password-Protected Threshold Signature

We model Augmented Password-protected Threshold Signature (aptSIG) using
an ideal functionality FaptSIG, shown in Fig. 5 and Fig. 6. A (t, n)-threshold apt-
SIG involves n + 1 parties, a user U and n server S1, ...,Sn, and it supports
two distributed protocols, initialization and signing. An initialization protocol
generates a public key for a signature scheme and protects the corresponding
private key by secret-sharing it and protecting this sharing using user’s pass-
word pw s.t. the sharing can be reconstructed only using this password. The
signing protocol allows the user and the servers to sign any message m as long
as (a) the user and at least t + 1 of the servers agree to sign it, and (b) the user
provides a matching password pw′ = pw into the signing protocol. Therefore,
aptSIG scheme functions as an outsourced signature service for party U, where
U’s secret key is distributed and password-protected by the servers, but using the
right password lets U obtain signatures as long as t + 1 servers agree to sign.

Corruption of up to t out of n servers gives no information to the attacker,
while corruption of t + 1 or more servers allows the attacker to reconstruct only
password-protected data. In particular, the data collected from all servers allows
the attacker an offline dictionary attack against the password, but that is all that
it allows. If the attacker finds the password via this offline search then security is
gone, and in our scheme the attacker reconstructs the signature private key, but
if the password is chosen with high-enough entropy and the dictionary attack
fails then the attacker gets no information about the signature key even if it
corrupts all n servers. We stress that in a secure aptSIG scheme the signing
key can never be reconstructed in one place. In particular, if the password leaks
but the adversary compromises fewer than t + 1 servers then signatures can
only be created via the on-line signing protocol. Consequently, servers Si can
function as rate limiters or policy limiters, i.e. they can apply whatever policy
the environment specifies regarding the messages they can sign.

Ideal Functionality FaptSIG. In what follows we explain the security properties
imposed by the ideal functionality FaptSIG of Fig. 5 and Fig. 6. Since we show
that our aptSIG protocol of Sect. 4.2 securely realizes this functionality, this will
in particular imply the security properties of that aptSIG scheme.

(1) FaptSIG: Honest Party Operation. Query (ptsig.uinit, sid, pw) from U
models user U starting initialization on a password pw with n servers specified
in identifier sid. (Using the convention of aPPSS, we assume sid = (sid′,Psid)
for Psid = (S1, ...,Sn).) Query (ptsig.uinit, sid, i,U) from S ∈ Psid models server
S entering into an initialization protocol, as an i-th server in list Psid, with U
as an intended “owner” of this password-protected signature instance. Query
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Fig. 5. FaptSIG: Ideal Functionality for Password-Protected Threshold Signature
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Fig. 6. Adversarial Interfaces of FaptSIG

(ptsig.uinit, sid,V) from A∗ models the ideal-world adversary allowing an initial-
ization instance identified by sid to complete, and U to output the public key
V. Note that all parties input the identities of all participants into the protocol,
and FaptSIG reacts to query ptsig.uinit only if all intended parties participate in
the initialization. This is realizable if U and each Si can authenticate each other,
and our aptSIG protocol indeed relies on authenticated channels in initialization.
The public key V is associated with initialization identifier sid in the sense that
sid serves as a handle to the password-protected secret-sharing (ppss) of a private
signing key corresponding to V. (Functionality FaptSIG does not ensure that this
sharing is successfully established when U outputs V, but FaptSIG allows U to
verify it, e.g. if U invokes the signing protocol on a test message.)

Once key V is created, query (ptsig.usign, sid, ssid,S, pw′,m) from U′ mod-
els user U′ (possibly using a different platform than U, hence a different
name tag U′) who holds password pw′ (which might or might not equal to
pw) starting a signing protocol instance on message m and a ppss-protected
key identified by sid. Identifier ssid is a handle of U′ on that instance,
and S is a subset of t + 1 servers with whom U intends to communicate.
However, FaptSIG doesn’t enforce authentication in signing, and the signing
instance record it creates, (sid, ssid,U′,Psid, pw, pw′,V,m) ignores field S. Query
(ptsig.ssign, sid, ssid,U′,m) from S models S agreeing to sign m using the ppss-
protected key identified by sid. Field U′ is a counterparty address, ssid is S’s
local instance handle, but they play no security roles and FaptSIG ignores them.
In particular, FaptSIG does not enforce equality of ssid or U′ tags used by the
participants in signing.

(2) FaptSIG: Signature Completion. Signing protocol output is controlled
by two queries by an ideal-world adversary A∗: ptsig.pretest and ptsig.finsign.
FaptSIG associates servers S ∈ Psid with ticket counters tx(S), as in the
aPPSS functionality FaPPSS of Sect. 3, and each S can trigger FaptSIG to record
(sid,m,S) which stands for S agreeing to sign m, as in the tSIG functionality
FtSIG of Sect. 2. When S issues a query (ptsig.ssign, ...,m) then FaptSIG incre-
ments tx(S) and records (sid,m,S) at the same time.
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Queries ptsig.pretest and ptsig.finsign serve two purposes: The first one,
denoted by A∗ using flag= 1, is a passive completion of the signing instance.
First, A∗ can use ptsig.pretest with flag= 1 to “pre-complete” that instance and
learn if party U′ runs the protocol on the correct password pw′ = pw. This is
akin to TestAbort query in the UC aPAKE model [26]: A protocol can make it
detectable whether U′ runs on the correct password, e.g. because otherwise U′

aborts, in which case the adversary learns if pw′ = pw by observing the protocol.
In this test, A∗ must specify a subset C of t + 1 servers with non-zero ticket
counters (which FaptSIG decrements), which enforces that U′ finalization requires
t+1 participating servers. Note that these servers can run on different messages
than U′, i.e. A∗ can mix and match S sessions in completing ptsig.pretest.

If pw′ = pw then A∗ can follow up the (ptsig.pretest, ..., flag= 1, ...) query with
(ptsig.finsign, ...,C′, flag = 1, σ∗,⊥), which corresponds to finalizing the signing
instance on message m with signature σ∗. Indeed, if U′ runs on the correct
password and the attacker is passive then U′ can output a signature. FaptSIG

processes this query in the same way as the threshold signature functionality
FtSIG of Sect. 2, i.e. it checks that t + 1 servers in subset C′ agreed to sign m,
that σ∗ was not previously recorded as a faulty signature, and that V(m, σ∗) = 1,
and if all conditions are met then it outputs σ∗ to U′ and declares σ∗ as a valid
signature on m by recording a “signature” tuple (sid,m, σ∗, 1). These tuples
control the outputs of a signature verification query ptsig.verify, and FaptSIG

handles that exactly as FtSIG, i.e. if there is no recorded tuple (sid,m, σ∗, 1)
then (ptsig.verify, ...,m, σ∗,V) query should return 0.

We note that FaptSIG does not enforce that C′ = C, i.e. the adversary is
allowed to mix-and-match servers and use a different subset C of server instances
to “pre-complete” a signature session via the ptsig.pretest query, and a different
subset C′ to complete the session via the ptsig.finsign query. Moreover, the second
set of servers must be signing m, but the first one might not. We allow this
“disconnection” in FaptSIG to enable an efficient aptSIG protocol of Sect. 4.2,
which does not enforce C′ = C. However, the practical import of adversary
replacing part of m-signing server session with parts taken from some m′-signing
server session seems innocuous, given that in the end a signature on m cannot
be created unless a pw-holding user and t + 1 servers all agree to it.

(3) FaptSIG: Active Attacks. The first type of active attack is an on-line
password guessing attack against honest servers, where A∗ poses as a user, or
employs a corrupt user U′, and runs a signing protocol via interface ptsig.usign
on some password pw′ ([S.U]), followed by ptsig.pretest and ptsig.finsign with
flag= 1 ([S.P.1]). The same logic as above will apply to this sequence, except
since the adversary contributed pw′ in ptsig.usign, the same interface will reveal
if pw′ = pw (in [S.P.1] the functionality sends this bit to the adversary). Moreover,
each ptSIG instance sid is associated with a flag flagsid which switches from 0 to
1 if it ever happens that the adversary found password pw′ in this way ([S.P.1*])
(or via offline attacks, see below). The consequence of flagsid = 1 is that any
adversarial signing instance, even one that starts with an incorrect password pw′,
and consequently its reconstruction record rec would be marked pretested(0) in
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ptsig.pretest, is effectively treated in ptsig.finsign as if it was marked pretested(1),
which means that the functionality will “sign” message m∗ in this signing session
(as long as t + 1 servers also agree to sign it) ([S.F.1]). In other words, if the
adversary guesses the right password on some ptSIG session, then we allow him
to “late switch” any incorrect password to the correct one on all his other signing
sessions.

The second type of active attack is an on-line password guessing attack
against an honest user. This is modeled via ptsig.pretest ([S.P.2]) and ptsig.finsign
queries with flag= 2 ([S.F.F.2]). Here A∗ can set C = ⊥, but must enter a pass-
word guess pw∗, and in ptsig.pretest it will learn if pw′ = pw∗ where pw′ is a
password used by an honest user U′ ([S.P.2]). If not then U′ can subsequently
only abort, but if so then subsequent ptsig.finsign makes U′ output as signature
an arbitrary value σ∗ chosen by A∗ ([S.F.F.2]). This reflects the fact that the
only security hedge which U′ enters into signing is its password pw′, so if an
online attacker guesses pw′, the attacker can wlog. run aptSIG initialization on
pw′ and then run the aptSIG signing on the resulting values, thus making U′

output e.g. a signature on m but issued by an adversarial key. However, this
attack does not imply signature forgery, because FaptSIG does not add tuple
(sid,m, σ∗, 1) to its records. In particular, a user could run signature verification
(ptsig.verify, sid,m, σ∗,V) on its aptSIG output, and in case of the above attack
she would learn that σ∗ is not a valid signature and that she was subject of an
active attack by someone who learned her password pw′.3

(4) FaptSIG: Adaptive Server Corruptions and ODA. Adversary A∗ can
adaptively corrupt any server S ([SC]), which allows A∗ to (1) freely issue tickets
for S, using ptsig.ssign with b = 1, and (2) freely issue S’s “partial signatures”
on arbitrary messages m, using ptsig.ssign with m �= ⊥ ([S.S]). The latter actions
can result in signatures if U using the correct password pw′ = pw wants to sign
the same m ([S.F.F.1]), or if the attacker learns pw and invokes user-side on that
pw and m. The former actions allow the attacker to test passwords via command
ptsig.testpw, which lets A∗ exchange t + 1 tickets from some t + 1 servers for an
off-line test of one password guess pw∗ specified by A∗. Note that corrupt Si’s
these tickets are “free” to A∗ so after corrupting t + 1 servers these tests can be
done fully offline, but if A∗ needs to add the tickets from honest servers to this
mix then only one such ticket is created in each signing instance Si runs, i.e. if
adversary corrupts t′ ≤ t + 1 servers then it can test q passwords only by on-line
interactions with q ∗ (t + 1 − t′) servers ([PT]).

Crucially, even if all servers are corrupted, attacker A∗ has no avenue to forge
message signatures unless A∗ finds out user’s password pw and runs ptsig.usign
(e.g. as corrupt U′) on pw. (Moreover, if fewer than t+1 servers are corrupt than
even knowing pw lets A∗ sign only messages which some uncorrupted servers
agree to sign.) Moreover, the only avenues to finding password pw ([PT]) consist
of (1) online guessing attacks against either the servers or the user as long as

3 FaptSIG lets A∗ set the user instance’s message m to arbitrary m∗ in the finalization of
the signing protocol, but only for adversarial user instances, i.e. we allow adversarial
signing instances to “late-commit” to their messages.
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A∗ corrupts fewer than t + 1 servers, and (2) (fully) offline dictionary attacks
(ODA), as explained above, enabled once A∗ corrupts t + 1 servers.

User/Message Authentication and Perfect Forward Secrecy. In the apt-
SIG ideal model FaptSIG, when servers sign they take input m from the envi-
ronment, and they do not know if their counterparty holds the right password,
and even if they do then whether they authorize signing this message. A model
which assures both properties extends the aptSIG model to capture perfect for-
ward security (PFS), because it would imply that if no password-holding entity
wants to sign some message at a given time, then the adversary who might cap-
ture the password in the future, cannot “redo” these signature instances, and
can only use the compromised password on new signature sessions.

The PFS property can be added in black-box way by running two instances
of aptSIG: Consider a modified signing protocol which executes two instances
of aptSIG, first one on the message m concatenated with nonce ssid, and only
if this one creates a valid signature on the m, ssid, then the proper aptSIG
instance would execute on just m. The first aptSIG instance accomplishes the
above requirements, because only a correct password could have caused this
aptSIG instance to issue a valid signature on the m, ssid pair.

In the full version of the paper we define a PFS version of the aptSIG ideal
model, denoted FaptSIG−PFS, and we show that the efficient aptSIG scheme
which we show in the next subsection, can be adapted more efficiently to imple-
ment the PFS property. The idea is very similar to the one above except that
the first instance of aptSIG is replaced by a standard signature made on pair
m, ssid by the user U. Indeed, efficiency-wise the PFS protocol variant shown
in the full version of the paper adds only the cost of issuing a single standard
signature for user U and a signature verification for each server S.

4.2 Generic AptSIG Protocol

In Fig. 7 we show a generic construction of an augmented password-protected
threshold signature (aptSIG), using an augmented Password-Protected Secret
Sharing (aPPSS) and a Threshold Signature (tSIG). The protocol in addition
relies on functionality FAUTH but it is used only in initialization. The protocol
also relies on an Equivocable Authenticated Encryption scheme, denoted AE.

Threshold Signature Protocol ΠtSIG. In the description of protocol ΠtSIG in
Fig. 7, we don’t use the threshold signature functionality FtSIG, but use the tSIG
protocol directly. We choose this way of describing the aptSIG scheme because
whereas the server parties Pi ∈ P can store secret state between tSIG initial-
ization and signature phases, the user party U is assumed to have no secure
storage (except for memorizing the password), hence it is in particular inca-
pable of locally storing the secret share generated in key generation of tSIG.
Indeed, we use the aPPSS scheme together with the authenticated encryption
AE to “securely transmit” this user’s tSIG state between initialization and sig-
nature phase, but since this secure transmission can fail, i.e., in case of successful
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Fig. 7. Protocol ΠaptSIG which realizes FaptSIG in (FaPPSS,FAUTH)-hybrid world
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password-guessing attack on aPPSS, an honest user may execute tSIG on adver-
sarially chosen inputs. In essence, our aptSIG protocol runs the real-world tSIG
protocol rather than an ideal functionality FtSIG, because functionality FtSIG

does not support a party running the signing protocol on the inputs which do
not correspond to the state created by the key generation for this party. Note
that this proof technique was used in the analysis of the OPAQUE protocol [32],
for the same reason that a UC-secure protocol tool, UC AKE in OPAQUE and
UC tSIG here, is used within a protocol on keys which might not match the ones
prescribed by the protocol.

tSIG Functionality and Communication Setting. We assume that the
tSIG scheme consists of (1) protocol ΠTKeyGen, which implements FtSIG com-
mand (tsig.keygen, sid′) for sid′ = (sid,P+); (2) protocol ΠTSign, which imple-
ments FtSIG command (tsig.sign, sid,m); and (3) algorithm ΠTVerify(V,m, σ)
which implements (tsig.verify, sid,m, σ,V), which simply returns V(m, σ). Note
that set P+ is a list of n + 1 tSIG participants, and we form it by prepending
the user party identifier U to the list of server identifiers P = {P1, . . . ,Pn}.

We use tsi to denote the state created for player Pi by the distributed key
generation protocol ΠTKeyGen, including i = U. (In the following we will use PU

and U interchangeably.) However, many threshold signature schemes assume that
protocol parties have access to some additional secure communication channels,
in the very least secure point-to-point channels and often also a reliable authen-
ticated broadcast channel. (These are the communication assumptions of most
work on threshold cryptosystems, including e.g. the UC threshold ECDSA of
[13] and the threshold BLS scheme in Sect. 2, albeit the latter only in the ini-
tialization phase.) Whereas aptSIG servers can be connected by such channels,
we cannot assume this for the user. Indeed, in aptSIG initialization we assume
user U has only point-to-point authenticated channels with each server Si, and
in aptSIG signing we assume a plain network. If threshold signature protocols
ΠTKeyGen and/or ΠTSign make such communication assumptions, in the initial-
ization phase our aptSIG prepends protocol ΠTKeyGen with a subprotocol which
adds U to this assumed communication setting.

For the above communication setting, this subprotocol could work as fol-
lows: Since in aptSIG initialization U and each Si have pairwise authenticated
channels, these can be upgraded to secure channels using key exchange, e.g.
Diffie-Hellman, executed between U and each Si. As for authenticated broad-
cast, it is typically implemented using PKI (e.g. assuming partial synchrony and
reliable message delivery between uncorrupted parties), in which case U can gen-
erate a signing key, deliver it over authenticated channels to each Si, and Si’s
can agree on it using their authenticated broadcast channels. Likewise, each Si

can send the list of all servers’ public keys to U, and U can reject unless all
the lists are the same. We denote this extended ΠTKeyGen protocol as ΠTKeyGen+ ,
and we use tcsi to denote the secure communication tokens each Pi retains from
it in subsequent ΠTKeyGen and ΠTSign executions. Whereas each server Si can
update its pre-existing communication tokens with tcsi’s output by ΠTKeyGen+ ,
user U cannot retain state between executions. However, we solve this by adding
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the communication tokens tcsU to the threshold signature state tsU created by
ΠTKeyGen, and we encrypt both using the aPPSS-protected key.

Equivocable Authenticated Encryption. Protocol ΠaptSIG uses symmet-
ric Authenticated Encryption scheme AE = (AuthEnc,AuthDec) to encrypt the
local state of U output by ΠTKeyGen+ . We denote this state as (U, tsU, tcsU), where
tsU, tcsU are explained above, and identity U needs to be retained as well because
tSIG assumes that its identifier sid+ includes the identities of all tSIG partic-
ipants, i.e. P+ = (U,P1, ...,Pn), and aptSIG should allow the user to retrieve
signatures using the password only, i.e. it should not rely on the user remember-
ing the identifier U used in the initialization.

We need the authenticated encryption to have ciphertext integrity under
a single chosen message attack. This is a relaxation of standard ciphertext
integrity security notion for authenticated encryption. We also require the
scheme AE to be equivocable, i.e. in the scenario where the adversary gets a
ciphertext followed by the key, there is a simulator that can create an indis-
tinguishable ciphertext with no information about the plaintext except for its
length, and then create the key to decrypt this ciphertext to any given plain-
text. Formally, we call an (authenticated) encryption AE equivocable if there
is an efficient simulator SIM s.t. for any efficient algorithm A, the distinguish-
ing advantage AdvEQV,AE

A (λ) = |p0A − p1A| is a negligible function of λ, where
pb

A = Pr[1 ← A(stA, aec, sk) | (stA, aec, sk) ← Expb], and

Exp0 : (m, stA) ← A(λ), sk ←$ {0, 1}λ, aec ← AuthEncsk(m)
Exp1 : (m, stA) ← A(λ), (aec, stS) ← SIM(|m|), sk ← SIM(stS,m)

Note that equivocability implies standard semantic security of encryption. In the
following we will use the term Equivocable Authenticated Encryption if encryp-
tion is (1) equivocable and (2) has ciphertext integrity. These properties are
easy to achieve in an idealized model like ROM [32], e.g. E(sk,m) = m ⊕ G(sk)
is equivocable if G is a random oracle. If an equivocable encryption is extended
to authenticated encryption, e.g. by computing a MAC on the ciphertext, this
achieves ciphertext integrity but does not effect equivocation because the authen-
tication mechanism is computed over the ciphertext.

4.3 Security of the AptSIG Protocol

Simulation Overview. We construct a simulator SIM which will show that no
environment Z can distinguish the ideal-world and real-world interactions. Since
protocol ΠaptSIG relies on the UC security of three components, aPPSS, tSIG,
and AUTH, we first overview how the real world and the ideal world interactions
involve the protocols, functionalities, or simulators of these components.4 With-
out loss of generality we assume a “dummy” adversary A∗ that is an adversary

4 Due to space constraints we defer to the full version of the paper, which captures
the top-level view of these interactions in the real-world and ideal-world executions.
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who merely passes all its messages and computations to the environment Z. Our
proof assumes that the real execution happens in the (FaPPSS,FAUTH)-hybrid
world, and below we omit the details of interactions with the adversary where in
the ideal world SIM will emulate FaPPSS and FAUTH, because that part of the
simulation is trivial: SIM gains all the information needed from A∗’s interfaces
to these functionalities, and simply follows the code of FaPPSS and FAUTH.

Simulator SIM interacts with the ideal functionality FaptSIG, which in turn
interacts with the environment Z via “dummy” honest parties playing the role
of either user U and server(s) S. The environment Z can also instruct A∗ to send
malicious inputs to SIM on behalf of corrupt or compromised parties, e.g. com-
promised servers. There are three types of SIM-A∗ interactions, corresponding
to three difference interfaces A∗ has in the real world. First, there is the net-
work interface, i.e. messages which protocol ΠaptSIG sends over plain channels.
This interface is used solely for sending aecU in the signing protocol. Second,
A∗ can communicate with functionalities FAUTH and FaPPSS, which SIM will
emulate in the ideal-world. Third, since protocol ΠaptSIG runs the real-world
protocol ΠtSIG instead of using FtSIG as a black-box (see also the explanation
above), A∗ expects to interact with ΠtSIG instances. In the ideal-world, SIM will
not execute the real-world protocol ΠtSIG, and instead it will delegate this to a
simulator SIMtSIG (the simulator whose existence is implied by the assumption
that protocol ΠtSIG UC-realizes functionality FtSIG), which SIM will execute
as a black-box. Simulator SIMtSIG can emulate execution of ΠtSIG instances to
A∗ if SIMtSIG interacts with the ideal functionality FtSIG. Therefore, SIM will
implement an “FtSIG” interface (just like the “FAUTH” and “FaPPSS” interfaces
described above) on which it will talk not to A∗ but to SIMtSIG. Note that from
SIM’s perspective SIMtSIG can be thought of as an extension of adversary A∗

(indeed SIM treats SIMtSIG as a black box, just like it treats A∗), at which point
SIM’s goals is just to correctly emulate the “FtSIG” interface with SIMtSIG.

As discussed above, there is one further unusual aspect of the simulation: In
one special case, which corresponds to an honest party U recovering wrong tSIG
shares because of a successful online active attack against U’s password in the
aPPSS subprotocol, the real-world execution in this case involves U running the
tSIG signing subprotocol on adversarial inputs rather than the inputs prescribed
for U in the tSIG key generation. Such honest party’s execution is not supported
by functionality FtSIG, so the simulator cannot send any messages on the “FtSIG”
interface to SIMtSIG to emulate such tSIG signing protocol instances on behalf
of U. Instead, SIM will simply execute itself the tSIG instance on behalf of U
on such adversarial inputs. (Note that SIM learns from the “FaPPSS” interface
the adversarial inputs which the real-world U would use, because the adversary
sends them to the real-world U via functionality FaPPSS) This U instance can be
thought of as another extension of the adversary, and SIM will inform SIMtSIG

(and pass to A∗) whatever this instance sends e.g. to honest tSIG servers, which
are emulated by SIMtSIG.

Theorem 3. If AE = (AuthEnc,AuthDec) is an Equivocable Authenticated
Encryption, and tSIG = (ΠTKeyGen,ΠTSign,ΠTVerify) is a Threshold Signature
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scheme which UC-realizes functionality FtSIG, then protocol ΠaptSIG in Fig. 7
UC-realizes functionality FaptSIG in Fig. 5 in the (FaPPSS,FAUTH)-hybrid model.

Due to space constraints, we defer the detailed specification of the simulator
SIM, as well as the rest of the proof of Theorem 3, to the full version of the
paper [21].

5 Concrete Instantiation of the AptSIG Protocol

In Fig. 8 we show a concrete instantiation of the generic ΠaptSIG protocol
from Fig. 7, called aptSIG-BLS. This instantiation uses tSIG implemented using
threshold BLS as shown in Fig. 2 in Sect. 2.1, and the aPPSS shown in Fig. 4
in Sect. 3. Finally, the latter is instantiated with a specific OPRF protocol,
2HashDH [29], included in the full version of the paper. This concrete aptSIG
protocol relies on authenticated channels between user U and each server Si in
initialization, an assumption we take throughout the paper. In addition, the ini-
tialization relies on a secure channel for U-to-Si communication, but secure chan-
nels can be implemented on top of authenticated channels using key exchange.
Moreover, a typical application would use TLS to implement authenticated chan-
nels, which provides secure channels without any additional cost.

Notation and Parameters. Figure 8 assumes the following notation for public
parameters: Security parameter l, threshold parameters t, n, t ≤ n, field F =
GF (2l), cyclic group G of prime order p, bilinear map group Ĝ of prime order p̂
and generator ĝ; hash functions H1, H2, H3, H4 with ranges G, {0, 1}l, {0, 1}2l,
Ĝ. Let AE = (AuthEnc,AuthDec) be an Equivocable Authenticated Encryption.
authA→B{m} and secA→B{m} stand for A sending message m to B via resp.
authenticated and secure A → B channel.

Performance. Our concrete aptSIG protocol is very practical: The initialization
protocol takes 3 flows (after receiving OPRF replies the user can send all the
remaining messages in one flow), and the signing protocol takes only 2 flows.
Each server performs 2 exponentiations in both initialization and signing (one
in a standard group, one in a group with a bilinear map), while the user performs
O(n) exponentiations and one bilinear map. The protocol involves no server-to-
server communication, and the bandwidth between user and each server is O(n),
but the only O(n)-sized message is a ciphertext vector e, which can be stored
more efficiently using error correction instead of replicating it on all servers,
which reduces bandwidth to O(1) for t = O(n). In the full version of the paper
we show a simplified rendering of this protocol which highlights its simplicity
and efficiency.

Adding Robustness to aptSIG-BLS. In the protocol in Fig. 8, user U chooses
t + 1 servers to interact with, and it aborts if any server misbehaves. Conse-
quently, there is no guarantee that the protocol outputs a correct signature. To
achieve guaranteed output, one needs to enhance the OPRF function with a ver-
ifiable OPRF [29], namely, where each server has a public OPRF verification key
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Fig. 8. aptSIG-BLS: an aptSIG protocol instantiated with T-BLS and aPPSS of Fig. 4
with 2HashDH OPRF. The aPPSS sub-protocol is marked in gray .
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that is provided to the user at initialization and included in the vector ω. In par-
ticular, the OPRF construction can be made verifiable (see [29]) by setting each
server’s public key to gk where k is the server’s OPRF key and where verification
is implemented via a non-interactive ZK proof of equality of dlog. In this case, U
can run the aPPSS protocol with any subset of t+1 or more servers that sent the
same ω value. If reconstruction succeeds, the user has correct keying material,
including the public keys to verify individual BLS signatures by the servers (and
discard invalid signatures). If reconstruction fails, a new (disjoint) set of t+1 or
more servers with same value ω is chosen by U and the process is repeated. It
is guaranteed that if U has undisturbed connectivity to t + 1 honest servers, the
correct signature σ on message m will be produced. The above process repeats
for at most �n/(t + 1)� times, hence it is efficient even with dishonest majority.

Adding PFS Security to aptSIG-BLS. In the protocol in Fig. 8, server Si

in step 3 of the signing phase sends its partial signature σi without a proof
that U knows the correct password pw and wants to sign m. This enables the
adversary to gather partial signatures on a message m without prior knowledge
of pw, and then complete these to the full signature if it compromises password
pw in the future. However, we can prevent this attack and guarantee Perfect
Forward Secrecy (PFS). This extension is sketched at the end of Sect. 4.1, and
is fully described in the full version of the paper. The PFS-version of the fully
instantiated protocol aptSIG-BLS is deferred to the full version of the paper.
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Abstract. A universal thresholdizer (UT), constructed from a thresh-
old fully homomorphic encryption by Boneh et. al , Crypto 2018, is
a general framework for universally thresholdizing many cryptographic
schemes. However, their framework is insufficient to construct strongly
secure threshold schemes, such as threshold signatures and threshold
public-key encryption, etc.

In this paper, we strengthen the security definition for a universal
thresholdizer and propose a scheme which satisfies our stronger security
notion. Our UT scheme is an improvement of Boneh et. al ’s construc-
tion at the level of threshold fully homomorphic encryption using a key
homomorphic pseudorandom function. We apply our strongly secure UT
scheme to construct strongly secure threshold signatures and threshold
public-key encryption.

Keywords: Universal Thresholdizer · Threshold Signature ·
Threshold FHE · Threshold PKE

1 Introduction

Threshold cryptography [DF89] refers to distributing a privileged operation that
requires a secret key, like signing in a signature scheme and decryption in an
encryption key, among n parties so that any t of them can collaborate to per-
form the final computation. Distributing shares of the secret key between mul-
tiple parties makes the system fault-tolerant. The reasons are: 1) A corrupted
number of parties below the threshold value are not able to evaluate the crypto-
graphic primitive. 2) The system would perform correctly, even in the presence
of few corrupt parties, if honest parties beyond the threshold value participate
in the evaluation. Due to the importance of protecting the secret key, almost all
the cryptographic primitives have their corresponding threshold system. Exam-
ples are threshold public-key encryption schemes [CG99], threshold signature
schemes [Sho00], threshold pseudorandom functions [NPR99], threshold symmet-
ric encryption [AMMR18], threshold message authentication codes [MPS+02],
etc.

In a non-interactive threshold scheme, each party computes a partial output
completely independently of others and then any t partial outputs can be publicly
combined to get the final output. A natural notion of security then says that no

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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polynomial time adversary must be able to compute the final output even if it is
given up to t − 1 partial outputs. Most of the papers on threshold cryptography
model this by allowing the adversary to get the partial secret keys of t−1 parties.
Ideally, the adversary should be allowed to choose the t − 1 parties adaptively.
However, achieving adaptive security is hard, and hence, generally the security
definitions restrict the adversary to output the t − 1 parties in the beginning. In
addition, they also disallow the adversary to ask the partial outputs on challenge
inputs (for e.g., partial signature on challenge message in threshold signature
and partial decryption of challenge ciphertext in CCA security of threshold PKE
scheme) [GWW+13,dPKM+24,Bol02,BGG+18]. This notion of security was
strengthened by Bellare, et. al [BCK+22] in the context of threshold signatures,
where the adversary is now allowed to output a forgery on one of the messages for
which it has already asked a partial signature. In more detail, let c be the number
of parties whose keys are given to the adversary. Then the adversary is allowed
to output a forgery on any message for which it has received at most t − 1 − c
partial signatures1. They further showed that some of the well-known signature
schemes, BLS [BLS04,Bol03] and FROST [KG20] can, in fact, be proven secure
in their stronger security definition. BLS and FROST are based on classical
assumptions based on discrete logarithm problem and is thus not secure against
a quantum adversary.

Motivated by Bellare et. al ’s work, we started with the question - is the
only lattice based non-interactive threshold signature scheme of Boneh et. al
[BGG+18] (referred to as BGGJKRS from mow on) secure in the stronger defi-
nition given by Bellare et. al ? We found that it is hard to prove the stronger
security for BGGJKRS in its current form. We discuss the issues in the technical
overview. We observed that the stronger definition can in fact be viewed as an
adaptive version of the current definition, which explains the difficulty in proving
it. We provide a detailed discussion on adaptive nature of the Bellare et. al ’s
stronger security notion in technical overview.

We then improved BGGJKRS construction using key homomorphic pseudo-
random functions (KHPRF), which are standard PRF, with additional property
that for all K1,K2, for all inputs x, PRF(K1, x)+PRF(K2, x) = PRF(K1+K2, x).
We then show that our improved construction satisfies the stronger security
notion of Bellare et. al .

Boneh et. al constructed the threshold signature from a tool called universal
thresholdizer (UT), which they defined and built from lattice based assump-
tions. The universal thresholdizer can be used as a compiler to thresholdize any
cryptographic primitive and is itself built from threshold FHE, which again, the
authors define and construct from any “special” FHE in the same paper. We
realized that our improvement in threshold signature scheme can actually be
implemented at the level of TFHE so that it improves its security, which in
turn, improves the security of universal thresholdizer built from TFHE in a way
that helps in achieving the stronger security for any threshold cryptographic

1 Bellare et. al defined different levels of security improvements. However, in this work,
we focus only on their TS-UF-1 definition.



Strongly Secure Universal Thresholdizer 209

primitive that uses UT as the thresholdizer. In the main body of this paper,
we define the desired stronger notion of security for TFHE and UT and pro-
vide a construction for TFHE that achieves this notion. We then show that the
universal thresholdizer built from our TFHE achieves the desired security. We
finally show applications of stronger universal thresholdizer to construct thresh-
old signatures and CCA secure PKE with the stronger security. However, in the
technical overview, we describe the challenges and our ideas using the specific
case of threshold signatures, because some of the ideas, especially the adaptivity
perspective of the stronger security definition is more clear when viewed at the
applications level, instead of TFHE or UT.

Our Contributions:

– We strengthen the security definition of universal thresholdizer (UT)
in [BGG+18], which is needed to prove the stronger security of threshold cryp-
toprimitives built using the UT. In turn, we define stronger security property
for threshold FHE (TFHE) needed to prove the stronger security of UT.

– We improve the construction of TFHE in [BGG+18] to achieve the stronger
security property, we define.

– Using our TFHE, we get the first lattice based construction of non-interactive
threshold signature with the stronger security as defined in [BCK+22,
BTZ22].

– Along the lines of [BCK+22], we define a stronger security notion for
CCA-PKE, and show that the constructions in [BGG+18] satisfy this security
if the universal thresholdizer UT satisfies stronger security.

– In [ASY22], Agrawal et. al constructed partially adaptive threshold signatures
in random oracle model, that allows the adversary to issue key queries (all at
once) in the middle of the game. We combine our technique with Agrawal et.
al ’s to construct TFHE (and its applications) with stronger security while
also allowing the adversary to issue key queries (all at once) in the middle of
the game.

1.1 Stronger Security from Adaptivity Perspective

A natural notion of security for t-out-of-n threshold signatures says that any
PPT adversary A should not be able to generate a signature on any message m∗

even if it gets (i) partial signatures on m∗ from up to any t − 1 parties and (ii)
complete (or any number of partial) signatures on messages m �= m∗. Item (ii) is
easy to provide and considered by all versions of unforgeability definition in the
literature. For item (i), A can obtain partial signatures on m∗ in two ways - (i) get
the partial signing keys from the t− 1 parties (ii) only get the partial signatures
(but not the keys) on m∗ from these parties. Clearly, the adversary gets more
power in the first case. In an ideal situation, the adversary can adaptively decide
which t − 1 parties to corrupt. However, this natural notion of security (mostly
referred to as adaptive unforgeability) is hard to achieve and hence, most of the
constructions in this area consider a selective notion of unforgeability where the
adversary must decide the set of corrupted parties in the beginning. There is
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also a notion of partial adaptivity, where the adversary can choose the set of
corrupted parties in the middle of the unforgeability game (i.e. after seeing some
(partial) signatures on other messages), but the entire set of corrupted parties
must be declared together [ASY22]. Since once the adversary has decided the set
of corrupted parties, it is always beneficial for it to ask the signing keys rather
than just the partial signatures, these definitions assume that the adversary
gets the partial signing keys from t − 1 parties, and is not allowed to issue any
partial signing query on the challenge message m∗. However, we can also consider
partial adaptivity in an orthogonal direction, where the adversary divides the
set of corrupted parties as fully corrupted, for which it asks the signing keys
and semi-corrupted from which it only asks the partial signature on m∗. The
adversary must output the set of fully corrupted parties selectively, i.e., in the
beginning of the game, but can decide the semi-corrupted parties adaptively
throughout the game. This is the notion considered in [BCK+22,BTZ22] under
stronger security definition which they call as TS-UF-1. Indeed we can define
security properties that combine adaptivity in both the directions. In Fig. 1,
we present different security properties that can be thus obtained, and relation
between them.

Between P2 and P∗
1, we could not show either of them implied by the other.

However, this is not surprising since both P∗
1 and P2 improve P1 in different

directions.
What is interesting is that even P3 does not seem to imply P∗

1 except with a
loss of factor Q, where Q is the number of signing queries. This can be understood
as follows. Let TS be any threshold signature scheme and AP∗

1
be an adversary

against P∗
1 security of TS. We want to show that if AP∗

1
exists then there exists

an adversary AP3 against P3 security of TS. The difficulty in the reduction comes
when AP∗

1
issues a signing query (m, i) such that m = m∗. In this situation, AP3

must not ask the partial signature from P3 challenger. Instead it should ask for
fski (the partial signing key of party i) and compute PartSign(i, fski,m) itself.
But the problem is that AP3 does not know when m = m∗. So, AP3 guesses
m∗ as follows: let Qs be the number of different messages queried for partial
signatures. Then Qs ≤ Q, where Q is the total number of signing queries. Guess
an index k ∈ [Qs +1] and assume the k-th unique message as m∗. Then, for each
signing query (m, i) with m �= m∗ from AP∗

1
, the reduction forwards the query

to P3 challenger. For m = m∗, the reduction queries for fski and computes the
partial signature itself. Thus, P3 implies P∗

1, but with a loss of factor Qs ≤ Q.
We summarize all the discussed notions in Fig. 1. An arrow in the picture

indicates a path to strengthen a notion, i.e., it is not an implication.

1.2 Technical Overview

Our construction uses the BGGJKRS construction, which does not satisfy the
stronger security notion, as the base and builds upon it to get the stronger
security. We first recall the BGGJKRS construction for threshold signature.
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Fig. 1. Threshold Signature security with different level of adaptivity. For any two
properties, Pi, Pj , Pi → Pj means that Pj is stronger than (at least as strong as) Pi.

Recap of BGGJKRS Threshold Signature. The BGGJKRS threshold signa-
ture scheme is a round optimal (non-interactive) scheme built from a “universal
thresholdizer” that can thresholdize a number of cryptographic primitives. The
thresholdizer is built from a thresholdized version of any “special” fully homo-
morphic encryption (FHE) where the decryption of any ciphertext ct, using a
key fsk, is a linear operation as 〈ct, fsk〉, which gives �q/2�m + e, followed with
rounding which gives m. Here, q is the working modulus and e is a “small” error
and depends on the LWE assumption on which FHE is built. In the thresholdized
version the decryption key fsk is t-out-of-n secret shared between n parties.
To decrypt a ciphertext ct, each party can compute a partial decryption of ct
using its own key share fski and then any t partial decryptions can be (publicly)
combined to get a complete decryption. The BGGJKRS construction for thresh-
old signature TS = (TS.Setup,TS.PartSign,TS.Combine) uses (i) a linear secret
sharing scheme SS, where the individual shares are combined through a linear
process (SS.Combine) to get the full secret, (ii) a fully homomorphic encryption
scheme FHE, where the decryption algorithm is a linear operation2, and (iii) a
signature scheme Sig. Then the construction is:

– TS.Setup(): generates FHE keys (fpk, fsk), signing keys (svk, ssk), and encrypts
ssk as ct = FHE.Enc(ssk). It then uses SS to secret share fsk among the n
parties as {fski}i∈[n] for t-out-of-n threshold access structure. Finally, it sets
pp = (fpk, svk, ct), {ski = fski}i∈[n], vk = svk.

– TS.PartSign(i, ski,m): firstly computes encryption of signature, σm, on m
using FHE.Eval as ctσm

= FHE.Eval(Sig.Signm, ct) and returns partial decryp-
tion of ctσm

as σm,i = 〈ctσm
, fski〉+noise. Here, Sig.Signm is the signing circuit

of Sig with message m being hardwired.

2 For ciphertext ct ∈ Z
λ
q and decryption key fsk ∈ Z

λ
q , FHE.Decrypt(fsk, ct) first com-

putes 〈ct, fsk〉, which gives �q/2�m + e, followed by rounding which outputs m.
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– TS.Combine(S, {σm,i}i∈S): For |S| ≥ t, the TS combine algorithm first runs
the SS.Combine algorithm on the partial signatures and then performs round-
ing to gets the signature as σm = round(SS.Combine({σm,i}i∈S)).

Security Sketch for BGGJKRS Construction. We first briefly recall the
security game. In the beginning of the game, the adversary is given the partial
signing keys from up to t − 1 parties of its choice. In addition, the adversary
can adaptively issue partial signing queries of the form (m, i) to receive partial
signature σm,i on m from party i. In the end, to win the game, the adversary
must output a forgery (m∗, σ∗) on a message m∗ for which no partial signature
was requested.

For the ease of presentation, let us consider a simple case of 2-out-of-2 access
structure. Thus, the FHE decryption key fsk is secret shared between the two
parties as: pick a random fsk1 and set fsk2 = fsk − fsk1. Wlog, we assume that
the adversary asks the signing key for the first party3.

The security is through a sequence of hybrids, where as usual, the initial
hybrid (H0) is the real game. Then in the next hybrid (H1), for any queried
message m, the challenger computes the partial signatures corresponding to
the honest party P2 without using its signing key fsk2. Instead, σm,2 is com-
puted as �q/2�σm − 〈ctσm

, fsk1〉 + noise, while σm,1 is computed honestly as
〈ctσm

, fsk1〉 + noise4. This does not change the adversary’s view because of lin-
earity of FHE.Decrypt. The purpose behind this step is to use the shares of FHE
key fsk only from an “invalid” set of parties (i.e. a set having at most t − 1
parties) so that, then, in the next hybrid (H2), the setup algorithm can use zero
vector instead of fsk to generate the partial signing keys fsk1, fsk2, using the
security of the secret sharing scheme. At this stage, fsk is not used at all, and
hence in the next hybrid (H3), using FHE security, ct in the setup is changed
from ct = FHE.Encrypt(ssk) to ct = FHE.Encrypt(0). Finally, at this stage ssk is
not used and we can use the security of underlying signature scheme to argue
that the adversary cannot output a forgery in this hybrid, which implies that
the adversary cannot generate a forgery in the real world as well.

The reduction to Sig security goes as follows. After getting svk from the Sig
challenger the reduction algorithm samples FHE keys (fpk, fsk) and discards fsk.
It secret shares 0 into fsk1 and fsk2, encrypts 0 as ct = FHE.Encrypt(0) and
sends pp = (fpk, ct) and fsk1 as signing key for party 1. Whenever the adversary
issue signing query on any message m from party 2, the reduction algorithm
computes ctσm

and sends a signing query on m to Sig challenger and gets σm.
It then computes σm,2 = σm − 〈ctσm

, fsk1〉 + noise.
In the end when the adversary outputs a forgery (m∗, σm∗), the reduction

forwards it to the Sig challenger. Since the adversary is not allowed to query

3 Since it is in the best interest of the adversary to get keys from the maximum possible
number of parties, the security definition assumes that the adversary gets keys from
t − 1 parties.

4 noise is added to hide the FHE error e, but is not the main focus of current discussion.
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partial signatures on m∗, the reduction never asks signature on m∗ from the Sig
challenger and hence, (m∗, σm∗) is a valid forgery against the Sig challenger.

Problem in Proving Stronger Security. In the stronger security, the adver-
sary is allowed to query partial signature on m∗ from up to g parties, where
g = t−1−c and c is the number of parties for which the signing key is obtained.
To better understand the difficulty in proving the stronger security in BGGJKRS,
let us consider a scenario where the adversary does not issue any key query. Fol-
lowing the proof strategy as before, while answering partial signing queries, the
challenger would want to make sure that it uses only either fsk1 or fsk2 but not
both. The challenger needs to decide, which one? But, since now partial signa-
ture queries on m∗ are also allowed, when a signing query (m, i) for i ∈ {1, 2}
is received, the challenger needs to be careful in using σm because in the end, if
m∗ = m, the reduction against the Sig challenger in the last hybrid fails. This
is so because whenever the challenger needs σm to reply a partial signing query
on m in (H3 in the proof of BGGJKRS scheme above), the reduction against Sig
gets it from the Sig challenger, and in this case, the reduction cannot output
a forgery on m. Let us understand the challenger’s dilemma with the following
example:

Suppose the adversary issues the first signing query as (m1, 1). Now the
challenger needs to decide whether to use fsk1 to compute σm1,1 or not. Let us
analyze both the options and show that both the choices can go wrong:
Option 1:

– The challenger uses fsk1 to compute σm1,1.
– The adversary issues next query as (m2, 2). Now since fsk1 is already used,

the challenger cannot use fsk2 to generate σm2,2. Hence, it computes σm2,2 as
�q/2�σm2 − 〈ctσm2

, fsk1〉 + noise.
– The adversary outputs a forgery (m2, σm2). Observe that this is a valid forgery

from the TS adversary since it has queried partial signature on m2 from party
2 only. But since the challenger used σm2 to compute the partial signature,
(m2, σm2) cannot be returned as a forgery to the Sig challenger.

Option 2:

– The challenger uses fsk2 to compute σm1,1 as σm1,1 as �q/2�σm1 −
〈ctσm1

, fsk2〉 + noise.
– The adversary outputs a forgery (m1, σm1). Observe that this is a valid forgery

from the TS adversary since it has queried partial signature on m1 from party
1 only. But since the challenger used σm1 to compute the partial signature,
(m1, σm1) cannot be returned as a forgery to the Sig challenger.

Remark 1. In the toy example above, one may be tempted to use guessing, and
that would indeed work here. But guessing becomes hard for general case of
t-out-of-n access structure with neither n − t nor t − c being a constant, where
c is the number of parties for which the adversary asks the signing keys.
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Our Solution: From the above arguments we can derive the following wishful
strategy for the challenger (i) use the secret shares of fsk from at most t−1 parties
(as before), (ii) for any signing query (m, i) do not use σm till |Sm ∪S∗| ≤ t − 1,
where S∗ is the set of parties for which the adversary asks the signing keys and
Sm = {j : (m, j) has been queried so far (including the query (m, i))}.

Attempt 1: For each query (m, i) simply return a random value + noise till
|S∗ ∪Sm| ≤ t−1 and argue that since fski is random, 〈ctσm

, fski〉 is also random.
But we can observe that this strategy immediately fails if the adversary issues
partial signing query from party i for Q different messages for Q > |fski|.
Solution: We use the same strategy as before, where for each query (m, i), the
challenger simply returns a random value + noise till |S∗ ∪ Sm| ≤ t − 1. But
now, we use a different argument to argue indistinguishability from the honestly
computed value using fski. In more detail, let us consider the previous toy exam-
ple of 2-out-of-2 access structure. Let the adversary issues first signing query as
(m1, 1). The challenger returns

σm1,1 = rm1,1 + noise,

where rm1,1 is uniformly random. Then if and whenever the adversary issues a
signing query (m1, 2), the challenger returns

σm1,2 = �q/2�σm1 − rm1,1 + noise.

Notice that this time it is safe to use σm1 because party 1 and party 2 together
form a valid party set and hence the challenger knows that m1 cannot be m∗.
To argue indistinguishability in the adversary’s view, we implicitly view rm1,1 =
〈ctσm1

, fsk1〉 + r′
m1,1, and write

σm1,2 = �q/2�σm1 − rm1,1 + noise

= �q/2�σm1 − 〈ctσm1
, fsk1〉 − r′

m1,1 + noise

= �q/2�σm1 − 〈ctσm1
, fsk1〉 − 〈ctσm1

, fsk2〉 + 〈ctσm1
, fsk2〉 − r′

m1,1 + noise

= �q/2�σm1 − 〈ctσm1
, fsk〉 + 〈ctσm1

, fsk2〉 − r′
m1,1 + noise

= �q/2�σm1 − �q/2�σm1 + e + 〈ctσm1
, fsk2〉 − r′

m1,1 + noise

= 〈ctσm1
, fsk2〉 + (−r′

m1,1) + e + noise.

This view leaves the extra terms r′
m1,1 and (−r′

m1,1) in σm1,1 and σm1,2, respec-
tively. We can think of r′

m1,1 and (−r′
m1,1) as 2-out-of-2 random secret shares

of 0. To address these extra random values, we modify the original construc-
tion by adding pseudorandom components to partial signatures as following.
Let PRF : K × {0, 1}λ → Y be a PRF. Then

σreal
m1,1 = 〈ctσm1

, fsk1〉 + PRF(K1,m1) + noise, and

σreal
m1,2 = 〈ctσm1

, fsk2〉 + PRF(K2,m1) + noise.
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It is easy to see that for correctness, PRF(K1,m1) + PRF(K2,m1) must be
zero5. However, for a general PRF for any two keys K and K ′, PRF(K,m1) +
PRF(K ′,m1) �= 0 with high probability. So, we use a key homomorphic PRF
and K1,K2 are generated as 2-out-of-2 secret shares of 0 ∈ K. We recall
that if PRF is key homomorphic, then for all K,K ′ ∈ K and all input x,
PRF(K,x) + PRF(K ′, x) = PRF(K + K ′, x). Thus, for K2=−K1, PRF(K2,m1)
= PRF(−K1,m1) = −PRF(K1,m1)6. Now, we can argue indistinguishability of
real partial signatures from simulated ones from PRF security that allows to
replace PRF(K1,m1) with random r′

m1,1, and also from the security of secret
sharing that ensures that K1 is uniformly random.

In general, our modified construction is:

– ski = (Ki, fski), where {K1, . . . , Kn} are t-out-of-n secret shares of 0 ∈ K.

– TS.PartSign(i, ski,m) computes σm,i = 〈ctσm
, fski〉 + PRF(Ki,m) + noisei

A simple calculation shows the correctness. For security, we need that for
{K1, . . . , Kn} generated as secret shares of 0 ∈ K and for all input x ∈ X , the fol-
lowing two distributions are indistinguishable (i) {PRF(K1, x), . . . ,PRF(Kn, x)}
versus (ii) (rx,1, . . . , rx,n), where {rx,1, . . . , rx,n} are generated as secret shares
of 0 ∈ Y. This should hold even if the adversary is given such samples for poly-
nomially many different x of the adversary’s choice. Here, K is the key space, X ,
the input space and Y is the output space of the PRF. We prove this based on
the security of PRF and the secret sharing scheme. Please see Sect. 4 for details.

Lattice Based Key Homomorphic PRF? Known lattice based constructions of
key homomorphic PRF are only almost key homomorphic, that is PRF(K1, x)+
PRF(K2, x) = PRF(K1 + K2, x) ± δ, where δ is a small constant, mostly in
{0, 1, 2}. Clearly, the above security property does not hold for almost key homo-
morphic PRF, because the adversary can combine the secrets using SS.Combine
and if the result is zero, then it is the second case, else the first case, with good
probability. We need extra care to work with almost key homomorphic PRF,
where we also add some flooding noise to hide the error incurred by homomor-
phic evaluation of almost KHPRF. Please refer to Sect. 4 for details.

Comparing with [ASY22]. In [ASY22], Agrawal et. al improve the BGGJKRS
construction by providing adaptivity in the other direction as we discussed pre-
viously. They construct a threshold signature scheme that allows the adversary
to output S∗, the set of parties for which it queries the signing keys, in the
middle of the game, but does not allow partial signing queries on m∗. In that

5 Indeed, it suffices that PRF(K1, m1) + PRF(K2, m1) can be computed publicly. In
that case the TS.Combine algorithm can first compute and subtract the extra term
PRF(K1, m1) + PRF(K2, m1) before rounding.

6 For 0 ∈ K, any K ∈ K and any input x, PRF(K, x) = PRF(K + 0, x) = PRF(0, x) +
PRF(K, x). Hence, PRF(0, x) = 0. This further implies PRF(−K, x) = −PRF(K, x).



216 E. Ebrahimi and A. Yadav

case also, to answer the partial signature queries before key query, the chal-
lenger has similar dilemma - to decide which of the FHE key shares to use.
However the nature of the problem is different - again considering the previ-
ous toy example of 2-out-of-2 access structure, suppose the challenger decides
to use fsk1 and simulate the partial signatures from Party 2. That is, for any
message m, σm,1 = 〈ctσm

, fsk1〉+noise and σm,2 = �q/2�σm −〈ctσm
, fsk1〉+noise.

This time there is no issue related to deciding whether to use σm or not.
Instead, the issue is that if the adversary asks fsk2, then the challenger will
be in trouble, as it will end up using both the key shares of fsk. To address
this situation, [ASY22] also use a similar idea - to simulate the partial signa-
tures till S∗ is received without using either fsk1 or fsk2. That is, for a sign-
ing query on message m, the challenger computes �q/2�σm and secret shares it
as rm,1 and rm,2. Then it sets σm,1 = rm,1 + noise and σm,2 = rm,2 + noise,
and implicitly views rm,i = 〈ctσm

, fski〉 + r′
m,i, for i = 1, 2. To account for

extra r′
m,1 and r′

m,2, Agrawal et. al also modify the BGGJKRS construction,
but instead of PRF they use random oracle. In particular, sk1 = (fsk1, R1,K),
sk2 = (fsk2, R2,K). Here R1 and R2 are random vectors of length n (here 2)
such that R1 + R2 = 0 and H is a hash function modeled as random ora-
cle. PartSign(ski,m) = 〈ctσm

, fski〉 + 〈H(K,m), Ri〉 + noise, for i = 1, 2. When
the adversary outputs S∗, the challenger does the following: for each message
m for which a partial signature has been queried, it solves for hm such that
〈hm, Ri〉 = r′

m,i for all i ∈ S∗. It then programs H(K,m) = hm and returns
{ski}i∈S∗ . In our toy example, let S∗ = {1}, then the challenger solves for
〈hm, R1〉 = r′

m,1, programs H(K,m) = hm and returns sk1 = (fsk1, R1,K).
After this point, the challenger has no uncertainty and it behaves in the same
way as in the proof of BGGJKRS . Observe that it is crucial that K has entropy
and is hidden from the adversary until it outputs S∗. In fact, that is the reason
this improvement gives only partial adaptivity and not the full adaptivity.

Looking back to our problem, we cannot use the ROM based trick
from [ASY22] because, in our case, as soon as the adversary gets a signing key,
it learns K, but the uncertainty for the challenger regarding when to use fski or
σm remains.

On the other hand, interestingly, the PRF based trick does not work
for [ASY22]. This is because, if r′

m,i for i ∈ [n] replaces PRF(Ki,m), then when
the adversary outputs S∗, the challenger will need to provide a K ′

i such that
PRF(K ′

i,m) = r′
m,i, which we don’t know how to do. For us, the PRF based

improvement works, because the challenger never needs to output such a key.

Combining Our Approach with [ASY22] to Get Partially Adaptive Key
Queries with Partial Signatures on m∗. We can combine our PRF based
technique with the ROM based technique in [ASY22] to get a construction that
has the advantage of both the constructions. That is, the adversary can ask key
queries in the middle of the game (but all at once) and also issue partial signing
queries on m∗. We refer the readers to the full version7 for more details.

7 The full version is available on https://eprint.iacr.org/.

https://eprint.iacr.org/
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Applying the Techniques at the TFHE Level. In [BGG+18], Boneh et.
al construct a threshold FHE (TFHE), using which they construct a universal
thresholdizer (UT), which, in turn, is used to thresholdize various cryptographic
primitives - threshold signature (TS), threshold CCA-PKE (TPKE).

We observed that all ideas and improvements that we discussed above in the
context of threshold signatures, can in fact be implemented at the TFHE level
itself, which then will have the obvious advantage of improving the security of
all the threshold primitives that are thresholdized from TFHE.

A TFHE is the same as FHE except that the decryption algorithm is thresh-
oldized in TFHE. In more detail,

– Setup algorithm outputs a public key fpk and n secret keys {fski}i∈[n].
– The Eval algorithm is the same as the one in FHE. It takes as input, the

ciphertexts ct1, . . . , ctk, where cti = Encrypt(μi), μi ∈ {0, 1}, and a circuit
C : {0, 1}k → {0, 1} and outputs a ciphertext ct that encrypts C(μ1, . . . , μk).

– The PartDec algorithm takes as input a partial decryption key fski and a
ciphertext ct and outputs a partial decryption pi.

– The FinDec algorithm takes as input a set of partial decryptions of a cipher-
text from a valid set of parties (i.e. the number of parties in the set is at least
t) and outputs the encrypted message.

Boneh et. al define semantic security and simulation security for TFHE. The
semantic security is the same as the semantic security of any PKE. Roughly
speaking simulation security is defined as follows. There exists an efficient sim-
ulator S, which can simulate the secret key shares {fski}i∈[n], without using fsk
in the Setup. Later on, given a set of ciphertexts {ct1, . . . , ctk} which encrypts
adversarially chosen message bits {μ1, . . . , μk}, and any circuit C : {0, 1}k →
{0, 1} along with C(μ1, . . . , μk) and a set S, S simulates partial decryptions of
ctC on behalf of parties in the set S. Here ctC = TFHE .Eval({ct1, . . . , ctk}, C).
The simulator does not need to know the message bits μ1, . . . , μk. The sim-
ulation security says that for any PPT adversary who gets partial decryption
keys {fski}i∈S∗ corresponding to any invalid set of parties of its choice in the
beginning, the simulated view is indistinguishable from the real view. For precise
definition, we refer to the full version. For the current discussion, we only need
to observe that in this definition, the simulator S takes C(μ1, . . . , μk) as input
irrespective of whether S is a valid (i.e. |S| ≥ t) or an invalid set (|S| < t). We
observed that this is the main hurdle in proving stronger security of threshold
signature (and also the other primitives) built from the universal thresholdizer
(UT) in [BGG+18]. We propose stronger definition of simulation security for
TFHE, where the simulator S needs C(μ1, . . . , μk) only when it generates partial
decryption for a valid set of parties. We then propose the same improvement in
UT security, which in turn allows us to prove the stronger security for thresh-
oldized primitives. We apply the ideas discussed above in the context of TSig at
the level of TFHE to achieve the stronger simulation security.

Stronger Security for Threshold CCA-PKE. We define a stronger CCA secu-
rity definition for a threshold public-key encryption scheme. In a real life attack
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scenario, an adversary capable of corrupting a number of parties below the
threshold value can participate in the decryption of a targeted ciphertext ct∗

with the help of a corrupt party. Let g = t − |S∗| be the gap between the
threshold value and the number of corrupt parties. A natural notion of CCA
security should allow up to g − 1 number of partial decryption queries on the
challenge ciphertext ct∗. We define a CCA security definition in which the adver-
sary is allowed to query partial decryption queries on ct∗ from up to g−1 honest
parties. Furthermore, we show that the threshold public-key encryption scheme
in [BGG+18] constructed from a UT scheme and a public-key encryption sat-
isfies our stronger notion of CCA security if UT is strongly secure (which we
define) and the underlying public-key encryption is CCA secure.

Other Related Work. Significant research has been done in building lattice
based threshold cryptography with efficient parameters. Unfortunately efficient
constructions are achieved at the cost of increasing the number of communica-
tion rounds between the parties [dPKM+24,GKS24] or restricting to n-out-of-n
access structure [DOTT21,MS23]. In [dPKM+24] del Pino et. al construct an
efficient threshold signature that involves 3 rounds. In [GKS24], Gur, Katz and
Silde improve [ASY22] but at the cost of increasing the number of rounds to
2. Moreover both the constructions achieve weaker notion of unforgeability (P1

in Fig. 1). In [CCK23] improve the efficiency of [BGG+18] UT using iterative
Shamir secret sharing. However, they consider the same (weaker) security defi-
nition for UT as in [BGG+18].

Organization of the Paper: We provide the notations and preliminaries in
Sects. 2. For detailed preliminaries, please see the full version. In Sect. 3 we define
simulators for secret sharing which we use in our construction. In Sect. 4, we
present key homomorphic PRF. In Sect. 5, we define stronger definition of TFHE
and provide our construction that satisfies the stronger security. In Sect. 6, we
define and prove stronger security definition of UT. In Sect. 7, we prove stronger
security of threshold signatures and threshold PKE from strongly secure UT.

2 Preliminaries

Notations: We represent the t-out-of-n threshold structure as At,n. At many
places we refer to a party Pi as i only (i.e. discarding the letter P ). For secret
sharing scheme where each party’s shares consist of multiple shares, we refer to
each share index by the term ‘party-share’ or only ‘share’. For a matrix M of
dimensions �×N , we represent the i-th row as M[i] or Mi. Let S ⊆ [�], then we
use M[S] or MS to represent the matrix formed by rows in set S. For a vector
x, unless otherwise stated, xi represents the i-th element in x. Due to space
constraints we provide necessary preliminaries in the full version.
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3 Secret Sharing

We first recall the definitions related to secret sharing. Then we define two
simulators that can simulate secret shares for parties one by one as per the
need. More importantly, the simulators do not need the actual secret till the
shares are generated for less than the threshold number of parties. Here we
recall the definition of linear secret sharing. For other preliminaries related to
access structures and secret sharing, please refer to the full version.

Definition 1 (Linear Secret Sharing (LSSS)). Let P = {Pi}i∈[n] be a set of
parties and S be a class of efficient access structures. A secret sharing scheme
SS with secret space K = Zp for some prime p is called a linear secret sharing
scheme if it satisfies the following properties:

– SS.Share(k,A): There exists a matrix M ∈ Z
�×N
p called the share matrix, and

each party Pi is associated with a partition Ti ⊆ [�]. We assume a SS.Setup
algorithm that outputs the share matrix and the partitions as pp which is
implicitly assumed to be an input to the SS.Share and the SS.Combine algo-
rithm.
To create the shares on a secret k, the sharing algorithm first samples uniform
values r1, . . . , rN−1←Zp and defines a vector w = M · (k, r1, . . . , rN−1)T. The
share ki for Pi consists of the entries ki = {wj}j∈Ti

.
At many places in the paper, when it is clear from the context, we directly
write (w1, . . . , w�) ← SS.Share(k,A) instead of (k1, . . . , kn) ← SS.Share(k,A)
with ki = {wj}j∈Ti

.
– SS.Combine(B): For any valid set S ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[j]}j∈⋃
i∈S Ti

).

over Zp where M[j] denotes the jth row of M. Any valid set of parties S ∈ A

can efficiently find the coefficients {cj}j∈⋃
i∈S Ti

satisfying

∑

j∈⋃
i∈S Ti

cj · M[j] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑

j∈⋃
i∈S Ti

cj · wj. The coefficients
{cj} are called recovery coefficients.

To secret-share a vector s = {s1, . . . , sm} ∈ Z
m
p , we can simply secret-share

each entry si using fresh randomness. This gives secret share vectors s1, . . . , s� ∈
Z

m
p . Using these secret shares, the secret vector s can be recovered using the

same coefficients as that for a single field element.
Below we describe the properties of two kinds of linear secret sharing schemes

for threshold access structure (TAS) - (i) Shamir secret sharing and (ii){0, 1}-
linear secret sharing.
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Theorem 1 (Shamir Secret Sharing). Let P = {P1, . . . , Pn} be a set of
parties, and let TAS be the class of threshold access structures on P . Then, there
exists a linear secret sharing scheme (Definition 1) SS with secret space K = Zp

for some prime p satisfying the following properties:

• For any secret s ∈ Zp and At,n ∈ TAS, each share for party Pi consists of a
single element wi ∈ Zp. Let us denote w0 = s.

• For every i, j ∈ [n] ∪ {0} and set S ⊂ [n] ∪ {0} of size t, there exists
an efficiently computable Lagrange coefficients γS

i,j ∈ Zp such that wj =∑
i∈S γS

i,j · wi.

The following lemma can be stated about TAS from [BGG+18].

Lemma 1 ({0, 1}-LSSS for TAS [BGG+18]). Let P = {P1, . . . , Pn} be a set
of parties. Let At,n be a t-out-of-n threshold access structure. There exists an
efficient linear secret sharing scheme bSS = (bSS.Share, bSS.Combine) over the
secret space K = Zp satisfying the following property:

• Let s be a shared secret and {wj}j∈Ti
be the share of party Pi for i ∈ [n].

Then, for every set S ∈ At,n, there exists a subset T ⊆ ⋃
i∈S Ti such that

s =
∑

j∈T wj. Moreover the set T can be computed efficiently for all S ∈ At,n.

We call a linear secret sharing scheme that satisfy the properties above as a
{0, 1}-linear secret sharing scheme8.

Note that for any {0, 1}-linear secret sharing scheme bSS, and for any
minimal valid share set T ⊆ [�], we have that

∑
j∈T wj = s. We will use

bSS = (bSS.Share, bSS.Combine) to refer to a {0, 1}-LSSS in this work.

3.1 LSSS Simulators

In the above descriptions, the SS.Share algorithm takes the secret as input and
outputs the secret shares for all the parties in one step. However, the secret
shares can indeed be generated in a sequential manner - one party (or even one
share) at a time - and the secret is needed only when the set of parties (or shares)
become valid. This is straightforward, for example, for n-out-of-n secret sharing,
where n−1 secret shares are chosen independently randomly as r1, . . . , rn−1 and
then the last share is computed as s − ∑

i∈[n−1] ri. However, for more general
case of t-out-of-n sharing, where each party can have more than one secret share,
it is little more involved. We formalize this by defining two simulators - SSSimI
and SSSimV as follows:

– SSSimI(pp, S, {wi}i∈S , R, st) → ({wj}j∈R, st′): takes as input a set S ⊆ [�],
for which the secret shares are already assigned, along with the assigned
secret shares {wi}i∈S , a subset R ⊆ [�], for which the secret shares are to be

8 We are using a slightly different naming from [BGG+18]. They call such a scheme a
special linear secret sharing scheme and the class of access structures that supports
special LSS as {0, 1}-LSSS.
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generated and a state st, and outputs the secret shares for indices in R and a
new state st′. Wlog, we assume R ∩ S = ∅, otherwise for such j ∈ R ∩ S, the
simulator simply returns the wj from the input secret shares and works with
R\S. We note that the simulator does not take the secret s being shared and
that S ∪ R must be an invalid share set.
1. If S ∪ R is a valid share set, then return ⊥.
2. Initialize I = ∅ and W = S.
3. For each j ∈ R,

• If M[j] /∈ Span(MW ) (i.e., is independent of rows in MW ), then
I = I ∪ {j} and W = W ∪ {j}; and wj ← Zq.
Else, ∃ {γα}α∈W such that M[j] =

∑
α∈W γαM[α]. Set wj =∑

α∈W γαwα.
4. Return {wα}α∈R and st′ = st.

– SSSimV(pp, S, {wi}i∈S , s, R, st) → ({wj}j∈R, st′): takes as input a set S ⊆ [�],
for which the secret shares are already assigned, along with the assigned secret
shares {wi}i∈S , the secret s, a subset R ⊆ [�], for which the secret shares are
to be generated and a state st, and outputs the secret shares for indices in R
and a new state st′. Wlog, we assume R∩S = ∅, otherwise for such j ∈ R∩S,
the simulator simply returns the wj from the input secret shares and work
with R \ S. We note that this simulator takes the secret s being shared and
that S ∪ R is a valid share set.

1. If st = ∅
(a) If S is a valid share set, then return ⊥.
(b) Find a maximal invalid share set X ⊆ [�] such that S ⊆ X.
(c) Initialize I = ∅ and W = S.
(d) For j ∈ X \ S,

i. If M[j] /∈ Span(MW ), sample wj ← Zq and update I = I ∪ {j}
and W = W ∪ {j}.

ii. Else compute wj from {wα}α∈W in the same ways as in Step 3 in
SSSimI above.

(e) st′ = (X, {wα}α∈X)
(f) For j ∈ R \ X

i. Since X is a maximally invalid share set, X ∪ {j} is a valid
share set. Hence, there exists {cα}α∈X∪{j} such that s =
∑

α∈X∪{j} cαwα. Hence, compute wj = s−∑
α∈X cαwα

cj

(g) Return {wα}α∈R and st′.

2. Else
(a) Parse st as (X, {wα}α∈X) where X is a maximally invalid share set -

if not, abort.
(b) Again, wlog we assume R∩X = ∅, because otherwise for all j ∈ X\R,

wj is already set and is returned as it is.
(c) For j ∈ R \ X
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i. Since X is a maximally invalid share set, X ∪ {j} is a valid
share set. Hence, there exists {c

X∪{j}
α }α∈X∪{j} such that s =

∑
α∈X∪{j} c

X∪{j}
α wα. Hence, compute wj = s−∑

α∈X cX∪{j}
α wα

c
X∪{j}
j

3. Return {wα}α∈R and st′ = st.

Below we show that the secret shares generated by the simulators SSSimI and
SSSimV have the same distribution as those generated by the SS.Share algorithm.
We formalize this via the following claim.

Claim 2. For all adversary A, Expt0SSSim and Expt1SSSim, as described below are
identical in A’s view.

ExptbSSSim(1λ) :

1. Upon input the security parameter 1λ and a threshold access structure At,n,
the challenger fixes a share matrix M and the partitions {Ti}i∈[n] and sends
them to A.

2. A outputs a secret s (for which secret shares are to be generated).
3. The challenger does the following:

– If b = 0, generates {wj}j∈[�] ← SS.Share(s,At,n)
Else if b = 1, initializes W = ∅ and st = ∅.

4. For κ = 1 to �,
(a) A outputs jκ ∈ [�] (wlog we assume that jκ was not queried before).
(b) If b = 0, the challenger returns wjκ

(generated in Step 3)
(c) If b = 1 and W ∪ {jκ} is an invalid share set, generate (wjκ

, st′) ←
SSSimI(W, {wα}α∈W , {jκ}, st); updates W = W ∪ {jκ}, st = st′ and
returns wjκ

(d) If b = 1 and W ∪ {jκ} is a valid share set, generate
(wjκ

, st′) ← SSSimV(W, {wα}α∈W , s, {jκ}, st); updates W = W ∪
{jκ}, st = st′ and returns wjκ

5. At the end, A outputs its guess bit b′ and wins if b′ = b.

Proof. We first recall the SS.Share algorithm. The secret shares of s, {wj}j∈[�]

are computed as M · (s, r1, . . . , rN−1)T = (w1, . . . , w�)T, where r1, . . . , rN−1 are
chosen uniformly randomly.

To prove the claim, we show that the secret shares {wj}j∈[�] generated by
the simulators can also be expressed as M · (s, r1, . . . , rN−1)T = (w1, . . . , w�)T,
for uniformly random r1, . . . , rN−1.

Let k ∈ [�] be the index where the transition from invalid to valid happens
- i.e., {j1, . . . , jk} is an invalid share set and {j1, . . . , jk, jk+1} is a valid share
set. Let I be the maximal invalid share set chosen by SSSimV when called to
generate wjk+1 . Note that for all subsequent queries also, the same invalid share
set I is used. Further, let E ⊆ I be the set of indices for which the secret shares
are chosen uniformly randomly. From the definition of the simulators, we note
that the rows in ME are independent. Let |E| = c. Now we make the following
observations: since I is a maximally invalid share set and E ⊆ I, E is also an
invalid share set. Hence, for all j ∈ [�] \ I, M[j] /∈ Span(ME), otherwise the
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adversary could recover the shares for a valid share set I ∪{j} from the shares of
an invalid share set I, where the j-th share wj could be generated from {wα}α∈E ,
thus breaking the security of secret sharing scheme. Thus, rank(M) ≥ |E| + 1
and hence, N ≥ |E| + 1 or |E| ≤ N − 1.

Case 1: |E| = N − 1, then given ME and {wj}j∈E , we can uniquely solve for
r1, . . . , rN−1 such that ME ·(s, r1, . . . , rN−1)T = (wj)j∈E , and since {wj}j∈E

are also chosen uniformly randomly from the same space as r’s, {rj}j∈[N−1]

are also uniformly random.
Case 2: |E| < N − 1. choose r1, . . . , rN−1−|E| uniformly randomly and then

uniquely solve for the rest of r’s, i.e. rN−|E| to rN−1, as in case 1, and by
the same argument, these r’s are also uniformly random.

Finally, it is straightforward to verify that for any (s, r1, . . . , rN−1), such that
∀ j ∈ E, M[j] · (s, r1, . . . , rN−1)T = wj , M[κ] · (s, r1, . . . , rN−1)T = wκ, for all
κ ∈ [�] \ E.

4 Key Homomorphic PRF

We recall the definitions related to pseudorandom functions.

Definition 2 (Pseudorandom Function (PRF)). A function F : K×X → Y
with key space K, domain X , and range Y is a secure pseudorandom function if
for all efficient algorithms A,

|Pr[k ← K : AF (k,·)(1λ) = 1]−Pr[f ← Funcs(X ,Y) : Af(·)(1λ) = 1]| = neg(λ),

where Funcs(X ,Y) denotes the set of all functions with domain X and range Y.

Definition 3 (Key Homomorphic PRF). Any function F : K×X → Y is a
key homomorphic PRF (KHPRF) [NPR99,BLMR13] if it satisfies the following
two properties:

1. It must be a PRF.
2. It satisfies key homomorphism: for any k1, k2 ∈ K, F (k1, x) + F (k2, x) =

F (k1 + k2, x) for all x ∈ X 9.

Definition 4 (Almost Key Homomorphic PRF). A δ-almost KHPRF
[BLMR13] is the same as the standard PRF except that the second condition
is different as:

1. It satisfies (almost) key homomorphism: for any k1, k2 ∈ K, F (k1, x) +
F (k2, x) = F (k1 + k2, x) + e, where |e| ≤ δ, for all x ∈ {0, 1}a.

9 In general, if K is a group with operation ‘+’ and Y is a group with operation ‘∗’,
then F (k1, x) ∗ F (k2, x) = F (k1 + k2, x).
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Almost KHPRF are constructed from LWE in [BLMR13,BP14,Kim20], where
δ = 1 or 2, depending upon the choice of the parameters.

We prove the following lemma which says that: for a secure KHPRF F and
linear secret sharing scheme SS, let K is a KHPRF key and is secret shared as
(K1, . . . , Kn) ← SS.Share(K,At,n). Then for all PPT adversary A, who outputs
polynomially many queries of the form (i, x), the following two views are indistin-
guishable - in the first (real) world, A receives F (Ki, x), while in the other (ideal)
world, A receives Rx,i, where (Rx,1, . . . , Rx,n) ← SS.Share(F (K,x),At,n)10. This
is true even if the adversary can corrupt up to t − 1 parties (now outputs for
only uncorrupted parties are random in the ideal world) and also knows K. Intu-
itively, this holds because, from the security of SS, the key shares K1, . . . , Kn

are “random” with the constraint that any valid combination of these keys gives
K. Hence, from KHPRF security we can replace F (Ki, x) in the real world with
random rx,i in the ideal world under the constraint that any valid combination
of rx,· gives F (K,x). These {rx,i}i∈[n] can indeed be generated as secret shares
of F (K,x).

However, observe that in the case of almost KHPRF, the adversary can distin-
guish between the two worlds as follows. Let us consider a simple case of 2-out-
of-2 sharing of an almost KHPRF key k (known to the adversary) as k = k1 + k2
without any corruption. On any input x, the adversary is given F (k1, x) and
F (k2, x) in the real world. In the ideal world, the adversary is given a random
secret shares of F (k, x) : r1, r2 such that r1 + r2 = F (k, x). The adversary can
distinguish the two worlds by adding the received values - if they add up exactly
to F (k, x), then it is the ideal world, else the real world with “good” probability.
Hence, in almost KHPRF, we must add noise to hide the error introduced due
to homomorphic evaluation.

We further observe that since each addition may add a δ error, the total
error introduced due to the homomorphic evaluation of partially evaluated PRF
values (let us call it ep) may actually depend on the secret sharing schemes -
in particular, the recovery coefficients. In {0, 1}-LSSS, the recovery co-efficients
are binary and hence it is easier to bound the error as |ep| ≤ �, where � is the
number of rows in the share matrix M. In Shamir secret sharing the recovery
co-efficients can be arbitrary in Zp. Hence, in that case one would need the
technique of ’clearing the denominators’ as in [ABV+12,BGG+18] and modify
the game accordingly. In this paper, we work with {0, 1}-LSSS. However, the
same ideas work for Shamir secret sharing as well.

Below we state and prove the lemma directly for the general case of almost
KHPRF for {0, 1}-LSSS.

Before formally defining the lemma, let us define an intermediate algorithm
SS.ShareInt for generating secret shares when some of the secret shares are
already set. Thus, SS.ShareInt(pp, S, {wj}j∈S , s) takes as input the public param-
eters, an invalid set of party shares S ⊂ [�] and the corresponding secret shares,
{wj}j∈S and the secret s and outputs the secret shares for [�] \ S. We assume

10 Each Ki may indeed consist of multiple keys as Ki = {kj}j∈Ti . In that case,
F (Ki, x) = {F (kj , x)}j∈Ti and Rx,i = {rx,j}j∈Ti .
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that the input shares are consistent in the following sense: for all j ∈ S such
that the row M[j] ∈ Span(MS\{j}), that is, M[j] =

∑
κ∈S\{j} cκM[κ], where

{cκ}κ∈S\{j} are constants, wj =
∑

κ∈S\{j} cκwκ. The algorithm is defined as
follows:

SS.ShareInt(S, {wj}j∈S , s,At,n):

– Find a set of random values r1, . . . , rN−1 such that for each α ∈ S,
〈M[α], (s, r1, . . . , rN−1)〉 = wα. These r’s are chosen as follows:

• Let SI ⊆ S such that MSI
is maximally independent set of rows within

MS . Let |SI | = c.
• Sample r1, . . . , rN−1−c ← Zq.
• Solve (deterministically) MSI

(s, r1, . . . , rN−1−c, rN−1−c+1, . . . , rN−1)T =
wSI

to compute rN−1−c+1, . . . , rN−1.
• For each α ∈ [�] \ S, wα = 〈Mα, (s, r1, . . . , rN−1)〉

Now we are ready to define the lemma.

Lemma 2. Let F be any secure δ-almost KHPRF and SS is a secure linear secret
sharing scheme (Definition 1). Then for all PPT adversary A, Pr[A wins] ≤
1/2 + neg(λ) in the following experiments if δ�/Esm ≤ neg(λ), where Esm is
flooding noise used to hide the error in homomorphic evaluation of KHPRF.

ExptA,almost-KHPRF(1λ,At,n):

1. Upon input the security parameter λ and a threshold access structure At,n,
the challenger C finds a share matrix M of dimensions � × N along with
the n partitions as (M, {Ti}i∈[n]) ← bSS.Setup(1λ,At,n). It sends bSS.pp =
(M, {Ti}i∈[n]) to A.

2. C samples a challenge bit, b ← {0, 1}.
3. A outputs a PRF key K and an invalid share set S∗ ⊆ [�].
4. C runs {k1, . . . , k�} ← bSS.Share(K,At,n) and returns {kj}j∈S∗ to A.
5. Then A issues polynomial number of evaluation queries of the form (x, j)

adaptively, where j ∈ [�] and x is an input to PRF F .
6. For each evaluation query (x, j), C does the following.

– Samples ηx,j ← [−Esm, Esm], where δ�/Esm ≤ neg(λ).
– If b = 0, it returns yx,j = F (kj , x) + ηx,j.

Else,
• if j ∈ S∗, return yx,j = F (kj , x) + ηx,j.
• else, C does the following:

if x is queried for the first time (irrespective of any j ∈ [�]),
then it first computes yx,α = F (kα, x) for all α ∈ S∗ and runs
{yx,α}α∈[�]\S∗ ← bSS.ShareInt(SS.pp, S∗, {yx,α}α∈S∗ , F (K,x),
At,n) and returns yx,j + ηx,j. It saves {yx,α}α∈[�]\S∗ for future
queries.
else C returns the saved yx,j + ηx,j.

7. A outputs b′ and wins if b′ = b.
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– Here, we are using a slight abuse of notation - we work directly at the
level of party shares in [�] without identifying the parties to which they
belong. For example, we write (k1, . . . , k�) ← bSS.Share(K,At,n) instead of
{{kj}j∈Ti

}i∈[n] ← bSS.Share(K,At,n).
– In the above game, the adversary can issue evaluation queries for multiple

party shares together as (S, x), where S ⊆ [�].

Due to space constraints, we prove the lemma in the full version.

5 Threshold Fully Homomorphic Encryption

We recall the definitions of TFHE from [BGG+18] along with its correctness and
security (semantic and simulation) properties in the full version of the paper.
Here we define our stronger notion of simulation security needed for constructing
UT with stronger security, which in turn is needed for building thresholdized
primitives with stronger notion of security.

Definition 5 (Stronger Simulation Security). A TFHE scheme satisfies
stronger simulation security if for all λ, depth bound d, and access structure
A, the following holds. There exists a stateful PPT algorithm S = (S1,SI ,SV )
such that for any PPT adversary A, the following experiments, ExptA,Real(1λ, 1d)
and ExptA,Ideal(1λ, 1d)) are indistinguishable:

ExptA,Real(1λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A
outputs A ∈ S.

2. The challenger runs (pk, sk1, . . . , skn) ← TFHE .Setup(1λ, 1d,A) and provides
pk to A.

3. A outputs an invalid (not necessarily maximal) party set S∗ ⊆ {P1, . . . , Pn}
and messages μ1, . . . , μk ∈ {0, 1}.

4. The challenger sends the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt
(pk, μi)}i∈[k] to A.

5. A issues a polynomial number of adaptive queries of the form (S ⊆
{P1, . . . , Pn}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger computes ct ← TFHE .Eval(pk, C, ct1, . . . , ctk) and
provides pi ← {TFHE .PartDec(pk, ski, ct)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, A outputs A ∈ S.
2. The challenger runs (pk, sk1, . . . , skn, st) ← S1(1λ, 1d,A) and sends pk to A.
3. A outputs an invalid party set S∗ ⊆ {P1, . . . , Pn} and messages μ1, . . . , μk ∈

{0, 1}.
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4. The challenger sends the keys {ski}i∈S∗ and {cti ← TFHE .Encrypt(pk,
μi)}i∈[k] to A.

5. A issues a polynomial number of adaptive queries of the form (S ⊆
{P1, . . . , Pn}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger provides {pi}i∈S computed as follows:
– If C is queried for the first time, then initialize SC = ∅.
– If S ∪ SC ∪ S∗ is an invalid party set, then

(st′, {pi}i∈S) ← SI(C, {ct1, . . . , ctk}, S, st)

Else, if S ∪ SC ∪ S∗ is a valid party set, then

(st′, {pi}i∈S) ← SV (C, {ct1, . . . , ctk}, C(μ1, . . . , μk), S, st).

– Update SC = SC ∪ S and st = st′.
6. At the end of the experiment, A outputs a distinguishing bit b.

Our definition differs from [BGG+18] mainly in the ideal experiment where
we define two simulators SI and SV instead of S2 in [BGG+18]. Note that SI

simulates the response for partial evaluation queries (S,C) if S forms an invalid
set of parties along with S∗ and the sets corresponding to previous queries for
the circuit C. The key property of SI is that it does not need C(μ1, . . . , μk) as
its input. SV simulates the response for partial evaluation queries (S,C) when
S forms a valid party set (along with S∗ and the sets corresponding to previous
queries for the circuit C) and takes C(μ1, . . . , μk) as one of its input.

5.1 Construction of Threshold FHE from {0, 1}-LSSS
Construction 1 (TFHE). Let P = {P1, ..., Pn}. We use the following building
blocks to construct a TFHE for P :

– A special fully homomorphic encryption scheme, FHE = (FHE.Setup,
FHE.Encrypt, FHE,Eval,FHE.Decrypt) with noise bound B = B(λ, d, q) and
multiplicative constant 1 (Definition 5 in the full version).

– A (δ-almost) KHPRF, F : K × {0, 1}λ → Zq.
– A {0, 1}-LSSS, bSS = (bSS.Share, bSS.Combine). We use Ti to denote the i-

th partition of the share matrix M . We use = � = �(λ, n) to denote a fixed
polynomial bound on the size of the share: |Ti| ≤ � for all i ∈ [n]. We let
Bsm be the bound on the smuding noise to hide the LWE error e ∈ [−B,B]
and Esm the bound on the noise added to smudge the error in homomorphic
evaluation of KHPRF.

– A collision resistant hash function H : {0, 1}∗ → {0, 1}λ.

TFHE .Setup(1λ, 1d,At,n): On input the security parameter λ, depth bound d, and
threshold access structure At,n, the setup algorithm does the following:
1. Samples (fpk, fsk) ← FHE.Setup(1λ, 1d).



228 E. Ebrahimi and A. Yadav

2. Secret shares 0 ∈ K as (K1, . . . , Kn) ← bSS.Share(0,At,n) and fsk as
(fsk1, . . . , fskn) ← bSS.Share(fsk,At,n). We let fski = {fheskj}j∈Ti

and
Ki = {kj}j∈Ti

.
3. Outputs tfpk = fpk and tfski = (fski,Ki) for all i ∈ [n].

TFHE .Encrypt(tfpk, μ): On input the public key tfpk and input μ ∈ {0, 1}, the
encryption algorithm computes and returns ct = FHE.Encrypt(tfpk, μ).

TFHE .Eval(tfpk, C, {ct1, . . . , ctk}): On input the public key tfpk, a circuit C :
{0, 1}k → {0, 1} of depth at most d and ciphertexts ct1, . . . , ctk, the evaluation
algorithm computes and returns ctC = FHE.Eval(tfpk, C, ct1, . . . , ctk).

TFHE .PartDec(tfpk, tfski, ct): On input the public key tfpk, a ciphertext ct and
partial decryption key tfski, the partial decryption algorithm does the follow-
ing.
1. Parse tfski = ({fheskj}j∈Ti

, {kj}j∈Ti
) and sample {ξj}j∈Ti

←
[−Bsm, Bsm] and {ηj}j∈Ti

← [−Esm, Esm].
2. Compute and return pi = {yj = FHE.decode0(fheskj , ct) + ξj +

F (kj ,H(C)) + ηj}j∈Ti
11.

TFHE .FinDec(tfpk, S, {pi}i∈S): On input a public key tfpk, a set S ⊆ [n], and a
set of partial decryption shares {pi}i∈S, it first checks if S ∈ At,n. If no, then
it outputs ⊥. Else, it computes and returns

μ = FHE.decode1(bSS.Combine({pi}i∈S)),

which involves following steps: parse pi = {yj}j∈Ti
for each i ∈ S

and compute a minimal valid shares set T ⊆ ⋃
i∈S Ti. Then compute

FHE.decode1(
∑

j∈T yj).

