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Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,
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Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACR Distinguished Lecture
delivered by Paul Kocher and one invited talk, nominated and voted by the PC. The
invited speaker had not yet been determined when this preface was written. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Outstanding PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/
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Measure-Rewind-Extract: Tighter Proofs
of One-Way to Hiding and CCA Security
in the Quantum Random Oracle Model

Jiangxia Ge1,2 , Heming Liao1,2 , and Rui Xue1,2(B)

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences,

Beijing 100084, China
{gejiangxia,liaoheming,xuerui}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. The One-Way to Hiding (O2H) theorem, first given by Unruh
(J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a
crucial technique for solving the reprogramming problem in the quantum
random oracle model (QROM). It provides an upper bound d ·√ε for the
distinguisher’s advantage, where d is the query depth and ε denotes the
advantage of a one-wayness attacker. Later, in order to obtain a tighter
upper bound, Kuchta et al. (EUROCRYPT 2020) proposed the Measure-
Rewind-Measure (MRM) technique and then proved the Measure-Rewind-
Measure O2H (MRM-O2H) theorem, which provides the upper bound
d · ε. They also proposed an open question: Can we combine their MRM
technique with Ambainis et al.’s semi-classical oracle technique (CRYPTO
2019) or Zhandry’s compressed oracle technique (CRYPTO 2019) to prove
a new O2H theorem with an upper bound even tighter than d · ε?

In this paper, we give an affirmative answer for the above question.
We propose a new technique named Measure-Rewind-Extract (MRE) by
combining the MRM technique with the semi-classical oracle technique.
By using MRE technique, we prove the Measure-Rewind-Extract O2H
(MRE-O2H) theorem, which provides the upper bound

√
d · ε.

As an important application of our MRE-O2H theorem, for the FO/⊥,
FO/⊥

m, FO⊥ and FO⊥
m proposed by Hofheinz et al. (TCC 2017), i.e., the

key encapsulation mechanism (KEM) variants of the Fujisaki-Okamoto
transformation, we prove the following results in the QROM:

– Their IND-CCA security can be reduced to the IND-CPA security
of the underlying public key encryption (PKE) scheme without the
square-root advantage loss. In particular, compared with the IND-
CCA proof of FO/⊥ given by Kuchta et al. (EUROCRYPT 2020), ours
removes the injectivity assumption and has a tighter security bound.

– Under the assumption that the underlying PKE scheme is unique
randomness recoverable, we for the first time prove that their IND-
CCA security can be reduced to the OW-CPA security of the under-
lying PKE scheme without the square-root advantage loss.
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1 Introduction

The Fujisaki-Okamoto (FO) transformation [10] is used to construct a public key
encryption (PKE) scheme that is secure against the indistinguishability under
chosen-ciphertext attacks (IND-CCA) in the random oracle model (ROM) [3]. The
PKE scheme constructed by FO is based on a weakly secure PKE scheme, which
can only be secure against the indistinguishability under chosen-plaintext attacks
(IND-CPA) or the one-wayness under one-way attacks (OW-CPA). Compared to
directly constructing an IND-CCA-secure PKE scheme, it is considered easier and
more efficient to first construct an IND-CCA-secure key encapsulation mechanism
(KEM) scheme and then derive an IND-CCA-secure PKE scheme via the KEM-
DEM paradigm [6]. Following this fact, Dent [8] designed the first KEM variant of
FO, which can be used to construct IND-CCA-secure KEM schemes in the ROM.
Further, Hofheinz et al. [13] designed some KEM variants of FO including FO/⊥,
FO/⊥

m, FO⊥ and FO⊥
m. They proved that the KEM schemes constructed by these

variants are IND-CCA-secure in the ROM. Indeed, these variants are also called
the FO-like transformations, the /⊥ (resp. ⊥) indicates that the variant is implicit
(resp. explicit) rejection type, in which a pseudorandom value (resp. an abort
symbol ⊥) is returned if the ciphertext fails to decapsulate.

The FO-like transformations are widely adopted in the NIST post-quantum
cryptography standardisation process [26], and hence their post-quantum secu-
rity has received much attention. As argued by Boneh et al. [5], to fully assess
post-quantum security, the ROM should be lifted to the quantum random oracle
model (QROM). This means that having only ROM security proof of FO-like
transformations is not enough, and we also need QROM security proof.

Up to now, a long sequence of works [4,14,17,18,22,27] have provided the
QROM security proofs of FO-like transformations, they all focused on the widely
accepted IND-CCA security and gave different security bounds. Simultaneously,
all those works used the original One-Way to Hiding (O2H) theorem [1,28] (or
its variant) to solve the reprogramming problem in the QROM. Here the repro-
gramming problem can be described informally as follows.

• The reprogramming problem. To reprogram a random function G : X →
Y at a subset S ⊆ X is to replace G with a new function H, where H(x) is
resampled on x ∈ S and H(x) = G(x) on x /∈ S, i.e., G and H only differ on
S. The reprogramming problem is, for any distinguisher A making parallel
queries with depth d1, bound its distinguishing advantage

Adv(A) := |Pr[b = 1 : b ← AG] − Pr[b = 1 : b ← AH ]|. (1)

This problem is said to be in the QROM if A has quantum access to its oracle.

The original O2H theorem [1,28] designs a one-wayness attacker Bow, which has
oracle access to H and generates its output x by measuring A’s oracle query.
And Bow’s one-wayness advantage Adv(Bow) := Pr[x ∈ S : x ← BH

ow] satisfies
Adv(A) ≤ 2d ·

√
Adv(Bow), where d is the query depth of A.

1 See Supplementary Material A.1 of our full version [11] for more of parallel query.
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From the proof strategies of the long sequence of works [4,14,17,18,22,27],
one can find that the upper bound of Adv(A) influences the tightness of their
IND-CCA security proofs. Roughly speaking, the tighter the upper bound of
Adv(A), the tighter their IND-CCA security proofs. Since a tighter security proof
means more freedom in the parameter selection, many tighter O2H variants have
been proved and used in those long sequence of works, and three representative
variants are shown in Table 1. As we can see, these variants are all proved by
using some novel techniques and giving more “power” (i.e. oracle 1S or G) to
the one-wayness attacker Bow, and their upper bounds of Adv(A) are all indeed
tighter than the 2d ·

√
Adv(Bow) proved by the original O2H theorem [1,28].

Table 1. Three O2H variants. Here A makes parallel queries to its oracle with query
depth d. The |S| denotes the number of elements in set S. The 1S denotes the indicator
function of set S, i.e., 1S(x) = 1 if x ∈ S and 0 otherwise.

O2H theorem Proved by |S| Adv(A) ≤ Bow’s oracle

Original O2H [1,28] \ Arbitrary 2d ·
√

Adv(Bow) H

SC-O2H [1] semi-classical oracle
technique [1] Arbitrary 2

√
d · Adv(Bow) H and 1S

a

DS-O2H [4] compressed oracle
technique [31] One 2

√
Adv(Bow) H and G

MRM-O2Hb [22] Measure-Rewind-Measure
(MRM) technique [22] Arbitrary 4d · Adv(Bow) H and G

a The SC-O2H theorem actually requires that Bow has oracle access to H\S. Since H\S
can be implemented knowing H and 1S , we just write H and 1S here for simplicity.
b The MRM-O2H theorem additionally requires that the event used by A to distinguish
G and H is efficiently checkable by itself. In fact, as shown in Eq. (1), the distinguisher
A considered in our paper uses the event b = 1 to distinguish G and H, which must
be efficiently checkable by A. So we omit this requirement in this table for simplicity.

Although the three O2H variants shown in Table 1 all have tighter upper
bounds, there are extra restrictions during their application, respectively. In
more detail, the SC-O2H theorem needs the Bow to have oracle access to both H
and 1S , which means that when we try to use Bow to attack the underlying hard
problem, we need to find a way to simulate the additional 1S for Bow. In order
to achieve this, it seems that we need to clearly know the set S or at least some
values related to S2. For the DS-O2H and MRM-O2H theorem, the situation is
even worse, as their Bow even requires oracle access to both H and G. Indeed,
since G and H only differ on the set S, requiring oracle access to both H and G
seems stronger than to H and 1S , in the way that one can determine whether
x ∈ S by testing if G(x) = H(x).

2 E.g. S = {w} and we can get f(w), where f is a public one-way injective function.
At this point, we can compute 1S(x) as: 1S(x) = 1 if f(x) = f(w) and 0 otherwise.
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Fortunately, these restrictions of Bow are not completely unattainable, at
least they can be achieved when proving the IND-CCA security of FO-like trans-
formations in the QROM. Roughly speaking, in the security proof, due to the
special properties of the underlying PKE scheme and the structure of FO-like
transformations, one can successfully simulate (H and 1S)/(H and G) for Bow.
In fact, the (QROM) IND-CCA security proof of FO/⊥ provided by Kuchta et al.
[22] is done in that way: firstly use the MRM-O2H theorem to obtain the corre-
sponding Bow, then simulate H and G for Bow, and finally use Bow to attack the
OW-CPA security of the underlying PKE scheme. One thing we would like to
stress is that, since the upper bound provided by the MRM-O2H theorem avoids
the square-root advantage loss (see Table 1), Kuchta et al.’s security proof also
avoids the square-root advantage loss.

In short, after the long sequence of works [4,14,17,18,22,27], a tighter O2H
theorem seems necessary if we want to give tighter QROM security proofs of the
FO-like transformations. However, it is quite challenging to prove a tighter O2H
theorem, Kuchta et al. also proposed the following question in [22]:

Can we combine their MRM technique with the semi-classical oracle technique or
the compressed oracle technique to prove a new O2H theorem that is tighter

than their MRM-O2H theorem? And can we use this new O2H theorem to give
tighter IND-CCA security proofs of the FO-like transformations in the QROM?

1.1 Our Contribution

Our answer to the above question is yes. We propose a new technique named

Measure-Rewind-Extract (MRE)

by combining the MRM technique with the semi-classical oracle technique. Then,
by using our MRE technique, we prove a new O2H theorem (Theorem 4) named

Measure-Rewind-Extract O2H (MRE-O2H).

It shows that Adv(A) ≤ 4
√

d · Adv(Bow), where d is A’s query depth and Bow
has oracle access to H,G and 1S . Note that this upper bound is tighter than the
4d · Adv(Bow) proved by the MRM-O2H theorem (see Table 1).

Remark 1. Compared with the MRM-O2H theorem, which only requires that
Bow has oracle access to H and G, our MRE-O2H theorem additionally requires
the oracle access to 1S . In fact, this additional requirement is not essential,
as we can simulate 1S by querying H and G: 1S(x) = 1 if H(x) 	= G(x) and 0
otherwise. Intuitively speaking, this simulation is not problematic because G and
H only differ on the set S. Here we point out that our MRE-O2H theorem still
remains 1S because directly providing 1S would make the proof of this theorem
more concise and understandable. For completeness, in Supplementary Material
B of our full version [11], we (roughly) show that every previous work using
the MRM-O2H theorem also works with our MRE-O2H theorem. Therefore,
compared with the MRM-O2H theorem, there seems to be no more restrictions
on the applicability of our MRE-O2H theorem.
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In addition, by using our MRE-O2H theorem, we give tighter IND-CCA secu-
rity proofs of the FO-like transformations FO/⊥, FO/⊥

m, FO⊥ and FO⊥
m in the

QROM, and the detailed security bounds are shown in Table 2.

Table 2. Security bounds of FO-like transformations in the QROM. Here q is the total
number of queries to random oracles, d is the query depth of random oracles, and qD
is the total number of queries to the decapsulation oracle. The “Assumption” column
shows the property that needs to be satisfied by the underlying PKE scheme. δ and ε
respectively represent the correctness error and the security bound of the underlying
PKE scheme. Here we abbreviate unique randomness recoverable as URR for simplicity.

Transformation Underlying
security Assumption Achieved

security Security bound

FO
/⊥,FO

/⊥
m [19] IND-CPA \ IND-CCA

√
q · ε + q ·

√
δ

FO
/⊥ [22] IND-CPA η-injective IND-CCA d2 · ε + dq · δ + q

√
η

FO⊥
m [16] IND-CPA γ-spread IND-CCA

√
(d + qD) · ε + q2 · δ + qqD ·

√
2−γ

FO
/⊥,FO

/⊥
m Corollary 1 IND-CPA \ IND-CCA d1.5 · ε + q2 · δ

FO⊥,FO⊥
m Corollary 2 IND-CPA γ-spread IND-CCA (d + qD)1.5 · ε + q ·

√
δ + qD ·

√
2−γ

FO
/⊥,FO

/⊥
m Corollary 1 OW-CPA URR IND-CCA d0.5 · ε + q2 · δ

FO⊥,FO⊥
m Corollary 2 OW-CPA URR IND-CCA (d + qD)0.5 · ε + q ·

√
δ

In more detail, our IND-CCA security proofs all avoid the square-root advan-
tage loss incurred in [16,19]. For the FO

/⊥, when the underlying security is IND-
CPA, our security proof removes the η-injective assumption used in [22] and
achieves a tighter security bound. Moreover, we for the first time prove that
the IND-CCA security of FO/⊥, FO/⊥

m, FO⊥ and FO⊥
m can be reduced to the OW-

CPA security of the underlying PKE scheme without the square-root advantage
loss. At this point, we introduce an additional assumption of unique randomness
recoverable. Roughly speaking, for a public key pk, a plaintext m and a ciphertext
c, this assumption assumes that there exists an efficient algorithm Rec such that
Rec(pk,m, c) = r and the encryption of m with the randomness r is exactly c.

Remark 2. As shown in Table 2, compared with [16,19], although our bounds
avoid the square-root advantage loss, the loss related to the query times still
exists. For example, if the underlying security is IND-CPA and d = q (i.e.
each parallel invoking only makes one query), the security bound of FO/⊥, FO/⊥

m

achieved in [19] is
√

q · ε while ours is d1.5ε = q1.5ε (Corollary 1). At this point,
it seems that determining which bound is tighter depends on the actual query
times and the concrete underlying problem. Nevertheless, for the massively par-
allelized attacks, which have low query depth and are the typical methods to
deal with high computation costs in practical cryptanalyses, our bound d1.5ε is
nearly tight.
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1.2 Technique Overview

In this section, for the sake of clarity and understandability, we explain our
technique by the following three steps:

• We first introduce a simple distinguisher A as an example and define some
notations that will be used in later explanations.

• Then, based on A, we give a high-level explanation of our Measure-Rewind-
Extract (MRE) technique and how we used it to prove our MRE-O2H theorem.

• Finally, we explain how we use the MRE-O2H theorem to give tighter IND-
CCA security proofs of the FO-like transformations in the QROM.

A Simple Distinguisher with Query Depth 2. Recall that G,H : X → Y
are random functions such that G(x) = H(x) for all x /∈ S. For the sake of
simplicity, we let S = {m∗ ∈ X} in the following analysis. That is, there is only
one point m∗ where G and H differ.

Consider the following simple distinguisher AO (O ∈ {G,H}) that is aimed
to distinguish whether O is G or H:

AG : MA ◦ U2OGU1OG|ψ〉, AH : MA ◦ U2OHU1OH |ψ〉.

Here |ψ〉 is the initial state of A, U1 and U2 are the unitary operations performed
by A between its oracle queries OG/OH , where OG|x, y〉 = |x, y ⊕ G(x)〉 and
OH |x, y〉 = |x, y ⊕ H(x)〉. MA := {MA

0 ,MA
1 } is the final projective measurement

performed by A, and its measurement result b (0 or 1) is A’s final output. Indeed,
AO considered here is a unitary quantum oracle algorithm that makes parallel
queries to O with query depth 2 and query width 13.

Before giving our explanation, we first perform some pretreatment. Define
two states

|ψH〉 := U2OHU1OH |ψ〉 and |ψG〉 := U2OGU1OG|ψ〉.

Then, the distinguishing advantage of A can be computed as follows.

Adv(A) =
∣∣Pr[b = 1 : b ← AH ] − Pr[b = 1 : b ← AG]

∣∣

=
∣∣‖MA

1 |ψH〉‖2 − ‖MA
1 |ψG〉‖2

∣∣

≤
∣∣(MA

1 (|ψH〉 − |ψG〉),MA
1 (|ψH〉 + |ψG〉)

)∣∣ (By Lemma 3)

=
∣∣
∣
(
|ψH〉 − |ψG〉,

(
MA

1

)†
MA

1 (|ψH〉 + |ψG〉)
)∣∣
∣

(
Basic property

of inner product

)

=
∣∣(|ψH〉 − |ψG〉,MA

1 (|ψH〉 + |ψG〉)
)∣∣ .

(
MA

1 is hermitian
and idempotent

)

(2)
Let Mm∗ := |m∗〉〈m∗| be a projector on the oracle’s input register, and let I
denotes the identity operator.
3 See Supplementary Material A.1 of our full version [11] for the introduction of unitary

quantum oracle algorithm and parallel query.
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High-Level Explanation of Our MRE Technique. Essentially, in order to
compute the upper bound of Adv(A), our MRE technique performs the following
three steps:
• MRE-Step-1: In this step, we use the projector Mm∗ = |m∗〉〈m∗| to divide
the state |ψH〉 − |ψG〉. For the state |ψH〉, we have

|ψH〉 = U2OHU1OH |ψ〉
= U2OH(Mm∗ + I − Mm∗)U1OH |ψ〉
= U2OHMm∗U1OH |ψ〉 +U2OH(I − Mm∗)U1OH |ψ〉
= U2OHMm∗U1OH |ψ〉 +U2OH(I − Mm∗)U1OH(Mm∗ + I − Mm∗)|ψ〉
= U2OHMm∗U1OH |ψ〉 +U2OH(I − Mm∗)U1OHMm∗ |ψ〉

+U2OH(I − Mm∗)U1OH(I − Mm∗)|ψ〉.

One can see that the main idea of the above partition is to sequentially insert
(Mm∗ +I−Mm∗) before the query OH , and then divide the entire state into two
parts “· · ·Mm∗ · · · |ψ〉” and “ · · · (I−Mm∗) · · · |ψ〉” by the distributive law. For the
first part, we keep it unchanged, and for the second part, we divide it again by
inserting (Mm∗ +I−Mm∗) before the another query OH . Similarly, for the state
|ψG〉, we have

|ψG〉 = U2OGMm∗U1OG|ψ〉 +U2OG(I − Mm∗)U1OGMm∗ |ψ〉
+U2OG(I − Mm∗)U1OG(I − Mm∗)|ψ〉.

Since G and H only differ on the set S = {m∗}, the operation OG(I−Mm∗)
must be identical with the operation OH(I − Mm∗). Based on this property,

|ψH〉 − |ψG〉 = U2OHMm∗U1OH |ψ〉 +U2OH(I − Mm∗)U1OHMm∗ |ψ〉
+U2OH(I − Mm∗)U1OH(I − Mm∗)|ψ〉

− U2OGMm∗U1OG|ψ〉 − U2OG(I − Mm∗)U1OGMm∗ |ψ〉
− U2OG(I − Mm∗)U1OG(I − Mm∗)|ψ〉

= U2OHMm∗U1OH |ψ〉 − U2OGMm∗U1OG|ψ〉
+U2OH(I − Mm∗)U1OHMm∗ |ψ〉 − U2OG(I − Mm∗)U1OGMm∗ |ψ〉

= U2 (OHMm∗U1OH |ψ〉 − OGMm∗U1OG|ψ〉)
+ U2OH(I − Mm∗)U1 (OHMm∗ |ψ〉 − OGMm∗ |ψ〉)

(a)
= U2Mm∗ (OHU1OH |ψ〉 − OGU1OG|ψ〉)
+ U2OH(I − Mm∗)U1Mm∗ (OH |ψ〉 − OG|ψ〉) .

Here (a) uses the fact that OG and OH commute with Mm∗ , which is obvious
since OG and OH do not change the state on the oracle’s input register.

• MRE-Step-2: Define two states |ψ1〉 := OHU1OH |ψ〉 − OGU1OG|ψ〉 and
|ψ0〉 := OH |ψ〉 − OG|ψ〉. One can see that the first step of our MRE technique
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actually shows that |ψH〉 − |ψG〉 = U2Mm∗ |ψ1〉 + U2OH(I − Mm∗)U1Mm∗ |ψ0〉.
Combine this equation with Eq. (2), we get

Adv(A) =
∣
∣(|ψH〉 − |ψG〉,MA

1 (|ψH〉 + |ψG〉)
)∣∣

=

∣∣∣∣∣

(
U2Mm∗ |ψ1〉,MA

1 (|ψH〉 + |ψG〉)
)

+
(
U2OH(I − Mm∗)U1Mm∗ |ψ0〉,MA

1 (|ψH〉 + |ψG〉)
)

∣∣∣∣∣

(a)
=

∣
∣∣∣∣

(
Mm∗ |ψ1〉,Mm∗(U2)†MA

1 (|ψH〉 + |ψG〉)
)

+
(
Mm∗ |ψ0〉,Mm∗(U1)†(I − Mm∗)OH(U2)†MA

1 (|ψH〉 + |ψG〉)
)

∣
∣∣∣∣
.

Here (a) follows from the basic property of inner product and the fact that Mm∗

is hermitian and idempotent.
Then, by applying Lemma 4, which guarantees that |(|α〉, |β〉) + (|γ〉, |δ〉)| ≤√

‖|α〉‖2 + ‖|γ〉‖2 ·
√

‖|β〉‖2 + ‖|δ〉‖2 for any states |α〉, |β〉, |γ〉, |δ〉, we rewrite
Adv(A) shown in the above equation into

Adv(A) ≤
√

‖Mm∗ |ψ1〉‖2 + ‖Mm∗ |ψ0〉‖2

·

√√√√
∥
∥Mm∗(U2)†MA

1 (|ψH + |ψG〉)
∥
∥2

+
∥
∥Mm∗(U1)†(I − Mm∗)OH(U2)†MA

1 (|ψH〉 + |ψG〉)
∥
∥2

.

(a)
=

√
‖Mm∗ |ψ1〉‖2 + ‖Mm∗ |ψ0〉‖2

·

√√√√
∥
∥Mm∗OH(U2)†MA

1 (|ψH〉 + |ψG〉)
∥
∥2

+
∥∥Mm∗OH(U1)†(I − Mm∗)OH(U2)†MA

1 (|ψH〉 + |ψG〉)
∥∥2

.

(3)

Here (a) uses the fact that OH is a unitary operation and it commutes with
Mm∗ .

• MRE-Step-3: Here, we will relate the above two sum of square norms with
the success probabilities of two one-wayness attackers, that is, Eq. (4) and Eq.
(5). For the ‖Mm∗ |ψ1〉‖2 + ‖Mm∗ |ψ0〉‖2, by the superposition oracle trick4 given
in [4], we can construct two one-wayness attackers B1 and B2 such that

4 · Pr[m∗ ← BG,H
1 ] = ‖Mm∗ |ψ1〉‖2 = ‖Mm∗(OHU1OH |ψ〉 − OGU1OG|ψ〉)‖2,

4 · Pr[m∗ ← BG,H
2 ] = ‖Mm∗ |ψ0〉‖2 = ‖Mm∗(OH |ψ〉 − OG|ψ〉)‖2.

Note that there is an extra constant factor “4” due to the using of superposition
oracle trick. Now we can merge B1 and B2 into B3, which uniformly chooses i
from {1, 2}, runs Bi and outputs its final output. Obviously, Pr[m∗ ← BG,H

3 ] is
equal to 1/2 · Pr[m∗ ← BG,H

1 ] + 1/2 · Pr[m∗ ← BG,H
2 ]. Hence we obtain

4 · 2 · Pr[m∗ ← BG,H
3 ] = ‖Mm∗ |ψ1〉‖2 + ‖Mm∗ |ψ0〉‖2. (4)

4 Roughly speaking, this trick first performs OG,H := (OH ⊗ |+〉〈+|)+ (OG ⊗ |−〉〈−|)
on |ψ〉|0〉 to obtain the state 1/2(OH |ψ〉 −OG|ψ〉)|1〉+1/2(OH |ψ〉+OG|ψ〉)|0〉, and
then measures the last qubit with the desired measurement result 1, which makes
the whole state to collapse into OH |ψ〉 − OG|ψ〉 (non-normalized).
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For the another sum of the square norms ‖Mm∗OH(U2)†MA
1 (|ψH〉+|ψG〉)‖2+

‖Mm∗OH(U1)†(I − Mm∗)OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2, we first define a one-

wayness attacker as:

BG,H,1S
4 : Given oracle access to G, H and 1S , it works as follows. Here 1S is the

indicator function of S = {m∗}, that is, 1S(x) = 1 if x = m∗ and 0 otherwise.

1. Prepare |ψH〉 + |ψG〉 by using the superposition oracle trick [4].
2. Perform the measurement MA = {MA

0 ,MA
1 } with the desired measurement

result 1, if the measurement result is 0, abort and output ⊥.
3. Apply OH(U2)†, then perform projective measurement Mm∗ := {χ0, χ1} on

the oracle’s input register by querying 1S . Here χ0 = I−Mm∗ and χ1 = Mm∗5.
(a) If the measurement result is 1, measure the oracle’s input register to get

m∗, then abort and output m∗.
(b) If the measurement result is 0, apply OH(U1)† and then perform the

measurement Mm∗ on the oracle’s input register again.
i. If the second measurement Mm∗ has measurement result 1, measure

the oracle’s input register to get m∗, then abort and output m∗. Oth-
erwise, abort and output ⊥.

Let E1 be the classical event that the measurement MA has result 1 and the
next first measurement Mm∗ also has result 1. Let E2 be the classical event that
the measurement MA has result 1, then the first measurement Mm∗ has result
0 and the next second measurement Mm∗ has result 1.

At this point, we have a crucial observation that events E1 and E2 are mutu-
ally exclusive and

‖Mm∗OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2 = 4 · Pr[E1 : BG,H,1S

4 ],

‖Mm∗OH(U1)†(I − Mm∗)OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2 = 4 · Pr[E2 : BG,H,1S

4 ].

Here we have an extra constant factor “4” since our B4 uses the superposition ora-
cle trick. Indeed, by the definition, E1 and E2 are obviously mutually exclusive.
For the ‖Mm∗OH(U2)†MA

1 (|ψH〉+ |ψG〉)‖2, the MA
1 and Mm∗ actually represent

that the measurement MA and the first measurement Mm∗ both have result 1,
i.e. E1 occurs. For the ‖Mm∗OH(U1)†(I−Mm∗)OH(U2)†MA

1 (|ψH〉+ |ψG〉)‖2, the
MA

1 represents that the measurement MA has result 1, the subsequent (I−Mm∗)
represents that the first measurement Mm∗ has result 0, and the final Mm∗ rep-
resents that the second measurement Mm∗ has result 1, i.e. E2 occurs. Conse-
quently, we can compute

5 Roughly speaking, to perform {I−Mm∗ ,Mm∗} on a state |φ〉 := ∑
x,y |x, y〉, we first

query the oracle 1S to obtain
∑

y |m∗, y〉|1〉 + ∑
x �=m∗,y |x, y〉|0〉, and then measure

the last qubit. If the measurement result is 1, the state |φ〉 collapses into Mm∗ |φ〉 =∑
y |m∗, y〉(non-normalized), and we can further measure the first register to get m∗.
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4 · Pr[m∗ ← BG,H,1S
4 ]

(a)
= 4 · Pr[E1 ∨ E2 : BG,H,1S

4 ]
(b)
= 4 · Pr[E1 : BG,H,1S

4 ] + 4 · Pr[E2 : BG,H,1S
4 ]

= ‖Mm∗OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2+

‖Mm∗OH(U1)†(I − Mm∗)OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2.

(5)

Here (a) follows from the definition of our one-wayness attacker B4, (b) uses the
fact that events E1 and E2 are mutually exclusive. Now, by Eq. (4) and Eq. (5),
we can rewrite the Adv(A) shown in Eq. (3) into

Adv(A) ≤
√
4 · 2 · Pr[m∗ ← BG,H

3 ] ·
√
4 · Pr[m∗ ← BG,H,1S

4 ].

Let B be a one-wayness attacker that runs both B3 and B4, outputs m∗ if
either of these two outputs m∗, and outputs ⊥ otherwise. Obviously, we have
max{Pr[m∗ ← BG,H

3 ],Pr[m∗ ← BG,H,1S
4 ]} ≤ Pr[m∗ ← BG,H,1S ], thus

Adv(A) ≤ 4 ·
√
2 · Pr[m∗ ← BG,H,1S ].

That is to say, for the distinguisher A with query depth d = 2, our MRE technique
provides an upper bound of Adv(A) as 4 ·

√
d · Adv(B), where Adv(B) is the

probability that BG,H,1S successfully finds an element in S = {m∗}.
Note that B4 constructed above has a special structure that first measures

(i.e. performs MA), then rewinds and extracts (i.e. performs rewinding oper-
ations OH(U2)†, OH(U1)† and measurement Mm∗ to extract m∗). The same
structure is inherited by the final B since it directly runs B4. Actually, that is
precisely why we call our technique described above the Measure-Rewind-Extract
(MRE) technique. In addition, when describing our contribution in Sect. 1.1, we
mentioned that MRE technique is a combination of the MRM technique [22] and
the semi-classical oracle technique [1]. Here, we explain this statement.

• Firstly, our MRE technique follows the framework of MRM technique, which
first divides the state |ψH〉 − |ψG〉, then rewrites Adv(A) into a product of
some square norms like Eq. (3), and finally designs a one-wayness attacker
B based on these square norms such that Adv(A) can be upper bounded by
utilizing Adv(B). However, different from the MRM technique which uses a
hybrid argument to divide |ψH〉−|ψG〉, our MRE technique uses the projector
Mm∗ to directly divide |ψH〉 − |ψG〉. Note that in the MRM technique, it is
this hybrid argument that inevitably introduce a loss of query depth d.

• Secondly, due to using Mm∗ to divide |ψH〉−|ψG〉, we have to construct a one-
wayness attacker that performs Mm∗ on the oracle’s input register, aiming at
extracting m∗ from A’s oracle query. In fact, Mm∗ is the “semi-classical oracle
OSC

{m∗}” designed in [1], and the core idea of semi-classical oracle technique is
exactly to extract m∗ from A’s oracle query by performing OSC

{m∗} (i.e. Mm∗).

Hence, our MRE technique can be viewed as a combination of the MRM technique
[22] and the semi-classical oracle technique [1].



Measure-Rewind-Extract 13

Remark 3 (Concern about the measurement Mm∗). Roughly speaking, by using
the semi-classical oracle technique, [1] constructed a one-wayness attacker B and
proved that |Pr[1 ← AO] − Pr[1 ← AO\S ]| ≤

√
O(d) · Adv(B). In our setting,

O\S actually the oracle that first performs the measurement Mm∗ on the ora-
cle’s input register and then queries O. So this inequality shows that using Mm∗

to measure A’s oracle query will disrupt A’s computation, resulting in a prob-
ability difference of

√
O(d) · Adv(B). Note that our one-wayness attacker B4

constructed above rewound A and performed Mm∗ , so one might be concerned
that B4 disrupts A’s computation and hence will inevitably introduce a loss of√

O(d) · Adv(B). Here, we emphasize that we do not have to concern about this.

• Firstly, our construction of B4 does not directly convert AO into AO\S .
It first runs AO, performs AO’s final measurement and then rewinds AO,
and the measurement Mm∗ (or O\S, intuitively speaking) is only performed
during the rewinding. So the inequality |Pr[1 ← AO] − Pr[1 ← AO\S ]| ≤√

O(d) · Adv(B) cannot be directly applied.
• Secondly, what our MRE technique does is, first derive the value

p :=‖Mm∗OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2+

‖Mm∗OH(U1)†(I − Mm∗)OH(U2)†MA
1 (|ψH〉 + |ψG〉)‖2,

then construct B4 and clearly prove that its success probability Pr[m∗ ←
B4] equals to 1/4 · p (i.e. Eq. (5)), and finally use this property to prove
Adv(A) ≤ 4 ·

√
d · Adv(B). That is to say, for our B4, we actually do not

care about the “probability difference” between AO calculated by B4 and the
original AO, but only focus on whether its success probability Pr[m∗ ← B4]
equals to 1/4 ·p. In fact, in Eq. (5), we have clearly calculated that the success
probability Pr[m∗ ← B4] of B4 is equal to 1/4 · p, and this calculation, which
only utilizes the structure of B4 and some basic quantum computation, is
actually independent of whether Mm∗ disrupts A’s computation.

Therefore, for our MRE technique, we do not have to concern about performing
measurement Mm∗ introducing an additional loss of

√
O(d) · Adv(B).

Use MRE Technique to Prove Our MRE-O2H Theorem. Although the
above explanation of the MRE technique only considers the case where the query
depth d is 2, we can directly lift it through induction to account for the case with
arbitrary query depth d. Hence, the above explanation of the MRE technique has
proved the following fixed version of MRE-O2H theorem.

Theorem 1 (Fixed O2H with MRE, informal). For a fixed tuple (G,H, S)
and a quantum distinguisher A that makes parallel queries with query depth d,
we can construct a quantum one-wayness attacker BG,H,1S such that

|Pr[b = 1 : b ← AG] − Pr[b = 1 : b ← AH ]| ≤ 4 ·
√

d · Adv(B). (6)

Here Adv(B) is the probability that BG,H,1S successfully finds an element in S.
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For the random version, where (G,H, S) is sampled from an arbitrary joint
distribution D, we can prove it by averaging over (G,H, S) ← D in Eq. (6).

QROM Security Proofs of FO-Like Transformations. Note that [4, Theo-
rem 5] has shown that FO/⊥ (resp. FO⊥) is as secure as FO/⊥

m (resp. FO⊥
m) and vice

versa. Hence, in our paper, for the FO-like transformations FO/⊥, FO/⊥
m, FO⊥ and

FO⊥
m, we only consider the IND-CCA security of FO/⊥ and FO⊥

m in the QROM.
Our proof outline is shown in Fig. 1. In this outline, we utilize the property

that FO/⊥ = U/⊥ ◦ T and FO⊥
m = U⊥

m ◦ T introduced in [13]. Here, T transforms
a randomized PKE (rPKE) scheme into a deterministic PKE (dPKE) scheme,
U/⊥ and U⊥

m both transform a dPKE scheme into a KEM scheme.

Fig. 1. Proof outline of FO/⊥ and FO⊥
m in the QROM. All the security proofs shown

in this outline avoid the square-root advantage loss. The double arrow indicates a
tight security proof, while the single arrow indicates a non-tight security proof. In this
outline, we abbreviate unique randomness recoverable as URR for the sake of simplicity.

As shown in Fig. 1, by using the DS-O2H theorem [4], we prove that T can
tightly transform a OW-CPA-secure and unique randomness recoverable rPKE
scheme into a OW-CPA-secure dPKE scheme in the QROM. Based on this proof,
we give an IND-CCA security proof of FO/⊥ and FO⊥

m from the OW-CPA security,
while avoiding the square-root advantage loss.

In addition, we emphasize that our security proof of U/⊥ shown in Fig. 1
(i.e. Theorem 6) does not rely on the η-injective assumption used in [22]. Our
observation is that, it is not necessary to require the encryption algorithm dEnc
of the underlying dPKE scheme to be nearly injective, we can only need dEnc
to satisfy the following weaker property:

For a m∗ uniformly sampled from the message space and (pk, sk) generated by
the key generation algorithm, there does not exist m 	= m∗ such that

dEncpk(m) = dEncpk(m∗).

Indeed, according to [23, Lemma 4], the probability that the underlying dPKE
scheme of U/⊥ does not satisfy this property is negligible. Hence, we can remove
the η-injective assumption in our security proof of U/⊥.
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1.3 Related Work

There are also some O2H variants that involve Zhandry’s compressed oracle tech-
nique [31]. For example, the [7, Theorem 10], the [21, Theorem C.5], the [14,
Theorem 6] and the [12, Theorem 1]. Intuitively speaking, these O2H variants
are all obtained by generalizing the SC-O2H theorem [1] to work with the com-
pressed oracle technique. However, they all have a drawback: their final upper
bound suffers from the square-root advantage loss.

We note that in [27,29], the authors proved that the IND-CCA security of
the transformation SXY (also known as U/⊥

m) can be tightly reduced to the DS-
IND security of the underlying dPKE scheme in the QROM, where DS-IND
is a non-standard security assumption. Indeed, although they provided a tight
QROM security proof of U/⊥

m, which is used to construct the FO-like transfor-
mation FO

/⊥
m(= U/⊥

m ◦ T) [13], the cost is that they used a non-standard security
assumption and the underlying PKE scheme is restricted to a dPKE scheme.

In our QROM security proofs of the FO-like transformations, when the
security of the underlying PKE scheme is OW-CPA, we introduce an addition
assumption named unique randomness recoverable. This assumption is actually
a stronger variant of the assumption named randomness recoverable, which, as
far as we know, was first introduced in [9,24] to achieve a tight ROM security
proof of the transformation T. According to the definition of unique randomness
recoverable given in Definition 6 of our full version [11], we find that it is not
a security assumption but just a constraint on the encryption algorithm. Mean-
while, we find that the NTRU-based PKE schemes generally satisfy the assump-
tion of unique randomness recoverable, and we also provide a rough explanation
in Supplementary Material C of our full version [11] for completeness.

In a concurrent work, under the assumption that the underlying PKE scheme
is unique randomness recoverable, Bao et al. [2] introduced a variant of the DS-
O2H theorem [4] and then used it to give a tight security proof of T in the
QROM. Their security bound 4 · ε is even tighter than the security bound 10 · ε
achieved by our security proof of T (Lemma 8) in the QROM. Here ε is the
security bound of the underlying PKE scheme.

2 Preliminaries

2.1 Notation

By [[x = y]] we denote a bit that is 1 if x = y and otherwise 0. For a finite
set S, x

$←− S denotes that x is an element uniformly sampled from set S. For
a distribution D, x ← D denotes that x is chosen according to distribution
D. For a game G in the security proof, 1 ← G denotes that G finally returns
1. Pr [A : B,C] (or PrC [A : B], PrB,C [A] for short) is the probability that the
predicate A keeps true where all variables in A are conditioned according to
predicates B and C. For an algorithm A, we use TA to denote its running time.
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2.2 Quantum Background

We refer to [25] for detailed basics of quantum computation.

2.3 Quantum Random Oracle Model

The random oracle model (ROM) is an ideal model in which a uniformly ran-
dom function H is selected, and all parties have access to H. In real schemes, the
random oracle is implemented using a suitable hash function. In the quantum set-
ting, the ROM should be lifted into the quantum random oracle model (QROM)
[5], where all parties have quantum access to the random oracle. In the QROM,
we take the random oracle H as a unitary operation OH : |x, y〉 �→ |x, y ⊕H(x)〉.

Here, we state the following two lemmas that are used throughout this paper.

Lemma 1 (Simulate the QROM [30, Theorem 6.1]). Let O be a random
oracle, H be a function uniformly sampled from the set of 2q-wise independent
functions. For any algorithm A that makes at most q quantum queries, we have

Pr[b = 1 : b ← AH ] = Pr[b = 1 : b ← AO].

Remark 4. This lemma shows that we can use a 2q-wise independent function
to perfectly simulate a quantum accessible random oracle with query bound q.
Indeed, as stated in [27, Section 2.2], this simulation has an O(q2) running time
increase since it has to compute a 2q-wise independent function for each query.

Lemma 2 (Generic quantum distinguishing problem with bounded
probabilities [15, Lemma 2.9]). Let δ ∈ [0, 1] and M be a finite set. Let
N1 : M → {0, 1} be a random function such that, for each m ∈ M, N1(m) = 1
with probability δm (δm ≤ δ), and N1(m) = 0 with probability 1 − δm. Let
N2 : M → {0, 1} be a constant function such that N2(m) = 0 for all m ∈ M.
For any algorithm A that makes at most q quantum queries, we have

∣∣Pr
[
b = 1 : b ← AN1

]
− Pr

[
b = 1 : b ← AN2

]∣∣ ≤ 8(q + 1)2 · δ.

Now, we recall the Measure-Rewind-Measure One-Way to Hiding (MRM-
O2H) theorem introduced in [22].
Theorem 2 (MRM-O2H [22, Lemma 3.3]). Let G,H : X → Y be random
functions, S ⊆ X be a random set and z ∈ Z be a random bitstring. The tuple
(G,H, S, z) may have arbitrary joint distribution D and satisfies that ∀x /∈ S,
G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm that makes
parallel queries with query depth d and query width n. Define

Pleft := Pr
(G,H,S,z)←D

[b = 1 : b ← AH(z)], Pright := Pr
(G,H,S,z)←D

[b = 1 : b ← AG(z)].

Then, we can construct an algorithm DG,H(z) such that

– Let Adv(D) := Pr
[
TD ∩ S 	= ∅ : TD ← DG,H(z), (G,H, S, z) ← D

]
, then

|Pleft − Pright| ≤ 4d · Adv(D).

– DG,H(z) makes parallel queries to G and H both with query depth at most 3d
and query width n. Its running time can be bounded as TD � 3 · TA.
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3 O2H with Measure-Rewind-Extract (MRE)

In this section, we focus on the tuple (G,H, S, z), where G,H are functions with
domain X and codomain Y , S is a subset of X and G,H, S satisfy that ∀x /∈ S,
G(x) = H(x), z ∈ Z is a bitstring that can depend on G,H, S. Let 1S denote
the indicator function of the set S, that is, 1S(x) = 1 if x ∈ S and 0 otherwise.

Here we introduce the following two lemmas that will be used later, and their
proofs can be found in Supplementary Material A.3 of our full version [11].

Lemma 3 ([22, Lemma 3.1]). For any states |φ1〉 and |φ2〉, we have
∣
∣‖|φ1〉‖2 − ‖|φ2〉‖2

∣
∣ ≤ |(|φ1〉 − |φ2〉, |φ1〉 + |φ2〉)|.

Lemma 4. For any states |ϕ1〉, . . . , |ϕn〉 and |φ1〉, . . . , |φn〉, we have

n∑

i=1

|(|ϕi〉, |φi〉)| ≤

√√√√
n∑

i=1

‖|ϕi〉‖2 ·

√√√√
n∑

i=1

‖|φi〉‖2.

Now we prove our new O2H theorem. Same as [22], we first prove the fixed
version, where the tuple (G,H, S, z) is fixed. Then, we extend it to the random
version, where the tuple (G,H, S, z) can have an arbitrary joint distribution.

Theorem 3 (Fixed O2H with MRE). Let G,H : X → Y be fixed functions,
S ⊆ X be a fixed set and z ∈ Z be a fixed bitstring. The tuple (G,H, S, z) satisfies
that ∀x /∈ S, G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm
that makes parallel queries with query depth d and query width n. Define

PGHSz
left := Pr[b = 1 : b ← AH(z)], PGHSz

right := Pr[b = 1 : b ← AG(z)].

Then, we can construct an algorithm DG,H,1S (z) which has the following two
properties:

– Let Adv(D) := Pr[TD ∩ S 	= ∅ : TD ← DG,H,1S (z)], then
∣∣PGHSz

left − PGHSz
right

∣∣ ≤ 4
√

d · Adv(D). (7)

– DG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at
most 3d and query width n. Its running time can be bounded as TD � 3 · TA.

Proof. Following the proof of [22, Lemma 3.2], we denote O⊗n
G (resp. O⊗n

H ) as
the n-width parallel quantum oracle for G (resp. H). Then, we define a new
quantum oracle

O⊗n
G,H := (O⊗n

H ⊗ |+〉〈+|) + (O⊗n
G ⊗ |−〉〈−|).

Here |+〉 := (|0〉 + |1〉)/
√
2 and |−〉 := (|0〉 − |1〉)/

√
2. Indeed, the oracle O⊗n

G,H

uses an auxiliary single quantum bit as the controlling bit: if the state of this
controlling bit is |+〉 (resp. |−〉), the oracle O⊗n

H (resp. O⊗n
G ) will be queried. As
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analyzed in [4,22], O⊗n
G,H can be efficiently implemented by applying a Hadamard

gate before and after a conditional operation, which queries O⊗n
H (resp. O⊗n

G ) if
the controlling bit is in the state |0〉 (resp. |1〉).

Based on the above notations, we introduce the following lemma that will be
used later. It shows that we can use O⊗n

G,H to get a uniform superposition of the
sum and difference of the state generated by O⊗n

G and O⊗n
H , and those states are

entangled with the controlling bit of O⊗n
G,H . This lemma can be easily proved by

induction, and we omit the detailed proof for the sake of simplicity.

Lemma 5. Let V1, . . . , Vt (t ∈ N
+) be any unitary operation that can be applied

between O⊗n
G /O⊗n

H queries and |φ〉 be any appropriate initial state. Let the con-
trolling bit of O⊗n

G,H be in the initial state |0〉. Then
t∏

i=1

[ViO
⊗n
G,H ](|φ〉|0〉) =1

2

(
t∏

i=1

[ViO
⊗n
H ]|φ〉 +

t∏

i=1

[ViO
⊗n
G ]|φ〉

)

⊗ |0〉

+
1
2

(
t∏

i=1

[ViO
⊗n
H ]|φ〉 −

t∏

i=1

[ViO
⊗n
G ]|φ〉

)

⊗ |1〉.

Here
∏t

i=1[ViO
⊗n
G,H ](|φ〉|0〉) := VtO

⊗n
G,HVt−1O

⊗n
G,H . . . V2O

⊗n
G,HV1O

⊗n
G,H(|φ〉|0〉), and

analogously for
∏t

i=1[ViO
⊗n
H ]|φ〉 and

∏t
i=1[ViO

⊗n
G ]|φ〉.

Since any quantum oracle algorithm can be efficiently transformed into a
unitary quantum oracle algorithm with the same query times and query depth
(i.e. Fact 1 in Supplementary Material A.1 of our full version [11]), we assume
AO(z) to be unitary without loss of generality. Now, for O ∈ {G,H}, denote
|ψz〉 as the initial state of AO(z), and denote U1, . . . , Ud as the unitary opera-
tions performed by AO(z) between its (parallel) oracle queries. Then, the joint
state of AH(z) (resp. AG(z)) just before performing the final binary projective
measurement MA := {MA

0 ,MA
1 } can be written as

|ψH〉 :=
d∏

i=1

[UiO
⊗n
H ]|ψz〉 (resp. |ψG〉 :=

d∏

i=1

[UiO
⊗n
G ]|ψz〉). (8)

Since the measurement result of MA is the final output of A, we can compute
∣∣PGHSz

left − PGHSz
right

∣∣ =
∣∣Pr[b = 1 : b ← AH(z)] − Pr[b = 1 : b ← AG(z)]

∣∣

=
∣∣‖MA

1 |ψH〉‖2 − ‖MA
1 |ψG〉‖2

∣∣

(a)

≤
∣
∣(MA

1 (|ψH〉 − |ψG〉),MA
1 (|ψH〉 + |ψG〉)

)∣∣

(b)
=

∣∣
∣
(
|ψH〉 − |ψG〉,

(
MA

1

)†
MA

1 (|ψH〉 + |ψG〉)
)∣∣
∣

(c)
=

∣
∣(|ψH〉 − |ψG〉,MA

1 (|ψH〉 + |ψG〉)
)∣∣ .

(9)

Here (a) is obtained by using Lemma 3. (b) uses the fact that (A|φ1〉, B|φ2〉) =
(|φ1〉, A†B|φ2〉) for any operators A, B and states |φ1〉, |φ2〉. (c) uses the fact
that the projector MA

1 is Hermitian and idempotent.
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Next, we focus on the states |ψH〉 and |ψG〉. We will give them a decompo-
sition (i.e., the following Eq. (13) and Eq. (14)) according to a projector on the
oracle’s input register. In the following, we first define this projector which we
denote as MS⊕n , and then introduce some properties of it.

– The definition of projector MS⊕n . Since A makes parallel queries with
query width n, the query state of A can be written as

|query〉 :=
∑

in,out,aux

αout
in,aux|in1〉|out1〉 · · · |inn〉|outn〉|aux〉.

Here in := (in1, . . . , inn) ∈ X⊗n, out := (out1, . . . , outn) ∈ Y ⊗n and aux ∈
{0, 1}∗. |in1〉 · · · |inn〉 (resp. |out1〉 · · · |outn〉) is the basis state of the oracle’s
input register IN (resp. oracle’s output register OUT ), |aux〉 is the basis
state of some auxiliary registers that may be entangled with IN and OUT .
Furthermore, we have

O⊗n
G |query〉 =

∑

in,out,aux

αout
in,aux|in1〉|out1 ⊕ G(in1)〉 · · · |inn〉|outn ⊕ G(inn)〉|aux〉,

O⊗n
H |query〉 =

∑

in,out,aux

αout
in,aux|in1〉|out1 ⊕ H(in1)〉 · · · |inn〉|outn ⊕ H(inn)〉|aux〉.

Define set

S⊕n := {(in1, . . . , inn)|in1, . . . , inn ∈ X,∃i ∈ {1, . . . , n} s.t. ini ∈ S}.

Then, we define a projector on the oracle’s input register IN as

MS⊕n :=
∑

(in1,...,inn)∈S⊕n

|in1〉 · · · |inn〉〈in1| · · · 〈inn|. (10)

Let IIN be the identity operator on the oracle’s input register IN , we have

IIN − MS⊕n =
∑

(in1,...,inn)/∈S⊕n

|in1〉 · · · |inn〉〈in1| · · · 〈inn|.

– Properties satisfied by MS⊕n , O⊗n
G and O⊗n

H . Using the fact that G(x) =
H(x) for all x /∈ S, it is easy to see that

O⊗n
H (IIN − MS⊕n)|query〉 = O⊗n

G (IIN − MS⊕n)|query〉. (11)

Note that querying the oracles O⊗n
G and O⊗n

H does not change the state on
the oracle’s input register IN , we also have

O⊗n
G MS⊕n = MS⊕nO⊗n

G , O⊗n
H MS⊕n = MS⊕nO⊗n

H . (12)

That is, O⊗n
G and O⊗n

H both commute with MS⊕n .
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In particular, we introduce the following lemma about MS⊕n . It shows that we
can implement the projective measurement {IIN −MS⊕n ,MS⊕n} on the oracle’s
input register IN by quantum querying the 1S . The proof of this lemma is very
simple and is given in Supplementary Material A.4 of our full version [11].

Lemma 6. Recall that 1S is the indicator function of the set S, that is, 1S(x) =
1 if x ∈ S and 0 otherwise. Let χ0 := IIN − MS⊕n and χ1 := MS⊕n . Then, the
binary projective measurement MS⊕n := {χ0, χ1} on the oracle’s input register
IN can be performed by making two parallel queries to 1S with query width n.

Now, we define the following states

|ψj
H〉 :=

j∏

i=1

[UiO
⊗n
H ]|ψz〉 (1 ≤ j ≤ d) and |ψ0

H〉 := |ψz〉.

Let
∏0

i=1[UiO
⊗n
H ] := IA, where IA denotes the identity operator on A’s whole

register. Then, for 1 ≤ j ≤ d, we can compute

|ψj
H〉 =

j∏

i=1

[UiO
⊗n
H ]|ψz〉 = UjO

⊗n
H (MS⊕n + IIN − MS⊕n)

j−1∏

i=1

[UiO
⊗n
H ]|ψz〉

= UjO
⊗n
H (MS⊕n + IIN − MS⊕n)|ψj−1

H 〉
= UjO

⊗n
H MS⊕n |ψj−1

H 〉 + UjO
⊗n
H (IIN − MS⊕n)|ψj−1

H 〉.

Hence, by induction, it is not hard to obtain

|ψH〉 = |ψd
H〉 =

d∏

i=1

[
UiO

⊗n
H (IIN − MS⊕n)

]
|ψz〉 + UdO

⊗n
H MS⊕n |ψd−1

H 〉

+
d−1∑

k=1

d∏

j=k+1

[
UjO

⊗n
H (IIN − MS⊕n)

] (
UkO⊗n

H MS⊕n

)
|ψk−1

H 〉.

(13)
Similarly, for |ψG〉, we can derive the following equation using the definitions
|ψj

G〉 :=
∏j

i=1[UjO
⊗n
G ]|ψz〉 (1 ≤ j ≤ d) and |ψ0

G〉 := |ψz〉.

|ψG〉 = |ψd
G〉 =

d∏

i=1

[
UiO

⊗n
G (IIN − MS⊕n)

]
|ψz〉 + UdO

⊗n
G MS⊕n |ψd−1

G 〉

+
d−1∑

k=1

d∏

j=k+1

[
UjO

⊗n
G (IIN − MS⊕n)

] (
UkO⊗n

G MS⊕n

)
|ψk−1

G 〉.

(14)
Note that IIN denotes the identity operator on the oracle’s input register

IN , and IA denotes the identity operator on A’s whole register. Then, based
on the states |ψj

H〉 and |ψj
G〉 (0 ≤ j ≤ d) defined above, we define the following

notations that will be used later:
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χ0 := IIN − MS⊕n , χ1 := MS⊕n ,

|ψH+G〉 := MA
1 (|ψH〉 + |ψG〉),

|ψi
H−G〉 := O⊗n

H |ψi−1
H 〉 − O⊗n

G |ψi−1
G 〉 (1 ≤ i ≤ d),

|ψS,i
H−G〉 := O⊗n

H MS⊕n |ψi−1
H 〉 − O⊗n

G MS⊕n |ψi−1
G 〉

(a)
= MS⊕nO⊗n

H |ψi−1
H 〉 − MS⊕nO⊗n

G |ψi−1
G 〉 (1 ≤ i ≤ d),

Unon-S
d←k+1 :=

d∏

j=k+1

[
UjO

⊗n
H (IIN − MS⊕n)

]
(1 ≤ k ≤ d − 1),

Unon-S
d←d+1 := IA.

(15)

Here (a) follows from Eq. (12).
By using Eq. (11), it is not hard to check that

d∏

i=1

[
UiO

⊗n
H (IIN − MS⊕n)

]
|ψz〉 =

d∏

i=1

[
UiO

⊗n
G (IIN − MS⊕n)

]
|ψz〉. (16)

Then, combining Eq. (11) with Eq. (13) to Eq. (16), we obtain |ψH〉 − |ψG〉 =∑d
k=1 Unon-S

d←k+1Uk|ψS,k
H−G〉. Combine this equation with Eq. (9), we can compute

∣∣PGHSz
left − PGHSz

right

∣∣

≤
∣
∣(|ψH〉 − |ψG〉,MA

1 (|ψH〉 + |ψG〉)
)∣∣ (a)

= |(|ψH〉 − |ψG〉, |ψH+G〉)|

=

∣∣∣∣
∣

d∑

k=1

(
Unon-S

d←k+1Uk|ψS,k
H−G〉, |ψH+G〉

)
∣∣∣∣
∣

(b)

≤
d∑

k=1

∣∣∣
(
Unon-S

d←k+1Uk|ψS,k
H−G〉, |ψH+G〉

)∣∣∣

(c)
=

d∑

k=1

∣∣∣
(
|ψS,k

H−G〉, (Uk)†
(
Unon-S

d←k+1

)† |ψH+G〉
)∣∣∣

(d)
=

d∑

k=1

∣
∣∣
(
χ1|ψS,k

H−G〉, (Uk)†
(
Unon-S

d←k+1

)† |ψH+G〉
)∣
∣∣

(e)
=

d∑

k=1

∣∣∣
(
χ1|ψS,k

H−G〉, χ1(Uk)†
(
Unon-S

d←k+1

)† |ψH+G〉
)∣∣∣

(f)
=

d∑

k=1

∣∣
∣
(
|ψS,k

H−G〉, χ1(Uk)†
(
Unon-S

d←k+1

)† |ψH+G〉
)∣∣
∣

(g)

≤

√√√√
d∑

k=1

‖|ψS,k
H−G〉‖2 ·

√√√√
d∑

k=1

∥∥∥χ1(Uk)†
(
Unon-S

d←k+1

)† |ψH+G〉
∥∥∥
2

.

(17)
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Here (a) follows the definition of |ψH+G〉 given in Eq. (15). (b) uses the triangle
inequality. (c) uses the basic property of inner product. (d) and (f) use the fact
that |ψS,i

H−G〉 defined in Eq. (15) satisfies |ψS,i
H−G〉 = χ1|ψS,i

H−G〉 for 1 ≤ i ≤ d. (e)
uses the fact that χ1 is Hermitian and idempotent. (g) uses Lemma 4.

Recall that |ψz〉 is the initial state of AO(z) (O ∈ {G,H}), U1, . . . , Ud are the
unitary operations performed by AO(z) between its parallel oracle queries, and
MA = {MA

0 ,MA
1 } is the final projective measurement performed by AO(z). Now,

we define the following algorithms BG,H
i (z) (1 ≤ i ≤ d), BG,H(z), CG,H,1S (z) and

DG,H,1S (z), all with the aim to extract an element from the set S:

– Algorithm BG,H
i (z) (1 ≤ i ≤ d). This algorithm has initial pure state |ψz〉|0〉,

where |0〉 is the state of the controlling bit of O⊗n
G,H . As mentioned earlier, this

controlling bit is used by O⊗n
G,H to determine whether to query O⊗n

G or O⊗n
H .

BG,H
i (z) first applies O⊗n

G,H

∏i−1
j=1[UjO

⊗n
G,H ] (here we let

∏0
j=1[UjO

⊗n
G,H ] = IA),

then measures the controlling bit of O⊗n
G,H in the computational basis:

1. If the measurement result is 1, BG,H
i (z) measures the oracle’s input reg-

ister IN in the computational basis, and outputs the result TBi
.

2. If the measurement result is 0, BG,H
i (z) outputs ⊥.

– Algorithm BG,H(z). This algorithm first uniformly chooses i from {1, . . . , d},
and then runs BG,H

i (z) directly. BG,H(z) finally outputs BG,H
i (z)’s output

and we denote it as TB if it is not ⊥.

– Algorithm CG,H,1S (z). This algorithm has initial pure state |ψz〉|0〉, where
|0〉 is the state of the controlling bit of O⊗n

G,H . CG,H,1S (z) first applies the
operation

∏d
i=1[UiO

⊗n
G,H ], then performs the projective measurement MA =

{MA
0 ,MA

1 } and measures the controlling bit of O⊗n
G,H in the computational

basis:
1. If the measurement result of MA is 0 or the measurement result of the

controlling bit is 1, CG,H,1S (z) outputs ⊥.
2. If the measurement result of MA is 1 and the measurement result of the

controlling bit is 0, CG,H,1S (z) performs the following operations:
(a) Initially, let i = d.
(b) Apply (rewinding operation) O⊗n

H (Ui)†, then perform the projective
measurement MS⊕n = {χ0, χ1} on the oracle’s input register IN by
querying 1S (Lemma 6). If the measurement result of MS⊕n is 1,
abort, measure IN in the computational basis and output the result
TC .

(c) If the measurement result of MS⊕n is 0 and i > 1, let i = i − 1 and
repeat the above step. If the measurement result of MS⊕n is 0 and
i = 1, abort and output ⊥.

– Algorithm DG,H,1S (z). This algorithm runs BG,H(z) and CG,H,1S (z), and it
outputs ⊥ if they both outputs ⊥. Otherwise, DG,H,1S (z) outputs TD, where

• TD = TB if BG,H(z) outputs TB and CG,H,1S (z) outputs ⊥.
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• TD = TC if BG,H(z) outputs ⊥ and CG,H,1S (z) outputs TC .
• TD = TB ∪ TC if BG,H(z) outputs TB and CG,H,1S (z) outputs TC .

As for the running time, one can easily check that TB � TA and BG,H(z) makes
parallel queries to G and H both with query depth at most d and query width
n. Since CG,H,1S (z) performs the rewinding operations, we have TC � 2 · TA and
CG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at most
2d and query width n. By the definition of DG,H,1S (z), we can conclude that
TD � 3 · TA, and DG,H,1S (z) makes parallel queries to G, H and 1S all with
query depth at most 3d and query width n.

We define

Adv(Bi) := Pr[TBi
∩ S 	= ∅ : TBi

← BG,H
i (z)] i ∈ {1, . . . , d},

Adv(B) := Pr[TB ∩ S 	= ∅ : TB ← BG,H(z)],

Adv(C) := Pr[TC ∩ S 	= ∅ : TC ← CG,H,1S (z)],

Adv(D) := Pr[TD ∩ S 	= ∅ : TD ← DG,H,1S (z)].

For the algorithm BG,H
i (z) (i ∈ {1, . . . , d}), since we let

∏0
j=1[UjO

⊗n
G,H ] := IA,

by Lemma 5 and the definition of states |ψi
H−G〉 and |ψS,i

H−G〉 given in Eq. (15),
it is not hard to check that

Adv(Bi) =

∥∥
∥∥∥

|ψS,i
H−G〉

∥∥|ψi
H−G〉

∥∥

∥∥
∥∥∥

2

·
∥∥
∥∥
1
2
|ψi

H−G〉
∥∥
∥∥

2

=
1
4

· ‖|ψS,i
H−G〉‖2.

Then, by the definition of algorithm BG,H(z), we have

Adv(B) =
d∑

i=1

1
d
Adv(Bi) =

d∑

i=1

1
4d

· ‖|ψS,i
H−G〉‖2. (18)

For the algorithm CG,H,1S (z), by Lemma 5 and the definition of |ψH〉 and
|ψG〉 given in Eq. (8), we can write the state of CG,H,1S (z) just before performing
the MA = {MA

0 ,MA
1 } and the measurement of the controlling bit of O⊗n

G,H as

1
2
(|ψH〉 + |ψG〉) ⊗ |0〉 + 1

2
(|ψH〉 − |ψG〉) ⊗ |1〉.

The right half, |0〉 and |1〉, is the state of the controlling bit of O⊗n
G,H . Since

|ψH+G〉 := MA
1 (|ψH〉 + |ψG〉) (i.e. Eq. (15)), the probability that MA has result

1 and the measurement of the controlling bit of O⊗n
G,H has result 0 is 1

4‖|ψH+G〉‖2.
Further, the state of CG,H,1S (z) will collapse into |ψH+G〉/‖|ψH+G〉‖6.

After MA obtains result 1 and the measurement of the controlling bit of O⊗n
G,H

obtains result 0, CG,H,1S (z) will rewind U1, . . . , Ud and perform MS⊕n = {χ0, χ1}
6 In this notation, we omit the state of the controlling bit of O⊗n

G,H , since this bit is no
longer used by the subsequent operations of CG,H,1S (z).
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to extract an element from the set S. We refer to this step of CG,H,1S (z) as the
“rewind-extract” process, and in fact, we can restate the “rewind-extract” pro-
cess as:

MS⊕nO⊗n
H (U1)

†
MS⊕n←−−−−O⊗n

H (U2)
† · · · MS⊕n←−−−−O⊗n

H (Ud−1)
†
MS⊕n←−−−−O⊗n

H (Ud)
† |ψH+G〉
‖|ψH+G〉‖ .

Here |ψH+G〉/‖|ψH+G〉‖ is the initial pure state just before the “rewind-extract”
process, and MS⊕n←−−− denotes the following conditional operation:

Perform MS⊕n on the oracle’s input register IN . If the measurement result is
1, measure IN in the computational basis and output the result TC. If the

measurement result is 0, proceed with the subsequent operations.

MS⊕n is the same as MS⊕n←−−−, except that it directly outputs ⊥ if the measurement

result of MS⊕n is 0. Obviously, CG,H,1S (z) performs MS⊕n at most d times.
Recall that χ1 := MS⊕n (i.e. Eq. (15)). By the definition of the projector

MS⊕n given in Eq. (10), we can conclude that TC must satisfy TC ∩ S 	= ∅ if TC
is obtained by measuring the oracle’s input register IN (in the computational
basis) under the condition that the measurement result of MS⊕n just performed
was 1. This means that, as long as one of the MS⊕n performed by CG,H,1S (z)
in the “rewinding-extract” process yields a measurement result of 1, CG,H,1S (z)
will output a set TC such that TC ∩ S 	= ∅.

Now, we define the following mutually exclusive events that may be occurred
in the “rewinding-extract” process of CG,H,1S (z):

Ei: The measurement result of the first i − 1 measurements MS⊕n are all 0,
and the measurement result of the i-th measurement MS⊕n is 1. (1 ≤ i ≤ d)

According to the definition of the operation Unon-S
d←k+1 (1 ≤ k ≤ d) given in Eq.

(15), one can check that

Pr[Ei] =

∥∥∥∥χ1O
⊗n
H (Uk)

†
(
Unon-S

d←k+1

)†
|ψH+G〉

∥∥∥∥

2
1

‖|ψH+G〉‖2 (1 ≤ i ≤ d, i + k = d + 1).

Then, we can compute

Adv(C) = 1
4

· ‖|ψH+G〉‖2 ·
d∑

i=1

Pr[Ei]

=
1
4

· ‖|ψH+G〉‖2 ·
∑d

k=1

∥
∥∥χ1O

⊗n
H (Uk)†

(
Unon-S

d←k+1

)† |ψH+G〉
∥
∥∥
2

‖|ψH+G〉‖2

(a)
=

1
4

·
d∑

k=1

∥∥∥O⊗n
H χ1(Uk)†

(
Unon-S

d←k+1

)† |ψH+G〉
∥∥∥
2

(b)
=

1
4

·
d∑

k=1

∥
∥∥χ1(Uk)†

(
Unon-S

d←k+1

)† |ψH+G〉
∥
∥∥
2

.

(19)
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Here (a) follows from the fact that χ1 = MS⊕n and MS⊕n commutes with O⊗n
H

(i.e. Eq. (12)), (b) uses the fact that O⊗n
H is a unitary operation.

Combine Eq. (17), Eq. (18) with Eq. (19), we get
∣∣PGHSz

left − PGHSz
right

∣∣ ≤
√

4d · Adv(B) ·
√
4 · Adv(C).

Since we have Adv(D) ≥ max{Adv(B),Adv(C)} by the definition of the algo-
rithm DG,H,1S (z), we finally obtain |PGHSz

left − PGHSz
right | ≤ 4

√
d · Adv(D). ��

Theorem 4 (Random O2H with MRE). Let G,H : X → Y be random
functions, S ⊆ X be a random set and z ∈ Z be a random bitstring. The tuple
(G,H, S, z) may have arbitrary joint distribution D and satisfies that ∀x /∈ S,
G(x) = H(x). Let AO (O ∈ {G,H}) be a quantum oracle algorithm that makes
parallel queries with query depth d and query width n. Define

Pleft := Pr
(G,H,S,z)←D

[b = 1 : b ← AH(z)], Pright := Pr
(G,H,S,z)←D

[b = 1 : b ← AG(z)].

Then, we can construct an algorithm DG,H,1S (z) which has the following two
properties:

– Let Adv(D) := Pr[TD ∩ S 	= ∅ : TD ← DG,H,1S (z), (G,H, S, z) ← D], then

|Pleft − Pright| ≤ 4
√

d · Adv(D).

– DG,H,1S (z) makes parallel queries to G, H and 1S all with query depth at
most 3d and query width n. Its running time can be bounded as TD � 3 · TA.

Proof. Based on Eq. (7) in Theorem 3, we can directly prove this theorem by
averaging over (G,H, S, z) ← D. ��

Remark 5. In the proof of Theorem 3, we assume that A is a unitary quantum
oracle algorithm by the well-known fact Fact 1 in Supplementary Material A.1
of our full version [11], which shows that any quantum oracle algorithm can be
efficiently transformed into a unitary one with the same query times and query
depth. However, as mentioned in [20,32], that transformation has a linear space7
expansion with the running time of the quantum oracle algorithm, since we need
to use unitary operations to simulate the non-unitary computations. Indeed, both
the MRM-O2H theorem [22] and our MRE-O2H theorem (Theorem 4) involve
this linear space expansion. In our paper, we stress that we do not view the space
expansion as a dominant factor since it is only linear and not exponential, and
we only view the advantage loss and the running time as crucial factors.

7 Here the “space” refers to the number of quantum bits used by an algorithm.
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4 Tighter IND-CCA Proofs of FO-Like Transformations

In this section, we consider the IND-CCA security of FO-like transformations
FO/⊥, FO/⊥

m, FO⊥ and FO⊥
m in the QROM. Note that [4, Theorem 5] has shown

that FO/⊥ (resp. FO⊥) is as secure as FO/⊥
m (resp. FO⊥

m) and vice versa. Hence,
we only prove the IND-CCA security of FO/⊥ and FO⊥

m in the QROM. Our proof
idea consists of the following two steps:

1. We first prove that the IND-CCA security of FO/⊥ and FO⊥
m can be reduced

to its IND-CPA security.
2. Then, by using our MRE-O2H theorem (Theorem 4), we prove that the IND-

CPA security of FO/⊥ and FO⊥
m can be reduced to the IND-CPA/OW-CPA

security of the underlying PKE scheme.

The advantage of our proof idea is that, for the FO/⊥, the additional injectivity
assumption assumed in the proof of [22, Theorem 4.6] can be removed. All the
relevant security notions can be found in Supplementary Material A.2 of our full
version [11].

Before proving our results, we first review the transformation T designed in
[13] and introduce three lemmas about T that will be used later.

Transformation T: Let P = (Gen,Enc,Dec) be a randomized PKE (rPKE)
scheme with message space M and randomness space R. Let H : M → R be
a hash function. We associate deterministic PKE (dPKE) scheme T[P,H] :=
(Gen,Enc′,Dec′). The constituting algorithms of T[P,H] are shown in Fig. 2.

Fig. 2. Deterministic Public Key Encryption T[P, H].

Lemma 7 (Security of T from IND-CPA [4, Theorem 1]). Let P be an rPKE
scheme with message space M. Let A be a OW-CPA adversary against T[P,H],
making parallel quantum queries to the random oracle H with query depth dH

and query width n. Let qH := dH · n.
Then, we can construct an IND-CPA adversary B against P such that

AdvOW-CPA
T[P,H] (A) ≤ (dH + 2) ·

(
AdvIND-CPA

P (B) + 8(qH + 1)
|M|

)

and TB ≈ TA + O(q2H).
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Remark 6. The [4, Theorem 1] actually claims TB ≈ TA. In the above lemma,
we give a more detailed running time of B as TB ≈ TA + O(q2H). The additional
O(q2H) is because B needs to use a 2qH -wise independent function to simulate a
quantum accessible random oracle with query bound qH .

The following lemma also focuses on the OW-CPA security of T in the QROM,
but the difference is that the following lemma does not require the underlying
rPKE scheme to be IND-CPA-secure.

Lemma 8 (Security of T from OW-CPA). Let P = (Gen,Enc,Dec) be a δ-
correct rPKE scheme, and assume P is unique randomness recoverable with the
recover algorithm Rec. Let A be a OW-CPA adversary against T[P,H], making
parallel quantum queries to the random oracle H with query depth dH and query
width n. Let qH := dH · n.

Then, we can construct a OW-CPA adversary B against P such that

AdvOW-CPA
T[P,H] (A) ≤ 10 · AdvOW-CPA

P (B) + 16 · δ

and TB ≈ TA + O(q2H) + O(qH) · (TEnc + TRec).

Proof. See Supplementary Material A.5 of our full version [11]. ��

Lemma 9 ([23, Lemma 4]). Let P = (Gen,Enc,Dec) be an rPKE scheme with
message space M and randomness space R. Define a set w.r.t fixed (pk, sk) and
function H : M → R as

Scollision
pk,sk,H := {m ∈ M|∃m′ 	= m s.t. Encpk(m′;H(m′)) = Encpk(m;H(m))}.

Let ΩH be the set of all functions H : M → R. Then, if P is δ-correct, we have

Pr
[
m∗ ∈ Scollision

pk,sk,H : (pk, sk) ← Gen,H $←− ΩH ,m∗ $←− M
]

≤ 2 · δ.

4.1 FO-Like Transformation FO /⊥

FO-like transformation FO/⊥. Let P = (Gen,Enc,Dec) be an rPKE scheme
with message space M, randomness space R and ciphertext space C. For a given
set K, let H : M → R, G : M × C → K be hash functions, let F : Kprf × C → K
be a pseudorandom function (PRF) with key space Kprf . We associate KEM
scheme

KEM/⊥ := FO/⊥[P,H,G,F] = (Gen/⊥,Enca,Deca/⊥)

that has key space K. The constituting algorithms of KEM/⊥ are given in Fig. 3.
We first prove the following theorem. It shows that in the QROM, the IND-

CPA security of KEM/⊥ implies its IND-CCA security.
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Fig. 3. Key Encapsulation Mechanism KEM/⊥.

Theorem 5 (IND-CPA of KEM
/⊥ QROM⇒ IND-CCA of KEM

/⊥). Let rPKE
scheme P = (Gen,Enc,Dec) be δ-correct. Let A be an IND-CCA adversary against
KEM/⊥ =FO

/⊥[P,H,G,F], making qD classical queries to the decapsulation oracle,
making parallel quantum queries to the random oracle H (resp. G) with query
depth dH (resp. dG) and query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct the following two adversaries:

– A PRF-adversary B1 against F making at most qD classical queries. The run-
ning time of B1 is TB1 ≈ TA + qD · (TEnc + TDec) + O(q2H + q2G).

– An IND-CPA adversary B2 against KEM/⊥ in the QROM. B2 makes parallel
quantum queries to the random oracle H (resp. G) with query depth at most
dH + dG (resp. dG) and query width n. The running time of B2 is TB2 ≈
TA + O(qG) · TEnc + O(q2G + q2D).

Adversaries B1 and B2 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + AdvIND-CPA

KEM/⊥ (B2) + 16(2qH + 2qG + 1)2 · δ.

Proof. The proof of this theorem is similar with the proof of [17, Theorem 1],
and we present it in Supplementary Material A.6 of our full version [11]. ��

Next, we focus on the IND-CPA security of KEM/⊥ in the QROM. As intro-
duced in [13], the KEM

/⊥ satisfies that

KEM/⊥ = FO/⊥[P,H,G,F] = U/⊥[T[P,H], G,F]. (20)

Here transformation U/⊥ transforms a dPKE scheme into a KEM scheme. For
the U/⊥, we can prove the following theorem, which shows that in the QROM,
the IND-CPA security of U/⊥ can be reduced to the OW-CPA security of the
underlying dPKE scheme without the square-root advantage loss.

Theorem 6 (OW-CPA of dPKE
QROM⇒ IND-CPA of U/⊥[dPKE, G,F]). For a

dPKE scheme dPKE = (Gen, dEnc, dDec) with message space M, let A be an
IND-CPA adversary against U/⊥[dPKE, G,F], making parallel quantum queries to
the random oracle G with query depth dG and query width n. Let qG := dG · n.

Then, we can construct a OW-CPA adversary A1 against dPKE such that

AdvIND-CPA
U/⊥[dPKE,G,F](A) ≤ 2

√
dG · AdvOW-CPA

dPKE (A1) + 2
√

dG · Pr[EdPKE]
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and TA1 � 3 · TA + O(qG) · TdEnc + O(q2G). Here EdPKE is the following event:

(pk, sk) ← Gen, m∗ $←− M, ∃m 	= m∗ such that dEncpk(m) = dEncpk(m∗).

Proof. We prove this theorem by applying Theorem 4, and we present the
detailed proof in Supplementary Material A.8 of our full version [11]. ��

Combining Theorem 6 with Lemma 7 and Lemma 8, we can prove the fol-
lowing result for the IND-CPA security of KEM/⊥ in the QROM.

Theorem 7 (IND-CPA/OW-CPA of P
QROM⇒ IND-CPA of KEM

/⊥). Let P =
(Gen,Enc,Dec) be a δ-correct rPKE scheme with message space M. Let A be an
IND-CPA adversary against KEM/⊥ = FO

/⊥[P,H,G,F], making parallel quantum
queries to the random oracle H (resp. G) with query depth dH (resp. dG) and
query width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B against P such that

AdvIND-CPA
KEM/⊥ (A) ≤2

√
dG(6dG + dH + 3) · AdvIND-CPA

P (B) + 4
√

dG · δ

+ 16
√

dG(6dG + dH + 3)
(6qG + 2qH + 1)

|M| .

and TB � 3 · TA + O(q2G + q2H) + O(qG) · TEnc. If P is also unique randomness
recoverable with the recover algorithm Rec, we can also construct a OW-CPA
adversary B1 against P such that

AdvIND-CPA
KEM/⊥ (A) ≤ 20

√
dG · AdvOW-CPA

P (B1) + 36
√

dG · δ

and TB1 � 3 · TA + O(q2G + q2H) + O(qG + qH) · (TEnc + TRec).

Proof. This theorem can be easily proved by Eq. (20) and Lemma 9. We present
the detailed proof in Supplementary Material A.9 of our full version [11]. ��

Combine Theorem 5 with Theorem 7, we finally obtain the following corollary.
It shows that, in the QROM, the IND-CCA security of KEM

/⊥ can be reduced
to the IND-CPA/OW-CPA security of the underlying rPKE scheme without the
square-root advantage loss.

Corollary 1 (IND-CPA/OW-CPA of P
QROM⇒ IND-CCA of KEM

/⊥). Let P =
(Gen,Enc,Dec) be a δ-correct rPKE scheme with message space M. Let A be
an IND-CCA adversary against KEM/⊥ = FO

/⊥[P,H,G,F], making qD classical
queries to the decapsulation oracle, making parallel quantum queries to the ran-
dom oracle H (resp. G) with query depth dH (resp. dG) and query width n. Let
qH := dH · n and qG := dG · n.

Then, we can construct the following two adversaries:

– A PRF-adversary B1 against F making at most qD classical queries. The run-
ning time of B1 is TB1 � TA + qD · (TEnc + TDec) + O(q2H + q2G).
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– An IND-CPA adversary B2 against P. The running time of B2 is TB2 � 3 ·
TA + O(qG) · TEnc + O(q2G + q2H + q2D).

Adversaries B1 and B2 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + 2

√
dG(7dG + dH + 3) · AdvIND-CPA

P (B2)

+ 16(2qH + 2qG + 1)2 · δ + 4
√

dG · δ

+ 16
√

dG(7dG + dH + 3)
(8qG + 2qH + 1)

|M| .

If P is also unique randomness recoverable with the recover algorithm Rec, we
can also construct following adversary:

– A OW-CPA adversary B3 against P. The running time of B3 is TB3 � 3 · TA+
O(q2G + q2H + q2D) + O(qG + qH) · (TEnc + TRec).

Adversaries B1 and B3 satisfy the following:

AdvIND-CCA
KEM/⊥ (A) ≤ AdvPRFF (B1) + 20

√
dG · AdvOW-CPA

P (B3) + 36
√

dG · δ

+ 16(2qH + 2qG + 1)2 · δ.

4.2 FO-Like Transformation FO⊥
m

Similar to Sect. 4.1, we use the following two steps to prove the IND-CCA security
of FO⊥

m in the QROM:

1. First, we introduce [12, Theorem 2], which shows that the IND-CCA security
of FO⊥

m can be reduced to its IND-CPA security.
2. Then, by using our MRE-O2H theorem (Theorem 4), we prove that the IND-

CPA security of FO⊥
m can be reduced to the IND-CPA/OW-CPA security of the

underlying PKE scheme.

We present the detailed proofs in Supplementary Material A.10 of our full version
[11], and we directly give the main corollary of this section in the following.

Corollary 2 (IND-CPA/OW-CPA of P
QROM⇒ IND-CCA of KEM⊥

m). Let rPKE
scheme P = (Gen,Enc,Dec) with message space M be δ-correct and weakly γ-
spread. Let A be an IND-CCA adversary against KEM⊥

m = FO⊥
m[P,H,G], making

qD classical queries to the decapsulation oracle, making parallel quantum queries
to the random oracle H (resp. G) with query depth dH (resp. dG) and query
width n. Let qH := dH · n and qG := dG · n.

Then, we can construct an IND-CPA adversary B1 against P such that

AdvIND-CCA
KEM⊥

m
(A) ≤ 2

√
dG + qD(6dG + 2dH + 6qD + 3) · AdvIND-CPA

P (B1)

+ 4
√

dG + qD · δ + 8
√

qH(qH + 1) · δ

+ (64qH + 2) · δ + 40qD · 2−γ/2

+ 16
√

dG + qD(6dG + 2dH + 6qD + 3)
(8qG + 8qD + 4qH + 1)

|M|



Measure-Rewind-Extract 31

and TB1 � 3 · TA + O(qG) · TEnc + O(q2G + q2H + qHqD). If P is also unique
randomness recoverable with the recover algorithm Rec, we can also construct an
OW-CPA adversary B2 against P such that8

AdvIND-CCA
KEM⊥

m
(A) ≤ 20

√
dG + qD · AdvOW-CPA

P (B2) + 36
√

dG + qD · δ

+ 8
√

qH(qH + 1) · δ + (64qH + 2) · δ + 40qD · |R|−1/2

and TB2 � 3 · TA + O(q2G + q2H + qHqD) + O(qG + qH) · (TEnc + TRec).
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Abstract. SPHINCS+ is a post-quantum signature scheme that, at the
time of writing, is being standardized as SLH-DSA. It is the most conser-
vative option for post-quantum signatures, but the original tight proofs
of security were flawed —as reported by Kudinov, Kiktenko and Fe-
dorov in 2020. In this work, we formally prove a tight security bound
for SPHINCS+ using the EasyCrypt proof assistant, establishing greater
confidence in the general security of the scheme and that of the param-
eter sets considered for standardization. To this end, we reconstruct the
tight security proof presented by Hülsing and Kudinov (in 2022) in a
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1 Introduction

The advent of sufficiently powerful quantum computers would jeopardize es-
sentially all of the currently deployed public-key cryptography [10]. Albeit it
is still uncertain if and when such computers will be practically realized, on-
going advancements and current prospects in the field lead many experts to
believe that the likelihood of this happening in the near future is quite substan-
tial [15,23]. Together with the potentially disastrous ramifications, this suggests
that adequate preparation is paramount and urgent. Therefore, in 2016, the
National Institute of Standards and Technology (NIST) started a process aimed
at the standardization of post-quantum cryptography — cryptography that is
executable on classical computers but provides security against attacks from both
classical and quantum computers [10,24]. In 2022, NIST announced the initial
four cryptographic constructions to be standardized as a result of this process:
CRYSTALS-Kyber for key encapsulation, and CRYSTALS-Dilithium, Falcon,
and SPHINCS+ for digital signatures [25]. Interestingly, two years prior, NIST
already standardized two post-quantum digital signature schemes —XMSS and
LMS (as well as their multi-tree variants)— independently from the ongoing
standardization process [12]. Although their maturity justified the standard-
ization, these schemes are challenging to deploy in many contexts due to the
required state management [12,22]. Hence, they do not suffice to fully replace
contemporary digital signature schemes, which is the rationale for additionally
standardizing the schemes from the standardization process.

During the above-mentioned standardization process, Kudinov, Kiktenko
and Fedorov discovered an error in the tight security proof for a variant of
the Winternitz One-Time Signature (WOTS) scheme, WOTS+ [14,21]. As this
scheme is (implicitly) a fundamental component of XMSS and SPHINCS+, the
tight security proofs for the latter two schemes used similar erroneous reasoning
and, hence, were invalid as well [9,20]. Following this discovery, Hülsing and Kudi-
nov remediated the error for the case of SPHINCS+ by explicitly specifying the
employed variant of WOTS—called WOTS-TW— defining (and proving) a spe-
cific security notion for this variant, and proving the tight security of SPHINCS+

using this security notion [17]. Sadly, this approach did not directly translate to
the case of XMSS due to the data processed by WOTS-TW being adversarially
controlled (while it is user controlled in SPHINCS+) [6]. Nevertheless, building
on the work by Hülsing and Kudinov [17], Barbosa, Dupressoir, Grégoire, Hüls-
ing, Meijers, and Strub later constructed a novel tight security proof for XMSS;
moreover, they formally verified this security proof using the EasyCrypt proof
assistant [6]. Unfortunately, in that work, the formal verification of the security
proof for SPHINCS+ in [17] was considered out of scope and left as future work.
Given that the error in the original SPHINCS+ security proof was only detected
after several years of intense scrutiny, an increase in confidence regarding the novel
security proof and its guarantees — as could be accomplished by, e.g., the formal
verification of the proof— is no frivolous luxury.

As it is referred to above, formal verification (of cryptography) is an endeavor
belonging to the field of computer-aided cryptography. This field aims to address
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the ever-increasing complexity of constructing and evaluating cryptography by
employing computers to make these processes more rigorous and streamlined [5].
Certainly, this is especially valuable in the context of complex cryptography that
is still relatively novel, such as most of the post-quantum cryptography consid-
ered for standardization today. Over time, many tools and frameworks have
been developed and proven effective in the construction and evaluation of pro-
gressively involved and significant cryptographic applications. For instance, as
discussed before, EasyCrypt has been used to formally verify the novel secu-
rity proof for XMSS [6], but also to formally verify the correctness and security
of Saber’s Public-Key Encryption (PKE) scheme [18]. Moreover, in combina-
tion with Jasmin, EasyCrypt has been used to construct and verify functionally
correct, constant-time and efficient implementations of ChaCha20-Poly1305 [1],
SHA-3 [3], and the aforementioned CRYSTALS-Kyber [2]. Further examples
using different tools include the formal verification of Hybrid Public-Key Encryp-
tion (HPKE) using CryptoVerif [4], as well as the formal verification of Trans-
port Layer Security (TLS) 1.3 [13] and (the key establishment of) Signal using
Tamarin [11]. A more thorough and systematic overview of computer-aided cryp-
tography with additional examples and success stories is provided in [5].

Our Contribution. In this work, we aim to renew or boost the confidence in
the security of (the parameter sets considered for) SPHINCS+. Crudely put,
we achieve this goal by formally verifying the novel tight security proof for
SPHINCS+ from [17]. However, we commence this endeavor by reconstruct-
ing the entire proof, essentially obtaining a modular version that is significantly
more detailed. This reconstruction allows us to somewhat manage the com-
plexity of the formal verification, and reuse some of the artifacts produced in
the formal verification of the new tight security proof for XMSS [6]. Never-
theless, the formal verification poses significant, novel challenges that we over-
come, including the formal analysis of the considered few-time signature scheme
and hypertree structure. Furthermore, one of the modular components we for-
mally verify constitutes a generic relation between variants of the multi-target
PREimage resistance (PRE), Target Collision Resistance (TCR), and Decisional
Second-Preimage Resistance (DSPR) properties. This statement is comparable
to Theorem 38 in [8], the proof of which employs non-standard reasoning. Cor-
respondingly, the proof for the statement we consider is similarly non-standard.
Loosely speaking, instead of utilizing a standard approach such as (a sequence
of) reductions between pairs of games, this proof simultaneously compares four
games through an extremely granular case analysis on the associated success
probabilities. In the process of understanding and developing a proof technique
aimed at this kind of reasoning, we formally verify the simpler of the funda-
mental theorems in [8], Theorem 25, that relates the (standard) PRE, SPR, and
DSPR properties — allowing us to try out the arguments in a simpler context.

Due to the nature of the considered proof and the artifacts we build on,
we opt to employ EasyCrypt— a powerful and expressive tool primarily aimed
at the formal verification of code-based, game-playing security proofs in the
computational model [7] — for this work. As part of this work’s contribution,
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we facilitate future formal verification endeavors in two ways. First, we extend
EasyCrypt by creating and enhancing libraries based on the features required
in this work. Specifically, we construct libraries containing (generic) definitions
and properties for binary trees and Merkle trees; furthermore, we enhance the
libraries for hash functions — originally produced in [6] — by adding new proper-
ties and adjusting some of the definitions to be easier to use in different scenarios.
Second, we develop a general formal verification technique targeting the type of
non-standard reasoning required for the proof of the aforementioned relation
between (variants of) the PRE, TCR, and DSPR properties. To the best of our
knowledge, this is a novelty in the context of EasyCrypt. Although this paper
only covers some of these artifacts in more detail, all of them can be found in
the repository associated with this work, located at https://github.com/MM45/
FV-SPHINCSPLUS-EC, or in the standard library of EasyCrypt.

Overview. The remainder of this paper is organized as follows. First, Section 2
introduces the fundamental structure and concepts underlying SPHINCS+ and
its formal verification. Second, Section 3 provides an overview of the formal
verification. Lastly, Section 4, 5, and 6 discuss several aspects of the formal
verification in detail.

2 Preliminaries

In the ensuing, we introduce the schemes and concepts considered throughout
the paper. Most of the fundamentals directly coincide with those of previous
works [6,9]; however, we still provide them here for completeness.

SPHINCS
+. On a high level, a SPHINCS+ instance consists of (1) an instance

of a hypertree-based signature scheme akin to XMSSMT [16,19], and (2) an
instance of a forest-based — i.e., considering a sequence of individual trees —
signature scheme for each leaf of the hypertree. This latter scheme is a few-
time signature scheme, called Forest of Random Subsets (FORS), which was
introduced together with SPHINCS+ [9]. In the hypertree construction, each
“node” constitutes an instance of a Merkle signature scheme similar to XMSS
with WOTS-TW, a variant of WOTS introduced in [17], as One-Time Signature
(OTS) scheme. To sign an arbitrary-length message m with SPHINCS+, the
message is initially processed in a way that results in a fixed-length message
mc and an index i pointing to a leaf of the hypertree. Subsequently, the FORS
instance associated with this leaf is used to sign mc; in turn, the hypertree
construction is used to sign the public key of this FORS instance. Then, the
SPHINCS+ signature on m consists of the information used to obtain mc and i
from m, the FORS signature on mc, and the hypertree signature on the public
key of the employed FORS instance. Intuitively, the FORS signature can be
seen as the actual signature on the message, while the signature of the hypertree
construction can be seen as a proof that the FORS instance used to sign the
message is actually part of the considered SPHINCS+ instance.

https://github.com/MM45/FV-SPHINCSPLUS-EC
https://github.com/MM45/FV-SPHINCSPLUS-EC
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Fig. 1. ITSR game. Fig. 2. Oracle employed in ITSR game.

Keyed Hash Functions. A Keyed Hash Function (KHF) is a function KHF :
K ×M → Y where key space K, message space M, and digest space Y respec-
tively denote sets of keys, messages, and digests. In practice, these spaces are
essentially all sets of bitstrings. However, in specifications, each of these spaces
may also be left abstract or be instantiated with any set relevant in the consid-
ered context— e.g., the set of integers within a certain range. Occasionally, we
interpret and refer to a KHF as a family of hash functions indexed by keys from
the key space.

For KHFs, we consider the Interleaved Target Subset Resilience (ITSR) and
Pseudo-Random Function family (PRF) properties. Intuitively, a KHF is a PRF
if querying an unknown, randomly selected hash function from the family defined
by the KHF is computationally indistinguishable from querying an actual ran-
dom function.1 Formally, the ITSR and PRF properties for KHFs are respectively
defined as the games in Figures 1 and 3; the oracles employed in these games
are specified in Figures 2 and 4. In the ITSR game, IBMAP

KHF is a predicate val-
idating whether its arguments constitute an ITSR break (with respect to KHF

and MAP); more precisely, this predicate is defined as follows.

IBMAP
KHF (k, x,T ) = (k, x) 6∈ T ∧ MAP(KHF(k, x)) ∈

⋃|T |−1
i=0 MAP(KHF(T [i][0],T [i][1]))

Then, the advantage of any adversary A against ITSR is defined as given below.

AdvITSR
KHF,MAP(A) = Pr

[

GameITSR
A,KHF,MAP = 1

]

Moreover, the advantage of any adversary A against PRF is defined as follows.

AdvPRF
KHF (A) =

∣

∣

∣Pr
[

GamePRF
A,KHF(0) = 1

]

− Pr
[

GamePRF
A,KHF(1) = 1

]∣

∣

∣

Tweakable Hash Functions. A Tweakable Hash Function (THF) is a function
THF : P × T ×M → Y where (public) parameter space P , tweak space T , mes-
sage space M, and digest space Y denote sets of (public) parameters, tweaks,
messages, and digests, respectively. As for KHFs, in practice, these spaces are

1 Unlike the PRF property, the ITSR property is specifically designed for SPHINCS+

and does not admit as much of an intuitive interpretation out of context.
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Fig. 3. PRF game. Fig. 4. Oracle employed in PRF game.

essentially all sets of bitstrings. In specifications, they may also be left abstract
or be instantiated with any set relevant in the considered context. Nevertheless,
throughout this work, the message and digest space of any THF are, respec-
tively, the set of arbitrary-length bitstrings (i.e., {0, 1}∗) and a set of fixed-length
bitstrings (i.e., {0, 1}k for some k > 0). Conceptually, THFs extend KHFs by
explicitly considering contextual data in the form of tweaks, primarily serving
the purpose of mitigating multi-target attacks. At times, we view and refer to
a THF as a family of hash functions (mapping tweaks and messages to digests)
indexed by (public) parameters from the (public) parameter space.

Alongside individual THFs, we consider collections of such functions — a con-
cept introduced by the authors of SPHINCS+ [9] — containing a single THF for
each possible length of the input messages. Alternatively stated, a collection of
THFs constitutes a set THFC = {THFλ : P × T ×M → Y}λ∈Λ where Λ is the
index set comprising the possible input lengths.2

For THFs, the properties we are concerned with in this work are the Single-
function, Multi-target, Distinct-Tweak variants of Target-Collision Resistance
(SM-DT-TCR), Decisional Second-Preimage Resistance (SM-DT-DSPR), and
Opening-Preimage Resistance (SM-DT-OpenPRE). Additionally, we consider
an extension of SM-DT-TCR, denoted by SM-DT-TCR-C, that takes the rel-
evant THF collection into account. As their names suggest, all of these prop-
erties model a similar scenario where (1) a single, uniformly random (public)
parameter is considered throughout (single-function); (2) the attack’s targets,
of which there may be multiple (multi-target), must be specified before the
parameter is revealed; and (3) the tweaks used in the attack’s targets must be

2 Technically, we could restrict the message space of each THF in a collection to only
contain messages of the relevant length, but this does not yield significant advantages.
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Fig. 5. SM-DT-TCR(-C) game. Outlined code is only considered in SM-DT-TCR-C.

Fig. 6. Challenge oracle employed in
SM-DT-TCR(-C) game.

Fig. 7. Collection oracle employed in
games for tweakable hash functions.

distinct (distinct-tweak). Unsurprisingly, this scenario shares quite some similar-
ities with the manner in which SPHINCS+ operates; in particular, SPHINCS+

uses the same (public) parameter — which is sampled uniformly at random dur-
ing setup — and a unique tweak for each THF evaluation. For a more in-depth
discussion and analysis of these properties, see [9,17].

The considered THF properties are formalized through the games and oracles
in Figures 5, 6, and 7 (SM-DT-TCR(-C) game, challenge oracle, and collection
oracle); Figures 8 and 9 (SM-DT-DSPR games and challenge oracle); and Fig-
ures 10 and 11 (SM-DT-OpenPRE game and challenge oracle). In these games,
t denotes the upper bound on the number of targets, SPETHF is a predicate that
indicates whether there exists a second-preimage of the given message under THF
(when the first two arguments to THF are the given parameter and tweak), and
VQSt is a predicate that validates the adversary’s behavior by checking whether
(1) the number of targets is less than or equal to t, (2) the provided index i is a
valid index into the target list(s), and (3) the target tweaks are distinct from each
other and, in case the relevant collection is considered, from the tweaks issued to
the collection oracle. Moreover, for the (non-standard) advantage definition of
SM-DT-DSPR, we need to define SM-DT-SPprob, a game that essentially repre-
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Fig. 8. SM-DT-DSPR (blue) and
SM-DT-SPprob (yellow) game. Non-
outlined code is considered in both games.
(Color figure online)

Fig. 9. Challenge oracle employed
in SM-DT-DSPR and SM-DT-SPprob
game.

Fig. 10. SM-DT-OpenPRE game for
tweakable hash functions.

Fig. 11. Challenge oracle employed in
SM-DT-OpenPRE game.

sents the trivial attack against SM-DT-DSPR. Then, we define the advantage of
any adversary A against Prop ∈ {SM-DT-TCR, SM-DT-OpenPRE} as follows.

Adv
Prop
THF,t(A) = Pr

[

GameProp
A,THF,t = 1

]

For the remaining THF properties, the corresponding advantages are given below,

where p = Pr
[

GameSM-DT-DSPR
A,THF,t = 1

]

and q = Pr
[

GameSM-DT-SPprob
A,THF,t = 1

]

.

AdvSM-DT-DSPR
THF,t (A) = max(0, p− q)

AdvSM-DT-TCR-C
THF,THFC,t (A) = Pr

[

GameSM-DT-TCR-C
A,THF,THFC,t = 1

]

Hash Addresses. An instance of SPHINCS+ employs the same collection of
THFs throughout its entire execution; furthermore, it invariably uses the same



A Tight Security Proof for SPHINCS+, Formally Verified 43

(public) parameter to index the THFs. Thus, to mitigate multi-target attacks,
SPHINCS+ uses a unique, fixed tweak in each THF evaluation. For the con-
struction of these tweaks, SPHINCS+ utilizes a specific addressing scheme. In
this scheme, an address essentially encodes (uniquely) identifying information for
the THF evaluation in which the address is used. More precisely, each address
constitutes a fixed-length sequence of nonnegative integers encoding the location
and purpose of a THF evaluation within the virtual structure of a SPHINCS+

instance. Naturally, not every (fixed-length) sequence of nonnegative integers
constitutes a valid address in this scheme. Furthermore, because we approach
the analysis of SPHINCS+ in a modular manner, parts of the addresses may
be irrelevant at certain points;3 in such cases, we disregard the irrelevant part
of the addresses. Throughout this paper, we use “address” to refer to a fixed-
length sequence of nonnegative integers that constitutes (the relevant part of) a
valid SPHINCS+ address in the considered context. Additional clarification on
address validity will be provided as necessary.

EasyCrypt. EasyCrypt is an interactive proof assistant designed to check the
validity of code-based, game-playing proofs for concrete security statements in
the computational model. Schemes, experiments/games, oracles, and reductions
are all expressed as probabilistic programs written in a simple probabilistic While
language, and claims (e.g., about successive games) are proved by demonstrating
equivalences between such programs — if necessary, quantifying over an addi-
tional program modeling the adversary. Moreover, it is possible to quantify over
programs modeling parts of the (honest) system that are left abstract; this can,
for example, be used to state and prove results about generic compositions or
transformations.

In EasyCrypt, an equivalence proof is typically performed by establishing
a probabilistic coupling between the processes defined by the considered pro-
grams, rather than reasoning directly about the distributions those processes
sample from. The relational (principal) logic supports conditional equivalences
(capturing simulation failures), and can be combined with a non-relational logic
to bound the computational distance between two imperfectly equivalent games.4

In cases where an equivalence cannot be reasoned about by coupling — e.g., when
a sampling operation is split into two or more sampling operations — EasyCrypt
supports reasoning directly about distributions, as long as the distributions are
fully defined by the programs without adversarial interaction.

3 Approach

The primary objective of this work is to renew or increase confidence in the
(parameter sets considered for) SPHINCS+, which we achieve via the formal

3 For example, in a modular part that exclusively operates on a single layer of the
virtual structure, the part of the addresses that indicates this layer is irrelevant.

4 Here, “relational” refers to simultaneous reasoning about two programs; correspond-
ingly, “non-relational” refers to reasoning about a single program.
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verification of a tight security proof. To this end, we initially reconstruct the
(handwritten) tight security proof for SPHINCS+ from [17] in a modular manner,
adding a significant amount of detail in the process. Utilizing this reconstructed
proof as a guideline for the subsequent formal verification facilitates the overall
process in several ways. First, the modularity reduces the complexity (of the
formal verification) of individual statements by limiting their scope. Second,
the modularity enables the reuse of certain artifacts previously produced in the
formal verification of the novel tight security proof for XMSS [6]. Lastly, the
increased granularity is a prerequisite for the formal verification, where each
reasoning step must be carried out explicitly and in full.

Figure 12 presents a high-level overview of (the proofs underlying) our formal
verification. In this figure, each node represents a property of a cryptographic
construction, KHF, or THF; each edge indicates an implication between prop-
erties, i.e., from origin nodes to destination nodes.

Fig. 12. High-level overview of (the proofs underlying) our formal verification. Nodes
represent properties of cryptographic constructions or functions: the text above the line
indicates the construction or function; the text below the line indicates the property.
Edges represent implications between properties: the property denoted by the desti-
nation node is implied by the conjunction of properties denoted by the origin nodes.
Red edges represent implications that have been formally verified in previous work
(specified in an edge label), the results of which are reused here.
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The leftmost node in Figure 12 signifies the primary objective of this work:
The formal verification of the Existential UnForgeability under Chosen-Message
Attacks (EUF-CMA) security of SPHINCS+. As depicted, we show that this
property is implied by (1) the PRF property of SKG and MKG, KHFs used
for the generation of secret keys and message compression keys, respectively;
and (2) the EUF-CMA security of SPHINCS+$, a variant of SPHINCS+ that
employs actual randomness rather than pseudorandomness. In essence, these
initial reductions replace all pseudorandomness used throughout the construction
by actual randomness. Consequently, in the remaining (modular) parts of the
proof, we can immediately consider variants of the sub-constructions that use
actual randomness (without further PRF-related reasoning).5

Next, we exhibit that the EUF-CMA security of SPHINCS+$ follows from
(1) the EUF-CMA security of M-FORS$, a multi-instance variant of FORS
that employs actual randomness; and (2) the EUF-NAGCMA property — a non-
adaptive, generic version of the EUF-CMA property — of FL-SL-XMSSMT$, a
fixed-length, stateless variant of XMSSMT that uses actual randomness.

Proceeding in a modular fashion, we demonstrate that the EUF-CMA secu-
rity of M-FORS$ can be based on (1) the ITSR property of MCO, a KHF used
for the compression of (arbitrary-length) messages; (2) the SM-DT-OpenPRE
property of F, a THF employed to generate Merkle tree leaves from secret key
elements; and (3) the SM-DT-TCR-C property of TRH and TRCO, THFs used
for the construction of Merkle trees from their leaves and, respectively, the com-
pression of Merkle tree roots. In turn, we establish that the SM-DT-OpenPRE
property of F is implied by its own SM-DT-DSPR and SM-DT-TCR properties.
Interestingly, this implication can be considered a THF analog of Theorem 38
in [8], which states a comparable implication for KHFs. Correspondingly, the
proofs require similar non-standard reasoning which, to the best of our knowl-
edge, is unprecedented in EasyCrypt. Employing Theorem 25 in [8] — the proof
of which only requires a relatively basic form of this reasoning — as an initial case
study, we develop a formal verification technique aimed at this kind of reasoning.
Building on this, we formally verify the implication required for SPHINCS+.

Then, for FL-SL-XMSSMT$, we show that its EUF-NAGCMA security is
implied by (1) the M-EUF-GCMA property — a multi-instance, generic version
of EUF-CMA specifically devised for the purpose of recovering the SPHINCS+

proof [17] — of WOTS-TW$, a variant of WOTS-TW that employs actual ran-
domness; and (2) the SM-DT-TCR-C property of PKCO and TRH, THFs respec-

tively employed for the compression of WOTS-TW$ public keys and the con-
struction of Merkle trees from their leaves.6 At this point, a single implication
remains: The implication from several properties of THF F to the M-EUF-GCMA
security of WOTS-TW$. Fortunately, in [6], this implication has already been

5 Nevertheless, at the expense of brevity (and code size), it should be relatively
straightforward to extract a proof in which the PRF-related reasoning is localized,
i.e., moved to the (modular) parts of the proof concerning the sub-constructions.

6 Indeed, TRH is the same function in both M-FORS$ and FL-SL-XMSSMT$.
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formally verified in a way that facilitates reuse. We capitalize on this and do not
formally verify this implication anew.

Finally, combining all modular parts, we formally verify that the EUF-CMA
security of SPHINCS+ can solely be based on the properties of the employed
KHFs and THFs, as desired.

In the ensuing sections, we discuss the formal verification process more exten-
sively, going by the cryptographic (sub-)constructions. Specifically, in order, we
go over M-FORS$, FL-SL-XMSSMT$, and SPHINCS+$/SPHINCS+. Through-
out this discussion, we do not include any material directly from the produced
formal verification artifacts in the interest of space. Instead, we cover the proofs
underlying the formal verification in a way that allows for a near-verbatim trans-
lation to EasyCrypt, thus accurately representing the formally verified material.

Development. Before proceeding to the detailed discussion about (the formal
verification of) the proof, we go over some meta-information in an attempt to
provide additional insight into the development process and produced artifacts.

Excluding any reused artifacts, the development comprises approximately
17000 lines of code. However, the vast majority of this code is entirely verified
by the tool. Furthermore, as hinted at before, the code that should be man-
ually verified mostly constitutes a straightforward translation from the corre-
sponding handwritten material (presented in this paper). In total, the project
spanned approximately seven months,7 with one primary developer and four
others (mainly) providing guidance.

Reflecting on the development process, we discern two key ways to facili-
tate future projects of a similar scale or nature. First, constructing EasyCrypt
libraries for common cryptographic concepts could significantly reduce both
specification and proof efforts. This work contributes to that end by develop-
ing and improving libraries relevant to hash-based cryptography. Additionally,
extending EasyCrypt with features that automate frequently occurring reason-
ing steps in cryptographic proofs — particularly those that currently still require
significant boilerplate and effort— could further streamline the process. A spe-
cific example of this would be PRF-related reductions.

4 M-FORS
$

FORS was first introduced in [9] as the few-time signature scheme used in
SPHINCS+. In practice, FORS is used with pseudorandom keys. However, our
proof performs a PRF-related step on the level of SPHINCS+ that replaces all
pseudorandom values with random values. Thus, when analyzing the security
of FORS, we actually analyze FORS$, a version of FORS that operates using
actual randomness. In fact, it turns out that considering a multi-instance variant
of FORS$, M-FORS$, is convenient for the proof because SPHINCS+ and the
ITSR property (inherently) consider multiple instances of FORS$.

7 Again, not including the development of any reused artifacts.
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Intuitively, the (virtual) structure of a FORS$ instance is a sequence of
Merkle trees, the leaves of which are digests of secret key values. The public
key of such an instance is a single digest obtained by compressing the roots of
the Merkle trees. A FORS$ signature comprises, for each Merkle tree, a single
secret key value and the corresponding authentication path (defined below). The
selection of secret key values in the signature is derived from the message.

A FORS$ instance is defined with respect to three parameters: k, a, and n.
These parameters denote the number of Merkle trees (k), the height of each
Merkle tree (a), and the byte-length (n) of the secret key elements, the public
key, and the (values associated with the) nodes of the Merkle trees. From a,
we compute the number of leaves for each Merkle tree as t = 2a. Furthermore,
FORS$ employs the THFs F, TRH, and TRCO. These functions have the same
(public) parameter space and tweak space — referred to as the public seed space
PS and address space AD— as well as the same message space {0, 1}∗ and digest
space {0, 1}8·n.

An instance of M-FORS$ essentially manages multiple FORS$ instances
divided into sequences, where the number of sequences and the size of each
sequence are respectively determined by parameters s and l′. M-FORS$ utilizes
the KHF MCO to process arbitrary-length messages, obtaining (1) a fixed-length
message — processable by a FORS$ instance — and (2) an index uniquely iden-
tifying a specific FORS$ instance. Moreover, it uses a random function MKG$ to
generate a fresh indexing key for each message compression. Lastly, to guarantee
a unique address for each THF evaluation in M-FORS$’s operations, we require
that addresses have a corresponding xtree index (xtri), keypair index (kpi), type
index (typei), ftree height index (ftrhi), and ftree breadth index (ftrbi). These
indices are nonnegative integers that indicate, in the given order, the sequence
of FORS$ instances, the FORS$ instance within the sequence, the type of oper-
ation (tree hashing or tree root compression), the height of the node (in the
FORS$ instance), and the breadth of the node (in the FORS$ instance).8 Here,
the breadth and height indices are only relevant for tree hashing operations.

In essence, provided with a public seed ps and an address ad, the key pair
of a FORS$ instance is constructed as follows. Initially, a FORS$ secret key
sk = sk0 . . . skk·t−1 — ski ∈ {0, 1}8·n for 0 ≤ i < k · t— is sampled uniformly
at random. To obtain the corresponding public key, first, a sequence of k · t
Merkle tree leaves is computed from the secret key by processing each element
with F. The resulting sequence contains k non-overlapping subsequences of t
leaves, each uniquely defining a Merkle tree of height a. The roots of these trees
can be obtained by iteratively computing the layers of each tree. Specifically, in
the construction of the layer at height h in the j-th Merkle tree, the node at
breadth b can be computed from its children cl and cr as TRH(ps, adj,h,b, cl || cr),
where adj,h,b denotes the unique address for this evaluation of TRH (obtained
by appropriately adjusting ad based on j, h and b). Hereafter, we denote the

8 For the ftree breadth index, we do not consider a single tree, but rather the full
sequence of trees in a FORS$ instance. This way, addresses are unique even for
nodes in different trees but at the same height and breadth of their respective tree.
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Listing 1 FORS$ Primary

1: procedure FORS$.KeyGen(ps, ad)

2: skF ←$ U(({0, 1}8·n)k·t)

3: lvs ← FORS$.SkFToLvs(skF, ps, ad)
4: rts ← [ ]
5: ad.typei ← ftrhType
6: for i = 0, . . . , k − 1 do

7: lvsst ← lvs[i · t : (i + 1) · t]
8: rt ← LvsToRta(ps, ad, lvsst, i)
9: rts ← rts || rt
10: ad.typei ← ftrcType
11: pkF ← TRCO(ps, ad, flatten(rts))
12: return (pkF, ps, ad), (skF, ps, ad)

13: procedure FORS$.Sign(sk := (skF, ps, ad), m)

14: lvs ← FORS$.SkFToLvs(skF, ps, ad)
15: sig ← [ ]
16: ad.typei ← ftrhType
17: for i = 0, . . . , k − 1 do

18: j ← toint(m[i · a : (i + 1) · a])
19: skele ← skF[i · t + j]
20: lvsst ← lvs[i · t : (i + 1) · t]
21: ap ← ConsAPa(ps, ad, lvsst, j, i)
22: sig ← sig || (skele, ap)
23: return sig

24: procedure FORS$.Verify(pk := (pkF, ps, ad),
m, sig)

25: pkF′ ← FORS$.SigToPkF(m, sig, ps, ad)
26: return pkF′ = pkF

Listing 2 FORS$ Auxiliary

1: procedure FORS$.SkFToLvs(skF, ps, ad)
2: lvs ← [ ]
3: ad.typei, ad.ftrhi ← ftrhType, 0
4: for i = 0, . . . , k · t − 1 do

5: ad.ftrhb ← i
6: lf ← F(ps, ad, skF[i])
7: lvs ← lvs || lf
8: return lvs
9: procedure FORS$.SigToPkF(m, sig, ps,

ad)
10: rts ← [ ]
11: ad.typei ← ftrhType
12: for i = 0, . . . , k − 1 do

13: skele, ap ← sig[i]
14: j ← toint(m[i · a : (i + 1) · a])
15: ad.ftrhi, ad.ftrbi ← 0, i · t + j
16: lf ← F(ps, ad, skele)
17: rt ← APToRta(ps, ad, ap, lf, j, i)
18: rts ← rts || rt
19: ad.typei ← ftrcType
20: pkF ← TRCO(ps, ad, flatten(rts))
21: return pkF

operator that performs this computation for Merkle trees of height h (i.e., for
lists of leaves of length 2h) by LvsToRth. Lastly, after computing the Merkle tree
roots, the FORS$ public key pk is obtained by compressing the concatenation of
these roots using TRCO. Since signing and verifying require the public seed and
address that were used in key generation, we include them in both the public
and secret key for convenience.

Given a FORS$ key pair, a message m ∈ {0, 1}k·a is signed and verified
in the following manner. Initially, m is split into k bitstrings of length a, each
of which is interpreted as the big-endian binary representation of an integer in
[0, 2a−1]. This gives rise to a k-tuple of integers (i0, . . . , ik−1). Next, for every ij,
0 ≤ j < k, a so-called authentication path is constructed for the ij-th leaf of the
j-th Merkle tree in the FORS$ instance. This path is the sequence comprising,
in order, the sibling nodes along the path from the root to the considered leaf.
Indeed, this path can be computed from the list of leaves and the index of the
leaf. Throughout the remainder, we denote the operator that constructs these
paths for Merkle trees of height h by ConsAPh. Then, the FORS$ signature on
m is a k-tuple of pairs (skij , apij ), 0 ≤ j < k, where skij and apij are the secret
key element and authentication path corresponding to the ij-th leaf of the j-th
Merkle tree. Verification of a signature on m is performed by, initially, extracting
the integers (i0, . . . , ik−1) from m in the same way as before. Subsequently, the
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secret key elements in the signature are transformed into the corresponding
leaves via F. Combining each of these leaves with the associated authentication
path in the signature, the root of each Merkle tree in the FORS$ instance is
computed. This is achieved by iteratively reconstructing the path from the leaf
to the root using the sibling nodes in the authentication path. For instance,
if the ij-th leaf is a right child, the second node on the path is computed as
n1 = TRH(ps, adj,1,x, apij [a− 1] || lfij ), where x = ⌊ij/2⌋, adj,1,x is the unique
address for this evaluation of TRH, and lfij is the ij-th leaf; then, if n1 is a left
child, the third node on the path equals TRH(ps, adj,2,y, n2 || apij [a− 2]), where

y = ⌊x/2⌋; and so forth.9 Henceforth, we denote the operator that performs this
computation for Merkle trees of height h (i.e., for authentication paths of length
log2 h) by ApToRth. Finally, the produced roots are compressed using TRCO to
obtain a candidate public key. If and only if this candidate public key matches
the original public key, verification succeeds.

Following the foregoing descriptions, Listing 1 provides the specification of
FORS$’s key generation, signing, and verification algorithm. These algorithms
employ auxiliary procedures for the computation of (1) a sequence of Merkle tree
leaves corresponding to a FORS$ secret key, and (2) a FORS$ public key corre-
sponding to a FORS$ signatures. For reuse purposes, we specify these auxiliary
procedures separately in Listing 2. In the specifications, l[i : j] denotes the slice
of list l from index i (including) up to index j (excluding), flatten(l) denotes the
sequential concatenation of all elements in list l, and toint(s) denotes the integer
corresponding to bitstring s (assuming big-endian binary representation).

At this point, it is rather straightforward to specify M-FORS$, as it essen-
tially constitutes a collection of FORS$ instances combined with a way to com-
press messages and select which instance to use for signing and verification.
Listing 3 provides the specification of M-FORS$’s algorithms.

Security Property. For M-FORS$, we effectively consider a slight variant
of the customary EUF-CMA security property that accounts for the fact that
M-FORS$ expects to be provided with a public seed and an address. Further-
more, for the usage of the THFs to be secure (with respect to their assumed
properties), this public seed should be sampled uniformly at random. The game
and oracle formalizing this security property are respectively provided in Fig-
ures 13 and 14. Here, adz denotes an arbitrary address used for initialization.

Formal Verification. As illustrated in Figure 12, we demonstrate that the
EUF-CMA security of M-FORS$ is implied by the ITSR property of MCO, the
SM-DT-OpenPRE property of F, and the SM-DT-TCR-C property of TRH and
TRCO. For the ITSR property of MCO, we instantiate MAP (see Figure 1) with
CM, a function that maps (mc, i) ∈ {0, 1}k·a × [0, s · l − 1]— i.e., outputs from
MCO— to the set S = {(i, j, toint(mc[j ·a : (j+1) ·a])) | 0 ≤ j < k}. Intuitively,
a tuple (x, y, z) from this set can be interpreted as an index pointing to the z-th

9 Whether the nodes along the reconstructed path are left or right children can be
computed from the value of ij .
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Listing 3 M-FORS$

1: procedure M-FORS$.KeyGen(ps, ad)
2: pkMF, skMF ← [ ], [ ]
3: for i = 0, . . . , s · l′ − 1 do

4: ad.xtri, ad.kpi ← ⌊i/l′⌋, i mod l′

5: (pkF,_,_), (skF,_,_) ← FORS$.KeyGen(ps, ad)
6: pkMF, skMF ← pkMF || pkF, skMF || skF
7: return (pkMF, ps, ad), (skMF, ps, ad)

8: procedure M-FORS$.Sign(sk := (skMF, ps, ad), m)

9: mk ← MKG$(m)
10: mc, i ← MCO(mk,m)
11: ad.xtri, ad.kpi ← ⌊i/l′⌋, i mod l′

12: sigF ← FORS$.Sign((skMF[i], ps, ad),mc)
13: return mk, sigF

14: procedure M-FORS$.Verify(pk := (pkMF, ps, ad), m, sig := (mk, sigF))
15: mc, i ← MCO(mk,m)
16: ad.xtri, ad.kpi ← ⌊i/l′⌋, i mod l′

17: isValid ← FORS$.Verify((pkMF[i], ps, ad),mc, sigF)
18: return isValid

GameEUF-CMA
A,M-FORS$

1 : ad ← adz

2 : ps ←$ U(PS)

3 : (pk, sk) ← M-FORS$
.KeyGen(ps, ad)

4 : [O]M-FORS$ .Init(sk)

5 : m
′
, sig′ ← A[O]

M-FORS$
.Query

.Forge(pk)

6 : isValid ← M-FORS$
.Verify(pk,m, sig)

7 : isFresh ← m
′ 6∈ [O]M-FORS$ .M

8 : return isValid ∧ isFresh

[O]M-FORS$

vars sk,M

Init(ski)

1 : sk,M ← ski, [ ]

Query(m)

1 : sig ← M-FORS$
.Sign(sk,m)

2 : M ← M || m

3 : return

Fig. 13. EUF-CMA game for M-FORS$. Fig. 14. Oracle employed in
EUF-CMA game for M-FORS$.

leaf of the y-th Merkle tree in the x-th FORS$ instance. Formally, the security
theorem we consider is the following.

Theorem 1 (EUF-CMA for M-FORS$). For any adversary A, there exist
adversaries B0, B1, B2, and B3 —each with approximately the same running
time as A—such that the following inequality holds.

AdvEUF-CMA
M-FORS$ (A) ≤ AdvITSR

MCO,CM(B0) + Adv
SM-DT-OpenPRE
F,tf

(B1)

+ AdvSM-DT-TCR-C
TRH,THFC,ttrh (B2)

+ AdvSM-DT-TCR-C
TRCO,THFC,ttrco(B3)

Here, THFC denotes an arbitrary THF collection containing F, TRH, and TRCO.
Furthermore, tf = s · l′ · k · t, ttrh = s · l′ · k · (t− 1), and ttrco = s · l′.

In essence, the formal verification of Theorem 1 proceeds by an exhaustive case
analysis on the situation where A wins GameEUF-CMA

A,M-FORS$ . This case analysis com-
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prises four distinct cases; for each of these cases, the probability is bounded
by exactly one of the advantage terms on the right-hand side of the theorem’s
inequality. In the following, G⊤

A signifies the event GameEUF-CMA
A,M-FORS$ = 1.

Case Distinction for G⊤
A. First, note that a valid EUF-CMA forgery for

M-FORS$ consists of a message m′ and a signature sig′ = (mk′, sigF′) such
that m′ is fresh and sig′ is a valid signature on m′ under the considered public
key pk = (pkMF, ps, ad). Here, recall that sig′ is only valid if the FORS$ candi-
date public key pkF′, computed from (m′

c, i
′) = MCO(mk′,m′) and sigF′, equals

pkF = pkMF[i′]. By the nature of the computations, validity of the forgery
implies that, at some point during the construction of pkF′, the considered val-
ues must coincide with the corresponding values in the original construction of
pkF.

Harnessing the above observation, the first case we distinguish is one where
the compression of m′ (using MCO indexed on mk′) results in the selection of a
set of secret key elements from a FORS$ instance such that all of these values
were already revealed as part of (the replies to) the issued signature queries.10

Alternatively stated, the set CM(m′
c, i

′) is contained in the union of the analogous
sets for the key/message pairs corresponding to the issued signature queries. As
m′ is fresh, it follows that the pair (mk′,m′) can be used to break ITSR. In the
remaining, EM denotes the event that captures this case.

If the first case does not occur (¬EM ), the forgery contains at least one
secret key element skele′ not revealed during the game. Then, the second case we
distinguish concerns the leaf lf ′ produced from this secret key element equaling
the corresponding leaf lf in the computation of pkF. In this case, skele′ is a
preimage of lf under F and, hence, can be used to break SM-DT-OpenPRE (for
F). Hereafter, EF signifies the event capturing this case (within ¬EM ).

If both the first and second case do not happen (¬EM ∧ ¬EF ), the forgery
contains a secret key element skele′ that (1) was not revealed during the game and
(2) produces a leaf lf ′ that is different from the one in the original construction
of pkF. As such, the third case we distinguish regards the Merkle tree root
computed from lf ′ and the associated authentication path ap′ (from the same
pair in the forgery) equaling the corresponding Merkle tree root in the original
computation of pkF. Here, it must be the case that, at a certain point, the values
on the reconstructed path (using lf′ and ap′) coincide with the corresponding
values in the original Merkle tree. So, because the initial node(s) on these paths
are not equal, the first node for which the paths converge must be obtained by
applying TRH on different inputs. These inputs form a collision for TRH and,
thus, can be used to break SM-DT-TCR-C (for TRH). Henceforth, we denote
the event that captures this case (within ¬EM ∧ ¬EF ) by ET .

Finally, if all of the foregoing cases do not transpire (¬EM ∧ ¬EF ∧ ¬ET ),
it must be the case that one of the Merkle tree roots provided as (part of the)
input to TRCO to produce pkF′ does not equal the corresponding root used

10 The values need not all be revealed in (the reply to) a single signature query. They
may have been revealed over (the replies to) any number of signature queries.
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in the original computation of pkF. Therefore, in this case, the (concatenated)
Merkle tree roots used to compute pkF′ and pkF form a collision for TRCO and
can be used to break SM-DT-TCR-C (for TRCO).

Bound on Pr
[

G⊤
A ∧ EM

]

. If the compression of m′ (using mk′) indicates a set
of secret key elements already revealed in (the responses to) the issued signa-
ture queries, we construct a reduction adversary RA playing in GameITSR

A,MCO,CM

that straightforwardly simulates an execution of GameEUF-CMA
A,M-FORS$ but, instead

of sampling, uses [OITSR] to obtain message keys for the compression of mes-
sages contained in queries by A. Upon receiving the forgery from A, RA directly
extracts and returns (mk′,m′), winning its own game. As a result, we can bound
Pr

[

G⊤
A ∧ EM

]

by AdvITSR
MCO,CM(R

A).

Bound on Pr
[

G⊤
A ∧ ¬EM ∧ EF

]

. In case the compression of m′ indicates an
unprecedented secret key element for which the image under F coincides with
the corresponding original Merkle tree leaf, we construct the following reduction
adversary playing in GameSM-DT-OpenPRE

RA,F,tf
. In its first stage, RA constructs and

returns a list containing every address used to create Merkle tree leaves from
secret key elements in M-FORS$. Then, in its second stage, RA utilizes the given
public seed and Merkle tree leaves to compute the corresponding M-FORS$ pub-
lic key and runs A with this public key, the public seed, and the initialization
address. During the execution of A, the reduction adversary answers signature
queries in accordance with M-FORS$.Sign, acquiring any necessary secret key
elements via [OOPRE]F.Open. Upon receiving the forgery from A, RA finds the
secret key element not revealed in (responses to) the issued signature queries,
and returns this element together with the associated index. By construction,
the reduction adversary did not query any indices corresponding to secret key
elements not included in (responses to) the issued signature queries. Conse-
quently, RA wins its own game and we can bound Pr

[

G⊤
A ∧ ¬EM ∧ EF

]

by

Adv
SM-DT-OpenPRE
F,tf

(RA).

Bound on Pr
[

G⊤
A ∧ ¬EM ∧ ¬EF ∧ ET

]

. If the leaf obtained from the unprece-
dented secret key element in the forgery does not equal the corresponding leaf
in the original Merkle tree, but the root computed based on the associated
authentication path does coincide with the root of the original Merkle tree, we
construct the ensuing reduction adversary playing in GameSM-DT-TCR-C

RA,TRH,THFC,ttrh
. In

its first stage, RA constructs a key pair in line with M-FORS$.KeyGen by uti-
lizing the provided oracles. Specifically, for each FORS$ instance, the reduction
adversary samples the secret key, computes the Merkle tree leaves by query-
ing the collection oracle on the secret key elements, computes the Merkle tree
roots by querying the challenge oracle on the (concatenation of) sibling nodes —
specifying these as targets — and computes the FORS$ public keys by querying
the collection oracle on the (concatenation of) Merkle tree roots. Then, in its
second stage, RA runs A with the previously generated public key, the received
public seed, and the initialization address. Since RA constructed the considered
key pair itself, it can trivially simulate the signing oracle for A. Upon receiv-
ing the forgery from A, RA computes the non-matching leaf from the unprece-
dented secret key element; extracts the collision based on this leaf, the associated
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authentication path, and the original Merkle tree; and returns the extracted col-
lision and the associated index, winning its own game. As such, we can bound
Pr

[

G⊤
A ∧ ¬EM ∧ ¬EF ∧ ET

]

by AdvSM-DT-TCR-C
TRH,THFC,ttrh (RA).

