
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

88

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part V

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15488
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part V

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0934-5 ISBN 978-981-96-0935-2 (eBook)
https://doi.org/10.1007/978-981-96-0935-2

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0935-2

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACRDistinguished Lecture,
delivered by Paul Kocher, as well as an invited talk by Dakshita Khurana. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Distinguished PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo

(Japan) and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent Researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part V

Key Exchange Protocols

C’est Très CHIC: A Compact Password-Authenticated Key Exchange
from Lattice-Based KEM . 3

Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, and Marjan Škrobot

Efficient Asymmetric PAKE Compiler from KEM and AE 34
You Lyu, Shengli Liu, and Shuai Han

Threshold PAKE with Security Against Compromise of All Servers 66
Yanqi Gu, Stanislaw Jarecki, Pawel Kedzior, Phillip Nazarian,
and Jiayu Xu

Key Exchange in the Post-snowden Era: Universally Composable
Subversion-Resilient PAKE . 101

Suvradip Chakraborty, Lorenzo Magliocco, Bernardo Magri,
and Daniele Venturi

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 134
Emanuele Di Giandomenico, Doreen Riepel, and Sven Schäge

Anamorphic Authenticated Key Exchange: Double Key Distribution
Under Surveillance . 168

Weihao Wang, Shuai Han, and Shengli Liu

Succinct Arguments

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments:
(Extended Abstract) . 203

Michael Klooß, Russell W. F. Lai, Ngoc Khanh Nguyen,
and Michał Osadnik

MuxProofs: Succinct Arguments for Machine Computation from Vector
Lookups . 236

Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi

xviii Contents – Part V

Verifiable Computation

Proofs for Deep Thought: Accumulation for Large Memories
and Deterministic Computations . 269

Benedikt Bünz and Jessica Chen

HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted
Data from Interactive Oracle Proofs is Practical . 302

Diego F. Aranha, Anamaria Costache, Antonio Guimarães,
and Eduardo Soria-Vazquez

Zero-knowledge Protocols

Interactive Line-Point Zero-Knowledge with Sublinear Communication
and Linear Computation . 337

Fuchun Lin, Chaoping Xing, and Yizhou Yao

LogRobin++: Optimizing Proofs of Disjunctive Statements
in VOLE-Based ZK . 367

Carmit Hazay, David Heath, Vladimir Kolesnikov,
Muthuramakrishnan Venkitasubramaniam, and Yibin Yang

FLI: Folding Lookup Instances . 402
Albert Garreta and Ignacio Manzur

Code-Based Zero-Knowledge from VOLE-in-the-Head and Their
Applications: Simpler, Faster, and Smaller . 436

Ying Ouyang, Deng Tang, and Yanhong Xu

Author Index . 471

Key Exchange Protocols

C’est Très CHIC: A Compact
Password-Authenticated Key Exchange

from Lattice-Based KEM

Afonso Arriaga1(B) , Manuel Barbosa2,3,4 , Stanislaw Jarecki5 ,
and Marjan Škrobot1

1 SnT - University of Luxembourg, Esch-sur-Alzette, Luxembourg
{afonso.delerue,marjan.skrobot}@uni.lu

2 FCUP, University of Porto, Porto, Portugal
mbb@fc.up.pt

3 INESC TEC, Porto, Portugal
4 Max Planck Institute for Security and Privacy, Bochum, Germany

5 University of California, Irvine, USA
stanislawjarecki@gmail.com

Abstract. Driven by the NIST’s post-quantum standardization efforts
and the selection of Kyber as a lattice-based Key-Encapsulation Mecha-
nism (KEM), several PasswordAuthenticated Key Exchange (PAKE) pro-
tocols have been recently proposed that leverage a KEM to create an effi-
cient, easy-to-implement and secure PAKE. In two recent works, Beguinet
et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed
generic compilers that transform KEM into PAKE, relying on an Ideal
Cipher (IC) defined over a group. However, although IC on a group is often
used in cryptographic protocols, special care must be taken to instanti-
ate such objects in practice, especially when a low-entropy key is used. To
address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a
relaxation of the IC model under the Universal Composability (UC) frame-
work called Half-Ideal Cipher (HIC). They demonstrate how to construct
a UC-secure PAKE protocol, EKE-KEM, from a KEM and a modified 2-
round Feistel construction called m2F. Remarkably, the m2F sidesteps the
use of an IC over a group, and instead employs an IC defined over a fixed-
length bitstring domain, which is easier to instantiate.

In this paper, we introduce a novel PAKE protocol called CHIC that
improves the communication and computation efficiency of EKE-KEM,
by avoiding the HIC abstraction. Instead, we split the KEM public key
in two parts and use the m2F directly, without further randomization.
We provide a detailed proof of the security of CHIC and establish pre-
cise security requirements for the underlying KEM, including one-wayness
and anonymity of ciphertexts, and uniformity of public keys. Our findings
extend to general KEM-based EKE-style protocols and show that a pas-
sively secure KEM is not sufficient. In this respect, our results align with
those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of
KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos
et al. (EUROCRYPT 2023).

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 3–33, 2025.
https://doi.org/10.1007/978-981-96-0935-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_1&domain=pdf
http://orcid.org/0000-0002-1967-3390
http://orcid.org/0000-0002-6848-5564
http://orcid.org/0000-0002-5055-2407
http://orcid.org/0000-0002-7132-7591
https://doi.org/10.1007/978-981-96-0935-2_1

4 A. Arriaga et al.

Finally, we provide an implementation of CHIC, highlighting its mini-
mal overhead compared to the underlying KEM – Kyber. An interesting
aspect of the implementation is that we reuse the rejection sampling
procedure in Kyber reference code to address the challenge of hashing
onto the public key space. As of now, to the best of our knowledge, CHIC
stands as the most efficient PAKE protocol from black-box KEM that
offers rigorously proven UC security.

Keywords: Password Authenticated Key Exchange · Key
Encapsulation Mechanism · Universal Composability · Post-Quantum ·
Ideal Cipher

1 Introduction

The problem of attaining secure communication online is commonly addressed
by employing Authenticated Key Exchange (AKE) protocols that involve high-
entropy long-term private keys, often relying on Public Key Infrastructure (PKI).
However, in scenarios where humans are involved in the authentication pro-
cess, secure storage of long-term private keys by users is impractical, and most
applications resort to a simpler and cost-effective solution—human-memorizable
passwords. In most cases, applications carry out password-based authentication
using (variants of) the bare-bones protocol where the user sends a password
across the network to be checked with respect to a previously stored record
(usually a salted hashed value) of the same password. This protocol, which is
chosen due to its usability and ease of deployment, has a number of disadvantages
from the security point of view. An obvious shortcoming is that the password
is explicitly transferred across the communications channel, and so it requires a
previously established secure and one-side-authenticated channel to the server
checking the password. This opens the way to a number of well-known attacks,
such as impersonating the server via a phishing attack.

Password Authenticated Key Exchange (PAKE) [6,7,10] is a cryptographic
primitive that can mitigate some of the limitations associated with low-entropy
passwords, and bootstrap a shared password into a cryptographically strong
session key. Intuitively, PAKE protocols guarantee that the only way to extract
a password from a user over the network is to actively perform a password-
guessing attack by trying to run the protocol with the user multiple times.

The most efficient PAKE constructions to date, namely the CPACE protocol
that has been recently chosen for standardization by the IETF [2], are built as
variants of the Diffie-Hellman protocol and they achieve security with essentially
no bandwidth overhead and minimal computational overhead—in CPACE this
overhead is reduced to hash operations. Indeed, one of the takeaways of the
CPACE selection process was that performance is critical for adoption.1 This
is because target applications include resource-constrained devices (e.g., IoT
networks) and ad-hoc contexts (e.g., ePassports and file transfers). Therefore,
a natural question to ask in the current context of migration to post-quantum
1 https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY.

https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 5

secure cryptography is how to construct efficient PAKE protocols that are not
Diffie-Hellman based and that, ideally, can leverage the recent results of the
NIST post-quantum competition.

KEM-Based PAKE Protocols. In this direction, and very recently, several
works [3,5,23,27,28] proposed black-box constructions of PAKE from a Key-
Encapsulation Mechanism (KEM) and an Ideal Cipher (IC) or its variants (see
below).2 Conceptually, this KEM-based design paradigm sheds new light on the
thirty-year-old Encrypted Key Exchange (EKE) approach to PAKE by Bellovin
and Merritt [7]. From a practical point of view, this recent focus on the generic
conversion of KEM into PAKE is largely driven by the efforts of the National
Institute of Standards and Technology (NIST) to standardize Post-Quantum
(PQ) cryptographic schemes, including KEM and digital signatures. In particu-
lar, the standardization of the first post-quantum KEM was just concluded [25]
and the scheme is based on Crystals-Kyber, a module-lattice-based KEM. Kyber
has undergone extensive scrutiny regarding its security and anonymity proper-
ties, as well as secure and efficient implementation, and this body of research can
be leveraged when constructing PAKE protocols that use KEM in a black-box
way.

A common characteristic of the above KEM-based PAKE proposals is their
reliance on Random Oracle (RO) and Ideal Cipher (IC) models.3 Despite the
similarities among these proposed protocols, they still differ in subtle ways and
can be categorized based on the model of analysis, design structure, and KEM
security properties used to establish PAKE security. The protocols put forth by
Bradley et al. [11], McQuoid et al. [23], Beguinet et al. [5] and Dos Santos et
al. [28] are analysed under Universal Composability (UC) PAKE framework [13],
while Pan and Zeng [27] and Alnahawi et al. [3] prove security under the game-
based PAKE definition of Bellare-Pointcheval-Rogaway (BPR) [6]. We note that
the UC PAKE security model of Canetti et al. [13] is significantly stronger than
the BPR model. The superiority of the former springs fundamentally from the
UC framework’s ability to capture security under arbitrary correlations of pass-
word inputs, which is beyond the scope of current game-based PAKE security
notions. Indeed, another important takeaway from the CPACE selection process
within the IETF, was the relevance of a (thoroughly scrutinized) proof of security
in the UC framework.4

Two Approaches to KEM-Based PAKE. Prior KEM-based PAKE pro-
tocols follow two distinct design patterns. Firstly, sPAKE [23], CAKE [5], and
PAKE-KEM [27], follow a procedure where the initiator Alice employs an IC to
encrypt a KEM public key under her password, and the responder Bob decrypts

2 This list can be extended by the PAPKE protocol of [11], which was originally pre-
sented as a generic PAKE from PKE and IC, but it can be recast as construction
from KEM and IC.

3 In [23] security is claimed based solely on RO, but that claim has not been formally
established.

4 https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s.

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s

6 A. Arriaga et al.

this public key and uses it to encapsulate a secret value.5 This secret value is
used by both parties as an input to a hash function—modeled as a Random
Oracle (RO)—to derive a session key. However, Bob does not send the KEM
ciphertext to Alice in the clear but instead utilizes a second IC to encrypt the
KEM ciphertext before transmitting it to the initiator. This approach ensures
that both parties are committed to a single password via IC encryption, based
on the collision-freeness of IC outputs. A practical disadvantage of this two-sided
usage of IC is that it requires two distinct IC instances, one over the domain
of KEM public keys, and the other over the domain of KEM ciphertexts. In
lattice-based KEMs, these domains are typically different, and both of them are
large, which makes implementing IC for these domains non-trivial.

The second design pattern, employed in protocols PAPKE [11], OCAKE [5],
EKE-KEM [28], and PAKEM [3], takes a slightly different approach. Here, the
KEM ciphertext obtained by Bob is sent in the clear, accompanied by a key con-
firmation tag, whose purpose is to make Bob’s message a commitment to a single
password guess.6 The second design uses only one instance of IC, which makes it
more efficient, and it does not require special properties of KEM ciphertexts, e.g.
that they are indistinguishable from random elements of the ciphertext domain.
In this work, we focus on efficiency and therefore adopt this design pattern.

Opening up the IC Blackbox. The sPAKE and EKE-KEM protocols of
resp. [23] and [28] deviate from the above pattern by replacing the Ideal Cipher
on the domain of public keys (and ciphertexts in [23]) with a weaker and easier-
to-construct primitive. One motivation for reducing the requirement on the
password-based encryption component is the difficulty of efficiently instantiat-
ing IC on a group domain—cf. the discussion of the costs of possible approaches
in e.g. [28], which is necessary to instantiate the “KEM+IC” design for PAKE
using KEM instantiated as an Elliptic-Curve Diffie-Hellman. However, instanti-
ating the same KEM+IC approach using a lattice-based KEM is also non-trivial
because it would require a special-purpose IC on a domain of large bit strings
(around one kilobyte in the case of Kyber). Even though there exist methods
for extending an IC domain to bitstrings of arbitrary size, e.g., using Feistel
networks, [14,17] these generic IC domain extension techniques would add sig-
nificant complexity to an implementation and incur a significant performance
penalty.

Motivated by the above, McQuoid et al. [23] proposed to replace IC in this
KEM+IC approach to PAKE with a weaker primitive of a Programmable-Once
Public Function (POPF), which they showed can be instantiated with a 2-round

5 In sPAKE [23] the IC is replaced by a weaker primitive, see more below.
6 A seeming exception is the PAPKE protocol [11], which does not attach such a

tag explicitly, but it requires a strong robustness property of the KEM, and the
generic method for achieving this property includes expanding a CCA-secure KEM
ciphertext with a key-committing tag [1]. Protocol PAKEM [3] also diverges from the
pattern because it employs an additional message flow where Alice sends her own key
confirmation tag to Bob. This last message achieves explicit mutual authentication
in the Alice-to-Bob direction, but it adds an extra round to the protocol.

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 7

Feistel network (2F). In particular, in the case of Kyber KEM, the 2F encryption
would involve just one RO hash onto the KEM public key domain, and one RO
hash onto a domain of bitstrings of length 3λ, where λ is the security parameter.
However, this way of implementing password encryption would add at least 384
(=3× 128) bits to the KEM ciphertext. Moreover, as mentioned in footnote (see
Footnote 3), the analysis of the resulting protocol as a UC-secure PAKE is cur-
rently incomplete. Dos Santos et al. [28] modify the 2-round Feistel network used
by [23]—calling the result a modified 2-Feistel (m2F)—by reducing the bandwidth
overhead to 256 (=2× 128) bits: this is achieved at the cost of adding an IC on
256-bit strings into the encryption procedure. The security proof in [28] shows
that m2F realizes a UC abstraction of a (randomized) Half-Ideal Cipher (HIC),
and then shows that the above KEM+IC approach to UC PAKE works also in
the case of KEM+HIC. However, because it is a randomized encryption using a
256-bit random seed, it adds at least 256 bits to the encrypted public key.

Main Contribution: Compact m2F and Bandwidth-Minimal KEM-to-
PAKE Compiler. In this paper we revisit the construction of [28] and reduce
the bandwidth overhead to a minimum. We observe that, for Kyber and other
post-quantum KEMs, the public key can be split into two components, one of
which is a 32-byte uniform seed ρ, and ask the following natural question:

Can we reduce the bandwidth overhead of the m2F by using ρ as the
ephemeral randomness r in the m2F construction?

We answer this question in the affirmative by giving direct proof that the
resulting construction is a UC secure PAKE in the joint Ideal Cipher and Ran-
dom Oracle model. By direct proof we mean that we do not rely on the Half-Ideal-
Cipher abstraction of [28], and instead perform the proof over the fully expanded
construction. The reason for this is that the notion of a UC-secure Half-Ideal-
Cipher crucially relies on the fact that the m2F construction is randomized,
i.e., that honest parties choose an ephemeral randomness that is independent of
the input public key. By unifying this ephemeral randomness with a public-key
component we lose this property and the ability to modularize the m2F con-
struction. We call our construction CHIC for Compact Half-Ideal-Cipher, as a
way to acknowledge the inspiration in the work of [28].

Second Contribution: Requirements for the KEM. We provide a detailed
proof of the security of CHIC and establish precise security requirements for the
underlying KEM, including passive one-way security (OW-CPA) and pseudo-
uniformity of public-keys (UNI-PK), necessary to achieve UC PAKE security.
Like prior works, our proof shows that anonymity is also a necessary property for
the security of the construction. However, we show that passive anonymity (i.e.,
indistinguishability of public keys and ciphertexts) is not sufficient to conclude
the proof. We show that CHIC requires a ANO-1PCA-secure KEM7, and that our
analysis extends to the proofs by Beguinet et al. [5] and Dos Santos et al. [28],
despite the claims that ANO-CPA-secure KEM would be sufficient.
7 We refer the reader to Definition 3.

8 A. Arriaga et al.

Practical Contribution: Implementation and Experimental Evalua-
tion. We give an implementation of the protocol, clarifying all aspects of real-
world deployment of the protocol, and we confirm experimentally the efficiency
properties of the protocol. Our implementation builds on the reference imple-
mentation of Kyber—the full construction offering CCA security [9,29] and
anonymity [16,21,30]. We clarify how to instantiate the m2F components show-
ing, in particular, that hashing into the public-key space of Kyber can be done
by reusing the code that the Kyber created for expanding the seed ρ in the public
key to a matrix over the algebraic ring that underlies the KEM construction.
Technically, this entails proving that the rejection sampling procedure speci-
fied by Kyber is indifferentiable from a random oracle; a result that may be of
independent interest. Compared to EKE-KEM [28], CHIC saves 32 bytes in band-
width costs, while also bringing mild computational savings by (1) eliminating
the need for Alice to generate 32 bytes of random coins, and (2) simplifying the
inputs/outputs of the m2F construction, with the right wire carrying only part
of the public key. The implementation is available as supplementary material.

2 Preliminaries

In this section, we present the definition of Key Encapsulation Mechanism
(KEM) and introduce its security properties of interest for this work.

Definition 1. A Key Encapsulation Mechanism (KEM) scheme is a tuple of
polynomial-time algorithms KEM = (Keygen,Encap,Decap) that behaves as fol-
lows:

– Keygen(λ) → (pk, sk): a key-generation algorithm that on input a security
parameter λ, outputs a public/private key pair (pk, sk).

– Encap(pk) → (c,K): an encapsulation algorithm that on input a public key
pk, generates a ciphertext c and a secret key K.

– Decap(sk, c) → K: a decapsulation algorithm that on input a private key sk
and a ciphertext c, output a secret key K.

For correctness, we require that for any key pair (pk, sk) ← Keygen(λ), and
ciphertext and secret key (c,K) ← Encap(pk), we have that K = Decap(sk, c).

KEM Security Properties. The standard security notion for key encapsu-
lation mechanisms and public-key encryption in general is indistinguishability
under chosen-ciphertext attacks (IND-CCA). In addition to achieving IND-CCA
security, many applications also demand the property of anonymity in a KEM.
An anonymous KEM ensures that a ciphertext conceals the identity of the recip-
ient by revealing no information about the public key employed in the encapsula-
tion process. Unsurprisingly, the standard definition of this property is a logical
adaptation of IND-CCA known as ‘anonymity under chosen-ciphertext attacks’
(ANO-CCA), and with the adversary’s objective being to determine which of two
public keys was used to generate the given challenge ciphertext.

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 9

It has been widely established that Kyber is IND-CCA [9,29] and ANO-CCA
[16,21,30]. However, for our construction, we rely on weaker properties, namely
‘one-wayness under plaintext-checkable attacks’ (OW-PCA)8 and anonymity
under plaintext-checkable attacks (ANO-PCA). In addition, we require a KEM
with ‘splittable and pseudo-uniform public-keys’ (UNI-PK). All these notions are
defined in Fig. 1.

Fig. 1. Security experiments defining properties of KEM: (1) One-Wayness under
Plaintext-Checkable Attacks (OW-iPCA); (2) Anonymity under Plaintext-Checkable
Attacks (ANO-iPCA); (3) Splittable and pseudo-Uniform Public-Keys (UNI-PK). A is
restricted to making at most i queries to the plaintext-checking oracle PCO. In par-
ticular, if i = 0, the plaintext-checking oracle PCO is not available. In ANO-iPCA
security experiment, A is not allowed to query the plaintext-checking oracle PCO on
the challenge ciphertext c∗. This restriction is not imposed in OW-iPCA experiment.

To elaborate, we first adopt the notion of one-wayness under plaintext check-
able attacks from [26]. We consider an adversary whose goal is to decrypt a KEM
ciphertext without the private decapsulation key but with access to a plaintext-
checking oracle. This oracle allows the adversary to confirm if the decapsulation
of a ciphertext under the challenge decryption key corresponds to a particular
plaintext (i.e., the secret key K in the context of KEM).9

8 Our construction can be proven secure assuming the underlying KEM has only ‘one-
wayness under chosen-plaintext attacks’ (OW-CPA), though the proof is less tight.

9 In IND-CCA security game, the decapsulation oracle can be queried on anything
except the challenge ciphertext. However, in OW-PCA, the plaintext-checking oracle
is unrestricted. Despite this gap, one can show that IND-CCA implies OW-PCA with
a tight reduction, losing only a constant factor 2. For the proof, we refer the reader
to the full version of the paper [4].

10 A. Arriaga et al.

Definition 2 (KEM one-wayness under plaintext-checkable attacks).
A Key Encapsulation Mechanism (KEM) scheme is said to be OW-iPCA secure
if for any PPT adversary A engaged in the OW-iPCA security game, where A is
restricted to making at most i queries to the plaintext-checking oracle PCO, the
advantage of A defined as:

AdvOW-iPCA
KEM,A (λ) def= Pr[OW-iPCAA

KEM(λ) = 1] (1)

is a negligible function of the security parameter λ. Experiment OW-iPCA is
defined in Fig. 1.

Similarly, we also adopt a weaker variant of the ANO-CCA property, where
the decapsulation oracle is replaced with the less-capable plaintext-checking ora-
cle. We call this definition ANO-PCA. In ANO-CCA game, the decryption ora-
cle disallows queries on the challenge ciphertext. We preserve this restriction
in ANO-PCA so it is trivial to see that ANO-CCA implies ANO-PCA with no
tightness loss in the reduction, as the plaintext-checking oracle could be easily
simulated with a decapsulation oracle.

Definition 3 (KEM anonymity under plaintext-checkable attacks). A
Key Encapsulation Mechanism (KEM) scheme is said to be ANO-iPCA secure if
for any PPT adversary A engaged in the ANO-iPCA security game, where A is
restricted to making at most i queries to the plaintext-checking oracle PCO and
is prohibited from calling the oracle on the challenge ciphertext, the advantage
of A defined as:

AdvANO-iPCA
KEM,A (λ) def= 2 · Pr[ANO-iPCAA

KEM(λ) = 1] − 1 (2)

is a negligible function of the security parameter λ. Experiment ANO-iPCA is
defined in Fig. 1.

Finally, a less common security requirement but which proved to be essential
for the constructions of PAKE protocol from KEM and IC [3,5,27,28] is public
key indistinguishability from uniform. In other words, the public keys output by
the KEM key generation algorithm must be computationally indistinguishable
from public keys uniformly sampled from the same key space. This notion is
also known as fuzziness [5,27]. In this work, we extended the requirements for
KEM public keys. Namely, CHIC requires a KEM with splittable and uniform
public keys that meet the following criteria: (1) the public key can be encoded
as a bitstring and a group element; (2) a random oracle indifferentiable hash
onto the group exists; and (3) honestly generated and decomposed public keys
appear uniformly distributed.10

10 Later in our construction, the KEM public key will be split into two parts. The first
part will be expanded to match the range of the second part—which is an element
of a group—and used to mask the second part of the public key. The expansion
function will be treated as a random oracle in our security proof. While it is gen-

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 11

Definition 4 (KEM with splittable and pseudo-uniform public keys).
A KEM scheme has splittable and pseudo-uniform public keys if (1) there exists
an efficiently computable and invertible map Split : PKλ → Nλ × Gλ, such that
each security parameter λ defines domains PKλ, Gλ, and Nλ = {0, 1}p(λ) for
some polynomial p; (2) there exists an RO-indifferentiable hash from Nλ onto
Gλ; (3) for any PPT adversary A engaged in the UNI-PK security game, the
advantage of A defined as:

AdvUNI-PKKEM,Split,A(λ) def= 2 · Pr[UNI-PKA
KEM,Split(λ) = 1] − 1 (3)

is a negligible function of the security parameter λ. Experiment UNI-PK is defined
in Fig. 1.

PQ KEMs with Spittable and Uniform Public Keys. Crystals-Kyber [29]
public key consists of a seed ρ ∈ {0, 1}256 and a group element t ∈ Rk

q , where Rq

is the ring Zq[X]/(Xn +1), q = 3329 is a small prime, n = 256 and k ∈ {2, 3, 4}
depending on the choice of the security parameter λ. Consider the split algorithm
for Kyber KEM to be the trivial breakdown of Kyber public keys into these two
components. Seed ρ is derived from expanding a purely random bitstring d ∈ B

32

using a hash function G(d) that produces two 32-byte outputs, with ρ being one
of them. In the security proofs of Kyber [16,21,29,30], function G is modeled as
a random oracle, which ensures that the distribution of ρ is uniform. In FIPS
203 [25] standard, function G is specified to be instantiated as SHA3-512. ρ
is then further expanded into a large stream of candidate 12-bit values via an
eXtendable Output Function (XOF), which Kyber instantiates with SHAKE-128.
From this stream, the first candidate values within the range [0, 3329) are selected
to form the public matrix A ∈ Rk×k

q in the NTT domain. This process is known
as rejection sampling and, again, can be modelled as a random oracle mapping ρ
to A. Matrix A is then used to compute the second component of the public key
as a Module-LWE instance. Therefore, the Kyber public key can be shown to
be pseudo-uniform under the decisional MLWE assumption [5] in the Random
Oracle Model. To instantiate the RO that maps elements in Nλ = {0, 1}256 to
Gλ = Rk

q , we borrow the same rejection sampling procedure from Kyber. We
expand this intuition and show that Kyber has splittable and pseudo-uniform
public keys in the full version of this paper [4].

Other lattice-based KEMs employ the same technique of expanding a short
seed into a public matrix, making them good candidates for splittable keys. For

erally accepted that random oracles with fixed ranges can be easily instantiated
with cryptographically-secure hash functions, the instantiation of a random ora-
cle for hashing into the group where (part of) the KEM public keys reside is less
straightforward. Indifferentiability [22] allows to formally justify the instantiation
of a non-trivial hashing procedure: it ensures that one can safely replace an ideal
object (e.g., a RO that hashes into a group) with a construction that makes use
of another ideal object (e.g., an ideal eXtendable Output Function). The require-
ment (2) emphasizes the need for such a hashing procedure to safely instantiate our
protocol.

12 A. Arriaga et al.

example, FrodoKEM [24], the lattice-based KEM recommended by the German
Federal Office for Information Security (BSI)11, also has splittable and pseudo-
uniform public keys. Similarly to Kyber, FrodoKEM public keys can be trivially
decomposed into a seed seedA ∈ {0, 1}128 (that expands to an n × n matrix A,
where all the coefficients are in Zq), and a group element B ∈ Z

n×8
q . The instan-

tiation of the RO-indifferentiable hash-onto-group is even simpler for FrodoKEM
because q is required to be a power of 2, so rejection sampling is not needed.

CPA Versus iPCA. Some essential points should be noted concerning these
security definitions. Firstly, when access to the PCO oracle is restricted to zero
queries, it effectively results in the removal of the oracle from the experiment.
This, in turn, gives rise to the weaker definitional variants known as ‘chosen-
plaintext attacks,’ specifically OW-CPA and ANO-CPA. Furthermore, we made
two adjustments to weaken our ANO-iPCA definition: (a) we refrained from pro-
viding the adversary with the challenge secret key K∗, and (b) we restricted the
PCO oracle to queries on the left private decapsulation key sk0. This contrasts
with definitions in [16,21,30], which grant the adversary access to both keys via
the oracle. These adaptations, which relax the requirements of the underlying
KEM, are proven to be sufficient for establishing the security of the protocol
CHIC presented in this paper.

It is also worth mentioning that for a very limited number of queries to the
PCO oracle, OW-iPCA is equivalent to OW-CPA, as established by Lemma 1.
However, it is essential to recognize that this equivalence cannot be readily
extended to indistinguishability-based games. In such games, a flawed simu-
lation resulting from an incorrect coin flip could nullify the advantage gained
when the simulation was correct. Consequently, we cannot make a similar asser-
tion regarding the relationship between ANO-iPCA and ANO-CPA.

Lemma 1. If KEM is a OW-CPA secure key encapsulation mechanism, then it
is also OW-1PCA secure.

Proof. Let A be any adversary against game OW-1PCA. We construct an adver-
sary B against OW-CPA that simulates game OW-1PCA for A as follows: i. Chal-
lenge (pk, c∗) is forwarded to A. ii. The single oracle query to PCO is answered
by B with a coin flip. iii. Finally, B forwards A’s answer to OW-1PCA as its own
answer to OW-CPA.

Notice that B perfectly simulates OW-1PCA for A half of the time, no mat-
ter what is A’s strategy for querying the plaintext-checking oracle. Therefore,
at least half of the time (possibly more, in case A wins regardless of the bad
simulation of PCO), a win for A translates into a win for B.

AdvOW-CPA
KEM,B (λ) ≥ 1

2
· AdvOW-1PCA

KEM,A (λ) (4)

In broader terms, OW-iPCA is essentially equivalent to OW-CPA, but only
when the number of queries made to the plaintext-checking oracle is limited to

11 BSI TR-02102-1, Version: 2024-1.

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 13

a few, as attempting to guess the PCO oracle’s responses multiple times leads to
an exponential loss in the number of tosses.

Definition 5 (Modified 2-Feistel construction: m2F). The modified 2-
round Feistel network, as introduced in [28], is constructed using three com-
ponents: (1) block cipher denoted by the tuple of algorithms (IC.Enc, IC.Dec),
with key space K and input/output space N ; (2) hash function H whose output
space is represented by group G; and (3) hash function H′ whose output space
is K. The m2F construction encompasses two efficiently computable functions,
m2Fpw : N × G → N × G and its inverse m2F−1

pw, both shown in Fig. 2.

Fig. 2. The modified 2-Feistel [28], where � is a group G operation, and (·)−1 is an
inverse in G.

Half-Ideal Cipher (HIC). In [28], the authors introduce a UC security notion
they called (randomized) Half-Ideal Cipher (HIC), which is designed to relax
the UC notion of an ideal cipher. This security notion is established through the
introduction of an ideal functionality, denoted as FHIC, and is parameterized by
the domain N×G. Notably, FHIC features ‘honest’ interfaces accessible for queries
by the environment Z, with these queries being mediated through honest parties.
However, the honest interfaces are restricted w.r.t. to half of the input: Z has no
control over the randomness parameter r ∈ N in the encryption direction, and
it cannot observe the value of r during decryption. By contrast, FHIC provides
two adversarial interfaces that grant the adversary/simulator the capability to
select r and even program half of the output T ∈ G during encryption. In the
decryption direction, the adversary can also observe the value of r.

It is shown in [28] that the m2F construction realizes FHIC functionality in
the Random Oracle and Ideal Cipher (IC) model. The HIC abstraction serves
as an effective replacement for an ideal cipher in the construction of EKE-like
protocols, eliminating the need for the direct use of an IC over groups, whose
instantiations are non-trivial (e.g., see [28]). However, it’s worth noting that the
randomized encryption of HIC introduces an overhead equal to the length of r.
Due to the security proof of m2F requiring no collisions on the domain of the

14 A. Arriaga et al.

IC, this overhead essentially amounts to 2λ bits, which is precisely what our
construction CHIC optimizes.

HIC+ and Why It Fails. A natural question is whether the FHIC could be
extended to FHIC+ which empowers honest parties and provides them with the
ability to select and have visibility over r in respectively encryption and decryp-
tion. Unfortunately, the m2F construction would not be a provably secure realiza-
tion of such extended functionality. To see why, let us exemplify with a concrete
attack coordinated between an environment Z and its adversary A:

1. Z selects r and M at random from the respective domains, picks arbitrary
pw, queries FHIC+, via a honest party, on Enc(pw, (r,M)), and obtains some
ciphertext (s, T).

2. Z queries H′(pw, T) via its adversary A and obtains t (a key for IC).
3. Z queries IC.Enc(t, r) via its adversary A and should get back s.

Unfortunately, the simulator SIM cannot possibly know how to correctly answer
the last query because it has no visibility over the first query Z made to FHIC+,
even though it controls IC, H and H′. This would not happen using FHIC interfaces
because the environment Z can only pass message M to the honest party Enc
interface in step (1) above, and it would not know the randomness r (which in
the real-world would be internally chosen by that honest party).

Although we could not leverage the modular abstraction that FHIC introduces
(or an extension of it), we still take full advantage of the m2F construction, as a
white-box drop-in, in our protocol CHIC and rely directly on the RO and IC in
the security proof. Therefore, no security definition is formally introduced here
for FHIC, and m2F is not explicitly parameterized by a security parameter λ,
although its internal components are essential to the security analysis of CHIC.

3 Security Model

We begin this section with a brief review of the Universal Composability (UC)
framework. Then we present the standard PAKE functionality as defined by
Canetti et al. [13].

Let P be a protocol of interest whose security properties are modelled within
the UC framework. In this framework, the environment Z embodies some higher-
level protocol that uses P as a sub-protocol, while also acting as an adversary
attacking that higher-level protocol. Here, the adversary A represents the adver-
sary attacking protocol P. Between the environment Z and the adversary there
is a continuously open communication channel. Such setup allows Z to launch
an attack on the higher-level protocol with the help of A (who is attacking pro-
tocol P). Note that Z can only indirectly (through adversary A) make calls to
idealized primitives such as an Ideal Cipher and/or a Random Oracle.

In the UC framework that models the security of PAKE protocols, parties
are initialized by the environment Z with arbitrary passwords of the environ-
ment’s choice. In the real world, protocols are executed according to protocol

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 15

specifications, in the presence of an adversary A capable of dropping, injecting,
and modifying protocol messages at will, thus modelling an insecure network. In
the ideal world, parties do not execute the protocol. Instead, they interact via an
ideal functionality FPAKE described in Fig. 3, in the presence of a simulator SIM
that acts as an adversary operating in the ideal world. The simulator SIM is also
allowed to interact with FPAKE, but only using the FPAKE adversarial interfaces
as defined in Fig. 3.

Fig. 3. The PAKE ideal functionality FPAKE of Canetti et al. [13].

Finally, the goal of the environment Z that interacts with the parties and the
adversary (either real world A or ideal world SIM) is to guess if it is in the real or
in a simulation of the ideal world. Consequently, if for every efficient adversary
A no such efficient environment Z exists that distinguishes the real world from
the ideal world, we say that the protocol of interest P securely emulates ideal
functionality FPAKE. The UC PAKE definition results in a stronger notion than
game-based PAKE notions and successfully captures the scenario where clients

16 A. Arriaga et al.

register related passwords with different servers, as this is captured by the ability
of Z initializing parties with passwords of its choosing. Furthermore, the UC
framework also ensures security under arbitrary protocol composition. Note that
the environment Z may reveal various information to the adversary A, thus
allowing UC PAKE definitions to capture password leaks (static adversaries)
and internal state leaks (adaptive adversaries) that may occur anytime during
the protocol execution.

4 UC PAKE from Modified 2-Feistel and KEM

In this section, we present CHIC, a UC-secure Password Authenticated Key
Exchange protocol. CHIC assumes a KEM scheme that is one-way secure (at least
OW-CPA, but OW-PCA results in a tighter proof), anonymous (ANO-1PCA), and
has splittable and pseudo-uniform public keys (UNI-PK). The protocol, shown
in Fig. 4, is built upon the modified 2-Feistel (m2F) construction of Dos Santos
et al. [28]. We take a moment to discuss several design choices in our protocol,
which follows an EKE-style construction combining a KEM and the m2F.

First, a pivotal decision, in contrast to the strategy in [28], was to ‘de-
randomize’ the m2F. We split the KEM public key and use the parts as inputs
to the m2F. This approach helps us avoid employing an ideal cipher over a
group, which can be both costly and challenging to instantiate and eliminates
any communication overhead associated with the HIC abstraction.

Second, the inputs used for tag and session key generation realized through
the H1 and H2 function calls in CHIC, are identical. This allows us to optimize
our implementation by making a single call to a hash function with an extended
output size of 2λ. Subsequently, the output is cut in two halves, one forming the
tag and the other the session key.

Third, the password is exclusively used in the m2F construction and is not
provided as input to either H1 or H2. This design choice means that the ini-
tiator does not need to store the input password in memory while waiting for
the responder’s answer. This choice has potential benefits in the event of a com-
plete compromise of the initiator (including leakage of its internal state), as an
attacker would be required to perform an offline dictionary attack to retrieve the
initiator’s password under such circumstances. (However, we don’t analyse the
security of our protocol under adaptive attacks in the UC sense, and this sort of
attack scenario is not captured by the FPAKE functionality).

Fourth, it is worth noting that in our protocol the initiator, instead of abort-
ing, outputs a random session key in the event that the received tag is invalid.
We opt for this approach to ensure that our construction aligns with the secu-
rity requirements specified in the standard UC PAKE functionality from [13]
that foresees implicit authentication. However, in practice, when implementing
the protocol, it is possible for the initiator to abort in that case, thus achieving
explicit responder-to-initiator authentication. Furthermore, it is assumed that
protocol participants erase any internal state as soon as it becomes unneces-
sary for the execution of the protocol. This means that the initiator instance

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 17

after computing and sending apk erases its entire internal state (including the
password) except fullsid, apk, pk, and sk.

Note that if function Split can be randomized, specifically if Split(pk) returns
(r, pk) for and Split−1(r, pk) returns pk, then the Split+m2F block in protocol
CHIC would instantiate the randomized Half-Ideal Cipher construction of [28].
In that sense, the Split+m2F procedure used in CHIC can be seen as a strict
generalization of the HIC construction of [28].

5 Security Analysis

In this section, we prove that the protocol described in Fig. 4 UC-realizes the
standard PAKE functionality FPAKE shown in Fig. 3.

Theorem 1. Let KEM be a OW-CPA, ANO-1PCA, and UNI-PK-secure key
encapsulation mechanism. Let IC be a block cipher modeled as an ideal cipher,
and H, H′, H1 and H2 be hash functions modeled as random oracles. Then, the
PAKE protocol CHIC described in Fig. 4 UC-realizes FPAKE in the static corrup-
tion model. Furthermore, a OW-PCA-secure KEM leads to a tighter proof.

Proof Overview. To prove Theorem 1 we show that the environment cannot
distinguish between the “real world” experiment in which the environment Z
and adversary A have parties Pi and Pj execute the protocol from Fig. 4, from
an “ideal world” experiment in which a simulator SIM interacts with FPAKE and
presents to environment Z a view that is consistent with what A produces in the
real world. We assume without loss of generality that A is the dummy adversary,
functioning as a communication intermediary between parties and the environ-
ment.

The Simulator. We describe the UC simulator SIM for CHIC that will act as the
ideal-world adversary, having access to the ideal functionality FPAKE. SIM must
simulate to Z protocol messages between honest participants without knowing
the passwords chosen by Z, while consistently answering random oracle and ideal
cipher queries. In a limited number of cases, the simulator is unable to conclude
the simulation and aborts. We argue in the proof that those bad events only
happen with negligible probability and account for these events in the overall
probability of Z distinguishing between the “real world” from the “ideal world”.

– First message: After receiving (NewSession, sid, Pi, Pj , Alice) from FPAKE,
SIM picks a random apk and sends message apk from Pi to Pj .

– Second message: After receiving (NewSession, sid, Pj , Pi, Bob) from FPAKE,
SIM waits for a message apk sent to Pj from A. Then SIM sets fullsid ←
(sid, Pi, Pj). In case the received apk is an output of the m2F that commits
the adversary to a password pw, SIM extracts the password pw and tests
it by sending (TestPwd, sid, Pj , pw) to FPAKE. If FPAKE replies with “correct
guess”, SIM computes the key according to the protocol specification and

18 A. Arriaga et al.

Fig. 4. The CHIC protocol. KEM scheme has splittable public keys (Definition 4) with
an efficiently computable and invertible map Split : PKλ → Nλ × Gλ. The protocol
makes use of a block cipher denoted as IC and hash functions H and H′ in an m2F con-
figuration (Definition 5), with domains that align with Split and that are characterized
by security parameter λ, i.e. {IC.Enc, IC.Dec} : Kλ × Nλ → Nλ, H : {0, 1}∗ → Gλ,
H′ : {0, 1}∗ → Kλ. Group operations within G are represented by �, and the inverse
operation by (·)−1.

sends (NewKey, sid, Pj , key) to FPAKE; in all other cases (including “wrong
guess”, honest execution, etc.), SIM runs a KEM.Keygen algorithm, obtains a
fresh key pair (pk, sk), computes the ciphertext c and the tag using the fresh
pk, and sends (NewKey, sid, Pj ,⊥) to FPAKE. To conclude the second message
flow, SIM sends the message (c, tag) from Pj to Pi via A.

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 19

– Final output : After receiving message (c, tag) sent to Pi from A, in case of
honest execution, SIM simply sends (NewKey, sid, Pi,⊥) to FPAKE. If message
(c, tag) was tampered with by the adversary, SIM checks for a corresponding
random oracle query to H1 that returned tag. If such query has not been asked,
SIM sends (TestPwd, sid, Pi,⊥) and (NewKey, sid, Pi,⊥) to FPAKE, forcing a
random session key. If tag comes from H1, pk and apk are extracted. If appro-
priate queries were made to the m2F, the password is also extractable. SIM
extracts A’s password guess pw and sends (TestPwd, sid, Pi, pw) to FPAKE.
In case of a “correct guess”, SIM computes the key by following the pro-
tocol and sends (NewKey, sid, Pi, key) to FPAKE. If tag is not valid (even
if the password guess was correct) or FPAKE returned “wrong guess”, SIM
sends (NewKey, sid, Pi,⊥) to FPAKE. If the adversary did not commit to a
password in its interaction with m2F, SIM sends (TestPwd, sid, Pi,⊥) and
(NewKey, sid, Pi,⊥) to FPAKE.

Proof. We prove Theorem 1 via a series of game hops. The first game corresponds
to a simulator that is not constrained in any way and executes the real world for
the environment perfectly. Concretely, this simulator controls all inputs/outputs
to the parties, as well as their communications with the environment. In each
hop, we modify this simulator gradually, so that in the final game one can clearly
see that it can be divided into two parts, where the first part corresponds to the
ideal functionality FPAKE and the second part to the simulator described earlier,
which has only black-box access to FPAKE and does not know the honest parties
secret passwords. Conceptually, we think of FPAKE as always existing alongside
our simulator and receiving the inputs from Z: in the first game it is not used
at all by the simulator, and gradually it will start using FPAKE to define the
outputs of parties. Because the first game is identical to the real world and the
last game is identical to the ideal world, we just need to show that the view of
the environment is not affected by each of our modifications. Hence, in each hop,
we analyze the probability of Z outputting 1 in the game Gi compared to that
of Z outputting 1 in the game Gi−1 and show that these change by a negligible
amount.

Our analysis depends on the number of interactions between the environment
and the execution model. To account for this, we consider and tally all queries
made to the ideal cipher and random oracles, irrespective of whether they origi-
nate from honest parties or the adversary. We denote qIC as the upper bound on
queries to the ideal cipher, regardless of whether it is used for encryption (IC.Enc)
or decryption (IC.Dec). Similarly, qH, qH′ , and qH1 represent upper bounds on the
number of queries made to the H, H′, and H1 oracles, respectively. Furthermore,
we take into account the number of PAKE sessions and interactions occurring
within each session. In this context, qnewSession serves as an upper bound on the
number of sessions initiated by Z, while qsend represents an upper bound on the
number of messages delivered by A when interacting with the involved parties.

20 A. Arriaga et al.

Game G0 (Real World): Simulation perfectly mimics the world with oracles
H, H′, H1, H2, IC.Enc and IC.Dec.

Pr [G0] = RealZ,A,CHIC (5)

Game G1 (Abort on Random Oracle Collisions): On output collisions of
H1, H or H′, the simulation aborts. This is a statistical hop with a birthday
bound.

|Pr [G0] − Pr [G1]| ≤ q2H1

|SpaceH1
| +

q2H
|SpaceH| +

q2H′

|SpaceH′ | (6)

Game G2 (Full Domain Sampling of IC and Abort on Collisions): On
new IC.Enc and IC.Dec queries, simulator samples s and r regardless of previous
answers and instead aborts on output collisions (even collisions across different
keys). s and r are high-entropy, therefore this is a statistical hop with a negligible
difference. Note that queries must be answered consistently and thus decrypting
a ciphertext returned by IC.Enc or encrypting a plaintext returned by IC.Dec,
under the same key, is not considered a new query.

|Pr [G1] − Pr [G2]| ≤ q2IC
|SpaceIC| (7)

Game G3 (Abort If a New Sample for H′ Collides with a Previous
Record of the IC): Upon sampling a new t (key for ideal cipher) for the simu-
lation of H′ oracle, if t is not fresh (and therefore already included in ListIC), the
simulation aborts. This is a statistical hop.

|Pr [G2] − Pr [G3]| ≤ qH′ · qIC
|SpaceH′ | (8)

Game G4 (Abort If a New Sample for IC.Dec Collides with a Previous
Record of H): Upon sampling a new r for the simulation of IC.Dec, if r is not
fresh (and therefore already included in ListH), the simulation aborts. This is a
statistical hop.

|Pr [G3] − Pr [G4]| ≤ qIC · qH
|SpaceIC| (9)

Game G5 (On Calls to IC.Dec Where the Password is Extractable from
the Ideal Cipher Key, Force a Record to H): On a new query IC.Dec(t, s)—
i.e., a query where a fresh ideal cipher preimage r is sampled—check if t came
out of H′ oracle and, if so, introduce the following change to the oracle. First,
extract the password pw associated with t (there is at most 1 since we have
already discarded the possibility of collisions in H′), then call H(pw, r), forcing
r to be added into the records of oracle H. Note that due to the abort triggers
introduced in the previous games, this modification is equivalent to sampling
a random pair (r,R) and trying to program H directly by adding the tuple
(pw, r,R) to ListH. This action will abort if either (∗, r, ∗) ∈ ListH (see Game
G4) or if (∗, ∗, R) ∈ ListH (see Game G1). Nothing really changes unless IC.Dec

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 21

triggers an abort that did not occur in the previous game. This is a statistical
hop.

|Pr [G4] − Pr [G5]| ≤ qIC · qH
|SpaceIC| +

qIC · qH
|SpaceH| (10)

Game G6 (On Calls to IC.Dec Where the Password is Extractable from
the Ideal Cipher Key, Use KEM.Keygen and Store Secrets): On a new
query IC.Dec(t, s), if t came out of H′ oracle, instead of directly sampling a ran-
dom pair (r,R), the simulator relies on KEM.Keygen and KEM.Split, and stores
the secrets in Listsecrets for future use. If the adversary attempts to decrypt Alice’s
apk using her password, the record is also added to Listsecrets. More precisely, if
the adversary queries IC.Dec(t, s), where t = H′(fullsid, pw, T) and apk = (s, T)
is the message Alice sent in the session matching fullsid, and pw is Alice’s pass-
word for that session, then add (pw, sk, pk, apk) to Listsecrets, where (sk, pk) is
Alice’s key pair. This hop is down to the uniformity of KEM public keys.

|Pr [G5] − Pr [G6]| ≤ qIC · Advpk-uniformity
KEM,Split (11)

Game G7 (Set Random Key via FPAKE if tag was Not Output by H1):
Modify Alice’s response when tag was not output by H1 wrt fullsid, apk and
c: use FPAKE to generate the session key totally at random by compromising the
session with an invalid password and then completing the session with NewKey.
The protocol specification determines Alice’s session key to be random if tag
is incorrect.12 A tag not coming out of H1 will only be valid with negligible
probability. Therefore, this is a statistical hop.

|Pr [G6] − Pr [G7]| ≤ qsend
|SpaceH1

| (12)

Game G8 (for Passive Attacks, Use a Private Oracle H∗
1 Without Inputs

pk and K to Compute tag, and set Session Key Directly via FPAKE

Instead of Using the Key Coming from H2): For passive attacks, i.e. mes-
sages are correctly computed and forwarded to the intended party (apk from
Alice to Bob, and possibly (c, tag) from Bob to Alice), compute the tag with
private oracle H∗

1 and use the functionality to generate the session key, without
testing the password.

The intuition of this hop is that the KEM ciphertext must conceal K, there-
fore the adversary will not call H1(∗, ∗, ∗, ∗,K) nor H2(∗, ∗, ∗, ∗,K). If it does,
the simulator breaks the one-wayness of the KEM. The technical difficulty in the
reduction is that the simulator does not know ahead of time if the session will be
actively attacked. Therefore, it must embed the challenge pk∗ in each session, one
at a time (hybrid argument), and complete the simulation without detectable
changes to the protocol. If the adversary relays correctly apk from Alice to Bob
but then decides to actively interfere with the communication and forward its
own (c, tag) back to Alice, the simulator faces the dilemma of whether to force
Alice to use a random session key (if tag is invalid) or the session key resulting

12 Our protocol is implicitly rejecting to follow the standard FPAKE functionality.

22 A. Arriaga et al.

from H2(fullsid, pk, apk, c,K) (if tag is valid). This boils down to whether c
encrypts K included in tag or not. However, because we embedded the challenge
pk∗ to compute the first flow of messages, we no longer can decrypt c. For this
reason, we reduce this hop down to OW-PCA and take advantage of the PCO
oracle to check if the key K included in the tag is effectively the key encrypted
under c.

The reduction goes as follows (hybrid argument, one public key at a time): i.
Embed challenge pk∗ into Alice’s initialization procedure. ii. If the adversary is
passive and delivers apk to Bob, reduction uses challenge c∗ and private oracles
H∗

1 and H∗
2 to proceed. These private oracles receive the same inputs as their

public counterparts H1 and H2, except for the arguments pk and K. (Note that
K∗ encrypted under c∗ is unknown to the reduction.) Since the ciphertext c∗ is
an input to both H1 and H2, this fixes a single key anyway and the games are
identical unless K∗ is queried to either oracle. If such a query is never placed,
the usage of these private oracles is independent of Z’s view. iii. On Alice’s side,
if the adversary is still passive, decryption is not needed: tag is valid and session
key is derived from private oracle H∗

2. Due to the uniqueness of inputs, private
oracle H∗

2 will produce the same key on both sides, as would the public oracle
H2 in G7 and NewKey query to FPAKE in G8.

If the adversary is active (and the reduction embedded the challenge pk∗ in
this session) the reduction algorithm will use the PCO oracle to verify the tag: it
verifies that the unique H1 entry corresponding to the tag includes key encrypted
under c∗. In this reduction, there is at most one PCO call per embedded challenge
public key pk∗ since KEM decryption occurs only in one place in our protocol. If
this check fails, the reduction returns a fresh random key to the attacker, which
is consistent with both games: trivially so in G7, and in G8 because this forces
the functionality to produce a fresh random session key by issuing a TestPwd
with ⊥.

When the adversary concludes its run, the reduction algorithm confirms the
inclusion of the correct K∗ in queries to H1 and H2 via calls to the PCO oracle
before submitting its answer against the one-wayness property of KEM cipher-
texts. If no such query with the correct K∗ exists, G7 and G8 are identical. As an
alternative approach, randomly selecting an entry from the H1 and H2 tables can
lead to a less tight reduction. However, this approach does not require confirma-
tion of the inclusion of K∗ in H1 and H2 oracle queries, and therefore at most one
query to the PCO oracle is required for the correct simulation of active attacks
to Alice, after embedding the challenge public key in the first flow from Alice to
Bob. Importantly, Lemma 1 establishes the equivalence between OW-1PCA and
OW-CPA.

|Pr [G7] − Pr [G8]| ≤ qsend · Advow-pcaKEM (13)

|Pr [G7] − Pr [G8]| ≤ (qH1 + qH2) · qsend · Advow-cpaKEM (14)

Game G9 (Simulate Bob’s Response with a Fresh Public Key for Pas-
sive Attacks): For honestly transmitted apk, the simulator creates ciphertext
c with a fresh public key, then computes tag with the private oracle H∗

1 (as in

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 23

the previous game), and finally sends (c, tag) on Bob’s behalf. We bridge this
hop using ANO-1PCA, with a hybrid argument, replacing one public key at a
time. Note that Alice does not decrypt honestly transmitted ciphertexts since
G8. However, if there’s an active attack on the second round of the session where
the reduction programmed the challenge pk0 from ANO-1PCA game, the decryp-
tion key is not available. As before, the reduction takes advantage of a single call
to the PCO oracle and the (single) relevant record of H1 to determine whether
the tag is valid.

More in detail, the reduction goes as follows (hybrid argument, one public
key at the time): i. Embed challenge pk0 into Alice’s initialization procedure. ii.
If the adversary is passive and delivers apk to Bob, reduction uses challenge c∗.
iii. On Alice’s side, if the attack is passive, no need to decrypt c∗. If there is an
active attack, extract K from tag by inspecting H1 records, and check K against
c submitted by the adversary and sk0 to determine the validity of tag without
actually decrypting the ciphertext. Note that the PCO oracle of the standard
ANO-1PCA game allows checks against both sk0 and sk1, and the reduction
embedded pk0 on Alice’s side. Therefore, checks must be carried out against
sk0.

There are a few noteworthy observations regarding the definitional require-
ments for this reduction. For starters, we only need a weaker version of
ANO-1PCA where the PCO oracle only allows plaintext checks against one of
the secret keys. Another observation is that we don’t require the challenger of
the ANO-1PCA game to provide K∗ as part of the challenge. This is a direct
result of the modification introduced in G8 that lifts the need to use the encap-
sulated key for passive attacks (via the usage of private oracle H∗

1 to compute the
tag, and NewKey to FPAKE to set the session key).13 This reduction algorithm
perfectly interpolates between games G8 and G9. If challenge c∗ is a result of
KEM.Encap with pk0, this corresponds to G8. On the other hand, if c∗ is a result
of KEM.Encap with pk1, the simulation adheres to the specifications of G9.

|Pr [G8] − Pr [G9]| ≤ qsend · Advano-1pcaKEM (15)

Game G10 (Active Attacks on Alice: The Tag is Invalid if the Password
Cannot be Extracted from an Adversarially Crafted Message from
Bob to Alice): On adversarially crafted (c, tag) sent to Alice, the tag forces a
commitment to a single pk and, consequently, to a unique password due to the
joint operation of IC.Dec and H′. The only case in which password extraction fails
is if the adversary did not reconstruct the Pk to which it committed using calls
to IC.Dec and H′. However, in this case, the correct Pk that Alice will be using
is information-theoretically hidden from the adversary’s view. More in detail, in
G10 we check if the pk was not obtained from apk via the appropriate calls to
H′ and then IC.Dec. (Note that since G6 the appropriate decryption calls create
a record in Listsecrets.) If this is not the case, then tag is declared as invalid. In
such cases, we force a random session key via FPAKE.
13 We note that this is the point in the proof where we could not find a way to avoid

a decryption-like oracle and that forces us to use an actively secure KEM.

24 A. Arriaga et al.

The two games G9 and G10 are identical unless the adversary guessed Alice’s
public key (and created the tag sent to Alice with it) without having obtained
it from apk via the appropriate calls to H′ and then IC.Dec. The probability of
guessing Alice’s public key by chance is tied to the min-entropy k of the public
keys generated by KEM.Keygen. This is not a new assumption on the properties
of KEM as it follows from UNI-PK that each part of the split public key has at
least min-entropy λ. We denote ε as a negligible function.

|Pr [G9] − Pr [G10]| ≤ ε(λ) (16)

Game G11 (Active Attacks on Alice: If the Password is Extractable,
Test it and Proceed Accordingly): On Alice’s side, if the password can be
extracted, test the password via TestPwd. If the guess is correct, run the protocol
honestly and program the session key. If the guess is wrong, tell functionality
to complete the session with a random key. Note that different passwords are
guaranteed to lead to different public keys for a fixed apk, as oracles discard
collisions. In turn, because pk is also included as an argument of H1, the tag-
verification procedure is bound to fail. Therefore, Game G10 and Game G11 are
identical from Z’s perspective. This is a bridge hop.

Pr [G10] = Pr [G11] (17)

Game G12 (Simulate Alice’s Initial Message Without Using the Pass-
word): Notice that the simulator deals with Alice’s response without using sk,
except for the case where Alice is actively attacked with the correct password.
Therefore, the simulator can simulate a NewSession for Alice by directly sam-
pling apk, leaving the generation of the public key for later. As such, the password
pw is not required at this stage.

Nevertheless, the simulator of G12 creates an IC record for apk := (s, T),
with placeholders that can later be replaced by Alice’s pk. More precisely, it
adds (⊥,⊥, s,mode = E) to ListIC. If s is unfresh, the simulation aborts. The
record only gets updated when Alice’s password pw is confirmed to be correct as
a result of a TestPwd query to FPAKE, and m2F−1

pw(apk) is computed by querying
its oracles. Recall that queries to IC.Dec with t that permits password extraction
leads to sk being embedded in Listsecrets. So, the decryption key is always available
in the only case still needed (active attack with the correct password).

Following the rules of the previous game G11, Alice generates a key-pair with
KEM.Keygen and then computes apk by feeding pk to the oracles of the m2F,
which leads to early abortion if the newly sampled R is in ListH (rule added in G1),
if the newly sampled t is in ListIC (rule added in G3), and if the newly sampled
s is in ListIC (rule added in G2). In G12, we abort only if the newly sampled
s is in ListIC. This means that the other abortion events have to be accounted
for in the analysis of this game hop. Furthermore, if the adversary places a
new query to IC.Enc and happens to land on s—it’s important to emphasize
new query, meaning this only applies to queries IC.Enc(t, r) where r is not the
result of a previous query IC.Dec(t, s),—the game aborts since there’s already
a record (albeit incomplete). Notice that in G11 there is one particular value of

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 25

r for which the oracle will respond without aborting–this is the r obtained by
splitting Alice’s pk. The probability of guessing r by chance is tied to the min-
entropy k of the first element resulting from the split of public keys generated
by KEM.Keygen. Again, this is not a new assumption about KEM, as it follows
from UNI-PK.

|Pr [G11] − Pr [G12]| ≤ qnewSession · qH
|SpaceH| +

qnewSession · qH′

|SpaceH′ | + ε(λ) (18)

Game G13 (Active Attacks on Bob: If There’s no Record Consistent
with apk Having Been Computed in the Forward Direction, Use Pri-
vate Oracle H∗

1 to Compute tag an Set Random Session Key via FPAKE):
The attacker sends its own apk to Bob and there is no record consistent with apk
having been computed in the forward direction. The term forward direction refers
to the encryption direction within the ideal cipher, which is why the simulator
tracks how the records of the IC were generated. Formally, apk = (s, T) was com-
puted in the forward direction if there exist a record (t, ∗, s,mode = E) ∈ ListIC
such that there is a record (fullsid, ∗, T, t) ∈ ListH′ wrt the unique fullsid asso-
ciated with the Alice instance receiving apk. In such cases, the simulator uses the
private oracle H∗

1 to compute the tag and sets a random session key via FPAKE.
Recall that the private oracle H∗

1 does not take as input pk and K. We reduce
this hop down to OW-PCA. We use a hybrid argument, changing the behavior
of one Bob session at a time. The intuition is that if apk was not computed in
the forward direction with an appropriate call to IC.Enc, the attacker has no
control over the KEM public key (and corresponding secret key) associated with
apk sent to Bob. Therefore, the attacker cannot decrypt Bob’s ciphertext, and
is unlikely to query H1 with K encrypted in Bob’s response. If it does, we break
the OW-PCA game of KEM.

The reduction algorithm knows Bob’s password. The inverse of the attacker’s
apk sent to Bob, under Bob’s password, must be the challenge pk∗ of the
OW-PCA game. The difficulty in arguing this hop arises from the adversary’s
potential actions with apk: they might attempt to decrypt it using Bob’s pass-
word before or after sending it, or they may not decrypt apk with Bob’s password
at all (willingly or because the Bob’s password was never correctly guessed by
the adversary).

Remember, in this particular game hop, we are exclusively handling
adversary-generated apk values, which are not computed following the forward
direction of the m2F. Therefore, we apply a hybrid argument over all qsend queries
from Alice to Bob, and all IC.Dec queries, carefully associating the challenge pk∗

with one of these queries. The reduction algorithm loses the ability to decrypt
ciphertexts encrypted under pk∗, but in the protocol only Alice needs to decrypt
ciphertexts and she will do so under her secret key (regardless of whether apk
sent out is crafted by the adversary and possibly associated with pk∗).

The reduction algorithm also embeds c∗ in the computation of tag with
private oracle H∗

1 and in Bob’s response. It also monitors queries to public oracles
H1 and H2, extracting K and testing with the PCO oracle against challenge c∗.
If the PCO oracle returns true, the reduction would submit K and would win

26 A. Arriaga et al.

the OW-PCA game. Otherwise, the usage of private oracle H∗
1 and setting Bob’s

session key to be random via FPAKE is identical from Z’s view.
Alternatively, as also described in the proof strategy of the hop to G8, if

we are willing the bear the cost of a loss in tightness, we could use a guessing
argument instead by simply outputting a K queried to one of the public oracles
H1 and H2, and avoid relying on any PCO oracle for this reduction (as mentioned
earlier, Alice is always able to decrypt).

|Pr [G12] − Pr [G13]| ≤ (qsend + qIC) · Advow-pcaKEM (19)

|Pr [G12] − Pr [G13]| ≤ (qH1 + qH2) · (qsend + qIC) · Advow-cpaKEM (20)

Game G14 (Active Attacks on Bob: If There’s no Record Consistent
with apk Having Been Computed in the Forward Direction, Encrypt
the Ciphertext Under a Freshly Generated Public Key): As in the case
of the previous game hop, the attacker sends its own apk to Bob and there’s
no record consistent with apk having been computed in the forward direction.
Now, the simulator encrypts the ciphertext that Bob sends out under a freshly
generated public key. This is a reduction to ANO-CPA.

The reduction is similar to the previous game hop in that we embed pk0 in
one send query to Bob at the time, and then embed the challenge c∗ in Bob’s
response. As in the analysis of the previous game hop, we have to account for the
possibility that the attacker tried to decrypt apk under Bob’s password before
sending it. In that case, pk0 needs to be embedded upon the IC.Dec call. In the
worst case, the lost in tightness w.r.t. to ANO-CPA is limited by qsend + qIC. If
c∗ was encrypted under pk0, we adhere to the specifications of G13. If it was
encrypted under pk1, we adhere to the rules of G14. We have already established
in the previous game that tag is computed via private oracle H1 (that does not
take pk as input). As in the reduction strategy of the previous game hop, the
challenge pk∗ of ANO-CPA is never associated with the apk sent by Alice. Thus,
Alice’s decryption key sk is always available when needed, and a PCO oracle is
also not needed for this reduction.

|Pr [G13] − Pr [G14]| ≤ (qsend + qIC) · Advano-cpaKEM (21)

Game G15 (Active Attacks on Bob: If There is a Record Consistent
with apk Having Been Computed in the Forward Direction, Extract
the Password, Test it, and Use Private Oracle H∗

1 and set a Random
Session Key If “wrong guess”): The simulator now deals with the case where
there is a record consistent with apk having been computed in the forward
direction. The simulator extracts the password and tests it. If “correct guess”, the
simulator keeps following the protocol and sets the correctly-computed session
key via FPAKE (this doesn’t change anything from Z’s view). If “wrong guess”, the
simulator makes use of private oracle H∗

1 to compute the tag and sets a random
session key via FPAKE. The reduction is similar to that of G13.

|Pr [G14] − Pr [G15]| ≤ (qsend + qIC) · Advow-pcaKEM (22)

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 27

|Pr [G14] − Pr [G15]| ≤ (qH1 + qH2) · (qsend + qIC) · Advow-cpaKEM (23)

Game G16 (Active Attacks on Bob: If There is a Record Consistent
with apk Having Been Computed in the Forward Direction, Extract
the Password, Test It, and Encrypt the Ciphertext Under a Freshly
Generated Public Key If “wrong guess”): This change and reduction is
similar to that argued in G14.

|Pr [G15] − Pr [G16]| ≤ (qsend + qIC) · Advano-cpaKEM (24)

Game G17 (Ideal World): At this point, we are in the ideal world, where the
simulator is using the ideal functionality FPAKE to generate all keys except for
those where there is a correct password guess.

