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Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,
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Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACRDistinguished Lecture,
delivered by Paul Kocher, as well as an invited talk by Dakshita Khurana. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Distinguished PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki
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Quantum Unpredictability

Tomoyuki Morimae1(B), Shogo Yamada1, and Takashi Yamakawa1,2,3

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
tomoyuki.morimae@yukawa.kyoto-u.ac.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan
3 NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

Abstract. Unpredictable functions (UPFs) play essential roles in clas-
sical cryptography, including message authentication codes (MACs) and
digital signatures. In this paper, we introduce a quantum analog of
UPFs, which we call unpredictable state generators (UPSGs). UPSGs
are implied by pseudorandom function-like states generators (PRFSs),
which are a quantum analog of pseudorandom functions (PRFs), and
therefore UPSGs could exist even if one-way functions do not exist, sim-
ilar to other recently introduced primitives like pseudorandom state gen-
erators (PRSGs), one-way state generators (OWSGs), and EFIs. In clas-
sical cryptography, UPFs are equivalent to PRFs, but in the quantum
case, the equivalence is not clear, and UPSGs could be weaker than
PRFSs. Despite this, we demonstrate that all known applications of
PRFSs are also achievable with UPSGs. They include IND-CPA-secure
secret-key encryption and EUF-CMA-secure MACs with unclonable tags.
Our findings suggest that, for many applications, quantum unpredictabil-
ity, rather than quantum pseudorandomness, is sufficient.

Keywords: Unpredictability · Secret-key encryption · Message
authentication codes with unclonable tags

1 Introduction

1.1 Background

Pseudorandom functions (PRFs), first formalized by Goldreich, Goldwasser and
Micali in 1984 [15], are one of the most fundamental primitives in classical cryp-
tography. A PRF is an efficiently-computable keyed function that is compu-
tationally indistinguishable from a random function for any polynomial-time
adversary that can query the function. PRFs have many important applica-
tions in cryptography, and in particular, they are essential building blocks of
EUF-CMA-secure message authentication codes (MACs) and IND-CPA-secure
secret-key encryption (SKE).

Naor and Reingold [29] introduced a related primitive so-called unpredictable
functions (UPFs). Like PRFs, a UPF is an efficiently-computable keyed function,
but the crucial difference is that the goal of the adversary is not to distinguish it
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15492, pp. 3–32, 2025.
https://doi.org/10.1007/978-981-96-0947-5_1
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from the random function, but to predict the output corresponding to an input
that was not queried before. More precisely, let f := {fk}k be an efficiently-
computable keyed function. Then f is a UPF if it satisfies the following property,
which is called unpredictability:

Pr[y = fk(x) : k ← {0, 1}λ, (x, y) ← Afk(·)] ≤ negl(λ) (1)

for any polynomial-time adversary A, where x was not queried by A. It is easy
to see that PRFs imply UPFs. The other direction is not straightforward, but
Naor and Reingold showed that UPFs imply PRFs [29], and therefore PRFs and
UPFs are actually equivalent.

What happens if we consider quantum versions of PRFs and UPFs? Recently,
quantum analogs of elementary primitives, including one-way functions (OWFs),
pseudorandom generators (PRGs), and PRFs, have been extensively studied [5–
8,10,18,25,27,28,32]. For example, pseudorandom states generators (PRSGs)
introduced by Ji, Liu, and Song [18] are a quantum analog of PRGs. One-way
states generators (OWSGs) introduced by Morimae and Yamakawa [28] are a
quantum analog of OWFs. EFIs introduced by Brakerski, Canetti, and Qian [10]
are a quantum analog of EFID [14].1 There are mainly two reasons why studying
such new quantum elementary primitives are important. First, they could be
weaker than (quantumly-secure) OWFs [22,23], which are the most fundamental
assumption in classical cryptography. More precisely, even if BQP = QMA or
P = NP and therefore OWFs do not exist, these new primitives could exist
(relative to oracles). Second, despite that, they have many useful applications,
such as private-key quantum money, SKE, non-interactive commitments, digital
signatures, and multiparty computations, etc. These facts suggest that these
primitives will play the role of the most fundamental assumptions in quantum
cryptography, similar to OWFs in classical cryptography.

Quantum versions of PRFs were already studied. There are two quantum
analogs of PRFs. One is pseudorandom unitary operators (PRUs) that were
introduced by Ji, Liu, and Song [18].2 It is a set {Uk}k of efficiently imple-
mentable unitary operators that are computationally indistinguishable from
Haar random unitary operators. The other quantum analog of PRFs is pseu-
dorandom function-like states (generators) (PRFSs) that were introduced by
Ananth, Qian and Yuen [7]. A PRFS is a QPT algorithm that, on input a secret
key k and a classical bit string x, outputs a quantum state φk(x). The security
roughly means that no QPT adversary can tell whether it is querying to the

1 An EFID is a pair of two efficiently samplable classical distributions that are sta-
tistically far but computationally indistinguishable. An EFI is its quantum analog:
a pair of two efficiently generatable quantum states that are statistically far but
computationally indistinguishable.

2 Weaker variants, so-called pseudorandom states scramblers [24] and pseudorandom
isometries [4] were recently introduced. They are shown to be constructed from
OWFs.
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PRFS oracle or to the oracle that returns Haar random states.3 EUF-CMA-
secure MACs (with quantum tags) and IND-CPA-secure SKE (with quantum
ciphertexts) can be constructed from PRFSs [7].

On the other hand, no quantum analog of UPFs was explored before. Is it
equivalent to a quantum analog of PRFs, such as PRUs or PRFSs? Does it imply
EUF-CMA-secure MACs and IND-CPA-secure SKE like PRFSs and PRUs? Can
we gain any meaningful insight for quantum cryptography by studying it?

1.2 Our Results

The goal of the present paper is to initiate the study of a quantum version
of UPFs which we call unpredictable state generators (UPSGs). We define
UPSGs and construct several cryptographic applications from UPSGs. UPSGs
are implied by PRFSs, and therefore UPSGs could exist even if OWFs do not
exist, similar to PRSGs, OWSGs, and EFIs. As we will explain later, the equiv-
alence between PRFSs and UPSGs are not clear, and UPSGs could be weaker
than PRFSs. Despite this, we show that all known applications of PRFSs are
also achievable with UPSGs.4 This finding provides us with an insightful obser-
vation: For many applications, quantum unpredictability, rather than quantum
pseudorandomness, is sufficient. Relations among our results and known results
are summarized in Fig. 1.

Defining UPSGs. Our first contribution is to define UPSGs. A UPSG is a QPT
algorithm Eval that, on input a secret key k and a classical bit string x, outputs
a quantum state φk(x). Intuitively, the security (unpredictability) is as follows:
no QPT adversary, which can query the oracle Eval(k, ·), can output (x∗, ρ)
such that x∗ was not queried and ρ is close to φk(x∗).5

In the classical case, PRFs and UPFs are equivalent [29]. What happens in
the quantum case? In fact, we can show that PRFSs imply UPSGs. However,
the other direction is not clear. In the classical case, the construction of PRFs
from UPFs is done by using the Goldreich-Levin [16,29]: if fk(·) is a UPF,
gk,r(x) := fk(x) · r is a PRF with the key (k, r), where x · y is the inner product
between bit strings x and y. However, we cannot directly apply that idea to
UPSGs: In particular, what is φk(x) · r?

In summary, a quantum analog of UPFs, UPSGs, are implied by PRFSs,
which especially means that UPSGs could also exist even if OWFs do not exist.
3 If the query x was not queried before, the oracle samples a new Haar random state

ψx and outputs it. If the query x was done before, the oracle outputs the same ψx

that was sampled before.
4 Strictly speaking, MACs with unclonable tags that are realized with PRFSs satisfy

the security against QPT adversaries that query the oracle quantumly, but those
realized with UPSGs satisfy that only for the classical oracle query.

5 We could consider classical query or quantum query. In the latter case, it is not
clear what we mean by “not queried”. One possible formalization, which we actually
adopt, is to define that a bit string x was not queried if the weight of |x〉 is zero for
all quantum queries. For more precise statements, see Sect. 3.1.
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However, the equivalence is not clear, and UPSGs could be weaker than PRFSs.
Then, a natural question is the following: Do UPSGs have useful applications
like PRFSs?

IND-CPA-Secure SKE. Our second contribution is to construct IND-CPA-secure
SKE (with quantum ciphertexts) from UPSGs. In the classical case, unpre-
dictability implies pseudorandomness [29], which implies encryption. However,
in the quantum case, as we have explained before, we do not know how to con-
vert unpredictability to pseudorandomness, and therefore it is not self-evident
whether SKE can be constructed from UPSGs. Despite this, we show that it is
actually possible:

Theorem 1.1. If UPSGs exist, then IND-CPA-secure SKE exist.

IND-CPA-secure SKE can be constructed from PRFSs [7]. Theorem 1.1 shows
that such SKE can be constructed from a possibly weaker primitive, UPSGs.

MACs with Unclonable Tags. Our third contribution is to define and construct
EUF-CMA-secure MACs with unclonable tags from UPSGs.6 The unclonability
of tags roughly means that no QPT adversary can, given t-copies of a quantum
tag, output a large (possibly entangled) quantum state that contains at least t+1
valid tag states. MACs with unclonable tags are useful in practical applications.
For example, consider the following attack (which is known as the replay attack
in the classical cryptography): Alice sends the message “transfer $100 to Bob”
with a MAC tag to a bank. Malicious Bob can steal the pair of the message and
the tag, and sends it ten times to the bank so that he can get $1000. In the
classical cryptography, the standard EUF-CMA security of MACs cannot avoid
such an attack, and some higher-level treatments are necessary. For example,
common techniques are using counters or time-stamps, but they require the
time synchronization among users.

If tags are unclonable, we can avoid such a replay attack. Actually, it is easy
to see that UPSGs imply EUF-CMA-secure MACs with quantum tags. (We
have only to take φk(x) as the tag of the message x.) However, the mere fact
that tags are quantum does not automatically imply the unclonability of tags.
Moreover, it is not self-evident whether the quantum unpredictability implies
unclonability. (Quantum pseudorandomness implies unclonability [18], but it is
not clear whether a possibly weaker notion of quantum unpredictability also
implies unclonability.) Despite that, we show that MACs with unclonable tags
can be constructed from UPSGs.

Theorem 1.2. If UPSGs exist, then EUF-CMA-secure MACs with unclonable
tags exist.

6 We will see that the unclonability of tags automatically implies EUF-CMA security,
and therefore we have only to focus on the unclonability of tags.
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EUF-CMA-secure MACs with unclonable tags can be constructed from
PRFSs [7].7 Theorem 1.2 shows that EUF-CMA-secure MACs with unclonable
tags can be constructed from a possibly weaker primitive, UPSGs.8

Private-Key Quantum Money. The definition of MACs with unclonable tags
straightforwardly implies that of private-key quantum money schemes in [18].
We therefore have the following as a corollary of Theorem 1.2. (For the definition
of private-key quantum money schemes and a proof of Corollary 1.1, see the full
version.)

Corollary 1.1. If UPSGs exist, then private-key quantum money schemes exist.

OWSGs and EFIs. IND-CPA-secure SKE implies one-time-secure SKE, and one-
time-secure SKE implies OWSGs and EFIs [27]. We therefore have the following
as a corollary of Theorem 1.1.

Corollary 1.2. If UPSGs exist, then OWSGs and EFIs exist.

However, thus obtained OWSGs are mixed OWSGs (i.e., the ones with mixed
states outputs), because ciphertexts of the SKE from UPSGs are mixed states.
We can actually directly show that UPSGs imply pure OWSGs, which means
UPSGs are broken if PP = BQP [12]:

Theorem 1.3. If UPSGs exist, then pure OWSGs exist and PP �= BQP.

1.3 Technical Overview

IND-CPA-Secure SKE from UPSGs. Let us first recall a construction of IND-
CPA-secure SKE from UPFs in classical cryptography. In the classical case, we
first use the Goldreich-Levin [16] to construct PRFs from UPFs: Let fk(·) be a
UPF. Then gk,r(x) := fk(x) · r is a PRF with the key (k, r) [29]. With a PRF
Fk(·), an IND-CPA-secure SKE scheme can be constructed as follows: The secret
key is the key of the PRF. The ciphertext of a message m is ct = (r, Fk(r)⊕ m)
with a random bit string r.

However, a similar strategy does not work in the quantum case. In particular,
we do not know how to convert UPSGs to PRFSs: what is φk(x) · r!?

Our idea is to use the duality between the swapping and the distinction [1,
17,21]. The duality intuitively means that distinguishing two orthogonal states
|ψ〉 and |φ〉 is as hard as swapping |ψ〉 + |φ〉 and |ψ〉 − |φ〉 with each other. Our
ciphertext for a single bit message b ∈ {0, 1} is, then, ctb := (x, y, |ctbx,y〉), where

7 [7] only showed that PRFSs imply EUF-CMA-secure MACs with quantum tags,
but we can easily show that tags are actually unclonable because their tags are
pseudorandom.

8 Strictly speaking, there is a difference: MACs with unclonable tags that are realized
with PRFSs satisfy the security against QPT adversaries that query the oracle quan-
tumly, but those realized with UPSGs satisfy only the security against the classical
query.
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|ctbx,y〉 := |0‖x〉|φk(0‖x)〉 + (−1)b|1‖y〉|φk(1‖y)〉, and x and y are random bit
strings. Here, |φk(0‖x)〉 and |φk(1‖y)〉 are outputs of UPGSs on inputs 0‖x and
1‖y, respectively. The secret key of our SKE scheme is the key k of the UPSGs.
If a QPT adversary can distinguish ct0 and ct1, then due to the duality, we
can construct another QPT adversary that can convert |φk(0‖x)〉 to |φk(1‖y)〉.
However, it contradicts the unpredictability of the UPSGs.

This argument seems to work. There is, however, one subtle issue here. The
adversary of the IND-CPA security can query the encryption oracle, but in
general we do not know whether the duality works if the distinguisher queries to
an oracle, because the swapping unitary is constructed from the distinguishing
unitary and its inverse.

We can solve the issue by observing that the oracle query by the adversary
can actually be removed. Because the oracle is an encryption algorithm for single-
bit messages and because the adversary queries to the oracle only polynomially
many times, we can remove the oracle by giving sufficiently many outputs of
the oracle to the adversary in advance as an auxiliary input. The duality in [17]
takes into account of the auxilially inputs to the adversary, and therefore now
we can use the duality.

MACs with Unclonable Tags from UPSGs. It is straightforward to see that
UPSGs imply EUF-CMA-secure MACs with quantum tags, because we have
only to take the output φk(x) of the UPSG on input x as the tag corresponding
to the message x. However, the mere fact that the tags are quantum does not
automatically mean that they are unclonable. PRFSs also imply EUF-CMA-
secure MACs with quantum tags, and in that case, the unclonability of tags is
straightforward, because quantum pseudorandomness implies unclonability [18].
However, in the case of UPSGs, it is not clear whether the quantum unpre-
dictability is also sufficient for unclonability.

Our idea to construct unclonable tags is to use the unclonability of random
BB84 states. (In other words, to use Wiesner money [31].) Assume that a UPSG
exists. Then, there exists an EUF-CMA-secure MAC. (Actually, in the following
argument, any EUF-CMA-secure MACs even with classical tags are fine.) Let τm

be a tag corresponding to a message m. Then, if we set τ ′
m := τm⊗|x〉〈x|θ as a new

tag, it becomes unclonable. Here, x, θ are random bit strings, |x〉θ :=
⊗

i Hθi |xi〉,
H is the Hadamard gate, and xi and θi are ith bit of x and θ, respectively.

However, the verifier who wants to verify the tag cannot verify τ ′
m, because

the verifier does not know x and θ. Let us therefore modify our tag as τ ′′
m :=

(x, θ, τm ⊗ |x〉〈x|θ). Now, this can be verified by doing the projection onto |x〉θ,
but the unclonability is no longer satisfied because x and θ are open.

To solve the issue, we introduce IND-CPA-secure SKE. Fortunately, as we
show in this paper, IND-CPA-secure SKE exists if UPSGs exist. Let us modify
our tag as τ ′′′

m := Enc(sk, (x, θ)) ⊗ τm ⊗ |x〉〈x|θ, where Enc is the encryption
algorithm of the SKE scheme. Now it is unclonable due to the security of the
SKE scheme, but it is no longer authenticated: Enc(sk, (x, θ))⊗τm⊗|x〉〈x|θ could
be replaced with Enc(sk, (x′, θ′))⊗ τm ⊗ |x′〉〈x′|θ′ with another x′ and θ′ chosen
by the adversary, because encryption does not necessarily mean authentication.
The adversary who knows x′ and θ′ can of course make many copies of the tag.
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The problem is finally solved by considering the following tag: τ ′′′′
m :=

Enc(sk, τm‖x‖θ ⊗ |x, θ〉〈x, θ|) ⊗ |x〉〈x|θ, where τm‖x‖θ is the tag corresponding
to the message m‖x‖θ.

1.4 Open Problems

To conclude Introduction, let us provide some interesting open problems.

1. Do UPSGs imply PRFSs? Or can we separate them?

Fig. 1. Relation among primitives. The red color arrows represent our results. A dotted
arrow from primitive A to primitive B represents that primitive A with pure outputs
implies primitive B. (Color figure online)
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2. Is there any application that is possible with PRFSs, but not with UPSGs?
So far, all known applications of PRFSs are achievable with UPSGs.

3. We show that EUF-CMA-secure MACs are possible with UPSGs. How about
EUF-CMA-secure digital signatures? Can we realize them with UPSGs? So
far, we do not know how to realize them even with PRUs.9

4. Do OWSGs imply UPSGs? It is neither known whether PRSGs imply PRFSs.

2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum computing and cryptography. For a
bit string x, xi denotes the ith bit of x. For two bit strings x and y, x‖y means
the concatenation of them. We use λ as the security parameter. [n] means the set
{1, 2, ..., n}. For any set S, x ← S means that an element x is sampled uniformly
at random from the set S. We write negl to mean a negligible function and poly
to mean a polynomial. PPT stands for (classical) probabilistic polynomial-time
and QPT stands for quantum polynomial-time. For an algorithm A, y ← A(x)
means that the algorithm A outputs y on input x.

For simplicity, we sometimes omit the normalization factor of a quantum
state. (For example, we write 1√

2
(|x0〉 + |x1〉) just as |x0〉 + |x1〉.) I := |0〉〈0| +

|1〉〈1| is the two-dimensional identity operator. For the notational simplicity, we
sometimes write I⊗n just as I when the dimension is clear from the context.
We use X, Y and Z as Pauli operators. For a bit string x, Xx :=

⊗
i Xxi

. We
use Y y and Zz similarly. For two density matrices ρ and σ, the trace distance is
defined as TD(ρ, σ) := 1

2‖ρ − σ‖1 = 1
2Tr

[√
(ρ − σ)2

]
, where ‖ · ‖1 is the trace

norm.

2.2 Lemmas

We use the following lemma by Hhan, Morimae and Yamakawa [17] (based
on [1]).

Lemma 2.1 (Duality Between Swapping and Distinction [17], Theorem
5.1). Let |ψ〉 and |φ〉 be orthogonal n-qubit states. Assume that a QPT algorithm
A with some m-qubit advice state |τ〉 can distinguish |ψ〉 and |φ〉 with advantage
Δ. Then, there exists a polynomial-time implementable unitary V over (n+m)-
qubit states such that

|〈α|〈τ |V |β〉|τ〉 + 〈β|〈τ |V |α〉|τ〉|
2

= Δ, (2)

where |α〉 := |ψ〉+|φ〉√
2

and |β〉 := |ψ〉−|φ〉√
2

.

9 Recently, [13] showed an oracle separation between PRUs and EUF-CMA-secure
digital signatures with classical signatures.
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We also use the security of Wiesner money [26,31].

Lemma 2.2 (Security of Wiesner Money [26]). Let us consider the follow-
ing security game:

1. The challenger C chooses x, θ ← {0, 1}λ and sends |x〉θ to the adversary A.
Here, |x〉θ :=

⊗
i∈[λ] H

θi |xi〉.
2. A sends a 2λ-qubit state ρ to C.
3. C projects ρ onto |x〉⊗2

θ . If the projection is successful, C outputs �. Otherwise,
C outputs ⊥.

For any unbounded adversary A, Pr[� ← C] ≤ negl(λ).

2.3 Cryptographic Primitives

The following is the standard definition of IND-CPA-secure SKE schemes for
classical messages. However, in this paper, we consider general cases where
ciphertexts can be quantum states.

Definition 2.1 (IND-CPA-Secure SKE for Classical Messages). An
IND-CPA-secure secret-key encryption (SKE) scheme for classical messages is
a set of algorithms (KeyGen,Enc,Dec) such that

– KeyGen(1λ) → sk : It is a QPT algorithm that, on input the security parameter
λ, outputs a classical secret key sk.

– Enc(sk,m) → ct : It is a QPT algorithm that, on input sk and a classical bit
string (plaintext) m, outputs a ciphertext ct, which can be a quantum state in
general.

– Dec(sk, ct) → m : It is a QPT algorithm that, on input sk and ct, outputs m.

We require the following two properties.

Correctness: For any bit string m,

Pr[m ← Dec(sk, ct) : sk ← KeyGen(1λ), ct ← Enc(sk,m)] ≥ 1 − negl(λ). (3)

IND-CPA Security (Against Classical Query): For any QPT adversary A,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

sk ← KeyGen(1λ)
(m0,m1, st) ← AEnc(sk,·)

b ← {0, 1}
ct ← Enc(sk,mb)

b′ ← AEnc(sk,·)(st, ct)

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1
2
+ negl(λ), (4)

where A can only classically query Enc(sk, ·).
We also need IND-CPA-secure SKE for quantum messages.
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Definition 2.2 (IND-CPA-Secure SKE for Quantum Messages [3,11]).
An IND-CPA-secure secret-key encryption (SKE) scheme for quantum messages
is a set of algorithms (KeyGen,Enc,Dec) such that

– KeyGen(1λ) → sk : It is a QPT algorithm that, on input the security parameter
λ, outputs a classical secret key sk.

– Enc(sk, ρ) → ct : It is a QPT algorithm that, on input sk and a quantum state
ρ on the register M, outputs a quantum state ct on the register C.

– Dec(sk, ct) → ρ : It is a QPT algorithm that, on input sk and a state ct on
the register C, outputs a state ρ on the register M.

We require the following two properties.

Correctness:

E
sk←KeyGen(1λ)

‖Dec(sk, ·) ◦ Enc(sk, ·) − id‖� ≤ negl(λ), (5)

where id is the identity map, Enc(sk, ·) is a CPTP map10 that runs the
encryption algorithm Enc with sk on the plaintext state, Dec(sk, ·) is a CPTP
map that runs the decryption algorithm Dec with sk on the ciphertext state,
and Dec(sk, ·) ◦ Enc(sk, ·) is the composition of Dec(sk, ·) and Enc(sk, ·). Here
‖F −E‖� := maxρ ‖(F ⊗ id)(ρ)− (E ⊗ id)(ρ)‖1 is the diamond norm between two
CPTP maps F and E acting on n qubits [30], where the max is taken over all
2n-qubit states ρ.

IND-CPA Security: Let us consider the following security game:

1. The challenger C runs sk ← KeyGen(1λ).
2. The adversary A can query the oracle Enc(sk, ·). (This means that A can

apply the CPTP map Enc(sk, ·) on the register M of any A’s state ρM,Z over
the registers Z and M, and get another state ρ′

Z,C over the registers Z and
C.)

3. A sends two registers M0 and M1 to C.
4. C chooses b ← {0, 1} and applies the CPTP map Enc(sk, ·) on Mb. C then

sends the output to A.
5. A can query the oracle Enc(sk, ·).
6. A sends b′ ∈ {0, 1} to C.
7. If b = b′, C outputs �. Otherwise, C outputs ⊥.

For any QPT adversary A, Pr[� ← C] ≤ 1
2 + negl(λ).

The following lemma is essentially shown in [11]. We give its proof in the full
version.

10 In this paper, we sometimes use the same notation Enc for an algorithm and a CPTP
map, but we believe there is no confusion.
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Lemma 2.3 (IND-CPA security for classical messages implies that for
quantum messages [11]). If IND-CPA-secure SKE schemes for classical mes-
sages that are secure against QPT adversaries that query the encryption ora-
cle classically exist, then IND-CPA-secure SKE schemes for quantum messages
exist.

The following lemma can be shown with the standard hybrid argument [11].

Lemma 2.4 (IND-CPA-multi security [11]). Let (KeyGen,Enc,Dec) be an
IND-CPA-secure SKE scheme for quantum messages. Let t be a polynomial. Let
us consider the security game that is the same as that of Definition 2.2 except
for the following two modifications.

– In step 3, A sends two registers M′
0 and M′

1 to C. Here, M′
0 consists of t

registers {Mi
0}i∈[t], and M′

1 consists of t registers {Mi
1}i∈[t]. For each i ∈ [t]

and b ∈ {0, 1}, |Mi
b| = |Mb|, where |A| is the size (i.e., the number of qubits)

of the register A.
– In step 4, C chooses b ← {0, 1} and applies the CPTP map Enc(sk, ·) on each

Mi
b for i ∈ [t]. C then sends the all outputs to A.

Then, in this modified game, Pr[� ← C] ≤ 1
2 + negl(λ) for any QPT adversary

A and any polynomial t.

Definition 2.3 (One-way States Generators (OWSGs) [27,28]). A one-
way states generator (OWSG) is a set of algorithms (KeyGen,StateGen,Ver) such
that

– KeyGen(1λ) → k : It is a QPT algorithm that, on input the security parameter
λ, outputs a classical key k.

– StateGen(k) → φk : It is a QPT algorithm that, on input k, outputs a quantum
state φk.

– Ver(k′, φk) → �/⊥ : It is a QPT algorithm that, on input φk and a bit string
k′, outputs � or ⊥.

We require the following correctness and security.

Correctness:

Pr[� ← Ver(k, φk) : k ← KeyGen(1λ), φk ← StateGen(k)] ≥ 1 − negl(λ). (6)

Security: For any QPT adversary A and any polynomial t,

Pr[� ← Ver(k′, φk) : k ← KeyGen(1λ), φ⊗t
k ← StateGen(k)⊗t, k′ ← A(1λ, φ⊗t

k )] ≤ negl(λ).

(7)

Here, φ⊗t
k ← StateGen(k)⊗t means that the StateGen algorithm is run t times.
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3 Unpredictable State Generators

3.1 Definition

In this subsection, we define UPSGs. The syntax is given as follows.

Definition 3.1 (Unpredictable States Generators (UPSGs)). An unpre-
dictable states generator is a set (KeyGen,Eval) of QPT algorithms such that

– KeyGen(1λ) → k : It is a QPT algorithm that, on input the security parameter
λ, outputs a classical key k.

– Eval(k, x) → (x, φk(x)) : It is a QPT algorithm that, on input k and a bit
string x, outputs x and a quantum state φk(x).

In general, φk(x) could be mixed states, but in this paper, we restrict them
to pure states.

The security, which we call unpredictability, roughly means that no QPT
adversary (who can quantumly query to Eval(k, ·)) can output (x∗, ρ) such that
x∗ was not queried and ρ is close to |φk(x∗)〉. In order to formally define it, we
have to clarify what we mean by “quantumly query” and “not queried before”.

Quantum Query. We assume that |φk(x)〉 ← Eval(k, x) is the following QPT
algorithm: on input k and x, it applies a unitary Uk on |x〉X|0...0〉Y,Z to generate
|x〉X|φk(x)〉Y|junkk〉Z and outputs the X and Y registers. Note that it is not
the most general case. First, as we have mentioned, we assume that the output
|φk(x)〉 is pure. Second, in general, the junk state |junkk〉 could depend on x,
but we here assume that it depends only k. These two restrictions seem to be
necessary to well define the quantum query.

With such Eval, the quantum query to the oracle Eval(k, ·) means the follow-
ing:

1. A state
∑

x αx|x〉X|ξx〉 is input to the oracle, where {αx}x are any complex
coefficients and {|ξx〉}x are any states.

2. The oracle adds the ancilla state |0...0〉Y,Z and applies Uk on the reg-
isters X,Y,Z of

∑
x αx|x〉X|0...0〉Y,Z|ξx〉 to generate

∑
x αx|x〉X|φk(x)〉Y

|junkk〉Z|ξx〉.
3. The oracle removes the junk register Z and outputs the state∑

x αx|x〉X|φk(x)〉Y|ξx〉.
Remark 3.1. If the output states are not pure, we cannot define such a quantum
query. In that case, we can consider a classical query as in [5]. However, in this
work, we focus on the case when the output states are pure and on the quantum
query.
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Not Queried. We define the word “not queried” as follows. Assume that A queries
the oracle q times. For each i ∈ [q], let |ψi〉 be the entire A’s state immediately
before its ith query to the oracle. (Without loss of generality, we can assume
that A postpones all measurements to the last step, and then A’s entire state is
always pure.) We say that x∗ is not queried if 〈ψi|(|x∗〉〈x∗|X ⊗ I)|ψi〉 = 0 for all
i ∈ [q]. Here, for each i ∈ [q], |ψi〉 =

∑
x cx|x〉X ⊗ |ηx〉.

Now we define the unpredictability.

Definition 3.2 (Unpredictability). Let us consider the following security
game:

1. The challenger C runs k ← KeyGen(1λ).
2. The adversary AEval(k,·)(1λ) outputs a bit string x∗ and a quantum state ρ,

and sends them to C. Here, A can make quantum queries to Eval(k, ·). x∗

should not be queried by A.
3. C projects ρ onto |φk(x∗)〉. If the projection is successful, C outputs �. Oth-

erwise, C outputs ⊥.

For any QPT adversary A, Pr[� ← C] ≤ negl(λ).

Remark 3.2. Note that the projection of ρ onto |φk(x∗)〉 can be done as follows:

1. Prepare |x∗〉〈x∗| ⊗ ρ ⊗ |junkk〉〈junkk|.
2. Apply U†

k on |x∗〉〈x∗| ⊗ ρ ⊗ |junkk〉〈junkk|.
3. Measure all qubits in the computational basis. If the result is x∗‖0...0, the

projection is successful. Otherwise, the projection is failed.

Remark 3.3. It is easy to see that UPSGs with O(log λ)-qubit output do not
exist.11

Remark 3.4. In [9], they define a security of digital signatures against quantum
adversaries. Their security definition is as follows: any QPT quantum adversary,
who queries the signing oracle t times, cannot output t+1 valid message-signature
pairs. We could define a quantum version of unpredictability based on their secu-
rity definition, but exploring this possibility is beyond the scope of the present
paper. At least, their definition seems to be incomparable to Definition 3.2. In
particular, we do not know how to construct IND-CPA-secure SKE from their
definition, because we do not know how to use the duality in that case.

3.2 Relation to PRFSs

In this section, we recall the definition of PRFSs and construct UPSGs from
PRFSs.

Definition 3.3 (Pseudorandom Function-Like States (PRFSs) [5,7]). A
pseudorandom function-like state (PRFS) (generator) is a set of algorithms
(KeyGen,Eval) such that
11 The adversary has only to output 0...0 and maximally-mixed state.
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– KeyGen(1λ) → k : It is a QPT algorithm that, on input the security parameter
λ, outputs a classical secret key k.

– Eval(k, x) → |φk(x)〉 : It is a QPT algorithm that on input k and a bit string
x, outputs a quantum state |φk(x)〉.

We require the following security. For any QPT adversary A,

|Pr[1 ← AEval(k,·)(1λ)] − Pr[1 ← AOHaar (1λ)]| ≤ negl(λ). (8)

Here, AEval(k,·) means that A can quantumly query the oracle Eval(k, ·) in the
sense of Sect. 3.112. AOHaar means that A can quantumly query the oracle OHaar

in the following sense.

1. A state
∑

x αx|x〉X|ξx〉 is input to the oracle, where {αx}x are any complex
coefficients and {|ξx〉}x are any states.

2. The oracle returns
∑

x αx|x〉X|ψx〉Y|ξx〉, where |ψx〉 is a Haar random state.

Theorem 3.1. If PRFSs exist then UPSGs exist.

Proof of Theorem 3.1. Let (KeyGen,Eval) be a PRFS. We show that it is a
UPSG. Assume that it does not satisfy the unpredictability. Then, there exist a
polynomial p and a QPT adversary A that can quantumly query Eval(k, ·) such
that

∑

k

Pr[k ← KeyGen(1λ)]
∑

x∗
〈x∗|〈φk(x∗)|AEval(k,·)(1λ)|x∗〉|φk(x∗)〉 ≥ 1

p(λ)
(9)

for infinitely many λ ∈ N. Here, A(·)(1λ) denotes the state of A(·) before
the measurement. Then, the following QPT adversary B breaks the security of
PRFS.

1. The challenger C′ of the PRFS chooses b ← {0, 1}.
2. Run A on input 1λ. When A queries the oracle, B simulates it by querying

B’s oracle (that is Eval(k, ·) if b = 0 and OHaar if b = 1).
3. B measures the first register of A(·)(1λ) to get x∗. Query x∗ to B’s oracle to

get |ξ〉, which is |ξ〉 = |φk(x∗)〉 if b = 0 and a Haar random state |ψx∗〉 if
b = 1.

4. B does the swap test between the second register of A(·)(1λ) and |ξ〉. If the
swap test succeeds, B outputs 1. Otherwise, B outputs 0.

If b = 0,

Pr[1 ← B] =
1

2
+

1

2

∑

k

Pr[k ← KeyGen(1λ)]
∑

x∗
〈x∗|〈φk(x

∗)|AEval(k,·)(1λ)|x∗〉|φk(x
∗)〉 (10)

≥ 1

2
+

1

2p(λ)
(11)

12 In [5,7], they do not explicitly consider the junk state |junkk〉. Here, we assume that
|junkk〉 is independent of x similarly to the case of UPSGs.
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for infinitely many λ. Here we have used Eq. (9). On the other hand, if b = 1,

Pr[1 ← B] = 1
2
+

1
2

∑

k

Pr[k ← KeyGen(1λ)]
∑

x∗
E

|ψ〉←μ
〈x∗|〈ψ|AOHaar (1λ)|x∗〉|ψ〉

(12)

≤ 1
2
+ negl(λ), (13)

where μ denotes the Haar measure and we have used E|ψ〉←μ〈ψ|σ|ψ〉 ≤ negl(λ)
for any state σ. Therefore, B breaks the security of the PRFS. ��

3.3 Pure OWSGs from UPSGs

In this section, we show that UPSGs imply OWSGs with pure output states.

Theorem 3.2. If UPSGs exist, then pure OWSGs exist.

Proof. Let (UPSG.KeyGen,UPSG.Eval) be a UPSG. From it, we construct a pure
OWSG (KeyGen,StateGen) as follows.
– KeyGen(1λ) → k′ : Run k ← UPSG.KeyGen(1λ). Choose xi ← {0, 1}� for

i ∈ [n]. Here, n := |k| + λ. Output k′ := (k, x1, ..., xn).
– StateGen(k′) → |ψk′〉 : Parse k′ = (k, x1, ..., xn). Run |φk(xi)〉 ←
UPSG.Eval(k, xi) for i ∈ [n]. Output ψk′ := (

⊗n
i=1|φk(xi)〉) ⊗ (

⊗n
i=1|xi〉).

For the sake of contradiction, assume that this construction is not secure. This
means that there exist polynomials p and t, and a QPT adversary A such that

1

p(λ)
≤

∑

k

Pr[k]
1

2n�

∑

x1,...,xn

∑

s,x′
1,...,x′

n

Pr
′
[s, x

′
1, ..., x

′
n|k, x1, ..., xn]

∏

i∈[n]

|〈φk(xi)|φs(x
′
i)〉|2δxi,x′

i

(14)

=
∑

k

Pr[k]
1

2n�

∑

x1,...,xn

∑

s

Pr
′
[s, x1, ..., xn|k, x1, ..., xn]

∏

i∈[n]

|〈φk(xi)|φs(xi)〉|2 (15)

for infinitely many λ. Here, Pr[k] := Pr[k ← UPSG.KeyGen(1λ)] and

Pr′[s, x′
1, ..., x′

n|k, x1, ..., xn] := Pr[(s, x′
1, ..., x′

n) ← A(1λ, ((
⊗

i

|φk(xi)〉) ⊗ (
⊗

i

|xi〉))⊗t)].

(16)

From the A, we construct a QPT adversary B that breaks the security of the
UPSG as follows.
1. Sample x1, ..., xn ← {0, 1}� and x∗ ← {0, 1}�.
2. For each i ∈ [n], query xi to the oracle UPSG.Eval(k, ·) t times to get

|φk(xi)〉⊗t.
3. Run (s, x′

1, ..., x
′
n) ← A(1λ, (

⊗n
i=1|φk(xi)〉) ⊗ (

⊗n
i=1|xi〉))⊗t). If x′

i �= xi for
at least one i ∈ [n], abort.

4. Run |φk(x∗)〉 ← UPSG.Eval(s, x∗). Output (x∗, |φk(x∗)〉).
By the standard average argument, we can show that the probability that B
wins is non-negligible for infinitely many λ. For its proof, see the full version. ��
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4 IND-CPA-Secure SKE from UPSGs

In this section, we construct IND-CPA secure SKE from UPSGs.

Theorem 4.1. If UPSGs exist, then IND-CPA-secure SKE schemes for classi-
cal messages secure against classically querying QPT adversaries exist.

Remark 4.1. From Lemma 2.3, IND-CPA-secure SKE schemes for classical mes-
sages secure against classically querying QPT adversaries imply IND-CPA-secure
SKE schemes for quantum messages. Therefore, the above theorem also shows
the existence of such SKE schemes if UPSGs exist.

Proof of Theorem 4.1. It suffices to construct an IND-CPA-secure SKE
scheme for single-bit messages because, from it, we can construct an IND-
CPA-secure SKE scheme for multi-bit messages by parallel repetition.13 Let
(UPSG.KeyGen,UPSG.Eval) be a UPSG. As is explained in Sect. 3.1, we assume
that UPSG.Eval is the following algorithm: on input k and x ∈ {0, 1}�, it applies
a unitary Uk on |x〉X|0...0〉Y,Z to generate |x〉X|φk(x)〉Y|junkk〉Z, and outputs
the registers X and Y. From (UPSG.KeyGen,UPSG.Eval), we construct an IND-
CPA-secure SKE scheme (KeyGen,Enc,Dec) for single-bit messages as follows.

– KeyGen(1λ) → sk : Run k ← UPSG.KeyGen(1λ) and output sk := k.
– Enc(sk, b) → ct : Parse sk = k. Choose x, y ← {0, 1}�. Generate

|ctbx,y〉X,Y :=
|0‖x〉X|φk(0‖x)〉Y + (−1)b|1‖y〉X|φk(1‖y)〉Y√

2
(17)

and output ct := (x, y, |ctbx,y〉). Here, |ctbx,y〉 is generated as follows:
1. Prepare |0‖x〉X|0...0〉Y,Z + (−1)b|1‖y〉X|0...0〉Y,Z.
2. Apply Uk on the registers X, Y, and Z to generate

|0‖x〉X|φk(0‖x)〉Y|junkk〉Z + (−1)b|1‖y〉X|φk(1‖y)〉Y|junkk〉Z. (18)

3. Remove the register Z.
– Dec(sk, ct) → b′ : Parse sk = k and ct = (x, y, ρX,Y). Run the following

algorithm.
1. Prepare ρX,Y ⊗ |junkk〉〈junkk|Z.
2. Apply U†

k on ρX,Y ⊗ |junkk〉〈junkk|Z.
3. Apply |0〉〈0| ⊗ Xx + |1〉〈1| ⊗ Xy on the register X.
4. Measure the first qubit of the register X in the Hadamard basis to get

b′ ∈ {0, 1}. Output b′.

Correctness is clear. To show the security, we define Hybrid 0, which is the orig-
inal security game of the IND-CPA-secure SKE scheme between the challenger
C and the QPT adversary A, as follows.

13 See [19].
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Hybrid 0

1. The challenger C runs k ← UPSG.KeyGen(1λ).
2. C chooses b ← {0, 1} and x, y ← {0, 1}�. C generates |ctbx,y〉 by running

UPSG.Eval(k, ·) coherently. Here,

|ctbx,y〉 = |0‖x〉|φk(0‖x)〉 + (−1)b|1‖y〉|φk(1‖y)〉√
2

. (19)

3. C sends ct := (x, y, |ctbx,y〉) to the adversary A.
4. A can classically query to the oracle Ok, where Ok works as follows:

(a) On input c ∈ {0, 1}, it chooses x′, y′ ← {0, 1}� and generates |ctcx′,y′〉.
(b) It outputs (x′, y′, |ctcx′,y′〉).
A sends b′ ∈ {0, 1} to C.

5. If b = b′, C outputs �. Otherwise, C outputs ⊥.

For the sake of contradiction, assume that our construction is not IND-CPA
secure. This means that there exist a polynomial p and a QPT adversary A
such that

Pr[� ← Hybrid 0] ≥ 1
2
+

1
p(λ)

(20)

for infinitely-many λ ∈ N.
Our goal is to construct a QPT adversary B that breaks the unpredictability

of the UPSG. For that goal, we use the duality between swapping and distinc-
tion [17]. However, we cannot directly use it here, because our A queries to the
encryption oracle Ok, but the distinguisher in Lemma 2.1 does not access any
oracle. To solve the issue, we have to remove the oracle Ok from Hybrid 0. Fortu-
nately, Ok is an encryption oracle for single-bit messages, and A makes classical
queries only polynomial times. Therefore, we can give A enough number of out-
puts of Ok in advance as auxiliary inputs, and A can use these states instead of
the outputs of Ok. In this way, we can remove the oracle Ok. We formalize this
as Hybrid 1.14 It is clear that Pr[� ← Hybrid 1] = Pr[� ← Hybrid 0].

Hybrid 1

1. The challenger C runs k ← UPSG.KeyGen(1λ).
2. C chooses b ← {0, 1} and x, y ← {0, 1}�. C generates |ctbx,y〉 by running

UPSG.Eval(k, ·) coherently. Here,

|ctbx,y〉 = |0‖x〉|φk(0‖x)〉 + (−1)b|1‖y〉|φk(1‖y)〉√
2

. (21)

3. C sends ct := (x, y, |ctbx,y〉) to the adversary A.
4. A can classically query to the oracle Ok, where Ok works as follows:
14 In Hybrid 1, text struck through with red is the step in the previous hybrid, and the

red text is the new step in the current hybrid.
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(a) On input c ∈ {0, 1}, it chooses x′, y′ ← {0, 1}� and generates |ctcx′,y′〉.
(b) It outputs (x′, y′, |ctcx′,y′〉).
A receives |τ〉 := ⊗

i∈[t],c∈{0,1}|xi
c〉|yi

c〉|ctcxi
c,yi

c
〉 as an auxiliary input, where t

is the maximum number of A’s queries to Ok in the step 4 of Hybrid 0, and
xi

c, y
i
c ← {0, 1}� for each i ∈ [t] and c ∈ {0, 1}. When A queries ci ∈ {0, 1} to

Ok in its ith query, it does not query to Ok. Instead, it uses |xi
c〉|yi

c〉|ctcxi
c,yi

c
〉

as the output of Ok. A sends b′ ∈ {0, 1} to C.
5. If b = b′, C outputs �. Otherwise, C outputs ⊥.

Let w := {xi
c, y

i
c}i∈[t],c∈{0,1}, where xi

c ∈ {0, 1}� and yi
c ∈ {0, 1}� for each i ∈

[t] and c ∈ {0, 1}. Let Pr[� ← Hybrid 1|k, x, y,w] be the conditional probability
that C outputs � given k ← UPSG.KeyGen(1λ) and x, y,w are chosen in Hybrid
1. We define a “good” set of (k, x, y,w) as follows:

G :=

{
(k, x, y,w) : Pr[� ← Hybrid 1|k, x, y,w] ≥ 1

2
+

1

2p(λ)
∧ x /∈ w ∧ y /∈ w ∧ x �= y

}
.

(22)

Let Pr[k, x, y,w] be the probability that k, x, y and w are chosen in Hybrid 1.
Then, we can show the following lemma by the standard average argument. For
its proof, see the full version.

Lemma 4.1.
∑

(k,x,y,w)∈G Pr[k, x, y,w] ≥ 1
4p(λ) for infinitely many λ ∈ N.

Let us fix (k, x, y,w). Moreover, assume that (k, x, y,w) ∈ G. Then from
Eq. (22), A of Hybrid 1 can distinguish |ct0x,y〉 and |ct1x,y〉 with an advantage
greater than 1

2p using the auxiliary input |τ〉. By using Lemma 2.1, we can
construct a polynomial-time implementable unitary V 15 such that

1

2p(λ)
≤|〈0‖x|〈φk(0‖x)|〈τ |V |1‖y〉|φk(1‖y)〉|τ〉 + 〈1‖y|〈φk(1‖y)|〈τ |V |0‖x〉|φk(0‖x)〉|τ〉|

2
(23)

≤max{|〈0‖x|〈φk(0‖x)|〈τ |V |1‖y〉|φk(1‖y)〉|τ〉| , |〈1‖y|〈φk(1‖y)|〈τ |V |0‖x〉|φk(0‖x)〉|τ〉|}
(24)

≤max{‖〈φk(0‖x)|Y (V |1‖y〉X|φk(1‖y)〉Y|τ〉Z) ‖, (25)
‖〈φk(1‖y)|Y (V |0‖x〉X|φk(0‖x)〉Y|τ〉Z)‖}. (26)

From this V , we construct the QPT adversary B that breaks the security of
the UPSG as follows:

1. Choose b ← {0, 1}.
2. Choose x, y ← {0, 1}�. If x = y, output ⊥ and abort. Choose xi

c ← {0, 1}�

and yi
c ← {0, 1}� for each i ∈ [t] and c ∈ {0, 1}. Set w := {xi

c, y
i
c}i∈[t],c∈{0,1}.

If x ∈ w or y ∈ w, output ⊥ and abort.
15 Note that this V is independent of (k, x, y,w) since, in the proof of Lemma 2.1, we

use A only as a black-box. For details, see [17].
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3. If b = 0, get |0‖x〉|φk(0‖x)〉 by querying 0‖x to UPSG.Eval(k, ·). If b = 1, get
|1‖y〉|φk(1‖y)〉 by querying 1‖y to UPSG.Eval(k, ·).

4. For each i ∈ [t] and c ∈ {0, 1}, generate |ctcxi
c,yi

c
〉 by making

the coherent query |0‖xi
c〉 + (−1)c|1‖yi

c〉 to UPSG.Eval(k, ·). Set |τ〉 :=⊗
i∈[t],c∈{0,1}|xi

c〉|yi
c〉|ctcxi

c,yi
c
〉.

5. If b = 0, apply the unitary V on |0‖x〉|φk(0‖x)〉|τ〉 and output the second
register and 1‖y. If b = 1, apply the unitary U on |1‖y〉|φk(1‖y)〉|τ〉 and
output the second register and 0‖x.

Since B does not abort if (k, x, y,w) ∈ G, the probability that the adversary
B wins is

Pr[B wins] ≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]

2

(
‖〈φk(0‖x)|Y (V |1‖y〉X|φk(1‖y)〉Y|τ〉Z)‖2 (27)

+ ‖〈φk(1‖y)|Y (V |0‖x〉X|φk(0‖x)〉Y|τ〉Z)‖2
)

(28)

≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]

2
max

{
‖〈φk(0‖x)|Y (V |1‖y〉X|φk(1‖y)〉Y|τ〉Z)‖2 (29)

‖〈φk(1‖y)|Y (V |0‖x〉X|φk(0‖x)〉Y|τ〉Z)‖2
}

(30)

≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]

2

1

4p(λ)2
≥ 1

32p(λ)3
(31)

for infinitely many λ, where we have used Eq. (26) in Eq. (30), and Lemma 4.1
in Eq. (31). This shows that B breaks the security of the UPSG. Hence we have
shown the theorem. ��

5 MACs with Unclonable Tags

In this section, we define MACs with unclonable tags and construct it from
UPSGs.

5.1 Definition

First, we give the definition of the standard EUF-CMA-secure MACs. However,
in this paper, we consider more general case where the tags could be quantum
states. MACs with classical tags can be considered as a special case where the
tags are computational-basis states.
Definition 5.1 (EUF-CMA-Secure MACs). An EUF-CMA-secure MAC is
a set (KeyGen,Tag,Ver) of QPT algorithms such that
– KeyGen(1λ) → sigk : It is a QPT algorithm that, on input the security param-

eter λ, outputs a classical key sigk.
– Tag(sigk,m) → τ : It is a QPT algorithm that, on input sigk and a classical

message m, outputs an n-qubit quantum state τ .
– Ver(sigk,m, ρ) → �/⊥ : It is a QPT algorithm that, on input sigk, m, and a

quantum state ρ, outputs �/⊥.

We require the following two properties.
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Correctness: For any m,

Pr
[

� ← Ver(sigk,m, τ) : sigk ← KeyGen(1λ)
τ ← Tag(sigk,m)

]

≥ 1 − negl(λ). (32)

EUF-CMA Security: For any QPT adversary A,

Pr
[

� ← Ver(sigk,m∗, ρ) :
sigk ← KeyGen(1λ)

(m∗, ρ) ← ATag(sigk,·)(1λ)

]

≤ negl(λ), (33)

where A queries the oracle only classically, and A is not allowed to query m∗.

The following corollary is straightforward from the definition of UPSGs.

Corollary 5.1. If UPSGs exist, then EUF-CMA-secure MACs exist.

Proof of Corollary 5.1. Let (KeyGen′,Eval′) be a UPSG. We construct EUF-
CMA-secure MAC (KeyGen,Tag,Ver) as follows:

– KeyGen(1λ) → sigk : Run k ← KeyGen′(1λ) and output it as sigk.
– Tag(sigk,m) → τ : Parse sigk = k. Run |φk(m)〉 ← Eval′(k,m) and output it

as τ .
– Ver(sigk,m, ρ) → �/⊥ : Parse sigk = k. Project ρ onto |φk(m)〉〈φk(m)|. If

the projection is successful, output �. Otherwise, output ⊥.

The correctness is clear. The EUF-CMA-security follows from the unpredictabil-
ity of UPSG. ��

Next, we define MACs with unclonable tags.

Definition 5.2 (MACs with Unclonable Tags). Let (KeyGen,Tag,Ver) be
an EUF-CMA-secure MAC. If (KeyGen,Tag,Ver) satisfies the following property
(which we call unclonability), we call it MAC with unclonable tags: For any QPT
adversary A and any polynomials t and �,

Pr

⎡

⎢
⎢
⎣Count(sigk,m

∗, ξ) ≥ t + 1 :

sigk ← KeyGen(1λ)
(m∗, st) ← ATag(sigk,·)(1λ)

τ⊗t ← Tag(sigk,m∗)⊗t

ξ ← ATag(sigk,·)(τ⊗t, st)

⎤

⎥
⎥
⎦ ≤ negl(λ), (34)

where A queries the oracle only classically, and A is not allowed to query m∗.
τ⊗t ← Tag(sigk,m∗)⊗t means that Tag algorithm is run t times and t copies of
τ are generated. ξ is a quantum state on � registers, R1, ...,R�, each of which
is of n qubits. Here, Count(sigk,m∗, ξ) is the following QPT algorithm: for each
j ∈ [�], it takes the state on Rj as input, and runs Ver(sigk,m∗, ·) to get � or
⊥. Then, it outputs the total number of �.

Remark 5.1. EUF-CMA security is automatically implied by the unclonability,
Eq. (34).16

16 The proof is easy. Let A be a QPT adversary that breaks the EUF-CMA security,
which outputs (m∗, ρ). Then the QPT adversary B that breaks the unclonability is
constructed as follows: it first simulates A to get (m∗, ρ). It then sends m∗ to the
challenger to get its tag τ . It finally sends τ and ρ to the challenger, both of which
are accepted as valid tags.
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5.2 Construction from UPSGs

In this subsection, we construct MACs with unclonable tags from EUF-CMA-
secure MACs and IND-CPA-secure SKE schemes.

Theorem 5.1. If EUF-CMA-secure MACs (secure against classically querying
QPT adversaries) and IND-CPA-secure SKE schemes for classical messages
(secure against classically querying QPT adversaries) exist, then MACs with
unclonable tags exist.

Because EUF-CMA-secure MACs (secure against classically querying QPT
adversaries) can be constructed from UPSG (Corollary 5.1), and IND-CPA-
secure SKE schemes for classical messages (secure against classically querying
QPT adversaries) can be constructed from UPSGs (Theorem 4.1), we have the
following corollary:

Corollary 5.2. If UPSGs exist, then MACs with unclonable tags exist.

Proof of Theorem 5.1. Let (MAC.KeyGen,MAC.Tag,MAC.Ver) be an EUF-
CMA-secure MAC secure against classically querying QPT adversaries and
(SKE.KeyGen,SKE.Enc,SKE.Dec) be an IND-CPA-secure SKE scheme for quan-
tum messages. (From Lemma 2.3, such SKE schemes exist if SKE schemes for
classical messages secure against classically querying QPT adversaries exist.) We
construct a MAC with unclonable tags (KeyGen,Tag,Ver) as follows:

– KeyGen(1λ) → sigk′ : Run sk ← SKE.KeyGen(1λ) and sigk ←
MAC.KeyGen(1λ). Output sigk′ := (sk, sigk).

– Tag(sigk′,m) → τ ′ : Parse sigk′ = (sk, sigk). It does the following:
1. Choose x, θ ← {0, 1}λ and generate |x〉θ. Here, |x〉θ :=

⊗
i∈[λ] H

θi |xi〉,
where H is the Hadamard gate, and xi and θi denote the i’th bit of x
and θ, respectively.

2. Run τ ← MAC.Tag(sigk,m‖x‖θ).
3. Run ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).

Output τ ′ := |x〉〈x|θ ⊗ ct.
– Ver(sigk′,m, ρ) → �/⊥ : Parse sigk′ = (sk, sigk). Let ρ be a state on two

registers A and C. (If ρ is honestly generated, ρA,C = (|x〉〈x|θ)A ⊗ ctC.) It
does the following:
1. Run SKE.Dec(sk, ·) on the register C to get another state ρ′

A,M on the
registers A and M.

2. Measure the first 2λ qubits of M in the computational basis to get the
result x′‖θ′.

3. Run MAC.Ver(sigk,m‖x′‖θ′, ·) on the remaining qubits of the register M
to get v ∈ {�,⊥}. Project the register A onto |x′〉θ′ . If the projection is
successful and v = �, output �. Otherwise, output ⊥.

The correctness is clear. Since the unclonablity implies EUF-CMA security, it
suffices to show our construction satisfies the unclonability. Let t and � be poly-
nomials. We define the Hybrid 0 as follows, which is the original security game
of unclonability between the challenger C and QPT adversary A.
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Hybrid 0

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi) and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi|

⊗ τi).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the following.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis

to get the result x′
j‖θ′

j .
(c) Run MAC.Ver(sigk,m∗‖x′

j‖θ′
j , ·) on the remaining qubits of the register

Mj to get vj ∈ {�,⊥}.
(d) Project the register Aj onto |x′

j〉θ′
j
.

(e) If the projection is successful and vj = �, set wj := 1. Otherwise, set
wj := 0.

7. If
∑�

j=1 wj ≥ t + 1, C outputs �. Otherwise, C outputs ⊥.

To show the theorem, let us assume that there exists a QPT adversary A
such that Pr[� ← Hybrid 0] ≥ 1

poly(λ) for infinitely many λ. Our goal is to con-
struct an adversary that breaks the security of the Wiesner money scheme from
A. To demonstrate that, we define some hybrids.17 To construct an adversary
against the Wiesner money, we want to make sure that two copies of |x〉θ are
generated when C outputs �. The next Hybrid 1 ensures such a situation, and
the hop from Hybrid 0 to 1 can be done by invoking the EUF-CMA security of
the MAC.18

Hybrid 1

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:

17 In each hybrid, text struck through with red is the step in the previous hybrid, and
the red text is the new step in the current hybrid.

18 This is actually a well-known technique to construct a full money from a mini-
scheme [2].
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(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi) and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi|

⊗ τi).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis

to get the result x′
j‖θ′

j .
(c) Run MAC.Ver(sigk,m∗‖x′

j‖θ′
j , ·) on the remaining qubits of the register

Mj to get vj ∈ {�,⊥}.
(d) Project the register Aj onto |x′

j〉θ′
j
.

(e) If the projection is successful and vj = �, set wj := 1. Otherwise, set
wj := 0.

7. If
∑�

j=1 wj ≥ t + 1 and the event E does not occur, then C outputs �.
Otherwise, C outputs ⊥. Here E is the event defined as follows:

– Event E: there exists j ∈ [�] such that (x′
j , θ

′
j) �∈ {(xi, θi)}i∈[t] and wj =1.

Lemma 5.1. Pr[� ← Hybrid 0] ≤ Pr[� ← Hybrid 1] + negl(λ).

Proof of Lemma 5.1. We can show

Pr[E] ≤ negl(λ) (35)

whose proof is given later. If Pr[E] ≤ negl(λ),

Pr[� ← Hybrid 0] = Pr[� ← Hybrid 0 ∧ E] + Pr[� ← Hybrid 0 ∧ Ē] (36)
≤ negl(λ) + Pr[� ← Hybrid 1], (37)

which shows the lemma.
Let us show Eq. (35). Assume that Pr[E] ≥ 1

poly(λ) for infinitely many λ ∈ N.
Then the following QPT adversary B breaks the EUF-CMA security of the MAC:

1. The adversary B runs sk ← SKE.KeyGen(1λ).
2. B simulates the interaction between C and A in Hybrid 1 by querying to

MAC.Tag(sigk, ·) up to the step 5. Then, B gets a classical message m∗ and
a state ξ on the registers R1, ...R�, where m∗ is a challenge message that A
sends to C in the step 2. Here Rj has two registers Aj and Cj for each j ∈ [�].

3. For each j ∈ [�], B does the following:
(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj .
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(b) Measure the first 2λ qubits of the register Mj in the computational basis
to get the result x′

j‖θ′
j .

4. B chooses j∗ ← [�]. If (x′
j∗ , θ′

j∗) ∈ {(xi, θi)}i∈[t], B aborts. Otherwise, B
outputs m∗‖x′

j∗‖θ′
j∗ and the all qubits of the register Mj∗ except for the first

2λ-qubits.

It is clear that B does not query m∗‖x′
j∗‖θ′

j∗ . Let Pr[B wins] be the probability
that B wins the above security game of EUF-CMA security. Then, we have
Pr[B wins] ≥ 1

� Pr[E]. Therefore, B breaks the EUF-CMA security if Pr[E] ≥
1

poly(λ) for infinitely many λ ∈ N. This means Pr[E] ≤ negl(λ). ��

If Pr[� ← Hybrid 1] ≥ 1
poly(λ) for infinitely many λ, at least two copies of

|x〉θ for some x and θ should be generated due to the pigeonhole principle. In
the following Hybrid 2, we randomly guess the indexes of such states. Then we
have the following lemma.

Lemma 5.2. Pr[� ← Hybrid 2] ≥ 1
t Pr[� ← Hybrid 1].

Hybrid 2

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi) and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi|

⊗ τi).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis

to get the result x′
j‖θ′

j .
(c) Run MAC.Ver(sigk,m∗‖x′

j‖θ′
j , ·) on the remaining qubits of the register

Mj to get vj ∈ {�,⊥}.
(d) Project the register Aj onto |x′

j〉θ′
j
.

(e) If the projection is successful and vj = � and (x′
j , θ

′
j) = (xi∗ , θi∗), set

wj := 1. Otherwise, set wj := 0.
7. If

∑�
j=1 wj ≥ t + 1 and the event E does not occur, If

∑�
j=1 wj ≥ 2, C outputs

�. Otherwise, C outputs ⊥. Here E is the event defined as follows:
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– Event E:
there exists j ∈ [�] such that (x′

j , θ
′
j) �∈ {(xi, θi)}i∈[t] and wj = 1.

Let us define Hybrid 3 as follows. The following lemma is straightforward.

Lemma 5.3. Pr[� ← Hybrid 3] ≥ Pr[� ← Hybrid 2].

Hybrid 3

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi) and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi|

⊗ τi).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis

to get the result x′
j‖θ′

j . Set (x′
j , θ

′
j) := (xi∗ , θi∗).

(c) Run MAC.Ver(sigk,m∗‖x′
j‖θ′

j , ·) on the remaining qubits of the register
Mj to get vj ∈ {�,⊥}.

(d) Project the register Aj onto |x′
j〉θ′

j
.

(e) If the projection is successful and vj = � and (x′
j , θ

′
j) = (xi∗ , θi∗), set

wj := 1. Otherwise, set wj := 0.
7. If

∑�
j=1 wj ≥ 2, C outputs �. Otherwise, C outputs ⊥.

Now in Hybrid 3 two copies of |xi∗〉θi∗ are generated. In order to use it to
break the security of the Wiesner money scheme, we have to remove the classical
description of BB84 states “hidden” in the ciphertexts. If we introduce Hybrid 4
as follows, the following lemma is straightforward.

Lemma 5.4 Pr[� ← Hybrid 4] ≥ Pr[� ← Hybrid 3].

Hybrid 4

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
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(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi) and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi|

⊗ τi).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj

and Mj . Does nothing in this step.
(b) Set (x′

j , θ
′
j) := (xi∗ , θi∗).

(c) Run MAC.Ver(sigk,m∗‖x′
j‖θ′

j , ·) on the remaining qubits of the register
Mj to get vj ∈ {�,⊥}. Does nothing in this step.

(d) Project the register Aj onto |x′
j〉θ′

j
.

(e) If the projection is successful and vj = �, set wj := 1. Otherwise, set
wj := 0.

7. If
∑�

j=1 wj ≥ 2, C outputs �. Otherwise, C outputs ⊥.

Now, we are ready to remove the information about the BB84 state from cti
by invoking IND-CPA security. We formalize it as Hybrid 5.

Hybrid 5

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi)

and cti ← SKE.Enc(sk, |xi‖θi〉〈xi‖θi| ⊗ τi). Run
cti ← SKE.Enc(sk, |0...0〉〈0...0|).

4. C sends {|xi〉〈xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,R�
, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Does nothing in this step.
(b) Set (x′

j , θ
′
j) := (xi∗ , θi∗).

(c) Does nothing in this step.
(d) Project the register Aj onto |x′

j〉θ′
j
.
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(e) If the projection is successful, set wj := 1. Otherwise, set wj := 0.
7. If

∑�
j=1 wj ≥ 2, C outputs �. Otherwise, C outputs ⊥.

Lemma 5.5 |Pr[� ← Hybrid 4] − Pr[� ← Hybrid 5]| ≤ negl(λ).

Proof of Lemma 5.5. Note that the difference between Hybrid 4 and Hybrid 5

lies only in the step 3b.
Let us consider the following security game of IND-CPA security between a

challenger C′ and a QPT adversary B:

1. The challenger C′ runs sk ← SKE.KeyGen(1λ).
2. B runs sigk ← MAC.KeyGen(1λ).
3. B simulates A in Hybrid 4 by querying to SKE.Enc(sk, ·) up to the step 2. B

gets m∗, where m∗ is the challenge message that A sends to C in the step 2.
4. B chooses i∗ ← [t]. For each i ∈ [t], B does the following: B chooses xi, θi ←

{0, 1}λ and prepares the state η0
i := |xi‖θi〉〈xi‖θi| ⊗ τi by running τi ←

MAC.Tag(sigk,m∗‖xi‖θi). B also prepares the state η1
i := |0...0〉〈0...0|.

5. B sends the states
⊗t

i=1 η0
i and

⊗t
i=1 η1

i to C′.
6. C′ chooses b ← {0, 1} and gets

⊗
i∈[t] cti by running cti ← SKE.Enc(sk, η0

i ) if
b = 0 and cti ← SKE.Enc(sk, η1

i ) if b = 1 for each i ∈ [t]. C′ sends
⊗

i∈[t] cti
to B.

7. B generates
⊗

i∈[t]|xi〉θi
. B simulates the interaction between C and A from

the step 4 of Hybrid 4 to the last step by using
⊗

i∈[t] cti ⊗ ⊗
i∈[t]|xi〉θi

and
querying to SKE.Enc(sk, ·). If C outputs �, B sends b′ := 0 to C′. Otherwise,
B sends b′ := 1 to C′.

8. C′ outputs � if b = b′. Otherwise, C′ outputs ⊥.

Let Pr[b′ ← B|b ← C′] be the probability that B sends b′ ∈ {0, 1} to C′ when
C′ chooses b ∈ {0, 1}. It is clear that Pr[0 ← B|0 ← C′] = Pr[� ← Hybrid 4]
and Pr[0 ← B|1 ← C′] = Pr[� ← Hybrid 5]. Therefore, if |Pr[� ← Hybrid 4] −
Pr[� ← Hybrid 5]| ≥ 1

poly(λ) for infinitely many λ ∈ N, B breaks the IND-CPA
security. ��

Let us define Hybrid 6 as follows. The following lemma is straightforward.

Lemma 5.6. Pr[� ← Hybrid 5] = Pr[� ← Hybrid 6].

Hybrid 6

1. The challenger C runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
2. The adversary A sends m∗ to C, where A can make classical queries to the

oracle Osk,sigk and does not query m∗. Here, Osk,sigk takes a bit string m as
input and works as follows:
(a) Choose x, θ ← {0, 1}λ and generate |x〉θ.
(b) Run τ ← MAC.Tag(sigk,m‖x‖θ) and ct ← SKE.Enc(sk, |x‖θ〉〈x‖θ| ⊗ τ).
(c) Output |x〉〈x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.
(a) Choose xi, θi ← {0, 1}λ and generate |xi〉θi

.
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(b) Run τi ← MAC.Tag(sigk,m∗‖xi‖θi). Run cti ← SKE.Enc(sk, |0...0〉〈0...0|).
4. C sends {|xi〉〈xi|θi

⊗ cti}i∈[t] to A.
5. A sends ξR1,...,R�

, where A can make classical queries to the oracle Osk,sigk

and does not query m∗. Here Rj has two registers Aj and Cj for each j ∈ [�].
6. For each j ∈ [�], C does the followings.

(a) Does nothing in this step.
(b) Set (x′

j , θ
′
j) := (xi∗ , θi∗).

(c) Does nothing in this step.
(d) Project the register Aj onto |x′

j〉θ′
j
.

(e) If the projection is successful, set wj := 1. Otherwise, set wj := 0.
7. If

∑�
j=1 wj ≥ 2, C outputs �. Otherwise, C outputs ⊥.

Finally, we construct an adversary that breaks the security of the Wiesner
money scheme from A of Hybrid 6, which concludes our proof of the theorem.

Lemma 5.7. Pr[� ← Hybrid 6] ≤ negl(λ).

Proof of Lemma 5.7. Let us assume that there exist polynomials t, � and a QPT

A adversary such that Pr[� ← Hybrid 6] ≥ 1
poly(λ) for infinitely many λ ∈ N.

From this A, we can construct a QPT adversary B that breaks the security of
the Wiesner money scheme as follows:

1. The challenger C′ chooses x, θ ← {0, 1}λ and sends |x〉θ to B.
2. B runs sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ).
3. B simulates the interaction between the challenger and A in Hybrid 6, where,

in the step 3, B chooses i∗ ← [t] and replaces |xi∗〉θi∗ with |x〉θ. Then, B gets
ξR1,...R�

from A. B chooses j0, j1 ← [�] and outputs the register Aj0 and Aj1 .

The probability that B wins is

Pr[B wins] ≥
(

�

2

)−1

Pr[� ← Hybrid 6] ≥ 2
�(� − 1)

1
poly(λ)

. (38)

However, this contradicts the security of the Wiesner money scheme, Lemma
2.2. Therefore, Pr[� ← Hybrid 5] ≤ negl(λ). ��

By combining Lemmata 5.1 to 5.7, we have Pr[� ← Hybrid 0] ≤ negl(λ),
but it contradicts the assumption that Pr[� ← Hybrid 0] ≥ 1

poly(λ) for infinitely
many λ. Therefore we have Pr[� ← Hybrid 0] ≤ negl(λ). ��
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Abstract. We construct a quantum money/quantum lightning scheme
from class group actions on elliptic curves over Fp. Our scheme, which is
based on the invariant money construction of Liu-Montgomery-Zhandry
(Eurocrypt’23), is simple to describe. We believe it to be the most instan-
tiable and well-defined quantum money construction known so far. The
security of our quantum lightning construction is exactly equivalent to
the (conjectured) hardness of constructing two uniform superpositions
over elliptic curves in an isogeny class which is acted on simply transi-
tively by an exponentially large ideal class group.

However, we needed to advance the state of the art of isogenies in
order to achieve our scheme. In particular, we show:

– An efficient (quantum) algorithm for sampling a uniform superposi-
tion over a cryptographically large isogeny class.

– A method for specifying polynomially many generators for the class
group so that polynomial-sized products yield an exponential-sized
subset of class group, modulo a seemingly very modest assumption.

Achieving these results also requires us to advance the state of the art of
the (pure) mathematics of elliptic curves, and we are optimistic that the
mathematical tools we developed in this paper can be used to advance
isogeny-based cryptography in other ways.

Keywords: Elliptic Curve Isogenies · Quantum Money

1 Introduction

Quantum money is a way of implementing digital money where “banknotes”
that represent the money are quantum states. The idea for quantum money
was first sketched out by Wiesner [Wie83], and since then quantum money has
captivated the quantum computing research community. In this work, we focus
on publicly verifiable quantum money [Aar09], which means that any observer
without privileged information can verify the correctness of the banknotes, and
quantum lightning [Zha19], which guarantees that even the mint cannot cheat
by producing duplicate banknotes.

Unfortunately, constructing publicly verifiable quantum money has proven to
be rather elusive. Farhi, Gosset, Hassidim, Lutomirski, Nagaj, and Shor showed
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that, even with some natural modifications, Wiesner’s quantum money scheme
cannot be used to directly build a publicly verifiable scheme [FGH+10]. The first
candidates for truly publicly verifiable quantum money were given by Aaron-
son [Aar09] and Aaronson and Christiano [AC12], and gave publicly verifiable
quantum money constructions relative to quantum and classical oracles, respec-
tively. Unfortunately, the proposed instantiations of oracles in both constructions
were later broken [LAF+10] [CPDDF+19], casting doubt on the possibility that
such oracles could be securely implemented in the real world. Zhandry’s concrete
construction of quantum lightning [Zha19] was also broken by Roberts [Rob21].
More recently, the lattice-based construction of Khesin, Lu, and Shor [KLS22]
was broken by Liu, Montgomery, and Zhandry [LMZ23].

On the other hand, there are a handful of candidates have been proposed
that have not been broken, including constructions from knots [FGH+12] and
quaternion algebras [Kan18,KSS21]. In addition, Zhandry [Zha19], as suggested
by [BDS16], showed how to build publicly verifiable quantum money from
quantum-secure indistinguishability obfuscation (iO). Unfortunately, none of
these assumptions have received much cryptanalytic attention at all, and all
known candidates of post-quantum iO [GGH15,BGMZ18,BDGM20,WW21] do
not have strong connections to well-studied cryptographic assumptions.

Liu, Montgomery, and Zhandry recently showed a generic, oracle construction
for quantum money that they called invariant money [LMZ23]. They showed a
number of possible constructions, but all of these were either oracle constructions
or schemes that were not known to be efficiently instantiable. In particular,
they showed an uninstantiable construction from class group actions on elliptic
curves. In particular, they mention how invariant money could potentially be
instantiated from isogenies. However, they also comment, “We do not know if
it is even possible to instantiate such a scheme, as it would likely require new
ideas in isogeny-based cryptography.”

Very recently, Zhandry [Zha24] showed how to build a construction of quan-
tum money from regular group actions that was loosely based on the generic
construction of [LMZ23]. While Zhandry’s construction was the first instan-
tiable construction from group actions, it unfortunately resorts to nonstandard
assumptions that seem significantly stronger than the assumptions used in the
invariant money construction would be for an instantiable construction.

1.1 Our Contributions

In this work, we prove new results in isogeny-based cryptography necessary to
build quantum money from the invariant money framework of [LMZ23]. We use
these results to build a new quantum money scheme based on class group actions
on elliptic curves, sharing some features with a proposal in [LMZ23]. Rather
than come up with a new verification algorithm like that of Zhandry [Zha24], we
advance the state of the art in the mathematics of elliptic curves, which enables
us to build a very simple construction with simple (although still non-standard)
assumptions.
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Our quantum money scheme is conceptually very simple (modulo the new
mathematical techniques required for its construction) and has an extremely easy
to state security assumption. For instance, for quantum lightning, the scheme is
exactly as secure as the problem of sampling two uniform superpositions over all
elliptic curves over Fp with N points, for some N corresponding to elliptic curves
with large class group. We also show that this new assumption is hard assuming
that it is hard to compute isogenies between random isogenous elliptic curves
(which is a standard assumption in cryptography at this point) and a quantum
knowledge assumption similar to the one proposed recently by Zhandry [Zha24].

Our quantum money/lightning scheme is the first fully instantiable construc-
tion with a simple, offline (albeit quantum) security assumption. We also believe
it is the simplest scheme proposed so far, and the one that rests on assumptions
that are closest to traditional cryptographic security assumptions.

To enable such a simple scheme with a very nice security assumption, we
advance the state of the art in elliptic curve mathematics and algorithms. In
particular, for the minting algorithm to be efficient, it is necessary that a random
elliptic curve mod p has non-negligible probability of having large associated
class group. Previous work has either relied on heuristic assumptions, or worked
exclusively with supersingular elliptic curves. In our work, we give new explicit
lower bounds on the number of elliptic curves whose endomorphism ring has
large discriminant, which together with a result of Tatuzawa show that at least
14% of elliptic curves mod p have endomorphism ring with exponentially large
class group. We also, to our knowledge, for the first time apply a heuristic model
due to Erdös-Rényi on encodings of class group elements.

Heuristics on sizes of class groups and efficiency of encodings for class groups
are ubiquitous in isogeny-based cryptography. Consequently our formalization of
these heuristics should find other uses in cryptography and mathematics outside
of quantum money.

1.2 Other Related Work

Quantum money has been a key primitive in quantum computing, especially as
quantum money and quantum lightning are closely tied to numerous other areas
in quantum computing. For instance, the first message in the quantum key dis-
tribution protocol of Bennet and Brassard [BB87] is just a banknote in Wiesner’s
quantum money scheme. Recent works on copy protection [ALL+21,CLLZ21]
[LLQZ22] require at a minimum a computational assumption that implies quan-
tum money.1

In the isogeny realm, our work makes precise estimates used for parameter
selection in CRS-style cryptosystems. Previous work (for example [Cou06,RS06,
DKS18]) relies completely on heuristics that imply a randomly chosen elliptic
curve mod p will have large associated class group. Those heuristics are made

1 This holds true even for certain weaker versions such as copy detection, also known
as infinite term secure software leasing.
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precise here. We also show that, under a very plausible heuristic assumption,
with overwhelming probability every element of the class group has a compact
encoding.

1.3 Outline

The rest of this paper proceeds as follows. In Sect. 2, we provide a brief technical
overview of our construction and new isogeny results. We hope this enables the
reader to understand our ideas at a high level. Then, in Sect. 3, we provide
preliminary material. In Sect. 4, we build the mathematical tools we need for
our constructions. We note this section utilizes math that is outside the scope of
knowledge of most cryptographers, but we do our best to make it as accessible
as possible. We then present our full algorithm for sampling a superposition of
elliptic curves in Sect. 5 and our algorithm for verifying these superpositions in
Sect. 6. We finally present our full quantum money construction in Sect. 7.

Unfortunately, due to space constraints, we must defer some content to the
full version of the paper. In particular, we defer the full proof of our superposition
verification algorithm and proofs of security to the full version, available on
eprint.

2 Technical Overview

In this section we explain our main results and contributions at a high level. We
begin by giving an overview of the new mathematical tools that are needed for
its construction. We then outline our new quantum money scheme.

2.1 New Techniques and Facts on Elliptic Curves

In [LMZ23], it is stated that “generating superpositions over X, where X is the
set of all elliptic curves with some (even polynomially likely) property seems
difficult. In fact, we do not even know how to generate a uniform superposition
over all elliptic curves efficiently.” Our minting algorithm solves this problem
by first efficiently generating a uniform superposition over all elliptic curves,
by encoding elliptic curves as pairs (j, b), where j is the j-invariant and b is
twisting data. We then show how to efficiently generate the superposition over
a random exponentially large isogeny class. Note that we believe generating a
superposition over a specified exponentially large isogeny class is difficult, and
indeed the security of our scheme depends on this being the case.

Passing from the uniform superposition over all elliptic curves over a par-
ticular finite field to a superposition over a large isogeny class is accomplished
by an explicit estimate on sizes of class groups associated to elliptic curves.
The previous literature either restricts to isogeny classes of supersingular elliptic
curves (which constitute a negligible fraction of all elliptic curves mod p), or
relies on heuristics stating that the class group associated to a random elliptic
curve mod p has size O(

√
p). We make these heuristics precise by focusing on
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elliptic curves whose Frobenius discriminant (that is, the discriminant of the
characteristic polynomial of Frobenius) is both square-free and ≥ 3p. We show
that for p > 263, at least 14% of elliptic curves mod p have such a Frobenius dis-
criminant. We then use Tatuzawa’s effective version of Siegel’s Theorem [Tat51]
to obtain the following:

Corollary 4.14. Let p > 263 be prime. Given an ordinary elliptic curve E/Fp,
let O be End(E). If an elliptic curve E is drawn from either the distribution Dp

or the distribution Up, then with probability at least 14%, the class group of O
and the isogeny class of E both have size at least

0.089
√

p

log p
,

Here, Up is the uniform distribution on elliptic curves, and Dp is a related dis-
tribution defined in Sect. 3.3.

In addition to [Tat51], the proof of Corollary 4.14 relies on statistical analysis
of the trace of Frobenius due to Murty-Prabhu [MP19b], and statistical analysis
of the values of 4p−t2, 1 ≤ t <

√
p, using methods of Friedlander-Iwaniec [FI10].

Finally, we give a new treatment of computations in class groups. Typically,
one cannot directly compute ideals coming from random ideal classes, since these
ideals can have exponentially large generators. Instead, one attempts to express
ideal classes as products of prime ideals with small norm. By treating small
norm prime ideals as random elements in the class group, we use results of
Erdös-Rényi to show that with all but negligible probability, every ideal class
can be represented by a product of distinct prime ideals of small norm; see Sect.
4.4 and Sect. 4.5.

2.2 Quantum Money from Class Group Actions on Elliptic Curves

As we have alluded before, our scheme generally falls into the invariant frame-
work of [LMZ23]. However, other than the obvious choice of using isogeny
classes (determined by the number of points on elliptic curves (#E (Fp)) as
the invariant, essentially every other choice we make deviates from the sugges-
tions of [LMZ23] for implementing invariant money using class group actions on
elliptic curves, and, as we have previously mentioned, our scheme accomplishes
or circumvents some tasks they find difficult or impossible.

Recall that, informally speaking, a (public key) quantum money scheme is
a tuple of algorithms (Gen,Ver) where Gen creates a quantum money state |ψ〉
which we refer to as a banknote and a serial number σ, and Ver takes as input a
banknote |ψ〉 and a serial number σ and outputs 0 or 1, depending on whether
or not the quantum money state is valid.

We say that a money scheme satisfies quantum money unforgeability if, given
a random valid banknote and serial number pair (|ψ〉, σ) it is hard to generate two
banknotes |ψ′〉, |ψ′′〉 that both verify with serial number σ. A scheme constitutes
secure quantum lightning if it is hard for an adversary to find two states |ψ′〉, |ψ′′〉
that both verify for any serial number σ. We formally define quantum money
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and quantum lightning in Sect. 3 and, for familiar readers, note that we use the
“mini-scheme” definition from [AC12].

Our Construction. For an elliptic curve E, let t be the trace of Frobenius acting
on E, and define the Frobenius discriminant to be ΔFr(E) = 4p − t2. (This is
the negative of the usual definition.) Note that Δ in the elliptic curve literature
designates the discriminant of E itself; that is, if E is given by y2 = x3+ax+b, the
discriminant is 4a3+27b2. We use ΔFr exclusively for the Frobenius discriminant.

Suppose we let Esf,3p represent the set of isomorphism classes of elliptic curves
E over Fp for prime p with ΔFr (E) ≥ 3p and square-free, and let IN denote the
set of elliptic curves over Fp with N points. Recall that two elliptic curves over
Fp are isogenous if and only if they have the same number of points.

Our construction at a high level works as follows:

Money States: a valid quantum money state is a uniform superposition over a
single isogeny class in Esf,3p.

Gen: To generate a money state, at a high level we do the following:

1. Sample a uniform superposition of elliptic curves in Esf,3p, getting a state
|ψ〉 =

∑|E〉.
2. In superposition, compute, in an adjacent register, the number of points in

|E〉 using Schoof’s algorithm.
3. Measure this new adjacent register and denote its value as N .
4. Output the tuple (|ψ〉, N) as the money state. Note that |ψ〉 will have been

altered by the measurement.

We note that sampling such a superposition as we do in step (1) was previ-
ously unknown and listed as an open problem in [LMZ23], and it requires new
results in number theory to solve; namely, we require precise lower bounds on
the proportion of elliptic curves with ΔFr(E) large and square-free. This follows
from our mathematical work that we explained earlier in this overview.

Ver: Let |IN 〉 := 1√
#IN

∑
E∈IN

|E〉. In other words, |IN 〉 is the state correspond-
ing to a uniform superposition over all elliptic curves with N points. Our goal,
similar to [LMZ23], is to compute an approximation of the projection-valued
measure VN = |IN 〉〈IN |.

To do this, we take a similar approach as both [LMZ23] and [FGH+12]. We
simulate a (invertible) random walk in superposition over the isogeny class group
and continually check to see if the state has changed using projection-valued
measures. Intuitively, correct money states will not change when we compute
invertible maps on the state since these maps will map uniform superpositions to
uniform superpositions. On the other hand, most incorrect money states will have
changed substantially by such a walk. For instance, a classical state consisting
of a single elliptic curve will likely be completely different after a random walk
and thus fail verification.
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While our verification algorithm closely resembles that of the invariant money
in [LMZ23] at a high level, we emphasize that we need substantially new tech-
niques to make it work. Most notably, to our knowledge the fact that a random
elliptic curve has large associated class group with non-negligible probability has
never been formally shown.

Security. The security of our construction is based on a simple assumption:

Definition 2.1. The Elliptic Curve Superposition Collision Problem
(ECSCPp): The prime p is fixed. Create two (possibly entangled) quantum states
that are each negligibly far from the superposition of all elliptic curves over Fp

in some isogeny class with Frobenius discriminant ΔFr ≥ 3p and square-free.

We justify below why mathematicians believe this to be a hard problem. An
astute reader will note that this security assumption is tied very closely to our
scheme itself, and a reduction is simple. This is true—see the full version of
our paper for the formal reduction—but we believe this to be a positive facet
of our construction, in the same vein as the fact that the security of ElGamal
encryption trivially following from the DDH assumption is a positive of that
scheme, too.

[LMZ23] and [Zha24] argue that their constructions are secure using quan-
tum assumptions of knowledge, and we can actually argue that not just our
construction but the security assumption of our construction that we infor-
mally mentioned above is secure using assumptions of knowledge. As in [LMZ23]
and [Zha24], we use two problems to prove the security of the ECSCPp. First,
we assume that it is hard to compute isogenies between random isogenous ellip-
tic curves (the group action discrete log problem [ADMP20] over isogeny class
groups). Second, we make a quantum assumption of knowledge: we assume
that if there exists an adversary that breaks our main assumption (generating
two superpositions) with non-negligible probability, we assume that there also
exists some adversary that breaks our main assumption with similar probability
from whose state “paths” (isogenies) between elliptic curves that it uses can be
extracted. This is a relatively new type of assumption and we defer to [Zha24]
for an extensive discussion on this sort of quantum knowledge assumption.

Construction Rationale. An adversary can efficiently fabricate money states if
they can solve the group action discrete log problem for ideal classes acting on
elliptic curves; fortunately, this problem is believed to be hard. But the hardness
requires that the ideal class group is large. By Tatuzawa’s estimate [Tat51], with
overwhelming probability it is sufficient that ΔFr(E) be large for any elliptic
curve E in the isogeny class. Thus we choose only isogeny classes for which
ΔFr ≥ 3p. (Note that as E varies over elliptic curves mod p, by the Hasse-
Weil bounds ΔFr(E) varies between 0 and 4p.) Finally, it may happen that
the isogeny class is a disjoint union of sets, each acted upon by different a
class group corresponding to a different choice of endomorphism ring inside a
given imaginary quadratic field (for instance, elliptic curves with endomorphism
ring isomorphic to Z[

√−3] along with elliptic curves with endomorphism ring
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isomorphic to Z[1+
√−3
2 ]). We introduce a square-freeness condition to guarantee

that the entire isogeny class forms a single homogeneous space.

Comparison to Zhandry’s Scheme [Zha24]. Zhandry’s recent quantum money
construction is also loosely based on the invariant money construction
in [LMZ23]. However, his construction turns out to be very different from ours.
Zhandry makes a very nice observation that the Fourier domain can be useful
for creating verifiable quantum states over group actions and builds a quantum
lightning scheme based on this observation. On the other hand, our construction
is more closely tied in nature to the invariant money scheme itself, although we
need to solve or formalize several open problems in the mathematics of elliptic
curves in order to make the scheme work.

We also note that Zhandry’s assumptions are more complicated and seem-
ingly stronger than ours: he proves his scheme secure in two different ways: one
way uses what he calls the “D2X” assumption, which is an interactive assump-
tion that requires a quantum oracle, and the other uses a quantum knowledge
assumption. On the other hand, we can prove our scheme secure using a simple,
noninteractive (albeit quantum) assumption, and we can prove this assumption
secure using a simpler knowledge assumption as compared to Zhandry.

3 Definitions

In this section we provide basic definitions. For our quantum notations and
definitions, we mostly borrow from and mimic [LMZ23].

Basic Cryptographic Notation. When we say a function is negligible, we mean
that it is (asymptotically) smaller than 1

f(λ) for any polynomial f and security
parameter λ. When we say a function is non-negligible, we mean that there is
some polynomial function f for which the function grows (asymptotically) faster
than 1

f(λ) for security parameter λ.

3.1 Quantum Specifics

We attempt to avoid any complicated quantum specifics. For general background
and notation on quantum computing, we highly recommend [NC10].

Notation. Following [LMZ23], for quantum notation, we denote |·〉 as the nota-
tion for a pure state and |·〉〈·| for its density matrix. ρ denotes a general mixed
state. We let “†” denote the conjugate transpose.

Definition 3.1. A projection-valued measure on a Hilbert space H is a set of
outcomes i ∈ M and, for each outcome, a positive semi-definite matrices Pi,
such that:

1.
∑

M Pi = I,
2. each Pi is Hermitian,
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3. P2
i = Pi and Pi = P†

i , and
4. for i �= j ∈ M , PiPj = 0.

We say that the probability of obtaining output i on a pure state |ψ〉 is just
〈ψ|Pi|ψ〉, with the measured state collapsing to Pi|ψ〉√

〈ψ|Pi|ψ〉 ; the analogous result

for a mixed state is defined in the natural way using the trace.
For simplicity, we will abuse notation and refer to a single PVM operator

Pi as a measurement, and the complementary operator I − Pi will be implicit.
In this case, a “successful” measurement on a state |ψ〉 will result in the out-
put Pi|ψ〉√

〈ψ|Pi|ψ〉 ; we will typically be less concerned about the output of “failed”

measurements.

3.2 Quantum Money and Quantum Lightning

Here, we define public key quantum money and quantum lightning. We use
the definitions of [LMZ23] verbatim. As they do, following Aaronson and Chris-
tiano [AC12], we will only consider so-called “mini-schemes”, where there is only
a single banknote.

Both quantum money and quantum lightning share the same syntax and
correctness requirements. There are two quantum polynomial-time algorithms
Gen,Ver such that:

– Gen(1λ) samples a classical serial number σ and a quantum state |ψ〉.
– Ver(σ, |ψ〉) outputs a bit 0 or 1, and, if the output bit is 1, also outputs a

state |ψ′〉.
Definition 3.2. We say that our quantum money scheme is correct if there
exists a negligible function negl such that, for any polynomially sized integer i,
we have Pr[Veri(Gen(1λ))] ≥ 1 − negl(λ). In other words, a correctly generated
money state can be verified any polynomial number of times and verification will
still pass.

Where public key quantum money and quantum lightning differ is in security.
The differences are analogous to the differences between one-way functions and
collision resistance.

Definition 3.3 (Quantum Money Unforgeability). (Gen,Ver) is secure
public key quantum money if, for all quantum polynomial-time A, there exists a
negligible negl such that A wins the following game with probability at most negl:

– The challenger runs (σ, |ψ〉) ← Gen(1λ), and gives σ, |ψ〉 to A.
– A produces a potentially entangled joint state ρ1,2 over two quantum registers.

Let ρ1, ρ2 be the states of the two registers. A sends ρ1,2 to the challenger.
– The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 =

b2 = 1.
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Definition 3.4 (Quantum Lightning Unforgeability). (Gen,Ver) is secure
quantum lightning if, for all quantum polynomial-time A, there exists a negligible
negl such that A wins the following game with probability at most negl:

– A, on input 1λ, produces and sends to the challenger σ and ρ1,2, where ρ1,2

is a potentially entangled joint state over two quantum registers.
– The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 =

b2 = 1.

In summary, the difference between quantum lightning and quantum money
is therefore that in quantum lightning, unclonability holds, even for adversarially
constructed states.

3.3 Elliptic Curves

Consider a large prime p. We represent isomorphism classes of elliptic curves
over Fp by pairs (j, b) ∈ Fp × Z, where b ∈ {0, 1} except in the following cases:

– If j ≡ 1728 mod p and p ≡ 1 (mod 4), then 0 ≤ b ≤ 3.
– If j ≡ 0 mod p and p ≡ 1 (mod 3), then 0 ≤ b ≤ 5.

Fix α ∈ Fp a quadratic nonresidue. When j �= 0, 1728, define the elliptic curve
associated to the pair (j, b) to be given by

y2 = x3 +
3jα2b

j − 1728
x +

2jα3b

j − 1728
.

If j = 1728, define (j, b) to be given by

y2 = x3 + αbx.

If j = 0 and p ≡ 1 (mod 3), we require that α be both a quadratic and a cubic
nonresidue. Then (j, b) is given by

y2 = x3 + αb.

There is a bijection between pairs (j, b) and Fp-isomorphism classes of elliptic
curves; see [Sil09, Cor. X.5.4.1]. In the literature, j is known as the j-invariant
of the elliptic curve, and b enumerates twists of elliptic curves with given j.

Definition 3.5. Let Up denote the uniform probability distribution on isomor-
phism classes of elliptic curves over Fp, given by uniformly randomly choosing
a pair (j, b) as above.

There are many statistical results in the literature which refer to a different
distribution Dp, defined as follows.

Definition 3.6. We say (a, b) ∈ F
2
p is a Weierstrass pair if 4a3 + 27b2 �= 0. We

associate to the Weierstrass pair the elliptic curve given by y2 = x3+ax+b. The
Weierstrass distribution Dp is the probability distribution on isomorphism classes
of elliptic curves over Fp induced by the uniform distribution on Weierstrass
pairs (a, b).
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Note that there are exactly p pairs (a, b) for which 4a3+27b2 = 0: when −3a is a
quadratic residue, there are 2 values for b, plus the pair (0, 0) yields 2· p−1

2 +1 = p.
Thus there are p2 − p pairs (a, b) yielding elliptic curves.

Looking ahead, in Lemma 4.11 we show that the distance between Up and
Dp is at most 2/p, and hence is negligible.