Bound on Pr
[

G⊤
A ∧ ¬EM ∧ ¬EF ∧ ¬ET

]

. Finally, if none of the previous cases

occurs, we construct a reduction adversary playing in GameSM-DT-TCR-C
RA,TRCO,THFC,ttrco

that, in essence, is extremely similar to the one considered in the preceding case.
Namely, in its first stage, RA constructs a M-FORS$ key pair in the same way as
the previous reduction adversary. However, in this case, RA employs the collec-
tion oracle for the construction of Merkle trees and the challenge oracle for the
compression of Merkle tree roots. In its second stage, RA also proceeds in the
same way as the previous reduction adversary, except that it now extracts and
returns a collision (and the associated index) based on the Merkle tree root com-
puted from the forgery. Following, we can bound Pr

[

G⊤
A ∧ ¬EM ∧ ¬EF ∧ ¬ET

]

by AdvSM-DT-TCR-C
TRCO,THFC,ttrco (R

A).

Final Result. At this point, Theorem 1 trivially follows from the established
bounds and the fact that the sum of the probabilities for the considered cases is
precisely equal to AdvEUF-CMA

M-FORS$ (A).

4.1 SM-DT-OpenPRE From SM-DT-TCR and SM-DT-DSPR

At this stage, we go over the formal verification of the aforementioned generic
relation between the SM-DT-OpenPRE, SM-DT-DSPR and SM-DT-TCR prop-
erties of a THF with a finite message space. By instantiating this relation with
F11 (and combining it with Theorem 1), we complete the modular part of the
formal verification rooted at M-FORS$ (see Figure 12). Formally, the security
statement we consider is the following.

Theorem 2 (SM-DT-OpenPRE for a THF). For any adversary A, there
exist adversaries B0 and B1 —each with approximately the same running time
as A—such that the following inequality holds.

Adv
SM-DT-OpenPRE
THF,t (A) ≤ AdvSM-DT-DSPR

THF,t (B0) + 3 · AdvSM-DT-TCR
THF,t (B1)

Here, THF is an arbitrary THF with a finite message space M, and t ≥ 0.

In [8], the authors demonstrate generic relations between similar properties for
KHFs. The proofs in [8] make use of non-standard techniques that we also use for
the proof of Theorem 2. As these techniques are unprecedented in EasyCrypt,
we elaborate on the formal verification and its challenges here.

Typical proofs considered in EasyCrypt compare, at each step, (the simulta-
neous execution of) two games. This encompasses usual proofs via direct reduc-
tion or game hopping. Namely, in these cases, the tool’s probabilistic relational

11 Although F technically has an infinite message space (see Section 2), we can replace
it in the context of M-FORS$/SPHINCS+ by an equivalent function with finite
message space {0, 1}8·n because F is only evaluated on messages from this space in
this context.
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logic enables formal reasoning about the desired equivalences (potentially up to
some failure event) between each pair of games. Unfortunately, it is not possible
to refer to any games beyond the two collated games, which would be needed to
formally verify our proof directly. Particularly, the proof for Theorem 2, which
closely resembles the proofs for Theorems 25 and 38 in [8], requires simul-

taneous reasoning about four games: GameSM-DT-OpenPRE
A,THF,t , GameSM-DT-DSPR

RA
D
,THF,t ,

GameSM-DT-SPprob

RA
D
,THF,t

, and GameSM-DT-TCR
RA

T
,THF,t . Here, the reduction adversaries RA

D

and RA
T are relatively straightforward. Specifically, in their first stage, both

reduction adversaries run A’s first stage to obtain the list of tweaks; then, for
each tweak in this list, they query their own oracle on this tweak and a uni-
formly random message (freshly sampled for each query), constructing a list of
digests from the responses. In their second stage, the reduction adversaries run
A’s second stage, providing it with the received public parameter and the previ-
ously constructed digest list. Upon receiving (i′, x′) from A, RA

T returns (i′, x′)
and RA

D returns (i′, b), where b guesses that the message contained in RA
D’s i′-th

query only has a single preimage if and only if x′ equals this message.
Using the above four games, the proof (and its formal verification) proceeds

by performing an extremely granular case analysis across multiple dimensions,
expressing the success probability associated with each game as a sum of proba-
bilities of fine-grained events. More precisely, these dimensions of analysis are (1)
the index j chosen by A, (2) the number of preimages for the digest pointed to
by j, and (3) the validity of A’s provided preimage. On a more technical level, we
perform this case analysis by defining F j

i and Sj
i , two auxiliary games parame-

terized on the number of preimages i and the index j. Intuitively, these games are
analogous to the similarly named auxiliary games in [8]: F j

i and Sj
i respectively

capture the failure and success cases for the considered SM-DT-OpenPRE game.
Utilizing these auxiliary games, the proof advances by performing the following
for each game (of the four primary games): First, decompose the success proba-
bility across the above-mentioned dimensions; second, show that, for some cases,
the probability equals that of either F j

i or Sj
i ; third, show that, for some (other)

cases, the probability equals 0; fourth, show that, for the remaining cases —
corresponding to the adversary finding a preimage different from the original
one chosen by the reduction adversary (which is information-theoretically hid-
den in the preimage set of size i)— the probability can be expressed as i−1

i ·Sj
i ;

and, lastly, combining the results into a closed formula. Subsequently, the result-
ing closed formulas can be combined to derive Theorem 2. In the process per-
formed for each game, the second and third step constitute customary proofs
for EasyCrypt, while the first and fourth step are non-standard and technically
involved. For the non-standard steps, we develop and apply techniques aimed at
the required reasoning. We elaborate on these below.

In the decomposition of the success probabilities, our objective is to express
the success probability of a game G (Pr

[

G⊤
]

) as follows. Here, G⊤
i,j denotes an
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event capturing a specific case of winning the game, parameterized by i and j.

Pr
[

G⊤
]

=
t−1
∑

j=0





|M|
∑

i=0

Pr
[

G⊤
i,j

]





We prove this equality by two applications of induction from the outside in —
i.e., first on j, then on i. So, we start with proving by induction that, for all z,
the following holds, where ti denotes the (adversarially chosen) target index.

Pr
[

G⊤ ∧ 0 ≤ ti < z
]

=

z−1
∑

j=0

Pr
[

G⊤ ∧ ti = j
]

In this proof, the base case (0) is trivial, and the inductive step directly follows
from the fact that the events are disjoint. We obtain the desired summation in
the range [0, t− 1] by showing that the adversary loses if it exceeds the number
of targets. Then, we continue the deconstruction by introducing the second sum-
mation. Specifically, we prove by induction that, for all z, the following holds,
where ntp denotes the number of preimages of the (adversarially chosen) target.

Pr
[

G⊤ ∧ 0 ≤ ti < t ∧ 0 ≤ ntp ≤ z
]

=
t−1
∑

j=0

(

z
∑

i=0

Pr
[

G⊤ ∧ ti = j ∧ ntp = i
]

)

This proof is similar to the previous one, except that the base case requires us to
argue that both probability expressions collapse to the case where the selected
target has no preimages. We acquire the intended summation by proving that the
number of preimages cannot exceed the (finite) number of messages |M|. The
resulting decomposition allows us to continue along the above proof outline.

Lastly, the most technically involved part of the formal verification concerns
the reasoning about information-theoretically hidden preimages, which is at the
heart of expressing the probability that the adversary finds a second preimage
in Sj

i as the probability of sampling an element uniformly at random from a
set of cardinality i and it not equaling a fixed element from this set. Proving
this in EasyCrypt is technically involved because there is no inherent mechanism
for reasoning about complex conditional probabilities (related to the execution
of games). In our case, it requires transforming Sj

i into a variant that initially
samples a digest y from the distribution induced by THF and, only in case y has
exactly i preimages, samples x from the set of y’s preimages after the adversary
returned x′. In actuality, this transformation requires several intermediate trans-
formations, each of which needs to guarantee that either the adversary’s view is
unaltered or the relevant event is not triggered. Loosely speaking, we alter the
original Sj

i in the following sequence of game hops. First, we use the sampled
message x only when the corresponding digest y has exactly i preimages, and
make the adversary’s view independent of it otherwise. Second, we invert the
order of the sampling by sampling y first and sampling x from the preimage set
of y. Third, we move the sampling of x to the end of the game. At this point,



56 M. Barbosa, F. Dupressoir, A. Hülsing, M. Meijers, and P-Y. Strub

since x is sampled after the adversary returns its guess, the desired probabil-
ity claim is relatively straightforward to prove using EasyCrypt’s logic. For the
technically involved and novel (for EasyCrypt) part of this proof, we developed
several reusable results that permit reasoning about distributions over sets of
images and preimages in functions with finite domain.

5 FL-SL-XMSS
MT$

XMSSMT is a stateful post-quantum digital signature scheme that is standard-
ized as a standalone construction, meaning that it is used to sign arbitrary-length
messages [12]. In effect, SPHINCS+ employs a stateless variant of this scheme
that is exclusively used to sign fixed-length messages, i.e., FORS public keys,
and therefore omits any initial message compression. We denote this variant
by FL-SL-XMSSMT. Within SPHINCS+, FL-SL-XMSSMT operates — akin to
FORS/M-FORS— using pseudorandomness. As we perform an all-encompassing
PRF-related step on the level of SPHINCS+, we only consider FL-SL-XMSSMT$,
a variant of FL-SL-XMSSMT which operates using actual randomness.

Intuitively, the (virtual) structure of a FL-SL-XMSSMT$ instance constitutes
a hypertree. Each “node” in this hypertree is an instance of a Merkle signature
scheme that uses WOTS-TW$ as its OTS scheme, essentially constituting a
variant of XMSS; we refer to these instances as “inner trees”. The inner trees
on the bottom layer of the hypertree are used to sign messages; all other inner
trees are used to sign the roots of the inner trees one layer below. An instance
of FL-SL-XMSSMT$ is defined with respect to parameters n, analogous to the
identically named parameter for FORS$; h′, the height of each inner tree; and d,
the number of layers in the hypertree. From h′ and d, we compute the number of
leaves of each inner tree as l′ = 2h

′

, the height of the hypertree as h = h′ ·d, and
the number of leaves of the hypertree as l = 2h. Furthermore, FL-SL-XMSSMT$

employs, in addition to the previously introduced F and TRH, the THF PKCO

for the compression of WOTS-TW$ public keys to inner tree leaves. PKCO has
the same domain and range as the other THFs,12 which largely remain identical
to those used in FORS$. Here, the only difference concerns the (minimal) indices
associated with the addresses. Specifically, in this context, we require addresses
to have an associated layer index (li), xtree index (xtri), type index (typei),
key pair index (kpi), xtree height index (xtrhi), and xtree breadth index (xtrbi).
Respectively, these indices indicate the layer, the inner tree within the layer,
the type of operation (chaining, public key compression, or tree hashing), the
leaf (within the inner tree), and the height and breadth of the node (within the

inner tree). Lastly, as we reuse formal verification artifacts for WOTS-TW$, we
mostly abstract this scheme away, only providing details when needed. For more
information about this scheme and its formal verification, see [6].

Loosely speaking, given a public seed and an address, a FL-SL-XMSSMT$ key
pair is constructed as follows. First, a FL-SL-XMSSMT$ secret key is a uniformly

12 Recall that we consider the same message space for each THF (i.e., {0, 1}∗).
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random sequence consisting of all WOTS-TW$ secret keys used throughout the
construction. Each of these WOTS-TW$ secret keys comprises a fixed number
(len) of bitstrings of length 8 · n and is associated with exactly one leaf of a
single inner tree. The corresponding FL-SL-XMSSMT$ public key is the root of
the hypertree, which is computed by (1) transforming the WOTS-TW$ secret
keys associated with the topmost inner tree into the corresponding public keys
via F, (2) compressing these public keys with PKCO to obtain the correspond-
ing leaves, and (3) computing the root of the topmost inner tree by iteratively
constructing its layers (from these leaves) using TRH. For the same reasons as
in FORS$/M-FORS$, we include the public seed and address in both the public
and secret key.

A FL-SL-XMSSMT$ signature on a message m ∈ {0, 1}8·n is a sequence of d

pairs, where the i-th pair consists of a WOTS-TW$ signature and an authenti-
cation path corresponding to (a particular leaf of) an inner tree on the i-th layer.
Here, the inner tree and leaf to be used on the bottom layer are provided as input,
completely determining the utilized inner trees and leaves from the upper lay-
ers. Naturally, the WOTS-TW$ signatures are produced with appropriate calls
to the signing procedure of WOTS-TW$; the associated authentication paths are
constructed analogously to the construction of such paths in FORS$, where the
considered leaf is obtained by compressing the corresponding WOTS-TW$ pub-
lic key via PKCO. Then, verification of a FL-SL-XMSSMT$ signature succeeds
if and only if the candidate root of the hypertree — constructed from the signa-
ture — equals the actual root of the hypertree contained in the public key. More
precisely, in a bottom-up manner, the roots of the inner trees corresponding to
the pairs in the signature are computed, where the message m serves as the ini-
tial root: First, the WOTS-TW$ public key is computed from the WOTS-TW$

signature (in the pair) and the considered root; second, the leaf corresponding to
the obtained public key is produced via PKCO; third, the root of the inner tree
is computed using the obtained leaf and the authentication path (in the pair),
again in a similar manner to the analogous computation in FORS$. Repeating
this process for each pair in the signature results in the candidate hypertree root.

In line with the preceding, the specification of FL-SL-XMSSMT$ is provided
in Listings 4 and 6; respectively, these listings specify the primary and auxiliary
algorithms, the latter of which are specified separately for reuse purposes. In
these specifications, the ConsAP, LvsToRt, and APToRt are the same operators
as in FORS$, yet parameterized on h′ instead of a.13 Furthermore, nrtrees(i)
denotes the number of inner trees in layer i (which equals 2h

′·(d−i−1)), and —
preventing clutter due to indexing — skMXi,j denotes the sequence (of length

l′) of WOTS-TW$ secret keys corresponding to the j-th inner tree on the i-th

layer. Finally, although the WOTS-TW$ procedures are not explicitly specified
here, their names are purposely indicative of their functioning; moreover, they
are mostly analogous to the similarly named procedures previously specified in
this paper.

13 The final argument to these operators is omitted as it was only used to determine
which Merkle tree in the FORS$ instance to consider.
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Listing 4 FL-SL-XMSSMT$ Primary

1: procedure FL-SL-XMSSMT$.KeyGen(ps, ad)
2: skMX ← [ ]
3: for i = 0, . . . , d − 1 do

4: for j = 0, . . . , nrtrees(i) − 1 do

5: skX ←$ U((({0, 1}8·n)len)l
′

)
6: skMX ← skMX || skX

7: pkMX ← FL-SL-XMSSMT$.SkMXToPkMX(skMX, ps, ad)
8: return (pkMX, ps, ad), (skMX, ps, ad)

9: procedure FL-SL-XMSSMT$.Sign(sk := (skMX, ps, ad), m, i)
10: rt ← m
11: ad.xtri ← i
12: sig ← [ ]
13: for j = 0, . . . , d − 1 do

14: ad.li, ad.xtri, ad.kpi ← j, ⌊ad.xtri/l′⌋, ad.xtri mod l′

15: skX ← skMXad.li,ad.xtri

16: skW ← skX[ad.kpi]
17: ad.typei ← chType

18: sigW ← WOTS-TW$.Sign((skW, ps, ad), rt)

19: lvsX ← FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
20: ad.typei ← xtrhType
21: apX ← ConsAPh′ (ps, ad, lvsX, ad.kpi)
22: rt ← LvsToRth′ (ps, ad, lvsX)
23: sig ← sig || (sigW, apX)
24: return sig

25: procedure FL-SL-XMSSMT$.Verify(pk := (pkMX, ps, ad), m, sig, i)

26: pkMX′ ← FL-SL-XMSSMT$.SigToPkMX(m, sig, i, ps, ad)
27: return pkMX′ = pkMX

Security Property. Regarding FL-SL-XMSSMT$, we consider a non-adaptive,
generic variant of the EUF-CMA security property denoted EUF-NAGCMA.
Here, “non-adaptive” refers to the fact that the selection of messages for which
the adversary receives signatures must happen at once; “generic” refers to the
fact that this selection happens without knowledge of the considered public key.
Akin to the EUF-CMA property for M-FORS$, this property accounts for the
fact that FL-XMSS-TW$ expects a public seed and an address, where the public
seed should be sampled uniformly at random. Furthermore, this property uses
an indexed version of the conventional freshness definition. Figure 15 provides
the game formalizing this property, where adz represents an arbitrary address.

Formal Verification. As Figure 12 depicts, we show that the EUF-NAGCMA
security of FL-SL-XMSSMT$ can be based on the M-EUF-GCMA property of
WOTS-TW$, as well as the SM-DT-TCR-C property of PKCO and TRH. Here,
we impose some additional constraints on the adversary’s behavior in terms of its
collection oracle queries. Intuitively, this limited oracle access can be interpreted
as modeling that the scheme remains secure in a greater context where the same
collection of THFs is also evaluated on different addresses (e.g., SPHINCS+).
Formally, the security theorem we consider is stated below.

Theorem 3 (EUF-NAGCMA for FL-SL-XMSSMT$). For any adversary A
that does not query its collection oracle on addresses used in FL-SL-XMSSMT$,
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Listing 5 FL-SL-XMSSMT$ Auxiliary

1: procedure FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
2: lvsX ← [ ]
3: for i = 0, . . . , l′ − 1 do

4: ad.typei, ad.kpi ← chType, i

5: pkW ← WOTS-TW$.SkWToPkW(skX[i], ps, ad)
6: ad.typei ← pkcoType
7: lf ← PKCO(ps, ad, flatten(pkW))
8: lvs ← lvs || lf
9: return lvs
10: procedure FL-SL-XMSSMT$.SkMXToPkMX(skMX, ps, ad)
11: ad.li, ad.xtri ← d − 1, 0
12: skX ← skMXd−1,0

13: lvsX ← FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
14: ad.typei ← xtrhType
15: pkMX ← LvsToRth′ (ps, ad, lvsX)
16: return pkMX

17: procedure FL-SL-XMSSMT$.SigToPkMX(m, sig, i, ps, ad)
18: rt ← m
19: ad.xtri ← i
20: for j = 0, . . . , d − 1 do

21: ad.li, ad.xtri, ad.kpi ← j, ⌊ad.xtri/l′⌋, ad.xtri mod l′

22: sigW, apX ← sig[j]
23: ad.typei ← chType

24: pkW ← WOTS-TW$.SigToPkW(rt, sigW, ps, ad)
25: ad.typei ← pkcoType
26: lf ← PKCO(ps, ad, flatten(pkW))
27: ad.typei ← xtrhType
28: rt ← APToRth′ (ps, ad, apX, lf, ad.kpi)
29: return rt

there exist adversaries B0, B1, and B2 —each with approximately the same run-
ning time as A—such that the following inequality holds.

AdvEUF-NAGCMA
FL-SL-XMSSMT$,THFC(A) ≤ AdvM-EUF-GCMA

WOTS-TW$,THFC,twtw
(B0) + AdvSM-DT-TCR-C

PKCO,THFC,tpkco
(B1)

+ AdvSM-DT-TCR-C
TRH,THFC,ttrh

(B2)
Here, THFC denotes an arbitrary THF collection containing F, PKCO, and
TRH. Furthermore, twtw =

∑d−1
i=0 nrtrees(i) · l′, tpkco =

∑d−1
i=0 nrtrees(i) · l′, and

ttrh =
∑d−1

i=0 nrtrees(i) · (l′ − 1).

Concerning the M-EUF-GCMA property for WOTS-TW$, it suffices to know
the following for the upcoming discussion. This property considers a two-stage
adversary that, only in its first stage, is given access to a WOTS-TW$ signing
oracle and [OC]THFC. In this first stage, the adversary can issue queries consisting

of a message and an address to the signing oracle, receiving a WOTS-TW$ public
key and signature (on the query’s message) that were freshly constructed using
the query’s address in any THF evaluations. In its second stage, the adversary is
asked to produce a fresh and valid forgery under one of the public keys received
in the first stage. For further details about this property, see [6].

The formal verification of Theorem 3 proceeds by an exhaustive case analysis
on the scenario where A wins GameEUF-NAGCMA

A,FL-SL-XMSSMT$,THFC, bounding the proba-



60 M. Barbosa, F. Dupressoir, A. Hülsing, M. Meijers, and P-Y. Strub

Fig. 15. EUF-NAGCMA game for FL-SL-XMSSMT$.

bility of each of these cases by the relevant advantage term. Here, much of the
reasoning related to the nature of the computations and the behavior of the
reduction adversaries is analogous to the reasoning presented in the discussion
on the formal verification for M-FORS$. As such, we do not elaborate as much
here. In the ensuing, G⊤

A refers to the event GameEUF-NAGCMA
A,FL-SL-XMSSMT$,THFC = 1.

Case Distinction for G⊤
A and Corresponding Bounds. First, remark that a valid

EUF-NAGCMA forgery for FL-SL-XMSSMT$ comprises a message m′, a signa-
ture sig′, and an index i′ such that m′ is fresh — which, in this context, means
that m′ is different from the message at index i′ in the list of selected (and signed)
messages — and sig′ is a valid signature on m′ under the considered public key
pk = (pkMX, ps, ad) and i′. Recall that sig′ is only valid if the candidate root
pkMX′ computed from m′, sig′, and i′ equals the actual root pkMX. By the ver-
ification procedure, validity of the forgery implies that the values considered in
the computation of pkMX′ must at some point coincide with the corresponding
values in the original computation of pkMX. As such, we can distinguish the fol-
lowing three exhaustive cases in the verification of the FL-SL-XMSSMT$ forgery.
In the first case, either (1) the initial WOTS-TW$ signature in the forgery is
valid on m′ or (2) we encounter an inner tree root that is different from the

corresponding original root, but the associated WOTS-TW$ signature is valid.
In the second case, we encounter a WOTS-TW$ public key (computed from a

WOTS-TW$ signature in the forgery) that does not match the corresponding
original public key, but the inner tree leaf resulting from the compression of the
public key equals the corresponding original leaf. In the last case, we encounter
an inner tree leaf that does not equal the corresponding original leaf, but the root
computed with the associated authentication path is equal to the corresponding
original root. Hereafter, in order, RA

W , RA
P , and RA

T denote the reduction adver-
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saries considered in each cases. Furthermore, EW and EP refer to the events
capturing the first two cases, respectively.

On a high level, the constructed reduction adversaries all follow a similar
approach. Specifically, in their first stage, the reduction adversaries run A’s first
stage, answering collection oracle queries via their own collection oracle, and
obtain a list of messages to sign (ml). Then, the reduction adversaries construct
a hypertree structure in line with FL-SL-XMSSMT.KeyGen using the provided
oracles. Here, the primary difference between the reduction adversaries concerns
which oracle they employ to compute certain values: RA

W uses the signing oracle

to obtain WOTS-TW$ public keys and signatures on the messages and roots of
inner trees; RA

P uses the challenge oracle to compress the WOTS-TW$ public
keys to inner tree leaves; and RA

T uses the challenge oracle to compute the inner
tree nodes from their leaves. All reduction adversaries compute the (for them)
remaining values using the collection oracle. In their second stage, the reduc-
tion adversaries sign the messages in ml, conforming to FL-SL-XMSSMT.Sign,
using the (hypertree) values obtained in their first stage. Subsequently, they run
A’s second stage, giving it their public key (i.e., hypertree root), the received
public seed, the initialization address, and the list of signatures. Upon receiv-
ing the forgery from A, the reduction adversaries find their forgery or colli-
sion and return this together with the associated index, winning their game.
Importantly, as the reduction adversaries simulate the collection oracle for A
through their own collection oracle, the constraint on A’s queries guarantees
that no addresses between the reduction adversaries’ oracles overlap, which
is required to win their games. Concluding, we can bound Pr

[

G⊤
A ∧ EW

]

by

AdvM-EUF-GCMA
WOTS-TW$,THFC,twtw

(RA
W ), Pr

[

G⊤
A ∧ ¬EW ∧ EP

]

by AdvSM-DT-TCR-C
PKCO,THFC,tpkco

(RA
P ),

and Pr
[

G⊤
A ∧ ¬EW ∧ ¬EP

]

by AdvSM-DT-TCR-C
TRH,THFC,ttrh

(RA
T ).

Final Result. Combining the acquired bounds and the fact that the sum of the
considered probabilities equals AdvEUF-NAGCMA

FL-SL-XMSSMT$,THFC(A), Theorem 3 follows.

6 SPHINCS
+

SPHINCS+ is essentially a straightforward extension of the pseudorandom ver-
sions of the constructions considered hitherto. Namely, a SPHINCS+ instance
uses the KHFs MKG and SKG to generate pseudorandom values when necessary,
rather than sampling and maintaining all of these values throughout. To this end,
in addition to a public seed and address, it initializes and maintains a message
seed and a secret seed used to index MKG and SKG, respectively. Furthermore,
as alluded to above, it employs the pseudorandom versions of FORS$ (FORS),
M-FORS$ (M-FORS), and FL-SL-XMSSMT$ (FL-SL-XMSSMT). Although not
explicitly presented here, these pseudorandom versions are trivially obtained
from their counterparts by replacing (1) the sampled (sequence of) values in
the secret key by the message seed and secret seed, (2) evaluations of MKG$ by
MKG (indexed by the message seed), and (3) references to sampled secret key
values by the generation of these values through SKG (indexed by the secret
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Listing 6 SPHINCS+

1: procedure SPHINCS+.Keygen()
2: ad ← adz

3: ms ←$ U(MS)
4: ss ←$ U(SS)
5: ps ←$ U(PS)

6: pkS ← FL-SL-XMSSMT.SkMXToPkMX(ss, ps, ad)
7: return (pkS, ps), (ms, ss, ps)

8: procedure SPHINCS+.Sign(sk := (ms, ss, ps), m)
9: ad ← adz

10: mk, sigF ← M-FORS.Sign((ms, ss, ps, ad),m)
11: mc, i ← MCO(mk,m)
12: ad.xtri, ad.kpi, ad.typei ← ⌊i/l′⌋, i mod l′, ftrhtype
13: pkF ← FORS.SigToPkF(mc, sigF, ps, ad)

14: sigMX ← FL-SL-XMSSMT.Sign((ss, ps, ad), pkF, i)
15: return mk, sigF, sigMX
16: procedure SPHINCS+.Verify(pk := (pkS, ps), m, sig := (mk, sigF, sigMX))
17: ad ← adz

18: mc, i ← MCO(mk,m)
19: ad.xtri, ad.kpi, ad.typei ← ⌊i/l′⌋, i mod l′, ftrhtype
20: pkF′ ← FORS.SigToPkF(mc, sigF, ps, ad)

21: pkS′ ← FL-SL-XMSSMT.SigToPkMX(pkF′, sigMX, i, ps, ad)
22: return pkS′ = pkS

seed and an appropriately adjusted address). Lastly, the set of valid addresses
for SPHINCS+ is the union of those for M-FORS and FL-SL-XMSSMT.

Following the preceding, Listing 6 specifies SPHINCS+’s algorithms. Here,
adz is an initialization address that, as per the official SPHINCS+ specification,
has every associated index set to 0 (and the type index set to chType).

Security Property. As is customary for standalone signature schemes, we con-
sider the conventional EUF-CMA security property for SPHINCS+. For com-
pleteness, this property and the corresponding oracle are given in Figures 16
and 17, respectively.

Fig. 16. EUF-CMA game for SPHINCS+. Fig. 17. Oracle employed in
EUF-CMA game for SPHINCS+.
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Formal Verification. As Figure 12 portrays, we demonstrate that the
EUF-CMA security of SPHINCS+ is implied by the EUF-CMA property of
SPHINCS+$ and the PRF property of MKG and SKG. Furthermore, we show
that the EUF-CMA security of SPHINCS+$ can be based on the EUF-CMA
property of M-FORS$ and the EUF-NAGCMA property of FL-SL-XMSSMT$.
In the ensuing exposition, we combine these two proof steps (without affecting
the reasoning) for the sake of brevity. More formally, we consider the following
security theorem.

Theorem 4 (EUF-CMA for SPHINCS+). For any adversary A, there exist
adversaries B0, B1, B2, and B3 —each with approximately the same running
time as A—such that the following inequality holds.

AdvEUF-CMA
SPHINCS+(A) ≤ AdvPRF

SKG (B0) + AdvPRF
MKG(B1) + AdvEUF-CMA

M-FORS$ (B2)

+ AdvEUF-NAGCMA
FL-SL-XMSSMT$,THFC(B3)

Here, THFC denotes an arbitrary THF collection containing F, PKCO, TRCO,
and TRH.

Unsurprisingly, the formal verification of this security theorem effectively per-
forms two conceptual steps: The substitution of all pseudorandomness by actual
randomness and, subsequently, the extraction of a forgery for one of the con-
sidered sub-constructions. In essence, the former step replaces SPHINCS+ by
SPHINCS+$ (inherently replacing M-FORS and FL-SL-XMSSMT by their “ran-
domized” counterparts). The latter step shows that a valid EUF-CMA forgery
for SPHINCS+$ contains a valid EUF-CMA forgery for M-FORS$ or a valid
EUF-NAGCMA forgery for FL-SL-XMSSMT$, thereafter relating each case to
the corresponding advantage. In the ensuing, G⊤

A denotes GameEUF-CMA
A,SPHINCS+$ = 1.

Bound on
∣

∣

∣Adv
EUF-CMA
SPHINCS+(A) − AdvEUF-CMA

SPHINCS+$(A)
∣

∣

∣. Considering the differences

between SPHINCS+ and SPHINCS+$, the transition from the former to the
latter basically comes down to replacing SKG and MKG by actual random func-
tions with the appropriate domain and range, on top of some refactoring to
maintain functional correctness (e.g., moving all evaluations of SKG to the key
generation and storing the result in the secret key). In fact, for SKG, we can
replace each evaluation by a pure random sampling because each provided input
is unique. Thus, for both functions, we can straightforwardly construct a reduc-
tion adversary playing in the corresponding PRF game that perfectly simulates
an execution of the EUF-CMA game (that A is playing in) by substituting each
evaluation of the considered function by an appropriate query to the provided

PRF oracle. As such, we can bound
∣

∣

∣Adv
EUF-CMA
SPHINCS+(A)− AdvEUF-CMA

SPHINCS+$(A)
∣

∣

∣ by

the sum of AdvPRF
SKG (RA

S ) and AdvPRF
MKG(R

A
M ), where RA

S and RA
M are the relevant

reduction adversaries.

Case Distinction for G⊤
A and Corresponding Bounds. First, observe that a valid

EUF-CMA forgery for SPHINCS+$ consists of a message m′ and a signature
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sig′ = (mk′, sigF′, sigMX′) such that m′ is fresh and sig′ is a valid signature for
m′ under the considered public key pk = (pkS, ps). Moreover, by the verification
procedure of SPHINCS+$, validity of sig′ implies that sigMX′ is a valid signa-
ture on the FORS$ public key pkF′ derived from sigF′. Thus, if pkF′ does not
equal the corresponding original public key, it constitutes a different “message”
than the original one signed by FL-SL-XMSSMT$ in the considered SPHINCS+$

instance. Otherwise, by definition, (mk′, sigF′) is a valid M-FORS$ signature
on m′, where m′ is fresh. Indeed, the former case allows for the extraction of
an EUF-NAGCMA forgery for FL-SL-XMSSMT$; the latter case allows for the
extraction of an EUF-CMA forgery for M-FORS$. In the following, EX and RA

X

denote the event and reduction adversary for the former case; RA
M denotes the

reduction adversary for the latter case (¬EX suffices to capture the latter case).
Loosely speaking, the considered reduction adversaries follow a similar app-

roach. Namely, both reduction adversaries construct a key pair for the sub-
construction they are not an adversary for, using the provided collection oracle
(FL-SL-XMSSMT)14 or public seed and address (M-FORS$). Then, to simulate
the signing oracle for A, the reduction adversaries use the constructed key pair to
create signatures for the corresponding sub-construction, use either the provided
list of signatures (FL-SL-XMSSMT) or their own signing oracle (M-FORS$) to
obtain signatures for the other sub-construction, and combine the signatures to
construct the corresponding SPHINCS+ signature. Upon receiving the forgery
from A, they extract and return the relevant forgery, winning their own game.
As a result, we can bound Pr

[

G⊤
A ∧EX

]

by AdvEUF-NAGCMA
FL-SL-XMSSMT$,THFC(R

A
X) and

Pr
[

G⊤
A ∧ ¬EX

]

by AdvEUF-CMA
M-FORS$ (RA

M ).

Final Result. From the above results, Theorem 4 follows. At last, we can com-
bine the security theorem regarding WOTS-TW$ in [6] with the security theo-
rems considered in this work to acquire a bound on the EUF-CMA security of
SPHINCS+ that is entirely based on the properties of the employed KHFs and
THFs. This completes the formal verification of the security of SPHINCS+.
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14 Crucially, this means that RA
X does not query its collection oracle on addresses used

in FL-SL-XMSSMT, as required for the application of Theorem 3.
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Abstract. The McEliece scheme is a generic frame introduced in [28],
which allows to use any error correcting code for which there exists an
efficient decoding algorithm to design an encryption scheme by hiding
the generator matrix of the code. Similarly, the Niederreiter frame, intro-
duced in [30], is the dual version of the McEliece scheme, and achieves
smaller ciphertexts. In the present paper, we propose a generalization of
the McEliece and the Niederreiter frame to matrix codes and the MinRank
problem, that we apply to Gabidulin matrix codes (Gabidulin rank codes
considered as matrix codes). The masking we consider consists in starting
from a rank code C, computing a matrix version of C and then concatenat-
ing a certain number of rows and columns to the matrix code version of the
rank code C before applying an isometry for matrix codes, i.e. right and
left multiplications by fixed random matrices. The security of the schemes
relies on the MinRank problem to decrypt a ciphertext, and the structural
security of the scheme relies on the new EGMC-Indistinguishability prob-
lem that we introduce and that we study in detail. The main structural
attack that we propose consists in trying to recover the masked linearity
over the extension field which is lost during the masking process. Over-
all, starting from Gabidulin codes, we obtain a very appealing trade off
between the size of the ciphertext and the size of the public key. For 128
bits of security we propose parameters ranging from ciphertexts of size 65
B (and public keys of size 98 kB) to ciphertexts of size 138 B (and pub-
lic keys of size 41 kB). For 256 bits of security, we can obtain ciphertext
as low as 119 B, or public key as low as 87 kB. Our new approach permits
to achieve a better trade-off between ciphertexts and public key than the
classical McEliece scheme instantiated with Goppa codes.

1 Introduction

Matrix Codes and Vector Codes. Introduced in 1951 in [26], before the
well-known notion of Hamming metric, matrix codes are Fq-linear subspaces of
c© International Association for Cryptologic Research 2025
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the matrix space F
m×n
q , endowed with the rank metric. The generic decoding

problem in matrix codes relies on the difficulty to solving an instance of the
MinRank problem, which is known to be NP-complete. A rank metric code of
length n over the extension field Fqm is an Fqm–linear vector subspace of Fn

qm ,
endowed with the rank metric. It is possible to turn a vector code into a matrix
code by considering all vectors of a vector code as matrices over Fq by writing
of the extension field Fqm as a vector space of dimension m over Fq. The main
advantage of vector codes compared to matrix codes lies in the fact that the
linearity over the extension field permits to achieve smaller description of the
code (division by a factor m, the degree of the field extension).

Code-Based Cryptography. There exist two approaches for code-based
encryption: in the first one, the McEliece frame, the public key consists in a
masking of a structured code, for instance using Goppa codes [28] or MDPC
codes [29]. In that case the hidden code is used both for encryption and decryp-
tion. The second one is the Alekhnovich approach [5] and its variants like [2,3]
in which there is no structural masking and for which two types of codes are
considered, a random (or random quasi-cyclic) code for encryption and another
code for decryption. The main advantage of the second approach is that it avoids
structural attacks, so it is semantically stronger in terms of security. However, the
price to pay is a larger ciphertext (typically quadratic in the security parameter),
whereas the first approach permits to obtain much smaller ciphertexts (linear in
the security parameter) at a cost of a very large public key. For instance for 128
bits of security for McEliece it is possible to get ciphertexts of size of order 100B,
whereas for HQC the ciphertext is of order 1500kB. There exist applications for
which having a very small ciphertext may be of interest.

Structural Attacks and Distinguishers on McEliece-Like Schemes. The
main tool for structural attacks is to consider a distinguisher for the underlying
masked code. While it is really interesting to consider Reed-Solomon codes or
Gabidulin codes – their rank metric analog – for encryption because of their very
good decoding properties, these codes are very highly structured which makes
them easy to distinguish from random codes. For Reed-Solomon codes, the main
distinguisher is the square code distinguisher of [15] which states that the square
code of an [n, k] Reed-Solomon code is a code of dimension 2k − 1, whereas for
a random code its dimension is close to min(n, k(k−1)

2 ). There exists an analog
distinguisher for Gabidulin codes [33], starting from an [m, k] Gabidulin code
over Fqm with generator matrix G, and considering Gq the matrix in which
one applies the Frobenius action x �→ xq to all entries of G. The code whose
generator matrix is a vertical concatenation of G and Gq has dimension k + 1,
whereas for a random code it would be 2k. These two distinguishers were used to
break systems in which the masking consisted in adding random columns (and
then applying an isometry) to Reed-Solomon codes [15,35] or to Gabidulin codes
[31,33].
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The Case of the Original Goppa-McEliece Scheme. The main masking
which is still resistant to structural attacks is the case of the original Goppa-
McEliece scheme. This case can be seen as considering generalized Reed-Solomon
codes over an extension field F2m , then considering its F2 subcodes. The effect of
considering the F2 subcode is that it breaks the structure over the F2m extension
and hence the direct application of a Reed-Solomon distinguisher, at least in the
case were the rate of the code is not close to 1, which is the general case (see
also [17]).

Contributions. Inspired by the previous situation we consider the case of
Gabidulin codes in which we want to break the structure over the extension
on which relies the Gabidulin distinguisher. Indeed, in order to apply the Over-
beck distinguisher we need to consider the application of the Frobenius map
which only makes sense over an extension Fqm and not directly on the base
field Fq. We consider the following masking: we start from a matrix code, which
can decode up to errors of rank r, we then add random rows and columns and
apply an isometry for matrix codes (multiplying on the left and on the right by
two fixed random invertible matrices). Starting from a vector code C, we call
enhanced code the transformation which consists in turning the vector code C
into a matrix code and then applying the previous masking. Since it is a mask-
ing, there always exists the possibility of a structural attack but the idea is that
considering matrix version of the vector codes with our masking (in the spirit
of the original Goppa-McEliece scheme) permits to avoid an efficient action of a
distinguisher.

The main contributions of the paper are the following:

– we describe a general encryption McEliece-like frame for matrix codes over
the MinRank problem,

– we propose a general masking for matrix codes that we apply on a matrix
code version of Gabidulin codes,

– we study in detail possible distinguishers for solving the Enhanced Gabidulin
Matrix Code (EGMC) distinguishing problem that we introduce for our
scheme.

In terms of distinguisher the best attack that we obtain for the vector code
we consider consists in trying to dismiss the action of the addition of random
rows and columns on the matrix code in order to test for its underlying linearity
over the extension field. In terms of parameters, our new approach permits to
obtain an alternative scheme to the classic McEliece scheme with very small
ciphertexts and even smaller public keys than in the classic McEliece scheme.
For 128 bits of security, we can achieve a size of 65B for the ciphertext and
98 kB for the public key, or 138B for the ciphertext and 41 kB for the public key.
These results compare very well to classic McEliece’s parameters [4]) yielding
ciphertext of 96B and public keys of 261 kB. For 256 bits of security, we can
obtain ciphertext as low as 119B, or public key as low as 87 kB.
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Organization of the Paper. The paper is organized as follows. Section 2 gives
an introduction and preliminaries, Sect. 3 defines the masking transformations
we introduce and the attached distinguishing problems, Sects. 4 and 5 describe
the new encryption schemes we propose, Sect. 6 examines in detail different types
of possible distinguishers and Sect. 7 details parameters of our schemes.

2 Preliminaries

2.1 Public Key Encryption

Definition 1 (PKE). A public key encryption scheme PKE consists of three
polynomial time algorithms:

– KeyGen (1λ): for a security parameter λ, generates a public key pk and a
secret key sk.

– Encrypt(pk,m): outputs a ciphertext c given the message m and the public
key pk.

– Decrypt(sk, c): outputs the plaintext m of the encrypted ciphertext c, or ⊥.

We require a PKE scheme to be correct: for every pair (pk, sk) generated by
KeyGen and message m, we should have Pr (Decrypt(sk,Encrypt(pk,m)) = m) =
1 − negl(λ), where negl is a negligible function.

There exist several notions of security for PKE schemes. The encryption schemes
we propose here achieve OW-CPA security.

Definition 2 (OW-CPA security). Let PKE = (KeyGen ,Encrypt,Decrypt) a
PKE scheme, A an adversary against PKE, and λ a level of security. We define
the OW-CPA game:

– Challenge. The challenger generates (pk, sk) ← KeyGen (1λ), samples m
from the set of messages and computes c ← Encrypt(pk,m). He sends (c, pk)
to the adversary A.

– Output. A outputs the guessing message m̃. A wins if m̃ = m.

PKE is OW-CPA secure if for any PPT adversary A, the probability that A wins
the game is negligible in λ.

To prove the security of our PKE, we need to formally define the notion of
indistinguishable distributions.

Definition 3 (Distinguisher). Let S a set of elements, P1 and P2 two proba-
bility distributions on S. A distinguisher D for the distributions P1 and P2 is an
algorithm that takes in input an element of S, and outputs a bit. Its advantage
is defined by:

Adv(D) =
∣
∣Pr(D(x) = 1|x ← P1) − Pr(D(x) = 1|x ← P2)

∣
∣.



72 N. Aragon et al.

We say that the distributions P1 and P2 are indistinguishable if there exists
no polynomial time distinguisher with non negligible advantage.

2.2 Matrix Codes

Definition 4 (γ-expansion). Let γ = (γ1, . . . , γm) be an Fq-basis of Fqm . The
γ-expansion of an element in Fqm to a vector in F

m
q is defined as the application:

Ψγ : x ∈ Fqm �→ (x1, . . . , xm) ∈ F
m
q

such that x =
∑m

i=1 xiγi.

Ψγ extends naturally to a word x ∈ F
n
qm and turns it into a matrix Ψγ(x) ∈ F

m×n
q ,

by writing in columns the coordinates of each element in basis γ in column. We
denote as B(Fqm) the set of Fq-bases of Fqm .

Definition 5 (Vector codes with rank metric). A vector code Cvec is an
Fqm-subspace of Fn

qm endowed with the rank metric. The weight of a vector x ∈
F

n
qm is the rank of the matrix Ψγ(x), for a basis γ ∈ B(Fqm). The weight of a

vector is independent of the choice of the basis γ.

Equivalently, the rank of a vector x is the dimension of the Fq-vector space
spanned by its coordinates, that is the support of x. We denote the weight of a
vector x by:

‖x‖ def= rank(Ψγ(x)) = dim(〈x1, . . . , xn〉q)

Definition 6 (Matrix codes). A matrix code Cmat is an Fq-subspace of Fm×n
q

endowed with the rank metric.

An Fqm-linear vector code Cvec of parameters [n, k]qm can be turned into a
matrix code of size m × n and dimension mk, defined as:

Ψγ(Cvec) := {Ψγ(x) |x ∈ Cvec}.

Let γ ∈ B(Fqm), and (vi)i∈{1,...,k} be an Fqm -basis of Cvec, then an Fq-basis of
Ψγ(Cvec) is given by:

{

Ψγ(bvi) | b ∈ γ, i ∈ {1, . . . , k}
}

.

Definition 7 (Equivalent matrix codes). Two matrix codes Cmat and Dmat

are said to be equivalent if there exist two matrices P ∈ GLm(Fq) and Q ∈
GLn(Fq) such that Dmat = P CmatQ. If P = Im (resp. Q = In), Cmat and
Dmat are said to be right equivalent (resp. left equivalent).
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As seen above, the transformation of a vector code into a matrix code is
dependent on the choice of the basis γ. However, two different bases produce
left-equivalent codes. For two bases β and γ, if we denote P the transition
matrix between β and γ, we get:

Ψγ(Cvec) = P Ψβ(Cvec)

Definition 8 (Folding). The application Fold turns a vector v = (v1‖ · · ·
‖vn) ∈ F

mn
q such that each vi ∈ F

n
q , into the matrix Fold(v) def= (v1

t‖ . . . ‖vt
n) ∈

F
m×n
q . The inverse map which turns a matrix into a vector is denoted by Unfold.

The map Unfold allows to define a matrix code Cmat thanks to a generator
matrix G ∈ F

mk×mn
q , whose rows are an unfolded set of matrices which forms

a basis of Cmat. This characterization allows to construct the associated parity
check matrix H, and define the dual of a matrix code: one can simply define
C⊥

mat as the code generated by matrices equal to the folded rows of H. A more
formal definition follows:

Definition 9 (Dual of a matrix code). Let Cmat be a matrix code of size
m×n and dimension K. Its dual is the matrix code of size m×n and dimension
mn − K:

C⊥
mat =

{

Y ∈ F
m×n
q | ∀X ∈ Cmat tr(XY t) = 0

}

.

2.3 MinRank Problem

The MinRank problem can be seen as the Rank Decoding problem adapted to
matrix codes:

Definition 10 (MinRank problem). Given as input matrices Y ,M1, . . . ,
Mk ∈ F

m×n
q , the MinRank(q,m, n, k, r) problem asks to find x1, . . . , xk ∈ Fq

and E ∈ F
m×n
q with rankE ≤ r such that Y =

∑k
i=1 xiM i +E.

The decoding problem for a matrix code of size m × n and dimension K
is exactly the MinRank(q,m, n,K, r) problem. While the MinRank problem is
well known, it is more uncommon to present this decoding problem from the
syndrome decoding point of view.

Let be X =
∑K

i=1 xiM i ∈ Cmat with basis the set of (M i) and E ∈ F
m×n
q

an error of small weight. The code Cmat can be represented as a vector code over
Fq, with generator matrix G ∈ F

K×mn
q has for rows the vectors Unfold(M i). A

word to decode would have the form: Unfold(X + E) =
∑K

i=1 xiUnfold(M i) +
Unfold(E), and the weight of the error is defined as the rank of E.

Let H ∈ F
(mn−K)×mn
q be a parity-check matrix of the dual code. We denote

by (hi)1≤i≤mn its columns. Let be x ∈ F
mn
q a noisy codeword with error e ∈ F

mn
q .

The weight of e is the rank of the matrix Fold(e). Since one has reduced itself
to a vector code, one can define the syndrome associated to an error in the
same way:

s = xHt = eHt =
mn∑

i=1

eih
t
i.
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One can deduce the associated problem:

Definition 11 (MinRank-Syndrome problem). Given as input vectors
s,v1, . . . ,vk ∈ F

nm−k
q , the MinRank − Syndrome(q,m, n, k, r) problem asks to

find (e1, . . . , enm) ∈ F
nm
q with rankFold(e) ≤ r such that s =

∑k
i=1 eivi.

The two previous problems are equivalent for the very same reasons that the
decoding problem and the syndrome decoding problem are in the vector codes
context.

2.4 Gabidulin Codes

Gabidulin codes were introduced by Ernst Gabidulin in 1985 [19]. These vector
codes can be seen as the analog in rank metric of the Reed-Solomon codes, but
for which a codeword is a set of evaluation points of a q-polynomial rather than
a standard polynomial.

Definition 12 (q-polynomial). A q-polynomial of q-degree r is a polynomial
in Fqm [X] of the form:

P (X) =
r∑

i=0

piX
qi

with pr �= 0.

For a q-polynomial P , we denote by degq P its q-degree.
A q-polynomial is also called linearized polynomial since it induces an Fq-

linear application due to the linearity of the Frobenius endomorphism x �→ xq.

Definition 13 (Gabidulin code). Let k,m, n ∈ N, such that k ≤ n ≤ m. Let
g = (g1, . . . , gn) ∈ F

n
qm a vector of Fq-linearly independent elements of Fqm . The

Gabidulin code Gg (n, k,m) is the vector code of parameters [n, k]qm defined by:

Gg (n, k,m) =
{

P (g)| degq P < k
}

,

where P (g) = (P (g1), . . . , P (gn)) and P is a q-polynomial.

The vector g is said to be an evaluation vector of the Gabidulin code Gg (n, k,m).

Gabidulin codes are popular in cryptography because they benefit from a very
efficient decoding algorithm, allowing to correct errors of rank weight up to
n−k

2 � [19]. However, their strong structure makes them difficult to hide.

2.5 The GPT Cryptosystem

It has been proposed in [20] to concatenate to a generator matrix a random
matrix, in order to mask a Gabidulin code more efficiently. Introduced in 1991 by
Gabidulin, Paramonov and Tretjakov, the GPT Cryptosystem is an adaptation
of the McEliece frame to the rank metric. The first versions having been attacked
by Gibson [22,23] and by Overbeck [33] whose attack is detailed in Sect. 6.1.
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We subsequently propose a new version of the scheme to prevent the Overbeck
attack. In our scheme, we propose to turn a Gabidulin code into a matrix code
before adding some random rows and columns, and multiplying it by a secret
invertible matrix.

3 Enhanced Matrix Codes Transformation

We present a general construction which defines a transformation containing a
trapdoor and allowing to mask a secret matrix code.

Definition 14 (Random Rows and Columns matrix code transforma-
tion). Let m,n,K, �1, �2 ∈ N. Let Cmat be a matrix code of size m × n and
dimension K on Fq. Let B = (A1, . . . ,AK) be a basis of Cmat. The Random
Rows and Columns matrix code transformation consists in sampling uniformly
at random the following matrices: P $←− GLm+�1(Fq), Q $←− GLn+�2(Fq) and
K random matrices: Ri

$←− F
m×�2
q , R′

i
$←− F

�1×m
q and R′′

i
$←− F

�1×�2
q ; and

defining the matrix code whose basis is:

RB =

(

P

(
A1 R1

R′
1 R′′

1

)

Q, . . . ,P

(
AK RK

R′
K R′′

K

)

Q

)

.

In particular, we can apply this construction to Gabidulin codes turned into
matrix codes:

Definition 15 (Enhanced Gabidulin matrix code). Let G be a Gabidulin
code [n, k, r] on Fqm , γ be a Fq-basis of Fqm . We recall that Ψγ turns a vec-
tor x ∈ Fqm into a matrix Ψγ(x) whose columns are coordinates of coefficients
of x in the basis γ (see Definition 4). An Enhanced Gabidulin matrix code
EGg (n, k,m, �1, �2) is the matrix code Ψγ(G) on which we apply the Random
Rows and Columns matrix code transformation presented in Definition 14.

Duality. The dual of an enhanced Gabidulin matrix code can be described as
follows. Start from an [n, k] Gabidulin code G over Fqm . It is well-known that
the dual of the vector code G⊥ for the Euclidean inner product is an [n, n − k]
Gabidulin code over Fqm . Moreover, given an basis γ for Fqm and denoting by
γ′ the dual basis with respect to the trace inner product in Fqm , then from [34,
Thm. 21], we get

Ψγ(G)⊥ = Ψγ′(G⊥).
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In short, the dual of the matrix code associated to G as defined in Definition 9
is a matrix code associated to a Gabidulin code.

Proposition 1. Following the notation of Definitions 14 and 15, let B1, . . . ,
Bm(n−k) be an Fq–basis of Ψγ(G)⊥. Let V ⊆ F

(m+�1)(n+�2)
qm be defined as

V def=
{(

R 0
0 0

) ∣
∣
∣
∣
R ∈ F

m×n
q

}

.

Then, there exists a space W ⊆ F
(m+�1)×(n+�2)
q such that EGg (n, k,m, �1, �2)⊥ =

(P t)
−1Cmat(Qt)

−1 and

Cmat = Span
Fq

{(
B1 0
0 0

)

, . . . ,

(
Bm(n−k) 0

0 0

)}

⊕ W.

Moreover, W is a complement subspace of V in F
(m+�1)×(n+�2)
q .

Proof. Denote by C0
mat, the space

C0
mat

def= Span
Fq

{(
B1 0
0 0

)

, . . . ,

(
Bm(n−k) 0

0 0

)}

.

Clearly, matrices of (P t)
−1C0

mat(Q
t)

−1 lie in EGg (n, k,m, �1, �2)⊥. Moreover, any

matrix of the shape (P t)
−1

(
B 0
0 0

)

(Qt)
−1 lying in EGg (n, k,m, �1, �2)⊥ should

satisfy B ∈ Ψγ(G)⊥. Consequently, V ∩W = 0 and, for dimensional reasons, they
should be complement subspaces.

More generally, one can prove that any matrix code with the above shape
is the dual of an enhanced Gabidulin code. Namely, starting with a matrix
Gabidulin code “extended by zero” to which we add a random complement sub-
space of the aforementioned space V and which we left and right multiply by
invertible matrices, we get the dual of an enhanced Gabidulin code.

Indistinguishability of Enhanced Gabidulin Matrix Codes. The security
of the scheme we introduce later is based on the difficulty of distinguishing a
random matrix code from a code as defined above.

We formally define in this section the problem of distinguishing an Enhanced
Gabidulin matrix code from a random matrix code, on which the security of
the EGMC-McEliece encryption scheme that we present below is based, and the
associated search problem. We conjecture that both problems are difficult to
solve.

Definition 16 (EGMC(k,m, n, �1, �2) (distribution). Let k,m, n, �1, �2 ∈ N be
such that k ≤ n ≤ m. The Enhanced Gabidulin Matrix Code distribution EGMC(k,
m, n, �1, �2) samples a vector g $←− F

n
qm , a basis γ $←− B(Fqm), P $←−
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GLm+�1(Fq), Q $←− GLn+�2(Fq) and km random matrices: Ri
$←− F

m×�2
q ,

R′
i

$←− F
�1×m
q and R′′

i
$←− F

�1×�2
q ; computes B = (A1, . . . ,Akm) a basis of the

matrix code Ψγ(G), and outputs the matrix code with basis:

RB =

(

P

(
A1 R1

R′
1 R′′

1

)

Q, . . . ,P

(
Akm Rkm

R′
km R′′

km

)

Q

)

.

Definition 17 (EGMC-Indistinguishability problem). Given a matrix code
Cmat of size (m + �1) × (n + �2) and dimension mk, the Decisional EGMC-
Indistinguishability (k,m, n, �1, �2) problem asks to decide with non-negligible
advantage whether Cmat sampled from the EGMC(k,m, n, �1, �2) distribution or
the uniform distribution over the set of Fq-subspaces of F(m+�1)×(n+�2)

q of dimen-
sion mk.

Definition 18 (EGMC-Search problem). Let k,m, n, � ∈ N be such that k ≤
n ≤ m, and Cmat sampled from the EGMC(k,m, n, �) distribution. The EGMC-
Search problem asks to retrieve the basis γ ∈ B(Fqm) and the evaluation vector
g ∈ F

n
qm used to construct Cmat.

Claim. Given a vector code Cvec ⊆ F
n
qm and an Fq–basis γ of Fqm . Then, the

matrix code Cmat = Ψγ(Cvec) is distinguishable from a random matrix code in
polynomial time.

Indeed, even without knowing γ, the Fqm–linear structure can be detected
by computing the left stabilizer algebra of Cmat. That is to say

StabL(Cmat)
def=

{

P ∈ F
m×m
q | ∀C ∈ Cmat, PC ∈ Cmat

}

.

For a random matrix code, with high probability this algebra has dimension
1 and only contains the matrices λI where λ ∈ Fq and I denotes the m × m
identity matrix. For a code Cmat which comes from an Fqm–linear code, the
algebra StabL(Cmat) contains a sub-algebra isomorphic to Fqm and hence has
dimension at least m. Since the computation of the stabilizer algebra can be
done by solving a linear system, this yields a polynomial time distinguisher.

Remark 1. Actually, using tools described in [14] it is even possible to do more
than distinguishing and recover a description of Cvec as a vector code.

Alternative Approach: Deleting Rows and Columns. We could have con-
sidered another masking procedure which consists in deleting rows and columns
of the matrix code rather than adding random rows and columns. Deleting rows
or columns is also an option which blurs the (right and left) stabilizer algebras.
If some columns are removed, we obtain a punctured Gabidulin code, which
remains a Gabidulin code, and hence can be decoded. If some rows are also
removed, then the decryption will require to correct both errors and erasures,
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which forces to reduce the amount of errors during the encryption process and
then reduces the security with respect to generic decoding attacks.

4 Generic McEliece and Niederreiter Frames Based
on MinRank

The McEliece frame is a generic process to construct code-based encryption
schemes, proposed in [28]. It consists in masking a generator matrix of a vector
code for which we know an efficient decoding algorithm with a secret operation.
For an opponent who does not know the secret transformation, decrypting the
ciphertext is as difficult as decoding a general linear code.

We propose here an adaptation of the McEliece frame to matrix codes: rather
than hiding the generator matrix of a vector code, we propose to hide a basis of
a secret matrix code, for which there exists an efficient decoding algorithm. The
resulting scheme can be found in Fig. 1.

Fig. 1. MinRank-McEliece encryption frame

Comments. Not just any transformation can be chosen: it must be compatible
with the decoding of the noisy matrix Ỹ .

An opponent which does not know the original code Cmat must solve a general
instance of the MinRank problem to retrieve the message μ, that is at least
as difficult as the decoding problem in rank metric. Therefore, it guarantees a
security at least as high as that of the standard McEliece frame for the same
sizes of ciphertext and public key.

The Niederreiter frame is a variant of the McEliece frame for code-based encryp-
tion, which consists in hiding a parity check matrix rather than a generator
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matrix. It allows to obtain syndromes as ciphertexts, which are shorter than
noisy codewords for an equivalent security, since the MinRank problem and the
MinRank-Syndrome problem are equivalent. The resulting scheme can be found
in Fig. 2.

Fig. 2. MinRank-Niederreiter encryption frame

Comments. Since only the original matrix code is equipped with an efficient
decoding algorithm, it is necessary to retrieve a noisy word whose syndrome is
the ciphertext c. Unlike the previous scheme, the message μ corresponds to the
error of the noisy codeword.

5 New Encryption Schemes

5.1 EGMC-McEliece Encryption Scheme

We apply the encryption frames we defined above in Sect. 4 to matrix Gabidulin
codes, by using the trapdoor presented in Definition 14. We obtain an encryption
scheme whose public key is an Enhanced Gabidulin Matrix code. The secret key
contains the original Gabidulin code G, the basis γ on which the secret code G
has been extended and the trapdoor. The resulting scheme is presented in Fig. 3.

Comments. The frame is valid since the multiplication by an invertible matrix
makes the rank invariant. We can easily see that Ỹ is a noisy codeword of Cmat,
whose error is equal to P−1EQ−1. Since the multiplication by P−1 and Q−1

does not change the rank of the matrix, we still have: rankP−1EQ−1 ≤ r.
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Fig. 3. EGMC-McEliece encryption scheme

The Enhanced code Cmat is not decodable on all its coordinates: the decoding
algorithms allow to decode only the first n coordinates, but the random noise
map prevents from decoding the others. However, these � coordinates can be
recovered by solving a linear system of equations. On the other hand, using a
matrix code, less structured than a vector code, increases the complexity of the
attacks.

An opponent who wants to decrypt a ciphertext without retrieving the secret
key has to solve a MinRank instance. In practice, we choose the same value for
�1 and �2 in order to obtain square matrices, the algebraic attacks against the
MinRank problem being less efficient in this case.

Proposition 2 (Decryption correctness). If the weight r of the error is at
most the decoding capacity m−k

2 � of the code G, the decryption algorithm outputs
the correct message μ.
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Proof. Let Φ : F
(m+�1)×(m+�2)
q → F

m×m
q be the map truncating matrices by

removing the �1 last rows and �2 last columns. Then,

Ỹ = Φ(P−1Y Q−1) =
∑

i

μiΦ(P−1M iQ
−1) + Φ(P−1EQ−1). (1)

Since Φ(P−1M1Q
−1), . . . , Φ(P−1MkmQ−1) form an Fq–basis of Cmat and

rank(Φ(P−1EQ−1)) ≤ r, applying decoding algorithm to (1) yields μ. ��
Proposition 3. Under the assumption that there exists no PPT algorithm to
solve the MinRank problem with non negligible probability and no PPT distin-
guisher for the EGMC-Indistinguishability problem with non negligible advantage,
then the scheme presented Fig. 3 is OW-CPA.

Proof. Suppose there exists an efficient PPT decoder AEGMC of the EGMC-
McEliece encryption scheme which takes as input the ciphertext and the public
key, with a non negligible probability ε(λ). Using this algorithm, we construct
the following distinguisher D for the EGMC-Indistinguishability problem:
Input: B = (M1, . . . ,Mkm)
μ $←− F

km
q

E $←− {X ∈ F
(m+�1)×(m+�2)
q | rank X ≤ r}

μ̃ ← AEGMC(B,
∑

μiM i +E)
if μ = μ̃ then

return 1
else

return 0
end if
Let AMR be an adversary against the MinRank problem. In the case where B

is not a basis of an Enhanced Gabidulin matrix code, retrieving E is equivalent
to solving a random MinRank instance. Then:

Adv(D) =
∣
∣Pr(D(B) = 1|B uniformly random) − Pr(D(B) = 1|B basis of EGMC)

∣
∣

=
∣
∣Succ(AMR) − Succ(AEGMC)

∣
∣,

since decrypting a ciphertext is strictly equivalent to retrieving the error E in
the case where B is the basis of an EGMC. We deduce that:

Succ(AEGMC) ≤ Succ(AMR) + Adv(D).

Since Succ(AEGMC) ≥ ε(λ), then Succ(AMR) ≥ ε(λ)
2 or Adv(D) ≥ ε(λ)

2 , that are
non negligible probabilities. We have proven that there exists either an efficient
PPT algorithm to solve the MinRank problem, or an efficient PPT distinguisher
to solve the EGMC-Indistinguishability problem, which allows to conclude. ��
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5.2 EGMC-Niederreiter Encryption Scheme

It is also possible to adapt the above ideas to the Niederreiter frame, the dual ver-
sion of the McEliece frame. It is then necessary to adapt the Syndrome Decoding
approach to matrix codes, in the same way as what is presented in Subsect. 2.3.
The resulting scheme can be found in Fig. 4.

Fig. 4. EGMC-Niederreiter encryption scheme

Proposition 4 (Decryption correctness). If the weight r of the error is
under the decoding capacity m−k

2 � of the code G, the decryption algorithm out-
puts the correct message μ.
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Proof. Let Ḡ ∈ Mmk×(m+�1)(m+�2)(Fq) be a generator matrix of the associated
unfolded C′

mat vector code, and H̄ ∈ M((m+�1)(m+�2)−k)×(m+�1)(m+�2)(Fq) a par-
ity check matrix. Let ȳ ∈ F

(m+�1)(m+�2)
q be such that c =

∑(m+�1)(m+�2)
i=1 ȳiM i.

Then:

Unfold(c) =
(m+�1)(m+�2)∑

i=1

ȳiUnfold(M i) = ȳH̄
t = ēH̄

t

where ē = Unfold(Ψγ(e)).
The nm first values of ē can be retrieved by decoding a word of the noisy

Gabidulin code Ψ−1
γ (C′

mat). The rank r of the error must not exceed the decoding
capacity.

The �2m last values can be retrieved by solving a linear system of (m − k +
�2)m equations, which is possible since k ≤ m. Multiplying by Q−1 allows to
retrieve the original message μ. ��
Proposition 5. Under the assumption that there exists no PPT algorithm to
solve the MinRank-Syndrome problem with non negligible probability and no
PPT distinguisher for the EGMC-Indistinguishability problem with non negligible
advantage, then the scheme presented Fig. 4 is OW-CPA.

Proof. This proof is similar to that of Proposition 3. Let AEGMC−N be an
efficient PPT adversary for the EGMC-Niederreiter encryption scheme. By con-
sidering the following distinguisher for the EGMC-Indistinguishability problem:
Input: H̄ ∈ F

((m+�1)(m+�2)−mk)×(m+�1)(m+�2)
q

μ $←− {m ∈ F
(m+�1)(m+�2)
q | rankFold(m) ≤ r}

μ̃ ← AEGMC−N (H̄,
∑

μih
t
i)

if μ = μ̃ then
return 1

else
return 0

end if
one demonstrates by identical reasoning that there exists either an efficient

PPT algorithm to solve the MinRank-Syndrome problem, or an efficient PPT
distinguisher to solve the EGMC-Indistinguishability problem. ��

5.3 Algorithms Complexity

The most costly step for the key generation is the multiplication by the matrices
P and Q. It involves computing km products of the form PAiQ, which requires
km((m+�1)2(m+�2)+(m+�2)2(m+�1)) multiplications in Fq. For the Niederre-
iter variant, we must also consider the cost of computing the matrix H̄, which can
be done using Gaussian elimination, giving a complexity of O(((m+�1)(m+�2))3)
operations in Fq.
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The encryption step is the cheapest as we only need to compute the ciphertext
c by adding (m + �1)(m + �2) elements of F

(m+�1)(m+�2)−km
q , each requiring

(m + �1)(m + �2) − km multiplications in Fq for the multiplication by μi in the
Niederreiter variant. For the McEliece variant, computing the μiM i requires
km(m + �1)(m + �2) multiplications in Fq.

The decryption process requires solving one (or two in the case of the Nieder-
reiter variant) linear system with (m + �1)(m + �2) unknowns in Fq. This gives
a complexity of O(((m + �1)(m + �2))3) operations in Fq.

6 Security Analysis

This section deals with the security of the schemes proposed in Sect. 5. There
exist two types of attacks. The first one are the structural attacks which consist
in retrieving the structure of the secret code from the information given in the
public key. It amounts to recovering the secret key by solving the EGMC-Search
problem (see Definition 18), and efficiently decrypting any ciphertext thanks to
the underlying decoding algorithm of the secret code. The second one includes
attacks which try to recover the message from the ciphertext and the public key,
that is equivalent to solving an instance of the MinRank problem.

6.1 Attacks on the Key

We recall that an opponent who wants to retrieve the secret key has to solve the
EGMC-Search problem:

Instance: A matrix code Cmat sampled from the EGMC(k,m, n, �1, �2) distribu-
tion.

Problem: Retrieve the basis γ ∈ B(Fqm) and the evaluation vector g ∈ F
n
qm of

the Gabidulin code G used to construct Cmat.
In this section, we present two algorithms for solving the EGMC decision

problem. Just like other distinguishers for structured codes in rank metric (e.g.
LRPC codes), there are two types of attacks. The first one is of combinatorial
nature and tries to detect the Fqm -linear structure, whereas the second one is
an algebraic distinguisher that is inspired from the Overbeck attack.

Before that, we present polynomial distinguishers for vector and matrix plain
Gabidulin codes, that are not directly usable for EGMC codes considered in our
schemes, since they are enhanced with perturbing random rows and columns
that increase the cost of a distinguisher.

Distinguisher for Vector Gabidulin Codes. Due to their strong algebraic
structure, Gabidulin codes can be easily distinguished from random linear codes.
As it has been proven, the security of the schemes relies on the difficulty to
distinguish an Enhanced Gabidulin vector code (see Proposition 3).
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Let x = (x1, . . . , xn) ∈ F
n
qm . For any i ∈ {0, . . . , m − 1}, we define:

x[i] = (xqi

1 , . . . , xqi

n ).

This definition naturally extends to codes. For a vector space E ⊂ F
n
qm , we write

E[1] the image of E by the Frobenius application. We can generalize this notation
to E[i] for i compositions of the Frobenius.

Definition 19. Let C be an [n, k]qm linear code. We define the f-th Frobenius
sum of C as:

Λf (C) = C + C[1] + · · · + C[f ].

If G is a generator matrix of C, then a generator matrix for Λf (C) is:
⎛

⎜
⎜
⎜
⎝

G

G[1]

...
G[f ]

⎞

⎟
⎟
⎟
⎠

∈ F
(f+1)k×n
qm .

For convenience, we abusively denote this matrix as Λf (G).

Proposition 6 ([21]). Let G be an [n, k]qm Gabidulin code. For any f ≥ 0:

dimΛf (G) = min{n, k + f}.

Let C be a random [n, k]qm linear code. For any f ≥ 0, we have with high prob-
ability:

dimΛf (C) = min{n, k(f + 1)}.

Remark 1. Let f ∈ {0, . . . , n − k}. If G is a Gabidulin code [n, k]qm with eval-
uation vector g, then Λf (G) is a Gabidulin code [n, n − 1]qm with the same
evaluation vector g.

Remark 2. Another way to distinguish a Gabidulin code from a random one is
to observe the intersection: C ∩ C[1] = {0} with high probability for a random
code, whereas dim(G ∩ G[1]) = k − 1 for any Gabidulin code.

Since the rank of a matrix can be computed in polynomial time, this note-
worthy behavior allows to easily distinguish a Gabidulin code from a random
code. It has been exploited by Overbeck. See [32,33] for some structural attacks
against cryptographic schemes based on Gabidulin codes.

Distinguisher for Matrix Gabidulin Codes. As already mentioned in the
preliminary part, starting from an Fqm–linear code Cvec ⊆ F

n
qm , the map Ψγ

sending it on a matrix code is not enough to hide it from a random matrix
code since it has a non trivial left stabilizer algebra.

When n = m, the following statement suggests the existence of another
detectable structure.
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Lemma 1. Suppose that n = m and let g ∈ F
m
qm whose entries are Fq–linearly

independent. let γ be an Fq–basis of Fqm . Then, Ψγ(Gg (m, k,m)) has a right
stabilizer algebra of dimension ≥ m.

Proof. A q–polynomial P of q–degree < k induces an Fq–endomorphism of Fqm

and Ψγ((P (g1), . . . , P (gm))) is the matrix representation of this endomorphism
from the basis g = (g1, . . . , gm) to the basis γ. Then, observe that the space of
q–polynomials of degree < k is stable by right composition by any q–polynomial
αX for α ∈ Fqm . Indeed, for any P = p0X + p1X

q + · · · + pk−1X
qk−1

with
q–degree < k, we have

P ◦ αX = p0αX + p1α
qXq + · · · + pk−1α

qk−1
Xqk−1

and the resulting q–polynomial has the same degree.
The stability of this space of q–polynomials by right composition by αX

entails that Ψγ(Gg (m, k,m)) is stabilized on the right by the matrix representing
the multiplication by α (regarded as an Fq–endomorphism of Fqm) in the basis
g.

In summary, the right stabilizer algebra contains a sub-algebra isomorphic
to Fqm and hence has dimension larger than or equal to m. ��

The goal of the masking we propose is to mask both left and right Fqm–linear
structure of a Gabidulin code, leading to trivial left and right stabilizer algebras.

A Combinatorial Distinguisher Detecting the Fqm–Linear Structure.
Suppose from now on that we are given a code Cmat which is an enhanced
Gabidulin matrix code. We keep the notation of Definitions 15 and 16. That
is to say our code that we denote Cpub is described by a basis:

RBpub =

(

P

(
A1 R1

R′
1 R′′

1

)

Q, . . . ,P

(
Akm Rkm

R′
km R′′

km

)

Q

)

, (2)

where the Aij ’s are an Fq–basis of Ψγ(Gg (m, k, n)), P ,Q are random nonsingular
matrices and the Ri, R′

i, R
′′
i s are random matrices with respective sizes m× �2,

�1 ×n and �1 × �2. Roughly speaking, this is a Gabidulin matrix code, enhanced
with �1 random rows and �2 random columns. The matrix P (resp. Q) “mixes”
rows (resp. columns) from the Gabidulin code with random ones.

We also introduce the secret “non-scrambled” version of the code denoted C0

and spanned by the basis:

RB0 =

((
A1 R1

R′
1 R′′

1

)

, . . . ,

(
Akm Rkm

R′
km R′′

km

))

. (3)

The idea of the combinatorial distinguisher to follow consists in applying a
projection map on both the row and columns spaces of Cpub in order to get rid
of the contributions of the matrices Ri,R

′
i and R′′

i while not destroying the
underlying Fqm–linear structure.

To understand the idea, let us first reason on the non scrambled code C0.
Choose two matrices
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– U ∈ F
m×(m+�1)
q of full rank whose �1 last columns are 0, i.e.,

U = (U0 | 0), with U0 ∈ GLm(Fq).

– and, for some integer n′ such that k < n′ ≤ n, a full rank matrix V ∈
F
(n+�2)×n′
q whose last �2 rows are 0:

V =
(
V 0

0

)

, with V 0 ∈ F
n×n′
q of full rank.

Now, observe that the code UC0V is spanned by

U0A1V 0, . . . ,U0AkmV 0,

which is a basis of the matrix Gabidulin code Ψγ′(GgV 0(m, k, n′)), where γ′ is
the image of the basis γ by U0. Hence, this code is distinguishable from random
by computing its left stabilizer algebra.

Note finally that the number of choices of U ,V is ≈ qm2+nn′
. The latter

quantity being minimal when n′ = k +1 (we should have n′ > k since otherwise
the resulting code would be the full matrix space F

m×n′
q ).

Now, when considering the public code Cpub instead of C0 the very same
observation can be made by replacing U by U ′ def= UP−1 and V by V ′ def=
Q−1V and the number of good choices killing the contributions of the Ri,R

′
i,R

′′
i

matrices remains the same, namely: qm2+n(k+1).
Thus, the suggested distinguisher consists in repeating the following opera-

tions:

– Guess the pair U ′,V ′ with U ′ ∈ F
m×(m+�1)
q and V ′ ∈ F

(n+�2)×(k+1)
q ,

– Compute the left stabilizer algebra of U ′CpubV
′.

until you get a stabilizer algebra of dimension ≥ m.

The probability of finding a valid pair U ′,V ′ is

P ≈ qm2+n(k+1)

qm(m+�1)+(n+�2)(k+1)
= q−(m�1+(k+1)�2)

which yields a complexity of

Õ(qm�1+(k+1)�2) (4)

for the distinguisher.
To conclude on this section let us do some remarks.

– The process is not symmetric on rows and columns since, on one hand U ′

must kill the random rows while preserving the Fqm–linearity. On the other
hand, the matrix V ′ should only kill the random columns, even if it partially
punctures the Gabidulin code.

– The above distinguisher holds when replacing the Gabidulin code by any Fqm–
linear code, it does not use the Gabidulin structure. In the subsequent section,
the proposed algebraic attacks will try to take advantage of the Gabidulin
structure.
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An Overbeck-Like Distinguisher. As already mentioned, the previous dis-
tinguisher does not actually take advantage of the Gabidulin structure and could
hold for any Fqm–linear code. Let us discuss how to take advantage of the
Gabidulin structure. The key of Overbeck’s distinguisher is that, when given
a Gabidulin code represented as a vector code Cvec, one can easily compute its
image by the Frobenius map C[1]

vec and the sum Cvec + C[1]
vec is small (it has Fqm–

dimension equal to 1 + dimFqm
Cvec) compared to what happens with a random

code. More generally, the sum Cvec + C[1]
vec + · · · + C[t]

vec is small compared to the
random case.

The difficulty in our setting is that we can access neither the multiplication
operation by an element of Fqm nor the action of the Frobenius map. We suggest
here to identify similar behaviours by solving a system of bilinear equations. We
do not claim that it is the only manner to distinguish via the resolution of a
bilinear system. However, our observation is that all our attempts led to the
resolution of a quadratic system with Θ(m2) unknowns for Θ(m2) equations. A
linearization would hence lead to Θ(m4) unknowns for only Θ(m2) equations. A
further analysis of this system or of any other (and possibly smarter) algebraic
modeling would be important to better assess the security of the system.

In the sequel, we assume that the dimension of the public code Cpub satisfies

2 dim Cpub = 2mk ≥ dimF
(m+�1)×(n+�2)
q .

If this condition is not satisfied, an algebraic distinguisher of similar flavor can
be searched on the dual code (see further for a discussion on a structural attack
on the dual).

The idea of this distinguisher relies on this observation.

Lemma 2. Let b be a non-negative integer. Let M ∈ Ψγ(Gγ(m, b,m)) and C ∈
Ψγ(Gg (m, k, n)). Then,

MC ∈ Ψγ(Gg (m, k + b − 1, n)).

Proof. The matrix M represents a q–polynomial PM of q–degree < b in the basis
γ (regarding PM as an Fq–endomorphism of Fqm). The matrix C represents a
q–polynomial PC of q–degree < k from the basis g to the basis γ. Thus, MC
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represents the q–polynomial PM ◦ PC from the basis g to the basis γ. The q–
polynomial PM ◦ PC has q–degree < k + b − 1. This yields the result. ��
Remark 2. The previous lemma is somehow a matrix version of Overbeck’s dis-
tinguisher.

As for the previous distinguisher, for the sake of clarity, we first reason on
the non scrambled code C0 whose basis is given in (3).

Proposition 7. Let D ⊆ F
(m+�1)×(m+�1)
q be the matrix code:

D def=
{(

B 0
T 1 T 2

) ∣
∣
∣
∣
B ∈ Ψγ(Gγ(m,n − k,m)), T 1 ∈ F

�1×m
q , T 2 ∈ F

�1×�1
q

}

.

Then,

(i) dimFq
D = m(n − k) + �1(m + �1);

(ii) The code U def= Span
Fq

{DC | D ∈ D, C ∈ C0} ⊆ F
(m+�1)×(n+�2)
q satisfies:

dimFq
U ≤ (m + �1)(n + �2) − m.

Proof. (i) is an immediate consequence of the definition of D. To prove (ii), let
D ∈ D and C ∈ C0. Then, they have the following shapes

D =
(
B 0
T 1 T 2

)

and C =
(
A R
R′ R′′

)

,

where B ∈ Ψγ(Gγ(m,n−k,m)) and A ∈ Ψγ(Gg (m, k, n)) and the other matrices
are arbitrary. According to Lemma 2, we deduce that BA ∈ Ψγ(Gg (m,n−1, n)).
Hence, any element of U has the shape

(
C S
S′ S′′

)

,

where C ∈ Ψγ(Gg (m,n−1, n)) and the matrices S,S′ and S′′ are arbitrary. This
yields the upper bound on the dimension of U . ��

Corollary 1. There exists a matrix code D′ ⊆ F
(m+�1)×(m+�1)
q such that

dimFq
Span

Fq
{DC | D ∈ D′, C ∈ Cpub} ≤ (m + �1)(n + �2) − m.

Proof. Recall that Cpub = P C0Q. Then, setting D′ def= PDP−1 where D is the
code of Proposition 7, yields the result. ��
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Corollary 1 is the key of our forthcoming distinguisher : it shows that some
operation (the “left multiplication”) by D′ does not fill in the ambient space
while it would fill it in if Cpub was random.

However, the difficulties are that:

(1) the code D′ is unknown;
(2) we need to equate the fact that the dimension of the span of D′Cpub is not

(m + �1)(n + �2).

To address (2), we proceed as follows. We will define a formal variable D ∈
F
(m+�1)×(m+�1)
q . Note first that the matrix code D of Proposition 7 contains the

identity matrix. Then, Corollary 1 asserts that Cpub +DCpub is not equal to the
ambient space since it is contained in the code D′Cpub of codimension at least
m. Hence its dual (Cpub + DCpub)⊥ is nonzero. Since (Cpub + DCpub)⊥ ⊆ C⊥

pub

there exists M ∈ C⊥
pub satisfying:

∀C ∈ Cpub, Tr(DCM t) = 0.

Any M ∈ C⊥
pub solution of the above system is an element of (Cpub +DCpub)⊥.

Thus, we can set the following bilinear system with

– Unknowns: D ∈ F
(m+�1)×(m+�1)
q and M ∈ C⊥

pub;
– Equations: for any element C of our Fq–basis RB (see (2)),

Tr(DCM t) = 0.

For this bilinear system we can count the equations and unknowns.

– Number of unknowns:
• D has (m + �1)2 entries but, from Proposition 7, it lies in a space of

dimension m(n − k − 1) + �1(m + �1). Hence one can specialize some
variables and restrict to m(m − n + �1 + k + 1) + 1 variables;

• M is in C⊥
pub which has dimension (m + �1)(n + �2) − mk, one can even

specialize m− 1 variables since (Cpub +DCpub)⊥ has codimension at least
m.

– Number of equations: it is nothing but dimFq
Cpub = mk.

Finally, recall that we assumed 2 dim Cpub = 2mk ≥ (m + �1)(n + �2) which
leads to the fact that, Cpub + DCpub would fill in the ambient space if Cpub

was random. Indeed, it is easy to check that for a random matrix code Crand the
dimension of Crand+DCrand is typically min(m+�1(n+�2), 2mk) = m+�1(n+�2)
or equivalently that Crand +DCrand fills in the ambient space.

However, assuming that k = Θ(m) and m ≈ n, we have Θ(m2) bilinear
equations with Θ(m2) unknowns from D and from M . For the parameters we
consider, with m ≈ 40, this represents thousands of variables to handle. Thus,
we claim that our system remains out of reach of such a distinguisher.
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Attacking the Dual. The dual of an enhanced Gabidulin code is described
in Proposition 1: after applying left and right multiplying by (P t) and (Qt)
respectively, the dual of the public code has the following shape

Dmat = Un−k ⊕ W,

where Un−k is a matrix version of a Gabidulin code “extended by zero” i.e. to
which �1 rows and �2 columns of zero have been added and W is some complement
subspace of dimension n�1 + m�2 + �1�2. We assume here that 2 dimFq

Cmat ≥
(m + �1)(n + �2). Equivalently, we suppose the dual of the public code to have
rate > 1/2

The code Un−k is derived from a Gabidulin code of Fqm–dimension n − k
and hence has Fq–dimension m(n− k). Similarly to the previous attack, observe
that if D ∈ F

(m+�1)×(m+�1)
q is in some matrix version of a Gabidulin code of

dimension b extended by zero, then

(Un−k +DUn−k) ⊆ Un−k+b−1,

where Un−k+b−1 is a matrix version of a Gabidulin code of Fqm–dimension n −
k + b − 1 extended by zero. Thus,

dimFq
(Dmat +DDmat) ≤ dimFq

(Un−k +DUn−k) + dimFq
W + dimFq

DW
≤ m(n − k + b − 1) + 2(n�1 + m�2 + �1�2).

Under the assumption that Dmat has rate > 1/2, the code Dmat+DDmat would
equal the ambient space w.h.p. if Dmat was random, while, it actually does not
as soon as:

m(n − k + b − 1) + 2(n�1 + m�2 + �1�2) < (m + �1)(n + �2),

which holds as soon as

b < k + 1 − n

m
�1 − �2 − �1�2

m
· (5)

Here again as in the previous case, we can equate this distinguisher by choosing
a b satisfying (5), searching D ∈ F

(m+�1)×(m+�1)
q and M ∈ Cmat such that for

all C in the dual of the public code, we have Tr(DCM t) = 0.
As in the previous case, the number of unknowns remains prohibitive com-

pared to the number of equations.

Remark 3. Solving such a system for b = 0 corresponds to searching the hidden
Fqm–linearity of the code Un−k.

Remark 4. We also considered a combinatorial approach on the dual as we pro-
posed on the public code itself. The attack on the public code consists in guessing
a relevant puncturing of the row and column spaces in order to get rid of the
contribution of the random rows and columns added in the enhancing process.
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When reasoning on the dual, we need to get rid of the contribution of the com-
plement subspace W. This can be done by guessing a relevant shortening of the
row and column space. Such a structural attack on the dual turns out to be
equivalent to the previously presented combinatorial attack performed on the
public code itself.

Finding Codewords Just Below the Singleton Bound and Exploiting
Their Structure. In this subsection we consider the approach of finding matri-
ces in the public code of weight the MRD bound minus 1. These matrices could
be candidates for unraveling the structure of the hidden Gabidulin code. We
first consider how the MRD bound is affected by the enhanced matrix codes
transformation (i.e. adding random rows and columns). Then, we show there are
many matrices of weight the MRD bound minus 1 in the public code and that
their structure does not seem to reveal any information on the secret key.

To simplify the analysis, we only consider the case n = m since all parameters
in Sect. 7 satisfy this equality. Without loss of generality, since we can always
consider the transposed code (i.e. the code Ct

mat = {M t | M ∈ Cmat}, which is
different from the dual code), we assume in this subsection �1 ≥ �2 > 0.

Definition 20 (Singleton bound [16]). A matrix code Cmat[m × n,K, d] sat-
isfies the Singleton (or MRD) bound if:

d ≤ min(n,m) − K

max(n,m)
+ 1.

Codes achieving the equality for this bound are called MRD codes.

Lemma 3. The minimum distance for the code Cpub[(m+ �1)× (m+ �2), km, d]
satisfies:

d ≤ m − k + 1 + �2 +
⌊

k�1
m + �1

⌋

.

Proof. The direct application of the Singleton bound yields:

d ≤ m − k + 1 + �2 +
k�1

m + �1
·

Since d is an integer, the integer part of k�1
m+�1

can be taken. ��
This shows that after perturbation, the Singleton bound is increased by at

least �2.
Let us denote d0 := m − k + 1 + �2 +

⌊
k�1

m+�1

⌋

. It is legitimate to wonder
whether Cpub achieves the MRD bound and in the contrary, how many matrices
of rank d0 − 1 are contained in Cpub.
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In the following we prove a lower bound on the expected number of matrices
in Cpub of rank d0 − 1, which shows that Cpub is highly unlikely to be an MRD
code and that, moreover, it contains lots of matrices of rank d0 − 1.

Lemma 4. Let N be the expected number of matrices in Cpub of rank d0 − 1. It
achieves the following inequality

N ≥
[

m
m − k + 1

]

q

(qm − 1) × q(�1+1)(1−k)−1 ≈ qm+(m−k−�1)(k−1)−1.

Proof. The matrices in Cpub are of the form

M = P

(
G

B
A

)

Q

with G ∈ Gg (m, k,m) of size m×m, A of size �1×m and B of size (m+�1)×�2.
Sufficient conditions such that M is of rank d0 − 1 are:

1. G is of rank d0 − �2
2. RowSpace(A) ⊂ RowSpace(G)
3. B is of full rank �2

4. ∃i ∈ [1, �2],B∗,i ∈ ColSpace

(
G
A

)

5. ColSpace(B∗,i)j∈[1,�2]
j �=i

∩ ColSpace

(
G
A

)

= {0}

The number of matrices G of rank m − k + 1 is
[

m
m − k + 1

]

q

(qm − 1) [27].

Because d0 − �2 ≥ m − k + 1 and since the weight distribution in a Gabidulin
code is increasing with the weight [11], the number of matrices G of rank d0 − �2

is ≥
[

m
m − k + 1

]

q

(qm −1). It remains now to evaluate the probabilities of 2.-5.

We assume that A and B are uniformly random independent matrices.
The probability that a single row of A is contained in RowSpace(G), which

is a subspace of Fm
q of dimension m − k + 1 is q1−k. Hence the probability of 2.

is q�1(1−k).
The probability of 3. is

∏�2−1
j=0 (1 − qj−�2−m) ≥ (1 − qm)�2 ≥ q−1.

Since B is of full rank, dimColSpace(B∗,i)j∈[1,�2]
j �=i

= �2 − 1. Noting that

dimColSpace

(
G
A

)

= m − k + 1, the probability of 4. and 5. together is

�2q
(1−k)(1 − q(�2−1)(1−k)) ≥ q1−k.

��
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The above lemma shows that for the parameters presented in Sect. 7, the
expected number of matrices of rank d0 − 1 is very large (at least q128 for all
parameters presented in Fig. 5) and does not seem to yield any information to
retrieve the secret Gabidulin structure.

The above proof can be easily adapted in the special case of �2 = 0 to find
a similar upper bound as long as k�1

m+�1
≥ 1, which is always the case in our

parameters.

6.2 Attacks on the Message

In all encryption schemes derived from the MinRank-McEliece and Niederreiter
encryption frames, an opponent who wants to retrieve the original message with-
out knowing the secret key has to solve a generic MinRank(q,m, n, k, r) instance.
We recall here the main attacks on this problem.

Hybrid Approach. In order to improve the attacks on MinRank, a generic
approach has been introduced in [9], which consists in solving smaller instances.
The complexity is given by:

min
a

qarA(q,m, n − a,K − am, r) (6)

where A is the cost of an algorithm to solve a MinRank instance.

The Kernel Attack. This attack was described in [25]. The idea of the attack
consists in sampling random vectors, hoping that they are in the kernel of E,
and deducing a linear system of equations. Its complexity is equal to:

O(qr	 k
m 
kω). (7)

Minors Attack. This algebraic attack was introduced and studied in [18]. This
modeling uses the minors of E. This method has been improved in [24]. We refer
to these papers for the complexity of the attack.

Support Minors Attack. The Support Minors modeling was introduced in
[10]. This idea also uses minors of a matrix, giving us another system of equa-
tions. With this approach, the complexity is of:

O
(

NbM
ω−1
b

)

(8)

where

Nb =
b∑

i=1

(−1)i+1

(
n

r + i

)(
k + b − i − 1

b − i

)(
k + i − 1

i

)

Mb =
(

n

r

)(
k + b − 1

b

)

and b is the degree to which we augment the Macaulay matrix of the system.
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7 Parameters

7.1 Parameters for EGMC-Niederreiter Encryption Scheme

We apply our idea of Enhanced MinRank-Niederreiter encryption frame by tak-
ing a Gabidulin code G[m, k]qm , for which we know an efficient decoding algo-
rithm, allowing to decode errors of weight up to m−k

2 �. As we previously said,
decrypting the ciphertext Y without the secret key sk is strictly equivalent to
the MinRank problem of parameters (q,m + �1,m + �2, km, r).

Choice of Parameters. For a given value of r, we choose the values of m and
k (the optimal parameters verify r = m−k

2 �) such that the underlying MinRank
instance is secure against the known attacks. Then, we choose �1 and �2 to obtain
parameters resistant to structural attacks (see below).

We choose the parameters based on the best known attacks, see Fig. 5 and
Fig. 6. Among these attacks, three of them rely on solving the associated Min-
Rank instance: Alg. refers to the algebraic Support Minors attack (see Eq. 8),
Hyb. refers to the Hybrid approach (see Eq. 6), and Comb. refers to the combi-
natorial Kernel attack (see Eq. 7). We also consider the attack which consists in
retrieving the Fqm-linear structure of the code Cmat (see Eq. 4).

We propose two kinds of parameters. In our main parameters, we add as
many rows as columns to the matrix Gabidulin code (�1 = �2). The resulting
parameters for 128 bits, 192 bits and 256 bits of security can be found in Fig. 5.
We also propose some sets of parameters for which only rows or only columns
are added to the matrix Gabidulin code (�1 = 0 or �2 = 0), and which can be
found in Fig. 6. We consider NIST-compliant parameters, while maintaining a
margin of 15 bits above the security level.

The public key pk consists of a parity check matrix of C′
mat. As a linear matrix

code [(m + �1)(m + �2), km]q, it can be represented with:

km((m + �1)(m + �2) − km) log2 q

bits. Thenumberofbitsnecessarytorepresenttheciphertextc∈F
(m+�1)(m+�2)−km
qm

is equal to:
((m + �1)(m + �2) − km) log2 q.

7.2 Comparison with Other Schemes

We propose a comparison of our sizes with those of other encryption schemes
based on various problems, see Figs. 7, 8 and 9. Note that we achieve better
performances than RQC and ROLLO, which are other rank-based encryption
schemes, and even the smallest ciphertext sizes compared to the schemes pro-
posed to the NIST based on codes and lattices.



96 N. Aragon et al.

Sec. q k m 1 2 r Alg. Hyb. Comb. Struc. pk ct

128

2 17 37 3 3 10 193 170 179 165 76 kB 121 B

2 25 37 3 3 6 168 150 164 189 78 kB 84 B

2 35 43 2 2 4 158 145 158 158 98 kB 65 B

2 47 53 2 2 3 158 147 161 202 166 kB 66 B

192 2 51 59 2 2 4 222 209 224 222 268 kB 89 B

256
2 23 47 3 3 12 302 271 285 284 191 kB 177 B

2 37 53 3 2 8 315 290 310 273 274 kB 139 B

2 71 79 2 2 4 303 289 305 302 667 kB 119 B

Fig. 5. Reference parameters for the EGMC-Niederreiter encryption scheme

Sec. q k m 1 2 r Alg. Hyb. Comb. Struc. pk ct

128

2 17 37 4 0 10 181 168 179 148 70 kB 111 B

16 13 23 1 1 5 236 273 282 148 41 kB 138 B

16 7 23 0 5 8 172 262 276 160 33 kB 207 B

192

2 23 43 5 0 10 239 220 230 215 133 kB 134 B

2 33 47 5 0 7 238 221 232 235 173 kB 111 B

2 41 53 4 0 6 258 240 257 212 230 kB 106 B

256
16 9 29 2 1 10 310 373 382 272 87 kB 334 B

16 17 29 2 1 8 357 399 408 304 107 kB 218 B

Fig. 6. Alternative parameters in particular case of �1 = 0 or �2 = 0, or q > 2

Scheme pk ct

EGMC-Niederreiter, Fig. 4 98 kB 65 B

Classic McEliece [12] 261 kB 96 B

EGMC-Niederreiter, Fig. 4 33 kB 207 B

ROLLO I [6] 696 B 696 B

KYBER [8] 800 B 768 B

RQC-Block-NH-MS-AG [7] 312 B 1118 B

BIKE [1] 1540 B 1572 B

RQC-NH-MS-AG [13] 422 B 2288 B

RQC [2] 1834 B 3652 B

HQC [3] 2249 B 4481 B

Fig. 7. Comparison of different schemes
for 128 bits of security

Scheme pk ct

EGMC-Niederreiter, Fig. 4 268 kB 89 B

EGMC-Niederreiter, Fig. 4 133 kB 134 B

Classic McEliece [12] 524 kB 156 B

ROLLO I [6] 958 B 958 B

KYBER [8] 1184 B 1088 B

RQC-Block-NH-MS-AG [7] 618 B 2278 B

BIKE [1] 3082 B 3024 B

RQC-NH-MS-AG [13] 979 B 3753 B

RQC [2] 2853 B 5690 B

HQC [3] 4522 B 9026 B

Fig. 8. Comparison of different schemes
for 192 bits of security
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Scheme pk ct

EGMC-Niederreiter, Fig. 4 667 kB 119 B

Classic McEliece [12] 1044 kB 208 B

EGMC-Niederreiter, Fig. 4 87 kB 334 B

ROLLO I [6] 1371 B 1371 B

KYBER [8] 1568 B 1568 B

BIKE [1] 5121 B 5153 B

RQC [2] 4090 B 8164 B

HQC [3] 7245 B 14465 B

Fig. 9. Comparison of different schemes for 256 bits of security

8 Conclusion and Further Work

This work presents a general McEliece-like encryption frame for matrix codes
whose security is based on the MinRank problem. We propose a general masking
for rank codes that we apply on a matrix code version of Gabidulin vector
code. We define a new problem: the Enhanced Gabidulin Matrix Code (EGMC)
distinguishing problem, for which we propose a thorough analysis and study
possible distinguishers to solve it. It results in a competitive encryption scheme,
which achieves a ciphertext size of 65B for 128 bits of security.

For future work, it would be interesting to extend our trapdoor by also con-
sidering subcodes of matrix codes that we obtain with our masking. Such mod-
ifications would probably make the action of the distinguisher more complex,
and thus may permit to reduce the parameters of our scheme.
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Abstract. In this work, we provide new, tighter proofs for the TRH -
transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-
CPA secure PKEs into KEMs with IND-1CCA security, a variant of
typical IND-CCA security where only a single decapsulation query is
allowed. Such KEMs are efficient and have been shown sufficient for
real-world applications by Huguenin-Dumittan and Vaudenay at EURO-
CRYPT 2022. We reprove Jiang et al.’s TRH -transformation in both the
random oracle model (ROM) and the quantum random oracle model
(QROM), for the case where the underlying PKE is rigid determinis-
tic. In both ROM and QROM models, our reductions achieve security
loss factors of O(1), significantly improving Jiang et al.’s results which
have security loss factors of O(q) in the ROM and O(q2) in the QROM
respectively. Notably, central to our tight QROM reduction is a new
tool called “reprogram-after-measure”, which overcomes the reduction
loss posed by oracle reprogramming in QROM proofs. This technique
may be of independent interest and useful for achieving tight QROM
proofs for other post-quantum cryptographic schemes. We remark that
our results also improve the reduction tightness of the TH -transformation
(which also converts PKEs to KEMs) by Huguenin-Dumittan and Vau-
denay (EUROCRYPT 2022), as Jiang et al. provided a tight reduction
from TH -transformation to TRH -transformation (ASIACRYPT 2023).

Keywords: QROM · Security proof · Tight reduction · 1CCA
security · KEM

1 Introduction

Indistinguishability against Chosen-Ciphertext Attacks (IND-CCA) has been
widely considered as the security standard for post-quantum key encapsulation
mechanisms (KEMs) [10,20,34–37,40,47], which could be achieved by applying
the Fujisaki-Okamoto-like (FO-like) transformation [27] to public-key encryp-
tion (PKE) with security weaker than IND-CCA. However, in the post-quantum
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Table 1. The reduction tightness of transformations from OW-CPA-secure determin-
istic PKE to IND-1CCA-secure KEM in the ROM/QROM. Here εR represents the
advantage of the reduction algorithm R with respect to the OW-CPA security of the
underlying PKE scheme, εA represents the advantage of the adversary A with respect
to the IND-1CCA security of the obtained KEM scheme, and q is the total number of
random oracle queries made by A.

Model Transformation Reduction tightness

TD
CH [31] εR ≈ εA [31]

ROM TD
H [31] εR ≈ O(1/q2)εA [31]

εR ≈ O(1/q)εA [33]

TD
RH [33] εR ≈ O(1/q)εA [33]

εR ≈ εA (Our work)

TD
CH [31] εR ≈ O(1/q3)ε2A [31]

QROM TD
H [31] εR ≈ O(1/q2)ε2A [33]

TD
RH [33] εR ≈ O(1/q2)ε2A [33]

εR ≈ ε2A (Our work)

cryptography (PQC) migration, it has been shown that IND-1CCA-secure KEM
is sufficient to replace the Diffie-Hellman key exchange in TLS 1.3 [21] and Sig-
nal [14] to achieve post-quantum security [31]. Compared to IND-CCA security,
IND-1CCA security allows the adversary to make only a single decapsulation
query. This restriction enables more efficient transformations [31,33] than the
FO-like approach, as it removes the need for the time-consuming re-encryption
operation in the decapsulation algorithm. In particular, Huguenin-Dumittan and
Vaudenay [31] pointed out that omitting the re-encryption step could speed up
the decapsulation algorithm of Kyber [13] and Frodo-AES [2] by 2.17 times and
6.11 times, respectively. Besides, removing the re-encryption operation might
enhance the security of the obtained KEM against side-channel attacks [49].

To design IND-1CCA-secure KEMs, Huguenin-Dumittan and Vaudenay [31]
proposed two transformations called TCH and TH , both of which build KEMs
from PKE schemes with One-Wayness against Chosen-Plainxt Attacks (OW-
CPA). In particular, TCH is a variant of the REACT transformation [43], and
TH is the same as the U⊥ transformation in [27]. Later, Jiang et al. [33] pre-
sented an implicit variant of TH called TRH where the decapsulation algorithm
returns a pseudo-random value instead of an explicit abort symbol for an invalid
ciphertext. Also, they provided tighter proofs for TH by reducing its IND-1CCA
security to the IND-1CCA security of TRH .

Table 1 lists the reduction tightness of these transformations with determinis-
tic PKE in the random oracle model (ROM) [7] and the quantum random oracle
model (QROM) [11]. Hereafter, we will use TD

X to denote TX with deterministic



Tighter Proofs for PKE-to-KEM Transformation in the QROM 103

PKE for X ∈ {CH,H,RH}. As shown in Table 1, the ROM proof of TD
CH is

almost tight, but the QROM proof of TD
CH requires an additional hash function

for ciphertext verification which increases the size of ciphertext. In contrast, the
QROM proofs of TD

H and TD
RH in [33] do not need ciphertext expansion.

Jiang et al. [33] not only made improvements on the reduction tightness of
TH , but also proved that the reduction losses O(q) and O(q2) are unavoidable in
the ROM and QROM proofs of TRH respectively. However, in this work we found
that these reduction losses could be further reduced to O(1) when the underlying
PKEs are rigid deterministic (See Sect. 1.2 for detailed explanation). These tight
security reductions could improve the practical efficiency of KEMs built via the
TD

RH due to no need to increase the security parameter to compensate for the
loss factor.

1.1 Our Contributions

In this work, we provide new, tighter proofs for the TRH -transformation by Jiang
et al. [33] when the underlying PKE is rigid deterministic1, as shown in Table 1,
and our contributions are as follows.

First, we present a tight security proof with loss factor O(1) for TD
RH in the

ROM (Theorem 2). In this proof, we propose a new strategy to simulate the
decapsulation oracle successfully with probability 1/2. This strategy takes full
advantage of the rigid deterministic property of PKE, and does not have to guess
the random oracle query of adversary.

Second, we extend the above strategy to the QROM and obtain a tight
security proof with loss factor O(1) for TD

RH in the QROM (Theorem 4). At the
core of our QROM proof for TD

RH is a novel technique called reprogram-after-
measure, which is used to handle the issue of random oracle reprogramming in
the QROM.

Compared with existing techniques including one-way to hiding (O2H) [3,
10,40,51] and measure-and-reprogram [18,19], our technique is tailored for this
particular case and introduces a reduction loss of O(1) only. Note that our results
also improve the reduction tightness of TD

H [31], as Jiang et al. [33] provided a
tight reduction from TH to TRH .

1.2 Results Overview

TRH transformation is shown in Fig. 1, where M and C are the message space and
the ciphertext space of the underlying PKE scheme PKE′ = (Gen′,Enc′,Dec′),
respectively, K is the key space of KEMRH , � is a fixed public value, and H is a
hash function mapping from M ∪ {�} × C to K. For simplicity, we only consider
the case of � ∈ M, and the case of � �∈ M can be proved similarly.

1 The property of “rigidity” is studied by Bernstein and Persichetti [8]. Roughly
speaking, it means that Enc(pk, m) = c for every (pk, sk) ← Gen(1λ), c ∈ C, and
m := Dec(sk, c).
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Fig. 1. KEMRH := TRH [PKE′, H].

On the Reduction Tightness of TRH by Jiang et al. [33]. Theorem 5.1
in [33] says that the reduction loss factors O(q) and O(q2) are unavoidable in
the ROM and QROM proofs of TRH when the underlying PKE is malleable. The
proof of this theorem describes a ROM/QROM adversary B against the IND-
1CCA security of TRH . In specific, given c∗ ← Enc′(pk,m∗) and k∗, B needs
to determine whether k∗ = H(m∗, c∗) or k∗ is a random value over K. By the
malleability of PKE′, B first derives a new c′ from c∗ where c′ = Enc′(pk, f(m∗))
and f is the function associated to the malleability of PKE′. Then, B makes
the single decapsulation query on c′ and receives tag = H(f(m∗), c′). Now B
makes random oracle queries to find m∗ ∈ M such that H(f(m∗), c′) = tag, and
computes H(m∗, c∗) to check whether k∗ is random or not. Let q be the total
number of random oracle queries made by B, Jiang et al. [33] pointed out that
these q random oracle queries contribute to unavoidable loss factors of O(q) and
O(q2) in the ROM and QROM.

Note that if Enc′(pk, ·) is rigid deterministic, B could find correct m∗ by
computing Enc′(pk, ·) and comparing with c∗ instead of querying random oracle,
and the loss factors in the ROM and QROM could be avoided. This fact implies
that it might be possible to improve the reduction tightness of TD

RH by Jiang et
al. [33].

Our Result I: Tight ROM Proof of TD
RH . As pointed out by Jiang et

al. [33], the core of the ROM proof is simulating decapsulation oracle without
sk. The simulation of hash function H relies on a hash list to record all the
random oracle queries and corresponding hash values. The ROM proof of TD

RH

in [33] is based on the fact that the decapsulation oracle always makes a random
oracle query to generate k′ and one could find the corresponding query from
the hash list of H, say the i∗-th entry, where i∗ ∈ {0, . . . , q} and q is the total
number of random oracle queries made by A. So, the simulator of decapsulation
oracle first randomly selects i∗ ∈ {0, . . . , q}. If the i∗-th entry is not empty
when A queries the decapsulation oracle, it returns the hash value of this entry;
otherwise, it returns a random k∗ ∈ K and when A makes the i∗-th hash query,
k∗ is returned. Therefore, the probability of a successful simulation is 1/(q + 1).

To achieve tighter proof, we present a new simulation strategy. That is, deter-
mining the way to compute k′ in decapsulation oracle based on a correct guess
on m′ �= ⊥ with probability 1/2. In the case of a correct guess on m′ �= ⊥,
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assuming PKE′ is perfectly correct, the simulator of decapsulation oracle first
checks whether there is a pair (m′, c) in the hash list such that Enc′(pk,m′) = c:

– If such a pair exists, then k′ := H(m′, c). The perfect correctness and the
rigidity of the deterministic PKE′ guarantee that if Enc′(pk,m′) = c, then
Dec′(sk, c) = m′.

– Otherwise, A does not have any knowledge of H(m′, c). Responding with
k′ := k∗, where k∗ ∈ K is a random value, implicitly assigns k∗ to H(m′, c)
and would not be noticed by A. After this, if A makes a random oracle query
on this pair, the random oracle should return k∗.

This completes the simulation of the decapsulation oracle without the knowl-
edge of sk. The probability of a successful simulation is 1/2, and the loss factor
of our proof is 2. Note that if PKE′ is δ-correct where δ �= 0, i.e., PKE′ is not
perfectly correct, then there will be an error term δ in our reduction result.

Our Result II: Tight QROM Proof of TD
RH . Note that, in the QROM,

since A can make the random oracle queries in superposition, there is no such
a hash list that can copy down A’s queries and their responses, which implies
that we cannot implicitly reprogram H(m′, c) to the random k∗ as above. So,
we propose following technique to fix this issue.

A New Tool: Reprogram-after-Measure. We present a simulator that can use a
random value to simulate the decapsulation oracle without the knowledge of sk.
This simulator simulates the random oracle using Zhandry’s compressed oracle
technique [55], which can record information about the adversary’s quantum
queries into a database in superposition without being detected by adversary.
Assuming PKE′ is perfectly correct and rigid deterministic, we can still use the
simulation strategy in the ROM, i.e., guessing whether m′ is equal to ⊥ or
not with probability 1/2. When m′ �= ⊥ and the guess is correct, we have
Enc′(pk,m′) = c, as Enc′ is rigid deterministic and perfectly correct. Then we
could find the pair (m′, c) that satisfies Enc′(pk,m′) = c in the database, and
store the responses in a quantum register in superposition. Now we measure
this register in the computational basis to get the classical response to (m′, c).
This response may be in two cases: k∗ ∈ K, or ⊥ �∈ K. The latter implies that
H(m′, c) has not been defined, so we use a random k∗ ←$K to replace it. Now,
we let k∗ be the response to the decapsulation oracle query on c. To make the
random oracle responses consistent, in the subsequent random oracle query, we
respond with k∗ if the query is (m′, c), or still use the compressed oracle to obtain
the responses otherwise. This completes the decapsulation simulation and the
proof sketch in the QROM. For generality, we further extend this method into a
reprogram-after-measure technique, which can address the oracle reprogramming
issue encountered during the single classical query in the QROM, and is proved
in Sect. 4.1.

The Proof in the QROM. Similar to the ROM proof of TD
RH (see Theorem 4),

the QROM proof also can be divided into following two steps:
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1. The first step (games G0 to G4): We use a random k ←$K to replace the
k := H(m, c) in Encaps, and use the double-sided O2H lemma (Lemma 1) to
convert the advantage of A detecting this change to the probability of a new
adversary B outputting the corresponding m.

2. The second step (games G5 to G8): We use the proposed reprogram-after-
measure technique to simulate the decapsulation oracle without sk, and then
use the ability of B to attack the OW-CPA security of PKE′.

The tightness of this QROM proof results from our reprogram-after-measure
technique that has a tighter upper bound than the measure-and-reprogram tech-
nique used in [33].

1.3 Related Work

The quantum random oracle model (QROM) [11] has been a popular model
to analyze the security of some post-quantum cryptographic schemes, such as
encryption [38,54], signature [1,9,24,46], authenticated key exchange (AKE) [30,
41,44], classical verification of quantum computations (CVQC) [6,15], and other
cryptographic primities [4,29,32]. Many works [53,56] showed that there exist
schemes that are secure in the ROM but insecure in the QROM, which implies
that the QROM is stronger than the ROM.

TCH , TH , and TRH can be seen as the simplified versions of the FO-like trans-
formation, where the FO-like transformation is a variant of the Fujisaki-Okamoto
transformation [22,23] under KEM. Targhi et al. [50] and Hofheinz et al. [27] con-
ducted the first analyses of the security of FO transformation and FO-like trans-
formation in the QROM, respectively. However, these works need to introduce
an additional hash function to achieve post-quantum security, and the proofs
suffer from the quartic reduction loss. For the case where the KEM is implicit
reject, Jiang et al. [34] provided a proof for the FO-like transformation without
the additional hash, where the degree the reduction loss is decreased from quar-
tic to quadratic, and the factor of the reduction loss is O(q2). Jiang et al. [37]
further pointed out that quadratic loss is unavoidable in the measurement-based
black-box reduction, where the adversary is accessed in a black-box manner and
is only run once without rewinding, and the reduction algorithm is performed
by measuring the state of the adversary. In the following works, Jiang et al. [36]
used the semi-classical O2H lemma proposed by Ambainis [3] to improve the
security reduction to εR ≈ O(q)ε2A, while Bindel et al. [10] proposed the double-
sided O2H lemma to improve the security reduction to εR ≈ ε2A. To investigate a
tighter transformation, Saito et al. [47] proposed the SXY transformation based
on the FO-like transformation, and got a tight security reduction to the newly
defined security called disjoint simulatability. This tight result is extended by
Jiang et al. [35] to the KEM with explicit reject. Considering stronger quantum
adversaries, Xagawa and Yamakawa [52] further proved the IND-QCCA secu-
rity2 of these PKE-to-KEM transformations [35,47] in the QROM. To remove the

2 The decapsulation oracle can also be accessed in superposition.
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quadratic loss, Kuchta et al. [40] provided the measure-rewind-measure lemma
and obtained a security reduction with tightness εR ≈ O(1/q)εA. As previous
works mainly focused on the cases where the underlying PKE has negligible
decryption errors, Cini et al. [16] proposed a new transformation that can work
for the PKE with non-negligible decryption errors. In addition, Kitagawa and
Nishimaki [39] and Pan and Zeng [45] further considered other security notions of
the FO-like transformations, named key dependent message (KDM) security and
selective opening security (SO) against chosen-ciphertext attacks, respectively.

The compressed oracle technique is a useful tool provided by Zhandry [55].
Based on it, Don et al. [20] proposed an online extractor and provided a proof for
the textbook FO transformation with tightness εR ≈ O(1/q2)ε2A. Using a similar
method, Shan et al. [48] and Ge et al. [25] began to analyze the IND-QCCA
security of the FO-like transformation. TCH and TH are proposed by Huguenin-
Dumittan and Vaudenay [31], but the QROM proof for TH is left. Jiang et al. [33]
proposed and provided the ROM and QROM proofs for TRH , and related the
IND-1CCA security of TRH to that of TH in the QROM. However, their proofs
of TRH can be improved when the underlying PKE is rigid deterministic.

2 Preliminaries

2.1 Notation

We represent the function H with domain X and codomain Y as H : X → Y. We
denote the set of such functions as ΩH . For any set S, we use |S| to represent
its cardinality and use s ←$S to denote the random choice of an element s
from S with uniform probability. To indicate the output of a probabilistic (or
deterministic) algorithm A with input x as y, we use the notation y ← A(x) (or
y := A(x)). Additionally, AH (or A|H〉) denotes an oracle algorithm that has
classical (or quantum) access to the oracle H. We utilize the notation [x = y]
to represent an integer value of 1 when x = y and 0 otherwise. The security
parameter is denoted by λ, and PPT stands for probabilistic polynomial time.
The base of logarithm log is 2, unless stated otherwise.

2.2 The (Quantum) Random Oracle Model

For the introduction to the fundamentals of quantum computation, we recom-
mend readers refer to [42]. In brief, the state space of a quantum system is a
complex vector space with an inner product. The Dirac notation “|·〉” (and “〈·|”)
is used to represent unit vectors, known as state vectors, in the state space (and
their counterparts in the dual space). The state space can be spanned by a set
of orthonormal bases called computational bases. The joint state of |ψ〉 and |φ〉
is |ψ〉⊗ |φ〉. The norm of a state |ψ〉, denoted as ‖|ψ〉‖, is calculated as

√〈ψ|ψ〉,
where “〈ψ|φ〉” signifies the inner product between |ψ〉 and |φ〉.

The random oracle model (ROM), as introduced in [7], is an idealized model
where the hash function is modeled as a publicly accessible random oracle. In
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this model, to get the value of H(x) for a given hash function H, an adversary
must make a H random oracle query on x. The quantum analog of this model,
known as the quantum random oracle model (QROM) [11], permits adversaries
to make the random oracle queries in a superposition state. Here, the H random
oracle behaves as a unitary transformation, mapping |x, y〉 to |x, y ⊕H(x)〉. It is
worth noting that traditional, or “classical”, queries are still permissible in the
QROM. These can be interpreted as first querying the random oracle on |x, 0〉
and then measuring the second register to obtain the classical output [20].

2.3 The One-Way to Hiding Lemma

In the ROM, random oracles serve as a crucial tool for learning the adversary’s
queries. An adversary cannot learn any knowledge about H(x) without querying
the H random oracle for x. Furthermore, without querying the random oracle
at x, the adversary cannot discover the reprogramming of the oracle at that
point. Under certain conditions in the QROM, the simulator can exploit the
adversary’s behavior to identify the point of random oracle reprogramming by
employing the “one-way to hiding (O2H)” lemma. In this work, we adopt the
version of the O2H lemma introduced by Bindel et al. [10], which has a tight
bound except for a quadratic loss that is impossible to avoid [37].

Lemma 1 (Double-Sided One-Way to Hiding [10]). Let G,H : X → Y
be random functions such that ∀x �= x∗ ∈ X , G(x) = H(x), and z be a random
value, where (G,H, x∗, z) may have arbitrary joint distribution. Let A|H〉 be an
oracle algorithm that has quantum access to the H random oracle. Then there
exists a double-sided oracle algorithm B|G〉,|H〉 that can access both G and H,
such that

|Pr[Ev : A|G〉(z)] − Pr[Ev : A|H〉(z)]| ≤
√

Pr[x̂ = x∗ : x̂ ← B|G〉,|H〉(z)]

for an arbitrary classical event Ev.

2.4 The Compressed Oracle Technique

The reduction in the ROM is allowed to record the adversaries’ queries, but this
feature was once considered impossible in the QROM. This is due to the quan-
tum no-cloning principle, which implies that any direct recording of a quantum
state would alter the adversary’s state. Fortunately, Zhandry [55] overcomes this
“recording barrier” by introducing the compressed oracle technique. The basic
idea is to purify the quantum random oracle and then record adversaries’ queries
on the purified quantum random oracle.

Definition 1 (Compressed Standard Oracle). Let D represent the
database composed of q pairs (x, y) ∈ (X × Y) ∪ (⊥, 0n) where n := log |Y| and
q signifies the maximum quantum random oracle queries a quantum adversary
could make. The structure of D is as follows:

D = ((x1, y1), (x2, y2), . . . , (xl, yl), (⊥, 0n), . . . , (⊥, 0n)) ,
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where 0 ≤ l ≤ q, (xi, yi) ∈ X ×Y for i = 1, · · · , l, x1 < · · · < xl, and D ends with
q − l pairs of (⊥, 0n). We denote the set of such databases as D. For any x ∈ X ,
if there exists a y such that (x, y) ∈ D, then we define D(x) = y; otherwise,
D(x) = ⊥. Notably, no two pairs in D share the same x. We use |D| to denote
the number of (x, y) pairs in D where x �= ⊥. When |D| < q and D(x) = ⊥,
we define D ∪ (x, y) as the operation of removing one (⊥, 0n) entry from D and
then inserting (x, y) while preserving the ascending order of x values.

Let D be a quantum register with state space H = C[D]. On the basis state
|D〉 (where D ∈ D), we define a unitary decompression procedure Fx as follows:

– If D(x) = ⊥ and |D| < q, we have

Fx|D〉 = 2−n/2
∑

y

|D ∪ (x, y)〉 ,

Fx

(
2−n/2

∑

y

|D ∪ (x, y)〉
)

= |D〉 ,

Fx

(
2−n/2

∑

y

(−1)z·y|D ∪ (x, y)〉
)

= 2−n/2
∑

y

(−1)z·y|D ∪ (x, y)〉 where z �= 0 .

– If D(x) = ⊥ but |D| = q, we have Fx|D〉 = |D〉 .

Let X and Y be the input and output registers of the quantum random oracle,
respectively. We define a unitary operator Ox that is applied to YD as

Ox : |y,D〉 → |y ⊕ D(x),D〉 .

Note that unlike the definition in [55] where y⊕⊥ = y, here we define 0n⊕⊥ = ⊥,
⊥ ⊕ 0n = ⊥, ⊥ ⊕ ⊥ = 0n, and for y ∈ Y \ {0n}, y ⊕ ⊥ = y, ⊥ ⊕ y = ⊥3. In the
end, the compressed standard oracle applied to XYD can be defined as

CStO :=
∑

x

|x〉〈x| ⊗ FxOxFx .

The compressed standard oracle is proved to be perfectly indistinguishable
from the quantum random oracle by Zhandry [55].

Lemma 2 (Lemma 4 in [55]). The compressed oracle as defined in Definition 1
with D set as

⊗q
i=1(⊥, 0n) initially is perfectly indistinguishable from a quantum

random oracle H : X → Y for any quantum adversary making at most q random
oracle queries.

3 With this definition, we can verify that OxOx = I, indicating that the adjoint of Ox

is itself, and thus Ox is unitary.
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2.5 Cryptographic Primitives

Definition 2 (Public-Key Encryption). The public-key encryption (PKE)
scheme is composed of three PPT algorithms with the security parameter λ,
a message space M, and a ciphertext space C: (1) The key generation algo-
rithm Gen is a probabilistic algorithm that takes as input 1λ and outputs a pub-
lic/private key pair (pk, sk). (2) The encryption algorithm Enc is a probabilistic
algorithm that takes as input pk and a message m ∈ M, and outputs a ciphertext
c ∈ C. (3) The decryption algorithm Dec is a deterministic algorithm that takes
as input sk and c ∈ C, and outputs m ∈ M or a special ⊥ �∈ M value.

The correctness requirement of a PKE is that for all possible outputs (pk, sk)
of Gen(1λ), and all possible outputs c of Enc(pk,m), we have Dec(sk, c) = m. We
say a PKE scheme is deterministic if Enc is a deterministic algorithm.

Definition 3 (δ-correctness [20]). We say a PKE scheme is δ-correct if

E(pk,sk)←Gen(1λ)

[
max
m∈M

Pr[Dec(sk, c) �= m : c ← Enc(pk,m)]
]

≤ δ .

If δ = 0, then we say the PKE scheme is perfectly correct.

Definition 4 (rigidity [8]). We say a deterministic PKE scheme is rigid if
Enc(pk,m) = c for every (pk, sk) ← Gen(1λ), every c ∈ C, and m := Dec(sk, c),
when the PKE is correct.

Definition 5 (The OW-CPA Security of PKE). We define the OW-CPA
security of a PKE scheme PKE = (Gen,Enc,Dec) in terms of an attack game
between a challenger and an adversary A, as follows. The challenger computes

(pk, sk) ← Gen(1λ), m∗ ←$M, c∗ ← Enc(pk,m∗) ,

and sends (pk, c∗) to A. Finally, A outputs m̂ ∈ M. We define A’s advantage
with respect to PKE as AdvOW-CPA

PKE (A) := Pr[m∗ = m̂], and if this advantage
is negligible for all PPT adversaries, we say that PKE is OW-CPA secure. We
refer to the m∗ and the c∗ computed by the challenger as the challenge message
and the challenge ciphertext, respectively.

Definition 6 (Key Encapsulation Mechanism). Key encapsulation mecha-
nism (KEM) is specified by three PPT algorithms with the security parameter λ, a
key space K, and an encapsulation space C: (1) The key generation algorithm Gen
is a probabilistic algorithm that takes as input 1λ and outputs a public/private
key pair (pk, sk). (2) The encapsulation algorithm Encaps is a probabilistic algo-
rithm that takes as input pk and outputs a pair (k, c) where the key k ∈ K and the
encapsulation c ∈ C. (3) The decapsulation algorithm Decaps is a deterministic
algorithm that takes as input sk and c ∈ C, and outputs k ∈ K ∪ {⊥}.

The correctness requirement of a KEM is that for all possible outputs (pk, sk)
of Gen(1λ), and all possible outputs (k, c) of Encaps(pk), we have Decaps(sk, c) =
k. We usually say that a KEM is explicit reject if ⊥ �∈ K, while a KEM is implicit
reject if ⊥ ∈ K represents a random value.
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Definition 7 (The IND-1CCA Security of KEM). We define the IND-
1CCA security of a KEM scheme KEM = (Gen,Encaps,Decaps) in terms of an
attack game between a challenger and an adversary A, as follows. The challenger
computes

(pk, sk) ← Gen(1λ), (k0, c∗) ← Encaps(pk), k1 ←$K, b ←$ {0, 1} ,

and sends (pk, c∗, kb) to A. In this game, A can make at most one decapsulation
query on any c �= c∗. Finally, A outputs b̂ ∈ {0, 1}. We define A’s advantage with
respect to KEM as AdvIND-1CCA

KEM (A) := |Pr[b = b̂] − 1/2|, and if this advantage
is negligible for all PPT adversaries, we say that KEM is IND-1CCA secure.
We refer to the c∗ and the kb sent to A as the challenge encapsulation and the
challenge key, respectively.

Theorem 1 (Difference Lemma [12]). Let Z,W1,W2 be some events defined
over some probability space, and Z̄ be the complement of Z. Assume that W0∧ Z̄
occurs if and only if W1 ∧ Z̄ occurs, then we have |Pr[W0] − Pr[W1]| ≤ Pr[Z].

3 The Security of TRH in the ROM

Here, we prove that the IND-1CCA security of KEMRH := TRH [PKE′,H] can be
tightly reduced to the OW-CPA security of PKE′ in the ROM, if PKE′ is rigid
deterministic.

Theorem 2 (The security of TRH in the ROM). Assume H : M×C → K is
modeled as a random oracle. If PKE′ is a rigid deterministic public-key encryp-
tion scheme that is δ-correct and OW-CPA secure, then KEMRH is IND-1CCA
secure.

In particular, for any PPT adversary A that attacks the IND-1CCA security
of KEMRH , there exists a PPT adversary B that attacks the OW-CPA security
of PKE′, such that

AdvIND-1CCA
KEMRH

(A) ≤ 2
(
AdvOW-CPA

PKE′ (B) + δ
)

.

Proof (Theorem 2). Figure 2 shows the simulation of the challenger for the adver-
sary A in game Gj for j = 0, . . . , 5. In each game, b is a random bit chosen by
the challenger, while b̂ is the bit output by A at the end of the game. We define
Wj to be the event that b̂ = b in game Gj .