Correctness. The correctness is the same as that in [BGG+18] along with
the observation that bSS.Combine({{F (kj ,H(C))}j∈Ti

}i∈S) = 0 for all C. We
provide detailed proof of correctness in the full version.

Security and Compactness. Compactness and semantic security follows
directly from the security of underlying FHE and bSS and compactness of FHE.
Please see full version for the details.

Simulation Security

Theorem 3. Assume that FHE is secure, F is a secure δ-almost KHPRF and
bSS is a secure {0, 1}-LSSS and H is collision resistant. Then the above con-
struction of TFHE satisfies stronger simulation security (Definition 5).

Proof. Let A be any PPT adversary against the stronger simulation security of
TFHE. Then we prove the above theorem via the following sequence of hybrid
experiments with A.

11 The two smudging noises, ξj and ηj can in fact be merged together by appropriately
setting the parameters.
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Hybrid0 : This is the real experiment ExptA,real(1λ, 1d). On input the
access structure, At,n, the challenger runs (tfpk, tfsk1, . . . , tfskn) ←
TFHE .Setup(1λ, 1d,At,n) and sends tfpk to A. Then A outputs a set S∗ ⊆ [n]
such that |S∗| < t and a set of messages μ1, . . . , μk ∈ {0, 1}. The chal-
lenger then computes cti = TFHE .Encrypt(tfpk, μi) for i ∈ [k] and returns
{tfski}i∈S∗ and {cti}i∈[k] to A. For each evaluation query (S,C) from A, the
challenger computes ctC = TFHE .Eval(tfpk, C, ct1, . . . , ctk) and returns the
following to A:

{pC,i = TFHE .PartDec(tfpk, tfski, ctC)}i∈S .

Each pC,i = {yC,j}j∈Ti
, where yC,j = FHE.decode0(fheskj , ctC) +

F (kj ,H(C)) + ξC,j + ηC,j . In the following, for any X ⊆ [n], we let TX =⋃
i∈X Ti.

Hybrid1: This is the same as the previous hybrid except that for each query
(S,C), the PRF component in TFHE .PartDec is replaced with random values.
In more detail, for i ∈ S ∩ S∗, pC,i is computed as in the real world. For
i ∈ S \ S∗, pC,i is computed as follows:

– If C is queried for the first time (and i is the first party in S\S∗), generate
{rC,j}j∈T[n]\S∗ ← bSS.ShareInt(TS∗ , {F (kj , C)}j∈TS∗ , 0), and save them
in a list LC for future iterations and queries. Else, lookup for previously
saved values of {rC,j}j∈Ti

in LC .
– Compute yC,j = FHE.decode0(fheskj , ctC)+rC,j +ξC,j +ηC,j for all j ∈ Ti.

Hybrid2: This is the same as the previous hybrid, except that for each query
(S,C), for all i ∈ S \S∗, the PRF components in pC,i are generated from bSS
simulators as follows.

– If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
– If S∗ ∪SC ∪S is an invalid party set then generate ({rC,j}j∈TS\S∗ , st′C) ←

bSS.SSSimI(TS∗∪SC
, {rC,j}j∈TS∗∪SC

, TS\S∗ , stC).
Else, if S∗∪SC∪S is a valid party set then generate ({rC,j}j∈TS\S∗ , st′C) ←
bSS.SSSimV(TS∗∪SC

, {rC,j}j∈TS∗∪SC
, 0, TS\S∗ , stC).

Here, for j ∈ TS∗ , rC,j = F (kj ,H(C)) and for j ∈ TSC\S∗ , rC,j is com-
puted during previous queries for C and is stored in LC .

– Update SC = SC ∪ S and stC = st′C and add {rC,j}j∈TS\S∗ to LC .
Then compute and return yC,j = FHE.decode0(fheskj , ct) + rC,j + ξC,j + ηC,j

for all j ∈ TS\S∗ .
Hybrid3: This is the same as the previous hybrid, except that for i ∈ S \ S∗,

pC,i = {yC,j}j∈Ti
is computed differently as yC,j = r̃C,j + ξC,j + ηC,j , where

r̃C,j are generated as follows:
– If C is queried for the first time then initialize SC = ∅, stC = ∅, LC = ∅.
– If S∗ ∪SC ∪S is an invalid party set then generate ({r̃C,j}j∈TS\S∗ , st′C) ←

bSS.SSSimI(TS∗∪SC
, {r̃C,j}j∈TS∗∪SC

, TS\S∗ , stC). Else, if S∗ ∪ SC ∪ S is a
valid party set then generate

({r̃C,j}j∈TS\S∗ , st′C) ← bSS.SSSimV(TS∗∪SC
, {r̃C,j}j∈TS∗∪SC

,

�q/2�C(μ1, . . . , Ck), TS\S∗ , stC)
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Here, for j ∈ TS∗ , r̃C,j = FHE.decode0(fheskj , ct) + F (kj ,H(C)) and for
j ∈ TSC\S∗ , r̃C,j is computed during previous queries for C and is saved
in LC .

– Update SC = SC ∪ S and stC = st′C and save {r̃C,j}j∈TS\S∗ in LC .
Hybrid4: In this hybrid, the challenger secret shares 0|fsk| in place of fsk in the

setup phase.
Hybrid5: In this hybrid, cti encrypts 0 instead of μi.

We observe that the challenger does not use fsk or μ1, . . . , μk to generate the
secret key shares {fski}i∈[n] or to reply PartDec queries. Thus the challenger in
Hybrid4 corresponds to the simulator in the ideal experiment, as desired.

Due to space constraints, we argue indistinguishability of hybrids in the full
version.

Parameters. For security and correctness, we require

– B + �Bsm + δ� + �Esm ≤ q/4 (for correctness)
– B/Bsm ≤ neg(λ) and δ�/Esm ≤ neg(λ) (for security).

We observe that since � is poly(λ) and δ is a constant, our parameters are sim-
ilar to those in [BGG+18]. As noted there, FHE satisfying these parameters is
known from subexponential LWE assumption [GSW13,BV11], which is as hard
as approximating the shortest vector with subexponential approximation factors.

Remark 2. In [ASY22], Agrawal et. al use Rényi divergence [BLL+15] based
analysis to reduce the size of noise flooding in BGGJKRS threshold signature from
exponential to polynomial, effectively reducing the size of modulus q to poly(λ).
Rényi divergence is more suitable for search based primitives, like signatures. We
remark that using similar analysis as in [ASY22], size of Bsm and Esm can also
be reduced to polynomial in case of threshold signatures. However, this does not
apply for threshold FHE and UT which are indistinguishability based primitives.

6 Universal Thresholdizer

We recall the definition of universal thresholdizer from [BGG+18] in the full
version. Here we define our stronger security notion for universal thresholdizer
needed to prove stronger security for the primitives thresholdized using it - for
example, threshold signatures and threshold CCA-PKE.

Definition 6 (UT Stronger Security). We say that a UT scheme satis-
fies (stronger) security if for all λ, and depth bound d, the following holds.
There exists a stateful PPT algorithm S = (S1,SI ,SV ) such that for all PPT
adversary A, we have that the following experiments ExptA,UT,Real(1λ, 1d) and
ExptA,UT,Ideal(1λ, 1d) are computationally indistinguishable:

ExptA,UT,Real(1λ, 1d):
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1. On input the security parameter 1λ, and circuit depth 1d, the adversary A
outputs an access structure At,n, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sn) ← UT.Setup(1λ, 1d,At,n, x) and provides
pp to A.

3. A outputs an invalid party set S∗ ⊂ {P1, . . . , Pn} for At,n.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆

{P1, . . . , Pn}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger provides {yi ← UT.Eval(pp, si, C)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,UT,Ideal(1λ, 1d):

1. On input the security parameter 1λ, and circuit depth 1d, the adversary A
outputs an access structure At,n, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sn, st) ← S1(1λ, 1d,At,n) and sends pp to A.
3. A outputs an invalid party set S∗ ⊂ {P1, . . . , Pn} for At,n.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues polynomial number of adaptive queries of the form (S ⊆

{P1, . . . , Pn}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger provides {yi}i∈S computed as follows:
– If C is queried for the first time, then initialize SC = S, else SC = SC ∪S.
– If SC ∪ S∗ is an invalid party set, then ({yi}i∈S , st′) ← SI(pp, C, S, st).

Else, if SC ∪ S∗ is a valid party set, then ({yi}i∈S , st′) ←
SV (pp, C, C(x), S, st).

– Update st = st′.
6. At the end of the experiment, A outputs a distinguishing bit b.

Remark 3. The above definition differs from the security definition in [BGG+18]
in the ideal experiment. In the weaker notion of [BGG+18], in response to any
query (S,C), the UT simulator takes C(x) as input, irrespective of whether or
not the set S forms a valid party set along with S∗ and sets corresponding to
the previous queries for the circuit C. In our definition, we make this distinction
- we define two simulators SI and SV . SI is used in case of invalid set and does
not take C(x) as input. SV is used when S forms a valid set (along with S∗ and
sets in previous queries for C) and takes C(x) as input.

[BGG+18] uses a TFHE and NIZK with preprocessing (PZK) to construct
a universal thresholdizer. Below we show that if the TFHE scheme satisfies the
semantic security and stronger simulation security (Definition 5), then the con-
struction of UT in [BGG+18] satisfies the stronger security (Definition 6). Due to
space constraints, we recall the construction from [BGG+18] in the full version.

Theorem 4. Suppose TFHE satisfies semantic security ( [BGG+18, Definition
5.5]) and stronger simulation security (Definition 5), PZK is a zero knowledge
proof system with pre-processing that satisfies zero-knowledge, and C is a non-
interactive commitment scheme that satisfies computational hiding. Then, the
universal thresholdizer scheme by Boneh et al. [BGG+18, Construction 7.7] sat-
isfies the stronger security (Definition 6).
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Proof. The proof for the above theorem is similar to the proof of [BGG+18,
Theorem 7.11]. Here we provide a sketch of the proof and refer to the full version
for complete proof. The main difference is in the description of Hybrid3, where
for each query (S,C), the challenger does the following:

1. If C is queried for the first time, initialize SC = ∅.
2. If S ∪ SC ∪ S∗ is an invalid party set then the partial evaluations {p∗

i }i∈S are
generated using SI simulator for TFHE.
Else, if S ∪ SC ∪ S∗ is a valid party set then the partial evaluations {p∗

i }i∈S

are generated using SV simulator for TFHE.
3. Update SC = SC ∪ S.

Here S∗ is the set of corrupted parties and as per our definition of UT security,
S∗ is an invalid party set, but not necessarily maximally invalid.

The indistinguishability of Hybrid3 from Hybrid2 follows directly from the
stronger simulation security of TFHE (Definition 5).

7 Applications

In this section we revisit the application of universal thresholdizer in thresh-
oldizing different crypto primitives as considered in [BGG+18]. In particular we
define and construct threshold signatures, threshold CCA PKE and function
secret sharing with stronger security properties. We note that the constructions
for these primitives using universal thresholdizer is the same as in [BGG+18].
Our contribution lies in (defining and) proving stronger security for these prim-
itives assuming that the underlying universal thresholdizer satisfies the stronger
security as defined in Sect. 6.

7.1 Threshold Signatures

We recall the definition of threshold signatures and its desired properties in the
full version. Below we describe selective unforgeability from [BGG+18] and its
stronger notion from [BTZ22].

Definition 7 (Selective Unforgeability [BGG+18]). A TS scheme is
unforgeable if for all PPT adversary A, the probability of winning in the fol-
lowing experiment, ExptA,TS,uf (1λ) is neg(λ).

1. On input the security parameter λ and an access structure At,n, the challenger
runs the TS.KeyGen(1λ,At,n) algorithm and generates public parameters pp,
verification key vk and set of n key shares {ski}n

i=1. It sends pp and vk to A.
2. A then outputs a maximally invalid party set S∗ ⊂ [n], i.e. |S∗| = t − 1,

requesting key shares ski for i ∈ S∗.
3. Challenger provides the set of keys {ski}i∈S∗ to A.
4. Adversary A issues polynomial number of adaptive queries of the form (m, i),

where i ∈ [n] \ S∗, to get partial signature σi on m. For each query the
challenger computes σi as TS.PartSign(pp, ski,m) and provides it to A.
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5. At the end of the experiment, A outputs a message-signature pair (m∗, σ∗).
The adversary wins if the following conditions hold:
(a) m∗ was never queried as a signing query.
(b) TS.Verify(vk,m∗, σ∗) = accept.

Definition 8 (Stronger Selective Unforgeability [BTZ22]). In the stronger
definition, the set S∗ of corrupted parties is not necessarily maximally invalid,
i.e. |S∗| < t. Another and the main difference is in the conditions under which
the adversary wins as defined below:

The adversary is allowed to issue partial signatures on the challenge message
m∗, and wins if the following conditions hold:

1. Let Sm∗ = {i : (m∗, i) was queried as a signing query}. Then |S∗ ∪ Sm∗ | < t.
2. TS.Verify(vk,m∗, σ∗) = accept.

Similar to [BGG+18], we construct a threshold signature scheme from a
universal thresholdizer and a signature scheme.

Construction 2 (Construction 8.16 in [BGG+18]). The construction TS =
(TS.KeyGen, TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) uses a sig-
nature scheme SignScheme = (SGen,Sign,Verify) and a universal thresholdizer
UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine).

– TS.KeyGen(1λ,At,n) → (pp, vk, {ski}n
i=1). First it invokes SGen(1λ) to obtain

a pair (pk, sk) and it sets vk := pk. Then it runs (upp, {uski}n
i=1) ←

UT.Setup(1λ,At,n, sk). Sets pp = upp and {ski = uski}n
i=1.

– TS.PartSign(pp, ski,m) → σi. On input the public parameters pp, a par-
tial signing key ski and a message m, the partial signing algorithm outputs
UT.Eval(pp, ski, Cm) where the circuit Cm is defined as

Cm(sk) := Sign(sk,m).

– TS.PartSignVerify(pp,m, σi) → accept/reject. On input the public parameters
pp, message m, and a partial signature σi, the partial signature verification
algorithm outputs UT.Verify(pp, σi, Cm).

– TS.Combine(pp, {σi}i∈S) → σm. On input the public parameters pp, and a
set of partial signatures {σi}i∈S, the signature combining algorithm outputs
UT.Combine(pp, {σi}i∈S).

– TS.Verify(vk,m, σm) → accept/reject. On input the signature verification key
vk = pk, a message m, and a signature σ, the verification algorithm outputs
Verify(pk,m, σ).

Theorem 5. If the universal thresholdizer UT satisfies the stronger secu-
rity notion (Definition 6) and SignScheme is a signature scheme that satisfies
unforgeability, then the construction above (Construction 2) satisfies the Stronger
Selective Unforgeability (Definition 8).
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Proof. We prove the above theorem via the following hybrids. We start with
Hybrid0 which is the experiment ExptA,TS,uf (1λ) for the Construction 2.

Hybrid1. Note that since UT is secure with respect to Definition 6, there exists
a stateful PPT algorithm UT.S = (UT.S1,UT.SI ,UT.SV ) which can simulate
answer to UT.Eval(pp, ski, ·) queries. We define Hybrid1 that is similar to Hybrid0
except that for the challenge queries of the form (m, i) made by A, the chal-
lenger uses UT.S = (UT.S1,UT.SI ,UT.SV ) to generate partial signatures. It is
straightforward to show these two hybrids are indistinguishable because UT is
secure with respect to Definition 6.

Furthermore, we show that the advantage of A in Hybrid1 is negligible. Let
us assume that the advantage of A in Hybrid1 is ε. We define a reduction
adversary B to attack the unforgeability of the underlying signature scheme
SignScheme = (SGen,Sign,Verify). Namely, the adversary B after receiving the
public key pk from its challenger, sets vk = pk. It runs (pp, sk1, . . . , skn, st) ←
UT.S1(1λ, 1d,At,n) and provides pp to A.

– When A outputs an invalid party set S∗ ⊂ [n], the adversary B provides the
set of keys {ski}i∈S∗ to A.

– Adversary A issues polynomial number of adaptive queries of the form (m, i),
where i ∈ [n] \ S∗ to get partial signature σi for m. For each query the
adversary B computes σi computed as follows:

• If m is queried for the first time, then initialize Sm = S, else Sm = Sm∪S.
• If Sm ∪ S∗ is an invalid party set, then ({σi}i∈S , st′) ←

UT.SI(pp, Cm, S, st)
• Else, if Sm ∪ S∗ is a valid party set, then it queries m to its chal-

lenger to receive a signature σm on m, and returns ({σi}i∈S , st′) ←
UT.SV (pp, Cm, σm, S, st).

• Update st = st′.
– When at the end of the experiment, A outputs a message-signature pair

(m∗, σ∗), the adversary B returns (m∗, σ∗) as a forgery for SignScheme.

We observe that (m∗, σ∗) is a valid forgery by B. This is because |S∗ ∪ Sm∗ | < t
due to validity of A’s forgery. Hence, B would never have asked a signature on
m∗ to its challenger to answer any partial signature query on m∗ by A. It is
clear that if A wins with ε advantage, then the advantage of B in breaking the
unforgeability of SignScheme is also ε. This finishes the proof.

7.2 Threshold CCA PKE

We recall the definition of CCA threshold PKE and its correctness in the full ver-
sion. Below we recall its security from [BGG+18] and define a stronger security,
similar to stronger security of threshold signature.

Definition 9 (Security [BGG+18]). A TPKE scheme for At,n is said to sat-
isfy CCA security if for all λ, the following holds: for all PPT adversary A,
following experiments, Expt0A,TPKE(1

λ) and Expt1A,TPKE(1
λ) are computationally

indistinguishable.
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ExptbA,TPKE(1
λ)

1. On input a security parameter λ, and a threshold access structure At,n, the
challenger runs (pp, ek, sk1, . . . , skn)←TPKE.KeyGen(1λ,At,n) and provides
pp and ek to A.

2. A outputs a maximal invalid party set, S∗ ⊂ [n], that is, |S∗| = t − 1.
3. The challenger provides the set of secret keys, {ski}i∈S∗ to A.
4. A issues a polynomial number of adaptive decryption queries of the form

(ct, i), where i �∈ S∗.
5. The challenger computes si←TFHE.PartDec(pp, ski, ct) and sends si to A.
6. A outputs a pair of challenge messages (m∗

0,m
∗
1)

7. The challenger computes ct∗←TFHE.Encrypt(ek,m∗
b) and sends ct∗ to A.

8. A continues issuing a polynomial number of adaptive decryption queries. How-
ever, the adversary is not allowed to issue a decryption query on the challenge
ciphertext ct∗.

9. At the end of the experiment, A outputs a guess bit b′.

Similar to the stronger security of threshold signature, we define the stronger
security for TPKE, where the adversary is allowed to issue partial decryption
query on the challenge ciphertext as well, as long as it is for an invalid set of
parties over all such queries.

Definition 10 (Stronger Security TPKE).
In the stronger definition, the set S∗ of corrupted parties is not necessarily

maximally invalid, i.e. |S∗| < t. Another, and the main difference is in the
admissibility condition for A as follows - A can issue queries of the form (ct∗, i).
Let Sct∗ = {i : A issued decryption query as (ct∗, i)}. Then, S∗ ∪ Sct∗ must be
an invalid set, i.e. |S∗ ∪ Sct∗ | < t.

Similar to [BGG+18], we construct a threshold public-key encryption scheme
from a universal thresholdizer and a public-key encryption.

Construction 3 (Construction 8.29 in [BGG+18]). The construction
TPKE = (TPKE.KeyGen,TPKE.Encrypt,TPKE.PartDec,TPKE.Combine) uses a
public key encryption scheme PKE = (PKE.Gen,Enc,Dec) and a universal
thresholdizer UT = (UT.Setup, UT.Eval,UT.Verify,UT.Combine).

– TPKE.KeyGen(1λ,At,n) → (pp, ek, sk1, . . . , skn). First it invokes PKE.Gen(1λ)
to obtain a pair (pk, sk) and it sets ek := pk. Then it runs (upp, {uski}i∈[n]) ←
UT.Setup(1λ,At,n, sk), and sets pp = upp and {ski = uski}n

i=1.
– TPKE.Encrypt(ek,m) → ct. The encryption algorithm takes as input a mes-

sage m ∈ M and the encryption key ek and outputs a ciphertext ct ←
Enc(pk,m).

– TPKE.PartDec(pp, ski, ct) → mi. The partial decryption algorithm takes as
input the public parameters, pp, decryption key share ski and a ciphertext ct
and outputs mi ← UT.Eval(pp, ski, Cct) where the circuit Cct is defined as

Cct(sk) := Dec(ct, sk).
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– TPKE.Combine(pp, {mi}i∈S) → m′. The combining algorithm takes the public
parameters, pp and set of partially decrypted messages {mi}i∈S and outputs
m′ ← UT.Combine(pp, {mi}i∈S).

Theorem 6. If the universal thresholdizer UT satisfies the stronger security
definition (Definition 6) and PKE is CCA secure, then the construction above
(Construction 3) satisfies the stronger security Definition 10.

Proof. We prove the above theorem via the following hybrids. For simplicity,
we consider a modified but equivalent version of ExptbA,TPKE(1

λ) in which the
advantage of the adversary is the probability that b′ = b when b is chosen uni-
formly random by the challenger. We start with Hybrid0 which is the (modified)
experiment ExptbA,TPKE(1

λ) for the Construction 2.

Hybrid1. Note that since UT is secure with respect to Definition 6, there exists
a stateful PPT algorithm UT.S = (UT.S1,UT.SI ,UT.SV ) which can simulate
answer to UT.Eval(pp, ski, ·) queries. We define Hybrid1 that is similar to Hybrid0
except for the challenge decryption queries of the form (ct, i) made by A. For the
challenge queries, the challenger uses UT.S = (UT.S1,UT.SI ,UT.SV ) to answer.
It is straightforward to show these two hybrids are indistinguishable because UT
is secure with respect to Definition 6.

Furthermore, we show that the advantage of A in Hybrid1 is at most 1/2 +
neg. Let us assume that the advantage of A in Hybrid1 is ε. We define a reduction
adversary B to attack the CCA security of the underlying public-key encryption
scheme PKE = (PKE.Gen,Enc,Dec). Namely, the adversary B after receiving the
public key pk from its challenger, it sets ek = pk, it runs (pp, sk1, . . . , skn, st) ←
UT.S1(1λ, 1d,At,n) and provides pp.ek to A.

– When A outputs an invalid party set S∗ ⊆ [n], the adversary B provides the
set of keys {ski}i∈S∗ to A.

– Adversary A issues a polynomial number of adaptive decryption queries of
the form (ct, i), where i �∈ S∗ . For each query the adversary B computes mi

computed as follows:
• If ct is queried for the first time, then initialize Sct = S, else Sct = Sct∪S.
• If Sct ∪ S∗ is an invalid party set, then ({mi}i∈S , st′) ←

UT.SI(pp, Cct, S, st)}i∈S

• Else, if Sct ∪ S∗ is a valid party set, then it queries ct to
its challenger to receive a decryption mct, and ({mi}i∈S , st′) ←
UT.SV (pp, Cct,mct, S, st)}i∈S .

• Update st = st′.
– When A outputs a pair of challenge messages (m∗

0,m
∗
1), the adversary B

forwards it to its challenger and receives ct∗←TFHE.Encrypt(ek,m∗
b), where

b is the challenge bit of PKE challenger. B sends ct∗ to A.
– A continues issuing a polynomial number of adaptive decryption queries

(ct, i). The adversary A is allowed to issue a decryption query on the challenge
ciphertext ct∗ up to the gap between the threshold value and the number of
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corrupted parties. The adversary B answers similar to pre-challenge queries
above, unless, when A queries ct∗. For ct∗, the adversary B stops and returns
⊥ whenever Sct∗ ∪ S∗ is a valid party set. Note that as long as Sct∗ ∪ S∗ is an
invalid party set, B uses UT.SI , which does not need the decryption of ct∗.

– When at the end of the experiment, A outputs a bit b′, the adversary B
returns b′ as its output.

It is clear that the advantage of B in breaking the CCA security of PKE is ε. This
finishes the proof since by the CCA security of PKE, ε ≤ 1/2 + negligible.
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Abstract. The Deuring correspondence is a correspondence between
supersingular elliptic curves and quaternion orders. Under this corre-
spondence, an isogeny between elliptic curves corresponds to a quater-
nion ideal. This correspondence plays an important role in isogeny-based
cryptography and several algorithms to compute an isogeny correspond-
ing to a quaternion ideal (ideal-to-isogeny algorithms) have been pro-
posed. In particular, SQIsign is a signature scheme based on the Deuring
correspondence and uses an ideal-to-isogeny algorithm. In this paper, we
propose a novel ideal-to-isogeny algorithm using isogenies of dimension
2. Our algorithm is based on Kani’s reducibility theorem, which gives a
connection between isogenies of dimension 1 and 2. By using the charac-
teristic p of the base field of the form 2fg−1 for a small odd integer g, our
algorithm works by only 2-isogenies and (2, 2)-isogenies in the operations
in Fp2 . We apply our algorithm to SQIsign and compare the efficiency
of the new algorithm with the existing one. Our analysis shows that the
key generation and the signing in our algorithm are at least twice as
fast as those in the existing algorithm at the NIST security level 1. This
advantage becomes more significant at higher security levels. In addition,
our algorithm also improves the efficiency of the verification in SQIsign.

Keywords: post-quantum cryptography · SQIsign · the Deuring
correspondence · Kani’s theorem

1 Introduction

Isogeny-based cryptography is a promising candidate for post-quantum cryptog-
raphy. Many isogeny-based schemes use supersingular elliptic curves because the
isogeny graph of supersingular elliptic curves has a more attractive structure than
that of ordinary elliptic curves. Some of these schemes use the Deuring corre-
spondence, which is a correspondence between supersingular elliptic curves and
quaternion orders. SQIsign is a signature scheme proposed by De Feo, Kohel, Ler-
oux, Petit and Wesolowski [12] that uses the Deuring correspondence. It was sub-
mitted to the additional digital signature candidates for the NIST post-quantum
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cryptography standardization process [6]. In this paper, we refer the NIST sub-
mission of SQIsign as the SQISIGN to distinguish it from the name of the scheme.
An advantage of the SQISIGN is that it has short key sizes and signature sizes com-
pared to other candidates. Its disadvantage is that the signing algorithm is slow.
This mainly comes from the computation of an isogeny corresponding to a quater-
nion ideal via the Deuring correspondence. We call an algorithm to compute an
isogeny corresponding to a quaternion ideal an ideal-to-isogeny algorithm.

Ideal-to-isogeny algorithms are crucial for isogeny-based cryptography.
Before SQIsign was proposed, ideal-to-isogeny algorithms appeared in the cryp-
toanalysis by Eisenträger, Hallgren, Lauter, Morrison and Petit [20] and the sig-
nature scheme by Galbraith, Petit and Silva [23]. Although, the ideal-to-isogeny
algorithms in these works have a polynomial-time complexity, they are not effi-
cient in practice because they require operations on extension fields. The first
efficient ideal-to-isogeny algorithm was proposed in SQIsign [12]. This algorithm
does not require operations on extension fields, but it requires that the char-
acteristic of the base field is in a special form. Later, the restriction on the
characteristic was relaxed by De Feo, Leroux, Longa and Wesolowski [14].

Another important mathematical tool for isogeny-based cryptography is
Kani’s reducibility theorem [26]. This theorem gives a connection between iso-
genies between elliptic curves and isogenies between abelian surfaces, in other
words, a connection between isogenies of dimension 1 and 2. Castryck and Decru
[5] and Maino, Martindale, Panny, Pope, and Wesolowski [31] used this theorem
to attack SIDH, which is an isogeny-based key exchange protocol by Jao and
De Feo [25]. Robert [36] extended these attacks to attacks using a connection
between isogenies of dimension 2 (resp. 4) and 4 (resp. 8). Later, this theorem
was used to construct isogeny-based schemes, for example, a signature scheme
by [10], a public-key encryption scheme by [2], a key encapsulation mechanism
by [32], and an updatable public-key encryption scheme by [18].

Some of these schemes use the Deuring correspondence in addition to Kani’s
reducibility theorem. SQIsignHD [10] uses isogenies of dimension 4 or 8 to con-
firm the existence of an isogeny corresponding to a quaternion ideal in its veri-
fication algorithm. QFESTA [32] uses isogenies of dimension 2 and the Deuring
correspondence to generate a random isogeny between elliptic curves of given
degree. Ideal-to-isogeny algorithms using Kani’s reducibility theorem have been
proposed in verifiable random functions by [29] and in SILBE [18].

1.1 Our Contributions

Motivated by these developments, this paper advances this line of research by
proposing a novel ideal-to-isogeny algorithm using isogenies of dimension 2. Our
contributions are as follows:

1. Proposing a novel ideal-to-isogeny algorithm IdealToIsogenyIQO, which uses
isogenies of dimension 2 and an embedding of an imaginary quadratic order
into the endomorphism ring of the domain elliptic curve (IQO stands for
Imaginary Quadratic Order).

2. Applying IdealToIsogenyIQO to SQIsign and comparing the efficiency of the
new algorithm with the existing one.
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Our algorithm is based on a similar idea as the algorithm in SILBE, which
uses isogenies of dimension 4. Compared to the algorithm in SILBE, our algo-
rithm has two advantages. The first advantage is using more efficient isogenies of
dimension 2 instead of isogenies of dimension 4. The second advantage is that our
algorithm does not require that the degree of the output isogeny of dimension 1
is prime to the degree of isogenies of dimension 2. Thanks to these advantages,
we can use only 2-isogenies and (2, 2)-isogenies to run our algorithm in practice
if we choose the characteristic of the base field properly.

As an application of our algorithm, we propose a new algorithm for SQIsign.
Our algorithm uses the characteristics of the form 2fg−1 for a small odd integer
g. The isogenies directly computed in our algorithm are only 2-isogenies and
(2, 2)-isogenies. By using an efficient algorithm to compute (2, 2)-isogenies by
Dartios, Maino, Pope, and Robert [11], we expect that the key generation and
the signing in our algorithm are faster than those in the SQISIGN. The verification
in our algorithm is faster than that in the SQISIGN because the number of the
separations of the isogeny chain in the signature of our algorithm is smaller than
that in the SQISIGN. Note that our algorithm does not affect the security of the
SQISIGN, and the sizes of the keys and the signatures of our algorithm are almost
the same as those of the SQISIGN because we just replace the ideal-to-isogeny
algorithm in the SQISIGN.

1.2 Related Works

As mentioned in [29, §6], the ideal-to-isogeny algorithm in [29] could be applied to
SQIsign in a manner similar to our algorithm. This algorithm also uses isogenies
of dimension 2, but takes a different approach from our algorithm. We discuss a
comparison with this algorithm in Sect. 4.6.

SQIsignHD [10] is a variant of SQIsign, which uses isogenies of dimension 4
or 8. The key generation and signing algorithms in SQIsignHD are more efficient
than those in SQIsign while the verification algorithm in SQIsignHD is slower
than that in SQIsign. In terms of key and signature sizes, SQIsignHD has the
same key sizes as SQIsign and smaller signature sizes than SQIsign. Furthermore,
SQIsignHD relies on distinct assumptions from SQIsign for security.

Although, we improve the efficiency of SQIsign, the key generation and sign-
ing algorithms in our algorithm are slower than those in SQIsignHD. Nonethe-
less, we contend that our approach remains valuable due to its fast verifica-
tion process compared to these schemes. Furthermore, the exploration of diverse
isogeny-based schemes based on distinct assumptions remains crucial.

At the same time as this work, other variants of SQIsign, SQIsign2D-West
[1], SQIPrime [17], and SQIsign2D-East [33], have been proposed. These variants
use isogenies of dimension 2 or 4 and offer different trade-offs between efficiency
and security. We leave the comparison with these schemes as future work. In
addition, a new ideal-to-isogeny algorithm using isogenies of dimension 2 was
proposed in SQIsign2D-West. It could be applied to SQIsign similarly to our
algorithm. We also leave the comparison with this algorithm as future work.
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1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we give the techni-
cal background on this paper. In particular, Sect. 2.1 gives the mathematical
background, Sect. 2.2 gives the existing ideal-to-isogeny algorithms, and Sect. 2.3
explains the outline of SQIsign. In Sect. 3, we propose a novel ideal-to-isogeny
algorithm using isogenies of dimension 2. In Sect. 4, we apply our algorithm to
SQIsign and compare the efficiency of the new algorithm with the existing one.
Finally, we conclude this paper in Sect. 6.

2 Preliminaries

This section gives the technical background on this paper. Throughout this
paper, we let p be a prime number of cryptographic size, i.e., p is at least about
2256.

2.1 Mathematical Background

In this subsection, we recall the mathematical background necessary for the rest
of this paper.

Supersingular Elliptic Curves. Let E be an elliptic curve over a finite field
of characteristic p. We denote the neutral element of E by OE . For an integer
n, the n-torsion subgroup of E is defined by E[n] = {P ∈ E | nP = OE}. If E[p]
is trivial, then E is called supersingular. A supersingular elliptic curve over a
field of characteristic p is isomorphic to a curve E defined over Fp2 such that the
p2-th power Frobenius endomorphism of E is the multiplication-by-(−p) map.
Then we have E(Fp2) = E[p + 1]. This property is preserved under isogenies
over Fp2 , i.e., if there exists an isogeny E → E′ defined over Fp2 then E′ is also
a supersingular elliptic curve such that E′(Fp2) = E′[p + 1]. In the rest of this
paper, we assume that all elliptic curves are supersingular and satisfy the above
property.

Abelian Surfaces. An elliptic curve is an abelian variety of dimension 1. The
generalization of elliptic curves to dimension 2 is called an abelian surface. An
abelian surface is principally polarized if it is isomorphic to its dual abelian sur-
face. A principally polarized abelian surface is isomorphic (over an algebraically
closed field) to the Jacobian of a genus-2 hyperelliptic curve or the product of
two elliptic curves.

Isogenies. An isogeny is a rational map between principally polarized abelian
varieties which is a surjective group homomorphism and has finite kernel. The
degree of an isogeny ϕ is its degree as a rational map and denoted by deg ϕ.
An isogeny ϕ is separable if # ker ϕ = deg ϕ. A separable isogeny is uniquely
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determined by its kernel up to post-composition of isomorphism. For an isogeny
ϕ : A → B, the dual isogeny of ϕ is the isogeny ϕ̂ : B → A such that ϕ̂ ◦ ϕ
is equal to the multiplication-by-deg ϕ map on A. Note that the dual isogeny
uniquely exists.

Let � be a positive integer. We say an isogeny ϕ between two elliptic curves
is an �-isogeny if ker ϕ is a cyclic group of order �. We say an isogeny ϕ between
two principally polarized abelian surfaces is an (�, �)-isogeny if the Weil pairing
acts trivially on kerϕ and the order of kerϕ is �2.

Algorithms to Compute Isogenies. An isogeny between elliptic curves can
be computed by Vélu’s formulas [39]. Let ϕ : E → E′ be an �-isogeny between
elliptic curves. Vélu’s formulas give an algorithm to compute E′ with input E and
a generator of kerϕ in O(�) operations on a field where the generator is defined.
For an additional input P ∈ E, we can compute ϕ(P ) in O(�) operations on
a field where the generator and P are defined. These computational costs were
improved to Õ(

√
�) by [3].

Algorithms to compute a (2, 2)-isogeny can be found in [38] and [24]. Recently,
an efficient algorithm for a (2, 2)-isogeny using theta functions was given by [11].
An algorithm for a general degree was given by [8] and later improved by [30].
The computational cost of this algorithm is O(�2) operations on a field where a
generator of the kernel is defined.

Let d be a positive integer prime to p having the prime factorization d =
∏

i �i

and ϕ be a d-isogeny or (d, d)-isogeny. Then we can compute ϕ as the composition
of �i-isogenies or (�i, �i)-isogenies. Therefore, if d is smooth and a generator of
ker ϕ are defined over a Fpk of k ∈ poly(log p), then we can compute a d-isogeny
in polynomial time in log p.

Quaternion Algebras. We denote by Bp,∞ the quaternion algebra over Q ram-
ified at p and ∞. The quaternion algebra Bp,∞ has Q-basis {1, i, j,k} such that
i2 = −q, j2 = −p,k = ij = −ji for some positive integer q. If p ≡ 3 (mod 4), then
we let q = 1. If p ≡ 5 (mod 8), then we let q = 2. Otherwise, we let q be the small-
est prime number such that q is a quadratic non-residue modulo p. The canonical
involution on Bp,∞ is defined by α = a + bi + cj + dk �→ ᾱ := a − bi − cj − dk.
The trace and the norm of α are defined by tr(α) := α + ᾱ and n(α) := αᾱ,
respectively. An order in Bp,∞ is a subring of Bp,∞ that is a free Z-module of
rank 4. A maximal order in Bp,∞ is an order that is maximal with respect to
inclusion. A fractional ideal of Bp,∞ is a Z-submodule of Bp,∞ of rank 4. Let I
be a fractional ideal of Bp,∞. We define the fractional ideal Ī := {ᾱ | α ∈ I}.
The left order of I is defined by OL(I) := {x ∈ Bp,∞ | xI ⊂ I} and we define
the right order OR(I) of I similarly. For an order O of Bp,∞, we say I is a left
(or right) O-ideal if I is a left (or right) ideal of O in the usual sense. If I is a
left O-ideal for a maximal order O, then OL(I) = O and OR(I) is a maximal
order. If I is contained in an order of Bp,∞, the we define the norm of I by
n(I) := gcd({n(α) | α ∈ I}). For α ∈ I, we define the normalized norm of α by
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qI(α) := n(α)/n(I). By the definition of the norm of I, the normalized norm
qI(α) is an integer for all α ∈ I.

The Deuring Correspondence. Deuring [16] showed that the endomorphism
ring of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
Bp,∞ and gave a correspondence (Deuring correspondence) where a supersingular
elliptic E curve over Fp2 corresponds to a maximal order isomorphic to End(E).

Fix a supersingular elliptic curve E0 and an isomorphism ι : O0 → End(E0).
For a left O0-ideal I, we define the I-torsion subgroup of E0 by E0[I] = {P ∈
E0 | ι(α)(P ) = 0 for all α ∈ I}. If n(I) is not divisible by p, then E0[I] is a
subgroup of E0 of order n(I). In this case, we define an isogeny corresponding to
I by an isogeny with kernel E0[I] and denote it by ϕI . Let E be the codomain
of ϕI . Then End(E) is isomorphic to OR(I). In particular, an isomorphism is
induced by

Bp,∞ → End(E) ⊗Z Q; α �→ 1
n(I)

ϕI ◦ ι(α) ◦ ϕ̂I . (1)

The fraction ideal Ī corresponds to the dual isogeny ϕ̂I . Let J be a left OR(I)-
ideal and ϕJ be an isogeny corresponding to J via the above isomorphism. Then
the composition ϕJ ◦ ϕI is an isogeny corresponding to IJ . If n(I) is prime to
n(J), then kerϕJ = ϕI(E0[IJ ] ∩ E0[n(J)]). For more detailed discussion for the
relation between ideals and isogenies, see [12, §4].

For left O0-ideals I1 and I2, the codomains of ϕI1 and ϕI2 are isomorphic if
and only if there exists α ∈ Bp,∞ such that I1 = I2α. If this is the case, we say
I1 and I2 are equivalent and denote it by I1 ∼ I2.

Special Extremal Orders. Let R be the integer ring of Q(i). We say a maximal
order O in Bp,∞ is special extremal if O contains R + jR. In this paper, we
mainly focus on the case p ≡ 3 (mod 4). In this case, the maximal order O0 :=〈
1, i, i+j

2 , 1+k
2

〉

Z

is a special extremal order and the supersingular elliptic curve
with j-invariant 1728 corresponds to O0 via the Deuring correspondence. Let E0

be the supersingular elliptic curve over Fp2 defined by y2 = x3 + x, which has j-
invariant 1728. Then an isomorphism O0 → End(E0) is induced by i �→ ((x, y) �→
(−x,

√−1y)) and mapping j to the p-th power Frobenius endomorphism.

KLPT Algorithms. An algorithm to transform an ideal to another equivalent
ideal is given by [27], which is called the KLPT algorithm. Let O0 be a special
extremal order in Bp,∞. The KLPT algorithm takes a left O0-ideal I and a
smooth integer n > p3.5 as input and outputs a left O0-ideal J such that J ∼ I
and n(J) = n. Its computational cost is bounded by a polynomial in log p under
heuristic assumptions. Later, the bound p3.5 was improved to p3 by [35].

The KLPT algorithm was generalized to ideals of arbitrary maximal orders
by [12]. We call this the generalized KLPT algorithm. Let O be a maximal order
of Bp,∞ and I0 be a left O0-ideal such that OR(I0) = O. The generalized KLPT
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algorithm takes I0, a left O-ideal I, and a smooth integer n > p3n(I0)3 as input
and outputs a left O-ideal J such that J ∼ I and n(J) = n.

These algorithms are based on the fact that Iᾱ/n(I) is a left OL(I)-ideal of
norm qI(α) for α ∈ I [27, Lemma 5]. Indeed, these algorithms find α ∈ I such
that qI(α) = n and output Iᾱ/n(I). We denote the ideal Iᾱ/n(I) by χI(α).
Then ϕ̂χI(α) ◦ ϕI is equal to α as endomorphisms up to post-composition of an
automorphism of E0. Note that the right order of χI(α) is αOR(I)α−1, which is
isomorphic to OR(I) but not equal to OR(I) in general.

Kani’s Reducibility Theorem. Let d1 and d2 be positive integers prime to
each other and p. Let ϕ1 : E0 → E1 be a d1-isogeny and ϕ2 : E0 → E2 be
a d2-isogeny between elliptic curves over a field of characteristic p. Then we
say an isogeny with kernel ϕ1(ker ϕ2) a push-forward of ϕ2 by ϕ1 and denote
it by ϕ1∗ϕ2. Since ker((ϕ1∗ϕ2) ◦ ϕ1) = 〈ker ϕ1, ker ϕ2〉 = ker((ϕ2∗ϕ1) ◦ ϕ2), the
codomains of ϕ1∗ϕ2 and ϕ2∗ϕ1 are isomorphic. Let F be the codomain of ϕ1∗ϕ2.
Then we can take ϕ2∗ϕ1 so that the following diagram commutes:

E0
ϕ1 ��

ϕ2

��

E1

ϕ1∗ϕ2

��
E2 ϕ2∗ϕ1

�� F.

Kani [26] showed that this diagram induces an isogeny E1 × E2 → E0 ×
F . More precisely, we have the following theorem based on Kani’s reducibility
theorem [26, Theorem 2.3].

Theorem 1 ([31, Theorem 1]). We use the same notation as above and let
d = d1 + d2. Suppose that we take the push-forwards so that the above diagram
is commutative. We define an isogeny

Φ =
(

ϕ̂1 ϕ̂2

−ϕ1∗ϕ2 ϕ2∗ϕ1

)

: E1 × E2 → E0 × F,

i.e., Φ((P1, P2)) = (ϕ̂1(P1) + ϕ̂2(P2),−ϕ1∗ϕ2(P1) + ϕ2∗ϕ1(P2)) for P1 ∈ E1 and
P2 ∈ E2. Then Φ is a (d, d)-isogeny with kernel {(ϕ1(P ), ϕ2(P )) | P ∈ E0[d]}.
This theorem says that we can compute the images of any points under ϕ̂1 and
ϕ̂2 by using the images of a basis of E0[d] under ϕ1 and ϕ2.

If F is not isomorphic to E0, then an isogeny with the same kernel as Φ is

of the form
(

ι0 0
0 ι

)

◦ Φ or
(

0 ι
ι0 0

)

◦ Φ, where ι0 and ι are automorphisms of E0

and F , respectively. In this case, we can compute the images of any point in E1

under ϕ̂1 by Algorithm 1. In the output of Algorithm 1, the automorphism ι0 is
not determined by the input and depends on the choice of Φ.
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Algorithm 1: EvalByKani
Input: d, E0, E1, E2 in Theorem 1, ϕ1(P ), ϕ2(P ), ϕ1(Q), ϕ2(Q), where (P, Q) is

a basis of E0[d], and a finite subset S ⊂ E1(Fp2).
Output: the image of S under ι0 ◦ ϕ̂1, where ι0 is an automorphism of E0.

1 Let Φ be a (d, d)-isogeny with kernel 〈(ϕ1(P ), ϕ2(P )), (ϕ1(Q), ϕ2(Q))〉;
2 Let prE0

be the projection to E0 from the codomain of Φ;

3 return {prE0
◦ Φ((R, 0E2)) | R ∈ S};

2.2 Ideal-to-Isogeny Algorithms

In this subsection, we recall some of the existing algorithms for computing the
codomain of an isogeny corresponding to a given ideal.

Let E0 be a supersingular elliptic curve over Fp2 whose endomorphism ring
is isomorphic to a special extremal order O0 in Bp,∞, and ι : O0 → End(E0) be
an isomorphism. Suppose that we can efficiently compute ι(α)(P ) for α ∈ O0

and P ∈ E0(Fp2). Given a left O0-ideal I, we consider an algorithm to compute
the codomain of an isogeny corresponding to I. We call this algorithm an ideal-
to-isogeny algorithm.

By using the KLPT algorithm, we can use an ideal J such that J ∼ I and n(J)
is smooth and greater than p3 instead of I. Since ϕJ = n(J) is smooth, we can
compute ϕJ in polynomial time if E[J ] is defined over a field of polynomial size.
However, E[J ] is in an exponential-size field in general. The following algorithms
deal with this issue.

Algorithm for Power-Smooth Norms. An ideal-to-isogeny algorithm was
first proposed by [23]. Their algorithm uses an ideal J such that J ∼ I and n(J)
is power-smooth, i.e., any prime power dividing n(J) is small. Its computation
requires operations on extension fields of Fp2 , thus the algorithm is not efficient
in practice.

Algorithm in the Original SQIsign. An ideal-to-isogeny algorithm that
works in Fp2 was proposed by [12]. This algorithm requires p to be of a special
form while the algorithm of [23] does not. In particular, the algorithm by [12]
requires that p2 − 1 is divisible by �f and T , where � is a small prime number,
f is an integer and T is a smooth integer greater than p1.5 and prime to �. In
this setting, we can compute �f -isogenies and T -isogenies over Fp2 by using the
method in [9]. The basic idea of the algorithm is as follows:

1. Compute a left O0-ideal J such that J ∼ I and n(J) is a power of �.
2. Divide J into the product J1 · · · Jk such that n(Ji) = �f (for simplicity, we

assume n(J) = �kf for an integer k).
3. Let J ′

0 = O0 and α = 1.
4. For i = 1, . . . , k:

(a) Compute ϕJi
: Ei−1 → Ei by kerϕJi

= ϕJ ′
i−1

(E0[J ′
i−1αJiα

−1] ∩ E0[�f ]).
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(b) Find α ∈ J1 · · · Ji such that qJ1···Ji
(α) = T 2 by using the KLPT algo-

rithm.
(c) Let J ′

i = χJ1···Ji
(α).

(d) Compute isogenies ψ1 with kernel E0[J ′
i ]∩E0[T ] and ψ2 with kernel ϕJi

◦
· · · ◦ ϕJ1(E0[α] ∩ E0[T ]).

(e) Obtain ϕJ ′
i

= ψ̂2 ◦ ψ1.

The following diagram illustrates the above algorithm:

E0

J1

��

ψ1
  J ′

1

��

J ′
2

��

J ′
i

��
E1

J2

��

ψ2

��

E2
J3

�� · · ·
Jk

�� Ek

Note that αJiα
−1 in Step (4.a) is a left OR(J ′

i−1)-ideal corresponding to
Ji. We also note that Step (4.d) and (4.e) are based on the fact that α =
ϕ̂J ′

i
◦ ϕJi

◦ · · · ◦ ϕJ1 up to post-composition of an automorphism of E0. The
algorithm by [12] is a further elaboration of the above idea. See [12, §8.1] for
more details.

IdealToIsogenyEichler. The restriction on p in the above algorithm was
relaxed by [14]. In particular, the lower bound on T in the restriction was
improved to p1.25. They use an endomorphism of each Ei instead of the isogeny
ϕJ ′

i
. The rough idea of their algorithm is as follows:
We use the same notation as above and consider the computation of ϕJi+1

from Ei and ϕJi
. Let O be an order isomorphic to End(Ei) and β ∈ O such that

Ji+1 = Oβ + O�f . Then we search θ ∈ O and coprime integers C,D such that
n(θ) = T 2 and β(C + Dθ) ∈ J̄i. The latter condition means that (C + Dθ)(P )
generates Ei[Ji+1] for a generator P of ker ϕ̂Ji

. From this, we can compute ϕJi+1

by using Vélu’s formulas.
Algorithm 4 in [14] shows how to find θ and C,D. This algorithm succeeds

if n(θ) > p2.5, thus we can take T > p1.25.
We call this algorithm IdealToIsogenyEichler. The SQISIGN uses this algorithm

as an ideal-to-isogeny algorithm.

Algorithm in DeuringVRF. DeuringVRF is the family of verifiable random func-
tions proposed by [29]. To construct this scheme, an ideal-to-isogeny algorithm
was proposed. This algorithm can be seen as an extension of IdealToIsogenyEich-
ler using isogenies of dimension 2. In this algorithm, the image of P under the
endomorphism θ in the explanation above is computed by using a 2-dimensional
isogeny Ei × Ei → Ei × Ei. See Algorithm 7 in [29] for more details.
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Algorithm in the Key Generation in SILBE. An ideal-to-isogeny algorithm
using higher-dimension isogenies was proposed by [18], which is used in the key
generation in an updatable public key encryption scheme SILBE. This algorithm
is based on the similar idea as in the algorithm in the original SQIsign. To
compute the auxiliary isogenies ϕJ ′

i
, it uses an extension of Kani’s reducibility

theorem to dimension 4 by [36]. See [18, §3.1] for more details.

2.3 SQIsign

SQIsign is a signature scheme proposed by [12], which uses the generalized KLPT
algorithm and an ideal-to-isogeny algorithm as building blocks.

Overview. Let O0 be a special extremal order and E0 a supersingular elliptic
curve over Fp2 whose endomorphism ring is isomorphic to O0. We consider the
following zero-knowledge proof.

The public parameters are p, O0, and E0. The protocol proves the knowl-
edge of a secret left O0-ideal Isec with a public key Epub, which is the codomain
of an isogeny ϕsec corresponding to Isec, The protocol is as follows:

1. The prover computes an isogeny ϕcom : E0 → Ecom and sends Ecom as a
commitment to the verifier.

2. The verifier computes an isogeny ϕchall : Ecom → Echall and sends ϕchall and
Echall as a challenge to the prover.

3. The prover computes ideals Icom corresponding to ϕcom and Ichall correspond-
ing to ϕchall.

4. The prover applies the generalized KLPT algorithm to Isec and ĪsecIcomIchall
and computes an ideal Ires ∼ ĪsecIcomIchall.

5. The prover computes ϕres corresponding to Ires and sends it to the verifier.
6. The verifier check that ϕres is an isogeny from Epub to Echall and the kernel

of ϕ̂chall ◦ ϕres is cyclic.

The following diagram illustrates the above protocol, where the dotted arrows
represent the isogenies kept secret by the prover:

E0

ϕsec

��

ϕcom �� Ecom

ϕchall

��
Epub ϕres

�� Echall

SQIsign is a signature scheme obtained by applying the Fiat-Shamir trans-
form [21] to the above protocol.

In the following, we describe the each step of the SQISIGN in more detail.
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Parameter. As we mentioned in Sect. 2.2, the SQISIGN uses IdealToIsogenyE-
ichler as an ideal-to-isogeny algorithm. For efficiency, we use 2 as �. Therefore,
we use p such that p2 − 1 is divisible by 2f and T for an odd smooth integer T
greater than p1.25.

Let λ be a security parameter. To achieve a λ-bit security level, we require
the following conditions:

– p ≈ 22λ (to address the attacks by [15] and [19]),
– deg ϕcom ≈ 22λ (to address the meet-in-the-middle attack [25, §5.2]),
– deg ϕchall ≈ 2λ (to ensure the challenge space of size 2λ ).

In the SQISIGN, the prime p satisfies that T is divisible by 3g such that 2f3g ≈ 2λ

and T/3g is prime to 3 and greater than 2λ. And we set deg ϕcom = T/3g and
deg ϕchall = 2f3g.

Key Generation. The key generation algorithm is as follows:

1. Sample a prime Dsec < p1/4 such that Dsec ≡ 3 (mod 4) uniformly at random.
2. Sample a left O0-ideal Isec of norm Dsec uniformly at random.
3. Compute J be a left O0-ideal such that J ∼ Isec and n(J) is a power of 2 by

the KLPT algorithm.
4. Compute the codomain Epub of an isogeny ϕsec corresponding to Isec by

IdealToIsogenyEichler.
5. Output a public key Epub and a secret key Isec.

The reason that we take Dsec < p1/4 is to reduce the norm of the output of the
generalized KLPT algorithm. The bound p1/4 is the minimum to make the size
of the secret key space larger than 2λ.

Commitment. A commitment is computed by using Vélu’s formulas. Taking
a point K of order T/3g on E0, we compute an isogeny ϕcom with kernel 〈K〉.
Then we output the codomain Ecom of ϕcom as a commitment.

Challenge. A challenge c is sampled from the integers in [0, 2f3g). Then the cor-
responding isogeny ϕchall is computed by using Vélu’s formulas from the kernel
〈PEcom + cQEcom〉, where (PEcom , QEcom) is a deterministic basis of Ecom[2f3g].

Response. Let O be the right order of Isec. Since n(Isec) < p1/4, we can find a
left O-ideal of norm approximately p3.75 equivalent to a given left O0-ideal by
the generalized KLPT algorithm. Let k be an integer such that 2kf ≈ p3.75. The
degree of ϕres is set to 2kf .

Given Epub, Ecom, Isec, ϕcom, ϕchall, the corresponding response is computed
as follows:

1. Compute the left O0-ideal Icom corresponding to ϕcom.
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2. Compute the left O0-ideal I ′
chall corresponding to an isogeny with kernel

ϕ̂com(PEcom + cQEcom).
3. Compute a left OR(Isec)-ideal Ires such that Ires ∼ Īsec(Icom ∩ I ′

chall) and
n(Ires) = 2kf by the generalized KLPT algorithm.

4. Compute an isogeny ϕres = ϕres,k ◦ · · · ◦ ϕres,1 corresponding to Ires by Ideal-
ToIsogenyEichler, where deg ϕres,i = 2f for i = 1, . . . , k.

5. Output the sequence of generators of kerϕres,1, . . . , ker ϕres,k as a response.

Verification. The verification checks the following:

1. The codomain of the composition ϕres,k ◦ · · · ◦ ϕres,1 is isomorphic to Echall.
2. The kernel of ϕ̂chall ◦ ϕres,k ◦ · · · ◦ ϕres,1 is cyclic.

Compression. To reduce the size of the response, a generator of the kernel of
ϕres,i is represented by coefficients of the linear combination of a deterministic
basis of the 2f -torsion subgroup of the domain. The detail is as follows: Let Ei

be the domain of ϕres,i and (PEi
, QEi

) be a basis of Ei[2f ] that is computed
deterministically. Then kerϕres,i is generated by a point of the form aPEi

+QEi

or PEi
+aQEi

for an integer a ∈ [0, 2f ). Therefore, we can represent a generator
of kerϕres,i by the integer a and a bit indicating the form of the generator.

Since the SQISIGN is the signature scheme obtained by applying the Fiat-
Shamir transform to the above protocol, a signature of the SQISIGN is a pair of
a commitment and a response. In the SQISIGN, a commitment is compressed by
generators of the kernels of ϕchall and its dual isogeny and these generators are
compressed by the above method. For details, see §3.4 and §3.5 in the document
in [6].

3 New Algorithms

In this section, we give new ideal-to-isogeny algorithms. Our algorithms are based
on the same idea as in the algorithm in the original SQIsign and the algorithm in
the key generation in SILBE explained in Sect. 2.2. In particular, we use isogenies
of dimension 2 instead of T -isogenies or isogenies of dimension 4.

To use isogenies of dimension 2, we use an embedding of an imaginary
quadratic order into the endomorphism ring of the domain curve. Unlike the
algorithm in SILBE, our algorithms allow that the degrees of isogenies of dimen-
sion 1 and 2 have the same prime factors. This flexibility enables the use of
2-isogenies and (2, 2)-isogenies, thereby enhancing algorithmic efficiency.

3.1 Setting

Let m1 and m2 be smooth integers such that p = m1m2f − 1 is a prime number
for a small positive integer f . We assume that m2 >

√
p. Note that we do

not require m1 and m2 to be coprime. Let O0 be a special extremal order in
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Bp,∞, R be the integer ring of Q(i) contained in O0, and E0 be a supersingular
elliptic curve over Fp2 whose endomorphism ring is isomorphic to O0. We fix an
isomorphism ι : O0 → End(E0) and identify O0 with End(E0) by ι. We also fix
a basis (P0, Q0) of E0[m1m2]. We assume that these parameters are implicitly
given as input for the algorithms in this section.

Let I1 be a left O0-ideal such that n(I1) is prime to m1m2, O be the right
order of I1, and E be the codomain of ϕI1 . Suppose that we know the images
ϕI1(P0) and ϕI1(Q0). Given a left O-ideal J , we consider an algorithm to com-
pute the codomain of ϕJ . Here, the correspondence between J and ϕJ is given
by the isomorphism induced by (1). By using generalized KLPT algorithm, we
can assume that n(J) is a power of m1.

3.2 Core of the Algorithm

Decompose J into the product J = J1 · · · Jk such that n(Ji) = m1. For each i, the
Ji-torsion subgroup is rational over Fp2 . Therefore, we can compute an isogeny
corresponding to Ji by Vélu’s formulas if we know a generator of its kernel. For
J1, we have ker ϕJ1 = ϕI1(E0[I1J1]∩E0[m1]) since ϕJ1 ◦ϕI0 corresponds to I1J1

and n(I1) is prime to m1. Therefore, we can compute the codomain of ϕJ1 by
using ϕI1(P0) and ϕI1(Q0). Similarly, we can compute the codomain of ϕJi

for
i > 1 if we have an ideal Ii such that Ii ∼ I1J1 · · · Ji−1 and n(Ii) is prime to m1,
and the images of a basis of E0[m1] under ϕIi . The following diagram shows the
relationship between I1, J1, . . . , Jk and the isogenies corresponding to them.

E0

I1

�� I2 		�
��

��
��

�



��
���

���
���

���
�

Ik

�����
����

����
����

����
����

E1
J1

�� E2
J2

�� · · ·
Jk

�� Ek

Therefore, our task is to compute the codomain Ei of ϕJi
, the ideal Ii, and

the images of a basis of E0[m1] under ϕIi for i > 1. However, we require the
images of a basis of E0[m1m2] under ϕIi for computing the next isogeny ϕIi+1 by
EvalByKani. More precisely, our algorithm takes Ei, Ii, Ji, ϕIi(P0), and ϕIi(Q0)
as input and computes Ei+1, Ii+1, ϕIi+1(P0), and ϕIi+1(Q0) as output. The
outline of our algorithm is as follows:

1. Compute Ei+1, ϕJi
◦ϕIi(P0), and ϕJi

◦ϕIi(Q0) by using Vélu’s formulas with
input Ei and a generator of kerϕJi

= ϕIi(E0[IiJi]).
2. Find β ∈ IiJi and α ∈ R such that qIiJi

(β) is prime to m1m2 and n(α) +
qIiJi

(β) = m2. Let Ii+1 be χIiJi
(β).

3. Compute ϕIi+1(m1P0) and ϕIi+1(m1Q0) by m1ϕIi+1 = 1
n(Ii)

ϕJi
◦ ϕIi ◦ β̂.

4. Compute the image of a basis of Ei+1[m1m2] under ϕ̂Ii+1 by EvalByKani with
input m2, E0, Ei+1E0, ϕIi+1(m1P0), ϕIi+1(m1Q0), α(m1P0), α(m1Q0).

5. Compute ϕIi+1(P0) and ϕIi+1(Q0) by solving a discrete logarithm problem in
E0[m1m2].
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The following diagram shows the relationship between the ideals and the isoge-
nies in the above algorithm. Here the dotted arrows represent the direction of
the endomorphism β of E0.

E0

Ii

��

Ii+1

����
���

���
���

��
α 

��
β

Ei
Ji

���� Ei+1

��

We give supplementary explanations for the above steps except for Step 1.

Step 2. As discussed in [27, §3.1], we can find elements in IiJi whose normalized
norms are approximately

√
p by using lattice enumeration (e.g., see [7, Algorithm

2.7.5]) for IiJi. However, there exist exceptional cases that we will discuss later.
Once we find many elements in IiJi whose normalized norms are approximately√

p, we can find β such that m2 − qIiJi
(β) is a prime number splitting in R.

Then we can find α by Cornacchia’s algorithm [7, Algorithm 1.5.2, 1.5.3]. This
method is also used in SQIsignHD and SILBE for the case R = Z[

√−1], i.e.,
m2 − qIiJi

(β) is the sum of two squares. However, these schemes do not use an
endomorphism of E0, instead they use an endomorphism of the abelian surface
E2

0 .

Step 3. Since β = ϕ̂Ii+1 ◦ ϕJi
◦ ϕIi , we have ϕJi

◦ ϕIi ◦ β̂ = m1n(Ii)ϕIi+1 .
Therefore, we can compute ϕIi+1(m1P0) by 1

n(Ii)
ϕJi

◦ϕIi◦β̂(P0) and ϕIi+1(m1Q0)
similarly, where 1

n(Ii)
is the inverse of n(Ii) modulo m2.

Step 4. We need to care about the fact that the output of EvalByKani could
not be ϕ̂Ii+1 but ι0 ◦ ϕ̂Ii+1 for some automorphism ι0 of E0. If the automorphism
groups of E0 and Ei+1 are {±1}, then this does not cause any problem. This
is because −ϕIi+1 is also an isogeny corresponding to Ii+1. However, if ι0 is an
isomorphism not in {±1}, then the dual isogeny of ι0 ◦ ϕ̂Ii+1 does not correspond
to Ii+1. This occurs when j(E0) = 0 or 1728. Therefore, we need to fix the post-
composition by ι0. To do this, we evaluate ϕJi

◦ ϕIi(P0) in addition to a basis
of Ei+1[m1m2] by EvalByKani. By comparing the output with β(P0), we can
determine ι0.

We also note that we want the codomain of the (m2,m2)-isogeny in Eval-
ByKani in Step 4 to not be isomorphic to E0 × E0. As discussed in [32, §2.4],
this only occurs with a negligible probability for a cryptographic size of p. In
addition, we can prove the following lemma.

Lemma 1. We use the notation in the above setting. Suppose that E0 �∼= Ei+1

and any γ ∈ End(E0) whose norm is less than m2 is in R. Then the codomain
of the (m2,m2)-isogeny in Step 4 is not isomorphic to E0 × E0.
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Proof. Suppose that the codomain of the (m2,m2)-isogeny is isomorphic to E0×
E0. Then we have the following commutative diagram:

E0

ϕIi+1 ��

α

��

Ei1

��
E0 γ

�� E0,

where n(γ) = n(Ii+1) and the right vertical arrow is an isogeny of degree n(α).
Since α commutes with γ and n(α) is prime to n(Ii+1) we have ϕIi+1 = γ up to
post-composition of an isomorphism. This contradicts E0 �∼= Ei+1. ��
The latter assumption in the lemma is satisfied if we take m2 ≈ √

p because
an element in O0 \ R has a norm approximately greater than p. If the first
assumption is not satisfied, we can compute the image under ϕIi+1 directly since
this is an endomorphism of E0.

Step 5. Let (Pi+1, Qi+1) be a basis of Ei+1[m1m2]. By Step 4, we know
ϕ̂Ii(Pi+1) and ϕ̂Ii(Qi+1). Solving the discrete logarithm problems for these
points with base P0 and Q0, we have integers a, b, c, d such that

ϕ̂Ii

(
Pi+1

Qi+1

)

=
(

a b
c d

)(
P0

Q0

)

.

We evaluate the points on both sides of the above equation by ϕIi and multiply

them by the inverse of
(

a b
c d

)

modulo m1m2. Then we have

n(Ii+1)
(

a b
c d

)−1 (
Pi+1

Qi+1

)

=
(

ϕIi+1(P0)
ϕIi+1(Q0)

)

.

3.3 Exceptional Cases

In this subsection, we discuss exceptional cases in Step 2 in the previous subsec-
tion. In particular, we consider what kind of ideals IiJi fail to find β and α, and
how to avoid them. To ease the notation, we denote IiJi by I and Ei+1 by E.

Exceptional Ideals. Step 2 fails if the normalized norm of the smallest element
in I is much smaller than

√
p and not prime to m1m2. Consider this case and

let (β1, β2, β3, β4) be the Minkowski-reduced basis of I. Then we have (see [27,
§3.1])

p2 ≤ qI(β1)qI(β2)qI(β3)qI(β4) ≤ 4p2.

Since qI(β1) � √
p and n(i) is small, we have β2 = γβ1, where γ is the smallest

element in R\Z. Therefore, the elements in I whose normalized norms is smaller
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than
√

p are of the form δβ1 for δ ∈ R. The normalized norms of these elements
are divisible by qI(β1), so not prime to m1m2.

In terms of elliptic curves, the above exceptional case occurs when there exists
an isogeny E0 → E whose degree is much smaller than

√
p and not prime to

m1m2. Let n be a positive integer smaller than
√

p. Then the number of isogenies
from E0 whose degree is smaller than n is approximately linear in n2. Therefore,
we can assume that the probability that I has an element whose normalized
norm is smaller than n is approximately n2/p. This probability is small but not
negligible in practice. Especially, it occurs with a high probability in the case
that J is a left O0-ideal, i.e., I1 = O0 and E1 = E0. In this case, there exists
the isogeny ϕJ1 : E0 → E2 of degree m1 <

√
p. Therefore, we need to avoid the

exceptional cases.

Avoiding Exceptional Cases. To avoid the exceptional cases, we use other
supersingular elliptic curves whose endomorphism rings contain an imaginary
quadratic order with a small discriminant. A similar idea is used in the SQISIGN.
See §2.5.2 in the document in [6] for the details.

To explain our method, we define the following term.

Definition 1 (connecting tuple). For a positive integer N , an (E0;P0, Q0)-
connecting tuple is a tuple (E′

0, I0,O, P ′
0, Q

′
0, σ(P ′

0), σ(Q′
0)), where E′

0 is a super-
singular elliptic curve over Fp2 , I0 is a left O0-ideal such that OR(I0) ∼= End(E′

0)
and n(I0) is prime to the order of P0 and Q0, O is an imaginary quadratic order
contained in End(E′

0), P ′
0 and Q′

0 are the images of P0 and Q0 under ϕI0 , and
σ is an element in O such that O = Z[σ].

Suppose that we are given an (E0;P0, Q0)-connecting tuple
(E′

0, I0,O, P ′
0, Q

′
0, σ(P ′

0), σ(Q′
0)). Instead of computing an isogeny between E0

and Ei+1, we compute an isogeny between E′
0 and Ei+1. The following diagram

shows the relationship between ideals and isogenies in this case.

E0

Ii

��

I0 ��

��

β

E′
0

I′
i+1

��

α����

Ei
Ji

���� Ei+1

��

In summary, we execute the following steps instead of Step 2–5 in the previous
subsection:

2’ Find β ∈ Ī0IiJi and α ∈ O such that qĪ0IiJi
(β) is prime to m1m2 and

n(α) + qĪ0IiJi
(β) = m2. Let I ′

i+1 be χĪ0IiJi
(β).

3’ Compute ϕI′
i+1

(m1P
′
0) and ϕI′

i+1
(m1Q

′
0) by

m1ϕI′
i+1

= 1
n(Ii)n(I0)

ϕJi
◦ ϕIi ◦ ϕ̂I0 ◦ β̂.

4’ Compute the image of a basis of Ei+1[m1m2] under ϕ̂Ii+1 by EvalByKani with
input m2, E

′
0, Ei+1E

′
0, ϕI′

i+1
(m1P

′
0), ϕI′

i+1
(m1Q

′
0), α(m1P

′
0), α(m1Q

′
0).
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5’ Compute ϕI′
i+1

(P ′
0) and ϕI′

i+1
(Q′

0) by solving a discrete logarithm problem in
E′

0[m1m2].

Consequently, we obtain a left O0-ideal I0I
′
i+1 whose norm is prime to m1m2

and the images of P0 and Q0 under ϕI0I′
i+1

= ϕI′
i+1

◦ ϕI0 .

3.4 Explicit Algorithms

In this subsection, we give explicit ideal-to-isogeny algorithms. The first is an
algorithm to compute an isogeny corresponding to an ideal of norm m1, which
is explained in the previous subsections. The second is an algorithm to compute
an isogeny from an ideal by using the first algorithm repeatedly.

Let Sct be a finite ordered set of (E0;P0, Q0)-connecting tuples with different
elliptic curves. We set the first entry of Sct to be the trivial connecting tuple
(E0,O0, R, P0, Q0, σ(P0), σ(Q0)), where σ is a generator of R. We assume that
Sct is implicitly given as input for the algorithms in this section. A method to
compute connecting tuples is given in Appendix A.

The first algorithm is given in Algorithm 2. We name this algorithm ShortIde-
alToIsogenyIQO. The second algorithm, IdealToIsogenyIQO, is given in Algorithm
3. This algorithm computes an isogeny corresponding to an ideal of norm mk

1 .

Remark 1. In our implementation, the imaginary quadratic orders in Sst are of
the form Z[

√−d] for a small positive integer d. The elements in Sst are arranged
in ascending order of d. Experimentally, the number of iterations of the for
loop in line 4 in Algorithm 2 is one in most cases, and additional iterations are
needed less than once in every ten runs. Over 10,000 runs of the algorithm for
the characteristics in Sect. 5.1 showed that it is sufficient to have Sst of size five.

4 New Algorithm for SQIsign

As an application of our algorithms, we propose a new algorithm for SQIsign. Our
algorithm for SQIsign uses IdealToIsogenyIQO instead of IdealToIsogenyEichler.
This change replaces the computation of isogenies of higher degrees between
elliptic curves with the computation of 2-isogenies and (2, 2)-isogenies and is
expected to reduce the computational cost of SQIsign, but not affect its security
and the size of public keys and signatures.

4.1 Setting

For the efficiency of our algorithm, we use powers of 2 as m1 and m2 and the
theta algorithm by [11] for (2, 2)-isogenies. The theta algorithm requires points
of order 8 instead of 2 to compute (2, 2)-isogenies. Therefore, we use p of the
form 2f1+f2+2g −1 for small odd integer g and compute (2f2 , 2f2)-isogenies from
points of order 2f2+2.

In the following, we use elliptic curves over Fp2 which are uniquely chosen
from their isomorphic classes, e.g., “normalized Montgomery curves” obtained
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Algorithm 2: ShortIdealToIsogenyIQO
Input: a supersingular elliptic curve E, a left O0-ideal I whose norm is prime

to m1m2, a left OR(I)-ideal J of norm m1, and ϕI(P0), ϕI(Q0).
Output: The codomain of the isogeny ϕJ , β ∈ IJ such that qIJ(β) is prime to

m1m2, and ϕχIJ (β)(P0), ϕχIJ (β)(Q0).

1 Let K be a generator of ϕI(E0[m] ∩ E0[IJ ]);
2 Compute an isogeny ϕJ : E → E′ with kernel 〈K〉;
3 Let S be {P ′, Q′}, where P ′, Q′ a basis of E′[m1m2];
4 for (E′

0, I0,O, P ′
0, Q

′
0, σ(P ′

0), σ(Q′
0)) ∈ Sct do

5 Search α ∈ O and β ∈ Ī0IJ such that qĪ0IJ(β) is prime to m1m2 and
n(α) + qĪ0IJ(β) = m2;

6 if α and β are found then
7 Let I ′ = χĪ0IJ(β);
8 Let P1 = ϕI′(m1P

′
0) and Q1 = ϕI′(m1Q

′
0);

9 Let P2 = α(m1P
′
0) and Q2 = α(m1Q

′
0);

10 if j(E′
0) = 0 or 1728 then

11 Append ϕJ ◦ ϕI ◦ ϕ̂I0(P
′
0) to S;

12 Let P ′′ = β(P ′
0);

13 break;

14 Let S′ = EvalByKani(m2, E
′
0, E

′, E′
0, P1, Q1, P2, Q2, S);

15 if #S = 3 then
16 Let P ′′′ be the third element of S′;
17 Compute ι0 ∈ Aut(E′

0) such that ι0(P
′′′) = P ′′;

18 Let S′ = ι0(S
′) ;

19 Let P ′′
0 , Q′′

0 be the first and second elements of S′;
20 Find a, b, c, d ∈ Z such that P ′′

0 = aP ′
0 + bQ′

0 and Q′′
0 = cP ′

0 + dQ′
0;

21 Let M be the inverse of

(
a b
c d

)
modulo m1m2;

22 Let

(
P
Q

)
= n(I ′)M

(
P ′

Q′

)
;

23 return E′, β, P, Q;

by [6, Algorithm 1]. For such a curve E, we fix a basis of E[2f1+f2+2] and denote
it by (PE , QE).

Let E0 be a supersingular elliptic curve over Fp2 of j-invariant 1728 and

ι : O0 :=
〈
1, i, i+j

2 , 1+k
2

〉

Z

→ End(E0) be an isomorphism. Let λ be a

security parameter. For λ-bit security, our system parameters are p ≈ 22λ

of the above form, E0, ι, and a finite ordered set Sct of (E0;PE0 , QE0)-
connecting tuples with the first entry being the trivial connecting tuple
(E0,O0,Z[i], PE0 , QE0 , i(PE0), i(QE0)).
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Algorithm 3: IdealToIsogenyIQO
Input: a supersingular elliptic curve E, a left O0-ideal I whose norm is prime

to m1m2, a left OR(I)-ideal J of norm mk
1 , and ϕI(P0), ϕI(Q0).

Output: The codomain of the isogeny ϕJ , a left O0-ideal I ′ such that I ′ ∼ IJ
and n(I ′) is prime to m1m2, and ϕI′(P0), ϕI′(Q0).

1 Let P = ϕI(P0), Q = ϕI(Q0);
2 Let J1, . . . , Jk be ideals such that n(Ji) = m1 and J = J1 · · · Jk;
3 for i = 1, . . . , k do
4 Let E, β, P, Q = ShortIdealToIsogenyIQO(E, I, Ji, P, Q);
5 Let I = χIJi(β);
6 Let Jj = βJjβ

−1 for j = i + 1, . . . , k;

7 return E, I, P, Q;

4.2 Key Generation

Our key generation algorithm is almost the same as the SQISIGN. In particular,
it is as follows:

1-3. The same as the key generation in Sect. 2.3.
4. Compute the codomain Epub of ϕIsec and the image of PE0 and QE0 under

ϕIsec by IdealToIsogenyIQO.
5. Output a public key is Epub and a secret key is (Isec, ϕIsec(PE0), ϕIsec(QE0)).

The product of the ideals in the input of the final call of ShortIdealToIsogenyIQO
in IdealToIsogenyIQO in Step 4 above is equivalent to Isec. Therefore, there exists
an element β in this product whose normalized norm is prime to Dsec and we can
compute β by the quaternions obtained by the calls of ShortIdealToIsogenyIQO
other than the final call. Since Dsec < p1/4 � √

p < 2f2 , we can find an odd
integer m and α ∈ Z[i] such that m2Dsec + n(α) = 2f2 . By using mβ in the
final call of ShortIdealToIsogenyIQO, we obtain the images of PE0 and QE0 under
mϕIsec . By dividing the images by m modulo 2f1+f2+2, we obtain the images of
PE0 and QE0 under ϕIsec .

4.3 Commitment

To pull back a challenge isogeny to E0, the degree of a commitment isogeny must
be prime to the degree of the challenge isogeny. Since the degree of a challenge
isogeny must be a power of 2 in our setting, the degree of a commitment isogeny
must be odd. To achieve this, we use IdealToIsogenyIQO for commitments. Our
commitment algorithm is as follows:

1. Sample a left O0-ideal Jcom of norm 22λ uniformly at random.
2. Compute the codomain Ecom of ϕJcom , a left O0-ideal Icom such that Icom ∼

Jcom and n(Icom) is odd, and the image of PE0 and QE0 under ϕIcom by
IdealToIsogenyIQO.

3. Output a commitment Ecom and commitment key (Icom, ϕIcom(PE0), ϕIcom

(QE0)).
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Algorithm 4: Response
Input: a public key Epub, a secret key (Isec, ϕIsec(PE0), ϕIsec(QE0)), a

commitment Ecom, a commitment key (Icom, ϕIcom(PE0), ϕIcom(QE0)),
and a challenge c.

Output: A sequence of the kernels of isogenies of degree 22f1 .

1 Compute the left O0-ideal I ′
chall corresponding to an isogeny with kernel

〈ϕ̂Icom(PEcom + cQEcom)〉;
2 Let Ires = Īsec(Icom ∩ I ′

chall);

3 Compute a left OR(Isec)-ideal Jres such that Jres ∼ Ires and n(Jres) = 22kf1 ;

4 Let J1, . . . , Jk be ideals such that n(Ji) = 2f1 and Jres = J1 · · · Jk;
5 Let E = Epub, I = Isec, P = ϕIsec(PE0), Q = ϕIsec(QE0);
6 Let Sres = ∅;
7 for i = 1, . . . , 2k − 2 do
8 if i is odd then

9 Append a generator of ϕI(E0[2
2f1 ] ∩ E0[IJiJi+1]) to Sres;

10 Let E, β, P, Q = ShortIdealToIsogenyIQO(E, I, Ji, P, Q);
11 Let I = χIJi(β);
12 Let Jj = βJjβ

−1 for j = i + 1, . . . , 2k;

13 Append a generator of ϕI(E0[2
2f1 ] ∩ E0[IJ2k−1J2k]) to Sres;

14 return Sres;

4.4 Challenge

Our challenge algorithm is almost the same as the SQISIGN, but we use only
2-isogenies. Consequently, a challenge is an integer c in [0, 2λ). This challenge
corresponds to an isogeny with kernel 〈PEcom + cQEcom〉.

4.5 Response and Verification

In the SQISIGN, a response is computed by dividing into 2f -isogenies and repre-
sented by the sequence of their kernels. In our algorithm, a response is computed
by dividing into 2f1 -isogenies and represented by the sequence of the kernels of
the compositions of consecutive two 2f1 -isogenies. More precisely, for a chain of
2f1-isogenies ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1, our response is represented by the sequence
of the kernels of ϕ2i ◦ ϕ2i−1 for i = 1, . . . , k/2. This is possible since E[22f1 ] is
Fp2 -rational for elliptic curves E appearing in the response. This reduces the
number of computations of torsion bases in verification and improves the effi-
ciency of verification. In addition, we can compute the final two isogenies ϕk

and ϕk−1 without ShortIdealToIsogenyIQO since we do not need to compute the
image of any point under the isogenies in the response.

Our response algorithm is given in Algorithm 4. Here we assume that the
norm of the ideal obtained by the generalized KLPT algorithm is 22kf1 for some
integer k. Our verification algorithm is the same as the SQISIGN.
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4.6 Other Methods

Algorithm in QFESTA. We can use RandIsogImages by [32] instead of Ideal-
ToIsogenyIQO in the key generation and commitment algorithms. RandIsogImages
takes an integer d and points in E0 and outputs the codomain and the images of
the points under a random d-isogeny. This algorithm is more efficient than Ide-
alToIsogenyIQO because it requires only one (2f1+f2+2, 2f1+f2+2)-isogeny while
IdealToIsogenyIQO requires several (2f2 , 2f2)-isogenies (see Table 1 in the next
section). However, the distribution of the codomain in the output of RandIs-
ogImages is not guaranteed to be uniform in the codomains of the d-isogenies
from E0.

In summary, this alternative method offers a trade-off between efficiency and
security. This is the same situation as in an alternative method for the key
generation in SQIsign [13, Appendix D]. The security of this alternative method
is discussed in [34]. We leave the detailed comparison between these methods in
our algorithm for future work.

Algorithm in DeuringVRF. As mentioned in [29, §6], the ideal-to-isogeny algo-
rithm in DeuringVRF could be applied to SQIsign. Indeed, we can replace Short-
IdealToIsogenyIQO with the ideal-to-isogeny algorithm in DeuringVRF (Algorithm
7 in [29]) in the SQIsign algorithms explained in this section. In each call of
the ideal-to-isogeny algorithm in DeuringVRF, we can compute an isogeny corre-
sponding to an ideal of norm approximately p1/2. This is almost the same as Ideal-
ToIsogenyIQO. On the other hand, the degree of the isogeny of dimension 2 in the
ideal-to-isogeny algorithm in DeuringVRF is slightly larger than that in ShortIde-
alToIsogenyIQO. Therefore, simple replacement of ShortIdealToIsogenyIQO with
the ideal-to-isogeny algorithm in DeuringVRF is not expected to improve the
performance of SQIsign.

5 Concrete Parameters and Efficiency

In this section, we propose concrete parameters for our algorithm for SQIsign
and discuss the efficiency of our algorithm compared with the SQISIGN.

5.1 Proposed Parameters

For the NIST security level 1, 3, and 5, we proposed the following parameters:

– For the security level 1: p = 2247 · 79 − 1, f1 = 106, f2 = 139.
– For the security level 3: p = 2370 · 231 − 1, f1 = 156, f2 = 212.
– For the security level 5: p = 2492 · 539 − 1, f1 = 216, f2 = 274.

These primes have almost the same size as the primes in the SQISIGN corre-
sponding to the same security levels.
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Table 1. The numbers of T -isogenies and (2f , 2f )-isogenies in the key generation,
commitment, and response in the SQISIGN and our algorithm.

SQISIGN Ours

# of T -isogenies # of (2f2 , 2f2)-isogenies

Key generation 16 7

Commitment one T/3g-isogeny 3

Response 28 8

5.2 Efficiency

The main difference between our algorithm and the SQISIGN is that our algorithm
uses IdealToIsogenyIQO instead of IdealToIsogenyEichler. Most of the computation
time in IdealToIsogenyIQO is spent on the computation of (2f2 , 2f2)-isogenies. On
the other hand, most of the computation time in IdealToIsogenyEichler is spent
on the computation of T -isogenies. Therefore, we count the numbers of these
isogenies in our algorithm and the SQISIGN.

In the following, we focus on the NIST security level 1 and claim that our algo-
rithm is more efficient than the SQISIGN. At higher security levels, the advantage
of our algorithm becomes more significant because the smoothness of T decreases
as the security level increases.

At the current implementation of the SQISIGN for the NIST security level
1, the following parameters are used: f = 75, the norm of the output of the
KLPT algorithm in the key generation is 2675, and n(Irep) = 21050. Since Ide-
alToIsogenyEichler requires two T -isogenies for each 2f -isogeny, the number of
T -isogenies in the key generation is 16, and that in the response is 28. Note that
the first 2f -isogeny in the key generation does not require any T -isogenies. In
addition, the commitment algorithm requires one T/3g-isogeny.

On the other hand, our algorithm uses 2742 for the norm of the output of
the KLPT algorithm in the key generation (we use 742 = 7 · f1 for simplicity)
and the same norm for the response. Consequently, our algorithm requires 7
(2f2 , 2f2)-isogenies in the key generation, 3 (= �256/f1�) (2f2 , 2f2)-isogenies in
the commitment, and 8 (= �1050/f1� − 2) (2f2 , 2f2)-isogenies in the response.

Table 1 shows the numbers of isogenies in the key generation, commitment,
and response in our algorithm and the SQISIGN.

We estimate the costs of a T -isogeny in the SQISIGN and a (2f2 , 2f2)-isogeny
in our algorithm. Our estimation is based on the number of operations in Fp2 .
We use the number of multiplication (including squaring) in Fp as the measure
of the cost of an operation. We counted the number of multiplications by Python
code.1 In conclusion, we claim that the cost of a T -isogeny in the SQISIGN is
at least 141, 987 Fp-multiplications, and the cost of a (2f2 , 2f2)-isogeny in our
algorithm is approximately 147, 951Fp-multiplications.

1 The code is available at https://github.com/hiroshi-onuki/SQIsignIQO.jl/blob/
main/measure costs/measure costs.py.

https://github.com/hiroshi-onuki/SQIsignIQO.jl/blob/main/measure_costs/measure_costs.py
https://github.com/hiroshi-onuki/SQIsignIQO.jl/blob/main/measure_costs/measure_costs.py


Ideal-to-Isogeny Algorithm Using 2-Dimensional Isogenies 265

Together with the numbers of isogenies in Table 1, we conclude that our
algorithm is at least twice as fast as the SQISIGN in the key generation and the
signing.

Our algorithms is also more efficient in the verification than the SQISIGN

because the numbers of separations in the response isogeny are reduced. As
shown by Corte-Real Santos, Eriksen, Meyer, and Reijnders [37], reducing the
number of separations in the response isogeny significantly improves the effi-
ciency of the verification. In the NIST security level 1, the verification in
the SQISIGN computes 14 275-isogenies, while our algorithm computes 4 2212-
isogenies and one 2202-isogeny. This reduce the number of the computations of
deterministic torsion bases in the verification.

5.3 Implementation

We implemented our SQIsign by Julia language [4] with its computer algebra
package Nemo [22]. Our code is available at

https://github.com/hiroshi-onuki/SQIsignIQO.jl.

Table 2 shows the computational times of key generation, signing, and ver-
ification in our implementation. The computational times are measured on a
computer with an Intel Core i7-10700K CPU@3.70 GHz without Turbo Boost.
The values are the averages of 100 runs.