Definition 3.7. For an elliptic curve E/Fp, let t = t(E) = p + 1 − #E(Fp) be
the trace of Frobenius on E, let t

2
√

p be the normalized trace, let ΔFr := ΔFr(E)

be 4p − t2 the Frobenius discriminant, let K = K(E) = Q(
√−ΔFr), and let

D = D(E) be the discriminant of K. Let Esf,3p be the set of elliptic curves E
over Fp such that ΔFr(E) ≥ 3p and ΔFr(E) is square-free.

The trace t is an Fp-isogeny invariant of E, and hence an invariant of the iso-
morphism class of E. Thus the derived invariants ΔFr and D depend only on the
isomorphism class of E, not on the equation used to define E. Thus by abuse
of notation, we write E ∈ Esf,3p to mean that the isomorphism class of E is in
Esf,3p.

Definition 3.8. Given an imaginary quadratic field K with discriminant D, let
OK be the ring of integers of K, and define the Bach generating set BK to be
the set of ideal classes of unramified primes l of OK with N(l) < 6(log D)2.

Bach [Bac90, p. 376] showed that, assuming GRH, BK generates Cl(OK).

4 Isogeny Building Blocks

In this section we build the isogeny-related tools we will need for our quantum
money construction. Some are already known, some have been folklore (but,
to our knowledge, never formalized), and some are new. For example, the prior
isogeny literature uses the heuristic that the size of the class group is proportional
to

√
D, where D is the discriminant of End(E) ⊂ K; in fact, the heuristic

is sometimes made by precise by noting that the constant of proportionality
is given by a certain infinite series depending on D. While this suffices if the
elliptic curve E is fixed, it is not strong enough to give bounds across large sets
of elliptic curves where D varies. In Sect. 4.1 we give, to our knowledge, the
first precise lower bounds for the number of elliptic curves mod p having large
class groups—see Corollary 4.14. As a consequence for our protocol, we will
obtain that minting is efficient, and that forgery attacks which rely on solving
the isogeny problem are hard.

Ideal classes are typically encoded as products of prime ideals with small
norm. After giving an algorithm for enumerating these prime ideals, we give
a new analysis for the effectiveness of these encodings in Sect. 4.4 and Sect.
4.5, specifically by proving an eigenvalue bound for the adjacency matrix of the
associated Cayley graph in Proposition 4.22. Our quantum money verification
algorithm utilizes the class group action on elliptic curves, and the eigenvalue
bound guarantees that verification is efficient.
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The results in this section often use number theory that is new to the cryp-
tography literature; while this enables proofs of new results, there is no easy way
to present this material to readers who do not have the requisite background in
mathematics. However, we have done our best to make the mathematics read-
able to cryptographers and have also summarized the necessary number theory.
We explain the relevant number theory in more details in the full version of this
paper.

4.1 Probability of Large Isogeny Class

The goal of this section is to prove Corollary 4.14, which shows that for large
p, a random elliptic curve belongs to an exponentially large isogeny class with
probability ≥ 14%.

Our estimate will be accomplished in three steps:

– In Theorem 4.1, we compute the probability that a random elliptic curve E
has Frobenius discriminant in a specified range.

– We determine how likely a random number of the form 4p−t2 is square-free in
Theorem 4.9, and combine this with Theorem 4.1 to obtain, in Corollary 4.12,
that a random elliptic curve is in Esf,3p with probability ≥ 14%.

– In Corollary 4.14, we use a result of Tatuzawa to show that for elliptic curves

in Esf,3p, the size of the associated class group is at least 0.089
√

p

log p
.

In the next result, we use the Weierstrass representation of elliptic curves, so
a pair (a, b) ∈ Fp × Fp corresponds to the elliptic curve y2 = x3 + ax + b.

Theorem 4.1. Let I ⊂ [−1, 1] be an interval, and let μST (I) = 2
π

∫
I√

1 − X2 dX. Let NI(p) be the number of elliptic curves over Fp, encoded as
pairs (a, b) with 4a3 + 27b2 �= 0, with normalized Frobenius trace t

2
√

p ∈ I. Then

∣
∣
∣
∣
NI(p)

p2
− μST (I)

∣
∣
∣
∣ ≤ 8

3p1/4
+

4
3p1/2

+ +
4
p2

+
4

p9/4
+

4 log p

p5/2
.

The measure μST is known as the Sato-Tate measure.

Proof. Birch [Bir68] showed that

lim
p→∞

∣
∣
∣
∣
NI(p)

p2
− μST (I)

∣
∣
∣
∣ = 0.

An asymptotic error bound for |NI(p)/p2 − μST (I)| is given in [MP19b]; we
follow that proof to compute the explicit constant. Our notation follows that
of [MP19b], with one exception. Suppose that I = [x0, x1] ⊂ [−1, 1], and define
J = [α, β] ⊂ [0, 1] where cos πα = x1, cos πβ = x0. Let μ′

ST (J) = 2
∫

J
sin2 πθ dθ.

Murty-Prabhu [MP19b] work with the measure μ′
ST in place of μST , but the

substitution x = cos πθ translates between the two.
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Let m ≥ 2 be an integer. For the elliptic curve y2 = x3 + ax + b, define θa,b

as the angle in [0, π] for which cos θa,b is its normalized trace. If m = 2k is even,
we have

∑

a,b∈Fp

4a3+27b2 
=0

sin 2kθa,b

sin θa,b
= 0 (1)

as follows. Fix c ∈ Fp a quadratic nonresidue. Consider the elliptic curve corre-
sponding to (a, b), having Frobenius trace t. Then the elliptic curve correspond-
ing to (c2a, c3b) has Frobenius trace −t. Thus θca,cb = π − θa,b, and so the set
of θ values appearing in the sum are symmetric with respect to θ �→ π − θ. But
sin(π − θ) = sin θ, while sin 2k(π − θ) = − sin 2kθ. Therefore,

∑
sin 2kθ
sin θ = 0.

Now suppose m is odd. By [DS05, Thm. 3.5.2], the dimension of the space
of weight m + 1 cusp forms is ≤ �m+1

12 �. Let Tm+1(p) be the p-Hecke operator
acting on the latter space of cusp forms. By [Del74, Thm. 8.2], the eigenvalues
of Tm+1(p) all have magnitude pm/2. Therefore the trace of Tm+1(p) is bounded
by 1

12 (m+1)pm/2. Substituting into the Eichler-Selberg trace formula appearing
on [MP19b, p. 31] and combining with [MP19b, eq. (3.3)], we obtain

∣
∣
∣
∣
∣
∣
∣
∣

∑

a,b∈Fp

4a3+27b2 
=0

sin mθa,b

sin θa,b

∣
∣
∣
∣
∣
∣
∣
∣

≤ 1
6
(m + 1)p3/2 + 2p− m−3

2 . (2)

Let M ≥ 2 be an integer. Let Ŝ±
J ′,M denote the Fourier transform of the Mth

Beurling-Selberg polynomial for the interval J ′ = 1
2J = [α

2 , β
2 ]; see [MP19b,

§2.3].2 From [MP19b, p. 30, (c)], we have

Ŝ±
J ′,M (0) =

β − α

2
± 1

M + 1
(3)

and, for 0 < m ≤ M ,
∣
∣
∣
∣Ŝ

±
J ′,M (m) + Ŝ±

J ′,M (−m) − sin πmβ − sin πmα

πm

∣
∣
∣
∣ ≤ 2

M + 1
. (4)

Since 2
M+1 ≤ 2

m and | sinπmβ−sinπmα
πm | ≤ 2

m ,

|Ŝ±
J ′,M (m) + Ŝ±

J ′,M (−m)| ≤ 4
m

. (5)

An elementary calculation shows that

μST (I) = (β − α) − sin 2πβ − sin 2πα

2π
. (6)

2 Note that there are several mistakes in the calculation of [MP19b], including an
incorrect choice for J ′. See the preprint version [MP19a] for a more accurate treat-
ment.
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From (3), (4) with m = 2, and (6),
∣
∣
∣2Ŝ±

J ′,M (0) − Ŝ±
J ′,M (2) − Ŝ±

J ′,M (−2) − μST (I)
∣
∣
∣ ≤ 4

M + 1
. (7)

From (1), ∣
∣
∣
∣
∣
∣
(Ŝ±

J ′,M (1) + Ŝ±
J ′,M (−1))

∑

4a3+27b2 
=0

sin 2θa,b

sin θa,b

∣
∣
∣
∣
∣
∣
= 0. (8)

From (2) and (5),
∣
∣
∣
∣
∣
∣
(Ŝ±

J ′,M (2) + Ŝ±
J ′,M (−2))

∑

4a3+27b2 
=0

sin 3θa,b

sin θa,b

∣
∣
∣
∣
∣
∣
≤ 4

3
p3/2 + 4 (9)

and
∣
∣
∣
∣
∣
∣
(Ŝ±

J ′,M (m) + Ŝ±
J ′,M (−m))

∑

4a3+27b2 
=0

[
sin(m + 1)θa,b

sin θa,b
− sin(m − 1)θa,b

sin θa,b

]
∣
∣
∣
∣
∣
∣

≤ 4(m + 2)
3m

p3/2 +
16
m

p− m−2
2 . (10)

From (10), we obtain

∑

3≤m≤M

∣∣∣∣∣∣
(Ŝ±

J′,M (m) + Ŝ±
J′,M (−m))

∑

4a3+27b2 �=0

[
sin(m + 1)θa,b

sin θa,b
− sin(m − 1)θa,b

sin θa,b

]∣∣∣∣∣∣

≤ 8

3
Mp3/2 + 16p− 1

2 log M. (11)

Let

B± =p2(2̂S±
J′,M (0)− ̂S±

J′,M (2)− ̂S±
J′,M (−2))

+

2
∑

m=1

⎛

⎝(̂S±
J′,M (m) + ̂S±

J′,M (−m))
∑

4a3+27b2 �=0

sin(m + 1)θa,b

sin θa,b

⎞

⎠

+
M
∑

m=3

⎛

⎝(̂S±
J′,M (m) + ̂S±

J′,M (−m))
∑

4a3+27b2 �=0

sin(m + 1)θa,b

sin θa,b
− sin(m − 1)θa,b

sin θa,b

⎞

⎠ .

From [MP19a, eq. (6)], we have

B− ≤ NI(p) ≤ B+. (12)

Letting M = �p1/4�, and putting together (7)–(12) we obtain the claim. ��
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Next, we determine what portion of elliptic curves with |t| <
√

p satisfy that
4p− t2 is square-free. The following argument through Corollary 4.10 is modeled
after the proof of [FI10, Theorem 2.1].

Lemma 4.2 ([You91]). Let γ ≈ 0.577 be Euler’s constant. Then for x ≥ 2 an
integer,

x∑

n=1

1
n

≤ log x + γ +
1
2x

For n ∈ N, let τ(n) be the number of positive divisors of n.

Lemma 4.3. For x ≥ 2,
∑

d≤x

τ(d) ≤ x log x + (2γ − 1)x + 4
√

x.

Proof. Let {x} denote x − �x�. According to the proof of [BKZ18, Theorem 2],
we have ∑

d≤x

τ(d) = 2
∑

d≤√
x

⌊x

d

⌋
− �√x�2.

Continuing with that proof, but keeping track of the error terms, we get
∑

d≤x

τ(d) ≤ 2
∑

d≤√
x

(x

d
+ 1

)
− (

√
x − {√x})2

≤ 2x
∑

d≤√
x

1
d

+
√

x − x + 2
√

x.

Simplifying and applying Lemma 4.2, the claim follows. ��
Let ρ(n) be the number of solutions to t2 ≡ 4p (mod n) with t ∈ Z/nZ.

Lemma 4.4. For d ≥ 1, ρ(d2) ≤ 4τ(d).

Proof. Suppose the prime factorization of d is qe1
1 · · · qes

s . By Sun Tzu’s Theorem
(Chinese Remainder Theorem), ρ(d2) =

∏
i ρ(q2ei

i ). Observe that 4p is not a
square mod p2, and hence ρ(d2) = 0 if qi = p for any i. Assume qi �= p for all i.
If qi is odd, then ρ(q2ei

i ) = ρ(qi) by Hensel’s Lemma, and ρ(qi) ≤ 2. If qi = 2,
then ρ(q2ei

i ) ≤ 8. Finally, observe that 2s ≤ τ(d), with equality precisely when
ei = 1 for all i. The claim follows. ��
Lemma 4.5. If 2 ≤ Y < p, then

Y∑

d=1

ρ(d2) ≤ 4Y log Y + (8γ − 4)Y + 16
√

Y .

Proof. Combine Lemmas 4.3 and 4.4. ��
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Let A(n) be the number of solutions to t2 ≡ 4p (mod n) with 1 ≤ t ≤ √
p.

Lemma 4.6. For d ≥ 1, |A(d2) − ρ(d2)
√

p

d2 | ≤ ρ(d2).

Proof. Let M = �
√

p

d2 �. In each of the intervals [1, d2], [d2 + 1, 2d2], . . . , [(M −
1)d2 + 1,Md2], there are exactly ρ(d2) contributions to A(d2). In the interval
[Md2 + 1,

√
p

d2 ], there are at most ρ(d2) additional contributions. ��

Lemma 4.7. If 2 ≤ Y <
√

p, then
∑

Y <d<
√

p

A(d2) ≤ 36p

Y 2
.

Proof. For positive integers κ, Y , let

N(κ) = #{(t, d) ∈ Z
2 : d > Y, 1 ≤ t ≤ √

p, 4p − t2 = κd2}
= #{(t, d) ∈ Z

2 : d > Y, 1 ≤ t ≤ √
p,Nm

Q(
√−κ)/Q(t + d

√−κ) = 4p}.

If (t, d) is a pair counted by N(κ), then we have κ = 4p−t2

d2 , and hence N(κ) = 0
for κ > 4p

Y 2 . We have
∑

Y <d<
√

p

A(d2) ≤
∑

1≤κ≤ 4p

Y 2

N(κ). We claim that N(κ) ≤ 9,

from which the lemma follows. To see this, suppose that (2) and (p) each split as
the product of two principal ideals in Q(

√−κ); say (2) = l1 · l1 and (p) = l2 · l2.
Then (t, d) is counted by N(κ) if and only if t+d

√−κ is a generator for an ideal
of norm 4p, which must lie in the list l21l2, (2)l2, l

2

1l2, l
2

1l2, (2)l2, l21l2. Conjugation
changes the sign of d, and since we only count d > 0, we need only consider half
of the above ideals. The number of generators for each ideal is at most the size
of the units in the ring of integers of Q(

√−κ), which is at most 6 (occurring
when κ = 3). But multiplication by −1 only changes the sign of the pair (t, d),
and so there are at most 3 generators per ideal which contribute to the count of
N(κ). Therefore N(κ) ≤ 9.

Finally, if the splitting behavior of (2), (p) differs from our assumption above,
then N(κ) can only shrink. ��

Let μ(n) denote the Möbius function.

Lemma 4.8. If 2 ≤ Y <
√

p is an integer, then
∣
∣
∣
∣
∣

∑

d>Y

μ(d)
ρ(d2)
d2

∣
∣
∣
∣
∣
≤ 12Y −0.7.

Proof. We have ∣
∣
∣
∣
∣

∑

d>Y

μ(d)
ρ(d2)
d2

∣
∣
∣
∣
∣
≤

∞∑

d=Y +1

4τ(d)
d2

.

The first displayed inequality in the proof of Lemma 5 from [NR83] yields τ(d) ≤
5d0.3. The result follows from the fact that

∞∑

d=Y +1

20
d1.7

≤
∫ ∞

Y

20x−1.7 dx. ��
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Theorem 4.9. Let C =
∏

q prime

(

1 − 2
q2

)

and let p be an odd prime. Let np be

the number of values of t for which 1 ≤ t <
√

p and 4p − t2 is square-free. Then

np ≥ Cp
1
2 − 4

3
p

1
3 log p − (8γ + 32)p

1
3 − 12p

4
15 − 16p

1
6 .

Proof. By inclusion-exclusion, np =
∞∑

d=1

μ(d)A(d2). Let Y = 3
√

p. Using

Lemma 4.6, we have

∞∑

d=1

μ(d)A(d2) =
∑

d≤Y

μ(d)A(d2) +
∑

d>Y

μ(d)A(d2)

≥ √
p

∑

d≤Y

μ(d)
ρ(d2)
d2

−
∑

d≤Y

ρ(d2) −
∑

d>Y

A(d2)

Additionally,

√
p

∑

d≤Y

μ(d)
ρ(d2)
d2

≥ √
p

∞∑

d=1

μ(d)
ρ(d2)
d2

− √
p

∣
∣
∣
∣
∣

∑

d>Y

μ(d)
ρ(d2)
d2

∣
∣
∣
∣
∣
.

Combining Lemmas 4.5, 4.7, and 4.8 with the fact that

∞∑

d=1

μ(d)
ρ(d2)
d2

=
∏

q prime

(

1 − ρ(q2)
q2

)

≥ C,

we obtain the result. ��
Corollary 4.10. If p > 263 is prime, then the probability that 4p− t2 is square-
free, where t is randomly chosen in 1 ≤ t <

√
p, is at least 25%.

Proof. We wish to bound np/
√

p. The Feller-Tornier constant [OEI24, Seq.
A065493] is

1
2

+
1
2

∏

q prime

(

1 − 2
q2

)

> .66,

from which it follows that C > 0.32. Thus by Theorem 4.9, np√
p ≥ 0.32 − ε(p),

where
ε(p) =

4
3
p− 1

6 log p + (8γ + 32)p− 1
6 + 12p− 7

30 + 16p− 1
3 .

Since p > 263, ε(p) ≤ ε(263) < 0.07, the claim follows.

Recall from Definitions 3.5 and 3.6 the probability distributions Up and Dp

on the set of isomorphism classes of elliptic curves over Fp.

Lemma 4.11. For any prime p ≥ 5, the �2 distance between the distributions
Dp and Up is ≤ 2

p .
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Proof. In the distribution Dp, we represent elliptic curves by the p2 − p pairs
(a, b) ∈ Fp × Fp satisfying 4a3 + 27b2 �= 0. As observed in [Bir68, §1], for each
isomorphism class of elliptic curves, there are (p−1)

2 pairs (a, b) giving rise to it,
except for the cases of y2 = x3 + ax and y2 = x3 + b. For y2 = x3 + ax, there
are (p − 1)/4 pairs (a, 0) if p ≡ 1 (mod 4) for each of 4 isomorphism classes
of elliptic curves, and (p − 1)/2 pairs for each of 2 isomorphism class if p ≡ 3
(mod 4). For y2 = x3 + 1, there are (p − 1)/6 pairs if p ≡ 1 (mod 3) yielding 6
isomorphism classes of elliptic curves, and (p − 1)/2 pairs if p ≡ 2 (mod 3) for
2 isomorphism classes of elliptic curves. Then Dp chooses isomorphism classes
with a, b �= 0 with probability 1

2p ; curves with b = 0 with probability between 1
2p

and 1
4p ; and curves with a = 0 with probability between 1

2p and 1
6p . The largest

discrepancy from the uniform distribution Up occurs when p ≡ 1 (mod 12). In
this case, for Dp there are 2p − 2 isomorphism classes of elliptic curves with
a, b �= 0, 4 with b = 0, and 6 with a = 0, while Up is uniform across all 2p + 8
isomorphism classes. A routine calculation now yields the result. ��
Corollary 4.12. Let p > 263 be prime. The probability that an elliptic curve
drawn from the distribution Dp lies in Esf,3p is at least 14%. The same holds if
we draw from the distribution Up.

Proof. We first choose an elliptic curve according to Dp. Note that | t
2
√

p | < 1
2

implies that ΔFr(E) ≥ 3p.
Next, we cannot directly use Corollary 4.10 since the distribution of t values

is not uniform. But since the density function dμST

dX = 2
π

√
1 − X2 is decreasing

as a function of |X| = | t
2
√

p |, the probability that ΔFr(E) is square-free, given
that |t| <

√
p, is lowest when all of the square-free values occur for |t| as large as

possible. (In fact, this will never occur, since even t values result in 4 | ΔFr(E);
but the probability we obtain with this assumption will in any case be a lower
bound for the true probability.) Via Corollary 4.10, we therefore assume that the
elliptic curves with square-free t and 4p−t2 ≥ 3p occur when 0.75

√
p < |t| <

√
p.

Applying Theorem 4.1, we see that at least 14% of all elliptic curves mod p have
trace t in this range.

The analogous results for Up follow from applying Lemma 4.11. ��
Theorem 4.13. Suppose 0 < ε < 1

2 and K is an imaginary quadratic field. Let
D be the absolute value of the discriminant of K, and h the class number of K.
If D > max(e1/ε, e11.2), then h > 0.655ε

π D
1
2−ε except for at most one choice of

K.

Proof. See the remarks immediately following Theorem 2 in [Tat51]. The idea
is that according to the Dirichlet class number formula, h = 1

π

√
D · LD(1),

where LD is the L-function associated to K (this is a power series related to the
Riemann zeta function which encodes number theoretic information about K).
Tatuzawa in [Tat51] provides lower bounds for LD(1). ��
For somewhat better bounds, see [Hof80, Theorem 1].
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Corollary 4.14. Let p > 263 be prime. Given an ordinary elliptic curve E/Fp,
let O be End(E). If an elliptic curve E is drawn from either the distribution Dp

or the distribution Up, then with probability at least 14%, E ∈ Esf,3p and both
the class group of O and the isogeny class of E have size at least 0.089

√
p

log p .

Proof. By Corollary 4.12, there is a probability of at least 14% such that E ∈
Esf,3p. For E ∈ Esf,3p, consider Fr the Frobenius endomorphism and K = Q(Fr).
Since ΔFr(E) is square-free, Z[Fr] = End(E) ∼= OK , and this must hold for any
elliptic curve isogenous to E. Therefore ΔFr(E) = D(E) and the isogeny class
of E is acted upon simply transitively by the class group, and so has the same
size as the class group.

For the size claim, choose ε = 1
ln p in Theorem 4.13. Note that the one pos-

sible exceptional K in that Theorem is subsumed by the round-off error in the
probability calculation of Corollary 4.12. ��

4.2 The SEA Isogeny Algorithm

We recall the complex multiplication theory of elliptic curves. Given an imagi-
nary quadratic number field K and an order O ⊂ K, we say that E has complex
multiplication by O if End(E) ∼= O, or if O is isomorphic to a subring of End(E),
and there is no larger order of K isomorphic to a subring of End(E); this second
case is only necessary for supersingular elliptic curves.

Identify O with (the corresponding subring of) End(E). Given an integral
ideal I of O, define E[I] = {∩ ker(α) : α ∈ I}; it is a subgroup of E of order the
ideal norm N(I). Write ϕI for the canonical isogeny ϕI : E → EI := E/E[I].
Observe that deg(ϕI) = N(I). The isomorphism class of EI depends only on
the ideal class of I. We let M(p) be the complexity of one arithmetic operation
in Fp. Then we have

Theorem 4.15. Let E be an elliptic curve over Fp with complex multiplica-
tion by O, and let l ⊂ O be a prime ideal of norm �, where � is a rational
prime. Then there is a classical algorithm which computes the isogeny ϕl in time
O (�M(p) log � log log � log p).

Proof. See [DKS18, p. 12], specifically “Elkies steps” (Algorithms 3 and 4). See
the full version of this paper for more details. ��
As we’ll see in Sect. 4.3, we will be concerned with the case where � ≤ 6 log2(4p).

4.3 Building the Generating Set of Isogenies

Below we will give an algorithm to list prime ideal classes in BK . We will omit
prime ideals of the form �OK for � a rational prime, since such so-called inert
primes are principal and hence yield the trivial class. (Additionally, the ideal
norm of �OK is �2, so the inert primes will quickly exceed the Bach bound.) The
prime � is inert if and only if −D is a quadratic nonresidue mod �. If � is not
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inert and does not divide D, then � factors as the product of a prime ideal, say
l, and its conjugate.

We now give an algorithm to generate a list of prime ideals li representing
BK .

Algorithm 4.1: Bach Generating Set Algorithm
Input: K an imaginary quadratic field with discriminant D
Output: (li), list of primes in OK

1 Initialize i = 1 and � = 2.
2 Check if � is inert by determining if the Legendre symbol (−D


 ) = −1; if
yes, go to step 5.

3 By enumeration, find the smallest positive x satisfying x2 ≡ −D (mod �).
Let l = (�, x +

√−D) and l′ = li = (�, x − √−D).
4 Check if the class of l has already been generated by determining if l · lj is

a principal ideal for any lj with j < i. If yes, go to the next step.
Otherwise, set li = l. Check if l2 is principal, and if not, then also set
li+1 = l′. Increment i by 1 or 2 accordingly.

5 Increment � to the next larger rational prime. If � > 6(log D)2, then
output the list (li) and terminate.

We remark on accomplishing each of these steps. Step 2 is clear. For step
3, such an x with 1 ≤ x ≤ 


2 is guaranteed to exist, as the Legendre symbol is
+1 and solutions come in additive inverse pairs. For step 4, take the pairwise
products of the generators of l · lj , and let Λ ⊂ C be the lattice generated by
these products (where we view Q(

√−D) ⊂ C using either field embedding).
Then apply Lagrange-Gauss reduction to the lattice; l · lj is principal if and only
if λ1(Λ) = � · �j .

Proposition 4.16. If B̃K is the output of Algorithm 4.1, then the map B̃K →
BK given by l �→ [l] is a bijection. Furthermore, if [l] ∈ BK , then [l]−1 ∈ BK .

Proof. The definition of BK immediately yields that the map is well-defined and
surjective. Let l ∈ B̃K of norm �. If l2 is principal, then [l] is its own inverse.
Otherwise in step 4, we also have l ∈ B̃K and since

l · l = �OK

is principal, we get [l]−1 = [l] ∈ B̃K . This proves the second claim.
For the first claim, it suffices to show that the map is injective. Step 4 of the

algorithm shows that ∀l, l′ ∈ B̃K , l · l′ is not principal. Since B̃K is closed under
inversion, this implies that if li, lj ∈ B̃K with i �= j, then li · l−1

j is not principal;
in other words, [li] · [lj ]−1 �= [(1)], and hence [li] �= [lj ]. ��
Proposition 4.17. Algorithm 4.1 requires O((log D)7) bit operations and uses
O((log D)2 log log D) bits of memory.

Note that log D = O(log p).



Quantum Money from Class Group Actions on Elliptic Curves 53

Proof. Each of the first three steps take O((log D)2). The length of the gen-
erators for the lattice Λ in step 4 is O(D), and hence Lagrange-Gauss take
O((log D)3). There are O((log D)2) pairs to check in one invocation of step 4,
and the algorithm repeats O((log D)2) times, whence the time estimate.

Each prime is recorded as a pair of generators whose coefficients are of size
log � = O(log log D). Since there are O((log D)2) primes, the space complexity
follows. ��

4.4 The Distribution of Class Group Generators

Let G be a finite abelian group. We say that a sequence h1, . . . , ht ∈ G is weakly
Erdös-Rényi if, for every g ∈ G, ∃e1, . . . , et ∈ {0, 1} such that g = he1

1 he2
2 · · · het

t .

Definition 4.18. We define the Bach-Erdös-Rényi game as follows. Given a
parameter λ, an adversary wins if it can find an imaginary quadratic field K
with discriminant D > 2λ such that the classes BK ⊂ Cl(OK) are not weakly
Erdös-Rényi.

Assumption 4.19 For every quantum polynomial time adversary, the proba-
bility of winning the Bach-Erdös-Rényi game is a negligible function of λ.

Why should we believe this assumption? First, consider the following theo-
rem.

Theorem 4.20 ([ER65], Theorem 2). If G is a finite abelian group, δ > 0,
and

t ≥ log(#G) + log log(#G) − 2 log δ + 5,

then a randomly chosen sequence h1, . . . , ht ∈ G is weakly Erdös-Rényi with
probability at least 1 − δ.

Taking G = Cl(OK) and δ = 1
D , the assumption holds as long as BK acts like a

random set of elements from G. In the full version of this paper, we give heuristic
evidence that BK acts “sufficiently randomly.”

4.5 Eigenvalue Bounds

A vertex-transitive graph Γ is one for which for every pair of vertices v, w, there
is an automorphism of the graph γ such that γ(v) = w.

Proposition 4.21 (Lemma 6.1, [Bab91]). Let Γ be a vertex-transitive graph
of degree d and diameter δ. Then the second largest eigenvalue of the adjacency
matrix of Γ is ≤ d − 1

16.5δ2 .

Fix an isogeny class IN ⊂ Esf,3p. Let X be the graph with vertex set IN and
for which E,E′ are adjacent if and only if ∃[l] ∈ BK such that [l] ∗ E = E′.
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Proposition 4.22. Suppose BK is weakly Erdös-Rényi for Cl(OK), and let
r = #BK . Then the second largest eigenvalue μ2 of the adjacency matrix of
X satisfies μ2 ≤ r − 1

16.5r2 .

Proof. Let E1, E2 ∈ IN . Since ΔFr(E1),ΔFr(E2) are square-free, we must have
ΔFr(E1) = D(E1) = ΔFr(E2). Therefore ∃c ∈ Cl(OK) such that c ∗ E = E′.
Since BK is weakly-Erdös-Rényi, ∃[l1], . . . , [lt] ∈ BK such that c =

∏
[li]. The

map E �→ (
∏

[li]) ∗ E yields an automorphism of X which sends E to E′, and
hence X is vertex-transitive.

Observe that X is a regular graph with degree equal to r. If BK is weakly
Erdös-Rényi, then the diameter of X is bounded above by r. The result now
follows from the previous proposition. ��

5 Sampling a Superposition of Elliptic Curves over Fp

Suppose p is a large prime. Recall that we represent elliptic curves over Fp

by a pair (j, b) where j ∈ Fp and b is twisting data. In this subsection, we
show how to sample a uniform superposition over elliptic curves over Fp. To
our knowledge, this is not known for supersingular elliptic curves [MMP22], and
most “natural” ways of generating random elliptic curves run into the index
erasure problem [AMRR11] when used to try to generate a superposition of
elliptic curves.

Algorithm 5.1: Algorithm ECSupGen

Input: p a prime
Output: |E〉 a quantum state
Let S be a register that can store a pair (j, b), where j ∈ Fp and
0 ≤ b ≤ 5.

Generate a uniform superposition |ψ〉 ∈ S over all pairs (j, b), where
– If j �≡ 0, 1728 (mod p), then b = 0 or 1.
– If j ≡ 1728 and p ≡ 1 (mod 4), then 0 ≤ b ≤ 3. If p ≡ 3 (mod 4), then

b = 0 or 1.
– If j ≡ 0 and p ≡ 1 (mod 3), then 0 ≤ b ≤ 5. If p ≡ 2 (mod 3), then b = 0

or 1.

Proposition 5.1. Let |ψ〉 be the output of Algorithm 5.1. Then |ψ〉 is a uni-
form superposition over all isomorphism classes of elliptic curves over Fp. The
algorithm takes time O(log p).

Proof. The first claim is immediate from the discussion in Sect. 3.3. The com-
plexity estimate comes from generating the superposition over all j, which dom-
inates the conditional superposition over b-values. ��
We remark that encoding a superposition using the Weierstrass encoding (a, b)
(corresponding to the elliptic curve y2 = x3 + ax + b) is also possible. However,
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the Weierstrass encoding requires about twice as many qubits. Additionally,
since there are O(p) pairs (a, b) corresponding to the same isomorphism class,
the group action will not be as nicely behaved; for instance, the set of elliptic
curves is the disjoint union of O(p) orbits under the class group action.

6 Verifying a Superposition of Elliptic Curves

In this section, we give an algorithm that verifies that a quantum state is negligi-
bly close to a uniform superposition of elliptic curves over Fp with a given number
of points. Our algorithm is based on the verification algorithm of [LMZ23] (which
is in turn an abstraction of the verification procedure of [FGH+12]); at a high
level, it is the same as that of [LMZ23], although we have made a number of
changes that are specific to our scheme.

6.1 Overview of Verification Algorithm

Let IN denote the set of elliptic curves over Fp with N points, and let |IN 〉 :=
1√
#IN

∑
E∈IN

|E〉. In other words, |IN 〉 is a uniform superposition over all elliptic
curves with N points.

Our goal, similar to [LMZ23], is to compute an approximation of the
projection-valued measure VN = |IN 〉〈IN |. Unlike [LMZ23], for us there is only
a single orbit in IN (because the class group acts transitively on the isogeny
class), so we can simplify our corresponding PVM relative to theirs.

Note that if we started with a uniform superposition |IN 〉, then VN |IN 〉 =
|IN 〉 immediately. If instead we compute VN |ψ〉 for some superposition |ψ〉 that
does not put much weight on |IN 〉, we know that VN is likely to reject. We
emphasize that such a projection does not disturb a “correct” state |IN 〉. We
will show that our algorithm closely mimics the behavior of the PVM VN .

At a rough level, our algorithm works as follows: we first check to make
sure that we are given a state that contains a representation of a (possible)
superposition of elliptic curves with N points. Then, as in [LMZ23], we mimic
taking a random walk (in superposition) over all elliptic curves with N points. If
we ensure that our “steps” in the random walk are invertible (i.e., the mapping
is one-to-one), then we have the following nice property: if we start with |IN 〉,
then taking a step of our walk brings us to |IN 〉, which is where we started. If,
on the other hand, we started with, say, a single elliptic curve E, then taking
a random walk would likely leave us with a different elliptic curve, which is
a totally different state. As in previous work [FGH+12,LMZ23], we build this
intuition into a full verification algorithm.

6.2 Verification Algorithm Definitions

Definition 6.1. The Isogeny Computation σi. Fix E0 ∈ Esf,3p, and let IN be
its isogeny class. Let V = C

IN ; that is, the complex vector space with orthonormal
basis given by |E〉 for E ∈ IN . Let K = End(E0) ⊗Q. Let l1, ..., lr denote prime
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ideals which form a system of representatives for the classes in BK . For each
i ∈ [1, r] we let σi : V → V denote the unitary given by σi|E〉 = |li ∗ E〉.
Note that by giving only p and N := #E0(Fp), IN is determined, while K,BK

can be efficiently computed.
Recall that if [l] ∈ BK , then [l]−1 ∈ BK as well. Therefore the σi come in

pairs which are inverses of each other.

Definition 6.2. The State |1n〉. If n is an integer, define the state |1n〉 :=
1√
n

∑n
i=1|i〉 and if n′ > n, define |1n,n′〉 := 1√

n′−n+1

∑n′

i=n|i〉.

Definition 6.3. For integers n and k, let Pn,k := |1n〉〈1n| ⊗ Ik, where Ik

denotes the identity matrix acting on k qubits.

We view Pn,k as a projection-valued measure with outputs 0 and 1. By Def-
inition 3.1, the probability of obtaining output 1 when we apply the operator
Pn,k to a pure state |ψ〉 is 〈ψ|Pn,k|ψ〉, with the measured state collapsing to

Pn,k|ψ〉√
〈ψ|Pn,k|ψ〉 .

Lemma 6.4. We have the following:

1. Each Pn,k is a positive semi-definite Hermitian matrix.
2. P2

n,k = Pn,k.
3. Pn,k = P†

n,k, where “†” denotes conjugate transpose.

Definition 6.5. Let r = #BK , k = #IN , and W = C
r ⊗ V. Let U : W → W

be the unitary given by

U :=
r∑

i=1

|i〉〈i| ⊗ σi +
2r∑

i=r+1

|i〉〈i| ⊗ Ik.

Equivalently, for 1 ≤ i ≤ r and E ∈ IN ,

U(|i, E〉) = |i, li ∗ E〉 and
U(|i + r, E〉) = |i + r, E〉.

Recall that instead of V, we work in the larger vector space of all pairs (j, b). But
if E /∈ IN (which can be efficiently determined via Schoof’s algorithm), then we
may define σi to act trivially on |E〉. However, valid bank notes lie in V, which
can be checked efficiently. Thus the action of σi on |E〉, E /∈ IN , will not be
relevant.
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6.3 Verification Algorithm

Algorithm 6.1: Algorithm ECSupVer

Input: a prime p, integers N and τ , and a quantum state |ψ〉 stored in a
register S

Output: a bit 0 or 1. If it returns 1, then ECSupVer alters |ψ〉 to a state
|ψ′〉 which it then outputs.

1 Check that |ψ〉 is properly formatted as a superposition over pairs
(j, b) ∈ Fp × {0, . . . , 5} with b following the restrictions of Algorithm 5.1,
and that 4p − (p + 1 − N)2 ≥ 3p and is square-free. If not, output 0.

2 Use Schoof’s algorithm to compute the number of points in the elliptic
curve representation of |ψ〉 in a new register.

3 Measure the value in the new register. If it is not N , output 0 and
terminate. From N , compute K, BK with Algorithm 4.1, and U as in
Definition 6.5. Then discard this register.

4 Let r = #BK . Using a new register, create the state
|ϕ〉 := 12r ⊗ |ψ〉 ∈ W := C

2r ⊗ V.
5 Repeat the following τ times:

1. Apply the unitary U to |ϕ〉.
2. Apply the projection-valued measurement corresponding to P2r,k to the

resulting state. If the measurement fails (i.e., we do not get a state lying
in the set 12r ⊗ V) output 0 and terminate.

Discard the first register and output 1 as well as the resulting state.

We will say that ECSupVer “accepts” if it returns 1 and a state.

6.4 Verification Algorithm Efficiency

We next prove that our verification algorithm is efficient. We do this with the
following lemma.

Lemma 6.6. On input a prime p, integers N and τ , and a quantum state |ψ〉,
the algorithm ECSupVer runs in time

max
(
O

(
log8 p

)
, O

(
τ

(
log3 p

) (
log log2 p

) (
log log log2 p

)))
.

Proof. Note that Schoof’s algorithm used in step 2 takes time O
(
log8 p

)
, which

dominates the running time of the algorithm before the loop in step 4.
Step 4 is dominated by the cost of step (a), which is the application of

the unitary U which performs the isogeny computation. If we let M(p) be the
complexity of one arithmetic operation in Fp, then we know from Theorem 4.15
that there is a classical algorithm which computes a degree � isogeny in time
O (�M(p) log � log log � log p). Since, in our case, � = O

(
log2 p

)
and M (p) =

O
(
log3 p

)
, we know that each iteration of step 4 is upper-bounded by a function

which is O
((

log5 p
) (

log log2 p
) (

log log log2 p
))

. The claim follows. ��
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6.5 Proof of Verification Algorithm

We now argue that our verification algorithm accepts with all but negligible
probability.

Definition 6.7. The Matrix M. Define a unitary operator M : V → V by
M := 1

r

∑r
i=1 σi.

Equivalently, for E ∈ IN , M|E〉 = 1
r

∑r
i=1|li ∗ E〉.

The operator M is analogous to a similar operator in [LMZ23], and we can
borrow from, and make more precise, their analysis and explanation.

Lemma 6.8. The eigenvalues of M are real. The largest eigenvalue of M is 1;
the corresponding eigenvector is precisely |IN 〉 =

∑
E∈IN

|E〉. Furthermore, if
BK is weakly Erdös-Rényi, then the second largest eigenvalue λ2 for M is at
most 1 − 1

16.5r3 .

See the full version of our paper for the proof, which relies on Proposi-
tion 4.22.

Let |ψ1〉, ..., |ψk〉 be an eigenbasis for M, where we let |ψ1〉 = |IN 〉. For each
j, let aj denote the eigenvalue corresponding to the eigenstate |ψj〉; if BK is
weakly Erdös-Rényi, then aj ≤ 1 − 1

16.5r3 for j ≥ 2.
The next result shows that Algorithm ECSupVer approximately implements

the PVM Vj . Theorem 6.9 implies that “proper” money states (where α1 = 1)
are always accepted, and “bad” money states (where α1 is negligible) are not
accepted with noticeable probability. Moreover, if we start with a “good enough”
money state, we will still have one post-verification.

Theorem 6.9. Let p be a prime. Let N be a positive integer for which D :=
4p − (p + 1 − N)2 is square-free and larger than 3p. Let K = Q(

√−D), BK

the Bach generating set for K, and suppose BK is weakly Erdös-Rényi. Let
r = #BK , and suppose τ = 33r3λ.

1. If |ψ〉 =
∑k

j=1 αj |ψj〉 ∈ V is an arbitrary state, then the probability that
ECSupVer accepts on input |ψ〉 is at least |α1|2 and at most |α1|2 + 2−λ.

2. If ECSupVer accepts on some input state |ψ〉 =
∑k

j=1 αj |ψj〉, and |ψ′〉 =
∑k

j=1 α′
j |ψj〉 is the corresponding output of ECSupVer, then |α′

1| ≥ |α1|√
|α2

1|+2−λ
.

Please see the full v ersion of the paper for the proof of this theorem.

7 The Protocol

Our elliptic curve-related security parameter is a large prime p. We can derive
this from the “true” security parameter λ, where λ ≈ log p. In general, the choice
of p will be derived from security of elliptic curve isogeny-related problems.
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Minting. The minting algorithm Gen
(
1λ

)
takes as input parameter p (deter-

mined implicitly by the security parameter λ) and proceeds as follows.

Algorithm 7.1: Minting Algorithm Mint

Input: A prime p ∈ Z

Output: |ψ〉, σ ∈ Z

1 Let S be a quantum register that is capable of holding a representation of
an elliptic curve. In S, construct a superposition

∑|E〉 over all elliptic
curves over Fp using the Algorithm 5.1.

2 Use Schoof’s algorithm to compute the number of points in |E〉 in
superposition, and store the result in a new register, yielding the state∑|E〉|#E(Fp)〉

3 In superposition, compute ΔFr(E), then set a third register to be 1 if
ΔFr(E) is square-free and ΔFr(E) > 3p, and 0 otherwise. Measure this
last register; if the result is 0, start over at step 1.

4 Measure the 2nd register (containing |#E (Fp)〉), and output the resulting
state, which we refer to as |ψ〉 and the measured value σ. The state |ψ〉
is the bank note and σ is the serial number.

Observe that the state is a superposition over elliptic curves in a specific
isogeny class. Note that Gen

(
1λ

)
outputs tuples of the form (|ψ〉, σ) as desired.

Verification. The verification algorithm Ver (|ψ〉, σ) does the following. Recall
that |ψ〉 is (supposed to be) a superposition of elliptic curves, and σ is supposed
to be the number of points in each of the elliptic curves in superposition.

Algorithm 7.2: Verification Algorithm V er

Input: |ψ〉, σ ∈ Z

Output: {0,⊥} or {1, |ψ′〉}
1 Run ECSupVer (|ψ〉, σ) and receive an output tuple (|ψ′〉 ∈ S, b ∈ {0, 1}).
2 if b = 0 then return 0 and ⊥ and discard |ψ′〉
3 else return 1 and |ψ′〉

We have deferred a considerable amount of complexity to the actual descrip-
tion of ECSupVer here which is located in Sect. 6.

7.1 Correctness of the Scheme

We next argue that our construction is correct and efficient. We note that this
follows almost immediately from the analysis of our ECSupGen and ECSupVer
algorithms, but we will present formal arguments here regardless. We start by
arguing that, with all but negligible probability, our Gen and Ver algorithms are
efficient.

Proposition 7.1. Let p > 263. For some parameter λ, the minting algorithm
Gen on inputs p and λ runs in time O

(
3λ log8 p

)
with probability 1 − 2−λ.
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Proof. Schoof’s algorithm for point counting takes time O
(
log8 p

)
, and this dom-

inates asymptotically the cost of minting. From Corollary 4.12, we know that
the probability of failure in step 3 is at most 86%. Thus, the probability that
the algorithm has not terminated after 3λ iterations of step 3 is less than 2−λ.

��
We make one further (but important) note on the minting algorithm.

Proposition 7.2. Let p > 263 be prime. Let O be End(E) for all E output by
the minting algorithm. Then the class group of O and the isogeny class of E both
have size at least 0.089

√
p

log p .

Proof. This follows immediately from Corollary 4.14. ��
Proposition 7.3. The verification algorithm Ver on inputs |ψ〉 and σ runs in
time

max
(
O

(
log8 p

)
, O

(
τ

(
log5 p

) (
log log2 p

) (
log log log2 p

)))
.

where we set τ = 33r3λ for r = #BK .

Proof. This follows immediately from Lemma 6.6. ��
Proposition 7.4. Our quantum money/lightning protocol (Gen,Ver) is correct.
More precisely, as required by Definition 3.2, for any polynomially sized (in λ)
integer i, we have

Verk
(
Gen

(
1λ

))
= (|ψ′〉, 1) (13)

with probability at least 1 − i2−λ+1 for all k ≤ i for some state |ψ′〉.
Proof. This follows from our earlier results evaluating ECSupGen and ECSupVer.
More precisely, from Lemma 4.11, we know that, for any prime p ≥ 5, the
algorithm ECSupGen outputs a state |ψ〉 that has distance ≤ 2

p from the uniform
superposition of all elliptic curves over Fp. Therefore, if we write |ψ〉 in terms of

an eigenbasis, the weight α1 of the eigenstate |ψ1〉 must be at least α1 ≥
√

1 − 2
p .

From Theorem 6.9 we know that Ver (|ψ〉, j) accepts on an input with prob-
ability at least |α1|2. Thus, Ver accepts on Gen

(
1λ

)
with probability at least

1 − 2
p .

Also from Theorem 6.9, we know that the output state of ECSupVer (and
thus Ver) on some input |ψ〉 can be written in eigenbasis form where the state

|ψ1〉 has weight at least
√

|α1|2
|α1|2+2−λ . Note that, for 2−λ

|α1|2 ≥ 2, we have

√
|α1|2

|α1|2 + 2−λ
≥

√

1 − 2−λ

|α1|2 (14)

Therefore, in the output state |ψ′′〉 = Ver
(
Gen

(
1λ

))
, we have that |ψ′′〉

contains the eigenstate |ψ′′
1 〉 with weight α′′

1 ≥
√

1 − 2−λ

1− 2
p

. Note that this is

exceptionally close to 1.
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In particular, as long as |α1|2 ≥ 1
2 for any |ψ〉 that is input to ECSupVer, we

know that the output will be at most a distance of 2−λ+1 from |ψ1〉. Through a
simple inductive argument, we can see that this will always be the case. There-
fore ECSupVer and, correspondingly, Ver will accept on an input from Gen with
probability at least 1 − 2−λ+1 in each verification. The final result follows from
a simple union bound. ��
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Abstract. In this work we first examine the hardness of solving vari-
ous search problems by hybrid quantum-classical strategies, namely, by
algorithms that have both quantum and classical capabilities. We then
construct a hybrid quantum-classical search algorithm and analyze its
success probability.

Regarding the former, for search problems that are allowed to have
multiple solutions and in which the input is sampled according to arbi-
trary distributions, we establish their hybrid quantum-classical query
complexities—i.e., given a fixed number of classical and quantum queries,
determine what is the probability of solving the search task. At a tech-
nical level, our results generalize the framework for hybrid quantum-
classical search algorithms recently proposed by Rosmanis [Ros22].
Namely, for an arbitrary distribution D on Boolean functions, the prob-
ability that an algorithm equipped with τc classical queries and τq quan-
tum queries succeeds in finding a preimage of 1 for a function sampled
from D is at most νD · (2√τc +2τq +1)2, where νD captures the average
(over D) fraction of preimages of 1.

Regarding our second contribution, we design a hybrid algorithm
which first spends all of its classical queries and in the second stage
runs a “modified Grover” in which the initial state depends on the tar-
get distribution D. We then show how to analyze its success probability
for arbitrary target distributions and, importantly, its optimality for the
uniform and the Bernoulli distribution cases.

As applications of our hardness results, we first revisit and gener-
alize the formal security treatment of the Bitcoin protocol called the
Bitcoin backbone [Eurocrypt 2015], to a setting where the adversary has
both quantum and classical capabilities, presenting a new hybrid honest
majority condition necessary for the protocol to properly operate. Sec-
ondly, we re-examine the generic security of hash functions [PKC 2016]
against quantum-classical hybrid adversaries.

The full version of the paper can be found at [CGS23].
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1 Introduction

The query model is an elegant abstraction and is widely adopted in cryptography.
A notable example is the random oracle (RO) model [BR93], where a hash
function f is modeled as a random black-box function, and all parties including
the adversary can evaluate it only by issuing a query x and receiving f(x) in
response. Numerous cryptosystems have been designed and analyzed in the RO
model—e.g., [BR94,BR96,Sho01,FOPS04,FO13].

The advent of quantum computing brings about a new query model, where
superposition queries to the hash function f in the form of

∑
x,y αx,y |x〉 |y〉 �→∑

x,y αx,y |x〉 |y ⊕ f(x)〉 are permitted, which equips quantum adversaries with
new capabilities. Indeed, some classically secure digital signature and public-
key encryption schemes are broken in the quantum random oracle (QRO)
model, where a quantum adversary is able to make such superposition queries
to f [YZ21]. As such, a significant amount of effort has been devoted to
address such quantum-query adversaries (cf. [BDF+11,ES15,Unr15,HHK17,
AHU19,DFMS19,CMS19,ES20,DFMS22]), often resulting in considerable effi-
ciency overhead, such as more complex constructions or larger key sizes, in order
to maintain security.

However alarming this threat is, it does not come for free, as it requires
running a large-scale quantum computer coherently for an extended amount of
time, while in the near-to-intermediate term the available quantum devices are
likely to be computationally restricted as well as expensive [Pre18]. This reality
inspires a hybrid query model, where the computational entity (the adversary)
is granted a quota of both classical and quantum queries, resulting in a model
which subsumes the classical and quantum query models as special cases. Thus,
establishing a trade-off between classical and quantum queries allows giving a
more accurate estimation of security and hence optimized parameter choices for
cryptosystems depending on what resources are likely to be available to near-
term quantum adversaries.

Recently, Rosmanis studied the basic unstructured search problem in the
hybrid query model [Ros22], where given oracle function f : X → {0, 1}, one
wants to find a “marked” input, i.e., x with f(x) = 1. This search problem
and many variants, such as multiple or randomly chosen marked inputs, are
well understood when all queries are quantum [Gro96,BBBV97,Zal99,DH09,
Zha19], and where Grover’s quantum algorithm gives a quadratic speedup over
classical algorithms, which is also proven to be optimal [BBBV97]. To reiterate,
Rosmanis’s work proves the hardness of searching in the domain of a function
with a unique marked input x∗ in the hybrid query model. Specifically, any
quantum algorithm with τc classical queries and τq quantum queries succeeds in
finding x∗ with probability at most 1

|X| · (2√τc +2τq +1)2. This hardness bound
is also shown in [HLS22], by a new recording technique tailored to the hybrid
query model.
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1.1 Our Contributions and Technical Overview

Bounding the Hardness of Hybrid Search
In this work, we consider an arbitrary distribution D on the function family
F = {f : X → {0, 1}}, and prove a precise upper bound on the probability of
finding a preimage x with f(x) = 1 when f ← D, for any algorithm A spending
τc classical and τq quantum queries. Specifically, we show that:

Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 ,

where νD
def= supϕ:‖ϕ‖≤1

(

Ef←D

∥
∥
∥
(∑

x:f(x)=1 |x〉 〈x|
)

ϕ
∥
∥
∥
2
)

captures the average

fraction of preimages of 1 and is solely determined by the distribution D.
Our generalized bound then allows us to derive hardness bounds for specific

relevant distributions. “All” we need to do is to analyze νD, and this usually can
be done by simple combinatorial arguments. For example, let D be the uniform
distribution over functions with exactly one marked input. Then we can observe
that νD = Prf←D[f(x) = 1] = 1/|X| for an arbitrary x, which reclaims the
result by Rosmanis [Ros22]. The hardness of searching given a function with
w > 1 marked items can be similarly derived.

We further demonstrate our result on another distribution Dη, where each
input is marked according to a Bernoulli trial. Namely, for every x ∈ X, we set
f(x) = 1 with probability η independently. By determining νD in this case, we
derive the hardness of search when the function is drawn from Dη. This search
problem under Dη, which we call Bernoulli Search, is particularly useful in sev-
eral cryptographic applications. Firstly, we can prove generic security bounds
for hash function properties, such as preimage-resistance, second-preimage resis-
tance and their multi-target extensions, against hybrid quantum-classical adver-
saries. This follows by first adapting the reductions in [HRS16], where the hash
properties are connected to the Bernoulli Search problem in the fully quantum
query setting, and then plugging in our hybrid hardness bound of Bernoulli
Search. In another application, Bernoulli Search was shown to dictate the secu-
rity of proofs of work (PoWs) and security properties of Bitcoin-like blockchains
in the RO model (with fully quantum queries) [CGK+23]. This allows us to
identify a new honest-majority condition under which the security of the PoW-
based Bitcoin blockchain holds against hybrid adversaries equipped with both
classical and quantum queries.

At a technical level, the proof of our hardness bound follows the over-
all strategy of [Ros22]. As in the standard optimality proof of Grover’s algo-
rithm [BBBV97], one would consider running an adversary’s algorithm with
respect to the input function f ← D or a constant-0 function. Then one argues
that each query diverges the states in these two cases, which is called a progress
measure, by a small amount. On the other hand, in order to find a marked input
in f , the final states need to differ significantly. Therefore, sufficiently many
queries are necessary for the cumulative progress to grow adequately.
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Now, when classical queries are mixed up with quantum queries, the quan-
tum states would collapse after each classical query, and it becomes unclear
how to measure the progress. To address this, Rosmanis considers instead an
intermediate oracle named pseudo-classical. Namely, consider a quantum query
with the output register initialized to |0〉: ∑

x αx |x〉 |0〉 �→ ∑
x αx |x〉 |f(x)〉. We

can then view a classical query as the result of measuring the input register that
collapses to x and receiving f(x), whereas a pseudo-classical oracle measures the
output register, resulting in one of two possible outcomes:

∑
x:f(x)=0 αx |x〉 |0〉

(denoted as the 0-outcome branch) or
∑

x:f(x)=1 αx |x〉 |1〉 (denoted as the 1-
outcome branch). With this change, one instead tracks the progress between: (i)
the 0-outcome branch in case of f ← D, and (ii) the state in case of the constant-
0 function (which always stays in the 0-outcome branch). The algorithm fails if
its state stays in the 0-outcome branch and is close to the state in the constant-0
case. A key ingredient in our proof is to deliberately separate the evolution of
various objects on an individual function and which characteristics of the dis-
tribution D influence the evolution and in what way. This enables us to obtain
a clean and concise lower bound for the generalized hybrid search problem.

Hybrid Search Algorithms: Design and Analysis. In the second part of
our work we focus on constructing a hybrid search algorithm for an arbitrary
distribution D and show that in several interesting cases (e.g., Bernoulli) the
algorithm is optimal. Inspired by our hardness analysis, our algorithm proceeds
in a two-stage fashion:

– The first stage is purely classical. We query the τc inputs that are the most
likely to be assigned the value 1 under D. More precisely, for any x in the
input domain, let the function ω(x) =

∑
f D(f) · f(x), which can be viewed

as the (unnormalized) probability that f(x) = 1 with f drawn from D. Let
S be the set of inputs whose ω(x) values are the τc-highest (ties are broken
arbitrarily). Then the algorithm queries all the points x ∈ S. If none of them
give a solution, we move on to the second stage.

– The second stage is fully quantum. We run a modified Grover algorithm A
which is tailored to the prior knowledge on the distribution D. Instead of
starting from an equal superposition of all points in the search space as in
the standard Grover search algorithm, we construct an initial state in which
the amplitude of each point is proportional to ω(x). Then, for each of the
τq quantum queries, two reflection operators are applied to rotate the initial
state towards a target state encoding the solutions. We give a comprehensive
analysis and derive a precise lower bound for the success probability of A
on the distribution D, which amounts to τ2

q ·
∑

x ω2(x)
∑

x ω(x) . In other words, for

the algorithm in the second stage, we define an induced distribution D̃ by
restricting and (re-normalizing) D to functions f satisfying f(x) = 0 for all
x ∈ S. We then invoke A on D̃ in a modular way.

Note that the hybrid algorithm needs to compute the values ω(x) from the
description of the target distribution D, and during the quantum procedure, the
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algorithm will implement a unitary dependent on the ω(x) values, hence the
algorithm does not need to be time efficient.

We can show that the success probability of the hybrid algorithm is at least
the average of the success probabilities of the classical stage and of the quantum
stage. In some special cases, such as the Bernoulli distribution, both the classical
probability (i.e., at least one success in τc Bernoulli trials) and the weights w(x)
(hence the quantum success probability) are easy to derive. We can show that the
hybrid algorithm gives matching lower bounds to the hardness bounds proven
in the first part of our work.

Discussion and Directions for Future Work. We believe that the hybrid
query model is both of theoretical and practical importance. Since near-term
quantum computers are limited and expensive, it is to the interest of a party
to supplement it with massive classical computational power. This also reflects
the fact that those parties who have early access to quantum computers (e.g.,
large tech companies and government agencies) largely coincide with those who
are capable of employing classical clusters and supercomputers. Next, we discuss
some future directions.

One immediate question is to study other problems in the hybrid query
model. The work of [HLS22] proves the hardness of the collision problem by their
generalized recording technique in the hybrid query model. It would be useful
to further develop techniques and establish more query complexity results.

Our applications to hash functions and Bitcoin-like blockchains can be seen as
analyzing cryptographic constructions in the QRO model against hybrid adver-
saries. Many block ciphers rely on a different model, known as the ideal cipher
model. As a simple example, the Even-Mansour cipher encrypts a message m by
Ek : m �→ σ(k⊕m)⊕k, where σ is a random permutation given as an oracle and
k is the secret key. As it turns out, this classically secure cipher is completely
broken when quantum queries are allowed to both Ek and σ [KM10]. Since the
secret key k is managed by honest users, it is debatable whether superposi-
tion access to Ek is realistic, and there has been progress in re-establishing the
cipher’s security under a partially quantum adversary with quantum access to
σ but classical access to Ek [JST21,ABKM22]. The hybrid query model we con-
sider in this work suggests further relaxing the queries to σ to be a hybrid of
classical and quantum ones, and it would be valuable to re-examine the security
of such schemes in the ideal cipher model.

Querying an oracle also occurs more broadly in many other cryptographic sce-
narios. Security definitions often give some algorithm as an oracle to the adver-
sary, such as an encryption oracle in the chosen-plaintext-attack (CPA) game,
and a signing oracle in formalizing the unforgeability of digital signatures. There
has been a considerable effort of settling appropriate definitions and construc-
tions (e.g., quantum-accessible pseudorandom functions, encryption and signa-
tures) when quantum adversaries are granted superposition queries to these ora-
cles (cf. [BZ13,Zha15,AMRS20,Zha21,CEV23]). Extending such efforts to the
hybrid-adversary landscape would offer fine-grained security assessments of post-
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quantum cryptosystems. Finally, in the context of complexity theory, the study
of hybrid algorithms is further motivated by related models focusing on the inter-
play between classical computation and near-future quantum devices [CCHL22],
and between circuit depth and quantum queries [SZ19,CM20,CCL23].

Organization of the Paper. The rest of the paper is organized as follows.
The generalized search problem we are considering, which we call Distributional
Search, is stated in Sect. 2, together with its hybrid quantum-classical hardness;
two case studies: Multi-Uniform Search and Bernoulli Search; as well as our pro-
posed hybrid search algorithm. Detailed proofs and analyses of our main results
above are presented in Sect. 3—hardness in Sect. 3.1 and the quantum algorithm
analysis in Sect. 3.2, respectively. Due to space constraints, the applications of
Bernoulli Search, as well as some of the proofs are presented in the full version
of the paper [CGS23].

2 Problem Definition(s) and Main Results

2.1 The Distributional Search Problem

The underlying problem we consider is the search for a preimage of 1 of an
arbitrarily distributed black-box boolean function.

Distributional Search Problem (Dist-Search)
Let D be an arbitrary distribution supported on the function family

F = {f : X → {0, 1}}.
Given: Black-box access to a function f drawn from distribution D.
Goal: Find x such that f(x) = 1 if there exists such an x.

It is not surprising that the problem’s hardness is crucially influenced by the
number of solutions on average under D; however, what is interesting about our
study is that we can show a clean quantitative relation.

Let f : X → {0, 1} be an arbitrary function. We define the projector on the
space spanned by the preimages of 1 as: πf

def=
∑

x:f(x)=1 |x〉〈x| .
Denote by π⊥

f
def= 1 − πf , and let D be a distribution on F . We define the

value that captures the average fraction of preimages of 1 as:

Definition 1 (νD). The average fraction of solutions in F is defined as:

νD
def= sup

ϕ:‖ϕ‖≤1

(
Ef←D ‖πfϕ‖2

)
, (1)

where ‖ϕ‖ denotes the Euclidean norm of the quantum state ϕ.

Characterization of νD. To better understand the νD value, we now derive
an alternative characterization. For simplicity, assume without loss of generality
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that the domain of our target functions is X = [m] def= {1, ...,m}, for some
positive integer m. We will write down the truth table to represent each f :
[m] → {0, 1} as a bitstring x ∈ {0, 1}m and denote by xi the i-th bit of x.

In this way, D becomes a distribution on {0, 1}m, and we write dx
def= D(x) as

the probability of sampling x from the distribution D. Then, from Definition 1,
we can rewrite νD as:

νD = sup
ϕ

(
Ex←D‖πxϕ‖2

)
, where πx

def=
∑

i:xi=1

|i〉 〈i| .

Let ϕ :=
∑m

i=1 αi |i〉, with ‖α‖ ≤ 1. We have:

νD = sup
α:‖α‖≤1

Ex←D

∑

i:xi=1

α2
i

= sup
α:‖α‖≤1

m∑

i=1

α2
i ·

∑

x∈{0,1}m

dx · xi

= sup
α:‖α‖≤1

m∑

i=1

α2
i · ωi ,

where, for each i ∈ [m], we define ωi
def=

∑
x∈{0,1}m dx · xi. In other words, ωi

captures the likelihood that xi is assigned value 1 under D. Then it becomes clear
that the supremum is achieved by a vector α having 0 entries except taking 1 on
i∗ where ωi∗ is maximized: supα:‖α‖≤1

∑m
i=1 α2

i ·ωi ≤ supα:‖α‖≤1

∑m
i=1 α2

i ·ωi∗ =
ωi∗ supα:‖α‖≤1 α2

i ≤ ωi∗ . Therefore,

νD = ωi∗ = max
i∈[m]

ωi . (2)

We also note that for any i ∈ [m], ωi/ω, where ω
def=

∑
i ωi, can be viewed as

the probability1 that xi = 1, when x is sampled according to D.

2.2 Hardness of Dist-Search

Next, we turn to establishing the following bound for the success probability of
solving Dist-Search, which constitutes one of our main results:

Theorem 1 (Hardness of Dist-Search – fixed query order). For any algo-
rithm A making up to τc classical queries and τq quantum queries (with a fixed
order of the queries independent of f), A solves the Dist-Search problem with
probability:

SuccA,D = Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 .

1 We remark that normalization is required as ω might not be 1; for example, in the
case of the Bernoulli distribution, ω = mη. Hence, normalization is needed so as to
view wi/w as a probability distribution.
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The proof can be found in Sect. 3.1. By relying on the result by Don et
al. [DFH22], the above hardness result can be directly extended to any general
hybrid algorithm in which the order of the classical and quantum queries can
be adaptive (and can depend on the underlying oracle), at the cost of only a
constant factor; i.e. increasing the number of classical and quantum queries by
a factor of 2:

Theorem 2 (Hardness of Dist-Search). For any algorithm A making τc

classical queries and τq quantum queries, A solves the Dist-Search problem with
probability:

SuccA,D := Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√2τc + 4τq + 1)2 .

As this bound for general adversaries is directly derived from the hardness
of hybrid algorithms with a fixed query order, in the sequel we will only focus
on proving Theorem 1.

2.3 Case Studies

In this section, we will apply our hardness result to two common function dis-
tributions. As a common ingredient, it will be helpful to consider the following
indicator random variable:

1f
x

def=

{
1 , if f(x) = 1 ;
0 , if f(x) = 0 ,

for all f ∈ F and x ∈ X. Then, for a distribution D:

Ef←D(1f
x) = Pr

f←D
[f(x) = 1] .

2.3.1 Multi-uniform Search The first interesting case is a general Grover-
type search. We consider a distribution Dw which is uniform over functions that
map exactly w inputs to 1. In other words, drawing f ← Dw is equivalent to
sampling a subset S ⊆ X with |S| = w uniformly at random and set f(x) = 1 if
and only if x ∈ S. We consider the resulting multi-uniform search problem:

Multi-Uniform Search
Given: f ← Dw, which maps a uniform size-w subset to 1.
Goal: Find x such that f(x) = 1.

Theorem 3. For any adversary A making τc classical queries and τq quantum
queries,

SuccA,Dw
≤ w

M
· (2√2τc + 4τq + 1)2 ,

where M = |X| is the domain size.
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Proof. We just need to show that νD = supϕ:‖ϕ‖≤1 Ef←Dw
(‖πfϕ‖2) ≤ w

M in this
case. Consider an arbitrary unit vector ϕ =

∑
x αx |x〉 with

∑
x |αx|2 = 1.

Ef←Dw
(‖πfϕ‖2) = Ef←Dw

⎛

⎝

∣
∣
∣
∣
∣

∑

x

αx1
f
x |x〉

∣
∣
∣
∣
∣

2
⎞

⎠

=
∑

x

|αx|2 · Ef←Dw
(1f

x)

=
∑

x

|αx|2 · Pr
f←Dw

[f(x) = 1] =
w

M
.

Alternatively, using the characterization of νD (Eq. 2), we can derive this
result, by first noticing that for the multi-uniform distribution we have:

dx =

{
1

(M
w)

, if hw(x) = w;

0 , otherwise.
(3)

Then, by relying on the characterization of νD, we can directly conclude that:

νD = max
i∈[M ]

ωi = max
i∈[M ]

∑

x∈{0,1}M

dx · xi

=
1

(
M
w

) ·
∑

x:hw(x)=w

xi

=
1

(
M
w

) ·
(

M − 1
w − 1

)

=
w

M
.

(4)


�
Next, we note two special scenarios. When w = 1, our result reproduces Ros-
manis’s result [Ros22], and when τc = 0, it reproduces the fully quantum query
complexity of Grover search with multiple marked items (cf. [BBBV97,Zal99]).

2.3.2 Bernoulli Search The second interesting case we consider is what we
call a Bernoulli distribution Dη on F , as specified below:

Bernoulli Search
Given: f ← Dη drawn via the following sampling procedure.

For each x ∈ X, independently set:

f(x) =
{
1, with probability η;
0, otherwise. .

Goal: Find x such that f(x) = 1.
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Theorem 4. For any adversary A making up to τc classical queries and τq

quantum queries,
SuccA,Dη

≤ η · (2√2τc + 4τq + 1)2 .

Proof. Consider an arbitrary unit vector ϕ =
∑

x αx |x〉 with
∑

x |αx|2 = 1.
Again, we just need to show that Ef←Dη

(‖πfϕ‖2) ≤ η. Similarly as before,

Ef←Dη
(‖πfϕ‖2) =

∑

x

|αx|2 · Pr
f←Dη

[f(x) = 1] = η .

Alternatively, using the characterization of νD (Eq. 2), we can derive this
result directly by noting that every position is marked independently with prob-
ability η. Hence νD = maxi wi = η. 
�

Note that when τc = 0, this bound reproduces the complexity of Bernoulli
Search using fully quantum queries (cf. [HRS16,ARU14]).

2.4 Designing Hybrid Search Algorithms

In the remaining of this section we propose a hybrid algorithm for the Dist-Search
problem, analyze its success probability and show that in several relevant cases,
the algorithm is optimal, hence leading to tight query complexity in the hybrid
search model.

As a first step, we next describe a quantum search algorithm that, by adapt-
ing Grover’s algorithm, takes into account a given distribution D.

2.4.1 Quantum Search Algorithm on D A main distinction from standard
Grover is that the amplitudes in our initial state are proportional to the weights
ωi (capturing the likelihood that xi is a solution under D), rather than a uniform
superposition.

Quantum Search Algorithm A for an Arbitrary Distribution D
Given: x ∈ {0, 1}m drawn from D.
Goal: Find i ∈ [m] such that xi = 1 making τq quantum queries to x.
Initialization: A constructs a unitary UD such that

|φ0〉 def= UD |0〉 = 1√
ω

∑

i

√
ωi |i〉 .

Modified Grover iteration: Repeatedly apply G := R0Rx, where

R0
def= −(1 − 2 |φ0〉 〈φ0|) ,

Rx
def=

∑

i

(−1)xi |i〉 〈i| .

Output : Measure the state in the computational basis and output the
measurement outcome i.
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Note that once UD is available, R0 = −UD(1 − |0〉 〈0|)U†
D can be readily

implemented, and one application of Rx can be realized by one query to x.
For any fixed x, we let εx denote the probability that A finds a solution (i.e.,

some i with xi = 1); thus, ε = Ex←D(εx) represents the success probability of A
averaged over the distribution D. Next, we turn to lower-bounding this success
probability; the proof is deferred to Sect. 3.2.

Theorem 5. Algorithm A with τq quantum queries finds an i with xi = 1 with
probability:

ε ≥ τ2
q ·

∑
i ω2

i

ω
.

2.4.2 A Hybrid Algorithm for Distributional Search
We are now ready to describe a hybrid algorithm equipped with τc classical
queries and τq quantum queries. The basic idea is as follows: Given distribution
D, let S = {i1, ..., iτc

} ⊆ [m] be the set of indices with the τc largest values of
ωi. (In case of ties, we break them arbitrarily.) Our algorithm will first issue the
τc classical queries on S to verify whether there exists an index i ∈ S such that
xi = 1; if not, it will run the quantum search algorithm A from before, but on
the reduced search space [m] − S.

In order to run the quantum algorithm in a modular fashion, we define an
induced distribution D̃ on {0, 1}m−τc . We will denote by xT the substring of x
of size |T | obtained from concatenating the bits xi for all i ∈ T , and by S̄ the
set defined as S̄

def= [m] − S.
To define D̃, we first define d

def=
∑

x∈{0,1}m:xS=0 dx. Then for each x ∈
{0, 1}m−τc , we define d̃x

def= dx

d , where x is the unique string with xS = 0 and
xS̄ = x. Note that there is a fixed mapping that matches every index i ∈ S̄ with
an index i ∈ [m] such that xi = 1 if and only if xi = 1. We assume that this
mapping is performed implicitly whenever necessary. Therefore, for every i ∈ S̄,
we can write the weight under D̃ as:

ω̃i =
∑

x∈{0,1}m−τc

d̃x · xi =

∑
x:xS=0 dx · xi
∑

x:xS=0 dx
.
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Our hybrid algorithm can now be described as follows.

Hybrid Search Algorithm Ah for an Arbitrary Distribution D
Given: x ∈ {0, 1}m drawn from D.
Goal: Find i ∈ [m] such that xi = 1 by making τc classical queries τq

and quantum queries to x.
Classical Stage. A makes classical queries for each i ∈ S, where S,

defined as above, consists of the indices with the τc largest ωi. If some
xi = 1, output i and exit; otherwise, continue.

Quantum Stage. Run the quantum algorithm A on induced distribution
D̃.

The algorithm’s success probability can be split into analyzing the classi-
cal and quantum stages separately, as we show below. First, we define the fol-
lowing binary random variables:

– Zx
c = 1 if and only if xi = 1 for some i ∈ S (i.e., the classical stage succeeds);

– Zx
q = 1 if and only if the quantum stage is successful.

Lemma 1. For any distribution D, the probability that hybrid algorithm Ah

succeeds is:

Pr[Hybrid Success] ≥ 1
2

(
Ex←D(Zx

c ) + Ex←D(Zx
q )

)
.

Proof. The algorithm fails if both classical and quantum stages fail. Hence the
failure probability is

Ex←D((1 − Zx
c )(1 − Zx

q )) = 1 − Ex←D(Zx
c ) − Ex←D(Zx

q ) + Ex←D(Zx
c · Zx

q ) .

Then, by using the Cauchy-Schwartz inequality (Lemma 5), and as Zx
c and Zx

q

are both binary variables, we have

Ex←D(Zx
c · Zx

q ) ≤
√
Ex←D(Zx

c ) · Ex←D(Zx
q )

≤ 1
2
(Ex←D(Zx

c ) + Ex←D(Zx
q )) .

We can then conclude that the algorithm’s success probability is

Pr[Hybrid Success] = 1 − Ex←D((1 − Zx
c )(1 − Zx

q )) ≥ 1

2

(
Ex←D(Zx

c ) + Ex←D(Zx
q )

)
.


�
Applying Theorem 5, we can immediately give an expression for the quantum
success probability. Namely:

Ex←D(Zx
q ) ≥ τ2

q

∑
i∈S̄ ω̃2

i∑
i∈S̄ ω̃i

.
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2.4.3 Success Probability for Special Distributions
We now show that for some special cases the hybrid algorithm above is optimal.
We note that in these cases, the quantum stage actually coincides with the stan-
dard Grover search, and thus the quantum success probability can be obtained
by the known result. Our analysis can be viewed as an alternative approach
following the general result expressed by Theorem 5.

When x ← D assigns a single i with xi = 1 uniformly at random, D̃ can be
seen as the same distribution but restricting to x with xS = 0. For all i ∈ S̄,
we have ω̃i = 1

m−c , and hence:

Ex←D(Zx
q ) = τ2

q ·
∑

i∈S̄ ω̃2
i∑

i∈S̄ ω̃i
= τ2

q

1
m − c

.

It is also easy to observe that Ex←D(Zx
c ) = τc

1
m .

Lemma 2 (Uniform Search Hybrid Success and Optimality). When D is
the uniform distribution, our hybrid algorithm equipped with τc classical queries
and τq quantum queries succeeds with probability at least

Pr[Hybrid Success] ≥ 1
2

(
τc

m
+

τ2
q

m − τc

)

.

Except for constant factors and lower-order terms, this matches the hardness
bound shown in Theorem 3, and hence the hybrid query complexity for the uni-
form distribution is Θ

(
1
m (τc + τ2

q )
)
.

Similarly, we can obtain a tight bound for the Bernoulli distribution, by the
observation that D̃ in this case is just another Bernoulli distribution with the
same η. Hence,

Ex←D(Zx
q ) = η · τ2

q .

On the other hand,

Ex←D(Zx
c ) = 1 − (1 − η)τc ≥ 1

2
η · τc .

Lemma 3 (Bernoulli Search Hybrid Success and Optimality). When
D is the Bernoulli distribution, our hybrid algorithm equipped with τc classical
queries and τq quantum queries succeeds with probability at least

Pr[Hybrid Success] ≥ 1
2
η

(
1
2
τc + τ2

q

)

.

Again, except for constant factors and lower-order terms, this matches the hard-
ness bound shown in Theorem 4, and hence the hybrid query complexity for the
Bernoulli distribution is Θ(η(τc + τ2

q )).
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3 Proofs of the Main Results

3.1 Hardness of Dist-Search

In this section we will pove the main hardness result stated in Theorem 1. For
convenience, we restate it again here:

Theorem 1 (Hardness of Dist-Search – fixed query order). For any algo-
rithm A making up to τc classical queries and τq quantum queries (with a fixed
order of the queries independent of f), it holds that A solves the Dist-Search
problem with probability:

SuccA,D := Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 .

3.1.1 Preliminaries and Overview
We first formally describe an oracle function for the case of quantum and pseudo-
classical queries.

Definition 2 (Query Operators). We define the following operators, describ-
ing the actions of quantum and pseudo-classical oracles for a hybrid algorithm
given a boolean function f .

– A pseudo-classical oracle is described by

Pf,b
def=

∑

x:f(x)=b

|x〉 〈x| ⊗ 1 ⊗ |b〉

– A quantum oracle is described by

Qf
def=

∑

x,b

|x〉〈x| ⊗ 1 ⊗ |b ⊕ f(x)〉 〈b|

We denote Πf
def= πf ⊗1 (1 operates on the output and ancilla registers) and

Π⊥
f

def= 1 − Πf (1 operates on the entire system). Then on a pseudo-classical
query, the two operators Pf,0 = Π⊥

f ⊗ |0〉 and Pf,1 = Πf ⊗ |1〉 correspond
to the two possible measurement outcomes. It is more convenient to answer
quantum queries by the corresponding phase oracle:

Qf
def= 1 − 2Πf .

This can be seen as setting the output register of the standard oracle in |−〉, and
as a result, a quantum query flips the signs of the 1-preimages.

When running a hybrid query algorithm with f , we will keep track of
the (sub-normalized) pure state ψ

(t)
f , which denotes the state of the algo-

rithm on input f after t queries in the situation where every pseudo-classical
query measures 0 (we will call this the 0-branch of Af ). Namely, consider
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an arbitrary algorithm with at most τ queries (τq quantum and τc pseudo-
classical) specified by a sequence of unitary operators2 (U (0), U (1), . . . , U (τ)). Let
Tc = {t : t-th query is pseudo-classical} and Tq = {t : t-th query is quantum}.
Then ψ

(t)
f is defined recursively by

ψ
(t)
f

def=

{
U (t)Pf,0ψ

(t−1)
f , if t ∈ Tc ;

U (t)Qfψ
(t−1)
f if t ∈ Tq .

(5)

From this definition, the projection of ψ
(t)
f under Π⊥

f characterizes the event
that an algorithm fails to find a 1-preimage.

Lemma 4. For any algorithm A, the failure probability of finding a 1-preimage
of f after t queries is

δ
(t)
f = Pr[f(x) �= 1 : x ← Af ] ≥

∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥
2

.

Hence, the failure probability with respect to distribution D satisfies

δ
(t)
D = Ef←Dδ

(t)
f ≥ Ef←D

∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥
2

.

Thus, our goal becomes lower-bounding
∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥. To do this, we consider

running the same algorithm, but with a null function:

f∅ : x �→ 0,∀x ∈ X .

In this case, a quantum query is equivalent to applying identity (denoted Q∅
def=

1), and a pseudo-classical query does not tamper the input state either, but just
appends |0〉. To be precise, we define

P∅,0
def= 1 ⊗ |0〉 ,

and at each step t ≥ 0, the state of the algorithm denoted by φ(t) can be described
as:

φ(t) =

{
U (t)P∅,0φ

(t−1), if t ∈ Tc ;
U (t)φ(t−1) if t ∈ Tq .

Without loss of generality we assume initially ψ
(0)
f = φ(0) = |0〉, and hence

∥
∥
∥Π⊥

f ψ
(0)
f

∥
∥
∥ =

∥
∥
∥Π⊥

f φ(0)
∥
∥
∥ = 1. In order to succeed, algorithm Af needs to move

ψ
(t)
f away from the kernel of Π⊥

f or reduce its norm. This motivates defining the
progress measures below.

2 Dimensions may grow depending on the arrangement of the pseudo-classical queries.
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Table 1. Summary of variables and quantities used in our Dist-Search analysis.

πf

∑
x:f(x)=1 |x〉 〈x|

Πf πf ⊗ 1 (1 on ancilla registers)
δf Pr[f(x) �= 1 : x ← Af ] (Failure probability with fixed f)
δD ED(δf ) (Failure probability with f ← D)

φ(0) = ψ(0) Initial state
φ(t) State after t-th query in Af∅

ψ
(t)
f State on the 0-branch after t-th query in Af

Qf 1 − 2Πf (quantum oracle of f)
Q∅ 1 (quantum oracle of f∅)
Pf,0 Π⊥

f ⊗ |0〉 (pseudo-classical oracle of f)
Pf,1 Πf ⊗ |1〉 (pseudo-classical oracle of f)
P∅,0 1 ⊗ |0〉 (pseudo-classical oracle of f∅)
γ
(t)
f

∥
∥Πfφ(t)

∥
∥2

γ(t)
ED(γ(t)

f )

Definition 3 (Progress Measures). For any function f and t ≥ 0, define

A
(t)
f

def=
∣
∣
∣〈φ(t), ψ

(t)
f 〉

∣
∣
∣
2

, B
(t)
f

def=
∥
∥
∥ψ

(t)
f

∥
∥
∥
2

−
∣
∣
∣〈φ(t), ψ

(t)
f 〉

∣
∣
∣
2

.

Given a distribution D on F , define the expected progress measures by

A
(t)
D

def= Ef←D

(
A

(t)
f

)
, B

(t)
D

def= Ef←D

(
B

(t)
f

)
.

Notice that:
A

(t)
f + B

(t)
f =

∥
∥
∥ψ

(t)
f

∥
∥
∥
2

, A
(0)
f = 1, B

(0)
f = 0 .

We will show that A
(t)
D −B

(t)
D essentially lower bounds the failure probability

δ
(t)
D (Lemma 8). Hence, an algorithm’s objective would be to reduce A

(t)
D and

increase B
(t)
D . However, we can limit how much change can occur after τ queries

(Proposition 1). This is by carefully analyzing the effect of each quantum or
pseudo-classical query (Lemmas 10 and 11). Roughly speaking,

– A quantum query reduces A
(t)
D by at most 4

√

νD · B
(t)
D and increases B

(t)
D by

the same amount (as a quantum query does not affect
∥
∥
∥ψ

(t)
f

∥
∥
∥
2

), and

– A pseudo-classical query increases B
(t)
D by at most νD, while a part z(t) of

B
(t)
D can also be spent to decrease A

(t)
D by

√
νD · z(t) (Table 1).
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3.1.2 Proof of Theorem 1 First off, we state the Cauchy-Schwarz inequality
for random variables and derive a corollary that is useful in several places.

Lemma 5 (Cauchy-Schwarz). For any random variables X, Y , it holds that:
|E(XY )|2 ≤ E(X2) · E(Y 2).

Corollary 1. Let Z be a discrete random variable, and g(Z) and h(Z)
be two non-negative functions. Then it holds that: EZ

(√
g(Z) · h(Z)

)
≤√

EZ(g(Z)) · EZ(h(Z)) .

It will be helpful to consider a two-dimensional plane in our analysis, which
we now define explicitly.

Definition 4 (Useful 2-D Plane). For t ≥ 0, let

φ
(t)
f

def
=

Πfφ(t)

‖Πfφ(t)‖ = Πfφ(t)/

√
γ
(t)
f , φ

(t)⊥
f

def
=

Π⊥
f φ(t)

∥
∥
∥Π⊥

f φ(t)

∥
∥
∥
= Π⊥

f φ(t)/

√
1 − γ

(t)
f

be the normalized vectors resulting of projecting φ(t) on the orthogonal subspaces
spanned by 1 and 0 preimages of f , respectively, and let Φ(t) be the 2-dimensional
plane spanned by {φ

(t)
f , φ

(t)⊥
f }. Then φ(t)⊥ is identified as the normalized state

perpendicular to φ(t) in Φ(t), i.e.,

φ(t)⊥ def= φ
(t)
f

√

1 − γ
(t)
f − φ

(t)⊥
f

√

γ
(t)
f .

It is useful to decompose ψ
(t)
f with respect to Φ(t):

Lemma 6 (Decomposition of ψ
(t)
f wrt Φ(t)). Let a and b be projecting ψ

(t)
f

on the plane Φ(t) and then decomposing it under basis {φ(t), φ(t)⊥}, and let c be
the remaining component of ψ

(t)
f orthogonal to Φ(t), i.e., c ⊥ Φ(t). Then ψ

(t)
f can

be expressed as ψ
(t)
f = a + b + c with

a = φ(t)
√

A
(t)
f , b = ω

√

B
(t)
f − ‖c‖2 · φ(t)⊥ ,

where ω is a complex phase (|ω| = 1) of the vector ψ
(t)
f − 〈ψ(t)

f , φ
(t)
f 〉 · φ(t) − c.

Thus,

Π⊥
f ψ

(t)
f = φ

(t)⊥
f

(√

1 − γ
(t)
f

√

A
(t)
f −

√

γ
(t)
f · ω

√

B
(t)
f − ‖c‖2

)

+ c⊥
f ,

with c⊥
f := Π⊥

f c.

Intuitively, for the next result, the goal is to relate the failure probability
with the progress measures A and B. To do so, we will first relate the failure
probability with the norm of the non-solution component. By decomposing this
norm in terms of the two progress measures A and B and an orthogonal com-
ponent which can be removed, we can determine a lower bound on the failure
probability as a function of the two progress measure after each performed query.
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Lemma 7. For any fixed f and t ≥ 0,

δ
(t)
f ≥ A

(t)
f − γ

(t)
f − 2

√

γ
(t)
f · B

(t)
f .

Proof. For convenience, we omit writing the superscript (t) in this proof. We
first show that

∥
∥
∥π⊥

f ψf

∥
∥
∥ ≥ √

(1 − γf )Af − √
γfBf . By Lemma 6, we have that

Π⊥
f ψf = φ⊥

f

(
√

1 − γf

√
Af − √

γf · ω

√

Bf − ‖c‖2
)

+ c⊥
f ,

with c⊥
f := π⊥

f c. Since c ⊥ Φ, it follows that

〈φ⊥
f , c⊥

f 〉 = 〈φ⊥
f ,Π⊥

f c〉 = 〈Π⊥
f φ⊥

f , c〉 = 〈φ⊥
f , c〉 = 0 .

We can then obtain:

∥
∥Π⊥

f ψf

∥
∥ =

∣
∣
∣
∣
√

1 − γf · √
Af − √

γf · ω

√

Bf − ‖c‖2
∣
∣
∣
∣ +

∥
∥c⊥

f

∥
∥

Hence by choosing c = 0, ω = 1, we get:
∥
∥
∥Π⊥

f ψf

∥
∥
∥ ≥ √

(1 − γf )Af − √
γfBf .

Therefore we can lower bound the failure probability:

δf ≥ ∥
∥π⊥

f ψf

∥
∥2 ≥ (1 − γf )Af − 2

√
(1 − γf )γfBf

≥ Af − γf − 2
√

γfBf (Af , γf ≤ 1)


�
Taking the expectation over D, we can express the failure probability with
respect to the distribution.

Lemma 8. For any distribution D and t ≥ 0,

δ
(t)
D ≥ A(t) − γ(t) − 2

√
γ(t) · B(t) .

Proof.

δ
(t)
D = Ef←D(δ

(t)
f )

≥ ED(A
(t)
f ) − ED(γ

(t)
f ) − 2ED

(√
γ
(t)
f · B

(t)
f

)
(Linearity of expectation)

≥ A(t) − γ(t) − 2

√
ED(γ

(t)
f ) · ED(B

(t)
f ) (Corollary1)

= A(t) − γ(t) − 2
√

γ(t) · B(t)


�
We can also relate γ(t) to the value νD determined by the distribution D:
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Lemma 9. For any t ≥ 0 and any distribution D, we have: γ(t) ≤ νD.

Proof.

γ(t) := Ef←D

(∥
∥
∥Πfφ(t)

∥
∥
∥
2
)

= Ef←D

(∥
∥
∥(πf ⊗ 1)φ(t)

∥
∥
∥
2
)

We write φ(t) =
∑

i αi |ui〉⊗|vi〉 under the Schmidt decomposition, where αi ≥ 0
such that

∑
i α2

i = 1 are the Schmidt coefficients, and {|ui〉} are orthonormal
states on the system of the input register and {|vi〉} are orthonormal states on
the system of output and ancilla registers. Then we can rewrite γ(t) as:

γ(t) := Ef←D

(∥
∥
∥(πf ⊗ 1)φ(t)

∥
∥
∥
2
)

= Ef←D

⎛

⎝

∥
∥
∥
∥
∥
(πf ⊗ 1)

(
∑

i

αi |ui〉 ⊗ |vi〉
)∥

∥
∥
∥
∥

2
⎞

⎠

= Ef←D

⎛

⎝

∥
∥
∥
∥
∥

∑

i

αi(πf |ui〉) ⊗ |vi〉
∥
∥
∥
∥
∥

2
⎞

⎠

= Ef←D

(
∑

i

α2
i ‖(πf |ui〉) ⊗ |vi〉‖2

)

( |vi〉 are orthogonal)

= Ef←D

(
∑

i

α2
i ‖πf |ui〉‖2 · ‖|vi〉‖2

)

( ‖a ⊗ b‖ = ‖a‖ · ‖b‖ )

= Ef←D

(
∑

i

α2
i ‖πf |ui〉‖2

)

=
∑

i

α2
i · Ef←D

(
‖πf |ui〉‖2

)

≤
∑

i

α2
i νD (definition of νD)

= νD

∑

i

α2
i = νD

Proposition 1 (Bounding Progress Measures). After τ = τc + τq queries,

A(τ) ≥ 1 − 4νD · (√τc + τq)2 , B(τ) ≤ νD · (√τc + 2τq)2 .

Proving Proposition 1 is the most involved step technically speaking. We present
the details separately in Sect. 3.1.3 and here we apply it to prove Theorem 1.

Proof of Theorem 1. Assuming the bounds above on the two progress measures,
we obtain that:

δ(τ) ≥ 1 − 4γ(τ) · (√τc + τq)2 − γ(τ) − 2γ(t) · (√τc + 2τq) (Proposition 1)

= 1 − γ(τ) · (4(√τc + τq) + 2
√

τc + 4τq + 1)

≥ 1 − γ(τ) · (2(√τc + τq) + 1)2 (τc ≥ 0)

≥ 1 − νD · (2√τc + 2τq + 1)2 (γ(τ) ≤ νD Lemma 9)
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Therefore,
SuccA,D ≤ 1 − δ(τ) ≤ νD · (2√τc + 2τq + 1)2 .


�

3.1.3 Bounding the Progress Measures (Proposition 1)
We repeat the proposition statement for convenience here:
Proposition 1 (Bounding the Progress Measures). After τ = τc + τq

queries,

A(τ) ≥ 1 − 4νD · (√τc + τq)2 , B(τ) ≤ νD · (√τc + 2τq)2 .

Firstly, we will consider a fixed function f , and bound how much each query
can possibly reduce A

(t)
f and increase B

(t)
f .

Lemma 10 (Progress Measures for a Fixed Function). For every t the
progress measures after the t+1-th query satisfy the following recurrent relations:

– If the t+1-th query is pseudo-classical, then there exists a sequence
(
z
(t)
f

)

t≥0
,

satisfying 0 ≤ zt
f ≤ B

(t)
f , such that:

A
(t+1)
f ≥ A

(t)
f − 2γ(t)

f − 2 ·
√

z
(t)
f ·

√

γ
(t)
f

B
(t+1)
f ≤ B

(t)
f + γ

(t)
f − z

(t)
f

(6)

– If the t + 1-th query is quantum, then:

A
(t+1)
f ≥ A

(t)
f − 4γ(t)

f − 4 ·
√

B
(t)
f ·

√

γ
(t)
f

B
(t+1)
f ≤ B

(t)
f + 4γ(t)

f + 4 ·
√

B
(t)
f ·

√

γ
(t)
f

(7)

Proof. The proof can be found in the full version of the paper [CGS23]. 
�
Lemma 11 (Progress Measures for Dist-Search). For every t, the progress
measures after the t + 1-th query satisfy the following recurrent relations:

– If the t + 1-th query is pseudo-classical, there exists zt ∈ [0, B(t)] such that:

A(t+1) ≥ A(t) − 2νD − 2
√

νD · √
zt

B(t+1) ≤ B(t) − zt + νD

(8)

– If the t + 1-th query is quantum, then we have:

A(t+1) ≥ A(t) − 4 · νD − 4 · √
νD ·

√
B(t)

B(t+1) ≤ B(t) + 4 · νD + 4 · √
νD ·

√
B(t)

(9)
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Proof. Letting zt
def= Ef←D(zt

f ), we can observe that zt ∈ [0, B(t)]. Tak-
ing expectations over D, and applying Corollary 1 (E(

√
g(Z) · h(Z)) ≤√

E(g(Z)) · E(h(Z))) and Lemma 9 (γ(t) ≤ νD), the relations for A(t) and B(t)

follow. 
�
Next, since we intend to lower bound A(τ) and upper bound B(τ), we can

change the inequalities to equalities and analyze instead the new sequences
(at, bt) defined below. It is clear that A(τ) ≥ aτ and B(τ) ≤ bτ .

Definition 5 (Sequences (at)t≥0,(bt)t≥0). We define the following sequences
based on the evolution of the progress measures A and B:

a0
def= A(0) = 1 ; b0

def= B(0) = 0

at+1
def=

{
at − 2 · νD − 2 · √νD · √

zt , if t + 1 ∈ Tc

at − 4 · νD − 4 · √νD · √
bt , if t + 1 ∈ Tq

bt+1
def=

{
bt + νD − zt , if t + 1 ∈ Tc

bt + 4 · νD + 4 · √νD · √
bt , if t + 1 ∈ Tq

where (zt)t≥1 is the sequence defined in the proof of Lemma 11, which satisfies
0 ≤ zt ≤ B(t) for any t.