Game G0. In this game, the challenger explicitly initializes an empty associative
array Map : M × C → K to implement the random oracle. In the initialization
step, k0 is chosen uniformly over K and then is stored in Map[(m∗, c∗)]. This is
equivalent to setting the value of the random oracle at (m∗, c∗) to k0. We can
see that, except for the extra records of responses from the random oracle, the
behavior of the challenger is clearly consistent with that in the IND-1CCA game
of KEMRH := TRH [PKE′,H]. Therefore,

|Pr[W0] − 1/2| = AdvIND-1CCA
KEMRH

(A) . (1)
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Fig. 2. Games G0 to G5 for the proof of Theorem 2.

Game G1. This game is the same as game G0 except that events COLL1 and
COLL2 do not occur, where COLL1 (or COLL2) denotes that decrypting the
encapsulation c∗ = Enc′(pk,m∗) received by A (or the decapsulation oracle query
c = Enc′(pk,m′) issued by A) with Dec using sk would obtain m such that
m �= m∗ (or m �= m′). By the δ-correctness of PKE′, the probability of either
COLL1 or COLL2 occurring is no greater than δ. Therefore,

|Pr[W1] − Pr[W0]| ≤ 2δ . (2)

Game G2. This game is the same as game G1 except that assigning k0 to
Map[(m∗, c∗)] is removed from the initialization step. Let Zj be the event that
A makes an H random oracle query on (m∗, c∗) in game Gj , then this game and
game G1 proceed identically until Z1 or Z2 occurs. By the Difference Lemma
(Theorem 1), we have

|Pr[W2] − Pr[W1]| ≤ Pr[Z2] . (3)
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Here, since k0 and k1 are both randomly chosen from K, and are both irrelevant
to the two oracles, b is independent of A’s view. Therefore,

Pr[W2] = 1/2 . (4)

Game G3. This game modifies the initialization step and the decapsulation
oracle in game G2. In the initialization step, the challenger picks an extra random
bit flag. In the decapsulation oracle, the condition m′ = ⊥ is replaced by flag = 0.
One can note that if m′ = ⊥ when flag = 0, or if m′ �= ⊥ when flag = 1, game
G3 is entirely identical to game G2

4, thereby

Pr[Z2] = Pr[Z3 ∧ m′ = ⊥|flag = 0] + Pr[Z3 ∧ m′ �= ⊥|flag = 1] . (5)

Game G4. Compared with game G3, we make the following modifications to
answer the decapsulation query without using sk. Firstly, in the initialization
step, the challenger initializes an extra empty list ListODec to store the c queried
to the decapsulation oracle, and chooses a random k∗ ←$K for the decapsulation
oracle query. The decapsulation oracle works as follows.

– Case flag = 0: If (�, c) has been queried in the H random oracle, then return
Map[(�, c)]; otherwise, return k∗.

– Case flag = 1: If there exists (m′, c) ∈ Domain(Map) where Enc′(pk,m′) = c,
then return Map[(m′, c)]; otherwise, return k∗.

In the H random oracle, for the new query (m, c), we introduce the following
operations: if c has been queried to the decapsulation oracle, i.e., c ∈ ListODec ,
then if m = � when flag = 0, or if Enc′(pk,m) = c when flag = 1, we reprogram
Map[(m, c)] to k∗.

Recall that we have assumed COLL2 would not occur since game G1, and that
PKE′ is rigid deterministic. This means that for any c where Dec(sk, c) = m′ �= ⊥,
m′ is the only value in M such that Enc′(pk,m′) = c. Therefore, if A has
performed an H random oracle query on (�, c) when flag = 0, or on (m′, c) when
flag = 1, before the decapsulation query of c, then the decapsulation oracle
will return the corresponding random oracle value, which is consistent with the
behavior in game G3 in the same case. If A does not make an H random oracle
query on (�, c) or (m′, c), then the decapsulation oracle will return k∗, but in
the subsequent H random oracle query on the corresponding (�, c) or (m′, c), it
will also respond with the same k∗. Since k∗ is chosen randomly, the behavior
at this time is consistent with that in game G3. Therefore,

Pr[Z4 ∧ m′ = ⊥|flag = 0] = Pr[Z3 ∧ m′ = ⊥|flag = 0]
Pr[Z4 ∧ m′ �= ⊥|flag = 1] = Pr[Z3 ∧ m′ �= ⊥|flag = 1] .

(6)

4 One may note that there are two additional cases in game G3, i.e., when m′ = ⊥ but
flag = 1, and when m′ �= ⊥ but flag = 0, requiring an extension of the domain of H
to M×{⊥} for H(⊥, c) to be defined. Nevertheless, in our analysis of the relationship
between G3 and G2, these cases are not pertinent and, thus, are omitted for brevity.
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Combining (5) and (6), we obtain

Pr[Z4] ≥ Pr[Z4 ∧ m′ = ⊥ ∧ flag = 0] + Pr[Z4 ∧ m′ �= ⊥ ∧ flag = 1]
= Pr[Z4 ∧ m′ = ⊥|flag = 0]Pr[flag = 0]

+ Pr[Z4 ∧ m′ �= ⊥|flag = 1]Pr[flag = 1]

=
1
2

(Pr[Z4 ∧ m′ = ⊥|flag = 0] + Pr[Z4 ∧ m′ �= ⊥|flag = 1])

=
1
2

(Pr[Z3 ∧ m′ = ⊥|flag = 0] + Pr[Z3 ∧ m′ �= ⊥|flag = 1])

=
1
2

Pr[Z2] .

(7)

At this point, it can be observed that the response of the decapsulation oracle
in game G4 no longer depends on m′ := Dec′(sk, c). Therefore, removing this step
has no impact on Pr[Z4].

Game 5. This game is the same as game G4, except for removing the step
m′ := Dec′(sk, c) in the decapsulation oracle. From the above discussion, we have

Pr[Z5] = Pr[Z4] . (8)

At this point, we can find that all the oracles do not depend on sk and
m∗. Therefore, when the event Z5 occurs, we can construct an adversary B to
attack the OW-CPA security of PKE′ as follows: When B received the public
key pk and the challenge ciphertext c∗ from the OW-CPA game of PKE′, he
chooses a random k ←$K, and then sends (pk, c∗, k) to A. After that, he uses
the decapsulation oracle and H random oracle described in game G5 to respond
to A’s queries. At the end of the game, B can search the pair (m∗, c∗) in Map
that satisfies Enc′(pk,m∗) = c∗ and output m∗. Therefore,

Pr[Z5] ≤ AdvOW-CPA
PKE′ (B) . (9)

Combining (1)–(4) and (7)–(9), we obtain

AdvIND-1CCA
KEMRH

(A) ≤ 2
(
AdvOW-CPA

PKE′ (B) + δ
)

.

That completes the proof of the theorem. ��
Remark 1. The bound given by Jiang et al. [33] in the case of deterministic PKE
is

AdvIND-1CCA
KEMRH

(A) ≤ (qH + 1)AdvOW-CPA
PKE′ (B) + δ ,

where qH is the number of H random oracle queries. We prove that the reduction
from IND-1CCA security of KEMRH to the OW-CPA security of rigid determin-
istic PKE′ is tight, with a loss factor of O(1).
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4 The Security Analysis in the QROM

4.1 The Reprogram-After-Measure Technique

During the IND-1CCA game of KEMRH in the ROM, the challenger needs to
access the random oracle to calculate the response for the adversary A in the
decapsulation oracle. But in some cases where the challenger does not know the
point at which it should query the random oracle, the challenger can directly
return a random response instead of accessing the random oracle, and the only
requirement is that the random response should be consistent with the response
to the corresponding random oracle query made by A in the subsequent process,
e.g., Game 5 in the proof of Theorem 2. This process involves two techniques of
ROM called lazy sampling and reprogramming, which are hard to carry over to
the quantum setting as Boneh et al. [11] claim.

With the help of the compressed oracle technique introduced by Zhandry [55],
we provide a new technique that can simulate the decapsulation oracle in a sim-
ilar way. We will reprogram the compressed oracle after performing a measure-
ment. Therefore, we refer to the proposed technique as reprogram-after-measure.
Note that the decapsulation oracle query and the implicit random oracle query
in it are both classical, and the classical decapsulation oracle is queried at most
once. In Sect. 4.2, we can see that we can obtain a tighter security proof with
this new technique.

Theorem 3 (Reprogram-after-Measure). Let AO,|H〉 be a quantum oracle
algorithm that can make qH times (quantum) H random oracle queries, but at
most one (classical) O oracle query, where O : C → Z,H : X → Y. Let C⊥ ⊆ C
be a set on which A is not allowed to make the O oracle query, and for any
c ∈ C⊥ the O oracle always returns ⊥. For c ∈ C \ C⊥, the O oracle computes
x := f−1(c), (classically) accesses the H random oracle to obtain y := H(x),
and returns g(y), where the functions f : X → C, g : Y → Z, and there is a
unique preimage x for c ∈ C \ C⊥ under f . Then there exists an algorithm B
that does not need to access the O oracle and the H random oracle, and needs
to know how to calculate the functions f and g (but does not need to know how
to calculate f−1), such that

Pr[Ev : AO,|H〉] ≤ 2Pr[Ev : B] (10)

for any classical event Ev.
In particular, we can construct B from AO,|H〉 as follows. Firstly, we use the

compressed oracle CStO to replace the H random oracle in AO,|H〉. Let XY be
the input/output registers of CStO, D be the database register used by CStO that
is initialized to

⊗qH+1
i=1 (⊥, 0n) (note that AO,|H〉 queries the H random oracle

qH + 1 times in total) where n := log(|Y|), and CZ be the input/output registers
of O oracle. We define a function e : C × D → Y ∪ ⊥ as follows, where D is the
database set as defined in Definition 1:

e(c,D) =
{

D(x) if there exists (x, y) ∈ D such that f(x) = c and y �= ⊥ ,
⊥ otherwise .
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Fig. 3. The quantum circuit diagram for OB .

Since e can be computed efficiently, the unitary operator Ue : |c,D, y〉 → |c,D, y⊕
e(c,D)〉 can also be implemented efficiently based on the quantum computation
theory. B first chooses a random y∗ ←$Y, and then runs AO,|H〉 until it makes
an O oracle query (with classical input c on register C). If c ∈ C⊥, B directly sets
register Z to ⊥ and continues running AO,|H〉 until the end; otherwise, instead of
accessing the O oracle, B uses the following OB oracle as a substitute, as shown
in Fig. 3:

1. Initialize the register Z to 0n.
2. Apply Ue to registers CDZ, where Z is the output register.
3. Perform the measurement MZ on the register Z in the computational basis

{|y〉}y∈Y∪⊥, denoting the result as |y′〉.
4. If y′ = ⊥, let y′ := y∗. Set Z to g(y′).

After that, define a function uc(x) : X → {0, 1} as follows:

uc(x) =
{

1 if f(x) = c ,
0 otherwise ,

where c ∈ C is the classical input on the register C when AO,|H〉 queries the O
oracle. Construct a unitary operator Uuc

: |x, b〉 → |x, b ⊕ uc(x)〉. In subsequent
H random oracle queries, B uses the CStOB oracle defined as follows (as shown
in Fig. 4) instead of CStO to simulate the H random oracle:

1. Initialize a register R to 0, where R is a one qubit register.
2. Apply Uuc

to registers XR, where R is the output register.
3. Apply the following two conditional operations:

(a) The control bit is R, and apply the unitary operator Uy′ to Y if b = 1,
where Uy′ |y〉 = |y ⊕ y′〉 and y′ is the (classical) value obtained in the OB

oracle.
(b) The control bit is R, and apply the unitary operator CStO to XYD if b = 0.

4. Apply Uuc
on XR, where R is the output register. Note that R is restored to

|0〉, so it can be discarded.
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Fig. 4. The quantum circuit diagram for CStOB , where R is an internal register used
by CStOB .

This completes the description of the construction of B.

Proof (Theorem 3). Here we use the same notation used in Theorem 3. Let
AO,|H〉 be the oracle algorithm defined in Theorem 3, where XY are the
input/output registers of the H random oracle and CZ are the input/output
registers of O oracle. We introduce a database register D that is initialized to⊗qH+1

i=1 (⊥, 0n) and use the compressed oracle CStO to implement the H random
oracle in AO,|H〉 to get a new oracle algorithm ÂO,|H〉. According to Lemma 2,
we have

Pr[Ev : AO,|H〉] = Pr[Ev : ÂO,|H〉] (11)

for any classical event Ev.
Next, we analyze the relationship between ÂO,|H〉 and B, where B is defined

in Theorem 3. Observe that the behavior of B is the same as that of ÂO,|H〉

until ÂO,|H〉 makes an O oracle query on c ∈ C \ C⊥. In other words, if ÂO,|H〉

does not make an O oracle query, or if ÂO,|H〉 queries the O oracle on c ∈ C⊥,
the behavior of B is exactly the same as that of ÂO,|H〉. In these two cases,
Eq. (10) obviously holds. Therefore, in what follows, we only consider the case
where ÂO,|H〉 makes only one (classical) O oracle query on c ∈ C \ C⊥.

Consider that the H random oracle is invoked qH + 1 times, where qH times
are direct quantum queries made by ÂO,|H〉, and 1 time is a classical query made
through the O oracle. Without loss of generality, let the classical query be the
i∗-th H random oracle query (1 ≤ i∗ ≤ qH +1), and the execution of ÂO,|H〉 can
be described as

UqH+2

(
qH+1∏

i=i∗+1

CStO ◦ Ui

)

O ◦ Ui∗

(
i∗−1∏

i=1

CStO ◦ Ui

)

|ψ0〉 ,

where |ψ0〉 is the initial state of ÂO,|H〉, and for i = 1, . . . , qH + 2, Ui is a
unitary operator5. Recall that the i∗-th (classical) H random oracle query is
made through the O random oracle. The (non-unitary) O can be described by
the following steps, where C⊥ ⊆ C represents the set of c on which ÂO,|H〉 is not
allowed to make the O oracle query:
5 This follows from the fact that any quantum oracle algorithm can be transformed

to a unitary quantum oracle with constant factor computational overhead and the
same number of oracle queries [3,25].
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1. If c ∈ C⊥, set Z to ⊥; otherwise
2. Initialize a register X′ to x := f−1(c).
3. Initialize the register Z to 0n, and apply CStO to registers X′ZD.
4. Perform the measurement MZ on the register Z in the computational basis

{|y〉}y∈Y∪⊥, denoting the result as |y′〉.
5. Compute g(y′) on the register Z.

The quantum circuit diagram for steps 2–5 is shown in Fig. 5.

Fig. 5. The quantum circuit diagram for steps 2–5 for O, where X′ is an internal register
used by O.

Correspondingly, the execution of B|H〉 can be described as

UqH+2

(
qH+1∏

i=i∗+1

CStOB ◦ Ui

)

OB ◦ Ui∗

(
i∗−1∏

i=1

CStO ◦ Ui

)

|ψ0〉 ,

where CStOB and OB are defined in Theorem 3.
Since before querying O oracle or OB oracle, the execution of ÂO,|H〉 and

B are the same, they are in the same state at this time, denoted as |Ψ〉. Next,
we consider the state |Ψ〉 on the register CZDP, where CZ are the input/output
registers of O (or OB) oracle, D is the database register used by CStO, and P
contains all remaining registers of ÂO,|H〉 (or B).

Next, we divide |Ψ〉 into three mutually orthogonal parts (note that c �∈ C⊥

and it is a certain classical value):

|Ψ〉 = |Ψ1〉 + |Ψ2〉 + |Ψ3〉 ,

where

|Ψ1〉 =
∑

z=0n,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p|c, z,D, p〉

|Ψ2〉 =
∑

z=0n,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

∑

y1∈Y
(−1)r·y1 |c, z,D ∪ (x, y1), p〉

|Ψ3〉 =
∑

z=0n,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y

βz,D,p,0√
2n

∑

y1∈Y
|c, z,D ∪ (x, y1), p〉 .
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Recall that the database register D is an internal register of CStO. Thus before
querying the O (or OB) oracle, except for CStO, ÂO,|H〉 and B did not perform
any operation on D. According to [55], |Ψ〉 does not have the component |Ψ3〉.
Hence, |Ψ〉 can be rewritten as

|Ψ〉 = |Ψ1〉 + |Ψ2〉 .

Denote the operation of O before performing the measurement MZ as O1,
and the operation of OB before performing the measurement MZ as O2, then

O1|Ψ1〉 =
∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx

(
∑

y1∈Y
|c, y1, D ∪ (x, y1), p〉

)

O2|Ψ1〉 =
∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p|c, ⊥, D, p〉

O1|Ψ2〉 =
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r �=0

βz,D,p,r√
2n

Fx

(
∑

y1∈Y
(−1)r·y1 |c, y1, D ∪ (x, y1), p〉

)

O2|Ψ2〉 =
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r �=0

βz,D,p,r√
2n

∑

y1∈Y
(−1)r·y1 |c, y1, D ∪ (x, y1), p〉 ,

where Fx is the decompression procedure in CStO applying on register D.
Therefore, after ÂO,|H〉 executes O1 and performs the measurement MZ, for

any y′ ∈ Y, |Ψ〉 will collapse into the (un-normalized) state

|Ψ Â
y′〉 =

∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx (|c, y′,D ∪ (x, y′), p〉)

+
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

Fx

(
(−1)r·y′ |c, y′,D ∪ (x, y′), p〉

)

with probability pÂ
y′ = ‖|Ψ Â

y′〉‖2. It implies that for any y′ ∈ Y, the O oracle will

respond with g(y′) with probability pÂ
y′ .

For B, after executing O2 and measuring MZ, for any y′ ∈ Y, |Ψ〉 will collapse
into the (un-normalized) state

|ΨB
y′ 〉 =

∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

(−1)r·y′ |c, y′,D ∪ (x, y′), p〉

with the same probability6

pB
1 = ‖|ΨB

y′ 〉‖2 ,

6 Since the probability ‖|ΨB
y′ 〉‖2 has same value for any y′ ∈ Y, we denote this common

value as pB
1 .
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and will collapse into the (un-normalized) state

|ΨB
⊥ 〉 =

∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p|c,⊥,D, p〉

with the probability
pB
2 = ‖|ΨB

⊥ 〉‖2 .

Note that when Z is ⊥, the result is set to g(y∗), where y∗ ∈ Y is uniformly and
randomly chosen by B in the beginning, so for any y′ ∈ Y, Pr[y∗ = y′] = 2−n.
It implies that for any y′, the probability of OB returning g(y′) is

pB = pB
1 + pB

2 /2n .

Note that after the O oracle query, all the responses of H random oracle
query on x = f−1(c) made by ÂO,|H〉 are

CStOFx|x, y,D ∪ (x, y′)〉 = FxOxFxFx|x, y,D ∪ (x, y′)〉
= Fx|x, y ⊕ y′,D ∪ (x, y′)〉 ,

which is equivalent to applying a unitary operator Uy′ to |y〉 such that Uy′ |y〉 =
|y⊕y′〉. Therefore, the H random oracle used by ÂO,|H〉 after the O oracle query
is equivalent to being implemented by CStOB defined in Theorem 3. Therefore,
the execution of ÂO,|H〉 can be rewritten as

UqH+2

(
qH+1∏

i=i∗+1

CStOB ◦ Ui

)

O ◦ Ui∗

(
i∗−1∏

i=1

CStO ◦ Ui

)

|ψ0〉 .

According to [10], when the event Ev is classical and well-defined, the proba-
bility of occurrence of the event is equivalent to the measurement of the density
operator of the final state of ÂO,|H〉 or B with MEv. Recall that the state of
ÂO,|H〉 after the O oracle query is

|Ψ Â
g(y′)〉 =

1√
pÂ

y′

(
∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx

(|c, g(y′), D ∪ (x, y′), p〉)

+
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r �=0

βz,D,p,r√
2n

Fx

(
(−1)r·y′ |c, g(y′), D ∪ (x, y′), p〉

) )

with probability pÂ
y′ , and the state of B after the OB oracle query is

|ΨB
g(y′),1〉 =

1
√

pB
1

∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

(−1)r·y′ |c, g(y′),D ∪ (x, y′), p〉
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with probability pβ
1 , or is

|ΨB
g(y′),2〉 =

1
√

pB
2

∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p|c, g(y′),D, p〉

with probability pB
2 /2n. Thus, let Q denote MEvUqH+2

(∏qH+1
i=i∗+1 CStO

B ◦ Ui

)
,

then we have

Pr[Ev : ÂO,|H〉] =
∑

y′
pÂ

y′‖Q|Ψ Â
g(y′)〉‖2

Pr[Ev : B] =
∑

y′

(
pB
2

2n
‖Q|ΨB

g(y′),2〉‖2 + pB
1 ‖Q|ΨB

g(y′),1〉‖2
)

.

Let

|Φ1
y′〉 =

∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,pFx (|c, g(y′),D ∪ (x, y′), p〉)

|Φ2
y′〉

∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

Fx

(
(−1)r·y′ |c, g(y′),D ∪ (x, y′), p〉

)

|Φ3
y′〉 =

∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p (|c, g(y′),D ∪ (x, y′), p〉)

|Φ4
y′〉

∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r 
=0

βz,D,p,r√
2n

(
(−1)r·y′ |c, g(y′),D ∪ (x, y′), p〉

)
,

then for any y′ ∈ Y, we have
√

pÂ
y′‖Q|ΨA

g(y′)〉‖ =
√

pÂ
y′‖Q

1
√

pÂ
y′

(
2−n/2|Φ1

y′〉 + |Φ2
y′〉

)
‖

= ‖Q
(
2−n/2|Φ1

y′〉 + |Φ2
y′〉

)
‖

≤ ‖Q2−n/2|Φ1
y′〉‖ + ‖Q|Φ2

y′〉‖
(∗)
= 2−n/2‖Q|Φ3

y′〉‖ + ‖Q|Φ4
y′〉‖

=

√
pB
2

2n
‖Q

1
√

pB
2

|Φ3
y′〉‖ +

√
pB
1 ‖Q

1
√

pB
1

|Φ4
y′〉‖

=

√
pB
2

2n
‖Q|ΨB

g(y′),2〉‖ +
√

pB
1 ‖Q|ΨB

g(y′),1〉‖ ,
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where equation (∗) utilizes the fact that unitary operators preserve the norm,
and that the compression procedure Fx is unitary. Thus,

Pr[Ev : ÂO,|H〉] =
∑

y′
pÂ

y′‖Q|Ψ Â
g(y′)〉‖2

≤
∑

y′

(√
pB
2

2n
‖Q|ΨB

g(y′),2〉‖ +
√

pB
1 ‖Q|ΨB

g(y′),1〉‖
)2

(∗)
≤ 2

∑

y′

(
pB
2

2n
‖Q|ΨB

g(y′),2〉‖2 + pB
1 ‖Q|ΨB

g(y′),1〉‖2
)

= 2Pr[Ev : B] ,

(12)

where (∗) uses the Jensen’s inequality. Combining Eqs. (11) and (12), yields (10).
This completes the proof of Theorem 3. ��

4.2 The Security of TRH in the QROM

The security of TRH in the QROM is captured in the following theorem.

Theorem 4 (The security of TRH in the QROM). Assume H : M×C → K
is modeled as a quantum-accessible random oracle. If PKE′ is a rigid determin-
istic public-key encryption scheme that is δ-correct and OW-CPA secure, then
KEMRH is IND-1CCA secure.

In particular, for any PPT adversary A that attacks the IND-1CCA security
of KEMRH and has quantum access to the H random oracle, there exists a PPT
adversary B that attacks the OW-CPA security of PKE′, such that

AdvIND-1CCA
KEMRH

(A) ≤ 4
√
AdvOW-CPA

PKE′ (B) + 2δ .

Proof (Theorem 4). For j = 0, · · · , 3, we define Gj to be the game played between
the adversary A and the challenger as shown in Fig. 6, where A can make any
number of quantum H random oracle queries, but at most one classical decap-
sulation oracle query. In each game, b is a random bit chosen by the challenger,
while b̂ is the bit output by A at the end of the game. We define Wj to be the
event that b̂ = b in game Gj .

Game G0. In this game, the challenger randomly chooses a function H from
the set ΩH of functions H : M × C → K to respond to the H random oracle
queries made by A. Note that although the challenger chooses a random k∗ ←$K
in the initialization step, it is not used in subsequent processes. Therefore, the
behavior of the challenger is exactly consistent with that in the IND-1CCA game
of KEMRH := TRH [PKE′,H]. Thus, we have

|Pr[W0] − 1/2| = AdvIND-1CCA
KEMRH

(A) . (13)
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Fig. 6. Games G0 to G3 for the proof of Theorem 4.

Game G1. In this game, similar to game G1 described in the proof of Theorem 2,
let COLL1 (or COLL2) represent the event of a collision occurring in the challenge
encapsulation c∗ received by A (or the decapsulation oracle query c issued by A).
We assume that neither COLL1 nor COLL2 occurs in this game. The probability
of either occurring is no greater than δ since PKE′ is δ-correct. Thus, we have

|Pr[W1] − Pr[W0]| ≤ 2δ . (14)

Game G2. This game is the same as game G1, except that k0 := H(m∗, c∗) in
the initialization step is replaced by k0 := k∗. Since k0 and k1 are both randomly
chosen from K∗, and are not used in any oracles, b is independent of A’s view.
Therefore,

Pr[W2] = 1/2 . (15)

Game G3. This game modifies the H random oracle as follows: upon receiving
a query where (m, c) = (m∗, c∗), it returns k∗. At this point, the H random
oracle is simulated by a new function G : M × C → K: for all (m, c) �= (m∗, c∗),
G(m, c) = H(m, c); but when (m, c) = (m∗, c∗), G(m∗, c∗) = k∗ is random and
independent of H(m∗, c∗). Since k0 = k∗ = G(m∗, c∗), the behavior of the chal-
lenger is equivalent to that in game G1. Thus, we have

Pr[W3] = Pr[W1] . (16)
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Recall that G(m, c) = H(m, c) for all (m, c) �= (m∗, c∗) and A is not
allowed to make decapsulation oracle queries on c∗. Therefore, the decapsu-
lation oracle ODec in game G2 is identical to that in game G3. Next, we can
construct two oracle algorithms AODec,|H〉(z) and AODec,|G〉(z) to execute games
G2 and G3 respectively, where z = (pk, c∗, k0), (pk, sk) ← Gen′(λ), m∗ ←$M,
c∗ := Enc′(pk,m∗), k∗ ←$K, k0 := k∗. AODec,|H〉(z) (or AODec,|G〉(z)) first com-
putes k1 ←$K, b ←$ {0, 1}, then runs the adversary AODec,|H〉(pk, c∗, kb) in game
G2 (or game G3) to obtain b̂, and finally outputs [b = b̂], where H (or G) is used
to simulate the H random oracle in game G2 (or game G3). Note that we still
assume that the events COLL1 and COLL2 defined in game G1 do not occur.
Therefore,

Pr[1 ← AODec,|H〉(z)] = Pr[W2]

Pr[1 ← AODec,|G〉(z)] = Pr[W3] ,
(17)

where z = (pk, c∗, k0), (pk, sk) ← Gen′(λ), m∗ ←$M, c∗ := Enc′(pk,m∗),
k∗ ←$K, k0 := k∗. Since H and G only differ at the point (m∗, c∗), according to
Lemma 1, there exists an oracle algorithm BODec,|H〉,|G〉(z) such that7

|Pr[1 ← AODec,|G〉(z)] − Pr[1 ← AODec,|H〉(z)]|
≤ 2

√
Pr[(m∗, c∗) ← BODec,|G〉,|H〉(z)] .

(18)

Then for j = 4, . . . , 8, we define Gj played between the oracle algorithm and the
challenger as shown in Fig. 7.

In each game, m∗ is randomly chosen from M, while m̂ is output by the
oracle algorithm at the end of the game. We define the event that m̂ = m∗ as
Zj in game Gj .

Game G4. This game is defined in Fig. 7. It is obvious that

Pr[(m∗, c∗) ← BODec,|G〉,|H〉(z)] ≤ Pr[Z4] , (19)

where z = (pk, c∗, k0), (pk, sk) ← Gen′(λ), m∗ ←$M, c∗ := Enc′(pk,m∗),
k∗ ←$K, k0 := k∗.

Game G5. This game is the same as game G4, except that the challenger chooses
an extra random bit flag ←$ {0, 1} in the initialization step, and replaces the
condition m′ = ⊥ by flag = 0 in the decapsulation oracle. Similar to the analysis
of game G3 in the proof of Theorem 2, we have

Pr[Z4] = Pr[Z5 ∧ m′ = ⊥|flag = 0] + Pr[Z5 ∧ m′ �= ⊥|flag = 1] . (20)

Game G6. This game replaces the condition (m, c) = (m∗, c∗) by c = c∗ ∧
Enc′(pk,m) = c∗ in the G random oracle of game G5. Recall that since game

7 Since the decapsulation oracle ODec in game G2 is identical to that in game G3,
therefore it can be seen as an internal oracle of the oracle algorithm A.
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Fig. 7. Games G4 to G8 for the proof of Theorem 4.

G1 we have assumed that the event COLL1 would not occur, which implies that
these two conditions are equivalent. Therefore,

Pr[Z6 ∧ m′ = ⊥|flag = 0] = Pr[Z5 ∧ m′ = ⊥|flag = 0]
Pr[Z6 ∧ m′ �= ⊥|flag = 1] = Pr[Z5 ∧ m′ �= ⊥|flag = 1] .

(21)

Note that at this point, the G random oracle does not depend on the knowl-
edge of m∗, so it can be simulated with only access to the H oracle. Therefore, we
can construct a new oracle algorithm B̄ODec,|H〉(pk, c∗, kb), which is the same as
BODec,|H〉,|G〉 except that if it needs to query the G oracle, it accesses H as the same
way as the G random oracle in game G6 and responds with the corresponding
result.

Game G7. This game replaces the oracle algorithm BODec,|H〉,|G〉 by B̄ODec,|H〉 in
game G6. By the above analysis, we have

Pr[Z7 ∧ m′ = ⊥|flag = 0] = Pr[Z6 ∧ m′ = ⊥|flag = 0]
Pr[Z7 ∧ m′ �= ⊥|flag = 1] = Pr[Z6 ∧ m′ �= ⊥|flag = 1] .

(22)

Denote two functions f : M × C → C ∪ ⊥ and g : K → K as follows. If
flag = 0, the challenger sets

f(m, c) :=
{

c if m = �
⊥ otherwise ;
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while if flag = 1, the challenger sets

f(m, c) :=
{

c if Enc′(pk,m) = c
⊥ otherwise .

Let g be an identity function, i.e., g(k) = k for all k ∈ K. It is obvious that for
c �= c∗, if m′ = ⊥ when flag = 0, or if m′ �= ⊥ when flag = 1, the process of
ODec is equivalent to computing (m, c) := f−1(c), (classically) accessing the H
random oracle to obtain k := H(m, c), and returning g(k), where (m, c) is the
unique preimage of c under f . Then by Theorem 3, there exists a new algorithm
B̂ that only needs to know how to calculate f and g, such that

2Pr[Ev : B̂(z, flag)|m′ = ⊥ ∧ flag = 0] ≥ Pr[Ev : B̄ODec,|H〉(z)|m′ = ⊥ ∧ flag = 0]

2Pr[Ev : B̂(z, flag)|m′ �= ⊥ ∧ flag = 1] ≥ Pr[Ev : B̄ODec,|H〉(z)|m′ �= ⊥ ∧ flag = 1],

for any classical event Ev, where z = (pk, c∗, k0)8.

Game G8. This game replaces the oracle algorithm B̄ODec,|H〉 by B̂ in game G7.
By the above analysis, we have

2Pr[Z8|m′ = ⊥ ∧ flag = 0] ≥ Pr[Z7|m′ = ⊥ ∧ flag = 0]
2Pr[Z8|m′ �= ⊥ ∧ flag = 1] ≥ Pr[Z7|m′ �= ⊥ ∧ flag = 1] .

Since the event m′ = ⊥ is independent of the event flag = 0, we have

Pr[Ev|m′ = ⊥ ∧ flag = 0] =
Pr[Ev ∧ m′ = ⊥ ∧ flag = 0]

Pr[m′ = ⊥ ∧ flag = 0]

=
Pr[Ev ∧ m′ = ⊥ ∧ flag = 0]

Pr[m′ = ⊥] Pr[flag = 0]
=

Pr[Ev ∧ m′ = ⊥|flag = 0]
Pr[m′ = ⊥]

for any classic event Ev. Therefore, we obtain

2Pr[Z8 ∧ m′ = ⊥|flag = 0] = 2Pr[Z8|m′ = ⊥ ∧ flag = 0]Pr[m′ = ⊥]
≥ Pr[Z7|m′ = ⊥ ∧ flag = 0]Pr[m′ = ⊥]
= Pr[Z7 ∧ m′ = ⊥|flag = 0] .

(23)

Similarly, we can obtain

2Pr[Z8 ∧ m′ �= ⊥|flag = 1] ≥ Pr[Z7 ∧ m′ �= ⊥|flag = 1] . (24)

8 The extra input flag for B̂ is used to determine which f should be used.
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Combining (20)–(24), we obtain

Pr[Z8] ≥ Pr[Z8 ∧ m′ = ⊥ ∧ flag = 0] + Pr[Z8 ∧ m′ �= ⊥ ∧ flag = 1]

=
1
2

(Pr[Z8 ∧ m′ = ⊥|flag = 0] + Pr[Z8 ∧ m′ �= ⊥|flag = 1])

≥ 1
4

(Pr[Z7 ∧ m′ = ⊥|flag = 0] + Pr[Z7 ∧ m′ �= ⊥|flag = 1])

=
1
4

(Pr[Z6 ∧ m′ = ⊥|flag = 0] + Pr[Z6 ∧ m′ �= ⊥|flag = 1])

=
1
4

(Pr[Z5 ∧ m′ = ⊥|flag = 0] + Pr[Z5 ∧ m′ �= ⊥|flag = 1])

=
1
4

Pr[Z4] .

(25)

At this point, we can find that sk is useless in game G8. Therefore, if the
event Z8 occurs, we can construct an adversary B to attack the OW-CPA secu-
rity of PKE′ as follows: Upon receiving the public key pk and the challenge
ciphertext c∗ from the OW-CPA game of PKE′, B randomly chooses k0 ←$K
and flag ←$ {0, 1}, and uses (pk, c∗, k0, flag) as input to run B̂. When the game
ends, B outputs m̂ that outputed by B̂. Therefore,

Pr[Z8] ≤ AdvOW-CPA
PKE′ (B) . (26)

Combining (13)–(19) and (25)–(26), we obtain

AdvIND-1CCA
KEMRH

(A) ≤ 4
√
AdvOW-CPA

PKE′ (B′) + 2δ .

That completes the proof of the theorem. ��
Remark 2. The bound given by Jiang et al. [33] in this case is

AdvIND-1CCA
KEMRH

(A) ≤ 6(qH + 1)
√

AdvOW-CPA
PKE′ (B) + 1/|K| + δ ,

where qH is the number of H random oracle queries made by A. Despite the
unavoidable quadratic reduction loss [37], our reduction is also tight in the
QROM, with a loss factor of O(1).

Remark 3. The security proof technique used by Jiang et al. [33] is called
(single-classical-query) measure-and-reprogram lemma, which is first proposed
by Don et al. [18,19] and then is extended by Jiang et al. [33]. In this technique,
to simulate the decapsulation oracle without sk, the basic strategy adopted by
the challenger is to randomly choose one of the q random oracle queries made
by A, measure its input register, consider it as the point that needs repro-
gramming, and use the reprogrammed random oracle to respond to subsequent
random oracle queries. This analysis method needs to consider the impact of
different measurements at different times on the final state of A, and ultimately
derives an upper bound for the norm of the final state of A, which is a sum of
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approximately q terms. When considering probability, it is necessary to square
this upper bound, and when using Jensen’s inequality to relate the probability
in a specific case, a coefficient of O(q2) will be generated. Therefore, using this
technique in security proofs can introduce a loss factor related to q. However,
the strategy adopted here is similar to that in the proof in the ROM, where the
random oracle and decapsulation oracle are modified during the execution of A,
resulting in a loss factor of only O(1) for the derived bound. Thus, using our
proposed new technique for security proofs will not introduce an additional loss
factor exceeding O(1).

5 The Tightness of the Reduction

Note that Jiang et al. [33] proved that there are unavoidable reduction losses of
O(q) and O(q2) in the security proof of TRH in the ROM and the QROM, respec-
tively, where q is the number of random oracle queries made by the adversary.
We should stress that instead of indicating any flaw in Jiang et al.’s unavoidabil-
ity conclusion, our work merely demonstrates that there is a special case which
is not captured in their given proofs.

The technique used by Jiang et al. to prove the unavoidability conclusion is
a so-called meta-reduction technique [5,17,28]. In the case where the underlying
PKE′ is malleable, the main idea is to use the decapsulation oracle to construct
an adversary B to attack the IND-1CCA security of KEMRH directly.

In the ROM, roughly speaking, given the challenge encapsulation c∗ ←
Enc′(pk,m∗), B uses the malleability of PKE′ to construct a new encapsulation
c′ from c∗ such that Dec(sk, c′) = f(m∗), where f is a special function related
to the property of the malleability. Then, B makes a decapsulation query on
c′ to obtain a tag := H(f(m∗), c′). Finally, through q many H random oracle
queries, B attempts to get m∗ ∈ M such that H(f(m∗), c′) = tag, and then uses
H(m∗, c∗) to distinguish k0 from k1. Assume that the underlying PKE scheme
PKE′ is λ-bit secure, which implies that the probability for any PPT adversary
breaking the OW-CPA security of PKE′ is no more than O(1/2λ). Therefore,
after q many H random oracle queries, the probability of getting m∗ is no more
than O(q/2λ). Therefore, they claim that there is an unavoidable reduction loss
of O(q) in the security proof for TRH in the ROM.

However, we can note that, in the aforementioned attack, the role of the
decapsulation oracle is to generate a tag, which is the image of m∗ under a
deterministic mapping g(·) := H(f(·), c′), and the q many H random oracle
queries are used to guess the preimage of tag under g. However, in the case where
PKE′ is deterministic, Enc′ itself can provide a deterministic mapping from m∗

to c∗ that neither relies on the use of the decapsulation oracle nor on queries to
the H random oracle. This implies that, at this point, B does not require access
to the decapsulation oracle or the H random oracle; he simply invokes Enc′ q
times to achieve the effect of invoking the H random oracle q times. Note that B’s
advantage in the OW-CPA game of PKE′ surpasses the probability of successfully
guessing the plaintext m∗ corresponding to the ciphertext c∗ by invoking Enc′
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q times. Consequently, the aforementioned conclusion regarding an unavoidable
reduction loss of O(q) in the ROM is inapplicable when PKE′ is a deterministic
public-key encryption scheme. (Clearly, we also present a security proof with
a reduction loss of O(1) as evidence.) Note that in the case where PKE′ is
probabilistic, the security proof given by Jiang et al. [33] incurs a reduction loss of
O(q2), which is not as tight as claimed in their unavoidability conclusion. Hence,
an intriguing open question is whether this O(q2) reduction loss is unavoidable
when PKE′ is probabilistic, or if the reduction loss in this case can be refined.

In the QROM, similar to the case in the ROM, the core idea is to use the
malleability of PKE′ to generate a new encapsulation c′ from c∗, where c∗ is
the challenge encapsulation, Enc(pk,m∗) = c∗, Dec(sk, c′) = f(m∗), and f is
a function related to the malleability of PKE′, make the decapsulation oracle
query on c′ to obtain k′ = H(f(m∗), c′), use the Grover’s algorithm [26] to
find m∗ from k′, and then use H(m∗, c∗) to distinguish k0 from k1, where the
Grover’s algorithm needs q times Grover iterations, and each Grover iteration
needs to make a random oracle query. Jiang et al. [33] show that this method to
distinguish k0 from k1 can succeed with probability at least (q + 1)2/|M|, and
can derive the conclusion that reduction loss O(q2) in the security proof for TRH

in the QROM is unavoidable.
Similar to the analysis in the ROM, the use of the random oracle is to compute

the deterministic mapping g(·) := H(f(·), c′) in order to recover m∗ from k′, but
the deterministic PKE′ itself can provide the deterministic mapping Enc′ from
m∗ to c∗. Therefore, the Grover iteration can use Enc′ instead of the random
oracle to achieve the same purpose, which implies that the conclusion about the
unavoidable reduction loss O(q2) for the security proof of TRH in the QROM is
inapplicable when PKE′ is deterministic.

We should note that in the above analysis, we do not require that the deter-
ministic PKE′ should be rigid. Therefore, there is an open problem that when
the underlying PKE is deterministic but not rigid, whether the reduction losses
of O(q) and O(q2) given by Jiang et al. [33] in the ROM and the QROM, respec-
tively, can be improved or not.
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Abstract. Probabilistic data structures (PDS) are compact representa-
tions of high-volume data that provide approximate answers to queries
about the data. They are commonplace in today’s computing systems,
finding use in databases, networking and more. While PDS are designed
to perform well under benign inputs, they are frequently used in appli-
cations where inputs may be adversarially chosen. This may lead to a
violation of their expected behaviour, for example an increase in false
positive rate.

In this work, we focus on PDS that handle approximate membership
queries (AMQ). We consider adversarial users with the capability of mak-
ing adaptive insertions, deletions and membership queries to AMQ-PDS,
and analyse the performance of AMQ-PDS under such adversarial inputs.

We argue that deletions significantly empower adversaries, pre-
senting a challenge to enforcing honest behaviour when compared to
insertion-only AMQ-PDS. To address this, we introduce a new con-
cept of an honest setting for AMQ-PDS with deletions. By leveraging
simulation-based security definitions, we then quantify how much harm
can be caused by adversarial users to the functionality of AMQ-PDS.
Our resulting bounds only require calculating the maximal false positive
probability and insertion failure probability achievable in our novel hon-
est setting.

We apply our results to Cuckoo filters and Counting filters. We show
how to protect these AMQ-PDS at low cost, by replacing or composing
the hash functions with keyed pseudorandom functions in their construc-
tion. This strategy involves establishing practical bounds for the proba-
bilities mentioned above. Using our new techniques, we demonstrate that
achieving security against adversarial users making both insertions and
deletions remains practical.

Keywords: probabilistic data structures · Counting filters · Cuckoo
filters · security · simulation-based proofs

1 Introduction

Probabilistic data structures (PDS) are widespread in today’s data-driven world.
They find a multitude of uses across our computing systems, in databases,
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networking and communication. By compactly representing data, they offer
improved efficiency, with the tradeoff of providing approximate (rather than
exact) answers to queries about the data.

Each PDS is specifically designed to answer certain kinds of queries. An
important category of PDS is those providing approximate answers to member-
ship queries, i.e. “is an element x a member of a set S?”. We refer to this category
as AMQ-PDS, which are the focus of this work. Examples of AMQ-PDS include
Bloom filters [5], Counting filters [12] and Cuckoo filters [10]. While Bloom filters
only support insertions of elements into the set, Counting and Cuckoo filters also
allow elements to be deleted. Other categories of PDS include frequency estima-
tors such as Count-Min sketches [9] and Heavy Keepers [17], and cardinality
estimators such as HyperLogLog [14] and KMV sketches [3].

PDS find a myriad of applications, from estimating the number of distinct
Google search queries [19] and detecting anomalies in network traffic [17,22] to
building privacy-preserving recommendation systems [28]. AMQ-PDS are bene-
ficial for database query speedup [34], spam detection [38], resource and packet
routing in networks [6], certificate revocation systems [23], DNA sequence anal-
ysis [29,37], and more [26]. In particular, AMQ-PDS that support deletions,
such as Counting and Cuckoo filters, are useful for cache sharing among web
proxies [12], speedup of post-quantum TLS handshakes [36], efficient certificate
revocation checking [35], mobile private contact discovery [18,20], and fighting
fake news [25].

The wide deployment of PDS across applications, however, comes with an
increasing risk of adversarial interference. By carefully choosing inputs, malicious
users can force specific elements to become false positives in AMQ-PDS [16],
cause frequencies of elements to be overestimated [8,27], or artificially inflate
cardinality estimates [33], for example. This leads to dangerous consequences for
the use of PDS in practice. In spite of this, such adversarial settings are typically
not covered by the performance guarantees of PDS; their expected behaviour
is characterised assuming honest inputs. To protect PDS against adversarial
influence, cryptographic techniques can be a powerful tool. Combining PDS with
cryptography results in a significant new research area with many critical open
questions.

1.1 Our Contributions

In this paper, we study the correctness of AMQ-PDS in adversarial settings.
We focus on malicious users interacting with an AMQ-PDS hosted by an honest
service provider. In practice, users interact with the AMQ-PDS through an API,
allowing dynamic updates to the stored dataset, through insertions and deletions,
as well as membership queries. In this work, we address how malicious users can
leverage adaptive insertions, membership queries and deletions to manipulate
the performance of AMQ-PDS. We will argue that deletions, in particular, are a
powerful tool for adversaries. While we focus on two commonly used AMQ-PDS,
Cuckoo filters [10] and Counting filters [12], our definitions are general and can
be applied to a broad range of AMQ-PDS.



Deletions and Dishonesty 139

Syntax for AMQ-PDS. Inspired by [8,13], we establish a syntax for AMQ-PDS
that support insertions, deletions and membership queries. We identify consis-
tency rules for the behaviour of AMQ-PDS, satisfied by Counting and Cuckoo
filters, that will allow us to prove results on their adversarial correctness.

Simulation-Based framework. We employ a simulation-based approach [24] to
define security, following recent work [13,33]. In this approach, the adversary is
modelled as interacting with the AMQ-PDS in either a “real world” or an “ideal
world”. In the real world, the adversary has access to the AMQ-PDS through
an API that allows it to insert and delete items, and make membership queries.
In the ideal world, the adversary instead interacts with a simulator that models
honest behaviour of the AMQ-PDS. At the end of its execution, the adversary
produces an output, which is used to distinguish between the two worlds. By
quantifying the distance between the worlds, we bound how much harm the
adversary can do in the real world by relating it to the honest operation of the
AMQ-PDS in the ideal world.

Simulation-based security definitions are traditionally used to analyse notions
of privacy (for example, in searchable encryption [7]), where the simulator is
given some leakage. By proving that the two worlds are indistinguishable, one
concludes that the adversary can only learn this leakage, which is deemed accept-
able. In contrast, our approach does not require indistinguishability between the
worlds in order to give useful bounds; we will show how they can be used to set
parameters for secure PDS in practice.

The power of the simulation-based approach in analysing correctness is that
it covers all adversarial goals, in contrast to the game-based approach with a
specific adversarial goal [8]. In practice, this means that one only needs to com-
pute the probability of achieving a particular goal in the honest setting (which
is well-studied in the PDS literature), in order to upper bound the probability
of achieving it in the adversarial setting.

Adversarial Correctness for AMQ-PDS with Insertions and Deletions. To anal-
yse adversarial correctness using the simulation-based approach, the first ques-
tion to address is how to define “honest” behaviour. Allowing deletions (in
addition to insertions and membership queries), however, introduces substantial
hurdles.

In [13], the notion of a non-adversarially-influenced (NAI) state was proposed
for insertion-only AMQ-PDS. Intuitively, this captures the idea that the state of
an AMQ-PDS can be thought of as honest if one cannot predict the effect of each
insertion on the state, prior to the insertion. To achieve this for many prominent
AMQ-PDS, one can replace the hash functions used in their constructions with
keyed Pseudo-Random Functions (PRFs).

With deletions, however, the above idea no longer suffices to capture hon-
esty. The ability to delete elements after inserting them means that an adversary
could effectively reset the state if not satisfied. For example, consider cache sum-
marisation for content routing [1,12]. Here, an element is automatically added to
or removed from the filter whenever the cache is updated. The cache’s size poses
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a natural bound on the number of elements the filter stores. So, the attacker
might want to force removal of elements that do not contribute to its goal of, for
example, increasing the false positive probability (FPP) or making a specific tar-
get a false positive. The former significantly increases time for content retrieval
on average, while the latter substantially increases retrieval time of the targeted
content. While such a final state satisfy insertion unpredictability, it would still
be adversarially influenced. Therefore, the deletion functionality of AMQ-PDS
forms an intrinsic barrier to enforcing honesty.

Further, another complication arises from false negatives. While insertion-
only AMQ-PDS may have false positives (elements that appear to be in the set
when they have not been inserted), deletions may also lead to false negatives
(elements that appear to not be in the set when they have not been deleted).
The FPP of AMQ-PDS is typically well-characterised; false negatives, which can
arise (for example) through deleting elements that were never inserted, are often
assumed not to occur under honest operation. In an adversarial setting, we can
no longer assume this.

We circumvent these obstacles by proposing a new notion of honesty for
AMQ-PDS with both insertions and deletions, which we call NAI*. We show that
building a simulator that satisfies NAI* suffices to analyse adversarial correctness
for our AMQ-PDS of interest.

Our results show how to provably protect AMQ-PDS by replacing or com-
posing public hash functions with PRFs and giving concrete bounds on the
probability of achieving any adversarial goal through adaptive queries. Practi-
tioners can use our concrete bounds to set AMQ-PDS parameters that guarantee
security even with adversarial users. This is in contrast to how parameters are
currently set in practice, with bounds on (for example) FPP being easily vio-
lated through precomputation attacks (on public hash functions). Using our
results, practitioners can guarantee that FPP will stay below a certain threshold
even with adaptive queries. This extends to any adversarial goal, e.g. creating
false negatives, causing insertion failures. By showing how to ensure AMQ-PDS
behave as expected even with malicious users, our work impacts any application
of AMQ-PDS - in particular, applications requiring dynamic deletions, insertions
and membership queries (e.g. cache sharing, coupon validation, etc.).

We emphasise that our focus is on users exploiting the API that allows inter-
action with an AMQ-PDS hosted by an honest service provider. To our knowl-
edge, such an API typically does not allow users to view its internal state, e.g.
[2]. Of course, in a different adversarial scenario with a compromised service
provider, users could gain access to the state. While out of scope in this work,
we later discuss why our results are not directly applicable to such a setting in
Remark 3.

Analysis of Counting and Cuckoo filters. We conclude by providing a concrete
evaluation of our security theorems by analysing Counting and Cuckoo filters.
The usage of public hash functions in their original formulations leads to vulnera-
bilities from precomputation attacks [8,16]. Using our theorems, we demonstrate
how to provably protect them by replacing or composing the hash functions with
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PRFs (at the cost of needing secure key management). This requires deriving
novel bounds on their NAI* false positive probability, as well as their NAI*
insertion failure probability, both of which we show how to upper bound using
results from the (insertion-only) AMQ-PDS literature.

Finally, we investigate the impact of our analysis for choosing appropriate
parameters to secure AMQ-PDS in practice. Our results illustrate that protect-
ing AMQ-PDS against adversarial users who can harness their full functionality
is practical. Further, as a result of our new insights and techniques, extending
the user’s capabilities to include deletions does not compromise security.

1.2 Related Work

In [13], Filić et al. proposed a simulation-based framework for analysing the
adversarial correctness and privacy of AMQ-PDS that only support insertions.
By building a simulator that models the non-adversarial operation of AMQ-PDS,
they derived bounds on the closeness of an adversarially generated state to that
of an honest one, applying their framework to derive correctness guarantees for
Bloom and insertion-only Cuckoo filters under adversarial inputs. In our work,
we use a similar methodology but cover the full functionality of AMQ-PDS, i.e.
allowing deletions as well as insertions. Thus, we solve an important question left
unanswered by their work, resulting in a more complete analysis of adversarial
correctness of AMQ-PDS.

A simulation-based approach was also employed in [33] to study the Hyper-
LogLog cardinality estimator in adversarial settings. While our proof technique
is conceptually similar, the types of queries supported by AMQ-PDS lead to
more powerful adversarial strategies, and thus a more complicated analysis.

The work of Clayton et al. [8] focused on the adversarial correctness of
AMQ-PDS Bloom and Counting filters. They examined an “l-thresholded” vari-
ant of Counting filters, where insertions are disallowed if more than � counters
are set. Their approach utilised a game-based formalism, which required defin-
ing a specific winning condition for the adversary, i.e. finding a certain number
of false positives or false negatives. We provide a more detailed comparison of
our work with [8] in the full version. A similar approach was adopted in [4]
with an adversary who tries to maximise the false positive rate of AMQ-PDS
by repeating membership queries. In contrast to these game-based methods, the
simulation-based formalism does not require specifying an adversarial goal. This
allows one to use our results to re-derive bounds for any specific adversary.

In [31,32], Naor and Yogev studied the adversarial correctness of Bloom
filters, again using a game-based approach. Recent work by Naor and Oved [30]
further extended this to propose various robustness notions for Bloom filters.
However, their adversarial model is more restricted than ours, without the ability
to make adaptive insertions and membership queries. Further, as their focus is
on Bloom filters, deletions do not play a role.

In [39], Yeo analysed Cuckoo hash tables, which are closely related to Cuckoo
filters. However, they considered a static adversarial setting, where a set of ele-
ments is inserted at the start, with a specific adversarial goal of causing the
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insertion of this set to fail. In this work, we are interested in a more powerful
setting where adversaries can dynamically update the dataset and can have any
goal. Adversarial influence on the false positive rate of Cuckoo filters was studied
in [21], but in a similarly restricted adversarial model.

Therefore, in comparison to previous work, we are the first to rigorously anal-
yse adversarial correctness of Counting and Cuckoo filters in their full capability,
for any adversarial goal. This fills a significant gap in the literature.

For scenarios where the data itself is sensitive, studying privacy might also
become important. Leveraging the power of deletions to deduce information
about elements in Counting filters, [15] proposed attacks on their privacy. This
highlights an intrinsic challenge in enforcing privacy for AMQ-PDS with dele-
tions, leaving the task an interesting open question.

1.3 Paper Organisation

We start with preliminaries in Sect. 2. In Sect. 3.1, we define the syntax for
AMQ-PDS with deletions, the notion of a non-adversarial setting, and properties
of our AMQ-PDS of interest. We analyse adversarial correctness in Sect. 4, and
discuss the usefulness of our results in practice in Sect. 5.

2 Preliminaries

Notation. We follow the notation of [13], repeated here for clarity. For an integer
m ∈ Z≥1, we write [m] to denote the set {1, 2, ...,m}. We consider all logarithms
to be in base 2. Given two sets D and R, we define Funcs[D,R] to be the set
of functions from D to R. We write F ←$ Funcs[D,R] to mean that F is a
random function D

F−→ R. Given a set S, we denote the identity function over
S as IdS : S → S. For a probability distribution D, we write x ←$ D to mean
that x is sampled according to D. We define the statistical distance between
two random variables X,Y with finite support D = Supp(X) = Supp(Y ) as
SD(X,Y ) := 1

2

∑
z∈D|Pr[X = z] − Pr[Y = z]|. For a set S (resp. a list L), we

denote by |S| (resp. |L|) the number of elements in S (resp. L). A fixed-length
list of length s initialised empty is denoted by a ← ⊥s. We denote by load(a) the
number of set entries of a. To insert an entry x into the first unused slot in a we
write a′ ← a �x such that a′ =x⊥ ...⊥ with s−1 trailing ⊥s and load(a′) = 1. A
further insertion a′′ ← a′ � y results in a′′ = x y ⊥ ...⊥ with load(a′′) = 2, and so
on. We refer to the i-th entry in a list a as a[i]. In algorithms, we assume that all
key-value stores are initialised with value ⊥ at every index, using the convention
that ⊥ < n, ∀n ∈ R, and we denote it as {}. For a key-value store a, we refer to
the value of the entry with key k as a[k]. We write variable assignments using
←, unless the value is output by a randomised algorithm, for which we use ←$ .

For a randomised algorithm alg, we write output ← alg(input1, input2, ...,
input�; r), where r ∈ R denotes the coins that can be used by alg and R is the
set of possible coins. We may also suppress coins whenever it is notationally
convenient to do so. For a deterministic algorithm, r can be set to ⊥. We remark
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Fig. 1. The PRF experiment.

that the output of a randomised algorithm can be seen as a random variable over
the output space of the algorithm. Unless otherwise specified, we will consider
random coins to be sampled uniformly from R, independently from all other
inputs and/or state, and refer to such r as “freshly sampled”. If alg is given
oracle access to functions f1, ..., fn, we denote it by algf1,...fn .

We will consider AMQ-PDS that can store elements from finite domains D
by letting D = ∪L

�=0{0, 1}� for some large but finite value of L, say L = 264. In
our constructions, we will make use of pseudorandom functions, which we will
model as truly random functions to which the AMQ-PDS has oracle access.

Definition 1. Consider the PRF experiment in Fig. 1. We say a pseudorandom
function family R : K ×D → R is (q, t, ε)-secure if for all adversaries B running
in time at most t and making at most q queries to its RoR oracle in ExpPRF

R ,

AdvPRF
R (B) := |Pr [ b′ = 1|b = 0 ] − Pr [ b′ = 1|b = 1 ]| ≤ ε.

We say B is a (q, t)-PRF adversary.

3 AMQ-PDS

In this section, we formalise the syntax of AMQ-PDS and their behaviour under
non-adversarial inputs. We formally define our AMQ-PDS of interest, Counting
and Cuckoo filters, and discuss some common properties that they satisfy.

3.1 Syntax

We now define the syntax of an AMQ-PDS, extending that of [13] to include
deletions. Let Π be an AMQ-PDS. We denote its public parameters by pp, and
its state as σ ∈ Σ, where Σ denotes the space of possible states of Π. The set of
elements that can be inserted into Π is denoted by D, unless stated otherwise.
We consider a syntax consisting of four algorithms:

– The setup algorithm σ ← setup(pp; r) sets up the initial state of an empty
PDS with public parameters pp; it will always be called first to initialise the
AMQ-PDS.

– The insertion algorithm (b, σ′) ← ins(x, σ; r), given an element x ∈ D,
attempts to insert it into the AMQ-PDS, and returns a bit b ∈ {⊥,
} repre-
senting whether the insertion was successful (b = 
) or not (b = ⊥), and the
state σ′ of the AMQ-PDS after the insertion.



144 M. Filić et al.

– The deletion algorithm (b, σ′) ← del(x, σ), given an element x ∈ D, attempts
to delete x from the AMQ-PDS, i.e. attempts to remove everything that a
successful insertion on x added to σ. The algorithm return a bit b ∈ {⊥,
}
representing whether the deletion was successful (b = 
) or not (b = ⊥), and
the state σ′ of the AMQ-PDS after the deletion.

– The membership querying algorithm b ← qry(x, σ), given an element x ∈ D,
returns a bit b ∈ {⊥,
} (approximately) answering whether x was previously
inserted (b = 
) or not (b = ⊥) into the AMQ-PDS.

We remark that we only consider AMQ-PDS where membership queries do not
change the state of the AMQ-PDS; thus, qry does not need to output a new σ′

value. This includes popular AMQ-PDS such as Counting and Cuckoo filters.
Due to the approximate nature of AMQ-PDS, qry calls may return a false pos-

itive result with a certain probability. That is, we may have 
← qry(x, σ) even
though no call ins(x, σ′; r) was made post setup and prior to the membership
query. We refer to the probability Pr[
← qry(x, σ) | x was not inserted into Π]
as the false positive probability of an AMQ-PDS Π. In addition, since Counting
and Cuckoo filters support deletions, qry calls may return a false negative result,
where we may have ⊥ ← qry(x, σ) even though an ins(x, σ′; r) call was made
beforehand. We refer to the probability Pr[⊥ ← qry(x, σ) | xwas inserted into Π]
as the false negative probability of an AMQ-PDS Π.

Moreover, the insertion algorithm may fail to insert an element, for example
if the AMQ-PDS has reached capacity. We denote the probability Pr[(⊥, σ) ←$

ins(x, σ)] as the insertion failure probability.

3.2 AMQ-PDS Under Non-adversarial Inputs

We now define the expected behaviour of AMQ-PDS in a non-adversarial setting,
since we will later quantify how much the state of an AMQ-PDS can deviate from
this under adversarial inputs. As in [13], we will focus on AMQ-PDS that satisfy
the following properties of function-decomposability and reinsertion invariance.

Definition 2 (Function-decomposability [13]). Let Π be an AMQ-PDS and
let F ←$ Funcs[D,R] with R ⊂ D be a random function to which Π has oracle
access. We say Π is F -decomposable if

insF (x, σ; r) = insIdR(F (x), σ; r) ∀x ∈ D, σ ∈ Σ, r ∈ R,

delF (x, σ) = delIdR(F (x), σ) ∀x ∈ D, σ ∈ Σ,

qryF (x, σ) = qryIdR(F (x), σ) ∀x ∈ D, σ ∈ Σ,

where insIdR , delIdR and qryIdR cannot internally evaluate F due to not hav-
ing oracle access to it and F being truly random. Function-decomposability also
applies to AMQ-PDS with oracle access to multiple functions.

Definition 3 (Reinsertion invariance [13]). Let Π be an AMQ-PDS. We say
Π is reinsertion invariant if for all x ∈ D, σ ∈ Σ such that 
 ← qry(x, σ), we
have (
, σ′) ← ins(x, σ; r) =⇒ σ = σ′ ∀r ∈ R.
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Reinsertion invariance is a natural property to expect from AMQ-PDS since
they are designed to represent sets and not multisets. Note that if reinsertion
invariance does not apply, simply repeatedly inserting a single element could
lead to blocking of further insertions.

If a reinsertion-invariant AMQ-PDS contains multiple copies of the same
element, deleting one copy will result in all other copies being deleted. However,
reinsertion invariance does not require the state of the AMQ-PDS to remain
unchanged if elements are reinserted after being deleted.

For an insertion-only AMQ-PDS satisfying function-decomposability and
reinsertion invariance, the notion of a non-adversarially influenced state was
proposed in [13]. We give an alternative (but equivalent) definition below.

Definition 4 (n-NAI state). Let Π be an AMQ-PDS with public parameters
pp using F = IdR satisfying reinsertion invariance, and let σ ← setup(pp). Let
n be a non-negative integer. Let X1, ...,Xn ←$ R. Let L be the list of operations
on σ, where L = [insIdR(X1, σ), ..., insIdR(Xn, σ)]. Then, σ is an n-NAI state.

We then give an alternative (but equivalent) definition of the NAI false positive
probability from [13].

Definition 5 (NAI false positive probability). Let Π be an AMQ-PDS
with public parameters pp, using a random function F : D → R satisfying
F -decomposability and reinsertion invariance. Let n be a non-negative integer.
Define the NAI false positive probability after n distinct insertions as

PΠ,pp(FP |n) := Pr

⎡

⎣
σ ← setup(pp)

for i ∈ [n] : (b, σ) ←$ insIdR(Xi ←$ R, σ) :

 ←$ qryIdR(X ←$ R, σ)

⎤

⎦ .

Remark 1. Definitions 4 and 5 are equivalent to that of [13, Def. 3.4] for F -
decomposable AMQ-PDS. Sampling n distinct elements from D is equivalent to
sampling n strings X ←$ R. Similarly, sampling the queried element from D\V ,
where V is the set of n inserted elements, is equivalent to sampling X ←$ R.

As mentioned, the NAI state constructed in Definition 4 captures honesty
for insertion-only AMQ-PDS. As long as the effect of every insertion on the
state is unpredictable, the final state cannot deviate from “honest”. However, for
AMQ-PDS that also allow deletions, defining an honest setting is more involved.
The deletion capability means that a user could insert elements, observe their
effects, and then decide whether to delete them, i.e. to reset the state if not
satisfied. In other words, even if every insertion is unpredictable, the final state
may still be adversarially influenced (i.e. no longer an NAI state).

We overcome these issues with a new definition of the non-adversarial setting
for function-decomposable, reinsertion-invariant AMQ-PDS, which we call NAI*.
NAI* captures honesty up to the extent that can be achieved with both insertions
and deletions. We will show that the final state of the AMQ-PDS satisfying NAI*
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suffices to capture a non-adversarial setting that we can analyse using results
from the PDS literature.

A key component of NAI* will be the following notion: for any element not
previously inserted, the effect of its insertion on the state is unpredictable (inser-
tion unpredictability). Intuitively, this can be thought of as replacing every inser-
tion of an element x ∈ D with X ∈ R sampled uniformly at random. This is
not necessarily ensured only by F -decomposability, since the interplay between
ins, del and qry on the same input could reveal information about F . We define
insertion unpredictability in Definition 6.

Definition 6 (Insertion unpredictability). Let Π be an AMQ-PDS with
public parameters pp, using a random function F : D ← R, and satisfying F -
decomposability and reinsertion invariance. Let σ ← setup(pp). Let {zi} be the
elements that are successfully inserted into σ. For every first insertion of zi, let
(
, σ′) ← insF (zi, σi) and (
, σ) ← insIdR(X ←$ R, σi). We say σ has insertion
unpredictability if SD

(
σ′, σ

)
= 0.

We are now ready to define an n-NAI* state. Although an NAI* state of an
AMQ-PDS can be constructed through both insertions and deletions of elements,
our definition will require that all insertions are unpredictable, deletions only
happen on currently inserted elements, and repeated insertions of elements only
change the state if that element has been deleted. These requirements essentially
capture what we would expect from honest insertions and deletions on function-
decomposable, reinsertion-invariant AMQ-PDS.

Definition 7 (n-NAI* state). Let Π be an AMQ-PDS with public parameters
pp using F = IdR satisfying reinsertion invariance, and let σ ← setup(pp). Let
n be a non-negative integer. Let X1, ...,Xn ←$ R. Let L be the list of operations
on σ, where each item in L is either insIdR(·, σ) or delIdR(·, σ) on X1, ...,Xn.
Then, σ is an n-NAI* state if:

– for all Xi there is an operation in L equal to insIdR(Xi, σ),
– for all successful delIdR(Xi, σ) operations in L, the preceding successful oper-

ation in L on Xi is insIdR(Xi, σ),
– all successful insIdR(Xi, σ) operations in L for which any prior successful

operation in L on Xi is insIdR(Xi, σ) either do not change the state, or have
delIdR(Xi, σ) as their preceding successful operation on Xi in L.

It is clear to see that every n-NAI state (Definition 4) is then an n-NAI*
state. We now give an analogous formulation of Definition 7 for F -decomposable
AMQ-PDS, where unsuccessful insertions do not change the state.

Corollary 1. Let Π be an AMQ-PDS with public parameters pp using a random
function F : D → R satisfying F -decomposability and reinsertion invariance,
where unsuccessful insertions do not change the state. Let σ ← setup(pp) and n
be a non-negative integer. Let L be the list of operations on σ, where each item
in L is either insF (·, σ) or delF (·, σ). Then, σ is an n-NAI* state if:
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– it satisfies Definition 6,
– there are n distinct elements {zi}i∈[n] for which an operation in L on zi is

insF (zi, σ),
– for all successful delF (zi, σ) operations in L, the preceding successful operation

in L on zi is insF (zi, σ), and
– all insF (zi, σ) operations in L for which any prior successful operation in L

on zi is insF (zi, σ) either do not change the state, or have delF (zi, σ) as their
preceding successful operation on zi in L.

A natural next step would be to define the false positive probability and inser-
tion failure probability for NAI* states, analogous to that of the insertion-only
setting [13]. However, while deleting an inserted element may be an operation
allowed under NAI*, a user could insert elements, observe their effects, and then
decide whether to delete them, i.e. to reset the state. This means that, using only
n distinct elements, a user can create many different NAI* states. Therefore, a
more useful notion for NAI* states is the maximal false positive and insertion
failure probability, defined in terms of the “worst possible” NAI* state.

Definition 8 (Maximal NAI* false positive probability). Let Π be an
AMQ-PDS with public parameters pp using a random function F : D → R
satisfying F -decomposability and reinsertion invariance. Let n be a non-negative
integer. Define the maximal NAI* false positive probability after n insertions as

P ∗
Π,pp(FP |n) := Pr

⎡

⎣
X1, ...,Xn ←$ R

σ ← U IdR

Π,pp(X1, ...,Xn) :

 ←$ qryIdR(X ←$ R, σ)

⎤

⎦ ,

where U IdR

Π,pp(X1,...,Xn) outputs an NAI* state created using insIdR(·,σ),
delIdR(·,σ) on X1,...,Xn that has the maximal false positive probability.

Definition 8 captures the false positive probability of the “worst possible” NAI*
state that can be created with insertions and deletions. The algorithm U gets n
strings sampled uniformly at random from R as input, and finds the ordering of
insertions and deletions of these strings (possibly excluding some) that maximises
the false positive probability. Since the queried X ←$ R is sampled randomly,
U is not increasing the probability that a particular element is a false positive;
rather, it is creating a state with the highest false positive probability in general.

Definition 9 (Maximal NAI* insertion failure probability). Let Π be an
AMQ-PDS with public parameters pp, using a random function F : D → R
satisfying F -decomposability and reinsertion invariance. Let n be a non-negative
integer. Define the maximal NAI* insertion failure probability within n insertions
as

P ∗
Π,pp(IF |n) := Pr

⎡

⎣
X1, ...,Xn ←$ R

σ ← VIdR

Π,pp(X1, ...,Xn) :
for some l ∈ [n], (⊥, σ) ←$ insIdR(Xl, σ)

⎤

⎦ ,



148 M. Filić et al.

where VIdR

Π,pp(X1,...,Xn) outputs an NAI* state created using insIdR(·,σ),
delIdR(·,σ) on X1,...,Xn that has the maximal probability of an insertion on one
of X1,...,Xn failing.

Definition 9 captures the insertion failure probability of the “worst possible”
NAI* state that can be created with insertions and deletions. The algorithm
V gets as an input n strings sampled uniformly at random from R, and then
finds the ordering of insertions and deletions of these strings (possibly excluding
some) that maximises the probability that inserting one of these strings will fail.
Note that the definition is of a slightly different flavour to Definition 8; V can
optimise its output in respect to Xl that is most likely to result in an insertion
failure. Definition 9 naturally extends upon insertion failure definitions found in
the literature [10,12], where the probability is defined as one among n insertions
failing.

3.3 Counting Filters

Counting filters are an extension of the popular Bloom filters, with the added
capability of supporting deletions of elements. A Counting filter consists of an
array of counters σ of length m initially set to 0m, and a family of k independent
hash functions Hi : {0, 1}∗ → [m], for i ∈ [k]. To insert an element x into the
filter, all k counters Hi(x) of σ are incremented; if any counter reaches the
maximum value maxVal, the insertion fails. To delete an element x from the
filter, if all k counters Hi(x) are greater than zero, they are all decremented;
if not, the deletion fails. A membership query on x returns 
 if all k counters
Hi(x) are greater than zero. Due to collisions in the hash functions Hi, Counting
filters can have both false positives and false negatives. As in [13], we will bundle
the k hash functions Hi into a single function F : D → [m]k.

We now formally define Counting filters.

Definition 10. Let m,k,maxVal be positive integers. We define an (m,k,
maxVal)-Counting filter to be the AMQ-PDS with algorithms defined in Fig. 2,
with pp = (m,k,maxVal), and F : D → [m]k.

We recall from the literature a bound on the NAI false positive probability
for Counting filters. Due to their membership query algorithm only checking for
non-zero counters, as in the case of Bloom filters, this bound is the same for
both Counting and Bloom filters.

Lemma 1 ([12],[13, Lemma 3.7]). Let Π be an (m, k,maxVal)-Counting filter
using a random function F : D → [m]k. Then, for any n, PΠ,pp(FP |n) ≤
[
1 − e− (n+0.5)k

m−1
]k

.

We now derive upper bounds on the maximal NAI* false positive probability
and the maximal NAI* insertion failure probability for Counting filters.

Lemma 2. Let Π be an (m, k,maxVal)-Counting filter using a random function
F : D → [m]k. Then, for any n, P ∗

Π,pp(FP |n) ≤ [
1 − e− (n+0.5)k

m−1
]k

.
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Fig. 2. AMQ-PDS syntax instantiation for the Counting filter.

Proof (sketch). We construct an algorithm that inserts all X1, . . . , Xn with
maxVal set to ∞, and show that the false positive probability of the result-
ing state (which follows from Lemma 1) is an upper bound on the false positive
probability of any n-NAI* state. For the full proof, see the full version.

Lemma 3. Let Π be an (m, k,maxVal)-Counting filter using a random function
F : D → [m]k. Then, for any n, P ∗

Π,pp(IF |n) ≤ m · [ e·n·k
maxVal·m

]maxVal
.

Proof (sketch). We construct an algorithm that inserts all X1, . . . , Xn, using a
modified insertion algorithm that always increments counters (i.e. the check in
line 6 of the ins algorithm in Fig. 2 is skipped), and with maxVal set to ∞. Let the
resulting state be denoted by Δ. We show that the insertion failure probability
of any n-NAI* state with maxVal equal to some limit can be upper bounded by
the probability that any counter in Δ exceeds limit. For the full proof, see the
full version.

3.4 Cuckoo Filters

Cuckoo filters were proposed as an alternative to Bloom filters with improved
performance and support for deletions [10]. A Cuckoo filter consists of a collection
(σi)i of 2λI buckets, each indexed by i ∈ [2λI ] and containing s slots, together
with a stash σstash containing one slot. They use two hash functions HI : D →
{0, 1}λI and HT : D → {0, 1}λT . To insert (resp. delete) an element x into the
filter, its tag is computed as HT (x) and inserted (resp. deleted) into its first or
second bucket, whose indices are computed as i1 = HI(x), i2 = i1 ⊕ HI(HT (x))
respectively. If both buckets are full, an eviction process begins. A membership
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query on x returns 
 if HT (x) is found in either of its corresponding buckets
or the stash. As for Counting filters, membership queries can return both false
positive and false negative responses.

In [13], a variant of the standard Cuckoo filter called the PRF-wrapped
Cuckoo filter was proposed, which was required for the proofs of adversarial
correctness and privacy. In this variant, inputs to the ins, del and qry algorithms
are simply preprocessed with a random function F : D → R, resulting in a
function-decomposable filter that remains easy to implement, while satisfying
the desired properties. For this reason, our work will also make use of PRF-
wrapped Cuckoo filters, which we formally define below.

Definition 11. Let pp = (s, λI , λT , num) be a tuple of positive integers. We
define an (s, λI , λT , num)-PRF-wrapped Cuckoo filter to be the AMQ-PDS with
algorithms defined in Appendix A, with pp = (s, λI , λT , num), making use of
hash functions HT : D → {0, 1}λT and HI : D → {0, 1}λI .

Our next step is to derive upper bounds on the NAI* false positive probability
and the NAI* insertion failure probability for PRF-wrapped Cuckoo filters.

Lemma 4. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,
for any n, P ∗

Π,pp(FP |n) ≤ 1 − (
1 − 2−λT

)2 s+1 + n
|R| .

Proof (sketch). We demonstrate that, apart from the collision probability in the
range of F between the queried element and those used to create the state, the
false positive probability bound in [10] upper bounds the probability for any
n-NAI* state. For the full proof, see the full version.

Lemma 5. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,
for any n,

P ∗
Π,pp(IF |n) ≤ 2

(|R| · 2λT +λI−1
)s−1

(
n

s

) s−1∏

i=1

[
(|R| − i)(2λT − i)

]
.

Proof (sketch). We construct an algorithm that inserts all X1, ...,Xn, using a
modified insertion algorithm where an element’s tag is added to both of its
buckets (if they do not already contain it), and with s set to ∞. Let the resulting
state be denoted by Δ. We show that the insertion failure probability of any n-
NAI* state with s equal to some limit can be upper bounded by the probability
that the load of any bucket in Δ exceeds limit. For the full proof, see the full
version.

3.5 Consistency Rules

In this work, we will consider AMQ-PDS that satisfy some properties that we
refer to as consistency rules, specified below. These rules are satisfied by Count-
ing and Cuckoo filters.
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Definition 12 (AMQ-PDSconsistency rules). Consider an AMQ-PDS Π.
We say Π has

– Successful deletion of positives if for all x ∈ D, σ ∈ Σ, 
 ← qry(x, σ) =⇒
(
, σ′) ← del(x, σ).

– Unsuccessful deletion of negatives if for all x ∈ D, σ ∈ Σ, ⊥ ← qry(x, σ) =⇒
(⊥, σ) ← del(x, σ).

– Unsuccessful operation invariance if for all x ∈ D, σ ∈ Σ, (⊥, σ′) ← ins(x, σ)
=⇒ σ′ = σ and (⊥, σ′) ← del(x, σ) =⇒ σ′ = σ.

In the insertion-only setting, AMQ-PDS satisfy an additional consistency
rule: for all x ∈ D, σ ∈ Σ, (
, σ) ← ins(x, σ) =⇒ 
 ← qry(x, σ). In other words,
a membership query on an inserted element will always return 
, meaning that
σ has no false negative elements. In a setting with both insertions and deletions,
one might expect the same rule to hold as long as x has not yet been deleted
from σ. In Definition 13, we define σ having no false negatives more precisely.

Definition 13 (No false negatives). Let Π be an AMQ-PDS with public
parameters pp satisfying reinsertion invariance, and let σ ← setup(pp). Let {zi}
be the elements that are successfully inserted into σ. Let Li be the list of success-
ful operations on zi, where each item in Li is either ins(zi, σ) or del(zi, σ). We
say σ has no false negatives if, for all zi, if the last item in Li is ins(zi, σ), then

 ← qry(zi, σ).

Unfortunately, with deletions, we cannot say that σ contains no false negatives.
They can arise as a result of inserting or deleting false positive elements, as we
will see later. Therefore, Definition 13 is not satisfied by AMQ-PDS in general,
and we will not require this from the AMQ-PDS we consider. Instead, we will
analyse false negatives in our security proofs by using their relationship to false
positives.

4 Adversarial Correctness

In this section, we analyse the correctness of AMQ-PDS under adversarial inputs.
Our starting point is the simulation-based security definition for adversarial cor-
rectness in [13]. However, while their focus was on AMQ-PDS that only support
insertions and membership queries, we are now interested in a more complex
scenario with insertions, membership queries and deletions. As we will see, this
increase in adversarial power requires tackling some new obstacles.

We derive bounds on the correctness of AMQ-PDS that satisfy function-
decomposability, reinsertion invariance, and the consistency rules in Defini-
tion 12. Then, we apply our results to analyse Counting filters instantiated using
a PRF, and PRF-wrapped Cuckoo filters. In both cases, we provide concrete
guarantees on their adversarial correctness.

In the following, we consider an adversary A interacting with an AMQ-PDS
Π through an API, which we model as three oracles: Ins, which inserts elements
of its choice into Π, Del, which deletes elements of its choice from Π, and Qry,
which responds to membership queries (i.e. whether x has been inserted into Π).
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Fig. 3. Correctness game for AMQ-PDS Π.

4.1 Notions of Correctness

We employ a simulation-based approach to analysing the adversarial correctness
of AMQ-PDS, which proceeds as follows. The adversary A plays in either the
“real” or “ideal” world. In the real world, A interacts with a keyed AMQ-PDS Π,
through oracles allowing it to make insertions, deletions and membership queries
on elements of its choice. In the ideal world, A instead interacts with a simulator
S, constructed such that it provides an NAI* view of Π to A. (Note that this
differs from the definition of adversarial correctness in [13], which required S to
provide an NAI view.)

A then produces some arbitrary output, which the distinguisher D uses to
compute which world A was operating in. Finally, we bound D’s ability to dis-
tinguish between the two worlds. This allows us to quantify A’s probability of
achieving any adversarial goal in the real world (through adaptive insertions,
deletions and membership queries) by relating it to the ideal world, which we
know how to analyse.

In Fig. 3, we define the Real-or-Ideal game.

Definition 14. Let Π be an AMQ-PDS with public parameters pp, and let RK

be a keyed function family. We say Π is (qins, qqry, qdel, ta, td, ts, ε)-adversarially
correct if, for all adversaries A running in time at most ta and making qins, qqry,
qdel queries to oracles Ins,Qry,Del respectively in the Real-or-Ideal game (Fig. 3)
with a simulator S that provides an NAI* view of Π to A and runs in time at most
ts, and for all distinguishers D running in time at most td, we have:

AdvRoI
Π,A,S(D):=

∣
∣ Pr [Real(A,D)=1 ] −Pr [ Ideal(A,D,S)=1 ]

∣
∣ ≤ ε.

Remark 2. We discuss why Definition 14 captures adversarial correctness, by
outlining how it can be used to analyse a specific adversarial goal. Consider
an adversary A that, throughout its execution, makes Ins and Del queries
on adversarially selected inputs x1, ..., xn, interspersed with Qry queries, and
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Fig. 4. Simulator and G∗ for AMQ-PDS with deletions.

ending with a final membership query Qry(x) with x ←$ D \ {x1, ..., xn}. Sup-
pose the output of A is the result of that final query, and D’s output is identical
to that of A. Then, Pr[Real(A,D)] is the adversarial false positive probability of
Π produced by A, for which we cannot directly compute an upper bound, since
A makes adaptive queries. However, Pr[Ideal(A,D,S)] is the NAI* false positive
probability, for which we can derive upper bounds for our AMQ-PDS of interest.
Then, if Definition 14 is satisfied, it means we can upper bound Pr[Real(A,D)]
by Pr[Ideal(A,D,S)] + ε. Note that our definition covers any adversarial goal
(see [13, Appendix C.2]).

In Fig. 4, we construct a simulator S providing an NAI* view for function-
decomposable AMQ-PDS supporting insertions, deletions and membership
queries. We first observe that the state constructed by S is always an NAI*
state (Definition 7). Every insertion of element zi either executes insIdR(·, σ) on
fresh Xi ←$ R or does not change the state if on a currently inserted element.
Moreover, only deletions of zi that are currently inserted run delIdR(Xi, σ). Fur-
ther, by inspection, the runtime of S is not significantly higher than that of the
underlying AMQ-PDS.
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Fig. 5. Intermediate game G∗ for the proof of Theorem 1.

Theorem 1. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0.
Let F : D → R. Let Π be an AMQ-PDS with public parameters pp and ora-
cle access to F , such that Π satisfies the consistency rules from Definition 12,
F -decomposability (Definition 2), and reinsertion invariance (Definition 3). Let
α, β, γ be the number of calls to F required to insert, query, delete an element
respectively in Π using its ins, qry, del algorithms.

If RK : D → R is an (αqins + βqqry + γqdel, ta + td, ε)-secure pseudorandom
function with key K ←$ K, then Π is (qins, qqry, qdel, ta, ts, td, ε

′)-adversarially
correct with respect to the simulator in Fig. 4, where ts ≈ ta and ε′ = ε +
2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

Proof. We define an intermediate game G∗ in Fig. 5. Let Real denote the d =
0 version of Real-or-G∗, let G∗ denote the d = 1 version of Real-or-G∗ (or
equivalently, the d = 0 version of G∗-or-Ideal), and let Ideal denote the d = 1
version of G∗-or-Ideal. Then,

AdvRoI
Π,A,S(D) := |Pr [Real(A,D)=1 ] −Pr [ Ideal(A,D,S)=1 ] |

≤ |Pr[Real(A,D)=1]− Pr[G∗(A,D)=1]|
+ |Pr[G∗(A,D)=1]− Pr[Ideal(A,D,S)=1]|. (1)

Our proof proceeds by bounding the closeness of Real, G∗ in Lemma 6 in terms
of the PRF advantage, and that of G∗, Ideal in Lemma 7 in terms of the probability
of some “bad” event. Then, we combine these lemmas to obtain our result.

Lemma 6. The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game Real-or-G∗ in Fig. 5 with a (qins, qqry, qdel, ta)-
AMQ-PDS adversary A is bounded by the maximal PRF advantage ε of an
(αqins + βqqry + γqdel, ta + td, ε)-PRF adversary attacking RK :

AdvReal−or−G∗
Π,A,S (D) := |Pr [Real(A,D) = 1 ] − Pr [G∗(A,D) = 1 ]| ≤ ε.
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Proof. Consider the PRF adversary B (Fig. 1), instantiating the AMQ-PDS
queried by A using its RoR oracle, in relation to the Real-or-G∗ game (Fig. 5).
When b = 0, B is running Real for A, and when b = 1, B is instead running G∗

for A. Then, the advantage of B is AdvPRF
R (B) = AdvReal-or-G∗

Π,A,S (D). Since RK is
an (αqins + βqqry + γqdel, ta + td, ε)-secure PRF, AdvReal-or-G∗

Π,A,S (D) ≤ ε.

Lemma 7. The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game G∗-or-Ideal in Fig. 5 with a (qins, qqry, qdel, ta)-
AMQ-PDS adversary A is bounded as follows:

AdvG∗-or-Ideal
Π,A,S (D) := |Pr [G∗(A,D) = 1 ] − Pr [ Ideal(A,D,S) = 1 ]|

≤ 2P ∗
Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗

Π,pp(FP | qins).

Proof. We wish to bound the probability of distinguishing between G∗ and Ideal.
Let E be the divergence event between G∗ and Ideal, which occurs due to a
mismatch in responses to Qry,Del, Ins queries across the two games (see Fig. 4).

First, we observe that Ideal cannot have false negative responses to member-
ship queries, but G∗ could have. If A induces a false negative for some element x
in G∗ and then calls Qry(x), the two games would diverge with probability one.
False negatives lead to repercussions when comparing responses to all types of
queries across the two games. Therefore, we will deal with them separately, by
defining EFN to be the event that a false negative occurs in G∗ before any other
query response mismatch. We then split the analysis of event E into two parts:
(1) the query response mismatch occurs without a false negative occurring in G∗

beforehand (i.e.¬EFN), or (2) the query response mismatch occurs with a false
negative occurring in G∗ beforehand (i.e. EFN). Then,

Pr [E ] ≤ Pr [E ∧ ¬EFN ] + Pr [E ∧ EFN ] ≤ Pr [E ∧ ¬EFN ] + Pr [EFN ] .

We will analyse E∧ ¬EFN for each query type separately. Let aG
i , bG

i , cG
i denote

the responses to A’s i-th query, deletion, and insertion query in game G ∈
{G∗, Ideal}. Then, the games diverge the first time that aG∗

i , bG∗
i or cG∗

i does not
match aIdeal

i , bIdeali or cIdeali , respectively. We define

EQry :=
[[

The first query response mismatch is
aIdeal

i �= aG∗
i for some i ∈ [qqry]

]

∧ ¬EFN

]

, (2)

EDel :=
[[

The first query response mismatch is
bIdeali �= bG∗

i for some i ∈ [qdel]

]

∧ ¬EFN

]

, (3)

EIns :=
[[

The first query response mismatch is
cIdeali �= cG∗

i for some i ∈ [qins]

]

∧ ¬EFN

]

. (4)
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Hence,

Pr [E ] ≤ Pr [EFN ] + Pr [EQry ] + Pr [EDel ] + Pr [EIns ] . (5)

We now proceed to bound the probability of each event in Eq. (5). In the
following, we take the probability over the randomness used by A (which we
refer to as A’s coins), and the randomness used by game G ∈ {G∗, Ideal} to
answer A’s queries (which we refer to as G’s coins). We will use xi, yi and zi to
denote the input to A’s i-th query, deletion and insertion query, respectively.

Calculation of Pr [EFN ]. We start by analysing the probability of a false negative
occurring in G∗. Our key observation is that false negatives can only occur from
inserting or deleting false positives.

Consider an element x that is a false positive due to insertions of {z1, ..., z�},
where � ≥ 1. By the consistency rule successful deletion of positives, the deletion
of x will succeed, although it was never inserted. However, this may cause ele-
ments in {z1, ..., z�} to become false negatives. Now, consider inserting this false
positive x. By reinsertion invariance, the state will remain unchanged, but x will
become a true positive. Then, deleting any element in {x, z1, ..., z�} will succeed,
but may cause other elements in {x, z1, ..., z�} to become false negatives.

Recall that we are interested in analysing the probability of a false negative
occurring in G∗ before any other mismatch in query responses across the two
games. Therefore, we do not need to consider deletions of false positives; it would
result in a mismatch in Del responses, since Ideal does not allow deletions of
false positives while G∗ does. We will then focus solely on false negatives caused
by insertions of false positives in the following. We write

Pr [EFN ] := Pr
[

A false negative occurs inG∗

before a query response mismatch occurred

]

≤ Pr
[

A false positive is inserted inG∗

before a query response mismatch occurred

]

≤
qins∑

i=1

Pr
[

zi is the first false positive inserted inG∗

before a query response mismatch occurred

]

.

Let σ∗
i denote the state of Π in game G∗ just before the i-th Ins query. Then,

since no prior query response mismatch occurred and zi is the first false positive
inserted, σ∗

i contains no false negatives up to this point. Then,

Pr[EFN] ≤
qins∑

i=1

Pr

⎡

⎣
[zi is a false positive in σ∗

i ]∧
[σ∗

i has no false negatives]∧
[no prior query response mismatch occurred]

⎤

⎦

≤
qins∑

i=1

Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎣
[inserted[zi] = ⊥] ∧ [
 ←$ qryF (zi, σ

∗
i )]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

⎤

⎦ . (6)

Let Li be the list of successful operations on σ∗ in G∗ up to the i-th Ins query,
where each item in Li is either insF (·, σ∗) or delF (·, σ∗) on z1, ..., zi−1. By the
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consistency rule unsuccessful operation invariance, we do not need to consider
unsuccessful operations when constructing σ∗

i . So,

Pr[EFN]≤
qins∑

i=1

Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎢
⎢
⎢
⎢
⎣

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (
, σ∗

i ) ← opF (zj , σ
∗
i ):

[inserted[zi] = ⊥] ∧ [
 ←$ qryF (zi, σ
∗
i )]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

⎤

⎥
⎥
⎥
⎥
⎦

. (7)

Now, if no prior query response mismatch has occurred, inserted[zi] = ⊥ implies
that either zi was never inserted into σ∗

i , or zi was inserted but then deleted. In
the latter scenario, since σ∗

i contains no false negatives up to this point (as per
Eq. (7)), zi must be a positive at the time of its deletion. Then, by the consistency
rule successful deletion of positives, its deletion will succeed, thus fully undoing
the effect of its insertion on σ∗

i . Since F is a random function satisfying F -
decomposability and A has no information about F , we write Eq. (7) as

Pr [EFN ] ≤
qins∑

i=1

Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎢
⎢
⎢
⎢
⎣

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (
, σ∗

i ) ← opIdR(F (zj), σ∗
i ) :

[
 ←$ qryIdR(X ←$ R, σ∗
i )]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

⎤

⎥
⎥
⎥
⎥
⎦

.

Now, since F is a random function and A has no information about F , we can
replace every first insertion of an element F (zj) by Xzj

←$ R (i.e. σ∗
i satisfies

insertion unpredictability). For repeated insertions on an element, we have two
possibilities. If this element has not been deleted since its last insertion, the
repeated insertion will not change the state, due to reinsertion invariance. How-
ever, if it has been deleted since its last insertion, it will change the state in the
same way as its first insertion, since both use the same F . Therefore, we can
rewrite the above by sampling |{z1, ..., zi−1}| random strings, and associating
each string to a distinct zj , giving

Pr[EFN]≤
qins∑

i=1

Pr
Ideal’s coins

A’s coins

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� ← |{z1, ..., zi−1}|
{u1, ..., u�} ← {z1, ..., zi−1}

Xu1 , ...,Xu�
←$ R

σ∗
i ← setup(pp)

for opF (zj , σ
∗)∈ Li:(
, σ∗

i )←opIdR(Xzj
, σ∗

i ):
[
 ←$ qryIdR(X ←$ R, σ∗

i )]∧
[σ∗

i has no false negatives]∧
[no prior query response mismatch occurred]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

We now argue that every σ∗
i is an n-NAI* state, where n is upper bounded

by qins, by showing that it satisfies the requirements in Corollary 1. Firstly,
observe that the construction of σ∗

i in Eq. (8) enforces insertion unpredictability
(Definition 6). Secondly, there are at most qins insertions in σ∗

i . Thirdly, since no
query response mismatch has yet occurred, all deletions must be on elements for
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which the preceding successful operation was an insertion. Finally, since there
are no false negatives up to this point and reinsertion invariance holds, any
insertion on a currently inserted element will not change the state.

Let U IdR

Π,pp be the algorithm from Definition 8 that, given X1, ...,Xn, outputs
an NAI* state created using insIdR , delIdR on X1, ...,Xn with the maximal false
positive probability. Then, no matter how σ∗

i is created, the state output by
U IdR

Π,pp will result in an equal or higher false positive probability than that of σ∗
i .

Since � ≤ qins and with more distinct insertions, U IdR

Π,pp may be able to create a
state with even higher false positive probability,

Pr [EFN ] ≤
qins∑

i=1

Pr
Ideal’s coins

⎡

⎣
X1, ...,Xqins ←$ R

σ ← U IdR

Π,pp(X1, ...,Xqins) :

 ←$ qryIdR(X ←$ R, σ)

⎤

⎦ .

Finally, applying Definition 8, we obtain

Pr [EFN ] ≤ qins · P ∗
Π,pp(FP | qins). (9)

Calculation of Pr [EQry ]. We first rewrite Eq. (2) using the union bound as

Pr[EQry] ≤
qqry∑

i=1

Pr

⎡

⎣

⎡

⎣
[Qry(xi) yields the first mismatch]∧[

[(aIdeal
i = 
) ∧ (aG∗

i = ⊥)]
∨[(aIdeal

i = ⊥) ∧ (aG∗
i = 
)]

]

⎤

⎦ ∧ ¬EFN

⎤

⎦ . (10)

We start by inspecting the Qry algorithms of G∗ and Ideal to see where they
could diverge. In G∗, the responses to A’s Qry queries are always computed
using the same function F , while in Ideal, a fresh random string X ←$ R is
sampled each time a non-inserted element is queried.

Let σi denote the state of Π in game Ideal just before the i-th Qry query,
and σ∗

i denote the corresponding state in game G∗. Since Qry(xi) yields the
first query response mismatch, both G∗ and Ideal must contain the same set of
inserted elements. As EFN did not yet occur, σ∗

i has no false negatives. Moreover,
Qry queries in Ideal do not give false negative responses. This means that Qry
queries on elements that were inserted (and not yet deleted) will always return a
positive response in both games. Therefore, in order for xi to yield a mismatch in
Qry query responses between the games, we must have that xi is not currently
inserted in Ideal (i.e. inserted[xi] = ⊥ in line 4 of QrySim). This gives

Pr [EQry ] ≤
qqry∑

i=1

[
Pr

[ [
[Qry(xi) yields the first mismatch ]∧

[inserted[xi] = ⊥] ∧ [aIdeal
i = 
]

]

∧ ¬EFN

]

+ Pr
[ [

[Qry(xi) yields the first mismatch ]∧
[inserted[xi] = ⊥] ∧ [aG∗

i = 
]

]

∧ ¬EFN

] ]
(11)

:=
qqry∑

i=1

[
Pr

[
EIdeal

Qry

]
+ Pr

[
EG∗

Qry

] ]
, (12)
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where, for simplicity, we will use Pr
[
EIdeal

Qry

]
to denote the first term of Eq. (11),

and Pr
[
EG∗

Qry

]
to denote the second term.

We start by bounding Pr
[
EIdeal

Qry

]
. In Ideal, a fresh random string X ←$ R

is sampled each time a non-inserted element is queried, and so

Pr
[
EIdeal

Qry

] ≤ Pr
Ideal’s coins

A’s coins

[
[Qry(xi) yields the first mismatch ]∧

[
 ←$ qryIdR(X ←$ R, σi)]

]

.

We now argue that every σi is an n-NAI* state, with n being upper bounded by
qins, by showing that it satisfies the requirements in Definition 7. Firstly, from
line 3 of DelSim, we observe that only deletions of currently inserted elements
run delIdR(·, σ), possibly changing the state. Secondly, we note that in InsSim,
every insertion either executes insIdR(·, σ) on Xi ←$ R, or does not change the
state if it is on a currently inserted element. Therefore, σi is an NAI* state
containing at most qins elements. Then, we can upper bound the false positive
probability of σi by that of the NAI* state with the maximal false positive
probability (Definition 8), giving Pr

[
EIdeal

Qry

] ≤ P ∗
Π,pp(FP | qins).

We use a reasoning similar to calculating EFN to compute Pr
[
EG∗

Qry

]
, replac-

ing zi with xi. Under ¬EFN , the state σ∗
i contains no false negatives. Therefore,

we can apply Eq. (6) from the EFN calculation to get

Pr
[
EG∗

Qry

]
= Pr

G∗’s coins
Ideal’s coins

A’s coins

[[
[Qry(xi) yields the first mismatch ]∧
[inserted[xi] = ⊥] ∧ [
 ←$ qryF (xi, σ

∗
i )]

]

∧ ¬EFN

]

≤ Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎣
[inserted[xi] = ⊥] ∧ [
 ←$ qryF (xi, σ

∗
i )]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

⎤

⎦

≤ P ∗
Π,pp(FP | qins). (13)

Substituting Pr
[
EIdeal

Qry

]
,Pr

[
EG∗

Qry

]
in Eq. (12) gives

Pr [EQry ] ≤
qqry∑

i=1

2P ∗
Π,pp(FP | qins) = 2qqry · P ∗

Π,pp(FP | qins). (14)

Calculation of Pr [EDel ]. We first rewrite Eq. (3) using the union bound as

Pr [EDel ] ≤
qdel∑

i=1

Pr

⎡

⎣

⎡

⎣
[Del(yi) yields the first mismatch]∧[

[(bIdeali = 
) ∧ (bG∗
i = ⊥)]

∨[(bIdeali = ⊥) ∧ (bG∗
i = 
)]

]

⎤

⎦ ∧ ¬EFN

⎤

⎦ . (15)

We now examine the Del algorithms of G∗ and Ideal. In G∗, the responses to A’s
Del queries are always computed using the same function F . In Ideal, deletions
are only allowed on an element yi if it is currently inserted in the filter, and use
the same random string f [yi] that was used for yi’s insertion.
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We note that in Eq. (15), we are only interested in the case where Del(yi)
is the first query response mismatch. In this case, both G∗ and Ideal must con-
tain the same set of inserted elements. As EFN did not occur, every inserted
element is a true positive in both games. We observe that in Ideal, true positives
are always successfully deleted (see line 3 of DelSim), while in G∗, successful
deletion of true positives is ensured by the consistency rule successful deletion of
positives. However, by the same consistency rule, deletions of false positives also
succeed in G∗, while they do not in Ideal. Consequently, deletions in G∗ succeed
on at least the elements on which they succeed in Ideal. Thus, it never happens
that a deletion succeeds in Ideal but not in G∗, and we can rewrite Eq. (15) as

Pr [EDel ] ≤
qdel∑

i=1

Pr
[ [

[Del(yi) yields the first mismatch]∧
[(bIdeali = ⊥) ∧ (bG∗

i = 
)]

]

∧ ¬EFN

]

.

Let σ∗
i denote the state of Π in game G∗ just before the i-th Del query. By the

consistency rule unsuccessful deletion of negatives,

Pr [EDel ] ≤
qdel∑

i=1

Pr
G∗’s coins
Ideal’s coins

A’s coins

[[
[Del(yi) yields the first mismatch ]∧

[inserted[yi] = ⊥] ∧ [
 ←$ qryF (yi, σ
∗
i )]

]

∧ ¬EFN

]

.

We use a reasoning similar to calculating EFN to compute this, replacing zi

with yi. Under ¬EFN , the state σ∗
i contains no false negatives. Therefore, we

can apply Eq. (6) from the EFN calculation to get

Pr [EDel ] ≤
qdel∑

i=1

Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎣
[inserted[yi] = ⊥] ∧ [
 ←$ qryF (yi, σ

∗
i )]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

⎤

⎦

≤
qdel∑

i=1

P ∗
Π,pp(FP | qins) = qdel · P ∗

Π,pp(FP | qins). (16)

Calculation of Pr [EIns ]. We first rewrite Eq. (4) as

Pr [EIns ] = Pr

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

[Ins(zi) yields the first mismatch]∧[
[(cIdeali = ⊥) ∧ (cG∗

i = 
)]
∨[(cIdeali = 
) ∧ (cG∗

i = ⊥)]
]

for some i ∈ [qins]

⎤

⎥
⎥
⎦ ∧ ¬EFN

⎤

⎥
⎥
⎦ . (17)

Let us now compare the Ins algorithms of G∗ and Ideal. In G∗, the responses to
A’s Ins queries are always computed using the same function F . On the other
hand, in Ideal, a fresh random string f [zi] ←$ R is sampled at each insertion of
an element zi which is not already inserted.

Let σi denote the state of Π in game Ideal just before the i-th Ins query, and
σ∗

i denote the corresponding state in game G∗. If Ins(zi) is the first mismatch,
it must be that both G∗ and Ideal contain the same set of inserted elements up
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to this point. In Ideal, by inspecting InsSim we observe that the insertion of
any currently inserted element zi will always succeed. In G∗, since we are only
considering the case where EFN did not yet occur, σ∗

i has no false negatives.
This means that any element zi that was inserted and not yet deleted will result
in 
 ← qryF (zi, σ

∗
i ). Then, by reinsertion invariance, the insertion of zi will

succeed (but not change the state) in G∗. Therefore, for the first query response
mismatch it must be that xi is not currently inserted in Ideal (i.e. inserted[zi] = ⊥
in line 4 of InsSim). Then,

Pr [EIns ] ≤ Pr

⎡

⎣

⎡

⎣
[Ins(zi) yields the first mismatch ]∧

[cIdeali = ⊥] ∧ [inserted[zi] = ⊥]
for some i ∈ [qins]

⎤

⎦ ∧ ¬EFN

⎤

⎦

+ Pr

⎡

⎣

⎡

⎣
[Ins(zi) yields the first mismatch ]∧

[cG∗
i = ⊥] ∧ [inserted[zi] = ⊥]

for some i ∈ [qins]

⎤

⎦ ∧ ¬EFN

⎤

⎦ (18)

:= Pr
[
EIdeal

Ins

]
+ Pr

[
EG∗

Ins

]
, (19)

where, for simplicity, we will use Pr
[
EIdeal

Ins

]
to denote the first term of Eq. (18),

and Pr
[
EG∗

Ins

]
to denote the second term.

We start by computing Pr
[
EIdeal

Ins

]
. In Ideal, a fresh random string X ←$ R

is sampled each time a non-inserted element is queried, and so we can write

Pr
[
EIdeal

Ins

] ≤ Pr
Ideal’s coins

A’s coins

⎡

⎣
[Ins(zi) yields the first mismatch ]∧

[(⊥, σi) ←$ insIdR(X ←$ R, σi)]
for some i ∈ [qins]

⎤

⎦ .

Since every σi is an n-NAI* state, with n being upper bounded by qins, we can
upper bound the insertion failure probability of σi by that of the NAI* state with
the maximal insertion failure probability (Definition 9), giving Pr

[
EIdeal

Ins

] ≤
P ∗

Π,pp(IF | qins).
We now compute Pr

[
EG∗

Ins

]
. We have that

Pr
[
EG∗

Ins

]
≤ Pr

G∗’s coins
Ideal’s coins

A’s coins

⎡

⎣

⎡

⎣
[Ins(zi) yields the first mismatch]∧

[(⊥, σ∗
i ) ←$ insF (zi, σ

∗
i )]

for some i ∈ [qins]

⎤

⎦ ∧ ¬EFN

⎤

⎦ .

Let Li be the list of successful operations on σ∗ in G∗ up to the i-th Ins query,
where each item in Li is either insF (·, σ∗) or delF (·, σ∗) on z1, ..., zi−1. Recall
that we do not need to consider unsuccessful operations when constructing σ∗

i ,
by the consistency rule unsuccessful operation invariance. Then,
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Pr
[
EG∗

Ins

]
≤ Pr

G∗’s coins
Ideal’s coins

A’s coins

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (
, σ∗

i ) ← opF (zj , σ
∗
i ) :

[inserted[zi] = ⊥] ∧ [(⊥, σ∗
i ) ←$ insF (zi, σ

∗
i )]∧

[σ∗
i has no false negatives]∧

[Ins(zi) yields the first mismatch]
for some i ∈ [qins]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Pr
G∗’s coins
Ideal’s coins

A’s coins

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (
, σ∗

i ) ← opIdR(F (zj), σ∗
i ) :

[inserted[zi] = ⊥] ∧ [(⊥, σ∗
i ) ←$ insIdR(F (zi), σ∗

i )]∧
[σ∗

i has no false negatives]∧
[Ins(zi) yields the first mismatch]

for some i ∈ [qins]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

by F -decomposability. Now, since F is a random function and A has no informa-
tion about F , we can then proceed in a similar manner as in the EFN calculation,
with the caveat that we are now interested in any of the qins insertions failing:

Pr[EG∗
Ins] ≤ Pr

Ideal’s coins
A’s coins

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� ← |{z1, ..., zqins}|
{u1, ..., u�} ← {z1, ..., zqins}

Xu1 , ...,Xu�
←$ R

for some i ∈ [qins],
σ∗

i ← setup(pp)
for opF (zj , σ

∗)∈ Li: (
, σ∗
i )←opIdR(Xzj

, σ∗
i ):

[(⊥, σ∗
i ) ←$ insIdR(Xzi

←$ R, σ∗
i )]∧

[σ∗
i has no false negatives]∧

[Ins(zi) yields the first mismatch]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

Similarly as in Eq. (8), we conclude that σ∗
i in Eq. (20) is an NAI* state. Then,

we again upper bound the insertion failure probability of σ∗
i by that of the

NAI* state with the maximal insertion failure probability (Definition 9), giving
Pr

[
EG∗

Ins

] ≤ P ∗
Π,pp(IF | qins). Substituting Pr

[
EIdeal

Ins

]
,Pr

[
EG∗

Ins

]
in Eq. (19),

we obtain

Pr [EIns ] ≤ 2P ∗
Π,pp(IF | qins). (21)

Finally, substituting Eqs. (9, 14, 16, 21) in Eq. (5), we have

AdvG∗-or-Ideal
Π,A,S (D) ≤ 2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

To prove Theorem 1, we then apply Lemmas 6 and 7 to Eq. (1) to obtain

AdvRoI
Π,A,S(D) ≤ ε + 2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

Remark 3. We discuss why our results do not directly extend to a setting where
A can access the internal state σ. In Fig. 4, observe that, upon reinsertion of an
element not currently in the filter, Ideal always samples a fresh X ←$ R, while G∗

inserts the same element again. This choice allowed us to obtain distinguishing
bounds involving only the NAI* false positive and insertion failure probabilities.
However, this difference is clearly detectable if A can view σ after reinsertion,
leading to Ideal and G∗ being distinguished with a probability close to 1.
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4.2 Guarantees for Counting and Cuckoo Filters

In this section, we will use Theorem 1 to give concrete correctness guarantees
for Counting and Cuckoo filters.

Corollary 2. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0. Let
F : D → R. Let Π be a Counting filter AMQ-PDS with public parameters pp and
oracle access to F . If RK for K ←$ K is a (qins + qqry + qdel, ta + td, ε)-secure
pseudorandom function and F = RK , then Π is (qins, qqry, qdel, ta, ts, td, ε

′)-
adversarially correct, where ts ≈ ta and ε′ = ε + 2m · [ e·qins·k

maxVal·m
]maxVal + (qins +

2qqry + qdel) · [
1 − e− (qins+0.5)k

m−1
]k

.

Proof. From the ins, del, qry algorithms in Fig. 2, we see that Counting filters with
oracle access to a random function F are F -decomposable, reinsertion invariant,
and satisfy the consistency rules in Def. 12. Further, each ins, del and qry call
contains one call to the function F . Then, Theorem 1 holds with α = β = γ = 1.
Using Lemmas 2 and 3, we obtain the result.

Remark 4. The adversarial correctness bound for Bloom filters in [13, Corollary
4.4] holds for insertion-only Counting filters.

Corollary 3. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0.
Let F : D → R. Let Π be a PRF-wrapped Cuckoo filter AMQ-PDS with pub-
lic parameters pp and oracle access to F . If RK for K ←$ K is a (qins +
qqry + qdel, ta + td, ε)-secure pseudorandom function and F = RK , then Π is
(qins, qqry, qdel, ta, ts, td, ε

′)-adversarially correct, where ts ≈ ta and

ε′ = ε +
4

(|R| · 2λT +λI−1
)s−1

(
qins
s

) s−1∏

i=1

[
(|R| − i)(2λT − i)

]

+ (qins + 2qqry + qdel) ·
[

1 − (
1 − 2−λT

)2 s+1 +
qins
|R|

]

.

Proof. From the ins, del, qry algorithms in Appendix A, we see that PRF-
wrapped Cuckoo filters with oracle access to a random function F are F -
decomposable, reinsertion invariant, and satisfy the consistency rules in Defi-
nition 12. Further, each ins, del and qry call contains one call to the function F .
Then, Theorem 1 holds with α = β = γ = 1. Using Lemmas 4 and 5, we obtain
the result.

5 Secure Instances

In this section, we outline how our results can be used to secure AMQ-PDS in
practice. Let us consider the example outlined in Remark 2, with the predicate
P := [A’s final Qry(x) query on x ←$ D \ {x1, ..., xn} returns 
].
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Fig. 6. Correctness guarantees vs. storage trade-offs for Counting filters with maxVal =
16, qins = qdel = qqry = 220, ε = 2−128. Dashed lines represent non-adversarial guar-
antees (Lemma 2), solid lines represent adversarial guarantees for the insertion-only
setting ([13, Corollary 4.4]), and dotted lines represent adversarial guarantees for the
setting with insertions and deletions (Corollary 2).

Since Theorem 1 holds for any predicate, the probability of an adversary A
satisfying P in the real world is given by Pr [D(A)=1 ] ≤ ε + 2P ∗

Π,pp(IF | qins) +
(qins + 2qqry + qdel + 1) · P ∗

Π,pp(FP | qins).
We illustrate the behaviour of this bound for the example of Counting filters.

In Fig. 6, we plot an upper bound of the false positive probability against the size
of the Counting filter in three settings: the non-adversarial setting, the insertion-
only adversarial setting, and the setting with deletions studied in this work. By
Remark 4, we can analyse the insertion-only setting using the results in [13]:
Pr [D(A)=1 ] ≤ ε + (2qqry + 1) · PΠ,pp(FP | qins).

From Fig. 6, we observe that guaranteeing a specific false positive probability
even in an adversarial setting with deletions requires roughly trebling the size
of the filter, when compared to the honest (NAI) setting. Crucially, deletions
do not incur a significant cost when compared to the insertion-only setting; the
additional term of P ∗

Π,pp(IF | qins) can be made very small with the choice of
an appropriate maxVal. For Cuckoo filters, the same observation holds for the
choice of λI and λT . Hence, moving to the more complex scenario of allowing
deletions does not hinder the practicality of our results.

A Cuckoo Filters

In Fig. 7, we give the AMQ-PDS syntax instantiation for PRF-wrapped Cuckoo
filters. Following the reference implementation [11] by the authors of [10], after
we delete an element, we try to empty the stash by re-inserting the stashed
element. We write the procedure evict separately for ease of understanding.
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Fig. 7. AMQ-PDS syntax instantiation for the PRF-wrapped Cuckoo filter.
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Abstract. Encrypted data structures have received a lot of attention
due to their use as building blocks in the design of fast encrypted search
algorithms and encrypted databases. An important design aspect that,
as far as we know, has not been considered is that modern server archi-
tectures are concurrent in the sense that they support the execution of
multiple operations simultaneously. In this work, we initiate the study of
concurrent encrypted data structures. We identify new definitional and
technical challenges posed by concurrency in the setting of encrypted
search. In order to formalize the security of these schemes, we extend the
standard framework of structured encryption to capture, among other
things, fine-grained leakage which occurs at the instruction level as well
as schedule-dependent leakage which changes as a function of the order
in which instructions are executed. The latter is particularly challenging
to handle when the scheduler is adversarial and adaptive. We provide
security definitions in the ideal/real-world model which allows us to cap-
ture both security and consistency together.

We combine techniques from structured encryption and concurrent
data structures to design the first concurrent encrypted multi-map. We
show that it is not only secure and efficient, but also satisfies a strong con-
sistency guarantee called linearizability while supporting lock-free append
operations and requiring no inter-client communication.

Keywords: Encrypted search · Concurrent data structures ·
Concurrent encrypted data structures

1 Introduction

Encrypted multi-maps (EMM) are end-to-end encrypted data structures
that store label/value pairs and support get and put operations in sub-linear
time. EMMs are a core building block in the design of sub-linear encrypted
databases and searchable symmetric encryption (SSE) schemes. As encrypted
databases gain popularity and interest from industry, new problems at the inter-
section of cryptography and distributed systems are emerging. One example is
the problem of designing encrypted distributed data structures studied in [1,2].
These are encrypted data structures designed to be stored and managed by clus-
ters of machines as opposed to a single server as is traditionally considered in
the encrypted search literature. Encrypted distributed structures are a crucial
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building block for the design of real-world encrypted databases since, in practice,
most databases are distributed and run on clusters.

Another practical problem that, as far as we know, has received very little
attention is the problem of designing concurrent encrypted structures by which
we mean dynamic encrypted structures that can be accessed concurrently while
providing strong consistency guarantees and high throughput. This is a funda-
mental problem because every real-world database system is concurrent. More
precisely, the literature in encrypted search usually models database server exe-
cutions as sequential in the sense that the server is assumed to execute operations
in their entirety one after the other. For example, upon receiving a sequence of
operations (op1, . . . , opn) from a client it executes opi entirely before executing
opi+1. Even in multi-client settings, the server is assumed to order the operations
of the clients and then execute them fully in that order.

Concurrency and Consistency. In reality, database servers do not execute opera-
tions sequentially. They use multi-threading and often multiple cores to execute
many operations simultaneously. This increases operation throughput since the
server can make progress on an operation opi while waiting for an expensive
call from operation opj to return (e.g., a call to disk). Database servers do not
view operations as atomic objects that must be executed in their entirety at once
but, instead, as sequences of lower-level atomic instructions that can be context-
switched at any moment by the operating system scheduler. Concurrency intro-
duces a host of challenges, the most important of which is that the traditional
notions of correctness are not meaningful. Consider a multi-map that stores
a label/tuple pair (�, v), where v = (v1, . . . , v10), an append operation (�, v11)
and a get operation on �. Now suppose the append and get operations are concur-
rent. Should we require the get operation to return (v1, . . . , v10) or (v1, . . . , v11)?
Either answer is acceptable depending on exactly how the lower-level instruc-
tions of the two operations are scheduled. Because of this, correctness in concur-
rent settings is replaced with the notion of consistency which guarantees that
the outputs of the operations are consistent with some sequential order of the
operations; even if their instructions are actually interleaved. Returning to the
example, if the get outputs (v1, . . . , v11) then its output is consistent with the
sequential order (append, get), whereas if it outputs (v1, . . . , v10) its output is
consistent with the sequential order (get, append).

Many different notions of consistency have been defined and studied. Some
are weaker in the sense that they allow for more sequential orders and some are
stronger in the sense that they allow for fewer. For example, linearizability [35]
is a very strong consistency notion which, roughly speaking, guarantees that the
output of the operations preserve their real-time ordering, i.e., if opi completes
before opj begins, then any effect of opi will be reflected in opj ’s output. In our
example above, linearizability guarantees that if the append finishes before the
get starts, then the get’s output will include the value added by the append. In
contrast, the weaker notion of sequential consistency [48], would allow the get
to output either (v1, . . . , v10) or (v1, . . . , v11) as long as the get and append were
made by different clients.
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Concurrent EMMs. Based on the discussion above, it should be clear that real-
world encrypted databases and their underlying data structures need to support
concurrent executions and guarantee some notion of consistency. As far as we
know, the only semi-dynamic or dynamic EMM construction that can achieve
high throughput and some form of consistency under concurrent operations is
the OST scheme of [42] which underlies MongoDB’s Queryable Encryption. A
limitation of the scheme, however, is that the scheme itself is only designed to
provide high throughput while consistency is achieved at the implementation
level by making use of database transactions. This has two implications. The
first is that the scheme itself is not provably consistent. The second is that the
way transactions are used may not necessarily lead to optimal throughput. The
design of concurrent EMMs is highly non-trivial and to see why we will go over
various possible solutions and explain why they do not work.

The first solution one might think of is to start with a dynamic EMM and
modify it using standard techniques from the concurrency literature. As an
example, one might start with the following simplified version of the πbas con-
struction from [15]. At a high level it works by breaking down a label/tuple
pair (�, v), where v = (v1, . . . , vn), into n pairs where the ith pair is of the
form (�||i, vi). Each pair is then stored as (F (K�,1, i),Enc(K�,2, vi)) in a stan-
dard/plaintext dictionary, where F is a pseudo-random function, Enc is a sym-
metric encryption scheme, and K�,1 and K�,2 are label-specific keys computed
using a pseudo-random function. To execute a get operation for �, the client
sends K�,1 to the server who uses it as follows. It initializes a counter i to 1
and computes tagi := F (K�,1, i). It then queries the dictionary on tagi. If the
tag is in the dictionary, the server returns the associated ciphertext, increments
the counter and repeats the process. If, on the other hand, tagi is not in the
dictionary it stops. To add a value vn+1 to �’s tuple, the client sends the pair
(F (K�,1, n + 1),Enc(K�,2, vn+1)). Notice that in order to guarantee correctness,
the client has to keep local counters for every label (client state is needed by most
semi-dynamic and dynamic EMMs that achieve standard notions of security).

Naive Server-Side Synchronization. To achieve consistency with a multi-client
stateful dynamic EMM, the clients need to synchronize on their state. This is
clear in the case of πbas and to see why consider a setting where two clients Ci

and Cj concurrently append values v and v′, respectively, to a label �’s tuple
(v1, . . . , vn). In this case, both Ci and Cj will use their local state to send
(F (K�,1, n + 1), v) and (F (K�,1, n + 1), v′) to the server which will result in one
pair overwriting the other. One approach to address this could be to encrypt and
outsource the state to the server and synchronize using locks, which is a primitive
that ensures exclusive access to shared resources. To append values, clients would
then need to acquire the lock, retrieve and decrypt the state, send the new pair
together with an updated and encrypted state and release the lock.

This naive form of server-side synchronization has both consistency and secu-
rity issues. Suppose we have two clients Ci and Cj and that when Ci acquires
the lock the counter is at 5 and when Cj acquires the lock the counter is at
6. In this case, Ci sends (F (K�,1, 6),Enc(K�,2, vi)) to the server whereas Cj
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sends (F (K�,1, 7),Enc(K�,2, vj)). Now, we will describe an execution schedule
in which Cj ’s append will not be output by its own get which proves that the
construction is not linearizable. This happens if Cj ’s append is scheduled but
Ci’s append is not. In this case, (F (K�,1, 7),Enc(K�,2, vj)) is inserted into the
dictionary whereas (F (K�,1, 6),Enc(K�,2, vi)) is not. Notice that if Cj executes
a get on � after its append is completed, it will not receive vj because when
the server queries the dictionary on the tag F (K�,1, 6), it will not find it and,
therefore, stop and return the values associated with counters 1 through 5. Lin-
earizability requires gets to return all the values of appends that finished before
the get started, so this construction is not linearizable. In fact, this construction
does not even achieve the weaker notion of sequentially consistency and only
satisfies the weakest form of consistency known as eventual consistency.

A General Approach for Linearizability. The problem with the previous app-
roach is that only locking the state is not enough to synchronize append and
get operations. A general-purpose way to fix this is to put both the state and
the EMM—the dictionary in the case of πbas—together under one lock. In this
case, only one operation can change or read the structure/dictionary at a time.
This solution, however, severely limits scalability and throughput and essentially
operates like a sequential implementation.

Naive State Access. Another issue with naive server-side synchronization is that
naively accessing the state could leak additional information. Specifically, if the
clients only retrieves the relevant (encrypted) counter during an append, the
server would learn append-to-append correlations (i.e., whether two appends
are for the same label or not). This can be avoided if the clients retrieve the
entire state each time or store and query it using an oblivious RAM (ORAM)
but both approaches are costly.

1.1 Our Contributions

In this work, we initiate the study of concurrent encrypted data structures.
Specifically, we formalize, define and construct a multi-map encryption scheme
that encrypts multi-maps in such a way that they can be accessed concurrently
with high throughput and that satisfies linearizability. Though our construction
is one of our main contributions, we also identify a variety of interesting defini-
tional and modeling issues that need to addressed to even formalize the security
of concurrent encrypted structures.

Instruction-Level Leakage. One of our core observations is that leakage in the
concurrent setting is quite different than leakage in the sequential setting and,
therefore, needs to be modeled differently. The observation stems from the fact
that, as discussed above, operations are really sequences of instructions and
that, in reality, leakage occurs at the instruction level and is produced little by
little with every instruction that is executed. To see this, consider the simpli-
fied version of πbas described above. Notice that during a get, the server learns
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information piece-by-piece as it queries the dictionary. For example, if the dic-
tionary query for F (K�,1, i) is successful the server learns that the length of
the tuple is at least i. And when the dictionary query fails, it finally learns the
exact length of the tuple. The fact that leakage really occurs at the instruction
level does not necessarily contradict the standard operation-level leakage model
[20,23] which is (implicitly) used in the sequential setting. This is because, in
the sequential setting, all the instructions of an operation are executed together
before the instructions of the next operation are started. The consequence is
that the operation-level leakage is the union of the instruction-level leakage. For
example, in πbas the operation-level get leakage is the length of the tuple which
is also the instruction-level get leakage in the sequential setting.

Schedule-Dependent Leakage. Another important observation is that instruction-
level leakage depends on how it is scheduled. For example, consider a πbas EMM
that stores a label pair (�, v), where v = (v1, . . . , v10), and the following two
concurrent operations: an append to �’s tuple and a get for �. Now, consider
one schedule where the append adds the pair (F (K�,1, 11),Enc(K�,2, v11)) to
the underlying dictionary before the get operation queries the dictionary for
F (K�,1, 11) and another schedule where the order is reversed. In the first sched-
ule, the server learns that v has size at least 11 from the dictionary query for
F (K�,1, 11), whereas in the second schedule it learns that the tuple length is
exactly 111.

Adversarial Schedulers. As discussed above, real-world database servers are
multi-threaded and instructions are ordered and scheduled for execution by the
OS scheduler. If the server is corrupted—which is the standard adversarial model
considered in encrypted search—then the scheduler is also corrupted and the
execution schedule of a sequence of operations will be adversarially-chosen and
because of this the observations above have important implications on the secu-
rity of encrypted structures. In particular, recall that it is standard for dynamic
encrypted structures to achieve forward privacy. Roughly speaking, forward pri-
vacy guarantees that updates to the structure cannot be correlated with previous
queries but can reveal correlations between queries and past updates. The obser-
vation that instruction-level leakage is schedule-dependent implies that, in the
presence of an adversarial scheduler, the notions of forward and backward pri-
vacy are not meaningful. This is simply because an adversarial scheduler can
render the guarantees of forward privacy useless by controlling the schedule.
Specifically, given a sequence of queries followed by updates, forward privacy
guarantees that the updates cannot be correlated to any of the queries. But by
scheduling all the updates first followed by the queries these correlations can be
revealed. A similar issue occurs with backward privacy which, roughly speaking,
guarantees that queries do not reveal information about items that have been
previously inserted and then deleted. As in the case of forward privacy, if an

1 Note that, in this example, the ordering of the operations also impacts the leakage
at the operation level.
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adversarial scheduler re-orders the operations such that an item is inserted, then
queried and then deleted, then it can learn whether the item was inserted.

Note that, so far, we only discussed adversarial schedulers that choose fixed
schedules, i.e., in a non-adaptive manner. But a scheduler could determine a
schedule adaptively, as a function of previous instructions, their outputs and
their leakage.

Modeling Instruction-Level Leakage. To capture instruction-level leakage and to
properly capture the interaction between adaptive schedulers and leakage, we
formalize leakage profiles in a more fine-grained manner. Specifically, we define
leakage functions as stateful functions that take as input a sequence of instruc-
tions (as opposed to a sequence of operations), a schedule for the instructions
executed so far and the next instruction to be executed. Based on these inputs,
the leakage function determines the leakage produced by the next instruction
which, in our security definition, is provided to the adaptive scheduler.