For reference, we executed the benchmarking suite in the reference imple-
mentation of the SQISIGN on the same computer. Table 3 shows the results. The
computational times are given in seconds by dividing the clock time by the CPU
frequency.

Table 2. The computational times of key generation, signing, and verification in our
implementation (sec.). The values are the averages of 100 runs.

Key gen. Sign Verify

Level 1 1.88 3.41 0.24

Level 3 2.81 6.15 0.32

Level 5 4.73 8.84 0.50

Table 3. The computational times of key generation, signing, and verification in the
reference implementation of the SQISIGN. The values are given in seconds by dividing
the clock time by the CPU frequency and the average of 100 runs.

Key gen. Sign Verify

Level 1 1.30 2.19 0.05

Level 3 9.34 17.20 0.32

Level 5 36.30 65.70 0.94

https://github.com/hiroshi-onuki/SQIsignIQO.jl
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In the NIST security level 1, our implementation is not faster than the ref-
erence implementation of the SQISIGN. However, we believe that our algorithm
outperforms the SQISIGN if we implement our algorithm in a lower-level language
such as C or Rust. We leave such an implementation for future work.

In the NIST security level 3 and 5, our implementation is faster than the ref-
erence implementation of the SQISIGN. The advantage of our algorithm becomes
more significant at higher security levels as we mentioned in Sect. 5.2.

6 Conclusion and Future Work

In this paper, we proposed a new ideal-to-isogeny algorithm using Kani’s
reducibility theorem and embeddings of imaginary quadratic orders into the
endomorphism rings of supersingular elliptic curves. Our algorithm works in the
operations in Fp2 if we use the characteristic p such that p + 1 has a smooth
divisor greater than

√
p. Especially, our algorithm is efficient if we use p of the

form 2fg − 1 for small odd integer g.
As an application of our algorithm, we proposed a new algorithm for SQIsign.

Our estimation shows that our algorithm is at least twice as fast as the SQISIGN

in the key generation and the signing at the NIST security level 1. Our algorithm
is also more efficient in the verification because the numbers of separations in
the response isogeny are reduced. Notably, at higher security levels, the benefits
of our algorithm become more pronounced. This assertion is substantiated by
our implementation results.

Implementing our algorithm in a lower-level language such as C or Rust
and comparing the efficiency with the SQISIGN are left for future work. Further
improvements in the efficiency of our algorithm are also left for future work. For
example, using a smooth factor of p − 1 in the degree of the response Isogeny
in addition to 2f1 may improve the efficiency of our algorithm since this could
reduce the number of separations in the response isogeny.
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ideal-to-isogeny algorithm. We also thank Andrea Basso, Luca De Feo, Pierrick Dartois,
Antonin Leroux, Luciano Maino, and Benjamin Wesolowski for sharing their work on
SQIsign2D-West, and Max Duparc and Tako Boris Fouotsa for sharing their work on
SQIPrime with us prior to publication. Finally, we thank the anonymous Asiacrypt
2024 reviewers for their valuable and constructive feedback.

A Computing Connecting Tuples

Let O0, R,m1,m2, E0, P0, Q0 be as in Sect. 3. In this section, we explain how to
compute (E0;P0, Q0)-connecting tuples. In particular, we compute a tuple

(E′
0, I0,O, P ′

0, Q
′
0, σ(P ′

0), σ(Q′
0)),

where E′
0 is a supersingular elliptic curve over Fp2 , I0 is a left O0-ideal such that

OR(I0) ∼= End(E′
0) and n(I0) is prime to m1m2, O is an imaginary quadratic

order in End(E′
0), P ′

0 and Q′
0 are the images of P0 and Q0 under ϕI0 , and σ is

an element in O such that O = Z[σ].
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A.1 Algorithm for Computing Connecting Tuples

The outline of the computation of an (O0;P0, Q0)-connecting tuple is as follows:

1. Take a small square-free integer d such that p does not split in Q(
√−d) and

let O be Z[
√−d].

2. Take a prime N > p such that there exists σ0 ∈ O0 such that σ2
0 = −N2d.

3. Let I0 = O0σ0 + O0N .
4. Compute the codomain E′

0 of ϕI0 , P ′
0 = ϕI0(P0) and Q′

0 = ϕI0(Q0) by a
variant of IdealToIsogenyIQO.

5. Compute σ(P ′
0) and σ(Q′

0) by σ = 1
N2 ϕI0 ◦ σ0 ◦ ϕ̂I0 .

In the following, we explain the detail of each step.

Step 1. From the condition on d, there exists a supersingular elliptic curve over
Fp2 whose endomorphism ring containing a subring isomorphic to Z[

√−d] (see
[28, Theorem 12 in Chap. 13]). The following steps computes such a curve E′

0

and the connection between E0 and E′
0.

Step 2. Since N > p, there exists an N -isogeny from E0 to E′
0 with high

probability. Suppose such an isogeny ϕ exists. Let σ be an endomorphism on
E′

0 corresponding to
√−d. Then σ0 := ϕ̂ ◦ σ ◦ ϕ is an endomorphism on E0

corresponding to N
√−d, i.e., σ2

0 = −N2d.
A method to find such σ0 is as follows:

(i) Let ā be a square root of N2d/n(i) modulo p (such ā always exists from the
condition on d) and a be a lift of ā to Z such that 0 ≤ a < p.

(ii) Find τ ∈ R such that n(τ) = (N2d − a2n(i))/p by Cornacchia’s algorithm.
(iii) Let σ0 = ai + jτ .

Since tr(σ0) = 0 and n(σ0) = N2d, we have σ2
0 = −N2d. The Step (ii) can fail.

In this case, we replace N by another prime and retry.

Step 3. Let σ = 1
N σ0. Since I0σ ⊂ I0, we have σ ∈ OR(I0). Therefore, the

endomorphism ring of the codomain of ϕI0 contains a subring isomorphic to
Z[

√−d]. It holds that n(I0) = N , which we will prove in the next subsection.

Step 4. As we mentioned in Sect. 3.3, the first ShortIdealToIsogenyIQO in the
computation of ϕI0 may fail if we do not use connecting tuples.

To avoid this problem, we use the other factors of p2 − 1. Let m3 be a
smooth factor of p2 − 1 such that m1m3 >

√
p and m3 is prime to m1m2.

Then we compute m3-isogenies from E0 efficiency by using the method in [9]. In
particular, we use J such that J ∼ I0 and n(J) = m3m

k
1 and decompose J into

J1 . . . Jk such that n(J1) = m1m3 and n(Ji) = m1 for i = 2, . . . , k. Based on
this decomposition, we compute the codomain of ϕJ and the images of P0 and
Q0 under ϕI for a left O0-ideal I such that I ∼ J and n(I) is prime to m1m2
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by using IdealToIsogenyIQO. Note that IdealToIsogenyIQO may fail even in this
case. In this case, we return to Step 2 and retry.

We can compute ϕI0(P0) and ϕI0(Q0) by using α ∈ I0 such that χI0(α) = I,
where α is obtained by the KLPT algorithm transforming I0 to J and the outputs
of ShortIdealToIsogenyIQO in the computation of ϕJ . Since α = ϕ̂I ◦ϕI0 , we have
ϕI0 = 1

deg ϕI
ϕI ◦ α.

Step 5. The isomorphism induced by ϕI0 maps σ to 1
N ϕI0◦ 1

N σ0◦ϕ̂I0 . Therefore,
we have

σ(P ′
0) = σ ◦ ϕI0(P0) =

1
N

ϕI0 ◦ σ0(P0).

The same holds for σ(Q′
0).

A.2 Proof of n(I0) = N

We prove the following proposition, which we used in the above explanation.

Proposition 1. The ideal I0 in the Step 3 in the previous subsection satisfies
n(I0) = N .

First, we recall basic facts on quaternion algebras. We refer to [40, Chapter
15] for the details. For a fractional ideal I of Bp,∞, the discriminant of I is
defined by

disc(I) = det((tr(bibj))i,j=1,...,4),

where b1, . . . , b4 is a Z-basis of I. For fractional ideals I, J of Bp,∞ such that
I ⊂ J , we have disc(I) = [J : I]2disc(J). Let O be a maximal order of Bp,∞ and
I be a left O-ideal. Then disc(O) = p2 and disc(I) = n(I)4p2.

Next, we prove the following lemmas used in the proof of Proposition 1.

Lemma 2. Let O0 be a special extremal order in Bp,∞ and N > p be a prime.
Let α be an element in Bp,∞ of the form α = a + bi + cj + dk for a, c, d ∈ Q and
b ∈ 1

N Z \ Z. Then α /∈ O0.

Proof. Since O0 is a special extremal order, O0 contains a sub-lattice L :=
Z+Zi+Zj+Zk. An easy computation shows that disc(L) = (4n(i))2. Therefore,
we have [O0 : L] = 4n(i). Since n(i) is 1, 2, or the smallest prime that is a
quadratic non-residue modulo p, we have n(i) < p < N . Therefore, 4n(i)α /∈ L.
This means that α /∈ O0. ��
Lemma 3. Let O0 be a special extremal order in Bp,∞ and N be a prime. Let
α be an element in O0 \ NO0 of norm divisible by N . Then the norm of a left
O0-ideal I0 = O0α + O0N is N .

Proof. By definition of the norm of an ideal, we have n(I0) | N2. Let β ∈ I0.
Then β = αβ1 + Nβ2 for some β1, β2 ∈ O0. Therefore, n(β) ≡ n(α)n(β1) ≡ 0
(mod N). This implies that N | n(β).

Therefore, n(I0) = N or N2. The inclusion O0N ⊂ I0 and n(O0N) = N2

imply that if n(I0) = N2, then I0 = O0N . This contradicts the assumption that
α /∈ NO0. Therefore, we have n(I0) = N . ��
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Proof (Proof of Proposition 1). Since σ0 = ai + bj + ck + dij with 0 ≤ a < p, we
have σ0 /∈ NO0 by Lemma 2. Therefore, we have n(I0) = N by Lemma 3. ��
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Abstract. Isogeny-based cryptography is cryptographic schemes whose
security is based on the hardness of a mathematical problem called the
isogeny problem, and is attracting attention as one of the candidates for
post-quantum cryptography. A representative isogeny-based cryptogra-
phy is the signature scheme called SQIsign, which was submitted to the
NIST PQC standardization competition. SQIsign has attracted much
attention because of its very short signature and key size among the
candidates for the NIST PQC standardization. Recently, a lot of new
schemes have been proposed that use high-dimensional isogenies. Among
them, the signature scheme called SQIsignHD has an even shorter signa-
ture size than SQIsign. However, it requires 4-dimensional isogeny com-
putations for the signature verification. In this paper, we propose a new
signature scheme, SQIsign2D-East, which requires only two-dimensional
isogeny computations for verification, thus reducing the computational
cost of verification though increasing the signing cost. First, we general-
ized an algorithm called RandIsogImg, which computes a random isogeny
of non-smooth degree. Then, by using this generalized RandIsogImg, we
construct a new signature scheme SQIsign2D-East.

1 Introduction

In recent years, isogeny-based cryptography has been actively studied as one of
the candidates for post-quantum cryptography (PQC). One of the representa-
tive isogeny-based cryptographies is the signature scheme called SQIsign [13],
which was submitted to the NIST PQC standardization competition. SQIsign
has attracted much attention because of its very short signature and key size
among the candidates for the NIST PQC standardization. Another well-known
isogeny-based cryptography is SIDH [20], which is proposed by De Feo and Jao.
Additionally, SIKE [1], a key encapsulation scheme based on SIDH, remained

Initially, it was a paper by Nakagawa and Onuki, but the security issue described in
Sect. 4.3 were pointed out by Wouter Castryck, Mingjie Chen, Riccardo Invernizzi,
Gioella Lorenzon and Frederik Vercauteren and a solution was also proposed by them.
Therefore, we marged these results into a single paper.
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an alternative candidate for the NIST PQC standardization competition until
Round 4. However, recent attacks [5,24,28] broke the security of SIDH and
SIKE. These attacks find the secret isogeny from the two point images under
the isogeny by computing high dimensional isogenies.

In response, a number of cryptographic applications of attacks on SIDH have
been studied, such as SQIsignHD [11], FESTA [3], QFESTA [26] SCALLOP-
HD [7], and IS-CUBE [25]. Among them, SQIsignHD is a variant of SQIsign
that has a shorter signature size and higher signing performance than SQIsign.
However, it requires 4-dimensional isogeny computations for signature verifica-
tion, which leads to a large computational cost. Since NIST calls for signature
schemes that have short signatures and fast verification, reducing the verification
cost of SQIsignHD is an important issue.

1.1 Contributions

In this paper, we make the following contributions:

1. We construct a new algorithm GenRandIsogImg, which is a generalization
of the algorithm called RandIsogImg proposed in [26], which computes the
codomain and point images of a given degree isogeny from a special elliptic
curve E0. Our GenRandIsogImg computes the codomain and point images of
a given degree isogeny from any elliptic curve E.

2. Using GenRandIsogImg as a building block, we propose a new variant of
SQIsignHD, which only requires 2-dimensional isogeny computations for the
verification. We name this signature scheme ‘SQIsign2D-East’.

3. We give concrete parameters of SQIsign2D for the NIST security level 1,
3, and 5. Under these parameter settings, we analyse the signature sizes
and show that our signature sizes are smaller than SQIsign and larger than
SQIsignHD.

4. We analyse the computational cost of SQIsign2D-East under the parameter
for the NIST security level 1 and show that the verification cost of SQIsign2D
is smaller than that of SQIsignHD though the signing cost is larger.

1.2 Related Works

At the same time as this work, [2] and [17] also proposed a variant of SQIsignHD
based on 2-dimensional isogenies. The former is called ‘SQIsign2D-West’ and
the later is called ‘SQIPrime’. These protocols are similar to ours, but they were
proposed independently of us. Our protocol has a stronger security assumption
than their protocol but seems to be more efficient. We leave the comparison with
their protocol as future work.

Recently, [27] proposed an algorithm called IdealToIsogenyIQO that makes
the key generation and the signing procedure in SQIsign at least twice as fast.
However, their costs are still larger than SQIsignHD and SQIsign2D-East as
described in their paper.
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1.3 Organization

In Sect. 2, we give some notation and background knowledge used in our protocol.
In Sect. 3, we construct a generalized RandIsogImg. In Sect. 4, we propose our
new signature scheme SQIsign2D-East and its security is analysed in Sect. 5. In
Sect. 6, we give some concrete parameters for SQIsign2D-East and analyse the
data size and the computational cost of SQIsign2D-East. Finally, in Sect. 7, we
give the conclusion of this paper.

2 Preliminaries

In this section, we summarize some background knowledge used in our protocol.

2.1 Notation

Throughout this paper, we use the following notation. We let p be a prime
number of cryptographic size, i.e., p is at least about 2256 and let λ be a security
parameter. Let f(x) and g(x) be real functions. We write f(x) = O(g(x)) if there
exists a constant c ∈ R such that f(x) is bounded by c ·g(x) for sufficiently large
x. For a finite set S, we write x ∈U S if x is sampled uniformly at random from
S. Let ⊥ be the symbol indicating failure of an algorithm.

2.2 Abelian Varieties and Isogenies

In this paper, we mainly use principally polarized superspecial abelian varieties of
dimension one or two defined over a finite field of characteristic p. Such a variety
is isomorphic to a supersingular elliptic curve, the product of two supersingular
elliptic curves, or a Jacobian of a superspecial hyperelliptic curve of genus two,
and always has a model defined over Fp2 . Therefore, we only consider varieties
defined over Fp2 .

Basic Facts. An isogeny is a rational map between abelian varieties which is a
surjective group homomorphism and has finite kernel. The degree of an isogeny
ϕ is its degree as a rational map and is denoted by deg ϕ. An isogeny ϕ is
separable if # ker ϕ = deg ϕ. A separable isogeny is uniquely determined by its
kernel up to post-composition of an isomorphism. For an isogeny ϕ : A → B
between principally polarized abelian varieties, there exists a unique dual isogeny
ϕ̂ such that ϕ̂ ◦ ϕ is equal to the multiplication-by-deg ϕ map on A.

Let ϕ : A → B, ψ : A → C, and ψ′ : B → D be isogenies such that deg ϕ is
coprime to deg ψ. If ker ψ′ = ϕ(ker ψ) holds, we say that ψ′ is the push-forward
of ψ by ϕ and denote it by ψ′ = [ϕ]∗ψ. Under the same situation, we say that ψ
is the pull-back of ψ′ by ϕ and denote it by ψ = [ϕ]∗ψ.

Let A and B be principally polarized abelian varieties. If there exists an
isogeny between A and B then the dimensions of A and B are the same. If A is
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superspecial then there exists an isogeny between A and B if and only if B is a
superspecial abelian variety of the same dimension as A.

Let A be a principally polarized abelian variety and � a positive integer. An
�-isotropic subgroup of A is a subgroup of the �-torsion subgroup A[�] of A on
which the �-Weil pairing is trivial. An �-isotropic subgroup G is maximal if there
is no other �-isotropic subgroup containing G. A separable isogeny whose kernel
is a maximal �-isotropic subgroup is called an �-isogeny if the dimension of the
domain is one or an (�, �)-isogeny if the dimension of the domain is two.

Let E be an elliptic curve defined over Fp2 . Among the isomorphism class
of E, we can chose a Montgomery curve as a canonical representative by using
[6, Algorithm 1]. We call this curve the normalized curve of E. In this paper,
we assume that all elliptic curves are normalized. Moreover, we can compute
a canonical basis of the n-torsion subgroup E[n] defined over Fp2 by using [6,
Algorithm 3]. Especially when n = 2k for a positive integer k, we can compute
a canonical basis of E[n] by the algorithm proposed in [9, Section 5.1].

Computing Isogenies. Let A be a principally polarized abelian variety, � a
positive integer, and G a maximal �-isotropic subgroup of A.

If the dimension of A is one then we can compute an �-isogeny ϕ with kernel
G by Vélu’s formulas [32]. More precisely, given A, �, G, Vélu’s formulas give a
method to compute the codomain of ϕ in O(�) operations on a field containing
the points in G. In addition, for additional input P ∈ A, we can compute ϕ(P ) in
O(�) operations on a field containing the points in G and P . These computational
costs are improved to Õ(

√
�) by Bernstein, De Feo, Leroux, and Smith [4].

For an isogeny ϕ : A → B, we say that information Iϕ is an efficient rep-
resentation of ϕ when we can compute ϕ(P ) in polynomial time from a given
point P ∈ A and the information Iϕ. For example, the tuple (A, �,G) described
above is an efficient representation of �-isogeny ϕ : A → B when � is smooth.

If A is the Jacobian of a hyperelliptic curve of genus two and � = 2 then we
can compute (2, 2)-isogeny by formulas in Smith’s Ph.D thesis [30]. Formulas
of (2, 2)-isogenies for the case A is the product of two elliptic curves is given
by Howe, Leprévost, and Poonen [19]. In 2023, more efficient formulas of (2, 2)-
isogenies is proposed by Dartois, Maino, Pope, and Robert [12]. In addition, an
efficient formulas of (3, 3)-isogenies is proposed by Corte-Real Santos, Costello
and Smith [29]. An algorithm to compute (�, �)-isogenies for a general � was given
by [10] and later improved by [23]. The computational cost of this algorithm is
O(�2) operations on a field containing the points in G.

2.3 Quaternion Algebras and the Deuring Correspondence

Quaternion Algebras. A quaternion algebra over Q is a division algebra
defined by Q + Qi + Qj + Qk and i2 = a, j2 = b, ij = −ji = k for a, b ∈ Q

∗. We
denote it by H(a, b). We say H(a, b) is ramified at a place v of Q if H(a, b)⊗QQv

is not isomorphic to the algebra of the 2 × 2 matrices over Qv. There exists a
quaternion algebra ramified exactly at p and ∞. Such an algebra is unique up
to isomorphism. We denote it by Bp,∞.
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Let α = x + yi + zj + tk ∈ H(a, b) with x, y, z, t ∈ Q. The conjugate of α is
x − yi− zj− tk and denoted by ᾱ. The reduced norm of α is αᾱ and denoted by
n(α).

An order O of H(a, b) is a subring of H(a, b) that is also a Z-lattice of rank
4. This means that O = Zα1 + Zα2 + Zα3 + Zα4 for a basis {α1, α2, α3, α4} of
H(a, b). We denote such an order by Z〈α1, α2, α3, α4〉. An order O is said to be
maximal if there is no larger order that contains O.

For a maximal order O, an (integral) left O-ideal I is a Z-lattice of rank
4 satisfying I ⊂ O and O · I ⊂ I. An right O-ideal is similarly defined. For
an ideal I, we denote its conjugate by Ī = {ᾱ | α ∈ I}. We denote by n(I)
the reduced norm of ideal I, defined as (the unique positive generator of) the
Z-module generated by the reduced norms of the elements of I. A left O-ideal I
of integer norm can be written as I = Oα + On(I) for some α ∈ I. We denote
such I by I = O〈α, n(I)〉. The ideal equivalence denoted by I ∼ J means that
there exists β ∈ B∗

p,∞ such that I = Jβ.

Deuring Correspondence. Deuring [16] showed that the endomorphism ring
of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
Bp,∞ and gave a correspondence (the Deuring correspondence) where a super-
singular elliptic E curve over Fp2 corresponding to a maximal order isomorphic
to End(E).

Suppose p ≡ 3 (mod 4). This is the setting we use in our protocol. Then
we can take Bp,∞ = H(−1,−p) and an elliptic curve over Fp2 with j-invariant
1728 is supersingular. Let E0 be the elliptic curve over Fp2 defined by y2 =
x3 + x. Then j(E0) = 1728, so E0 is supersingular. We define endomorphisms
ι : (x, y) �→ (−x,

√−1y) and π : (x, y) �→ (xp, yp) of E0, where
√−1 is a

fixed square root of −1 in Fp2 . The endomorphism ring of E0 is isomorphic to
O0 := Z〈1, i, i+j

2 , 1+k
2 〉. This isomorphism is given by ι �→ i and π �→ j. From

now on, we identify End(E0) with O0 by this isomorphism.
Some isogeny-based protocols, e.g., SQISign [13], need to compute the image

under an element in O0 represented by the coefficients with respect to the basis
(1, i, i+j

2 , 1+k
2 ). Let P ∈ E0(Fp2) and α = x + yi + z i+j

2 + t 1+k
2 for x, y, z, t ∈

Z. Given P and x, y, z, t, one can compute α(P ) in O(log max{|x|, |y|, |z|, |t|})
operations on Fp2 and O(log p) operations on Fp4 . The latter operations on Fp4

is necessary only for the case when the order of P is even. We need to compute
α(P0) and α(Q0) for a fixed basis P0, Q0 of E0[2a] for some integer a in our
protocol. In this case, by precomputing the images of P0 and Q0 under i, i+j

2 ,
and 1+k

2 , we can compute α(P0) and α(Q0) by scalar multiplications by x, y, z, t
and additions.

The Deuring correspondence also gives a correspondence between isogenies
and ideals. Let E1 be a supersingular elliptic curve over Fp2 and let O1 be a
maximal order of Bp,∞ such that O1

∼= End(E1). Let φ : E1 → E2 be an N -
isogeny, then the isogeny φ can be associated to a left O1-ideal Iφ. This ideal
Iφ is also a right O2-ideal for a maximal order O2 satisfying O2

∼= End(E2).
Such an ideal Iφ is called a connecting ideal from O1 to O2. Furthermore, it is
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known that its norm n(Iφ) is equal to the degree N of φ. The order O denoted
by O = O1 ∩O2 is called the Eichler order and O = Z+Iφ holds. Moreover, two
isogenies φ, ψ : E1 → E2 that have the same domain and codomain correspond
to equivalent ideals Iφ ∼ Iψ.

Let Iτ be a connecting ideal of norm d from O0
∼= End(E0) to O1

∼= End(E1)
and let τ : E0 → E1 be the corresponding isogeny. In our protocol, we need
to compute the image under an endomorphism α1 ∈ End(E1) represented as
an element α ∈ O0 ∩ O1. Since α ∈ O0, we can compute the image under the
corresponding endomorphism α0 ∈ End(E0) as described above. Then, if the
order n of P ∈ E1 is coprime to d, we can compute α1(P ) as follows:

α1(P ) =
1
d
τ ◦ α0 ◦ τ̂(P ),

where
1
d

is an inverse of d modulo n.

Algorithms Using Quaternion Algebras. As in the above, we let O0 be the
maximal order of Bp,∞ with basis (1, i, i+j

2 , 1+k
2 ). Here, we introduce some exist-

ing algorithms using quaternion algebras necessary for the construction of our
SQIsign2D-East. These algorithms are used in SQISign (see the official document
[6] for details).
– FullRepresentIntegerO0

(M): Take an integer M > p as input, output α ∈
O0 such that n(α) = M .

– EichlerModConstraint(I, γ, δ): Take a left-O0 ideal I of prime norm N and
γ, δ ∈ O0 as input, output (C0 : D0) ∈ P

1(Z/NZ) such that γ(C0j+ D0k)δ ∈
Z + I.

– StrongApproximationM (N,C0,D0): Take integers M,N,C0 and D0 as
input, output μ ∈ O0 such that n(μ) = M and μ = m(C0j + D0k) + Nμ1,
where m ∈ Z and μ1 ∈ O0.

2.4 Computing Isogenies of Dimension One from Dimension Two

In this subsection, we give an algorithm to compute isogenies of dimension one
by using an isogeny of dimension two, which is an important sub-algorithm for
our protocol. This algorithm comes from recent attacks to SIDH by [5,24,28].
We use the following theorem, which is based on Kani’s criterion [21].

Theorem 1 ([24, Theorem 1]). Let N1, N2, and D be pairwise coprime inte-
gers such that D = N1 + N2, and let E0, E1, E2, and E3 be elliptic curves
connected by the following diagram of isogenies:

E0
ψ2 ��

ψ1

��

E2

ψ′
1

��
E1

ψ′
2

��

f
  ��������
E3,
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where ψ′
2 ◦ ψ1 = ψ′

1 ◦ ψ2, f = ψ2 ◦ ψ̂1, deg(ψ1) = deg(ψ′
1) = N1, and deg(ψ2) =

deg(ψ′
2) = N2. Then, the isogeny

Φ =
(

ψ̂1 −ψ̂2

ψ′
2 ψ′

1

)
: E1 × E2 → E0 × E3 (1)

is a (D,D)-isogeny with respect to the natural product polarizations on E1 × E2

and E0 × E3, and has kernel {([N2]P, f(P )) | P ∈ E1[D]}.

Conversely, a (D,D)-isogeny with kernel {([N2]P, f(P )) | P ∈ E1[D]} is of the
form ι◦Φ with an isomorphism ι from E0 ×E3. To construct algorithms to eval-
uate the isogenies in the matrix in Eq. (1), we need to restrict the possibility of
ι. In particular, we assume that the codomain E3 of ψ′

1 and ψ′
2 is not isomorphic

to E0. This assumption is plausible because there exist about p/12 supersingular
elliptic curves over Fp2 up to isomorphism and ψ′

1 seems to be a random isogeny
unless we intend to have E1

∼= E3. Under this assumption, an isomorphism from

E0 × E3 is represented by
(

ι0 0
0 ι3

)
or

(
0 ι3
ι0 0

)
, where ι0 is an isomorphism from

E0 and ι3 is an isomorphism from E3. Since we assume that E0 and E3 are
normalized, we can determine the codomain of Φ in only two ways: E0 × E3 or
E3 × E0.

Using Theorem 1 and assuming the above assumption, we construct an algo-
rithm to evaluate the isogenies in the matrix in Equation (1) by computing a
(D,D)-isogeny. We denote the algorithm by KaniCod.

Let N1, N2 be integers coprime with each other and D = N1 + N2. Let
E1, E2 supersingular elliptic curves over Fp2 , (P1, Q1) a basis of E1[D], (P2, Q2)
a basis of E2[D], S1 a finite subset of E1, and S2 a finite subset of E2. If
there exist isogenies ψ1 : E0 → E1 and ψ2 : E0 → E2 such that deg ψ1 = N1

deg ψ2 = N2, P2 = ψ2 ◦ ψ̂1(P1), and Q2 = ψ2 ◦ ψ̂1(Q1), then KaniCod with
input (N1, N2, E1, E2, P1, Q1, P2, Q2;S1;S2) returns the curve E0, the image of
S1 under ψ̂1, and the image of S2 under ψ̂2. If such isogenies do not exist then
KaniCod returns ⊥. The procedure for KaniCod is as follows:

1. Compute a (D,D)-isogeny Φ with kernel 〈([N2]P1, P2), ([N2]Q1, Q2)〉.
2. If the codomain of Φ is not the product of elliptic curves then return ⊥.
3. Otherwise let F1 × F2 be the codomain of Φ.
4. Let P ′

1 and Q′
1 be first components of Φ((P1, OE2)) and Φ((Q1, OE2)).

5. Compute the D-Weil pairings eD(P1, Q1) and eD(P ′
1, Q

′
1).

6. If eD(P1, Q1)N1 = eD(P ′
1, Q

′
1) then return F1 and the first components of

Φ((R1, OE2)) and Φ((OE1 , R2)) for R1 ∈ S1 and R2 ∈ S2.
7. If eD(P1, Q1)N2 = eD(P ′

1, Q
′
1) then return F2 and the second components of

Φ((R1, OE2)) and Φ((OE1 , R2)) for R1 ∈ S1 and R2 ∈ S2.
8. Otherwise, return ⊥.

When D is smooth, P1, Q1 ∈ E1(Fp2), S1 ⊂ E1(Fp2), P2, Q2 ∈ E2(Fp2), and
S2 ⊂ E2(Fp2) the computational costs of KaniCod are O((#S1 + #S2) log D)
operations on Fp2 by using the methods stated in Sect. 2.2. Especially, D is a
power of 2 in our case.
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2.5 RandIsogImg

Here, we recall the algorithm RandIsogImg which evaluates the codomain of a
random isogeny of non-smooth degree and some point images under the isogeny.
This algorithm was proposed in the paper of QFESTA [26] and is an important
component of our SQIsign2D-East.

Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x. Let D be a
smooth integer satisfying E0[D] ⊂ E0(Fp2) and D ≈ p, and let d be an integer
coprime to D satisfying D − d ≈ p. RandIsogImg takes integers d,D satisfying
these conditions and a finite subset S of E0 as input, and outputs the codomain
of a random d-isogeny τ and the images of the points in S under τ .

In this algorithm, we first compute an endomorphism α ∈ End(E0) of degree
d · (D−d) using FullRepresentInteger and decompose it into α = ρ̂◦ τ , where
τ and ρ are the isogenies whose domains are E0 and whose degrees are d and
D − d, respectively. (See the following diagram.) Since deg τ + deg ρ = D and
gcd(deg τ,deg ρ) = 1, we can evaluate point images under the isogeny τ by using
KaniCod. We describe the pseudo code of RandIsogImg in Algorithm 1.

Algorithm 1. RandIsogImgO0
(d,D;S)

Input: Relatively prime Integers d, D such that D − d ≈ p and E0[D] ⊂ E0(Fp2) and
a finite subset S ⊂ E0.

Output: (EA, τ(S)) for a random d-isogeny τ : E0 → EA.
1: Let α ← FullRepresentIntegerO0

(d · (D − d)).
2: Take a basis P0, Q0 of E0[D].
3: (EA, τ(S), ∅) ← KaniCod(d, D − d, E0, E0, P0, Q0, α(P0), α(Q0); S; ∅).
4: return (EA, τ(S)).

In addition, we can compute the left O0-ideal Iτ = O0〈α, d〉, which corre-
sponds to the isogeny τ . We denote the algorithm which outputs (EA, τ(S), Iτ )
by RandIsogImgWithIdeal.
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2.6 SQIsignHD

SQIsignHD is a signature scheme proposed in [11] in 2023, which is based on
SQIsign and utilizes an attack on SIDH to achieve a smaller signature length than
SQIsign. There are two types of SQIsignHD, one using 4-dimensional isogenies
and the other using 8-dimensional isogenies for the verification. In this section,
we introduce an overview of SQIsignHD using 4-dimensional isogenies. For more
details, we refer to [11].

First, we show the system parameters of SQIsignHD. Let a, b be integers
satisfying 2a ≈ 3b ≈ 2λ, and let p be a prime satisfying p = 2a3bf − 1 for
a sufficiently small integer f . Let E0 be the elliptic curve over Fp2 defined as
E0 : y2 = x3 + x. Furthermore, we say that an odd integer q is 2a-good if there
exist integers m1,m2 satisfying m2

1 + m2
2 = 2a − q.

SQIsignHD is obtained by applying the Fiat-Shamir transform [18] on the
identification scheme based on the following diagram.

E0 E1

EA E2

τsk

ψ

com

φch

σ
resp

In the following, we describe the overview of SQIsignHD identification protocol,
which is similar to our protocol.

keygen: The prover generates a random 32b-isogeny τ : E0 → EA and publishes
the curve EA as the public key.

commit: The prover generates a random 32b-isogeny ψ : E0 → E1 and sends
E1 to the verifier as the commitment.

challenge: The verifier generates a random 3b-isogeny φ : E1 → E2 and sends
it to the prover.

response: The prover computes the ideal J corresponding to φ ◦ψ ◦ τ̂ and finds
a random equivalent ideal Iσ ∼ J whose norm q is 2a-good. Then, the prover
sends to the verifier an efficient representation of the q-isogeny σ : EA → E2

corresponding to Iσ.

verify: The verifier checks that the response send by the prover correctly rep-
resents a q-isogeny σ : EA → E2.

As an efficient representation of the q-isogeny σ, the prover sends (q, σ|EA[2a]).
Then, the verifier recovers the isogeny σ using Theorem 1. To apply Theorem 1,
the verifier needs to compute a (2a − q)-isogeny from EA. However, this task
is hard since the degree 2a − q is generally non-smooth. The verifier instead
computes the 2-dimensional endomorphism over EA × EA of degree 2a − q as
follows:
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1. Find two integers m1,m2 satisfying m2
1 + m2

2 + q = 2a.
2. Let ω be the 2-dimensional endomorphism of degree m2

1+m2
2 = 2a−q defined

as follows:

ω =
(

m1 −m2

m2 m1

)
.

Let I2 be the 2 × 2 identity matrix. Under the following diagram, the verifier
can recover σ by computing 4-dimensional 2a-isogeny. In this step, the verifier
uses an extension of Theorem 1 to higher dimension by Robert [28].

EA × EA
σI2 ��

ω

��

E2 × E2

ω′

��
EA × EA

σI2

�� E2 × E2.

3 Building Block for SQIsign2D-East

In this section, we give an algorithmic building block for SQIsign2D-East. We
assume that we have a prime p = 2a+bf − 1 with a ≈ b ≈ λ and f ∈ N as
small as possible. We use the same notation q := deg(σ) as in Subsect. 2.6. Note
that the degree q is approximately p1/2. In SQIsignHD, the verifier required a
4-dimensional isogeny computations since the auxiliary path ω of degree 2a − q
is a 2-dimensional isogeny. Our main idea is to generate the auxiliary path ω
as 1-dimensional isogeny of degree 2a − q by using RandIsogImg. However, the
original RandIsogImg can only compute an isogeny from a specific elliptic curve
E0. Since the auxiliary path we need is the isogeny from the public key EA, we
have to construct a generalized RandIsogImg.

3.1 Generalized RandIsogImg

We construct a generalized RandIsogImg so that we can compute an isogeny from
arbitrary curves. Let E be an elliptic curve isogenous to E0 and let O ∼= End(E).
Let τ be an Nτ -isogeny from E0 to E and let Iτ be a left O0-ideal corresponding
to τ . We propose an algorithm to compute an isogeny of non-smooth degree from
E.

In the procedure of RandIsogImgO0
(d,D;S), we use O0 only in step 1, where

we find α ∈ O0 satisfying n(α) = d · (D − d). Therefore, to construct a gener-
alized RandIsogImg, we have to find α ∈ O satisfying n(α) = d · (D − d). This
can be achieved by using EichlerModConstraint and StrongApproximation as
follows:

1. Using EichlerModConstraint(Iτ , 1, 1), obtain (C0 : D0) ∈ P
1(Z/NτZ) such

that C0j + D0k ∈ Z + Iτ = O0 ∩ O.
2. Using StrongApproximationd(D−d)(Nτ , C0,D0), we can find α ∈ O0 ∩ O

satisfying n(α) = d(D − d).
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The above approach is also used in the key generation and signing algorithm
of SQIsign [15]. Since we use StrongApproximation, the degree Nτ of τ must
be prime and d(D − d) > pN3

τ must hold. If we assume that D − d ≈ p as with
the original RandIsogImg, the requirement on the degree d will be d > N3

τ . In
addition, if we fix D around p, the condition D − d ≈ p holds for almost all d
satisfying d < D.

In the following, we show there is an additional hidden constraint on d. First,
StrongApproximationd(D−d)(Nτ , C0,D0) outputs μ ∈ O0 such that

n(μ) = d(D − d) and μ = m(C0j + D0k) + Nτμ1,

where m ∈ Z and μ1 ∈ O0. Therefore, the following equation holds:

d(D − d) = n(μ) ≡ m2p(C2
0 + D2

0) mod Nτ .

For such an integer m to exist, the following condition must be satisfied:
(

d(D − d)
Nτ

)
=

(
p(C2

0 + D2
0)

Nτ

)
,

where
( ·

·
)

is the quadratic residue symbol. On the other hand, from the definition
of EichlerModConstraint, there exists an integer m′ satisfying

m′ + C0j + D0k ∈ Iτ .

Hence, we have

n(m′ + C0j + D0k) = (m′)2 + p(C2
0 + D2

0) ≡ 0 mod Nτ ,

which means that (
p(C2

0 + D2
0)

Nτ

)
=

(−1
Nτ

)
.

Summarizing the above discussion, d must satisfy(
d(D − d)

Nτ

)
=

(−1
Nτ

)
. (2)

However, if we use the degree d satisfying this condition in our protocol, we face
a security issue. We explain this issue in Sect. 4.3. To avoid this security issue,
we instead require that 3 | d(D − d) and that 3 is not a square modulo Nτ , i.e.,
we require Nτ ≡ 5, 7 mod 12. Then, our two new conditions together allow us to
modify as follows:

– if d satisfies condition (2), then we call StrongApproximation with target
norm M = d(D − d);

– otherwise, we call StrongApproximation with target norm d(D − d)/3 to
obtain an endomorphism α′. In this case we have that d(D − d)/3 satisfies

(
d(D − d)/3

Nτ

)
=

(−1
Nτ

)
.
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After that, we compute a random degree 3 isogeny α′′ : E → E′′ using Vélu’s
formulas and we compose it with α′ to finally obtain an isogeny α of degree
d(D − d) from E to E′′.

From the above argument, a generalized RandIsogImg for E is as shown in
Algorithm 2.

Algorithm 2. GenRandIsogImgτ,Iτ
(d,D;S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ ,
relatively prime integers d, D such that 3 | d(D − d), N3 < d < D ≈ p, and
E[D] ⊆ E(Fp2), and a finite set S ⊆ E,

Output: (F ; ι(S)) for a random d-isogeny ι : E → F .
1: (C0 : D0) ← EichlerModConstraint(Iτ , 1, 1)
2: Let P, Q be a basis of E[D].

3: if d satisfies
(d(D−d)

Nτ

)
=

(−1
Nτ

)
then

4: α ← StrongApproximationd(D−d)(Nτ , C0, D0)
5: (F ; ι(S); ∅) ← KaniCod(d, D − d, E, E, P, Q, α(P ), α(Q); S; ∅)
6: else
7: α′ ← StrongApproximationd(D−d)/3(Nτ , C0, D0)

8: α′′ ← random 3-isogeny E → E′′, computed using Vlu’s formulas.
9: α ← α′′ ◦ α′

10: (F ; ι(S); ∅) ← KaniCod(d, D − d, E, E′′, P, Q, α(P ), α(Q); S; ∅)
11: end if
12: return (F ; ι(S))

3.2 Computing Auxiliary Path

Unfortunately, the requirement d > N3
τ is too strong to compute an auxiliary

path of degree r = 2a − q ≈ p1/2. To allow the use of smaller degree, we take the
following approach:

1. Let D1 be a smooth integer such that r(D1 − r) > N3
τ and r(D1 − r) < D.

2. Compute a r(D1 − r)-isogeny using GenRandIsogImg.
3. By computing a (D1,D1)-isogeny, obtain a r-isogeny.

Then, the lower bound of r decreases from N3
τ to approximately N3

τ /D1.

Remark 1. Strictly speaking, the lower bound of r is B=D1/2−√
(D1/2)2 − N3

τ

= (D1/2) ·(1−
√

1 − 4N3
τ /D2

1). Especially when D2
1 � N3

τ , we have B ≈ N3
τ /D1,

where we used
√

1 − ε ≈ 1 − ε/2 for ε � 1.
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Algorithm to compute an auxiliary path is given in Algorithm 3. Especially
in our protocol, we use D1 = 2a ≈ p1/2 and D = 2a+b ≈ p. Since the degree
r = 2a − q of the auxiliary path we need is around p1/2, we have r(D1 − r) ≈ p
for almost all r < D1. Hence, the condition r(D1 − r) > N3

τ is satisfied when
Nτ < p1/3.

Algorithm 3. AuxiliaryPathτ,Iτ
(r,D1,D;S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ , integers
r, D1, D such that gcd(r, D1D) = 1, N3

τ < r(D1 − r) < D ≈ p, 3 | d(D − d) for
d = r(D1 − r), and E[D] ⊂ E(Fp2), and a finite set S ⊂ E.

Output: (F ; ω(S)) for a random r-isogeny ω : E → F .
1: Let P, Q be a basis of E[D1].
2: (F ′; ι(P ), ι(Q)) ← GenRandIsogImgτ,Iτ

(r(D1 − r), D; P, Q).
3: (F ; ω(S); ∅) ← KaniCod(r, D1 − r, E, F ′, P, Q, ι(P ), ι(Q); S; ∅).
4: return (F ; ω(S)).

In the following, let M(q) := q(2a − q)(2a+b − q(2a − q)). From the above
argument, the requirements on the degree q are as follows:

q is odd integer smaller than 2a,

q(2a − q) < 2a+b,

3 | M(q).

Definition 1. We say that a positive integer q is ‘(2a, 2b)-nice’ if q is an odd
integer smaller than 2a and satisfying q(2a − q) < 2a+b. In addtion, we say that
a positive integer q is ‘(2a, 2b)3-nice’ if q is (2a, 2b)-nice and satisfies 3 | M(q).

Remark 2. The odd integer q < 2a is always (2a, 2b)-nice when a − b ≤ 2 from
the following inequality:

q · (2a − q) = 22a−2 − (2a−1 − q)2 < 22a−2 ≤ 2a+b.

Remark 3. From the following facts, the probability that 3 | M(q) is 2/3 or 1.

– if a ≡ b mod 2 then 3 | M(q),
– if a ≡ 0 mod 2 and b ≡ 1 mod 2 then 3 � M(q) if and only if q ≡ 2 mod 3,
– if a ≡ 1 mod 2 and b ≡ 0 mod 2 then 3 � M(q) if and only if q ≡ 1 mod 3.

4 New Signature Scheme: SQIsign2D-East

In this section, we describe our new signature scheme SQIsign2D-East. First,
we describe the detailed algorithm for SQIsign2D-East and then we propose its
variant named ‘CompactSQIsign2D-East’, which has smaller signature size than
the original SQIsign2D-East.
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4.1 Description of SQIsign2D-East

We first describe the identification protocol underlying SQIsign2D-East.
SQIsign-2D-East identification protocol is based on the following diagram.

E0 E1

EA E2

E3

τsk

ψ

com

φch

σ
resp

ωresp

We show the algorithms for the SQIsign2D-East identification scheme below.

Parameter Setting. The public parameter of SQIsign2D-East is taken as fol-
lows:

1. Let p be a prime of the form p = 2a+bf − 1, where f is a small integer and
a ≈ b ≈ λ.

2. Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x.
3. Let P0, Q0 be a basis of E0[2a+b].
4. Let O0 = Z〈1, i, i+j

2 , 1+k
2 〉, which is isomorphic to End(E0).

5. Let param = (p, a, b, E0, P0, Q0,O0).

Key Generation. As we stated in Subsect. 3.2, we have to take the degree Nτ

of the secret isogeny τ smaller than p1/3. Fortunately, we can take Nτ as small
as approximately p1/4 while achieving λ-bits security as follows:

1. Take a random prime Nτ < p1/4 such that
(

3
Nτ

)
= −1.

2. Compute a random Nτ -isogeny τ : E0 → E.

The method to use a random degree smaller than p1/4 is also used in the key
generation of SQIsign [13].

Since Nτ is a large prime, we cannot compute τ efficiently from
ker τ using Vélu’s formulas. Instead, we compute an efficient representation
(Nτ , τ(P0), τ(Q0)) of τ using RandIsogImg. By using (Nτ , τ(P0), τ(Q0)), we can
efficiently compute τ(T0) for any T0 ∈ E0[2a+b] as follows:

1. Find s, t ∈ Z/2a+b
Z such that T0 = sP0 + tQ0.

2. Return τ(T0) = sτ(P0) + tτ(Q0).
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Now we show the key generation algorithm in Algorithm 4.

Algorithm 4. keygen(param) → (pk, sk)
Input: Public parameter param = (p, a, b, E0, P0, Q0, O0).
Output: Public key pk and secret key sk.
1: Take a random prime Nτ < p1/4.
2: (EA, RA, SA, Iτ ) ← RandIsogImgWithIdealO0

(Nτ , 2a+b; P0, Q0).
3: return pk = EA, sk = (τ = (Nτ , RA, SA), Iτ ).

Commitment. The commitment phase is similar to the key-generation. How-
ever, the commitment degree Nψ need not to be prime smaller than p1/4 unlike
Nτ . Hence, we just chose a raodom odd integer Nψ smaller than 2a+b.

As with the key generation, we compute (Nψ, ψ(P0), ψ(Q0)) as an efficient
representation of ψ using RandIsogImg. As described above, we can efficiently
evaluate ψ over the 2a+b-torsion subgroup using this representation. In addition,
we can compute ψ̂(T1) for any T1 ∈ E1[2a+b], where E1 is the codomain of ψ as
follows:

1. Find s, t ∈ Z/2a+b
Z such that T1 = sψ(P0) + tψ(Q0).

2. Return ψ̂(TA) = sNψP0 + tNψQ0.

Now, we show the commitment algorithm in Algorithm 5.

Algorithm 5. commit(param) → (com, s)
Input: Public parameter param.
Output: Commitment com and secret information s.
1: Take a random odd integer Nψ < 2a+b.
2: (E1, R1, S1, Iψ) ← RandIsogImgWithIdealO0

(Nψ, 2a+b; P0, Q0).
3: return com = E1, s = (ψ = (Nψ, R1, S1), Iψ).

Challenge. We just compute a random 2b-isogeny from E1 using Vélu’s formu-
las. We show the challenge algorithm in Algorithm 6.

Response. In the response phase, we first compute the ideal Iφ. This can be
done by using IsogToIdeal algorithm [11, Algorithm 10], which takes two iso-
genies ψ : E0 → E1 and φ : E1 → E2 and the ideal Iψ corresponding to ψ as
input and return the ideal Iφ corresponding to φ. Then, we compute the ideal J
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corresponding to φ ◦ ψ ◦ τ̂ . Next, we find all α ∈ J such that q := n(α)/n(J) is
(2a, 2b)3-nice by lattice enumeration (e.g., see [8, Algorithm 2.7.5]) and choose
one of them uniformly. Then, we let Iσ = J ᾱ

n(J) and compute an efficient repre-
sentation of the q-isogeny σ : EA → E2 corresponding to Iσ. Finally, we generate
an auxiliary path ω : EA → E3 and return an efficient representation of σ ◦ ω̂.

Algorithm 6. challenge(pk,param) → ch

Input: Public key pk and public parameter param.
Output: Challenge ch.
1: Take a random integer u ∈U Z/2b

Z and a bit bin ∈U {0, 1}.
2: Let P ′

1, Q
′
1 be the canonical basis of E1[2

b].
3: If bin = 0, K′

1 ← P ′
1 + uQ′

1, otherwise, K′
1 ← uP ′

1 + Q′
1.

4: return ch = K′
1, a generator of the kernel of φ : E1 → E2.

If there is no ideal Iσ whose norm q is (2a, 2b)3-nice, we need to go back to the
commitment phase. In the following, we discuss how to avoid this. From now on,
we assume that a − b ≤ 2, which means that at least 2/3 of odd integers smaller
than 2a are (2a, 2b)3-nice (see Remark 2 and Remark 3). To avoid the failure
in finding Iσ, we consider using q′ = q/ gcd(q, f) instead of q. This reduces the
constraint of q from q < 2a to q′ < 2a ⇔ q < gcd(q, f) · 2a.

Definition 2. We say that a positive integer q is ‘(2a, 2b, f)-nice’ when q′ =
q/ gcd(q, f) is (2a, 2b)-nice. Similarly, we say that q is ‘(2a, 2b, f)3-nice’ when
q′ = q/ gcd(q, f) is (2a, 2b)3-nice.

Let σ be a q-isogeny computed in the response phase. Assume that q is
(2a, 2b, f)3-nice and let g = gcd(q, f), q′ = q/g, and r = 2a − q′. We formally
decompose the q-isogeny σ to a g-isogeny σg : EA → E′

A and a q′-isogeny
σ′ : E′

A → E2 and take the following procedures:

1. Compute kerσg by evaluating σ over EA[g].
2. Compute σg : EA → Em by using Vélu’s formulas.
3. Obtain an r-isogeny ω : EA → E3 by using AuxiliaryPath.
4. Let σ′

g = [ω]∗σg and compute kerσ′
g = ω(ker σg).

5. Compute σ′
g : E3 → E4 by using Vélu’s formulas.

6. Evaluate σ′ and ω′ over Em[2a] by using the relationships: σ′ ◦ σg = σ and
ω′ ◦ σg = σ′

g ◦ ω.
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E0

τ

��

ψ
�� E1

φ

��
EA

ω

��

σg ��

σ

��
Em

ω′

��

σ′
�� E2

E3

σ′
g �� E4,

Note that there is a concern that deg σg = g is not coprime to deg ω = r. This
means that the degree of ω′ may not be equal to r but reduces to r̃ = r/h for a
factor h of gcd(g, r). In this case, we additionally compute a random h-isogeny ι
from E4 and use ι ◦ ω′ as an auxiliary path. For simplicity, we consider the case
h = 1 in the following.

The response algorithm is given in Algorithm 7. To compute R′
2, S

′
2 in step

5, we use the following equation:

σ ◦ [2b] =
1

NτNψ
φ ◦ ψ ◦ τ̂ ◦ α̂,

which is obtained by applying the Deuring correspondence on the equation Iσ =
ĪτIψIφ · ᾱ

Nτ Nψ2b . Then, we can compute R′
2 as follow:

R′
2 =

1
NψNτ

φ ◦ τ ◦ ψ̂ ◦ α̂(PA) = σ(2bPA) = σ(P ′
A).

We can compute S′
2 similarly.

In step 6, we compute R′
3 = ω(P ′

A) and S′
3 = ω(Q′

A) for an r-isogeny ω :
EA → E3. Since K ′

g = 2a(R′
3 + �S′

3) = ω(Kg) holds, we have σ′
g = [ω]∗σg.

Therefore, the following equation holds:

R′
4 = σ′

g(gR′
3) = σ′

g ◦ ω(gP ′
A) = ω′ ◦ σg(gP ′

A) = ω′(R′
m),

where ω′ = [σg]∗ω. Similarly, S′
4 = ω′(S′

m) also holds.
From the equation (P ′

4, Q
′
4) = (R′

4, S
′
4)M = (ω′(R′

m), ω′(S′
m))M in step 11,

the following equation holds:

(ω̂′(P ′
4), ω̂′(Q′

4)) = r(R′
m, S′

m)M = −q(R′
m, S′

m)M,



SQIsign2D-East 289

Algorithm 7. response(sk, s, ch,param) → resp

Input: Secret key sk, secret information s, challenge ch, and public parameter param.
Output: Response resp.
1: Let Iφ ← IsogToIdeal(φ, ψ, Iψ).
2: Let J = ĪτIψIφ.
3: Find all α ∈ J such that q := n(α)/n(J) is (2a, 2b, f)3-nice by lattice enumeration

and choose one of them uniformly.
4: Let Iσ = J ᾱ

n(J)
.

5: Let q = n(Iσ), g = gcd(q, f), q′ = q/g and r = 2a − q′.
6: Let PA, QA be the canonical basis of EA[2a+bg] and let (P ′

A, Q′
A) = 2b(PA, QA).

7: Compute R′
2 = σ(P ′

A) and S′
A = σ(Q′

A).
8: Let (E3, R

′
3, S

′
3) ← AuxiliaryPathIτ

(r, 2a, 2a+b; P ′
A, Q′

A).
9: Find an integer 	 such that 2a(R′

2 + 	S′
2) = O (or 2a(	R′

2 + S′
2) = O) and let

Kg = 2a(P ′
A + 	Q′

A) (or Kg = 2a(	P ′
A + Q′

A)).
10: Compute σg : EA → Em = EA/〈Kg〉, R′

m = σg(gP ′
A), S′

m = σg(gQ′
A).

11: Let K′
g = 2a(R′

3 + 	S′
3) (or Kg = 2a(	P ′

A + Q′
A)).

12: Compute σ′
g : E3 → E4 = EA/〈K′

g〉, R′
4 = σ′

g(gR′
3), S

′
4 = σ′

g(gS′
3).

13: Let P ′
4, Q

′
4 be the canonical basis of E4[2

a] and compute the change of basis matrix
M such that (P ′

4, Q
′
4) = (R′

4, S
′
4)M .

14: Compute (U2, V2) = −g(R′
2, S

′
2)M .

15: return resp = (Kg, E4, U2, V2).

where we used r = 2a−q′ ≡ −q′ mod 2a. By taking the image under the isogeny
σ′ of both sides, we obtain

(σ′ ◦ ω̂′(P ′
4), σ

′ ◦ ω̂′(Q′
4)) = −q(σ′(R′

m), σ′(S′
m))M

= −q(σ′ ◦ σg(gP ′
A), σ′ ◦ σg(gQ′

A))M
= −qg(σ(P ′

A), σ(Q′
A))M

= −qg(R′
2, S

′
2)M = q(U2, V2).

Therefore, we obtain the following equation:

(U2, V2) =
(

1
q
σ′ ◦ ω̂′(P ′

4),
1
q
σ′ ◦ ω̂′(Q′

4)
)

. (3)

Verify. We show the verification algorithm in Algorithm 8. We prove that
SQIsign2D-East identification protocol is complete. Assume here that the prover
computes the response honestly. From Eq. 3, the subgroup K of EA ×F satisfies
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Algorithm 8. verify(pk, com, ch, resp,param) → accept/reject
Input: Public key pk, commitment com, challenge ch, response resp, and public

parameter param.
Output: accept or reject.
1: Compute σg : EA → Em = EA/〈Kg〉.
2: Let P ′

4, Q
′
4 be the canonical basis of E3[2

a].
3: Compute a (2a, 2a)-isogeny Φ : E4 ×E2 → A with kernel K = 〈(P ′

3, U2), (Q
′
3, V2)〉.

4: if A ∼= Em × F for an elliptic curve F then
5: return accept.
6: else
7: return reject.
8: end if

the following equation:

K = 〈(P ′
4, U2), (Q′

4, V2)〉

=
〈(

P ′
4,

1
q
σ′ ◦ ω̂′(P ′

4)
)

,

(
Q′

4,
1
q
σ′ ◦ ω̂′(Q′

4)
)〉

= 〈(qP ′
4, σ

′ ◦ ω̂′(P ′
4)), (qQ

′
4, σ

′ ◦ ω̂′(Q34))〉.
Let σ′′ = [ω′]∗σ′, ω′′ = [σ′]∗ω′, and F be the codomain of σ′′ and ω′′. From
Theorem 1, a (2a, 2a)-isogeny Φ with kernel K has the following form:

Φ =
(

ω̂′ −σ̂′
σ′′ ω′′

)
: E4 × E2 → Em × F

up to isomorphism. Therefore, the verifier accepts the honest response.

4.2 Reducing Signature Size

Applying the Fiat-Shamir transform, the signature of our protocol is made of
the data (E1,Kg, E4, U2, V2), where E1 is the commitment elliptic curve, E4 is
the codomain of the auxiliary path, Kg ∈ EA[g], and U2, V2 ∈ E2[2a]. E1 and
E4 can be determined by their j-invariant j(E1), j(E4) ∈ Fp2 . Therefore, storing
E1 and E4 takes 2 log2 p2 ≈ 8λ bits. The points U2 and V2 can be compressed
as in SIKE. Using this compression, U2 and V2 requires 3a ≈ 3λ bits. Similarly,
the point Kg can be compressed and it requires about log2 gλ bits. Totally, the
signature size is 11λ bits.

Actually, we can reduce the signature size by about 2λ bits by using the same
method as SQIsign: include the information about φ̂ instead of the commitment
E1 in the signature. We name this variant ’CompactSQIsign2D-East’. To apply
this method, we compute ω′′ = [σ′]∗ω′ using KaniCod. Now we explain how
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CompactSQIsign2D-East works. Let H : {0, 1}∗ × Fp2 → Z/2b
Z × {0, 1} be a

cryptographic hash function and let GenKer be an algorithm defined as follows:

GenKer(m,E1) → K ′
1:

1. h,bin ← H(m, j(E1)).
2. Let P ′

1, Q
′
1 be the canonical basis of E1[2b].

3. If bin = 0, return K ′
1 = hP ′

1 + Q′
1.

4. Otherwise, return K ′
1 = P ′

1 + hQ′
1.

In the following, we regard Fp2 as a totally ordered set under an appropriate order
relation. We show the explicit algorithms for CompactSQIsign2D-East in Algo-
rithm 9 and 10. Note that the key generation algorithm for CompactSQIsign2D-
East is same as Algorithm 4.

Algorithm 9. CompactSign(pk, sk,m,param) → sig

Input: The public key pk, the secret key sk, the message m, and the public parameter
param.

Output: The signature sig.
1: (E1, Nψ, R1, S1, Iψ) ←, (param).
2: Let K1 ← GenKer(m, E1) and φ : E1 → E2.
3: Let K2 be a generator of ker φ̂.
4: Find a 2b-torsion point P ′

2 linearly independent with K2 deterministically.
5: Find t ∈ Z/2b

Z satisfying K1 = tφ̂(P ′
2).

6: Compute P ′
4, Q

′
4, R′

m, S′
m, and resp = (Kg, E4, U2, V2) using Algorithm 7.

7: (F ; ∅; U, V ) ← KaniCod(q′, r, E4, E2, P
′
4, Q

′
4, qU2, qV2; ∅; R′

m, S′
m).

8: Let M and MF be the Montgomery coefficient of Em and F , respectively.
9: if M ≤ MF then

10: bin ← 0.
11: else
12: bin ← 1.
13: end if
14: return sig = (Kg, F, U, V, K2, t, bin).

Since the point K2 ∈ E2[2b] can be represented by a single Z/2b
Z element,

the size of (K2, t) is about 2b bits. Therefore, the total signature size is about
log2 p2 + 3a + 2b ≈ 9λ bits.

4.3 Security Issue

We discuss the security issue when we use only (2a, 2b)-nice degrees q satisfying
Eq. (2) for d = q(2a − q) and D = 2a+b.

As a first step, we observe that an adversary can evaluate σ at any input;
the degree q can be then recovered using a pairing computation combined with
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Algorithm 10. CompactVerify(pk,m, sig,param) → accept/reject
Input: The public key pk, the message m, the signature sig, and the public parameter

param.
Output: accept or reject.
1: Let PA, QA be the canonical basis of EA[2a+bg].
2: Compute σg : EA → Em = EA/〈Kg〉, R′

m = σg(2bgPA), S′
m = σg(2bgQA).

3: Compute a (2a, 2a)-isogeny Φ : Em × f → A with kernel 〈(R′
m, U), (S′

m, V )〉.
4: if not A ∼= F0 × F1 for elliptic curves F0 and F1 then
5: return reject.
6: end if
7: Let M0 and M1 be the Montgomery coefficient of F0 and F1, respectively.
8: if M0 > M1 then
9: F0, F1 ← F1, F0.

10: end if
11: E2 ← Fbin2 .
12: Find a 2b-torsion point P ′

2 linearly independent with K2 deterministically.
13: Compute a 2a-isogeny φ̂ : E2 → E1 = E2/〈K2〉 and L1 = φ̂(P ′

2).
14: Let K1 ← GenKer(m, E1).
15: if K1 = tL′

1 then
16: return accept.
17: else
18: return reject.
19: end if

an easy discrete log computation. Therefore it can be assumed that q is known. It
is important to note that q varies with every signature and is essentially random
subject to the above condition. Hence for each signature the adversary learns
that M(q) has the same quadratic residuosity as −1 mod Nτ . From Dirichlet’s
theorem on arithmetic progressions it follows that, as soon as M(q) is not an
exact square, the density of primes Nτ satisfying (2) is 50%. Thus, heuristically,
we expect that Nτ is uniquely determined by about λ/2 values of q. This means
that after seeing roughly λ/2 signatures we should be able to find Nτ by simply
brute-forcing over all primes in (0, p1/4) and testing whether (2) holds for each of
the corresponding values of q. Ignoring polynomial overhead, this step therefore
has a complexity of O(2λ/2).

Given the norm Nτ of the secret ideal Iτ , we can recover Iτ by enumerating
all left O0-ideals of norm Nτ and check whether the corresponding isogenies have
codomain isomorphic to EA. There will be O(2λ/2) such ideals and they can be
enumerated using the bijection from [22, Lemma 7.2]. Therefore, the cost of this
step is Õ(2λ/2).
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4.4 On Sampling a Response Ideal

Lemma 1. Let f ∈ Z>0. As x → ∞, the proportion of integers q ∈ (x, fx)
satisfying q < gcd(q, f)x converges to

P (f) − f

f(f − 1)
,

where P (f) denotes the gcd-sum function (also known as Pillai’s arithmetical
function):

P (f) =
f−1∑
k=0

gcd(k, f) =
∑
d|f

dϕ(f/d).

Proof. For any k = 0, . . . , f − 1, the number of integers q ∈ (x, fx) such that

q mod f = k and q < gcd(q, f)x

is asymptotic to
1
f

· gcd(k, f) − 1
f − 1

,

so the lemma follows by summing over all congruence classes mod f .

For a detailed study of the gcd-sum function, we refer to [31]. It is a mul-
tiplicative function which at prime powers f = �e takes the values P (�e) =
(e + 1)�e − e�e−1. On “average”, it can be shown that

P (f) ≈ 3f log f

π2
,

although its concrete values fluctuate largely with f .

Heuristic. Let J be a left ideal of OA and assume that 0 ≤ a − b ≤ 2. If

δπ22a−bP (f) > f

where

δ =
{

1 if a ≡ b mod 2,
2/3 if not

(see Remark 3), then on average we expect there to exist at least one left ideal
Iσ ∼ J such that q := n(Iσ) is odd, M(q) is divisible by 3, q < gcd(q, f)2a and
q(2a − q) < 2a+b. More quantitatively, the probability that no such ideal exists
can be estimated as (

1 − δ
P (f)
2f2

)2π2f2a−b

.

(
1 − δ

P (f) − f

3f(f − 1)

)2π2f2a−b

.
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Explanation. First note that the assumption 0 ≤ a−b ≤ 2 implies that q(2a−q) <
2a+b as soon as q is odd, so the last condition is of no concern. The Gaussian
heuristic says that in any sufficiently general lattice Λ ⊂ R

4, we expect

#{α ∈ Λ | ‖α‖ < R } ≈
π2

2 R4

Vol(Λ)
,

where the numerator on the right is just the volume of a ball in R
4 with radius

R. Applying this heuristic to Λ = J , which has Euclidean covolume n(J)2p/4,
and to R =

√
f2an(J), we find an expected number of

2π2f222a

p
≈ 2π2f2a−b

elements α ∈ J whose quaternion norm is smaller than f2an(J). Assuming
OR(J)× = {±1}, from [14, Lemma 1] it follows that there should be about
π2f2a−b left ideals Iσ ⊂ OA satisfying Iσ ∼ J and n(Iσ) < f2a.

If we furthermore assume that the norms of these Iσ’s behave as independent
uniform variables in (0, f2a) ∩ Z, then we expect a proportion of 1/2 to be odd,
a proportion of δ to satisfy 3 | M(q), and a proportion of P (f)/f2 to meet the
bound q < gcd(q, f)2a, leading to

δ
π22a−bP (f)

f

ideals whose norm q is of the desired type.

Remark 4. The count is slightly off in case f is even, because the condition
q < gcd(q, f)2a is not independent of the condition that q is odd. A similar
remark applies in case δ = 2/3 and 3 | f . For simplicity, we ignore this issue
here, although it is taken into account in the failure rates listed in Table 1.

A similar reasoning shows the failure rate of the signing procedure (i.e., the
probability of having to go back to the commitment phase): this is

(
1 − δ

P (f)
2f2

)2π2f2a−b

. (4)

For the concrete parameter sets shown in Sect. 6.1, this gives (Fig. 1):

5 Security Analysis

We now discuss the security of our SQIsign2D-East.
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Fig. 1. Heuristical rates of failure to find an equivalent ideal of the desired norm type.
For NIST level 3 this is formula (4). For the other NIST levels the formula was tweaked
so as to take into account Remark 4.

5.1 On the Distribution of Auxiliary Paths

Let τ : E0 → EA be an Nτ -isogeny and Iτ be the left O0-ideal corresponding to
τ . Given the right order OA of Iτ , we use SIτ ,M to denote the distribution on

OM := {α ∈ O0 ∩ OA | n(α) = M}

that are outputs of the algorithm consisting of first getting (C0 : D0) ∈
P
1(Z/NτZ) by running EichlerModConstraint(Iτ , 1, 1), then getting α ∈ O0 ∩

OA with norm M by running StrongApproximationM (Nτ , C0,D0).
For a fixed q, we define

Iso(EA, q) := {ϕ : EA → � such that deg ϕ = 2a − q},

and we consider the following distributions on Iso(EA, q):

DU : The uniform distribution UIso(EA,q).
D1: For q such that d = q(2a − q) satisfies Eq. (2): a factor of θα of degree 2a − q

where α ∼ SIτ ,M(q) and θα ∈ End(EA) is the corresponding endomorphism.
D2: For q such that d = q(2a − q) does not satisfy Eq. (2): a factor of θα ◦ θ′′

of degree 2a − q where α ∼ SIτ ,M(q)/3, θα ∈ End(EA) is the corresponding
endomorphism and θ′′ is a random isogeny of degree 3 with domain EA.

DAP : DAP = D1 if d = q(2a − q) satisfies Eq. (2), and DAP = D2 otherwise.
Note that this is the same distribution as the outputs of Algorithm 3 with
d = q,D1 = 2a and D = 2a+b.

Finally, we define a distribution Q on Z, which is the distribution of reduced
norm of the response ideals Iσ.

Problem 1. Let a be a fixed integer as in the parameter choices and EA be the
public curve. Let S = {ω : EA → � of degree 2a − q} be a set of size M > log Nτ

where either

1. S is sampled by first sampling q ∼ Q, then sampling ω from DU ;
2. S is sampled by first sampling q ∼ Q, then sampling ω from DAP .

The problem is, given EA, a, S, to distinguish between the two cases with a
polynomial number of queries to Q, FIDIO and to DAP .
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Remark 5. It seems that the most natural way to distinguish the two cases in
Problem 1 is to reverse engineer the algorithm that underlies the distribution
DAP . That means, given an isogeny EA → F of degree 2a − q, one tries to
complete the diagrams in Figs. 2 and 3. In the first case, it means to come up
with an isogeny from F to EA of degree q(2a+b −q(2a −q)). This gives rise to an
endomorphism on EA, then one recovers the quaternion element corresponding
to this endomorphism and check whether the quaternion element is sampled
from SIτ ,M(q). The second case is similar, except that one finds an isogeny from
F to some curve E′′ that is away from EA by a degree 3 isogeny. This process,
requires at least the knowledge of both the endomorphism rings of EA and F .
Therefore, it seems reasonable to assume that an algorithm to solve Problem 1
requires at least O(2λ) time complexity.

Fig. 2. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (2) holds for d = q(2a − q) and D = 2a+b.

Fig. 3. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (2) does not hold.

5.2 Soundness of SQIsign2D-East

The proof of soundness of our protocol is quite similar to that of SQIsignHD.
Let (E1, φ,Kg, E4, U2, V2) and (E1, φ

′,K ′
g, E

′
4, U

′
2, V

′
2) are two SQIsign2D-East

transcripts with the same commitment E1 but different challenges φ �= φ′. From
(Kg, E4, U2, V2) and (K ′

g, E
′
4, U

′
2, V

′
2), we can compute efficient representations

of σ : EA → E2 and σ′ : EA → E′
2, where E2 and E′

2 are codomains of φ and φ′,
respectively.

Therefore, we obtain an efficient representation of α = σ̂′ ◦ φ′ ◦ φ̂ ◦ σ ∈
End(EA). Finally, the proof that α is non-scalar is exactly same as SQIsignHD
since it depends only on the fact that q = deg(σ) and q′ = deg(σ′) are coprime
to deg(φ) = deg(φ′).
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5.3 Zero-Knowledge of SQIsign2D-East

We now conclude this section with a proof of the zero-knowledge property of our
SQIsign2D-East.

Definition 3. Given parameters f and a, a random uniform nice degree isogeny
oracle (Rundio) is an oracle taking as input a supersingular elliptic curve E
defined over Fp2 and returning an efficient representation of a random isogeny
σ : E → E′ of (2a, 2b, f)3-nice degree prime such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) The conditional distribution of σ given E′ is uniform among isogenies E →

E′ of (2a, 2b, f)3-nice degree.

The existence of RUNDIO is based on the Heuristic assumption Sect. 4.4
applied to our choices of parameter sets.

Definition 4. A fixed degree isogeny oracle (Fidio) is an oracle taking as input
a supersingular elliptic curve E defined over Fp2 and an integer N , and outputs a
uniformly random isogeny ϕ : E → E′ (in efficient representation) with domain
E and degree N .

Theorem 2. Assuming that the commitment curve E1 is both computationally
indistinguishable from an elliptic curve chosen uniformly at random in the super-
singular isogeny graph, and the hardness of Problem 1. Then the SQIsign2D-East
identification protocol is computationally honest-verifier zero-knowledge in the
RUNDIO and FIDIO model.

In other words, there exists a polynomial time simulator S with access to a
RUNDIO and a FIDIO that produces random transcripts which are computa-
tionally indistinguishable from honest transcripts.

Proof. A transcript of SQIsign2D-East consists of (E1, φ,Kg, E4, U2, V2), where
E1 is a commitment, φ is a challenge, (Kg, E4, U2, V2) can be uniquely computed
from a q-isogeny σ and a (2a − q)-isogeny ω. (See Algorithm 7 for detail.) The
simulator proceeds as follows:

1. Call the RUNDIO on input EA to get an isogeny σ′ : EA → E′
2 of (2a, 2b, f)3-

nice degree q.
2. Generate an isogeny φ̂′ : E′

2 → E′
1 of degree 2b uniformly at random.

3. Call the FIDIO on input (EA, 2a − q), resulting in the isogeny ω′ : EA → E′
3.

4. Compute (K ′
g, E

′
4, U

′
2, V

′
2) from (σ′, ω′).

Then the procedure above gives rise to a simulated transcript as (E′
1, φ

′,K ′
g, E

′
4,

U ′
2, V

′
2).

Let (E1, φ,Kg, E4, U2, V2) be a real transcript where (Kg, E4, U2, V2) is com-
puted from the response isogeny σ : EA → E2 of degree q and the auxiliary path
ω : EA → E3 of degree 2a − q. From the properties of the RUNDIO and FIDIO
and the assumptions we made in the theorem, we can see that:
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1. By the definition of the RUNDIO, E′
2 is uniformly random in the super-

singular isogeny graph. Since φ̂′ is a uniformly random isogeny from E′
2 of

degree 2b, its codomain curve E′
1 is also uniformly random in the graph. By

assumption, E1 and E′
1 are computationally indistinguishable.

2. φ and φ′ follow the same distribution as they are generated the same way.
3. Conditional to E′

2, σ′ is uniformly random among isogenies between EA and
E′

2 of (2a, 2b)3-nice degree by the definition of RUNDIO. Conditional to E2,
σ has the same distribution by construction.

4. Assuming the hardness of Problem 1, conditional to q, ω is computationally
indistinguishable from a random isogeny of degree 2a − q from EA.

5. Item 3,4 combined shows that (Kg, E4, U2, V2) is computationally indistin-
guishable from (K ′

g, E
′
4, U

′
2, V

′
2) as the distributions of (σ, ω) and (σ′, ω′) are

computationally indistinguishable. ��
Remark 6. The assumption on the distribution of the commitment curve E1

made in Theorem 2 is about analyzing the distribution of the outputs of the
algorithm RandIsogImg given the input norm size. This has been discussed in
great detail in [26] where this algorithm was first introduced. Based on the
discussions there, we believe this assumption is reasonable.

The Previous Attack Strategy Does Not Apply. To run the attack as in Sect. 4.3
on SQIsign2D-East, we need to able to solve the following problem:

Problem 2. Let ω : EA → � of degree 2a − q where either

1. ω is sampled from D1,
2. ω is sampled from D2.

The problem is, given EA, ω, to distinguish with success rate 1 between the two
cases with a polynomial number of queries to DAP .

We prove in Proposition 1 that Problem 2 is no easier than Problem 1 assum-
ing that the best algorithm to solve Problem 1 has complexity O(2λ′

) where
λ′ ≥ λ. This seems a reasonable assumption as discussed in Remark 5, and
a necessary condition to have our protocol achieve λ-bits security. Proposition
1 then implies that our assumption on the hardness of Problem 1 ensures the
hardness of Problem 2, therefore we do not need to make an extra assumption
on Problem 2. This agrees with our intuition that if Problem 2 were easy, then
our SQIsign2D-East would not be zero-knowledge.

Proposition 1. If solving Problem 1 requires O(2λ′
) time complexity with λ′ ≥

λ, then solving Problem 2 requires at least O(2λ′
) time complexity.

Proof. We prove by contradiction. Suppose there is an algorithm A that solves
Problem 2 in O(2λ′′

) where λ′′ < λ. Now in Problem 1, we are given with M
samples with M > log Nτ such that they are either from DU or DAP . We run
the distinguishing algorithm A on around log Nτ ≈ λ/2 number of samples to
get enough Legendre symbol values with respect to Nτ to uniquely determine
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Nτ . These values allows us to recover Nτ in time O(2λ/2). Given the value of Nτ ,
then we check whether the remaining M − log Nτ samples gives rise to correct
Legendre symbols values. In the case when the M samples are from DU , this
fails with a non-negligible probability; and in the case when M samples are from
DAP , this always succeeds. This leads to an algorithm that solves Problem 1 in
time Õ(2λ′′

+ 2λ/2) which is less than O(2λ′
), a contradiction. ��

Remark 7. Although the additional 3-isogeny computation will probably be very
fast if compared to the rest of the response step, it still introduces a conditional
step that is performed only when q fails to satisfy some Legendre symbol con-
dition with respect to Nτ . This creates a side channel that may be exploited
leading to a restoration of the original attack. We leave this solution as a future
work.

6 Efficiency

In this section, we analyse the efficiency of SQIsign2D-East and CompactSQI
sign-2D-East. First, we provide concrete parameters for these protocols, then
compare the data sizes of these protocols such as public key size and ciphertext
size with SQIsign and SQIsignHD. Finally, we analyse the computational cost
of SQIsign2D-East and CompactSQIsign2D-East.

6.1 Parameters

In the following, we give concrete parameters for SQIsign2D-East and Compact-
SQIsign2D-East satisfying the NIST security level 1, 3, and 5.

NIST level a b f p

1 127 126 27 2253 · 27 − 1

3 191 189 35 2380 · 35 − 1

5 254 253 153 2507 · 153 − 1

Remark 8. To fit primes into 64-bit limbs, it preferable to use smaller primes
such as: p = 2248 · 5 − 1, p = 2376 · 65 − 1, and p = 2500 · 27 − 1 used in
SQIsign2D-West [2]. However, if we choose such primes, the challenge length b
becomes quite smaller than λ. (e.g. b = 123 < 128 for Level 1.) Therefore, we
need to extend the challenge length in some way. For example, if there exists a
smooth integer c | (p−1), we can extend the challenge degree from 2b to 2b ·c by
using an additional c-isogeny. This change requires to evaluate points of order
c under ψ, which is computed by a 2-dimensional isogeny. In the gluing step of
the theta algorithm by [12], we need to compute the x-coordinate of the sum of
an evaluated point and a point of order 4. This requires the arithmetic on Fp4 .
We leave the efficient computation to future work.
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6.2 Data Sizes

In this subsection, we compare the signature sizes of SQIsign, SQIsignHD,
SQIsign- 2D-East, and CompactSQIsign2D-East using the above parameters.
Table 1 shows each signature size. Note that we do not give the signature size
of SQIsignHD for the level 3 and 5 since sufficient information to evaluate the
signature sizes are not given in [11].

Table 1. Signature size comparison

Security Protocol Signature (bytes)

Level 1 SQIsign 177

SQIsignHD 109

SQIsign2D-East 182

CompactSQIsign2D-East 150

Level 3 SQIsign 263

SQIsignHD –

SQIsign2D-East 271

CompactSQIsign2D-East 223

Level 5 SQIsign 335

SQIsignHD –

SQIsign2D-East 359

CompactSQIsign2D-East 295

As shown in Table 1, the signature size of SQIsign2D-East is larger than
both SQIsign and SQIsignHD for every security level. On the other hand, the
signature size of CompactSQIsign2D-East is smaller than SQIsign and larger
than SQIsignHD for every security level.

6.3 Computational Cost

We compare the computational costs of SQIsignHD, SQIsign2D-East, and Com-
pactSQIsign2D-East for the security level 1. Table 2 shows the number of isogeny
computations of each degree. As Table 2 shows, our protocol does not require
any 4-dimensional isogeny computation for the verification. In addition, the
number of 2-dimensional isogeny computations is smaller than the number of
4-dimensional isogeny computations in SQIsignHD. Therefore, the verification
cost of our protocol is clearly smaller than that of SQIsignHD. As for the key
generation and signing, our protocol requires 2-dimensional isogeny computa-
tions, whereas SQIsignHD only requires 1-dimensional isogeny computations.
Therefore, our protocol is likely to have a larger cost for the key generation and
signing.

Finally, in Table 3, we show the actual computational times of SQIsign2D-
East and CompactSQIsign2D-East implemented in Julia. The implementation is
available as supplementary materials. These are the averages of 100 run times.
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Table 2. Number of isogeny computations of each degree

Protocol (Security level 1) 2 3 (2, 2) (2, 2, 2, 2)

SQIsignHD keygen 378 234 – –

sign 252 312 – –

verify – 78 – 142

SQIsign2D-East keygen – – 253 –

sign 126 0–4 633 –

verify 126 0–4 127 –

CompactSQIsign2D-East keygen – – 253 –

sign 126 0–4 760 –

verify 126 0–4 127 –

Table 3. Computational times (sec.)

Security Protocol keygen sign verify

Level 1 SQIsign2D-East 0.50 1.50 0.24

CompactSQIsign2D-East 0.52 1.87 0.32

Level 3 SQIsign2D-East 1.02 2.91 0.51

CompactSQIsign2D-East 1.03 3.21 0.56

Level 5 SQIsign2D-East 1.52 4.21 0.72

CompactSQIsign2D-East 1.57 4.97 0.80

The computational times are measured on a computer with an Intel Core i7-
10700K CPU@3.70 Hz without Turbo Boost. The cost evaluation through an
optimized implementation is a future work.

7 Conclusion

In this paper, we introduce SQIsign2D-East, a new variant of SQIsignHD,
which requires only 2-dimensional isogeny computations for the verification,
while SQI-signHD requires 4-dimensional isogeny computations. As a building
block of SQIsign2D-East, we construct a new algorithm, which is a generaliza-
tion of the conventional algorithm called RandIsogImg. In addition, we propose
CompactSQI-sign2D-East, which has shorter signature size but has larger sign-
ing cost.

Both SQIsign2D-East and CompactSQIsign2D-East have less verification
costs than SQIsignHD. On the other hand, the signing costs are expected to be
larger than SQIsignHD though they are expected to be smaller than SQIsign. The
signature size of SQIsign2D-East is longer than both SQIsign and SQIsignHD.
The signature size of CompactSQIsign2D-East is shorter than SQIsign but longer
than SQIsignHD.
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Abstract. In this paper, we describe an algorithm to compute chains
of (2, 2)-isogenies between products of elliptic curves in the theta model.
The description of the algorithm is split into various subroutines to allow
for a precise field operation count.

We present a constant time implementation of our algorithm in Rust
and an alternative implementation in SageMath. Our work in SageMath
runs ten times faster than a comparable implementation of an isogeny
chain using the Richelot correspondence. The Rust implementation runs
up to forty times faster than the equivalent isogeny in SageMath and has
been designed to be portable for future research in higher-dimensional
isogeny-based cryptography.

1 Introduction

The devastating attacks on SIDH [3,25,42] have highlighted the relevance of
studying higher-dimensional abelian varieties in isogeny-based cryptography.
Following the attacks, it soon became evident that these new tools would have
applications beyond cryptanalysis. For instance, Robert leveraged these tech-
niques both to give a representation of isogenies in polylogarithmic time [40]
and to compute the endomorphism ring of ordinary elliptic curves in quantum
polynomial time [41].

On a more cryptographic side, the attacks have been used to design new pro-
tocols. Basso, Maino and Pope utilise these cryptanalytic techniques to construct
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a trapdoor mechanism, and using standard transformations, this trapdoor is used
to derive a public-key encryption protocol named FESTA [2]. Subsequently, three
additional protocols employing similar ideas to FESTA have appeared [27,28,33].
One of the main building blocks underlying these protocols is the computation
of chains of (2, 2)-isogenies between products of two elliptic curves. However, the
cryptographic application of these isogeny chains extends beyond FESTA-based
applications. For instance, SQIsign2D-West [1] uses two-dimensional isogenies
between elliptic products to achieve significant speed ups for keygen and signing
as well as the fastest SQIsign verification to date. These isogenies are also at
the core of computing the group action in SCALLOP-HD [4], as well as in novel
constructions of isogeny-based weak verifiable delay functions [15] and verifi-
able random functions [21]. Therefore, improving algorithms to compute chains
of (2, 2)-isogenies between elliptic products is of paramount importance to the
progress of higher-dimensional isogeny-based protocols.

Prior to this work, the only method to compute (2, 2)-isogenies between ellip-
tic products relied on ad-hoc procedures for gluing and splitting, and the use of
the Richelot correspondence to compute isogenies between Jacobians of genus-
two hyperelliptic curves [34,45]. This method can be considered satisfactory for
cryptanalytic purposes, but it is definitely not efficient enough for construc-
tive applications. Indeed, for the proof-of-concept implementations of [2,33], the
two-dimensional isogenies are the bottleneck of the protocol. Richelot isogenies
describe (2, 2)-isogenies between Jacobians of genus-two hyperelliptic curves in
the Mumford model. Here, kernel elements are divisors, represented by a pair of
univariate polynomials. The arithmetic of the group elements, as well as isogeny
codomain computation and evaluation, require working in a univariate polyno-
mial ring above the base field. This model makes doubling and evaluation of
points expensive and the implementation of the isogeny chain itself is signif-
icantly more complicated than the more familiar isogeny chains between two
elliptic curves, which use Vélu’s formulae. A natural question is then to ask
whether it could be possible to use different models that are more amenable to
simple and efficient algorithmic descriptions.

In the literature, another model used to compute isogenies is already known:
the theta model. Despite being suitable for isogenies between elliptic curves, the
theta model has mainly been employed to compute isogenies in higher dimen-
sion due to the lack of alternatives. For instance, Cosset and Robert describe
an algorithm for (�, �)-isogenies in the theta model for odd primes � [9], later
improved in [24]. The case � = 2 has been briefly treated in [38, Proposition
6.3.5] and [39, Remarks 2.10.3, 2.10.7, 2.10.14] but never formalised.

The theta model is well known for its efficient arithmetic (in low dimension).
For instance, Chudnovsky and Chudnovsky utilised the arithmetic of Kummer
surfaces represented in the theta model for factoring integers [6]. Following this
work, Gaudry derived fast formulae for the scalar multiplication on the Kum-
mer surface associated to genus-two hyperelliptic curves. Moreover, in [37], Renes,
Schwabe, Smith and Batina designed signature schemes for microcontrollers based
on the efficient Montgomery ladder scalar multiplication on the Kummer surface.

Despite this efficient arithmetic, curiously, up until now, it had not really
been considered for efficient (2, 2)-isogenies between Kummer surfaces. A notable
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exception is the work of Costello [10]. Costello employs the theta model to trans-
late the computation of 2n-isogenies between elliptic curves defined over Fp2 to
(2n, 2n)-isogenies between Kummer surfaces over Fp via the Weil restriction.
However, the (2, 2)-isogenies considered by Costello are of a very special form,
i.e. those deriving from very special kernels on the Weil restriction of elliptic
curves. Our work can be seen both as a specialisation of the results of [39] to the
case most interesting for isogeny-based cryptography (namely (2n, 2n)-isogenies
between product of elliptic curves or Kummer surfaces), and as a generalisation
of [10] to general (2n, 2n)-isogenies.

In this work, we mainly focus on an algorithm to compute (2n, 2n)-isogenies
between products of elliptic curves using the theta model. Since the applications
we have in mind fall within the realm of isogeny-based cryptography, we spe-
cialise in the case of chains of (2, 2)-isogenies whose intermediate abelian surfaces
are all Jacobians of genus-two hyperelliptic curves and the kernel generators are
all rational. Indeed, in all the current schemes involving two-dimensional iso-
genies, encountering elliptic products in the middle of these chains occurs with
negligible probability. Still, we briefly explain how to extend our algorithms to
treat all cases in Appendix A.