Lemma 12 (Bounding aτ and bτ).

aτ ≥ 1 − 4νD · (√τc + τq)2 , bτ ≤ νD · (√τc + 2τq)2 . (10)

Proof. The proof consists of four steps.

(1) First we show that bτ ≤ (√
τc + 2τq

)2 · νD.
To get an upper bound for each term of this sequence, we can let zt = 0 and

instead consider the sequence:

dt+1
def=

{
dt + νD , if t + 1 ∈ Tc

dt + 4 · νD + 4 · √
νD · √

dt , if t + 1 ∈ Tq

As a result we have: bt ≤ dt for any t ∈ [τ ].
Our task is to bound the last term dτ in the sequence. Every hybrid strategy

A that uses τc classical queries and τq quantum queries can be expressed by
A = [x1, · · · , xτ ], where if xi = 0 (resp. xi = 1) indicates that the i-th query of
A is classical (resp. quantum), and there are exactly τc values of 0 and τq values
of 1. Therefore, the sequence (dt)t parameterized by the strategy A, denoted as
(dA

t )t, can be re-written as:

dA
t+1

def=

{
dA

t + νD , if xt+1 = 0
dA

t + 4 · νD + 4 · √νD · √
dt , if xt+1 = 1

(11)
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Our task then becomes determining the strategy A∗ which achieves the max-
imum dA∗

τ . We claim that

A∗ def= [0, · · · , 0, 1, · · · , 1] ,

namely the strategy of making all classical queries upfront is optimal. This fol-
lows from a greedy argument.

Consider two arbitrary strategies A = [x1, · · · , xi, xi+1, · · · , xτ ] and B =
[y1, · · · , yi, yi+1, · · · , yτ ] which only differ in the i and i+ 1-th queries. Namely,
xi = 0, xi+1 = 1 and yi = 1, yi+1 = 0 and xj = yj for j ∈ {1, · · · , τ}−{i, i+1}.
We next show that dA

τ > dB
τ . As x1 = y1, · · · xi−1 = yi−1, this implies directly

that dA
i−1 = dB

i−1. Then for the i-th and i + 1 terms of the two sequences we
have:

dA
i = dA

i−1 + νD ; dA
i+1 = dA

i−1 + 5νD + 4
√

νD

√
dA

i−1 + νD

dB
i = dB

i−1 + 4νD + 4
√

νD

√
dB

i−1 ; dB
i+1 = dB

i−1 + 5νD + 4
√

νD

√
dB

i−1

Then, as dA
i−1 = dB

i−1 it is clear that dA
i+1 > dB

i+1. As xj = yj for all i+2 ≤ j ≤ τ ,
this also implies that dA

τ > dB
τ .

Denote the following swap operation on strategies. Given as input a strategy
A = [x1, ..., xi, xi+1, · · · , xτ ] the function swapi outputs a strategy A′:

swapi(A) = A′ where A′ = [x1, ..., xi+1, xi, · · · , xτ ]

Our previous argument implies that for a strategy A such that xi = 0 and
xi+1 = 1, we have: dA

τ > d
swapi(A)
τ . Therefore, we can see that any strategy

A = [x1, ..., xτ ] can be obtained from a sequence of applications of swapi on A∗.

A∗ def= [0, · · · , 0, 1, · · · , 1]
swapi1−−−−→ · · · swapik−−−−→ A for some indices i1, ..., ik .

It hence follows that dA∗
τ ≥ dA

τ , i.e., A∗ is the optimal strategy.
Now, let us compute the last term of the optimal strategy, i.e.: dA∗

τ . We can
rewrite the sequence dt as:

dA∗
t+1 =

⎧
⎨

⎩

dA∗
t + νD , if 0 ≤ t < τc

dA∗
t + 4 · νD + 4 · √

νD ·
√

dA∗
t =

(√
dA∗
t + 2

√
νD

)2

, if τc ≤ t < τ

As dA∗
0 = 0, it is clear that we have: dA∗

τc
= τc · νD. For τc ≤ t ≤ τ , we will prove

by induction that:
dA∗

t = (
√

τc + 2(t − τc))
2 · νD

For the base case t = τc, we already showed that dA∗
τc

= τc ·νD. For the inductive
step, we have that:

dA∗
t+1 =

(√

(
√

τc + 2(t − τc))
2 · νD + 2

√
νD

)2

= (
√

τc + 2(t − τc + 1)) · νD
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which concludes the inductive proof. Hence, by putting things together:

bτ ≤ dτ ≤ dA∗
τ = (

√
τc + 2τq)

2 · νD (12)

(2) Secondly, we show that
∑

t∈Tq

√
bt−1 ≤ √

νD · τq(
√

τc + τq − 1).
As for bτ , to get an upper bound we let zt = 0 and use the sequence (dA

t )t.
From the definition of the sequence (Eq. 11), it is clear that (dA

t )t is a strictly
increasing sequence for any strategy A. This also implies that for any strategy
A we have: ∑

t∈Tq

√
dA

t−1 ≤
∑

τc≤t≤τ

√
dA

t

In other words,
∑

t∈Tq

√
dA

t−1 is maximized when the strategy performs first
all τc classical queries and then the τq quantum queries. Hence, the maximum is
achieved for the strategy described above by the sequence (dA∗

t )t.
Using the previous result in Eq. 12:

∑

τc≤t≤τ

dA∗
t = νD ·

∑

τc≤t≤τ

(
√

τc + 2(t − τc))
2

This gives us:
∑

t∈Tq

√
bt−1 ≤

∑

τc≤t≤τ

√
dA∗

t =
√

νD

∑

τc≤t≤τ

√
τc + 2(t − τc)

≤ √
νD

⎛

⎝τq(
√

τc − 2τc) + 2
∑

τc≤t≤τ

t

⎞

⎠

=
√

νDτq(
√

τc + τq − 1)

(3) Thirdly, we show that
∑

t∈Tc

√
zt−1 ≤ √

νD · (τc + 2
√

τcτq).
By definition of the sequence zt (Definition 5), we know that for t ∈ Tc:

∑

t∈Tc

zt−1 = νD · τc +
∑

t∈Tc

(bt−1 − bt)

Thus it suffices to derive an upper bound on
∑

t∈Tc
(bt−1 − bt). We rewrite bτ as:

bτ = b0 +
τ∑

t=1

(bt − bt−1) =
∑

bt≥bt−1

(bt − bt−1) +
∑

bt<bt−1

(bt − bt−1)

As a result, we have that:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

bt<bt−1

(bt−1 − bt) =
∑

bt≥bt−1

(bt − bt−1) − bτ

In other words we also have:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) +
∑

t∈Tq ∧ bt≥bt−1

(bt − bt−1)
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For t ∈ Tq, from sequence definition (Definition 5), we have that bt > bt−1

and hence:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) + 4τq · νD + 4
√

νD

∑

t∈Tq

√
bt−1

By applying step (2), we get:
∑

t∈Tc ∧ bt<bt−1

(bt−1−bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt −bt−1)+4νDτq +4νDτq(
√

τc+τq −1)

By subtracting the first sum from the right hand side we get:
∑

t∈Tc

zt−1 = νD · τc +
∑

t∈Tc

(bt−1 − bt) < νD · (
τc + 4τ2

q + 4τq
√

τc

)

Finally, by using the Cauchy-Schwarz inequality:
∑

t∈Tc

√
zt−1 ≤

√
νD · (

τc + 4τ2
q + 4τq

√
τc

) · √
τc ≤ √

νD · (τc + 2τq
√

τc)

(4) In the final step, we show that aτ ≥ 1 − 4νD(
√

τc + τq)2.
From the definition of at (Definition 5):

aτ = a0 +
τ∑

t=1

(at − at−1)

= 1 −
∑

t∈Tc

(
2νD + 2

√
νD · √

zt−1

) −
∑

t∈Tq

(
4νD + 4

√
νD ·

√
bt−1

)

= 1 − 2τcνD − 4τqνD − 2
√

νD

∑

t∈Tc

√
zt−1 − 4

√
νD

∑

t∈Tq

√
bt−1

Using the bounds derived in steps (2) and (3), we get :

aτ ≥ 1 − 2τcνD − 4τqνD − 2νD · (τc + 2
√

τcτq) − 4νD · τq(
√

τc + τq − 1)

= 1 − 4νD(
√

τc + τq)2


�

3.2 Quantum Algorithm Analysis

In this section we will prove the success probability of our proposed quantum
algorithm described in Sect. 2.4.1.

Theorem 5. Algorithm A with τq quantum queries finds an i with xi = 1
with probability:

ε ≥ τ2
q ·

∑
i ω2

i

ω
.
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Proof. We adapt the geometric analysis of standard Grover’s algorithm to ana-
lyze A. First for any x, define two states below:

|Ax〉 := 1√
αx

∑

i:xi=1

√
ωi |i〉 , |Bx〉 := 1√

βx

∑

i:xi=0

√
ωi |i〉 ,

with normalization factors

αx :=
∑

i:xi=1

ωi =
∑

i

ωixi, and βx :=
∑

i:xi=0

ωi =
∑

i

ωi(1 − xi) .

We will focus on the two dimensional plane spanned by |Ax〉 and |Bx〉.
Observe that φ0 belongs to this plane, and can be decomposed under the basis
{|Ax〉 , |Bx〉}:

|φ0〉 := sin θ |Ax〉 + cos θ |Bx〉 ,where:

sin2 θ = |〈φ0|Ax〉|2 =
1

ω · αx
(
∑

i

ωixi)2 =
αx

ω
.

We then show that on the two dimensional plane, R0 is a reflection about |φ0〉
and Rx is a reflection |Bx〉. We introduce a state |φ⊥

0 〉 on the plane orthogonal
to |φ0〉, which can be written as

|φ⊥
0 〉 = cos θ |Ax〉 − sin θ |Bx〉 .

Clearly {φ0, φ
⊥
0 } forms another basis on the plane, under which we can express

|Ax〉 and |Bx〉 as below.

|Ax〉 = sin θ |φ0〉 + cos θ |φ⊥
0 〉 , |Bx〉 = cos θ |φ0〉 − sin θ |φ⊥

0 〉 .

It then becomes easy to verify that

R0 |Ax〉 = sin θ |φ0〉 − cos θ |φ⊥
0 〉 , R0 |Bx〉 = cos θ |φ0〉 + sin θ |φ⊥

0 〉 .

Hence R0 reflects about φ0. Similarly, Rx reflects about |Bx〉 as shown below.

Rx |φ0〉 = − sin θ |Ax〉 + cos θ |Bx〉 , R0 |φ⊥
0 〉 = − sin θ |φ0〉 − cos θ |φ⊥

0 〉 .

As a consequence, G = R0Rx composes two reflections and effectively amounts
to an rotation of 2θ. Therefore, after τq iterations, the state becomes

|φτq
〉 := sin((2τq + 1)θ) |Ax〉 + cos((2τq + 1)θ) |Bx〉 .

This is illustrated in Fig. 1.
When measuring |φτq

〉, an outcome i with xi = 1 occurs with probability

εx = sin2((2τq + 1)θ) ≥
(
2τq + 1

2
θ

)2

≥ τ2
q sin2 θ = τ2

q

αx

ω
.

Thus:

ε = Ex←Dεx ≥ τ2
q

Exαx

ω
= τ2

q

∑
i ωi

∑
x dxxi

ω
= τ2

q

∑
i ω2

i

ω
.


�
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Fig. 1. Illustration of the evolution in the two-dimensional plane.

Optimality for Permutation-Invariant Distributions. Consider a special
family of distributions, where ωi are identical for all i ∈ [m] implying that every i
is mapped to 1 with equal probability. We call such a distribution D permutation
invariant, and in this case our quantum algorithm A becomes identical to the
standard Grover’s algorithm. It also follows immediately Eq. (2) that for any
i, ωi = νD. Therefore we obtain that

∑
i ω2

i

ω
=

∑
i ω2

i∑
i ωi

=
mν2

D

mνD
= νD .

As a result, quantum algorithm A succeeds with probability Ω(τ2
q νD) in the

case of permutation-invariant distribution, which is in turn optimal by our hard-
ness bound (Theorem 1). This also reproves the tight quantum query complexity
for multi-uniform search and Bernoulli search. We summarize it below.

Corollary 2. For a permutation-invariant distribution D, the quantum algo-
rithm A coincides with the standard Grover’s algorithm, and it succeeds with
probability Ω(τ2

q · νD) with τq quantum queries which is tight.
In particular, multi-uniform search and Bernoulli search have tight quantum

query complexity Θ(τ2
q

w
m ) and Θ(τ2

q η) for quantum algorithms with τq queries.
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Abstract. A non-interactive ZK (NIZK) proof enables verification of
NP statements without revealing secrets about them. However, an adver-
sary that obtains a NIZK proof may be able to clone this proof and dis-
tribute arbitrarily many copies of it to various entities: this is inevitable
for any proof that takes the form of a classical string. In this paper, we
ask whether it is possible to rely on quantum information in order to
build NIZK proof systems that are impossible to clone.

We define and construct unclonable non-interactive zero-knowledge
arguments (of knowledge) for NP, addressing a question first posed by
Aaronson (CCC 2009). Besides satisfying the zero-knowledge and argu-
ment of knowledge properties, these proofs additionally satisfy unclon-
ability. Very roughly, this ensures that no adversary can split an honestly
generated proof of membership of an instance x in an NP language L
and distribute copies to multiple entities that all obtain accepting proofs
of membership of x in L. Our result has applications to unclonable sig-
natures of knowledge, which we define and construct in this work; these
non-interactively prevent replay attacks.

Keywords: Unclonable · Zero-Knowledge · Quantum Money

1 Introduction

Zero-knowledge (ZK) [27] proofs allow a prover to convince a verifier about the
truth of an (NP) statement, without revealing secrets about it. These are among
the most widely used cryptographic primitives, with a rich history of study.

Enhancing Zero-Knowledge. ZK proofs for NP are typically defined via the sim-
ulation paradigm. A simulator is a polynomial-time algorithm that mimics the
interaction of an adversarial verifier with an honest prover, given only the state-
ment, i.e., x ∈ L, for an instance x of an NP language L. A protocol satisfies
zero-knowledge if it admits a simulator that generates a view for the verifier,
which is indistinguishable from the real view generated by an honest prover.
This captures the intuition that any information obtained by a verifier upon
observing an honestly generated proof, could have been generated by the verifier
“on its own” by running the simulator.
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Despite being widely useful and popular, there are desirable properties of
proof systems that (standard) simulation-based security does not capture. For
example, consider (distributions over) instances x of an NP language L where it
is hard to find an NP witness w corresponding to a given instance x. In an “ideal”
world, given just the description of one such NP statement x ∈ L, it is difficult
for an adversary to find an NP witness w, and therefore to output any proofs of
membership of x ∈ L. And yet, upon obtaining a single proof of membership of
x ∈ L, it may suddenly become feasible for an adversary to make many copies
of this proof, thereby generating several correct proofs of membership of x ∈ L.

Unfortunately, this attack is inevitable for classical non-interactive proofs:
given any proof string, an adversary can always make multiple copies of it. And
yet, there is hope to prevent such an attack quantumly, by relying on the no-
cloning principle.

Indeed, a recent series of exciting works have combined cryptography with
the no-cloning principle to develop quantum money [2,24,34,48,49], quantum
tokens for digital signatures [16], quantum copy-protection [1,3,8,23], unclonable
encryption [6,7,19,28,39], unclonable decryption [26], one-out-of-many unclon-
able security [35], and more. In this work, we combine zero-knowledge and unclon-
ability to address a question first posed by Aaronson [1]:

Can we construct unclonable quantum proofs?
How do these proofs relate to quantum money or copy-protection?

1.1 Our Results

We define and construct unclonable non-interactive zero-knowledge argument of
knowledge (NIZKAoK). We obtain a construction in the common reference string
(CRS) model, as well as one in the quantum(-accessible) random oracle model
(QROM). The CRS model allows a trusted third-party to set up a structured
string that is provided to both the prover and verifier. On the other hand, the
QROM allows both parties quantum access to a truly random function O.

In what follows, we describe our contributions in more detail.

Definitional Contributions. Before discussing how we formalize the concept
of unclonability for NIZKs, it will be helpful to define hard distributions over
NP instance-witness pairs.

Hard Distributions over Instance-Witness Pairs. Informally, an efficiently sam-
plable distribution over instance-witness pairs of a language L is a “hard” distri-
bution if given an instance sampled randomly from this distribution, it is hard
to find a witness. Then, unclonable security requires that no adversary given an
instance x sampled randomly from the distribution, together with an honestly
generated proof, can output two accepting proofs of membership of x ∈ L.

More specifically, a hard distribution (X ,W) over RL satisfies the following:
for any polynomial-sized (quantum) circuit family {Cλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[Cλ(x) ∈ RL(x)] ≤ negl(λ).
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For the sake of simplifying our subsequent discussions and definitions, let us
fix a NP language L with corresponding relation R. Let (X ,W) be some hard
distribution over R.

A Weaker Definition: Unclonable Security. For NIZKs satisfying standard com-
pleteness, soundness and ZK, we define a simple, natural variant of unclonable
security as follows. Informally, a proof system satisfies unclonable security if,
given an honest proof for an instance and witness pair (x,w) sampled from a
hard distribution (X ,W), no adversary can produce two proofs that verify with
respect to x except with negligible probability.

Definition 1. (Unclonable Security of NIZK). A NIZK proof
(Setup,Prove,Verify) satisfies unclonable security if for every language L and
every hard distribution (X ,W) over RL, for every poly-sized quantum circuit
family {Cλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[
Verify(crs, x, π1) = 1

and Verify(crs, x, π2) = 1

∣∣∣∣∣(crs,td)←Setup(1λ)
π←Prove(crs,x,w)
π1,π2←Cλ(x,π)

]
≤ negl(λ).

In the definition above, we aim to capture the intuition that one of the
two proofs output by the adversary can be the honest proof they received, but
the adversary cannot output any other correct proof for the same statement. Of
course, such a proof is easy to generate if the adversary is able to find the witness
w for x, which is exactly why we require hardness of the distribution (X ,W) to
make the definition non-trivial.

We also remark that unclonable security of proofs necessitates that the proof
π keep hidden any witnesses w certifying membership of x in L, as otherwise
an adversary can always clone the proof π by generating (from scratch) another
proof for x given the witness w.

A Stronger Definition: Unclonable Extractability. We can further strengthen the
definition above to require that any adversary generating two (or more) accepting
proofs of membership of x ∈ L given a single proof, must have generated one of
the two proofs “from scratch” and must therefore “know” a valid witness w for x.
This will remove the need to refer to hard languages.

In more detail, we will say that a proof system satisfies unclonable extractabil-
ity if, from any adversary A that on input a single proof of membership of x ∈ L
outputs two proofs for x, then we can extract a valid witness w from A for at least
one of these statements with high probability. Our (still, simplified) definition of
unclonable extractability is as follows.

Definition 2 (Unclonable Extractability). A proof (Setup,Prove,Verify)
satisfies unclonable security there exists a QPT extractor E which is an oracle-
aided circuit such that for every language L with corresponding relation RL and
for every non-uniform polynomial-time quantum adversary A, for every instance-
witness pair (x,w) ∈ RL and λ = λ(|x|), such that there is a polynomial p(·)
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satisfying:

Pr

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ (crs,td)←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Aλ(crs,x,π,z)

]
≥ 1

p(λ)
,

there is also a polynomial q(·) such that

Pr[(x,wA) ∈ RL|wA ← EA(x)] ≥ 1
q(λ)

.

In fact, in the technical sections, we further generalize this definition to con-
sider a setting where the adversary obtains an even larger number (say k − 1)
input proofs on instances x1, . . . , xk−1, and outputs k or more proofs. Then
we require the extraction of an NP witness corresponding to any proofs that
attempt to “clone” honestly generated proofs (i.e. the adversary outputs two or
more proofs w.r.t. the same instance xi ∈ {x1, . . . , xk−1}). All our theorem state-
ments hold w.r.t. this general definition. Finally, we also consider definitions and
constructions in the quantum-accessible random oracle model (QROM); these
are natural generalizations of the definitions above, so we do not discuss them
here.

We also show that the latter definition of unclonable extractability implies
the former, i.e. unclonable security. Informally, this follows because the extractor
guaranteed by the definition of extractability is able to obtain a witness w for x
from any adversary, which contradicts hardness of the distribution (X ,W). We
refer the reader to the full version [33] for a formal proof of this claim.

Moreover, we can generically boost the unclonable-extractor’s success prob-
ability from 1/q(λ) to 1 − negl(λ) with respect to a security parameter λ. For
details, see Sect. 4.2 and Sect. 5.2.

Realizations of Unclonable NIZK, and Relationship with Quantum
Money. We obtain realizations of unclonable NIZKs in both the common refer-
ence string (CRS) and the quantum random oracle (QRO) models, assuming
public-key quantum money mini-scheme and other (post-quantum) standard
assumptions. We summarize these results below.

Theorem 1 (Informal). Assuming public-key quantum money mini-scheme,
public-key encryption, perfectly binding and computationally hiding commit-
ments, and adaptively sound NIZK arguments for NP, there exists an unclonable-
extractable NIZK argument of knowledge scheme in the CRS model.

Adaptively sound NIZK arguments for NP exist assuming the polynomial
quantum hardness of LWE [40].

Theorem 2 (Informal). Assuming public-key quantum money mini-scheme
and honest verifier zero-knowledge arguments of knowledge sigma protocols for
NP, there exists an unclonable-extractable NIZK argument of knowledge scheme
in the QROM.
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Is Quantum Money Necessary for Unclonable NIZKs? Our work builds unclon-
able NIZKs for NP by relying on any (public-key) quantum money scheme (mini-
scheme), in conjuction with other assumptions such as NIZKs for NP. Since
constructions of public-key quantum money mini-scheme are only known based
on post-quantum indistinguishability obfuscation [2,50], it is natural to wonder
whether the reliance on quantum money is inherent. We show that this is indeed
the case, by proving that unclonable NIZKs in fact imply public-key quantum
money mini-scheme.

Theorem 3 (Informal). Unclonable NIZK arguments for NP imply public-key
quantum money mini-scheme.

Applications Unclonable Signatures of Knowledge. A (classical) signature
scheme asserts that a message m has been signed on behalf of a public key pk.
However, in order for this signature to be authenticated, the public key pk must
be proven trustworthy through a certification chain rooted at a trusted public
key PK. However, as [21] argue, this reveals too much information; it should
be sufficient for the recipient to only know that there exists a public key pk
with a chain of trust from PK. To solve this problem, [21] propose signatures of
knowledge which allow a signer to sign on behalf of an instance x of an NP-hard
language without revealing its corresponding witness w. Such signatures provide
an anonymity guarantee by hiding the pk of the sender.

While this is ideal for many applications, anonymity presents the following
downside: a receiver cannot determine whether they were the intended recipient
of this signature. In particular, anonymous signatures are more susceptible to
replay attacks. Replay attacks are a form of passive attack whereby an adver-
sary observes a signature and retains a copy. The adversary then leverages this
signature, either at a later point in time or to a different party, to imperson-
ate the original signer. The privacy and financial consequences of replay attacks
are steep. They can lead to data breach attacks which cost millions of dollars
annually and world-wide [32].

In this work, we construct a signature of knowledge scheme which is the
first non-interactive signature in the CRS model that is naturally secure against
replay attacks. Non-interactive, replay attack secure signatures have seen a lot
of recent interest including a line of works in the bounded quantum storage
model [11] and the quantum random oracle model [10]. Our construction is in
the CRS model and relies on the quantum average-case hardness of NP problems,
plausible cryptographic assumptions, and the axioms of quantum mechanics. We
accomplish this by defining unclonable signatures of knowledge: if an adversary,
given a signature of a message m with respect to an instance x, can produce
two signatures for m which verify with respect to the same instance x, then our
extractor is able to extract a witness for x.

Theorem 4 (Informal). Assuming public-key quantum money mini-scheme,
public-key encryption, perfectly binding and computationally hiding com-
mitments, and simulation-sound NIZK arguments for NP, there exists an
unclonable-extractable signature of knowledge in the CRS model.
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Our construction involves showing that an existing compiler can be aug-
mented using unclonable NIZKs to construct unclonable signatures of knowledge.
The authors of [21] construct signatures of knowledge from CPA secure dense
cryptosystems [44,45] and simulation-sound NIZKs for NP [42,43]. Signatures
of knowledge are signature schemes in the CRS model for which we associate
an instance x in a language L. This signature is simulatable, so there exists a
simulator which can create valid signatures without knowledge of a witness for
x. Additionally, the signature is extractable which means there is an extractor
which is given a trapdoor for the CRS and a signature, and is able to produce
a witness for x. We show that, by switching the simulation-sound NIZKs for
unclonable simulation-extractable NIZKs (and slightly modifying the compiler),
we can construct unclonable signatures of knowledge.

Relationship with Revocation. A recent exciting line of work obtains cer-
tified deletion for time-lock puzzles [46], non-local games [25], information-
theoretic proofs of deletion with partial security [22], encryption schemes [13,18],
device-independent security of one-time pad encryption with certified dele-
tion [36], public-key encryption with certified deletion [30], commitments and
zero-knowledge with certified everlasting hiding [31], and fully-homomorphic
encryption with certified deletion [9,12–14,41]. While certified everlasting dele-
tion of secrets has been explored in the context of interactive zero-knowledge
proofs [31], there are no existing proposals for non-interactive ZK satisfying vari-
ants of certified deletion. Our work provides a pathway to building such proofs.

In this work, we construct a quantum revocable/unclonable anonymous
credentials protocol in which the issuer of credentials uses a pseudonym to
anonymize themselves, receivers of credentials do not require any trusted setup,
and the issuer has the ability to remove access from other users. Our work fol-
lows a line of work on (classical) revocation for anonymous credentials schemes
using NIZK [4,15,20].

In particular, our construction involves noting that NIZK proof systems
that are unclonable can also be viewed as supporting a form of certified dele-
tion/revocation, where in order to delete, an adversary must simply return the
entire proof. In other words, the (quantum) certificate of deletion is the proof
itself, and this certificate can be verified by running the NIZK verification proce-
dure on the proof. The unclonability guarantee implies that an adversary cannot
keep with itself or later have the ability to generate another proof for the same
instance x. In the other direction, in order to offer certifiable deletion, a NIZK
must necessarily be unclonable. To see why, note that if there was an adversary
who could clone the NIZK, we could use this adversary to obtain two copies,
and provably delete one of them. Even though the challenger for the certifiable
deletion game would be convinced that its proof was deleted, we would still be
left with another correct proof.
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1.2 Related Works

This work was built upon the foundations of and novel concepts introduced by
prior literature. We will briefly touch upon some notable such results in this
section.

Unclonable Encryptions. Unclonable encryption [6,7,19,28,39] imagines an
interaction between three parties in which one party receives a quantum cipher-
text and splits this ciphertext in some manner between the two remaining parties.
At some later point, the key of the encryption scheme is revealed, yet both par-
ties should not be able to simultaneouly recover the underlying message. While
our proof systems share the ideology of unclonability, we do not have a similar
game-based definition of security. This is mainly due to proof systems offering
more structure which can take advantage of to express unclonability in terms of
simulators and extractors.

Signature Tokens. Prior work [17] defines and constructs signature tokens
which are signatures which involve a quantum signing token which can only be
used once before it becomes inert. The setting they consider is where a client
wishes to delegate the signing process to a server, but does not wish the server
to be able to sign more than one message. They rely on quantum money [2] and
the no-cloning principle to ensure the signature can only be computed once. For
our unclonable signatures of knowledge result, we focus on the setting where
a client wishes to authenticate themselves to a server and wants to prevent an
adversary from simultaneously, or later, masquerading as them.

One-shot Signatures. The authors of [5] introduce the notion of one-shot sig-
natures which extend the concept of signature tokens to a scenario where the
client and server only exchange classical information to create a one-use quantum
signature token. They show that these signatures can be plausibly constructed
in the CRS model from post-quantum indistinguishability obfuscation. Unless
additional measures for security, which we discussed in our applications section,
are employed, classical communication can be easily copied and replayed at a
later point. In contrast, we prevent an adversary from simultaneously, or later,
authenticating with the client’s identity.

Post-quantum Fiat-Shamir. Our QROM results are heavily inspired by the
recent post-quantum Fiat-Shamir result [37] which proves the post-quantum
security of NIZKs in the compressed quantum(-accessible) random oracle model
(compressed QROM). These classical NIZKs are the result of applying Fiat-
Shamir to post-quantum sigma protocols which are HVZKAoKs. We further
extend, and crucially rely upon, their novel proof techniques to prove extractabil-
ity (for AoK) and programmability (for ZK) to achieve extractability and pro-
grammability for some protocols which output quantum proofs.
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1.3 Concurrent Works

Unclonable Commitments and Proofs. A recent, concurrent work [29]
defines and constructs unclonable commitments and interactive unclonable
proofs. They additionally construct commitments in the QROM that are unclon-
able with respect to any verification procedures, and they show that it is impos-
sible to have (interactive) proofs with the same properties. The authors also
observe a similar relationship between non-interactive unclonable proofs and
public-key quantum money via unclonable commitments. They also briefly men-
tion a connection between unclonable commitments and unclonable credentials.

In contrast, we define unclonable-extractable proofs which we construct in
the non-interactive setting in both the crs model and the QROM. We also show a
relationship between non-interactive unclonable-extractable proofs and quantum
money in both the crs model and the QROM. Our work also formalizes the
relationship between unclonable-extractable proofs and unclonable anonymous
credentials.

2 Technical Overview

In this section, we give a high-level overview of our construction and the tech-
niques underlying our main results.

2.1 Unclonable Extractable NIZKs in the CRS Model

Our construction assumes the existence of public-key encryption, classical bit
commitments where honestly generated commitment strings are perfectly bind-
ing, along with

– Public-key quantum money mini-scheme (which is known assuming post-
quantum iO and injective OWFs [50]). At a high level, public-key quantum
money mini-scheme consists of two algorithms: Gen and Ver. Gen on input a
security parameter, outputs a (possibly mixed-state) quantum banknote ρ$

along with a classical serial number s. Ver is public, takes a quantum money
banknote, and outputs either a classical serial number s, or ⊥ indicating that
its input is an invalid banknote. The security guarantee is that no efficient
adversary given an honest banknote ρ$ can output two notes ρ$,0 and ρ$,1

that both pass the verification and have serial numbers equal to that of ρ$.
– Post-quantum NIZKs for NP, which are known assuming the post-quantum

hardness of LWE. These satisfy (besides completeness) (1) soundness, i.e., no
efficient prover can generate accepting proofs for false NP statements, and
(2) zero-knowledge, i.e., the verifier obtains no information from an honestly
generated proof beyond what it could have generated on its own given the
NP statement itself.
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Construction. Given these primitives, the algorithms (Setup,Prove,Verify) of
the unclonable extractable NIZK are as follows.

Setup(1λ): The setup algorithm samples a public key pk of a public-key encryp-
tion, the common reference string crs of a classical (post-quantum) NIZK for NP,
along with a perfectly binding, computationally hiding classical commitment to
0λ with uniform randomness t, i.e. c = Com(0λ; t). It outputs (pk, crs, c).

Prove: Given the CRS (pk, crs, c), instance x and witness w, output
(ρ$, s, ct, π) where

– The state ρ$ ← Gen is generated as a quantum banknote with associated
serial number s.

– The ciphertext ct = Encpk(w;u) is an encryption of the witness w with ran-
domness u.

– The proof string π is a (post-quantum) NIZK for the following statement
using witness (w, u):

EITHER (∃w, u : ct = Encpk(w;u) ∧ RL(x,w) = 1) OR (∃r : c = Com(s; r)) ,

where we recall that pk and c were a part of the CRS output by the Setup
algorithm.

Verify: Given CRS (pk, crs, c), instance x and proof (ρ$, s, ct, π), check that (1)
Ver(ρ$) outputs s and (2) π is an accepting NIZK argument of the statement
above.

Analysis. Completeness, soundness/argument of knowledge and ZK for this con-
struction follow relatively easily, so we focus on unclonable extractability in this
overview. Recall that unclonable extractability requires that no adversary, given
an honestly generated proof for x ∈ L, can split this into two accepting proofs
for x ∈ L (as long as it is hard to find a witness for x). Towards a contradic-
tion, suppose an adversary splits a proof into 2 accepting proofs (ρ$,0, s1, ct1, π1),
(ρ$,1, s2, ct2, π2). Then,

– If s1 = s2 = s, the adversary given one bank note with serial number s
generated two valid banknotes ρ$,0 and ρ$,1 that both have the same serial
number s. This contradicts the security of quantum money.

– Otherwise, there is a b ∈ {1, 2} such that sb 	= s. Then, consider an indis-
tinguishable hybrid where the adversary obtains a simulated proof generated
without witness w as follows: (1) sample quantum banknote ρ$ with serial
number s, (2) sample public key pk along with secret key sk, (3) generate
c = Com(s; t), ct = Encpk(0;u), (4) generate proof π using witness t (since
c = Com(s; t)) instead of using witness w. Send common reference string
(pk, crs, c) and proof (ρ$, s, ct, π) to the adversary. Now, the proof that the
adversary generates with sb 	= s must contain ctb = Encpk(w;u), since c being
generated as a commitment to s 	= sb along with the perfect binding property
implies that (	∃ r : c = Com(sb; r)). That is, given instance x, the adver-
sary can be used to compute a witness w for x by decrypting ciphertext ctb,
thereby contradicting the hardness of the distribution.
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Our technical construction in Sect. 4.4, while conceptually the same, is formal-
ized slightly differently. It uses NIZKs with an enhanced simulation-extraction
property, which can be generically constructed from NIZK (see Sect. 4.1). Hav-
ing constructed unclonable extractable arguments in the CRS model, in the next
section, we analyze a construction of unclonable extractable arguments in the
QROM.

2.2 Unclonable Extractable NIZK in the QROM

We now turn our attention to the QRO setting in which we demonstrate a
protocol which is provably unclonable. Our construction assumes the existence
of public-key quantum money mini-scheme and a post-quantum sigma protocol
for NP. A sigma protocol (P,V) is an interactive three-message honest-verifier
protocol: the prover sends a commitment message, the verifier sends a uniformly
random challenge, and the prover replies by opening its commitment at the
locations specified by the random challenge.

Construction. The algorithms (Prove,Verify) of the unclonable extractable
NIZK in the QROM are as follows.

Prove: Given an instance x and witness w, output (ρ$, s, α, β, γ) where

– The quantum banknote ρ$ is generated alongside associated serial number s.
– P is run to compute the sigma protocol’s commitment message as α given

(x,w) as input.
– The random oracle is queried on input (α, s, x) in order to obtain a challenge

β.
– P is run, given as input (x,w, α, β) and its previous internal state, to compute

the sigma protocol’s commitment openings as γ.

Verify: Given instance x and proof (ρ$, s, α, β, γ), check that (1) the quantum
money verifier accepts (ρ$, s), (2) the random oracle on input (α, s, x) outputs
β, and (3) V accepts the transcript (α, β, γ) with respect to x.

Analysis. Since the completeness, argument of knowledge and zero-knowledge
properties are easy to show, we focus on unclonable extractability. Suppose an
adversary was able to provide two accepting proofs π1 = (ρ$,0, s1, α1, β1, γ1)
and π2 = (ρ$,1, s2, α2, β2, γ2) for an instance x for which it received an honestly
generated proof π = (ρ$, s, α, β, γ). Then,

– Suppose s1 = s2 = s. In this case, the adversary given one bank note with
serial number s generated two valid banknotes ρ$,0 and ρ$,1 that both have
the same serial number s. This contradicts the security of quantum money.

– Otherwise, there is a b ∈ [1, 2] such that sb 	= s. By the zero-knowledge
property of the underlying HVZK sigma protocol, this event also occurs when
the proof π that the adversary is given is replaced with a simulated proof.
Specifically, we build a reduction that locally programs the random oracle
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at location (α, s, x) in order to generate a simulated proof for the adversary.
Since the adversary’s own proof for sb 	= s is generated by making a distinct
query (αb, sb, x) 	= (α, s, x), the programming on (α, s, x) does not affect
the knowledge extractor for the adversary’s proof, which simply rewinds the
(quantum) random oracle to extract a witness for x, following [37]. This allows
us to obtain a contradiction, showing that our protocol must be unclonable.

2.3 Unclonable NIZKs Imply Quantum Money Mini-Scheme

Finally, we discuss why unclonable NIZKs satisfying even the weaker definition
of unclonable security (i.e., w.r.t. hard distributions) imply public-key quantum
money mini-scheme. Given an unclonable NIZK, we build a public-key quantum
money mini-scheme as follows.

Construction. Let (X ,W) be a hard distribution over a language L ∈ NP. Let
Π = (Setup,Prove,Verify) be an unclonable NIZK protocol for L.

Gen(1λ): Sample (x,w) ← (X ,W), crs ← Setup(1λ, x), and an unclonable NIZK
proof π as Prove(crs, x, w). Output a (possibly mixed-state) quantum banknote
ρ$ = π, and associated serial number s = (crs, x).

Ver(ρ$, s): Given a (possibly mixed-state) quantum banknote ρ$ and a classical
serial number s as input, parse ρ$ = π and s = (crs, x), and output the result of
Verify(crs, x, π).

Analysis. The correctness of the quantum money scheme follows from the com-
pleteness of the unclonable NIZK Π. We will now argue that this quantum money
scheme is unforgeable. Suppose an adversary A given a quantum banknote and
classical serial number (ρ$, s) was able to output two banknotes (ρ$,0, ρ$,1) both
of which are accepted with respect to s. We can use A to define a reduction to
the uncloneability of our NIZK Π as follows:

– The NIZK uncloneability challenger outputs a hard instance-witness pair
(x,w), a common reference string crs, and an unclonable NIZK π to the reduc-
tion.

– The reduction outputs a banknote (ρ$, s) to the adversary, where ρ$ = π and
s = (crs, x). It receives two quantum banknotes (ρ$,0, ρ$,1) from A, and finally
outputs two proofs (π0, π1) where π0 = ρ$,0 and π1 = ρ$,1.

If A succeeds in breaking unforgeability, then the quantum money verifier accepts
both banknotes (ρ$,0 = π0, ρ$,1 = π1), with respect to the same serial number
s = (crs, x). By syntax of the verification algorithm, this essentially means that
both proofs (π0, π1) are accepting proofs for membership of the same instance
x ∈ L, w.r.t. crs, leading to a break in the unclonability of NIZK.

2.4 Unclonable Signatures of Knowledge

Informally, a signature of knowledge has the following property: if an adversary,
given a signature of a message m with respect to an instance x, can produce
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two signatures for m which verify with respect to the same instance x, then the
adversary must know (and our extractor will be able to extract) a witness for x.

We obtain unclonable signatures of knowledge assuming the existence of
an unclonable extractable simulation-extractable NIZK for NP. Simulation-
extractability states that an adversary which is provided any number of sim-
ulated proofs for instance and witness pairs of their choosing, cannot produce
an accepting proof π for an instance x which they have not queried before and
where extraction fails to find an accepting witness w. Our unclonable extractable
NIZK for NP in the CRS model can, with some extra work, be upgraded to
simulation-extractable.

We informally describe the construction of signatures of knowledge from such
a NIZK below.

Construction. Let (Setup,P,V) be non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge, unclonable-extractable
protocol for NP. Let R be the NP relation corresponding to L.

Setup: The setup algorithm samples a common reference string crs of an
unclonable-extractable simulation-extractable NIZK for NP. It outputs crs.

Sign: Given the CRS crs, instance x, witness w, and message m, output signature
π where

– The proof string π is an unclonable-extractable simulation-extractable NIZK
with tag m using witness w of the following statement:

(∃w : (x,w) ∈ R) .

Verify: Given CRS crs, instance x, message m, and signature π, check that π
is an accepting NIZK proof with tag m of the statement above.

Analysis. The simulatability (extractability) property follows from the zero-
knowledge (resp. simulation-extractability) properties of the NIZK. Suppose an
adversary A given a signature σ was able to forge two signatures σ1 = π1 and
σ2 = π2, and, yet, our extractor was to fail to extract a witness w from A. Then,

– Either both proofs π1 and π2 are accepting proofs for membership of the same
instance w.r.t. crs. However, this contradicts the unclonability of the NIZK.

– Otherwise there exists a proof πi (where i ∈ {1, 2}) for an instance which
A has not previously seen a proof for. We can switch to a hybrid where our
signatures contain simulated proofs for the NIZK. But now, we have that
the verifier accepts a proof for an instance which A has not seen a simulated
proof for and, yet, we cannot extract a witness from A. This contradicts the
simulation extractability of the NIZK.

Roadmap. In Sect. 4, we define and construct unclonable NIZKs in the CRS
model, and in Sect. 5, in the QROM. Along the way, we also show that unclonable
NIZKs imply quantum money (in the CRS and QRO model respectively). Later,
we show how to define and construct unclonable signatures of knowledge from
unclonable NIZKs in the CRS model.
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3 Preliminaries

We defer definitions to the full version [33]; below we recall some useful theorems.

3.1 Post-quantum Commitments and Encryption

Theorem 5 (Post-quantum Commitment). [38] Assuming the polynomial
quantum hardness of LWE, there exists a non-interactive commitment with per-
fect binding and computational hiding.

3.2 NIZKs in the CRS Model

Theorem 6 (Post-quantum NIZK Argument for NP in the CRS
Model). [40] Assuming the polynomial quantum hardness of LWE, there exists
a non-interactive adaptively computationally sound, adaptively computationally
zero-knowledge argument for NP in the common reference string model.

Theorem 7 (Simulation Sound Compiler). [43] Given one-way functions
and a single-theorem NIZK proof system for NP, then there exists a non-
interactive simulation sound, adaptively multi-theorem computationally zero-
knowledge proof for NP in the common reference string model.

Corollary 1 (Post-quantum Simulation Sound NIZK for NP). Assum-
ing the polynomial quantum hardness of LWE, there exists a post-quantum non-
interactive simulation sound, adaptively multi-theorem computationally zero-
knowledge proof for NP in the common reference string model.

Proof. This follows from Theorem 6 and Theorem 7.

3.3 NIZKs in the QRO Model

Theorem 8 (NIZKAoK in QROM [37,47]). Let Π be a post-quantum sigma
protocol. The Fiat-Shamir heuristic applied to Π yields a classical post-quantum
NIZKAoK in the QROM.

3.4 Quantum Money

Theorem 9 (Quantum Money from Subspace Hiding Obfuscation [2,
50]). If injective one-way functions and post-quantum iO exist, then public-key
quantum money exists.
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4 Unclonable Non-interactive Zero-Knowledge in the
CRS Model

4.1 Simulation-Extractable NIZK

We defer the definition, and proofs to the full version [33]; below we state our
results.

Fig. 1. Unclonable Non-Interactive Quantum Protocol for L ∈ NP

Theorem 10 (Post-quantum Simulation-Extractable NIZK for NP in
the CRS Model). Let NP relation R with corresponding language L be given.

Let Π = (Setup,P,V) be a non-interactive post-quantum simulation sound,
adaptively multi-theorem computationally zero-knowledge protocol for NP. Let
(Gen,Enc,Dec) be a post-quantum perfectly correct, IND-CPA secure encryption
scheme.

(Setup,P,V) as defined in Fig. 1 will be a non-interactive post-quantum
simulation-extractable, adaptively multi-theorem computationally zero-knowledge
argument for L in the common reference string model.

Corollary 2 (Post-quantum Simulation-Extractable NIZK for NP in
the CRS Model). Assuming the polynomial quantum hardness of LWE, there
exists a simulation-extractable, adaptively multi-theorem computationally zero-
knowledge argument for NP in the common reference string model.

Proof. This follows from Corollary 1 and Theorem 10.
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4.2 Unclonability Definitions

We consider two definitions of unclonability for NIZKs. The first one, motivated
by simplicity, informally guarantees that no adversary given honestly proofs for
“hard” instances is able to output more than one accepting proof for the same
instance.

Definition 3 ((Quantum) Hard Distribution). Let an NP relation R be
given. (X ,W) is a (quantum) hard distribution over R if the following properties
hold.

– Syntax. (X ,W) is indexable by a security parameter λ ∈ N. For every choice
of λ ∈ N, the support of (Xλ,Wλ) is over instance and witness pairs (x,w)
such that x ∈ L, |x|= λ, and (x,w) ∈ R.

– Hardness. For every polynomial-sized (quantum) circuit family A =
{Aλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[(x,Aλ(x)) ∈ R] ≤ negl(λ).

Definition 4. (Unclonable Security for Hard Instances). A proof (Setup,P,V)
satisfies unclonable security for a language L with corresponding relation RL if
for every polynomial-sized quantum circuit family {Cλ}λ∈N, and for every hard
distribution {Xλ,Wλ}λ∈N over RL, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr
(x,w)←(Xλ,Wλ)

[
V(crs, x, π1) = 1

∧
V(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←P(crs,x,w)

π1,π2←Cλ(x,π)

]
≤ negl(λ).

We will now strengthen this definition to consider a variant where from any
adversary A that on input a single proof of membership of x ∈ L outputs two
proofs for x, we can extract a valid witness w for x with high probability. In
fact, we can further generalize this definition to a setting where the adversary
obtains an even larger number (say k−1) input proofs on instances x1, . . . , xk−1,
and outputs k or more proofs. Then we require the extraction of an NP witness
corresponding to any proofs that are duplicated (i.e. two or more proofs w.r.t.
the same instance xi ∈ {x1, . . . , xk−1}). We write this definition below.

Definition 5 ((k − 1)-to-k-Unclonable Extractable NIZK). Let security
parameter λ ∈ N and NP relation R with corresponding language L be given. Let
Π = (Setup,P,V) be given such that Setup,P and V are poly(λ)-size quantum
algorithms. We have that for any (x,w) ∈ R, (crs, td) is the output of Setup
on input 1λ, P receives an instance and witness pair (x,w) along with crs as
input and outputs π, and V receives an instance x, crs, and proof π as input and
outputs a value in {0, 1}.

Π is a non-interactive (k − 1)-to-k-unclonable zero-knowledge quantum pro-
tocol for language L if the following holds:

– Π is a quantum non-interactive zero-knowledge protocol for language L.
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– (k − 1)-to-k-Unclonable with Extraction: There exists an oracle-
aided polynomial-size quantum circuit E such that for every polynomial-
size quantum circuit A, for every tuple of k − 1 instance-witness pairs
(x1, ω1), . . . , (xk−1, ωk−1) ∈ R, for every instance x, if there exists a poly-
nomial p(·) such that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

⎡
⎣ ∃ J ⊆ {j : x̃j = x}

s.t. |J |> |{i : xi = x}|
and ∀ι ∈ J ,V(crs, x, π̃ι) = 1

⎤
⎦ ≥ 1

p(λ)
,

then there is also a polynomial q(·) such that

Pr
w←EA(x1,...,xk−1,x)

[(x,w) ∈ R] ≥ 1
q(λ)

.

We observe in Definition 5 that we can generically boost the extractor’s
success probability to 1 − negl(λ) with respect to a security parameter λ.

Definition 6 ((k − 1)-to-k-Unclonable Strong-Extractable NIZK). Let
security parameter λ ∈ N and NP relation R with corresponding language L be
given. Let Π = (Setup,P,V) be given such that Setup,P and V are poly(λ)-size
quantum algorithms. We have that for any (x,w) ∈ R, (crs, td) is the output of
Setup on input 1λ, P receives an instance and witness pair (x,w) along with crs
as input and outputs π, and V receives an instance x, crs, and proof π as input
and outputs a value in {0, 1}.

Π is a non-interactive (k − 1)-to-k-unclonable zero-knowledge quantum pro-
tocol for language L if the following holds:

– Π is a quantum non-interactive zero-knowledge protocol for language L.
– (k − 1)-to-k-Unclonable with Strong-Extraction: There exists an oracle-

aided polynomial-size quantum circuit E such that for every polynomial-size
quantum circuit A with non-uniform quantum advice aux, for every tuple of
k−1 instance-witness pairs (x1, ω1), . . . , (xk−1, ωk−1) ∈ R, for every instance
x if there is a polynomial p(·) where

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1],aux)

⎡
⎣ ∃ J ⊆ {j : x̃j = x}

s.t. |J |> |{i : xi = x}|
and ∀ι ∈ J ,V(crs, x, π̃ι) = 1

⎤
⎦ ≥ 1

p(λ)
,

then there is also a polynomial poly(·) and a negligible function negl(·)
such that

Pr
w←EA(x1,...,xk−1,x,aux⊗poly(λ))

[(x,w) ∈ R] ≥ 1 − negl(λ).

We describe two useful lemmas to compare the above definitions.
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Lemma 1. Let Π = (Setup,P,V) be a 1-to-2-unclonable with extraction, non-
interactive zero-knowledge quantum protocol (Definition 5). Then, Π satisfies
Definition 4.

For a proof of Lemma 1, we refer to the full version [33].

Lemma 2. Let Π = (Setup,P,V) be a (k − 1)-to-k-unclonable with extraction,
non-interactive zero-knowledge quantum protocol (Definition 5). Then, Π satis-
fies Definition 6.

For a proof of Lemma 2, we refer to the full version [33].
From the above lemmas, we conclude that Definition 5 is the strongest

definition. In the following sections, we construct a protocol that satisfies
Definition 5.

4.3 Unclonable NIZK Implies Public-Key Quantum Money
Mini-scheme

Fig. 2. Public-Key Quantum Money Mini-Scheme from an Unclonable Non-Interactive
Quantum Protocol

Theorem 11. Let (X ,W) be a hard distribution over a language L ∈ NP. Let
Π = (Setup,P,V) satisfy Definition 4. Then (Setup,P,V) implies a public-key
quantum money mini-scheme as described in Fig. 2.

We defer the proof to the full version [33].

4.4 Construction and Analysis of Unclonable-Extractable NIZK
in CRS Model
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Fig. 3. Unclonable Non-Interactive Quantum Protocol for L ∈ NP

Theorem 12. Let k(·) be a polynomial. Let NP relation R with corresponding
language L be given.

Let (NoteGen,Ver) be a public-key quantum money mini-scheme and Com be
a post-quantum commitment scheme. Let Π = (Setup,P,V) be a non-interactive
post-quantum simulation-extractable, adaptive multi-theorem computational zero-
knowledge protocol for NP.

(Setup,P,V) as defined in Fig. 3 will be a non-interactive quantum simulation-
extractable, adaptive multi-theorem computationally zero-knowledge, and (k−1)-
to-k-unclonable argument with extraction protocol for L in the common reference
string model (Definition 5).

Proof. Completeness follows from perfect correctness of the public key quantum
money scheme, and perfect completeness of Π.

See the full version [33] for proofs of zero-knowledge and simulation
extractability.

Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem computation-
ally zero-knowledge simulator of Π. We define Sim0 with oracle access to Π.Sim0

as follows: Input : 1λ.
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(1) Send 1λ to Π.Sim0. Receive (crsΠ, tdΠ) from Π.Sim0.
(2) Sample s∗, r∗ uniformly at random. Define c = Com(s∗; r∗).
(3) Output crs = (crsΠ, c) and td = tdΠ.

We define Sim1 with oracle access to Π.Sim1 as follows:
Input : crs = (crsΠ, c), td = tdΠ, x.

(1) Sample (ρ$, s) ← NoteGen(1λ).
(2) Define xΠ = (c, x, s). Send (crsΠ, tdΠ, xΠ) to Π.Sim1. Receive πΠ from

Π.Sim1.
(3) Output π = (ρ$, s, πΠ).

Claim (4.1). Let Ext be as defined earlier, in the current proof of simulation-
extractability. There exists a negligible function negl(·) such that for every
polynomial-size quantum circuit B,

Pr
(crs,td)←Sim0(1

λ)

(x,π)←BSim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ 	∈ QΠ ∧ (x,w) 	∈ R] ≤ negl(λ)

where QΠ is the list of queries forwarded by Sim1 to Π.Sim1.

See the full version [33] for proof of Claim 4.1.

Unclonable Extractability. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive
multi-theorem computationally zero-knowledge simulator of Π. Let Π.Ext be
the simulation-extraction extractor of Π with respect to Π.Sim. Let Sim =
(Sim0,Sim1) be the simulator, with oracle access to Π.Sim, as defined in the proof
that Fig. 3 is adaptive multi-theorem computational zero-knowledge. Let Ext be
the extractor, based on Sim, as defined in the proof that Fig. 3 is simulation-
extractable. We define E with oracle access to Sim, Ext, and some A as follows:
Hardwired : x1, . . . , xk−1, x

(1) Send 1λ to Sim0. Receive (crs, td) from Sim0.
(2) For ι ∈ [k − 1]: send (crs, td, xι) to Sim1, and receive πι from Sim1.
(3) Send (crs, {xι, πι}ι∈[k−1]) to A. Receive {x̃ι, π̃ι}ι∈[k] from A.
(4) Define j′ uniformly at random from [k].
(5) Output Ext(crs, td, x, π̃j′) as w.

Let A, (x1, w1), . . . , (xk−1, wk−1) ∈ R, x, polynomial p(·), and negligible
function negl(·) be given such that A outputs more accepting proofs for x than
A received, and yet the extractor E is unable to extract a valid witness for x
from A. Restated more formally, that is that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

⎡
⎣ ∃ J ⊆ {j : x̃j = x}

s.t. |J |> |{i : xi = x}|
and ∀ι ∈ J ,V(crs, x, π̃ι) = 1

⎤
⎦ ≥ 1

p(λ)
, (1)
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and for all polynomials p′(·) (there are infinitely many λ) such that

Pr
w←EA(x1,...,xk−1,x)

[(x,w) ∈ R] ≤ 1
p′(λ)

. (2)

We parse the output of the adversary A as π̃ι = (ρ̃$,ι, s̃ι, π̃Π,ι) for all ι ∈ [k].
Given Eq. (1), we may be in one of the two following cases: either A generates

two accepting proofs which have the same serial number as an honestly generated
proof (for an infinite set of λ), or A does not (for an infinite set of λ). We consider
that either of these two scenarios occur with at least 1/(2p(λ)) probability and
show that each reaches a contradiction.
Scenario One

Say that (for an infinite set of λ) A generates two accepting proofs which have
the same serial number as an honestly generated proof with at least 1/(2p(λ))
probability. Symbolically,

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

⎡
⎢⎢⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,V(crs, x, π̃ι) = 1
and ∃i∗ ∈ [k − 1] ∃j∗, �∗ ∈ J

s.t. si∗ = s̃j∗ = s̃�∗

⎤
⎥⎥⎥⎥⎦ ≥ 1

2p(λ)
. (3)

Through a hybrid argument, we can get a similar event with fixed indices i∗, j∗,
and �∗ which belong to their respective sets with an advantage of 1/(2k3p(λ)). By
using the advantage of A in this game, we can show a reduction that breaks the
unforgeability of the quantum money scheme. We will now outline this reduction.
Reduction: to unforgeability of quantum money scheme given oracle access to
A.
Hardwired with: (x1, w1), . . . , (xk−1, wk−1), x, i∗, j∗, �∗.

(1) Compute (crs, td) ← Setup(1λ) where crs = (crsΠ, c) and td = tdΠ.
(2) Receive (ρ$, s) ← NoteGen from the challenger.
(3) Define ρ$,i∗ = ρ$, si∗ = s, and xΠ = (c, xi∗ , si∗).

Compute πΠ,� ← Π.P(crsΠ, xΠ, wi∗). Define πi∗ = (ρ$,i∗ , si∗ , πΠ,i∗).
(4) Define πι ← P(crs, xι, wι) for ι ∈ [k − 1] \ {i∗}.
(5) Send {xι, πι}ι∈[k−1] to A.
(6) Receive {x̃ι, π̃ι}ι∈[k] from A.
(7) Parse π̃j∗ = (ρ̃$,j∗ , s̃j∗ , π̃Π,j∗) and π̃�∗ = (ρ̃$,�∗ , s̃�∗ , π̃Π,�∗).
(7) Send (ρ̃$,j∗ , ρ̃$,�∗) to the challenger.

Given the event in Eq. (3) holds (for the afore mentioned fixed indices),
then the reduction will return two quantum money states with the same serial
number as the challenger sent. With advantage 1/(2k3p(λ)), the reduction will
succeed at breaking unforgeability of the quantum money scheme, thus reaching
a contradiction.
Scenario Two.

Alternatively, say that (for an infinite set of λ) A does not generate two
accepting proofs which have the same serial number as an honestly generated
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proof with at least 1/(2p(λ)) probability. By the pigeon-hole principle, this means
that A generates an accepting proof with a serial number which is not amongst
the ones it received. In summary, we have that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

⎡
⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,V(crs, x, π̃ι) = 1
and ∃j∗ ∈ J s.t. s̃j∗ 	∈ {sι}ι∈[k−1]

⎤
⎥⎥⎦ ≥ 1

2p(λ)
.

(4)
Through an averaging argument, we can get a similar event with a fixed index
j∗ that belongs to the event’s set J with an advantage of 1/(2kp(λ)). We will
now switch to a hybrid where we provide A with simulated proofs.

Claim (Claim 4.2). There exists a polynomial q(·) such that

Pr
(crs,td)←Sim0(1

λ)
∀ι∈[k−1], πι←Sim1(crs,td,xι)

{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

⎡
⎢⎢⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,V(crs, x, π̃ι) = 1
and j∗ ∈ J

and s̃j∗ 	∈ {sι}ι∈[k−1]

⎤
⎥⎥⎥⎥⎦ ≥ 1

q(λ)
. (5)

We will later see a proof of Sect. 4.4. For now, assuming that this claim
holds, by the definition of E , Eq. (2), and Eq. (5), there exists a polynomial q′(·)
such that

Pr
(crs,td)←Sim0(1

λ)
∀ι∈[k−1], πι←Sim1(crs,td,xι)

{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

j′ $←[k]
w←Ext(crs,td,x,π̃j′ )

⎡
⎢⎢⎢⎢⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,V(crs, x, π̃ι) = 1
and j∗ ∈ J

and s̃j∗ 	∈ {sι}ι∈[k−1]

and (x,w) 	∈ R

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 1
q′(λ)

.

We will additionally have that j′ = j∗ with advantage at least 1/(kq′(λ)).
Since V accepts π̃j∗ with respect to x, Π.V must accept π̃Π,j∗ with respect to
x̃Π,j∗ = (c, x, s̃j∗). Since s̃j∗ 	∈ {sι}ι∈[k−1], we have that Π.Sim1, through Sim1,
has not previously received x̃Π,j∗ as a query. As such, we have that

Pr
(crs,td)←Sim0(1

λ)
∀ι∈[k−1], πι←Sim1(crs,td,xι)

{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

w←Ext(crs,td,x̃j∗ ,π̃j∗ )

⎡
⎣ Π.V(crsΠ, (c, x, s̃j∗), π̃Π,j∗) = 1

and (c, x, s̃j∗) 	∈ QΠ

and (x,w) 	∈ R

⎤
⎦ ≥ 1

kq′(λ)
(6)

where QΠ is the set of queries asked through Sim1 to Π.Sim1. We now define B
with oracle access to A and Sim1

1:
1 Here, B is given oracle access to Sim1 which has the terms (crs, td) fixed by the

output of Sim0.
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Hardwired : x1, . . . , xk−1, x j∗

Input : crs = (crsΠ, c)

(1) For ι ∈ [k − 1]: send xι to Sim1, and receive πι from Sim1.
(2) Send (crs, {xι, πι}ι∈[k−1]) to A. Receive {x̃ι, π̃ι}ι∈[k] from A.
(3) Output ((c, x, s̃j∗), π̃j∗).

Given that the event in Eq. (6) holds, then B contradicts Sect. 4.4. Thus, all
that remains to be proven is Sect. 4.4.

See the full version [33] for a proof of Claim 4.2.
By completing the proofs of our claim, we have concluding the proof of our

theorem statement.

Corollary 3. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, and post-quantum iO exists, there exists a non-
interactive adaptive argument of knowledge, adaptive computationally zero-
knowledge, and (k − 1)-to-k-unclonable argument with extraction protocol for
NP in the common reference string model (Definition 5).

Proof. This follows from Theorem 5, Corollary 2, Theorem 9, and Theorem 12.

We have thus shown that Fig. 3 is an unclonable NIZK AoK in the
CRS model as defined according to our proposed unclonability definition,
Definition 5.

In the upcoming sections, we will consider unclonable proof systems in
the QROM.

5 Unclonable NIZK in the Quantum Random Oracle
Model

5.1 A Modified Sigma Protocol

We will begin by introducing a slightly modified sigma protocol. In the coming
sections, our construction will involve applying Fiat-Shamir to this modified
protocol.

Theorem 13. Let a post-quantum sigma protocol with unpredictable commit-
ments Π be given. Let RΠ be an NP relation. Let R = {((x,S), w) : (x,w) ∈
RΠ ∧ S 	= ∅}. We argue that the following protocol will be a post-quantum sigma
protocol with unpredictable commitments:

– P.Com(1λ, (x,S), w): Sends (x, α, s) to V where (α, st) ← Π.P.Com(1λ, x, w)
and s is sampled from S.

– V.Ch(1λ, (x,S), (x, α, s)): Sends β to P where β ← Π.V.Ch(1λ, x, α).
– P.Com(1λ, (x,S), w, st, β): Sends γ to V where γ ← Π.P.Prove(1λ, x, w, st, β).
– V.Ver(1λ, (x,S), (x, α, s), β, γ): 1 iff s ∈ Support(S) and Π.V.Ver(1λ, x, α,

β, γ) = 1.



116 R. Jawale and D. Khurana

See the full version [33] for the proof of Theorem 13.

Corollary 4. The Fiat-Shamir transform applied to the post-quantum sigma
protocol defined in Theorem 13 yields a classical post-quantum NIZKAoK Π′ in
the QROM.

Proof. This follows by Theorem 13 and Theorem 8.

5.2 Unclonability Definitions

Unclonable NIZKs in the quantum random oracle model are defined analogously
to the CRS model – we repeat these definitions in the QRO model for complete-
ness in the full version [33].

5.3 Unclonable NIZK Implies Public-Key Quantum Money
Mini-Scheme in QROM

We defer the construction and proof to the full version [33]; below we state our
results.

Theorem 14. Let O be a quantum random oracle. Let (X ,W) be a hard dis-
tribution over a language L ∈ NP. Let Π = (P,V) be a 1-to-2 unclonable non-
interactive perfectly complete, computationally zero-knowledge protocol for L in
the QRO model.

Then (P,V) implies a public-key quantum money mini-scheme in the QRO
model.

5.4 Construction and Analysis of Unclonable-Extractable NIZK in
QROM

We now introduce our construction in Fig. 4 and prove the main theorem of this
section.

Theorem 15. Let k(·) be a polynomial. Let NP relation R with corresponding
language L be given.

Let (NoteGen,Ver) be a public-key quantum money mini-scheme and Π =
(P,V) be a post-quantum sigma protocol.

(P,V) as defined in Fig. 4 will be a non-interactive knowledge sound, compu-
tationally zero-knowledge, and (k − 1)-to-k-unclonable argument with extraction
protocol for L in the quantum random oracle model.

Proof. Let the parameters and primitives be as given in the theorem statement.
We argue that completeness follows from the protocol construction in Fig. 4, and
we prove the remaining properties below.

See the full version [33] for complete proofs of argument of knowledge and
zero-knowledge properties.
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Fig. 4. Unclonable Non-Interactive Quantum Protocol for L ∈ NP in the Quantum
Random Oracle Model

Let S be the distribution of serial numbers as output by NoteGen(1λ). We
define Ext2 with oracle-access to ExtFS , O, and some A as follows:
Hardwired with: S.
Input : x.

(1) Given an oracle-query (x, α, s) from A: send (x, α, s) to O, receive β from
O, and send β to A.

(2) Upon receiving π = (ρ$, s, α, β, γ) from A: send πFS = ((x, α, s), β, γ) to
ExtFS .

(3) Output the result of ExtFS as w.

Let SimFS be the simulator for Π′ in Corollary 4 (where Π instantiates The-
orem 13). Let RFS be the relation for Π′ with respect to R. We define Sim with
oracle-access to SimFS and program access to some random oracle O as follows:
Input : x (ignores any witnesses it may receive).

(1) Sample (ρ$, s) ← NoteGen(1λ).
(2) Let S be the distribution where all probability mass is on s.
(3) Compute ((x, α, s), β, γ) ← Π.Sim(x,S). Allow Π.Sim to program O at

(x, α, s) to return β.
(5) Output π = (ρ$, s, α, β, γ).
2 An extractor whose local code is implementable as a simple unitary which allows for

straightforward rewinding.
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Unclonable Extractability. Let Ext be the quantum circuit of the extractor
we defined earlier (in our proof that Fig. 4 is an argument of knowledge). Let
Sim be the quantum circuit of the simulator that we defined earlier (in our proof
that Fig. 4 is a zero-knowledge protocol). We define a simulator for our extractor,
SimExt, which interacts with some A and has oracle-access to O as follows:
Hardwired with: x1, . . . , xk−1, x

(1) Compute πι ← Sim(xι) for ι ∈ [k − 1] where we store all points Sim would
program into a list P.

(2) Send {xι, πι}ι∈[k−1] to A.
(3) For every query from A, if the query is in P, then reply with the answer

from P. Else, forward the query to O and send the answer back to A.

We now define our extractor E with oracle-access to some A as follows:
Hardwired with: some choice of x1, . . . , xk−1, x.

(1) Instantiates a simulatable and extractable random oracle O. Runs Ext on O
throughout the interaction with A (which may involve rewinding, in which
case we would rewind A and repeat the following steps).

(2) Run SimExtO(x1, . . . , xk−1, x) which interacts with A.
(3) Receive {x̃ι, π̃ι}ι∈[k] from A.
(4) Samples � ∈ [k] uniformly at random. Send π̃� to Ext.
(5) Outputs the result of Ext as w.

Let A, (x1, w1), . . . , (xk−1, wk−1) ∈ R, x, polynomial p(·), and negligible
function negl(·) be given such that A outputs more accepting proofs for x than
A received, and yet the extractor E is unable to extract a valid witness for x
from A. Restated more formally, that is that

Pr
O

∀ι∈[k−1], πι←PO(xι,wι)

{x̃ι,π̃ι}ι∈[k]←AO({xι,πι}ι∈[k−1])

⎡
⎣ ∃ J ⊆ {j : x̃j = x}

s.t. |J |> |{i : xi = x}|
and ∀ι ∈ J ,VO(x, π̃ι) = 1

⎤
⎦ ≥ 1

p(λ)
, (7)

and for all polynomials p′(·) (there are infinitely many λ) such that

Pr
w←EA(x1,...,xk−1,x)

[(x,w) ∈ R] ≤ 1
p′(λ)

. (8)

We parse the output of the adversary A as π̃ι = (ρ̃$,ι, s̃ι, α̃ι, β̃ι, γ̃ι) for all ι ∈ [k].
Given Eq. (7), we may be in one of the two following cases: either A generates

two accepting proofs which have the same serial number as a honestly generated
proof (for an infinite set of λ), or A does not (for an infinite set of λ). We consider
that either of these two scenarios occur with at least 1/(2p(λ)) probability and
show that each reaches a contradiction.
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Scenario One.
Say that (for an infinite set of λ) A generates two accepting proofs which have
the same serial number as an honestly generated proof with at least 1/(2p(λ))
probability. Symbolically,

Pr
O

∀ι∈[k−1], πι←PO(xι,wι)

{x̃ι,π̃ι}ι∈[k]←AO({xι,πι}ι∈[k−1])

⎡
⎢⎢⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,VO(x, π̃ι) = 1
and ∃i∗ ∈ [k − 1] ∃j∗, �∗ ∈ J

s.t. si∗ = s̃j∗ = s̃�∗

⎤
⎥⎥⎥⎥⎦ ≥ 1

2p(λ)
. (9)

Through a hybrid argument, we can get a similar event with fixed indices i∗, j∗,
and �∗ which belong to their respective sets with an advantage of 1/(2k3p(λ)). By
using the advantage of A in this game, we can show a reduction that breaks the
unforgeability of the quantum money scheme. We will now outline this reduction.
Reduction: to unforgeability of quantum money scheme given oracle access to A
and O.
Hardwired with: (x1, w1), . . . , (xk−1, wk−1), x, i∗, j∗, �∗.

(1) Receive (ρ$, s) from the challenger.
(2) Define ρ$,i∗ = ρ$ and si∗ = s. Sample (ρ$,ι, sι) ← NoteGen(1λ) for ι ∈ [k −

1] \ {i∗}. Compute (αι, ζι) ← Π.P.Com(xι, wι), query O at (xι, αι, sι) to get
βι, compute γι ← Π.P.Prove(xι, wι, βι, ζι), and define πι = (ρ$,ι, sι, αι, βι, γι)
for ι ∈ [k − 1].

(3) Send {xι, πι}ι∈[k−1] to A.
(4) Receive {π̃ι}ι∈[k] from A.
(5) Send (ρ̃$j∗ , ρ̃$�∗) to the challenger.

Given the event in Eq. (9) holds (for the afore mentioned fixed indices),
then the reduction will return two quantum money states with the same serial
number as the challenger sent. With advantage 1/(2k3p(λ)), the reduction will
succeed at breaking unforgeability of the quantum money scheme, thus reaching
a contradiction.
Scenario Two.

Alternatively, say that (for an infinite set of λ) A does not generate two
accepting proofs which have the same serial number as an honestly generated
proof with at least 1/(2p(λ)) probability. By the pigeon-hole principle, this means
that A generates an accepting proof with a serial number which is not amongst
the ones it received. In summary, we have that

Pr
O

∀ι∈[k−1], πι←PO(xι,wι)

{x̃ι,π̃ι}ι∈[k]←AO({xι,πι}ι∈[k−1])

⎡
⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,VO(x, π̃ι) = 1
and ∃j∗ ∈ J s.t. s̃j∗ 	∈ {sι}ι∈[k−1]

⎤
⎥⎥⎦ ≥ 1

2p(λ)
.

(10)
Through an averaging argument, we can get a similar event with a fixed index
j∗ that belongs to the event’s set J with an advantage of 1/(2kp(λ)). We will
now switch to a hybrid where we provide A with simulated proofs.
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Claim (5.1). There exists a polynomial q(·) such that

Pr
O

{πι}ι∈[k−1]←SimExtO(x1,...,xk−1)

{x̃ι,π̃ι}ι∈[k]←ASimExtO ({xι,πι}ι∈[k−1])

⎡
⎢⎢⎢⎢⎣

∃ J ⊆ {j : x̃j = x}
s.t. |J |> |{i : xi = x}|

and ∀ι ∈ J ,VSimExtO (x, π̃ι) = 1
and j∗ ∈ J

and s̃j∗ 	∈ {sι}ι∈[k−1]

⎤
⎥⎥⎥⎥⎦ ≥ 1

q(λ)
.

(11)

We will later see a proof of Sect. 5.4. For now, assuming that this claim holds,
we can define an adversary from which Ext can extract a valid witness for x.

Claim (5.2). There exists a polynomial q′(·) such that

Pr
w←EA(x1,...,xk−1,x)

[(x,w) ∈ R] ≥ 1
q′(λ)

. (12)

We will soon see a proof for Sect. 5.4. Meanwhile, if this claim is true, then
we will have a direct contradiction with Eq. (8). Thus, all that remains to be
proven are the two claims.

See proof of Claim 5.1 and Claim 5.2 in the full version [33].
By completing the proofs of our claims, we have concluding the proof of our

theorem statement.

Corollary 5. Assuming the injective one-way functions exist, and post-quantum
iO exists, there exists a non-interactive knowledge sound, computationally zero-
knowledge, and (k − 1)-to-k-unclonable with extraction protocol for NP in the
quantum random oracle model.

Proof. This follows from Theorem 9 and Theorem 15.

We have thus shown that Fig. 4 is an unclonable NIZK AoK in the ROM
model as defined according to our unclonability definition.

6 Applications

6.1 Unclonable Signatures of Knowledge

Definition 7 (Unclonable Extractable SimExt-secure Signatures of
Knowledge). Let NP relation R with corresponding language L be given such
that they can be indexed by a security parameter λ ∈ N. Let a message space M
be given such that it can be indexed by a security parameter λ ∈ N.

(Setup,Sign,Verify) is an unclonable signature of knowledge of a witness with
respect to L and M if it has the following properties:

– (Setup,Sign,Verify) is a quantum Sim-Ext signature of knowledge.
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– (k − 1)-to-k-Unclonable with Extraction: There exists an oracle-
aided polynomial-size quantum circuit E such that for every polynomial-
size quantum circuit A, for every tuple of k − 1 instance-witness pairs
(x1, ω1), . . . , (xk−1, ωk−1) ∈ R, every {mι ∈ Mλ}ι∈[k−1], for every (x,m),
if there is a polynomial p(·) where

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{σ̃ι}ι∈[k]←A(crs,{xι,mι,σι}ι∈[k−1])

⎡
⎣

∃ J ⊆ {j : (x̃j , m̃j) = (x, m)}
s.t. |J |> |{i : (xi, mi) = (x, m)}|

and ∀ι ∈ J ,Verify(crs, x, m, σ̃ι) = 1

⎤
⎦ ≥ 1

p(λ)
,

then there is also a polynomial q(·) such that

Pr
w←EA({xι,mι}ι∈[k−1],x,m)

[(x,w) ∈ R] ≥ 1
q(λ)

.

Fig. 5. Unclonable Signature of Knowledge in CRS model

Theorem 16. Let Π = (Setup,P,V) be a non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge, unclonable-extractable
protocol for NP (Definition 5).

(Setup,Sign,Verify) in Fig. 5 is an unclonable-extractable SimExt-secure sig-
nature of knowledge (Definition 7).

Corollary 6. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, post-quantum iO exists, there exists an unclonable
SimExt-secure signature of knowledge (Definition 7).

Proof. This follows from Corollary 3 and Theorem 16.
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6.2 Revocable Anonymous Credentials

Definition 8 (Revocable Anonymous Credentials).(IssuerKeyGen, Issue,
VerifyCred,Revoke, Prove,VerRevoke) is a revocable anonymous credentials
scheme with respect to some set of accesses {Sλ}λ∈N if it has the following prop-
erties:

– Correctness: For every sufficiently large λ ∈ N, and every access ∈ Sλ,

Pr
(nym,sk)←IssuerKeyGen(1λ)

cred←Issue(1λ,nym,sk,access)

[VerifyCred(1λ, nym, access, cred) = 1] = 1

and

Pr
(nym,sk)←IssuerKeyGen(1λ)

cred←Issue(1λ,nym,sk,access)

revnotice←Revoke(1λ,nym,sk,access)

π←Prove(1λ,nym,revnotice,cred)

[VerRevoke(nym, sk, access, revnotice, π) = 1] = 1.

– Revocation: For every polynomial-size quantum circuit A, there exists a
negligible function negl(·) such that for sufficiently large λ ∈ N, and every
access ∈ Mλ

Pr
(nym,sk)←IssuerKeyGen(1λ)

cred←Issue(1λ,nym,sk,access)

revnotice←Revoke(1λ,nym,sk,access)

π,cred′←A(1λ,nym,revnotice,cred)

[
VerRevoke(1λ,nym,sk,access,revnotice,π)=1

∧

VerifyCred(1λ,nym,access,cred′)=1

]
≤ negl(λ).

We now introduce a construction based on unclonable signatures of knowl-
edge.

Theorem 17. Let (X ,W) be a hard-distribution of instance and witness
pairs for some NP relation. Let {Sλ}λ∈N be some set of accesses. Let
(Setup,Sign,Verify) be an unclonable-extractable SimExt-secure signature of
knowledge for message space {Sλ}λ∈N (Definition 7).

(IssuerKeyGen, Issue,VerifyCred,Revoke,Prove,VerRevoke) defined in Fig. 6 is
a revocable anonymous credentials scheme (Definition 8).

Proof (Proof Sketch of Theorem 17). The correctness of this revocable anony-
mous credentials scheme follows from the correctness of the unclonable signature
of knowledge scheme.

We will now sketch the proof of revocation. Say that there exists an adversary
A, access access, and polynomial p(·) such that, with probability at least 1/p(λ):
(1) π passes the revocation check, and (2) cred′ passes the credential check. This
means that both π and cred′ are valid signatures with respect to the same crs,
x, and access that the signature cred was issued under. This satisfies the “if”
condition of the unclonability property of the unclonable signature of knowledge.



Unclonable Non-interactive Zero-Knowledge 123

Fig. 6. Revocable Anonymous Credentials

As such, there exists a polynomial q(·) such that the unclonable signature of
knowledge’s extractor can produce a witness w for x with probability at least
1/q(λ). However, this contradicts the hardness of the distribution (X ,W). Hence,
our protocol must have the revocation property.

Corollary 7. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, post-quantum iO exists, and the hardness of NP, there
exists a revocable anonymous credentials scheme (Definition 8).

Proof. This follows from Corollary 6 and Theorem 17.

6.3 Unclonable Anonymous Credentials

We will show that our revocable anonymous credentials construction in Fig. 6
also satisfies a definition of unclonable anonymous credentials. We defer the
definitions and proofs to the full version [33].

Theorem 18. Let (X ,W) be a hard-distribution of instance and witness
pairs for some NP relation. Let {Sλ}λ∈N be some set of accesses. Let
(Setup,Sign,Verify) be an unclonable-extractable SimExt-secure signature of
knowledge for message space {Sλ}λ∈N (Definition 7).

(IssuerKeyGen, Issue,VerifyCred) defined in Fig. 6 is an unclonable anonymous
credentials scheme.

Corollary 8. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, post-quantum iO exists, and the hardness of NP, there
exists an unclonable anonymous credentials scheme.



124 R. Jawale and D. Khurana

Acknowledgments. The authors were supported in part by DARPA SIEVE, NSF
QIS-2112890, NSF CAREER CNS-2238718, and NSF CNS-2247727. This material is
based on work supported by DARPA under Contract No. HR001120C0024. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States Govern-
ment or DARPA.

References

1. Aaronson, S.: Quantum copy-protection and quantum money. In: Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009. pp. 229–242. IEEE Computer Society (2009). https://doi.
org/10.1109/CCC.2009.42, https://doi.org/10.1109/CCC.2009.42

2. Aaronson, S., Christiano, P.F.: Quantum money from hidden subspaces. Theory
Comput. 9, 349–401 (2013). https://doi.org/10.4086/toc.2013.v009a009, https://
doi.org/10.4086/toc.2013.v009a009

3. Aaronson, S., Liu, J., Liu, Q., Zhandry, M., Zhang, R.: New approaches for quan-
tum copy-protection. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 12825, pp. 526–555. Springer (2021). https://doi.org/10.
1007/978-3-030-84242-0_19, https://doi.org/10.1007/978-3-030-84242-0_19

4. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) Public Key Cryptography
- PKC 2011 - 14th International Conference on Practice and Theory in Public
Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6571, pp. 423–440. Springer (2011). https://doi.org/10.
1007/978-3-642-19379-8_26, https://doi.org/10.1007/978-3-642-19379-8_26

5. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and applica-
tions to hybrid quantum/classical authentication. In: Makarychev, K., Makarychev,
Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020. pp. 255–268. ACM (2020). https://doi.org/10.1145/
3357713.3384304, https://doi.org/10.1145/3357713.3384304

6. Ananth, P., Kaleoglu, F.: Unclonable encryption, revisited. In: Nissim, K., Waters,
B. (eds.) Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 13042, pp. 299–329. Springer (2021). https://doi.org/10.
1007/978-3-030-90459-3_11, https://doi.org/10.1007/978-3-030-90459-3_11

7. Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility of
unclonable encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Con-
ference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 13508, pp. 212–241.
Springer (2022). https://doi.org/10.1007/978-3-031-15979-4_8, https://doi.org/
10.1007/978-3-031-15979-4_8

8. Ananth, P., Placa, R.L.L.: Secure software leasing. In: Canteaut, A., Standaert, F.
(eds.) Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,

https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1145/3357713.3384304
https://doi.org/10.1145/3357713.3384304
https://doi.org/10.1145/3357713.3384304
https://doi.org/10.1007/978-3-030-90459-3_11
https://doi.org/10.1007/978-3-030-90459-3_11
https://doi.org/10.1007/978-3-030-90459-3_11
https://doi.org/10.1007/978-3-031-15979-4_8
https://doi.org/10.1007/978-3-031-15979-4_8
https://doi.org/10.1007/978-3-031-15979-4_8


Unclonable Non-interactive Zero-Knowledge 125

Croatia, October 17-21, 2021, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12697, pp. 501–530. Springer (2021). https://doi.org/10.1007/978-3-
030-77886-6_17, https://doi.org/10.1007/978-3-030-77886-6_17

9. Ananth, P., Poremba, A., Vaikuntanathan, V.: Revocable cryptography from learn-
ing with errors. In: Rothblum, G.N., Wee, H. (eds.) Theory of Cryptography - 21st
International Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2,
2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14372, pp.
93–122. Springer (2023). https://doi.org/10.1007/978-3-031-48624-1_4, https://
doi.org/10.1007/978-3-031-48624-1_4

10. Barhoush, M., Salvail, L.: How to sign quantum messages (2023)
11. Barhoush, M., Salvail, L.: Powerful primitives in the bounded quantum storage

model (2023)
12. Bartusek, J., Garg, S., Goyal, V., Khurana, D., Malavolta, G., Raizes, J., Roberts,

B.: Obfuscation and outsourced computation with certified deletion. Cryptology
ePrint Archive, Paper 2023/265 (2023), https://eprint.iacr.org/2023/265

13. Bartusek, J., Khurana, D.: Cryptography with certified deletion. In: Crypto 2023
(to appear) (2023)

14. Bartusek, J., Khurana, D., Poremba, A.: Publicly-verifiable deletion via target-
collapsing functions. In: Crypto 2023 (to appear) (2023)

15. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5677, pp. 108–125. Springer (2009). https://
doi.org/10.1007/978-3-642-03356-8_7, https://doi.org/10.1007/978-3-642-03356-
8_7

16. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. CoRR
abs/1609.09047 (2016), http://arxiv.org/abs/1609.09047

17. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. IACR Cryptol.
ePrint Arch. p. 94 (2017), http://eprint.iacr.org/2017/094

18. Broadbent, A., Islam, R.: Quantum encryption with certified deletion. In: Pass, R.,
Pietrzak, K. (eds.) Theory of Cryptography. pp. 92–122. Springer International
Publishing, Cham (2020)

19. Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In: Flammia,
S.T. (ed.) 15th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography, TQC 2020, June 9-12, 2020, Riga, Latvia. LIPIcs, vol. 158,
pp. 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.TQC.2020.4, https://doi.org/10.4230/LIPIcs.TQC.2020.4

20. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: Garay, J.A., Prisco, R.D. (eds.) Security and Cryptog-
raphy for Networks, 7th International Conference, SCN 2010, Amalfi, Italy, Septem-
ber 13-15, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6280, pp.
454–471. Springer (2010). https://doi.org/10.1007/978-3-642-15317-4_28, https://
doi.org/10.1007/978-3-642-15317-4_28

21. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings. Lec-
ture Notes in Computer Science, vol. 4117, pp. 78–96. Springer (2006). https://doi.
org/10.1007/11818175_5, https://doi.org/10.1007/11818175_5

https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-031-48624-1_4
https://doi.org/10.1007/978-3-031-48624-1_4
https://doi.org/10.1007/978-3-031-48624-1_4
https://eprint.iacr.org/2023/265
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
http://arxiv.org/abs/1609.09047
http://eprint.iacr.org/2017/094
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5


126 R. Jawale and D. Khurana

22. Coiteux-Roy, X., Wolf, S.: Proving erasure. In: IEEE International Symposium
on Information Theory, ISIT 2019, Paris, France, July 7-12, 2019. pp. 832–836
(2019). https://doi.org/10.1109/ISIT.2019.8849661, https://doi.org/10.1109/ISIT.
2019.8849661

23. Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and applications to
unclonable cryptography. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 12825, pp. 556–584. Springer (2021). https://doi.org/10.
1007/978-3-030-84242-0_20, https://doi.org/10.1007/978-3-030-84242-0_20

24. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.W.: Quantum
money from knots. In: Goldwasser, S. (ed.) Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January 8-10, 2012. pp. 276–289.
ACM (2012). https://doi.org/10.1145/2090236.2090260, https://doi.org/10.1145/
2090236.2090260

25. Fu, H., Miller, C.A.: Local randomness: Examples and application. Phys. Rev.
A 97, 032324 (Mar 2018). https://doi.org/10.1103/PhysRevA.97.032324, https://
link.aps.org/doi/10.1103/PhysRevA.97.032324

26. Georgiou, M., Zhandry, M.: Unclonable decryption keys. IACR Cryptol. ePrint
Arch. p. 877 (2020), https://eprint.iacr.org/2020/877

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012, https://doi.org/10.1137/0218012

28. Gottesman, D.: Uncloneable encryption. Quantum Inf. Comput. 3(6), 581–602
(2003). https://doi.org/10.26421/QIC3.6-2, https://doi.org/10.26421/QIC3.6-2

29. Goyal, V., Malavolta, G., Raizes, J.: Unclonable commitments and proofs. IACR
Cryptol. ePrint Arch. p. 1538 (2023), https://eprint.iacr.org/2023/1538

30. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum encryption with
certified deletion, revisited: Public key, attribute-based, and classical communica-
tion. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT
2021. pp. 606–636. Springer International Publishing, Cham (2021)

31. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Certified everlasting zero-
knowledge proof for QMA. CRYPTO (2022), https://ia.cr/2021/1315

32. IBM: Cost of a data breach report 2023. Tech. rep., IBM (2023)
33. Jawale, R., Khurana, D.: Unclonable non-interactive zero-knowledge. IACR Cryp-

tol. ePrint Arch. p. 1532 (2023), https://eprint.iacr.org/2023/1532
34. Kane, D.M.: Quantum money from modular forms. CoRR abs/1809.05925

(2018), http://arxiv.org/abs/1809.05925
35. Kitagawa, F., Nishimaki, R.: One-out-of-many unclonable cryptography: Defini-

tions, constructions, and more. IACR Cryptol. ePrint Arch. p. 229 (2023), https://
eprint.iacr.org/2023/229

36. Kundu, S., Tan, E.Y.Z.: Composably secure device-independent encryption with
certified deletion (2020). https://doi.org/10.48550/ARXIV.2011.12704, https://
arxiv.org/abs/2011.12704

37. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Mic-
ciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 11693, pp. 326–355.
Springer (2019). https://doi.org/10.1007/978-3-030-26951-7_12, https://doi.org/
10.1007/978-3-030-26951-7_12

https://doi.org/10.1109/ISIT.2019.8849661
https://doi.org/10.1109/ISIT.2019.8849661
https://doi.org/10.1109/ISIT.2019.8849661
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1103/PhysRevA.97.032324
https://link.aps.org/doi/10.1103/PhysRevA.97.032324
https://link.aps.org/doi/10.1103/PhysRevA.97.032324
https://eprint.iacr.org/2020/877
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.26421/QIC3.6-2
https://doi.org/10.26421/QIC3.6-2
https://eprint.iacr.org/2023/1538
https://ia.cr/2021/1315
https://eprint.iacr.org/2023/1532
http://arxiv.org/abs/1809.05925
https://eprint.iacr.org/2023/229
https://eprint.iacr.org/2023/229
https://doi.org/10.48550/ARXIV.2011.12704
https://arxiv.org/abs/2011.12704
https://arxiv.org/abs/2011.12704
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26951-7_12


Unclonable Non-interactive Zero-Knowledge 127

38. Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commit-
ments. Cryptology ePrint Archive, Paper 2019/279 (2019), https://eprint.iacr.org/
2019/279, https://eprint.iacr.org/2019/279

39. Majenz, C., Schaffner, C., Tahmasbi, M.: Limitations on uncloneable encryption
and simultaneous one-way-to-hiding. IACR Cryptol. ePrint Arch. p. 408 (2021),
https://eprint.iacr.org/2021/408

40. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11692, pp. 89–114. Springer (2019). https://doi.org/10.1007/978-3-
030-26948-7_4, https://doi.org/10.1007/978-3-030-26948-7_4

41. Poremba, A.: Quantum proofs of deletion for learning with errors. Cryptology
ePrint Archive, Report 2022/295 (2022), https://ia.cr/2022/295

42. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’99, 17-18 October, 1999, New York, NY, USA. pp. 543–553. IEEE
Computer Society (1999). https://doi.org/10.1109/SFFCS.1999.814628, https://
doi.org/10.1109/SFFCS.1999.814628

43. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 19-23, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2139, pp. 566–598. Springer (2001). https://doi.org/10.1007/3-540-44647-8_
33, https://doi.org/10.1007/3-540-44647-8_33

44. Santis, A.D., Crescenzo, G.D., Persiano, G.: Necessary and sufficient assumptions
for non-iterative zero-knowledge proofs of knowledge for all NP relations. In: Mon-
tanari, U., Rolim, J.D.P., Welzl, E. (eds.) Automata, Languages and Program-
ming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July
9-15, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1853, pp. 451–
462. Springer (2000). https://doi.org/10.1007/3-540-45022-X_38, https://doi.org/
10.1007/3-540-45022-X_38

45. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction
(extended abstract). In: 33rd Annual Symposium on Foundations of Computer
Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992. pp. 427–436. IEEE
Computer Society (1992). https://doi.org/10.1109/SFCS.1992.267809, https://doi.
org/10.1109/SFCS.1992.267809

46. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8441, pp. 129–146. Springer (2014). https://doi.org/10.1007/978-3-
642-55220-5_8, https://doi.org/10.1007/978-3-642-55220-5_8

47. Unruh, D.: Post-quantum security of fiat-shamir. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 10624, pp. 65–95. Springer (2017). https://doi.org/10.1007/978-3-319-
70694-8_3, https://doi.org/10.1007/978-3-319-70694-8_3

https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2021/408
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://ia.cr/2022/295
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-45022-X_38
https://doi.org/10.1007/3-540-45022-X_38
https://doi.org/10.1007/3-540-45022-X_38
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3


128 R. Jawale and D. Khurana

48. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). https://doi.
org/10.1145/1008908.1008920, https://doi.org/10.1145/1008908.1008920

49. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11693, pp. 239–268. Springer (2019). https://doi.org/10.1007/978-3-
030-26951-7_9, https://doi.org/10.1007/978-3-030-26951-7_9

50. Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y.,
Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 11478, pp. 408–438. Springer (2019). https://doi.
org/10.1007/978-3-030-17659-4_14, https://doi.org/10.1007/978-3-030-17659-4_
14

https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-17659-4_14
https://doi.org/10.1007/978-3-030-17659-4_14
https://doi.org/10.1007/978-3-030-17659-4_14
https://doi.org/10.1007/978-3-030-17659-4_14


Unclonable Secret Sharing

Prabhanjan Ananth1(B), Vipul Goyal2, Jiahui Liu3 , and Qipeng Liu4

1 University of California, Santa Barbara, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 NTT Research, Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu

3 Massachusetts Institute of Technology, Cambridge, USA
4 University of California, San Diego, San Diego, USA

Abstract. Unclonable cryptography utilizes the principles of quantum
mechanics to addresses cryptographic tasks that are impossible classi-
cally. We introduce a novel unclonable primitive in the context of secret
sharing, called unclonable secret sharing (USS). In a USS scheme, there
are n shareholders, each holding a share of a classical secret represented
as a quantum state. They can recover the secret once all parties (or at
least t parties) come together with their shares. Importantly, it should
be infeasible to copy their own shares and send the copies to two non-
communicating parties, enabling both of them to recover the secret.

Our work initiates a formal investigation into the realm of unclon-
able secret sharing, shedding light on its implications, constructions, and
inherent limitations.

– Connections: We explore the connections between USS and other
quantum cryptographic primitives such as unclonable encryption
and position verification, showing the difficulties to achieve USS in
different scenarios.