Formalizing Security. We formalize the security of a concurrent multi-map
encryption scheme in the ideal/real-world paradigm. At a high level, in the real
world the clients and server execute the real multi-map encryption scheme oper-
ations in the presence of a semi-honest adversary that corrupts the server. In the
ideal world, the clients and server interact with an ideal concurrent multi-map
functionality. Defining this ideal functionality is challenging for the following
reasons. The ideal functionality should produce a sequence of outputs that is
consistent. There are, however, many possible consistent output sequences. We
could make the functionality produce a specific one of them but this would be
too strong and not achievable since, in the real world, the adversary controls the
scheduler and can, therefore, influence the outputs of the encrypted multi-map.
To capture this, we need to relax the functionality and allow the simulator to
provide it with information that it can use to generate an output sequence. But,
crucially, we require the functionality to abort if the simulator leads it to output
a sequence that violates consistency. This guarantees that the functionality and
the scheme always produce consistent output sequences but that the adversary
can influence which consistent output sequence it produces. As with traditional
(i.e., sequential) STE security definitions, we explicitly model leakage in our
definitions.

Another interesting feature of our definition is how adaptive adversarial
schedulers are handled. Recall that adaptive schedulers choose the next atomic
instruction to execute based on previous instructions, their results and possibly
their leakage. During simulation, this is handled by the simulator forwarding the
scheduler’s next instruction to the functionality which returns the instruction-
level leakage so that the simulation can proceed.

A New Concurrent Multi-map Encryption Scheme. We describe a linearizable
multi-map encryption scheme called TST which, as far as we know, is the first
such construction. In addition, TST achieves lock-free append operations which,
roughly speaking, means that if an append gets scheduled it will never have to
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wait on another operation. At a very high level, the scheme works as follows.
Suppose we have n clients C1, . . . , Cn. A label �’s tuple v can be split into n
sub-tuples (v1,�, . . . , vn,�), where vi,� holds the values appended by Ci. For all
clients Ci and labels �, the encrypted multi-map will store an encrypted form of a
reverse linked list listi,�, where each node stores a value of vi,� and a pointer to the
previous node in the list. It also stores an encrypted structure that stores pointers
to the heads of the list. To append a value vm+1 to �’s tuple, Ci sends a new node
that stores vm+1 and points to the head of listi,�. To retrieve �’s tuple, the server
walks each listi,�, for i ∈ [n], starting from their heads and returns the nodes in
∪i∈[n]listi,�. Note that, for security reasons, append operations do not update the
structure that stores the heads of the list so that structure can store old/stale
head pointers which could result in the get only returning a subset of �’s tuple.
To address this, we augment the construction with additional encrypted data
structures that the server can use at get time to find the unreachable nodes (i.e.,
the nodes that cannot be reached from the old head). This adds false positives to
the server’s response, but the client can locally filter them out. Additionally, the
client can use the results to update the structures at the server so that future gets
have less false positives (and depending on the distribution of operations possibly
none). Like many dynamic EMM constructions [8,9,15,28,59], TST also uses lazy
deletion to handle deletes, where deletions are treated as additions with special
delete markers that the client can locally use to filter out the deleted values.
The description provided here is very high level and ignores many subtleties and
technical challenges which we discuss in detail in Sects. 5 and 6.

One of the main challenges in designing TST was to find a way to achieve
linearizability, security and efficiency. Traditional techniques from concurrent
data structures are designed to provide consistency and efficiency whereas tra-
ditional techniques from structured encryption are designed to achieve security
and efficiency. In our setting, we need to find ways of using, adapting and cre-
ating new techniques so that we achieve all three. Interestingly, while TST is
very different than all previous EMM constructions, it does make use of and
combine ideas from previously-known influential constructions. Specifically, it is
both a list-based scheme like the SSE-1 construction of [23] and a dictionary-
and counter-based scheme like the πbas construction of [15].

A New Linearizable Range Dictionary. Our TST construction makes use of a
plaintext range dictionary which stores label/value pairs where the labels are
integers. In addition to get and put operations, the range dictionary also needs
to support a greater-than � operation that returns the set of values associated
with labels greater than �. We construct such an efficient and linearizable range
dictionary which may be of independent interest.

2 Related Work

Structured Encryption. Structured encryption was introduced by Chase and
Kamara [20] as a generalization of index-based searchable symmetric encryp-
tion (SSE) [23,58]. The most common and important type of STE schemes are
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multi-map encryption schemes which are a basic building block in the design of
sub-linear SSE schemes [15,23,41], expressive SSE schemes [13,29,38,39,55] and
encrypted databases [16,39]. STE and encrypted multi-maps have been studied
along several dimensions including dynamism [15,33,40,41,55] and I/O efficiency
[5,7,14,15,24,25,52]. The notion of forward privacy was introduced by Stefanov,
Papamanthou and Shi [60] and formally defined by Bost [8], who also proposed
the first forward-private encrypted multi-map construction. Kamara and Moataz
pointed out in [38] that the definition of [8] does not necessarily capture the intu-
itive security guarantee of forward-privacy and suggested that it be formalized
as requiring that updates be leakage-free. Backward privacy was introduced by
Bost, Minaud and Ohrimenko [9]. Several follow up works showed how to improve
on the constructions of [9], sometimes achieving both forward and backward pri-
vacy [3,9,28,30,45,59]. All these works focus on designing SSE/STE construc-
tions for non-concurrent settings. While these non-concurrent constructions have
several applications, concurrent constructions that allow multiple operations to
operate on the encrypted data structure simultaneously are more practical and
useful.

Multi-user Schemes. Multi-user STE/SSE refers to schemes that allow multiple
clients to operate on the encrypted structure/collection. Multi-user schemes can
be single-writer multi-reader as proposed in [23], multi-writer single-reader, or
multi-writer multi-reader. As far as we know all the multi-user constructions
proposed—except for [42]—assume the server is sequential and do not support
concurrent operations.

Oblivious Parallel RAMs. Oblivious parallel RAM (OPRAM) was introduced by
Boyle, Chung, and Pass [10] as a generalization of ORAM that compiles an m-
CPU PRAM program into an oblivious m-CPU PRAM. Numerous subsequent
work improved OPRAM overhead [6,17–19,22,37,53]. Although the notions of
parallel and concurrent computation are related, they are not the same. Parallel
computation involves executing multiple operations at the same time in order
to accelerate computationally-intensive tasks by using multiple processing units.
In contrast, concurrent computation involves executing multiple operations that
can be interleaved with one of another. This means that operations can begin,
run, and complete in any sequence and they can share resources such as mem-
ory and processors. Our work is focused on concurrency not parallelism.

Concurrent Dictionaries. Our construction makes use of linearizable dictionaries
which can be instantiated with hash tables based on closed or open addressing.
Existing solutions can be lock-based [27,47,49], partially lock-free [34,36], lock-
free [32,50,57], or wait-free [61]. Search trees can also be used to instantiate
concurrent dictionaries and there are various lock-based designs [11,46] and lock-
free linearizable implementations [26,62].
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3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}.
a := b means that a is set to b. The output y of a deterministic algorithm A
on input x is denoted by y := A(x). If S is a set then x

$← S denotes sampling
from S uniformly at random. If S is a set then #S refers to its cardinality.
Throughout, k will denote the security parameter.

Cryptographic Primitives. We make use of CPA-secure symmetric encryption
schemes SKE = (Gen,Enc,Dec) and pseudo-random functions (PRF) in our
construction. We denote the evaluation of a pseudo-random function F with
a key K on an input x as F (K, x). Sometimes for visual clarity, we denote
F (F (F (K, x1), x2), . . . , xn) as F [K, x1, . . . , xn]. We refer the reader to [44] for
standard notions of security for PRFs and symmetric encryption schemes.

Plaintext Data Structure Schemes. A dictionary scheme ΔDX = (Init,Get,Put)
supports three algorithms where Init(k1, k2) initializes an empty dictionary DX
that maps labels of length k1 to values of length k2, Put(DX, �, v) adds a
label/value pair (�, v) to DX, and Get(DX, �) returns the value v associated with
label � in DX. A cas-dictionary scheme ΔDX = (Init,Get,Put, CompareAndSwap) is
a dictionary scheme that supports, in addition to Get and Put, a CompareAndSwap
algorithm. CompareAndSwap(DX, �, vold, vnew) compares the value of label � with
vold and updates it with vnew if they are equal [51,54,56]. A range dictio-
nary scheme ΔRDX = (Init,Put,GetGreater) is a dictionary scheme that sup-
ports GetGreater instead of Get. In particular, the GetGreater(RDX, �) algorithm
returns all the values in the dictionary that have labels �′ greater than �. Finally,
ΔCTR = (Init,FetchAndInc) is a counter scheme where Init(v) initializes a counter
countg with value v, and FetchAndInc(countg) returns the current value of countg
and increments the counter by 1.

Operations. We define an operation op as a tuple (opid, name, inp, cid) which
includes a unique operation id, the operation’s name, its input, and the id of
the client who issued the operation. For example, op = (opid,Get, �, i) is a get
operation that takes a label � as its input and is issued by client Ci.

Atomic Instructions. We assume that each operation op consists of atomic
instructions (ins1, . . . , insλ), which are instructions that guarantee uninterrupted
access and updates of shared single-word variables. We use op.[First] and
op.[Last] to indicate the first and last atomic instruction in a sequence of atomic
operations that make up an operation. We also use op.[insi] or opid.[insi] to refer
to the ith instruction of operation op.

Execution Schedules. We assume the server has a scheduler that is responsible for
scheduling operations on the CPU. Given a set of operations Ω = {op1, . . . , opλ},
the execution process is as follows: (1) the scheduler schedules an operation; (2)



178 A. Agarwal et al.

the CPU executes the next atomic instruction of the scheduled operation; and (3)
then the scheduler de-schedules the operation. After that, the scheduler schedules
another operation, the CPU which carries out the next atomic instruction of that
operation, and so on. This process defines an execution schedule, schedΩ , for a
set of operations Ω.

It is important to note that the next atomic instruction of the scheduled
operation is not necessarily next atomic instruction in the literal code of the
operation. Instead, it is determined by accounting for branches and other con-
trol flow constructs. Consequently, two get operations with identical code but
different inputs can follow entirely different execution paths due to different
inputs and can, therefore, have different execution schedules.

We define a schedule schedΩ for a set of operations Ω as a pre-
fix of the following sequence: (opid1.[First], . . . , opid1.[Last]) × . . . ×
(opidλ.[First], . . . , opidλ.[Last]), where the × operator denotes the interleav-
ing of executions. We stress that execution schedules need not be complete in
the sense that they do not have to contain all the atomic instructions of an
operation. Intuitively, they represent the execution that has happened so far on
the machine. Given an operation set Ω, and a schedule schedΩ , we partition Ω
into two disjoint sets Ωf ∪ Ωp, where Ωf is the set of operations that are com-
pleted, and Ωp is the set of operations that are partially completed. Formally an
operation (opid, �, �, �) ∈ Ω is in Ωf if (opid.[First], . . . , opid.[Last]) ∈ schedΩ ,
otherwise it is in Ωp.

Concurrent Schedules. Given a schedule schedΩ , we write timesched(op.[ins]) to
refer to the logical time the instruction op.[ins] is executed. For instance, for an
operation op, timesched(op.[First]) and timesched(op.[Last]) refer to the start and
end times of the operation. If op.[Last] /∈ schedΩ , then timesched(op.[Last]) = ∞.
A schedule schedΩ is called concurrent if there exists a time when two operations
are “active”. Formally, there exist a time t, such that timesched(op.[First]) ≤ t ≤
timesched(op.[Last]) and that timesched(op′.[First]) ≤ t ≤ timesched(op′.[Last]).
We say that op and op′ are concurrent if this condition is true.

Execution Histories. An execution history is a record of the operations executed
on a data structure, when they were executed, and their outputs were. We model
it as a triple H = (Ω, schedΩ , outΩf

), where schedΩ is the execution schedule of
the operations in Ω and outΩf

is an output function that assigns an output to
finished operations Ωf ⊆ Ω.

Correctness of Concurrent Data Structures. A concurrent data structure is a
data structure that allows multiple operations to be executed simultaneously
without violating its correctness. The correctness of a concurrent data structure
is formalized by a notion of consistency which, intuitively, guarantees that the
operations executed on a data structure should always appear to be executed
one after the other, even if their executions were interleaved. For instance, a get
operation on a multi-map should output all the values that appear to have been
added by “previous” appends, without including any of the values that appear
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to have been added by “later” appends. We capture the notion of sequential
correctness with a function called exec. It takes as input a total order seqΩ

of operations Ω, an operation op ∈ Ω, and returns the output of op as if the
operations were executed in the order of seqΩ . In the particular case of a multi-
map, exec is defined as follows. If op = (opid,Get, �, �), exec(seqΩ , op) = {v :
(opid′,Append, (�, v), �) ∈ Ω and seqΩ orders opid′ before opid}. Various consis-
tency notions define how operations in Ω can be ordered in relation to their
original ordering in schedΩ , determining what is considered “previous” or “later”.
Stricter consistency results in fewer possible orderings, while weaker consistency
allows for more. We formalize this intuition in the definition in the definition
below where we use a predicate χ to capture constraints on how operations can
be ordered. Given a schedule schedΩ and a sequential order seqΩ , it outputs 1 if
seqΩ orders certain operation pairs in the same way as schedΩ , and 0 otherwise.

Definition 1 (χ-consistent histories). A history H = (Ω, schedΩ , outΩf
) is

χ-consistent if there exists a sequence seqΩ such that:

χ(schedΩ , seqΩ) = 1 and ∀ op ∈ Ωf , exec(seqΩ , op) = outΩf
(op),

where Ωf ⊆ Ω is the set of completed operations, and exec is a function that
assigns op an output that conforms to the sequential correctness of the data
structure when executing operations in Ω in the sequential order seqΩ.

We say that a concurrent data structure is called χ-consistent, if all its exe-
cution histories are χ-consistent.

Linearizability. Linearizability [35] is a popular and strong consistency notion
that requires operations to preserve their real-time ordering, i.e., if op completes
before operation op′ begins, then op should take effect before op. Said differently,
it implies that operations should appear to be interleaved at the granularity of
complete operations, and the order of non-overlapping operations is preserved.
We formally define this notion below.

Definition 2 (Linearizability). An execution history H = (Ω, schedΩ , outΩf
)

is linearizable if the two conditions below are verified:

1. (span membership): for each operation op ∈ Ω, there exists a point in time
linp(op) ∈ R, called its linearization point, such that

timesched(op.[First]) ≤ linp(op) ≤ timesched(op.[Last])

2. (correctness): for all op ∈ Ωf , exec(seqlinpΩ , op) = outΩ(op), where seqlinpΩ is
created from the linearization points as follows. Let op and op′ be two opera-
tions in Ω and let opid and opid′ be their operation ids. If linp(op) < linp(op′),
then order opid before opid′ in seqlinpΩ .

Intuitively, the linearization point of an operation captures the instant when
the operation appears to have taken effect. For example, the linearization point
of an append operation is the point in its execution before which its value was
not in the multi-map but after which it definitely is.
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Progress Guarantees. The concept of termination is more complicated in concur-
rent execution than in sequential execution because an operation’s completion
depends not only on its own execution but also on the execution of other oper-
ations. For instance, an operation that is waiting on a lock cannot proceed until
the operation that holds the lock releases it. Progress guarantees define condi-
tions under which an operation is ensured to complete. These guarantees are
broadly classified as non-blocking and blocking, where the former allows other
operations to proceed even if one operation is delayed, while the latter does
not. Non-blocking guarantees are further classified into wait-freedom and lock-
freedom. An operation is considered wait-free if its executions complete in a
finite number of scheduler steps. In contrast, an operation is lock-free if it guar-
antees that some operation call will finish in a finite number of scheduler steps,
even if not all calls will. Similarly, blocking guarantees are further classified into
starvation-freedom and deadlock-freedom. An operation is starvation-free if its
executions can make progress provided that the locks are not held infinitely by
the other executions. On the other hand, an operation is deadlock-free if some
call will make progress.

4 Definitions

Structured encryption (STE) was introduced in [20] as a generalization of index-
based2 SSE schemes [23]. The notion of SSE was introduced in [58] and for-
malized in [23]. There are several forms of structured encryption. The original
definition of [20] considered schemes that encrypt both a structure and a set of
associated data items (e.g., documents, emails, user profiles etc.). In [21], the
authors also describe structure-only schemes which only encrypt structures. One
can also distinguish between response-hiding and response-revealing schemes: the
former reveal the response to queries whereas the latter do not.

Definition 3 (Append-only multi-map encryption scheme). A response-
hiding multi-client append-only multi-map encryption scheme ΣMM =
(Init,Append,Get) consists of three two-party protocols that are executed by n
clients C1, . . . Cn and a server S and work as follows:

– (K1, st1; . . . ; Kn, stn;EMM) ← InitC1,...,Cn,S(1k; . . . ; 1k; 1k): is a probabilistic
algorithm that takes as input from the clients and server a security parameter
1k. It outputs to a client Ci a key Ki and state sti and to the server an
encrypted multi-map EMM;

– (st′i;EMM′) ← AppendCi,S(Ki, sti, (�, v);EMM): takes as input from the client
its key Ki and state sti and a label/value pair (�, v); and from the server an
encrypted multi-map EMM. It outputs to the client an updated state st′i and
to the server an updated encrypted multi-map EMM′;

– (st′i, v; ⊥) ← GetCi,S(Ki, sti, �;EMM): takes as input from the client its key
Ki and state sti and a label �; and from the server an encrypted multi-map

2 In the literature structure-based schemes are also called index-based schemes.
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EMM. It outputs to the client a (possibly) updated state st′i and a tuple v and
to the server ⊥;

We stress that all the protocols (except the Init) can be executed by many
clients concurrently. For parameters θ, λ ∈ N≥1, we use LMM = {0, 1}θ to denote
the label space and VMM = {0, 1}λ to denote the value space of the multi-map.

4.1 Security Definition

We now turn to formalizing the security of a concurrent multi-map encryption
scheme. We do this by combining the definitional approaches used in secure
multi-party computation [12] and in structured encryption [20,23]. The secu-
rity of multi-party protocols is generally formalized using the ideal/real-world
paradigm. To capture the fact that a protocol could leak information to the
adversary, we parameterize the definition with a leakage profile that consists of
a leakage function L that captures the information leaked by the execution of
the operations.

Adversarial Model. In this work, we consider semi-honest adversaries that cor-
rupt the server and, therefore, see all its stored data, randomness, client opera-
tions, and shared memory instructions. Furthermore, we assume that the adver-
sary has control over the scheduler and can determine which atomic instruction
is executed at any given time. This implies that the adversary selects a schedule
schedΩ for a given operation set Ω.

The Real-World Execution. The real-world experiment is executed between a
set of n clients C1, . . . , Cn, a server S, an environment Z and an adversary A.
Given z ∈ {0, 1}∗, the environment Z sends a message to the adversary A to cor-
rupt the server S. The clients and the server then execute ΣCMM.Init(1k). Z then
adaptively chooses a polynomial number of operations (op1, . . . , opq), where opj

is either a (Get, �, i) tuple or a (Append, (�, v), i) tuple. For all j ∈ [q], Z sends opj

to client Ci. If opj is a get operation Ci executes ΣCMM.Get with the server but
if it is an append operation, Ci executes ΣCMM.Append. The adversary also com-
municates with the environment throughout the run of the experiment. Since the
adversary controls the scheduler and also communicates with the environment,
A and Z decide how to schedule operations. When an operation opj finishes, the
server returns the response to the right client Ci which, in turn, sends it to the
environment Z. After all the operations are executed, the adversary A sends a
message m to Z who returns a bit that is output by the experiment. We let
RealA,Z(k) be the random variable denoting Z’s output bit.

The Ideal-World Experiment. The experiment is executed between a set of n
dummy clients C1, . . . , Cn, an environment Z and a simulator Sim, where the
environment and the simulator can communicate at any point in the experiment.
Each party also has access to the ideal functionality Fχ,L

CMM. Given z ∈ {0, 1}∗,
Z sends a message to the simulator Sim to corrupt the simulated server S. Z
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then adaptively chooses a polynomial number of operations (op1, . . . , opq), where
opj is either a (Get, �, i) tuple or an (Append, (�, v), i) tuple. For all j ∈ [q], Z
sends opj to a dummy client Ci which forwards to it to the functionality Fχ,L

CMM.
Upon receiving a message the functionality executes its prescribed procedure
from Fig. 1 with simulator Sim. When a dummy client receives an output from
the functionality, it forwards it to Z. In the end, Sim computes a message m
from its view and sends it to Z. Finally, Z returns a bit that is output by the
experiment. We let IdealSim,Z(k) be the random variable denoting Z’s output
bit.

Definition 4 ((χ, L)-security). We say that a concurrent encrypted multi-map
scheme ΣMM = (Init,Get,Append) is (χ, L)-secure, if for all ppt adversaries A,
and all ppt environments Z, there exists a ppt simulator Sim such that for all
z ∈ {0, 1}∗, | Pr[RealA,Z(k) = 1] − Pr[IdealSim,Z(k) = 1]| ≤ negl(k).

Note that in both experiments, the environment can send an operation to any
client at any time so there can be multiple operations executed concurrently at
the server.

4.2 An Ideal Concurrent Multi-map Functionality

Our ideal functionality captures all the properties of a secure concurrent multi-
map, in particular, its consistency and security guarantees.

Capturing Consistency in the Ideal Functionality is Challenging. We begin by
discussing two challenges that arise in capturing the consistency guarantees of
a concurrent multi-map in the ideal/real-world paradigm. The first challenge is
that operations take time to execute and do not finish instantaneously in the
real world. To address this, we need to create an ideal functionality that can
account for this behavior. One option is to allow the functionality to choose an
arbitrary time to return output. However, this approach is problematic because
in the real world, the adversary controls when an operation ends, and there is
no way for the functionality to know this. The second challenge is determining
the outputs that the functionality should produce for operations. We want to
achieve χ-consistency, but there are multiple possible output sequences that can
satisfy this. Creating a functionality that chooses a specific sequence is also not
achievable because the scheduler can influence the outputs by forcing a specific
interleaving of atomic instructions. To address these challenges, we relax the
functionality and allow the simulator (i.e., the ideal adversary) to influence the
functionality’s output. When an operation ends, the simulator gives the func-
tionality a sequential order of operations that it uses to compute the operation’s
output.

The Functionality Overview. We formally describe the ideal concurrent multi-
map functionality Fχ,L

CMM in Fig. 1. The functionality stores two operation sets
Ω and Ωf , where Ω stores all the client operations, and Ωf ⊆ Ω stores all the
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completed operations. Both the sets start out as empty sets. The functionality
also stores a schedule sched of operations, and an output function out, both
of which it builds over time. When the functionality receives an operation op
from a client Ci, the functionality assigns the operation a unique opid, adds the
operation to Ω, and sends to the simulator the operation id, its name, and the
client id. Note that our functionality implicitly leaks the type of the operation,
and the client making that operation. As previously discussed, in concurrent
settings, the scheduler selects the next instruction to be executed. This means
that the simulator must receive information on the leakages at the instruction
level. In order to obtain the leakages of an operation op’s instruction ins, the
simulator sends a message (opid, ins) to the functionality to obtain its leakage.
The functionality first checks its local schedule sched to confirm if ins is the next
instruction that needs to be executed for op. If yes, it sends L(Ω, sched, opid.ins)
to the simulator and updates the schedule sched with opid.ins. Otherwise, it
aborts.

Moreover, when opid.ins is the last instruction for operation op, the simu-
lator additionally sends the functionality a sequential order seq of operations.
Recall that we want to capture the notion of χ-consistency in the functionality.
Therefore, the functionality makes the checks required by the definition of χ con-
sistency. In particular, it checks if seq is sequential, if χ(sched, seq) = 1, and if for
all the operations op′ ∈ Ωf completed so far, if exec(seq, op′) = out(op′). If seq
passes all the checks, the functionality accepts seq, else it aborts. It finally com-
putes the output r = exec(seq, op) of the operation just completed and returns
it to Ci. Finally, it updates its set of completed operations Ωf and adds op to
it.

5 A (Plaintext) Linearizable Multi-map

In this section, we describe a linearizable multi-client plaintext multi-map. This
structure underlies our main multi-map encryption scheme TST and will make
its description in Sect. 6 easier to understand. We start with a straw-man con-
struction and gradually build towards a final construction while highlighting
various security, efficiency and concurrency considerations.

5.1 An Initial Design

We construct a multi-client plaintext multi-map data structure MM =
(dDX, cDX1, . . . , cDXn) that is composed of a data dictionary dDX and n check-
point dictionaries cDXi, where n is the number of clients. For simplicity, we
assume the structure is accessed by a fixed number of clients, C1, . . . , Cn, but
note that the structure can handle a variable number of clients. The data dictio-
nary dDX will store labels and tuple values and the checkpoint dictionaries will
store meta-data necessary for correctness and fast get operations.

Intuitively, the structure stores a reverse linked list listi,� for each client Ci

that inserts a label/tuple pair (�, vi). The list listi,� = (nodei,�,1, . . . , nodei,�,m)
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Fig. 1. The concurrent multi-map functionality parameterized with consistency guar-
antee χ and a leakage function L.

is composed of m = #vi nodes nodei,�,j = (vj , addri,�,j−1), each of which
stores a value vj ∈ vi and a pointer addri,�,j−1 to the previous node, where
addri,�,0 = ⊥. The address of listi,�’s head is then stored in Ci’s checkpoint dic-
tionary cDXi. Storing label/tuple pairs using per-client lists has several advan-
tages, one of which is that it enables concurrent appends without needing
clients to synchronize on their state. Typically, nodes of the lists are stored
in memory and pointers are memory addresses but, in our case, we store
them in the data dictionary dDX so addresses and pointers are dDX labels.
Specifically, each node nodei,�,j = (vj , addri,�,j−1) is stored in dDX by setting
dDX [addri,�,j ] := nodei,�,j , where addri,�,j is a k-bit string chosen uniformly at
random. The address addri,�,m of listi,�’s head is then stored in Ci’s checkpoint
dictionary by setting cDXi[�] := addri,�,m. Throughout, we will sometimes refer
to the nodes of listi,� as (i, �)-nodes, to the nodes in dDX inserted by client Ci

as i-nodes and to the nodes in dDX that hold �’s values as �-nodes.

Get. To get the tuple associated with a label �, a client Ci sends � to the server.
The latter then retrieves the head address of every �-list and recovers the values
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from those lists. More precisely, for all i ∈ [n], the server computes addri,�,m :=
cDXi[�] and nodei,�,m := dDX[addri,�,m], parses nodei,�,m as (vm, addri,�,m−1),
adds vm to the response r, and then performs the same steps for the node at
address addri,�,m−1 until it reaches a node such that addri,�,j−1 = ⊥.

Append. To append a value vm+1 from client Ci to the tuple of a label �, the
client sends (�, vm+1) to the server. The latter computes addri,�,m := cDXi[�],
creates a new node nodei,�,m+1 = (vm+1, addri,�,m), samples a new dDX label
addri,�,m+1

$← {0, 1}k and inserts the node into the data dictionary by setting
dDX[addri,�,m+1] := nodei,�,m+1. It then updates Ci’s checkpoint dictionary by
setting cDXi[�] := addri,�,m+1.

5.2 Towards a Secure Design

The structure described above is efficient and is straightforward to encrypt
using any of a variety of practical dictionary encryption schemes. The result-
ing encrypted structure would also be efficient but it would not achieve the
level of security we want. To see why, consider the case where Ci performs an
append on � twice. Even if the multi-map is encrypted, the server would learn
that Ci appended to the same label twice because the two operations cause the
server to set cDXi[�] twice. These append-to-append correlations are problem-
atic because they reveal the length of the tuple already at append time. Another
issue is that this approach also reveals get-to-append correlations which can be
exploited using adaptive injection attacks [63].

Leakage-Free Appends Through Client State. To address this, we want a solution
with no append leakage at all. This could be achieved by storing and accessing
the checkpoint dictionaries using black-box ORAM simulation or by using a
leakage-free dictionary [31,43], but this would result in high overhead and mul-
tiple rounds of interaction. Instead, we take a different approach and modify the
append operation as follows. Specifically, appends will store the new node in the
data dictionary dDX but will not update the checkpoint dictionaries. We also
require the clients to store local state that maps labels to the head addresses of
their own lists (but not of other clients’ lists). During an append operation for
(�, vm+1), the client Ci sends to the server a pair (addri,�,m+1, nodei,�,m+1), where
addri,�,m+1

$← {0, 1}k and nodei,�,m+1 := (vm+1, addri,�,m) and addri,�,m is
retrieved from its local state. The client then updates its local state to map
� to addri,�,m+1 and the server inserts the new node in the data dictionary dDX
by setting dDX[addri,�,m+1] := nodei,�,m+1.

This guarantees that updates are leakage-free (modulo the fact that an
append occurred) but introduces a correctness issue for get operations. Specifi-
cally, the addresses stored in the checkpoint dictionaries can be out of date in the
sense that they do not necessarily point to the heads of the lists anymore. This, in
turn, means that there are nodes in each list that could be unreachable and not
returned by get operations. Throughout, we will refer to the addresses stored in
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the checkpoint dictionaries as checkpoint addresses and to the nodes pointed to
by those addresses as checkpoint nodes and recall that, with the current design,
checkpoint nodes are not necessarily heads.

Scanning and Filtering. One way to solve the correctness issue above is to store
the label � in the nodes so that they now have the form (vj , addri,�,j−1, �) instead
of (vj , addri,�,j−1) and to change the get operations to work in two phases as
follows. The first phase works as before; that is, for all i ∈ [n], the server retrieves
the checkpoint address addri,�,j := cDXi[�] and traverses the list to recover the
values stored in the nodes. In the second phase, it recovers the unreachable nodes
by scanning all the untouched nodes in dDX (i.e., the nodes in dDX it did not
access in the first phase), checking if they hold � or not and, if so, returning the
value in the node.

5.3 Towards a Secure and Efficient Design

With the changes made so far, we solved the leakage and correctness issues but
introduced non-trivial efficiency overhead. While appends remain optimal, gets
are now linear in the size of the multi-map due to the scanning step. In this
section, we show how solve this issue.

Time. We first provide an intuitive explanation of how we can address this
limitation and then show how to instantiate it concretely. Recall that the pur-
pose of the linear scan in the second phase of gets is to find the nodes that are
unreachable from the address stored in the checkpoint dictionary. Our solution
will be to build a new set of data structures that map labels to the unreach-
able nodes so that we can replace the linear scan with an efficient data struc-
ture query. Building such structures is possible because of the following key
observation: the nodes in the lists list1,�, . . . , listn,� that are unreachable are the
ones that were inserted into dDX after the checkpoint nodes. Based on this
observation we can modify the operations to work as follows. First, we make
the server include a timestamp in every node when it inserts them in dDX
during an append. The server also maintains n auxiliary range dictionaries
RDX1, . . . ,RDXn such that RDXi maps timestamps to the labels/addresses of
Ci’s nodes in dDX with the associated timestamp. During a get, the server then
does the following. For all i ∈ [n], it will retrieve the ith checkpoint node by com-
puting addri,�,j := cDXi[�] and nodei,�,j := dDX[addri,�,j ]. Recall that nodei,�,j

now has form (vj , addri,�,j−1, �, timej). It then retrieves the unreachable nodes
by: (1) computing (addr1, . . . , addrp) := RDXi[timej , ∞]; (2) retrieving nodes
nodez := dDX[addrz], for z ∈ [p]; and (3) filtering out the nodes that hold �.
Note that this time-based solution relies on the assumption that timestamps are
strictly increasing; that is, even if two append operations on the same label are
concurrent, the server will never assign their nodes the same timestamp and will
never assign them a timestamp smaller than any previous append. This could
possibly be achieved in practice with a clock that has high enough resolution
but we provide an instantiation that does not rely on any assumption.
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Our approach is to implement the timestamps using a linearizable counter
countg. The linearizability of the counter guarantees that no two nodes get
assigned the same counter and that if an append occurs before another, the
former’s counter value will be strictly smaller than the latter’s. So nodes now
have the form nodei,�,j = (vj , addri,�,j−1, �, count) and the range dictionaries
RDXi map counter values to the addresses of Ci’s nodes in dDX that have that
counter. We denote the counter of a node nodei,�,j as counti,�,j .

Updating the Checkpoint Dictionaries. Up to this point, our solution is correct
(i.e., the unreachable nodes are now returned), sub-linear (i.e., we do not need to
scan anymore) but we can still improve it. Notice that the efficiency of gets now
depends on the number of nodes inserted in dDX since the checkpoint node. It
follows then that the more up to date the checkpoint dictionaries are the better.
To achieve this, we update the checkpoint dictionaries during get operations (as
opposed to append operations). More precisely, at the end of a get the server
returns the reachable nodes of list1,� through listn,�, and all the nodes inserted
after the ith checkpoint node together with their addresses. The client then
parses this set of nodes and finds, for all i ∈ [n], the (i, �)-nodes with the highest
counter. Note that these nodes are the heads of the lists. The client returns
the heads together with their addresses to the server who can now update the
checkpoint dictionaries.

5.4 Towards an Optimal Design

The construction so far has optimal append, a single round of interaction, opti-
mal storage overhead, but the efficiency of gets is

#MM[�] +
∑

i∈[n]

∑

�′ �=�

#listi,�′ [count ≥ ci,�] = O

(
#MM[�] +

∑

�′ �=�

#list�′ [count ≥ min
i∈[n]

ci,�]
)

where ci,� = chkcounti,� is the counter of the (i, �) checkpoint node, list�′ =
∪i∈[n]listi,�′ , and list[cond] is the set of nodes in the list that satisfy the condition
specified by cond. Notice that the second term in the get complexity depends
on the number of non-�-nodes inserted, where � is the queried label. For certain
workloads this can lead to non-trivial overhead so we show how to avoid it.

Skipping. To solve the issue above, we add n skip dictionaries skDX1, . . . , skDXn

such that skDXi maps a label � to the time when an i-node was inserted last,
i.e., the largest counter in an i-node. We will refer to the counters stored in
skDXi as skip counters. Recall that previously, during the second phase of a get
the server would query the range dictionaries RDXi for all i-nodes with counters
greater than the ith checkpoint counter. Now, instead, the server queries the
range dictionaries for all i-nodes with counters greater than the ith skip counter.
Similar to the checkpoint dictionaries, the skip dictionaries are also updated
during gets, where the client parses the set of nodes it retrieves from the server
and finds for i ∈ [n], the i-nodes with the highest counter. The client returns the
counters of these nodes to the server who then updates the skip dictionaries.
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Efficiency. With the changes described, the complexity of appends, the round
complexity and the storage complexity remain the same, whereas the complexity
of gets is

#MM[�] +
∑

i∈[n]

∑

�′ �=�

#listi,�′ [count ≥ si,�] = O

(
#MM[�] +

∑

�′ �=�

#list�′ [count ≥ min
i∈[n]

si,�]
)

where si,� = skcounti,� is the (i, �) skip counter. Observe that for all � ∈ LMM,

min
i∈[n]

skcounti,� ≥ min
i∈[n]

chkcounti,�,

since skcounti,� ≥ max�∈LMM chkcounti,�.

Note. We slightly modify the gets to perform the label-based filtering at the
client instead of doing it at the server. While this modification does not change
our asymptotics, it is going to be essential to describe the changes we are going
to make due to various concurrency issues. Moreover, in the final TST protocol,
we will encrypt the labels which makes server-side filtering impossible.

5.5 A Concurrent Design

So far we designed our plaintext structure without considering concurrency. We
now present several challenges that come up when the structure is accessed
concurrently. Recall that our goal is to achieve linearizability which essentially
means that the operations should appear to be interleaved at the granularity
of complete operations, and the order of non-overlapping operations should be
preserved. In simpler terms, we should be able to order the operations in a way
that a get should always output all the values added by the append operations
ordered before it. Additionally, if an operation finishes before another one starts,
the former should be ordered before the latter.

5.5.1 Need for Atomic Instructions
Consider the following scenario involving two clients C1 and C2. Suppose list1,�

includes 100 nodes at addresses addr1,�,1, . . . , addr1,�,100 in dDX and assume the
(1, �) checkpoint address is addr1,�,1. If C2 executes a get on label � it retrieves
the reachable nodes of list1,� and list2,� as well as the nodes inserted after the
(2, �) skip counter. C2 will then determine that node1,�,100 is the head of list1,�

and will send addr1,�,100 to the server so that it can update the checkpoint
dictionary cDX1. Now assume that before the server updates cDX1[�], the sched-
uler pauses the execution of the get operation and that C1 executes a hundred
appends followed by one get all on label �. The one hundred appends result in
the creation of one hundred nodes with addresses addr1,�,101, . . . , addr1,�,200 and
the get operation results in C1 sending the server a new checkpoint address
addr1,200 which the server will use to update the checkpoint dictionary cDX1.
If the scheduler resumes C2’s get operation at this moment, the server will set
cDX1[�] to addr1,�,100 which is clearly wrong. For simplicity, we do not describe
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the updates of the skip dictionaries, but the same issue applies, where it is pos-
sible to overwrite the correct skip counter value count1,�,200 with an out-of-date
value count1,�,100.

As seen, with our current design it is possible to update the checkpoint
dictionaries with addresses that are out of date and the consequence is that the
next get operation for � will return incorrect results. This is the case because the
server will first retrieve the old checkpoint address addr1,�,100 from cDX1, then
recover the reachable nodes of list1,� from dDX starting at addr1,100. It will then
retrieve the skip counter count1,�,200 from the skip dictionary skDX1 and query
the range dictionary RDX1 which will return the addresses that were inserted
after count1,�,200. The server then uses these addresses to recover the remaining
nodes from dDX but this set of nodes is incorrect because it is missing the nodes
with addresses between addr1,�,101 and addr1,�,200.

Efficiency Issue. Now consider the scenario above except that the skip dictionar-
ies are the ones updated with out-of-date counters instead of the checkpoint dic-
tionaries. During a get on label �, the server retrieves an old counter count1,�,100
from the skip dictionary instead of the correct counter count1,�,200. Given this
counter, the server will query the range dictionary and recover the addresses
added after count1,�,100. But notice that the server already retrieved the nodes
between addr1,�,1 and addr1,�,200 since the checkpoint dictionary was updated
correctly so the server could potentially retrieve a large number of unnecessary
nodes just to filter them out at the end. In particular, the structure could have
get efficiency

#MM[�] +
∑

i∈[n]

∑

�′ �=�

#listi,�′ [count ≥ acounti]

where acounti is the counter value of the latest i-node at the time of an arbitrar-
ily old get operation—instead of being exactly at the time of the previous get
operation as intended. In the worst case, the efficiency of the get can be linear
in the size of the multi-map.

Compare and Swap Operations. The problem that leads to the issues above
is that the time at which the server was supposed to update the checkpoint
dictionary cDX1 for C2’s get on � and the time at which the server actually
updates it are distinct and during this interval of time the server receives and
executes additional append and get operations from C1. One possible solution
is to make the server check whether the to-be-written checkpoint address is
the latest one and only update the checkpoint dictionary if it is still so. This
approach, however, suffers from the same issue above since the time between
the check and the actual write are distinct. We solve this by making use of
atomic operations and, specifically, dictionaries that support CompareAndSwap
operations. These are dictionaries which, at a high level, execute a comparison
and an update operation in one atomic step. The atomicity guarantees that
there is no interruption between the comparison and the update so the approach
mentioned above will solve the problem. We provide more details below.
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The get operation now works the same as before, except for how the server
updates the checkpoint and the skip dictionaries. We focus on the case of the
checkpoint dictionaries but the same modifications apply to the skip dictionar-
ies. When the server receives a new checkpoint address addr�� , it first retrieves
node�

� := dDX[addr�� ]. It then parses node�
� as (v�, prevAddr�, �, count�) and

retrieves the node at the current checkpoint address addr×� which it parses as
(v×, prevAddr×, �, count×). If count× < count�, the server executes

CompareAndSwap(dDX, �, addr×� , addr�� ).

If the operation fails, there was an update to the checkpoint dictionary so the
server retries all the previous steps until CompareAndSwap is successful or until
the current checkpoint address corresponds to a node that has a higher counter
than the new one, i.e., when count� < count×. We refer to dictionaries that
support cas operations as cas-dictionaries and denote such schemes as ΔDX.

5.5.2 Need for Locking
Recall that our goal is to design a linearizable encrypted multi-map which means
that we need to ensure that all possible execution histories are linearizable. In
the following, we show that our construction so far is not linearizable which
leads to situations in which concurrent gets for the same label have incoherent
responses; that is, neither is a subset of the other.

First, we introduce some useful terminology. Consider an append and get
operation on two possibly distinct labels � and �′, respectively, and let node� be
the node inserted into the data dictionary by the append operation. We say that
the get sees the append if the client who initiated the get on �′ retrieves node�.
Recall that as part of a get, a client retrieves all the nodes that are reachable
through the checkpoint dictionaries and the nodes with addresses returned by
the range queries on the range dictionaries RDXi, for i ∈ [n]. Moreover, we say
that the get outputs the append if the get outputs the value of the node that
was inserted by the append operation. Note that it is possible for a get to see
an append but to not output it. This can occur due to the client-side filtering
step when the non-� nodes.

Why the Structure is not Linearizable. Assume there are four clients C1, . . . , C4
and let get1,� and get2,� be two concurrent gets on label � initiated by C1 and C2,
respectively. For this example, we solely focus on the accesses to the range dic-
tionaries. In particular, consider the part where get1,� and get2,� access the range
dictionaries RDX3 and RDX4 corresponding to C3 and C4 in the following order:
first, get1,� accesses RDX3, then get2,� accesses RDX3 and RDX4 and, finally, get1,�

accesses RDX4. We now show that the responses of the two gets are incoherent
which breaks linearizability. In the example above, get2,� accesses RDX3 after
get1,� so it is possible that get2,� sees and outputs appends from C3 that get1,�

does not see. This could happen, for instance, if C3 executes an append after
get1,� finishes reading RDX3. Similarly, since get1,� reads RDX4 after get2,�, it
could see and output appends from C4 that get2,� does not see. Therefore, in
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this execution there are appends that one get will output but that the other
does not. However, for linearization we must be able to order the two gets such
that the second get outputs (at least) the responses of the first get. Since neither
get1,� nor get2,� have responses that are a superset of the other, they cannot be
ordered appropriately and, therefore, the execution is not linearizable.

Coarse-Grained Locking. The reason the outputs of the gets do not have the
superset structure required for linearizability is that they do not synchronize on
their access to the range dictionaries. In particular, the concurrent gets can access
the range dictionaries in an interleaved manner which leads to the incoherent
outputs described above. To synchronize the gets’ accesses, we could wrap all
the range dictionaries under one big lock and require the gets to acquire the
lock before accessing them. This would solve the issue since there can be no
interleaved accesses but now a get might need to wait until the lock is released
by another concurrent get which can greatly decrease throughput.

Hand-Over-Hand Locking. Instead of using coarse-grained locking, we solve the
interleaving problem using a more granular form of locking called hand-over-
hand locking. More precisely, given two get operations get1,� and get2,� on the
same label �, if get1,� accesses RDXi before get2,�, we need to ensure that get1,�

accesses RDXi+1 before get2,� does, and this has to hold for all i ∈ [n − 1].
Accessing the range dictionaries prevents any form of interleaving and can be
achieved as follows. Instead of a single monolithic lock, we use a series of locks
rLock1, . . . , rLockn, one per range dictionary. When a get acquires rLocki it then
queries RDXi but only releases the lock when it acquires the next lock RDXi+1.
Hand-over-hand locking leads to much better throughput.

5.5.3 Synchronizing the Gets and Appends

So far, we focused on the various synchronization issues of concurrent get oper-
ations and showed how to extend our structure with atomic instructions and
hand-over-hand locking. We now highlight other synchronization issues between
get and append operations which can also result in non-linearizable execution
histories. Consider three clients C1, C2 and C3 such that C3 executes get3,�

which queries RDX1. After accessing RDX1 but before accessing RDX2, C3’s get
is paused and C1 executes an append append1,� followed by append2,� executed by
C2. After the two appends, server resumes C3’s get and accesses RDX2 where it
sees and outputs append2,� but not append1,� since it did not see it at the time
it queried RDX1. The execution history in this example is not linearizable. To
see why, observe that even though append1,� precedes append2,�, the get outputs
append2,� but not append1,� which violates the superset structure necessary for
linearizability.

Using Counters to Synchronize. The problem above is due to the fact that the
get and append operations are not synchronizing their accesses to the range
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dictionaries. More concretely, the gets have no way of knowing if they missed an
append operation in a range dictionary that they have already read. Similarly
to the previous problem, this issue can be solved with coarse-grained locking;
specifically, by requiring that every append and get acquire a lock on all the
range dictionaries. However, as discussed, this approach would affect throughput.
Instead, we synchronize get and append operations with a counter as follows.
The idea is to use a lineralizable counter to assign a time to a get operation
in such a way that clients can distinguish between appends that are before and
after the get. Recall that the appends already make use of a lineralizable counter
countg to timestamp the nodes. We now make use of countg to generate a counter
value countget whenever a client starts executing a get. More precisely, the gets
generate a counter value right before they try to acquire the lock for RDX1. Then,
if they see an append with a larger counter than countget, they discard it and
do not output it. This avoids situations where a get outputs a later append, but
misses an earlier one because it did not see that append. With this extension,
and going back to the example above, the get operation will not see either of the
appends, append1,� and append2,�, which solves the linearizability issue.

Final Details. The structure so far is almost complete except for one detail.
The new counter described above and the client-side filtering may some times
violate the superset structure required for linearizability.3 Now that the counter
is part of the get operation, the synchronization between the gets achieved with
hand-over-hand locking is violated and a total order can no longer be attained.
To solve this, we make a simple extension and wrap the counter countg with
a lock cLock. We also ensure that cLock and rLock1, . . . , rLockn are connected
through hand-over-hand locking in the sense that a get operation first needs to
acquire the cLock and then wait to acquire rLock1, then rLock2 and so on and
so forth.

6 TST: A Linearizable Multi-map Encryption Scheme

Our construction TST = (Init,Get,Append) makes black-box use of a lin-
earizable dictionary ΔDX = (Init,Get,Put), a linearizable cas-dictionary
ΔDX = (Init,Get,Put, CompareAndSwap), a linearizable range dictionary ΔRDX =
(Init,Put,GetGreater), a linearizable counter ΔCTR = (Init,FetchAndInc), a
pseudo-random function F : {0, 1}k ×{0, 1}∗ → {0, 1}k and a symmetric encryp-
tion scheme SKE = (Gen,Enc,Dec). Due to space limitations, the details of the
scheme are in the full version. At a high level, it works as follows.

Init. The init protocol is executed between a trusted party T, n clients C1, · · · , Cn

and the server S. All parties input the security parameter k. First, the trusted
party T samples two keys Ke, Ks

$← {0, 1}k and sends them to all clients. For all

3 This issue is very similar to the one discussed in Sect. 5.5.2 so we do not expand on
it in more detail.
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i ∈ [n], client Ci instantiates a state dictionary sDXi ← ΔDX.Init(θ, 2k) that will
be updated during append operations and that maps labels � to a pair composed
of (1) the address of the head of the linked list listi,� and (2) the key that encrypts
the head. The server S initializes a data dictionary dDX ← ΔDX.Init(k, θ+λ+3k).
For all i ∈ [n], S initializes a checkpoint dictionary cDXi ← ΔDX.Init(k, k), a skip
dictionary skDXi ← ΔDX.Init(k, k), a range dictionary RDXi ← ΔRDX.Init(k, k),
and a range lock rLocki := Λ.Init(·). The server S also initializes a counter lock
cLock := Λ.Init(·). Finally, it outputs the encrypted multi-map

EMM :=
(
dDX, (cDXi)i∈[n] , (RDXi)i∈[n] , (skDXi)i∈[n] , countg, cLock, (rLocki)i∈[n]

)
.

Append. The append protocol is executed between a client Ci and the server
S. It takes as input a key K, a state st, a label � and a value v from the client
and the encrypted multi-map EMM from the server. It is a single-round protocol
that works as follows:

– (client) The client first retrieves from sDXi the address dtag�− of the head
of listi,� and its corresponding key K�− . If this is the first time Ci appends
a value for �, the entry in the state dictionary will be empty and the client
sets both dtag�− and K�− to ⊥. The client then samples a new data tag
dtag�

$← {0, 1}k and a new key K�
$← {0, 1}k and creates a new node composed

of five ciphertexts
(ct�, ctv, ct�− , ctK�− , ctK�

),

where ct� := EncKe
(�) is an encryption of the label with key Ke, ctv :=

EncKe
(v) is an encryption of the value under key Ke, ct�− := EncK�

(dtag�−)
is an encryption of the previous data tag under the new key K�, ctK�− :=
EncK�

(K�−) is an encryption of previous key under the new key K�, and
ctK�

:= EncKe
(K�) is an encryption of the new key under key Ke. The client

then updates the state dictionary with the new data tag and key and finally
sends to the server an append token atk := (dtag�, nodei,�) composed of the
new data tag along with the encrypted node.

– (server) Once the server receives the append token atk, it first retrieves
and increments the global counter count ← ΔCTR.FetchAndInc

(
countg

)
. It

then appends the counter value to the encrypted node by setting nodei,� :=
(nodei,�, count). The server then inserts the encrypted node nodei,� in the
data dictionary at the address provided by the client by computing dDX ←
ΔDX.Put

(
dDX, dtag, node). It also inserts the pair (count, dtag�) in the range

dictionary by computing RDXi ← ΔRDX.Put
(
RDXi, count, dtag). Finally, the

server outputs the updated encrypted multi-map.

Get. The get protocol is executed between a client Ci and the server S. The
protocol takes as input a key K, a state st, a label � from Ci and the encrypted
multi-map from S. The get protocol is a three-round protocol that works as
follows:
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– (client round 1) The client first generates the checkpoint tag ctag�,j for label
� and all j ∈ [n] by computing ctag�,j := F [Ks, �, j, 1]. The client then sends
to the server the get token gtk1 := (ctag�,j)j∈[n] composed of all checkpoint
tags;

– (server round 1) Once the server receives the first get token gtk1, it initial-
izes an empty set R and retrieves the data tag dtagj from the checkpoint
dictionary by computing, for all j ∈ [n], dtagj ← ΔDX.Get

(
cDXj , ctagj

)
. If

dtagj �= ⊥, the server retrieves the corresponding node nodej from the data
dictionary by computing nodej ← ΔDX.Get

(
dDX, dtagj

)
, and appends it to

R. Note that the absence of a tag dtagj simply means that either the jth
client never appended a value for � or that the ongoing get is the first get
initiated by any client. The server sends the set R to Ci.

– (client round 2) For all j ∈ [n], the ith client parses nodej in R and decrypts
the ciphertext of the previous key by computing K�−,j := DecKe

(ctK�− ). The
client also computes the checkpoint tag ctagj as well as the skip tag sktag by
computing

ctag�,j := F [Ks, �, j, 1] and sktag�,j := F [Ks, �, j, 2].

The client sends to the server the second get token gtk2 composed of the old
key K�−,j , the checkpoint tag ctag�,j and the skip tag sktag�,j for all j ∈ [n].

– (server round 2) Once the server receives the second get token gtk2, it initial-
izes n empty sets (Rj)j∈[n], retrieves the counter from the skip dictionaries
and the data tag from the checkpoint dictionary by computing

skcountj ← ΔDX.Get
(
skDXj , sktag�,j

)
and dtagj ← ΔDX.Get

(
cDXj , ctag�,j

)
.

The server then traverses listj,� starting from the head node located at
dtagj and populates the result sets Rj , for j ∈ [n], as follows. It
first retrieves the node from the data dictionary by computing nodej ←
ΔDX.Get

(
dDX, dtagj

)
, adds the pair (dtagj , nodej) to Rj , parses the node as

(ct�, ctv, ct�− , ctK�− , ctK�
, count), decrypts the ciphertext of the previous data

tag by computing dtag−
j := DecK�−,j

(ct�−) (which becomes the new head),
and decrypts the ciphertext of the previous key K�−,j := DecK�−,j

(ctK�− )
(which becomes the new key). The server reiterates this process until it
reaches a data tag dtag−

j equal to ⊥.
The server also accesses the range dictionary to retrieve the data tags. In par-
ticular, it first waits and acquires the counter lock cLock, retrieves and incre-
ments the counter countGet ← ΔCTR.FetchAndInc

(
countg

)
and then unlocks

cLock. For all j ∈ [n], the server then waits and acquires the range lock of the
range dictionary rLockj , retrieves all the data tags that have a counter larger
than skcountj such that rj ← ΔRDX.GetGreater (RDXj , skcountj), releases
the lock, and then retrieves all the nodes from the data dictionary located
at the corresponding data tags. Note that the acquisition and release of
the lock follows a hand-over-hand locking mechanism (refer to Sect. 5.5.2
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for more details). In particular, for all dtag ∈ rj , the server computes
node ← ΔDX.Get (dDX, dtag) and adds (dtag, node) to Rj . Finally, the server
sends to the client (Rj)j∈[n] along with the get counter countGet.

– (client round 3) In this round, the client filters the nodes and only keeps
the ones that need to be part of final response. The client also computes,
for all j ∈ [n], the new head dtag�

j of the linked list to be stored in the
checkpoint dictionary and the most recent counter skcountj to be stored in
the skip dictionary. To filter the nodes, it initializes a set v and for all j ∈ [n],
performs the following steps. For all (dtagz, nodez) ∈ Rj , it parses the node as
(ct�,z, ctv,z, ct�−,z, ctK�−,z

, ctK�,z, countz) and decrypts the ciphertext of the
label by computing �z := DecKe

(ct�,z). If �z = � and countz is smaller than
countGet, the client computes v := DecKe

(ct�,z) and adds it to v. Note that the
second condition is necessary to synchronize between the get and the append
operations which is crucial for linearizability as discussed in Sect. 5.5.3. As a
second step, client computes the new head of the linked list, dtag�

j , by first
identifying the node for label � with the largest counter and then setting
dtag�

j := dtagz� , chkcountj := countz� , where

z� := arg max
z∈Z

(countz) and Z = {z ∈ [|Rj |] : �z = �}.

For the skip counter, the client needs to identify the node with the largest
counter irrespective of the underlying label, i.e., skcountj := maxz

(
countz

)
.

The client also computes the checkpoint tag as well as the skip tag

ctag�,j := F [Ks, �, j, 1] and sktag�,j := F [Ks, �, j, 2],

which are necessary to update the jth checkpoint dictionary and the jth skip
dictionary. Finally, the client sends the third get token gtk3 which is com-
posed of the checkpoint tag ctag�,j , the checkpoint counter chkcountj and the
new data tag dtag�

j which is the address of the new head of the linked list.
The token also includes of the skip counter skcountj as well as the skip tag
sktag�,j , for all j ∈ [n].

– (server round 3) Once the server receives the third get token, it updates
the checkpoint dictionary as well as the skip dictionary. In particular,
for all j ∈ [n], the server first retrieves the old data tag by comput-
ing dtag×

j ← ΔDX.Get
(
cDXj , ctagj

)
. It then retrieves the corresponding

node from the data dictionary from which it extracts the counter countj .
The server only updates the checkpoint dictionary if the old counter
countj is strictly smaller than the new checkpoint counter chkcountj .
For this, it makes use of the compare and swap atomic instruction
CompareAndSwap(cDXj , ctagj , dtag×

j , dtag�
j ), so that cDXj [ctagj ] is updated

to dtag�
j if and only if cDXj [ctagj ] = dtag×

j . If the CompareAndSwap fails, the
server performs the same steps as above until countj ≥ chkcountj . It performs
the same steps to update the skip dictionary; i.e., for all j ∈ [n], it computes
CompareAndSwap(skDXj , sktagj , count×j , skcountj), where count×j is the old
counter in the skip dictionary such that count×j ← ΔDX.Get

(
skDXj , sktagj

)
.
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The client finally outputs the final response v whereas the server outputs the
updated encrypted multi-map EMM.

Making TST Fully-Dynamic. TST can be extended to support delete operations
using lazy deletion which has been used in many dynamic multi-map encryption
constructions [8,9,15,28,59]. The lazy deletion of a label/value pair (�, v) is
implemented using an append of (�, v) with an additional delete marker. During
gets, the client retrieves both pairs and uses the delete markers to filter out
the deleted values. In the context of TST, the client retrieves the nodes of the
appended and deleted pairs and filters out the deleted values as follows. For
each append node with value v, if there is a delete node with value v but a
greater counter, then it removes v from the response; otherwise, it keeps v.
The construction can be made linearizable with a minor change to the append
protocol on the server side. When a client Ci sends a new node to the server,
it uses hand-over-hand locking over cLock and rLocki to increment countg and
to update RDXi. Unfortunately, this makes appends and deletes deadlock-free
instead of lock-free. All the operations linearize at the time they lock cLock.
Due to space constraints, the proof will appear in the full version of this work. We
leave it as future work to design a linearizable lock-free fully-dynamic encrypted
multi-map.

7 Efficiency, Linearizability and Security of TST

Efficiency Analysis. Due to space constraints, we defer the efficiency analysis
of TST (including time, storage, round complexity, and progress guarantees) to
the full version. We first analyze the asymptotic behavior of TST in a black-box
manner, and then, examine its concrete efficiency by considering specific instan-
tiations of the underlying plaintext data structures. Additionally, we investigate
both the worst-case and best-case scenarios for the get complexity.

Linearizability. We show that TST is linearizable. In particular, we first intro-
duce a linearizable procedure LZP (in the full version) which defines the lin-
earization points for all possible execution histories H in TST. As a second step,
given the output of the linearizable procedure we prove that TST verifies both
the span membership and the correctness conditions described in Definition 2.
While proving span membership is relatively straightforward, proving correct-
ness is more challenging as it requires showing that for all append operations
append� and get operations get� for label � in the history H, the inequality,
linp(append�) < linp(get�) holds if and only if the appended value in append� is
part of the output of the get operation get�. Conversely, if the append operation
is not part of the output of the get operation, then append� should be linearized
after get�. Due to space constraints, we defer the details to the full version, and
only state the main result here.

Corollary 1. If ΔDX, ΔDX, ΔRDX and ΔCTR are linearizable, then all execution
histories H are linearizable and, therefore, TST is linearizable.
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Security. We describe TST’s instruction-level leakage L. During an append oper-
ation, there is no leakage. During get operations, TST leaks the operation equal-
ity pattern, i.e., correlations between operations on the same label. In the first
round of server communication, when the server receives the first get token gtk1,
it infers correlations with get operations that have the same label and for which
the server has also received the first get token. This is because the first get
token for two gets that query the same label will be the same. Next, during the
third round, when the server receives new checkpoint addresses in gtk3, it learns
new correlations between the current get and append operations. These corre-
lations are with the appends that added their counters to the range dictionary
before the get operation read that range dictionary. This is because when the
server sees the new checkpoint address, it learns that all these nodes have the
same label as the current get operation. Due to space constraints, a formal and
detailed description of the leakage profile L and proof of the theorem are in the
full version.

Theorem 1. If F is pseudo-random, SKE is a CPA-secure, and ΔDX, ΔDX,
ΔRDX, and ΔCTR are all linearizable, then TST is (χlz, L)-secure in the random
oracle model.

Note. In the sequential setting, our construction achieves forward privacy which
has been extensively studied in the STE literature and is the standard security
goal for dynamic encrypted multi-maps. As pointed out in [63], forward privacy
can protect against certain injection attacks but recent work [4] has shown that
forward privacy has some limitations. In the concurrent setting, there are no
standard security notions for leakage profiles and, as far as we know, there are
no concurrent-specific leakage attacks (e.g., that also exploit adversarial schedul-
ing), therefore we do not have a baseline for comparison other than the one in
the sequential setting.
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Abstract. We revisit the lattice-based verifiable oblivious PRF con-
struction from PKC’21 and remove or mitigate its central three sources
of inefficiency . First, applying Rényi divergence arguments, we elimi-
nate one superpolynomial factor from the ciphertext modulus q, allow-
ing us to reduce the overall bandwidth consumed by RLWE samples
by about a factor of four. This necessitates us introducing intermediate
unpredictability notions to argue PRF security of the final output in
the Random Oracle model. Second, we remove the reliance on the 1D-
SIS assumption, which reduces another superpolynomial factor, albeit
to a factor that is still superpolynomial. Third, by applying the state-
of-the-art in zero-knowledge proofs for lattice statements, we achieve a
reduction in bandwidth of several orders of magnitude for this material.
Finally, we give a t-out-of-n threshold variant of the VOPRF for con-
stant t and with trusted setup, based on a n-out-of-n distributed variant
of the VOPRF (and without trusted setup) .

1 Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a
client and a server allowing the client to derive a pseudorandom output based on
their input. In particular, an OPRF allows a client to receive a pseudorandom
function (PRF) evaluation on an input x from a server with key k. The secu-
rity of the protocol then refers to (i) the server not learning anything about the
input x and (ii) the client not learning anything besides the PRF evaluation of x
under k. An OPRF is additionally verifiable if the client is guaranteed that the
output received is indeed evaluated under a committed key. (V)OPRFs recently
gained considerable popularity with important applications including but not
limited to secure keyword search [23], private set intersection [31], secure data
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de-duplication [34], password-protected secret sharing [27,28], and more popu-
larly password-authenticated key exchange(PAKE) [30] and private lightweight
authentication mechanisms [18]. A systematisation of knowledge of OPRFs is
given in [14].

Unfortunately, while VOPRFs have useful practical applications and an
abundant number of constructions, these are insecure in the post-quantum set-
ting, i.e. in the presence of a quantum adversary, since they rely on classi-
cal assumptions. Hence, it is required to design VOPRFs relying on plausibly
quantum-resistant assumptions so that the world of functionalities afforded by
VOPRFs can also be realised in this new era. Yet, like many other functionalities
in a post-quantum setting, post-quantum secure VOPRFs are scarce. We give
an overview of the current state of the art in Table 1, extending a table from [3].

In particular, VOPRFs based on lattices have only a limited number of con-
structions. The first known round-optimal post-quantum VOPRF in [4] is more
of a feasibility result rather than a practical proposal due to the required zero-
knowledge proofs causing the communication to be in GBs. Even ignoring this
cost, bandwidth per query was estimated at about 2MB in the semi-honest set-

Table 1. Post-quantum (V)OPRF candidates in the literature

work assumption r communication model

plain

[4] R(LWE), SIS 2 ≈ 2 MB semi-honest, QROM

[41] Legendre PRF 3 ≈ λ· 13K semi-honest, pp, ROM

[12] CSIDH 3 424 KB malicious client

[25] CSIDH 2 21 KB semi-honest, ts

[25] CSIDH 4 35 KB malicious client, ts

[25] CSIDH 258 25 KB semi-honest

[19] [11] 2 80B semi-honest, pp

[22] AES ? 4746 KB malicious client, pp

[3] lattices, [11] 2 2.5 MB + 10 KB malicious client, ROM

[3] lattices, [11] 2 15MB + 5.3 KB malicious client, ROM

[2] [2] 2 4.8 B + 114.5 B semi-honest, pp, wPRF

verifiable

[4] R(LWE), SIS 2 > 128 GB malicious, QROM

[3] lattices, [11] 2 2.8 MB + 110 KB malicious, ROM

[3] lattices, [11] 2 15 MB + 60 KB malicious, ROM

[9] Legendre PRF 9 911 KB malicious, ROM

[8] [8] 2 28.9 KB malicious, ROM

this work, Q = 216 R(LWE), SIS 2 108.3kB + 188.6kB malicious, ROM

this work, Q = 264 R(LWE), SIS 2 221.5kB + 315.9kB malicious, ROM

The column “r” gives the number of rounds. ROM is the random oracle model, QROM
the quantum random oracle model, “pp” stands for “preprocessing”, “ts” for “trusted
setup”, “wPRF” for PRFs that accept random inputs. When bandwidth is reported as a
sum, this is for a one-time offline cost and online costs per query respectively, where
online costs are amortised over 64 queries for [3]. See Table 2 for details on our
parameters.
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Table 2. Example parameters

log Q λ (d, log q, log σ′) |c| |cx| |dx| size

4 100 (4096, 137, 35) (68.5, 36.1) (68.5, 73.2) (1.8, 38.8) (104.6, 182.3)

16 95 (4096, 143, 41) (71.5, 36.8) (71.5, 75.5) (1.8, 39.8) (108.3, 188.6)

32 90 (4096, 151, 49) (75.5, 38.0) (75.5, 79.4) (1.8, 41.0) (113.5, 197.7)

64 167 (8192, 169, 67) (169.0, 52.5) (169.0, 88.6) (1.8, 56.5) (221.5, 315.9)

Q is the number of queries supported, λ the dRLWE security level, d, q are dRLWE dimension

and modulus and σ′ the size of the drowning noise. All sizes are in kB, (x, y) means size of

value and proof except in the the last column which gives the offline and online sizes. We

always target a correctness error of 2−100.

ting. More recently [3] adapted the “Crypto Dark Matter” PRF [11] to the lat-
tice setting using fully-homomorphic encryption [15]. The resulting construction
achieves practical sizes but is slow to evaluate for the server, and rather complex
to implement by relying on the full machinery of fully homomorphic encryption.
Moreover, in addition to the PRF assumption in [11], the construction relies on
a heuristic argument for verifiability.

For the threshold setting, the concurrent work of [32] is most similar to ours.
There, the authors propose four different distributed OPRFs based on the Leg-
endre PRF in a setting where client-server communication is round optimal but
servers communicate between client evaluations. Our construction does not have
this requirement after the initial setup. Similar to our construction, the con-
struction in [32] is only efficient for small (t, n) pairs. Unlike our constructions,
however, [32] requires n servers to be available for evaluation for different set-
tings whereas we only require t for security with aborts. The constructions also
have weaker security guarantees compared to ours. Out of the four, only the last
constructions promises security against malicious servers with a dishonest major-
ity, which relies on the security guarantees of the underlying MPC operations.
This causes issues with some security assumptions, as neither client privacy nor
verifiability is provided against ≥ t or n corrupted servers respectively. Our con-
struction provides these guarantees also when n servers are corrupted. On other
hand, [32] achieves low bandwidth between clients and servers of roughly n · λ2

bits, which is much smaller than our construction.

1.1 Technical Overview

To present our contributions, we begin with a high-level overview of the con-
struction from [4] and highlight its main bottlenecks. The VOPRF construction
is based on the ring instantiation of the PRF by Banerjee and Peikert [7]
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Fk(x) =
⌊

p

q
· aF (x) · k

⌉
(1)

where k ∈ Rq is the key with small coefficients represented in {−q/2, . . . , q/2}
and aF (x) is essentially a hash function processing the client input x. Security
of the construction can be reduced to the hardness of RLWE. The construction
in [4] instantiates this framework with uniformly random public vectors a0,a1 ∈
R1×�

q and a bit decomposition function G−1. Given a public a ∈ R1×�
q the high-

level protocol is then:

1. The server publishes a commitment c := a · k + e to a small key k ∈ R.
2. For input x, the client chooses a small s ∈ R and eC ∈ R1×�, and computes

cx := a · s + eC + aF (x) mod q.
3. Using k, the server sends dx := cx · k + eS mod q for small eS ∈ R1×�.
4. The client finally outputs y =

⌊
p
q · (dx − c · s)

⌉
.

Since dx = a · s · k +aF (x) · k + eC · k + eS, if eS is chosen from a distribution
that hides the presence of additive terms eC · k, e · s and the absence of the
additive term ex (which follow some narrow distribution Ea0,a1,x,σ) then it is
indistinguishable from d′

x = (a ·k +e) · s+eS +(aF (x) ·k +ex) = c · s+(aF (x) ·
k + ex) + eS. Then if ex is chosen from a proper distribution [7], aF (x) · k + ex

and consequently dx leaks nothing about k by the RLWE assumption. Similarly,
if s chosen from a proper RLWE secret distribution and e is from a discrete
Gaussian, the client message cx = a ·s+e+aF (x) is also indistinguishable from
uniform by RLWE.

Correctness is satisfied with high probability regardless of the choice of k by
the one-dimensional short integer solution (1D-SIS) assumption [13]. Verifiability
is then achieved with the help of non-interactive zero-knowledge arguments of
knowledge showing c,cx, and dx are computed correctly.

The above construction is intuitive in following well-established pre-quantum
Diffie-Hellmann blueprints. Moreover, its simple algebraic nature (and instantia-
tion in the standard model, except potentially for zero-knowledge proofs) allows
for extensions such as threshold variants.

However, the concrete instantiation is highly inefficient due to three reasons.
First, the correctness of the PRF adds a superpolynomial factor to the mod-

ulus q to ensure correct rounding which in the end results in large parameters.
Indeed, to thwart adversaries that maliciously sample k such that aF (x) · k pro-
duces a rounding error for a target value x, [4] relies on the 1D-SIS assumption
as just mentioned. This assumption requires q � 22λ, i.e. more than what we
would naively expect to have correct rounding with overwhelming probability.1

Second, to hide the additive terms eC · k, e · s and ex, the eS has to have
superpolynomial size in the norm of these terms. This allows for an argument
based on statistical distance to go through.
1 Concretely, [4] picks log(q) ≈ 256 and a ring dimension of 214 for the semi-honest

setting, i.e. without considering maliciously chosen k. This leads to a communication
cost of 2MB already; relying on the 1D-SIS assumption would require log(q) ≈ 2048
based on SIS estimates provided by the lattice estimator [5].
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Third, the NIZKAoKs required for verifiability and to protect against mali-
cious clients add further overheads as these relations require non-trivial state-
ments. In particular, the proof that cx is correctly computed has to show cx

indeed contains aF (x) without revealing the secrets x, s, or eC. Since aF (x) is
highly irregular with calls to bit decompositions and two different public vec-
tors, [4] used the NIZKAoK construction from [43] which proves rank-1 con-
straints (R1CS) over Zq, breaking the native structure of the protocol. Combined
with large parameters this causes bandwidth in the GBs.

1.2 Contributions

In this work, we resolve or reduce the above-mentioned sources of inefficiency.
First, we avoid relying on the 1D-SIS assumption, by borrowing a trick from

the non-interactive key exchange in [24]. Instead of defining the PRF output as
�p

q · (aF (x) ·k)�, we define it as �p
q · (aF (x) ·k +r)� where r is the output of some

Random Oracle called on x and c: r := Hr(x, c). In the Random Oracle model,
r is independent of k and thus �p

q · (aF (x) · k + r+ eC · k + eS)� will round to the
correct value �p

q ·(aF (x) ·k+r)� with a probability to ≈ 1−‖eC ·k+eS‖∞/(q/p).
This still requires a superpolynomial gap between q and ‖eC · k + eS‖∞ but this
gap is comparable to that in the semi-honest setting of [4].

Second, we change the way how we analyse eS and remove the superpolyno-
mial dependency on the norm of additive terms. To achieve this, we use a Rényi
divergence based approach instead of the statistical distance. However, for this,
we have to replace the simulation-based security in the standard model in [4]
with a game-based notion in the Random Oracle model. In more detail, except
in rather particular circumstances, we cannot apply Rényi divergence arguments
to decision problems [6]. To work around this, we first show that our construc-
tion based on [4] achieves the notion of unpredictability, which we then upgrade
to PRF security. Overall, this leads to a bandwidth improvement of roughly an
order of magnitude when compared with the semi-honest parameters of [4] (and
without NIZKAoK).

Third, we replace the NIZKAoK [43] with that from [38] compressed with
LaBRADOR [10] and also work in larger rings Rq with lattice statements. This
improves bandwidth by several orders of magnitude.

Overall, we obtain the sizes reported in Table 2. Compared with [4], our
work allows for practical-ish parameters. Compared with [3], our bandwidth
requirements are smaller if few evaluations are required. In terms of computa-
tional burden, we note that [3] has an expensive computation on the server side
(TFHE bootstrapping) whereas we have an expensive computation on the client
side (proving well-formedness with a complex statement).

Finally, we extend the functionality of the VOPRF and build multiparty
protocols. We use n-out-of-n and t-out-of-n threshold VOPRFs which consist
of n servers jointly evaluating the input x and n (respectively t) servers are
required to generate the output. The n-out-of-n construction is immediate from
the key-homomorphic properties of the VOPRF. To achieve the more interesting
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t-out-of-n setting, we exploit that in the VOPRF setting, we expect t to be
quite small, i.e. constant. Moreover, we assume a trusted setup. While this is a
significant limitation of this work, we think this assumption is justified in the
VOPRF setting, where one entity may aim to avoid single points of failure, rather
than multiple parties coming together to, say, validate some statement, i.e. the
threshold signature setting. In our approach, we essentially output

(
n
t

)
copies

of the n-out-of-n setting. We use rejection sampling to enforce that these are
all well-distributed. To achieve verifiability in the t-out-of-n case we rely on an
additional cut-and-choose type argument to be able to use weaker NIZKAoKs.

2 Preliminaries

For integers a and b where a < b we use [a, b] to represent the set {a, a+1, . . . , b−
1, b}. If a = 0 and b = n − 1 we use the notation [n] instead. For a vector
b we use b[i] as the indexing operator. We denote the output of probabilistic
algorithms with ← and deterministic ones with :=. Similarly for a distribution
D or a bounded set S if an element x is sampled according to distribution D or
uniformly random from S we denote it as x ← D and x ← S respectively. For two
distributions, we use ≈c to denote they are computationally indistinguishable.
A PPT algorithm is a probabilistic algorithm with running time polynomial in
the security parameter λ. We say a function is negligible in λ if λ−ω(1) and write
r1 � r2 as short-hand for r1 ≥ λω(1) ·r2. We denote the �x norm of a vector with
‖·‖x. If x = 2 and clear from the context, we omit the subscript. A distribution
D is B bounded if Pr [‖x‖ ≥ B : x ← D] < δ for a negligible δ. We also consider
the rounding operation �·� to the nearest integer (rounding down if there is a tie)
and �x�q′ := �q′/q · x� from Zq to Zq′ for q′ < q and x ∈ Zq. We use lowercase
letters to denote ring elements and boldface lowercase letters to denote vectors.

We use power of two cyclotomic rings in this work. For a modulus q ∈ Z,
we consider the polynomial ring R = Z[X]/〈XN + 1〉 and Rq := R/qR for a
power-of-two N . The set R≤c is then the set of all elements of R with coefficients
that have an absolute value of at most c. Norms of ring elements are defined over
the coefficient vectors of the said elements and norms of vectors of ring elements
are norms of the concantenation of the coefficient vectors.

Define G : R�×�
q → R1×�

q to be the linear operation corresponding to left
multiplication by (1, 2, . . . , 2�−1). Further, define G−1 : R1×�

q → R�×�
q to be

the bit decomposition operation that essentially inverts G i.e. the ith column of
G−1(a) is the bit decomposition of ai ∈ Rq into binary polynomials.

For a0,a1 ∈ R1×�
q , x ∈ {0, 1}L, and i ∈ [L] define

ax\i := G−1
(
axi+1 · G−1

(
axi+2 · G−1

(
· · ·
(
axL−2 · G−1

(
axL−1

))
· · ·
)))

∈ R�×�
q .

Now, for a client input x ∈ {0, 1}L, let Ea0,a1,x,σ be the distribution of all ex

computed as e =
∑L−2

i=0 ei · ax\i + eL−1 where ∀i ∈ [L] : ei ← R1×�
χσ

.
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2.1 Discrete Gaussian Distributions over Polynomial Rings

The discrete Gaussian distribution over R is defined as follows:

Definition 1. For x ∈ Rm let ρv,s(x) = exp(−π‖x − v‖2
2/s2) be the Gaus-

sian function of parameters v ∈ Rm and s ∈ R. Then the discrete Gaussian
distribution Dm

v,s centered at v is

Dm
v,s = ρv,s(x)/ρv,s(Rm) where ρv,s(Rm) =

∑
x∈Rm

ρv,s(x).

When there is only a single element in a vector, we omit the superscript and
if v is the zero-vector, we omit the subscript v. When s exceeds the smoothing
parameter ηε(Rm) ≤ ω(

√
log(mN)), Dm

s behaves like a continuous Gaussian
of standard deviation of σ = s/2π. The following lemmas will be useful when
we discuss our key generation algorithm for our threshold construction where
we need to argue about the distribution of key shares based on properties of
Gaussians.

Lemma 1 [40, Theorem 3.3]. Let s be a parameter exceeding the smoothing
parameter by a factor of at least

√
2 and xi for i ∈ [n] be independent samples

from Dm
s . Then the distribution of x :=

∑
i

xi is statistically close to Dm
s
√

n
.

For our threshold construction, we rely on rejection sampling [37] to guaran-
tee each partial key adheres to a particular distribution. The following lemma
shows for a vector of ring elements x sampled from a Gaussian, the �2 norm is
bounded for all but negligible probability:

Lemma 2 [37, Lemma 4.4 adapted]. For any γ > 1, we have

Pr
[
‖x‖2 > γ · σ ·

√
m · N : x ← Dm

s

]
< γm N · em N ·(1−γ2)/2.

To be able to argue that our key shares in the t-out-of-n setting are no differ-
ent compared with a key sampled from an independent Gaussian distribution,
we have the following lemma that allows us to decide on a σ and the expected
number of repetitions M in rejection sampling:

Lemma 3 [37, Lemma 4.5 adapted]. For a V ⊆ Rm, let T = maxv∈V ‖v‖2.
For a fixed t with t = ω(

√
log(mN)) and t = o(log(mN)) if σ = α · T for any

positive α then:

Pr
[
M ≥ Dm

s (x)/Dm
v,s(x) : x ← Dm

s

]
≥ 1 − ε

where M = et/α+1/(2(α2)) and ε = 2e−t2/2.

For practical set of parameters, M grows slowly which is useful for arguing that
rejection sampling does not need too many trials to “clean up” a small centre
v. For the remainder of the work we use Rχσ

to denote distribution of elements
in Rq which have coefficients distributed according to the a discrete Gaussian
with parameter χσ.
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2.2 Rényi Divergence

For any two discrete probability distributions φ and φ′ such that Supp(φ) ⊆
Supp(φ′) and an α ∈ (1,+∞). The Rényi divergence of order α can be defined
as:

Rα(φ‖φ′) :=

⎛
⎝ ∑

x∈Supp(φ′)

φ(x)α

φ′(x)α−1

⎞
⎠

1
α−1

.

The Rényi divergence Rα has the following properties for probability distribu-
tions φ, φ′, φ′′ with Supp(φ) ⊆ Supp(φ′) ⊆ Supp(φ′′):

– Log. Positivity: Rα(φ‖φ′) ≥ Rα(φ‖φ) = 1.
– Data Processing Inequality: Rα(φf‖φ′f ) ≤ Rα(φ‖φ′) for any function f

where φf denotes the distribution of f(y) where y ← φ.
– Multiplicativity: Assume φ and φ′ are two distributions for a pair of random

variables (Y0, Y1). For i ∈ {0, 1}, let φi denote the marginal distribution of
Yi under φ, and let φ1|0(·|y0) denote the conditional distribution of Y1 given
Y0 = y0. Then

• Rα(φ‖φ′) = Rα(φ0‖φ′
0) ·Rα(φ1‖φ′

1) if Y0 and Y1 are independent for α in
given interval.

• Rα(φ‖φ′) ≤ R∞(φ0‖φ′
0) · maxy0∈X Rα(φ1|0(·|y0)‖φ′

1|0(·|y0))
– Probability Preservation: Let E ⊆ Supp(φ′) be an arbitrary event. For

given interval of α, φ′(E) ≥ φ(E)
α

α−1 /Rα(φ‖φ′). Furthermore

φ′(E) ≥ φ(E)/R∞(φ‖φ′).

Additionally, we rely on the following lemma to argue about the Rènyi divergence
between Gaussians with different centers.

Lemma 4 [35]. Let P and Q be distributions corresponding to Gaussians Dm
c,s

and Dm
c′,s with centers c and c′, and s ≥ η(Rm). Then for any α ∈ (1,+∞):

Rα(P ||Q) ≤ exp

(
α · π · ‖c − c′‖2

2

s2

)

Remark 1. Note that the Rényi divergence grows exponentially with m, since
‖c − c′‖2

2 grows linearly with m. Similarly, the Rényi divergence for z samples
grows exponentially in z by the multiplicative property.

2.3 Hardness Assumptions

We rely on the standard decisional RLWE problem for the security of the VOPRF
function.
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Definition 2 ([39,42]). Let Rq,m, σs, σe > 0 depend on security parameter λ
for integers q, N and m and Rq := Zq[x]/(XN +1). The decision Ring Learning
with Errors (dRLWERq,m,σs,σe

for short) problem is to distinguish between

(ai, ai · s + ei)i∈[m] ∈ (Rq)
2 and (ai, ui)i∈[m] ∈ (Rq)

2

for ai, ui ← Rq; s,← Rχσs
ei ← Rχσe

.

When the number of samples m is implicit, we omit the subscript.

Remark 2. We note the trivial hierarchy that dRLWERq,m,σ0,σ is at least as hard
as dRLWERq,m,σ1,σ when σ0 =

√
k ·σ1 for any integer k > 1 and σ1 ≥

√
2 ·ηε(R).

Given samples from the latter (ai, bi) submit (ai, bi + ai · δ) to the distinguisher
for the former, where δ ← Rχ√

k−1σ0
. By a simple corollary of Lemma 1, we have

that δ + s is correctly distributed if s ← Rχσ0
. Since

∑k−1
i=0 χσ0 ≈s χσ1 and∑k−2

i=0 χσ0 ≈s χ√
k−1·σ0

, we have χ0 + χ√
k−1 ≈s χσ1 . Here, “≈s” indicates that

two distributions are statistically close.

2.4 Non-interactive Zero-Knowledge Arguments of Knowledge
(NIZKAoK)

We use the standard definitions regarding zero-knowledge (ZK) proof systems
and arguments of knowledge (AoK). Informally, a ZK proof system for a language
L allows a prover P to convince a verifier V some x is in L and not reveal anything
else. A ZKAoK then provides a stronger guarantee where P also convinces V that
they hold a witness w attesting to the fact. Formally the definition is as follows:

Definition 3. For a prover P, a verifier V, a language L with accompanying
predicate PL(·, ·), a witness set WL(·) such that for all x ∈ L and w ∈ WL
PL(x,w) = 1, a NIZKAoK is a tuple of algorithms (Setup,P,V) such that:

– Setup(1λ): On input 1λ outputs a common reference string crs.
– P(crs, x, w): On input of a common reference string crs, a statement x ∈ L,

and a witness w ∈ WL outputs a proof π ∈ {0, 1}∗ polynomial in λ.
– V(crs, x, π): On input of a common reference string crs, a statement x, and a

proof π ∈ {0, 1}∗ outputs b ∈ {0, 1}.

The security of a NIZKAoK holds as long as the following definitions hold

Definition 4 (Completeness). For x ∈ L, w ∈ WL(x) with PL(x,w, ) = 1:

Pr
[
1 ← V(crs, x, π) : crs ← Setup(1λ)

π ← P(crs, x, w)

]
≥ 1 − ε

where ε is negligible in λ.
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Definition 5 (Computational Knowledge Extraction (Extractability)).
The NIZKAoK is said to have computational knowledge extraction (or is

extractable) with knowledge error εextr if for any malicious prover P
∗ with auxil-

iary information aux there exists an extraction algorithm Extract and a polyno-
mial p such that for any x:

Pr [1 ← PL(x,w′) : w′ ← Extract(P∗(crs, x, aux))] ≥ εVfy − εextr
p(|x|)

where εVfy is the probability that V(crs, x,P∗(crs, x, aux)) outputs 1.

Definition 6 (Computational zero-knowledge). There exists a simulated
setup algorithm SimSetup which on input 1λ outputs crsSim and a trapdoor T
along with a PPT simulator Sim where for all x ∈ L and w ∈ WL(x):
{
crs ← Setup(1λ)
π ← P(crs, x, w)

}
≈c

{
crs′

πSim ← Sim(crs′, T , x) : (crs′, T ) ← SimSetup(1λ)
}

2.5 Verifiable Oblivious Pseudorandom Functions

A verifiable oblivious pseudorandom function (VOPRF) for a keyed function
F is a two-party protocol between a client C and a server S consisting of the
following algorithms:

– InitS is a protocol run by S which on input 1λ outputs a secret key sk and its
public commitment pk.

– InitC is a protocol run by C which on input pk outputs a state indicating
acceptance/rejection of public commitment.

– QueryC is a protocol run by C which on input client input x and state outputs
a blinded message x̄ and a state ρ.

– QueryS is a protocol run by S which on input of client’s blinded message x̄
and a secret key sk outputs a blinded evaluation yx.

– Finalize is a protocol run by C which on input server’s blinded evaluation yx,
public commitment pk and a state ρ outputs the PRF output y.

We define security of VOPRF based on corresponding games. This is not
common for OPRF protocols and only a handful instantiations in literature use
game-based notion of security. A protocol PRF = (InitS, InitC,QueryC,QueryS,
Finalize) with inputs x ∈ {0, 1}∗ and sk ∈ K is a VOPRF protocol corresponding
to a keyed function F if the following hold:

Definition 7 (Correctness). For every pair of inputs x, sk:

Pr [PRF(x, sk) �= Fsk(x)] ≤ ε

where ε is negligible in security parameter λ.

Definition 8 (Obliviousness [36]). PRF is said to be oblivious if for any PPT
adversary A the probability of the obliviousness experiment depicted in Fig. 1a
outputting 1 is 1/2 + ε where ε negligible in λ.
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Fig. 1. Obliviousness, Verifiability and Unpredictability

In the obliviousness game of Definition 8 security is still based on an indis-
tinguishability notion. For malicious C, since we will rely on Rènyi based argu-
ment, we cannot use such an indistinguishability-based notion for security unless
a specific set of conditions are met [6]. We instead define a search-based secu-
rity game and upgrade this to indistinguishability of the output in the Random
Oracle model (ROM).

Definition 9 (One-more unpredictability [21]). PRF is said to be one-more
unpredictable if for any PPT adversary A the probability of the one-more unpre-
dictability experiment depicted in Fig. 1c outputting 1 is negligible in λ.

Note that the queries to the oracle OPRF include receiving blinded inputs from
A as it is not guaranteed that A outputs a correctly computed x̄. The definition
is similar to unforgeability definitions for signature schemes. The intuition here
is once we can argue that the interaction between C and S has an unpredictable
output, the security of the VOPRF can be shown in the ROM. To achieve this
we use a different notion of security called one-more PRF security.
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Fig. 2. The experiment Expom-PRF
PRF,H (A)

Definition 10 (One-more PRF security [21]). A PRF is said to be one-
more pseudorandom if for any PPT adversary A the probability of the one-more
pseudorandomness depicted in Fig. 2 outputting 1 is negligible in λ.

It is easy to see that unpredictability implies one-more PRF security in the
ROM when Finalize includes yx as an input to an oracle H.

Lemma 5. Let F be a keyed one-more unpredictable function and H be a hash
function modeled as a random oracle. Then the function PRF corresponding to
F has one-more PRF security.

Proof. We can construct an adversary A against unpredictability using an adver-
sary B against one-more PRF security as a subroutine. Let B be an adversary
who outputs a tuple (i1, . . . , iQ) and a bit b′. If B wins the one-more PRF secu-
rity game then B distinguished Q real or random PRF executions with ctr < Q
queries to the PRF oracle and q ≥ Q queries to the real or random oracle for
the specific input. Even if B submits all of its PRF oracle queries to the real or
random oracle, since q > ctr this means there exists at least one oracle answer
xi′ , yi′ that has not been queried to the PRF oracle. The adversary A then can
use xi′ to find Fsk(xi′) such that yi′ = H(xi′ , Fsk(xi′)). The adversary A then
submits xi′ , Fsk(xi′) along with queried xi as the answer to the unpredictability
game. Since the queried xi have been generated by the PRF oracle, the answers
are valid. On the other hand, xi′ was never queried to the PRF oracle yet is a
valid answer which means A will win the unpredictability game.

It also has been shown in prior work that one-more PRF security is the strict
strengthening of the traditional PRF security [21].

Finally, we define the notion of verifiability which assures C the output y is
indeed Fsk(x).

Definition 11 (Verifiability [3]). PRF is said to be verifiable if for any PPT
adversary A the probability of the verifiability experiment depicted in Fig. 1b
outputting 1 is negligible in λ.
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2.6 Lattice (VO)PRFs

We use the construction from [4] which adapts the lattice PRF Fk(x) = �p
q ·

aF (x) · k� from [7] into ring setting. The construction can be thought of an
instantiation of Fig. 3 where n = 1, Hr(·, ·) := 0 and H(·, yx) := yx.2

Remark 3. We note that there is a generic transformation upgrading any
VOPRF to a partial VOPRF, where part of the client’s input is in the clear.
The server computes skt := HK(sk, t) for its master secret key sk and public
client input or tag t and then proceeds with skt [14,29]. In the verifiable case,
the server is also required to output a commitment to skt, to have something
to verify against. We forego discussing partial variants of (V)OPRFs for the
remainder of this work.

3 Construction

We first define the languages L0 ,L1, L2 with corresponding predicates PL,0,
PL,1, PL,2 for our NIZKAoKs:

L0 :=
{

PL,0(x,w) = 1
∣∣∣∣ x := (ci) ∧ w := (ki, ei) :
‖ki‖2 , ‖ei‖2 ≤ B0 ∧ ci = a · ki + ei mod q

}

L1 :=

⎧⎪⎪⎨
⎪⎪⎩

PL,1(x,w) = 1

∣∣∣∣∣∣∣∣

x := (cx) ∧ w := (x = (x0, . . . , xL−1), s, eC) :
‖s‖2 , ‖eC‖ ≤ B1

∧ ax = ax0 · G−1(. . . (axL−2 · G−1(axL−1)) . . . )
∧ cx = a · s + eC + ax[0] mod q

⎫⎪⎪⎬
⎪⎪⎭

L2 :=

⎧⎪⎪⎨
⎪⎪⎩

PL,2(x,w) = 1

∣∣∣∣∣∣∣∣

x := (ci, cx, dx,i) ∧ w := (ki, ei, eS,i) :
‖ki‖2 , ‖ei‖2 ≤ B0 ∧ ‖eS,i‖2 ≤ B2

∧ ci = a · ki + ei mod q
∧ dx,i = cx · ki + eS,i mod q

⎫⎪⎪⎬
⎪⎪⎭

for reference strings crs0 = (a,B0), crs1 = (a,a0,a1, B1), and crs2 = (a,B2). Our
construction, which is a mild variant of the construction given in [4], is given in
Fig. 3 when n = 1. For the rest of this work, we set B0 = σ ·

√
N , B1 = σ ·

√
N ,

and B2 = σ′ ·
√

N .
We start by proving that the protocol is secure against a malicious S i.e. is

oblivious and verifiable. The first proof is almost exactly the same as the mali-
cious server proof of [4] and given for completeness; the second proof is similar
but drops the need for invoking the 1D-SIS assumption.

2 In [4] the protocol is defined for vectors of ring elements of length � rather than
single ring elements. We give the variant here, already mentioned in [4], that only
considers a single ring element, for performance.
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Fig. 3. n-out-of-n VOPRF Construction.

Theorem 1. Let σ and N be poly (λ). Let dRLWEq,N,σ,σ be hard. Let (P0,V0),
(P1,V1) be NIZKAoKs for languages L0,L1, then the protocol in Fig. 3 with
n = 1 is oblivious against any PPT adversary A controlling S.

We give the proof in the full version of this work.
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Theorem 2. Let σ and N be poly (λ). Let β = 2σ2 · N + σ′ ·
√

N and q/p � β.
Let (P0,V0), (P2,V2) be NIZKAoKs for languages L0,L2, Hr be a random oracle,
and QH be number of queries made to such oracle. Then the protocol in Fig. 3
with n = 1 is verifiable against any PPT adversary A controlling S in the ROM.

Proof. We show A corrupting a server S
∗ cannot have a significant advantage

by biasing the output derived by C and force an incorrect evaluation.
If S∗’s reply does not have a valid proof for the setup or the final round then

the client will abort. If not, we extract a key k∗ from π0 with ‖k∗‖∞ ≤ σ ·
√

N .
Let s and eC be sampled as it is in the protocol for an honest client therefore
‖s‖∞ ≤ ‖s‖2 ≤ σ ·

√
N and ‖eC‖∞ ≤ ‖eC‖2 ≤ σ ·

√
N . Observe that an honest

client has

p

q
·
(

dx + r − c · s

)
=

p

q
· ax[0] · k∗ +

p

q
· r +

p

q
·
(

eC · k∗ − e · s + eS

)

Each k∗, eS are correctly computed according to the protocol hence ‖k∗‖∞ ≤
‖k∗‖2 ≤ σ ·

√
N and ‖eS‖∞ ≤ ‖eS‖2 ≤ σ′ ·

√
N .

If every coefficient of p
q · ax[0] · k∗ + p

q · r is further away from Z + 1/2 than∥∥∥p
q · (eC · k∗ − e · s + eS)

∥∥∥
∞

, the evaluation is correct. The adversary can query
Hr to find r∗ such that evaluation would be incorrect. Note that in the Random
Oracle Model r∗ is independent of k∗, since Hr takes a commitment to k∗ as
one of its inputs, therefore the only way A can find a satisfying r∗ is by finding
an x∗ such that r∗ := Hr(x∗, c). This probability is negligible in the Random
Oracle Model as long as 2λ � QH. It follows that A can only force an incorrect
evaluation with probability proportional to ‖eC · k∗ − e · s + eS‖∞/(q/p). We
then have

‖eC · k∗ − e · s + eS‖∞/(q/p) ≤ (‖eC‖∞ · ‖k∗‖∞ + ‖e‖∞ · ‖s‖∞ + ‖eS‖∞)/(q/p)

≤ (2σ2 · N + σ′√N)/(q/p).

Since q/p � β with β = 2σ2 · N + σ′ ·
√

N the probability above is negligible. ��

4 Using Rènyi Divergence for Smaller Parameters

The security of [4] relies on eS chosen from a distribution R1×�
χσ′ with σ′ �

max(L ·� ·σ ·N3/2, σ2 ·N2). This superpolynomial gap has a significant impact on
communication costs. In the malicious client proof of [4], the security argument
relies on the statistical distance between

c · s + eC · k + ax · k + eS and c · s + êS + (ax · k + ex)

where eC ← R1×�
χσ

, eS, êS ← R1×�
χσ′ , and ex ← Ea0,a1,x,σ.

Here, instead, we use a Rènyi divergence based argument to prove that the
protocol given in Fig. 3 with n = 1, Hr(·, ·) := 0, and H(x, yx) := yx is unpre-
dictable. We note, though, that Theorem 3 requires a bound Q on the permitted
number of queries, this explains the four different rows in Table 2.
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Theorem 3. Assume that σ and N are poly (λ), and p|q. Let dRLWEq,N,σ,σ hard
and q

2p � σ′ ≥ (L ·
√

N + 2 · σ) · σ · N ·
√

Q · N for a number of queries made Q.
Let (P0,V0), (P1,V1), (P2,V2) be NIZKAoKs for languages L0,L1,L2, then the
VOPRF protocol defined in Fig. 3 with n = 1, Hr(·, ·) := 0, and H(x, yx) := yx is
unpredictable against any PPT adversary A controlling C.

Proof. We show A controlling C
∗ cannot find an unqueried request-response pair

(x(τ), y
(τ)
x ) with all but negligible probability in λ.

Hybrid0: This is the real execution of the protocol where A makes Q queries to
S. The server S samples a key k and outputs a commitment c. For τ ∈ [Q], A
sends a query (c(τ)

x , π
(τ)
1 ) based on x for which S computes (d(τ)

x , π
(τ)
2 ) if π

(τ)
1

verifies and aborts otherwise. The adversary A then computes y
(τ)
x based on d

(τ)
x

and x(τ) (resp. y
(τ)
x ) is added to the set X (resp. Y). At the end, A outputs

(x∗, y∗
x) and wins the game if x∗ /∈ X and c∗

x generated on x∗ evaluates to y∗
x.

The advantage of A is the probability of A winning in the unpredictability game.

Hybrid1: Hybrid1 is the same as Hybrid0 except how the proofs by the server
are computed. Instead of honestly generating crs0 and crs2, and computing π0

and π
(τ)
2 , S calls the simulator for the relative proof systems. Hybrid1 is then

indistinguishable from Hybrid0 by the ZK property of the underlying ZKAoKs.

Hybrid2: Hybrid2 is the same as Hybrid1 except that in the Query phase we have
that after S receives (c(τ)

x , π
(τ)
1 ), it calls the extractor for the underlying ZKAoK

to obtain (x(τ), e
(τ)
C

, s(τ)) and aborts if it fails to do so. By the extractability of
the underlying ZKAoK Hybrid1 is exactly like Hybrid2 as long as the extraction
does not fail. Then Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: S changes how d
(τ)
x are computed. Upon receiving c

(τ)
x , S samples e′

S
←

Rχσ′ and e
(τ)
x ← Ea0,a1,x,σ based on the extracted x(τ). The server S then sends

d
(τ)
x := c

(τ)
x · k + e′

S
+ e

(τ)
x − e

(τ)
C

· k + e · s(τ).
Since (s(τ), e

(τ)
C

, x(τ)) were extracted from π
(τ)
1 , it is possible for S to sample

e
(τ)
x based on x(τ) and compute e

(τ)
C

· k and e · s(τ). To bound the probability of
the adversary winning when going from Hybrid2 to Hybrid3, we will show that
if A making Q queries can win the game in Hybrid2 with probability ρ then
its probability of winning in Hybrid3 is also polynomial in ρ. Let D(τ)

2 and D(τ)
3

denote the distributions of (d(τ)
x , π

(τ)
2 ) in Hybrid2 and Hybrid3 respectively.

In both Hybrid2 and Hybrid3, (π(τ)
2 ) are simulated and hence are distributed

exactly the same. In Hybrid2, d
(τ)
x is computed as d

(τ)
x = cτ

x · k + eS whereas in
Hybrid3 we have d

(τ)
x = c

(τ)
x · k + e′

S
+ e

(τ)
x − e

(τ)
C

· k + e · s(τ) for eS, e
′
S

∈ Rχσ′ The
distribution of d

(τ)
x in two hybrids can then be considered as two Gaussians with

different centres. Outside {(d(τ)
x , π

(τ)
2 )}τ∈Q, A’s view in both hybrids consists of

crs0, crs1, crs2, a,a1,a0, c
(τ)
x
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and consequently c
(τ)
x . Here, we have that crs0, crs1, crs2, a,a1,a0 and c are sam-

pled independently from A, therefore are fixed in both views. x(τ) and conse-
quently c

(τ)
x however are chosen by adversary which means x(τ) (consequently

a(τ)
x ), s(τ), e

(τ)
C

and therefore c
(τ)
x can be adaptively chosen. However, note that

each c
(τ)
x is associated with a proof π

(τ)
1 proving c

(τ)
x is correctly computed. Since

S does not abort, each π
(τ)
1 has to verify therefore each c

(τ)
x corresponds to the

same distribution.
The RD between D(τ)

2 and D(τ)
3 is then by Lemma 4:

Rα(D(τ)
2 ||D(τ)

3 ) ≤ 1 · exp

(
α · π · ‖ex − eC · k + e · s‖2

2

σ′2

)

≤ exp

⎛
⎜⎝α · π ·

(√
N ‖eC‖2 · ‖k‖2 +

√
N ‖e‖2 · ‖s‖2 + ‖ex‖2

)2

σ′2

⎞
⎟⎠

Since τ ∈ Q, we can define the distributions D2 and D3 for the distribution of
(d(τ)

x , π
(τ)
2 ) for the entire hybrids. We have:

Rα(D2||D3) ≤ exp

⎛
⎜⎝α · π · Q ·

(√
N ‖eC‖2 · ‖k‖2 +

√
N ‖e‖2 · ‖s‖2 + ‖ex‖2

)2

σ′2

⎞
⎟⎠

Let ψ,ψ′ denote the views of A in Hybrid2 and Hybrid3 respectively. By data
processing inequality of RD we then have:

Rα(ψ||ψ′) ≤ Rα(D2||D3)

Let E be the event that A outputs a successful prediction. By our assumption
we then have D2(E) = ρ. Following the probability preservation property of RD:

ψ′(E) ≥ ρ
α

α−1

Rα(ψ||ψ′)

By assumption σ′ ≥ (L ·
√

N + 2 · σ) · σ · N ·
√

Q · N , ‖e‖2 , ‖eC‖2 ≤ σ
√

N ,
‖k‖2 , ‖s‖2 ≤ σ

√
N , and ‖ex‖∞ ≤ L · σ · N3/2 [4, Lemma 4]. This means

Rα(ψ||ψ′) ≤ exp(π · α) and consequently ψ′(E) ≥ ρ
α

α−1 · exp(−απ) which is
non-negligible if and only if ρ is non-negligible.

Hybrid4: S stops using key material k for replies to C
∗. The server S maintains

a received list for (x(τ), yq). After receiving and verifying c
(τ)
x , it checks if the

extracted x(τ) has been queried before. If (x(τ), yq) exists in received, S retrieves
yq from the list, samples ēS

(τ) ← Rχσ′ and returns d̄
(τ)
x = c · s(τ) + ēS

(τ) + yq.
If x(τ) is queried for the first time, S first samples a PRF output y and then
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uniformly samples a yq such that yq ← Rq∩(q/p·y+R≤q/2p). S records (x(τ), yq)
and computes d̄

(τ)
x the same. First, note that we can rewrite d

(τ)
x in Hybrid3 as

d(τ)
x = c(τ)

x · k + e′
S + e(τ)

x − e
(τ)
C

· k + e · s(τ)

= a · s(τ) · k + e
(τ)
C

· k + a(τ)
x [0] · k + e′

S + e(τ)
x − e

(τ)
C

· k + e · s(τ)

= a · s(τ) · k + e · s(τ) + e
(τ)
C

· k + a(τ)
x [0] · k + e′

S + e(τ)
x − e

(τ)
C

· k

= c · s(τ) + e(τ)
x +

(
a(τ)

x [0] · k + e′
S

)

We have that a(τ)
x [0] · k + e

(τ)
x is indistinguishable from some uniform u

(τ)
x by

opening up the proof of [4, Lemma 3].3 Said lemma holds under the hardness
of dRLWEq,N,σ,σ where a(τ)

x [0] · k + e
(τ)
x can be decomposed as multiple samples

of the form ai · k + ei for uniform ai ∈ Rq and small ei ∈ Rq. Multiple queries
for a(τ)

x [0] · k + e
(τ)
x can then be considered as increased number of samples for

ai · k + ei. Hence, by the hardness of dRLWEq,N,σ,σ, c · s(τ) +a(τ)
x [0] · k + e

(τ)
x + e′

S

is indistinguishable from d
(τ)
x = c · s(τ) + u

(τ)
x + e′

S
for some uniform u

(τ)
x . Since

y is a PRF output, yq is a uniformly chosen element of a uniformly chosen
interval, it is also indistinguishable from u

(τ)
x . Finally ēS

(τ) is sampled from
the same distribution as e′

S
, d

(τ)
x and d̄

(τ)
x therefore Hybrid3 and Hybrid4 are

indistinguishable.

Hybrid5: Now that the VOPRF answer does not rely on k, S stops sampling a
k altogether and samples a uniformly random c ← Rq instead. By the hardness
of dRLWEq,N,σ,σ, c in Hybrid4 and Hybrid5 are indistinguishable.

Now that every reply to A is freshly generated and independent from any
secret material, they are unpredictable. This concludes the proof. ��

From the unpredictable function, we can define a VOPRF. We first define
random oracles H : {0, 1}L × Rq → {0, 1}λ and Hr : {0, 1}L × Rq → Rq which
then are used to generate the VOPRF output on the client side. The new VOPRF
protocol is depicted in Fig. 3 with n = 1, and new definitions of H and Hr.

The transformation is rather standard and we immediately follow that the
VOPRF protocol has one-more PRF security.

Corollary 1. Assume that σ and N are poly (λ), and p|q. Let H,Hr be hash
functions modeled as random oracles, and Q denote the number of queries made
to the VOPRF. Let dRLWEq,N,σ,σ hard and q

2p � σ′ ≥ (L ·
√

N + 2 · σ) · σ · N ·√
Q · N . Let (P0,V0), (P1,V1), (P2,V2) be NIZKAoKs for languages L0,L1,L2.

Then if the VOPRF protocol defined in Fig. 3 for n = 1 is unpredictable, it also
has one-more PRF security in random oracle model against any PPT adversary
A controlling C.
3 In [4], it is argued that a

(τ)
x [0] · k + e

(τ)
x and u

(τ)
x are indistinguishable directly by a

lemma implicit in the underlying PRF [7]. This is incorrect as is because the lemma
does not consider multiple queries.
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5 Bandwidth Estimate

We give rough bandwidth estimates in Table 2. We adapt the estimation scripts
from [3] and give our adapted scripts in the full version of this work. Our size
estimates for ring elements are simply d · log q bits, except for dx where we use
(a) that we can drop lower order bits since those are drowned by σ′ anyway and
(b) that we only use dx additively when computing dx + r − c · s, allowing us
to drop many coefficients of dx since we only want to extract from λ many. It
would be possible to amortise the zero-knowledge proofs as in [3], but we forego
this optimisation here.

While these are somewhat rough estimates, they suffice to make good on our
claim that the parameters we obtain are practical-ish.

6 Threshold Lattice (V)OPRF

As a result of the nice homomorphic properties of [4], we give lattice-based
threshold/distributed VOPRFs for both n-out-of-n and t-out-of-n thresholds,
when t is constant.

6.1 Threshold Verifiable Oblivious Pseudorandom Functions

A (t, n) threshold VOPRF is an extension to VOPRFs where instead of having
a single server S, there are n servers S0, . . . ,Sn−1 where any t ≤ n servers
can collectively generate the PRF output. If t = n i.e. the threshold scheme is
n-out-of-n we call it a distributed scheme, but we may also call it full threshold so
that we can discuss n-out-of-n and t-out-of-n together as “threshold”. Based on
the setting, the initialisation phase can be done by either each Si individually or
by an outside trusted authority. A threshold verifiable oblivious pseudorandom
function (VOPRF) for a keyed function F is then an n+1 party protocol between
a client C and n servers S0, . . . ,Sn−1 consisting of following algorithms:

– InitS is a protocol run by each Si (or a trusted authority), which on input
1λ outputs a partial secret key ski and its public commitment pki (or the
combined commitment pk).

– InitC is a protocol run by C, which on input {pk}i∈[n] (respectively pk) outputs
a state indicating acceptance/rejection of the public commitment.

– QueryC is a protocol run by C, which on input client input x and state outputs
a blinded message x̄ and a state ρ.

– QueryS is a protocol run by Si which on input of client’s blinded message x̄, a
subset of participating users U and a partial key ski outputs a blinded partial
evaluation yx,i.

– Finalize is a protocol run by C which on input server’s blinded evaluation yx

and public commitments {pki}i∈U (or a single pk) and a state ρ outputs the
PRF output y.
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Fig. 4. The experiment Expom-TUNPRED
PRF (A). Lines in grey are executed if each Si gen-

erates their own key. Lines in dashed boxes are executed if there is a trusted authority
setting up the keys.

Some definitions of VOPRF security are not sufficient for the threshold case
as A can corrupt a subset of servers C along with the client. Similarly A can
engage in concurrent queries for the same input. So we extend unpredictability
and one-more PRF security to accommodate a set of corrupted servers and
concurrent QueryC executions and again define the corresponding games. We
also introduce a new algorithm Comb that takes a set of partial output shares
and outputs a single combined output.

Definition 12 (Threshold unpredictability). A threshold PRF is said to
be unpredictable if for any PPT adversary A the probability of the one-more
unpredictability depicted in Fig. 4 outputting 1 is negligible in λ.

Definition 13 (Threshold one-more TPRF security). A threshold PRF
is said to be pseudorandom if for any PPT adversary A the probability of the
one-more pseudorandomness depicted in Fig. 5 outputting 1 is negligible in λ.

For both unpredictability and pseudorandomness, we assume a rushing adver-
sary where honest parties send their messages first. The relationship between
unpredictability and one-more PRF security also translates into the threshold
setting where the unpredictable A controls the same parties as the PRF adver-
sary B. However, we must take that that unlike in the plain one-more PRF game,
here both adversaries have partial inside access to evaluating parties. However,
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Fig. 5. The experiment Expom-TPRF
PRF,H (A)

note that A is queried for its corrupt shares independent of the oracles deci-
sion regarding real or random value which prevents A from trivially winning the
game.

Since we are in a multiparty setting, we need NIZKAoKs that provide con-
current security as well as prevent exponential tightness loss as part of the
extractability. For which, we rely on NIZKAoKs that are straight-line extractable
i.e. can extract the witness without rewinding. For some systems, this can be
achieved by using the generic transform by Katsumata [33]. However, while the
transform is straightforward to use for proofs of L0 and L2, this is not the case
for L1 since we here we rely on LaBRADOR [10]. Thus, straight-line extractabil-
ity for client messages is open. We note that it seems plausible we can apply the
“encryption-to-the-sky” paradigm here, see e.g. [1], encrypting only that small
part of the witness that we need extract to avoid blowing up bandwidth costs.

6.2 Case 1: n-out-of-n

We start with the easy case where all n participants are required to generate
the pseudorandom output. The n-out-of-n distributed setting can be considered
as a multikey application of the base scheme. This is also the reason why we
used the n-out-of-n protocol with n = 1 in the previous sections. Instead of
setting a single σ however, we allow each party to choose σi ≤ σ for publicly
known σ.4 We have multiple servers S0, . . . ,Sn−1 interacting with single client
C, Fig. 3 depicts the protocol. For the sake of simplicity of exposure, though, we

4 We will expand on this idea when we discuss our t-out-of-n construction.
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assume σi = σ for all i for the rest of this section. Correctness follows from the
underlying protocol where �r + dx − c · s�p

=
⌊
r +

∑
dx,i −

∑
ci · s

⌉
p

=
⌊
r + cx ·

∑
ki +

∑
eS,i − s ·

∑
(a · ki + ei)

⌉
p

=

⌊
r + a · s

∑
ki + eC

∑
ki + ax[0]

∑
ki +

∑
eS,i − a · s

∑
ki − s ·

∑
ei

⌉

p

=
⌊
r + ax[0]

∑
ki + eC

∑
ki +

∑
eS,i − s

∑
ei

⌉
p

=

⌊
r +

p

q
· ax[0] · k

⌉

p

with k =
∑

i∈[n]

ki. Correctness then follows from Theorem 2. Note however, since

k =
∑

i∈[n]

ki for ki ∈ Rχσi
we have to scale the combined parameter by a factor

of
√

n. We then have the following lemma.

Lemma 6. Let ki ← Rχσi
, k =

∑
i∈[n]

ki, and q � p · σ ·
√

L · n · N . Then the

function Fk(x) := �ax[0]·k+r�p is a PRF under dRLWEq,N,σ
√

n,σ
√

n assumption.

Security against malicious servers i.e. obliviousness and verifiability is immediate.
Each Si receives the same client input, which is the same as in single party case.
For completeness we state them here:

Theorem 4. Let σ and N be poly (λ). Let dRLWEq,N,σ,σ be hard. Let (P0,V0),
(P1,V1) be straight-line extractable NIZKAoKs for languages L0,L1, then the
protocol in Fig. 3 is oblivious against any PPT adversary A controlling all Si.

Theorem 5. Let σ and N be poly (λ). Let β = 2n·σ2 ·N +σ′ ·
√

n · N and q/p �
β. Let (P0,V0), (P2,V2) be straight-line extractable NIZKAoKs for languages L0,
L2, Hr be a random oracle, and QH be number of queries made to such oracle.
Then the protocol in Fig. 3 is verifiable against any PPT adversary A controlling
all Si.

The interesting security goal is threshold unpredictability when there is a
collusion between the malicious client and some subset of servers. We show how
the protocol given in Fig. 3 is unpredictable. We note that we implicitly assume
that a malicious C sends the same message to honest servers. This assumption
can be removed with an initial round of consistency check among the servers
which we omit here.

Theorem 6. Let σ and N be poly (λ). Let dRLWEq,N,σ,σ be hard, and q
2p �

σ′ ≥ (L ·
√

N +(
√

n+1) ·σ) ·σ ·N ·
√

Q · N for a number of queries made Q. Let
(P0,V0), (P1,V1), (P2,V2) be straight-line extractable NIZKAoKs for languages
L0,L1,L2, then the distributed VOPRF protocol defined in Fig. 3 is threshold
unpredictable against malicious clients controlling up to n − 1 servers.
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Proof. In the Random Oracle model, if the input of H at the end of the protocol
is unpredictable, then so is the output of the protocol. Hence, we show that the
client-derived input to H is unpredictable. Similar to the proof of Theorem 3,
we show A controlling C

∗ and a subset of servers C cannot find an unqueried
request-response pair (x(τ), y

(τ)
x ) with all but negligible probability in λ.

Hybrid0: This is the real execution of the protocol where the A makes Q queries
to servers. The adversary A first corrupts a set of servers C with fewer than t = n
elements and the rest of the servers denoted with H behave honestly. The honest
parties sample a key share ki and each party outputs a commitment ci alongside
a proof of correct computation. For τ ∈ [Q], A sends a query (c(τ)

x , π
(τ)
1 ) based on

some x for which honest servers compute (d(τ)
x , π

(τ)
2 ) if π

(τ)
1 verifies and aborts

otherwise. For corrupted servers, A can send arbitrary shares as long as π
(τ)
2

verifies for each of them. The adversary A then computes y
(τ)
x based on d

(τ)
x,i and

x(τ) (resp. y
(τ)
x ) is added to the set X (resp. Y). At the end, A outputs (x∗, y∗

x)
and wins the game if x∗ /∈ X and c∗

x generated on x∗ evaluates to y∗
x. The

advantage of A is the probability of A winning in the threshold unpredictability
game where U are all n servers.

Hybrid1: Hybrid1 is exactly like Hybrid0 except how proofs by the server com-
puted. Instead of honestly generating crs0,j , crs2,j for j ∈ H, and computing
and π0,j , π

(τ)
2,j each honest server calls the simulator for relative proof systems.

Hybrid Hybrid1 is then indistinguishable from Hybrid0 by the ZK property of the
underlying ZKAoKs.

Hybrid2: Hybrid2 is exactly like Hybrid1 except the honest parties try to extract
a witness for the corrupted parties. During InitS, after the honest parties extract
{ki, ei}i∈C from π0,i using the extractor for the underlying ZKAoK, aborts if the
extraction fails. Similarly during the Query phase after honest servers receive
c
(τ)
x , π

(τ)
1 , it calls the extractor to obtain (x(τ), e

(τ)
C

, s(τ)). By the extractability
of the underlying ZKAoKs Hybrid1 is exactly like Hybrid2 unless the extraction
fails, and Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: Si′ changes how d
(τ)
x,i′ is computed for i′ ∈ H. Upon receiving c

(τ)
x , fix an

index i′. For every other honest party, the computation continues as before. The
server Si′ then derives the combined key k =

∑
i∈[n] ki and error e =

∑
i∈[n] ei

and samples e
(τ)
x ← Ea0,a1,x,σ based on the extracted x(τ). The server Si′ finally

computes d̄
(τ)
x,i′ = c

(τ)
x · ki′ + e

(τ)
S,i′ + e

(τ)
x − e

(τ)
C

· k + e · s(τ) sends d̄
(τ)
x,i′ as its share.

The rest follows as before.
The difference between Hybrid2 and Hybrid3 is in the error term of Si′ ’s share

where there is an added term of e
(τ)
x − e

(τ)
C

· k + e · s(τ). Using the same Rènyi
argument in Hybrid3 of Theorem 3, we conclude if A has a winning probability
in Hybrid2, it also does a winning probability polynomial of said probability in
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Hybrid3. Since ‖k‖2 ≤ σ
√

n however, σ′ has an increased factor compared to the
single party case.5

Hybrid4: We stop using combined key k for deriving d̄
(τ)
x . Each honest server

maintains a received list for (x(τ), yq). After receiving and verifying c
(τ)
x checks

if the extracted x(τ) has been queried before. If (x(τ), yq) exists in received, Si′

retrieves yq from the list and samples ē
(τ)
S,i′ ← Rχσ′ and returns d̄

(τ)
x,i′ = c · s(τ) −

c
(τ)
x ·
∑

j 	=i′ kj + ē′(τ) +yq. If x(τ) is queried for the first time, Si′ first samples an
output y and then uniformly samples a yq such that yq ← Rq ∩(q/p ·y+R≤q/2p).
Each server records (x(τ), yq) and computes d̄

(τ)
x,i the same. In Hybrid3 d̄

(τ)
x,i′ can

be rewritten as:

d̄
(τ)

x,i′ = c(τ)x · ki′ + e
(τ)

S,i′ + e(τ)x − e
(τ)
C

· k + e · s(τ)

= c(τ)x · k − c(τ)x ·
∑
j �=i′

kj + e
(τ)

S,i′ + e(τ)x − e
(τ)
C

· k + e · s(τ)

= a · s(τ) · k + e
(τ)
C

· k + a(τ)
x [0] · k − c(τ)x ·

∑
j �=i′

kj + e
(τ)

S,i′ + e(τ)x − e
(τ)
C

· k + e · s(τ)

= c · s(τ) − c(τ)x ·
∑
j �=i′

kj + a(τ)
x [0] · k + e(τ)x + e

(τ)

S,i′

Using the same argument in Hybrid4 for Theorem 3, Hybrid3 and Hybrid4 are
indistinguishable.

Hybrid5: We modify honest parties’ shares so that each of them includes addi-
tional error terms e

′(τ)
i ← Rχσ

and e
′(τ)
x,i ← Ea0,a1,x,σ, and the adjusted share

d̄
(τ)
x,i′ includes the substraction of these shares −

∑
i	=i′∈H(e′(τ)

i + e
′(τ)
x,i ). The rest

follows as before. In Hybrid4 each honest party outside i′ computes their share as
d
(τ)
x,i = c

(τ)
x · ki + e

(τ)
S,i whereas in Hybrid5 d

(τ)
x,i = c

(τ)
x · ki + e

(τ)
S,i + e

′(τ)
i + e

′(τ)
x,i . The

difference is then how error terms are distributed for two Gaussians of parameter
σ′ with two different centers. Using a similar argument to Hybrid3,6 we conclude
if A can win in Hybrid4 with some probability, it also has a winning probability
polynomial in the said probability in Hybrid5.

Hybrid6: We remove the dependency on partial key shares for honest parties.
Except i′, each honest server samples a uniformly random u

(τ)
i ← Rq and com-

putes their share as d̄
(τ)
x,i := u

(τ)
i + e

(τ)
S,i instead. Similarly, Si′ defines its share

as d̄
(τ)
x,i′ = c · s(τ) − c

(τ)
x ·

∑
j∈C kj + ē

(τ)
S,i′ + yq −

∑
i	=i′∈H u

(τ)
i . The rest proceeds

5 Note that this hybrid also changes the combined d
(τ)
x since the additional error term

carries over. By Lemma 1 the error term is statistically close to a Gaussian with
parameter σ′√n using a similar Rènyi argument as above, but with easier to satisfy
parameters, already satisfied by the parameters considered in the main text.

6 Note that we do not need to consider the combined d
(τ)
x as Si′ adjusts its share based

on the added error terms.
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as before. In Hybrid5 after the addition of noise terms, each partial evaluation is
d
(τ)
x,i = c

(τ)
x ·ki+e

(τ)
S,i +e

′(τ)
i +e

′(τ)
x,i = (a·s(τ)+e

(τ)
C

)·ki+e
′(τ)
i +a(τ)

x [0]·ki+e
′(τ)
x,i +e

(τ)
S,i .

Using the same argument to Hybrid4 of Theorem 3, a(τ)
x [0] · ki + e

′(τ)
x,i is indistin-

guishable from uniform. Replacing these terms with uniform ones, d
(τ)
x,i in Hybrid5

and u
(τ)
i + e

(τ)
S,i , consequently Hybrid5 and Hybrid6 are indistinguishable.

Hybrid7: Now that the function evaluation does not rely on the combined key
honest servers stop deriving key shares kj altogether. During initialization each
server samples random ci ← Rq. Then by the hardness of dRLWEq,N,σ

√
n,σ

√
n, c

in Hybrid6 and Hybrid7 are indistinguishable.
Since every reply to A is freshly generated and independent from the secret

combined key k and the honest key shares, they are unpredictable. Thus we
conclude the proof. ��

Now that the protocol is threshold unpredictable, we can also argue it has
threshold one-more PRF security.

Corollary 2. Let σ and N be poly (λ). Let dRLWEq,N,σ,σ be hard and q
2p �

σ′ ≥ (L ·
√

N +(
√

n+1) ·σ) ·σ ·N ·
√

Q · N for a number of queries made Q. Let
(P0,V0), (P1,V1), (P2,V2) be straight-line extractable NIZKAoKs for languages
L0,L1,L2 and H,Hr be hash functions modeled as random oracles, then if the
distributed VOPRF protocol defined in Fig. 6 is threshold unpredictable, it also
has threshold one-more PRF security against any PPT adversary A controlling
C and a subset of servers C of size at most t − 1.

6.3 Case 2: t-out-of-n

We now switch to the more interesting case of arbitrary thresholds i.e. t-out-of-n
with t ≤ n. We cannot directly use the additive homomorphism of the underlying
operation but tweak it to our setting. Dealing with t-out-of-n shares in a lattice
setting is not trivial against malicious adversaries, and we here work around
known issues by assuming a trusted setup. As mentioned above, we consider this
a realistic assumption for OPRFs as most use cases of threshold OPRFs utilise
the functionality to prevent a single point of failure during execution rather than
to achieve execution among untrusted parties. Still, this is a limitation of this
work.

Similarly, we assume that in the context of distributed OPRFs, neither n nor(
n
t

)
is large. Hence we can consider a separate set of keys for different thresholds

of servers since we only have
(
n
t

)
of such sets. However, trivially combining all

partial keys will result in
(
n
t

)
different combined keys and consequently public

commitments which now (i) requires the client to know which servers are replying
for correctness (ii) the client will receive different PRF outputs for the same input
for different threshold sets.

Instead, we make use of the setting we are in and consider a different way of
representing these

(
n
t

)
sets. We delegate key generation to a trusted authority
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which in return allows us to use different additive shares of the same combined
key. On a high level, key generation proceeds as follows: The trusted authority
first samples a combined key from the combined distribution of individual keys.
For every threshold set T , the authority fixes indices ia and ib. For every server
i outside ia and ib in the set, it samples partial keys from a smaller distribution.
For ib, it samples a partial key from a wider distribution. The trusted authority
then computes the key of ia as the difference of the combined key and t−1 partial
keys and rejects the key with a certain probability. If rejected, the process starts
again for the threshold set. If not the trusted authority proceeds to the next set.

The first key idea is that we can choose distributions of keys for differing
parameters as long as each of them are bounded from below for RLWE secu-
rity and above for correctness and noise drowning. Hence, choosing a key with
some σL > σ allows us to control the rejection probability. The second key
idea is that while the last share is not exactly the same as the sampled keys,
if rejected correctly it is statistically indistinguishable from the distribution of
ib’s key and thus still secure. This rejection is similar to the inefficient variant
Dilithium-G signature discussed in [17]. Since the last key share is computed as
k−
∑

i	=ia
ki,T = k−

∑
i	=ia,ib

ki,T −kib,T , we can treat it as a Gaussian centered
around k −

∑
i	=ia,ib

ki,T and use Lemmas 1 to 3 to find correct M, t, T to make
the last share within a negligible statistical distance of a sampled Gaussian with
parameter σL by Lemma 3. For σ = 3.2 and N = 4096, a threshold of 5 parties
can have σL = 1024 with M = 131 repetitions per key with all but negligible
probability 2−102. We emphasise that for large sizes of

(
n
t

)
this can result in

long key generation times but does not affect the actual PRF evaluation. For
security argument, we will assume

(
n
t

)
is poly (λ).

Remark 4. Our approach can be considered as a variant of replicated secret shar-
ing [26] using qualified sets. Hence, we could consider algorithms such as in [16]
for key generation instead. However, we highlight some key differences: (a) Secret
sharing is done for long term keys rather than online randomness which renders
the
(
n
t

)
overhead more acceptable. (b) Our final shares are with overwhelming

probability from specific Gaussian distributions rather than uniformly random
in order to preserve the structure of the protocol. (c) Since shares of Shamir
secret sharing are arbitrarily large any advantage regarding easy conversion into
Shamir secret sharing is not relevant in our context.

One downside to this approach, we cannot show verifiability for individual
partial evaluations as public commitments ki,T for all subsets T of size t do not
exist. Hence it is not possible for Si to prove dx,i is computed correctly with
respect to a partial key ki,U . One solution to this for the trusted authority to
publish public commitments for each ki,T which however would require t ·

(
n
t

)
commitments to be published and for C to know which subset of users are
participating in PRF execution. This is worse than the trivial construction of
having

(
n
t

)
different combined keys.