Pr [G16] = Pr [G17] = IdealZ,SIM,FPAKE
(25)

Bringing all these elements together and assuming KEM is a OW-PCA-secure key
encapsulation mechanism, we obtain the result shown in Eq. 26. For the sake of
completeness, a description in pseudo-code of the simulator SIM of the ideal world
is provided in the full version of the paper [4]. Each step of the process, starting
from the code execution of uncorrupted parties in the real world and leading to
the simulation of the ideal world, is meticulously detailed. Every modification
is framed and cross-referenced with the specific game hop where it was initially
introduced to ensure a traceable progression of the proof.

|RealZ,A,CHIC − IdealZ,SIM,FPAKE
| ≤

qIC · Advpk-uniformity
KEM,Split

+ (3 · qsend + 2 · qIC) · Advow-pcaKEM

+ (3 · qsend + 2 · qIC) · Advano-1pcaKEM

+
q2IC + 2 · qIC · qH

|SpaceIC| +
q2H1

+ qsend

|SpaceH1
|

+
q2H + qIC · qH + qnewSession · qH

|SpaceH|
+

q2H′ + qIC · qH′ + qnewSession · qH′

|SpaceH′ | + ε(λ)

(26)

	

On Tightness. The bounds we give here are aligned with those obtained in
prior works on EKE-like constructions from KEMs. The main difference with
respect to Diffie-Hellman based constructions is that we cannot use self reducibil-
ity properties to remove the multiplicative factors associated with dealing with
multiple-instance KEM security properties. Intuitively, the qIC multiplicative fac-
tor is the most problematic, but it seems intrinsic to the use of the ideal cipher: it
corresponds to the reduction’s uncertainty as to which of the adversary’s reverse

28 A. Arriaga et al.

ideal cipher queries will the adversary choose to fix the KEM public key on which
it will be challenged. A KEM with a tight proof of multi-instance security would
solve this problem.

Implications for the Proofs in [5,28]. In game G9 we explain why at that
point in the proof we could not avoid making a decryption-like query, and that
forces us to use an actively secure KEM. Furthermore, the 1 PCA query needed
for the reduction seems applicable regardless of whether the protocol uses IC [5],
HIC [28], or directly m2F [here], to password-encrypt the pk. This stands in
contention with the results in [5,28], where we believe the authors have missed
this point. A guessing strategy does not work for indistinguishability-based defi-
nitions for the reasons discussed in “CPA versus iPCA” subsection. We also note
that ANO-PCA was already used in the security proof from Pan and Zeng [27].
The authors claim that OCAKE protocol in [5] lacks perfect forward secrecy
(PFS), but it is unclear whether the claim is attributed to the fact that the
original proof for the protocol requires the underlying KEM to satisfy merely
ANO-CPA.

6 Implementation and Performance Analysis

We make two preliminary notes on our instantiation of CHIC, which distinguish
this work from previous proposals for building PAKE from a lattice-based KEM
in the Ideal Cipher model.

Firstly, contrary to what has been suggested in previous papers [5,28], our
security proof shows that the construction requires a KEM that offers more
than just passive security (namely ANO-1PCA). For this reason, we take the
(CCA-secure) Kyber standard defined in FIPS 203 [25] as the natural off-the-
shelf lattice-based KEM instantiation. Indeed, Kyber has been shown to be
IND-CCA [9,29] and ANO-CCA secure in [16,21,30].

Secondly, we recall that the bandwidth requirements of the IND-CCA version
of Kyber are the same as that of the underlying IND-CPA construction: this is
one of the properties of the Fujisaki-Okamoto transformation used by Kyber.
For this reason, when it comes to bandwidth usage, our construction still out-
performs previous proposals that (unjustifiably) propose to use the IND-CPA
version. Indeed, there is no overhead in public-key transmission in the first flow
of our protocol due to the compact half-ideal cipher, whereas in the second flow
we have only the overhead of transmitting the (short) MAC tag.

It remains to show that the Kyber KEM satisfies the remaining requirements
of having splittable and pseudo-uniform public keys. We refer to the full version
of the paper [4] for a detailed proof that Kyber indeed satisfies the conditions
outlined in Definition 4.

Our Implementation. We have implemented CHIC in C by extending the
reference implementation of Kyber available from github.com/pqcrystals/kyber.
The implementation is provided as supplementary material.

Before discussing parameter choices and giving some performance figures,
we briefly describe how we implemented the three components of the compact

http://www.github.com/pqcrystals/kyber

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 29

half-ideal cipher construction, as well as the computation of the MAC tag and
key derivation hashes, which are all that’s needed beyond Kyber KEM:

– Ideal cipher over 256-bits: We take the Rijndael variant that uses 256-
bit blocks and 256-bit keys14. The code was taken from the open-source tool
ccrypt, which in turn adapts on the original Rijndael reference implementation.
We recall that this block cipher is used to hide the seed component ρ that
results from public-key splitting.

– Hashing to the Kyber polynomial ring Rq: We reuse the implementation
of the rejection sampling procedure that is used internally by Kyber to expand
the public-key seed to a k×k matrix over Rq. The only difference to the Kyber
implementation is that, rather than sampling a k × k matrix starting from a
seed ρ, our implementation samples a vector of size k, seeded by the input to
random oracle H in our m2F construction. We recall that the output of this
procedure is used to mask the vector over Rk

q that results from public-key
splitting using a group operation.

– Masking vectors in Rk
q : We reuse the functions already available in the

Kyber code that permit adding and subtracting vectors over Rk
q .

– Hashing to the key space of Rijndael: We use SHA3-256 to produce the
required 32-bytes.

– Key Derivation Function and Tag Computation Since these two hash
functions take the same input, we implement them as a single SHA3-512
computation that produces 64 bytes, which we then split to obtain the session
key (which is kept secret) and the tag (which is transmitted).

Parameter Selection. We consider all three variants of Kyber (Kyber512,
Kyber768 and Kyber1024) as plausible instantiations for KEM. In our security
analysis, we exclude the possibility of collisions on the block cipher, as well as on
the hash function that derives the block cipher key. For this reason, we opt to use
Rijndael with 256-bit block and key sizes. As a result, our parameter selection
ensures at least 128-bit security against classical adversaries. We extend the
discussion on the guarantees provided by CHIC in the conclusion section.

Performance Analysis. The bandwidth overhead of our protocol over Kyber
KEM is minimal: it comprises of only 32-bytes for the tag in the second flow.
Concerning execution time, Table 1 shows values in microseconds for the two
stages of the initiator and the single stage of the responder for three cases: 1)
using just the IND-CPA version of Kyber; 2) using just the IND-CCA version of
Kyber; and 3) using CHIC. The measurements were taken in a modest laptop
with a 2.3GHz Intel “Core i5” processor with four cores, 128 MB of embedded
eDRAM, a 6 MB shared level 3 cache, and 16GB of RAM. We did not explore
aggressive optimizations using parallelism (or even SIMD implementations), so
these results can definitely be improved. The overhead in computation time for
initiators is around 25% for Kyber 768 wrt the bare CCA KEM key exchange. For

14 Alternatively, we could employ standard AES and extend its domain from 128-bit
to 256-bit blocks using the 3-round Feistel domain extender from [15], which is also
indifferentiable from IC if AES itself is indifferentiable from IC.

30 A. Arriaga et al.

responders, it is around 50%. Overall, these overheads decrease as the security
level of Kyber increases, but the execution times are still in the order of tens of
microseconds.

Table 1. Experimental results in microseconds. Comparison of execution times of
CHIC participants (two initiator stages and responder single stage) with respect to key
exchange using only a CPA or CCA Kyber KEM.

CPA KEM CCA KEM CHIC
KeyGen Enc Dec KeyGen Enc Dec Start Resp End

Kyber512 25 29 9 45 49 12 70 74 14
Kyber768 28 36 41 49 59 65 75 85 93
Kyber1024 36 56 53 61 87 83 89 123 117

7 Conclusion

It’s important to underscore the significance of the 30+ years of research enabling
CHIC’s development. The concept of constructing PAKE by encrypting a pub-
lic key with a password dates back to EKE [7]. However, EKE and its variant
OEKE [12] upon which EKE-KEM [28] and CHIC are based, were never stan-
dardized or deployed because of the difficulty of encrypting group elements with
a password while preventing offline dictionary attacks. The work of [28] clev-
erly sidesteps the use of the IC over groups by using the m2F as a randomized
cipher, which increases ciphertext size. CHIC avoids this ciphertext expansion by
splitting Kyber pk and using the m2F instead as a keyed PRP. Our implementa-
tion represents the first practical realization of an approach previously deemed
impractical [18], and it leverages the just-concluded ML-KEM standard [25].

This brings up the question: What security guarantees does CHIC provide
against a quantum adversary? We proved that CHIC UC-realizes FPAKE in the
IC and RO model. The UC framework is the gold standard security definition
for PAKE because it captures arbitrary password distributions. Unfortunately,
it’s known that FPAKE cannot be UC-realized without an idealized computation
model or CRS [13]. In our implementation we instantiate the IC with Rijndael-
256 and the RO with SHA3. These building blocks are quantum-resistant, but
our security proof does not allow the adversary to query the RO and IC in super-
position. Sufficiently large quantum computers don’t yet exist, but adversaries
today can actively attack the protocol with classical computing capabilities and
store PAKE transcripts now, hoping to decrypt them later with a quantum com-
puter. However, such decryption would require breaking the KEM, and Kyber is
quantum-resistant. This puts CHIC in the category of protocols secure against
the “harvest-now/decrypt-later” quantum threat.

With a UC proof in the plain model aside, a consolidated analysis against
adversaries that can actively attack the protocol with the support of a quantum

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 31

computer, demands working in the Quantum Random Oracle Model (QROM) [8]
and/or Quantum Ideal Cipher Model (QICM) [19], which is a future direction
to pursue. The QROM is better understood than the QICM [19]. To the best of
our knowledge, the only PAKE protocols analysed in the UC framework and the
QROM were only very recently proposed in [20]. While the authors’ contribution
is a significant step forward, a modular approach based on standard KEMs
is likely yield a better candidate as a practical substitute of currently widely-
used PAKE protocols. In this respect, CHIC is extremely efficient, with minimal
overhead compared to the KEM it’s based on.

Acknowledgements. We thank the anonymous reviewers of ASIACRYPT’24 for
their valuable feedback. Afonso Arriaga and Marjan Škrobot received support from the
Luxembourg National Research Fund (FNR) under the CORE Junior project (C21/
IS/16236053/FuturePass).

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2_28

2. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Advances in
Cryptology – ASIACRYPT 2021. pp. 711–741. Springer (2021)

3. Alnahawi, N., Hövelmanns, K., Hülsing, A., Ritsch, S.: Towards post-quantum
secure PAKE - A tight security proof for OCAKE in the BPR model. In: Kohlweiss,
M., Di Pietro, R., Beresford, A. (eds.) Cryptology and Network Security. CANS
2024. LNCS, vol. 14906, pp. 191–212. Springer, Singapore (2025). https://doi.org/
10.1007/978-981-97-8016-7_9

4. Arriaga, A., Barbosa, M., Jarecki, S., Skrobot, M.: C’est très CHIC: A compact
password-authenticated key exchange from lattice-based KEM. Cryptology ePrint
Archive, Paper 2024/308 (2024), https://eprint.iacr.org/2024/308

5. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE:
Generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. In: Applied Cryptography and Network Security – ACNS
2023. pp. 516–538. Springer (2023)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

7. Bellovin, S., Merritt, M.: Encrypted key exchange: password-based protocols secure
against dictionary attacks. In: Symposium on Research in Security and Privacy –
S&P 1992. pp. 72–84. IEEE Computer Society (1992)

8. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random Oracles in a Quantum World. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

9. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: European Symposium on Security and Privacy – EuroS&P
2018. pp. 353–367. IEEE Computer Society (2018)

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-981-97-8016-7_9
https://doi.org/10.1007/978-981-97-8016-7_9
https://eprint.iacr.org/2024/308
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

32 A. Arriaga et al.

10. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_12

11. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
Authenticated Public-Key Encryption. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 442–462. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_22

12. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: ACM Conference on Computer and Communi-
cations Security – CCS 2003. pp. 241–250. Association for Computing Machinery
(2003)

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639_24

14. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A Domain Extender for the Ideal
Cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_17

15. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A Domain Extender for the Ideal
Cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_17

16. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: Advances in Cryptology – EUROCRYPT 2022. pp. 402–432.
Springer (2022)

17. Guo, C., Lin, D.: Improved domain extender for the ideal cipher. Cryptography
and Communications 7(4), 509–533 (2015). https://doi.org/10.1007/s12095-015-
0128-7

18. Hao, F., van Oorschot, P.C.: SoK: Password-authenticated key exchange – the-
ory, practice, standardization and real-world lessons. In: ACM Asia Conference on
Computer and Communications Security – AsiaCCS 2022. pp. 697–711. Associa-
tion for Computing Machinery (2022)

19. Hosoyamada, A., Yasuda, K.: Building Quantum-One-Way Functions from Block
Ciphers: Davies-Meyer and Merkle-Damgård Constructions. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10

20. Lyu, Y., Liu, S., Han, S.: Universal composable password authenticated key
exchange for the post-quantum world. In: Advances in Cryptology – EUROCRYPT
2024. pp. 120–150. Springer (2024)

21. Maram, V., Xagawa, K.: Post-quantum anonymity of Kyber. In: Public-Key Cryp-
tography – PKC 2023. pp. 3–35. Springer (2023)

22. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24638-1_2

23. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In: ACM Conference on Computer and
Communications Security – CCS 2020. pp. 425–442. Association for Computing
Machinery (2020)

https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-030-21568-2_22
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2

C’est Très CHIC: A Compact Password-Authenticated Key Exchange 33

24. Naehrig, M., Alkim, E., Bos, J., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila,
D.: FrodoKEM. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

25. NIST: FIPS203, Module-Lattice-based Key-Encapsulation Mechanism Standard.
Federal Information Processing Standards Publication (2023), https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf

26. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Topics in Cryptology – CT-RSA 2001. pp. 159–174.
Springer (2001)

27. Pan, J., Zeng, R.: A generic construction of tightly secure password-based authenti-
cated key exchange. In: Advances in Cryptology – ASIACRYPT 2023. pp. 143–175.
Springer (2023)

28. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Advances in Cryptology – EUROCRYPT 2023.
pp. 128–156. Springer (2023)

29. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

30. Xagawa, K.: Anonymity of NIST PQC round 3 KEMs. In: Advances in Cryptology
– EUROCRYPT 2022. pp. 551–581. Springer (2022)

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Efficient Asymmetric PAKE Compiler
from KEM and AE

You Lyu1,2 , Shengli Liu1,2(B) , and Shuai Han2,3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{vergil,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

dalen17@sjtu.edu.cn
3 School of Cyber Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China

Abstract. Password Authenticated Key Exchange (PAKE) allows two
parties to establish a secure session key with a shared low-entropy pass-
word pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-
server setting, and the server only stores a password file instead of the
plain password so as to provide additional security guarantee when the
server is compromised.

In this paper, we propose a novel generic compiler from PAKE to
aPAKE in the Universal Composable (UC) framework by making use of
Key Encapsulation Mechanism (KEM) and Authenticated Encryption
(AE).

– Our compiler admits efficient instantiations from lattice to yield
lattice-based post-quantum secure aPAKE protocols. When instan-
tiated with Kyber (the standardized KEM algorithm by the NIST),
the performances of our compiler outperform other lattice-based
compilers (Gentry et al. CRYPTO 2006) in all aspects, hence yield-
ing the most efficient aPAKE compiler from lattice. In particular,
when applying our compiler to the UC-secure PAKE schemes (San-
tos et al. EUROCRYPT 2023, Beguinet et al. ACNS 2023), we obtain
the most efficient UC-secure aPAKE schemes from lattice.

– Moreover, the instantiation of our compiler from the tightly-secure
matrix DDH (MDDH)-based KEM (Pan et al. CRYPTO 2023) can
compile the tightly-secure PAKE scheme (Liu et al. PKC 2023) to a
tightly-secure MDDH-based aPAKE, which serves as the first tightly
UC-secure aPAKE scheme.

Keywords: Password authenticated key exchange · asymmetric
password authenticated key exchange · lattice · post-quantum security

1 Introduction

Password Authenticated Key Exchange (PAKE) facilitates a secure establish-
ment of session keys between two parties, say a client and a server, over a public
network using a low entropy password pw. These session keys can then be used
to set up secure communication channels for the client and server. In contrast
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 34–65, 2025.
https://doi.org/10.1007/978-981-96-0935-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_2&domain=pdf
http://orcid.org/0000-0002-8148-3643
http://orcid.org/0000-0003-1366-8256
http://orcid.org/0000-0002-8156-7089
https://doi.org/10.1007/978-981-96-0935-2_2

Efficient Asymmetric PAKE Compiler from KEM and AE 35

to Authenticated Key Exchange (AKE) protocols, PAKE operates with easily
memorable passwords and eliminates the need for reliance on Public Key Infras-
tructure (PKI), hence offering a more convenient deployments of secure channels.

Note that the adversary can always implement online invocations of the
PAKE protocol with guessing passwords. The low entropy of the passwords might
make such online attacks succeed with non-negligible probability. So the security
of PAKE requires these online attacks be the only efficient attacks.

For PAKE, a password must be shared between the client and server. Gen-
erally, the password is memorable so it is not necessary for the client to store
it. However, the server has to store passwords for all the clients. If the server is
compromised, the adversary can snatch the password pw from the server so
as to impersonate the client. To address this vulnerability, asymmetric PAKE
(aPAKE) [15] was proposed. With an aPAKE, the server only has to store a
password file, which is a one-way function value H(pw) of the password pw.
Now if the server is compromised, the adversary only obtains the password file
instead of the plain password. Therefore, aPAKE is deemed preferable to PAKE
in the client-server setting. In this paper, we focus on aPAKE.

For aPAKE, if the adversary obtains H(pw), it is possible for him/her to
implement a so-called offline attack: compute or pre-compute (pw′,H(pw′))
pairs to check the correctness of guessing password pw′ by testing whether
H(pw′) = H(pw). Clearly, offline attack is inevitable after H(pw) is obtained by
the adversary. As such, the security of aPAKE requires these offline attacks on
H(pw) be the only efficient attacks that may work (beyond the online attacks).

Security Models for aPAKE. There are two types of security notions for
aPAKE, the game-based security in the Indistinguishability model (IND secu-
rity) [3,4] and the simulation-based security under the Universally Composable
framework (UC security) [15]. The UC framework is preferable to the IND model
in the following important aspects.

– The UC framework permits arbitrary correlations and distributions for pass-
words, while the IND model typically assumes passwords uniformly dis-
tributed over a dictionary for the sake of security proofs.

– Protocols that are proven secure in the UC framework enable a smooth and
secure composition with other UC-secure protocols, thanks to the universal
composition theorem [8].

Therefore, UC framework offers a more robust security guarantee and facil-
itates modular design of complex protocols, making it a better security model
than the IND model.

aPAKE from Post-quantum Assumptions. Now there is a trend to migrate
cryptographic algorithms to post-quantum ones. In fact, NIST has already deter-
mined Kyber [7] as the Post-Quantum Cryptography (PQC) winner for Key
Encapsulation Mechanism (KEM), and Dilithium [11], Falcon [14], Sphincs+
[5] for digital signature schemes. Recently, the Crypto Forum Research Group

36 Y. Lyu et al.

(CFRG) in IETF [32] initiated a selection process for both PAKE and aPAKE
protocols. As far as we know, none of existing candidates are based on post-
quantum assumptions.

There do exist a few aPAKE compilers instantiable from post-quantum
assumptions. One compiler is the Ω-method proposed by Gentry et al. [15],
which can compile any UC-secure PAKE protocol into a UC-secure aPAKE pro-
tocol with the help of a signature scheme. Accordingly, the existing UC-secure
PAKE protocol from lattices [2,30] and post-quantum secure signature schemes
(like Dilithium [11], Falcon [14], Sphincs+ [5]) admit UC-secure aPAKE proto-
cols. Another compiler is due to McQuoid and Xu [25], which can compile any
UC-secure PAKE protocol into a strong aPAKE protocol. This strong aPAKE is
secure against pre-computation attacks (in idealized generic group action model
[12]), but their compiler can only be instantiable from group actions (e.g. isogeny-
based CSIDH) rather than lattices. Note that there also exists an aPAKE com-
piler from UC-secure Key-Hiding AKE protocols [17,30,31]. However, no such
key-hiding AKE protocols is instantiable from post-quantum assumptions. So
up to now this compiler does not lead to post-quantum secure aPAKE yet.

In summary, the two UC-secure aPAKE compilers in [15,25] seem to be the
only available approaches to aPAKE achieving post-quantum security. However,
either compiler has its own limitations.

– The compiler in [25] can only be instantiated from isogeny-based assumptions,
rather than the mainstream lattice-based assumptions. Besides, the isogeny-
based group action does not offer good computational efficiency under the
current parameter configuration.

– The compiler in [15] can be instantiated from lattice-based assumptions with
the help of lattice-based signature schemes. However, it is not very efficient
since current lattice-based signature schemes (like Dilithium [11] in the NIST
PQC winner) will lead to much higher computational overhead compared to
their KEM counterparts (like Kyber [7] in the NIST PQC winner) under the
same security level. Technically speaking, this might be mainly due to the
time-consuming process of trapdoor sampling or rejection sampling involved
in most lattice-based signature schemes, dating back to the seminal works of
[16,24].

This motivates us to seek a new aPAKE compiler instantiable from lattice
to answer the following question:

How to construct an efficient UC-secure aPAKE protocol
from lattices, without using signatures?

Our Contribution. In this paper, we address the aforementioned question
through the following contributions.

• UC-secure aPAKE compiler without using signatures. We propose
a novel generic compiler that can compile any UC-secure PAKE protocol
to a UC-secure aPAKE protocol, with the help of weak primitives of KEM

Efficient Asymmetric PAKE Compiler from KEM and AE 37

and Authenticated Encryption (AE). KEM is only required to have One-
Wayness under Plaintext-Checkable Attacks (OW-PCA) [26], weaker than the
standard Indistinguishability under Chosen-Ciphertext Attacks (IND-CCA).
AE is only required to have one-time CCA security and one-time authenticity,
which has efficient information-theoretical instantiations. In particular, our
compiler does not rely on signature schemes.

• Mutual explicit authentication and good round efficiency. In addi-
tion to its excellent efficiency, our compiler enjoys other desirable features.
By using our compiler, the resulting aPAKE enjoys mutual explicit authenti-
cation even if the underlying PAKE does not. This is similar to the compiler
in [15] but in sharp contrast to [25], which completely relies on the underlying
PAKE to achieve mutual explicit authentication.

Moreover, our compiler only augments two additional rounds to the
underlying PAKE. If the last round message of PAKE is sent from the server,
then the first additional round of our compiler can be merged to the last
round of PAKE, and hence only one additional round is needed for aPAKE.
This is also similar to the compiler in [15] and comparable to [25].1

• The most efficient UC-secure aPAKE from lattice. By instantiating
the KEM in our compiler with Kyber, the NIST PQC KEM winner, we obtain
a lattice-based compiler. The performance evaluations show that our Kyber-
based compiler outperforms the signature-based compiler in [15] from lattice
in all aspects: ours save at least 61.1%-63.8% computing time and 41.5%-
84.3% communication cost. Our Kyber-based compiler turns out to be the
most efficient aPAKE compiler from lattice, and also results in the most effi-
cient UC-secure aPAKE schemes from lattice when applying to the UC-secure
PAKE schemes in [2,30].

• The first tightly UC-secure aPAKE. By instantiating the KEM in our
compiler with the tightly-secure matrix DDH (MDDH)-based KEM scheme
proposed in [27], we obtain a tightness-preserving compiler, which yields the
first tightly UC-secure aPAKE scheme when applying the compiler to the
tightly-secure PAKE scheme in [22].

Technique Overview. Our aPAKE compiler mainly relies on a KEM with
OW-PCA security to compile a PAKE to an aPAKE protocol. Here OW-PCA
[26] is weaker than IND-CCA security and asks one-wayness of ciphertext even
if the adversary has access to a “plaintext-checking” oracle which on input a
ciphertext-key pair (c,K) determines whether c is an encapsulation of K.

Our compiler also requires a one-time secure Authenticated Encryption (AE)
and five hash function H0, · · · ,H4. Here one-time security of AE includes one-
time authenticity and one-time CCA security. We note that one-time secure AE
has very efficient information-theoretical instantiations, e.g., from one-time pad
and one-time secure message authentication code (MAC). On the other hand,
1 More precisely, the compiler in [25] incurs an additional round from server to client

before PAKE. Since it is usually the client who starts the protocol, actually two
additional rounds are needed before PAKE in [25].

38 Y. Lyu et al.

the hash functions will be modelled as Random Oracles (RO) during the security
proof.

We refer to Fig. 1 for a high-level description of our compiler. More precisely,
our compiler works as follows.

Fig. 1. High level description of our aPAKE compiler from KEM and AE.

The server’s password file contains a hash value H0(pw) of the password pw
and a KEM public key pk, which is derived from the password pw by using
H1(pw) as the randomness of key generation, i.e., (pk, sk) ← KeyGen(H1(pw)).

To establish a session key sKey, the client and server equip the underlying
PAKE with password rw = H0(pw), and run the PAKE protocol to derive a
PAKE session key K0.

Next, the server will use KEM to distribute a key K1 to the client with the
help of pk (retrieved from its password file): it first invokes (c,K1) ← Encap(pk)
but it does not send c directly to the client. Instead, the server will use the
PAKE session key K0 to derive a key H2(K0) for AE. Then with the help of AE,
the server further encrypts the encapsulation c to obtain an AE ciphertext ψ via
ψ ← AE.Enc(H2(K0), c), and sends ψ to the client. In this way, the (one-time)
authenticity of AE helps the server authenticate itself to the client since only
the server and client can compute K0 via PAKE and generate valid ciphertext ψ
(i.e., the decryption of which does not lead to rejection) under AE key H2(K0).

After receiving ψ, the client checks the validity of ψ with the AE key H2(K0).
If ψ is valid, i.e., AE.Dec(H2(K0), ψ) �= ⊥, the client will set the session key
sKey := H4(K0). It also recovers the KEM secret key sk from pw via (pk, sk) ←
KeyGen(H1(pw)), and then double decrypts ψ with AE key H2(K0) and KEM
secret key sk to obtain K1. Finally, the client computes an authenticator σ :=
H3(K0,K1, T rans|ψ) where Trans is the transcription of PAKE, and sends σ to
the server. Note that only the server and client can compute K0 and K1. In this
way, the confidentiality of KEM and AE (i.e., OW-PCA of KEM and one-time
CCA of AE) help the client authenticate itself to the server.

Efficient Asymmetric PAKE Compiler from KEM and AE 39

Finally, the server checks the validity of σ with (K0,K1) by testing whether
σ = H3(K0,K1, T rans|ψ), where Trans, ψ, σ constitute the transcription seen
by the server. If σ is valid, the server’s session key is set to sKey := H4(K0).

Roughly speaking, our aPAKE compiler is designed in a “PAKE plus
password-based mutual authentication” manner. PAKE helps the client and
server share an AE key H2(K0) and then AE helps the authentication of the
server. Meanwhile, the server’s message ψ can be viewed as a “challenge” to the
client. Only the client knowing the correct password pw is able to derive the
KEM secret key sk to recover K1 and generate the correct “response” σ with
(K0,K1). Putting differently, σ can be viewed as a proof of knowledge of pw for
the client. As long as adversary A does not obtain pw through offline or online
attacks, A cannot impersonate the client even if A compromises the server and
obtains (rw, pk).

UC Security in RO Model. To prove the UC security for our aPAKE compiler
in the random oracle (RO) model, we have to construct a simulator Sim to
simulate all the interaction transcripts and session keys for both passive and
active attacks implemented by A, without the knowledge of password pw but
accessing to the ideal functionality Fapake for aPAKE (see Fig. 4 in Sect. 2.3).

The aPAKE protocol has two parts: the PAKE part in which rw = H0(pw)
is used to generate PAKE key K0, and the last two rounds in which K0 and
(pk, sk, rw) are used to generate ψ, σ and the session keys sKey. Recall that
PAKE has UC security, so the PAKE part can emulate the ideal functionality
Fpake (see Fig. 3 in Sect. 2.3 for the description of Fpake).

Firstly, let us consider A’s attacks on the PAKE part. The task of Sim is
to simulate the correctly distributed PAKE key K0 without password pw. Note
that if A did not use the correct PAKE password rw := H0(pw) in the PAKE
part, A’s active attack on the PAKE part hardly succeeds, due to the ideal
functionality Fpake of PAKE. We consider the following three cases.

Case I: A ’s successful active attacks on the PAKE part with the correct
password pw. In this case, A successful implements either an online attack
or an offline attack, in both of which A must have queried H0(pw) to obtain
rw. For A’s such an attack with rw, Sim can search the hash list to find
pw′ such that rw = H0(pw′), and then justify the correctness of pw′ with
the help of Testpw interface of Fapake. In this way, Sim is able to extract the
correct password pw from A’s successful active attacks. Then with pw, it can
simulate the PAKE part to generate PAKE key K0 for A.

Case II: A’s successful active attacks on the PAKE part with the stolen
PAKE password rw. In this case, A must have stolen the password file
(rw, pk) and can use rw to impersonate client or server in the PAKE part
of the aPAKE protocol. Sim can simulate the generation of password file
for A with random elements. More precisely, Sim picks rw and r randomly,
sets H0(?) := rw and H1(?) := r respectively with pw =? undetermined,
and generates (pk, sk) ← KeyGen(r). If later A attacks with correct pw,
Sim can extract it (see Case I) and then re-program the hash function with

40 Y. Lyu et al.

H0(pw) := rw and H1(pw) := r. With the knowledge of rw, it can simu-
late Fpake to generate PAKE key K0 for A. We stress that Sim generates
(pk, sk, rw) without pw in this case.

Case III: the other cases. If neither Case I nor Case II happens, then either
A’s active attack fails or A implements a passive attack.
Case III.1: Failed active attack on the PAKE part. In this case,

either the PAKE part outputs ⊥ to abort the protocol (PAKE with
explicit authentication), or the PAKE part outputs different PAKE ses-
sion keys K0 and K ′

0 for Client and Server respectively (PAKE with
implicit authentication), where K0 and K ′

0 must be uniform to A accord-
ing to the UC security of PAKE.

Case III.2: Passive attack on the PAKE part. In this case, the PAKE
part generates the shared PAKE session key K0 for Client and Server.
According to the UC security, K0 must be uniform to A.

In this case, Sim can simulate K0 (also K ′
0) with a randomly chosen one.

Next, let us consider A’s attacks on the last two rounds of the aPAKE pro-
tocol. We follow the above three cases.

Case I happened. In this case, Sim has extracted the correct password pw and
also knows PAKE key K0. With the knowledge of pw and K0, Sim can give
a perfect simulation for A’s active attacks (here passive attack is impossible
due to the previous active attack on the PAKE part) with round message ψ′

or σ′. Note that Sim can use the correct pw to invoke Fapake to assign the
session key sKey determined by A to both client and server.

Case II happened. In this case, Sim has the knowledge of (pk, sk, rw) itself
(generated without pw) and the PAKE key K0. also uniformly distributed.

– For A’s active attack with ψ′, Sim can determine the validity of ψ′ with
K0. It rejects ψ′ and aborts the protocol for invalid ψ′, and for valid ψ′

it invokes Fapake to assign the session key sKey determined by A to both
client and server (dealing with the case that A stole the file (pk, rw) and
successfully impersonated server to accomplish the aPAKE protocol).

– For A’s active attack with σ′, Sim can determine the validity of σ′ with
K0 and K1. If σ′ is valid and A has obtained the correct password pw
via an offline attack, it invokes Fapake to assign the session key sKey
determined by A to both client and server. If σ′ is invalid, it rejects σ′

and aborts the protocol. Define Bad as the event that σ′ is valid but A
did not obtain pw from offline attack. If Bad happens, it rejects σ′ as well.
However in the real experiment, in case of Bad, σ′ should be accepted.
This imperfect simulation does not annoy us since Bad can hardly happen,
which is guaranteed by the OW-PCA security of KEM. The reason is as
follows. Without pw, A cannot derive sk, then A cannot obtain K1 due to
the OW-PCA security, hence H3(K0,K1, T rans|ψ) is uniform to A and
σ′ = H3(K0,K1, T rans|ψ) hardly holds.

Efficient Asymmetric PAKE Compiler from KEM and AE 41

Case III happened. In this case, Sim has the knowledge of K0 which is uni-
formly distributed in A’s view. Then to A, the hash values of H2(K0),H3(K0,
K1, T rans|ψ),H4(K0) are also uniformly distributed.

– For A’s passive attacks on server or client, Sim can simulate ψ with ψ ←
AE.Enc(H2(K0),dummy message) and simulate σ with a uniform string,
and invoke Fapake to generate random session key sKey for server or client.
Given uniform AE key H2(K0), AE encryption of a dummy message is
indistinguishable from AE encryption of the real message c, due to the
one-time CCA security of AE. Meanwhile random oracles guarantee the
uniformity of σ := H3(K0, K1, T rans|ψ) and sKey := H4(K0). Moreover,
Sim invokes Fapake to generate a uniform session key sKey for both client
and server. Therefore, Sim’s simulation is perfect for these passive attacks.

– For A’s active attacks on client with ψ′, Sim directly rejects and aborts
the protocol. Without the knowledge of AE key H2(K0), A’s forgery of ψ′

will result in AE.Dec(H2(K0), ψ′) = ⊥, due to the one-time authenticity
of AE. So Sim’s simulation of dealing with ψ′ is perfect (except with
negligible probability).

– For A’s active attacks on client with σ′, Sim directly rejects and aborts
the protocol. Without the knowledge of KEM’s secret key sk, K0, A’s
forgery of σ′ can hardly collide with the valid σ := H3(K0,K1, T rans|ψ),
due to uniformity of the RO outputs. So Sim’s simulation of dealing with
ψ′ is perfect (except with negligible probability).

Comparison. In Table 1, we instantiate our aPAKE compiler with the NIST
PQC KEM winner algorithm Kyber, and compare it with the signature-based
compiler [15], which is the only known aPAKE compiler instantiable from lattices
prior to our work. The performance results in Table 1 is obtained by running
experiments on Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz with 4 cores
under macOS 13.3.1. When the compiler [15] is instantiated with the NIST PQC
lattice-based signature scheme Dilithium or Falcon, our compiler significantly
outperforms theirs in all aspects including registration time, computing time,
server storage size, and communication cost. This suggests that our compiler is
the most efficient aPAKE compiler from lattices. As far as we know, there is
no UC-secure aPAKE scheme constructed directly from lattices, and the only
approach to UC-secure aPAKE from lattices is via compiling a PAKE scheme to
an aPAKE. Therefore, the good efficiency of our compiler suggests that applying
our compiler to the available UC-secure PAKE schemes from lattices will yield
the most efficient UC-secure aPAKE schemes from lattices.

We also compare our compiler with known aPAKE compilers [15,25] instan-
tiated from other post-quantum assumptions in the full version of our paper [23].
The comparison shows that our compiler overwhelms these compilers in terms
of registration time and computing time, and has comparable server storage and
communication cost.

In Table 2, we also compare the resulting MDDH-based aPAKE scheme (from
our MDDH-based compiler) with other aPAKE schemes in terms of tight UC

42 Y. Lyu et al.

security. The tight security of aPAKE in [19,22,25,31,33] is eliminated by the
impossibility result in [22], which essentially said that tightly UC-security is
impossible to achieve if the secret derived from password by client is uniquely
determined by the password file and moreover the relation between the secret and
file can be efficiently determined. In contrast to their schemes, the client secret
(rw, sk) in our MDDH-based aPAKE evades the impossibility result since the
key generation of MDDH-based KEM makes sure that multiple sk correspond to
one pk and hence to one password file. On the other hand, the aPAKE schemes
[15,17] in Table 2 are obtained by compiling PAKE + signature in [15] and AKE
+ ideal cipher in [17] respectively, but the security reduction is not tight, so it
is unknown whether tight UC security can be achieved.

Table 1. Efficiency comparison of our Kyber-based compiler with the other aPAKE
compilers [15] from lattices, where Kyber is in its version of NIST security level 3. For
computing and communication cost, we use the mode of “Client + Server = Total”
to reflect the separation of client/server computation/communication. The aPAKE
compiler in [15] has two lattice-based instantiations, one is instantiated with Dilithium
in its version of NIST security level 3, and the other is instantiated with Falcon in its
version of NIST security level 1 (due to its lack of level 3).

aPAKE
Compiler

Registration
Time (ms)

Computing
Time (ms)

Server
Storage (KB)

Communication
Cost (KB)

Assumption
Type

[15] (Dilithium) 0.096 0.245 + 0.126 = 0.371 5.875 3.215 + 3.938 = 7.153 Lattice-based
[15] (Falcon) 7.003 0.271 + 0.074 = 0.345 2.189 0.642 + 1.282 = 1.924 Lattice-based

Ours (Kyber) 0.017 0.051 + 0.083 = 0.1341.188 0.031 + 1.094 = 1.125Lattice-based

Table 2. Comparison of our MDDH-based aPAKE scheme with other UC-secure
aPAKE scheme in terms of tight UC security, where our aPAKE scheme is resulted
from compiling the PAKE protocol [22] with our MDDH-based compiler. “?” denotes
its tight UC security is unknown.

aPAKE scheme Our MDDH-based aPAKE [22] [31] [33] [19] [25] [15] [17]

Tight UC Security? � × × × × × ? ?

The Necessity of AE in Our Compiler. Note that AE plays an important
role in our compiler for aPAKE to achieve explicit authentication. Moreover,
AE is especially necessary in our compiler when the underlying KEM has no
anonymity under secret key leakage. No anonymity under secret key leakage
means that given sk, one can efficiently decide whether a KEM ciphertext c is
generated under pk. If we take off AE from the round message ψ, the server will
send the KEM ciphertext c directly, and then the resulting aPAKE will suffer

Efficient Asymmetric PAKE Compiler from KEM and AE 43

from an offline attack: the adversary sees the encapsulation c, tries different
password pw, generates (pk, sk) ← KeyGen(H1(pw)), and tests whether c is the
KEM ciphertext generated under key pair (pk, sk).

As far as we know, many lattice-based KEMs have no anonymity under secret
key leakage. Let us take Regev’s encryption scheme [29] as an example. For a
ciphertext c generated under pk, the decryption of c using sk will result in a value
which is either very close to 0 or close to q/2 with q the modulus. However, for c
generated under another public key pk′, the decryption of c using sk may result in
a value far from both 0 and q/2. In this way, one can in fact efficiently tell whether
c is generated under pk (at least with noticeable probability). Consequently, AE
is necessary for our lattice-based compiler.

On the other hand, if the underlying KEM does have anonymity under secret
key, which means the adversary cannot distinguish a given ciphertext c is gen-
erated under (pk1, sk1) or (pk2, sk2), the above offline attack fails. However, the
price of getting rid of AE from our compiler is that we lose the explicit authen-
tication of server-side. Actually, the CDH-based aPAKE compiler [19] can be
seen as an instantiation of our compiler from ElGamal KEM without AE, and of
course the CDH-based aPAKE does not achieve explicit mutual authentication.

Hardness on Achieving UC-Secure aPAKE in QROM. Note that our
aPAKE compiler is proved under ROM instead of Quantum Random Oracle
Model (QROM) [6]. QROM allows adversary A to perform superposition queries
to random oracles, making it hard for simulator to extract preimages or repro-
gram random oracles. It is especially hard to give UC-secure aPAKE protocols
in QROM since reprogrammable random oracles are unavoidable for the con-
struction of UC-secure aPAKE protocols, as demonstrated in [18]. Therefore, it
is a big challenge to construct UC-secure aPAKE in QROM, and we leave it as
an interesting open problem.

2 Preliminary

Let λ ∈ N denote the security parameter throughout the paper. If x is defined
by y or the value of y is assigned to x, we write x := y. For μ ∈ N, define
[μ] := {1, 2, . . . , μ}. Denote by x ←$ X the procedure of sampling x from set
X uniformly at random. Let |X | denote the number of elements in X . All our
algorithms are probabilistic unless stated otherwise. We use y ← A(x) to define
the random variable y obtained by executing algorithm A on input x. We also
use y ← A(x; r) to make explicit the random coins r used in the probabilistic
computation. The notation “≈s” represents statistical indistinguishability, while
“≈c” denotes computational indistinguishability. “PPT” abbreviates probabilistic
polynomial-time. Denote by negl some negligible function.

In Subsect. 2.1, we recall the definitions of Key Encapsulation Mechanism
(KEM), Authentication Encryption (AE) and their security notions. In Subsects.
2.2 and 2.3, we present the ideal functionalities of random oracle and (a)PAKE,
respectively.

44 Y. Lyu et al.

2.1 KEM and AE

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KeyGen,Encap,Decap) consists of three algorithms:

– KeyGen(r) : Taking as input a randomness r ∈ R, the key generation algo-
rithm outputs a pair of public key and secret key (pk, sk).

– Encap(pk) : Taking as input a public key pk, the encapsulation algorithm
outputs a pair of ciphertext c ∈ CT and encapsulated key K ∈ K.

– Decap(sk, c) : Taking as input a secret key sk and a ciphertext c, the decap-
sulation algorithm outputs K ∈ K.

The correctness of KEM requires that

Pr
[
r ←$ R, (pk, sk) ← KeyGen(r)

(c,K) ← Encap(pk) : Decap(sk, c) = K

]
= 1 − negl(λ).

Definition 2 (OW-PCA security for KEM). For a KEM scheme KEM =
(KeyGen,Encap,Decap), the advantage function of an adversary A is defined by

Advow-pcaKEM (A) := Pr

⎡
⎣ r ←$ R, (pk, sk) ← KeyGen(r),

(c,K) ← Encap(pk)
K ′ ← ACheck(sk,·,·)(pk, c)

: K = K ′

⎤
⎦ ,

where the oracle Check takes as input a ciphertext-key pair (c,K) and returns
whether Decap(sk, c) = K or not. The OW-PCA security for KEM requires
Advow-pcaKEM (A) = negl(λ) for all PPT A.

Definition 3 (AE). An authenticated encryption (AE) scheme AE = (Enc,Dec)
consists of two algorithms:

– Enc(k,m) : Taking as input a key k ∈ K and a message m ∈ M, the encryp-
tion algorithm outputs a ciphertext c.

– Dec(k, c) : Taking as input a key k ∈ K and a ciphertext c, the decryption
algorithm outputs a message m ∈ M or a symbol ⊥.

The correctness of AE requires that Dec(k,Enc(k,m)) = m holds for all k ∈ K
and all m ∈ M.

Definition 4 (One-time authenticity for AE). For an AE scheme AE =
(Enc,Dec), the advantage function of an adversary A for one-time authenticity
is defined by Advot-authAE (A) := Pr

[
k ←$ K, c ← AEnc(k,·) : Dec(k, c) �= ⊥ ∧

cis not the output of oracleEnc(k, ·)
]
. The one-time authenticity for AE requires

Advot-authAE (A) = negl(λ) for all PPT A that query the oracle Enc(k, ·) at most
once.

Definition 5 (One-time IND-CCA security for AE). For an AE scheme
AE = (Enc,Dec), the advantage function of an adversary A for one-time CCA
security is defined by Advot-ccaAE (A) :=

∣∣ Pr
[
k ←$ K, b ←$ {0, 1}, (m0,m1) ←

ADec(k,·), cb ← Enc(k,mb), b′ ← ADec(k,·)(cb) : b = b′] − 1/2
∣∣. The one-time

IND-CCA security requires Advot-ccaAE (A) = negl(λ) for all PPT A that query the
oracle Dec(k, ·) at most once for a ciphertext different from cb.

Efficient Asymmetric PAKE Compiler from KEM and AE 45

Such an AE can be easily constructed from one-time pad and one-time
secure Message Authentication Code (MAC), and hence it has a very efficient
information-theoretical instantiation. See Sect. 4 for the detailed construction.

2.2 Idealized Random Oracle Model

The idealized functionality of random oracle is shown in Fig. 2. The idealized
functionality of random oracle can be perfectly simulated by a PPT simulator
Sim: Sim maintains a list L (initialized to be empty) to store the records. Upon
receiving a query (Eval, x) from P , Sim checks whether there exists (x, y) ∈ L.
If yes, Sim returns y. Otherwise, Sim randomly samples y ←$ Y, records (x, y)
in the list L, and returns y.

Fig. 2. The ideal functionality FRO for random oracle H.

2.3 (Asymmetric) PAKE Under UC Framework

In Figs. 3 and 4, we show the ideal functionalities of PAKE and aPAKE respec-
tively. Here the functionalities mainly follows from [15] along with some modifi-
cations as did in [33]. The ideal functionality of aPAKE is extended from that
of PAKE, so we only explain aPAKE below.

Fig. 3. The ideal functionality Fpake for PAKE.

46 Y. Lyu et al.

Fig. 4. The ideal functionality Fapake for aPAKE.

Security Guarantees in the Ideal World. Fapake in Fig. 4 formalizes the
ideal functionality of asymmetric PAKE with mutual explicit authentication.
Roughly speaking, the ideal functionally Fapake in the UC model captures the
following security guarantees in the ideal world.

Efficient Asymmetric PAKE Compiler from KEM and AE 47

– Passive attack and forward security. For a passive attacker A, the session
key is uniformly distributed (which is modeled by the FreshKey and CopyKey
query), even if the adversary is given the password.

– Online guessing password attack. In this case, the adversary A guesses
a password pw′ once for a session and tests whether his guess is correct,
which is modeled by the Testpw query. This means that any active attack
implemented by a real-world adversary A to the protocol can be translated
to a single Testpw query in the ideal world. If the password-guess is correct,
then the adversary can control the session key at its will (which is modeled by
the CorruptKey query). Otherwise, the attacked party can detect the active
attack and reject this session directly (which modeled by the Abort query).

– Online impersonation attack on server after stealing the password
file. In this case, the adversary A has obtained the password file stored in
the server. Without loss of generality, we write the password file as H(pw).
With H(pw), A can impersonate a server perfectly to communicate with a
client, which is modeled by the Impersonate query. Besides online attack, A
can also implement offline attacks by choosing a password pw′ and checking
whether H(pw′) = H(pw), which is modeled by the OfflineTestPW query.
Moreover, before A obtains the password file H(pw), A can precompute a
table of possible pairs (pw′,H(pw′)). When A obtains the password file, he
can search pw in the table quickly by comparing H(pw′) = H(pw). This is also
captured by the OfflineTestPW. Note that in this case, A cannot impersonate
a client unless A makes a correct online password guess, or A obtains the
password via offline attacks, i.e. A gets a pw′ s.t. H(pw′) = H(pw).

UC Security for aPAKE. In the real world, the environment Z has all pass-
words for all users, controls the adversary A, and sees all the interactions over
the channel and session keys derived from the protocol. In UC framework, we
will construct a PPT simulator Sim which has access to the ideal functional-
ity Fapake and interacts with the environment Z. If the view simulated by Sim
for environment Z is indistinguishable to Z’s view in the real world, then UC
security is achieved.

Difference Between Our Fpake/Fapake and the Original Fpake /Fapake.
The original ideal functionality Fpake for PAKE was proposed in [9]. The ideal
functionality Fapake for aPAKE in [15] was built upon [9]. Shoup [33] improved
and optimized both Fpake and Fapake in several ways.

– In the original ideal functionality Fpake and Fapake, each protocol instance
must be identified by a globally unique session identifier and the PAKE par-
ticipants can successfully establish a joint session key only if they use the same
session identifier sid. The requirements on sid are problematic for an imple-
menter, as pointed out by [1]. Shoup’s modified Fpake addresses this issue
by replacing globally unique session identifiers with locally unique instance
identifiers (iid), and session identifiers (sid) are seen as protocol outputs.

– The Fapake in [15] is flawed, as pointed out by [18]. In fact, Shoup also pointed
it out, and he fixed these flaws with a modified Fapake.

48 Y. Lyu et al.

– Fapake in [33] models the explicit authentication (via fresh-key, copy-key,
corrupt-key and abort interfaces), while the formulation of explicit authenti-
cation in [15] is flawed, as pointed out by Remark 10 in [33].

In our paper, we adopt the optimized Fpake and Fapake provided in [33].

Remark 1. In this paper, we assume that each instance of a party (client or
server) is initialized with the different instance ID iid. This is reasonable and
also taken in [33] . Another notation is that for simplicity, our ideal functionality
Fapake does not model the case that client mistypes its password, but this can
be easily taken into account with the same approach in [33] (See Remark 3 and
Remark 4 in [33] for more details).

3 Our aPAKE Compiler from KEM and AE

In this section, we propose an aPAKE compiler from KEM and AE, and show
how to construct aPAKE from UC-secure PAKE with the help of our compiler in
the UC framework. The detailed compiler (as well as the aPAKE construction) is
shown in Fig. 5. Due to its UC security, PAKE can emulate its ideal functionality
Fpake, so we replace PAKE with Fpake in the aPAKE construction.

Clearly, the resulting aPAKE scheme from our compiler is correct if the
underlying PAKE, KEM and AE scheme are correct. If the underlying KEM
has OW-PCA security and AE has one-time authenticity and one-time CCA
security, then our compiler is able to compile a UC-secure PAKE to a UC-secure
aPAKE, as shown in the following theorem.

Theorem 1. If KEM is a key encapsulation mechanism with OW-PCA security,
AE is an authenticated encryption scheme with one-time authenticity and one-
time CCA security, H0,H1,H2,H3,H4 work as random oracles, then the aPAKE
scheme in Fig. 5 securely emulates Fapake, hence achieving UC security in the
{Fpake,FRO}-hybrid model. More precisely, suppose there are at most N parties,
� sessions and q random oracle queries, then there exists a simulator Sim s.t.

|Pr [RealZ,A] − Pr [IdealZ,Sim]| ≤N2� · Advow-pcaKEM (BKEM) +
q2 + q + 1

2λ

+� · Advot-authAE (BAE) + � · Advot-ccaAE (BAE).

Proof. The main objective of the proof is constructing a PPT simulator Sim
to simulate an indistinguishable view for the environment Z. Sim is designed to
have access to the ideal functionality Fapake and interact with the environment
Z, thereby emulating the real-world aPAKE protocol interactions involving the
adversary A, the parties, and the environment Z. It is important to note that
Sim does not possess any password.

Let RealZ,A represent the real-world experiment where the environment Z
interacts with the parties and adversary A who can access ideal functionality
Fpake via Testpw and NewKey. Let IdealZ,Sim represents the ideal experiment

Efficient Asymmetric PAKE Compiler from KEM and AE 49

Fig. 5. Construction of UC-secure aPAKE from UC-secure PAKE with our compiler.

where Z interacts with “dummy” parties and simulator Sim. By RealZ,A ⇒ 1,
we mean Z outputs 1 in RealZ,A, and IdealZ,Sim ⇒ 1 is similarly defined.

Our goal is to show that |Pr [RealZ,A ⇒ 1] − Pr [IdealZ,Sim ⇒ 1]| is negligi-
ble by employing a series of games, denoted as Game G0-G7. In this sequence, G0

corresponds to RealZ,A, while G7 corresponds to IdealZ,Sim. We aim to show
that these adjacent games are indistinguishable from the view of Z. For simplic-
ity, we write H0(pw,C(i),S(j)) and H1(pw,C(i),S(j)) as H0(pw) and H1(pw) in
the security proof.
Game G0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers, ideal functionality Fpake and adversary A, and also obtains the corre-
sponding session keys of protocol instances. During the execution, Fpake may
be invoked to create records like “(P, iid,Q, rw)” which we call inner records so
as to distinguish them from the records created by Fapake. Here A may imple-
ment attacks like view, modify, insert, or drop messages over the network. In G0,
H0,H1,H2,H3,H4 works as random oracles. Each party will do the following.

– For a server S(j) on input (StorePWFile,C(i),S(j), pw) from Z, it computes
rw := H0(pw) and (pk, sk) ← KeyGen(H1(pw)) and then stores (C(i),S(j),
rw, pk) locally.

– For a server S(j) on input (StealPWFile,C(i),S(j)) from A, it retrieves (C(i),
S(j), rw, pk) from local storage, and returns (rw, pk) to A.

50 Y. Lyu et al.

– For a client instance (C(i), iid) on input (NewClient,C(i), iid, S(j), pw) from
Z, it computes rw := H0(pw) and issues “(NewClient, C(i), iid,S(j) , rw)”
query to ideal functionality Fpake. According to the specification of Fpake,
it will create a fresh inner record “(NewClient,C(i), iid,S(j), rw)”, and send
“(NewClient,C(i), iid,S(j))” to A.
If A issues “(NewKey,C(i), iid, sid,Key∗)” to Fpake, then the instance
(C(i), iid) may receive “(sid,Key = K0)” from Fpake.

– For a server instance (S(j), iid′) on input (NewServer,S(j), iid′,C(i)) from Z,
it retrieves (C(i), S(j), rw, pk) from its storage, and sends “(NewServer,S(j),
iid′,C(i), rw)” to Fpake. According to the specification of Fpake, it will create a
fresh inner record “(S(j), iid′,C(i), rw)”, and send “(NewServer, S(j), iid′,C(i))”
to A.
If A issues “(NewKey,S(j), iid′, sid,Key∗)” to Fpake, then the instance
(S(j), iid′) may receive “(sid,Key = K0)” from Fpake.

– A can access Fpake via two interfaces (Testpw, P, iid, pw) and (NewKey, P,
iid, sid,Key∗).

• Upon Fpake receiving “(NewKey, P, iid, sid,Key∗)” from A, Fpake may
create “(sid,Key = K0)” according to the specification in Fig. 3, mark the
inner record “(P, iid,Q, rw)” as completed, and send “(sid,Key = K0)”
to the instance “(P, iid)”.

• Upon Fpake receiving “(Testpw, P, iid, rw′)” query from A, it checks
whether rw′ = H0(pw). If yes, Fpake returns “correct guess” to A. Oth-
erwise, Fpake returns “wrong guess” to A. Meanwhile, Fpake marks the
inner record “(P, iid,Q, rw)” as compromised or interrupted accordingly
(See Fig. 3).

– Upon a server instance (S(j), iid′) receiving message (sid,K0) from Fpake,
it retrieves “(C(i),S(j), rw, pk)” from its storage, and computes (c,K1) ←
Encap(pk). Then it computes ψ ← AE.Enc(H2(K0), c) and sends ψ to A.

– Upon a client instance (C(i), iid) receiving message “(sid,K0)” from Fpake

and message ψ from A, it first decrypts c ← AE.Dec(H2(K0), ψ). If c =
⊥, then it rejects and sends ⊥ to Z. Otherwise, it computes (pk, sk) ←
KeyGen(H1(pw)) and decrypts K1 ← Decap(sk, c). Finally, it computes σ :=
H3(K0,K1, sid|ψ), sends σ to A, sets sKey := H4(K0) and returns sKey to
Z.

– Upon a server instance (S(j), iid′) receiving message σ from A, if σ �= H3(K0,
K1, sid|ψ), then it rejects and sends ⊥ to Z. Otherwise, it sets sKey :=
H4(K0) and returns sKey to Z.

We have
Pr [Real]Z,A ⇒ 1 = Pr [G0 ⇒ 1] .

Game G1 (Simulations for Clients and Servers with pw). In this game,
we introduce a simulator Sim who additional knows passwords and has access to
the ideal functionality Fapake. Now in Game G1, the client and server become
“dummy party” and directly forward their inputs to the ideal functionality Fapake

defined in Fig. 4. Then Sim simulates the behaviors of clients and servers with
the help of pw as follows.

Efficient Asymmetric PAKE Compiler from KEM and AE 51

– For a dummy server S(j) on input (StorePWFile,C(i),S(j), pw) from Z, it
directly sends this query to Fapake. Then Fapake sends (StorePWFile,C(i),S(j))
to Sim. Then Sim simulates the password file (rw, pk) with rw := H0(pw),
(pk, sk) ← KeyGen(H1(pw)). Sim also stores a trapdoor record (C(i),S(j), rw,
pk, sk,H1(pw)) in its local storage.

– For a dummy server S(j) on input (StealPWFile,C(i),S(j)) from A, Sim directly
sends this query to Fapake. Then Fapake functions as described in Fig. 4 and
sends (StealPWFile,C(i), S(j)) to Sim. Then Sim returns the password file
(rw, pk) to A.

– For a dummy client instance (C(i), iid) on input (NewClient, C(i), iid, S(j), pw),
it directly sends this query to Fapake. Then Fapake sends (NewClient,C(i), iid,
S(j)) to Sim and Sim simulates the behavior of the client instance (C(i), iid)
with the password pw, just like G0.

– For a dummy server instance (S(j), iid′) on input (NewServer, S(j), iid,C(i)), it
directly sends this query to Fapake. Then Fapake sends (NewServer,S(j), iid′,
C(i)) to Sim and Sim simulates the behavior of the server instance (S(j), iid′)
with the PAKE password rw, just like G0.

– For dummy client and server instances, the generations of ψ, σ and sKey are
all simulated by Sim with the password pw, just like G0.

With the knowledge of passwords, the simulations of the behaviors of all
clients and servers are perfect.

Moreover, Sim also simulates random oracles Hi (i ∈ [0, 4]) maintaining sep-
arate lists, namely LHi

. For a query x on Hi(·), if (x, y) ∈ LHi
, then Sim will

return y as the reply. Otherwise, Sim will choose a random element y, record
(x, y) in LHi

, and return y as the reply.
During the simulation, Sim additionally checks a bad event: if there exists

two different random oracle queries to Hi such that Hi(pw) = Hi(pw′), then
Sim will abort the game. By the ideal functionality of random oracles, Sim’s
simulations for oracles Hi are perfect except a collision occurs in the simulation
of Hi. Suppose that the adversary issues q random oracle queries totally, by the
union bound, we have

|Pr [G1 ⇒ 1] − Pr [G0 ⇒ 1]| ≤ q2

2λ
.

The following games will change the simulations of Sim step by step in an
indistinguishable way so that Sim can arrive at its final form , and accomplish
the simulations in IdealZ,Sim without passwords pw. The complete description
of the simulator Sim is given in the full version [23].
Game G2 (Simulation for Ideal Functionality Fpake Without pw). In
G2, simulator Sim will simulate the ideal functionality Fpake itself, but without
the knowledge of pw. More precisely, Sim will maintain some inner records to
simulate the output of Fpake in the following way.

– Upon receiving (NewClient, C(i), iid,S(j)) from Fapake: Sim sends
(NewClient, C(i), iid,S(j)) to A. Then it stores “(C(i), iid,S(j), ?)” as an inner
record and marks it as fresh.

52 Y. Lyu et al.

– Upon receiving input (NewServer, S(j), iid′,C(i)) from Fapake: Sim sends
(NewServer,S(j), iid′,C(i)) to A. Then it stores “(S(j), iid′,C(i), ?)” as an inner
record and marks it as fresh.

– Upon receiving a query (Testpw, P, iid, rw) from A: If there exists a fresh
inner record “(P, iid,Q, ?)”, then do the following.
1. If there exists (pw, rw) ∈ LH0 , then Sim sends (Testpw, P, iid, pw) to

Fapake and forwards Fapake’s reply (“correct guess” or “wrong guess”) to
A.

2. If A ever issued (StealPWFile,C(i),S(j)) query before and Sim returned
(rw′, pk′) to A with rw′ = rw, and (P, iid) is an instance among the
interaction of C(i) and S(j), then Sim returns “correct guess” to A.

3. In other cases, return “wrong guess”.
4. If Sim returns “correct guess” to A, it also replaces “(P, iid,Q, ?)” with

“(P, iid,Q, rw)” and marks it as a compromised inner record. Otherwise,
it marks “(P, iid,Q, ?)” as an interrupted inner record.

– Upon receiving a query (NewKey, P, iid, sid,Key∗) from A: The simulator
replies the query just like Fpake.
1. If sid has been assigned to P ’s any other instance (P, iid′), return ⊥.
2. If there exists a compromised inner record “(P, iid,Q, rw)”, then output

(sid,Key∗) to P .
3. If there exists a fresh inner record “(P, iid,Q, ?)” and a completed inner

record “(Q, iid′, P, ?)”, “(sid,Key′)” was sent to Q and (Q, iid′, P, ?) was
fresh at the time, then output “(sid,Key′)” to P .

4. In any other case, pick a new random key Key ←$ {0, 1}λ and send
“(sid,Key)” to P .

Finally, mark the inner record “(P, iid,Q, ·)” as completed.

It is easy to see the simulation of NewClient,NewServer,NewKey query is
perfect. The only difference in G1 and G2 occurs in the simulation of Testpw
query.

Note that in G1, (Testpw, P, iid, rw) returns “correct guess” if and only if
rw is the PAKE password used in the instance (P, iid), which is the case that
rw = H0(pw) for the input pw to party P . Therefore, G2 and G1 differs only
when A issues a (Testpw, P, iid, rw) query to Fpake, rw = H0(pw) but A does not
query H0(pw). By the ideal functionality of random oracle, H0(pw) is uniformly
distributed to A if A does not query it. So we have

|Pr [G2 ⇒ 1] − Pr [G1 ⇒ 1]| ≤ 1
2λ

.

Game G3 (Replace Hash Values of K0 with Uniform Ones Unless A
Implements a Successful On-Line Active Attacks on Fpake). We consider
the following three cases, where Case I and Case II cover A’s successful on-line
active attacks on Fpake, and Case III covers the rest.

Case I. A implements a (successful) on-line attack on Fpake with the correct
password pw. That is, A issues “(Testpw, P, iid, rw = H(pw))” query, and then
Sim obtains “correct guess” from Fapake for its query “(Testpw, P, iid, pw)” to
Fapake. In this case, Sim is able to extract the correct password pw.

Efficient Asymmetric PAKE Compiler from KEM and AE 53

Case II. A implements a (successful) on-line attack on Fpake by impersonating
a party with the stolen PAKE password rw. That is A first issues a query
(StealPWFile, P,Q), then issues “(Testpw, P, iid, rw)” or “(Testpw, Q, iid, rw)”
query. In this case, A has stolen the PAKE password rw and successfully
implements an on-line impersonation attack.

Case III. Neither Case I nor Case II occurs.

If Case I or Case II happens, G3 is the same as G2. But if Case III happens in
G3, when A issues a “(NewKey, P, iid,Key∗)” query resulting in K0, then the hash
values of H2(K0),H3(K0,K1, c) and H4(K0) are replaced with independently
and uniformly chosen elements, no matter whether A has ever queried any of
them or not.

It is easy to see that G3 is the same as G2 unless A has ever queried H2(K0),
H3(K0,K1, c) or H4(K0) in Case III.

Note that Case III means that either there is no on-line attacks from A or
the on-line attack does not succeed. Upon A issuing a “(NewKey, P, iid,Key∗)”
query to Fpake in Case III, then the resulting key K0 simulated by Sim is
uniformly distributed to A (according to the specification of the simulation of
ideal functionality Fpake, the session key K0 should be uniform). Suppose the
adversary totally issues q random oracle queries, then A ever issues hash query
H2(K0),H3(K0,K1, c) or H4(K0) with correct K0 with probability at most q/2λ.
So we have

|Pr [G3 ⇒ 1] − Pr [G2 ⇒ 1]| ≤ q

2λ
.

Now in Case III, the AE key H2(K0), the authenticator σ = H3(K0,K1, c)
and the session key sKey = H4(K0) will be uniformly distributed to A. Jumping
ahead, the uniform AE key H2(K0) in Case III paves the way for the security
reduction to the security of AE in G4 and G5.

Now in G3, Sim does not need pw to simulate the generation of PAKE session
key K0: upon A’s (NewKey, P, iid,Key∗) query, Sim just sets K0 := Key∗ in Case
I and Case II, and can choose K0 uniformly in Case III. But Sim still needs rw to
identify Case II and needs password pw to generate password file. Moreover, the
generations of ψ and σ also needs pw: (pk, sk) ← KeyGen(H1(pw)), (c,K1) ←
Encap(pk), ψ ← AE.Enc(H2(K0), c), and σ = H3(K0,K1 = Decap(sk, c), sid|ψ).
Game G4 (Simulation of Generating Server’s Message ψ Without pw).
In G4, Sim is the same as in G3, except for Sim’s generation of ψ for the server
instance (S(j), iid′). We describe Sim’s simulations in the three cases (which are
defined in G3) in G4.

– If Case I occurs to (S(j), iid′), then Sim does not need to know pw beforehand.
Instead, Sim can extract the true password pw of server S(j) from Fapake. Then
Sim can use pw to generate (pk, sk) ← KeyGen(H1(pw)), (c,K1) ← Encap(pk)
and ψ ← AE.Enc(H2(K0), c), exactly like G3.

– If Case II occurs to (S(j), iid′), then Sim does not need the knowledge of
pw to generate ψ. In this case, Sim directly retrieves pk from its trapdoor
record (C(i),S(j), rw, pk, sk, r), and then compute (c,K1) ← Encap(pk) and
generates ψ ← AE.Enc(H2(K0), c). Simulation of ψ is exactly the same as G3.