– Limited Entanglement: In the case where the adversarial share-
holders do not share any entanglement or limited entanglement, we
demonstrate information-theoretic constructions for USS.

– Large Entanglement: If we allow the adversarial shareholders to
have unbounded entanglement resources (and unbounded computa-
tion), we prove that unclonable secret sharing is impossible. On the
other hand, in the quantum random oracle model where the adver-
sary can only make a bounded polynomial number of queries, we
show a construction secure even with unbounded entanglement.
Furthermore, even when these adversaries possess only a polynomial
amount of entanglement resources, we establish that any unclon-
able secret sharing scheme with a reconstruction function imple-
mentable using Cliffords and logarithmically many T-gates is also
unattainable.

1 Introduction

Alice is looking for storage for her sensitive data. She decides to hire multi-
ple independent cloud providers and secret shares her data across them. Later
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on, Alice retrieves these shares and reconstructs the data. Everything went as
planned. However: what if the cloud providers keep a copy and sell shares of her
data to her competitor, Bob? How can Alice make sure that once she retrieves
her data, no one else can?

This is clearly impossible in the classical setting. The cloud providers can
always keep a copy of the share locally and later, if Bob comes along, sell that
copy to Bob. Nonetheless, this problem has been recently studied in the classical
setting by a recent work of Goyal, Song, and Srinivasan [GSS21] who introduced
the notion of traceable secret sharing (TSS). In TSS, if (a subset of) the cloud
providers sell their shares to Bob, they cannot avoid leaving a cryptographic
proof of fraud with Bob. Moreover, this cryptographic proof could not have
been generated by Alice. Hence, (assuming Bob cooperates with Alice), Alice
can sue the cloud providers in court and recover damages. Thus, TSS only acts
as a deterrent and indeed, cannot stop the cloud providers from copying the
secret.

However, in the quantum setting, the existence of no cloning theorem offers
the tantalizing possibility that perhaps one may be able to build an “unclonable
secret sharing” (USS) scheme. Very informally, the most basic version of a USS
can be described as follows:

– Alice (the dealer) has a classical secret m ∈ {0, 1}∗. She hires n cloud
providers P1, . . . ,Pn.

– Alice computes shares (ρ1, · · · , ρn), which is an n-partite state, from m and
sends the share ρi to the party Pi (note that Alice does not need to store any
information like a cryptography key on her own).

– Given (ρ1, · · · , ρn), it is easy to recover m. But given any strict subset of the
shares, no information about m can be deduced (i.e., it is an n-out-of-n secret
sharing scheme).

– The most important is the unclonability. For every i ∈ [n], the party Pi

computes a bipartite state σXiYi
. It sends the register Xi to Bob and Yi

to Charlie. Assuming that the message m was randomly chosen to be either
m0 or m1 (where (m0,m1) is chosen adversarially), the probability that both
Bob and Charlie can guess the correct message must be upper bounded by a
quantity negligibly close to 1

2 .

In other words, the parties P1, . . . ,Pn must be unable to locally clone their
shares such that both sets of shares allow for reconstruction. Indeed, as we
mentioned, this is the most basic version of USS. Even this basic setting has a
practical significance: the servers which store Alice’s shares may not intentionally
communicate her shares with each other, because they belong to companies with
conflict of interest; but a malicious Bob may still buy a copy of Alice’s share from
each of them.

One can consider more general settings where, e.g., we are interested in
threshold (i.e., t-out-of-n) USS or, where a subset of the n parties might col-
lude in attempting to clone their shares. One can also consider the setting where
the parties P1, . . . ,Pn share some entanglement (allowing them to use quantum
teleportation).
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Unclonable cryptography leverages the power of quantum information and
empowers one to achieve primitives which are clearly impossible in classical cryp-
tography. While a lot of efforts have been made towards various unclonable cryp-
tographic primitives including but not limited to quantum money [BB20,AC12,
Zha17,Shm22,LMZ23], copy-protection [Aar09,CLLZ21,AL20], tokenized sig-
natures [BS16,CLLZ21,Shm22] and unclonable encryption (UE) [Got02,BL20,
AK21,AKL+22,AKL23], the question of unclonable secret sharing had not been
studied prior to our work. Secret sharing is one of the most fundamental prim-
itives in cryptography and as such, we believe that studying unclonable secret
sharing is an important step towards laying the foundation of unclonable cryp-
tography. Our contribution lies in initiating a systematic study of USS.

Connection to Unclonable Encryption. The classical counterparts of unclon-
able encryption and (2-out-of-2) unclonable secret sharing are very similar. For
instance, both one-time pad encryption and 2-out-of-2 secret sharing rely on the
same ideas in the classical setting. One may wonder if UE and USS share similar
a relation. UE resembles standard encryption with one additional property: now
ciphertext is unclonable, meaning no one can duplicate a ciphertext into two
parts such that both parts can be used separately to recover the original plain-
text. At first glance, it might seem like UE directly implies a 2-out-of-2 USS. To
secret share m, the dealer (Alice) would generate a secret key sk, and compute
ciphertext ρct, which encrypts the classical message m. One of the shares will
be ρct while the other will be sk. Since ρct is unclonable, this may prevent two
successful reconstructions of the original message.

However, the above intuition does not work if the two parties in (2-out-of-2)
USS share entanglement. In UE, the ciphertext ρct is a split into two compo-
nents and sent to Alice and Bob. Later on, the secret key sk is sent (without
any modification) to both Alice and Bob. However, in USS, the secret key sk
corresponds to the second share and might also be split into two register such
that one is sent to Alice and the other to Bob. This split could be done using
a quantum register which is entangled with the quantum register used to split
the cipher text ρct. It is unclear if such an attack can be reduced to the UE
setting, where there is no analog of such an entangled register. In fact, we show
the opposite. We show that in some settings, USS implies UE, thus showing that
USS could be a stronger primitive.

Connection to Instantaneous Non-local Computation. It turns out that the
positive results on instantaneous non-local computation imply negative results
on USS in specific settings. The problem of instantaneous non-local computa-
tion [Vai03,BK11,Spe15,IH08,GC19] is the following: Dave and Eve would like
to compute a unitary U on a state ρXY, where Dave has the register X and Eve
has the register Y. They need to do so by just exchanging one message simulta-
neously with each other. Non-local computation has connections to the theory
of quantum gravity, as demonstrated in some recent works [May19,May22]. Sup-
pose there is a unitary U for which non-local computation is possible then this
rules out a certain class of unclonable secret sharing schemes. Specifically, it
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disallows certain reconstruction procedures that are functionally equivalent to
U . In more detail, consider a USS scheme that is defined as follows: on input
a message m, it produces shares on two registers X and Y. The reconstruction
procedure1 takes as input the shares and outputs m in both registers X and Y.
Any non-local computation protocol for such a reconstruction procedure would
violate the security of the USS scheme. Investigating both positive and negative
results of USS schemes could shed more light on the feasibility of non-local com-
putation. In this work, we adapt and generalize techniques used in the literature
on non-local computation to obtain impossibility results for USS.

USS also has connections to position verification, a well-studied notion in quan-
tum cryptography that has connections to problems in fundamental physics. We
discuss this in the next section.

1.1 Our Results

In this work, our primary emphasis will be on n-out-of-n unclonable secret shar-
ing schemes as even though they are the simplest, they give rise to numerous
intriguing questions. Our results are twofold, as below.

Fig. 1. Relations between USS and UE in the information-theoretic regime.

Results on Information-Theoretic USS. We first examine the connections
between USS and UE and constructions of UE in the information-theoretic
regime. The first part of our results can be summarized by Fig. 1. In the figure,
USS1 stands for information-theoretic USS, secure against adversarial parties
sharing unbounded amount of entanglement; we will explain why we call it USS1
later on. We first show that, even if we restrict adversaries in USS1 to have a
polynomial amount of entanglement, it implies UE.

1 In general, a reconstruction procedure need not output a copy of the secret twice
but using CNOT gates, we can easily transform any reconstruction procedure into
one that outputs two copies of the secret.
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Theorem 1 (direction (a) in Fig. 1, Sect. 6.3). Information-theoretic USS
that is secure against adversarial parties P sharing polynomial amount of entan-
glement implies UE.

This leads us to ponder whether USS1 and UE share equivalence, like their
classical counterparts do. Perhaps surprisingly, we show that this connection is
unlike to hold. We prove that USS1 does not exist in the information-theoretic
setting. Since there is no obvious evidence to refute UE in the IT setting and
many candidates were proposed toward information-theoretic UE, our impossi-
bility stands in sharp contrast to UE.

Theorem 2 (direction (b) in Fig. 1, Sect. 6.1). Information-theoretic USS
that is secure against adversarial parties P sharing unbounded amount of entan-
glement with each other, does not exist.

Facing the above impossibility, it seems like USS in the IT regime comes
to a dead end. To overcome the infeasibility result, we investigate USS against
adversarial parties with specific entanglement configurations. We consider the
case where every pair of Pi and Pj either shares unbounded entanglement or
shares no entanglement. In this case, we can define an entanglement graph, of
which an edge (i, j) corresponds to entanglement between Pi and Pj . Then, we
propose the natural generalization and define USSd for any d > 1:

USSd: Information-theoretic USS, secure against adversarial parties sharing
entanglement whose entanglement graph has at least d connected compo-
nents.

The above definition captures the case that there are d groups of parties; there
is unlimited entanglement between parties in the same group and no entangle-
ment between parties in different groups. This notation is not only for overcom-
ing the barrier, but also has practical interest: parties from different groups are
geographically separated or have conflict of interest, maintaining entanglement
between them is either too expensive or impossible. Note that the characteri-
zation of entanglement is only for adversarial parties, whereas honest execution
of the scheme does not need any pre-shared entanglement. We also like to note
that aforementioned USS1 is also captured by the above definition when d = 1.

It is easy to see that the existence of USSd implies USSd+1 for any d ≥ 1, as
having less entanglement makes attacking more difficult. However, since USS1 is
impossible, can we construct USSd for some d? We complete the picture of USS
and UE by presenting the following two theorems.

Theorem 3 (direction (c) in Fig. 1, Sect. 5.2). UE implies USS2 in the
information-theoretic setting. As a corollary, it implies USSd for any d > 1 in
the IT setting.

Theorem 4 (construction (d) in Fig. 1, Sect. 5.1). USSd exists for every
d = ω(log λ) in the information-theoretic setting, where λ is the security param-
eter.
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Along with Theorem 4, we proved a special XOR lemma of the well-known
monogamy-of-entanglement property for BB84 states [BB20,TFKW13], when
the splitting adversary is limited to tensor strategies. More precisely, we only con-
sider cloning strategies that apply channels on each individual qubit, but never
jointly on two or more qubits. Given a BB84 state, let p(n) be the probability of
the optimal tensor cloning strategy, that later two non-communicating parties
recover the parity simultaneously. p(1) = 1/2+1/2

√
2 was proved in [TFKW13].

In this work, we show that p(n) = 1/2+exp(−Ω(n)), which demonstrates a XOR
hardness amplification for tensor strategies. We believe the proof of the theorem
will be of independent interest, as a more general version of the theorem (that
applies to any cloning strategies) will imply UE in the IT setting, resolving an
open question on unclonable encryption since [BL20].

These two theorems establish a clear distinction between USS1 and USSd for
all d greater than 1. Furthermore, the latter theorem illustrates that as the value
of d becomes sufficiently large, it becomes feasible to achieve USSd within the
IT setting. Consequently, it implies that, at the very least, certain objectives
outlined in Fig. 1 can be constructed.

Lastly, as the final arrow in Fig. 1, does USS2 or USSω(log λ) implies UE?

Remark 1 (direction (e) in Fig. 1). We do not have an answer yet. Nonetheless,
we assert that either USSd does not imply UE, or establishing this implication is
as challenging as constructing UE. The latter assertion arises from our existing
knowledge of USSω(log λ)—demonstrating such an implication should, in turn,
furnish us with a means to construct UE within the IT framework.

Results on Computational USS. In this computational regime, adversarial
parties are computationally bounded; this in turn implies that the amount of pre-
shared entanglement is also computationally bounded. Unlike the comprehensive
picture presented in Fig. 1, our understanding here is more intricate. Specifically,
as demonstrated in Fig. 2, the feasibility or infeasibility hinges on factors such as
the computational complexity of USS schemes and the actual quantity of shared
entanglement among malicious parties.

Similar to the IT setting, the implication of USS1 and UE still works (direc-
tion (a) in Fig. 2). What is new here is that we present one impossibility result
and one infeasibility result on USS1.

Theorem 5 (Informal, impossibility (f) in Fig. 2, Sect. 6.2). USS whose
reconstruction function has only d T gates, can be attacked with adversarial
parties sharing O(2d) qubits of pre-shared entanglement.

Therefore, when the reconstruction has low T complexity, say d = log λ, then
such USS does not exist even in the computational regime. Next, we present
a construction, in sharp contrast to the impossibility above. Quantum random
oracle [BDF+11], models the perfect (and unrealizable) cryptographic hash func-
tion. As it should behave as a truly random function, it can not have a small
number of T gates.
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Fig. 2. Relations between USS and UE in the computational regime.

Theorem 6 (construction (g) in Fig. 2, Full Version). USS that is secure
against query-efficient adversarial parties sharing an arbitrary amount of pre-
shared entanglement2, exists in the quantum random oracle model (QROM).

As quantum random oracle is not realizable in general, we wonder whether
USS1 can be constructed in the plain model. To the end, we show that USS1
implies a cryptographic primitive called 1-dimensional position verification that
is secure against parties sharing any polynomial amount of entanglement. Posi-
tion verification represents an actively explored research area. Despite all the
ongoing efforts, the development of a construction for position verification within
the standard model remains elusive. This underscores the formidable challenge
of devising USS1, when relying on computational assumptions.

Theorem 7 (direction (h) in Fig. 2, Sect. 6.4). USS that is secure against
adversarial parties having pre-shared entanglement, implies 1-dimensional posi-
tion verification that is secure against parties sharing the same amount of pre-
shared entanglement.

1.2 Other Related Works

On Secret Sharing of Quantum States. Our work focuses on secret-sharing clas-
sical secrets by encoding them into a quantum state to achieve unclonability.
One may be curious about the relationship of our new primitive to the existing
studies on secret-sharing schemes where the secret messages are quantum states
to begin with.

In short, all the existing quantum secret sharing schemes fall short of satisfy-
ing one crucial property in our model: the requirement of no or low entanglement
for honest parties. Their unclonability also remains elusive, as they require much
more complicated structures on quantum states than ours. We provide a detailed

2 The adversary is polynomially bounded in queries but not in the pre-shared entan-
glement.
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discussion below and will carefully incorporate all the discussions into the sub-
sequent version.

In the paper, we consider a model where malicious parties can share some
amount of entanglement before attacking the protocol. As illustrated in Fig. 1
and Fig. 2, the amount of entanglement (or more precisely, the entanglement
graph) plays an important role in both the construction and barriers of such
schemes. Therefore, we do not want the entanglement used in honest shares to
scale to the same order or surpass what adversaries can access. Our constructions
(Theorem 4 and Theorem 6) are based on unentangled quantum shares of single
qubits, thus no entanglement required.

[HBB99] first proposed the idea of using quantum states to secret-share a
classical bit. Their idea is to use n-qubit GHZ states for an n-out-of-n secret
share scheme. However, an n-qubit GHZ state requires entanglement across n
quantum registers, which enforces shareholders to maintain entanglement with
each other. A subsequent proposal in [KKI99] followed a similar path but also
required a large amount of entanglement. The idea of using quantum state to
secret share classical secrets was also discussed by Gottesman [Got00], but they
mostly focused on the lower bounds of general schemes (potentially requiring
entanglement): for example, how many qubits are required to secret-share one
classical bit.

There is another line of works on secret-sharing quantum secrets, including
[CGL99,Smi00] and most recently [ÇGLR23] by Çakan et al. Since the goal is to
secret-share a quantum state, entanglement is also necessary in these protocols.

2 Technical Overview

In this section, unless otherwise specified, we focus on 2-out-of-2 USS, with Share
and Reconstruct. Share takes as input a message m and outputs two shares ρ0, ρ1;
whereas Reconstruct takes two quantum shares and outputs a string. We assume
ρ0, ρ1 are unentangled. When we consider impossibility results, all arguments
mentioned in this overview carry in the same way to the general cases; for con-
structions, we only require unentangled shares.

2.1 USS1 Implies UE, UE Implies USS2

We first examine two directions (directions (a) and (c) in Figs. 1 and 2); that is,
how USS1 implies UE and how UE implies USS2. We briefly recall the definition
of UE: it is a secret key encryption scheme with the additional property: there
is no way to split a quantum ciphertext into two parts, both combining with the
classical secret key can recover the original plaintext (with probability at least
1/2 plus negligible).

USS1 implies UE, Sect. 6.3. Given a 2-out-of-2 USS, we now design a UE:

UE.Enc(k,m) takes as input a secret key k and a message,
1. it first produces two shares (ρ1, ρ2) ← USS.Share(m),
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2. it parses k = (a, b), let the unclonable ciphertext be ct =
(ρ1,XaZbρ2Z

bXa). In other words, it sends out ρ1 in clear, while having
ρ2 one-time padded by the key k.

Decryption is straightforward, by unpadding XaZbρ2Z
bXa and applying

Reconstruct to (ρ1, ρ2). Correctness and semantic security follows easily. Its
unclonability can be based on the unclonability of USS1; indeed, the scheme
corresponds to a special strategy of malicious P1 and P2. Suppose there exists
an adversary (A,B, C) that violates the above scheme, there exists (P1,P2,B, C)
that violates the security of USS1.

P1 and P2 share EPR pairs. P2 uses the EPR pairs to teleport ρ2 to P1, with P2

having random (a, b) and P1 obtaining (ρ1,XaZbρ2Z
bXa). As P2 only has

classical information, it sends (a, b) to both B and C, while P1 applies A on
(ρ1,XaZbρ2Z

bXa) and shares the bipartite state with both B and C.

It is not hard to see that the above attacking strategy for USS1 exactly corre-
sponds to an attack in the UE we proposed above: P1 tries to split a ciphertext
while P2 simply forwards the secret key k = (a, b). Therefore, we can base the
unclonability of the UE on that of USS1, which completes the first direction.

UE implies USS2, Sect. 5.2. Recall that 2-out-of-2 USS2 describes adversarial
parties who do not share any entanglement. We can simply set up our USS2
scheme as follows, using UE:

Share(m) takes as input a message m, it samples a key k for UE, and let |ct〉 be
the unclonable ciphertext of m under k; the procedure Share outputs the first
share as ρ1 = k, and the second share as ρ2 = |ct〉.

As there is no entanglement between P1 and P2, P1 with ρ1 = k forwards the
classical information to both Alice and Bob. In the meantime, P2 employs her
cloning strategy, which remains entirely independent of the key k. Consequently,
the unclonability of out USS2 aligns with that of UE.

When we generalize the conclusion to n-out-of-n USS2, we first secret share
the targeted message m into n shares. For any two adjacent parties Pi, Pi+1

and the i-th share, the first part receives the key and the second one gets the
unclonable ciphertext. As long as all the malicious parties form at least two
connected components (as defined in USS2), there must be two adjacent parties
who do not have entanglement. Thus, we can incur the same logic to prove its
unclonability, basing on the unclonability of UE.

2.2 Construction of USSω(log λ)

For simplicity, we focus on an n-out-of-n USS, where n = ω(log λ) and no entan-
glement is shared between any malicious parties, which is a special case of a
general n-out-of-n USSω(log λ), for a larger n � ω(log λ). Our construction is
based on the BB84 states. Our scheme first classically secret-shares m into (n−1)
shares and encodes each classical share into a single-qubit BB84 state. One party
will receive the basis information θ which contains (n−1) basis; every other party
will receive a BB84 state for the i-th classical share.
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Share(m): it takes as input a secret m ∈ {0, 1},
– it samples m1, · · · ,mn−1 conditioned on their parity equals to m;
– it samples θ ∈ {0, 1}n−1;
– let the first (n − 1) shares be ρi = Hθi |mi〉 〈mi| Hθi and the last share

ρn = |θ〉〈θ|.
Reconstruction of shares is straightforward. After receiving all shares, one uses
the basis information θ to recover all the classical shares mi; m then is clearly
determined by these mi.

To reason about the unclonability of our protocol, we first recall a theo-
rem on BB84 states, initially proposed by Tomamichel, Fehr, Kaniewski and
Wehner [TFKW13] and later adapted in constructing unclonable encryption by
Broadbent and Lord [BL20]. We start by considering a cloning game of single-
qubit BB84 states.

1. A receives Hθ|x〉〈x|Hθ for uniformly random x, θ ∈ {0, 1}, it applies a channel
and produces σBC. Bob and Charlie receive their registers accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover x; they win if
and only if both guess x correctly.

Lemma 1 (Corollary 2 when n = 1, [BL20]). No (unbounded) quantum
(A,B, C) wins the above game with probability more than 0.855.

Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] and Broadbent and
Lord [BL20] studied parallel repetitions of the above cloning game3. In the par-
allel repetition, n random and independent BB84 states are generated, which
encode an n-bit string x. The goal of cloning algorithms is to guess the n-bit
string x simultaneously. They showed that the cloning game follows parallel
repetition, meaning that the optimal winning probability in an n-fold parallel
repetition game is at most (0.855)n.

Our proposed scheme also prepares these BB84 states in parallel, but hides
the secret m as the XOR of the longer secret. Indeed, the XOR repetition of the
BB84 cloning game has been a folklore and was considered as a candidate for
UE. More specifically, it is conjectured that the following game can not be won
by any algorithm with probability more than 1/2 + exp(−Ω(n)):

XOR repetition of BB84 cloning games.

1. A receives Hθ|x〉〈x|Hθ for uniformly random x, θ ∈ {0, 1}n, it applies a chan-
nel and produces σBC. Bob and Charlie receive their register accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover parity(x); they
win if and only if both guess correctly.

Although there is no evidence to disprove the bound for the XOR repetition so
far, the validity of the bound still remains unknown. In this work, we prove this

3 Indeed, [TFKW13] proved a stronger statement on a different game, which ultimately
implied the parallel repetition theorem, shown by [BL20].
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bound, when A is restricted to a collection of strategies. It applies Ci on the i-th
qubit of the BB84 state and get σ

(i)
BC; the final state σBC =

⊗
i σ

(i)
BC. Note that

the lemma does not put any constraint on the behaviors of B or C.

Lemma 2 (An XOR lemma for BB84 cloning games, Sect. 5.1). When
A only applies a tensor cloning strategy to prepare σBC, the optimal success
probability in the XOR repetition of BB84 games is 1/2 + exp(−Ω(n)).

Equipped with it, it is straightforward to show the unclonability of our protocol.

A proof for the XOR repetition. Finally, we give a brief recap on the proof for
Lemma 2.

For any A’s tensor strategy with channels Ci applied on the i-th qubit of a
BB84 state, we recall the notation σ

(i)
BC . This is the state produced from the i-th

qubit of the B884 state, when θi, xi was sampled uniformly at random. Let σ
(i,0)
B

be the density matrix, describing the register that will be given to Bob, when
xi = 0. We can similarly define σ

(i,1)
B , σ

(i,0)
C and σ

(i,1)
C . Lemma 1 tells us that,

there exists a constant c > 0, either

TD(σ(i,0)
B , σ

(i,1)
B ) < c or TD(σ(i,0)

C , σ
(i,1)
C ) < c.

This indicates that for every i, either Bob or Charlie can not perfectly tell the
value of xi, regardless of the channel Ci. Furthermore, as the BB84 state has n
qubits, w.l.o.g. we can assume that the above holds for Bob, for at least n/2
positions.

In the XOR repetition, Bob eventually will receive σ
(i,mi)
B . We show that Bob

can not tell whether the parity of all mi is odd or even. More precisely, we will
show:

TD

⎛

⎜
⎝

∑

m1,...,mn−1:
⊕imi=0

1
2n−2

(
⊗

i

σ
(i,mi)
B

)

,
∑

m1,...,mn−1:
⊕imi=1

1
2n−2

(
⊗

i

σ
(i,mi)
B

)
⎞

⎟
⎠ ≤ cn/2.

We connect the trace distance directly to the trace distance of each pair of states
TD(σ(i,0)

B , σ
(i,1)
B ) and demonstrate an equality (see Sect. 5.1):

TD

⎛

⎜
⎝

∑

m1,...,mn−1:
⊕imi=0

1
2n−2

(
⊗

i

σ
(i,mi)
B

)

,
∑

m1,...,mn−1:
⊕imi=1

1
2n−2

(
⊗

i

σ
(i,mi)
B

)
⎞

⎟
⎠

=
∏

i

TD
(
σ
(i,0)
B , σ

(i,1)
B

)
.

Since every trace distance is bounded by 1 and there are at least n/2 terms in
the product smaller than c, we conclude the result.
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2.3 Impossibility of USS1

Since USS1 implies UE, it is natural to consider building UE from USS1. Con-
structing UE in the basic model remained unresolved since [BL20]. Perhaps the
connections in the last section provide a new avenue for constructing UE. In this
section, we present two impossibility results (referred to as (b) in Fig. 1 and (f)
in Fig. 2) that highlight challenges associated with USS1.

Information-theoretic USS1 does not exist, Sect. 6.1. We begin by examining the
case of 2-out-of-2 USS1 with unentangled shares, and our impossibility result
extends to the general case. Let us consider two malicious parties, P1 and P2, who
share an unlimited amount of entanglement. P2 receives the initial share, ρ2, and
teleports it to P1. This action leaves P2 with a random one-time pad key, denoted
as (a, b) while P1 now possesses (ρ1,XaZbρ2Z

bXa). Now, P1 aims to jointly
apply the reconstruction procedure to (ρ1, ρ2), but there’s a problem: P1 lacks
all the necessary information, especially the one-time padded key. To address
this challenge, we recall the concept of port-based teleportation [IH08,BK11] to
help P1.

Port-based teleportation allows one party to teleport a d-qubit quantum state
to another party, while leaving the state in plain. This is certainly impossible
without paying any cost, as it contradicts with special relativity. Two parties need
to pre-share about O(d2d) EPR pairs, divided into O(2d) blocks of d qubits. After
the port-based teleportation, the teleported state will be randomly dropped into
one of the blocks of P2, while only P1 has the classical information about which
block consists of the original state.

Equipped with port-based teleportation, P1 teleports (ρ1,XaZbρ2Z
bXa) to

P2; it has the classical information ind specifying the location of the teleported
state. P2 then runs Reconstruct ◦ (I ⊗ ZbXa) on every possible block among the
pre-shared entanglement, yielding O(2d) different values; even though most of
the execution is useless, the ind-th block will store the correct (classical) answer.
Finally, both P1 and P2 sends all their classical information to Alice and Bob;
each of them can independently determine the message. This clearly violates
the unclonability of USS1. Thus, for any 2-out-of-2 USS1 whose shares are of
length d, there is an attacking strategy that takes time and entanglement of
order Õ(d2d) and completely breaks its unclonability.

We refer readers to Sect. 6.1 for the proof of a general theorem statement.

Impossibility of computationally secure USS1, with low-T Reconstruct, Sect. 6.2.
We now focus on the case when the reconstruction circuit can be implemented
by Clifford gates and logarithmically many T gates. Denote C to be the recon-
struction circuit. That is, on input two shares of the form ρ1, ρ2, the output is
the first bit of C(ρ1 ⊗ ρ2)C† = |m〉 〈m| ⊗ τ .

We let P2 teleport ρ2 to P1 and they try to compute Reconstruct in a non-local
manner. In the previous attack, this is done by leveraging an exponential amount
of entanglement. To avoid this and make the attack efficient, we hope that P1

can homomorphically compute on the one-time padded data (ρ1,XaZbρ2Z
bXa),

without decrypting it.
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Suppose C is a Clifford circuit. We use the fact that the Clifford group is a
normalizer for the Pauli group (specifically, the XaZb operator). Let us assume
each ρ1, ρ2 is of 	 qubits. In other words, for any a, b ∈ {0, 1}� and Clifford circuit
C, there exists a polynomial-time computable a′, b′ ∈ {0, 1}2� depending only on
a, b and C, such that

C(ρ1 ⊗ XaZbρ2Z
bXa)C† = Xa′

Zb′
C(ρ1 ⊗ ρ2)C†Zb′

Xa′
.

Here a′, b′ act as a bigger quantum one-time pad operated on C(ρ1 ⊗ ρ2)C† =
|m〉 〈m| ⊗ τ .

Now P1 measures the first qubit in the computational basis, yielding m⊕a′
1;

whereas P2 compute a′, b′ (and most importantly, a′
1) from its classical informa-

tion a, b. They send their knowledge to both Alice and Bob, who later simulta-
neously recover m.

Next, let us consider the more general case where C consists of Clifford gates
and t number of T gates. The homomorphic evaluation of Clifford gates are as
before. However, the homomorphic evaluation of T gates are handled differently.

Let us consider one single T gate that applies to the first qubit. We consider
two identities, for any x, z ∈ {0, 1} and any single-qubit state |ψ〉

(i) T (XxZz) |ψ〉 = (XxZx⊕zP x)T |ψ〉 ,

(ii) P (XxZz) |ψ〉 = (XxZx⊕z)P |ψ〉
Suppose, the current state is of the form XxZz |ψ〉 and we apply P xT to the
state. We would like to show that the resulting state is Xa′

Zb′
T |ψ〉 for some

a′ ∈ {0, 1}, b′ ∈ {0, 1}. We use the above identities:

(P xT )(XxZz) |ψ〉 From (i)
= P x(XxZx⊕zP x)T |ψ〉 From (ii)

= XxZx⊕zP x⊕xT |ψ〉 .

Note that P 2 = P 0 = I. Thus, if we can learn x ahead, we can successfully homo-
morphic compute T on the encrypted data. However, in our case, x corresponds
to any bit in the one-time pad key a of any stage. P1 has no way to learn x. This
is where the limitation of low-T gate comes from. Instead of knowing x ahead,
each time when a T homomorphic evaluation is needed, one simply guesses x′; as
long as x = x′ (which happens with probability 1/2), we succeed. Thus, P1 only
guesses all x’s (for each T gate) correctly with probability 2−t. If t is logarithmic,
our attack violates the security with inverse polynomial probability; therefore,
it rules out computationally secure USS1 with a low-T Reconstruct procedure.

2.4 Barriers of USS1 (Implication of PV)

To further demonstrate the challenge of building USS against entangled adver-
saries, we show that 2-party USS1 implies a primitive called position verifica-
tion. Position verification (PV) has remained a vexing problem since its incep-
tion [CGMO09].

We briefly introduce the notion of position verification for the 1-dimensional
setting: two verifiers on a line will send messages to a prover who claims to be
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located at a position between the two verifiers. By computing a function of the
verifiers’ messages and returning the answers to the verifiers in time, the prover
ensures them of its location. However, two malicious provers may collude to
impersonate such an honest verifier by standing at the two sides of the claimed
position.

We demonstrate that 2-party USS1, even with the weaker search-based secu-
rity, will imply PV: the two verifiers in the position verification protocol will
generate secret shares (ρ0, ρ1) of a random string s; then they will each send the
messages ρ0 and ρ1 respectively to the prover; the prover needs to reconstruct
s and send s to both verifiers in time. Any attack against PV can be viewed as
a two-stage strategy—one can perfectly turn the first-stage strategy in PV into
the shareholders’ strategy in USS and the second-stage strategy in PV into the
recoverers’ strategy in USS.

Despite many efforts, progress on PV in the computational setting against
entangled adversaries has unfortunately been slow. We do not even know of
any secure computational PV against adversaries with unbounded polynomial
amount of entanglement in the plain model, nor any impossibility result. More-
over, some recent advancement in quantum gravity has unveiled some connec-
tions between the security of position verification and problems in quantum
gravity [May19,May22] .

Any progress of USS1 in the plain model will contribute towards resolving
this long-standing open problem and unveil more implications.

3 Preliminaries

3.1 Notations

We assume that the reader is familiar with the basic background from [NC10].
The Hilbert spaces we are interested in are Cd, for d ∈ N. We denote the quantum
registers with capital bold letters R, W, X, ... . We abuse the notation and
use registers in place of the Hilbert spaces they represent. The set of all linear
mappings from R to W is denoted by L(R,W), and L(R) denotes L(R,R).
We denote unitaries with capital letters C, E, ... and the set of unitaries on
register R with U(R). We denote the identity operator on R with IR; if the
register R is clear from the context, we drop the subscript R from the notation
IR. We denote the set of all positive semi-definite linear mappings in L(R,R)
with trace 1 (i.e., set of all valid quantum states) by D(R). For a register R in
a multi-qubit system, we denote R to be a register consisting of all the qubits
in the system not contained in R. We denote TrR(ρ) to be the state obtained
by tracing out all the registers of ρ except R. A quantum channel Φ refers to a
completely positive and trace-preserving (CPTP) map from a Hilbert space H1

to a possibly different Hilbert space H2.

3.2 Unclonable Encryption

Unclonable encryption was originally defined in [BL20] and they considered two
security notions, namely search and indistinguishability security, with the latter
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being stronger than the former. We consider below a mild strengthening of the
indistinguishability security due to [AK21].

Definition 1. An unclonable encryption scheme UE is a triple of efficient quan-
tum algorithms (UE.KeyGen,UE.Enc,UE.Dec) with the following procedures:

– KeyGen(1λ): On input a security parameter 1λ, returns a classical key sk4.
– Enc(sk,m): It takes the key sk and the message m for m ∈ {0, 1}poly(λ) as

input and outputs a quantum ciphertext ρct.
– Dec(sk, ρct): It takes the key sk and the quantum ciphertext ρct, it outputs a

quantum state τ .

Correctness. The following must hold for the encryption scheme. For every
sk ← KeyGen(1λ) and every message m, we must have Tr[|m〉 〈m|Dec(sk,
Enc(sk, |m〉 〈m|))] ≥ 1 − negl(λ).

Unclonability. In the rest of the work, we focus on unclonable IND-CPA security.
The regular IND-CPA security follows directly from its unclonable IND-CPA
security. To define unclonable security, we introduce the following security game.

Definition 2 (Unclonable IND-CPA game). Let λ ∈ N
+. Consider the

following game against the adversary (A,B, C).
– The adversary A generates m0,m1 ∈ {0, 1}n(λ) and sends (m0,m1) to the

challenger.
– The challenger randomly chooses a bit b ∈ {0, 1} and returns Enc(sk,mb) to

A. A produces a quantum state ρBC on registers B and C, and sends the
corresponding registers to B and C.

– B and C receive the key sk, and output bits bB and bC respectively.

The adversary wins if bB = bC = b.

We denote the success probability of the above game by advA,B,C(λ). We say
that the scheme is information-theoretically (resp., computationally) secure if
for all (resp., quantum polynomial-time) adversaries (A,B, C),

advA,B,C(λ) ≤ 1/2 + negl(λ).

4 Definitions and Notations

4.1 Unclonable Secret Sharing

An (t, n)-unclonable secret sharing scheme, associated with n parties P1, . . . ,Pn,
consists of the following QPT algorithms:

4 In our construction, we require sk being a uniform random string. Such a UE scheme
can be constructed in QROM [AKL+22,AKL23].
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– Share(1λ, 1n, 1t,m) → ρR1R2···Rn
: On input security parameter λ, n parties,

a secret m ∈ {0, 1}∗, output registers R1,R2, · · · ,Rn.
– Reconstruct(ρR′

i1
, . . . , ρR′

it
): On input shares R′

i1
, . . . ,R′

it
, output a secret m̂.

When it is an n-out-of-n USS scheme, we ignore the input 1t in Share. In
the rest of the work, we will focus on constructions with unentangled shares
and impossibility results for entangled shared. For sake of clarity, we will use
ρ1, · · · , ρn to denote these shares. We require the following properties to hold.

Correctness. We can recover the secret with probability (almost) 1, more for-
mally:

Pr[Reconstruct(ρi1 , · · · , ρik
) = m|(ρ1, · · · , ρn) ← Share(1λ, 1n, m) ∩ k ≥ t] = 1 − negl(λ).

Soundness/Privacy. Given (at most) (t−1) shares, it is information-theoretically
impossible/computationally hard to recover the original message. Formally, for
any unbounded/QPT A, there exists a negligible function negl(·), for every m ∈
{0, 1}, for every λ > 0, i1, · · · , it−1 ∈ [n],

Pr[A(ρi1 , · · · , ρit−1) = m|(ρ1, · · · , ρn) ← Share(1λ, 1n,m)] =
1
2
+ negl(λ).

All our schemes satisfy information-theoretic soundness/privacy.

4.2 Indistinguishability-Based Security

In this work, we will mostly focus on the (n, n)-unclonable secret sharing case.
For simplicity, we call it n-party USS.

In this section, we define indistinguishability-based security for n-party USS.
The security guarantees that for any two messages m0,m1, no two reconstruct-
ing parties can simultaneously distinguish between whether the secret is m0 or
m1, given their sets of respective cloned shares. Formally, we define the following
experiment:

Expt({Ai},B,C,ξ):

1. Let ξ be a quantum state on registers Aux1, . . . ,Auxn. For every i ∈ [n], Ai

gets the register Auxi.
2. Adv = ({Ai},B, C, ξ) sends (m0,m1) to the challenger such that |m0| = |m1|.
3. Share Phase: The challenger chooses a bit b

$←− {0, 1}. It computes
Share(1λ, 1n,mb) to obtain (ρ1, . . . , ρn) and sends ρi to Ai.

4. Challenge Phase: For every i ∈ [n], Ai computes a bipartite state σXiYi
.

It sends the register Xi to B and Yi to C.
5. B on input the registers X1, . . . ,Xn, outputs a bit bB. C on input the registers

Y1, . . . ,Yn, outputs a bit bC .
6. Output 1 if bB = b and bC = b.
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Definition 3 (Information-theoretic Unclonable Secret Sharing). An
n-party unclonable secret sharing scheme (Share,Reconstruct) satisfies 1-bit
unpredictability if for any non-uniform adversary Adv =

({Ai}i∈[n],B, C, ξ
)
, the

following holds:

Pr
[
1 ← Expt({Ai},B,C,ξ)

]
≤ 1

2
+ negl(λ)

Definition 4 (Computational Unclonable Secret Sharing). An n-party
unclonable secret sharing scheme (Share,Reconstruct) satisfies 1-bit unpre-
dictability if for any non-uniform quantum polynomial-time adversary Adv =({Ai}i∈[n],B, C, ξ

)
, the following holds:

Pr
[
1 ← Expt({Ai},B,C,ξ)

]
≤ 1

2
+ negl(λ)

Claim. Existence of (n − 1)-party USS unconditionally implies n-party USS.

This is straightforward to see, by creating a dummy share.

4.3 Entanglement Graph

We will focus on the setting when there are multiple quantum adversaries with
shared entanglement modeled as a graph, that we refer to as an entanglement
graph. We formally define entanglement graphs below.

Definition 5 (Entanglement Graph). Let ρ be a n-partite quantum state
over the registers X1, · · · ,Xn. Let ρ[i] be the mixed state over register Xi

(i.e., ρ[i] = TrXi
(ρ)) and ρ[i, j] be the mixed state over the registers Xi,Xj

(i.e., ρ[i, j] = TrXi,Xj
(ρ)). An entanglement graph G = (V,E) associated with

(ρ,X1, . . . ,Xn) is defined as follows:

– G is an undirected graph;
– V = {1, 2, · · · , n};
– E contains an edge (u, v) if and only if Xu and Xv are entangled; or in other

words, there does not exist σu, σv such that ρ[u, v] = σu ⊗ σv.

Performing non-local operations on a state ρ, over the registers X1, . . . ,Xn, could
change the entanglement graph. For instance, performing arbitrary channels on
some Xi, could remove some edges associated with the node i; for example, a
resetting channel that maps every state to |0〉 〈0|. However, on the other hand,
performing only unitary operations on each of X1, . . . ,Xn is not going to change
the entanglement graph.

Unless otherwise specified, we assume that the amount of entanglement
shared between the different parties is either unbounded for information-
theoretic protocols, or arbitrarily polynomial for computational protocols.

Definition 6. Let P = (P1, . . . ,Pn) be the set of parties with ρ being the state
received by all the parties. That is, ρ is an n-partite quantum state over the
registers X1, . . . ,Xn such that the party Pi gets the register Xi. We say that
G is the entanglement graph associated with P if G is the entanglement graph
associated with (ρ,X1, . . . ,Xn).
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Definition 7 (USSd). We say an information-theoretic/computational unclon-
able secret sharing scheme is a secure USSd scheme, if it has indistinguishability-
based security against all unbounded/efficient adversaries with pre-shared entan-
glement, whose entanglement graph has at least d connect components.

It is not hard to see that, USS1 is a USS satisfying the regular indistinguishability
security.

5 Adversaries with Disconnected Entanglement Graphs

In this section, we give a construction of unclonable secret sharing with security
against quantum adversaries with disconnected entanglement graphs.

5.1 USSω(log λ): an Information-Theoretic Approach

We present an information-theoretic protocol in the setting when there are
ω(log λ) connected components. For simplicity, we consider the case when there
are (n + 1) parties and the entanglement graph does not have any edges. We
demonstrate a construction of USS in this setting, where the security scales with
n.

1. Share(1λ, 1(n+1),m ∈ {0, 1}):
(a) Sample uniformly random r1, . . . , rn ← {0, 1} conditioned on ⊕iri = m.
(b) Sample θ1, . . . , θn ← {0, 1}.
(c) For each i ∈ [n]: let the ith share be ρi = Hθi |ri〉〈ri|Hθi . Let the (n+1)th

share be ρn+1 = (θ1, . . . , θn).
(d) Output (ρ1, . . . , ρn+1).

2. Reconstruct(ρ1, . . . , ρn+1):
(a) Measure ρn+1 in the computational basis to get (θ1, . . . , θn).
(b) For every i ∈ [n], apply Hθi to ρi. Measure the resulting state in the

computational basis to get ri.
(c) Output ⊕iri = m.

Correctness and Soundness. We refer readers to the full version. Note that the
soundness only holds for n = Ω(log n), i.e., the protocol should have at least
Ω(log n) shares.

Security. Consider the adversary to be Adv = ({Ai},B, C, ξ), where ξ is a product
state. Henceforth, we omit mentioning ξ = ξ1 ⊗ · · · ⊗ ξn+1, where Ai receives ξi,
since we can think of ξi to be part of the description of Ai.

For b ∈ {0, 1}, let (ρr1
1 , . . . , ρrn

n , ρn+1) ← Share(1λ, 1(n+1), b), where ⊕iri = b
and ρi = Hθi |ri〉〈ri|Hθi and ρn+1 = |θ1 · · · θn〉〈θ1 · · · θn|. Suppose upon receiving
ρri

i , Ai sends registers {Xri
i } and {Yri

i } respectively to B and C. We denote the
reduced density matrix on Xri

i to be σri
i and on Yri

i to be ζri
i . We assume without

loss of generality that ρn+1 is given to both B and C since it is a computational
basis state.
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Define SB and SC as follows:

SB =
{
i ∈ [n] : TD

(
σ0

i , σ1
i

) ≤ 0.86
}

SC =
{
i ∈ [n] : TD

(
ζ0i , ζ1i

) ≤ 0.86
}

We prove the following claims.

Claim. Either |SB| ≥ �n
2 � or |SC | ≥ �n

2 �.
Proof. We prove by contradiction; suppose it is not the case. Then there exists
an index i ∈ [n] such that i /∈ SB and i /∈ SC . That is, TD

(
σ0

i , σ1
i

)
> 0.86

and TD
(
ζ0i , ζ1i

)
> 0.86, meaning the optimal state distinguishing circuit can

distinguish σ0
i , σ1

i with probability at least 0.93 = (1 + 0.86)/2. Similarly, the
optimal distinguishing probability for states ζ0i , ζ1i is at least 0.93.

Using this, we design an adversary that violates the unclonable security of
single-qubit BB84 states [BL20, Corollary 2]. Let us first recall the security game
for the unclonability of single-qubit BB84 states:

1. A receives Hθ|x〉〈x|Hθ for uniformly random x, θ ∈ {0, 1}, it applies a channel
and produces σBC. Bob and Charlie receive their register accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover x; they win if
and only if both guess x correctly.

Lemma 3 (Corollary 2 when λ = 1, [BL20]). No (unbounded) quantum
(A,B, C) wins the game with probability more than 0.855.

We design an adversary (A,B, C) as follows, with winning probability 0.86 >
0.855, a contradiction.

– A receives as input an unknown BB84 state. It runs Ai on the state to obtain
a bipartite state, which it shares with B and C.

– B and C in the security game of BB84 state will receive θi from the challenger.
– B runs the optimal distinguisher distinguishing σ0

i and σ1
i . Based on the

output of the distinguisher, it outputs its best guess of the challenge bit.
Similarly, Charlie runs the optimal distinguisher distinguishing ζ0i and ζ1i . It
outputs its best guess of the challenge bit.

By a union bound, the probability that one of B or C fails is at most 0.14 =
0.07 × 2. Thus, they simultaneously succeed with probability at least 0.86, a
contradiction.

Claim. The following holds:

1.

TD

⎛

⎜
⎝

∑

r1,...,rn:
⊕iri=0

1
2n−1

(
⊗

i

σri
i

)

,
∑

r1,...,rn:
⊕iri=1

1
2n−1

(
⊗

i

σri
i

)
⎞

⎟
⎠ ≤ 0.86|SB|
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2.

TD

⎛

⎜
⎝

∑

r1,...,rn:
⊕iri=0

1
2n−1

(
⊗

i

ζri
i

)

,
∑

r1,...,rn:
⊕iri=1

1
2n−1

(
⊗

i

ζri
i

)
⎞

⎟
⎠ ≤ 0.86|SC |

Proof. We prove bullet 1 since bullet 2 follows symmetrically.

TD

⎛

⎜
⎝

∑

r1,...,rn:
⊕iri=0

1
2n−1

(
⊗

i

σri
i

)

,
∑
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1
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(
⊗

i

σri
i

)
⎞

⎟
⎠

=
1
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∥
∥
∥
∥
∥
∥
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(
⊗

i

σri
i
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−
∑
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1
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∥
∥
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∥
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∥
1

=

∥
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∥
∥

⊗

i

(
σ0

i − σ1
i

)

2

∥
∥
∥
∥
∥
1

=
∏

i

∥
∥
∥
∥
∥

(
σ0

i − σ1
i

)

2

∥
∥
∥
∥
∥
1

≤
∏

i∈SB

TD
(
σ0

i , σ1
i

)

≤ 0.86|SB|

Here ‖ · ‖1 denotes the trace norm. In the above proof, we use the fact that
‖⊗

i τi‖1 =
∏

i ‖τi‖1.
Lemma 4. The above USS scheme satisfies indistinguishability security against
any adversaries with no shared entanglement; i.e., it is a secure USSn scheme
(see Definition 7) with n = ω(log λ).

Proof. From Sect. 5.1, either |SB| ≥ �n
2 � or |SC | ≥ �n

2 �. We will assume without
loss of generality that |SB| ≥ �n

2 �. From bullet 1 of Sect. 5.1, it holds that B
can successfully distinguish whether it is in the experiment when the challenge
bit 0 was used or when the challenge bit 1 was used, with probability at most
1+ν(n)

2 , for some exponentially small function ν in n. Thus, both B and C can
only simultaneously distinguish with probability at most 1+ν(n)

2 . This completes
the proof. �

5.2 USSd , for d ≥ 2: from Unclonable Encryption

We present a construction of USS with security against quantum adver-
saries associated with any disconnected entanglement graph. In the construc-
tion, we use an information-theoretically secure unclonable encryption scheme,
UE = (UE.KeyGen,UE.Enc,UE.Dec). The resulting USS scheme is consequently
information-theoretically secure.
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1. Share(1λ, 1n,m) :
(a) Sample r1, · · · , rn ← {0, 1}|m|.
(b) For each i ∈ [n], let yi = ri; let yn = m ⊕ ∑n

i=1 ri.
(c) For each i ∈ [n]:

(a) Compute ski ← UE.KeyGen(1λ). We denote the length of ski to be
	 = 	(λ).

(b) Compute |cti〉 ← UE.Enc(ski, yi)
(d) For each i ∈ [n]: let each share ρi = (ski−1, |cti〉); here we define sk0 = skn.
(e) Output (ρ1, · · · , ρn)

2. Reconstruct(ρ1, · · · , ρn):
(a) For each i ∈ [n],

i. Parse ρi as (ski−1, |cti〉). We define skn = sk0.
ii. Compute yi ← UE.Dec(ski, |cti〉)

(b) Output m =
∑n

i=1 yi.

Theorem 8. The above scheme satisfies indistinguishability-based security
against adversaries with any disconnected entanglement graph. More precisely,
it is a secure USS2 scheme (see Definition 7).

Proof. The correctness of the scheme follows from the correctness of UE decryp-
tion.

We now prove the security of the above scheme. Suppose we have an USS
adversary (A = (A1, · · · ,An),B, C, ξ) who succeeds with probability 1

2+ε in Def-
inition 7, we construct an UE adversary (A′,B′, C′) who succeeds with probability
1
2 + ε in Definition 2.

Let A receive as input an n-partite state ξ over the registers Aux1, . . . ,Auxn

such that Ai receives as input the register Auxi. Additionally, without loss of
generality, we can assume that A also receives as input the challenge messages
(m0,m1), where |m0| = |m1|. Let G = (V,E) be the entanglement graph asso-
ciated with (ξ,Aux1, . . . ,Auxn), where, V = {1, . . . , n}. Since G is discon-
nected, there exists i∗ ∈ [n] such that (i∗, i∗ + 1) /∈ E. Let G1 = (V1, E1) and
G2 = (V2, E2) be two subgraphs of G such that V1∪V2 = V , V1∩V2 = ∅, i∗ ∈ V1,
i∗+1 ∈ V2. Moreover, G1 and G2 are disconnected with each other. This further
means that ξ can be written as ξG1 ⊗ ξG2 , for some states ξG1 , ξG2 , such that
ξG1 is over the registers {Auxi}i∈V1 and ξG2 is over the registers {Auxi}i∈V2 .

We describe (A′,B′, C′) as follows:

Description of A′. Fix i∗, (m0,m1) (as defined above). Upon receiving a quantum
state |ct∗〉 A′ does the following:

– It prepares quantum states ξG1 , (ξG2)
⊗2�

.
– It samples ri

$←− {0, 1}|m0|, where i ∈ [n], subject to the constraint that
⊕iri = m0.

– It submits (ri∗ , ri∗ ⊕m0 ⊕m1) to the UE challenger and in return, it receives
|ct∗〉. It sets |cti∗+1〉 = |ct∗〉.

– For every i ∈ [n], generate ski ← UE.KeyGen(1λ); let skn+1 = sk1.
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– For every i ∈ [n] and i �= i∗, generate |cti〉 ← UE.Enc(ski, shi).
– For every i ∈ [n] and i �= i∗ + 1, define ρi = (ski−1, |cti〉).
– We need to define ρi∗+1 = (ski∗ , |cti∗+1〉). However, as ski∗ will only be

received by B′ and C′ in the UE security game later, we will enumerate
all possible values of ski∗ and the corresponding computation result in the
subgraph G2.

• For every x ∈ {0, 1}� (possible value of ski∗), compute {Ai}i∈V2 on
{ρi}i∈V2 , ξG2 to obtain two sets of registers {X(x)

i }i∈G2 and {Y(x)
i }i∈G2 .

– Compute {Ai}i∈V1 on {ρi}i∈V1 and ξG1 to obtain two sets of registers
{Xi}i∈G1 and {Yi}i∈G1 .

– Send the registers {Xi}i∈G1 and {X(x)
i }i∈G2,x∈{0,1}λ to B′. Send the registers

{Yi}i∈G1 and {Y(x)
i }i∈G2,x∈{0,1}λ to C′.

Description of B′ and C′. B′ upon receiving the secret key k (which is ski∗), com-
putes B on {Xi}i∈G1 and {X(k)

i }i∈G2 to obtain a bit bB. C′ is defined similarly.
We denote the output of C′ to be bC .

If the challenger of the UE security chooses the bit b = 0, then (A,B, C) in the
above reduction are receiving shares of m0; otherwise, they are receiving shares
of m1. Thus, the success probability of (A,B, C) in Definition 7 is precisely the
same as the success probability of (A′,B′, C′) in Definition 2. �

6 Impossibilities and Barriers

In this section, we present two impossibility results on USS. Furthermore, we
present two implications of USS: namely, unclonable encryption and position
verification secure against large amount of entanglement. Since no construction
known for the latter two primitives, this further underscores the formidable
barriers of building USS.

6.1 Impossibility in the Information-Theoretic Setting

Theorem 9. Let P be a set of parties. Information-theoretically secure USS for
P is impossible if the entanglement graph for P is connected and in particular,
there is an edge from P1 to everyone else.

Proof. The attack strategy is as follows. The n parties P1, · · · , Pn pre-share a
large amount of entanglement with one another. In the protocol, each Pi receives
its share ρi.

– Regular Teleportation Stage: all parties Pi, where i �= 1 teleport their shares to
party P1 via regular teleportation. Each Pi obtains a measurement outcome
(ai, bi).

– Now P1 holds a state in the following format: (I ⊗ Xa2Zb2 ⊗
· · · Xan Zbn) |Ψ〉P1P2···Pn

which can be represented as mixed states
(ρ1,Xa2Zb2ρ2X

a2Zb2 , · · · ,XanZbnρnXanZbn). That is, quantum one-time
padded shares from all other parties and its own share in the clear.
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– Port-Based Teleportation Stage:
• P1 performs port-based teleportation for the state (I ⊗ Xa2Zb2 ⊗

· · · XanZbn) |Ψ〉P1P2···Pn
to P2. P1 obtains a measurement outcome that

stands for some index i1. Recall that by the guarantee of port-based tele-
portation, the index i1 specifies the register of P2 that holds the above
state in the clear, without any Pauli errors on top.

• P2 will now remove the quantum one time pad information Xa2 , Za2 on
its share in the teleported state above. Since P2 does not have information
about i1, it simply performs I ⊗ Za2Xa2 ⊗ I · · · ⊗ I on all exponentially
many possible registers that it may receive the teleported state from P1.

• Next P2 performs port-based teleportation with P3 for all registers that
could possibly hold the state (I⊗ I⊗Xa3Zb3 ⊗ · · ·⊗XanZbn) |Ψ〉P1P2···Pn

.
Thus, P2 obtains an exponential number of indices about the registers
that will receive the teleported states on P3’s hands.

• P3 accordingly, applies I ⊗ I ⊗ Zb3Xa3 · · · I on all the possible registers
that can hold the teleported state; performs a port-based teleportation
to P4 with all of these registers and obtains a measurement outcome that
has a doubly-exponential number of indices5.

• · · ·
• Finally, Pn receives the teleported states from Pn−1 and performs I ⊗

· · · I ⊗ ZbnXan on all of them. One of these registers will hold the state
|Ψ〉P1···Pn

= (ρ1, · · · , ρn) in the clear. Then Pn performs the reconstruc-
tion algorithm on all of these registers to obtain a large number of possible
outcomes. One of them will hold the correctly reconstructed secret s.

– Reconstruction Stage: now Pn sends all its measurement outcomes to both
Bob and Charlie. All other Pi’s send their indices information measured in the
port teleportation protocol. Bob and Charlie can therefore find the correct
index in Pn’s measurement outcomes that holds s, by following a path of
indices.

�

Remark 2. The above strategy can be easily converted into a strategy where the
underlying entanglement graph is connected (but may not be a complete graph)
and every pair of connected parties share (unbounded) entanglement. The similar
idea applies by performing regular teleportation and port-based teleportation via
any DFS order of the graph. Thus, we have the following theorem.

Theorem 10. Let P be a set of parties. Information-theoretically secure USS
for P is impossible if the entanglement graph for P is connected.

6.2 Impossibility with Low T-gates for Efficient Adversaries

Our impossibility result above in the information-theoretic setting requires expo-
nential amount of entanglement between the parties. We also present an attack
5 For Pi, 2 ≤ i < n, the measurement outcome will have its size grow in an exponential

tower of height i.
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that can be performed by efficient adversaries, albeit on USS schemes with
restricted reconstruction algorithms.

We would like to mention that a similar result has already been shown in
[Spe15] in the context of instantaneous non-local computation; we rediscovered
the following simple attack for unclonable secret sharing. We also extend the
attack to an n-party setting whereas [Spe15] considers only 2 parties.

Theorem 11. Let P be a set of parties and if the entanglement graph for P
is connected, then there exists an attack using polynomial-time and polynomial
amount of entanglement on any USS scheme where the procedure Reconstruct
consists of only Clifford gates and O(log λ) number of T gates.

We refer readers to the full version for the proof.

6.3 USS Implies Unclonable Encryption

Theorem 12. Unclonable secret sharing with IND-based security against adver-
saries with (bounded) polynomial amount of shared entanglement and connected
pre-shared entanglement graph implies secure unclonable encryption.

We will first look at the 2-party case, which can be easily extended to the n(> 2)-
party case.

Proof. Assume a secure USS = (USS.Share,USS.Reconstruct) with IND-based
security, we construct the following UE scheme:

1. KeyGen(1λ, 1|m|): samples a random sk ← {0, 1}2�, where 	 = 	(λ) is the
number of qubits in each share generated by USS.Share(1λ, 1|m|, ·). Output
sk.

2. Enc(sk,m) :
(a) compute (ρ1, ρ2) ← USS.Share(1λ, 1|m|,m).
(b) sample random (a, b) ← {0, 1}2�. Use them to quantum one-time pad the

second share ρ2 to obtain XaZbρ2Z
bXa.

(c) compute s ← (a, b) ⊕ sk
(d) Output ct = (ρ1,XaZbρ2Z

bXa, s).
3. Dec(ct, sk):

(a) parse ct = (ρ1, ρ′
2, s);

(b) compute (a, b) ← s ⊕ sk;
(c) output m ← USS.Reconstruct(ρ1,XaZbρ′

2Z
bXa).

Correctness. The correctness easily follows from the correctness of the underlying
USS scheme.



Unclonable Secret Sharing 153

Security. Suppose we have UE adversaries (A,B, C) that wins in the IND-based
UE security game, we can construct adversary (A′ = (A1,A2),B′, C′) for the
USS IND-based security.

Before receiving the shares from the challenger, A1 and A2 agrees on a ran-
dom strong r ← {0, 1}2�. When receiving the shares, A2 teleports its share ρ2
to A1 and obtains Pauli errors (a, b).

A1 gives (ρ1, , r) the UE adversary A. A2 computes sk′ ← (a, b) ⊕ r.
In the USS challenge phase, A2 sends sk′ to both B′ and C′. The UE adver-

saries A has finished giving the bipartite it generated from (ρ1, r) state σB,C to
B and C.

Then B′ feeds B with sk′ as the secret key in the UE security game (and C′

feeding sk′ to C,respectively), and outputs their output bit bB, bC as the answer to
USS game. Since the classical part in the unclonable ciphertext is the classical
information (a, b) masked by a uniformly random sk, the reduction perfectly
simulates the above scheme by first giving the UE adversary A a uniformly
random string r and later feeding B, C with r ⊕ (a, b).

Extending to n-party case. We can change the scheme to sample a longer sk ∈
{0, 1}2(n−1)� and let theunclonable ciphertextbe (ρ1,Xa2Zb2ρ2Z

b2Xa2 , · · · ,XanZbn

ρnZ
bnXan , s = (a1, b1, · · · , an, bn) ⊕ sk).
In the reduction, when receiving the shares, Ai, i �= 1 teleports its share ρi

to A1 and obtains Pauli errors (ai, bi). The rest of the reduction follows easily.

�

Theorem 13. Unclonable secret sharing with IND-based security against adver-
saries with disconnected entanglement graph, where one of the parties receives
as a share a quantum state and all other parties receive classical shares (in other
words, computational basis states), implies secure unclonable encryption.

Proof. In the case where only one party has a quantum share, the others classical
shares, we can easily modify the above construction to have a UE scheme from
USS:

1. KeyGen(1λ, 1|m|): samples a random sk ← {0, 1}(n−1)�, where 	 = 	(λ) is
the number of qubits/bits in each share generated by USS.Share(1λ, 1|m|, ·).
Output sk.

2. Enc(sk,m) :
(a) compute (ρ1, y2, · · · , yn) ← USS.Share(1λ, 1|m|,m). y1, · · · , yn are binary

strings.
(b) sample random sk ← {0, 1}(n−1)�. Compute s ← (y1, · · · , yn) ⊕ sk
(c) Output ct = (ρ1, s).

3. Dec(ct, sk):
(a) parse ct = (ρ1, s);
(b) compute (y1, · · · , yn) ← s ⊕ sk;
(c) output m ← USS.Reconstruct(ρ1, y1, · · · , yn).
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Security. Suppose we have an UE adversary (A,B, C) that wins in the IND-
based UE security game with probability 1

2 + ε, we construct an adversary
(A′ = (A1, · · · An),B′, C′) that wins in the USS IND-based security game with
probability 1

2 + ε. Thus, if the USS scheme is secure then ε has to be negligible.
We describe A1, · · · ,An as follows.

Before receiving the shares from the challenger, A1, · · · ,An agrees on a ran-
dom string r ← {0, 1}(n−1)�.

A1 gives (ρ1, r) to the UE adversary A. Ai, for i �= 1, when receiving the
classical share yi from the challenger, computes sk′

i ← yi ⊕ ri, where ri is the
(i − 1)-th block of length-	 string in r.

In the USS challenge phase, each Ai, for i �= 1, sends sk′
i to both B′ and C′.

A1 sends the bipartite state σB,C to B′ and C′, where σB,C is the output of A.
Then B′ feeds B with sk′ = (sk′

2, · · · , sk′
n) as the secret key in the UE security

game (and C′ feeding sk′ to C, respectively), and outputs their output bit bB, bC
as the answer to USS game. Since the classical part in the unclonable ciphertext
is the classical information (y2, · · · , yn) masked by a uniformly random sk, the
reduction perfectly simulates the above scheme by first giving the UE adversary
A a uniformly random string r and later feeding B, C with r⊕(y2, · · · , yn). Thus,
the advantage of (A′,B′, C′) in breaking the USS security game is precisely the
same as the advantage of (A,B, C) breaking the UE security game.

6.4 Search-Based USS Implies Position Verification

The definition of quantum position verification is in the full version.

QPV with Pre-shared Entanglement. In QPV, we also consider different adver-
sarial setup such as: (1) (P0, P1) do not have pre-shared entanglement; (2)
(P0, P1) can share a bounded/unbounded polynomial amount of entanglement;
(3) (P0, P1) can share unbounded amount of entanglement. We also divide the
settings into computational and information-theoretic.

Theorem 14. 2-party USS(computational/IT resp.) with search-based security
implies 1-dimensional QPV (computational/IT, resp.), where the two adversarial
provers in the QPV protocol pre-share the same amount of entanglement as the
two parties in the USS protocol do.

The following theorem demonstrates from another point of view the barrier
of constructing secure protocols against entangled adversaries for USS in the
IT setting. Even if we consider computational assumptions, the development
in building secure QPV protocols against entangled adversaries has been slow,
which indicates further evidence on how challenging USS can be in the entangled
setting.

Theorem 15 ([BK11,BCF+14]). Quantum position verification is impossible
in the information theoretic setting if we allow the adversaries to preshare entan-
glement.

We leave the proof to the full version.
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Abstract. We give a tighter lifting theorem for security games in the
quantum random oracle model. At the core of our main result lies a novel
measure-and-reprogram framework that we call coherent reprogramming.
This framework gives a tighter lifting theorem for query complexity prob-
lems, that only requires purely classical reasoning. As direct applications
of our lifting theorem, we first provide a quantum direct product the-
orem in the average case—i.e., an enabling tool to determine the hard-
ness of solving multi-instance security games. This allows us to derive
in a straightforward manner the hardness of various security games, for
example (i) the non-uniform hardness of salted games, (ii) the hardness
of specific cryptographic tasks such as the multiple instance version of
one-wayness and collision-resistance, and (iii) uniform or non-uniform
hardness of many other games.

1 Introduction

Hash functions are a fundamental workhorse in modern cryptography. Effi-
cient constructions such as SHA-2 and SHA-3 are widely used in real-world
cryptographic applications. To facilitate the analysis of constructions based on
hash functions, Bellare and Rogaway [BR93] proposed a framework known as
the random oracle model (ROM). Recent development of quantum comput-
ing demands re-examining security against potential quantum attackers. The
quantum random oracle model (QROM) has since been proposed by Boneh et
al. [BDF+11] as an extension of ROM by taking into account quantum attackers.
Various techniques have been developed for analyzing security in the QROM;
however, they are often either ad-hoc (for specific scenarios) or too involved to
apply.

In this paper we revisit a general tool for lifting security from ROM to
QROM by Yamakawa and Zhandry [YZ21]. The lifting theorems are applica-
ble to search games in (Q)ROM between a classical challenger interacting with
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15492, pp. 158–184, 2025.
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an adversary (e.g., think of an adversary that aims to find a preimage of 0 in
the random oracle, with the challenger querying the random oracle to verify
the adversary’s answer). Roughly speaking, the lifting theorems assert that if a
search game with a challenger performing a constant number of queries to the
random oracle is hard against a classical adversary, then it is also hard against
a quantum adversary in the QROM. Specifically, if the challenger performs k
queries and if a quantum adversary performs q quantum queries and wins the
search game with probability ε, then there exists a classical adversary perform-
ing only k classical queries winning with probability ε/(2q + 1)2k.

This tool is particular powerful to establish quantum query lower bounds
in the QROM. Let us consider function inversion from above for example; the
goal is to find an input x, whose image equals 0. In this case, k = 1 and

ε

(2q + 1)2k
=

ε

(2q + 1)2
≤ 1

N
.

This is because a single query reveals a pre-image of 0 with probability at most
1/N . Therefore we have ε ≤ (2q + 1)2/N , which immediately reproduces the
tight bound for the famous Grover’s search problem [BBBV97]. However, for a
k-search problem whose goal is to find k distinct inputs that all map to 0, the
bound derived from [YZ21] is O

(
(kq)2/N

)k for any quantum algorithm with

kq queries, which has a large k2k factor gap from the tight bound Θ
(
q2/N

)k1.
Similar weaknesses appear in a variety of problems involving multiple inputs.

In this work, we derive a new tighter lifting theorem for search games. If the
challenger performs k queries and the quantum adversary performs q quantum
queries and wins the search game with probability ε, then there exists a quan-
tum adversary performing only k quantum queries and winning with probabil-

ity ε/22k
(
q+k

k

)2
, improving on the previous lifting theorem by Yamakawa and

Zhandry. Let us consider a (kq)-quantum-query algorithm for the previous k-
search problem. Our bound (in this case, q in the theorem should be kq) gives
the tight bound as below:

ε

22k
(
kq+k

k

)2 ≤ 1
Nk

←→ ε ≤ 22k
(
kq+k

k

)

Nk

2

≤ O

(
(q + 1)2

N

)k

.

To achieve this, we develop a newmeasure-and-reprogram techniquewhich
is a key technical contribution of our work. The technique, which we call coher-
ent reprogramming, improves on the recent results on adaptively reprogramming
QRO on multiple points by Don et al. [DFM20,DFMS22] and Liu and Zhandry
[LZ19], yielding tighter reprogramming bounds than the existingmeasure-and-
reprogram proofs. As an immediate consequence, we are able to derive tighter
1 We believe this is a folklore result that to our knowledge, this bound follows from a
result in [CGK+23] (Theorem 3.1). Moreover, we would like to emphasize that since
our main result is a strengthening of the lifting Lemma of [YZ21], we can also show
that our result concerning the bound of this problem is stronger than the bound
derived from [YZ21].
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quantum hardness bounds for many applications, such as direct-product theo-
rems, salted security, and non-uniform security.

1.1 Summary of Our Results

Lifting Theorem for Search Games. Our central result is a new lifting theorem
for search games that relates (and upper bounds) the success probability of an
arbitrary quantum algorithm to the success probability of a quantum algorithm
performing a small number of queries to the RO. More formally:

Theorem 1 (Quantum Lifting Theorem (Informal)). Let G be a search game with
a classical challenger C that performs at most k queries to the RO, and let A be a q-
quantum query adversary in the game G (against the k-classical query challenger C).
Then there exists a k-quantum query adversary B such that:

Pr[B wins G] ≥ 1

22k
(
q+k

k

)2 Pr[A wins G].

Remark 1. Comparing to the lifting theorem in [YZ21], we have a better loss
22k

(
q+k

k

)2
, whereas it is (2q +1)k in their work. Since the algorithm often makes

more queries than the challenger q � k, it is roughly a (k!)2 save. In [YZ21],
they are able to reduce a q-quantum-query algorithm to a k-classical-query algo-
rithm; whereas in this work, we only reduce the number of the queries, with the
algorithm B still making quantum queries. Nonetheless, it does not affect the
applications and improvement we have in this work. Our framework handles the
case where the challenge is independent of the oracle (similar to the results in
[YZ21]). We leave the case of oracle-dependent challenges as an interesting open
question.

Coherent Reprogramming. At the core of our main lifting result above lies a
new framework for quantum reprogramming which we call coherent reprogram-
ming. This new framework has the following advantages:

1. It simplifies the proofs and frameworks of existing quantum reprogramming
results;

2. It yields improved tighter reprogramming bounds; and
3. It implies in a straightforward manner several applications in quantum

query complexity and cryptography.

In order to present our main coherent reprogramming result, we first need
to introduce a few notions. For an oracle H we call Hx,y the reprogrammed
oracle that behaves almost like the original function H , with the only difference
that its value on input x will be y. Similarly, we define the reprogrammed ora-
cle on k inputs x = (x1, ..., xk) and k corresponding outputs y = (y1, ..., yk),
denoted by Hx,y , as the original function H with the only difference that for
every input xi in x, the corresponding image will be yi in y.
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Theorem 2 (Coherent Reprogramming (Informal)). Let H,G be two ran-
dom oracles. Let A be any q-quantum query algorithm to the oracle H , and let
xo = (x1, ..., xk) ∈ Xk be any k-vector of inputs and yo = (y1, ..., yk) =
(G(x1), ..., G(xk)). Then there exists a simulator algorithm Sim that given oracle
access to H,G and A, simulates the output of A having oracle access to Hxo,y o

(the
reprogrammed version of H) with probability:

Pr
H,G

[Sim outputs correct (x,y)] ≥ 1

22k
(
q+k

k

)2 · Pr
H,G

[AHx o,y o outputs correct (x,y)
]
.

where “correct” is defined with respect to some predicate that can depend on the repro-
grammed oracle Hxo,y o

.

Remark 2. Similar to the comparison between Theorem 1 and [YZ21], the second
theorem improves the factor (2q + 1)k in [DFM20] to 22k

(
q+k

k

)2
. Our simulator

does not measure and reprogram directly, but does everything coherently (or in
superposition).

Next, we show the applications of our lifting theorem in query complexity
and cryptography.

Quantum Lifting Theorem with Classical Reasoning. Amulti-output k-search
game between a challenger and an adversary is defined as follows. The adver-
sary receives k different challenges from the challenger, and at the end of their
interaction, the adversary needs to respond with k outputs. If the k outputs
(taken together) satisfy some relation R specified by the game, we say the
adversary wins the multi-output k-search game . The goal of the lifting theo-
rem is to establish the hardness of solving the multi-output k-search game by
any general quantum adversary, with only simple classical reasoning. For an
arbitrary k-ary relation R, let Sk be the symmetric group on [k] and we define:

p(R) := Pr[∃π ∈ Sk | (yπ(1), yπ(2), ..., yπ(k)) ∈ R : (y1, ..., yk) $←− Y k] .

Note that p(R) is a quantity that only depends on the game itself, and can be
calculated with only classical reasoning.

Theorem 3 (Quantum Lifting Theorem with Classical Reasoning (Infor-
mal)). For any quantum algorithm A equipped with q quantum queries to a random
oracle H : X → Y , A’s success probability to solve the multi-output k-search game as
specified by the winning relation R, is bounded by:

Pr[A wins multi-output k-search game ] ≤ 22k

(
q + k

k

)2

· p(R) .

Our lifting theorem translates into the following quantum hardness results
for our applications in query complexity and cryptography.

Direct Product Theorem. We give the first direct product theorem (DPT) in the
average case (in the QROM). Previously, only worst-case quantum DPTs were
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known [She11,LR13] and were proof-method dependent; until recently, Dong
et al. [DLW24] shows the first average-case quantum DPTs for some problems
in the QROM. While they are non-tight, our DPTs works for all games in the
QROM and proof-method independent.

Our direct product theorem establishes the hardness of solving g indepen-
dent instances (each instance is associated with an independent oracle) of a
game G given a total of g · q quantum queries:

Theorem 4 (Direct Product Theorem). For any quantum algorithm A equipped
with g · q quantum queries, A’s success probability to solve the Direct Product game
G⊗g with the underlying G specified by the winning relation R, is bounded by

Pr[A wins G⊗g] ≤
(

22k

(
q + k

k

)2

p(R)

)g

.

Non-uniform Security of Salting. The above theorem directly implies non-
uniform security of salting. Non-uniform attacks allow a malicious party to
perform heavy computation offline and attack a protocol muchmore efficiently,
using the information in the offline stage. Salting is a generic method that pre-
vent non-uniform attacks against hash functions. Chung et al. [CGLQ20] shows
that “salting generically defeats quantum preprocessing attacks”; they show
that if a game in the QROM is ε(q) secure, the salted game with salt space [K]
is ε(q) + Sq

K secure against a quantum adversary with S-bit of advice. Their
bound is non-tight, since when the underlying game is collision-finding, the
tight non-uniform security should be ε(q)+ S

K . Improving the additive factor is
an interesting open question and until recently [DLW24] is able to answer this
question affirmatively for a limited collection of games.

Using our direct product theorem, we show:

Theorem 5 (Another “Salting Defeats Quantum Preprocessing”). For any
non-uniform quantum algorithm A equipped with q quantum queries and S-bit of
classical advice, A’s success probability to solve the salted game Gs with the underlying
G specified by the winning relation R, is bounded by

Pr[A wins Gs] ≤ 4 ·
(

22k

(
q + k

k

)2

p(R) +
S

K

)

.

Our bound is incomparable to that in [CGLQ20]. We are able to improve the
additive term from Sq

K to S
K , while only able to give an upper bound for ε(q).

Even our bound is non-tight in general, it still confirms (on a high level) that
the help from classical advice only comes from the following:

– using S-bit advice to store solutions for S random salts;
– if the challenge salt matches with the random salts (with probability S

K ), the
attack succeeds; otherwise, proceed the attack as if there is no advice.
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Non-uniform Security. By combining our lifting theorem with the results by
Chung et al. [CGLQ20], we derive the following results concerning the security
(hardness) against non-uniform quantum adversaries with classical advice, for
a broader class of games.

Lemma 1 (Security against Quantum Non-Uniform Adversaries (Informal)).
Let G be any classically verifiable search game specified by the winning relation R.
Let R⊗S be the winning relation of the multi-instance game of G. Any quantum non-
uniform algorithm A equipped with q quantum queries and S classical bits of advice,
can win G with probability at most:

Pr[A wins G] ≤ 4 · 22k

(
S(q + k)

Sk

) 2
S

· p(R⊗S)1/S .

To demonstrate the power of our results, we also apply them to the hard-
ness of three concrete cryptographic tasks: the multiple instance versions of
one-wayness, collision resistance and search, as described next. Note that the
applications we list below are non-exhaustive, given p(R) is easy to define for
almost every game.

Hardness of Multi-image Inversion. Firstly, we can analyze the quantum hard-
ness of inverting k different images of a random oracle H : [M ] → [N ].

Our first result establishes the quantum hardness of multi-image inversion,
which is a tight bound as already proven in [CGLQ20], but achieved here in a
much simpler way, directly from our quantum lifting theorem.

Lemma 2 (Quantum Hardness of Multi-Image Inversion (Informal)). For any
distinct y = (y1, ..., yk) ∈ [N ]k and for any q-quantum query algorithm A whose aim
is to invert all the images in y, the success probability of A is upper bounded by:

Pr
H

[A(y) → x = (x1, ..., xk) : H(xi) = yi ∀i ∈ [k]] ≤ 22k

(
q + k

k

)2

· k!
Nk

.

Hardness of Multi-Collision Finding. Secondly, we can analyse the quantua-
nalyzeess of finding k collisions, namely, k inputs that map to the same image
of the random oracle H : [M ] → [N ]. We can also determine upper bounds
for solving the salted version of this task, as well as the hardness of finding a
collision for quantum algorithms that are also equipped with advice.

Lemma 3 (Quantum Hardness of Multi-Collision Finding and Salted Multi-
Collision Finding (Informal)). For any q-quantum query algorithm A, the proba-
bility of solving the k-multi-collision problem is at most:

Pr
H

[A() → x = (x1, ..., xk) : H(x1) = ... = H(xk)] ≤ 1
Nk−1

[
2e(q + k)

k

]2k

.
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Any quantum algorithm A equipped with q quantum queries and S-bit of classi-
cal advice can win the salted multi-collision finding game with salted space [K] with
probability at most:

Pr
H

[A() → x = (x1, ..., xk) : H(x1) = ... = H(xk)] ≤ 4
Nk−1

[
2e(q + k)

k

]2k

+
4S

K
.

The above bounds become O(q4/N) and O(q4/N + S/K) respectively, for
k = 2 (the standard collision-finding). Previous work [YZ21] achieves the same
uniform bound, but only achieves O((Sq)4/N + S/K), due to the extra loss in
their lifting theorem.

Hardness of Multi-search. Finally, we also establish a tight bound for finding
k distinct inputs that all map to 0 under the random oracle H : [M ] → [N ].
This is potentially useful in analyzing proofs-of-work in the blockchain con-
text [GKL15].

Lemma 4 (Quantum Hardness of Multi-Search). For any q-quantum query algo-
rithm A whose task is to find k different preimages of 0 of the random oracle, the success
probability of A is upper bounded by:

Pr
H

[A() → x = (x1, ..., xk) : H(xi) = 0 ∀i ∈ [k]] ≤
[
4e2(q + k)2

Nk2

]k

.

1.2 Related Work

The measure-and-reprogram framework was proposed, and subsequently gen-
eralized and improved with tighter bounds in the works of [DFM20,LZ19,
DFMS22,GHHM21]. A main application of the framework has been in the
context of the Fiat-Shamir transformation, with several works establishing
its post-quantum security [Cha19,DFMS19,AFK22,AFKR23,GOP+23]. Other
cryptographic applications of measure-and-reprogram have been considered in
[Kat21,BKS21,ABKK23,JMZ23,DFHS23,KX24]. Finally, applications in query
complexity of the framework have been developed in [CGLQ20,YZ21].

2 Preliminaries

Notation. For two vectors x,x′ ∈ Xk, we say x ≡ x′ if and only if there exists a
permutation σ over the indices {1, 2, . . . , k} such that x′

i = xσ(i). For a function
H : X → Y and x ∈ Xk, H(x) is defined as (H(x1),H(x2), . . . , H(xk)). We say
x ∈ x, if x = xi for some i ∈ [k].

2.1 Quantum Query Algorithms

We will denote a quantum query algorithm by A. Let q be the total number
of quantum queries of A. By AH we mean that A has quantum access to the
function H .
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A quantum oracle query to H will be applied as the unitary OH :
OH |x〉|y〉 −→ |x〉|y ⊕ H(x)〉. Without loss of generality, we assume an algo-
rithm will never perform any measurement (until the very end) and thus the
internal state is always pure. We use |φH

i 〉 to denote the algorithm A’s internal
(pure) state right after the i-th query.

|φH
i 〉 = OHUi · · · OHU1|0〉.

Specifically, we have,

– |φH
0 〉 = |0〉 is the initial state of A;

– |φH
q 〉 is the final state of A.

Without loss of generality, the algorithm will have three registers X ,Y,Z at the
end of the computation, where X consists of a list of inputs, Y consists of a list
of outputs corresponding to these inputs and some auxiliary information in Z .

Definition 1 (Reprogrammed Oracle). Reprogram oracle H to output y on input
x, results in the new oracle, defined as:

Hx,y(z) =

{
y, if z = x

H(z), otherwise.

We can similarly define a multi-input reprogram oracle Hx,Θ for x ∈ Xk without
duplicate entries and Θ ∈ Y k:

Hx,Θ (z) =

{
Θi, if z = xi

H(z), otherwise.

2.2 Quantum Measure-and-Reprogram Experiment

We recall the measure-and-reprogram experiment and the state-of-the-art
results here, first proposed by [DFM20] and later adapted by [YZ21].

Definition 2 (Measure-and-Reprogram Experiment). Let A be a q-quantum
query algorithm that outputs x ∈ Xk and z ∈ Z. For a function H : X → Y
and y = (y1, ..., yk) ∈ Y k, define a measure-and-reprogram algorithm B[H,y]:

1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} such that there
does not exist j �= j′ such that ij = ij′ �=⊥;

2. Run AO where the oracle O is initialized to be a quantumly accessible classical
oracle that computes H and when A makes its i-th query, the oracle is simulated as
follows:
(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′

j and do either
of the following:

i. If bj = 0, reprogram O using (x′
j , yj) and answer A’s ij-th query using

the reprogrammed oracle;
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ii. If bj = 1, answer A’s ij-th query using oracle before reprogramming and
then reprogram O using (x′

j , yj);
(b) Else, answer A’s i-th query by just using the oracle O without any measurement

or reprogramming;
3. Let (x = (x1, ..., xk), z) be A’s output;
4. For all j ∈ [k] such that ij =⊥, set x′

j = xj

5. Output x′ := ((x′
1, ..., x

′
k), z)

We next state the current state-of-the-art quantum measure-and-reprogram
result.

Lemma 5 (Quantum Measure-and-Reprogram (adaptation from [DFM20,
YZ21])). For any H : X → Y , for any x∗ = (x∗

1, ..., x
∗
k) ∈ Xk without duplicated

entries, for all y = (y1, ..., yk) and any relation R ⊆ Xk × Y k × Z, we have:

Pr[x′ = x∗ ∧ (x′,y, z) ∈ R | (x′, z) ← B[H, y]]

≥ 1
(2q + 1)2k

Pr[x = x∗ ∧ (x,y, z) ∈ R | (x, z) ← AHx ∗,y ]

where B[H, y] is the measure-and-reprogram experiment.

2.3 Predicates and Success Probabilities

Definition 3 (Predicate/Verification Projection/Symmetric Predicate). Let R be
a relation on Xk × Y k × Z. A predicate V H(x,y, z) parameterized by an oracle H ,
returns 1 if and only if (x,y, z) ∈ R and H(xi) = yi for every i ∈ {1, 2, . . . , k}.

Let X ,Y,Z be the registers that store x,y, z, respectively. We define ΠH
V as the

projection corresponding to V H :

ΠH
V |x,y, z〉 =

{
|x,y, z〉 if V H(x,y, z) = 1
0 otherwise

.

Finally, for any predicate V H , we are able to establish the success probability
using the projection ΠH

V .

Definition 4 (Success Probability). Let A a quantum query algorithm. Its success
probability of outputting x,y, z such that H(x,y, z) = 1 is defined by

Pr
[AH → (x,y, z) and V H(x,y, z) = 1

]
=

∥
∥ΠH

V |φH
q 〉∥∥2

.

(Recall that |φH
q 〉 is the final state of A.)

Sometimes, we care about the event that A outputs a particular x and still succeeds.
For any xo, the following probability denotes that A outputs x ≡ xo and succeeds:

Pr
[AH → (x,y, z), x ≡ xo and V H(x,y, z) = 1

]
=

∥
∥GxoΠ

H
V |φH

q 〉∥∥2
,

where Gxo is defined as the projection that checks whether A consists of x ≡ xo.



Improved Quantum Lifting by Coherent Measure-and-Reprogram 167

3 Coherent Measure-and-Reprogram

In this section, we give our main theorem: the coherent measure-and-
reprogram theorem. A main difference between our theorem and the previous
measure-and-reprogram theorem [DFM20] is that our simulator needs to make
quantum queries, instead of classical queries, which is potentially required by
the coherent nature of our simulator and gives tighter reprogramming bounds
for many applications. While this makes the simulator slightly more compli-
cated, it yields improved bounds on the various applications that we mention
in the next section.

3.1 Main Theorem

We give our main theorem below.

Theorem 6. Let H,G : {0, 1}m → {0, 1}n be two functions X → Y . Let k be a pos-
itive integer (can be a computable function in both n and m). There exists a black-box
quantum algorithm SimH,G,A, satisfying the properties below. Let V H be any predicate
defined over Xk × Y k × Z. Let A be any q-quantum query algorithm to the oracle H .
Then for any xo ∈ Xk without duplicate entries and yo = G(xo), we have,

Pr
H,G

[
SimH,G,A → (x,y, z) and x ≡ xo and V Hx o,y o (x,y, z) = 1

]

≥ 1

22k
(
q+k

k

)2 · Pr
H,G

[AHx o,y o → (x, z) and x ≡ xo and V Hx o,y o (x,Hxo,y o
(y), z) = 1

]
.

Furthermore, Sim makes exactly k quantum queries to G and has a running time poly-
nomial in n,m, k and the running time of A.

Before formally defining our simulator, we introduce one more notation:
controlled reprogrammed oracle queries. That is, an oracle query will be repro-
grammed by a list of input and output pairs in a control register.

Definition 5 (Controlled Reprogrammed Oracle Query). For every x ∈ X, y ∈
Y , every � > 0 and x ∈ X� without duplicated entries, Θ ∈ Y �, controlled repro-
grammed oracle Octrl

H acts as below.

Octrl
H |x〉|y〉|x,Θ〉 =

(
OHx ,Θ

|x〉|y〉) |x,Θ〉
Its behavior on |x〉 with duplicated entries can be arbitrarily defined as long as unitarity
is maintained, as this case will never occur in the simulator or our analysis.

We define our simulator used in Theorem 6, as follows:

Definition 6 (Coherent Measure-and-Reprogram Experiment). Let A be a (q+
k)-quantum query algorithm that outputs x = (x1, . . . , xk) ∈ Xk,y ∈ Y k and
z ∈ Z. We assume y is always computed by H(x), using the last k queries. For a
function H : X → Y and G : X → Y , define a measure-and-reprogram algorithm
B[H,G]:
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1. Pick a uniformly random subset v of [q + k], of length k. We have 1 < v1 < · · · <
vk ≤ q + k. Pick b ∈ {0, 1}k uniformly at random.

2. Run A with an additional control register R, initialized as empty |∅〉. Define the
following operation U that updates the control register: for x that is not in L,

U |x〉|L〉R ← |x〉|L ∪ (x,G(x))〉R.

Here L is the set of input and output pairs. Since we will only work with basis states
|x〉|L〉 whose x is not in L, U clearly can be implemented by a unitary (by assuming
that the list is initialized as empty).

3. When A makes its i-th query,
(a) If i = vj for some j ∈ [k], do either of the following:

i. If bj = 0, update R using the input register and G, and make the i-th
query to H controlled by R (see Octrl

H above);
ii. If bj = 1, make the i-th query to H controlled by R and

update R using the input register and G.
iii. Before updating the control register, it

checks coherently that the input register is not contained in the control
register; otherwise, it aborts.

(b) Else, answer A’s i-th query controlled by R;
4. Let (x,y, z) be A’s output;
5. Measure R register to obtain L = (x′,Θ′).
6. Output (x,y, z) if x′ ≡ x; otherwise, abort.

At a high level, our simulator resembles that in Definition 2; instead of mea-
suring A’s queries, we put it into a separate register (a.k.a., measure the queries
coherently). With the “controlled reprogrammed oracle query”, we are still able
to progressively reprogram the oracle and run the algorithm with (an) updated
oracle(s). The ability of coherently measuring and reprogramming, makes all
the improvement (mentioned in the later sections) possible.

Proof of Theorem 6. Before we start with the proof, we first recall and introduce
some notations. Fix any x ∈ Xk without duplicate entries and Θ ∈ Y k. Recall
that in Sect. 2.1,

∣
∣
∣φHx ,Θ

q

〉
is the state of the algorithm A after making all its

queries to Hx,Θ . More precisely, it is:
∣
∣
∣φHx ,Θ

q

〉
= OHx ,Θ

Uq · · · OHx ,Θ
U1|0〉.

In the next step, we decompose this quantum state, so that each component
corresponds to one of the cases in the quantum simulator Definition 6.
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The First Query. We start by considering the state up to the first query:
OHx ,Θ

U1|0〉. We insert an additional identity operator and have,

OHx ,Θ
U1|0〉 = OHx ,Θ

I U1 |0〉

(i)= OHx ,Θ

⎛

⎝I −
∑

xj

|xj〉〈xj | +
∑

xj

|xj〉〈xj |
⎞

⎠ U1|0〉

= OHx ,Θ

⎛

⎝I −
∑

xj

|xj〉〈xj |
⎞

⎠ U1|0〉 + OHx ,Θ

⎛

⎝
∑

xj

|xj〉〈xj |
⎞

⎠ U1|0〉

(ii)= OH

⎛

⎝I −
∑

xj

|xj〉〈xj |
⎞

⎠ U1|0〉 +
∑

xj

OHxj,Θj
|xj〉〈xj |U1|0〉

= OHU1|0〉
︸ ︷︷ ︸

(1)

−
∑

xj

OH |xj〉〈xj |U1|0〉
︸ ︷︷ ︸

(2)

+
∑

xj

OHxj,Θj
|xj〉〈xj |U1|0〉

︸ ︷︷ ︸
(3)

Above, xj is enumerated over all entries in x.
Line (i) follows easily. Line (ii) is due to the fact that, if the query input is

not in x, Hx,Θ is functionally equivalent to H; similarly, if the query input is
xj , Hx,Θ is functionally equivalent to Hxj ,Θj

.
Next, we look at the three terms (1), (2), (3):

(1) OHU1|0〉 corresponds to the case that no measurement happens for the first
query.

(2) OH |xj〉〈xj |U1|0〉 corresponds to the case that measurement is made at the first
query and the query input is xj ; the oracle is not reprogrammed immediately.
In other words, the case (v1, b1) = (1, 1) in the simulator.

(3) OHxj,Θj
|xj〉〈xj |U1|0〉 corresponds to the case that measurement is made at the

first query and the query input is xj ; the oracle is reprogrammed immediately
and used for the first query. In other words, the case (v1, b1) = (1, 0) in the
simulator.

The Second Query. We do the same: insert an additional identity operator. To
make the presentation clearer, we focus only on one term OH |xj〉〈xj |U1|0〉; the
other cases are simpler.
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OHx ,Θ
U2OH |xj〉〈xj |U1|0〉

(1)= OHx ,Θ

⎛

⎝I −
∑

xk �=xj

|xk〉〈xk| +
∑

xk �=xj

|xk〉〈xk|
⎞

⎠ U2OH |xj〉〈xj |U1|0〉

(2)= OHx ,Θ

⎛

⎝I −
∑

xk �=xj

|xk〉〈xk|
⎞

⎠ U2OH |xj〉〈xj |U1|0〉

+ OHx ,Θ

⎛

⎝
∑

xk �=xj

|xk〉〈xk|
⎞

⎠ U2OH |xj〉〈xj |U1|0〉

(3)= OHxj,Θj

⎛

⎝I −
∑

xk �=xj

|xk〉〈xk|
⎞

⎠ U2OH |xj〉〈xj |U1|0〉

+

⎛

⎝
∑

xk �=xj

OH(xj,xk),(Θj,Θk) |xk〉〈xk|
⎞

⎠ U2OH |xj〉〈xj |U1|0〉

= OHxj,Θj
U2OH |xj〉〈xj |U1|0〉

︸ ︷︷ ︸
(1)

−
∑

xk �=xj

OHxj,Θj
|xk〉〈xk|U2OH |xj〉〈xj |U1|0〉

︸ ︷︷ ︸
(2)

+
∑

xk �=xj

OH(xj,xk),(Θj,Θk) |xk〉〈xk|U2OH |xj〉〈xj |U1|0〉
︸ ︷︷ ︸

(3)

We explain the equations line by line:

1. This one is straightforward by realizing the summation inside the bracket is
an identity operator.

2. This one follows from the distributive property.
3. This is the most important one.

– For the first term, we realize that the oracle will only be applied to inputs
that are not in x, or are equal to xj . Thus, Hx,Θ is functionally equivalent
to Hxj ,Θj

.
– For the second term, the oracle will only be applied to inputs that are

equal to xk. Thus, Hx,Θ is functionally equivalent to H(xj ,xk),(Θj ,Θk)
2.