Our aim is to demystify the hard algebraic geometry underpinning the theta
model and make it accessible to cryptographers who want to employ isogenies
between higher-dimensional abelian varieties within their protocols. The end
result of our work is a set of concrete algorithms which describe the necessary
pieces for computing isogenies between elliptic products; written to be particu-
larly amenable to efficient and optimised implementations which are not all that
different in appearance to the one-dimensional isogenies many are more familiar
with.

1.1 Contributions

This paper has been written with the aim of being modular, using an algorithmic
approach. All the formulae in the paper are mainly derived from the duplication
formula. As a result, a reader uniquely interested in the computational results
can assume the validity of the work in Sect. 2 and follow along the subsequent
sections, which contain the explicit algorithms. From the duplication formula,
we first re-obtain the addition formulae that have already been described in [17]
and also give a precise operation count in the base field.

The algorithm to compute chains of (2, 2)-isogenies between elliptic products
is split into various subroutines. Each subroutine is carefully described in algo-
rithmic boxes; this allows for a precise field operation count. The main advantage
of this approach is that both reducible and irreducible abelian surfaces can be
described in the same way. However, some extra care will be devoted to the
splitting and gluing case.

The gluing case is the most delicate one, where zero coordinates must be
carefully handled during both arithmetic and isogeny computations. We effi-
ciently compute the theta model representation of an elliptic product using only
the dimension one representation of the theta structures and a few additional
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Table 1. Base field costs of doubling, codomain computation and evaluation for generic
(normalised and projective) and gluing isogenies in the theta model. We denote by
M,S, I the costs of multiplication, squaring and inversion of an element in the base field
and ignore the cost of additions. Computation of a codomain is given along with the
precomputation cost which accounts for the one-time cost of computing field elements
used when doubling and evaluating theta points along the isogeny chain.

Isogeny Type Doubling Codomain Evaluation

Precomputations Codomain

Normalised 8S + 6M 4S + 24M + 1I 8S + 10M + 1I 4S + 3M

Projective 8S + 8M 5S + 14M 8S + 7M 4S + 4M

Gluing 12S + 12M — 8S + 13M + 1I8S + 10M + 1I

multiplications to recover the product structure. A summary of the costs of the
algorithms described in this paper is shown in Table 1.

Note that unlike the case of the Richelot chain, which requires both a (2, 2)-
gluing and (2, 2)-splitting isogeny, computing the elliptic product at the end of
a chain of isogenies in the theta model is a case of simply converting from one
model to another, which can be done efficiently.

Finally, we offer both a constant time implementation of the computation of
an isogeny between elliptic products in the programming language Rust, as well
as an alternative implementation for the computer algebra system SageMath [46].
Both are available at the following GitHub repository:

https://github.com/ThetaIsogenies/two-isogenies.

The Rust implementation has been written with cryptographic applications
in mind and so has been built to run in constant time, with the appropriate finite
field arithmetic and no secret-dependent conditional branching. It should also be
easily portable to other projects in the future. The SageMath implementation
has been designed to be a drop-in replacement for the work of [34]. As a result, all
the protocols whose implementation relies on this work or the proof-of-concept
of [2] can be upgraded to (2, 2)-isogenies in the theta model with minimal effort.
As a use case, we show the benefit of these algorithms in FESTA in Sect. 5.3.

We give explicit timings of our implementations in Table 2. In SageMath, our
implementation achieves a ten times speed up for the codomain computation
and more than twenty times speed up for evaluation time compared to [34]. For
characteristic of size 254 bits, the Rust code runs approximately forty times faster
than the same algorithms written in SageMath, and more than two times as fast
for very large characteristic (1293 bits). Concretely, on an Intel Core i7-9750H
CPU with a clock-speed of 2.6 GHz with turbo-boost disabled, we compute an
isogeny chain of length n = 208 between elliptic products over Fp2 with a 254
bit characteristic in only 2.13 ms.

Roadmap. In Sect. 2, we give a concise summary of the algebraic theory of
theta functions. The most important parts of this section are the duplication
formula and the algorithm to construct theta structures on elliptic products;
the reader willing to accept these two main building blocks can skip this section

https://github.com/ThetaIsogenies/two-isogenies
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entirely. In Sect. 3, we derive addition formulae from the duplication formula.
The isogeny formulae are described in Sect. 4. We discuss our implementation
results in Sect. 5 and draw some conclusions in Sect. 6.

Notation. Throughout the paper, M,S, I will represent the cost of multipli-
cation, squaring and inversion of an element in the base field, respectively. In
Sect. 2, we will introduce the Hadamard transform H; in dimension two,

H(x, y, z, w) =

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠

We also define (θ̃00(P ) : θ̃10(P ) : θ̃01(P ) : θ̃11(P )) = H(
θ00(P ), θ10(P ), θ01(P ),

θ11(P )
)

to be the dual coordinates of P , and the � operator:

(x, y, z, w) � (x′, y′, z′, w′) = (xx′, yy′, zz′, ww′).

Another useful operator we will introduce in Sect. 3 is the squaring operator S:

S(x, y, z, w) = (x2, y2, z2, w2).

When computing the cost of inverting k elements, we will use batched inver-
sions. Batched inversions allow us to invert k elements at a cost of 3(k − 1)
multiplications and only one inversion [26, §10.3.1]. We refer to our implemen-
tation for an explicit description of the algorithm.1

2 Preliminaries

We assume the reader has some familiarity with (N,N)-isogenies between princi-
pally polarised abelian surfaces; we refer to [25, §2] for a cryptographer-friendly
introduction to the subject (see also [7, Ch. V, §8 ] for a general introduc-
tion). Before giving an explicit description of the algorithm used to compute
(2n, 2n)-isogenies between products of two elliptic curves, we provide a concise
and self-contained summary of the algebraic theory of theta functions. Using
theta functions, it is possible to perform arithmetic on principally polarised
abelian varieties. The reader willing to assume the validity of the duplication
formula and the algorithm to construct theta structures on elliptic products can
skip this section entirely and use Algorithm 2 as a black box.

For all the other readers, in what follows, we utilise the language of Mumford’s
theory to provide a summary of the algebraic theory of theta functions [29–31].
We will first briefly recapitulate Mumford’s results, then recall the duplication
formula, which will allow us to describe isogeny formulae between principally
polarised abelian surfaces, and finally provide a formula for the change of basis
in the case of a product of two elliptic curves, which is the case analysed in the
paper.
1 Python implementation of batched inversion.

https://github.com/ThetaIsogenies/two-isogenies/blob/main/Theta-SageMath/utilities/batched_inversion.py
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2.1 Mumford’s Theory

In [44, §2.2], Robert and Sarkis provide a concrete treatment of Mumford’s theory
in the case of elliptic curves. In this section, we describe Mumford’s theory for a
principally polarised abelian variety (A, λ) of dimension g in a similar manner,
working over an algebraically closed field k of characteristic different from two.

Assume that the principal polarisation λ is represented by a divisor Θ, which
we will further assume to be symmetric: [−1]∗Θ = Θ (we can always find such a
representative). The principal polarisation is then given by λ = ΦΘ : A →
Â, P �→ t∗P Θ − Θ.2

We can then define the polarisation of level n: λ ◦ [n] : P �→ t∗P nΘ − nΘ.
Its kernel coincides with A[n]. This means that, if P ∈ A[n], t∗P nΘ − nΘ is a
principal divisor. We will denote by gP a function on A with this divisor; the
function gP is well defined up to multiplication by an invertible constant in k.
This is a fundamental ingredient to introduce the theta group.

The theta group of level n is given by G(nΘ) = {(P, gP ), P ∈ A[n]}, with
group law (P, gP ) · (Q, gQ) = (P + Q, gP ( )gQ(P + )). Finally we have an
(irreducible) action of G(nΘ) on Γ (nΘ) = {f ∈ k(A)∗ | div(f) ≥ −nΘ}∪{0}, via
(P, gP )·f = gP ( )f( +P ). We also have an operator δ−1 on G(nΘ): δ−1(P, gP ) =
(−P, [−1]∗gP ).

Let G(n) be the Heisenberg group k∗ ×K(n)× K̂(n) where K(n) = (Z/nZ)g

and K̂(n) = (Ẑ/nẐ)g, where the multiplication is given by

(α, x, χ) · (α′, x′, χ′) := (αα′χ′(x), x + x′, χ · χ′).

We have an operator δ−1 on G(n) given by δ−1(α, x, χ) = (α,−x, 1/χ), and an
irreducible action of G(n) to V (n), the vector space of functions (Z/nZ)g −→ k
generated by the Kronecker delta functions δi : i ∈ (Z/nZ)g, via (α, x, χ) · δi =
αχ(i)δx+i.

For technical reasons, we will from now on assume that n is even. We will
denote by L the line bundle associated to nΘ. A symmetric theta structure ΘL of
type n is an isomorphism G(n) → G(nΘ) that commutes with the action of δ−1

and which induces the identity on the natural embedding of k∗ in both groups. It
induces an isomorphism Θ

L
: A[n] → H(n) = K(n)×K̂(n), which sends the Weil

pairing enΘ on A[n] to the pairing en on H(n) given by en((x1, χ1), (x2, χ2)) =
χ2(x1)/χ1(x2). In particular, the symmetric theta structure of level n ΘL induces
a canonical symplectic basis of the n-torsion; and Mumford shows in [29] that
conversely ΘL is induced by a symplectic basis of the 2n-torsion. We will say
that these bases are compatible with ΘL.

By uniqueness of the irreducible action of the Heisenberg group [29], the
theta structure ΘL induces an isomorphism β : Γ (A,nΘ) ∼−→ V (n), uniquely
defined up to a scalar. Via β, it is possible to transfer the basis δi : i ∈ (Z/nZ)g

of V (n), to a basis (θi)i∈(Z/nZ)g on Γ (A,nΘ); the functions θi are called theta
coordinates of level n. Using theta coordinates, it is possible to represent abelian
varieties via an embedding into the projective space [32, Ch. II, Theorem 1.3].
In particular, if n > 2, the abelian variety A can be completely described in the
2 With Â, we denote the dual abelian variety of A.
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projective space via the evaluation of theta coordinates at the identity using the
Riemann relations; we call the projective point

(
θi(0A)

)
i∈(Z/nZ)g

the theta-null
point. Given a point P ∈ A and T ∈ A[n], we can efficiently represent P + T in
theta coordinates: if T corresponds to (s, χ) via Θ

L
,

(θi(P + T ))i = (χ(i)θi+s(P ))i . (1)

Let f : A → B be an isogeny between abelian varieties, let ΘA, ΘB be two
divisors inducing principal polarisations on A and B respectively. Suppose there
exists an isomorphism α : f∗ΘB

∼−→ nΘA, we say that f is an n-isogeny. Then,
one can prove that ker(f) ⊂ A[n]. On the other hand, given K ⊂ A[n], it is not
generally true that the isogeny f ′ : A → B of kernel K generates an isomorphism
between nΘA and (f ′)∗Θ′

B for some divisor Θ′
B on B. By [29], this is exactly

true when K is maximal isotropic for the Weil pairing en on A[n]3. We note
that if we have a theta structure ΘL on A, then the image of K(n) = (Z/nZ)g

and K̂(n) = (Ẑ/nẐ)g by Θ
L

are maximal isotropic subgroups of A[n]. If K is
equal to the image of K̂(n) by Θ

L
, we say that it is compatible with the theta

structure.
In this work we will consider (2n, 2n)-isogenies A → B between abelian sur-

faces, with kernel K maximal isotropic in A[2n], and A will be endowed with a
symmetric theta structure of level two. We will say that K is compatible with our
theta structure if not only K[2] is compatible in the sense above, but also that
K[4] is compatible with the symmetric structure. This is to say that if T ′ ∈ K[4]
is a point of exact order four, and T = 2T ′, with T corresponding to Θ

L
(0, χ),

then we require the theta coordinates θi(T ′) to be invariant under the action of
ΘL(1, 0, χ). Unraveling the definition, this is equivalent to the fact that a basis
of K[4] extends to a symplectic basis of A[4] compatible with ΘL.

Example 1. Let (a : b : c : d) be a theta-null point of level two in dimension two
obtained from the theta structure ΘL. Implicitly, this determines a symplectic
basis (S1, S2, T1, T2) of the two-torsion. Let i1 = ([1], [0]) ∈ K(2), i2 = ([1], [0]) ∈
K(2), χ1, χ2 ∈ K̂(2, 2) such that

χj(ik) =
{−1 if j = k ,

1 if j 	= k .

Then, let us define S1 = Θ
L
(i1), S2 = Θ

L
(i2), T1 = Θ

L
(χ1) and T2 =

Θ
L
(χ2). If P = (x : y : z : t), we have S1 = (b : a : d : c) and P + S1 = (y : x :

t : z), S2 = (c : d : a : b) and P + S2 = (z : t : x : y), T1 = (a : −b : c : −d) and
P + T1 = (x : −y : z : −t), T2 = (a : b : −c : −d) and P + T2 = (x : y : −z : −t).

Remark 2 (Rational theta coordinates). In practice, our base field k is not alge-
braically closed. However, if we assume that A[2n] is k-rational then the asso-
ciated level-n theta structure is also k-rational. Especially, the theta-null point

3 We say K is isotropic for en when en(x, y) = 1 for all x, y ∈ K and maximal isotropic
if it is maximal as a subgroup of A[n] for this property.
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is k-rational and level-n theta coordinates of k-rational points are k-rational. In
our work focused on cryptographic applications, k will be a finite field (e.g. Fp2)
but the formulae we provide are valid on any perfect field.

Another fundamental ingredient is the change of theta structure given by
Heisenberg group automorphisms. A Heisenberg group automorphism is an auto-
morphism of G(n) acting as the identity on k∗. In particular, such an automor-
phism induces a symplectic automorphism on H(n) with respect to its natural
pairing en. The most fundamental example is the Hadamard Transform, which
is the automorphism that swaps K(n) and K̂(n).

Hadamard Transform. Let (θi)i be some theta coordinates on A. The action
of the Hadamard transform on (θi)i is described in [39, Eq. 2.4]. The resulting
theta coordinates after this transform are called the dual theta coordinates; we
will denote such coordinates by (θ̃i)i. In what follows, we will use the Hadamard
transform on level-two theta coordinates. For the sake of clarity, we explicitly
state the action of this symplectic automorphism in dimension one and two.

First, let us fix an ordering for theta coordinates. In dimension one, there are
only two theta coordinates. Whenever we write (x : y) to represent a point P
in theta coordinates, we actually mean (θ0(P ) : θ1(P )). Hence, specialising [39,
Eq. 2.4], we obtain (θ̃0(P ) : θ̃1(P )) = (x + y : x − y). In dimension two, we
represent a point P in theta coordinates by a tuple (x : y : z : w), where we fix
the ordering (θ00(P ) : θ10(P ) : θ01(P ) : θ11(P )).4 Specialising [39, Eq. 2.4], we
have

θ̃00(P ) = x + y + z + w, θ̃01(P ) = x + y − z − w

θ̃10(P ) = x − y + z − w, θ̃11(P ) = x − y − z + w.

Henceforth, we will use the operator H to refer to the action of the Hadamard
transform on theta coordinates. Finally, we remark that H (H (

(θA
i )i

))
= (θA

i )i

(projectively).

2.2 Duplication Formula

Let (θA
i )i be theta coordinates of level two on A. Implicitly, we have a symplectic

decomposition of A[2] = K(L) = K(L)1 ⊕ K(L)2—from now on, we will drop
the dependence on the line bundle L and simply write A[2] = K1 ⊕ K2. Let
(S1, . . . , Sg) be the canonical basis induced by Θ

L
(K(2)) and (T1, . . . , Tg) the

canonical basis induced by Θ
L
(K̂(2)), which means K1 = 〈S1, . . . , Sg〉 and K2 =

〈T1, . . . , Tg〉. Now, let us consider the isogeny f : A → B, where ker(f) = K2. The
abelian variety B is principally polarised and in turn can be endowed with a type
two theta structure, whose theta coordinates are denoted by (θB

i )i. Also, let us
define � to be the operator such that (xi)i � (yi)i = (xiyi)i. Then, a consequence
of the isogeny theorem [29, Theorem 4, p. 302] (see also [38, Theorem 3.6.4])
and duplication formula [29, Equation A, p. 332] shows that:

(
θA

i (P + Q)
)
i
�

(
θA

i (P − Q)
)
i
= H

((
θ̃B

i (f(P ))
)

i
�

(
θ̃B

i (f(Q))
)

i

)
, (2)

4 The subscript ij refers to the pair ([i], [j]) ∈ K(2).
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H
((

θA
i (f̃(R))

)
i
�

(
θA

i (f̃(S))
)

i

)
=

(
θ̃B

i (R + S)
)

i
�

(
θ̃B

i (R − S)
)

i
, (3)

where f̃ denotes the dual isogeny of f and (θ̃B
i )i are the dual theta coordinates

of (θB
i )i.

2.3 Theta Structures on Elliptic Products

We now focus on products of two elliptic curves and explain how to endow these
products with a theta structure of type two. First, let us recall that every theta
structure of type two comes from a symplectic basis of the four-torsion [29,
Remark 4, p. 319]. Let E1 and E2 be two elliptic curves. The natural candidate
for a theta structure on E1 ×E2 is the product theta structure, which is obtained
via the combination of the theta structures on elliptic curves [13, Lemma F.3.1].

Proposition 3. Let (ai : bi) be theta-null points on Ei induced by a symplectic
four-torsion basis (ei, fi), for i = 1, 2. Then, (a1a2 : b1a2 : a1b2 : b1b2) is a theta-
null point for E1 × E2 induced by the symplectic four-torsion 〈(e1, 0), (0, e2)〉 ⊕
〈(f1, 0), (0, f2)〉.

However, in the next sections, we might need to work with theta structures
associated to a different symplectic four-torsion basis. In what follows, we explain
how to construct theta structures associated with a fixed symplectic four-torsion
basis. First, we explain how to do it over elliptic curves and then transfer our
results to elliptic products.

Let E be an elliptic curve, and (T ′
1, T

′
2) a basis of the four-torsion. To compute

the theta-null point associated to this basis, we proceed as follows. Given a point
T ∈ E[2], there are two symmetric elements ±g (satisfying δ−1(g) = g−1) above
T in the theta group G (L(2(0E))). We can fix a symmetric element via a point T ′

of four-torsion above T . Let T1 = 2T ′
1, T2 = 2T ′

2, and let g1, g2 be these elements
associated to T ′

1 and T ′
2, respectively. Unraveling the construction by Mumford

of a symmetric theta structure of level two induced by a symplectic basis of
level four, the theta coordinate θ0 must be invariant under the action of g2, and
θ1 = g1 · θ0. The coordinate θ0 can be computed as the trace of a global section
s ∈ Γ (E,L(2(0E))), provided it is not equal to zero, i.e. θ0 = id · s + g2 · s 	= 0.

Working on a Montgomery curve in Weierstrass coordinates, we have a canon-
ical point of four-torsion T ′ = (1 : 1) above T = (0 : 1) that induces the canonical
element g of the theta group acting by g · (X,Z) = (Z,X). Indeed, translation
by T is given by (X : Z) �→ (Z : X), and the two symmetric elements above this
translation act by (X,Z) �→ (±Z,±X) since they have order two. The element
gT ′ in G (L(2(0E))) fixed by T ′ corresponds to ±g. Still by unraveling Mumford’s
construction, the correct sign choice for the symmetric element gT ′ induced by T ′

is given by the one that leaves invariant any affine lift of T ′. In our case, this is g.
For a general elliptic curve, if T ′ = (x, y, z) is a point of four-torsion and

2T ′ = T = (u, v, w), we can map T ′ to the Montgomery point (1 : 1) via
the linear transformation (in the Kummer line): M : (X : Z) �→ (X ′ : Z ′) =
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(zwX − zuZ : (xw − zu)Z). It follows that the action of gT ′ is given by

MT UMT −1
=

1
xw − zu

(
uz zw

wx2/z − 2ux −uz

)
,

with M =
(

wz −zu
0 xw − uz

)
, U =

(
0 1
1 0

)
. This computation is the output of

Algorithm 1.

Example 4. Using previous notation, on a Montgomery curve we have T ′
2 = (−1 :

1), which acts by g2 ·(X,Z) = (−Z,−X). Taking the trace of X under this action
we get θ0 = id · X + g2 · X = X − Z.

Let T ′
1 = (a + b : a − b) be another point of four-torsion; its double is then

(a2 + b2 : a2 − b2). Let x = a + b, z = a − b, u = a2 + b2, w = a2 − b2. We
compute θ1 = g1 · θ0 = g1 · (X − Z) = z(u − w)/(wx − uz)X + (wx2/z − 2ux +
uz)/(wx−uz)Z = b/aX+b/aZ. We recover the same conversion formula between
Montgomery and theta coordinates as obtained in [43, Ch. 7, Appendix A.1].

We can use the same strategy to compute the theta-null point associated to
a symplectic basis of the four-torsion on a product of elliptic curves. If T ′ =
(T ′

1, T
′
2) ∈ E1 × E2 is a point of four-torsion, the associated element gT ′ is

given by gT ′ = gT ′
1

⊗ gT ′
2
. Let Xi, Zi be global sections of 2(0Ei

) defining the
x-coordinate on Ei as x = Xi/Zi. We can take θ0 as the trace of X1 ⊗ X2, i.e.
θ0 =

∑
i gi · X1 ⊗ X2 =

∑
i gi,1 · X1 ⊗ gi,2 · X2, where the gi = gi,1 ⊗ gi,2’s are

the elements above K2 fixed by the four-torsion. The other theta coordinates
are computed via the action of the elements above K1 on θ0.

Algorithm 1. Action by Translation
Input: A point P ′ in the four-torsion of the Kummer line of an elliptic curve
Output: The 2 × 2 submatrix M with coefficients mij describing the action of gP ′

lifting the action by translation of P = 2P ′.
1: P ← [2]P ′ (�) Cost: 2S + 3M
2: Let P ′ = (X : Z) and (U : W ) = P
3: WX, WZ, UX, UZ ← W · X, W · Z, U · X, U · Z
4: δ ← WX − UZ
5: Compute δ−1, Z−1 via batched inversions (�) Cost: 3M + 1I
6: m00 ← −UZ · δ−1

7: m01 ← −WZ · δ−1

8: m10 ← UX · δ−1 − X · Z−1

9: m11 ← −m00

10: return M (�) Total cost: 2S + 14M + 1I

In practice, in the algorithm to compute the (2n, 2n)-isogeny f : E1 × E2 →
E′

1 × E′
2, we only have access to ker(f)[4] = 〈T ′

1, T
′
2〉 and not to a complete

symplectic torsion basis of (E1 × E2)[4]; let T ′
1 = (P1, P2) and T ′

2 = (Q1, Q2).
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To bypass this problem, we define S′
1 = (0, Q2) and S′

2 = (P1, 0).5 Then, K1 =
〈S1, S2〉 and K2 = 〈T1, T2〉 , where Si = [2]S′

i and Ti = [2]T ′
i . We use the

symplectic four-torsion basis (S′
1, S

′
2, T

′
1, T

′
2) when endowing E1 × E2 with a

theta structure. We summarise this procedure in Algorithm 2. The output of
this algorithm is a matrix N that allows for a change of coordinates as follows. If
R = (R1, R2) ∈ E1×E2 is a point in Weierstrass coordinates for the Montgomery
elliptic curves, where Ri = (Xi : Zi), the image of R in theta coordinates is
given by N · (X1 · X2,X1 · Z2, Z1 · X2, Z1 · Z2)

ᵀ.

Algorithm 2. Change of Basis
Input: The points (P ′

1, P
′
2) and (Q′

1, Q
′
2) in the four-torsion of E1 × E2 below the

kernel.
Output: The 4 × 4 change of basis matrix N .
1: G1 ← action by translation(P ′

1) (�)Algorithm 1: Cost: 2S + 14M + 1I
2: G2 ← action by translation(P ′

2)
3: H1 ← action by translation(Q′

1)
4: H2 ← action by translation(Q′

2)
5: t00|1 ← g00|1 · h00|1 + g01|1 · h10|1 (�) Compute the first column of G1 × H1

6: t10|1 ← g10|1 · h00|1 + g11|1 · h10|1
7: t00|2 ← g00|2 · h00|2 + g01|2 · h10|2 (�) Compute the first column of G2 × H2

8: t10|2 ← g10|2 · h00|2 + g11|2 · h10|2
9: n00 ← g00|1·g00|2+h00|1·h00|2+t00|1·t00|2+1 (�) Compute the trace for the first row

10: n01 ← g00|1 · g10|2 + h00|1 · h10|2 + t00|1 · t10|2
11: n02 ← g10|1 · g00|2 + h10|1 · h00|2 + t10|1 · t00|2
12: n03 ← g10|1 · g10|2 + h10|1 · h10|2 + t10|1 · t10|2
13: n10 ← h00|2 · n00 + h01|2 · n01 (�) Compute the action of (0, Q′

2) for the second row
14: n11 ← h10|2 · n00 + h11|2 · n01

15: n12 ← h00|2 · n02 + h01|2 · n03

16: n13 ← h10|2 · n02 + h11|2 · n03

17: n20 ← g00|1 · n00 + g01|1 · n02 (�) Compute the action of (P ′
1, 0) for the third row

18: n21 ← g00|1 · n01 + g01|1 · n03

19: n22 ← g10|1 · n00 + g11|1 · n02

20: n23 ← g10|1 · n01 + g11|1 · n03

21: n30 ← g00|1 · n10 + g01|1 · n12 (�) Compute the action of (P ′
1, Q

′
2) for the final row

22: n31 ← g00|1 · n11 + g01|1 · n13

23: n32 ← g10|1 · n10 + g11|1 · n12

24: n33 ← g10|1 · n11 + g11|1 · n13

25: return N (�)Total cost: 8S + 100M + 4I

Remark 5. In Algorithm 2, it is possible to optimise the computation of the four
inversions required in the four calls to Algorithm 1 in lines 1, 2, 3 and 4 by
using a unique batched inversion. We decided not to show this optimisation in
Algorithm 2 for the sake of a cleaner exposition.

5 Here, we assume that both P1 and Q2 have order four. When this is not the case,
f is a diagonal isogeny (P, Q) �→ (φ1(P ), φ2(Q)), which can be computed via two
one-dimensional isogenies φ1 and φ2; see also Appendix A.
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3 Addition Formulae

In this section, we derive addition formulae using the equations in Sect. 2.2.
These formulae have already been described in dimension two [17]. However, we
prefer to restate them in dimension two to highlight the connection with (2, 2)-
isogenies and provide an explicit operation count. In what follows, we use the
same notation as in Sect. 2.2.

Let P,Q ∈ A and suppose we have (θA
i (P − Q))i. To compute (θA

i (P + Q))i,
we can use Eq. 2, but first we need to recover

(
θ̃B

i (f(P ))
)

i
and

(
θ̃B

i (f(Q))
)

i
,

which can be computed as
(
θ̃B

i (f(P ))
)

i
�

(
θ̃B

i (0)
)

i
= H ((

θA
i (P )

)
i
�

(
θA

i (P )
)
i

)
,

and similarly for
(
θ̃B

i (f(Q))
)

i
. The quantity

(
θ̃B

i (0)
)

i
is actually not needed,

as we only need
(
θ̃B

i (0)
)

i
�

(
θ̃B

i (0)
)

i
if we use

(
θ̃B

i (f(P ))
)

i
�

(
θ̃B

i (0)
)

i
�

(
θ̃B

i (f(Q))
)

i
�

(
θ̃B

i (0)
)

i
,

to compute
(
θ̃B

i (f(P ))
)

i
�

(
θ̃B

i (f(Q))
)

i
. For the sake of compactness, we intro-

duce the operator S that, on input
(
θA

i (P )
)
i
, returns

(
θA

i (P )
)
i
�

(
θA

i (P )
)
i
. We

formalise this procedure in Algorithm 3.
Let (a : b : c : d) be a theta-null point for A and define (α : β : γ : δ) to be the

dual coordinates (θ̃B
i (0))i of the theta-null point (θB(0)i)i. For simplicity, let us

assume that α · β · γ · δ 	= 0; the (rare) case when one of the dual coordinates is
zero is briefly treated in Remark 6. Equation 2 proves that (α2 : β2 : γ2 : δ2) =
H(a2 : b2 : c2 : d2). However, since we are working projectively, we need to use
the quantities (α2/β2, α2/γ2, α2/δ2) and (a/b, a/c, a/d), which can be computed
via batched inversions.

To obtain an algorithm to double a point P ∈ A, we proceed as before
with the only difference that we only need (a/b, a/c, a/d). We provide a detailed
description of the doubling in Algorithm 4.

Remark 6. In practice, we will always be in the case that α ·β ·γ ·δ 	= 0. We may
incur in such an exception when we are working on a product of elliptic curves
but with a non-product theta structure (see [43, Ch. 7, § 16.4]): this is due to
how we construct the theta structure on the elliptic product in Sect. 2.3. In this
case we do not have to worry since we could perform arithmetic on the elliptic
curves and then convert to the theta model afterwards. However, if one wants
to deal with this case in the theta model, one may first act with a symplectic
automorphism ψ sending the dual theta-null point to an all-non-zero one, use
the addition formulae and eventually switch back to the former theta structure
acting by ψ−1.

To compute (2n, 2n)-isogenies, we will only use doublings. Algorithm 4 works
only if a · b · c · d 	= 0. The case a · b · c · d = 0 can happen only if the codomain
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Algorithm 3. Differential addition
Input: The theta coordinates of P , Q and P − Q, and (λ̃1, λ̃2, λ̃3) =

(α2/β2, α2/γ2, α2/δ2).
Output: The theta coordinates P + Q.
1: XP , YP , ZP , WP ← H ◦ S(xP , yP , zP , wP ) (�) Cost: 4S
2: XQ, YQ, ZQ, WQ ← H ◦ S(xQ, yQ, zQ, wQ) (�) Cost: 4S
3: Xf(P )f(Q) ← XP · XQ

4: Yf(P )f(Q) ← λ̃1 · YP · YQ

5: Zf(P )f(Q) ← λ̃2 · ZP · ZQ

6: Wf(P )f(Q) ← λ̃3 · WP · WQ

7: XPQ, YPQ, ZPQ, WPQ ← H(Xf(P )f(Q), Yf(P )f(Q), Zf(P )f(Q), Wf(P )f(Q))
8: xyP−Q ← xP−Q · yP−Q

9: ztP−Q ← zP−Q · tP−Q

10: xP+Q ← XPQ · ztP−Q · yP−Q

11: yP+Q ← YPQ · ztP−Q · xP−Q

12: zP+Q ← ZPQ · xyP−Q · wP−Q

13: wP+Q ← WPQ · xyP−Q · zP−Q

14: return xP+Q, yP+Q, zP+Q, wP+Q (�) Total cost: 8S + 17M

Algorithm 4. Doubling
Input: The theta coordinates of P and (λ̃1, λ̃2, λ̃3) = (α2/β2, α2/γ2, α2/δ2) and

(λ1, λ2, λ3) = (a/b, a/c, a/d).
Output: The theta coordinates [2]P .
1: XP , YP , ZP , WP ← H ◦ S(xP , yP , zP , wP ) (�) Cost: 4S
2: X ′

f(P ), Y
′
f(P ), Z

′
f(P ), W

′
f(P ) ← S(XP , YP , ZP , WP ) (�) Cost: 4S

3: Y ′
f(P ) ← λ̃1 · Y ′

f(P )

4: Z′
f(P ) ← λ̃2 · Z′

f(P )

5: W ′
f(P ) ← λ̃3 · W ′

f(P )

6: X ′
P , Y ′

P , Z′
P , W ′

P ← H(X ′
f(P ), Y

′
f(P ), Z

′
f(P ), W

′
f(P ))

7: Y ′
P , Z′

P , W ′
P ← λ1 · Y ′

P , λ2 · Z′
P , λ3 · W ′

P

8: return X ′
P , Y ′

P , Z′
P , W ′

P (�)Total cost: 8S + 6M

B is a product of elliptic curves with non product theta structure by [43, Ch. 7,
§ 16.4]. In this case, we can use the same solution as above, by using ψ = H as
our symplectic transformation.

4 The Isogeny Formula

In this section, we explain how to derive an isogeny formula for (2, 2)-isogenies
from Sect. 2.2. Ultimately, we focus on chains of isogenies between products of
two elliptic curves. However, we first show how to compute isogenies when we
have an abelian surface already endowed with a theta structure compatible with
the kernel of the (2, 2)-isogeny we want to compute.

Let A be an abelian surface defined over a perfect field k endowed with a
k-rational theta structure of level two, and let (S1, S2, T1, T2) be the canonical
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symplectic basis associated with the symplectic decomposition A[2] = K1 ⊕ K2;
to be more specific, K1 = 〈S1, S2〉 and K2 = 〈T1, T2〉. Let us recall that a
theta-null point is fixed by a k-rational symplectic basis of the four-torsion [29,
Remark 4, p. 319], and let (S′

1, S
′
2, T

′
1, T

′
2) be such a basis; in particular 2S′

i = Si

and 2T ′
i = Ti. Our goal is to compute a (2, 2)-isogeny f : A → B. As explained

in Sect. 2.3, in our case, we will always be working with ker(f) = K2.
Before outlining the explicit procedure, let us assume that we have k-rational

points T ′′
1 , T ′′

2 such that 〈T ′′
1 , T ′′

2 〉[4] = 〈T ′
1, T

′
2〉, 2T ′′

i = T ′
i and their Weil pairing

e8(T ′′
1 , T ′′

2 ) = 1.6 These conditions are not restrictive since they are naturally
satisfied for chains of (2, 2)-isogenies, which are our end goal. In particular,
(f(T ′′

1 ), f(T ′′
2 )) are two of the four-torsion points inducing the theta-null point on

B lying above the two two-torsion points in K2. Hence, the points (f(T ′′
1 ), f(T ′′

2 ))
lay above the canonical points in K1 for the dual coordinates.

Let us remark that f(T ′′
i ) + 2f(T ′′

i ) = −f(T ′′
i ). So, as highlighted in Eq. 1

and since we are on the Kummer, we have
(
θ̃B
00(f(T ′′

1 )) : θ̃B
10(f(T ′′

1 )) : θ̃B
01(f(T ′′

1 )) : θ̃B
11(f(T ′′

1 ))
)

=
(
θ̃B
10(f(T ′′

1 )) : θ̃B
00(f(T ′′

1 )) : θ̃B
11(f(T ′′

1 )) : θ̃B
01(f(T ′′

1 ))
)

,

and (
θ̃B
00(f(T ′′

2 )) : θ̃B
10(f(T ′′

2 )) : θ̃B
01(f(T ′′

2 )) : θ̃B
11(f(T ′′

2 ))
)

=
(
θ̃B
01(f(T ′′

2 )) : θ̃B
11(f(T ′′

2 )) : θ̃B
00(f(T ′′

2 )) : θ̃B
10(f(T ′′

2 ))
)

.

Define (α : β : γ : δ) to be the dual theta-null point of B, i.e.
(
θ̃B
00(0) : θ̃B

10(0) : θ̃B
01(0) : θ̃B

11(0)
)

= (α : β : γ : δ).

Then, combining Eq. 2 with the above observations, we have

H ◦ S(θA
00(T

′′
1 ), θA

10(T
′′
1 ), θA

01(T
′′
1 ), θA

11(T
′′
1 )) = (xα, xβ, yγ, yδ),

H ◦ S(θA
00(T

′′
2 ), θA

10(T
′′
2 ), θA

01(T
′′
2 ), θA

11(T
′′
2 )) = (zα,wβ, zγ, wδ),

for some unknown x, y, z, t. Hence, we can recover the dual theta-null point
(α : β : γ : δ) for B, and in turn its theta-null point H(α : β : γ : δ).

Remark 7 (Technical Remark). It is possible to prove that all x, y, z, t must be
different from zero. If it had not been the case, we would have ended up with a
theta-null point with at least two zero coordinates. This is a contradiction since
it implies we have more than a zero even theta-null coordinate of level (2, 2) –
see Section “Gluing Isogeny” for the definition of level-(2, 2) theta coordinates.

In general, the dual theta-null point (α : β : γ : δ) has all coordinates
different from zero. The only exceptions can be found for certain cases of the
gluing isogeny – we will discuss how to handle this case in Sect. 4.1.
6 Recall that such a subgroup 〈T ′′

1 , T ′′
2 〉 is said to be isotropic.
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Algorithm 5. Codomain
Input: Theta coordinates of T ′′

1 and T ′′
2 , where T ′′

i is a 8-torsion point lying above the
K2 part of the symplectic four-torsion basis inducing the theta-null point.

Output: Dual theta-null point (1 : β : γ : δ), the inverse of the dual theta-null
point (1 : β−1 : γ−1 : δ−1) and the theta-null point (a′ : b′ : c′ : d′) on B.
(�) Case β · γ · δ 	= 0

1: (xα, xβ, yγ, yδ) ← H ◦ S(xT ′′
1

, yT ′′
1

, zT ′′
1

, wT ′′
1

) (�) Cost: 4S
2: (zα, wβ, zγ, wδ) ← H ◦ S(xT ′′

2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (�) Cost: 4S

3: Invert (xα, xβ, zα, wβ, zγ, wδ) using batched inversions. (�) Cost: 15M + 1I
4: β ← xβ · (xα)−1

5: γ ← zγ · (zα)−1

6: δ ← wδ · (wβ)−1 · β
7: β−1 ← xα · (xβ)−1

8: γ−1 ← zα · (zγ)−1

9: δ−1 ← wβ · (wδ)−1 · β−1

10: (a′, b′, c′, d′) ← H(1, β, γ, δ)
11: return (1, β, γ, δ), (1, β−1, γ−1, δ−1), (a′, b′, c′, d′) (�) Total cost: 8S + 10M + 1I +

(13M)

Once we have computed (α : β : γ : δ), we can evaluate the isogeny
f at any point P using (again) Eq. 2. To compute the image, we first com-
pute (x′, y′, z′, w′) = H ◦ S (

(θA
i (P ))i

)
. Then we find (θB

i (f(P )))i =
H(α−1x′, β−1y′, γ−1z′, δ−1w′) using (α−1 : β−1 : γ−1 : δ−1) as input to the eval-
uation algorithm which can be computed at a one-time cost during the codomain
computation.

Algorithm 6. Evaluation
Input: Theta coordinates of P and the dual theta-null point (1 : β−1 : γ−1 : δ−1) on

B.
Output: Theta coordinates f(P ). (�)Case β · γ · δ 	= 0
1: (XP , YP , ZP , WP ) ← H ◦ S(xP , yP , zP , wP ) (�) Cost: 4S
2: (X ′

f(P ), Y
′
f(P ), Z

′
f(P ), W

′
f(P )) ← (XP , β−1 · YP , γ−1 · ZP , δ−1 · WP )

3: (xf(P ), yf(P ), zf(P ), wf(P )) ← H(X ′
f(P ), Y

′
f(P ), Z

′
f(P ), W

′
f(P ))

4: return (xf(P ), yf(P ), zf(P ), wf(P )) (�)Total cost: 4S + 3M

We give a detailed description of both the codomain and evaluation computa-
tions in Algorithms 5 and 6. We note that the cost in parentheses for Algorithm 5
is the cost of the computation of (α−1 : β−1 : γ−1 : δ−1) which is required as
input to Algorithm 6.

Remark 8. As we explained in Sect. 3, the inverse squared dual theta-null point
(α2/β2, α2/γ2, α2/δ2) are also needed for the addition and doubling formulae.
If such a quantity has already been precomputed at a cost of 4S + 15M + 1I,
we can use it to lower down the cost in Algorithm 5. In line 3, we need only
to invert three elements, namely xα, zα,wβ. Then, to obtain (β−1, γ−1, δ−1),
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Algorithm 7. Projective Codomain
Input: Theta coordinates of T ′′

1 and T ′′
2 , where T ′′

i is a 8-torsion point lying above the
K2 part of the symplectic four-torsion basis inducing the theta-null point.

Output: Dual theta-null point (α : β : γ : δ), the inverse of the dual theta-null
point (α−1 : β−1 : γ−1 : δ−1) and the theta-null point (a′ : b′ : c′ : d′) on B.
(�)Case α · β · γ · δ 	= 0

1: (xα, xβ, yγ, yδ) ← H ◦ S(xT ′′
1

, yT ′′
1

, zT ′′
1

, wT ′′
1

) (�) Cost: 4S
2: (zα, wβ, zγ, wδ) ← H ◦ S(xT ′′

2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (�) Cost: 4S

3: zαwβ ← zα · wβ
4: α ← xα · zαwβ
5: β ← xβ · zαwβ
6: γ ← zγ · xα · wβ
7: δ ← wδ · xβ · zα
8: αβ, γδ ← α · β, γ · δ
9: α−1 ← γδ · β

10: β−1 ← γδ · α
11: γ−1 ← αβ · δ
12: δ−1 ← αβ · γ
13: (a′, b′, c′, d′) ← H(α, β, γ, δ)
14: return (α, β, γ, δ), (α−1, β−1, γ−1, δ−1), (a′, b′, c′, d′) (�)Total cost: 8S + 7M +

(6M)

we can simply multiply component-wise (α2/β2, α2/γ2, α2/δ2) by (β, γ, δ). The
total cost in this optimised case is 8S + 10M + 1I + (4M).

Projective Algorithms. In Algorithm 5, we use batched inversions to recover
(1 : β : γ : δ) and (1 : β−1 : γ−1 : δ−1). This choice allows us to reduce the
number of operations when doubling a point and evaluating an isogeny. However,
we can remove the inversion in Algorithm 5 by working projectively at a cost of
only a few extra multiplications. We describe a projective version of Algorithm 5
in Algorithm 7, where the cost in parentheses is associated to the computing the
input (α−1 : β−1 : γ−1 : δ−1) used for the evaluation of theta points under the
action of f .

Evaluating the isogeny and doubling a point when the dual theta-null point
is not normalised at (1 : β : γ : δ) induces an extra cost of one multiplication
for evaluations and two multiplications for doubling. Additionally, the arithmetic
precomputation requires 5S+14M to precompute eight field elements. Note that
if these arithmetic precomputations are available when computing the codomain,
we can reduce the stated cost to 8S + 7M + (4M). Understanding whether
to work projectively or using batched inversions with normalised null points
boils down to the specifics of the chain length, number of evaluations and the
cost of inversion in the base field. In the rest of paper, we will work using the
normalised implementation for clarity but point out that it is always possible to
use projective arithmetic to save inversions at the cost of slightly more expensive
doubling and evaluations.
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4.1 Computing (2n , 2n)-Isogenies Between Elliptic Products

Now, we specialise to the case of a (2n, 2n)-isogeny f : E1 × E2 → E′
1 × E′

2

between elliptic products defined over a perfect field k, which will be computed
as a chain of (2, 2)-isogenies. Let K be the kernel of this isogeny and suppose
that we have two k-rational points of order 2n+2 on E1 × E2 above K forming
an isotropic group. To apply the formulae we described above, we need to be
sure that K[4] is in “the right position”. Given K[4], we apply Algorithm 2 to
obtain a theta-null point induced by the symplectic four-torsion decomposition
〈S′

1, S
′
2〉 ⊕ 〈T ′

1, T
′
2〉, where K[4] = 〈T ′

1, T
′
2〉

If n > 2, we have that K[8] = 〈T ′′
1 , T ′′

2 〉 is the isotropic 8-torsion above K[4].
This means we could apply Algorithms 5 and 6 to compute the first step of the
isogeny f , i.e. the isogeny f1 : E1 × E2 → A1 with kernel K[2]. However, we
should be careful as on the product structure, one of the coordinates of the dual
theta-null point on A1 may be equal to zero. We explain why this happens and
how to bypass this obstacle in the Section “Gluing Isogeny” below.

After the first step, we also end up with a complete description of the theta
structure on A1; let A1[2] = K1 ⊕ K2. The points f1(T ′′

1 ) and f1(T ′′
2 ) are two

of the four-torsion elements describing the theta-null point on A1. If n > 3, we
can use f1(K)[8] to describe the 8-torsion above 〈f1(T ′′

1 ), f1(T ′′
2 )〉 and iterate the

process.
Once we reach the second last step fn−1 : An−2 → An−1, we cannot inherit

the 8-torsion above the K2 part of the An−2 anymore. However, thanks to the
assumption that we have to two points of order 2n+2 on E1×E2 above K forming
an isotropic group, we can use the same exact strategy using the images of such
points. We explain how to relax this condition in Sect. 4.2.

In the last step fn : An−1 → E′
1 × E′

2, we map onto an elliptic product.
Even though we can reuse the same computational strategies when we stay in
the theta model, for most of the cryptographic applications we have to explicitly
recover the equations of the curves E′

1 and E′
2, and we also have to have map

points onto these curves. We describe how to do so in the Section “Splitting
Isogeny”.

Gluing Isogeny. In this section, we focus on the first step of the isogeny chain,
an isogeny originating from an elliptic product; let f : E1 × E2 → A be such an
isogeny. Theta structures on elliptic products E1 × E2 satisfy some additional
properties with respect to level-two theta coordinates. We refer to Dupont’s PhD
thesis [16] for background material. For the case at hand, we briefly recall some
fundamental facts.

Theta coordinates of level (2, 2) are indexed by a pair of elements in K(2). A
level-two theta coordinate Ui,j is said to be even if i · jT = 0 (mod 2); otherwise
it is said to be odd. Moreover, at most one of the even indices (i, j) satisfies
Ui,j(0) = 0, and there is exactly one zero even index if and only if the theta
structure is associated with a product of two elliptic curves.
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Given level-two theta coordinates (θi(P ))i, we can compute the square of its
level-(2, 2) theta coordinates as

U2
i,j(P ) =

∑
t

(−1)i·tT θt(P )θt+j(P ).

In [16, Proposition 6.5], Dupont shows that a theta-null point (θi(0))i comes from
the product theta structure of two elliptic curves if and only if U11,11(0) = 0.
This means that if we are working on a product structure, all the coordinates of
the dual theta-null point (α : β : γ : δ) are non-zero since (U00,00(0) : U10,00(0) :
U01,00(0) : U11,00(0)) = (α : β : γ : δ). However, when we perform a change
of basis, we might move the zero even index of the level-(2, 2) theta-null point
around, and potentially we might have one of the dual theta-null coordinates
equal to zero.

In fact, unless A is a product of elliptic curves (which would be the case if
the kernel is a product kernel), then we know that one of α, β, γ, δ is zero. If
it were not the case, we could compute f(P ) from P . But since we work with
theta coordinates of level two, on the product E1 × E2 we are really working
with the product of Kummer lines E1/ ± 1 × E2/ ± 1. The automorphism group
by which we quotient is thus Z/2Z×Z/2Z compared to Z/2Z when working on
the Kummer surface A/ ± 1 of an abelian surface with a non product principal
polarisation. Thus, when going from P to f(P ), there is an ambiguity coming
from an action of Z/2Z, which can only be resolved by either taking a square
root, or as we will explain next, by using extra information coming from the
arithmetic of E1 × E2 (rather than E1/ ± 1 × E2/ ± 1).

Let us handle the case where one of the coordinates of the dual theta-null
point (α : β : γ : δ) is zero; let us first analyse the case α = 0. In Algorithm 5, we
normalised everything with respect to δ. This actually simplifies the codomain
computation. We explain how to do so in Algorithm 8.

Algorithm 8. Special Codomain, α = 0
Input: Theta coordinates of T ′′

1 and T ′′
2 , where T ′′

i is a 8-torsion point lying above the
K2 part of the symplectic four-torsion basis inducing the theta-null point.

Output: Dual theta-null point (0 : β : γ : 1), the “inverse” of the dual theta-null point
(0 : β−1 : γ−1 : 1) and the theta-null point (a′ : b′ : c′ : d′) on A. (�) Case α = 0

1: (0, xβ, yγ, yδ) ← H ◦ S(xT ′′
1

, yT ′′
1

, zT ′′
1

, wT ′′
1

) (�) Cost: 4S
2: (0, wβ, zγ, wδ) ← H ◦ S(xT ′′

2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (�) Cost: 4S

3: Compute the inverse of (yγ, wβ, yδ, wδ) using batched inversions. (�)Cost: 9M+1I
4: β ← wβ · (wδ)−1

5: γ ← yγ · (yδ)−1

6: β−1 ← wδ · (wβ)−1

7: γ−1 ← yδ · (yγ)−1

8: (a′, b′, c′, d′) ← H(0, β, γ, 1)
9: return (0, β, γ, 1), (0, β−1, γ−1, 1), (a′, b′, c′, d′) (�) Total cost: 8S + 13M + 1I
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As explained above, mapping points under this isogeny requires extra care.
If we simply use Algorithm 6, we cannot retrieve the first coordinate of a point.
To be precise, if we want to evaluate f at the point (θE1×E2

i (P ))i, we have

H ◦ S((θE1×E2
i (P ))i) = (0, βθ̃A

10(f(P )), γθ̃A
01(f(P )), δθ̃A

11(f(P ))). (4)

Multiplying by β−1, γ−1 and δ−1 the components βθ̃A
10(f(P )), γθ̃A

01(f(P )),
δθ̃A

11(f(P )), we retrieve all the dual components but θ̃A
00(f(P )).

The component θ̃A
00(f(P )) can be computed using the additional information

coming from the theta structure. Let T ′
1 be the point above T1 ∈ K2 as in the

previous section. Then,

H ◦ S((θE1×E2
i (P + T ′

1))i) = (0, βθ̃A
00(f(P )), γθ̃A

11(f(P )), δθ̃A
01(f(P ))). (5)

However, multiplying the component βθ̃A
00(f(P )) by β−1 is not enough since we

are working up to projective factors.
Once we recover θ̃A

10(f(P )), θ̃A
01(f(P )), θ̃A

11(f(P )) from Eq. 4, we can compute
λθ̃A

01(f(P )) from Eq. 5 for some projective factor λ: we simply multiply the last
component of H ◦ S((θE1×E2

i (P + T ′
1))i) by δ−1. If θ̃A

01(f(P )) 	= 0, we can actu-
ally compute the inverse of the projective factor by θ̃A

01(f(P ))/(λθ̃A
01(f(P ))).

Otherwise, we repeat the same process with the second last component of
H ◦ S((θE1×E2

i (P + T ′
1))i).

Algorithm 9. Special Evaluation, α = 0
Input: Theta coordinates of P and P + T ′

1 and the “inverse” of the dual theta-null
point (0 : β−1 : γ−1 : 1) on A.

Output: Theta coordinates of f(P ). (�) Case α = 0
1: (0, YP , ZP , WP ) ← H ◦ S(xP , yP , zP , wP ) (�) Cost: 4S
2: (0, YP+T1 , ZP+T1 , WP+T1) ← H ◦ S(xP+T1 : yP+T1 : zP+T1 : wP+T1) (�) Cost: 4S
3: (Y ′

f(P ), Z
′
f(P ), W

′
f(P )) ← (β−1 · YP , γ−1 · ZP , WP )

4: if Z′
f(P ) 	= 0 then

5: λ−1 ← Z′
f(P )/WP+T1

6: else
7: Z′

f(P+T1)
← γ−1 · ZP+T1

8: λ−1 ← W ′
f(P )/Z

′
P+T1

9: X ′
f(P ) ← λ−1 · β−1 · YP+T1

10: (xf(P ), yf(P ), zf(P ), wf(P )) ← H(X ′
f(P ), Y

′
f(P ), Z

′
f(P ), W

′
f(P ))

11: return (xf(P ), yf(P ), zf(P ), wf(P )) (�)Total cost: 8S + 5M + 1I

Once we have λ, we extract θ̃A
00(f(P )) from the second component of H ◦

S((θE1×E2
i (P +T ′

1))i): we multiply the second component of H◦S((θE1×E2
i (P +

T ′
1))i) by λ−1 · β−1. Finally, we obtain the image of the point P under f via

H(θ̃A
00(f(P )), θ̃A

10(f(P )), θ̃A
01(f(P )), θ̃A

11(f(P ))).
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We summarise everything in Algorithm 9. Note that for both Algorithm 8 and 9,
the case for β, γ or δ = 0 follows almost identically, see the implementation for
a concrete example of how all cases can be considered concisely. We note that
Algorithm 9 requires the knowledge not only of the theta coordinates of P , but
also of P + T ′

1. From the knowledge of the (θi(P )) and (θi(T ′
1)), we may only

recover (θi(P ± T ′
1)), hence extract (θi(P + T ′

1)) via a square root, consistent
with the fact that in a gluing isogeny we have an ambiguity for images coming
from an action by Z/2Z. Luckily we can compute this addition on each elliptic
curve separately, using Weierstrass coordinates, before switching to the level-two
theta coordinates on the surface E1 × E2.

Splitting Isogeny. In this last step of the isogeny chain, we need to compute
an isogeny f : A → E′

1 × E′
2 mapping onto an elliptic product. We can compute

the theta-null point of E′
1 × E′

2 and mapping points under f using Algorithms 5
and 6. However, we still need to retrieve the explicit equations for the curves E′

1

and E′
2. This can be done using level-(2, 2) theta coordinates Ui,j .

Since the theta structure on the image surface underlies an elliptic product,
we know that one of the even indices – say (i, j) – of the level-(2, 2) theta-
null point is equal to zero. Also, we know that if we compute a symplectic
automorphism ψ mapping (i, j) onto (11, 11), the action of ψ on the theta-null
point obtained via Algorithm 5 gives back a theta-null point associated with the
product theta structure.

From the above, it can be seen that there are ten distinct even indices. For
each of these indices, we computed a symplectic automorphism sending this
index to (11, 11). For efficiency reasons, we hard-coded the action of each of the
symplectic automorphisms onto theta coordinates of level two in the reference
implementation. These symplectic automorphisms and their actions have been
derived from [39, p. 28] using the following sequential steps.

Let (i, j) be the even index such that Ui,j(0) = 0, and, for ease of notation,
let (a00 : a10 : a01 : a11) be the underlying theta-null point.

1. If i = j = 00, we act by the symplectic automorphism with matrix form
⎛
⎜⎜⎝

1 0 2 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

We then obtain the theta-null point (a00 :
√−1 · a10 : a01 :

√−1 · a11), which
means that U10,00(0) = 0.

2. If j = 00 and i 	= 00, we act by H, which swaps the roles of i and j. We can
now assume that j 	= 00.

3. Let A be any invertible matrix such that A · jT = 11T . Then, the action of
the symplectic automorphism with matrix

(
A 0
0 AT −1

)
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maps the theta-null point (a00 : a10 : a01 : a11) to (a00 : a10·AT : a01·AT :
a11·AT ). This means that Ui′,j′(0) = 0, where i′ = i · A and j′ = 11. We can
now assume that j = 11.

4. Now, either i = 00 or i = 11. If i = 11, we are done. Otherwise, we act by
the symplectic automorphism with matrix form

⎛
⎜⎜⎝

1 0 2 0
0 1 0 2
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

We then obtain the theta-null point (a00 :
√−1 · a10 :

√−1 · a01 : a11), which
means that U11,11(0) = 0.

Thus, we can assume we are now working on the product theta structure.
If (a : b : c : d) is a theta-null point on E1 × E2, from Proposition 3, it

follows that (a : b) is a theta-null point for E1 and (b : d) is a theta-null point
for E2. Also, if f(P ) = (P1, P2) ∈ E1 × E2 is represented in theta coordinates
as (x : y : z : w), we have that (x : y) is the representation of P1 in theta
coordinates for E1 and (y : w) is the representation of P2 in theta coordinates
for E2. Finally, to convert from theta coordinates to the Montgomery model we
can use the formulae in [43, Ch. 7, Appendix A.1], also rederived in Example 4.

4.2 Computing Isogenies Without Extra Isotropic Information

In this section, we relax the condition on the two points of order 2n+2 on E1×E2

above K forming an isotropic group. This does not represent a problem when
computing a (2n, 2n)-isogeny, except for the two last steps. We discuss two cases:
when we can work with 2n+2-torsion, and when we cannot.7

Let us discuss the former case. Let K = 〈P1, P2〉 ⊂ E1 × E2. To apply the
previous algorithm, we would like to have an isotropic 〈P ′′

1 , P ′′
2 〉 above K such

that Pi = [4]P ′′
i . However, it suffices to pick any Q′′

1 , Q′′
2 , not necessarily isotropic,

as long as Pi = [4]Q′′
i . Indeed, one can check that applying the algorithm of

Sect. 4.1 on these Q′′
i gives a theta-null point that differs from the one given by

isotropic P ′′
i by an automorphism of the theta group (see Sect. 2.1) induced by

a symplectic automorphism. Hence, it still corresponds to the correct codomain,
but with a different theta structure. We refer to [43, Ch. 7, Example B.4] for
more details.

In the latter case, we cannot use the 2n+2-torsion at all. A way to circumvent
this problem is to use square roots to compute the codomains for the last two
steps. Once we have the codomain, the image evaluation is unaffected. There is
no way to avoid the square root computations: the theta-null point requires a
theta structure of level two, so in particular a full basis of the two-torsion and
some extra information on the four-torsion. If we do not have the 2n+2-torsion
7 For instance, it is preferable not to work with the 2n+2-torsion when it is defined

over a field extension of the base field k.



An Algorithmic Approach to (2, 2)-Isogenies in the Theta Model 325

at the beginning, we miss the necessary information on the four-torsion at the
penultimate step and on the two-torsion on the last step. To reconstruct this
information requires making choices, hence taking square roots.

At the penultimate step f : A → B, we have T ′
1 and T ′

2 of four-torsion but
not the 8-torsion points T ′′

1 and T ′′
2 anymore. This means that on the codomain,

we only have the two-torsion determined. We have several choices of possible
compatible theta structure, but we still want to use the information at hand.

Let (α : β : γ : δ) be the dual theta-null point on B. Applying Eq. 2 to the
theta-null point (a : b : c : d), we have

H ◦ S(a : b : c : d) = (α2 : β2 : γ2 : δ2). (6)

Also, since f(T ′
1) is in K1 for the dual theta structure, we have

(
θ̃B

i (f(T ′
1))

)
i
= (β : α : δ : γ).

Therefore, from Eq. 2,

H ◦ S(
(
θA

i (T ′
1)

)
i
) = (αβ, αβ, γδ, γδ). (7)

Fix α = 1. From Eq. 6, we can compute any square root of β2 for β and any
square root of γ2 for γ. From Eq. 7 and β we can recover the correct lifting of
γδ, and in turn, we can recover δ. The four choices we can make on the square
roots of γ2 and δ2 describe different theta structures underlying the same abelian
surface since they differ by the action of a symplectic automorphism [43, Ch. 7,
Example B.3].

At the last step, we only have T1 and T2. As a result, we can only recover
the squares (α2 : β2 : γ2 : δ2) of the dual theta-null point (α : β : γ : δ). We can
fix α = 1 and compute β, γ, δ via three square roots. Once again, we can check
that these 8 choices all come from a valid theta structure [43, Ch. 7, Example
B.3].

To sum up, if the 2n+2-torsion is available, we need no square root. If the
2n+1-torsion is available, we need two square roots. If only the 2n-torsion is
available, we need 2 + 3 = 5 square roots.

5 Implementation

We have implemented the computation of an isogeny between elliptic prod-
ucts in the theta model using both the programming language Rust and the
computer algebra system SageMath version 10.2. The SageMath implementa-
tion has been designed to follow the API of isogenies between elliptic curves and
is intended to be a tool in both experimentation and in constructing proof-of-
concept implementations of isogeny-based cryptographic primitives. For those
who have previously relied on the SageMath implementation of [34], the func-
tion EllipticProductIsogeny(kernel, n) has been designed to be a drop-in
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replacement for the (2n, 2n)-isogeny computed using the Richelot correspondence
and the algorithms presented in [45].

The Rust implementation has been designed with constructive cryptographic
implementations in mind, and in particular, it has been written to be constant
time.8 The finite field arithmetic and certain elliptic curve functions have been
adapted from the crrl library [35] maintained by Thomas Pornin as well as
other ongoing collaborations. An effort has been made to ensure the code is
(reasonably) flexible so that without too much tweaking, this work can be ported
to other Rust projects. As an example of this flexibility, we show timings of
isogenies of various lengths between elliptic products over three distinct base
fields.

Both the SageMath and Rust implementations are made available via the
following GitHub repository: https://github.com/ThetaIsogenies/two-isogenies.

5.1 Performance

In this section, we include the performance of our algorithm for three distinct
isogeny chains between elliptic products over a range of base fields. We include
the timings for both the constant-time Rust implementation as well as the proof-
of-concept SageMath implementation, together with a comparison to previous
work on isogenies between elliptic products in the Mumford model [34] using the
optimisations introduced in the implementation of [2].

This triplet of comparisons has a twofold advantage. Firstly, the Rust imple-
mentation we present is the first (to our knowledge) constant time implemen-
tation of dimension two isogenies between elliptic products. By including the
timings of both our Rust implementation and the SageMath implementation,
we hope that researchers can estimate a performance gain if they were to write
efficient and cryptographically minded implementations following the proof-of-

Table 2. Running times of computing the codomain and evaluating a (2n, 2n)-isogeny
between elliptic products over the base field Fp2 . Times were recorded on an Intel Core
i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

Theta Theta Richelot Theta Theta Richelot

log p n Rust SageMathSageMath [34] Rust SageMathSageMath [34]

254 1262.13 ms 108 ms 1028 ms 161 µs 5.43 ms 114 ms

381 2089.05 ms 201 ms 1998 ms 411 µs 8.68 ms 208 ms

1293632 463 ms 1225 ms 12840 ms 17.8 ms 40.8 ms 1203 ms

8 The implementation assumes the kernel generators are good with respect to them
generating an isogeny between elliptic products. Designing the algorithm to run in
constant time with malformed input extends beyond the goals of this paper but
may be necessary for protection against side-channel attacks against schemes which
rely on this algorithm.

https://github.com/ThetaIsogenies/two-isogenies
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concept scripts which currently exist in the higher-dimensional isogeny-based
cryptography literature.

Secondly, our SageMath implementation allows an honest comparison of the
isogenies in the theta model to the Richelot isogenies in the Mumford model.
We compare against the implementation of [34] together with the additional
optimisations introduced for the proof-of-concept of [2] which offered more than
a two times speed up by optimising both the arithmetic on Jacobians as well as
the isogenies themselves.

The run-times displayed in Table 2 were captured on an Intel Core i7-
9750H CPU with a clock-speed of 2.6 GHz with turbo-boost disabled for sta-
ble measurements. The Rust code was compiled with the Rust compiler version
1.80.0-nightly with the flag -C target-cpu=native to allow the compiler
to use CPU specific opcodes (specifically, mulx for the finite field arithmetic).
The arithmetic is written using Rust, rather than optimised assembly for each
base field; the inclusion of which would allow dramatically faster results, espe-
cially for base fields with large characteristic. This form of optimisation is better
suited to particular protocols, and we would expect to see this in optimised
implementations of isogeny-based cryptographic primitives.

Comparing our SageMath implementation (version 10.2) to the isogeny chain
in the Mumford model, we find that the codomain computation is consistently
faster by a factor of ten, while the image computation is more than twenty
times faster. For the smaller characteristics studied, the Rust implementation is
approximately forty times faster than the same algorithm written in SageMath,
but this gap closes significantly for larger primes. For example, the FESTA sized
parameters run only 2.5 times faster than the SageMath code. Note that the Rust
implementation has been written to run in constant time and so the underlying
arithmetic between these two implementations is incomparable.9

We note here that an alternative and faster implementation of (2, 2)-isogenies
in the Mumford model is available in [19]. In this work, Kunzweiler uses Jaco-
bians of hyperelliptic curves in specific models which allows (2, 2)-isogeny chains
to be computed particularly efficiently. In the initial treatment of this work, iso-
genies between elliptic products were not considered, leading to FESTA [2] and
other projects to rely on [34]. However, Kunzweiler’s work can be adapted to
the case of isogenies between elliptic products. Additionally, Kunzweiler also has
an unpublished SageMath implementation of (2, 2)-isogenies using Kummer sur-
faces in the Mumford model rather than in the Jacobian model that she kindly
provided us.10 Comparing our results to the computations of Kummer surfaces
in the Mumford model is a fairer comparison as we work with level-two theta

9 It is not surprising to see this gap close though, as we expect for very large char-
acteristic that the SageMath overhead becomes negligible compared to the cost of
the arithmetic. As such, the comparisons of the two run-times boil down to com-
paring the Rust finite field arithmetic against the SageMath calls to the optimised
arithmetic of the C libraries it is built upon.

10 Kunzweiler’s isogenies between elliptic products using both Jacobians and Kummer
surfaces are now available via GitHub [20].
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Table 3. Comparison of the SageMath running times for a (2n, 2n)-isogeny between
elliptic products in the theta model against Kunzweiler’s implementation in the Mum-
ford model using both Jacobians and Kummer surfaces [20]. Times were recorded on
an Intel Core i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Theta JacobianKummer Theta JacobianKummer

254 126 108 ms 760 ms 467 ms 5.43 ms 66.7 ms 18.4 ms

381 208 201 ms 1478 ms 858 ms 8.68 ms 119 ms 31.4 ms

12936321225 ms 9196 ms 5150 ms 40.8 ms 593 ms 170 ms

coordinates, which are also on Kummer surfaces. Comparing against this imple-
mentation, the codomain computation in the theta model is around four times
faster than in the Mumford model, and evaluations are around four times faster.
We give detailed comparison timings in Table 3.

Although theta coordinates are faster, working in the Mumford model is
interesting when the level-two theta coordinates are not rational, which would
require using theta coordinates on a field extension. Since our domain is a prod-
uct of elliptic curves, the theta coordinates are rational when each elliptic curve
is described by rational theta coordinates. Following the discussion in Sect. 2.3,
an elliptic curve E has rational theta coordinates when E[4] is rational.

Comparison with Dimension One. In Table 4, we provide a timing compar-
ison using SageMath between a 2n-isogeny in dimension one using the efficient
formulae of [36] to our formulae in dimension two over the same base field. The
dimension two isogeny has degree 22n so is expected to be slower. Our timings
show a consistent factor-two slow down both for the codomain and image com-
putations in dimension two compared to dimension one. This is essentially the
best we could hope given the degrees, and actually better than expected.

The dominating costs of a 2n-isogeny are the intermediate doublings and
images. In the following we consider the more costly doublings and images
in dimension two which arise from avoiding inversion when computing the
codomain. First of all, we have around twice as many doublings and images
in dimension two than in dimension one because the kernel is of rank two. The
cost of doubling in dimension one is 4M+2S compared to 8M+8S in dimension
two, and an image is 4M compared to 4M + 4S in dimension two. Thus, while
images are twice slower, doublings are around 2.5× slower, and the intermediate
codomain computations are also slower. Furthermore, a lot of doublings are done
on the first step of the chain to get the first kernel, so on the elliptic product.

While it might seem at first glance that these doublings would only incur a
twofold slowdown, in practice, for the gluing images, we need to compute these
points in affine (x, y) coordinates rather than x-only coordinates to allow access
to addition laws.11

11 We could also use differential additions to compute [m]P, [m]P + T ′
1, but this would

be more expensive than just doubling in the affine model.
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Table 4. Comparison of the running times for a 2n-isogeny in dimension one and
dimension two over the same base field. Times were recorded on an Intel Core i7-9750H
CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Montgomery Theta Montgomery Theta

254 126 63 ms 108 ms 2.24 ms 5.43 ms

381 208 136 ms 201 ms 4.4 ms 8.68 ms

1293632 727 ms 1225 ms 20 ms 40.8 ms

So, all in all, we should expect a slowdown around 4× for perfect imple-
mentations. Our benchmarks show a slowdown slightly less than 2×, making
two-dimensional isogenies perform better than expected (by contrast, the 2×
slowdown for images is consistent with the theory). This is probably due to
SageMath overhead and the fact that the dimension one implementation has
been designed to allow arbitrary degree rather than only chains of two isogenies
and is missing some optimisations. A final caveat is that in dimension one, it
is faster to split the 2n-isogeny using the fast four-isogenies from [11] rather
than using two-isogenies – we did not do that in our comparison because we do
not have efficient four-isogeny formulae in dimension two yet. Still, taking into
account the degrees of the respective isogenies, this shows that our dimension
two formulae are quite competitive with the best dimension one formulae.

5.2 Implementation Details

In this section, we explain two optimisations we applied in the implementation.
The first one is a direct consequence of Remark 8, where we describe how to
lower the complexity of the codomain computation by reusing some constants.
The second optimisation consists in the application of optimal strategies [14] to
our case.

Reduce, Reuse, Recycle. A simple and obvious optimisation is to reuse as
many computations as possible throughout the isogeny chain. As mentioned in
Remark 8, for each step on the isogeny chain, we precompute six field elements
for doubling with a normalised null point at a cost of 4S + 21M + 1I or eight
field elements at a cost of 6S+ 16M for the projective null point. Knowledge of
these values allows the doubling of any theta point on the corresponding theta
structure to have a cost of 8S+6M and 8S+8M respectively, but it also allows
the following evaluation precomputation cost to be lowered from 13M and 6M
to 4M for both cases.

For the gluing isogeny, the basis change is determined from the kernel and so
cannot be precomputed. However, the last step at the end of the isogeny chain
requires to find a symplectic transformation that maps the zero even index to
the position (11, 11). As there are only ten even indices, we can precompute ten
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symplectic transforms which map any given zero even index to (11, 11). Comput-
ing the basis change is then only a matter of finding the current zero index and
from this, selecting the precomputed matrix and applying the transformation.

On Inversions. At each step of the isogeny chain, we compute one inversion
for the intermediate codomain. This inversion allows us to reduce the cost of
doublings on this codomain from 8M + 8S to 6M + 8S and the cost of images
from 4M + 4S to 3M + 4S. However, at the end of the isogeny chain, there
remain fewer doublings and images to compute, so it would be more efficient
to skip this inversion and occur the higher cost. The precise cutoff point would
depend on the relative cost of the inversion compared to a multiplication and
the number of doublings and evaluations required at each step along the chain.
This optimisation has not yet been implemented in our code, where we work
with projective null points along the whole chain for simplicity.

On Square Roots. As explained in Sect. 4.2, when we do not have the 2n+2-
torsion available, we need to compute some square roots at the end of the chain
(five square roots in total). This only changes the computation cost of the last two
codomains, and do not affect the images computations. The longer the isogeny
chain, the less impactful these square roots will be. With our SageMath imple-
mentation, we observed that the impact of these five square roots is completely
negligible for the chains we consider.

Optimal Strategies. As is now standard with computing long isogeny chains,
we can reduce the complexity of isogeny chains from a quadratic number of edges
in the graph of doublings and evaluations to quasi-linear following the “optimal
strategies” introduced in [14]. Essentially, the saving comes from reducing the
total number of doublings when computing the kernel for each step in the chain
by pushing through intermediate points encountered in the repeated doubling.
For isogenies in the theta model, the cost of images is half that of doubling, and
so shifting the cost in this way is particularly useful in optimisations.

Although this strategy was first discussed in dimension one for the case of
isogenies between elliptic curves, using it in dimension two is a natural
generalisation—see for instance [5]. For the dimension one case, the strategy
is computed from balancing the costs of doubling and evaluating the kernel gen-
erator through the chain. In dimension two, the (2, 2)-isogeny is generated by a
pair of elements which means twice the number of evaluations, but as the pair
of elements must also be doubled to obtain the kernel for each step, essentially
nothing changes. The cost weighting for the optimal strategies is a ratio between
doublings and evaluations, which means we can naively use an identical method
as described in [14] to compute a strategy for our isogeny chain.

Implementing the strategy with the weighting of doublings and images at
a cost of (2 : 1), we find an approximate ten times speed up in comparison to an
implementation with no strategy. Concretely, for the Rust implementation of the
isogeny chain of length n = 208, we see a speed up from 107 ms to 11.4 ms.

However, unlike the isogeny chains between elliptic curves, the isogeny chain
between elliptic products in our implementation does not have the same costs
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for every step. For steps in the chain between generic theta structures, the cost
weighting is indeed (2 : 1). However, for the first gluing isogeny, doubling an
element on the product structure has a cost of 12S+12M while the cost for the
image is much more expensive.

To compute the image of a point P ∈ E1 × E2 one must first compute the
shift P + T ′

1 for a cost of 10S+ 32M to projectively add a pair of points. Then,
for each of these two points on the product, there is a cost of 4M to compute
the corresponding theta point from elliptic curve coordinates, and an additional
16M required perform the matrix multiplication for the basis change to ensure
a compatible representation. Altogether, this precomputation costs 10S+ 72M.
Given the theta point corresponding to the pair of points on the product struc-
ture, there is still then the final cost of 8S + 5M + 1I for the special image
itself. Furthermore, for this to be implemented in constant time, both branches
depending on whether a coordinate is zero or not must be evaluated, raising the
practical cost to 8S + 10M + 1I.

On the whole, a gluing image costs 18S+82M+1I, making it approximately
seven times the cost of the doubling for this first step and fourteen times the
cost of a regular image. Visualising the graph of doublings and images as in [14,
Figure 2], this means we must weigh the cost of moving down the left most branch
with the product doubling and the first step right from the leftmost branch with
this high-cost gluing image.

Taking this into account, an optimised strategy for the isogeny between ellip-
tic products for our formula must be tweaked from the original case to find the
right balance of doublings and expensive images from this left branch. Applying
this modification, we are able to find the “proper” optimised strategy, which
further reduces the run-time of the isogeny chain computation by approximately
2%.12 For the same chain as above, we see a computation time improve from
11.4ms to 11.2ms. For an explicit description for computing the optimised strat-
egy with a different costs on the left-most branch, see the implementation.

5.3 An Application: FESTA

As an explicit, cryptographic example of the new isogeny formula, we can take
our implementation and use it to compute the isogeny between elliptic products
which is required within the decryption algorithm of the isogeny-based public
key encryption protocol FESTA-128 [2]. Concretely, this requires computing an
isogeny of length n = 632, where the base field has a characteristic with log p =
1293 bits, and the evaluation of a pair of points on the elliptic product L1 =
(R1, R2) and L2 = (S1, S2), Li ∈ E1 × E2.

A direct swap from the isogeny chain derived from the Richelot correspon-
dence used in the FESTA proof-of-concept would require using Sect. 4.2 to com-

12 As an aside, in the original discussion of the optimised costings, it is shown that
a 2–3% improvement is gained by moving from a balanced to optimised strategy.
Seeing a similar saving from the naive (2 : 1) weighted optimisation to one carefully
handling the cost of the gluing step is then within our expectations.
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pute the final two steps without the eight-torsion above the kernel. An implemen-
tation of this is available in SageMath, but for the purpose of FESTA, we instead
propose to tweak the 128-bit parameter set to instead allow for the additional
torsion information to be known, allowing the isogeny chain to be computed as
fast as possible while only including an additional two bits in the masked torsion
data.13

We find that our SageMath implementation of the codomain computation has
a ten times speed up compared to the proof-of-concept code accompanying [2],
and evaluating the pair of points is now thirty times faster. As a hint to what
approximate running times may be for FESTA, computing the codomain and
both images using our Rust implementation takes only 563ms, a 2.5 times speed
up over the SageMath implementation. Note that these computation are pre-
cisely that of the final row of Table 2. Optimisations of the finite field arithmetic
could offer substantial speed ups, as seen in the optimised assembly implemen-
tations for large characteristic SIDH [18, Table 2.1] and the efficient algorithms
of [22].

In SageMath, the novel algorithms we present here offer a four times speed
up in decryption, with run-times for FESTA-128 being reduced from 20.7 s to
only 5.4 s. When computing the dimension two isogeny in the theta model, the
time spent for the (2n, 2n)-isogeny shrinks from 70% of the run-time to only 25%,
with the remaining computation time spent in dimension one, computing various
discrete logarithms and Weil pairings to complete the decryption routine.

6 Conclusions

In this paper, we have described and implemented formulae to compute (2n, 2n)-
isogenies between elliptic products in the theta model. The main goal was to
provide a comprehensive and self-contained treatment of the theta model, spe-
cialising to the two-dimensional case.

Our algorithm significantly outperforms the previous method in [2,34]: in
SageMath, the codomain computation is ten times faster, while the isogeny eval-
uation is more than twenty times faster. The implementation in Rust has been
written to run in constant time, with cryptographic implementations in mind.
It runs up to forty times faster than the same algorithm written in SageMath.

We tested our algorithm on the proof-of-concept implementation in [2] and
showed a fourfold speed up in decryption, highlighting that the slowest part
is now given by the computations in dimension one. Furthermore, our Sage-
Math implementation has been designed to allow protocols whose implemen-
tation relies on the previous proof-of-concept in [2] to be easily upgradeable,
allowing the theta model code to be used in many more projects without too
much work. Ultimately, the aim is to provide a new tool to facilitate research in
higher-dimensional isogeny-based cryptography, allowing us to better understand
the practical role of higher-dimensional isogenies in constructive applications.

13 SageMath benchmark of FESTA isogeny.

https://github.com/ThetaIsogenies/two-isogenies/blob/main/Theta-SageMath/benchmarks/benchmark_paper.py#L177
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A The General Case

In this section, we briefly explain how to compute a general (2n, 2n)-isogeny
between Kummer surfaces (with decomposable or indecomposable polarisations).

In theory, using the theta model would give an uniform approach to handle
both Jacobian of hyperelliptic curves of genus two and product of elliptic curves.
However, in order to achieve the best performance, we rely on a theta model of
level two rather than higher level n > 2 (since in level n we have ng theta
coordinates), which yields the following technical difficulty.

Let A be a principally polarised abelian surface. If A corresponds to a Jaco-
bian, then the level-two theta coordinates give an embedding of the Kummer
surface A/ ± 1. However, as explained in the main text, if A = E1 × E2

is a product of two elliptic curves (with their product polarisation), then
the level-two theta coordinates give an embedding of the product of Kum-
mer lines (E1/ ± 1) × (E2/ ± 1). In particular, we do not get an embedding
of (E1 × E2)/ ± 1 but of a further quotient.

As a consequence, for a gluing image (E1/ ± 1) × (E2/ ± 1) → A/ ± 1,
knowing a point P = (±P1,±P2) is not enough to determine its image in A: we
need extra data. This is why we had to use a special algorithm for the gluing
isogeny in Sect. 4. In practice, the gluing case can be detected when some of our
intermediate theta constants are zero. As mentioned above, if we were working in
level n > 2, we would always have enough non-zero theta constants to compute
images in all cases (by [29]), but we need an alternative strategy for n = 2.

We now explain how to deal with all cases for a (2n, 2n)-isogeny A → B in
level two with kernel K. In the main text, we already dealt with the case where
both A,B are product of elliptic curves, but none of the intermediate abelian
surfaces are.

1. When the codomain B is not a product. In this case we proceed as in
the main algorithm, except we do not need to find a product theta structure
in the end. If needed, to recover B as a Jacobian and to convert between
theta coordinates and Mumford coordinates, we can use Thomae’s formula
and the conversion formula from [32], see also [8,9,47].

2. When the domain A is not a product. If A and the kernel are already
described by theta coordinates, we first need to do a symplectic change of
theta coordinate to make the kernel compatible with our theta structure. To
compute this change of basis, we can proceed as in Sect. 2.3 by taking suitable
traces under the symmetric elements of the theta group induced by K[4]. For
the case of a product of elliptic curves, we had to give the explicit action
of the symmetric theta group element corresponding to a couple of points
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of four-torsion of elliptic curves on the product of coordinates. In our case,
since we already have theta coordinates, this action is already encoded by our
theta structure. We refer to the change of coordinates formulae provided in
[12, Theorem 12].
If A, which is a Jacobian Jac(C) under our hypothesis, is described by the
curve C and the kernel K has its generators given in Mumford coordinates, we
first need to convert into theta coordinates, using the formulae of [8,9,32,47]
as above. In that case, Kunzweiler has formulae14 for how to take the fourth-
roots in Thomae’s formula that directly give the theta constants compatible
with the kernel; this allows to bypass the change of basis step once we have
the theta coordinates.

3. When the first step is between elliptic products. If the chain begins
with a (2, 2)-isogeny between products Φ : E1×E2 → E′

1×E′
2, the isogeny Φ is

a diagonal isogeny, i.e. Φ =
(

φ1 0
0 φ2

)
, where φi : Ei → E′

i is a one-dimensional

isogeny. This cases reduces to first computing the one-dimensional isogenies
φi’s to encode the first step and then resuming from the resulting elliptic
product.
The only other possibility is that we have an isogeny diamond (i.e., a Kani
square) with isogenies of degree one (i.e., isomorphisms). Then Kani’s lemma
give a (2, 2)-isogeny Φ. For instance if we take E1 = E2 = E′

1 = E′
2 = E and

we consider the automorphisms Id : Ei → Ei; then we obtain the two-isogeny
Φ : (P,Q) �→ (P +Q,P −Q), and whose kernel is {(T, T ) | T ∈ E[2]}. All other
(2, 2)-isogenies E ×E → E ×E which are not given by diagonal two-isogenies
in dimension one are variant of this Φ where we apply some automorphisms
to P or Q before. (This only gives a different kernel when j(E) = 0 or
j(E) = 1728 and we have non trivial automorphisms, i.e. different from ±1).

4. An intermediate abelian surface is a product. In that case, the easiest
solution would be to restart the computation using level n = 4 (which requires
16 coordinates rather than four), or the representation from [23] (which
requires eight coordinates), because they give embeddings of the abelian sur-
faces in both the product and non product case, and allow to treat both cases
uniformly.
Another solution is to switch to the representation from [23] on the fly. Let us
treat the case of a gluing directly followed by a splitting: A → E1 × E2 → B,
with Φ1 : A → E1 × E2 and Φ2 : E1 × E2 → B.
The splitting step can be handled as in the main text, where we had to com-
pute a splitting as the last step; namely we can compute a product theta
structure on E1 × E2. The difference is that now, we are not at the last step
anymore, so we still need to compute a gluing image afterwards.
For reasons explained above, knowing Φ1(P ) in level-two theta coordinates
is not enough to compute the gluing Φ2 ◦ Φ1(P ). As in Sect. 4, for the gluing
we need Φ1(P ) and Φ1(P ) + T ′ in level-two coordinates, for T ′ a point of
four-torsion in E1 × E2.

14 Private communication.
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One way to obtain these point is to take T ′′ ∈ A a point of 8-torsion in A,
above ker Φ2 ◦Φ1. We compute a representation of the set {P ±T ′′} using the
formulae of [23], and we compute Φ1(P ), {Φ1(P ± T ′′)} in level-two coor-
dinates. From our choice of T ′′ we have that T ′ = Φ1(T ′′) is a point of
four-torsion in E1 × E2. We do not quite have Φ1(P ), Φ1(P ) + T ′, but only
Φ1(P ) ± T ′. However, from our choice of T ′′ we have that Φ2(T ′) is a point
of two-torsion, hence the two points Φ2 ◦ Φ1(P ) ± Φ2(T ′) are the same. This
means that we can use our gluing algorithm as before.
The case where we have m several successive product A → E1 × E2 →
E′

1 × E′
2 → · · · → B can be treated in a similar way, by taking a point T ′′

of 2m+2-torsion above the kernel of A → B, pushing P, P ± T ′′ through the
splitting isogeny and the intermediate isogenies, then taking a final gluing
isogeny.
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Abstract. We introduce SQIsign2D–West, a variant of SQIsign using
two-dimensional isogeny representations.

SQIsignHD introduced four- and eight-dimensional isogeny represen-
tations to improve signing times and provable security of SQIsign, at the
cost of slower verification. It left open the question of leveraging two-
dimensional representations, which we solve here by introducing new
algorithmic tools. These lead to a “best-of-both-worlds” scheme: our
signing times are only 2× to 3× slower than SQIsignHD but 10× to
15× faster than SQIsign, our security proof rigorously reduces to an
assumption similar to the one behind SQIsignHD, and our verification
times are the fastest among all present variants of SQIsign. Addition-
ally, like SQIsignHD, SQIsign2D–West favourably scales to high levels of
security.

Concretely, for NIST level I we achieve signing times of 80 ms and ver-
ifying times of 4.5 ms, using optimised arithmetic for the x86 64 archi-
tecture. For NIST level V, we achieve 470 ms for signing and 31 ms for
verifying.

Keywords: Isogenies · Post-quantum · Signatures

1 Introduction

SQIsign [9,14] is a signature scheme based on the conjectured hardness of com-
puting endomorphism rings of supersingular curves. A candidate in the NIST
post-quantum cryptography standardisation process, it features the smallest
combined size of public key and signature, but it also exhibits one the slow-
est performances among all candidates.

The SIDH attacks [8,30,39] shook the foundations of isogeny-based cryptog-
raphy by showing that any isogeny can be efficiently recovered from its evalua-
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Table 1. Parameter sizes and performance of SQIsign2D–West. Average running times
computed using an Intel Xeon Gold 6338 (Ice Lake, 2 GHz) using finite field arithmetic
optimised for the x64 architecture, turbo boost disabled. See Sect. 6 for details.

Sizes (bytes) Timings (ms)

Public key Signature Keygen Sign Verify

NIST I 66 148 30 80 4.5

NIST III 98 222 85 230 14.5

NIST V 130 294 180 470 31.0

SIDH/SIKE [24,25] and related schemes, it was not long before the same tech-
nique was put to constructive use, notably in the encryption schemes FESTA [4]
and QFESTA [31], and in the SQIsignHD [11] variant of SQIsign. The key to
all these applications is to embed an isogeny of elliptic curves into an isogeny
between higher-dimensional abelian varieties. The number of dimensions used for
the embedding is a key parameter for efficiency: Robert [38] shows that 8 dimen-
sions are always enough, however the cost of representing the higher-dimensional
objects grows exponentially with the dimension, thus all practical constructions
strive to limit the embedding dimension. For example, FESTA and QFESTA
manage to restrict themselves to two-dimensional isogenies.