54 Y. Lyu et al.

– If neither Case I nor Case II occurs to (S(j), iid′), then Sim does not
need the knowledge of pw to generate ψ either. In this case, Sim directly
retrieves pk from its trapdoor record (C(i),S(j), rw, pk, sk, r) and then com-
putes (c,K1) ← Encap(pk) and ψ ← AE.Enc(H2(K0), 0). Accordingly, when
its partnered client instance (C(i), iid) receives this specific ψ (passive attack
with ψ), it directly uses K1 corresponding to ψ (for consistence) and com-
putes σ := H3(K0,K1, sid|ψ). Recall that in G3, ψ ← AE.Enc(H2(K0), c)
rather than ψ ← AE.Enc(H2(K0), 0).

Finally, simulator Sim records (S(j), iid′,K1) in Case I and Case II and records
(S(j), iid′,⊥) in Case III.

The difference between G3 and G4 lies in the generation of ψ in Case III:
ψ ← AE.Enc(H2(K0), c) in G3 but ψ ← AE.Enc(H2(K0), 0) in G4. In Case III,
H2(K0) is uniformly distributed and independent of A’s view, as shown in G3.
According to the one-time IND-CCA security of AE and hybrid arguments over
the (at most) � ciphertexts of AE, we have

|Pr [G4 ⇒ 1] − Pr [G3 ⇒ 1]| ≤ � · Advot-ccaAE (BAE).

Note that the reduction needs to query the decryption oracle once to simulate
the message σ when it receives ψ generated by A. This is why we need AK have
one-time IND-CCA security.

Now in G4, Sim only needs rw to distinguish Case II and pk to simulate the
generation of ψ in Case II. Besides Sim also uses pk to generate c,K1 in Case II,
III, and uses sk to generate σ in Case II, III. But it still needs pw to generate
(rw, pk, sk).
Game G5 (Simulation of Client’s Message σ and Session Key sKey With-
out pw). In G5, Sim is the same as in G4, except for Sim’s generation of σ and
sKey for the client instance (C(i), iid) when receiving ψ. We describe Sim’s sim-
ulations in the three cases in G5.

– Case I occurs to (C(i), iid): A successfully guesses pw by issu-
ing “(Testpw,C(i), iid, rw = H0(pw))” query to Fpake. In this case, Sim
can extract the true password pw from Fapake and simulate the genera-
tion of σ in the same way as G4. More precisely, Sim first decrypts c ←
AE.Dec(H2(K0), ψ).

– If c = ⊥, then Sim issues (Abort,C(i), iid) query to Fapake. As a result, Fapake

returns (⊥,⊥) to (C(i), iid) to reject the session. In this case the session is
rejected in both G4 and G5.

– Otherwise, Sim generates (pk, sk) ← KeyGen(H1(pw)), decrypts K1 ←
Decap(sk, c) and computes σ := H3(K0,K1, sid|ψ). Finally, Sim issues
(CorruptKey,C(i), iid, sid|ψ|σ,H4(K0)) query to Fapake and Fapake returns
(sid|ψ|σ, sKey = H4(K0)) to (C(i), iid). In this case sKey = H4(K0) and
σ = H3(K0,K1, sid|ψ) in both G4 and G5.

Efficient Asymmetric PAKE Compiler from KEM and AE 55

– Case II occurs to (C(i), iid): A must have stolen server’s password
file and then impersonates party S(j). In this case, Sim first decrypts
c ← AE.Dec(H2(K0), ψ).

– If c = ⊥, then Sim issues (Abort,C(i), iid) query to Fapake. As a result, Fapake

returns (⊥,⊥) to (C(i), iid) to reject the session. In this case the session is
rejected in both G4 and G5.

– If c �= ⊥, then Sim retrieves sk from its trapdoor record (C(i),S(j), rw, pk, sk,
r) to decrypt K1 ← Decap(sk, c) and computes σ := H3(K0,K1, sid|ψ). Then
Sim issues (Impersonate,C(i), iid) query to Fapake, which indicates that Sim
impersonates S(j) to attack (C(i), iid). Finally, Sim issues (CorruptKey,C(i),
iid, sid|ψ|σ,H4(K0)) query to Fapake and then Fapake must return (sid|ψ|σ,
sKey = H4(K0)) to (C(i), iid). In this case the session key is sKey = H4(K0)
and σ = H3(K0,K1, sid|ψ) in both G4 and G5.

– Case III: neither Case I nor Case II occurs to (C(i), iid). In this case,
K0, H2(K0), H3(K0,K1, c) and H4(K0) are all simulated with uniform ones
by Sim. We further consider the following two subcases according to passive
or active attacks.

– Passive Attack withψ: In this case, (C(i), iid) and (S(j), iid′) must have
shared the same PAKE session key K0 and ψ must be generated by Sim
for some instance (S(j), iid′). Sim randomly chosen σ ←$ {0, 1}λ and issues
(FreshKey, C(i), iid, sid|ψ|σ) query to Fapake. Then Fapake returns a uniform
session key sKey ←$ {0, 1}λ to (C(i), iid). Later if the server session (S(j), iid′)
receives the same σ later, Sim will issue (CopyKey, S(j), iid′, sid|ψ|σ) query to
Fapake directly. In this case, (C(i), iid) and (S(j), iid′) share a same uniform
session key chosen by Fapake.

– Active Attack with ψ: In this case ψ is not generated by Sim or instance
(S(j), iid′) and (C(i), iid) do not share a same PAKE session key. Sim issues
(Abort,C(i), iid) query to Fapake. As a result, Fapake returns (⊥,⊥) to
(C(i), iid) to reject the session.
In both sub-cases, Sim does not need to retrieve pk to generate c via (c,K1) ←
Encap(pk) for the server instance (S(j), iid′), and it does not need to retrieve
sk to decrypt c for client instance (C(i), iid) any more.

If Case I or Case II occurs, G4 and G5 are the same, as analysed above. The
difference lies in Case III.

Recall in G4, if neither Case I nor Case II occurs, then K0 is uniform and
independent of A’s view. Consequently, H3(K0,K1, sid|ψ), H4(K0),H2(K0) are
all uniform to A and independent of A’s view. In the case of passive attack
where ψ is generated by Sim, the client message σ := H3(K0,K1, sid|ψ) and
the client session key sKey := H4(K0) are uniform to A. In G5, σ and sKey are
uniformly chosen. Therefore, σ and sKey have the same distribution in G4 and
G5. In the case of active attack with ψ, Sim directly rejects ψ in G5. But in G4,
Sim accepts if ψ is valid and rejects otherwise. G5 and G4 are the same unless
the event BadAuth happens, where BadAuth is defined as

BadAuth: Active attack with ψ results in AE.Dec(H2(K0), ψ) �= ⊥ in Case
III.

56 Y. Lyu et al.

With difference lemma, we know that |Pr [G5 ⇒ 1] − Pr [G4 ⇒ 1]| ≤
Pr [BadAuth.]

Recall that H2(K0) is uniformly distributed in Case III. Thanks to the
authenticity of AE, A only has negligible probability of generating a valid cipher-
text ψ without the knowledge of H2(K0).

Hence, ψ will always be rejected by (C(i), iid) except with a negligible proba-
bility. Given at most � sessions, we know that Pr [BadAuth] ≤ � ·Advot-authAE (BAE).
Consequently, we have

|Pr [G5 ⇒ 1] − Pr [G4 ⇒ 1]| ≤ � · Advot-authAE (BAE).

Note that A may additionally see a valid ciphertext ψ generated by Sim. This
is why we need a one-time secure authenticity AE scheme.

Now in G5, Sim only needs rw to distinguish Case II, needs pk to simulate
the generation of ψ for server instances in Case II, and needs sk to decrypt c so
as to compute σ for client instances in Case II. But it still needs pw to generate
(rw, pk, sk).
Game G6 (Simulation for Password File Without pw). In G6, Sim behaves
the same as G5 except for the simulation of generating the password file (rw, pk).

Recall that in G5, Sim uses password pw to generate the password file (rw, pk)
upon A’s StorePWFile query, but reveals the file to A upon A’s StealPWFile query.
Sim also generates the trapdoor record along with the file but only uses the record
for Case II in which StealPWFile must have happened. This fact suggests that
Sim can delay the generation of password file (rw, pk) and the trapdoor record
(C(i),S(j), rw, pk, sk,H1(pw)) until StealPWFile query. This is exactly Sim does
without pw in G6, but with the help of re-programming technique of ROs.

In G6, Sim will keep the password file and the trapdoor record empty until
StealPWFile query from A. We consider three phases of the game.

– Before receiving (StealPWFile,C(i),S(j)) from A: In this phase, the simu-
lations by Sim is exactly the same as that in G5. Besides, Sim also does the
following. For any random oracle query to H0(x) or H1(x) from A, Sim will
also issue a query (OfflineTestPW, C(i),S(j), x) to Fapake and Fapake will store
an offline-guess record.
Recall that only Case I or Case III happens in this phase. But neither pw nor
the trapdoor record is needed by Sim for Case I and Case III in G5. So the
simulation without pw in G6 is sound in this phase.

– When receiving (StealPWFile,C(i),S(j)) from A: It must happen that A
has issued a StealPWFile query to a dummy server S(j) and then Sim issues
a StealPWFile query to Fapake. According to the specification of Fapake in
Fig. 4, Fapake sends (StealPWFile, C(i),S(j)) to Sim.
Upon the output (StealPWFile,C(i),S(j)) from Fapake,

Efficient Asymmetric PAKE Compiler from KEM and AE 57

(1) If Sim ever issued a (OfflineTestPW,C(i),S(j), x) query before such that
x = pw, Fapake must have additionally output pw and “correct guess” to Sim.
In this case, Sim obtains the correct password pw, and then it can invoke
(pk, sk) ← KeyGen(H1(pw)), set rw := H0(pw), return (rw, pk) to A, and
set the trapdoor record as (C(i),S(j), rw, pk, sk,H1(pw)). The simulations of
password file and trapdoor record are exactly like G5.
(2) Otherwise, Sim randomly samples rw ←$ {0, 1}λ and r ←$ R, invokes
(pk, sk) ← KeyGen(r), returns (rw, pk) to A, and stores record (C(i), S(j),
rw, pk, sk, r). In this case, A did not ever query H0(pw) or H1(pw), so these
hash values are uniform to A. Though Sim does not know the value of pw,
it implicitly set H0(pw) := rw and H1(pw) = r. Therefore, in this case, the
simulations of password file and trapdoor record are exactly the same from
A’s view no matter in G6 or G5.

– After receiving (StealPWFile,C(i),S(j)) from A: In this phase, Sim will use
the trapdoor record for the simulations, exactly like in G5. Besides, Sim also
keeps an eye on random oracle queries: For each new random oracle query
for H0(x) or H1(x), Sim will issue a query (OfflineTestPW,C(i),S(j), x) to
Fapake and check the reply. If Fapake returns “correct guess”, Sim will retrieve
the record (C(i),S(j), rw, pk, sk, r) and reprogram H0(x = pw) := rw and
H1(x = pw) := r by storing (x, rw) in list LH0 and (x, r) in list LH1 . As long
as A issues oracle queries on pw, Sim will detect it and obtains the correct
password pw. In this way, Sim keeps the consistence between pw and the
trapdoor record. Even if A’s offline-attack succeeds, Sim still give a perfect
simulation for A, just like G5.

Due to the simulation strategy and reprogramming technique, the distri-
bution of trapdoor record (C(i),S(j), rw, pk, sk, r = H1(pw)) in G6 and G5 are
exactly the same. Therefore, we have

Pr [G6 ⇒ 1] = Pr [G5 ⇒ 1] .

Game G7 (Simulation of Dealing with σ for Server Instances Without
pw). In G7, Sim is the same as in G6, except for the simulation of the server
instance (S(j), iid′) when receiving σ. We still consider Sim’s simulations in the
three cases in G7.

First, Sim retrieves record (S(j), iid′,K1) (that was stored when ψ is simulated
for (S(j), iid′)) and the corresponding PAKE key K0.

Case I occurs to (S(j), iid′). If σ �= H3(K0,K1, sid|ψ), then Sim sends (Abort,
S(j), iid′) to Fapake. As a result, Fapake returns (⊥,⊥) to (S(j), iid′) to reject
the session. If σ = H3(K0,K1, sid|ψ), then Sim sends (CorruptKey,S(j), iid′,
sid|ψ|σ,H4(K0)) to Fapake. Then Fapake returns H4(K0) to (S(j), iid′).
Recall in G6, sKey = ⊥ if σ is invalid and sKey = H4(K0) if σ is valid.
Therefore, G6 and G7 are the same in this case.

Case II occurs to(S(j), iid′). If σ �= H3(K0,K1, sid|ψ) or σ = H3(K0,K1, sid|ψ)
but Fapake did not return “correct guess” to any of Sim’s (OfflineTestPW,

58 Y. Lyu et al.

C(i),S(j), pw′) queries, then Sim sends (Abort,S(j), iid′) to Fapake. As a result,
Fapake returns (⊥,⊥) to (S(j), iid′) to reject the session.
If σ = H3(K0,K1, sid|ψ) and Fapake returned “correct guess” to one of Sim’s
(OfflineTestPW, C(i),S(j), pw′) queries, then Sim sends (CorruptKey,S(j), iid′,
sid|ψ|σ,H4(K0)) to Fapake. Accordingly Fapake returns (sid|ψ|σ, sKey :=
H4(K0)) to (S(j), iid′).
Recall in G6, as long as Case II occurs, the simulator will set the session
key sKey := H4(K0) if σ = H3(K0,K1, sid|ψ), and set sKey := ⊥ if σ �=
H3(K0,K1, sid|ψ).

Case III occurs to (S(j), iid′). We further consider whether σ is from A’ passive
attack or active attack.

– Passive Attack withσ: In this case, there must exist some instance
(C(i), iid) which has agreed PAKE key K0 with (S(j), iid′), and σ must
be generated by Sim for (C(i), iid). Moreover, Sim must also have issued
(FreshKey, C(i), iid, sid|ψ|σ) query to Fapake and Fapake returns a uniform
session key sKey to (C(i), iid). Now Sim issues (CopyKey, S(j), iid′, sid|ψ|σ)
query to Fapake directly. In this case, (C(i), iid) and (S(j), iid′) share a
same uniform session key sKey chosen by Fapake and the session key sKey
is simulated with the help of Fapake, without the knowledge of pw or the
trapdoor record, just like G6.

– Active Attack with ψ: Sim sends (Abort,S(j), iid′) to Fapake, and
accordingly Fapake returns (⊥, sKey := ⊥) to (S(j), iid′) to reject the
session. Recall that in Case III of G6, H4(K0,K1, sid|ψ) is uniformly dis-
tributed and independent of A’s view, the simulator will reject the session
by setting sKey := ⊥ except with negligible probability.

Therefore, G6 and G7 are the same in Case III except with negligible proba-
bility.

According to the above analyses, G7 and G6 are the same except a bad event
Bad happens, where

Bad: Case II occurs to some (S(j), iid′), σ = H3(K0,K1, sid|ψ), but until then
none of the Sim’s (OfflineTestPW,C(i),S(j), pw′) queries results in “correct
guess”.

With difference lemma, we know that |Pr [G7 ⇒ 1] − Pr [G6 ⇒ 1]| ≤ Pr [Bad].
Next we show a reduction algorithm BKEM and prove Pr [Bad] ≤ N2� ·
Advow-pcaKEM (BKEM).

BKEM obtains a public key pk∗, a key encapsulation c∗, and has access to
oracle Check(·, ·) which on input (c,K) returns 1 iff Decap(sk∗, c) = K. BKEM

aims to find K∗ s.t. Decap(sk∗, c∗) = K∗.
In the reduction, BKEM plays the role of the simulator Sim in G7. It first

randomly choose (C(∗),S(∗), iid′) ←$ [N] × [N] × [�]. BKEM sets (S(∗), iid′) as the
target instance. Suppose that (C(∗), iid) is the partnered instance. BKEM will
detect whether Bad happen on (S(∗), iid′).

– For any other instances, BKEM behaves just like Sim does in G7.

Efficient Asymmetric PAKE Compiler from KEM and AE 59

– For the instances (C(∗), iid) and (S(∗), iid′), BKEM does the simulations as
follows.

• Before receiving (StealPWFile,C(∗),S(∗)) from A: BKEM behaves just
like Sim does in G7.

• Upon receiving (StealPWFile,C(∗),S(∗)) from A: BKEM issues a
StealPWFile query to Fapake. If Fapake replies with pw and “correct guess”,
then Bad does not happen on (S(∗), iid′), and BKEM aborts the game.
Otherwise, BKEM randomly samples rw ←$ {0, 1}λ, sets the trapdoor
record as (C(∗),S(∗), rw, pk∗, sk =?, r =?), and returns the password file
(rw, pk∗) to A.

• After receiving (StealPWFile,C(∗),S(∗)) from A: During this phase, for
any offline attack from A, if the corresponding (OfflineTestPW,C(∗),S(∗),
pw′) query to Fapake results in “correct guess”, then Bad does not happen
on (S(∗), iid′) and BKEM aborts the game.
For the session between instances (C(∗), iid) and (S(∗), iid′), BKEM first
simulates the generation of PAKE key K0 without pw and trapdoor
record, just like Sim. If Case II does not happen, then Bad does not
happen on (S(∗), iid′) and BKEM aborts the game.
Next, for server instance (S(∗), iid′), BKEM can simulate the generation of
ψ, BKEM invokes ψ ← AE.Enc(H2(K0), c∗). Since c∗ is an encapsulation
under pk∗, we know BKEM’s simulation is perfect, just like Sim.
For client instance (C(∗), iid) to deal with ψ′, recall that Sim may
decrypt ψ′ with sk∗ to generate K ′

1 and then σ, but BKEM has no
sk∗ at all. To deal with this problem, BKEM resorts to ROs and the
re-programming techniques: upon (C(∗), iid) receiving ψ′, BKEM invokes
c ← AE.Dec(H2(K0), ψ′). If c = ⊥, BKEM behaves just like Sim (no sk∗

involved). If c �= ⊥, for all hash queries H3(K0,K
′
1, sid|ψ′), BKEM first

checks whether there exists K ′
1 such that Check(c,K ′

1) = 1. If yes, set
σ := H3(K0,K

′
1, sid|ψ′). Otherwise randomly choose σ ←$ {0, 1}λ, and

set H3(K0,K
′
1 =?, sid|ψ′) := σ with ? denoting the undermined value of

K ′
1. It then returns σ to A and returns sKey := H2(K0) as the session key.

If later A issues any new query H3(K0,K
′
1, sid|ψ′), BKEM checks whether

Check(c,K ′
1) = 1. If yes, BKEM re-programme H3(K0,K

′
1, sid|ψ′) := σ.

Upon (S(∗), iid′) receiving σ′. If there is no H3 query such that σ′ =
H3(K0,K

′
1, sid|ψ), then Bad does not happen on (S(∗), iid′) since σ′ is

hardly valid due to the uniformity of RO, and then BKEM aborts the game.
Otherwise, find A’s hash query such that σ′ = H3(K0,K

′
1, sid|ψ), BKEM

checks whether Check(c,K ′
1) = 1. If no, then K ′

1 �= K∗
1 := Decap(sk∗,

c) so σ′ �= H3(K0,K
∗
1 , sid|ψ). Thus Bad does not happen on (S(∗), iid′)

and BKEM aborts the game. If yes, Check(c,K ′
1) = 1 implies K ′

1 = K∗
1 =

Decap(sk∗, c). Now Bad happens, BKEM just replies this K ′
1 as it answer

to its OW-PCA challenger.

60 Y. Lyu et al.

The above description and analysis shows that BKEM presents a perfect simu-
lation like Sim. As long as Bad happens on (S(∗), iid′), BKEM wins in its OW-PCA
experiment. Consequently, we have

Advow-pcaKEM (BKEM) = Pr
[
Bad on (S(∗), iid′)

]
=

1
N2�

· Pr [Bad] .

So,
|Pr [G7 ⇒ 1] − Pr [G6 ⇒ 1]| ≤ Pr [Bad] = N2� · Advow-pcaKEM (BKEM).

Finally, by combining all the statements across G0-G7, we get

|Pr [RealZ,A] − Pr [IdealZ,Sim]| ≤N2� · Advow-pcaKEM (BKEM) +
q2 + q + 1

2λ

+� · Advot-authAE (BAE) + � · Advot-ccaAE (BAE).

�
Remark 2 (Tightly secure aPAKE compiler.) Note that in the security proof,
the security loss is due to the guessing strategy in the reduction between G7

and G6, which relies on the OW-PCA security of the KEM scheme. By imposing
stronger security on KEM, it is possible to make the reduction a tight one.
For example, Pan et al. [27] proposed the OW-ChCCA security for KEM and
presented instantiation of such a KEM with tight OW-ChCCA security based on
the (Matrix) DDH assumption. The OW-ChCCA security considers a multi-user
setting, where besides the check oracle, the adversary adaptively corrupt users to
obtain their secret keys, gets multiple challenge ciphertext encapsulations {cj},
adaptively reveals some ciphertexts {c′

i} ⊆ {cj} to obtain encapsulation keys,
and adaptively obtains decryption results for {c′

k} such that {cj} ∩ {c′
k} = ∅,

and it requires that it is still hard for such an adversary to guess correctly an
encapsulation key for any unrevealed ciphertext under public keys of uncorrupted
users.

Theorem 2. Under the same condition as in Theorem 1, if KEM is replaced
with an OW-ChCCA secure one and AE is an information-theoretical AE scheme
with one-time authenticity and one-time CCA security, then we have

|Pr [RealZ,A] − Pr [IdealZ,Sim]| ≤ Adv
(N2,�)-ChCCA
KEM (BKEM) +

2� + q2 + q + 1
2λ

.

The security proof of Theorem 2 is given in the full version [23]. In Appendix B
of [23], we recall the formal definition of OW-ChCCA security for KEM. Then we
prove that our compiler is tightness-preserving when equipped with such a OW-
ChCCA secure KEM. We also review the specific tightly OW-ChCCA secure
KEM based on the Matrix DDH assumption, which was proposed in [27].

4 Instantiations of aPAKE from Our Compiler and PAKE

Our aPAKE compiler needs an OW-PCA secure KEM scheme and an AE scheme
with one-time authenticity and one-time CCA security. A good candidate for AE
is the canonical information-theoretic construction.

Efficient Asymmetric PAKE Compiler from KEM and AE 61

Instantiation of One-Time Secure AE. For one-time secure AE, we present
a concrete information-theoretically secure AE scheme AEit = (AE.Enc,AE.Dec)
from one-time pad and one-time MAC, using the Encrypt-then-MAC approach.
Here the key space is {0, 1}3λ, the message space is {0, 1}λ, and the ciphertext
space is {0, 1}2λ. All operations are over field F2λ .

– AE.Enc(k,m) : Parse k := (k1, k2, k3) ∈ F2λ × F2λ × F2λ and m ∈ F2λ .
Compute c1 := k1 + m and c2 = k2 × c1 + k3.

– AE.Dec(k, c) : Parse k := (k1, k2, k3) ∈ F2λ × F2λ × F2λ and c = (c1, c2). If
c2 �= k2 × c1 + k3: return ⊥. Otherwise return c1 − k1.

Lemma 1. For the above AE, we have

Advot-authAE (A) ≤ 1/2λ, Advot-ccaAE (A) ≤ 1/2λ.

for any (even all-powerful) adversaries.

The security proof of Lemma 1 is shown in the full version [23].
The OW-PCA security is a security notion weaker the CCA security, which

admits flexible choices for the underling KEM in our compiler. Next we show how
to instantiate our compiler according to the PAKE scheme so as the resulting
aPAKE scheme enjoying good features.

4.1 Most Efficient aPAKE from Lattice

Recall that there exists efficient UC-secure PAKE protocols [2,20,30] from lat-
tice, where the PAKE protocol in [2,20] is based on Kyber [7] and that in [30]
is based on Saber [10]. Kyber [7] is the NIST PQC winner for KEM, and its
CCA security is based on the module-LWE assumption [21], so we choose the
Kyber-based UC-secure PAKE scheme [2].

Now we also take Kyber (whose CCA security naturally implies OW-PCA
security) as the KEM in our compiler. Then together with the information-
theoretically secure AEit, we obtain a Kyber-based aPAKE scheme (A more
detailed description of the scheme is provided in the full version [23]).

Note that the second to last round of our compiler can be merged in the
last round of PAKE, resulting in a 3-round Kyber-based aPAKE scheme with
UC-security.

Comparison to Other Lattice-Based aPAKEs. Up to now, the only app-
roach to lattice-based UC-secure aPAKE is via the signature-aided compiler pro-
posed in [15]. However, signature schemes from lattice, like Dilithium or Falcon,
are far less efficient than their KEM counterpart like Kyber. We compare our
Kyber-based compiler to the Dilithium-based Compiler in [15] and the Falcon-
based Compiler in [15] in terms of the computing and communication efficiency
in Table 1.

The comparison in Table 1 suggests that our Kyber-based compiler is
the most efficient one, and hence the resulting Kyber-based aPAKE scheme

62 Y. Lyu et al.

(=Kyber-based compiler + Kyber-based PAKE) is the most efficient aPAKE
scheme with UC-security from lattice up to now.

Corollary 1. Under the same condition as in Theorem 1, suppose that KEM
is instantiated with the CCA secure KEM scheme Kyber [7] and AE is an
information-theoretical AE scheme with one-time authenticity and one-time
CCA security in our compiler. If the underlying PAKE is instantiated with the
UC-secure Kyber-based PAKE protocol in [2], then the resulting aPAKE has UC-
security s.t.

|Pr [RealZ,A] − Pr [IdealZ,Sim]| ≤ (5q + 2q� + 2N2�) · Advmlwe
k+1,k,χ(A) + 2−Ω(λ),

where Advmlwe
k+1,k,χ(A) is the advantage function for the Module-LWE problem [21].

4.2 Tightly Secure aPAKE Scheme from Matrix DDH

For the underlying PAKE protocol, there exist tightly UC-secure PAKE pro-
tocols from the CDH assumption [22,28]. Accordingly, our compiler also has
tightly secure OW-ChCCA secure KEM [27] from the (Matrix) DDH assump-
tion as candidate.

Now we take the MDDH-based KEM [27] with tight OW-ChCCA security
as the KEM in our compiler. Then together with the information-theoretically
secure AEit, our compiler can compile the CDH-based tightly UC-secure PAKE
scheme to a MDDH-based aPAKE scheme, which serves as the first tightly UC-
secure aPAKE scheme up to now (The tightly UC-secure aPAKE scheme is
provided in [23]).

Corollary 2. Under the same condition as in Theorem 2, suppose that KEM
is instantiated with the tightly OW-ChCCA secure MDDH-based KEM in [27]
and AE is an information-theoretical AE scheme with one-time authenticity and
one-time CCA security in our compiler. If the underlying PAKE is instantiated
with the tightly UC-secure CDH-based PAKE protocol in [22], then the resulting
aPAKE has tight UC-security such that

|Pr [RealZ,A] − Pr [IdealZ,Sim]| ≤ 12 · AdvMDDH(A) + 2 · AdvCDH(A) + 2−Ω(λ),

where AdvMDDH(A) and AdvCDH(A) are the advantage function for the MDDH
problem [13] and the CDH problem.

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments. This work was partially supported by Guangdong Major Project of Basic and
Applied Basic Research (2019B030302008), National Natural Science Foundation of
China under Grant 61925207 and Grant 62372292, and the National Key R&D Pro-
gram of China under Grant 2022YFB2701500.

Efficient Asymmetric PAKE Compiler from KEM and AE 63

References

1. Barbosa, M., Gellert, K., Hesse, J., Jarecki, S.: Bare PAKE: universally composable
key exchange from just passwords. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024,
Part II. LNCS, vol. 14921, pp. 183–217. Springer (2024), https://doi.org/10.1007/
978-3-031-68379-4_6

2. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE:
Generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. In: Tibouchi, M., Wang, X. (eds.) ACNS 23, Part II. LNCS,
vol. 13906, pp. 516–538. Springer, Heidelberg (Jun 2023). https://doi.org/10.1007/
978-3-031-33491-7_19

3. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In: Den-
ning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93.
pp. 244–250. ACM Press (Nov 1993).https://doi.org/10.1145/168588.168618

4. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: New models and constructions. Cryptology ePrint Archive, Report
2013/833 (2013), https://eprint.iacr.org/2013/833

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2129–2146. ACM Press (Nov 2019). https://
doi.org/10.1145/3319535.3363229

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_3

7. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367. IEEE (2018)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct
2001).https://doi.org/10.1109/SFCS.2001.959888

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (May 2005). https://doi.org/
10.1007/11426639_24

10. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol. 10831, pp. 282–305.
Springer, Heidelberg (May 2018).https://doi.org/10.1007/978-3-319-89339-6_16

11. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES 2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-
268, https://tches.iacr.org/index.php/TCHES/article/view/839

12. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Generic models for group actions. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 406–435. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4_15

https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1145/168588.168618
https://eprint.iacr.org/2013/833
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-031-31368-4_15

64 Y. Lyu et al.

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013).https://
doi.org/10.1007/978-3-642-40084-1_8

14. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier lattice-
based compact signatures over ntru. Submission to the NIST’s post-quantum cryp-
tography standardization process 36(5), 1–75 (2018)

15. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (Aug 2006). https://doi.org/
10.1007/11818175_9

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008).https://doi.org/10.1145/1374376.1374407

17. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: Asymmetric PAKE from key-hiding
key exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS,
vol. 12828, pp. 701–730. Springer, Heidelberg, Virtual Event (Aug 2021). https://
doi.org/10.1007/978-3-030-84259-8_24

18. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 579–
599. Springer, Heidelberg (Sep 2020). https://doi.org/10.1007/978-3-030-57990-
6_29

19. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 485–504. Springer,
Heidelberg (Sep 2018).https://doi.org/10.1007/978-3-319-98113-0_26

20. Januzelli, J., Roy, L., Xu, J.: Under what conditions is encrypted key exchange
actually secure? Cryptology ePrint Archive, Paper 2024/324 (2024), https://eprint.
iacr.org/2024/324

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
DCC 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-9938-4

22. Liu, X., Liu, S., Han, S., Gu, D.: EKE meets tight security in the Universally
Composable framework. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I.
LNCS, vol. 13940, pp. 685–713. Springer, Heidelberg (May 2023). https://doi.org/
10.1007/978-3-031-31368-4_24

23. Lyu, Y., Liu, S., Han, S.: Efficient asymmetric PAKE compiler from KEM and
AE. Cryptology ePrint Archive, Paper 2024/1400 (2024), https://eprint.iacr.org/
2024/1400

24. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012).https://doi.org/10.1007/978-3-642-29011-4_43

25. McQuoid, I., Xu, J.: An efficient strong asymmetric pake compiler instantiable
from group actions. In: ASIACRYPT 2023. pp. 176–207. Springer (2023), https://
eprint.iacr.org/2023/1434

26. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer, Heidelberg (Apr 2001). https://doi.org/10.1007/3-540-
45353-9_13

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-319-98113-0_26
https://eprint.iacr.org/2024/324
https://eprint.iacr.org/2024/324
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/978-3-031-31368-4_24
https://eprint.iacr.org/2024/1400
https://eprint.iacr.org/2024/1400
https://doi.org/10.1007/978-3-642-29011-4_43
https://eprint.iacr.org/2023/1434
https://eprint.iacr.org/2023/1434
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13

Efficient Asymmetric PAKE Compiler from KEM and AE 65

27. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4_20

28. Pan, J., Zeng, R.: A generic construction of tightly secure password-based authenti-
cated key exchange. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VIII.
LNCS, vol. 14445, pp. 143–175. Springer, Heidelberg (Dec 2023). https://doi.org/
10.1007/978-981-99-8742-9_5

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005).https://doi.org/10.1145/1060590.1060603

30. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 128–156. Springer, Heidelberg (Apr 2023). https://
doi.org/10.1007/978-3-031-30589-4_5

31. Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 127–156. Springer, Heidel-
berg (May / Jun 2022).https://doi.org/10.1007/978-3-031-07085-3_5

32. Schmidt, J.: Requirements for password-authenticated key agreement (pake)
schemes. Tech. rep. (2017), https://tools.ietf.org/html/rfc8125

33. Shoup, V.: Security analysis of itSPAKE2+. In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part III. LNCS, vol. 12552, pp. 31–60. Springer, Heidelberg (Nov
2020).https://doi.org/10.1007/978-3-030-64381-2_2

https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8742-9_5
https://doi.org/10.1007/978-981-99-8742-9_5
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://tools.ietf.org/html/rfc8125
https://doi.org/10.1007/978-3-030-64381-2_2

Threshold PAKE with Security Against
Compromise of All Servers

Yanqi Gu1(B) , Stanislaw Jarecki1 , Pawel Kedzior2 , Phillip Nazarian1 ,
and Jiayu Xu3

1 University of California Irvine, Irvine, USA
{yanqig1,sjarecki,pnazaria}@uci.edu
2 University of Warsaw, Warsaw, Poland

p.kedzior@mimuw.edu.pl
3 Oregon State University, Corvallis, USA

xujiay@oregonstate.edu

Abstract. We revisit the notion of threshold Password-Authenticated
Key Exchange (tPAKE), and we extend it to augmented tPAKE
(atPAKE), which protects password information even in the case all
servers are compromised, except for allowing an (inevitable) offline dic-
tionary attack. Compared to prior notions of tPAKE this is analogous to
replacing symmetric PAKE, where the server stores the user’s password,
with an augmented (or asymmetric) PAKE, like OPAQUE [43], where
the server stores a password hash, which can be used only as a target in
an offline dictionary search for the password. An atPAKE scheme also
strictly improves on the security of an aPAKE, by secret-sharing the
password hash among a set of servers. Indeed, our atPAKE protocol is a
natural realization of threshold OPAQUE.

We formalize atPAKE in the framework of Universal Composability
(UC), and show practical ways to realize it. All our schemes are generic
compositions which interface to any aPAKE used as a sub-protocol, mak-
ing them easier to adopt. Our main scheme relies on threshold Oblivious
Pseudorandom Function (tOPRF), and our independent contribution
fixes a flaw in the UC tOPRF notion of [40] and upgrades the tOPRF
scheme therein to achieve the fixed definition while preserving its mini-
mal cost and round complexity. The technique we use enforces implicit
agreement on arbitrary context information within threshold computa-
tion, and it is of general interest.

1 Introduction

Passwords remain a dominant method of authentication of end-users on the
Internet (and beyond),1 and for decades the prime mechanism for client-server
password authentication has been “password-over-TLS”, where the user sends
the password to the server over a secure channel authenticated via a Public Key
Infrastructure (PKI), and the server compares the received password against the
salted, i.e. randomized, password hash created during user registration.

1 See e.g. [51,54,55] for usability review of alternatives to password authentication.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 66–100, 2025.
https://doi.org/10.1007/978-981-96-0935-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_3&domain=pdf
http://orcid.org/0000-0001-6577-2704
http://orcid.org/0000-0002-5055-2407
http://orcid.org/0000-0003-2270-8694
http://orcid.org/0009-0005-1230-6941
http://orcid.org/0000-0002-0881-9980
https://doi.org/10.1007/978-981-96-0935-2_3

Threshold PAKE with Security Against Compromise of All Servers 67

This scheme has multiple weaknesses, including password visibility on the
server during authentication, accidental storage of passwords (for examples see
e.g. [1,2]), and password leakage if the user falls prey to the so-called “phishing”
attack. To improve upon this the Internet Engineering Task Force (IETF) con-
ducted a standardization process for a much stronger mechanism, a (strong) asym-
metric (or augmented) Password-Authenticated Key Exchange (aPAKE), see e.g.
[31,43] and references there-in, where the server stores a randomized password
hash for each user but the authentication protocol does not rely on PKI, except
possibly for user registration. An aPAKE scheme eliminates all the above weak-
nesses of password-over-TLS, limiting attacks to the two unavoidable avenues,
namely online password tests, and offline password tests in the case of server com-
promise. The IETF aPAKE competition chose the OPAQUE protocol [12,43],
which in addition to low computation and communication costs, uses an Authen-
ticated Key Exchange (AKE) protocol as a black-box, which makes it easy to inte-
grate with existing secure channel establishment protocols like TLS 1.3 [36,60].

Strengthening Password Protection by Server Distribution. The online
password tests, where the adversary tests a password by using it to authenticate,
can be mitigated by setting limits on the number of unsuccessful authentication
attempts.2 The exposure to offline password tests after server compromise can be
reduced as well, using Multi-Party Computation (MPC) [9,32]: If the aPAKE
server is emulated by n parties via an MPC protocol, then the offline testing
attack is enabled only if the adversary corrupts more than some threshold t < n
of these parties and reconstructs server data, i.e. the password hash.

Employing generic MPC techniques makes the complexity of such a solution
linear in the circuit description of the aPAKE server code, which for OPAQUE
involves elliptic curve operations, symmetric ciphers, and CRH hashes, with a
resulting circuit with tens of thousands of gates. A natural question is whether
there are much more practical solutions to an aPAKE where the server-held
password hash is secret-shared across a group of servers, and the offline password
tests attack avenue is enabled only after corruption of t+1 servers.

Threshold Symmetric PAKE. MPC-emulation of one party in a symmet-
ric PAKE is known as threshold PAKE (tPAKE). It was addressed in many
works starting from Ford-Kaliski [28] and Jablon [37], whose proposals included
informal security arguments. MacKenzie, Shrimpton, and Jakobsson [52] showed
the first tPAKE secure in a game-based model, for arbitrary t, assuming PKI.
Gennaro and Raimondo [25] showed a password-only tPAKE for t < n/3, and
Abdalla et al. [3] improved it to t < n/2 in the Random Oracle Model (ROM).
Jarecki, Kiayias, and Krawczyk [38] constructed game-based tPAKE for any t
using an intermediary tool of password-protected secret-sharing (PPSS), a.k.a.
password-authenticated secret-sharing (PASS), [6,16,18,39,40]. In addition, sev-
eral works focus on the case of 2 servers, known as 2PAKE [10,14,18,42,46–
48,61,64], including support for proactive security and universal composability
[15,49,65].

2 Two-factor authentication could mitigate on-line password tests as well, but two-
factor authentication is not commonly used in that way.

68 Y. Gu et al.

However, in these works the servers MPC-emulate a symmetric PAKE, and
make no security guarantees after corruption of t+1 servers, i.e. the adversary
who corrupts that threshold might reconstruct a plaintext password, as opposed
to its (salted) hash. Current cryptographic literature thus gives the implementers
two incomparable choices for protecting password-related information on the
server: They can protect it by storing only password hashes, using either the
password-over-TLS method or an aPAKE like OPAQUE, or they can protect it
using secret-sharing among n servers and using tPAKE, but the latter choice is
worse than the former if the attacker corrupts t+1 servers.

Contribution #1: UC Augmented Threshold PAKE Model. We define a
tPAKE notion which achieves the best of both worlds, i.e. where the compromise
of t+1 servers leaks only a salted password hash, which enables offline password
tests but does not reveal the password in the clear. We call such scheme an
augmented threshold PAKE (atPAKE), and we define it in the Universal Com-
posability (UC) framework [19], by extending the UC (strong) aPAKE notion
[43] to the multi-server setting.3

We note that the UC framework for expressing security of password authen-
tication protocols, beginning with the Canetti et al. model for UC PAKE [21],
is much stronger than extensions of the game-based PAKE security notion of
Bellare-Pointcheval-Rogaway (BPR) [8], because in addition to arbitrary inter-
actions between protocol instances it can capture security in the face of arbitrary
password correlations, password mistyping, and arbitrary password information
leakage. Indeed, UC security was a requirement in the PAKE/aPAKE competi-
tion conducted by the IETF, and if distributing the server should strictly upgrade
the security properties of UC aPAKE, then the notion that captures the security
of such distribution must extend and strengthen the UC aPAKE notion.

We define the UC atPAKE model in a flexible way, distinguishing between
two types of servers: A target server, who establishes a secure session with a
password-authenticated client, and an auxiliary server, who holds a secret-share
of the password hash but does not establish a secure session. Similar split of
roles was considered for both tPAKE and 2PAKE, e.g. in [3,10,25], with the
target server sometimes called a gateway. However, these solutions assumed a
single party playing the target role and required secure channels between each
pair of servers. By contrast, our protocols admit an arbitrary number of target
and auxiliary servers, with no prior trust assumptions between them. (However,
we imply security only if the client is uncorrupted during account initialization.)
In our model the auxiliary servers do not learn whether authentication succeeds,
but if they need this information, e.g. to implement rate-limiting on unsuccessful
authentication attempts, it can be supported if each auxiliary server also plays
a target server role.

3 Here we use aPAKE to refer to strong aPAKE functionality of [43], denoted saPAKE
therein, and we use weak aPAKE to refer to the original aPAKE functionality of [31].
The weak aPAKE model allows for speeding up the offline attack by precomputation
performed before server compromise, while the (strong) aPAKE disallows it.

Threshold PAKE with Security Against Compromise of All Servers 69

We view our UC atPAKE model as a major part of our contribution. As a san-
ity check, we verify that any protocol that realizes the UC atPAKE notion, sim-
plified to the case where auxiliary and target servers are equated, is also secure
under the game-based tPAKE notion of MacKenzie, Shrimpton, and Jakobsson
[52], upgraded using the real-or-random extension of the BPR game-based PAKE
model introduced by Abdalla-Fouque-Pointcheval [4]. Recall that a similar check
was done by Canetti et al. [21] who verified that their UC PAKE notion implies
the BPR game-based PAKE notion of [8].

Contribution #2: Augmented Threshold PAKE Schemes. We show how
to realize the atPAKE notion in a modular way, as a generic composition of
universally composable sub-protocols, and we prove security of our schemes
under the UC atPAKE definition discussed above. Our main proposal real-
izes UC atPAKE by generically combining threshold Oblivious Pseudorandom
Function (tOPRF) [40] with an aPAKE scheme. The variants of this approach
include replacing the tOPRF component with threshold Partially Oblivious PRF
(tPOPRF) [27], or with augmented Password-Protected Secret-Sharing (aPPSS)
[26]. We include an overview of these variants in Sect. 1.2 below.

Contribution #3: Threshold Oblivious PRF. Oblivious PRF (OPRF) [29]
is a 2-party protocol between a server who holds key k of PRF F and a client
who holds an argument x, s.t. the client outputs y = Fk(x), but no information
on x is leaked to the server. OPRF was defined in the UC framework in [38,39],
and it is realized by the “2HashDH” scheme [39] based on the Gap-OneMore-DH
(Gap-OMDH) assumption in a prime-order group. For OPRF’s based on other
assumptions see e.g. [5,22,38,45]. Threshold OPRF (tOPRF) [40] replaces the
OPRF server with a group that secret-shares the PRF key.

We revisit the UC tOPRF notion of [40].4 We point out a subtle flaw in their
model which makes it ambiguous, and we propose a revised UC tOPRF defini-
tion which strengthens the model and fixes the ambiguity. The original tOPRF
protocol of [40], based on secret-sharing of the PRF key in the 2HashDH OPRF
of [39], does not seem to be provably secure in the fixed model, as we explain
in the technical overview below. However, we show that adding an additional
form of blinding to this tOPRF scheme – which adds only a very modest cost
to the protocol – lets the modified protocol realize the fixed UC tOPRF notion,
under the Gap-OMDH and DDH assumptions in ROM. Moreover, whereas the
original tOPRF of [40] was analyzed under a complex interactive assumption,
which was shown secure in the generic group model, amending that protocol
with our blinding method not only lets the protocol realize a stronger security
model, but it does so under much simpler security assumptions, adding only
the DDH assumption to the Gap-OMDH assumption required by the underlying
2HashDH OPRF.

We extend the UC tOPRF model and our protocol to threshold Partially
Oblivious PRF (tPOPRF) [27]. This protocol variant has applications e.g. to

4 Variants of UC tOPRF notion were also defined and constructed in [7] and [23], but
these works target only the setting of n-out-of-n sharing.

70 Y. Gu et al.

an atPAKE scheme where the auxiliary servers share O(1)-sized state across all
user accounts. (We discuss this extension in Sect. 1.2 below.)

UC tOPRF can also be used to implement augmented PPSS (aPPSS) [26]
via the simple compiler of [40]. Augmented PPSS has further applications, e.g.
to password-protected cryptosystems [26]. An advantage of aPPSS built from
tOPRF via the compiler of [40] is that if tOPRF is proactively secure (see Sect. 1.2
below) then so is the resulting aPPSS. By contrast, the aPPSS construction
shown in [26] does not seem easy to proactivize.

1.1 Technical Overview

The idea behind our atPAKE protocol is simple and indeed it has appeared
in close variants before. Our tOPRF-based construction and its aPPSS-based
modification, are close variants of the game-based tPAKE’s of resp. [40] and
[38]. They are also natural threshold extensions of resp. the “server learns first”
variant of OPAQUE called OPAQUE’ in [34,43,56], and of OPAQUE itself [43].
They can also be seen as extensions of the 2PAKE of [42] to general thresholds.
Indeed, all these protocols are natural threshold extensions of the password-
hardening idea of Ford-Kaliski [28] and Jablon [37], which originated all research
on threshold PAKE’s. The idea of [28,37] is a blueprint for 2PAKE: The client
on password pw computes a hardened password rw = Fk(pw) via OPRF with (an
auxiliary) server #1 who holds key k, and then uses rw to authenticate to (a
target) server #2. If the last step is a (weak) aPAKE instance, this scheme was
shown as a game-based secure augmented 2PAKE [42], where augmented refers
to the property that corruption of both servers enables offline password tests
but does not leak the cleartext password. Indeed, if PRF Fk is appropriately
constructed then leaking key k held by server #1 and rw = Fk(pw) held by
server #2, does not leak argument pw except via brute-force attack, where an
evaluation of Fk(·) on each argument requires some fixed amount of computation.

First, observe that using (strong) aPAKE [43] instead of PAKE in the last
step strengthens security by eliminating advantages due to precomputation in the
offline attack in case of all-parties compromise. Second, make it into a “threshold
cryptosystem” by replacing OPRF with a (t, n)-threshold tOPRF involving n
auxiliary servers. Finally, rather than use the tOPRF-derived value rw = Fk(pw)
directly, let the user derive T -specific password as rwT = KDFrw(T). This forms
our tOPRF-based atPAKE construction: The client on password pw computes
rw = Fk(pw) via tOPRF with the auxiliary servers who hold a (t, n)-threshold
secret-sharing of key k, and then uses T -specific value derived from rw in an
instance of aPAKE with the target server T . We prove that this scheme is a UC
atPAKE if the tOPRF subprotocol is a UC tOPRF.

UC atPAKE Model. The UC atPAKE model we propose is a threshold exten-
sion of the UC (strong) aPAKE model [43], customized to a division of roles of
auxiliary and target servers, where the former play the role of “guardians”, who
must agree for an authentication instance to go through, while the latter are
authentication end-points.

Threshold PAKE with Security Against Compromise of All Servers 71

The security properties of our UC atPAKE model can be summarized as
follows: If a user creates an account with a target server with an identifier sid
and a set of n auxiliary servers, then an authentication attempt against the
target server requires a unique password guess and participation of t+1 of these
auxiliary servers who agree on an sid -dependent authentication attempt. Turning
to active attacks against the client, if the attacker plays man-in-the-middle on
client interaction with all servers then the security is as in PAKE, i.e. one user
authentication instance allows the attacker one on-line password test. However,
our model strengthens this basic guarantee s.t. if the adversary is passive in
client’s interaction with at least some auxiliary servers then the on-line password
test is only possible using password guesses which the attacker used himself in
on-line interactions with these servers. In other words, as in the case of the online
attack against the target server, the attacker can on-line test a password only if
it uses it in an sid -tagged interaction with auxiliary servers. This limits online
attacks on the client who fails to authenticate the target server but correctly
authenticates the auxiliary servers. Finally, offline password tests are enabled
only if the adversary corrupts t+1 auxiliary servers and the target server, and
there is no other avenue for learning information on the password.

Requirements on tOPRF and the Flaw in the tOPRF Model [40]. The
above requirements impose the following contract on the tOPRF subprotocol:
To get one online password test opportunity, either against the target server or
the client, the adversary must engage t+1 auxiliary server instances under the
target account identifier. We strengthen this contract further, so that all par-
ticipating auxiliary server instances must run on the same sub-session identifier
ssid . This allows more flexibility in the applications, e.g. ssid can include context
information which must be approved by all these servers (and approved by the
target server if the latter is in the auxiliary group).

The tOPRF of [40] is perfectly hiding for the client and does not enforce that
the servers agree on a sub-session identifier ssid they use to service an interaction
with a user. Indeed, it is unclear how a simulator in that protocol can identify
which server executions pertain to a user computing consistently on some fixed
password. This was observed by [40], who tried to solve this by letting the ideal
tOPRF functionality FtOPRF pick an arbitrary subset of sessions with distinct
t+1 servers which are “utilized” for computing one OPRF value. However, this
turns out to create an ambiguous and effectively unrealizable model.

Consider a tOPRF instance with n = 3 servers S1,S2,S3 and threshold t = 1,
so one needs 2 servers to compute Fk(·). Assume that the environment allowed
each of servers S1,S2,S3 to engage in tOPRF, and the simulator SIM observes
that the adversary computes Fk(·) on some argument x1, so SIM sends the
“evaluate Fk(·) on x1” request to FtOPRF, which in the model of [40] must decide
which pair of server sessions to utilize for this evaluation. Now, whatever choice
it makes, with 2/3 probability it will not match the subset which the real-world
adversary used, e.g. if the latter picks its set of two servers at random. For
example, assume the adversary computes Fk(·) on x1 via interaction with S1

and S2, whereas interaction with S3 was directed at computing Fk(·) on x2, and

72 Y. Gu et al.

assume that functionality FtOPRF picked the set of utilized servers badly, e.g.
it chose {S2,S3}. Unfortunately, this will prevent correct simulation afterwards.
Assume the environment cooperates with the adversary, and after this Fk(x1)
evaluation the environment allows S1 to engage in one more tOPRF instance.
The real-world adversary can evaluate Fk(·) on x2 by using this last interaction
with S1 together with the interaction with S3, but when SIM asks FtOPRF for
the value of Fk(·) on x2, functionality FtOPRF is stuck: The only two non-utilized
server sessions are two sessions by a single server S1, whereas an evaluation of
Fk(·) on any new argument requires non-utilized sessions with 2 different servers.

Fixing the tOPRF Model of [40]. A natural fix is to change FtOPRF s.t.
simulator SIM must extract the set of servers which the real-world adversary
uses to compute Fk(·) on a single argument. However, the tOPRF protocol of
[40] does not seem to enable such simulation. As mentioned above, tOPRF of
[40] is a threshold version of 2HashDH OPRF of [39]. In the latter Fk is defined
as Fk(x) = H3(x,H1(x)k) where H1,H3 are RO hash functions, range of H1

is a group G of prime order m, and key k is random in Zm. This is a PRF
under the CDH assumption on group G in ROM. In the 2HashDH protocol for
oblivious evaluation of this PRF, the client on input x picks r ←$ Zm and sends
to the server a blinded form of its argument, a = H1(x)r. The server responds
with b = ak, which the client de-blinds and outputs Fk(x) as H3(x, b1/r). In
protocol 2HashTDH which is a tOPRF version of this scheme [40], k is (Shamir)
secret-shared as (k1, ..., kn), the client sends a to t+1 servers, each Si responds
with bi = aki , and the client recovers H1(x)k = bk/r =

∏
i(bi)λi/r where λi’s

are interpolation coefficients. However, a malicious client can send ai = H1(x)ri ,
for random ri, to each Si, and still recover H1(x)k as

∏
i(bi)λi/ri . Since each ai

is a random group element, the simulator’s view is independent of which ai’s
correspond to the same argument x.

Fixing Protocol 2HashDH: Enforcing Agreement Without Interaction.
Still, an honest sender sends the same a to each server, so if the servers pre-
ceded the above tOPRF with a round of agreement on a, ssid , this would bind
t+1 server tOPRF sessions to a single x, ssid . This extra round of agreement
introduces costs and delays, and might not be easy to implement e.g. if one
tOPRF node is the user’s own personal device, a cell phone or a USB dongle.
We show protocol 3HashTDH, which enforces (a, ssid)-binding on t+1 server ses-
sions without sacrificing the optimal round-complexity of 2HashTDH, using a
form of “label-based blinding”, applicable to threshold exponentiation. Namely,
in addition to sharing (k1, ..., kn) of key k, the servers hold a random zero-sharing
(z1, ..., zn), i.e. shares of a random t-degree polynomial which evaluates to zero,
and using another hash function H2 onto G, server Si on input ssid and client’s
message a set its response to bi = aki · (H2(ssid , a))zi . The client computes
H1(x)k in the same way, i.e. as

∏
i(bi)λi/r =

∏
i(a)λiki/r ·

∏
i(H2(ssid , a))λizi/r:

The first factor evaluates to ak/r = H(x)k as before, while the second factor eval-
uates to 1 because zi’s form a zero-sharing, hence

∑
i λizi = 0. If H2 is an RO

hash onto G then under the DDH assumption, the blinding factors (H2(ssid , a))zi

used by any t servers Si are indistinguishable from random group elements (after

Threshold PAKE with Security Against Compromise of All Servers 73

this threshold the blinding factors are correlated because zi’s lie on a t-degree
polynomial). Consequently, unless t+1 servers use the same (a, ssid) these blind-
ing factors mask server’s responses, making effective evaluation possible only if
t+1 servers use the same (a, ssid) pair.

1.2 Protocol Variants, Extensions, and Applications

Auxiliary Servers with Constant-Sized State. We consider several further
variants of our main tOPRF+(s)aPAKE construction. Firstly, note that in this
tOPRF-based construction the auxiliary servers hold separate tOPRF keys for
each user. However, the auxiliary servers can keep only a single secret-shared key
if we replace tOPRF with threshold Partially Oblivious PRF (tPOPRF) [27].
Partially Oblivious PRF (POPRF) [27] extends OPRF to 2-party evaluation of
a PRF whose arguments are pairs (xpriv, xpub), where xpriv is a private input of
the client while xpub is known to both parties, and the protocol hides only xpriv

from the server. The “Pythia” POPRF of [27] is secure under One-More Bilin-
earDH (OMBDH) under a game-based definition. For POPRF’s based on other
assumptions see e.g. [41,63].5 Threshold POPRF (tPOPRF) [27,41] replaces the
POPRF server with a group that secret-shares the PRF key.

In the atPAKE application replacing tOPRF with tPOPRF means that a
single secret-shared key can be re-used across all user accounts: If the servers
set the public tPOPRF input xpub to an account identifier UID, and the user’s
private input is xpriv = pw, then the user’s output is rw = Fk(pw,UID), which
by the PRF property of F can be interpreted as rw = F ′

k[UID](pw) where F ′ is
a PRF and k[UID] is a user-specific PRF key. We show that a threshold version
of the Pythia POPRF [27], amended by the same blinding technique as above,
realizes the UC tPOPRF functionality in ROM under Gap-OMBDH and the
DDH assumption on the target group.

Structured Authentication Data. We also consider a variant where tOPRF is
replaced with aPPSS [26], i.e. a protocol that allows the client holding password
pw to decrypt and authenticate an arbitrary secret rw which was secret-shared
among the auxiliary servers in initialization. (Furthermore, the aPPSS is aug-
mented in the same sense as atPAKE, i.e. corruption of t+1 servers allows only
for an offline dictionary attack against the password.) A benefit of using aPPSS
over tOPRF is that aPPSS can be built from (non-threshold) OPRF [26,39],
which might require weaker assumptions, e.g. only GapOMDH [39], or only
DDH (with more protocols rounds) [16], or LWE [5]. Moreover, aPPSS based
on OPRF was shown to be adaptively secure for arbitrary t, n parameters [26]
(see below).

5 POPRF can be implemented as F ′
k(xpriv, xpub) = FF∗

k
(xpub)(xpriv) using any OPRF F

and PRF F ∗, but this generic construction might not have properties like threshold
implementation, updatability, or verifiability without xpub-dependent keys [27,63].

74 Y. Gu et al.

A disadvantage of this protocol variant is that it enables offline password
testing attack after compromise of t+1 auxiliary servers, without the compro-
mise of a target server, because the aPPSS datastructure already allows for
verification of the password guess. Indeed, our aPPSS-based atPAKE scheme
can be seen as a threshold counterpart to OPAQUE, where the client authenti-
cates the server-supplied data before using it to authenticate to the server, while
our tOPRF-based scheme can be seen as a threshold counterpart to OPAQUE’,
where the (target) server is the first party that can verify an authentication
result. Furthermore, we don’t know how to make the OPRF-based aPPSS con-
struction proactive (see below).

Adaptive and Proactive Security. We show our t(P)OPRF protocols secure
for arbitrary t, n parameters in the static corruptions model, i.e. if the envi-
ronment corrupts all parties at the outset of the protocol. A variant of the
same argument shows that these protocols remain secure against adaptive cor-
ruptions, but only if

(
n
t

)
is polynomial in the security parameter. The same

security statements carry to the atPAKE construction instantiated if t(P)OPRF
is instantiated as above.

Another benefit of our t(P)OPRF-based atPAKE protocol is that it can be
proactivized, i.e. made secure against proactive adversary, using standard tech-
niques of distributed secret-sharing randomization [35]. We note that the same
techniques do not extend to the aPPSS of [26], which leaves an open question of
constructing a practical atPAKE which is both proactive and adaptively secure
for arbitrary t, n parameters.

Practical Advantages and Applications. Our UC atPAKE protocol is highly
practical: It involves a single round of low bandwidth interaction between the
client and t+1 auxiliary servers, followed by an aPAKE instance between the
client and the target server. The servers do not need to communicate directly,
which makes the scheme flexible: The auxiliary servers can be implemented by
different commercial entities offering a “password hardening” service, or they can
be user’s own devices, like a USB stick or a cell phone. Our scheme requires no
trust assumptions (and no secure channels) between auxiliary servers or between
the auxiliary servers and the target servers.

We note that for simplicity we present our protocols in non-robust versions,
but robustness and verifiability can be added using well-known inexpensive ROM-
based non-interactive zero-knowledge proofs. We note also that our atPAKE
uses aPAKE as a black-box, and can interface with any existing target-server
aPAKE implementation, like OPAQUE. (Indeed, its variants can interface with
TLS-OPAQUE, password-over-TLS, and others, see Sect. 6.)

Our UC atPAKE model assumes that the user knows the list of target servers
at initialization, but this is done purely to reduce model complexity, because all
our protocol variants allow the user to add more target servers by reconstruct-
ing rw and computing new rwT = KDFrw(T) values. Indeed, this feature make
our atPAKE scheme applicable to a (threshold) password manager application,
implemented by the auxiliary servers.

Threshold PAKE with Security Against Compromise of All Servers 75

Other Related Works. As mentioned above, our atPAKE can be thought
of as a threshold password manager scheme, where the user recovers service-
specific passwords from the master password. Our atPAKE protocols map to
this application if the master password is pw, the T -specific password is rwT =
KDFrw(T), and rw is recovered from pw via either tOPRF, tPOPRF, or PPSS.
We note that similar usage of non-threshold OPRF or POPRF for outsourced
password managers was previously considered e.g. in [27,58,59].

In other related work, a password-protected storage scheme of [23], a variant
of PPSS which allows adaptive addition of records, analyzed a similar solution
in the n-out-of-n case, i.e. distributed but not (general) threshold.

Another scheme that uses secret-sharing to protect server-stored password
hashes is Distributed Password Verification [17,27,50,57]. In these schemes com-
promise of permanent storage of all servers leaks only a salted password hash,
as in atPAKE. However, these schemes implement only the verification step in
the password-over-TLS authentication, i.e. the secret-shared password hash can
be used for secure comparison with a cleartext password candidate, but not for
authenticated key exchange of a remote entity holding that password.

Roadmap. Section 2 includes notation and security assumptions used across
this work, and a brief overview of universal composability. In Sect. 3 we define
UC Threshold Oblivious PRF (tOPRF) and show protocol 3HashTDH which
realizes that notion. Section 4 introduces the UC Augmented Threshold PAKE
(atPAKE) functionality. Section 5 includes our main construction of secure UC
atPAKE from UC tOPRF. Section 6 overviews several variants and extensions
of the above construction. Due to space constraint we defer some material to the
full version version of this paper [33].

Specifically, in the full version we include a proof that UC atPAKE notion
of Sect. 3 implies a game-based T-PAKE, a proof of that tOPRF scheme of
Sect. 3 realizes UC tOPRF functionality, a proof that atPAKE construction of
Sect. 5 realizes UC atPAKE functionality, an extension of our 3HashTDH tOPRF
to the threshold Partially Oblivious PRF (tPOPRF) (here we overview this
extension in Sect. 3.4), and we present three further variants of the atPAKE
protocol: (1) replacing tOPRF with tPOPRF [27], (2) replacing tOPRF with
augmented password-protected secret sharing (aPPSS) [26], and (3) replacing
(strong) aPAKE with a weak aPAKE in the last protocol flow.

2 Preliminaries

Notation. We use τ to denote the security parameter. Given a finite set S,
we write x ←$ S to indicate that x is sampled uniformly at random from S.
Throughout the paper we assume function KDF : {0, 1}τ × {0, 1}∗ → {0, 1}τ

which is a PRF.

We recall the computational assumptions that we use in this paper:

76 Y. Gu et al.

Definition 1. Let (G, ·) be a cyclic group of prime order m with generator g.
The Decisional Diffie-Hellman problem (DDH) on G is to distinguish the fol-
lowing two distributions: {(g, ga, gb, gc) : a, b, c ←$ Zm} and {(g, ga, gb, gab) :
a, b ←$ Zm}. The DDH assumption is that any PPT adversary A can only solve
this problem with negligible advantage negl(τ).

Definition 2. Let (G, ·) be a cyclic group of prime order m with generator g.
The Gap One-More Diffie Hellman problem (GapOMDH) on G is that, given
a vector (y∗, h1, . . . , hq) where hj ←$ G, and y∗ = gs where s ←$ Zm, along
with access to oracle OMDH(a) which returns as and oracle DDH(y, h, u) which
returns 1 if and only if (g, y, h, u) is a Diffie-Hellman tuple, A wins if it outputs
a set W of pairs (j, hs

j) where |W | is strictly greater than the number of (unique)
queries A made to the OMDH oracle. The GapOMDH assumption is that any
PPT adversary A can win this game with only negligible probability negl(τ).

Secure Channel. We assume secure channels, i.e. secure and authenticated
communication, modeled as a UC functionality Fchannel in Fig. 1. We stress that
all our protocols use secure channels only in initialization.

Fig. 1. Fchannel: secure and authenticated communication functionality

Universal Composability and Related Notation. In this paper we use the
Universal Composability (UC) framework [19] to construct security proofs. UC
follows the simulation-based paradigm where the security of a protocol is mod-
eled by a machine called the ideal functionality F , which interacts with a set of
“dummy” parties and an ideal world adversary SIM, and does all computation in
the ideal world. We say that protocol π securely realizes F if for any PPT A, there
is a simulator SIM s.t. for all environments Z, the difference between the real-world
view, i.e. an interaction of Z and A with parties executing π, and the ideal-world
view, i.e. an interaction of Z and A with SIM and F , is negligible in τ .

Threshold PAKE with Security Against Compromise of All Servers 77

In the descriptions of ideal functionalities, e.g. Fig. 2, Fig. 4, and others, we
specify that each functionality interacts with a set of honest parties P and an
adversary A∗, and we use notation P∗ = P ∪ {A∗}. Each functionality assumes
set Corr includes all initially corrupted parties, and by convention A∗ ∈ Corr.
In our functionalities, protocols, and simulators, we assume strings sid (or sidA,
sidT) have the form sid = (. . . ,S) where S = (S1, . . . ,Sn) is a sequence in P,
and Ssid denotes the list S specified by string sid .

3 Threshold Oblivious PRF

An oblivious pseudorandom function (OPRF) is a protocol with two parties, a
server and an evaluator. The server holds the key to a pseudorandom function,
and the evaluator holds an input to be evaluated by that pseudorandom function.
The OPRF protocol allows the evaluator to evaluate the function obliviously (i.e.
without revealing the input to the server) without learning the server’s secret
key. Since the PRF key is kept secret, evaluators can only compute the function
with the online participation of the server, who could, for example, enforce a
rate-limiting policy on evaluators.

3.1 Threshold Oblivious PRF Model

Threshold OPRF (tOPRF) is an extension of OPRF introduced by [40] which
distributes server across n parties, s.t. any t + 1 of them must participate for
an evaluation to succeed. As explained in detail in Sect. 1.1, the tOPRF ideal
functionality of [40] has a subtle flaw that seems to make it unrealizable. In Fig. 2
we show FtOPRF, our modification of the UC tOPRF functionality for the (t, n)
threshold. Our functionality FtOPRF is a modification of the tOPRF functionality
in [40] (see Fig. 1 therein), and it involves several refinements, including the
critical fix to the flaw mentioned above. Below we explain the workings of our
functionality, including the ways in which it differs from [40].