(1) corresponds to the case that no measurement happens for the second query,
but since the first query is measure-and-reprogrammed, the second query is
made with the oracle Hxj ,Θj

. In other words, the case (v1, b1) = (1, 1).
(2) corresponds to the case that measurement is made at the second query and

the query input is xk; the oracle is not reprogrammed immediately. In other
words, the case (v1, b1) = (1, 1) and (v2, b2) = (2, 1) in the simulator.

2 It is also equivalent to Hxk,Θk . However, due to our description of the simulator,
H(xj ,xk),(Θj ,Θk) is more natural to work with.
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(3) corresponds to the case that measurement is made at the second query and the
query input is xk; the oracle is reprogrammed immediately. In other words,
the case (v1, b1) = (1, 1) and (v2, b2) = (2, 0) in the simulator.

Generalization to all Queries—State Decomposition. By repeating the same state
decomposition up to the first q queries (instead of all q + k queries), we will
end up a collection of subnormalized states, who sum up to the original state∣
∣
∣φHx ,Θ

q

〉
. These states are parameterized by when the measurement happens (an

ordered vector v such that 1 ≤ v1 · · · ≤ vt ≤ q), whether these queries are made
before or after each reprogramming (b ∈ {0, 1}t), and t ∈ {0, . . . , q}; in the
following we will denote these states by |φv ,b〉. For example, assuming b = 0 (all
reprogramming happens immediately), we have,

|φv ,0〉 =
∑

σ∈Sk
t

OHx σ,Θ σ
Uq · · · OHx σ,Θ σ

Uvt+1 OHx σ,Θ σ
|xσt

〉〈xσt
| · · · Uvt−1+1

︸ ︷︷ ︸
stage (t)

· · ·
· OH(xσ1 ,xσ2 ),(Θσ1 ,Θσ2 ) |xσ2〉〈xσ2 |Uv2 · · · OHxσ1 ,Θσ1

Uv1+1
︸ ︷︷ ︸

stage (2)

· OHxσ1 ,Θσ1
|xσ1〉〈xσ1 |Uv1OH · · · OHU1|0〉

︸ ︷︷ ︸
stage (1)

Here Sk
t denotes all ordered list of length t, with elements in {1, . . . , k} without

duplication; xσ denotes (xσ1 , . . . , xσt
) and Θσ denotes (Θσ1 , . . . , Θσt

). We can
similarly define |φv ,b〉 for all other b ∈ {0, 1}t, the only difference here is the
oracle may not be immediately reprogrammed at the end of each stage. More
generally, for each v of length t and b ∈ {0, 1}t, we define

|φv ,b〉 =
∑

σ∈Sk
t

|φv ,b,σ〉,

where |φv ,b,σ〉 is the state that is measured-and-reprogrammed according to v, b
with the order σ, similar to that in the definition of |φv ,0〉. Thus, we have:

∣
∣
∣φHx ,Θ

q

〉
=

∑

v ,b

|φv ,b〉,

Adding the Extra k Queries. We assume the algorithm A, after the first q queries,
already prepares the output x, z. We will force A making the last k queries, to
generate y = H(x). Recall the definitions Π

Hx o,y o

V and Gxo in Definition 4. By
setting x = xo and Θ = yo in the above analysis, the probability on the RHS
in the theorem we are proving is equal to:

Pr
H,G

[AHx o,y o → (x, z) and x ≡ xo and V Hx o,y o (x,Hxo,y o
(x), z) = 1

]

=
∥
∥
∥GxoΠ

Hx o,y o

V

∣
∣
∣φ

Hx o,y o

q+k

〉∥
∥
∥
2

.
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Since Gxo and Π
Hx o,y o

V commute (as they are both projections over compu-
tational basis), we can assume Gxo is applied to the state first. Even further,
as the computation of y = H(x) and the projection Gxo also commute, we can
assume Gxo applies to the state right before the last k queries, which are used
to compute y. Therefore, for every |φv ,b,σ〉, even if t < k (the length of v), we
can measure-and-(immediately)-reprogram exactly k − t locations of the last k
queries, and making the random oracle exactly reprogrammed to Hxo,y o

.
Thus, we have:

∣
∣
∣φ

Hx o,y o

q+k

〉
=

∑

v ,b
|v |=k

|φv ,b〉, (1)

where the RHS has (at most) 2k
(
q+k

k

)
terms.

By Eq. (1), Cauchy-Schwartz and the triangle inequality, we have:
∥
∥
∥GxoΠ

Hx o,y o

V

∣
∣
∣φ

Hx o,y o

q+k

〉∥
∥
∥
2

≤ 2k

(
q + k

k

) ∑

v ,b
|v |=t

∥
∥
∥GxoΠ

Hx o,y o

V |φv ,b〉
∥
∥
∥
2

. (2)

Finally, to prove the theorem statement, we relate each individual term on
the RHS with the behaviors of our simulator B.

Relating Each Term with Our Simulator B. Next, we prove that each term∥
∥
∥GxoΠ

Hx o,y o

V |φv ,b〉
∥
∥
∥
2

is upper bounded by the probability that when the simu-
lator B picks v, b, it succeeds and outputs x ≡ xo, which we denote by pxo,v ,b .

Since the simulator B ensures that (1) no duplicated elements ever in the
control register, (2) at the end, the control register only consists of inputs that
are outputted by A (which will be xo, enforced by Gxo), we have that pxo,v ,b is

the squared norm of the state
(
GxoΠ

Hx o,y o

V ⊗ IR
)

|ψv ,b〉, with the state |ψv ,b〉
being:

|ψv ,b〉 =
∑

σ∈Sk
k

|φv ,b,σ〉 ⊗ |set {(xo,σ1 , yo,σ1), . . . , (xo,σk
, yo,σk

)}〉R .

The only difference between |ψv ,b〉 and |φv ,b〉 is the extra control register! How-
ever, we realize that in this case, when σ is a permutation of [k], the control

register is unentangled, making pxo,v ,b is equal to
∥
∥
∥GxoΠ

Hx o,y o

V |φv ,b〉
∥
∥
∥
2

. This is
because the set will simply be set{(xo,1, yo,1), . . . , (xo,k, yo,k)}, regardless of what
σ is.

Finally, we have the L.H.S. is equal to

Pr
H,G

[
SimH,G,A → (x,y, z) and x ≡ xo and V Hx o,y o (x,y, z) = 1

]

=
1

2k
(
q+k

k

)
∑

v ,b
|v |=k

pxo,v ,b
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Thus, combining Eq. (2) and the equation above, we have:

R.H.S. =
∥
∥
∥GxoΠ

Hx o,y o

V

∣
∣
∣φ

Hx o,y o
q

〉∥
∥
∥
2

≤ 2k

(
q + k

k

) ∑

v ,b
|v |=k

pxo,v ,b

≤
(

2k

(
q + k

k

))2

· 1
2k

(
q+k

k

)
∑

v ,b
|v |=k

pxo,v ,b

= L.H.S.

where L.H.S. and R.H.S. denote the left/right-hand side term in the theorem
statement. Therefore, we conclude the proof. ��
Lemma 6 (Coherent Measure-and-Reprogram results in Uniform Images).
Consider the Coherent Measure-and-Reprogram Experiment in Definition 6, but where
we choose G to be uniformly random Then, for the measure-and-reprogram algorithm
B, the measurement L = (x′,Θ′) of the R register (in Step 5) will result in uniformly
random images Θ′.

Proof. We will proceed with a proof by induction over the number of quantum
queries of A. In this proof, we will denote by n the total number of queries
(n = q+k). For n = 1, let vj = n = 1. Then, if bj = 0, after updating the register
R using the unitary U (in step 2), the register R will contain superposition of
L sets consisting of a single pair (x,G(x)). Then, we perform the query to H
controlled by R using Octrl

H , which is a query to the reprogrammed H on single
points x, modifying accordingly the image register (y → y ⊕Hx,G(x)), but which
does not affect the R register. As G is random oracle, measuring R will result
in a uniform image θ′ = G(x), for some x ∈ X. If bj = 1, we first query using
Octrl

H , which is a query to the original H as L is empty. Then, we update R
using unitary U , resulting in R containing superposition of L sets consisting of
a single pair (x,G(x)). As before, measuring R will result in a uniform image
θ′ = G(x), for some x ∈ X. We emphasize that although Definition 6 defines G
as an arbitrary function, in the statement of this Lemma, we consider uniformly
random G instead of an arbitrary G.

For the inductive step, suppose that up to query n−1, the register R consists
of sets L′ with uniform images. Let A make its n-th query. If there does not exist
any vj equal to n then algorithm B answer A’s query controlled by R, repro-
gramming the oracle with the inputs and outputs pairs in L′, but importantly
R remains unchanged, hence R contains only uniform images by our induc-
tive hypothesis. Otherwise, suppose there exists j∗ such that vj∗ = n. Then if
bj∗ = 0, we are first going to add in L the pair (x,G(x)) if x is not already in
L, i.e. L = L′ ∪ {(x,G(x))}, otherwise L = L′. We are then going to make the
controlled query Octrl

H to the reprogrammed oracle OHL
, which does not affect

the register R. Hence by measuring R results in either (x′, θ′) ∈ L′, which by
hypothesis contains uniform image θ′ or in (x,G(x)), which given that G is a
random oracle, also results in a uniform image. Similarly, if bj∗ = 1 we are first
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going to make the controlled query Octrl
H to the reprogrammed oracle OH′

L
, then

we will update the register R using the unitary U , which as before will either
result in either L = L′ ∪ {(x,G(x))} or L = L′. In both cases, by measuring
R we will get a uniform image by using the uniformity of G and the inductive
hypothesis. ��

4 Applications

4.1 Query Complexity

We will begin by first introducing the family of (security) games for which we
will establish their quantum query complexity, namely the hardness of a quan-
tum adversary to win such games.

Definition 7 (Multi-Output k-Search Game (Single-Instance)). Let the random
oracle H : [M ] → [N ], a distribution over challenges πH and a winning relation RH,ch

defined over Y k.
Then we define the multi-output k-search game G as follows:

1. Challenger samples randomness ch and sends it to a quantum algorithm A having
(quantum) oracle access to H ;

2. Adversary A gets oracle access to H and outputs x := (x1, ..., xk), z;
3. Challenger queries x to the random oracle, resulting in y := (y1 = H(x1), ..., yk =

H(xk)) and checks if they satisfy the winning relation:
b := (x1, . . . , xk, y1, . . . , yk, z) ∈ RH,ch;

4. If b = 1, A wins the G game.

We will denote by εG(q) the maximum probability over all q-quantum algorithms A of
winning the multi-output k-search game G.

Our main result is a quantum lifting theorem in the average case, relat-
ing the success probability of an arbitrary quantum algorithm to win a multi-
output k-search game with the probability of success of a quantum algorithm
equipped with exactly k quantum queries.

Theorem 7 (Lifting for Multi-Output k-Search Games). Let G be a multi-output
k-search game (as defined in Definition 7). Let A be a q-quantum query adversary in
the game G (against the k-classical query challenger C). Then there exists a k-quantum
query adversary B against the game such that:

Pr[B|H〉 wins G] ≥ 1

22k
(
q+k

k

)2 Pr[A|H〉 wins G].

Proof. We will show that our Coherent Reprogramming result in Theorem 6
implies the lifting theorem. We will now show how to instantiate the coherent
reprogramming theorem. Let xo be uniformly sampled from Xk. Let H ′, G′ :
X → Y be two uniform random oracles. Then, it is clear that, as yo = G′(xo)
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is also uniform over Y k, the reprogrammed function H ′
xo,y o

: X → Y is a
uniform random function; this is due to the fact that, as stated in Theorem 6
(invoked here), the tuple xo has distinct values for its element. We will instan-
tiate the random oracle in the game G as the function H ′

xo,y o
. Assume that in

the game G after receiving the challenge and after performing its q quantum
queries to H ′

xo,y o
, the adversary A returns to the Challenger the outcome x.

Then, the Challenger queries x to H ′
xo,y o

resulting in y and checks if y satisfies
the winning relation RH′

x o,y o ,ch. Define V H′
x o,y o as the predicate that outputs 1

if y ∈ RH′
x o,y o ,ch and 0 else. In this way, we observe that the probability that A

wins the game G is exactly the RHS of Theorem 6. As a result, by Theorem 6,
there must exist an efficient quantum simulator SimH′,G′,A performing k quan-
tum queries that also wins the game G. Hence, it suffices to instantiate B as the
simulator Sim. ��

Let LC represent the set of (classical) queries that a challenger performs dur-
ing a multi-output k-search game G (Definition 7). For a quantum query adver-
sary B against G, wewill denote byLB the result of measuring its input and out-
put query registers. Now, for the query complexity applications we will need
the following stronger lifting theorem, which intuitively additionally guaran-
tees the existence of an algorithm against G such that at the end of the game,
measuring its input and output registers gives us exactly the set of queries of
the challenger.

Theorem 8 (Lifting for Search Game with Uniform Images). Let G be a multi-
output k-search game (as defined in Definition 7). Let A be a q-quantum query adver-
sary in the game G (against the k-classical query challenger C). Then there exists a
k-quantum query adversary B such that LB is uniform, satisfying:

Pr[B|H〉 wins G and LC = LB] ≥ 1

22k
(
q+k

k

)2 Pr[A|H〉 wins G].

Proof. The simulator algorithm B will follow the outline of the algorithm in the
proof of Theorem 7, with the only difference that B will perform an additional
step at the end. Namely, after interaction with Challenger C, compute list of
queries of C as LC . If any query in LC has not yet been queried by B, B will
query them to oracle H. The uniformity of LB follows directly from Lemma 6.
��

4.2 A New Quantum Lifting Theorem and Direct Product Theorem
for Image Relations

Our first quantum lifting result (in Theorem 7) gives a first bound on the quan-
tum hardness of solving any multi-output k-search game G by relating it to the
probability of G being solved by a quantum algorithm with a small number
of quantum queries. In this section we can derive a stronger quantum lifting
theorem for the class of relations that only depend on images.
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Theorem 9 (Quantum Lifting Theorem for Image Relations). For any quan-
tum algorithm A equipped with q quantum queries, A’s success probability to solve the
multi-output k-search game specified by the winning relation R, is bounded by:

Pr[A|H〉 wins multi-output k-search game ] ≤

22k

(
q + k

k

)2

Pr[∃ perm π | (yπ(1), yπ(2), ..., yπ(k)) ∈ R : (y1, ..., yk) $←− Y k].

For simplicity, in the rest of the section, we define p(R) as:

p(R) = Pr[∃ perm π | (yπ(1), yπ(2), ..., yπ(k)) ∈ R : (y1, ..., yk) $←− Y k].

Proof. Let G be a multi-output k-search game and assume a q-quantum adver-
sary A sends to the Challenger the answer x = (x1, ..., xk). Challenger C will
accept if and only if y := (H(x1), ...,H(xk)) ∈ RH,ch and if xi, xj are pairwise
distinct. By Theorem 8 we know there exists a quantum algorithm B making k
quantum queries to H winning the game such that LB = LC with success prob-
ability at least the success probability of A multiplied by a factor of 22k

(
q+k

k

)2
.

The condition LB = LC implies that C will verify as the images of B’s answer
exactly a permutation of the recorded information in LB. Therefore, due to the
property of Theorem 8 that LB will be uniformly over Y k, B’s winning probabil-
ity will be lower bounded by the probability that there exists a permutation such
that for uniformly sampled images from Y k, the permuted images will belong to
our target relation:

Pr[A|H〉 wins multi-output k-search game ] ≤ 22k

(
q + k

k

)2

p(R) .

��
Next, we show a Direct Product Theorem for Image Relations.

Definition 8 (Direct Product). Let G be a multi-output k-search game specified by
the winning relation R, with respect to a random oracle [M ] → [N ]. Define the follow-
ing Direct Product G⊗g :

– Let H be a random oracle [g] × [M ] → [N ], and Hi denotes H(i, ·);
– Challenger samples chi as in G for i ∈ {1, . . . , g}.
– Adversary A gets oracle access to H and outputs x1, . . . ,xg , z1, . . . , zg such that

each input in xi start with i.
– Challenger computes bi := (xi,H(xi), zi) ∈ RHi,chi

;
– If all bi equal to 1, A wins the G⊗g game.

Theorem 10 (Direct Product Theorem for Image Relations). For any quantum
algorithm A equipped with gq quantum queries, A’s success probability to solve the
Direct Product G⊗g with the underlying G specified by the winning relation R, is
bounded by

Pr[A|H〉 wins G⊗g] ≤
(

22k

(
q + k

k

)2

p(R)

)g

.
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Proof. Let G be a multi-output k-search game and assume a gq-quantum adver-
sary A sends to the Challenger the answer x1, . . . ,xg, z1, . . . , zg. By Theorem 8
we know there exists a quantum algorithm B making gk quantum queries to
H winning the game such that LB = LC with success probability at least the
success probability of A multiplied by a factor of 22gk

(
gq+gk

gk

)2
. The condition

LB = LC implies that C will verify as the images of B’s answer exactly a per-
mutation of the recorded information in LB. Moreover, for every image y, its
associated input x only belongs to one of the oracles H(i, ·); thus, it can only
contribute to one of the relation checks RHi,chi

. Thus, the permutation of the
recorded information can only permute images with respect to the same oracle
Hi.

Therefore, due to the property of Theorem 8 that LB will be uniformly over
Y gk, B’s winning probability will be lower bounded by the probability that
there exists a permutation such that for uniformly sampled images from Y gk,
the permuted images will belong to our target relation:

Pr[A|H〉 wins G⊗g ]

≤ 22gk
(gq + gk

gk

)2

Pr[∃π1, . . . , πg ∈ Sk | (yi,πi(1)
, ..., yi,πi(k)

) ∈ R : (yi,1, ..., yi,k)
$←− Y k]

≤
(
22k

(q + k

k

)2

Pr[∃ π ∈ Sk | (yπ(1), yπ(2), ..., yπ(k)) ∈ R : (y1, ..., yk)
$←− Y k]

)g

≤
(
22k

(q + k

k

)2

p(R)

)g

.

��
In the following section, we will show some of the query complexity and

cryptographic applications of our quantum lifting theorems and Direct Product
Theorem.

4.2.1 Application 1: Non-uniform Security

Definition 9 (Advice Algorithms). We define an advice (non-uniform) algorithm
A = (A1,A2) equipped with q queries and advice of length S as follows:

1. AH
1 → |adv〉: an unbounded algorithm A1 outputs the advice |adv〉 consisting of

S qubits;
2. AH

2 (|adv〉, ch) → x: q-quantum algorithm A2 takes as input the quantum advice
|adv〉 and a challenge ch, outputs answer x;

We define εC
G (q, S) as the maximum winning probability over any advice adversary A

equipped with q quantum queries and S classical bits of advice against the classically-
verifiable search game G.

We also consider multi-instance games, similar to Direct Product, except all
the instances share the same oracle.

Definition 10 (Multi-Instance Game). Let G be a multi-output k-search game spec-
ified by the winning relation R, with respect to a random oracle [M ] → [N ]. Define the
following Direct Product G⊗g

MIS:
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– Let H be a random oracle [M ] → [N ];
– Challenger samples chi as in G for i ∈ {1, . . . , g};
– Adversary A gets oracle access to H and outputs x1, . . . ,xg , z1, . . . , zg ;
– Challenger computes bi := (xi,H(xi), zi) ∈ RH,chi

;
– If all bi equal to 1, A wins the G⊗g

MIS game.

From above, we can define R⊗g
MIS as the winning relation for G⊗g

MIS.

Lemma 7
(Multi-Output Implies Non-Uniform Classical Advice ([CGLQ20])). Let G be
a search game (as defined in Definition 7). If the maximum winning probability for any
quantum algorithm equipped with q quantum queries against G⊗g

MIS is εG⊗g
MIS

(q), then the
maximum probability of any non-uniform adversary equipped with q quantum queries
and S-length classical advice against the original game G is at most:

εC
G (q, S) ≤ 4 ·

[
εG⊗S

MIS
(Sq)

] 1
S

By combining these results with our Quantum Lifting Theorem, we derive
the security against advice (non-uniform) quantum algorithms.

Lemma 8 (Security against Advice Quantum Adversaries). Let G be any multi-
output k-search game specified by the winning relation R. Let G⊗g

MIS be the multi-
instance game and R⊗g

MIS be the relation. Any non-uniform algorithm A equipped with
q quantum queries and S classical bits of advice can win the game G with probability
at most:

εC
G (q, S) ≤ 4 · 22k

(
S(q + k)

Sk

) 2
S

· p(R⊗S
MIS) .

Proof. By combining our (strong) quantum lifting theorem (in Theorem 9) with
the two advice results (Lemma 7). ��

4.2.2 Application 2: Salting Against Non-uniform Adversaries

Definition 11 (Salted Game). Let G be a search game (as defined in Definition 7)
specified by a random oracle H : [M ] → [N ], a distribution over challenges πH and a
winning relation RH,ch defined over Y . Then we define the salted version of G as the
game Gs with salted space [K] defined as follows:

1. The random oracle function is defined as: G = (H1, ...,HK) for K random func-
tions Hi : [M ] → [N ];

2. For any such G, the challenge ch := (i, chi) is produced by first sampling uniformly
at random i ∈ [K] and then sampling chi according to πHi

;
3. The winning relation is defined as RG,ch := RHi,chi

;

We will denote by εGs
(q) the maximum probability over all q-quantum algorithms A

of winning the salted game Gs.
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Lemma 9 (Security of Salted Game against Classical Advice). Let G be a multi-
output k-search game (as defined in Definition 7), specified by a relation R. Let Gs be
the salted game, with salt space [K]. Then we have,

εC
Gs

(q, S) ≤ 4 · S

K
+ 4 · 22k

(
q + k

k

)2

p(R).

Proof. By Lemma 7, the non-uniform security is related to the multi-instance
game G⊗g

s,MIS, with salt space [K]. The security of the multi-instance game is
closely related to the Direct Product, for salted games, as shown in [DLW24] (in
the proof of Theorem 4.1). More precisely,

εG⊗g
s,MIS

(gq)1/g ≤ εG⊗g
s

(gq)1/g +
g

K
.

Intuitively, the only difference between the multi-instance game and the Direct
Product is that, the same salt can be sampled with duplication. The extra factor
g
K captures the fact that the salt can be duplicated. Combining with Theorem
10, we have:

εC
Gs

(q, S) ≤ 4
(
εG⊗S

s,MIS
(Sq)

)1/S

≤ 4
(

εG⊗S
s

(Sq)1/S +
S

K

)

≤ 4 · S

K
+ 4 · 22k

(
q + k

k

)2

p(R).

��

4.2.3 Application 3: Multi-image Inversion
Our first result establishes the quantum hardness of multi-image inversion,
which is a tight bound as already proven in [CGLQ20], but achieved here in
a much simpler way, directly from our quantum lifting theorem.

Lemma 10 (Quantum Hardness of Multi-Image Inversion).
For any y = (y1, ..., yk) ∈ Y k = [N ]k (without duplicates) and for any q-quantum
query algorithm A whose task is to invert all the images in y, the success probability of
A is upper bounded by:

Pr
H

[A|H〉(y) → x = (x1, ..., xk) : H(xi) = yi ∀i ∈ [k]]

≤
[
4e(q + k)2

Nk

]k

Proof. We will show this using our strong quantum lifting theorem for image
relations (Theorem 9). Define R as the relation over [N ]k, with H : [M ] →
[N ] such that: R = {y1, ..., yk}. Then for each permutation π, we have
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Pr[(yπ(1), ..., yπ(k)) ∈ R | (y1, ..., yk) ← [N ]k] = 1
Nk . Using that the number

of permutations π is k! leads to:

Pr
H

[A|H〉(y) → x = (x1, ..., xk) : H(xi) = yi ∀i ∈ [k]] ≤ 22k

(
q + k

k

)2

· k!
Nk

Using first the inequality
(
q+k

k

) ≤ (q+k)k

k! and then the Stirling approximation

k! ≥ (
k
e

)k
, we get:

22k

(
q + k

k

)2

· k!
Nk

≤
(

4
N

)k

· k! ·
[
(q + k)k

k!

]2

≤
(

4
N

)k

· (q + k)2k ·
( e

k

)k

=
[
4e(q + k)2

Nk

]k

��

4.2.4 Application 4: Multi-collision Finding and Multi-search
Next, we can determine the quantum hardness of the multi-collision problem,
namely finding k different inputs that map to the same output of the random
oracle.

Lemma 11 (Quantum Hardness of Multi-Collision Finding and Salted
Multi-Collision Finding).

For any q-quantum query algorithm A, we have the upper bound for solving the
k-multi-collision problem:

Pr
H

[A|H〉() → x = (x1, ..., xk) : H(x1) = ... = H(xk)] ≤ 1
Nk−1

[
2e(q + k)

k

]2k

Any quantum algorithm A equipped with q quantum queries and S-bit of classical
advice can win the salted multi-collision finding game with salted space [K] with prob-
ability at most:

Pr
H

[A() → x = (x1, ..., xk) : H(x1) = ... = H(xk)] ≤ 4
Nk−1

[
2e(q + k)

k

]2k

+
4S

K
.

Proof. We will show this using our strong quantum lifting theorem for image
relations (Theorem 9). Define R := {y, ..., y}y the relation over [N ]k, where
H : [M ] → [N ]. Then for each permutation π, we have Pr[(yπ(1), ..., yπ(k)) ∈
R | (y1, ..., yk) ← [N ]k] = 1

Nk−1 . As R is permutation invariant, this implies
that:

Pr
H

[A|H〉() → x = (x1, ..., xk) : H(x1) = ... = H(xk)] ≤ 22k

(
q + k

k

)2

· 1
Nk−1
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Using first the inequality
(
q+k

k

) ≤ (q+k)k

k! and then the Stirling approximation:

22k

(
q + k

k

)2

· 1
Nk−1

≤ N ·
(

4
N

)k

·
[
(q + k)k

k!

]2

≤ N

(
4
N

)k

· (q + k)2k ·
( e

k

)2k

=
1

Nk−1

[
2e(q + k)

k

]2k

Finally, the security of salted multi-collision against non-uniform quantum adver-
saries equipped with S bits of advice follows by combining this quantum hardness
bound of multi-collision with Lemma 9. ��

Finally, we consider another search application, namely the task of deter-
mining k different inputs that all map to 0 under the random oracle. One of the
main motivations behind this problem is its relation to the notion of proof-of-
work in the blockchain context [GKL15].

Lemma 12 (Quantum Hardness of Multi-Search). For any q-quantum query
algorithm A whose task is to find different preimages of 0 of a random oracle H , the
success probability of A is upper bounded by:

Pr
H

[A|H〉() → x = (x1, ..., xk) : H(xi) = 0 ∀i ∈ [k]] ≤
[
4e2(q + k)2

Nk2

]k

Note that this bound is asymptotically tight, as an algorithm with q queries
can use q/k queries to find each pre-image (Grover’s algorithm), resulting in a

probability of Θ
({

( q
k )2/N

}k
)
.

Proof. We will show this using our strong quantum lifting theorem for image
relations (Theorem 9). Define R := {0, ..., 0} the relation over [N ]k, where
H : [M ] → [N ]. Then for each permutation π, we have Pr[(yπ(1), ..., yπ(k)) ∈
R | (y1, ..., yk) ← [N ]k] = 1

Nk . As R is permutation invariant, this implies that:

Pr
H

[A|H〉() → x = (x1, ..., xk) : H(xi) = 0 ∀i ∈ [k]] ≤ 22k ·
(

q + k

k

)2 1
Nk

Using first the inequality
(
q+k

k

) ≤ (q+k)k

k! and then the Stirling approximation:

22k

(
q + k

k

)2

· 1
Nk

≤
(

4
N

)k

·
[
(q + k)k

k!

]2

≤
(

4
N

)k

· (q + k)2k ·
( e

k

)2k

=
[
4e2(q + k)2

Nk2

]k

��
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Abstract. Quantum key leasing, also known as public key encryption
with secure key leasing (PKE-SKL), allows a user to lease a (quantum)
secret key to a server for decryption purpose, with the capability of
revoking the key afterwards. In the pioneering work by Chardouvelis et
al. (arXiv:2310.14328), a PKE-SKL scheme utilizing classical channels
was successfully built upon the noisy trapdoor claw-free (NTCF) fam-
ily. This approach, however, relies on the superpolynomial hardness of
learning with errors (LWE) problem, which could affect both efficiency
and security of the scheme.

In our work, we demonstrate that the reliance on superpolynomial
hardness is unnecessary, and that LWE with polynomial-size modulus
is sufficient to achieve the same goal. Our approach enhances both effi-
ciency and security, thereby improving the practical feasibility of the
scheme on near-term quantum devices. To accomplish this, we first con-
struct a noticeable NTCF (NNTCF) family with the adaptive hardcore
bit property, based on LWE with polynomial-size modulus. To the best of
our knowledge, this is the first demonstration of the adaptive hardcore bit
property based on LWE with polynomial-size modulus, which may be of
independent interest. Building on this foundation, we address additional
challenges in prior work to construct the first PKE-SKL scheme satisfy-
ing the following properties: (i) the entire protocol utilizes only classical
communication, and can also be lifted to support homomorphism. (ii)
the security is solely based on LWE assumption with polynomial-size
modulus.

As a demonstration of the versatility of our noticeable NTCF, we show
that an efficient proof of quantumness protocol can be built upon it.
Specifically, our protocol enables a classical verifier to test the quantum-
ness while relying exclusively on the LWE assumption with polynomial-
size modulus.

Keywords: Trapdoor claw-free functions · Adaptive hardcore bit ·
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1 Introduction

In this article, we mainly focus on a fundamental primitive with a key-revocation
capability – public key encryption with secure key leasing (PKE-SKL). Specif-
ically, PKE-SKL refers to the realization of key-revocable PKE functionality,
allowing the user/lessor to delegate decryption capability to the server/lessee
in the form of a quantum decryption key, whereby once the key is revoked, the
lessee loses the ability to decrypt. The PKE-SKL scheme is particularly effec-
tive in interactive cryptographic settings involving classical users and quantum
servers.

Recently, inspired by secure software leasing in [ALP21], the notion of PKE-
SKL was concurrently introduced by Agrawal et al. in [AKN+23] and Ananth
et al. in [APV23]. Based on the PKE-SKL scheme, these works subsequently
investigated the notion of secure key leasing for several extensions, like identity-
based encryption (IBE), attribute-based encryption (ABE), functional encryp-
tion (FE), fully homomorphic encryption (FHE), and pseudorandom functions
(PF). These key-revocable schemes based on the quantum no-cloning principle
enable delegation and revocation of privileges, which is crucial in many crypto-
graphic applications. Unfortunately, both recent works in [AKN+23,APV23] for
constructing PKE-SKL have two shortcomings:

– The user and the server must have both quantum capabilities, and the key
generation process has to require quantum communication;

– The construction requires subexponential hardness of the LWE assumption
with superpolynomial modulus.

To address the former issue, Chardouvelis et al. [CGJL23] recently intro-
duced a semi-quantum PKE-SKL scheme, transforming their approach into a
scheme with merely classical communication between a classical client and a
quantum server. Their work is inspired by the work of classical verification of
quantumness from LWE in [BCM+18]. Their construction is mainly based on
a powerful cryptographic tool called the LWE-based noisy trapdoor claw-free
functions (NTCF) with an adaptive hardcore bit (AHB) property.

However, the PKE-SKL scheme by Chardouvelis et al. [CGJL23] does not
address the second issue. Their construction still requires the subexponential
hardness of LWE with a superpolynomial modulus. One of the main reasons for
this is that their construction relies on NTCF with the AHB property, which
in turn depends on the superpolynomial hardness of LWE assumption. This
significantly affects the security and the efficiency of PKE-SKL, even making it
unfriendly for implementation on near-term quantum devices. Thus, building on
these, our main open question is the following:

Can efficient PKE-SKL with completely classical communication be based on
the polynomial hardness of standard LWE over polynomially large modulus ?
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1.1 Our Results

In this work, we affirmatively solve the above question. Main contributions are
summarized in Fig. 1.

Noticeable NTCF with AHB property

(Polynomial hardness of LWE assumption)

Section 5

PKE with Secure Key Leasing

Section 6

Proof of Quantumness

NTCF with AHB property

[CGJL23] [BCM+18]

Section 4

(Superpolynomial hardness of LWE assumption)

Fig. 1. Outline of main contributions in our work. To achieve a PKE-SKL scheme
with a polynomially large modulus, we first improve the NTCF from [BCM+18] and
propose a cryptographic primitive called noticeable NTCF (NNTCF). This primitive
serves as the core tool for constructing PKE-SKL and can be constructed based on
the polynomial hardness of LWE while still retaining the AHB property. We believe
that NNTCF may have independent interests. In addition to constructing PKE-SKL
schemes using NNTCF with AHB, as an example, we demonstrate a NNTCF-based
proof of quantumness protocol to illustrate its versatility.

We show that a modified version of the PKE-SKL scheme [CGJL23] with
merely classical communication can be constructed based on the hardness of
LWE with polynomial modulus. Informally, we first obtain the following result.

Theorem 1 (Informal). There exists a secure key leasing scheme for public
key encryption with a completely classical lessor, assuming the hardness of LWE
with polynomial modulus.

Specifically, based on LWE with polynomial modulus, we can achieve PKE-
SKL introduced in [CGJL23] with the following properties:

1. The protocol only uses polynomial-sized modulus q. This improves both effi-
ciency and security.

2. The protocol executed between a classical lessor and a quantum lessee involves
only classical communication, and all deletion certificates are classical.

3. The protocol satisfies a stronger PKE-SKL security described in [CGJL23].
We show that any quantum polynomial-time adversary can only simultane-
ously provide a valid classical deletion certificate and distinguish ciphertexts
with at most negligible probability.
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To achieve this target, we realize the adaptive hardcore bit property from
the hardness of LWE with polynomial modulus, which reduces the modu-
lus from superpolynomial size in [BCM+18] to polynomial size. Besides this, we
introduce an important primitive named the noticeable NTCF (NNTCF) family
with this property.

Theorem 2 (Informal). Assuming the hardness of the LWE problem with
polynomial modulus, there exists a noticeable NTCF (NNTCF) family with the
amplified adaptive hardcore bit property.

To the best of our knowledge, prior to our work, the NTCF family with
adaptive hardcore bit property can only be constructed based on superpoly-
nomial modulus. We believe this noticeable version of NTCF using a smaller
modulus may be of independent interest, such as enhancing the security1 and
improving the implementation efficiency of NTCF-based quantum cryptographic
protocols: revocable quantum digital signatures [MPY23], proofs of quantum-
ness [BCM+18,BKVV20], quantum delegated computation [Mah18b], certifiable
randomness generation [BCM+18] etc. To illustrate this, we present a new proof
of quantumness protocol based on NNTCF as an example.

Theorem 3 (Informal). Assuming the polynomial hardness of the LWE with
polynomial modulus, there exists a polynomial-sized proof of quantumness proto-
col from the NNTCF family.

Specifically, our NNTCF-based proof of quantumness protocol circumvents
the need for a superpolynomial modulus as required in [BCM+18], and fully
satisfies both quantum completeness and classical soundness. Namely, the pro-
tocol ensures that a quantum polynomial-time prover can succeed with high
probability (quantum completeness), while no classical polynomial-time prover
can achieve comparable success probability (classical soundness). The soundness
relies on the adaptive hardcore bit property of the NNTCF.

1.2 Related Works

Noisy Trapdoor Claw-Free Functions. The concept of noisy trapdoor claw-
free functions (NTCF) was first introduced by Brakerski et al. in the proofs of
quantumness and certifiable quantum randomness generator [BCM+18], and was
further developed by Mahadev within the realms of delegated quantum comput-
ing [Mah18b] and quantum homomorphic encryption [Mah18a]. Conceptually,
trapdoor claw-free functions (TCFs) consist of a pair of injective functions f0
and f1 that share the same image. With access to a secret trapdoor td, it becomes
easy to determine the two preimages x0 and x1 of the same image y, such
that f0(x0) = f1(x1) = y. However, it is computationally difficult to invert f0, f1
without the trapdoor td. Such a pair of (x0,x1) is known as a claw, hence the

1 Improving the security from the subexponential hardness of LWE assumption to
polynomial hardness of LWE assumption.
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name is claw-free. This useful cryptographic tool constructed based on the LWE
assumption plays a crucial role in quantum-classical interactive proof systems,
especially in constraining, describing, and verifying the behavior of untrusted
quantum devices. Inspired by these works, LWE-based NTCFs have been applied
to many intriguing quantum cryptographic schemes, such as remote state prepa-
ration [GV19,GMP23], tests of quantumness [BKVV20,BGKM+23], quantum
money [RS19,Shm22], secure quantum extraction [ALP20], public-key deni-
able encryption [CGV22], quantum copy-protection [CHV23], quantum certified
deletion [HMNY21], secure key leasing [AKN+23,APV23,CHV23,MPY23], and
secure software leasing [KNY21], etc.

More importantly, the security of LWE-based NTCF requires a very impor-
tant property – the adaptive hardcore bit (AHB) property, which is widely used
in constructing the above cryptographic schemes. The AHB property states that
whenever f0(x0) = f1(x1), it is difficult to hold both single preimage (b,xb), as
well as a random d and a bit c such that c = d� · (x0 ⊕ x1) mod 2. So far, The
LWE-based NTCF in [BCM+18,Mah18b] is the only known TCF instance with
AHB property, but its security is based on LWE with superpolynomial modulus.
In this work, we will consider a noticeable version of NTCF with AHB property
that only requires a polynomially large modulus.

Secure Key Leasing/Revocable Cryptography. The notion of secure key
leasing (SKL) or key-revocable cryptography is inspired by secure software leas-
ing in [ALP21]. Secure key leasing can be viewed as secure software leasing for
decryption algorithms but with stronger security guarantees that the adversary
is not restricted from running the software honestly after it is returned. Simi-
lar to quantum copy protection schemes, the core idea of SKL is to encode the
secret key into a quantum state to prevent it from being copied based on the
no-cloning principle. Recently, a couple of works have built PKE-SKL (or called
key-revocable PKE) and DSIG-SKL from lattices.

In [AKN+23], Agrawal et al. proposed the notion of public key encryption
with secure key leasing. In [APV23], Ananth et al. concurrently introduced the
same concept of key-revocable public key encryption. In these two works, key-
revocable PKE schemes are constructed based on standard LWE assumption
[APV23] or even the mere existence of any PKE scheme [AKN+23]. Indepen-
dently, for the digital signature primitive, Morimae et al. [MPY23] studied the
notions of digital signature with revocable signing keys and digital signature
with revocable signatures, assuming the sub-exponential hardness of LWE.

However, the above PKE-SKL works require both the user and the server
to possess quantum capabilities and utilize quantum communication. Thus, an
interesting question is whether it is possible to transform their schemes into
one with classical user and classical communication. To solve this problem and
further reduce quantum resources, Chardouvelis et al. [CGJL23] introduced a
semi-quantum PKE-SKL scheme in which the user is classical and interacts
solely through a classical communication with the quantum server. However, as
the construction of this scheme heavily relies on the trapdoor claw-free functions
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with AHB property introduced in [BCM+18], the security of the scheme still
depends on the sub-exponential time hardness of LWE assumption, necessitating
a sub-exponentially large modulus.

To date, all previous works that imply PKE-SKL are designed to achieve
quantum/semi-quantum key-revocable cryptography and almost rely on the sub-
exponential hardness of LWE. In this paper, inspired by the work of Chardou-
velis et al. [CGJL23], our goal is to achieve a PKE-SKL scheme that requires
only minimal quantum capabilities (only with classical communication), more
desirably from the polynomial hardness of LWE assumption.

NTCF-Based Proofs of Quantumness. A cryptographic proof of quan-
tumness is an interactive protocol that enables classical verifiers to deter-
mine whether provers (potentially quantum) is non-classical. To achieve
this, [BCM+18] introduced the first groundbreaking proof of quantumness sys-
tem. This scheme is constructed based on LWE-based NTCF, and its soundness
is guaranteed by the adaptive hardcore bit (AHB) property of NTCF. However,
a major drawback of this scheme is that the AHB property must rely on the sub-
exponential hardness of LWE, requiring the modulus of the scheme to be super-
polynomially large. Since then, many methods have been proposed to further
simplify NTCF-based proof systems by circumventing the AHB property. For
example, [BKVV20] introduced a simple proof of quantumness scheme based on
a random oracle model, assuming only the existence of trapdoor claw-free func-
tions. [YZ22] demonstrated a non-interactive quantumness test in the random
oracle model. Furthermore, other schemes [KMCVY22,KLVY23,BGKM+23]
incorporate NTCF with Bell’s inequality to get rid of dependence on AHB
property.

In this work, to avoid relying on the random oracle model or Bell’s inequality,
we aim to achieve the AHB property solely based on the polynomial hardness
of LWE. This approach will fundamentally and directly enhance the efficiency
of the protocol described in [BCM+18]. To the best of our knowledge, no prior
research has accomplished this.

1.3 Organization

The remainder of the paper is organized as follows. In Sect. 2 we give the technical
overview for our main results. In Sect. 3 we provide cryptographic preliminaries
used throughout this work. In Sect. 4 we formalize our definition of noticeable
noisy trapdoor claw-free family (NNTCF) and show that its construction can be
built from standard LWE assumption with polynomial modulus. Furthermore,
we prove our NNTCF still satisfies the adaptive hardcore bit (AHB) property.

In Sect. 5, we describe the construction of the NNTCF-based PKE-SKL
scheme, assuming the polynomial hardness of LWE with polynomial modulus.

In Sect. 6, we describe the construction of the NNTCF-based proof of quan-
tumness scheme, assuming the polynomial hardness of LWE.
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2 Technical Overview

In this section, we will provide a technical overview of our works described in
Fig. 1. We first slightly extend the original NTCF from [BCM+18] to define
our noticeable NTCF (NNTCF) in Subsect. 2.1. Notably, our NNTCF family
with adaptive hardcore bit property can be built upon LWE with polynomial
modulus. In Subsect. 2.2, we will explain how the NNTCF primitive can be
used to optimize the PKE-SKL scheme in [CGJL23] such that its ciphertexts’
modulus q can be reduced to polynomial size and the security is based on the
LWE with polynomial modulus. Finally, in Subsect. 2.3, we will present the
main idea of constructing a new proof of quantumness protocol based on our
NNTCF. In particular, our scheme is solely based on LWE with polynomial
modulus and does not need to rely on random oracle model [BKVV20] or Bell’s
inequality [KMCVY22,KLVY23,BGKM+23].

Throughout this section, we will try to be consistent with prior works about
the notation of parameters for easier comparison and comprehension.

2.1 Noticeable NTCF from Polynomial Hardness of LWE

Before explaining this approach, we need to recall how the LWE can be employed
to construct a NTCF in [BCM+18] and why this original LWE-based NTCF
requires a superpolynomial-sized modulus.

Recap: LWE-Based NTCF and Its Two Superpolynomial Gaps. Given
function fk,b(x) = Ax + e + b · As defined with standard LWE samples k =
(A, t = As+e0) ∈ Z

m×n
q ×Z

m
q , a NTCF can be informally defined by f ′

k,b(x) =
Ax + e + b · (As + e0) for b ∈ {0, 1}. We can see that if e0 were 0, f ′

k,b(x) is
the same as fk,b(x), such that fk,1(x) = fk,0(x + s). But in fact, e0 really won’t
be 0. In this case, to ensure that f ′

k,1(x) and f ′
k,0(x + s) still appear to be the

same, we must strictly constrain the norm of e. Typically, we can sample e from
a Gaussian distribution with width superpolynomially larger than the Gaussian
distributed noise e0, implying that f ′

k,1(x) is statistically close to f ′
k,0(x + s).

Specifically, if e0 ←↩ DZm
q ,BV

, e ←↩ DZm
q ,BP

and BP /BV is superpolyno-
mial in security parameter λ, the Hellinger statistical distance between f ′

k,b(x)
and fk,b(x), 1−exp(−2πmBV /BP ), can be bounded by 1−negl(λ). Therefore, e
can be viewed as a flooding noise for e0, which incurs the first superpolynomial
gap BP /BV .

Next, we explain the second superpolynomial gap BV /BL. This gap is
incurred by noise flooding used to ensure the adaptive hardcore bit (AHB) prop-
erty of NTCF, which is briefly introduced below. Given a description of a NTCF
described as above, a quantum device can easily set up a claw superposition
as 1√

2
(|0,x0〉 + |1,x1〉) by creating the state

∑
b,x|b〉|x〉|f ′

k,b(x)〉 and measuring
the last register, where f ′

k,0(x0) = f ′
k,1(x1) and x1 = x0−s mod q. For the gener-

ated state 1√
2
(|0,x0〉 + |1,x1〉), performing a computational basis measurement

will yield a preimage (b,xb) ∈ {0, 1} × Z
n
q . On the other hand, performing a
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Hadamard basis measurement will yield a pair (c,d) ∈ {0, 1} × {0, 1}n log q such
that d is uniform random and c = d� · (x0 ⊕ x1) mod 22.

The AHB property asserts that it is not possible to simultaneously obtain
both (b,xb) and (c,d) under the LWE assumption. From the Lemma 2, Brak-
erski et al. have proven that if (b,xb, c,d) are given, there exists an effi-
ciently computable function Ib,xb

(d) for random d can compute a string d̂ such
that d� · (x0 ⊕ x1) = d̂� · s, where d̂ ∈ {0, 1}n \ {0n} and s ∈ {0, 1}n. Thus,
the AHB property can be reformulated as stating that it is hard to produce a
pair (c, d̂) such that c = d̂� · s mod 2. In other words, the AHB property holds
if the distribution d̂� · s mod 2 is statistically close to a uniformly random bit,
where d̂ is conditioned on LWE sample.

To prove this, [BCM+18] used the leakage resilience of LWE: Given an LWE
instance, any given bit of s is computationally indistinguishable from a uni-
formly random bit. This approach replaces the matrix A with a computation-
ally indistinguishable lossy matrix Ã = BC + F ← lossy(1n, 1m, 1�, q,DZq,L),
where C ∈ Z

�×n
q has a large kernel and F ←↩ D

Z
m×n
q ,BL

is small. Now, the LWE
instance (A,As + e0) is replaced by (BC + F,BCs + Fs + e0). As we know,
the choice of d̂ indeed depends upon the LWE sample, which corresponds in the
leakage resilience argument to d̂ depending on Cs. Thus, the core proof of AHB
property is to argue that given a sample of the form (BC + F,BCs + Fs + e0),
for any fixed d̂, the distribution d̂� ·s mod 2 is still statistically close to uniform
distribution with overwhelming probability. In other words, we need to show for
any fixed d̂ and C, the joint distribution (Cs, d̂ · s mod 2) is statistically close
to uniform.

To achieve this, their solution relies on s being a computationally random
binary vector, but now the s is subject to Fs information leakage. To solve
this, they choose e0 from a Gaussian distribution with a width sufficiently
larger than Gaussian distributed noise F (i.e., BV /BL also be superpolyno-
mial). Since e0 ←↩ DZm,BV

and ‖Fs‖ ≤ nBL
√

m, this ensures that e0 statisti-
cally “floods” the term Fs. Then, this noise flooding technology could efficiently
ensure that (Cs, d̂� · s mod 2) is statistically close to uniform.

Noticeable NTCF from Polynomial LWE Assumption . To circumvent
the above two superpolynomial flooding noises, we develop a family of noticeable
NTCF (NNTCF) endowed with the AHB property from the hardness of standard
LWE. The formal definition and construction are described in Sect. 4. Below we
elaborate on the high-level idea of reducing BP /BV and BV /BL to polynomial
size, respectively.

– Circumvent superpolynomial BP /BV : We introduce the concept of a notice-
able version of NTCF (NNTCF). Intuitively, “noticeable” here means that
we can slightly relax the statistical distance between the two distribu-
tions, f ′

k,1(x) and fk,1(x), in the NTCF. Specifically, we relax the Hellinger

2 In fact, the bit c is evaluated by c = d� · (J (x0)⊕J (x1)) in [BCM+18], where J (·)
is the binary representation function. For simplicity, we omit this function in the
expression.
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NTCF Noticeable NTCF

[BCM+18]: Overlapping proportion
is almost 1 − negl(λ)

Ours: Overlapping proportion
is relaxed to 1 − 1/poly(λ)

Fig. 2. Schematic representation of noticeable NTCF from original NTCF. The term
“noticeable NTCF” emphasizes that the distance we consider is not negligible but
noticeable (inverse polynomially small).

distance between f ′
k,1(x) and fk,1(x) from negl(λ) to 1/poly(λ), as shown in

Fig. 2. This relaxation allows us to naturally reduce BP /BV to a polynomial
size. In fact, this relaxation has already been implicitly used in [BKVV20] to
simplify the proof of quantumness. Here, we decide to explicitly define this
concept to emphasize that the statistical distance between the two aforemen-
tioned distributions is not necessarily negligible.

– Circumvent superpolynomial BV /BL: We illustrate the high-level idea in
Fig. 3. To ensure that distribution (Cs, d̂� · s mod 2) is statistically close
to the uniform distribution U(Zl

q ×Z2), [BCM+18] uses the superpolynomial
flooding noise e0 hides the term Fs. This method is very straightforward,
however, we observe that it is not necessary to completely hide the Fs infor-
mation, but only to obscure the s information well. Intuitively, there is no
need to hide s perfectly. We argue that if there is sufficiently high entropy
left in s, then the argument (Cs, d̂� · s mod 2) ≈s U(Zl

q × Z2) still holds.
Specifically, we use the refined flooding technique, also known as the gen-
tle flooding approach in [BD20]. The main solution is to apply refined noise
flooding to replace the error e0 with term Fe(1)0 + e(2)0 . Refer to [BD20], we
set e(1)0 and e(2)0 as independent random variables with polynomially large
width. Consequently, the term Fs + e0 is reformulated as F(s + e(1)0 ) + e(2)0 .
Building on this, we prove that the AHB property still holds in the NNTCF
family. The heart of the proof lies in the fact that we can directly argue that
the distribution (Cs, d̂� ·s mod 2), conditioned on v = s+e(1)0 for any fixed v,
is statistically indistinguishable from the uniform distribution U(Zl

q×Z2) (See
Lemma 6).
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Fig. 3. Summary of circumventing superpolynomial flooding noise in the proof of AHB
property of NTCF. U(Zl

q × Z2) denotes the density of the uniform distribution over
Z

l
q × Z2.

Therefore, both BP for e and BV for e0 can be polynomially large, thereby
ensuring the LWE-based NNTCF only relies on polynomial hardness of LWE
assumption.

2.2 Secret Key Leasing for PKE from LWE-Based NNTCF

Building on the NNTCF family with AHB property, we show how to construct
a PKE-SKL scheme with a polynomial modulus. We first review the PKE-SKL
scheme described in [CGJL23] from the LWE-based NTCF with AHB property.

Recap: NTCF-based PKE-SKL in [CGJL23]. Their construction is inspired
by the “proof of quantumness” construction in [BCM+18]. To obtain a key leas-
ing scheme, the idea is to use the claw superposition in their construction as a
quantum decryption key. We describe (a slightly simplified version of) Chardou-
velis’s PKE-SKL scheme based on Regev’s two-key PKE and LWE-based NTCF,
as illustrated in Fig. 4.

The formal scheme is a parallel repetition of the above scheme. Recall the
AHB property of NTCF that no quantum polynomial-time adversary can obtain
both (b,xb) and (c,d). This property will guarantee the security of the PKE-SKL
scheme of Fig. 4, i.e., any adversary cannot both provide a valid classical deletion
certificate and distinguish ciphertexts (the latter corresponds to the ability to
extract xb).

Now, we explain why the PKE-SKL construction in Fig. 4 requires a super-
polynomial modulus. The primary reason is the presence of four superpolynomial
gaps: all ratios BV /BL, BP /BV , BP ′/BP , BX/BS need to be superpolynomial
in λ. The first two superpolynomial gaps BV /BL, BP /BV are caused by LWE-
based NTCF with AHB property, which has been explained in Sect. 2.1.
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Fig. 4. Core subroutine of PKE-SKL in [CGJL23]

The BP ′/BP must be superpolynomial because the ct3 in ciphertext needs
a flooding noise e′ ←↩ DZm

q ,BP ′ to flood the term r�e. In the PKE-SKL security
game, the y = Ax0 + e is given by the adversary who plays the role of the
user, hence e can be related to A. Therefore we cannot apply a general leftover
hash lemma directly to r�A conditioned on r�e. To make r�A independently
random, they use smudging noise e′ with superpolynomially larger width BP ′ 

BP to flood the term r�e, thereby ensuring r�A to be independently random
under the entropy of r. This is crucial for the (quantum) extractor to work given
a (quantum) distinguisher for distinguishing encryptions of 0 and 1. Due to the
AHB property, the successful construction of such an extractor will ensure that
any lessee can not decrypt anymore after submitting a deletion certificate, which
proves the PKE-SKL security.

Finally, regarding BX , it is required to be either superpolynomially larger
than BS or equal to modulus q. This condition is to ensure that the two distri-
butions U([BX ]) and U([BX ] + BS) are statistically close, which is crucial for
ensuring correct generation of claw superposition as 1√

2
(|0,x0〉 + |1,x1〉). Later,

when we resolve all three primary gaps BV /BL, BP /BV and BP ′/BP , the mod-
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Fig. 5. Summary of circumventing superpolynomial BP ′/BP . U(Zn
q ) denotes the den-

sity of the uniform distribution over Z
n
q .

ulus can then be reduced to be polynomial-size. As a result, we can set BX = q
and the gap BX/BS also becomes polynomial.

Therefore, to achieve polynomial-size modulus in the PKE-SKL [CGJL23],
it suffices to address the three gaps: BV /BL, BP /BV and BP ′/BP .

Solving Superpolynomial Gaps in NTCF-Based PKE-SKL. Below, we
provide high-level ideas for circumventing these gaps.

– The gaps BV /BL and BP /BV : Firstly, we can replace the NTCF with
the NNTCF family described in Sect. 2.1, thereby immediately avoiding two
superpolynomial gaps BV /BL, BP /BV . The security of PKE-SKL will then
be based on the AHB property of our NNTCF.

– The gap BP ′/BP : Intuitively, to make r�A independently random, it is not
necessary to completely hide the r�e information, but only to obscure the r
well. Furthermore, there is no need to statistically hide r, we only need to
properly hide enough information in r to ensure that r�A appears indepen-
dently random, as shown in Fig. 5.
In order to remove the superpolynomially large e′, our key idea is to per-
turb e with another vector e1 ∈ [−‖e‖∞, ‖e‖∞]m before its product with r.
The hope is that many entries of e + e1 indexed by some set Z will become
0’s after the random perturbation. As explained before, the e can be related
to A. Therefore, it is crucial to argue that the set Z is random and indepen-
dent from e, in which case the remaining entropy of r given r�(e + e1) is
sufficient to make r�A independently random.
Unfortunately, the length of e is smaller than the infinity norm of e, so we
cannot expect a high probability that e+e1 has many 0’s. To address this, we
need to modify the scheme such that the public key contains more samples.
We apply a standard technique that can help increase the number of sam-
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ples (i.e., m′ > m), but will also slightly increase the error size. Concretely,

we select U $←− {0, 1}m′×m and derive more samples (A′,y′) with the same
secret x0, where A′ = UA and y′ = Uy = U(Ax0 + e) = A′x0 + Ue.
We let e′′ = Ue denote the new error. Now we can guess e′′ with e′

1 from
[−‖e′′‖∞, ‖e′′‖∞]m

′
of a larger length. For an appropriate choice of m′, we

can ensure that e′′ + e′
1 has sufficiently many 0’s. Under this condition, suffi-

cient randomness in r will be preserved, which allows us to argue that r�A′

is independently random.

Next, we discuss why the decryption functionality and security of the PKE-
SKL scheme can still be maintained when switching from NTCF to NNTCF.

Decryption Functionality. For the ciphertext in the PKE-SKL scheme, the
correctness of decryption depends on the quantum decryption key ρsk. As we
know, in the NTCF-based PKE-SKL scheme, the decryption key ρsk is the uni-
form claw superposition 1√

2
(|0,x0〉+|1,x1〉) quantumly generated by the NTCF.

When we switch from NTCF to NNTCF, the generated claw state may
exhibit slight variations. In NNTCF, we relax the Hellinger distance between
distributions f ′

k,b(x) and fk,b(x) from 1 − negl(λ) to 1 − 1/poly(λ). In this case,
once the quantum device measures the last register of state

∑
b,x|b〉|x〉|f ′

k,b(x)〉,
the first two registers will not always produce a uniform claw superposition.

However, we must point out that even if the generated claw state is not
a perfect uniform superposition of (x0,x1), the state can still successfully
decrypt with a probability of 1 − negl(λ). This is because the decryption oper-
ation ρsk ⊗ |ct3 − ct1 · xb + b · ct2〉 is performed coherently. As long as the claw
state generated by the NNTCF is still over the two preimages (0,x0) and (1,x1),
regardless of whether their amplitudes differ from 1/

√
2, decryption will be suc-

cessful.

Key Leasing Security. The core of key leasing security is to ensure that
the lessee cannot perform decryption after deleting the quantum decryption
state ρsk. The deletion operation requires the lessee to perform a Hadamard
measurement on ρsk to produce a valid deletion certificate (c,d) such that c =
d� · (x0 ⊕ x1) mod 2. Since the decryption capability corresponds to obtaining
the information (b,xb), the security of PKE-SKL will ultimately be guaranteed
by the AHB security property of the NTCF. However, as shown in [CGJL23],
a single valid deletion certificate is insufficient. For example, the adversary can
forge a certificate (c,d) by randomly picking d and c. Therefore with 1/2 prob-
ability, the adversary can produce a valid certificate. In this case, the adversary
does not need to run a Hadamard measurement on its state and can continue to
decrypt ciphertext successfully. Therefore, the security of key leasing needs to
be further amplified through a parallel repetition mechanism.

In the parallel repeated NTCF-based PKE-SKL scheme, the lessor is required
to prepare many (say, N) independent LWE instances {ki = (Ai, ti =
Aisi + e0,i)}i∈[N ]. Correspondingly, the lessee generates its public key pk =
{ki,yi}i∈N and secret key ρsk = ⊗N

i=1ρsk,i, where ρsk,i = 1√
2

∑
bi∈{0,1}|bi,xi,bi

〉 =
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1√
2
(|0,xi,0〉 + |1,xi,1〉). The deletion certificate now consists of a collection

of N responses {(ci,di)}i∈[N ] certifying the deletion of ρsk. The ciphertext
is revised as ct := (ct1, ct2, ct3), where ct1 = [r�A1, . . . , r�AN ]�, ct2 =
[r�t1, . . . , r�tN ]� and ct3 = 〈r,∑N

i=1 yi〉 + e′ + μ · 
q/2�. Then, the decryp-
tion is performed in a coherent way as

ρsk ⊗ |ct3 − [x1,b1 , . . . ,xN,bN
] · ct1 − [b1, . . . , bN ] · ct2〉 ≈ ρsk ⊗ |μ · 
q/2�〉.

Thus the security of the parallel repeated scheme will naturally depend on an
amplified AHB property, i.e., the probability that the adversary can simultane-
ously obtain {(ci,di)}i∈[N ] and {(bi,xi,bi

)}i∈[N ] can be approximately bounded
by 2−N .

As mentioned previously, our main concern now is whether the security
previously based on amplified AHB can be ensured if we replace NTCF with
NNTCF. On the positive aspect, our NNTCF still enjoys the AHB property
under the polynomial hardness of LWE assumption. On the negative side, the
claw state generated with our NNTCF will sometimes lead to failure in the
verification. In more detail, by using the NNTCF family, the claw state ρsk,i
corresponding to some yi may no longer be a uniform superposition state
as 1√

2
(|0,xi,0〉 + |1,xi,1〉). For such a non-uniform superposition claw state,

performing a Hadamard measurement will no longer produce a valid certifi-
cate (ci,di) that satisfies ci = di · (xi,0 ⊕xi,1) mod 2, thereby causing the certifi-
cate verification algorithm to fail. Here, we need to point out that the generation
of non-uniform superposition claw states, as described above, does not affect the
overall security of our NNTCF-based PKE-SKL scheme.

Intuitively, the Hellinger distance between the distributions f ′
k,b(x)

and fk,b(x) in NNTCF is 1 − 1/poly(λ). Although this is not 1 − negl(λ), it
is still sufficiently close. Therefore, while we cannot generate a uniform super-
position claw state with 1 − negl(λ) probability every time, in N independent
events, we can use the Chernoff bound to ensure that there are at least 0.78N
valid deletion certificates. We further show that it suffices to verify a major (e.g.,
the carefully chosen 78%) proportion of the certificate for the security guaran-
tee. Now suppose it requires passing verification of all certificates over a prefixed
size-0.78N set of indices i’s. Under the amplified AHB, one can claim that the
advantage of any adversary passing the verification without losing decryption
capability is approximately 2−0.78N . However, in the real protocol, the adver-
sary is available to choose any size-0.78N set of indices, and there are

(
N

0.78N

)

many choices over a set of N indices. Up to a union bound, the advantage of a
successful adversary can still be properly bounded.

2.3 Proof of Quantumness from LWE-Based NNTCF

In this subsection, we introduce how to use the NNTCF to construct a proof of
quantumness protocol based on the polynomial hardness of LWE problem.

Fix a security parameter λ and a LWE-based NNTCF family. Let P denote
a quantum prover and V denote a classical verifier. The NNTCF-based proof of
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Fig. 6. Polynomial-sized proof of quantumness from NNTCF (Simple version)

quantumness protocol is described in Fig. 6. Our NNTCF-based proof of quan-
tumness protocol can be viewed as a revised version of the works in [BCM+18]
and [BKVV20], while the security is solely based on the AHB property of the
NNTCF. Compared to [BCM+18], the protocol construction no longer requires
a superpolynomial LWE modulus; compared to [BKVV20], the protocol con-
struction no longer requires the random oracle model (ROM).

Quantum Completeness. Regarding the preimage test, as long as the claw
state generated by the NNTCF is still over the two preimages (0,x0) and (1,x1)
with any amplitude, any one of the two measured values will certainly pass the
verification. As shown in Fig. 6, there are almost half of the NNTCF instances
devoted to the preimage test instead of the equation test. Therefore, we need to
correspondingly adapt the number of valid equation tests such that an honest
quantum prover can pass the equation test except with negligible probability.
Overall, the probability that the quantum prover can successfully pass the pro-
tocol described in Fig. 6 is 1 − negl(λ).

Classical Soundness. Intuitively, any malicious classical prover will be ruled
out as it is required to pass a majority of the equation tests in our protocol. In
particular, under the AHB property, conditioned on always passing the preimage
test, any classical PPT prover should not be able to subsequently win in the
equation test with probability noticeably larger than 1

2 .
As a result, the cheating advantage of any classical PPT adversary to pass a

major proportion (say, 75%) of the equation tests should be negligible.
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2.4 Open Problems

Our work opens several promising avenues for future research, particularly
concerning the NNTCF construction and its potential applications. While we
focused primarily on quantum key leasing due to its compatibility with NNTCF,
numerous other NTCF-based applications, particularly those involving the adap-
tive hardcore bit property, could benefit from our findings. We identify significant
unexplored directions to extend and generalize our results, which could inspire
further advancements in the field. They can be mainly divided into the following
three categories.

The first category is about applications based on standard NTCF over classi-
cal channels. Within this category, we have successfully improved both the proof
of quantumness scheme in [BCM+18] and the key leasing scheme in [CGJL23].
As far as we know, there are more applications within this category such as the
certifiable randomness generation protocol [BCM+18] and the semi-quantum
money [RS19]. However, these adaptations appear to be more involved and we
leave them as future work.

The second category concerns the tasks based on variants of NTCF over clas-
sical channels. An example is the quantum delegated computation in [Mah18b],
which is based on the extended TCF. It seems more effort would be needed to
properly adapt these applications, which can also be interesting for future work.

The last category includes all applications based on (variants of) NTCF
that require quantum channels. One example is the revocable quantum digital
signature [MPY23]. In this work, to start, we tried to focus on the applications
solely over classical channels. However, we believe that the adaptation for this
category can be an interesting direction for future research.

3 Preliminaries

3.1 Notions

In this paper, we use λ to denote the security parameter. For positive integer N ,
let [N ] denote the set {1, 2, . . . , N}. Let Z be the set of integers and N be the
set of natural numbers. For any q ≥ 2 ∈ N, we let Zq denote the ring of integers
modulo q. The vectors are denoted by bold lowercase letters (e.g., x ∈ Z

n),
matrices by bold uppercase letters (e.g., A ∈ Z

m×n). We write negl(λ) for any
function f : N → R+ such that for any polynomial p, limλ→∞ p(λ)f(λ) = 0.
Let poly(n) be a polynomial in n. Let B(c, R) denote the ball with center c and
radius R. Let the letter D denote a distribution over a finite domain X and f for a
density on X, i.e., a function f : X → [0, 1] s.t.

∑
x∈X f(x) = 1. x ← D indicates

that x is sampled from the distribution D, and x
$←− X indicates that x is sampled

uniformly from the set X in random. Let DX for the set of all densities on X. For
any f ∈ DX , Supp(f) is denoted the support of f , Supp(f) = {x ∈ X|f(x) > 0}.
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3.2 Lattices and Lattice Problems

We give some background on lattice in this section. Let B = {b1, . . . ,bm} ⊂ R
n,

where m ≤ n consist of m linearly independent vectors. The m-dimensional
lattice generated by the basis B is

Λ = L(B) = {x =
∑

i∈[m]

cibi, ci ∈ Z}.

In the following part, we will introduce discrete Gaussian distribution over a
lattice Λ and some properties of discrete Gaussian distribution. For a full-rank,
symmetric, positive definite n×n matrix Σ, we define the n-dimension Gaussian
function of deviation parameter

√
Σ as ρ√

Σ(x) = exp(−π · (x)T Σ−1(x)), for
any x ∈ R

n. Particularly, if Σ is a diagonal matrix and each non-zero term
equals r2, Gaussian function can be simplified as ρr(x) = exp(−π · ‖x‖2/r2).

We recall the discrete Gaussian distribution on the integer lattice Z
n.

Definition 1 (Discrete Gaussian Distribution). For a full-rank, symmet-
ric, positive definite n × n matrix Σ, we define the n-dimension discrete Gaus-
sian distribution over the lattice Z

n, D
Zn,

√
Σ of standard deviation parameter

matrix
√

Σ by

∀x ∈ Z
n : D

Zn,
√

Σ(x) = ρ√
Σ(x)/ρ√

Σ(Zn),

where ρ√
Σ(Zn) =

∑
x∈Zn ρ√

Σ(x).

Now we recall the following lemma about the approximate upper bounds of
the vectors selected from discrete Gaussian distribution.

Lemma 1 ([Ban93, Lemma 1.4]). Let n ∈ N, r > 0, then it holds that

1) For any k > 0, Pr[|x| > kr;x ←↩ DZ,r] ≤ 2e
−k2
2 ;

2) for any k > 1, Pr[‖x‖ > kr
√

n;x ←↩ DZn,r] < kne
n
2 (1−k2).

We can now define bounded discrete Gaussian distribution.

Definition 2 (Bounded Gaussian Distribution). For the integer lattice Z
n,

the bound B and the derivation parameter r, the bounded discrete Gaussian
distribution is defined by:

DZn,r,B(x) =

{
ρr(x)∑

‖x‖≤B ρr(x)
, if ‖x‖ ≤ B,

0 , otherwise.

Due to the Lemma 1, when B > r
√

n, the bounded discrete Gaussian distri-
bution DZn,r,B is statistically closed to the discrete Gaussian distribution DZn,r.

Definition 3 (LWE Problem). For a security parameter λ, let n,m, q ∈ N

be integer functions of λ. Let χ = χ(λ) be a distribution over Z. The LWEn,m,q,χ

problem is to distinguish between the distributions (A,As+e mod q) and (A,u),

where A $←− Z
n×m
q , s $←− Z

n
q , e ← χm, and u $←− Z

m
q . Often we consider the

hardness of solving LWE for any function m such that m is at most a polynomial
in n log q. This problem is denoted LWEn,q,χ.



202 D. H. Phan et al.

4 Noticeable Noisy Trapdoor Claw-Free Function Family

In this section, we will describe our construction of a noticeable noisy trap-
door claw-free function (NNTCF) family and prove its properties including the
adaptive hardcore bit.

4.1 Construction of NNTCF from LWE with Polynomial Modulus

Our construction of NNTCF is similar to the one in [BCM+18]. Let λ be the secu-
rity parameter All other parameters are functions of λ as follows: l = O(λ), n ≥
λ · l · 
log q�, m ≥ n · 
log q� and m > 500, w = n
log q�, q ≥ 8σ

√
m, and q is a

prime, σ0 ≥ n
3
2
√

m, 150 · m · σ0 ≤ σ ≤ q
CT

√
mn log q

.
Under the above parameters, we describe the noticeable NTCF family FLWE

based on LWE with polynomial modulus. Let X = Z
n
q and Y = Z

m
q . The key

space KFLWE
is subset of Z

m×n
q × Z

m
q . For b ∈ {0, 1}, x ∈ X and the key k =

(A,As + e0), the fk,b(x) is given as

∀y ∈ Y : (fk,b(x))(y) = DZm,σ,2σ
√

m(y − Ax − b · As), (1)

Then we show that each of the properties of NNTCF holds. The first two
properties are the same as that of LWE-based NTCF in [BCM+18], while the
last two properties differ due to the use of polynomial-size modulus.

Efficient Function Generation. On input the security parameter λ, the pro-
cedure GENFLWE

samples a random A ∈ Z
m×n
q , together with trapdoor informa-

tion TA. This is done using the procedure GenTrap(1n, 1m, q).
Moreover, the distribution on matrices A returned by GenTrap is negligibly

close to the uniform distribution on Z
m×n
q .

Next, the sampling procedure selects s ∈ {0, 1}n uniformly at random, and
a vector e0 ←↩ DZm,σ0,σ0

√
m. GENFLWE

returns k = (A,As + e) and tdk = TA.

Trapdoor Injective Pair

(a) Trapdoor. For any key k = (A,As + e0) ∈ KFLWE
and for all x ∈ X ,

Supp(fk,0(x)) =
{
Ax + e | ‖e‖ ≤ σ

√
m

}
, (2)

Supp(fk,1(x)) =
{
Ax + As + e | ‖e‖ ≤ σ

√
m

}
. (3)

The procedure InvFLWE
takes as input the trapdoor tA, b ∈ {0, 1}, and y′ ∈

Y, it uses the algorithm Invert to determine x′, e′ such that y′ = Ax′ +e′,
and returns the element x′ − b · s ∈ X . This procedure returns the unique
correct outcome provided y′ = Ax′ + e′ for some e′ such that ‖e′‖ ≤ σ

√
m.

This condition is satisfied for all y′ ∈ Supp(fk,b(x′)) provided σ is chosen
so that σ ≤ q

CT

√
mn log q

.
(b) Injective Pair. We let Rk be the set of all pairs (x0,x1) such that fk,0(x0) =

fk,1(x1). By definition, this occurs if and only if x1 = x0 − s mod q, and
so Rk is a perfect matching.
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Efficient Range Superposition. For k = (A,As + e0) ∈ KFLWE
, b ∈ {0, 1}

and x ∈ X , let

(f ′
k,b(x))(y) = DZm,σ,2σ

√
m(y − Ax − b · (As + e0)) . (4)

Note that f ′
k,0(x) = fk,0(x) for all x ∈ X . The distributions f ′

k,1(x) and fk,1(x)
are shifted by e0. Given the key k and x ∈ X , the densities f ′

k,0(x) and f ′
k,1(x)

are efficiently computable. For all x ∈ X ,

Supp(f ′
k,0(x)) = Supp(fk,0(x)) , (5)

Supp(f ′
k,1(x)) =

{
Ax + e + As + e0 | ‖e‖ ≤ 2σ

√
m

}
. (6)

(a) Using that σ ≥ σ0m, it follows that the norm of the term e0 + e in Eq. (6)
is always at most 3σ

√
m. Therefore, the inversion procedure InvFLWE

can
be guaranteed to return x on input tA, b ∈ {0, 1}, y ∈ Supp(f ′

k,b(x)) if we
strengthen the requirement on σ to σ ≤ q

2CT

√
mn log q

. This strengthened
trapdoor requirement also implies that for all b ∈ {0, 1}, (x0,x1) ∈ Rk,
and y ∈ Supp(f ′

k,b(xb))
⋂

Supp(f ′
k,b⊕1(xb⊕1)), InvFLWE

(tA, b⊕ 1,y) = xb⊕1.
(b) The procedure ChkFLWE

is identical to the one in [BCM+18]. On input k =
(A,As+e0), b ∈ {0, 1}, x ∈ X , and y ∈ Y, if b = 0, it computes e′ = y−Ax.
If ‖e′‖ ≤ 2σ

√
m, the procedure returns 1, and 0 otherwise. If b = 1, it

computes e′ = y − Ax − (As + e0). If ‖e′‖ ≤ 2σ
√

m, it returns 1, and 0
otherwise.

(c) The procedure SAMPFLWE
is identical to the one in [BCM+18]. We bound the

Hellinger distance between the densities fk,b(x) and f ′
k,b(x). If b = 0 they are

identical. If b = 1, both densities are shifts of DZm,σ,2σ
√

m, where the shifts
differ by e0 and e0 ←↩ DZm,σ0,σ0

√
m. It holds that H2(fk,1(x), f ′

k,1(x)) ≤
1−e

−9
√

m‖e0‖
4σ (1−2e− 1

2m) ≤ 1−e
−9 mσ0

4σ (1−2e− 1
2m) ≤ 1−e− 3

200 (1−2e− 1
2m).

When m > 500, 1 − e− 3
200 (1 − 2e− 1

2m) < 1
50 . Therefore, the require-

ment E
x

$←−Zn
q

[H2(fk,1(x), f ′
k,1(x))] ≤ 1

50 holds.

Finally, it remains to describe the procedure SAMPFLWE
. At the first step,

the procedure creates the following superposition
∑

e∈Zm
q

√
DZm

q ,σ,2σ
√

m(e)|e〉 . (7)

At the second step, the procedure creates a uniform superposition over x ∈
X , yielding the state

(2q)− n
2

∑

x∈X
b∈{0,1}
e∈Z

m
q

√
DZm,σ,2σ

√
m(e)|b,x〉|e〉 . (8)
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At the third step, using the key k = (A,As + e), the procedure computes

(2q)− n
2

∑

x∈X
b∈{0,1}
e∈Z

m
q

√
DZm,σ,2σ

√
m(e)|b,x〉|Ax + e + b · (As + e0)〉

= (2q)− n
2

∑

x∈X
b∈{0,1}

y∈Supp(f ′
k,b(x))

√
f ′

k,b(x)(y)|b,x〉|y〉
(9)

Adaptive Hardcore Bit. Now we show that our NNTCF family also enjoys
the adaptive hardcore bit property. We start by providing some useful statements
and lemmata. Recall that X = Z

n
q and let w = n
log q�. Let J : X → {0, 1}w be

such that J (x) returns the binary representation of x ∈ X . For b ∈ {0, 1}, x ∈ X ,
and d ∈ {0, 1}w, let Ib,x(d) ∈ {0, 1}n be the vector whose each coordinate is
obtained by taking the inner product mod 2 of the corresponding block of 
log q�
coordinates of d and of J (x) ⊕ J (x − (−1)b1), where 1 ∈ Z

n
q is the vector with

all its coordinates equal to 1 ∈ Zq. There is a useful claim in [BCM+18] that
the inner product d · J (x) ⊕ J (x− (−1)b1) is exactly equal to Ib,x(d) · s, which
is recalled as follows.

Lemma 2 (Claim 4.5 in [BCM+18]). For all b ∈ {0, 1},x ∈ X ,d ∈ {0, 1}w

and s ∈ {0, 1}n the following equality holds:

d · (J (x) ⊕ J (x − (−1)bs)) = Ib,x(d) · s . (10)

Note that in [BCM+18], the d is only required to have one non-zero place
in the first and second half as each bit of secret s is computationally indis-
tinguishable from random. In our case, we consider a relaxed condition on s,
which then requires the string d to have more non-zero positions. Therefore,
for k = (A,As + e0), b ∈ {0, 1} and x ∈ X , we define the set Gk,b,x as

Gk,b,x =
{
d ∈ {0, 1}w : HW (Ib,x(d)Ib

) ≥ n

8

}
,

where HW(·) represents the Hamming weight and Ib,x(d)Ib
is the concate-

nation of all the entries indexed by Ib, which satisfies Ib =
{
bn
2 , · · · , bn

2 + n
2

}
.

Besides, we also divide s = (s0, s1). Here s0 is the vector containing the first n
2

entries and s1 contains the last n
2 entries. We define Ĝs1,0,x0 = Ĝs0,1,x1 =

Gk,0,x0

⋂
Gk,1,x1 . Actually, for all b ∈ {0, 1} and x ∈ X , if d is sampled uni-

formly at random, d /∈ Ĝsb⊕1,b,xb
with probability e− n

32+1.

Theorem 4 (Adaptive hardcore bit). For m,n, q set the same as Sect. 4.1
and σ0 ≥ n

3
2
√

m, assume the hardness assumption LWEm,n
q,σ0

and s ∈ {0, 1}n, we
define two sets:

Hs = {(b,x,d, (d · (J (x) ⊕ J (x − (−1)bs)) mod 2)|b ∈ {0, 1},x ∈ Z
n
q ,

d ∈ Ĝsb⊕1,b,x},

Hs = {(b,x,d, c)|(b,x,d, c ⊕ 1) ∈ Hs}.
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For any quantum polynomial-time algorithm A : Zm×n
q × Z

m
q → {0, 1} × Z

n
q ×

{0, 1}n
log(q)�×{0, 1} and the any LWE sample (A,As+e0) ←↩ Gen(1λ, s,m, n),
the negligible difference always exists:

|Pr[A(A,As + e0) ∈ Hs] − Pr[A(A,As + e0) ∈ Hs]| ≤ negl(λ)

Refer to [BCM+18, Section 4.4.1], it suffices to prove the following lemma,
which implies the above theorem.

Lemma 3. Under the hardness assumption LWEm,n
q,σ0,s, A : Z

m×n
q × Z

m
q →

{0, 1} × Z
n
q × {0, 1}n
log(q)� × {0, 1} is a quantum polynomial-time algorithm.

The following two distributions are computationally indistinguishable:

D0 = (k = (A,As + e0), (b, x,d, c) ← A(k), Ib,x(d) · s mod 2)

D1 = (k = (A,As + e0), (b, x,d, c) ← A(k), (δd∈Ĝsb⊕1,b,x
· r) ⊕ (Ib,x(d) · s mod 2))

where r is a random bit and δd∈Ĝsb⊕1,b,x
= 1 if d ∈ Ĝsb⊕1,b,x and 0 otherwise.

Here, we recall some useful notions such as moderate vector and moderate
matrix, together with the lemma of the lower bound of the probability for a
uniformly selected matrix to be moderate from [BCM+18].

Definition 4. For a vector b ∈ Z
n
q , we say b is moderate if there are at least n

4

entries of b has absolute value in the range ( q
8 , 3q

8 ]. A matrix C ∈ Z
l×n
q is

moderate if every vector in the spanning space of row vectors of C, span(C), is
moderate.

Lemma 4 ([BCM+18, Lemma 4.8]). Let q be prime and l, n be integers. Then

Pr
C

$←−Z
m×n
q

[C is moderate] ≥ 1 − ql · 2− n
8 .

Now suppose σ ≥ n, we present our main lemma as follows.

Lemma 5. Let C ∈ Z
l×n
q be an arbitrary moderate matrix and d̂ ∈ {0, 1}n

be an arbitrary non-zero binary vector satisfying that its hamming weight is at
least n

4 . Let s $←− {0, 1}n and e ←↩ DZn,σ,σ
√

n, where σ = n. Consider the random
variables v = Cs mod q and z = 〈d̂, s〉 mod 2 conditioned on s + e = t for
any t fixed. Then statistical distance between the distribution of (v, z) and the
distribution of U(Zl

q × Z2) is at most q
l
2 · 2− n

4 .

Proof (Proof of Lemma 5). Let f be the probability density function of (v, z)
and f̂ be the Fourier transform over Z

l
q × Z2. It’s clear that f̂(0, 0) = 1.

Let U denote the density of the uniform distribution over Z
l
q × Z2. It’s

easy to see that Û(0, 0) = 1 and Û(v̂, ẑ) = 0 for all (v̂, ẑ) �= (0, 0).

Then we can compute: 1
2 ‖f − U‖1 ≤

√
ql

2 ‖f − U‖2 = 1
2

∥
∥
∥f̂ − Û

∥
∥
∥
2

=
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1
2

(
∑

(v̂,ẑ∈Zl
q×Z2\(0,0)

∣
∣
∣f̂(v̂, ẑ)

∣
∣
∣
2
)1/2

, where the first inequality follows from the

Cauchy-Schwarz inequality and the second line follows from Parseval’s iden-
tity. Denote ω2q = e− 2π

√−1
2q , then we can write:f̂(v̂, ẑ) = Es

[
ω
(2v̂ᵀC+qẑd̂ᵀ)s
2q

]
=

Es

[
ωwᵀs
2q

]
= Πi∈[n]Esi

[ωwisi
2q ], where wᵀ = 2 · v̂ᵀC + q · ẑ · d̂ᵀ ∈ Z

n
2q. To com-

pute f̂(v̂, ẑ), we have:

Pr[si|ei + si = ti, ti fixed, si
$←− {0, 1}, ei ←↩ DZ,σ]

=
ρσ(ti − si)

ρσ(ti) + ρσ(ti − 1)
=

e−π(−2siti+s2
i )/σ2

1 + e−π(−2ti+1)/σ2

Therefore,

Pr[si|ei + si = ti, ti fixed, si
$←− {0, 1}, ei ←↩ DZ,σ] =

⎧
⎨

⎩

1

e−π(−2ti+1)/σ2
+1

, si = 0;

e−π(−2ti+1)/σ2

e−π(−2ti+1)/σ2
+1

, si = 1.

For (v̂, ẑ) = (0, 1), Esi
[ωwisi

2q ] =

{
1−e−π(−2ti+1)/σ2

e−π(−2t+1)/σ2+1
, di = 1;

1 , di = 0.

When di = 1, Esi
[ωwisi

2q ] ≤ 1−e(−2πσ
√

n−π)/σ2

1+e(−2πσ
√

n−π)/σ2 ≤ 1−e−3π/
√

n

1+e−3π/
√

n ≤ 1
2 . Since the

hamming weight of d̂ is at least n
4 , f̂(0, 1) ≤ (12 )

n
4 .

For v̂ �= 0, Esi
[ωwisi

2q ] = 1 − e(2πti−π)/σ2

1+e(2πti−π)/σ2 (1 − e2π
√−1wi/(2q)), and for the

second term of the formula above,
∣
∣
∣
∣
∣

e(2πti−π)/σ2

1 + e(2πti−π)/σ2 (1 − e2π
√−1wi/2q)

∣
∣
∣
∣
∣
≥ 2e(2πti−π)/σ2

1 + e(2πti−π)/σ2

∣
∣
∣
∣sin(

πwi

2q
)
∣
∣
∣
∣

≥ 2e(−2πσ
√

n−π)/σ2

1 + e(−2πσ
√

n−π)/σ2

∣
∣
∣
∣sin(

πwi

2q
)
∣
∣
∣
∣ ≥ 2 · sin(π/8),

the last inequality exists for at least n
4 , i ∈ [n] because C is moderate. In this

case Esi
(ωwisi

2q ) ≤ 1−2·sin(π/8). Hence for v̂ �= 0, f̂(v̂, ẑ) ≤ (1−2·sin(π/8))
n
4 ≤

(14 )
n
4 . Therefore, Δ(f, U) ≤ 1

2

√(
1
2

)n
4 + 2(ql − 1)

(
1
4

)n
4 ≤ 1

2

√

2 · ql · (
1
2

)n
2 ≤

q
l
2 2− n

4 ��
Based on the lemma above, the following lemma can be proved by following

the same merit of the proof for [BCM+18, Lemma 4.6].

Lemma 6 Let q be a prime, l, n ≥ 1 integers, and C ∈ Z
l×n
q a uniformly random

matrix. With probability at least 1 − ql · 2− n
8 over the choice of C the following

holds. For a fixed C, all v ∈ Z
l
q and d̂ ∈ {0, 1}n with hamming weight larger

than n
4 , the distance of (d̂ · s mod 2), where s is uniform in {0, 1}n conditioned

on Cs = v and s + e = t fixed, where e ←↩ DZn,σ,σ
√

n is within statistical
distance O(q

3l
2 · 2− n

4 ) of the uniform distribution {0, 1}.
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Our idea to circumvent noise flooding in the proof of [BCM+18, Lemma 4.4]
is inspired by the Gaussian decomposition technique introduced in [BD20]. In
short, to hide s in Fs, one can decompose e0 = Fe(1)0 + e(2)0 and use e(1)0 to
hide s.

Now we can prove the Lemma 3.

Proof (Proof of Lemma 3). We use hybrid arguments to prove the lemma. Here
are the six hybrids we introduce.

In the Hybrid 1,

D(1) = ((Ã, Ãs + e0), (b, x,d, c) ← A(Ã, Ãs + e0), Ib,x(d) · s mod 2),

where Ã = BC + F and B ∈ Z
m×l
q , C ∈ Z

l×n
q and F is selected from the

distribution D
Z

m×n
q ,σF

, where σF =
√

n. According to the hardness of LWEm,l
q,σF

assumption, distribution D0 and D(1) are computationally indistinguishable.
In the Hybrid 2,

D(2) = ((Ã′, Ã′s + e0), (b, x,d, c) ← A(Ã′, Ã′s + e0), Ib,x(d) · s mod 2).

The only difference between distribution D(1) and D(2) is that we select Ã′ =
BC + F with totally the same parameters with Ã in D(1), but abort if ‖F‖ ≥
σF

√
m. As the probability of aborting is negligible, the distributions of D(1)

and D(2) are statistically indistinguishable.
In the Hybrid 3,

D(3) = ((Ã′,BCs + F(s + e(1)0 ) + e(2)0 ),

(b,x,d, c) ← A(Ã′,BCs + F(s + e(1)0 ) + e(2)0 ), Ib,x(d) · s mod 2),

where e(1)0 ←↩ D
Zn,σ

(1)
0

with σ
(1)
0 = n and e(2)0 ←↩ D

Zm,
√

Σ with Σ = σ2
0Im −

(σ(1)
0 )2FᵀF. The distributions of D(3) is identical to that of D(2).
In the Hybrid 4,

D(4) = ((Ã′,BCs + F(s + e(1)0 ) + e(2)0 ),

(b,x,d, c) ← A(Ã′,BCs + F(s + e(1)0 ) + e(2)0 ),
(δd∈Ĝsb⊕1,b,x

· r) ⊕ (Ib,x(d) · s mod 2)).

According to the Lemma 6, based on the condition of (s + e(1)0 ), Cs and the
hamming weight of Ib,x(d) larger than n

4 , the distribution of Ib,x(d) · s mod 2 is
within statistical distance at most q

3l
2 · 2− n

4 to the uniform distribution over Z2.
Since n = λ · l · log q, these two distributions are statistically close.

In the Hybrid 5,

D(5) = ((Ã′, Ã′s + e0),

(b,x,d, c) ← A(Ã′, Ã′s + e0),
(δd∈Ĝsb⊕1,b,x

· r) ⊕ (Ib,x(d) · s mod 2)).
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The distribution of D(5) is identical to that of D(4).
In the Hybrid 6,

D(6) = ((Ã, Ãs + e0),

(b,x,d, c) ← A(Ã, Ãs + e0),
(δd∈Ĝsb⊕1,b,x

· r) ⊕ (Ib,x(d) · s mod 2)).

The distribution of D(6) is statistically closed to that of D(5) since the probability
of aborting due to the selection of Ã′ is negligible.

Finally, the distribution of D(6) is computationally indistinguishable with the
distribution D1, according to the hardness LWEm,l

q,σF
assumption. This completes

the proof of the lemma. ��

5 Public Key Encryption with Secret Key Leasing
from LWE with Polynomial Modulus

5.1 Our PKE-SKL Scheme Description

Here we describe our construction for PKE-SKL over classical channel with
single-bit messages from NNTCF family.

Construction 1 (ParallelRepetitionVersion of ourPKE-SKLprotocol)

– Setup(1λ) → (mpk, sk):
• let l = O(λ); n = ω(l · 
log q�); q is a poly(λ)-sized prime satisfying q >

8Bm′�log q� and m = n · 
log q�. σ0 = n
3
2
√

m, σ = 150 · σ0 · m, B =
m · (σ + σ0)

√
λ, m′/B = ω(n log q), N = λ.

• Run (ki, tdi) ← GenF (1λ), return ki = (Ai,Aisi + e0,i) and tdi = TAi
.

• Output (mpk, sk) = ({ki}i∈[N ], {tdi}i∈[N ]).
– KeyGen(mpk) → (ρsk, pk):

• Take in mpk = {(Ai,Aisi + e0,i)}N
i=1. Run SampF (ki, ·) on a uniform

superposition of bi’s, to obtain the state

N⊗

i=1

1√
2qn

∑

bi∈{0,1},
xi∈Z

n
q ,

ei∈Z
m
q

√
DZm,σ,2σ

√
m(ei)|bi,xi〉|ei〉,

then compute the following state:

N⊗

i=1

1√
2qn

∑

bi∈{0,1},
xi∈Z

n
q ,

eiZ
m
q

√
DZm,σ,2σ

√
m(ei)|bi,xi〉|ei + Aixi + bi · (Aisi + e0,i)〉,
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• Measure the last register to obtain yi = Aix′
i + e′

i, where x′
i = x′

i,bi
+

bisi, e′
i = ei + bi · e0,i. The resulting post-measurement state constitutes

the quantum decryption key:

ρsk =
N⊗

i=1

1√
2

∑

bi∈{0,1}
pbi

(e0,i, e′
i)|bi,x′

i,bi
〉,

where x′
i,bi

= x′
i − bisi and the value of pbi

(e0,i, e′
i) satisfying:

1) p0(e0,i, e′
i) = 1√

1+e(2π〈e′
i
,e0,i〉−π‖e0,i‖2)/σ2 ,

p1(e0,i, e′
i) = e(π〈e′

i,e0,i〉− π
2 ‖e0,i‖2)/σ2√

1+e(2π〈e′
i
,e0,i〉−π‖e0,i‖2)/σ2 if e′

i ∈ S0

⋂ S1

⋂
Z

m;

2) p0(e0,i, e′
i) = 0, p1(e0,i, e′

i) = 1 if e′
i ∈ (S0 \ S1)

⋂
Z

m;
3) p0(e0,i, e′

i) = 1, p1(e0,i, e′
i) = 0 if e′

i ∈ (S1 \ S0)
⋂

Z
m,

where S0 = B(0, σ
√

m) and S1 = B(e0, σ
√

m).
• Output public key pk = {(Ai,Aisi + e0,i,yi)}i∈[N ] and quantum decryp-

tion key ρsk.
– Enc(pk, μ) → ct:

• Take in a message μ ∈ {0, 1}. Select Ui
$←− {0, 1}m′×m, R ←↩ {0, 1}m′×m′

and ê1,i
$←− [−B,B]m

′
, where B = (σ + σ0)

√
λ · m.