In the same vein, SQIsignHD consists of two sub-variants. The first, Rigorous-
SQIsignHD, uses eight-dimensional isogenies and strives for the best possible
provable security but is deemed unpractical. The second, FastSQIsignHD, uses
four-dimensional isogenies and compromises on the security proof to achieve
the best possible efficiency: the result is a signature scheme with smaller signa-
tures than SQIsign, similarly sized public keys, and significantly faster signing
times, but, realistically, slower verification owing to the complexity of the four-
dimensional representation.

Our Contributions. The question of whether it is possible to obtain an
improvement over SQIsign by using only two-dimensional isogenies was left open
in [11], where a short paragraph commented on the apparent difficulty of this
task. We answer this question in the affirmative by introducing SQIsign2D–West.

To achieve this we introduce new tools for computing higher-dimensional
isogeny representations in the context of supersingular elliptic curves:

– An algorithm, a simple extension of [31, Algorithm 2], to evaluate a random
elliptic isogeny of given degree by embedding it in a two-dimensional isogeny;

– An algorithm, inspired by [34], to translate a quaternion ideal into a two-
dimensional representation of the corresponding elliptic curve isogeny. Com-
bined with an algorithm to sample uniformly random quaternion ideals of
given norm, it lets the signer uniformly generate isogenies to be transmitted
to the verifier.

We give concrete parametrisations of SQIsign2D–West for NIST security lev-
els I, III and V, and implement them, using both generic and optimised modular
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arithmetic. With key and signature sizes as reported in Table 1, it is comparable
to SQIsignHD in terms of bandwidth. Our benchmarks highlight a consistent
improvement over SQIsign across the whole spectrum, slightly slower signing
performance than FastSQIsignHD but much faster than SQIsign, and the fastest
verification among all variants of SQIsign. Because prime characteristics in the
shape required by SQIsign2D–West are abundant, our variant, unlike SQIsign,
does not need a costly search for a “SQIsign-friendly” prime and thus scales
seamlessly to high security levels.

Our security proof shows that the security of SQIsign2D–West reduces to the
problem of computing the endomorphism ring of a random supersingular curve,
in a security model where the attacker is given (classical) access to an oracle
computing (higher-dimensional representations of) uniformly random isogenies
from a given curve. Hence, compared to SQIsignHD, SQIsign2D–West manages
to blend the efficiency gains of FastSQIsignHD with security guarantees simi-
lar to RigorousSQIsignHD.

The algorithmic tools we introduce are very flexible, and we considered sev-
eral variants with different trade offs between provable security and speed. In
the main text, we focus on the most secure variant: our security proof follows
the blueprint of RigorousSQIsignHD and achieves a reduction to the endomor-
phism ring problem, provided an isogeny-sampling oracle. By contrast the proof
of unforgeability for SQIsign essentially assumes that the signing oracle does not
leak information on the secrets. Nevertheless, if one is ready to accept heuris-
tic security (roughly similar to the heuristics used in FastSQIsignHD, so still
cleaner than the heuristics of SQIsign), it is possible to modify SQIsign2D–West
to obtain even faster signing. We describe this variant in [3, Appendix B]

Related Work. Besides SQIsignHD, there is a growing interest in finding more
efficient variants of SQIsign. The recent work AprèsSQI [41] achieves promising
savings in verification, while keeping the general structure of SQIsign the same
(in particular, AprèsSQI does not use higher dimensional isogenies). The key idea
is to use larger extensions of the base field to access more small-order points of
the curves, and thus more easy-to-compute isogenies. Nevertheless, because it
does not change the overall structure, AprèsSQI suffers from the same problems
as SQIsign when it comes to scaling: suitable primes are difficult to find and
negatively impact the performance of high security levels.

While preparing this work, we were informed of three concurrent projects
with similar objectives. What they have in common is the use of two-dimensional
isogeny representations and prime characteristics of similar shape. In particular,
they all scale to higher security levels more favourably than SQIsign. We briefly
discuss the differences with our work below.

1. In [32], Nakagawa and Onuki first introduce an algorithm to translate ideals to
isogenies relying on the computation of two-dimensional isogenies. This algo-
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rithm is reminiscent of the techniques used in [19]; in particular, it is signifi-
cantly different from the one we introduce in Sect. 3.2. Then, they apply the
algorithm to SQIsign. Their proof-of concept implementation in Julia sug-
gests an improvement over SQIsign for key generation and signing, especially
at higher security levels. The proof of security, however, remains heuristic.

2. In [33], Nakagawa and Onuki design SQIsign2D-East, a version of SQIsign
where verification requires a computation of a two-dimensional isogeny. This
idea shares many similarities with the heuristic version we describe in [3,
Appendix B]. At the time of writing, we were not provided an implementation,
but we expect SQIsign2D-East to have performance similar to our heuristic
version. The main difference between this work and ours is the rigorous proof
of security of SQIsign2D–West, which appears difficult to emulate with SQI-
sign2D-East.
Very recent work [7] shows that the version of SQIsign2D-East described
in [33] did not reach the security levels claimed. The authors of [7] also present
a new version of SQIsign2D-East that thwarts their attack. We highlight that
this attack does not apply to SQIsign2D–West.

3. In [19], Duparc and Fouotsa introduce another version of SQIsign, called
SQIPrime. SQIPrime is the closest to SQIsignHD of all the variants, the main
difference being the type of challenge used in the identification protocol. The
authors describe two versions, one using two-dimensional isogeny represen-
tations and another using four-dimensional ones. The security of either is
close to FastSQIsignHD, and thus less rigorous than ours. No implementa-
tion of SQIPrime is available at the time, but we expect the four-dimensional
variant to perform similarly to SQIsignHD, and the two-dimensional variant
to perform similarly to SQIsign2D-East/West, albeit with larger keys and
signatures.

For conciseness, from now on we will use SQIsign2D to refer to our proto-
col, only using SQIsign2D–West when it is needed to distinguish it from other
variants.

Plan. We start by reviewing some mathematical background and the funda-
mentals of SQIsign and its variants in Sect. 2. In Sect. 3 we introduce our new
algorithms to compute two-dimensional representations of isogenies. Building on
these we give in Sect. 4 a detailed description of the SQIsign2D identification pro-
tocol, and provide a formal proof of its security in Sect. 5. Finally in Sect. 6 we
describe our implementation of SQIsign2D–West and of its heuristic variant, and
report on their performance. For space reasons, we describe the aforementioned
heuristic variant in [3, Appendix A].
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2 Preliminaries

In this section, we recall some background knowledge about the Deuring cor-
respondence and isogenies between products of two elliptic curves. We assume
some familiarity with elliptic curves and their isogenies and refer to [13,42] for
more information.

2.1 The Deuring Correspondence

We now give a brief summary of the theory of the Deuring correspondence,
following the approach in [29, Chapter 2]. Let p > 3 be a prime ≡ 3 (mod 4)
and let Bp,∞ be the unique quaternion algebra ramified at p and ∞, i.e. Bp,∞ =
Q〈i, j〉, where i2 = −1 and j2 = −p. Given a fractional ideal I, we define its left
order as OL(I) = {α ∈ Bp,∞ | αI ⊂ I}; similarly, one can define its right order
OR(I).

In [17], Deuring showed an equivalence between maximal orders in Bp,∞
and supersingular elliptic curves defined over Fp2 . From now on, we will refer
to this equivalence as the Deuring correspondence. Under this correspondence,
an isogeny ϕ : E1 → E2 corresponds to a fractional ideal Iϕ, where OL(Iϕ) ∼=
End(E1) and OR(Iϕ) ∼= End(E2). Moreover, deg(ϕ) = nrd(Iϕ).

Given two isogenies ϕ1 : E → E1 and ϕ2 : E → E2 of coprime degrees,
we denote by [ϕ1]∗ϕ2 : E1 → E′ the pushforward isogeny of ϕ2 under ϕ1, i.e.
ker([ϕ1]∗ϕ2) = ϕ1(ker(ϕ2)). Equivalently, we define the pushforward of Iϕ2 under
Iϕ1 as the ideal corresponding to the isogeny [ϕ1]∗ϕ2.

A problem we will face in the following sections is to compute the ideal
associated to a given kernel generator. To be more precise, we are given an
isogeny ϕ : E0 → E, where we know O0

∼= End(E0) and its associated ideal
Iϕ. We also have a point K ∈ E of smooth order D coprime to deg(ϕ), which
describes the kernel of an isogeny ψ : E → E′. Our goal is to compute Iψ, the
ideal corresponding to ψ.

We can accomplish this goal using the algorithm [11, Algorithm 9]. In partic-
ular, we first push O0 under ϕ via [11, Algorithm 8] and then use [11, Algorithm
9] to retrieve Iψ. In our use case, we want to avoid running [11, Algorithm 8]
and [11, Algorithm 9] on the fly but rather allow some precomputations. Let
(P,Q) be a basis E[D] and write K as [a]P + [b]Q. In [11, Algorithm 9, Line 1],
we have to evaluate a basis (β1, β2, β3, β4) of the right order of Iϕ at K. This is
equivalent to evaluating (β1, β2, β3, β4) at the basis (P,Q) and then retrieving
βi(K) as [a]βi(P ) + [b]βi(Q).

In what follows, we use the notation {βi(P ), βi(Q)}i=1,...,4 to mean that we
have evaluated a basis (β1, β2, β3, β4) of the right order of Iϕ at (P,Q) via [11,
Algorithm 9]. Additionally, we say that we use the datum {βi(P ), βi(Q)}i=1,...,4 to
compute Iψ when we evaluate (β1, β2, β3, β4) at K as ([a]βi(P )+ [b]βi(Q))i=1,...,4

and then run the rest of [11, Algorithm 9] to obtain Iψ.
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2.2 Kani’s Lemma

Throughout this document we will encounter several different ways to represent
isogenies of elliptic curves. We abstract the details into the concept of isogeny
representation, which essentially says that representing an isogeny is having an
efficient algorithm to evaluate it.

Definition 1. Let Fq be a finite field. An isogeny evaluator E is a pair of
polynomial-time algorithms:

– E .valid(D) taking as input a string D ∈ {0, 1}∗ and outputting either a
symbol ⊥ or a triple (E,E′, d); in the latter case, E and E′ are elliptic curves
defined over Fq and there exists an isogeny ϕ : E → E′ of degree d.

– E .eval(D,P ) taking as input a string D ∈ {0, 1}∗ and a point P ∈ E(Fqk);
if E .valid(D) = (E,E′, d) it outputs the image point ϕ(P ) ∈ E′(Fqk), oth-
erwise the output is undefined.

In the case that D is of size polynomial in log(q) and log(d) and that E .valid(D)
does not output ⊥, the string D is called an efficient representation of ϕ (for the
evaluator E ).

The article [38] shows that any isogeny can be efficiently represented as the
datum of its evaluation on a suitably chosen set of points, then gives an efficient
algorithm, akin to an interpolation-evaluation algorithm, which, on input an
arbitrary point x and the evaluation datum, outputs the value of the isogeny at x.
We will only need a special case of this construction, embedding an arbitrary
dimension-one n-isogeny into a two-dimensional 2e-isogeny where 2e > n. Let us
first recall the notion of (d1, d2)-isogeny diamond.

Definition 2. A (d1, d2)-isogeny diamond is a commutative diagram of isoge-
nies:

E2

E0 E1

E12

ϕ1

ϕ2

ϕ′
1

ϕ′
2�

where ϕ1 : E0 → E1 and ϕ′
1 : E2 → E12 are d1-isogenies, ϕ2 : E0 → E2 and

ϕ′
2 : E1 → E12 are d2-isogenies.

We can now state Kani’s Lemma, which is contained in [26, Section 2, Proof
of Theorem 2.3]. We refer to [30, Theorem 1] for a proof of this result.

Theorem 4 (Kani’s Lemma). Let d1 and d2 be two coprime positive integers.
Given a (d1, d2)-isogeny diamond, the isogeny Φ : E0 × E12 → E1 × E2 given
matricially by

Φ =
(

ϕ1 ϕ̂′
2

−ϕ2 ϕ̂′
1

)
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is a (d1+d2)-isogeny between these products of elliptic curves with their principal
product polarisation. The kernel of Φ is given by

Ker Φ = {(ϕ̂1(P ), ϕ′
2(P )) | P ∈ E1[d1 + d2]}.

2.3 The SQIsign family

SQIsign and SQIsignHD. SQIsign is a digital signature scheme obtained via
the Fiat-Shamir transform [21] of an identification protocol. This protocol is
built on the Deuring correspondence between quaternion ideals and isogenies.
SQIsign and SQIsignHD mainly differ in the way of making the Deuring cor-
respondence effective. While SQIsign only works with smooth degree isogenies
between supersingular elliptic curves, SQIsignHD uses four-dimensional isoge-
nies in the verification process. In the following, we present the main building
blocks of SQIsign (and SQIsignHD) identification protocol which will be used in
SQIsign2D.

Public Set-Up. We choose a prime p and a supersingular elliptic curve E0/Fp2

of known endomorphism ring O0
∼= End(E0) such that E0 has smooth torsion

defined over a small extension of Fp2 (of degree 1 or 2). In practice, one may use
the curve E0 : y2 = x3 + x (and p ≡ 3 mod 4).

Key Generation. The prover generates a random secret isogeny ϕsk : E0 → Epk

and publishes Epk as its public key.

Commitment. The prover generates a random secret isogeny ϕcom : E0 → Ecom

and sends Ecom to the verifier as its commitment. For the identification protocol
to be zero-knowledge (and the derived signature scheme to be secure), Ecom has
to be computationally indistinguishable from a uniformly random elliptic curve
in the supersingular isogeny graph.

Challenge. The verifier generates and sends to the prover a random isogeny
ϕchl : Epk → Echl of smooth degree sufficiently large for ϕ to have high entropy.
The challenge space should have size Ω(2λ) to ensure λ bits of (soundness)
security.

Response. The prover generates and transmits to the verifier an efficient rep-
resentation (as defined in Definition 1) of an isogeny ϕrsp : Ecom → Echl which
does not backtrack through ϕchl (i.e. ϕ̂rsp ◦ ϕchl is cyclic).

Verification. The verifier checks that the response returned by the prover cor-
rectly represents an isogeny ϕrsp : Ecom → Echl and checks that this isogeny does
not backtrack through ϕchl. The diagram in Fig. 1 illustrates the relationship
between the various isogenies computed by the protocol.

To compute such an efficient representation of ϕrsp (that will be called ϕrsp

by abuse of notations), the prover uses the Deuring correspondence. Returning
ϕrsp = ϕchl ◦ ϕsk ◦ ϕ̂com : Ecom → Echl would make the scheme insecure. However,
the prover can translate ϕchl◦ϕsk◦ϕ̂com into an ideal I connecting End(Ecom) and
End(Echl), find a random equivalent ideal Irsp ∼ I and translate Irsp into ϕrsp.
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Fig. 1. The SQIsign/SQIsignHD identification protocol. Dashed red lines represent
secrets. (Color figure online)

The ideal Irsp ∼ I is sampled to be relatively easy to translate into an isogeny
and with a distribution that ensures one can simulate the response without secret
knowledge (zero knowledge property). Those two objectives are in tension and
lead to a trade-off between efficiency and rigorous security proofs. In SQIsign,
nrd(Irsp) had to be smooth to make the ideal to isogeny translation possible. The
KLPT algorithm [28] was used to find Irsp, resulting in big norms nrd(Irsp) ≈
p15/4, slow ideal to isogeny translation and a very heuristic security proof.

In SQIsignHD [11], the smoothness condition on Irsp is relaxed, allowing for
smaller norms, a stronger security proof and a faster response at the expense
of the verification time. The idea is to use the higher-dimensional SIDH attack
techniques [8,30,39] to represent ϕrsp. The prover uses the secret knowledge of
ϕchl ◦ ϕsk ◦ ϕ̂com to evaluate ϕrsp on some torsion points. This torsion evaluation
(along with deg(ϕrsp)) is an efficient representation of ϕrsp that can be sent to
the verifier. To verify the validity of this representation, the verifier computes a
four-dimensional isogeny that “embeds” ϕrsp by Kani’s Lemma. The efficiency
of four-dimensional isogeny computation is still an open research question. How-
ever, SQIsignHD verification is expected to be slower than SQIsign verification,
especially after the latest improvements of AprèsSQI [41]. This was the main
motivation for our contribution: accelerate the verification while maintaining a
fast signing procedure and strong security proofs (with two-dimensional isogeny
computations).

What Makes SQIsign2D Different from SQIsign and SQIsignHD. As a
derivative of SQIsign, SQIsign2D follows the same construction presented above
but uses different techniques involving two-dimensional isogeny computations.
To perform the verification, we “embed” the response ϕrsp : Ecom → Echl into
a two-dimensional 2r-isogeny. The bottleneck is to find an auxiliary isogeny
ϕaux : Echl → Eaux of degree 2r −deg(ϕrsp) to complete the isogeny diamond and
apply Kani’s Lemma. Additionally, the distribution of ϕaux needs to be uniform
in order to simplify the proof of the zero knowledge property.

We overcome these issues with an algorithm to sample quaternion ideals
of fixed norm with a uniform distribution (called RandomFixedNormIdeal) and
another algorithm (called IdealToIsogeny) to translate any left ideal of the order
O0

∼= End(E0) (with j(E0) = 1728) into an isogeny. IdealToIsogeny uses two-
dimensional isogenies and is inspired from the Clapoti algorithm introduced
in [34] and RandIsogImages introduced in QFESTA [31, Algorithm 2]. Both Ran-
domFixedNormIdeal and IdealToIsogeny are also used in the key generation and
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commitment steps to obtain statistically uniform distributions of Epk and Ecom,
with a clear security benefit.

3 Algorithmic Building Blocks

In this section, we present the main algorithmic building blocks of SQIsign-
2D to make the Deuring correspondence effective. We assume we are given a
cryptographic size prime p = c ·2e −1 with e ∈ N and c ∈ N as small as possible.
We can find such p with c = O(log(p)) by Dirichlet’s arithmetic progression
theorem [18]. We denote by E0 the supersingular elliptic curve given by y2 =
x3 + x over Fp and by O0 a maximal quaternion order isomorphic to End(E0).

First, we briefly introduce FixedDegreeIsogeny, an algorithm to compute the
kernel ideal and to evaluate an isogeny of fixed odd degree defined over E0, which
is almost identical to RandIsogImages introduced in QFESTA [31, Algorithm 2].
Then, we present an algorithm IdealToIsogeny to translate any left ideal of O0

into an efficient representation of isogeny defined over E0. We finally present an
algorithm RandomFixedNormIdeal to sample left ideals of a given maximal order
O ⊆ Bp,∞ of fixed norm with a uniform distribution.

3.1 Generating an Arbitrary Odd-Degree Isogeny from E0

In QFESTA [31], Nakagawa and Onuki introduce an algorithm RandIsogImages
to compute non-smooth isogenies originating from E0. For SQIsign2D, we use
their idea and tweak it to construct the FixedDegreeIsogeny algorithm which:

– Takes as input an odd positive integer u < 2e and a basis (P0, Q0) of E0[2e].
– Returns the torsion image points ϕ|2e = (ϕ(P0), ϕ(Q0)) and the codomain

E, where ϕ : E0 → E is a u-isogeny (as in RandIsogImages), along with its
corresponding ideal I (not returned by RandIsogImages).

In the rest of the paper, we will use the notation ϕ|N to refer to the action of ϕ
on E0[N ]. In practice, when we write ϕ|N , we mean ϕ(P ) and ϕ(Q), for some
basis 〈P,Q〉 = E0[N ] (as above). A detailed description of FixedDegreeIsogeny is
provided in [3, Appendix A.1]. It involves Kani’s Lemma and the computation
of a 2e-isogeny.

3.2 Translating a Left Ideal Into an Efficient Isogeny Representation

The state of the art techniques to translate ideals into isogenies impose conditions
on the input norm. In SQIsign, the norm had to be smooth and in SQIsignHD,
the norm nrd(I) had to be such that 2e − nrd(I) can be easily decomposed into
a sum of two squares. We now propose an algorithm IdealToIsogeny to translate
a left O0-ideal I of any norm into an isogeny starting from E0. It is inspired
by Page and Robert’s work in the context of the Clapoti group action [34]. In
Clapoti, the ideal considered is an ideal of a quadratic imaginary order but we
can adapt their ideas to quaternion orders.
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Let I be a left O0-ideal. We want to compute the torsion image ϕI |2e . The
general outline is as follows:

1. Find I1, I2 ∼ I of coprime norms d1, d2 ≈ √
p, and u, v ∈ N∗ such that

d1u + d2v = 2f with f ≤ e and d1u is prime to d2v.
2. Evaluate isogenies ϕu, ϕv : E0 → Eu, Ev of degrees u and v on E0[2e].
3. Use Kani’s Lemma on ϕu ◦ ϕ̂1 : EI → Eu and ϕv ◦ ϕ̂2 : EI → Ev, where

ϕ1, ϕ2 : E0 → EI are the isogenies corresponding to I1 and I2 respectively,
to compute Φ : Eu × Ev → EI × E′ that embeds the isogenies ϕ1 ◦ ϕ̂u and
ϕ2 ◦ ϕ̂v.

4. Use Φ to compute ϕ1 ◦ ϕ̂u|2e and then ϕu|2e to obtain ϕ1|2e and finally obtain
ϕI |2e .

Step 1. We sample ideals I1, I2 ∼ I of odd coprime norms d1 and d2 until
we find positive integers u, v such that d1u + d2v = 2e. A sufficient (but not
necessary) condition for a solution (u, v) to exist is d1d2 < 2e. Hence, the
norms d1 and d2 should be as small as possible. To find equivalent ideals of
such norms, we sample βi ∈ I with sufficiently small reduced norm and choose
Ii := Iβi/nrd(I), so that nrd(Ii) = qI(βi) := nrd(βi)/nrd(I). Minkowski’s the-
orem and [28, Section 3.1] (see also [11, Lemma 12]) ensure that the shortest
vector in I has norm O(nrd(I)

√
p) so we should expect to find d1, d2 ≈ √

p
so that d1d2 ≈ p ≈ 2e in general. This is not enough to rigorously ensure the
existence of u and v.

In [3, Section 3.1], we provide an algorithm ([3, Algorithm 1]) which sam-
ples β1, β2 ∈ I and finds u, v ∈ N∗ such that gcd(uqI(β1), vqI(β2)) = 1 and
uqI(β1) + vqI(β2) = 2e, where qI(β) := nrd(β)/nrd(I). This algorithm termi-
nates after O(log(p)2) attempts (to sample β1, β2) under reasonable heuristics
that we motivate therein.

Step 2. We can use FixedDegreeIsogeny [3, Algorithm 7] to evaluate isogenies
ϕu, ϕv : E0 → Eu, Ev of degrees u and v on E0[2e]. Since u, v ≈ √

p, we do not
need to compute two-dimensional 2-isogeny chains of full length e in this step,
but of half length e/2 instead (see [3, Remark 26]).

Remark 8. Alternatively, we may save some time on step 2 at the expense of step
1. Assuming u = a2 + b2, with a, b ∈ Z, then we can choose ϕu := [a] + [b]ι ∈
End(E0), with ι : (x, y) ∈ E0 �→ (−x,

√−1y) ∈ E0 and similarly for v. Finding
u, v in step 1 that can be written easily as a sum of to squares is more costly.
There is also a hybrid approach where we only require u (or v) to be a sum of two
squares. Experimentally, both of these approaches were on the whole more costly
than the proposed method as soon as the ideal given in input is a bit unbalanced
(and the smallest possible d2 is a bit bigger than the expected ≈ √

p). However,
we believe that there is room for improvement in our implementation of this
search for d1, d2, u and v, and this could lead to a different conclusion regarding
which variant is the most efficient. Answering this interrogation is left as an
interesting open question for future work.

Step 3. We now give more details on steps 3 and 4 inspired by [34]. Consider
the following (d1u, d2v)-isogeny diamond:
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Eu

E′ Ev

EI

ϕ1 ◦ ϕ̂u

ϕv ◦ ϕ̂2ϕ′
u

̂ϕ′
v

�

where ϕ′
u := [ϕu ◦ ϕ̂1]∗(ϕv ◦ ϕ̂2) and ϕ′

v := [ϕv ◦ ϕ̂2]∗(ϕu ◦ ϕ̂1) (pushforward
isogenies). By Kani’s Lemma, we have a 2f -isogeny:

Φ :=
(

ϕ1 ◦ ϕ̂u ϕ2 ◦ ϕ̂v

−ϕ′
u ϕ′

v

)
: Eu × Ev → EI × E′,

with kernel:

ker(Φ) = {([d1]ϕu(P ), ϕv ◦ ϕ̂2 ◦ ϕ1(P )) | P ∈ E0[2f ]}.

Let θ := ϕ̂2 ◦ ϕ1 ∈ End(E0). By Lemma 9, given I1 and I2, if we write I1 :=
Iβ1/nrd(I) and I2 := Iβ2/nrd(I) with β1, β2 ∈ I, then we can compute θ =
β2β1/nrd(I) so we can evaluate it easily. By step 2, we also know ϕv|2e and
ϕu|2e . Hence, we can compute ker(Φ) (and evaluate Φ) efficiently. This completes
step 3.

Step 4. We first notice that we can evaluate ϕ1 ◦ ϕ̂u from the two-dimensional
isogeny Φ. This implies we can evaluate ϕ1 on E0[2e] as follows: Φ(ϕu(P0), 0) =
([u]ϕ1(P0), ∗) and Φ(ϕu(Q0), 0) = ([u]ϕ1(Q0), ∗) and we can invert u modulo 2e

since u is odd to get ϕ1|2e = (ϕ1(P0), ϕ1(Q0)). To obtain ϕI |2e , we rely on the
following lemma.

Lemma 9. For i ∈ {1, 2}, if we write Ii := Iβi/nrd(I) with βi ∈ I, then
ϕ̂i ◦ ϕI = βi.

Proof. Let i ∈ {1, 2}. We should expect that ϕ̂i ◦ ϕI corresponds to the ideal
I · Ii, however OR(I) �= OL(Ii) so the product I · Ii is not well defined. It is
defined up to conjugation of Ii. We have OL(Ii) = OR(Ii) = βi

−1OR(I)βi. It
follows that OL(βi ·Ii ·βi

−1
) = OR(I) and the ideal corresponding to the isogeny

ϕ̂i ◦ ϕI via the Deuring correspondence is:

Iβi · Ii · βi
−1

= I
βiβi

nrd(I)
I · βi

−1
= II

nrd(βi)
nrd(I)

βi

nrd(βi)
= O0βi.

The result follows. ��
Following Lemma 9, we have that [d1]ϕI = ϕ1 ◦ β1. Since we can evaluate

β1 and ϕ1 on E0[2e] and d1 can be inverted modulo 2e, we can evaluate ϕI on
E0[2e], completing step 4. Algorithm 2 summarises all these steps.
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Algorithm 2. IdealToIsogeny
Input: An ideal I ⊆ O0

∼= End(E0) and a basis (P0, Q0) of E0[2
e].

Output: The image ϕI |2e = (ϕI(P0), ϕI(Q0)) of the isogeny ϕI : E0 → EI associated
to I.

1: Use [3, Algorithm 1] to obtain β1, β2 ∈ I and u, v ∈ N∗ and f ≤ e such that
gcd(uqI(β1), vqI(β2)) = 1 and uqI(β1) + vqI(β2) = 2f

2: Ii ← Iβi/ nrd(I) for i ∈ {1, 2}
3: θ ← β2β1/ nrd(I) ∈ End(E0) (�) θ := ϕ̂2 ◦ ϕ1

4: Compute ϕu|2e for a u-isogeny ϕu : E0 → Eu (�)FixedDegreeIsogeny(u, P0, Q0)
5: Compute ϕv|2e for a v-isogeny ϕv : E0 → Ev (�)FixedDegreeIsogeny(v, P0, Q0)
6: Set KP ← [2e−f ]([d1]ϕu(P0), ϕv ◦ θ(P0))
7: Set KQ ← [2e−f ]([d1]ϕu(Q0), ϕv ◦ θ(Q0))
8: Compute Φ : Eu × Ev → EI × E′ of kernel 〈KP , KQ〉
9: Evaluate Φ(ϕu(P0), 0) = ([u]ϕ1(P0), ∗) and Φ(ϕu(Q0), 0) = ([u]ϕ1(Q0), ∗) to obtain

ϕ1|2e
10: Use ϕ1|2e to evaluate ϕI = [1/d1]ϕ1 ◦ β1 on (P0, Q0) and obtain ϕI |2e
11: return ϕI |2e

3.3 Sampling Uniformly at Random an Ideal of Fixed Norm

In the protocol, we shall need to uniformly sample at random cyclic isogenies
ϕ : E → E′ of fixed degree N several times. When O ∼= End(E) is known,
by the Deuring correspondence this reduces to sampling a left ideal I ⊆ O of
norm N uniformly at random. I is then translated into an isogeny ϕ (e.g. using
Algorithm 2 if O = O0). For ϕ to be cyclic, I has to be primitive, that is to say
that I �⊆ nO for any integer n > 1.

Given a maximal quaternion order O ⊆ Bp,∞ and an integer N coprime with
p, we explain how to sample primitive left ideals I ⊆ O of norm N . It has been
proved that such ideals are in bijection with primitive left ideals of O/NO via
the reduction modulo N which are themselves in bijection with:

P1(Z/NZ) = {(x, y) ∈ (Z/NZ)2 | gcd(x, y,N) = 1}/(Z/NZ)∗.

N being coprime with p, Bp,∞ splits at N and we have an isomorphism O⊗ZN
∼=

M2(ZN ), where ZN is the completion of the localisation of Z at N . Via the
reduction modulo N , we obtain an isomorphism ϕN : O/NO ∼→ M2(Z/NZ).

Lemma 10 ([27, Lemma 7.2]). All primitive left ideals of M2(Z/NZ) are prin-
cipal and generated by a matrix

Mx,y =
(

x y
0 0

)

with (x : y) ∈ P1(Z/NZ). Hence, we have the following bijection:

P1(Z/NZ) −→ {primitive left ideals I ⊆ O of norm N}
(x : y) �−→ Oϕ−1

N (Mx,y) + ON
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As a direct consequence of the above lemma, we obtain:

Lemma 11. The set of elements α ∈ O invertible modulo N acts transitively
(by multiplication on the right) on the set of primitive left O-ideals of norm N .
Those elements α ∈ O invertible modulo N are those of norm coprime with N .

Proof. Let I be a primitive left O-ideal of norm N . Then, the ideal I corresponds
to (x : y) ∈ P1(Z/NZ) via the bijection of Lemma 10 and is isomorphic to
M2(Z/NZ) · Mx,y via the composition of the reduction modulo N and ϕN . For
any representative (x, y) ∈ Z2 of (x : y) ∈ P1(Z/NZ), we have gcd(x, y,N) = 1
so we may find u, v ∈ Z such that xu + yv ≡ 1 mod N , so that:

Mx,y

(
u −y
v x

)
≡ M1,0 mod N and det

(
u −y
v x

)
≡ 1 mod N

Hence, the ideal M2(Z/NZ) · Mx,y is in the orbit of M2(Z/NZ) · M1,0 under the
right action of GL2(Z/NZ), and as a consequence, I/NO is in the orbit of the
ideal I0/NO := Oϕ−1

N (M1,0)/NO under the right action of (O/NO)∗.
To conclude, it suffices to prove that the invertible elements of O modulo N

are those of norm coprime with N . If α ∈ O is invertible modulo N , there exists
β, γ ∈ O such that αβ = 1 + Nγ, so that

nrd(α) nrd(β) = nrd(1 + Nγ) = 1 + N Tr(γ) + N2 nrd(γ) ≡ 1 mod N,

so nrd(α) is invertible modulo N . Conversely, if nrd(α) is prime to N , there
exists λ ∈ Z such that nrd(α)λ ≡ 1 mod N . Then, it follows that ααλ ≡ 1
mod N , so α is invertible modulo N . This completes the proof. ��

Lemma 11 ensures that (O/NO)∗ acts transitively on primitive left ideals of
norm N by multiplication on the right. Hence, given a primitive left O-ideal I0
of norm N , if we sample [α] ∈ (O/NO)∗ uniformly at random, then I0α + NO
is uniformly random among primitive left O-ideals of norm N .

To obtain such an ideal I0, we compute γ ∈ O of norm NM with
gcd(N,M) = 1 and without integral factor. This can be done with the algorithms
of [29, Section 3.3]. We then consider I0 := Oγ + ON and sample [α] ∈ O/NO
uniformly at random until it is invertible modulo N (which can be checked by
computing nrd(α)). The probability of finding such an α is (by the Chinese
remainder theorem):

|GL2(Z/NZ)|
|M2(Z/NZ)| =

∏
�e||N

|GL2(Z/�eZ)|
|M2(Z/�eZ)| =

∏
�|N

(
1 − 1

�

)(
1 − 1

�2

)
.

This quantity is an Ω(1/ log log(N)) by [23, Theorem 328] so we can find α after
O(log log(N)) tries. These operations are summarised in Algorithm 3.
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Algorithm 3. RandomFixedNormIdeal

Input: A maximal order O ⊆ Bp,∞ and an integer N such that p � N .
Output: A primitive left O-ideal I of norm N sampled uniformly at random.
1: Find γ ∈ O primitive of norm NM with gcd(N, M) = 1 (�) Using [29, Section 3.3]
2: repeat
3: Sample u1, · · · , u4 ∈ �0; N − 1� uniformly at random
4: α ← ∑4

i=1 uiαi, where (α1, · · · , α4) is a basis of O
5: until gcd(nrd(α), N) = 1
6: Return I := Oγα + NO

4 Detailed Description of SQIsign2D

We now present a full description of the SQIsign2D protocol. We start by describ-
ing the Σ-protocol underlying SQIsign2D, and then we present the variant of the
Fiat-Shamir transform [21] that we rely on to obtain a digital signature protocol.

The protocol uses a field characteristic of the form p = c · 2e − 1, where c is
a small cofactor and log p ≈ 2λ. This is already an improvement over existing
SQIsign protocols: since such primes are abundant, it is significantly easier to
find parameters, especially at higher security levels, for SQIsign2D than for SQI-
sign. Compared to SQIsignHD, which uses Montgomery-friendly primes p =
c · 2e · 3f − 1, SQIsign2D primes offer even better opportunities for low-level
optimisations, as discussed in Sect. 6.

4.1 The Σ-Protocol

Key Generation. During key generation, we sample a random left ideal Isk
of O0 of norm Nsk via RandomFixedNormIdeal (Algorithm 3), where Nsk is an
odd integer of size 4λ. The ideal Isk corresponds to the isogeny ϕsk : E0 → Epk

connecting E0 to the public key Epk. To be more precise, we compute Epk via
IdealToIsogeny.

From a mathematical perspective, the ideal Isk provides enough information
to describe the secret isogeny ϕsk. However, in order to speed up the response
algorithm, we perform additional computations that are stored as internal opti-
misations – we colour these lines to describe such computations. These internal
optimisations are required to obtain a faster translation from the challenge to
its corresponding ideal; we will formalise what we mean with “its corresponding
ideal” in the paragraph “Response” below.

The gist of these optimisations is to evaluate a basis {β1, β2, β3, β4} of the
right order Opk of Isk at the 2e-torsion of Epk. This is achieved via [11, Algorithm
9]. The key-generation procedure is formalised in Algorithm 4.

Commitment. The commitment phase is similar to the key-generation com-
putations: as explained above, we first sample a random left ideal Icom of O0

of norm Ncom = �n
com, for some n > 0. In particular, we require �com > 2ersp ,

where 2ersp denotes the largest possible degree of the response isogeny. This con-
dition implies that we can compute the pushforward of any left ideal I of O0 of
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Algorithm 4. Key Generation
Output: The public key pk = Epk and the secret key sk = Isk.
1: Isk ← RandomFixedNormIdeal(Nsk)
2: ϕsk|2e , Epk ← IdealToIsogeny(Isk, P0, Q0).
3: Compute a deterministic basis (Ppk, Qpk) of Epk[2

e].
4: Compute a basis B = (β1, β2, β3, β4) of the right order Opk of Ipk.
5: Compute the basis (β̃1, β̃2, β̃3, β̃4) of End(Epk) corresponding to B.

(�) [11, Algorithm 9]

6: Compute B =
{

β̃i(Ppk), β̃i(Qpk)
}

i=1,...,4
.

7: return pk := Epk and sk := (Isk, B)

norm < 2ersp under Icom, which is a necessary step in the response computation
(see Algorithm 6, Line 9).

One of the outputs of the Commitment algorithm is the curve Ecom obtained
by applying IdealToIsogeny on Icom. Additionally, the algorithm outputs the inter-
nal state Icom. Similarly to what has been said above, the ideal Icom provides
enough information to compute the corresponding isogeny ϕcom : E0 → Ecom.
However, as an internal optimisation, we also extract and store the isogeny rep-
resentation ϕcom|2e . We summarise everything in Algorithm 5.

Algorithm 5. Commitment
Output: The commitment curve E, and the corresponding state I,
1: Icom ← RandomFixedNormIdeal(Ncom).
2: ϕcom|2e , Ecom ← IdealToIsogeny(Icom, P0, Q0).
3: return com := Ecom and st := (Icom, ϕcom|2e).

Challenge. The challenge consists of a positive integer chl < 2echl , where echl is
a parameter denoting the size of the challenge space. This integer describes the
kernel of the challenge isogeny ϕchl : Epk → Echl:, i.e. ker(ϕchl) = 〈Ppk+[chl]Qpk〉.

It is worth noting that, although deg(ϕchl) = 2e, the challenge space con-
tains only 2echl � 2e possible challenges, i.e. we only allow 2echl possible kernels.
Intuitively, the extra length of ϕchl is needed to deal with the fact that response
isogenies may backtrack with ϕchl. This concept is formalised in Theorem 17.

Response. The diagram to keep in mind as we explain the response algorithm
is the following one (see Fig. 2), where

– ϕchl : Epk → Echl is the isogeny described by the challenge chl;
– ϕ′

chl : Epk → E0
chl is the portion of ϕchl that does not backtrack with the

response isogeny;
– ϕ

(1)
rsp : Ecom → E′

chl is the odd part of the response isogeny;
– ϕ

(0)
rsp : E′

chl → E0
chl is the even, non-backtracking part of the response isogeny;
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– ϕaux : Ecom → Eaux is the auxiliary isogeny needed to embed the isogeny ϕ
(1)
rsp

into a two-dimensional isogeny;
– ϕ′

aux : E′
chl → E′

aux is the pushforward of ϕaux under ϕ
(1)
rsp .

Fig. 2. Response diagram.

The first step is to compute the ideal Ichl corresponding to the isogeny
ϕchl : Epk → Echl with kernel 〈Ppk + [chl]Qpk〉. This is done via [11, Algorithm 9]

using the datum B =
{

β̃i(Ppk), β̃i(Qpk)
}

i=1,...,4
computed during Key Genera-

tion (see Algorithm 4).
The ideal Ichl is then employed to compute an isogeny ϕrsp : Ecom → Echl.

To be more precise, the prover first computes an ideal Irsp, equivalent to
Icom · Isk · Ichl, which is uniformly distributed among the equivalent ideals of norm
< 2ersp . The protocol parameter ersp is chosen such that the existence of Irsp (or
equivalently a connecting isogeny of degree < 2ersp between Ecom and Echl) is
guaranteed, which means that 2ersp must be larger than 2

√
2p/π. The norm of

Irsp must be bounded by 2ersp so that we can represent ϕrsp : Ecom → Echl via
a two-dimensional 2ersp -isogeny. In particular, following Kani’s Lemma (Theo-
rem 4), the degree of the one-dimensional isogenies represented by such a two-
dimensional isogeny must be odd, but this might not be the case for ϕrsp. We
now explain how to deal with the case of even-degree.

Let us write the norm of Irsp as nrd(Irsp) = q = 2nq′ < 2ersp for an odd q′. We
can think of ϕrsp as ϕrsp = ψ ◦ ϕ

(1)
rsp : Ecom → E′

chl → Echl, where deg(ϕ(1)
rsp ) = q′

and deg(ψ) = 2n. It may happen that ker(ψ̂) ∩ ker(ϕ̂chl) is not trivial. Let nbt

be the positive integer such that 2nbt = #ker(ψ̂) ∩ ker(ϕ̂chl). Equivalently, nbt is
the largest integer such that Ichl · Irsp ∈ 2nbtOpk.

Let r′ := n − nbt and define ϕ
(0)
rsp : E′

chl → E0
chl to be the isogeny with kernel

ker(ψ)[2r′
] – the isogeny ϕ

(0)
rsp coincides with the non-backtrack portion of ϕrsp.

Now, let us factor Irsp as I1rsp · I0rsp · I ′, where nrd(I(1)rsp ) = q′ and nrd(I(0)rsp ) = 2r′
.

The isogenies ϕ
(1)
rsp and ϕ

(0)
rsp correspond to I

(1)
rsp and I

(0)
rsp , respectively.
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Since ϕ
(1)
rsp has odd degree, it can be represented via a 2ersp−n-isogeny in

dimension 2 by Kani’s Lemma. This requires computing an auxiliary isogeny
ϕ′
aux : E′

chl → E′
aux of degree 2ersp−n − q′.

As required in Theorem 22, we need the isogeny ϕ′
aux : E′

chl → E′
aux to be uni-

formly sampled among all the isogenies of degree 2ersp−n − q′. Hence, the prover
samples a random left ideal I ′′

aux of O0 of norm 2ersp−n − q′ and then computes I ′
aux

as the pushforward I ′
aux of I ′′

aux through Icom · I
(1)
rsp . The prover can then evaluate

ϕ′
aux ◦ϕ

(1)
rsp ◦ϕcom at the 2e-torsion running IdealToIsogeny on input Icom ·I(1)rsp ·I ′

aux.
Using the datum ϕcom|2e , the prover has actually access to ϕ′

aux ◦ ϕ
(1)
rsp

∣∣∣
2e

.

While a representation of ϕ′
aux ◦ ϕ

(1)
rsp could act as a valid response, we want

the Σ-protocol to be commitment recoverable, i.e. it is possible to recompute
the commitment curve from a the challenge and corresponding response. This
eventually leads to a more compact signature. To achieve such a property, we
want the isogeny connecting Eaux and E′

chl, passing through Ecom. Thus, the
prover has to compute the isogeny ϕaux : E0 → Eaux of degree 2ersp−n − q′ fitting
in the following commutative diagram:

Ecom E′
chl

E′
auxEaux

ϕ
(1)
rsp

ϕaux ϕ′
aux

ϕ

�

Such an isogeny can be obtained as one of the components of the two-
dimensional 2ersp−n-isogeny Φ with kernel {([q]′P,ϕ′

aux ◦ ϕ
(1)
rsp (P )) | P ∈

Ecom[2ersp−n]}:

Φ =
(

ϕ
(1)
rsp −ϕ̂′

aux

ϕaux ϕ̂

)
: Ecom × E′

aux → E′
chl × Eaux.

To complete the response algorithm, we still need to compute the non-
backtracking part of the response isogeny. Let ϕ

(0)
rsp : E′

chl → E0
chl be such an

isogeny, which indeed corresponds to the ideal I0rsp.
Let ϕ′

chl : Epk → E0
chl be the isogeny with kernel 〈[2nbt ](Ppk + [chl]Qpk)〉. In

other words, ϕ′
chl is the portion of ϕchl that does not backtrack with the response

isogeny. Even though ϕ′
chl and ϕ

(0)
rsp map onto the same elliptic curve, the curves

obtained after an explicit computation of the two isogenies will only be equal
up to isomorphism. Thus, the prover additionally has to compute an explicit
isomorphism to let the two curves agree.

The explicit computation of the isomorphism between the codomains of ϕ′
chl

and ϕ
(0)
rsp is required to facilitate the verification. During the verification, the

verifier will not compute ϕchl but rather compute its non-backtrack portion, i.e.
the verifier will only compute the isogeny with kernel 〈[2nbt ](Ppk + [chl]Qpk)〉.
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Let {Paux, Qaux} be a deterministic basis of Eaux[2ersp−nbt ] and define

Pchl := [2ersp−n − q′]−1ϕ(0)
rsp ◦ ϕ(1)

rsp (Paux), Qchl := [2ersp−n − q′]−1ϕ(0)
rsp ◦ ϕ(1)

rsp (Qaux).

The output of the response algorithm consists in (Eaux, Pchl, Qchl, r
′, nbt). We

collect what has been explained in this paragraph in Algorithm 6.

Algorithm 6. Response
Input: The public key Epk, the secret key Isk, B, the commitment (Ecom, com), the

commitment state Icom, ϕcom(P0), ϕcom(Q0), and the challenge chl < 2echl .
Output: Eaux, Paux, Qaux, r

′, nbt

1: Compute a deterministic basis (Ppk, Qpk) of Epk[2
e].

2: Compute the ideal Ichl from chl and using B. (�) [11, Algorithm 9]
ϕchl : Epk → Echl is the isogeny with kernel 〈Ppk + [chl]Qpk〉.

3: Set J = Icom · Isk · Ichl.
4: Compute a uniformly distributed ideal Irsp equivalent to J of norm q < 2ersp .
5: Compute n such that q = q′ · 2n, where q′ is odd and nbt < n as the largest integer

such that Ichl · Irsp ∈ 2nbtOpk.
// nbt is the length of the part of the response that backtracks along the challenge isogeny

6: r′ ← n − nbt.
7: Factor Irsp as I1

rsp · I0
rsp · I ′ where nrd(I

(1)
rsp ) = q′ and nrd(I

(0)
rsp ) = 2r′

.
// I(1)

rsp is the ideal corresponding to the odd part of the response isogeny ϕ(1)
rsp : Ecom → E′

chl,

and I(0)
rsp is the ideal corresponding to the even part of the response isogeny ϕ(0)

rsp : E′
chl → Echl.

8: I ′′
aux ← RandomFixedNormIdeal(2ersp−n − q′).

9: Compute I ′
aux as the pushforward of I ′′

aux through Icom · I
(1)
rsp .

// I′
aux is the ideal corresponding to an auxiliary isogeny ϕ′

aux : E′
chl → Eaux.

10: ϕ′
aux ◦ ϕ

(1)
rsp ◦ ϕcom

∣

∣

∣

2e
, E′

aux ← IdealToIsogeny(Icom · I
(1)
rsp · I ′

aux).

11: P 0
com, Q0

com ← [2e−(ersp−n)]ϕcom(P0), [2
e−(ersp−n)]ϕcom(Q0).

12: P 0
aux, Q

0
aux ← [2e−(ersp−n)]ϕ′

aux ◦ ϕ
(1)
rsp ◦ ϕcom(P0), [2

e−(ersp−n)]ϕ′
aux ◦ ϕ

(1)
rsp ◦ ϕcom(Q0).

13: Compute Φ′ : Ecom×E′
aux → E′

chl×Eaux with kernel 〈([q′]P 0
com, P 0

aux

)

,
(

[q′]Q0
com, Q0

aux

)〉
14: (P̃chl, P̃aux) ← Φ′(ϕcom(P0), 0).
15: (Q̃chl, Q̃aux) ← Φ′(ϕcom(Q0), 0).
16: E0

chl ← E′
chl.

17: if r′ > 0 then
18: Compute the isogeny ϕ0

rsp : E′
chl → E0

chl corresponding to I0
rsp.

19: P̃chl, Q̃chl ← ϕ0
rsp(P̃chl), ϕ

0
rsp(Q̃chl).

20: Compute ϕ′
chl : Epk → (E0

chl)
′ of kernel 〈[2nbt ](Ppk + [chl]Qpk)〉.

21: Compute the isomorphism ιchl : E0
chl → (E0

chl)
′.

22: P̃chl, Q̃chl ← ιchl(P̃chl), ιchl(Q̃chl).
23: Compute a deterministic basis (Paux, Qaux) of Eaux[2

ersp−nbt ].
24: Compute a, b, c, d ∈ Z/2ersp−nbtZ such that

Paux = [2e−ersp+nbt ]([a]P̃aux+[b]Q̃aux) and Qaux = [2e−ersp+nbt ]([c]P̃aux+[d]Q̃aux).
25: Pchl, Qchl ← [2e−ersp+nbt ]([a]P̃chl + [b]Q̃chl), [2

e−ersp+nbt ]([c]P̃chl + [d]Q̃chl)
26: return Eaux, Pchl, Qchl, r

′, nbt.
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Verification. On input (Eaux, Pchl, Qchl, r
′, nbt), the verifier first computes the

isogeny ϕchl : E0 → Echl with kernel 〈[2nbt ](Ppk + [chl]Qpk)〉 – this corresponds to
the non-backtrack portion of the challenge isogeny as in the previous paragraph.
Additionally, they compute (Paux, Qaux), a deterministic basis of Eaux[2ersp−nbt ]

If r′ > 0, it means that the prover has chosen a response isogeny hav-
ing an even, non-backtrack component. In this case, [2ersp−r′−nbt ]Pchl and
[2ersp−r′−nbt ]Qchl are linearly dependent, and 〈[2ersp−r′−nbt ]Pchl, [2ersp−r′−nbt ]Qchl〉
is the kernel of the dual of the isogeny ϕ

(0)
rsp (Cfr. Fig. 2). The verifier then com-

putes the isogeny ϕ : Echl → E′
chl with kernel 〈[2ersp−r′−nbt ]Pchl, [2ersp−r′−nbt ]Qchl〉

and updates Echl ← E′
chl, Pchl ← ϕ(Pchl) and Qchl ← ϕ(Qchl).

From Kani’s Lemma, it follows that the isogeny Φ with kernel
〈(

Pchl, [2r′
]Paux

)
,
(
Qchl, [2r′

]Qaux

)〉

maps E′
chl × Eaux onto Eaux × Ecom. This proves the existence of an isogeny

connecting Ecom and E′
chl. We summarise these steps in Algorithm 7.

Remark 12 (Technical Remark). In the concrete instantiation, when comput-
ing the isogeny Φ with kernel K =

〈(
Pchl, [2r′

]Paux

)
,
(
Qchl, [2r′

]Qaux

)〉
, we use

the formulae in [12]. In particular, in order to avoid the computation of extra
square roots in the codomain computation, we use the four torsion above K. As
explained in [11, Theorem 56], this also fixes a symplectic four-torsion basis on
the codomain, which in turns defines a theta structure.

In the implementation, we always pick the four-torsion above K such that
the codomain is of the form E′

aux × Ecom. Therefore, in Algorithm 7, Line 15, we
can restrict ourselves to checking that F2 is isomorphic to Ecom.

4.2 The Signature Protocol

To transform the Σ-protocol in a digital signature, we rely on the Fiat-Shamir
transform [21], where the interactive challenge generation is replaced by hashing
the commitment, together with the message, to obtain a challenge. However, our
protocol differs from a straightforward application of the transform: we rely on
the commitment-recoverability property of the underlying Σ-protocol to obtain
a smaller signature. Namely, a signature of SQIsign2D consists only of a chal-
lenge and the corresponding response. To verify a signature, the verifier recovers
the challenge from the signature, checks that the commitment, challenge, and
response form a valid transcript for the Σ-protocol, and ensures that the chal-
lenge was honestly generated.

For this approach to work, it is necessary that the verifier can extract the com-
mitment from the response. During verification, the verifier first computes the
challenge isogeny codomain, and then they obtain the two-dimensional isogeny Φ
(see Line 12 of Algorithm 7). The codomain of Φ is either the product E′

aux×Ecom

or Ecom × E′
aux. While a priori it is not possible to distinguish between the two

cases, we rely on a specific method to compute Φ, as explained in Remark 12,
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Algorithm 7. Verify
Input: The public key Epk, the commitment Ecom, the challenge chl, the response

Eaux, Pchl, Qchl, r
′, nbt.

Output: true or false.
1: Compute a deterministic basis (Ppk, Qpk) of Epk[2

e].
2: Compute ϕchl : E0 → Echl with kernel 〈[2nbt ](Ppk + [chl]Qpk)〉.
3: Compute a deterministic basis (Paux, Qaux) of Eaux[2

ersp−nbt ].
4: if r′ > 0 then
5: if [2ersp−nbt−1]Qchl �= 0 then

6: R ← [2ersp−nbt−r′
]Qchl

7: else
8: R ← [2ersp−nbt−r′

]Pchl

9: Compute ϕ : Echl → E′
chl of kernel 〈R〉.

10: Echl ← E′
chl.

11: Pchl, Qchl ← ϕ(Pchl), ϕ(Qchl).

12: Compute Φ : Echl × Eaux → F1 × F2 with kernel
〈(

Pchl, [2
r′

]Paux

)

,
(

Qchl, [2
r′

]Qaux

)〉

.
13: if the computation of Φ fails then
14: return false
15: return F2

∼= Ecom

that guarantees that the codomain is E′
aux×Ecom. Hence, the verifier can extract

the commitment curve Ecom from the codomain of Φ and check the challenge has
been honestly generated, i.e. as the output of the hashing of Ecom and the mes-
sage to be signed.

5 Security Analysis

In this section, we prove that the identification protocol (and thereby the signa-
ture scheme obtained by the Fiat–Shamir transform) is secure: it is knowledge-
sound and honest-verifier zero-knowledge.

First, note that the key recovery problem for our construction is simply the
standard Supersingular Endomorphism Ring problem, a foundational problem
of isogeny-based cryptography.

Problem 13 (Supersingular Endomorphism Ring problem). Given a supersingu-
lar elliptic curve E/Fp2 , find four endomorphisms (in efficient representation)
which generate the ring End(E).

The fastest known algorithms for this problem have classical complexity in
Õ(p1/2) [16] (see also [35, Theorem 8.8]). The only known quantum speed-up
is using Grover’s algorithm [6,22], for a quantum complexity in Õ(p1/4).

We prove in Theorem 17 that if echl + ersp ≤ e, the protocol has the 2-special
soundness property for the language

{(Epk, α) | α ∈ End(Epk) \ Z in efficient representation}.
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This language corresponds to the Supersingular One Endomorphism problem.

Problem 14 (Supersingular One Endomorphism problem). Given a supersingular
elliptic curve E/Fp2 , find a non-scalar endomorphism α ∈ End(E)\Z (in efficient
representation).

This One Endomorphism problem is equivalent to the Endomorphism Ring prob-
lem [35], i.e., to the key recovery problem for our construction.

Then, we prove in Theorem 22 that if Ncom ≥ 24λ and 2ersp ≥ 2
√

2p/π, then
the protocol is statistically honest-verifier zero-knowledge, in a model where the
simulator can sample random large-degree isogenies from a given curve (in the
classical model, this can only be done efficiently for smooth degree). This model,
discussed in Sect. 5.2, is similar to the security model of SQIsignHD [11].

Impact on Parameter Selection. In summary, for a security level ensuring
λ bits of classical security, one needs to choose a prime p = Θ(22λ). To ensure
soundness, one needs echl +ersp ≤ e (recall that p ≈ 2e, so e ≈ 2λ). To ensure the
statistical honest-verifier zero-knowledge property, one needs Ncom ≥ 24λ and
2ersp ≥ 2

√
2p/π.

5.1 Knowledge Soundness

Lemma 15. Given a commitment Ecom, a challenge chl < 2echl (generating the
challenge isogeny ϕchl : Epk → Echl), and a response (Eaux, Pchl, Qchl, r

′, nbt) pass-
ing verification, one can extract in polynomial time an efficient representation
of an isogeny σ̃ : Ecom → Echl of degree at most 2ersp .

Proof. Write ψ : E0
chl → Echl for the last nbt steps of the challenge isogeny. Let

n = r′ + nbt. A successful verification ensures that one can extract a 2r′
-isogeny

ϕ̃(0) : Ẽ′
chl → E0

chl,

(for some curve Ẽ′
chl) and an 2ersp−n-isogeny

Φ : Ẽ′
chl × Eaux → Ecom × Ẽ′

aux,

(for some curve Ẽ′
aux), in efficient representation. Composing Φ with the inclusion

E′
chl → E′

chl × Eaux and the projection Ecom × E′
aux → Ecom, and taking the

dual, we obtain an isogeny ϕ̃(1) : Ecom → E′
chl of degree at most 2ersp−r′

. Let
σ̃ = ψ ◦ ϕ̃(0) ◦ ϕ̃(1) : Ecom → Echl. It has degree at most

deg(ψ) deg(ϕ̃(0)) deg(ϕ̃(1)) ≤ 2nbt · 2ersp−n · 2r′
= 2ersp ,

which proves the lemma. ��
Lemma 16. Let ϕchl : Epk → Echl and ϕ′

chl : Epk → E′
chl be two distinct

challenges from the same public curve Epk. Then, the largest integer dividing
ϕ′
chl ◦ ϕ̂chl ∈ Hom(Echl, E

′
chl) is smaller than 2echl .
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Proof. Recall that the challenge isogeny ϕchl is defined by the kernel 〈K(chl)〉
with

K(chl) = Ppk + [chl]Qpk

where 0 ≤ chl < 2echl , and 〈Ppk, Qpk〉 = Epk[2e]. The second challenge isogeny
ϕ′
chl is defined similarly by its kernel generator K(chl′) = Ppk + [chl′]Qpk, for

some chl �= chl′. Since ϕchl and ϕ′
chl are cyclic, by [11, Lemma 37] there exists

three cyclic isogenies ϕ0 : Epk → E, ϕ1 : E → Echl and ϕ′
1 : E → E′

chl such
that ϕchl = ϕ1 ◦ ϕ0, ϕ′

chl = ϕ′
1 ◦ ϕ0 and ϕ′

1 ◦ ϕ̂1 is cyclic. We call ϕ0 the greatest
cyclic factor of ϕchl and ϕ′

chl. It has kernel ker(ϕ0) = ker(ϕchl) ∩ ker(ϕ′
chl). Since

ϕ′
chl ◦ ϕ̂chl = [deg(ϕ0)]ϕ′

1 ◦ ϕ̂1, we see that deg(ϕ0) is the largest integer dividing
ϕ′
chl ◦ ϕ̂chl in Hom(Echl, E

′
chl), so we only have to prove that deg(ϕ0) < 2echl .

Let R ∈ Epk be a generator of ker(ϕ0). Then, R = [a]K(chl) = [b]K(chl′) for
some a, b ∈ �0; 2e − 1�, i.e.,

[a − b]Ppk + [a · chl − b · chl′]Qpk = 0.

Since (Ppk, Qpk) is a basis of Epk[2e], it follows that a−b ≡ 0 mod 2e so a = b and
a(chl − chl′) ≡ 0 mod 2e. Since 0 ≤ chl �= chl′ < 2echl , it follows that 2e−echl+1|a,
so that R ∈ Epk[2echl−1] and deg(ϕ0) ≤ 2echl−1. This completes the proof. ��
Theorem 17. If echl + ersp ≤ e, then the identification protocol has 2-special
soundness for the language

{(Epk, α) | α ∈ End(Epk) \ Z in efficient representation}.

Proof. Consider two accepting transcripts with the same commitment curve
Ecom but challenge isogenies ϕchl : Epk → Echl and ϕ′

chl : Epk → E′
chl with

distinct kernels. From Lemma 15, we can extract an efficient representation of
isogenies σ : Ecom → Echl and σ′ : Ecom → E′

chl, each of degree at most 2ersp .
Suppose by contradiction that α = [m] for some m ∈ Z. We deduce

[m] ◦ ϕ′
chl ◦ ϕ̂chl = [deg(ϕchl) deg(ϕ′

chl)] ◦ σ′ ◦ σ̂. (2)

Write ϕ′
chl ◦ ϕ̂chl = [2a] ◦ ψ and σ′ ◦ σ̂ = [d] ◦ ν where ψ and ν have cyclic kernel.

We deduce from Eq. (2) that 2am = d deg(ϕchl) deg(ϕ′
chl) is the largest integer

dividing either side of the equality, and ψ = ν is the cyclic part of either side.
On one hand, we have deg(ν) ≤ deg(σ) deg(σ′) ≤ 22ersp . On the other

hand, Lemma 16 implies

deg(ψ) =
ϕ′
chl ◦ ϕ̂chl

22a
> 22(e−echl) ≥ 22ersp .

This contradicts the equality ψ = ν. ��

5.2 Zero-Knowledge Property

In this section, we prove that the identification protocol is honest-verifier zero-
knowledge. Let us first prove that the commitment curve is indistinguishable
from a uniformly random curve.
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Lemma 18. If Ncom ≥ 24λ, then an honestly generated commitment curve Ecom

is at statistical distance Õ(2−λ) from a uniformly random supersingular elliptic
curve.

Proof. It follows from [11, Proposition 29] with ε = 1 and p = Θ(22λ). ��
To prove that the protocol has the zero-knowledge property, we prove that

there exists a simulator producing transcripts indistinguishable from an honest
run of the protocol. Like in SQIsignHD [11], the simulator runs in polynomial
time if it has access to an oracle producing random isogenies. This “random
isogeny” oracle comes in two variants: the UTO and the FIDIO.

Definition 19. A uniform target oracle (UTO) is an oracle taking as input a
supersingular elliptic curve E defined over Fp2 and an integer N ≥ 2

√
2p/π, and

outputs a random isogeny ϕ : E → E′ (in efficient representation) such that:

1. The distribution of E′ is uniform among all the supersingular elliptic curves.
2. The conditional distribution of ϕ given E′ is uniform among isogenies E → E′

of degree smaller or equal to N .

Remark 20. The condition N ≥ 2
√

2p/π ensures such an oracle exists: for any
pair (E1, E2), the collection of isogenies E1 → E2 of degree smaller than N is
non-empty (Minkowski’s bound for the lattice Hom(E1, E2)).

Definition 21. A fixed degree isogeny oracle (FIDIO) is an oracle taking as
input a supersingular elliptic curve E defined over Fp2 and an integer N , and
outputs a uniformly random isogeny ϕ : E → E′ (in efficient representation)
with domain E and degree N .

Theorem 22. If 2ersp ≥ 2
√

2p/π and Ncom ≥ 24λ, then the identification proto-
col is statistically honest-verifier zero-knowledge in the UTO and FIDIO model.
In other words, there exists a polynomial time simulator S with access to a UTO
and a FIDIO that produces random transcripts which are statistically indistin-
guishable from honest transcripts.

Proof. The simulator proceeds as follows:

1. Generate an isogeny ϕchl : Epk → Echl according to the honest challenge
distribution.

2. Call the UTO on input (Echl, 2ersp), resulting in the isogeny ϕ̂rsp : Echl → Ecom.
3. Decompose ϕrsp = ψ ◦ ϕ

(1)
rsp with q′ = deg(ϕ(1)

rsp ) odd and deg(ψ) = 2n a power
of two. Let 2nbt = #(ker(ψ̂) ∩ ker(ϕ̂chl)). Let r′ = n − nbt.

4. Call the FIDIO on input (Ecom, 2ersp−r′ − q′), resulting in the isogeny ϕaux :
Ecom → Eaux.

From the properties of the UTO and FIDIO, the above procedure is equivalent
to the following one:



362 A. Basso et al.

1. Generate a uniformly random supersingular curve Ecom

2. Generate an isogeny ϕchl : Epk → Echl according to the honest challenge
distribution.

3. Generate a uniformly random isogeny ϕrsp from Ecom to Echl, of degree at
most 2ersp .

4. Decompose ϕrsp = ψ ◦ ϕ
(1)
rsp with q′ = deg(ϕ(1)

rsp ) odd and deg(ψ) = 2n a power
of two. Let 2nbt = #(ker(ψ̂) ∩ ker(ϕ̂chl)). Let r′ = n − nbt.

5. Generate a uniformly random isogeny β from Ecom and of degree 2ersp−r′ − q′.

This is precisely the order in which an honest run of the protocol proceeds.
The distribution for the first step matches the honest run by Lemma 18. The
distributions of following steps match the honest ones by construction. ��
On the UTO and FIDIO Oracles. Let us first argue that the UTO is essen-
tially redundant: given a FIDIO, one can implement an oracle that is computa-
tionally indistinguishable from a UTO, at least when the bound N is sufficiently
large. We proceed in two steps:

1. First, we use the FIDIO to build an oracle which outputs a uniform isogeny
σ from E with deg(σ) ≤ N . In other words, one can turn a FIDIO into a
RADIO, following the terminology of [11].

2. Second, we argue that this distribution (the output of a RADIO) is indistin-
guishable from the output of a UTO.

Recall the definition of a RADIO.

Definition 23 ([11, Definition 41]). A random any-degree isogeny oracle
(RADIO) is an oracle taking as input a supersingular elliptic curve E defined
over Fp2 and an integer N , and outputs a uniformly random isogeny ϕ : E → E′

(in efficient representation) with domain E and degree at most N .

Let us first explain how one can turn a FIDIO into a RADIO. Let fN be the
probability distribution of the degree of the output of a RADIO: for any integer
q, let fN (q) be the probability that the degree of the output of a RADIO on
input (E,N) is equal to q. Note that conditional on the degree of the output
begin q, the FIDIO and the RADIO follow the same distribution: uniform among
isogenies with domain E and degree q. Therefore, to simulate a RADIO, we can
proceed as follows: on input (E,N),

1. sample an integer q following the distribution fN ;
2. call the FIDIO on input (E, q), and return the output.

To sample from the distribution fN , observe that the value fN (q) = Θ̃(q/N2)
can be computed efficiently if the factorisation of q is known. Therefore, we can
do rejection sampling by sampling uniformly random integers in [1, N ] together
with their factorisation (see [1]).

We proceed as follows: sample a random degree q ≤ N , then call the FIDIO
to sample a uniform isogeny of degree q from E. The only difficulty is to sample



SQIsign2D-West 363

q ≤ N with the same distribution as the degree of a UTO-output (it is not the
uniform distribution). Given the prime factorisation q =

∏
i �ei

i , there are
∏

i �ei
i .

Now that we can turn a FIDIO into a RADIO, it remains to argue that a
RADIO is indistinguishable from a UTO. For N large enough, it is indeed statis-
tically indistinguishable: conditionally on the target curve, the two distributions
are identical, and it is proven in [11, Theorem 42] that when N = Θ(p1+ε)
for ε ∈ (0, 2], the distribution on the target curves are at statistical distance
O(p−ε/2). Therefore, when N = Θ(p1+ε), the RADIO and the UTO are at sta-
tistical distance O(p−ε/2). The bound N = O(p1/2) used in the protocol is not
large enough for this theorem to apply, but we expect the distributions to remain
computationally indistinguishable.

The conclusion of the above discussion is that in Theorem 22, the UTO is
heuristically redundant. In other words, there is a (heuristic) simulator in the
FIDIO model. It remains to argue that this FIDIO does not hurt the security
assumption: access to a FIDIO does not help with solving the endomorphism ring
problem. We refer to the analogous discussion about the security of SQIsignHD
in [11, Section 5.3]. In essence, all a FIDIO does is compute a random walk
from a source curve. We already know how to compute random walks of smooth
degree (by taking a sequence of random isogeny steps of small prime degree), and
a FIDIO extends this capability to random walks with potentially large prime
steps.

5.3 Security of the Signature Protocol

In the previous sections, we have shown that the SQIsign2D Σ-protocol is 2-
special sound, under the assumed hardness of Problem 13, and zero-knowledge
in the UTO and FIDIO model. Hence, a direct application of the Fiat–Shamir
transform [21] yields a digital signature that is EUF-CMA secure in the random
oracle model (ROM) [36], under the hardness of Problem 13 when the attacker
has access to the UTO and FIDIO.

However, the signature protocol whose security is proved in [36] includes
commitments in the signature. As explained in Sect. 4.2, we replace the com-
mitment in the signature with the challenge (by relying on the commitment-
recoverability property of the Σ-protocol) to reduce the signature size. To show
the security equivalence of the two approaches, we rely on [2, Theorem 2], which
requires the commitment-recovering algorithm to be correct and sound. Given a
transcript (com, chl, rsp), correctness requires the commitment-recovering algo-
rithm to always produce com given chl and rsp, and it follows from Remark
12. Soundness, in this context, means that it is computationally hard to find
a pair of challenge and response (chl, rsp) for which the commitment-recovering
algorithm produces a commitment com such that (com, chl, rsp) is not a valid
transcript. In our case, the commitment-recovering algorithm is perfectly sound
(i.e. soundness holds even against unbounded adversaries): the curve produced
by the commitment-recovering algorithm introduced in Sect. 4.2 is always the
codomain of an isogeny, efficiently represented in the response, starting from
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Echl, and the curve Ecom does not need to satisfy any additional requirement to
be a valid commitment; thus, the resulting transcript is always valid.

This shows that the SQIsign2D signature protocol is EUF-CMA secure in the
ROM, assuming the hardness of Problem 13 when the attacker has also access
to the UTO and FIDIO.

6 Instantiation and Experimental Results

We selected parameters for the scheme described in Sect. 4 matching NIST post-
quantum security levels I, III and V, and implemented them in C building upon
the SQIsign reference implementation. We now give details on our implementa-
tion and compare its performance to the other variants of SQIsign.

6.1 Parameter Choices and and Signature Size

Choice of the Primes. As mentioned in Sect. 5, the best attacks against the
Supersingular Endomorphism Ring problem have classical complexity Õ(p1/2)
and quantum complexity Õ(p1/4), where p is the characteristic of the base field.
These are also the best known attacks against SQIsign (see [9, Chapter 9]) and
SQIsign2D. Our security reduction, although not tight and formulated in the
UTO/FIDIO model, further justifies using these complexities to set parameters.

To reach NIST’s security levels I, III and V, we thus look for primes of
roughly 256, 384 and 512 bits respectively. For maximum efficiency, we selected
primes such that 2p fits in 4, 6 and 8 64-bits words. The final requirement is
that p+1 = c · 2e with c as small as possible; it is also desirable that c has small
Hamming weight. Our final choices are listed in Table 2.

Table 2. Chosen parameters for SQIsign2D. Sizes in bytes.

NIST I NIST III NIST V

Prime 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1

Public-key size 66 98 130

Signature size 148 222 294

Signature Encoding and Sizes. The resulting public key and signature sizes are
reported in Table 2. We detail below how these numbers are computed.

As for other SQIsign variants, there are various possibilities to decrease the
signature size at the expense of slower verification and signing. For our imple-
mentation, we prioritised verification speed over signature size, and thus chose
to not use the most advanced compression tricks. As we mentioned already
(see Sect. 4.2), our scheme is commitment recoverable which means that we do
not need to include the commitment curve in the signature. This requires a little
more work for the signer, but it makes close to no difference for the verification.

https://github.com/SQISign/the-sqisign
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Outside of this, the only other real compression we use is to represent the
basis Pchl, Qchl as four elements in [0, 2ersp ] (that are the coefficients of Pchl, Qchl

in a canonical basis of Echl). For a given level security of λ, we have log p ≈ 2λ
and ersp ≈ λ, so this compression allows us to decrease the size of the basis
representation from 8λ (since each point is represented as one element in Fp2)
to 4λ. This requires the additional computation a canonical basis of Echl. In
general, this is not cheap to compute, but we can abuse tricks specialised for
the generation of bases of E[2k] such as the entangled torsion basis from [43,
Algorithm 3.1] or the modification described in [41, Section 5.1].

We can further reduce the cost of the basis generation for the verifier by
including hints at the very reasonable cost of increasing the signature size by
two bytes. The idea of hints to speed-up basis generation was first introduced
as part of the compression procedure in the original SQIsign paper. Using the
specialised algorithms [41,43] boils down to selecting x-coordinates with chosen
Legendre symbols and checking whether the chosen x is a valid x-coordinate for
a point on the curve.

In this context, the hints can be either indices of tables of “good” x-
coordinates, or some integer h such that x = i + h ∈ Fp2 are values with the
correct Legendre symbol properties and points on the curve.1 Moreover, it does
not cost anything to the signer to include these hints. In our experiments, the
value of the hints never went over 50, thus we conjecture that for the sizes consid-
ered for our scheme, the hints for a basis can fit in two bytes with overwhelming
probability.

In our scheme, we use hints for the deterministic basis generation required
by the verification: one for Epk and one for Echl. Thus, this increases the size of
the public key by two bytes and the size of the signature by two bytes.

In the end, the size of the public key is 4λ + 16 bits, and the size of the
signature is 9λ + 16 + 2 log2(2λ) bits (λ for the scalar chl ,4λ for Eaux, 4λ + 16
for Pchl, Qchl and 2 log(2λ) for r′ and nbt).

6.2 Implementation Choices and Optimisations

We implemented SQIsign2D in C by modifying SQIsign’s reference code.2

Multi-precision integers and quaternion algebras are built on top of the GMP
library.3 The only significant difference with SQIsign is the use of floating point
numbers in the LLL algorithm instead of exact rationals.

Arithmetic modulo p has two implementations: one based on the Fiat-Crypto
code generator [20] and one optimised implementation using the special form of
1 In our implementation, we begin sampling coordinates from two tables with twenty

values. This gives a 2−20 chance of failure, which we recover from by then sampling
coordinates of the form x = i + h as above. Regardless of whether the basis is
generated from a look-up or sampling, the cost for verification is the same thanks to
the supplied hint.

2 Our code will be available at https://github.com/SQISign/sqisign2d-west-ac24.
3 https://gmplib.org/.

https://github.com/SQISign/the-sqisign
https://github.com/SQISign/sqisign2d-west-ac24
https://gmplib.org/
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the primes used, allowing for efficient Montgomery reduction. We give a detail
of the design choices of this implementation and future work in [3, Appendix C].

Elliptic Curves, Pairings, and Isogenies. Following standard practice, we rep-
resent elliptic curves in Montgomery form and use the formulas in [10,37] to
evaluate 2-isogenies and 4-isogenies. Compared to SQIsign, we do not use for-
mulas for isogenies of odd degrees, and in particular we do not need the costly√

élu algorithm [5].
For pairings, we use the biextension/cubical formulas from [40], because these

are currently, to the best of our knowledge, the fastest available to compute
pairings on Montgomery curves. We note that since we only need to compute
pairings between points of order 2e, we only need to use biextension doublings.

Two-dimensional abelian varieties are represented in theta coordinates and their
two-dimensional 2-isogenies are evaluated using the formulas in [12]. We use the
projective version of their formulas to remove almost all inversions along the
isogeny chain.

All other algorithms are either taken from the implementation of SQIsignHD
or have been written from scratch according to the description in Section 3,
with minor deviations to allow for several small optimizations, such as commit-
ment recoverability, bases compression, and hints.

Table 3. Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2 GHz), using
generic finite field arithmetic (Fiat-Crypto), GMP 6.2.1. Turbo-boost disabled. Timings
in 106 cycles.

Level SQIsign SQIsignHD SQIsign2D

I 2,800 190 120

Keygen III 21,300 — 440

V 91,600 — 1,070

I 4,600 115 290

Sign III 39,300 — 1,040

V 165,000 — 2,490

I 93 — 25

Verify III 641 — 98

V 2,080 — 247

6.3 Performance

We ran benchmarks to compare our implementations to the state of the art. All
code was compiled on Ubuntu using clang 14, with flags -march=native -O3,
dynamically linking to the system GMP library (version 6.2.1). Benchmarks were
run on an Intel Xeon Gold 6338 (Ice Lake) CPU clocked at 2 GHz with turbo
boost disabled. In Table 3 we compare our pure-C implementation to:

https://github.com/Pierrick-Dartois/SQISignHD-lib
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– The reference implementation of SQIsign at https://github.com/SQISign/
the-sqisign. Because this uses the same modular arithmetic based on Fiat-
Crypto, it is a fair comparison for showcasing the higher-level algorithmic
improvements of SQIsign2D.

– The implementation of SQIsignHD at https://github.com/Pierrick-Dartois/
SQISignHD-lib. This codebase is momentarily lacking a C implementation of
the verification, thus we only benchmark key generation and signatures.

For the optimised pure-C implementation we additionally compare to the
implementation of SQIsign [15] at https://github.com/SQISign/sqisign-ec23.
This has much better assembly optimisations for finite fields and is generally
faster than the reference implementation. However, our implementation is the
only one to implement all three NIST levels. We additionally implemented the
heuristic variant of SQIsign2D described in [3, Appendix B] and included these
results under the label SQIsign2D-H. The results are reported in Table 4.

Table 4. Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2 GHz), with
finite field arithmetic optimised using intrinsics for the Ice Lake architecture, GMP
6.2.1. Turbo-boost disabled. Timings in 106 cycles.

Level SQIsign ( [9]) SQIsign ( [15]) SQIsign2D SQIsign2D-H

I 1,700 400 60 58

Keygen III — — 170 170

V — — 360 350

I 2,400 1880 160 100

Sign III — — 460 280

V — — 940 570

I 39 29 9 9

Verify III — — 29 29

V — — 62 60

https://github.com/SQISign/the-sqisign
https://github.com/SQISign/the-sqisign
https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/SQISign/sqisign-ec23
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Abstract. We introduce a new tool for the study of isogeny-based cryp-
tography, namely pairings which are sesquilinear (conjugate linear) with
respect to the O-module structure of an elliptic curve with CM by an
imaginary quadratic field O. We use these pairings to study the security
of problems based on the class group action on collections of oriented
ordinary or supersingular elliptic curves. This extends work of [CHM+23]
and [FFP24].

Keywords: Isogeny-based cryptography · Pairings · Elliptic curves

1 Introduction

The use of isogeny graphs in cryptography dates to [CLG09,Cou06,RS06]. The
latter proposals were for public-key cryptography based on an ordinary isogeny
graph. In particular, the class group Cl(O) of an order O in an imaginary
quadratic field K acts on the set of ordinary elliptic curves over Fp with CM by
O. For efficiency, CSIDH was proposed [CLM+18], making use of supersingular
curves with an action by the class group of the Frobenius field. More recently,
this was generalized to OSDIH [CK20], making use of other imaginary quadratic
fields in the endomorphism algebra. Recently, SIDH adaptations based on related
ideas have been proposed [BF23]. Our paper concerns oriented elliptic curves,
which refers to attaching the data of an embedding of a particular imaginary
quadratic order O into the endomorphism ring. All these public-key proposals
are examples of class group actions on oriented curves.

The security of these schemes relies on variants of the Diffie-Hellman problem
for the class group action. The security of these problems has drawn a great deal
of interest, and not all instances of the problem have so far proven to be secure. If
the class group is even, the decisional Diffie-Hellman problem is broken by the use
of genus theory [CSV22,CHVW22]. These papers make use of the Weil and Tate
pairings to compute certain associated characters. More recently, [CHM+23]
makes use of generalizations of Weil and Tate pairings to break certain instances
of the class group action problem (i.e., determining which class group element
takes one given oriented curve to another) when the discriminant has a large
smooth square factor and the degree is known. Pairings have also appeared in the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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study of oriented elliptic curves in [IJ13], to navigate the isogeny graph. For other
interactions between pairings and isogeny-based cryptography, see [KT19,Rei23].

The attacks in [CHM+23] use pairings to reduce a hidden isogeny problem
with known degree for the class group action to the SIDH problem recently
broken using higher dimensional abelian varieties [CD23,MMP+23,Rob23b]. In
short, if the degree of a secret isogeny φ : E → E′ is known, and it is known
that φP ∈ ZP ′ for P ∈ E and P ′ ∈ E′, then we can make use of a relationship
of the form

〈P, P 〉deg φ = 〈φP, φP 〉 = 〈kP ′, kP ′〉 = 〈P ′, P ′〉k2

by solving a discrete logarithm to obtain the relationship k2 ≡ deg φ (mod m),
and thereby solve for k. With this, we (essentially) obtain the image φP of P ,
which is the type of information provided in the SIDH problem. The classical
SIDH problem (for which we now have efficient methods) requires the image
of two basis points, and this provides only one. To close the gap, [CHM+23]
uses results of [FFP24] which reduce SIDH1, in which the image of only one
torsion point is provided, to classical SIDH, provided the order of the point
is square. More recent work presented but not yet available [CDM+24] uses
pairings to generalize the SIDH attacks so that torsion images of any sufficiently
large subgroup suffice.

These attacks require that the degree of the secret isogeny is known. This
is the case in constant-time implementations aimed at preventing side-channel
attacks such as those in [CVCCD+19]; see [CHM+23] for more details. Further-
more, in [FFP24, Lemma 14], the authors give a heuristic reduction from the
group action problem to the same problem with known degree. In this paper
we will assume throughout that the degree of the secret isogeny is
known.

In this paper we introduce a new tool for understanding these results and
pushing such attacks further. In [Sta24], certain new generalized pairings ̂W

and ̂T (generalizing the usual Weil and Tate pairings) are defined, which are
O-sesquilinear, meaning that

〈αx, βy〉 = 〈x, y〉αβ

for α, β ∈ O. In particular, they take values in an O-module formed by extending
scalars from the usual domain F

∗
q .

In particular, we need now assume only that φP ∈ OP ′ and obtain a rela-
tionship

〈P, P 〉deg φ = 〈φP, φP 〉 = 〈λP ′, λP ′〉 = 〈P ′, P ′〉N(λ),

where λ ∈ O. The new pairings are amenable to a Miller-type effective algorithm
for their computation, and carry all the useful properties of the Weil and Tate
pairings, especially compatibility with O-oriented isogenies.

The paper [CHM+23] provides a taxonomy of known generalized pairings,
but all of these are only Z-bilinear with image in F

∗
q .

One important difference of these sesquilinear pairings from the generalized
pairings previously considered is their non-degeneracy. In [CHM+23], there is a
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classification theorem for cyclic self-pairings compatible with oriented endomor-
phisms. These are functions fm : C → μm where C is a cyclic subgroup of E[m]
whose image under fm spans μm, with the following properties: f(λP ) = f(P )λ2

,
ι(σ)(P ) ∈ C, and f(ι(σ)P ) = f(P )N(ι(σ)) for ι an orientation of a given imag-
inary quadratic order O, σ ∈ O, and P ∈ C. They essentially show that such
pairings can only be non-trivial for m dividing the discriminant ΔO of O.

The requirement that m divide ΔO limits the applicability of their attacks
on the class group action to situations where the discriminant has a good fac-
torization. We demonstrate that by extending to O-sesquilinear pairings, whose
domain is not Z-cyclic but instead O-cyclic, we obtain many more non-trivial
self-pairings to work with.

The use of these new O-sesquilinear pairings offers several clarifying concep-
tual advantages, and partially answers several of the open problems posed in
[CHM+23]. However, they are not a magic bullet: we show (Theorem 7) that
the computation of these pairings is essentially equivalent to the computation of
the O-orientation, provided discrete logarithms are efficient in μm (for example,
if m is smooth).

Conceptual Contributions

1. We introduce the new O-sesquilinear pairing ̂T in the cryptographic context.
2. We show that these pairings give rise to many non-degenerate O-cyclic self-

pairings, without a requirement that m divide the discriminant (Theorem 6).
3. We characterize elliptic curves for which E[m] is a cyclic O-module (Theo-

rem 3): E[m] is O-cyclic if and only if the O-orientation is m-primitive.
4. We show an equivalence between computation of an O-orientation and the

computation of O-sesquilinear pairings for nice m (Theorem 7).
5. Corollary 1 and Theorem 9 (described in more detail below) provide evidence

for a trade-off between the amount of known level structure of a secret isogeny
φ : E → E′ of degree d and how much of the endomorphism rings of E and E′

we need to represent to find φ. As shown in [Wes22], the fixed-degree isogeny
problem with full level structure is equivalent to finding a representation of the
full endomorphism ring of E and E′, while [CD23,MMP+23,Rob23b] show
that the fixed-degree isogeny problem with minimal level structure requires
no knowledge of even a partial representation of the endomorphism rings of
E and E′. As described in Cryptographic contributions items 2 and 3 below,
knowledge of an intermediate level structure can be combined with a repre-
sentation of only “half” of the endomorphism rings of E and E′, to provide
attacks on hidden isogenies of known degree. See also the work in [FFP24],
which explores varying amounts of level structure.

Cryptographic Contributions

1. We extend the applicability of the (sometimes polynomial) attacks from
[CHM+23] on the class group action problem (Sect. 8). These attacks run
for smooth m dividing the discriminant. We recover these attacks using the
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new pairings in a slightly different way, with the advantage that our pair-
ing computations do not require going to a large field extension. This par-
tially addresses one of the open questions of [CHM+23, Section 7]. Example 3
gives an explicit situation in which the reach of polynomial attacks is strictly
extended.

2. We demonstrate a pairing-based reduction from SIDH1 to SIDH in the ori-
ented situation for E[m], where m is smooth and coprime to the discriminant
(Theorem 9), resulting in an attack when m2 > deg φ. This partially addresses
the first and second open problems in [CHM+23, Section 7]. Existing attacks
on SIDH1 (which apply without orientation information) require m > deg φ.

3. We reduce the hard problem underlying FESTA [BMP23] to finding an ori-
entation of the secret isogeny φ : E → E′ (i.e. an orientation of both curves
and the isogeny between them) (Corollary 1). This follows from an attack on
the Diagonal SIDH Problem (Theorem 10).

4. We show how these pairings, using orientation information, easily reveal par-
tial information on the image of a torsion point P of order m for m smooth
(Theorem 8). This results in an algorithm to break class-group-based schemes
by running the SIDH attack on

√

deg(φ) candidate torsion points as images
under φ (Remark 5).

5. Our results should be considered a cautionary tale for the design of deci-
sional problems based on torsion point images, such as in [MOT20], since the
possible images of torsion points is restricted. We discuss this in Remark 6.

6. In the supersingular case, we demonstrate a method of finding the secret
isogeny in the presence of two independent known orientations (which
amounts to an explicit subring of the endomorphism ring of rank 4), pro-
vided the secret isogeny is oriented for both orientations. This is not a
surprise, as this problem could be solved by the KLPT algorithm if the
endomorphisms are obtained by walking the graph (see [EHL+20], and also
[KLPT14,Wes22]), but it provides a new method via a simple reduction to
the SIDH problem. (Section 9.)