The Initialization Phase. The initialization is done between an initializer
P0 and a group of n servers Ssid . At the end of the process, each server S ∈
Ssid is supposed to record a key share, to be used later in evaluation. In the
functionality, this is modeled as having a record toprf.sinit for each server S, which
is marked either active or compr; the latter denotes the adversary knowing S’s
key share, which happens if S is compromised, or P0 is the adversary (in which
case the adversary can compute all key shares on its own).

Additionally, P0 can specify a vector of PRF inputs (x1, ..., xk), and obtain
their PRF outputs (Fsid(x1), ..., Fsid (xk)) during initialization. Though some-
what atypical, this “eval-during-init” feature is natural in our initialization set-
ting. Since P0 is responsible for creating all key shares and sending them to the
servers, there is no reason why P0 shouldn’t be able to locally evaluate the PRF
during initialization. Looking ahead, our tOPRF-based atPAKE construction
uses this feature to simplify its initialization phase.

78 Y. Gu et al.

Fig. 2. FtOPRF: threshold OPRF functionality, parameterized by threshold t, number
of servers n, and output length l.

The Evaluation Phase. In this phase, a user U begins its evaluation by specify-
ing a PRF input x. Any server whose record is active, as well as any corrupted

Threshold PAKE with Security Against Compromise of All Servers 79

server (whose record is compr), may choose to participate; each server S is asso-
ciated with a ticket counter tx[sid , ssidS, i] (where S is the i-th server in Ssid),
which increments if S participates (the mechanics of ssidS will be explained
below). Finally, the ideal adversary specifies an index sid∗ which may or may
not be the intended index for evaluation sid , together with a set of t + 1 servers
C which may or may not be a subset of the intended set of n servers for eval-
uation Ssid . (Giving the adversary the ability to directly specify the evaluation
set C fixes the flaw in the tOPRF functionality of [40].) After that, U receives
Fsid∗(x) provided that none of the servers in C has ticket counter 0 (w.r.t. index
sid∗), and all those ticket counters decrement. This models a man-in-the-middle
adversary that might impersonate t + 1 servers and let the user evaluate on a
“wrong” PRF key.

As a specific case, the ideal adversary can make the user evaluate an unin-
tended function with index sid∗ �= sid : the adversary can act as P0 and init
tOPRF sid∗ with itself as all n servers; then it can print tickets for servers cor-
responding to sid∗ at will, evaluate function Fsid∗ locally on its own inputs, and
use index sid∗ to respond dishonestly to honest evaluators who are intending
to evaluate a different function. This all simply represents the real adversary’s
ability to locally sample PRFs. To enhance readability, we provide the adversary
with a sndrcomplete∗ interface that is simply a shortcut for the above series of
actions. This shortcut is never actually needed by the adversary, and indeed the
simulator for our tOPRF realization does not make use of it.

The “ticketing mechanism”—inherited from various prior works on (t)OPRF
[38,40]—ensures that in order to compute the PRF value, at least t + 1 servers
must participate in the evaluation process. In our functionality the action of
printing tickets comes from the environment, which models the fact that servers
can choose when they wish to participate in an evaluation. In contrast, [40, Fig. 1]
models ticket-printing as an adversarial action, effectively reducing tOPRF
servers to powerless entities that blindly allow tOPRF evaluations whenever
they are asked to.

Our model strengthens the ticketing mechanism by further associating each
ticket with the server subsession identifier ssidS used to print it. To complete
an evaluation, the adversary specifies not only the tOPRF instance sid∗ and
server set C to use, but also the particular ssid∗

S whose tickets to use up. A
successful evaluation requires not only that t + 1 servers agree to participate,
but that they agree to participate using the same ssidS. These ssidS values
might, therefore, be used to bind tickets to a particular context (for example,
an evaluation timestamp). If this feature is unneeded, the ssidS field can simply
be left blank by servers, in which case it will play no role in ticketing.

Server Corruption. Finally, the ideal adversary may corrupt a server P and
steal its key share. This is modeled by marking any active toprf.sinit record
for P compr. Note that the only consequence of corrupting a server is that the
adversary can now print tickets for it at will.

80 Y. Gu et al.

3.2 3HashTDH

Figure 3 shows our 3HashTDH protocol Π3HashTDH. Protocol Π3HashTDH relies
on secure authenticated channels during initialization, to allow for secure com-
munication between the initializer party and the n servers participating in the
scheme. In Fig. 3 this is modeled via a secure channel functionality Fchannel shown
in Fig. 1.

Fig. 3. Protocol Π3HashTDH which realizes FtOPRF in the Fchannel-hybrid world.

3HashTDH uses a prime-order group G of size m and three hash functions,
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, and H3 : {0, 1}∗ → {0, 1}l. The PRF
it defined as Fk(x) = H3(x,H1(x)k), exactly the same as the 2HashDH OPRF
of [38]. 2HashDH’s (single-server) oblivious evaluation protocol for this PRF is
the foundation of our protocol. In 2HashDH, the evaluator first picks r ←$ Zm

and sends the blinded input a := H1(x)r to the server. The server exponentiates
using its secret key and sends b := ak back to the evaluator. The evaluator
de-blinds and computes the final hash, outputting H3(x, b1/r).

Threshold PAKE with Security Against Compromise of All Servers 81

The 2HashTDH protocol of [40] extends 2HashDH to the threshold, multi-
server setting. Each server Si now holds a (Shamir) secret share ki of the PRF key
k. The evaluator sends a := H1(x)r to t + 1 servers, and they each respond with
bi := aki . To combine these responses, the evaluator uses polynomial interpola-
tion in the exponent to compute b :=

∏
i bλi

i = ak, where the λi’s are Lagrange
interpolation coefficients. Finally the evaluator can compute the final output
H3(x, b1/r) as before.

As explained in Sect. 1.1, though, this 2HashTDH protocol does not seem to
realize the fixed FtOPRF functionality (nor does it realize the non-fixed function-
ality, which it seems no protocol can realize). To fully simulate the environment’s
real-world view, the ideal-world simulator must be able to observe exactly which
servers the man-in-the-middle adversary is using for each evaluation. If the eval-
uator honestly sends the same a = H1(x)r to all servers, then the simulator can
indeed make this observation. However, in 2HashTDH, there is nothing prevent-
ing a dishonest evaluator from picking t + 1 different blinding exponents ri and
sending information-theoretically random messages ai := H1(x)ri to each server
as part of a single evaluation on x.

With 3HashTDH, we aim to fill this simulatability gap by forcing dishonest
evaluators to use a single a with all servers for each evaluation, just as honest
evaluators do. 3HashTDH accomplishes this by having the servers apply an a-
specific blinding factor to their responses; the evaluator can only remove this
blinding factor by combining t + 1 server responses computed on the same a. In
particular, the servers in 3HashTDH hold a Shamir secret sharing (z1, ..., zn) of
zero (in addition to their sharing of the PRF key k). Given an evaluator query a,
server i responds with bi := aki ·(H2(a))zi . The evaluator combines the responses
as b :=

∏
i bλi

i =
∏

i akiλi ·
∏

i(H2(a))ziλi , the second part of which interpolates
to (H2(a))0 = 1 and disappears. Meanwhile, an adversary who sees only t or less
responses for the same a cannot distinguish them from random group elements
(under the DDH assumption). Thus, even dishonest evaluators are forced to send
the same a to all servers, and simulation succeeds.

As a further feature, we have each server include its subsession identifier
ssidS alongside a in the H2 input. Then, only server responses corresponding
to the same (ssidS, a) can be combined. Servers can use this ssidS field to bind
evaluations to some context-specific data, which t + 1 servers must agree upon
in order to have a successful evaluation.

In a concurrent work, Das and Ren [24] have used blinding factors formed in
the same way as ours, though for a different purpose: achieving adaptive security
for a threshold BLS signature scheme. In their case, the message being signed
acts as the “binding data” used as input to the random oracle. Both of our
works are preceded by Canetti and Goldwasser [20], who employed a similar
blinding factor in a CCA-secure threshold encryption scheme. They also used
a Shamir sharing of zero in the exponent, but with a fixed base rather than a
random oracle output. Therefore, their scheme requires a fresh zero sharing for
each execution.

82 Y. Gu et al.

3.3 Security Analysis of 3HashTDH

If corruptions are static, then the 3HashTDH protocol in Fig. 3 is secure in the
random oracle model under the Gap One-More Diffie Hellman (GapOMDH) and
Decisional Diffie Hellman (DDH) assumptions.6

Theorem 1. Protocol 3HashTDH realizes functionality FtOPRF with parameters
t and n in the Fchannel-hybrid model, assuming static corruptions, hash functions
H1, H2, and H3 modeled as random oracles, and the GapOMDH and DDH
assumptions on group G.

Specifically, for any efficient adversary A against protocol 3HashTDH, there
exists a simulator SIM such that no efficient environment Z can distinguish
the view of A interacting with the real 3HashTDH protocol and the view of SIM
interacting with the ideal functionality FtOPRF with advantage better than q2I/m+
qI ·(t·AdvDDH

Q +AdvGapOMDH
R)·(t+1) where qI is the number of tOPRF instances,

m = |G|, and AdvGapOMDH
R and AdvDDH

Q are bounds on the probability that any
efficient algorithm violates the GapOMDH and DDH assumptions, respectively.
If corruptions are adaptive, then the 3HashTDH protocol remains secure under
the additional assumption that

(
n
t′
)

is a polynomial function of the security
parameter for all 0 ≤ t′ ≤ t.

Theorem 2. In the case of adaptive corruptions, the statement from Theorem
1 still holds under the additional assumption that

(
n
t′
)

is a polynomial function
of the security parameter for all 0 ≤ t′ ≤ t.

Specifically, no efficient adversary A against 3HashTDH has distinguishing
advantage better than q2I/m + qI · (t · AdvDDH

Q + AdvGapOMDH
R) ·

∑t
t′=0

(
n
t′
)
.

Proof of Theorems 1 and 2 is presented in the full version of the paper. We
provide a high-level sketch here.

The essential steps of the proof involve the blinding factors H2(ssidS, a)zi that
are applied to the server responses. We construct a GapOMDH reduction that
simulates the real 3HashTDH behavior, but picks random key shares to send to
the adversary for the corrupted servers (denote the number of corrupted servers
as t′). For the uncorrupted servers, the reduction responds to evaluation requests
with uniformly random group elements until the same (ssidS, a) is queried to
t − t′ + 1 servers. At that point, the reduction queries the OMDH oracle to find
ak, where k is the OMDH secret (here it acts as the PRF key). The reduction
then knows enough values to perform interpolation in the exponent between ak,
the t′ key shares attributed to the corrupted servers, and the randomly chosen
first t−t′ responses. Thus, the (t−t′+1)th response (and any future responses) to
(ssidS, a) are correctly formed from the point of view of an adversary who wishes

6 Though somewhat unusual, the combination of the GapOMDH and DDH assump-
tions on group G is not theoretically problematic. It has been proven that the DDH
assumption [11] and the GapOMDH assumption [40] each hold for generic groups.
Therefore, our security statement is, at a minimum, sound in the Generic Group
Model. We also note that there are precedents for making a Gap assumption along-
side the DDH assumption on the same group, e.g. [44].

Threshold PAKE with Security Against Compromise of All Servers 83

to interpolate ak. The reduction embeds the OMDH challenge group elements
in the H1 responses, and uses the H3 random oracle queries as an opportunity
to intercept completed evaluations. The “Gap” DDH oracle is used to verify
whether or not an H3 query represents a correct evaluation. If the adversary
ever exceeds their FtOPRF-allowed number of evaluations, then the reduction
exceeds its OMDH-allowed number of k exponentiations and thereby wins the
GapOMDH game.

In this GapOMDH reduction, the first t − t′ uncorrupted server evalua-
tion requests for any (ssidS, a) return random group elements, rather than
aki · H2(ssidS, a)zi for consistent (secret) (ki, zi) as in the real world. This is
the only difference between the adversary’s views in the reduction and in the
real world. We use a series of hybrids to prove that it is not detectable.

Our proof first picks any arbitrary set of t−t′ uncorrupted servers. In a series
of incremental hybrids, we replace the blinding factor H2(ssidS, a)zi at each of
these servers with a randomly chosen group element (for each (ssidS, a)), one
by one. For the uncorrupted servers outside of this set, the blinding factors are
computed by interpolation in the exponent between the t′ key shares attributed
to the corrupted servers, the t−t′ randomly chosen blinding factors, and the fact
that {zi} are a sharing of 0. By a one-time pad argument, a uniformly random
blinding factor creates a uniformly random overall server response. Therefore,
once all blinding factors are randomized in this way, the adversary’s view is
identical to that in the GapOMDH reduction. At each hybrid, we use a DDH
reduction to prove that replacing one more server’s blinding factors with random
values is not detectable by the adversary. In sum, then, the adversary’s behavior
in the GapOMDH reduction must differ only negligibly from the real world.

The factor of
∑t

t′=0

(
n
t′
)

that appears in the adaptive-case security bound
is a consequence of the GapOMDH reduction simply guessing (at the start of
execution) which t′ servers the adversary will eventually corrupt. As long as
n and t are small, this guess will succeed with non-negligible probability. It is
not sufficient for the reduction to guess a superset (e.g. a t-size superset) of
the servers that will eventually be corrupted. The reduction relies on the fact
that adversarial computation of a PRF output without having queried t − t′ + 1
uncorrupted servers always corresponds to a win in the GapOMDH game. This
is not true unless the reduction’s guess set is exactly the same as the actual
corrupted set at the moment of this adversarial computation.

3.4 Extension to Threshold Partially Oblivious PRF

Partially Oblivious Pseudorandom Function (POPRF) [27] is a generalization of
OPRF where the argument to the PRF is split into two parts, xpriv and xpub.
Function evaluation is only partially oblivious because the xpub part of the input
is visible to both parties, while xpriv is visible only to the evaluator and is hidden
from the server. Note that if POPRF Fk(xpriv, xpub) is evaluated s.t. xpub is always
⊥ (or any other constant), then POPRF behaves exactly like a standard OPRF,
hence POPRF can be seen as a generalization of OPRF.

84 Y. Gu et al.

The techniques we use above to implement a UC threshold OPRF (tOPRF)
extend to a UC threshold POPRF (tPOPRF). In the full version of this paper
[33] we define tPOPRF via the UC functionality FtPOPRF, a generalization of
our FtOPRF functionality in Fig. 2, and we show that this functionality is real-
ized by protocol P3HashTDH, which combines the blinding technique used in
our 3HashTDH tOPRF protocol with the natural threshold implementation
of the pairing-based (single-server) POPRF protocol of Pythia [27]. Protocol
P3HashTDH uses only two flows, just like 3HashTDH, and it implements the
PRF of Pythia, i.e. Fk(xpriv, xpub) = H3(xpriv, xpub, e(H1(xpriv),H ′

1(xpub))k).
We note that [41,62] showed alternative POPRF constructions that do not

rely on pairings. Both of these constructions should have efficient threshold
implementations which realize functionality FtPOPRF without bilinear maps. The
threshold version of the POPRF of [62] would require additional rounds of com-
munication, while POPRF of [41] is a generic construction from any OPRF,
and its threshold implementation can be instantiated using our 2-flows tOPRF
protocol 3HashTDH. However, the disadvantage of the latter tPOPRF, just like
the POPRF of [41], is that it is efficient only for small groups of servers and it
offers no verifiability.

4 Augmented Threshold PAKE Model

Figures 4, 5, and 6 are FatPAKE, the UC functionality for augmented threshold
PAKE (atPAKE). As explained in the introduction, this functionality is flexible
in that it models target servers and auxiliary servers separately. The target
servers are the entities that ultimately wish to establish keys with password-
authenticated users. The auxiliary servers distribute the secret information in
such a way that it requires the participation of t+1 of them for a user to establish
a session with a target server. If this separation of responsibilities is undesired,
atPAKE can simply be instantiated such that the auxiliary and target server
lists partially or wholly overlap.

The shadowed text in FatPAKE corresponds to relaxations introduced by
[43] to the (non-threshold) FsaPAKE model. The OPAQUE protocol [43] realizes
FsaPAKE only with these slight relaxations, but, as argued in [43], the relaxations
do not reduce the functionality’s practical security properties in any significant
way. Since our FatPAKE is a threshold generalization of [43]’s FsaPAKE, we inherit
the same relaxations.

Initialization. A user U may initialize with a group of auxiliary servers and a
group of target servers on password pw, represented by sidA and sidT respec-
tively, using a userinit call to the functionality. Similarly, a server (auxiliary
or target) may initialize with a user U using an auxinit or targetinit call. The
(ideal) adversary finishes initialization for an auxiliary server SsidA

[i] by send-
ing finishauxiliaryinit, which establishes the server’s file record; the file record is
compr (i.e., the adversary knows its content) if the server is corrupt. Similarly,
a finishtargetinit call finishes initialization for a target server SsidT

[j] and estab-
lishes a corresponding record, which is compr if that server is corrupt. However,

Threshold PAKE with Security Against Compromise of All Servers 85

Fig. 4. FatPAKE: atPAKE functionality (1): Initialization Phase.

a target server’s record might additionally be tampered if the user it commu-
nicates with is corrupt, and in this case we allow the adversary to change the
password in the target server’s file from pw to some pw∗ of the adversary’s choice;
the adversary can also overwrite the auxiliary server instance sidA with which
the target server’s file is associated. As will be apparent in the other sections
of the functionality, this tampered case models the intuitive notion that many
atPAKE security properties are lost if the original initializing user is dishonest.

Corruption, File Compromise, and Offline Password Tests. The adver-
sary may corrupt any party (by sending corrupt) or compromise any server and
steal its file without corrupting it (by sending stealauxiliaryfile or stealtargetfile);
either way, the corresponding server’s file will become compr.

Obtaining a target server’s file allows the adversary to run an offline dictio-
nary attack on it, which is modeled by the offlinetestpwd call in which the adver-

86 Y. Gu et al.

Fig. 5. FatPAKE: atPAKE functionality (2): Compromises, Authentication (I).

sary specifies a password guess pw∗. Though offline with regard to the target
server, the adversary still requires the participation of t + 1 auxiliary servers to
perform this attack (some or all of them may be compromised, in which case the
adversary can also emulate their participation offline via auxsession, explained

Threshold PAKE with Security Against Compromise of All Servers 87

Fig. 6. FatPAKE: atPAKE functionality (3): Authentication (II).

below). In each offlinetestpwd call, the adversary can specify an auxiliary server
i with which it wishes to evaluate pw∗. Only once t + 1 auxiliary servers have
participated in the evaluation of pw∗ can the adversary test the password guess
pw∗ against the compromised target server file and learn whether or not it is
correct.

Authentication. In the authentication phase, a user U′ may start an online
session with a target server T = SsidT

[j] using a usersession call (which specifies a
password pw′); this call also implicitly defines the auxiliary servers by specifying

88 Y. Gu et al.

sidA. This establishes a session record for U′ marked prelim. Similarly, a target
server T may start a session with a user U′ using a targetsession call; since
the target server’s password is included in its file record, it is not explicitly
specified in the targetsession message. This establishes a session record for T
marked fresh. Next, an auxiliary server Si = SsidA

[i] may choose to participate
via a auxsession call, which also increments its ticket count tx[sidA, i, ssidA]. If
the auxiliary server’s file is compr, then the adversary can call auxsession on
its behalf and thereby print tickets for the server at will. In order to progress a
user session from prelim to fresh, the adversary must use an auxproceed call
to connect the user with a set C of t + 1 auxiliary servers running on identifier
sidA. Those auxiliary servers must have all agreed to participate in an evaluation,
which is tracked via the ticket mechanism.

Once both U′ and T sessions are fresh, the adversary lets a party output a
session key using the newkey call. If both sides use the same pw and the same
subsession identifier ssid , then they will receive the same key. Otherwise, they
will output independently random keys for the session. Figure 7 diagrams the
state transitions that user and server session records can move through (including
those corresponding to attack scenarios).

Fig. 7. FatPAKE session record state diagram. (1) is targetsession; (2) is usersession; (3) is
auxproceed; (4) is auxactive; (5) is interrupt (only for server sessions); (6) is impersonate
(only for fresh user sessions) or testpwd; (7) is testabort (only for user sessions) or
newkey; (8) is newkey.

Passive Attacks. The adversary has two “passive” attack avenues that corre-
spond to simply transmitting messages between parties. With auxproceed, the
adversary might choose to connect the user with a different auxiliary session
sid∗

A than expected; in that case the user will not be able to successfully authen-
ticate to the intended target server (unless that server was dishonestly initialized

Threshold PAKE with Security Against Compromise of All Servers 89

with the same spurious sid∗
A). With the testabort call, the adversary can con-

nect a fresh user session to any target server and observe whether or not they
successfully authenticate.

Active Attacks. For active session attacks, if the user U′’s session record is
prelim (i.e. it has not completed its communication with the auxiliary servers),
the adversary can run the auxiliary servers’ algorithms on its own and communi-
cate with U′. In this situation, modeled by the auxactive call, the adversary effec-
tively controls all auxiliary servers that communicate with U′, so we mark U′’s
session record counterfeit. Such a session can never successfully authenticate
to a target server, but it is vulnerable to an online password-guessing attack.

Using testpwd, the adversary can perform an active session attack with some
password guess pw∗. There are three possible cases:

(a) the adversary has evaluated pw∗ with t + 1 auxiliary servers (using
offlinetestpwd);

(b) the adversary is attacking a user session that is counterfeit;
(c) the adversary is attacking a server that was dishonestly initialized (i.e. its

file is tampered).

If the password guess is successful, then the attacked session is marked
compr. Otherwise, it is marked interrupted, indicating that it is no longer
possible for the session to successfully complete. In either case, the adversary
learns whether or not the password guess was correct. After stealing a target
server’s file, the adversary can also compromise user sessions meant to connect
with that server via the impersonate call. If the user’s password does not match
the one in the saved file, then this impersonate attack will fail and the user’s
session will become interrupted.

Once a session is compr, the adversary has done a successful attack, so
the adversary is able to choose that session’s output key in newkey. If both the
session and its countersession are fresh, this models an unattacked pair, so the
two parties output the same random key (if their passwords and sidAs match). In
all other cases (i.e. counterfeit and interrupted), the functionality samples
an independent random key for the session.

Comparison to Game-Based tPAKE. As a sanity check, we verify that
FatPAKE is at least as strong as the game-based tPAKE definition of MacKenzie,
Shrimpton, and Jakobsson [52]. In the full version of the paper we show a proof
that any protocol realizing FatPAKE (in the case that the auxiliary and target
server lists are identical) is also secure under that notion.

5 Augmented Threshold PAKE Construction

Figure 8 shows protocol ΠtOPRF−atPAKE, our main atPAKE construction which
is a generic composition of UC tOPRF and UC (strong) aPAKE. In Fig. 8 we
show this protocol in the hybrid model assuming functionalities FtOPRF(shown
in Fig. 2) and FsaPAKE which model respectively UC tOPRF and UC (strong)

90 Y. Gu et al.

Fig. 8. Protocol ΠtOPRF−atPAKE which realizes FatPAKE using FtOPRF,FsaPAKE

aPAKE, but in an implementation these functionalities will be replaced by sub-
protocols that realize them. Protocol ΠtOPRF−atPAKE also uses secure channels
modeled by functionality Fchannel (shown in Fig. 1), but it uses them only in
the initialization. Note that our realization of the threshold OPRF functionality
FtOPRF, i.e. protocol 3HashTDH of Sect. 3.2, also relies on secure channels in the
initialization.

In protocol ΠtOPRF−atPAKE, authentication between a user and a target server
T, indexed as the j-th server in the target server list SsidT

, proceeds in two
steps. First, the user interacts with t + 1 tOPRF servers, i.e. the auxiliary
servers, in order to convert their password guess pw′ into a “hardened” pass-
word rw′ = Fk(pw′). Then, the user uses a pseudorandom function to derive

Threshold PAKE with Security Against Compromise of All Servers 91

Fig. 9. Concrete instantiation of ΠtOPRF−atPAKE using arbitrary (strong) aPAKE

92 Y. Gu et al.

a T-specific password rw′
j = KDF(rw′,T), and uses rw′

j as the password in an
underlying (strong) aPAKE instance between the user and the target server.

When registering a new user with password pw, the client must initialize
a new tOPRF instance Fk(·) with the auxiliary servers. At the same time the
client computes rwj = KDF(Fk(pw),Tj) for every target server Tj = SsidT

[j],
and sends rwj to Tj over a secure channel. Upon receiving rwj , server Tj uses it
to create a password file for this user.

Theorem 3. Protocol ΠtOPRF−atPAKE realizes functionality FatPAKE with param-
eters t and n in the (FtOPRF,FsaPAKE,Fchannel)-hybrid model.

Specifically, for any efficient adversary A against protocol ΠtOPRF−atPAKE,
there exists a simulator SIM such that no efficient environment Z can distin-
guish the view of A interacting with the real ΠtOPRF−atPAKE protocol and the view
of SIM interacting with the ideal functionality FatPAKE with advantage better than
(qT · q2eval + qtest + q∗

T · qeval)/2τ where qT is the number of target server instances,
qeval is the number of tOPRF evaluations, qtest is the number of online and offline
password-guessing attacks against FsaPAKE, q∗

T is the number of dishonestly ini-
tialized target server instances, and security parameter τ is the tOPRF output
length.

Proof of Theorem 3 is given in the full version of the paper.

Concrete Instantiation. In Fig. 9 we show a concrete instantiation of protocol
ΠtOPRF−atPAKE, with FtOPRF realized with the 3HashTDH protocol of Sect. 3.2.
The user and the target server interact via an arbitrary (strong) aPAKE,
which can be realized with any realization of FsaPAKE, including OPAQUE
[43], OPAQUE’ [34,43,56], TLS-OPAQUE [36,60], or other aPAKE construc-
tions [13,53]. As discussed in Sect. 6, the (strong) aPAKE can be replaced with
weaker building blocks, including weak aPAKE [31], the “envelope+AKE” build-
ing block used within OPAQUE, or even password-over-TLS, although the result-
ing protocol could realize modified (and sometimes weakened) versions of the
atPAKE functionality FatPAKE.

6 Protocol Variants and Extensions

We considered several possible variants of the tOPRF+aPAKE construction of
atPAKE shown in Sect. 5. Indeed, both the UC tOPRF subprotocol and the
(strong) aPAKE protocol can be substituted by other building blocks, and the
resulting protocols implement variants of the atPAKE functionality FatPAKE.
We summarize the security properties of the protocol variants we considered in
Table 1 below. Table entries marked with a special symbol (∗) are verified formally
either here or in the full version of the paper [33]. All the other table entries are
not formally verified, but these are our hypotheses based on extrapolating the
formally verified cases.

Implementing atPAKE with Variants of tOPRF. The columns of the table
include three variants of the threshold OPRF (tOPRF) protocol, namely tOPRF

Threshold PAKE with Security Against Compromise of All Servers 93

itself, the threshold Partial OPRF (tPOPRF) (see Sect. 3.4), and the augmented
Password-Protected Secret-Sharing (aPPSS) [26], an extension of PPSS [6] to
security up to offline dictionary attack upon compromise of all servers. Recall
that PPSS is a protocol which secret-shares a secret s among n servers and
protects it under password pw, s.t. no t parties can learn any information on s,
and t + 1 parties suffice to reconstruct s but only if the reconstruction protocol
client enters the same password pw which was used to initialize this secret-
sharing.7

These three protocol variants have the following security characteristics:
Replacing tOPRF with tPOPRF creates a very mild and essentially negligible
difference in the atPAKE security model, denoted FatPAKE′ (see [33] for details).
However, replacing t(P)OPRF with aPPSS changes the resulting atPAKE notion
to a variant of UC atPAKE notion we denote FatPAKE(weak), which is weaker than
FatPAKE in the following sense: In the latter model an offline dictionary attack
(ODA) is enabled only if the adversary corrupts t + 1 of n auxiliary servers
S1,,Sn and the target server T, whereas in FatPAKE(weak) the ODA requires
corruption of t + 1 auxiliary servers, but it can be done without corrupting a
target server. However, note that one can implement the security contract of
FatPAKE using FatPAKE(weak) if the atPAKE scheme involves a single target server:
If the target server T is part of the auxiliary server group, and it holds a “block-
ing” set of shares, then corruption of a sufficient number of (virtual) auxiliary
servers becomes possible only if one corrupts t+1 (real) auxiliary server and the
target server T.

Table 1. Summary of security properties of atPAKE implementation variants

U-to-T subprotocol tOPRF tPOPRF aPPSS

(strong) aPAKE FatPAKE
(∗) FatPAKE′ (∗) FatPAKE(weak)

(∗)

TLS-OPAQUE FatPAKE−EA FatPAKE′−EA FatPAKE(weak)−EA

password-over-TLS FatPAKE−PKI FatPAKE′−PKI FatPAKE(weak)−PKI

weak aPAKE FatPAKE(medium)
(∗) FatPAKE′(medium) FatPAKE(weak)

AKE N/A N/A FatPAKE(weak)

Implementing atPAKE with Variants of (Strong) aPAKE. Table rows
include five variants of the U-to-T authentication protocol, i.e. the way user U
uses rw retrieved using its password to authenticate to the target server T. In
the protocol analyzed in Sect. 5 this is handled by (strong) aPAKE. The same
holds for the variants examined in the full version of the paper [33], where

7 As shown in [40], tOPRF implies PPSS: One simply uses an authenticated encryption
to encrypt secret s under rw = Fk(pw), where Fk is a tOPRF implemented by the
servers. We believe that this implements UC augmented PPSS (aPPSS) [26], but
we leave formal verification of this to future work.

94 Y. Gu et al.

tOPRF is replaced by tPOPRF and aPPSS. However, one can consider replac-
ing the (strong) aPAKE sub-protocol with TLS-OPAQUE, i.e. the Exported
Authenticator (EA) extension of TLS which implements augmented password
authentication over existing TLS connection, rather than creating new password-
authenticated session key [36,60]. The mechanics of these “EA” extensions of our
FatPAKE variants will be similar as in [36], and their security properties should
be the same as in FatPAKE/FatPAKE′/FatPAKE(weak) except the final U-T authen-
tication would pertain to a pre-established secure channel between these two
parties.

Another possible variant considers U-T interaction implemented as
“password-over-TLS”. Such “PKI” extensions of our FatPAKE variants would have
weaker security: First, U’s login sessions need to include T’s identity as input.
Second, if this identity is wrong, i.e. U fails to authenticate the proper T coun-
terparty, or if it is right but T is compromised, then (1) the adversary learns rwT

and can authenticate to T as U, and (2) the adversary can stage ODA if t + 1
auxiliary servers are corrupted. (In other words, PKI error in U authenticating
T has the same consequences regarding ODA attack as corruption of T.)

The final two possibilities include replacing (strong) aPAKE with weak
aPAKE of [31] or with pfs-AKE, i.e. AKE with perfect forward secrecy, usually
achieved by key confirmation flows. Using the first option allows for atPAKE
with lower round complexity (only 3 protocol flows) if weak aPAKE is imple-
mented with a 2-flow protocol of [30]. However, the resulting functionality is
slightly weaker in the case of FatPAKE and FatPAKE′ , denoted resp. FatPAKE(medium)

and FatPAKE′(medium). The weakening is that after compromise of t + 1 auxiliary
servers the attacker can precompute the ODA before the compromise of a tar-
get server. This forms a mid-point between FatPAKE, where ODA can start only
at compromise of t + 1 auxiliary servers and a target server, and FatPAKE(weak)

where it can start at compromise of just the auxiliary servers. (We include this
protocol variant in the full version of the paper [33].) Using pfs-AKE can further
lower the U-T subprotocol cost, but it can be done only with aPPSS, because U
needs to reconstruct structured data, not a pseudorandom string, to run AKE,
namely its own private key and server T’s public key. Using either weak aPAKE
or pfs-AKE option the aPPSS-based protocol should achieve the same atPAKE
notion variant FatPAKE(weak), but we recommend that the last option, i.e. aPPSS
and pfs-AKE, should be formally verified before anyone implements it.

Proactive Security. In our tOPRF and tPOPRF protocols, the only state held
by each server is two Shamir secret shares, one of the PRF key and one of zero.
Therefore, these protocols can be naturally extended to support proactive key
refresh by using standard techniques for proactively refreshing a secret sharing.
For example, [35] presents a scheme where all share-holders broadcast verifiable
secret sharings of zero, which are then added to the secret sharing to be refreshed.
After carrying out this refresh procedure, the share-holders hold a fresh sharing
of their original (unchanged) secret value. If the servers in our t(P)OPRF were
to adopt this behavior, it would effectively partition their evaluation tickets into
“epochs” separated by key-refresh events. To successfully evaluate, one would

Threshold PAKE with Security Against Compromise of All Servers 95

not only need the participation of t + 1 servers, but the participation of t + 1
servers within the time of one epoch. Similarly, the adversary would gain nothing
by stealing server files across multiple epochs; only by stealing t+1 servers’ data
within the time of one epoch could the adversary unlock the power to perform
entirely offline evaluations.

Our atPAKE constructions that are based on t(P)OPRF inherit these same
proactive security properties. We note that the tOPRF-based atPAKE proto-
col requires auxiliary servers to hold a separate tOPRF instance for each user,
whereas the tPOPRF-based construction reuses a single tPOPRF instance across
all users. Since it would likely be impractical for servers to proactively refresh a
separate key sharing for every registered user, the tPOPRF-based atPAKE has
an additional benefit: Besides reducing each server’s storage load, it would also
make proactive key refresh much more practical.

References

1. Facebook stored hundreds of millions of passwords in plain text, https://
www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-
hundreds-millions-users. 2019.

2. Google stored some passwords in plain text for fourteen years, https://www.
theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-
years. 2019.

3. Michel Abdalla, Olivier Chevassut, Pierre-Alain Fouque, and David Pointcheval.
A simple threshold authenticated key exchange from short secrets. In Bimal K.
Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 566–584. Springer,
Berlin, Heidelberg, December 2005.

4. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay, edi-
tor, PKC 2005, volume 3386 of LNCS, pages 65–84. Springer, Berlin, Heidelberg,
January 2005.

5. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices. In Juan Garay,
editor, PKC 2021, Part II, volume 12711 of LNCS, pages 261–289. Springer, Cham,
May 2021.

6. Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-
protected secret sharing. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM CCS 2011, pages 433–444. ACM Press, October 2011.

7. Carsten Baum, Tore Kasper Frederiksen, Julia Hesse, Anja Lehmann, and Avishay
Yanai. Pesto: Proactively secure distributed single sign-on, or how to trust a hacked
server. In Proceedings - 5th IEEE European Symposium on Security and Privacy,
Euro S and P 2020, pages 587–606. IEEE, 2020. 2020 IEEE European Symposium
on Security and Privacy (EuroS&P) ; Conference date: 07-09-2020 Through 11-09-
2020.

8. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Berlin, Heidelberg,
May 2000.

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years

96 Y. Gu et al.

9. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

10. Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server breaches
in password-based authentication: Secure and efficient solutions. In Kazue Sako,
editor, CT-RSA 2016, volume 9610 of LNCS, pages 3–18. Springer, Cham, Febru-
ary / March 2016.

11. Dan Boneh. The decision diffie-hellman problem. Stanford Cryptography Group
webpage, 1998. https://crypto.stanford.edu/SIMdabo/pubs/papers/DDH.pdf

12. D. Bourdrez, H. Krawczyk, K. Lewi, and C. Wood. The OPAQUE Asymmet-
ric PAKE Protocol, draft-irtf-cfrg-opaque, https://tools.ietf.org/id/draft-irtf-cfrg-
opaque, July 2022.

13. Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu. Strong asymmetric PAKE based
on trapdoor CKEM. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 798–825. Springer, Cham,
August 2019.

14. John G. Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo. A new two-server
approach for authentication with short secrets. In USENIX Security 2003. USENIX
Association, August 2003.

15. Jan Camenisch, Robert R. Enderlein, and Gregory Neven. Two-server password-
authenticated secret sharing UC-secure against transient corruptions. In Jonathan
Katz, editor, PKC 2015, volume 9020 of LNCS, pages 283–307. Springer, Berlin,
Heidelberg, March / April 2015.

16. Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Memento:
How to reconstruct your secrets from a single password in a hostile environment.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 256–275. Springer, Berlin, Heidelberg, August 2014.

17. Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal distributed password
verification. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015, pages 182–194. ACM Press, October 2015.

18. Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet universally
composable two-server password-authenticated secret sharing. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 525–536. ACM Press,
October 2012.

19. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

20. Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 90–106. Springer, Berlin, Heidelberg,
May 1999.

21. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Ronald Cramer, edi-
tor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Berlin,
Heidelberg, May 2005.

22. Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudorandom
functions. Cryptology ePrint Archive, Paper 2022/302, 2022. https://eprint.iacr.
org/2022/302.

23. Poulami Das, Julia Hesse, and Anja Lehmann. Dpase: Distributed password-
authenticated symmetric encryption. Cryptology ePrint Archive, Paper 2020/1443,
2020. https://eprint.iacr.org/2020/1443.

https://crypto.stanford.edu/~dabo/pubs/papers/DDH.pdf
https://tools.ietf.org/id/draft-irtf-cfrg-opaque
https://tools.ietf.org/id/draft-irtf-cfrg-opaque
https://eprint.iacr.org/2022/302
https://eprint.iacr.org/2022/302
https://eprint.iacr.org/2020/1443

Threshold PAKE with Security Against Compromise of All Servers 97

24. Sourav Das and Ling Ren. Adaptively secure BLS threshold signatures from DDH
and co-CDH. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part VII, volume 14926 of LNCS, pages 251–284. Springer, Cham, August 2024.

25. Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 507–523. Springer, Berlin, Heidelberg, May 2003.

26. Stefan Dziembowski, Stanislaw Jarecki, Pawel Kedzior, Hugo Krawczyk, Nam Ngo,
and Jiayu Xu. Password-protected threshold signatures. IACR Cryptology ePrint
Archive, 2024.

27. Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ris-
tenpart. The pythia PRF service. In Jaeyeon Jung and Thorsten Holz, editors,
USENIX Security 2015, pages 547–562. USENIX Association, August 2015.

28. Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong
secret from a password. In 9th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE 2000), pages 176–
180, Gaithersburg, MD, USA, June 4–16, 2000. IEEE Computer Society.

29. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 303–324. Springer, Berlin, Heidelberg, February 2005.

30. Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk.
Asymmetric pake with low computation and communication. In EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2022.

31. Craig Gentry, Philip D. Mackenzie, and Zulfikar Ramzan. Password authenticated
key exchange using hidden smooth subgroups. In Vijayalakshmi Atluri, Catherine
Meadows, and Ari Juels, editors, ACM CCS 2005, pages 299–309. ACM Press,
November 2005.

32. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

33. Yanqi Gu, Stanislaw Jarecki, Pawel Kedzior, Phillip Nazarian, and Jiayu Xu.
Threshold pake with security against compromise of all servers. Cryptology ePrint
Archive, report 2024/1455, 2024.

34. Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE: Asymmetric PAKE
from key-hiding key exchange. In Advances in Cryptology - Crypto 2021, pages
701–730, 2021. https://ia.cr/2021/873.

35. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing or: How to cope with perpetual leakage. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 339–352. Springer, Berlin, Heidelberg,
August 1995.

36. Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christopher Wood. Password-
authenticated TLS via OPAQUE and post-handshake authentication. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 98–127. Springer, Cham, April 2023.

37. David P. Jablon. Password authentication using multiple servers. In David Nac-
cache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 344–360. Springer,
Berlin, Heidelberg, April 2001.

38. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Berlin, Heidelberg, December 2014.

https://ia.cr/2021/873

98 Y. Gu et al.

39. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient
and composable password-protected secret sharing (or: how to protect your bitcoin
wallet online). In IEEE European Symposium on Security and Privacy – EuroS&P
2016, pages 276–291. IEEE, 2016.

40. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-
minimal password-protected secret sharing based on threshold OPRF. In Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17International
Conference on Applied Cryptography and Network Security, volume 10355 of LNCS,
pages 39–58. Springer, Cham, July 2017.

41. Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. Threshold partially-oblivious
PRFs with applications to key management. Cryptology ePrint Archive, Report
2018/733, 2018.

42. Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena.
Device-enhanced password protocols with optimal online-offline protection. In
Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang, editors, Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, AsiaCCS
2016, Xi’an, China, May 30 - June 3, 2016, pages 177–188. ACM, 2016.

43. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 456–486. Springer, Cham, April / May 2018.

44. Stanislaw Jarecki and Xiaomin Liu. Affiliation-hiding envelope and authentication
schemes with efficient support for multiple credentials. In Automata, Languages and
Programming, pages 715–726, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

45. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set intersection. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer,
Berlin, Heidelberg, March 2009.

46. Haimin Jin, Duncan S. Wong, and Yinlong Xu. An efficient password-only two-
server authenticated key exchange system. In Sihan Qing, Hideki Imai, and Guilin
Wang, editors, ICICS 07, volume 4861 of LNCS, pages 44–56. Springer, Berlin,
Heidelberg, December 2008.

47. Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-
server password-only authenticated key exchange. In John Ioannidis, Angelos
Keromytis, and Moti Yung, editors, ACNS 05International Conference on Applied
Cryptography and Network Security, volume 3531 of LNCS, pages 1–16. Springer,
Berlin, Heidelberg, June 2005.

48. Franziskus Kiefer and Mark Manulis. Distributed smooth projective hashing and its
application to two-server password authenticated key exchange. In Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14International Confer-
ence on Applied Cryptography and Network Security, volume 8479 of LNCS, pages
199–216. Springer, Cham, June 2014.

49. Franziskus Kiefer and Mark Manulis. Universally composable two-server PAKE.
In Matt Bishop and Anderson C. A. Nascimento, editors, ISC 2016, volume 9866
of LNCS, pages 147–166. Springer, Cham, September 2016.

50. Russell W. F. Lai, Christoph Egger, Dominique Schröder, and Sherman S. M.
Chow. Phoenix: Rebirth of a cryptographic password-hardening service. In Engin
Kirda and Thomas Ristenpart, editors, USENIX Security 2017, pages 899–916.
USENIX Association, August 2017.

Threshold PAKE with Security Against Compromise of All Servers 99

51. Leona Lassak, Annika Hildebrandt, Maximilian Golla, and Blase Ur. “it’s stored,
hopefully, on an encrypted server”: Mitigating users’ misconceptions about fido2
biometric webauthn. In Proc. USENIX Security, 2021.

52. Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold
password-authenticated key exchange. In Moti Yung, editor, CRYPTO 2002, vol-
ume 2442 of LNCS, pages 385–400. Springer, Berlin, Heidelberg, August 2002.

53. Ian McQuoid and Jiayu Xu. An efficient strong asymmetric PAKE compiler instan-
tiable from group actions. In Advances in Cryptology - ASIACRYPT 2023 - 29th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part VIII,
volume 14445 of Lecture Notes in Computer Science, pages 176–207. Springer,
2023.

54. Kentrell Owens, Olabode Anise, Amanda Krauss, and Blase Ur. User perceptions
of the usability and security of smartphones as fido2 roaming authenticators. In
SOUPS, pages 57–76, 2021.

55. Hirak Ray, Flynn Wolf, Ravi Kuber, and Adam J Aviv. Why older adults (don’t)
use password managers. In USENIX, 2021.

56. Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk.
Asymmetric PAKE with low computation and communication. In Orr Dunkel-
man and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-
ings, Part II, volume 13276 of Lecture Notes in Computer Science, pages 127–156.
Springer, 2022.

57. Jonas Schneider, Nils Fleischhacker, Dominique Schröder, and Michael Backes. Effi-
cient cryptographic password hardening services from partially oblivious commit-
ments. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1192–1203. ACM Press,
October 2016.

58. Maliheh Shirvanian, Stanislaw Jarecki, Hugo Krawczyk, and Nitesh Saxena.
SPHINX: A password store that perfectly hides passwords from itself. In Kisung
Lee and Ling Liu, editors, 37th IEEE International Conference on Distributed
Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, pages 1094–
1104. IEEE Computer Society, 2017.

59. Maliheh Shirvanian, Christopher Robert Price, Mohammed Jubur, Nitesh Sax-
ena, Stanislaw Jarecki, and Hugo Krawczyk. A hidden-password online password
manager. In Chih-Cheng Hung, Jiman Hong, Alessio Bechini, and Eunjee Song,
editors, SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, Republic of Korea, March 22-26, 2021, pages 1683–1686. ACM,
2021.

60. N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. OPAQUE with TLS 1.3,
draft-sullivan-tls-opaque-01, https://datatracker.ietf.org/doc/html/draft-sullivan-
tls-opaque, February 2021.

61. Michael Szydlo and Burton S. Kaliski Jr. Proofs for two-server password authen-
tication. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
227–244. Springer, Berlin, Heidelberg, February 2005.

62. Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and
Christopher A. Wood. A fast and simple partially oblivious prf, with applications.
In Advances in Cryptology - EUROCRYPT 2022: 41st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Trondheim,

https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque

100 Y. Gu et al.

Norway, May 30 - June 3, 2022, Proceedings, Part II, page 674-705, Berlin, Hei-
delberg, 2022. Springer-Verlag.

63. Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and
Christopher A. Wood. A fast and simple partially oblivious prf, with applications.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, pages 674–705, Cham, 2022. Springer International Publish-
ing.

64. Yanjiang Yang, Robert Deng, and Feng Bao. A practical password-based two-server
authentication and key exchange system. Dependable and Secure Computing, IEEE
Transactions on, 3:105–114, 05 2006.

65. Lin Zhang, Zhenfeng Zhang, and Xuexian Hu. UC-secure two-server password-
based authentication protocol and its applications. In Xiaofeng Chen, XiaoFeng
Wang, and Xinyi Huang, editors, ASIACCS 16, pages 153–164. ACM Press,
May / June 2016.

Key Exchange in the Post-snowden Era:
Universally Composable

Subversion-Resilient PAKE

Suvradip Chakraborty1(B), Lorenzo Magliocco2, Bernardo Magri3,4,
and Daniele Venturi2

1 VISA Research, Foster City, USA
suvradip1111@gmail.com

2 Sapienza University of Rome, Rome, Italy
3 University of Manchester, Manchester, UK

4 Primev, Manchester, UK

Abstract. Password-Authenticated Key Exchange (PAKE) allows two
parties to establish a common high-entropy secret from a possibly low-
entropy pre-shared secret such as a password. In this work, we provide
the first PAKE protocol with subversion resilience in the framework of
universal composability (UC), where the latter roughly means that UC
security still holds even if one of the two parties is malicious and the
honest party’s code has been subverted (in an undetectable manner).

We achieve this result by sanitizing the PAKE protocol from oblivious
transfer (OT) due to Canetti et al. (PKC’12) via cryptographic reverse
firewalls in the UC framework (Chakraborty et al., EUROCRYPT’22).
This requires new techniques, which help us uncover new cryptographic
primitives with sanitation-friendly properties along the way (such as OT,
dual-mode cryptosystems, and signature schemes).

As an additional contribution, we delve deeper in the backbone of com-
munication required in the subversion-resilient UC framework, extending
it to the unauthenticated setting, in line with the work of Barak et al.
(CRYPTO’05).

Keywords: PAKE · subversion resilience · universal composability

1 Introduction

Authenticated Key Exchange (AKE) allows two parties to generate a shared
high-entropy secret and mutually authenticate by means of identifiers such as
public keys, signatures or shared passwords. As such, AKE allows two parties

Lorenzo Magliocco and Daniele Venturi were supported by project SERICS
(PE00000014) and by project PARTHENON (B53D23013000006), under the
MUR National Recovery and Resilience Plan funded by the European Union—
NextGenerationEU. Daniele Venturi is member of the Gruppo Nazionale Calcolo Sci-
entifico - Istituto Nazionale di Alta Matematica (GNCS-INdAM).

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 101–133, 2025.
https://doi.org/10.1007/978-981-96-0935-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_4&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_4

102 S. Chakraborty et al.

to establish a secure channel. Due to its sensitive nature, malicious actors may
have a particular interest in undermining the security of AKE protocols (e.g., by
leaking the password of an honest party, or by establishing a shared key with-
out authentication). To this extent, AKE protocols are typically designed in the
setting of multi-party computation, where the adversary controls the communi-
cation channels and can corrupt some of the parties. Corrupted parties either
simply follow the protocol (so-called semi-honest corruptions), or deviate arbi-
trarily from its intended execution (so-called malicious corruptions).

This threat model is widely adopted in the literature. However, it relies on the
assumption of having access to uncorrupted parties that run the protocol exactly
as prescribed. Unfortunately, as shown by the shocking Edward Snowden’s rev-
elations, the latter assumption may not hold in practice, as the machine of an
honest party could have been compromised in an undetectable manner, both in
the case of its hardware (e.g., via backdoored components) or its software (e.g.,
via algorithm-substitution attacks, purposefully designed leaky constructions,
or mistakenly instantiated protocols). Such undetectable corruptions enable an
adversary to launch so-called subversion attacks, which may cause the target
compromised machine to covertly exfiltrate information or behave in an unex-
pected manner upon receiving a specific triggering input.

A possible mitigation consists in equipping parties with cryptographic reverse
firewalls (RFs), as first defined by Mironov and Stephens-Davidowitz [27]. These
objects allow to sanitize inbound and outbound messages of the party they are
attached to, thus destroying any potential side-channel while preserving func-
tionality and security of the underlying protocol. The idea here is that protocol
designers can instantiate parties and their respective RF on different physical
machines on the same local network in order to achieve security in the presence
of subversion attacks.

While the original formalism of [27] only accounted for standalone security,
where each protocol is run in isolation, the setting of RFs has recently been
extended to the universal composability (UC) framework by Chakraborty, Magri,
Nielsen and Venturi [18]. The latter ensures that, once a designed protocol is
proven to be secure, subversion resilience holds even if that protocol is arbitrarily
composed with other protocols. This lifts the requirement of redoing the security
analysis from scratch for each individual composition setting, thus yielding a
modular design of subversion-resilient cryptographic protocols.

1.1 Password-Authenticated Key Exchange

In this work, we focus on instantiating Password-Authenticated Key Exchange
(PAKE) in the subversion-resilient UC (srUC) framework [18], in which parties
can derive a high-entropy secret key and verify their identities by means of a
shared password. Given that passwords are considered to be low-entropy, the
security definition of PAKE must take into account the fact that the adversary
can guess the password with non-negligible probability. Thus, a protocol realiz-
ing PAKE is secure if no adversary is able to break it with probability better
than guessing the password outright. Moreover, the PAKE functionality restricts

Key Exchange in the Post-snowden Era 103

the ideal adversary to only perform online password guesses. In other words, the
transcript of a PAKE protocol must not help the adversary to perform a dictio-
nary (i.e., offline) attack.

1.2 Our Results

Our main contribution consists in constructing the first UC PAKE protocol
with security in the presence of subversion attacks, via RFs. Following [18],
we consider a setting where each party is split into a core (which has secret
inputs and is in charge of generating protocol messages) and a RF (which shares
no secrets with the core and sanitizes the outgoing/incoming communication
from/to the core using random coins). Both the core and the RF are subject to
different flavours of corruption, modelling different kinds of subversion attacks.

In order to avoid simple impossibility results, we follow [18] and only consider
the so-called specious subversions, in which a subverted core looks like an honest
core to any efficient test, yet it may signal private information to the subverter
via subliminal channels, or trigger an unexpected behaviour whenever a specific
triggering message is received.

Our PAKE protocol is obtained by sanitizing the UC randomized equality
protocol from oblivious transfer (OT) by Canetti et al. [12]. As an added bonus,
this construction allows us to introduce several building blocks of independent
interest in the srUC framework in a modular and natural manner. As we explain
in the next section, essential changes to the original building blocks’ design are
needed, including the definition and the realization of sanitizable variants of
intermediate ideal functionalities, new sanitation-friendly properties for crypto-
graphic primitives, and extensions to the srUC model itself.

One difficulty in the realization of PAKE is that one cannot rely on authen-
ticated channels. As shown by Barak et al. [7], this difficulty can be tackled
generically by first designing a PAKE protocol assuming authenticated chan-
nels, and then compiling it into another protocol without authenticated channels
using the concept of “split functionalities”. Such functionalities basically allow
the adversary to disconnect parties completely, and engage in separate execu-
tions with each one of the two parties, where in each execution the adversary
plays the role of the other party. We follow a similar recipe in the design of our
PAKE protocol. In particular, we first realize subversion-resilient randomized
equality, which is essentially PAKE with authenticated channels, assuming the
existence of a functionality for sanitizable authenticated communication (which
already appeared in [18], and is denoted by FSAT). Following [7], we then define a
weaker split-authenticated (sanitizable) variant sFSAT that allows the adversary
to partition parties, and prove that a modification of their transformation allows
to lift any protocol that multi-realizes a functionality F assuming authenticated
channels to one that realizes the corresponding “split version” (i.e., sF) without
any assumption on channels, even in the presence of subversion.

In the process, we realize sFSAT by sanitizing the protocol of [7, Section 4.2],
introducing a new notion of key-sanitizable signature schemes with a matching
security property. This improves on an open problem from [18], where the authors

104 S. Chakraborty et al.

were only able to realize FSAT assuming the presence of a PKI and by moving
to a “three-tier model” variant of the framework, in which each party has an
additional operative component that may only be honest or malicious. Even if
used exclusively throughout the setup phase of the protocol, providing access to
an operative component that is immune to subversion is a strong assumption
that definitely weakens any result achieved in the framework: indeed, the three-
tier model provides a trivial solution to counteract specious corruptions of the
core for any functionality, as the operative is in principle allowed to run any
protocol on behalf of the core. On the contrary, we realize the backbone of
communication among components in the two-tier model without assuming a
PKI, although only for the unauthenticated setting (i.e., sFSAT).

Finally, we apply the aforementioned transformation to our randomized
equality protocol, and realize subversion-resilient PAKE by constructing a pro-
tocol with access to the split version of the randomized equality functionality.

1.3 Technical Overview

Below, we provide an overview of the technical contributions, explaining the
main ideas and tools behind our subversion-resilient PAKE protocol.

Sanitizing OT. Defining oblivious transfer in the presence of subversion attacks
is a tricky task, as the (non-sanitized) functionality would allow a (specious)
receiver to obtain exactly one of the inputs of the sender, which may act as a
trigger if sampled maliciously. Similarly, it would allow a (specious) sender to
sample the inputs in a leaky manner and send them over to a corrupted party. For
this reason, in our sanitizable OT ideal functionality FsOT (depicted in Fig. 1),
both firewalls are allowed to blind the sender’s inputs by means of a blinding
operation. This way, the sender’s firewall can sanitize the sender’s randomly
chosen inputs, and the receiver’s firewall can sanitize the inbound inputs.

Fig. 1. Our sanitizable OT functionality FsOT, with ∗ being an appropriate blinding
operation for the input domain.

Here, we introduce a different technique compared to that of the seminal frame-
work. Namely, the functionality allows firewalls to explicitly contribute to the

Key Exchange in the Post-snowden Era 105

sanitation, and disregard their contribution whenever the overall party related to
that firewall is malicious. From a formal standpoint this is allowed, as there exists
a corruption translation table that maps corruptions of individual components
of a party to a corruption for the entire party, and currently the srUC framework
only supports static corruptions, so the functionality knows in advance which
parties are corrupted. This also makes sense for what concerns simulation: once
we have mapped components to a malicious party we shouldn’t simulate any-
thing that occurs within that malicious party. As an example, while handling
a malicious sender in a protocol realizing FsOT, it suffices for the simulator to
only forward to FsOT the malicious sender’s input messages. Indeed, the notion
of blinding may not even be well-defined.

In order to instantiate FsOT, we start by considering dual-mode cryptosys-
tems as in Peikert et al. [28]. Briefly, in these cryptosystems the party holding
the secret key specifies a decryption branch upon generating the keypair, and the
party holding the public key specifies an encryption branch for each ciphertext.
Decryption succeeds only for ciphertexts generated on the decryption branch.
Moving to the subversion setting, we introduce a new primitive that we call san-
itizable homomorphic dual-mode cryptosystems that extends dual-mode cryp-
tosystems by additionally providing: (1) a procedure to carry out homomorphic
operations on ciphertexts (e.g., Enc(m1) ∗ Enc(m2) = Enc(m1 ∗ m2)), (2) a pro-
cedure to maul an encryption key pk to a different encryption key ˜pk, and (3) a
procedure to maul a ciphertext under encryption key ˜pk to a ciphertext of the
same message under encryption key pk. Looking ahead, item (1) allows firewalls
to sanitize the messages input to the OT, and items (2, 3) allow to first blind a
public key, introducing a layer of sanitation, and align encryptions accordingly,
stripping that layer of sanitation away to preserve correctness. The construction
from DDH of [28, Section 5] can be extended to verify our newly introduced
properties in a straight-forward manner.

Finally, we instantiate the functionality by proposing an appropriate sani-
tation of the protocol of [28, Section 4], which unfolds as follows. The receiver
produces a key pair that may only be used to decrypt values on the encryption
branch matching the choice bit σ and sends the public key towards the sender.
This key is sanitized once by each firewall. Upon receiving the (sanitized) key,
the sender encrypts value xb on encryption branch b, for b ∈ {0, 1}, and for-
wards these ciphertexts towards the receiver. Each firewall removes one layer of
sanitation from the ciphertexts, so that the receiver can successfully decrypt the
ciphertext on branch b = σ.

In the security proof, we first show that the construction is strongly sani-
tizing, i.e., a specious core with a honest firewall is indistinguishable from an
incorruptible core with a honest firewall, by using the aforementioned proper-
ties. After that, the simulation becomes extremely close to the one of the original
protocol, as it leverages on the two (computationally indistinguishable) modes
of the CRS to map the behaviour of the adversary to consistent queries to FsOT.

We conclude the section by remarking that, exactly as in the original protocol
of [28], it is possible to re-use the same CRS across multiple protocol runs. Hence,

106 S. Chakraborty et al.

we obtain a protocol that multi-realizes FsOT (i.e., a protocol that realizes the
the multi-session sanitizable OT functionality F̂sOT).

Sanitizing Randomized Equality. Canetti et al. [12] instantiate the ran-
domized equality functionality by proposing a protocol that relies on OT and
roughly unfolds as follows: for an n-bit password, each party runs FOT n-times
as the sender, inputting two random strings for each OT run, and n-times as
the receiver, inputting the i-th bit of their password in the i-th run. Intuitively,
the sender of each batch of OTs is able to choose the same random strings that
were selected by the receiver only if the passwords are the same, and all these
strings can be combined to derive a common shared key.

After defining FsOT, designing a protocol that realizes the randomized equal-
ity ideal functionality FRE in the subversion setting becomes immediate. In order
to thwart information leakage originating from a biased sampling of the ran-
dom strings, as well as inbound input-triggering strings, both firewalls blind the
sender’s inputs in both OT batches with locally-sampled random strings. The
trick to preserve correctness leverages on the symmetrical structure of the pro-
tocol: namely, random strings used for the i-th OT in which a core acts as the
sender are re-used for the i-th OT in which the same core acts as the receiver.

Split Functionalities in the srUC Model. A PAKE protocol establishes
(over an unauthenticated channel) a secret key among parties that share a com-
mon password. Thus, it makes little sense to build a PAKE protocol in a setting
that already assumes the existence of authenticated channels.

The problem of achieving any form of secure computation (including pro-
tocols such as PAKE) in the UC unauthenticated channel setting was first
described by Barak et al. [7]. In their setting, all the messages sent by parties
can be tampered with and manipulated by the adversary unbeknownst to honest
parties. The authors show that, while in this model it is not possible to achieve
the same guarantees as with authenticated channels, meaningful security can
still be provided: namely, the worst the adversary can do is split honest parties
into independent execution sets before the protocol run, and act on behalf of all
(honest) parties that are not within the same set. This way, even though honest
parties can run the entire protocol with the adversary without even noticing it,
they can rest assured that they will complete the entire run of the protocol inter-
acting with the same set of parties since the start. In [7], this notion is captured
in what the authors call split functionalities. One central result of [7] consists of
showing a generic transformation for which any protocol UC n-realizing some
n-party functionality F relying on authenticated channels can be compiled into a
similar protocol that UC-realizes the split functionality sF , but now just relying
on unauthenticated channels.

Given that [18] exclusively refers to authenticated channels, which are for-
malized with the “sanitizable authenticated transmission” functionality FSAT, in
this work we extend the notion of split functionalities to the srUC model. More
specifically, we show that the generic transformation of [7] for split protocols

Key Exchange in the Post-snowden Era 107

carries over to our setting whenever the underlying unauthenticated channel is
sanitizable. The latter notion is captured by the split version of FSAT, that we call
sFSAT. This functionality allows the adversary to split parties in different authen-
tication sets in a “link initialization” phase, before any message is exchanged.
After that, the behaviour is exactly the same as FSAT, except that the adversary
may deliver arbitrary messages to parties within different authentication sets.

A crucial component of the transformation is the construction of a proto-
col realizing sFSAT. For that, we introduce a new primitive that we call key-
sanitizable signatures that: (1) provides a procedure to maul a verification key
vk into ˜vk, (2) a procedure to maul a signature under verification key vk into a
signature under verification key ˜vk, and (3) is equipped with a function f such
that f(vki, ˜vkj) = f(˜vki, vkj), with ˜vki and ˜vkj being verification keys mauled
under the same randomness. We show that the BLS signature scheme [10] is a
key-sanitizable signature scheme, with f being a bilinear map. In our protocol for
sFSAT, parties exchange locally-generated keys, which are used to “initialize the
link” by determining a session ID sid, and to sign messages that are exchanged
through the link. Firewalls sanitize these keys and re-align signatures accordingly
to preserve correctness, and the bilinear map allows parties to recompute the
same sid in the presence of firewalls mauling the keys. We note however that the
bilinear map restricts the protocol to the 2-party setting, which in turn restricts
the transformation to only capture 2-party functionalities in the srUC model.

Once a protocol for sFSAT is in place, one can simply white-box inspect the
proofs of [7] and adapt them to the srUC setting. The core result is a lemma
stating that any protocol 2-realizing a 2-party functionality F in the wsrUC
model assuming FSAT can be compiled into a protocol realizing sF in the wsrUC
model assuming sFSAT. Given that any n-party functionality F can be n-realized
in the wsrUC model by the subversion-resilient GMW compiler of [18], we also
obtain a theorem stating that any 2-party split functionality can be realized
in the wsrUC model using only unauthenticated channels (in the sFSAT-hybrid
model), matching [7, Theorem 10]. As in traditional UC, a protocol poly-realizing
a functionality roughly means that polynomially-many instances of that protocol
may re-use the same setup.

The Final PAKE Protocol. At last, we combine all our ingredients together
to realize PAKE in the subversion setting. First, we apply the split transfor-
mation to the protocol realizing FRE in the authenticated setting, obtaining a
protocol that realizes sFRE in the unauthenticated setting. Then, with a sim-
ilar argument to that of Dupont et al. [22], we argue that sFRE is sufficient
to instantiate FPAKE. This can be shown by exhibiting a trivial protocol in the
sFRE-hybrid model that exclusively interacts with sFRE, and by showing that
the power of splitting parties in sFRE can be mapped to the power of performing
password queries in FPAKE.

We observe that, as a corollary of the generic result of the previous paragraph,
one also gets a protocol realizing sFRE by relying on the srUC GMW compiler
from [18], although with worse efficiency than our concrete construction from

108 S. Chakraborty et al.

DDH. For that, we provide a hand-wavy comparison of the two constructions by
considering communication and round complexity.

Importantly, in this work we consider a PAKE functionality that only pro-
vides implicit rather than explicit authentication. This means that, while parties
can be assured by the functionality that any other party capable of deriving the
same session key must possess the password, there is no direct assurance that
the counterpart has successfully computed the session key upon completion of
the protocol. This decision was made for two primary reasons: (1) it streamlines
our results, as explicit mutual authentication typically requires incorporating
additional “key confirmation” steps at the protocol’s conclusion, which would
complicate our protocol with the need for further sanitation processes, and (2)
in many practical scenarios, such as secure channels, explicit authentication is
not a requirement. Moreover, in our setting, mutual explicit authentication is
inherently provided by any higher-level protocol that utilizes our PAKE as a
foundation. For instance, in applications involving secure messaging, the act of
successfully exchanging messages serves as explicit confirmation that both par-
ties share the same session key.

Moreover, as a technical remark stemming from the srUC model, the PAKE
functionality we realize implicitly includes the wrapper of [18] that simply adds
dummy firewall parties in order to prevent trivial distinguishing from the envi-
ronment. This also holds for FRE, but causes no differences in the behaviour of
both functionalities. For a cleaner presentation and following [18], we omit the
wrapper when using hybrid functionalities.

1.4 Related Work

Next, we discuss related works on the topics of reverse firewalls, subversion-
resilient cryptography in general, and PAKE.