Instead, we combine the cut-and-choose type of approach in [4] with a weaker
proof system. The intuition is while we cannot prove that correct ki,U is used
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for generating dx,i, we can verify that a small ki,U is used consistently across
multiple evaluations. If one of these evaluations points can be checked with
respect to a publicly known value, we can argue that every evaluation used the
correct combined key. This does not guarantee each individual partial evaluation
is done correctly but assures C the final output is correct.

We change the protocol as follows. During setup there is a public fixed input
x′ and its evaluation yx′ (under the key k) known both to the client and the
servers. During QueryC, instead of a single input x, C blinds two inputs x0, x1.
To do that, the client first decides on a random bit b′. For i �= b′, the client uses
the private input xi = x for some x ∈ {0, 1}L and for i = b′, xi = x′. The client
C then runs the computation for two cx values and sends cx,i, π1,i pairs. Each
server Sj then runs partial evaluations on each of them and sends a proof π2,j

to prove that the same short kj,U have been used for computing all cx,i values.
During Finalize, C first verifies π2,i and then computes two different yx values
and checks if yx,b′ = yx′ . If everything verifies, C uses yx,i for i �= b′ as its output.

We depict this t-out-of-n VOPRF construction with a trusted setup in Fig. 6.
Note that π2,i are computed with a different proof system P

′
2,V

′
2 for language

L′
2 since it’s slightly different from P2,V2. It can however still be initiated with

the same proof systems discussed in the full version of this work.
Correctness follows from the linearity of the additive secret sharing. Obliv-

iousness is once again immediate as the client’s input to the t servers do not
change. We first show that the protocol described has verifiability:

Theorem 7. Let σ, N , and
(
n
t

)
be poly (λ). Let β = 2 t ·σ2 ·N +σ′ ·

√
t · N and

q/p � β. Let (P′
2,V

′
2) be straight-line extractable NIZKAoK for language L′

2,
Hr be a random oracle, and QH be number of queries made to such oracle. Let

N ·
(

log q − log
(
σ ·
√

(t + 1) · N
)

− log
(

q

2p

))
> λ.

Then the protocol in Fig. 6 is verifiable against any PPT adversary A controlling
a subset of servers C of size at most t − 1.

Proof. In verifiability game, the challenger will abort and A will trivially lose if
the checks during Finalize fail. For A to win, yx,i for i �= b′ derived by C must be
different from the actual PRF. Similar to Theorem 2, A can only find an x∗ that
would cause r∗ to force an incorrect evaluation only with negligible probability.
If π2,j verifies for each j ∈ U , then there exists short {kj,U}j∈U used in each of
the {dx,j,i}i∈{0,1},j∈U . Then if yx,b′ = yx′ each server Sj knows k∗

j,U for some k�

where k� =
∑

j∈U k∗
j,U .

Since π2,j verifies, we have
∥∥k∗

j,U
∥∥

∞ ≤
∥∥k∗

j,U
∥∥

2
≤ σ ·

√
N consequently

‖k∗‖∞ ≤ σ ·
√

t · N , and ‖eS,j,i‖∞ ≤ ‖eS,j,i‖2 ≤ σ′ ·
√

N . Since q/p �
2 t · σ2 · N + σ′ ·

√
t · N , we have:
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Fig. 6. t-out-of-n VOPRF Construction with Trusted Setup
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⎢⎢⎢⎣∑
j

dx,j,b′ + r′ − c · s

⎤
⎥⎥⎥

p

=

⎢⎢⎢⎣ax[0] · k∗ + r′ +

⎛
⎝eC · k∗ − e · s +

∑
j

eS,j,b′

⎞
⎠
⎤
⎥⎥⎥

p

= �ax[0] · k∗ + r′�p

with overwhelming probability. Then, A can only win if it can find k∗ �= k
such that �ax′ [0] · k∗ + r′�p = �ax′ [0] · k + r′�p. Rearranging the terms we get

[ax′ [0] | 1] ·
[
k∗ − k

e′

]
= 0 mod q for some e′ ∈ Rq, ‖e′‖∞ ≤ q/(2p). By our

assumption we have that there are (2σ ·
√

t · N)
N · (q/(2p))N possible choices

for (k∗−k, e′) but over the randomness of a0[0],a1[0], the probability of obtaining
0 is 1/qN . Thus, with high probability such a k∗ does not exist. Hence if the
evaluation for i = b′ is correct, k∗ = k.

Since the same k∗
j,U and consequently the same k∗ = k are used for computing

yx,i, i �= b′; the evaluation must also be correct if yx,b′ is correct. This concludes
the proof. ��

Remark 5. Our proof above relies on the absences of any SIS solution to [ax′ | 1].
First, our bound is rather loose, by first extracting a worst-case �∞ bound from
the �2 bound established by the NIZKAoK and then constructing a box of solu-
tions with this �∞ bound. A tighter approximation would be accomplished by
bounding the number of integer points inside the �2 ball established by the
NIZKAoK directly. Moreover, an alternative approach, giving smaller parame-
ters, is to instead rely on a computational SIS assumption wrt the infinity norm
and with unbalanced entries. This problem was considered in [20,44]. Indeed,
even assuming an infinity norm bound of q/4 for all components, the difficulty
of the resulting SIS instance is comparable to λ as given in Table 2 according to
the lattice estimator [5].

We now show how the protocol has threshold unpredictability.

Theorem 8. Let σ, N , and
(
n
t

)
be poly (λ). Let t′ = o(log(N)), T ≤

σ
√

(t − 1)N and α = T/σL. Let M = exp(t′/α + 1/2 · α−2). Let dRLWEq,N,σ,σ

be hard, and q
2p � σ′ ≥ (L ·

√
N + 2 · σ) · σ · N ·

√
Q · N for the number of

queries made Q. Let (P1,V1), (P′
2,V

′
2) be straight-line extractable NIZKAoKs

for language L1,L′
2. Then the (t, n) threshold OPRF protocol defined in Fig. 6 is

threshold unpredictable against malicious clients controlling up to t − 1 servers.

We give the proof in the full version of this work. Finally, since the protocol
is threshold unpredictable, we can also argue it has threshold one-more PRF
security.

Corollary 3. Let σ, N , and
(
n
t

)
be poly (λ). Let t′ = o(log(N)), T ≤

σ
√

(t − 1)N and α = T/σL. Let M = exp(t′/α + 1/2 · α−2). Let dRLWEq,N,σ,σ

be hard, and q
2p � σ′ ≥ (L ·

√
N +2 ·σ) ·σ ·N ·

√
Q · N for the number of queries

made Q. Let (P1,V1), (P′
2,V

′
2) be straight-line extractable NIZKAoKs for lan-

guage L1,L′
2 and H,Hr be hash functions modeled as random oracles then if the
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(t, n) threshold OPRF protocol defined in Fig. 6 is threshold unpredictable, it also
has threshold one-more PRF security against any PPT adversary A controlling
C and a subset of servers C of size at most t − 1.

Acknowledgements. We thank reviewers for their valuable comments and pointing
out the issue with both [4] and our unpredictability proofs. This work was supported
in part by UKRI grant EP/Y02432X/1. Part of this work was done while Kamil Doruk
Gur was at SandboxAQ and supported in part by NSF award CNS-2154705.

References
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Abstract. We introduce new lattice-based techniques for building ABE
for circuits with unbounded attribute length based on the LWE assump-
tion, improving upon the previous constructions of Brakerski and
Vaikuntanathan (CRYPTO 16) and Goyal, Koppula, and Waters (TCC
16). Our main result is a simple and more efficient unbounded ABE
scheme for circuits where only the circuit depth is fixed at set-up; this
is the first unbounded ABE scheme for circuits that rely only on black-
box access to cryptographic and lattice algorithms. The scheme achieves
semi-adaptive security against unbounded collusions under the LWE
assumption. The encryption time and ciphertext size are roughly 3×
larger than the prior bounded ABE of Boneh et al. (EUROCRYPT 2014),
substantially improving upon the encryption times in prior works. As a
secondary contribution, we present an analogous result for unbounded
inner product predicate encryption that satisfies weak attribute-hiding.

1 Introduction

Attribute-based encryption (ABE) [SW05,GPSW06] is a generalization of public-
key encryption to support fine-grained access control for encrypted data.
Here, ciphertexts are associated with attributes like ‘(author:Waters), (inst:UT),

(topic:PK)’ and keys with access policies like ((topic:Thy) OR (topic:Qu)) AND

(NOT(inst:CWI)), and decryption is possible only when the attributes satisfy the
access policy. Over past decade, substantial progress has been made in the design
and analysis of ABE schemes, leading to a large families of schemes that achieve
various trade-offs between efficiency, security and underlying assumptions. Mean-
while, ABE has found use in a variety of settings such as electronic medical records,
messaging systems and online social networks; companies like Cloudflare already
use ABE to distribute private key storage across data centers [Ver23].

As institutions grow and with new emerging and more complex applica-
tions for ABE, we need ABE schemes that can readily accommodate the addi-
tion of new roles, entities, attributes and policies. This means that the ABE
set-up algorithm should put no restriction on the length of the attributes or
the size of the policies that will be used in the ciphertexts and keys. This
requirement was introduced and first realized in the work of Lewko and Waters
[LW11] under the term unbounded ABE ; we would henceforth also refer to stan-
dard ABE as bounded ABE. The Lewko-Waters schemes rely on pairings without
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15487, pp. 238–267, 2025.
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random oracles, and have since been improved and extended in several sub-
sequent works [Lew12,OT12,RW13,Att14,KL15,Att16,CGKW18]. All of these
schemes are limited to policies described by NC1 circuits or branching programs,
as is the case with all pairing-based ABE schemes.

In 2016, Brakerski and Vaikuntanathan (BV16) gave the first construction of
unbounded ABE for circuits [BV16] based on the Learning with Errors (LWE)
assumption, building upon bounded ABE schemes in [BGG+14,GVW13]. This
was followed shortly by a generalization in Goyal-Koppula-Waters (GKW16)
[GKW16] showing a generic compiler of bounded ABE schemes to unbounded
ones assuming additionally adaptively secure identity-based encryption (IBE).
Both BV16 and GKW16 schemes also achieve semi-adaptive security [CW14],
a slight strengthening of selective security where an adversary can choose its
encryption challenge after seeing the public key. We note that both schemes do
inherit the limitation from prior bounded ABE for circuits, in that the depth of
the circuits needs to be fixed at set-up; nonetheless, this already capture NC1

circuits, whose depth can be bounded by security parameter λ.
One theoretical and practical draw-back of the BV16 and GKW16 schemes

is that they require non-black-box access to the underlying cryptographic build-
ing blocks and algorithms, which not only incur substantial efficiency over-
heads during encryption, but also make these schemes harder to implement and
deploy in practice. In particular, the BV16 scheme uses homomorphic computa-
tion of a pseudorandom function, whereas the GKW16 applies circuit garbling
techniques to the underlying ABE schemes. This is in contrast to the afore-
mentioned pairing-based unbounded ABE schemes as well as prior LWE-based
ABE schemes for circuits, which avoid non-black-box techniques.

1.1 Our Results

In this work, we present new LWE techniques for building simple and more
efficient unbounded ABE from bounded ones that avoid non-black-box tech-
niques, leading to substantial savings in encryption times. Our constructions are
inspired in part by prior pairing-based schemes in [Lew12,OT12,CGKW18], as
well as ideas from [Agr17] on how to combine inner-product functionality and
BGGHNSVV14 structure.

Unbounded ABE for Circuits. Our main result is a more efficient unbounded
ABE for circuits of a-priori bounded depth d based on the LWE assumption.
From a feasibility stand-point, this is the first unbounded ABE scheme for
circuits that rely only on black-box access to cryptographic and lattice algo-
rithms. As with BV16 and GKW16, we achieve semi-adaptive security against
unbounded collusions. For depth d circuits over �-bit inputs where only d is fixed
at set-up, we have

|mpk| = poly(d, λ), |ct| = � · poly(d, λ), |sk| = � · poly(d, λ)

Compared to the BGGHNSVV14 ABE (which only achieves selective security),
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– the encryption time and the ciphertext size are roughly 3× larger;
– the decryption time incurs an additive � · poly(d, λ) overhead; the overhead is

sublinear in the BGGHNSVV14 ABE decryption time s · poly(d, λ).

The efficiency savings over prior works are as follows:

– compared to the BV16 unbounded ABE, the savings in running times and
ciphertext/key sizes are two-fold: cutting down poly(d + dPRF) dependencies
to poly(d) where dPRF is the depth of a PRF and removing additive over-
heads corresponding to PRF evaluation; in particular, (i) encryption time in
BV16 is mostly dominated by homomorphic evaluation of a PRF with �-bit
output, and our encryption time should be a poly(λ) factor smaller, (ii) for
constant-depth circuits and shallow circuits where d � dPRF, our scheme is
substantially more efficient for all running times and sizes.

– compared to the GKW16 unbounded ABE, our encryption time and cipher-
text size are a multiplicative O(λ) factor smaller, which corresponds to the
overhead from garbling the BGGHNSVV14 ABE encryption circuit.

Decryption times in our scheme and GKW16 are comparable to that in
BGGHNSVV14 ABE, and faster than that in BV16. In all three unbounded
ABE schemes, the secret key has two components: a private component cor-
responding to a BGGHNSVV14 ABE secret key of size poly(d, λ) as well as a
public component of size � · poly(d, λ) that can be reused across all keys for
circuits of input length �. In BV16, the private component is slightly larger
poly(d + dPRF, λ), but the public component is just � + poly(λ) bits.

Unbounded Inner Product Predicate Encryption. Next, we turn our
attention to inner product predicate encryption (IPPE) [KSW08], where cipher-
texts are associated with (row) vectors x ∈ Z

�
q and keys with vectors y ∈ Z

�
q and

decryption is possible only if their inner product xy� equals 0. In addition to
hiding the message as in ABE, we require attribute-hiding, namely that cipher-
texts hide the attribute x. Unbounded IPPE schemes can be realized from pair-
ings [OT12] with black-box techniques, or from LWE by applying the GKW16
transformation to the bounded IPPE scheme of Agrawal, Freeman, and Vaikun-
tanathan (AFV11) [AFV11] with non-black-box techniques.

Our second result is a more efficient unbounded inner product predicate
encryption scheme based on the LWE assumption. We achieve semi-adaptive,
weak attribute-hiding security against unbounded collusions. For vectors over
Z

�
q where only q is fixed at set-up, we have

|mpk| = poly(log q, λ), |ct| = � · poly(log q, λ), |sk| = � · poly(log q, λ)

Compared to the scheme derived from combining GKW16 with the AFV11
scheme, our encryption time and ciphertext size are a multiplicative O(λ log q)
factor smaller, where the O(λ) factor comes from garbling as before, and the
O(log q) comes from the fact that we can directly support attributes over Zq

in our scheme. In contrast, the techniques in BV16 and GKW16 are inherently
limited to attributes over a binary alphabet.
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Fig. 1. Comparison of running times with prior KP-ABE for circuits of size s and depth
d over {0, 1}�. [BGG+14] is used as a benchmark. Here, dPRF = O(log λ + log �) and
sPRF = O(�·λ) denotes the depth and size of a PRF for �-bit inputs. The ciphertext sizes
satisfy an analogous relationship, where we replace TEnc by SEnc, namely: SEnc(�, d) =
� · poly(d, λ), O(SEnc(�, d + dPRF)), poly(λ) · SEnc(�, d), (3 + o(1)) · SEnc(�, d) respectively.
The total key sizes are SDec(d) = poly(λ, d), SDec(d + dPRF) + � + poly(λ), SDec(d) + � ·
poly(λ), � · SDec(d) respectively. In each row, the dominant term for Time(Dec) comes
from TDec(s, d).

Our Construction, in a Nutshell. The starting point, following BV16 and
GKW16, is to compute/sample a BGGHNSVV14 mpk during key generation,
which would be reused across all key queries; this (deceptively) simple idea
buys us both short mpk and semi-adaptive security. Decryption would then first
reconstruct a BGGHNSVV14 ciphertext w.r.t. mpk and then proceed as in
BGGHNSVV14 decryption. The key technical novelties in this work lie in how we
enable reconstruction of BGGHNSVV14 ciphertext using simple LWE algebra
and techniques (instead of non-black-box techniques), along with a new simple
idea for handling circuit with different input lengths in the key queries.

1.2 Technical Overview

We proceed to provide a technical overview of our constructions, focusing on the
unbounded ABE.

BGGHNSVV14 ABE. We begin with an overview of the BGGHNSVV14
bounded ABE scheme for depth d circuits over {0, 1}� [BGG+14]. Let A ∈
Z

n×�·m
q be a matrix where q ∈ N is prime and m = O(n log q). Given A and a

circuit f : {0, 1}� → {0, 1} of depth d, we can derive [BGG+14,GSW13] a matrix
Af ∈ Z

n×m
q such that for any x ∈ {0, 1}�, we can compute a low-norm matrix

HA,f,x satisfying

(A − x ⊗ G) · HA,f,x = Af − f(x) · G, (1)
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where G ∈ Z
n×m
q is the gadget matrix [MP12] and ‖HA,f,x‖ ≤ mO(d). The ABE

scheme is as follows, omitting error terms in the ciphertext:

mpk = A0 ← Z
n×m
q ,b ← Z

n
p ,A ← Z

n×�·m
q .

ct = (

c0
︷ ︸︸ ︷

s · A0,

c2
︷ ︸︸ ︷

s · b� + μ · 	q/2
,
c3

︷ ︸︸ ︷

s · (A − x ⊗ G)), s ← Z
n
q .

sk = k�
f ← DZ2 m,τ s.t. [A0 | Af ] · k�

f = b�.

Decryption computes an approximation to μ · 	q/2
 for f(x) = 0 as follows:

c2 −
≈ s·[A0|Af ]

︷ ︸︸ ︷

[c0 | c3 · HA,f,x] ·k�
f .

Compressing mpk. As a warm-up, we describe an ABE for circuits over {0, 1}�

where |mpk| = poly(d, λ). It is convenient to then write A in the BGGHNSVV14
ABE as Ai ∈ Z

n×m
q , i ∈ [�] and c3 in the ciphertext as s · (Ai −xiG), i ∈ [�]. We

want to sample Ai during key generation (and not set-up) and then compute
s · (Ai − xiG) during decryption. In particular,

– mpk now contains random matrices B0,W,V ← Z
n×m
q in addition to A0,b,

and msk contains the trapdoors for A0 and B0;
– the ciphertext contains

si · B0, {si · W + s · G, si · V + xi · s · G}i∈[�],

where s, si ← Z
n
q are sampled during encryption;

– during decryption, we compute

s · (Ai − xi ·G) ≈ (si ·W + s ·G) ·G−1(Ai) − (si ·V + xi · s ·G) + si ·B0 ·Zi

where Zi ← B−1
0 (V − W · G−1(Ai)) is provided in the secret key.

– key generation for f returns the same (Ai,Zi) across all secret keys—
generated using a PRF key in msk so that we don’t need to maintain state
across key queries—as well as a BGGHNSVV14 secret key for f .

This is sufficient for functionality. However, an adversary can also compute si ·
B0 ·Zj and thus s(Aj − xi ·G) for any i �= j. To prevent this attack, we replace
W with W + i · G in both the ciphertext and the secret key. This yields the
following ABE scheme:
mpk = A0, B0, W, V ← Z

n×m
q , b ← Z

n
q .

ct =
( c0︷ ︸︸ ︷
s · A0, {

c1,i︷ ︸︸ ︷
si · B0,

c2,i︷ ︸︸ ︷
si · (W + i · G) + s · G,

c3,i︷ ︸︸ ︷
si · V + xi · s · G}i∈[�],

c4︷ ︸︸ ︷
s · b�

+ μ · �q/2�
)

, s, si ← Z
n
q .

sk =
({Zj , Rj}j∈[�], kf

)
, where Zj , Rj are fixed across all keys

[
Zj

Rj

]
← D

Z2 m×m,τ
s.t.

[
B0 | W + j · G] ·

[
Zj

Rj

]
= V,

Aj = G · Rj

k
�
f ← D

Z2 m,τ
s.t. [A0 | Af ] · k�

f = b
�
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Decryption first uses

c1,i · Zi + c2,i · Ri − c3,i ≈ s · (Ai − xi · G) (2)

to recover a BGGHNSVV14 ciphertext, and then proceed as in BGGHNSVV14
decryption.

Proof Overview. The proof proceeds in two steps: Step 1. For i = 1, 2, . . . , �,
we rely on pseudorandomness of si · [B0 | W + i · G] to replace c1,i, c2,i with
random and rewrite c3,i in terms of s · (Ai − xi · G) using (2). In more detail,

– we program W + i · G = B0 · W̃ for a random low-norm W̃;
– we sample random Gaussian Zi,Ri and program V accordingly;
– for all j �= i, we sample Zj ,Rj using the trapdoor for [B0 | W + j · G] =

[B0 | B0 · W̃ + (j − i) · G];
– use the LWE assumption to replace si · B0 with random.

Step 2. Run the BGGHNSVV14 security proof. This step knows the trapdoor
for B0, which is used to solve for Zj .

Our construction and proof strategy achieve semi-adaptive security for the same
reason as in BV16, GKW16: the matrices Ai from the BGGHNSVV14 mpk are
sampled after the adversary chooses its encryption challenge attribute.

Getting to an Unbounded ABE Scheme. In an unbounded ABE scheme,
we need to allow both an honest party and an adversary to ask for keys corre-
sponding to functions with different input lengths. The previous scheme already
satisfies the syntax of an unbounded ABE scheme, since we can sample the Ai

matrices “on the fly”, while using a PRF to ensure that we use the same Ai

across all secret keys. However, it is insecure as an unbounded ABE: consider an
attack that fixes x∗ for the challenge ciphertext and then query a f such that f
evaluates to true on a prefix of x∗. To defeat this attack, we add s · (B1 −|x| ·G)
to the challenge ciphertext and modify sk for f : {0, 1}� → {0, 1} to satisfy

[A0 | Af | B1 − � · G] · k�
f = b�

To handle semi-adaptive security, we would simply guess |x∗| when simulating
B1 in the reduction, which incurs an additional polynomial loss. This is where
GKW16 uses an adaptively secure IBE (for which the known instantiations from
LWE in e.g. [Yam16] are more complex than their selectively secure counter-
parts), since they embed |x∗| into the identity of the IBE ciphertext. The BV16
scheme similarly embeds |x∗| as part of the attribute in an “outer ABE” that
plays an analogous role to the IBE ciphertext in GKW16.

Inner Product Predicate Encryption Scheme. Here, we start with the
AFV11 inner product predicate encryption, where an encryption for an attribute
x = (x1, . . . , x�) ∈ Z

�
q is exactly the same as that in the BGGHNSVV14 ABE.

Here, we exploit the fact that our construction directly support attributes over
Zq. We can then proceed essentially as before.
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1.3 Discussion

Additional Comparison with Prior Approaches. As mentioned at the
beginning of Sect. 1.1, our constructions are inspired in part by prior pairing-
based schemes. To better convey this, compare our ciphertext with that in the
KP-ABE for arithmetic span programs in [CGKW18, Section 9.3], where an
encryption of x = (x1, . . . , x�) ∈ Z

�
p has the form:

(
[

c0︷︸︸︷
sB0]1, [

c2,i︷ ︸︸ ︷
siB0]1, [

c′
2,i︷ ︸︸ ︷

s
′
iB0]1, [

c1,i︷ ︸︸ ︷
si(W + iW1) + s

′
i(W

′
+ iW

′
1) + s(V + xiV

′
)]1, [sb

�
]T μ

)
, s, si, s

′
i ← Z

k
p.

where [·]1 denotes exponentiation in the group G1. Our si(W + i · G) is
inspired by si(W + i · W1) above. However, note that s, sxi appear together as
s(V + xiV′) in c1,i. In our scheme, sG, xisG appear separately in s2,i and s3,i

respectively.
In our analysis, we implicitly treat {si(W + i · G)}i∈[�] as independent IBE

ciphertexts (for the LWE-based IBE in [ABB10]) corresponding to the identi-
ties 1, 2, . . . , � with randomness si. This is again inspired by the pairing-based
scheme [CGKW18] which uses IBE techniques in a similar way. IBE schemes are
also used in the BV16, GKW16 constructions in a generic manner, whereas our
schemes exploit specific algebraic structure in the underlying IBE.

Our construction can be viewed as using a one-key secure inner product
functional encryption (IPFE) scheme to compute s(Ai − xiG), where the IPFE
ciphertext encrypts (s, xis). The IPFE approach was used in [Agr17, Section 5]
to construct a “bounded” ABE for circuits with semi-adaptive security. Our
construction is simpler in that we do not need to encrypt a LWE error term, but
also more delicate since we want an unbounded ABE scheme.

Perspective. Apart from the landmark results of ABE for circuits from LWE
about a decade ago now, research on LWE-based ABE has largely lagged behind
their pairing-based counter-parts. One reason is that we have a much larger arse-
nal of techniques in the pairings world, which exploit the rich algebraic structure
in pairing groups. We see this work as taking another step towards discovering
analogues of these algebraic techniques in the LWE setting, in the specific con-
text of realizing short mpk. We stress that realizing short mpk (where |mpk| is
much shorter than the ciphertext attributes) is not only relevant for constructing
unbounded ABE and IPPE schemes, but also a necessity for several outstand-
ing open problems in the LWE-based ABE literature, notably (i) CP-ABE for
unbounded size circuits (even just NC1), (ii) ABE for DFA and Turing machines,
(iii) broadcast encryption where the total parameter size |mpk| + |ct| + |sk| is
sublinear in the total number of users, all of which we have made much more sub-
stantial progress in the pairings setting. We hope that developing new algebraic
techniques for short mpk as well as LWE analogues of existing pairing-based
techniques in this work could help facilitate progress on these open problems.
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2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface
upper case for matrices (e.g. R). For integral vectors and matrices (i.e., those
over Z), we use the notation ‖r‖, ‖R‖ to denote the maximum absolute value
over all the entries. We use v ← D to denote a random sample from a distribu-
tion D, as well as v ← S to denote a uniformly random sample from a set S. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable. We denoted by DZm,χ the (centered) discrete Gaussian distri-
bution over Zm with parameter χ, i.e., the distribution over Zm where for all x,
Pr[x] ∝ e−π·(x2

1+···+x2
m)/χ2

.

2.1 Pseudoradom Functions

A pseudorandom function (PRF) is a family of functions {F(k, ·) : {0, 1}m(λ) →
{0, 1}�(λ)}λ∈N,k∈{0,1}λ such that:

– efficiency : one can compute F(k, x) in poly(λ)-time given x and k,
– security : for any PPT adversary A let

AdvPRF
A,F (λ) :=

∣

∣

∣Pr
[

AF(k,·)(1λ) = 1
]

− Pr
[

AR(·)(1λ) = 1
]∣

∣

∣ ,

where k←{0, 1}λ and R←F({0, 1}m(λ) → {0, 1}�(λ)), with F({0, 1}m(λ) →
{0, 1}�(λ)) denoting the set of all functions mapping m(λ) bits to �(λ) bits.
A PRF F is secure if for all PPT adversary A, the advantage AdvPRF

A,F (λ) is a
negligible function in λ.

2.2 Attribute-Based Encryption

Syntax. A key policy attribute-based encryption (KP-ABE) scheme Π for some
class F consists of four algorithms:

– Setup(1λ,F) → (mpk,msk). The setup algorithm gets as input the security
parameter 1λ and class description F . It outputs the master public key mpk
and the master secret key msk.

– Enc(mpk,x,µ) → ctx. The encryption algorithm gets as input mpk, an input
x and a message µ ∈ {0, 1}λ. It outputs a ciphertext ctx. Note that x is
public given ctx.

– KeyGen(mpk,msk, f) → skf . The key generation algorithm gets as input
mpk,msk and f ∈ F . It outputs a secret key skf . Note that f is public
given skf .

– Dec(mpk, skf , f, ctx,x) → µ. The decryption algorithm gets as input skf and
ctx along with mpk. It outputs a message µ.
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Correctness. For all � ∈ N, inputs x ∈ {0, 1}�, functions f : {0, 1}� → {0, 1} with
f(x) = 0, and all µ ∈ {0, 1}λ, we require

Pr

⎡

⎣Dec(mpk, skf , ctx) = µ :
(mpk,msk) ← Setup(1λ,F)
skf ← KeyGen(mpk,msk, f)
ctx ← Enc(mpk,x,µ)

⎤

⎦ ≥ 1 − negl(λ).

Security Definition. For a stateful adversary A, we define the advantage function

AdvABE
A,Π (λ) := Pr

⎡

⎢

⎢

⎢

⎢

⎣

b = b′ :

(mpk,msk) ← Setup(1λ,F)
x∗ ← A(1λ,mpk)
(µ0,µ1) ← AKeyGen(mpk,msk,·)(mpk)
b ← {0, 1}; ctx∗ ← Enc(mpk,x∗,µb)
b′ ← AKeyGen(mpk,msk,·)(ctx∗)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2
,

with the restriction that all queries f : {0, 1}� → {0, 1} that A sent to
KeyGen(mpk,msk, ·) satisfy either � �= |x∗| or f(x∗) = 1. An ABE scheme Π
is semi-adaptively secure if for all PPT adversaries A, the advantage AdvABE

A,Π (λ)
is a negligible function in λ.

2.3 Lattices Background

Learning with Errors. Given n,m, q, χe ∈ N, the LWEn,m,q,χe
assumption

states that
(A, s · A + e) ≈c (A, c),

where
A←Z

n×m
q , s←Z

n
q , e←DZm,χe

, c←Z
m
q .

Leftover Hash Lemma and Generalizations A result that we will use is
the so-called leftover hash lemma (LHL) [HILL99], which states that for m ≥
(n+1) · log q+2 ·λ the distribution of (A,u = A ·x) for uniform and independent
A ← Z

n×m
q and x ← {1,−1}m is statistically indistinguishable from uniformly

random.

Lemma 1 (Generalized Leftover Hash Lemma [DRS04,ABB10]). Suppose
that m > (n + 1) log q + ω(log n) and that q > 2 is prime. Let R be an m × k
matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in
n. Let A and B be matrices chosen uniformly in Z

n×m
q and Z

n×k
q respectively.

Then, for all vectors w in Z
m
q , the distribution (A,A ·R,w� ·R) is statistically

close to the distribution (A,B,w� · R).

Trapdoor and Preimage Sampling. Let n, q ∈ Z,

gq = (1, 2, 4, . . . , 2�log q	−1) ∈ Z
�log q	.
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The gadget matrix Gn,q is defined as the diagonal concatenation of gq n times.
Formally, Gn,q = gq ⊗ In ∈ Z

n×n·�log q	. For any t ∈ Z, the function G−1
n,q :

Z
n×t
q → {0, 1}n·�log q	×t expands each entry a ∈ Zq of the input matrix into a

column of size �log q� consisting of the bit-representation of a. For any matrix
A ∈ Z

n×t
q it holds that Gn,q ·G−1

n,q(A) = A mod q. We refer to the gadget matrix
simply as G when parameters n and q are clear from the context.

Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q

we let A−1(V, τ) denote the random variable whose distribution is the discrete
Gaussian D

Zm×m′ ,τ conditioned on A·A−1(V, τ) = V mod q. If Y ← A−1(V, τ)
then ‖Y‖ ≤ k · τ · √

m · m′ with probability at least 1 − e−Ω(k2). A matrix
T ∈ Z

m×m such that A · T = H · G, for some invertible matrix H ∈ Z
n×n
q is

called a τ -trapdoor for A, for τ ≥ 2 ·m ·√n · log q ·‖T‖. The following properties
have been established in a long sequence of works.

Lemma 2 (Trapdoor Generation and Sampling [Ajt96,GPV08,MP12]).
There exists a pair of probabilistic polynomial-time algorithms:

– TrapGen(1n, 1m, q) that for all m ≥ m0 = m0(n, q) = O(n log q), outputs
(A,TA) s.t. A ∈ Z

n×m
q is within statistical distance 2−n from uniform and

TA is a τ -trapdoor for A where τ = O(
√

n · log q · log n).
– SamplePre(A,T,V, τ) that given A and any τ -trapdoor T of A, outputs a

sample from A−1(V, τ).

Moreover

1. for x←DZm,τ , the marginal distribution of y = A · x ∈ Z
n
q is uniform (up to

negl(n) statistical distance), and the conditional distribution of x given y is
A−1(y, τ).

Lemma 3 (Trapdoor Extension [ABB10,CHKP10]). Given A ∈ Z
n×m
q , with

a τ -trapdoor T, it is efficient to sample from [A|B]−1(·, τ) for all B ∈ Z
n×k
q .

Moreover, for any V ∈ Z
n×m′
q , the following two distributions are statistically

close

– U ∈ Z
m+k×m′

, where U←[A|B]−1(V, τ),

–
[

U0

U1

]

∈ Z
m+k×m′

, where U1←D
Zk×m′ ,τ and U0←A−1(V − BU1, τ).

Another related result that we will use is the so-called leftover hash lemma
(LHL) [HILL99], which states that for m ≥ (n + 1) · log q + 2 · λ the distribution
of (A,u = A · x) for uniform and independent A ← Z

n×m
q and x ← {0, 1}m is

statistically indistinguishable from uniformly random.

Homomorphic Computation on Matrices. We recall basic homomorphic
computation on matrices used in BGGHNSVV14:
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Theorem 1 ([BGG+14,GSW13]). There exist efficient deterministic algo-
rithms EvalF and EvalFX such that for all n, q, � ∈ N, and for any sequence
of matrices A = (A1, . . . ,A�) ∈ (Zn×n·�log q	)�, for any depth-d Boolean cir-
cuit f : {0, 1}� → {0, 1} and for every x = (x1, . . . , x�) ∈ {0, 1}�, the following
properties hold.

– The outputs Af = EvalF(A, f) and HA,f,x = EvalFX(A, f,x) are matrices in
Z

n×(n·�log q	)
q and Z

(�·n·�log q	)×(n·�log q	),
– It holds that ‖HA,f,x‖ ≤ (n · log q)O(d),
– It holds that

(A − x ⊗ Gn,q) · HA,f,x = Af − f(x) · Gn,q mod q.

For a proof of this theorem, we refer the reader to [BCTW16, Fact 3.4].

3 Unbounded ABE for Circuits

We refer to Sect. 1.2 for an overview of the scheme and the security proof.

Construction. Let the ABE Π = (Setup,Enc,KeyGen,Dec) for the family Fd of
circuits of depth d, over �-bit inputs for any � ∈ N, be defined as follows:

– Setup(1λ, 1d): Sample

(A0,TA0)←TrapGen(1n, 1m, q), (B0,TB0)←TrapGen(1n, 1m, q),

B1,WV←Z
n×m
p ,D←Z

n×λ
q ,

k←{0, 1}λ.

where q is prime1. Set mpk = (A0,B0,B1,W,V,D), and msk =
(TA0 ,TB0 , k). Return (mpk,msk).

– Enc(mpk,x ∈ {0, 1}�,µ ∈ {0, 1}λ): Let � = |x|. Sample

s ← Z
n
q , e0 ← DZm,χ, e4 ← DZλ,χ, e5 ← DZm,χ′ ,

sj ← Z
n
q , e1,j ← DZm,χ, e2,j ← DZm,χ′ , e3,j ← DZm,χ′′ for all j ∈ [�].

Compute

c0 := s · A0 + e0 mod q,

c1,j := sj · B0 + e1,j mod q for all j ∈ [�],
c2,j := sj · (W + j · G) + s · G + e2,j mod q for all j ∈ [�],
c3,j := sj · V + xj · s · G + e3,j mod q for all j ∈ [�],
c4 := s · D + µ · 	q/2
 + e4 mod q.

c5 := s · (B1 − � · G) + e5 mod q.

Output ctx := (c0, {c1,j}j∈[�], {c2,j}j∈[�], {c3,j}j∈[�], c4, c5).

1 We can also adapt the construction to support non-prime moduli using techniques
from [MP12].
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– KeyGen(mpk,msk, f): Let � equal the size of f ’s inputs. For all j ∈ [�], sample

Kj ← SamplePre
(

[B0|W + j · G],
[

TB00m×m

]

,V, τ1;F(k, j)
)

.

Parse

Kj =
[

Zj

Rj

]

,

and let Aj := G · Rj mod q. Let A := [A1| . . . |A�] and Af = EvalF(A, f).
Sample

Kf ← SamplePre

⎛

⎝[A0|Af |B1 − � · G],

⎡

⎣

TA0

0m×m

0m×m

⎤

⎦ ,D, τ2

⎞

⎠ .

Output skf := ({Kj}j∈[�],Kf ). Here, Kf is the private component, and {Kj}
is the public component and can be reused over all functions of input length
at most �.

– Dec(mpk, skf , f, ctx,x): Let � = |x|. Parse ctx = (c0, {c1,j}j∈[�], {c2,j}j∈[�],

{c3,j}j∈[�], c4, c5), skf = ({Kj}j∈[�],Kf ), and Kj =
[

Zj

Rj

]

for all j ∈ [�]. Let

Aj = G · Rj and A =
[

A1 . . . A�

]

. Compute HA,f,x = EvalFX(A, f,x). For
each j ∈ [λ], check if the j-th entry of

c4 −
[
c0

∣∣∣∣ ([[
c1,1 c2,1

] · K1 | . . . | [
c1,� c2,�

] · K�

] − [
c3,1 . . . c3,�

]) · HA,f,x

∣∣∣∣ c5

]
· Kf

is q/4-close to q/2. If so, set μj := 1. Else, μj := 0. Return µ.

Parameters. We have 3 gaussian parameters:

≈‖e0‖,‖e1,j‖,‖e4‖
︷ ︸︸ ︷

χ′ ≤
≈‖e2,j‖,‖e5‖

︷ ︸︸ ︷

χ′ ≤
≈‖e3,j‖
︷ ︸︸ ︷

χ′′ .

The parameters requirements can be compactly specified as:

m ≥ O(n log q) trapdoorgeneration(Lemma2)

2nδ
≥ q/χ0, χ ≥ O(n + λ) LWEn,χs0 ,q hardness (H3,i,6 ≈c H3,i,7, H2 ≈c H3, H7 ≈c H8)

χ
′ ≥ χ · poly(λ, m) · λ

ω(1) noise flooding (H3,i,5 ≈s H3,i,6, H6 ≈s H7)

χ
′′ ≥ χ

′ · τ1 · poly(λ, m) · λ
ω(1) noise flooding (H3,i,4 ≈s H3,i,5, H6 ≈s H7)

m ≥ (n + 1) · log q + ω(log n) + 2λ (G)LHL (H3,i,0 ≈s H3,i,1, H3,i,7 ≈s H3,i,8)

τ1 ≥ O(m
2) trapdoor generation (H3,i,2 ≈s H3,i,3)

τ2 ≥ λ
ω(1) · m

3 · B trapdoor generation (H4 ≈s H5)

q ≥ poly(λ, m, �) · τ2 · τ1 · B · (χ + χ
′ + χ

′′) correctness (Theorem 2)
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We bound the adversarially chosen parameter d, � by λω(1). Taking λ1 =
λω(1), and additionally bounding the poly(λ,m, �) terms by λ1, we can set

m = O(n log q),
χ = λ1, χ′ = λ3

1, χ′′ = λ6
1,

τ1 = λ1, τ2 = B · λ2
1 = λ

O(d)
1 ,

q = B · τ2 · λ8
1 = λ

O(d)
1 , n = O(log B + log λ1)1/δ = O(d · log λ1)1/δ,

(3)

where in the last two lines, we use B ≤ mO(d) ≤ λ
O(d)
1 .

Efficiency. Our ABE scheme achieves

|mpk| = O((n · log q)
2
), |ct| = O(� · n · (log q)

2
), |sk| = O(� · (n · log q)

2 · log τ1 + λ · n · log q · log τ2).

This yields the following parameter sizes (in bits) for our ABE scheme:

|mpk| = Oλ(d2+2/δ), |ct| = Oλ(� · d2+1/δ), |sk| = Oλ(� · d2+2/δ).

where Oλ(·) hides factors polynomial in λ (bounded by λ4). Here, we use n =
O(d1/δ · λ), log q = O(d · λ), where we do optimize on the dependency on d but
not on λ.

Comparison with BGGHNSVV14 ABE. To compare concrete efficiency of
our construction against the BGGHNSVV14 ABE, let n,m, q denote the param-
eters in our scheme and n0,m0, q0 those in BGGHNSVV14. Since q0 ≥ B, we
can set

q = q0 · λω(1).

This implies that we have

log q = (1 + o(1)) · log q0, n = (1 + o(1)) · n0, and m = (1 + o(1)) · m0.

In particular, n,m, and log q factors are essentially the same in both schemes.
Therefore, to compare concrete efficiency with BGGHNSVV14 ABE, we can
compare the number of field (i.e., Zq) elements and operations.

– Our ciphertext size is (3� + 2) · m + λ elements in Zq, whereas that in
BGGHNSVV14 is (� + 1) · m + λ elements.

– Encryption requires (3� + 2) · m + λ vector-vector products over Z
n
q and

sampling (3� + 2) · m + λ gaussians over Zq, whereas that in BGGHNSVV14
requires (� + 1) · m + λ vector-vector products and (� + 1) · m + λ gaussians.

– Our secret key contains a private component with mλ Zq-elements, and a
public component with m�n Zq-elements, whereas that in BGGHNSVV14 is
mλ elements.

– Decryption in both schemes are dominated by s · poly(λ) time to compute
HA,f,x, with an additive � · poly(λ) overhead in our scheme.
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Notice that this also applies to GKW16 since it uses the BGGHNSVV14 scheme
as the underlying building block.

Theorem 2 (Correctness). Let Π be the ABE construction described in
Sect. 3, with parameters as in Eq. 3. Then Π is correct.

Proof Fix x, f such that f(x) = 0. The bulk of the proof lies in showing that
[

c0

∣

∣

∣

∣

([[

c1,1 c2,1

] · K1 | . . . | [

c1,� c2,�

] · K�

] − [

c3,1 . . . c3,�

]) · HA,f,x

∣

∣

∣

∣
c5

]

= s · [

A0 | Af | B1 − � · G]

+ e′
f,x mod q (4)

where ‖e′
f,x‖ is small. Correctness then follows readily from the fact that

c4 − (s · [A0 | Af | B1 − � · G]

+ e′
f,x) · Kf = µ · 	q/2
 + e4 − e′

f,x · Kf mod q.

To prove Eq. (4):

– First, for any j ∈ [�], we have
[
c1,j c2,j

]
· Ki = (sj ·

[
B0 | W + j · G

]
+ s ·

[
0n×m | G

]
+

[
e1,j | e2,j

]
) · Kj

= sj ·
[
B0 | W + j · G

]
· Kj + s ·

[
0n×m | G

]
· Kj +

[
e1,j | e2,j

]
· Kj

≈ si · V + s · Ai mod q.

– Further, we have

sj · V + s · Aj − c3,j = sj · V + s · Aj − (sj · V + xj · s · G + e3,j )

≈ s · (Aj − xj · G) mod q.

– We deduce that
[[
c1,1 c2,1

] · K1 | . . . | [
c1,� c2,�

] · K�

] − [
c3,1 . . . c3,�

]
= s · (A − x ⊗ G) + ex mod q,

where A := [A1 | . . . | A�] and ex :=
[[

e1,1 e2,1

] · K1 | . . . | [

e1,� e2,�

] · K�

] −
[

e3,1 | . . . | e3,�

]

.
– Using the key equation

(A − x ⊗ G) · HA,f,x = Af mod q,

as f(x) = 0, we have
[[
c1,1 c2,1

] · K1 | . . . | [
c1,� c2,�

] · K�

] · HA,f,x = s · (A − x ⊗ G) + ex) · HA,f,x

= s · Af + ex · HA,f,x

≈ s · Af mod q.
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– Putting everything together, we obtain Eq. (4) with

e
′
f,x =

[
e0 | ex · HA,f,x | e5

]

=
[
e0 | ([[

e1,1 e2,1
] · K1 | . . . | [

e1,� e2,�

] · K�

] − [
e3,1 | . . . | e3,�

]) · HA,f,x | e5
]

,

where

‖e′
f,x‖ ≤ λ · χ

+ λ2 · 2 · � · m2 · (χ + χ′ + χ′′) · τ1 · B

+ λ · χ′.

In particular, the norm of the final error term is, with overwhelming probability
in λ, bounded by

‖e4‖ + ‖e′
f,x · Kf‖ ≤ λ · χ

+ λ · 3 · m · τ2 ·
(

λ · χ

+ λ2 · 2 · � · m2 · (χ + χ′ + χ′′) · τ1 · B

+ λ · χ′
)

,

where we have used that ‖Kf‖ ≤ λ · τ2 and that e′
f,x is a vector of length 3 · m.

Since
q ≥ poly(λ,m, �) · τ2 · τ1 · B · (χ + χ′ + χ′′)

the theorem follows. ��
Theorem 3 (Security). Let Π be the KP-ABE construction described in Sect. 3,
with parameters set as in Eq. (3), and F a PRF. Then, for any semi-adaptive
adversary A that runs is time T = T (λ), there exists adversaries B0, B1 and B2

against PRF-security, LWEn,m,χ,q, and LWEn,m+λ,χ,q respectively, such that

Advsa-ABE
A,Π (λ) ≤ T ·

(
AdvPRF

B0,F(λ) + Adv
LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
.

Proof Consider the following sequence of hybrids, summarized in Fig. 2 and
Fig. 3. Let Advi(A) denote the advantage of A in hybrid Hi. Notice that we
can bound the length � of the input domain of any function f queried to the
KeyGen oracle by T , i.e., an adverary A running in time T will never obtain Kj

for j > T .

– H0: This is identical to the real security game. Therefore

Advsa-ABE
A,Π (λ) = Adv0(A).

– H1: This is identical to H0, except for the fact that the reduction guesses
|x∗| = �∗ before generating the public parameters. If the guess is not correct,
the reduction aborts. Since A runs in time T , one has that �∗ ≤ T , so the
reduction can guess �∗ and incur a security loss of T . In other words, we have
that

Adv0(A) ≤ T · Adv1(A).
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Fig. 2. Summary of our security proof. ↓ denotes the same as the previous hybrid. We
omit the noise terms in H0. Starting from H6, the proof is essentially the same as the
BGGHNSVV14 ABE.

– H2: This is identical to H1, except for the following modification to KeyGen:
• for all j ∈ [T ], sample once and for all a random string rj←{0, 1}poly(λ),
• use ri as randomness to sample Kj , i.e.

Kj ← SamplePre

(

[B0|W + j · G],
[

TB0

0m×m

]

,V, τ1; rj

)

.

To show that H1 ≈c H2, we rely on the PRF security of F. The reduction
works as follows:

• it samples A,B0,B1,W,V and D as in H1,
• it obtains x∗ from the adversary A,
• it answers KeyGen queries as in H1 but using the output O(j) of its PRF

oracle as randomness to sample Kj ,
• whenever the adversary A produces (µ0,µ1), it produces the challenge

ciphertext ctx∗ as in H1.
Observe that

• if O(·) = F(k, ·) is pseudorandom function instance, the view of the adver-
sary A is identical to H1;
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Fig. 3. Summary for H2 ≈c H3. The sequence of hybrid is repeated for all i ∈ [�∗].That
is, H2 = H3,1,0 ≈ · · · ≈ H3,1,9 = H3,2,0 ≈ · · · ≈ H3,�∗,9 = H3.

• if O(·) = F (·) is a truly random function instance, the view of A is
identical to H2.

We conclude that

Adv1(A) ≤ Adv2(A) + AdvPRF
B0,F(λ).

and in particular, that H1 ≈c H2.

For i ∈ [�∗]:

– H3,i,1: This is the same as previous hybrid, except for the following modifica-
tion to W in mpk:

• sample W̃i ← {1,−1}m×m,
• set W := B0 · W̃i − i · G.

Since W̃i is sampled uniformly and m ≥ (n + 1) · log q + 2 · λ, statistical
indistinguishability of H3,i,1 from previous hybrid follows from the leftover
hash lemma. Notice that, for all j ∈ [�∗], we can now rewrite

W + j · G = B0 · W̃i + (j − i) · G

– H3,i,2 This is the same as H3,i,1, except for the following modification to V
in mpk and to Ki in KeyGen queries:

• Parse ri = [ri,1|ri,2] and sample Zi,Ri ← DZm×m,τ1 using as random
coins ri,1 and ri,2 respectively,

• set Ki :=
[

Zi

Ri

]

,

• set V := [B0 | W + i · G] · Ki.
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By the properties of the SamplePre algorithm (Lemma 2, Item 1.), the distri-
bution of V and Ki is statistically indistinguishable between H3,i,1 and H3,i,2.
Therefore

Adv3,i,1(A) ≤ Adv3,i,2(A) + negl(λ).

– H3,i,3: This is the same as H3,i,2, except for the following modification to
KeyGen queries when j �= i:

• compute T :=
[

W̃i

−Im

]

and observe that

[B0 | W + j · G] · T = [B0 | B0 · W̃i + (j − i) · G] ·
[

W̃i

−Im

]

= (i − j) · G.

• compute
Kj ← SamplePre([B0|W + j · G],T,V, τ1; rj)

to answer KeyGen queries. This works as long as

τ1 ≥ O(m2) ≥ O(m2 · ‖W̃‖). (5)

Therefore, since τ1 satisfies such constraint by our choice of parameters, we
have that

Adv3,i,2(A) ≤ Adv3,i,3(A) + negl(λ).

Notice that the reduction does not use TB0 anymore.
– H3,i,4: This is the same as H3,i,3, except for the following modification to B0

in mpk:
• sample B0←Z

n×m
q instead of (B0,TB0)←TrapGen(1n, 1m, q).

By the properties of the TrapGen algorithm (Lemma 2), the distribution of
B0 is statistically indistinguishable between H3,i,3 and H3,i,4. Therefore,

Adv3,i,3(A) ≤ Adv3,i,4(A) + negl(λ).

– H3,i,5: This is the same as H3,i,4 except for the following modification to c3,i

in the challenge ciphertext:
• set

c3,i := [c1,i | c2,i] · Ki − s · (Ai − x∗
i · G) + e′

3,i,

for s ← Z
n
q , e′

3,1 ← DZm,χ′′ .
First, recall that in H3,i,4, we have

c3,i = si · V + x∗
i · s · G + e3,i

= si · [B0 | W + i · G]
︸ ︷︷ ︸

[c1,i|c2,i]−[0|s·G]−[e1,i|e2,i]

·
[

Zi

Ri

]

︸ ︷︷ ︸

Ki

+x∗
i · s · G + e3,i

= [c1,i | c2,i] · Ki − s · (Ai − x∗
i · G) + e3,i − [e1,i | e2,i] · Ki mod q
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where in the last equality we have used that Ai = G ·Ri and the boxed term
is the term in H3,i,4 that will be modified in H3,i,5. By noise flooding, we have

([e1,i | e2,i],Ki, e3,i − [e1,i | e2,i] · Ki ) ≈s ([e1,i | e2,i],Ki, e′
3,i),

as long as

χ′′ ≥ 2 · m · χ′ · τ1 · λω(1),

≥ ‖[e1,i | e2,i] · Ki‖ · λω(1).

We conclude that

Adv3,i,4(A) ≤ Adv3,i,5(A) + negl(λ).

– H3,i,6: This is the same as H3,i,5, except for the following modification to c2,i

in the challenge ciphertext:
• set

c2,i := c1,i · W̃i + s · G + e′
2,i,

for e′
2,i ← DZm,χ′ and s ← Z

n
q .

First, recall that in H3,i,5, we have

c2,i = si · (W + i · G) + s · G + e2,i

= si · (B0 · W̃i) + s · G + e2,i

= (si · B0 + e1,i
︸ ︷︷ ︸

c1,i

) · W̃i + s · G + e2,i − e1,i · W̃i mod q

where the boxed term is the term in H3,i,5 that will be modified in H3,i,6. By
noise flooding, we have

(

e1,i,W̃i, e2,i − e1,i · W̃i

)

≈s

(

e1,i,W̃i, e′
2,i

)

,

as long as

χ′ ≥ m · χ · λω(1)

≥ ‖e1,i · W̃i‖ · λω(1).

We conclude that

Adv3,i,5(A) ≤ Adv3,i,6(A) + negl(λ).

– H3,i,7: This is the same as H3,i,6, except for the following modification to c1,i

in the challenge ciphertext:
• sample

c1,i ← Z
m
q .



Unbounded ABE for Circuits from LWE, Revisited 257

Recall that in H3,i,6, we have

c1,i = si · B0 + e1,i,

where si ← Z
n
q , e1,i←DZm,χ. To show that H3,i,6 ≈c H3,i,7, we rely on

LWEn,m,χ,q. The reduction works as follows:
• it parses B = B0 ∈ Z

n×m
q and c̃ = c1,i ∈ Z

m
q from the LWEn,m,χ,q

instance,
• it samples W̃i←{0, 1}m×m and computes A0,W,V,D as in H3,i,6, while

using B0 obtained from the LWE instance,
• it receives x∗ from the adversary A,
• it answers KeyGen queries using T (which can be computed from W̃i) as

in H3,i,6,
• whenever the adversary A outputs (µ0,µ1), it samples

b ← {0, 1}, s ← Z
n
q , e0 ← DZm,χ, e4 ← DZλ,χ, e5 ← DZλ,χ′

c1,j ← Z
m
q , c2,j ← Z

m
q for j ∈ [i − 1],

e′
2,i ← DZm,χ′ , e3,i ← DZm,χ′′ , and

sj ← Z
n
q , e1,j ← DZm,χ, e2,j ← DZm,χ′ , e3,j ← DZm,χ′′ for j ∈ [i + 1 : �∗]

and outputs

ct =

⎛
⎜⎜⎜⎜⎜⎜⎝

s · A0 + e0

{c1,j}j∈[i], {sj · B0 + e1,j}j∈[i+1:�∗]

{c2,j}j∈[i−1], c1,i · W̃i + s · G+ e′
2,i, {sj · (W + j · G) + s · G+ e2,j}j∈[i+1:�∗]

{c1,j | c2,j ] · Kj − s · (Ai − x∗
i · G) + e′

3,i}j∈[i], {sj · V + x∗
i · s · G+ e3,j}j∈[i+1:�∗]

s · D+ µ · �q/2� + e4

s · (B1 − |x∗| · G) + e5

⎞
⎟⎟⎟⎟⎟⎟⎠

Observe that
• if (B, c̃) is a structured LWEn,m,χ,q instance, the view of the adversary A

is identical to H3,i,6;
• if (B, c̃) is a uniform random instance, the view of A is identical to H3,i,7.

We conclude that

Adv3,i,6(A) ≤ Adv3,i,7(A) + Adv
LWEn,m,χ,q

B1
(λ).

– H3,i,8: This is the same as H3,i,7, except for the following modification to c2,i

in the challenge ciphertext:
• sample

c2,i ← Z
m
q .

Recall that in H3,i,7, we have

c2,i = c1,i · W̃i + s · G + e′
2,i.

Since c1,i is uniform random in Z
m
q in H3,i,7, W̃i is sampled uniformly and

m ≥ (n+1)·log q+2·λ+ω(log n), indistinguishability (H3,i,7 ≈s H3,i,8) follows
from the generalized leftover hash lemma (the adversary’s view includes W =
B0 · W̃i − i · G), that is

Adv3,i,7(A) ≤ Adv3,i,8(A) + negl(λ).
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– H3,i,9: This is the same as H3,i,8, except for the following modification to B0

in mpk and to the KeyGen queries:
• sample (B0,TB0)←TrapGen(1n, 1m, q), instead of B0←Z

n×m
q ,

• compute

Kj ← SamplePre([B0|W + j · G],
[

TB0

0m×m

]

,V, τ1; rj),

to answer KeyGen queries.
By the properties of the TrapGen algorithm (Lemma 2) and that of the
SamplePre algorithm, the distribution of B0 and that of answers to the KeyGen
queries are statistically indistinguishable between H3,i,8 and H3,i,9. Therefore,

Adv3,i,8(A) ≤ Adv3,i,9(A) + negl(λ).

– H4: This is the same as H3,�,9, except for the following modification to Kj for
all j ∈ [T ], and to the relative KeyGen queries:

• sample, once and for all key queries, Rj←DZm×m,τ1 ,
• compute

Zj ← SamplePre(B0,TB0 ,V − [W + j · G] · Rj , τ1; rj,1),

• set Kj :=
[

Zj

Rj

]

.

By the properties of the SamplePre algorithm and Lemma 3, the distribution
of {Kj}j∈[T ] is statistically indistinguishable between H3,�,9 and H4. There-
fore,

Adv3,�,9(A) ≤ Adv4(A) + negl(λ).

– H5: This is the same as H4, except for the following modification to Aj ,Kj

for all j ∈ [T ], and to the relative KeyGen queries:
• sample Aj←Z

n×m
q ,

• set Rj = SamplePre(G, I,Aj , τ1; rj,2),
• compute

Zj ← SamplePre(B0,TB0 ,V − [W + j · G] · Rj , τ1; rj,1),

• set Kj :=
[

Zj

RRj

]

.

By the properties of the SamplePre algorithm (Lemma 2, Item 1.), the distri-
bution of {Aj ,Kj}j∈[T ] is statistically indistinguishable between H4 and H5.
Therefore,

Adv4(A) ≤ Adv5(A) + negl(λ).

– H6: This is the same as H5, except for the following modification to B1 and
Aj for all j ∈ [�∗]:

• sample U←{0, 1}m×m and Uj←{0, 1}m×m for j ∈ [�∗],
• set B1 = A0 · U + �∗ · G and Aj := A0 · Uj + x∗

j · G for j ∈ [�∗].
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Since U,Uj are sampled uniformly and m ≥ (n + 1) · log q + 2 · λ, indistin-
guishability (H5 ≈s H6) follows from the leftover hash lemma, that is

Adv5(A) ≤ Adv6(A) + negl(λ).

– H7: This is the same as H6, except for the following modification to change
answers to KeyGen queries

• recall the key equation

(A − x ⊗ G) · HA,f,x = Af − f(x) · G mod q,

and that a valid adversary can only make KeyGen queries for functions f
for which f(x∗) = 1, and that |x∗| = �∗. Using these facts, for functions
f with input length �∗, one has that

Af = (A − x∗ ⊗ G) · HA,f,x∗ + f(x∗) · G
= ([A1| . . . |A�∗ ] − x∗ ⊗ G) · HA,f,x∗ + f(x∗) · G
= (A0 · [U1| . . . |U�∗ ] + x∗ ⊗ G − x∗ ⊗ G) · HA,f,x∗ + f(x∗) · G
= (A0 · [U1| . . . |U�∗ ] · HA,f,x∗

︸ ︷︷ ︸

Uf

+f(x∗) · G

= (A0 · Uf + G mod q,

where in the second equality we have used the definition of Aj for j ∈ [�∗].

• compute Tf :=
[ −Uf

Im0m×m

]

and observe that [A0|Af |B1−�∗ ·G]·Tf = G.

• for functions f whose input length is �∗, compute

Kf ← SamplePre ([A0|Af |B1 − � · G],Tf ,D, τ2)

to answer KeyGen queries.
• for functions f with input length � �= �∗, observe that

[A0|Af |B1 − � · G] ·
⎡
⎣

−U
0m×m

Im

⎤
⎦ = [A0|Af |A0 · U + �∗ · G − � · G] ·

⎡
⎣

−U
0m×m

Im

⎤
⎦

= [A0|Af |A0 · U + (�∗ − �) · G] ·
⎡
⎣

−U
0m×m

Im

⎤
⎦

= (�∗ − �︸ ︷︷ ︸
	=0

) · G mod q.

• for such functions (with input length � �= �∗), compute

Kf ← SamplePre

⎛

⎝[A0|Af |B1 − � · G],

⎡

⎣

−U
0m×m

Im

⎤

⎦ ,D, τ2

⎞

⎠

to answer KeyGen queries.
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• these procedures work as long as

τ2 ≥ m3 · �∗ · B

≥ m2 · m · �∗ · B

≥ O(m2 · (‖Uf‖ + ‖U‖))

(6)

By properties of the SamplePre algorithm,

Adv6(A) ≤ Adv7(A) + negl(λ).

Notice that the reduction does not use TA0 anymore.
– H8: This is the same as H7, except for the following modification to A0 in
mpk:

• sample A0←Z
n×m
q instead of (A0,TA0)←TrapGen(1n, 1m, q).

By the properties of the TrapGen algorithm (Lemma 2), the distribution of
A0 is statistically indistinguishable between H7 and H8. Therefore

Adv7(A) ≤ Adv8(A) + negl(λ).

– H9: This is the same as H8 except for the following modification to c3,j and
c5 in the challenge ciphertext:

• set

c3,j := [c1,j | c2,j ] · Kj − c0 · Uj + e′′
3,j , and

c5 := c0 · U + e′
5,

for e3,j ← DZm,χ′′ , e′
5 ← DZm,χ′ .

First, recall that in H8, we have

c3,j = [c1,j | c2,j ] · Kj − s · A0 · Uj
︸ ︷︷ ︸

c0·Uj−e0·Uj

+e′
3,j

= [c1,j | c2,j ] · Kj − c0 · Uj + e0 · Uj + e′
3,j mod q,

and

c5 = s · A0 · U
︸ ︷︷ ︸

c0·U−e0·U
+e5

= c0 · U + e5 − e0 · U mod q.

where the boxed terms are the term in H8 that will be modified in H9. By
noise flooding, we have

(

e′
3,j ,Uj , e0 · Uj + e′

3,j

)

≈s

(

e′
3,j ,Uj , e′′

3,j

)

,

and
(

e0,U, e5 − e0 · U
)

≈s (e0,U, e′
5) ,
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as long as

χ′′ ≥ m · χ · λω(1),

≥ ‖e0 · Uj‖ · λω(1),

and

χ′ ≥ m · χ · λω(1),

≥ ‖e0 · U‖ · λω(1),

respectively. We conclude that

Adv8(A) ≤ Adv9(A) + negl(λ).

– H10: This is the same as H9, except for the following modification to c0 and
c4 in the challenge ciphertext:

• sample
c0 ← Z

m
q , c4 ← Z

λ
q

Recall that in H9, we have

c0 = s · A0 + e0, c4 = s · D + µ · 	q/2
 + e4

where s ← Z
n
q , e0←DZm,χ, and e4←DZm,χ. To show that H9 ≈c H10, we rely

on LWEn,m+λ,χ,q. The reduction works as follows:
• it parses B = [A0|D] ∈ Z

n×(m+λ)
q and c̃ = [c0|c4] ∈ Z

m+λ
q from the

LWEn,m+λ,χ,q instance,
• it samples B0,W,V,U as in H7, while using A0,D obtained from the

LWE instance,
• it receives x∗ from the adversary A,
• it samples {Uj}j∈[�∗] and implicitly sets {Aj}j∈[�∗] as in H9,
• it answers KeyGen queries using Uf or U as in H9,
• whenever the adversary A outputs (µ0,µ1), it samples

b ← {0, 1}, e′
5 ← DZλ,χ′

c1,j ← Z
m
q , c2,j ← Z

m
q for j ∈ [�∗], and

e′′
3,j ← DZm,χ′′ for j ∈ [�∗]

and outputs

ct =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c0

{c1,j}j∈[�∗],
{c2,j}j∈[�∗],

{[c1,j | c2,j ] · Kj − c0 · Uj + e′′
3,i}j∈[�∗]

c4 + µb · 	q/2

c0 · U + e′

5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Observe that
• if (B, c̃) is a structured LWEn,m+λ,χ,q instance, the view of the adversary

A is identical to H9;
• if (B, c̃) is a uniform random instance, the view of A is identical to H10.

We conclude that

Adv9(A) ≤ Adv10(A) + Adv
LWEn,m+λ,χ,q

B2
(λ).

Putting everything together, we obtain

Advsa-ABE
A,Π (λ) ≤ T ·

(
AdvPRF

B0,F(λ) + Adv
LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
,

as claimed. ��

4 Unbounded Inner Product Predicate Encryption

We consider inner product predicate encrytion, where ciphertexts are associated
with x ∈ Z

�
q, keys with y ∈ Z

�
q, and decryption is possible iff x · y� = 0, where

q is prime.

Predicate Encryption. The syntax is exactly the same as ABE except Dec
only gets (mpk, skf , f, ctx) but not x. Correctness is defined analogously. For
security, we require weak attribute-hiding with semi-adaptive security as cap-
tured by the following advantage function:

AdvPE
A,Π(λ) := Pr

⎡

⎢

⎢

⎢

⎢

⎣

b = b′ :

(mpk,msk) ← Setup(1λ,F)
x∗

0,x
∗
1,← A(1λ,mpk)

(µ0,µ1) ← AKeyGen(mpk,msk,·)(mpk)
b ← {0, 1}; ct ← Enc(mpk,x∗

b ,µb)
b′ ← AKeyGen(mpk,msk,·)(ct)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2
,

with the restriction that |x∗
0| = |x∗

1| and all queries f : {0, 1}� → {0, 1} that
A sent to KeyGen(mpk,msk, ·) satisfy either (i) � �= |x∗

0| or (ii) f(x∗
0) �= 0 and

f(x∗
1) �= 0.

Homomorphic Computation on Matrices. Following [AFV11], we have:

(A − x ⊗ Gn,q) ·
HA,y

︷ ︸︸ ︷

(I� ⊗ Gn,q)−1(y�) =

Ay
︷ ︸︸ ︷

A · (I� ⊗ Gn,q)−1(y�) −x · y� ⊗ G (7)

Observe that computing HA,y does not require knowing x.
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4.1 Our Construction

Our inner product predicate encryption scheme Π′ is exactly the same as our
ABE, with the following modifications:

– In Enc, we have x ∈ Z
�
q, xj ∈ Zq instead of x ∈ {0, 1}�, xj ∈ {0, 1};

– In KeyGen, we replace Af in Kf with Ay in Ky, namely

Ky ← SamplePre

⎛

⎝[A0| Ay |B1 − � · G],

⎡

⎣

TA0

0m×m

0m×m

⎤

⎦ ,D, τ2

⎞

⎠ .

– In Dec, we replace HA,f,x with HA,y and Kf with Ky, namely

c4 −
[
c0

∣∣∣∣ ([[
c1,1 c2,1

] · K1 | . . . | [
c1,� c2,�

] · K�

] − [
c3,1 . . . c3,�

]) · HA,y

∣∣∣∣ c5

]
· Ky

– We can set the parameters as before, but with B = 1 (since ‖HA,y‖ ≤ 1),
which yields:

Theorem 4 (Correctness). Let Π′ be the inner product predicate encryption
scheme just described, with parameters as in Eq. (3) and B = 1. Then Π′ is
correct.

Correctness is exactly the same as in the ABE, except we use (7). In particular,
in the derivation of correctness we only need to replace Eq. (4) with

[

c0

∣

∣

∣

∣

([[

c1,1 c2,1

] · K1 | . . . | [

c1,� c2,�

] · K�

] − [

c3,1 . . . c3,�

]) · HA,y

∣

∣

∣

∣
c5

]

= s · [

A0 | Ay | B1 − � · G]

+ e′
f,y mod q. (8)

4.2 Security Proof

We sketch here the main modifications required. The security proof starts out
exactly as in our ABE, except

– we replace Af with Ay and HA,f,x∗ with HA,y and x∗ with x∗
b .

– to show H6 ≈s H7, we use x∗
b · y� �= 0, instead of f(x∗) �= 0.

In addition, we require the following additional games analogous to those in
[AFV11]:

– H11: sample A0 together with a trapdoor TA0 via (A0,TA0)←TrapGen(1n,
1m, q). We have H10 ≈s H11 by properties of the TrapGen algorithm.

– H12: sample Ky using the trapdoor for A0:

Ky ← SamplePre

⎛

⎝[A0|Ay|B1 − � · G],

⎡

⎣

TA0

0m×m

0m×m

⎤

⎦ ,D, τ2

⎞

⎠

We have H11 ≈s H12 by properties of the SamplePre algorithm.
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Fig. 4. Summary of our security hybrids. ↓ denotes the same as the previous hybrid.
We omit the noise terms in H0. Starting from H10, the proof is essentially analogous to
that in [AFV11].

– H13: replace Aj , c3,j with random.2 We have H12 ≈s H13 via the leftover hash
lemma as follows. First, in H12, Ky does not leak any additional information
about Uj beyond A1, . . . ,A�∗ . Then, the leftover hash lemma tells us

(A0, c0, c0 · U1, . . . , c0 · U�∗ ,A0 · U0, . . . ,A0 · U�∗)

is statistically close to random. This means:

(A0, c0, . . . , [c1,j |c2,j ] · Kj − c0 · Uj
︸ ︷︷ ︸

c3,j

, . . . ,A0 · Uj + x∗
b,j · G

︸ ︷︷ ︸

Aj

, . . .)

is statistically close to random.
2 Similar argument shows that c5 is also pseudorandom.
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Finally, observe that in H13, the view of the adversary is statistically independent
of the challenges x∗

b . The various hybrids are described in Fig. 4. This result is
summarized in the following theorem.

Theorem 5 (Security). Let Π′ be the inner product predicate encryption
scheme described in Sect. 4.1, with parameters set as in Eq. (3) with B = 1, and
F a PRF. Then, for any semi-adaptive adversary A that runs is time T = T (λ),
there exists adversaries B0, B1 and B2 against PRF-security, LWEn,m,χ,q, and
LWEn,m+λ,χ,q respectively, such that

AdvPE
A,Π(λ) ≤ T ·

(
AdvPRF

B0,F(λ) + Adv
LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
.
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Abstract. This paper gives the first lattice-based two-round thresh-
old signature based on standard lattice assumptions for which the first
message is independent of the message being signed without relying on
fully-homomorphic encryption, and our construction supports arbitrary
thresholds.

Our construction provides a careful instantiation of a generic thresh-
old signature construction by Tessaro and Zhu (EUROCRYPT ’23) based
on specific linear hash functions, which in turns can be seen as a gener-
alization of the FROST scheme by Komlo and Goldberg (SAC ’20). Our
reduction techniques are new in the context of lattice-based cryptogra-
phy. Also, our scheme does not use any heavy tools, such as NIZKs or
homomorphic trapdoor commitments.

1 Introduction

Multiple novel applications, primarily motivated by blockchains (e.g., digital
wallets [39]), are re-energizing a multi-decade agenda aimed at developing prac-
tical threshold signatures [32,33] with the goal of reducing trust assumptions in
systems using digital signatures. To this end, recall that in a t-out-of-n thresh-
old signature scheme, a set of n signers each hold shares of a secret signing key
associated with a public verification key. Any subset of at least t of these signers
should be able to come together and run a signing protocol to produce a signa-
ture on any message. However, an adversary that controls an arbitrary subset
of fewer than t signers should not be able, on its own, to come up with a valid
signature, even when they maliciously deviate from the protocol.

Threshold signatures are currently the focus of standardization efforts by
NIST [58] and IETF [23], and threshold signing protocols for a number of existing
signature schemes have been given from a variety of cryptographic assumptions.
These include threshold versions of BLS [4,12], Schnorr [7,22,26,41,51,52,66]
and (EC-)DSA [13,19,38–40,42,53], along with several schemes for ad-hoc signa-
tures in pairing-free groups with specific properties [5,27,68]. Several RSA-based
constructions [28,31,43,65,68] have also been proposed.

Lattice-based threshold signatures. With the threat of quantum comput-
ers looming on the horizon (and, in particular, their ability to break all assump-
tions behind all aforementioned threshold signatures), a widely recognized goal
c© International Association for Cryptologic Research 2025
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is to develop threshold signatures that are based on quantum-safe assumptions.
The most natural candidate for such schemes are lattice-based assumptions,
considering in particular the fact that NIST has selected DILITHIUM [56] and
FALCON [61], two lattice-based signature schemes, for standardization. Regard-
less of quantum safety, it is also important to obtain constructions from a set of
assumptions as diverse as possible.

While lattice-based cryptography has been enormously successful in enabling
extremely sophisticated functionalities, building efficient lattice-based threshold
signatures has turned out to be very challenging. In principle, the problem can
be solved generically and round optimally with constructions [2,14,15] based
on Fully-Homomorphic Encryption (FHE), but these require the homomorphic
evaluation of the signing algorithm within the FHE, thus imposing a substantial
computational and communication overhead on the signing process.

There have been attempts [20,29] at giving more direct constructions of two-
round signing protocols based on the Fiat-Shamir-with-abort paradigm [54],
obtained by adapting constructions for the related notion of multi-signatures.
These constructions only realize n-out-of-n threshold signatures, i.e., do not tol-
erate arbitrary thresholds t < n. Gur, Katz, and Silde [45] recently proposed a
new two-round construction based on linearly homomorphic encryption (LHE)
which supports arbitrary thresholds. Both rounds are message-dependent, and
they rely on homomorphic trapdoor commitments and NIZKs to ensure security
against malicious signers. For n “ 5 and t “ 3, their signatures and public keys
have sizes 46.6 and 13.6 KB, respectively, whereas the communication costs for
signing are roughly 3 MB per signer. Recent work by del Pino et al. [60] proposes
a more efficient lattice-based threshold signature scheme that does not rely on
FHE or the aforementioned heavy primitives, but the drawback is that the pro-
tocol has three message-dependent rounds. Other recent works consider adaptive
security [49] and robustness [36], but their schemes require higher round com-
plexity. In Table 1, we provide an overview of the aforementioned lattice-based
threshold signatures, detailing round complexity and assumptions used in each
construction. We further discuss a concurrent and independent work by Espitau
et al. [35] below.

Better two-round threshold signatures. In this paper, we pursue the
question of designing better and more efficient two-round threshold signatures.
Clearly, we would like to minimize communication along with signature and key
sizes, but other properties are desirable. For example, a fundamental property of
FROST [7,51] is that it is partially non-interactive, in that while the signing
protocol consists of two rounds, the first round messages are simply nonces
independent of the message being signed. This allows us to recover some of the
positive features of non-interactive schemes by preprocessing the initial round.
Currently, with the exception of FHE-based schemes, we do not know of any
partially non-interactive lattice-based threshold signatures. Note that in fact
partially non-interactive lattice-based multi-signatures exist [17], inspired by the
discrete-log based counterparts [59], but it is not clear how to turn these into
threshold signatures, especially for the case t < n.
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Table 1. Overview of lattice-based t-out-of-n threshold signatures for arbitrary thresh-
olds with the number of online (message-dependent) and offline (message-independent)
rounds, hardness assumptions, and notes on specific details in each construction.

Scheme Offline Online Assumption Notes

ASY [2] 0 1 SIS + LWE FHE

GKS [45] 0 2 RSIS + RLWE Trapdoor Commitments + NIZKs

TRaccoon [60] 0 3 MSIS + MLWE

KRT [49] 2 3 MSIS + MLWE Adaptive security

Pelican [36] 0 4 MLWE Robustness when t ď n/3

EKT [35] 1 1 AOM-MLWE Non-standard assumption

Our work 1 1 MSIS

Our contributions. In this paper, we develop the first partially non-interactive
lattice-based threshold signatures that do not rely on FHE or other heavy primi-
tives like NIZKs and trapdoor commitments. The security of our scheme is based
on standard lattice assumptions, in particular, we rely on the Module-SIS assump-
tion.

To achieve 128-bit of security and allow for up to 264 signatures to be gener-
ated with the same key, for the case n “ 5, which is the same setting considered
by [45], the signatures in our scheme have sizes roughly of 258.1 KB with the
size of public keys 47.6 KB, and the communication complexity per signer is 1.5
MB. While our signature and public key sizes are larger than [45], we achieve
better communication complexity.

Like other recent works [5,7,26,60], we do not propose an explicit distributed
key generation (DKG) protocol. (We can envision that keys are either set up
manually, or that they are the output of a suitable generic MPC protocol.) We
leave the design of suitable DKG protocols as an interesting open question.

Our approach. A common way to construct an efficient lattice-based primitive
is to take an efficient construction based on pairing-free groups and translate it
into a lattice-based scheme. However, one key barrier in translating ideas from
FROST, the state-of-art group-based partially non-interactive threshold signa-
ture scheme, to the lattice setting is that the security analysis of FROST relies
on the one-more discrete logarithm assumption, of which no analog is known in
the lattice setting. A recent work by Tessaro and Zhu [68] proposes a variant of
FROST based on linear hash functions (LHF) and gives a security reduction to
the plain DL assumption. Inspired by the work of Hauck et al. [46], which turns
a LHF-based blind signature scheme into a lattice-based one, our starting point
is to translate the LHF-based threshold signatures into lattice-based threshold
signatures. The main difficulty in this idea is that the lattice-based linear hash
functions do not have the desirable algebraic properties as required in the origi-
nal analysis from [68]. We refer to the technical overview below for the detailed
issues and our solutions.

We also want to point out some caveats with our work:
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– Our approach is very different from the aforementioned lattice-based thresh-
old signature works, and techniques, such as modularising the proof by reduc-
ing to the self-target MSIS problem [34,50] or the one from [55] for reducing
the norm bound of secret keys, do not apply to our construction. We refer to
the last paragraph of the technical overview for more details.

– Our solution requires stronger properties from the underlying secret shar-
ing scheme, which are satisfied by the secret sharing scheme by Benaloh and
Leichter [9]. However, this makes our secret key shares significantly large and
we address this further in Sect. 4.4. We remark that Benaloh-Leichter and
similar kinds of small-coefficient linear secret sharing have also been used
before in the context of lattice-based threshold cryptography, e.g., in con-
structing universal thresholdizers [14,15,18,21]. We further discuss in Sect. 3.3
the issues which make other secret sharing schemes, such as the one by Apple-
baum et al. [3], not applicable to our use case.

Significance of the work. We emphasize that we see the primary value of
our paper in showing the feasibility of constructing partially non-interactive
threshold signatures based on standard lattice assumptions without using FHE
and giving new techniques involved in transforming a DL-based schemes into a
lattice-based one. Nonetheless, we note that the efficiency of our schemes is still
within the practical realm and deserves further investigation.

Concurrent and independent work. Espitau et al. [35] recently proposed
a lattice-based two-round partially non-interactive threshold signatures. Their
construction also follows the approach of instantiating FROST in the lattice-
based settings. However, the difference is that their security analysis is based on a
non-standard interactive assumption, the Algebraic One-More Module Learning
with Error (AOM-MLWE) assumption, which is newly proposed in their paper.

Other related works. We discuss some additional related works we have
not discussed above. An alternative approach to obtain threshold signatures
is to leverage standard MPC techniques to evaluate (part of the) signing. For
example, Bendlin et al. [10] use this approach to obtain a threshold version
of GPV signatures [44]. More recently, Cozzo and Smart [24] considered more
broadly MPC-based instantiations of NIST post-quantum signature candidates
and concluded that they are unlikely to lead to practical solutions.

1.1 Technical Overview

Our starting point is a variant of FROST [51] proposed by [68] which gives a
threshold signature scheme based solely on the DL assumption, instead of the
stronger one-more DL assumption. The key idea is to replace the map x �→ gx

(for a generator g) in FROST with a compressing and collision resistant linear
map F : D → R, referred to as a linear hash function (LHF), where D and R are
two vector spaces over a scalar field S. The secret key of the scheme is a random
element sk P D and the corresponding public key is pk ← F (sk). The secret
key shares {ski}iP[n] are generated using Shamir’s secret sharing. The signing
protocol consists of one offline round and one online round.
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– In the offline round, each signer i samples ri,0, ri,1 P D and publishes a token
(Ri,0, Ri,1) ← (F (ri,0), F (ri,1)).

– In the online round, to sign a message μ, the user selects a set of signers SS of
size at least t and sends a request lr ← (μ,SS , {Ri,0, Ri,1}iPSS ) to each signer
in SS . Each signer i sends R ← ∑

i′PSS (Ri′,0 ` bRi′,1) with b ← H1(pk, lr),
and zi ← ri,0 ` bri,1 ` cλSS

i ski with c ← H2(pk, μ,R) to the user, where H1

and H2 are two hash functions.
– Finally, the signature is computed as (R, z “ ∑

iPSS zi). To verify it, one
checks whether F (z) “ R ` c · pk for c “ H2(pk, μ,R).

Here H1,H2 : {0, 1}∗ → S are hash functions. We note that the underlying
signature scheme can be viewed as a LHF-based analog of Schnorr signatures.
Also, the required properties of F are:

(i) Linearity: F (a) ` F (b) “ F (a ` b) holds for any a, b P D.
(ii) Collision resistance: it is hard to find x �“ y P D such that F (x) “ F (y) for

a randomly sampled F .
(iii) Compressing: the pre-image of any element in R under F contains multiple

elements.

As observed by Hauck et al. [46], a natural candidate to instantiate LHF from
lattices is F (x) “ Ax, where A is a uniformly random matrix A P Rk×m

q for a
prime q and the ring Rq :“ Zq[X]/(XN ` 1), with D “ {x P Rm

q | ‖x‖∞ ď βx},
R “ Rk

q , and S “ Rq, where βx < q is a constant. It is clear that F is linear
and compressing if |D| “ (2βx)mN � qkN “ |R|. Also, F is collision resistance
under the Module-SIS (MSIS) assumption, which guarantees that given a uni-
form matrix A P Rk×m

q , it must be infeasible to find a small-norm solution x �“ 0
such that Ax “ 0. If one can find x1 �“ x2 P D such that F (x1) “ F (x2), we
have A(x1 ´ x2) “ 0, which gives us a MSIS solution (x1 ´ x2) for A with
�∞-norm bounded by 2βx.

Unfortunately, we cannot simply apply the analysis from [68] to the above
lattice-based instantiation. A simple reason is that D as defined above is not
a linear space,1 which are required by the prior analysis. There are also more
technical reasons why this does not work, and to see what they are, we now try
to apply the prior analysis here.

Reduction idea from prior work. The reduction idea is simple. Denote an
adversary that breaks unforgeability of the threshold signature scheme as A,
which corrupts up to t ´ 1 signers, engages in an arbitrary number of signing
sessions with honest signers, and forges a valid signature for a message that was
not signed in any of the signing sessions. We construct a MSIS adversary B as
follows: (In the analysis, H1 and H2 are modeled as random oracles.) Initially, B
receives a MSIS challenge A. Then, B runs A by simulating the key generation,
the signing sessions and the random oracles following the protocol by itself. If A
returns a valid message-signature pair (μ∗, sig∗ “ (R∗,z∗)), B rewinds A to the
1 This is because given x1, x2 with �∞-norm bounded by βx, ‖x1 ` x2‖∞ can exceed

βx.
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step that the query H2(pk, μ∗,R∗) is made and runs A again while answering
its random oracle queries with refreshed randomness. If A returns (μ̄∗, sig∗ “
(R

∗
, z̄∗))2 with (μ∗,R∗) “ (μ̄∗,R

∗
), then we find a collision F (z∗ ´ c · sk) “

R∗ “ R
∗ “ F (z̄∗ ´ c̄ · sk), where c and c̄ are the outputs of H2(pk, μ∗,R∗) in the

first and second execution respectively. Therefore, B returns (z∗´z̄∗´(c´c̄)·sk).
Otherwise, B aborts.

By the Forking Lemma, if A breaks unforgeability with high probability, then
we have that B does not abort and c �“ c̄ with high probability. The difficulty
here is to ensure that we indeed find a MSIS solution, i.e. z∗ ´z̄∗ ´(c´ c̄)·sk �“ 0.
The prior analysis from [68] shows that for any two secret keys sk �“ sk′ mapping
to the same public key, there exists a bijection Φ that maps the randomness ρ
of B to another randomness ρ′ such that ρ and ρ′ lead to secret key sk and sk′

respectively, and the view of A given ρ is identical to that given ρ′. Therefore,
A outputs the same (μ∗,R∗,z∗, μ̄∗,R

∗
, z̄∗) independent of whether B is run

with ρ or ρ′. Since sk �“ sk′ and c �“ c̄, we have that z∗ ´ z̄∗ ´ (c ´ c̄ ) · sk �“
z∗ ´ z̄∗ ´ (c ´ c̄) · sk′, so B wins in at least one of the cases. Hence, B wins with
at least half of the probability that B does not abort.

Challenges in lattice instantiations. The main challenges lie in how to
construct Φ. Note that given the secret key sk, the randomness ρ of B consists of:
an RO tape h “ (h1,1, h1,2, . . . , hqh,1, hqh,2, h̄1,1, , . . . , h̄qh,2), where hi,j is used to
answer the i-th RO query to Hj in the first execution of A and h̄i,j is used after
rewinding, the secret key shares {ski}iP[n] of sk,3 and the randomness (ri,0, ri,1)
for generating the tokens of each signing session. Therefore, we only consider Φ
defined over those variables. First of all, Φ maps h to itself since A can learn
h from RO queries. For the other two parts, Φ satisfies the following:

(1) Φ maps {ski}iP[n] to {sk′
i}iP[n] such that {sk′

i}iP[n] are the secret shares of sk′

and ski “ sk′
i for any corrupted signer i.

(2) For the interaction with signer i during signing, Φ maps (ri,0, ri,1) to (r′
i,0,

r′
i,1) such that F (ri,0) “ F (r′

i,0), F (ri,1) “ F (r′
i,1), and

(
1 b
1 b̄

)(
ri,0

ri,1

)

`
(

cλSS
i ski

c̄λSS
i ski

)

“
(

zi

z̄i

)

“
(

1 b
1 b̄

)(
r′

i,0

r′
i,1

)

`
(

cλSS
i sk′

i

c̄λSS
i sk′

i

)

,

where we use (̄·) to denote the variables after rewinding. (It is possible that
the adversary makes only one query or the same queries for the token during
the two executions, but these cases are easier to deal with. Thus, we only
discuss the above hardest case here.)

It is not hard to satisfy the first condition due to the privacy property of secret
sharing. For the second condition, by the idea of prior work, if b´ b̄ is invertible,
we can set (r′

i,0, r
′
i,1) “ (ri,0 ` (c ´ b(b ´ b̄)´1Δc)Δsk, ri,1 ` (b ´ b̄)´1ΔcΔsk) to

2 In this section, we will use the overline to denote values in the second run.
3 More accurately, it should be the randomness for generating the secret key shares,

but for simplicity of explanation, we use the secret key shares instead.
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make the condition hold, where Δc “ c ´ c̄ and Δsk “ λSS
i (ski ´ sk′

i). However,
the problem is that the map is not a bijection since D is not a vector space.
There is no guarantee that (r′

i,0, r
′
i,1) P D for ri,0, ri,1 P D. A common solution,

which was also used by Hauck et al. [46], is to enlarge D (by increasing βx)
such that (r′

i,0, . . . , r
′
i,�) P D except for a negligible fraction of (ri,0, . . . , ri,�).

Still, there are two issues we need to address: (a) We need to show that the shift
(b ´ b̄)´1ΔcΔsk is small; (b) To make the fraction of bad randomness negligible,
we have to set βx “ Ω(2κ

∥
∥(b ´ b̄)´1ΔcΔsk

∥
∥), where κ denotes the security

parameter. This would lead to a very large modulus.

Our solution. For issue (a), we need to show that all of the three parts, i.e.,
(b ´ b̄)´1, Δc, and Δsk, are small. To make sure that the inverse of (b ´ b̄)´1

is small, we restrict the range of H1 to be {0, 1}. As a result, with 1/2 proba-
bility, b ´ b̄ P {1, ´1} and thus its inverse is small (either 1 or ´1). Then, we
boost the probability to 1 ´ 2´2κ by increasing the number of nonces and the
range of H1 to be {0, 1}2κ. More precisely, in the offline round, each signer i
samples ri,0, ri,1, . . . , ri,� for � “ 2κ. In the online round, signer i returns zi ←
ri,0 ` ∑

jP[�] bjri,j ` cλSS
i ski, where (b1, . . . , b�) P {0, 1}� are computed from H1.

Also, Φ maps (ri,0, . . . , ri,�) to (r′
i,0, . . . , r

′
i,�) “ (ri,0 ` (c ´ bj(bj ´ b̄j)´1Δc)Δsk,

. . . , ri,j´1, ri,j `(bj ´ b̄j)´1ΔcΔsk, ri,j`1, . . . , ri,�), where j is the first index with
bj �“ b̄j .

For Δc, it is a common practice to sample c with small �1-norm, which implies
that the norm of Δc is small. Lastly, we have to ensure that the norm of Δsk

is small. This imposes an additional requirement on the secret sharing scheme.
Namely, it requires that there exists a map Φ satisfying the aforementioned
condition (1) and in addition, restricting

∥
∥ski ´ sk′

i

∥
∥

∞ to be small. We show
that a special class of secret sharing schemes, referred to as linear secret sharing
schemes with small coefficients, satisfies the requirement. We refer to Sect. 3 for
the detailed definition and instantiation.

To address issue (b), we sample each ri,j from an m-dimensional discrete
Gaussian distribution centered at the origin with variance σr. Intuitively, D
becomes a probability distribution instead of a set, and we can show that B
wins with high probability as long as the ratio α “ Pr[(ri,0,...,ri,�)]

Pr[Φ(ri,0,...,ri,�)]
is close to 1

except for a negligible fraction of (ri,0, . . . , ri,�). More precisely, we need to show
αqs P (1 ´ ε, 1 ` ε) for some constant ε, where qs denotes the number of signing
sessions. Since the map only shifts ri,0 and ri,j by roughly Δ “ ΔcΔsk, the ratio

is roughly exp
(‖Δ‖2`2‖Δ‖·‖(ri,0,...,ri,�)‖

σ2
r

)
, and we can achieve the desired bound

by setting σr “ Ω(qs ‖ΔcΔsk‖).
We now discuss the two optimizations made to improve the efficiency of our

protocol in the following paragraphs.

Decreasing the number of nonces. In the above protocol, the number of
nonces generated is equal to the security parameter, resulting in significant over-
head in communication complexity. To decrease the number of nonces �, the
key observation is that we can extend the domain of b to the set of signed
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monomials, Sb :“ {±1,±X, . . . ,±XN´1} Ď Rq. (This has also been consid-
ered in other works, e.g., [11].) Although for any b �“ b̄ P Sb, (b ´ b̄) does not
necessarily have a small inverse, we can show that there exists vb´b̄ P R such
that vb´b̄(b ´ b̄) “ 2 and ‖vb´b̄‖∞ ď 1. Therefore, we let each signer compute
zi ← ri,0 ` ∑

jP[�] bjri,j ` 2c · λSS
i ski, and, then we can structure the map Φ

following the method described above except that we replace (b´ b̄)´1 with vb´b̄.
As a result, we just need to set � “ 2κ/ log(2N), which is 10 times smaller for
N “ 512 used in our concrete efficiency analysis.

Improving modulus size using the Rényi Divergence. Another main effi-
ciency problem is that the modulus size depends linearly on qs, which is implied
by how we set σr. To address this, we observe that the ratio Pr[(ri,0,...,ri,�)]

Pr[(r ′
i,0,...,r ′

i,�)]
is not

evenly distributed. It gets larger as the norm of ri,j becomes larger. However, as
the norm of ri,j becomes larger, its probability of being sampled becomes expo-
nentially small. As a result, there are only a small fraction of points with ratios
close to the ratio bound, while a large proportion of points have much smaller
ratios. Therefore, we try to use the Rényi divergence, which computes the aver-
age of the probability ratio of two distributions. More precisely, instead of con-
sidering the probability that a particular random value (ri,0, . . . , ri,�) is sam-
pled, we consider the distribution of the view of A conditioning on sk (denoted
by Tsk) directly. We show that B wins with high probability as long as the Rényi
divergence Rα (Tsk‖Tsk′) is close to 1. Then, we observe that the Rényi divergence
of the view of A in a single signing session given sk from that given sk′ is roughly
the Rényi divergence of two discrete Gaussian distributions both with variance
O(σr) and with distance ‖ΔcΔsk‖ between their centers. Thus, considering all
signing sessions (both before and after the rewinding), Rα (Tsk‖Tsk′) is roughly
exp

(
qs ‖ΔcΔsk‖2 /σ2

r

)
, omitting the constants and unimportant factors. There-

fore, we can set σr “ Ω(
√
qs ‖ΔcΔsk‖), improving the modulus size by a factor of√

qs. We note that similar techniques have also been used by Agrawal et al. [2] to
improve the modulus size of their FHE-based threshold signature.

Technical distinctions from other works. We emphasize that our proof
framework is very different from other recent lattice-based threshold and multi-
signature works [17,20,29,35,60] without using homomorphic encryptions, where
unforgeability of the protocols is reduced to the key-only security of the under-
lying signature schemes by showing that the signing oracles can be simulated
given only the public key. In contrast, our proof framework directly simulates
the unforgeability game using the honestly sampled secret key and then extract
an MSIS solution by rewinding. The benefit here is that we do not need to rely
on more advanced assumptions [35], introduce an additional online round [20,60],
or use hard cryptographic primitives, such as a homomorphic trapdoor commit-
ment scheme [17,29]. However, the downside is that techniques, such as reducing
to the self-target MSIS problem [34,50] or the common trick to reduce the norm
bound of secret keys using MLWE [17,29,55], do not apply to our construction.
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2 Preliminaries

2.1 Notations

For any integers 0 ď k < n, [n] denotes {1, . . . , n}, and [k..n] denotes {k, . . . , n}.
We use κ to denote the security parameter. For a finite set S, |S| denotes the
size of S, and x ←$ S denotes sampling an element uniformly from S and assign-
ing it to x. For a distribution D, x ←$ D denotes sampling x according to D.
For a sequence of variables x1, . . . , x�, we use x[i..j] to denote (xi, . . . , xj). For
any vector space V over a field F and a set S P V , we denote SpanF (S) as the F -
span of S, which is the smallest F -subspace of V that contains S. In particular,
we omit F from the subscript if F “ R. For a finite set S “ {v1, . . . , vn} Ď V , we
say S is F -linearly independent if and only if for any non-zero (a1, . . . , an) P Fn,∑

iP[n] aivi �“ 0. We say S is a F -basis of V if and only if S is F -linearly inde-
pendent and SpanF (S) “ V . When F is not specified, we assume F “ R. The
dimension of V is equal to the size of S.

2.2 Polynomial Rings

Let q be an odd prime and N be a power of 2. We denote the ring R :“
Z[X]/(XN ` 1), contained in the cyclotomic field K :“ Q[X]/(XN ` 1), and
let Rq :“ R/qR ∼“ Zq[X]/(XN ` 1). Denote KR :“ R b K ∼“ R[X]/(XN ` 1).
For an element v P KR, where v “ ∑N´1

i“0 viX
i, we denote its conjugate as

v∗ “ ∑N´1
i“0 ´viX

N´i. We use φ to denote the coefficient embedding that embeds
KR in R

N , and φ maps v to vector (v0, . . . , vN´1) P R
N . When applying φ to

a vector v P Km
R

, φ maps v to a vector in R
mN by applying φ to each entry

of v. The map φ is a bijection, and we denote its inverse by φ´1. An �p-norm

of v P Km
R

is given by ‖v‖p :“ ‖φ(v)‖p “
(∑m

i“1

∑N´1
j“0 |vi,j |p

) 1
p

, where vi,j

denotes the coefficient of Xj of the i-th entry of v. Additionally, the �∞-norm
of v is defined as ‖v‖∞ :“ maxiP[m],jP[0..N´1] |vi,j |. For the �2-norm, we omit the
subscript and denote ‖v‖ as the �2-norm of v. Denote the conjugate transpose of
v P Km

R
as v† :“ (v∗)T . We define the inner product of two vectors v,v′ P Km

R

as 〈v,v′〉 :“ φ(v)T φ(v′) “ 〈φ(v), φ(v′)〉. We have ‖v‖ “ 〈v,v〉. We say v is a
unit vector if ‖v‖ “ 1.

Also, we define a map φM that maps each element in KR to a matrix in

R
N×N as follows. Let MX :“

(
0 ´1

IN´1 0

)

P R
N , where IN´1 is the identity

matrix in R
N´1. For each v P KR, φM(v) :“ ∑N´1

i“0 viM
i
X , which can be viewed

as the matrix representation of v. In particular, for φ and φM, the following
properties hold: for any v, v′ P KR, φM(v∗) “ φM(v)T , φM(vv′) “ φM(v)φM(v′)
and φM(v)φ(v′) “ φ(vv′). We extend the above definitions to Rq by representing
each v P Rq as v “ ∑N´1

i“0 viX
i, where vi P {´(q ´ 1)/2, . . . , (q ´ 1)/2}.

For a matrix M P Km×m
R

, we denote its conjugate transpose as M† “ (M∗)T ,
and we say M is hermitian if M “ M†. We say M is positive definite if and
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only if M is hermitian and for all x P Km
R

\ {0}, 〈x,Mx〉 > 0, or equivalently,
φM(M) is positive definite. Also, denote σmin(M) :“ infxPKm

R
,‖x‖“1 〈x,Mx〉 as

the smallest singular value of M and σmax(M) :“ supxPKm
R

,‖x‖“1 〈x,Mx〉 as the
largest singular value of M .

We state the following lemma establishing the property of the set of signed
monomials Sb :“ {±1, . . . ,±XN´1} Ď Rq, used in the security analysis.

Lemma 1. Let Sb :“ {±1, . . . ,±XN´1} Ď Rq. For any b, b̄ P Sb such that b �“ b̄,
the ideal generated by b ´ b̄ contains 2.

Proof. Let b “ sXa, b̄ “ s̄X ā for a, ā P [0..N ´ 1] and s, s̄ P {´1, 1}. Consider
two cases:

– a “ ā: Then, b ´ b̄ “ 2Xa or ´2Xa. It is easy to see that the statement holds
as (b ´ b̄)XN´a “ 2 or ´2.

– a �“ ā: W.l.o.g. assume a > ā. Then, b ´ b̄ generates Xa´ā ´ ss̄ since (b ´ b̄) ·
(´sxN´ā) “ Xa´ā ` ss̄. We can see that this generates X2e(a´ā) ´ 1 for any
e ě 1, since (x ´ 1)(x ` 1) “ x2 ´ 1. Since a ´ ā < N and N is a power of 2,
there exists e such that N |2e(a´ā) but N � 2e´1(a´ā). Then, 2e(a´ā) “ Na′

for some odd a′, and thus b ´ b̄ generates XNa′ ´ 1 “ (´1)a′ ´ 1 “ ´2, which
implies the statement. �

2.3 Lattices and Discrete Gaussian Distributions

In this subsection, we give definitions for lattices and discrete Gaussian dis-
tributions over R and KR. An m-dimensional lattice Λ over Z (resp. R) is a
discrete additive subgroup of Z (resp. R). Equivalently, Λ “ L({b1, . . . , bk}) :“
{∑

iP[k] xibi : xi P Z} for a set of linearly independent vectors b1, . . . , bk P Z
m

(resp. Rm), which is referred to as a basis of Λ. The size k is the rank of
the lattice Λ. We say Λ is a full rank lattice if k “ m (resp. k “ mN for
Λ over R). For any a P Z

m (resp. Rm), Λ ` a is a coset of Λ. The dual lat-
tice of Λ is denoted as Λ∗ “ {x P Span(Λ) : ∀ y P Λ, 〈x,y〉 P Z}. A Λ-
subspace is the linear span of some subset of Λ, i.e., a subspace S such that
S “ Span(S ∩ Λ). For any two vectors v P Z

m (resp. Rm) and u P Z
n (resp.

Rn), denote v b u :“ (v1u1, . . . , v1un, . . . , vmu1, . . . , vmun) P Z
mn (resp. Rmn).

For any two lattices Λ Ď Z
m (resp. Rm) and Λ′ Ď Z

n (resp. Rn), denote their
tensor product as Λ b Λ′, which is the smallest lattice over Z

mn (resp. Rmn)
that contains {x b y : x P Λ,y P Λ′}.

Further, for a lattice Λ Ď Rm, we say Λ is a R-lattice if and only if Λ is a R-
module, or equivalently, rx P Λ for any r P R and x P Λ. For a matrix A P Rk×m

q ,
we define the R-lattice Λ⊥

q (A) Ď Rm as Λ⊥
q (A) :“ {x P Rm : Ax “ 0 mod q},

which is full-rank since qRm Ď Λ⊥
q (A).

For a positive definite matrix Σ P R
m×m (resp. an invertible positive definite

matrix Σ P Km×m
R

) and a vector c P R
n (resp. Km

R
), we define the function ρΣ,c

over R
m (resp. Km

R
) as ρΣ,c(x) :“ exp

(´π
〈
x ´ c, Σ´1(x ´ c)

〉)
.

Dm
Λ`a,Σ,c(x) :“ Pr[x ←$ Dm

Λ`a,Σ,c ] “ ρΣ,c(x)
ρΣ,c(Λ ` a)
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where ρΣ,c(Λ ` a) “ ∑
xPΛ`a ρΣ,c(x). For Λ ` a Ď Rm, we denote Dm,mod q

Λ`a,Σ,c (x)
as the distribution of (x mod q) P Rm

q for x sampled from Dm
Λ`a,Σ,c .

The following lemma shows that a discrete Gaussian distribution over KR

can be viewed as a discrete Gaussian distribution over R via the coefficient
embedding φ.

Lemma 2. For a random variable x P Km
R

, the distribution of x is Dm
Λ`a,Σ,c for

some lattice coset Λ`a Ď Rm, an invertible positive definite matrix Σ P Km×m
R

,
and vector c P Km

R
if and only if the distribution of φ(x) is DmN

φ(Λ`a),φM(Σ),φ(c).

Proof. For any v P Km
R

,

ρφM(Σ),φ(c)(φ(v)) “ exp
(´π

〈
φ(v ´ c), φM(Σ)´1φ(v ´ c)

〉)

“ exp
(´π

〈
v ´ c, Σ´1(v ´ c)

〉)

“ ρΣ,c(v) .

Therefore, for any x P Λ ` a, Dm
Λ`a,Σ,c(x) “ DmN

φ(Λ`a),φM(Σ),φ(c)(φ(x)). �
Also, we make some remarks about the notations we will use throughout the

paper. When Σ “ σ2
Im for σ P R, we will use ρσ,c and Dm

Λ`a,σ,c as ρΣ,c and
Dm

Λ`a,Σ,c , respectively. If the center c “ 0, then we omit the subscript c from
ρΣ,c and Dm

Λ`a,Σ,c . Moreover, when Λ ` a “ Z
m (resp. Λ ` a “ Rm), we omit

Λ ` a from the subscript of Dm
Λ`a,Σ,c .

The smoothing parameter of a lattice Λ with respect to ε > 0, denoted by
ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ď ε. Throughout the paper,
we set ε “ 2´2κ.

We borrow the following lemma from [1] that bounds the �2-norm of discrete
Gaussian random variables and adapt it to lattices over KR by Lemma 2.

Lemma 3 (Lemma 3 of [1] adapted to KR). For any ε P (0, 1), a lattice
Λ Ď Rm, c P Km

R
, and σ ě ηε(Λ), then Pr[‖x ´ c‖ ě σ

√
mN : x ←$ DΛ,σ,c ] ď

1`ε
1´ε · 2´mN .

We also borrow the following lemma from [17] to bound the smoothing param-
eters of Λ⊥

q (A) for a randomly sampled A.

Lemma 4 (Lemma 2.5 of [17]). Let q be an odd integer and A a uniformly
random matrix in Rk×m

q , k < m. Then, for any ε > 0, except with probability at

most 2´N on the choice of A, we have ηε(Λ⊥
q (A)) ď 8q

k
m√
π

√
N log(2mN(1 ` 1/ε)).

2.4 Assumptions

We recall the module short integer solution (MSIS) problem (defined in Fig. 1).
The advantage of A for the MSIS problem is defined as Advmsis

q,k,m,β(A) :“
Pr

[
MSISA

q,k,m,β “ 1
]
.
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Fig. 1. The module-SIS problem.

2.5 Rényi Divergence

We define the notion of Rényi Divergence [62] between two distributions P,Q
which we will use in the analysis of the scheme. For a discrete distribution P ,
we denote the support of P as Supp(P ) :“ {x : P (x) > 0}.

Definition 1 (Rényi Divergence). Let P,Q be two discrete probability distri-
butions such that Supp(P ) Ď Supp(Q) and α P [1, `∞]. We define the Rényi

Divergence of order α, for α P (1,∞) as Rα (P‖Q) :“
(∑

xPSupp(P )
P (x)α

Q(x)α´1

) 1
α´1

.

For α “ 1 and α “ ∞, we define R1 (P‖Q) :“ exp
(∑

xPSupp(P ) P (x) log P (x)
Q(x)

)
,

R∞ (P‖Q) :“ maxxPSupp(P )
P (x)
Q(x) .

The two following lemmas, from [2] and [64] respectively, give basic properties
of the Rényi Divergence.

Lemma 5 (Lemma 2.27 of [2]). Let α P [1,∞] and P , Q be discrete probability
distributions with Supp(P ) Ď Supp(Q). Then, the following properties hold:

– Log Positivity: Rα (P‖Q) ě Rα (P‖P ) “ 1.
– Data Processing Inequality: Rα

(
P f‖Qf

) ď Rα (P‖Q) for any function f ,
where P f (and Qf ) denotes the distribution which samples x ←$ P (x ←$ Q)
and outputs f(x).

– Probability Preservation: Let E Ď Supp(Q) be an arbitrary event. Then,
for α P (1,∞), Prx ←$ Q[E] ě Prx ←$ P [E]α/(α´1)/Rα (P‖Q) .

– Weak Triangle Inequality: Let P1, P2, P3 be three probability distributions
where Supp(P1) Ď Supp(P2) Ď Supp(P3). Then, we have

Rα (P1‖P3) ď
{

Rα (P1‖P2) · R∞ (P2‖P3)
R∞ (P1‖P2)

α
α´1 · Rα (P2‖P3) if α P (1,∞)

Lemma 6 (Proposition 2 of [64]). Let P and Q denote two distributions of a
sequence of random variables (X1, . . . , Xn). For 1 ď i ď n, denote Pi|x[i´1]

(resp.
Qi|x[i´1]

) as the conditional distribution of Xi given X[i´1] “ x[i´1]. Then, for

any α > 1, Rα (P‖Q) ď ∏
iP[n] maxx[i´1] Rα

(
Pi|x[i´1]

‖Qi|x[i´1]

)
.

The following lemma from [67] upperbounds the Rényi Divergence between
two discrete Gaussian distributions with different centers.



280 R. Chairattana-Apirom et al.

Lemma 7 (Lemma 5 of [67]). For any m-dimensional lattice Λ Ď Z
m, a

positive definite Σ P R
m×m, and two vectors c, c′ P R

m, let P “ Dm
Λ,Σ,c and

Q “ Dm
Λ,Σ,c′ . If c, c′ P Λ, set ε “ 0. Otherwise, fix ε P (0, 1) and assume

√
σmin(Σ) ě ηε(Λ) with σmin(Σ) :“ infxPRm,‖x‖“1 ‖Σx‖ denoting the smallest

singular value of Σ. Then, Rα (P‖Q) ď (
1`ε
1´ε

) α
α´1 exp

(

απ
‖c´c′‖2

σmin(Σ)

)

.

By Lemma 2, we derive the following lemma, which adapts the above to lattices
over rings. The proof is deferred to the full version of the paper.

Lemma 8. For any m-dimensional lattice coset Λ ` a Ď Rm and any integer
q > 0, an invertible positive definite Σ P Km×m

R
, and two vectors c, c′ P Rm

q , let
P “ Dm,mod q

Λ`a,Σ,c and Q “ Dm,mod q
Λ`a,Σ,c′ . If c, c′ P Λ ` a, set ε “ 0. Otherwise, fix

ε P (0, 1) and assume
√

σmin(Σ) ě ηε(Λ). Then,

Rα (P‖Q) ď
(

1 ` ε

1 ´ ε

) α
α´1

exp

(

απ
‖c ´ c′‖2
σmin(Σ)

)

.

2.6 Linear Transformations of Discrete Gaussian Random Variables

We adopt the notation P
ε≈ Q from [37]: for any two distributions P,Q with the

same support and ε > 0, we say that P
ε≈ Q if and only if maxxPSupp(P ) | log P (x)

´ log Q(x)| ď log(1 ` ε), or equivalently, max(R∞ (P‖Q) , R∞ (Q‖P )) ď 1 ` ε.
Note that if P

ε≈ Q, then the statistical distance between P and Q is bounded
by ε/2, i.e., 1

2

∑
xPSupp(P ) |P (x) ´ Q(x)| ď ε/2. We state the following lemma

used later in our security proof, which characterizes the distribution of a lin-
ear transformation of independent discrete Gaussian random variables. The full
proof is deferred to the full version of the paper.

Lemma 9. For any constant ε P (0, 1), σ0 > 0, full-rank R-lattice Λ Ď Rm

withηε(Λ) ď σ0/(2
√

3mN), arbitrary elements s0, s1, . . . , s� P Rm and b1,
b̄1, . . . , b�, b̄� P Sb (defined in Lemma 1) such that (b1, . . . , b�) �“ (b̄1, . . . , b̄�),
let r0, r1, . . . , r� be independent samples with ri ←$ Dm

Λ`si,σ0
, and T “

(
1 b1 · · · b�

1 b̄1 · · · b̄�

)

and (y, ȳ) “ (T b Im) · (r0, . . . , r�) P R2m. Denote the joint dis-

tribution of (y, ȳ) as D. Then,

D
ε′
≈ D2m

(T bIm)Λ�`1`(S ,S̄),ΣbIm
,

where ε′ “ 2((1`ε)�´1)
2´(1`ε)� , Λ�`1 :“ {(x0, . . . ,x�) : ∀ i P [0..�],xi P Λ}, which

is a (� ` 1)m-dimensional lattice over R, (S, S̄) “ (T b Im) · (s0, . . . , s�), and
Σ “ σ2

0TT † P K2×2
R

is invertible and positive definite.
Moreover, denote D1 as the marginal distribution of y and D2|y0

as the
distribution of ȳ conditioning on y “ y0 for any y0 P Λ ` S, and we have

D1
ε′
≈ Dm

Λ`S ,σ“√
Σ11

, D2|y0

ε′
≈ Dm

IbΛ`y0`S̄´S ,
Δ(Σ)
Σ11

·Im,
Σ12
Σ11

y0
,
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where I Ď R is the ideal generated by b1 ´ b̄1, . . . , b� ´ b̄�, Σij denotes the entry
in the i-th row and j-th column of Σ, Δ(Σ) “ Σ11Σ22 ´ Σ12Σ21 denotes the
determinant of Σ, and Σ11 “ Σ22 “ σ2

0(1 ` �).

2.7 Other Useful Lemmas

We also show the following useful lemmas.

Lemma 10. For any integer n > 0 and any v P R such that ‖v‖1 ď n and
v �“ n,

σmax((1 ` v)∗(1 ` v)) ď (n ` 1)2 ´ 2n/N2 .

The proof of the above lemma is deferred to the full version of the paper.

Lemma 11. For any a, b ě 0 such that a ` b ď 1 and α ě 1, we have a ` bα ě
1
α (a ` b)α.

Proof. Let f(x) “ x ` bα and g(x) “ 1
α (x ` b)α. Since f(0) “ bα ě 1

αbα “ g(0)
and f ′(x) “ 1 ě (x ` b)α´1 “ g′(x) for x ě 0, we know f(x) ě g(x) for
0 ď x ď 1 ´ b, we have f(x) ě g(x) for 0 ď x ď 1 ´ b, which shows the
statement. �

3 Linear Secret Sharing Schemes with Small Coefficients

In this section, we first define, in Sect. 3.1, the notion of linear threshold secret
sharing schemes with small coefficients for an abelian group G (which for our
threshold signature G “ Rm

q with its additions as the group operations) and
discuss the properties required by our construction. Then, we consider a secret
sharing scheme which satisfies the desired properties in Sect. 3.2 and discuss why
other secret sharing schemes do not apply to our case in Sect. 3.3.

3.1 Definitions

We first give a brief explanation on the notations used in this section. We consider
the group G as a Z-module and adopt the additive notation with 0 as the neutral
element. Additionally, for a vector g P G

K and a matrix M P Z
L×K , Mg denotes

(
∑K

j“1 M1,j · gj , . . . ,
∑K

j“1 ML,j · gj)T P G
L, and for g P G and a vector u P Z

K ,
u · g denotes (u1 · g, . . . , uK · g)T . Now, we give the following definition for linear
threshold secret sharing schemes with small coefficients.

Definition 2 (Linear Threshold Secret Sharing with Small Coeffi-
cients). Let 1 < t ď n,L, and K be positive integers and G be an abelian group.
A t-out-of-n linear threshold secret sharing scheme SecShat,n for G consists of
two algorithms (Share,Recon) with the following syntax:
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– Share(s P G;ρ P G
K) ⇒ (ssj)jP[L] P G

L: takes as input a secret s P G and
a randomness vector ρ P G

K (sampled uniformly from G
K), and returns the

secret shares (ssj)jP[L]. We note that each party i P [n] has a subset of indices
Ti Ď [L] such that the share of party i is (ssj)jPTi

. We say that the individual
share size of party i is |Ti|, the total share size is L, and the randomness size
is K.

– Recon(U, (ssj)jP⋃
iPU Ti

) ⇒ s P G: takes as input a set U Ď [n] with |U | ě
t and the secret shares corresponding to each party in U , and returns the
reconstructed secret s.

We require that SecShat,n satisfies the following properties:

– Linearity: The sharing algorithm Share can be written as an integer matrix
M P Z

L×(K`1) mapping a vector v “ (s, ρ1, . . . , ρK)T P G
K`1 to Mv P G

L.
Moreover, for any U Ď [n] denote MU as the matrix M restricted to the rows
indexed with

⋃
iPU Ti, the following is also true:

• For any U Ď [n], |U | ě t, there exists a reconstruction coefficient
vector λU P Z

L such that λU
j “ 0 for j /P ⋃

iPU Ti and (λU )T M “
(1, 0, . . . , 0). Then, the output of Recon(U, ·) on input (ssj)jP⋃

iPU Ti
can

be written as
∑

iPU

∑
jPTi

λU
j ssj. Hence, for (ssj)jP[L] ← Share(s;ρ) for

any s P G and ρ P G
K , we have that

∑
iPU

∑
jPTi

λU
j ssj “ s.

• For any U Ď [n] with |U | < t, there exists a vector u P Z
K`1 such that

u1 “ 1 and MUu “ 0. We call such u the sweeping vector of MU .
– Small Coefficients: For the sharing matrix M , its entries are bounded by

βM and the number of non-zero entries in each row is bounded by βrow.
For any U Ď [n] and |U | ě t, the reconstruction coefficient vector λU has∥
∥λU

∥
∥

∞ ď βλ. For any U Ď [n] and |U | < t, there exists a sweeping vector u
of MU such that ‖u‖∞ ď βu.

We point out that our definition differs from prior works in that we did not
explicitly define correctness and privacy properties (since we will not use them
in the proofs of our construction), and instead give two properties: linearity
and small coefficients. The linearity property already implies correctness and
privacy, as shown in prior works [6,25,48] which showed relations between linear
secret sharing schemes and span programs. In particular, the first bullet point
of linearity implies correctness, while the second bullet point implies privacy.

The small coefficients property is required by the following lemma, which
establishes a crucial property used in the security proof of our threshold signa-
ture. Notably, fixing two secret keys sk, sk′ P Rm

q with bounded norms and a
corrupted subset U Ď [n] with |U | < t, one can construct a bijection Φsk,sk′,U
between the set of the randomness used to generate the secret shares of sk and
sk′ such that: the secret shares given to the corrupted parties is unchanged (item
(1)), and the distance between the reconstructed shares for any party is bounded
(item (2)).

Lemma 12. Let (Share,Recon) be a t-out-of-n linear threshold secret sharing
with small coefficients for G “ Rm

q . In particular, let M P Z
L×(K`1) be the shar-

ing matrix, and βM , βrow, βλ, βu be the bounds for the small coefficients property.
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Fix any U Ď [n] with |U | < t, a matrix A P Rk×m
q and any sk, sk′ P Rm

q

such that Ask “ Ask′ and ‖sk‖∞ ,
∥
∥sk′∥∥

∞ ď βsk. Then, there exists a bijection
Φsk,sk′,U : (Rm

q )K → (Rm
q )K , such that for any ρ P (Rm

q )K and ρ′ “ Φsk,sk′,U (ρ),
the secret shares (ssj)jP[L] ← Share(sk;ρ) and (ss′j)jP[L] ← Share(sk′;ρ′) satisfy:

(1) (ssj)jP⋃
iPU Ti

“ (ss′j)jP⋃
iPU Ti

(2) For any S Ď [n] with |S| ě t, let λS P Z
L be the reconstruction coef-

ficients for Recon(S, ·). Also, for i P S, define vi “ ∑
jPTi

λS
j ssj and

v′
i “ ∑

jPTi
λS

j ss
′
j, we have that Avi “ Av′

i, and
‖vi ´ v′

i‖∞ ď βssβsk, where βss “ 2|Ti|βMβrowβuβλ.

Proof. Let u P Z
K`1 be a sweeping vector for MU such that ‖u‖∞ ď βu which

exists due to our secret sharing definition. Consider the map Φsk,sk′,U defined as
Φsk,sk′,U (ρ) “ ρ ` (u2, . . . , uK`1)T · (sk′ ´ sk), which we can see is a bijection on
(Rm

q )K as it only shifts ρ by some fixed amount. Now, fix a ρ P (Rm
q )K and ρ′ “

Φsk,sk′,U (ρ). Consider the secret shares generated using these two randomness.
For any j P [L], denote Mj as the j-th row of M , then ss′j ´ssj “ Mj(sk′,ρ′T )T ´
Mj(sk,ρT )T “ (Mju) · (sk′ ´ sk).

Then, since MUu “ 0, we have (ss′j)jP⋃
iPU Ti

“ (ssj)jP⋃
iPU Ti

` (MUu) · (sk′ ´
sk) “ (ssj)jP⋃

iPU Ti
, proving (1). To show (2), for i P [n], consider vi and v′

i as
defined in the lemma statement. Then,

v′
i ´ vi “ ∑

jPTi
λS

j (ss′j ´ ssj) “ ∑
jPTi

λS
j (Mju) · (sk′ ´ sk) . Since

∑
jPTi

λS
j (Mju) P Z, we have that Av′

i´Avi “
(∑

jPTi
λS

j (Mju)
)
·(Ask′´Ask) “

0 P Rk
q , so Av′

i “ Avi. Moreover, with βss “ 2|Ti|βMβrowβuβλ, ‖vi ´ v′
i‖∞ ď∥

∥
∥
∑

jPTi
λS

j (Mju)(sk′ ´ sk)
∥
∥
∥

∞
ď βssβsk. �

3.2 Instantiation

One secret sharing scheme satisfying Definition 2 is the generic construction
from Benaloh and Leichter [9] which derives a linear secret sharing scheme for
any monotone access structure (i.e., for any set S of parties that can recover the
secret, any set that contains S can also recover the secret) from a monotone
Boolean formula (i.e., a Boolean circuit with only AND and OR gates of fan-in
2 and fan-out 1, but the input wires may have multiple fan-out) f computing
such access structure. Damg̊a rd and Thorbek [30] showed that Benaloh-Leichter
secret sharing satisfies the following properties:

(1) Both the number of randomness K and total share size L are at most the
size of the formula f .

(2) The sharing matrix M has binary entries, and the number of 1’s in each row
is at most the depth of f .

(3) The reconstruction coefficients are in {´1, 0, 1}.
(4) For any U Ď [n] with |U | < t, the sweeping vector u of MU has entries in

{´1, 0, 1}.
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Regarding the formula computing threshold access structure, a seminal work by
Valiant [69] gave a probabilistic construction of a monotone formula for majority
function ((n/2, n)-threshold function) of size O(n5.3) and depth 5.3 log n`O(1).
Then, Boppana [16] generalized this result to a monotone formula for (t, n)-
threshold function of size O(t′4.3

n log n) and depth log n ` 4.3 log t′ ` log log n
`O(1) where t′ “ min(t, n´ t). Hoory, Magen, and Pitassi [47] improved this to
a monotone circuit of size O(t′2n log n) and depth O(log n). However, as pointed
out in [18], this construction is not a formula (namely, the gates in this circuit
have multiple fan-out), so it does not imply a linear secret sharing scheme.
Also, it is worth noting that these are probabilistic constructions with success
probability 1/2 of realizing the threshold functions. Still, for small n (e.g., n “
5, 32 as we consider in this work), we can exhaustively check if a constructed
formula correctly computes the threshold function on all inputs.

The following lemma then formalizes the existence of a secret sharing scheme
constructed by applying Benaloh and Leichter’s construction to Boppana’s
monotone formula for threshold function.

Lemma 13. There exists a t-out-of-n linear threshold secret sharing with small
coefficients with total share size L “ O(t′4.3

n log n) making the individual share
size |Ti| ď O(t′4.3

n log n) for t′ “ min(t, n ´ t) and the small coefficient bounds
βM “ βλ “ βu “ 1 and βrow “ log n ` 4.3 log t′ ` log log n ` O(1),

which result in the bound βss from Lemma 12 of βss “ O(t′4.3
n(log n)2).

3.3 Discussion on Other Secret Sharing Schemes

In this section, we discuss whether other linear secret sharing schemes, such as a
recent ramp/near-threshold secret sharing scheme [3] and the tree secret sharing
scheme [21], apply to our case.

Applebaum, Nir, and Pinkas [3] recently proposed a ramp/near-threshold
black-box secret sharing scheme where a set of at least tcn parties is guaran-
teed to recover a secret, while privacy is guaranteed for any set of less than tpn
corrupted parties with 0 < tp < tc < 1. Their secret sharing scheme has the
sharing matrix M of the form

M “
(

0L´1 G
1 aT

)

P Z
L×(K`1),

where L,K “ O(n), G P Z
(L´1)×K is a matrix with small entries, and each entry

of a P Z
K is bounded by some constant c. We also remark that the secret share

corresponding to the last row of M is public in their scheme. Their reconstruction
can be modeled as a O(n)-size O(log n)-depth addition circuit, translating to a
bound of poly(n) on the reconstruction coefficients.

For the sweeping vector, fixing a subset U Ď [n] where |U | < tpn and letting
MU and GU denote the rows of the matrices M and G of which the shares are
known to U , they showed that there exists a vector u′ P Z

K with each entry
bounded by some constant b where GUu′ “ 0 and v “ aT · u′ �“ 0 mod q for
any prime q > 2bcK (see Claim 4.1 of [3]). This gives us a vector (v, ´u′T )T
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with |v| ď bcK such that MU (v, ´u′T )T “ 0. However, since v is not necessarily
1, we only get a sweeping vector u “ v´1(v, ´u′T )T mod q of which the entries
are not guaranteed to be bounded, because v´1 can be large in Zq. To account
for division by any v, one can scale up the secret by the least common multiple
of (1, . . . , bcK), but this scaling is estimated to be 2O(n).4

Tree Secret Sharing Scheme is proposed by Cheon, Cho, and Kim [21] in
the context of improving universal thresholdizer. They constructed a (n ` 1)/2-
out-of-n linear secret sharing by repeatedly applying η-out-of-(2η ´ 1) Shamir’s
secret sharing, for any integer η ě 2, in a tree structure. The tree is of depth
d ě logcη

n ` logη n ` O(1) with cη “ 2η´2
22η´2 · (

2η´2
s´1

)
, and the total share size is

O(nlogcη
(2η´1)`logη(2η´1)). They showed that their reconstruction coefficients are

bounded by ((2η ´ 1)!)2d, amounting to O(n2(log3/2 6`log2 6)) ≈ O(n14) for η “ 2.
This already exceeds βss from Lemma 13, so we do not consider their secret
sharing as an instantiation.

4 Threshold Signatures

In this section, we first give formal syntax and security definitions for threshold
signatures, then present our construction and the security analysis, and finally
discuss the concrete parameters and efficiency.

4.1 Syntax and Security

We use the formalization proposed by Bellare et al. [7], which is also used in [68].

Syntax. A (partially) non-interactive threshold signature schemes for n signers
and threshold t is a tuple of efficient (randomized) algorithms TS “ (Setup,
KeyGen, SPP, LPP, LR,PS,Agg,Vf) that behave as follows. Signers involved are a
leader and n signers. In real-world scenarios, the leader can be one of the signers.
The setup algorithm Setup(1κ) initializes the state sti for each signer i P [n] and
st0 for the leader and returns a system parameter par . We assume par is given to
all other algorithms implicitly. The key generation algorithm KeyGen() returns
a public verification key pk, and a secret key ski for each signer i.