2 Background

2.1 Notations

We study elliptic curves, typically denoted E, E′ etc., defined over finite fields,
denoted by F in general. Denote an algebraic closure of F by F̄. The identity on E
is denoted ∞, and End(E) is the endomorphism ring over F. We study imaginary
quadratic fields, denoted K in general, and orders in such fields, denoted by O,
O′ etc. Greek letters typically denote elements of the orders. We denote the norm
of an element λ of a given order by N(λ). When considering the action of an
element α ∈ O on a point P , we write [α]P . The Greek letter φ always refers to
an isogeny and ̂φ always denotes the dual isogeny of φ. For ease of notation, we
write φP instead of φ(P ). Throughout the paper, we write μm for the copy of
μm in a finite field.
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2.2 Orientations

We study O-oriented elliptic curves over finite fields, which are curves together
with the information of an embedding ι : O → End(E). This extends to an
embedding of the same name, ι : K → Q ⊗Z End(E), and the O-orientation is
called primitive if ι(K) ∩ End(E) = ι(O). If the index [ι(K) ∩ End(E) : ι(O)]
is coprime to n, we say the orientation is n-primitive. Given an O-orientation,
there is a unique O′ ⊇ O for which ι becomes a O′-primitive orientation, namely
ι(O′) = ι(K) ∩ End(E). Given an elliptic curve E with an O-orientation, we
define the relative conductor of O to be the index [O′ : O], for which the orien-
tation is O′-primitive.

If φ : E → E′ is an isogeny between two O-oriented elliptic curves (E, ι)
and (E′, ι′) is such that φ ◦ ι(α) = ι′(α) ◦ φ for all α ∈ O, then we say that
φ is an oriented isogeny. Throughout the paper, we will generally fix a single
O-orientation for any curve, so we will often drop the ι, writing simply [α] for
ι(α), writing O ⊆ End(E), and characterizing oriented isogenies as those for
which φ ◦ [α] = [α] ◦ φ. This saves on notation.

2.3 Cyclic Self-pairings

CSIDH, introduced in [CLM+18], relies for its security on the presumed hardness
of the following instance of the vectorization problem: given a (large) prime p ≡ 3
(mod 4) and two supersingular curves E and E′ over Fp, find the ideal class [a] of
O = Z[

√−p] such that E′ = [a]E. More generally, the vectorization problem can
be phrased as follows: given two supersingular elliptic curves E,E′ primitively
oriented by an imaginary quadratic order O and known to be connected by the
action of the ideal class group cl(O) of O, find [a] ∈ cl(O) such that E′ = [a]E.
This is also known as a class-group-action problem.

This paper builds on the previous work of [CHM+23]. There, the authors ask
whether the attack on SIDH [CD23,MMP+23,Rob23b] that renders the protocol
insecure can be applied to solving the vectorization problem. In brief, they note
that one can treat the SIDH attack as an oracle, which when given the degree d
of a secret Fq-rational isogeny φ between curves E and E′ defined over Fq and
knowledge of its action on a basis of E[m] for m coprime to d and m2 > 4d,
returns φ. Assuming the degree d of φ is known, the question of whether this
oracle can answer the vectorization problem therefore reduces to the question of
whether one can determine the action of φ on a basis of E[m] for suitable m.

The following example, reproduced directly from [CHM+23], is instructive.
Assume the context of CSIDH, i.e., that the relevant order is Z[

√−p]. Choosing
m to be the power of a small prime l coprime to d that splits in Q(

√−p), E[m]
has a basis {P,Q} consisting of eigenvectors of the Frobenius endomorphism
πp. Since by assumption the curves E,E′ and the isogeny φ are all defined over
Fp, E′[m] has a basis {P ′, Q′} consisting of eigenvectors of πp and φP = rP ′,
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φQ = sQ′ for r, s ∈ (Z/mZ)×. The bilinearity and compatiblity with isogenies
of the m-Weil pairing imply that

em(P ′, Q′) = em(P,Q)rsd (1)

With Miller’s algorithm [Mil04], computation of the m-Weil pairing is efficient.
Since m is a power of a small prime, also efficient is computation of discrete
logarithms. Thus, given knowledge of d it remains to determine one of r or s.
Yet properties of the m-Weil pairing imply that em(P ′, P ′) = 1; thus, one cannot
compute em(P ′, P ′) = em(P, P )r2d to find r.

In [CHM+23], this obstacle is surmounted via the construction of cyclic self-
pairings that are compatible with O-oriented isogenies. A cyclic self-pairing is a
function f defined on a finite cyclic subgroup C of an elliptic curve E/F with
the property that

f(rP ) = f(P )r2
for all P ∈ C and r ∈ Z.

When E and E′ are two curves over F with orientations of an imaginary quadratic
order O by ι, ι′, respectively, two self-pairings f and f ′ defined on finite subgroups
C of E and C ′ of E′ are compatible with O-oriented isogenies φ : E → E′ when
φ(C) ⊂ C ′ and f ′(φP ) = f(P )deg φ. If φ is an O-oriented isogeny from E to E′

of degree d coprime to an integer m such that E and E′ have non-trivial cyclic
self-pairings f and f ′ compatible with O-oriented isogenies on cyclic subgroups
〈P 〉, 〈P ′〉, then

f ′(P ′) = f(P )dr2

for some r ∈ Z/mZ. If furthermore discrete logarithms are efficiently computable
modulo m, then the non-triviality of f and f ′ implies that one can efficiently
determine r2 modulo m. Assuming m has a nice factorization, this leaves only a
few possibilities for r, and one simply guesses by direct computation which one
is correct.

The non-trivial self-pairings constructed in [CHM+23] are generalizations on
the classical reduced m-Tate pairing. We refer the reader to Sect. 5 of [CHM+23]
for further details. Crucially, the order m of non-trivial cyclic self-pairings com-
patible with O-oriented isogenies must divide ΔO ( [CHM+23], Proposition 4.8).
Furthermore, the existence of such a self-pairing only yields knowledge of the
image of a single torsion point P under φ. In [CHM+23], this latter issue is
addressed by assuming m2 | ΔO. Then one obtains the image of an order m2

point P under φ. The authors briefly describe how one can then obtain from
this data knowledge of the action of φ on a basis for E[m]. A more systematic
description of this reduction in the language of level structure is in Sect. 5 of
[FFP24] (in particular, see corollary 12).

Thus, there are two significant limitations to the scope of this attack. First,
ΔO must contain a large smooth square factor. Second, in general one must work
over a field where the m2-torsion is fully rational. In the worst case, this requires
a base change to an extension of potentially large degree.
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The first of these limitations is addressed in work in preparation by Castryck
et al. [CDM+24], the authors show that with knowledge of the image of φ :
E → E′ on a generating set S for a subgroup G with #G > 4d, there is an
algorithm to determine φ (in the sense of computing arbitrary images) that is
polynomial in

(1) the size of the S and log q, where q is the size of the field over which E and
E′ are defined;

(2) the size of the largest prime factor of #G;
(3) the largest degree of the fields of definition of E[
�e/2�], taken over all prime

powers le dividing #G.

In particular, this result obviates the need for ΔO to contain a smooth square
factor; instead, one only needs a smooth factor of size greater than 4d.

2.4 Level Structure

Many isogeny-based protocols require that some torsion-point information be
made publicly known. For example, in SIDH, the image under the secret isogeny
φ of a specified basis {P,Q} for E[m] (where m is a power of a small prime
coprime to the characteristic of the field F over which E is defined) is known. As
discussed in the last section, in CSIDH the image of a basis {P,Q} for E[m] (with
m again a power of a small prime coprime to the field characteristic, but also
coprime to the degree d of the secret isogeny φ) is known, up to multiplication
by an element of (Z/mZ)×. Equivalently, the image under φ of two order m
subgroups of E is known. Both types of torsion-point information are examples
of level structure that φ respects.

Definition 1 ([FFP24]). Let E be an elliptic curve over a finite field F of
characteristic p and m be a positive integer coprime to p. Let Γ be a subgroup of
GL2(Z/mZ). A Γ-level structure of level m on E is a Γ-orbit of a basis of E[m].

Typically in the context of isogeny problems, one is not interested in level
structure per se, but in level structure that a given isogeny φ respects. That is,
given curves E and E′ both with Γ-level m structures for a fixed Γ, φ maps the
specified Γ-orbit for E[m] to the specified Γ-orbit for E′[m].

There has been much attention paid recently to elliptic curves equipped
with a particular level structure. Arpin [Arp24] studies the correspondence of
Eichler orders in the quaternion algebra Bp,∞ with supersingular elliptic curves
over Fp equipped with Borel level structure—i.e., where Γ = ({ ∗ 0∗ ∗ })—for m
squarefree and coprime to p. In [CL24], the authors consider the structure of the
supersingular isogeny graph with varying level structures and show that many
of these graphs remain Ramanujan. Others investigate the actions of general-
ized ideal class groups on elliptic curves over finite fields with level structure
[GPV23,ACKE+24]. In this paper, we are primarily interested in level structure
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as a unifying framework for understanding the security of various proposals in
isogeny-based cryptography. This framework is described in detail in [FFP24].
In particular, those authors make explicit the implicit level structures in sev-
eral schemes including SIDH, M-SIDH, CSIDH, and FESTA, and prove several
security reductions between various level structures.

2.5 Computational Assumptions

With regards to computations, we use the word efficient to mean polynomial
time in the size of the input, which is itself typically a polynomial in log m
(the torsion) and log q (where q is the cardinality of the field of definition of
the m-torsion), in our context. Throughout the paper, when we assume that we
are given an O-oriented elliptic curve, we mean that we are given an explicit
orientation, and in particular that, given an element α ∈ O, we can compute its
action [α] on a point P on E efficiently.

We assume throughout that the degree of the hidden isogeny is known.
We assume that m is coprime to the characteristic p of the given field F, and

that m is smooth, meaning that its factors are polynomial in size, so that discrete
logarithms in μm or E[m] are computable in polynomial time. In particular, we
can efficiently write any element of E[m] in terms of a given basis.

2.6 The Tate-Lichtenbaum Frey-Rück Pairing

We review the definition and basic properties of the Tate-Lichtenbaum pairing.

Definition 2. Let m > 1 be an integer. Let E be an elliptic curve defined over a
field F (assumed finite in this paper). Suppose that P ∈ E(F)[m]. Choose divisors
DP and DQ of disjoint support such that DP ∼ (P )− (O) and DQ ∼ (Q)− (O).
Then mDP ∼ ∅, hence there is a function fP such that div(fP ) = mDP . The
Tate-Lichtenbaum pairing

tm : E(F)[m] × E(F)/mE(F) → F
∗/(F∗)m

is defined by
tm(P,Q) = fP (DQ).

The standard properties of the Tate pairing are as follows. Proofs can be
found in many places, for example [Rob23a] and [CHM+23, Sec 3.2].

Proposition 1. Definition 2 is well-defined, and has the following properties:

1. Bilinearity: for P, P ′ ∈ E(F)[m] and Q,Q′ ∈ E(F)

tm(P + P ′, Q) =tm(P,Q)tm(P ′, Q),
tm(P,Q + Q′) =tm(P,Q)tm(P,Q′).
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2. Non-degeneracy: Let F be a finite field containing the m-th roots of unity μm.
For nonzero P ∈ E(F)[m], there exists Q ∈ E(F) such that

tm(P,Q) �= 1.

Furthermore, for Q ∈ E(F)\mE(F), there exists a P ∈ E(F)[m] such that

tm(P,Q) �= 1.

In particular, for P of order m, there exists Q such that tm(P,Q) has order
m, and similarly for the other entry.

3. Compatibility: For a point P ∈ E(F)[m], an isogeny φ : E → E′, and a point
Q ∈ E′(F),

tm(φP,Q) = tm(P, ̂φQ).

3 Structure of E[α]

Suppose E has an O-orientation. Let α ∈ O. We wish to know when E[α] is
cyclic as an O-module. The following two theorems of Lenstra are relevant.

Theorem 1 ([Len96, Proposition 2.1]). Let E be an elliptic curve over an
algebraically closed field k, and O a subring of Endk(E) such that as Z-modules,
O is free of rank 2 and Endk(E)/O is torsion-free. Then for every separable
element α ∈ O, E[α] ∼= O/αO as O-modules.

When α is inseparable, Lenstra has a similar result. With O as above,
char k = p > 0, and K = O ⊗Z Q, he observes that there is a p-adic valua-
tion ν on K with ν(α) = log(degi α)/ log p for α ∈ O. Following his notation, we
define V = {x ∈ K : ν(x) ≥ 0}.

Theorem 2 ([Len96, Proposition 2.4]). Let the notation and hypotheses be
as above. Then for every non-zero element α ∈ O there is an isomorphism of
O-modules E[α] ⊕ (V/αV ) ∼= O/αO.

Theorem 3. Let E be an elliptic curve over F, K an imaginary quadratic field,
and O an order in K such that E has an O-orientation, which is primitive when
extended to O′. Let f = [O′ : O] be the relative conductor of O. For α ∈ O with
N(α) coprime to f (i.e., such that the O-orientation is N(α)-primitive), then
E[α] is cyclic as an O-module. Specifically:

1. If α is separable, then E[α] ∼= O/αO.
2. If α is inseparable, then E[α] is isomorphic to a proper cyclic O-submodule

of O/αO.

As a partial converse, as soon as α factors through multiplication by n for
some n > 1 that divides f , E[α] is not cyclic as an O-module. In particular, if
α = m ∈ Z, then E[m] is a cyclic O-module if and only if m and f are coprime.
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Proof. Suppose first that α is separable. Let ι be an O-orientation for E and
O′ be the order of K for which ι is a primitive orientation. Then as an abelian
group the quotient End(E)/O′ is torsion-free and Theorem 1 tells us that E[α] ∼=
O′/αO′ as O′-modules. We have N(α) = N(αO′) = |O′/αO′|, so since N(α)
is coprime to f , it follows from [Cox22, Proposition 7.18, 7.20] that the natural
injection O/αO → O′/αO′ is an isomorphism of O-modules.

Suppose then that α is inseparable. Let O′ be as above. From Theorem 2
we have E[α] ⊕ V/αV ∼= O′/αO′, so E[α] is isomorphic as an O′-module to
(O′/αO′)/(V/αV ) and hence is a cyclic O′-module. Since O′/αO′ ∼= O/αO as
O-modules, again by our assumption that N(α) is coprime to f , it follows that
E[α] is cyclic as an O-module.

Finally, suppose α factors through [n] for some n > 1 with n | f . Then as a
Z-module, E[α] ∼= Z/bZ × Z/cZ with n | b | c. Let Q be an arbitrary point of
order c in E[α] and extend to a generating set {P,Q} for E[α] with ord(P ) =
b, ord(Q) = c. Let O′ = Z[σ] for some σ. Then O = Z[fσ]. Since any element of
O is a Z-linear combination of [1] and [fσ], whether or not E[α] is cyclic as an
O-module is determined by the action of fσ. We have [fσ]Q = [nσ]Q′, where
Q′ = [f/n]Q.

If [σ]Q′ = [s]P + [t]Q, then [fσ]Q = [ns]P + [nt]Q, and we cannot obtain P
from the action of any Z-linear combination of [1] and [fσ] on Q (since [n] is
not injective on E[α]). Thus, Q cannot be a generator for E[α] as an O-module.
Since Q was an arbitrary order c point, and since no point of order strictly less
than c can generate E[α] as an O-module (endomorphisms send points of E of
order m to points of E of order dividing m), E[α] cannot be a cyclic O-module.

��
Example 1. Consider the ordinary curve y2 = x3 + 30x + 2 over F101. Denoting
the Frobenius endomorphism of degree p by π, Z[π] has conductor 2 in the
maximal order and [Z[π] : Z[π2]] = 18. Thus, Theorem 3 implies E[3] is not
cyclic as a Z[π2]-module. Indeed, making a base change to F1012 , the 3-torsion
of E becomes rational. On the other hand, E[3] is cyclic as a Z[π]-module.
With F1012 = F101(a) and x2 − 4x + 2 the minimal polynomial of a, we have
P = (41a + 16, 39a + 19) ∈ E[3] and π(P ) = (60a + 79, 62a + 74) �∈ 〈P 〉, hence
Z[π]P = E[3].

4 Sesquilinear Pairings

We follow [Sta24] in this section. Suppose O = Z[τ ] is an imaginary quadratic
order. Let E have CM by O. Let ρ : O → M2×2(Z) be the left-regular represen-
tation of O acting on the basis 1 and τ , i.e.

ρ(α) =
(

a b
c d

)

⇐⇒ α = a + cτ, ατ = b + dτ.

Then we endow the Cartesian square (F∗)×2 of the multiplicative Z-module F
∗

(i.e. Z-coefficients in the exponent) with a multiplicative O-module action (i.e.
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O-coefficients in the exponent) via

(x, y)α = ρ(α) · (x, y) = (xayb, xcyd), where ρ(α) =
(

a b
c d

)

. (2)

In the case of an O-module, by order of an element we mean the Z-order;
we can also discuss the annihilator as an O-module, which may be distinct from
this.

For each α ∈ O, we define a bilinear pairing

̂T τ
α : E[α](F) × E(F)/[α]E(F) → (F∗)×2/((F∗)×2)α

as follows. Write
ρ(α) =

(

a b
c d

)

, ρ(α) =
(

d −b
−c a

)

.

Observe that this corresponds to the ring facts

a + cτ = α, b + dτ = ατ, d − cτ = α, −b + aτ = ατ.

We take P ∈ E[α], Define fP = (fP,1, fP,2), where

div(fP,1) = a([−τ ]P ) + b(P ) − (a + b)(∞),
div(fP,2) = c([−τ ]P ) + d(P ) − (c + d)(∞).

Choose an auxiliary point R ∈ E(F) and define for Q ∈ E(F),

DQ,1 = ([−τ ]Q + [−τ ]R) − ([−τ ]R), DQ,2 = (Q + R) − (R).

Then, choosing R so that the necessary supports are disjoint (i.e. the support of
div(fP,i) and DQ,j are disjoint for each pair i, j), the pairing is defined (using
(2)) as

̂T τ
α (P,Q) := (fP,1(DQ,1), fP,2(DQ,1)) (fP,1(DQ,2), fP,2(DQ,2))

τ

which can also be expressed as
(

fP,1(DQ,1)fP,1(DQ,2)Tr(τ)fP,2(DQ,2)N(τ), fP,2(DQ,1)fP,1(DQ,2)−1
)

.

Remark 1. In [Sta24], it is shown how it is possible to think of these definitions
as elements of O ⊗Z Pic0(E):

DQ = DQ,1 + τ · DQ,2, DP = ([−τ ]P ) − (∞) + τ · ((P ) − (∞)),

and analogously define fP satisfying div(fP ) = α · DP , so that the definition
above has the form fP (DQ) as for the classical Tate pairing, and the apparent
dependence on the basis 1, τ disappears. For simplicity here, we stick to the
direct definition above. In that same paper, analogous constructions are also
given for quaternion orders and Weil-like pairings.
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Theorem 4 ([Sta24, Theorems 5.4, 5.5, 5.6]). The pairing above is well-
defined and satisfies

1. Sesquilinearity: For P ∈ E[α](F) and Q ∈ E(F),

̂T τ
α ([γ]P, [δ]Q) = ̂T τ

α (P,Q)γδ.

2. Compatibility: Let φ : E → E′ be an isogeny between curves with CM by O
and satisfying [α] ◦ φ = φ ◦ [α]. Then for P ∈ E[α](F) and Q ∈ E(F),

̂T τ
α (φP, φQ) = ̂T τ

α (P,Q)deg φ.

3. Coherence: Suppose P ∈ E[αβ](F), and Q ∈ E(F)/[αβ]E(F). Then

̂T τ
αβ(P,Q) mod ((F∗)×2)β = ̂T τ

β ([α]P,Q mod [β]E).

Suppose P ∈ E[α](F), and Q ∈ E(F)/[αβ]E(F). Then

̂T τ
αβ(P,Q) mod ((F∗)×2)α = ̂T τ

α (P, [β]Q mod [α]E).

4. Non-degeneracy: Let F be a finite field, and let E be an elliptic curve defined
over F. Let α ∈ O be coprime to char(F) and the discriminant of O. Let
N = N(α). Suppose F contains the N -th roots of unity. Suppose there exists
P ∈ E[N ](F) such that OP = E[N ] = E[N ](F). Then

̂T τ
α : E[α](F) × E(F)/[α]E(F) → (F∗)×2/((F∗)×2)α,

is non-degenerate. Furthermore, if P has annihilator αO, then Tα(P, ·) is
surjective; and if Q has annihilator αO, then Tα(·, Q) is surjective.

5. Let tn be the n-Tate-Lichtenbaum pairing as described in Sect. 2. Then

̂T τ
n (P,Q) =

(

tn(P,Q)2N(τ)tn([−τ ]P,Q)Tr(τ), tn([τ − τ ]P,Q)
)

.

6. Provided both of the following quantities are defined,

̂T τ
N(α)(P,Q) = ̂T τ

α (P,Q)α (mod ((F∗)×2)α)

Theorem 5. Provided the action of τ is efficiently computable, then the pairing
̂T τ
α (P,Q) is efficiently computable. That is, it takes polynomially many operations

in the field of definition of P and Q.

Proof. This follows from the definition given above, which is amenable to a
Miller-style pairing algorithm; details are in [Sta24, Algorithm 5.7]. ��

To use the pairings ̂T τ
α , the most expedient computation method is the for-

mulas given in Theorem 4 items (5) and (6). In particular, in our applications of
̂T τ
α to form a discrete logarithm problem, in most use cases it suffices to compute

̂T τ
α (P,Q)α instead. But if one wishes, one can compute α−1 (mod α) (provided

α and α are coprime), and use

̂T τ
α (P,Q) = ̂T τ

N(α)(P,Q)α−1
(mod ((F∗)×2)α).

This may not apply when α divides the discriminant.
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Definition 3. Also for cryptographic applications, it is convenient to apply a
final exponentiation to obtain a reduced pairing, as is common with the classical
Tate pairing. This will move the pairing into the roots of unity:

(F
∗
)/(F

∗
)α → μ×2

N(α) ⊆ (F
∗
)×2, x �→ x(q−1)α−1

.

Lemma 1. Consider the image N(O) of O under the norm map. Then N(O)
modulo m > 2 is a subset of {x2 : x ∈ Z/mZ} only if m and ΔO share a
non-trivial factor.

Proof. We may assume, by Sunzi’s Theorem (Chinese Remainder Theorem), that
m is a prime power pk > 2. If p is split, the statement follows from the fact that
the norm map from Qp ⊗Z O to Qp is surjective. If p is inert, the norm map is
surjective on the residue field, so N(O) modulo pk does include non-squares. ��
Theorem 6. Let E be an elliptic curve oriented by O = Z[τ ]. Let m be coprime
to the discriminant ΔO. Let F be a finite field containing the m-th roots of unity.
Suppose E[m] = E[m](F). Let P have order m. Let s be the maximal divisor of
m such that E[s] ⊆ OP . Then the multiplicative order m′ of ̂T τ

m(P, P ) satisfies
s | m′ | 2s2. In particular, if OP = E[m], then s = m and the self-pairing has
order m. If OP = ZP , then s = 1, and in fact, in this case, the self-pairing is
trivial.

To rephrase the last sentence, the self-pairing is trivial on the eigenspaces
for the action of O on E[m]. This observation by itself is a consequence of the
classification of self-pairings in [CHM+23].

Proof. Let m′ | m be the order of ̂T τ
m(P, P ). Suppose s is the maximal divisor of

m so that E[s] ⊆ OP . In other words, OP ∼= Z/sZ×Z/mZ and OP/ZP ∼= Z/sZ
as abelian groups. In particular, [s]OP ∈ ZP . Thus O[s]P = Z[s]P .

We will show that m′ | 2s2 and s | m′. Let λ ∈ O. Then [λs]P = [ks]P for
some k = k(λ) ∈ Z, and then

̂T τ
m([s]P, [s]P )k2

= ̂T τ
m([ks]P, [ks]P ) = ̂T τ

m([λs]P, [λs]P ) = ̂T τ
m([s]P, [s]P )N(λ).

Ranging over all λ ∈ O, we conclude that N(λ) are squares modulo m′′ :=
m′/ gcd(m′, s2), the multiplicative order of ̂T τ

m([s]P, [s]P ), contradicting that m
is coprime to the discriminant unless m′′ = 1 or 2 by Lemma 1. Therefore
m′ | 2s2. In the case where s = 1, this argument implies only that the order
of ̂T τ

m(P, P ) is at most 2. However, the fact that in this case the order of the
self-pairing is trivial follows immediately from [CHM+23, Proposition 4.8].

On the other hand, by Theorem 4 item (4), there exists some Q so that
̂T τ
m(P,Q) has order m. Let t = m/s. Then there is a basis for E[m] of the form

P, P ′ where [t]P ′ = [λ]P for some λ ∈ O. Writing Q = [a]P + [b]P ′,

̂T τ
m(P,Q)t = ̂T τ

m(P, [t]([a]P + [b]P ′)) = ̂T τ
m(P, [ta + bλ]P ) = ̂T τ

m(P, P )ta+bλ.

This has order s on the left. Therefore ̂T τ
m(P, P ) must have order a multiple of

s. Hence s | m′. ��
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Remark 2. As discussed in Sect. 2.3, the authors of [CHM+23], the authors show
that non-trivial cyclic self-pairings can only exist for P of order m dividing ΔO.
The reason our pairings are not ruled out by this result is that our pairings are
defined not only on cyclic subgroups stabilized by the orientation (where they are
in fact trivial, as required).

The following is a partial converse to Theorem 5.

Theorem 7. Let E be an elliptic curve defined over a finite field F, and let
m ∈ Z. Let a basis for E[m] be given. Suppose arithmetic in F, discrete logarithms
in F

∗ modulo m, and group law computations on E[m] can all be accomplished in
polynomial time. Suppose ϕ(m) >

√

2/3m. Suppose E is known to be oriented
by O = Z[τ ] (but the orientation ι is not given), and suppose m is coprime to
the discriminant ΔO. Then the computation of arbitrary pairings ̂T τ

m(P,Q) on
E[m] is Monte-Carlo equivalent in polynomial time to the computation of the
action of [τ ] on E[m].

By Monte-Carlo equivalent, we mean that there is an arbitrarily small prob-
ability that the algorithm will return incorrectly. The condition on ϕ(m) can be
improved: what should be required is that ϕ(m) non-negligibly exceed m/

√
2.

Proof. Note that computation of [τ ] allows for computation of [τ ] = [Tr(τ)]−[τ ].
If [τ ] is computable, then by Theorem 4 (5) one can compute ̂T τ

m(P,Q) by
computing 3 multiplications by [τ ] or [τ ], one addition, and 3 classical Tate
pairings.

Conversely, suppose one can compute ̂T τ
m(P,Q) for any P,Q ∈ E[m]. We will

show how to compute the action of [τ ] on E[m]. The pairing is non-degenerate as
a consequence of the given hypotheses. It is possible to sample randomly from
the subset of order m points in E[m], by choosing P uniformly randomly as
a linear combination aP1 + bP2 of the given basis P1, P2 such that gcd(a, b) is
coprime to m. Choose such a P of order m and compute ̂T τ

m(P, P ).
For now, we assume that OP = E[m]. Choose Q ∈ E[m] so that P,Q form

a basis for E[m]. Then Q = [λ]P for some λ /∈ Z; then

̂T τ
m(P,Q) = ̂T τ

m(P, P )λ.

Since ̂T τ
m(P, P ) is of order m by Theorem 6, we can compute λ modulo m by

two pairing computations and a discrete logarithm in (F∗)×2/((F∗)×2)m ∼= μm.
By construction, we can write τ = a + bλ modulo m, so we can compute

[τ ]P = [a]P + [b]Q.
To compute [τ ]R for arbitrary R, we first determine μ ∈ O modulo m such

that R = [μ]P (we may use the same discrete log method as above), and then
we have [τ ]R = [μ][τ ]P .

If OP �= E[m], then the algorithm is not guaranteed to be correct. Therefore,
we run the algorithm several times using different random P of order m. We have
E[m] ∼= O/mO by Theorem 3. Any element of O is a O-module generator of
O/mO provided it is coprime to m (since 1 is a generator and it has an inverse
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modulo m). So the proportion of such generators is at least (ϕ(m)/m)2. By
our assumption on m, this exceeds 2/3. Any such P has self-pairing of order m
(by non-degeneracy), so repeating sufficiently often and taking the majority rule
answer, this will succeed with overwhelming probability in polynomial time. ��
Remark 3. If ϕ(m)/m is non-negligible, then one can sample points uniformly
at random and use the pairing to check whether they generate O, with a high
probability of success. However, if m is badly behaved, for example, a primorial,
then ϕ(m)/m may be less than 1/mx for some x > 0.

Remark 4. Given any basis for E[m], the pairing ̂T τ
m allows us to compute the

‘eigenspaces’, i.e. a basis P,Q such that [τ ]P ∈ ZP and [τ ]Q ∈ ZQ. That is,
knowing the pairing values on the original basis, we can solve for points with
trivial self-pairing.

Example 2. Consider the elliptic curve y2 = x3 +x over Fp, p = 541. A basis for
E[5] is P = (109, 208), Q = (53, 195). If we compute the self-pairings ̂T

[i]
5 ([a]P +

[b]Q, [a]P+[b]Q), for a, b = 0, . . . , 4, we obtain the following: the left matrix shows
the real parts and the right matrix the imaginary parts, taken to the log base 48
(48 is a generator of F∗

541). So, for example, the fourth entry (a = 3) in the second
column (b = 1) (of both matrices) indicates that ̂T

[i]
5 ([3]P + [1]Q, [3]P + [1]Q) =

(g3, g4).
⎛

⎜

⎜

⎜

⎜

⎝

0 4 1 1 4
0 2 2 0 1
0 0 3 4 3
0 3 4 3 0
0 1 0 2 2

⎞

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎝

0 2 3 3 2
0 1 1 0 3
0 0 4 2 4
0 4 2 4 0
0 3 0 1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

We can also read off, for example, that ̂T
[i]
5 (P, P ) = ̂T

[i]
5 ([2]P + Q, [2]P + Q) =

1. Thus the matrices have zeroes on the first column and on the coordinates
(a, b) which are multiples of (2, 1) modulo 5. This is as dictated by Theorem 6,
because P ∈ E[2 + i] and [2]P + Q ∈ E[2 − i], which implies [i]P = [3]P and
[i]([2]P +Q) = [2]([2]P +Q). In other words, the subgroups E[2±i] ∼= O/(2±i)O
are the eigenspaces for the action of O on E[5] ∼= O/5O.

5 Recovering Partial Torsion Image Information

Our first observation is that when E[m] is a cyclic O-module, the pairings recover
partial information about the action of a hidden oriented isogeny φ on E[m].

Theorem 8. Let E and E′ be O-oriented supersingular curves over Fp upon
which we can efficiently compute the action of a generator τ for O. Assume that
the discrete logarithm in μm is efficiently computable. Assume also that E[m] is
a cyclic O-module, and that the hidden oriented isogeny φ : E → E′ has known
degree coprime to m. Suppose we are given P and P ′ such that OP = E[m] and
OP ′ = E′[m]. Then we can efficiently recover N(λ) modulo m for λ ∈ O such
that φP = [λ]P ′.
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Proof. We have

̂T τ
m(P, P )deg φ = ̂T τ

m(φP, φP ) = ̂T τ
m(λP ′, λP ′) = ̂T τ

m(P ′, P ′)N(λ).

Note that by Theorem 6, ̂T τ
m(P, P ) has order m. Using the reduced pairing, we

can solve a discrete log problem in μm to obtain N(λ) modulo m. ��
Remark 5. This result improves upon a naïve exhaustive search over the pos-
sible images of a general point P (on account of Theorem 6, we cannot use
an eigenvector). More precisely, one could attack the class group action prob-
lem by trying all possible image points φP for P , infer φ[τ ]P = [τ ]φP , and
use the imputed image of E[m] for the SIDH attacks, checking for success at
each attempt. This is similar to [FMP23, Section 4.1], for example. Here, the
knowledge of N(λ) restricts φP to typically around m possible images (between
m

∏

prime q|m(1 − 1/q) and m
∏

prime q|m(1 + 1/q)), rather than all m2. To run
such an attack, we need the degree of φ to be known and m2 > deg φ, m to be
coprime to deg φ, and m to be smooth. Since we have great freedom in choosing
m, we can expect to choose an m around

√
deg φ.

The example of [CHM+23] described by (1) in Sect. 2.3 shows that when m
is a power of a prime 
 that splits in Q(

√−p), the classical m-Weil pairing also
provides an attack with this runtime. However, with the sesquilinear pairing,
one does not require splitting conditions.

Remark 6. This and other similar results in this paper and in [FFP24] are a cau-
tion against Decisional Diffie-Hellman problems in which one must decide if a
given point is the image point of a specified torsion point under a hidden isogeny.
A result like the previous one reduces the possibilities for the torsion image
(without pinning it down entirely). For an example, the IND-CPA hardness of
SiGamal [MOT20] depends upon such a problem, called the P-CSSDDH assump-
tion. This is discussed in [CHM+23, Section 6.1], where the authors lament the
triviality of the available self-pairings. There are non-trivial pairings of the type
̂T which would apply to the SiGamal situation, but only if we had access to a
different orientation on the curves and isogeny. The Frobenius orientation used
in the P-CSSDDH assumption results in a trivial pairing once again, because
the torsion is contained in the base field.

Remark 7. There is a sense in which we cannot hope to obtain more information
than N(λ) modulo m using these methods. If we post-compose our isogeny with
an endomorphism from O of norm 1 modulo m, then we do not change the degree
modulo m, but we do change λ, replacing it with another λ′ having the same
norm modulo m. To detect the difference, we must feed in more information than
just the degree modulo m. In fact, it is possible to recover the same result by a
different method. Take a basis for E and E′ and change basis so that the Weil
pairing takes a canonical diagonal form. Then the set of possible endomorphisms
in O that preserve this diagonal form turns out to be the same ‘degree of freedom’
of λ observed above. The pairings from [CHM+23] can be seen as getting around
this by assuming λ ∈ Z, in which case N(λ) pins down λ more effectively.
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Remark 8. In principle, the result above doesn’t require using ̂T ; it could be
phrased in terms of one of the coordinates in Theorem 4 (5). This wouldn’t
violate the classification of cyclic self-pairings in [CHM+23] because the domain
is not Z-cyclic.

6 Reduction from SIDH1 to SIDH

In [FFP24], the authors consider a variety of variants on the SIDH problem
which can be parameterized by level structure for on the m-torsion preserved by
φ. In particular, they define the following problem.

Problem 1 (SIDH1). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined over Fq,
where m is coprime to q. Let P ∈ E[m] have order m. Suppose there exists an
isogeny φ : E → E′ of known degree d and φP is given. Find φ.

This can be compared to the classical SIDH problem, in which we are given
full torsion image information.

Problem 2 (SIDH). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined over Fq,
where m is coprime to q. Let P,Q form a basis for E[m]. Suppose there exists
an isogeny φ : E → E′ of known degree d and φP and φQ are given. Find φ.

In either case we refer to m as the level of the SIDH or SIDH1 problem. The
authors of [FFP24] show that if m has a large smooth square factor, then SIDH1

of level m (a single torsion point image of order m) reduces to SIDH of level
O(

√
m) (two torsion point images of order O(

√
m)). More recently, a manuscript

in preparation (presented at Caipi Symposium 2024 [CDM+24]) generalizes the
SIDH attacks of [CD23,MMP+23,Rob23b], directly attacking SIDH1 without
the requirement that m have a large square factor. Both approaches require that
m > deg φ.

Here we show that, if we have an oriented isogeny, knowing a single image of
order m is enough to reduce to SIDH of level m (on the same curve), assuming
only that m is smooth, with no assumption on m being square, and no loss in
level. Thus using the SIDH attacks requires only m2 > deg φ.

Although the proof relies on taking an ‘imaginary quadratic viewpoint,’ it
does not make use of the sesquilinear pairings.

Theorem 9. Let E and E′ be O-oriented supersingular curves over Fp, upon
which we can efficiently compute the action of endomorphisms from O. Assume
that m is smooth and coprime to the discriminant. Assume also that E[m] is
a cyclic O-module, and that the hidden isogeny φ : E → E′ has known degree
coprime to m and is compatible with the O-orientations. Then the problem SIDH1

of level m to find φ reduces, in a polynomial number of operations in the field of
definition of E[m], to SIDH of level m on the same curve E and same φ.

Proof. For convenience, write O = Z[τ ]. We are given φR for some point R ∈
E[m] of order m. We wish to recover a second torsion point image resulting in an
SIDH problem. First, by Sunzi’s Theorem, we can reduce the problem to prime
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powers m = qk. By assumption, q is not ramified. Hence we may assume q is
split or inert.

Case that q is Inert. We know OR is an O-submodule of E[m] ∼= O/mO.
If q is inert, it must be isomorphic to O/qsO. However, O/qsO doesn’t have
elements of additive order qk unless s = k. Thus OR = E[m]. Given any other
point Q, we may compute η such that Q = [η]R (using basis R and [τ ]R). Then
φQ = φ[η]R = [η]φR.

Case that q is Split. Write m = qk = bb, where N(b) = m. Write ker b :=
{P ∈ E[m] : βP = O for all β ∈ b}, and similarly for b. Then these are distinct
cyclic subgroups of order m. Thus there exists a basis S, T for E[m] so that
T ∈ ker b and S ∈ ker b. Similarly, let S′ and T ′ be a basis for E′[m] so that
T ′ ∈ ker b and S′ ∈ ker b. To find such subgroups, one can use linear algebra, as
follows. The problem of finding ker b can be rephrased as solving for coefficients
a and b for T = aP + bQ in terms of a basis P,Q for E[m], subject to linear
conditions determined by the action of b, which we can make explicit in terms of
the known action of τ . In addition, by adding a gcd condition on the coefficients,
one can choose T to be of full order m.

Now the mapping φ, as a matrix from basis S, T to basis S′, T ′, is diagonal,
with some integers k1 and k2 on the diagonal (as φ respects the O-orientation).
By writing R and φR in the relevant bases, namely R = [a]S + [b]T , φR =
[c]S′ +[d]T ′, we learn that ak1 ≡ c, bk2 ≡ d (mod m), where a, b, c, d are known.
We also know that deg φ ≡ k1k2 (mod m). Without loss of generality, at least
one of a or b is coprime to m, so we know at least one of k1 or k2, and the degree
equation then gives us the other. ��

7 Diagonal SIDH

The following problem arises in [FFP24, Lemma 6 and Sect. 5.6].

Problem 3 (Diagonal SIDH). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined
over Fq, where m is coprime to q. Let P,Q ∈ E[m] form a basis. Suppose there
exists an isogeny φ : E → E′ of known degree d. Suppose that generators P ′ of
〈φP 〉 and Q′ of 〈φQ〉 are known. Find φ.

Interestingly, when the curves are oriented, the Diagonal SIDH problem is
amenable to a pairing-based attack, at least for certain conditions on E[m].

Theorem 10. Suppose E and E′ are O-oriented (and one can compute the
action of the endomorphisms efficiently, as usual). Let m > 4 deg φ be a smooth
integer such that modulo m, 1 has polynomially many square roots. Then Diag-
onal SIDH with known degree for an oriented isogeny φ : E → E′ is solvable in
polynomial time, provided OP = E[m] or OQ = E[m].

Proof. Let the Diagonal SIDH problem be given in terms of basis P,Q for E[m]
and generators P ′ and Q′ for 〈φP 〉 and 〈φQ〉 respectively. Assume without loss of
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generality that OP = E[m]. Then by Theorem 8, we can efficiently recover N(λ)
modulo m such that φP = [λ]P ′. However, the Diagonal SIDH setup guarantees
that λ ∈ Z, hence we have recovered λ2 modulo m. By assumption, this gives
only polynomially many possible values for λ, each of which can be tested by
running the SIDH attacks, until one recovers φ. ��

An instance of the Diagonal SIDH problem is the problem underlying the
FESTA cryptosystem [BMP23, Problem 7]. In this case m is chosen to be a
power of 2, so the attack above would apply if FESTA were instantiated in a
situation where the isogeny was oriented (for known orientations). Assuming an
O-orientation, the condition OP = E[m] or OQ = E[m] is reasonably likely to
occur by chance if not explicitly avoided.

Corollary 1. The hard problem underlying FESTA, namely CIST (see
[BMP23]), with m > 4 deg φ, reduces to finding explicit O-orientations of the
curves E and E′ respected by the isogeny φ.

Remark 9. In [FFP24, Section 5.6], it is shown how to reformulate the problem
of finding an isogeny of fixed degree d between oriented curves (the class group
action problem) as a Diagonal SIDH problem, where m is a product of primes
split in O. The method of reduction, in brief, uses the eigenspaces associated to
a split prime in the orientation, which must map to each other. However, the
conditions under which Theorem 10 applies – that m have few square roots, and
P or Q be generators of E[m] as an O-module – both fail in the Diagonal SIDH
problems that result from the reduction of [FFP24]. This means we cannot chain
these attacks together to attack class group action problems!

8 When m Divides the Discriminant

Suppose m | ΔO, where m = N(τ) for τ ∈ O. In this case the pairing ̂T τ
m

becomes trivial. However, a modification is more interesting. Let m ∈ Z, and
define

T ′
m : E[m](F)×E(F)/[m]E(F) → ((F∗)/(F∗)m)×2,

T ′
m(P,Q) = (tm([τ ]P,Q), tm(P,Q)) .

This modification does not preserve all of the properties of Theorem 4 but impor-
tantly, it is bilinear and inherits compatibility from tm, so that for φ : E → E′

compatible with O, we have

T ′
m(φQ, φQ) = T ′

m(Q,Q)deg φ.

In [CHM+23], the authors use generalized pairings to determine the image
of a single torsion point in E[m], and then reduce to SIDH with E[

√
m] when

m is a smooth square. As previously mentioned, recent further development of
the SIDH attacks (in preparation [CDM+24]) generalize to image information on
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subgroups of a large enough size, not just full torsion subgroups, which effectively
removes the restriction that m be square.

Inspired by this result, we develop a similar reduction using the pairing above.
The main advantage of our situation over that in [CHM+23] is the computation
of the pairing, which requires only operations in the field of definition of E[m].
Because the pairings used in [CHM+23] may require a move to the field of
definition of E[m2], our pairings result in a speedup in cases where that field of
definition is large.

Proposition 2. Let E be an elliptic curve oriented by O = Z[τ ]. Let F be a finite
field containing the m-th roots of unity. Suppose E[m] = E[m](F) is a cyclic O-
module. Let P ∈ E[m] have order m. Then the multiplicative order T ′

m(P, P ) is
at least m/t where t is the minimal positive integer such that [t]E[m] ⊆ OP .

Proof. The classical Tate-Lichtenbaum pairing

tm : E[m](F) × E(F)/[m]E(F) → F
∗/(F∗)m

is non-degenerate and, for P of order m, there exists a Q so tm(P,Q) has order m
(Proposition 1). Let t be the minimal positive integer for which [t]E[m] ⊆ OP .
Then [t]Q = [a + τb]P . Using Proposition 1,

T ′
m(P,Q)t = T ′

m(P, [a + τb]P )

= T ′
m(P, P )aT ′

m(P, [τ ]P )b

=
(

tm([τ ]P, P )atm([τ ]P, [τ ]P )b, tm(P, P )atm(P, [τ ]P )b
)

=
(

tm([τ ]P, P )atm(P, P )N(τ)b, tm(P, P )a+Tr(τ)btm([τ ]P, P )−b
)

.

The left side has order m/t by Proposition 1. Thus the right side has order
m/t. This is the image of T ′

m(P, P ) via a linear transformation of determinant
N(τ)b2 + a2 + Tr(τ)ab = N(a + τb). Therefore T ′

m(P, P ) must have order at
least m/t. ��

In the following, we assume E[m] is a cyclic O-module. By Theorem 3, it
suffices that the O-orientation be m-primitive.

Theorem 11. Let E and E′ be O-oriented elliptic curves. Suppose there exists
an oriented isogeny φ : E → E′ of known degree d. Let m be smooth, coprime
to d, and chosen so that there are only polynomially many square roots of 1
modulo m. Suppose m | ΔO. Suppose that E[m] is a cyclic O-module. Suppose
P ∈ E[m] such that OP = E[m], and P ′ ∈ E′[m] such that OP ′ = E′[m].
Then there exists an efficiently computable point Q ∈ E[m] of order m such
that a subset S ⊂ E′[m] of polynomial size containing φ(Q) can be computed in
polynomially many operations in the field of definition of E[m].

Proof. Choose a point P ∈ E[m] such that OP = E[m]. Choose a point P ′ ∈
E′[m] such that OP ′ = E′[m]. Then T ′

m(P, P ) and T ′
m(P ′, P ′) have order m by

Proposition 2. Then

T ′
m(P, P )deg φ = T ′

m(φP, φP ) = T ′
m(λP ′, λP ′) = T ′

m(P ′, P ′)N(λ).
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(Note that λ is an endomorphism, so here we use compatibility with isogenies,
not sesquilinearity in general.) Using a discrete logarithm, we can compute N(λ)
(mod m).

Observe that the definition of T ′
m actually depends only on τ modulo m,

and hence on Z[τ ] modulo m. So we now choose τ in a specific way, possibly
not generating all of O but only generating it modulo m. In short, we claim the
existence of τ ∈ O with certain properties, namely that

1. Z[τ ] ≡ O modulo m;
2. Tr(τ) ≡ N(τ) ≡ 0 (mod m′) where m′ = m/4 if 4 | m; m′ = m/2 if m ≡ 2

(mod 4); and m′ = m otherwise.

The existence of such a τ is a consequence of m | ΔO, as follows. A generator
for O is given by σ = Δ+

√
Δ

2 having trace Δ and norm 1
4 (Δ−Δ2). Then τ = 2σ

already has the required properties if m is odd. If m is even, then 4 | Δ, and the
norm is divisible by m′, so τ = σ suffices. Hence the minimal polynomial of τ is
x2 modulo m′, and [τ2]E′[m] ⊆ E′[m/m′] ⊆ E′[4].

Write λ ≡ a + bτ modulo m. Then N(λ) ≡ a2 (mod m′). Since the factor-
ization of m′ is known, by assumption, we have an efficiently computable set of
polynomial size of possible values of a. Compute [a][τ ]P ′. For the correct a, this
is the image of [τ ]P under φ up to addition of a 4-torsion point, since

φ[τ ]P = [λ][τ ]P ′ ∈ [a][τ ]P ′ + E′[4].

Trying all possible values of a, and setting Q = [τ ]P , we obtain the set

{[a][τ ]P ′ : a2 ≡ N(λ) (mod m)} + E′[4]

required by the statement. Observe that P,Q form a basis for E[m] by construc-
tion, so Q has order m. ��

For each possible value of a, we have a putative φ([τ ]P ), i.e. the action of φ
on a single m-torsion point. The results of [CHM+23,FFP24] can now be applied
if m is a smooth square, d is powersmooth and m > 4d , to reduce to SIDH.
Alternatively, loosening the restriction that m is a square will be possible with
the new generalizations of SIDH mentioned above [CDM+24].

The following example demonstrates a new growing family of parameters for
which solving the class group action problem (with known degree) is polynomial
instead of exponential using Theorem 11.

Example 3. This is based on an example communicated to the authors by
Wouter Castryck. Let E : y2 = x3 + x. Let p be a prime of the form 4 · 3r − 1
with r > 0. This curve is supersingular with j = 1728 and endomorphisms
[i] : (x, y) �→ (−x, iy) and πp : (x, y) �→ (xp, yp). Let

τ :=
i + πp

2
∈ End(E).
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Then τ2 = −p+1
4 = −3r, so N(τ) = 3r and Tr(τ) = 0. Let O = Z[τ ], having

N(τ) | ΔO. Let m = 3r. Then m | ΔO.
Since π2

p = [−p], E(Fp2) ∼= (Z/(p + 1)Z)2 ∼= (Z/4 · 3r
Z)2 [Sil09, Ex. 5.16.d].

Therefore E[3r] ⊆ E(Fp2).
Let Q be an O-generator of E[3r]. Then by Proposition 2, T ′

m(Q,Q) has order
3r, and the polynomially many operations to run the attack of Theorem 11 take
place in Fp2 . The SIDH portion of the attack requires that 4d < m = 3r.

By contrast, using the methods of [CHM+23, Section 6.1], one would need a
generalized pairing value for which only methods of computation taking place in
the field of definition of E[32r] are known, and this field degree grows exponen-
tially with r. (Specifically, in [CHM+23, Section 5, p. 20], the authors give an
estimated runtime for the pairing needed in the attack, noting that their method
requires dividing a point by m and working in the resulting field extension of
degree as much as O(m2).) That means that what was an exponential runtime
in terms of r under [CHM+23] becomes a polynomial one using Theorem 11.

9 Supersingular Class Group Action in the Presence
of Another Orientation

The following theorem shows that, if we have two distinct orientations respected
by φ, then we can recover the action of φ.

Suppose O ⊆ End(E). We use the notation O⊥ for the quadratic order
orthogonal to O within the endomorphism ring, with respect to the geometry
induced by the quaternion norm.

Theorem 12. Let E and E′ be supersingular elliptic curves for both of which
we know orientations by two quadratic orders O and O′ which together generate
a rank 4 sub-order of the endomorphism ring. Let φ : E → E′ be an isogeny of
known degree d. Let m be smooth, coprime to the discriminants of O and O′, and
suppose 1 has only polynomially many square roots modulo m. Suppose φ respects
both the O and O′ orientations. Suppose O-module generators are known for both
E[m] and E′[m]. Suppose, finally, that O⊥ has elements of norm coprime to m.
Let P ∈ E[m]. Then a subset of E′[m] of polynomial size containing φP can be
computed in a polynomial number of operations in the field of definition of E[m].

Proof. Suppose E[m] = OP and E′[m] = OP ′.
Let σ ∈ End(E) be chosen to have norm coprime to m. Write λσ for an

element which participates in the equivalence λσσ ≡ σλ (mod m). Suppose λσ ∈
O. Then

̂T τ
m([σ]P, P )deg φ = ̂T τ

m(φ[σ]P, φP )

= ̂T τ
m([σ]φP, φP )

= ̂T τ
m([σ][λ]P ′, [λ]P ′)

= ̂T τ
m([λσ][σ]P ′, [λ]P ′)

= ̂T τ
m([σ]P ′, P ′)λσλ.
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Since the norm of σ is coprime to m, ̂T τ
m([σ]P, P ) has the same order as ̂T τ

m(P, P ),
which is m by Theorem 6. Thus, we can compute λσλ modulo m by performing
a discrete logarithm in μm.

We will now apply the above for two specially chosen σ ∈ End(E). Since we
can compute the action of O and O′, we can compute the action of anything
they generate. Thus, we choose σ1 = 1 (so λσ1 = λ), and then some σ2 ∈ O⊥,
so λσ2 = λ. Assuming that O⊥ contains elements of norm coprime to m, from
this, we obtain both N(λ) and λ2 modulo m.

Using N(λ) and λ2, we can solve for polynomially many possibilities for
λ modulo m (this requires smoothness, so m can be factored). Then we have
obtained φP . From this we can compute any other φR by solving for R = [μ]P
and observing that φR = φ[μ]P = [μ]φP . ��
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Abstract. We introduce SQIPrime, a post-quantum digital signature
scheme based on the Deuring correspondence and Kani’s Lemma. Com-
pared to its predecessors that are SQISign and especially SQISignHD,
SQIPrime further expands the use of high dimensional isogenies, already
in use in the verification in SQISignHD, to all its subroutines. In doing so,
it no longer relies on smooth degree isogenies (of dimension 1). Intrigu-
ingly, this includes the challenge isogeny which is also a non-smooth
degree isogeny, but has an accessible kernel. The fact that the isogenies
do not have rational kernel allows to fit more rational power 2 torsion
points which are necessary when computing and representing the response
isogeny. SQIPrime operates with prime numbers of the form p = 2αf − 1.

We describe two variants of SQIPrime. SQIPrime4D which incor-
porates the novelties described above and uses dimension 4 isogenies
to represent the response isogeny. The runtime of higher dimensional
isogeny computation is exponential in the dimension, hence the smaller
the dimension the better for efficiency. The second variant, SQIPrime2D,
solely uses dimension 2 isogenies. This is achieved by setting the degree
of the secret isogeny to be equal to that of the challenge isogeny and fur-
ther exploiting Kani’s Lemma. SQIPrime2D is more efficient compared
to SQIPrime4D and to SQISignHD, at the cost of being comparatively
less compact, but still very compact compared to non isogeny based
post-quantum signatures.

Keywords: Isogenies · SQISign · SQISignHD · Kani’s Lemma ·
SQIPrime

1 Introduction

The interest of isogeny based signature schemes is that they provide com-
pact post-quantum signatures. This property, which comes at the cost of a
greater computational cost, motivated their research. Among the early proposi-
tions of isogeny based signature schemes such as [6,16,49], was GPS [27] that
specifically relied on Deuring correspondence [20]. Its ideas were expanded and
improved in 2020 by De Feo, Kohel, Leroux, Petit and Wesolowski to create
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the SQISign protocol in [18]. As of today, SQISign is the only isogeny based
candidate at the NIST [38] post-quantum cryptography standardization effort.
In 2023, Dartois, Leroux, Robert and Wesolowski proposed SQISignHD [11], a
variant of SQISign utilising Kani’s Lemma [29] for verification. Both SQISign
(and follow-ups [19,46]) and SQISignHD are, as of today, the two most com-
pact post-quantum signatures, of respective size 177B for SQISign and 109B for
SQISignHD for 128 bits of security.

Kani’s Lemma and high dimensional isogenies (originally used in [8,34,44] to
prove that SIDH [17,28] was insecure by leveraging accessible images of torsion
points) are used in SQISignHD to solve some drawbacks of SQISign as they can
be used to represent isogenies of non-smooth degree, which significantly simpli-
fies the signature part of SQISignHD, at the cost of a more complex verification.
The emergence of SQISignHD is part of a broader trend in Isogeny Based Cryp-
tography, consisting in leveraging the new capabilities enabled by Kani’s Lemma,
a trend that birthed many new cryptographic schemes such as SQISignHD [11],
FESTA and QFESTA [3,36], IS-CUBE [35], SCALLOP-HD [9], DeuringVRF
[33], SILBE [22] or POKE [1]. Kani’s lemma has also been recently used to
design a new ideal-to-isogeny algorithm [39] for the SQISign signature scheme.

As mentioned above, the main input in SQISignHD is the use of high dimen-
sional isogenies to represent the response. In SQISign, the secret key is an isogeny
τ : E0 → EA, where E0 has j–invariant 1728. The commitment is a curve E1

obtained by computing an isogeny ψ : E0 → E1 and the challenge is an isogeny
ϕ : E1 → E2. The response is an isogeny σ : EA → E2 (see left-hand side of
Fig. 1). The isogeny σ is in fact a long smooth isogeny of degree roughly p15/4,
obtained through a more efficient variant [18,19] of the KLPT algorithm [30].
The use of the KLPT algorithm and the fact that the degree of the response
isogeny σ is roughly p15/4 implies that one needs to use primes with as much
accessible (defined over a small extension of Fp) smooth torsion as possible. This
is one of the biggest constraints in SQISign that was solved in SQIsignHD.

The attacks [8,34,44] on SIDH/SIKE (and any other isogeny based proto-
col revealing images of smooth order torsion points such as [10,14,25]) led to a
new method for representing isogenies of generic degree [43]. In fact, an eval-
uation of an isogeny on torsion points of large (with respect to the degree of
the isogeny) smooth order is a representation of this isogeny. In SQISignHD,
from the knowledge of the endomorphism rings of the curves at play, the signer
samples a relatively short (but non-smooth) response isogeny σ and evaluates it
on torsion points of smooth order. This evaluation is then returned to the veri-
fier as the response. Since this evaluation represents the isogeny, the verifier can
efficiently check that the data received represents an isogeny σ : E1 → E2. Note
that here, the response goes from E1 to E2 while the challenge goes from EA

to E2, this change is made for a more convenient implementation. This brings
several relaxations, among which the change of the base prime p to an SIDH
prime: p = 2a3bf − 1. In SQISign, the most computationally involved part is
transforming the ideal obtained from KLPT into an isogeny, this is done during
the signing process. In SQISignHD, signing is somewhat easier since the KLPT
algorithm is avoided, but the verification is computationally involved. In fact,
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in order to validate that the evaluation returned by the signer represents an
isogeny σ : E1 → E2, one needs to compute and evaluate an isogeny in higher
dimension: 2, 4 or 8 in general. The smaller the dimension, the more efficient the
computation and the evaluation are. In SQISignHD, the verification uses dimen-
sion 4 isogenies. There is a huge efficiency gap between dimension 4 isogenies
and dimension 2 isogenies [11,12,31,45]. Hence, in the quest for better efficiency,
it becomes natural to ask the following question:

Can one design a variant of SQISignHD that uses
only dimension 1 and/or dimension 2 isogenies?

Contributions. In this paper, we answer the question above in the affirmative,
by describing SQIPrime, a derivative of SQISignHD. To do so, we first extend
the use of Kani’s Lemma to both key generation and commitment, by adapt-
ing the RandIsogImages algorithm from QFESTA [36]. Next, we modify the
challenge isogeny generation in such a way that the verifier can use non-smooth
degree isogenies, by sampling solely the kernel generator of this isogeny. The
signer/prover can then use the techniques introduced by Leroux [33] to compute
this challenge isogeny and include it in the response. As a consequence, we use
primes of the form p = 2αf −1 = 2Nq+1 where q is the degree of the challenge.
These changes induce numerous adaptations and optimizations throughout the
protocol. In order to ease understanding and not apply all the numerous changes
at once, we propose two variants of SQIPrime: SQIPrime4D and SQIPrime2D.

In SQIPrime4D, we incorporate the most basic changes to SQISignHD, with-
out necessarily aiming for a better efficiency. These changes include: the use of
an adaptation (KaniDoublePath, Sect. 3.1) of the RandIsogImages algo-
rithm from QFESTA [36] for key generation and commitment, and the use of a
non-smooth degree isogeny for commitment. More precisely, let τ : E0 → EA,
ψ : E0 → E1, ϕ : EA → E2 and σ : E1 → E2 be the secret, commitment,
challenge and response isogenies in SQISignHD. In SQIPrime4D, τ and ψ are
generated using the KaniDoublePath algorithm. For the challenge, the verifier
samples a uniformly random scalar a ∈ Zq where q is the degree of the commit-
ment isogeny. The scalar a defines a point C = P+[a]Q where (P,Q) is a specified
basis of EA[q]. The signer/prover uses the techniques in the DeuringVRF [33]
to translate C into its corresponding ideal Iϕ, which is in fact the ideal corre-
sponding to the challenge isogeny ϕ : EA → E2. From here, they recover the
endomorphism ring of E2, solve for a short isogeny σ : E2 → E1 (note that this
is the dual of the response in the original SQISignHD), and evaluate κ = σ ◦ ϕ
on the 2α-torsion points (this is illustrated in Fig. 2). The evaluation of κ = σ◦ϕ
is then returned to the verifier as the response. The verifier checks that the data
they received represents an isogeny κ : EA → E1 of degree qd whose kernel
contains C = P + [a]Q and, q and d are co-prime. This proves that κ factors
through the challenge ϕ : EA → E2 whose kernel was sampled by the verifier.
The verification is performed using dimension 4 isogenies. In SQIPrime2D, we
implement further adjustments in order to use only dimension 2 isogenies.
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The main obstacle when representing isogenies in dimension 2 is the need
of an auxiliary isogeny. To represent the isogeny κ := σ ◦ ϕ : EA → E1 of
degree qd returned in SQIPrime4D in dimension 2, we need an auxiliary isogeny
δ : EA → Eδ of degree 2α −qd. Hence, the goal of all the changes we will operate
from now on will be to enable an efficient computation of such an auxiliary
isogeny. The main change consists in fixing the degree of the secret isogeny τ to
q, the same degree as that of the challenge isogeny ϕ, and making sure that this
degree is prime. Once this is done, we sample an endomorphism γ ∈ End(E0) of
degree d(2α −dq), and compose it with the secret isogeny τ : E0 → EA to obtain
an isogeny τ ◦ γ : E0 → EA of degree dq(2α − dq). This isogeny can be seen as
the composition of two isogenies of degree dq and 2α − dq respectively. We then
use Kani’s Lemma to recover the pushforward of the isogeny of degree 2α − dq
in such a way that its domain is EA, and its codomain is some curve Eδ which
is computed at the same time. This pushforward is used as the sought auxiliary
isogeny, allowing us to have a variant SQIPrime2D which only uses dimension 2
isogenies. The SQIPrime2D identification scheme is illustrated in Fig. 3.

The key generation in SQIPrime2D requires two dimension 2 isogeny com-
putation and evaluation. The signing process requires two dimension 2 isogeny
computations and evaluations, one for the commitment isogeny and another
for generating the auxiliary isogeny. The verification requires one dimension 2
isogeny computation and evaluation, bringing it up to a total of three dimension
2 isogeny computations and evaluations for the signature and verification. Given
the current efficiency gap between dimension 2 and dimension 4 isogenies, we
expect SQIprime2D to be more efficient compared to SQISignHD. This is to be
confirmed with a more advanced implementation of SQIprime2D, task that we
leave as future work.

In order to prove the security of SQIPrime4D and SQIPrime2D, we assume
that the codomain of an isogeny computed using the KaniDoublePath algo-
rithm is computationally indistinguishable from a random supersingular curve.
Once this assumption is made, we reduce the security of SQIPrime4D and
SQIPrime2D to the Supersingular Endomorphism problem in the RUCGDIO or
RUCODIO+AIO models respectively, models that we introduce and which are
translations of the RUDGIO model (introduced in the context of SQISignHD)
into the context of SQIPrime4D and SQIPrime2D respectively.

Related Work. While this work was under finalisation, we became aware of
two other concurrent but independent projects that were trying to answer the
same open question we answer in the paper. The first project is from Nakagawa
and Onuki, named SQISign2D-East [37] and the second one is from Basso, Dar-
tois, De Feo, Leroux, Maino, Pope, Robert and Wesolowski, named SQISign2D-
West [2]. Interestingly, all three papers adopt substantially different approaches
to solve this problem.

– Our mechanism mainly relies on the primality of the challenge isogeny ϕ and
on the fact that it has the same degree as our secret isogeny τ .
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– The SQISign2D-East [37] mechanism uses Eichler modules [32, Definition
1.2.7] to sample endomorphisms over E0 that can also be interpreted as endo-
morphisms over EA. The auxiliary isogeny δ : EA → Eδ is then generated
using such endomorphisms on EA.

– Finally, the SQISign2D-West [2] mechanism merges RandIsogImages with
Clapoti [40] to design a new efficient algorithm to evaluate random ideals.
This algorithm is then used to compute the auxiliary isogeny by sampling its
ideal, composing it with the commitment and challenge ideals, evaluating the
composition. Using the knowledge of the commitment and challenge isogenies,
the auxiliary isogeny is retrieved.

We wholeheartedly recommend the reader to delve into these two papers (after
completing ours, naturally).

Outline. The remainder of this paper is organised as follows. In Sect. 2, we give
a quick recall on the architecture of both SQISign and SQISignHD, together
with a reminder of the standard algorithms in Isogeny Based Cryptography that
we use to define SQIPrime. In Sect. 3, we will introduce special tools that we will
need to construct both SQIPrime4D and SQIPrime2D. In Sect. 4, we give the
detailed construction of SQIPrime4D, together with an analysis of its security
in Sect. 5. Similarly, we give the detailed specification of SQIPrime2D in Sect. 6,
with its security analysis in Sect. 7. Finally, we discuss in Sect. 8 how to find
adequate parameters for both SQIPrime4D and SQIPrime2D and have a word
about their foreseen efficiency.

2 Background

We assume some familiarity with Isogeny Based Cryptography. We provide in
[21, Appendix A] a concise overview of isogenies, Deuring correspondence, and
Kani’s Lemma. For a more comprehensive exploration, we recommend referring
to De Feo’s notes [13] and Silverman’s book [47] for a general understanding
of elliptic curves and isogenies. For insights into the Deuring Correspondence,
Leroux’s thesis [32] is an excellent resource, while Robert’s attack on SIDH
[43,44] provides valuable details on Kani’s Lemma.

Throughout this paper, we denote by λ the security parameter. Let p be a
prime, Fp is the finite field of cardinality p. We denote as E0 the curve with j-
invariant 1728 given by y2 = x3+x. If p = 3 mod 4, then it is supersingular and
its endomorphism ring correspond to the maximal order O0 = Z + iZ + i+j

2 Z +
1+ij
2 Z with i : (x, y) → (−x,

√−1y) and j = π the Frobenius endomorphism.
This is an evaluation basis1 denoted O0.

1 An evaluation basis [11, Definition A.4.1] consists in an isomorphism between the
endomorphism ring and a maximal order such that every element of the basis is
efficiently computable.
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2.1 Standard Algorithms

SQIPrime, even more profoundly than SQISign and SQISignHD, heavily relies
on the different efficient representations [11, Definition 1] of isogenies and more
specifically the kernel, ideal and high dimensional representations. To do so, it
uses the following standard algorithms in Isogeny Based Cryptography:

– KernelToIsogeny: Takes as input E a supersingular curve and K ∈ E[d]
and returns φ the isogeny of degree d whose kernel is generated by K together
with E′, its codomain. To do so, it uses Vélu’s Formulas [48] and factorises
φ as a composition of prime degree isogenies. To be efficient, d needs to be
smooth.2

– CanonicalTorsionBasis: Takes as input E a supersingular curve and N an
integer such that N |(p2 − 1) and returns 〈P,Q〉 = E[N ]. To do so, it simply
samples points at random in E(Fp2) or its quadratic twist and multiplies it by
the right cofactor. To ensure that this method is deterministic, the sampling
is performed deterministically using the Elligator algorithm [5].

– KernelToIdeal [11, Algorithm 9]: Takes as input OE an evaluation basis of
End(E) and K a generator of the kernel of an isogeny φ of smooth degree d
and returns Iφ.

– FullRepresentInteger [32, Algorithm 4]: Takes as input a number N >
4p and returns γ ∈ O0 an endomorphism of E0 of norm N . Note that the
successful termination of this algorithm relies on plausible heuristics. We refer
to [32, Section 3.1] for further details.

– EvalTorsion [11, Algorithm 11]: It takes as input OF an evaluation basis of
End(F ), ρ1 : F → E of degree d1, ρ2 : F → E′ of degree d2, both efficiently
computable isogenies together with their respective ideals I1 and I2. It also
takes as input J an (OE ,OE′)-ideal of norm N co-prime to d1 and d2. It
outputs φJ(P ), with P any point whose order is co-prime to d1d2.

– RandomEquivalentIdeal [32, Algorithm 6]: It takes as input a (OE ,OF )-
ideal I and returns J another (OE ,OF )-ideal such that n(J) is a “small”
prime, meaning that n(J) � √

p with extremely high probability, as shown in
[32, Lemma 3.2.3 & Lemma 3.2.4].

– HDKernelToIsogeny: This is an high dimensional equivalent to Kernel-
ToIsogeny. Depending on the dimension, it can be based upon theta struc-
tures [11,12,42], or over Kummer surfaces [45].

2.2 SQISign and SQISignHD

The SQISign and SQISignHD signature algorithms are in fact Σ-protocols that
are transformed into digital signature schemes using the Fiat-Shamir transform
[23], rendering them Universally Unforgeable under Chosen Message Attacks
(UU-CMA) secure in the Random Oracle Model (ROM). The underlying Σ-
protocols are built upon the Deuring correspondence, hence the acronym SQIS
2 Note that this algorithm, as presented here, is not optimal. Among the important

improvements on those computations, see [17] and [4].
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for Short Quaternion Identification Scheme. The security of both protocols relies
on the hardness of the one endomorphism problem (Problem 1). The one endo-
morphism problem was recently [41] shown to be equivalent to the endomorphism
ring problem (Problem 2), a central problem in isogeny based cryptography,
which is believed to be hard for both classical and quantum adversaries.

Problem 1. Let E be a random supersingular curve defined over Fp2 , find a
nontrivial (not in Z) endomorphism of E.

Problem 2. Let E be a random supersingular curve defined over Fp2 , compute
the endomorphism ring End(E) of E.

The main idea behind SQISign and SQISignHD is to prove the knowledge of
the endomorphism ring End(EA) of EA, a supersingular curve. In SQISign, the
fact that the prover knows End(EA) enables them to find a connecting isogeny
between EA and any other curve E2, provided that they also know End(E2). The
idea is then to let E2 be chosen as the challenge by the verifier, by computing
a random isogeny ϕ : E1 → E2 where E1 was generated by the prover (who
hence knows its endomorphism ring End(E1)). Using ϕ, the prover can retrieve
End(E2) and respond with an isogeny σ : EA → E2 that can be easily verified.
This is illustrated in Fig. 1. The high level picture in SQISignHD is similar with
a minor exception that the domain of ϕ and σ are interchanged for efficiency
reasons. The main difference between SQISign and SQISignHD consists in how
the response isogeny σ is computed and represented. The first returns a very
long smooth isogeny through a sequence of kernels, while the second uses high
dimension isogenies to represent a relatively short but non-smooth isogeny.

E0 E1 E0 E1

EA E2 EA E2

ψ

τ ϕ

ψ

ττ ′ σ

σ ϕ

Fig. 1. Diagrams of SQISign (left) and SQISignHD (right). The prover is in blue and
the verifier is in red. Dashed isogenies are secrets. (Color figure online)

SQISign: To construct σ the connecting isogeny, SQISign uses a variant of
the KLPT [30] named the SigningKLPT [18, Algorithm 5]. The ideal Iσ it
retrieves is smooth, as its norm is a large power of 2 of size O(p15/4). To be
efficiently computed, σ is represented as a composition of isogenies with rational
kernel generator. Transcribing Iσ to these kernels is done using IdealToIsogeny



SQIPrime 403

[19, Algo. 7]. This IdealToIsogeny step requires a lot of smooth torsion, reason
why the prime p is such that 2�T |p2 − 1 with T � p5/4 and T smooth. Finding
such primes is difficult and T often has prime factors in the order of 103. Those
big factors significantly slow down the signing procedure, as several T isogenies
have to be computed throughout IdealToIsogeny. On the other hand, the ver-
ification of SQISign is very efficient, as it essentially consists in computing a
sequence of isogenies of degree 2� from their kernels.

SQISignHD: On the other hand, SQISignHD uses the RandomEquivalen-
tIdeal to compute σ. The response isogeny is therefore short O(

√
p) but not

smooth. It is given to the verifier using high dimension representation [43]. This
shift to high dimension isogenies considerably speeds up the signature part of
SQISignHD but shifts most of the expensive computation to the verification
that has to use Kani’s Lemma in dimension 4. To be efficient, SQISignHD uses
“SIDH-like” prime, that are easy to find. We refer to [11] for further details.

3 Introduced Techniques

Before jumping into SQIPrime, we detail two new techniques that we will use
to construct our variant of SQISignHD.

1. The first tool is called KaniDoublePath, a variant of DoublePath [11,
Section 3.3] that uses Kani’s Lemma to sample two (possibly non-smooth)
isogenies between E0 and EA of co-prime degrees. This algorithm is a mod-
ification of the RandIsogImages [36, Algorithm 2], as it additionally com-
putes the corresponding ideals of these isogenies. We also describe a variant
ExtKaniDoublePath that relies on endomorphisms of greater norm.

2. The second is a method to compute, given K a generator of the kernel of
an isogeny, the corresponding ideal even when the degree of this isogeny is
non-smooth. This method is an adaptation of the work of Leroux on Deur-
ingVRF [33] and allows us to use large non-smooth degree isogenies as chal-
lenge isogeny in SQIPrime.

3.1 KaniDoublePath

The main idea behind KaniDoublePath is, similarly to the DoublePath algo-
rithm, to construct two isogenies of co-prime degree between E0 and another
supersingular curve E. The main interest of KaniDoublePath lies in the fact
that those isogenies are not necessary smooth.

To perform the KaniDoublePath, we first use FullRepresentInteger to
find an endomorphism γ ∈ End(E0) with deg(γ) = �(N − �) with �, N co-prime
and N smooth. We can decompose γ as γ = ρ◦τ with deg τ = � and deg ρ = N−�.
Using Kani’s Lemma, we compute the dimension 2 isogeny F : E0×E0 → E×E′

given by the following diagram and kernel:



404 M. Duparc and T. B. Fouotsa

E E0

E0 E′

τ̂

ρ γ τ̂∗ρ

ρ∗τ̂

ker(F ) =
{(

[−�](P ), γ(P )
)∣∣∣ P ∈ E0[N ]

}
with F :=

(
τ −ρ̂

τ̂∗ρ ρ∗τ̂

)

We can therefore efficiently evaluate both τ and ρ̂ at any points of E0 by
writing τ(−) = F (−, 0)1 and ρ̂(−) = −F (0,−)1. Additionally, we also retrieve
Iτ and Iρ the ideal corresponding to τ and ρ as Iτ = O0γ + O0� and Iρ =
O0γ + O0(N − �). The full process is summarized in Algorithm 1.

One may ask if a curve generated using KaniDoublePath has the same
distribution as a curve generated by sampling a random cyclic kernel of size �
and computing the corresponding isogeny. In practice, if the degree N − � of the
byproduct isogeny ρ is not way larger than p, it may happen that for some curve
E which is �-isogenous to E0, there exists no isogeny of degree N − � between
E0 and E, meaning that E will never be returned by KaniDoublePath. We
describe ExtKaniDoublePath, a variation of KaniDoublePath in which the
degree of the byproduct isogeny ρ is larger, hence increasing the chances that
there exists such an isogeny between E0 and any curve which is �-isogenous to
E0, hence reducing the gap between the two distributions.

Algorithm 1. KaniDoublePath
Input: O0 the evaluation basis of End(E0) with 〈P, Q〉 a basis of E0[N ] and � such
that gcd(�, N) = 1 and �(N − �) > p with N smooth.
Output: τ ,ρ̂ : E0 → E isogenies of respective degree � and N − �, together with Iτ

and Iρ̂ their ideals.
1: γ ← FullRepresentInteger(O0, �(N − �))
2: B ← {(

[−�]P, γ(P )
)

,
(

[−�]Q, γ(Q)
)}

3: F ← HDKernelToIsogeny(E2
0 ,B)

4: Iτ ← O0γ + O0�
5: Iρ̂ ← O0γ + O0(N − �)
6: return τ, ρ̂, Iτ , Iρ̂ 	 τ(−) = F (−, 0)1 and ρ̂(−) = −F (0, −)1

The concept behind ExtKaniDoublePath closely resembles that of
KaniDoublePath, albeit with a slight variation. Instead of operating with
γ ∈ End(E0) of norm �(N − �), ExtKaniDoublePath involves working with
γ ∈ End(E0) of norm �(N ′ − �)

(
N − �(N ′ − �)

)
, where N and N ′ are smooth.

Consequently, we have deg(ρ) = (N ′ − �)
(
N − �(N ′ − �)

)
. Both τ and ρ̂ are

computed by applying Kani’s Lemma twice:
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1. Initially, we decompose γ into γ = ρ1◦ρ2◦τ where ρ1 has degree N −�(N ′−�)
and ρ2 ◦ τ has degree �(N ′ − �), and we assess ρ2 ◦ τ over E0[N ′].

2. Subsequently, we further break down ρ2 ◦ τ of degree �(N ′ − �) into τ and ρ̂2
of degree � and N ′ − � respectively, allowing for the computation of ρ̂ as a
composition of ρ̂1 and ρ̂2.

You may find below the commutative diagram of the ExtKaniDoublePath.
The first use of Kani’s Lemma is in blue and the second is in red.

E0 E′
1

E

E′

E1 E0

[ρ̂2◦τ ]∗ρ1

τ̂∗ρ2

ρ2◦τ

γ

τ̂

ρ2
[ρ2]∗τ̂

ρ1

[ρ1]∗ρ̂2◦τ

Algorithm 2. ExtKaniDoublePath
Input: O0 an evaluation basis of End(E0) with 〈P, Q〉 a basis of E0[N ], 〈P ′, Q′〉 a basis
of E0[N

′] and � such that gcd(�, N) = gcd(�, N ′) = 1 and �(N ′ − �)(N − �(N ′ − �)) > p
with N, N ′ smooth.
Output: τ ,ρ̂ : E0 → E isogenies of respective degree � and (N ′ − �)(N − �(N ′ − �)),
together with Iτ and Iρ̂ their ideals.
1: γ ← FullRepresentInteger(O0, �(N

′ − �)(N − �(N ′ − �))
2: B1 ← {(

[−�(N ′ − �)]P, γ(P )
)

,
(

[−�(N ′ − �)]Q, γ(Q)
)}

3: F1 ← HDKernelToIsogeny(E2
0 ,B1) 	 τ ◦ ρ2(−) = F1(−, 0)1

4: Find E1 the codomain of (ρ̂1)
5: B2 ← {(

[N ′ − �]P ′, τ ◦ ρ2(P
′)

)

,
(

[N ′ − �]Q′, τ ◦ ρ2(Q
′)

)}

6: F2 ← HDKernelToIsogeny(E0 × E1,B2)
7: Iτ ← O0γ + O0�
8: Iρ̂ ← O0γ + O0(N

′ − �)(N − �(N ′ − �))
9: return τ, ρ̂, Iτ , Iρ̂ 	 τ(−) = −F2(−, 0)1 and ρ̂(−) = F2(0, −)1 ◦ −F1(0, −)1

Remark 1. In KaniDoublePath and ExtKaniDoublePath, and in other
algorithms throughout this paper, we return isogenies and their ideal repre-
sentations. In practice, during implementation, instead of returning an isogeny,
one usually returns its evaluation on some relevant torsion point basis. These
torsion point images are used later on to evaluate the isogeny on points lying in
the same torsion group.
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We will rely on the following assumptions when discussing the security of
SQIPrime.

Assumption 1. The distribution of E the codomain of τ and ρ̂, returned
by KaniDoublePath (N,P,Q, �) with � a random prime smaller than √

p is
computationally indistinguishable from the distribution of E sampled randomly
among all supersingular curves.

Assumption 2. The distribution of an isogeny τ : E0 → E returned by
ExtKaniDoublePath (N,P,Q,N ′, P ′, Q′, �) with � <

√
p a random prime is

computationally indistinguishable from the distribution of τ : E0 → E sampled
randomly among isogenies of degree � and of domain E0.

3.2 KernelToIdeal for Generic Degree Isogenies

Looking at the details of KernelToIdeal [11, Algorithm 9], we see that it makes
extensive use of discrete logarithms over E[d], with d being the degree of the
isogeny for which the representing ideal is being computed. To be efficient via
standard methods (i.e. Pohlig-Hellman), this method requires d being smooth.
We therefore need another method for isogenies of generic degree. The idea
proposed by Leroux in [33] is to use the knowledge of the endomorphism ring of
E to construct a precomputed basis of E[d].

Definition 1. Let E be any supersingular curve. The tuple (P,Q, ι, IP ) is a
precomputed basis of E[d] if the following conditions are satisfied:

– P,Q ∈ E form a basis of E[d].
– ι ∈ End(E) and ι(P ) = Q.
– IP is the ideal corresponding to the isogeny of kernel 〈P 〉.

Knowledge of an evaluation basis OE of End(E) enables us to construct a pre-
computed basis using the FindPrecomputedBasis algorithm (Algorithm 3),
proposed in [33]. In our case, we apply it to the curve E0, where we can use
the (heuristic) FullRepresentInteger algorithm to efficiently sample endomor-
phisms in O0 with the desired norm dN where N is co-prime to d and p 	 dN .

Using a precomputed basis, we can compute ideals from a kernel generator
K ∈ E[d] by applying the following lemma.

Lemma 1. Let (P,Q, ι, IP ) be a precomputed basis of E[d] and let K = [a]P +
[b]Q be a point in E[d]. Then the representing ideal of the isogeny φK : E →
E/〈K〉 is given by IK = [a + bε(ι)]∗IP where ε : OE ↔ End(E).

Proof. This comes from the fact that 〈K〉 = 〈[a]P + [b]Q〉 = 〈[a]P + [b]ι(P )〉 =
[a + bι]〈P 〉, meaning that φK = [a + bε(ι)]∗φP . We then get the desired result
through the Deuring correspondence. ��
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Algorithm 3. FindPrecomputedBasis
Input: OE =

({bi}4
i=1, ε

)

an evaluation basis of End(E) with d prime.
Output: (P, Q, ι, IP ) a precomputed basis of E[d].
1: Sample a random R ∈ E[d]
2: Sample α ∈ OE such that gcd

(

n(α), d2) = d
3: if ε−1(α)(R) = 0 then go to step 1
4: P ← ε−1(α)(R)
5: IP ← OEα + OEd
6: Sample γ ∈ OE such that gcd(n(γ), d) = 1
7: if P and ε−1(γ)(P ) are linearly dependent, then go to step 6
8: return P, ε−1(γ)(P ), ε−1(γ), IP

We can thus compute the ideals corresponding to a kernel of generic order.
Nevertheless, the method that we presented here requires knowing OE . Most of
the time, the curve E is obtained by computing an isogeny φ : E0 → E. With
the knowledge of O0 and φ : E0 → E, one can recover OE , and hence determine
a precomputed basis of E[d] using the FindPrecomputedBasis algorithm.
Even though this is already efficient, in Corollary 1, we describe a faster and
more convenient method to translate a kernel generator K ∈ E[d] into an ideal
knowing a precomputed basis of E0[d], φ : E0 → E of degree co-prime to d and
its corresponding ideal Iφ.

Corollary 1. Let (P,Q, ι, IP ) be a precomputed basis of E0[d] and let φ : E0 →
E be an isogeny of degree q with corresponding ideal Iφ such that d and q are
co-prime. Let S, T ∈ E be the respective images of P and Q by φ and let K =
[a]S + [b]T be a point in E[d]. Then IK =

[
(a + bε(ι))Iφ

]
∗IP .

Proof. Similarly to Lemma 1, we have that

〈K〉 = [q]〈K〉 = φφ̂ 〈[a]S + [b]T 〉 = φ〈[a]φ̂(S) + [b]φ̂(T )〉 = φ〈[aq]P + [bq]Q〉
= φ〈[a]P + [b]Q〉 = φ〈[a]P + [b]ι(P )〉 = φ ◦ [a + bι]〈P 〉,

i.e. φK = [φ ◦ (a + bι)]∗φP and thus IK = [(a + bε(ι))Iφ]∗IP . ��
It’s worth noting that [33] proposes using φ to directly generate a precom-

puted basis over E. Specifically, if (P,Q, ι, IP ) represents a precomputed basis
over E0[d], then

(
φ(P ), [deg(φ)]φ(Q), θ, [Iφ]∗IP

)
constitutes a precomputed basis

of E[d] with θ = φ ◦ ι ◦ φ̂. The significant advantage of Corollary 1 lies in its
exclusive use of endomorphisms over E0 rather than over E. This characteristic
aligns more closely with our requirements in SQIPrime, making it better suited
for our purposes.

4 SQIPrime4D: SQIPrime in Dimension 4

As previously stated in the introduction, SQIPrime4D further expands the use of
Kani’s Lemma to both KeyGen and Commit. Moreover, the challenge isogeny has
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non-smooth degree. Only the kernel of the challenge isogeny is sampled by the
verifier. The challenge isogeny ϕ : EA → E2 is computed by the prover, who then
appends the usual response isogeny σ : E2 → E1 to it to get κ := σ◦ϕ : EA → E1.
The high dimensional representation of κ is returned to the verifier. Figure 2
illustrates the architecture of SQIPrime4D.

E0 E1

EA E2

ψ

τ

ϕ

σκ

Fig. 2. Diagram of SQIPrime4D, prover in blue and verifier in red. Dashed isogenies
are not shared. (Color figure online)

The public parameters of SQIPrime4D are defined as:

– p a prime number of the form p = 2αf − 1 � 22λ and such that p = 2Nq +1,
with q � 2λ. We discuss in Sect. 8 how to efficiently compute such primes.

– P0, Q0 a basis of E0[2α].
– (P,Q, ι, I[N ]P ) which is almost a precomputed basis over E0[Nq]. (It is if we

use IP instead of I[N ]P but this ideal is more adapted to SQIPrime4D.)
– β an integer of the form β = 2λ + c log(λ) with c a small constant. (See

Sect. 4.2 for more details.)

They are constructed using the Setup algorithm described in Algorithm 4.

Algorithm 4. SQIPrime4D.Setup
Input: 1λ.
Output: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

.
1: Take p a prime of the form p = 2αf − 1 � 22λ such that p − 1 = 2Nq with q � 2λ

prime and N co-prime to q
2: P0, Q0 ← CanonicalTorsionBasis(E0, 2

α)
3: (P, Q, ι, IP ) ← FindprecomputedBasis(O0, qN)
4: Compute I[N ]P = IP + O0q
5: β ← 	2λ + c log2(λ)

6: pp ← (

p, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

7: return pp

At a high level, the subroutines of SQIPrime4D are as follows.
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– KeyGen: Compute τ : E0 → EA together with its corresponding ideal Iτ

using KaniDoublePath. Additionally, compute a matrix M and use it to
mask the image through τ of a precomputed basis of degree qN , with q � 2λ.
The curve EA and the masked basis form the public key, while τ , Iτ and the
matrix M form the secret key.

– Commit: The prover computes an isogeny ψ : E0 → E1 with KaniDou-
blePath together with its ideal Iψ and shares E1.

– Challenge: The verifier samples a random scalar a ∈ Zq and returns it to the
prover. This scalar defines a point Ca = P + [a]Q where P,Q is a specified
basis of EA[q].

– Response: Using the precomputed basis over E0 and its knowledge of Iτ , the
prover retrieves Iϕ, the ideal corresponding to the challenge isogeny ϕ : EA →
E2 whose kernel is given by ker(ϕ) = 〈Ca〉. Using RandomEquivalentIdeal,
they compute a short (O2,O1)-ideal Iσ corresponding to an isogeny σ : E2 →
E1, and construct κ = σ ◦ ϕ, evaluate it using EvalTorsion and send this
evaluation of κ as the response to the verifier.