• Let ê1 =
∑

i∈[N ] ê1,i. The algorithm computes ciphertexts as follows:

ct = RA + RE1 + μ · Gm′,N(n+1)+1,

where A ∈ Z
m′×N(n+1)+1
q is given as:

A =
(
U1(A1s1 + e0,1) U1A1 · · · UN (ANsN + e0,N ) UNAN

∑
i∈[N ] Uiyi

)
,

E1 ∈ Z
m′×N(n+1)+1
q is a matrix with all columns 0m′

except the last
column which equals ê1. Gm′,N(n+1)+1 is the Gadget matrix.

• Output ciphertext ct.
– Add(ct1, ct2) → ctAdd : On input two ciphertexts ct1, ct2, output ctAdd = ct1 +

ct2.

– Mult(ct1, ct2) → ctMult : On input two ciphertexts ct1, ct2, output ctMult =
G−1(ct1) · ct2.

– Dec(ρsk, ct) → (μ′, ρ′
sk):

• On the input quantum decryption key ρsk and ciphertext ct, run decryption
algorithm in a coherent way as follows:

(
N⊗

i=1

1√
2

∑

bi∈{0,1}
pbi

(e0,i, e′
i)|bi,x′

bi,i〉)|vinv · ct · vsk︸ ︷︷ ︸
y′

〉|
y′/�q/2��〉, (11)

where vinv = G−1
(
01×(N(n+1)) � q

2� )
and vsk = (−b1,−(x′

b1,1)
�, · · · −

bN ,−(x′
bN ,N )�, 1)� is a column vector where bi’s, x′

bi,i
’s for ∀i ∈ [N ] are

from the corresponding registers in the secret key ρsk .
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• Measure the last register to obtain μ′. Uncompute the register |y′〉 with
the ciphertexts and bi, x′

bi
. Then the first N registers consist of ρ′

sk. Ide-
ally, ρ′

sk = ρsk holds.
– Del(ρsk) → cert:

• Take in the ρsk, perform Hadamard operations and obtain

|ψ〉 =
N⊗

i=1

2− n·	log(q)
+2
2

∑

di∈{0,1}n	log(q)
,
bi∈{0,1},
ui∈{0,1}

(−1)di·J (x′
bi,i)⊕uibipbi

(e0,i, e′
i)|ui〉|di〉.

• Measure this quantum state, thereby resulting in cert = {(ui,di)}N
i=1 ∈

(Z2 × Z
n·
log(q)�
2 )N as the deletion certificate.

– VerDel(sk, pk, cert) → �/⊥:
• Compute x′

b′,i ← InvF (TAi
, bi,yi) for all i ∈ [N ] and both b′ ∈ {0, 1}.

• Check if ‖yi − Aix′
b′,i − b′ · Aisi‖2 ≤ (σ + σ0)

√
m for all i ∈ [N ] and b′ ∈

{0, 1}. If not, output invalid ⊥. If yes, continue.
• Check if di ∈ Gki,0,x′

0,i

⋂
Gki,1,x′

1,i
and ui = d�

i · (J (x′
0,i)⊕J (x′

1,i)) mod
2. Count the number of the i that passes the checking step and denote
this number as N ′. If N ′ > 0.78N , output valid �. Otherwise, output
invalid ⊥.

The completeness of our protocol is given as follows.

Theorem 5. The PKE-SKL scheme with classical lessor described in Construc-
tion 1 satisfies the correctness property of the PKE-SKL Definition.

The Theorem 5 follows immediately from the following Lemmas 7 and 8.

Lemma 7 (Correctness of Decryption). The algorithm Dec in PKE-SKL
Construction 1 satisfies decryption correctness, namely,

Pr

⎡

⎣Dec(ρsk, ct) = μ :
(mpk, td) ← Setup(1λ)

(pk, ρsk) ← KeyGen(mpk)
ct ← Enc(pk, μ)

⎤

⎦ ≥ 1 − negl(λ).

Lemma 8 (Correctness of Verifying Deletion). For m > 500, honestly
prepared {yi}i∈[N ] and secret key ρsk , the probability passing the algorithm VerDel
is overwhelming.

To prove the security of our PKE-SKL scheme, we need to show that the
lessee should not have any noticeable advantage to distinguish between cipher-
texts of messages 0 and 1, after submitting the deletion certificate.

Theorem 6 (Security of our PKE-SKL). For σ0 = n
3
2
√

m, assuming the
post-quantum hardness LWEn,m,q,σ0 with polynomial modulus, the Construction 1
satisfies strong γ-SKL security for any noticeable γ.

Please refer to the full version of this paper for proof.
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6 Polynomial-Sized Proof of Quantumness

In this section, we present an NNTCF-based proof of quantumness protocol
based on the polynomial hardness of LWE problem without reliance on a random
oracle or Bell’s inequality. Our proof of quantumness protocol can be viewed as
an improved version of the work in [BCM+18], where the soundness is directly
guaranteed by the AHB property of the NNTCF.

Let P denote a quantum prover and V denote a classical verifier, our proof
of quantumness protocol is given in Construction 2.

Construction 2 (Proof ofQuantumness based onLWE-basedNNTCF)

1. Setup(1λ): Fix a security parameter λ and the NNTCF family F described by
algorithms (GenF ,SampF , InvF ,ChkF ), assuming the polynomial hardness
of LWE. Set l = O(λ), n = ω(l
log q�), m ≥ n · 
log q� and m > 500; w =
n
log q�, q ≥ 8σ

√
m a prime, σ0 ≥ n

3
2
√

m, 150·m·σ0 ≤ σ ≤ q
CT

√
mn log q

. N =
λ. Output pp = (n,m,w, q, σ0, σ).

2. For i = 1, . . . , N ,
i.1. V: On input the parameters pp, the verifier runs (ki = (Ai,Aisi +

e0,i),TAi
) ←GenFLWE

(1m, 1n, σ0, q), where e0,i ←↩ DZm,σ0,σ0
√

m, sends k
to the prover and keeps the trapdoor TAi

private.
i.2. P: On receive the key ki = (Ai,Aisi + e0,i), the prover will do the

following steps:
∗ Generate the following quantum state:

1√
2qn

∑

bi∈{0,1},
xi∈Z

n
q ,

ei∈Z
m
q

√
DZm,σ,2σ

√
m(ei)|bi,xi〉|ei〉

and then compute with the key ki as below:

1√
2qn

∑

bi∈{0,1},
xi∈Z

n
q ,

eiZ
m
q

√
DZm,σ,2σ

√
m(ei)|bi,xi〉|ei + Aixi + bi · (Aisi + e0,i)〉,

(12)
∗ Measure the last register to obtain yi = Aix′

i + e′
i, where x′

i,bi
=

x′
i − bisi and x′

i = x′
i,0 + bisi, e′

i = ei + bi · e0,i for some fixed ei. The
resulting post-measurement state is:

|ϕi〉 =
1√
2

∑

bi∈{0,1}
pbi

(e0,i, e′
i)|bi,x′

i,bi
〉,

where the value of pbi
(e0,i, e′

i) satisfying:
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1) p0(e0,i, e′
i) = 1√

1+e(2π〈e′
i
,e0,i〉−π‖e0,i‖2)/σ2 ,

p1(e0,i, e′
i) = e(π〈e′

i,e0,i〉− π
2 ‖e0,i‖2)/σ2√

1+e(2π〈e′
i
,e0,i〉−π‖e0,i‖2)/σ2 if e′

i ∈ S0

⋂ S1

⋂
Z

m;

2) p0(e0,i, e′
i) = 0, p1(e0,i, e′

i) = 1 if e′
i ∈ (S0 \ S1)

⋂
Z

m;
3) p0(e0,i, e′

i) = 1, p1(e0,i, e′
i) = 0 if e′

i ∈ (S1 \ S0)
⋂

Z
m,

where S0 = B(0, σ
√

m) and S1 = B(e0, σ
√

m).
∗ Output the string yi.

i.3. V: Reply with a uniformly random challenge bit ci
$←− {0, 1}.

i.4. P: Take in the challenge ci, do the following tests:
∗ Preimage test (if ci = 0): Perform a standard basis measurement

onto |ϕi〉, return a pair (bi,x′
i,bi

) as the proof σci
.

∗ Equation test (if ci = 1): Perform a Hadamard basis measurement
onto |ϕi〉, return a pair (ui,di) as the proof σci

.
3. V: Take in {TAi

,yi, ci, σci
}i∈N , do the following steps:

• Compute x′
b′,i ← InvF (TAi

, bi,yi) for all i ∈ [N ] and both b′ ∈ {0, 1}.
• When ci = 0, check if ChkFLWE

(ki, bi,x′
i,bi

,yi) = 1 holds for all i ∈ [N ].
• When ci = 1, check if di ∈ Gki,0,x′

0,i

⋂
Gki,1,x′

1,i
and ui = dT

i · (J (x′
0,i) ⊕

J (x′
1,i)) mod 2.

• Count the number of i’s that ci = j for j ∈ {0, 1} and denote this number
as Nj. Count the number of the i’s that pass the Equation tests and denote
this number as N ′. If N0 > 1

4N ,N1 ≥ 1
4N and N ′ > 0.75N1, output

valid �. Otherwise, output invalid ⊥.

Based on the NNTCF, the correctness and soundness of our protocol are
given as follows.

Theorem 7 (Correctness of Our Proof of Quantumness). Let λ ∈ N be
the security parameter. A QPT prover P, following the honest strategy in the
Construction 2, is accepted with probability 1 − negl(λ).

Theorem 8 (Soundness of Our Proof of Quantumness). Based on the
adaptive hardcore bit property of the NNTCF family F , the probability for any
classical P̃ to pass the verification in the Construction 2 is negligible.

Please refer to the full version of this paper for proof.
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more efficient distinguishers can be created. This highlights the need to study
whether existing security proofs for generic constructions and modes of operation
can be extended to the quantum setting, which has received a considerable focus
in a series of recent works [4,5,7,16,23–25,27,43,44].

Pseudorandom Functions and Permutations. Classically, most of the well-known
symmetric cryptographic algorithms are constructed as a mode of operation
over fixed length primitives that are instantiated with either a pseudorandom1

permutation (PRP) or function (PRF).
Some well-known examples of generic PRP constructions include the Luby-

Rackoff cipher [33], Lai-Massey [32] and the generic Misty ciphers [35,37]. Of
these the former two constructions can be instantiated by any primitive (function
or permutation), while the latter solely works with permutations. In general,
PRP-based constructions are preferred as they can be directly instantiated with
well-analyzed block ciphers. On the other hand, PRF based constructions are
usually easier to analyze in security proofs. Indeed, many security proofs involve
the boilerplate switching lemma [3,42]: replace PRP calls with PRF calls with
a factor of O(q2/2n) per call, where q and n denote the number of queries
and output size, respectively. Thus, all of the above mentioned constructions
are classically secure birthday-bound PRFs. On the other hand more recent
efforts have focused on building beyond-the-birthday-bound secure PRP-to-PRF
constructions, starting with the well-known sum of permutations [2,21] and the
truncation of permutation [21] to the more recent encrypted Davis-Meyer [15]
and its dual [36]. The analysis of these PRP and PRF constructions lead to a
great advancement in the provable security research, mushrooming several new
proof techniques such as the H-coefficient technique [22,40], mirror theory [14,
39,41] the χ2-technique [17], and the recent use of Fourier analysis [18] to prove
the exact security of sum of permutations.

The Compressed Oracle. In the quantum setting, however, the research on the
security of these well-known constructions is still in the rudimentary stage. While
there are some generic attacks on Luby-Rackoff [23,30] and Misty [19], on the
security proofs front the results are still far from tight even in the birthday-
bound2 regime. Having said that, the situation has changed in recent years,
largely due to Zhandry’s compressed oracle technique [44]—an elegant way to
lazy sample a random function. Indeed most recent security proofs [5,23–25] in
symmetric cryptography relied on the compressed oracle [44] and its variants
respectively introduced by Hosoyamada and Iwata [23] and Chung et al. [13].

When proving the indistinguishability of a construction C based on PRFs
from a true random function, the proof typically follows these steps:
1 the fixed-length permutation /function is keyed, efficiently computable, and indis-

tinguishable from a uniform random permutation/function.
2 Note that, in the quantum setting birthday-bound refers to the cube-root of the

output size.
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– Model the random function as a construction with a structure similar to C,
but with some of the inputs augmented with adversarial queries to ensure the
uniqueness of inputs, thereby guaranteeing the uniformity of outputs.

– Identify “bad events” that occur when the output of intermediate function
calls leads to input collisions in subsequent calls.

– Upper-bound the probability of such bad events occurring.
– Establish a one-to-one mapping between intermediate values in both con-

structions, assuming no bad event has occurred.

It is important to note that ensuring these bad events are described only using
inputs and outputs recorded by the compressed oracle is critical to the proof. In
particular, certain information may be lost in this process, such as the specific
adversarial query or the relationship between input-output pairs belonging to
the same query.

1.1 Our Contribution

Our contribution is three-fold. Firstly, we identify some critical issues in some
of the previous works in this direction. They relate to the aforementioned one-
to-one mapping: most notably, in the 4-round Luby-Rackoff security proof [23],
the authors cannot prevent bad collisions without relying on information that
is not present in the compressed oracle entries. We also spotted similar flaws
in [5,25,34].

Secondly, we propose a new security proof for the 4-round Luby-Rackoff
construction in the non-adaptive chosen plaintext attack setting: the adversary
has to prepare all of its queries in advance, and receive the corresponding outputs
at once. By using an artificial dummy database call on all the adversary’s inputs,
this allows us to mitigate the issue from [23], since now the database contains
all the necessary information to handle the bad events.

Finally, we prove the security of Misty schemes in the quantum setting using
the two-domain framework from [5]. In more details, we prove that the 4-round
MistyR (resp. 5-round MistyL) construction is secure up to 2n/5 (resp. 2n/7) cho-
sen plaintext queries, where n denotes the size of the underlying permutation. We
note that, in both cases, this corresponds to the minimum number of rounds to
achieve an exponential bound in n, since period-finding attacks based on Simon’s
algorithm exist for the 3-round MistyR (resp. 4-round MistyL) constructions [19].

2 Quantum Computing

Throughout, we assume familiarity with the fundamentals of finite dimensional
linear algebra and Quantum computing. A comprehensive exposition on these
subjects is given in [1,38]. In this section, we introduce some notation we use later
in the paper; an introductory overview of the relevant notions is also available
in the full version of this paper [6].
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2.1 General Notation

The set of all binary strings, including the empty string ε, is denoted {0, 1}∗.
For some x, y ∈ {0, 1}∗, x‖y denotes the concatenation of x and y. For some
positive integer m, [m] denotes the set {1, . . . , m}, and {0, 1}m denotes the set
of all m-bit binary strings.

We use the standard Dirac notations. 〈·|·〉 denotes the inner product over
a k-dimensional Hilbert space H := C

k, and ‖·‖ denotes the norm. Given an
orthonormal basis B of H, we sometimes write H[B] to emphasize the basis rep-
resentation of H. U[H] will denote the set of all unitaries on H. Tr(L) will denote
the trace of a linear operator L. TrH1(L) will denote the partial trace on H1 of
a linear operator L over the tensor product H1 ⊗ H2. D(H) will denote the set
of all density operators of H. ‖L‖1 will denote the trace norm of L.

2.2 Quantum (Non-adaptive) Oracle-Algorithms

In what follows, we define Hin := C
2m , Hout := C

2n . Let Hwork and Hstate be
two finite dimensional complex Hilbert spaces.

Any function f : {0, 1}m → {0, 1}n can be realized by the unitary mapping
|x, y〉 to |x, y ⊕ f(x)〉 on Hin ⊗Hout. Indeed, the oracle access to f , denoted Of ,
is represented by this standard unitary

Of |x, y〉 	→ |x, y ⊕ f(x)〉,

on the space Hin ⊗ Hout. To represent a stateful oracle, we simply bestow addi-
tional qubits to represent the oracle state. Formally, we define

Of |x, y, s〉 	→ |x, y + f(x), s′〉,

on the product space HOf
:= Hin ⊗ Hout ⊗ Hstate, where {|x, y, s〉} denotes

the computational basis of HOf
. The oracle state space Hstate into Hdb ⊗ Haux,

where Hdb denotes the internal state which is (possibly transient) and persistent
across queries, and Haux denotes the state space of any ancillary qubits required
to compute the function itself. As ancillary qubits are always reset after each
query, it is convenient to focus solely on the former (the useful state) while
disregarding the latter (the ancillary qubits). Indeed, we often drop Haux from
the description and simply consider Hdb as the oracle state space.

For any quantum oracle-algorithm A that makes q black-box queries to a
(possibly stateful) oracle Of , we define the interactive game AOf to be the
sequence of 2q +1 unitaries: UqOf . . .U1OfU0 over the product space HAOf =
Hin ⊗Hout ⊗Hwork ⊗Hstate, where it is implicitly understood that Ui’s operate
on HA = Hin ⊗ Hout ⊗ Hwork and Of operates on HOf

.
We write AOf [ρA ⊗ ρOf

] = b to denote the event that the oracle-aided algo-
rithm A outputs b after making q queries to oracle Of , where A and Of are
initialized in ρA ∈ D(HA) and ρOf

∈ D(Hstate), or jointly as ρ0A,Of
:= ρA ⊗ρOf

.
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Capturing Non-adaptivity. For any oracle-algorithm A that makes q non-
adaptive queries to Of , we define the non-adaptive interactive game AO⊗q

f to be
the unitary U1O

⊗q
f U0 on the product space H⊗q

in ⊗H⊗q
out ⊗Hwork ⊗Hstate where

it is implicitly understood that O⊗q
f operates on H⊗q

in ⊗ H⊗q
out × Hstate, while U0

and U1 operates on H⊗q
in ⊗ H⊗q

out ⊗ Hwork.
Indeed the above formalism is analogous to the classical setting, where the

non-adaptive algorithm makes all q queries, x = (x1, . . . ,xq) ∈ ({0, 1}m)q,
together and receives all q responses, y = (y1, . . . ,yq) ∈ ({0, 1}n)q, together
from the oracle. Analogously, in the quantum setting, we have

O⊗q
f |x,y, s〉 = |x,y + f(x), s′〉,

where f(x) = (f(x1), . . . , f(xq)) is simply the pointwise application of f on x.

2.3 Quantum Distinguishing Games

For any two quantum oracles I and R, we define the distinguishing advantage
of any quantum distinguisher3 A by

Advdist
I;R(A) :=

∣
∣Pr

(

AI[ρ0A,I] = 1
)

− Pr
(

AR[ρ0A,R] = 1
)∣
∣ ,

where ρ0A,I and ρ0A,R denote the initial state of AI and AR, respectively.

The Computationally Unbounded Case. For any computationally-unbounded A,
it is well known that

Advdist
I;R(A) ≤ 1

2
‖TrHIdb

(ρq
A,I) − TrHRdb

(ρq
A,R)‖1,

where ρq
A,O := AOρA,OAO† is the state after q queries to the oracle at-hand

O ∈ {I,R}. In addition, without loss of generality, we can assume A to be
deterministic, and thus, define the initial state of A, ρA = |ψA〉〈ψA| for some
fixed unit vector |ψA〉 ∈ HA.

The Quantum IND-CPA Game. Let F = {FK : {0, 1}m → {0, 1}n}K∈K be
a family of functions. The IND-qCPA advantage of some distinguisher A against
F is defined as

Advqcpa
F (A) := Advdist

OFK
;Of

(A), (1)

where K is uniformly distributed over K, and f : {0, 1}m → {0, 1}n is a uniform
random function.

For a non-adaptive distinguisher A, the non-adaptive IND-qCPA advantage
is defined analogously as:

Advqncpa
F (A) := Advdist

O⊗q
FK

;O⊗q
f

(A), (2)

3 An oracle-algorithm with binary output.
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3 Zhandry’s Compressed Oracle

In [44], Zhandry proposed an elegant solution to implement a restricted form of
lazy sampling for quantum random oracle, or simply a uniform random func-
tion f : {0, 1}m → {0, 1}n. We will largely follow the Chung-Fehr-Hunag-
Liao (CFHL) intepretation [13] of the compressed oracle, and its refinement
by Bhaumik-Cogliati-Ethan-Jha (BCEJ) [5].

3.1 The Chung-Fehr-Huang-Liao Interpretation

Let Y denote {0, 1}n and define CY to be the computational basis of the n-
qubit space C

2n . Let Ŷ denote the dual group of Y, consisting of all the group
homomorphisms ŷ(z) := (−1)y·z.It is well-known that Ŷ is isomorphic to Y. We
assume Ŷ to be an additive group with the group operation ŷ + ẑ := ŷ ⊕ z.
Naturally, 0̂ denotes the identity. For each ŷ ∈ Ŷ define

|ŷ〉 :=
1

2n/2

∑

z∈Y
ŷ(z)|z〉 =

1
2n/2

∑

z∈Y
(−1)y·z|z〉,

The set FY := {|ŷ〉} is referred as the Fourier basis of C
2n , and the mapping

|y〉 → |ŷ〉 is the well-known Hadamard transformation that maps the computa-
tional basis CY to Fourier basis FY . The reverse basis transformation from FY to
CY is given by

|y〉 :=
1

2n/2

∑

ẑ∈ ̂Y
ẑ(y)|ẑ〉 =

1
2n/2

∑

ẑ∈ ̂Y
(−1)z·y|ẑ〉.

Next, let Z denote the set Y ∪ {⊥} for a special symbol ⊥; similarly Ẑ will
denote Ŷ ∪ {⊥}. We also choose a corresponding norm-1 vector |⊥〉 orthogonal
to C

2n , so that the span of both CZ := {|y〉 | y ∈ Z} and FZ := {|ŷ〉 | ŷ ∈
Ẑ} is C

2n+1; we’ll call CZ and FZ the computational basis and Fourier basis
respectively of the extended space C

2n+1.

Functions and Databases. Let X denote {0, 1}m for some arbitrary m, and let
F denote the set of m-bit-to-n-bit classical functions f : X −→ Y. The quantum
truth table of f is defined as

|f〉 :=
⊗

x∈X
|x〉|f(x)〉.

Let F̂ denote the set of Fourier functions f̂ : X −→ Ŷ. The quantum truth table
of f̂ is defined similarly as

|f̂〉 :=
⊗

x∈X
|x〉|f̂(x)〉.
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For a subset S ⊆ X , a function f : S −→ Y will be called a partial function
from X to Y. A partial function f can be extended to a function df : X −→ Z
by defining df (y) = ⊥ for all y ∈ X \ S. We call df the database representing f ,
with ⊥ denoting the cells where f is not defined. (When f is a full function, df

coincides with f .) The database will also be represented as a quantum truth table

|df 〉 :=
⊗

x∈X
|x〉|df (x)〉.

Similarly we define partial Fourier functions f̂ : S −→ Ŷ, databases d
̂f : X −→ Ẑ

representing partial Fourier functions, and their quantum truth tables |d
̂f 〉.

When f and f̂ are clear from context, we’ll find it convenient to drop the sub-
scripts and write df and d

̂f simply as d and d̂ respectively. We’ll write D (resp.

D̂) to denote the set of all databases d : X −→ Z (resp. all Fourier databases
d̂ : X −→ Ẑ). When convenient we will treat a database d as a relation on
X × Y and write (x, y) ∈ d to denote d(x) = y; |d| will then denote the size of
this relation, i.e., the size of {x ∈ X | d(x) ∈ Y}.

For any function f ∈ F , let f̂ ∈ F̂ be defined as the map x 	→ f̂(x). Then
we have

|f̂〉 =
1

2n2m/2

∑

g∈F
(−1)f ·g|g〉, (3)

where f · g is defined as
∑

x∈X f(x) · g(x). Thus, {|f〉 | f ∈ F} and {|f̂〉 | f̂ ∈ F̂}
span the same space (isomorphic to C

2n2m

). Similarly we can show that {|d〉 |
d ∈ D} and {|d̂〉 | d̂ ∈ D̂} span the same space isomorphic to C

(2n+1)2
m

; we call
this space the database space D.

Letting 0 denote the constant 0n function and observing that 0 · g = 0 for
any g ∈ F , we have

|0̂〉 =
1

2n2m/2

∑

g∈F
|g〉,

the uniform superposition over all functions in F .

The Standard Oracle. The standard oracle is a stateful oracle with Hdb = H[F ].
Given a truth-table representation |f〉 of a function f ∈ F , it acts on the adver-
sary registers |x〉|y〉 and the truth-table registers |f〉 as

stO|x〉|y〉 ⊗ |f〉 = |x〉|y ⊕ f(x)〉 ⊗ |f〉. (4)

It is obvious to see that stO is perfectly indistinguishable with a uniform random
function, when the truth table register is initialized in |0̂〉.

If we first put the adversary’s response register and the truth-table register
in the Fourier basis, we have

stO|x〉|ŷ〉 ⊗ |f̂〉 = |x〉|ŷ〉 ⊗ |f̂ + δ̂xy〉, (5)



222 R. Bhaumik et al.

where δxy is the function in F defined as

δxy(z) =

{

y when z = x,

0 otherwise,

and the operations ⊕ in F and + in F̂ are defined point-wise. We define the
operator Oxŷ on the truth-table register as

Oxŷ|f̂〉 := |f̂ + δ̂xy〉.

Then we can write stO|x〉|ŷ〉 ⊗ |f̂〉 = |x〉|ŷ〉 ⊗ Oxŷ|f̂〉.

The Compressed Oracle. For any x ∈ X , the cell compression unitary compx

on C
2n+1 is defined on the basis FZ as

compx := |⊥〉〈0̂| + |0̂〉〈⊥| +
∑

ŷ∈ ̂Y\{̂0}
|ŷ〉〈ŷ|.

The database compression unitary comp on D is defined as

comp :=
⊗

x∈X
compx.

The compressed oracle cO is a stateful oracle with Hdb = D. It acts on the
adversary’s registers and the oracle’s database registers as

cO := (IH[X ]⊗H[̂Y] ⊗ comp) ◦ stO ◦ (IH[X ]⊗H[̂Y] ⊗ comp).

For a database d̂ we have

cO|x〉|ŷ〉 ⊗ |d̂〉 = |x〉|ŷ〉 ⊗ cOxŷ|d̂〉,

where cOxŷ := compx ◦ Oxŷ ◦ compx.

3.2 The Two-Domain Distance Technique

Bhaumik et al. distilled [5] the Chung et al. interpretation [13] for indistinguisha-
bility setting and proposed a generic way to represent both the ideal and real
world oracles using a single compressed permutation oracle. In addition, they
combined it with a result from Hosoyamada and Iwata to get a quantum analog
of “identical-up to-bad”, the so-called two-domain distance lemma.

Domain-Restricted Databases. For a subset X̃ of X we will write D|
˜X to denote

the set of databases restricted to X̃ , defined equivalently as {d|
˜X | d ∈ D} or

the set of databases d : X̃ −→ Z. Since D is a basis of the database space
D, a domain-restricted database space will span a subspace of D isomorphic to
C

(2n+1)| ˜X|
. We continue to represent elements of X̃ as m-bit numbers.
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Transition Capacity. For a domain-restricted database-set D|
˜X , a subset P ⊆

D|
˜X will be called a database property on D|

˜X . We also define the projection

ΠP :=
∑

d∈P
|d〉〈d|.

For a database d ∈ D|
˜X and an x ∈ X̃ define

d|x := {d′ ∈ D|
˜X | d′(x′) = d(x′)∀x′ ∈ X̃ \ {x}}.

In other words, d|x is the set of databases in D|
˜X which are identical to d except

(possibly) at x. (Note that since d (resp. x) is also in D (resp. X ), d|x is only
well-defined when we specify D|

˜X as well; however, since D|
˜X will usually be

clear from the context, for notational convenience we leave the dependence of
d|x on D|

˜X implicit.)
For two properties P and P ′, the transition capacity from P to P ′ is

defined as

�P ↪→ P ′� := max
x∈ ˜X ,ŷ∈ ̂Y,d∈D|

˜X

‖ΠP′∩d|x ◦ cOxŷ ◦ ΠP∩d|x‖.

The transition capacity �P ↪→ P ′� is roughly a measure of an upper bound for
how likely it can be that a database in P will transition into a database in P ′

after a single query to cO.
For a property P ⊆ D|

˜X , let Pc denote its negation, i.e., D|
˜X \ P. Then we

have the following lemma from [5, Transition Capacity Bound].

Lemma 1. Let P,P ′ be properties on D|
˜X such that for every x ∈ X̃ and d ∈

D|
˜X , we can find a set SPc↪→P′

x,d ⊆ Y satisfying

P ′ ∩ d|x ⊆ {d′ ∈ d|x | d′(x) ∈ SPc↪→P′
x,d } ⊆ P ∩ d|x. (6)

In other words, for any database d′ ∈ d|x,

d′ ∈ P ′ =⇒ d′(x) ∈ SPc↪→P′
x,d =⇒ d′ ∈ P.

Then we have

�Pc ↪→ P ′� ≤ max
x∈ ˜X ,d∈D|

˜X

√

10|SPc↪→P′
x,d |
2n

.

Size-Restricted Properties. For a domain-restricted database-set D|
˜X , a property

P ⊆ D|
˜X , and some i ≤ |X̃ |, we define

P[≤i] := {d ∈ P | |d| ≤ i}.

Then the transition capacity �Pc
[≤i−1] ↪→ P[≤i]� is a measure of the maximum

probability of a database outside P with at most i − 1 entries changing to a
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database in P after a single application cOxŷ. (Note that Pc
[≤i−1] denotes the

size-restriction of Pc, and not the complement of P[≤i−1].)
Let ⊥ := {d⊥} denote the empty property (where d⊥ is the empty database,

i.e., the constant-⊥ function). Then for P such that d⊥ /∈ P, ⊥ = Pc
[≤0]. We

define
⎧

⎩⊥ q� P
⎫

⎭ :=
q

∑

i=1

�Pc
[≤i−1] ↪→ P[≤i]�,

the q-query transition bound from ⊥ to P. In other words,
⎧

⎩⊥ q� P
⎫

⎭ is a
measure of the probability that the empty database changes into a database in
P at any point during q successive queries.

Prefixed Oracle. Fix some t < m and write X = T × I, where T = {0, 1}t and
I = {0, 1}m−t. For every non-zero t ≤ 2t, any family of functions p = (pk :
I → X )k∈[t] is said to be a (t,m)-domain-separator if for each k ∈ [t] and for all
x ∈ I, pk(x) ∈ {δt(k) ‖ x : x ∈ I}, for some fixed injective function δt : [t] → T .
Let pk(I) := {pk(x) : x ∈ I} and p(I) := ∪k∈[t]pk(I).

To any (t,m)-domain-separator p = (pk : I → X )k∈[t], we associate
the prefixed-compressed oracle cOp which is defined as a family of oracles
{cOpk}k∈[t], where cOpk denotes the restriction of cO to inputs from pk(I) ⊂
X , i.e., for any k ∈ [t], x ∈ I, ŷ ∈ Ŷ and d̂ ∈ D̂, we have

cOpk |x〉|ŷ〉 ⊗ |d̂〉 = |x〉|ŷ〉 ⊗ cOpk

xŷ |d̂〉,

where cOpk

xŷ := comppk(x) ◦ Opk(x)ŷ ◦ comppk(x). Consequently, cOp can also
be viewed as the restriction of cO to inputs from p(I) ⊆ X .

Two-Domain Systems. Let I and R be two stateful oracles with Hin = H[I],
Hout = H[Z], Hdb = D, defined by the sequences of unitaries:

I := FtcOI[t] . . . cOI[1]F0, R := FtcOR[t] . . . cOR[1]F0,

where with a slight abuse of notations we reuse I and R to also denote the corre-
sponding (t,m)-domain-separators, and the unitaries F0, . . . ,Ft only operate on
the input, output and ancillary qubits, if any, needed to compute the function
itself. Whenever convenient, we will continue ignoring the ancillary qubits.

Consider a q-query interactive game where a computationally unbounded and
deterministic distinguisher A aims to distinguish R from I. We emphasize that
in such an interactive game with I or R, the compressed oracle cO is invoked
a total of q′ := tq times. Fix two domains X̃I = I(I), X̃R = R(I), and define
DI := D|

˜XI
and DR := D|

˜XR
. Consider properties BI ⊆ DI\⊥ and BR ⊆ DR\⊥,

and define GI := DI \ BI and GR := DR \ BR. The central tool of our security
proofs will be the following adaptation of [5, Lemma 4]. A proof of this lemma
is available in the full version of this paper [6].
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Lemma 2 (Two-Domain Distance Lemma). Suppose we can find a map
h : GI −→ GR such that the following hold:

– h is a bijection from GI to GR;
– For every i ∈ [q′] ∪ {0}, h|GI[≤i] is a bijection from GI[≤i] to GR[≤i];
– For every i ∈ [q′], x ∈ I, ŷ ∈ Ŷ, d ∈ GI[≤i−1], and d′ ∈ GI[≤i],

〈d′ | cOI[k]
xŷ | d〉 = 〈h(d′) | cOR[k]

xŷ |h(d)〉.

where k = t if i = 0 mod t, and k = i mod t otherwise.

Then, we have

‖TrD(ρq
A,I) − TrD(ρq

A,R)‖1 ≤ 3
⎧

⎩⊥ q′
� BI

⎫

⎭
I + 3

⎧

⎩⊥ q′
� BR

⎫

⎭
R,

where ρq
A,p := Ap|ψA, d⊥〉〈ψA, d⊥|Ap† is the state after q queries to the oracle

at-hand p ∈ {I,R} for some norm-1 vector |ψA〉 and the empty database |d⊥〉.
The transition bounds

⎧

⎩⊥ q′
� ·

⎫

⎭
I and

⎧

⎩⊥ q′
� ·

⎫

⎭
R are computed for queries to cOI

and cOR, respectively.

When the oracle in use is clear from the context, we will drop the subscripts for

the transition bounds and simply write both as
⎧

⎩⊥ q′
� ·

⎫

⎭. We’ll also keep the
domain-separator implicit when there’s no scope for ambiguity.

3.3 The Hosoyamada-Iwata Interpretation

Hosoyamada and Iwata proposed a slightly different variant of stO with an aim
to characterize and analyze databases in an explicit computational basis with
an exact definition of ⊥ with the help of an ancillary flag bit that signifies if the
database entry is defined or not.

Let S ⊆ X and Z = {0, 1} × Y. For any partial function f : S → Y, we
associate the database function df : X → Z defined as:

df (x) :=

{

(1, y) when f(x) = y ∈ Y,

(0, 0n) if f(x) is undefined,

On comparing this with Zhandry’s original interpretation, we see that the ⊥ in
original interpretation corresponds to (0, 0n) in HI interpretation. As before, we
drop the subscripts when f is either clear from the context or inconsequential.

We define the database space as the 2(n+1)2m -dimensional complex Hilbert
space Hdb = H[Z] which is isomorphic to C

2(n+1)2m

. Note that not all
d ∈ Z can be associated with some partial function f . A database d =
((b0, β0), . . . , (b2m−1, β2m−1)) is said to be valid if it satisfies that for each
i ∈ {0, 1, . . . , 2m − 1} such that bi = 0 we have βi = 0n. Indeed, any valid
database ((b0, β0), . . . , (b2m−1, β2m−1)) is identified with the set {(i, βi) | bi = 1},
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which is nothing but the truth table of a partially-defined function from {0, 1}m

to {0, 1}n. Accordingly, let Πvalid be the orthogonal projection onto the vector
space spanned by valid databases.

Any database |d〉 ∈ H[Z] can be equivalently viewed as an array of 2m cells
|d[0]〉 . . . |d[2m−1]〉. Writing |d[i]〉 as |bi, βi〉 for each i ∈ {0, 1, . . . , 2m−1} (where
bi and βi are respectively the control qubit and the response register of the i-th
cell |d[i]〉 of |d〉), the standard oracle stO is now defined as:

stO|i, y〉|d〉 := |i, y + βi〉|d〉

for each |i, y, d〉 ∈ Hin × Hout × Hdb. For |d〉 such that |d[i]〉 = |0, 0n〉, we define
|d ∪ (i, β)〉 to be the database with |1, β〉 as its i-th cell and identical to |d〉 in
all other cells.
Define the following unitary operators on database cells:

IH0 := I1 ⊗ H⊗n Tg0 := I1 ⊗ |0n〉〈0n| + X(I2n − |0n〉〈0n|)
cH0 := |0〉〈0| ⊗ I2n + |1〉〈1| ⊗ H⊗n

and databases:

IH := IH⊗2m

0 Tg := Tg⊗2m

0 cH := cH⊗2m

0

where X and H are the well-known flip and Hadamard operators on C, i.e. in
the computational basis:

X := |0〉〈1| + |1〉〈0| H :=
1
2

(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|)

Note that all these operators are Hermitian. Using these, we define the encode
and decode operator dec on databases as follows:

enc := cH ◦ Tg ◦ IH;

dec := enc† = IH ◦ Tg ◦ cH;

The recording standard oracle RStOE, due to Hosoyamada and Iwata [23], is
defined as:

RStOE := (I2m+n ⊗ enc)stO(I2m+n ⊗ dec)

Thus, RStOE first decodes the database, then applies stO on the adversary’s
registers and the decoded database, and then encodes the database again. Let
|0〉 denote the valid empty database.
Hosoyamada and Iwata proved [23,25] the following useful propositions.

Proposition 1 (Proposition 1 in [25]). Suppose that the oracle state is ini-
tialized in |0〉. For any i ≥ 1, if the oracle state register is measured after i
queries, then the resulting database d is valid, and contains at most i entries.
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Proposition 2 (Proposition 2 in [25]). For any valid database d satisfying
d[i] = |0, 0n〉, we have

RStOE|i, y〉|d ∪ (i, β)〉 = |i, y ⊕ β〉|d ∪ (i, β)〉 + |ε1〉; (7)

RStOE|i, y〉|d〉 =
∑

β∈{0,1}n

1
2n/2

|i, y ⊕ β〉|d ∪ (i, β)〉 + |ε2〉; (8)

for some |ε1〉 and |ε2〉 such that ‖|ε1〉‖, ‖|ε2〉‖ ∈ O(1/
√

2n).

Although we do not require them in this paper, we remark that [23] gives an
exact description of |ε1〉 and |ε2〉. Intuitively, |ε1〉 and |ε2〉 can be viewed as the
errors introduced in the lazy sampling of a quantum random function due to
interference.
Finally, the main technical result used to study the indistinguishability game
and bound the advantage is given below.

Proposition 3 (Proposition 3 in [25]). For each j ∈ {0, 1, . . . , q}, let |Rj〉
and |Ij〉 denote the state vector corresponding to the real and ideal worlds after
the j-th query, respectively. Suppose, there exist vectors |Rg

j〉, |Rb
j〉, |Igj〉, |Ibj〉 and

non-negative reals ε
(j)
I and ε

(j)
R such that

1. |Rj〉 = |Rg
j〉 + |Rb

j〉, |Ij〉 = |Igj〉 + |Ibj〉;
2. |Rg

j〉〈R
g
j | = |Igj〉〈I

g
j |;

3. ‖|Ibj〉‖ ≤ ‖|Ibj−1〉‖ + ε
(j)
I , ‖|Rb

j〉‖ ≤ ‖|Rb
j−1〉‖ + ε

(j)
R .

Then, for any computationally unbounded and deterministic distinguisher A

we have‖TrHIdb
(ρq

A,I) − TrHRdb
(ρq

A,R)‖1 ≤
∑q

i=1 ε
(j)
I +

∑q
i=1 ε

(j)
R , where ρq

A,R =
|ψA〉〈ψA| ⊗ |0R〉〈0R| and ρq

A,I = |ψA〉〈ψA| ⊗ |0I〉〈0I| for some norm-1 vector
ψA ∈ HA and |0R〉 and |0I〉 denote the all zero database states in the real and
ideal worlds respectively.

4 Revisiting IND-qCPA Security of LR4

4.1 The Luby-Rackoff Construction

For some r ≥ 1 and f1, . . . , fr : {0, 1}n → {0, 1}n, we define g : [r] × {0, 1}2n →
{0, 1}2n by the mapping:

(i, x1, x2) 	−→ (x2 ⊕ fi(x1), x1),

and write gi(·, ·) := g(i, ·, ·). The r-round Luby-Rackoff construction, denoted
LRr is defined as:

(x1, x2) 	−→ gr ◦ · · · ◦ g1(x1, x2). (9)

For all i ∈ [r], we write (also see Fig. 1):

– xi−1 := (xi−1
1 , xi−1

2 ) to denote the input to gi, where x0 := x = (x1, x2),
denotes the input to LRr.
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– (ui, vi) to denote the input-output tuple corresponding to fi.
– y = (y1, y2) := (xr

1, x
r
2) to denote the output of LRr.

Hosoyamada and Iwata stated [23] the following IND-qCPA security bound for
LR4.

Theorem 1 (Theorem 3 in [23]). Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n

are four mutually independent uniform random functions. Then, for any q ≥ 0,
and any quantum adversary A that makes at most q CPA queries, we have

Advqcpa
LR4

(A) = O

(√

q3

2n

)

.

The proof of this theorem uses the HI interpretation of Zhandry’s compressed
oracle, the so-called RStOE. The high level proof approach is as follows:

1. Simulate the random functions f1, f2, f3, f4 using independent instances of
RStOE with the corresponding databases, d1, d2, dR, d4, respectively.

2. The authors then apply a series of hybrids, introducing intermediate con-
structions between the real construction LR4, and the ideal construction, a
uniform random function Γ : {0, 1}2n → {0, 1}2n. The first of these inter-
mediate constructions is a length-preserving function, that we refer as L̃R4,
defined by the mapping (see also Fig. 1):

(x1, x2) 	→ g4 ◦ G3 ◦ g2 ◦ g1(x1, x2), (10)

where G3(x′
1, x

′
2) := (F3(x′

1, x
′
2), x

′
1) for all (x′

1, x
′
2) ∈ {0, 1}2n. The function

F3 : {0, 1}2n → {0, 1}n is a uniform random function, to be implemented by
an appropriate RStOE, say dI.
In this note, we will solely focus on the distance between LR4 and L̃R4. In
fact, showing a negligible distance between the two systems is the technical
core of the proof. For the discussion in this paper, it is sufficient to consider
the chopped output x3

1. So, we drop the application of f4. We write dR =
(d1, d2, dR) and dI = (d1, d2, dI).

3. In a bid to use Proposition 3 to bound the advantage, the authors iteratively
apply Proposition 2 to study the action of each of f1, f2, f3 (only in the
real world), and F3 (only in the ideal world) in that order, followed by the
respective uncomputation steps for f2 and f1 in that order.

4. The key idea in the proof is the observation that LR4 and L̃R4 are indistin-
guishable as long as the inputs to f3 (res. F3 in the ideal world) are pair-
wise distinct across all queries, i.e., the database triple dR = (d1, d2, dR)
(res. dI = (d1, d2, dI) in the ideal world) is considered to be good if and
only if there does not exists distinct database entries (u1, v1), (u′

1, v
′
1) ∈ d1,

(u2, v2), (u′
2, v

′
2) ∈ d2, and (u3, v3) ∈ dR (res. (u3, x

2
2, v3) ∈ dI in the real

world) such that u1 ⊕ v2 = u′
1 ⊕ v′

2 = u′
3. All other database triples are

considered bad. Let Πbad denote the projection onto the space spanned by
bad databases. A key property of good database triples is the fact that they
enable a one-to-one correspondence dR 	→ [dR]I between the real and ideal
databases, i.e., the two worlds can be easily shown to behave identically
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when the databases remain good throughout the execution. Thus, by setting
|Rb

j〉 = Πbad|Rj〉, |Rg
j〉 = |Rj〉 − |Rb

j〉, |Ibj〉 = Πbad|Ij〉, and |Igj〉 = |Ij〉 − |Ibj〉,
we satisfy condition 1 and 2 in Proposition 3.
Now, all that remains is to study the action of each function call, and bound
the norm of the bad vectors after each application, assuming that the state
is spanned by good databases before the action. In particular, we concen-
trate on the application of f1 in the next section, uncovering a flaw in the
argumentation that breaks the proof.

4.2 Action of f1 and the Trivialization of Norm

For any unit vector |ψ〉 and an arbitrary projection operator Π, we say that
‖Π|ψ〉‖ is trivially bounded when we simply use the fact that ‖Π|ψ〉‖ ≤ 1.

Fig. 1. 4-round Luby-Rackoff (left) and 4-round Luby-Rackoff with a BIG function
(right).



230 R. Bhaumik et al.

We will study the action in the ideal world, although the same issue lies in
the real world application as well. For brevity we assume that the output of f1
is written on some ancillary register to be used in later actions. By a recursive
application of Proposition 2, there exists vectors |ε1〉 and |ε2〉 such that

Of1 |I
g
j−1〉 :=

∑

x,y,z,dI

dI:good
d1(x1) �=⊥

α
(j−1)

x,y,z,dI |x, y, z〉 ⊗ |d1(x1)〉 ⊗ |dI〉

+
∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

α
(j−1)

x,y,z,dI

2n/2
|x, y, z〉 ⊗ |β〉 ⊗ |dI ∪ (x1, β)1〉

+ |ε1〉 + |ε2〉,

where |dI ∪ (x1, β)1〉 = |d1 ∪ (x1, β)〉 ⊗ |d2〉 ⊗ |dI〉 denotes the database that is
same as |dI〉 except for d1(x1) which has been newly defined as β.

In this note we are only concerned with the second summand, denoted |Ig,1
j 〉,

which gives the state transition on a fresh input to f1 starting with a good
state. Roughly speaking, a new entry (x1, β) is recorded in d1 at the cost of an
amplitude factor of 2−n/2.

Formally, we are interested in the following norm, which is an equivalent
representation of [23, (51)]:

‖Πbad|Ig,1
j 〉‖2 = ‖

∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

dI∪(x1,β)1:bad

α
(j−1)

x,y,z,dI

2n/2
|x, y, z〉 ⊗ |β〉 ⊗ |dI ∪ (x1, β)1〉‖2

=
∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

dI∪(x1,β)1:bad

∣
∣
∣
∣
∣
∣

α
(j−1)

x,y,z,dI

2n/2

∣
∣
∣
∣
∣
∣

2

(11)

=
∑

x,y,z,dI

dI:good
d1(x1)=⊥

∣
∣
∣α

(j−1)

x,y,z,dI

∣
∣
∣

2 ∑

β

dI∪(x1,β)1:bad

1
2n

(12)

≤ O

(
j

2n

)
∑

x,y,z,dI

dI:good
d1(x1)=⊥

∣
∣
∣α

(j−1)

x,y,z,dI

∣
∣
∣

2

(13)

≤ O

(
j

2n

)

, (14)
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where (13) to (14) follows from the fact that ‖|Ij−1〉‖ ≤ 1. However, there is no
supporting argument in [23] for (12) to (13). In fact, we claim that

∑

β

dI∪(x1,β)1:bad

1
2n

= O(1). (15)

To bound the summation, we have to estimate the size of the set {β : dI ∪
(x2, β)1 is bad}. Now, dI ∪ (x1, β)1 is bad if and only if there exists distinct
database entries (u′

1, v
′
1) ∈ d1, (u2, v2), (u′

2, v
′
2) ∈ d2, and (u′

1 ⊕ v′
2, u

′
2, v

′
3) ∈ dI

such that
x1 ⊕ v2 = u′

1 ⊕ v′
2.

Note that, the above predicate is independent of β! Thus, in the worst case, the
predicate is true for all possible values of β which immediately establishes the
claim. Once we plug in the bound from (15) in (12), we get

‖Πbad|Ig,1
j 〉‖2 = O(1), (16)

which clearly trivializes the norm. This completely breaks the security proof, as
this revised bound leads to a trivial bound of O(1) on the PRF advantage.

4.3 Do Additional Rounds Help?

One might think that, while this approach does not work for three rounds, maybe
it will if we add more rounds, i.e., by considering r-round Luby-Rackoff for r ≥ 4.
Unfortunately, as we show in this section, the “trivialization of norm” seems to
be a fundamental issue. We will argue this further for input collision at fi for
any odd i ∈ {1, . . . , r}. A similar argument can also be given for any even i.

Consider the database snapshot after j ≥ 2 queries. Suppose, the adversary
makes a query (x1, x2), such that d1(x1) = ⊥, i.e., the database entry corre-
sponding to x1 is empty, and a new entry (x1, β) is to be created. Now, if we
have distinct (u′

1, v
′
1) ∈ d1, (u2, v2), (u′

2, v
′
2) ∈ d2, . . . , (ui−1, vi−1), (u′

i−1, v
′
i−1) ∈

di−1, (u′
i, v

′
i) ∈ di, such that

u′
i = u′

1 ⊕ v′
2 ⊕ · · · ⊕ v′

i−1, and
x1 ⊕ v2 ⊕ · · · ⊕ vi−1 = u′

1 ⊕ v′
2 ⊕ · · · ⊕ v′

i−1,

then there is a possibility4 that this query leads to a collision at the input of
fi. And what’s more, this condition is independent5 of β, and thus, a similar
trivialization of norms as in (15) would occur in this case as well, rendering this
line of argumentation effectively useless.
4 We are obviously overcounting by considering all possible combinations of queries.

In fact, most of these combinations are never queried by the adversary. However,
as of now, there is no effective way to find out the query ordering from database
entries.

5 This independence only holds corresponding to the badness condition. In a typical
execution of LRr, these variables will obviously depend on β. However, due to the
badness condition and the ignorance of query ordering (see the above point), this
dependence is lost.
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5 Non-adaptive IND-qCPA Security of LR4

The main reason that the existing Luby-Rackoff proof fails is a lack of global
knowledge of adversarial query pattern. At any instant, the compressed oracle
only has the information recorded in the database and the current input. Thus,
one has to argue as if every possible combination of global inputs are possible
which as we showed in Sect. 4 leads to a trivialization of norm in case of LR4.
At the same time, for several other constructions, like TNT and LRWQ, one can
still try to reconstruct a moderately global view to achieve some security bound.

The Dummy Call Idea: In the non-adaptive setting, the adversary makes
a single query of the form xq = (x1, . . . , xq). We can employ a single dummy
compressed oracle call to record xq, and then implement the oracle at-hand. Note
that the compressed oracle in both the dummy call and actual oracle evaluation
can be implemented by a single compressed oracle using the prefixed oracle
technique. More formally, suppose Of denote the stateful oracle corresponding
to the function f : {0, 1}� → {0, 1}n, defined as follows:

Of := Ft−1cOpt−1 . . . cOp1F0,

where p is a (t,m)-domain-separator for some t ≥ �log2 t� such that m ≥ �q + t.
Keep in mind that the unitaries F0, . . . ,Ft−1 only operate on the input, output
and ancillary qubits, if any. Then, the q-query variant of Of with dummy call
is defined to be the sequence

(cOpt)† ◦ O⊗q
f ◦ cOpt .

In other words, we enclose the original non-adaptive oracle between two com-
pressed oracle calls, which record and erase the global input (xq, ŷq). Note that
erasing the dummy call entries is crucial; otherwise, this perturbs the state.

In what follows, we assume the actions of the dummy call are implicit and
do not analyze them explicitly. Consequently, we will often focus only on the
relevant subspace of the database used in the other actions.

We prove the following IND-qNCPA bound for LR4.

Theorem 2. Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n are three mutually inde-
pendent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q qNCPA queries, we have

Advqncpa
LR4

(A ) = 3

√

q6

2n
+ 6

√

q5

2n
.

Proof. Our goal is to bound the distinguishing advantage for any non-adaptive
adversary trying to distinguish LR4 from a uniform random function. First, let
F3, F4 : {0, 1}3n → {0, 1}n be two uniform random functions. For i ∈ {3, 4},
define

Gi(x1, x2, x
′
1, x

′
2) := (x′

2 ⊕ Fi(x1, x2, x
′
1), x

′
1),
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for any (x1, x2, x
′
1, x

′
2) ∈ {0, 1}4n. We define the hybrid random function L̃R4 as

(see also Fig. 2):

L̃R4(x1, x2) := G4(x1, x2, G3(x1, x2, LR2(x1, x2))).

Then, it is easy to see that L̃R4 is indistinguishable to a uniform random function
Γ : {0, 1}2n → {0, 1}2n. So, it is sufficient to bound the distance between LR4

and L̃R4. Let X = {0, 1}4+2nq, Y = {0, 1}n and Γ : X → Y be a uniform random

Fig. 2. LR4 (left) vs the hybrid random function, ˜LR4 (right).
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function. For each x1, x2, x3 ∈ {0, 1}n, we define

f1(x1) := Γ(1001‖x1‖02nq−n)

f2(x1) := Γ(1010‖x1‖02nq−n)

f3(x1) := Γ(1011‖x1‖02nq−n)

f4(x1) := Γ(1100‖x1‖02nq−n)

F3(x1, x2, x3) := Γ(1101‖x1‖x2‖x3‖02nq−3n)

F4(x1, x2, x3) := Γ(1110‖x1‖x2‖x3‖02nq−3n)

In addition, we implicitly define the dummy call, denoted dummy, to oper-
ate over a disjoint6 subspace of the database, mapping 2qn-bit inputs to n-bit
outputs. The exact description of the dummy call is not necessary as the output
is never used.

The distinctness of the first four bits ensures that f1, f2, f3, f4, F3, F4 are all
independent, and they are independent of dummy by definition.

The database in the real world is denoted dR (tracking dummy, f1, f2, f3,
f4) and dI in the ideal world (tracking dummy, f1, f2, F3, F4). Let DR (resp.
DI) be the set of all possible choices for dR (resp. dI).
For some x = (x1, x2, . . . , x2q) ∈ Y2q, let

[x]0 := 0000‖x [x1]1 := 1001‖x1‖02nq−n

[x1, x2, x3]5 := 1101‖x1‖x2‖x3‖02nq−3n [x1]2 := 1010‖x1‖02nq−n

[x1, x2, x3]6 := 1110‖x1‖x2‖x3‖02nq−3n [x1]3 := 1011‖x1‖02nq−n

[x1]4 := 1100‖x1‖02nq−n

In addition, for all k ∈ [q], we write [x2k−1, x2k]0‖k to denote the k-th diblock
coordinate (x2k−1, x2k) of x. We will mostly use this view, and thus, view the 2qn-
bit entry as q separate entries of size 2n-bit each, and thus, dR([x2k−1, x2k]0‖k) �=
⊥ (or dI([x2k−1, x2k]0‖k) �= ⊥) is well-defined as long as dR([x]0) �= ⊥ (res.
dI([x]0) �= ⊥ for some x = (z, (x2k−1, x2k), z′) where z and z′ are 2(k − 1)n-bit
and 2(q − k)n-bit strings.
Define

X̃R := {[x]0, [x1]1, [x1]2, [x1]3, [x1]4 : x = (x1, . . . , x2q) ∈ Y2q}
X̃I := {[x]0, [x1]1, [x1]2, [x1, x2, x3]5, [x1, x2, x3]6 : x = (x1, . . . , x2q) ∈ Y2q}

Then it is easy to see that DR = D|
˜XR

and DI = D|
˜XI

.

5.1 Bad and Good Databases

Let BR be the set of databases dR satisfying one of the following condition: we
can find (x1, x2) �= (x′

1, x
′
2) ∈ Y2 and v1, v2, v

′
1, v

′
2 ∈ Y such that

6 Disjoint from the other functions due to the first bit.
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– for some k /∈ k′ ∈ [q], dR([x1, x2]0‖k) �= ⊥, dR([x′
1, x

′
2]0‖k′) �= ⊥;

– ([x1]1, v1), ([x′
1]1, v1) ∈ dR;

– ([x2 ⊕ v1]2, v2), ([x′
2 ⊕ v′

1]2, v
′
2) ∈ dR;

– x1 ⊕ v2 = x′
1 ⊕ v′

2;

or we can find (x1, x2) �= (x′
1, x

′
2) ∈ Y2 and v1, v2, v3, v

′
1, v

′
2, v

′
3 ∈ Y such that

– for some k /∈ k′ ∈ [q], dR([x1, x2]0‖k) �= ⊥, dR([x′
1, x

′
2]0‖k′) �= ⊥;

– ([x1]1, v1), ([x′
1]1, v1) ∈ dR;

– ([x2 ⊕ v1]2, v2), ([x′
2 ⊕ v′

1]2, v
′
2) ∈ dR;

– ([x1 ⊕ v2]3, v3), ([x′
1 ⊕ v′

2]3, v3) ∈ dR;
– x2 ⊕ v1 ⊕ v3 = x′

2 ⊕ v′
1 ⊕ v′

3;

Next, let BI be the set of databases dI satisfying one of the the following condi-
tion: we can find (x1, x2) �= (x′

1, x
′
2) ∈ Y2 and v1, v2, v

′
1, v

′
2 ∈ Y

– for some k /∈ k′ ∈ [q], dI([x1, x2]0‖k) �= ⊥, dI([x′
1, x

′
2]0‖k′) �= ⊥;

– ([x1]1, v1), ([x′
1]1, v1) ∈ dI;

– ([x2 ⊕ v1]2, v2), ([x′
2 ⊕ v′

1]2, v
′
2) ∈ dI;

– x1 ⊕ v2 = x′
1 ⊕ v′

2;

or we can find (x1, x2) �= (x′
1, x

′
2) ∈ Y2 and v1, v2, v3, v

′
1, v

′
2, v

′
3 ∈ Y such that

– for some k /∈ k′ ∈ [q], dI([x1, x2]0‖k) �= ⊥, dI([x′
1, x

′
2]0‖k′) �= ⊥;

– ([x1]1, v1), ([x′
1]1, v1) ∈ dI;

– ([x2 ⊕ v1]2, v2), ([x′
2 ⊕ v′

1]2, v
′
2) ∈ dI;

– ([x1, x2, x1 ⊕ v2]5, v5), ([x′
1, x

′
2, x

′
1 ⊕ v′

2]5, v5) ∈ dI;
– x2 ⊕ v1 ⊕ v3 = x′

2 ⊕ v′
1 ⊕ v′

3;

Let GR := DR \ BR and GI := DI \ BI. The above definitions mean that in both
GR and GI, each u3 and u4 is associated with a unique pair (x1, x2). Then it is
easy to see that GR and GI have an obvious bijection h : GR −→ GI as follows:
for each dR we define dI := h(dR) such that

– for each x ∈ Y2q, dI([x]0) = dR([x]0). Note that, by definition of the oracle,
there will be only one entry of this type in both the worlds;

– for each u1 ∈ Y, dI([u1]1) = dR([u1]1);
– for each u2 ∈ Y, dI([u2]2) = dR([u2]2);
– for each u3, u4 ∈ Y such that dR([u3]3) �= ⊥ and dR([u4]4) �= ⊥, find

the unique (x1, x2) ∈ Y2, and define dI([x1, x2, u3]5) = dR([u3]3) and
dI([x1, x2, u4]6) = dR([u4]4).

Then h satisfies the conditions of Lemma 2. To complete the proof, we show that

⎧

⎩⊥ 4q+2� BR

⎫

⎭+
⎧

⎩⊥ 4q+2� BI

⎫

⎭≤ 2

√

q6

2n
+ 4

√

q5

2n
.
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5.2 Sequence of Actions

We ignore the dummy call actions, as the transition from a good to bad database
is independent of the output of this operator.

Recall that the q non-adaptive queries can be represented by a single q-fold
query to be evaluated sequentially.

Action of f1. For i ∈ {4k+2 : 0 ≤ k ≤ q−1}, we bound the transition capacity
�Bc

R[≤i−1] ↪→ BR[≤i]�. For any dR with |dR| ≤ i − 1 and any x ∈ Y, we have

SBc
R↪→BR

x,d = {dR([x′
1]1) ⊕ dR([u′

3]3) ⊕ dR([u3]3) ⊕ x2 ⊕ x′
2 | E} ,

where E denotes the predicate dR([u3]3) �= ⊥, dR([u′
3]3) �= ⊥, dR([x, x2]0‖∗) �=

⊥, dR([x′
1, x

′
2]0‖∗) �= ⊥.

There are at most q choices for (x′
1, x

′
2), �i − 1/4� choices for each of u3 and

u′
3, and at most q choices for x2, so |SBc

R↪→BR

x,d | ≤ q2�(i − 1)/3�2 ≤ q4, and from
there using Lemma 1 we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

10q4

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (17)

By the same arguments we can also show that

�Bc
I[≤i−1] ↪→ BI[≤i]� ≤

√

10q4

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (18)

Action of f2. Next consider the transition capacity �Bc
R[≤i−1] ↪→ BR[≤i]� for

i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any x ∈ Y,
we have

SBc
R↪→BR

x,d = {dR([u′
2]2) ⊕ x1 ⊕ x′

1 | E} ,

where E denotes the predicate dR([u′
2]2) �= ⊥, dR([x1, x2]0‖∗) �= ⊥,

dR([x′
1, x

′
2]0‖∗) �= ⊥. Again, there are at most �(i − 1)/4� choices for u′

2 and
at most q2 choices for (x1, x

′
1). Thus, from Lemma 1, we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (19)

Action of f3 (resp. F3): For i ∈ {4k + 4 : 1 ≤ k ≤ q − 1}, for any dR with
|dR| ≤ i − 1 and any x ∈ Y, we have

SBc
R↪→BR

x,d = {dR([x1]1) ⊕ dR([x′
1]1) ⊕ dR([u′

3]3) ⊕ x2 ⊕ x′
2 | E} ,

where E denotes the predicate dR([x1]1), dR([x′
1]1), dR([u3]3) �=

⊥, dR([x1, x2]0‖∗) �= ⊥, dR([x′
1, x

′
2]0‖∗) �= ⊥. There are at most �(i − 1)/4�
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choices for u′
3 and at most q2 choices for ((x1, x2), (x′

1, x
′
2)). Since the analysis

is identical in both the worlds, by using Lemma 1, we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 4 : 0 ≤ k ≤ q − 1} (20)

�Bc
I[≤i−1] ↪→ BI[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 4 : 0 ≤ k ≤ q − 1} (21)

Action of f4 (resp. F4): Since the property BR (resp. BI) is independent of
the output of f4 (resp. F4) and the database is good right before the action, we
have SBc

R↪→BR

x,d = ∅. Thus,

�Bc
R[≤i−1] ↪→ BR[≤i]� = 0, ∀ i ∈ {4k + 5 : 0 ≤ k ≤ q − 1} (22)

�Bc
R[≤i−1] ↪→ BR[≤i]� = 0, ∀ i ∈ {4k + 5 : 0 ≤ k ≤ q − 1} (23)

Summing over the 4q + 2 actions using (17)–(23) gives

⎧

⎩⊥ 4q+2� BR

⎫

⎭≤ 2

√

10q5

2n
+

√

10q6

2n
,

⎧

⎩⊥ 4q+2� BI

⎫

⎭≤ 2

√

10q5

2n
+

√

10q6

2n
. (24)

Adding the two inequalities completes the proof of Theorem 2.

5.3 The Problem with the Adaptive Setting

A closer look at the non-adaptive proof serves to show why a similar proof is
difficult to achieve in the adaptive setting. The dummy call is used to record
all the q non-adaptive queries of the adversary in the database, before LR4 is
applied to each of them sequentially. This enables us to argue that the oracle
knows all q queries at the time of each of the subsequent actions (f1, f2, f3 etc.)
which in turn helps in upper bounding the bad norm to a non-trivial value.

The proof hinges on the characterisation as bad of any database which has
a ‘collision’ on the f input in either of the last two rounds, i.e., collisions on
x1⊕v2 or x2⊕v1⊕v3 for different database entries. Specifically, this implies that
certain later values of x1 or x2 can always make the database go bad irrespective
of earlier choices of v1, v2, or v3. As a concrete example, recall (from Sect. 5.1)
that a database is (also) considered bad if:

– for some k �= k ∈ [q], dR([x1, x2]0‖k), dR([x′
1, x

′
2]0‖k′) �= ⊥ (i.e. the adversary

has made these two queries).
– ([x1]1, v1), ([x′

1]1, v
′
1) ∈ dR; (f1 has been evaluated over x1 and x′

1)
– ([x2 ⊕ v1]2, v2), ([x′

2 ⊕ v′
1]2, v

′
2) ∈ dR; (f2 has been evaluated over x2 ⊕ v1 and

x′
2 ⊕ v′

1)
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– x1 ⊕ v2 = x′
1 ⊕ v′

2; (there is an input-collision on f3)

Now, in the context of f1’s action, comparing the above definition with the
previous proofs (specifically see the discussion around (15) and (16)), one can
see that conditions 1 and 3 are missing in previous proofs. This is because it is
impossible for the oracle to detect the queries made by the adversary, as at any
given instant, it can only see the database entries, nothing less and nothing more.
As a result, the norm bound becomes trivial. On the other hand, in our case,
specifically because condition 1 can be checked at all times (once the dummy
call is executed), condition 3 is also well-defined. As a result, as shown in (17)
and (18), the norm bound is non-trivial.

At the same time, the dummy call must be erased before the oracle returns
an output to the adversary. Otherwise, this perturbs the state, which can be
detected by the adversary. So, this approach only works in non-adaptive games
which can be modelled as an adversary making a single “big” query (consist-
ing of q usual queries) to the oracle and the oracle returning a single “big”
output (consisting of q usual outputs). An adaptive game, on the other hand,
does not adhere to such simplifications. More specifically, since future values
of x1 and x2 are directly under the adversary’s control and are not known to
the oracle in advance, the amplitude of such events cannot be bounded using
known techniques. In the HI framework, this problem appears as the trivializa-
tion of the norm (see Sect. 4). In the BCEJ framework, this observation implies
that databases can go bad between two actions, something that the framework
does not account for. In the non-adaptive setting, however, the oracle knows in
advance the future values of x1 and x2, and the outputs of f can accordingly be
classified as ‘bad’ and bounded at the time of the action of f .

Lastly, we remark that this is not a problem specific to Luby-Rackoff, but is
inherent to any proof for which the definition of bad databases is in terms of an
input that the adversary can adaptively choose. We have also noticed this error
in other proofs. For example, in [5], the security proofs of TNT, LRWQ and LRQ
suffer from this problem, and do not hold in the adaptive setting. While for TNT
and LRWQ this seems to be more of a definitional problem, since the bad events
can be defined directly in terms of the database entries (though possibly leading
to a slightly worse bound), for the LRQ proof this looks like a more fundamental
issue that does not admit an easy fix. We spotted similar flaws in other works
like the proof of LRWQ in [25] and the tight security proof for TNT [34]. While
the former seems to be fixable, the latter is again a fundamental issue.

6 IND-qCPA Security of Misty

6.1 The Misty Constructions

For some r ≥ 1 and f1, . . . , fr : {0, 1}n → {0, 1}n, we define

– gL : [r] × {0, 1}2n → {0, 1}2n by the mapping:

(i, x1, x2) 	−→ (x2, x2 ⊕ fi(x1)),
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– gR : [r] × {0, 1}2n → {0, 1}2n by the mapping:

(i, x1, x2) 	−→ (x2 ⊕ fi(x1), fi(x1)),

and write gL
i (·, ·) := gL(i, ·, ·) and gR

i (·, ·) := gR(i, ·, ·).
MistyL Construction: The r-round MistyL, denoted MistyLr is defined as:

(x1, x2) 	−→ gL
r ◦ · · · ◦ gL

1 (x1, x2). (25)

MistyR Construction: The r-round MistyR construction, denoted MistyRr is
defined as:

(x1, x2) 	−→ gR
r ◦ · · · ◦ gR

1 (x1, x2). (26)

For all i ∈ [r], we write:

– xi−1 := (xi−1
1 , xi−1

2 ) to denote the input to gi, where x0 := x = (x1, x2),
denotes the input to Misty{L|R}r.

– (ui, vi) to denote the input-output tuple corresponding to fi.
– y = (y1, y2) := (xr

1, x
r
2) to denote the output of Misty{L|R}r.

6.2 IND-qCPA Security of MistyR

We prove the following IND-qCPA bound for MistyR4.

Theorem 3. Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n are four mutually inde-
pendent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q queries, we have

Advqcpa
MistyR4

(A ) = O

(√

q5

2n

)

.

Proof. Let F3, F4 : {0, 1}3n → {0, 1}n be two uniform random functions. Define

GR
3 (x1, x2, x

′
1, x

′
2) := (x′

2 ⊕ F3(x1, x2, x
′
1), F3(x1, x2, x

′
1))

GR
4 (x1, x2, x

′
1, x

′
2) := (x′

2 ⊕ F4(x1, x2, x
′
1), F4(x1, x2, x

′
1))

for any (x1, x2, x
′
1, x

′
2) ∈ {0, 1}4n. We define the hybrid random function M̃istyR4

as (see also Fig. 3):

M̃istyR4(x1, x2) := GL
4 (x1, x2, G

L
3 (x1, x2,MistyR2(x1, x2))).

Then, it is easy to see that M̃istyR4 is indistinguishable to a uniform random
function Γ : {0, 1}2n → {0, 1}2n. So, it is sufficient to bound the distance between
MistyR4 and M̃istyR4.
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Let X := {0, 1}3n+3, and let f : X −→ Y be a (3n + 3)-bit-to-n-bit uniform
random function. We implement f through cO defined over H[X ] ⊗ H[Y] ⊗ D.
For each x, y, z ∈ Y,

f1(x) = f(000‖x‖02n) f4(x) = f(011‖x‖02n)

f2(x) = f(001‖x‖02n) F3(x, y, z) = f(100‖x‖y‖z)

f3(x) = f(010‖x‖02n) F4(x, y, z) = f(101‖x‖y‖z).

The distinctness of the first three bits ensures that f1, f2, f3, f4, F3, F4 are all
independent, and they can be implemented by the prefix oracle. We do not give
the implementation explicitly as it is obvious. This setup allows us to use a single

Fig. 3. MistyR4 (left) vs the hybrid random function, M̃istyR4 (right).
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database df : X −→ Z to keep track of f1, f1, f2, f3, f4, F3 and F4; we refer to
this database as dR in the real world (tracking f1, f2, f3 and f4) and dI in the
ideal world (tracking f1, f2, F3 and F4). Let DR (resp. DI) be the set of all
possible choices for dR (resp. dI). Let

[x]1 := 000‖x‖02n,[x]2 := 001‖x‖02n,

[x]3 := 010‖x‖02n,[x]4 := 011‖x‖02n.

and define the sets

X̃R := {[x]1, [x]2, [x]3, [x]4 | x ∈ Y},
X̃I := {[x]1, [x]2, (100‖x‖x′‖y) , (101‖x‖x′‖y) | x, x′, y ∈ Y}.

Then it is easy to see that DR = D|
˜XR

and DI = D|
˜XI

.

Let BR be the set of databases dR satisfying one of the two following conditions:
we can find u1, u

′
1, u2, u

′
2, v1, v

′
1, v2, v

′
2 ∈ Y such that

1. ([u1]1, v1), ([u′
1]1, v

′
1), ([u2]2, v2), ([u′

2]2, v
′
2) ∈ dR;

2. v2 ⊕ v1 = v′
2 ⊕ v′

1;

or we can find u1, u
′
1, u2, u

′
2, v1, v

′
1, v2, v

′
2, v3, v

′
3 ∈ Y such that

1. ([u1]1, v1), ([u′
1]1, v

′
1), ([u2]2, v2), ([u′

2]2, v
′
2),

[v2 ⊕ v1]3, v3), ([v′
2 ⊕ v′

1]3, v
′
3) ∈ dR;

2. v3 ⊕ v2 = v′
3 ⊕ v′

2;

Next, let BI be the set of databases dI satisfying one of the two following
conditions: we can find u1, u

′
1, u2, u

′
2, v1, v

′
1, v2, v

′
2 ∈ Y such that

1. ([u1]1, v1), ([u′
1]1, v

′
1), ([u2]2, v2), ([u′

2]2, v
′
2) ∈ dI;

2. v2 ⊕ v1 = v′
2 ⊕ v′

1;

or we can find u1, u
′
1, u2, u

′
2, v1, v

′
1, v2, v

′
2, v3, v

′
3 ∈ Y such that

1. ([u1]1, v1), ([u′
1]1, v

′
1), ([u2]2, v2), ([u′

2]2, v
′
2),

(100‖u1‖v1 ⊕ u2‖v2 ⊕ v1, v3), (100‖u′
1‖v′

1 ⊕ u′
2‖v′

2 ⊕ v′
1, v

′
3) ∈ dI;

2. v3 ⊕ v2 = v′
3 ⊕ v′

2;

Let GR := DR \ BR and GI := DI \ BI. Suppose dR ∈ GR and dI ∈ GI. Then
each u3 for which there exists v3 such that ([u3]3, v3) ∈ dR is associated with a
unique pair ([u1]1, v1), ([u2]2, v2) ∈ dR such that u3 = v1 ⊕ v2, and each u4 for
which there exists v4 such that ([u4]4, v4) ∈ dR is associated with a unique triple
([u1]1, v1), ([u2]2, v2), ([u3]3, v3) ∈ dR such that u3 = v1 ⊕ v2 and u4 = v2 ⊕ v3.

Similarly, each u3 for which there exist x1, x2, v3 such that
(100‖x1‖x2‖u3, v3) ∈ dI is associated with a unique pair ([u1]1, v1), ([u2]2, v2) ∈
dI such that u3 = v1 ⊕ v2, and this pair also satisfies x1 = u1, x2 = v1 ⊕ u2;
and each u4 for which there exist x1, x2, v4 such that (101‖x1‖x2‖u4, v4) ∈ dI
is associated with a unique triple ([u1]1, v1), ([u2]2, v2), (100‖x1‖x2‖u3, v3) ∈ dI
such that u3 = v1 ⊕ v2 and u4 = v2 ⊕ v3, and this triple also satisfies
x1 = u1, x2 = v1 ⊕ u2.

Then we can define the bijection h : GR −→ GI as follows: for each dR we
define dI := h(dR) such that
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– for each u1 ∈ Y, dI([u1]1) = dR([u1]1);
– for each u2 ∈ Y, dI([u2]2) = dR([u2]2);
– for each x1, x2 ∈ Y and the associated (u3, u4), dI(100‖x1‖x2‖u3) = dR([u3]3)

and dI(101‖x1‖x2‖u4) = dR([u4]4).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 3,
we just need to show that

⎧

⎩⊥ 4q� BR

⎫

⎭+
⎧

⎩⊥ 4q� BI

⎫

⎭≤ (4 + 2
√

2)
√

10q5/2n.

Sequence of Actions. Each query by the adversary to its oracle results in a
sequence of four queries to f , one each to f1, f2, and one to f3 and f4 in the
real world or F3 and F4 in the ideal world, in that order. We view the query
response phase as a sequence of 4q (possibly duplicate) actions and analyze the
transition capacity at each action.

Action of f1: For i ∈ {4k + 1 : 0 ≤ k ≤ q − 1}, we first look at the transition
capacity �Bc

R[≤i−1] ↪→ BR[≤i]�. For any dR with |dR| ≤ i − 1 and any x ∈ Y,
we have

SBc
R↪→BR

x,d = {dR([u1]1) ⊕ dR([u2]2) ⊕ dR([u′
2]2) | dR([u1]1) �= ⊥,

dR([u2]2) �= ⊥, dR([u′
2]2) �= ⊥} .

There are at most �(i − 1)/4�3 choices for the triple (u2, u
′
1, u

′
2), so |SBc

R↪→BR

x,d | ≤
�(i − 1)/4�3 ≤ q3, and from there using Lemma 1 we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 1 : 0 ≤ k ≤ q − 1}. (27)

By the same arguments we can also show that

�Bc
I[≤i−1] ↪→ BI[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 1 : 0 ≤ k ≤ q − 1}. (28)

Action of f2: Next we look at the transition capacity �Bc
R[≤i−1] ↪→ BR[≤i]� for

i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any x ∈ Y,
we have

SBc
R↪→BR

x,d = {dR([u1]1) ⊕ dR([u′
1]1) ⊕ dR([u′

2]2) | dR([u1]1) �= ⊥, dR([u′
1]1) �= ⊥,

dR([u′
2]2) �= ⊥} ∪ {dR([u3]3) ⊕ dR([u′

3]3) ⊕ dR([u′
2]2) |

dR([u3]3) �= ⊥, dR([u′
3]3) �= ⊥, dR([u′

2]2) �= ⊥} .

Again, there are at most �(i−1)/4�3 choices for each of the triples (u2, u
′
1, u

′
2)

and (u3, u
′
2, u

′
3), and arguing as before we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

20q3

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (29)
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By the same arguments we can also show that

�Bc
I[≤i−1] ↪→ BI[≤i]� ≤

√

20q3

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (30)

Action of f3 (resp. F3): Next we look at the transition capacity �Bc
R[≤i−1] ↪→

BR[≤i]� for i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any
x ∈ Y, we have

SBc
R↪→BR

x,d = {dR([u2]2) ⊕ dR([u′
2]2) ⊕ dR([u′

3]3) | dR([u2]2) �= ⊥,

dR([u′
2]2) �= ⊥, dR([u′

3]3) �= ⊥} .

Again, there are at most �(i−1)/4�3 choices for the pair (u2, u
′
2, u

′
3), and arguing

as before we have

�Bc
R[≤i−1] ↪→ BR[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (31)

By the same arguments we can also show that

�Bc
I[≤i−1] ↪→ BI[≤i]� ≤

√

10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (32)

Action of f4(resp. F4): Finally, for i ∈ {4k : 1 ≤ k ≤ q}, for any dR with
|dR| ≤ i − 1 (resp. any dI with |dI| ≤ i − 1) and any x ∈ Y, since the property
BR (resp. BI) does not depend on dR([x]4) (resp. dI(101‖x1‖x2‖x)), we have
SBc

R↪→BR

x,d = ∅ (resp. SBc
I ↪→BI

x,d = ∅). Thus,

�Bc
R[≤i−1] ↪→ BR[≤i]� = 0, ∀ i ∈ {4k : 0 ≤ k ≤ q − 1}, (33)

and also,

�Bc
I[≤i−1] ↪→ BI[≤i]� = 0, ∀ i ∈ {4k : 0 ≤ k ≤ q − 1}. (34)

Summing over the 4q actions using (27)–(34) gives
⎧

⎩⊥ 4q� BR

⎫

⎭≤ (2 +
√

2)

√

10q5

2n
,

⎧

⎩⊥ 4q� BI

⎫

⎭≤ (2 +
√

2)

√

10q5

2n
. (35)

Adding the two inequalities completes the proof of Theorem 3.

6.3 IND-qCPA Security of MistyL

We prove the following IND-qCPA bound for MistyL5.

Theorem 4. Suppose f1, f2, f3, f4, f5 : {0, 1}n → {0, 1}n are five mutually inde-
pendent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q queries, we have

Advqcpa
MistyL5

(A ) = O

(√

q7

2n

)

.

A proof of this theorem is available in the full version of this paper [6].
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7 Conclusion

In this work, we uncover a flaw in the proof of quantum security for the Luby-
Rackoff, TNT, LRWQ and LRQ constructions. While TNT and LRWQ might still
be proven secure (most likely with a degraded bound), the issue in the other
cases seems inherent to the proof techniques that were used. In particular, for
the technique to work, it is critical that bad databases are only described with
information that is actually present in the database. For some constructions,
notably the Luby-Rackoff and LRQ constructions, a part of the input to the
construction will never appear in the database directly which means that it
cannot be used to characterize bad databases. On a positive note, we restore the
security of the 4-round Luby-Rackoff construction in the non-adaptive setting,
and prove the security of the 4-round MistyR and 5-round MistyL constructions.
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Abstract. In this paper, we study the security of MAC constructions
among those classified by Chen et al. in ASIACRYPT ’21. Precisely,
FEDM

B2 (or EWCDM as named by Cogliati and Seurin in CRYPTO ’16),
FEDM

B3 , F SoP
B2 , F SoP

B3 (all as named by Chen et al.) are proved to be fully
secure up to 2n MAC queries in the nonce-respecting setting, improv-
ing the previous bound of 3n

4
-bit security. In particular, F SoP

B2 and F SoP
B3

enjoy graceful degradation as the number of queries with repeated nonces
grows (when the underlying universal hash function satisfies a certain
property called multi-xor-collision resistance). To do this, we develop a
new tool, namely, extended Mirror theory for two independent permu-
tations with a wide range of ξmax including inequalities. We also present
matching attacks on FEDM

B4 and FEDM
B5 using O(23n/4) MAC queries and

O(1) verification query without using repeated nonces.

Keywords: message authentication code · beyond birthday bound
security · Mirror theory

1 Introduction

Beyond Birthday Bound MACs. A message authentication code (MAC) is
a fundamental symmetric primitive allowing two entities sharing a secret key
to verify that a received message originates from one of the two parties and
was not modified by an attacker. Most popular MAC constructions are based
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on block ciphers (e.g., CBC-MAC [2], PMAC [7], and OMAC [20]). At a high
level, well-known block cipher-based MAC constructions such as CBC-MAC and
PMAC follow the UHF-then-PRF design paradigm: a message is first mapped
onto a short string through a universal hash function (UHF) and then encrypted
through a fixed-input-length PRF to obtain a short tag. This method is simple,
deterministic and stateless, yet its security caps at the so-called birthday bound;
any collision at the output of the UHF, which translates into a tag collision, is
usually enough to break the security of the scheme. The birthday bound security
might not be enough, in particular, when the MAC construction is instantiated
with a block cipher such as PRESENT [8], LED [17], and GIFT [1] operating on
small blocks. A small block length, such as 64 bits, of the underlying primitive
can render it a practical attack target when used in modes with birthday-bound
security, as was illustrated by the recent attacks on popular communication
protocols such as TLS [6].

Nonce-based MACs. Authenticated encryption schemes use a nonce (a value
that never repeats) to give diversity to encryption of messages. The tag gener-
ation can be modeled as a nonce-based MAC in this case. Nonce-based MACs
might be designed by a deterministic MAC using the concatenation of a nonce
and a message as an input, or the well-known Wegman-Carter (WC) [29,30]
construction. Many studies have tried to tweak deterministic MACs to obtain
BBB security. They share a similar structural design of doubling the internal
state of the hash function [25,31–33]. Better security bounds can be obtained
for Wegman-Carter style MACs [4,13,29,30]. The WC construction is based on
a universal hash function H and a pseudorandom function (PRF) F , that com-
putes the corresponding tag as

T = HKh
(M)⊕ FK(N)

where K is the key for F , Kh is the key for H, and N and M denote a nonce
and a message, respectively. It enjoys a powerful security bound when nonces are
never repeated. Assuming FK is a uniformly random function, the adversary can
make a forgery with probability at most vε, where v is the number of verification
queries and ε is the collision probability of H. By assuming ε is close to 1

2n , WC is
secure up to O(2n) forgery attempts. This paradigm has been widely employed,
e.g., in the Poly1305-AES [5] and GMAC [24] standards, and studied in depth [4].

Nonce Misuse Resistance. Despite the strong security advantages, the WC
construction suffers from one major shortcoming: it is vulnerable to nonce-
misuse. The construction might be seriously attacked if a nonce is repeated even
once. For example, in the case of polynomial universal hashing, a repeated nonce
can lead to the recovery of the hash key, which allows successful forgeries [18].
It might be challenging to maintain the uniqueness of a nonce in certain envi-
ronments, for example, when a nonce is chosen from a set of low entropy or
when the state of the MAC is reset due to some fault in its implementation. For
this reason, there has been a considerable amount of research on constructing
nonce-based MACs that provide security under nonce misuse.
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1.1 Motivation

EWCDM [13] is based on an n-bit hash function H and an n-bit block cipher E; it
takes as input an n-bit nonce N and a message M , and outputs the corresponding
tag as follows.

EWCDM[H,E](N,M) = EK2(HKh
(M) ⊕ EK1(N) ⊕ N)

for hash key Kh and block cipher keys K1 and K2. By using two block cipher
calls, its security has been proved up to O(22n/3) MAC queries and O(2n) ver-
ification queries. As a variant of EWCDM, Datta et al. [15] proposed to replace
the second block cipher call of EWCDM by block cipher decryption using the
same key; for a nonce N = N∗ ‖ 0n/3 and a message M ,

DWCDM[H,E](N,M) = E−1
K (HKh

(M) ⊕ EK(N) ⊕ N).

DWCDM is also secure up to O(22n/3) MAC queries and O(2n) verification
queries.

Notably, Mennink and Neves [22] proved n-bit PRF security of EWCDM,
but their proof relied on unverifiable Mirror theory. Recently, Datta et al. [14]
proved 3n

4 -bit MAC security of EWCDM and DWCDM using 3n
4 -bit nonces using

verifiable Mirror theory. More precisely, the adversarial advantages against the
PRF security of EWCDM and DWCDM are upper bounded by O(q4/3/2n) and
O(q1/3/2n/4), respectively, in the nonce-respecting setting, while both construc-
tions are secure up to O(2n) verification queries.

Dutta et al. [16] formalized the faulty nonce model for MAC constructions,
where a MAC query is considered faulty if it is queried with a repeated nonce.
They introduced the nonce-based Enhanced Hash-then-Mask (nEHtM) construc-
tion and proved its security up to O(22n/3) MAC queries and O(2n) verification
queries in a nonce-respecting setting. Moreover, nEHtM enjoys graceful security
degradation when nonces are misused. For the number of faulty nonces μ, their
bound on the forging advantage includes μq/2n and μv/2n terms, where q and
v denote the number of MAC queries and the number of verification queries,
respectively. Subsequently, Choi et al. [10] improved this security bound to 3n

4

bits when the number of faulty nonces is below 23n/8, and also proved graceful
security degradation for μ ≤ 2n/2. Recently, Chen et al. [9] classified nonce-based
MAC constructions that use two block cipher calls, one universal hash function
call and an arbitrary number of XOR operations, and analyzed their PRF secu-
rity in the faulty nonce model. Some constructions have been shown to achieve
3n
4 -bit PRF security. However, the tightness of those constructions still remains

open. This line of research raises the following fundamental question:

“Is there a block cipher-based MAC construction using nonces that provides
both full n-bit security and nonce misuse resistance?”

1.2 Our Contribution

To affirmatively answer the question, we selected six candidates of nonce-based
MAC constructions from [9]; EWCDM (denoted as FEDM

B2
in [9], while denoted
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Fig. 1. MAC constructions F SoP
B2 and FEDM

B4 based on a universal hash function H and
a block cipher E.

EWCDM in this paper), FEDM
B3

, F SoP
B2

, F SoP
B3

, FEDM
B4

, and FEDM
B5

. The subscript
is defined in [9] based on where the hash value is added. For a nonce N and a
message M , F SoP

B2
and FEDM

B4
compute the corresponding tags as follows:

F SoP
B2

[H,E](N,M) = EK1(N) ⊕ EK2(N ⊕ HKh
(M)),

FEDM
B4

[H,E](N,M) = EK2(EK1(N ⊕ HKh
(M)) ⊕ N)

where Kh is a hash key and K1 and K2 are block cipher keys (see Fig. 1). We
can also prove the security of the following constructions:

FEDM
B3

[H,E](N,M) = EWCDM[H,E](N,M) ⊕ HKh
(M),

F SoP
B3

[H,E](N,M) = F SoP
B2

[H,E](N,M) ⊕ HKh
(M),

FEDM
B5

[H,E](N,M) = FEDM
B4

[H,E](N,M) ⊕ HKh
(M),

since adding HKh
(M) to the tag does not significantly affect their security proof.

Our contribution is summarized as follows:

1. We prove the tightness of the security bounds for 6 MAC schemes using two
(independent) block cipher calls except FEDMD

B2
from Chen et al. [9]. This

result will be discussed in more detail in the next part of this section.
2. To prove their security, we generalize state-of-the-art Mirror theory for two

independent permutations with equation and inequality systems. To obtain
the result, we first prove the Mirror theory when the distinction condition
between variables is relaxed. Then, we further formalize the extended Mirror
theory by using a new approach: estimates the ratio between the number of
solutions to a system of equations and those with the addition of inequalities.
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Table 1. Security of MAC constructions where μ is the number of faulty nonces and n
is the block size. NR (resp. NM) denotes security in the nonce respecting (resp. misuse)
setting. CR and MCR denote xor-collision resistance and multi-xor-collision resistance,
respectively.

MAC NR NM Tightness Hash assumption References

WC 2n 0 tight CR [30]

EWCDM23n/4 2n/2 - CR [13,14]

FEDM
B3 23n/4 2n/2 - CR [9]

F SoP
B2 23n/4 23n/4 (μ ≤ 2n/4) - CR [9]

F SoP
B3 23n/4 23n/4 (μ ≤ 2n/4) - CR [9]

FEDM
B4 23n/4 23n/4 (μ < 2n/2) tight CR [9], Sect. 6

FEDM
B5 23n/4 23n/4 (μ < 2n/2) tight CR [9], Sect. 6

EWCDM 2n 2n/2 tight CR Sect. 4

FEDM
B3 2n 2n/2 tight CR Sect. 4

F SoP
B2 2n 2n /µ (μ ≤ 2n/2)† tight (NR) MCR Sect. 5

F SoP
B3 2n 2n /µ (μ ≤ 2n/2)† tight (NR) MCR Sect. 5

† In this paper, we proved the security bound for μ ≤ 2n/4, while the same
bound is obtained when 2n/4 ≤ μ ≤ 2n/2 in a similar way to [16].

3. We also prove multi-xor-collision probability of CBC-MAC is negligible: for
any distinct x1, . . . , xk ∈ {0, 1}∗ and distinct y1, . . . , yk ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(x1) ⊕ y1 = · · · = HKh

(xk) ⊕ yk] ≤ ε

for a small ε. This allow us to prove that F SoP
B2

and FEDM
B5

with the internal
hash function instantiated with CBC-MAC achieves n-bit security.

For the tightness of the security bounds, we have the following results (see
also Table 1):

1. We prove n-bit MAC security of EWCDM and FEDM
B3

in the nonce respecting
setting. More precisely, EWCDM and FEDM

B3
are secure up to O(2n) MAC

queries and O(2n) verification queries. It is the first concrete proof of n-bit
MAC security of EWCDM to the best of our knowledge.

2. We prove that F SoP
B2

and F SoP
B3

are secure up to O(2n) MAC queries and
O(2n) verification queries in the nonce respecting setting. In addition, we
show that F SoP

B2
and F SoP

B3
are secure up to O(2n/μ) MAC queries and O(2n)

verification queries when the adversary makes μ faulty queries. Compared to
the previous analysis, it enjoys stronger provable security when μ ≤ O(2n/4).
However, for these constructions, the underlying hash function should have a
multi-xor-collision resistance property. As a concrete example, we show that
CBC-MAC [19] is multi-xor-collision resistant.

3. We present a matching universal forgery attack on FEDM
B4

and FEDM
B5

using
O(23n/4) MAC queries and O(1) verification query without using repeated
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nonces. Since FEDM
B4

and FEDM
B5

are provably secure up to O(23n/4) queries
when μ < O(2n/2), they achieve tight 3n

4 -bit security within the range of μ.
The core idea of this attack is to find four query-answer tuples (N1,M1, T1),
(N2,M2, T2), (N3,M3, T3), and (N4,M4, T4) satisfying the following condi-
tions:

N1 ⊕ HKh
(M1) = N2 ⊕ HKh

(M2),
T2 = T3,

N3 ⊕ HKh
(M3) = N4 ⊕ HKh

(M4),
T1 = T4,

N1 ⊕ N2 ⊕ N3 ⊕ N4 = 0.

By repeating a nonce O(2n/2) times, one can find such pairs with high prob-
ability. On the other hand, in the nonce-respecting setting, one can choose a
well-structured set of nonces. From such pairs, a forgery is made with high
probability.

As a proof strategy, we first extend a two-permutation version of Mirror the-
ory to a wider range of ξmax, and then give a generic extension of Mirror theory
for equation systems and Mirror theory for equation and inequality systems.

The main tool of our security proof is Mirror theory, which systemati-
cally estimates the number of solutions to a system of equations of the form
Xi ⊕ Xj = λi,j such that X1, . . . , Xq are pairwise distinct. Recently, Cogliati et
al. [12] presented the complete proof of Mirror theory for a wide range of ξmax,
where ξmax denotes the maximum component size when a system of equations
is represented by a graph. However, we cannot directly apply their result to our
problem; since our target constructions are based on two independent permuta-
tions, all variables are not necessarily pairwise distinct. To address this case, we
divide the set of variables V into V1 and V2 where V = V1�V2. Then, we estimate
the number of solutions to a system of equations such that only the variables in
V1 (or V2) are pairwise distinct. By letting V1 = V and V2 = ∅, one can recover
the Mirror theory for a single permutation. Even with n-bit Mirror theory for
independent permutations, the security proof is not immediate. It is not trivial
to prove MAC security (also called “unforgeability”) from regular Mirror theory.
We propose a generic method for deriving extended Mirror theory from a regular
Mirror theory. With our modular approach, we can apply regular Mirror theory
to the extended Mirror theory, which is much simpler than proving the extended
Mirror theory directly.