The signing protocol consists of two rounds: a message-independent offline
round and an online signing round. In the offline round, any signer i can run
SPP(sti) to generate a pre-processing token pp, which is sent to the leader,
and the leader runs LPP(i, pp, st0) to update its state st0 to incorporate token
pp. In the online round, for any signer set SS Ď [n] with size t and message
μ P {0, 1}∗, the leader runs LR(μ,SS , st0) to generate a leader request lr with
lr .msg “ μ and lr .SS “ SS and sends lr to each signer i P SS . Then, each signer
i runs PS(lr , i, sti) to generate its partial signature psig i. Finally, the leader
computes a signature sig for μ by running Agg({psig i}iPSS ). The (deterministic)

4 The natural logarithm of LCM(1, . . . , x) is the second Chebyshev’s function which
is bounded by 1.03883x [63].
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Fig. 2. The TS-COR game for a threshold signature scheme TS with threshold t.

Fig. 3. The TS-UF-0 game for a threshold signature scheme TS.

verification algorithm Vf(pk, μ, sig) outputs a bit that indicates whether sig is
valid for (pk, μ).

In summary, an honest execution of the signing protocol between signers
in SS and the leader to sign a message μ P {0, 1}∗ is represented in the game
TS-COR (defined in Fig. 2), and we say that TS is correct with correctness error δ
if for any adversary A for the game TS-COR, we have Pr[TS-CORA

TS(κ) “ 1] ď δ.

Security. A hierarchy for security notions of threshold signatures is proposed
in [7]. In this paper, we consider TS-UF-0, which guarantees that an adversary
can generate a valid signature sig for μ only if it receives partial signatures from
at least one honest signer for μ. We also note that the same security notion is also
used in all the prior lattice-based works, such as [45,60]. Formally, the TS-UF-0
game is defined in Fig. 3, where TS.HF denotes the space of the hash functions
used in TS from which the random oracle is drawn. The advantage of A for the
TS-UF-0 game is defined as Advts-uf-0TS (A, κ) :“ Pr

[
TS-UF-0A

TS(κ) “ 1
]
.

4.2 Construction

Our threshold signature scheme TSL[SecSha] is shown in Fig. 4, where SecSha is a
linear secret sharing scheme with small coefficients (see Definition 2), which can
be instantiated from Benaloh and Leichter’s secret sharing scheme as discussed
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Fig. 4. Lattice-based t-out-of-n threshold signatures TSL[SecSha], where SecSha is
a linear secret sharing scheme with small coefficients (see Definition 2). Here, H1 :
{0, 1}∗ → S�

b and H2 : {0, 1}∗ → Sc. Also, Ti denotes the set of shares of party i and
λlr.SS

j denotes the reconstruction coefficient. Also, we remark that, as stated earlier,
the system parameter par is implicitly given to all algorithms except Setup.

in Sect. 3.2. Each Ti and λlr .SS
j are defined by the scheme SecSha. In particular,

the secret key sk P Rm
q is shared into L secret shares {ssj}jP[L], and for each

party i P [n], its secret key share is {ssj}jPTi
. For a signer set SS where |SS | ě t,

by the linearity property of SecSha, the secret key can be reconstructed as sk ←∑
iPSS

∑
jPTi

λSS
j ssj . Although we do not explicitly provide a DKG protocol, we

do not see our use of Benaloh and Leichter’s secret sharing in place of Shamir’s
secret sharing to be a barrier in constructing a DKG. For instance, the DKG
protocol given in [45] is a possible candidate as it only utilizes the linearity of
the secret sharing schemes, which is satisfied by both Shamir’s and Benaloh and
Leichter’s secret sharing.

For the signing protocol, in the offline round, each signer generates � ` 1
nonces {Rj}jP[0..�] as a pre-processing token, where Rj ← Arj for a uniformly
sampled A P Rk×m

q generated during the setup phase and rj sampled from the
discrete Gaussian distribution Dm

σr
. In the online round, given a leader request
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Fig. 5. Table showing the parameters for the scheme TSL.

lr , each signer computes an aggregated nonce R from a list of tokens generated
by signers in lr .SS using coefficients {bj P R}jP[�] output from a hash function
H1 and computes a challenge c P R from another hash function H2 as described
in the algorithm CompPar. Each signer then returns its partial signature (R,z).
It is worth noting that we include R in partial signatures for the simplicity of
presenting our protocol. In actual implementations, each signer only needs to
send back z since the leader can compute R from lr by itself.

We note that our protocol does not achieve identifiable abort, i.e., one cannot
identify misbehaving signers if the final signature obtained from aggregating the
partial signatures is not valid. However, we point out that one possible fix is to let
KeyGen additionally output the commitments of the secret key shares as public
information and, during signing, have each signer send an NIZK along with
their partial signature proving that the partial signature is computed honestly
with respect to the committed key shares and the first round nonces, which
allows the leader to verify the correctness of the partial signature. A similar
approach can be found in [45]. We also note that, except for the recent work [36],
which uses 4 online rounds to achieve robustness, other prior works satisfying
robustness/identifiable abort rely on advanced primitives, such as NIZKs [14,21,
45] or homomorphic signatures [2].

Parameters. In Fig. 5, we give the description of the parameters used in the
protocol. We set � and βc such that the sizes of S�

b and Sc are at least 22κ. We
set m such that except for a negligible probability, for a secret key uniformly
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sampled from Bm
βsk

, there exists another secret key in Bm
βsk

such that their cor-
responding public keys are the same. We set βz according to the correctness
proof and σr according to the unforgeability proof.

Correctness and Unforgeability. The following theorems establish the
correctness and unforgeability of TSL. We show correctness in the full version of
the paper, while we show TS-UF-0 under the MSIS assumption in the random
oracle model below.

Theorem 1 (Correctness of TSL). The threshold signature scheme TSL is
correct with correctness error δ “ (2 ` 4t(� ` 1)) · 2´2κ.

Theorem 2 (TS-UF-0 of TSL). For any integers q “ q(κ), k “ k(κ),m “ m(κ)
and any TS-UF-0 adversary A making at most qs “ qs(κ) queries to PPO and
qh “ qh(κ) queries to RO, there exists an MSIS adversary B running in time
roughly two times that of A such that, for any α ě 2,

Advts-uf-0TSL (A, κ) ď
√

q
(
2αδαAdv

msis
q,k,m,β(B, κ)

)1´ 1
α ` q(2 ` 8q2)2´2κ .

where q “ qh ` qs ` 1, β “ 2βz ` 4
√

mNβcβsk, and δα “ (1 ` 160�q · 2´2κ) · eα.

To prove the above theorem, we use the following variant of the forking lemma
from [8], which is proved in the full version of the paper. The only difference
is that here each hi might be sampled independently from a different distribution.
We require it in our proof since the ranges of H1 and H2 are different.

Lemma 14. Let q ě 1 be an integer, S Ď [1..q] be a set, and HG be an algo-
rithm that outputs h1, . . . , hq where each hi is independently sampled. Let A be a
randomized algorithm that on input x, h1, . . . , hq outputs a pair (I,Out), where
I P {⊥} ∪ S and Out is a side output. Let IG be a randomized algorithm that
generates x. The accepting probability of A is defined as

acc(A) “ Prx ←$ IG,h1,...,hq ←$ HG[(I,Out) ←$ A(x, h1, . . . , hq) : I �“ ⊥] .

Consider algorithm ForkA described in Fig. 6. The accepting probability of ForkA

is defined as acc(ForkA) “ Prx ←$ IG[α ←$ ForkA(x) : α �“ ⊥] . Then,
acc(ForkA) ě acc(A)2/|S|.

Proof (of Theorem 2). Let A be a TS-UF-0 adversary described in the theorem.
W.l.o.g. we assume that A is deterministic and corrupts exactly t ´ 1 signers.
Also, we assume if A returns (μ∗, (R∗,z∗)), the RO query H2(pk, μ∗,R∗) was
made by A, which adds at most one RO query. Also, since the game makes at
most one RO query to H1 and H2 respectively for each signing query, the total
number of RO queries to each of H1 and H2 is bounded q “ qh `qs ` 1. We first
construct an algorithm C compatible with the syntax in Lemma 14 and construct
B from ForkC . The input of C consists of par “ A, public key pk, secret key shares
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Fig. 6. The forking algorithm build from A.

{ski}iP[n], the randomness {r
(i)
j }iP[qs],jP[0..�] for generating the nonces, and the

random RO outputs h1, . . . , h2q, where h2i´1 P S�
b and h2i P Sc for i P [q]. To

start with, C does initialization exactly as in the game TS-UF-0 and then runs
A with access to oracles Init, PPO, PSignO simulated in the same manner as
in the game TS-UF-0 (the randomness {r

(i)
j }jP[0..�] are used for the i-th signing

query to PPO) and the RO oracle R̃O, which is simulated as follows.

R̃O query H1(x): If H1(x) �“ ⊥, C returns H1(x). Otherwise, parse x as (p̃k, lr).
If the parsing fails or p̃k �“ pk, C sets H1(x) ←$ S�

b and returns H1(x). Oth-
erwise, C increases ctrh by 1, sets H1(x) ← h2ctrh´1. Also, C computes
R ← ∑

iPlr .SS(Ri,0 ` ∑
jP[�] bj · Ri,j), where (Ri,j)jP[0..�] ← lr .PP(i) and

{bj}jP[�] ← h2ctrh´1. If H2(pk, lr .msg,R) “ ⊥, C sets H2(pk, lr .msg,R) ←
h2ctrh

. Finally, C returns H1(x).
R̃O query H2(x): If H2(x) �“ ⊥, C returns H2(x). Otherwise, parse x as (p̃k, μ,

R). If the parsing fails or p̃k �“ pk, C sets H2(x) ←$ Sc. Otherwise, C increases
ctrh by 1 and sets H2(x) ← h2ctrh

. Finally, C returns H2(x).
After receiving the output (μ∗, (R∗,z∗)) from A, C aborts if A does not win the
TS-UF-0 game. Otherwise C finds the index I such that H2(pk, μ∗,R∗) is set to
hI during the simulation. By our assumption of A, we know such I must exist.
Then, C returns (I,Out “ (μ∗,R∗,z∗)).

Analysis of C. To use Lemma 14, we define S :“ {2j}jP[q] and IG as the algo-
rithm that runs A ←$ Setup(1κ), (pk, {ski}iP[n]) ←$ KeyGen(), samples r

(i)
j ←$ Dm

σr

for each i P [qs] and j P [0..�], and returns (A, pk, {ski}iP[n], {r
(i)
j }iP[qs],jP[0..�]). We

define HG as the algorithm that samples h1, h3, . . . , h2q´1 uniformly from S�
b and

h2, h4, . . . , h2q uniformly from Sc. From the simulation, we know that the output
index I of C is always in S. Also, we can see that C simulates the game TS-SUF-0
perfectly, which implies acc(C) ě Advts-uf-0TSL (A, κ). By Lemma 14, we have that
acc(ForkC) ě Advts-uf-0TSL (A, κ)2/q .

Construct B from ForkC
.We now construct the MSIS adversary B using ForkC .

To start with, B receives A P Rk×m
q from the MSIS game, follows the algorithm

KeyGen() to generate (pk, sk, {ski}iP[n]), and samples {r
(i)
j }iP[qs],jP[0..�] exactly as

in IG. Then, B runs ForkC . If ForkC outputs (I,Out “ (μ∗,R∗,z∗),Out “
(μ̄∗, R̄∗

, z̄∗)), B returns z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk. Otherwise, B aborts.
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By the execution of ForkC , we know (μ∗,R∗) “ (μ̄∗, R̄∗), Az∗ “ R∗ ` 2hI ·
pk and Az̄∗ “ R̄

∗ `2h̄I ·pk. Therefore, A(z∗ ´ z̄∗ ´2(hI ´ h̄I)sk) “ 0. Also, it is
clear that

∥
∥z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk

∥
∥ ď 2βz ` 2

√
mN

∥
∥(hI ´ h̄I)sk

∥
∥

∞ ď 2βz `
4
√

mNβcβsk “ β, where the last inequality is due to
∥
∥(hI ´ h̄I)sk

∥
∥

∞ ď 2βcβsk.
It is left to show that z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk �“ 0 with high probability.

Denote Win as the event that B returns and z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk �“ 0, which
means that B wins the MSIS game, and Zero as the event that B returns and
z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk “ 0. Since B returns if ForkC returns,

Pr[Win ∨ Zero] “ acc(ForkC) ě Advts-uf-0TSL (A, κ)2/q . (1)

Denote BadHash as the event that h1, h̄1, . . . , h2q, h̄2q are not all distinct, SgA as
the set of MSIS challenge A P Rk×m

q that ηε(Λ⊥
q (A)) ď σr/(2N

√
3m), and Sgk,A

as the set of secret key sk P Bm
βsk

such that there exists another key sk′ �“ sk and
Ask′ “ Ask. Then, denote the event Good as (¬BadHash ∧ A P SgA ∧ sk P Sgk,A).
We bound Pr[Win] using the following main lemma proved in Sect. 4.3.

Lemma 15. For any α ě 2, Pr[Win ∧ Good] ě Pr[Zero ∧ Good]α/(α´1)/δα ,
where δα “ (1 ` 160�q · 2´2κ) · eα.

We now show that Good occurs with overwhelming probability. By Lemma 4,
Pr[A �P SgA] ď 2´N ď 2´2κ. Since each of h1, h3, . . . , h2q´1 and h2, h4, . . . , h2q

are sampled uniformly from S�
b and Sc respectively, Pr[BadHash] ď (2q)2/ |Sb|�

`(2q)2/ |Sc| ď 8q22´2κ. Also, we can see that Pr[sk �P Sgk,A] ď 2´2κ, since the size
of Bm

βsk
is much larger than Rk

q . In particular, there is at most qkN possible values
of Ask, so sk /P Sgk,A with probability at most qkN/(2βsk)mN . The bound then
follows from the value of m in Fig. 5. Thus, Pr[¬Good] ď (2 ` 8q2)2´2κ.

Finally, by Lemma 15 and Equation (1), we conclude our theorem, since

Pr[Win] ě 1
2

(
Pr[Win ∧ Good] ` Pr[Zero ∧ Good]α/(α´1)/δα

)

ě α ´ 1
2αδα

(Pr[Win ∧ Good] ` Pr[Zero ∧ Good])α/(α´1)

ě 1
2αδα

(Pr[(Win ∨ Zero) ∧ Good])α/(α´1)

ě 1
2αδα

(
Advts-uf-0TSL (A, κ)2/q ´ (2 ` 8q2)2´2κ

)α/(α´1)

,

where the third inequality is due to Lemma 11 and the fact that δα > 1. �

4.3 Proof of Lemma 15

By the definition of Sgk,A, there exists a bijection fA : Sgk,A → Sgk,A such that
fA(sk) �“ sk and A·f(sk) “ A·sk. Denote a random variable TA,sk,h as the view of
A during its interaction with B given the MSIS challenge being A, the secret key
being sk and the hash values being h “ (h1, . . . , h2qh

, h̄1, . . . , h̄2qh
) for answering
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RO queries. More concretely, TA,sk,h contains the public key pk, the secret key
shares of corrupted signers {skj}jPCS , the transcripts of all queries to the oracles
PPO, PSignO, RO, and the outputs of A in both executions. Denote WA,sk,h

as the distribution of TA,sk,h . Denote Sgh as the set of hash values h such that
BadHash does not occur.

We first show that the lemma holds if Rα

(
WA,sk,h‖WA,fA(sk),h

) ď δα for any
A P SgA, sk P Sgk,A and h P Sgh. Given a view T , we denote (μ∗,R∗,z∗) and
(μ̄∗, R̄∗

, z̄∗) as the outputs of A in T , and we follow the execution of C to find an
index I such that H2(pk, μ∗,R∗) is set to hI if A wins during the first execution.
Denote Ī as such an index for the second execution of A. We define the event
Ex as A wins in both executions and I “ Ī ∧ z∗ ´ z̄∗ ´ 2(hI ´ h̄I)x “ 0.

For any fixed A P SgA, sk P Sgk,A,h P Sgh and T ←$ WA,sk,h , if Esk occurs,
since sk �“ fA(sk) and h P Sgh which implies hI ´ h̄I �“ 0, we know z∗ ´
z̄∗ ´ 2(hI ´ h̄I)fA(sk) �“ z∗ ´ z̄∗ ´ 2(hI ´ h̄I)sk “ 0, which means that B
wins the MSIS game given (A, fA(sk),h, T ). Therefore, Pr[Win|A, fA(sk),h] ě
PrT ←$ WA,sk,h

[Esk], where Pr[Win|A, fA(sk),h] denotes the probability that Win
occurs given the MSIS challenge being A, the secret key being fA(sk), and the
hash values being h. For T ←$ WA,sk,h , if Esk occurs, we know the event Zero
occurs given the secret key being sk and the view of A being T , which means
Pr[Zero|A, sk,h] “ PrT ←$ WA,sk,h

[Esk]. Therefore, by Lemma 5,

Pr[Win|A, fA(sk),h] ě Pr
T ←$ WA,fA(sk),h

[Esk]

ě Pr
T ←$ WA,sk,h

[Esk]α/(α´1)/Rα

(
WA,sk,h‖WA,fA(sk),h

)

ě Pr[Zero|A, sk,h]α/(α´1)/δα ,

which implies

Pr[Win|Good] “ E
A,sk,h

[Pr[Win|A, fA(sk),h]] ě E
A,sk,h

[
1
δα

Pr[Zero|A, sk,h]
α

α´1

]

ě 1
δα

E
A,sk,h

[Pr[Zero|A, sk,h]]
α

α´1 “ 1
δα

Pr[Zero|Good] α
α´1 ,

where the expectation is taken over (A, sk,h) uniformly sampled from SgA ×
Sgk,A × Sgh, the first equation is due to the fact that fA is a bijection on Sgk,A,
and the last inequality is due to Jensen’s inequality. Therefore,

Pr[Win ∧ Good] “ Pr[Win|Good]Pr[Good] ě 1
δα

Pr[Good] · Pr[Zero|Good]α/(α´1)

ě 1
δα

(Pr[Good] · Pr[Zero|Good])α/(α´1) “ 1
δα

(Pr[Zero ∧ Good])α/(α´1) ,

where the second inequality is due to Pr[Good] ď 1 and α
α´1 > 1.

Analysis of Rα

(
WA,sk,h‖WA,fA(sk),h

)
. We first define a more fine-grained view

TA,sk,ρ,h by further fixing the randomness ρ used for generating the secret key
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shares. We can view WA,sk,h as the distribution of TA,sk,ρ,h for ρ uniformly
sampled from (Rm

q )K .
We also extend the bijection fA to a bijection f ′

A that additionally takes
the randomness ρ as input such that f ′

A maps (sk,ρ) to (fA(sk),ρ′) such that
the shares of corrupted signers CS given (sk,ρ) are the same as that given
(fA(sk),ρ′).5 By Lemma 12, we construct the bijection as f ′

A(sk,ρ) :“ (fA(sk),
Φsk,fA(sk),CS (ρ)). As a result, WA,fA(sk),h can be viewed as the distribution of
TA,f ′

A(sk,ρ),h for uniformly sampled ρ.
Denote WA,sk,ρ,h as the distribution of TA,sk,ρ,h . Denote P as the distri-

bution of (ρ, TA,sk,ρ,h) and Q as the distribution of (ρ, TA,f ′
A(sk,ρ),h) for uni-

formly sampled ρ. By the data processing inequality from Lemma 5, we have
that Rα

(
WA,sk,h‖WA,fA(sk),h

) ď Rα (P‖Q). By Lemma 6, denoting P1 as the
uniform distribution of ρ and P2|ρ as the distribution of TA,sk,ρ,h conditioned
on the value of ρ (Q1 and Q2|ρ are defined analogously), then Rα (P‖Q) ď
Rα (P1‖Q1) · maxρ Rα

(
P2|ρ‖Q2|ρ

) “ maxρ Rα

(
WA,sk,ρ,h‖WA,f ′

A(sk,ρ),h

)
.

Therefore, Rα

(
WA,sk,h‖WA,fA(sk),h

) ď maxρ Rα

(
WA,sk,ρ,h‖WA,f ′

A(sk,ρ),h

)
,

and we can conclude the lemma by the following claim.

Claim. For any A P SgA, sk P Sgk,A, ρ P (Rm
q )K , and h P Sgh, we have

Rα(WA,sk,ρ,h‖WA,f ′
A(sk,ρ),h) ď (1 ` 160�q · 2´2κ) · eα .

Proof. Denote (sk′,ρ′) “ f ′
A(sk,ρ) and denote {ssi}iP[L] and {ss′i}iP[L] as the

secret shares generated by SecSha.Share(sk;ρ) and SecSha.Share(sk′;ρ′), respec-
tively. Since A is deterministic, TA,sk,ρ,h is determined by the nonces {R

(j)
0 , . . . ,

R
(j)
� }jP[qs] and the outputs (R,z) of queries to oracle PSignO. Therefore, we

only need to consider the marginal distribution of those variables when com-
paring the two distributions. We further ignore R from the outputs of PSignO
queries since it is determined given {R

(j)
0 , . . . ,R

(j)
� }jP[qs] and h.

We now use Lemma 6 to bound Rα(WA,sk,ρ,h‖WA,f ′
A(sk,ρ),h) by defining ran-

dom variables X0, . . . , X2qs
as follows. Let X0 :“ {R

(j)
0 , . . . ,R

(j)
� }jP[qs]. For

j P [qs], let Xj be the output z of the j-th query to PSignO made by A
during the first execution, and let Xj be ⊥ if A makes less than j queries to
PSignO during the first execution. Similarly, let Xqs`j be the output z of the
j-th query to PSignO made by A during the second execution, and let Xqs`j

be ⊥ if A does not win during the first execution or makes less than j queries to
PSignO during the second execution. We denote D and D′ as the distributions
of X0, . . . , X2qs

sampled from WA,sk,ρ,h and WA,f ′
A(sk,ρ),h , respectively.

By Lemma 6, denoting Dj|x[0..j´1]
as the distribution of Xj conditioned

on x[0..j´1] (D′
j|x[0..j´1]

is defined analogously), we only need to upper-bound
Rα(Dj|x[0..j´1]

‖D′
j|x[0..j´1]

) for any j P [0..2qs] and x[0..j´1]. For simplicity of our
explanation, we denote δα,j :“ maxx[0..j´1] Rα(Dj|x[0..j´1]

‖D′
j|x[0..j´1]

).

5 The corrupted set CS is fixed here since we assume that A is deterministic.
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For j “ 0, since {R
(j)
0 , . . . ,R

(j)
� }jP[qs] are sampled independently of sk,ρ, D0

and D′
0 are the same distributions, which implies δα,j “ 1.

For 1 ď j ď qs, given X[0..j´1] “ x[0..j´1] for any x[0..j´1], we know TA,sk,ρ,h

and TA,f ′
A(sk,ρ),h are identical prior to the j-th PSignO query in the first execu-

tion. Denote the j-th query to PSignO as (i, lr). We say that the query corre-
sponds to the j′-th token if lr .PP(i) “ (R(j′)

0 , . . . ,R
(j′)
� ). Suppose that the query

is valid, i.e., the query corresponds to the j′-th token for some j′ P [qs] and there
is no prior PSignO query corresponding to the same token. Let (c, b1, . . . , b�)
be the parameters computed from CompPar(pk, lr). Let sî P Rm be an arbi-
trary vector such that Asî “ R

(j′)
î

for î P [0..�]. Then, the distribution of r
(j′)
î

given R
(j′)
î

is Dm
Λ⊥

q (A)`s î,σr
for î P [0..�]. Let v :“ ∑

ĵPTi
λlr .SS

ĵ
ssĵ . Since Xj “

r
(j′)
0 `∑

îP[�] bîr
(j′)
î

`2cv and ηε(Λ⊥
q (A)) ď σr/(2

√
3mN), by Lemma 9, we have

Dj
ε′
≈ Dm,mod q

Λ⊥
q (A)`S`2cv ,σ′,2cv

,6 where ε′ “ 2((1`ε)�´1)
2´(1`ε)� , S “ s0 `∑

îP[�] bîsî and σ′ “
σr

√
1 ` �. Similarly, D′

j

ε′
≈ Dm,mod q

Λ⊥
q (A)`S`2cv ′,σ′,2cv ′ , where v′ “ ∑

ĵPTi
λlr .SS

ĵ
ss′

ĵ
. By

weak triangle inequality from Lemma 5,

δα,j ď (1 ` ε′)1` α
α´1 Rα

(
Dm,mod q

Λ⊥
q (A)`S`2cv ,σ′,2cv

‖Dm,mod q
Λ⊥

q (A)`S`2cv ′,σ′,2cv ′

)
.

By Lemma 12, we have Av “ Av′, which implies 2c(v ´ v′) P Λ⊥
q (A), and

thus the two lattice cosets Λ⊥
q (A) ` S ` 2cv and Λ⊥

q (A) ` S ` 2cv′ are the
same. Then, by Lemma 12, we have ‖v ´ v′‖ ď βssβsk

√
Nm, so ‖2c(v ´ v′)‖2 ď

4β2
c β

2
ssβ

2
skNm. Thus, by Lemma 8,

δα,j ď (1 ` ε′)1` α
α´1 exp

(

απ
‖2c(v ´ v′)‖2

σ′2

)

ď (1 ` ε′)3eα/(2q) , (2)

where the last inequality is due to the fact that σr is set as shown in Lemma 5.
If the j-query is not valid or A makes less than j queries to PSignO in the first
execution, we have Xj “ ⊥ in both distributions, which means δα,j “ 1.

For qs ` 1 ď j ď 2qs, given X[0..j´1] “ x[0..j´1] for any x[0..j´1], we know
TA,sk,ρ,h and TA,f ′

A(sk,ρ),h are identical prior to the (j ´ qs)-th PSignO query
in the second execution. W.l.o.g. assume A wins the TS-UF-0 game during the
first execution since otherwise Xj “ ⊥ in both Dj and D′

j and δα,j “ 1. Also,
w.l.o.g. assume A makes at least (j ´ qs) queries to PSignO and the (j ´ qs)-th
query is valid during the second execution since otherwise Xj “ ⊥. We denote
the (j ´qs)-th query as (i, l̄r) and let (c̄, b̄1, . . . , b̄�) be the parameters computed
from CompPar(pk, l̄r). Suppose the query corresponds to the j′-th token. There
are three cases:

– The adversary does not make a PSignO query that corresponds to the j′-th
token during the first execution. Since Xj is the distribution of z̄ conditioning

6 This follows from Lemma 9 showing that Xj ´ 2cv is distributed closely to
Dm,mod q

Λ⊥
q (A)`S ,σ′ .
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on {R
(j′)
0 , . . . ,R

(j′)
� }, we can use the same analysis as in the case of the first

execution and get the same bound on δα,j as Equation (2).
– Otherwise, the adversary makes a valid PSignO query that also corresponds

to the j′-th token during the first execution. Denote the query as (i, lr), and
suppose it is the j̃-th PSignO query. (Since the query corresponds to the
j′-th token, it must be for signer i too.) Let (c, b1, . . . , b�) be the parameters
computed from CompPar(pk, lr) during the first execution. Denote J as the
index such that (b1, . . . , b�) “ hJ . If lr “ l̄r and J < I, where we recall that
I denotes the index such that H2(pk, μ∗,R∗) “ hI and (μ∗, (R∗,z∗)) denotes
the output of A during the first execution, we have (b̄1, . . . , b̄�) “ hJ .
Denote J ′ as the index such that c “ hJ ′ . By the simulation of the random
oracles, J ′ is either J ` 1 or less than J . Since A wins the TS-UF-0 game
during the first execution, μ∗ �“ lr .msg, which implies J ′ �“ I. Since J ′ ď
J `1 ď I, we know J ′ < I. Therefore, from the algorithm CompPar, we know
c “ hJ ′ “ c̄, which implies that the answer to the (j ´ q)-th PSignO query
during the second execution is the same as the j̃-th PSignO query during
the first execution. Thus, Xj “ Xj̃ “ xj̃ for both Dj|x[0..j´1]

and D′
j|x[0..j´1]

and δα,j “ 1.
– Otherwise, either lr �“ l̄r or J > I. Since h P Sgh, in either of the cases,

(b1, . . . , b�) �“ (b̄1, . . . , b̄�). We denote the output of the j̃-th PSignO query
during the first execution as z and define {sî}îP[0..�], and (v,v′) for the query
following the analysis of the first execution. Then, we have that Xj “ r0 `
∑

îP[�] b̄îrî ` 2c̄v̄, where v̄ “ ∑
ĵPTi

λl̄r .SS
ĵ

ssĵ and each rî, for î P [0..�], is

independently sampled from Dm,mod q
Λ⊥

q (A)`s î,σr
conditioning on r0 ` ∑

îP[�] bîrî “
z ´ 2cv. Denote y0 “ z ´ 2cv. By Lemma 9,

Dj
ε′
≈ Dm,mod q

IbΛ⊥
q (A)`y0`S ′`2c̄v̄ ,

Δ(Σ)
Σ11

·Im,
Σ12
Σ11

y0`2c̄v̄

where S′ “ ∑
îP[�](b̄î ´bî)sî, I denotes the ideal generated by b1´ b̄1, . . . , bn ´

b̄n, and Σ “ σ2
r

(
1 ` ∑

îP[�] b
∗
î
bî 1 ` ∑

îP[�] b̄îb
∗
î

1 ` ∑
îP[�] b̄

∗
î
bî 1 ` ∑

îP[�] b̄
∗
î
b̄î

)

.

Similarly, D′
j

ε′
≈ Dm,mod q

IbΛ⊥
q (A)`y ′

0`S ′`2c̄v̄ ′, Δ(Σ)
Σ11

·Im,
Σ12
Σ11

y ′
0`2c̄v̄ ′ , where y′

0 “ z ´2cv′

and v̄′ “ ∑
ĵPTi

λl̄r .SS
ĵ

ss′j′ . Since (b1, . . . , b�) �“ (b̄1, . . . , b̄�), we know 2 P I
by Lemma 1. Since c(v ´ v′) ` c̄(v̄ ´ v̄′) P Λ⊥

q (A) by Lemma 12, we know
2c(v ´ v′) ` 2c̄(v̄ ´ v̄′) P 2Λ⊥

q (A) Ă I b Λ⊥
q (A), which implies I b Λ⊥

q (A) `
z ´ 2cv ` S′ ` 2c̄v̄ and I b Λ⊥

q (A) ` z ´ 2cv′ ` S′ ` 2c̄v̄′ are the same lattice
cosets. Also, since b†b “ 1 for any b P Sb, we have Σ11 “ Σ22 “ (1 ` �)σ2

r .
Let w “ ∑

îP[�] b̄îb
∗
î
. Since ‖w‖1 ď � and w �“ �, by Lemma 10, we have

σmax(Σ12Σ21) “ σmax(σ4
r (1 ` w)∗(1 ` w)) “ σ4

r σmax((1 ` w)∗(1 ` w)) ď
σ4
r ((� ` 1)2 ´ 2�/N2). Therefore, σmin(Δ(Σ)) “ σmin(Σ11Σ22 ´ Σ21Σ12) “

σmin((� ` 1)2σ4
r ´ Σ21Σ12) ě (� ` 1)2σ4

r ´ σmax(Σ21Σ12) ě 2�σ4
r /N

2, which
implies σmin(Δ(Σ)/Σ11) ě 2�

N2(�`1)σ
2
r ě σ2

r /N
2. Since 2Λ⊥

q (A) Ă I b Λ⊥
q (A),
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Fig. 7. The concrete parameters and estimated efficiency for κ “ 128 and n “ 5, 32.
In both cases, we use (N, �, βc) “ (512, 26, 64). The last second column denotes the
communication complexity per signer and the last column denotes the average secret
key size.

ηε(I b Λ⊥
q (A)) ď 2ηε(Λ⊥

q (A)) ď σr/N ď √
σmin(Δ(Σ)/Σ11), by Lemma 8

and using weak-triangle inequality as in the case of the first execution, we

have δα,j ď (1 ` ε′)1` α
α´1

(
1`ε
1´ε

) α
α´1 exp

(

απ
N2

∥
∥
∥

Σ12
Σ11

2c(v´v ′)`2c̄(v̄´v̄ ′)
∥
∥
∥
2

σ2
r

)

.

Also, by Lemma 12, ‖v ´ v′‖ ď βssβsk

√
mN and ‖v̄ ´ v̄′‖ ď βssβsk

√
mN , and

since
∥
∥
∥1 ` ∑

îP[�] b̄
†
î
bî

∥
∥
∥
1

ď 1` � , we know that
∥
∥
∥Σ21

Σ11

∥
∥
∥
1

ď σ2
r (�`1)

σ2
r (�`1) ď 1. Finally,

by how σr is set in Fig. 5 and α
α´1 ď 2,

δα,j ď (1 ` ε′)3
(

1 ` ε

1 ´ ε

)2

· eα/(2q) . (3)

Since ε “ 2´2κ and � ď 2κ, ε′ ď 8� · 2´2κ and 1`ε
1´ε ď 1 ` 4 · 2´2κ. From the

above analysis, Rα (D0‖D′
0) “ 1 and by Eqs. 2 and 3, for any j P [2qs] and

x[0..j´1], Rα

(
Dj|x[0..j´1]

‖D′
j|x[0..j´1]

)
ď (1 ` 8� · 2´2κ)5eα/(2q). Thus, by Lemma

6, Rα(WA,sk,ρ,h‖WA,f ′
A(sk,ρ),h) ď (1`8� ·2´2κ)10qeα ď (1`160�q ·2´2κ) ·eα. �

4.4 Concrete Instantiation and Efficiency Analysis

We analyze the concrete efficiency of our protocol in the setting considered
by [45], where the security parameter is κ “ 128, the maximum number of
signing sessions is qs “ 264 (following NIST recommendations and used in other
related works [60]), and n “ 5. We consider arbitrary threshold 1 ď t ď n here.
We set N “ 512 and k “ 7. We set q such that the logarithm of β, the �2-norm
of the short solution, satisfies log β ď 2

√
kN log q log δ, according to [57]. We use

δ “ 1.005 as in [45] so that we get roughly 128-bit security of the MSIS problem.
Note that we are not choosing the MSIS parameters according to the concrete
bounds of Theorem 2, but rather we are choosing parameters so that MSIS gives
128 bits of security. This follows common practice, and it is justified by the fact
that our bound is likely not tight due to the use of the Forking Lemma. We will
see that the estimated β ď 2104.63, so we set q ě 2106. We set βsk “ 223 and
then, according to Fig. 5, we set βc “ 64, m “ 33, � “ 26. We set σr “ 293.12

due to the first term of the maximum function7 with βss ≈ 7200 by Lemma
7 The second term is much smaller given the parameters we set.
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13. Then, we set βz “ 2103.63. By Theorem 2, we have that β is bounded by
2104.63. Then, our public key size is |pk| “ kN log q “ 47.55 KB, the signature
size is |sig | “ (m ` k)N log q “ 258.10 KB, the communication complexity per
signer is ((� ` 1)k ` m)N log q “ 1.49 MB, and the average secret key size is
|{ski}|/n “ �n/2�4.3 log(n) log(q)mN “ 610.68 KB. We summarize the param-
eters in Fig. 7, where we also show the concrete parameters and efficiency for
n “ 32 estimated in the same manner as above.
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Abstract. Folding schemes (Kothapalli et al., CRYPTO 2022) are a con-
ceptually simple, yet powerful cryptographic primitive that can be used
as a building block to realise incrementally verifiable computation (IVC)
with low recursive overhead without general-purpose non-interactive suc-
cinct arguments of knowledge (SNARK). Most folding schemes known
rely on the hardness of the discrete logarithm problem, and thus are both
not quantum-resistant and operate over large prime fields. Existing post-
quantum folding schemes (Boneh, Chen, ePrint 2024/257) based on lat-
tice assumptions instead are secure under structured lattice assumptions,
such as the Module Short Integer Solution Assumption (MSIS), which
also binds them to relatively complex arithmetic. In contrast, we con-
struct Lova, the first folding scheme whose security relies on the (unstruc-
tured) SIS assumption. We provide a Rust implementation of Lova, which
makes only use of arithmetic in hardware-friendly power-of-two moduli.
Crucially, this avoids the need of implementing and performing any finite
field arithmetic. At the core of our results lies a new exact Euclidean norm
proof which might be of independent interest.

1 Introduction

Incrementally verifiable computation [Val08] (IVC) is a cryptographic primitive
that allows a long (possibly infinite) computation to be run, such that correctness
of the state of the computation can be efficiently verified at any point. IVC
and its generalisation, proof-carrying data [CT10] (PCD), have found numerous
applications in succinct blockchains [BMRS20,BGH19,Mina], verifiable delay
functions [BBBF18,KMT22], SNARKs for machine computations [BCTV14],
and more.

Originally, IVC and PCD were built on recursive SNARKs [BCCT13,
BCTV14,Val08] which prove that: (i) the current computation step was exe-
cuted correctly, and (ii) there exists a proof that the computation was performed
correctly for all previous steps up to that point. This approach, however, suffers
from several restrictions on the choice of the underlying SNARKs, making the
approach rather impractical. More recent constructions of IVC and PCD were
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15487, pp. 303–326, 2025.
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proposed from so-called folding and (split-)accumulation schemes [BCMS20,
BCL+21,BC23,KST22,KS22,KS23]. Informally, a folding scheme “folds” sev-
eral instances of a certain relation into a single instance, so that correctness of
the folded instance implies correctness of all original instances. Until recently,
folding (aka accumulation) schemes are instantiated using Pedersen commit-
ments, and their security holds in the random oracle model under the discrete
logarithm assumption. Consequently, all the constructions are currently exposed
to efficient quantum attacks [Sho94].

Given the recent announcement of the US National Institute of Standardisa-
tion and Technology (NIST) on the post-quantum standardisation effort [NIST],
it is becoming more and more likely that lattices will form the future founda-
tion of public-key cryptography. Hence, a natural question arises as to whether
folding schemes can be efficiently realised from lattice-based assumptions.

1.1 Our Results

In this paper, we present Lova1, the first folding scheme based on unstructured
lattice assumptions, i.e. the Short Integer Solution (SIS) assumption. Our con-
struction brings the following benefits over relying on more structured assump-
tions, such as Module-SIS [LS15]. It allows for much simpler (yet efficient) instan-
tiations of the folding scheme, without implementing polynomial ring arithmetic
and requiring NTT-friendly prime moduli while relying on a more established
computational assumption.

Our starting point is a generic construction of a folding scheme from Nova
[KST22], which requires an additively homomorphic compressing commitment
scheme. The rough intuition can be described as follows; the folding scheme
focuses on “commit-and-prove”-type relations:

R := {((x, t), (w, r)) : (x, w) ∈ R ∧ t =, (w; r)} ,

where R is a binary NP relation. Further, given two valid instances (x0,w0)
and (x1,w1) ∈ R, the folded instance (x∗ := (x∗, t∗),w∗ := (w∗, r∗)) ∈ R
is constructed by taking a linear combination of (x0,w0) and (x1,w1) with
challenges generated by the verifier, or in the non-interactive case, output values
of the random oracle. Thus, one could naively obtain a lattice-based folding
scheme by instantiating , with the folklore Ajtai commitment scheme [Ajt96].

The resulting construction, unfortunately, comes with a major efficiency
drawback. Indeed, Ajtai commitments are binding only with respect to short
message and randomness vectors. This limitation becomes particularly prob-
lematic because the norm of the folded witness w∗ increases after each folding
step. The consequences are twofold. First, a maximal number of folding steps
must be known ahead of setting the lattice parameters. This is contradictory to
the concept of IVC, where we do consider long, and possibly infinite, computa-
tions. Second, the extracted message w∗ may not be a valid witness for x∗ with

1 The name comes from the fact that our construction is a direct lattice adaptation
of the Nova folding scheme [KST22].
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respect to the relation R, due to slack and other related norm growth problems
[BLNS20,ACK21,AL21]. In this work, we incorporate two main techniques to
circumvent these limitations.

Decompose-and-Fold. First, we apply the (folklore by now) “decompose-
and-fold” paradigm [PSTY13,BS23,BC24] which allows us to control the norm
growth during an honest execution. Intuitively, given a witness wi of norm at
most β, where i ∈ {0, 1}, the prover starts by decomposing it (usually w.r.t.
some decomposition base b) into many intermediate witnesses wi,1, . . . ,wi,k,
where each wi,j has much smaller norm than wi. Afterwards, the prover folds
all the 2k intermediate witnesses (wi,j)i∈{0,1},j∈[k] into the final witness w∗. By
picking appropriate parameters b and β, one can ensure that norm of the folded
witness w∗ is also bounded by β; thus no norm growth occurs when following
the protocol honestly.

Exact Euclidean Norm Proof. The second component is a new exact
Euclidean norm proof. This ingredient ensures that no slack and stretch
occurs in the knowledge soundness/extractability argument. Combined with the
decompose-and-fold approach, this enables us to build a lattice-based folding
scheme, where the number of folding steps is independent of the instantiated
lattice parameters. We highlight that our Euclidean norm proof could be of
independent interest, and may be applied in the context of lattice-based suc-
cinct arguments with fast verification, e.g., in the recent polynomial commitment
scheme by Cini et al. [CMNW24].

To showcase the simplicity and practicality of our folding scheme, we pro-
vide a concrete instantiation and a proof-of-concept implementation. The Lova
protocol is relatively simple and relies on unstructured assumptions, which
makes it particularly easy to implement and straightforward to parallelize.
Both our prover and verifier mostly perform linear algebra operations (espe-
cially matrix-matrix multiplication with bounded-norm entries), and we do not
require more complex operations that appear in other lattice-based constructions
(e.g., number-theoretic transforms for polynomial arithmetic, or sumcheck-style
computations). In addition, we are able to choose the lattice modulus to be
a hardware-friendly power-of-two (q = 264 in our evaluation), which eschews
modular arithmetic altogether and reduces to standard integer arithmetic.

1.2 Technical Overview

We provide a brief overview of our techniques.

1.2.1 Background
Ajtai Commitment. In the Ajtai commitment scheme [Ajt96], one commits

to a short vector s ∈ Z
m by computing

As ≡ t (mod q) .

In the above q and A ∈ Z
n×m are public parameters of the scheme, and t ∈ Z

n

is the commitment to s. That Ajtai commitments are binding follows directly
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from the SIS assumptions, as two distinct short vectors s, s∗ that satisfy the
above equation imply that s − s� �= 0 is also short and A(s − s�) = 0 (mod q).

Reductions of Knowledge. Reductions of Knowledge (RoK) [KST22] are
interactive protocols between a prover and a verifier that reduce checking mem-
bership of an instance in a relation to checking membership a related instance
in a (usually simpler) relation. In a reduction of knowledge from R to R′, the
prover and the verifier have access to an index i and an instance x. The honest
prover additionally has access to a witness w for the instance. They interact and
at the end of the interaction:

– If (i,x,w) ∈ R, the verifier accepts and outputs an instance x′ and the prover
outputs a witness w′ such that (i,x′,w′) ∈ R′.

– If at the end of the interaction the verifier accepts and outputs an instance x′,
there is an efficient extractor that given (i,x,x′) and w′ such that (i,x′,w′) ∈
R′ outputs w such that (i,x,w) ∈ R

A folding scheme is then simply reduction of knowledge from a relation R2 to
itself. Note that both completeness and (knowledge) soundness require then that
the updated witness belongs to the same relation and that the extracted witness
belong to the original relation. For the lattice setting, where norm growth and
slack tend to accrue, this is the major technical hurdle to solve. The relation
that we consider is the following, which is a slight generalization of the natural
opening relation for Ajtai commitments2:

RSIS
q,β,t :=

{
(A, T, S) ∈ Z

n×m × Z
n×t × Z

m×t

∣∣∣∣ AS ≡ T (mod q)
∀i ∈ [t], ‖S∗,i‖ ≤ β

}
.

Since an instance of (RSIS
q,β,t)2 can be reduced to one of RSIS

q,β,2t, we consider
designing a RoK for RSIS

q,β,2t → RSIS
q,β,t.

1.2.2 A Naive Attempt to Folding Schemes
As in previous folding approaches, we will aim to do so via a random linear
combinations, which will inevitably incur into problems. Let (A, T, S) ∈ RSIS

q,β,2t.
The (naive) protocol that we design is the following:

1. The verifier samples a challenge C ← C2t×t ⊆ Z
2t×t (from a yet unspecified

sampling set) and send it to the prover.
2. The prover computes and outputs the updated witness Z := SC.
3. The verifier computes the updated instance T′ := TC, accepts and outputs it.

This protocol suffers from two main issues:

Completeness Norm Growth. Folding must reduce checking two instances
of a relation to checking a single instance of the same relation. In this case, the
new opening Z will not in fact satisfy ‖Z∗,i‖ ≤ β for any non-trivial sampling
set C.
2 Which we can recover by setting t = 1. We use this formulation as it will notationally

more convenient later on.
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Extraction Norm Growth. The protocol is knowledge sound, as we can con-
struct an extractor that produces a (relaxed) witness via coordinate-wise special
soundness [BBC+18,FMN23]. Interpreting the challenge set C2t×t ∼= (Ct)2t (i.e.
so that each coordinate correspond to a row of the matrix) the extractor is given
access to a tree of 2t + 1 accepting transcripts,

((
C(0)

Z(0)

)
, · · · ,

(
C(2t)

Z(2t)

))
,

such that, for j ∈ [2t], C(0), C(j) differ in exactly row j. Letting i∗ denote the
column in which the two differ we have that C

(0)
j,i∗ �= C

(j)
j,i∗ and C

(0)
j′,i = C

(j′)
j′,i for

i ∈ [t] and j′ �= j. For j ∈ [2t], the extractor computes

S∗,j ≡ Z(0)
∗,j − Z(j)

∗,j

C
(0)
j,i∗ − C

(j)
j,i∗

(mod q) ,

and sets S :=
[
S∗,1, . . . , S∗,2t

]
. It is easy to see then that, for every j ∈ [2t],

AS∗,j ≡ AZ(0)
∗,j − AZ(j)

∗,j

C
(0)
j,i∗ − C

(j)
j,i∗

≡ T∗,j (mod q) .

What is left is to bound the norm of the extracted witness S. Letting βC :=
maxc �=c′∈C

∥∥(c − c′)−1 mod q
∥∥, and β′ denote the completeness norm bound on

Z, we can only conclude that norm of S∗,j is at most 2 · βC · β′ > β. So, even if
there were no completeness norm growth and β′ = β (which as argued before, is
not currently the case), the extraction incurs in a norm blowup. The particularly
hard term to control is βC . Selecting C that simultaneously is (i) large enough
for soundness; (ii) with elements of small norm (to keep the completeness norm
under control); (iii) and with βC small is challenging. In polynomial rings, setting
C to be the monomials can partially help, but there are limitations even in the
cyclotomic ring setting [AL21].

To construct an efficient folding scheme for Ajtai commitments, we have to
solve both of the above problems.

– To solve the completeness norm growth, we will ask the prover to decompose
its opening and send us an updated commitment, which we can check for
consistency against the old commitment.

– To solve the extraction norm growth, we will proceed in steps. First, we
will present an approach to extract (a decomposed witness) with almost no
extraction blowup, and then we will augment this protocol with a proof of
exact norm that allows it to eliminate it completely.

1.2.3 Extracting Witness with Small Norm
We now aim to choose a challenge set C suitable for both keeping completeness
and extraction norm growth under control. A natural choice is the set of binary
challenges C = {0, 1} as used in [BBC+18,CMNW24]. Then, as demonstrated in
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the aforementioned works, we have βC = 1 and norm of the extracted matrix is
at most 2β′. Below, we consider a slight extension of this approach, which later
will be crucial to prove exact norm bounds.

Namely, consider ternary challenges C = {−1, 0, 1} instead. As in the binary
case, those challenges are small, so they will contribute little to the completeness
growth. For extraction, recall that norm growth was in large part contributed
by the term βC . For our choice of C, the differences of challenges consists of
δ := α − α′ with α, α′ ∈ {−1, 0, 1} and α �= α′. We notice that δ ∈ {±1, ±2} and
further equals 2 only if (α, α′) = (±1, ∓1). When δ = ±1, dividing by δ does
not create any norm blowup, similarly as in the binary case. On the other hand,
for δ = ±2, it is unclear whether the extracted witness is short, or even if it is
well-defined, e.g. for even moduli q.

To leverage this observation, we revisit the coordinate-wise special soundness
(CWSS) property and the heavy-row analysis in [BBC+18, Lemma 3]. For each
coordinate i, we construct an extractor that recovers two accepting transcripts
(C, Z), (C′, Z′) such that: (i) C and C′ differ exactly, and only, in the i-th row,
and (ii) their corresponding i-th row vectors ci, c′

i satisfy ci �≡ c′
i (mod 2). The

latter condition makes sure that there exists an entry of ci − c′
i which is ±1 and

allows for extracting a witness with norm at most 2β′ as in the binary setting.
Roughly, the analysis relies on the heavy-row argument [Dam10]. Suppose

a cheating prover succeeds to produce a valid response Z for a random chal-
lenge matrix C with a noticeable probability. Then, for any coordinate i, with
sufficiently large probability (i.e. the probability of “landing in a heavy row”),
the set of matrix challenges C′, which satisfy conditions (i) and (ii) described
above, that are simultaneously “good” (in the sense that the prover outputs an
accepting transcript) must be big enough.

Replicating the CWSS analysis with the improved extraction procedure to
the strawman protocol, we reduce the extraction norm blowup of the strawman
protocol to 2 · β′. We highlight that the new approach suffers from a larger
soundness than in the binary challenge setting, which is now roughly (23 )t.

1.2.4 Almost a Folding Scheme
Following the above strategy, we design a folding scheme with no completeness
blowup. Further, we use the extraction strategy previously described to extract a
very short (decomposed) witness, which we later show how to upgrade to extract
a witness with no extraction norm blowup.

b-Decomposition. In the sequel G is the b-decomposition gadget matrix, and
G−1 denote its inverse, i.e. G−1(S)G = S for every S. G−1 decomposes S into
a matrix S̃ where each entry is in [−�b/2�, �b/2�] (in this work, we use balanced
base-b decomposition).

Folding Scheme. Let (A, T, S) ∈ RSIS
q,β,2t. The new protocol that we design is

the following:

1. The prover computes S̃ := G−1(S), T̃ := AS̃ mod q and sends T̃ to the
verifier.

2. The verifier samples a challenge C ← {−1, 0, 1}2kt×t and send it to the prover.
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3. The prover computes and outputs the updated witness Z := S̃C.
4. The verifier computes T′ := T̃C, accepts if

T̃G ≡ T (mod q) ,

and outputs the updated instance T′.

We analyse completeness and knowledge soundness of the above RoK. Com-
pleteness First, it is easy to see that the verifier’s algebraic checks succeed.

T̃G ≡ AS̃G ≡ AS ≡ T (mod q) ,

AZ ≡ AS̃C ≡ T̃C (mod q) .

We are left to check the norms of Z. Let i ∈ [t], and consider ‖Z∗,i‖. Since∥∥S̃∗,j

∥∥ ≤ � b
2�√

m, we have that

‖Z∗,j‖ ≤
∥∥∥∥∥

2kt∑
i=1

Ci,jS̃∗,i

∥∥∥∥∥ ≤ 2kt

⌊
b

2

⌋√
m .

As long as t ≤ β

2k� b
2�√

m
, the above norm is then bounded above by β.

Relaxed Knowledge Soundness. We apply a similar analysis to that in the
strawman protocol, except now that the extraction procedure is applied on 2kt+1
coordinates instead of 2t + 1. This recovers a decomposed witness S̄ ∈ Z

n×2kt

which has
∥∥S̄∗,j

∥∥ ≤ 2β and for which AS̄ ≡ T̃ (mod q). Later on, we will make
use of this intermediate short extracted witness. The final extracted witness is
S := S̄G which satisfies

AS ≡ AS̄G ≡ T̃G ≡ T (mod q) .

Note that, for j ∈ [2t], ‖S∗,j‖ ≤ 2β2.

1.2.5 Exact Euclidean Norm Proof
To construct the final protocol, we require to augment the above protocol with a
proof of exact norm. Our first observation is that, if for every j ∈ [2t] ‖S∗,j‖ ≤ β
then the matrix D := S�S has a diagonal bounded by β2, i.e. for every i ∈ [2t],
has Di,i ≤ β2. This is because

Di,i = 〈S∗,i, S∗,i〉 = ‖S∗,i‖2 ≤ β2 .

We then rewrite the relation for opening of Ajtai commitments to:

Rq,β,t :=

⎧⎨
⎩

(A, (T, D), S)
∈ Z

n×m × (Zn×t × Z
t×t) × Z

m×t

∣∣∣∣∣∣
AS ≡ T (mod q)
∧ D = S�S
∧ ∀i ∈ [t], Di,i ≤ β2

⎫⎬
⎭ . (1)

Now, let (A, (T, D), S) ∈ Rq,β,2t. The final protocol that we design is the follow-
ing:
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1. The prover computes S̃ := G−1(S), T̃ ≡ AS̃ mod q and D̃ := S̃�S̃ and
sends T̃, D̃ to the verifier.

2. The verifier samples a challenge C ← {0, ±1}2kt×t and send it to the prover.
3. The prover computes and outputs the updated witness Z := S̃C.
4. The verifier computes T′ := T̃C and D′ := C�D̃C, accepts if

G�D̃G = D
∧ T̃G ≡ T (mod q) ,

and outputs the updated instance (T′, D′).

The protocol is complete with no norm blowup. We are left to show that the
additional information allows us to enforce exact extracted norm. We consider
a new extractor that acts a following:

1. Run the malicious prover, answering its query with a uniformly random C ←
C2kt×t, to obtain a transcript (T̃, D̃, C, Z).

2. If the transcript is not accepting, abort.
3. Rewind the prover to the beginning and run the extractor to obtain a wit-

ness S̄ ∈ Z
m×2kt (note that this is not the final witness that we previously

extracted, which can be recovered by right multiplying by G), aborting if
extraction fails.

4. Output S := S̄G.
First note that, as desired:

AS ≡ AS̄G ≡ T̃G ≡ T (mod q) .

If S̄�S̄ = D̃, then we have that

S�S = (S̄G)�S̄G = G�D̃G = D ,

and since, for i ∈ [2t], Di,i ≤ β2 we are done. What is left is to bound the
probability that S̄�S̄ �= D̃. Since the first transcript is accepting, it must be
that

AZ ≡ T′ ≡ T̃C ≡ AS̄C (mod q) .

Thus, it must be that Z = S̄C, or else the adversary has found a short SIS
solution (since for every j ∈ [2t],

∥∥S̄∗,j

∥∥ ≤ 2β and C, Z are short). When this
holds, it must also be that (S̄C)�S̄C = C�D̃C. Writing f(X) = (S̄X)�S̄X and
g(X) = X�D̃X, the above conditions can be rewritten as f(C) = g(C). The
functions f and g can be thought as 2kt × t functions (one for each coordinate),
and each of these functions is a multivariate polynomial of total degree at most
2. Indexing accordingly, further if f(C) = g(C) then fi,i(C∗,i) = gi,i(C∗,i) for
i ∈ [t]. Since S̄�S̄ �= D̃, these two polynomials are not identically equal, and so
the probability that, over a random setting of the variables, the equation holds
is at most 2

|C| by the Demillo-Lipton-Schwartz-Zippel lemma (applied over the
integral domain Z)3. Since the equation needs to hold jointly over all the choices
3 Choosing C to be ternary instead of the arguably more natural binary challenges, in

hindsight, is what allows us to have soundness in this step.
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of i, then the probability is at most
(

2
|C|
)t

. This concludes our argument. We
highlight that this probabilistic test was the main reason why chose challenge
matrices with ternary entries.

1.3 Related Works

Folding schemes were introduced by Kothapalli et al. [KST22] as a motiva-
tion to build incrementally verifiable computation from simple cryptographic
building blocks. In a concurrent work, Bünz et al. [BCL+21] generically con-
structed an IVC from a similar primitive, called a split-accumulation scheme.
In both works, the underlying folding/accumulation scheme works for a fixed,
but universal, R1CS language. More recently, there has been significant progress
in building folding schemes which circumvent the limitation of a single fixed
R1CS, by supporting multiple circuits, high-degree relations, and lookup gates
[BC23,EG23,KS22,KS23]. The aforementioned constructions still crucially rely
on additively homomorphic vector commitments. Thus, we believe that our tech-
niques could be applied to the aforementioned constructions identically as for
[BCL+21,KST22].

To the best of our knowledge, the only lattice-based folding scheme is the
work by Boneh and Chen [BC24], called LatticeFold. The construction also fol-
lows the decompose-and-fold paradigm, which circumvents the norm growth
issue during an honest execution. On the contrary, the paper introduces a new
way to prove shortness in the infinity norm by cleverly combining the CRT pack-
ing technique [BLS19,ESLL19,YAZ+19], together with the sumcheck argument
[LFKN92]. By the nature of the techniques, the folding scheme must rely on
structured lattice assumptions. Moreover, proving the �2 norm, rather than the
�∞ one, is very often what one would like to do when constructing proofs for
lattice-based primitives – especially when the witness vector comes from per-
forming trapdoor sampling [ABB10,DLP14,MP12].

2 Preliminaries

Notation. We denote the security parameter by λ, which is implicitly given to
all algorithms unless specified otherwise. Further, we write negl(λ) (resp. poly(λ))
to denote an unspecified negligible function (resp. polynomial) in λ. In this work,
we implicitly assume that the vast majority of the key parameters, e.g. the ring
dimension, and the dimensions of matrices and vectors, are poly(λ). However,
the modulus used in this work may be super-polynomial in λ.

For a, b ∈ N with a < b, write [a, b] := {a, a + 1, . . . , b}, [a] := [1, a]. For q ∈ N

write Zq for the integers modulo q. We denote vectors with lowercase boldface
(i.e. u, v) and matrices with uppercase boldface (i.e. A, B). Specifically, for a
matrix A, we write Ai,∗ and A∗,j for the i-th row and the j-th column of A
respectively, and write with lowercase Ai,j for the entry in the i-th row and j-th
column. For a vector x of length n, we write xi or x[i] for its i-th entry. Similarly,
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we define xi := (x1, . . . , xi) for i ∈ [n]. Given two vectors u, v, we denote by
(u, v) its concatenation.

Decompose and Gadget Matrix. Let b > 1. We set k := �logb β� + 24

and g =
[
1, b, . . . , bk−1]� ∈ Z

k. Given S ∈ Z
m×n, we can decompose it by

computing S̃ ∈ Z
m×kn such that S = S̃Gn, where Gn is the gadget matrix

and Gn := In ⊗ g ∈ Z
kn×n. Note that if ‖S∗,i‖ ≤ β for all i ∈ [n], then∥∥S̃∗,j

∥∥ ≤ ⌊
b
2
⌋√

m for all j ∈ [kn]. We denote G−1
n : Zm×n → Z

m×kn for the
function that decomposes S into S̃ satisfying S = S̃Gn. When the dimensions
are clear from context we simply write G and G−1.

Definition 1 (SIS). Let q = q(λ), n = n(λ), m = m(λ) and β = β(λ). We say
that the SISn,m,q,β assumption holds if for any PPT adversary A, the following
holds:

Pr
[

Az ≡ 0 (mod q) ∧ 0 < ‖z‖ ≤ β

∣∣∣∣ A ← Z
n×m
q

z ← A(A)

]
= negl(λ) .

2.1 The Demillo-Lipton-Schwartz-Zippel Lemma

We recall the Demillo-Lipton-Schwartz-Zippel lemma [DL78,Sch80,Zip79], a tool
for probabilistic polynomial identity testing commonly used in proof systems.

Lemma 1 (Demillo-Lipton-Schwartz-Zippel
Lemma). Let f ∈ R[x1, x2, . . . , xn] be a non-zero polynomial of total degree
d over an integral domain R. Let S be a finite subset of R and r1, . . . , rn be
sampled independently and uniformly random from S. Then

Pr [f(r1, . . . , rn) = 0] ≤ d

|S| .

2.2 Concentration Inequalities

We will use the following well-known Chernoff-Hoeffding bound.

Lemma 2 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be independent
random variables taking value in {0, 1}. Let X =

∑n
i=1 Xi denote their sum and

let μ = E [X]. Then for all ε ≥ 0:

Pr [X ≤ μ − εn] ≤ e−2ε2n.

4 We use balanced base-b decomposition throughout, where x =
∑

i∈[k] xib
i and |xi| ≤⌊

b
2

⌋
.
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2.3 Reduction of Knowledge

We recall the definition of reduction of knowledge from [KP23], which also cap-
tures the notion of folding scheme. That is, a prover, who wants to prove that
it knows a witness w1 such that (x1,w1) ∈ R1, can use a reduction of knowl-
edge from R1 to R2 and try to prove that it knows a witness w2 such that
(x2,w2) ∈ R2, where x2 is the reduced instance.

Definition 2 (Reduction of Knowledge). Consider ternary relations R1 and
R2. A reduction of knowledge from R1 to R2 consists of three PPT algorithms
(G, P, V) denoting the generator, the prover, and the verifier

– G(λ) → i: Takes security parameter λ. Outputs public parameters i.
– P(i,x1,w1) → (x2,w2): Takes as input public parameters i, and statement-

witness pair (x1,w1). Interactively reduces the statement (i,x1,w1) ∈ R1 to
a new statement (i,x2,w2) ∈ R2.

– V(i,x1) → x2: Takes as input public parameters i, and statement x1 asso-
ciated with R1. Interactively reduces the task of checking x1 to the task of
checking a new statement x2 associated with R2.

Let 〈P, V〉 denote the interaction between P and V that runs the inter-
action on prover input (i,x1,w1) and verifier input (i,x1), then outputs the
verifier’s statement x2 and the prover’s witness w2. A reduction of knowledge
Π = (G, P, V) from R1 to R2 satisfies the following properties.

Definition 3 (Perfect Completeness). Π has perfect completeness if for all
PPT adversaries A,

Pr

⎡
⎣(i,x2,w2) ∈ R2

∣∣∣∣∣∣
i ← Setup(1λ)

(x1,w1) ← A(i)
(x2,w2) ← 〈P(i,x1,w1), V(i,x1)〉

⎤
⎦ = 1 .

Definition 4 (Knowledge Soundness). Π is knowledge sound (with knowl-
edge error κ(λ)) if for all expected polynomial-time adversaries A and P∗, there
is an expected polynomial-time extractor E such that

Pr

⎡
⎢⎢⎣ (i,x2,w2) ∈ R2

∧(i,x1,w1) /∈ R1

∣∣∣∣∣∣∣∣

i ← Setup(1λ)
(x1, st) ← A(i)

(Tr,x2,w2) ← 〈P∗(i,x1, st), V(i,x1)〉
w1 ← EP∗(i,x1, st)

⎤
⎥⎥⎦ ≤ κ(λ) 5.

6

6 Our definition of knowledge soundness is different but equivalent to that of [KP23].
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Definition 5 (Public Reducibility). Π satisfies public reducibility if there
exists a deterministic polynomial-time algorithm f such that for any PPT adver-
sary A and expected polynomial-time adversary P∗,

Pr

⎡
⎣f(i,x1,Tr) = x2

∣∣∣∣∣∣
i ← Setup(1λ)

(x1, st) ← A(i)
(Tr,x2,w2) ← 〈P∗(i,x1, st), V(i,x1)〉

⎤
⎦ = 1 .

3 A Folding Scheme for Ajtai Commitment Openings

In this section, we construct a folding scheme for the Ajtai commitment openings
relation Rq,β,t, defined in Eq. (1); or equivalently, a reduction of knowledge from
(Rq,β,t)2 to Rq,β,t.

For simplicity, we describe the folding scheme as the composition of two
reductions of knowledge from (Rq,β,t)2 to Rq,β,2t and from Rq,β,2t to Rq,β,t. The
first reduction of knowledge serves the purpose of merging two instances of Rq,β,t

into one single instance Rq,β,2t of larger size, while the second reduction of knowl-
edge is where folding takes place to reduce the size of the instance from Rq,β,2t

to Rq,β,t.

3.1 Reduction of Knowledge from (Rq,β,t)2 to Rq,β,2t

Let (A, (T1, D1), S1), (A, (T2, D2), S2) be two instances of Rq,β,t. The idea is
to concatenate S :=

[
S1 S2

]
and T :=

[
T1 T2

]
. However, the verifier does not

have enough information to compute D = S�S. Hence, we let the prover send
S�
1 S2 and S�

2 S1 to the verifier. We illustrate the protocol in Fig. 1.

Fig. 1. Reduction of knowledge from (Rq,β,t)2 to Rq,β,2t.
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Table 1. Overview of parameters and notation.

Parameter Explanation
q SIS modulus
n Height of the matrix A
m Width of the matrix A
β Norm bound for SIS instances
t Number of commitment openings
b Decomposition base
k �logb β� + 2

Lemma 3. The protocol shown in Fig. 1 satisfies public reducibility, perfect com-
pleteness, and knowledge soundness.

Proof. We prove each property separately.

Public reducibility: Given the instances (T1, D1), (T2, D2) and the transcript
Tr = (U, V), one can efficiently compute T, D.

Completeness: We have that

AS ≡ A
[
S1 S2

] ≡ [AS1 AS2
] ≡ [T1 T2

] ≡ T (mod q) ,

S�S =
[
S�
1

S�
2

] [
S1 S2

]
=
[
S�
1 S1 S�

1 S2
S�
2 S1 S�

2 S2

]
=
[
D1 V
U D2

]
= D .

We can see from the last inequality that the diagonal of D containing the
diagonals of D1 and D2, thus Di,i ≤ β2, ∀i ∈ [2t].

Knowledge soundness: Given (A, (T, D), S) ∈ Rq,β,2t, it is not hard to see
that if we parse

[
S̄1 S̄2

]
:= S, then

(A, (T1, D1), S̄1), (A, (T2, D2), S̄2) ∈ Rq,β,t .

��

3.2 Reduction of Knowledge from Rq,β,2t to Rq,β,t

Now, we describe the reduction of knowledge (see Fig. 2) to fold a larger instance
to a smaller one while keeping the norm small (Table 1).

The prover starts by decomposing the witness S̃ = G−1(S). In this section,
the dimension 2t is fixed, and we write G and G−1 as shorthand for G2t and
G−1

2t , respectively.
Next, it computes and sends T̃ := AS̃ and D̃ := S̃�S̃ to the verifier, where

D̃ serves as a proof of exact norm. The verifier then proceeds with uniform
sampling and sending the challenge C ∈ C2kt×t.
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Finally, the prover outputs the folded witness S′ := S̃C. Meanwhile, the
verifier performs two checks. Firstly, it checks G�D̃G� = D to verify the norm
proof. Secondly, it checks T̃G ≡ T mod q to ensure that the prover decomposes
correspondently. Then, it outputs (T′ := T̃C, D′ := C�D̃C) as the folded
instance. Note that the norm of the new witness does not increase as long as
the challenge space only contains small elements. Furthermore, looking ahead to
knowledge soundness, we set C := {−1, 0, 1}.

Now, we prove that this reduction of knowledge satisfies public reducibility,
perfect completeness, and knowledge soundness.

Fig. 2. Reduction of knowledge from Rq,β,2t to Rq,β,t.

Lemma 4 (Public Reducibility and Perfect Completeness). The pro-
tocol Π shown in Fig. 2 satisfies public reducibility. Furthermore, if t ≤
β/(2k

⌊
b
2
⌋√

m), Π satisfies perfect completeness.

Proof We prove each property in turn.
Public reducibility Given the instance (A, (T, D), S) and the transcript Tr =
(T̃, D̃, C), one can efficiently compute (T′, D′).
Perfect completeness We have that
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G�D̃G = G�S̃�S̃G = S�S = D ,

T̃G ≡ AS̃G ≡ AS ≡ T (mod q) ,

AS′ ≡ AS̃C ≡ T̃C ≡ T′ (mod q) ,

S′�S′ = (S̃C)�S̃C = C�S̃�S̃C = C�D̃C = D′ ,

∥∥S′
∗,j

∥∥ ≤
∥∥∥∥∥

2kt∑
i=1

Ci,jS̃∗,i

∥∥∥∥∥ ≤ 2kt

⌊
b

2

⌋√
m ≤ β ,

where the last inequality holds when t ≤ β/(2k
⌊

b
2
⌋√

m). ��
To demonstrate that the protocol shown in Fig. 2 is knowledge sound (with

exact witnesses), we first construct an extractor that yields a relaxed witness,
as detailed in Lemma 5. Then, in Lemma 6, we augment this relaxed extractor
in order to achieve (exact) knowledge soundness.

Lemma 5 (Relaxed Knowledge Soundness). For a malicious prover P,
which convinces the verifier with probability ε > 4 · 2t(δ+2/3)/3t for any δ > 0,
there exists an extractor for the protocol in Fig. 2 that yields S satisfying

AS ≡ T̃ mod q,
∥∥S∗,j

∥∥ ≤ 2β, ∀j ∈ [2kt] . (2)

and runs in time O(λkt/ε).

Proof We closely follow the approach from Baum et al. [BBC+18]. For j ∈ [2kt],
we construct an extractor that produces two accepting transcripts, with chal-
lenges C(0,j), C(1,j) and corresponding witnesses Z(0,j), Z(1,j) such that C(0,j)

and C(1,j) are identical except for the j-th row, and further such that, there
exists i ∈ [t] such that C

(0,j)
j,i − C

(1,j)
j,i = ±1. This suffices to show the lemma

since we have that

A(Z(0,j)
∗,i − Z(1,j)

∗,i ) = (C(0,j)
j,i − C

(1,j)
j,i )T̃∗,j (mod q).

We therefore obtain S∗,j := (Z(0,j)
∗,i − Z(1,j)

∗,i )/(C(0,j)
j,i − C

(1,j)
j,i ) with norm at most

2β.
Let P denote a (possibly malicious) prover, which we assume to be deter-

ministic without loss of generality. Let ε denote the success probability of the
prover P (over the randomness of the choice of the challenge C). For j ∈ [2kt],
the extractor Ej is the following algorithm.

EP
j (x) :

1. Run P until it outputs its first message T̃, D̃.
2. Sample C(0,j) ← C2kt×t.
3. Run P until it outputs a witness Z(0,j).
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4. If the verifier accepts the transcript (T̃, D̃, C(0,j), Z(0,j)) continue, else go to
Item 2

5. Define

Sj :=
{

C ∈ C2kt×t

∣∣∣∣∣
∃i ∈ [t] s.t. |C(0,j)

j,i − Cj,i| = 1
∀i ∈ [t], j′ ∈ [2kt] s.t. j �= j′ : C

(0,j)
j,i = Cj′,i

}

6. Rewind the prover P. If this label has been reached more than λ/ε times,
abort.

7. Sample C(1,j) ← Sj .
8. Run P until it outputs a witness Z(1,j).
9. If the verifier accepts the transcript (T̃, D̃, C(1,j), Z(1,j)) continue, else go to

6
10. Output (C(0,j), C(1,j), Z(0,j), Z(1,j)).

The expected running time of the extractor is at most 1/ε+λ/ε = poly(λ)/ε.
We are left to bound the failure probability of the extractor. We denote by

G ⊆ C2kt×t the set of accepting challenges, i.e., those for which P outputs an
accepting transcript. We also say a challenge C′ is j-special w.r.t. C if they dis-
agree only in the j-th row, that have the required difference in at least on entry.
The goal of the extractor EP

j is to output a challenge C(1,j) that is both accept-
ing and j-special w.r.t. C(0,j). Consider the binary matrix Mj , whose entries
correspond to challenges. We index the rows of Mj by Cj,∗ and its columns by
(C1,∗, . . . , Cj−1,∗, Cj+1,∗, . . . , C2kt,∗). An entry C in Mj is 1 if C ∈ G, and 0
otherwise. Note that the fraction of ones in Mj is at least ε.

Following the terminology in [BBC+18], a column in Mj is heavy if its frac-
tions of ones is at least ε/2. By [BBC+18, Lemma 2], given C(0,j) is accepted,
the probability that the column containing C(0,j) is heavy is at least 1/2. In
this case, the fraction of both accepting and j-special (w.r.t. C(0,j)) challenges
associated with the column is at least ε/2 − g(Z), where g(Z) is the fraction of
challenges that are not j-special in that column, depending on the number of
zeroes Z in the j-th row of C(0,j). Concretely, a challenge C′ is not j-special
w.r.t. to C if and only if, in the j-th row, C′ has the same zero entries as C and
the remaining entries are ±1; thus

g(Z) = 2t−Z

3t
.

Since C(0,j) is sampled uniformly from Ct, Z is concentrated around t/3. Using
the Chernoff-Hoeffding bound, we obtain an upper-bound on the abort proba-
bility. Specifically, let A be the event that the extractor aborts and H be the
event that the column containing C(0,j) is heavy, we have
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Pr[A] = Pr
[
A
∣∣ H̄] · Pr[H̄] + Pr[A ∧ H]

≤ Pr[H̄] + Pr [A ∧ H | Z ≤ t/3 − δt] · Pr[Z ≤ t/3 − δt]
+ Pr [A ∧ H | Z > t/3 − δt] · Pr[Z > t/3 − δt]
≤ Pr[H̄] + Pr[Z ≤ t/3 − δt] + Pr [A ∧ H | Z > t/3 − δt]

≤ 1/2 + e−2δ2t + (1 − (ε/2 − g(t/3 − δt))λ/ε .

If ε > 4 · 2t(δ+2/3)/3t, then ε/2 − g(t/3 − δt) > ε/4 and

(1 − (ε/2 − g(t/3 − δt))λ/ε < (1 − ε/4)λ/ε < e−4λ < 2−λ ,

Pr[A] < 1/2 + e−2δ2t + 2−λ .

Running the extractor O(λ) times yields an extractor that runs in expected
time poly(λ)/ε and outputs a transcript of the required structure. ��
By using Lemma 5, we obtain a relaxed extractor, which can be used to prove
knowledge soundness of the protocol in Fig. 2. We note that this alternative
notion of knowledge soundness, where the extractor runs in expected poly(λ)/ε
times, is equivalent to the notion adapted for a reduction of knowledge (see
[Att23, Remark 2.4] for more discussion).

Lemma 6 (Exact Knowledge Soundness). Assuming SISn,m,q,(2kt+1)β, the
protocol in Fig. 2 satisfies knowledge soundness.

Proof. Let (Tr := (T̃, D̃, C),x2 := (T′, D′),w2 := S′) be the output of the
interaction between a malicious prover P∗ and the verifier V. If (A,x2,w2) ∈
Rq,β,t, then by Lemma 5, we obtain a relaxed extractor that outputs S̄ satisfying
Eq. 2.

Furthermore, in such cases, we have that S′ = S̄C with probability at least
1 − κSIS. Indeed, otherwise, S′ − S̄C is SISn,m,q,(2kt+1)β solutions since

AS′ ≡ T′ ≡ T̃C ≡ ASC (mod q).

In addition, when S′ = S̄C, we have that C�S̄�S̄C = S′�S′ = C�D̃C, or
equivalently, f(C) = g(C), where f(X) := X�S̄�S̄X and g(X) := X�D̃X are
functions in the variables X ∈ C2kt×t. Looking at the index (i, i) of f and g,

fi,i(X) =
∑

u∈[2kt]

∑
v∈[2kt]

(S̄�S̄)u,vXu,iXv,i ,

gi,i(X) =
∑

u∈[2kt]

∑
v∈[2kt]

D̃u,vXu,iXv,i ,
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which both have total
degree 2.Then by the Demillo-Lipton-Schwartz-Zippel Lemma for the integral
domain Z, we have that the probability of fi,i(C∗,i) = gi,i(C∗,i) but S̄�S̄ �= D̃
is at most 2/|C| for uniformly random C∗,i in C2kt.

Note that when S�S = D̃, then

G�S�SG = G�D̃G = D ,

ASG ≡ T̃G ≡ T (mod q) ,

which implies SG is a valid witness for T. Therefore, we can bound the
probability of (A,x2,w2) ∈ Rq,β,t but S̄G is not a witness for (A, (T, D)) by
the probability that f(C) = g(C) but S�S �= D̃, which is at most (2/|C|)t

because for each i ∈ [t], fi,i(C∗,i) = gi,i(C∗,i) and C∗,i is sampled independently
and uniformly at random from C2kt. More precisely, if E is the event that the
extractor in Lemma 5 succeeds, then

Pr
[
(A, (T′, D′), S′) ∈ Rq,β,t ∧ (A, (T, D), S̄G) /∈ Rq,β,2t ∧ E

]
≤ Pr

[
f(C) = g(C) ∧ (A, (T, D), S̄G) /∈ Rq,β,2t ∧ E

]
+ κSIS

≤ Pr
[
f(C) = g(C) ∧ S̄�S̄ �= D̃ ∧ E

]
+ κSIS

≤
(

2
|C|
)t

+ κSIS .

��

Applications to Folding Schemes for NP Relations. Unfortunately, unlike
in Nova [KST22], we cannot easily modify our construction to support (relaxed)
R1CS relations. The issue is that the norm of the (additional cross-term) folded
witness now depends on the magnitude of entries in the R1CS matrices A, B, C,
which we cannot assume is small in general. We leave a construction of a lattice-
based folding schemes for R1CS-type relations as future work.

Instead, we provide a sketch on how to build a folding scheme for the subset
sum problem which is NP-complete. We recall that the subset sum problem is
essentially to find a binary vector s such that Ms = y over Z for public matrix
M and vector y.

First, we use the observation from [LNP22] that an integer vector s has binary
values if and only if 〈s, s − 1〉 = 0, where 1 is the all-one vector. Secondly, we
can pick a proof system modulus q large enough so that Ms = y (mod q) is
equivalent to Ms = y over integers, i.e. no modulo overflow occurs.

Thus, similarly to (1) we can define a relation:

R�
q,β,t :=

{
(A, (T, D), S)

∈ Z
n×m × (Zn×t × Z

t×t) × Z
m×t

∣∣∣∣ AS ≡ T (mod q)
∧ D = S�S − S�1

}
(3)
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where in this equation 1 is the all-one matrix. Here, the matrix A will contain
the SIS commitment key (to ensure binding), together with the matrix M related
to the subset sum problem. Then, given a valid tuple (A, (T, D), S) ∈ R�

q,β,t, one
can be convinced that the matrix S has binary entries by simply checking that
diagonal entries Di,i of D are equal to zero. Finally, building a folding scheme for
R�

q,β,t is almost identical to the construction above up to certain straightforward
modifications.

4 Implementation and Evaluation

4.1 Parameter Selection

For an input witness length m and a security parameter t, we need to select
a SIS modulus q ∈ N, a commitment output length n ∈ N, a norm β < q, a
decomposition basis b (which fixes a decomposition length k = �logb β�+2) such
that the following conditions are fulfilled:

1. The knowledge error κKS = Q(κPIT + κrS + κSIS) must be at most 2−λ, where κrS

is the knowledge error from Lemma 5;
2. For perfect completeness, 2tk

(⌊
b
2
⌋√

m
) ≤ β;

3. For (knowledge) soundness, SISn,m,β,L2 must be κSIS-hard.

The knowledge error is κKS = Q(κPIT +κrS +κSIS) = Q((2
3 )t +4(2t(δ+2/3)

3t )+κSIS).
Setting λ = 128 and Q = 264, we choose t = 330 and κSIS ≤ 2−(129+64) such that
κKS ≤ 5 · 264( 2

3 )334 + 2−129 ≤ 2−λ. The second condition gives rise to the bounds
β ≥ e

−W−1(− ln b
bt

√
m

) + 2
⌊

b
2
⌋

t
√

m (where W−1 is the non-principal branch of the
real Lambert W-function). Additionally, 2 ≤ b ≤ √

β. For efficiency, we want
b to be as large as possible, i.e., b ≈ √

β. Substituting in the condition above,

we get t
⌊
log√

β
(β) + 2

⌋√
β

√
m

!≤ β, which yields β = (4t)2m, b = �√
β�, and

k = 4.
We choose q = 264 for the lattice modulus, which is both large enough to

guarantee SIS hardness and allows for very efficient modular arithmetic (modular
reductions reduce to wrapping 64-bit arithmetic, and are implemented directly
in hardware for machines with 64-bit instruction sets).

Finally, we perform binary search on n in order to find the smallest
n such that the underlying SIS instances are κSIS-hard. We rely on the
lattice-estimator tool [est], which uses the methodology outlined by Gama
and Nguyen [GN08].

Improving Proof Size. For the parameter sets outlined above, we made use of
a worst-case bound on the norm of folded witnesses to ensure perfect complete-
ness. If one is willing to accept a negligibly small completeness error κC, we can
leverage probabilistic upper bounds on the norm of folded witnesses to reduce
proof sizes.



322 G. Fenzi et al.

Since |Ci,j | is a Bernoulli-distributed random variable with p = 2
3 , we have

E

[∑
l∈[2kt]|Cl,j |

]
= 4kt

3 and Pr
[∑

l∈[2kt]|Cl,j | ≥ 4kt
3 + 2ktε

]
≤ e−4ktε2 by a

Chernoff-Hoeffding bound. Solving for e4ktε2 = κC = 2−μ yields ε =
√

μ ln 2
2kt .

Putting everything together, we have that

‖S∗,j‖ ≤
⌊

b

2

⌋(
4kt

3 + 2ktε

)√
m =

⌊
b

2

⌋(
4kt

3 +
√

μ ln 2
)√

m

with all but negligible probability. Setting μ = 128, and for t = 330 and k = 4
as above, this bound is roughly a third of the worst-case bound.

4.2 Implementation

We implement Lova and plan to open-source our implementation. In our imple-
mentation, we translate several nice properties of Lova into hardware-friendly
optimizations:

– We leverage symmetries to compute and send fewer matrix entries; in par-
ticular, our prover only computes one matrix instead of two for the protocol
in Fig. 1, and only computes the lower triangular part of symmetric matrices
for the protocol in Fig. 2.

– Since our challenges are ternary, random linear combinations can be computed
without any multiplications, using only negations, and additions.

– We parallelize both the prover and verifier.
– As mentioned above, we set the SIS modulus to q = 264, which allows us to

eschew modular arithmetic in favor of native 64-bit arithmetic.

In order to safely instantiate the Fiat-Shamir transform, we rely on and
extend the nimue framework [nimue]. We benchmark our implementation on an
AWS EC2 m5.8xlarge instance with 128 GB of RAM and 32 Intel Xeon vCPUs
@ 3.1 GHz.

4.3 Evaluation

Proof Size. For one run of the Lova folding protocol with two witnesses of
size m, the prover sends one t × t matrix with entries of norm at most β2

(noting that U = V�), one n × 2kt matrix with entries in Zq, and one 2kt × 2kt

symmetric matrix with entries of norm at most
⌊

b
2
⌋2, totalling t2

⌊
2 + log β2⌋+

2hkt �1 + log q� + (2kt)(2kt+1)
2

⌊
2 + log

⌊
b
2
⌋2⌋ bits.

In general (what we call PCD-type settings), the prover folds two full wit-
nesses, i.e., matrices with t columns. In IVC-type settings, the prover repeatedly
folds a fresh witness (i.e., which consists of the same vector concatenated t times
with itself) with a non-fresh witness. In this setting, the prover and the verifier
can exploit this extra structure to reduce computation and proof size. We show
concrete proof times for varying witness lengths in Table 2.
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Table 2. Proof sizes and prover runtime for a single folding step. We consider IVC and
PCD-type settings, and perfect completeness (worst-case bound analysis) and negligible
completeness error (probabilistic bound analysis).

Instance length 217 218 219

IVC

Proof size (κC = 0) 17.53 MB 18.36 MB 19.18 MB
Proof size (κC ≤ 2−128) 16.62 MB 17.42MB 18.24MB
Prover time (κC = 0) 321 s 694 s 1501 s
Prover time (κC ≤ 2−128) 296 s 630 s 1367 s

PCD

Proof size (κC = 0) 43.64 MB 45.51 MB 47.36 MB
Proof size (κC ≤ 2−128) 41.62 MB 43.43MB 45.28MB
Prover time (κC = 0) 728 s 1567 s 3440 s
Prover time (κC ≤ 2−128) 690 s 1494 s 3236 s

Prover Runtime and Verifier Complexity. Concrete prover runtimes are
shown in Table 2. The verifier needs to sample �32kt2� ≈ 3.22 · kt2 bits from a
hash function in order to generate the ternary challenge matrix. Checking T̃G ≡
T mod q and G�D̃G = D requires n·2t and (2t)2 linear constraints, respectively.
Finally, in order to check that the new instance is valid, the verifier needs to check
T′ = T̃C and D′ = C�D̃C, which requires n · 2t and (2k)2 + (2kt)2 quadratic
constraints, respectively. Note that these constraints are very sparse, and the
for the latter constraints, the values of some variables are ternary; depending on
the chosen constraint and proof systems, these properties may be exploited to
significantly reduce the overhead of proving and verifying this circuit.
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Abstract. This paper addresses the spinor genus, a previously unrec-
ognized classification of quadratic forms in the context of cryptography,
related to the lattice isomorphism problem (LIP). The spinor genus lies
between the genus and equivalence class, thus refining the concept of
genus. We present algorithms to determine whether two quadratic forms
belong to the same spinor genus. If they do not, it provides a negative
answer to the distinguishing variant of LIP. However, these algorithms
have very high complexity, and we show that the proportion of genera
splitting into multiple spinor genera is vanishing (assuming rank n ≥ 3).
For the special case of anisotropic integral binary forms (n = 2) over
number fields with class number 1, we offer an efficient quantum algo-
rithm to test if two forms lie in the same spinor genus. Our algorithm
does not apply to the HAWK protocol, which uses integral binary Her-
mitian forms over number fields with class number greater than 1.

Keywords: quadratic forms · lattice isomorphism problem · spinor
genus · class group

1 Introduction

Lattices have been studied for almost 30 years by the cryptographic community,
since works by Ajtai [1,2] gave worst-case to average-case reductions for lattice
problems and an encryption scheme whose hardness was based on such worst-case
lattice problems, as well as the introduction of NTRU [21]. Since then other foun-
dational problems for lattice-based cryptography have been introduced, notably
Learning with Errors [28]. A recent addition to these is the Lattice Isomorphism
problem.

Informally, the Lattice Isomorphism problem (LIP) is, given two lattices, to
decide if they are isomorphic or not. This can be rephrased in the language of
quadratic forms: the LIP is, given two quadratic forms, to decide whether they lie
in the same equivalence class or not, and if so to find such an isomorphism. This
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15487, pp. 329–358, 2025.
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problem was studied by Haviv and Regev [20], who gave an nO(n) algorithm
to solve the problem. This problem was given cryptographic applications by
van Woerden and Ducas [15], who gave worst-case to average-case reductions
for certain forms of the problem, and constructed a KEM and signature scheme
relying on the hardness of LIP. This was followed by the signature scheme HAWK
[14], which relied on the security of LIP restricted to module lattices. The growing
application and use of LIP-based schemes thus makes cryptanalysis of interest
to the cryptological community. We also note [5], which studied a closely related
problem to the LIP, named the lattice distortion problem.

The first step in a cryptanalytic direction was made in [7], which analysed the
distribution of quadratic forms corresponding to random q-ary lattices in genera.
Each quadratic form has an associated equivalence class, and each equivalence
class lies in a genus. The disjoint union of equivalence classes ‘fills out’ the genera
(i.e. each genus is a disjoint union of equivalence classes, and each class lies in
one genus). Thus, if two forms were to lie in distinct genera, and this could be
efficiently verified, a method for providing a negative answer to the LIP would be
provided. The conclusion of that study was, informally, that ‘most’ random q-ary
lattices lie inside one of few ‘large’ genera, and thus two forms can be sampled
at random from a ‘large’ genus with the property that rejection sampling only
negligibly biases the final distribution of forms.

Further work was done investigating the viability of using lattice hulls to
solve LIP instances in [13], and the possibility of using characteristic vectors
and lattice automorphisms to solve LIP was studied in [23].

In this work we continue the above line of investigation, studying notions
of equivalence for positive definite integral quadratic forms. The contribution
of this paper begins with a largely expository account of the spinor genus, a
collection of equivalence classes with respect to an equivalence relation defined
by the kernel of a certain homomorphism known as the spinor norm. A spinor
genus is a disjoint union of equivalence classes, much like the genus, but a genus
may contain multiple spinor genera. Thus, given two quadratic forms, one might
compute their spinor genera, and if they lie in different spinor genera, the forms
are not equivalent, providing a negative answer to distinguish LIP for those
two forms. We observe that the spinor genus was omitted from the ‘arithmetic
fingerprint’ of [15], and we here fill this lacuna.

1.1 Overview of Methodology

At a high level, spinor genera provide a finer classification of quadratic forms
over Z than genera. It is well known that for quadratic forms over Q, the equiv-
alence of two forms can be determined by checking their equivalence over the
p-adic fields Qp for all primes p (including p = ∞). According to the famous
local-global principle, two forms are equivalent over Q if and only if they are
equivalent over Qp for all p. While it may seem tempting to extend this method
to classify quadratic forms over Z, the theory encounters limitations. If two forms
are equivalent over the p-adic integers Zp for all p (including p = ∞), they are
not necessarily equivalent over Z; rather, they only belong to the same genus.
In a sense, the genus highlights the constraints of local methods.
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equivalent
class

spinor
genus

genus

Fig. 1. Relation between the genus and spinor genus of quadratic forms.

The spinor genus is a new classification intermediate between the genus and
the integrally equivalent class. It combines local and global methods. To study
the spinor genus, we need the theory of Clifford algebra to define the spin group
and spinor norm. A Clifford algebra is an algebra generated by a vector space
V equipped with a quadratic form, which is a powerful mathematical machinery
to study quadratic forms. The spin group Spin(n) gives a double cover of the
special orthogonal group of a vector space. A prototype spin group, Spin(3),
consisting of unit quaternions, is widely used in computer graphics to rotate
objects in 3 dimensions. The spin group is closely related to the spinor kernel,
which consists of autometries of a vector space determined by certain elements
with spinor norm 1 in the Clifford algebra [8]. Therefore, the spinor kernel is
well suited to the study of LIP.

The relation between the genus and spinor genus is illustrated in Fig. 1.
Using the language of lattices, we give in Table 1 a more precise comparison
of the definitions of the equivalent class, spinor genus and genus. Since both
orthogonal group O(V ) and spinor kernel Θ(Vp) are subgroups of orthogonal
group O(Vp), it is easy to see the inclusions in Fig. 1. For extensive treatments
of quadratic forms, see the classic references [8,27].

Table 1. Comparison of various classifications of lattices. Γ, Λ are lattices, V is a vector
space, and subscript p denotes localization. See Sects. 2, 3 for details.

Classification Definition Transform Remark

Class Γ = γΛ γ ∈ O(V ) O orthogonal group

Spinor genus Γp = γδpΛp, ∀p γ ∈ O(V ), δp ∈ Θ(Vp) Θ spinor kernel

Genus Γp = βpΛp, ∀p βp ∈ O(Vp) p prime
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1.2 Main Results

It is well known that the while genera of quadratic forms exist in any dimension
n ≥ 3 which contain multiple spinor genera, such genera are in some sense rare.
To each quadratic form is associated a Jordan p-symbol, which classifies the genus
of the form. We show that the proportion of Jordan p-symbols which correspond
to genera which split into multiple spinor genera is a vanishing fraction of all
possible Jordan p-symbols. We summarise this as

Theorem 1. (Informal) For the set of quadratic forms of prime power determi-
nant and rank such that the genus could split into multiple spinor genera, only
a negligible proportion of such forms do in fact lie in such genera.

A similar result holds for composite determinant. We then proceed to study
algorithms to compute the number of spinor genera in a genus, and whether two
forms lie in the same spinor genus. We consider such algorithms first over the
rational integers, and then over rings of integers in number fields. The latter case
is extracted from the work of [4]. We include discussion of the complexity of this
algorithm. Summarising the results of Sect. 5, we find:

Theorem 2. Let F be a number field with ring of integers OF is a PID. Assume
V is an n-dimensional vector space over F with a non-degenerate quadratic form
φ and associated symmetric bilinear form b, and n ≥ 3. Suppose L and L̃ are
quadratic lattices on V and they are in the same genus. Then there is an effective
algorithm to decide if L̃ ∈ spn+(L), the proper spinor genus of L.

We also discuss the barriers to this algorithm being efficient. Currently, the
complexity of these algorithms to compute the spinor genus appears to be super-
exponential, and we welcome further research to reduce their complexity.

Finally, we study the special case of integral binary quadratic forms over the
ring of integers of a number field. This is of particular cryptographic interest,
since HAWK relies on the hardness of these instances. In this case, when the
ring of integers of the number field is a principal ideal domain (PID), it turns
out that the spinor genus can be computed via a particularly simple algorithm:
deciding if two forms lie in the same spinor genus is equivalent to deciding
quartic residuosity in a certain class group, which can be done efficiently using
(quantum) algorithms by Hallgren. We note that in the case of forms over Z, a
similar result was proved in [19]; we rely on the subsequent work of [16,17].

To state our result, let F be a number field with ring of integers OF . If (V, φ)
is a quadratic space over F and we need not reference φ, we may simply write
V for the space; in the binary case, when (V, φ) is anisotropic, we may view
V as a quadratic field extension of F with ring of integers OV . Let the proper
spinor genus of a quadratic form g be written spn+(g). Let Lg be the lattice
corresponding to the quadratic form g. Finally, denote the left order of a lattice
L by Ol(L) := {x ∈ V : xL ⊂ L} ⊂ V . We prove:

Theorem 3. Let F be a number field with ring of integers OF is a PID. Let f
and g be two anisotropic binary quadratic forms, integral over OF , in the same
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genus. Let V be the dimension 2 quadratic space containing Lf and Lg. Then if
Lf · L−1

g generates an ideal coprime to the conductor of Ol(Lg) in OV , there is
a quantum polynomial time algorithm to decide if f ∈ spn+(g).

We note that this does not affect HAWK, since HAWK uses integral binary
Hermitian forms over cyclotomic fields of conductor n ∈ {512, 1024}. The cyclo-
tomic field of largest conductor such that it has ring of integers a PID has n = 90.
However, our work complements that of [26], since they show that module-LIP
over the ring of integers of totally real fields has an efficient solution, and we
note that the class number of maximal totally real subfields of cyclotomic fields
of power-of-two conductor is believed to be 1 for all powers of two, and that this
is confirmed up to n = 256, and assuming GRH, for n = 512 [25]. Our result
does not just hold for these (maximal totally real sub-) fields, however, since
it applies to all integral binary quadratic forms over number fields with ring of
integers a PID.

1.3 Paper Organisation

After providing some background, we then define the notion of spinor genera
in Sect. 3. We begin with quadratic forms over Z: in Sect. 3.3, a step is taken
towards understanding ‘how often’ genera split into distinct spinor genera, while
in Sect. 4, an algorithm is presented to compute the spinor genus of a positive
definite integral quadratic form, adapted from Conway and Sloane [12, Chapter
15]. After this, we move to quadratic forms over number fields: in Sect. 5 Conway
and Sloane’s algorithm is extended to lattices over number fields; in Sect. 6 we
specialise to binary quadratic forms over maximal orders of number fields, and
give a quantum polynomial time algorithm to decide if two forms lie in the same
spinor genus. We conclude the paper in Sect. 7, applying our results to LIP and
commenting on their applicability to existing schemes.

2 Preliminaries

2.1 Notation

We write [n] for the set of integers {1, ..., n}. For any field F , we denote by F×

its group of units. For two orthogonal subspaces V1, V2 we use V1 ⊥ V2 to denote
their direct sum. The dual space of V will be denoted ̂V .

2.2 Lattices

A lattice is a discrete additive subgroup of R
n. A lattice L can be generated

by a number of linearly independent vectors b1, ...,bm that form a basis B =
[b1, ...,bm], and if m = n then L is full-rank. A lattice L with basis B may be
written L = L(B).

One may consider lattices, more abstractly, as discrete additive subgroups of
a vector space V over a field F . The case of the previous paragraph is then that
of F = R. We state an important theorem for lattices, known as the Invariant
Factors Theorem:
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Theorem 4. [27, §81D] Let L1 and L2 be lattices on a vector space V/F . Then
there is a basis x1, ..., xn for V such that

L1 = a1x1 + ... + anxn and L2 = a1t1x1 + ... + antnxn

where the ai and ti are fractional ideals satisfying t1 ⊃ t2 ⊃ ... ⊃ tn. Moreover,
the ti satisfying the above are unique.

2.3 Quadratic Forms

Let F be a number field with characteristic not equal to 2, and OF be the ring
of integers of F . A quadratic form is a homogeneous polynomial of degree two,
written f(x) =

∑m
i,j=1 aijxixj , with coefficients aij lying in F . Such a form can

be associated to an m × m symmetric matrix Af = (aij)i,j . The determinant of
f is the determinant of Af .

We say that two quadratic forms f, g are equivalent over OF if and only if
there exists U ∈ GLm(OF ) such that Ag = UT AfU . This is an equivalence
relation, and the classes obtained from the quotient by this relation are called
classes of quadratic forms.

Definition 1. A quadratic form f is called isotropic if there exists x ∈ V \ {0}
such that f(x) = 0. If no such x exists, we call f anisotropic.

When F is a totally real number field (i.e., all embeddings of F into C are
real), we will be most concerned with certain families of quadratic forms:

Definition 2. We call f positive definite if f(x) is totally positive (i.e., all
conjugates of f(x) are positive) for any x ∈ V \{0}, and f negative definite if f(x)
is totally negative (i.e., all conjugates of f(x) are negative) for any x ∈ V \ {0}.
Otherwise, we call f indefinite.

All forms over totally real number fields below will be assumed positive definite.
Note if a form is positive definite, it is anisotropic. One may then obtain the
Cholesky decomposition of Af , Af = BT

f Bf , so one can always write the sym-
metric matrix of a quadratic form in such a manner. We denote the lattice with
basis B satisfying Af = BT B by Lf = L(B).

Given a lattice L with basis B, one can form the symmetric matrix BT B. This
can then be considered as the matrix corresponding to a quadratic form f . Thus
one can move between the ‘world’ of lattices and the ‘world’ of quadratic forms.
In this vein, we call the pair of a vector space V over F and a quadratic form
mapping from V to F , say φ, a quadratic space. We call V regular if detφ �= 0.

To any quadratic form φ on V is also associated a symmetric bilinear form
b : V × V → F , which can be constructed via the polarisation identity

b(v, w) =
1
2
(φ(v + w) − φ(v) − φ(w))
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2.4 Orthogonal Groups

Let (V, φ) be a quadratic space. We may then consider the isomorphisms σ :
V → V such that φ(σx) = φ(x), that is the set of automorphisms preserving
the quadratic form. This collection forms a group known as the orthogonal group
O(V ) of V . These are linear transformations, so we can define the determinant of
σ to be the determinant of the corresponding linear transformation of V , fixing
some basis of V/F . An element of the orthogonal group has either determinant
equal to 1 or −1; it thus contains a subgroup known as the proper orthogonal
group; we have

O(V ) = {σ : V → V : φ(σx) = φ(x)∀x} and O+(V ) = {σ ∈ O(V ) : det σ = 1}

These notions have analogues for lattices within a quadratic space: for any lattice
L ⊂ V we set

O(L) = {σ ∈ O(V ) : σL = L} and O+(L) = {σ ∈ O+(V ) : σL = L}

Important subsets of O(V ) are the involutions and symmetries. An element
σ ∈ O(V ) is called an involution if σ2 = Id. There is a family of involutions
known as symmetries, which we will use below: we say an involution τ is a
symmetry1 if there is some fixed anisotropic vector y ∈ V such that

τ(x) = τy(x) := x − b(x, y)
φ(y)

y

for all x ∈ V .
We can use the orthogonal group to give a definition of equivalence of lattices:

we say Γ is equivalent to Λ if and only if there exists some γ ∈ O(V ) such that
Γ = γΛ.

2.5 p-Adic Integers

We give a brief introduction to p-adic arithmetic; for a fuller introduction aimed
at cryptographers, see for example [10].

Let p be a prime and a
b ∈ Q

×. We may then write a
b = pi · a′

b′ uniquely with
both a′, b′ coprime with p and i ∈ Z. We may then define the p-adic norm on Q

as |a
b |p := p−i. One may verify that this satisfies the properties of a norm, and

satisfies the ultrametric inequality.
Taking the completion of Q with respect to | · |p for some fixed prime p yields

the p-adic rationals Qp. This contains a subring Zp, the p-adic integers, defined

Zp := {x ∈ Qp : |x|p ≤ 1}

One may view Zp as the completion of Z with respect to the p-adic norm.

1 Sometimes known as a ‘reflection’.
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It will also be useful to consider another subring of Qp, the localisation of Z
at a prime p:

Z(p) :=
{a

b
: a ∈ Z, b ∈ Z \ pZ

}

This is in fact both a subring of Zp and a subring of Q.
We now record some useful properties of Zp and Z(p). We begin with units.

We have

Z
×
p = {x ∈ Qp : |x|p = 1} and Z

×
(p) =

{a

b
∈ Z(p) : gcd(a, p) = 1

}

Both rings each has only one prime ideal, which is therefore maximal:

Spec(Zp) = pZp and Spec(Z(p)) = pZ(p)

The units therefore are

Z
×
p = Zp \ pZp and Z

×
(p) = Z(p) \ pZ(p)

We may define an equivalence relation on Q
×
p as follows: we say a ∼ b if and

only if a
b ∈ (

Q
×
p

)2. The quotient of Q×
p by this relation yields a number of p-adic

square classes. We list the possible classes here, for future reference, categorised
by the value of p (following the notation of [12]; for more detail see [8]):

1. p = ∞ (i.e. the case of R): we have representatives u and −u, where u is any
strictly positive number.

2. p = 2: we have 8 classes, with representatives u1, u3, u5, u7, 2u1, 2u3, 2u5, 2u7,
where ui ∈ Z

×
2 satisfies ui ≡ i mod 8.

3. p > 2: we have 4 classes, with representatives u+, u−, pu+, pu−, where u+

(u− respectively)∈ Z
×
p is a quadratic residue (nonresidue respectively).

p-adic Diagonalisation. Given any quadratic form f , it is possible to diago-
nalise the matrix Af over the p-adic integers, and in fact diagonalise Af over
the subring Z(p) ⊂ Zp (except that this is a block-diagonalisation if p = 2).
The algorithm to perform this diagonalisation is given in [12], and runs as fol-
lows: find the entry of Af least divisible by p. If this entry is on the diagonal,
begin diagonalising as usual (subtracting multiples of rows and columns from
one another). If this entry is off the diagonal in the (i, j)th position, add the jth
row to the ith row and the jth column to the ith column, and proceed as before.
If p = 2, it is possible to obtain a block of the form

2k

(

a b
b c

)

for some k, where a, c are even and b is odd, instead of a wholly diagonal matrix.
One then obtains a corresponding decomposition of f over Zp. If p > 2, this

has the form
f = f0 ⊕ pf1 ⊕ ... ⊕ pkfk ⊕ ...

where the fi are p-adically integral represented by diagonal npi × npi matrices
with gcd(det fi, p) = 1, and if p = 2 the fi may possibly be represented by the
2 × 2 matrices given above. The fi are called the Jordan constituents of f .
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Genera. We say f and g lie in the same genus if and only if they are locally
equivalent for all primes p, and over the reals; that is to say, we have

Ag ∼Zp
Af ∀ p

and Ag ∼R Af , which is the case if and only if there exist Up ∈ GLm(Zp) such
that Ag = UT

p AfUp for all p, and U ∈ GLm(R) such that Ag = UT AfU . There
are finitely many genera with the given determinant and dimension, and each
genus is a finite disjoint union of equivalence classes.

Equivalently, in terms of lattices we say that Γ and Λ which are on the same
space V lie in the same genus if there exist βp ∈ O(Vp) such that Γp = βpΛp for
all primes p.

p-Adic Norms and Number Fields The above can all be extended to alge-
braic number fields. We assume some familiarity with the splitting and rami-
fication of primes in rings of integers of number fields; for background, see for
example [24]. We begin with a definition: say two norms | · |1, | · |2 are equivalent
if there exists some 
 ∈ R

+ such that | · |�1 = | · |2.
Let F be a number field with ring of integers OF . Let p be a prime ideal of

OF . Then we say there is a norm of F corresponding to each prime ideal p of
OF , each embedding σ of F into R, and each pair of embeddings into C. The
latter two kinds of norms are called real and complex respectively.

We first consider the norms associated to prime ideals. For any α ∈ F×, let
(α) = pi

∏

j p
ej

j be the factorisation of (α) into products of prime ideals. We
then define |α|p = NF/Q(p)−i. By a prime spot p we mean the equivalence class
of norms containing | · |p. We may then consider the completion Fp of F under
| · |p.

For a real embedding σ, we define a norm | · |σ = |σ(·)|, the absolute value
of the embedding into R. We call the equivalence class of norms containing | · |σ
a real spot. We can define the complex spots in a similar manner.

2.6 Jordan p-Symbols

From a p-adic diagonalisation of f as above, one can read off a number of invari-

ants of f , which classify the genus of f . In fact, with
(

a
p

)

denoting the Legendre

symbol, one can say

Theorem 5. [12, Chapter 15, Theorem 9] For p �= 2, f is equivalent to g over
Zp if and only if the precise powers of p, the dimensions npi , and the signs

εpi =
(

det fi

p

)

occuring in their Jordan decompositions are identical.

These invariants are encoded in the Jordan p-symbol (called the ‘p-adic symbol’
in [12]), which is a formal product of factors qεq,nq .

A similar but more complicated result holds for p = 2, which we omit for
brevity.
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3 Spinor Genera and Proportion of Splitting Genera

In this section we define the spinor genus of a quadratic form. In order to make
the definition precise, we proceed via Clifford algebra.

3.1 Clifford Algebra

Let (V, φ) be a regular quadratic space of dimension n over a field K. There is
a unique algebra C(V ) over K of dimension 2n satisfying

1. C(V ) is spanned by 1 and formal products x1...xr, xi ∈ V ,
2. xx = φ(x) for x ∈ V .

If V has normal basis e1, ..., en, then in C(V ) we have eiej = −ejei and eiei =
φ(ei) ∈ K. This C(V ) is the Clifford algebra associated to V .

For J ⊂ [n] with j1 < ... < jr, define e(J) := ej1ej2 ...ejr and set e(I)e(J) =
(I, J)e(K) where K = {i : i ∈ I or i ∈ J , i �∈ I ∩ J}, and

(I, J) =

⎛

⎝

∏

i∈I,j∈J,i>j

−1

⎞

⎠ ·
(

∏

i∈I∩J

φ(ei)

)

.

Sending x �→ −x ∈ V extends to give an automorphism of C(V ). Set

C0(V ) = {u ∈ C(V ) : u is fixed by the above automorphism}.

The involution on C(V ) is defined by extending linearly the map

e(J) = ej1ej2 ...ejr �→ ejrejr−1 ...ej1 =: e(J)′

This involution2 satisfies

1. (u′)′ = u for all u ∈ C(V )
2. u′ = u if u ∈ V
3. (uv)′ = v′u′ for any u, v ∈ C(V ).

For u ∈ C(V ), if u is (multiplicatively) invertible define Tu : x �→
uxu−1. Then

Lemma 1. [8, Chapter 10, Lemma 3.1] If u ∈ C(V ) is invertible and Tu(x) =
uxu−1 ∈ V for all x ∈ V , then Tu ∈ O(V ).

Inspired by this, define the group

M0(V ) = {u ∈ C0(V ) : u−1 exists, Tu : V → V }
Then
2 The involution (sometimes called the ‘transpose’) is not to be confused with the

automorphism used to define C0(V ).
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Lemma 2. [8, Chapter 10, Theorem 3.1] O+(V ) ∼= M0(V )/K×.

Moreover, if u ∈ M0(V ), then u = a1...ar for an even r, aj ∈ V , and uu′ ∈
K×. Define the spin group

Spin(V ) = {u ∈ M0(V ) : uu′ = 1}
and

Θ(V ) = {Tu : uu′ = 1}.

The latter is called the spinor kernel, a name which will be clarified in the
following section. We now relate Spin(V ) and Θ(V ):

Theorem 6. [8, Chapter 10, Theorem 3.3] There is an homomorphism

Spin(V ) � Θ(V ), u �→ Tu

with kernel {±1}.

Spinor Norm. We reach the application of the theory developed in the previous
sections. Let σ ∈ O+(V ). Then we can write σ as a map Tu for some u ∈ M0(V ),
and then map u �→ uu′ mod (K×)2. The composition of these maps is called the
spinor norm:

Theorem 7. [8, Chapter 10, Corollary 3] The map θ : σ �→ uu′ mod (K×)2 is
a multiplicative homomorphism.

Proof. It is plain that the identity maps to the identity. Consider σ, τ ∈ O+(V ).
We show θ(στ) = θ(σ)θ(τ).

First note that by Lemma 2, στ corresponds to some product uv ∈
M0(V )/K×. Then θ(στ) = (uv)(uv)′ = uvv′u′ = uu′vv′ since vv′ ∈ K×. More-
over, we have θ(σ)θ(τ) = uu′vv′.

3.2 Defining the Spinor Genus

The spinor norm can be used to define an equivalence relation on the space of
quadratic forms, via lattices.

Definition 3. Let Γ,Λ be lattices on the quadratic space (V, φ). Say S(Γ,Λ)
holds if there exist γ ∈ O+(V ) and δp ∈ Θ(Vp) such that

Γp = γδpΛp, for all p.

We call the equivalence classes under this relation the (proper) spinor genera.
Note that if f ∼ g, then setting the δp to be the identity for all p implies that
S(Lf , Lg) holds. So equivalent lattices lie in the same spinor genus. Moreover, if
S(Lf , Lg) holds, then since Θ(Vp) ⊂ O(Vp), we have g ∈ gen(f). The following
demonstrates that the spinor genus truly is an ‘intermediate’ relation to the class
and the genus:
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Theorem 8. [8, Chapter 11, Lemma 1.4] S(Γ,Λ) is an equivalence relation.

Proof. Symmetry and reflexivity are straightforward; here we demonstrate tran-
sitivity. Suppose Γ,Λ,Δ are three lattices satisfying S(Γ,Λ) and S(Λ,Δ). Then
there are γ1, γ2 ∈ O+(V ) and β1p, β2p ∈ Θ(Vp) such that Γp = γ1β1pΛp and
Λp = γ2β2pΔp for each prime p. Combining these, one has

Γp = γ1β1pγ2β2pΔp = (γ1γ2)(γ−1
2 β1pγ2β2p)Δp

for each prime p. It is easy to check γ1γ2 ∈ O+(V ) and γ−1
2 β1pγ2β2p ∈ Θ(Vp).

Hence S(Γ,Λ) holds.

We record some standard facts on the set of spinor genera [8, Chapter 11]:

Proposition 1. 1. The number of spinor genera in any genus is a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. Let (V, φ) be a quadratic space of dimension n ≥ 3, Λ ⊂ V a lattice, and φ

takes integral values on Λ. If gen(Λ) contains multiple spinor genera, either
there exists p > 2: p

n(n−1)
2 | det(Λ), or 2n(n−3)/2+�(n+1)/2� | det(Λ).

3.3 Proportion of Genera Splitting Into Multiple Spinor Genera

In this section we obtain an upper bound on the number of Jordan p-symbols
corresponding to forms which lie in a genus which splits into multiple spinor
genera. In the rest of this subsection we will call such genera, forms in a given
genera, and their corresponding p-symbols, ‘splitting’, for convenience. The point
of this result is to show that a negligible number of such p-symbols in the prime-
power case correspond to forms in such genera, when n ≥ 3.

Odd Prime-Power Determinant. We begin by considering forms of rank
n ≥ 3 and determinant pn(n−1)/2 for some prime p > 2, as this is the mini-
mal prime-power determinant for which the genus of a form specified by rank
and determinant can split into more than one spinor genus (cf. Proposition 1).
Observe that a necessary condition for such splitting is that the Jordan decom-
position of the form has no component with dimension larger than one, i.e. the
prime powers occurring in the p-adic diagonalisation of the form are all dis-
tinct (this may be seen from Sect. 4, (i)). That is, up to multiplication by p-adic
quadratic residues or non-residues on the diagonal elements and reordering, f
has corresponding matrix A p-adically diagonalising to

AD,p =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 ... 0
0 p 0 ... 0
0 0 p2 ... 0
...

...
...

. . .
...

0 0 0 ... pn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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which has determinant pn(n−1)/2. If a form has determinant a higher power of
p, the proportion of forms will be upper bounded by the below result also. We
do not address the power-of-two case, for simplicity.

We will proceed by (straightforwardly) finding the number of splitting Jordan
p-symbols, and we then lower bound the total number of p-symbols for forms
with the above-specified parameters (rank f = n, detf = pn(n−1)/2). In the latter
instance, f has corresponding matrix A p-adically diagonalising to

AD,p =

⎛

⎜

⎜

⎜

⎝

pi1 0 ... 0
0 pi2 ... 0
...

...
. . .

...
0 0 ... pin

⎞

⎟

⎟

⎟

⎠

, (1)

up to multiplication by quadratic residues (or non-residues), with determinant
pn(n−1)/2, so

∑

j ij = n(n − 1)/2. In the more general case of determinant pm

for some m > n(n − 1)/2, one has
∑

j ij = m.

Step 1: splitting symbols. To find the number of splitting Jordan p-symbols,
observe from the algorithm reproduced above that we must have distinct prime
powers on the diagonal of AD,p. Thus the Jordan p-symbol of a splitting form
must be 1ε1,1pεp,1p2

εp2 ,1
...pn−1εpn−1 ,1. Moreover, in the case of prime-power

determinant, all the εi agree: the diagonals must all be distinct powers of p,
either multiplied by quadratic residues modulo p, or all multiplied by quadratic
non-residues modulo p. So there are at most two splitting p-symbols for such
fixed parameters.

Step 2: bounding the number of p-symbols. We lower bound the number of
p-symbols for the family of forms mentioned above. The number we are seeking
to approximate is the following:

An,m :=

∣

∣

∣

∣

∣

{

1ε1,n1pεp,np ...pn−1εpn−1 ,npn−1 :
n−1
∑

i=0

npi = n and
n−1
∑

i=0

inpi = m

}∣

∣

∣

∣

∣

,

initially in the specific instance m = n(n−1)/2. By observing (1), it is sufficient
to count the number of n-tuples (i1, ..., in) satisfying

∑

j ij = m, each multiplied
by 2k−1, where k is number of distinct terms in the n-tuple; this multiplicative
factor, since each entry of the diagonal of (1) may be multiplied by a quadratic
residue or non-residue.

We use some elementary partition theory to conduct this counting exercise;
for more background on partitions, see for example [3].

Definition 4. Let l be an integer. A decomposition l = λ1+...+λk into positive
integers λi is called a partition of l. The λi are called the parts of the partition,
and k is called the length of the partition. The number of partitions of an integer
l is denoted by p(l).
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Now let

pi,j(l) := |{partitions of l of length i with j distinct parts}|.

Write r := n(n − 1)/2. One can then express An,r as a weighted sum of pi,j(r):

An,r =
n

∑

(i,j) : i≥j≥1

pi,j(r) · 2j ,

because of the quadratic residues or non-residues on each diagonal term of (1).
Pick (i, j) such that i + j is maximal in [2, 2n] with respect to the property

that pi,j(r) �= 0. Then An,r > pi,j(r)·2j . So we now proceed to find (i, j) maximal
with respect to i + j such that pi,j(r) �= 0.

Recall r = n(n − 1)/2. Then

pi,j(r) = |{partitions of n(n − 1)/2 of length i with j distinct parts}|

is pi,j(·) applied to the (n−1)th triangle number, which has a maximal partition
of length n − 1 into distinct parts of length n − 1 by definition. So (i, j) =
(n − 1, n − 1) is a pair satisfying i + j is maximal and pi,j(r) is non-zero. Then

An,r =
n

∑

i≥j≥1

pi,j(n(n − 1)/2) · 2j

> pn−1,n−1(n(n − 1)/2) · 2n−1 = 2n−1.

Now suppose detf ≥ pm for odd prime p and integer m ≥ r. The number of
splitting p-symbols in this case is upper bounded by

2 (pn,n(m) + pn−1,n−1(m)) ≤ 4pn−1,n−1(m)

To bound the total number of symbols, observe that pn−1,n−1(m) ≥ 1 for
m ≥ r. From the above reasoning it follows that a lower bound on An,m is

An,m =
n

∑

i≥j≥1

pi,j(m) · 2j ≥ pn−1,n−1(m) · 2n−1 ≥ 2n−1

Step 3: Proportion of Splitting Forms for Odd Prime-Power Determi-
nants Since there are at most 2 splitting Jordan p-symbols, for a form of deter-
minant pr and rank n, the fraction of symbols corresponding to forms whose
genus splits into multiple spinor genera is less than 2/2n−1 = 1

2n−2 , which is a
negligible function in n. We have thus arrived at

Theorem 9. Let p > 2 be a prime. The proportion of splitting p-symbols cor-
responding to positive definite quadratic forms of rank n ≥ 3 and determinant
pn(n−1)/2 among all possible p-symbols is strictly less than 2−(n−2).
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When m > r, an upper bound for the proportion of splitting p-symbols is

4pn−1,n−1(m)
∑

i≥j≥1 pi,j(m) · 2j

The proportion can then be bounded by considering i = j = n − 1:

4pn−1,n−1(m)
∑n

i≥j≥1 pi,j(m) · 2j
≤ 4

2n−1
=

1
2n−3

,

which is a negligible function in n.
For the case of odd composite determinants, we note the following. As above,

we have a set S, comprised of prime divisors of 2d and ∞. Suppose |S| = t. We
then have to compute the Jordan p-symbols at each element of this set. By
Proposition 1, there must be at least one prime divisor of the determinant which
divides the determinant many times, and any element of S may be this divisor.
We can thus upper bound the proportion of splitting symbols by t

2n−3 , which is
negligible when t is polynomially large.

We leave the p = 2 case to the interested reader, for brevity; the details of
this case can be found in [12].

4 An Algorithm to Compute Spinor Genera

Inspired by Conway and Sloane [12, Chapter 15], in this section we provide a
(quantum) polynomial time algorithm to calculate the number of spinor genera
in the given genus with rank n is at least 3. Let f and g be two positive definite
quadratic forms with determinant d in the same genus. In view of [30, Theorem
50], there is a rational matrix M such that Af = M tAgM with |detM | = 1 and
denominators of its entries are relatively prime to 2d . Let Lf and Lg be the
corresponding lattices that reflect this property. Then [Lf : Lf ∩ Lg] = [Lg :
Lf ∩ Lg] = r for some integer r which is relatively prime with 2d.

Let S be the finite set of prime divisors of 2d. We denote a spinor operator by
a sequence (. . . , rp, . . .)p∈S , where rp is a p-adic unit square class. For each p ∈ S,
choose a proper isometry σp ∈ O+(Vp) with θ(σp) = rp. Let Lh be the lattice
in the genus of Lf with (Lh)p = σp(Lf )p for each p ∈ S and (Lh)p = (Lf )p

for each p /∈ S. Then the spinor operator (. . . , rp, . . .)p∈S sends spn+(f) to
spn+(h) where h is a quadratic form defined on Lh. More information about
the action of a spinor operator can be found in [8, Chapter 11]. In this notation
the group operation is componentwise multiplication, and the rational or p-adic
integers can be regarded as spinor operators in the following way. For a rational
integer r that is relatively prime to 2d, the corresponding spinor operator is
Δ(r) = (r, . . . , r); for a p-adic integer Ap = pka there corresponds the spinor
operator Δp(Ap) = (pk, . . . , pk, a, pk, . . . , pk) whose q-coordinate for q �= p is the
q-adic unit square class of pk and whose p-coordinate is the p-adic unit square
class of a.
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By [8, Theorem 4.1 in Chap. 11], Δ(r) ∗ spn+(f) = spn+(g) where r = [Lf :
Lf ∩ Lg] . Moreover when the rank is at least 3, Δ(r) ∗ spn+(f) is defined for
every positive integer r prime to 2d. Thus there is a surjective map from the
set of spinor operators Δ(r) with r positive integers prime to 2d to the set of
spinor genera in gen(f), and we can determine the number of the spinor genera
by determining the kernel of this map, i.e., those Δ(r) which fix each spinor
genus.

By Theorem 16 and Theorem 17 in [12, Chapter 15], the spinor operator
kernel consists of the spinor operators Δ(r) for which the positive integer r is an
automorphous number (the spinor norm of a proper integral isometry in O+(Lf ))
and relatively prime to 2d. The spinor operator kernel can be calculated locally
and is generated by the spinor operators Δp(Ap) for each p ∈ S where Ap is a
p-adically automorphous number (the spinor norm of a proper p-adic integral
isometry in O+((Lf )p)).

As the spinor operator kernel is completely determined by the p-adically
automorphous numbers, it is necessary to introduce an algorithm for identifying
the p-adically automorphous numbers associated with the given quadratic form
f . Recall that f is diagonalizable at p ≥ 3, and f is a direct sum of quadratic

forms that are of the shapes 2k(x) or 2k

(

a b
b c

)

at p = 2, where a, c are even and

x, b are odd. Now we want to create a set consisting of numbers in the following
two parts:

(I) when p ≥ 3, all the diagonal entries; when p = 2, the diagonal entries 2kx.
(II) only when p = 2, the numbers 2k+1u1, 2k+1u3, 2k+1u5, 2k+1u7 for every 2-

dimensional component 2k

(

a b
b c

)

.

Then the group of p-adically automorphous numbers is generated by the p-
adic square classes of the products of all pairs of numbers from the above list,
and supplemented by:
(i) all p-adic units if either p ≥ 3 and dimfk ≥ 2 for any k, or p = 2 and
2kfk ⊕ 2k+1fk+1 ⊕ 2k+2fk+2 ⊕ 2k+3fk+3 has dimension ≥ 3 for any k.
(ii) the square classes 2u1, 2u3, u5, u3, u7 whenever p = 2 and part (I) of the
list contains two entries whose product has the form u1, u5, (1 or 4 or 16)uodd,
(2 or 8)u1 or 5, (2 or 8)u3 or 7 respectively.

Remark:

1. If there is a prime p such that, for each p-adic unit u, the spinor operator
Δp(1, . . . , 1, u, 1, . . . , 1) is in the spinor operator kernel, then the prime p can
be removed from the set S, as it conveys no information modulo the spinor
operator kernel. We call such a prime p tractable.

2. For any spinor operator (r1, . . . , rs), by the Strong Approximation Theorem
[27, 21:2], there is a positive integer r such that Δ(r) = (r1, . . . , rs).

Theorem 10. There is a (quantum) polynomial time algorithm to determine
the number of spinor genera in the genus of the given quadratic form f .
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Algorithm 1: An algorithm to determine the number of spinor gen-
era in gen(f)
Input: Quadratic form f
Output: Answer
1: Compute the p-adic diagonalisation of f for each p | 2d
2: Compute p-adically automorphous numbers for each p | 2d
3: S := {p | 2d : p is intractable}
4: Compute a basis G of the spinor operators kernel with respect to S.
5: if 2 ∈ S then
6: Output‘2|S|+1−|G|’
7: else
8: output ‘2|S|−|G|’
9: end if

Proof. Let d be the determinant of the given quadratic form f . There are at
most log2(2d) different prime divisors of 2d. We can compute in time poly(n,
log2d) the diagonalisation of fp using the method introduced in Sect. 2.5 and its
p-adically automorphous numbers for all primes p dividing 2d.

When p ≥ 3, p is tractable if the non-square unit u− is in θ(O+((Lf )p) or
both pu+ and pu− are contained in θ(O+((Lf )p). Therefore, if p is intractable,
then p contributes at most one non-trivial spinor operator Δp(pu+) or Δp(pu−)
to the generators of the spinor operator kernel. The prime 2 is tractable if one
of the following is true:

1. two of three non-square units u3, u5, u7 are in θ(O+((Lf )2);
2. three of four prime elements 2u1, 2u3, 2u5, 2u7 are contained in θ(O+((Lf )2);
3. one non-square unit u and two prime elements whose product is in the differ-

ent square class from u in θ(O+((Lf )2).