– Verify: The verifier receives κ and checks using Kani’s Lemma that it is valid
by verifying that it is an isogeny from EA to E1 and that κ(Ca) = 0.

4.1 Key Generation and Commitment

Both key generation and commitment consist essentially in using KaniDou-
blePath. We take a random prime � smaller than √

p and use the KaniDou-
blePath with an endomorphism of norm �(2α − �) to retrieve τ in the case of
SQIPrime.KeyGen (Algorithm 5) and ψ in SQIPrime.Commit. (Algorithm
6). The only significant differences between the key and commitment generation
is that during the key generation, we additionally compute a masked basis of
EA[Nq]. To do so, we compute the image of (P,Q) through the isogeny τ and
use a random matrix M ∈ GL2(Nq) to mask the torsion points. Note that this
masking makes of R,S a random basis of EA[Nq].

Algorithm 5. SQIPrime4D.KeyGen
Input: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

.
Output: sk =

(

τ, Iτ ,M
)

, pk =
(

EA, (R, S)
)

.
1: Sample �A �= 2 a random prime smaller than √

p such that �A co-prime with q
2: τ, ∗, Iτ , ∗ ← KaniDoublePath(2α, P0, Q0, �A)
3: Compute EA = Im(τ)
4: Sample a random matrix M ∈ GL2(Nq)
5:

(

R
S

) ← M
(

τ(P )
τ(Q)

)

6: return (τ, Iτ ,M),
(

EA, (R, S)
)
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Algorithm 6. SQIPrime4D.Commit
Input: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

.
Output: sec =

(

ψ, Iψ

)

, com = E1.
1: Take �1 �= 2 a random prime smaller than √

p such that �1 co-prime with q
2: ψ, ∗, Iψ, ∗ ← KaniDoublePath(2α, P0, Q0, �1)
3: Compute E1 = Im(ψ)
4: return

(

ψ, Iψ

)

,
(

E1

)

4.2 Challenge and Response

Challenge. As touched on earlier, our challenge is significantly different from
the challenge of SQISign and SQISignHD, as the evaluation of the challenge
isogeny has been moved from the verifier to the prover. This adjustment is nec-
essary since the verifier lacks an efficient means to evaluate this isogeny, as it
only has access to the kernel representation of ϕ, whose degree is not smooth.
The prover uses the ideal representation to construct a high dimension repre-
sentation of ϕ that is then sent to the verifier together with the high dimension
representation of the answer isogeny σ. Thus, instead of providing an isogeny of
smooth degree, the challenger simply sends a challenge point Ca ∈ EA[q]. This
point is given as a ∈ Zq such that Ca = [N ](R+ [a]S) where R,S is the basis of
EA[Nq] included in the public key. This point is the generator of the kernel of
ϕ : EA → E/〈Ca〉 = E2. We have q � 2λ possible challenge isogenies.

Response. In line with SQISignHD, our objective is to compute an isogeny
σ : E2 → E1. However, the verifier lacks knowledge of E2. An initial idea might
be to provide the verifier with an HD representation of ϕ, allowing him to check
that the kernels match. However, this approach requires knowledge of a map
between E0 and E2 (or EA and E2), which is challenging to construct.3 Instead
of sending σ and ϕ separately, the idea is to send κ = σ◦ϕ and use Kani’s Lemma
over κ to prove that κ factors through ϕ, utilising the fact that ker(κ)∩EA[q] =
ker(ϕ).

First, one adapts Corollary 1 to compute ICa
= Iϕ. Upon receiving the

challenge Chal = a, the prover finds b, c ∈ Zq such that Ca = [N ]
(
[b]τ(P ) +

[c]τ(Q)
)
. These scalars are given by

(
b
c

)
= M�(

1
a

)
. One then recovers ICa

as

ICa
=

[(
b + cε(ι)

)
Iτ

]
∗I[N ]P

One then computes the (O2,O1)-ideal ICa
IτIϕ and finds an equivalent short

(O2,O1)-ideal J using RandomEquivalentIdeal. The ideal J corresponds to
an isogeny σ : E2 → E1 of degree d as shown in Fig. 2, with d such that
2β − qd can be written as the sum of two squares. One sufficient condition

3 We could use the KLPT algorithm followed by the IdealToKernel algorithm,
but avoiding this algorithm was a primary motivation behind the development of
SQISignHD.
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is to ask for 2β − qd = 1 mod 4 and to be prime. Following the discussion in
[11, Section 4.2] and by using the sampling method proposed in [11, Section
E.2], we expect to find a valid J after sampling O(λ) times. Moreover, we
require that d is co-prime to q. This is to prevent backtracking when com-
posing σ and ϕ. Since q has very few prime factors in our case, then a few
supplementary samples will allow to ensure that d and q are co-prime. For
the suggested parameters (Sect. 8), the worst case is when λ = 192 where
q = 3 · 7 · 4803463386334137403 · 116682096886878909945888202135243873061
and that the probability that a random number shares a prime factor with q is
at most 0.47. Note that β can be as large as 2α ≈ 2 log p, which means there is
more than enough room to sample J with the requirements above. In practice,
β = 2λ + c log(λ) 	 23λ where c is a small constant is sufficient.

The final response is composed of the evaluation of the isogeny κ = σ ◦ ϕ
on EA[2α] and on the point C2 = [a]R − S, together with the degree d of σ. To
do so, one generates a basis of EA[2α] using CanonicalTorsionBasis, one uses
EvalTorsion to evaluate κ on the generated basis and C2. The point κ(C2) is
used to ensure the soundness of our verification. It is important to note that C2

satisfies 〈Ca, [N ]C2〉 = EA[q].

Algorithm 7. SQIPrime4D.Response
Input: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

, sk = (τ, Iτ ,M), pk = (EA, (R, S)),
sec = (ψ, Iψ), com = E1, chal = a.
Output: res = (T, U, V, d) with T, U ∈ E1[2

α], V ∈ E1[Nq] and d the degree of σ.
1:

(

b
c

) ← M�(

1
a

)

2: ICa ← [(b + cι)Iτ ]∗I[N ]P

3: J ← RandomEquivalentIdeal(ICaIτIψ) d ← n(J)
4: if gcd(d, q) �= 1 or 2β − dq �= 1 mod 4 or 2β − dq is composite, go back to Step 3
5: X, Y ← CanonicalTorsionBasis(EA, 2α)
6: C2 ← [a]R − S

7: T, U, V ← EvalTorsion
(

O0, τ, Iτ , ψ, Iψ, ICaJ, qd, {X, Y, C2}
)

8: return res = (T, U, V, d) 	 T = κ(X), U = κ(Y ), V = κ(C2)

4.3 Verification

Upon receiving T,U, V, d, we want to verify that the following statement holds:
the torsion points we received define a high dimensional representation of an
isogeny κ : EA → E1 of degree dq such that d and q are co-prime and the
isogeny κ factors through ϕ, meaning that ker(κ)[q] = 〈Ca〉.
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To perform this verification efficiently, we use Kani’s Lemma to construct the
isogeny F : E2

1 × E2
A → E2

A × E2
1 given by the following diagram and matrices:

E2
A E2

1

E2
A E2

1

Σ

η η

Σ

F :=
(

Σ̃ −η̃
η Σ

)
=

⎛
⎜⎜⎝

κ̂ 0 −a1 −a2

0 κ̂ a2 −a1

a1 −a2 κ 0
a2 a1 0 κ

⎞
⎟⎟⎠

where η :=
(

a1 −a2

a2 a1

)
such that deg(η) = a2

1 + a2
2; Σ := diag(κ, κ). If the

parameters allow us to always have enough torsion, that is we always have dq <
2α or equivalently β = α, then F can be computed on one go and its kernel is
given by ker(F ) =

{(
Σ(P ),−η(P )

)∣∣ P ∈ E2
A[2

β ]
}
. If the parameters do not allow

this, then we split the isogeny F : E2
1 × E2

A → E2
A × E2

1 into two isogenies F1 :
E2

1 ×E2
A → Δ and F2 : Δ → E2

A ×E2
1 where Δ is an abelian surface, F = F2 ◦F1

with deg(Fi) = 2βi (β1+β2 = β), ker(F1) =
{(

Σ(P ),−η(P )
)∣∣ P ∈ E2

A[2
β1 ]

}
and

ker(F̃2) =
{(

Σ(P ), η̃(P )
)∣∣ P ∈ E2

A[2
β2 ]

}
, similarily to SQISignHD4. We then use

the following property: let X ∈ EA be a point of odd order, then

F

⎛
⎜⎜⎝

0
0
X
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
[−a1]X
[a2]X

Y
0

⎞
⎟⎟⎠ ⇐⇒ [2β2 ]F1

⎛
⎜⎜⎝

0
0
X
0

⎞
⎟⎟⎠ = F̃2

⎛
⎜⎜⎝
[−a1]X
[a2]X

Y
0

⎞
⎟⎟⎠ .

We use this equivalence on the points Ca and C2 of respective order q and Nq.

Proposition 1. Let pp, pk, com, chal be a valid public key, commitment, and
challenge of SQIPrime4D and let P,Q be the canonical basis of EA[2α]. Let
Res be a potential response. SQIPrime4D.Verify(pp, pk, com, chal,Res) = 1
implies that Res = (T ,U, V , d) is such that:
– (P,Q, T , U) is a high dimension representation of an isogeny κ : EA → E1 of

degree qd.
– ker(κ) ∩ EA[q] = 〈Ca〉.
Proof. Our proof takes inspiration from [11, Section E.5]. In fact if we assume
that SQIPrime.Verify(pp, pk, pub, chal,Res) = 1, then T ,U, V are in E1, F1

and F2 are well-defined and have the same codomain, and the following holds:

[2
β2 ]F1(0, 0, Ca, 0) = ˜F2([−a1]Ca, [a2]C2, 0, 0) =⇒ F (0, 0, Ca, 0) = ([−a1]Ca, [a2]C2, 0, 0)

[2
β2 ]F1(0, 0, C2, 0) = ˜F2([−a1]Ca, [a2]C2, V , 0) =⇒ F (0, 0, C2, 0) = ([−a1]Ca, [a2]C2, V , 0).

From the isogeny F , using ιi and ρj the standard injections/restrictions of
product spaces, we can construct 16 elliptic curve isogenies F i,j = ρi ◦ F ◦ ιj
with 1 ≤ i, j ≤ 4 such that for all j = 1, · · · , 4:
4 A slight change in the prime used in SQISignHD was suggested in [24] in order to

avoid splitting the high dimensional isogeny, in the hope for a better efficiency, but
we are not aware of any implementation of this variant.
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Algorithm 8. SQIPrime4D.Verify
Input: pp =

(

p, (P0, Q0), (P, Q, ι, I[N ]P ), β
)

, pk = (EA, R, S), com = E1, chal = a, res =
(T, U, V, d).
Output: 0 or 1.
1: if one of the points T, U, V is not in E1 or gcd(d, q) �= 1, return 0
2: β1 ← �β

2
�, β2 ← 	β

2

, k1 ← 2α−β1 , k2 ← 2α−β2

3: (a1, a2) ← Cornacchia(2β − qd)
4: Compute η and η̃
5: Compute {Pi}0�i�4 a basis of E2

A[2
α] 	 Using CanonicalTorsionBasis

6: B1 ← {(

[k1]Σ(Pi), [−k1]η(Pi)
)}

0�i�4
	 Σ(Pi) computed using T, U

7: B2 ← {(

[k2]Σ(Pi), [k2]η̃(Pi)
)}

0�i�4

8: F1 ← HDKernelToIsogeny(B1)

9: ˜F2 ← HDKernelToIsogeny(B2)

10: if codomain(F1) �= codomain(˜F2) do return 0 	 Do as [11, Section F.3]
11: Ca ← [N ](R + [a]S), C2 ← ([a]R − S)

12: b1 ← [2β2 ]F1(0, 0, Ca, 0)
?
= ˜F2([−a1]Ca, [a2]Ca, 0, 0)

13: b2 ← [2β2 ]F1(0, 0, C2, 0)
?
= ˜F2([−a1]C2, [a2]C2, V, 0)

14: return b1 ∧ b2

4∑
i=1

deg(F i,j) = deg(F ) = 2β

We focus on the case when j = 3. We want to demonstrate that for i = 1, 2,
and 4, Fi,3 = [bi], with bi being −a1, a2, and 0, respectively. To achieve this, we
utilize the Cauchy interpolation theorem. By applying the triangular inequality,
we have:

for i = 1, 2, 4, deg(F i,3 − [bi]) ≤ 4 · 2β ≈ 22λ+c log(λ)+2 	 23λ.

We know that F i,3 = [bi] for all points generated by 〈Ca, C2〉, i.e., for Nq2 ≈ 23λ

points. Thus, F 1,3 = [a1], F 2,3 = [−a2], and F 4,3 = 0. Since F (0, 0, Ca, 0) =
([−a1]Ca, [a2]C2, 0, 0), we deduce that F 3,3 is an isogeny of degree qd between
EA and E1 such that F 3,3(Ca) = 0. Since d and q are co-prime, then ker(F 3,3)∩
EA[q] = 〈Ca〉. ��

5 Security Analysis of SQIPrime4D

We now prove that the SQIPrime4D identification protocol described in the
Sect. 4 is a Σ-protocol. To do so, we have to show that SQIPrime4D has special
soundness and is Honest Verifier Zero Knowledge (HVZK). Once both are proven,
applying the Fiat-Shamir transform [23] over SQIPrime4D will result in a digital
signature scheme that is UU-CMA in the ROM. The extractor is constructed as
follows.
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Proposition 2. Let (E1, chal1, T1, U1, V1, d1) and (E1, chal2, T2, U2, V2, d2) be 2
transcripts with identical commitment E1 and chal1 �= chal2. There exists an
extractor E that, given both transcripts, can efficiently solve the one endomor-
phism problem (Problem 1) over EA, i.e. find θA ∈ End(EA) a non-trivial endo-
morphism.

Proof. Our proof is very similar to [11, Proposition 17]. We can use T1, U1 to
compute a high dimension representation of κ1 = σ1 ◦ ϕ1 and T2, U2 to compute
a high dimension representation of κ̂2 = σ̂2 ◦ ϕ2. Then, θA = κ̂2 ◦ κ1 ∈ End(EA)
is non-scalar. In fact, let us assume for a moment that θA is a scalar. Since
ker(κ1) ∩ EA[q] = 〈Cchal1〉 is cyclic, ker(κ2) ∩ EA[q] = 〈Cchal2〉 is cyclic, d1 and
d2 are co-prime to q, then ker(κ1)∩ EA[q] = ker(κ2)∩ EA[q], which implies that
〈Cchal1〉 = 〈Cchal2〉. Hence chal1 = chal2, which is a contradiction. ��

The extractor ensures us that SQIPrime4D has special soundness. Similarly
to [11, Section 5.2], we construct the simulator under the assumption that we
have access to the following oracle.

Definition 2. The Random Uniformly Constrained Good Degree Isogeny Ora-
cle (RUCGDIO) is an oracle that takes as input a supersingular curve E together
with P ∈ E[q] and that returns an efficient representation of κ : E → E′ of degree
qd with d co-prime with q and such that:

– E′ is uniformly distributed over all supersingular curves.
– κ is uniformly distributed among all isogenies between E and E′ such that

P ∈ ker(κ) and such that 2β − qd is a prime congruent to 1 modulo 4 with d
co-prime to q.

Proposition 3. Given pp, pk and chal, there exists a simulator S with access
to a RUCGDIO that simulates transcripts with a distribution that is computa-
tionally indistinguishable from the distribution of transcripts of SQIPrime4D,
conditioned to chal.

Proof. Given a ∈ Zq, we compute Ca = [N ](R + [a]S). Calling RUCGDIO
over EA and Ca, we retrieve an efficient representation of κ : EA → E1 and
use this representation to compute the points A = κ(X), B = κ(Y ), and Z =
κ([b]R − [a]S) with X,Y the canonical basis over EA[2α].

We then simply return the following transcript (E1, a, A,B,Z,deg(κ)/q).
This transcript is computationally indistinguishable from a genuine tran-

script, as:

– Following Assumption 1, we have that a genuine E1 or one given by RUDGIO
are computationally indistinguishable.

– Following [32, Lemma 3.2.4], a genuine κ or one given by RUDGIO are com-
putationally indistinguishable, and so does A,B,Z,deg(κ)/q.

��
We now make the following assumption.



SQIPrime 415

Assumption 3. The one endomorphism problem (Problem 1) remains hard
even when given access to RUCGDIO.

Indeed, by definition, RUCGDIO, when given an input P , generates a random
isogeny that factors φP and that is of good degree. If P is of smooth order,
then RUCGDIO is in fact equivalent to the RUGDIO oracle [11, Definition
5.2.1]. Thus, the arguments of [11, Section 5.3] also applies to RUCGDIO. It is
therefore reasonable to assume that RUCGDIO does not help to break the one
endomorphism problem.

6 SQIPrime2D: SQIPrime in Dimension 2

In this section, we describe a version of SQIPrime which uses only dimension 2
isogenies. As touched on earlier, moving from dimension 4 isogenies to dimension
2 isogenies allows to obtain a more efficient scheme. This time, SQIPrime2D is
expected to be more efficient compared to SQISignHD.

6.1 High Level Description

Recall the diagram for SQIPrime4D in Fig. 2. In order to represent κ = σ◦ϕ using
Kani’s Lemma in dimension 2, we need to compute and evaluate an auxiliary
isogeny δ : EA → Eδ of degree 2α−dq. Since the prover knows the endomorphism
ring of EA, they could in fact compute such an isogeny by using the KLPT
algorithm, but this is not an admissible way as we want to avoid using the costly
KLPT algorithm.

Instead, we will use Kani’s Lemma, KaniDoublePath and ExtKaniDou-
blePath, together with several other techniques to generate the auxiliary isogeny
of degree 2α − dq. To achieve this goal, we will operate the following change to
SQIPrime4D:

the secret isogeny τ will now be of fixed5 degree q, which is also the degree of
the challenge isogeny ϕ.

With that change in mind, we now sketch how one generates an auxiliary
isogeny δ : EA → Eδ of degree 2α − dq. Firstly, one samples an endomorphism
γ ∈ End(E0) of degree d(2α − dq), and one evaluates it on the 2α-torsion. Next,
one evaluates τ ◦γ̂ on the 2α-torsion basis {P0, Q0} of E0. Write γ = γ2◦γ1 where
γ1 and γ2 have degree d and 2α −dq respectively, and let E′

0 be the codomain of
γ1. Let δ : EA → Eδ be the pushforward of γ2 through τ ◦ γ̂1. Then E0, E′

0, EA

and Eδ are the vertices of an SIDH square where the degrees are dq and 2α −dq.
One can hence apply Kani’s Lemma to compute the isogeny δ : EA → Eδ and
evaluate it on the 2α-torsion points. This is illustrated in Fig. 3.

For SQIPrime2D, the public parameters are defined as follows:
5 This already implies that the key recovery problem in SQIPrime4D and SQIPrime2D

are different, since the degree of the secret isogeny in SQIPrime4D is random and is
not public.
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E0 E′
0

E0 E1

Eδ EA E2

η

γ2

γ
γ1

ψ

τρ̂ κ

δ ϕ

σ

Fig. 3. Diagram of SQIPrime2D, prover in blue and verifier in red. Dashed isogenies
are not shared. (Color figure online)

– The base prime p is of the form p = 2αf − 1 = 2Nq + 1 � 22λ, with q � 2λ

prime, such that: α ≥ � log2(p)
2 + log2(q)� + 1.

– P0, Q0 is a basis of E0[2α].
– (P,Q, ι, IP ) is a precomputed basis of E0[q].

The computation of the commitment isogeny in SQIPrime2D is identical to
that of the secret isogeny in SQIPrime4D, but the key generation, the response
and the verification algorithms are modified.

6.2 SQIPrime2D Key Generation Algorithm

For the computation of the secret isogeny τ , whose degree is q and is public,
we use ExtKaniDoublePath. In SQIPrime2D, the points R and S are no
longer the masked images of P and Q by τ (as in SQIPrime4D). Instead, they
are the masked images by ρ̂ of the points P and Q, where ρ̂ is the second
isogeny computed using ExtKaniDoublePath. This change is necessary since
deg(τ) = q, which is also the order of the points P and Q. We thus have that(
R
S

)
= Mρ̂

(
P
Q

)
. This time, one also includes Iρ̂ in the secret key since it is needed

when translating the kernel of the non-smooth challenge isogeny into an ideal.

Remark 2. With respect to the current state of the art [8,15,34,44] when it
comes to the supersingular isogeny problem with torsion point information, there
is no known algorithm that exploits the images of torsion points of non-smooth
order to weaken the supersingular isogeny problem. All known attacks require
the torsion point images to have smooth order. This means that the masking
matrix M is not really necessary since q is prime. We nevertheless keep it in
order to avoid having to explicitly assume that revealing the non-smooth order
torsion point images in clear does not affect the security of the protocol.

6.3 SQIPrime2D Response Algorithm

Upon receiving Chal = a ∈ Zq from the verifier, the prover computes Ca =
R + [a]S = [b]ρ̂(P ) + [c]ρ̂(Q). The prover then calculates ICa

defined as ICa
=[(

b + cε(ι)
)
Iρ̂

]
∗IP .
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Algorithm 9. SQIPrime2D.KeyGen
Input: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, IP )
)

.
Output: sk =

(

τ, ρ̂, Iτ , Iρ̂

)

, pk =
(

EA, (R, S)
)

.
1: τ, ρ̂, Iτ , Iρ̂ ← ExtKaniDoublePath(2α, P0, Q0, q)
2: Compute EA = Im(τ)
3: Sample a random matrix M ∈ GL2(q)
4:

(

R
S

) ← Mρ̂
(

P
Q

)

5: return (τ, ρ̂, Iτ , Iρ̂,M),
(

EA, (R, S)
)

Next, the prover computes the (O2,O1)-ideal ICa
IτIψ and locates another

small (O2,O1)-ideal J using the RandomEquivalentIdeal algorithm. Follow-
ing [11, Lemma 12], we are assured of the existence of such an ideal with a norm
smaller than √

p. Additionally, we require that n(J) is odd. Notably, this condi-
tion is considerably less restrictive than that of SQIPrime4D, as approximately
half of all potential isogenies remain valid, compared to only 1/ log(p) in the
case of SQIPrime4D. Therefore, we have a high heuristic probability of finding
our desired J with an odd norm d smaller than 2

√
p, thereby yielding the corre-

sponding isogeny σ : E2 → E1. In [21, Appendix B], we provide details on how
our method can be adapted to function with even d as well. The other require-
ment is that ICa

J should not be divisible by q. This is to avoid that the final
response κ = σ ◦ ϕ is divisible by q, which would imply that κ is independent of
the challenge Ca. In practice, when E1 is sampled honestly, the probability that
ICa

J is divisible by q is at about q−2 ≈ 2−2λ. Hence an ideal J that satisfies the
previous requirements will satisfy this one as well.

With knowledge of d, the objective now shifts to constructing an auxiliary
isogeny δ : EA → Eδ of degree 2α − qd. This specific mechanism lies at the heart
of SQIPrime2D and underscores the necessity for the secret isogeny τ to be
of degree q. The approach involves sampling γ ∈ End(E0), an endomorphism of
degree d(2α−qd). This is done using FullRepresentInteger. Next, we compute(

V
W

)
= τ ◦ γ̂

(
P0
Q0

)
. Given that deg(τ ◦ γ̂) = dq(2α − qd), we find ourselves in the

following scenario:
E0 E′

0

E0

Eδ EA

γ̂

η

γ2

γ̂1

τ

δ

where γ = γ2 ◦ γ1, deg(γ1) = d and deg(γ2) = (2α − qd). By applying Kani’s
Lemma, we construct the dimension 2 isogeny F : E0 × EA → E′

0 × Eδ of kernel
ker(F ) =

{(
[−qd]P, τ ◦ γ̂(P )

)∣∣ P ∈ E0[2α]
}

and given by
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F :=
(

γ̂2 −γ1 ◦ τ̂
[γ2]∗(τ ◦ γ̂1) [τ ◦ γ̂1]∗γ2

)
.

We thus have an efficient representation of our desired δ = [τ ◦ γ̂1]∗γ2.
The response to our challenge is to give the evaluation T,U of δ◦ κ̂ = δ◦ ϕ̂◦ σ̂

over a basis of E1[2α] to the verifier. Additionally, we share the image V = δ(Ca)
of Ca through δ. To do the evaluation, we call CanonicalTorsionBasis over E1

to deterministically find a basis X,Y of E1[2α], evaluate κ̂ on X and Y using the
EvalTorsion and compute δ on these images using the dimension two isogeny
F . Finally, we multiply the final points by (−qd)−1 mod 2α. The prover then
sends these three points together with the curve Eδ.

Algorithm 10. SQIPrime2D.Response
Input: pp =

(

p, α, q, N, (P0, Q0), (P, Q, ι, IP )
)

, sk = (τ, ρ̂, Iτ , Iρ̂,M), pk =
(

EA, (R, S)
)

, sec = (ψ, Iψ), com = E1, chal = a.
Output: res = (Eδ, T, U, V ) with T, U ∈ Eδ[2

α].
1:

(

b
c

) ← M�(

1
a

)

2: ICa ← [(b + cι)Iτ ]∗IP

3: J ← RandomEquivalentIdeal(ICaIτIψ) d ← n(J)
4: If 2|d or ICaJ is divisible by q, go back to step 3.
5: X, Y ← CanonicalTorsionBasis(E1, 2

α)
6: γ ← FullRepresentInteger(O0, d(2

α − dq))
7:

(

V
W

)

= τ ◦ γ̂
(

P0
Q0

)

8: B ← {([−dq]P0, V ), ([−dq]Q0, W )}
9: F ← HDKernelToIsogeny(E0 × E1,B)

10: Define τ = FA(−, 0)1 and ψ = F1(−, 0)1

11: T1, U1 ← EvalTorsion
(

O0, τ, Iτ , ψ, Iψ, IC1J, qd, {X, Y }
)

	T1 = κ̂(X), U1 = κ̂(Y )

12:
(

T
U

)

= [(−qd)−1]δ
(

T1
U1

)

	 δ(−) = F (0, −)2
13: V = δ(R + [a]S)
14: Recover Eδ, the codomain of δ
15: return res = (Eδ, T, U, V )

6.4 SQIPrime2D Verification Algorithm

Note that in SQIPrime2D, the verifier receives a dimension 2 representation of
κ̂ rather than that of κ. We describe how to use this representation of κ̂ to
effectively check that κ is an isogeny from EA to E1 such that ker(κ)[q] = 〈Ca〉.

Upon receipt of T , U and V , the verifier deterministically computes the basis
〈X,Y 〉 = E1[2α]. Following that, the verifier uses X, Y , T and U to compute
a basis for the kernel of the isogeny F , as derived from Kani’s Lemma over the
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following diagram.
EA E1

Eδ E•

κ

δ δ ◦ κ̂ κ∗δ

δ∗κ

F : E1 × Eδ → EA × E• is defined as
(

κ̂ −δ̂
κ∗δ δ∗κ

)

ker(F ) =
〈(
[−qd]X, δ ◦ κ̂(X)

)
,
(
[−qd]Y, δ ◦ κ̂(Y )

)〉
=

〈(
X,T

)
,
(
Y,U

)〉

Using F , they compute the point F
(
0
V

)
=

(−̂δ(V )
δ∗κ(V )

)
and check that:

1. δ∗κ(V ) = 0.
2. δ̂(V ) = [2α − qd](R + [a]S) = [2α](R + [a]S).

Additionally, we check that for W ∈ Eδ[q] linearly independent with V ,
δ∗κ(W ) �= 0. This ensures that ker(κ)[q] = 〈Ca〉.

Algorithm 11. SQIPrime2D.Verify
Input: pp =

(

p, (P0, Q0), (P, Q, ι, IP )
)

, pk = (EA, R, S), com = (E1), chal = a, res =
(Eδ, T, U, V ).
Output: 0 or 1.
1: Check T, U, V ∈ Eδ

2: X, Y ← CanonicalTorsionBasis(E1, 2
α)

3: B ← {(

X, T
)

,
(

Y, U
)}

4: F ← HDKernelToIsogeny(E1 × Eδ,B) 	 If not well defined, return 0
5: if codomain κ̂ �= EA do return 0
6: Sample W ∈ Eδ[q] such that V and W are linearly independent
7:

(

Z1
Z2

) ← F
(

0
V

)

=
( −̂δ(V )

δ∗κ(V )

)

8: b1 ← Z1
?
= [2α](R + [a]S)

9: b2 ← Z2
?
= 0

10: b3 ← δ∗κ(W )
?

�= 0
11: return b1 ∧ b2 ∧ b3

The following proposition shows us that our verification is correct.

Proposition 4. Let pp, pk, com, chal be the public parameters, a valid public key,
a commitment, and a challenge in SQIPrime2D and let X,Y be the canoni-
cal basis of E1[2α]. Let Res = Res = (Eδ, T , U, V ) be any possible output of
Algorithm 10.
If SQIPrime2D.Verify(pp, pk, com, chal,Res) = 1, then (X,Y, T , U) is a dim
2 representation of an isogeny κ̂ : E1 → EA of degree qd < 2α and such that
κ factors through ϕ, the isogeny corresponding to the challenge chal, but is not
divisible by q; in other words, ker(κ)[q] = 〈Ca〉.
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Proof. Let Eδ, T , U, V be an accepting response. Since the (2α, 2α) isogeny F
whose kernel is generated by {(X,T ), (Y,U)} is well-defined, then deg(F 1,1) =
deg(F 2,2), deg(F 1,2) = deg(F 2,1) and deg(F 1,1) + deg(F 1,2) = 2α.

Thus, as F 2,2(V ) = 0, we know that q divides deg(F 2,2), meaning that it

cannot divide deg(F 1,2). Since F 1,2(V ) = [2α](R + [a]S), then [2α]F̂ 1,2(R +
[a]S) = [deg(F 1,2)]V . As q and 2α deg(F 1,2) are co-prime, we have that F 2,2 ◦
F̂ 1,2(R + [a]S) = 0 = F 2,1 ◦ F̂ 1,1(R + [a]S). As deg(F 1,2) = deg(F 2,1) is not

divisible by q, then F̂ 1,1(R + [a]S) = 0. We therefore have that F̂ 1,1 : EA → E1

is of degree qd < 2α and it factors through the isogeny ϕ corresponding to the
challenge chal. Since W ∈ Eδ[q] is such that V and W are linearly independent,
then F 2,2(W ) �= 0 induces that F 2,2 and F̂ 1,1 : EA → E1 are not divisible by q.

��

7 Security Analysis of SQIPrime2D

Similarly to SQIPrime4D, we have to show that SQIPrime2D defines a Σ pro-
tocol. We thus have to prove that we have special soundness and are Honest
Verifier Zero Knowledge. Our proof of special soundness differs slightly from
Proposition 2, as it leverages the primality of q to address the case where deg(σ)
is not necessarily co-prime to q.

Proposition 5. Let (E1, chal1, T1, U1, V1) and (E1, chal2, T2, U2, V2) be 2 tran-
scripts of SQIPrime2D with identical commitment E1 and chal1 �= chal2. There
exists an extractor E that, given both transcripts, can efficiently solve the one
endomorphism problem (Problem 1) over EA, i.e. find θA ∈ End(EA) a non-
trivial endomorphism.

Proof. Similarly to Proposition 2, we construct θA = κ̂2 ◦ κ1 ∈ End(EA). We
now show that θA is non-scalar.

Let d1 = deg(σ1) and d2 = deg(σ2). Recall that d1q < 2α < p, d2q < 2α < p
and q is prime. If both are co-prime to q, then one follows the same reasoning as in
the proof of Proposition 2. Let us assume that q divides d1 and let d1 = d′

1q. Then
d′
1 is co-prime to q, as otherwise, we would have d1q = d′′

1q3 ≥ q3 > 2α ≥ d1q
where d′

1 = d′′
1q, leading to a contradiction.

Now, suppose θA = [χ]. Since χ2 = deg[χ] = deg θA = q2d1d2 = q3d′
1d2,

then d2 = d′
2q with d′

2 co-prime to q. Hence deg κ1 = q2d′
1 and deg κ2 = q2d′

2

where d′
1 and d′

2 are co-prime with q. Write κ1 = φ1 ◦κ′
1 and κ2 = φ2 ◦κ′

2 where
the isogenies κ′

1, κ′
2, φ1 and φ2 have degree q2, q2, d′

1 and d′
2 respectively. Since

θA = κ̂2 ◦ κ1 is a scalar endomorphism and, κ1 and κ2 are not divisible by q
(which is prime), then κ′

1 = κ′
2. This implies that ker(ϕ1) := ker(κ1) ∩ EA[q] =

ker(κ′
1)∩EA[q] = ker(κ′

2)∩EA[q] = ker(κ2)∩EA[q] =: ker(ϕ2), i.e. chal1 = chal2,
which is a contradiction. ��
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Regarding HVZK, there are several differences between SQIPrime4D and
SQIPrime2D:

1. We have access to an auxiliary isogeny δ : EA → Eδ.
2. Our isogeny κ is of degree qd where the requirements that d is co-prime to q

and 2β − qd is prime congruent to 1 modulo 4 are relaxed.

We therefore need to define our HVZK under new oracles, defined as such.

Definition 3. The Random Uniform Constrained Odd Degree Isogeny Oracle
(RUCODIO) is an oracle that takes as input a supersingular curve E together
with P ∈ E[q] and returns an efficient representation of an isogeny κ : E → E′

of degree q� such that:

– E′ is uniformly distributed.
– κ is uniformly distributed among all isogenies between E and E′ such that:

• � is odd with q� ≤ 2α.
• κ is such that κ(P ) = 0.

Definition 4. The Auxiliary Isogeny Oracle (AIO) is an oracle that takes as
input a supersingular curve E together with an odd integer � < 2α/q and returns
an efficient representation of an isogeny δ : E → E′′ of degree 2α − q� such that
it has the same distribution as the auxiliary isogeny computed in Algorithm 10.

Using RUCODIO and AIO, we can now prove our HVZK.

Proposition 6. Given pp, pk and chal, then there exists a simulator S with
access to a RUCODIO and AIO that simulates transcripts with a distribution
that is computationally indistinguishable from the distribution of transcripts of
SQIPrime2D, conditioned to chal.

Proof. Given EA, we sample a ∈ Zq and construct C = R+[a]S call RUCODIO
over EA and C, we retrieve an efficient representation of κ : EA → E1. We
compute � = deg(κ)/q and call AIO over EA and d to retrieve δ : EA → Eδ. We
use this representation to compute the points T = δ ◦ κ̂(X), U = δ ◦ κ̂(Y ) and
V = δ(C) with X,Y the canonical basis over E1[2α]. We then simply return the
following transcript (E1, a, Eδ, T, U, V ).

This transcript is computationally indistinguishable from a genuine tran-
script, as:

– A genuine E1 or one given by RUCODIO are computationally indistinguish-
able, following Assumption 1.

– Due to Definition 4, Eδ has the same distribution as the isogeny computed
during SQIPrime2D response. This also applies to the point V .

– Following [32, Lemma 3.2.4], a genuine κ or one given by RUCODIO are
computationally indistinguishable, and so does T,U . ��
We now make the following assumption.

Assumption 4. The one endomorphism problem (Problem 1) remains hard
even when given access to RUCODIO and AIO.

Thus, we have that, under our assumptions, SQIPrime2D is a Σ-protocol.
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8 Parameters and Efficiency

As discussed in Sect. 4 and Sect. 6, the public parameters in both versions of
SQIPrime differ significantly from those used in SQISign [18,19] and SQISignHD
[11], particularly concerning their base prime numbers. This section provides a
detailed explanation on how to compute suitable baseline “SQIPrime-friendly”
primes.

8.1 Finding “SQIPrime4D-Friendly” Primes

We can view “SQIPrime4D-friendly” primes as a combination of the “SIDH
primes” used in SQISignHD and the stringent requirements on both p + 1 and
p − 1 seen in SQISign primes. However, in SQIPrime4D, the only condition is
that p − 1 needs to have a factor of size O(2λ). Finding “SQIPrime4D-friendly”
primes is actually easier than finding “SQISign-friendly” primes. These primes
can in fact be found by a brute-force search over the cofactor f . Her are some
good candidates.

λ = 128 : p + 1 = 2241 · 33967 � 2256

q = 647133889352330391744288229376113975777 � 2128

λ = 192: p + 1 = 2368 · 239 · 277 � 2384

q = 3 · 7 · 4803463386334137403·
116682096886878909945888202135243873061 � 2193

λ = 256: p + 1 = 2497 · 52 · 479 � 2512

q = 97 · 147869462015622684206054234380684709202350
1415545736430515280986935609000677 � 2256

8.2 Finding “SQIPrime2D-Friendly” Primes

Finding “SQIPrime2D-friendly” primes through a brute-force search over the
cofactor f as we did in the case of SQIPrime4D is computationally involved.
This essentially comes from the fact that we want q ≈ 2λ to be prime this
time and if we take p = 2αf − 1 to be a prime, then the probability that a
random prime q divides p−1 is roughly 1/q. Given that there are approximately
2λ(2t − 1)/λ distinct primes in the interval [2λ, 2λ+t], the probability that there
exists a prime q in [2λ, 2λ+t] that divides p − 1 is heuristically given by:

P

[
∃q ∈ [

2λ, 2λ+t
]

such that q
∣∣∣(p − 1)

]
≥

2λ+t∑
q≥2λ

P
[
q|(p − 1)

] �
2λ+t∑
q≥2λ

1
q

≥
t∑

i=1

2λ+i∑
q≥2λ+i−1

1
2λ+i

�
t∑

i=1

2λ+i

(λ + i)
1

2λ+i
�

t∑
i=1

1
λ + i

≥ t

λ + t
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Following this computation, the probability that, for a given f , p = 2αf − 1
is prime and p−1 has a factor close to λ-bit long is about O(1/λ2). This induces
that the expected size of f is around 2 log2(λ), meaning that a “SQIPrime2D-
friendly” prime for the security level λ is of expected size 2λ+4 log2(λ) bits, or a
little bit larger. These additional 4 log2(λ) bits present a challenge. For λ = 128,
this results in an overhead of approximately 28 bits, which translates to an 11%
increase in the size of the base prime p.6

For λ = 128, the first “SQIPrime2D-friendly” prime we identified is denoted
as p130.

p130 = 2273 · 192 − 1 � 2281.50

q130 = 1733124013302036320718171822563477047667 � 2130.35

To find a smaller p, it is tempting to ask for q to be non-prime, as we did for
SQIPrime4D, but this is not possible as our security would be downgraded by a
non-smooth generalisation of the Galbraith meet-in-the-middle attack [26] and
our proof of special soundness would be affected. However, to maintain efficiency,
we may tolerate a slight reduction in the bit length of q. We suggest the following
prime.

p117 = 2247 · 79 − 1 � 2253.34

q117 = 168118140144706967996895604212334429 � 2117.01

Searching for “SQIPrime2D-friendly” primes corresponding to security levels
λ = 192, 256, by brute-force search over the cofactor f , is practically out of
reach since it requires factoring several numbers of about 384 and 512 bits.
We therefore use a more advanced method which consists of sample integers
p = 2x2 − 1 where x = 2rf0 with r > λ and f0 being a small integer. When p
is prime, then since p − 1 = 2x2 − 2 = 2(x − 1)(x + 1), we only need to check
whether x+1 or x − 1 has a prime q ≈ 2λ. Interestingly, this essentially reduces
to checking whether x + 1 or x − 1 has a small smooth factor s in the order of
x/2λ such that (x−1)/s or (x+1)/s is prime. This hence leads to a quite efficient
method to generate “SQIPrime2D-friendly” primes. A similar technique [7] was
also used in the context of SQISign for the parameter generation. We obtained
the following primes for the security levels λ = 192, 256 respectively.

p186 = 2397 · 32 · 72 · 112 − 1 � 2413 p240 = 2499 · 32 · 72 − 1 � 2508

q186 = (2198 · 3 · 7 · 11 − 1)/664723 � 2187 q240 = (2249 · 3 · 7 − 1)/7709 � 2241

6 It is important to note that this overhead scales logarithmically with λ. As λ doubles,
the overhead only increases by 4 bits, meaning that its relative cost decreases at
higher security levels.
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8.3 Compactness of SQIPrime

Similarly to SQISign and SQISignHD, both version of SQIPrime are made into
digital signature schemes via the Fiat-Shamir transform [23]. Thoses digital
schemes are universally unforgeable under chosen message attacks (UU-CMA)
in the random oracle and RUCGDIO or RUCODIO+AIO model, assuming the
hardness of the one endomorphism problem.

Signature Size. In the case of SQIPrime2D, the signature takes the form
sign =

(
E1, Eδ, T, U, V

)
. This signature can be slightly compressed using meth-

ods akin to those outlined in [11, Section 6.1]. The crux of this compression lies in
representing T and U by a1, a2, a3,∈ Z2α corresponding to their coordinates in a
deterministic basis of Eδ[2α], with the final coordinate a4 derived using pairings
and discrete logs and using d an integer of λ bits. Employing this compression
method, each component of a SQIPrime2D signature exhibits the following sizes:

– E1 and Eδ are represented by their j-invariant in Fp2 , hence of size 8λ +
O(log λ).

– T and U are each represented by three integers of size α plus d of size log(p)/2,
totaling 7λ + O(log λ) bits.

– Finally, because q is non-smooth, we can not compress V , meaning that they
are represented as a point in Fp2 , hence of size 4λ + O(log λ).

Summing these sizes, a SQIPrime2D signature is 19λ + O(log λ) bits long.
Consequently, it is larger than the signature of SQISignHD, which was 13/2λ+
O(log λ) bits, and also larger than SQISign, which is at least 17/2λ + O(log λ)
bits. Nevertheless, it remains a highly compact post-quantum signature scheme.

It is noteworthy that similar compression techniques can be applied to the
SQIPrime4D signature, which is of the form (E1, T, U, V, d), resulting in a sig-
nature size of 12λ+O(log λ) bits. This difference of 7λ bits comes from the fact
that in SQIPrime2D, we have to share Eδ and because in SQIPrime4D, we split
the verification in 2 dimension 4 isogenies, therefore only requiring 2β-torsion
points, as opposed to 2α in SQIprime2D.

8.4 SQIPrime Efficiency

The next phase for SQIPrime involves developing an efficient implementation of
SQIPrime2D. Building upon the advancements made in [12], as well as lever-
aging the efficient implementations of SQISign [18,19] and SQISignHD [11], we
anticipate that SQIPrime2D will demonstrate very competitive performance. As
for now, we have a proof of concept code written in SageMath, with which the
key generation, signature and verification take about 720ms, 1750ms and 200ms
respectively when using p117. We will provide a link to the code in the full ver-
sion [21] of the paper once the code is ready to share, as there is still room for
improvement through basic optimisations.
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Table 1. Size (in bytes) comparison between the different SQI-protocols for public
keys and signatures in both normal and compressed form.

Scheme λ pk signature signature (compressed)

SQISign
128 64 322 177
192 92 - 267
256 128 - 335

SQISignHD
128 64 208 109
192 92 312 156
256 128 416 208

SQIPrime4D
128 192 272 240
192 288 408 288
256 384 544 384

SQIPrime2D
128 191 320 299
192 288 517 484
256 384 635 600

With and advanced implementation, we expect signature time in
SQIPrime2D to be relatively slower compared to that of SQISignHD (this is
due to the extra cost of generating the auxiliary isogeny in SQIPrime2D when
computing the signature), while having a faster verification. This intuition fol-
lows from the number of (2, 2) isogenies required to perform SQIPrime2D, as
detailed in [21, Appendix C].

9 Conclusion

In this paper, we have designed SQIPrime, an elegant variant of SQISignHD
that uses non-smooth degree challenge isogenies. Moreover, we have described a
variant, SQIPrime2D, that uses only dimension two isogenies.

We provide a theoretical performance analysis of our schemes and antic-
ipate SQIPrime2D being more efficient compared to SQISignHD. An effec-
tive implementation of SQIPrime2D, which should be expected in the near
future, will allow us to have a more practical comparison between SQIPrime4D
and SQISignHD on one hand, and, SQIPrime2D, SQISign2D-West [2] and
SQISign2D-East [37] on the other hand.
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Abstract. In the post-quantum migration of TLS 1.3, an ephemeral
Diffie-Hellman must be replaced with a post-quantum key encapsulation
mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and
Vaudenay [20] demonstrated that KEMs with standard CPA security
are sufficient for the security of the TLS 1.3 handshake. However, their
result is only proven in the random oracle model (ROM), and as the
authors comment, their reduction is very much non-tight and not suffi-
cient to guarantee security in practice due to the O(q6)-loss, where q is
the number of adversary’s queries to random oracles. Moreover, in order
to analyze the post-quantum security of TLS 1.3 handshake with a KEM,
it is necessary to consider the security in the quantum ROM (QROM).
Therefore, they leave the tightness improvement of their ROM proof and
the QROM proof of such a result as an interesting open question.

In this paper, we resolve this problem. We improve the ROM proof in
[20] from an O(q6)-loss to an O(q)-loss with standard CPA-secure KEMs
which can be directly obtained from the underlying public-key encryp-
tion (PKE) scheme in CRYSTALS-Kyber [8]. Moreover, we show that
if the KEMs are constructed from rigid deterministic public-key encryp-
tion (PKE) schemes such as the ones in Classic McEliece [2] and NTRU
[11], this O(q)-loss can be further improved to an O(1)-loss. Hence, our
reductions are sufficient to guarantee security in practice. According to
our results, a CPA-secure KEM (which is more concise and efficient than
the currently used CCA/1CCA-secure KEM) can be directly employed
to construct a post-quantum TLS 1.3. Furthermore, we lift our ROM
result into QROM and first prove that the CPA-secure KEMs are also
sufficient for the post-quantum TLS 1.3 handshake. In particular, the
techniques introduced to improve reduction tightness in this paper may
be of independent interest.
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1 Introduction

The Transport Layer Security (TLS) protocol is one of the most widely deployed
cryptographic protocols in practice. As the NIST standardization of post-
quantum cryptography (PQC) progresses, exploring the transition of the TLS
1.3 protocol to post-quantum (PQ) security has become a significant topic. To
ensure PQ security for parts of the protocol that use Diffie-Hellman (DH) key
exchange, it is necessary to replace the existing DH key exchange with a PQ
secure key encapsulation mechanism (KEM).

The existing TLS 1.3 protocol [15], as well as the majority of other crypto-
graphic protocols such as KEM-TLS [30], Signal [9], and Noise [4] schemes, rely
on the PRF-ODH [10] assumption to achieve security. The PRF-ODH assump-
tion is a variant of the hashed DH assumption. For PQ variants of these protocols,
it has been shown that IND-1CCA security is required for the replaced KEMs,
see PQ TLS [15,20,30,31], PQ Signal [9], and PQ Noise [4]. Simply put, IND-
1CCA security ensures that any probabilistic polynomial time (PPT) adversary
cannot distinguish between a legitimately generated key and a random key with
at most one decapsulation query. Usually, IND-CCA secure KEMs are taken as
IND-1CCA secure KEMs for the implementation of PQ TLS 1.3 [1]. IND-CCA
security is typically achieved by employing a Fujisaki-Okamoto-like (FO-like)
transformation to an OW-CPA/IND-CPA secure public-key encryption (PKE),
see [7,14,16–19,22–25]. In particular, CRYSTALS-Kyber [8] and the remaining
KEMs in the Round-4 submissions [27] all employ an FO-like transformation.
However, the FO-like transformation in IND-CCA secure KEMs requires re-
encryption in decapsulation, significantly impacting decapsulation efficiency as
demonstrated in [20]. For instance, there is a 2.17X speedup over decapsula-
tion in CRYSTALS-Kyber [8], and a 6.11X speedup in FrodoKEM [26] when
re-encryption is removed, as shown in [20]. Moreover, re-encryption can render
KEMs more vulnerable to side-channel attacks as demonstrated in [5,32], affect-
ing nearly all NIST-PQC Round-3 KEMs. Therefore, the design of an IND-1CCA
secure KEM without re-encryption was left as an open problem in [30].

Huguenin-Dumittan and Vaudenay [20] made the first attempt to solve this
problem by proposing two general constructions of IND-1CCA secure KEMs
from OW-CPA/IND-CPA PKEs. One construction, denoted as TCH , incorpo-
rates a key-confirmation component into the original ciphertext, causing cipher-
text expansion. Another construction, denoted as TH , works without ciphertext
expansion, and the key is derived by H(m, c). Building upon [20], Jiang et al. [21]
introduced an implicit variant of TH , denoted as TRH , and provided a tighter
security reduction for both TH and TRH in the Random Oracle Model (ROM)
compared to the proof presented in [20]. Jiang et al. [21] also established the
security of TH and TRH in the Quantum Random Oracle Model (QROM) by
introducing a variant of the measure-and-reprogram technique [12,13].

Paquin, Stebila, and Tamvada [29] conjectured that CPA KEMs are sufficient
for TLS 1.3. As shown in Fig. 1, the construction of CPA KEMs is more concise
than 1CCA KEMs as one hash calculation can be removed. Huguenin-Dumittan
and Vaudenay [20] confirmed this conjecture. They observed that in the TLS
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1.3 key schedule, the keys are obtained by applying key-derivation functions
(KDFs) to the shared secret and the hash of the transcript so far (including the
ciphertext). Inspired by the proof of security of the TH transform, they proved
that if the underlying KEM is OW-CPA secure, then the TLS 1.3 handshake
protocol is secure in the MultiStage model of Dowling et al. [15]. Specifically,
they introduced a distinct intermediate IND-1CCA-MAC game to demonstrate
that OW-CPA KEMs are sufficient for TLS 1.3 in the ROM. They first proved
that OW-CPA KEMs imply the security of the IND-1CCA-MAC with a secure
MAC in the ROM, then utilized the security of the IND-1CCA-MAC to prove
the security of TLS 1.3 in the standard model. Notably, the IND-1CCA-MAC
game only serves as an intermediate step in the proof.

However, they only proved that OW-CPA KEMs can derive IND-1CCA-MAC
security with a secure MAC in the ROM [20]. They did not extend their proof
to the QROM. Also, the bound of the ROM proof is very much non-tight, with
εR ≈ O(1/q6)εA for OW-CPA KEMs to prove IND-1CCA-MAC secure, where
εR (resp. εA) is the advantage of the reduction R (resp. adversary A) breaking
the OW-CPA security of the underlying KEM (resp. the IND-1CCA-MAC secu-
rity), and q is the number of A’s queries to the random oracle (RO). Therefore,
they suggest that due to the weak security bound associated with OW-CPA
KEMs, employing IND-1CCA KEMs might be more advantageous in the PQ
TLS 1.3 handshake because the security bound for IND-1CCA KEMs provides
better guarantees than OW-CPA KEMs. Consequently, better parameters can
be chosen for the implementation of the underlying IND-1CCA KEMs. Further-
more, they leave the development of tighter ROM reductions and proofs in the
QROM as open problems, as stated in Sect. 4.3 of their paper [20].

The overall bound for TLS security from OW-CPA is very much non-tight.
This is clearly not sufficient to guarantee security in practice, and we leave the
improvement of the bounds as an interesting open question and leave security

in the QROM as future work.

1.1 Our Contributions

We resolve the open problem by introducing a new intermediate security game
IND-1CCA-MAC∗ (a variant of the IND-1CCA-MAC [20] and suitable for estab-
lishing the security of TLS 1.3 handshake), and by reducing the CPA security
of the underlying KEM to IND-1CCA-MAC* in a tighter manner. In particular,
our results show that standard CPA-secure KEMs are sufficient to guarantee the
security of TLS 1.3 in practice. Our main contributions are as follows:

1. First, we prove the security of IND-1CCA-MAC∗ from standard CPA-secure
KEMs in the ROM. Specifically, our reduction exhibits a tightness of εR ≈
O(1/q)εA, which is much tighter than εR ≈ O(1/q6)εA given by [20] (see
Table 1). Such a CPA-secure KEM can be directly obtained by instantiating
the PKE scheme in Fig. 1 with the one used in CRYSTALS-Kyber [8].
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2. Moreover, we also show that for rigid D-OW-CPA KEMs the reduction can be
tight, with 2εR ≈ εA. Here, rigid D-OW-CPA KEMs denote KEMs that are
constructed by applying a simple transform to a rigid one-way secure deter-
ministic PKE1, as shown in Fig. 1. In particular, the NIST-PQC Round-3
Finalist NTRU [11] and the NIST-PQC Round-4 Candidate Classic McEliece
[2] are based on rigid one-way secure deterministic PKEs, which can be trans-
formed into the corresponding D-OW-CPA KEMs in this paper.

3. Then, we first prove the security of IND-1CCA-MAC∗ from OW-CPA/IND-
CPA/D-OW-CPA2 KEMs in the QROM. In particular, Huguenin-Dumittan
and Vaudenay [20] conjectured that the compressed oracle technique intro-
duced by Zhandry [34] could be useful in the QROM proof due to their exten-
sive use of the programming property of ROs in the ROM proof. However, in
our QROM proof, we only utilize two other well-established techniques: one-
way to hiding (OW2H) [3,7] and measure-and-reprogram [12,13,21]. Specif-
ically, our reduction achieves a tightness of εR ≈ O(1/q2)ε2A in the QROM
with IND-CPA/D-OW-CPA secure KEMs.

4. Finally, we show that if the IND-1CCA-MAC* security is satisfied, then the
MultiStage [15] security of TLS 1.3 handshake protocol is satisfied in the stan-
dard model. In particular, the reduction for TLS 1.3 from IND-1CCA-MAC∗

exhibits the same tightness as the reduction given by [20] for TLS 1.3 from
IND-1CCA-MAC or 1CCA KEM. Putting everything together, we finally
prove that if the underlying KEM is OW-CPA/IND-CPA/D-OW-CPA secure,
then the TLS 1.3 handshake protocol is secure in the MultiStage model with
a much tighter ROM proof and the first QROM proof.

Remark 1. Our results show that the reduction bounds for IND-1CCA-MAC∗

from CPA KEMs exhibit the same tightness as those 1CCA KEMs from PKEs
[21]. We also note that CPA KEMs in Fig. 1 can be tightly reduced to CPA
PKEs. Therefore, if we consider the complete reduction from the CPA security
of the underlying PKE to the MultiStage security of the resulting TLS 1.3, our
reduction for TLS 1.3 with CPA KEM has the same tightness as the currently
tightest reduction for TLS 1.3 with 1CCA KEM given by [21]. Notably, the
CPA-secure KEM used in this paper is more concise and efficient compared to
the currently employed CCA/1CCA-secure KEM.

1.2 Practical Efficiency Impact

As shown in Fig. 2, the most economical method to construct a secure TLS 1.3 is
to use an OW-CPA/IND-CPA secure KEM, obviating the need for transforma-
tions like FO or TCH , TH , TRH to achieve 1CCA security. Directly using the CPA
1 The rigid [6] property means that decrypting a ciphertext c and then re-encrypting

yields c. For a general deterministic PKE, the rigid property can be achieved through
a re-encryption transform.

2 In the QROM, we do not require the rigid property for D-OW-CPA KEMs because
the simulations of ODec and ODec

MAC are the same as standard CPA KEMs in the
proof.
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Table 1. Reduction tightness of the intermediate game IND-1CCA-MAC∗.

Underlying KEM Reduction Tightnessa Model

OW-CPA [20] εR ≈ O(1/q6)εA ROM
OW-CPA (Our work) εR ≈ O(1/q2)εA ROM
IND-CPA (Our work) εR ≈ O(1/q)εA ROM
D-OW-CPA (Our work) εR ≈ O(1)εA ROM
OW-CPA [20] - QROM
OW-CPA (Our work) εR ≈ O(1/q4)ε2A QROM
IND-CPA (Our work) εR ≈ O(1/q2)ε2A QROM
D-OW-CPA (Our work) εR ≈ O(1/q2)ε2A QROM

aAll proofs for IND-1CCA-MAC∗ from CPA KEMs rely on a
secure MAC, we focus on the primary KEM component here.
In [20], they actually prove IND-1CCA-MAC, which implies the
security of IND-1CCA-MAC∗. Essentially, IND-1CCA-MAC∗ is
sufficient for the security proof of TLS 1.3, see Theorem 6 for
details.

KEM based on CRYSTALS-Kyber.PKE [28] as in Fig. 1 can bring a significant
speed improvement, see Table 2. In particular, for decapsulation, there is a 6X
speedup over using TCH , TRH , and a 20X speedup over using FO.

Fig. 1. The construction of CPA and 1CCA (TH [20]) KEMs from PKEs

Table 2. Benchmark of Encaps and Decaps for CRYSTALS-Kyber [28] with different
transforms using liboqs (AVX2 enabled, NIST security level I) on system specs: Intel(R)
Core(TM) i9-10900X CPU @ 3.7 GHz, 32.0 GB RAM, 64-bit OS.

Algorithm CPA TRH TCH FO

Encaps (μs) 5.35 7.255 7.682 7.666
Decaps (μs) 0.366 2.274 2.277 7.428
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Fig. 2. Diagram of the process for constructing TLS 1.3 using KEMs based on different
security assumptions. This figure shows that the most straightforward method to con-
struct a secure TLS 1.3 is to use an OW-CPA/IND-CPA secure KEM, which does not
require the redundant T transformation [20,21] or FO transformation [16,18]. Here, T
represents a general term for TCH , TH , TRH .

1.3 Technique Overview

Approach by Huguenin-Dumittan and Vaudenay [20]: To demonstrate
that OW-CPA KEMs are sufficient for the security of TLS1.3 (the description of
the TLS 1.3 protocol is illustrated in Fig. 4.), Huguenin-Dumittan and Vaudenay
introduced a special intermediate IND-1CCA-MAC game, as depicted in Fig. 3.
They first demonstrated that an OW-CPA KEM with a secure MAC implies
IND-1CCA-MAC security and then established the security of TLS 1.3 based
on the IND-1CCA-MAC security. Specifically, the reduction bounds for deriving
TLS 1.3 security from IND-1CCA-MAC KEMs or from IND-1CCA KEMs are
both O(t2sεA + tstuεSIGB ), where ts (resp. tu) is the maximal number of sessions
(resp. users) and εA (resp. εSIGB ) is the advantage of A (resp. B) breaking the
IND-1CCA/IND-1CCA-MAC security for KEM (resp. EUF-CMA security for
signature). The following is an overview of the rationale behind using this special
IND-1CCA-MAC game to prove the security of TLS 1.3. When attempting to
prove the security of TLS 1.3, it is necessary to simulate the specific entire
session and the queries by the adversary. Specifically, when the tested session is
the server session labeled labelS , and its partner is labeled labelC . If the Server
Hello (SH) message (including the original SH and Server Key Share (SKS)) sent
by labelS differs from the SH message received by labelC , it indicates potential
tampering by the adversary with SH values. However, the reduction must still
simulate the honest partner labelC to complete the handshake protocol and
answer the adversary’s queries. Therefore, by utilizing two oracles, ODec and
ODec

MAC in the IND-1CCA-MAC game, the reduction can perfectly simulate this
scenario. Specifically, the reduction can query ODec to obtain stage-1 and stage-2
keys tkC , tkS , enabling perfect simulation of labelC and any Reveal queries up to
the Server Finished (SF) message. Upon labelC receiving the SF message, which
contains a MAC tag, the reduction can query ODec

MAC to verify this tag. If this
tag is correct, the reduction obtains the Handshake Secret (HS) and can derive
all necessary secrets to perfectly simulate labelC .

Causes of Reduction Loss in [20]: When proving that OW-CPA KEMs
are IND-1CCA-MAC secure in the ROM, the reduction needs to simulate
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ODec(ct, n), ODec
MAC(ct, n, tag, txt) without secret key and embed the underly-

ing security experiment into the IND-1CCA-MAC instance. When simulating
ODec

MAC, the reduction randomly takes one of adversary’s query H2(HS, t) (corre-
sponding to H2(HS,HT (ct, n)) in ODec

MAC) or ⊥ as the return, with the success
probability of guessing correctly being O(1/(qH2 + 1)). When simulating ODec,
the reduction takes one of the adversary’s query H1(HS, t),H2(HS, t) (corre-
sponds to H1(HS,HT (ct, n)), H2(HS,HT (ct, n)) in ODec) or ⊥ as the return,
or ⊥d (this guess indicates that the adversary has not queried about the corre-
sponding value H1(HS,HT (ct, n)), H2(HS,HT (ct, n)) and decaps(sk, ct) �= ⊥),
with the success probability of guessing correctly being O(1/(qH1 +2)(qH2 +2)).
In the case of ⊥d, the reduction randomly chooses chts, shts, and finally returns
HD(chts),HD(shts) in ODec. After this, the reduction must ensure the consis-
tency of H1 and H2 with ODec by guessing whether H1(HS, t),H2(HS, t) corre-
sponds to the potentially defined chts, shts in ODec, with the success probability
of guessing correctly being O(1/(qH1+1)(qH2+1)). When embedding the instance
of the underlying OW-CPA experiment into the IND-1CCA-MAC instance, an
OW-CPA instance is embedded with a O(1/qG) loss in the ROM. Thus, the total
loss is O(1/q6) in the ROM.

Below, we elaborate on how to improve the reduction of the above loss in the
ROM and lift our tighter ROM proof into the QROM setting.

A New Intermediate Game: IND-1CCA-MAC∗: We observe that we
only need a specific IND-1CCA-MAC game denoted as IND-1CCA-MAC∗ to
prove the security of TLS1.3. IND-1CCA-MAC∗ is identical to IND-1CCA-MAC,
except it constrains the adversary A to initiating the first query to ODec(ct, n)
and subsequent query to ODec

MAC(ct, n, tag, txt) with (ct, n) = (ct, n). This restric-
tion in IND-1CCA-MAC∗ does not impact the proof for TLS1.3 because in the
proof when the adversary send a forged SH = (ct, ns) message the reduction
just queries ODec(ct, nS) first and ODec

MAC(ct, nS , txt, tag) later to perfectly sim-
ulate the game. Specifically, following the method in [20], we can easily utilize
IND-1CCA-MAC∗ to prove the MultiStage security of TLS 1.3. In particular,
by utilizing IND-1CCA-MAC∗, we can employ the guess from ODec to perfectly
simulate ODec

MAC, thereby avoiding the O(1/(qH2 + 1)) security loss in the ROM
and this new intermediate game also plays a crucial role for the QROM proof.

Combining RO Simulation Technique: When there are two ROs, H1(x) and
H2(x), with identical input space, we need to operate on these two ROs on the
same input x0, which could be either reprogramming or guessing which query
to H1(·),H2(·) corresponds to x0. In this paper, we combine these two ROs by
defining H12 = (H1,H2) to simulate H1 and H2 simultaneously. In this scenario,
the total number of queries to H12 is at most qH1 + qH2 . Thus operating only
on H12 may result in a tighter reduction loss. More precisely, they have to guess
separately for the two ROs, resulting in a loss of O(1/(qH1 + 1)(qH2 + 1)) in [20].
By using the combining RO simulation technique, we only need to make one guess
for H12 = (H1,H2), thereby reducing the security loss to O(1/(qH1 + qH2 + 1)).

Specifically, to simulate the ODec(ct, n) oracle without the secret key, we
initially employ an internal hash function H12 = (H1,H2) to simulate the ran-
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dom oracles H1 and H2. We first randomly choose guess ←$ {0, 1} to guess
whether decaps(ct, sk) = ⊥. If guess = 0, we return ⊥ in ODec. Otherwise, for
a valid ciphertext ct such that ⊥ �= K ← decaps(sk, ct), the Dec oracle should
return (HD(H1(HS, t)),HD(H2(HS, t))), where HS = G(K), t = HT (ct, n). Con-
sequently, following [21], we directly reprogram H12(HS, t) with random values
Θ = (chts, shts), and then output HD(chts),HD(shts) in the ODec oracle. Intu-
itively, the simulation is perfect if we reprogram H12(HS, t) with Θ when the
adversary A first queries (HS, t) to either H1 or H2. In the ROM, a random
guess is correct with a probability of 1/(qH1 + qH2 + 1).

Utilizing IND-CPA: When embedding the underlying security experiment
into the IND-1CCA-MAC∗ instance, we successfully embed an IND-CPA
instance in the ROM without reduction loss, and an OW-CPA instance is embed-
ded in the ROM with an O(1/q) loss.

Rigid D-OW-CPA: We can utilize rigid D-OW-CPA KEMs to prove IND-
1CCA-MAC∗/IND-1CCA-MAC tightly. The fundamental reason is that with the
rigid property of the underlying deterministic PKE, we can perfectly simulate
HS = G(decaps(sk, ct)) without sk when decaps(sk, ct) �= ⊥ if G is a random
oracle. Thus we can use HS perfectly simulate ODec, ODec

MAC. Moreover, we embed
a D-OW-CPA instance in the ROM without reduction loss.

Specifically, we note that the δ-correctness implies that all queries to G(K)
are keys K that do not induce correctness errors. When the adversary queries
G(K), we return HS by lazy sampling and updating L = L ∪ (K, ct,HS),
where ct = enc′(K). Subsequently, when the adversary queries ODec(ct1, n1)
(resp. ODec

MAC(ct2, n2, tag, txt)), we first randomly choose guess ←$ {0, 1} to guess
whether decaps(ct1, sk) = ⊥ (resp. decaps(ct2, sk) = ⊥). When guess = 0, we
return ⊥. When guess = 1 and the corresponding ct1 (resp. ct2) exists in L, we
directly extract the HS corresponding to ct1 (resp. ct2) from L. Otherwise, we can
conclude that the adversary has not yet queried G(K), where K = dec′(sk, ct1)
(resp. K = dec′(sk, ct2)). Assuming the adversary has queried G(K) before, this
implies the existence of (K, ct′

1, ·) ∈ L, where enc′(pk,K) = ct′
1. According to

the rigid property, we have ct1 = ct′
1, which contradicts the condition. There-

fore, we just directly sample a random HS and record LDec = {ct1,HS} (resp.
LMAC
Dec = {ct2,HS}). Finally, using HS we can directly simulate ODec (resp.

OMAC
Dec ). To ensure consistency between the random oracle G and ODec (resp.

ODec
MAC), in the simulation of following G(K), we first compute ct = enc′(K)

and directly return HS from LDec (resp. LMAC
Dec ) if ct = ct1 (resp. ct = ct2). If

ct �= ct1 (resp. ct �= ct2), we can assert that dec′(sk, ct) �= dec′(sk, ct1) (resp.
dec′(sk, ct) �= dec′(sk, ct2)) based on the rigid property. Therefore, we can per-
fectly simulate ODec and ODec

MAC when we guess correctly, and the probability
of guessing correctly in each case is 1/2. Lastly, the D-OW-CPA adversary can
directly identify a K such that enc′(K) = ct∗ in the G-List and return K as the
solution to the D-OW-CPA instance without random guessing, thereby embed-
ding a D-OW-CPA instance without reduction loss.
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QROM: We have discussed the primary techniques used to achieve a tighter
security reduction for IND-1CCA-MAC∗ in the ROM. However, achieving
QROM proof for IND-1CCA-MAC∗ from OW-CPA/IND-CPA/D-OW-CPA is
still challenging. The fundamental difficulty in the proof revolves around embed-
ding the underlying security experiment into the IND-1CCA-MAC∗ instance and
simulate ODec, ODec

MAC without the secret key. We delve into how we solve each
of these challenges in detail.

To embed the instance of the underlying security experiment into the
IND-1CCA-MAC∗ instance, if the underlying KEM is OW-CPA secure, we fol-
low previous proofs [7,21,22] and use general OW2H [3] to argue the embedding
of the underlying instance. Moreover, if the KEM is D-OW-CPA, we employ
double-sided OW2H [7] to discuss the implications of instance embedding. Sim-
ilarly, if the KEM is IND-CPA, we utilize double-sided OW2H and extended
double-sided OW2H [21] to discuss the implications of instance embedding.

To simulate the ODec(ct, n) oracle without the secret key, we initially uti-
lize an internal hash function H12 = (H1,H2) to simulate the random ora-
cles H1 and H2. Firstly, we randomly choose guess ←$ {0, 1} to guess whether
decaps(ct, sk) = ⊥. If guess = 0, we return ⊥ in ODec. Otherwise, for a
valid ciphertext c such that ⊥ �= K ← decaps(sk, c), the Dec oracle should
return HD(H1(HS, t)),HD(H2(HS, t)), where HS = G(K) and t = HT (ct, n).
As discussed in the ROM, we directly reprogram H12(HS, t) to random val-
ues Θ = (chts, shts), and then output HD(chts),HD(shts) in the ODec oracle.
Intuitively, the simulation is perfect if we reprogram H12(HS, t) to Θ when the
adversary A first queries (HS,HT (ct, n)) to either H1 or H2. In the ROM, the
probability of a correct random guess is 1/qH12 . However, in the QROM, since
the adversary’s queries are superposition RO-queries, it is difficult to define
when the adversary makes a query H12(HS, t) to either H1 or H2. Therefore,
in the QROM, we adopt the approach from [21] to argue it differently. We
observe that the consistency between ODec and H12 can be ensured if the predi-
cate ODec(ct, n) = (HD(H1(HS, t)),HD(H2(HS, t))) holds true. In the practical
implementation of the decryption oracle ODec(ct, n), there is an implicit classical
query to H12, which is omitted during the oracle’s simulation in ODec. Therefore,
we utilize the refined optional query measure-and-reprogram technique [21] to
argue this simulation impact.

Now we consider how to simulate the ODec
MAC(ct, n, txt, tag) oracle without the

secret key. Note that (ct, n, ·, ·) remains consistent with the ODec(ct, n) oracle,
as defined in the IND-1CCA-MAC∗ game. If the guess value in ODec is 0, we
correspondingly return ⊥ in ODec

MAC. Otherwise, for a valid ciphertext c, in the
ROM, if MAC.Vrf(fkS , txt, tag) is correct, where fkS = HD(shts), we can
assert that the adversary has already queried the corresponding H2 with high
probability. Subsequently, using the guess i from the simulation of ODec, we
extract the i + 1-th query directly and output the respective HSi+1.

In the QROM, we simulate ODec
MAC by combining the refined optional-query

measure-and-reprogram technique and OW2H technique. During the simula-
tion of ODec(ct, n), we have utilized the refined optional-query measure-and-
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reprogram technique to H12. Specifically, we measure the input quantum state
to obtain x and subsequently reprogramming H12 at x to Θ conditioned on some
random values. If MAC.Vrf(fkS , txt, tag) is correct, we need to return HS in
ODec, where fkS = HD(shts). Intuitively, we can use x (which includes HS) to
directly output HS. However, it is important to discuss the order of ODec

MAC query
and the measurement in the optional-query measure-and-reprogram technique. If
ODec

MAC query occurs after the measurement, we can easily use x to perfectly sim-
ulate the output of HS. However, if ODec

MAC query occurs before the measurement,
we cannot return HS since we have not yet measured it to obtain x. Nonetheless,
this scenario implies that all H12 queries made by the adversary have not been
reprogrammed and, consequently, are unrelated to the reprogrammed values Θ,
which is utilized to derive the MAC key. Therefore, we can argue that the adver-
sary A cannot distinguish the MAC key fkS from a random value using the
OW2H Lemma. Consequently, the adversary cannot forge a valid tag based on
the security of MAC. Therefore, if ODec

MAC query occurs before the measurement,
we directly output ⊥ in ODec

MAC.

2 Preliminaries

2.1 Notation

The security parameter is denoted as λ. The set {0, . . . , q} is denoted as [q].
PPT is denoted to represent probabilistic polynomial time. K, M and C denote
the key space, message space, and ciphertext space, respectively. For a finite
set X, x ←$X represents the sampling of a uniformly random element from
X. Pr[P : G] indicates the probability that the predicate holds true when free
variables in P are assigned according to the program in G. The sampling from
some distribution D is represented by x ←$D. For a quantum or randomized
classical algorithm (resp. deterministic) A, y ←$A(x) (resp. y ← A(x)) denotes
that A outputs y on input x. x =?y is denoted as an integer that is 1 if x = y,
and 0 otherwise. |X| denotes the cardinality of set X. AH (resp. A|H〉) denotes
that algorithm A gains classical (resp. quantum) access to the oracle H.

2.2 Cryptographic Primitives

Definition 1 (Deterministic Public-Key Encryption). A DPKE over M
is a tuple of three algorithms gen, enc, dec. (1) (pk, sk) ←$ gen(1λ): The key
generation algorithm gen takes as inputs the security parameter and outputs
a key pair (pk, sk). Usually, we will omit the input of gen for brevity. (2)
ct ← enc(pk,m): The encryption algorithm takes as inputs the public key
pk and a message m ∈ M and deterministically outputs a ciphertext ct. (3)
m′ ← dec(sk, ct): The decryption algorithm, on input the secret key sk and the
ciphertext ct, deterministically outputs a message m′ ∈ M ∪ {⊥}.
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Correctness. A Deterministic Public-Key Encryption (DPKE) is δ-correct if
E [maxm∈M Pr[dec(sk, ct) �= m : ct ← enc(pk,m)]] ≤ δ, where the expectation is
taken over (pk, sk) ← gen. We say a DPKE is perfectly correct if δ = 0.
Rigidity. [6]3 A DPKE is rigid if for all key pairs (pk, sk) ←$ gen, and all cipher-
texts ct, it holds that either dec(sk, ct) = ⊥ or enc(pk,dec(sk, ct)) = ct.

Definition 2 (OW-CPA-secure DPKE). A DPKE scheme DPKE =
(gen, enc,dec) is OW-CPA if for any PPT adversary A we have

AdvOW-CPA
DPKE (A) = Pr

[
A(pk, ct∗) ⇒ m∗ :

(pk, sk) ←$ gen;
m∗ ←$M; ct∗ = enc(pk,m∗)

]

= negl(λ),

where the probability is taken over the randomness of the public-key generation
and the adversary A.

Definition 3 (Key Encapsulation Mechanism). A KEM over K is a
tuple of three algorithms gen, encaps, decaps. (1) (pk, sk) ←$ gen(1λ): The key
generation algorithm gen takes as inputs the security parameter and outputs
a key pair (pk, sk). Usually, we will omit the input of gen for brevity. (2)
(ct,K) ←$ encaps(pk): The encapsulation algorithm takes as inputs the pub-
lic key pk and it outputs a tuple (ct,K), where K ∈ K and ct ∈ C. (3)
K ′ ← decaps(sk, ct): The decapsulation procedure, on input the secret key sk
and the ciphertext ct, outputs a key K ′. If the KEM allows explicit rejection, the
output is a key K ′ ∈ K or the rejection symbol ⊥.

Definition 4 (OW-CPA-secure KEM). A KEM scheme KEM =
(gen, encaps,decaps) is OW-CPA if for any PPT adversary A we have

AdvOW-CPA
KEM (A) = Pr

[
A(pk, ct∗) ⇒ K∗ :

(pk, sk) ←$ gen;
(K∗, ct∗) ←$ encaps(pk)]

]

= negl(λ),

where the probability is taken over the randomness of the public-key generation,
encapsulation, and the adversary A.

It is straightforward to construct an OW-CPA-secure KEM = (gen,encaps,
decaps) based on an OW-CPA-secure DPKE = (gen′,enc′, dec′) using the sim-
ple CPA transform shown in Fig. 1. In this paper, we denote this particular
construction of KEM as DKEM or D-OW-CPA KEM.

3 The NIST-PQC Round-3 Finalist NTRU [11] and NIST-PQC Round-4 Candidate
Classic McEliece [2], are based on rigid one-way secure deterministic PKEs. For
a general deterministic PKE, the rigid property can be achieved through a re-
encryption transform.
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Definition 5 (IND-CPA-secure KEM). A KEM scheme KEM =
(gen, encaps,decaps) is IND-CPA if for any PPT adversary A we have

AdvIND-CPA
KEM (A) = Pr

[
A(pk, ct∗,K∗

b ) ⇒ b :
(pk, sk) ←$ gen; b ←$ {0, 1};
(K∗

0 , ct∗) ←$ encaps(pk);K∗
1 ←$K

]

= negl(λ),

Definition 6 (MAC EUF-0T). Let MAC = (MAC.Vrf,MAC.Tag) be a mes-
sage authentication code scheme (MAC). We say MAC is EUF-0T if for any
PPT adversary A, AdvMAC

EUF-0T(A) := Pr[MAC.Vrf(K,m, tag) = 1 : (m, tag) ←
A;K ← K] is negligible in the security parameter, where the probability is taken
over the sampling of the key and the randomness of the adversary.

Definition 7 (IND-1CCA-MAC [20]). We consider the games defined in
Fig. 3. Let K be the key space, G, H1, H2, H3, H4, and HD be key-derivation
functions with images in {0, 1}n, HT be a hash function with images in {0, 1}n,
and a MAC scheme MAC. A KEM scheme KEM = (gen, encaps,decaps) is
IND-1CCA-MAC if for any PPT adversary A we have

AdvIND-1CCA-MAC
KEM (A) :=

∣∣∣∣Pr[IND-1CCA-MACKEM(A) ⇒ 1] − 1
2

∣∣∣∣ = negl(λ)

where Pr[IND-1CCA-MACb
KEM(A) ⇒ 1] is the probability that A wins the

IND-1CCA-MACb
KEM(A) game defined in Fig. 3.

In this game, the adversary receives a public key, a challenge cipher-
text ct∗ encapsulating a key K∗, a nonce n∗, and access two oracles, ODec

and ODec
MAC, which it can query at most once to distinguish between three

secrets: (CHTS0,SHTS0,dHS0) derived from K∗, ct∗ and n∗, or three random
secrets (CHTS1,SHTS1,dHS1). It is important to note that these three secrets
(CHTS0,SHTS0,dHS0) are computed in a manner nearly identical to that of
their similarly named counterparts in the modified TLS 1.3 protocol (see Fig. 4).
The ODec oracle takes a ciphertext (different from the challenge ciphertext) and
serves as a decapsulation oracle, implementing a key schedule similar to that used
in TLS to process the decapsulated key. Ultimately, ODec returns two secrets:
tkC and tkS . The ODec

MAC oracle takes a ciphertext (different from the challenge
ciphertext), a tag, and some message txt. The ciphertext is then decrypted to
recover a secret HS′, which is then subjected to a key schedule to generate a
MAC key fkS . Finally, the oracle verifies whether the tag constitutes a valid
MAC on the txt with the key fkS . If the tag is valid, it returns HS′. Otherwise,
it returns an error ⊥.

Definition 8 (IND-1CCA-MAC∗). The security definition is exactly the
same as IND-1CCA-MAC, except that it restricts the adversary A to make
only the first query to ODec, and subsequent query to ODec

MAC must have inputs
(ct, n, tag, txt) consistent with those in ODec. Specifically, the input components
(ct, n) for both ODec and ODec

MAC must be the same.
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Fig. 3. IND-1CCA-MAC game

2.3 TLS1.3 Protocol

The Transport Layer Security (TLS) protocol is one of the most widely deployed
cryptographic protocols in practice. In this paper, we focus on the TLS 1.3 hand-
shake protocol. We refer the reader to [15] for a detailed introduction to TLS 1.3
handshake protocol. Additionally, we recall the notion of the MultiStage secu-
rity model [15,20] in complete version of the paper. We present the (full 1-RTT)
handshake of TLS 1.3 with the DH component substituted by a KEM, as shown
in Fig. 4. Below, we explicitly demonstrate the correspondence between TLS
1.3 and the IND-1CCA-MAC/IND-1CCA-MAC∗ game. First, based on T2 =
H(CH,SH) = H(nc, pk, ns, ct), we can rewrite CHTS = HKDF.Ext4(HS, T2)
as CHTS = Hj(HS,HT (ns, ct)), j ∈ {1, 2}, where Hj and HT are both mod-
eled as random oracles. Here, we omit the public key pk and the client nonce
nc because these values are not important for the proof of Theorem 6, game
GB.2. Similarly, since dES is constant, one can represent HKDF.Ext(dES, ·) as
G(·), HKDF.Ext0(T0, ·) as H3(·), HKDF.Exp6(·) as H4(·), and HKDF.TK(·)
as HD(·), where G, H3, H4, and HD are all modeled as random oracles. This
rewrite clarifies how these key steps in TLS 1.3 correspond precisely with the
IND-1CCA-MAC/IND-1CCA-MAC∗ game.

3 CPA-Secure KEMs Are Sufficient for TLS 1.3
in the ROM/QROM

In this chapter, we first prove OW-CPA/IND-CPA/D-OW-CPA KEMs are
IND-1CCA-MAC∗ with an EUF-0T secure MAC in the ROM and QROM. We
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Fig. 4. TLS 1.3 handshake with KEM [20]. {...} denotes a message encrypted with the
session traffic key tkS . Ti denotes the hash of the transcript up to the i-th message.
For simplicity, the CH (resp. SH) message captures both the ClientHello and Clien-
tKeyShare (resp. ServerHello and ServerKeyShare). Only the relevant steps for the
proof are depicted. Keys in the remaining stages (3–6, not shown) are all derived from
the Diffie-Hellman secret (dHS).
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then establish the security proof of TLS 1.3 from IND-1CCA-MAC∗ in the stan-
dard model. By integrating these results, we establish a comprehensive security
proof for TLS 1.3 from OW-CPA/IND-CPA/D-OW-CPA KEMs in the ROM and
QROM. Our analysis yields significantly tighter bounds than those presented in
[20] in the ROM and is the first security proof for TLS 1.3 from CPA-secure
KEMs in the QROM.

3.1 OW-CPA/IND-CPA/D-OW-CPA KEMs Imply
IND-1CCA-MAC/IND-1CCA-MAC* in the ROM

In this section, we demonstrate that OW-CPA/IND-CPA KEMs are IND-1CCA-
MAC/IND-1CCA-MAC* secure with an EUF-0T secure MAC in the ROM and
D-OW-CPA KEMs are also IND-1CCA-MAC/IND-1CCA-MAC* secure with
an EUF-0T secure MAC in the ROM with tight reduction. More precisely, the
KDFs G, H1, H2, H3, H4, and HD, and the hash function HT in the IND-1CCA-
MAC/IND-1CCA-MAC* games are assumed to be random oracles.

Theorem 1. Let KEM = (gen, encaps,decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C, an IND-CPA adversary D, and an EUF-0T adversary B such
that

AdvIND-1CCA-MAC
KEM (A) ≤2qG(qH2 + 1)(qH1 + qH2 + 1) · AdvOW-CPA

KEM (C)
+ AdvEUF-0T

MAC (B) + qH1 + 2qH2 + qH3 + qHD
+ qHT

+ 6
2n

AdvIND-1CCA-MAC
KEM (A) ≤4(qH2 + 1)(qH1 + qH2 + 1) · AdvIND-CPA

KEM (D)

+ AdvEUF-0T
MAC (B) + qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n

+
4qG(qH2 + 1)(qH1 + qH2 + 1)

|K| .

where B, C, and D have approximately the same running time as A.

Proof. Let A be an adversary against the IND-1CCA-MAC security of KEM,
issuing (exactly) one classical query to ODec

MAC and one classical query to ODec

(by introducing a dummy query if necessary). We proceed with a sequence of
games, which are given in detail in Fig. 5, 6.

GAMEG0. This is the original IND-1CCA-MAC game. From now on, we assume
w.l.o.g. that each query to ROs is unique (i.e., they never repeat). Thus,
|Pr[GA

0 ⇒ 1] − 1/2| = AdvIND-1CCA-MAC
KEM (A).
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Fig. 5. Games for the proof of Theorem 1

GAMEG1: In game G1, we abort if there exists (ct, n) �= (ct∗, n∗) such that
HT (ct, n) = HT (ct∗, n∗). Since there are at most qHT

+ 4 queries to HT in
the game (including two additional implicit queries to HT in both ODec and
ODec

MAC), the probability of A finding such (ct, n) given by (ct∗, n∗) is less than
(qHT

+ 4)/2n.

|Pr[GA
0 ⇒ 1] − Pr[GA

1 ⇒ 1]| ≤ qHT
+ 4

2n
.

GAMEG2. In game G2, we abort whenever the MAC verification succeeds on the
query ODec

MAC(ct2, n2, tag, txt) but fkS := H4(SHTS) was never queried before
the query of ODec

MAC(ct2, n2, tag, txt), where SHTS := H2(G(K),HT (ct2, n2))
and K := Decaps(sk, ct2). If this is the case, it means the MAC key fkS :=
H4(SHTS) is indistinguishable from a random value for A when it queries the
ODec

MAC(ct2, n2, tag, txt) oracle, but it manages to forge a valid tag. Therefore,
we can build an adversary B that breaks MAC unforgeability. More formally,
B samples a pair of keys (sk, pk) ← gen for KEM, generates a valid input
for A and simulates the ODec oracle with the secret key. Then, when A query
ODec

MAC(ct2, n2, tag, txt), B outputs (txt, tag) as a forgery.
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We also abort if the value SHTS computed in the ODec
MAC oracle is such that

SHTS = SHTSb. Since G1 and G2 return ⊥ when HT (ct2, n2) = HT (ct∗, n∗),
the event SHTS = SHTSb = H2(.,HT (ct∗, n∗)) occurs implies the adversary
that given SHTSb finds H2(.,HT (ct2, n2)) = SHTSb such that HT (ct2,n2) �=
HT (ct∗, n∗). Note that there are at most qH2 + 1 queries to H2 (including an
implicit query in ODec), the probability of the event SHTS = SHTSb occurring
is at most (qH2 + 1)/2n. Therefore, we have

|Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ AdvEUF-0T
MAC (B) + qH2 + 1

2n
.