Reverse Firewalls and Subversion. Reverse firewalls were introduced by
Mironov and Stephens-Davidowitz [27], who showed how to construct reverse
firewalls for oblivious transfer (OT) and two-party computation with semi-honest
security. Follow up works showed how to construct reverse firewalls for many
other cryptographic primitives and protocols including: secure message transmis-
sion and key agreement [19,21], interactive proof systems [24], and maliciously
secure MPC for both the case of static [16] and adaptive [17] corruptions. How-
ever, most of these constructions lack modularity, as the security of each firewall
is proven in isolation and does not extend to larger protocols when combined
with other firewalls. This was addressed by Chakraborty, Magri, Nielsen and Ven-
turi [18] with the proposal of the Subversion-Resilient Composability framework
(srUC). The srUC allowed for the first time to build and to analyse subversion-
resilient protocols under composition. [18] shows how to sanitize the classical
GMW compiler [25] for MPC under subversion. Towards that, it also introduces
the concept of sanitizable commitment and sanitizable commit-and-prove.

More recently and concurrently to this work, an alternative framework for
subversion-resilient UC was put forward by Arnold et al. [4]. Compared to [18],

Key Exchange in the Post-snowden Era 109

this new framework captures reverse firewalls in the plain UC model, but char-
acterizes subversion by exclusively allowing an adversary to tamper with the
function generating the randomness of a protocol. This rules out simple subver-
sion attacks which [18] (and our paper) accounts for, such as having a specious
core change its input to part of its secret state upon receiving a specific triggering
value.

Ringerud [29] explored the problem of achieving subversion-resilient AKE
in a standalone fashion (i.e., without reverse firewalls or watchdogs), providing
intuition on why realizing this primitive appears to be hard in such an adversarial
setting.

Additional work on subversion includes algorithm substitution attacks
[6,9,20], parameter subversion [2,3,8,23], Cliptography [5,31,32], subliminal
channels [33,34] to list a few. We refer to [18,27] for further related works,
such as watchdogs and self-guarding.

PAKE. The seminal work by Canetti et al. [13] formalizes PAKE as an ideal
functionality, and proposes an efficient protocol securely realizing this function-
ality in the setting of malicious corruptions and under universal composabil-
ity [11], i.e., when protocols can be arbitrarily composed with other protocols.
The description was later extended to explicit mutual authentication in [12,26],
in which parties are able to tell whether they effectively authenticated or not.
Our work is the first to achieve subversion-resilient PAKE in the UC framework.

1.5 Organization

In Sect. 2, we give a concise introduction to the subversion-resilient UC frame-
work of [18]. In Sect. 3, we define and instantiate sanitizable oblivious trans-
fer. In Sect. 4, we instantiate a subversion-resilient protocol for the randomized
equality ideal functionality. In Sect. 5, we define and instantiate the sanitizable
split-authenticated functionality, and port the transformation of Barak et al. [7]
that allows to remove authenticated channels from our reference framework. In
Sect. 6, we combine the results of previous sections to achieve subversion-resilient
PAKE. Finally, in Sect. 7, we conclude the paper with a few related open prob-
lems for further research. See Fig. 2 for a visual representation of how our results
are linked to one another.

2 A Brief Recap of Subversion-Resilient UC

We give a brief overview of subversion resilience in the UC framework (srUC for
short). We refer the reader to [18] for further details, and to [11] for a complete
treatment of the UC framework.

110 S. Chakraborty et al.

Authenticated Communication (FSAT) Unauthenticated Communication (sFSAT)

DME from DDH [28]

Thm. 1

SHDME (Def. 1)

Thm. 2

(Multi-realizing) FsOT

Thm. 3

FRE
Thm. 7

BLS [10]

Thm. 5

KS-EUF-CMA +
IDComb (Def. 2, 3, 4)

Thm. 6

sFSAT

sFRE

Thm. 8

FPAKE

GMW (srUC) [18] Thm. 4 Any 2-party sF

Fig. 2. A visual summary of the contributions of this paper. All the functionalities
are realized in the srUC framework of [18]. DME stands for Dual-Mode Encryption.
SHDME stands for Sanitizable Homomorphic DME. KS-EUF-CMA stands for Key-
Sanitizable EUF-CMA. IDComb is a shorthand for Consistent Identity Combinability.

2.1 Corruption Types

Each party Pi in the protocol is modelled as two independent parties: a core Ci,
which hosts the code associated with the protocol (and may contain secrets),
and a firewall Fi, which may intervene on all the messages associated with their
respective core (both inbound and outbound). Since cores and firewalls are inde-
pendent parties, they may also be corrupted independently. The model of [18]
specifies that the relevant corruption cases for the core are Honest, Mali-
cious, or Specious, while the ones for the firewall are Honest, SemiHonest,
or Malicious. Mapping the corruption possibilities for the parties Pi = (Ci,Fi)
in a regular UC functionality gives rise to the following corruption translation
table (Table 1):

Key Exchange in the Post-snowden Era 111

Table 1. The corruption translation table of [18].

Core C Firewall F Party P in F
Honest SemiHonest Honest
Specious Honest Honest
Honest Malicious Isolate

Malicious Malicious Malicious

Specious Corruption. A specious corruption is a type of subversion where
the subverted core looks indistinguishable from the honest core to any efficient
test. The main idea is that we consider corruptions where a core Ci has been
replaced by another implementation ˜Ci which cannot be distinguished from Ci

by black-box access to ˜Ci or Ci. Intuitively, a specious corruption can be thought
of as a subversion that remains undetectable.

Isolate Corruption. Isolate is a weaker type of corruption that models the
setting where a malicious firewall simply cuts the communication of an honest
core with the outside world. This is typically modelled as a Malicious corrup-
tion in the authenticated setting, and as a MITM attack in the unauthenticated
setting, and can therefore be safely dropped from the analysis.

Strong Sanitation. A firewall is strongly sanitizing if an adversary is unable to
distinguish an execution of the protocol with a specious core equipped with an
honest firewall from an execution of the protocol with an honest core equipped
with an honest firewall. As shown in [18], whenever the firewalls are strongly san-
itizing, the Specious core and Honest firewall case is the same as considering
an Honest core and an Honest firewall.

2.2 Ideal Functionalities

There are two types of ideal functionalities in srUC: sanitizable functionalities
and regular functionalities. Sanitizable functionalities are the ones where cores
and firewalls explicitly interact with the functionality. For that, sanitizable func-
tionalities expose, for each party Pi, an input-output interface IOi that interacts
with the core Ci, and a sanitation interface Si that interacts with the firewall
Fi. Regular functionalities have the same flavor of the functionalities used in
the UC framework, where the functionality will only communicate with parties
and is not aware of cores and firewalls. The goal of considering regular func-
tionalities is that it is perfectly valid and desirable to be able to build protocols
that realize a regular functionality (e.g., coin tossing) under subversion attacks.
However, since there is no support for sanitation interfaces in regular functional-
ities, the model considers a wrapped version of the functionality F , denoted by
Wrap(F), that handles all the boilerplate code of translating the combinations
of corruptions of cores and firewalls to corruptions of parties in F . The wrapper
also passes any message coming from the functionality and directed to party Pi

to the corresponding core Ci and firewall Fi, and it is needed to avoid trivial

112 S. Chakraborty et al.

distinguishing attacks in the UC framework, since the actual protocol will be
implemented with cores and firewalls. For what concerns security definitions,
two separate notions are presented in [18], according to the type of functional-
ity that is being realized: subversion-resilient UC (srUC) security for sanitizable
ideal functionalities, and wrapped subversion-resilient UC (wsrUC) security for
regular ideal functionalities. We refer the reader to [18] for the formal definitions
and further details.

2.3 Communication Channels

In all the protocols of [18], communication is mediated by a sanitizable ideal func-
tionality for authenticated communication FSAT, which fundamentally embeds
three capabilities:

• It allows to distribute a setup (e.g., a CRS) by means of a Setup algorithm.
• It provides secure channels between cores and their respective firewall.
• It provides authenticated channels between firewalls.

In what follows, we report a variant of the description of FSAT that does not
include the first capability. This is a design choice that allows to better separate
setup and communication: indeed, the former may be captured by a separate
ideal functionality Fcrs.

Functionality FSAT

– On input (Send,Pi,Pj , a) on IOi, it forwards the tuple on Si. As in the orig-
inal description, we assume that a is sent at most once from honest parties.

– On input (Send,Pi,Pk, b) on Si, it leaks the tuple to the adversary S, and
internally stores the tuple.

– On input (Deliver, (Send,Pi,Pk, b)) from the adversary, where the Send
tuple is stored, it outputs (Receive,Pi,Pk, b) on Sk and deletes the tuple.

– On input (Receive,Pi,Pm, c) on Sm, it outputs (Receive,Pi,Pm, c) on IOm.

An important observation is that FSAT induces a core-to-core authenticated chan-
nel. While this is an acceptable backbone of communication for our protocols
in Sects. 3 and 4, it makes little sense to instantiate PAKE by already assum-
ing authenticated channels. In Sect. 5, we overcome this limitation by defining a
weaker functionality sFSAT that models the unauthenticated setting by allowing
the adversary to partition parties, in line with the work of Barak et al. [7].

3 Sanitizing Oblivious Transfer

In this section, we first propose a sanitizable ideal functionality for oblivious
transfer that will be used as a building block for the sanitation of randomized

Key Exchange in the Post-snowden Era 113

equality in Sect. 4. Secondly, we recap dual-mode cryptosystems, define saniti-
zable homomorphic dual-mode cryptosystems, and exhibit an instantiation for
this new primitive from the DDH assumption. We use the latter notion to sani-
tize the generic framework for OT of Peikert et al. [28], obtaining a protocol for
the sanitizable oblivious transfer functionality FsOT. Finally, we argue that, in
line with the instantiation of [28], our protocol can reuse the same CRS across
multiple runs, thus realizing the multi-session extension of FsOT (also denoted
by F̂sOT).

3.1 Sanitizable OT

Following the ideas presented in the technical overview in Sect. 1.3, we describe
sanitizable ideal functionality for oblivious transfer FsOT, in which both firewalls
may intervene in the sanitation of the sender’s inputs.

Functionality FsOT

FsOT is a sanitizable ideal functionality that interacts with the sender S = (CS,FS)
and the receiver R = (CR,FR), parameterized by input domain I ⊆ {0, 1}n and
a blinding operation ∗ : I2 → I.

Interface IOi:

Upon receiving a query (sender, sid, (x0, x1)) from CS on IOS:
Record (sender, sid, (x0, x1)) and forward the tuple on Si. Ignore subse-
quent commands of the form (sender, sid, ·).

Upon receiving a query (receiver, sid, σ) from CR on IOR:
Check if a record (sender, sid, (x̂0, x̂1)) exists. If this is the case, check
the following:

* The message (blind, sid, ·) was sent to FsOT on SS. If S is malicious
according to the corruption translation table, mark this check as
passed.

* The message (blind, sid, ·) was sent to FsOT on SR. If R is malicious
according to the corruption translation table, mark this check as
passed.

If the conditions above hold, output (sid, x̂σ) to R, sid to the adversary
S, and halt. Otherwise, send nothing to R but continue running.

Interface Si:

Upon receiving a query (blind, sid, (x′
0, x

′
1)) from FS on SS:

If S is malicious according to the corruption translation table, do nothing.
Otherwise, check if a record (sender, sid, (x0, x1)) exists. If so, update
the tuple to (sender, sid, (x̃0, x̃1)), with x̃b = xb ∗ x′

b. Otherwise, do
nothing. Ignore future commands of the form (blind, sid, ·) on SS.

Upon receiving a query (blind, sid, (x′′
0 , x′′

1)) from FR on SR:
If R is malicious according to the corruption translation table, do nothing.
Otherwise, check the following:

* A record (sender, sid, (x̃0, x̃1)) exists.

114 S. Chakraborty et al.

* A message (blind, sid, ·) was sent to FsOT on SS. If S is malicious
according to the corruption translation table, mark this check as
passed.

If the conditions above hold, update the tuple to (sender, sid, (x̂0, x̂1)),
with x̂b = x̃b ∗x′′

b . Otherwise, do nothing. Ignore future commands of the
form (blind, sid, ·) on SR.

The ideal functionality is parameterized by a blinding operation ∗, which
may be tailored to the input domain of choice (e.g., for additive blinding,
x0 ∗ x′

0 = x0 ⊕ x′
0; for multiplicative blinding, x0 ∗ x′

0 = x0x
′
0). Furthermore, the

functionality disregards blinding inputs from firewalls of parties that, accord-
ing to the corruption translation table, are malicious. As discussed throughout
the technical overview in Sect. 1.3, this is reasonable: the corruption status of
individual components can be determined in advance (as we are in the static
setting), and their combined behaviour can be considered as a single party by
following the corruption translation table. If the joint party is malicious, we do
not have to simulate anything related to messages internally exchanged by the
adversary. In particular, the blinding operation may not be well-defined at all.

3.2 Sanitizable Homomorphic Dual-Mode Encryption

Dual-mode cryptosystems operate like traditional public-key cryptosystems,
except for the following differences. First, they introduce the notion of encryp-
tion branches, for which the key generation algorithm takes as an additional
input a branch σ ∈ {0, 1}. The party holding the public key can choose either
branch b ∈ {0, 1} over which to encrypt a message. The party holding the secret
key is able to decrypt the ciphertext successfully only if σ = b. Second, they
rely on a common-reference string that may be setup either in messy mode or
decryption mode. These modes are computationally indistinguishable and induce
different algorithms for the generation of a trapdoor, yielding different security
guarantees: in messy mode, the sender has statistical security and the receiver
has computational security, whereas in decryption mode the security properties
are mirrored. We refer the reader to [28, Section 3] for the formal definition and
further details.

Sanitizable Homomorphic Dual-Mode Cryptosystems. Looking ahead,
we need to augment dual-mode cryptosystems to allow the sanitation of public
keys, ciphertexts, and plaintexts related to ciphertexts. For that, we formally
define sanitizable homomorphic dual-mode cryptosystems in what follows.

Definition 1 (Sanitizable Homomorphic Dual-Mode Cryptosystems).
A sanitizable homomorphic dual-mode cryptosystem consists of a tuple of algo-
rithms (Setup, KeyGen, Enc, Dec, FindMessy, TrapKeyGen, HomOp, MaulPK,
AlignEnc) with the following properties:

Key Exchange in the Post-snowden Era 115

1. Dual-mode cryptosystem: The tuple of algorithms (Setup,KeyGen,Enc,
Dec,FindMessy,TrapKeyGen) constitutes a dual-mode cryptosystem.

2. Homomorphic ciphertexts: For every σ ∈ {0, 1}, for every (pk, sk) ←$

KeyGen(σ), for every ci ←$ Enc(pk, σ,mi), with i ∈ {0, 1} and mi ∈ {0, 1}n,
HomOp(m0,m1) produces a new ciphertext of message m0 ∗m1, i.e., HomOp(
c0, c1) = Enc(pk, σ, (m0 ∗ m1)).

3. Consistent key sanitation: For every σ ∈ {0, 1}, for every (pk, sk) ←$

KeyGen(σ), for every ρ ∈ {0, 1}n, MaulPK(pk, ρ) outputs a new encryption key
˜pk with the following property. For every c̃ ←$ Enc(˜pk, σ,m), with i ∈ {0, 1}
and m ∈ {0, 1}n, AlignEnc(c, ρ) produces a new ciphertext c under public key
pk, i.e., AlignEnc(c̃, ρ) = c, where c = Enc(pk, σ,m).

Intuitively, MaulPK and AlignEnc are defined as a (symmetric) tuple of algo-
rithms as firewalls will first sanitize the outbound encryption key by running
MaulPK with some randomness. Then, upon receiving any ciphertext encrypted
under the new mauled public key, the firewall will “strip” the layer of sanita-
tion by using the same randomness used for MaulPK, outputting a ciphertext
containing the same message for the non-mauled public key pk.

Remark 1. The MaulPK, AlignEnc, HomOp algorithms are outputting keys and
ciphertexts implicitly combining the randomness of their inputs. This is essential
in the context of sanitation, as it allows a firewall to run these algorithms to
combine their “good randomness” to destroy subliminal channels stemming from
values with “bad randomness” output by their core.

Instantiation from DDH. We briefly recap the instantiation of dual-mode
cryptosystems from DDH of [28, Section 5]. In what follows, we denote G as the
group description on a cyclic group G of prime order p for which DDH is hard,
with generators g, h.

• The CRS is a tuple (g0, h0, g1, h1), with different trapdoors according to the
mode of operation.

• KeyGen(σ) = ((gr
σ, hr

σ), r) = ((pk1, pk2), sk) = (pk, sk).
• Enc(pk,m, b) = (gs

bh
t
b, pks

1pkt
2m) = (c1, c2).

• Dec(sk, c) = c2/cr
1.

The DDH cryptosystem is compatible with all the additional interfaces we intro-
duced in Definition 1, and we define algorithms matching the newly introduced
properties in a straight-forward manner:

• MaulPK(pk, ρ): Output pkρ.
• AlignEnc(c, ρ): Parse c = (c1, c2). Output c̃ = (cρ

1, c2).• HomOp(c0, c1): Output c0c1.

Theorem 1. The DDH cryptosystem of [28] with the additional algorithms spec-
ified above is a sanitizable homomorphic dual-mode cryptosystem, assuming that
DDH is hard for G.

The theorem follows by inspection of the newly-introduced algorithms. A formal
proof is given in the full version.

116 S. Chakraborty et al.

3.3 A Generic Framework for Sanitizable OT

As shown in the generic framework of [28, Section 4], having access to a dual-
mode cryptosystem allows the instantiation of FOT in a natural manner: the
receiver uses its choice bit σ as the selected decryption branch, and the sender
encrypts each of its inputs xb on a separate encryption branch b ∈ {0, 1}. The
receiver will only be able to decrypt the ciphertext on branch σ = b.

Sanitizing the Framework. From a high-level perspective, our sanitized pro-
tocol leverages homomorphic ciphertexts to blind the sender’s inputs and uses
consistent key sanitation to sanitize the receiver’s outbound encryption key and
realign the inbound ciphertexts for decryption purposes. These operations also
destroy any potential subliminal channel linked to the original ciphertexts or to
the keys. In Fig. 3, we depict a protocol run showing only the firewall of the
sender, since the firewall of the receiver behaves exactly in the same way.

Fig. 3. A sanitation of the generic framework of Peikert et al. [28], realizing FsOT. The
receiver’s firewall is omitted, as it runs the same code as FS.

Theorem 2. The protocol in Fig. 3, parameterized by mode ∈ {mes, dec}, real-
izes the sanitizable functionality FsOT in the (FSAT,Fcrs)-hybrid model under
static corruptions. For mode = mes, the sender’s security is statistical and the
receiver’s security is computational; for mode = dec, the security properties are
reversed.

Intuitively, we first show that the firewalls are able to thwart all subversion
attacks (both inbound and outbound). Then, we simulate similarly to the original
proof, with the twist that we do not have to simulate inputs of malicious parties
(as per the considerations in the technical overview). We defer the formal proof
to the full version.

Key Exchange in the Post-snowden Era 117

3.4 Multi-session FsOT

Informally, a multi-session ideal functionality in UC is an ideal functionality that
allows “multiple runs” of the functionality using the same setup. As a concrete
example, the commitment functionality FCOM allows a committer to commit to
a single value; to produce another commitment a new and independent instance
of (the protocol realizing) FCOM must be spawned with a brand new setup. In
contrast, the multi-session functionality FMCOM allows a committer to perform
poly-many commitments using the same setup. Hence, using multiple instances
of FMCOM has the same effect as using a single instance of FMCOM.

Moving to our case, we note that the generic framework of [28] actually
realizes the multi-session version of FOT (also denoted as F̂OT). Given that our
protocol in Fig. 3 has the same structure as the protocol of [28], we observe
that we can reuse the same CRS across multiple runs, each with a distinct sub-
session ID. The presence of subverted cores does not impact this property, as
the sanitation operated from the firewalls uses independently-sampled random
strings for each sub-protocol run.

4 Sanitizing Randomized Equality

In this section, we present our sanitized protocol for the (regular) randomized
equality ideal functionality FRE that relies on authenticated channels (i.e., FSAT)
and FsOT, following the construction of Canetti et al. [12].

4.1 Description of FRE

We describe a variation of the randomized equality ideal functionality FRE of [12],
with technical improvements from Dupont et al. [22].

Functionality FRE

The functionality FRE is parameterized by a security parameter λ. It interacts
with an initiator I = (CI,FI), a responder R = (CR,FR), and the adversary S via
the following messages:

Upon receiving a query (NewSession, sid, I, R, wI), from I:
Record (I, R, wI) and send a message (sid, I, R) to S. Ignore all future
messages from I.

Upon receiving a query (ok, sid) from S:
Send a message (wakeup, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, wR) from R:
• If wR = wI, choose skey ←$ {0, 1}λ and store skeyI = skeyR = skey.
• If wR �= wI, then set skeyI ←$ {0, 1}λ, skeyR ←$ {0, 1}λ.

In both cases, ignore subsequent inputs from R.
Upon receiving a query (NewKey, sid,P, K), P ∈ {I, R} from S:

• If any of the following conditions hold, output (sid, K) to party P:
– P is corrupted.

118 S. Chakraborty et al.

– wI = wR, and the peer of P is corrupted.
• Otherwise, output (sid, skeyP) to party P.

Ignore all subsequent (NewKey,P) queries for the same party P.

4.2 Randomized Equality from OT

We sanitize the RE from OT protocol of [12, Section 2.2] by using FsOT, restrict-
ing to implicit mutual authentication as per the considerations in the technical
overview. Compared to the non-sanitized protocol, we parameterize the input
domain I and the respective blinding operation ∗, in line with the description
of FsOT. For ease of exposition, we depict the protocol in Fig. 4 assuming 1-bit
passwords. The n-bit password case runs exactly in the same way except that (i)
it uses n OTs within the multi-session sanitizable OT functionality F̂sOT, and (ii)
it computes keys using operator ∗ with n random strings rather than only one.
In order to preserve correctness, we leverage the symmetry of the protocol. In
particular, the values each party retrieves from the batch of OTs in which they
act as receivers embeds the random strings that are used by both firewalls, and
these strings are the same also for the other OT batch. This also thwarts both
input triggering attacks, as well as information leakage.

Theorem 3. The protocol in Fig. 4 wsrUC-realizes the FRE ideal functionality
in the (FsOT,FSAT)-hybrid model under static corruptions.

Fig. 4. A sanitizing protocol for FRE from sanitizable OT with a 1-bit password.

Key Exchange in the Post-snowden Era 119

Within the proof, we first show strong sanitation of firewalls, and then proceed
similarly to [12]. We defer the formal proof and an explicit analysis of correctness
to the full version.

5 Subversion-Resilient Split Functionalities

In this section, we extend the notion of split functionalities of Barak et al. [7]
to the srUC framework. Informally, we want to show that, for any well-formed1

regular 2-party2 ideal functionality F , there exists a protocol that realizes the
2-party sF functionality with wsrUC-security in the CRS model. More formally,
the goal of this section consists in proving an adaptation of [7, Theorem 10] to
our setting, i.e.:

Theorem 4. Let F be a (regular) 2-party UC functionality. Then, assuming
key-sanitizable signatures with consistent identity combinability, there exists a
protocol that securely realizes the 2-party split functionality sF in the wsrUC
model.

Towards that, we follow the same strategy as [7] and proceed in the following
three stages:

– Link initialization: The first step consists in building the sanitizable split-
authenticated functionality sFSAT that parties will use to communicate on.
The sFSAT functionality can be seen as the split version of the FSAT function-
ality.

– Multi-session security : As the second step, we show that when authenticated
channels are available, any functionality can be “poly-realized” in the wsrUC
model. Here, poly-realizing a functionality informally means that security of
the protocol implementing the functionality still holds even when multiple
(i.e., poly-many) instances of the protocol share the same setup. For that, we
show that the subversion-resilient GMW protocol from [18] poly-realizes any
functionality in the wsrUC model.

– Unauthenticated channels : Finally, we adapt the generic transformation of [7]
that transforms any protocol π that 2-realizes a 2-party functionality F given
authenticated channels (i.e., FSAT) in the wsrUC model into a protocol that
realizes sF given access to sFSAT in the wsrUC model.

Next, we look at each of these stages individually towards demonstrating Theo-
rem 4.

1 The “well-formed” property is to rule out unrealistic functionalities as explained
in [7,15].

2 We restrict our attention to 2-party functionalities (in contrast to [7]) as the theorem
relies on the sanitizable sFSAT functionality that we only show how to realize for the
2-party setting.

120 S. Chakraborty et al.

5.1 Building Link Initialization

In this section we formally define sFSAT (i.e., the split version of the sanitiz-
able authenticated channel functionality FSAT of [18]) and build a protocol that
realizes it in the 2-party setting in the srUC model. For that, we introduce the
notion of key-sanitizable signatures and show that it can be instantiated with
the BLS signature scheme [10].

Description of sFSAT. The sFSAT functionality has a similar structure to
FSAT, with the addition of having a link initialization phase. In contrast with
FSAT, the only guarantee provided by the functionality is that each party will
be interacting with the same entity throughout the entire protocol run, but that
entity could either be the expected party or the adversary itself. We describe
sFSAT next.

Functionality sFSAT

sFSAT is a sanitizable ideal functionality that interacts with an adversary S and
a set of parties, each composed of a core C and a firewall F. The functionality
consists of the following communication interfaces.

Initialization

– Upon activation with input (Init, sid) from party P: Parse sid = (P, sid′)
where P is a set of parties that includes P. Forward (Init, sid,P) to the
adversary S.

– Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that H ⊆ P,
that the list H of party identities includes P = (C,F), and that for all recorded
sets H ′ either (i) H ∩H ′ contains only corrupted parties (as per the standard
corruption transition table in Table 1) and sidH �= sidH′ , or (ii) H ′ = H
and sidH = sidH′ . If any of the check fails, do nothing. Otherwise, output
(Init, sid, sidH) to P and record (H, sidH) if not yet recorded.

Message Authentication

– Upon receiving the message (Send, sid,Pi,Pj , m) on IOi where Pj ∈ P: Out-
put the tuple on Si.

– Upon receiving the message (Send, sid,Pi,Pj , m̃) on Si: Add the tuple to
an (initially empty) list W of waiting messages. The same tuple can appear
multiple times in the list. Then, leak the tuple to S.

– Upon receiving the message (Deliver, (Send, sid,Pi,Pj , m̃)) from S:
• If Pj did not previously receive an (Init, sid, sidH) output, do nothing.
• Else, if Pi is in the authentication set H of Pj , and Pi is uncorrupted,

then: if there is a tuple (Send, sid,Pi,Pj , m̃) ∈ W, remove one appear-
ance of the tuple from W and output (Receive, sid,Pi,Pj , m̃) on Sj .
Otherwise, do nothing.

• Else (i.e., Pj received (Init, sid, sidH), and either Pi is corrupted or Pi /∈
H), output (Receive, sid,Pi,Pj , m̃) on Sj , regardless of W.

– Upon receiving the message (Receive, sid,Pi,Pj , m̂) on Sj , output the tuple
on IOj .

Key Exchange in the Post-snowden Era 121

The functionality consists of a preliminary initialization phase and the actual
message authentication phase. In the initialization phase, the adversary controls
how parties will be partitioned in the respective authentication sets. Intuitively,
parties within the same authentication set will be able to communicate as if
there was an authenticated channel between them. It is however possible for the
adversary to participate in different authentication sets on behalf of all corrupted
parties and any party outside of that authentication set. In the message authen-
tication phase, honest parties will transmit messages in an authenticated fashion
within the same authentication set. However, they may very well receive mes-
sages out of the blue from the adversary on behalf of any party that is corrupted
or outside the authentication set.

With respect to sanitation, whenever a core sends a message m with des-
tination Pj on IOi, the message is output on Si. This means that m is output
to a firewall that will decide if/how to sanitize m to m̃ in any arbitrary way,
without involving the functionality in the sanitation process. Once the firewall
determines the message m̃ to send to Pj , m̃ is leaked to the adversary. Accord-
ing to the partition of parties performed in the link authentication phase, the
adversary has different capabilities:

• If the recipient party is within the same authentication set, the message is
added to a message queue, and the adversary can exclusively control its deliv-
ery time. This behaviour is indeed equivalent to FSAT, in which the message is
stored and then output to the recipient party whenever the adversary decides
to do so.

• If Pi is corrupted or the parties are in different authentication sets, the adver-
sary may deliver arbitrary messages to Pj , disregarding the message queue.

Whenever the adversary allows the delivery of a message, that message is output
to the firewall Fj . Similarly to the sending phase, Fj may now modify the message
arbitrarily without involving the functionality. Once a (potentially different)
message m̂ is determined by Fj , it is delivered by the functionality to Cj .

We stress that, as it is the case for FSAT, cores and their respective firewall
are allowed to freely communicate through secure channels. This is achieved by
means of Send messages (from a core to its firewall), and Receive messages
(from a firewall to its core). In principle, a firewall may send back any message to
its core, even if it was not related to any Deliver message from the adversary.

Key-Sanitizable Signature Schemes. In the construction of FSA of [7,
Section 4.2], parties exchange locally-generated keys and sign their messages in
order to preserve the split-authenticated security of the communication chan-
nel. However, in order to avoid subversion attacks, both inbound and outbound
verification keys have to be appropriately sanitized by firewalls, breaking cor-
rectness in the verification of the signature. In order to overcome this limitation,
we introduce a new notion that we call key-sanitizable signature schemes.

Informally, a key-sanitizable signature scheme allows to maul the verifica-
tion key from vk to ˜vk by means of an algorithm MaulVK that takes as input

122 S. Chakraborty et al.

randomness ρ. The same randomness may be re-used by an algorithm AlignSig
to align an (accepting) signature σ produced under secret key sk, producing a
signature σ̃ that verifies with mauled key ˜vk. The latter operation should also
be invertible, meaning that the signature σ may be re-computed from σ̃ and ρ.
We formally define this notion as a natural extension of traditional signatures in
Definition 2, introducing a matching security notion in Definition 3 that extends
EUF-CMA security to account for the newly introduced algorithms. This new
security notion is implied in a black-box manner by any EUF-CMA scheme
supporting the aforementioned algorithms.

Definition 2 (Key-sanitizable signature scheme). A key-sanitizable sig-
nature scheme consists of a tuple of polynomial-time algorithms (KeyGen,Sign,
Vrfy,MaulVK,AlignSig,UnAlignSig) with the following properties:

1. Correctness: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m)
with m ∈ {0, 1}n, Vrfy(vk, (m,σ)) = 1.

2. Consistent key sanitation: For every (vk, sk) ←$ KeyGen(1λ), for every
ρ ∈ {0, 1}n, MaulVK(vk, ρ) outputs a new verification key ˜vk with the following
property. For every σ ←$ Sign(sk,m) with m ∈ {0, 1}n, AlignSig((vk, σ,m), ρ)
produces an accepting signature σ̃ for message m verifiable by verification key
˜vk, i.e., Vrfy(˜vk,AlignSig((vk, σ,m), ρ)) = 1, where ˜vk = MaulVK(vk, ρ) and
σ = Sign(sk,m).

3. Alignment invertibility: For every (vk, sk) ←$ KeyGen(1λ), for every
σ ←$ Sign(sk,m) with m ∈ {0, 1}n, for every ρ ∈ {0, 1}n, for every
˜vk = MaulVK(vk, ρ), for every σ̃ = AlignSig((vk, σ,m), ρ), the algorithm
UnAlignSig returns the original signature σ, i.e., UnAlignSig((˜vk, σ̃,m), ρ) = σ

Definition 3 (Key-sanitizable EUF-CMA security). A key-sanitizable sig-
nature scheme is key-sanitizable existentially unforgeable against chosen message
attacks (KS-EUF-CMA) if the probability of the adversary A winning the fol-
lowing game is negligible:

– Sample (vk, sk) ←$ KeyGen(1λ) and a blinding factor ρ ←$ {0, 1}n, and run
A(vk, ρ). Compute ˜vk = MaulVK(vk, ρ).

– Upon receiving a query from A with message m, compute σ = Sign(sk,m) and
AlignSig((vk, σ,m), ρ). Respond with σ̃ and add m to a list M.

– Challenge A to produce a signature σ̃∗ on message m∗ /∈ M that verifies
under ˜vk.

– Upon receiving a response (m∗, σ̃∗), A wins if Vrfy
˜vk(m

∗, σ̃) = 1.

Lemma 1. Any EUF-CMA signature scheme that supports algorithms MaulVK,
AlignSig, and UnAlignSig, as defined in Definition 2, is also KS-EUF-CMA.

The proof consists of a black-box reduction to EUF-CMA, and is deferred to the
the full version.

Key Exchange in the Post-snowden Era 123

Combining Verification Keys. Looking ahead, the link initialization phase of
the protocol realizing sFSAT relies on the determination of session IDs via (iden-
tifying) verification keys of parties, which get sanitized by firewalls in different
directions. For instance, in the 2-party setting, core Ci has access to vki and ˜vkj ,
and core Cj has access to ˜vki and vkj , with ˜vki, ˜vkj being appropriate sanitations
of vki, vkj using the same randomness ρi. For this reason, we additionally define
an appropriate generic algorithm that allows to combine these keys either way
to output the same value.

Definition 4 (Consistent identity combinability). A key-sanitizable sig-
nature scheme has consistent identity combinability if it supports an algorithm
IDComb with the following property:

IDComb(vki,MaulVK(vkj , ρ)) = IDComb(MaulVK(vki, ρ), vkj).

Instantiation from BLS. We report the BLS signature scheme [10] in the
following.

• KeyGen(1λ) = (sk, vk) = (x, gx)
• Sign(sk,m) = H(m)sk

• Vrfy(vk, (m,σ)): Check ê(σ, g) = ê(H(m), vk)

The BLS signature scheme is already compatible with all the additional inter-
faces required by a key-sanitizable signature scheme. Moreover, bilinear maps
immediately induce the consistent identity combinability property:

• MaulVK(vk, ρ) = vkρ

• AlignSig((vk, σ,m), ρ) = σρ

• UnAlignSig((vk, σ̃,m), ρ) = σ̃ρ−1

• IDComb(vki, vkj) = ê(vki, vkj)

Theorem 5. The BLS signature scheme [10] with the additional algorithms
specified above is a key-sanitizable signature scheme with KS-EUF-CMA security
and consistent identity combinability, assuming that H is a random oracle and
that CDH is hard for G.

The theorem follows by inspecting the newly-introduced algorithms, and by
observing that the BLS signature scheme is EUF-CMA. We defer the formal
proof to the full version.

Realizing sFSAT. We now describe a protocol that realizes sFSAT in the 2-
party setting, which follows a similar structure to that of [7, Section 4.2]. The
link initialization phase is depicted in Fig. 5, and the message authentication
phase in Fig. 6. A verbose description of the protocol can be found in the full
version.

124 S. Chakraborty et al.

Fig. 5. Diagram of the protocol implementing the link initialization phase of sFSAT.

Theorem 6. The protocol depicted in Figs. 5, 6 realizes the sFSAT functional-
ity, assuming a KS-EUF-CMA signature scheme with consistent identity com-
binability and the presence of secure channels between cores and their respective
firewall.

Intuitively, the proof runs as the one for the non-sanitized protocol of [7], except
that the blinding operations of firewalls thwart subversion attacks, and consis-
tency between keys is obtained by using IDComb. We defer the formal proof to
the full version.

5.2 Multi-realizing any Ideal Functionality in the wsrUC Model

Next, we prove the following lemma.

Lemma 2. For any regular (well-formed) ideal functionality F there exists a
protocol π that n-realizes F in the wsrUC model assuming authenticated channels

Key Exchange in the Post-snowden Era 125

in the presence of static and malicious adversaries for n = poly(λ). Moreover,
the protocol π is such that all instances of π use a single instance of Fcrs.

Informally, such a protocol can be obtained from the adaptation of the GMW
compiler to the srUC framework shown in [18]. The formal proof of the lemma is
essentially [7, Theorem 13] verbatim, except that we replace results for the UC
framework with their counterparts in the srUC framework, shown in [18] (e.g.,
the UC composition theorem and the GMW compiler). We defer the formal proof
to the full version.

5.3 Realizing Generic Split Functionalities

We finally show that any protocol π that wsrUC-2-realizes a 2-party function-
ality F in the FSAT-hybrid model (i.e., using authenticated channels) can be
compiled into a protocol Π that wsrUC-realizes the split 2-party functionality
sF in the sFSAT-hybrid model (i.e., using unauthenticated channels). The sF
functionality is exactly the same as in [7]. Indeed, since we wsrUC-realize a reg-
ular ideal functionality F assuming FSAT, our end goal is to wsrUC-realize the
split counterpart of F assuming sFSAT, which is also a regular ideal functionality.

Lemma 3. Let G be a setup functionality, let F be a 2-party ideal functionality,
and let πF be a protocol that securely 2-realizes F in the wsrUC model with

Fig. 6. Diagram of the protocol implementing the message authentication sFSAT, split
in each of the interfaces.

126 S. Chakraborty et al.

authenticated communication (i.e., FSAT) and a single instance of G. Then, there
exists a protocol ΠF wsrUC-realizing the split functionality sF using a single
instance of sFSAT and a single instance of G.
To prove this theorem, we adapt the proof of [7, Lemma 4.1] to the wsrUC
model. First, we describe the protocol ΠF , which is obtained by adapting the
compiler presented in [7]. In particular, the compiler of [7] transforms a protocol
πF realizing functionality F in the UC FMAUTH-hybrid model into a protocol
ΠF realizing functionality sF in the UC FSA-hybrid model. This result can be
mapped to our setting by replacing FMAUTH with FSAT, and FSA with sFSAT,
with the crucial detail that messages coming from sFSAT are forwarded to the
instance of the protocol πF on the respective interface (i.e., IO or S), rather
than having a single interface for each party. Then, we simply follow the proof
of [7, Lemma 4.1] accounting for the additional communication between cores
and firewalls and for the presence of specious cores, as per the srUC framework.
We defer the description of ΠF and the formal proof to the full version.

Putting it All Together. We showed that the split functionalities notion
of [7] can be cast in the subversion-resilient UC model in the same way as in
standard UC. Namely, one can build a protocol n-realizing a functionality for
the authenticated channel setting and simply invoke Lemma 3 to obtain security
of the split version of the protocol in the unauthenticated channel setting (albeit
only for 2-party functionalities). Since there exists a protocol 2-realizing any
regular ideal functionality in the authenticated setting (by using the srUC GMW
compiler of [18], as per Lemma 2), there also exists a matching 2-party protocol in
the unauthenticated setting realizing the split version of the same functionality,
yielding Theorem 4.

6 Sanitizing PAKE

So far we have only referred to the FRE functionality, in which the adversary is
unable to perform any (online) password guesses. In order to move to PAKE,
we first provide a description of FPAKE, highlighting its differences with respect
to FRE. Then, similarly to [12], we argue that our protocol in Sect. 4 can be
compiled in a protocol for sFRE by invoking a result of Sect. 5. Finally, we show
that sFRE is sufficient to trivially realize FPAKE. We conclude the section by
highlighting that it is also possible to obtain a protocol for sFRE by using the
general-purpose result given by Theorem 4 (which internally relies on the srUC
GMW compiler). In that regard, we provide a hand-wavy performance compar-
ison of such a protocol with our instantiation from DDH.

6.1 Description of FPAKE

The behaviour of FPAKE is conceptually close to that of the FRE we described
in Sect. 4.1, with the important difference that the adversary is now allowed

Key Exchange in the Post-snowden Era 127

to perform (online) password guesses in order to influence the keys output by
the functionality. In what follows, we provide a formal description of the FPAKE

functionality [12] that embeds minor variations to achieve consistency with FRE,
and technical improvements from Dupont et al. [22].

Functionality FPAKE

The functionality FPAKE is parameterized by a security parameter λ. an initiator
I, a responder R, and the adversary S via the following queries:

Upon receiving a query (NewSession, sid, I, R, wI) from I:
Record (I, R, wI), mark it as fresh, and leak (sid, I, R) to S. Ignore all
future messages from I.

Upon receiving a query (ok, sid) from S:
Send a message (wakeup, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, wR) from R:
Record (R, I, wR) and mark it as fresh.

Upon receiving a query (TestPwd, sid,P, w′) from the adversary S:
If P ∈ {I, R} and there exists a record of the form (P, ·, w) which is fresh,
then:

• If w′ = w, mark the record as compromised and return ”correct
guess” to S.

• If w′ �= w, mark the record as interrupted and return ”wrong guess”
to S.

Upon receiving a query (NewKey, sid,Pi, K) from S, where |K| = λ:
If Pi ∈ {I, R} and there is a record of the form (Pi,Pj , wi) that is not
marked as completed, with Pj being the peer of Pi, then:

• If any of the following conditions hold, output (sid, K) to party Pi:
– Pi is corrupted.
– This record is fresh, there exists a record (Pj ,Pi, wj) with wi =

wj , and Pj is corrupted.
– This record is compromised.

• If this record is fresh, both parties are honest, and there exists a
record (Pj ,Pi, wj) with wj = wi, choose skey ←$ {0, 1}λ. Output
skey to Pi, and append skey to the record (Pi,Pj , wi).

• If this record is fresh, both parties are honest, and there exists a
record (Pj ,Pi, wj , skey) with wj = wi, output skey to Pi.

• If none of the above rules apply, choose skey′ ←$ {0, 1}λ and output
it to party Pi.

In any case, mark the record (Pi, ·, wi) as completed.

Variations in the srUC Setting. As for FRE, we restrict our attention to
implicit mutual authentication (as discussed in Sect. 1.3), and the functionality
provides no security whatsoever whenever the adversary is able to guess an
honest party’s password.

128 S. Chakraborty et al.

Shortcomings of PAKE Functionalities. Recent works have raised technical
concerns regarding the definition of PAKE functionalities widely used across
the literature. Specifically, Abdalla et al. [1] observed that several definitions,
including the one of the seminal paper of Canetti et al. [13], allow the adversary
to set the key output by an honest party even without knowing the password.
Similarly to Dupont et al. [22], our definitions of FRE and FPAKE do not embed
this shortcoming.

Additionally, Roy and Xu [30] show an impossibility result proving that any
2-party FPAKE may be instantiated by an incorrect 0-round protocol. In order to
overcome this limitation, they show that either (i) the underlying PAKE protocol
is assumed to be correct; (ii) the simulator gets limited in power; or (iii) a third
party responsible for routing messages is introduced in FPAKE. For this work,
we solve this shortcoming by considering approach (i), following the spirit of
discarding “trivial protocols” in the context of UC (e.g., the empty protocol),
as discussed by Canetti et al. [14].

6.2 From FRE to FPAKE

The protocol we presented in Sect. 4 realizes FRE in the presence of subversion
attacks in the authenticated setting. Proceeding as [12], we convert it to a pro-
tocol for sFRE, obtaining the following theorem:

Theorem 7. There exists a protocol that wsrUC-realizes the sFRE ideal func-
tionality in the (Fcrs, sFSAT)-hybrid model under static corruptions. The protocol
is based on the DDH assumption, runs in a constant number of rounds, and has
a communication complexity of O(n) group elements per session key.

Proof (Theorem 7). The proof of this theorem is the proof of [12, Theorem 2]
verbatim. First, we observe that the multi-session version of FRE can be imple-
mented by having access to the multi-session version of FsOT (each new session
of FRE uses a new invocation of the protocol for FsOT). Then, we observe that
our protocol in Sect. 3 implements the multi-session version of FsOT in the Fcrs-
hybrid model. Hence, we can invoke Lemma 3, which allows us to replace FSAT

with sFSAT, yielding a protocol for the split version of randomized equality (i.e.,
sFRE).

All that remains to show is that FPAKE can be instantiated from sFRE. Intuitively,
the power of the adversary to disconnect parties in sFRE can be mapped to
TestPwd queries in FPAKE, as the adversary is allowed to run FRE with an
arbitrary password by impersonating a disconnected party’s peer.

Theorem 8. There exists a protocol in the sFRE-hybrid model that instantiates
FPAKE in the presence of subversion attacks.

Dupont et al. [22] exhibit a trivial protocol in the sFRE-hybrid model that realizes
FPAKE. In particular, their protocol exclusively interacts with sFRE. This fact
allows to port their protocol and its related proof to our setting in a straight-
forward manner, as intuitively such a protocol inherits the structure and the
security properties of sFRE. We report the formal proof in the full version.

Key Exchange in the Post-snowden Era 129

6.3 A Hand-Wavy Performance Comparison

An alternative route to obtain FPAKE consists of invoking Theorem 4 to obtain
a protocol wsrUC-realizing sFRE, and then applying the transformation of The-
orem 8. In particular, as per Lemma 2, this protocol relies on the srUC GMW
compiler of [18]. In order to establish an informal comparison with our instantia-
tion from DDH (given by Theorem 7), we first observe that both these protocols
rely on Lemma 3 to move from the authenticated setting to the unauthenticated
setting. Hence, it suffices to compare the protocols in the authenticated setting.
For our hand-wavy comparison, we compare round complexity and communica-
tion complexity.

Our instantiation from DDH, as per Fig. 4, essentially relies on n runs of
FsOT that share the same CRS. By our specific instantiation of FsOT, each party
sends 1 public key and 2 SHDME encryptions (= 4 group elements) for each bit
of the password. Hence, our protocol runs in 2 rounds (by batching messages for
sOTs) with a communication complexity of O(n) group elements.

On the other hand, the instantiation from the srUC GMW compiler requires
each party to (i) generate its random tape jointly with its peer; (ii) commit to
its input; (iii) prove in zero-knowledge that each step of a semi-honest protocol
realizing FRE was executed correctly. (i) requires 3 rounds: 1 for committing to
some locally-generated randomness and 2 from the coin tossing functionality. (ii)
requires 1 round. (iii) requires at least the same number of rounds of a semi-
honest execution of an r-round protocol realizing FRE. Hence, we end up with
at least 4 + r rounds. We then observe that the coin tossing functionality of [18,
Section 4] relies on the sanitizable commitment functionality (presented in [18,
Section 3]), which is realized by computing and forwarding bit-wise commitments
(each containing 2 group elements) under the DDH assumption. Given that the
input to the semi-honest instantiation of FRE is an n-bit password, and that the
random strings used to generate the random tape have size λ, the communication
complexity of the first two steps is already O(n + λ).

We conclude that our instantiation from DDH has a better round and com-
munication complexity even prior to the run of the compiled semi-honest instan-
tiation of FRE of the protocol from GMW. We further remark that, in step (iii),
the protocol from GMW requires the generation of re-randomizable NIZK argu-
ments for each message of the protocol, hindering the efficiency further.

7 Conclusions

We presented the first subversion-resilient UC protocol for PAKE. We formal-
ized and instantiated oblivious transfer in the subversion setting, and extended
the framework to the unauthenticated setting, providing an implementation for
its respective backbone of communication (i.e., sFSAT) in the two-tier model
without assuming a PKI. Finally, we instantiated FPAKE by replacing, in a san-
itized protocol for FRE, the FSAT assumption with sFSAT. Several interesting
research questions remain open, such as fully instantiating FSAT in the two-tier
model, expanding the notion of split functionalities in the srUC model to the
n-party setting, extending the framework to adaptive corruptions, weakening

130 S. Chakraborty et al.

trusted setups to be subvertable, and achieving explicit mutual authentication
for randomized equality and PAKE.

References

1. Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093
of LNCS, pages 711–741. Springer, Cham, December 2021.

2. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A
subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33. Springer, Cham,
December 2017.

3. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On QA-NIZK
in the BPK model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 590–620.
Springer, Cham, May 2020.

4. Paula Arnold, Sebastian Berndt, Jörn Müller-Quade, and Astrid Ottenhues. Pro-
tection against subversion corruptions via reverse firewalls in the plain universal
composability framework. Cryptology ePrint Archive, Report 2023/1951, 2023.

5. Giuseppe Ateniese, Danilo Francati, Bernardo Magri, and Daniele Venturi. Public
immunization against complete subversion without random oracles. In Robert H.
Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS
19International Conference on Applied Cryptography and Network Security, volume
11464 of LNCS, pages 465–485. Springer, Cham, June 2019.

6. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient sig-
nature schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
ACM CCS 2015, pages 364–375. ACM Press, October 2015.

7. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure com-
putation without authentication. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 361–377. Springer, Berlin, Heidelberg, August 2005.

8. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS,
pages 777–804. Springer, Berlin, Heidelberg, December 2016.

9. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer, Berlin,
Heidelberg, August 2014.

10. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pair-
ing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–
532. Springer, Berlin, Heidelberg, December 2001.

11. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

12. Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee.
Efficient password authenticated key exchange via oblivious transfer. In Marc Fis-
chlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293
of LNCS, pages 449–466. Springer, Berlin, Heidelberg, May 2012

Key Exchange in the Post-snowden Era 131

13. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Ronald Cramer, edi-
tor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Berlin,
Heidelberg, May 2005.

14. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of uni-
versally composable two-party computation without set-up assumptions. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 68–86. Springer,
Berlin, Heidelberg, May 2003.

15. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

16. Suvradip Chakraborty, Stefan Dziembowski, and Jesper Buus Nielsen. Reverse
firewalls for actively secure MPCs. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 732–762. Springer,
Cham, August 2020.

17. Suvradip Chakraborty, Chaya Ganesh, Mahak Pancholi, and Pratik Sarkar.
Reverse firewalls for adaptively secure MPC without setup. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS,
pages 335–364. Springer, Cham, December 2021.

18. Suvradip Chakraborty, Bernardo Magri, Jesper Buus Nielsen, and Daniele Venturi.
Universally composable subversion-resilient cryptography. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS,
pages 272–302. Springer, Cham, May / June 2022.

132 S. Chakraborty et al.

19. Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo, and Mingwu
Zhang. Cryptographic reverse firewall via malleable smooth projective hash func-
tions. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 844–876. Springer, Berlin, Heidelberg, December
2016.

20. Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cau-
tious approach to security against mass surveillance. In Gregor Leander, editor,
FSE 2015, volume 9054 of LNCS, pages 579–598. Springer, Berlin, Heidelberg,
March 2015.

21. Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message trans-
mission with reverse firewalls—secure communication on corrupted machines. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 341–372. Springer, Berlin, Heidelberg, August 2016.

22. Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia
Yakoubov. Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 393–424. Springer, Cham, April / May 2018.

23. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–
347. Springer, Cham, March 2018.

24. Chaya Ganesh, Bernardo Magri, and Daniele Venturi. Cryptographic reverse fire-
walls for interactive proof systems. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, ICALP 2020, volume 168 of LIPIcs, pages 55:1–55:16. Schloss
Dagstuhl, July 2020.

25. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

26. Adam Groce and Jonathan Katz. A new framework for password-based authenti-
cated key exchange. Cryptology ePrint Archive, Report 2010/147, 2010.

27. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 657–686. Springer, Berlin, Heidelberg, April 2015.

28. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 554–571. Springer, Berlin, Heidelberg, August 2008.

29. Magnus Ringerud. Note on subversion-resilient key exchange. Cryptology ePrint
Archive, Report 2023/749, 2023.

30. Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero com-
munication cost - (and why it shouldn’t be considered UC-secure). In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940 of
LNCS, pages 714–743. Springer, Cham, May 2023.

31. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 34–64.
Springer, Berlin, Heidelberg, December 2016.

32. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic seman-
tic security against a kleptographic adversary. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 907–
922. ACM Press, October / November 2017.

Key Exchange in the Post-snowden Era 133

33. Gustavus J. Simmons. Authentication theory/coding theory. In G. R. Blakley
and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 411–431.
Springer, Berlin, Heidelberg, August 1984.

34. Gustavus J. Simmons. A secure subliminal channel (?). In Hugh C. Williams, edi-
tor, CRYPTO’85, volume 218 of LNCS, pages 33–41. Springer, Berlin, Heidelberg,
August 1986.

Tightly-Secure Group Key Exchange
with Perfect Forward Secrecy

Emanuele Di Giandomenico1(B) , Doreen Riepel2 , and Sven Schäge1

1 Eindhoven University of Technology, Eindhoven, Netherlands
{e.di.giandomenico,s.schage}@tue.nl

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. In this work, we present a new paradigm for constructing
Group Authenticated Key Exchange (GAKE). This result is the first
tightly secure GAKE scheme in a strong security model that allows max-
imum exposure attacks (MEX) where the attacker is allowed to either
reveal the secret session state or the long-term secret of all communi-
cation partners. Moreover, our protocol features the strong and realistic
notion of (full) perfect forward secrecy (PFS), that allows the attacker to
actively modify messages before corrupting parties. We obtain our results
via a series of tightly secure transformations. Our first transformation
is from weakly secure KEMs to unilateral authenticated key exchange
(UAKE) with weak forward secrecy (WFS). Next, we show how to turn
this into an UAKE with PFS in the random oracle model. Finally, and
as one of our major novel conceptual contributions, we describe how to
build GAKE protocols from UAKE protocols, also in the random ora-
cle model. We apply our transformations to obtain two practical GAKE
protocols with tight security. The first is based on the DDH assumption
and features low message complexity. Our second result is based on the
LWE assumption. In this way, we obtain the first GAKE protocol from
a post-quantum assumption that is tightly secure in a strong model of
security allowing MEX attacks.

1 Introduction

Group Authenticated Key Exchange (GAKE) is the generalization of two-party
key exchange to the group setting. It allows N group members to compute a
common symmetric session key over an insecure network. This key can then be
used to exchange messages among the group members that are protected via
efficient symmetric cryptography. As such GAKE protocols form an important
building block in any form of group-based communication.

Proving security of GAKE protocols is in general much more challenging than
for classical AKE protocols. In many AKE security proofs the two parties partic-
ipating in the protocol can simply be guessed upfront resulting in a polynomial
security loss

(
N
2

)
. For GAKE protocols this strategy quickly becomes infeasible

with growing group size t since there are
(
N
t

)
possible groups that could now

run the GAKE protocol. For superlogarithmical t this number already grows
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 134–167, 2025.
https://doi.org/10.1007/978-981-96-0935-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_5&domain=pdf
http://orcid.org/0009-0003-4632-7017
http://orcid.org/0000-0002-4990-0929
http://orcid.org/0000-0002-8698-4244
https://doi.org/10.1007/978-981-96-0935-2_5

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 135

superpolynomial and guessing the group upfront becomes inefficient. Moreover,
each of the existing GAKE protocols have one of the following downsides.

Vulnerabilty Against Quantum Attacks. The vast majority of GAKE protocols
rely on classical security assumptions that are related to the discrete logarithm
assumption. The underlying problems are known to be solvable efficiently by
quantum computers [31]. For long-term security a shift towards post-quantum-
based security assumptions is necessary. However, relying on post-quantum
assumptions often introduces new challenges like non-perfect correctness in lat-
tice cryptography. Thus PQ-based security assumptions cannot be used as a
drop-in to classical protocols and new techniques are necessary.

Realistic Security Models. Most GAKE protocols consider relatively weak secu-
rity definitions that only consider attackers that may corrupt the long-term keys
of parties while disallowing that the (ephemeral) state material stored by parties
between moves will ever be revealed. So, in case an attacker manages to obtain
the state information of a single group member all security guarantees may be
lost. A stronger and much more realistic notion of security considers so-called
maximum exposure attacks (MEX) that allow the attacker to also reveal the
secret states of the group members while carefully excluding trivial attacks [22].
These models are considered standard in the case of two-party key exchange.

Non-tight Security Proofs. A tight security proof allows for highly efficient and
theoretically-sound instantiations of the system parameters. In particular, the
proofs—and thus the system parameters—are independent of the number of
parties, sessions, or the number of attacker queries. Providing schemes with tight
security proofs for asymmetric cryptography is challenging [5], in particular for
key exchange [8]. Only recently have tightly secure AKE protocols been proposed
for strong security in the two-party case [15,19,28]. The only tightly secure
GAKE protocol [25] relies on signatures (which are generally less efficient in the
PQ-setting) and also does not protect against MEX attacks.

1.1 Contribution

In this work, we tackle these challenges and present the first, tightly secure
GAKE protocol that is secure under post-quantum assumptions under a strong,
realistic notion of security. To this end, we develop a new paradigm for construct-
ing GAKE schemes. To explain it intuitively, consider the well-known ring-based
Burmester-Desmedt (BD) protocol [7]. In this protocol, each party Pi first sends
ki = gxi for some randomly drawn ephemeral secret xi. In the next round, each
party sends Ki = (ki+1/ki−1)xi where all indices are taken mod t for group size
t. The final group key is produced as

K = ktxi
i−1K

t−1
i Kt−2

i+1 . . . Ki−2 = gx1x2+x2x3+...+xtx1 .

136 E. Di Giandomenico et al.

This protocol is only passively secure but serves as a guiding principle in many
constructions. Using digital signatures over all messages sent, this protocol can
be made actively secure (though it remains highly vulnerable to state-reveal
attacks). While it is elegant, we believe that it rather disguises the core principles
that make it work. We therefore present a more conceptual perspective to the
design of GAKE protocols that to the best of our knowledge is novel. This allows
us to identify the parts that can be improved considerably.

Novel Conceptual Perspective on GAKE. Assume we have t parties P1, . . . , Pt

organized in a ring. Essentially we view a GAKE protocol as consisting of two
phases. In the first phase, adjacent parties compute a common session key via a
two-party protocol. To make this secure against active attacks, the neighboring
parties will at some point (implicitly or explicitly) authenticate each other. In
particular, for each i, Pi authenticates Pi−1 and Pi+1. In the basic BD protocol
(which is only passively secure) this step simply consists of sending ki. Actively
secure protocols that rely on the BD protocol, typical add authentication via
other means like digital signatures. More concretely, each party will also sign
each message they send. The shared key with party Pi+1 can then be computed
as Gi,i+1 = (ki+1)xi . Likewise, the shared key computed with Pi−1 can then
be computed as Gi−1,i = (ki−1)xi . The second phase of the protocol consists of
distributing the derived key material to the other parties. Now, a key insight is
that, in order to not hand these keys over to an impersonating attacker, they
are only given to parties that Pi has authenticated before. In particular, Gi,i+1

is only given to Pi−1 and Gi−1,i is only given to Pi+1. In the BD protocol this is
done simultaneously via simply publishing Gi,i+1/Gi−1,i. This can be thought as
a simple symmetric encryption of Gi,i+1 (respectively Gi−1,i) via the key Gi−1,i

(respectively Gi,i+1). Now observe that from the knowledge of all the Kj , each
party Pi can now easily compute K = gx1x2+x2x3+...+xtx1 = G1,2G2,3 · · · Gt,1. It
first computes Gi,i+1 using ki+1 and xi. Next, it can step-wisely compute the
next value Gi+1+c,i+2+c from Ki+1+c and Gi+c,i+1+c for any c = 0, 1, . . . , t − 1.
The BD protocol essentially computes this process in an algebraically elegant
and efficient fashion.

Having this perspective in mind, we make several conceptual changes to the
design that enable better efficiency. First, we do not require that Pi authenticates
Pi+1 and vice versa. Crucially, we observe that only one direction is enough. This
is because the group members are organized in a ring: if each member authenti-
cates its predecessor only, all parties will be authenticated eventually. In general,
reciprocal authentication among neighbors seems wasteful. In addition to that,
this change will now allow us to avoid using AKE protocols but instead rely
on unilaterally authenticated key exchange (UAKE) where only a single party
is authenticated. Overall this saves bandwidth and computational complexity.
Let us clarify: each party will as before compute two shared keys one with its
predecessor and one with its successor. However, only the predecessor will be
authenticated. Thus, in the second phase, parties will now only distribute the
symmetric key that they share with their successor to their authenticated prede-
cessor (and not vice versa). The second change that we make is that we consider

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 137

Fig. 1. The idea of the complete construction presented in Sect. 6, assuming, without
loss of generality, that the predecessor and the successor of party i are i − 1, i + 1,
respectively, and that the parties verify the tag received. The superscripts e and L
stand for “ephemeral” and “long-term” respectively. H∗ with different subscripts ∗ are
(independent) random oracles.

the symmetric encryption scheme used more generally in the second phase. To
this end, we use a simple random oracle-based symmetric encryption system,
where the sharing of key Ki,i+1 to Pi now proceeds as h(Ki−1,i) ⊕ Ki,i+1. In
this way, each party essentially only encrypts to one party – its predecessor.
This scheme is very simple and fast and has strong security properties. Unfortu-
nately, currently there is no efficient and tightly secure post-quantum secure dig-
ital signature scheme that is suitable to implementing authentication efficiently.1
To obtain a tightly secure GAKE protocol overall—even in the PQ-setting—we
will thus deviate from the use of digital signature schemes and instead rely on
authentication via KEMs, similar to previous work on tight AKE in the 2-party
setting [19,26,28]. We provide an illustration of our protocol from the view of
one party in Fig. 1. Typically post-quantum signatures are considerably larger in
size than KEM ciphertexts. Essentially, the mechanism that we use for authenti-
cation will require Pi to send an encapsulated key to its predecessor (encrypted
with pki−1). This key will be decapsulated by Pi−1 and is then used to derive
a MAC key, which in turn is used to provide integrity protection for all the
messages sent and received by Pi−1. Since Pi knows the encapsulated key as

1 The signature schemes introduced in [16,27] do provide (almost) tight security but
are too inefficient for practical applications.

138 E. Di Giandomenico et al.

well, it can recompute the MAC. The security properties of the KEM guarantee
that the MAC can only be computed correctly by the predecessor if it indeed
has the corresponding secret long-term key. In our instantiations, we rely on the
recent tightly secure KEM from [28] that is secure under lattice assumptions
and the DDH based scheme introduced in [19] that both fulfill the notion of
OW-PCVA-CR [26], a very weak notion of KEM security.

We proceed as follows. First, we present a construction of an UAKE scheme
with weak perfect forward secrecy (WFS) that is constructed from a KEM. Next,
we present a transformation from a WFS-secure UAKE to an UAKE that pro-
vides full PFS in the random oracle model (ROM). Whereas WFS only provides
security guarantees against long-term key corruptions in case the attacker has not
modified the sent messages, full PFS also guarantees security in the presence of
active attackers that modify messages. Finally, and as our main contribution, we
present a transformation from PFS-secure UAKE to PFS-secure GAKE, again in
the ROM. Security holds even under MEX attacks where the attacker may adap-
tively reveal state information and adaptively corrupt parties. Remarkably, all
our transformations preserve the tightness of the security proof so that the final
GAKE will tightly reduce to the security of the KEM. When instantiated with
the PQ-secure scheme of [28] this results in the first tightly secure GAKE scheme
under lattice assumptions in a very strong model of security. When instantiated
under the DDH assumption, our protocol only requires to send 5 group elements
and two bitstrings of length 256 bits per party. In comparison, the tightly secure
protocol of [25] requires to send 2 group elements and 4 exponents (when relying
on generic group model bounds of Schnorr signatures), or 2 group elements and
6 exponents (when instantiating the signature scheme with [10]).

1.2 Security Model

To provide a strong notion of security that reflects full PFS and security against
state-reveal attacks, we present a new security definition. We remark that pro-
viding security notions for GAKE has in the past proven error-prone. This is due
to the number of subcases that one has to consider in the proof. In this work,
we take a new avenue that simplifies the development of such a definition.

The central idea is to strongly rely on a corresponding security definition for
two parties. This definition is now used more generically to develop the GAKE
definition. To this end, we take the strong definition of [19] as a starting point.
This definition features an attack table that defines when certain query combi-
nations of the attacker are deemed non-trivial. In our new definition a similar
attack table is (almost) generically utilized at the end of our security experiment
to evaluate if, for any of the tested sessions, the attacker has performed a trivial
attack. However, we need to be careful since the application of the checks in
the [19] table do not only depend on the holder of the tested session itself, but
also on its peer.

Our formulation of GAKE security thus essentially re-applies this table to
all the peers of the considered tested session that are currently participating
in the GAKE run. In this way, we can reduce the problem of analyzing trivial

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 139

attacks for a session and all its peers to the problem of analyzing trivial attacks
for this session and a single peer. We note that the semantics of these tables
define when an attack is valid. In this sense they encode properties of non-trivial
attacks. By setup all other attacks are deemed trivial. So to make this useful
in the group setting we require that for all of the pairs of parties, the attacker
hasn’t performed a trivial attack.

We note that our GAKE definition holds for any polynomial-sized groups,
in particular for groups of size 2. This implies a definition for classical AKE as
well. However, conceptually the exposition of our algorithms is structured into
rounds, where every party has to apply the same algorithms. This allows us
to specify algorithms independent of classical roles like initiator or responder.
However, when proving the security of our GAKE from the underlying UAKE
we have to relate the UAKE roles of initiator and responder to the behaviour of
two adjacent parties in the GAKE using terms like predecessor and successor.

Fig. 2. Logical implication sequence from KEM to GAKEPFS with intermediate steps.