Therefore if 2 is intractable, then 2 contributes at most three non-trivial spinor
operators to the generators of the spinor operator kernel. Let S = {p | 2d :
p is intractable}. Then there are 2|S| different spinor operators with respect to S
when 2 /∈ S and 2|S|+1 different spinor operators with respect to S when 2 ∈ S.
Once we can determine the size of the spinor operator kernel with respect to S,
the number of the spinor genera in gen(f) will be determined.

Let G = {Δ1, . . . ,Δt} (t ≤ log2(8d)) be the set of different non-trivial spinor
operators obtained from the p-adically automorphous numbers for all p ∈ S. It
generates the spinor operator kernel with respect to S. We can further obtain a
basis by applying Gaussian elimination to the matrix G with log Δ1, . . . , log Δt

as its rows. We denote log u1 = 0 for p = 2 and log u+ = 0 for p ≥ 3. Suppose
log Δ′

1, . . . , log Δ′
t′ are all nonzero rows in the “Echelon form” of G, then the set

G̃ = {Δ′
1, . . . ,Δ

′
t′} is a basis of the spinor operator kernel with respect to S and

can be obtained in time poly(log2d).

Algorithm 1 shows the pseudocode of the procedure given above. The spinor
operator kernel can also help us to identify if two quadratic forms f and g are
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Algorithm 2: An algorithm to distinguish the spinor genera
Input: Quadratic forms f and g in the same genus
Output: Answer
1: Compute a rational matrix M with denominators of its entries relatively prime

to 2d by solving the system of quadratic equations Af = M tAgM
2: Compute a matrix Bg such that Bt

gBg = Ag using Cholesky decomposition
3: Lg ← lattice generated by Bg

4: Bf := BgM and Lf ← lattice generated by Bf

5: Compute r = [Lf : Lf ∩ Lg] using Hermite Normal Form
6: Compute the p-adic diagonalisation of fp for each p | 2d
7: Compute p-adically automorphous numbers and the corresponding spinor

operators for each p | 2d
8: if Δ(r) is a product of some spinor operators obtained in the above step then
9: output ‘same spinor genus’

10: else
11: output ‘different spinor genera’
12: end if

in the same spinor genus or not: f and g are in the same spinor genus if and
only if Δ(r) where r = [Lf : Lf ∩ Lg] is a product of some generators Δp(Ap)
where Ap ∈ θ(O+(Lf )p). This is shown in Algorithm 2, where all the steps can
be completed in (quantum) polynomial time except for Steps 1. For Step 1, [12]
suggested an exhaustive search through all rational matrices until a rational
equivalence with denominator r relatively prime to 2d is found. This would cost
complexity at least eO(n2), which may be reduced significantly using a better
method. For Step 8, we can determine whether Δ(r) is in the spinor operator
kernel by applying Gaussian elimination in time poly(log2d) since the number
of generators of spinor operator kernel is bounded by t ≤ log2(8d), as explained
above.

5 Spinor Genus Algorithm for Quadratic Forms
over Number Fields

In this section, we will investigate the complexity of an algorithm, that was
introduced by Benham and Hsia [4], to determine if two quadratic forms over
number fields which are in the same genus are in the same spinor genus or not.
For the convenience, we discuss it in the lattice setting. This algorithm was
implemented in MAGMA (see [11]) but without discussion of its complexity.
Let F be an algebraic number field with O its ring of integers. Assume V is an
n-dimensional vector space over F with a non-degenerate quadratic form φ and
its associated symmetric bilinear form b satisfying b(v, w) = 1

2 (φ(v +w)−φ(v)−
φ(w)), and L is a quadratic lattice on V . We assume n ≥ 3 in the sequel.

Let Ω be the set consisting of all spots on F . For a prime spot p ∈ Ω, define
dLp, the discriminant of Lp = Opv1 + · · · + Opvn with respect to the basis
{v1, . . . , vn}, as the determinant of the Gram matrix ALp = (b(vi, vj))n×n when
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n is even and as half of the determinant when n is odd. We say L is good at p
(or simply Lp is good) if φ(Lp) ⊆ Op and dLp ∈ 2−nup where up is the group
of units of Fp. Recall that we say Lp is Op-maximal if φ(Lp) ⊆ Op and if for
every lattice Np with Lp ⊆ Np and φ(Np) ⊆ Op we have Lp = Np. The following
lemma shows that Lp is Op-maximal if Lp is good.

Lemma 3. When L is good at p, Lp is Op-maximal.

Proof. Let ALp = (aij)n×n be the Gram matrix of Lp. Define the scale ideal
sLp to be the fractional ideal generated by the entries aij with 1 ≤ i, j ≤ n, and
the volume vLp to be the fractional ideal generated by detALp . Remember that
the discriminant dLp is detALp when n is even and is 1

2detALp when n is odd.
When L is good at p, φ(Lp) ⊆ Op and dLp = 2−nu with u a p-unit. Therefore
vLp = 2−nOp when n is even and vLp = 2−n+1Op when n is odd.

When p is non-dyadic (|2|p = 1), 2 is a p-unit. We have Lp is unimodular
since sLp ⊆ Op and vLp = Op (see [27, 82G]). By [27, 82:19], Lp is Op-maximal.

Now let p be dyadic (0 < |2|p < 1). Suppose that there is a lattice Np on
Vp such that Lp ⊆ Np and φ(Np) ⊆ Op. We want to show that Lp = Np by
comparing their volumes. When n is even, since φ(Np) ⊆ Op, we have sNp ⊆ 1

2Op

and vNp ⊆ (sNp)n ⊆ 2−nOp = vLp. When n is odd, Np = 〈α〉 ⊥ N ′
p with

α ∈ Op. Then vNp = αvN ′
p ⊆ (sN ′

p)
n−1 ⊆ 2−n+1Op = vLp. Therefore, by [27,

82:11], Np = Lp and Lp is Op-maximal.

Suppose L̃ is a lattice on V that is also good at p, so Lp and L̃p are
Op-maximal lattices. By [27, 91:2], there is a local basis {e1, f1, . . . , et, ft,
z2t+1, . . . , zn} for Lp satisfying φ(ei) = φ(fi) = 0, b(ei, fj) = 1

2δij , b(ei, ej) =
b(fi, fj) = 0 for i �= j, b(ei, zk) = b(fi, zk) = 0, the subspace spanned by
{z2t+1, . . . , zn} is anisotropic, and

L̃p = pa1e1 + p−a1f1 + · · · + patet + p−atft + Opz2t+1 + · · · + Opzn,

where a1, . . . , at are nonnegative exponents. It follows that

[Lp : Lp ∩ L̃p] = [L̃p : Lp ∩ L̃p] = |O/p|a1+···+at .

We define R(L : p) to be the global graph containing lattices L̃ ∈ gen(L)
such that L̃q = Lq at all prime spots q �= p as vertices. The distance dist(L, L̃, p)
between L̃ and L is r = a1 + · · · + at. In particular, two vertices L̃ and L are
connected by an edge when r = 1 and they are called neighbors. It is known that
the vertices of R(L : p) belong to at most two spinor genera, and two vertices
belong to the same spinor genus when r is even. Therefore, all the vertices are
in the same spinor genus spn+(L) if and only if the neighbor of L is in spn+(L).

Let JV = {Σ ∈ ∏

q∈Ω O+(Vq) : ||Σq||q = 1 for almost all q ∈ Ω} be the
group of split rotations and JL

V = {Σ ∈ JV : ΣL = L} be the set of stabilizers
of L. Let πp be a fixed prime element of the local field Fp. Define Σ(p) ∈ JV

by setting Σ(p)q to be the identity map for all primes q �= p and Σ(p)p =
τe1−f1 · τe1−πpf1 , where τw denotes the symmetry with respect to the anisotropic
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line Fpw. It is easy to check that the action of Σ(p) does not depend on the
choice of πp. Let JF = {i ∈ ∏

q∈Ω F×
q : |iq|q = 1 for almost all q ∈ Ω}. Define

j(p) ∈ JF to have 1 at all primes q �= p and πp at prime p. Since Lp is maximal,
θ(O+(Lp)) contains all the units in Fp [27, 91:8] so that j(p) is well-defined
modulo θ(JL

V ). Moreover, θ(Σ(p)) ≡ j(p) mod θ(JL
V ).

Suppose L′ = Σ(p)L is a neighbor of L; then the graph R(L : p) contains
only one spinor genus if and only if L′ ∈ spn+(L) if and only if j(p) ∈ PDJL

F ([27,
102:7]), where PD is the subgroup of principal idèles generated by the elements
in D = θ(O+(V )) which equals the set of elements in F× that are positive at
all real spots q at which Vq is anisotropic ([27, 101:8]), and JL

F = {i ∈ JF : iq ∈
θ(O+(Lq)) for all prime spots q}.

Given a lattice L̃ in the genus of L, based on the above observations, Ben-
ham and Hsia designed an algorithm to identify a prime spot p such that
L′ = Σ(p)L ∈ spn+(L̃) is a neighbor of L in the graph R(L : p). One can
determine whether L̃ is in spn+(L) by checking if j(p) ∈ PDJL

F .

Step 1: Compute X and T where X is the set of all real spots on F and T is a
finite set of prime spots satisfying

1. q ∈ T for all dyadic prime spots q;
2. Lq is unimodular at all prime spots q /∈ T ;
3. Lq = L̃q for all prime spots q /∈ T .

Step 2: For each q ∈ T , compute an isometry Σq ∈ O+(Vq) such that L̃q =
ΣqLq.

Step 3: For each q ∈ T , compute an element xq ∈ Oq ∩ θ(Σq) · F×2
q and set

aq = ordq(xq) + ordq(4) + 1.

Step 4: Compute an algebraic integer c ∈ O such that c is positive with respect
to all q ∈ X and c is congruent to xq mod qaq for each q ∈ T .

Step 5: Write the ideal (c) =
∏

q∈T qkq · a where a is relatively prime to each
q in T and define a modulus m =

∏

q∈T qaq · ∏

q∈X q. Given a fractional ideal
u = bc−1 where b and c are integral ideals, u is said to be relatively prime to
q if both b and c are relatively prime to q. Let ImF := {fractional ideals of F
that are relatively prime to each q ∈ T}, Fm,1 := {a ∈ F× : a ≡ 1 mod m}
where a ≡ 1 mod m means ordq(a − 1) ≥ aq for each q ∈ T and a > 0 at each
q ∈ X, and Sm = {aO : a ∈ Fm,1}. By a density theorem from class field theory,
each ray class in the ray class group ImF /Sm contains infinitely many primes.
Compute a prime ideal p in the ray class a · Sm. This p is the prime spot we are
looking for.

Step 6: Determine if j(p) ∈ PDJL
F .

In the remaining of this section, we would like to restrict our attention to the
number fields with class number 1, and study the complexity of this algorithm.
Every quadratic lattice is free with a basis {v1, . . . , vn} such that L = Ov1 +
· · · + Ovn, and dL = det(b(vi, vj)) is called the discriminant of L with respect
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to the basis {v1, . . . , vn}. Moreover, if L is given in the form a1w1 + · · · + anwn

where a1, . . . , an are fractional ideals, then a21 . . . a2ndet(b(wi, wj)) = dLO. We
use the same symbol q to denote the prime ideal in both O and Oq, and use πq

to denote their common generator.

Lemma 4. Suppose Lq and L̃q are maximal lattices, then there is an isometry

σq in O+(Vq) sending Lq to L̃q and θ(σq) = π
1
2 ordq(d(L∩L̃)/dL)O
q .

Proof. Since Lq and L̃q are maximal lattices, by [27, 91:2] there is a local basis
{e1, f1, . . . , et, ft, z2t+1, . . . , zn} for Lq satisfying φ(ei) = φ(fi) = 0, b(ei, fj) =
1
2δij , b(ei, ej) = b(fi, fj) = 0 for i �= j, b(ei, zk) = b(fi, zk) = 0, the subspace
spanned by {z2t+1, . . . , zn} is anisotropic, and L̃q = qa1e1+q−a1f1+ · · ·+qatet+
q−atft + Oqz2t+1 + · · · + Oqzn. Define the isometry

σq = τe1−f1τe1−π
a1
q f1

· · · τet−ft
τet−π

at
q ft

,

then σq(Lq) = L̃q and θ(σq) = πa1+···+at
q . Note that

Lq ∩ L̃q = qa1e1 + Oqf1 + · · · + qatet + Oqft + Oqz2t+1 + · · · + Oqzn,

and q2(a1+···+an) = (d(Lq ∩ L̃q)/dLq)Oq. Therefore

θ(σq) = π
1
2ordq(d(Lq∩L̃q)/dLq)Oq

q = π
1
2 ordq(d(L∩L̃)/dL)O
q .

Lemma 5. Suppose L̃ is in the genus of L. Then Lq = L̃q if and only if
ordq(d(L ∩ L̃)/dL)O = 0.

Proof. Since both L and L̃ are lattices on V , their intersection L ∩ L̃ is also a
lattice on V . Now, by the Invariant Factors Theorem (Theorem 4), there is a
basis {v1, . . . , vn} of V such that

L = Ov1 + · · · + Ovn L ∩ L̃ = a1v1 + · · · + anvn

with a1 ⊇ · · · ⊇ an integral ideals. Therefore, Lq = L̃q if and only if Lq = Lq∩L̃q

if and only if a1, . . . , an are Oq at q, i.e., ordq(d(L ∩ L̃)/dL)O = 0.

Lemma 6. The finite set T of prime spots in Step 1 can be computed in (quan-
tum) polynomial time.

Proof. The set T in Step 1 consists of the prime ideals that appear in the factor-
ization of 2dLO or in the factorization of d((L∩L̃)/dL)O. The basis of L∩L̃ can
be found using Hermite Normal Form in polynomial time, and the factorization
of fractional ideals can be obtained in (quantum) polynomial time according to
[18, Lemma 4.1].

Lemma 7. The algebraic integer c in Step 4 can be computed in (quantum)
polynomial time.
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Proof. Since O is dense in the set Oq, we can choose xq to be an element in O.
An algebraic integer c such that c ≡ xq mod qaq can be obtained in (quantum)
polynomial time according to [18, Lemma 3.1, Lemma 3.5]. Also, let q1, . . . , qt be
the rational prime numbers lying below the prime ideals q1, . . . , qt in T . We can
add a multiple of the product q

aq1
1 . . . q

aqt
t to c to satisfy the positive conditions

at each real spot in X.

For Steps 2, 3 and 5, there are effective but possibly not efficient methods
to compute the solutions. Let BL and BL̃ be the generating matrix of L and
L̃ respectively. Search for a matrix M ∈ Mn×n(F ) with detM is a unit and
whose entries are in Oq for each prime spot q dividing 2dLO such that Bt

LBL =
M t(Bt

L̃
BL̃)M . The existence of such a matrix M can be found in [27, Example

102:4], and we can replace L by the lattice generated by BL̃M which is in the
proper class of L.

Then in Steps 2 and 3, for all primes spots q dividing 2dLO, since Lq = L̃q,
we can choose Σq to be the identity map and θ(Σq) = 1. For the remaining
prime spots q ∈ T , both Lq and L̃q are maximal and Σq and its spinor norm
can be found in Lemma 4.

For Step 5, one can find a prime ideal p in the ray class of a by searching
through all (finitely many) prime ideals with norm bounded by the constant
given in [31] that can be effectively calculated.

6 Spinor Genera of Binary Forms over Number Fields

Many results given above, which appear to frustrate algebraic approaches to
solving LIP via computing spinor genera, have the condition n ≥ 3. However,
HAWK uses rank 2 forms, integral over a cyclotomic field. In this section we ask:
how does the spinor norm behave in this setting? In Sect. 7.1 we explain in more
detail the connection between our results and the HAWK signature scheme.

Our result relies on the work of Earnest and Estes, who prove in [16] (via
[17]) that in the binary setting, two lattices in the same genus lie in the same
spinor genus if and only if they are fourth powers (quartic residues) in the class
group of some order in the field, when the ring of integers is a PID. Thus if one
can compute quartic residues in class groups of non-maximal orders, one could
correctly decide the answer to the distinguish LIP problem, when the forms lie
in different spinor genera.

There are quantum algorithms to compute the class group of a suborder
of any number field efficiently, under GRH [6]. Moreover, deciding quadratic
residuosity in the class group can be performed efficiently, given the data from
those quantum algorithms; and the same is true for quartic residuosity. The
quantum algorithm we will need is:

Theorem 11. [6, Theorem 1.2] (Class group Computation) Under the General-
ized Riemann Hypothesis, there is a quantum algorithm for computing the class
group of an order O in a number field K which runs in polynomial time in the
parameters n = deg(K) and log(|Δ|), where Δ is the discriminant of O.
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We note that the above algorithm ‘computes the class group’ by computing a
generating set of prime ideals together with the relations between them.

We now explain in more detail the result of Earnest and Estes. In the fol-
lowing, we consider regular binary quadratic spaces (V, φ) over a number field F
and anisotropic binary quadratic forms over the ring of integers OF . These cor-
respond to lattices of rank 2 over that ring of integers, contained in V . We may
fix a basis such that this vector space is in fact isomorphic to a field extension
of degree 2, when (V, φ) is anisotropic. We then have V ∼= F (

√−d) for some d,
and we write OV for the ring of integers of F (

√−d). There is then an involution
∗ on V fixing F such that φ(x) = xx∗ for any x ∈ V . For more details see [17].

The following two results combine to imply that two lattices L1, L2 ⊂ V in
the same genus are in the same proper spinor genus if and only if L1L

−1
2 is a

quartic residue in the class group of the left order of L2 in V . Recall that the
left order is defined as Ol(L2) := {x ∈ V : xL2 ⊂ L2} ⊂ V , and any lattice is a
left ideal in its left order.

Proposition 2. [17, Proposition 2.3] A necessary and sufficient condition that
L1 be in cls+(L2) (resp. spn+(L2) or gen(L2)) is that L1L

−1
2 be in cls+ (Ol(L2))

(resp. spn+ (Ol(L2)) or gen (Ol(L2))).

For any (possibly non-maximal) OF -order O ⊂ V , denote the group of invert-
ible fractional ideals of O by I(O), and the subgroup of principal invertible
fractional ideals by P(O). Set

H(O) = gen(O)/ spn+(O),

and
C(O) = I(O)/P(O).

Then

Corollary 1. [16, §4] Suppose F is a number field and OF is a PID. Let O be
a degree 2 order over OF . Then we have H(O) ∼= C(O)2/C(O)4.

A consequence of this is that we find spn+(O)/ cls+(O) ∼= C(O)4. Thus we
can prove

Theorem 12. Let F be a number field and suppose OF is a PID. Let f and g
be two anisotropic binary quadratic forms, integral over OF , lying in the same
genus. Let V (= F · Lf = F · Lg) be the rank 2 quadratic space containing Lf

and Lg. Then if Lf · L−1
g generates an ideal coprime to the conductor of Ol(Lg)

in OV , there is a quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. Let the corresponding lattices to f, g be denoted by Lf , Lg. Since f, g are
anisotropic, V is anisotropic and hence isomorphic to a quadratic field extension
of F ; identify V with this extension. Begin by computing a basis of the left
order of Lg in V , Ol(Lg). Next, use Theorem 11 to compute the class group
structure, obtaining a generating set of prime ideals in the class group of Ol(Lg)
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in quantum polynomial time, together with their defining relations. This system
of relations forms a lattice Λ, and we obtain an isomorphism C(Ol(Lg)) → Z

n/Λ
by writing an element of C(Ol(Lg)) as a product of powers of prime ideals from
our generating set, and mapping to the vector of exponents (modulo the lattice
of relations). That is, for I ∈ C(Ol(Lg)), we write I =

∏n
i=1 p

ei
i and then send

I �→ (e1, ..., en) + Λ.
Since Z

n/Λ is an abelian group, we can then consider C(Ol(Lg)) ∼= ⊕iZ/diZ,
and the image of Lf · L−1

g in ⊕iZ/diZ for some integers di, where the factors di

are obtained by the algorithm of Theorem 11. Moreover, the algorithm outputs
a list of vectors gi of order di which form a basis of Zn/Λ ∼= ⊕iZ/diZ [9, §6.5.4].

If Ol(Lg) is a maximal order or more generally if Lf · L−1
g generates an ideal

coprime to the conductor of Ol(Lg) in OV , this can be done by factorising Lf ·L−1
g

into a product of prime ideals contained in our generating set, and then reducing
modulo the relations between the prime ideals in the class group obtained by
the algorithm of Theorem 11. We then map Lf · L−1

g �→ (f1, ..., fn) + Λ for some
exponents fi.

Testing such an element for quartic residuosity can then be done efficiently
as follows: we may take the basis g1, ..., gn and express (f1, ..., fn) =

∑

i λigi

for some coefficients λi ∈ Z/diZ, i = 1, ..., n; thus fj =
∑

i λigij . We then
express the above as a matrix-vector equation: (f1, ..., fn)T = G · λ where G is
the matrix with ith column gT

i and λ is a vector with ith entry λi. We then
compute G−1 · (f1, ..., fn)T = λ; if λi = 4γi mod di for some γi ∈ Z/diZ and for
all i = 1, ..., n, we conclude that Lf · L−1

g is a quartic residue in the class group.
Finally, if Lf · L−1

g is a quartic residue in C(Ol(Lg)), then f ∈ spn+(g) by
Corollary 1; otherwise, f �∈ spn+(g).

Algorithm 3: Quantum Algorithm for Spinor Genus of Binary Forms
Input: Quadratic forms f and g in the same genus
Output: Answer
1: Compute basis of Ol(Lg)
2: ({p1, ..., pn}, Λ, {d1, ..., dn}, {g1, ..., gn}) ← Algorithm of Theorem 11
3: Lf · L−1

g =
∏

p
fi
i

4: (f ′
1, ..., f

′
n) := (f1, ..., fn) mod Λ

5: Compute G−1 · (f ′
1, ..., f

′
n)T

6: if G−1 · (f ′
1, ..., f

′
n)T = 0 mod 4 then

7: Output ‘Yes’
8: else
9: Output ‘No’

10: end if

We make the following remark:

Corollary 2. Let F be a number field and suppose OF is a PID. Let f and g be
two anisotropic binary quadratic forms, integral over OF , in the same genus. Let
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V be the rank 2 quadratic space containing Lf and Lg. Suppose Lf ·L−1
g generate

an ideal coprime to the conductor of Ol(Lg) in OV , and gcd(|C(Ol(Lg))|, 2) = 1.
Then f ∈ spn+(g).

Proof. When |C(Ol(Lg))| is odd, then none of the di obtained in the course of the
algorithm implicit in the proof of Theorem 6 are even. Then in the penultimate
paragraph of the proof, when one computes G−1 · (f1, ..., fn)T = λ, and checks
if λi = 4γi mod di for some γi ∈ Z/diZ and for all i = 1, ..., n, we must find that
there always exist such γi mod di, since gcd(4, di) = 1. Thus in this setting the
two forms f, g always lie in the same spinor genus.

We note that there are many examples of number fields with odd class num-
bers which may be considered relevant to LIP in cryptography: for instance,
the power-of-two cyclotomic fields Q(ζ64), Q(ζ128), and Q(ζ256) all have odd
class number, being 17, 359057, and 10449592865393414737 respectively (see
[22,25,29]). However, many cyclotomic fields have even class number, such as
Q(ζ130), which has class number 64. We conclude from this that if one is choos-
ing parameters for LIP-based schemes over number fields, one must choose the
number field carefully to avoid distinguishing attacks as detailed in the section
below.

We also derive two corollaries regarding cyclotomic fields:

Corollary 3. Let F = Q(ζn) be a cyclotomic field and

n ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84}

Let f and g be two anisotropic binary quadratic forms, integral over OF , in the
same genus. Let V be the rank 2 quadratic space containing Lf and Lg. Then if
Lf · L−1

g generates an ideal coprime to the conductor of Ol(Lg) in OV , there is
a quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. [29, Theorem 11.1] states that the cyclotomic fields with n as in the
corollary statement are all the cyclotomic fields with class number equal to one.
We may then apply the theorem for binary integral anisotropic quadratic forms
over such rings of integers.

Corollary 4. Let F be the maximal totally real subfield of Q(ζn) and n ∈ S :=
{4, 8, 16, 32, 64, 128, 256} (and assuming GRH, n ∈ S ∪ {512}). Then there is a
quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. [25, Theorem 2.1] states that the cyclotomic fields with n as in the corol-
lary statement are all the cyclotomic fields for which we know unconditionally
(and conditionally for n = 512) that the maximal real subfield has class number
equal to one. We may then apply the theorem for binary integral anisotropic
quadratic forms over such rings of integers.
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7 Application to Distinguish LIP

We now apply the theory of the previous sections to the lattice isomorphism
problem. We begin by defining these problems. Denote the real orthogonal group
in n dimensions by On(R).

Definition 5. (search LIP, lattices) Given two isometric lattices L1, L2 ⊂ R
n,

find an orthogonal transformation O ∈ On(R) such that L2 = O · L1.

We redefine this in terms of quadratic forms:

Definition 6. (search LIP, quadratic forms) Given two positive definite integral
quadratic forms Q1, Q2 in the same equivalence class, find a unimodular U ∈
GLn(Z) such that Q2 = U tQ1U .

There is a distinguishing variant of this problem:

Definition 7. (distinguish LIP, quadratic forms) Given two positive definite
integral quadratic forms Q0, Q1, the distinguish LIP problem Δ-LIP is, given
any quadratic form Q′ ∈ [Qb] for b ∈ {0, 1} a uniform random bit, to find b.

And a decision variant:

Definition 8. Given positive definite integral quadratic form Q, the decision
LIP problem dLIPQ is, given any Q′, to decide if Q′ ∈ [Q] or not.

As discussed in [15], for Δ-LIP to be hard Q0 and Q1 must be equivalent over
Q,R,Qp, and Zp for all p, as well as the forms to agree on any other computable
invariant. However, that paper did not discuss the spinor genus of the forms; we
fill in that gap in this section.

We outline the immediate consequence of Sect. 6 for LIP over number fields.
Suppose in the Δ-LIP experiment, Q0 and Q1 are integral binary quadratic
forms over the ring of integers of a number field which is a PID, lying in the
same genus (and that the implicit quadratic space is anisotropic). Then suppose
we are given Q′ which lies in either [Q0] or [Q1]. We run the algorithm implicit
in the proof of Theorem 12 on the pairs (Q′, Q0), (Q′, Q1). If the spinor genus
has not been accounted for and the forms Q0, Q1 lie in different spinor genera
within the same genus, we may answer Δ-LIP correctly in polynomial time by
ruling out the form lying in the wrong spinor genus, since Q′ lies in the same
spinor genus as Qb.

Similarly, in the dLIPQ experiment, if Q′ and Q lie in the same genus but in
distinct spinor genera, in the event that the forms not only lie in distinct equiv-
alence classes but also distinct spinor genera, we may detect this and correctly
answer ‘No’.

7.1 Implications for the Schemes of [15] and [14]

In [15], the authors gave a KEM and a signature scheme, both having their hard-
ness founded on distinguish LIP. These schemes were designed for integral forms



Spinor Genus and LIP 355

of rank n (� 5) and we conclude from the analysis of Sect. 3.3 that, if a ‘random’
quadratic form of determinant pm has its Jordan p-symbol uniformly distributed
among possible Jordan p-symbols, then with only negligible probability do two
such forms lie in a genus which splits into multiple spinor genera.

However, our work does have consequences for structured cases of these LIP
instances. Moving from forms over the rational integers of rank n = 2m to
binary quadratic forms over the ring of integers of a number field of degree
m yields forms of the same overall rank, yet would introduce structure into the
LIP instances which makes them vulnerable to our Theorem 12. We thus caution
against the use of such structured LIP instances in cryptography.

In HAWK [14], the authors gave a signature scheme, which was later submit-
ted to the first round of NIST’s additional post-quantum standardisation process
for digital signatures. This scheme was designed for rank two forms over the ring
of integers of cyclotomic fields of power-of-two conductor. These correspond to
rank two modules over such rings. At first sight, it might seem that our result
affects the security of HAWK. However, firstly, these rings of integers are not
PIDs, so our theorem does not apply; secondly, our result applies to distinguish
LIP, whereas the security of HAWK is based on a search problem; and thirdly,
HAWK is based on Hermitian forms, which we do not consider. To explain this
last point, we give a brief overview of HAWK which illuminates the differences
to the notions studied in this work, following the notation of [26].

Let K be an algebraic number field of degree n. Then there are n embeddings
σi : K ↪→ C. We define the canonical embedding of K as

σK : K → R
r1 × C

2r2

defined by
x �→ (σ1(x), ..., σn(x))

Here im σK ⊂ H := {(x1, ..., xn) ∈ R
r1 × C

2r2 : xr1+r2+j = xr1+j , 1 ≤ j ≤ r2}.
This map is extended to vectors over K componentwise. For every module M ⊂
K� of finite rank over a Dedekind domain R ⊂ K, there exist ideals Ik of R
and linearly independent vectors bk of K� such that M =

∑m
k=1 Ik · bk. Then

[(Ik)k , (bk)k] is a pseudo-basis of M. Write KR = K ⊗R. Then a module lattice
in σK(KR)� for some  > 0 is given by the embedding of M under σK .

Let Un(KR) denote the n × n unitary matrices with entries in KR, that is,
matrices A ∈ Mn(KR) such that A−1 = A

T
, where · is complex conjugation. We

then say that two module lattices M1,M2 ⊂ σK(KR)� are isomorphic if there
exists U ∈ U�(KR) such that M2 = UM1. The module LIP problem is, given
two such module lattices, to find such a U .

There is a corresponding notion of quadratic forms; these are Hermitian
forms, defined as follows. A matrix A in Mn(KR) is a Hermitian form if A

T
= A.

Such a form is positive definite when φA(x) = xT Ax > 0 for all x ∈ Kn
R

with
entries which do not embed to 0.

We call K totally real if the image of every embedding lies properly in R.
Then Um(KR) is the set of matrices A such that A−1 = AT , since complex
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conjugation acts trivially. Then isomorphism of module lattices corresponds to
our above definitions of equivalence of lattices, and our results may apply to
such problems. However, this is the very setting in which [26] solved the binary
module LIP problem.

In the case when K is not totally real, we use a different notion of equiva-
lence of lattices to HAWK (since we do not define equivalence by the conjugate
transpose above). Thus our results do not affect HAWK. However, we leave it
as an open problem to see if the spinor genus can be efficiently computed for
integral binary Hermitian forms over number fields.
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Abstract. At Eurocrypt’24, Mureau et al. formally defined the Lattice
Isomorphism Problem for module lattices (module-LIP) in a number field
K, and proposed a heuristic randomized algorithm solving module-LIP
for modules of rank 2 in K

2 with a totally real number field K, which
runs in classical polynomial time for a large class of modules and a large
class of totally real number field under some reasonable number theo-
retic assumptions. In this paper, by introducing a (pseudo) symplectic
automorphism of the module, we successfully reduce the problem of solv-
ing module-LIP over CM number field to the problem of finding certain
symplectic automorphism. Furthermore, we show that a weak (pseudo)
symplectic automorphism can be computed efficiently, which immedi-
ately turns out to be the desired automorphism when the module is in
a totally real number field. This directly results in a provable determin-
istic polynomial-time algorithm solving module-LIP for rank-2 modules
in K

2 where K is a totally real number field, without any assumptions or
restrictions on the modules and the totally real number fields. Moreover,
the weak symplectic automorphism can also be utilized to invalidate
the omSVP assumption employed in HAWK’s forgery security analysis,
although it does not yield any actual attacks against HAWK itself.

Keywords: Lattice automorphism · module-LIP · Symplectic matrix

1 Introduction

Lattices are discrete additive subgroups of R
m, which provide rich geometric

structures that can be used to define various computationally hard problems,
such as the famous shortest vector problem (SVP) and the closest vector problem
(CVP). Based on the hardness of these problems or their variants, lots of lattice-
based cryptosystems have been constructed. It is widely believed that lattice-
based cryptosystems are quantum-resistant, and some of them are selected as the
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standard algorithms in NIST’s Post-Quantum Cryptography Standardization
Project.

Lattice Isomorphism Problem (LIP) is another lattice-related computational
problem. Two lattices L1 and L2 are said to be isomorphic if there exists a
bijective orthogonal transformation from L1 to L2. The search version of LIP
refers to the question of finding such orthogonal transformation given the lattice
bases of L1 and L2, and the decision version asks to determine whether the
two given lattices are isomorphic or not. Research on LIP dates back to [22] in
the 1990s, in which the LIP for low-dimensional lattices was considered. In [14],
Haviv and Regev proposed an nO(n)-time algorithm for solving the general LIP,
which remains the fastest known algorithm for LIP. Since then, many more
cryptanalytic works have been proposed [3,6–10,12,13,17,18,23].

Most of these works focus on a special case of LIP, namely, ZLIP, in which
L is the hypercubic lattice Z

n, such as [4,12]. Recently, Ducas [6] explored a
reduction from n-dimensional ZLIP to n

2 -dimensional SVP, which means that
ZLIP can be solved with 2n/2 time complexity due to the best provable algorithm
[1] for SVP. A similar algorithmic result can be concluded by employing Bennett
et al.’s reduction [3] from ZSVP to O(1)-uSVP with the well-known reduction
from ZLIP to ZSVP.

To improve the efficiency of LIP-based cryptosystems, an algebraic variant of
LIP, called module-LIP problem, was introduced by Ducas et al. [8], where the
module can be chosen as free module over a CM number field instead of just the
ring of integers. By taking the module M as O2

L
where the field L is a cyclotomic

field with conductor being a power of 2, Ducas et al. [8] presented a signature
scheme called HAWK, whose security relies on the hardness of O2

L
-LIP problem.

HAWK is now a candidate algorithms in the first round of NIST’s Post-Quantum
Cryptography Standardization Project for additional digital signature proposals.
However, in spite of the additional algebraic structure, we always treat O2

L
-LIP

problem as an LIP on non-structured lattices when analyzing the security of
HAWK. Hence, a natural problem is how to solve module-LIP more efficiently
than LIP with its special algebraic structure.

For LIP with algebraic structures, the most well-known algorithm originates
from the work of Gentry and Szydlo [13], which tries to recover the secret key
of NTRUSign [15] by solving some special ZLIP instance with algebraic struc-
ture. Later, Lenstra and Silverberg made [17,18] lots of in-depth analysis of the
Gentry-Szydlo algorithm, and Lenstra and Silverberg [19] generalized it to check
isomorphism of lattices over CM-orders. The essence of these algorithms lies in
using sufficient lattice automorphisms to solve LIP. Note that the automorphisms
provided by the algebraic structure of rank-1 module enable the Gentry-Szydlo
algorithm and its variants to solve the corresponding rank-1 module-LIP prob-
lems over CM number fields.

At Eurocrypt’24, Mureau et al. [20] formalized the framework for module-LIP
using the concept of pseudo-bases, allowing it to be defined on module lattices
over general number fields. Furthermore, as their main technical contribution,
they presented a heuristic algorithm for solving module-LIP when the module



Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms 361

M ⊂ K
2 has rank 2 and when the number field K is a totally real number field.

Roughly speaking, the strategy in [20] mainly utilizes the prime decomposition of
the principal ideal generated by the sum of squares x2+y2 to guess the principal
ideal generated by its factor x+ i · y. To avoid factoring a general integer during
the process of prime ideal factorization, which is still hard on classical computers
by now, the ideals should be selected carefully such that their norms are easy
to be factored under some heuristic assumption. However, guessing the desired
principal ideal by enumerating the possible combinations of prime ideals, still
makes the time complexity of the final algorithm exponential in the number of
distinct prime ideals factors (Theorem 4.6 in [20]). Therefore, the algorithm in
[20] runs in polynomial time under some reasonable heuristic assumptions for
a class of certain module-LIP, which relates to the arithmetic properties of the
module and the field. It should be noted that their algorithm does not impact
the security of HAWK, as pointed out in [20].

1.1 Our Contributions

In this paper, we present a provable deterministic polynomial-time algorithm to
solve O2

L
-LIP where L is a CM number field, with the help of a new module

lattice automorphism defined by a symplectic matrix with rank 2. Therefore,
we reduce the problem of solving O2

L
-LIP to the problem of finding out the

certain module lattice symplectic automorphism. Although it seems not easy
to find the exact symplectic automorphism in general, we can compute another
weak module lattice symplectic automorphism for O2

L
efficiently when L is a

CM number field. Specially, the weak symplectic automorphism will become
a module lattice automorphism immediately when a totally real number field
K is considered, which directly yields a provable deterministic polynomial-time
algorithm solving O2

K
-LIP where K is a totally real number field.

Note that the forgery security of HAWK [8] is based on the hardness of the
one more SVP (omSVP), which asks the adversary to find one more short enough
non-trivial element in O2

L
that is out of the trivial set {αx}α∈μ(L) where x is a

given short element. However, our weak symplectic automorphism ϕ, which can
be computed efficiently, will yield another non-trivial short element ϕ(x) directly,
whose length is as the same as x’s. This invalidates the omSVP assumption
used in HAWK’s forgery security analysis, although it does not yield any actual
attacks against HAWK itself. An easy way to fix this issue is just adjusting the
omSVP assumption by adding the new short elements we find into the trivial
set.

We also generalize the algorithm to solve module-LIP for the rank-2 module
M ⊂ K

2 where the number field K is a totally real number field. By introducing
a similar pseudo symplectic automorphism and utilizing eigenspaces to acquire
isomorphism invariants, we have the following theorem.

Theorem 1.1 (informal). Let K be a totally real number field. M ⊆ K
2 is an

module lattice of rank 2 with pseudobasis B and pseudo-Gram matrix G. G′ is
the pseudo-Gram matrix of M ′ isomorphic to M . If U is congruence matrices
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between G and G′, then there is a deterministic polynomial time algorithm to
find U, given a basis of OK, B, and G′.

The main contributions are summarized as below:

– We introduce a new tool called module lattice symplectic automorphism into
designing algorithms solving module-LIP, and reduce the problem solving
module-LIP to finding the certain symplectic automorphism. With this frame-
work, we propose a provable deterministic polynomial-time algorithm that
solves module-LIP for the rank-2 module M ⊂ K

2 where K is a totally real
number field.

– Compared with algorithms in [20], our algorithms are provable deterministic
polynomial-time algorithm while the algorithms in [20] need some heuristic
assumptions. Moreover, our algorithm, that solves module-LIP for the rank-
2 module M in totally real number field, always runs in polynomial time
regardless of the the arithmetic properties of the module, whereas the time
complexity of algorithm in [20] relates to the arithmetic properties.

– We invalidates the omSVP assumption introduced by HAWK to prove its
forgery security. Therefore, necessary adjustment about the omSVP assump-
tion should be made to guarantee the validity of the security proof. We stress
that our results haven’t yielded any actual attack against HAWK.

1.2 Technical Overview

Isomophism and Automorphism. From a geometric perspective, LIP is to
find the unitary matrix O such that OM = M ′ for isomorphic module lattices
M , M ′. In this perspective, we call a unitary matrix A such that AM = M an
automorphism of M . If O is a unitary matrix such that OM = M ′, then the
automorphisms of M ′ all have the form OAO−1, where A is an automorphism
of M . From the algebraic perspective, LIP is to find the congruence matrix
U such that U∗GU = G′, where G = B∗B (B is a basis of the lattice). In
this perspective, we call U such that U∗GU = G an automorphism of G. The
automorphisms of G all have the form B−1UB, where U is a unitary matrix.
There have been many works showing that automorphisms can play important
roles in solving LIP [2,13,16,17].

The key to our technique is that, for the module lattice O2
L
, we find a lattice

isomorphism that has not been considered before. In particular, if the base field
is also considered to be a totally real number field, this lattice isomorphism will
also be a module lattice isomorphism with more algebraic structures.

Specifically, we will exploit the symplectic property of rank 2 matrices (i.e.

BT J2B = J2, ∀B ∈ SL2(L), here J2 =
(

0 1
−1 0

)
) and its variants to extract

automorphism, such as computing B−1J2B from BT B (See Subsect. 3.1).

Analysis of O2
L
-LIP. We reduce the problem of solving O2

L
-LIP to the prob-

lem of finding out the certain module lattice symplectic automorphism by using
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the Lenstra-Silverbergalgorithm proposed in [19]. Informally speaking, this algo-
rithm can find an isomorphism between a lattice and its certain canonical form
using specific automorphisms of the lattice. The module lattice O2

L
has the

automorphisms {aI2|a ∈ μ(L)}(μ(L) denotes the roots of unity in L) inher-
ently, but these automorphisms are not enough for Lenstra-Silverbergalgorithm.
We discovered and carefully demonstrated that adding the certain module lat-
tice symplectic automorphism to the above-mentioned automorphisms meets the
requirements for the algorithm in [19].

It is worth mentioning that the main theorem (Theorem 2.1 in this paper)
in [19] will be used over and over again as a powerful tool in our technique.
However, before us it seems that people only focused on the original version
[13].

As the discussion before, this sympletic automorphism can be computed if the
considered field is a totally real number field. For HAWK, we can obtain a weak
sympletic automorphism, and it will affect the existing omSVP assumptions.
This invalidates the assumption used in their security analysis, although it does
not yield attacks against the construction itself.

Algorithm for Rank-2 Module-LIP over Totally Real Number Field.
We now explain how our algorithm for module-LIP works when the module
M ⊂ K

2 has rank-2 and when the number field K is a totally real number field.
Firstly, we can still first obtain a pseudo-automorphism of M , which we call
pseudo because it does not preserve M . To be specific, for M ′ = OM where O is
a unitary matrix, we can obtain OJ2O

−1. If we look at the pseudo-automorphism
from the perspective of matrix conjugation, then the eigenspace before conjugat-
ing differs from the eigenspace after conjugating by only one transition matrix
for the same eigenvalue.

From a high level view, a fundamental reason why the module isomorphism
problem for rank 2 is harder than for rank 1 lies in the fact that it is hard
to find rank 1 submodule N ⊆ M , N ′ ⊆ M ′ such that N ′ = ON . The inter-
section of the modules and eigenspaces of pseudo-automorphisms provides the
submodules N,N ′ s.t. N ′ = ON , but previously we only knew automorphisms
of pure quantities, that is, they only have trivial eigenspaces. This new (pseudo)
automorphism fits our requirements nicely. And then rank 1 module-LIP can be
solved by using algorithm in [19]. It should be pointed out that the eigenvalues
and eigenvectors of this automorphism need to be lifted to be considered in OL,
and thus need to be argued more carefully.

In addition, for better intuition, we here give our technical overview from a
geometric point of view. However, the geometric perspective and Gram matrix
perspective can be transformed into each other. For computational reasons, the
actual algorithm will be performed from the Gram matrix perspective. We will
give a sketch of the actual algorithm at the beginning of Sect. 4.

Roadmap. The rest of the paper is organized as follows. Section 2 provides
basic definitions and preliminaries. In Sect. 3, we present a provable determinis-



364 H. Luo et al.

tic polynomial-time algorithm to solve O2
L
-LIP where L is a CM number field,

with the help of a new module lattice symplectic automorphism, and we also
show how to find a weak module lattice symplectic automorphism efficiently,
which can invalidate the omSVP assumption introduced by HAWK to prove its
forgery security. In Sect. 4, we present the provable deterministic polynomial-
time algorithm to solve module-LIP for the rank-2 module M ⊂ K

2 where the
number field K is a totally real number field. Section 5 concludes the paper
shortly.

2 Notations and Preliminaries

2.1 Notations

– The Euclidean norm of a ∈ R
n is denoted by ‖a‖. The transpose of A is

denoted by AT , and (A−1)T is abbreviated as A−T . Let GLn(R) and GLn(Z)
be the general linear group of rank n over R and Z respectively.

– We use J2 to represent the matrix
(

0 1
−1 0

)
, JB to represent B−1J2B for some

2 × 2 matrix B. We use rIn to represent the matrix diag(r, r, · · · , r), and

sometimes use r to represent rIn in matrix multiplications (such as r

(
x1

x2

)
=(

rx1

rx2

)
). We will also emphasize this point from time to time in the proof.

– For a number field K, the parameter K denotes degree of K, log ΔK, and a
basis of OK.

– For x in a number field K, we call x∗ is the complex conjugation of x if
σ(x∗) = σ(x), ∀σ ∈ HomQ(K, C). For matrix H = (hij), let H∗ denote
(h∗

ij)
T and H denote (h∗

ij) if all h∗
ij exist.

– For a ring A in a number field that are closed under complex conjugating,
the unitary matrices over A is Un(A) := {T ∈ Mn(A)|T ∗T = In}.

– For a number field K, we use μ(K) to denote the roots of unity in F. Note
μ(K) ⊂ OK and μ(K) = U1(OK)

– Assume G is an abelian group. For abelian groups A,B equiped a bilinear
map ϕ : A × B → G, we define the group product A · B as the abelian group
generated by {ϕ(a, b)}. We also usually use a · b to denote ϕ(a, b). Further
more, if there are canonical bilinear maps respectively between (A,B), (B,C),
(A·B,C), (A,B·C) satisfying associative law i.e. (a·b)·c = a·(b·c), ∀a ∈ A, b ∈
B, c ∈ C, then the group product also have associative law, i.e. (A · B) · C =
A · (B · C). For example, matrix groups A ⊆ K

n×m, B ⊆ K
m×l, C ⊆ K

l×t or
A,B,C are ideals of a ring.

2.2 Lattices

Lattices are discrete additive subgroups of R
m. A lattice is usually defined by a

set of n linearly independent basis vectors b1, b2, . . . , bn ∈ R
m. Any point in the

lattice can be expressed as an integer linear combination of the basis vectors.
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A lattice L of rank n and dimension m is a set of points in R
m that can

be expressed as integer combinations of n linearly independent basis vectors
b1, ..., bn. Denote B = (b1, ..., bn) as the basis of the lattice L, and then L =
{Bz : z ∈ Z

n}.

2.3 Number Theory

A number field K is a finite extension of the rational numbers Q. Any such K

is isomorphic to Q[X]/(P ) for an irreducible monic polynomial P . The degree
of P matches the degree of the extension. For any extension K of degree d,
there are exactly d embeddings σ1, ..., σd from K into the complex numbers C.
If an embedding sends K into the real numbers R, it’s called a real embedding.
Otherwise, it’s called complex. If an embedding is not real, it can be paired
with its complex conjugate to give another distinct complex embedding. We
use r1 to denote the count of real embeddings and r2 to denote the count of
complex embeddings up to conjugation. Therefore, the total count of embeddings
is d = r1 + 2r2. When all embeddings are real (i.e. r1 = d), we say the extension
K|Q is totally real. Conversely, when all embeddings are complex (i.e. 2r2 = d),
we call it totally imaginary.

CM Number Field. A CM (number) field L is a number field if it’s a quadratic
extension L/K where the base field K is totally real but L is totally imaginary.
The extension L/K is a Galois extension and we denote the Galois group by
Gal(L/K). There is a complex conjugation in Gal(L/K), i.e. ∃τ ∈ Gal(L/K) s.t.
∀x ∈ L, σi(τ(x)) = σi(x). We usually denote τ(x) by x∗.

Canonical Embedding. We call this map σ : x ∈ K 	→ (σ1(x), . . . , σd(x))T ∈
C

d canonical embedding of number field K. We will often identify K with the
image underlying its canonical embedding, then OK is a lattice. But note that
we are not representing elements in K using the canonical embedding.

The norm map defined over K is NK(z) =
∏

i σi(z). Similarly, the trace map
is TrK(z) =

∑
i σi(z). Regard z ∈ K as Q-linear map mz : x ∈ K 	→ zx ∈ K,

then we have NK(z) = det(mz) and TrK(z) = Tr(mz). Especially, if z ∈ K, then
NK(z), TrK(z) belong to Q. When there is no ambiguity, we drop the subscript.

The R-algebra KR := K⊗Q R is a real vector space of dimension d. If write K

as Q[X]/(P ), then we can use R[X]/(P ) to denote K⊗QR. To keep the discussion
concise, this paper will not delve deeply into the discussion about KR.

Rings of Integer. Let OK denote the ring of integers of a number field K.
OK is a free Z-module of rank d. The discriminant of K, denoted ΔK, is defined
as (det(σi(αj))i,j)2 ∈ Z, where (αj)1≤j≤d is any basis of OK. Specifically, there
exists some absolute constant c > 1 such that ΔK ≥ cd for all number fields K.
In particular, we always have d = poly(log ΔK).

When K is a totally real number field and L = K[X]/(X2 +1), Mureau et.al.
showed log ΔL = poly(log ΔK) and the following lemma in [20, Section 2.2].
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Lemma 2.1 ([20, Lemma 2.6]). Let K be a totally real number field and L :=
K[X]/(X2 +1). There exists a polynomial time algorithm A that, given as input
a Z-basis BK of OK, computes a Z-basis BL of OL.

Lemma 2.2. Let L be a CM number field with degree n. Then ∀x ∈ OL \ {0},
we have: TrL(x∗x) ≥ n, and TrL(x∗x) = n iff x is a root of unity.

Proof. Note ∀1 ≤ i ≤ n, σi(x∗x) = (σi(x))∗σi(x) = |σi(x)|2 ≥ 0. So TrL(x∗x) =∑n
i=1 σi(x∗x) ≥ n(

∏n
i=1 |σi(x∗x)|)1/n = n(N (x∗x))1/n ≥ n. The last inequality

holds for ∀r ∈ OL, N (r) ≥ 1. This means TrL(x∗x) = n iff all the equals are
taken iff |σi(x)| = 1 for all 1 ≤ i ≤ n iff1 x is a root of unity. �

Ideals. An (fractional) ideal I is an finitely generated additive subgroup of K

such that x · I ⊆ I for all x ∈ OK. When an ideal is contained in OK, we call it
an integral ideal and usually use the fraktur lower-case letter to denote it (e.g.
a). Principal ideal is an ideal generated by a single element a ∈ K i.e. aOK. The
product of two ideals I and J is their group product i.e. IJ = {∑i xiyi|xi ∈
I, yi ∈ J }. An ideal I has the form 1

d · a, where d ∈ OK \ {0}, a ⊂ OK. Then we
can define the algebraic norm N (I) := �(OK/a)/�(OK/(dOK)).

Modules. Assume K is a number field. An OK module M is a subset of K
� of

the form b1I1 + · · · + brIr, where the Ii’s are non-zero fractional ideals of K

and (b1, ..., br) are K-linearly independent vectors of K
�, for some � > 0. We call

B = (B, (Ii)1≤i≤r) a pseudo-basis for M , where B is the matrix whose columns
are the bi. The integer r is called the rank of the module. When r = �, we say
that the module has full rank.

2.4 Module-LIP

Definition 2.1. Let B = (B, (Ii)1≤i≤�) be a pseudo-basis of a rank-� module
M in K

k
R
. The pseudo-Gram matrix associated with B is denoted by G :=

(G, (Ii)1≤i≤�), where G = B∗B.

Definition 2.2. Let G = (G, (Ii)1≤i≤�) and G′ = (G′, (Ji)1≤i≤�) be two
pseudo-Gram matrices. They are said to be congruent if there exists U =
(ui,j)1≤i,j≤� ∈ GL�(K) such that G′ = U∗GU and ui,j ∈ IiJ −1

j , vi,j ∈ JiI−1
j ,

where V = (vi,j)1≤i,j≤� := U−1. Such U is called a congruence matrix between
G and G′. This defines an equivalence relation ∼ on the set of pseudo-Gram
matrices.

In [20] Mureau et al. proposed three equivalent definitions of isomorphism
between module lattices, and we only elaborate here the one we will use.

1 This is a basic result in number theory. One can find a argument in [20, Lemma
2.14].
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Definition 2.3. Let M,M ′ ⊂ K
�
R

be two modules of rank � with respective
pseudo-bases B = (B, (Ii)1≤i≤�) and B′ = (B′, (Ji)1≤i≤�). Let G (resp. G′)
be the pseudo-Gram matrix associated with B (resp. B′). We say that M,M ′

are isomorphic as module lattices if G and G′ are congruent.

Definition 2.4 (module-LIPB
K). For B a pseudo-basis of a module lattice

M ⊂ K
�
R

with associated pseudo-Gram matrix G, the (worst-case) search module
lattice Isomorphism Problem with parameter K and B, denoted by module-LIPB

K,
is, given as input any pseudo-Gram matrix G′ ∼ G (see Definition 2.2), to find
a congruence matrix between G and G′.

2.5 Algorithmic Consideration

Representation of Ideals and Modules. Assume BOK
= (αj)j=1,...,d is a

basis of OK. We represent elements in K (resp. KR) by their coordinates in the
basis BOK

, which is a vector in Q
d (resp. R

d). For x ∈ K represented by the
vector (x1, . . . , xd)T ∈ Q

d, we define size(x) :=
∑

i size(xi), where size(a/b) :=
�log2 |a|�+�log2 |b|� for a, b ∈ Z coprime. As is customary, we assume that in this
paper the BOK

is always an LLL-reduced basis of OK, meaning that σ(BOK
) forms

an LLL-reduced basis of OK. This choice is made to ensure that the coefficients
of αiαj under BOK

representation do not blow up.
In fact, σ(BOK

) being LLL-reduced implies that for any integral x ∈ OK,
size(x) = poly(d, ‖σ(x)‖). Inversely, ‖σ(x)‖ ≤ ∑

i |xi| · ‖σ(αi)‖ ≤ d3/2 · 2d ·
(Δ1/d

K
) · maxi |xi| since λd(OK) ≤ √

d · (Δ1/d
K

). This implies that the arithmetic
operations on elements in OK are in polynomial time. And then the arithmetic
operations on elements in K are in polynomial time.

A fractional ideal I is represented by a Z-basis (y1, ..., yd) of the ideal,
such that (σ(yi))1≤i≤d is an LLL-reduced basis of σ(I). In particular, we have
‖σ(yi)‖ ≤ 2d · λd(I) ≤ √

d · 2d · Δ
3/(2d)
K

· N (I)1/d (see e.g. [20, Section 2.3]). We
define size(I) :=

∑
i size(yi).

Lemma 2.3 ([20, Lemma 2.9]). Let B = (B, (Ii)1≤i≤r) be a pseudo-basis
of a rank r module M in K

�. Then, one can compute in polynomial time a
basis C ∈ C

d�×dr of σ(M) such that the column vectors ci of C satisfy ‖ci‖ ≤√
d · 2d · (Δ3/(2d)

K
) · max1≤j≤r ‖σ(bj)‖ · N (Ij)1/d, where bj is the j-th column of

B.

Basic Algorithms

Lemma 2.4 ([11, Lemma 2.8]). With the representation of ideals as described
above, one can sum up two ideals I and J in time poly(size(I), size(J )), mul-
tiply two ideals I and J in time poly(size(I), size(J ), log ΔK), compute the
inverse of an ideal I in time poly(size(I), log ΔK).

As a generalization of the product of ideals, when the bilinear map between two
abelian groups satisfies that it runs in polynomial time in the input size and
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outputs a lattice vector of polynomial size in the input size, we can compute the
group product of these two abelian groups with the Z-basis of them as input in
polynomial time.

The following lemma guarantees that the computation of roots of unity in a
given field is efficient.

Lemma 2.5 ([20, Corollary 2.11]). Let K be a degree d number field. Then,
K has at most 2d2 roots of unity, and there exists a polynomial-time algorithm
that, given a basis of the ring of integers OK, computes the roots of unity in K.

Lenstra-Silverberg Algorithm. Gentry and Szydlo initially proposed an
algorithm in [13] to recover x from x∗x and xR (where R is a certain type
of polynomial ring). Later, Lenstra and Silverberg extended this in [17–19]. We
describe here the main theorem presented in [19], which will be used later in
Sect. 3 and Sect. 4.

Definition 2.5. An order is a commutative ring of which the additive group is
isomorphic to Z

n for some n ∈ Z≥0. A CM-order A is an order such that:

1. A has no non-zero nilpotent elements.
2. A is equipped with an conjugate automorphism x 	→ x of A such that ϕ(x) =

ϕ(x) for all x ∈ A and all ring homomorphisms ϕ : A → C.

Definition 2.6. Let A be a CM-order. A lattice L is an A-lattice if it’s given
an A-module structure with the property that for all a ∈ A and x, y ∈ L one has
〈ax, y〉 = 〈x, ay〉.
An example of an A-lattice is the A-module A itself, with inner product 〈a, b〉 =
Tr(ab); here Tr : A → Z is the trace function of A as a Z-algebra. This A-lattice
is called the standard A-lattice.

In algorithms, we can represent an order by a system (bijk)n
i,j,k=1 of integers

with the property that, for some Z-basis α1, ..., αn of the order, one has αiαj =∑n
k=1 bijkαk for all 1 ≤ i, j ≤ n. In other words, for Z-basis α1, ..., αn of the

order, we specify the order by matrix representation of mαi
under the basis

α1, ..., αn, where mαi
means the action of multiplying αi. A lattice is specified

by the Gram matrix of a Z-basis b1, ..., bm. An A-lattice is specified as a lattice
and a system of nm2 integer coefficients that express αibj on b1, ..., bm, where
the (αi)n

i=1 and (bj)m
j=1 are as above.

Definition 2.7. An A-isomorphism f : L → M of A-lattices is an isomorphism
of A-modules with 〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ L.

One can see that if there is an A-isomorphism between an A-lattice L and
A-module M which is also a lattice, then M is also an A-lattice.

Theorem 2.1 ([19, Theorem 1.5]). There is a deterministic polynomial-time
algorithm that, given a CM-order A and an A-lattice L, decides whether or not
L is A-isomorphic with the standard A-lattice, and if so, computes such an A-
isomorphism.
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3 Solving O2
L
-LIP with Module Symplectic

Automorphism

In this section, we focus on the O2
L
-LIP, in which B is taken to be (I2, (OL)) in

module-LIPB
L , and L is a CM number field.

We firstly present a deterministic polynomial-time algorithm solving O2
L
-

LIP with the help of certain module lattice automorphism of O2
L
. It seems not

easy to find such a module lattice automorphsim, but we can compute another
weak module lattice automorphism. This weak module lattice automorphism will
invalidate the omSVP assumption used in the security analysis of HAWK.

3.1 An Algorithm for O2
L
-LIP with Automorphism of O2

L

In this subsection, we will mainly give a direct application of the Lenstra-
Silverberg algorithm on O2

L
-LIP as Theorem 3.1. Essentially, this provides a

reduction from O2
L
-LIP to finding certain module lattice automorphisms of O2

L
.

Recall J2 :=
(

0 1
−1 0

)
.

Theorem 3.1. Let L be a CM number field with degree 2d and B ∈ GL2(OL).
There is a deterministic polynomial-time algorithm that, given a basis of OL,
B∗B, and B−1J2B, outputs U2(OL)B.

Lemma 3.1. Let L be a CM number field with degree 2d. Then

U2(OL) = {
(

ξ1 0
0 ξ2

)
|ξ1, ξ2 ∈ μ(L)}

⋃
{
(

0 ξ1
ξ2 0

)
|ξ1, ξ2 ∈ μ(L)}.

Furthermore, �(U2(OL)) ≤ 2�(μ(L))2 ≤ 128d4.

Proof. Assume U =
(

a b
c d

)
∈ U2(OL), then 2d = TrL(1) = TrL(a∗a + b∗b) =

TrL(a∗a)+TrL(b∗b). By Lemma 2.2, one of a or b is zero, and the other is a root
of unity. Do same discussion for c, d, one of c or d is zero, and the other is a root
of unity. Similarity, one of a or c is zero, and the other is a root of unity. �
Lemma 3.2. Use the notation in Theorem 3.1. Denote B−1J2B by JB, OL by
R. Take H := 〈JB〉 = {I2, JB ,−I2,−JB}. Then we can define modified group
ring R 〈H〉 := R[H]/ 〈I2 + (−I2)〉 = R · I2 + R · JB. Denote I2 by e, JB by σ,
R 〈H〉 by R̃.Then R̃ is a CM-order. We usually use ae+bσ to denote the element
in R̃, where a, b ∈ R. And then Tr(ae + bσ) is just 2TrL(a).

Proof. R,H is communicative, so R 〈H〉 is communicative and the additive group
is isomorphic to Z

4d.
Assume ae+ bσ is nilpotent in R̃, in which a, b ∈ R. Then (ae+ bσ)m = 0 for

some m ∈ Z+. Consider (bx+a)m, x2+1 ∈ R[x]. Then ∃r(x) ∈ R[x] s.t.deg(r) ≤
1, and (bx + a)m − r(x) ∈ 〈

x2 + 1
〉
. Assume r(x) = cx + d, then we have
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(ae+ bσ)m − (cσ +de) = 0 for σ2 + e = 0. Therefore, cσ +de = 0 and this means
c = d = 0. If bx + a �= 0 then r(x) �= 0 since x2 + 1 doesn’t divide (bx + a)m. It’s
a contradiction. So bσ + ae = 0.

The conjugate automorphsim is ae + bσ 	→ a∗e − b∗σ. Then ∀ϕ : R̃ → C,
ϕ(ae) = ϕ(ae) since R is a CM-order and its conjugate automorphism is the
complex conjugation. And ϕ(σ)2 = ϕ(σ2) = −1 ⇒ ϕ(σ) ∈ {±i} ⇒ ϕ(σ) =
−ϕ(σ) = ϕ(σ). So ϕ(r) = ϕ(r) for all r ∈ R̃.

Thus R̃ is a CM-order. Note R̃ = Re ⊕ Rσ and Re, Rσ are invariant under
ae ⇒ Tr(ae) = Tr(ae|Re) + Tr(ae|Rσ) = 2TrR(a) = 2TrL(a). Here TrR means
trace on R. Similarly, since bσ(Re) ⊆ Rσ, bσ(Rσ) ⊆ Re, Tr(bσ) = 0. �
Proof (proof of Theorem 3.1). Use the setting in Lemma 3.2. We take M := O2

L

with the inner product 〈, 〉M : (x, y) ∈ M2 	→ 2TrL(x∗B∗By) ∈ Z. R̃ acts on M

as (ae+bσ,m) ∈ R̃×M 	→ a·m+b·σ·m (matrix multiplication). It makes M a R̃-
module (Note that the commutativity between rI2 and σ matrices multiplication
is utilized here to ensure the associativity of the ring operation.)

Assume e1 = B−1

(
1
0

)
= e · e1, e2 = B−1

(
0

−1

)
= σ · e1 ∈ M . Define

f : r ∈ R̃ 	→ r · e1. Then we have ∀a1e + b1σ, a2e + b2σ ∈ R̃,

1
2

〈f(a1e + b1σ), f(a2e + b2σ)〉M

=TrL((a1 · e1 + b1 · e2)∗B∗B(a2 · e1 + b2 · e2))

=TrL

(
(a∗

1, −b∗
1)(B

∗)−1B∗BB−1

(
a2

−b2

))

=TrL

(
(a∗

1, −b∗
1)

(
a2

−b2

))

=TrL(a∗
1a2 + b∗

1b2)

=
1
2
Tr((a∗

1a2 + b∗
1b2)e + (a∗

1b2 − b∗
1a2)σ)

=
1
2
Tr

(
(a1e + b1σ)(a2e + b2σ)

)

=
1
2

〈a1e + b1σ, a2e + b2σ〉 .

Obviously f is homomorphism of R̃-module. Note f(ae + bσ) = a · e1 + b · e2 =

B−1

(
a

−b

)
. f is injective since f(ae + bσ) = 0 ⇒ B−1

(
a

−b

)
= 0 ⇒

(
a

−b

)
=

0 ⇒ a = b = 0. f is surjective since ∀v ∈ M , assume Bv =
(

a
−b

)
∈ O2

L
, then

f(ae + bσ) = B−1

(
a

−b

)
= v.

In conclusion, we obtain M is A-isomorphic with the standard A-lattice, and
then is a A-lattice. Using the polynomial-time algorithm in Theorem 2.1, we
can get an A-isomorphsim φ between the standard A-lattice and M . Assume
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φ(e) = B−1

(
a1

b1

)
for some a, b ∈ R. Then TrL(a∗

1a1 + b∗
1b1) = 1

2 〈φ(e), φ(e)〉M =
1
2 〈e, e〉 = n. By Lemma 2.2, we have a1 ∈ μ(R), b1 = 0 or b1 ∈ μ(R), a1 = 0.

Assume φ(σ) = B−1

(
a2

b2

)
. Similarly, we obtain a2 ∈ μ(R), b2 = 0 or b2 ∈

μ(R), a2 = 0. Note M = Rφ(e)
⊕

Rφ(σ), so a1, a2 are not both 0. This means
(φ(e)|φ(σ)) ∈ B−1U2(OL)(by Lemma 3.1).

Then we compute (φ(e)|φ(σ)) · U2(OL) = B−1(μ(A) ·v)U2(OL) in polynomial
time since �(U2(OL)) ≤ 128d4. �

3.2 New Pseudo Lattice Automorphisms of Rank 2 Module Lattices
over a CM Number Field

A very simple but important lemma is given below. It’s actually the symplectic
property of the 2 × 2 matrix.

Lemma 3.3. ∀U ∈ GL2(K), UT J2U = det(U) · J2.

Proof. Assume U =
(

a b
c d

)
, then

UT J2U =
(

a c
b d

) (
0 1

−1 0

) (
a b
c d

)
=

(
0 ad − bc

−(ad − bc) 0

)
= det(U) · J2.

�
Proposition 3.1. Let K be a number field, B ∈ GL2(K), and r ∈ K. Given as
input a basis of OK, G = BT B, and det(B), we can compute JB := B−1J2B
and mr := B−1(rI2)B in the time of polynomial of the input size.

Proof. We claim that

JB = (det(B)I2) · G−1 · J2 and mr = (rI2),

and then the time to compute JB and mr is polynomial.
It is obvious that rI2 = B−1(rI2)B since rI2 is in center of M2(K), and we

also have

(det(B)I2) · G−1 · J2

=(det(B)I2)B−1(BT )−1J2B
−1B

=B−1(det(B)I2)
(
(B−1)T J2B

−1
)
B

=B−1(det(B)I2)(det(B−1))J2B

=B−1J2B,

where the third equality holds by Lemma 3.3. �



372 H. Luo et al.

Lemma 3.4. Let L be a CM number field. Define t∗ :
(

x
y

)
∈ L

2 	→
(

x∗

y∗

)
∈ L

2.

It’s an Q linear map. We claim that ∀U ∈ GL2(L), U∗J2t∗U = det(U)∗ · J2t∗.

Proof. Note that for all B ∈ M2(L), t∗ ◦B = (B∗)T ◦t∗ as Q linear map. Assume

U =
(

a b
c d

)
, then

U∗J2t∗U =
(

a∗ c∗

b∗ d∗

) (
0 1

−1 0

) (
a∗ b∗

c∗ d∗

)
t∗

=
(

0 (ad − bc)∗

−(ad − bc)∗ 0

)
t∗

= det(U)∗ · J2t∗.

�
Proposition 3.2 Let L be a CM number field, B ∈ GL2(L), and r ∈ L. Given
as input a basis of OL, G = B∗B, and det(B), we can compute B−1J2t∗B and
mr := B−1(rI2)B in the time of polynomial of the input size.

Proof. The computation of mr is same as Proposition 3.1. Similarly we claim
B−1J2t∗B = (det(B)∗I2) · G−1 · J2t∗, and then the time to compute B−1J2t∗B
is polynomial.

(det(B)∗I2) · G−1 · J2t∗ = (det(B)∗I2)B−1(B∗)−1J2t∗2B−1B

= B−1(det(B)∗I2)
(
(B−1)∗J2t∗B−1

)
B

= B−1(det(B)∗I2)(det(B−1)∗)J2t∗B

= B−1J2t∗B,

where the third equality holds by Lemma 3.4. �
Remark 1. We refer to B−1J2B and B−1J2t∗B as pseudo lattice automorphisms.
To further distinguish them, we refer to B−1J2B as a pseudo module lat-
tice automorphism. We use the term ’pseudo’ because when they act on the
module lattice generated by the pseudo-basis B, the resulting elements may
not necessarily still belong to the original module lattice. We call them auto-
morphisms because the inner product (over the Q-vector space) induced by
G = B∗ · B of a vector remains the same under the pseudo-automorphisms.
More precisely, in the case of B−1J2t∗B (the case of B−1J2t∗B is similar), for
any vectors vi = B−1(xi, yi)T , i = 1, 2, their inner product induced by G is
trL/Q(v∗

1Gv2) = trL/Q(x∗
1x2 + y∗

1y2). Applying the pseudo-automorphism on vi,
the images become (B−1J2t∗B)B−1(xi, yi)T = B−1(y∗

i ,−x∗
i )

T . Consequently,
the inner product of the images is trL/Q(x1x

∗
2 + y1y

∗
2) = trL/Q(x∗

1x2 + y∗
1y2), the

same as before. If considered on the L-vector space, B−1J2t∗B cannot preserve
the inner product, but B−1J2B can.
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3.3 Impact of Additional Automorphism on HAWK

In this section, we will show the impact of additional automorphism on HAWK
[8]. HAWK2 is one of the brightest prospects at round one of the NIST for
additional digital signatures [21]. HAWK is defined over a degree n, which is a
power of two (equal to 256, 512 or 1024). A HAWK private key is a randomly
generated basis for the lattice Z

2n, consisting of four polynomials f, g, F,G ∈
Rn = Z[X]/(Xn + 1), where f and g have small coefficients and together they
satisfy the NTRU equation

fG − gF = 1 ( mod Xn + 1)

The lattice secret basis B is
(

f F
g G

)
and the public key is

Q = B∗B =
(

f∗f + g∗g f∗F + g∗G
F ∗f + G∗g F ∗F + G∗G

)

In order to provide formal justification for the strong unforgeability under
chosen message attack of HAWK, they formally introduce omSVP and they pro-
vide reductions in the (quantum) random oracle model from HAWK to omSVP3,
i.e. if there exists an adversary A against the (Q)ROM-SUF-CMA game of
HAWK, then there exists an adversary B against the SAMPLE game in Fig. 1.
The omSVP is defined as follows.

Definition 3.1 (Average case omSVP [8]). An average case omSVP instance
is the pair ac-omSVP = (Init, samp). On input 1n, Init returns a form Q
sampled from some distribution over H�n(Kn), the roots of unity μ(Kn) for Kn,
a length bound Ln, and a Gaussian parameter σn. On input Q, samp returns
a sample from DQ,σn

. The adversary in Fig. 1 wins whenever it can utilize the
form Q and the samples it receives from samp to produce a non-trivial new
element of O�

K
that is sufficiently short.

Fig. 1. The SAMPLE game

Here the “non-trivial new” depends on the definition of Lsamples in samp(Q)
in the SAMPLE game. In the SAMPLE game of HAWK, Q = B∗B, we can
2 see https://hawk-sign, info.
3 See chapter 6 of the HAWK specification document for details.
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think that the sample x we get has the form x = B−1

(
x1

x2

)
and ‖

(
x1

x2

)
‖ < L.

However, Proposition 3.2 tells us that in addition to {αx}α∈μ(K), there is another
type of trivial new vector that we can obtain efficiently. More specifically, we can
compute the automorphism B−1J2t∗B by Proposition 3.2 and for a given sample

x = B−1

(
x1

x2

)
, applying this automorphism to x we will obtain an element

x� = B−1J2t∗B · B−1

(
x1

x2

)
= B−1

(
x∗
2

−x∗
1

)
in Fig. 1. Note that ‖x�‖ = ‖x‖ < L

and x� �∈ {αx}α∈μ(K), thus the {αx�}α∈μ(K) are non-trivial new elements. In the
case of HAWK, μ(K) = {Xi : i = 0, . . . , 2n − 1}, combined with automorphism
B−1J2t∗B, we get a subgroup G of Aut(Q) and G is isomorphic to the dihedral
group D2n

4. At present, it seems that this automorphism has little impact on
HAWK, but whether this automorphism will have a greater impact on HAWK
requires further research in the future.

It is worth noting that omSVP and forging signatures on Hawk are not com-
pletely equivalent. Intuitively even if one can find an x� that wins the SAMPLE
game, one must also find a message and salt that hashes into a particular coset
to make this a successful signature forgery. For more information see HAWK [8].

What’s more, Theorem 3.1 tells us that in secret key recovery of HAWK, given
Q = B∗B, if we can find B−1J2B, then we can get the secret key B efficiently by
Theorem 3.1, or equivalently, we have the following corollary, namely, if we have
additional information BT B, then we can find the secret key B. This provide
new perspectives for cryptanalysis of HAWK.

Corollary 3.1. Let L be a CM number field and B ∈ GL2(OL). There is a
deterministic polynomial-time algorithm that, given a basis of OL, B∗B, and
BT B, computes U2(OL)B.

Proof. Recall t∗ :
(

x
y

)
∈ L

2 	→
(

x∗

y∗

)
∈ L

2 and t∗ ◦ B = (B∗)T ◦ t∗ as Q

linear map. We can compute (BT B)−1(B∗B)T t∗ as Q-linear map. Then note
(BT B)−1(B∗B)T t∗ = B−1(B∗)T t∗ = B−1t∗B. By [20, Theorem 2.15] or Propo-
sition 4.1, we can find det(B) from det(G) in polynomial time. Using Propo-
sition 3.2, then we can compute B−1J2t∗B. In conclusion, we can compute
B−1t∗B · B−1J2t∗B = B−1J2B in polynomial time. Then we use Theorem 3.1.
�

4 An Algorithm for Module-LIP in Rank 2 over Totally
Real Number Fields

In this section, let K be a totally real number field and L = K[X]/(X2 + 1).
By Lemma 2.1 and the discussion of size, we can always assume that the input
parameter K and the input parameter L are equivalent. We can think of X as

4 D2n refers to the symmetries of the 2n-gon, a group of order 4n.
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the imaginary unit ı, but sometime we use X again. We’ll use this notation a
lot.

In last section, all operations performed on L in Corollary 3.1 can be directly
applied to K, then we can directly obtain a algorithm for solving O2

K
-LIP. This is

a deterministic polynomial-time algorithm for O2
K
-LIP, where K is a totally real

number field. In contrast, the result in [20] only offers a heuristic polynomial-time
algorithm for it.

In this section, with different approach and more elaborate processing, we
present a deterministic polynomial-time algorithm for the module-LIP of rank 2
over a totally real number field as this following theorem.

Theorem 4.1. Let K be a totally real number field and L = K[X]/(X2 + 1).
M ⊆ K

2 is an module lattice of rank 2 with pseudobasis parameter B. Algorithm
7 takes as input parameter K, B, and G′ an instance of module-LIPB

K, runs in
the polynomial time in the size if the input and finds all congruence matrices
between G and G′.

To illustrate the structure of our algorithm, we first present an informal
version of Algorithm 7 as below.

Algorithm 1: FindU(Informal)

Require: Parameter B = (B, (Ii)i) and K. An module-LIPB
K instance

G′ = (G′, (Ji)i).
Ensure: A congruence matrix U between G(the pseudo-Gram matrix associated

with B) and G′.
1: ±JBU ← ConjOfJ(B,K,G′) (Proposition 4.2)
2: (IB, vB, (BU)−1IBvB) ← EigenSubLat(JBU ,B,K,G′) (Proposition 4.3)
3: μ(L) · (BU)−1vB ← UseLS(IB, vB, (BU)−1IBvB,B,K,G′) (Proposition 4.4)
4: BU ← (vB|vB)((BU)−1vB|(BU)−1vB)−1

5: U ← B−1BU
6: return U .

Roughly speaking, our algorithm can be divided into three steps.
Firstly, we extract a ’automorphism’ of G′ from the information of parame-

ters B and G′, denoted by JBU = (BU)−1J2(BU). We call this step as ConjOfJ
that means finding conjugation of J2.

Secondly, we identify the intersection of the eigenspace of this automorphism
and the direct product of ideals in G, showing that it differs from the eigenspace
of J2 intersected with the lattice defined by B only by a factor of BU . This inter-
section is essentially a rank 1 module lattice, and with the BU factor accounted
for, we can easily compute a pseudo-basis for it. We call this step as EigenSubLat
that means computing sublattice composed by eigenvector.

Finally, we multiply the lattice obtained from the intersection by the inverse
of the ideal derived from the previously computed pseudo-basis, resulting in a
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cyclic module lattice OL ·v. Again, we will also obtain the value BUv. So we can
use the Lenstra-Silverberg algorithm to recover v from OL · v, in the sense of a
difference of one root of unity. We call this step as UseLS that simply means using
Lenstra-Silverberg algorithm. With BUv and v known, we can easily recover BU .

4.1 Application of Lenstra-Silverbergalgorithm

First we use the Theorem 2.1 (Lenstra-Silverberg algorithm) to give two spe-
cific algorithms, which will play an important role in the subsequent proofs.
The first algorithm in the proposition is just Theorem 2.15 in [20], while the
second algorithm can be seen as a high-dimensional generalization of the first
algorithm. It is worth noting that the two algorithms in Proposition 4.1 are actu-
ally algorithms for solving rank-1 module-LIP in K and K

2, respectively. We can
generalize them into a unified form for solving rank-1 module-LIP, but we have
chosen this current representation for easier understanding. So far, it seems that
only the first algorithm has received attention, both in terms of applications and
implementations.

Proposition 4.1. Let F be a CM-field or a totally real number field with degree
n. Let A be the ring of integers of F. [19, Examples 3.7(i)(ii))] showed that A is a
CM-order. The conjugate automorphsim is just the complex conjugation x 	→ x∗,
and the trace function is just TrF.

1. For α ∈ F, there is a deterministic polynomial-time algorithm LS1 that, given
A, αA and α∗α, then we can find αμ(A) in polynomial time, where μ(A)
means roots of unity in A.

2. For v =
(

v1
v2

)
∈ F

2 and B ∈ GL2(F), there is a deterministic polynomial-

time algorithm LS2 that, given A, B∗B, v∗v = v1v
∗
1 + v2v

∗
2 , and B−1(A · v) ,

then we can find B−1(μ(A) · v) in polynomial time, where μ(A) means roots
of unity in A.

Algorithm 2: LS1(informal)
Require: OF; lattice αOF for some α ∈ F;α∗α
Ensure: αμ(OF).

1: 〈, 〉M ← ((x, y) ∈ (αOF)
2 �→ TrF(

x∗y
α∗α

))
2: M ← (αOF, 〈, 〉M )
3: W ← LS(OF, M)
4: return W .
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Algorithm 3: LS2(informal)
Require: OF; lattice B−1(OF · v) for some v ∈ F

2;v∗v,B∗B
Ensure: B−1(μ(OF) · v).

1: 〈, 〉M ← ((x, y) ∈ (B−1(OF · v))2 �→ TrF(
x∗(B∗B)y

v∗v
))

2: M ← (B−1(OF · v), 〈, 〉M )
3: W ← LS(OF, M)
4: return W .

Proof. 1. Let M = αA. It’s an (fractional) ideal of A, so is an A-module. Define
the inner product in M as 〈, 〉M : (x, y) ∈ M2 	→ TrF( x∗y

α∗α ) ∈ TrF(A) ⊆ Z.
Then M is a integral lattice. Consider f : a ∈ A 	→ αa ∈ M . Obviously it’s
an isomophsim of A-module, and one can see 〈f(x), f(y)〉M = 〈x, y〉 for all
x, y ∈ A by the definition of 〈, 〉M . So f is an A-isomorphsim, and M is an
A-lattice isomorphic to standard A-lattice.
Using the polynomial-time algorithm in Theorem 2.1, we can get an A-
isomorphsim φ between the standard A-lattice and M . Assume φ(1) = α · a
for some a ∈ A. Then TrF(aa∗) = 〈φ(1), φ(1)〉M = 〈1, 1〉 = n. By Lemma 2.2,
we have a ∈ μ(A). Then we compute φ(1) ·μ(A) = αμ(A) in polynomial time
since �(μ(A)) ≤ 2n2.

2. Let M = B−1(A ·v) = A ·(B−1v). It’s an A-module. Define the inner product
in M as 〈, 〉M : (x, y) ∈ M2 	→ TrF(

x∗(B∗B)y
v∗v ) ∈ TrF(A) ⊆ Z. Then M is a

integral lattice.
Consider f : a ∈ A 	→ B−1(av) = a(B−1v) ∈ M . Obviously it’s an isomoph-
sim of A-module, and one can see 〈f(x), f(y)〉M = 〈x, y〉 for all x, y ∈ A
by the definition of 〈, 〉M . So f is an A-isomorphsim, and M is an A-lattice
isomorphic to standard A-lattice.
Using the polynomial-time algorithm in Theorem 2.1, we can get an A-
isomorphsim φ between the standard A-lattice and M . Assume φ(1) =
B−1(av) for some a ∈ A. Then TrF(aa∗) = 〈φ(1), φ(1)〉M = 〈1, 1〉 = n. By
Lemma 2.2, we have a ∈ μ(A). Then we compute μ(A) ·φ(1) = B−1(μ(A) · v)
in polynomial time since �(μ(A)) ≤ 2n2. �

4.2 Find JBU

Using the Proposition 3.1, we only need to know det(BU) to obtain JBU using G′.
We have known B and thus det(B). It remains to find det(U). This can be done
by Gentry’s algorithm i.e. LS1. To do so, we first need to extract det(U)·OK from
(Ii) and (Ji), which is not unexpected since U actually gives an isomorphism
from

⊕ Ii to
⊕ Ji.

Lemma 4.1 ([5, Proposition 1.4.2]). Follow the setup as in Definition 2.2.
We have det(U) · OK =

∏�
k=1 Ik

∏�
k=1 J −1

k .
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Proof. For any permutation σ ∈ S�,

�∏
k=1

ukσ(k) ∈
�∏

k=1

IkJ −1
σ(k) =

�∏
k=1

Ik

�∏
k=1

J −1
k .

By the definition of determinant, det(U) ∈ ∏�
k=1 Ik

∏�
k=1 J −1

k i.e.

det(U) · OK ⊆
�∏

k=1

Ik

�∏
k=1

J −1
k .

Symmetrically, we have det(V ) · OK ⊆ ∏�
k=1 Jk

∏�
k=1 I−1

k . Note that det(V ) =
det(U)−1, so

det(U) · OK =
�∏

k=1

Ik

�∏
k=1

J −1
k .

�
Proposition 4.2. Follow the setup provided in Theorem 4.1. U is a congruence
matrix. There is a deterministic polynomial-time algorithm that, given parameter
B, K, G′, computes ±JBU .

Proof. We show Algorithm 4 satisfies the requirements.

Algorithm 4: ConjOfJ
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i).

Ensure: ±JBU for a congruence matrix U between G(the pseudo-Gram matrix
associated with B) and G′.

1: det(U) · OK ← ∏l
k=1 Ik

∏l
k=1 J −1

k

2: det(U)2 ← det(G′)
det(B)2

3: W1 ← LS1(K, det(U) · OK, det(U)2)
4: W2 ← det(B) · W1 · G′−1 · J2

5: return W2.

Correctness: Step 1 is right by Lemma 4.1. Step 2 is right since det(G′) =
det(UT BT BU) = det(UT ) det(BT ) det(B) det(U) = det(B)2 det(U)2. Step 3 is
right by Proposition 4.1.
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Complexity: At Step 1, both ideals’ multiplication and inversion run in poly-
nomial time. At Step 2, both elements’ multiplication and inversion run in poly-
nomial time. Step 3 also runs in polynomial time by Proposition 4.1. �
Remark 2. Here, Algorithm LS1 can be replaced by an algorithm for computing
square roots over algebraic number fields.

Remark 3. If we consider B as a matrix over KR, where det(U) is still an element
of K, we can therefore obtain an approximate value of det(U)2 by calculating
det(G′)
det(B)2 , and then recover the exact value of det(U)2.

4.3 Find Sub Module Lattice Composed by Eigenvectors of JBU

For the remainder of this section, we need to transfer the whole setting from K
to L, since the eigenvalues ±ı of J2 are not in K. Specifically, we will consider
(B, (IiOL)) instead of (B, (Ii)), (G′, (JiOL)) instead of (G′, (Ji)). We can com-
pute IiOL by calculating

∑d
j=1 yijOL, where {yij} are a LLL-reduced Z-basis

for Ii. It can be done in time poly(size(Ii), log ΔL). We do the same thing for
Ji. So we can assume we input (B, (IiOL)), (G′, (JiOL)) when we input B,G′.
The following lemma tells us that the congruence matrix U does not change.

Lemma 4.2. Follow the setup provided in Definition 2.2. Define I ′
k := Ik ·

OL, J ′
k := Jk · OL 1 ≤ k ≤ �. Then U(

⊕�
k=1 J ′

k) =
⊕l

k=1 I ′
k. Here, the term

”direct sum” refers to the Cartesian product.

Proof. Assume ei ∈ L
�, and its i-th component is 1, while the rest are 0.

Then
⊕�

k=1 I ′
k =

∑�
k=1 OL · Ik · ek = OL

∑�
k=1 Ik · ek = OL

⊕�
k=1 Ik.(Note

that the products here can all be viewed as group products of Abelian groups,
and it is easy to verify the second equality sign from the point of view of
Abelian groups.) Similarly,

⊕�
k=1 J ′

k = OL

⊕�
k=1 Jk. Since U and elements in

OL commute under matrix multiplication, it’s enough to show U(
⊕�

k=1 Jk) =⊕�
k=1 Ik. In the setting in Definition 2.2, U = (uij) and uij ∈ Ii · J −1

j . So
∀v ∈ ⊕�

k=1 Jk, Uv’s i-th component is in Ii i.e. Uv ∈ ⊕�
k=1 Ik. This means

U(
⊕�

k=1 Jk) ⊆ ⊕�
k=1 Ik. Symmetrically, we have U−1(

⊕�
k=1 Ik) ⊆ ⊕�

k=1 Jk.
Thus U(

⊕�
k=1 Jk) =

⊕�
k=1 Ik. �

Remark 4. Lemma 4.2 essentially states the following: if (B, (Ii)i) and (B′, (Ji)i)
are two pseudo-bases of the same module lattice M ⊂ K

�, then (B, (IiOL)i) and
(B′, (JiOL)i) are two pseudo-bases of the same module lattice OLM ⊂ L

�.

In the following we show by computation the intersection of the eigenspace
of J2 with the module lattice defined by B. And then consider the analogue after
conjugating.

Definition 4.1. Let K be a totally real number field and L = K[X]/(X2+1). For

parameter B and K, assume B =
(

a c
b d

)
∈ K

2×2. Define IB := (b − ıa)I1OL ∩



380 H. Luo et al.

(ıc−d)I2OL, and vB := 1
b−ıa

(
a
b

)
+ 1

ıc−d

(
c
d

)
. We can see IB is an (fractional)

ideal of OL, vB ∈ L
2, and IB, vB, I−1

B can all be computed in polynomial time
with inputs of the parameters B,K.

Lemma 4.3. Follow the setup provided in Theorem 4.1. U is a congruence
matrix. Denote BU by B̃. Assume J

˜B = B̃−1J2B̃ and mı = ıI2 = B̃−1ıI2B̃.
Then ker(J2 − ıI2) ∩ B(I1OL

⊕ I2OL) = IB · vB and ker(J
˜B − mı) ∩

(J1OL

⊕J2OL) = B̃−1(IB · vB).

Proof. Firstly,

ker(J2 − ıI2) ∩ B(I1OL ⊕ I2OL)

={r1

(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, J2(r1

(
a
b

)
+ r2

(
c
d

)
) = ı(r1

(
a
b

)
+ r2

(
c
d

)
)}

={r1

(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL,

(
r1b + r2d

−r1a − r2c

)
=

(
ı(r1a + r2c)
ı(r1b + r2d)

)
}

={r1

(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, r1b + r2d = ı(r1a + r2c)}

={r1

(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, r1(b − ıa) = r2(ıc − d)}

={ r

b − ıa

(
a
b

)
+

r

ıc − d

(
c
d

)
|r ∈ (b − ıa)I1OL ∩ (ıc − d)I2OL}

=(b − ıa)I1OL ∩ (ıc − d)I2OL · { 1
b − ıa

(
a
b

)
+

1
ıc − d

(
c
d

)
}

=IB · vB,

and then

ker(J
˜B − mı) ∩ (J1OL ⊕ J2OL)

= ker(B̃−1(J2 − ıI2)B̃) ∩ (J1OL ⊕ J2OL)

=B̃−1(ker(J2 − ıI2) ∩ B̃(J1OL ⊕ J2OL))

=B̃−1(ker(J2 − ıI2) ∩ B(I1OL ⊕ I2OL))(use Lemma 4.2)

=B̃−1(IB · vB)(by above).

�
The following lemma guarantees that we can compute the intersection above

efficiently (without knowing B̃). In fact, the integer version of intersection is
already well known, we just need to modify it slightly.

Lemma 4.4. Let L be a number field with degree n, and BOL
be a basis of OL.

Then for A ∈ L
2×2 and a lattice L ⊆ L

2, there is a deterministic polynomial-time
algorithm that, given BOL

, A, and a basis BL of L, outputs ker(A) ∩ L.
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Proof. Assume rank(L) = r. Note that ker(A)∩L = BL(ker(A ·BL)∩Z
r). Since

A · BL ∈ L
2×r, we can compute some U ∈ Q

2n×r in polynomial time such that

A · BL =
(

BOL
0

0 BOL

)
U . Then ker(A) ∩ L = BL(ker(U) ∩ Z

r), and ker(U) ∩ Z
r

can be computed by using Hermit Normal Form (or Smith Normal Form) in
polynomial time. �

Combining the lemmas and definitions in this subsection, we can directly
obtain the following proposition.

Proposition 4.3. Follow the setup provided in Theorem 4.1. U is a congruence
matrix. There is a deterministic polynomial-time Algorithm 5 that, given JBU

and parameters B, K, G′, output the ideal IB, the vector vB, and the rank 1
module lattice (BU)−1IBvB.

Algorithm 5: EigenSubLat
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i). JBU for a congruence matrix U between G(the pseudo-Gram

matrix associated with B) and G′. Write B =

(
a c
b d

)

.

Ensure: IB, vB, (BU)−1IBvB.
1: IB ← (b − ıa)I1OL ∩ (ıc − d)I2OL

2: vB ← 1
b−ıa

(
a
b

)

+ 1
ıc−d

(
c
d

)

3: (BU)−1IBvB ← ker(JBU − mı) ∩ (J1OL ⊕ J2OL)
4: return IB, vB, (BU)−1IBvB.

Remark 5. Here we have computed a concrete pseudo-basis of IBvB directly. In
fact, if we first figure out IBvB by finding ker(J2 − ıI2) ∩ B(I1OL ⊕ I2OL), and
then find any pseudo-basis of IBvB, it will not affect the following operations.
From this point of view it is better to generalize our algorithm to the case on
KR (in this case our IB is not a fractional ideal of OK).

4.4 Use Lenstra-Silverberg Algorithm

In the last subsection we ended up with a rank 1 module lattice. Just turn it
into a cyclic module and we can use the Proposition 4.1.

Proposition 4.4. Follow the setup provided in Theorem 4.1. U is a congru-
ence matrix. There is a deterministic polynomial-time Algorithm 6 that, given
IB, vB, (BU)−1IBvB and parameters B, K, G′, output μ(L) · (BU)−1vB, where
μ(L) is the roots of unity contained in L.

Proof. Denote BU by B̃ and (BU)−1IBvB by L′.
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Algorithm 6: UseLS
Require: Parameters B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i). The ideal IB, vector vB. The rank 1 module lattice
(BU)−1IBvB for a congruence matrix U between G(the pseudo-Gram matrix
associated with B) and G′.

Ensure: μ(L) · (BU)−1vB.
1: L ← I−1

B (BU)−1IBvB(regard r ∈ I−1
B as rI2)

2: ω ← v∗
BvB

3: W ← LS2(L, G′, ω, L)
4: return W .

Correctness: We have L = I−1
B ·(B̃)−1IBvB = B̃−1I−1

B ·IB·vB = B̃−1(OL·vB).
By Proposition 4.1, we can use L, G′ = B̃∗B̃, L = B̃−1(OL · vB), ω = v∗

BvB to
find B̃−1μ(L) · vB.

Complexity: On Step 1, one can compute I−1
B π1(L′) firstly, where π1 is

the projection of vectors onto their first component (WLOG, we can assume
π1(L′) �= {0} i.e. π1(B̃−1vB) �= 0). Note π1(L′) is fractional ideal of OL.(we have
shown L′ = IB(B̃−1vB), then π1(L′) = IBπ1(B̃−1vB).) So it’s a product of
fraction ideals and can be computed in polynomial time. Then take one vector(

x0

y0

)
of the reduced basis of L′ and consider embedding ι : x1 ∈ I−1

B π1(L′) 	→(
x1

x1(x−1
0 y0)

)
∈ L

2. We have ι(I−1
B π1(L′)) = L′.(L′ = IB(B̃−1vB) ⇒ ∀

(
x
y

)
∈

L′, x−1y is a constant.) Therefore the image of a basis of I−1
B π1(L′) under ι is

a basis of L′ and can be computed in polynomial time. So step 7 runs in poly-
nomial time. Step 2 is just conjugation and matrix multiplication. Step 3 runs
in polynomial time by Proposition 4.1. �
Remark 6. If the reader can accept the language of group products, then Step 1
is just a group product that corresponds matrix multiplications as the bilinear
map and lattice vectors in L

2 as output.

4.5 The Algorithm

Proof (proof of Theorem 4.1). We prove the correctness and the time complexity
as below.

Correctness: Denote BU by B̃. Assume U is a congruence matrix U between
G and G′. By Proposition 4.2 we can assume σ = (B̃)−1J2(B̃) after step 3. This
time we have (I, v,L′) is just (IB, vB, (B̃)−1IBvB) by Proposition 4.3. Next, by
Proposition 4.4 we have W = B̃−1μ(L) · vB, where μ(L) is the roots of unity
contained in L.
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Algorithm 7: FindU
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i).

Ensure: A congruence matrix U between G (the pseudo-Gram matrix associated
with B) and G′.

1: P ← ConjOfJ(B,K,G′)
2: S ← ∅

3: for σ ∈ P do
4: (I, v, L′) ← EigenSubLat(σ,B,K,G′))
5: W ← UseLS(I, v, L′,B,K,G′)
6: for w ∈ W do
7: D ← (v|v)(w|w)−1

8: V ← B−1D
9: if V is a congruence matrix between G and G′ then

10: S ← S ∪ {V }
11: end if
12: end for
13: end for
14: return S.

Then we assume w = B̃−1v after Step 6. In this time, w = B̃−1v = B̃−1v =
B̃−1v (note B̃ ∈ K

2×2) and v, v are L-linear independent (note 〈v, v〉 = 0). So
(w|w) = B̃−1(v|v) and then D = B̃. Finally, we get V = B−1B̃ = U .

Complexity: We can compute matrix products and inverses over K (resp. L) in
polynomial time. By Proposition 4.2, 4.3, 4.4, Step 1, 4, 5 all run in polynomial
time of size(B,K,G′). And �(P ) = 2, �(W ) = �(U2(OL)) are in poly(degree(K)).
In summary, the whole algorithm runs in polynomial time. �
Remark 7. We could do argument similar to the proof of Corollary 3.1 to show
that: under the additional condition that a hint B̃T B̃ is given, Theorem 4.1 still
holds for CM number fields.

5 Conclusion

In this paper, we introduce a new tool called (pseudo) symplectic automorphism
of the module, with which we can solve O2

L
-LIP efficiently for a CM number

field L. Although we do not know how to find such automorphism efficiently in
general, a weak one can always be computed in polynomial time, which is enough
to invalidate the omSVP assumptions utilized in HAWK’s security proof and
directly results in a provable deterministic polynomial-time algorithm solving
module-LIP for rank-2 modules in K

2 where K is a totally real number field.
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Abstract. The Lattice Isomorphism Problem (LIP) was recently intro-
duced as a new hardness assumption for post-quantum cryptography.
The strongest known efficiently computable invariant for LIP is the genus
of a lattice. To instantiate LIP-based schemes one often requires the exis-
tence of a lattice that (1) lies in some fixed genus, and (2) has some good
geometric properties such as a high packing density or small smoothness
parameter.

In this work we show that such lattices exist. In particular, build-
ing upon classical results by Siegel (1935), we show that essentially any
genus contains a lattice with a close to optimal packing density, smooth-
ing parameter and covering radius. We present both how to efficiently
compute concrete existence bounds for any genus, and asymptotically
tight bounds under weak conditions on the genus.

The introduction of the lattice isomorphism problem (LIP) as a hardness
assumption for cryptography raises a new family of interesting questions [3,
10,11]. LIP asks to determine if two lattices are isomorphic, i.e., if one is an
orthonormal transformation of the other. One way to answer this question in the
negative is using invariants, and the genus of a lattice, gives the strongest known
efficiently computable invariant for LIP. If two lattices fall into distinct genera
LIP thus becomes easy. Therefore, in the context of LIP, one often works inside
a certain genus or a family of genera. In particular, notions like randomness,
reductions and hardness questions are suddenly restricted to within a genus.

In this work we study the geometric properties of random lattices in a fixed
genus G and use that to show the existence of a lattice L ∈ G with a good packing
density, smoothing parameter or covering radius. We show that the strong con-
dition of being in a fixed genus does in fact not change much to the behavior we
are used to from random lattices. This is both interesting from a theoretic per-
spective, but in addition it allows to tightly instantiate cryptographic schemes
that are based on LIP. Previously, the existence of such lattices was assumed
heuristically [1,3,11].

Random Lattices and the Existence of Good Packings. Within cryptography
families of random lattices play an important role, for example we often consider
random q-ary lattices qZ

n ⊂ L ⊂ Z
n which are related to LWE, NTRU or SIS.

Within cryptanalysis random lattices often play the role of worst-case instances
and therefore their properties are used in heuristic analysis of algorithms. For
c© International Association for Cryptologic Research 2025
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example, heuristically we assume that lattices we encounter follow the Gaussian
Heuristic which in full generality says that the number of nonzero lattice points
in a ‘nice’ volume S is about vol(S)/ vol(L). What is precisely meant here by
‘random’ is often not so important as these heuristics give good estimates in
practice.

On the mathematical side however, the notion of a random lattice is more
explicitly defined. Here we look at the whole space of lattices L[n,D] of some
fixed dimension n ≥ 2 and (co)volume D > 0. There exists a natural and finite
Haar measure on L[n,D], which thereby induces a natural probability distribu-
tion D(L[n,D]). While the space L[n,D] and the distribution D(L[n,D]) can be
quite complicated to understand, it allows for remarkably clean and provable
statements about the expected behavior of lattices following this distribution.
For example, for any star-shaped volume S the expected number E[|S ∩L\{0}|]
of nonzero lattice points in S over D(L[n,D]) is precisely equal to vol(S)/ vol(L),
i.e., what the Gaussian Heuristic prescribes. However, in this case it is a provable
result.

Now by choosing S ⊂ R
n to be a ball of radius λ we can determine the

expected number of nonzero lattice points of length at most λ. If this expectation
is strictly less than 2 we know that there must exist a lattice L ∈ L[n,D] that has
strictly less than 2 vectors of length λ. Because any lattice point occurs in a pair
±x of the same length we thus know that this lattice contains no lattice points of
length at most λ and thus that its minimum distance λ1(L) := min{‖v‖ : v ∈ L}
satisfies λ1(L) > λ. By picking the appropriate λ and by slightly refining this
argument one gets the Minkowski-Hlawka Theorem, which says that there exists
a lattice L ⊂ R

n with λ1(L) ≥ (2ζ(n) vol(L)/ωn)1/n ≈ √
n/2πe · vol(L)1/n,

where ωn is the volume of the n-dimensional unit ball. This is close to optimal
as Minkowski’s Theorem says that λ1(L) ≤ mk(L) := 2 · (vol(L)/ωn)1/n.

So from the average-case behavior of random lattices one can show the exis-
tence of a lattice with a large minimum distance, i.e., that of a good lattice
packing. More generally, random lattices are known to have other good geomet-
ric properties. Besides a good packing density, they also have a large covering
radius and a small smoothing parameter in expectation. And again, this imme-
diately results in a proof of existence for lattices with such good properties.

Random Lattices in a Fixed Genus. Our question is if the same can be said when
we add the seemingly strong restriction of falling in some fixed genus. Two (full-
rank) integral lattices L1,L2 ⊂ R

n fall into the same genus if they are equivalent
over the p-adic integers Zp for all primes p, i.e., if L1 ⊗Z Zp

∼= L2 ⊗Z Zp
1 Com-

puting if two lattices are equivalent over Zp is efficient, essentially because one
can (block) diagonalize (gram) matrices over this local ring, and the equivalence
class can then simply be read from the (block) diagonalized form. Furthermore,

1 One could view this as formally replacing the lattice B·Zn by B·Zn
p , and the standard

Euclidean inner product with image Z becomes the bi-linear form (x, y) �→ ∑
i xiyi

with image Zp. An isomorphism has to preserve both the Zp structure as the bi-linear
form.



388 W. van Woerden

assuming that vol(L1) = vol(L2), one only has to check this equivalence over
the finite number of primes p dividing 2 vol(Li)2. Given the prime factorization
of vol(Li)2 the genus equivalence is thus efficiently computable.

Minkowski showed that any genus only contains a finite number of isomor-
phism classes [L1], . . . , [Lm] [20]. Furthermore, if one restrict the usual Haar
measure to a fixed genus G we obtain a natural distribution D(G) on these
classes, where each [Li] is sampled relative to its mass m([Li]) = 1/|Aut(Li)|,
where Aut(Li) is the automorphism group of Li.

Now that we have a natural notion of randomness on a genus G, the question is
if we can say something about the expected behavior of certain lattice properties.
It turns out that the answer is yes, and in fact most of the theory for this was
already developed almost 90 years ago by Siegel [26] in the form of mass formulas.

For an integer k ≥ 1 and an integral lattice L we denote the number of lattice
point with squared norm k by NL(k) := |{x ∈ L : ‖x‖2 = k}|. Generally, com-
puting NL(k) is a very hard problem, however Siegel showed that its expected
value over a genus is essentially equal to a converging product of local densities
at each prime p. Each local density is efficiently computable and similarly as
for the genus one only really has to compute them for the primes p dividing
2k vol(G)2. Siegel’s mass formula thus implies, that for a genus G we can effi-
ciently compute the expectation NG(k) := E[L]←D(G)[NL(k)] (given the prime
factorization of 2k vol(G)2).

We can now make a similar argument as for the Minkowski-Hlawka Theorem.
For an integer λ ≥ 1 consider the sum Sλ :=

∑λ
k=1 NG(k). This sum represents

the expected number of nonzero lattice vectors of squared norm at most λ for
a lattice L sampled from D(G). Now if Sλ < 2 we know that there must exist
a lattice L ∈ G with strictly less than 2 and thus precisely 0 nonzero vectors of
squared norm less than λ. So we have that λ1(L)2 > λ, and by appropriately
picking λ this can show the existence of a good lattice packing in G. This rea-
soning was already used in an unpublished work by Conway and Thompson, and
written down by Milnor [19], to show the existence of odd unimodular lattices,
integral lattices L with volume 1 which contain vectors of odd squared norm,
with λ1(L)2 ≥ �( 35ωn)−2/n�. For the case of even unimodular lattices, that only
exist when 8|n, Milnor [19], using computations of Serre [25], claims a similar
bound of λ1(L)2 ≥ 2� 1

2 (
3
5ωn)−2/n�. Note that for both odd and even unimodular

lattices the existence bound is only slightly weaker than the Minkowski-Hlawka
Theorem, and they quickly converge to each other for large n. The additional
restriction of falling in a fixed genus therefore does not seem strong enough to
influence the good geometric properties of random lattices too much.

Contributions. The first aim of this work is to survey these classical and maybe
surprising results related to the genus. The existing literature however only seems
to consider the unimodular case and the packing density2. In this work, we
therefore extend these results in two ways that are of interest to cryptography.

2 As far as we know.
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Firstly, we extend the Minkowski-Hlawka-like Theorem to almost any genus.
In particular, under light conditions3 on the genus G, we show the existence of a
good lattice packing L ∈ G, with minimum distance equivalent to the Minkowski-
Hlawka Theorem up to a small factor O(1)1/n. We achieve this by bounding the
local densities and thus the expected number of lattice vectors NG(k) of squared
norm k.

Theorem 1 (General packing). For any integral genus G in dimension n ≥ 6
such that rkp(G) ≥ 6 for all primes p, and any constant 0 < c ≤ 1, we have

Pr
[L]←D(G)

[

λ1(L)2 ≥
⌈

c2 ·
(
7ζ(3)
9ζ(2)

· vol(L)
ωn

)2/n
⌋]

> 1 − cn.

In particular, there exists a lattice L ∈ G with

λ1(L)2 ≥
⌈(

7ζ(3)
9ζ(2)

· vol(L)
ωn

)2/n
⌋

≈ n/2πe · vol(L)2/n.

Note that in fact we show something stronger, i.e., by roughly lowering the
bound on the first minimum by a constant factor c we show that it is attained
with a probability of at least 1 − cn over D(G). This follows directly from an
application of Markov’s inequality in the proof and the result closely matches the
behavior of the first minimum for random lattices [2]. Furthermore, this allows
us to show the existence of a lattice L ∈ G for which both L and its dual L∗

have a good packing density.
Secondly, we show that the reasoning can be extended to prove the existence

of lattices with a good covering radius v(L) := min{λ > 0 : dist(L, x) ≤ λ ∀x ∈
R

n} and a good smoothing parameter ηε(L), even for the relatively large values
ε � e−n that are of interest in cryptography.

Theorem 2 (General smoothing). For any integral genus G in dimension
n ≥ 6 such that rkp(G) ≥ 6 for all primes p, constants C = 26.1 and 0 < c ≤ 1,
and ε ≥ C · (ce)−n · vol(G)−1, we have

Pr
[L]←D(G)

[

ηε(L∗) ≤ 1
c

·
(

C · vol(L∗)
ε

)1/n
]

> 1 − cn.

In particular, there exists a lattice L ∈ G such that ηε(L∗) ≤ (C · vol(L∗)/ε)1/n
.

3 We require that the rank rkp(G) of a Gram matrix G mod p over Fp of any lattice
L ∈ G is at least 6. Note that this property only has to be checked for primes
p| det(G), and is (after normalization) true for most integral lattices of sufficiently
large dimension. In particular it is true for Z

n, SIS, LWE and NTRU lattices with a
sufficiently high dimension and number of samples.
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Theorem 3 (General covering radius). For any integral genus G in dimen-
sion n ≥ 6 such that rkp(G) ≥ 6 for all primes p, and constants C = 26.1 and
e−1(2C/(3 vol(G)))1/n ≤ c ≤ 1, we have

Pr
[L]←D(G)

[

v(L∗) ≤ 1
c

·
(√

n/2π + 1
)

·
(
2
3
C · vol(L∗)

)1/n
]

> 1 − cn.

In particular, when additionally n ≥ 7, there exists a lattice L ∈ G such that

v(L∗) ≤
(√

n/2π + 1
)

·
(
2
3
C · vol(L∗)

)1/n

≈ √
e ·

√
n/2πe · vol(L∗)1/n.

Besides these essentially tight asymptotic bounds we also explain how to effi-
ciently compute concrete existence bounds for any fixed genus.

Applications. Finally, we give some applications of these results for the instan-
tiation of LIP-based schemes. Suppose we have an efficiently decodable lattice
L with unique decoding radius ρ = Θ(λ1(L)), and suppose that

gap(L) := max{mk(L)/λ1(L),mk(L∗)/λ1(L∗)} ≤ f,

i.e., the primal and dual minimum distances and the decoding radius are within
a factor O(f) from optimal. Heuristically, the larger f is the easier it is to decode
or find short vectors in this lattice (or its dual). Given such a lattice [11] shows
how to instantiate an encryption scheme where the security is solely based on
distinguishing between some isomorphism classes [L1], [L2] constructed from L
that lie in the same genus. However in this construction the geometric gaps
blow up to gap(Li) = O(f3) which reduces the concrete security significantly.
Our results show the existence of a lattice L′ in the same genus as L but such
that gap(L′) = O(1). This can in turn be used to create a suitable pair L1,L2

for which gap(Li) = O(f), and thus we reduce the cubic loss to only a small
constant loss. The encryption scheme from [4] based on the same framework
benefits from the same improvement. Similarly, we show how to instantiate the
signature scheme from [11] with a constant loss O(f) instead of a quadratic loss
O(f2).

Another interesting work [3] introduces constructions based on LIP for
the unimodular lattice Z

n. To instantiate their scheme the authors assume
that there exists a lattice L in the odd unimodular genus Godd of Z

n with
λ1(L) ≥ Ω(n/ log(n)) and ηε(Zn) ≤ ηε(Zn)/

√
log(n) for ε < n−ω(1)n. Simi-

larly, the encryption scheme [1] based on LIP requires the existence of an even
unimodular lattice L such that λ1(L) ≥ 4

√
72n, and this is conjectured to be

true for n ≥ 85. We raise that the first claim for the first minimum is already
answered by [19,25], and the second claim for the smoothing parameter follows
from Lemma 4. In fact, this shows a much stronger result than required.



Dense and Smooth Lattices in Any Genus 391

1 Preliminaries

Notation. Vectors are column vectors. For a ring R we denote GLn(R) as the
general linear group of n × n invertible matrices over R. For R ⊂ R we denote
S>0

n (R) as the space of positive-definite symmetric matrices over R. We denote
On(R) for the group of orthonormal transformations over the reals R. We denote
ζ(·) for the Riemann zeta function.

1.1 Lattices and Quadratic Forms

Lattices. A lattice L is a discrete additive subgroup of the Euclidean space R
n.

We call the dimension of the real span Span
R
(L) ⊂ R

n the rank rk(L) of a
lattice, and say that L ⊂ R

n has full-rank if rk(L) = n. In this work we restrict
ourselves to full-rank lattices. Full-rank lattices L ⊂ R

n can be represented by
a full-rank basis B ∈ GLn(R) such that

L = L(B) := B · Z
n = {Bx : x ∈ Z

n}.

Such a basis representation is not unique, i.e., for any basis B ∈ GLn(R) and any
unimodular matrix U ∈ GLn(Z) we have L(B) = L(B · U).

For a basis B we call GB := B�B ∈ S>0
n (R) the gram matrix of B and a

gram matrix of the lattice L(B). Note that a gram matrix does not uniquely
define a lattice, in particular for any basis B ∈ GLn(R) and any orthonormal
transformation O ∈ On(R) we have GB = GOB while L(B) and L(OB) are
usually distinct. From a gram matrix G ∈ S>0

n (R) one can always construct a
corresponding lattice basis by computing the unique Cholesky decomposition
G = C�C where C is an upper-triangular matrix with positive diagonal. Gen-
erally however, the Cholesky decomposition of GB does not return the basis B
of L(B), but some basis C = O · B of O · L(B) for some O ∈ On(R).

For a lattice L we write L∗ for its dual lattice given by

L∗ := {x ∈ R
n : ∀y ∈ L, 〈x, y〉 ∈ Z}.

As expected we have that (L∗)∗ = L. If B is a basis and G a gram matrix of L,
then (B−1)� is a basis and G−1 a gram matrix of L∗.

Lattice Properties. Due to the discrete and additive nature of a lattice there
exists a positive minimum (Euclidean) distance λ1(L) called the first mini-
mum between any two distinct lattice points. Equivalently, this can be defined
as λ1(L) := minx∈L\{0} ‖x‖. For a (full-rank) lattice L = L(B) we define its
(co)volume vol(L) as |det(B)| which is independent of the chosen basis. Equiv-
alently, we have vol(L) = det(G)

1
2 for any gram matrix G ∈ S>0

n (R) of L.
Furthermore, note that vol(L∗) = vol(L)−1. The first minimum and the volume
of a lattice L ⊂ R

n are related to each-other by Minkowski’s Theorem which
says that

λ1(L) ≤ mk(L) := 2 · vol(L)
1/n

ω
1/n
n

≈
√

2n/πe · vol(L)1/n,
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where ωn is the volume of the n-dimensional unit ball. The covering radius v(L)
of a (full-rank) lattice L ⊂ R

n is the minimum radius r > 0 such that any target
t ∈ L is at distance at most r from the lattice, i.e., such that L + rBn = R

n.
We call a lattice integral or rational, if all for all pair-wise x, y ∈ L the

inner product 〈x, y〉 ∈ Z is integer or rational, respectively. Equivalently this
means that for any basis B of L the gram matrix GB = B�B has integer or
rational coefficients, i.e., GB ∈ S>0

n (Z) or GB ∈ S>0
n (Q), respectively. Note that

a lattice being integral is a weaker condition than being integer L ⊂ Z
n, and

many well-known lattices are integral but not integer. We define the scale of a
rational lattice L by scale(L) := max{0 < s < ∞ : 1

sL is integral}, which can
efficiently be computed from any gram matrix G of L. We call an integral lattice
L normalized if scale(L) = 1. Note that every rational lattice can be normalized
to an integral lattice as L/ scale(L). If a lattice L is rational, then its dual is
also rational and thus integral up to scaling. We define the parity of an integral
lattice L by par(L) := gcd({‖x‖2 : x ∈ L})/ gcd({〈x, y〉 : x, y ∈ L}) ∈ {1, 2},
which can efficiently be computed from any gram matrix G of L. For an integral
lattice L ⊂ R

n with gram matrix G ∈ S>0
n (Z) and any prime p we define its

p-rank by rkp(L) := rkFp
(G), which is independent of the choice of gram matrix.

Besides the first minimum λ1(L) of a lattice we can also ask how many
lattice vectors exists of a certain length. This information is usually denoted by
the theta series of a lattice.

Definition 1 (Theta series). Let L be a lattice, the theta series θL(q) of L is
the formal q-series

θL(q) =
∑

v∈L
q‖v‖2

.

For integral lattices L we obtain the formal power series θL(q) = 1+
∑∞

k=1 NL(k)·
qk, where NL(k) := |{v ∈ L : ‖v‖2 = k}| is the number of vectors with squared
norm k.

Note that for an integral lattice L we have NL(k) = 0 for all 0 < k < λ1(L)2, i.e.,
the first λ1(L)2 − 1 non-trivial coefficients of the theta series are 0. Theta series
and their relation to the first minimum of a lattice will play an important role
in this work. Another property that is important in lattice-based cryptography
is the smoothing parameter.

Definition 2 (smoothing parameter). For ε > 0 the smoothing parameter
ηε(L) of a lattice L is given by the minimum s > 0 such that θL∗(exp(−πs2)) =
1 + ε.

While this might not immediately be clear from the definition, the smoothing
parameter indicates how large the standard deviation of a centered (continuous)
Gaussian must be such that it becomes ε-close to uniform over the quotient
R

n/L. The latter property can for example be used in security proofs of signature
schemes to show that the signatures sampled from a discrete Gaussian with
standard deviation σ ≥ ηε(L) do not leak any information. Preferably we thus
want the smoothing parameter ηε(L) to be small, something which we informally
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call good smoothing. A lattice with a good smoothing automatically also has a
small covering radius.

Lemma 1 ([24, Lemma 6.1]). For any lattice L ⊂ R
n we have

v(L) ≤
(√

n/2π + 1
)

· η 3
2
(L).

Note that computing the first minimum, (part of) the theta series, the covering
radius, or the smoothing parameter is generally a hard problem for which the
best algorithms take at least 2Ω(n) time.

Quadratic Forms. In the literature on post-quantum cryptography and crypt-
analysis it is common to work with bases and lattices. On the contrary, in the
mathematical study of lattices it is quite common to work with gram matrices
and (positive definite) quadratic forms. We discuss how those are related and
how they essentially give a different view on the same object.

Consider a basis B ∈ GLn(R) and its gram matrix G = B�B. A gram matrix
is positive definite and naturally defines a positive definite real quadratic form

fG : R
n → R, x �→ x�Gx =

n∑

i=1

n∑

j=1

Gijxixj .

From now on we will simply identify fG with G and call a gram matrix G
a quadratic form or simply a form. Due to the positive-definiteness such a
quadratic form defines a norm by ‖x‖G :=

√
x�Gx. Note that for v = Bx

we have the following identity:

‖v‖22 = (Bx)�Bx = x�B�Bx = x�Gx =: ‖x‖2G.

More generally, G defines an inner product 〈x, y〉G := x�Gy, and for Bx,By we
have that

〈Bx,By〉 = (Bx)�By = x�B�By = x�Gy = 〈x, y〉G.

In terms of geometry it is thus equivalent to consider the vector Bx under the
Euclidean geometry or the vector x under the geometry induced by G. Every
lattice point of L(B) can be written as Bx for an integer vector x ∈ Z

n, thus
on the quadratic form side we always consider the lattice Z

n (but we change
its geometry). For a quadratic form G one could thus similarly define its first
minimum by λ1(G) = minx∈Zn\{0} ‖x‖G, or its (co)volume vol(G) :=

√
det(G)

matching those of any corresponding lattice.
Throughout this work when we talk about a lattice we always implicitly

assume it is represented by some basis or some gram matrix. Generally, we will
stick to the lattice terminology to present our main results, but for the proofs
we will often switch to quadratic forms as they are more natural to work with
in this setting.
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1.2 Random Lattices

The space of full-rank lattices in R
n of volume 1 can be identified by the quotient

L[n] := GLn(R)/GLn(Z). Here GLn(R) represents all the bases of volume 1, and
GLn(Z) represents the basis transformations that turn one basis into another
basis of the same lattice.

The space GLn(R) has a natural invariant Haar measure, and Siegel proved
in 1945 [27] that the mass of L[n] is finite under the projection of this Haar
measure. After normalization this yields a probability distribution μn over L[n].
By construction this distribution is invariant under both orthonormal and basis
transformations, i.e., for any measurable set A ⊂ L[n] and all O ∈ GLn(R), and
U ∈ GLn(Z) we have μn(OAU) = μn(A). A random lattice is thus a unit lattice
L ∈ L[n] sampled under the probability distribution μn. More generally, simply
by scaling, we also speak of random lattices of some fixed volume D > 0.

In 1943, Hlawka proved the following, maybe surprising result about the
expectation of a function f : R

n → R over a random lattice.

Theorem 4 ([17,27]). Let n ≥ 2 and let f : R
n → R be an Riemann-integrable

function such that ‖x‖n+c
f(x) is bounded on R

n for some fixed c > 0. Then
∫

L∈L[n]

∑

x∈L\{0}
f(x)dμn =

∫

Rn

f(x)dx.

In particular, for a star-shaped volume S the expected number of nonzero lattice
vectors in S for a random lattice of volume D is vol(S)/D. Furthermore, the
expected number of primitive lattice vectors is vol(S)

ζ(n)D .

Knowing the expected number of (primitive) lattice points in a certain volume
is enough to show the existence of a lattice with a good packing.

Corollary 1 (Minkowski-Hlawka theorem [17,21]). For any dimension n
and volume D there exists a lattice L ∈ L[n,D] with

λ1(L) ≥ (2ζ(n) vol(L)/ωn)1/n ≈
√

n/2πe · vol(L)1/n.

Proof. For any (2ζ(n)D/ωn)1/n > ε > 0 let λ = (2ζ(n)D/ωn)1/n − ε > 0 and
let Sλ ⊂ R

n be the n-dimensional ball with radius λ. Then by construction

vol(Sλ)
ζ(n)D

=
λn · ωn

ζ(n)D
< 2,

and thus the expected number of primitive lattice vectors in Sλ is strictly less
than 2. There thus exists a lattice L ∈ L[n,D] such that |Sλ ∩ L| < 2 which
implies that |Sλ ∩ L| = 0 as any lattice vectors occurs as a pair ±x. So λ1(L) >
(2ζ(n) vol(L)/ωn)1/n − ε. In particular, letting ε → 0 shows that

sup
L∈L[n,D]

λ1(L) ≥ (2ζ(n) vol(L)/ωn)1/n.

It is a classical result (see e.g. [29, p. 29-31]) that this supremum is attained by
some lattice L ∈ L[n,D], from which the Theorem follows. ��
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Ignoring the small factor4 (2ζ(n))1/n the quantity gh(L) := (vol(L)/ωn)1/n ≈√
n/2πe · vol(L)1/n is often called the Gaussian heuristic of a lattice L. Besides

the existence of a lattice L ⊂ R
n with λ1(L) ≥ gh(L) one can also show concen-

tration results that show that the first minimum of a random lattice becomes
heavily concentrated around gh(L) for growing n (see [2] for a survey). In crypt-
analysis, this is often also heuristically assumed to be the case for ‘random’
lattices in a more broader sense, hence the name.

Beyond the existence of a good packing one can also show the existence of a
lattice with a good (small) smoothing parameter for any ε > 0.

Corollary 2 (Random smoothing). For any dimension n and volume D and
any ε > 0 there exists a lattice L ∈ L[n,D] with

ηε(L) ≤
(
vol(L)

ε

) 1
n

.

Proof. Without loss of generality we normalize to have volume D = 1, and
consider the function f(x) = e−πs2‖x‖2

for s > 0 and for which ‖x‖n+1
f(x) is

clearly bounded on R
n. Applying Theorem 4 we obtain that

∫

L∗∈L[n]

∑

x∈L∗\{0}
e−πs2‖x‖2

dμn =
∫

Rn

e−πs2‖x‖2
dx = s−n.

Let s := ε− 1
n , by the above there exists a lattice L∗ ∈ L[n] such that

θL∗(exp(−πs2)) = 1 +
∑

x∈L∗\{0}
e−πs2‖x‖2 ≤ 1 + s−n = 1 + ε.

Then by definition for the dual L ∈ L[n] of L∗ we have ηε(L) ≤ s. ��
Note that Corollary 2 goes beyond just combining Corollary 1 with bounds based
in the (dual) minimal distance like ηε(L) ≤ √

ln(1/ε)/λ1(L∗) for ε ∈ (0, e−n].
In particular, it gives a better and tighter bound for large ε > e−n, which is
precisely the regime interesting for cryptography. This bound is represented in
a different setting in [8, Proposition 4.].

1.3 Lattice Isomorphism Problem

The lattice isomorphism problem asks if two lattices L1 and L2 are related
to each-other by an orthonormal transformation. In terms of bases this means
there exists both an orthonormal transformation on the left and a unimodular
(basis) transformation on the right that transforms one basis into the other. In
the setting of gram matrices or quadratic forms the orthonormal transformation
is irrelevant and only the unimodular transformation remains but is applied
(transposed) to both sides.
4 One could argue that for the actual Gaussian Heuristic this factor should not be

neglected, but it is often ignored as it quickly converges to 1 as n grows.
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Definition 3 (Lattice Isomorphism). We call two full-rank lattices L1,L2 ⊂
R

n isomorphic and write L1
∼= L2 if there exists an orthonormal transformation

O ∈ On(R) such that O ·L1 = L2. If Li = L(Bi) for bases B1, B2 ∈ GLn(R) then
L1

∼= L2 if and only if:

1. there exist O ∈ On(R), U ∈ GLn(Z) such that O ·B1 ·U = B2, or equivalently,
2. there exist U ∈ GLn(Z) such that U�G1U = G2 where Gi = B�

i Bi.

In the quadratic form setting the gram matrices G1, G2 are called Z-equivalent
or simply equivalent if they represent isomorphic lattices. Given two isomorphic
lattices it is computationally a hard problem to find the isomorphism between
them.

Definition 4 (Search LIP). Given a pair of isomorphic lattices L1,L2 ⊂ R
n,

compute an orthonormal transformation O ∈ On(R) such that O · L1 = L2.

We allow for the lattice to be either represented by a basis or by a gram matrix.
In the case of a gram matrices G1, G2 we rephrase search LIP as finding an
unimodular transformation U ∈ GLn(Z) such that U�G1U = G2. This makes
the orthonormal transformation irrelevant. Furthermore note that if we restrict
to integral lattices, then this formulation of LIP only involves integer arithmetic.

The best provable algorithm to solve search LIP runs in time nO(n) [15]. Fur-
thermore, the general algorithms for solving LIP [12,22,23] require as a first step
the computation of short lattice vectors, which takes time 2O(n). The high com-
plexity of these algorithm is what makes LIP interesting as a hardness assump-
tion.

Often however, the security proof of LIP based cryptographic schemes is not
based on the search variant, but on a distinguishing variant. For any lattice L
we will denote its isomorphism class by [L] = {O · L : O ∈ On(R)}. We can then
ask to distinguish between different isomorphism classes.

Definition 5 (Distinguish LIP). Let L1,L2 be non-isomorphic lattices. Given
any lattice L ∈ [Lb] for a uniformly random b ← U({1, 2}). Recover b.