Fig. 6. Games for the proof of Theorem 1
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GAME G3. In game G3, we abort whenever the MAC verification succeeds
on the query ODec

MAC(ct2, n2, tag, txt) but H2(G(K),HT (ct2, n2)) was never
queried before the query of ODec

MAC(ct2, n2, tag, txt), where K := decaps(sk, ct2).
By the previous game, it means that the adversary queried SHTS :=
H2(G(K),HT (ct2, n2)) to H4 without having queried H2(G(K),HT (ct2, n2))
beforehand. Let us analyze what information A has about SHTS �= SHTSb

if it did not query H2(G(K),HT (ct2, n2)). Note that the only potential “leak-
age” is from ODec that returns tkS := HD(SHTS), where HD is a RO perfectly
hiding SHTS. If G3 aborts, we can construct an adversary A who is capable of
recovering SHTS given the random oracle output HD(SHTS). The best strategy
for A to recover SHTS is to query random values x ∈ {0, 1}n to HD until it
finds x such that HD(x) = tkS , or randomly guess the value of SHTS. Thus, the
advantage of A is at most qHD

+1

2n . Hence, we have

|Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ qHD
+ 1

2n
.

GAMEG4. In game G4, we use a new random oracle H12(HS, t) to simulate
both H1 and H2. Let H12(HS, t) := (H1(HS, t),H2(HS, t)). Here, H12 is a ran-
dom oracle maintained internally by the challenger. When adversary A queries
H1(HS, t), the challenger only needs to query H12(HS, t) and then output the
first component. Similarly, when adversary A queries H2(HS, t), the challenger
only needs to query H12(HS, t) and then output the second component. Conse-
quently, the total number of queries to H12 is at most qH1 + qH2 . Therefore, this
G4 is consistent with G3 from A’s view. In other words, we have

Pr[GA
3 ⇒ 1] = Pr[GA

4 ⇒ 1].

GAMEG5. In game G5, we abort whenever the adversary did not query G(K∗)
(which is equal to HS∗) but queried H1(HS∗,HT (ct∗, n∗)), H2(HS∗,HT (ct∗, n∗)),
or H3(HS∗). Note that the ODec and ODec

MAC never query H1(HS∗,HT (ct∗, n∗)),
H2(HS∗,HT (ct∗, n∗)), or H3(HS∗) and the challenge values given to A are
either perfectly random or completely hide HS∗. Similarly, the ODec oracle
also completely hides HS∗. According to the definition of the previous game,
the ODec

MAC(ct2, n2, tag, txt) oracle returns HS∗ if and only if the correspond-
ing (HS∗,HT (ct2, n2)) was queried to H2 before, where HS∗ = G(K ′) and
K ′ = decaps(sk, ct2). That is, the adversary has queried H2(HS∗,HT (ct2, n2))
before the ODec

MAC oracle, which means the adversary already knows HS∗. There-
fore, HS∗ is uniformly random and independent from A’s view, and the proba-
bility that A queries HS∗ to H1, H2, or H3 is upper bounded by qH1+qH2+qH3

2n .
Hence, we have

|Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]| ≤ qH1 + qH2 + qH3

2n
.
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GAMEG6. In game G6, (CHTS0,SHTS0,dHS0) is replaced by (CHTS0,SHTS0,
dHS0) ←$ {0, 1}3n. Define QUERY as the event that H1(HS∗,HT (ct∗, n∗)),
H2(HS∗,HT (ct∗, n∗)), or H3(HS∗) is queried by the adversary. Then, G6 is iden-
tical to G5 in A’s view unless the event QUERY happens. Thus, we have

∣∣Pr[GA
5 ⇒ 1] − Pr[GA

6 ⇒ 1]
∣∣ ≤ Pr[QUERY : G6].

It is evident that in game G6, the bit b is independent of adversary A’s view.
Therefore, we have

Pr[GA
6 ⇒ 1] =

1
2
.

GAMEG7. In game G7, the challenger can simulate the ODec(ct1, n1) oracle
without the secret key. Initially, we randomly sample guess ←$ {0, 1} to guess
whether K ′ = decaps(sk, ct1) equals to ⊥. If guess = 0, in this case, we
guess K ′ = ⊥, so we just return ⊥ in ODec. Otherwise, if guess = 1, we will
make two further changes in this game. First, we modify the Dec oracle and
replace CHTS := H1(HS′,HT (ct1, n1)) and SHTS := H2(HS′,HT (ct1, n1)) with
CHTS = chts and SHTS = shts, where chts and shts are randomly chosen from
{0, 1}n and HS′ = G(K ′). Second, we reprogram the random oracle H12 condi-
tionally on a uniform i over [qH1 +qH2 ]. In other words, on the i+1-th query, we
reprogram H12 to return (chts, shts), while keeping all other queries unchanged.
Let (i∗ + 1) denote the number of first queries to H12 with (HS′,HT (ct1, n1)),
where i∗ ∈ [qH1 + qH2 − 1]. We also denote i∗ = qH1 + qH2 as the event that H12

makes no queries with (HS′,HT (ct1, n1)).
Moreover, if the (ct2, n2, ., .) input to ODec

MAC is equal to the (ct1, n1) input
to ODec, that is, (ct1, n1) = (ct2, n2). We change ODec

MAC as follows: In the case
of guess = 0, we return ⊥ in ODec

MAC. Otherwise, we compute fkS = H4(shts)
and verify if MAC.Vrf(fkS , txt, tag) is correct. If the verification returns true,
we only need to extract HSi+1 from the i+ 1-th query to H12, and then output
HSi+1. According to the previous game, when MAC.Vrf(fkS , txt, tag) is correct,
we can conclude that the adversary has already queried the corresponding H2,
which means the ODec

MAC oracle query must have occurred after the i + 1-th H12

query so that we can extract the corresponding HSi+1. If the verification is not
true, we output ⊥.

Note that G7 has the same distribution as G6 in A’s view when the event
i∗ = i occurs and the guess is correct. Thus, we have

Pr[QUERY : G6] ≤ 2(qH1 + qH2 + 1)Pr[QUERY : G7].

GAME G8. In game G8, the challenger can simulate ODec
MAC(ct2, n2, tag, txt)

oracle without the secret key. We modify the ODec
MAC oracle as follows: If the

(ct2, n2, ., .) input to ODec
MAC is not equal to the (ct1, n1) input to ODec or A

did not query ODec before. According to the definition of the previous game,
this oracle returns something other than ⊥ if and only if the correspond-
ing (HS′,HT (ct2, n2)) was queried to H2 before, where HS′ = G(K ′) and
K ′ = decaps(sk, ct2). Therefore, one can randomly choose j over [qH2 ] and guess
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whether ODec
MAC outputs ⊥ ( if j = qH2) or corresponding HS′ is in the j + 1-th4

query and return HSj+1. Therefore, the simulation is such that when j = qH2 ,
output ⊥. Otherwise, we extract HSj+1 from the j+1-th query to H2 (simulated
by H12), and then output HSj+1. Overall, the simulation works with probability

1
(qH2+1) . Thus, we have

Pr[QUERY : G7] ≤ (qH2 + 1)Pr[QUERY : G8]

Note that if QUERY happens, K∗ will be in the G-list of queries
made by A. Let (pk, sk) ←$ gen, (K∗, ct∗) ←$ encaps(pk). Then, we con-
struct an adversary C′(pk, ct∗) samples n∗, chts, shts, guess, i, j as in
G8 and CHTS∗,SHTS∗,dHS∗ ←$ {0, 1}3n. Then C picks five qHk

-wise
(k ∈ {12, 3, 4,H, T}) independent functions and a qG-wise independent func-
tions (indistinguishable from a random function for a qHk

(qG)-query adversary
according to [33]) and runs AG,Hi,ODec,ODec

MAC(pk, ct∗, n∗,CHTS∗,SHTS∗,dHS∗)
as in game G8 and returns A’s G-query list G-List.

Now, we can construct an adversary C against the OW-CPA security of the
underlying KEM. C runs C′ and randomly selects one message in the G-List as a
return. Then, we have AdvOW-CPA

KEM (C) ≥ 1
qG

Pr[Query : G8]. Therefore, we have

AdvIND-1CCA-MAC
KEM (A) ≤2qG(qH2 + 1)(qH1 + qH2 + 1) · AdvOW-CPA

KEM (C)
+ AdvEUF-0T

MAC (B) + qH1 + 2qH2 + qH3 + qHD + qHT + 6

2n
.

Right now, we consider the case of the IND-CPA KEM. Specifically, the
IND-CPA challenger generates (pk, sk) ←$ gen, (ct∗,K∗) ←$ encaps(pk), and
b′ ←$ {0, 1}. When b′ = 0, define K∗

b′ = K∗, and when b′ = 1, define K∗
b′ ←$K.

Finally, D needs to guess the value of b′ after receiving (pk,K∗
b′ , ct∗) from the

challenger.
Then, D runs C′(pk, ct∗) to get A’s G-List. Let BADG be the event that the

G-List contains K∗
1 . Since K∗

1 is uniformly random and independent from A’s
view, the probability that adversary A queries G(K∗

1 ) is at most qG
|K| . For the

remainder of the proof, we assume BADG did not happen. If QUERY happens,
this means adversary A queried the random oracle G on K∗

0 . In this case, if D
obtains K∗

b′ in the G-List, it directly outputs b = 0; otherwise, it outputs b = 1.
If QUERY does not happen, D uniformly randomly guesses the value of b′, i.e.,
it outputs b ←$ {0, 1}. Thus, we have

AdvIND-CPA
KEM (D) +

qG

|K| ≥ |Pr[b′ = b] − 1
2
|

= |Pr[QUERY:G8] +
1
2
Pr[¬QUERY:G8] − 1

2
|

=
1
2
Pr[QUERY:G8].

4 Here, we exclude the H12 query induced by the H1 query from the adversary.
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Putting the bounds together, we have

AdvIND-1CCA-MAC
KEM (A) ≤4(qH2 + 1)(qH1 + qH2 + 1) · AdvIND-CPA

KEM (D)

+ AdvEUF-0T
MAC (B) + qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n

+
4qG(qH2 + 1)(qH1 + qH2 + 1)

|K| .

��
Theorem 2. Let KEM = (gen, encaps, decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC∗ game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists a OW-
CPA adversary C , an IND-CPA adversary D and an EUF-0T adversary B such
that

AdvIND-1CCA-MAC∗
KEM (A) ≤2qG(qH1 + qH2 + 1) · AdvOW-CPA

KEM (C)
+ AdvEUF-0T

MAC (B) + qH1 + 2qH2 + qH3 + qHD + qHT + 6

2n

AdvIND-1CCA-MAC∗
KEM (A) ≤4(qH1 + qH2 + 1) · AdvIND-CPA

KEM (D)

+ AdvEUF-0T
MAC (B) + qH1 + 2qH2 + qH3 + qHD + qHT + 6

2n

+
4qG(qH2 + 1)(qH1 + qH2 + 1)

|K| .

Proof. It is easy to see that, except for G8, the proof is the same as the proof of
Theorem 1. The G8 is redundant because IND-1CCA-MAC∗ require (ct1, n1) =
(ct2, n2) and the query ODec

MAC is subsequent to the query ODec. Thus, in this
proof, we can simply define G8 to be identical to G7 to maintain consistency
with Theorem 1. Hence, we have Pr[QUERY : G7] = Pr[QUERY : G8]. ��
Theorem 3. Let KEM = (gen, encaps,decaps) = S(DPKE(gen′, enc′,dec′))5

be a DKEM and the underlying δ-correctness DPKE is rigid. Let the KDFs and
the hash function in the IND-1CCA-MAC game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C and an EUF-0T adversary B such that

AdvIND-1CCA-MAC
KEM (A) ≤4AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n
+ δ

where C have approximately the same running time as A.
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Fig. 7. Games for the proof of Theorem 3

Proof. Let A be an adversary against the IND-1CCA-MAC security of KEM,
issuing one classical query to ODec

MAC and one classical query to ODec (by intro-
ducing a dummy query if necessary). Let DKEM = S(DPKE(gen′, enc′,dec′)).
In this proof, we utilize the rigid property to simulate the ODec(ct1, n1) and
ODec

MAC(ct2, n2, tag, txt) tightly. Additionally, we utilize the deterministic prop-
erty to embed the challenge tightly. Define games G0 − G9 as in Fig. 7, 8.

GAMES G0 − G3. Games G0 − G3 are identical to the G0 − G3 in Theorem 1.
GAME G4. In game G4, we abort whenever the adversary did not query
G(K∗) (which is equal to HS∗) but it queried H1(HS∗,HT (ct∗, n∗)),

5 Applying the simple CPA transform depicted in Fig. 1 to DPKE.
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Fig. 8. Games for the proof of Theorem 3

H2(HS∗,HT (ct∗, n∗)) or H3(HS∗). Similar to Theorem 1, the probability that
A queries HS∗ to H1, H2 or H3 is upper bounded by qH1+qH2+qH3

2n and hence
we have

|Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]| ≤ qH1 + qH2 + qH3

2n
.

GAME G5. In game G5, (CHTS∗
0,SHTS∗

0,dHS∗
0) is replaced by (CHTS∗

0,SHTS∗
0,

dHS∗
0) ← {0, 1}3n. Define QUERY as the event that H1(HS∗,HT (ct∗, n∗)),

H2(HS∗,HT (ct∗, n∗)), or H3(HS∗) is queried by the adversary. Then, G5 is iden-
tical to G4 in A’s view unless the event QUERY happens. Thus, we have

∣∣Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]
∣∣ ≤ Pr[QUERY : G5].
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One can see that in G5, the bit b is independent of A’s view, thus

Pr[GA
5 ⇒ 1] =

1
2
.

GAME G6. In game G6, the challenger simulates the random oracle G as follows:
When adversary A queries G(K), return G(K) if it has been previously defined,
otherwise randomly select HS ←$ {0, 1}n and return it. We also compute ct =
enc′(pk,K), and update LG = LG ∪ (K,HS), L = L ∪ (K, ct,HS). We have

Pr[QUERY : G5] = Pr[QUERY : G6].

GAME G7. In game G7, we define ERO as the event that LG contains an entry
(K,HS) with dec′(sk, enc′(pk,K)) �= K. Upon ERO, we immediately abort. It is
noteworthy that GAME G6 and GAME G7 exhibit identical distributions when
ERO does not occur (as implied by δ-correctness). Thus we have

Pr[QUERY : G6] ≤ Pr[QUERY : G7] + δ.

GAME G8. In game G8, the challenger simulates the ODec(ct1, n1) oracle with-
out the secret key. Initially, we randomly choose guess ←$ {0, 1} to guess whether
K ′ = decaps(sk, ct1) equals to ⊥. If guess = 0, we assume K ′ = ⊥, and thus
return ⊥ in ODec. If guess = 1 and the corresponding (·, ct1, ·) ∈ L, we directly
extract the corresponding HS′ from L. If there’s no such (·, ct1, ·) in L, we can
conclude that A has not queried G(K ′) before based on rigid property of the
DPKE. Assuming the adversary has queried G(K ′) before, this implies the exis-
tence of (K ′, ct′

1, ·) ∈ L, where enc′(pk,K ′) = ct′
1. According to the rigid prop-

erty, we have ct1 = ct′
1. This contradicts the condition. Therefore, We just

sample a uniformly random value HS′ ←$ {0, 1}n, and define LDec = (ct1,HS′).
Finally, we utilize HS′ to compute (tkC , tkS), thereby perfectly simulating ODec.
To maintain consistency with ODec and random oracle G, we change G as fol-
low. When simulating G(K) later, first compute ct = enc′(pk,K). If ct = ct1,
directly return HS′ from LDec in this case. If ct �= ct1, we can assert that
dec′(sk, ct) �= dec′(sk, ct1) based on the rigid property.

Moreover, if the (ct2, n2, ., .) input to ODec
MAC is equal to the (ct1, n1) input to

ODec, that is, (ct1, n1) = (ct2, n2). If guess = 0, we directly return ⊥ in ODec
MAC.

Else we check if (·, ct1, ·) ∈ L. If so, we find the corresponding HS′. Otherwise,
we extract HS′ from LDec. Then we can use HS′ to simulate ODec

MAC. Note that if
ERO does not happen, this simulation is perfect when guessing correctly, thus
we have

Pr[QUERY : G7] = 2Pr[QUERY : G8].

GAME G9. In game G9, the challenger can simulate ODec
MAC(ct2,n2, tag, txt) with-

out the secret key. We modify ODec
MAC as follows: If the (ct2, n2, ., .) input to ODec

MAC
is not equal to the (ct1, n1) input to ODec or A did not query ODec before, we
initially make another guess guess′ ←$ {0, 1} to determine whether K ′ = ⊥.



CPA-Secure KEMs are also Sufficient for Post-quantum TLS 1.3 457

If guess′ = 0, we simply return ⊥ in ODec
MAC. If guess′ = 1 and the corre-

sponding (·, ct2, ·) ∈ L, we extract the corresponding HS′. Otherwise, we sample
HS′ ←$ {0, 1}n and define LDec

MAC = (ct2,HS′). We then utilize HS′ to perfectly
simulate ODec

MAC. To maintain consistency with ODec
MAC and the random oracle G,

when simulating G(K) later, first compute ct = enc′(pk,K). If ct = ct2, directly
return HS′ from LMAC

Dec , otherwise, we simulate G as before. Note that this anal-
ysis is identical to G8. It is apparent that based on the rigid property of DPKE
this simulation is perfect when guessing correctly. Thus, we have

Pr[QUERY : G8] = 2Pr[QUERY : G9].

Now, we construct an OW-CPA adversary C(pk, ct∗) against the DKEM. C
samples guess, guess′, n∗ as in G9 and CHTS∗,SHTS∗,dHS∗ ←$ {0, 1}3n. Then
C picks six 2qHk

-wise (k ∈ {1, 2, 3, 4,H, T}) independent functions and runs
AG,Hi,ODec,ODec

MAC(pk, ct∗, n∗,CHTS∗,SHTS∗,dHS∗) as in game G9, lastly selects
a K ′ from G-List such that enc′(K ′) = ct∗, and returns K ′. Note that if
ERO does not happen, C returns K∗ with probability Pr[QUERY : G9]. Thus
AdvOW-CPA

DKEM (C) ≥ Pr[QUERY : G9]. Putting everything together, we have

AdvIND-1CCA-MAC
KEM (A) ≤4AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n
+ δ

��
Theorem 4. Let KEM = (gen, encaps,decaps) = T (DPKE(gen′, enc′,dec′)) be
a DKEM and the underlying δ-correctness DPKE is rigid. Let the KDFs and
the hash function in the IND-1CCA-MAC* game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C and an EUF-0T adversary B such that

AdvIND-1CCA-MAC*
KEM (A) ≤2AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n
+ δ

where C have approximately the same running time as A.

Proof. It is easy to see that except for G9, the proof is the same as the proof of
the Theorem 3. In the proof of IND-1CCA-MAC∗, we can simply define G9 to be
identical to G8. Thus, in this proof we have Pr[QUERY : G8] = Pr[QUERY : G9].

��

3.2 OW-CPA/IND-CPA/D-OW-CPA KEMs Imply
IND-1CCA-MAC∗ in the QROM

We now prove that any OW-CPA/IND-CPA/D-OW-CPA KEMs are also IND-
1CCA-MAC∗ secure in the QROM with an EUF-0T secure MAC.
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Theorem 5. Let KEM = (gen, encaps,decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC∗ game be modeled as quantum random
oracles. Then, for any PPT adversary A issuing at most one single (classical)
query to the ODec, ODec

MAC oracle and making at most qG, qH1 , qH2 , qH3 , qH4 ,
qHD

, qHT
queries to G, H1, H2, H3, H4, HD, HT respectively and let q123 =

qH1 + qH2 + qH3 + 1, there exists a PPT OW-CPA adversary C, a PPT D-OW-
CPA adversary Ĉ(if KEM is DPKE), a PPT IND-CPA adversary D, a PPT
EUF-0T adversary B1 and a PPT EUF-0T adversary B2 such that

AdvIND-1CCA-MAC∗
KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8qG(qH1 + qH2 + 1)·√
AdvOW-CPA

KEM (C) + 1
22n

+ 6qH4(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

AdvIND-1CCA-MAC∗
KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1 + qH2 + 1)·√
AdvOW-CPA

DKEM (Ĉ) + 1
22n

+ δ + 6qH4(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

AdvIND-1CCA-MAC∗
KEM (A)

≤ 2q123 + 6qH4(qHD + 2)

2n/2
+

(qHT + 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1 + qH2 + 1)·√
2AdvIND-CPA

KEM (D) +
(qG + 1)2

|K| + 6qH4(qHD + 3)2−n/2 + AdvEUF-0T
MAC (B2).

where B1, B2, C, and D have approximately the same running time as A.

Proof Sketch: The proof consists of four main steps. The first is embedding the
underlying hard problem by replacing the real key HS∗ with a random value.
When the underlying KEM is OW-CPA-secure, we use general OW2H [3] to
argue the reprogramming impact. When the KEM is IND-CPA-secure or D-
OW-CPA-secure, we use the double-sided OW2H [7] to discuss the impact of
reprogramming. Since the embedded IND-CPA game is decisional, we also need
to argue the advantage that searching for a reprogramming point results in a
double-sided oracle.
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The second step is simulate the ODec(ct, n) oracle without the secret key.
Initially, we utilize an internal hash function H12 = (H1,H2) to simulate the
quantum random oracles H1 and H2. We first randomly choose guess ←$ {0, 1}
to guess whether decaps(sk, ct) = ⊥. When guess = 0, we return ⊥. When
guess = 1, we proceed with the simulation as follows. As discussed in Sect. 1.3,
we directly reprogram H12(HS, t) to random values Θ = (chts, shts), where
HS = G(K) and t = HT (ct, n), then output HD(chts),HD(shts) in the ODec.
Intuitionally, the simulation is perfect if we reprogram H12(HS, t) to Θ when the
adversary A first queries (HS, t) to either H1 or H2 in the ROM. However, in
the QROM, it is hard to define when the adversary makes a query (HS, t) to H1

or H2. Therefore, in the QROM, we use the idea from [21] to argue it differently.
As discussed in Sect. 1.3 we find that the simulation is perfect if the predicate
ODec(ct, n) = (HD(H1(HS, t)),HD(H2(HS, t))) is satisfied. Since in the practical
implementation of the ODec(ct, n) oracle, there is an implicit classical query to
H12, which is removed during the oracle’s simulation in ODec. Therefore, this
specific query cannot be measured. Hence, we employ the refined optional-query
measure-and-reprogram technique [21] to argue the simulation impact.

The third step is simulate the ODec
MAC(ct, n, txt, tag) oracle without the secret

key. Recall that (ct, n) remains consistent with the ODec oracle according to the
definition in IND-1CCA-MAC∗. When the guess value in ODec is 0, we return
⊥ in ODec

MAC. Otherwise, we proceed with the following simulation. While simu-
lating ODec(ct, n), we employ the refined optional-query measure and reprogram
technique on H12, where the measurement yields x, and then reprogram H12 on
x to Θ. If MAC.Vrf(fkS , txt, tag) is correct, we need to return HS in ODec

MAC,
where fkS = HD(shts). Intuitively, we can directly use x (which includes HS)
to output HS. However, it is crucial to discuss the order of ODec

MAC query and the
measurement in the refined optional-query measure and reprogram technique. If
ODec

MAC query occurs after the measurement, we can utilize x to perfectly simulate
it by return HS. However, if ODec

MAC query occurs before the measurement, we
cannot return HS since we have not yet measured it to obtain x. Nonetheless,
this scenario implies that all H12 queries made by the adversary so far are not
reprogrammed and unrelated to the reprogrammed values Θ, which are utilized
to derive the MAC key. Thus, we can argue that the adversary A cannot dis-
tinguish fkS from a random value using OW2H Lemma. Hence, according to
the security of MAC, the adversary cannot forge a valid tag. Therefore, if ODec

MAC
query occurs before the measurement, we directly output ⊥.

Finally, we reprogram (CHTS∗
0,SHTS∗

0,dHS∗
0) = (H1(HS∗, t∗),H2(HS∗, t∗),

H3(HS∗)) to random values. In this case, the adversary’s probability of winning
this game is 1/2. We then utilize HS∗ to be indistinguishable from random for the
adversary to analyze the impact of such reprogramming using OW2H Lemma.

Proof. We provide the complete proof in complete version of the paper. ��
Remark 2. One can demonstrate the security of the IND-1CCA-MAC based on
CPA-secure KEMs in the QROM using a similar proof technique as Theorem 5
with greater loss reduction compared to IND-1CCA-MAC∗ because it is neces-
sary to utilize the Measure-and-Reprogram technique twice.
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3.3 Multi-stage Security for TLS 1.3 from IND-1CCA-MAC∗

We now demonstrate that if the IND-1CCA-MAC∗ is satisfied, the 1-RTT TLS
1.3 handshake is secure in the MultiStage model. Theorem 6 aligns with Theorem
5 in [20], but substitutes the IND-1CCA-MAC with the IND-1CCA-MAC∗.

Theorem 6. The TLS 1.3 full 1-RTT handshake is secure in the MultiStage
model if the underlying KEM is IND-1CCA-MAC∗ (and the signature is secure).
Formally for any Multi-Stage PPT adversary A, there exist PPT adversaries
{Bi}i∈[6] such that

Advmulti-stage
TLS1.3-1RTT(A) ≤ 6ts

⎛
⎜⎜⎝

Advcoll
H (B1) + tuAdveuf-cma

Sig (B2)

+ ts

(
Advind-1cca-mac*

KEM (B3) + 2Advprf
HKDF.Exp(B4)

+ Advprf
HKDF.Ext(B5) + Advprf

HKDF.Exp(B6)

)
⎞
⎟⎟⎠

where ts (resp. tu) is the maximal number of sessions (resp. users).

Proof Sketch: This proof is identical to the proof in [20], Theorem 5, except for
replacing IND-1CCA-MAC with IND-1CCA-MAC∗. For detailed steps, please
refer to the original proof in [15], Theorem 6.4. They utilized the snPRF-ODH
assumption to substitute HS with a random H̃S [15]. Following [20], we directly
apply the IND-1CCA-MAC∗ to concurrently replace CHTS, SHTS, and dHS
with random values, and subsequently leverages PRF properties to replace addi-
tional keys with random values. In particular, IND-1CCA-MAC∗ is sufficient for
the security of TLS 1.3. The complete proof is provided in complete version of
the paper.

Theorem 7. The modified TLS 1.3 handshake in the pre-shared key (optional)
0-RTT mode with key exchange (i.e., TLS 1.3 PSK-(EC)-DHE 0-RTT) is secure
in the MultiStage model if the underlying KEM is IND-1CCA-MAC∗ (and sig-
nature, MAC, etc. are secure), in the sense of Dowling et al. [15].

We provide the complete statement and a proof sketch for Theorem 7 in complete
version of the paper.

Remark 3. Combining Theorem 2, 4, 5, 6, 7, we obtain the security proof of TLS
1.3 from OW-CPA/IND-CPA/D-OW-CPA KEMs (with a secure MAC) in the
ROM and QROM.
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Abstract. The Fast IDentity Online (FIDO) Alliance has developed the
widely adopted FIDO2 protocol suite that allows for passwordless online
authentication. Cryptographic keys stored on a user’s device (e.g. their
smartphone) are used as credentials to authenticate to services by per-
forming a challenge-response protocol. Yet, this approach leaves users
unable to access their accounts in case their authenticator is lost.

The device manufacturer Yubico thus proposed a FIDO2-compliant
mechanism that allows to easily create backup authenticators. Frymann
et al. (CCS 2020) have first analyzed the cryptographic core of this pro-
posal by introducing the new primitive of Asynchronous Remote Key
Generation (ARKG) and accompanying security definitions. Later works
instantiated ARKG both from classical and post-quantum assumptions
(ACNS 2023, EuroS&P 2023).

As we will point out in this paper, the security definitions put forward
and used in these papers do not adequately capture the desired security
requirements in FIDO2-based authentication and recovery. This issue
was also identified in independent and concurrent work by Stebila and
Wilson (AsiaCCS 2024), who proposed a new framework for the analy-
sis of account recovery mechanisms, along with a secure post-quantum
instantiation from KEMs and key-blinding signature schemes.

In this work, we propose alternative security definitions for the primi-
tive ARKG when used inside an account recovery mechanism in FIDO2.
We give a secure instantiation from KEMs and standard signature
schemes, which may in particular provide post-quantum security. Our
solution strikes a middle ground between the compact, but (for this par-
ticular use case) inadequate security notions put forward by Frymann et
al., and the secure, but more involved and highly tailored model intro-
duced by Stebila and Wilson.

Keywords: FIDO2 · post-quantum · account recovery · passwordless

1 Introduction

FIDO2 encompasses a set of pioneering industry standards for passwordless
authentication on the web [5,14] that is driven and supported by a wide con-
sortium of major industry players and stakeholders. At its core, passwords are
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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replaced by a sophisticated combination of public-key cryptography and hard-
ware devices such as smartphones or dedicated security keys. In a FIDO2 authen-
tication ceremony, users authenticate themselves by proving in a challenge-
response fashion that they control the secret key of a previously registered public-
key credential.

There are three main actors: the authenticator, the client, and the relying
party. The relying party is the service that a user wants to log in to, i.e., the party
that will verify the user’s identity. The authenticator is the device holding the
secret key material used for signing the cryptographic authentication challenge
issued by the relying party. The client is the device that the user uses to access
the authenticator and to communicate with the relying party.

For example, suppose a user is logging into their Gmail account using their
laptop with a Yubico security key. In that case, their Yubikey is the authenti-
cator, the laptop (and the browser on it) is the client, and Google is the relying
party. The set of cryptographic information required by a user for a successful
authentication is referred to as a passkey [21] or simply a (FIDO2) credential.

1.1 The Need for Credential Recovery

When using devices such as a smartphone or a USB security key for authentica-
tion, the possibility of transferring or recovering credentials must be considered.
Essentially, there are two relevant scenarios:

1. One is the graceful transition from an old authenticator to a new one when
the previously registered credentials are still accessible to the user, e.g., when
switching smartphones.

2. The other, more challenging, situation occurs when the original credentials
are no longer available, e.g., in case the smartphone is lost, stolen, or broken.

While the first scenario can be easily accommodated by logging on with the
old device and then adding the new device as an authenticator, the second case
is much trickier.

For the secure recovery of symmetric secrets, mechanisms have already been
created. Signal’s Secure Value Recovery or Apple’s Secure iCloud Keychain
Recovery serve as two examples. These mechanisms rely on a low-entropy recov-
ery PIN created by the user, which encrypts a high-entropy key stored on a dis-
tributed hardware security module (HSM). This high-entropy key is then used to
encrypt the user’s secrets. Recovery of the high-entropy key is governed by the
HSM, which only allows for a limited amount of retries to prevent brute-force
attacks.

For the secure recovery of asymmetric secrets, as they are used within FIDO2,
the aforementioned approach should not, and often cannot, be applied. For once,
the entire security relies on a low-entropy PIN chosen by the user. Further-
more, the approach requires trust in cloud vendors and their HSMs to behave
as promised, which is an unsatisfactory assumption at best. Lastly, dedicated
hardware authenticators, such as FIDO2 security keys, usually generate their
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cryptographic secrets locally and do not allow for their extraction from the
device.

The FIDO2 Alliance suggests the usage of so-called multi-device creden-
tials [21] to ensure reliable access to relying parties. Multi-device credentials
are not constrained to the physical devices they were generated on but can be
copied across a user’s devices to ensure a consistent login experience. While this
is an easy-to-use approach, it has numerous security drawbacks.

In principle, it is possible for users to then have multiple, functionally-
identical authenticators, by synchronizing the passkeys over a vendor’s cloud
service. This solves the recovery problem straightforwardly: If one authenticator
is lost, a new one can be acquired, and the multi-device credentials can be copied
to this new authenticator. However, this also means that:

– The fine-grained revocation of credentials is impossible. All authenticators
behave identically and use the same secrets, i.e., a user cannot revoke access
for the lost credential, since the credentials on his new authenticator are
identical.

– Hardware binding is impossible. A user can never be certain of being the sole
owner of their secret keys and thus their account access, as it might have been
copied to a different device without their knowledge or consent.

Furthermore, the relying party may insist on single-device passkeys for high-
security use cases. This functionality is specified as part of the FIDO2 protocol
suite and is thus incompatible with this recovery approach. Lastly, as already
mentioned above, dedicated hardware security keys are built to be tamperproof
which in particular means that they may not support the export of secret key
material.

1.2 Introducing Backup Authenticators

In light of this, Yubico, one of the leading manufacturers of hardware security
devices, takes the stance that allowing secret key material to leave the authen-
ticators is an inherent weakness in the system and must be avoided [13]. Conse-
quently, Yubico does not support the creation of multi-device FIDO2 passkeys
and strictly follows a one-device, one-credential policy.

Yubico has thus suggested an alternative approach, using so-called backup
authenticators (BA) to facilitate account recovery when a user is faced with lost
or broken authenticators [16]. This solution is an easy-to-implement extension to
the WebAuthn protocol in FIDO2 and bridges the gap in account recovery mech-
anisms, as it eliminates the need for trusted third parties, while also maintaining
the full autonomy of the authenticators.

A backup authenticator is a hardware device that is initialized once by creat-
ing a cryptographic key pair. The public key of this key pair is then transferred
once to the primary authenticator (PA), which is a regular authenticator that is
used for day-to-day authentications to relying parties. After this initial pairing
between backup and primary authenticator, the backup can be stored offline in a
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safe location and will only be required in case a user needs to recover credentials,
e.g., when they have lost their primary authenticator.

In particular, when registering a new credential with a relying party, and in
any subsequent login, the user only needs their primary authenticator. To enable
this some additional protected recovery information is stored at the relying party
when the FIDO2 credential is first registered. The backup authenticator uses its
secret key to recover the authentication data from this externally stored recovery
information.

In more detail, the solution by Yubico is a Diffie–Hellman-based protocol,
which roughly lets the backup authenticator and the primary authenticator
each generate the public part of a Diffie–Hellman (DH) key share. The primary
authenticator stores its public DH share as recovery information at the relying
party, along with the public key of the joint DH key derived from the PA’s and
BA’s DH shares. To serve a recovery request, the backup authenticator computes
the joint DH secret by combining the externally stored public DH share of the
primary authenticator with its own DH secret. The resulting joint DH secret key
can then be used to authenticate the recovery request to the relying party.

Note, that the recovery DH keys are separate from the “regular” FIDO2
credentials, which are generated independently and are used for authentications
with the primary authenticator during regular protocol execution.

1.3 Security of FIDO2 and Yubico’s Proposal

Backup authenticators and how to create them from the newly introduced prim-
itive for asynchronous remote key generation is not part of the FIDO2 standard.
Consequently, there exist no established security requirements, let alone any
formal definitions. The cryptographic core of the account recovery extension to
WebAuthn has first been formalized and analyzed by Frymann et al. [8] through
the introduction of a new cryptographic primitive which they termed Asyn-
chronous Remote Key Generation, or ARKG, for short. Since then, a subset of
the authors of [8] has also introduced alternative instantiations of the ARKG
primitive based on pairings [10] and lattices [7]. The latter makes use of the
(equally new) primitive of split-KEMs, which was first introduced by Brendel
et al. [6] in the context of post-quantum asynchronous key exchange.

As we will point out in more detail shortly, we believe that the ARKG security
notions proposed by Frymann et al. [8] are not adequate for the proposed use case
of FIDO2 account recovery. In independent and concurrent work to ours, Stebila
and Wilson [22], have also arrived at this conclusion. While we opt to “fix” the
security notions for ARKG, Stebila and Wilson go a step further and propose
a new abstraction for account recovery mechanisms in place of ARKG. Their
security analysis is closer to a protocol security analysis than the analysis of a
stand-alone cryptographic primitive. As such, no straightforward implications
between our security notions and theirs can be shown.

The underlying FIDO2 protocol was first analyzed by Barbosa, Boldyreva,
Chen, and Warinschi [1] using the provable security paradigm. A formal analysis
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of FIDO2 has been conducted by Guan, Li, He, and Zhao [11]. More comprehen-
sive analyses capturing newer protocol versions and modes, as well as advanced
security features have been conducted by Hanzlik, Loss, and Wagner [12] as
well as Bindel, Cremers and Zhao [3]. In [4], Bindel, Gama, Guasch, and Ronen
analyzed the different attestation modes specified for FIDO2. In particular, [3]
proposed and analyzed a full post-quantum instantiation of the latest iteration
of the FIDO2 standards CTAP 2.1 and WebAuthn 2, requiring only minor exten-
sions to the protocol, thus showing that the functionality of the FIDO2 protocol
family can be achieved without any classical hardness assumptions.

1.4 Our Contributions

We have found the security notions for ARKG put forward in [8] and further
used in the subsequent works [7,10] to be a poor fit when used inside the FIDO2
framework.1

Frymann et al. [8] have defined two security definitions for ARKG. One covers
the security of the backup authentication mechanism, called secret-key security
or key security, which intuitively requires that the adversary cannot produce the
entire secret key used by honest users to recover their account. This notion comes
in slightly different flavors, depending on whether the adversary can communi-
cate with the backup authenticator or not (strong vs. weak), and whether the
adversary needs to attack a given public key or can attempt to fool the relying
party with a public key of its choice (honest vs. malicious).

The second property they propose is public-key unlinkability. It captures the
relying parties’ inability to track users across different services via the backup
authenticator’s public keys. This is formalized by an indistinguishability notion
where the adversary learns a backup authenticator’s long-term public key and
either receives keys derived from this long-term public key or independently
generated keys.

We set off by giving more befitting security notions for both key security and
public-key unlinkability, which may also prove to be advantageous in other use
cases of ARKG beyond FIDO2. In the course of these adaptations, we change
the names of the security properties to authentication security and unlinkability,
since the first property not only protects the secret key but also prevents forg-
eries, and the privacy property now also takes other available data beyond the
public key into account.

In a bit more detail, for authentication security, we strengthen the adversary
in line with the FIDO2 use case by counting the adversary already as successful
if it can produce signature forgeries under backup keys. In practice, this means
an adversary cannot access the recovery mechanism and register new credentials
on behalf of the user, locking them out of their accounts.

For unlinkability, we follow a left-or-right approach where the adversary can-
not decide which of two backup keys has been generated given derived public

1 We stress that we have not considered other contexts in which ARKG may be
employed, for which the originally proposed security properties may be appropriate.
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keys and recovery information. This extends the previous definition to now also
include the recovery data which is accessible to the adversary in the real-world
use case. We will give a detailed discussion of the shortcomings in the analysis
of [8] and our adjustments in Sect. 3.

Our second contribution is then the proposal of a FIDO2-compatible ARKG
instantiation from standard KEMs and signature schemes in Sect. 4 to provide
post-quantum security. The idea is to let the primary authenticator generate
the key pair of a signature scheme, encapsulate the key-generating randomness
under the backup authenticator’s public key, and store this ciphertext externally
at the relying party. During recovery, the backup authenticator can retrieve the
randomness and re-generate the signing key.

In particular, we do not rely on the only recently-introduced notions of split
KEMs as necessary in [7] or key-blinding signature schemes as in [22]. We note,
that both of these primitives, split KEMs and key-blinding signatures, are not
by themselves standardized, which may be a requirement for some future imple-
mentations and use cases.

2 Preliminaries of Asynchronous Remote Key Generation

We start by introducing the notation, terminology, and main definitions used in
this paper. In particular, we revisit the definition of Asynchronous Remote Key
Generation (ARKG), which was first proposed by Frymann et al. in [8].

Notation. We write y ← Alg(x) and y ←$Alg(x) for the deterministic, resp.
probabilistic execution of an algorithm Alg on input x with output y. We write
prefix(x) = y to indicate that y is a prefix of x. We assume classical algorithms for
implementing schemes, with the common notion of efficiency if the algorithms
run in probabilistic or quantum polynomial time in the length of the security
parameter λ, denoted by PPT and QPT, respectively. Explicit randomness is
indicated in an algorithm’s input using a semicolon, e.g., Sign(sk,m; r) denotes
the execution of the signing algorithm with randomness r.

We assume QPT adversaries A. Since the honest parties use classical algo-
rithms, A may only interact classically with honest parties. We write AO to
denote that A has access to the oracle O. We use ·, to represent required input
to an algorithm, i.e., O(·, ·) denotes that the algorithm O takes two inputs.

Furthermore, we use y ← x to denote the assignment of a value x to a variable
y. In security games, we use �expression� to denote the boolean evaluation of
expression. The special symbol ⊥ shall denote rejection or an error, usually
output by an algorithm, in particular ⊥ /∈ {0, 1}∗.

Terminology. In FIDO2, services are referred to as relying parties (RP), to which
users can authenticate via so-called authenticators. In this work, we view a user
with their authenticator(s) as a singular actor and abstract away the client that
is located between the authenticator and the relying party. This abstraction
removes the analysis of the CTAP protocol but comes without loss of generality
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as account recovery with ARKG is a WebAuthn extension, which is exactly the
protocol executed between client and relying party.

Within ARKG, authenticators are split into two different classes: backup
authenticators (BA), which hold the long-term secrets denoted by (pkBA, skBA)
and are used for account recovery, and primary authenticators (PA) which derive
(public) keys pk′ and recovery information rec from the long-term key pkBA and
are used to authenticate the user to RPs.

2.1 ARKG Syntax

We now recall the notion of asynchronous remote key generation schemes intro-
duced in [8] but slightly change notation to align it more with the intended
purpose of account recovery in FIDO2.

We assume that the BA generates a long-term key pair (pkBA, skBA) via the
algorithm KGen. Key pairs on the PA are denoted as (pk, sk). They are generated
together with recovery information rec via the algorithm DerivePK in such a way
that allows the backup authenticator BA to recover the secret key with the help
of skBA via the algorithm DeriveSK.

Both algorithms are linked through an algorithm Check to identify matching
public and secret keys. Instead of calling the recovery information a creden-
tial denoted by cred as in [8] we call it recovery information, or rec, for short,
resembling the externally stored session resumption data in TLS.

Definition 1. (ARKG). A scheme for asynchronous remote key generation, or
ARKG for short, consists of four algorithms (Setup,KGen,DerivePK,DeriveSK,
Check) such that

Setup takes as input the security parameter λ in unary and outputs the public
parameters, i.e., pp ← Setup(1λ).

KGen takes as input the public parameters pp and output a public/secret key pair
(pkBA, skBA) ←$KGen(pp) for the backup authenticator.

DerivePK takes as input the public parameters pp, a public key pkBA and aux-
iliary information aux2 and outputs a derived public key pk′ and associated
credential information rec, i.e., (pk′, rec) ←$DerivePK(pp, pkBA, aux ).

DeriveSK takes as input the public parameters pp, a secret key skBA and recovery
information rec. It outputs either a secret key sk′, i.e., sk′ ← DeriveSK(pp,
skBA, rec), or the dedicated symbol ⊥, in case no valid sk′ can be computed
for pk′ associated with rec.

Check takes as input a public-secret key pair (pk, sk) and returns 1 if (pk, sk)
form a valid public/secret key pair, and 0 otherwise.

We say that an asynchronous remote key generation scheme ARKG = (Setup,
KGen,DerivePK,DeriveSK,Check) is ε-correct, if for all λ and pp ← Setup(1λ)

2 We assume that in the context of FIDO2 account recovery as treated in this paper,
aux is a unique identifier rpid of the relying party for which the public key and
credential are derived.
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and (pkBA, skBA) ←$KGen(pp), and auxiliary information aux we have that the
probability of Check outputting 0 is bounded by ε, i.e., Pr

[
Check(pk′, sk′) = 0

] ≤
ε, for (pk′, rec) ←$DerivePK(pp, pkBA, aux ) and sk′ ← DeriveSK(pp, skBA, rec).

If the scheme is ε-correct for ε = 0 then we say that the scheme is (perfectly)
correct.

Remark 1. Frymann et al. include the algorithm Check(pk, sk) as part of their
ARKG syntax, which is necessary to define correctness in the ARKG setting.
In public-key cryptography, one can always leverage the randomness that went
into key generation to implement such a check. That is, we define the secret
key as the randomness used during key generation and, if required, reconstruct
the actual secret key by re-running key generation. Then, one can easily check
that the public key matches given the randomness as the secret key. Indeed, our
generic construction follows this approach, such that we do not give a concrete
instantiation of Check.

2.2 ARKG in the Context of FIDO2

As also mentioned in [8], the ARKG primitive itself may be applicable to use
cases outside of account recovery for FIDO2. Most notably, privacy-preserving
proxy signatures with unlinkable warrants can be generically constructed from
ARKG [9]. This work focuses on the original motivation for the introduction of
ARKG: FIDO2 account recovery.

In Sect. 3, we will present our modified security notions for ARKG. To moti-
vate the changes to the security definitions given in [8], we recap the basics of
passwordless authentication via WebAuthn in FIDO2 [14] and how ARKG fits
into this flow. Roughly speaking, the role of the ARKG primitive within the
context of FIDO2 account recovery is two-fold:

On the PA: To create a signature key pair and recovery information from the
BA’s long-term public key to register with relying parties such that no inter-
action with the BA is necessary to do so.

On the BA: To use the long-term secret and the recovery information from relying
parties to derive a signing key to authenticate to the respective relying party
and recover account access.

In more detail, ARKG has three phases: pairing, registration, and recovery.
These phases are illustrated in Fig. 1, and we briefly describe them next.

Pairing. At the beginning, ARKG requires that the backup authenticator(s) be
paired with a primary authenticator. We note that it is possible to pair any
primary authenticator with multiple backup authenticators, and vice versa.
Nonetheless, for ease of presentation, we focus on the case where a single PA
is paired with a single BA. During the pairing process, the long-term public
key pkBA of the BA is transferred to the PA which stores it.
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Fig. 1. Simplified illustration of how ARKG integrates into WebAuthn registration
flows with default attestation type none.

Registration. At some point, the primary authenticator PA begins to regis-
ter credentials with relying parties. This registration happens over a secure
channel since the user has logged into the relying party via another authenti-
cation method, typically with a username and password, and has established
a TLS connection to the server of the RP .
In a regular WebAuthn registration procedure, the relying party sends a chal-
lenge value to the authenticator, which then derives a key pair (pkauth, skauth)
and sends pkauth to the relying party. Depending on the chosen attestation
type, the authenticator’s response may also include a signature on a message
that contains (among other information) the challenge ch and the new public
key pkauth. This signature is created using the (highly non-unique) long-term
secret key that is embedded in the authenticator at production time. Since
no attestation is the proposed default, we chose to omit this signature from
Fig. 1.
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When the recovery extension is present, the PA will also derive a recovery
public key pkrec and recovery information rec from pkBA via the ARKG algo-
rithm DerivePK; (pkrec, rec) are then also transmitted to the RP .

Recovery. While the primary authenticator acts as the “standard” authentica-
tor of the user when signing in to services, the backup authenticator comes
into play should the user lose access to its PA. Until that point, the BA
can be stored offline. Note, that the recovery process is a regular WebAu-
thn registration ceremony with the recovery extension. When the recovery
is triggered by the BA, the relying party sends out a challenge ch to the
authenticator along with recovery information rec for the user in question.
The BA then uses its long-term secret skBA to recover the derived secret key
skrec associated with rec. It then generates a new key pair (pknew, sknew) to
replace the lost (pkauth, skauth) and signs (among other information) the new
public key pknew and the challenge provided by the relying party. Finally, it
sends the new public key and the signature to the relying party which then
checks the signature wrt. its stored information. If the signature verifies, RP
stores pknew and should revoke the old stored credentials.

Remark 2. After the initial registration, the user can use their primary authen-
ticator with the secret skauth to sign WebAuthn authentication challenges in
a passwordless manner. ARKG is not involved in this phase, thus we did not
include it in the Figure. As usual, this happens via a challenge-response protocol
in which the relying party sends a challenge value to the user, and the user then
signs the challenge with the secret key stored on the authenticator. The RP
then verifies the signature with respect to the public key it had received during
registration. If the signature is valid, the user is authenticated and logged onto
the service.

3 Security of ARKG Schemes

When first introducing ARKG and in later works, Frymann et al. [7,8,10]
described security in terms of an adversary’s inability to recover a derived
secret key in various adversarial settings (honest/malicious, weak/strong) and
the unlinkability of derived public keys. The former should guarantee that an
adversary is not able to successfully complete the account recovery process with-
out access to the secret key stored on the backup authenticator, whereas public-
key unlinkability shall ensure that users cannot be tracked across services via
their registered public-key credentials. Unfortunately, neither of the previously
proposed notions adequately provides these guarantees in the FIDO2 setting.

The key security notion in [8] demands that in order to break the scheme,
an adversary must be able to recover the entire secret key. However, in the
context of FIDO2, recovery is broken if an adversary can successfully convince
a relying party that they are authorized to register new credentials following a
recovery. For this, the adversary does not need knowledge of the full secret key.
Thus, we switch to a notion based on the adversary’s (in)ability to successfully
authenticate.
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With regards to public-key unlinkability, we note that the definition in [8],
which states that derived keys are indistinguishable from randomly sampled keys,
does not take the adversary’s actual view during the execution of the protocol
into account. This omission gives a false sense of security: One can have ARKG
schemes that provide public-key unlinkability wrt. Frymann et al.’s definition
that trivially link derived public keys when employed in the envisioned setting.

In the following, we provide the security notions of authentication security
and unlinkablity that fix the just mentioned shortcomings. Before we formally
define these security properties for ARKG schemes, we first state our basic
assumptions on the adversary’s power and capabilities.

The formal definitions from [8] can be found in Appendix A.

3.1 Adversarial Model

Recall that we assume a quantum polynomial-time (QPT) adversary since our
ARKG construction aims to provide post-quantum security, interacting classi-
cally with the honest parties, i.e., it may not query any oracles in superposition.

We note that it is generally assumed that authenticators are tamperproof,
i.e., they do not leak information on the secret keys stored on them, even if
they are in the adversary’s possession. This assumption was also made for the
FIDO2 analysis by Barbosa et al. [1] and is intuitively also reasonable in our
setting where we assume the primary authenticator has been lost, i.e., might be
in the hands of the adversary. If (primary) authenticators leaked secret keys,
the adversary could immediately log into services and reset credentials such that
account recovery would not be possible anymore.

Nevertheless, we provide the adversary with oracles that leak the derived
secret keys to achieve stronger notions of security by default, analogous to the
strong version in [7,8,10].

We assume that the initial pairing between the BA and the PA(s) is in a
trusted setting such that an adversary is not able to inject its own long-term
public key into the user’s primary authenticator. This is a reasonable assumption
since this pairing only happens once, is of short duration, and is executed locally
at the user with no information going over public network channels.

Backup authenticators are typically offline and should only come online dur-
ing account recovery. Since we cannot rule out that an adversary intercepts the
user’s account recovery attempts, we do, nevertheless, grant the adversary access
to a signing oracle where the BA’s long-term secrets are employed.

We assume that WebAuthn registrations (with extensions) are secure against
active adversaries (cf. [3]). In the context of ARKG, this is especially important
during registration, where the derived public keys and recovery information are
transmitted from the PA to the relying party. If the adversary were able to inject
its own account recovery credentials here, all is lost. This assumption is in line
with the security model for FIDO2.

Typically, upon registration of FIDO2 credentials, a user has previously
logged in to the service using other means of authentication, e.g., with user-
name and password, and has established an authenticated connection [1]. Thus,
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we assume that the adversary remains passive during the registration of cre-
dentials with a relying party. During the account recovery process, however, the
user is not authenticated to the relying party and no secure channel exists. Thus,
we allow the adversary to actively interfere, i.e., it may drop, modify, or inject
messages.

We remind the reader of the possibility of pairing any primary authenticator
with multiple backup authenticators, and vice versa. For the former case, all
interactions are now carried out for each of the registered backup authenticators
in parallel. This introduces a minor side channel by revealing the number of
registered backup authenticators to relying parties. For the latter case, no change
in the protocol is required and the security remains unaffected.

As usual for reliable authentication, we assume that public keys are globally
unique. This can be accomplished by including the relying party’s identity rpid
and a unique user identifier (or pseudonym) uid in the public key.

3.2 Authentication Security

Viewed merely from the cryptographic primitive level, the main functionality of
ARKG schemes is to derive public-secret key pairs (pk′, sk′) along with additional
recovery information rec from a long-term public key pkBA such that sk′ can only
be recovered with knowledge of the long-term secret skBA. Frymann et al. [8] thus
describe the main security property of ARKG schemes as one where an adversary
may not be able to derive valid public-secret key pairs (and recovery information)
without knowledge of the long-term secret key.

As elaborated in Sect. 2.2, ARKG schemes were originally introduced to sup-
port account recovery in case of primary authenticator loss in FIDO2 authenti-
cation procedures, i.e., in a challenge-response-based protocol using digital sig-
natures. Viewed in this context, the main security goal of ARKG schemes should
be the adversary’s inability to create a valid response, i.e., a valid signature on a
given challenge value (and new public key credential) during an account recovery
procedure. Since our main contribution is a generic post-quantum secure ARKG
construction for account recovery in FIDO2 authentications, we opt to define
security in the latter sense as follows.

We discuss the differences between this notion, and the one given by Frymann
et al. in more detail in Appendix A.

Game Description. The formal description of the authentication game
Expauth

ARKG(A) is given in Fig. 2. The adversary A gets as input the public parame-
ters pp and the long-term public key pkBA from the backup authenticator BA. A
then has access to the oracles DerivePK, Chall-auth, Sign, and LeakSK.

The oracle DerivePK takes as input auxiliary data aux and derives a public
key pk′ and recovery information rec for the relying party specified in aux from
the long-term public key pkBA. This simulates the honest generation of derived
public keys and recovery information on the primary authenticator PA when
registering with relying parties specified in the auxiliary data aux .
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ExpauthARKG(A):

1 pp ← Setup(1λ)

2 Lkeys, Lch, Lsk′ , Lσ ← ∅;

3 (pkBA, skBA) ←$KGen(pp)

4 (pk�, rec�, aux�, m�, σ�) ←$ ADerivePK,Chall-auth,Sign,LeakSK(pp, pkBA)

5 return �(pk�, rec�, aux�) ∈ Lkeys ∧ ∃(ch, aux�) ∈ Lch : prefix(m�) = ch ∧
Vrfy(pk�, σ�, m�) ∧ (rec�, m�) /∈ Lσ ∧ rec� /∈ Lsk′�

DerivePK(pp, pkBA, ·) on input aux :

6 (pk′, rec) ←$DerivePK(pp, pkBA, aux)

7 Lkeys ← Lkeys ∪ {(pk′, rec, aux)}
8 return (pk′, rec)

Chall-auth(·) on input aux :

9 ch ←$ {0, 1}λ

10 Lch ← Lch ∪ {(ch, aux)}
11 return ch

Sign(·, ·) on input (rec, m):

12 sk′ ← DeriveSK(pp, skBA, rec)

13 if sk′ = ⊥: abort

14 σ ←$Sign(sk′, m)

15 Lσ ← Lσ ∪ {(rec, m)}
16 return σ

LeakSK(·) on input rec:

17 sk′ ← DeriveSK(pp, skBA, rec)

18 Lsk′ ← Lsk′ ∪ {rec}
19 return sk′

Fig. 2. Our security definition for authentication security of ARKG schemes.

As they are by default not authenticated, account recovery processes may be
triggered by the adversary. Thus, A gets access to the challenge oracle Chall-
auth, which takes as input auxiliary data aux and outputs a uniformly random
challenge value ch. This challenge value corresponds to the challenges sent out by
the relying parties that are specified via aux in the account recovery process. The
adversary eventually has to create a valid signature on a message containing one
of these challenges, more specifically on a message m that starts with a challenge
value and has not been queried to Sign with respect to the secret key.

When it receives some recovery information rec, the backup authenticator
BA has no means to distinguish between credential information that had been
honestly generated by a primary authenticator and recovery information that
the adversary sends to it. The BA will simply use its long-term secret skBA to
derive the secret key sk′ and sign the response with it. Thus, we grant A access
to an oracle Sign which takes as input recovery information rec and a message
m. The oracle then tries to derive a secret key sk′ and signs the provided message
m, returning the signature σ. If the secret key derivation fails, the oracle simply
aborts.

The LeakSK oracle models the leakage of derived secret keys. The adversary
may provide recovery information rec and the oracle will return the output of
DeriveSK, which is either ⊥ if the derivation failed or the derived secret key sk′.

The adversary outputs (pk�, rec�, aux�,m�, σ�) and wins the game
Expauth

ARKG(A), if it is able to produce a valid signature on a message contain-
ing the challenge posed by a relying party. The valid signature must fulfill the
following requirements:
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– (pk�, rec�) was honestly generated for the relying party specified in aux�,
– there exists an honestly generated challenge ch for aux� such that ch is a

prefix of m�,
– σ� is a valid signature on m� with respect to pk�,
– the adversary has not received a signature on m� with respect to the secret

key associated with rec�, and
– the secret key associated with rec� has not been given to the adversary.

Definition 2. Let ARKG = (Setup,KGen,DerivePK,DeriveSK) be an async.
remote key generation scheme. We say that ARKG is AUTH -secure, if for every
QPT adversary A the advantage in winning the game Expauth

ARKG(A) described in
Fig. 2, defined as

Advauth
ARKG,A(λ) :=

∣
∣
∣ Pr

[
Expauth

ARKG(A) = 1
]∣∣
∣

is negligible in the security parameter λ.

Remark 3. Note that a weaker notion of authentication security, where A does
not have access to the LeakSK oracle to learn other derived keys, could be
defined. However, at least in our instantiation from KEMs, we gain nothing
from this modification as both notions require the same assumptions on the
primitives.

3.3 Unlinkability

Unlinkability aims to fulfill a requirement in the WebAuthn standard [14] which
recommends authenticators to ensure that the credential IDs and credential pub-
lic keys of different public-key credentials cannot be correlated as belonging to
the same user. We note that this is a non-normative requirement, i.e., WebAu-
thn implementations that do not provide this unlinkability are still considered as
conforming to the standard. As mentioned, we deviate from Frymann et al.’s def-
inition of public-key unlinkability, which was based on the adversary’s inability
to distinguish derived from randomly sampled key pairs.

In essence, their definition allows to prove ARKG schemes as public-key
unlinkable although they trivially link public-key credentials when employed in
account recovery.

In our definition, two long-term key pairs (pk0
BA, sk0

BA) and (pk1
BA, sk1

BA) are
generated and the public keys are given to the adversary. A bit b ←$ {0, 1} is
sampled uniformly at random. The adversary may once query auxiliary infor-
mation of its choice to the oracle 1-Chall-u. The oracle then derives a public
key pk′ and credential information rec either from pk0

BA (if b = 0), or pk1
BA (if

b = 1). It then derives the corresponding secret key sk′ and outputs (pk′, sk′, rec)
as the challenge to the adversary. Note that with a standard hybrid argument,
one may lift this definition to a setting with multiple challenges. Additionally,
the adversary may learn derived secret keys sk′ for credential information of its
choice, where it can also specify via a bit β which of the long-term secrets skβ

BA
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Fig. 3. Our security definition for unlinkability of ARKG schemes.

shall be used in the oracle’s internal DeriveSK call. Note that if secret key deriva-
tion fails, DeriveSK outputs ⊥ and this is then returned to the adversary as sk′.
Of course, the adversary may not query its challenge ciphertext to the oracle
LeakSK-u, even if the auxiliary information in the recovery credential has been
modified. This does not impose any undue limitation, because during an honest
execution, the auxiliary information is the unique identifier of the relying party
and thus remains unchanged. In the end, A will output a bit b′, guessing whether
the challenge was derived from pk0

BA or pk1
BA and wins if correct. More formally,

Definition 3. As before, let ARKG = (Setup,KGen,DerivePK,DeriveSK) be an
asynchronous remote key generation scheme. We say that ARKG provides unlink-
ability, or is UNL -secure, for short, if for every QPT adversary A, the advantage
in winning the game Expunl

ARKG(A) described in Fig. 3, defined as

Advunl
ARKG,A(λ) :=

∣
∣
∣ Pr

[
Expunl

ARKG(A) = 1
] − 1

2

∣
∣
∣

is negligible in the security parameter λ.

Recall that [8] in their (public-key) unlinkability game asks to distinguish gen-
uinely generated public keys against independently sampled ones. This requires
defining a distribution of public keys. We have opted here for the common left-
or-right notion. In principle, we could also cover such real-or-random scenarios.
Looking ahead to a post-quantum instantiation, the post-quantum ML-KEM
Kyber, currently being standardized as FIPS 203, achieves this notion. The rea-
son is that Kyber provides strong pseudorandomness under CCA [23], as shown
in [18].
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4 Post-quantum Asynchronous Remote Key Generation

This section will introduce our instantiation for PQ-ARKG, built from generic
primitives, and provide security proofs in the setting discussed in Sect. 3. Choos-
ing generic primitives for the instantiation allows us to provide a general security
proof independent of the actual instantiation of the primitives. The result ensures
ARKG is secure within the specified scenario, as long as the underlying primitives
achieve the respective security properties.

4.1 The PQ-ARKG Scheme

In Fig. 4 we provide the generic instantiation for all algorithms required for an
ARKG scheme. The key building blocks of the proposed ARKG instantiation are
key encapsulation mechanisms, digital signatures and key derivation functions,
all of which allow for multiple concrete instantiations believed to be resistant
to a QPT attacker with high confidence [15,17,19,20]. Formal definitions of the
building blocks used in this chapter can be found in Appendix B. Conceptually,
the interactions that make up a full ARKG protocol execution work as follows:
During pairing, the BA generates a KEM key pair, denoted as (pkBA, skBA), and
transfers pkBA to the PA.

Fig. 4. Our PQ-ARKG instantiation from KEMs, Signatures, and KDFs

During registration, which is exclusively done by the PA, an encapsulation
operation is performed under pkBA to obtain a random key, which is then input
to a KDF which outputs a random seed in the desired format. This seed is
then used to deterministically generate a new signature key pair (pk′, sk′). The
ciphertext resulting from the encapsulation operation is sent to the relying party
for safekeeping along with the newly derived public key pk′.

During recovery, the BA retrieves the ciphertext from the RP and performs a
decapsulation operation to obtain the key used as input to the KDF. By executing
the PRF, it obtains the seed used for the key generation. This allows BA to
regenerate the original signature key pair, which critically includes the secret
key sk′. As a result, BA now has access to the same signing key pair as PA had
during the registration, without any direct communication from PA to BA.
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In short, we use KEM ciphertexts stored at the relying parties to securely
relay seeds for the creation of recovery credentials between PA and BA.

A minor difference between the instantiation proposed in [8] and in this
work is the fact that the primary authenticator temporarily has access to the
full recovery key pair (pk′, sk′). Nonetheless, the secret key material is immedi-
ately discarded by the primary authenticator after the generation of pk′. This
does not pose a security risk, as the primary authenticator is also in possession
of the primary credentials used during regular FIDO2 sessions. Consequently,
an attacker with access to the primary authenticator’s internal secrets could
authenticate himself using a regular FIDO2 interaction while completely disre-
garding the recovery extension. The fact that recovery credentials are generated
by the primary authenticator but only ever used by the backup authenticator
therefore also holds for our instantiation.

4.2 Security Analysis

Our instantiation of ARKG achieves both authentication security, as well as
unlinkability, as reflected in the following theorems. The standard definitions of
security for the employed cryptographic primitives can be found in Appendix B.

Authentication Security. We first show authentication security.

Theorem 1. Let ARKG be the generic instantiation of ARKG as given in Fig. 4,
KEM be an IND-CCA secure and ε-correct KEM scheme, Sig be an EUF-CMA
secure signature scheme and KDF a secure key derivation function modeled as a
PRF. Then ARKG provides ε-correctness and authentication security as defined
in Definition 2. More precisely, for any QPT adversary A against AUTH, there
exist QPT algorithms B1,B2, and B3 with approximately the same running time
as A such that

Advauth
ARKG,A(λ) ≤ q ·

(
ε + Advind-cca

KEM,B1
(λ) + Advprf

KDF,B2
(λ) + Adveuf-cma

Sig,B3
(λ)

)

where q is the maximum number of calls to the DerivePK oracle.

Proof. Correctness with parameter ε for ARKG directly follows from ε-correctness
of KEM: If one is able to decapsulate the right key, then one can also derive the
same key pair. We will prove the authentication property of Theorem 1 using
game hopping. We denote by Adv

gamei
ARKG,A(λ) the advantage of the adversary in

the corresponding game.

Game1(λ): The original AUTH security game Expauth
ARKG(A).

Game2(λ): In this game we assume that KEM decapsulation for honestly gener-
ated public keys and ciphertexts never fails. This is always the case, except
for a negligible failure probability ε for each of the at most q generated keys,
given by Definition 1. Thus, we get the bound

Adv
game1
ARKG,A(λ) ≤ q · ε + Adv

game2
ARKG,A(λ) .
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Game3(λ): In this game we guess for which call of DerivePK the adversary
will output the forgery (pk�, rec�, aux�,m�, σ�) for the key pk� output by
DerivePK. Note that, by definition, the adversary must succeed for one of
the keys in Lkeys. We denote the number of oracle calls of A to DerivePK
with q. Consequently, the correct oracle call is guessed with a probability of
1/q and hence it follows that

Adv
game2
ARKG,A(λ) ≤ q · Advgame3

ARKG,A(λ) .

Game4(λ): In this game we modify the behavior of the DerivePK algorithm for the
execution guessed during the previous game: The input to the KDF, which
previously was a KEM ciphertext, is replaced with a random value. This
substitution takes place in line 2 of the DerivePK algorithm (cf. Figure 4).
We show that any efficient adversary A, which can distinguish between game3
and game4 implies the existence of an efficient adversary B1 against the
IND-CCA security of KEM. B1 receives the KEM challenge (pk∗, k∗, c∗) and
initializes Expauth

ARKG(A) with pk∗ as pkBA.
During the execution of DerivePK that has been guessed in game3, algorithm
B1 modifies the behavior of the algorithm by plugging in its own challenge:
In line 1 of the DerivePK algorithm, pk∗ is used for encapsulation; in line 2 k∗

is used as input to the KDF . The ciphertext, which is output as a component
of rec, is replaced with the ciphertext c∗.
To simulate the Sign Oracle, the reduction keeps a list of derived secret keys,
which are also generated as part of the DerivePK algorithm, but discarded
during normal operation. As we are only retrieving stored keys, we implicitly
eliminate all decryption failures, which is already captured by the transition
to game2. Queries to the Sign oracle for inputs that have not been generated
by the DerivePK algorithm can be answered using the Decaps oracle provided
by the IND-CCA challenger. Due to the guess in game3, the challenge key
and ciphertext is always embedded in an output of the DerivePK oracle,
and therefore such a query to the Decaps oracle does not coincide with the
challenge ciphertext, which subsequently means that the game’s own Decaps
oracle always answers.
To simulate LeakSK our reduction B1 needs to answer queries rec to
LeakSK without knowing the decryption key skBA of the KEM. But since
the adversary can only win if the forgery attempt rec� does not lie in Lsk′ ,
reduction B1 can use its own decryption oracle of the IND-CCA KEM to
answer these different requests.
Chall-auth can be trivially simulated, as it has no secret inputs.
Finally, A terminates and outputs a guess b, which the reduction B1 outputs
as its own answer to the KEM challenger. Clearly, B1 perfectly simulates
game3 when the KEM challenge is real and game4 when the KEM challenge
is random. Consequently, we obtain the following bound:

Adv
game3
ARKG,A(λ) ≤ Advind-cca

KEM,B1
(λ) + Adv

game4
ARKG,A(λ) .
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Game5(λ): In this game the execution of the DerivePK algorithm is further mod-
ified. The variable r, which was previously assigned the output of a KDF, is
now sampled uniformly at random.
Any efficient adversary A, able to distinguish game3 and game4 can be used
to construct an efficient adversary B2 against the security of the underlying
KDF, whose security we model as a PRF. The construction works similarly as
in the previous game hop. B2 initializes Expauth

ARKG(A) for A as specified, but
modifies the behavior of the KDF used as part of the DerivePK algorithm in
line 2 (cf. Figure 4). Instead of directly invoking the key derivation function,
B2 forwards the input to the PRF oracle provided by the PRF challenger.
The simulation of the other oracles works identically as in the previous hop.
Finally, A terminates and outputs a bit b, to indicate whether it is playing
against game3 or game4. B2 forwards this as its own output to the PRF
challenger.
Clearly, B2 perfectly simulates game3 if the oracle is an actual KDF, and
game4 if the oracle is a random function. Thus, we get the following advan-
tage:

Adv
game4
ARKG,A(λ) ≤ Advprf

KDF,B2
(λ) + Adv

game5
ARKG,A(λ) .

Now we bound the last term on the right hand side. For this we can construct a
reduction B3, which uses an efficient adversary A against game4 as a subroutine
and can efficiently win against any EUF-CMA challenger with non-negligible
probability. This allows us to bound the advantage of any QPT adversary against
game4 by the EUF-CMA security of the underlying signature scheme.

The reduction B3 receives a challenge public key pk∗ and a signing oracle Sign
from the EUF-CMA challenger. It then initializes the game game4 as specified,
in particular it holds the backup authenticator’s key pair (pkBA, skBA). During
the query guessed in the first game hop, it replaces the public key output by
DerivePK with the challenge public key pk� = pk∗. Note that this also means
that this choice also determines the recovery information rec�. Replacing the
public key by pk∗ is possible, as in game4 the output of DerivePK is completely
independent of both the key derivation function and the initial public key pkBA.

Queries by A to the Sign Oracle of the AUTH game for the value rec� can be
forwarded to the outer Sign Oracle of the EUF-CMA game by the reduction B3.
Since DeriveSK is deterministic, the signature oracle in the attack would recover
exactly the secret key to pk∗, such that using the external signing oracle is valid.
Note that signature queries for any other rec value can be answered with the help
of skBA, first recovering the derived key and then signing the input message m.

Ultimately, the inner adversary A terminates and outputs values (pk�, rec�,
aux�,m�, σ�), where σ� is a valid signature under the challenge public key pk∗

and an arbitrary message m�. The reduction can then output the message-
signature pair (m�, σ�) as its forgery. Per construction, this constitutes a valid
forgery: The only queries forwarded to B3’s external signing oracle are the ones
for rec�. Since the adversary A can only win if (rec�,m�) is not in the list of
signed pairs Lσ, it follows that m� must not have been signed before in B3’s
attack.



484 J. Brendel et al.

Consequently, the success probabilities of A and B3 are equal. Thus we can
conclude that

Adv
game5
ARKG,A(λ) ≤ Adveuf-cma

Sig,A (λ) .

To conclude the proof, we sum up the advantages:

Advauth
ARKG,A(λ) ≤ ε + q ·

(
Advind-cca

KEM,B1
(λ) + Advprf

KDF,B2
(λ) + Adveuf-cma

Sig,B3
(λ)

)
.

Note that in the proof we have not used the requirement that the forgery
needs to be for a random challenge and for the right format. The reason is that
we presume existential unforgeability of the signature scheme, such that even
forgeries for arbitrary messages should be infeasible. For practical purposes we
would only require the relaxed unforgeability notion but do not explore this here
further.

Unlinkability. We next discuss the unlinkability of our scheme. This follows
from the fact that the underlying KEM scheme is anonymous [2].

Theorem 2. Let ARKG be the instantiation of ARKG as shown in Fig. 4 and
KEM be an ANON-CCA secure KEM scheme. Then ARKG provides unlinkability
security as described in Definition 3. More precisely, for any QPT adversary
A against UNL there exists a QPT algorithm B with approximately the same
running time as A, such that

Advunl
ARKG,A(λ) ≤ Advanon-cca

KEM,B (λ).

Proof. We prove Theorem 2 using a direct reduction to the ANON-CCA security
of the underlying KEM. Let A be a QPT adversary against unlinkability. We use
A to construct an efficient reduction, B, that uses A as a subroutine to win
against ANON-CCA with non-negligible probability.

First, B receives the challenge set (pk0, pk1, c
∗, k∗) as per the ANON-CCA

security definition (cf. Figure 8). Then, B forwards (pk0, pk1) to the inner adver-
sary A as (pk0

BA, pk1
BA). Next, A outputs aux to query the 1-Chall-u oracle.

The reduction simulates the behavior of 1-Chall-u as follows: During the exe-
cution of the algorithm DerivePK (cf. Figure 4), the challenge key k∗ is used as
input to the KDF in combination with aux provided by the inner adversary A.
The KDF output is then used as input to the key generation algorithm Lastly,
it creates rec as rec ← (c∗, aux ). Then it returns (pk′, sk′, rec) to the inner adver-
sary. Queries to the LeakSK-u oracle can be answered by B with the help of
its own decapsulation oracle provided by the ANON-CCA challenger; any query
including about the challenge value c∗ is immediately rejected.

Finally, A outputs a bit b, which the reduction forwards as its guess to the
ANON-CCA challenger. Depending on the bit b of the ANON-CCA game, this
perfectly simulates either the case where the challenge bit of UNL is sampled as
0 or 1.

We have constructed B in such a way, that it is efficient and perfectly simu-
lates the UNL game for A and its view depends only on the random bit b chosen
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by the challenger. Consequently, the success probability of the reduction is equal
to that of the inner adversary, which yields the following result:

Advunl
ARKG,A(λ) ≤ Advanon-cca

KEM,B (λ) .

4.3 Overhead and Instantiation

Implementing ARKG requires relatively low additional computations and stor-
age at both the relying party and the authenticator itself, with the overhead
dependent on the instantiation of the underlying primitives. Crucially, during
the most frequent operation, namely authentication, no additional computations
are necessary. For each registration of an authenticator at a relying party, only
a single additional KEM key generation and encapsulation are performed. Sim-
ilarly, the initial pairing (only done once) and account recovery require a KEM
key generation and one single other operation (KEM decapsulation and signing,
respectively). In terms of storage, the authenticator needs to store the backup
authenticator’s public key and the relying party needs to store the public key of
the recovery credential and the recovery information rec.

Our solution can be instantiated with any suitable primitive that satisfies the
security requirements stated in the theorems. For example, SPHINCS+ could be
a viable signature choice due to its small key sizes, which would be beneficial
for the storage overhead at the relying parties, however, the recovery would take
longer than with other options. We leave the ideal tradeoff between storage and
computational costs as an open question for future work.
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proofs of a previous version of this work as well as the anonymous reviewers for their
valuable comments. Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - SFB 1119-236615297 and the German Federal Ministry of
Education and Research (BMBF) under reference 16KISQ074.

A Comparison to the Different Security Definitions

In the following, we review the security definitions of ARKG schemes as proposed
by Frymann et al. [7,8,10] and compare them to our proposed notions.

A.1 Key Security

Intuitively, key security formalizes the confidentiality of the derived secret keys
and assures that no party can learn the key without knowledge of the BAs
secret key. The notions by Frymann et al. [8] for key security are based on the
adversary’s inability to output an entire valid secret key sk� needed for account
recovery. We have depicted the strong and weak game description for SK-security
of [8] in the honest setting in Fig. 5.
3 We note that the pseudocode descriptions of Opk′ and Osk′ have not been given

before and thus correspond merely to our interpretation of the prose description. [8].
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ExpksARKG,A(λ):

1 pp ← Setup(1λ)

2 Lkeys, Lsk′ ← ∅
3 (pk0, sk0) ←$KGen(pp)

4 (pk�, sk�, rec�) ←$ AOpk′ , Osk′
(pp, pk0)

5 sk′ ← DeriveSK(pp, sk0, rec
�)

6 return �(pk�, rec�) ∈ Lkeys ∧ (̌pk�, sk�) = 1 ∧ (̌pk�, sk′) = 1 ∧ rec� /∈ Lsk′ �

Opk′(pp, pk0, ·) on input aux :

7 (pk′, rec) ←$DerivePK(pp, pk0, aux)

8 Lkeys ← Lkeys ∪ (pk′, rec)
9 return (pk′, rec)

Osk′(·) on input rec:

10 sk′ ← DeriveSK(pp, sk0, rec)

11 Lsk′ ← Lsk′ ∪ rec

12 if (·, rec) /∈ Lkeys : abort

13 return sk′

Fig. 5. SK-Security as defined in [8] (honest variants).3

Honest vs. Malicious Security. For this security definition, the term honest refers
to the first requirement in Line 6 in Fig. 5, which enforces that (pk�, rec�) must
be in Lkeys, i.e., that the tuple was honestly generated via DerivePK. This same
requirement is mirrored in our check that (pk′, aux ) ∈ Lkeys in Line 5 in Fig. 2.
In the malicious setting, this requirement is dropped, thus giving the adversary
more leeway. However, Frymann et al. themselves note in [7], that this may be
“too strong for many applications”.

Weak vs. Strong Security Frymann et al. have another dimension of security
in their definition, which they term weak and strong security, respectively. The
distinction is made along the presence of the highlighted oracle Osk′ in Line 4
and the highlighted condition rec� /∈ Lsk′ in Line 6 in Fig. 5. If it is present (the
strong setting), the adversary is required to output a valid secret key sk� for a
pair (pk′, rec�) for which it has not already learned a secret key via a query to
Osk′ . In the weak setting, the adversary may not learn derived secret keys.

Delineation. We argue that the formalization by Frymann et al. is inadequate
in the context of ARKG within FIDO2. An adversary that can output the triple
of values specified by the security game cannot complete a malicious account
recovery. In other words, a successful attacker against the security notions is
unable to mount an actual attack in the real world. This problem persists inde-
pendent of the weak/strong and honest/malicious definitions.

We find that this notion of security does not capture the real-world setting,
where an adversary is already successful if it can forge a signature during the
recovery process and thus gain access to the user’s account. Our AUTH-security
notion, which takes the place of key security, does not require the adversary to
output a valid secret key to win, it only requires that the adversary can sign the
challenge provided by the relying party during the recovery mechanism. Anal-
ogously to the relevant security results by Frymann et al., our definition aligns
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with their honest setting, since an adversary can only be considered successful
in account recovery if it can convince a relying party to successfully verify the
signature under the honestly generated public key it has stored as the recovery
credential for the user.

With regards to the strong vs. weak setting of Frymann et al. our AUTH-
security definition provides capabilities to an adversary roughly comparable to
the strong setting. The provided oracles correlate to the case, where there is
virtually unlimited access to the backup authenticator with all its capabilities,
except of course for trivial attacks. Such an attacker is very powerful and a
weaker notion could be defined, but as observed in Remark 3 relaxing the notion
would not ease any of the requirements for the underlying primitives.

A.2 Public-Key Unlinkability

The security notion of unlinkability has the goal of capturing an adversary’s
inability to identify multiple derived public keys belonging to the same backup
authenticator.

Figure 6 gives a complete pseudocode description of the so-called public-key
unlinkability as proposed by Frymann et al. [8]. Essentially, the adversary is
given the long-term public key pkBA of a backup authenticator and may then
receive key pairs, which, depending on a hidden bit b, are either derived from this
long-term public key or sampled independently from the key-pair distribution D.

ExppkuARKG(A):

1 pp ← Setup(1λ)

2 (pk0, sk0) ←$KGen(pp)

3 b ←$ {0, 1}
4 b′ ←$ AOb

pk′ (pp, pk0)

5 return �b = b′�

Ob
pk′(b, pkBA, skBA) with no input:

6 if b = 0

7 (pk′, rec) ←$DerivePK(pkBA, aux)

8 sk′ ← DeriveSK(skBA, rec)

9 else

10 (pk′, sk′) ←$D

11 return (pk′, sk′)

Fig. 6. Public-key unlinkability as defined in [8].4

Delineation. On its own, the definition by Frymann et al. makes sense to
formalize that derived public keys do not leak from which long-term public key
they were derived. However, one can show that an ARKG scheme that satisfies
public-key unlinkability under Frymann et al.’s definition can output trivially
linkable keys, which is also observed in [22] This is because the definition above
does not take into account the actual information an adversary has at its disposal.

During registration of derived public keys pk′, not only is pk′ sent over the
wire but also the credential information rec, which the relying party also sends
4 We note that the pseudocode description of Ob

pk′ has not been given before and thus
corresponds merely to our interpretation of the prose description. [8]. In particular,
it is underspecified how aux in Line 7 is chosen.
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back over an insecure channel when account recovery is triggered. This rec may
contain pkBA: there is nothing in the construction per se that forbids this. But
then public keys derived from this pkBA are all trivially linkable by the adversary.

We want to stress that the linkability is not always as easy to spot (or prevent)
as in this example. Especially in the (post-quantum) KEM setting it is not always
guaranteed that schemes that provide standard indistinguishably of ciphertexts
do not leak information on the public key for which the encapsulation took
place. As we show in our results, only KEMs that satisfy ANON-CCA security
do provide this guarantee and thus any KEM-based ARKG schemes must ensure
this property to provide unlinkability of derived public keys in the presence of
recovery information, which we term simply unlinkability.

We thus opted to define unlinkability as a game where the adversary gets
to see two long-term public keys pk0

BA and pk1
BA and can as a challenge derive

a public key and recovery information with auxiliary information of its choice.
Multiple queries would also be easily supported due to a hybrid argument. Fur-
thermore, the adversary may query recovery information of its choice (not the
challenge) and let the oracle derive the secret key either from sk0

BA or sk1
BA.

B Definitions

This appendix will introduce definitions for common building blocks used
throughout this work.

B.1 Key Encapsulation Mechanisms

A KEM scheme is a public key based scheme to generate and communicate a
shared secret over an unsecure channel. The primary use case for KEMs is key
establishment. KEMs are non-interactive, meaning only one party can contribute
randomness. The length of the key as well as the ciphertext are dependent on
the security parameter and can be expressed as Γ(λ) for the length of the key
and Θ(λ) for the length of the ciphertext. The receiving party cannot influence
on the key generation process and has to trust the generating party to use ade-
quate randomness. A key encapsulation scheme KEM consists of three algorithms
KEM = (KGen,Encaps,Decaps).

KGen is a probabilistic algorithm that takes the security parameter λ as
input and probabilistically outputs a key pair (pk, sk). Encaps is a probabilistic
algorithm and takes as input a public key pk, where pk ← KGen(1λ), and outputs
a key k as well as a ciphertext c. The ciphertext c encapsulates the key k. Decaps
is a deterministic algorithm and takes a secret key sk and a ciphertext c as input,
outputting either a key k or ⊥ to indicate failure.
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Definition 1 (Correctness of KEMschemes). A key encapsulation scheme
KEM = (KGen,Encaps,Decaps) is δ-correct, if for all (sk, pk) ←$KGen(1λ) we
have Pr [Decaps(sk, c) = k : (c, k) ←$Encaps(pk)] ≥ 1 − δ If δ = 0 holds, the
scheme is called perfectly correct.

The security of a KEM scheme is defined over the indistinguishability of
derived keys and random keys. A challenger is provided a triple (pk, c, kb),
where c is output by (c, k) ← Encaps(pk) and kb is either sampled uniformly as
{0, 1}Γ(λ) or the actual key, which was output by the encapsulation algorithm. A
challenger is successful if it can decide whether the given kb is randomly sampled
or generated by the encapsulation algorithm with non-negligible probability.

Definition 2 (IND-ATKsecurity of KEMschemes). Given the security game
in Fig. 7, a key encapsulation scheme KEM = (KGen,Encaps,Decaps) is
IND-ATK secure for ATK ∈ {CPA,CCA}, if the advantage

Advind-atk
KEM,A(λ) := Pr [Expind-atk

KEM,A(λ) = 1]

is negligible in the security parameter λ for any QPT adversary A.

An additional property some KEM schemes achieve is anonymity. Intuitively,
anonymity requires that the ciphertext obtained during encapsulation does not
leak any information on the public key used during the encapsulation operation.

Definition 3 (Anonymity of KEM Schemes) Given the security game in
Fig. 8, a key encapsulation scheme KEM, is ANON-ATK secure with ATK ∈
{CPA,CCA}, if the advantage

AdvANON-ATK
KEM,A (λ) := |Pr [ExpANON-ATK

KEM,A (λ) = 1] − 1
2
|

is negligible in the security parameter λ for any QPT adversary A.

Fig. 7. Game definition for IND-ATK security of key encapsulation mechanisms with
ATK ∈ {CPA, CCA}
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Fig. 8. Game definition for ANON-ATK anonymity of key encapsulation mechanisms
with ATK ∈ {CPA, CCA}

B.2 Digital Signatures

A digital signature scheme is a public-key scheme that can be used to generate
publicly verifiable signatures. It is defined as a triple of PPT algorithms Sig =
(KGen,Sign,Vrfy).

KGen takes as input the security parameter λ and outputs a key pair (pk, sk).
Sign takes as input a secret key sk and a message m, and computes a signature
σ on the message m. Vrfy is used to verify signatures. It takes as input a public
key pk, a signature σ, and a message m. The output is 1, if σ is a valid signature
for the message m under the public key pk, otherwise it returns 0.

Definition 4 A digital signature scheme Sig = (KGen,Sign,Vrfy) is correct,
if Pr [0 ← Vrfy(pk, σ,m) : (pk, sk) ←$KGen(1λ), σ ←$Sign(sk,m)] is negligible in
the security parameter λ.

Security of signature schemes is defined over the notion of unforgeability.
For the basic notion of existential unforgeability under chosen message attack
(EUF-CMA) we require an adversary with access to a signing oracle to be unable
to forge a signature for a message not previously queried to the oracle. This
notion is formalized in the following definition

Definition 5 (EUF-CMAsecurity of digital signature schemes) Given the
security game in Fig. 9, a digital signature scheme Sig = (KGen,Sign,Vrfy) is
EUF-CMA secure, if Adveuf-cma

Sig,A (λ) := Pr [Expeuf-cma
Sig,A (λ) = 1]is negligible in the

security parameter λ for any QPT adversaries A.

Fig. 9. Game definition for EUF-CMA security of signature schemes
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B.3 PRF Security

Definition 6 (PRF Security) Let F : {0, 1}κ(λ) × {0, 1}ι(λ) → {0, 1}ω(λ) be
an efficient keyed function with key length κ(λ), input length ι(λ) and output
length ω(λ). Given the security experiment in Fig. 10, a PRF is secure, if for all
QPT adversaries A the following holds Advprf

F,A(λ) := |Pr [Expprf
F,A(λ) = 1] − 1

2 |

Fig. 10. Game definition for PRF security of a function F
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