1.3 Related Work

There has been considerably less research activity on GAKE than on classical
two-party AKE. A nice overview of the existing notions of group AKE can be
found in [30].

The protocol from [12] is similar to BD. It relies on DDH and signatures to
achieve PFS. It supports dynamic groups and only requires two rounds. We note
that while we require three rounds to get PFS, it was shown in [21] for 2-party
AKE that if the underlying protocol is only implicitly authenticated (e.g., via
KEMs), then a protocol cannot achieve PFS in two rounds.

The protocol in [4] can be thought of as a lattice-based variant of the BD
protocol that is secure under the Ring-LWE assumption. Correspondingly it
is passively secure and needs additional authentication mechanisms for active
security. To this end the authors propose the application of signatures. It is
generally unclear how to do this in an efficient and tightly secure manner in the
post-quantum setting. The security model of [4] does not allow the attacker to
reveal secret state information.

The work in [25] focuses on tight security. It also takes the BD protocol as
a basis and presents a tight proof in a security model that does not allow the
attacker to reveal secret state information. The construction applies the efficient
Schnorr signature scheme to protect the protocol against active attacks and
achieve authentication. We deviate from these two approaches by considering
tight security in strong models that allow MEX attacks. Moreover, we use a novel
authentication mechanism that relies on KEMs instead of signatures. This allows

140 E. Di Giandomenico et al.

us to obtain efficient instantiations based on previous works. Our instantiation in
the classical setting considers the highly efficient DDH-based scheme introduced
in [19]. In the post-quantum setting we can apply the recent scheme of [28] that
is based on the LWE assumption. However, from the description of the scheme
in [28] it is not immediately clear if it can be applied to our transformation
when used in the group setting. The problem is that the correctness of the
scheme is only shown to hold with probability (1 − z) where z = negl(κ). This
can be problematic when bounding the probability that all N = poly(κ) KEM
applications that are required in a run of the GAKE protocol provide correctness
because (1−negl(κ))N is only overwhelming if z is statistically small. Fortunately,
we can show that z is indeed statistically small [28].

Recent works on AKE also aim at achieving tighter security reductions in
the QROM [17,26,29]. The first AKE protocol proven secure in the QROM [17]
suffers from a square-root security loss in the random oracle model. This was
improved in [29] that provides a QROM proof with a loss only linear in the
number of users. The resulting scheme only provides weak forward secrecy. Very
recently, via an additional key confirmation move [26], this was lifted to a pro-
tocol that provides perfect forward secrecy, also with a linear loss in the number
of users.

Another interesting work related to ours is the authentication compiler of
Katz and Yung that constructs actively secure GAKE from a passively secure
one. Essentially the paper proposes to authenticate all messages with digital sig-
natures schemes as in the BD protocol. However, their analysis does not account
for attacks that reveal ephemeral states. Also they do not specifically consider
tight reductions. Our result, in contrast, uses authentication based on KEMs
that provides efficient instantiations in the DH setting and the PQ-setting. At
the same time, our solutions are tightly secure.

In 1999, Mayer and Yung have proposed a construction of GAKE from two-
party AKE [24]. The model that they use is comparatively weak and does not
consider attacks that reveal state information. Also, they rely on key exchange
with mutual authentication that – when used in a ring setting – requires each
party to be authenticated twice. Our solution based on UAKE, authenticates
parties only once and is thus more efficient, while featuring tight security. Simi-
larly, the work presented in [1] considers a compiler from AKE to GAKE. Again,
the security model is weaker than ours and does not allow to reveal state infor-
mation in the GAKE. As in [24] the compiler requires the computationally more
complex notion of AKE whereas we solely require UAKE.

UAKE protocols and their security notions were previously studied in [11,23],
where the former proposes a 2-round forward-deniable and forward-secure UAKE
from KEMs that is very similar to ours and the latter focuses on universal
composability (UC) security. Further, [18] studies anonymity of UAKE. The
main focus of these works is to study UAKE protocols themselves, whereas we
use UAKE as a building block for GAKE. Hence, our security notion is tailored to
be as weak as possible to enable our transformation, which makes it presumably
weaker than (or incomparable to) the ones given in these works.

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 141

We mention that our notion of security covers key compromise impersonation
(KCI) security for GAKE as introduced by [14]. Whereas [14] can be thought
of as an analogue of the security notion introduced in [21], our notion rather
generalizes the stronger notion of [22].

Finally, we remark that GAKE is generally related to Group Continous Key
Agreement, a notion that has gained much interest [2,3,9,20] in the last years.
More formally, the authors of [6] provide initial results showing that weakly-
secure variants of these primitives are indeed equivalent. We believe that this
relationship will become much clearer in the future where we expect GAKE
to be an essential primitive used in the setup phase of CGKA protocols to
establish key material for the first time. It is thus very helpful that our protocol
provides security even in case the attacker obtains secret state information. This
seems helpful in CGKA constructions to achieve the intricate notions of post-
compromise security that CGKA protocols try to guarantee in a provably secure
way.

2 Preliminaries

For a positive integer N , let [N] := {1, . . . , N}. For a set S, let |S| be the
cardinality of S; moreover, s ← S denotes that s is sampled uniformly at random
from S. We use the abbreviation �B� to represent the bit set to 1 when the
boolean statement B is true, and 0 otherwise.

By y ← A(x), we denote that on input x ∈ X, the probabilistic algorithm
A returns y ∈ Y . Otherwise, by y := A(x), we denote that on input x, the
deterministic algorithm A returns y. By AO, we denote that the algorithm A
has access to oracle O. We say that probabilistic algorithm A has min-entropy
μ if for all outputs y′ ∈ Y we have Pr[y = y′ : y ← A(x)] ≤ 2−μ.

Following [32], we use code-based games. An adversary is a probabilistic
polynomial time algorithm. Let G be a game, for an adversary A, GA ⇒ 1
denotes that the output of game G running with adversary A is 1. All the games
that will be introduced later have two fixed oracles, Initialize and Finalize,
which can be queried at most once, as the first and last query respectively.

3 Unilateral Authenticated Key Exchange

We will first define unilateral authenticated key exchange (UAKE), which is a
two-party protocol where only one party authenticates to the other. We will
only focus on two-message protocols (but note that the syntax can be extended
trivially).

Syntax. A two-message unilateral authenticated key exchange UAKE := (Setup,
KeyGen,Beg,DerR,DerB) consist of five polynomial-time algorithms:

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the
security parameter κ in unary and returns global system parameters par that
implicitly define message space T , the public key space PK, the secret key
space SK and the key space K.

142 E. Di Giandomenico et al.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen
takes as input the parameters par and returns a public key pk ∈ PK and a
secret key sk ∈ SK.

– (M1, st) ← Beg(pk) : The probabilistic initial algorithm Beg takes as input a
public key pk and returns a message M1 ∈ T and a state st.

– (M2,K) ← DerR(sk,M1) : The probabilistic derivation for the responder algo-
rithm DerR takes as input a secret key sk and a message M1 and returns a
message M2 ∈ T and a key K ∈ K.

– K := DerB(pk,M2, st) : The deterministic derivation for the initiator algo-
rithm DerB takes as input a secret key pk, a message M2 and a state st and
returns a key K ∈ K.

Note that only the party I save a state information, even if only the party
R has long-term keys. Then, R can derive immediately the session key K after
receiving the message of I (Fig. 3).

Fig. 3. Syntax of a two-message unilateral key exchange protocol.

Definition 1 (Correctness of UAKE). We say that UAKE is ρ-correct, if for
any par ← Setup(1κ) we have:

Pr

⎡

⎢
⎢
⎣K = K ′

∣
∣
∣
∣
∣
∣
∣
∣

(pk, sk) ← KeyGen(par),
(M1, st) ← Beg(pk),
(M2,K) ← DerR(sk,M1),
K ′ := DerB(pk,M2, st)

⎤

⎥
⎥
⎦ ≥ ρ,

and the probability is over the random coins consumed by the algorithms of
UAKE.

Now we introduce the definition of min-entropy for UAKE. This is extremely
useful for the theorems we will introduce.

Definition 2 (Min-Entropy of UAKE). We say that UAKE has min-entropy
μ if:

– It has key min-entropy μ′ ≥ μ: for any pk′ ∈ PK we have Pr[pk =
pk′ : (pk, sk) ← KeyGen(par)] ≤ 2−μ′

for some par.
– It has min-entropy μ′′ ≥ μ of Beg: for any M ′

1 ∈ T we have Pr[M1 =
M ′

1 : (M1, st) ← Beg(pk)] ≤ 2−μ′′
for some pk ∈ PK.

– It has min-entropy μ′′′ ≥ μ of DerR: for any M ′
2 ∈ T we have Pr[M2 =

M ′
2 : (M2,K) ← DerR(sk,M1)] ≤ 2−μ′′′

for some sk ∈ SK and M1 ∈ T .

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 143

3.1 Security for UAKE

We consider N parties P1, . . . , PN (for an easier notation sometimes we use n to
refer to Pn) with long-term key pairs (pkn, skn), n ∈ [N]. An interaction between
two parties is called session, and to each session are associated an identification
number sID and variables defined on sID.

– ini[sID] ∈ [N] denotes the initiator of the session.
– res[sID] ∈ [N] denotes the responder of the session.
– type[sID] ∈ {“In” , “Re”} denotes if the initiator or the responder computes

the session key.
– I[sID] denotes the message sent by the initiator.
– R[sID] denotes the message sent by the responder.
– state[sID] denotes the state.
– sKey[sID] denotes the session key. In case a party does not accept, this variable

will be set to rej.

Moreover, we use the following boolean values to store which queries the
adversary made.

– corr[n] denotes if long-term secret key of party Pn has been given to the
adversary.

– revState[sID] denotes if the state has been given to the adversary.
– peerCorr[sID] denotes if the peer of the session is corrupted and its long-term

key has already been given to the adversary at the time the session key is
derived.

Let us now define what it means for two sessions to be (partially) matching.
As in two-party key exchange, the notion of partially matching sessions is used
to define if two parties have communicated with each other and so revealing
session secrets of the first will also reveal secrets of the second. Partially matching
sessions take into account that parties have to accept at distinct points in time:
the party responsible for sending the last message will accept independent of
whether the attacker modifies the last message on transit or not. We will later
use our general methodology and derive a definition of partially matching for
GAKE protocols that is intuitively based on a repeated application of the two-
party notion. This simplifies the exposition greatly.

Definition 3 (Partially Matching Session for UAKE). The session sID is
partially matched with session sID∗ if the following conditions are satisfied.

1. The sessions have the same initiator and responder, (ini[sID], res[sID]) =
(ini[sID∗], res[sID∗]).

2. The messages of the initiator are identical, I[sID] = I[sID∗].
3. The types of the sessions are distinct, type[sID] �= type[sID∗].
4. The type of sID is “In”, type[sID] = “In”.

Definition 4 (Matching Session for UAKE). Two sessions sID and sID∗

are matching if the following conditions are satisfied.

144 E. Di Giandomenico et al.

1. The sessions have the same initiator and responder, (ini[sID], res[sID]) =
(ini[sID∗], res[sID∗]).

2. The messages of the initiator are identical, I[sID] = I[sID∗].
3. The messages of the responder are identical, R[sID] = R[sID∗].
4. The type of the sessions are distinct, type[sID] �= type[sID∗].

OW-Security. We define security in a one-way game, where the adversary has
to compute the session key of a target session of its choice. The full game is given
in Fig. 4. The adversary can create parties using the KeyGeneration oracle. It
can send and relay messages between the parties using oracles Beg,SDerR ,SDerB .
It can reveal the state of sessions and corrupt parties via Rev-State and
Corrupt, respectively. Further, we allow the adversary to check for session
keys using oracle Check. If the session is fresh when the oracle is queried and
the key is correct, then we set a flag attFound which will also be the final output
of the game, i.e., the adversary wins whenever this flag is set.

In order to rule out trivial attacks, we use attack tables as introduced in [19]
to describe which queries the adversary is allowed to make for an attack. We
give two tables, one capturing perfect forward secrecy (cf. Table 1) and the other
one capturing weak forward secrecy (cf. Table 2) for UAKE protocols.

Each table is parameterized by an initiator i∗ and responder r∗ session. Note
that only the responder has a public key, hence we only need to consider corrup-
tions of that party. The initiator on the other hand holds a state, however, we
do not allow the adversary to reveal the state for any session it wants to attack.
Even though this could be achieved for some cases, we will see that it is not
necessary to allow this attack for our following transformations. Similarly, we
also omit a session key reveal oracle. This way, we relax the security definition
as much as possible to allow for most efficient instantiations, while still achieving
the strongest target notion for the final group AKE protocol.

We explain Table 1 in more detail, the other table can be read in a similar way.
Line (0) captures that if a protocol has not sufficient entropy, then the protocol
should not be considered secure. If this is the case, it should be possible for an
adversary to create a session that has multiple (partially) matching sessions, so
whenever this happens, we consider it a valid attack which lets the adversary win
directly. Line (1) is for sessions that have a matching session. These can be of
type “In” or “Re” and in this case we allow the adversary to reveal the responder’s
long-term key, but (as explained above) we never allow to reveal the initiator’s
state. Line (2) captures partially matching sessions which are always of type
“Re”. For those, we also allow the responder to be corrupted. Line (3) captures
sessions that do not have any (partially) matching partner session. Since Table 1
looks at perfect forward secrecy, we allow to reveal the responder’s secret key
after the session key has been computed, which is captured by variable peerCorr.
We only consider sessions of type “In” since the initiator has no long-term secrets
and sessions of type “Re” can never be secure when being actively attacked.

For completeness, we give the table for weak forward security of UAKE pro-
tocols in Table 2. It is very similar to Table 1, the only difference is that the peer
cannot be corrupted at all if the adversary was active.

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 145

Fig. 4. Games OW-UAKE-GX for a two-message UAKE. A has access to oracles
O := {SBeg,SDerR ,SDerB ,Rev-State,Corrupt,Check}. Helper procedure UValidX

is defined in Fig. 5.

Fig. 5. UValidX verifies the validity of attacks against the UAKE protocol.

146 E. Di Giandomenico et al.

Definition 5. We define the game OW-UAKE-GX for X ∈ {PFS,WFS} as in
Fig. 4. The advantage of an adversary A against UAKE in this game is defined
as

AdvXUAKE(A) := Pr[OW-UAKE-GA
X ⇒ 1].

3.2 From WFS to PFS Secure UAKE

We construct a UAKE protocol UAKEPFS with perfect forward secrecy from a
UAKE protocol UAKEWFS with weak forward secrecy and two hash functions H,
Hukey. The idea is that the session key of UAKEWFS will be used twice: to derive
the UAKEPFS session key and to compute a key confirmation hash which is sent
together with M2. An illustration of the protocol is given in Fig. 6.

Fig. 6. Protocol UAKEPFS = (Setup,KeyGen,Beg,Der′R,Der′B) constructed from
UAKEWFS = (Setup,KeyGen,Beg,DerR,DerB) and random oracles H,Hukey.

Table 1. Attack table for UAKE describing valid attacks for perfect forward secrecy.
An attack is regarded as an AND conjunction of variables with specified values as
shown in the each line, where “-” means that this variable can take arbitrary value,
“F” means “false”, “n/a” indicates that there is no state which can be revealed as no
(partially) matching session exists.

A gets (i∗, r∗)

co
rr
[r

∗]

pe
er

C
or

r[
sI

D
∗]

ty
pe

[s
ID

∗]

re
vS

ta
te
[s

ID
∗]

∃s
ID

∈
M

(s
ID

∗)
:

re
vS

ta
te
[s

ID
]

|M
(s

ID
∗)

|
∃s

ID
∈
P
(s

ID
∗)

:
re

vS
ta

te
[s

ID
]

|P
(s

ID
∗)

|

(0) multiple partially matching sessions - - - - - - - >1

(1) (–, long-term) - - - F F 1 - -
(2) (–, long-term) - - “Re” F n/a 0 F 1
(3) (–, long-term) - F “In” F n/a 0 n/a 0

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 147

Table 2. Attack table for UAKE describing valid attacks for weak forward secrecy. An
attack is regarded as an AND conjunction of variables with specified values as shown
in the each line, where “-” means that this variable can take arbitrary value, “F” means
“false”, “n/a” indicates that there is no state which can be revealed as no (partially)
matching session exists.

A gets (i∗, r∗)

co
rr
[r

∗]

pe
er

C
or

r[
sI

D
∗]

ty
pe

[s
ID

∗]

re
vS

ta
te
[s

ID
∗]

∃s
ID

∈
M

(s
ID

∗)
:

re
vS

ta
te
[s

ID
]

|M
(s

ID
∗)

|
∃s

ID
∈
P
(s

ID
∗)

:
re

vS
ta

te
[s

ID
]

|P
(s

ID
∗)

|

(0) multiple partially matching sessions - - - - - - - >1

(1) (–, long-term) - - - F F 1 - -
(2) (–, long-term) - - “Re” F n/a 0 F 1
(3) (–, long-term) F - “In” F n/a 0 n/a 0

Observe that the construction does not introduce any new primitives at all.
Hence, correctness is preserved from the underlying UAKEWFS.

Lemma 1. If UAKEWFS has correctness ρ = 1 − 1/2v for some v ∈ Ω(κ) then
UAKEPFS has overwhelming correctness at least ρ.

Theorem 1 (UAKEWFS to UAKEPFS). Let UAKEWFS be (1 − 1/2v)-correct and
with min-entropy μ. Let ζ be the lower bound for the dimensions of the tag
space and key space. For any adversary A against OW-UAKE-GPFS with protocol
UAKEPFS, there exists an adversary B against OW-UAKE-GWFS with protocol
UAKEWFS such that

AdvPFSUAKEPFS
(A) ≤ AdvWFS

UAKEWFS
(B) + N2 + S2 + SqRO

2μ
+

S + q2RO + qCh

2ζ
+

2S
2v

,

where N is the number of queries that A and B make to the key generation oracle,
S is the number of sessions that A and B create, and qRO and qCh are the number
of random oracle and check queries that A makes. Further, the running time of
B is about that of A.

We give the full proof in the full version and we want to give a brief intuition
here. It is indeed very similar to the proof for AKE in [26], adapted to the UAKE
case. For this, note that the only difference between the weak and perfect forward
security is that in the latter the adversary A is allowed to query corrupt after the
session is completed even if there is no matching session. We will show that due
to the key confirmation tag, A can never complete a session for which the peer
was not corrupted. More specifically, A has to forge a valid tag t. For this, it has
to compute the underlying UAKE key and query it to the random oracle. Hence,
we can construct a reduction which extracts the key and wins game UAKEWFS.

148 E. Di Giandomenico et al.

4 Group Authenticated Key Exchange

We define group authenticated key exchange (GAKE), which is an N -party
protocol, with N > 2, where all parties authenticate to each other. We consider
three-round broadcast protocols where each round corresponds to a message
broadcast. It is exemplified in Fig. 7.

We indicate with P = {P1, . . . , PN} the set of all potential members. Before
the first run of the protocol, each party Pn ∈ P runs the algorithm KeyGen to
get their own long-term public and secret keys (pkn, skn).

Our GAKE protocol allows all parties in a group P′ ⊆ P to establish a
common secret group key. For a party Pn, we define Pn := P′ \ {Pn} the set
of the peers from the point of view of Pn. The following provides a detailed
explanation of how our GAKE protocol works and offers proper syntax.

Syntax. A group authenticated key exchange protocol GAKE := (Setup,KeyGen,
Begin,Respond,Final,Derive) consists of six polynomial-time algorithms:

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the
security parameter κ in unary and returns global system parameters par that
implicitly define message space T , the public key space PK, the secret key
space SK and the key space K.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen
takes as input the parameters par and returns a public key pk ∈ PK and a
secret key sk ∈ SK.

– (m, st) ← Begin(sk, {pkj}j∈P) : The probabilistic first round algorithm Begin
takes as input a secret key sk and a set of public keys {pkj}j∈P of the peers
P ⊂ N and returns a message m ∈ T and a state st.

– (m̂, st) ← Respond(sk, st,M) : The probabilistic second round algorithm
Respond takes a secret key sk, a state st, and a set M of extended mes-
sages M = {(i,m)}. Each extended message is a pair consisting of an index
i ∈ N and a message m ∈ T . The algorithm returns a message m̂ ∈ T and an
updated state st.

– (m̄, st) ← Final(sk, st,M̂) : The probabilistic third round algorithm Final takes
a secret key sk, a state st, and a set of extended messages M̂ = {(i, m̂)} with
index i ∈ N and message m̂ ∈ T , and returns a message m̄ ∈ T and an
updated state st.

– K := Derive(sk, st,M̄) : The deterministic derivation algorithm Derive takes
a secret key sk, a state st and a set of extended messages M̄ = {(i, m̄)} with
index i ∈ N and m̄ ∈ T , and returns a group key K ∈ K.

Definition 6 (Correctness GAKE). Given N parties, we say that GAKE is
ρ-correct, if for any par ← Setup(1κ) we have:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

K1 = · · · = KN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀i ∈ [N] : (pki, ski) ← KeyGen(par),
(mi, sti) ← Begin(ski, {pkj}j∈[N]\{i}),
(m̂i, sti) ← Respond(ski, sti,Mi),
(m̄i, sti) ← Final(ski, sti,M̂i),
Ki := Derive(ski, sti,M̄i)

⎤

⎥
⎥
⎥
⎥
⎦

≥ ρ,

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 149

Fig. 7. Execution of the GAKE algorithms in a protocol run.

where Mi = {(j,mj)}j∈[N]\{i}, M̂i = {(j, m̂j)}j∈[N]\{i}, and M̄i =
{(j, m̄j)}j∈[N]\{i} and the probability is over the random coins consumed by the
algorithms of GAKE.

To each new run of the group key protocol we assign a unique identification
number sID and variables which are defined relative to sID. We call such a run
a session.

– holder[sID] ∈ [N] denotes the holder of the session.
– peers[sID] ⊆ [N] denotes the peers of the session.
– I[sID], R[sID], F [sID] denotes the extended message sent by the holder in the

first, second and third round respectively.
– M[sID],M̂[sID],M̄[sID] denotes the extended messages received by the

holder in the first, second and third round respectively.
– state[sID] denotes the state.
– gKey[sID] denotes the group key.
– stage[sID] ∈ {2, 3, 4, 5} is used to model that the algorithms of each session

are executed in a specific order.

Moreover, we use the following boolean values to store which queries the
adversary made.

– corr[n] denotes if long-term secret key of party Pn has been given to the
adversary.

– revealed[sID] denotes if the group key has been given to the adversary.
– revState[sID] denotes if the state has been given to the adversary.
– peersCorr[sID] denotes if one of the peers is corrupted and its long-term key

has already been given to the adversary at the time the group key is derived.

Let us now define what it means for two sessions to be partially matching
for GAKE protocols. This follows the same motivation as in the definition for
the two-party case.

150 E. Di Giandomenico et al.

Definition 7 (Partially Matching Session). Two sessions sID and sID∗ are
partially matching if the following conditions are satisfied.

1. The sessions have distinct holders, holder[sID] �= holder[sID∗].
2. The extended messages in the first round are identical, I[sID] ∪ M[sID] =

I[sID∗] ∪ M[sID∗]
3. The extended messages in the second round are identical, R[sID]∪ M̂[sID] =

R[sID∗] ∪ M̂[sID∗]

Definition 8 (Matching Session). Two sessions sID and sID∗ are matching
if they are partially matching and additionally, we have:

4. The extended messages in the third round are identical, F [sID] ∪ M̄[sID] =
F [sID∗] ∪ M̄[sID∗]

Security Notion. We give the full description of the security game in Fig. 8.
In contrast to the UAKE game, this game models key indistinguishability. The
interfaces are however very similar. We allow the adversary to create parties via
KeyGeneration. It can create groups and send messages to its members via
oracles SessionB,SessionR,SessionF,Der. Here, we not only allow to reveal
the state and long-term keys of parties, but also session keys. Security is captured
by the Test oracle which can be queried multiple times. All queries are answered
with the same bit b.

Similar to UAKE, we use an attack table to describe valid attacks. Here,
we only define the stronger notion of perfect forward secrecy in Table 3 since
this is our target notion. One can define weak forward secrecy by modifying the
table similar to the UAKE notions. Intuitively, we aim for the strongest notion
possible where the adversary is allowed to query either the long-term key or the
secret state of any party in the group, even if the corresponding session of any
group member will later be queried to Test.

We now describe Table 3 in more detail. As for UAKE, we let the adversary
win directly if the protocol does not have sufficient entropy. Further, we iterate
over all peers of a session to detect trivial attacks. More specifically, we look at
the holder of the session and then at each group member individually. Depend-
ing on whether this group member has the same view as the holder, which we
determine by the checking whether they have a (partially) matching session, we
allow the adversary to reveal long-term keys or states.

– Attacks (1)–(4) deal with matching sessions, where we essentially capture all
combinations of reveal queries.

– Attacks (5)–(8) capture partially matching sessions which are the same as
(1)–(4), except that we need to look at the state of those sessions in set P.

– Attacks (9)–(10) look at sessions where the peer does not hold a session with
the same view (hence, the adversary actively modified communication). Here,
we need to be more restrictive since the adversary can pick some of the states
itself, in which case we cannot allow it to also reveal the long-term key.

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 151

Definition 9. We define the game GAKE-GPFS,b for b ∈ {0, 1} as in Fig. 8. The
advantage of an adversary A against GAKE in this game is defined as

AdvPFSGAKE(A) :=
∣
∣Pr[GAKE-GA

PFS,1 ⇒ 1] − Pr[GAKE-GA
PFS,0 ⇒ 1]

∣
∣ .

Fig. 8. Games GAKE-GPFS,b for GAKE, where b ∈ {0, 1}. A has access to oracles O :=
{SessionB,SessionR,SessionF,Der,Reveal,Rev-State,Corrupt,Test}. Helper
procedure GValidPFS is defined in Fig. 9. If there exists any test session which is not
valid, the game will return 0.

152 E. Di Giandomenico et al.

Fig. 9. GValidPFS captures perfect forward secrecy and verifies the validity of attacks
against the GAKE protocol.

5 GAKE from UAKE

We construct a GAKE protocol from a UAKE protocol as shown in Fig. 10. Each
party will run the UAKE protocol twice to generate two fresh symmetric keys.
While doing this, each party uses the first UAKE run to authenticate itself to the
predecessor (acting as responder in the UAKE), and the other to authenticate
its successor (acting as initiator). In the second phase, each party will encrypt
the key that it shares with its predecessor to its successor. In this way, shared
keys will only be made available to parties that have been authenticated. In the
final step, each party will step-wisely compute all the pairwisely shared keys and
use them to derive the final group key.

To protect critical information from the attacker, we will encrypt the state
information with the long-term key. The state information consists of all the
information that needs to be pertained between rounds for the the protocol to
work properly. To simplify, we will in our description encrypt all state infor-
mation. Indeed some of the state information of sessions can be derived by the
attacker publicly. Encrypting the entire state information allows us to abstract
and more generically describe the mechanisms we use.

We will rely on perfect forward secrecy of UAKE to achieve perfect forward
secrecy of GAKE, hence we refer to the protocols as UAKEPFS and GAKEPFS,
respectively.

5.1 Correctness

It can be shown that the final construction has overwhelming correctness if the
underlying UAKE has overwhelming correctness.

Lemma 2. Consider the construction in Fig. 10. If UAKEPFS has overwhelming
correctness ρ = 1 − 1/2v for some v ∈ Ω(κ) and the attacker makes q queries
overall, then GAKEPFS has overwhelming correctness at least 1 − q/2v.

Proof. Assume UAKEPFS has overwhelming correctness ρ = 1 − 1/2v for some
v ∈ Ω(κ). First, observe that by setup this is the only source of non-perfect

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 153

Table 3. Attack table describing valid attacks for full perfect forward secrecy (PFS).
An attack is regarded as an AND conjunction of variables with specified values as
shown in the each line, where “-” means that this variable can take arbitrary value, “F”
means “false”, “n/a” indicates that the result is trivially “false” because of the definition
of (partially) matching sessions.

A gets (holder, P) co
rr
[i

∗]

co
rr
[P

]

pe
er

sC
or

r[
sI

D
∗]

re
vS

ta
te
[s

ID
∗]

∃s
ID

∈
M

(s
ID

∗ ,
P
)
:

re
vS

ta
te
[s

ID
]

|M
(s

ID
∗ ,

P
)|

∃s
ID

∈
P
(s

ID
∗ ,

P
)
:

re
vS

ta
te
[s

ID
]

|P
(s

ID
∗ ,

P
)|

(0) multiple partially matching sessions - - - - - - - >1

(1) (long-term, long-term) - - - F F 1 - -
(2) (state, state) F F - - - 1 - -
(3) (long-term, state) - F - F - 1 - -
(4) (state, long-term) F - - - F 1 - -

(5) (long-term, long-term) - - F F n/a 0 F 1
(6) (state, state) F F - - n/a 0 - 1
(7) (long-term, state) - F - F n/a 0 - 1
(8) (state, long-term) F - F - n/a 0 F 1

(9) (long-term, long-term) - - F F n/a 0 n/a 0
(10) (state, state) F F - - n/a 0 n/a 0

correctness in the entire protocol construction. Also observe that if UAKEPFS

has no correctness errors at all, then we will not have any correctness error in
our GAKEPFS construction as well. So we only have to analyse the influence of
UAKEPFS on the overall correctness. Now, since a single application of UAKEPFS

has overwhelmingly high correctness ρ, a q-time application of UAKEPFS will
result in a correctness of at least (1 − 1/2v)q. This can be lower bounded via
(1−1/2v)q ≥ 1−q/2v for some arbitrary polynomial q = q(κ) due the Bernoulli’s
inequality, which shows that the resulting correctness is still overwhelming. �

5.2 Security

We now prove the security of our construction. Informally, if UAKE has perfect
forward secrecy, then the resulting GAKE also has perfect forward secrecy. This
is captured in the following theorem.

Theorem 2 (UAKE to GAKE). For any adversary A against GAKE-GPFS,b

with protocol GAKEPFS with N parties that establish at most S sessions and

154 E. Di Giandomenico et al.

Fig. 10. Generic construction of GAKEPFS from UAKEPFS = (SetupUAKE,KeyGenUAKE,
Beg,DerR,DerB).

issues at most q queries to the oracles, there exists an adversary B against
OW-UAKE-GPFS of a protocol UAKEPFS with min-entropy μ and correctness
(1 − 1/2v), such that

AdvPFSGAKEPFS
(A) ≤ AdvPFSUAKEPFS

(B) + SqRS + NqC

2κ
+

SqHukey

2τ
+

SqHtag

2τ

+
SqHgkey

|KGAKEPFS
| +

N2 + S2

2μ
+

N2 + 3S2

2κ
+

q2RO

2ζ
+

q

2v
,

where all hash functions are modeled as random oracles and the running time of
B is about that of A.

Let us first sketch the proof. We proceed in a series of games. In the first
steps, we make sure that all outputs of the sessions are distinct by relying on
the min-entropy of the UAKE. Next, we exclude collisions in the random ora-
cles. Finally, we assume that all UAKE runs feature correctness. Each time this
accounts only for a statistically small change in the success probability of the
attacker. Next we make the state of each stage independent of all the initial val-
ues and secret parameters. At the same time, we ensure consistency by adapting

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 155

the random oracle used for state encryption to generate an output - on the fly
- that is used to encrypt the state. In fact, the reduction creates it such that
it can successfully appear to have encrypted the state beforehand. In this step,
we essentially exploit that the hash function in the state encryption is modeled
as a random oracle. After that, we change how the keys K ′

UAKE,i are computed
and make them independent of all previously computed values while guarantee-
ing consistency with all the queries of the attacker. Again, we exploit that the
underlying hash function is used as a random oracle. We now have that uKey′

is now independent of uKey. Now we partition the space of all sessions into two
categories.

1) The set of sessions that still, when tested, could amount to a subset S of valid
attacks (with respect to the predicate GValid).

2) The set of sessions for which we already have certainty, that they can never
amount to a valid attack in S.

Specifically, we will show that sessions of type 1) imply the existence of
an algorithm that breaks the underlying UAKE scheme. Put differently, the
attacks in 1) will correspond to an attacker that can compute the UAKE key
in a non-trivial way. For the remaining sessions we will next apply an argument
which guarantees that the keys K ′

UAKE,prd[holder[sID],π] and K ′
UAKE,holder[sID] are

indistinguishable from random. This accounts for an additional statistically small
change in the success probability. As a result, we now only consider group keys
that are indistinguishable from random (with overwhelming probability).

Proof. Let A be an adversary against GAKE-GPFS,b with protocol GAKEPFS as
defined in Fig. 10. We consider the sequence of games described below and give
their detailed pseudocode in the full version.

Game G0,b . This is the same as GAKE-GPFS,b, except for small changes. We store
the un-encrypted state in an additional variable state′[sID] and do not decrypt
it explicitly. This is only conceptual. We also implicitly exclude collisions and
if a collision happens at any time in the game, the experiment aborts. We also
make sure that key pairs and messages are distinct. Using the fact that UAKEPFS

has min-entropy μ, the upper bound for key collisions is N2/2μ and for message
collisions, it is S2/2μ. Moreover, we assume that values kn, for n ∈ [N], and
IV, ˆIV , ¯IV (at most S for each one) are distinct, and this is provided with
probability at most (N2 + 3S2)/2κ. In the end, we aim for all random oracle
outputs to be unique. Assuming ζ is the lower bound for all dimensions of the
random oracle outputs, collisions are excluded with a probability of at most
q2RO/2ζ , where qRO ≤ q. All the probabilities above also follow from the birthday
bound. Finally, in this step we abort if any of the UAKE runs of the challenger
do not feature correctness. However, as analysed before this only happens with
probability q/2v.

We get ∣
∣Pr[GAKE-GA

PFS,0 ⇒ 1] − Pr[GAKE-GA
PFS,1 ⇒ 1]

∣
∣ ≤

∣
∣Pr[GA

0,0 ⇒ 1] − Pr[GA
0,1 ⇒ 1]

∣
∣ +

N2 + S2

2μ
+

q2KG + 3S2

2κ
+

q2RO

2ζ
+

q

2v
.

156 E. Di Giandomenico et al.

Game G1,b . In games G1,b , we make the state of each stage independent of all
the initial values and secret parameters. At the same time, we ensure consistency
by adapting the random oracle Hst∗ to generate an output - on the fly - that
is used to encrypt the state (actually the reduction creates it such that it can
successfully appear to have encrypted the state beforehand). Now the initial
values are computed in the Rev-State oracle and the long-term secret values
kn are computed in the Corrupt oracle. We raise flag BADIV and abort if the
Rev-State oracle chooses an initial value IV that was issued, together with the
secret key of the corresponding holder of the session, to the Hst∗ oracle before.
The probability that BADIV is raised for one specific IV is at most qRS/2κ,
where qRS indicates the number of queries issued to the Rev-State oracle and
qRS ≤ q. An union bound gives us

Pr[BADIV] ≤ SqRS

2κ
. (1)

We also raise flag BADk and abort if, for the chosen secret value kn computed by
the Corrupt oracle, there exist an initial value IV such that both were issued
to the Hst∗ oracle before. The probability that BADk is raised for one specific
kn is at most qC/2κ, where qC indicates the number of queries issued to the
Corrupt oracle and qC ≤ q. Again, an union bound gives us

Pr[BADk] ≤ NqC

2κ
. (2)

Then, from Eqs. 1 and 2 we have

|Pr[GA
1,b ⇒ 1] − Pr[GA

0,b ⇒ 1]| ≤ SqRS + NqC

2κ
.

Game G2,b . This is a bridging step. We essentially change how the keys K ′
UAKE,i

are computed and make them independent of all previously computed values
while guaranteeing consistency with all the queries of the attacker. We also
introduce two helper variables, uKey and uKey′, that store the keys KUAKE,i

and K ′
UAKE,i for later use if needed.

Pr[GA
2,b ⇒ 1] = Pr[GA

1,b ⇒ 1].

Game G3,b . In the previous game we have already changed the way uKey′ is
computed. In particular, it is now independent of uKey while the simulation
is still consistent. This holds for all sessions. Now we partition the space of all
sessions into two categories.

1) The set of sessions that still, when tested, could amount to a subset S of valid
attacks (with respect to the predicate GValid).

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 157

2) The set of sessions for which we already have certainty, that they can never
amount to a valid attack in S.

Specifically, we will show that sessions of type 1) imply the existence of an
algorithm that breaks the underlying UAKE scheme. Intuitively, the attacks in
1) will correspond to an attacker that can compute the UAKE key in a non-trivial
way. Essentially, the conditions require sID to be a session that has successfully
computed an UAKE key in SessionR (or SessionF) via a successive run of Beg
and DerB (or DerR). We now need to show that whenever this happens, we can
immediately break the security of the underlying UAKE. So we set a flag BAD
in case some preliminary conditions are fulfilled. This is the case if there is a
specific query w = (K,m, h) to the random oracle Hprkey such that:

i) the query w has never been queried before to Hprkey;
ii) there exists a session sID that has helper variable uKey – which

is either KUAKE,holder[sID] of the holder of that session (case (a)) or
KUAKE,prd[holder[sID],π] of the predecessor (case (b)) – be equal to K;

iii) the hash of the context so far ĥ[sID] = Hctxt(Mi[sID], h[sID]) is equal to h;
iv) the message m is equal to the message mholder[sID] in case (a) and

mprd[holder[sID],π] in case (b).

Now, the flag will only be set if additionally in case (a), we have that there is a
non-trivial attack when testing sID with peer scc[holder[sID], π] and in case (b)
there is a non-trivial attack with peer prd[holder[sID], π]. All these conditions
map to a specific non-trivial attack that transfers to an underlying attack on
UAKEPFS: if there is a non-trivial attack on GAKEPFS under these conditions
we have that any of the lines (0), (1), (2), or (3) in Table 1 are fulfilled. We
show this by analyzing what – under the conditions i), ii), iii), iv) respectively
– a non-trivial attack on the GAKE protocol means. Importantly, we show that
under these conditions, attacks on the GAKE protocol will always result in an
attack on the UAKE protocol.

Let us begin by considering the reduction for which we give the com-
plete pseudocode in the full version. We observe that the output distribution
of the queries Initialize, KeyGeneration, SessionB, SessionR, SessionF,
Corrupt, Der, Test and all outputs of the queries to the random oracle are
distributed like in Game 2, except for Hprkey. Thus, we need to formally show
that Finalize, Hprkey, and Rev-State are distributed like in Game 2 unless the
GAKE attacker breaks the underlying UAKE security game.

Let us begin with Rev-State. The introduced changes will complete the
state of the GAKE with the state of the underlying UAKE if needed. By the
modifications made in the last games, we have ensured that in no other place
the state of the underlying UAKE is required. Also, observe that the format of
the full state of the GAKE protocol means that only the last part of it refers to
the underlying UAKE. So by appropriate projections, the state state′[sID] can
give information on both the underlying UAKE state and the remaining state
of the GAKE.

158 E. Di Giandomenico et al.

Now let us have a look at the remaining queries Finalize and Hprkey. The
first one makes the underlying UAKE decide whether there has actually been
a non-trivial attack on session sID∗. To this end, it calls the Check query of
the UAKE. We will in the following detail which subset of the attacks on the
GAKE will correspond to an attack on the UAKE by comparing the attack
tables that both schemes use. Next, Finalize simply calls the ˜Finalize query
of the UAKE to essentially relay the attFound value of the underlying UAKE to
the attFound of the GAKE. Similarly, Hprkey also uses the Check query of the
UAKE to identify if the input session key is consistent with some session sID.
Let us begin our analysis of the conditions in the attack tables: first, we consider
all GAKE attacks that would imply an attack on the UAKE according to line
(0) in Table 1. Such an attack happens if, in any UAKE run, there is a receiver
session such that there are multiple initiator sessions that share the first message
with the receiver (partially matching sessions). However, since we have already
excluded collisions in the first message due to its high entropy this is impossible.

Let us now consider Table 3. Consider lines (0) to (8). The lines all imply that
there are two neighbors that have matching sessions since a partially matching
session in GAKE implies a fully matching session in the underlying UAKE. Since
the underlying UAKE has high entropy, we have that the GAKE attack of line
(0) can be excluded with overwhelming probability. We remark that, for the
GAKE to have partially matching sessions, two sessions must agree on the first
two messages. However, each communication partner participates in generating
one of the messages via a contribution of high entropy messages. But, due to
the previous modifications of the security game where we excluded collisions, we
will not see the same message twice. So we can consider the lines (1) to (8) in
the GAKE table that will transfer to sessions of the UAKE that have a single
matching session. By definition of non-trivial GAKE attacks, we have that for
both, the tested session and the partnered sessions, it must hold that state and
long-term key will never be revealed at the same time. Both scenarios can be
simulated efficiently without immediately presenting a trivial attack according
to the UAKE definition. The PFS notion guarantees that we cover corruptions
of the long-term key. (For this, WFS would actually be sufficient at this point
in the proof.) Importantly now, albeit for non-tested sessions revealing the state
of the GAKE can be transferred to revealing states in the UAKE, now the
state of the UAKE will never be revealed. The underlying argument is that
by revealing the state of the GAKE, the attacker only obtains the encrypted
UAKE state w = Hst(IV, k) + st (or ŵ = Hŝt(ˆIV , k) + ŝt or w̄ = Hs̄t(¯IV , k) + s̄t).
Moreover, the adversary can only obtain (with overwhelming probability) the
current underlying UAKE state (st, ŝt, or s̄t) at all, by obtaining not only the
long-term key k via a Corrupt query but also the initialization vector (IV , ˆIV ,
or ¯IV) via a Rev-State query. We emphasize that by the changes introduced
in the previous games, there is indeed no other way for the attacker to obtain
the UAKE state: since it is modeled as a random oracle, the output of Hst∗ does
not reveal anything about its inputs. It is drawn as a uniformly random output
and independent of any other values. Additionally, k will never be used for any

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 159

other purpose than computing encrypted states. As it is part of the long-term
key it will never be accessible via state revealing. The initialization vectors will
likewise never be used for any other purpose besides state encryption. Moreover,
they will only be stored in the state of sessions and are not part of the long-term
key.

Now let us consider the remaining lines in the GAKE table, (9) and (10).
These lines indicate no partially matching session exists for the tested session.
However, since the underlying UAKE protocol has only two moves, this can
either transfer to the existence of a partially matching session in the UAKE
table—line (2)—or the lack of it—line (3). We note that in both cases we can
exploit the PFS property of the UAKE in case the attacker corrupts the holder
of the test session.

Now consider lines (9) and (10) more closely and let us restrict our attention
to the sub-case where in the resulting UAKE table we have partially matching
conversations, i.e. the first message has not been modified on transit. With the
same arguments as before on state encryption, the conditions in the GAKE table
for both lines guarantee that the attacker will never see the secret state of any
of the sessions. This in particular holds for the computations of each GAKE
session that correspond to the computations of the responder in the underlying
UAKE protocol. So this particular sub-case of attacks on the GAKE protocol
will always transfer to an attack according to line (2).

Finally, consider the remaining sub-class of attacks that are characterised by
the lack of sessions that do not have partially matching sessions with the tested
session in the underlying UAKE, i.e. they do not share the first message. The
last line of the UAKE table essentially says that in case no oracle shares the
first message with the tested oracle, then all other oracles might as well be fully
under the control of the attacker. We do not require the peer to be corrupted
and have no other requirements on the remaining oracles (since they are not
fully nor partially matching the tested oracle). Also, the two lines in the GAKE
table make sure that there is no corruption of the holder of the tested session
at all. So in particular, there is no “early” corruption where peersCorr[sID∗] is
true. Due to the state encryption this immediately guarantees that the UAKE
state of the tested session is never revealed. Thus, this sub-case transfers to the
sub-case (3) of the UAKE table.

To win, the adversary must successfully guess a crucial input to the com-
putation of KUAKE,i or K ′

UAKE,i and thus would be able to compute these keys
directly. In particular, the attacker has generated an input to the random ora-
cle Hprkey that constitutes a valid attack. This now immediately reduces to the
OW-UAKE-G security game.

|Pr[GA
3,b ⇒ 1] − Pr[GA

2,b ⇒ 1]| ≤ Pr[BAD] ≤ AdvPFSUAKEPFS
(B).

Game G4,b . We raise flag BADU and abort if there exists a session sID such
that a (prime) predecessor UAKE key K ′

UAKE,prd[holder[sID],π] or a (prime) succes-
sor UAKE key K ′

UAKE,holder[sID] have been queried (in a valid attack) with the

160 E. Di Giandomenico et al.

predecessor or, respectively, the successor as peer. The probability that BADU

is raised for a specific derived key is at most qHukey
/2τ , where qHukey

are queries
issued to random oracle Hukey and qHukey

≤ q. An union bound, over the number
of sessions, gives us

|Pr[GA
4,b ⇒ 1] − Pr[GA

3,b ⇒ 1]| ≤ Pr[BADU] ≤
SqHukey

2τ
.

Game G5,b . We raise flag BADT and abort if there is a session sID such that
a derived predecessor key Kprd[holder[sID],π],holder[sID] is issued in a valid attack.
The probability that BADT is raised for a specific Kprd[holder[sID],π],holder[sID] is at
most qHtag/2

τ , where qHtag are queries issued to random oracle Htag and qHtag ≤ q.
Again, an union bound gives us

|Pr[GA
5,b ⇒ 1] − Pr[GA

4,b ⇒ 1]| ≤ Pr[BADT] ≤
SqHtag

2τ
.

Game G6,b . We raise flag BADG and abort if there exists a session sID such
that a sorted key K̄ is issued in a valid attack for all the peers of the session.
The probability that BADG is raised for a specific K̄ is at most qHgkey

/|KGAKEPFS
|,

where qHgkey
are queries issued to random oracle Hgkey and qHgkey

≤ q. An union
bound gives us

|Pr[GA
6,b ⇒ 1] − Pr[GA

5,b ⇒ 1]| ≤ Pr[BADG] ≤
SqHgkey

|KGAKEPFS
| .

Now, observe that the attacker does not have any advantage in distinguishing
the session key from a random key since for all non-trivial attacks the session key
is a random key by the modifications that we made in the sequence of games.

Combining all probabilities, we obtain the bound stated in Theorem 2. �

6 Final GAKE Protocol

A pseudocode description of our final GAKE protocol based on KEMs is given
in the full version. The idea is the same showed previously in Fig. 1. It is a
multi-party three round protocol.

6.1 UAKE from KEMs

We introduce the syntax for key encapsulation mechanisms and provide the
definitions of correctness and min-entropy. The latter is extremely useful for the
initial step of the security proof of the UAKE based on KEMs.

Syntax. A key encapsulation mechanism KEM := (Setup,KeyGen,
Encaps,Decaps) consist of four polynomial-time algorithms:

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 161

– par ← Setup(1κ) : The probabilistic setup algorithm Setup takes as input the
security parameter κ in unary and returns global system parameters par that
implicitly define ciphertext space C, the public key space PK, the secret key
space SK and the key space K.

– (pk, sk) ← KeyGen(par) : The probabilistic key generation algorithm KeyGen
takes as input the parameters par and returns a public key pk ∈ PK and a
secret key sk ∈ SK.

– (ct,K) ← Encaps(pk) : The probabilistic encapsulation algorithm Encaps takes
as input a public key pk and returns a ciphertext ct ∈ C and a key K ∈ K.

– K := Decaps(sk, ct) : The deterministic decapsulation algorithm Decaps takes
as input a secret key sk and a ciphertext ct and returns a key K ∈ K.

Definition 10 (Correctness KEM). We say that KEM is ρ-correct, if for any
par ← Setup(1κ) we have:

Pr[K = K′ | (pk, sk) ← KeyGen(par), (ct, K) ← Encaps(pk), K′ = Decaps(sk, ct)] ≥ ρ.

Definition 11 (‘ KEM). We say that KEM has min-entropy μ if:

– It has key min-entropy μ′ ≥ μ: for all pk′ ∈ PK we have Pr[pk =
pk′ : (pk, sk) ← KeyGen(par)] ≤ 2−μ′

for some par.
– It has ciphertext min-entropy μ′′ ≥ μ: for all ct′ ∈ C we have Pr[ct =

ct′ : (ct,K) ← Encaps(pk)] ≤ 2−μ′′
for some pk ∈ PK.

Security Notion for KEM. We recall the security notion recently used to
analyze two-party key exchange with key confirmation from [26], which is a
multi-user version of one-way security with corruptions under plaintext checking
and ciphertext validity attacks.

Definition 12. The game OW-PCVA-CR is defined as in Fig. 11. The advantage
of an adversary A against KEM in this game is defined as

AdvOW-PCVA-CR
KEM (A) := Pr[OW-PCVA-CRA ⇒ 1].

UAKE Construction. We construct a UAKE protocol from two KEMs as
shown in Fig. 12. Let us first prove correctness.

Lemma 3. Consider the construction in Fig. 10. If both KEMe and KEML have
overwhelming correctness of at least ρ = 1 − 1/2v for some v ∈ Ω(κ) and the
attacker makes q queries overall, then UAKEWFS has overwhelming correctness
at least 1 − q/2v−2.

Proof. We give a crude bound. The proof closely follows the proof of the main
construction. Assume each of the two KEM schemes has at least overwhelming
correctness ρ = 1−1/2v for some v ∈ Ω(κ). Observe that by setup the KEMs are
the only source of incorrectness in the entire protocol construction. Next, observe
that if we condition the KEMs to have no correctness error at all, then we will
not have a correctness error in UAKEWFS as well. So we only have to analyse the

162 E. Di Giandomenico et al.

Fig. 11. Game OW-PCVA-CR for KEM. A has access to oracles O := {Enc,Cvo,Rev,
Check,Corr}.

Fig. 12. Generic construction of UAKEWFS from KEMe and KEML.

influence of the KEMs on the overall correctness. Now, since a single application
of a single KEM has overwhelmingly high correctness ρ the probability for both
KEMs to simultaneously have no correction error is lower bounded by ρ′ =
ρ2 ≥ 1 − 1/2v−2. A q-time call of the KEMs will thus result in a correctness of
(1 − 1/2v−2)q. This can be lower bounded via (1 − 1/2v−2)q ≥ (1 − q/2v−2) for
some arbitrary polynomial q = q(κ) which shows that the resulting correctness
is still overwhelming. �

Theorem 3 (KEM to UAKEWFS). For any adversaryA againstOW-UAKE-GWFS

with protocolUAKEWFS withN parties that establish atmostS sessions and issues at

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 163

most q queries to the oracles, there exist adversariesB and C againstOW-PCVA-CR
security of KEMe and KEML with respectively min-entropy μe and μL and correct-
ness (1 − 1/2v) for both, such that

AdvWFS
UAKEWFS

(A) ≤AdvOW-PCVA-CRKEMe(B) + AdvOW-PCVA-CRKEML(C)

+
2S2

2μe +
N2 + S2

2μL +
q

2v−2
,

where the running time of B and C is about that of A.

We provide the proof in the full version.

6.2 Putting Things Together

We collect the bounds from Theorems 1 to 3 in the following corollary.

Corollary 1 (KEMs to GAKE). For any adversary A against GAKE-GPFS

with protocol GAKEPFS with N parties that establish at most S sessions and
issues at most q queries to the oracles, there exist adversaries B and C against
OW-PCVA-CR security of KEMe and KEML with respectively min-entropy μe and
μL and correctness (1 − 1/2v) for both, such that

AdvPFSGAKEPFS
(A) ≤ AdvOW-PCVA-CRKEMe(B) + AdvOW-PCVA-CRKEML(C)

+
SqRS + NqC + N2 + 3S2

2κ
+

3SqRO + 2q2RO + S + qCh

2ζ

+
3(N2 + S2)

2μL +
2S2 + SqRO

2μe +
5q + 2S

2v
,

where ζ is the lower bound for all dimensions of the random oracle outputs
and qRO, qCh, qRS , qC are the number of random oracle, check, reveal state and
corrupt queries that A makes. Further, the running time of B and C are about
that of A.

Instantiations from DDH and LWE. Let us now show how we can imple-
ment the underlying KEM with existing constructions. The first implemen-
tation is the DDH-based KEM introduced in [19]. As shown in [26,28] this
scheme achieves OW-PCVA-CR security. Ciphertexts consist of two group ele-
ments, whereas public keys consist of a single group element. Overall we thus
need to transfer two ciphertext and one ephemeral public key in the UAKE
protocol with WFS. The UAKE protocol with PFS adds to this a MAC which
accounts for a bitstring of size 256 bits. Finally, in the second phase, we exchange
symmetric ciphertexts of size 256 bits. In total, this accounts for 5 group elements
and 2 strings of size 256 bits.

In comparison, the tightly secure protocol by [25] requires to send 2 group ele-
ments for the underlying BD protocol. They use signature schemes over each BD
message for authentication. Unfortunately, at the time their paper was published

164 E. Di Giandomenico et al.

no efficient signature scheme was known that fulfilled the security notion that
they require in a tightly secure way. This is why they used Schnorr signatures
while providing a proof of tight security in the generic group model. However,
at the same time, the work in [13] shows that Schnorr signatures cannot pro-
vide tight security under any non-interactive security assumption. This indicates
that the results of [25] will lose its tight security guarantees when leaving the
GGM model and reducing to non-interactive security assumptions. Based on this
instantiation, their protocol accounts for overall 2 group elements and 4 expo-
nents in Zp where p is the group order. However, the recent signature scheme
in [10] can now be used as a drop-in for their protocol to obtain a proof under the
DDH assumption that does not rely on the generic group model. This signature
scheme has signatures that consist of 3 elements in Zp. When using it in [25]
this accounts for 6 elements in Zp and 2 group elements. We can now instantiate
all schemes in elliptic curve groups with group element representation of around
256 bits.

As a result, we can see that our protocol is more efficient when reducing
to non-interactive security assumptions and not relying on GGM proofs. At the
same time, we stress that we prove security in a much stronger model that allows
the attacker to reveal secret states.

Our second implementation uses the recent scheme by [28] that is based on
the LWE assumption. It is thus secure in the PQ-setting. The construction relies
on a double encryption approach and is given the full version along with an anal-
ysis that shows that its correctness bounds are suitable for our transformation.

Acknowledgements. Emanuele Di Giandomenico and Sven Schäge have been sup-
ported by the CONFIDENTIAL6G project that is co-funded by the European Union
(grant agreement ID: 101096435). Work done while Doreen Riepel was at UC San
Diego, supported in part by Mihir Bellare’s KACST grant.

References

1. Abdalla, M., Bohli, J.M., González Vasco, M.I., Steinwandt, R.: (Password)
authenticated key establishment: From 2-party to group. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 499–514. Springer, Berlin, Heidelberg (Feb 2007).
https://doi.org/10.1007/978-3-540-70936-7_27

2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Cham (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2_9

3. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Cham (Nov 2020). https://doi.org/10.1007/978-
3-030-64378-2_10

4. Apon, D., Dachman-Soled, D., Gong, H., Katz, J.: Constant-round group key
exchange from the ring-LWE assumption. In: Ding, J., Steinwandt, R. (eds.) Post-
Quantum Cryptography - 10th International Conference, PQCrypto 2019. pp. 189–
205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_11

https://doi.org/10.1007/978-3-540-70936-7_27
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-25510-7_11

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 165

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Berlin, Heidelberg (May 2016). https://doi.org/
10.1007/978-3-662-49896-5_10

6. Bienstock, A., Dodis, Y., Garg, S., Grogan, G., Hajiabadi, M., Rösler, P.: On
the worst-case inefficiency of CGKA. In: Kiltz, E., Vaikuntanathan, V. (eds.)
TCC 2022, Part II. LNCS, vol. 13748, pp. 213–243. Springer, Cham (Nov 2022).
https://doi.org/10.1007/978-3-031-22365-5_8

7. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution sys-
tem (extended abstract). In: Santis, A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950,
pp. 275–286. Springer, Berlin, Heidelberg (May 1995). https://doi.org/10.1007/
BFb0053443

8. Cohn-Gordon, K., Cremers, C.: Mind the gap: Where provable security and real-
world messaging don’t quite meet. Cryptology ePrint Archive, Report 2017/982
(2017), https://eprint.iacr.org/2017/982

9. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802–
1819. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243747

10. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 1–31. Springer, Cham (May 2021). https://doi.org/10.1007/978-3-030-75248-
4_1

11. Dodis, Y., Fiore, D.: Unilaterally-authenticated key exchange. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 542–560. Springer, Cham (Apr 2017). https://doi.
org/10.1007/978-3-319-70972-7_31

12. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Berlin, Heidelberg (Sep 2005). https://doi.org/10.1007/11556992_6

13. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr sig-
natures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873,
pp. 512–531. Springer, Berlin, Heidelberg (Dec 2014). https://doi.org/10.1007/978-
3-662-45611-8_27

14. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise imper-
sonation attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Berlin, Heidelberg (Mar 2009).
https://doi.org/10.1007/978-3-642-00468-1_7

15. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated
key exchange and signatures with tight security in the standard model. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700.
Springer, Cham, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-
84259-8_23

16. Han, S., Liu, S., Wang, Z., Gu, D.: Almost tight multi-user security under adaptive
corruptions from LWE in the standard model. In: Handschuh, H., Lysyanskaya, A.
(eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 682–715. Springer, Cham
(Aug 2023). https://doi.org/10.1007/978-3-031-38554-4_22

17. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422.
Springer, Cham (May 2020). https://doi.org/10.1007/978-3-030-45388-6_14

https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-031-22365-5_8
https://doi.org/10.1007/BFb0053443
https://doi.org/10.1007/BFb0053443
https://eprint.iacr.org/2017/982
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-319-70972-7_31
https://doi.org/10.1007/978-3-319-70972-7_31
https://doi.org/10.1007/11556992_6
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-642-00468-1_7
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-031-38554-4_22
https://doi.org/10.1007/978-3-030-45388-6_14

166 E. Di Giandomenico et al.

18. Ishibashi, R., Yoneyama, K.: Post-quantum anonymous one-sided authenticated
key exchange without random oracles. In: Hanaoka, G., Shikata, J., Watanabe,
Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 35–65. Springer, Cham (Mar
2022). https://doi.org/10.1007/978-3-030-97131-1_2

19. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Cham (Oct 2021). https://doi.
org/10.1007/978-3-030-77870-5_5

20.). Klein, K., Pascual-Perez, G., Walter, M., Kamath, C., Capretto, M., Cueto, M.,
Markov, I., Yeo, M., Alwen, J., Pietrzak, K.: Keep the dirt: Tainted TreeKEM,
adaptively and actively secure continuous group key agreement. In: 2021 IEEE
Symposium on Security and Privacy. pp. 268–284. IEEE Computer Society Press
(May 2021). https://doi.org/10.1109/SP40001.2021.00035

21. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Berlin,
Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_33

22. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Berlin, Heidelberg (Nov 2007). https://doi.org/10.1007/978-3-
540-75670-5_1

23. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authenti-
cation: Composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555 (2013), https://eprint.iacr.org/2013/555

24. Mayer, A.J., Yung, M.: Secure protocol transformation via “expansion”: From two-
party to groups. In: Motiwalla, J., Tsudik, G. (eds.) ACM CCS 99. pp. 83–92.
ACM Press (Nov 1999). https://doi.org/10.1145/319709.319721

25. Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with
tight security. Journal of Cryptology 35(4), 26 (Oct 2022). https://doi.org/10.
1007/s00145-022-09438-y

26. Pan, J., Riepel, D., Zeng, R.: Key exchange with tight (full) forward secrecy via
key confirmation. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part VII.
LNCS, vol. 14657, pp. 59–89. Springer, Cham (May 2024). https://doi.org/10.
1007/978-3-031-58754-2_3

27. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and
more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS,
vol. 13178, pp. 347–378. Springer, Cham (Mar 2022). https://doi.org/10.1007/978-
3-030-97131-1_12

28. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Cham (Aug 2023). https://doi.org/10.1007/978-
3-031-38554-4_20

29. Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key
exchange in the QROM. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part IV. LNCS, vol. 14441, pp. 401–433. Springer, Singapore (Dec 2023). https://
doi.org/10.1007/978-981-99-8730-6_13

30. Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: Game-based security
models for group key exchange. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS,
vol. 12704, pp. 148–176. Springer, Cham (May 2021). https://doi.org/10.1007/
978-3-030-75539-3_7

https://doi.org/10.1007/978-3-030-97131-1_2
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://eprint.iacr.org/2013/555
https://doi.org/10.1145/319709.319721
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-030-75539-3_7

Tightly-Secure Group Key Exchange with Perfect Forward Secrecy 167

31. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

32. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), https://eprint.iacr.org/2004/
332

https://doi.org/10.1109/SFCS.1994.365700
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

Anamorphic Authenticated Key
Exchange: Double Key Distribution

Under Surveillance

Weihao Wang1,2 , Shuai Han1,2(B) , and Shengli Liu2,3(B)

1 School of Cyber Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{dykler123,dalen17}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
slliu@sjtu.edu.cn

Abstract. Anamorphic encryptions and anamorphic signatures assume
a double key pre-shared between two parties so as to enable the trans-
mission of covert messages. How to securely and efficiently distribute
a double key under the dictator’s surveillance is a central problem for
anamorphic cryptography, especially when the users are forced to sur-
render their long-term secret keys or even the randomness used in the
algorithms to the dictator.

In this paper, we propose Anamorphic Authentication Key Exchange
(AM-AKE) to solve the problem. Similar to anamorphic encryption, AM-
AKE contains a set of anamorphic algorithms besides the normal algo-
rithms. With the help of the anamorphic algorithms in AM-AKE, the
initiator and the responder are able to exchange not only a session key
but also a double key. We define robustness and security notions for AM-
AKE, and also prove some impossibility results on plain AM-AKE whose
anamorphic key generation algorithm only outputs a key-pair. To bypass
the impossibility results, we work on two sides.

– On the one side, for plain AM-AKE, the securities have to be relaxed
to resist only passive attacks from the dictator. Under this setting,
we propose a generic construction of two-pass plain AM-AKE from
a two-pass AKE with partially randomness-recoverable algorithms.

– On the other side, we consider (non-plain) AM-AKE whose key gen-
eration algorithm also outputs an auxiliary trapdoor besides the key-
pairs. We ask new properties from AKE: its key generation algo-
rithm has secret extractability and other algorithms have separa-
bility. Based on such a two-pass AKE, we propose a generic con-
struction of two-pass (non-plain) AM-AKE. The resulting AM-AKE
enjoys not only robustness but also the strong security against any
dictator knowing both users’ secret keys and even the internal ran-
domness of the AKE algorithms and implementing active attacks.

Finally, we present concrete AM-AKE schemes from the popular
SIG+KEM paradigm and three-KEM paradigm for constructing AKE.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 168–200, 2025.
https://doi.org/10.1007/978-981-96-0935-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_6&domain=pdf
http://orcid.org/0009-0005-6285-4049
http://orcid.org/0000-0002-8156-7089
http://orcid.org/0000-0003-1366-8256
https://doi.org/10.1007/978-981-96-0935-2_6

Anamorphic Authenticated Key Exchange: Double Key Distribution 169

1 Introduction

Cryptography provides fundamental technical tools for achieving authenticity
and confidentiality in our daily electronic data communications. For a crypto-
graphic algorithm to work, it is critical that the underlying secret key is not
compromised by the adversary. However, an authority dictator may force cit-
izens to surrender their secret keys, and as a result, cryptographic algorithms
may completely lose their functionalities of authenticity and confidentiality.

To save cryptographic functionalities in face of dictator, the so-called anamor-
phic algorithms were introduced [1,5,13,20,25].
Anamorphic Algorithms Supported by Double Key. In [20], Persiano,
Phan, and Yung proposed the concept of anamorphic encryption (AME), which
is partitioned into receiver-AME and sender-AME depending on whether the
receivers are forced to surrender their secret keys or the senders are forced to send
designated messages. As for receiver-AME, it is a public-key encryption (PKE)
deployed either in normal model with (Gen,Enc,Dec) or in the anamorphic mode
with (aGen, aEnc, aDec). In the anamorphic mode, the receiver initially generates
an anamorphic key-pair (ask, apk) and a double key dk via aGen. Any sender
who shares dk with the receiver is able to use apk and dk to encrypt not only
a normal plaintext m but also a covert plaintext m̂. The anamorphic public
key apk and the resulting anamorphic ciphertext ĉ should be indistinguishable
from the normal public key pk and normal ciphertext c to the dictator who
also obtains the corresponding secret key. With the knowledge of secret key, the
dictator can always decrypt the ciphertext to learn m, but the covert message
m̂ remains hidden owing to the secrecy of the double key dk.

Later, Kutylowski et al. extended anamorphic encryption to anamorphic sig-
nature [13], where a signing party can use the anamorphic signing key ask and the
double key dk to send undetectable secure messages using signature tags which
are indistinguishable from regular tags for the dictator who sees the signing key
ask but not the double key dk.