2 The Genus of a Lattice

For any two isomorphic lattices L1
∼= L2 we have that vol(L1) = vol(L2). The

(co)volume of the lattice is thus an efficiently computable invariant for lattice
isomorphisms. Other examples of this are the scale(L) or parity par(L) of an
integral lattice. If two lattices have distinct invariants we can use that to solve
distinguish LIP, simply by computing the same invariant for L ∈ [Lb] and see if it
matches that of L1 or L2. When instantiating a cryptographic scheme based on
distinguishing LIP [1,3,4,11] we thus should make sure that the non-isomorphic
lattices L1,L2 match on all efficiently computable invariants.

In terms of quadratic forms the lattice isomorphism problem boils down to
Z-equivalence, which is seemingly hard. It is natural however to look at weaker
forms of equivalence over larger rings R ⊃ Z which might be more efficient to
compute.
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Definition 6 (R-equivalence). Let R ⊃ Z be any ring containing Z. We say
that two integral lattices L1,L2 ⊂ R

n are R-equivalent if L1 ⊗Z R ∼= L2 ⊗Z R.
Alternatively, two integral quadratic forms G1, G2 ∈ S>0

n (Z) are R-equivalent if
there exists a U ∈ GLn(R) such that U�G1U = G2 over R.

One such weaker form of equivalence is that over the p-adic integers Zp. In
contrast to Z-equivalence it is efficient to compute if two integral lattices are
Zp-equivalent for any prime p. In short, it follows from the fact that forms are
(block-)diagonalizable over Zp, after which the equivalence is relatively easy to
determine. See [6, Chapter 15.7] for more information on this computation and
how to determine a complete set of invariants for Zp-equivalence. Furthermore,
assuming that vol(L1) = vol(L2), we only have to focus on those primes p
that divide 2 vol(Li)2, as for all other primes the Zp-equivalence follows directly.
Assuming that we know the factorization of vol(Li)2 we can thus determine the
Zp-equivalence of L1 and L2 for all primes p.

Definition 7 (Genus [6, Chapter 15]). The genus gen(L) of an integral
lattice L ⊂ R

n consists of all (integral) lattices of dimension n that are Zp-
equivalent to L for all primes p. Given an integral lattice L, and the prime fac-
torization of vol(L)2, we can efficiently compute a canonical label of the genus
it corresponds to.

In case we are not only considering full-rank lattices there is an extra condi-
tion that the lattices must be equivalent over the reals. However, two full-rank
lattices of the same dimension are always equivalent over R so we can safely
ignore this condition.

Two lattices L1
∼= L2 that are Z-equivalent are also Zp equivalent for any

prime p given that Z ⊂ Zp, and thus gen(L1) = gen(L2). In particular, if we have
lattices L1,L2 such that gen(L1) �= gen(L2) it follows directly that they cannot
be equivalent, and this can be efficiently computed. In this way, the genus of a
lattice gives us a strong invariant for lattice isomorphisms. Note that as a result
it is also well defined to speak about the genus of a Z-equivalence class [L], and
denote gen([L]) := gen(L). As far as we know the genus covers all the known
efficiently computable invariants, which makes it interesting for us to study. As
a result we can also simply define vol(G) := vol(L), scale(G) := scale(L) and
rkp(G) := rkp(L) for L ∈ G which is independent of the chosen representative.

Remark 1. For simplicity we only consider here the genus of integral lattices.
Because the structure of the genus is invariant under integer scaling one could
easily extend these notions to rational lattices. In particular, scale(L) is an invari-
ant of the (rational) genus. More generally, similar notions exist for quadratic
forms over the ring of integers of number fields [18,30].

2.1 Randomness over the Genus

Every genus consists of a finite number of Z-equivalence classes [20] and thus
one could consider a uniform distribution U(G) over it. However, mathematically,
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this is not the most natural distribution and we have to give each equivalence
class a slightly different weight depending on the size of their automorphism
group.

Definition 8 (Randomness over a genus). For a genus G we define the
probability distribution D(G) which samples [L] ∈ G with relative mass m(L) :=
1/|Aut(L)|. In particular, for any [L] ∈ G we have

Pr
[L′]←D(G)

[L′ ∼= L] = m(L)
∑

[L′]∈G
m(L′)

.

Just as in the case of fully random lattice the measure m(L) = 1/Aut(L)
again follows naturally, this time from the Haar measure on On(R). More
precisely, equip On(R) with its volume 1 Haar measure. The isometry class
[L] is then endowed with an On(R)-invariant measure m with total measure
m([L]) = m(On(R) · L) = 1

|Aut(L)| , because L is left invariant by precisely
|Aut(L)| orthonormal transformations. Furthermore, this is precisely the distri-
bution one gets when restricting the general probability distribution μn,D to the
genus G. In particular, if we sample a random L′ ∈ μn,D under the restriction
that L′ ∈ G, then the probability that L′ ∼= L for some L ∈ G is precisely
m(L)/∑

[L′′] m(L′′).
Given one representative L ∈ G in a genus there is a natural notion of p-

neighbours within the same genus for any prime p � 2 vol(G)2, namely all those
lattices L′ in the same genus for which L ∩ L′ has index p in both L and L′.
These connections turn the genus into a graph where the nodes are isomorphism
classes [L] and the edges are p-neighbours. For large enough primes p this graph is
furthermore connected5. By picking any of those (finite) p-neighbours uniformly
at random one obtains a random walk over this graph. Another reason for the
distribution D(G) to be natural is that for large enough p it is the natural limit
or stationary distribution for this random walk, and this precisely allows us to
sample efficiently from D(G) as stepping through this graph is efficient [16]. In
fact for large enough p, a single step is enough to be negligibly close to the
distribution of D(G) [5], i.e., any isomorphism class is reached with relative
weight w(L).
Theorem 5 ([5,16]). There exists an efficient algorithm to sample from D(G).

2.2 Siegel’s Mass Formulas

Given that the genus is an invariant under Z-equivalence we can view any par-
ticular genus as a set of Z-equivalence classes. This set is always finite, but more
surprisingly we can even compute a notion of its size, i.e., its mass.

5 We ignore here the rare case that the genus splits into multiple spinor-genera.
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Theorem 6 (Smith-Siegel-Minkowski Mass formula [26]). Let

M(G) :=
∑

[L]∈gen(G)

1
|Aut(L)|

be the mass of G, where the sum is over all equivalence classes in the genus. Given
as input a gram matrix G of any lattice L ∈ G, and the prime factorization of
det(G)2, the mass M(G) can be computed in polynomial time in the input, n and
log(vol(G)).
This directly gives an estimate for the number of equivalence classes.

Corollary 3. Let G be a non-empty genus of dimension n and let M(G) be
its mass. Then the genus contains at least 2M(G) and for n > 10 at most
2n · n! · M(G) distinct equivalence classes.

Proof. Clearly {±In} ⊂ Aut(L) and thus |Aut(L)| ≥ 2 for any lattice. Fur-
thermore, Feit [13] showed in 1996 that with some exception for n ≤ 10, Z

n

has the largest automorphism group for any n-dimensional lattice L and thus
|Aut(L)| ≤ |Aut(Zn)| = 2n · n! for any n > 10. The latter is one of the first
significant results based on the classification of finite simple groups in an unpub-
lished manuscript from 1984 of Weisfeiler [31]. The result follows immediately
from these bounds and the definition of the mass formula. ��
We remark that asymptotically most lattices have a trivial automorphism group
and thus we expect the number of equivalence classes to be quite close to 2M(G).
While the existence of such a mass formula might already be surprising, one can
go even further then this.

Note that computing the first minimum λ1(L)2 = argmink≥1{NL(k) > 0}
is already a hard problem. So to say anything about the theta series of a given
lattice is very hard. However, once we start to look at the expected theta series
over a genus, we suddenly are able to compute it efficiently.

Theorem 7 (Siegel’s mass formula [26]). For a non-empty genus G we define
the expected theta series as

ΘG(q) = E[L]←D(G) [θL(q)] =

∑
[L]∈G

1
|Aut(L)| · θL(q)

∑
[L]∈G

1
|Aut(L)|

=: 1 +
∞∑

k=1

NG(k) · qk.

Given the prime factorizations of vol(G)2 and k > 0 the coefficient NG(k) of
ΘG(q) can be efficiently computed.

Remark 2. While these mass formulas are indeed computable in polynomial
time, it is not necessarily and easy task to do it. In particular, the computations
are very prone to errors. For an extensive explanation on how to compute the
Smith-Siegel-Minkowski mass formula see [7]. In Sect. 4.1 we explain (partly) how
to compute Siegel’s mass formula. Both mass formulas have been implemented
in Sagemath [28]. For example, the total mass of a genus can be computed by
calling Q.conway_mass() on a QuadraticForm Q.



400 W. van Woerden

3 On the Existence of Lattices with Good Properties

3.1 Lattices with Good Properties

The theta series give a lot of information about the geometric properties of a
lattice. Due to this connection we can also hope that from the expected theta
series over a genus, we can derive the existence of a lattice with good geometric
properties within this genus.

One such example is to derive a good lattice packing. Given that the genus
already fixed the determinant this means we want to find a lattice with a large
first minimum λ1(L). Note that for such a lattice the theta series coefficients
N1(L), . . . , Nλ1(L)2−1(L) are zero. In case the first few coefficients of the expected
theta series are small we can conclude by a counting argument that at least
one of the lattices must have only zeros there. Beyond existence, recall that
for a non-negative random variable X and a > 0, Markov’s inequality states
that Pr[X < a] ≥ 1 − E[X]

a , which can directly gives us a lower bound on
the probability density of such lattices. This leads to a density analogue of the
Minkowski-Hlawka Theorem restricted to a fixed genus.

Lemma 2 (Good packing density). Let G be a genus with expected theta
series ΘG(q) = 1+

∑∞
k=1 NG(k)qk. If

∑λ−1
k=1 NG(k) < 2r for some 0 < r ≤ 1 and

some integer λ ≥ 1, then Pr[L]←D(G)[λ1(L)2 ≥ λ] > 1 − r. In particular, then
there exists a lattice L ∈ G such that λ1(L)2 ≥ λ.

Proof. We consider the non-negative random variable
∑λ−1

k=1 NL(k) where [L] ←
D(G). By definition its expectation is given by

∑λ−1
k=1 NG(k). By Markov’s

inequality we then obtain

Pr
[L]←D(G)

[
λ−1∑

k=1

NL(k) < 2

]

≥ 1 −
∑λ−1

k−1 NG(k)
2

> 1 − 2r
2

= 1 − r,

from which the result follows as
∑λ−1

k=1 NL(k) < 2 if and only if λ1(L)2 ≥ λ. For
the existence result note that the probability is strictly positive for r ≤ 1. ��
Remark 3. One can observe that Lemma 2 proves a stronger statement than
merely the existence of a good packing. It also gives a lower bound on the
probability that any lattice sampled from D(G) achieves a certain minimum
distance. Moreover, this can be turned into a quantitative statement on the
number of such lattices by considering the mass M(G) of the genus. In particular,
if

∑λ−1
k=1 NG(k) < 2r for 0 < r ≤ 1 then there exist at least 2(1 − r)M(G) non-

isomorphic lattices L ∈ G such that λ1(L)2 ≥ λ.

Remark 4. Just as for general random lattices there exists a variant of Siegel’s
mass formula that computes the number of primitive vectors of squared norm
k (see e.g. [14]). Clearly, Lemma 2 works just a well with these quantities. For
large n however, it does not seem to make a large difference (just as for the
Hlawka-Minkowski Theorem), so we do not consider this small improvement.
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To obtain a good dual lattice packing one can apply the same Lemma to the
(scaled) dual theta series. Note that one could even apply the same proof to the
primal and dual theta series simultaneously to obtain a single lattice with both
a good primal and dual packing.

Lemma 3 (Good primal and dual packing). Let G be a genus with expected
theta series ΘG(q) = 1 +

∑∞
k=1 NG(k)qk, and let cG−1 for c = scale(G−1)−1 ∈

Q be the integral scaled dual genus with expected theta series ΘcG−1(q) = 1 +∑∞
k=1 NcG−1(k)qk. Let 0 < r ≤ 1 and let λ, λ′ ≥ 1 be integers. If

∑λ−1
k=1 NG(k) +

∑λ′−1
k=1 NcG−1(k) < 2r, then Pr[L]←D(G)

[
λ1(L)2 ≥ λ and λ1(L∗)2 ≥ λ′

c

]
> 1 − r.

In particular, then there exists a lattice L ∈ G with λ1(L)2 ≥ λ and λ1(L∗)2 ≥ λ′
c .

The existence of a good dual packing immediately also implies the exis-
tence of a lattice with good smoothing as for ε ∈ (0, e−n] we have ηε(L) ≤√
ln(1/ε)/λ1(L∗). Usually however, we are interested in the smoothing for larger

values of ε. In that case we can consider the following result.

Lemma 4 (Good smoothing parameter). Let ε > 0, 0 < r ≤ 1 and let s > 0
be such that ΘG(exp(−πs2)) < 1 + rε, then Pr[L]←D(G)[ηε(L∗) < s] > 1 − r. In
particular, then there exists a lattice L ∈ G such that ηε(L∗) < s.

Proof. Note that ΘG(exp(−πs2))− 1 is the expectation of the non-negative ran-
dom variable ΘL(exp(−πs2))− 1 where [L] ← D(G). By Markov’s inequality we
then obtain

Pr
[L]←D(G)

[
ΘL(exp(−πs2)) − 1 < ε

] ≥ 1 − ΘG(exp(−πs2)) − 1
ε

> 1 − rε

ε
= 1 − r,

from which the result follows as by definition ΘL(exp(−πs2)) < 1 + ε if and
only if ηε((L′)∗) < s. For the existence result note that the probability is strictly
positive for r ≤ 1. ��

3.2 Example: Unimodular Lattices

Let us consider the easiest, but in some sense also most interesting genera, those
of unimodular lattices. These lattices are self-dual, which protects them from
Hull attacks like [9]. In addition, due to their small determinant one could in
principle describe them using small matrix entries, potentially leading to smaller
keys. Because unimodular lattices have determinant 1 we only have to focus on
the p-adic equivalence for p = 2. Furthermore, because 2 does not divide the
determinant the full 2-adic equivalence is determined by the parity par(L) ∈
{1, 2} of these unimodular lattices. We thus obtain two genera, the odd and
even one. Here we consider as an example the even case for which all the vectors
v ∈ L have an even squared norm ‖v‖2.

The even case includes the famous root lattice E8 and the Leech lattice Λ24.
Even unimodular lattices only exist in dimensions that are a multiple of 8 (see
e.g. [25, p. 53]). For even unimodular lattices the expected theta series is given
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by a rational scaling of the q-expansion of the Eisenstein series [19]. To be more
precise, let n ≥ 8 with 8|n, and let Gn,e be the genus of even unimodular lattices
of dimension n = 8m, then we have

ΘG8m,e
(q) = E4m(q2) = 1 +

−8m
B4m

∞∑

k=1

σ4m−1(k)q2k,

where Bi is the i-th Bernoulli number, and σz(m) =
∑

d|m dz is the sum of
positive divisors function.

Using the above expected theta series and Lemma 2 we can prove the exis-
tence of an even unimodular lattice with first minimum essentially as indicated
by the Gaussian Heuristic.

Lemma 5 (Even packing). Let n = 8m ≥ 8 with m ∈ N, then there exists an

n-dimensional even unimodular lattice L with λ1(L)2 ≥ 2
⌈

1
2 ·

(
3ζ(n/2)
2ωn

)2/n
⌋

≈
n/2πe.

Proof. Let k′ =
⌈

1
2 ·

(
3ζ(4m)
2ω8m

)1/4m
⌋
. To apply Lemma 2 we need to show that

the sum of the first k′ − 1 non-trivial coefficients of ΘG8m,e
(q) is bounded by 2.

Recall that these have values −8m
B4m

σ4m−1(k) for k = 1, . . . , k′ −1. First, note that

k′−1∑

k=1

σ4m−1(k) =
k′−1∑

k=1

∑

d|k
d4m−1 =

k′−1∑

d=1

⌊
k′ − 1

d

⌋
d4m−1 ≤

k′−1∑

d=1

(k′ − 1) · d4m−2

≤ (k′ − 1) · 1
4m − 1

(
k′ − 1

2

)4m−1

<
(k′ − 1

2 )
4m

4m − 1

≤ 3ζ(4m) · ω−1
8m

24m+1 · (4m − 1)
,

where we use that d4m−2 ≤ ∫ d+ 1
2

d− 1
2

x4m−2dx. Secondly, by using the common
identity for even Bernoulli numbers and the volume ω8m of an 8m-dimensional
unit ball, we get

−8m
B4m

= 8mω8m · 2
4m−1

ζ(4m)
.

Combining the two we get that

−8m
B4m

·
k′−1∑

k=1

σ4m−1(k) < 8m · ω8m · 2
4m−1

ζ(4m)
· 3ζ(4m) · ω−1

8m

24m+1 · (4m − 1)
=

3
2

· 4m
4m − 1

≤ 2.

We can conclude by Lemma 2 and the even parity that there exists a lattice
L ∈ Gn,e with minimum λ1(L)2 ≥ 2k′. ��
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Remark 5. We want to emphasize that this result is not novel. The bound
in Lemma 5 is essentially the same as claimed by Milnor [19, p. 47], where a
lower bound of 2 · � 1

2 (
3
5ωn)−2/n� is given based on computations in [25]. The

proof here uses a different representation of the Eisenstein series and is more
elementary. For a concrete comparion see Fig. 1. For odd unimodular lattices
Milnor [19, p. 46] gives a full proof for a lower bound of λ1(L)2 ≥ �( 35ωn)−2/n�.
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Fig. 1. First minimum guarantee for even unimodular lattices as given by Lemma 5
and [19], compared to concrete values directly computed using ΘGn,e and Lemma 2.

For the smoothing parameter we can also prove a result that is essentially
tight, and similar to Corollary 2 for random lattices. We restrict ourselves to
ε ≥ Ω(e−n) as the general bounds based on the dual minimum distance often
fail to give tight results in this important regime for cryptography.

First we require two small technical lemmas.

Lemma 6 (Technical lemma I). For x ≥ 2 and any integer y ≥ 1 we have
σx(y) ≤ ζ(x) ·yx, where σx(y) =

∑
d|y dx is the sum of positive divisors function.

Proof. Let y = pa1
1 · · · pan

n , be the prime factorization of y with p1, . . . , pn distinct
primes and n ≥ 0, ai > 0. Now for any prime power pa we have σx(pa) =
∑

d|pa dx = 1 + px + . . . + pax = pax · 1−p−(a+1)x

1−p−x ≤ pax · 1
1−p−x . The sum of

divisors function σx is multiplicative for coprime inputs and thus we get

σx(y) =
n∏

i=1

σx(pai
i ) ≤

n∏

i=1

paix
i · 1

1 − p−x
≤ yx ·

∏

p prime

1
1 − p−x

= ζ(x) · yx.

��
Lemma 7 (Technical lemma II). Let 0 < c ≤ C for some constant C > 0,
then we have for x ≥ 2 that

Li−x(exp(−c)) ≤
(

1 + 2 ·
∞∑

k=1

(1 + 4k2π2/C2)−3/2)

)

· Γ (1 + x) · c−x−1,
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where Liy(z) =
∑∞

k=1
zk

ky is the polylogarithm function.

Proof. For negative y < 0 we have the following identity by Wood [32, (13.1)]:

Li−x(exp(−c)) = Γ (x + 1) ·
∞∑

k=−∞
(2kπi + c)−x−1

= Γ (x + 1) · c−x−1 ·
∞∑

k=−∞
(2kπi/c + 1)−x−1.

The summation is real-valued as the terms ±k are conjugates, and we have
∞∑

k=−∞
(2kπi/c + 1)−x−1 ≤ 1 + 2 ·

∞∑

k=1

|2kπi/c + 1|−x−1

= 1 + 2 ·
∞∑

k=1

(1 + 4k2π2/c2)−(x+1)/2

≤ 1 + 2 ·
∞∑

k=1

(1 + 4k2π2/C2)−1.5.

��
Lemma 8 (Even smoothing). Let n = 8m ≥ 8 with m ∈ N, C = 17.8, and let
ε > C ·e−n, then there exists an n-dimensional even unimodular lattice L ∈ Gn,e

such that ηε(L) ≤ (C/ε)1/n.

Proof. Let s = (C/ε)1/8m ≤ e. To apply Lemma 4 we have to show that the
following sum is bounded by ε:

μ =
−8m
B4m

·
∞∑

k=1

σ4m−1(k) · exp(−2πs2k).

First, using Lemma 6 we have the bound σ4m−1(k) ≤ ζ(4m − 1) · k4m−1 ≤
ζ(3)k4m−1. This gives us that

μ ≤ −8mζ(3)
B4m

·
∞∑

k=1

k4m−1 · exp(−2πs2k) =
−8mζ(3)

B4m
Li1−4m(e−2πs2

),

where Lip(z) =
∑∞

k=1
zk

kp is the polylogarithm function. From Lemma 7 we get
that Li1−4m(e−2πs2

) ≤ 14.78 · Γ (4m) · (2πs2)−4m, which combined with the
identity for the even Bernoulli numbers gives us

μ ≤ −8mζ(3)

B4m
Li1−4m(e−2πs2) ≤ ζ(3) · 8m · (2π)4m

2 · (4m)!
· 14.78 · Γ (4m) · (2πs2)−4m

= ζ(3) · 14.78 · s−8m ≤ C · ε

C
= ε.

We conclude by Lemma 4 and the fact that unimodular lattices are self-dual. ��
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We note that in principle the above Lemma is not restrained to ε ≥ Ce−n

and could easily be adapted to handle ε < C · e−n at the cost of a larger
constant C. In particular, by slightly adapting Lemma 7 we can obtain a bound
of (3ζ(3)/ε)1/(n−2) that is valid for any 3ζ(3) ≥ ε > 0. Numerical evidence
indicates that the bound from Lemma 7 could be improved further leading to
a lower constant C both here and for Theorem 2. However in this regime the
bound obtained from a good dual packing is better than the one given here. In
Fig. 2 we can see that the bound in Lemma 8 is rather tight compared to a direct
application of Lemma 4.

Fig. 2. Smoothing bound for even unimodular lattices as given by Lemma 8, compared
to concrete values directly computed using ΘGn,e and Lemma 4. The value ε = 2−71/2 =
1/

√
qs · λ is common in hash-and-sign schemes with λ = 128 bits of security that can

sign 264 signatures.

4 A General Result

We now consider the general case for almost all genera. By our knowledge existing
literature only show packing results for the (simpler) unimodular case, but the
results do generalize.

Theorem 1 (General packing). For any integral genus G in dimension n ≥ 6
such that rkp(G) ≥ 6 for all primes p, and any constant 0 < c ≤ 1, we have

Pr
[L]←D(G)

[

λ1(L)2 ≥
⌈

c2 ·
(
7ζ(3)
9ζ(2)

· vol(L)
ωn

)2/n
⌋]

> 1 − cn.

In particular, there exists a lattice L ∈ G with

λ1(L)2 ≥
⌈(

7ζ(3)
9ζ(2)

· vol(L)
ωn

)2/n
⌋

≈ n/2πe · vol(L)2/n.
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Similarly, we can show the existence of a lattice with a good smoothing
parameter and covering radius in any genus.

Theorem 2 (General smoothing). For any integral genus G in dimension
n ≥ 6 such that rkp(G) ≥ 6 for all primes p, constants C = 26.1 and 0 < c ≤ 1,
and ε ≥ C · (ce)−n · vol(G)−1, we have

Pr
[L]←D(G)

[

ηε(L∗) ≤ 1
c

·
(

C · vol(L∗)
ε

)1/n
]

> 1 − cn.

In particular, there exists a lattice L ∈ G such that ηε(L∗) ≤ (C · vol(L∗)/ε)1/n
.

The proofs of Theorems 1 and 2 are stated in Sect. 4.3 after some preliminary
definitions and results in Sects. 4.1 and 4.2.

Theorem 3 (General covering radius). For any integral genus G in dimen-
sion n ≥ 6 such that rkp(G) ≥ 6 for all primes p, and constants C = 26.1 and
e−1(2C/(3 vol(G)))1/n ≤ c ≤ 1, we have

Pr
[L]←D(G)

[

v(L∗) ≤ 1
c

·
(√

n/2π + 1
)

·
(
2
3
C · vol(L∗)

)1/n
]

> 1 − cn.

In particular, when additionally n ≥ 7, there exists a lattice L ∈ G such that

v(L∗) ≤
(√

n/2π + 1
)

·
(
2
3
C · vol(L∗)

)1/n

≈ √
e ·

√
n/2πe · vol(L∗)1/n.

Proof. We combine Theorem 2 for ε = 3
2 and Lemma 1. The constraint on c

is equivalent to the constraint on ε = 3
2 in Theorem 2. For the existence claim

note that if n ≥ 7 then e−1(2C/(3 vol(G))1/n < 1 and the result follows from the
strictly positive probability for c = 1. ��
Remark 6. We expect that the condition on rkp(G) could be removed at the cost
of a minor loss in the bound and a more tedious proof. Note that the condition
is not satisfied by a genus with scale(G) > 1, however one can always circumvent
this by first normalizing the genus before applying the result.

Remark 7. By choosing c = 3−n in Theorems 1 to 3 we get a probability of
strictly more than 2

3 for each property. In particular, this implies the existence
of a lattice L ∈ G having a good packing density and good dual smoothing and
covering

4.1 Computing Siegel’s Mass Formula

What makes testing equivalence over Zp easy is the fact that we can efficiently
(block) diagonalize forms over Zp.
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Lemma 9 ([6, p.370]). For p �= 2 every integral form G ∈ S>0
n (Z) is Zp-

equivalent to a diagonal matrix. For p = 2 every integral form G ∈ S>0
n (Z) is

Z2-equivalent to a block diagonal matrix with blocks

(
qx

)
,

(
qa qb
qb qc

)
,

where q is a power of 2, a and c are divisible by 2, but x, b and d = ac − b2 are
not. As a corollary, for any prime p the form G ∈ S>0

n (Z) is equivalent over Zp

to a decomposition

G1 ⊕ pGp ⊕ p2Gp2 ⊕ . . . ⊕ qGq ⊕ . . .

where p � det(Gq) for all q = pi, all but a finite number of the Gpi have dimension
0, and each Gq is (block) diagonalized.

The (block) diagonalization is not necessarily unique but can be made canonical
with some additional rules [6]. Testing for Zp-equivalence then simply becomes
testing for equality. Note that because scale(.) is a genus invariant we can nor-
malize (all forms in) a genus just as we can normalize individual forms. Then
for any form in a normalized genus G the first block G1 has by construction a
nonzero dimension which coincides precisely with having a p-rank rkp(G) ≥ 1.
For our main results we will require that rkp(G) ≥ 6, which simply states that
the first block isn’t too small.

Recall that the k-th coefficient of Siegel’s mass formula computes the
expected number of integer solutions to x�Gx for a random form G in a fixed
genus. By a local-global principle the number of such solutions is related to the
density of such solutions over the localization Zp.

Definition 9 (Local density [26]). For an integral form G ∈ S>0
n (Z), prime

p and integers k, j ≥ 0 we denote

NG(k mod pj) := |{x ∈ (Z/pj
Z)n : x�Gx ≡ k mod pj}|.

for the number of distinct solutions of x�Gx = k mod pj. The average number
of solutions over all values k = 0, . . . , pj − 1 is given by p(n−1)j and we denote

δG(k mod pj) :=
NG(k mod pj)

p(n−1)j

for the relative density of solutions. For k ≥ 1 the following limit exists and is
finite

δG,p(k) := lim
j→∞

δG(k mod pj).

For k = 0 the limit does not always exist so we define

δG,p(0) := lim sup
j→∞

δG(0 mod pj),

which might be ∞. We call δG,p(k) the local density over Zp at k.
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The number of local solutions and therefore the density over Zp is invariant
under Zp-equivalence. We therefore also denote δG,p(k) := δG,p(k) for any form
G in the genus G. We also consider one last local density over the reals, which
is often also called ‘the prime at infinity’ or at −1.

Definition 10 (Local density at p = ∞). For an integral genus G of dimen-
sion n, and any k ≥ 1 we denote

δG,∞(k) = vol(G)−1 · 1
2
nωnkn/2−1,

for the local density over the reals R (or p = ∞).

We can now state the local-global result of Siegel that allows us to express the
coefficients of Siegel’s mass formula in terms of the local densities.

Theorem 8 (Siegel [26]). Let G be a genus of dimension n ≥ 3, and let
ΘG(q) = 1 +

∑∞
k=1 NG(k)qk be the expected theta series over G. Then for all

k ≥ 1 we have

NG(k) =
∏

p=2,3,5,...,∞
δG,p(k).

This product converges and is 0 if and only if at least one of the factors is 0.
Furthermore, this product is efficiently computable given the prime factorization
of k and vol(G)2.
Recall that to determine if two integral forms lie in the same genus we only
have to compute something for each prime divisor of 2 vol(G)2, as they are auto-
matically equivalent over the other primes (if their volume matches). We have
a similar property here that we only have to compute the local densities for
p = ∞ and the primes dividing 2k vol(G)2. For these primes we can get a (block)
diagonalized representative over Zp, and from this there are efficient recursive
formulas to compute the local density δG,p(k) (see [14]). For the other primes the
local density is easy to express and their total infinite product can be computed
efficiently using a series identity.

Siegel’s Theorem is also valid when restricting to primitive (global and local)
solutions which could in theory give slightly better packing bounds. For simplic-
ity we do not consider this case.

Remark 8. These formulas are implemented in Sagemath [28] by Hanke [14] and
others. For a QuadraticForm object Q, one can call Q.local_density(p, k)
to compute δQ,p(k).6 Furthermore, the whole product at k ≥ 1 is computed

6 The current Sagemath implementation for computing the local density δQ,p(k) at p =
2 follows a naive brute-force approach and therefore becomes infeasible to compute
for dimensions as low as n ≥ 8. In our artifact available at https://github.com/
WvanWoerden/siegel_asiacrypt_artifact we supply a patch that resolves this issue
and we aim at integrating this fix into Sagemath.

https://github.com/WvanWoerden/siegel_asiacrypt_artifact
https://github.com/WvanWoerden/siegel_asiacrypt_artifact
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as Q.siegel_product(k). Note, for lattices with even parity this actually com-
putes the local density for Q/2 because Sagemath uses a different normalization.
These functions allow to compute Siegel’s mass formula explicitly and get better
concrete bounds directly based on Lemmas 2 and 4.

4.2 Bounding the Local Densities

We will use Theorem 8 to bound the coefficients NG(k) of the expected theta
series over the genus G. We will show that under light conditions the local den-
sity at each finite prime is bounded sufficiently such that the magnitude of the
product of local densities is mostly driven by δG,∞.

The general idea is to use the orthogonal decomposition we get from Lemma
9 and show that if we have G = G1 ⊕ G2 we only need to bound the local
density of G1 to bound the local density of G. The reason for this is that all
solutions to x�Gx = k mod pj come from solutions x�

i Gixi = ki mod pj for
k1 + k2 = k mod pj . The local densities of G are thus an averaged out version of
the local densities of G1 and G2.

Lemma 10 (Decompose and conquer). Let p be a prime, G a form of
dimension n over the p-adic integers, and suppose that G = G1 ⊕ G2 can be
written as an orthogonal sum of non-trivial G1 and G2. Then for a constant
C > 0 we have

∀ integers k′ ≥ 0, δG1,p(k′) ≤ C =⇒ ∀ integers k ≥ 0, δG,p(k) ≤ C.

Proof. Note that we can express the number of solutions of G in terms of G1

and G2 as follows

NG(k mod pj) =
∑

k1,k2∈Z/pjZ,s.t.

k1+k2≡k mod pj

NG1(k1 mod pj) · NG2(k2 mod pj).

Dividing both sides by p(n−1)j gives us

δG(k mod pj) = p−j
∑

k1,k2∈Z/pjZ,s.t.

k1+k2≡k mod pj

δG1(k1 mod pj) · δG2(k2 mod pj)

≤ max
k1

δG1(k1 mod pj) ·
⎛

⎝p−j
∑

k2∈Z/pjZ

δG2(k2 mod pj)

⎞

⎠

= max
k1∈Z/pjZ

δG1(k1 mod pj)

Taking the limit j → ∞ we obtain a supremum over δG1,p(k1) for all k1 ≥ 0 each
of which is bounded by C. So δG(k) ≤ C. ��
Lemma 11 (Classification of local normal forms [6, Chapter 15.7]). Let
p be a prime. Let G ∈ S>0

n (Z) be an integral form of dimension n ≥ 4 and such
that p � det(G). Then G is equivalent over Zp to
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Proof. This follows from the classification of a complete set of invariants for Zp-
equivalence extensively discussed in [6, Chapter 15.7]. We shortly repeat it here
for the case that p � det(G). If p �= 2 then the Zp equivalence is fully determined
by the dimension and the sign given by the Legendre symbol

(
det(G)

p

)
∈ {±1}.

For any dimension n we thus have two cases which can be represented by the
forms in the statement.

The case p = 2 is a bit more complicated, first the sign is 1 if det(G) =
±1 mod 8 and −1 if det(G) = ±3 mod 8. Then we have the parity of G which is
1 if there is at least one odd entry on the diagonal, and otherwise 2. If the parity
is 1 then we can fully diagonalize the form and we can consider the oddity t that
is the sum of the diagonal modulo 8. Note that t = n mod 2 as the diagonal
consists of odd entries, so there are 4 possibilities left. Combined with the sign
there are thus 8 pairs of values for each dimension n and one can check that
each of those are attained by the representatives in the statement.

Finally, for parity 2 we only have to consider the sign, giving the two cases
in the statement. ��
Now if we assume that rkp(G) ≥ 4 then we can assume without loss of generality
that our form G takes the shape G = G1⊕G2 where G1 is one of the forms given
in Lemma 11. What remains is to bound the local densities of these forms. For
this we have to make a distinction between the prime p = 2 and primes p ≥ 3.

Lemma 12 (p = 2). For all k ≥ 0 we have δB,2(k) ≤ 3 and δI2,2(k) ≤ 2.

Proof. For I2 and k ≥ 1 Milnor [19, Lemma 9.1, p. 43] states that δI2,2(k) ∈
{0, 2} and thus is bounded by 2. What remains is the case k = 0. For every
solution to x2 + y2 ≡ 0 mod 2j for j ≥ 3 one can verify that necessarily x, y ≡
0 mod 2j/2�. This leaves at most (2j−j/2�)2 ≤ 2j+1 solutions and thus a density
of at most 2j+1/2j = 2. We conclude that δI2,2(k) ≤ 2 for all k ≥ 0.

We now consider B, i.e., the number of solutions to the equation 2x2+2xy+
2y2 ≡ k mod 2j for j ≥ 3. Clearly δB,2(k) = 0 if k ≡ 1 mod 2. So we assume
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that k = 2k′ and normalize by 2 to obtain the equation f(x, y) = x2+xy+y2 =
k′ mod 2j−1. Note that if 2 | x, y, then 4 | x2 + xy + y2, and thus we need
k′ ≡ 0 mod 4. Else either 2 � x or 2 � y, and we see modulo 2 that k′ ≡ 1 mod 2.
If k′ ≡ 2 mod 4 there are thus no solutions. We now consider the case that
k′ ≡ 1 mod 2. In this case the Jacobian (2x + y, 2y + x) ≡ (y, x) mod 2 of f at
any solution (x, y) is nonzero modulo 2. So by a quantitive Hensel’s Lemma every
solution modulo 2 lifts to precisely 2j−1 solutions modulo 2j , i.e., the density
remains unchanged. One can simply count 3 solutions (0, 1), (1, 0), (1, 1) modulo
2 and thus we have a density of 1.5 for all k′ ≡ 1 mod 2. Now we consider the
case that k′ ≡ 0 mod 4. Note that x, y are both divisible by 2 and thus we can
divide both sides of the equation by 4. The density of the number of solutions
is thus equal to that of f(x, y) ≡ k′/4 mod pj−2. More generally we can divide
by a power of 4 until we obtain a number equal to ±1 or 2 modulo 4. By the
previous result we thus obtain that the density is 1.5 if v2(k′) ≡ 0 mod 2, and
0 if v2(k′) ≡ 1 mod 2. Lastly, for k′ = 0 and j = 2j′ we have the 2j solutions
(a · 2j′

, b · 2j′
) mod 2j , and thus a density of 1. Note that we have only shown

lower bounds for the densities, but one can quickly verify that we have accounted
for all solutions as for j = 2j′ there are 2j−2i−1 elements in 1, . . . , 2j − 1 with
valuation 2i, and thus we obtain a total density modulo 2j of

1 +
j′−1∑

i=0

22j′−2i−1 · 3
2
= 2j .

To conclude we note that the density scales by a factor 2 after scaling back. ��
Lemma 13 (p ≥ 3). Let p be an odd prime and consider the 6-dimensional
form Du = uI1 ⊕ I5 with

(
u
p

)
∈ {±1}. Then for all k ≥ 0 we have

δDu,p(k) ≤ 1 − p−3

1 − p−2
.

Additionally,

∏

p′=3,5,7,...

1 − p−3

1 − p−2
=

6ζ(2)
7ζ(3)

≤ 1.173.

Proof. Note that det(Du) = u, and let ε =
(

−u
p

)
∈ {±1}. Let k = plv ≥ 1 where

pl is the highest power of p dividing k. Then by [26, Hilfssatz 16,p.544] we have
for j > l that

δDu,p(plv mod pj) = (1 − εp−3)(1 + εp−2 + ε2p−4 + . . . + εlp−2l).

Note that the above local density is maximized if ε = 1 and l → ∞, i.e., we have

δDu,p(plv mod pj) ≤ (1 − p−3)
∞∑

i=0

p−2i =
1 − p−3

1 − p−2
,
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and thus in particular δDu,p(k) ≤ 1−p−3

1−p−2 . Furthermore, because the den-
sity only depends on the largest power pl dividing k > 0 we also have
δDu,p(0) = liml→∞ δDi,p(p

l) = 1−εp−3

1−εp−2 ≤ 1−p−3

1−p−2 . Finally, we use the identity
∏

p=2,3,5,...(1 − p−i) = 1/ζ(i) for i ≥ 2, and that 1−2−3

1−2−2 = 7/6. ��
Corollary 4 (Finite places are bounded). For any integral genus G of
dimension n ≥ 6 such that rkp(G) ≥ 6 for all primes p, we have for all k ≥ 0

∏

p=2,3,5,...

δG,p(k) ≤ 18ζ(2)
7ζ(3)

< 3.52.

Proof. Let G be a form in G and consider a finite prime p. Because rkp(G) ≥ 6
we assume by Lemma 9 without loss of generality that G decomposes as G =
G1 ⊕ pG2 with p � det(G1) and dim(G1) ≥ 6. For p �= 2 an odd prime Lemma 11
shows that we can assume without loss of generality that G1 = Du ⊕ Il where
Du = uI1 ⊕ I5 for a unit u ∈ Zp. Lemma 13 gives that δDu,p(k′) ≤ 1−p−3

1−p−2 for all

k′ ≥ 0 and thus we can conclude that δG,p(k) ≤ 1−p−3

1−p−2 by Lemma 10.
For p = 2 we either have G1 = I2 ⊕ G′

1 or G1 = B ⊕ G′
1 and we can again

conclude that δG,2(k) ≤ 3 by Lemmas 12 and 10. ��

4.3 Proving the Main Result

Taking Theorem 8 and Corollary 4 together gives a bound on the coefficients
NG(k) of the expected theta series over a genus G. This bound is sufficient to
prove our main results.

Proof (Theorem 1). Let G and 0 < c ≤ 1 be as in the theorem statement and
let ΘG(q) = 1 +

∑∞
k=1 NG(k)qk be the expected theta series of G. By Theorem

8, Corollary 4 and Lemma 10 we have for all k ≥ 1 that

NG(k) =
∏

p=2,3,...,∞
δG,p(k) ≤ 9ζ(2)

7ζ(3)
· nωn

vol(G) · kn/2−1.

Let λ =
⌈
c2 ·

(
7ζ(3)
9ζ(2)ω

−1
n vol(G)

)2/n
⌋
, then using the inequality jk ≤

j+
1
2∫

j− 1
2

tkdt for

k ≥ 1 we get

λ−1∑

k=1

NG(k) <
9ζ(2)
7ζ(3)

· nωn

vol(G) ·
λ− 1

2∫

0

tn/2−1dt =
18ζ(2)
7ζ(3)

· ωn

vol(G) · (λ − 1
2 )

n/2,

which by the choice of λ is bounded by 2cn. The result then follows from Lemma
2. ��
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Proof (Theorem 2). Let G be as in the theorem statement and let ΘG(q) =
1 +

∑∞
k=1 NG(k)qk be the expected theta series of G. By Theorem 8, Corollary

4 and Lemma 10 we have for all k ≥ 1 that

NG(k) =
∏

p=2,3,...,∞
δG,p(k) ≤ 9ζ(2)

7ζ(3)
· nωn

vol(G) · kn/2−1.

Let C = 26.1, ε ≥ C · (ce)−n · vol(G)−1 and s = 1
c ·

(
C

ε·vol(G)

)1/n

≤ e. Then we
have

ΘG(exp(−πs2)) − 1 =
∞∑

k=1

NG(k) · exp(−πs2k)

≤
∞∑

k=1

9ζ(2)
7ζ(3)

· nωn

vol(G) · kn/2−1 · exp(−πs2k)

=
9ζ(2)
7ζ(3)

· nωn

vol(G) · Li1−n/2(exp(−πs2)) = (∗).

Now by Lemma 7 and using that ωn = πn/2

Γ (n/2+1) we get

(∗) ≤ 7.39 · 9ζ(2)
7ζ(3)

· n

vol(G) · πn/2

Γ (n/2 + 1)
· Γ (n/2) · (πs2)−n/2

= 7.39 · 9ζ(2)
7ζ(3)

· vol(G)−1 · 2 · s−n < C · vol(G)−1 · s−n = cnε.

So ΘG(exp(−πs2)) < 1+ cnε and we can conclude the proof by applying Lemma
4, where we recall that vol(L∗) = vol(G)−1. ��

5 Applications

Instantiating [11] Without Increasing the Geometric Gap. The LIP
framework introduced in [11] turns a decodable lattice L into a Key Encapsula-
tion Scheme based on the hardness of distinguishing LIP between two auxiliary
lattices L1,L2 in the same genus. The concrete hardness of this distinguishing
problem is directly related to the geometry of these lattices, in particular, assum-
ing the lattices are normalized to have determinant 1, the best known attacks
seems to be driven by the gap max{mk(L)/λ1(L),mk(L∗)/λ1(L∗)} between their
first minimum (or their dual’s) and the Minkowski bound. In the example instan-
tiation given in [11], an efficiently decodable lattice with primal and dual dis-
tance, and decoding gap bounded by f , leads to auxiliary lattices with geometric
gaps bounded by O(f3), and thus this leads to a significant reduction in concrete
security. The authors already hint that knowledge of good lattices in the same
genus can decrease this blowup in the construction. Here we show how Theorem
1 could be used to only have a constant blowup, from f to O(f).
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Lemma 14. Let L be any n ≥ 6-dimensional lattice with primal, dual and effi-
cient decoding gap bounded by O(f) and such that rkp(L) ≥ 6 for all primes p.
Then there exists a KEM which security reduces to a 2n-dimensional instance
of distinguish LIP with geometric gaps bounded by O(f).

Proof. Let g ∈ Z>0 be some scaling factor to be determined later. We need to
construct an appropriate pair of lattices LS ,LQ to instantiate [11, Theorem 5.2].
Let L′ ∈ gen(L) be a lattice with gap(L′) = O(1) as exists according to Theorem
1. We set LS := gL⊕ (g+1)L as our well decodable lattice with decoding radius
ρ′ = O(g/f · gh(L), and LQ = L′ ⊕ g(g + 1)L′ as our auxilary lattice that has a
dense sublattice L′ ⊂ LQ. Note that gap(LS) = O(f) and gap(LQ) = O(g). To
satisfy the conditions of [11, Theorem 5.2] we require that η 1

2
(L′) ≤ ρ′/(2

√
2n).

Now note that because gap(L′) = O(1) we have

η 1
2
(L′) ≤ η2−n(L′) ≤

√
n

λ1((L′)∗)
= θ(det(L′)1/n).

Furthermore, we have ρ′/2
√
2n = θ(g/f · gh(L)/√

n) and thus it is sufficient to
pick g that satisfies

θ(det(L′)1/n) ≤ θ(g/f · gh(L)/√
n) = θ(g/f · det(L′)1/n),

from which it is clear that g = Θ(f) sufficies. We conclude by noting that then
gap(LS) = O(f) and gap(LQ) = Θ(g) = O(f). ��
The encryption scheme from [4] based on the same framework benefits from
the same improvement. For the signature scheme from [11] we also improve the
blowup from O(f2) to O(f).

Lemma 15. Let L be any n ≥ 6-dimensional lattice with primal, dual and effi-
cient Gaussian sampling gap bounded by O(f) and such that rkp(L) ≥ 6 for all
primes p. Then there exists a signature scheme which security reduces to a 2n-
dimensional instance of distinguish LIP with geometric gaps bounded by O(f).

Proof. The proof follows similarly as the construction in [11] and the proof
of Lemma 14, but with LS := gL ⊕ (g + 1)L and LQ−1 = L′ ⊕ g(g + 1)L′.
��

Instantiating for Z
n . Another interesting concurrent work [3], that arrived

shortly after [11], introduces some cryptographic constructions based on LIP for
Z

n. In this work the authors raised some open questions about the instantiability
of their schemes, as for this they require the existence of a lattice with certain
geometric properties in the same genus as Z

n. In particular, it is asked if there
exist a lattice L in the genus of Z

n that have λ2
1(L) ≥ Ω(n/ log n), or ηε(L) ≤

ηε(Zn)/
√
log n ≈ O(

√
log(1/ε)/ log n) for ε < n−ω(1). Note that the genus of

Z
n is that of all odd unimodular lattices of dimension n. Therefore, the first

question is in fact already answered by [19], which shows that there exists an
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odd unimodular lattice with λ1(L)2 ≥ Ω(n) > Ω(n/ log n) for growing n. For the
second, we can instantiate Theorem 2 with for example ε = 2−n, which implies
the existence of L in the genus of Z

n with ηε(L) = O(1) < ηε(Zn)/
√

log(n) ≈
Θ(

√
n/ log(n)).

Instantiation of the Encryption Scheme of [1]. In [1] a public-key encryp-
tion scheme based on LIP is presented. To instantiate the scheme however an
auxiliary lattice is needed that satisfies some geometric properties. In the instan-
tiation the authors would like to use unimodular lattices and they conjecture that
for n ≥ 85 there exists at least one unimodular lattice of dimension n such that
λ1(L) ≥ 4

√
72n. We see that Lemma 5 is enough to answer this conjecture pos-

itively, and even show the existence of much better packings. More generally,
given a decodable lattice L of dimension n they require another lattice L′ ∈ G
with large minimum distance λ1(L′). For most genera Theorem 1 shows the
existence of such a lattice.

6 Open Questions

We discuss some open questions that could be interesting for further work.
In this work we have restricted ourselves for simplicity to unstructured

lattices. However, in cryptography we often use structured module lattices to
decrease storage and improve efficiency. The genus theory extends to these cases
and mass formulas can also be extended in certain settings [18,30]. One has
to be careful when considering the existing literature as it often considers the
quadratic form B�B for some module-lattice basis B. Except for the case of
totally real number fields, the matrix B�B does not correspond to the geometry
of the module lattice via the canonical embedding. For example, in the common
case of CM-fields, which is relevant for Hawk [10], this information is instead
captured by the Hermitian form B∗B. Luckily, most of the genus theory and the
Smith-Siegel-Minkowski mass formula has been generalized to hermitian forms
over CM-fields by [18]. We therefore expect that Siegel’s mass formula can also
be generalized, leading to similar claims as in this work for module lattices over
CM-fields.

Furthermore, the results of Siegel go further than just the expectation of
the number of vectors of some squared norm. In fact, they can also count the
expected number of higher rank constellations of multiple vectors with certain
norm and inner product within each lattice. More precisely, for forms G ∈ S>0

n (Z)
and K ∈ S>0

m (Z) for 1 ≤ m ≤ n, it counts the expected number of solutions
X ∈ Z

n×m such that X�GX = K when varying G over a genus. This might
open up the possibility to study more advanced geometric properties of random
lattices over a genus.

Acknowledgements. W. van Woerden was supported by the CHARM ANR-NSF
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Abstract. The evasive LWE assumption, proposed by Wee [Euro-
crypt’22 Wee] for constructing a lattice-based optimal broadcast encryp-
tion, has shown to be a powerful assumption, adopted by subsequent
works to construct advanced primitives ranging from ABE variants to
obfuscation for null circuits. However, a closer look reveals significant
differences among the precise assumption statements involved in differ-
ent works, leading to the fundamental question of how these assumptions
compare to each other. In this work, we initiate a more systematic study
on evasive LWE assumptions:
(i) Based on the standard LWE assumption, we construct simple coun-

terexamples against three private-coin evasive LWE variants, used in
[Crypto’22 Tsabary, Asiacrypt’22 VWW, Crypto’23 ARYY] respec-
tively, showing that these assumptions are unlikely to hold.

(ii) Based on existing evasive LWE variants and our counterexamples, we
propose and define three classes of plausible evasive LWE assump-
tions, suitably capturing all existing variants for which we are not
aware of non-obfuscation-based counterexamples.

(iii) We show that under our assumption formulations, the security proofs
of [Asiacrypt’22 VWW] and [Crypto’23 ARYY] can be recovered,
and we reason why the security proof of [Crypto’22 Tsabary] is also
plausibly repairable using an appropriate evasive LWE assumption.

1 Introduction

Resolving a decade-long open problem, Wee [Wee22] constructs a lattice-based
ciphertext-policy attribute-based encryption (CP-ABE) for NC1 with param-
eters independent of the circuit size, implying an optimal broadcast encryp-
tion, under a new assumption called the evasive LWE assumption. Roughly, the
assumption states that, for any PPT Samp outputting an arbitrary matrix P
and auxiliary information aux containing all coin tosses used by Samp,

if (B, P, sTB + eT0, sTP + eT1, aux) ≈c (B, P, $, $, aux) (1)

then (B, P, sTB + eT0, B−1(P), aux) ≈c (B, P, $, B−1(P), aux),
for a uniformly random matrix B ←$Z

n×m
q , a uniformly random LWE secret

s ←$Z
n
q , Gaussian errors e0, e1 of appropriate dimensions, and where B−1(P)

c© International Association for Cryptologic Research 2025
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https://doi.org/10.1007/978-981-96-0894-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0894-2_14&domain=pdf
http://orcid.org/0009-0001-7485-1217
http://orcid.org/0000-0002-8929-0221
http://orcid.org/0000-0001-8905-1207
https://doi.org/10.1007/978-981-96-0894-2_14


Evasive LWE Assumptions: Definitions, Classes, and Counterexamples 419

denotes a short Gaussian preimage of P with respect to B, i.e. it holds that
B · B−1(P) = P mod q and B−1(P) is short in Euclidean norm. Intuitively,
the assumption postulates that, to distinguish LWE samples sTB + eT0 mod q
given a short preimage B−1(P) as hint, the only thing one can do with this
hint is to right-multiply it to sTB + eT0 mod q to obtain another LWE sample
sTP+eT1 mod q and try to distinguish the latter. We shall call this the public-coin
evasive LWE assumption, to highlight that all random coins of Samp are given
to the distinguisher via aux. Subsequently, public-coin evasive LWE was adapted
by [WWW22,HLL24], to prove security of a multi-authority (MA-)ABE scheme
without a random oracle and construct a variant of inner-product functional
encryption, respectively.

Concurrently and subsequently, a number of works considered what we shall
call private-coin variants of evasive LWE, where Samp does not need to provide all
its randomness to the distinguisher. These private-coin variants of evasive LWE
(sometimes applied along with other new lattice assumptions) have shown to
imply further advanced primitives including multi-input (MI-)ABE [ARYY23],
CP-ABE for unbounded depth circuits [AKY24], null-iO [VWW22], and witness
encryption [Tsa22,VWW22]. Notably, these primitives tend to be believed to be
stronger than what is currently achievable by public-coin evasive LWE.

Underlying the name of evasive LWE, however, are significant differences
among the actual assumption statements involved in all aforementioned works,
in addition to the distinction between public and private-coin. For example, the
public-coin evasive LWE variants in [WWW22,HLL24] involve multiple inde-
pendent matrices and LWE samples (Bi, sTiBi + eTi mod q), where the si’s can
be identical or different, and [HLL24] further requires a joint preimage where
B−1

i (P) = B−1
j (P) for all i, j. In the private-coin world, [VWW22] formulates

an evasive LWE assumption where the matrices B,P are not explicitly stated in
the if and then joint distributions, whereas [ARYY23] includes B into both dis-
tributions, but not P. Unfortunately, up to now, we have little understanding as
to how these and other modifications affect the strength and plausibility of the
assumptions, with the only cryptanalytic insight being a heuristic obfuscation-
based counterexample by [VWW22] against some private-coin variants.

1.1 Our Contributions

We initiate a systematic study on evasive LWE assumptions, summarised by
three aspects:

Falsifying Existing Private-Coin Variants. We construct counterexamples
against subclasses of existing evasive LWE variants. Specifically, we give three
examples to show that, each of the three private-coin evasive LWE assumptions
stated in [Tsa22,VWW22,ARYY23], respectively, are unlikely to hold. All our
counterexamples are conceptually simple, based on the standard LWE assump-
tion and do not rely on obfuscation. Our counterexamples are summarised
in Sect. 2.2 and formalised in Sect. 5. More counterexamples are sketched in the
full version of this work.
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Classifications and Definitions. Based on existing variants together with the
essences of our counterexamples, we propose a classification of plausible evasive
LWE assumptions. Our proposed three families are summarised below:

1. Public-coin evasive LWE, i.e. the PPT sampler Samp does not hide any of its
computation from the distinguisher;

2. Private-coin binding evasive LWE, where (i) Samp does not input the matrix
B, and (ii) the matrices B,P are given to the distinguisher;

3. Private-coin hiding evasive LWE, where (i) Samp does not input the matrix
B, (ii) B is not given to the distinguisher, and (iii) the matrix P is provably
sufficiently hidden from the distinguisher.

For each family we formulate a general definition, suitably capturing all variants
in existing works that are not subject to simple counterexamples (see Remark 3
for a discussion of obfuscation-based counterexamples). We summarise the ratio-
nale in Sect. 2.3 and give precise definitions in Sect. 4. We hope that this will
serve as a first step to provide the community with a language for communicating
about evasive LWE assumptions, leaving its intuition unchanged while simulta-
neously expressing the qualitative differences between the actual assumptions
involved.

Implications on Existing Constructions. We show that the assumption instances
in the security proofs of [VWW22,ARYY23] fall under our proposed families of
plausible evasive LWE, as such, their related constructions remain secure under
our assumptions. More concretely, in Sect. 6 we prove that the evasive LWE
instances in the proof of [VWW22] satisfy our condition of P being sufficiently
hidden, thus falling into the private-coin hiding family. The assumption instances
of [ARYY23] fall into the private-coin binding family directly by definition. For
the proof of [Tsa22], we discuss in Sect. 2.4 why we believe it may be repairable
with an alternative and plausible evasive LWE assumption.

2 Overview

In Sect. 2.1 we review a number of evasive LWE variants. In Sect. 2.2 we sketch
our counterexamples against three subclasses, which leads to our proposal of
three plausible evasive LWE families summarised in Sect. 2.3. For existing works
that rely on assumptions affected by our counterexamples, we discuss in Sect. 2.4
to which extent their security proofs may be repairable.

We adopt simplified notation in this overview: Operations are understood
to be over Zq and we suppress mod q expressions. To denote noise terms, we
use curly underline ·

��
, e.g. sTB

���
means sTB + eT where e is short relative to q.

We use $ to refer to uniformly random values, where multiple $ signs in a joint
distribution are understood to be independent uniform samples.

2.1 Existing Evasive LWE Variants and Classifications

To aid understanding the differences among the evasive LWE variants below, we
provide two partition grids in Fig. 1 which we will cross-reference with.
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Public-Coin Evasive LWE. We recall again Wee’s public-coin evasive LWE
assumption: For any PPT Samp outputting an arbitrary matrix P and auxil-
iary information aux containing all randomness used by Samp,

if (B, P, sTB
���

, sTP
���

, aux) ≈c (B, P, $, $, aux) (2)

then (B, P, sTB
���

, B−1(P), aux) ≈c (B, P, $, B−1(P), aux)

for uniformly random B and uniformly random LWE secret s.1 Subsequently,
Waters, Wee and Wu [WWW22] define a variant consisting of polynomially many
pairs of matrices (Bi,Pi)i and their respective LWE samples sTiBi

����
, sTiPi

���
. More

recently, Hsieh, Lin, and Luo [HLL24] define a public-coin variant consisting also
of pairs of (Bi,Pi)i, but with LWE samples of the form (sTBi

����
, sTPi

���
)i sharing the

same secret s, with a structured error distribution instead of a random Gaussian,
and further requiring joint preimages satisfying B−1

i (P) = B−1
j (P) for all i, j.

Private-Coin without B,P. Vaikunthanathan, Wee and Wichs [VWW22] define
the following private-coin evasive LWE assumption: For any PPT Samp which
outputs (arbitrary) LWE secret S, matrix P, and auxiliary information aux (not
necessarily containing all randomness used by Samp),

if (SB
��

, SP
��

, aux) ≈c ($, $, aux) (3)

then (SB
��

, B−1(P), aux) ≈c ($, B−1(P), aux)

for uniformly random B. This variant corresponds to the blue area in Fig. 1b.
We observe that, unlike in Eq. (2), in this variant, B is not included in the if and
then distributions, and P also not necessarily. However, since both aux,P are
generated by Samp, information about P may or may not be included in the dis-
tributions via aux, e.g., Samp could choose aux = P. Using the above, [VWW22]
prove that the well-known GGH15 encodings [GGH15] are secure, implying the
existence of null-iO and witness encryption, and recent works also use the above
evasive LWE variant to construct SNARG for UP as well as universal computa-
tional extractors [MPV24,CM24].

Private-Coin Without P. Agrawal, Rossi, Yadav and Yamada (ARYY)
[ARYY23] defined the following private-coin variant: For any PPT Samp out-
putting (arbitrary) LWE secret S, matrix P, and auxiliary information aux (not
necessarily containing all randomness used by Samp),

if (B, SB
��

, SP
��

, aux) ≈c (B, $, $, aux) (4)

then (B, SB
��

, B−1(P), aux) ≈c (B, $, B−1(P), aux)

1 [Wee22] includes an additional matrix A and LWE samples sTA
���

in the joint distri-

butions for further expressiveness, which we omit in this overview.
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Fig. 1. Partition of evasive LWE assumptions. Background colour {yellow,blue,red}
= Assumption {(4),(3),(5)}. Cross in {yellow,blue,red} = Counterexample {1, 2, 3}
sketched in Sect. 2.2 and formalised in Sect. 5. Cross in gray = heuristic counterexample.
Green checkboxes are the three proposed classes in Sect. 2.3. (Color figure online)

for uniformly random B. This corresponds to the yellow area in Fig. 1b. We notice
that here the matrix B is included in the distributions, and P again may or may
not be via aux. ARYY show that Eq. (4) implies another private-coin variant,
which is almost identical except that aux can be partitioned as (aux1, aux2),
with aux1 provably pseudorandom, and P is efficiently computable from aux2.
The latter is used for proving security of their MI-ABEs2, and subsequently also
by [AKY24] for proving their CP-ABE for unbounded depth circuits3.

Samp Generates B−1(P). Concurrent to [VWW22], Tsabary [Tsa22] proposes a
similar flavour of assumption for constructing witness encryption. Putting for-
mulation differences aside, Tsabary’s assumption can be summarised as follows:
For any PPT Samp which inputs a matrix B with its trapdoor tdB, and out-
puts LWE secret S, target matrix P, preimages B−1(P) sampled using tdB, and
auxiliary information aux (not necessarily containing all randomness of Samp),

if (SB
��

, SP
��

, aux) ≈c ($, $, aux) (5)

then (SB
��

, B−1(P), aux) ≈c ($, B−1(P), aux).

This variant covers the red area in Fig. 1b. The if and then distributions are
identical to Eq. (3). The crucial difference is, however, that Samp takes the
matrix B as input and samples the preimages B−1(P) itself, in contrast to other
variants where the preimages are provided by the challenger. This formulation
necessitates Samp knowing B and tdB, and as a consequence S,P and aux can
be arbitrarily correlated with B.

Summarising from above, we obtain the following factors:

– Public-coin vs. private-coin Samp (Fig. 1a vs. Fig. 1b).
– Whether B is included in the if and then distributions (left axis of Fig. 1b).
2 For their MI-ABE for P, along with a new assumption called extended tensor LWE.
3 Along with a new assumption called circular tensor LWE.
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– Whether P is included in the if and then distributions. We separately consider,
informally for now, P is fully available, partially available, or fully hidden from
the distinguisher (bottom axis of Fig. 1b), the last to be expanded later.

– Whether Samp inputs the matrix B (right axis of Fig. 1b).

The above jointly form a partition of Fig. 1, as marked by the figure labels.4

Remark 1 (On Assumption Strength). The classes of samplers Samp in evasive
LWE form natural inclusions corresponding to the strength of the assumptions:
The largest class contains the most Samp, which can take the most inputs,
e.g. B, and output arbitrary matrices, representing the strongest assumptions.
Underlying are various subclasses, e.g. one containing Samp which does not input
B, and one containing Samp which must output P in plain, each forming weaker
assumptions. Similarly, public-coin samplers are a subclass of private-coin ones.

In contrast, including B in the distributions or not rather makes the assump-
tions incomparable: Including B leads to a stronger if condition to be satisfied,
but the assumption simultaneously asserts a stronger then statement with B.

2.2 Counterexamples

In order to invalidate an evasive LWE assumption, our goal is to construct a
PPT Samp such that, with respect to Samp, (1) the if statement holds (assuming
plausible assumptions), but (2) the then statement does not.

Counterexample 1: Private-Coin with B and Partial/Hidden P. We give
a counterexample for the case where the distinguisher of if receives the matrix B,
but not P, corresponding to a subclass of Eq. (4) with a yellow cross in Fig. 1b.
The idea is simple: Given B and B−1(P), the distinguisher of then can recover
P, so that if P contains useful information for distinguishing, this can be used
by then but not if. Concretely, let Samp return the following:

P =
(
P1, P2 =

[
uT

R

])
, aux = ()

where u is a short vector such that P1u = 0, i.e. Samp samples P1 together
with a trapdoor to generate u, and R is uniformly random. To see that the the
if statement holds, observe that

(B, sTB
���

, sTP1
����

, sTP2
����

)
stat.≈ (B, sTB

���
, $, $)

LWE≈ (B, $, $, $)

where the first statistical statement holds since R and P1 are (close to) uni-
formly random (and unknown), and the second follows by LWE, as B is uniformly
random. For the distinguisher of then, observe that, when given

(B, B−1(P1,P2), sTP1
����

, sTP2
����

),

4 The partition has not taken into account whether the LWE secret S is generated by
Samp. This is to be discussed at the end of Sect. 2.2.
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it can compute

P2 ← B · B−1(P2);
[
uT

R

]
← P2; Test sTP1

����
· u ≈? 0, (6)

where sTP1
����

· u would likely not be short when replacing sTP1
����

with a random

vector. Note that the example works also when P1 is given in aux.

Counterexample 2: Private-Coin Without B and Partial P. Next we turn
to the case where B is not available to the distinguisher of if but P is partially
available, corresponding to a subclass of Eq. (3) with a blue cross in Fig. 1b.
Here, our Samp is almost identical to the previous counterexample, except that
now it lets aux = P1. Similar to above, for the if condition, we have

(sTB
���

, sTP1
����

, sTP2
����

, P1)
stat.≈ ($, sTP1

����
, $, P1)

LWE≈ ($, $, $, P1)

where the first relation is due to B,R being uniform and unknown to the
distinguisher. For distinguishing the then distribution, since B is not contained
in the joint distribution any longer, the distinguisher takes an extra step to
recover it. Namely, our crucial observation is that when P1 has (at least) as
many columns as that of B and Zq is a field5 then with high probability, B is
fully determined given (B−1(P1),P1), and is efficiently recoverable by a system
of linear equations from the relation B · B−1(P1) = P1. This follows since each
entry of B−1(P1) is Gaussian-distributed so that B−1(P1) has full rank over Zq

if the variance of its entries is large enough. After recovering B, the distinguisher
performs the same steps as Eq. (6).

Remark 2 (When aux contains s). Counterexample 2 relies on that aux does
not contain information about the LWE secret s, so that (sTP1

����
,P1) ≈ ($,P1)

holds by LWE. Against settings where aux is required to contain s (e.g. that
in [VWW22]), one can modify the above slightly to yield another counterexam-

ple: Write sT = (sT1, s
T
2), B =

(
B1

B2

)
, P1 =

(
Q11 Q12

Q21 Q22

)
. Let aux = (s,Q11,Q22).

Now, (sTP1
����

, aux) ≈ ($, aux) still holds since sT2Q21 and sT1Q12 are uniform

without information about Q21,Q12. To distinguish then, use the relations

B1 · B−1

(
Q11

Q21

)
= Q11 and B2 · B−1

(
Q12

Q22

)
= Q22 to recover B, the rest

is the same.

Counterexample 3: Private-Coin Where Samp Inputs B. Our last coun-
terexample applies whenever a private-coin Samp inputs the matrix B, spanning

5 The condition of Zq being a field can be naturally extended to the ring setting,
where Rq splits into subfields of super-polynomial size, so that a random element is
invertible with high probability. For simplicity we only consider Zq in the rest.
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the whole area in red in Fig. 1b, marked with a red cross.6 The idea is again
simple: If Samp knows the matrices B,P = (p1,p2) and wishes to make a secret
available to the distinguisher of then who additionally receives a short preimage
B−1(p1), then an immediate strategy is to encrypt, specifically with the dual-
Regev encryption. As is usual in the lattice-setting, for one to distinguish LWE,
an appropriate short preimage suffices. Therefore, let Samp on input B output

P = (p1,p2), aux = ctxtu2 = (RB
���

, Rp1
���

+ �q/2�u2),

where P = (p1,p2) = B · (u1,u2) are the images under random short (e.g.
Gaussian or binary) preimages (u1,u2) sampled by Samp itself, and ctxtu2 the
dual-Regev encryption of u2 under the public key (B,p1). To see that the if
statement holds, observe

(B, P, sTB
���

, sTP
���

, ctxtu2)
c≈ (B, P, sTB

���
, sTP

���
, $)

c≈ (B, P, $, $, $)

where the first ≈c follows from security of dual-Regev encryption, the second
by LWE. Finally, to distinguish the then distributions, we can use B−1(p1) to
decrypt by observing that RB

���
· B−1(p1) ≈ Rp1

���
, so we can obtain u2. Next,

we observe that B−1(p2) − u2 is a short preimage of 0 for the image p2, i.e.
B · (B−1(p2)−u2) ≈ 0. We highlight that in the above we can prove the hardest
if condition where B,P are in the joint distributions, and we can distinguish
the weakest then distributions without B and P, since the distinguisher does
not require them. As such, the above counterexample covers the whole red area
in Fig. 1b spanning all settings with/without B,P.

On LWE Secret s. We are not aware of counterexamples which specifically require
Samp to know/generate the LWE secret s. More concretely, for any attack which
targets a subclass where Samp needs to know/generate s, we realise a more
general attack which works over the corresponding superclass where Samp does
not know s. To illustrate, when Samp is allowed to generate the LWE secret s,
we can simplify counterexample 1 against Eq. (4) above, by letting Samp embed
s in e.g. the first row P, thus skipping generating P1 and u. However, once such
“embed-secret-in-P” mechanism is possible, the attack generalises to one where
Samp does not need to know s. Indeed, all attacks that we are aware of work by
embedding some secret chosen by Samp, which can be recovered given B−1(P).
As long as this can be achieved, one can naturally pick a secret that breaks LWE
by interacting with (parts of) P, without interacting with s.

Remark 3 (Obfuscation-based Counterexample). [VWW22] suggested a heuristic
obfuscation-based counterexample which applies to all private-coin variants dis-
cussed above. To recall, let aux contain an obfuscated circuit Γ which has P and
its trapdoor hardwired and, on input (C,D), outputs 1 if (1) D is short, and
(2) there exists S such that CD ≈ SP. This allows distinguishing then since Γ

6 Note that the counterexample also applies to Eq. (5) which considers an even larger
sampler class that also knows the trapdoor tdB.
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outputs 1 if C = SB
��

and D = B−1(P), but 0 w.h.p. if C is random. Unfortu-
nately, both proving and disproving this example seem tricky. On the one hand,
a proof requires to argue that no if distinguisher can find an input such that Γ
evaluates to 1, but the characterisation of such set of inputs is unclear (regard-
less of strong assumptions like VBB). Meanwhile, to disprove this, one may try
finding alternative inputs such that Γ outputs 1, e.g. find short R,T such that
SP
��

RT = SP
��

, and let C = SP
��

R, D = T. 7 This however seems hard since

RT − I �= 0 are SIS solutions w.r.t. (the supposedly random-looking) SP
��

. 8

2.3 Plausible Classes of Assumptions

Recall again the intuition of evasive LWE from [Wee22]: To distinguish sTB
���

given B−1(P), the seemingly only meaningful way to use B−1(P) is to right-
multiply it to sTB

���
, obtaining new samples sTP

���
and distinguishing with the latter.

Underlying all counterexamples above are simple alternative uses of B−1(P)
crafted according to the corresponding assumption setting, which we summarise:

Mapping Between B,P. Both counterexamples 1 and 2 target the setting where
in the if distribution only one of the two matrices B and P are fully known
to the distinguisher, but in the then distribution the additional information of
B−1(P) allows to recover the other hidden matrix via the relation

B · B−1(P) = P, (7)

the latter containing sufficient information for distinguishing LWE.

Encrypt w.r.t. Short Vector B−1(P). For counterexample 3, B−1(P) acts as the
secret key of an encryption scheme. In fact, in this scenario, during decryption
B−1(P) is still being multiplied to some LWE samples rTB

���
of B to obtain new

samples rTP
���

w.r.t. P. The crucial difference, however, is that such pair of LWE
samples is prepared by Samp but not the challenger, allowing its embedding of
secret in the form of rTP

���
+ secret.

With these in mind, we propose three main families of evasive LWE assump-
tions where these alternative uses cannot apply. These families are marked with
green checkboxes in Fig. 1. See Sect. 4 for formal definitions.

Public-coin Evasive LWE. The first family is when Samp is public-coin,
meaning that it outputs all randomness used. This captures for example the
assumptions in [Wee22,WWW22,HLL24,Wee24,CLW24]. We require that
B is contained in the joint distribution, see Remark 4 for a discussion. We
also require that Samp does not input B, which is supported by a heuristic
counterexample sketched in the full version of this work. 9 Note that under

7 R serves to make C of the same width as SB
��

. If B,P were of the same width, letting

R = T = I completes the disproof; The parameters given by [VWW22] disallow this.
8 It holds that SP

��
(RT − I) = 0 mod q and that RT − I is short.

9 We thank a reviewer of AsiaCrypt 2024 for pointing out this counterexample to us!.
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this family, P is always available to the distinguisher (c.f. Fig. 1a), since it is
efficiently recoverable from the randomness used by Samp.

Private-coin Binding Evasive LWE. The second family is when Samp is
private-coin, and B,P are explicitly included in the joint distributions.
Assumptions of this family take the following form: For any PPT Samp
inputting the security parameter λ and outputting (S,P, aux), where aux
need not include all randomness used,

if (B, P, SB
��

, SP
��

, aux) ≈c (B, P, $, $, aux)

then (B, P, SB
��

, B−1(P), aux) ≈c (B, P, $, B−1(P), aux).

This corresponds to the bottom-left green checkbox area of Fig. 1b and
captures the variant Eq. (8) used by [ARYY23,AKY24], to be discussed
in Sect. 2.4.

Private-coin Hiding Evasive LWE. The third and most subtle family is when
Samp is private-coin and B,P are hidden from the joint distribution. Our
proposed family takes the following form: For any PPT Samp inputting the
security parameter λ and outputting (S,P, aux), where aux need not include
all randomness used, and it holds (P, aux) ≈c (P + R, aux) for a bounded-
norm random R,

if (SB
��

, SP
��

, aux) ≈c ($, $, aux)

then (SB
��

, B−1(P), aux) ≈c ($, B−1(P), aux).

The bounded-norm R can be interpreted as noise, and P+R some approx-
imation of P. The indistinguishability between P and P + R serves as a
proof of “P cannot be approximated given aux” and resists algebraic attacks
which would, e.g., recover a column of P, or a sum of a two columns, since
either allows to distinguish by cross-checking with aux. See Sect. 4.3 for a
more thorough discussion. This family corresponds to the top-right green
checkbox area of Fig. 1b, and seeks to capture existing assumptions taking
the form of Eq. (3) while plausibly resisting attacks exploiting the alternative
use of B−1(P) via Eq. (7): Without knowing neither B nor approximation
of P, it is unclear how Eq. (7) may still be exploited.

Remark 4. Observant readers might have noticed that we have not included the
top-left areas of Figs. 1a and 1b, the families where B is hidden but P is known.
While we have not found counterexamples on these families, we believe they are
of relatively low utility, based on the following informal argument: Since P is fully
known, the indistinguishability SP

��
≈c $ implies S having high entropy given the

“if” distribution, in which case an appropriate entropic LWE assumption [BD20]
implies SB

��
≈c $ even when B is known. 10 We therefore expect that, instead of

resorting to an assumption in this family, one can utilise the families where B is
known, yielding also a stronger then relation where B is also known.
10 The argument is informal, because SP

��
≈c $ might not necessarily imply sufficiently

high entropy for entropic LWE to apply.
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2.4 Assumption Instances in Existing Works

[ARYY23,AKY24]: Counterexample 1 applies to the evasive LWE variant in Eq.
(4), which is the one of the two involved in [ARYY23,AKY24]. Fortunately, both
works’ proofs are modular, in particular, ARYY show that Eq. (4) implies a
second evasive LWE assumption, the latter used by both works to prove security
of their constructions. The second assumption is as follows: For any PPT Samp
outputting an (arbitrary) LWE secret S, matrix P, and auxiliary information
aux1, aux2 (not necessarily containing all randomness used by Samp), where P
is efficiently computable given aux2,

if (B, SB
��

, SP
��

, aux1, aux2) ≈c (B, $, $, $, aux2) (8)

then (B, SB
��

, B−1(P), aux1, aux2) ≈c (B, $, B−1(P), $, aux2)

for uniformly random B. Since P is efficiently computable from aux2, one can
also phrase Eq. (8) as an instance of our proposed private-coin binding evasive
LWE, where B and P are both fully available in the joint distribution. Thus,
assuming the private-coin binding evasive LWE, the MI-ABE of [ARYY23] and
CP-ABE of [AKY24] remain secure.

[VWW22]: Counterexample 2 applies to the evasive LWE variant in Eq. (3),
which first appears in [VWW22] and is recently involved in [CM24,MPV24].
Nevertheless, we have not found attacks on the assumption instance (i.e. the spe-
cific Samp) used by [VWW22]. Indeed, in Sect. 6 we show that, the assumption
instance used by [VWW22] falls under our proposed private-coin hiding evasive
LWE, where B is not given in the joint distribution and P is hidden. The main
reason is that each entry of P contains Gaussian noise that is independent of
aux, and when the Gaussian parameter is sufficiently large, the noise term, con-
sequently also P, is statistically irrecoverable. Thus, assuming the private-coin
hiding evasive LWE, the constructions of [VWW22] remain secure.

[Tsa22]: Counterexample 3 applies to the evasive-type assumption by [Tsa22],
where a private-coin Samp inputs B and its outputs can be arbitrarily corre-
lated with B. Nevertheless, we observe that the condition of Samp knowing B
seems to be an artifact of the definitional style used in [Tsa22]. In Tsabary’s
evasive-type assumption, Samp also outputs the pre-image B−1(P) for the then
distribution, which necessitates Samp to input B and its trapdoor. In contrast,
in other evasive LWE assumptions, such B−1(P) is generated by the challenger
but not Samp. Upon closer inspection, the Samp instance in the security proof
of [Tsa22] indeed only uses B and tdB for sampling the preimages B−1(P)
but nothing else. In particular aux contains no further components correlated
to B and tdB. Therefore, it seems plausible to us that Tsabary’s construction
can be proved under a variant of private-coin evasive LWE that is not subject
to counterexamples. However, verifying this claim is not straightforward, since
Tsabary’s assumption and proof comes with many subtle differences. In more
detail, Tsabary considers exponential-size distributions over matrices and LWE
samples, and the distinguisher accesses them via querying an oracle with an
index for the sample. In turn, evasive LWE provides polynomial-size samples
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directly to the distinguisher, so the adaptation of Tsabary’s proof to evasive
LWE requires syntactic changes and possibly re-structuring the proof into more
game hops. We leave verifying the security of Tsabary’s construction to future
works.

3 Preliminaries

Denote by N = {1, 2, . . .} the set of natural numbers, by Z the set of integers
and by R the set of real numbers. For n ∈ N, we set [n] = {1, . . . , n}. For a ring
extension R ⊇ Z, we set Rq := R/(q · R).

Denote by λ the security parameter. Write poly(λ) =
⋃

d∈N
O(λd), negl(λ) =⋂

d∈N
o(λ−d). A PPT algorithm is a probabilistic algorithm whose time complex-

ity lies in poly(λ). For a PPT algorithm A, we write A(·; rand) for running which
on randomness rand, where rand is understood to be uniformly random over its
randomness space. Denote by U(S) the uniform distribution over a finite set S.
The statistical distance between two discrete distributions S1, S2 over a set
X is Δ(S1,S2) = 1

2

∑
x∈X |S1(x) − S2(x)| . For a vector x = (x1, . . . , xm)T ∈ R

m,

its �2-norm is ‖x‖ := ‖x‖2 =
√∑

i∈[m] x
2
i .

3.1 Lattices and Gaussian Distributions

Definition 1 (Lattice and Dual Lattice). A lattice is a discrete additive
subgroup Λ ⊂ R

m. The rank of a lattice Λ is defined to be the vector space
dimension by the space spanned by the elements of Λ.

The dual lattice of a lattice Λ is given by

Λ∗ = {y ∈ R
m | ∀x ∈ Λ : 〈y|x〉 ∈ Z}.

Definition 2 (q-ary Lattices and Cosets). For a matrix A ∈ Z
n×m
q , define

its orthogonal lattice by

Λ⊥(A) := {e ∈ Z
m | Ae = 0 mod q} ⊆ Z

m

and the lattice spanned by its rows by

Λ(A) := {y ∈ Z
m | ∃x ∈ Z

n, y = xTA mod q} ⊆ Z
m.

Additionally, for a syndrome u ∈ Z
n
q , define the following coset of Λ⊥(A)

Λ⊥
u (A) := {e ∈ Z

m | Ae = u mod q} ⊆ Z
m.
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For U = (u1, . . . ,uk) ∈ Z
n×k
q , the notation extends naturally to Λ⊥

U(A) =
Λ⊥
u1

(A) × . . . × Λ⊥
uk

(A) ⊆ Z
m×k.

Note that we have q · Λ(A) =
(
Λ⊥(A)

)∗ and Λ⊥
u (A) = Λ⊥(A) + t, if there

exists a t ∈ Z
m s.t. At = u mod q.

Definition 3 (Gaussian measure). For x ∈ R
m, the Gaussian measure

with parameter Σ ∈ R
m×m and center c ∈ R

m, where Σ is positive semi-definite,
is ρΣ,c(x) = exp

(−π · (x − c)TΣ−1(x − c)
)
. If Σ = χ2I, we write ρχ,c(x). If

c = 0, we simply write ρΣ(x) (resp. ρχ(x)). For a discrete set Λ ⊂ R
m, we set

ρΣ,c(Λ) :=
∑

x∈Λ ρΣ,c(x).

Definition 4 (Discrete Gaussian Distribution). For a non-empty discrete
set Λ ⊂ R

m, define the discrete Gaussian distribution over Λ with parameter
Σ ∈ R

m×m and center c ∈ R
m, where Σ is positive definite, as

DΛ,Σ,c(x) =
ρΣ,c(x)
ρΣ,c(Λ)

if x ∈ Λ,

and DΛ,χ,c(x) = 0 otherwise. If Σ = χ2I, we write DΛ,χ,c for DΛ,Σ,c. If c = 0,
we simply write DΛ,Σ (resp. DΛ,χ).

For Λ⊥
U(A) = Λ⊥

u1
(A) × . . . × Λ⊥

uk
(A) where each Λ⊥

ui
(A) is non-empty, we

write DΛ⊥
U(A),Σ,c for the (horizontal) concatenation of the discrete Gaussian

distributions over each Λ⊥
ui

(A).

Definition 5 (Smoothing Parameter [MR04]). For a full-rank lattice Λ ⊂
R

m and ε > 0, its smoothing parameter is

ηε(Λ) := inf{χ > 0 | ρ1/χ(Λ∗ \ {0}) ≤ ε}.

The following lemma allows to bound the smoothing parameter for orthogo-
nal lattices of random matrices:

Lemma 1 ([Pei07,GPV08]). Let q be prime, m ≥ 2n · log q. We have

Pr
A←Z

n×m
q

[
η2−n(Λ⊥(A)) ≤ 4√

π
·
√

log(2m) + log(1 + 2n)
]

≥ 1 − q−n.

Lemma 1 is an implication of results of [Pei07,GPV08]. For details, we refer the
reader to the full version of this work.

Lemma 2 ([MR04,PR06]). Let Λ ⊂ R
m be an m-dimensional full-rank lattice.

For any c ∈ R
m, ε > 0, χ ≥ 2ηε(Λ), and y ∈ Λ, it holds that

DΛ,χ,c(y) ≤ 2−m · 1 + ε

1 − ε
.

Lemma 3 (Leftover Hash Lemma [HILL99,BDK+11]). Let m,n, q ∈ N. If
we draw A ← Z

n×m
q , y ← Z

n
q and x ← {0, 1}m, we have

Δ((A,Ax mod q), (A,y)) ≤ 1
2

· qn/2

2m/2
.
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Lemma 4 (Noise Flooding). Let χ = DZ,σ. For all t ∈ Z, we have Δ(χ, χ +
t) ≤ √

π
2 · ‖t‖

σ . In particular, if χ ∈ λω(1) ‖t‖, then Δ(χ, χ + t) ∈ negl(λ).

For a proof of Lemma 4, see [BDE+18, Appendix A.2].

3.2 Lattice Assumptions and Lattice Trapdoors

Definition 6 (Learning with Errors). Let q, n,m, χ be parametrised by λ,
where n,m, q ∈ N with n,m ∈ poly(λ). The (decisional) Learning with Errors
LWEq,n,m,χ assumption states that for every PPT distinguisher D, it holds that
∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎣b = 0

∣∣∣∣∣∣∣∣∣

A ←$Z
n×m
q

s ←$Z
n
q , e ←$ DZm,χ

bT := sTA + eT mod q

b ← D(A,b)

⎤
⎥⎥⎥⎦ − Pr

⎡
⎢⎣b = 0

∣∣∣∣∣∣∣
A ←$Z

n×m
q

b ←$Z
m
q

b ← D(A,b)

⎤
⎥⎦

∣∣∣∣∣∣∣∣∣
∈ negl(λ).

In their seminal work, [MP12] gave algorithms for sampling (almost) uni-
formly random matrices together with trapdoors that allow for LWE inversion
and preimage lattice sampling. Currently, their algorithms are the status quo
for these tasks, and we will usually assume that the challengers for the evasive
LWE assumptions will resort to them. Hence, we will give here an overview of
the guarantees given in [MP12] for these algorithms:

Theorem 1 ([MP12]). Let m ≥ 3n·log(q) and set w = n·�log q�. Let χ ∈ Ω(n·√
log q). There exist algorithms (TrapGen,SampPre) with the following properties:

1. TrapGen(1n, 1m) outputs two matrices B ∈ Z
n×m
q , td ∈ {−1, 0, 1}w×(m−w)

s.t. the statistical distance between B and U(Zn×m
q ) is upper-bounded by 2−n.

2. Draw (B, td) ← TrapGen(1n, 1m), let u ∈ Z
n
q . For e′ ← SampPre(B, td,u, χ)

and e ← DΛ⊥
u (B),χ, we have Δ((B, e), (B, e′)) ∈ O(2−n).

4 Evasive LWE: Definitions, Classes

We formally define the three classes of evasive LWEs outlined in Sect. 2.3.

4.1 Public-Coin Evasive LWE

Definition 7 (Public-coin Evasive LWE). Let the parameters

param = (R, q, n, nA,m,mP ,mA, t, tA,D,S, χB , χP , χA, f, fA, Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in R
ϕ

for some ϕ ∈ N, D ∼ Rn×m
q , S ∼ Rt×n

q × RtA×nA
q , χB ∼ Rt×m, χP ∼ Rt×mP ,

and χA ∼ RtA×mA are distributions, Σ ∈ R
ϕm×ϕm is positive definite, and f, fA

are PPT algorithms. Let Samp be a PPT algorithm which, on input 1λ, outputs
(
A ∈ RnA×mA

q , P ∈ Rn×mP
q , aux ∈ {0, 1}∗) .
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Fig. 2. Experiments Pre and Post for public-coin evasive LWE.

Denote

AdvPreA (λ) :=
∣∣Pr

[
Pre0A(1λ) = 1

] − Pr
[
Pre1A(1λ) = 1

]∣∣ ,
AdvPostB (λ) :=

∣∣Pr
[
Post0B(1λ) = 1

] − Pr
[
Post1B(1λ) = 1

]∣∣ ,
where the experiments Preb

A and PostbB are defined in Fig. 2. The
PublicEvLWEparam assumption states that for any PPT Samp and B there exists
a PPT A such that AdvPreA (λ) ≥ AdvPostB (λ)/poly(λ) − negl(λ).

Remark 5. We parametrise the assumption by the modulus, matrix dimen-
sions, noise parameters, etc. This is analogous to how the LWE assumption is
defined when done precisely, which formally is parametrised by (R, q, n,m, χ).
We emphasise that we believe the plausibility of an evasive LWE assumption
should depend on these parameters, analogous to that the plausibility of LWE
depends on e.g. the dimension n and the ratio q/χ. As we will see, existing
public-coin evasive LWE all fall under Definition 7 with specially chosen param-
eters.

Definition 7 is a versatile definition designed to capture both the public-coin
flavour and many different (sometimes implicit) features involved in existing
definitions. We elaborate on some key aspects.
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Randomness of Samp. The randomness rand used by Samp is made explicit
syntactically, to highlight the public-coin nature. The same convention was
used in [HLL24]. Given rand, the inputs (A,P, aux) to A and B may be
omitted as they can be derived from rand; we include them for clarity.

Matrix A. The matrix A serves to represent the LWE matrix not involved in
the preimage-image relation which the evasive LWE assumption concerns,
i.e. in the Post experiment, the acquired preimages do not involve A. This
serves to increase expressiveness of the assumption while leaving the intuition
of evasive LWE unchanged, and is required in a number of works [Wee22,
WWW22,HLL24,CLW24]. By setting A the empty matrix, we recover the
simpler cases outlined in Sect. 2.

Check P = BRmP . This check makes the evasive LWE assumption formally
well-defined: Without this check, in case P = (pi)i is not in the R-span of
B, the distribution DΛ⊥

P(B),Σ , and consequently Postb, would be ill-defined,
since some Λ⊥

pi
(B) would be empty. In existing works, this check is implicit

since in those settings w.h.p. B is primitive and all Λ⊥
pi

(B) �= ∅.
Distribution of B. We let B be sampled from a distribution D, the latter

being itself a parameter of the assumption. In the simple setting of [Wee22],
D is the uniform distribution over Z

n×m
q . As discussed below, by setting D

appropriately, other existing variants, e.g. where an evasive LWE is defined
over multiple Bi’s, can also be naturally captured. To understand and gain
confidence in this generalisation, we discuss some special cases of D. (1) Low-
entropy D (in the extreme case B is deterministic) and n < m: In this case
LWE w.r.t. B is likely easy, so that both Preb and Postb can be efficiently
distinguished, and the assumption is vacuously true. (2) D is such that B is
(likely) not primitive: If P is in the column span of B then the rationale of
the assumption stays unchanged; otherwise, the check P = BRmP fails, so
that the winning probability in both Preb,Postb are zero and the assumption
is again true. (3) D is such that the lattice Λ⊥(B) (likely) contains no short
vector: The assumption, in particular the distribution DΛ⊥

P(B),Σ , is still well-
defined, although with the unusual scenario that U is (likely) not short, which
intuitively only makes distinguishing Postb harder.

LWE Secret Distributions. The LWE secret distribution S, determining (cor-
relation between) the LWE secret for samples w.r.t. to (B,P) and A respec-
tively, is parametrised by the assumption (instead of e.g. fixed to be uni-
form). This is in line with the intuition of evasive LWE (and already implicit
in existing private-coin variants), which says that secret distributions should
not matter to the if-then relation that the assumption postulates, since intu-
itively B−1(P) should not be able to interact with S and SA meaningfully.
Note that a poor secret distribution would allow to distinguish Preb in the first
place so that the assumption is vacuously true. As to be discussed below, this
treatment further allows us to interpret some existing variants in an arguably
more intuitive way.

Public-coin Hint. The hint on the LWE secrets, which are outputs of the func-
tions f, fA parametrised by the assumption, manifests the intuition of “secret
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distributions should not matter to the if-then relation”, in that leakages on
the secret may be given to the distinguishers. We view this as an evasive ana-
logue of entropic LWE [BD20]. (In private-coin variants, such hint is implicit
in aux since Samp can generate it itself.) To be consistent with the spirit of
“public-coin”, we require the randomness randfA

, randf used in generating
hint (if any) to be provided to the distinguisher. We note again that a poor
leakage would allow a distinguisher to distinguish Preb so that the assumption
is vacuously true.

B not known to Samp. Similar to the private-coin setting to be discussed up
next, in Definition 7 we forbid the sampler Samp to input B. Although we
are unable to provide a provable counterexample against this case, in the full
version of this work we provide a heuristic counterexample to support this
restriction.

Relating to Existing Definitions. All existing public-coin evasive LWE can be
viewed as special cases of Definition 7, which we briefly summarise. Most works
define an assumption over the integers R = Z.11 The original evasive LWE
of [Wee22], later also used in [Wee24], has secret distribution S such that
SA = S = sT where s is uniform, and fA, f the empty function, i.e. no hint
involved. [WWW22] defined a public-coin evasive LWE with multiple indepen-
dent and uniform Bi ∈ Z

n×m
q , with LWE samples sTiBi + eTi mod q under inde-

pendent uniform secrets si, and additionally with samples w.r.t. A under the
concatenated secret (sT1, . . . , s

T
k). This can be expressed by our definition as hav-

ing B =

⎛
⎜⎝
B1

. . .
Bk

⎞
⎟⎠ and secret distribution S such that S = SA = (sT1, . . . , s

T
k).

[CLW24] used a public-coin evasive LWE that is similar to that of [WWW22],
but let S be such that S = (sT1, s

T, . . . , sTk, sT), SA = (sT1, . . . , s
T
k, sT), where si, s

are all uniform. [HLL24] defined a public-coin evasive LWE with matrices and
LWE samples of the (arguably ad-hoc) forms

B =

⎛
⎜⎝
B0

...
Bk

⎞
⎟⎠ , sTi (B0, . . . ,Bk) + (0T,gT ⊗ eTi,1) + eTi,2 mod q for all i ∈ [I]

(with preimages U = B−1(P) w.r.t. B), where gT = (20, . . . , 2k−1), and with
further samples of the form (sTi , s

T
0)A+eTi,0 mod q for all i ∈ [I]; This can be sum-

marised by our definition as letting B ←$Z
nk×m
q be simply uniformly random,

and with structured secret and error distributions S, χB , χA such that

11 On the other hand, suppose one is to optimise any involved constructions for effi-
ciency, then it is easy to see that an analogous evasive LWE instance over other rings
R, e.g. the ring of integers of some cyclotomic field, is to be involved.
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S =

⎛
⎜⎝
Ŝ

. . .
Ŝ

⎞
⎟⎠ where Ŝ =

⎛
⎜⎝
sT1
...
sTI

⎞
⎟⎠ , SA =

⎛
⎜⎝
sT1, s

T
0

...
sTI , s

T
0

⎞
⎟⎠ ,

EB =

⎛
⎜⎝

(0T,gT ⊗ eT1,1) + eT1,2
...

(0T,gT ⊗ eTI,1) + eTI,2

⎞
⎟⎠ , EA =

⎛
⎜⎝
eT1,0

...
eTI,0

⎞
⎟⎠ .

Remark 6 (Relation to evasive circular LWE of [HLL23]). In [HLL23] an “eva-
sive circular LWE assumption” is proposed, which can be viewed as involving
a non-trivial hint function. However, despite being regarded as a public-coin
assumption by [HLL23], this does not fall into the public-coin family under our
characterisation (also when factoring out its circular nature), due to its hint
function being not public-coin. Further discussion on this in the full version of
this work.

4.2 Private-Coin Binding Evasive LWE

Definition 8 (Private-coin Binding Evasive LWE). Let the parameters

param = (R, q, n,m,mP , t,D, χB , χP , Σ)

be parametrised by λ, where R is a ring admitting an embedding as a lattice in R
ϕ

for some ϕ ∈ N, D ∼ Rn×m
q , χB ∼ Rt×m, and χP ∼ Rt×mP are distributions,

and Σ ∈ R
ϕm×ϕm is positive definite. Let Samp be a PPT algorithm which, on

input 1λ, outputs
(
S ∈ Rt×n

q , P ∈ Rn×mP
q , aux ∈ {0, 1}∗) .

Let Preb
A and PostbB be the experiments defined in Fig. 3 and denote

AdvPreA (λ) :=
∣∣Pr

[
Pre0A(1λ) = 1

] − Pr
[
Pre1A(1λ) = 1

]∣∣ ,
AdvPostB (λ) :=

∣∣Pr
[
Post0B(1λ) = 1

] − Pr
[
Post1B(1λ) = 1

]∣∣ .
The PrivateBindEvLWEparam assumption states that for any PPT Samp and B
there exists a PPT A such that AdvPreA (λ) ≥ AdvPostB (λ)/poly(λ) − negl(λ).

We explain some key aspects of Definition 8.

Randomness of Samp. As its name suggests, in Definition 8 the randomness
of Samp need not be given to the distinguishers. This makes the assumption
more susceptible to future attacks, as Samp can embed secret information in
aux. For example, as discussed in [VWW22], one may potentially include in
aux a carefully crafted obfuscation containing a trapdoor of P (cf. Remark 3).

B not known to Samp. The assumption is restricted to the class of Samp
which does not input the matrix B. This avoids counterexamples such as
ours, sketched in Sect. 2.2 and detailed in Sect. 5.3.
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Fig. 3. Experiments Pre and Post for private-coin binding evasive LWE.

Correlations among S,P and aux. Samp outputs also the LWE secret S,
implying that S can be correlated to P and aux secretly and arbitrarily. This
leads to another potential attack angle of exploiting such correlations.

Other outputs of Samp. Relative to Definition 7, other components such as
A,SA and hint functions are omitted, since these can now be generated by
Samp and contained in aux.

Relating to Existing Definitions. The private-coin variant of [ARYY23,
Lemma 3.4] falls under Definition 8, where they formulated aux as (aux1, aux2),
where aux1 can be proven pseudorandom and P is efficiently computable from
aux2. As reference, the security proofs of [ARYY23] involve calling private-coin
evasive LWE iteratively, some instances due to that aux contains preimages w.r.t.
components of P sampled using a trapdoor which cannot be leaked to the distin-
guisher, and some others due to that aux involves secret correlation with S; all
instances do not involve correlation between S and P. The same variant is later
used by [AKY24]. Moreover, the evasive circular LWE assumption of [HLL23] is
also a member of Definition 8, for which we discuss in the full version.

4.3 Private-Coin Hiding Evasive LWE

Definition 9 (Private-coin Hiding Evasive LWE). Let the parameters

param = (R, q, n,m,mP , t,D, χB , χP , �, Σ)
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Fig. 4. Experiments Pre1, Pre2 and Post for private-coin hiding evasive LWE.

be parametrised by λ, where R is a ring admitting an embedding as a lattice in R
ϕ

for some ϕ ∈ N, D ∼ Rn×m
q , χB ∼ Rt×m, and χP ∼ Rt×mP are distributions,

Σ ∈ R
ϕm×ϕm is positive definite, and � ∈ {1, 2, . . . , q}. Let Samp be a PPT

algorithm which, on input 1λ, outputs
(
S ∈ Rt×n

q , P ∈ Rn×mP
q , aux ∈ {0, 1}∗) .

Let Pre1b
A, Pre2b

A and PostbB be the experiments defined in Fig. 4 and denote

AdvPre1A (λ) :=
∣∣Pr

[
Pre10

A(1λ) = 1
] − Pr

[
Pre11

A(1λ) = 1
]∣∣ ,

AdvPre2A (λ) :=
∣∣Pr

[
Pre20

A(1λ) = 1
] − Pr

[
Pre21

A(1λ) = 1
]∣∣ ,

AdvPostB (λ) :=
∣∣Pr

[
Post0B(1λ) = 1

] − Pr
[
Post1B(1λ) = 1

]∣∣ .
The PrivateHideEvLWEparam assumption states that for any PPT Samp and B
there exists a PPT A such that AdvPre1A (λ) + AdvPre2A (λ) ≥ AdvPostB (λ)/poly(λ) −
negl(λ).

The experiments Pre1,Post in Definition 9 are almost identical to the exper-
iments Pre,Post in Definition 8, except that the matrix B is not given to the
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distinguishers A and B, and P also not necessarily. The obvious distinction is
the additional experiment Pre2, which we define below.

Experiment Pre2. This experiment seeks to ensure that “both B,P are suf-
ficiently hidden from the distinguishers”. First, observe that the indistin-
guishability of Pre10 and Pre11, i.e., (SB

��
, SP

��
, aux) ≈c ($, $, aux), implies

that (SB
��

,SP
��

, aux) does not leak information about B (computationally),
since aux is independent of B. Moreover, the only possible way for a PPT
adversary A to obtain information about P is via aux. Experiment Pre2b then
ensures that the latter is also impossible, in that (P, aux) and (P+noise, aux)
are indistinguishable. In words, given aux, no PPT A can learn sufficiently
about (an approximation of) P, in that P and P+noise look the same to A.

On � and U({0, 1, . . . , �}). The parameter � parametrises the strength of Pre2
and the overall evasive LWE assumption. For example, if � = q, then Pre2
can be seen as requiring P to be pseudorandom, and since this is the hardest
case to achieve, the resulting Hiding Evasive LWE assumption is the weakest.
As � decreases, i.e. less noise is added to P, Pre2 becomes easier to be satis-
fied, and the evasive LWE assumption grows stronger. The noise distribution
U({0, 1, . . . , �}) may alternatively be replaced by other natural distributions,
e.g. discrete Gaussian over R, with the Gaussian parameter being a suitable
� parametrising the hardness of Pre2.

Relating to Existing Definitions. Suppose � = 0 (which is disallowed in Defi-
nition 9), then the experiment Pre2 is trivial and Definition 9 collapses to the
private-coin variant in [VWW22]. Letting mP = 2m, our counterexamples prove
that the assumption for this setting is false (conditioned on other appropriate
parameters). On the other hand, even just by setting � = 1, we are unaware of
counterexamples (except the obfuscation-based one by [VWW22], c.f. Remark
3). Moreover, in Sect. 6 we will see that Definition 9 with a large � can be applied
to the security proof of [VWW22], without altering their parameters.

Remark 7 (What if Pre2 restricts some but not all entries of P). In the full ver-
sion of this work, we sketch an alternative counterexample against the assump-
tion in [VWW22], which demonstrates that it is necessary for most entries of P
to be irrecoverable, as even leaking only m entries of P (for m the number of
columns of B) would lead to a successful distinguisher for Postb.

Remark 8 (Alternative Pre2 candidate). Another way to potentially capture the
intuition of “cannot approximate P given aux” might be to ask for indistin-
guishability of P mod � and R mod �, for a uniform R over Zq. 12 Other than the
complication in formalisation and potential issues due to number-theoretic rela-
tions between q and �, this alternative is also intuitively a weaker pre-condition
12 These mean, fix the representatives of Zq = {0, 1, . . . , q − 1} and map each entry

in Zq to their representative over Z, then further apply mod � operation. For an
intuition, if � = 2k is a power of 2, then P mod � may be interpreted as the last k
bits of (each entry of) P.
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Fig. 5. Experiments Pre and Post for private-coin evasive LWE variants, to which our
counterexamples apply.

(hence leading to stronger evasive assumption). For more context, in the full ver-
sion of this work we provide a heuristic counterexample against such alternative
Pre2 for � = 2 and mP = O(m2), which may be further generalised to be against
constant � and mP = O(m
) [AG11,NMSÜ24].

5 Counterexamples to Existing Variants

We present our counterexamples against a number of existing evasive LWE
variants sketched in Sect. 2.2. These variants are formally defined in Fig. 5 and
parametrised by β, γ, each controlling if Samp receives B as input or not, and
if the distinguishers receive B, (B,P), or none. We remark that this definition
is a special case of the private-coin variants in existing works, where we con-
sider the restricted setting of the LWE sample s being sampled honestly by the
experiments, not available to Samp.

Denote the advantages of distinguishers A,B and β ∈ {0, 1}, γ ∈ {0, 1, 2} by

AdvPre,β,γ
A (λ) =

∣∣∣Pr[Pre0,β,γ
A (1λ) = 0] − Pr[Pre1,β,γ

A (1λ) = 0]
∣∣∣

AdvPost,β,γ
A (λ) =

∣∣∣Pr[Post0,β,γ
A (1λ) = 0] − Pr[Post1,β,γ

A (1λ) = 0]
∣∣∣
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In all counterexamples, we consider the usual case of the ring of integers R =
Z and assume that error noise is distributed according to a discrete Gaussian
distribution DZm,χ for a parameter χ > 0 to be specified. We require q to be
prime, and abide to the following parameter restrictions for n,m, χ, q

m ≥ 3n log(q), χ ≥ λm, q ≥ λm2χ2.

Remark 9 (On Parameters). The above parameters are polynomial (in particular
the modulus q can be chosen to lie in O(n4λ4), for example) and the attacks we
propose in the following have a high advantage of at least 1−O(1/λ) to win the
then challenge. It is possible to increase the advantage to be overwhelming in λ,
by chosing q � χ � m such that q is super-polynomially larger than χ, and χ
is super-polynomially larger than m.

The following lemma upper-bounds the probability of a square Gaussian
matrix sampled over random cosets being not invertible over Zq, which be useful
for our counterexamples. Its proof in more generality is given in the full version
of this work.

Lemma 5. Let B,P1 ←$Z
n×m
q be uniformly random. Let χ ∈ ω(

√
n), m ≥

2n log q and let q > n · χ be prime. We have

Pr
D1 ←$ DΛ⊥

P1
(B),χ

[det(D1) = 0 mod q] ≤ O (m/χ) .

Remark 10 (Alternative to Lemma 5). As an alternative to Lemma 5, one can
use a similar result by Regev [Reg05], which states that m2 many Gaussian
vectors d1, . . . ,dm2 ←$ DZm,χ will contain a basis of Z

m with probability at
least 1−2Ω(n). Correspondingly, the numbers of columns of the matrices P1 and
P3 in Sects. 5.1 and 5.2 is required to increase from m to m2 .

5.1 Counterexample 1

We give a counterexample for the case β = 0, γ = 1, i.e., B is given to the
distinguishers, but P = (P1,P2) is not and aux is empty. Our idea is to embed a
trapdoor in P2, which we use to distinguish sTB+ eT0 from uniform randomness
in the Postb challenge. Concretely, let Samp1(1λ) output the following:

(P = (P1,P2), aux = ⊥)

where

u′ ←$ {0, 1}m−1, P′
1 ←$Z

n×(m−1)
q , P′

2 ←$Z
(n−1)×m
q ,

uT = ((u′)T, 1) ∈ {0, 1}1×m, P1 =
(
P′

1| − P′
1u

′ mod q
)
, P2 =

(
P′

2

uT

)
.
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Proposition 1. Let A be a PPT adversary. Under the LWEZ,q,n,2m,χ assump-
tion, we have for the experiment Preβ=0,γ=1

A (1λ) in Fig. 5 instantiated with Samp1

AdvPre,0,1
A (λ) ∈ negl(λ).

Proof. The proof proceeds via four hybrid experiments:

D0: The joint distribution of the ifstatement, i.e.
(
B, sTB + eT0 mod q, sTP1 + eT1 mod q, sTP2 + eT2 mod q

)
where B ←$ Rn×m

q , s ←$Z
n
q , e0 ←$ χm, e1 ←$ χm, e2 ←$ χm.

D1: The last term sTP2 + eT2 mod q is replaced by a random vector y2, i.e.
(
B, sTB + eT0 mod q, sTP1 + eT1 mod q, y2

)
for y2 ←$Z

m
q .

D2: As D1, but P1 is swapped to random.
D3: sTB + eT0 mod q and sTP1 + eT1 mod q are swapped to random, i.e.

(B, y0, y1, y2)

for y0,y1,y2 ←$Z
m
q .

The statistical distance between D0 and D1 is bounded by q−n+1. This is because
for s = (s′, sn) ←$Z

n
q , sTP2 = s′TP′

2 + sn · uT mod q is uniformly random if s′

is non-zero (even if we know B, P1, s and u).
Since m ≥ 2n log q, the Leftover-Hash Lemma 3 implies that the statistical

distance between P1 = (P′
1| − P′

1u
′ mod q) and a uniformly random matrix

is bounded by 2−n. Hence, the statistical distance between D1 and D2 is also
bounded by 2−n. Finally, LWEZ,q,n,2m,χ states that D2 and D3 are computation-
ally indistinguishable.

Therefore, A’s distinguishing advantage between Pre0,0,1
A (1λ) = D0 and

Pre1,0,1
A (1λ) = D3 is bounded by 2−n+1 plus a negligible term stemming from

the LWE assumption. ��
We introduce two more lemmas, their proofs are given in the full version.

Lemma 6. Let (P1 ∈ Z
n×m
q ,u ∈ {0, 1}m) ← Samp1(1λ). For B ←$Z

n×m
q and

D1 ← DΛ⊥
P1

(B),χ, we have Pr [D1 · u = 0 mod q] ≤ O(m/χ).

Lemma 7. Let (P1 ∈ Z
n×m
q ,u ∈ {0, 1}m) ← Samp1(1λ). Sample B ←$Z

n×m
q ,

e0 ←$ DZm,χ and D1 ←$ DΛ⊥
P1

(B),χ. We have Pr
[‖eT0 · D1 · u‖ ≥ m2χ2

] ≤ 2−λ.

Proposition 2. There is a PPT adversary B s.t. we have for the experiment
Postβ=0,γ=1

B (1λ) in Fig. 5 instantiated with Samp1

AdvPre,0,1
B (λ) ≥ 1 − O(1/λ).
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Proof. Let B ←$Z
n×m
q and (S,P, aux = ⊥) ← Samp1(1λ). Sample

D ←$ DΛ⊥
P(B),χ and note that D ∈ Z

n×2m can be split into two equally large
parts D = (D1|D2), which are distributed as

D1 ←$ DΛ⊥
P1

(B),χ and D2 ←$ DΛ⊥
P2

(B),χ.

Recall that in the experiment Postβ=0,γ=1
B (1λ), B has to decide if cT in(

B, D1, D2, cT
)

equals sTB + eT0 mod q, for e0 ←$ DZm,χ and s ←$Z
n
q , or has been sampled uni-

formly at random from Z
1×m
q .

Our adversary B proceeds as follows:

1. It recovers P2 := B · D2 mod q.

2. Since Samp1 samples P2 as
(
P′

2

uT

)
, B can extract the binary vector u ∈

{0, 1}m from the last row of P2.
3. B computes r := cT · D1 · u mod q.
4. If r ∈ {−χ2m2, . . . , χ2m2} ⊂ Zq, then B outputs 0. Otherwise, it outputs 1.

If c is drawn uniformly at random from Z
m
q , then the probability that r lies in

{−χ2m2, . . . , χ2m2} is bounded by O(χ2m2/q) ⊆ O(1/λ). This is because r is
distributed uniformly at random in Zq if D1 ·u mod q is non-zero, which happens
with probability at least 1 − O(m/χ) = 1 − O(1/λ) by Lemma 6. Hence, if c is
uniformly random, B outputs 1 with probability 1 − O(1/λ).

Else, if c = BTs + e0 mod q for e0 ←$ DZm,χ and s ←$Z
n
q , then

r =cT · D1u = (sTB + eT0) · D1u = sTB · D1u + eT0 · D1u

=sTP1u + eT0D1u = eT0D1u mod q.

By Lemma 7, ‖eT0D1u‖ ≤ m2χ2 with probability at least 1 − 2−λ. Hence, B will
output 0 if c = BTs + e0 mod q with overwhelming probability. It follows that
the advantage of B lies in 1 − O(1/λ). ��

5.2 Counterexample 2

We give a counterexample for the case β = γ = 0, i.e. B is not given to the
distinguisher. The sampler is similar to that in Sect. 5.1, except that we add a
third part P3 ←$Z

n×m
q to P, which is also included in aux. While P3 is harmless

on its own, the distinguisher for Postb can use it to recover B and continue as
in the first counterexample. Concretely, let Samp2(1λ) output the following:

(P = (P1,P2,P3), aux = P3)

where P3 ←$Z
n×m
q and

u′ ←$ {0, 1}m−1, P′
1 ←$Z

n×(m−1)
q , P′

2 ←$Z
(n−1)×m
q ,

uT = ((u′)T, 1) ∈ {0, 1}1×m, P1 =
(
P′

1| − P′
1u

′ mod q
)
, P2 =

(
P′

2

uT

)
.
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Proposition 3. Let A be a PPT adversary. Under the LWEZ,q,n,3m,χ assump-
tion, we have for the experiment Preβ=0,γ=0

A (1λ) in Fig. 5 instantiated with Samp2

AdvPre,0,0
A (λ) ∈ negl(λ).

Proof. Let P1,P2,P3 be the output of Samp2(1λ). Note that in this case, A has
to distinguish between the distribution

(
sTB + eT0, sTP1 + eT1, sTP2 + eT2, sTP3 + eT3, P3

)
mod q (9)

for B ←$ Rn×m
q , s ←$Z

n
q , e0 ←$ χm, e1 ←$ χm, e2 ←$ χm, and the distribution

(y0, y1, y2, y3, P3) ,

for y0,y1,y2,y3 ←$Z
m
q . By the same argument as in the proof of Proposition 1,

the statistical distance between the distribution in Eq. (9) and
(
sTB + eT0 mod q, sTP′′

1 + eT1 mod q, y2, sTP3 + eT3 mod q, P3

)
, (10)

for P′′
1 ←$Z

n×m
q and y2 ←$Z

m
q is bounded by 2−n+1. Now, the claim follows by

invoking LWEZ,q,n,3m,χ. ��
Proposition 4. There is a PPT adversary B s.t. we have for the experiment
Postβ=0,γ=0

B (1λ) in Fig. 5 instantiated with Samp2

AdvPre,0,0
B (λ) ≥ 1 − O(1/λ).

Proof. For i = 1, 2, 3, let Di ←$ DΛ⊥
Pi

(B),χ be the short preimages that B is given

in Postb. Denote the adversary of Proposition 2 from counterexample 1 by B′.
We want to invoke B′ on Postb, however, note that B is missing.

Since B and P3 have been sampled uniformly at random, Lemma 5 implies
that D3 mod q is invertible with probability 1 − O(1/λ). Hence, B on input

(D1, D2, D3, cT, aux = P3)

proceeds as follows:

1. If D3 mod q is not invertible, then B outputs a random bit and stops.
2. If D3 mod q is invertible, B computes B = D−1

3 · P3 mod q.
3. B runs B′(B,D1,D2, cT) and defers its output to the post challenger.

By Lemma 5 and Proposition 1, the advantage of B is at least 1 − O(1/λ). ��

5.3 Counterexample 3

We give a counterexample for the cases β = 1, γ ∈ {0, 1, 2}. Note that β = 1
implies that Samp gets B as input. We prove indistinguishability of Preb in the
strongest case, where the joint distribution contains B and P, i.e. γ = 2. We
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also show that, there exists PPT distinguisher for the weakest Postb challenge,
where the joint distribution will contain neither P nor B, i.e. γ = 0.

Let Samp3(1λ,B), on input B, output a matrix P constructed as follows:

U = (u1|u2) ←$ {0, 1}m×2, P = (p1|p2) := BU mod q ∈ Z
n×2
q .

Additionally, Samp3 outputs aux, which consists of the Dual Regev encryptions
(under (B|p1) ∈ Z

n×(m+1)
q ) of the bits u2,1, . . . , u2,m of u, that is,

aux =
(
rTiB + f ′T

i mod q, rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i mod q

)
i∈[m]

∈ Z
m×(m+1)
q

where Samp3 samples r1, . . . , rm ←$Z
n
q and fi = (f ′

i , fi,m+1) ←$ DZm+1,χ.

Proposition 5. Let A be a PPT adversary. Under the LWEZ,q,n,m+2,χ assump-
tion, we have for the experiment Preβ=1,γ=2

A (1λ) in Fig. 5 instantiated with Samp3

AdvPre,1,2
A (λ) ∈ negl(λ).

Proof. We proceed via the following hybrid experiments:

D0: This distribution corresponds to the view of A in Pre0,1,2(1λ), i.e.⎛
⎝B, sTB + eT0 mod q, p1, p2, sTp1 + eT1 mod q, sTp2 + eT2 mod q,

aux =
(
rTiB + f ′T

i mod q, rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i mod q

)
i=1,...,m

⎞
⎠

where B ←$Z
n×m
q , (p1,p2, aux) ← Samp3(B, 1λ), s ←$Z

n
q , e0, ←$ DZm,χ,

e1, e2 ←$ DZ,χ.
D1: D1 resembles D0, but we replace p1 in the joint distribution and in the

auxiliary information aux of the sampler with a uniformly random vector
p′

1 ←$Z
m
q .

D2: We replace aux =
(
rTiB + f ′T

i mod q, rTip
′
1 + fi,m+1 +

⌊
q
2

⌋ · u2,i mod q
)

i∈[m]

by a uniformly random matrix aux′ ←$Z
m×m+1
q in D1.

D3: We replace p2 by a uniformly random vector in D2.
D4: We replace sTB+ eT0, s

Tp′
1 + eT1, and sTp′

2 + eT2 by uniformly random vectors
and numbers over Z

n
q .

D5: We swap p′
2 back to p2 in D4.

D6: We revert the changes on aux′ and put again

aux =
(
rTiB + f ′T

i mod q, rTip
′
1 + fi,m+1 +

⌊q

2

⌋
· u2,i mod q

)
i=1,...,m

.

D7: Finally, we replace the uniformly random vector p′
1 in D6 by the vector

p1 = Bu1 outputted by the sampler. Note that D7 equals now⎛
⎝ B, c0, p1, p2, c′

1, c′
2,

aux =
(
rTiB + f ′T

i mod q, rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i mod q

)
i=1,...,m

⎞
⎠

for c0 ←$Z
m
q , c′

1, c
′
2 ←$Zq. Hence, D7 is the view of A in Pre1,1,2(1λ).
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We claim that the advantage of A to distinguish between the hybrids is negligible:
By the Leftover-Hash Lemma 3, the statistical distance between D0 and D1,
between D2 and D3, between D4 and D5 and between D6 and D7 is bounded by
2−n. Going from D1 to D2, we replace the m-fold dual-Regev encryption aux by
a uniformly random matrix aux′ ←$Z

m×(m+1)
q , which we revert again when we

go from D5 to D6. In total, we invoke the LWEZ,q,n,m+1,χ assumption in both
directions m times. Finally, the LWEZ,q,n,m+2,χ assumption stipulates that it is
hard for A to distinguish between D3 and D4.

Concluding, the advantage of A to win Preβ=1,γ=2(1λ) is bounded by O(2−n)
plus a negligible term stemming from (2m + 1)-times of invoking LWE. ��

We require two more lemmas, their proofs are given in the full version.

Lemma 8. For B ←$Z
n×m
q , u2 ←$ {0, 1}m, p2 = B · u2 and d2 ←$ DΛ⊥

p2
(B),χ,

we have Pr [d2 = u2] ≤ 2−m+1 + q−n.

Lemma 9. Draw B ←$Z
n×m
q , u2 ←$ {0, 1}m and set p2 = Bu2 mod q. Draw

d2 ←$ DΛ⊥
p2

(B),χ and f ′
1, . . . , f

′
m ←$ DZm,χ.

We have Pr
[∃i ∈ [m] : ‖fTi · d2‖ ≥ mχ2

] ≤ 2−λ. Additionally, we have for
e0 ←$ DZm

q ,χ, Pr [‖eT0 · (d2 − u2)‖ ≥ χ(χ + 1) · m] ≤ 2−λ.

Proposition 6. There is a PPT adversary B s.t. we have for the experiment
Postβ=1,γ=0

B (1λ) in Fig. 5 instantiated with Samp3

AdvPre,1,0
B (λ) ≥ 1 − O(1/(λm)).

Proof. Recall that the post challenge consists of
⎛
⎝ c, dT

1, dT
2,

aux =
(
rTiB + f ′T

i mod q, rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i mod q

)
i=1,...,m

⎞
⎠

for B ←$Z
n×m
q , (p1,p2, aux) ← Samp3(B, 1λ), d1 ←$ DΛ⊥

p1
(B),χ,

d2 ←$ DΛ⊥
p2

(B),χ. B has to decide if c has been sampled uniformly at random
from Z

m
q or is of shape sTB + eT0 mod q for s ←$Z

n
q , e0 ←$ DZm,χ.

The distinguisher B, we propose, proceeds as follows:

1. For i ∈ [m], it computes

gi :=rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i − (rTiB + f ′T

i ) · d1 mod q

=rTip1 + fi,m+1 +
⌊q

2

⌋
· u2,i − rTi · p1 − f ′T

i · d1 mod q

=fi,m+1 − f ′T
i · d1 +

⌊q

2

⌋
· u2,i mod q.

Further, it sets u′
i = 1 if |gi| ≥ q

4 and else 0, and u′ = (u′
1, . . . , u

′
m) ∈ {0, 1}m.

2. It computes r := cT · (d2 − u′) mod q.
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3. If r ∈ {−χ(χ + 1) · m, . . . , χ(χ + 1) · m} ⊂ Zq, output 0. Else, output 1.

We claim that the dual-Regev decryption of u2,1, . . . , u2,m in step 1 suc-
ceeds with overwhelming probability. Indeed, we have u′

i = u2,i whenever∥∥∥fi,m+1 − f ′T
i · d1

∥∥∥ is bounded by q/4. Lemma 9 guarantees that we have

∥∥∥fi,m+1 − f ′T
i · d1

∥∥∥ < mχ2 <
q

4

with overwhelming probability ≥ 1 − 2−λ.
Hence, assume that decryption succeeds, which happens with overwhelming

probability, and that B can recover u′ = u2. Assume that d2 − u′ = d2 − u2 is
not zero. We now distinguish two cases:

If c = BTs + e0, then we have

r = cT · (d2 − u′) = (sTB + eT0) · (d2 − u′) mod q

= sTB · (d2 − u′) + eT0 · (d2 − u′) mod q

= sT · (p2 − p2) + eT0 · (d2 − u′) = eT0 · (d2 − u′) mod q.

According to Lemma 9, the quantity eT0 · (d2 −u2) is bounded χ(χ + 1) · m with
overwhelming probability ≥ 1 − 2−λ. Hence, in this case, B will output 0 with
overwhelming probability.

Else, if c ←$Z
n
q , the value r = cT · (d2 −u2) mod q is uniform whenever d2 −

u2 �= 0. By Lemma 8 this is the case with overwhelming probability ≥ 1−q−n −
2−m+2. In this case, the probability that r lies in {−χ(χ+1)·m, . . . , χ(χ+1)·m}
is bounded by 2χ(χ+1)m

q ≤ 2(χ+1)
λ·χ·m ∈ O(1/(λm)). Hence, B will output 1 in this

case with probability 1 − O(1/(λm)). It follows that the advantage of B lies in
1 − O(1/(λm)). ��

6 Evasive LWE Instance in [VWW22]

We show that we can apply the PrivateHideEvLWE assumption (Definition 9)
to the security proof of [VWW22]. Consequently, assuming PrivateHideEvLWE,
the GGM15-encoding in [VWW22], as well as its witness encryption and null-iO
constructions, remains secure.

Let n,w,m, h ∈ poly(λ), let n̂ = wn, t = 2j−1n̂, and fix some j ∈ [h]. To
recall, the PPT sampler used in the proof of [VWW22, Lemma 5.2], which we
denote by SampVWW, outputs the following:

S := {Ŝi,b}i∈[h],b∈{0,1} ∈ Z
t×n̂
q ,

P :=
(
Ŝj,0Aj + Ej,0, Ŝj,1Aj + Ej,1

)
mod q ∈ Z

n̂×2 m
q ,

aux := {A−1
i−1(Ŝi,bAi + Ei,0 mod q)}i≥j+1,b∈{0,1}, {Ŝi,b}i∈[h],b∈{0,1},

where
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– Ŝi,b ∈ Z
n̂×n̂
q for i ∈ [h], b ∈ {0, 1} are arbitrary matrices (in the con-

text of [VWW22] representing a branching program), and {Ŝi,b}i∈[h],b∈{0,1}
denotes stacking the 2h matrices vertically,

– Ej,0,Ej,1 ←$ (DZ,χ′)n̂×m are Gaussian with parameter χ′ ≥ λω(1)λhO(n),
– Ai ∈ Z

n̂×m
q for i ≥ j + 1 are uniformly random matrices,

– each A−1
i−1(Ŝi,bAi + Ei,0 mod q) for i ≥ j + 1, b ∈ {0, 1} denotes a Gaussian

preimage w.r.t. Ai−1 for the image Ŝi,bAi +Ei,0 mod q, with parameter χ′′ =
O(2

√
nw log q).

The proof of [VWW22, Lemma 5.2] showed that, assuming the condition
of [VWW22, Equation 6], there exists no PPT A distinguishing the Pre1b exper-
iments in Definition 9 with respect to SampVWW with non-negligible probability.
In Proposition 7 below, we show that, for a large �, there exists no PPT A
that can win Pre2 with respect to SampVWW with non-negligible probability.
Invoking the PrivateHideEvLWEparam assumption with param = (Z, q, n,m, 2m,
t,U(Zn×m

q ), (DZ,χ)t×m, (DZ,χ′)t×2 m, �, (χ′′)2I) for χ = λω(1)χ′ completes the
proof of [VWW22, Lemma 5.2]. The existence of a secure witness encryption
and null-iO, under the (sub-exponential) LWE and private-coin hiding evasive
LWE assumptions, then follows from [VWW22, Theorem 5.1, Sections 6,7].

Proposition 7. Let � = λh. With respect to SampVWW, there exists no PPT A
distinguishing Pre2b in Definition 9 with non-negligible probability in λ.

Proof. Note that the Gaussian parameter of Ej,0,Ej,1 is χ′ ≥ λω(1)λhO(n),
implying χ′ ≥ λω(1)�. Also, aux contains no information on Ej,0,Ej,1. Therefore,
conditioned on aux, for R ←$ U({0, 1, . . . , �}n×2m), we have

P + R = (Ŝj,0Aj + Ej,0, Ŝj,1Aj + Ej,1) + R mod q

≈s(Ŝj,0Aj + Ej,0, Ŝj,1Aj + Ej,1) mod q,

where the second line is due to (Ej,0,Ej,1) +R ≈s (Ej,0,Ej,1) by noise flooding
(Lemma 4). Therefore, (P, aux) ≈s (P + R mod q, aux). The claim follows. ��
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