When it comes to F SoP
B2

and F SoP
B3

, the underlying hash function is required to
satisfy the multi-xor-collision resistance property. We prove multi-xor-collision
resistance of CBC-MAC which is one of ISO standards using the well-known
structure graph technique [3,21,28]. We believe other MACs of ISO/IEC 9797-1
can be proved similarly since they have the same iteration algorithm.
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2 Preliminaries

Notation. Throughout this paper, we fix positive integers n to denote the
block size. We denote 0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n

is sometimes regarded as a set of integers {0, 1, . . . , 2n − 1} by converting an
n-bit string an−1 . . . a1a0 ∈ {0, 1}n to an integer an−12n−1 + · · · + a12 + a0. We
also identify {0, 1}n with a finite field GF(2n) with 2n elements. For a positive
integer q, we write [q] = {1, . . . , q}.

Given a non-empty finite set X , x ←$ X denotes that x is chosen uniformly
at random from X . |X | means the number of elements in X . The set of all
permutations of {0, 1}n is simply denoted Perm(n). For some positive integer
m, the set of all functions with domain {0, 1}n and codomain {0, 1}m is simply
denoted by Func(n,m). For a keyed function F : K × X → Y with key space K
and non-empty sets X and Y, we will denote F (K, ·) by FK(·) for K ∈ K. The
set of all sequences that consist of b pairwise distinct elements of X is denoted
X ∗b. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1) and
(a)0 = 1 by convention. If |X | = a, then (a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X �Y.

Hash Function. Let Kh and X be two non-empty finite sets and H : Kh×X →
{0, 1}n be the hash function. Then,

1. H is said to be an ε-almost xor universal (AXU) hash function, if for any
distinct x, x′ ∈ X and y ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(x) ⊕ HKh

(x′) = y] ≤ ε.

2. H is said to be an (k, ε)-almost xor universal (AXU) hash function, if for any
distinct x1, . . . , xk ∈ X and distinct y1, . . . , yk ∈ {0, 1}n,

Pr [Kh ←$ Kh : HKh
(x1) ⊕ y1 = · · · = HKh

(xk) ⊕ yk] ≤ ε.

Block Cipher. Let E : K×{0, 1}n → {0, 1}n be an n-bit block cipher with key
space K. We will consider an information-theoretic distinguisher A that makes
oracle queries to E, and returns a single bit. The advantage of A in breaking the
prp security of E is defined as

Advprp
E (A) =

∣
∣Pr

[

K ←$ K : AEK = 1
]

− Pr
[

P ←$ Perm(n) : AP = 1
]∣
∣ .

We define Advprp
E (q, t) as the maximum of Advprp

E (A) over all the distinguish-
ers against E making at most q queries and running in time at most t. When
considering information-theoretic security, we will drop the parameter t.

Nonce-based Pseudorandom Function. Let F : K × N × {0, 1}∗ → {0, 1}n

be a nonce-based keyed function with key space K and nonce space N . We will
consider an information-theoretic distinguisher A that makes oracle queries to
F , and returns a single bit. The advantage of A in breaking the prf security of
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F , i.e., in distinguishing FK where K ←$ K from the random oracle Rand, is
defined as

Advprf
F (A) =

∣
∣Pr

[

K ←$ K : AFK = 1
]

− Pr
[

ARand = 1
]∣
∣ .

We define Advprf
F (μ, q, t) as the maximum of Advprf

F (A) over all the distinguish-
ers against F making at most q queries, at most μ faulty queries and running in
time at most t. We also denote Advprf

F (q, t) for Advprf
F (0, q, t). When we consider

information theoretic security, we will drop the parameter t.

Nonce-based MACs. Given four non-empty sets K, N , M, and T , a nonce-
based keyed function with key space K, nonce space N , message space M and
tag space T is simply a function F : K × N × M → T . Stated otherwise, it
is a keyed function whose domain is a cartesian product N × M. We denote
FK(N,M) for F (K,N,M).

For K ∈ K, let AuthK be the MAC oracle which takes as input a pair
(N,M) ∈ N ×M and returns FK(N,M), and let VerK be the verification oracle
which takes as input a triple (N,M, T ) ∈ N × M × T and returns 1 (“accept”)
if FK(N,M) = T , and 0 (“reject”) otherwise. We assume an adversary queries
the two oracles AuthK and VerK for a secret key K ∈ K.

A (μ, q, v, t)-adversary against the nonce-based MAC-security of F is an
adversary A with oracle access to oracles AuthK and VerK , making at most
q MAC queries to Auth oracle, at most μ faulty queries, at most v verification
queries to Ver oracle, and running in time at most t. We say that A forges if any
of its queries to VerK returns 1. The advantage of A against the nonce-based
MAC security of F is defined as

Advmac
F (A) = Pr

[

K ←$ K : AAuthK ,VerK forges
]

.

where the probability is also taken over the random coins of A, if any. A is not
allowed to ask a verification query (N,M, T ) to VerK if a previous query (N,M)
to AuthK returned T . When μ = 0, we say that A is nonce-respecting, otherwise,
A is said nonce-misusing. However, the adversary is allowed to repeat nonces in
its verification queries.

We define Advmac
F (μ, q, v, t) as the maximum of Advmac

F (A) over all
(μ, q, v, t)-adversaries. We also define Advmac

F (q, v, t) as the maximum of
Advmac

F (A) over all (0, q, v, t)-adversaries. When we consider information-
theoretic security, we will drop the parameter t.

We obtain an upper bound for the forging advantage of F in terms of dis-
tinguishing advantage, where the ideal world is comprised of a random oracle
Rand and the reject oracle Rej that always returns 0 for any verification query.
For any (μ, q, v, t)-adversary A, Advmac

F (A) is upper bounded by

max
A

∣
∣Pr

[

K ←$ K : AAuthK ,VerK = 1
]

− Pr
[

ARand,Rej = 1
]∣
∣ .

2.1 Coefficient-H Technique

We will use Patarin’s coefficient-H technique. The goal of this technique is to
upper bound the adversarial distinguishing advantage between a real construc-
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tion and its ideal counterpart. In the ideal and the real worlds, an information-
theoretic adversary A is allowed to make q queries to certain oracles (with the
same oracle interfaces), denoted S0 and S1, respectively. The interaction between
the adversary A and the oracle determines a “transcript” τ ∈ Ωq; it contains
all the information obtained by A during the interaction. We call a transcript τ
attainable if the probability of obtaining τ in the ideal world is non-zero.

We partition the set of attainable transcripts Θ into a set of “good” tran-
scripts Θgood such that the probabilities of obtaining some transcript τ ∈ Θgood

are close in the real world and the ideal world, and a set Θbad of “bad” tran-
scripts such that the probability of obtaining any τ ∈ Θbad is small in the ideal
world. The coefficient-H technique is summarized in the following lemma.

Lemma 1. Let Θ = Θgood � Θbad be a partition of the set of attainable tran-
scripts, where there exists a non-negative ε1 such that for any τ ∈ Θgood,

pq
S1

(τ)
pq

S0
(τ)

≥ 1 − ε1,

and there exists ε2 such that
∑

τ∈Θbad
pq

S0
(τ) ≤ ε2. Then,

∑

τ∈Θ

max
{

0, pq
S0

(τ) − pq
S1

(τ)
}

≤ ε1 + ε2.

Proof. We have
∑

τ∈Θ

max
{
0, pq

S0
(τ) − pq

S1
(τ)

}
=

∑

τ∈Θ
p
q
S0

(τ)>p
q
S1

(τ)

(
pq

S0
(τ) − pq

S1
(τ)

)

=
∑

τ∈Θ
p
q
S0

(τ)>p
q
S1

(τ)

pq
S0

(τ)

(
1 − pq

S1
(τ)

pq
S0

(τ)

)

≤
∑

τ∈Θgood

pq
S0

(τ)ε1 +
∑

τ∈Θbad

pq
S0

(τ)

≤ ε1 + ε2. ��

3 Mirror Theory

Patarin’s Mirror theory [26,27] has been a valuable tool for proving PRF security
and MAC security. However, the original proof provided by Patarin is complex
and hard to verify, containing several gaps. Recently, Cogliati et al. [12] presented
the complete proof of Mirror theory for a wide range of ξmax. Nevertheless, there
are limitations when it comes to proving the security of our target MACs using
the Mirror theory in [12]. This is because the Mirror theory focuses on a single
permutation. To address this limitation, we refine the Mirror theory to cover
constructions based on two independent permutations, allowing us to analyze
the security of two permutation-based constructions. Additionally, we need to
extend the Mirror theory to include inequalities for MAC security. This extended
version is known as “Extended Mirror theory”.
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3.1 Extended Mirror Theory for Two Independent Permutations

The goal of this section is to compute a lower bound of the number of solutions
to a certain type of system of equations and inequalities.

We consider a system of equations and inequalities γ = (γ=, γ �=), which is
divided into a system of equations γ= and a system of inequalities γ �=. A set
of variables V is partitioned into V1 � V2. Intuitively, variables in V1 come from
one permutation and ones in V2 are results of the other permutation. In this
section, we assume that they are arbitrarily partitioned. So, the variables in V1

(or V2) should be distinct. We use the notion X ∼ Y to indicate that X and Y
belong to the same subset meaning that X and Y are distinct elements within
that subset. Additionally, we impose the following constraint on γ: If X ∼ Y ,
then X 
= Y .

Fix a positive integer c. For 1 ≤ i ≤ c and a positive integer ξi > 1, the
system of equations as γ= is represented as:

γ= :

⎧

⎪⎪⎨

⎪⎪⎩

X1,0 ⊕ X1,1 = λ1,1, . . . , X1,0 ⊕ X1,ξ1−1 = λ1,ξ1−1,
...

Xc,0 ⊕ Xc,1 = λc,1, . . . , Xc,0 ⊕ Xc,ξc−1 = λc,ξc−1

where λα,i ∈ {0, 1}n for 1 ≤ α ≤ c and 0 ≤ i ≤ ξα − 1. The set of variables
on γ= is denoted as V= and we define V=

1 =def V= ∩ V1 and V=
2 =def V= ∩ V2.

We also define V �= =def V \ V=, V �=
1 =def V �= ∩ V1 and V �=

2 =def V �= ∩ V2. The
set of variables V= consists of c components, and for i ∈ [c], the i-th component
takes form of {Xi,0, . . . , Xi,ξi−1}. The largest number of components is denoted
as ξmax, where ξmax = maxi∈[c] {ξi}.

We separately establish a system of inequalities with γ=. For a non-negative
integer v, we denote

γ �= :

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X ′
1 ⊕ X ′

2 
= λ′
1,

X ′
3 ⊕ X ′

4 
= λ′
2,

...
X ′

2v−1 ⊕X ′
2v 
= λ′

v

where λ′
i ∈ {0, 1}n for 1 ≤ i ≤ v. Note that a variable that appears in both

systems of equations and inequalities can be represented by a single symbol.
However, to clearly distinguish between the system of equations and the system
of inequalities, we use separate symbols for those in γ= and those in γ �=. The
equivalence between variables is indicated using the relation ∼eq. Specifically,
for some i, X ′

i can be identified as an element of V= or another element of V �=.
This identification is publicly known and can be denoted as a relation ∼eq, i.e.,
X ′

i ∼eq Xj,k ⇔ X ′
i = Xj,k and X ′

i ∼eq X ′
j ⇔ X ′

i = X ′
j .

In this section, we express the system of equations and inequalities with
relation ∼ and ∼eq; denoted as Γ =def (γ=, γ �=,∼,∼eq). h(Γ ) denotes the number
of solutions to γ subject to the above constraints.
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In this work, we focus on a system Γ for which at least one solution exists.
To ensure a solution, the system must satisfy the non-degeneracy properties
outlined below:

1. λα,i 
= 0 for all α ∈ [c] and i ∈ [ξα − 1] such that Xα,0 ∼ Xα,i.
2. λα,i 
= λα,j for all α ∈ [c] and distinct i, j ∈ [ξα − 1] such that Xα,i ∼ Xα,j .
3. There is no (α, β, i, j) such that γ= contains Xα,i ⊕Xα,j = λ′

β and γ �= con-
tains Xα,i ⊕ Xα,j 
= λ′

β .

We refer to any system Γ satisfying the above properties as a nice system. The
following theorem provides a lower bound of h(Γ ) for a nice system Γ .

Theorem 1. Let Γ be a nice system over {0, 1}n such that the number of equa-
tions is q and the number of inequalities is v. Suppose the number of variables
in the largest component of γ= is ξmax. If ξ2maxn + ξmax ≤ 2n/2, qξ2max ≤ 2n

12 and
q + v ≤ 2n−1, one has

h(Γ ) ≥ (2n − 2)|V1|(2
n − 2)|V2|

2nq

(
1 − 2v

2n

)
.

The proof of Theorem 1 is involved, so to enhance clarity, we begin by focusing
on a subset of Γ that contains only the equations, as outlined in Sect. 3.2. Sub-
sequently, we extend the theorem to include inequalities, which will be discussed
in Sect. 3.3.

3.2 Mirror Theory with Equations

Set Representation. We start by establishing a fixed system Γ . Additionally, we
define a new partition of V as V = C1 � · · · � Cc, with each Ci being a set of
variables defined as Ci = {Xi,0, . . . , Xi,ξi−1}. Let F = {C1, . . . , Cc} represent a
family of the sets Ci. In this context, we introduce a label function denoted as
Λ : V ×V → {0, 1}n ∪{⊥} defined as follows: when both Xi,j and Xi,k are within
the same set Ci, Λ(Xi,j ,Xi,k) returns λi,j ⊕ λi,k by letting λi,0 = 0. Otherwise,
it returns ⊥. In this section, we fix F and Λ.

Now, for any family of sets G = {A1, . . . , Aa} where Ai is a subset of V, and
a given label function L, we define the terminologies used in our proof:

– N(G) represents the total number of variables in G, i.e., N(G) =
∑

1≤i≤|G| |Ai|.
– N1(G) and N2(G) denote the number of variables of G contained in V1 and

V2, respectively. In other words,

N1(G) =
∑

1≤i≤|G|
|Ai ∩ V1| ,

N2(G) =
∑

1≤i≤|G|
|Ai ∩ V2| .

– For a variable v ∈ V,

Nv(G) =

{
N1(G) if v ∈ V1,

N2(G) if v ∈ V2.
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– We denote h(G,L) as the number of assignments to G according to the label
function L while all the variables in V1 (resp. V2) should take on different
values. Specifically, h(F , Λ) is equivalent to h(Γ ).

– M(G) is the maximum number of components within the family, i.e., M(G) =
max1≤i≤|G| {|Ai|}.

We first estimate the number of solutions for a system of equations. Let
Γ= be a system of equations γ= with relation ∼ and h(Γ=) be the number of
solutions to Γ=. We can prove the following theorem.

Theorem 2. Let Γ= be a nice system over {0, 1}n such that the number of
equations is q. Suppose the number of variables in the largest component of Γ=

is ξmax. If ξ2maxn + ξmax ≤ 2n/2 and qξ2max ≤ 2n

12 , one has

h(Γ=) ≥
(2n − 2)|V=

1 |(2
n − 2)|V=

2 |
2nq

.

Proof. Let G be a sub-family of F . For any set S ∈ G, we claim that

h(G, Λ)≥2nh(G \ {S} , Λ)
N1(G)
∏

i=N1(G\{S})+1

(

1 − i + 1
2n

) N2(G)
∏

i=N2(G\{S})+1

(

1 − i + 1
2n

)

.

If |S| = 1, it means S contains only one element, say v, i.e., S = {v}. The claim
is obvious since

h(G, Λ) = h(G \ {S} , Λ) × (2n − Nv(G) + 1). (1)

Next, suppose |S| ≥ 2. We first consider the case that N(G) ≤ 2
n
2 . We have

h(G, Λ) ≥ h(G \ {S} , Λ) × (2n − N1(S) × N1(G \ {S}) − N2(S) × N2(G \ {S})).

In order to prove the claim, it is enough to show that

1 − N1(S) × N1(G \ {S})
2n

− N2(S) × N2(G \ {S})
2n

≥
N1(G)
∏

i=N1(G\{S})+1

(

1 − i + 1
2n

) N2(G)
∏

i=N2(G\{S})+1

(

1 − i + 1
2n

)

. (2)

The above inequality is represented by

1 − ar + bs

2n
≥

(

1 − a + 2
2n

)

. . .

(

1 − a + r + 1
2n

) (

1 − b + 2
2n

)(

1 − b + s + 1
2n

)

.

This can be shown by induction on r and s. For r = 1 and s = 1, the inequality
holds since

(

1 − a + 2
2n

)(

1 − b + 2
2n

)

≤ 1 − a + b

2n
− 4

2n

(

1 − (a + 2)(b + 2)
2n+2

)

≤ 1 − a + b

2n
.
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The last inequality holds since a, b ≤ 2
n
2 and n ≥ 2. If r ≥ s we obtain

(

1 − a(r − 1) + bs

2n

)(

1 − a + r + 1
2n

)

≤ 1 − ar + bs

2n
− r + 1

2n
+

(a(r − 1) + bs)(a + r + 1)
22n

≤ 1 − ar + bs

2n
− r + 1

2n

(

1 − (a + b)(a + r + 1)
2n

)

≤ 1 − ar + bs

2n

since a + b ≤ 2n/2 and a + r + 1 ≤ 2n/2. If r < s, similarly, we have
(

1 − ar + b(s − 1)
2n

)(

1 − b + s + 1
2n

)

≤ 1 − ar + bs

2n
.

By applying induction hypothesis for r and s, the Eq. (2) holds.
For an element v ∈ S ∈ G, we denote G−v as a family of partitions deleting

v, i.e., G−v = (G \ {S}) ∪ {S \ {v}}. We state the following lemma.
Given a set S ∈ G, v, w ∈ S and a label function L, we define δS,L(v, w) as the

number of 2-subsets {a, b} of S such that a ∼ v and b ∼ w with L(a, b) = L(v, w).
We define

δG,L(v, w)
def=

∑

S∈G
δS,L(v, w), ΔG,L

def= max
S∈G

max
(v,w)∈S∗2

δG,L(v, w).

Then, we estimate the lower bound of h(G, Λ).

Lemma 2. Suppose the maximum ΔG,Λ is attained for v, v′ ∈ S ∈ G. If 2
n
2 ≤

N(G) ≤ 2n

12ξ2
max

, we have

h(G, Λ) ≥ h(G−v, Λ)
(

1 − Nv(G) + 1
2n

)

The proof of Lemma 2 is deferred to the full version of this paper [11].
When 2

n
2 ≤ N(G) ≤ 2n

12ξ2
max

, the claim holds by Lemma 2. By iterating the
inequality, we conclude that

h(F , Λ) ≥ (2n)c

|V1|
∏

i=1

(

1 − i + 1
2n

) |V2|
∏

i=1

(

1 − i + 1
2n

)

≥
(2n − 2)|V1|(2n − 2)|V2|

2nq
.

��

3.3 Generalization of Extended Mirror Theory

Mirror theory is later generalized to extended Mirror theory [15,16], by including
inequalities in the system. The extended Mirror theory systematically estimates
the number of solutions to a system of equations and inequalities. On the other
hand, the goal of this section is slightly different: we will estimate the ratio
between two quantities:
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1. The number of solutions to a system of equations.
2. The number of solutions to a system of equations and inequalities.

This approach separates the counting of inequalities from (equations-only) Mir-
ror theory, eliminating the need for developing the Extended Mirror theory each
time whenever there is an improvement of Mirror theory.

When a given system Γ is nice, we can compute a lower bound on the ratio

h(Γ )
h(Γ=)

as follows.

Lemma 3. Let Γ be a nice system over {0, 1}n such that the number of equa-
tions is q and the number of inequalities is v. If q + v ≤ 2n−1, one has

h(Γ )
h(Γ=)(2n − |V=

1 |)|V �=
1 |(2n − |V=

2 |)|V �=
2 |

≥ 1 − 2v

2n
.

Proof (of Lemma 3). Let Γ0 = Γ= and Γi = Γi−1 � {X ′
2i−1 ⊕X ′

2i 
= λ′
i} for

i ∈ [v]. We additionally define Γ ′
i = Γi−1 � {X ′

2i−1 ⊕ X ′
2i = λ′

i} for i ∈ [v]. Then,
we have

h(Γi+1) = h(Γi) − h(Γ ′
i+1). (3)

If both X ′
2i−1 and X ′

2i are in V=, then Γ ′
i+1 contradicts, i.e., h(Γ ′

i+1) = 0 since
Γi+1 is nice. Thus, h(Γi+1) = h(Γi).

Now, we suppose that X ′
2i−1 or X ′

2i is not in V=. The number of pos-
sible assignments of distinct values outside V= to the variables in V �= is
(2n −|V=

1 |)|V �=
1 |(2

n −|V=
2 |)|V �=

2 |. Among these assignments, it violates the inequal-
ity conditions when X ′

2i−1 ⊕ X ′
2i = λ′

i for each i ∈ [v]. These assignments are
at most

A
def= max

{

(2n− |V=
1 |)|V �=

1 |−1(2
n− |V=

2 |)|V �=
2 |, (2

n− |V=
1 |)|V �=

1 |(2
n− |V=

2 |)|V �=
2 |−1

}

.

Therefore, we have

h(Γ )
h(Γ=)

≥ (2n − |V=
1 |)|V �=

1 |(2
n − |V=

2 |)|V �=
2 | − vA

which means

h(Γ )
h(Γ=)(2n − |V=

1 |)|V �=
1 |(2n − |V=

2 |)|V �=
2 |

≥ 1 − 2v

2n
.

It concludes the proof. ��
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By combining Theorem 2 and Lemma 3, Theorem 1 can be proved as

h(Γ ) ≥ h(Γ=)(2n − |V=
1 |)|V �=

1 |(2
n − |V=

2 |)|V �=
2 |

(

1 − 2v

2n

)

≥
(2n − 2)|V=

1 |(2
n − 2)|V=

2 |
2nq

· (2n − |V=
1 |)|V �=

1 |(2
n − |V=

2 |)|V �=
2 |

(

1 − 2v

2n

)

≥
(2n − 2)|V1|(2n − 2)|V2|

2nq

(

1 − 2v

2n

)

.

4 Security of EWCDM and FEDM
B3

In this section, we consider EWCDM[H,E] and FEDM
B3

[H,E] based on an n-bit
ε-AXU hash function H and an n-bit block cipher E. For given n-bit nonce N
and a message M , the user receives a tag as

EWCDM[H,E](N,M) = EK2(HKh
(M) ⊕ EK1(N) ⊕ N)

and

FEDM
B3

[H,E](N,M) = EK2(HKh
(M) ⊕ EK1(N) ⊕ N) ⊕ HKh

(M)

by a hash key Kh and block cipher keys K1 and K2. The goal of this section is
to prove the security of EWCDM[H,E] and FEDM

B3
[H,E]. As a result, we have

the following theorem.

Theorem 3. Let n ≥ 30, ε > 0, H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU
hash function, and E : K × {0, 1}n → {0, 1}n be a block cipher. Let q, v, t be
nonnegative integers such that q + v ≤ 2n−1. Then, one has

Advmac
EWCDM[H,E](q, v, t) ≤ 6q

2n
+

q2ε

2n
+

6v

2n
+ vε + 2Advprp

E (q + v, t + t′).

where t′ is the time complexity necessary to compute E for q + v times.

Since adding HKh
(M) to the tag does not make any significant difference, the

MAC security of FEDM
B3

follows immediately.

Corollary 1. Let n ≥ 30, ε > 0, H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU
hash function, and E : K × {0, 1}n → {0, 1}n be a block cipher. Let q, v, t be
nonnegative integers such that q + v ≤ 2n−1. Then, one has

Advmac
FEDM

B3
[H,E](q, v, t) ≤ 6q

2n
+

q2ε

2n
+

6v

2n
+ vε + 2Advprp

E (q + v, t + t′).

where t′ is the time complexity necessary to compute E for q + v times.
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4.1 Proof of Theorem 3

We assume that the adversary is deterministic and never repeats a prior query.
Assume further that the adversary never makes a redundant query. Up to the
prp-security of E, keyed block ciphers EK1 and EK2 can be replaced by truly
random permutations P1 and P−1

2 , respectively. The cost of this replacement is
upper bounded by

2Advprp
E (q + v, t + t′).

The resulting construction denotes EWCDM∗[H].
At the end of the interaction between an adversary and the oracle, additional

information is freely given to an adversary, and a transcript is defined as a pair of
query-answer pairs and additional information Kh. In the real world, Kh is the
hash key used in EWCDM. In the ideal world, Kh is uniformly randomly chosen
after the end of the interaction between an adversary and the oracle. Without
loss of generality, we rearrange query indices so that verification queries come
after MAC queries. Let Θ be the set of all attainable transcripts in the ideal
world and τ = (τm, τv,Kh) ∈ Θ be a transcript where τm and τv denote the list
of MAC queries and the list of verification queries, i.e.,

τm = {(N1,M1, T1), . . . , (Nq,Mq, Tq)},

τv = {(Nq+1,Mq+1, Tq+1, bq+1), . . . , (Nq+v,Mq+v, Tq+v, bq+v)}.

From a transcript τ , A can compute Xi = HKh
(Mi) ⊕ Ni for i ∈ [q + v] before

outputting its decision bit.
This proof utilizes the extended Mirror theory stated in Theorem 1 and the

coefficient-H technique stated in Lemma 1. The core of the security proof is
to estimate the number of possible ways of fixing evaluations P1 and P2 in a
way that

Xi = P1(Ni) ⊕ P2(Ti)

for i = 1, . . . , q and

Xi 
= P1(Ni) ⊕ P2(Ti)

for i = q+1, . . . , q+v. We will identify V1 = {P1(Ni)} and V2 = {P2(Ti)} with as
sets of variables. We also define V = V1 � V2. Then we can construct the system
of equations Γτ as defined in Sect. 3. To satisfy the conditions in Theorem 1,
we must first define bad events on a transcript τ , and then we can apply the
extended Mirror theory to each transcript that the bad event does not happen.

Defining and Bounding Bad Events. A transcript τ = (τm, τv,Kh) is defined as
bad if one of the following condition holds.

– bad1 ⇔ there exists (i1, . . . , in) ∈ [q]∗n such that Ti1 = · · · = Tin .
– bad2 ⇔ there exists (i, j) ∈ [q]∗2 such that Ti = Tj and Xi = Xj .
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– bad3 ⇔ there exists (i, j) ∈ [q] × [q + 1, q + v] such that Ni = Nj , Ti =
Tj , and Xi = Xj .

If a transcript τ is not bad, then it will be called a good transcript. The proba-
bility that the bad event occurs is obtained as follows:

– Since the tag is random in the ideal world, we have

Pr [bad1] =

(
q
n

)

(2n)n−1
≤

(
2q

2n

)n

≤ 2q

2n

since q ≤ 2n−1 and Pr [bad2] ≤ q2ε
2n .

– For each j ∈ [q + 1, q + v], there is at most one i ∈ [q] such that Ni = Nj . For
such pair (i, j), one has Pr [Xi = Xj ] ≤ ε. Therefore, we have

Pr [bad3] ≤ vε.

Therefore, we have

Pr [bad] ≤ Pr [bad1] + Pr [bad2] + Pr [bad3] ≤ 2q

2n
+

q2ε

2n
+ vε. (4)

Good Transcript Analysis. For a good transcript τ and its system Γτ , by assum-
ing nonces are not repeated, we observe that

– Γτ is nice by ¬(bad2 ∨ bad3);
– ξmax ≤ n + 1 and ξ2maxn + ξmax ≤ n(n + 1)2 + n + 1 ≤ 2n/2 since n ≥ 30 by

¬bad1.
Henceforth, we can apply Theorem 1 and then we have

h(Γτ ) ≥
(2n − 2)|V1|(2n − 2)|V2|

2nq

(

1 − 2v

2n

)

.

Furthermore, we see that

pq+v
S0

(τ) =
1

|Kh| · 1
2nq

, pq+v
S1

(τ) =
1

|Kh| · h(Γτ )
(2n)|V1|(2n)|V2|

.

From the above, one has

pq+v
S1

(τ)

pq+v
S0

(τ)
=

h(Γτ )2nq

(2n)|V1|(2n)|V2|

≥
(2n − 2)|V1|(2n − 2)|V2|

(2n)|V1|(2n)|V2|

(

1 − 2v

2n

)

=
(2n − |V1|)2(2n − |V2|)2

(2n)2(2n)2

(

1 − 2v

2n

)

≥
(

1 − q + v

2n

)4 (

1 − 2v

2n

)

≥ 1 − 4q

2n
− 6v

2n
(5)

since |V1| , |V2| ≤ q + v.
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Plugging (4) and (5) to Lemma 1, we conclude that

∥
∥pq+v

S0
(·) − pq+v

S1
(·)

∥
∥ ≤ 6q

2n
+

q2ε

2n
+

6v

2n
+ vε.

5 Security of F SoP
B2

and F SoP
B3

In this section, we consider F SoP
B2

[H,E] and F SoP
B3

[H,E] based on an n-bit (n, εn)-
AXU hash function H and an n-bit block cipher E. For given n-bit nonce N
and a message M , the user receives a tag as

EK1(N) ⊕ EK2(HKh
(M) ⊕ N)

for F SoP
B2

[H,E], and

EK1(N) ⊕ EK2(HKh
(M) ⊕ N) ⊕ HKh

(M)

for F SoP
B3

[H,E] by a hash key Kh and block cipher keys K1 and K2. This section
aims to prove the security of F SoP

B2
[H,E] and F SoP

B3
. As a result, we have the

following theorem and corollary.

Theorem 4. Let ε > 0 and n ≥ 32. Let H : Kh×{0, 1}∗ → {0, 1}n be an ε-AXU
hash function and (n, εn)-AXU hash function, and E : K × {0, 1}n → {0, 1}n

be a block cipher. Let μ, q, v, t be nonnegative integers such that nμ ≤ 2n/4,
12(μ + n + 2)2q ≤ 2n and q + v ≤ 2n−1. Then, one has

Advmac
F SoP

B2
[H,E](μ, q, v, t) ≤

(
q

n

)

εn + 2μqε + μ2ε +
μ2

2n
+

q2ε

2n
+

4q

2n
+ vε +

6v

2n

+ 2Advprp
E (q + v, t + t′)

where t′ is the time complexity necessary to compute E for q + v times.

Since adding HKh
(M) to the tag does not make any significant difference, the

MAC security of F SoP
B3

follows immediately.

Corollary 2. Let ε > 0 and n ≥ 32. Let H : Kh×{0, 1}∗ → {0, 1}n be an ε-AXU
hash function and (n, εn)-AXU hash function, and E : K × {0, 1}n → {0, 1}n

be a block cipher. Let μ, q, v, t be nonnegative integers such that nμ ≤ 2n/4,
12(μ + n + 2)2q ≤ 2n and q + v ≤ 2n−1. Then, one has

Advmac
F SoP

B3
[H,E](μ, q, v, t) ≤

(
q

n

)

εn + 2μqε + μ2ε +
μ2

2n
+

q2ε

2n
+

4q

2n
+ vε +

6v

2n

+ 2Advprp
E (q + v, t + t′)

where t′ is the time complexity necessary to compute E for q + v times.
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We claim that CBC-MAC is a multi-xor-collision resistant hash function. More
specifically, for any distinct M1, . . . ,Mn ∈ ({0, 1}n)∗ and distinct Y1, . . . , Yn ∈
{0, 1}n, the following holds:

Pr[π ←$ Perm(n) : CBC-MAC[π](X1) ⊕ Y1 = · · · = CBC-MAC[π](X1) ⊕ Y1]

≤ 1
(2n − n(� + 1))n−1

+
(

(n� + 1)2

2n

)n

when n(�+1) ≤ 2n−1. At the last of this section, we prove the claim in Lemma 4.
When the underlying hash function is instantiated with CBC-MAC, we have the
following corollary.

Corollary 3. Let ε > 0 and n ≥ 32. Let E : K × {0, 1}n → {0, 1}n be a block
cipher. Let μ, q, v, t be nonnegative integers such that nμ ≤ 2n/4, 12(μ+n+2)2q ≤
2n and q + v ≤ 2n−1. Let n(� + 1) ≤ 2n−1 where � be the maximum block length
of MAC queries. Then, one has

Advmac
F SoP

B2
[CBC-MAC,E](μ, q, v, t) ≤ q(n� + 1)2

2n
+ 2μqε + μ2ε +

μ2

2n
+

q2ε

2n
+

4q

2n
+ vε

+
6v

2n
+ 2Advprp

E (q + v, t + t′)

and

Advmac
F SoP

B3
[CBC-MAC,E](μ, q, v, t) ≤ q(n� + 1)2

2n
+ 2μqε + μ2ε +

μ2

2n
+

q2ε

2n
+

4q

2n
+ vε

+
6v

2n
+ 2Advprp

E (q + v, t + t′)

where t′ is the time complexity necessary to compute E for q + v times.

5.1 Proof of Theorem 4

Similarly to the proof of Theorem 3, we assume that the adversary is determinis-
tic and never makes a redundant query. Up to the prp-security of E, keyed block
ciphers EK1 and EK2 can be replaced by truly random permutations P1 and P2,
respectively. The cost of this replacement is upper bounded by

2Advprp
E (q + v, t + t′).

The resulting construction denotes F SoP
B2

∗[H]. At the end of the interaction, addi-
tional information Kh is freely given to an adversary. Without loss of generality,
we rearrange query indices so that verification queries come after MAC queries.

Let Θ be the set of all attainable transcripts in the ideal world and τ =
(τm, τv,Kh) ∈ Θ be a transcript where τm and τv denote the list of MAC queries
and the list of verification queries, i.e.,

τm = {(N1,M1, T1), . . . , (Nq,Mq, Tq)},

τv = {(Nq+1,Mq+1, Tq+1, bq+1), . . . , (Nq+v,Mq+v, Tq+v, bq+v)}.
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From a transcript τ , A can compute Xi = HKh
(Mi) ⊕ Ni for i ∈ [q + v] before

outputting its decision bit.
The core of the security proof is to estimate the number of possible ways of

fixing evaluations P1 and P2 in a way that

Ti = P1(Ni) ⊕ P2(Xi)

for i = 1, . . . , q and

Ti 
= P1(Ni) ⊕ P2(Xi)

for i = q + 1, . . . , q + v. We will identify V1 = {P1(Ni)} and V2 = {P2(Xi)}
with as sets of variables. We also define V = V1 � V2. Then we can construct
the system of equations Γτ as defined in Sect. 3. To satisfy the conditions in
Theorem 1, we must first define bad events on a transcript τ , and then we can
apply the extended Mirror theory to each transcript that the bad event does not
happen.

Defining and Bounding Bad Events. A transcript τ = (τm, τv,Kh) is defined as
bad if one of the following condition holds.

– bad1 ⇔ there exists (i1, . . . , in) ∈ [q]∗n where Ni1 , . . . Nin are all distinct such
that Xi1 = · · · = Xin .

– bad2 ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nj and Xi = Xj .
– bad3 ⇔ there exists (i, j) ∈ [q]∗2 such that Ni = Nj and Ti = Tj .
– bad4 ⇔ there exists (i, j) ∈ [q]∗2 such that Xi = Xj and Ti = Tj .
– bad5 ⇔ there exists (i, j, k) ∈ [q]∗3 such that Ni = Nj and Xj = Xk.
– bad6 ⇔ there exists (i, j) ∈ [q] × [q + 1, q + v] such that Ni = Nj ,Xi = Xj

and Ti = Tj .

If a transcript τ is not bad, then it will be called a good transcript. Now, we
upper bound the probability happens bad in the ideal world by the following:

1. Since H is (n, εn)-AXU hash function, we have

Pr [bad1] ≤
(

q

n

)

εn.

2. By symmetry, we can assume that i < j, which means that Nj is a faulty
nonce. For each MAC query using a faulty nonce, there are at most μ other
queries using the same nonce. So, the number of pairs (i, j) such that i < j
and Ni = Nj is at most μ2. For each of such pair (i, j), the probability that
Xi = Xj is ε. Therefore, we have

Pr [bad2] ≤ μ2ε.

Similarly, we can show that

Pr [bad3] ≤ μ2

2n
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and

Pr [bad4] ≤ q2ε

2n

3. The number of indices j such that Ni = Nj is at most 2μ. So, the number of
choices of (j, k) is at most 2μq. For each of such pairs, the probability that
Xj = Xk is at most ε. Therefore, we have

Pr [bad5] ≤ 2μqε.

4. Suppose bad3 does not occur. When an adversary makes a verification query
(Nj ,Mj , Tj), there is one MAC query (Ni,Mi, Ti) such that Ni = Nj and
Ti = Tj . For each of such pairs, the probability that Xi = Xj is at most ε.
Therefore, we have

Pr [bad6 | ¬bad3] ≤ vε.

To sum up, we have

Pr [bad]
= Pr [bad1] + Pr [bad2] + Pr [bad3] + Pr [bad4] + Pr [bad5] + Pr [bad6 | ¬bad3]

≤
(

q

n

)

εn + 2μqε + μ2ε +
μ2

2n
+

q2ε

2n
+ vε. (6)

Good Transcript Analysis. For a good transcript τ and its system of equations
Γτ , we observe that

– Γτ is nice by ¬(bad2∨bad3∨bad4∨bad5∨bad6). Since ¬(bad2∨bad5), for any
component {Xi,0, . . . , Xi,ξi−1}, Xi,0 
∼ Xi,j for 1 ≤ j ≤ ξi − 1, which means
the first condition holds. The second and the third conditions are satisfied by
¬(bad3 ∨ bad4) and ¬bad6.

– By ¬(bad1 ∨ bad5), ξmax ≤ max {μ + 1, n + 1}. Therefore, we have

ξ2maxn + ξmax ≤ n(μ + n + 2)2 + μ + n + 2 ≤ 2n/2

since n ≥ 32 and nμ ≤ 2n/4. We also have qξ2max ≤ (μ + n + 2)2q ≤ 2n

12 .

Henceforth, we can apply Theorem 1 and then we have

h(Γτ ) ≥
(2n − 2)|V1|(2n − 2)|V2|

2nq

(

1 − 2v

2n

)

.

Furthermore, we see that

pq+v
S0

(τ) =
1

|Kh| · 1
2nq

, pq+v
S1

(τ) =
1

|Kh| · h(Γτ )
(2n)|V1|(2n)|V2|

.
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From the above, since |V1| , |V2| ≤ q + v, one has

pq+v
S1

(τ)

pq+v
S0

(τ)
=

h(Γτ )2nq

(2n)|V1|(2n)|V2|

≥
(2n − 2)|V1|(2n − 2)|V2|

(2n)|V1|(2n)|V2|

(

1 − 2v

2n

)

=
(2n − |V1|)2(2n − |V2|)2

(2n)2(2n)2

(

1 − 2v

2n

)

≥
(

1 − q + v

2n

)4 (

1 − 2v

2n

)

≥ 1 − 4q

2n
− 6v

2n
. (7)

Plugging (6) and (7) to Lemma 1, we conclude that

∥
∥pq+v

S0
(τ) − pq+v

S1
(τ)

∥
∥ ≤

(
q

n

)

εn + 2μqε + μ2ε +
μ2

2n
+

q2ε

2n
+

4q

2n
+ vε +

6v

2n
.

5.2 Multi-xor-Collision Probability of CBC-MAC

We state an example of a multi-xor-collision resistant hash function. We consider
CBC-MAC[π] based on pseudorandom permutation π. For a permutation π and a
message M = (M [1], . . . , M [m]) ∈ ({0, 1}n)m with m blocks, the tag is given by

CBC-MAC[π](M) = X[m]

where X[i] = π(X[i − 1] ⊕ M [i]) for i ∈ [m] and X[0] = 0. We will show that
CBC-MAC is a

(

n, 2
2(n−1)2

)

-AXU hash function.
We fix n distinct messages M1, . . . ,Mn ∈ ({0, 1}n)∗ and n distinct strings

Y1, . . . , Yn ∈ {0, 1}n throughout this section. We use mi to denote the block
length of Mi and let � = maxi∈[n]{mi}. For simplicity, we assume that the
length of each message is a multiple of n.

We define an n-multi-collision event

Collπ ⇔ CBC-MAC[π](M1) ⊕ Y1 = · · · = CBC-MAC[π](Mn) ⊕ Yn.

Equivalently, the collision event is regarded as

Collπ ⇔ CBC-MAC[π](M1 ‖ Y1) = · · · = CBC-MAC[π](Mn ‖ Yn).

We bound the probability of Collπ by the following lemma:

Lemma 4. With the above notations, suppose that n(� + 1) ≤ 2n−1. Then, we
have

Pr [π ←$ Perm(n) : Collπ] ≤ 1
(2n − n(� + 1))n−1

+
(

(n� + 1)2

2n

)n

.



Toward Full n-bit Security and Nonce Misuse Resistance 273

Proof. Let M = (M1‖Y1, . . . ,Mn‖Yn) and m =
∑n

i=1 mi+n. We first represent
a relation of internal outputs through the computation of CBC-MAC via the
structure graph. The intermediate values will be defined as sequences over a
two-dimensional index set. Each index is a pair where the first element of the
pair corresponds to the message number and the second element is the block
number of that message. We define the index set

I = {(r, i) | r ∈ [k], i ∈ [mr]}
and the dictionary order ≺ on it as follows: (r, i) ≺ (s, j) if r < s or r = s and
i < j. We also consider the index set I0 = I ∪ {(r, 0) | r ∈ [q]} and the natural
extension of the order ≺ on I0.

For any π ∈ Perm(n), we build the structure graph Gπ, which is a directed
graph (V,E) as follows:

– For any π ∈ Perm(n), we denote the intermediate values for each message as

Xπ[r, i] = π(Xπ[r, i − 1] ⊕ Mr[i])

for (r, i) ∈ I and Xπ[r, 0] = 0 for r ∈ [q].
– From this X[r, i]’s, we define the mapping [·]π : I0 → I0 as [(r, i)]π =

min {(s, j) | Xπ[s, j] = Xπ[r, i]} where the minimum is determined through
the dictionary order. Now the structure graph Gπ = (V,E) is given by

V = {[(r, i)]π | (r, i) ∈ I0} ,

E = {([(r, i − 1)]π, [(r, i)]π;Mr[i]) | r ∈ [q], i ∈ [mr]} .

Note that [(r, 0)]π = (1, 0) for r ∈ [n].

We define a binary function Iszero such that for a structure graph Gπ,
Iszero(Gπ) = 1 if the vertex (1, 0) has positive in-degree, otherwise it maps
to 0. We say that Gπ has a collision in a vertex z if there exist u and v
such that e1 =def (u, z;Lu), e2 =def (v, z;Lv) ∈ E. Then, we must have
X[u]⊕X[v] = Lu ⊕Lv. For all collisions, the collection of those linear equations
is denoted L. Let rank(Gπ) denote the rank of L. We define the accident of a
structure graph Gπ as Acc(Gπ) =def rank(Gπ) + Iszero(Gπ).

Collπ occurs if and only if Acc(Gπ) ≥ n−1 since the last blocks of all messages
are pairwise distinct. Moreover, at least n−1 accidents occur at a vertex (1,m1).
Similarly to Proposition 2 in [21], we have

Pr [π ←$ Perm(n) : Collπ] ≤ A

(2n − m)n−1
+

(
m2

2n

)n

where A is the number of all structure graphs with n−1 accidents and satisfying
Collπ. It is easy to see that A ≤ 1 since no collision can occur except the vertex
(1,m1). Therefore, we have

Pr [π ←$ Perm(n) : Collπ] ≤ 1
(2n − m)n−1

+
(

m2

2n

)n

≤ 1
(2n − n(� + 1))n−1

+
(

(n� + 1)2

2n

)n

since m ≤ n(� + 1). ��
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6 Matching Attack on FEDM
B4

and FEDM
B5

In this section, we present a universal forging attack on FEDM
B4

and FEDM
B5

with
probability 1

2 using O(23n/4) queries in the nonce-respecting setting. For given
n-bit nonce N and a message M , a tag is computed as

FEDM
B4

[H,E](N,M) = EK2(EK1(N ⊕ HKh
(M)) ⊕ N),

FEDM
B5

[H,E](N,M) = FEDM
B4

[H,E](N,M) ⊕ HKh
(M)

where a hash key Kh and block cipher keys K1 and K2 (see Fig. 1). To ease
the notation, we show an attack on FEDM

B4
below, but the same idea is easily

mounted to FEDM
B5

. The attack is described in Algorithm 1 that outputs a valid
forgery for a target message M ∈ {0, 1}n.

To compute the success probability of the attack, we analyze the probability
of obtaining a specific value for the leftmost bit of the hash difference between
two messages. Let M,M ′ ∈ {0, 1}n be distinct two messages. For a randomly
selected hash key Kh, we assume that at least one bit of HKh

(M) ⊕ HKh
(M ′)

is 1 with a high probability. Without loss of generality, we say

Pr [Kh ←$ Kh : HKh
(M) ⊕ HKh

(M ′) = 1 ‖ ∗] ≈ 1
2
. (8)

In the following, we state that PolyHash [23] and CBC-MAC satisfy the above
property. For input M ∈ {0, 1}n, PolyKh

: {0, 1}n → {0, 1}n is defined as
PolyKh

(M) = M · Kh and CBC-MAC[EKh
](M) : {0, 1}n → {0, 1}n is defined as

CBC-MAC[EKh
](M) = EKh

(M).

Then, we have

Pr [Kh ←$ Kh : (M ⊕ M ′) · Kh = 1 ‖ ∗] ≈ 1
2

and

Pr [Kh ←$ Kh : EKh
(M) ⊕ EKh

(M ′) = 1 ‖ ∗] ≈ 1
2
.

Based on the above analysis, we then evaluate the success probability of the
attack described in Algorithm 1.
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Algorithm 1: A universal forgery attack on FEDM
B4

and FEDM
B5

Input: A target message M ∈ {0, 1}n

Output: A set of forgeries F
1 F ← ∅
// First Phase

2 M ′ ←$ {0, 1}n \ {M}
3 Used ← ∅
4 for i ← 0 to 23n/4 − 1 do
5 Ni ← 0n/4 ‖ 〈i〉3n/4

6 N ′
i ← 1 ‖ 〈i〉3n/4 ‖ 0n/4−1

7 Ti ← O(Ni,M)
8 T ′

i ← O(N ′
i ,M

′)
9 Used ← Used ∪ {Ni, N

′
i}

10 Y ← ∅
11 if ∃(i, j, k, l) such that (Ni ⊕ Nj ⊕ N ′

k ⊕ N ′
l = 0) ∧ (Ti = Tj) ∧ (T ′

k = T ′
l )

then
12 Y ← Y ∪ {Ni ⊕ N ′

k}
13 if Y = ∅ then
14 return ⊥

// Second Phase

15 for i ← 0 to 2n/2 − 1 do
16 N i ← {0, 1}n \ Used

17 T i ← O(N i,M
′)

18 if ∃(i, j) such that T i = T j then
19 for Y ∈ Y do
20 T ← O(N i ⊕Y,M)
21 F ← F ∪

{

N j ⊕ Y,M, T
}

22 return F

23 return ⊥

Theorem 5. Let A∗ be an adversary running Algorithm 1. Then,

Advmac
FEDM

B4
(A∗) ≈ 1

4
where the error is exponentially small.

Proof. We argue that A∗ can find at least one pair (i, j, k, l) with a high prob-
ability. Suppose that HKh

(M) ⊕ HKh
(M ′) = Ni ⊕ N ′

k = Nj ⊕ N ′
l . Then, it

holds

Ti = Tj ⇔ EK1(Ni ⊕ HKh
(M)) ⊕ Ni = EK1(Nj ⊕ HKh

(M)) ⊕ Nj

⇔ EK1(N
′
k ⊕ HKh

(M ′)) ⊕ N ′
k = EK1(N

′
l ⊕ HKh

(M ′)) ⊕ N ′
l

⇔ T ′
k = T ′

l
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For each quadruple (i, j, k, l), the probability that Ti = Tj and T ′
k = T ′

l is 1
2n if

HKh
(M) ⊕ HKh

(M ′) = Ni ⊕ N ′
k = Nj ⊕ N ′

l . Otherwise, the probability is 1
22n .

For 2n−1 ≤ y ≤ 2n − 1, there are q′ = 2n/2+1 tuples of indices (i, j) such
that Ni ⊕ N ′

j = 〈y〉n. If HKh
(M) ⊕ HKh

(M ′) = 〈y〉n for some y, A∗ can find
a quadruple (i, j, k, l) such that Ni ⊕ N ′

k = Nj ⊕ N ′
l = 〈y〉n with overwhelming

probability since the expected number is (q′
2 )
2n ≥ 1. So, the probability Y contains

the real hash difference is, by (8),

Pr [Kh ←$ Kh : HKh
(M) ⊕ HKh

(M ′) = 1 ‖ ∗] ≈ 1
2

(9)

and the expected size of Y is

1 + (2n − 1)

(
q′

2

)

22n
≤ 5.

Once the hash difference is found, one can compute a forgery by finding a tag
collision in the second phase. Roughly, the attack samples O(2n/2) fresh nonces
and computes tags with the chosen message M ′, where the collision probability
of tags is given as

(
2

n
2

2

)

2n
≈ 1

2
.

Combined with (9), the probability of successful forgery is approximately 1
4 .

The above attack works when q ≤ 2
3n
4 +2 with a constant number of verification

queries. ��
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Abstract. We introduce a new approach between classical security
proofs of modes of operation and dedicated security analysis for known
cryptanalysis families: General Practical Cryptanalysis. This allows us
to analyze generically the security of the sum of two keyed permutations
against known attacks. In many cases (of course, not all), we show that
the security of the sum is strongly linked to that of the composition of
the two permutations. This enables the construction of beyond-birthday
bound secure low-latency PRFs by cutting a known-to-be-secure block
cipher into two equal parts. As a side result, our general analysis shows
an inevitable difficulty for the key recovery based on differential-type
attacks against the sum, which leads to a correction of previously pub-
lished attacks on the dedicated design Orthros.

1 Introduction

Symmetric primitives are used to encrypt most of our sensitive data in virtually
all applications. Block ciphers are arguably the most studied primitives.

Overhead of Modes. In order to encrypt actual data, primitives have to be used in
a mode-of-operation. As a consequence of block ciphers being the most studied
primitives, the majority of symmetric-key cryptographic schemes are built as
block cipher modes. The advantage of using primitives in a mode-of-operation
instead of directly designing an (authenticated) encryption is obvious: a well-
designed mode comes with a proof that reduces its security to the security of
the primitive. Using such a mode with a well-understood (block) cipher results
in a secure scheme. One example is the counter-mode, where a pseudo-random
function (PRF) is constructed by encrypting a counter. Indeed, AES-CRT is a
frequently used scheme for encryption. In this paper, we instead focus on the
sum of two block ciphers. Given two pseudo-random permutations (PRPs) (or
independent block ciphers) Ek and E′

k, the sum Ek(x)⊕E′
k(x) is a secure PRF.
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However, modes have a significant overhead. For example, AES-CRT is only
secure only up to the birthday bound. For better security, modes with two (or
more) calls to the block cipher are required. Turning our focus to the sum-of-
PRP construction, we wonder whether it is necessary that both parts are secure
PRPs. This question was already posed by the dedicated PRF Orthros [4], which
consists of the sum of two specific keyed permutations that would not be secure
block ciphers individually. A similar approach was taken in [48], where AES-PRF
is proposed as a round-reduced instance of the EDMD construction presented
in [47]. The security of AES-PRF required dedicated cryptanalysis to explain
why known attacks do not apply. Interestingly, the authors of [48] state that the
sum construction seems more risky than the EDMD construction, an opinion we
clearly object to as explained below. The main difference with AES-PRF and
Orthros is that we are interested in a more general approach.

Link to Composition. As an example, consider a differential attack on the sum
construction. One would typically consider an input difference α that would be
input to both parts and try to find the most probable output differences β and
γ for the individual parts, leading finally to an output difference of β ⊕ γ.

P

C

E1 E2k1 k2

⊕

α

α α

β γ

β ⊕ γ

The starting point for our work is the observation that the probability for this
event, assuming the independence of the parts, is the same as the probability of
the following differential trail on the composition of E−1

1 and E2.

A BE−1
1 E2

β α γ

That is, at least intuitively, the sum construction is as secure as the composition
with respect to differential distinguishers. Ideally, we might hope for a result
stating that if E2 ◦E−1

1 is a secure (strong) PRP, then E1 ⊕E2 is a secure PRF.
Before discussing why this is not actually true, let us elaborate on how useful
such a statement would be. Such a statement would allow us to take any secure
block cipher, split it into two parts, and obtain a secure PRF . This would (i)
remove the overhead of having two calls to a secure cipher (ii) remove the need
for dedicated cryptanalysis as done in Orthros and (iii) result in a PRF with
roughly half the latency of the corresponding block cipher.
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The problem is, as mentioned, the result is wrong. The easiest example is to
take E−1

1 to be identity. Then, the resulting scheme is the classical feed-forward
construction for which distinguishing attacks exist with square-root complexity.
So the main question was if and how this statement might be corrected without
losing the great advantages it would provide.

Latency. Latency is an especially important fundamental criterion for the design
of symmetric primitives. Indeed, compared to other performance criteria, low
latency is much harder to achieve. In a nutshell, asking for a minimal latency
cipher is asking about the minimal amount of computation necessary to obtain
a secure cipher - a question as fundamental as it is open. Besides being a funda-
mental property, low latency ciphers have important applications, with memory
encryption being one of the most prominent. There are a few dedicated low-
latency designs, e.g. PRINCE [16], PRINCEv2 [17], MANTIS [7], QARMA [2],
QARMAv2 [3], and SPEEDY [43]. While all these designs use different ideas,
their latency seems to converge. Differences in latency are mainly due to differ-
ent security margins. Substantially improving latency with another block cipher
design seems hard if not impossible, which means the possibility of essentially
halving the latency with the sum of permutations construction is very enticing.

Our Contribution. It turns out it is possible to show that a practically iden-
tical statement holds to an extent. For this, we introduce a new approach which
lies between general security reduction on modes of operation and dedicated
security analysis of a specific primitive. Specifically, we compare, without ana-
lyzing the inside of each component, the security of the sum of two components
with their composition. We name this approach General Practical Cryptanalysis.

We show that for many attack families, distinguishers on the sum construc-
tion are related to distinguishers on the composition. In the case of the two main
attack families, differential and linear distinguishers, as well as their variants,
their behaviors are very similar. In particular, (i) differential and linear trails
have the same probability/correlation in E1 ⊕E2 as in E2 ◦E−1

1 or E−1
2 ◦E1 and

(ii) differential-linear and boomerang distinguishers on E2 ◦ E−1
1 are equivalent

to differential-and-linear and second order differential distinguishers on E1 ⊕E2.
Of course, there are exceptions; for example, the sum construction is only as
strong as the strongest part against the integral attack.

An attack on a symmetric primitive is, in most cases, built from a distin-
guisher and a key-recovery part. Equally interesting as the results on distin-
guishers is, therefore, to understand how one can add key-recovery rounds to
the different distinguishers on the sum construction. Returning to the example
of differential cryptanalysis, it is intuitively clear that adding key recovery at
the end is unpromising. Adding key recovery at the top is also more difficult
than for the composition, as one has to control both branches simultaneously.
We argue that this is only possible under strict conditions. As an interesting
side result, our general findings imply that the previous differential attack on
Orthros published in [44] must be reviewed.
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This novel practical general approach leads to our main result: with respect
to the most important attack vectors (with the exceptions mentioned above),
the sum E1 ⊕ E2 is as secure as the composition E2 ◦ E−1

1 . Taking a secure
block cipher and splitting it into equal parts, with some additional analysis to
cover the exceptions, leads to a PRF that is secure against all known attacks. Of
course, this does not rule out the existence of new attacks, but this is the case
for all new symmetric primitives.

Instances. To showcase the power and flexibility of our approach, we give a
concrete instance in Sect. 4: ZIP-AES, a variant built as the sum of two 5-round
AES. This results in a secure PRF with half the latency of AES-CTR and twice
the security in terms of data complexity. When implemented with AES-NI, as
inverse rounds are more costly, it does not achieve half the latency, but still
provides slightly better running times, as detailed in Sect. 4.3.

We finally mention that a ZIP cipher based on a 64-bit lightweight block
cipher is promising, e.g., ZIP-GIFT in Sect. 5. The resulting PRF is secure up to
the entire 264 blocks, which is enough for all practical cases, while the counter
mode of such a 64-bit block cipher can be broken with only 232 blocks of data
complexity. Again, not only would security double, but the latency would also
be halved, and therefore, it would be very competitive with the dedicated low-
latency designs mentioned above.

2 Preliminaries

2.1 Known Attacks on Symmetric Primitives

We work a lot with linear and differential attacks and their variants. We expect
the reader to be familiar with them and use this section to fix our notation.

Differential Cryptanalysis [13]. Differential attacks use pairs of plaintexts
with a well-chosen difference. For a function F : F

n
2 → F

m
2 , a given input differ-

ence α ∈ F
n
2 , and an output difference β ∈ F

m
2 , we denote by

Prob(α F−→ β) =
|{x ∈ F

n
2 | F(x) ⊕ F(x ⊕ α) = β}|

2n

the probability that the difference α results in the difference β. Given two (or
more) functions F : F

n
2 → F

m
2 and G : F

m
2 → F

�
2, a differential trail or character-

istic for G◦F also includes an intermediate difference γ. Its probability is usually
estimated by multiplying the probabilities

Prob(α F−→ γ
G−→ β) � Prob(α F−→ γ) · Prob(γ G−→ β),

which can be justified if F and G are key-alternating ciphers with independent
round keys and considering the average probability over all keys. From now on,
we adopt this independence assumption. Without assumptions, it holds that

Prob(α G◦F−−→ β) =
∑

γ

Prob(α F−→ γ
G−→ β),
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which is referred to as a differential in contrast to a differential trail.

Linear Cryptanalysis [46]. A linear approximation is a linear combination
of input and output bits of the cipher. The main measure of its quality is its
correlation. Given a function F, an input mask α, and output mask β, it’s

corF(α, β) = Probx (〈β,F(x)〉 = 〈α, x〉) − Probx (〈β,F(x)〉 	= 〈α, x〉) .

Again, given two functions, a linear trail for the composition is specified by an
input mask α, an intermediate mask γ, and an output mask β, and its correlation
contribution is formally defined as corF(α, γ)corG(γ, β). The set of all linear
trails sharing the same input and output masks is often called linear hull. This
definition is motivated by the fact that

corG◦F(α, β) =
∑

γ

corF(α, γ)corG(γ, β).

Similarly, given a Boolean function f : F
n
2 −→ F2, its correlation is

cor(f) = Probx (f(x) = 0) − Probx (f(x) = 1) .

Differential-Linear Cryptanalysis. The data complexity is given by the
autocorrelation, which for an input difference δ and output mask α is defined as

AutF(δ, α) = Probx (〈α,F(x) ⊕ F(x ⊕ δ)〉 = 0) − Probx (〈α,F(x) ⊕ F(x ⊕ δ)〉 = 1) .

In most cases, it is infeasible to obtain all trails in a linear hull or a differen-
tial. Hence, security arguments are often based on bounding the probability or
correlation of trails. We mainly stick to this approach in this work.

2.2 The Sum-of-PRPs

Constructing PRFs from PRPs is a well-studied topic from a provable security
perspective. The sum-of-PRPs construction is a well-known research topic. It
was initially introduced by Bellare et al. at EUROCRYPT 1998 [9]. The first
proof of its security was given by Lucks at EUROCYPT 2000 [45], where he
proved a suboptimal security bound up to 22n/3 queries. This was improved
by Bellare and Impagliazzo [8] to 2n/n. Finally, with the introduction of the
H-coefficient technique, Patarin [49] proved the optimal full n-bit security, and
Dutta et at. in [26] filled some gaps in Patarin’s proof. Very recently, Dinur [24],
using Fourier-analysis, proved optimal bounds for the general case of the sum of
permutations and the multi-user setting. A good survey of the state of the art
of this and other constructions is given in the later paper as well as in [39].

Complementing this line of work, some recent work has focused on the ques-
tion of constructing a public function from public (i.e., non-keyed) permutations.
This setting requires the notion of indifferentiability and is technically more
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involved. After several attempts that turned out to be flawed or non-optimal,
the work of Gunsing et al. finally settled the result at CRYPTO 2023 [34].

Despite the general usefulness of constructing a pseudo-random function,
there was for a long time no practical cryptanalysis discussion against this con-
struction, mainly because there were no practical instances that have been used
or even proposed. The first concrete design was, to the best of our knowledge,
Orthros [4]. Motivated by the fact that the output of each pseudo-random per-
mutation is not visible to the attacker, the authors used the so-called proof-then-
prune approach [38] to realize an efficient pseudo-random function by reducing
the rounds of the two parts. This significantly improved the latency of the result-
ing scheme but required dedicated cryptanalysis. As discussed below, getting
this analysis right is more difficult than usual, in particular when considering
differential-type attacks with key recovery.

To capture all designs derived by summing two not necessarily pseudo-
random permutations, we give the following general definition.

Definition 1 (P ⊕ Q). Let P,Q be two families of permutations, indexed by
the keys kp, kq in the sets P and Q, respectively:

(x, kP ) ∈ F
n
2 × P 
→ Pkp

(x) ∈ F
n
2 , (x, kQ) ∈ F

n
2 × Q 
→ Qkq

(x) ∈ F
n
2 .

We define the P ⊕ Q construction as the following family of functions:

P ⊕ Q : F
n
2 × P × Q → F

n
2

(x, (kP , kQ)) 
→ Pkp
(x) ⊕ Qkq

(x).

Unlike in provable security analysis, it is not assumed that P and Q are
pseudo-random permutations. In other words, P and Q are not necessarily secure
block ciphers with sound security claims on their own. Our objective is to reveal
whether P ⊕ Q enhances the practical security in the context of cryptanalysis.

3 General Practical Cryptanalysis of P ⊕ Q

This section discusses the resistance of the P⊕Q construction against well-known
attack families, and compares it to compositions of P , Q and their inverses. As
stated above, for our arguments, we make the usual assumption on the inde-
pendence of rounds and therefore multiply probabilities over multiple rounds.
While for attacks, this tends to lead to flawed complexity estimations, for secu-
rity arguments there is currently no alternative technique avoiding this.

3.1 Differential Cryptanalysis

Differential Characteristic Equivalence. The differential trails of the par-
allel construction P ⊕Q are tightly linked to those of the sequential construction
Q ◦ P−1, as shown by the following result:
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Fig. 1. Differential and linear trail equivalence

Proposition 1. Let P,Q be two keyed permutations over F
n
2 , and let F := P ⊕Q

and S := Q◦P−1. For each differential trail with probability p traversing F, there
is a trail traversing S with the same probability p.

Proof. Given δI , δO ∈ F
n
2 , we consider the differential δI

F−→ δO. All its trails take
the same form given by the choice of γ ∈ F

n
2 and have probability

p = Prob(δI
P−→ γ) · Prob(δI

Q−→ γ ⊕ δO).

Since Prob(δI
P−→ γ) = Prob(γ P −1

−−−→ δI), p is also the probability of the differ-

ential trail γ
P −1

−−−→ δI
Q−→ γ ⊕ δO traversing S. ��

The left diagram in Fig. 1 shows the trail equivalence between P ⊕Q and Q◦P−1.

Aggregating the Trails. While individual trails of P ⊕ Q and Q ◦ P−1 are
equivalent (and thus both have the same maximum differential trail probability),
it is hard to compare the resulting differential probabilities when adding up all
the trail probabilities in a differential. We can try to compare the expected
differential probability (EDP) of both constructions:

Prob(δI
P⊕Q−−−→ δO) =

∑

γ

Prob(γ P −1

−−−→ δI) · Prob(δI
Q−→ γ ⊕ δO),

Prob(δI
Q◦P −1

−−−−−→ δO) =
∑

γ

Prob(δI
P −1

−−−→ γ) · Prob(γ
Q−→ δO).

However, we quickly realize that both sums cover sets of differential trails which
are non-equivalent, which makes further analysis difficult. Indeed, in the case of

P⊕Q, the sum covers all trails γ
P −1

−−−→ δI
Q−→ γ⊕δO for all γ, and δI

P −1

−−−→ γ
Q−→ δO

in the case of Q◦P−1. Therefore, the maximum expected differential probability
(MEDP) is not necessarily identical.
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Taka et al. studied this effect on multiple-branch-based designs and investi-
gated the differential clustering effect on Orthros [51]. They focused on several
γ, evaluated the clustering effect on each branch for each γ, and combined them.
On the other hand, in general, we do not expect either P ⊕ Q or Q ◦ P−1 to
have a stronger clustering effect because the number of terms in both sums is
the same. More importantly, the clustering inside P and Q is exactly the same
in both cases. We also note that if P and Q are almost the same structure,

Prob(δI
P⊕Q−−−→ 0) is expected to be high, but so will be Prob(δI

Q◦P −1

−−−−−→ δI).

On Key Recovery in Differential Cryptanalysis. Regarding the key recov-
ery based on the differential attack, P ⊕ Q appears to be more resilient than
Q ◦P−1. More precisely, we find an inevitable difficulty in mounting an effective
key-recovery attack on P ⊕ Q.

The most common strategy for the key-recovery attack is to append key-
recovery rounds to the differential distinguisher. We construct a differential dis-
tinguisher and append key-recovery rounds for attacking more rounds. The data
complexity depends on the probability of the differential distinguisher, since the
key-recovery rounds are deterministic under each key guess. We now consider
two possible key-recovery strategies: it is added to the output or input.

Key Recovery on the Output Side. The output is P (x) ⊕ Q(x), where P (x) and
Q(x) are unknown to the attacker. It is unlikely to add key recovery unless the
attacker can compute at least part of (differences in) P (x) or Q(x). We suppose
P and Q contain almost the same rounds. This implies that the key-recovery
part can cover half of the total round when we attack the composition. As long
as this is not the case, adding key-recovery at the output is not possible.

Key Recovery on the Input Side. Key recovery on the input side seems more
natural because the attacker knows or even chooses the inputs to P and Q. We
consider a differential key-recovery attack on F := (P2◦P1)⊕(Q2◦Q1), where the
input differences to P2 and Q2 are fixed to δP and δQ, respectively. Therefore,

we exploit a high differential probability p = Prob((δP , δQ)
P2⊕Q2−−−−→ δO) with key

recovery on P1 and Q1. Conventionally, the data complexity can be p−1 in the
optimal case, but we show such a strategy does not work.

Proposition 2. Let F = (P2 ◦ P1) ⊕ (Q2 ◦ Q1). We consider a differential key-
recovery attack where the input differences of P2 and Q2 are fixed to δP and δQ,
respectively, and the output difference is δO. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) · Prob(δP

Q1◦P −1
1−−−−−→ δQ) > 2−n .
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Proof. Let us count the number of input pairs X,X ′ to P ⊕ Q that produce a
difference of δP after P1 and δQ after Q1 simultaneously.

T = |{(X,X ′) | P1(X) ⊕ P1(X ′) = δP and Q1(X) ⊕ Q1(X ′) = δQ}|
= |{(x, x ⊕ δP ) | Q1 ◦ P−1

1 (x) ⊕ Q1 ◦ P−1
1 (x ⊕ δP ) = δQ}|

= 2n · Prob(δP
Q1◦P −1

1−−−−−→ δQ)

Observing that the expected data complexity for the distinguisher is at least
the inverse of the probability of the differential and at most T , i.e.

Prob((δP , δQ)
P2⊕Q2−−−−→ δO)−1 < T

leads to the claimed result. ��
In practice, the attacker would choose a differential trail given by δP

P2−→ γ and
δQ

Q2−−→ γ ⊕ δO and estimate the probability of the resulting distinguisher as

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) ≈ Prob(δP

P2−→ γ) · Prob(δQ
Q2−−→ γ ⊕ δO).

The usual condition Prob(δP
P2−→ γ) ·Prob(δQ

Q2−−→ γ⊕δO) > 2−n is not sufficient
for an attack to be possible. If

Prob(γ
P −1

2−−−→ δP ) · Prob(δP
Q1◦P −1

1−−−−−→ δQ) · Prob(δQ
Q2−−→ γ ⊕ δO) < 2−n,

there may be no pairs satisfying the differential characteristic.

Review of the Differential Key-Recovery Attack against Orthros in [44]. Proposi-
tion 2 implies that the data complexity of a differential key-recovery attack must
be estimated carefully. In a nice paper at Africacrypt 2022, Li, Sun, and Wang
proposed differential cryptanalysis against round-reduced Orthros. Their attacks
add a 1-round key recovery to the input side of both branches. Specifically, they
prepared pairs of chosen plaintexts whose differences take the form

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ2, 0, 0, 0, δ3, 0).

Branch 1 requires three nibble difference transitions in the Sbox layer: δ1
S−→ 0x2,

δ2
S−→ 0x2, and δ3

S−→ 0x8. Similarly, branch 2 requires δ1
S−→ 0x8, δ2

S−→ 0x1, and
δ3

S−→ 0x2. Excluding these first S-box layers, the differential probability on each
branch is estimated as 2−64 and 2−48, so the total probability is p = 2−112. They
finally estimated the data complexity as 2115 based on their attack framework.

Proposition 2 implies that a key-recovery attack is possible only when

p · Prob(0x2
S◦S−1−−−−→ 0x8) · Prob(0x2

S◦S−1−−−−→ 0x1) · Prob(0x8
S◦S−1−−−−→ 0x2) > 2−128.

This probability highly depends on the key (difference) involved in S ◦S−1. The
detailed review is shown in the full version [28]. We notice that the probability
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is zero for more than half of the keys in each Sbox. Therefore, it is a weak-key
attack whose fraction of weak keys is 5/16 × 7/16 × 5/16 ≈ 2−4.55.

We assume that one of the weak keys is used. Since the attacker does not
know which (weak) key is used, the attacker must fully activate corresponding
12-bit inputs. Among 12-bit active inputs, we can construct about 224 pairs.
However, given a fixed key, the number of pairs satisfying input differences of
both branches is limited. In some (weak) keys, the number is only 8 (see the full
version [28] for details). Therefore, to observe differential characteristics with
p = 2−112, we need at least 2109 texts in addition to the 12-bit active. As a
result, the attacker must use at least 2109+12 = 2121 chosen plaintexts to lead a
valid key-recovery attack for all keys belonging to the weak keys, which is more
than 2115 by the analysis of [44].

Remark 1. Assuming that the keys in three active S-boxes are identical in P
and Q, the input differences of the two branches must be the same because

Prob(δP
S◦S−1

−−−−→ δQ) = 0 for δP 	= δQ. In other words, to lead the key-recovery
attack that is valid for all keys, it is necessary to construct differential charac-
teristics whose input differences are equal in both branches.

3.2 Linear Cryptanalysis

Linear Characteristic Equivalence. Similarly to the differential cryptanaly-
sis, the linear trails of P ⊕Q are equivalent to those of the sequential construction
Q−1 ◦ P , as shown in the right diagram of Fig. 1, and by the following result:

Proposition 3. Let P,Q be two keyed permutations over F
n
2 , and let F := P ⊕Q

and S∗ := Q−1 ◦ P . For each linear trail with correlation c traversing F, there is
a linear trail with the same correlation c traversing S∗.

Proof. Consider any masks α, γ, β ∈ F
n
2 , let c = corP (γ, β)corQ(γ ⊕ α, β) be the

correlation of a linear trail through F. Again, notice that

corP (γ, β)corQ(γ ⊕ α, β) = corP (γ, β)corQ−1(β, γ ⊕ α).

Thus, c is the correlation of the linear trail γ
P−→ β

Q−1

−−−→ γ ⊕ α traversing S∗. ��
Similar to differential cryptanalysis, while individual trails or characteristics

are equivalent, it is hard to compare the resulting linear approximation correla-
tion when adding up the trail correlation contributions:

corF(α, β) =
∑

γ

corP (γ, β)corQ(γ ⊕ α, β),

corS∗(α, β) =
∑

γ

corP (α, γ)corQ(β, γ).

It is possible that the largest correlations of the linear approximations F and S∗

are not the same, due to differences in the clustering effect for both constructions.
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About Sequential Applications. One peculiar aspect of Propositions 1 and
3 is that the sequential function with equivalent trails or characteristics differs
between the differential (S := Q ◦ P−1) and linear (S∗ := Q−1 ◦ P ) cases. This
occurs because differential trails traversing F must coincide in the input of the
two branches (the output differentials can be added) while linear trails must
coincide in the output of the two branches (the input masks can be added).

However, in the case in which Q = {P−1|P ∈ P}, then the compositions
S = S∗ conform the same set of permutations, and F has the same differential
and linear characteristics as P1 ◦ P2, where P1, P2 ∈ P. This is the ZIP-design
strategy we employ in Sects. 4 and 5.

We note that the behavior of both constructions is not necessarily the same
when it comes to trail clustering (so that the maximum differential probability
or correlation may still differ). Again, all the clustering that happens within P
and/or Q is equivalent in S, S∗, and P ⊕ Q. Thus, even so our argument does
not cover all possible clustering, it covers more than done in both attacks in the
vast majority of cases.

On Key Recovery in Linear Cryptanalysis. Unlike with differential crypt-
analysis, it is possible to mount linear key-recovery attacks on P ⊕ Q. While it
is not possible on the output side due to the irreversibility of the XOR opera-
tion, it is possible on the input side. Indeed, assume that the branches can be
written as P = P2 ◦P1 and Q = Q2 ◦Q1. We are given a linear approximation of
P2 ⊕ Q2, and we want to perform key recovery over P1 and Q1. As long as the
combined size of the necessary key guesses to determine the parity of the input
masks to P2 and Q2 is small enough, it is possible to perform key recovery on
both P1 and Q1 simultaneously without increasing the data complexity. Linear
cryptanalysis is a known plaintext attack, so the cryptanalyst does not need
to control internal values in either branch and, most notably, does not need to
control both branches at the same time, which is the impediment to differential
key-recovery attacks). In summary, linear key-recovery attacks over the first few
rounds of P and Q can be carried out in the same manner as on an iterative
block cipher. Thus, assuming that differential and linear distinguishers cover the
same number of rounds, linear cryptanalysis may lead to stronger attacks.

3.3 Differential-Linear Cryptanalysis

We next look at differential-linear cryptanalysis. First, we investigate how the
autocorrelation of P ⊕ Q is related to the properties of P and Q, and we find
the following straightforward result:

Proposition 4. Let P,Q be keyed permutations over F
n
2 and let F = P ⊕Q. Let

δ ∈ F
n
2 be an input difference, and let α ∈ F

n
2 be an output linear mask. Then

AutF(δ, α) = AutP (δ, α) · AutQ(δ, α).
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Proof. From the definition of the autocorrelation:

AutF(δ, α) = cor (〈α,F(x)〉 ⊕ 〈α,F(x ⊕ δ)〉)
= cor (〈α, P (x)〉 ⊕ 〈α,Q(x)〉 ⊕ 〈α, P (x ⊕ δ)〉 ⊕ 〈α,Q(x ⊕ δ)〉)
= cor (〈α, P (x)〉 ⊕ 〈α, P (x ⊕ δ)〉 ⊕ 〈α,Q(x)〉 ⊕ 〈α,Q(x ⊕ δ)〉) .

Assuming the independence of both halves of the expression (or, alternatively,
that cor (〈α, P (x)〉 ⊕ 〈α,Q(x)〉) is negligible), we deduce:

AutF(δ, α) = cor (〈α, P (x)〉 ⊕ 〈α, P (x ⊕ δ)〉) · cor (〈α,Q(x)〉 ⊕ 〈α,Q(x ⊕ δ)〉)
= AutP (δ, α) · AutQ(δ, α)

from the piling-up-lemma [46]. ��
We note two important differences between this result and the ones for differ-

ential and linear distinguishers. It describes the behavior of a whole differential-
linear distinguisher without singling out an individual trail. However, the auto-
correlation cannot generally be related to that on the composition of P,Q or
their inverses, and relies just on the product of the autocorrelations for P and
Q. This does not make a large difference for constructions in which the logarithm
of the maximum autocorrelation decreases linearly with the number of rounds,
but it may create a gap when this exponent decreases very quickly.

Practical Strategies for Finding DL Distinguishers. The autocorrelation
of F is computed as the multiplication of the autocorrelations of P and Q having
the same input difference and output mask. On the other hand, in practice a DL
distinguisher is found by studying a trail perspective.

Traditionally, a cipher is separated into two parts, so that a differential trail
is considered over the first part and a linear trail over the second. Let P =
Pl ◦ Pd and Q = Ql ◦ Qd, where differentials δ

Pd−−→ δP and δ
Qd−−→ δQ and

linear approximations on αP
Pl−→ β and αQ

Ql−−→ β are known. We consider the
composition S := P−1

l ◦Ql ◦Qd ◦P−1
d . Then, the differential-linear distinguishers

δ
F−→ β and δP

S−→ αP are expected to have the same autocorrelation, assuming
that these trails are dominant and independent. When Pd and Pl are iterations
of the round function and Qd and Ql are iterations of the inverse round function,
P ⊕ Q is equivalent to the composition.

On the other hand, we can consider truncated differentials, (δP , δQ) ∈ UP ×
UQ, instead of a single differential trail. As mentioned later, the behavior of the
truncated differential is different in P ⊕ Q and the composition. Moreover, the
differential-linear hull aggregates multiple intermediate masks instead of a single
intermediate mask. When we switch differential trails into linear trails, we also
have the so-called independence assumption issue. In particular, the strategy
above has two different switches for each side of P and Q. Considering such
a complicated situation, it is preferable to analyze the autocorrelation of each
branch rather than optimistically trusting the relationship to the composition.
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On Key Recovery in Differential-Linear Cryptanalysis. Considering the
differential-linear key recovery, a similar problem arises to the one shown in
the differential key recovery: it is necessary to control input differences in both
branches simultaneously, which puts a limitation on the usable distinguishers.

Proposition 5. Let F = (P2 ◦P1)⊕ (Q2 ◦Q1). We consider a differential-linear
key-recovery attack, where the input differences of P2 and Q2 are δP and δQ,
respectively. The output linear mask is α. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

(AutP2(δP , α) · AutQ2(δQ, α))−2
< 2n · Prob(δP

Q1◦P −1
1−−−−−→ δQ).

Proof. Let δP and δQ be fixed input differences of P2 and Q2, respectively.
Let α be the output linear mask. Therefore, assuming the input pairs to P2

and Q2 already satisfy δP and δQ, the necessary number of pairs is estimated as
(AutP2(δP , α) · AutQ2(δQ, α))−2. The number of available pairs satisfying δP and

δQ at the same time is expected as 2n · Prob(δP
Q1◦P −1

1−−−−−→ δQ). Therefore, when
this number is less than (AutP2(δP , α) · AutQ2(δQ, α))−2, the attacker cannot
collect enough pairs to complete the attack. ��

Review of the DL Key-Recovery Attack against Orthros in [44]. We again review
the existing attack against Orthros proposed at [44]. It also presents differential-
linear cryptanalysis. It uses a differential-linear distinguisher whose autocorrela-
tion is 2−46. They also estimated the data complexity to be 295 chosen plaintexts.

This has the same problem as the key recovery in differential attacks, i.e.,
the attack is a weak-key attack and requires a higher data complexity than
their estimation. The key-recovery structure is the same as the differential case.
Therefore, the fraction of weak keys is 2−4.55. From 12-bit active inputs, there
are weak keys, where the number of pairs satisfying input differences of both
branches is only 8. Therefore, to recover any weak key, we need at least 246×2/8×
212 = 2101 chosen plaintexts, which is more than 295 by the previous estimation.

3.4 Differential-and-Linear Key-Recovery Attack

In previous sections, we have noted that attacks which require the adversary to
control an input difference in both branches are difficult to turn into key-recovery
attacks. On the other hand, linear attacks lend themselves well to key recovery
because of the known-plaintext nature. We next introduce a hybrid key-recovery
attack which uses a differential-linear distinguisher on one of the branches and
a linear distinguisher on the other. On the differential-linear branch, the key
recovery can be performed because the attacker can control the input difference
by choosing plaintexts as in a standard differential or differential-linear attack.
On the linear branch, the attacker only needs to establish the parity of the input
linear mask, so it does not interfere with the key recovery on the other branch.

Let us describe this situation in more detail (see Fig. 2). P is divided into
P = P2 ◦ P1. Key recovery will be carried out on P1 while a differential-linear
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Fig. 2. The differential-and-linear key-recovery attack on P ⊕Q (left) and differential-
linear key-recovery attack on Q−1 ◦ P .

distinguisher is considered on P2 with input difference δ, output mask β, and
autocorrelation c1. Q is also divided into Q = Q2 ◦ Q1 where Q1 is reserved for
key recovery, and a linear approximation with masks α and β and correlation c2
is considered for Q2. We note that the roles of P and Q can be exchanged.

By guessing parts of the key in P1 and Q1, the attacker can compute the
following parity from arbitrary X.

〈β,F(X)〉 ⊕ 〈β,F(P−1
1 (P1(X) ⊕ δ))〉 ⊕ 〈α,Q1(X)〉 ⊕ 〈α,Q1(P−1

1 (P1(X) ⊕ δ))〉.

Thus, by querying enough plaintexts, the attacker can obtain the experimental
correlation.

We will first determine the correlation of this function, and then we will
briefly describe the key-recovery attack algorithm. For the former, we note that
we can, by expanding F, rearrange the formula as follows:

〈β, P2(P1(X))〉 ⊕ 〈β, P2(P1(X) ⊕ δ)〉⊕
〈α,Q1(X)〉 ⊕ 〈β,Q2(Q1(X))〉⊕
〈α,Q1(P−1

1 (P1(X) ⊕ δ))〉 ⊕ 〈β,Q2(Q1(P−1
1 (P1(X) ⊕ δ)))〉

From the assumptions on the distinguishers for P2 and Q2, the correlation of
the first line is c1, and the correlations of the second and third lines are c2. As
a result, and from the piling-up lemma, we deduce that the correlation for the
whole expression is c1 · c22, which means an attack can be mounted with data
complexity c−2

1 c−4
2 .

We next sketch the key recovery algorithm for this attack. Using a key guess
in P1, the attacker can use structures to construct pairs (X,X ′) so that P1(X)⊕
P1(X ′) = δ in the same way they would for a differential or a differential-linear
attack, and at the same cost. Once these pairs (X,X ′) are constructed, a guess of
part of the key in Q1 enables the attacker to determine the values of 〈α,Q1(X)〉
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and 〈α,Q1(X ′)〉. With these, and for each key guess, the attacker can compute
the experimental correlations of

〈β,F(X)〉 ⊕ 〈β, F (X ′)〉 ⊕ 〈α,Q1(X)〉 ⊕ 〈α,Q1(X ′)〉,
where X and X ′ are constructed so that P1(X) ⊕ P1(X ′) = δ. We verified our
assumption and validity of our key-recovery attack by using ZIP-AES introduced
in the next section. In detail, we discuss it in the full version [28].

Interestingly, again this kind of attack is related to a cryptanalysis on the
composition of P and Q (see the right diagram of Fig. 2). Indeed, we notice that
the differential-linear distinguisher on P2 and the linear approximation of Q2 can
be combined into a differential-linear distinguisher on Q−1

2 ◦ P2. Furthermore,
the whole key-recovery attack corresponds to a differential-linear key-recovery
attack on Q−1 ◦ P guessing the same key material. However, we note that the
autocorrelation of the differential-linear distinguisher on the composition may
be larger, because the intermediate mask β is not fixed, while in the case of the
attack on F the mask β has to be fixed by the attacker.

3.5 Truncated Differential Cryptanalysis

A variant of classical differential cryptanalysis is truncated differential crypt-
analysis [41], in which the attacker can predict only part of the difference
between pairs of texts. When considering truncated differentials cryptanalysis,
the parallel construction F := P ⊕Q seems to offer a security that is hardly com-
parable with any sequential construction and thus may require a dedicated anal-
ysis, which is also to be expected when compared to differential-linear attacks.

Firstly, the parallel and sequential constructions involving inverse permu-
tations become hardly comparable as truncated differentials do not propagate
backwards so that truncated differential characteristics in P generally differ from
characteristics in P−1.

Secondly, if we consider the sequential construction S := Q ◦ P−1 then a
truncated differential attack works as such for any linear subspaces U ,V,W:

Prob
(
P−1(x) ⊕ P−1(x ⊕ α) ∈ V | x ∈ F

n
2 , α ∈ U)

= p

Prob (Q(x) ⊕ Q(x ⊕ β) ∈ W | x ∈ F
n
2 , β ∈ V) = q

=⇒ Prob (S(x) ⊕ S(x ⊕ α) ∈ W | x ∈ F
n
2 , α ∈ U) ≥ p · q .

On the other hand, Proposition 6 shows how to mount a truncated differential
attack on P ⊕ Q:

Proposition 6. Let P,Q be two keyed permutations over F
n
2 , and let F := P⊕Q.

Let UP ,UQ,VP ,VQ ⊆ F
n
2 be four non-trivial linear subspaces such that UP ∩

UQ is non-empty. Assume that the following truncated differentials hold with
probabilities p, q ∈ (0, 1] respectively:

Prob (P (x) ⊕ P (x ⊕ α) ∈ VP | x ∈ F
n
2 , α ∈ UP ) = p ,

Prob (Q(x) ⊕ Q(x ⊕ β) ∈ VQ | x ∈ F
n
2 , β ∈ UQ) = q .
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Then:

Prob (F(x) ⊕ F(x ⊕ γ) ∈ VP ⊕ VQ | x ∈ F
n
2 , γ ∈ UP ∩ UQ) ≥ p · q .

We note that ⊕ denotes the sum of binary vector subspaces, which may not
necessarily be a direct sum. Obviously, if VP ⊕VQ = F

n
2 is the full space, the last

probability is equal to 1, making the truncated differential to be meaningless.
This is not the case for S.

Proof. Let x ∈ F
n
2 . We know that P (x) ⊕ P (x ⊕ γ) ∈ VP with probability p over

γ ∈ UP , and that Q(x)⊕Q(x⊕γ) ∈ VQ with probability q over γ ∈ UQ. Assuming
that both events are statistically independent of each other, over γ ∈ UP ∩ UQ,
the probability that they both occur at the same time is p · q. Since VP and VQ

are vector subspaces, we have

F(x) ⊕ F(x ⊕ γ) = P (x) ⊕ Q(x) ⊕ P (x ⊕ γ) ⊕ Q(x ⊕ γ) ∈ VP ⊕ VQ,

which concludes the proof. ��
As shown in Proposition 6, an interesting constraint to find a truncated differ-
ential attack on P ⊕Q is to find two linear subspaces UP and UQ such that both
UP ∩ UQ is not empty and VP ⊕ VQ is not the full space F

n
2 . As a result, even if

we find two truncated differentials, where p and q are high enough, it does not
always guarantee a non-trivial truncated differential on F.

Based on this, we encourage to pay particular attention when arguing the
security against truncated differentials.

On Key Recovery in Truncated Differential Attacks. Extending a trun-
cated differential distinguisher into a key recovery presents the same problems
discussed in Sect. 3.1 for the analogous case of differential cryptanalysis.

Proposition 7. Let F = (P2◦P1)⊕(Q2◦Q1). We consider a key-recovery attack,
where the truncated input differences of P2 and Q2 are in the affine subspace UP

and UQ respectively, and the key involved in P1 and Q1 is guessed. When N
pairs are needed for the distinguishing attacks based on the truncated differential
to succeed, (UP ,UQ)

P2⊕Q2−−−−→ V, such an attack works only when

2n · |UP | · Prob(UP
Q1◦P −1

1−−−−−→ UQ) > N .

As the input of P2, the number of pairs satisfying the truncated differential
is 2n · |UP |. To mount the key recovery, the attacker needs to find pairs that
satisfy the truncated differential in the input of Q2 simultaneously. Therefore,

the number of pairs we can collect is 2n · |UP | · Prob(UP
Q1◦P −1

1−−−−−→ UQ). If this
value is less than N , it is insufficient to execute the key-recovery attack.
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Impossible (Truncated) Differentials. An impossible (truncated) differen-
tial [11] is a (truncated) differential that holds with probability 0. In general,
the existence of impossible differentials for the composition does not imply the
existence of non-trivial1 impossible differentials for F := P ⊕ Q.

Assuming Prob(δI
Q−1◦P−−−−−→ δO) = 0, let VP and VQ denote a subset satisfying

Prob(δI
P−→ VP ) = Prob(δO

Q−→ VQ) = 1, and VP ∩VQ = φ. In contrast, assuming

Prob(δI
F−→ δO) = 0, it implies Prob(δI

P−→ VP ) = Prob(δI
Q−→ VQ) = 1, and

VP ∩ (VQ ⊕ δO) = φ. The former can choose both input differences for P and Q
arbitrarily. The latter restricts them to be the same, but we can add arbitrary
δO to VQ. While it finally depends on case by case, probably, the former is easier
to find impossible differentials than the latter.

3.6 Algebraic and Integral Attacks

The security of P ⊕Q against algebraic attacks does not seem much better than
the most secure between P and Q against this family of cryptanalysis. In this
section, we formulate the cipher as a polynomial on the key and input bits. More
precisely, we interpret the cipher as a multivariate polynomial of the n input bits
of x with coefficients that are functions of the key k,

F(k, x) :=
⊕

u∈F
n
2

fu(k)xu .

The degree of F is defined as the highest degree monomial with a non-zero
coefficient, that is, deg(F) := maxu{wt(u) | fu(k) 	= 0}, where wt(u) denotes
the Hamming weight of u. Since the attacker usually exploits the weakest bit, or
more generally component function, the minimum degree is more important than
the degree: minDeg(F) := minβ deg(〈β,F(k, x)〉). However, in terms of security,
we rather look at non-constant coefficients only, as any monomial that is key-
independent distinguishes the function from random. Therefore, we define d̃eg
and m̃inDeg as follows:

d̃eg(F) := max
u

{wt(u) | fu(k) is not constant},

m̃inDeg(F) := min
β

d̃eg(〈β,F(k, x)〉).

Proposition 8. Let P,Q be keyed permutations over F
n
2 and F := P ⊕ Q, then:

m̃inDeg(F) = min
β

max{d̃eg(〈β, P 〉), d̃eg(〈β,Q〉)} .

Proof. Let kP and kQ in KP and KQ, respectively, and let:

〈β, P (kP , x)〉 :=
⊕

u∈F
n
2

pβ,u(kP )xu , 〈β,Q(kQ, x)〉 :=
⊕

u∈F
n
2

qβ,u(kQ)xu .

1 If F(x) belongs to U with probability 1 for each x ∈ V, then F(x) ∈ Uc with proba-
bility 0, where ·c is the complimentary subspace.
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Given k := kP ‖kQ ∈ KP × KQ, summing the polynomials for P and Q:

〈β,F(k, x)〉 =
⊕

u∈F
n
2

fβ,u(k)xu =
⊕

u∈F
n
2

(pβ,u(kP ) + qβ,u(kQ)) xu .

So we have fβ,u = pβ,u + qβ,u defined on inputs k ∈ KP × KQ. Note that fβ,u is
constant if and only if pβ,u and qβ,u are constant. Therefore, we conclude by:

d̃eg(〈β,F〉) = max
u

{wt(u) : pβ,u is not constant or qβ,u is not constant}
= max

{
max

u
{wt(u) : pβ,u is not constant},max

u
{wt(u) : qβ,u is not constant}}

= max{d̃eg(〈β, P 〉), d̃eg(〈β,Q〉)} .