The original anamorphic schemes bind dk to the anamorphic key pair
(apk, ask). Once the public key is deployed, it is not possible to associate the
public key with a double key. This limitation is lifted in [1] by allowing double
keys to be created independently of key-pairs, which makes it possible to create
double keys at anytime even after the public key is deployed.
Double Key Distribution. The double key dk is essential to anamorphic
encryption and anamorphic signature, whose security relies on the secrecy of
dk (to the dictator). Now the crucial problem is how to secretly distribute the
double key dk between sender and receiver in face of the dictator who may obtain
the secret key of all users. The offline physical delivery of dk is expensive and
even infeasible in the Internet era. In [20], a two-step bootstrap method in [11]
was suggested for distributing dk secretly: Superficially, two parties send to each
other abundant ciphertexts generated by a PKE scheme. Covertly, they imple-
ment a key-exchange (KE) protocol. Each ciphertext from PKE embeds a tiny
piece of the pseudo-random transcript of KE. If they can collect the complete

170 W. Wang et al.

transcript of KE, they can compute a common dk. This method is very inefficient,
since its embedding rate is very low. Even worse, this method is too fragile to be
practical, since the parties have to collect all these ciphertexts (e.g., hundreds
or even thousands of ciphertexts) to recover the KE transcripts, and any active
attack or transmission disordering will ruin the distribution of dk. Another pos-
sible way for double key distribution might be via sender-AME [25]. However,
sender-AME does not allow the dictator to obtain the users’ secret keys, which is
not compatible to the security settings considered by other anamorphic schemes
like receiver-AME or anamorphic signature, and thus this method seems hardly
useful for distributing double keys for those anamorphic schemes. Therefore, a
natural and important question is:

How to distribute double keys dk in a secure and efficient way under
the surveillance of the dictator?

Our answer to the question is Anamorphic Authenticated Key Exchange.

1.1 Our Contributions

In this paper, we initiate the study of Anamorphic Authenticated Key Exchange
(AM-AKE) and formalize security requirements for it, including robustness,
indistinguishability of working modes (IND-WM) and pseudo-randomness of dou-
ble keys (PR-DK). Then we provide impossibility results and possibility results on
achieving secure AM-AKE. In particular, we show that two popular paradigms
for constructing AKE are good candidates for obtaining AM-AKE: the first one
is the signed Diffie-Hellman paradigm [17] which uses a digital signature scheme
(SIG) and a key encapsulation mechanism (KEM), referred to as the SIG+KEM
paradigm in this paper, and the second one is the three-KEM paradigm [18]
which invokes KEM three times. Actually, many existing AKE schemes are
designed following these paradigms, such as the IKE protocol [10], the pro-
tocol used in TLS 1.3 [21], the 2KEM+Diffie-Hellman protocol [4] and more in
[7,9,12,15,19,26]. For efficiency consideration, we focus on two-pass AM-AKE.

Syntax, Robustness and Security Notions of AM-AKE. We define two-
pass AM-AKE with AKE’s normal algorithms and a set of anamorphic algo-
rithms. With the normal algorithms, a session key K is agreed between the
initiator and the responder. With the anamorphic ones, both a session key K
and a double key dk are agreed between the initiator and the responder.

To make AM-AKE useful, we define initiator-robustness (resp., responder-
robustness) as the initiator’s (resp., responder’s) capability of telling whether its
partner is working with the normal or anamorphic algorithms. The robustness
helps the party invalidate its double key when its partner works with normal
algorithms (i.e., its partner has no intention to share any double key).

As for security, we define indistinguishability between parties’ different work-
ing modes (IND-WM security) against the dictator who possesses the secret keys
of all the parties, the session keys, and even the states of the initiator in any com-
pleted AKE sessions, and is permitted to conduct active attacks. This ensures

Anamorphic Authenticated Key Exchange: Double Key Distribution 171

that the dictator cannot realize that the parties are actually invoking anamorphic
algorithms to establish double keys. For such a dictator, we also define pseudo-
randomness of the double keys (PR-DK security) to capture that the dictator
learns no information about the double keys. This guarantees that the pseudo-
random double keys can be later used in anamorphic encryption or signature
schemes to transmit covert messages.

We also consider strong security notions of IND-WM and PR-DK, denoted by
sIND-WM and sPR-DK respectively. sIND-WM and sPR-DK are defined similar
to IND-WM and PR-DK, but they deal with a stronger dictator who not only
implements passive and active attacks, obtains secret keys of the parties, the
session keys and the internal states, but also forces the parties to surrender their
internal randomness used in AKE sessions.

Impossibility Results for Plain AM-AKE. For a plain AM-AKE where
the output of the anamorphic key generation algorithm aGen only contains an
anamorphic key-pair (apk, ask), we prove three impossibility results.

– It’s impossible for a two-pass plain AM-AKE to achieve responder-robustness.
– It’s impossible for a plain AM-AKE to achieve both initiator-robustness and
IND-WM security, due to the dictator’s active attacks of impersonating the
initiator with its secret key to test the working mode of its partner.

– It’s impossible for a plain AM-AKE to achieve PR-DK security under active
attacks, since the dictator can impersonate any party with its secret key to
agree on a double key.

Generic Construction of Plain AM-AKE with Relaxed Security. To
bypass the impossibility results, we relax the security requirements for plain
AM-AKE by restricting the active attacks by adversary. The relaxed IND-WM
security excludes the attacks of impersonating the initiator, while the relaxed
PR-DK security excludes the attacks of impersonating either the initiator or the
responder. Then we propose a generic construction of plain AM-AKE achieving
initiator-robustness, the relaxed IND-WM and PR-DK security from any AKE
with partially randomness-recoverable algorithms. We prove that those AKE
under the SIG+KEM paradigm and those under the three-KEM paradigm are
both good candidates, as long as the underlying SIG and/or KEM schemes are
randomness-recoverable.

Generic Construction of Robust AM-AKE with Strong Security. Recall
that the impossibility results apply to plain AM-AKE, so another possible way of
bypassing the impossibility is designing non-plain AM-AKE, where the anamor-
phic key generation algorithm (apk, ask, aux) ← aGen outputs a related auxiliary
trapdoor aux along with the anamorphic key-pair (apk, ask). We note that aux is
only kept by the party who generates it and does not need to share it with others.
In other words, we do not require the parties pre-share any prior information
anyway.

To construct such AM-AKE, we require secret extractability for aGen which
enables the initiator and the responder to agree on a common secret s computed

172 W. Wang et al.

from the auxiliary trapdoor aux of one party and the public key apk′ of the
other party. Then we propose a generic construction of AM-AKE achieving the
strong IND-WM and strong PR-DK security from any AKE whose algorithm Gen
is secret extractable. We prove that those AKE under the SIG+KEM paradigm
and those under the three-KEM paradigm are both good candidates, as long as
the underlying SIG and/or KEM schemes have secret extractable key generation
algorithm.

1.2 Technique Overview

For a two-pass AKE scheme AKE = (Gen, Init,DerR,DerI), the key generation
algorithm Gen returns a key-pair (pk, sk), the initialization algorithm Init com-
putes the first-pass message msgi, the derivation algorithm DerR for responder
derives the second-pass message msgr and the session key Kr, and the derivation
algorithm DerI for initiator derives the session key Ki. For AM-AKE, it addition-
ally has a set of anamorphic algorithms (aGen, aInit, aDerR, aDerI) for deriving
double keys (and session keys as well). Let Pi and Pr denote the initiator and
responder respectively.

Impossibility Results for Plain AM-AKE. Roughly speaking, AM-AKE is
called a plain one, if the anamorphic key generation algorithm aGen only outputs
an anamorphic key-pair (apk, ask). For a plain AM-AKE, the parties will have
no advantage over the dictator who owns their key-pairs as well, leading to
the consequence that the dictator can impersonate any party to conduct active
attacks. So we have the following impossibility results on plain AM-AKE.

– It’s impossible for a two-pass plain AM-AKE to achieve responder-robustness.
The responder-robustness means that Pr can decide whether Pi invokes nor-
mal algorithms or anamorphic algorithms upon receiving the first-pass mes-
sage from Pi. Note that the adversary who obtains the secret key of Pr can
also make the same judgement, thus distinguishing the working mode of Pi

and breaking the security of AM-AKE.
– It’s impossible for a plain AM-AKE to achieve both initiator-robustness and
IND-WM security. With the secret key of Pi, the adversary can impersonate
Pi to generate an anamorphic message amsgi, send it to Pr, and receive a
second-pass message from Pr. Note that the initiator-robustness ensures that
the adversary who obtains the secret key of Pi can decide whether Pr invokes
normal algorithms or anamorphic algorithms, thus breaking the IND-WM
security of AM-AKE.

– It’s impossible for a plain AM-AKE to achieve the PR-DK security under
active attacks. Similarly, the adversary can impersonate Pi by sending amsgi

to Pr, and compute its double key dki upon receiving anamorphic message
amsgr from Pr. Note that the correctness of AM-AKE ensures the consistency
of double keys dki = dkr, and thus the adversary trivially knows Pr’s double
key dkr (= dki) and breaks the PR-DK security of AM-AKE.

Generic Construction of Plain AM-AKE with Relaxed Security. Let
AKE = (Gen, Init,DerR,DerI) be a two-pass AKE. Let KE be a two-pass key

Anamorphic Authenticated Key Exchange: Double Key Distribution 173

exchange scheme, like the Diffie-Hellman protocol [6] with the first message ga

and the second message gb. In the main body of this paper, this KE is accom-
plished by a KEM scheme with the pseudo-random KEM public key ˜pk as the
first message and the pseudo-random ciphertext ψ as the second message.

The anamorphic algorithms (aGen, aInit, aDerR, aDerI) of AM-AKE scheme
are almost the same as the normal ones, except that KE’s two messages ga and
gb are used for the (partial) randomnesses to generate AKE’s two anamorphic
messages amsgi, amsgr:

amsgi ← Init(ga| · · ·
︸ ︷︷ ︸

randomness

), (amsgr,Kr) ← DerR(amsgi; gb| · · ·
︸ ︷︷ ︸

randomness

),

where the public key and secret key are omitted from the input for simplicity.
If Init and DerR are partially randomness-recoverable, which means there are

recovering algorithms for Pi and Pr to recover ga and gb from amsgi and amsgr,
respectively, then the double key dk := gab is shared between Pi and Pr.

For passive attacks from the dictator, the uniformity of ga and gb guarantees
the (statistical) indistinguishability between normal algorithm Init and anamor-
phic algorithm aInit, and the (statistical) indistinguishability between DerR and
aDerR. Meanwhile, the DDH assumption guarantees the pseudo-randomness of
dk, even if the dictator obtains both Pi and Pr’s secret key and even the under-
lying randomness (ga| · · ·) and (gb| · · ·).

The initiator-robustness can be achieved if we replace randomness (gb| · · ·)
with (gb|σ := PRF(gab, amsgi)| · · ·) and set dk := PRF(gab, amsgi|amsgr) with
the help of a PRF. In this case Pi is able to tell the working mode of Pr by
testing whether σ = PRF(gab, amsgi).

In fact, lots of AKE constructions support partially randomness-recoverable
property. For example, in AKE under the SIG+KEM paradigm [17] and that
under the three-KEM paradigm [18], the underlying SIG and KEM have instanti-
ations with randomness-recoverable property [2,3,8,16]. Accordingly, such AKE
admits AM-AKE schemes with initiator-robustness and relaxed security.

Generic Construction of Robust AM-AKE with Strong Security. To
achieve (strong) IND-WM and PR-DK security and bypass the impossibility
results, we allow the anamorphic key generation algorithm (apk, ask, aux) ← aGen
of AM-AKE outputs a related auxiliary trapdoor aux along with the anamorphic
key-pair (apk, ask). The auxiliary message aux is only kept privately by the party
who generates it and does not need to share it with others.

To construct such AM-AKE, we require new properties for the two-pass AKE
scheme AKE = (Gen, Init,DerR,DerI), where Gen has secret extractability, and Init
and DerR have separable sub-algorithms.

Roughly speaking, secret extractability of Gen asks a simulating key genera-
tion algorithm SimGen and a secret extracting algorithm Extract satisfying the
following properties.

• SimGen outputs not only a key-pair (pk, sk) that is indistinguishable to the
output of Gen, but also a master key msk serving as the auxiliary trapdoor.

174 W. Wang et al.

• Extract(mski, pkr) = s = Extract(mskr, pki) for all (pki, ski,mski) ← SimGen
and (pkr, skr,mskr) ← SimGen. The extracting algorithm can extract a secret
s from one party’s master key and the other party’s public key and make
sure that two parties can compute the same secret s = Extract(mski, pkr) =
Extract(mskr, pki). The extracted secret s is pseudo-random even in the pres-
ence of ski and skr.

DoubleKeyGeneration. Now let SimGen play the role of aGen to generate
the anamorphic key-pair (apk, ask) and the auxiliary trapdoor aux := msk. Then
Pi and Pr use their key-pairs to run the AKE protocol and obtain the two pass
messages (msgi,msgr). At the same time, they can use Extract to compute a
common secret s = Extract(mski, pkr) = Extract(mskr, pki), and then use s as
the seed of PRF to compute the double key

dki = PRF(s, (amsgi, amsgr)) = dkr.

AchievingRobustness. To achieve robustness, Pi and Pr need to decide the
working mode of each other. Our method is that the party invoking anamorphic
algorithms provides a proof and embeds the proof in the message, and the other
party extracts the proof from the message and verifies the proof. If the proof is
valid, then the other party validates its double key and achieves its robustness.

Let us work on responder-robustness first. We require that the normal algo-
rithm Init can be divided into three sub-algorithms (fI,1, fI,2, Init) which com-
putes the three parts of msgi = (mi,1,mi,2,mi,3) respectively. Here fI,1, fI,2
make use of independent randomness di,1, di,2 to compute mi,1 := fI,1(di,1)
and mi,2 := fI,2(di,2), and Init uses independently chosen randomness di,3 to
compute mi,3 := Init(di,1, di,2, di,3) together with di,1, di,2. This is captured by
the 3-separability of Init.

If Pi invokes anamorphic algorithm aInit, then Pi can prove it by embedding
the PRF value PRF(s,mi,1) in di,2. Then the anamorphic aInit works as follows.

• amsgi = (mi,1,mi,2,mi,3) ← aInit : mi,1 := fI,1(di,1),

mi,2 := fI,2(di,2 = PRF(s,mi,1)), (mi,3, st) ← Init(di,1, di,2, di,3).

Next, upon receiving amsgi, Pr can check whether mi,2 = fI,2(PRF(s,mi,1)). If
yes, Pi must have invoked anamorphic algorithm aInit, and Pr will invoke aDerR
to output amsgr and accept its double key dkr = PRF(s, (amsgi, amsgr)), other-
wise invalidate it with dkr := ⊥. Note that in the normal mode, a uniform di,2

hardly collides with PRF(s,mi,1). We further require that fI,2 returns different
outputs on different inputs, which is captured with entropy-preserving property.
Then mi,2 := fI,2(di,2) with uniform di,2 hardly collides with fI,2(PRF(s,mi,1)).
So Pr can always correctly decide whether Pr invokes normal algorithm Init or
anamorphic algorithm aInit, and hence achieve responder-robustness.

In the same way, we can achieve initiator-robustness by requiring that the
normal algorithm DerR has 3-separability with sub-algorithms (fR,1, fR,2,DerR)
computing msgr = (mr,1,mr,2,mr,3) and fR,2 has the property of entropy-
preserving. More precisely, if Pr invokes anamorphic algorithm aDerR, then Pr

Anamorphic Authenticated Key Exchange: Double Key Distribution 175

can prove this fact by embedding the PRF value PRF(s, (mi,1,mr,1)) in dr,2.
Consequently, the anamorphic aDerR works as follows.

• amsgr = (mr,1, mr,2, mr,3) ← aDerR(amsgi) : mr,1 := fR,1(dr,1),

mr,2 := fR,2(dr,2 = PRF(s, (mi,1, mr,1))), (mr,3,Kr) ← DerR(amsgi, dr,1, dr,2, dr,3).

Upon receiving amsgr, Pi can check whether mr,2 = fR,2(PRF(s, (mi,1,mr,1))).
If yes, Pr must work in anamorphic mode, and Pi will accept its double key
dki = PRF(s, (amsgi, amsgr)), otherwise invalidate it with dki := ⊥. Meanwhile,
Pi also computes the session key with Ki ← DerI(apkr, aski, amsgr, st). Here the
anamorphic aDerI is exactly the normal DerI. With a similar analysis as above,
we have initiator-robustness.
Achieving StrongSecurity of IND-WM and PR-DK. We note that the dic-
tator does not know the auxiliary trapdoors mski,mskr, and hence the extracted
secret s is pseudo-random even if the dictator obtains the key-pairs (apki, aski)
and (apkr, askr).

Let us first consider strong IND-WM security. The difference between the
normal algorithm Init and the anamorphic aInit lies in that a random di,2 ←$ DI,2

is used in Init while a PRF value di,2 := PRF(s, fI,1(di,1)) with di,1 ←$ DI,1 is
used in aInit.

Now we require fI,1 have the property of entropy-preserving, so different
inputs to fI,1 will lead to different outputs overwhelmingly. Accordingly, every
invocation of aInit will result in fresh di,1 and thus fresh fI,1(di,1). Furthermore,
the freshness of fI,1(di,1) makes sure that di,2 := PRF(s, fI,1(di,1)) is pseudo-
random and indistinguishable to di,2 ←$ DI,2 used in Init. Therefore, Pi’s invok-
ing Init or invoking aInit is indistinguishable to the dictator who knows the secret
keys aski, askr and even the randomness (di,1, di,2, di,3), and does active attacks
with aski, askr.

By requiring entropy-preserving property for fR,1, we have a similar argument
showing that Pr’s invoking DerR or invoking aDerR is indistinguishable to the
dictator. We stress that the extracted secret s is pseudo-random to the dictator
and the dictator’s active attacks with message m to aDerR does not help it to
distinguish whether dr,2 = PRF(s, fR,1(dr,1)) or dr,2 ←$ DR,2 due to the freshness
of fI,1(dr,1) and the security of PRF.

Together with the fact that DerI = aDerI, we know that the AM-AKE has
strong indistinguishability of working mode (strong IND-WM) against the dic-
tator. Here “strong” is reflected in that the dictator is able to implement active
attacks with secret keys aski, askr and also able to obtain the randomness like
(di,1, di,2, di,3) and (dr,1, dr,2, dr,3).

As for strong PR-DK security, we first consider the dictator’s passive attacks,
the pseudo-randomness dk = PRF(s, (amsgi, amsgr)) is indistinguishable to a
random key dk ←$ DK, thanks to the freshness of (amsgi, amsgr) from the
entropy-preserving property of fI,1, fI,2, fR,1, fR,2. Next we consider the dictator’s
active attacks with message m. There are two cases.

176 W. Wang et al.

(1) This m leads to an invalid double key dk = ⊥ (but without s, the dic-
tator does not realize dk = ⊥) due to di,2 �= PRF(s,mi,1) or dr,2 �=
PRF(s, (mi,1,mr,1)).

(2) If di,2 = PRF(s,mi,1), then dk = PRF(s, (m, amsgr)) is a valid one, but
is still pseudo-random due to the freshness of amsgr generated by aDerR.
Similarly, if dr,2 = PRF(s, (mi,1,mr,1)), then dk = PRF(s, (amsgi,m)) is a
valid one, but is still pseudo-random due to the freshness of amsgi generated
by aInit.

Clearly, the pseudo-randomness of valid dk holds even if the dictator additionally
knows the randomness like (di,1, di,2, di,3) and (dr,1, dr,2, dr,3). This yields strong
PR-DK security.

1.3 Related Works

Anamorphic Cryptography. The notion of anamorphic encryption was pro-
posed in [20]. Later works in [1,5,13,14,25] improved and extended this notion
in different aspects. To be specific, more approaches to receiver-AME are pro-
vided in [1,14]. The work in [1] decouples the generation of the anamorphic
key-pair and the double key, and also proposes the notion of robustness for
AME. Sender-AME was considered and specific constructions of robust sender-
AME were presented in [25]. In [5], anamorphism is associated to homomorphic
encryption, and the double key is dismantled with a public part and a secret
part. In [13], anamorphism algorithms were extended to anamorphic signature.

Steganographic Key Exchange. Steganographic key exchange was firstly pro-
posed in [23]. It aims to share a pseudo-random covert key by exchanging a
sequence of seemingly normal messages. However, it only considered weak secu-
rity where the adversary only implements passive attacks. Later, [11] proposed
stronger requirement that permits the adversary to obtain the secret keys of
parties. Nevertheless, steganographic key exchange does not allow active attacks
in the security model, and hence much weaker than the security notions of AM-
AKE defined in our paper.

2 Preliminary

Let κ ∈ N denote the security parameter and let pp denote the public parameter
throughout the paper, and all algorithms, distributions, functions and adver-
saries take 1κ and pp as implicit inputs. For N ∈ N, define [N] = {1, 2, . . . , N}.
If x is defined by y or the value of y is assigned to x, we write x := y. For a set X ,
denote by |X | the number of elements in X , and denote by x ←$ X the procedure
of sampling x from X uniformly at random. If D is distribution, x ←$ D means
that x is sampled according to D. For an algorithm A, let y ← A(x; r) or simply
y ← A(x) denote running A with input x and randomness r and assigning the
output to y. “PPT” abbreviates probabilistic polynomial-time. Denote by poly

Anamorphic Authenticated Key Exchange: Double Key Distribution 177

some polynomial function and negl some negligible function in κ. Let ⊥ denote
the empty string/set, and all variables in our experiments are initialized to ⊥.

Due to space limitations, we present the definitions of pseudo-random func-
tion (PRF), digital signature (SIG) and its EUF-CMA security, key encapsula-
tion mechanism (KEM) and its IND-CPA security, two-pass authenticated key
exchange (AKE) and the DDH assumption in the full version [24].

3 Anamorphic Authenticated Key Exchange

In this section, we present the syntax of anamorphic authenticated key exchange
(AM-AKE), propose its robustness requirements, and define its security models.
We also establish three impossibility results for plain AM-AKE, and define its
relaxed security models.

3.1 Syntax of AM-AKE

Definition 1 ((Plain) Anamorphic Authenticated Key Exchange). A
two-pass authenticated key exchange scheme AKE = (Gen, Init,DerR,DerI) is
called an AM-AKE scheme if there exists a corresponding anamorphic version
of algorithms (aGen, aInit, aDerR, aDerI) with syntax defined below.

• (apk, ask, aux) ← aGen: The anamorphic key generation algorithm generates
a pair of anamorphic public/secret keys (apk, ask) as well as an auxiliary
message aux for storing extra secret information.

• (amsgi, st, aux
′
i) ← aInit(apkr, aski, auxi): The anamorphic initialization algo-

rithm takes an anamorphic public key apkr of a responder (say Pr), an
anamorphic secret key aski and an initiated auxiliary message auxi of an
initiator (say Pi) as input, and outputs a message amsgi, a state st and an
updated auxiliary message aux′

i for Pi.
• (amsgr,Kr, dkr) ← aDerR(apki, askr, auxr, amsgi): The derivation algorithm

for the responder takes an anamorphic public key apki of the initiator Pi, an
anamorphic secret key askr and an initiated auxiliary message auxr of the
responder Pr, and a message amsgi as input, and outputs a message amsgr,
a session key Kr and a double key dkr for Pr.

• (Ki, dki) ← aDerI(apkr, aski, aux
′
i, amsgr, st): The deterministic derivation

algorithm for the initiator takes an anamorphic public key apkr of the respon-
der Pr, an anamorphic secret key aski and an updated auxiliary message aux′

i

of the initiator Pi, a message amsgr and a state st as input, and outputs a
session key Ki and a double key dki for Pi.

Then the AM-AKE scheme is denoted by AM-AKE = ((Gen, Init,DerR,DerI),
(aGen, aInit, aDerR, aDerI)) where (Gen, Init,DerR,DerI) are called normal algo-
rithms while (aGen, aInit, aDerR, aDerI) are called anamorphic algorithms.

If aux = ⊥ or aux is generated independent of (apk, ask) in (apk, ask, aux) ←
aGen, we call AM-AKE is a plain AM-AKE.

178 W. Wang et al.

Fig. 1. The normal algorithms (with dotted boxes) and the anamorphic algorithms

(with gray boxes) of AM-AKE.

An execution of an AM-AKE scheme AM-AKE is shown in Fig. 1. Any party
can choose normal or anamorphic algorithms to run the AKE protocol, resulting
in different working modes.

Working Modes of AM-AKE and Correctness Requirements. AM-AKE
may work in the following three modes.

• Normal Mode. Both Pi and Pr invoke normal algorithms, i.e., executing the
AKE protocol with (Init,DerR,DerI). But in the protocol execution, Pi may
use either a normal key-pair (pki, ski) generated by Gen or an anamorphic
key-pair (apki, aski) generated by aGen, and so does Pr.

• Anamorphic Mode. Both Pi and Pr invoke anamorphic algorithms, i.e.,
executing the protocol with (aInit, aDerR, aDerI), where both Pi and Pr have
anamorphic keys (apki, aski, auxi), (apkr, askr, auxr) generated by aGen.

• Half Mode. One party invokes normal algorithms while the other invokes
anamorphic algorithms. There are two cases described below.

– Case I. Pi invokes anamorphic algorithms (aInit, aDerI) with its anamor-
phic keys (apki, aski, auxi), while Pr invokes normal algorithm DerR with
either normal key-pair (pkr, skr) or anamorphic key-pair (apkr, askr). In
this case, Pi and Pr execute the protocol with (aInit,DerR, aDerI).

– Case II. Pi invokes normal algorithms (Init,DerI) with either normal
key-pair (pki, ski) or anamorphic key-pair (apki, aski), while Pr invokes
anamorphic algorithm aDerR with its anamorphic keys (apkr, askr, auxr).
In this case, Pi and Pr execute the protocol with (Init, aDerR,DerI).

For each of the above three working modes, Pi and Pr should derive the
same session key Ki = Kr. Meanwhile, in the anamorphic mode, they should
also derive the same double key dki = dkr besides the same session key.

Anamorphic Authenticated Key Exchange: Double Key Distribution 179

Moreover, AM-AKE always considers adversaries(dictators) who has already
obtained secret keys ski/aski and skr/askr from users, the state st from the
initiator, and the derived session keys Ki,Kr from both initiator and respon-
der. Therefore, an adversary can always invoke DerI to obtain a session key K′

i.
To avoid the detection of using anamorphic algorithms in AM-AKE, a basic
requirement is that DerI and aDerI results in the same session key K′

i = Ki.
These capture the correctness of AM-AKE.

Formally, we present the definition of correctness as follows, where different
requirements serve for different working modes of AM-AKE. We also refer to
Table 1 for a summary of correctness requirements in different working modes.

Definition 2 (Correctness of AM-AKE). Let AM-AKE = ((Gen, Init,DerR,
DerI), (aGen, aInit, aDerR, aDerI)) be an AM-AKE scheme. We consider the cor-
rectness for its three modes.

Correctness for the normal mode. If both Pi and Pr invoke normal algo-
rithms in the AKE protocol, then it results in the same session key Ki = Kr,
no matter Pi (and Pr) uses normal key-pair or anamorphic key-pair. More
precisely, for any (pki, ski) := (pki, ski) generated by Gen or (pki, ski) :=
(apki, aski) generated by aGen, and for any (pkr, skr) := (pkr, skr) generated
by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

⎡
⎣Ki = Kr �= ⊥

∣∣∣∣∣∣
(msgi, st) ← Init(pkr, ski)

(msgr,Kr) ← DerR(pki, skr,msgi)

Ki ← DerI(pkr, ski,msgr, st)

⎤
⎦ = 1.

Correctness for the anamorphic mode. If both Pi and Pr invoke anamorphic
algorithms in the AKE protocol, then it results in the same session key Ki =
Kr and the same double key dki = dkr. Meanwhile, the normal derivation by
DerI using aski should also result in the same session key K′

i = Ki = Kr. More
precisely, for any (apki, aski, auxi) ← aGen and any (apkr, askr, auxr) ← aGen,
we have

Pr

⎡
⎢⎢⎣
Ki = Kr = K′

i �= ⊥
∧ dki = dkr �= ⊥

∣∣∣∣∣∣∣∣

(amsgi, st, aux
′
i) ← aInit(apkr, aski, auxi)

(amsgr,Kr, dkr) ← aDerR(apki, askr, auxr, amsgi)
(Ki, dki) ← aDerI(apkr, aski, aux

′
i, amsgr, st)

K′
i ← DerI(apkr, aski, amsgr, st)

⎤
⎥⎥⎦ = 1.

Correctness for the half mode. If one party invokes normal algorithms and
the other invokes anamorphic algorithms, then the half mode still results in the
same session key Ki = Kr. Moreover, the normal derivation DerI using aski

should also result in the same session key K′
i = Ki = Kr. More precisely, for

any (apki, aski, auxi) ← aGen, and for any (pkr, skr) := (pkr, skr) generated
by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

⎡
⎢⎢⎣Ki = Kr = K′

i �= ⊥

∣∣∣∣∣∣∣∣

(amsgi, st, aux
′
i) ← aInit(pkr, aski, auxi)

(msgr,Kr) ← DerR(apki, skr, amsgi)

(Ki, dki) ← aDerI(pkr, aski, aux
′
i,msgr, st)

K′
i ← DerI(pkr, aski,msgr, st)

⎤
⎥⎥⎦ = 1.

180 W. Wang et al.

On the other hand, for any (apkr, askr, auxr) ← aGen, and for any
(pki, ski) := (pki, ski) generated by Gen or (pki, ski) := (apki, aski) gener-
ated by aGen, we have

Pr

⎡
⎣Ki = Kr �= ⊥

∣∣∣∣∣∣
(msgi, st) ← Init(apkr, ski)

(amsgr,Kr, dkr) ← aDerR(pki, askr, auxr,msgi)

Ki ← DerI(apkr, ski, amsgr, st)

⎤
⎦ = 1.

3.2 Robustness of AM-AKE

In practice, it is hard for Pi and Pr to agree on the working mode beforehand.
So it happens AM-AKE works in half mode: one party invokes normal algo-
rithms while the other invokes anamorphic algorithms. Accordingly, Pi and Pr

can hardly agree on consistent double keys, so it is desirable for a party P invok-
ing anamorphic algorithms to detect this issue and invalidate its double key by
setting dk = ⊥. This is captured by robustness of AM-AKE.

Roughly speaking, robustness of AM-AKE requires that in the half mode,
except for the correctness of Ki = Kr, the party invoking anamorphic algorithms
can detect the half mode of AKE and hence set its double key dk := ⊥. According
to whether the party is the initiator or the responder, we respectively define
initiator-robustness and responder-robustness as follows.

Definition 3 (Initiator-Robustness). AM-AKE is called initiator-robust, if
for any (apki, aski, auxi) ← aGen, and for any (pkr, skr) := (pkr, skr) generated
by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

⎡
⎣dki = ⊥

∣∣∣∣∣∣
(amsgi, st, aux

′
i) ← aInit(pkr, aski, auxi)

(msgr,Kr) ← DerR(apki, skr, amsgi)

(Ki, dki) ← aDerI(pkr, aski, aux
′
i,msgr, st)

⎤
⎦ ≥ 1 − negl(κ).

Definition 4 (Responder-Robustness). AM-AKE is called responder-robust,
if for any (apkr, askr, auxr) ← aGen, and for any (pki, ski) := (pki, ski) generated
by Gen or (pki, ski) := (apki, aski) generated by aGen, we have

Pr

⎡
⎣dkr = ⊥

∣∣∣∣∣∣
(msgi, st) ← Init(apkr, ski)

(amsgr,Kr, dkr) ← aDerR(pki, askr, auxr,msgi)

Ki ← DerI(apkr, ski, amsgr, st)

⎤
⎦ ≥ 1 − negl(κ).

We stress that robustness is important for an AM-AKE scheme, because it’s
meaningless for a party to derive an un-agreed double key without the other
party realizing it. Indeed, using un-agreed double key in the later anamorphic
encryption/signature schemes has no effect at all.

For better illustration, we list all working modes of AM-AKE and the corre-
sponding correctness and robustness requirements in Table 1.

Anamorphic Authenticated Key Exchange: Double Key Distribution 181

Table 1. Working modes of AM-AKE and the corresponding correctness and robust-
ness requirements. In column Algorithms invoked by, it indicates the type of algo-
rithms invoked by Pi and Pr. In column Correctness, it shows the correctness require-
ments, where Ki and dki (resp., Kr and dkr) denote the session key and double key
derived by Pi (resp., Pr), and K′

i denotes the session key derived from DerI when
Pi invokes anamorphic algorithms. In column Robustness, it shows the robustness
requirements, where Init-Rob./Resp-Rob. denotes Initiator-Robustness/Responder-
Robustness and “−” means no requirement.

Working Mode Algorithms invoked by
Correctness

Robustness

of AM-AKE Pi Pr Init-Rob.Resp-Rob.

Normal Normal Normal Ki = Kr − −

Half
Normal Anamorphic Ki = Kr − dkr = ⊥

Anamorphic Normal Ki = Kr = K′
i dki = ⊥ −

Anamorphic Anamorphic Anamorphic Ki = Kr = K′
i ∧ dki = dkr − −

3.3 Security Model for AM-AKE

In this subsection, we introduce the security models for AM-AKE. To this end,
we need to capture the dictator(government)’s demands and behaviors to for-
malize the adversary. We consider the setting of multiple parties. In practice, the
dictator may force every party involved in AM-AKE to surrender their secret
keys, and reveal the session keys along with the state of the initiator in any
completed AM-AKE session. Moreover, the dictator may impersonate any party
and conduct active attacks because it owns the secret keys of all parties.

Intuitively, the security for AM-AKE requires that such a dictator cannot
tell whether AM-AKE is working in the normal mode or in other modes. This is
called Indistinguishability of Working Modes (IND-WM). Moreover, the double
keys dk derived from the anamorphic mode will be used later by the anamorphic
public-key primitives. To guarantee the security of the anamorphic public-key
primitives, we have to require Pseudo-Randomness of Double Keys (PR-DK).

We also define the corresponding strong version of IND-WM and PR-DK by
allowing the dictator additionally receive the internal randomness that all parties
used in the seemingly benign AKE sessions, i.e., receiving the true randomness
when normal algorithms are invoked while receiving simulated randomness when
anamorphic algorithms are used. Especially, we require that there exists PPT
simulator Sim = (SimI,SimR), where SimI can explain a randomness R′

i used by
aInit as a randomness Ri of Init, and similarly, SimR can explain a randomness
R′

r used by aDerR as a randomness Rr of DerR.1 These result in strong IND-WM
and strong PR-DK, denoted by sIND-WM and sPR-DK respectively.

More precisely, we define the formal security models with IND-WM/sIND-WM
experiments ExpIND-WM

AM-AKE,A,N/ExpsIND-WM
AM-AKE,A,Sim,N in Fig. 2 and PR-DK/sPR-DK

experiments ExpPR-DK
AM-AKE,A,N/ExpsPR-DK

AM-AKE,A,Sim,N in Fig. 3. To be clearer, we explain
the local variables used in these security experiments.

1 Note that the (anamorphic) derivation algorithms DerI and aDerI for the initiator
are typically deterministic without using any randomness.

182 W. Wang et al.

• sID : The identifier of a specific AKE session.
• init[sID] : The initiator of session sID.
• resp[sID] : The responder of session sID.
• modeI[sID] : The working mode of the initiator in session sID.

• Mout
I [sID]/M in

I [sID] : The message sent and received by the initiator in session sID.

• Mout
R [sID]/M in

R [sID] : The message sent and received by the responder in session sID.
• S[sID]: The state of the initiator in session sID.
• Aux[sID]: The updated auxiliary message generated by the initiator in session sID.
• KI[sID] (resp., KR[sID]): The session key generated by the initiator (resp., responder) in

session sID.
• DK[sID,P ∈ {I,R}] : The double key generated by the initiator when P = I or by the

responder when P = R in session sID.
• DK : The key space of double keys.
• ONew(i, r) : The oracle establishes a new session for initiator Pi and responder Pr.
• OInit(sID) : The oracle invokes the initialization algorithm for session sID.
• ODerR(sID, m) : The oracle invokes the derivation algorithm with input message m for the

responder of session sID.
• ODerI(sID, m) : The oracle invokes the derivation algorithm with input message m for the

initiator of session sID.
• OTestDK(sID,P ∈ {I,R}) : The oracle provides either the double key generated by P of session

sID or a random string. Note that this oracle can be invoked only once for each session to
avoid trivial attack.

Especially, to formalize the IND-WM/sIND-WM security, we first require that
the normal key-pair (pk, sk) generated by Gen and the anamorphic key-pair
(apk, ask) generated by aGen are computationally indistinguishable, and then we
can choose the keys of all parties via aGen. During the experiments (cf. Fig. 2),
the adversary is allowed to designate the working modes of the initiator and the
responder by providing additionally variables wI,wR ∈ {N,A} to oracles OInit

and ODerR, respectively. The adversary is asked to tell whether the oracles run
the protocols in the normal modes or in the modes specified by the adversary.

As for the PR-DK/sPR-DK security (cf. Fig. 3), all parties work in the anamor-
phic modes, and the adversary is asked to distinguish real double keys dk from
uniformly chosen keys via a OTestDK oracle. To avoid trivial attacks, we define
the notion of matching sessions as follows, and we require that the adversary
cannot test the double keys of matching sessions.

Definition 5 (Matching Sessions). For two sessions sID, sID∗ and two par-
ties P,P ∈ {I,R}, we say (sID,P) and (sID∗,P) match, if the same parties are
involved (i.e., init[sID], resp[sID]) = (init[sID∗], resp[sID∗])), the messages sent
and received are the same (i.e., (M in

P [sID],Mout
P [sID]) = (Mout

P
[sID∗],M in

P
[sID∗])),

and the parties are of different type (i.e., P = {I,R}\P). In particular, we define

M[sID,P] :=
{

(sID∗,P)
∣

∣

∣

∣

(init[sID], resp[sID]) = (init[sID∗], resp[sID∗]) ∧ P = {I,R} \ P
∧ (M in

P [sID],Mout
P [sID]) = (Mout

P
[sID∗],M in

P
[sID∗])

}

as the set of matching sessions with (sID,P).

Now we are ready to present the formal definition of the security of AM-AKE.

Definition 6 (Security of AM-AKE). The security of AM-AKE contains
indistinguishability of working modes (IND-WM) and pseudo-randomness of dou-
ble keys (PR-DK).

Anamorphic Authenticated Key Exchange: Double Key Distribution 183

Fig. 2. Security experiments for defining IND-WM (without gray and dotted boxes)

and sIND-WM (with gray boxes) of AM-AKE, and experiments for defining

relaxed IND-WM (with dotted boxes) and relaxed sIND-WM (with both gray and

dotted boxes) of plain AM-AKE, where OWM := {ONew, OInit, ODerR, ODerI}. Here Ri ,

R′
i , Rr and R′

r are uniformly sampled from the corresponding randomness spaces.

– Indistinguishability of Working Modes (IND-WM). For any PPT
adversary A and any N = poly(κ), it holds that

∣

∣ Pr[A(pk, sk) = 1] −
Pr[A(apk, ask) = 1]

∣

∣ ≤ negl(κ), where (pk, sk) ← Gen and (apk, ask, aux) ←
aGen, and

∣

∣ Pr
[

ExpIND-WM
AM-AKE,A,N = 1

] − 1
2

∣

∣ ≤ negl(κ). (1)

– Pseudo-Randomness of Double Keys (PR-DK). For any PPT adversary
A and any N = poly(κ), it holds that

∣

∣ Pr
[

ExpPR-DK
AM-AKE,A,N = 1

] − 1
2

∣

∣ ≤ negl(κ). (2)

The strong security of AM-AKE includes strong indistinguishability of work-
ing modes (sIND-WM) and strong pseudo-randomness of double keys (sPR-DK),

184 W. Wang et al.

Fig. 3. Security experiments for defining PR-DK (without gray and dotted boxes) and

sPR-DK (with gray boxes) of AM-AKE, and experiments for defining relaxed PR-DK

(with dotted boxes) and relaxed sPR-DK (with both gray and dotted boxes) of plain

AM-AKE, where OPRD := {ONew, OInit, ODerR, ODerR, OTestDK}. Here R′
i and R′

r are
uniformly sampled from the corresponding randomness spaces.

which require that there exists PPT simulator Sim = (SimI,SimR) such that the
above (1) and (2) hold for ExpsIND-WM

AM-AKE,A,Sim,N and ExpsPR-DK
AM-AKE,A,Sim,N experiments.

3.4 Impossibility Results and Relaxed Security for Plain AM-AKE

In this subsection, we show three impossibility results for (two-pass) plain AM-
AKE, and then define proper relaxed security to circumvent the impossibility
results. More precisely, we show the impossibility results via the following three
theorems, whose formal proofs are shown in the full version [24], and we refer to
Subsect. 1.2 for a high-level overview of the proofs. Roughly speaking, for a (two-
pass) plain AM-AKE, the adversary A holds both (apki, aski) and (apkr, askr),
and thus a null aux = ⊥ or independent aux does not offer any advantage to Pi

or Pr over A, and A is capable of doing whatever Pi or Pr can do.

Anamorphic Authenticated Key Exchange: Double Key Distribution 185

Theorem 1. It is impossible for a two-pass plain AM-AKE scheme AM-AKE
to achieve responder-robustness.

Theorem 2. If a plain AM-AKE scheme AM-AKE is initiator-robust, then it
is impossible for AM-AKE to achieve the IND-WM/sIND-WM security.

Theorem 3. It is impossible for a plain AM-AKE scheme AM-AKE to achieve
the PR-DK/sPR-DK security.

To circumvent the above impossibility results for plain AM-AKE, we weaken
the IND-WM/sIND-WM security and PR-DK/sPR-DK security, by restricting
the active attacks by adversary. More precisely, we disallow the adversary
to query ODerR(sID,m,wR = A) with its own messages m when wR = A
in the IND-WM/sIND-WM experiments, and disallow the adversary to query
ODerR(sID,m) and ODerI(sID,m) with its own messages m in the PR-DK/sPR-DK
experiments, respectively. These yield relaxed IND-WM/sIND-WM and relaxed
PR-DK/sPR-DK securities, with experiments shown in Fig. 2 and Fig. 3 with
dashed boxes .

Definition 7 (Relaxed Security of Plain AM-AKE). The relaxed
security of plain AM-AKE contains relaxed IND-WM/sIND-WM and relaxed
PR-DK/sPR-DK, which are defined the same as those (non-relaxed versions)
of AM-AKE in Definition 6, except that the experiments are replaced by
Exprelaxed-IND-WM

AM-AKE,A,Sim,N/Exprelaxed-sIND-WM
AM-AKE,A,Sim,N/Exprelaxed-PR-DK

AM-AKE,A,Sim,N/Exprelaxed-sPR-DK
AM-AKE,A,Sim,N in

Fig. 2 and Fig. 3, respectively.
In the full version [24], we present a generic construction of plain AM-

AKE with relaxed security, which not only achieves relaxedsIND-WM and
relaxed sPR-DK security, but also enjoys initiator-robustness. We also discuss
how to achieve responder-robustness by relying on more passes to evade the first
impossibility result. (See Subsect. 1.2 for a high-level overview of this plain AM-
AKE construction and its security analysis.) Then we show how to instantiate
the generic construction from the popular SIG+KEM and three-KEM paradigms
for constructing AKE and get the corresponding plain AM-AKE schemes.

4 Generic Construction of Robust & Strongly-Secure
AM-AKE from AKE

In this section, we present a generic construction of robust and strongly-secure
AM-AKE from a basic AKE with the help of a PRF. To make the construction
possible, the underlying AKE should be equipped with some new properties,
which are defined in Subsect. 4.1. We call such AKE as qualified AKE. Then we
show the generic construction in Subsect. 4.2 and present its security proof in
Subsect. 4.3.

186 W. Wang et al.

4.1 New Properties for Functions and Algorithms

To characterize the conditions on the basic AKE scheme, in this subsection, we
first define three new properties for general functions and algorithms. Roughly
speaking, the entropy-preserving property of a function asks the function out-
put to have negligible guessing probability on uniformly random input. The
η-separable property of an algorithm means that the first η − 1 parts of the out-
put can be computed publicly and in a way independent of the input. The secret
extractability of a key generation algorithm Gen requires that the key-pair (pk, sk)
from Gen can be perfectly simulated by an algorithm SimGen which additionally
outputs a master key msk, and it enables the extraction of a pseudo-random
secret s from msk and pk′ of another party via an algorithm Extract.

Definition 8 (Entropy-Preserving Function). A function f : X → Y is
entropy-preserving, if for any y ∈ Y, it holds Pr [f(x) = y |x ←$ X] ≤ negl(κ).

Definition 9 (η-Separable Algorithm). Let η ∈ N, and let (y, z) ← Alg(x)
be a PPT algorithm which inputs x and outputs (y, z). We say that Alg is η-
separable for generating y if Alg can be implemented with (f1, . . . , fη−1,Alg) as
follows, where fj : Dj → {0, 1}∗ is a publicly and efficiently computable function
for j ∈ [η − 1], and Alg is a PPT algorithm.

• (y, z) ← Alg(x): For j ∈ [η − 1], sample dj ←$ Dj and compute mj := fj(dj);
invoke (mη, z) ← Alg(x, d1, . . . , dη−1); output y := (m1, . . . ,mη) and z.

Definition 10 (Secret Extractability of Gen). Let Gen be a key generation
algorithm that outputs (pk, sk).2 We say Gen supports secret extractability if there
exist two PPT algorithms SimGen and Extract satisfying the following properties.

• (pk, sk,msk) ← SimGen : it is a simulated key generation algorithm that out-
puts a simulated key-pair (pk, sk) together with a master key msk.

• s ← Extract(mski, pkr) : it is a deterministic extracting algorithm that takes a
master key mski and a public key pkr as input, and outputs a secret s ∈ DE.

Identically Distributed Key-Pairs. The simulated key-pair has the same dis-
tribution as the normal pair, i.e., the following two distributions are identical:

{(pk, sk) | (pk, sk) ← Gen} ≡ {(pk, sk) | (pk, sk,msk) ← SimGen}.

Extracting Correctness. For any (pki, ski,mski) ← SimGen and (pkr,
skr,mskr) ← SimGen, it holds that Extract(mski, pkr) = Extract(mskr, pki).

Pseudo-Randomness of the Extracting. For any PPT adversary A, we have

AdvPR-ExtGen,A (κ) :=
∣∣ Pr

[A(pki, pkr, ski, skr, s0) = 1
] − Pr

[A(pki, pkr, ski, skr, s1) = 1
]∣∣ ≤ negl(κ),

where (pki, ski,mski) ← SimGen, (pkr, skr,mskr) ← SimGen, s0 :=
Extract(mski, pkr), and s1 ←$ DE.

Based on the three new properties, we are ready to describe the requirements
on the basic AKE and present the generic construction of AM-AKE from it.
2 Gen can be the key generation algorithm of any public-key primitive, like AKE, SIG,

KEM, etc.

Anamorphic Authenticated Key Exchange: Double Key Distribution 187

4.2 Construction of AM-AKE from AKE and PRF

Let AKE = (Gen, Init,DerR,DerI) be a two-pass AKE scheme that satisfies:

– Gen has secret extractability, supported by algorithms (SimGen,Extract) and
secret space DE as per Definition 10;

– Init is 3-separable for generating msgi, supported by (fI,1, fI,2, Init) as per Def-
inition 9, i.e., Init(pkr, ski) generates (msgi, st) by sampling di,1 ←$ DI,1,
di,2 ←$ DI,2, computing mi,1 := fI,1(di,1), mi,2 := fI,2(di,2), invoking
(mi,3, st) ← Init(pkr, ski, di,1, di,2), and setting msgi := (mi,1,mi,2,mi,3);

– DerR is 3-separable for generating msgr, supported by (fR,1, fR,2,DerR) as
per Definition 9, i.e., DerR(pki, skr,msgi) generates (msgr,Kr) by sampling
dr,1 ←$ DR,1,dr,2 ←$ DR,2, computing mr,1 := fR,1(dr,1), mr,2 := fR,2(dr,2),
invoking (mr,3,Kr) ← DerR(pki, skr,msgi, dr,1, dr,2), and setting msgr :=
(mr,1,mr,2,mr,3);

– The functions fI,1, fI,2, fR,1, fR,2 associated with Init and DerR are entropy-
preserving as per Definition 8.

We call such AKE as qualified AKE, with requirements summarized in
Table 2. Moreover, let PRF : DE × {0, 1}∗ −→ DI,2 × DR,2 × {0, 1}κ be a pseudo-
random function. For ease of exposition, we parse the output of PRF as three
parts, i.e., PRFI/PRFR/PRFD : DE × {0, 1}∗ −→ DI,2/DR,2/{0, 1}κ, such that
PRF(s,m) = (PRFI(s,m), PRFR(s,m),PRFD(s,m)) for all s ∈ DE, m ∈ {0, 1}∗.

Table 2. Requirements for AKE = (Gen, Init,DerR,DerI) to be qualified for constructing
AM-AKE.

Qualified AKE Gen Init DerR

Requirements secret extractability
3-separable for msgi with 3-separable for msgr with

entropy-preserving fI,1, fI,2 entropy-preserving fR,1, fR,2
Supportive
Func./Alg.

(SimGen,Extract) (fI,1, fI,2, Init) (fR,1, fR,2,DerR)

Now we convert AKE to an AM-AKE scheme AM-AKE = ((Gen, Init,DerR,
DerI), (aGen, aInit, aDerR, aDerI)) with the help of PRF, where the anamorphic
algorithms are described below. (See also Fig. 4 for an illustration of AM-AKE.)

• (apk, ask, aux) ← aGen : it invokes the simulated key generation algorithm
(pk, sk,msk) ← SimGen, and sets (apk, ask) := (pk, sk) and aux := msk.

• (amsgi, st, aux
′
i) ← aInit(apkr, aski, auxi = mski) : it first extracts a secret

si := Extract(mski, apkr). Next it randomly chooses di,1 ←$ DI,1 and com-
putes mi,1 := fI,1(di,1). Then it computes di,2 := PRFI(si,mi,1) ∈ DI,2,
mi,2 := fI,2(di,2), and invokes (mi,3, st) ← Init(apkr, aski, di,1, di,2). Finally,
it returns (amsgi := (mi,1,mi,2,mi,3), st, aux′

i := (si, amsgi)).

188 W. Wang et al.

• (amsgr,Kr, dkr) ← aDerR(apki, askr, auxr = mskr, amsgi = (mi,1,

mi,2,mi,3)) : it first randomly chooses dr,1 ←$ DR,1 and computes mr,1 :=
fR,1(dr,1). Next it extracts a secret sr := Extract(mskr, apki), and computes
dr,2 := PRFR(sr, (mi,1,mr,1)) ∈ DR,2, mr,2 := fR,2(dr,2), invokes (mr,3,Kr) ←
DerR(apki, askr, amsgi, dr,1, dr,2), and sets amsgr := (mr,1,mr,2,mr,3). After-
wards, it checks whether mi,2 = fI,2(PRFI(sr,mi,1)) holds. If the check passes,
then it sets dkr := PRFD(sr, (amsgi, amsgr)) ∈ {0, 1}κ as the double key; oth-
erwise, it sets dkr := ⊥. Finally, it returns (amsgr,Kr, dkr).

• (Ki, dki) ← aDerI(apkr, aski, aux
′
i = (si, amsgi), amsgr = (mr,1,mr,2,mr,3),

st) : it first checks whether mr,2 = fR,2(PRFR(si, (mi,1,mr,1))) holds. If yes,
it sets dki := PRFD(si, (amsgi, amsgr)) ∈ {0, 1}κ as the double key; else,
dki := ⊥. Finally, it invokes Ki ← DerI(apkr, aski, amsgr, st), and returns
(Ki, dki).

Fig. 4. Generic construction of the AM-AKE scheme AM-AKE based on AKE and

PRF, where dotted boxes appear only in normal algorithms (Gen, Init,DerR,DerI),

and gray boxes appear only in anamorphic algorithms (aGen, aInit, aDerR, aDerI).

Let us compare the normal algorithms and the anamorphic ones.

– The anamorphic algorithm aGen invokes SimGen to produce a simulated key-
pair (apk, ask) := (pk, sk) as well as a master secret aux := msk. By the
property of secret extractability of the normal algorithm Gen, the anamorphic
key-pair has the same distribution as the normal key-pair generated by Gen.

Anamorphic Authenticated Key Exchange: Double Key Distribution 189

– The normal algorithm Init makes use of random coins di,1 and di,2 for the
generation of msgi. The anamorphic algorithm aInit can be regarded as the
normal Init taking random coins di,1 and specific coins di,2 = PRFI(si,mi,1),
with si a secret extracted from the master secret mski of Pi and apkr of Pr.

– The normal algorithm DerR makes use of random coins dr,1, dr,2 for the gen-
eration of msgr and the session key Kr. The anamorphic algorithm aDerR
has two parts: one part can be regarded as the normal DerR taking ran-
dom coins dr,1 and specific coins dr,2 = PRFR(sr, (mi,1,mr,1)) to output
msgr and key Kr; the other part is in charge of generating the double
key dkr := PRFD(sr, (amsgi, amsgr)) or dkr := ⊥ depending on whether
mi,2 = fI,2(PRFI(sr,mi,1)) holds, with sr a secret derived from the master
secret mskr of Pr and apki of Pi.

– The normal algorithm DerI is deterministic and outputs the session key
Ki. The anamorphic algorithm aDerI functions identically as DerI for the
generation of key Ki, but it is also in charge of generating the double
key dki := PRFD(si, (amsgi, amsgr)) or dki := ⊥ depending on whether
mr,2 = fR,2(PRFR(si, (mi,1,mr,1))) holds.

Note that the correctness of the underlying AKE guarantees that Ki = Kr

for every possible choices of di,1, di,2, dr,1, dr,2. Thus even using specific coins in
the anamorphic algorithms, we also have Ki = Kr. This shows the correctness
of Ki = Kr in all working modes. Moreover, in the anamorphic mode, we have
dki = PRFD(si, (amsgi, amsgr)) = PRFD(sr, (amsgi, amsgr)) = dkr since
si = Extract(mski, apkr) = Extract(mskr, apki) = sr holds by the extracting
correctness of Gen’s secret extractability, and thus the correctness of double key
holds.

Below we analyze the robustness of our AM-AKE.

Initiator-Robustness. Suppose that Pi invokes anamorphic algorithms aInit
and aDerI while Pr invokes normal algorithm DerR, then Pr computes mr,2 :=
fR,2(dr,2) by using a uniformly chosen dr,2 ←$ DR,2. When Pi invokes the
anamorphic algorithm aDerI to check if mr,2 = fR,2(PRFR(si, (mi,1,mr,1)))
holds, we know that fR,2(PRFR(si, (mi,1,mr,1))) is independent of mr,2 :=
fR,2(dr,2) since dr,2 ←$ DR,2 is chosen independently of si,mi,1,mr,1 by
Pr. Thus for every possible value of fR,2(PRFR(si, (mi,1,mr,1))), the check
mr,2 := fR,2(dr,2) = fR,2(PRFR(si, (mi,1,mr,1))) can pass with only a negli-
gible probability by the entropy-preserving property of fR,2 and due to the
randomness of dr,2 ←$ DR,2, and consequently, Pi will set dki := ⊥ with
overwhelming probability.

Responder-Robustness. Suppose that Pi invokes normal algorithms Init and
DerI while Pr invokes anamorphic algorithm aDerR, then Pi computes mi,2 :=
fI,2(di,2) by using a uniformly chosen di,2 ←$ DI,2. When Pr invokes the
anamorphic algorithm aDerR to check whether mi,2 = fI,2(PRFI(sr,mi,1))
holds, we know that here fI,2(PRFI(sr,mi,1)) is independent of mi,2 :=
fI,2(di,2) since di,2 ←$ DI,2 is chosen independently of sr,mi,1 by Pi. Thus
for every possible value of fI,2(PRFI(sr,mi,1)), the check mi,2 := fI,2(di,2) =

190 W. Wang et al.

fI,2(PRFI(sr,mi,1)) can pass with only a negligible probability by the entropy-
preserving property of fI,2 and due to the randomness of di,2 ←$ DI,2, and
consequently, Pr will set dkr := ⊥ overwhelmingly.

4.3 Security Proofs

We show the strong security of the AM-AKE proposed in Subsect. 4.2.

Theorem 4 (Strong Security of AM-AKE). Let AKE be a qualified two-pass
AKE scheme satisfying the requirements listed in Table 2, and let PRF be a
pseudo-random function. Then the AM-AKE constructed in Subsect. 4.2 achieves
both the sIND-WM and sPR-DK security.

The proof of Theorem 4 consists of two parts: the sIND-WM security follows
from Lemma 1 and Lemma 2, and the sPR-DK security follows from Lemma 3.

Lemma 1. For any adversary A, it holds that
∣

∣ Pr
[A(pk, sk) = 1

] −
Pr

[A(apk, ask) = 1
]∣

∣ = 0, where (pk, sk) ← Gen and (apk, ask, aux) ← aGen.

Proof of Lemma 1. In AM-AKE, the anamorphic key-pair (apk, ask) is gen-
erated by SimGen, and thus has the same distribution as the norm pair (pk, sk)
generated by Gen, according to the secret extractability of Gen.
�
Lemma 2. There exists PPT simulator Sim = (SimI,SimR), such that for any
PPT adversary A and N = poly(κ),

∣

∣ Pr
[

ExpsIND-WM
AM-AKE,A,Sim,N = 1

]− 1
2

∣

∣ ≤ negl(κ).

Lemma 3. There exists PPT simulator Sim = (SimI,SimR), such that for any
PPT adversary A and N = poly(κ),

∣

∣ Pr
[

ExpsPR-DK
AM-AKE,A,Sim,N = 1

]− 1
2

∣

∣ ≤ negl(κ).

Due to space limitations, the proofs of Lemma 2 and Lemma 3 are shown
in the full version [24]. Here we only present the description of the simulator
Sim = (SimI,SimR) used in these proofs, and we refer to Subsect. 1.2 for an
overview of the proofs.

• Ri ← SimI(apkr, aski, auxi = mski, R
′
i) : Here R′

i is an internal randomness
used in aInit, and thus includes di,1 as well as the randomness used in Init,
denoted by di,3, i.e., R′

i = (di,1, di,3). This algorithm aims to explain R′
i as

a randomness Ri for Init. To this end, it computes si := Extract(mski, apkr),
mi,1 := fI,1(di,1), di,2 := PRFI(si,mi,1), and outputs Ri := (di,1, di,2, di,3).

• Rr ← SimR(apki, askr, auxr = mskr,m,R′
r) : Here R′

r is an internal random-
ness used in aDerR, and thus includes dr,1 as well as the randomness used
in DerR, denoted by dr,3, i.e., R′

r = (dr,1, dr,3). This algorithm aims to
explain R′

r as a randomness Rr for DerR. To this end, it parses m =
(mi,1,mi,2,mi,3), computes sr := Extract(mskr, apki), mr,1 := fR,1(dr,1),
dr,2 := PRFR(sr, (mi,1,mr,1)) and outputs Rr := (dr,1, dr,2, dr,3).

Anamorphic Authenticated Key Exchange: Double Key Distribution 191

5 Instantiations of Robust and Strongly-Secure AM-AKE

To instantiate the AM-AKE generic construction proposed in Sect. 4, we can
employ any pseudo-random function PRF, and thus we only need to instantiate
the underlying qualified AKE, i.e., AKE satisfying the requirements in Table 2.

In this section, we will show that the popular SIG+KEM paradigm [17] and
three-KEM paradigm [18] for constructing AKE yield qualified AKE schemes,
as long as the underlying SIG and/or KEM satisfy certain conditions. Then by
plugging them into the generic construction in Sect. 4, we immediately obtain
concrete AM-AKE schemes achieving initiator-robustness, responder-robustness
and strong security. More precisely, in Subsect. 5.1, we show how to obtain
qualified AKE and AM-AKE via the SIG+KEM paradigm, and in Subsect. 5.2,
we show how to obtain them via the three-KEM paradigm.

5.1 Instantiation from The SIG+KEM Paradigm

Qualified AKE via The SIG+KEM Paradigm. We first recall the
SIG+KEM paradigm of constructing two-pass AKE according to [17]. Let
KEM = (GenKEM,Encap,Decap) be a KEM scheme, SIG = (GenSIG,Sign,Vrfy)
a signature scheme and H a suitable hash function. The resulting AKEKS =
(GenKS, InitKS,DerRKS,DerIKS) is described as follows (see also Fig. 5 with dotted
boxes for the paradigm).

• (pk, sk) ← GenKS : Invoke (pk, sk) ← GenSIG and return (pk, sk).

• (msgi, st) ← InitKS(pkr, ski) : Invoke (˜pk, ˜sk) ← GenKEM, σi ← Sign(ski, ˜pk),

and output msgi := (˜pk, σi) and the state st := (˜pk, ˜sk).
• (msgr,Kr) ← DerRKS(pki, skr,msgi = (˜pk, σi)) : If Vrfy(pki,

˜pk, σi) = 0:

output ⊥; if Vrfy(pki,
˜pk, σi) = 1: invoke (K,ψ) ← Encap(˜pk),

σr ← Sign(skr, (˜pk, ψ)), and output msgr := (ψ, σr) and Kr :=
H(K, pki, pkr,msgi,msgr).

• Ki ← DerIKS(pkr, ski,msgr = (ψ, σr), st = (˜pk, ˜sk)) : If Vrfy(pkr, (˜pk, ψ), σr) =

0: output ⊥; if Vrfy(pkr, (˜pk, ψ), σr) = 1: invoke K ← Decap(˜sk, ψ) and output
Ki := H(K, pki, pkr,msgi,msgr).

Below we will show that the AKEKS is qualified for constructing AM-AKE, if
the underlying SIG and KEM satisfy the following requirements (see also Table 3).

Requirements for SIG = (GenSIG,Sign,Vrfy):

– GenSIG has secret extractability, supported by (SimGen,Extract) as per Defi-
nition 10;

– Sign is 2-separable for generating σ, supported by (fS,Sign) as per Definition
9, i.e., Sign(sk,m) generates σ by sampling dS ←$ DS, computing σ1 :=
fS(dS), invoking σ2 ← Sign(sk,m, dS), and setting σ := (σ1, σ2);

– The function fS is entropy-preserving as per Definition 8.

192 W. Wang et al.

Fig. 5. The SIG+KEM paradigm for AKE (with dotted boxes) and the resulting
robust and strongly-secure AM-AKE via our generic construction in Sect. 4 (with nor-

mal algorithms in dotted boxes and anamorphic ones in gray boxes).

Table 3. Requirements for the building blocks SIG = (GenSIG, Sign,Vrfy) and KEM =
(GenKEM,Encap,Decap) of the KEM-SIG paradigm in order to get a qualified AKEKS.

Qualified AKEKS
SIG KEM

GenSIG Sign GenKEM Encap

Requirements secret extract.
2-separable with

entropy-preserv. entropy-preserv.
entropy-preserv. fS

Supportive
Func./Alg.

(SimGen,Extract) (fS, Sign) pk := GenKEM(dG) ψ := Encap(dK)

Requirements forKEM = (GenKEM,Encap,Decap):

– The function GenKEM(·) : DG −→ {0, 1}∗ is entropy-preserving, where GenKEM
functions the same as GenKEM that takes a randomness dG ∈ DG as input but
outputs only pk (and does not output sk).

– For any public key pk, the function Encap(pk; ·) : DK −→ {0, 1}∗ is entropy-
preserving, where Encap(pk; ·) functions the same as Encap(pk) that takes a
randomness dK ∈ DK as input but outputs only ψ (and does not output K).

With such SIG and KEM, we prove that the resulting AKEKS is a qualified
AKE via the following Lemma 4. Then by plugging the qualified AKEKS into our

Anamorphic Authenticated Key Exchange: Double Key Distribution 193

generic construction in Sect. 4, we immediately get a robust and strongly-secure
two-pass AM-AKE scheme, as shown in Fig. 5 with gray boxes .

Lemma 4. If SIG and KEM meet the above requirements, then the AKEKS

yielded by the SIG+KEM paradigm is a qualified AKE for constructing AM-
AKE.

Proof. To prove that AKEKS = (GenKS, InitKS,DerRKS,DerIKS) is a qualified one,
we show that all requirements listed in Table 2 are satisfied, i.e., GenKS has secret
extractability, InitKS is 3-separable with entropy-preserving functions (fI,1, fI,2),
and DerRKS is 3-separable with entropy-preserving functions (fR,1, fR,2).