��
To show that a cipher is secure against algebraic attacks often involves arguing
that the cipher reaches a high degree. Proposition 8 shows that P ⊕ Q can only
reach a high degree if either P or Q reaches it. Thus, integral attacks could be
one of the most powerful attacks on P ⊕ Q. Indeed, if a cipher has a degree
d then the cipher is vulnerable to an integral attack for any linear subspace
with dimension d + 1. In particular, if P has degree d greater than Q, then any
dimension d + 1 linear subspace will allow an integral attack on both P and Q
simultaneously, so on P ⊕ Q as well.

A similar statement holds for the stronger arguments against integral attacks
as given in [37]. Again, to argue for full resistance against integral cryptanalysis
either P or Q already has to be fully resistant.

On Key Recovery in Integral Attacks. On the other hand, we cannot expect
a strong integral key-recovery attack. Usually, the integral key-recovery attack
focuses on the ciphertext side, but it is impossible in P ⊕ Q. In [27], Ferguson
et al. added one-round key recovery to the plaintext side, but it requires almost
the full code book even for one-branch analysis. Besides, we must control the
input of both branches in P ⊕ Q. As discussed above, such a key recovery is
difficult because the inputs of both branches are unlikely to take sets satisfying
higher-order differences simultaneously after applying each key-recovery round
from the common plaintext set.

The cube attack [25] is another possible key-recovery strategy. It is possible
only when fβ,u(k) is a very sparse polynomial. A common block cipher, where
subkey is XORed every round, tends to have complicated polynomials, and the
feature is used to guarantee the lower bound of the degree or the integral resis-
tance property in [36,37]. Therefore, the cube attack is unlikely in such ciphers
unless m̃inDeg(F) is insufficient.

Zero-Correlation Linear. Instead of considering the zero-correlation linear
[15] explicitly, we first consider the link between the zero-correlation and integral
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[14,50]. When we have zero-correlation linear on F, we also have an integral
distinguisher on F. Therefore, if F is secure enough against the integral, it should
also be secure against the zero-correlation linear.

It is also possible to find the zero-correlation linear directly. However, because
of the analogous argument of the impossible differential, we do not suppose that
the sum is weaker than the composition against the zero-correlation linear.

3.7 Second-Order Differential Cryptanalysis

We look at attacks exploiting independent differential properties of P and Q.
Interestingly, this distinguisher on P ⊕ Q is linked to the Boomerang distin-
guisher [52] on Q−1 ◦ P , as depicted in Fig. 3.

Assuming we have two independent differential transitions that are
Prob(δP

P−→ δ′
P ) = p and Prob(δQ

Q−→ δ′
Q) = q, then for some x:

{
P (x) ⊕ P (x ⊕ δP ) = δ′

P , P (x ⊕ δQ) ⊕ P (x ⊕ δQ ⊕ δP ) = δ′
P ,

Q(x) ⊕ Q(x ⊕ δQ) = δ′
Q, Q(x ⊕ δP ) ⊕ Q(x ⊕ δP ⊕ δQ) = δ′

Q

=⇒ F(x) ⊕ F(x ⊕ δP ) ⊕ F(x ⊕ δQ) ⊕ F(x ⊕ δQ ⊕ δP ) = 0 .

With the usual independent assumptions, this happens with probability (p · q)2
for a random x when F = P ⊕ Q. Therefore, such a second-order differential
requires about 4(p · q)−2 queries to F.

We review the same differential transitions on S = Q−1 ◦ P and perform the
following boomerang attack. For some x,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P (x) ⊕ P (x ⊕ δP ) = δ′
P ,

P (S−1(S(x) ⊕ δQ)) ⊕ P (S−1(S(x) ⊕ δQ) ⊕ δP ) = δ′
P ,

Q(S(x)) ⊕ Q(S(x) ⊕ δQ) = δ′
Q,

Q(S(x ⊕ δP )) ⊕ Q(S(x ⊕ δP ) ⊕ δQ) = δ′
Q,

=⇒ S−1(S(x) ⊕ δQ) ⊕ S−1(S(x ⊕ δP ) ⊕ δQ) = δP .

This well-known Boomerang holds with a probability of (p · q)2 with some inde-
pendent assumptions. It requires about 4(p · p�)−2 queries to S and S−1.

Note that the relationship above ignores some independent issues when
switching differential trails. For example, although δP = δQ is a meaningful
parameter for the Boomerang distinguisher on Q−1 ◦ P , it is meaningless on
P ⊕ Q. Due to different independent issues, the resulting Boomerang proba-
bility on S and the 2nd order differential probability on P ⊕ Q differ. On the
other hand, when p and q are reasonably high, that is a natural setting in real
cryptanalysis, we would observe a similar feature in both cases.

On Key Recovery in 2nd-Order Differential Attacks. When considering
key recovery, we observe a similar difficulty to that of differential key recovery.
Let P = P2 ◦ P1 and Q = Q2 ◦ Q1. Assuming that there is a non-negligible
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Fig. 3. 2nd-order differential on P ⊕ Q (left) and Boomerang on P −1 ◦ Q (right).

2nd-order differential distinguisher on P2 ⊕ Q2. We apply the key recovery to
P1 and Q1. Let (x1, y1), (x2, y2), (x3, y3), and (x4, y4) be the input of (P2, Q2).
Then, a quartet satisfying x1 ⊕ x2 = x3 ⊕ x4 = δP and y1 ⊕ y3 = y2 ⊕ y4 = δQ is
constructed by y1 = Q1◦P−1

1 (x1), x2 = x1⊕δP , y2 = Q1◦P−1
1 (x2), y3 = y1⊕δQ,

x3 = P1 ◦ Q−1
1 (y3), x4 = x3 ⊕ δP , and

y4 = Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ .

In general, Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ does not hold with a probability of 1.

3.8 Meet-in-the-Middle Attacks

The meet-in-the-middle (MitM) attack [23] is another of the typical cryptanalysis
of keyed symmetric primitives. In a traditional meet-in-the-middle attack, the
adversary obtains a plaintext-ciphertext pair, and aims to extract the key faster
than through an exhaustive search. The attacker guesses part of the key on
the plaintext side and part of the key on the ciphertext side, and constructs
two tables: one consists of all possible partial encryptions of the plaintext and
the other of all possible partial decryptions of the ciphertext. When a collision
between both tables is found, a candidate for both key guesses is obtained.

When applying this approach to the P ⊕ Q construction, we note that no
information about the outputs of both branches can be obtained directly from
the ciphertext. Thus, any MitM attack would require guessing part of one of
the branches. However, by xoring the known ciphertext, this is equivalent to
guessing part of an internal state of Q−1 ◦ P , which is an ineffective guessing
strategy in a MitM attack.

The DS-MitM attack [22] is an extension of the Meet-in-the-Middle attack
and consists of the distinguisher and key recovery. When the distinguisher cov-
ers the initial few rounds in both branches, the key recovery requires the inverse
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query but there is no such query in the PRF. When the distinguisher covers
the last few rounds in both branches, it involves the output of the PRF. There-
fore, the parameter size of the distinguisher significantly increases. Consequently,
using the distinguisher in either the inside of P or that of Q is promising, but
then, such an attack is very similar to the attack against the composition, Q−1◦P
too.

3.9 Summary and Other Attacks

In this section, we analyzed differential, linear, differential-linear, differential-
and-linear key recovery, (impossible) truncated differential, algebraic and inte-
gral, zero-correlation linear, the 2nd-order differential, and the MitM attacks.
Some of them are strongly linked to the cryptanalysis against the composition.

When we mount a key recovery, where we need to control differences in
two branches simultaneously, it is more difficult than the corresponding analysis
against the composition. Notably, linear key recovery and differential-and-linear
key recovery are promising attack strategies against the sum structure because
they are friendly to key recovery, but they are strongly linked to linear key
recovery and differential-linear key recovery against the composition.

Other well-known attacks exist. For example, Boomerang [52] or Yo-Yo [10]
attacks require adaptive chosen-plaintext-ciphertext attacks. However, the sum
structure does not provide the decryption query, so applying these attacks is
non-trivial. Note that an amplified Boomerang [40] and Rectangle [12] attacks
are a chosen-plaintext variant of the Boomerang attack. However, it contains
a probability of 2−2n because the intermediate state size is 2n bits. Thus, it is
unlikely that those attacks are applicable.

4 The ZIP Structure: Designing PRF in Light Work

Respecting the discussions in Sect. 3, we introduce the ZIP structure, which is
defined as follows:

Definition 2 (ZIP structure). Let E = E1 ◦ E0 be a secure iterative block
cipher. We define the ZIP construction of E as the following family of functions
E0 ⊕ E−1

1 : F
n
2 → F

n
2 . We suppose E0 and E1 contain almost the same rounds.

The ZIP structure has three advantages:

– We can inherit many cryptanalysis results against E.
– Since the resulting primitive is a pseudo-random function, it derives beyond-

birthday security in some modes of operation.
– On performance, the latency is about half of the original block cipher.

Of course, the discussion in Sect. 3 never shows that the ZIP structure has the
same security as the original block cipher against all attack strategies. In par-
ticular, algebraic (integral), differential-linear, and truncated differential have to
be carefully analyzed, but it is not as hard work as designing it from scratch.
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In a practical application, the ZIP structure can achieve beyond-birthday
security in some modes of operation while keeping the throughput in the case
we use the original block cipher. It is useful in a wide situation. Moreover, its half
latency is promising in several practical applications such as memory encryption
or communication over the 5G and the beyond 5G as discussed in [1].

In this section, we focus on the ZIP-AES as an example.

4.1 ZIP-AES: A Concrete Instantiation via AES-128

AES-128. The Advanced Encryption Standard [21] is a SPN scheme designed
by Daemen and Rijmen, and based on the Wide-Trail design strategy [19,20].
Focusing on AES-128, the key size is of 128 bits, and the number of rounds is
10. Each AES-round RAES : F

4×4
28 → F

4×4
28 applies three operations besides the

key-addition to the state x, that is, x 
→ RAES(x) := MC ◦ SR ◦ SB(x). An
additional AddRoundKey operation is applied at the input of the first round,
and the last MixColumns operation is omitted (we denote a round without MC
as R̂AES). We refer to [21] for the details of the key-schedule.

The ZIP-AES PRF. We define the ZIP-AES as

∀x ∈ F
4×4
28 : ZIP-AES5(x) := AES5(x) ⊕ AES−1

5 (x) ,

where AES5 denotes 5 encryption rounds of AES-128

AES5(·) = AK ◦ MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦ · · · ◦ AK ◦ MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦AK(·)

including the final MC in the last round as well, and where AES−1
5 denotes 5

decryption rounds of AES-128

AES−1
5 (·) = AK−1 ◦ (MC ◦ SR ◦ SB)−1

︸ ︷︷ ︸

R−1
AES

◦AK−1 ◦ . . . ◦ (MC ◦ SR ◦ SB)−1

︸ ︷︷ ︸

R−1
AES

◦AK−1(·)

where (MC ◦ SR ◦ SB)−1(·) := SB−1 ◦ SR−1 ◦ MC−1(·), and including the
initial MC−1 in the first round as well.

Regarding the sub-keys, let k0 = k, k1, k2, . . . , k10 ∈ F
4×4
28 be the sub-keys

generated by the key-schedule of AES-128, where k ∈ F
4×4
28 is the whitening key.

– AES5 is instantiated with k0, k1, k2, k3, k4, k5;
– AES−1

5 is instantiated with k6, k7, k8, k9, k10, 0128.

We claim that ZIP-AES is a 128-bit secure pseudo-random function.
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Design Rationale and Modified Versions of ZIP-AES. Before going on, we briefly
discuss some technical choices regarding ZIP-AES, with particular attention both
at the MixColumns operation at the end of AES5, and at the inverse MixColumns
operation at the beginning of AES−1

5 . As we pointed out, the final MC operation
is omitted in AES. However, we decided to keep it for ZIP-AES.

This choice is necessary considering our motivation: ZIP-AES shares many
cryptanalysis results to the original AES. As mentioned in Sect. 3, P ⊕ Q and
Q ◦ P−1 shares the same differential characteristic, and P ⊕ Q and Q−1 ◦ P
shares the same linear trail. If there is no inverse MixColumns in the beginning
of AES−1

5 , the inverse MixColumns is missing between Q and P−1 in Q ◦ P−1.
Similarly, if there is no MixColumns in the last of AES5, the MixColumns is
missing between Q−1 and P in Q−1 ◦ P . In other words, such a construction
corresponds to the variant of AES, where the MixColumns is omitted in the 5th
round, which is clearly more insecure than the AES.

In practice, in order to prove this fact, we consider these variants of ZIP-AES,
in which the final MC operation for AES and/or the initial MC−1 operation for
AES−1 are omitted in the full version [28]. In there, we show that these modified
versions are (much) weaker against attacks such as truncated differentials and
mixture differentials with respect to the ZIP-AES defined here.

4.2 Security Analysis of ZIP-AES

In this section, we present our security analysis of ZIP-AES. Our results show
that the strongest attack against it is the integral attack, which can distinguish
up to 4+4 rounds (namely, ZIP-AES4,4) from a PRF. All other attacks (including
classical linear and differential attacks, truncated differentials, mixture differen-
tials, and so on) can only cover a smaller number of rounds. Moreover, in the full
version [28], we also show that the attacks against AES-PRF1,r and AES-PRF2,r

for any r ≥ 1 proposed in [48] work against ZIP-AES1,r and ZIP-AES2,r as well.

Unbalanced Variants. For the follow-up, we introduce “reduced-round variants”
of ZIP-AES defined as ZIP-AESr0,r1(x) := AESr0(x)⊕AES−1

r1
(x) . We encourage

to analyze its security with particular attention to the case r0 = r1 ≥ 2, in order
to better evaluate ZIP-AES’s resistance against attacks.

Differential and Linear Attacks. In the case of differential cryptanalysis, we
have seen in Proposition 1 that, given two independent keyed permutations P,Q,
then for each differential characteristic (trail) with probability p traversing P⊕Q,
there is a differential characteristic with the same probability p traversing Q ◦
P−1. Due to the wide-trail design strategy, it is well known that any differential
characteristic over 4-round AES has a probability of at least 2−150. This means
that ZIP-AES2,2 does not admit any differential characteristic with probability
lower than 2−150. Based on this, we claim that ZIP-AES5,5 is secure against
differential distinguishers and key-recovery attacks.

We have an analogous argument for linear cryptanalysis, differential-and-
linear key recovery, and the 2nd order differential attacks.
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Differential-Linear Attacks. The differential-linear distinguisher (autocorre-
lation) is estimated as the product of each branch’s autocorrelation. In [35], the
authors evaluated the autocorrelation of the AES. They are 1, 2−7.66, 2−31.66,
and 2−55.66, for 2, 3, 4, and 5 rounds, respectively. Although there are no ref-
erences in the AES inverse, we expect the autocorrelations to be similar, con-
sidering the well-aligned structure of the AES. Then, the autocorrelation of
ZIP-AES5,5 is expected as 2−55.66×2, which is unlikely to be observed with 2128,
full code-book, queries. In practice, the input difference and output mask must be
the same in both branches. Such a restriction does not allow us to use the optimal
autocorrelation for both branches simultaneously. We verified this observation
by using ZIP-AES3,3. When we used the 3-round differential-linear distinguisher
shown in [35] in the left branch, we could not observe a significant autocorrela-
tion in the right branch. Therefore, we expect that the autocorrelation is worse
than the squared value of the best autocorrelation of each branch. In detail, see
the full version [28].

Integral Attacks. Following [32], we introduce the following subspaces of F
4×4
28 :

the diagonal subspace Di, in which the i-th diagonal for i ∈ {0, 1, 2, 3} is active
and all the others are constant; the column subspace Ci := SR(Di), in which
the i-th column for i ∈ {0, 1, 2, 3} is active and all the others are constant; the
anti-diagonal subspace IDi := SR(Ci), in which the i-th anti/inverse diagonal
for i ∈ {0, 1, 2, 3} is active and all the others are constant; the mixed subspace
Mi := MC(IDi).

As it is well known [27,29,42], the following integral attacks hold
⊕

x∈Di⊕α

AES4(x) =
⊕

x∈Mi⊕β

AES−1
4 (x) = 0

for each i ∈ {0, 1, 2, 3} and for any α, β ∈ F
4×4
28 . It follows that for each i, j ∈

{0, 1, 2, 3}: ⊕

x∈(Di⊕Mj)⊕α

ZIP-AES4,4(x) = 0

for each α ∈ F
4×4
28 , where dim(Di ⊕ Mj) = 8 – the dimension is considered

at byte level. Therefore, we have the integral distinguisher by using 264 chosen
plaintexts.

Since no other integral distinguisher is known for 5 or more rounds of AES,
and since appending a key recovery to the plaintext side is not easy (see Sect. 3
for more details), we claim that ZIP-AES5,5 is secure against integral attacks.

Truncated Differential and Subspace Trail Attacks. With respect to the
previous attacks and distinguishers, truncated differential requires a more ded-
icated analysis, since it is not possible to reduce the security of F := P ⊕ Q to
the one of any sequential construction (see Sect. 3.5 for more details).

We first re-call some results regarding the subspace trails presented in [32].
Given DI :=

⊕
i∈I Di, CI :=

⊕
i∈I Ci, IDI :=

⊕
i∈I IDi, MI :=

⊕
i∈I Mi for

each I ⊆ {0, 1, 2, 3}, we have that
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Table 1. Practical tests on ZIP-AES over F
4×4
28

. In the table, we assume |I| = |I ′| = 3
and |J | = 2 (P ≡ Practical – Prob. ≡ Probability).

# Rounds Input Subspace Output Subspace ZIP-AES P-Prob. PRF Prob.

1 + 1 Ci Di ∩ Mi 1 2−64

2 + 2 Ci CI 2−32 + 2−52.8 2−32

2 + 2 MJ ∩ DI CI′ 2−32 + 2−53.7 2−32

– Di,i+2 = IDi,i+2 for each i ∈ {0, 1, 2, 3},
– for each I, J ⊆ {0, 1, 2, 3}: dim(CI ∩ MJ ) = dim(CI ∩ DJ) = |I| · |J |,
– for each I, J ⊆ {0, 1, 2, 3} with |I| + |J | ≤ 4: DI ∩ MJ = IDI ∩ MJ = ∅,

where |I| and |J | represent the cardinality of I and J respectively.
Let AESr(·) be r rounds of AES. For each x ∈ F

4×4
28 , and for each I, J ⊆

{0, 1, 2, 3}, the following truncated differentials hold:

Prob(AES1(x) ⊕ AES1(x ⊕ δ) ∈ CI | δ ∈ DI) = 1 ,

Prob(AES1(x) ⊕ AES1(x ⊕ δ) ∈ MI | δ ∈ CI) = 1 ,

Prob(AES2(x) ⊕ AES2(x ⊕ δ) ∈ MI | δ ∈ DI) = 1 ,

Prob(AES3(x) ⊕ AES3(x ⊕ δ) ∈ MJ | δ ∈ DI) = 28·|I|·(|J|−4) .

We refer to [6,31] for truncated differentials up to 6-round AES.

Truncated Differentials for ZIP-AES1,1. Since Prob(AES1(x) ⊕ AES1(x ⊕ δ) ∈
Mi | δ ∈ Ci) = Prob(AES−1

1 (x)⊕AES−1
1 (x⊕ δ) ∈ Di | δ ∈ Ci) = 1, the following

truncated differentials on ZIP-AES1,1 holds:

Prob(ZIP-AES1,1(x) ⊕ ZIP-AES1,1(x ⊕ δ) ∈ Di ⊕ Mi | δ ∈ Ci) = 1 .

For comparison, note that Prob(Π(x) ⊕ Π(x ⊕ δ) ∈ Di ⊕ Mi | δ ∈ Ci) = 2−64

for a PRF Π over F
4×4
28 .

Truncated Differentials for ZIP-AES2,2: a Negative Result. Due to the exis-
tence of probability-1 truncated differentials for both 2-round AES and 2-round
AES−1, corresponding to R2(DI ⊕ α) = MI ⊕ β and R−2(MJ ⊕ α′) = DJ ⊕ β′,
it could seem natural to combine them in order to set up a truncated differential
for ZIP-AES2,2, defined via an initial subspace DI ∩ MJ and a final subspace
MI ⊕ DJ . However, a problem arises, since

– DI ∩ MJ contains only the zero-element for each I, J with |I| + |J | ≤ 4, and
– DJ ⊕ MI is the full space F

4×4
28 for each I, J with |I| + |J | ≥ 4,

due to the results listed before. For this reason, it seems impossible to set up a
probability-1 truncated differential for ZIP-AES2,2 via this strategy.

Truncated Differentials for ZIP-AES r,r with r ≥ 2: Practical Results. At the
same time, probabilistic truncated differential distinguishers for ZIP-AESr,r with
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r ≥ 2 exist. Our practical results for ZIP-AES is summarized in Table 1.2 As it is
possible to observe, for all the considered cases, the probability that a truncated
differential distinguisher holds for ZIP-AESr,r with r ∈ {2, 3} is only slightly
higher than the corresponding probability for a generic PRF.

Conclusion. Based on our practical tests, we conjecture that if a bias between
the probability for ZIP-AESr,r for r ≥ 4 and a generic PRF exists, it would be
too small for being useful in practice. Together with the fact that extending a
distinguisher that ends with CI with |I| ≥ 2 by 1 round is not possible, we claim
that ZIP-AES5,5 is secure against truncated differential distinguishers.

Mixture Differential Attacks (and More). A powerful attack on round-
reduced AES is the mixture differential cryptanalysis [30]. Given two plaintexts
p0, p1 in the same column space CI⊕γ ⊆ F

4×4
28 , let p′

0, p
′
1 ∈ CI⊕γ be two new texts

obtained by carefully swapping the generating variables of p0, p1. Independently
of the values of the round-keys, the difference between p0 and p1 after 2-round
AES is equal to the corresponding difference of p′

0 p′
1, that is,

AES2(p0) ⊕ AES2(p1) = AES2(p′
0) ⊕ AES2(p′

1) . (1)

This is also known as the integral mixture distinguisher [33]. Moreover, p0 and
p1 belong to the same coset of a mixed space MJ after 4-round AES if and only
if p0 and p1 satisfy the same property, that is, ∀J ⊆ {0, 1, 2, 3}:

AES4(p0) ⊕ AES4(p1) ∈ MJ ⇐⇒ AES4(p′
0) ⊕ AES4(p′

1) ∈ MJ .

Similar distinguishers hold in the backward direction. (A variant of such distin-
guisher – the exchange attack [6] – is discussed in the full version [28]).

(Deterministic) Mixture Integral Distinguishers for ZIP-AES2,2: a Negative
Result. At the current state, it does not seem possible to set up an integral
mixture distinguisher for ZIP-AES2,2, that is,

ZIP-AES2,2(p0) ⊕ ZIP-AES2,2(p1) 	= ZIP-AES2,2(p′
0) ⊕ ZIP-AES2,2(p′

1)

in general, where p0, p1, p
′
0, p

′
1 ∈ CI ⊕ γ for I ⊆ {0, 1, 2, 3}, and where p′

0 and p′
1

are constructed by carefully swapping the generating variables of p0, p1 in the
same way described in [30]. The problem arises from the fact that generating
variables of p0, p1 and the ones of MC−1(p0),MC−1(p1) are different.

(Probabilistic) Mixture Differential Distinguishers for ZIP-AES2,2. Having said
that, it is possible to set up a probabilistic mixture differential distinguisher for
ZIP-AES2,2 by exploiting the following result.

2 The truncated differentials are not affected by the details (as the degree) of the S-
Box. Hence, we also provide practical results for small-scale ZIP-AES (that is, AES
over F

4×4
24

as presented in [18]) in the full version [28].
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Table 2. Performance comparison on the counter mode.

cycle-per-byte counter

16B 32B 256B 2KB 16KB 128KB

AES 3.56 1.84 0.51 0.36 0.34 0.34 integer

AES-PRF 3.63 1.94 0.55 0.39 0.37 0.37 integer

ZIP-AES 2.96 1.58 0.53 0.41 0.39 0.39 integer

AES 3.53 1.81 0.47 0.35 0.34 0.33 gray code

AES-PRF 3.57 1.88 0.51 0.36 0.34 0.34 gray code

ZIP-AES 2.90 1.61 0.47 0.34 0.33 0.33 gray code

Lemma 1. Let p0, p1 ∈ Ci ⊕ α. Let p′
0, p

′
1 ∈ Ci ⊕ α be defined as the mixture

couples generated by p0 and p1 such that Eq. (1) holds. For any I ⊆ {0, 1, 2, 3}
with |I| = 3:

Prob
(
ZIP-AES2,2(p0) ⊕ ZIP-AES2,2(p1)

⊕ ZIP-AES2,2(p′
0) ⊕ ZIP-AES2,2(p′

1) ∈ DI

)≥ 2−16 .

For comparison, Prob (Π(p0) ⊕ Π(p1) ⊕ Π(p′
0) ⊕ Π(p′

1) ∈ DI) = 2−32 for a
PRF Π over F

4×4
28 .

See the full version [28] for the proof of Lemma 1.
At the current state, it does not seem possible to extend the previous dis-

tinguisher for more rounds of ZIP-AES. For this reason, we conjecture that
ZIP-AES5,5 is secure against such an attack.

4.3 Performance Evaluation

We implemented the counter mode of ZIP-AES to measure the performance.
For the comparison, we also implemented the counter modes of AES-128 and
AES-PRF-128 [48]. All measurements were taken on a single core of Intel Core
i7-1185G7 (Tiger Lake) with Turbo Boost and Hyperthreading disabled, and
averaged over 100000 × 4096

byte repetitions, where byte denotes the processing data
size in bytes. All subkeys are pre-computed, and the process is measured when
the IV and plaintext are given in a byte array. The counter mode uses the 64-bit
IV and 64-bit counter for the top and bottom halves of the input, respectively.

Table 2 (top 3 rows) summarizes the cycle-per-byte of each cipher for each
size of processing message. As expected, ZIP-AES performs better than AES
and AES-PRF for small data because the latency for one block processing is
lower. On the other hand, when we encrypt more than 2KB, ZIP-AES performs
worse than AES and AES-PRF. The reason is that AESDEC performs AK−1 ◦
MC−1◦SR−1◦SB−1 and is not the straightforward AES inverse round function.
AES-NI consists of six instructions:

– AESENC performs AK ◦ MC ◦ SR ◦ SB.
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– AESENCLAST performs AK ◦ SR ◦ SB.
– AESDEC performs AK−1 ◦ MC−1 ◦ SR−1 ◦ SB−1.
– AESDECLAST performs AK−1 ◦ SR−1 ◦ SB−1.
– AESIMC performs MC−1. It is prepared to prepare subkeys for decryption.
– AESKEYGENASSIST assists to create round keys.

To perform AES−1
5 , we first use AESIMC and then use AESDEC. Unfortunately,

AESIMC of the AES-NI is worse than the other main instructions. For example,
on Tiger Lake CPU, the latency and throughput of the main four instructions
are 3 and 0.5, respectively, but the latency and throughput of AESIMC are 6 and
1, respectively. The overhead by AESIMC is not negligible for long data.

To solve the overhead issue, we replace an integer counter with a gray code
counter. In the gray code, the counting up is implemented by one XOR with a
counter-dependent value. Notably, the counting up and MC−1 (and the whiten-
ing key XORing) is commutative. Given the IV, we first prepare the counter for
AES5 and prepare the counter for AES−1

5 by applying MC−1. Then, we perform
each counting up independently by one XOR. Then, we can avoid AESIMC for
every block. Modern CPUs can perform XOR instructions in 3 ports, and the
XOR instruction is executed with the AES instruction in parallel. Therefore, the
overhead can be negligible. Table 2 (bottom 3 rows) summarizes each cycle-per-
byte, where the counter is implemented by the gray code. We notice that the
overhead of ZIP-AES for the long data can be resolved, and the performance is
competitive with the case of AES and AES-PRF.

5 Future Work: Other ZIP Ciphers and Modes

In addition to ZIP-AES, one can consider several ZIP ciphers. Although we did
not discuss it in this paper, we are interested in ZIP-AES-256; does it successfully
derive the 256-bit secure PRF? Another interesting instance is the ZIP cipher
using the 64-bit block cipher, e.g., ZIP-GIFT, instantiated by GIFT-64 [5].

GIFT-64 consists of 28 rounds. So, ZIP-GIFT consists of 14-round GIFT-64
and 14-round inverse GIFT-64. Unlike ZIP-AES, we do not provide a detailed
analysis, and it is left as an open problem. As a reference, the following is a
related analysis for GIFT-64. For the integral attack, in [37], the integral resis-
tance property is guaranteed in 12-round GIFT-64, and the best integral distin-
guisher is up to 10 rounds. Therefore, ZIP-GIFT also guarantees integral resis-
tance property. In [53], the autocorrelation is evaluated in GIFT-64, where the
squared autocorrelation is 2−57.22 in 12 rounds. Therefore, the autocorrelation
of ZIP-GIFT would be low enough.

Besides looking into more ZIP ciphers, it is promising to apply the gen-
eral practical cryptanalysis to other structures. In particular, the feed-forward
EDMD structure used in [47,48] to construct AES-PRF is a natural candidate
to check which attack vectors link to AES and which do not. Another exam-
ple is the generalization of the sum of two permutations, i.e., a sum of several
permutations. There is already a concrete instance that has been designed, i.e.,
Gleeok [1] named after the multiple head dragon.
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Finally, it is worth investigating if the new differential-and-linear attack that
we introduced and liked to a differential-linear attack on the composition, is
applicable to Orthros.
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Abstract. There has been a recent interest to develop and standard-
ize Robust Authenticated Encryption (Robust AE) schemes. NIST, for
example, is considering an Accordion mode (a wideblock tweakable block-
cipher), with Robust AE as a primary application. On the other hand,
recent attacks and applications suggest that encryption needs to be com-
mitting. Indeed, committing security is also a design consideration in the
Accordion mode. Yet it is unclear how to build a Robust AE with com-
mitting security.

In this work, we give a modular solution for this problem. We first
show how to transform any wideblock tweakable blockcipher TE to a
Robust AE scheme SE that commits just the key. The overhead is cheap,
just a few finite-field multiplications and blockcipher calls. If one wants
to commit the entire encryption context, one can simply hash the con-
text to derive a 256-bit subkey, and uses SE on that subkey. The use of
256-bit key on SE only means that it has to rely on AES-256 but doesn’t
require TE to have 256-bit key.

Our approach frees the Accordion designs from consideration of
committing security. Moreover, it gives a big saving for several key-
committing applications that don’t want to pay the inherent hashing
cost of full committing.

Keywords: Robust authenticated encryption · committing security

1 Introduction

Authenticated Encryption (AE) is widely used in practice to provide data privacy
and authenticity. Yet standard AE schemes such as GCM are both fragile and
inflexible. On the one hand, if some misuse happens, say nonce repetition, then
security is completely broken. On the other hand, for standard AE schemes, the
ciphertext C must be sufficiently longer than the message M , so that forgeries
will never happen in practice. In particular the ciphertext expansion τ = |C|−|M |
is typically 128 bits. But several applications, such as Voice-over-IP or IoT,
demand shorter expansion (say 64 bits, or even 32 bits) to minimize latency
or energy consumption. One cannot simply truncate the tag of a standard AE
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scheme because forgeries will happen sooner or later, and once a forgery happen,
all security guarantees are voided.1

Robust AE. There has been a long line of work to deal with the situation
above [2,3,18,26], culminating in the Robust AE notion of Hoang, Krovetz, and
Rogaway [18]. Instead of using a fixed expansion τ , Robust AE explicitly accepts
a user-defined choice of τ for each encryption. If τ is small then forgeries of course
will happen, but just occasionally, roughly once per 2τ attempts. Robust AE also
provides misuse resistance for nonce reuse [26] and protects against releases of
unverified decrypted messages [2]. Because of such strong guarantees, standard
agencies are actively seeking Robust AE schemes for standardization. The UK
National Cyber Security Centre, for example, recently release their own Robust
AE schemes [9]. NIST is also considering an Accordion mode for a wideblock
tweakable blockcipher (TBC), with Robust AE as a primary application.

The need for committing security. Robust AE aims to provide the best
security possible, but it only covers privacy and authenticity. Recent attacks,
such as the Partitioning-Oracle attack on password-based encryption [20], high-
light the need for encryption to be committing. This guarantee is also needed by
several recent applications, such as Facebook’s Message Franking [16], Amazon
Cloud encryption, Subscribe with Google [1], or TLS Oracle [22]. Most appli-
cations require committing just the key K, but some need to commit all the
four inputs (K,N,A,M) of encryption. Due to such demand, it is desirable to
build a scheme that provides both Robust AE and committing security. Indeed,
committing security is also a property that NIST are considering in the call for
the Accordion mode.

Obstacles. Unfortunately, existing Robust AE schemes such as AEZ [18] or
HCTR2 [14] do not offer (full) committing security. The obvious reason is their
hashing of the associated data via a universal hash instead of a collision-resistant
one. However, there is a subtle, quantitative reason. In particular, suppose that
we only need s bits of expansion and target s bits of committing security.2 In
prior constructions of committing AE schemes [1,4,5,11], the common approach
is to make the tag a commitment of (K,N,A), and the message will be com-
mitted due to decryption correctness. However, this approach doesn’t work for
Robust AE schemes. First, Robust AE can only be realized via the Encode-
then-Encipher (EtE) paradigm [7]: encode the message with s-bit redundancy
(say padding it with 0s) and then encipher it with a wideblock TBC. The EtE
method has no tag, defeating the prior approach of building committing AE.

1 If the expansion is short and an adversary can obtain decrypted messages, standard
AE schemes are inherently insecure because the encryption algorithm makes just
one pass over data. Specifically, two ciphertexts of the same prefix would decrypt to
two messages of the same prefix.

2 Generic attacks [5] show that we can at best hope for s-bit committing security
given s-bit expansion. Moreover, given that committing attacks are offline, we want
to achieve s bits of committing security instead of a “birthday-bound” s/2 bits of
security.
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Next, birthday attacks suggest that the commitment must be at least 2s bits,
but we only have s-bit space.

Given the birthday attacks, at the first glance, it seems that to provide s-bit of
committing security, we are doomed to use at least 2s bits of expansion. However,
a closer inspection reveals that the attacks only require that the ciphertext must
be at least 2s bits. Thus as long as messages are at least s bits long3 then the
attacks do not apply. This gives a way out of the impossibility, but it is unclear
how to exploit this opening.

Related work. Chen et al. [13] show that AEZ [18] offers 64-bit key-
committing security for 128-bit expansion, assuming that the underlying tweak-
able blockcipher is modeled as ideal. (The result is tight, with a matching attack.)
However, this security guarantee is weak, because given 128-bit expansion, we
want 128-bit security, not merely 64-bit. Moreover, committing security has never
been a design goal of AEZ, and thus the security by accident here gives no insight
on how one should build a committing Robust AE scheme.

A very recent work by Bellare and Hoang [5] considers adding s bits of
committing security to a base AE scheme using just s bits of expansion (assuming
that messages are at least s bits). Their work only deals with tag-based AE
schemes and thus doesn’t apply to Robust AE. However, implicitly their work
contains a technical tool that is central to our construction. We will elaborate
later how to use their ideas for our setting.

Contributions. We initiate the study of committing Robust AE. By extending
the definitions of Bellare and Hoang [4], we formalize two notions of commit-
ting security: (1) the CMT notion that commit all inputs (K,N,A, τ,M) of the
encryption algorithm, and (2) the CMT-1 notion that commits just the key K.

Achieving CMT security demands that one hashes the associated data A
with a cryptographic hash function, such as SHA-2 or SHA-3. While this cost is
O(1) in theory, the actual relative overhead is huge for small data. We therefore
consider a modular route. First, we focus on building a CMT-1 Robust AE
scheme SE that is enough for most applications and doesn’t have to pay the
hashing penalty. Next, for applications that demand the full CMT security, one
can non-intrusively add CMT security to SE via the Hash-then-Encrypt (HtE)
transform of Hoang and Bellare [4]: first hash (K,N,A, τ) to derive a subkey L,
and then encrypt with key L, the empty nonce, the empty AD, and expansion τ .
Using HtE means that SE needs to use 256-bit key, but this aligns well with (i)
NIST’s requirement that an Accordion mode must support 256-bit key, and (ii)
the fact that our CMT-1 construction has to use a blockcipher of 256-bit key
anyway.

For CMT-1 security, we build a transform EwC that turns any wideblock
TBC TE to another TE such that using the latter in the EtE method provides
CMT-1 security. While EwC uses a 256-bit key, it doesn’t require the base TE

3 This assumption is reasonable. Indeed, existing Robust AE schemes can’t encrypt
tiny messages, as AES-based wideblock TBC can only efficiently encipher messages
of at least 128 bits.
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to have a 256-bit key. This allows us to leverage a wealth of existing wideblock
TBC constructions and future Accordion submissions. The overhead of EwC is
cheap, just a few finite-field multiplications and blockcipher calls. The underlying
blockcipher E uses a 256-bit key, and thus can be instantiated via AES-256 or
Rijndael-256. Moreover, EwC only uses E in the forward direction, which saves
code size in hardware implementation.

If the underlying blockcipher E has 256-bit block length (such as Rijndael-
256), then EwC would encipher messages of at least 512 bits, and provides s
bits of CMT-1 security when used in EtE with s bits expansion. If E only has
128-bit block length (such as AES-256) then the CMT-1 security of EwC is more
nuanced, because implicitly it takes a parameter � < 128, and enciphers messages
at least 256+ � bits. Using EwC[�] in EtE still allows one to use any expansion s
but only guarantees to deliver CMT-1 security when s > �, and in that case it
provides just � − 8 bits of CMT-1 security.

At the bird’s-eye view, EwC is a four-round (unbalanced) Feistel-like struc-
ture. (See Fig. 15 for an illustration.) The first and last rounds, following Naor
and Reingold [24], are based on an AXU hash function. Since the input length
of the AXU is short, it amounts to just one or two finite-field multiplications
for each hashing. The second round uses TE. The third round uses a collision-
resistant PRF H and a committing concealer, a new primitive that we will discuss
later. The function H only needs to deal with short inputs and has to produce
a 256-bit output. Thus if the blockcipher E has 256-bit block length, we can
directly instantiate H via the Davies-Meyer construction, meaning H(K,M) =
EK(M)⊕M . If E has just 128-bit blockcipher, we show how to build H via “dou-
bling” Davies-Meyer, meaning H(K,M) = (EK(U)⊕U)‖(EK(V )⊕V ), where
U = M‖0 and V = M‖1.

Cost. The overhead of EwC is listed in Table 1. For each instantiation of
the blockcipher (AES-256 or Rijndale-256), we list two values for the num-
ber of blockcipher calls because (i) if one only uses the standalone EwC for
key-committing security, we can ignore the cost of subkey generation since the
subkeys can be cached, but (ii) if one uses EwC with the HtE transform for
full committing security, then the cost of subkey generation must be included.
While the subkey generation seems expensive (say six AES calls), these block-
cipher calls are fully parallelizable. On platforms with vector AES instructions,
these AES calls would take almost the same amount of time as couple AES calls.

Table 1. The overhead of the EwC transform. The third column shows the number of
blockcipher calls; two numbers are given, one includes the cost of subkey generation
and another doesn’t. The last column shows the number of finite-field multiplications.

Block length nBlockcipher Blockcipher calls Mults in GF(2n)

128 AES-256 10 (or 4 if subkeys are cached) 4

256 Rijndael-256 6 (or 2 if subkeys are cached) 2
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Implementing a performant version of EwC is tricky. The problem comes from
having three AES keys (one for the wideblock TBC, another for the Davies-
Meyer, and yet another for the committing concealer). Overall, that generates
a lot of AES subkeys, and it is tricky to ensure that we have no register spill.
See Fig. 16 for experimental data for the overhead of EwC on HCTR2. The cost
is significant for small data, but becomes negligible for messages bigger than 1
KB.

Committing concealer. Central to our EwC transform is a new primitive
that we call committing concealer. Committing concealer can be viewed as a
blockcipher but the security requirement is different. Traditionally, we want a
blockcipher to be a strong PRP; if we build it from a Feistel network, we need
at least four rounds. For committing concealer, we only need it to be a one-time
strong PRP (meaning that the adversary can make just a single query per user),
and thus we can build it from just two-round Feistel. Still, we want committing
concealer to commit the key if used only on the set of messages that are encoded
with s-bit redundancy.

If we have a blockcipher E of 256-bit block length, one can directly use it
as a committing concealer; the key-committing property would be justified by
modeling E as an ideal cipher. However, it is tricky if E only has 128-bit block
length. The core idea is implicitly in the recent work of Bellare and Hoang [5].
Technically, they need to commit messages up to m < n bits to produce a
commitment of (m+n)-bit length and nearly n bits of binding security. They give
a construction via the SIV paradigm [26], but alternatively, their construction
can be viewed as padding the message with zeros, and then enciphering it with a
committing concealer. Their (implicit) committing concealer is based on a two-
round unbalanced Feistel, where the round functions are implemented via the
Davies-Meyer construction on a blockcipher of block length n. See Fig. 13 for an
illustration.

The use of ideal-cipher model. If one uses our EwC transform in the EtE
construction, one would have Robust AE security in the standard model. But
the committing security has to be justified in the ideal-cipher model. The use of
idealized models in cryptographic constructions has always been a controversial
issue, and sometimes it can stand in the way towards adoption. The UK National
Cyber Security Centre, for example, do not target committing security in their
Robust AE schemes due to concerns about the use of the ideal-cipher model [9].
We argue that as long as the Robust AE is still justified in the standard model,
we can only gain by additionally providing committing security (even in the
ideal-cipher model).

2 Preliminaries

2.1 Notation and Terminology

Let ε denote the empty string. For a string x we write |x| to refer to its bit
length, and x[i : j] is the bits i through j (inclusive) of x, for 1 ≤ i ≤ j ≤ |x|.
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Fig. 1. Game defining (multi-user) PRF security of F.

By Func(Dom,Rng) we denote the set of all functions f : Dom → Rng. We use ⊥
as a special symbol to denote rejection, and it is assumed to be outside {0, 1}∗.
If X is a finite set, we let x ←$ X denote picking an element of X uniformly at
random and assigning it to x. For an integer n ≥ 1, let {0, 1}≤n denote the set
of all bit strings whose length is at most n, and let {0, 1}≥n denote the set of all
bit strings whose length is at least n.

2.2 Some Standard Primitives

Collision resistance. Let H : Dom → Rng be a function. A collision for H
is a pair (X1,X2) of distinct points in Dom such that H(X1) = H(X2). For an
adversary A, define its advantage in breaking the collision resistance of H as

Advcoll
H (A) = Pr[(X1,X2) is a collision for H]

where the probability is over (X1,X2) ←$ A.

AXU hash. Let G : K × M → {0, 1}n be a keyed hashed function. We say
that G is c-almost XOR-universal (c-AXU) if for any distinct X,Y ∈ M and
any Δ ∈ {0, 1}n,

Pr
K ←$ K

[GK(X)⊕GK(Y ) = Δ] ≤ c

2n
.

PRF. For a function F : K × Dom → Rng and an adversary A, we define the
advantage of A in breaking the (multi-user) PRF security of F as

Advprf
F (A) = 2Pr[Gprf

F (A)] − 1 ,

where game Gprf
F (A) is shown in Fig. 1.

PRP. For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and an adversary A,
we define the advantage of A in breaking the (multi-user) strong-PRP security
of E as

Adv±prp
E (A) = 2Pr[G±prp

E (A)] − 1 ,

where game G±prp
E (A) is shown in Fig. 2.
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Fig. 2. Game defining (multi-user) strong PRP security of E. Here Perm(n) denotes
the set of all permutations in {0, 1}n

Fig. 3. Game defining (multi-user) strong tweakable-PRP security of TE. Here LP(M)
denote the set of permutations π on M that are length-preserving, meaning |π(M)| =
|M | for every M ∈ M.

(Wideblock) Tweakable Blockcipher. A tweakable blockcipher (TBC) TE
consists of two deterministic algorithms TE.Enc and TE.Dec, and is associated
with a key space K, a message space M, and a tweak space T . The enciphering
algorithm TE.Enc takes as input a key K ∈ K, a message M ∈ M, a tweak
T ∈ T , and outputs a ciphertext C ← TE.Enc(K,T,M). The deciphering algo-
rithm TE.Dec takes as input (K,T,C) and produces M ← TE.Dec(K,T,C). For
correctness, we require that deciphering reverses enciphering, meaning that if
C ← TE.Enc(K,T,M) then TE.Dec(K,T,C) = M .

In this paper, we consider wideblock TBC, meaning that the message space
consists of messages of different length, say M = {0, 1}≥m. We require that
enciphering preserves the message length, meaning that |C| = |M |.

Define the advantage of an adversary A breaking the strong tweakable-PRP
security of TE as

Adv±p̃rp
TE (A) = 2Pr[G±p̃rp

TE (A)] − 1 ,

where game G±p̃rp
TE (A) is shown in Fig. 3.
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2.3 Robust Authenticated Encryption

Syntax. An robust authenticated encryption (RAE) scheme SE consists of
two deterministic algorithms SE.Enc and SE.Dec; it is associated with a nonce
space N , a message space M, key space K, and an expansion space X . The
encryption algorithm takes as input a key K ∈ K, a nonce N ∈ N , associated
data A ∈ {0, 1}∗, a message M ∈ M, and an expansion τ ∈ X , and returns a
ciphertext C ← SE.Enc(K,N,A,M, τ) such that |C| = |M | + τ . The decryption
algorithm takes as input (K,N,A,C, τ) and returns either a message M ∈ M or
a leakage L 
∈ M. The correctness requirement says that decryption reverses
encryption, namely if C ← SE.Enc(K,N,A,M, τ) then SE.Dec(K,N,A,C, τ)
returns M .

We say that SE is tidy [23] if M ← SE.Dec(K,N,A,C, τ) and M ∈ M imply
that SE.Enc(K,N,A,M, τ) returns C. Combining correctness and tidiness means
that functions SE.Enc(K,N,A, ·, τ) and SE.Dec(K,N,A, ·, τ) are the inverse of
each other. The schemes we consider will be tidy.

Standard AE schemes are a special case of RAE schemes where the set X is
a singleton, meaning that the expansion is a constant, say 128. In general, RAE
schemes support a large range of expansion values, typically {0, 1, . . . , 128}, and
the expansion value can dynamically change within the same session.

RAE security. Let SE be an RAE scheme of message space M. Define the
advantage of an adversary A breaking the RAE security of SE with respect to a
(stateful) simulator Sim as

Advrae
SE,Sim(A) = 2 · Pr[Grae

SE,Sim(A)] − 1 ,

where game Grae
SE,Sim(A) is defined in Fig. 4. To prevent trivial attacks, we forbid

the adversary from first querying C ← Enc(i,N,A,M, τ) and then querying
Dec(i,N,A,C, τ).

In the game above, the simulator Sim is only called on invalid ciphertexts to
simulate the decryption leakage, but is not given any information on messages of
encryption queries. The simulator is stateful and explicitly maintains its state st.

Encode-then-Encipher (EtE). Hoang, Krovetz, and Rogaway [18] show that
to achieve RAE security, one has to use the Encode-then-Enciphering (EtE)
paradigm of Bellare and Rogaway [7]. We now recall the details of the EtE
construction. Let pad : {0, 1}∗ ×X → {0, 1}∗ be a padding scheme such that (1)
for any τ ∈ X , the function pad(·, τ) is injective, and let unpad(·, τ) : {0, 1}∗ →
{0, 1}∗ ∪ {⊥} be its inverse, and (2) If Y ← pad(X, τ) then |Y | = |X| + τ . For
example, we can let pad(M, τ) = M‖0τ . Let TE be a wideblock TBC with tweak
space N × {0, 1}∗ × X . The scheme EtE[TE] is specified in Fig. 5; it has nonce
space N and expansion space X . Informally, to encrypt M under (K,N,A, τ), we
pad M with pad(·, τ) and then encipher it with tweak (N,A, τ). On decryption,
we first recover V ← TE.Dec(K,T,C) and check the unpadding. If the unpadding
fails then we model the decryption leakage as L ← (⊥, V ). (Note that since we
require L 
∈ M, the invalidity symbol has to be included.)
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Fig. 4. Game defining (multi-user) RAE security of SE with respect to a simulator
Sim. Here Inj(τ) denote the set of injective functions f : {0, 1}∗ → {0, 1}∗ such that
|f(M)| = |M | + τ for all messages M .

Fig. 5. The EtE method, with decryption leakage on invalid ciphertexts.

3 Committing Security for RAE Schemes

In this section, we give a definitional treatment of committing security for RAE
schemes. The definitions are a straightforward extension of the work of Bel-
lare and Hoang [4] for standard AE schemes. The main issue is whether to
restrict adversaries from generating collisions on the same, or possibly different,
expansions τ1 and τ2. It is easy to see that allowing different ones is a strictly
stronger security goal, and so we opt for it.

3.1 Definitions

Committing security for RAE schemes. For an adversary A, we define its
advantage in breaking the committing security of an RAE scheme SE as

Advcmt
SE (A) = Pr[Gcmt

SE (A)] ,

where game Gcmt
SE (A) is defined in Fig. 6. Informally, committing security means

that an adversary cannot produce a ciphertext collision. This generalizes the
notion CMT-4 security of Bellare and Hoang [4].
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Fig. 6. Game defining committing security, encryption-based style.

Fig. 7. Game defining committing security, decryption-based style. Here M is the
message space.

The definition above uses an encryption-based style where the adversary
specifies the messages and the game encrypts them to compare the ciphertexts.
Alternatively, we can define a decryption-based one as follows. Define

Advcmtd
SE (A) = Pr[Gcmtd

SE (A)] ,

where game Gcmtd
SE (A) is defined in Fig. 7. Informally, this means that a cipher-

text cannot be properly decrypted under two different contexts (K1, N1, A1, τ1)
and (K2, N2, A2, τ2).

Relations. Following Bellare and Hoang [4], we show that CMT and CMT-D
security are equivalent.
� CMTD −→ CMT: First we show that CMTD implies CMT. Let SE be an RAE
scheme with message space M. Consider an adversary Ae that attacks the CMT
security of SE. We now construct an adversary Ad attacking the CMTD security
of SE. It runs Ae to get (K1, N1, A1,M1, τ1) and (K2, N2, A2,M2, τ2). It then
computes C ← SE.Enc(K1, N1, A1,M1, τ1), and outputs (C, (K1, N1, A1, τ1),
(K2, N2, A2, τ2)).

For analysis, without loss of generality, assume that Ae outputs distinct
tuples (K1, N1, A1,M1, τ1) and (K2, N2, A2,M2, τ2). Suppose that Ae wins its
game, meaning that SE.Enc(K2, N2, A2,M2, τ2) is also C. From the correct-
ness of SE, we have SE.Dec(Ki, Ni, Ai, C, τi) = Mi ∈ M for each i ∈ {1, 2}.
If (K1, N1, A1, τ1) = (K2, N2, A2, τ2) then M1 = M2, which is a contradiction.
Hence (K1, N1, A1, τ1) 
= (K2, N2, A2, τ2), thus Ad also wins its game. Therefore,

Advcmtd
SE (Ad) ≥ Advcmt

SE (Ae) .

� CMT ��� CMTD: Conversely, we show that for tidy schemes, CMT implies
CMTD. Let SE be a tidy RAE scheme with message space M. Consider
an adversary Ad that attacks the CMTD security of SE. We now construct
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Fig. 8. Game defining CMT-1 security.

an adversary Ae that attacks the CMT security of SE. It runs Ad to get
(C, (K1, N1, A1, τ1), (K2, N2, A2, τ2)), and gets Mi ← SE.Dec(Ki, Ni, Ai, C, τi)
for each i ∈ {1, 2}. It then outputs ((K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)).

For analysis, without loss of generality, assume that Ad outputs dis-
tinct tuples (K1, N1, A1, τ1), (K2, N2, A2, τ2). Suppose that Ad wins its game,
meaning that M1 ∈ M and M2 ∈ M. Since SE is tidy, we have
SE.Enc(Ki, Ni, Ai,Mi, τi) = C for each i ∈ {1, 2}, and thus Ae also wins its
game. Hence

Advcmt
SE (Ae) ≥ Advcmtd

SE (Ad) .

CMT-1 security. The notions CMT and CMTD above commit the entire con-
text (K,N,A,M, τ). Many applications however only need to commit just the
key. Following Bellare and Hoang [4], define the advantage of an adversary break-
ing the CMT-1 of an RAE scheme SE as

Advcmt-1
SE (A) = Pr[Gcmt-1

SE (A)] ,

where game Gcmt-1
SE (A) is defined in Fig. 8.

Discussion. Note that for CMT security, in the special case that the message is
empty, the ciphertext is a τ -bit commitment of the AD. This means that CMT
security requires hashing AD by a collision-resistant hash function such as SHA-
512 or SHA-3. While this overhead is constant, it’s expensive for small messages.
In contrast, CMT-1 security only needs to commit a short input (namely the
key), and we can use, for example, the Davies-Meyer construction with very low
overhead.

Lower bounds. RAE schemes cannot achieve commitment security for small
expansion. For example, if an adversary is allowed to choose τ1 = τ2 = 0, then
any ciphertext will decrypt to some message under any context. More formally,
let SE be a tidy RAE scheme of expansion space X . Let λ be the minimum value
in X , and let � be the smallest message length that SE supports. Prior generic
committing attacks on standard AE schemes do apply to RAE schemes if we
restrict to λ-bit expansion, and treat decryption leakage as a symbol ⊥ 
∈ M. In
particular, from the attacks of Bellare and Hoang [5], one can at best hope for
min{λ, (λ + �)/2} bits of CMT/CMT-1 security for SE.

The term λ+� is also the smallest message length of the underlying wideblock
TBC TE of SE. Practical constructions of TE typically require that λ + � to
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Fig. 9. The HtE transform.

be reasonably large, say 128, because otherwise TE has to include a Format-
Preserving Encryption scheme [6], which is expensive. For our schemes in Sect. 6,
λ + � is even larger, say 344 for the AES-based instantiation (if we want 80-bit
committing security), or 512 for the Rijndael-256-based one.

3.2 From CMT-1 to CMT Security

We extend the Hash-then-Encrypt (HtE) transform of Bellare and Hoang [4] for
RAE. This transform turns a CMT-1 secure scheme SE to a CMT-secure one
HtE[H,SE],

The HtE transform. Let SE be an RAE scheme of key space {0, 1}k, nonce
space {ε}, and expansion space X . Let H : K × (N × {0, 1}∗ × X ) → {0, 1}k be
a (keyed) hash function. The code of HtE[H,SE] is specified in Fig. 9. The idea
is simple. We first hash L ← H(K,N,A, τ) to derive a subkey L, and then run
SE to encrypt M with the subkey key L and tweak (ε, ε, τ). Note that the AD A
is only processed once, because we use SE with the empty AD. The overhead
of HtE is essentially optimal, since the hashing of AD is required for achieving
CMT security. Therefore, in this paper, we only focus on building CMT-1 secure
RAE scheme.

CMT security of HtE. The following result shows that if H is collision-
resistant then HtE promotes CMT-1 security to CMT one.

Proposition 1. Let SE be an RAE scheme of key space {0, 1}k, nonce space N ,
and expansion space X . Let H : {0, 1}k×(N ×{0, 1}∗×X ) → {0, 1}k be a (keyed)
hash function. For any adversary A, we can build adversaries B1 and B2 such
that

Advcmt
HtE[H,SE](A) ≤ Advcoll

H (B1) + Advcmt-1
SE (B2) .

Adversary B1 has the same running time and uses the same amount of resource
as A. Adversary B2 runs A and then runs H on A’s inputs.

Proof. We first describe the adversaries B0 and B1. Adversary B1 runs
(
(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)

)
←$ A .

It then outputs
(
(K1, (N1, A1, τ1)), (K2, (N2, A2, τ2)

)
.

Adversary B2 also runs
(
(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)

)
←$ A .
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Let Li ← H(Ki, (Ni, Ai, τi)) for every i ∈ {1, 2}. Adversary B2 then outputs(
(L1, ε, ε,M1, τ1), (L2, ε, ε,M2, τ2)

)
.

For analysis, let Ci ← HtE[H,SE].Enc(Ki, Ni, Ai,Mi, τi) for each i ∈ {1, 2}. Note
that Ci = SE.Enc(Li, ε, ε,Mi, τi). Assume that A succeeds in creating a collision,
meaning that C1 = C2. If L1 = L2 then B1 also creates a collision. Suppose that
L1 
= L2. Then B2 creates a collision. Hence

Advcmt
HtE[H,SE](A) ≤ Advcoll

H (B1) + Advcmt-1
SE (B2)

as claimed. �


HtE preserves RAE security. The following result shows that if H is a PRF
then HtE preserves the RAE security.

Proposition 2. Let SE be an RAE scheme of key space {0, 1}k, nonce space {ε},
and expansion space X . Let H : {0, 1}k×(N ×{0, 1}∗×X ) → {0, 1}k be a (keyed)
hash function. Consider an adversary A of q queries, with at most B queries per
(user, nonce, AD, expansion). For any simulator Simb, we can build adversaries
B1 and B2 and a simulator Sima such that

Advrae
HtE[H,SE],Sima

(A) ≤ Advprf
H (B1) + Advrae

SE,Simb
(B2) .

The running time of Sima is about the same as that of Simb. Adversary B1

makes q queries. Its running time is about that of A plus the cost of using SE to
encrypt/decrypt A’s queries. Adversary B2 has about the same running time as
A and also makes q queries of the total length as A, but it makes only B queries
per user.

Proof. We first construct the simulator Sima. It maintains a counter v for the
current number of users and a state st∗ for Simb, and lazily maintains a map Tbl
to translate a tuple (i,N,A, τ) to a user u. On (i,N,A,C, τ, st), it parses st into
(v, st∗,Tbl). It then checks if Tbl[i,N,A, τ ] is defined. If not then it increments
v and sets Tbl[i,N,A, τ ] ← v. In any case, it gets u ← Tbl[i,N,A, τ ] and runs
(M, st∗) ←$ Simb(u, ε, ε, C, τ, st∗). It then update its own state st ← (v,Tbl, st∗),
and returns (M, st).

Consider the following sequence of games. Game G0 corresponds to game
Grae

HtE[H,SE],Sima
(A) with challenge bit 1. Game G1 is identical to game G0, except

that instead of using H(Ki, ·, ·, ·) to derive the subkeys for user i, we use a truly
random function fi : N × {0, 1}∗ × X → {0, 1}k. To bound the gap between G0

and G1, we construct an adversary B1 attacking the (multi-user) PRF security
of H. It runs A and simulates game G0, but each call to H(Ki, ·) is replaced by
a corresponding call to Eval(i, ·). Then

Advprf
H (B1) = Pr[G0(A)] − Pr[G1(A)] .

Next, game G2 corresponds to game Grae
HtE[H,SE],Sima

(A) with challenge bit 0.
To bound the gap between G1 and G2, we construct an adversary B2 attack-
ing the (multi-user) RAE security of SE. It runs A. For each encryption
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query (i,N,A,M, τ) of A, it calls C ← Enc(u, ε, ε,M, τ) for the effective user
u = (i,N,A, τ), and returns C to A. (This means B2 must lazily maintain a map
from N×N ×{0, 1}∗ ×X → N to translate (i,N,A, τ) to an integer u.) Likewise,
for each decryption query (i,N,A,C, τ) of A, it returns Dec(u, ε, ε, C, τ) for the
effective user u = (i,N,A, τ). Hence

Advrae
SE,Simb

(B2) = Pr[G1(A)] − Pr[G2(A)] .

Summing up,

Advrae
HtE[H,SE],Sima

(A) = Pr[G0(A)] − Pr[G2(A)]
= (Pr[G0(A)] − Pr[G1(A)]) + (Pr[G1(A)] − Pr[G2(A)])

= Advprf
H (B1) + Advrae

SE,Simb
(B2) .

This concludes the proof. �


Instantiation. To have strong committing security, the key length k needs to
be 256-bit. If the nonce length is fixed then one can instantiate H(K,N,A, τ) via
SHA-512(K‖N‖A‖[τ ]16)[1 : 256] or SHA-3(K‖N‖A‖[τ ]16)[1 : 256], where [τ ]16
is a 16-bit representation of the number of τ . We stress that one should avoid
using SHA-256, because of the extension attack.

4 Fast Collision-Resistant PRF From Blockcipher

Recall that in CMT-1 security, we want to commit a short string (namely the
key). This doesn’t require a fully-fledged collision-resistant hash like SHA-512
or SHA-3. Instead, one can use cheaper constructions like Davies-Meyer applied
to AES, as first suggested in the context of commitment security in [4]. Running
Davies-Meyer on a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n however can only
provide an n-bit commitment. In this section, we investigate how to produce a
λ-bit commitment, where n ≤ λ ≤ 2n. Specifically, we want to build a collision-
resistant PRF H : {0, 1}k × {0, 1}n−1 → {0, 1}λ on top of E with λ/2 bits of
security. Below, we show how to do that by “doubling” Davies-Meyer.

The Double Davies-Meyer hash. The code of the hash function DM2[E, λ] :
{0, 1}k × {0, 1}n−1 → {0, 1}λ is given in Fig. 10. Informally, to hash M with
key K, we run two Davies-Meyer, one with (K,M‖0), and another with
(K,M‖1), and then truncate the concatenated output. For λ = n, we recover
the conventional Davies-Meyer construction.

Collision resistance of DM2. The following result confirms that DM2[E, λ]
has λ/2-bit collision resistance if E is modeled as an ideal cipher.

Proposition 3. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that we will
model as an ideal cipher. Let n ≤ λ ≤ 2n. Then for any adversary A that makes
at most q ideal-cipher queries,

Advcoll
DM2[E,λ](A) ≤ 8q2

2λ
+

2
2n

.
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Fig. 10. The DM2 hashing.

Proof. Without loss of generality, assume that the adversary does not make
redundant queries. That is, it does not repeat prior queries, and if it queries
C ← EK(P ) then later it will not query E−1

K (C), and if it queries P ← E−1
K (C)

then it will not later query EK(P ). For each query C ← E(K,P ) we store a
log entry (K,P,C⊕P ). Likewise, for each query P ← E−1(K,C), we store a log
entry (K,P,C⊕P ). For an n-bit string P , let P denote the string obtained by
flipping the last bit of P .

If a query results in a log entry (K,P,C) and there is no prior entry (K,P ,C∗)
then we immediately grant the adversary a free query EK(P ) and store the
corresponding log entry. These free queries can only help the adversary. As a
result, if we sort the log entries according to their querying order, then the ith
query is the granted ones, for every even i ≤ 2q.

Without loss of generality, assume that the right-hand side of the claimed
bound is smaller than 1; otherwise the bound is moot. That is, q ≤ 2n−1. Thus
for each entry (K,P,C), conditioning on prior entries, the value X is uniformly
chosen from a set of at least 2n − q ≥ 2n−1 members. Let r = λ − n.

Suppose that A outputs (K1,M1,K2,M2). Let Bad be the event that there
are entries (K1,M1‖0,X1), (K1,M1‖1,X∗

1 ), (K2,M2‖0,X2), (K2,M2‖1,X∗
2 ) in

the logs. We now bound the advantage of the adversary depending on whether
Bad happens.

If Bad does not happen. If Bad does not happen, because of the symmetry
and the way we grant free queries, without loss of generality, suppose that there is
no entry (K1,M1‖0,X1). In that case, the chance that E(K1,M1‖0)⊕(M1‖0) =
E(K2,M2‖0)⊕(M2‖0) is at most 21−n.
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If Bad happens. By symmetry, without loss of generality, assume that among
the four corresponding entries, (K1,M1‖0,X1) happens first (meaning that it is
a non-granted query). For every (i, j) such that i is odd and 1 ≤ i < j ≤ 2q, let
Badi,j be the event that the query of (K1,M1‖0,X1) is the ith query, and the
first query of (K1,M2‖0,X2) and (K2,M2‖1,X∗

2 ) is the jth query. Then

Bad =
⋃

Badi,j .

Note that there are at most

(2q − 1) + (2q − 3) + · · · + 1 = q2

pairs (i, j). Fix one such pair. We now bound the adversary’s advantage assuming
that Badi,j happens. We consider the following cases.
Case 1: The jth query creates the entry (K2,M2‖0,X2). Then X2 = X1 with
probability at most 21−n. Moreover, conditioning on X2 = X1, because the
entries (K1,M1‖1,X∗

1 ) and (K2,M2‖1,X∗
2 ) corresponds to the granted queries,

the conditional probability that X∗
2 [1 : r] = X∗

1 [1 : r] is at most 21−r. Summing
up over at most q2 pairs (i, j), the chance that this case happens is at most
4q2/2n+r = 4q2/2λ.
Case 2: The jth query creates the entry (K2,M2‖1,X2). Then the entries
(K1,M1‖1,X∗

1 ) and (K2,M2‖0,X2) corresponds to the granted queries. Thus
the chance that (X∗

1 [1 : r],X2) = (X∗
2 [1 : r],X1) is at most 4/2λ. Summing up

over at most q2 pairs (i, j), the chance that this case happens is at most 4q2/2λ.

Wrapping up. Summing up all cases,

Advcoll
DM2[E,λ](A) ≤ 8q2

2λ
+

2
2n

as claimed. �


PRF security of DM2. The following result shows that if we model E as a
good PRF then DM2 is also a good PRF.

Proposition 4. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Let n ≤
λ ≤ 2n. Then for any adversary A that makes at most q queries, we can construct
an adversary B of about the same time and 2q queries such that

Advprf
DM2[E,λ](A) ≤ Advprf

E (B) .

Proof. Without loss of generality, assume that A does not repeat a prior query.
Consider the following sequence of games. Game G0 is game Gprf

DM2[E,λ](A) with
challenge bit 1. Game G1 is identical to game G0, except that each call to
E(Ki, ·) is replaced with a corresponding call to a truly random function fi :
{0, 1}n → {0, 1}n. To bound the gap between the two games, we construct an
adversary B attacking the (multi-user) PRF security of E as follows. It runs A
and simulates game G0, but each call to E(Ki, ·) is replaced by a corresponding
call to Eval(i, ·). Then

Advprf
E (B) = Pr[G0(A)] − Pr[G1(A)] .
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Let G2 be game Gprf
DM2[E,λ](A) with challenge bit 0. We now bound the gap

between G1 and G2 for a computationally unbounded adversary A. Without loss
of generality, assume that A is deterministic and never repeats a prior query.
Note that in game G1, thanks to the domain separation in DM2, each fi is never
called on the same input twice, and thus effectively, in game G1, for each Eval

call, adversary A receives a truly random answer. Likewise, in game G2, for each
Eval call, adversary A receives a truly random answer. Hence

Pr[G1(A)] = Pr[G2(A)] .

Summing up,

Advprf
DM2[E,λ](A) = Pr[G0(A)] − Pr[G2(A)]

= (Pr[G0(A)] − Pr[G1(A)]) + (Pr[G1(A)] − Pr[G2(A)])

= Advprf
E (B) .

This concludes the proof. �


5 Committing Concealer

In this section, we formalize a new primitive that we call a committing concealer.
Functionality wise, a committing concealer C : K × {0, 1}m → {0, 1}m is simply
a blockcipher on {0, 1}m, with C−1 denoting its inverse. But traditionally a
blockcipher is only secure if it is a strong PRP, but we will weaken this security
goal in order to allow more efficient constructions. Looking ahead to our Feistel-
based approach to committing concealers, we’ll show a weaker security goal that
allows us to get by with a two-round Feistel network, rather than the four rounds
that would be required to achieve security as a strong PRP [21].

Hiding security. Our weaker security goal is what we call hiding security.
It requires a committing concealer be a one-time strong PRP, meaning that
an adversary is allowed only a single query per user. In particular, define the
advantage of an adversary A breaking the hiding security of C as

Advhide
C (A) = Pr[Ghide

C (A)] ,

where game Ghide
C (A) is defined in Fig. 11.

Binding security. Let s ≤ m be an integer, and let {0, 1}≤m−s denote the set
of bit strings whose length is at most m − s. Let encode : {0, 1}≤m−s → {0, 1}m

be a function. Define the binding advantage of an adversary A against C with
respect to encode as

Advbind
C,encode(A) = Pr[Gbind

C,encode(A)] ,

where game Gbind
C,encode(A) is defined in Fig. 12. Informally, we want the ciphertext

of C to be a commitment of the key, if we restrict to messages in {encode(X) |
X ∈ {0, 1}≤m−s}.
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Fig. 11. Game defining hiding security of C. The game maintains a set Used of users
that A has queried.

Fig. 12. Game defining binding security of C.

Relation to prior work. Bellare and Hoang [5] recently consider how to add
committing security to a standard AE scheme without expanding the ciphertext
length. Their method requires that the scheme is tag-based, meaning that the
ciphertext consists of a ciphertext core C∗ and a tag T , and one can recover the
message from just C∗ (but of course without authenticity guarantees). As such,
their method doesn’t work for SIV constructions [26] (because the tag is needed
for decryption), or EtE constructions (because there is no tag).

The work of Bellare and Hoang relies on an invertible PRF (IPF) that is
also collision-resistant. Their construction of collision-resistant IPF encodes the
message and then enciphers it with what is implicitly a committing concealer.
In Sect. 5.2 we will study this committing concealer construction.

5.1 Committing Concealer from Ideal Cipher

As a warmup, we show that a blockcipher E : {0, 1}k ×{0, 1}n → {0, 1}n can be
used directly as a committing concealer if we model E as an ideal cipher. Still,
if we want E to have strong binding security, the block length n needs to be at
least 256 bits, meaning that we can’t instantiate E from AES.

Hiding security. If E is modeled as a strong PRP then it obviously has good
hiding security. We state the formal result for completeness.

Proposition 5. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Then for
any adversary A,

Advhide
E (A) ≤ Adv±prp

E (A) .
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Binding security. The following result, from Bellare and Hoang [5], shows
that if we model E as an ideal cipher then it also has good binding security, for
any encoding mechanism. Due to the term q2/2n, if we aim for strong binding
security, we need n ≥ 256, meaning we need to instantiate E from, say Rijndael-
256.

Proposition 6 ([5]). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we model as an ideal cipher. Let encode : {0, 1}≤n−s → {0, 1}n be a function.
Then for any adversary A that makes at most q ideal-cipher queries,

Advbind
E,encode(A) ≤ 4q

2s
+

2q2

2n
.

5.2 Committing Concealer from Two-Round Feistel

In this section, we show how to build a committing concealer FF from a two-
round Feistel network. The round functions are built on top of a blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n that we can instantiate via AES.

The FF construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
Let � < n be an integer. Define pad(·, 0) : {0, 1}n → {0, 1}n via pad(X, 0) =
X[1 : n − 1]‖0, and define pad(·, 1) : {0, 1}� → {0, 1}n via pad(Y, 1) = Y ‖1n−�.
Note that pad is a domain separation in the sense that pad(X, 0) 
= pad(Y, 1) for
any X,Y .

The committing concealer FF[E, �] has message space {0, 1}n+�. It is a two-
round unbalanced Feistel network, where the left-hand side is n bits, and the
right-hand side is � bits. The round functions are based on the Davies-Meyer con-
struction of E. See Fig. 13 for the code and also an illustration. This committing
concealer is implicit in the recent work of Bellare and Hoang [5].

Hiding security of FF. The following result shows that FF has good hiding
security, assuming that E is a good PRF.

Proposition 7. Let n, � be integers such that � < n. Let E : {0, 1}k ×{0, 1}n →
{0, 1}n be a blockcipher. Then for an adversary A that makes at most q queries,
we can construct an adversary B of about the same time and 2q queries, with
two queries per user, such that

Advhide
FF[E,�](A) ≤ Advprf

E (B) .

Proof. Consider the following sequence of games. Game G0 coincides with game
Ghide

C (A) with challenge bit 1. Game G1 is identical to game G1, except that
each E(Ki, ·) is replaced by a truly random function fi : {0, 1}n → {0, 1}n. To
bound the gap between the two games, we construct an adversary B attacking
the (multi-user) PRF security of E as follows. It runs A and simulates game G0,
but each call to E(Ki, ·) is replaced by a corresponding call to Eval(i, ·). Then

Advprf
E (B) = Pr[G0(A)] − Pr[G1(A)] .
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Fig. 13. The committing concealer C = FF[E, �]. In the illustration, the function H
denotes the Davies-Meyer construction on E, meaning H(K, M) = EK(M)⊕M .

Fig. 14. Game G2 in the proof of Proposition 7.

Note that in game G1, each fi is never run on the same input twice, thanks to
the domain separation in FF and the requirement that the adversary can make a
single query per user. Then we can rewrite game G1 as game G2 in Fig. 14, and
the two games are equivalent. Note that effectively, in game G2, each Enc/Dec

query returns a truly random answer. Thus game G2 is equivalent to game
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Ghide
C (A) with challenge bit 0. Summing up,

Advhide
FF[E,�](A) = Pr[G0(A)] − Pr[G2(A)]

= (Pr[G0(A)] − Pr[G1(A)]) + (Pr[G1(A)] − Pr[G2(A)])

= Advprf
E (B) .

This concludes the proof. �


Binding security of FF. Let 1 ≤ t ≤ n. Let encode : {0, 1}≤n−t → {0, 1}n+�

be a function such that encode(X) must end with 0�+1. The following result of
Bellare and Hoang [5] shows that FF[E, �] has about (�− log2(n)) bits of binding
security in the ideal-cipher model.

Proposition 8 ([5]). Let n, � be integers such that n ≥ 32 and � < n. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let encode be as above. Then for an adversary A that makes at most q
ideal-cipher queries,

Advbind
FF[E,�],encode(A) ≤ 4(n + �)q + 5

2�
.

6 A Committing Transform for Wideblock TBC

Let TE be a wideblock TBC with message space {0, 1}≥k, key space {0, 1}k, and
tweak space T . Our goal is to turn it into a wideblock TBC TE of the same tweak
space and key space such that using TE in the EtE transform gives a scheme of
both CMT-1 and RAE security. We achieve this via the Encipher-with-Concealer
(EwC) transform below.

The EwC transform. Let C be a committing concealer of message space
{0, 1}m and key space {0, 1}k. Let G : {0, 1}n × {0, 1}m → {0, 1}n be a c-AXU
hash function, with n ≤ k. Let H : {0, 1}k × {0, 1}r → {0, 1}k be a collision-
resistant PRF, with r ≤ n. For an integer i ∈ {0, . . . , 2r − 1}, let [i]r denote
the r-bit representation of i. For two strings X and Y with |X| ≤ |Y |, we write
X⊕Y to denote (X‖0|Y |−|X|)⊕Y . The code of the transform EwC[TE,C,H,G]
is given in Fig. 15. The scheme has message space {0, 1}≥m+k.

Informally, we use a four-round Feistel-like structure, where the right-hand
side is m bits. Following Naor and Reingold [24], the first and last rounds
are implemented via the AXU hash G (whose output is padded with 0’s). In
the second round, we encipher the intermediate left-hand side U via V ←
TE.Enc(L, T, U), where the subkey L is derived via L ← HK([2]r). In the third
round, we derive a one-time key R ← HI(U [1 : r]⊕V [1 : r]) for C, where
I ← HK([3]r), and use C to encipher the intermediate right-hand side.

Since we only need to use the r-bit prefix of the output of TE for C, on
long messages, the evaluation of TE and C can be parallelized, for off-the-shelf
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Fig. 15. The EwC transform. We omit the derivation of subkeys J, J∗, L, I in the illus-
tration.

constructions of TE such as AEZ [18] or HCTR2 [14]. Conversely, on decryp-
tion, this allows fast rejection of invalid ciphertexts, which is important to resist
denial-of-service attacks. The subkeys J, J∗, L, I can be cached and the cost of
their derivation can be ignored if EwC is used in a stand-alone way. Still, if we
compose it with the HtE transform in Sect. 3.2 then we have to account for this
key derivation. However, in that case, the overhead of EwC is negligible compared
to the hashing cost in HtE.

Discussion. Structurally, EwC resembles the Hash-CTR-Hash (HCH)
method [10] but there are nuances in the design. Here the message is split into
two uneven halves, one of |M | − O(1) bits, and the other just O(1) bits. HCH
runs the universal hash on the big half, meaning the hashing cost is Θ(|M |). In



334 V. T. Hoang and S. Menda

contrast, EwC runs the universal hash on the small half, and thus the hashing
cost is merely O(1). On the other hand, while both have to encrypt Θ(|M |) bits
with their base encryption schemes, EwC has to use the expensive TE but HCH
only needs to run the cheap CTR.

Instantiations. If we want to use AES, we can instantiate H from the DM2
construction in Sect. 4, with AES-256 as the underlying blockcipher, and instan-
tiate G from GHASH or POLYVAL [17]. This means k = 256 and r = 127 and
n = 128 and c = 2. The committing concealer C can be built from the FF con-
struction in Sect. 5.2, again on AES-256. If we want to achieve around � − 8 bits
of CMT-1 security, with � < 128, the input length of C should be m = � + 128.
However, in EtE, if we want CMT-1 security, the minimum expansion must be
�+1 bits. Moreover, EwC only uses AES-256 in the forward direction. The over-
head of EwC (assuming that the subkeys are cached) is four multiplications in
GF(2128) and four AES-256 calls plus an AES key setup. If AES-NI is available,
the AES cost is approximately three sequential AES-256, because a good imple-
mentation can hide the key setup cost, and running two parallel AES calls in
DM2 has the same cost as one.4

If we instead have a blockcipher of 256-bit block length, say Rijndael-256,
the instantiation is much simpler. In particular, we can instantiate H from the
Davies-Meyer construction of Rijndael-256, and C directly from Rijndael-256,
meaning k = m = r = 256. Moreover, we can pick n = 256 and instantiate
GJ (X) as X × J , where × denotes the finite-field multiplication in GF(2256),
meaning c = 1. Thus the overhead of EwC in this case is two multiplications in
GF(2256) and two sequential Rijndael-256 calls plus the Rijndael-256 key setup
cost (that can be hidden with a good implementation if AES-NI is available).5

For both instantiations, in EtE, we can pad with either 10∗ or 0∗.

CMT-1 security of EtE[EwC]. Suppose that C has good binding security with
respect to an encoding encode : {0, 1}≤m−s → {0, 1}m. Define the following
padding mechanism in EtE. If we have a message M and want to pad τ ≥ s bits to
it, we parse M to M1‖M2, with |M2| = m−τ , and then output M1‖encode(M2).
(We assume that one can efficiently recover the message X from encode(X)
and |X|, so that EtE is decryptable under the padding above.) For example, if
encode(X) = X‖0m−|X|, the padding mechanism simply adds 0τ to the message.
The following result shows that EtE[EwC] has good CMT-1 security. Intuitively,
we have a commitment chain K

H−→ I
H−→ R

C−→ C2, and thus C2 is a commitment
of K.

4 If we count the cost of subkey generation, we need six extra AES calls (instead of
eight). In particular, since J and J∗ are 128-bit long, each only needs one AES call
(instead of two). These six AES are fully parallel, so running them costs as much as
one AES call in AES-NI platforms.

5 If we count the cost of subkey generation, we need four extra (parallel) Rijndael-256
calls.
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Theorem 9. Let TE = EwC[TE,C,H,G] be as above. For any adversary A, we
can construct adversaries B1 and B2 such that

Advcmt-1
EtE[TE]

(A) ≤ Advcoll
H (B1) + Advbind

C,encode(B2) .

Proof. We first construct adversary B1. It runs
(
(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)

)
←$ A .

It then runs EtE[TE] on (K,N,A, P‖S, τ) to obtain the subkeys I and R ←
H(I,X). It also runs EtE[TE] on (K∗, N∗, A∗, P ∗‖S∗, τ∗) to obtain (I∗, R∗,X∗).
If I = I∗ then it outputs ((K, [3]r), (K∗, [3]r)). Otherwise, it outputs ((I,X),
(I∗,X∗)).
Next, we construct B2. It runs

(
(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)

)
←$ A .

It then obtains subkeys R and R∗, and outputs ((R,S), (R∗, S∗)).

For analysis, let C1‖C2 and C∗
1‖C∗

2 be the corresponding ciphertexts. Suppose
that A can create a ciphertext collision, meaning C1 = C∗

1 and C2 = C∗
2 and

K 
= K∗. If R = R∗ then B1 also creates a collision. If R 
= R∗ then B2 creates
a collision. Hence

Advcmt-1
EtE[TE]

(A) ≤ Advcoll
H (B1) + Advbind

C,encode(B2) .

This concludes the proof. �


Strong tweakable-PRP security of EwC. The following result shows that
EwC is a strong tweakable-PRP. The proof is deferred to Sect. 8.

Theorem 10. Let TE = EwC[TE,C,H,G] be as above. For any adversary A
making q queries, with at most B queries per user, we can construct adversaries
B1, B2, and B3 such that

Adv±p̃rp

TE
(A) ≤ 2Advprf

H (B1) + Adv±p̃rp
TE (B2) + Advhide

C (B3) +
6cqB

2r
+

6qB

2m
.

7 Performance

Schemes. We start from HCTR2 [14] as our baseline wideblock tweakable block
cipher. We use HCTR2 on AES-256 since the Accordion call targets 256-bit (key-
recovery) security, but note that one can use EwC on HCTR2-AES-128 as well.
We implement EwC with the committing concealer C being the FF construction
from Sect. 5.2, the hash H being the DM2 construction from Sect. 4, the AXU
hash G being POLYVAL [17], and set � = 120.

Experimental setup. We evaluated the schemes on a range of message lengths
from 64 bytes to 16384 bytes. For each message length, after warming up the
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Fig. 16. Performance of EwC transform. The graph shows CPU cycles-per-byte (y-axis,
lower is better) for encrypting messages of varying sizes (x-axis, in bytes) on a x86 64
processor.

operation 2048 invocations, we measured the elapsed time in cycles for 2048
invocations. We divided this elapsed time by the number of encrypted bytes to
compute the number of cycles per byte. To minimize variance, we repeated this
eight times, checked that the standard deviation across the repetitions was less
than 0.05 cycles per byte, and took the mean.

Our benchmarking program used the implementation accompanying the
paper [14] and was executed on an Intel i7-1360P, on a specified core running at
2.4 GHz with frequency scaling disabled.

Results. The statistics is given in Fig. 16. Overall, the overhead is significant
for small data, but becomes negligible for messages bigger than 1 KB.

8 Proof of Theorem 10

8.1 A Technique to Simplify Game-Based Proofs

Our proof relies on a novel use of the H-coefficient technique [12,25] to simplify
game-based proofs [8]. This technique is generic, and in this section, we will
elaborate on its details.

The setting. Suppose we have a construction based on an indistinguishability-
based primitive Π, such as a PRF, an encryption scheme, or in our case, a
committing concealer. The security notion of this construction involves bounding
the gap between the real game G0 (where Π is used) and an ideal game G2.
The standard approach is to (i) define an intermediate game G1 where Π is
replaced by its ideal reference, (ii) give a reduction to bound the gap between
G0 and G1, and (iii) bound the (information-theoretic) gap between G1 and G2.
This approach doesn’t work if in step (ii), the reduction only works as long as
G0 doesn’t set a flag bad. For example, in our case, we have to derive the key
for the committing concealer, and the key is uniformly random only when G0

doesn’t set bad.
To deal with the situation above, define G1 as the analogue of G0 where Π

is replaced by its ideal reference; this means that G1 also includes a flag bad.
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The reduction still works as usual, but keeps track of the flag bad. If bad is set,
then the reduction returns 1, suggesting that it’s interacting with the real world.
Otherwise, it follows the guess of the adversary.

In this case, the reduction advantage Δ doesn’t bound Pr[G0] − Pr[G1].
Instead, Pr[G0] − Pr[G1] ≤ Δ + Pr[G1 sets bad]. This means that we need to
bound (1) the chance that G1 sets bad, and also (2) the gap Pr[G1] − Pr[G2].
Here we only consider information-theoretic bounds, meaning the adversary is
computationally unbounded, and thus can be assumed to be deterministic. There
are many techniques [12,15,19,25] for simplifying the analysis in (2), but none
considers (1). In this section, we show how to extend the H-coefficient tech-
nique [12,25] to simultaneously bound both (1) and (2). That is, not only can
we simplify the analysis of (1), but we can kill two birds with one stone.

The H-coefficient technique. Following [19], it is convenient to consider
interactions of a distinguisher A with an abstract system S which answers A’s
queries. This system takes inputs and produces outputs, and is randomized and
possibly stateful. The interaction between an adversary A and a system S defines
a transcript θ =

(
(u1, v1), . . . , (uq, vq)

)
containing the ordered sequence of query-

answer pairs. Let pS(θ) be the probability that if the adversary queries u1, . . . , uq

in that order, the answers will be v1, . . . , vq respectively.
In the H-coefficient technique, one wants to bound the distinguishing advan-

tage of a real system Sreal and an ideal one Sideal. The adversary’s interactions
with those systems define transcripts Treal and Tideal, respectively. The following
result bounds the distinguishing advantage of A.

Lemma 11. [12,25] Suppose we can partition the set of valid transcripts for the
ideal system into good and bad ones. Further, suppose that there exists a constant
ε ≥ 0 such that 1− pSreal (θ)

pSideal (θ)
≤ ε for every good transcript θ. Then, the advantage

of A in distinguishing Sreal and Sideal is at most ε + Pr[Tideal is bad] .

Application to our setting. Recall that we have two games G1 and G2,
and we need to bound (1) Pr[G1 sets bad] and (2) Pr[G1] − Pr[G2]. To use the
H-coefficient technique, we view G1 as the real system Sreal, and G2 as the ideal
system Sideal, and define what’s meant for transcripts to be bad. Then one can
use Lemma 11 to bound (2). Our key idea here is that it’s often possible to
extend the definition of bad transcripts (say adding some certain conditions, or
revealing some extra information when the adversary finishes querying) so that
if G1 sets bad then the transcript must be bad. In that case, the following result
shows that the same bound of Lemma 11 can be used to bound (1) as well. In
fact, the actual bound is even slightly better.

Lemma 12. Suppose we can partition the set of valid transcripts for the ideal
system into good and bad ones such that if G1 sets bad then the transcript must be
bad. Further, suppose that there exists a constant ε ≥ 0 such that 1− pSreal (θ)

pSideal (θ)
≤ ε

for every good transcript θ. Then

Pr[G1 sets bad] ≤ ε + (1 − ε) Pr[Tideal is bad] .
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Proof. Since G1’s setting bad will lead to a bad transcript,

Pr[G1 sets bad] ≤ Pr[Treal is bad] ≤ 1 − Pr[Treal is good] . (1)

Recall that for any good transcript θ,

pSreal(θ) ≥ (1 − ε)pSideal(θ) .

Summing this over all good transcripts,

Pr[Treal is good] ≥ (1 − ε) Pr[Tideal is good] . (2)

By combining Eq. (1) and Eq. (2), we obtain

Pr[G1 sets bad] ≤ 1 − (1 − ε) Pr[Tideal is good]
= 1 − (1 − ε)

(
1 − Pr[Tideal is bad]

)

= ε + (1 − ε) Pr[Tideal is bad] .

This concludes the proof. �


Discussion. Let Badreal be the event that G1 sets bad. Our approach requires
extending the definition of bad transcripts so that if Badreal happens, the result-
ing transcript will be bad. Effectively, this requires bounding the probability of
an extra event Badideal in the ideal system when we deal with Pr[Tideal is bad].
This doesn’t mean we gain nothing, because events in the ideal system are often
much easier to analyze.

8.2 Proof of Theorem 10

Without loss of generality, assume that the adversary doesn’t repeat prior
queries. Moreover, if it queries C ← Enc(i, T,M) then it won’t later query
Dec(i, T, C), and vice versa.

Consider the following sequence of games. Game G0 coincides to game G±p̃rp

TE
(A)

with challenge bit 1. Game G1 is identical to game G0, except that each call to
H(Ki, ·) is replaced by a corresponding call to a truly random function fi :
{0, 1}r → {0, 1}k. To bound the gap between the two games, we construct an
adversary D1 attacking the (multi-user) PRF security of H as follows. It runs A
and simulates game G0, but each call to H(Ki, ·) is replaced by a corresponding
call to Eval(i, ·). Then

Advprf
H (D1) = Pr[G0(A)] − Pr[G1(A)] .

Then in game G1, the subkeys Ji, J
∗
i , Li, Ii will be uniformly random. In

game G2, instead of using H(Ii, ·), we uses truly random functions gi : {0, 1}r →
{0, 1}k. To bound the gap between G2 and G1, we construct an adversary D2

attacking the (multi-user) security of H as follows. It runs A and simulates game
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Fig. 17. Games G4 and G5 in the proof of Theorem 10. Game G5 contains the high-
lighted code but game G4 does not.

G1, but each call to H(Ii, ·) is replaced by a corresponding call to Eval(i, ·).
Then

Advprf
H (D2) = Pr[G1(A)] − Pr[G2(A)] .

So far we have two adversaries attacking the PRF security of H. We can unify
them to an adversary B1 as follow: adversary B1 picks a coin b ←$ {0, 1}, and
runs Db. Then

Advprf
H (B1) =

1
2
Advprf

H (D1) +
1
2
Advprf

H (D2) ,

and thus
Pr[G0(A)] − Pr[G2(A)] = 2 · Advprf

H (B1) .

Let M be the domain of TE, and let LP(M) denote the set of permutations on M
that are length-preserving, meaning |π(M)| = |M | for every M ∈ M. Game G3

is identical to game G2, but calls to TE.Enc(Li, T, ·) and TE.Dec(Li, T, ·) are
replaced by corresponding calls to Πi,T ←$ LP(M) and its inverse. To bound
the gap between the two games, we construct an adversary B2 attacking the
(multi-user) strong tweakable-PRP security of TE as follows. It runs A and
simulates game G2, but calls to calls to TE.Enc(Li, T, ·) and TE.Dec(Li, T, ·) are
replaced by corresponding calls to Enc(i, T, ·) and Dec(i, T, ·). Then

Adv±p̃rp
TE (B2) = Pr[G2(A)] − Pr[G3(A)] .

Game G4 is specified in Fig. 17. It is the same as G3 with some bookkeeping,
and thus

Pr[G4(A)] = Pr[G3(A)] .

We are now in the setting of Sect. 8.1, as the keys for C are uniformly only when
G4 doesn’t set bad. Let G5 be identical to game G4, except that the answers
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of C and C−1 are replaced by uniformly random strings. The code of game G5

is specified in Fig. 17. To bound the gap between the two games, we construct
an adversary B3 attacking the hiding security of C as follows. It runs A and
simulates game G4. For each call to C(R, ·), it creates a new user u and makes a
corresponding call to Enc(u, ·). Likewise, for each call to C−1(R, ·), it creates a
new user u∗ and makes a corresponding call to Dec(u∗, ·). If the simulated game
sets bad then B3 returns 1, indicating that it’s in the real world. Otherwise, it
returns the same guess as A.
Let d be the challenge bit of game Ghide

C (B3). Then on the one hand,

Pr[Ghide
C (B3) ⇒ true | d = 1] ≥ Pr[G4(A)] .

On the other hand,

Pr[Ghide
C (B3) ⇒ false | d = 0] ≤ Pr[G5(A)] + Pr[G5(A) sets bad] .

Subtracting, we obtain

Pr[G4(A)] − Pr[G5(A)] ≤ Advhide
C (B3) + Pr[G5(A) sets bad] .

Let G6 be game G±p̃rp

TE
(A) with challenge bit 0. Using the technique in Sect. 8.1,

we obtain the following result; the proof is given in the full version of the paper.

Lemma 13. Let G5 and G6 be as above. Then

Pr[G5(A) sets bad] + (Pr[G5(A)] − Pr[G6(A)]) ≤ 2qB

2m
+

6cqB

2r
.

Summing up,

Adv±p̃rp
TE (A) = Pr[G0(A)] − Pr[G6(A)]

=
5∑

i=0

Pr[Gi(A)] − Pr[Gi+1(A)]

≤ 2Advprf
H (B1) + Adv±p̃rp

TE (B2) + Advhide
C (B3) +

6cqB

2r
+

2qB

2m
.
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