• Since GenKS=GenSIG, the secret extract of GenKS follows from that of GenSIG.
• The process of InitKS(pkr, ski) for generating (msgi = (˜pk, σi =

(σi,1, σi,2)), st = (˜pk, ˜sk)) can be decomposed into three steps, since Sign is
2-separable:
1. dG ←$ DG and ˜pk := GenKEM(dG). So we can define fI,1 := GenKEM, and

then the entropy-preserving property of fI,1 follows from that of GenKEM.
2. dS,i ←$ DS and σi,1 := fS(dS,i). So we can define fI,2 := fS, and then the

entropy-preserving property of fI,2 follows from that of fS.
3. (˜pk, ˜sk) := GenKEM(dG), σi,2 ← Sign(ski, ˜pk, dS,i), and set st := (˜pk, ˜sk).

This process can be defined as (σi,2, st) ← InitKS(pkr, ski, dG, dS,i).
Consequently, InitKS is 3-separable with two entropy-preserving functions
(fI,1 = GenKEM, fI,2 = fS) and an algorithm InitKS.

• Similarly, the process of DerRKS(pki, skr,msgi = (˜pk, σi)) for generating
(msgr = (ψ, σr = (σr,1, σr,2)),Kr) can be decomposed into three steps:
1. dK ←$ DK and ψ := Encap(˜pk; dK). So we can define fR,1 := Encap(˜pk; ·),

and then the entropy-preserving of fR,1 follows from that of Encap(˜pk; ·).
2. dS,r ←$ DS and σr,1 := fS(dS,r). So we can define fR,2 := fS, and then

the entropy-preserving property of fR,2 follows from that of fS.
3. If Vrfy(pki,

˜pk, σi) = 1: (K,ψ) := Encap(˜pk; dK), σr,2 ←
Sign(skr, (˜pk, ψ), dS,r), and set Kr := H(K, pki, pkr,msgi,msgr). Oth-
erwise output ⊥. This process can be defined as (σr,2,Kr) ←
DerRKS(pki, skr,msgi = (˜pk, σi), dK, dS,r).

Consequently, DerRKS is 3-separable with two entropy-preserving functions
(fR,1 = Encap(˜pk; ·), fR,2 = fS) and an algorithm DerRKS.
�

Concrete Instantiations. To obtain concrete qualified AKE scheme via the
SIG+KEM paradigm, it remains to present concrete SIG and KEM schemes
satisfying the requirements described above (cf. Table 3). More precisely, we will
show that any IND-CPA secure KEM suffices, and then for SIG, we present a
concrete instantiation over asymmetric pairing groups.

Concrete KEM. In fact, any IND-CPA secure KEM has entropy-preserving
GenKEM and Encap, which output only pk and ψ respectively. Intuitively, if an

194 W. Wang et al.

independently generated (˜pk, ˜sk) ← Gen or (˜K, ˜ψ) ← Encap(pk) leads to ˜pk = pk

or ˜ψ = ψ with non-negligible probability for a target pk or ψ, an adversary can
use the accompanying ˜sk or ˜K to break the IND-CPA security of KEM easily.
More precisely, we have the following lemma with proof shown in the full version
[24].

Lemma 5 (Any IND-CPA Secure KEM has Entropy-Preserving GenKEM
and Encap). If KEM = (GenKEM,Encap,Decap) is a IND-CPA secure KEM
scheme, then the function GenKEM(·) that outputs only pk and the function
Encap(pk; ·) that outputs only ψ are entropy-preserving.

Concrete SIG. Let pp = (G1,G2,GT , p, e, g1, g2, gT) be a description of asym-
metric pairing group, where G1,G2,GT are cyclic groups of prime order p,
e : G1 × G2 → GT is a non-degenerated bilinear pairing, and g1, g2, gT are
generators of G1,G2,GT respectively. Moreover, let H : {0, 1}∗ → Zp be a hash
function. We present a concrete scheme SIGDDH = (GenDDH,Sign,Vrfy) as follows.

• (pk, sk) ← GenDDH : it picks x ←$ Zp, and sets (pk := e(g1, g2)x, sk := gx
2).

• σ ← Sign(sk = gx
2 ,m) : it chooses r ←$ Zp randomly, then computes σ1 := gr

1,
d := H(m,σ1) ∈ Zp, σ2 := g2

x·d+r, and outputs σ := (σ1, σ2).
• 0/1 ← Vrfy(pk = e(g1, g2)x,m, σ = (σ1, σ2)) : it computes d := H(m,σ1) ∈

Zp, and outputs 1 if and only if e(g1, σ2) = e(g1, g2)x·d · e(σ1, g2) holds.

Intuitively, the scheme SIGDDH can be viewed as a variant of the Schnorr
signature scheme [22], by lifting it from (Zp,G) of a cyclic group to (G2,GT) of
the asymmetric pairing group. It is routine to check the correctness of SIGDDH.
Next we show its EUF-CMA security with proof shown in the full version [24],
since the proof is essentially the same as that for the Schnorr scheme.

Theorem 5 (Security of SIGDDH). If the DDH assumption holds over G1 and
H is a random oracle, then the proposed SIGDDH achieves EUF-CMA security.

Below we show that SIGDDH satisfies the requirements listed in Table 3 via
the following two lemmas.

Lemma 6 (Secret Extractability of GenDDH). The key generation algorithm
GenDDH has secret extractability based on the DDH assumption over G2.

Proof. We first describe the supportive algorithms SimGenDDH and ExtractDDH

as follows, which take pp as an implicit input, the same as GenDDH.

• (pk, sk,msk) ← SimGenDDH : it picks x ←$ Zp, and sets (pk := e(g1, g2)x, sk :=
gx
2 ,msk := x).

• s ← ExtractDDH(mski = xi, pkr = e(g1, g2)xr) : it computes s := pkmski
r =

e(g1, g2)xrxi .

Anamorphic Authenticated Key Exchange: Double Key Distribution 195

Next we show that the proposed (SimGenDDH,ExtractDDH) satisfy the require-
ments of secret extractability (cf. Definition 10). It is easy to see that the key-
pair (pk, sk) generated by SimGenDDH has the same distribution as the normal
pair generated by GenDDH, and check that the extraction correctness holds, i.e.,
ExtractDDH(mski, pkr) = e(g1, g2)xixr = ExtractDDH(mskr, pki).

It remains to prove the pseudo-randomness of ExtractDDH(mski, pkr) =
e(g1, g2)xixr conditioned on (pki = e(g1, g2)xi , pkr = e(g1, g2)xr , ski = gxi

2 , skr =
gxr
2). More precisely, for any adversary A against the pseudo-randomness of the

extracting, we construct an algorithm B against the DDH assumption over G2

as follows.
Given a DDH challenge (pp, gxi

2 , gxr
2 , T), B wants to distinguish T = gxixr

2

from T ←$ G2, where xi, xr ←$ Zp. To this end, B sets ski := gxi
2 , skr := gxr

2 ,
computes pki := e(g1, gxi

2) = e(g1, g2)xi , pkr := e(g1, gxr
2) = e(g1, g2)xr , s∗ :=

e(g1, T), gives (pki, pkr, ski, skr, s
∗) to A, and returns the output of A to its own

challenger. It is easy to see that B’s simulation of (pki, pkr, ski, skr) is perfect.
If T = gxixr

2 , then s∗ := e(g1, T) = e(g1, g2)xixr = ExtractDDH(mski, pkr); if
T ←$ G2, then s∗ := e(g1, T) is uniformly distributed over GT . Consequently,
B is able to distinguish T = gxixr

2 from T ←$ G2, as long as A can distinguish
(pki, pkr, ski, skr, s

∗ = ExtractDDH(mski, pkr)) from (pki, pkr, ski, skr, s
∗ ←$ GT),

and we have AdvPR-ExtGenDDH,A(κ) ≤ AdvDDH
G2,B(κ), which is negligible under the DDH

assumption over G2. This shows the pseudo-randomness of the extracting.
�
Lemma 7 (2-Separability of SignDDH with Entropy-Preserving fS).
SignDDH is 2-separable for generating σ, and the supportive function fS is
entropy-preserving.

Proof. It is easy to see that the process of Sign(sk = gx
2 ,m) generating σ =

(σ1, σ2) can be decomposed into two parts: the first part includes r ←$ Zp and
σ1 := gr

1, and the second part computes σ2 := g2
x·H(m,σ1)+r. Consequently, Sign

is 2-separable for generating σ = (σ1, σ2), supported by (fS,Sign), where fS is
defined by fS(r) := gr

1 for r ∈ Zp and Sign is defined by Sign(sk = gx
2 ,m, r) :=

g
x·H(m,gr

1)+r
2 . Moreover, fS is entropy-preserving since for any h ∈ G1, the prob-

ability Pr[fS(r) = gr
1 = h|r ←$ Zp] = 1/p is negligible.
�

5.2 Instantiation from The Three-KEM Paradigm

Qualified AKE via The Three-KEM Paradigm. We first recall the
three-KEM paradigm of constructing two-pass AKE according to [18]. Let
KEM = (GenKEM,Encap,Decap) and KEM0 = (GenKEM0 ,Encap0,Decap0) be
two KEM schemes, and H a suitable hash function. The resulting AKE3K =
(Gen3K, Init3K,DerR3K,DerI3K) is described as follows (see also Fig. 6 with dotted
boxes).

• (pk, sk) ← Gen3K : Invoke (pk, sk) ← GenKEM and return (pk, sk).

• (msgi, st) ← Init3K(pkr, ski) : Invoke (˜pk, ˜sk) ← GenKEM0 , (Ki, ψi) ←
Encap(pkr), and output msgi := (˜pk, ψi) and the state st := (˜sk,Ki).

196 W. Wang et al.

• (msgr,Kr) ← DerR3K(pki, skr,msgi = (˜pk, ψi)) : Invoke Ki ← Decap(skr, ψi),

(˜K, ˜ψ) ← Encap0(˜pk) and (Kr, ψr) ← Encap(pki). Output msgr := (˜ψ,ψr)
and session key Kr := H(pki, pkr,msgi,msgr,Ki,Kr, ˜K).

• Ki ← DerI3K(pkr, ski,msgr = (˜ψ,ψr), st = (˜sk,Ki)) :

Invoke ˜K ← Decap0(˜sk, ˜ψ), Kr ← Decap(ski, ψr), and output Ki :=
H(pki, pkr,msgi,msgr,Ki,Kr, ˜K).

Table 4. Requirements for the building blocks KEM = (GenKEM,Encap,Decap) and
KEM0 = (GenKEM0 ,Encap0,Decap0) of the three-KEM paradigm in order to get a qual-
ified AKE3K.

Qualified AKE3K
KEM KEM0

GenKEM Encap GenKEM0 Encap0

Requirements secret extract. entropy-preserv. entropy-preserv. entropy-preserv.

Supportive
Func./Alg.

(SimGen,Extract) ψ := Encap(dK) p̃k := GenKEM(dG) ψ̃ := Encap(dK0)

Fig. 6. The three-KEM paradigm for AKE (with dotted boxes) and the resulting
robust and strongly-secure AM-AKE via our generic construction in Sect. 4 (with nor-

mal algorithms in dotted boxes and anamorphic ones in gray boxes).

Below we will show that AKE3K is qualified for constructing AM-AKE, if the
underlying KEM and KEM0 satisfy the following requirements (see also Table 4).

Anamorphic Authenticated Key Exchange: Double Key Distribution 197

Requirements forKEM = (GenKEM,Encap,Decap) :

– GenKEM has secret extractability, supported by (SimGen,Extract) as per Def-
inition 10;

– For any public key pk, the function Encap(pk; ·) : DK −→ {0, 1}∗ is entropy-
preserving, where Encap(pk; ·) functions the same as Encap(pk) that takes a
randomness dK ∈ DK as input but outputs only ψ (and does not output K).

Requirements forKEM0 = (GenKEM0 ,Encap0,Decap0) :

– The function GenKEM0(·) : DG −→ {0, 1}∗ is entropy-preserving, where
GenKEM0 functions the same as GenKEM0 that takes a randomness dG ∈ DG as
input but outputs only ˜pk (and does not output ˜sk).

– For any public key ˜pk, the function Encap0(˜pk; ·) : DK0 −→ {0, 1}∗ is entropy-
preserving, where Encap0(˜pk; ·) is the same as Encap0(˜pk) that takes a ran-
domness dK0 ∈ DK0 as input but outputs only ˜ψ (and does not output ˜K).

With such KEM and KEM0, we prove that the resulting AKE3K is a qualified
AKE via the following Lemma 8. The proof of Lemma 8 is quite similar to that
of Lemma 4 in Subsect. 5.1, and thus we show it in the full version [24].

Lemma 8. If KEM and KEM0 meet the above requirements, the AKE3K yielded
by the three-KEM paradigm is a qualified AKE for constructing AM-AKE.

Then by plugging the qualified AKE3K into our generic construction in Sect. 4,
we immediately get a robust and strongly-secure two-pass AM-AKE scheme, as
shown in Fig. 6 with gray boxes .

Concrete Instantiations. To obtain concrete qualified AKE scheme via the
three-KEM paradigm, it remains to present concrete KEM schemes KEM and
KEM0 satisfying the requirements described above (cf. Table 4). Specially, as
shown in Lemma 5 in Subsect. 5.1, any IND-CPA secure KEM has entropy-
preserving GenKEM and Encap, so we can instantiate KEM0 with any IND-CPA
secure KEM scheme. For KEM, we present a concrete instantiation over asym-
metric pairing groups.

Concrete KEM schemeKEM. Let pp = (G1,G2,GT , p, e, g1, g2, gT) be a descrip-
tion of asymmetric pairing group. We present a concrete KEM scheme
KEMDDH = (GenDDH,Encap,Decap) as follows:

• (pk, sk) ← GenDDH : it picks x ←$ Zp, and sets (pk := e(g1, g2)x, sk := gx
2).

• (K,ψ) ← Encap(pk = e(g1, g2)x) : it chooses r ←$ Zp randomly, then com-
putes ψ := gr

1, K := (e(g1, g2)x)r = e(g1, g2)xr, and outputs (K,ψ).
• K ← Decap(sk = gx

2 , ψ = gr
1) : it computes K := e(gr

1, g
x
2) and outputs K.

It is routine to check the correctness of KEMDDH. Next we show its IND-CPA
security based on the DDH assumption over G1 via the following theorem. The
proof is quite straightforward and thus we show it in the full version [24].

198 W. Wang et al.

Theorem 6 (Security of KEMDDH). If the DDH assumption holds over G1,
then the proposed KEMDDH achieves IND-CPA security.

Below we show that KEMDDH satisfies the requirements listed in Table 4, i.e.,
its key generation algorithm GenDDH has secret extractability, and the function
Encap(pk; ·) that outputs only ψ is entropy-preserving. Since GenDDH is identical
to that of SIGDDH in Subsect. 5.1, as shown in Lemma 6, GenDDH has secret
extractability under the DDH assumption over G2. Moreover, by Lemma 5, the
function Encap(pk; ·) is entropy-preserving by the IND-CPA security of KEMDDH.

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments. The authors were partially supported by National Natural Science Foundation
of China (Grant Nos. 61925207, 62372292), Guangdong Major Project of Basic and
Applied Basic Research (2019B030302008), the National Key R&D Program of China
under Grant 2022YFB2701500, and Young Elite Scientists Sponsorship Program by
China Association for Science and Technology (YESS20200185).

References

1. Banfi, F., Gegier, K., Hirt, M., Maurer, U., Rito, G.: Anamorphic encryption,
revisited. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT
2024. pp. 3–32. Springer Nature Switzerland, Cham (2024)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.)
EUROCRYPT’94. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (May 1995).
https://doi.org/10.1007/BFb0053428

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (May 2004). https://doi.org/10.1007/978-3-540-24676-3 4

4. Boyd, C., Cliff, Y., González Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
08. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (Jul 2008)

5. Catalano, D., Giunta, E., Migliaro, F.: Anamorphic encryption: New construc-
tions and homomorphic realizations. In: Joye, M., Leander, G. (eds.) Advances in
Cryptology – EUROCRYPT 2024. pp. 33–62. Springer Nature Switzerland, Cham
(2024)

6. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions
on Information Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.
1055638

7. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018). https://
doi.org/10.1007/978-3-319-96881-0 4

8. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-
9, https://www.sciencedirect.com/science/article/pii/0022000084900709

9. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated
key exchange and signatures with tight security in the standard model. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700.
Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-
030-84259-8 23

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23

Anamorphic Authenticated Key Exchange: Double Key Distribution 199

10. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). IETF RFC 2409 (Pro-
posed Standard) (1998)

11. Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert backdoored
encryption: Security against adversaries that decrypt all ciphertexts. In: Blum, A.
(ed.) ITCS 2019. vol. 124, pp. 42:1–42:20. LIPIcs (Jan 2019). https://doi.org/10.
4230/LIPIcs.ITCS.2019.42

12. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https://
doi.org/10.1007/978-3-030-77870-5 5

13. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: Anamorphic sig-
natures: Secrecy from a dictator who only permits authentication! In: Handschuh,
H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 759–790.
Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38545-2 25

14. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: The self-anti-
censorship nature of encryption: On the prevalence of anamorphic cryptogra-
phy. Proc. Priv. Enhancing Technol. 2023(4), 170–183 (2023). https://doi.org/
10.56553/POPETS-2023-0104, https://doi.org/10.56553/popets-2023-0104

15. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64834-3 27

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X 16

17. Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with
tight security. Journal of Cryptology 35(4), 26 (Oct 2022). https://doi.org/10.
1007/s00145-022-09438-y

18. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4 20

19. Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key
exchange in the QROM. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part IV. LNCS, vol. 14441, pp. 401–433. Springer, Heidelberg (Dec 2023). https://
doi.org/10.1007/978-981-99-8730-6 13

20. Persiano, G., Phan, D.H., Yung, M.: Anamorphic encryption: Private commu-
nication against a dictator. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022, Part II. LNCS, vol. 13276, pp. 34–63. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-07085-3 2

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446, https://www.rfc-editor.org/info/
rfc8446

22. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0 22

23. von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch,
J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341. Springer, Heidelberg
(May 2004). https://doi.org/10.1007/978-3-540-24676-3 20

https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-031-38545-2_25
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/popets-2023-0104
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-3-031-07085-3_2
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-24676-3_20

200 W. Wang et al.

24. Wang, W., Han, S., Liu, S.: Anamorphic authenticated key exchange: Double
key distribution under surveillance. Cryptology ePrint Archive, Paper 2024/1438
(2024), https://eprint.iacr.org/2024/1438

25. Wang, Y., Chen, R., Huang, X., Yung, M.: Sender-anamorphic encryption reformu-
lated: Achieving robust and generic constructions. In: Guo, J., Steinfeld, R. (eds.)
ASIACRYPT 2023, Part VI. LNCS, vol. 14443, pp. 135–167. Springer, Heidelberg
(Dec 2023). https://doi.org/10.1007/978-981-99-8736-8 5

26. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key exchange
protocol in the CK model. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 171–198. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/978-3-030-
40186-3 9

https://eprint.iacr.org/2024/1438
https://doi.org/10.1007/978-981-99-8736-8_5
https://doi.org/10.1007/978-3-030-40186-3_9
https://doi.org/10.1007/978-3-030-40186-3_9

Succinct Arguments

RoK, Paper, SISsors Toolkit
for Lattice-Based Succinct Arguments

(Extended Abstract)

Michael Klooß1, Russell W. F. Lai2, Ngoc Khanh Nguyen3,
and Micha�l Osadnik2(B)

1 ETH Zurich, Zurich, Switzerland
michael.klooss@inf.ethz.ch

2 Aalto University, Espoo, Finland
michal.osadnik@aalto.fi

3 King’s College London, London, UK

Abstract. Lattice-based succinct arguments allow to prove bounded-
norm satisfiability of relations, such as f(s) = t mod q and ‖s‖ ≤ β,
over specific cyclotomic rings OK, with proof size polylogarithmic in
the witness size. However, state-of-the-art protocols require either 1) a
super-polynomial size modulus q due to a soundness gap in the security
argument, or 2) a verifier which runs in time linear in the witness size.
Furthermore, construction techniques often rely on specific choices of K
which are not mutually compatible. In this work, we exhibit a diverse
toolkit for constructing efficient lattice-based succinct arguments:
(i) We identify new subtractive sets for general cyclotomic fields K and

their maximal real subfields K+, which are useful as challenge sets,
e.g. in arguments for exact norm bounds.

(ii) We construct modular, verifier-succinct reductions of knowledge for
the bounded-norm satisfiability of structured-linear/inner-product
relations, without any soundness gap, under the vanishing SIS
assumption, over any K which admits polynomial-size subtractive
sets.

(iii) We propose a framework to use twisted trace maps, i.e. maps of the
form τ(z) = 1

N
· TraceK/Q(α · z), to embed Z-inner-products as R-

inner-products for some structured subrings R ⊆ OK whenever the
conductor has a square-free odd part.

(iv) We present a simple extension of our reductions of knowledge for
proving the consistency between the coefficient embedding and the
Chinese Remainder Transform (CRT) encoding of s over any cyclo-
tomic field K with a smooth conductor, based on a succinct decom-
position of the CRT map into automorphisms, and a new, simple
succinct argument for proving automorphism relations.

Combining all techniques, we obtain, for example, verifier-succinct argu-
ments for proving that s satisfying f(s) = t mod q has binary coefficients,
without soundness gap and with polynomial-size modulus q.

M. Klooß—Work done at Aalto University. The author’s affiliation changed before
publication.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 203–235, 2025.
https://doi.org/10.1007/978-981-96-0935-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_7&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_7

204 M. Klooß et al.

1 Introduction

A fundamental and recurring task in constructing lattice-based succinct argu-
ments is to prove knowledge of a committed vector s ∈ Rm over a ring R which
satisfies norm-bound constraints, such as ‖s‖ ≤ β. For instance, such protocols
could be extended directly into a succinct argument for structured languages [11],
combined with quadratic functional commitments to yield succinct arguments
for NP [1,11]1, or transformed into polynomial commitment schemes [2,12,16]
which allow compiling polynomial interactive oracle proofs into succinct argu-
ments.

As evidenced in prior works [7,22,24], the currently most efficient lattice-
based (non-)succinct arguments operate over rings of integers R := Z[ζ] of
cyclotomic number fields K := Q(ζ), where ζ is a primitive f-th root of unity for
f = poly. Indeed, the ability to construct exponential-sized low-norm challenge
sets over R allows the aforementioned protocols to achieve negligible soundness
in one-shot while maintaining relatively small lattice parameters. However, this
comes at a cost of the following two complications.

Correctness Gap. The first one can be described as the correctness gap.
Namely, most of the recursion-based protocols start with the initial witness
s0 := s, and in the i-th iteration, an honest prover somehow folds the “cur-
rent” witness si−1 into a new one si; thus shrinking the dimension of the wit-
ness, but simultaneously, increasing its norm. At the end, say after μ itera-
tions, the prover outputs the final witness sμ of small (potentially constant)
dimension. Suppose there exists some γ such that for all i = 1, . . . , μ we have
‖si‖ ≤ γ · ‖si−1‖. Then, in order to maintain correctness, one must inherently
choose q > γμ · β ≥ ‖sμ‖. We call this phenomenon the correctness gap, since if
our only task were to commit to s using a standard lattice-based commitment
scheme, setting q = O(β) would suffice2.

Soundness Gap. A more concerning issue is the soundness gap. A vast major-
ity of prior works based on cyclotomic rings encounter the problem that the
extracted witness s̄ is not necessarily short, but it is of the fractional form
s̄ := z̄/c̄ mod q, where q is the proof system modulus and both z̄ ∈ Rm and c̄ ∈ R
are somewhat short (but ‖z̄‖ is larger than β). Even though this relaxed sound-
ness suffices to construct basic primitives, such as signature schemes [14,22],
verifiable encryption [23], or few-time verifiable random functions [15], it is not
enough when the required functionality naturally involves proving exact norm
bounds (e.g. in set membership and range proofs). But especially in the context
of succinct arguments built in a recursive manner, dealing with the slack and
other norm-growth related issues have shown to have enormous impact on set-
ting up the parameters [2,3,10], such as picking super-polynomial modulus q,
which makes the aforementioned schemes seem barely practical.
1 [1,11] relied on the knowledge-kRISIS assumption for the knowledge soundness of

well-formedness of commitments. However, the assumption has subsequently been
cryptanalysed [13,29], rendering the security proofs vacuous.

2 For presentation, we omitted the factors related to the security parameter λ.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 205

Prior Works. Since the soundness gap seemed to be the main efficiency bottle-
neck of lattice-based succinct arguments, several works naturally tried to address
this issue first. To begin with, Albrecht and Lai [3] designed a lattice-based argu-
ment of polylogarithmic size, where the extracted witness s̄ is somewhat short.
The key ingredient of [3] was the notion of subtractive sets. Namely, a set S ⊆ R
is called subtractive if for any two distinct elements c, c′ ∈ S, c − c′ is invertible
over the ring R. Since the invertibility is independent of the proof system modu-
lus q, the latter can be picked freely so that the inverse (c−c′)−1 is short relative
to q. Further, it was shown how to construct such subtractive sets of cardinality
p in cyclotomic rings of prime power conductors f := pk. Thus, using subtractive
sets as a challenge space for the verifier, one can argue that the extracted wit-
ness s̄ := z̄/c̄ has low norm, because 1/c̄ itself is short. However, this approach
comes at a cost of non-negligible soundness error (due to the size of subtractive
sets), and therefore some sort of soundness amplification is necessary. Further-
more, the protocol itself still does not manage to prove the exact norm bound,
i.e. ‖s‖ ≤ β. In fact, in the context of recursive succinct arguments, the norm of
the extracted witness can only be upper bounded by γμ ·θO(μ) ·β for some θ ≈ f.

In the setting of power-of-two cyclotomic rings, the strategy above falls apart
completely since there exists no subtractive set of size larger than two [3,21].
Hence, a different methodology has recently been developed. Notably, Beullens
and Seiler [7] proposed a succinct argument, LaBRADOR, for proving ‖s‖2 ≤ β2

(among other relations), inspired by the following two-fold approach from [24]:

(i) Approximate shortness proof. Prove that s is somewhat short.
(ii) Zq-Inner product proof. Prove that (〈ψ(s), ψ(s)〉 (mod q)) ≤ β2, where ψ(s)

is the coefficient vector of s.

Combining (i) and (ii), one can argue that for a large enough modulus q no
modulo wrap-around occurs, and therefore 〈ψ(s), ψ(s)〉 ≤ β2 holds over Z.

In order to prove (i) without relying on subtractive sets, LaBRADOR uses the
Johnson-Lindenstrauss random projection technique [4,17,26]. The idea is that
the verifier will first generate an integer matrix B with short (binary or ternary)
values as a challenge, and the prover then outputs ψ(v) := Bψ(s) (mod q).
Afterwards, the verifier checks whether ψ(v) is of low norm (which is true in
the honest executions, since both B and ψ(s) are). Finally, the prover needs to
prove wellformedness of ψ(v), i.e. the linear equation Bψ(s) = ψ(v) over Zq. The
crucial soundness argument is that if the extracted s was not short, then with
high probability (dictated by the number of rows of B), ψ(v) = Bψ(s) would
not have low norm, which leads to a contradiction. Unfortunately, the random
projection strategy inherently requires the verifier to generate the matrix B,
which itself has length O(m). As a consequence, the verifier runtime becomes
essentially linear in the witness size, which may not be satisfying in certain
real-world use cases.

We highlight that both (i) and (ii) require some kind of inner product proof
over Zq; either between two committed vectors, or between one public and one
committed vector. Since the underlying protocol natively operates over cyclo-
tomic rings R = Z[ζ], it is essential to transform Z-relations into equivalent ones

206 M. Klooß et al.

over the ring R. To this end, it was shown in [24] that for any two elements
a, b ∈ R of a power-of-two cyclotomic ring, the constant term3 of a · b̄ ∈ R is
exactly equal to the inner product 〈ψ(a), ψ(b)〉 ∈ Z, where ψ(a), ψ(b) are the
coefficient vectors of a, b respectively and ·̄ here denotes the complex conjuga-
tion. This observation allows us to translate proving inner products and linear
relations over integers into proving statements about constant terms over the
ring R. Finally, LaBRADOR makes use of the fact that inner product relations
over R are “folding-friendly” and can be efficiently proven in a recursive manner.

Interestingly, LaBRADOR also managed to circumvent the correctness gap
by taking inspiration from the “decompose-then-hash” paradigm used in lattice-
based Merkle trees [28]. Intuitively, using the notation above for describ-
ing recursive-based protocols, instead of folding the intermediate witness si−1

directly into a new one si, an honest prover would first decompose si−1 (w.r.t.
some decomposition base b) into multiple vectors (si−1,j)j∈[�] of much smaller
norm and then fold all of them together into a new witness si

4. By carefully pick-
ing various parameters, such as b, one can ensure that, in an honest execution,
if ‖si−1‖ ≤ β, then we must have ‖si‖ ≤ β. This technique was also adopted in
a recent folding scheme called LatticeFold [8].

Bridging the Gap. At a high level, the aforementioned approaches to prove
shortness seem somewhat orthogonal. For f = pk, where p = poly is a large
enough prime, one can rely on subtractive sets to efficiently prove approximate
shortness 1 with succinct verification [11]. However, it is unknown how to trans-
late proving Zq-relations, as in 1, into equivalent relations over odd prime-power
cyclotomic rings. On the other hand, for f = 2k, one can apply the Johnson-
Lindenstrauss projection strategy to prove both 1 and 1, but at the cost of slow
verification time.

Hence, it is an important research question whether there exist cyclotomic
(or other) rings R, which contain subtractive sets of fairly large size, and at the
same time, expose efficient packing and batching techniques for turning relations
over Z (or more generally, other base rings) to relations over R. An affirmative
answer, together with existing optimisations, would then yield a practical lattice-
based succinct argument for proving exact norm bounds with fast verification.

1.1 Our Contributions

In this work, we present a versatile toolkit for constructing lattice-based succinct
arguments that eliminate correctness and soundness gaps while maintaining suc-
cinct verification. Our contributions are outlined as follows:

Succinct Arguments for Bounded-Norm Satisfiability. We design a
lattice-based succinct argument system for bounded-norm satisfiability of
structured linear and inner-product relations. Our system retains features of
previous protocols, such as transparent setup, quasi-linear-time prover, and

3 We say that a0 ∈ Z is the constant term of the ring element a =
∑ϕ(f)

i=0 aiζ
i ∈ Z[ζ].

4 For soundness, the prover needs to prove additional relations involving (si−1,j)j∈[�].

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 207

polylogarithmic-time verifier, while simultaneously eliminating any correctness
and soundness gaps. Consequently, our argument system achieves asymptotically
the most attractive proof sizes, which are smaller by at least a factor of Ω(log2 λ)
smaller than the prior state-of-the-art constructions (see Fig. 1 for more details).
Furthermore, our protocol’s modular design allows for straightforward analysis
and customisation, making it adaptable to various applications.

Subtractive Sets. Our protocol uses subtractive sets as challenge sets. While
subtractive sets for prime-power cyclotomic rings are well-known, the non-prime-
power case seems less studied. Motivated by the need of non-prime-power rings
(e.g. for the twisted trace technique, see below) in some applications, we iden-
tify a subtractive set for cyclotomic rings Z[ζf] of non-prime-power conductor f
with a cardinality of f/fmax, where fmax is the largest prime-power divisor of f.
Additionally, we identify subtractive sets over the real subrings Z[ζf + ζ−1

f], with
a cardinality of (p + 1)/2 for prime-power conductors f = pk and
f/(2fmax)� for
non-prime-power f.

Embedded Z-Inner-Products via Twisted Trace. While our protocol sup-
ports proving inner products over rings such as Z[ζf], higher-layer applications
may require proving inner products over Z, e.g. for proving that a commit-
ted Z-vector is binary. Unfortunately, efficient methods for embedding Z-inner
products to Z[ζf]-inner products were only known for f = 2d being a power of
2, which is problematic because subtractive sets over Z[ζ2d] are of cardinality
at most 2. We extend the existing embedding method to any ring of the form
Z[ζ2d]⊗Z[ζp0 + ζ−1

p0
]⊗ . . .⊗Z[ζpk−1 + ζ−1

pk−1
], where p0, . . . , pk−1 are distinct odd

primes. This is achieved by replacing the “constant term map” with a “twisted
trace map” defined as: τ(z) = 1

N Trace(α · z).

Succinct Consistency Proof for CRT. Another typical way of embedding
Z-relations into Z[ζf]-relations is via the Chinese Remainder Transform (CRT).
However, this requires proving that the witness vector is committed in both the
coefficient embedding and its CRT coefficients consistently, and known consis-
tency proofs are not succinct. Using the fact that the CRT over cyclotomic fields
with smooth conductors can be succinctly represented through a few automor-
phism evaluations, we derive a succinct argument for the consistency between
the commitment of the coefficient embedding and that of the CRT coefficients.
At the core of our succinct consistency proof is a new succinct argument that
verifies whether two committed vectors are related by an entry-wise automor-
phism. Due to space constraints, we refer to the full version of this work for
detailed CRT-related results.

2 Technical Overview

Throughout this work, we will assume that K = Q(ζ) is a cyclotomic field with
conductor f and degree ϕ = ϕ(f) = poly, and OK = Z[ζ] is its ring of integers.
For some of our results, we will further require K+ = Q(ζ + ζ−1), the maximal
real subfield of K, and its ring of integers OK+ = Z[ζ + ζ−1]. Depending on the

208 M. Klooß et al.

scheme assumptions proof size

[9] M-SIS O
(
log6 m · λ2

/log λ
)

[11] vSIS O
(
log5 m · λ2

/log2 λ
)

[16] PowerBASIS O
(
log5 m · λ2

/log2 λ
)

[2] M-SIS O
(
log5 m · λ2

/log2 λ
)

[12] SIS O(log3 m · λ2)

This work vSIS O
(
log3 m · λ2

/log2 λ
)

Fig. 1. Asymptotic efficiency of our commitment opening proof (in bits) and compari-
son with prior interactive proofs which support succinct poly[log m, λ] verification time.
Here, λ is the security parameter and m is the length of the committed vector. For each
construction, the proof size corresponds to the soundness error poly[λ, log m] ·2−λ. The
SIS-related parameters were chosen with respect to the methodology from [27] for run-
ning BKZ on block size b = O(λ). For [9,11,16] as well as our scheme, which only
achieve inverse-polynomial soundness in one-shot, we applied a standard soundness
amplification by parallel-repeating the protocol by a factor of O(λ/ log λ). We high-
light that for the sizes reported from [2,12], the knowledge extractor runs in expected
super-polynomial time in m and λ.

context of a specific section, we will use R ⊂ OK to denote a ring of interest to
that section. Unless specified, we measure the norm of elements and vectors by
their �2-norm over the canonical embedding over K. Our results can be divided
into three parts, which we overview in Sects. 2.1, 2.2, and 2.3 respectively.

2.1 Subtractive Sets

In Sect. 4, we expose subtractive sets over OK with non-prime-power conductor
f, and over OK+ with both prime-power and non-prime-power conductors, with
favourable properties, i.e. they have poly cardinality and small expansion fac-
tors. These subtractive sets can be used in any lattice-based arguments, and in
particular those developed in this work.

A set S ⊂ R is said to be subtractive over R if for any two distinct elements
c, c′ ∈ S, it holds that c−c′ ∈ R×, i.e. c−c′ is a unit. This concept is prevalently
linked with the examination of Euclidean number fields [21] and has also found
relevance in lattice-based cryptography, specifically in argument systems and
secret sharing [3]. An explicit creation of an upper-bound-matching cardinality p
is evident in a cyclotomic ring R = OK with a prime-power conductor f = pk. On
the other hand, we are not aware of explicit studies of subtractive sets regarding
other cyclotomic rings and their subrings.

For applications in lattice-based cryptography, the most relevant measures
of the quality of a subtractive set S are its

(i) cardinality |S|, which inversely affects the knowledge error of argument sys-
tems using S as a challenge set,

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 209

(ii) “expansion factor” γ = γS , i.e. how much the norm of an element grows
when multiplied with an element in S, which affects the “correctness gap”
of lattice-based argument systems,

(iii) “inverse-expansion factor” θ = θS , i.e. how much the norm of an element
grow when multiplied with (c − c′)−1 for distinct c, c′ ∈ S, which affects the
“soundness gap” of lattice-based argument systems.

For R = OK with prime-power conductor f = pk, it is known [3,21] that there
exists a subtractive set S of cardinality p and expansion factors γ, θ ≈ p.

Our main result in this part is the exposition of the subtractive set
S:=

{
ζi
}

i∈[f/fmax]
of cardinality |S| = f/fmax for any conductor f with at least two

distinct prime factors, where fmax is the largest prime-power factor of f. Notably,
the expansion factor is γ = 1, i.e. the norm of an element does not grow when
multiplied with an element from S, while the inverse-expansion factor θ ≈ f is
similar to the existing result for prime-power rings.

For completeness, we also expose related subtractive sets over OK+ for both
prime-power and non-prime-power conductors.

2.2 Tight Succinct Argument for Bounded Norm Satisfiability

In Sect. 5, we work with R = OK or OK+ . We present a new lattice-based succinct
argument for proving the bounded norm satisfiability of structured linear and/or
inner-product relations, denoted by Ξ lin and Ξ ip respectively. More concretely,
the argument system allows to prove knowledge of a short vector w ∈ Rm, with
m = dμ, satisfying

– a linear relation Fw = y mod q, where F = Fμ−1 • . . . • F0 ∈ Rn×m
q can be

expressed as a row-wise tensor product of μ matrices Fi ∈ Rn×d
q , and

– (optionally) an inner-product relation 〈w, α(w)〉 mod q, where α is either the
identity function or the complex conjugate (specified publicly).

Our argument system consists of O(μ) = O(logd m) rounds and is public-coin,
and can thus be made non-interactive via the Fiat-Shamir transform. The prover
time is quasi-linear in the size of the statement, and both the proof size and the
verifier time are polylogarithmic in the statement size. It can be instantiated
with a transparent setup. For example, the rows of F could contain a random
commitment key of the vSIS commitment scheme [11] and evaluations of mono-
mials at different evaluation points. This turns the vSIS commitment scheme
into a polynomial commitment scheme, which can then be used to compile a
PIOP into a SNARK.

Correctness and Soundness Gaps. A distinguishing feature of our argument
system is that it is free of the so-called “correctness gap” and “soundness gap”.

The correctness gap refers to the phenomenon that although the prover’s
witness w is of norm at most β, the norm check performed by the verifier in the
protocol is against a bound β′ � β. Typically, e.g. in lattice-based Bulletproofs,

210 M. Klooß et al.

Fig. 2. Overview of the evolution of a prover witness w0 to an extracted witness w∗
0

in lattice-based Bulletproofs and in Split-and-Fold + Norm-Check.

Fig. 3. Structures of Split-and-Fold (left) and Norm-Check (right) protocols.

we have β′ ≈ (1 + γ)μβ. Using the subtractive set suggested in [3] and picking
μ ≈ log λ, the gap β′/β ≈ (1 + γ)μ is super-polynomial in λ. Note that if the
subtractive set suggested in Sect. 4 with γ = 1 is used, then the correctness gap
is immediately reduced to poly but still greater than 1 (i.e. no gap).

The more challenging issue is that of the soundness gap, which refers5 to the
limitation that, in addition to the correctness gap β′/β, the witness produced
by a knowledge extractor is of even larger norm β∗ ≫ β′. Using the example
of lattice-based Bulletproofs again, we have β∗ ≈ (2θ)3μβ′ ≈ (1 + γ)μ(2θ)3μβ.
Since no currently known subtractive set (including those suggested in Sect. 4)
achieves θ = O(1), the soundness gap problem cannot be solved by simply using
a different subtractive set, at least until more favourable sets are found.6

Figure 2 overviews the evolution of a prover witness w0 to an extracted wit-
ness w∗

0 in lattice-based Bulletproofs and in this work.

Lattice-Based Bulletproofs. In Fig. 2 part a) for Bulletproofs, each arrow
in the top row represents one Bulletproofs folding step, where wi denotes the
intermediate witness after the i-th folding step. The norm of the i-th round

5 In general, the soundness gap consists of a “stretch”, i.e. increase in witness norm,
and a “slack”, i.e. a multiplicative approximation factor. Using a subtractive set, the
slack can be eliminated.

6 We believe that a slightly better but still super-polynomial soundness gap of β∗/β′ ≈
(1+γ)μ(2θ)μ can be achieved using a technique called “short-circuit extraction” [18].

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 211

prover witness wi grows by a multiplicative factor of (around) γ compared to
the previous round prover witness wi−1. The last round witness wμ is then of
norm around βγμ, i.e. with correctness gap γμ. The vertical arrow is trivial since
the last-round prover witness is sent in plain, i.e. w∗

μ = wμ. Each arrow in the
bottom row represents a “traditional witness extraction step”, i.e. moving one
layer up in the tree-special soundness witness extraction, where w∗

i denotes the
extracted witness at depth i. The norm of the i-th round extracted witness w∗

i

grows by (roughly) a multiplicative factor of θ3 compared to the previous round
extracted witness w∗

i−1. The final extracted witness w∗
0 is then of norm around

βγμθ3μ, i.e. the soundness gap is γμθ3μ.

Split-and-Fold and Norm-Check. To eliminate correctness and soundness
gaps, we propose two modular protocols called Split-and-Fold and Norm-Check,
each of which is a composition of atomic elementary building blocks – (b-ary)
Decomp, Split, Fold, Linearise, and Batch. The structures of Split-and-Fold and
Norm-Check, designed to eliminate the correctness and soundness gaps respec-
tively, are depicted in Fig. 3. These protocols are designed to run in an interleaved
manner to restrict the norm growth of the witness and to aid witness extrac-
tion. The lattice-based Bulletproofs protocol can be seen as a repeated execution
of the barebone Split protocol and Fold protocol without any norm-restricting
mechanisms.

The Split-and-Fold and Norm-Check can be summarised as follows:

Split-and-Fold. The purpose of the Split-and-Fold protocol is to shrink the dimen-
sion of the relation to be proven without increasing the norm of the witness. On
input a Ξ lin instance (F,y) with witness w of norm at most β, run the Decomp
protocol to decompose the witness into b-ary parts. This splits (F,y) into � sub-
instances (F,yi) each with witness wi. If b is small, each sub-witness wi norms at
most b/2 � β. Then, for each sub-instance (F,yi) with witness wi, run the Split
protocol to peel off one tensor factor of F, i.e. factor F into F = R • F̃ and
decompose wi into (wi,j)j∈[d]. Each sub-instance is thus further split into finer
sub-instances (F̃,yi,j) for some appropriate yi,j with witnesses wi,j still of norm
at most b/2. Finally, the Fold protocol is run to merge all sub-instances into a
single instance (F̃, ỹ) with witness w̃. For appropriately chosen b, we should end
up with a next-round witness w̃ of norm at most β again.

Note that the above suffices to eliminate the correctness gap, i.e. if the Split-
and-Fold protocol were to be run recursively, the intermediate and hence final
witnesses of the prover will remain to have norm at most β. However, given an
extracted next-round witness w̃ of norm at most β, the knowledge extractor
could only extract a candidate witness of norm at most ≈ θβ. To improve the
norm bound to β, we need to interleave a Norm-Check protocol, as described
below, between executions of Split-and-Fold.

Norm-Check. The purpose of the Norm-Check protocol is to upgrade a relaxed
norm bound guarantee to a tight norm bound guarantee. On input a Ξ lin instance
(F,y) with witness w of norm at most β, the prover sends the value t = 〈w,w〉R

212 M. Klooß et al.

to the verifier, who can check that Trace(t) ≤ β2. If t is computed correctly, then
Trace(t) is precisely the square of the canonical �2-norm of w, which the verifier
checks to be at most β2. It thus remains for the prover to prove that t is computed
correctly, along with all the other relations. To do so, the prover encodes w as the
coefficients of a polynomial g(X), and commit to the coefficients of the Laurent
polynomial L(X) = g(X) · ḡ(X−1). This reduces the problem to checking that
L is computed correctly and has constant term t, both of which can be expressed
as relations captured by Ξ lin.

Two issues remain: First, the norm of the coefficients of L(X) is around β2

instead of β. To tackle this, the prover runs the Decomp protocol (in a non-
black-box manner) to shrink the coefficients of L(X) back to norm β, at the cost
of spawning new sub-instances. Second, the extra checks for L being computed
correctly and L(0) = t introduce more constraints which would translate to
higher communication cost when handled naively. To tackle this, the parties run
the Batch protocol to compress the newly added constraints with the existing
ones. Finally, we use again the Fold protocol to merge all sub-instances into one.

In Fig. 2 part b) for “Split-and-Fold + Norm-Check”, each horizontal arrow
in the top row represents one “split-and-fold” step which replaces a Bulletproofs
folding step. The effect of this is that the norm of wi remains at most β for all i,
i.e. the correctness gap is eliminated. Each vertical arrow from wi to w∗

i for i < μ
represents one “Norm-Check” which is used to prove that the norm of the current
witness wi is at most β. For this step, it is important that the norm function
is chosen to be the �2-norm over the canonical embedding, so that it can be
expressed in terms of the (complex) inner product which is natively supported
by our protocol. This proof upgrades the bound ||w∗

i || ≤ θβ guaranteed by
a traditional witness extraction step to a tighter bound ||w∗

i || ≤ β, i.e. the
soundness gap is eliminated.

2.3 Embedding Z-Inner Products

Lattice-based succinct arguments such as those constructed in Sect. 5 typically
support proving relations over a ring R natively. However, in many applications,
we would like to prove algebraic statements given over Z, which motivates the
question of how to reduce a statement over Z to statements over R, so that
a proof of the latter implies a proof of the former. Specifically, we consider the
task of proving that some (committed) vectors x,y ∈ Z

mδ satisfies 〈x,y〉 = z for
some given z ∈ Z. This task is of particular interest since, for some applications
(e.g. constructing verifiable delay function [20]) it is necessary for the prover to
prove that the witness is not only short but in fact binary. More generally, the
application might require the prover to show a proof for x ∈ [a, b]mδ for some
a, b ∈ Z, which is not immediately implied by a bounded-norm guarantee.

To prove binariness, the basic idea is, for a witness w ∈ Z
mδ, to use the

equivalence w ∈ {0, 1}mδ ⇐⇒ 〈1mδ −w,w〉Z = 0 to reduce checking the bina-
riness of w to checking that some transformed witness vector over R is short and
satisfies some linear and inner-product relations, where R ⊂ OK is of dimension
δ | ϕ when viewed as Z-modules.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 213

Existing Embedding Methods. We are aware of three ways to embed Z-
inner products into R-inner products in the literature, each with a significant
drawback:

(i) Naive embedding: Interpret each Z element as an R element via the inclusion
Z ⊂ R, and interpret the Z-inner product as an R-inner product. This incurs
a multiplicative overhead of δ in terms of statement and witness sizes, which
translate into overheads in prover and verifier computation, proof size, etc.

(ii) Coefficient embedding: Divide the witness into blocks containing δ Z-
elements, and encode each block as an R element via the (inverse-)coefficient
embedding7 ψ−1 : Zmδ → Rm. For certain R, we have

〈x,y〉Z = ct(〈ψ−1(x), ψ−1(y)〉R)

where ct(·) denotes the constant term of the coefficient embedding.
This embedding has a convenient property that it is (somewhat) norm-
preserving, i.e. x is short if and only if ψ−1(x) is also short (in both coef-
ficient and canonical embedding). However, this approach only works for
Z[ζ2d]. This is problematic since the largest subtractive set over Z[ζ2d] is
{ 0, 1 }.

(iii) CRT embedding: Let the witness vectors be such that x,y ∈ Z
mδ
p for some

(typically small) prime p which splits completely in R. Divide the witness
into blocks of δ Z elements, and encode each block as an R element via the
(inverse-)CRT embedding CRT−1

p : Zmδ
p → Rm

p . It holds that

〈x,y〉Z =
〈
1δ,CRTp

(〈CRT−1
p (x),CRT−1

p (y)〉R
)〉

Z
mod p.

This approach is powerful in that it not only supports proving about Zp-
inner products, but in fact about Zp-Hadamard products x�y mod p, which
is more fine-grained. However, to turn a claim about Zp-inner products into
a claim about Z-inner products (without reduction modulo p), we would
additionally need to prove that ||〈x,y〉||∞ < p/2, so that the reduction
modulo p has no effect. Since CRTp does not respect the geometry of Z

and R, this approach usually requires the prover to commit to the witness
vectors in both the ψ−1(·) and CRT−1

p (·) encodings, prove that the former
is short, and prove that the two commitments are consistent. An issue here
is that existing proofs of consistency between the two encodings (e.g. [7,25])
do not have a succinct verifier, i.e. they run in time linear in the witness
size.

In the following, we highlight how the aforementioned issues regarding the
coefficient and CRT embeddings can be solved over certain (wide) range of rings.

Twisted Trace Maps. In Sect. 6, we generalise the coefficient embedding
technique over power-of-2 rings to a wide range of other rings. Recall from
7 For example, with respect to the power basis { 1, ζ, . . . , ζϕ−1 } of a cyclotomic

field, the coefficient embedding of an element x =
∑

i∈[ϕ] xiζ
i is denoted as

ψ(x) = (xi)i∈[ϕ].

214 M. Klooß et al.

the above that, over OK with a power-of-2 conductor, it holds that 〈x,y〉Z =
ct(〈ψ−1(x), ψ−1(y)〉R). In fact, the constant term function can be expressed as
ct(·) = 1

ϕ ·TraceK/Q(·) where TraceK/Q denotes the field trace, and the power basis
{ 1, ζ, . . . , ζϕ−1 } satisfies i.e. the power basis is orthogonal with respect to the
field trace.

The above point of view motivates the search for ideal lattices with Z-
bases orthogonal with respect to the field trace. This leads us to the litera-
ture of lattice constellations. In particular, we extract the following embedding
method from [5]: Over OK+ with prime conductor f, there exists an (efficiently
computable) basis b+ ∈ Oϕ/2

K+ and a twist element α ∈ OK+ such that

〈x,y〉Z =
1
2f
TraceK/Q(α · 〈ψ−1

b+(x), ψ−1
b+(y)〉R)

where ψb+ : OK+ → Z
ϕ/2 denotes the coefficient embedding with respect to

the basis b+. Furthermore, adapting a result from the same work [5] regarding
tensor products of rings, we extract similar embedding methods based on twisted
trace maps for rings R of the form R = OK2d

⊗ OK+
p0

⊗ . . . ⊗ OK+
pk−1

, where the
subscripts of K denote the conductors the respective factor rings and p0, . . . , pk−1

are distinct odd primes. This captures power-of-2 rings as a special case. Notably,
since such R generally have non-prime-power conductors, they are compatible
with the subtractive set for non-prime-power rings exposed in Sect. 4.

Succinct Proof for Consistency of CRT. As highlighted earlier, the miss-
ing piece, required to harness the power of the CRT embedding for Hadamard
and inner products, is a verifier-succinct argument for proving the consistency
between the coefficient embedding and the CRT embedding. More precisely,
we need a succinct argument for proving that two ring vectors w,w′ ∈ Rm

satisfy

ψ(w) = CRTp(w′) mod p. (1)

In the full version, we present a protocol for performing this task over R = OK
where the conductor f is w-smooth, i.e. all its prime factors are at most some
small integer w, with proof size and verifier time scaling linearly in w logw f. In
other words, if w = O(1), then the complexity is logarithmic in f.

Underlying our protocol is the observation that, if the conductor f is w-
smooth, then the map CRT−1

p ◦ ψ can be expressed as the composition of
t ≤ O(log f) maps, each being a linear combination of h ≤ O(log f) automor-
phisms from Gal(K/Q) with coefficients lying in R. This means that, to suc-
cinctly prove that w′ = CRT−1

p (ψ(w)) mod p, it suffices to design a succinct
argument for proving automorphism relations.

Motivated by the above, we present in the full version a succinct reduction
of knowledge from checking the automorphism relation α(w) = w′ to checking
that (w,w′) satisfies some linear relations. Combined with the Split-and-Fold
and Norm-Check protocols designed in Sect. 5, we obtain a succinct argument for
proving Eq. (1).

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 215

3 Preliminaries

Let N = { 1, 2, . . . } denotes natural numbers and λ ∈ N be the security parame-
ter. For n ∈ N, we write [n]:= { 0, . . . , n − 1 } counting from 0. For multidimen-
sional ranges, we use the shorthand (i, j, k) ∈ [n,m, �] for i ∈ [n], j ∈ [m], and
k ∈ [�].

Throughout this work, we let K = Q(ζ) be a cyclotomic field with conductor
f of degree ϕ = ϕ(f), where ζ is a root of unity of order f and ϕ is Euler’s totient
function, and OK = Z[ζ] be its ring of integers. We will also consider the maximal
real subfield K+ = Q(ζ + ζ−1) of K and its ring of integers OK+ = Z[ζ + ζ−1]. In
contexts where we refer to multiple cyclotomic fields with different conductors
(fi)i∈[k], we write Kfi for i ∈ [k] to emphasis the conductors. We will usually use
R ⊆ OK to denote a subring which has dimension δ when viewed as a Z-module.
We assume familiarity with basic algebraic number theory.

3.1 Cryptographic Assumption

We state an equivalent formulation of the vanishing short integer solution (vSIS)
assumption [11], which has a simpler description and better aligns with the
notation adopted in this work.

Definition 1 (vSIS Assumption (adapted from [11])). Let params =
(R, q, β, χ) be parametrised by λ, where R is a ring, q ∈ N a modulus, β > 0
a norm bound, and χ a distribution over Rn×⊗i∈[μ]di

q for some dimensions
n, d0, . . . , dμ−1, μ ∈ N. The vSISparams assumption states that, for any PPT adver-
sary A, the advantage function satisfies

AdvvSISparams,A:=Pr

[
Fw = 0 mod q

||σ (w)||2 ≤ β

∣
∣
∣
∣
∣
F ← $χ

w ← A(F)

]

≤ negl(λ).

For simplicity, in this work, we will consider the setting where the block
sizes d0, . . . , dμ−1 are identically set to some d ∈ N, so that F can be factored
into F = Fμ−1 • . . . • F0 with Fi ∈ Rn×d

q , where • denotes the row-wise tensor
product.

3.2 Reduction of Knowledge

In this paper we consider ternary relations Ξ ⊆ {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗, where
a tuple (pp, stmt,wit) ∈ Ξ consists of public parameters pp, statement stmt
and witness wit. For presentation, we omit including pp when it is known from
the context. We consider a modified and simplified definition of a reduction of
knowledge [19] for the following reasons: All of our protocols are public coin
and (coordinate-wise) special sound [16] or similar.8 Thus, public reducibility
8 To turn soundness errors of probabilistic tests (such as Schwartz–Zippel) into knowl-

edge errors, we merely need uniformly random transcripts. These are produced by
(CW)SS extractors for example. We call such extractors k-transcript extractors.

216 M. Klooß et al.

is automatic and we have (super-constant) sequential composition results due
to known (tree) black-box extractors, whereas composition in [19] is limited a
constant number of protocols. Lastly, we define a relaxed knowledge soundness
notion which is not present in [19]. For lack of space, we provide a condensed
overview of reductions of knowledge. See the full version for details.

Definition 2 (Reduction of Knowledge (modified)). Let Ξ0, Ξ1 be ter-
nary relations. A reduction of knowledge (RoK) Π from Ξ0 to Ξ1, short
Π : Ξ0 → Ξ1, is defined by two PPT algorithms Π = (P,V), the prover P ,
and the verifier V, with the following interface:

– P(pp, stmt1,wit1) → (stmt2,wit2): Interactively reduce the input statement
(pp, stmt,wit) ∈ Ξ0 to a new statement (pp, s̃tmt, w̃it) ∈ Ξ1 or ⊥.

– V(pp, stmt) → s̃tmt: Interactively reduce the task of checking the input state-
ment (pp, stmt) w.r.t Ξ0 to checking a new statement (pp, s̃tmt) w.r.t. Ξ1.

A RoK Π is correct, if for any honest protocol run (with correct inputs),
the prover outputs a witness for the reduced statement (which the verifier out-
puts). A RoK Π is relaxed knowledge sound from ΞKS

0 to ΞKS
1 with knowl-

edge error κ(pp, stmt) if there is a black-box expected polynomial-time extractor
E , which succeeds with probability ε−κ(pp, stmt) if the malicious prover outputs
a valid witness for the reduced statement with probability ε (on verifier’s input
(pp, stmt)).

4 Subtractive Sets

A subtractive set S over a ring R is such that c − c′ is a unit for any distinct
c, c′ ∈ S. While the notion is connected to the study of Euclidean number fields
[21], it also found applications in lattice-based cryptography in the contexts of
argument systems and secret sharing [3]. For a cyclotomic ring R with prime-
power conductor f = pk, an explicit construction of upper-bound-matching car-
dinality p is known. For other cyclotomic rings and their subrings, however, not
much seem to be explicitly studied. In this section, we construct subtractive sets
over non-prime-power cyclotomic rings. All proofs, as well as constructions of
subtractive sets over real cyclotomic rings, can be found in the full version.

Definition 3 (Subtractive Set). We say that a set S ⊆ R is subtractive over
R if c − c′ ∈ R× for any distinct c, c′ ∈ S.

While [3] measured the quality of a subtractive set over cyclotomic rings
in terms of the �∞-norm over the coefficient embedding, in this work, we will
instead work with the �∞-norm over the canonical embedding for compatibility
with Sect. 5 via the inequality ∀ c, x ∈ R, ||σ (c · x)||2 ≤ ||σ (c)||∞ · ||σ (x)||2 .
We measure the quality of a subtractive set by its cardinality, expansion factor
γS , and inverse-expansion factor θS , with the latter two defined below.

Definition 4 ((Inverse-)Expansion Factor of Subtractive Set). Let S ⊆
R be subtractive over R. The expansion and inverse-expansion factors of S are
γS := maxc∈S ||σ (c)||∞ and θS := maxc,c′∈S,c�=c′

∣
∣
∣
∣
∣
∣σ
(

1
c−c′

)∣∣
∣
∣
∣
∣
∞

respectively.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 217

4.1 Prime-Power Cyclotomics

We recall the subtractive set for prime-power cyclotomics [3,21] with conductor
f = pk and analyse its (inverse-)expansion factor in canonical �2-norm. Although
we are interested mostly in p � 2, the result also holds for p = 2. A proof can
be found in the full version.

Theorem 1. Let f = pk > 4 for some prime p. The set S:= {μ0, . . . , μp−1 } ⊆p

OK is subtractive, where μi = (ζi − 1)/(ζ − 1). Further, γS ≤ p and θS ≤ f

2
√
2
.

4.2 Non-prime-Power Cyclotomics

A drawback of the subtractive set recalled above is its rather large expansion
factor γS ≤ p. In some applications, e.g. Section 5, we would like γS to be con-
stant. Below, we expose a subtractive set over non-prime-power cyclotomic rings
with expansion factor γS = 1. A proof can be found in the full version.

Theorem 2. Let f factor into k ≥ 2 coprime prime-power factors
(̂fi)i∈[k], i.e. f =

∏
i∈[k] f̂i. Write f̂max:= maxi∈[k] f̂i. The set S:=

{
1, ζ, ζ2,

. . . , ζf/f̂max−1
}

⊆f/fmax
OK, is subtractive. Furthermore, γS = 1 and θS ≤ f

4
√
2
.

5 Succinct Arguments for Bounded-Norm Satisfiability

In this section, we assume that R is either OK or OK+ which admit large enough
subtractive sets, e.g. those constructed in Sect. 4. Let CR ⊂ R denote a fixed sub-
tractive set with expansion factor γ and inverse-expansion factor θ. Throughout,
we mainly use the canonical 2-norm, and simply write || · || := ||σ (·)||2, unless
specified. We use the shorthand notation Rn×d⊗μ

q :=((R1×d
q)⊗μ)n for a matrix

whose rows are elementary tensors. We also write Z (resp. Z) to indicate the top
(resp. bottom) half of a block matrix; the block dimension will be clear from the
context. Lastly, we let CRq

⊆ R×
q be obtained by taking a subfield of Rq and

removing 0. Note that CR and CRq
have the invertible differences property with

respect to R and Rq respectively, i.e. ∀x �= y ∈ CR (resp. CRq
): x − y ∈ R×

(resp. R×
q).

We construct succinct arguments for proving that a short vector w satisfy:

– Rq-linear elementary tensor relations, i.e. (gμ−1 ⊗ . . . ⊗ g0) · w = y mod q;
– a self-inner-product relation, i.e. t =
w, α(w)R =

∑m−1
i=0 wi · α(w)i ∈ Rq; where α ∈ {id, id} is either the identity

map or the complex conjugate; and
– a norm bound ||w|| ≤ β.

Theorems and proofs are relegated to the full version. In Table 1 on page 25,
we provide an overview of parameters for correctness and relaxed knowledge
soundness.

218 M. Klooß et al.

5.1 The (principal) Relation Ξ lin

We begin by defining the relation Ξ lin and outline how protocols reduce instances
in this relation to other instances. This relation serves as the principal building
block for further protocols.

Basic (Single-Block) Relation. We define our central relation(s) over the
ring R, modulo q, for witness dimension m = dμ. In fact, there are two cen-
tral relations: Ξ lin for correctness; and Ξ lin∨sis for relaxed knowledge soundness.
We define both at once, so that Ξ lin∨sis ⊇ Ξ lin contains all highlighted parts
additionally. Let

Ξ lin∨sis
R,q,m,nout,μ,β,βsis :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((H,F,y),w) :

H ∈ Rnout×n
q ; F ∈ Rn×d⊗μ

q ⊆ Rn×m
q ; y ∈ Rnout

q
{ ||w|| ≤ β
HFw = Hy mod q

}
or

{ ||w|| ≤ βsis

HF = 0n mod q

}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

where we always assume that H has the block structure9

H =
(
H
H

)
∈ Rnout×n

q where H = (In 0) ∈ Rn×n
q and H ∈ Rn×n

q (2)

Similarly, write y ∈ Rn
q and y ∈ Rn

q for the n top (resp. n bottom) rows of y.

Remark 1 (Notational conventions). We often omit irrelevant parameters in Ξ lin

and similar relations. Especially all fixed parameters in our protocols, which are
R, q, n, βsis. For example, for parameterised relation like ΞR,q,x,y, we write
Ξx=f(ξ) for ΞR,q,f(ξ),z or even just Ξf(ξ) if x = f(ξ) is clear from the context.
Also, we fix d and always set m = dμ. As such, we often omit d and μ.

Clearly, relation Ξ lin asserts that the witness w has norm ||w|| ≤ β. For the
linear relation, let us first assume that H = In is an identity matrix. In this case,
the relation asserts that Fw = y holds over Rq. The matrix F is structured,
namely each row f is an elementary tensor in R1×d⊗μ

q , i.e. f = gμ−1 ⊗ . . . ⊗ g0

for gi = (gi,0, . . . , gi,d−1) ∈ R1×d
q .

For Ξ lin∨sis, we relax these assertions by introducing the highlighted OR-
part, which captures a break of some underlying cryptographic assumption, e.g.
a break of the vSIS assumption [11] (Definition 1). For this, F = HF will be the
commitment key in a protocol. If the assumption is broken, then Ξ lin may not
be satisfied, hence the relaxed soundness relation Ξ lin∨sis is necessary.

Now, we further explain H. The primary use of H is to capture random linear
combination of rows of F. The block structure asserts that the top n rows of F

9 This can be marginally relaxed: As long as there is an invertible X ∈ Rnout×nout

such that XH has this block structure, we can replace the claim (H,F,y) with the
equivalent claim (XH,F,Xy) which has the block structure our protocols require.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 219

are simply copied—F = HF will correspond to the commitment key. Naively,
our protocols would have communication costs linear in the number of rows of
F, but by using H, we can compress this from n down to nout = n + n. In
prior works, one would simply (re)define F as HF and y as Hy. However, to
keep (verifier-)succinctness, we cannot do this: A (random) linear combination
of elementary tensors is in general not an elementary tensor. However, our pro-
tocol crucially relies on the rows of F being elementary tensor in order to apply
FRI-style (verifier-succinct) folding of the statement. Therefore, we remember
the (random) linear combinations of rows in H, instead of carrying out the
multiplication. Importantly, the communication of the protocol can indeed by
compressed by applying H. (Note there that the dimensions of H and y are in
general much smaller than that of w).

Reductions between Ξ lin. Our protocols reduce instances of Ξ lin
m,β with dif-

ferent parameters, and we chain them to obtain our final split-and-fold proto-
col with intermediate norm checks. Primary protocols and parameters of interest
are:

(i) Πb−decomp: Reduce one instance with bound β to many with bound b � β.
(ii) Πsplit: Reduce one instance with witness dimension m to many with m′ =

m/d.
(iii) Π fold: Reduce many instances with bounds βi to one with β′ = γ

∑
i βi.

(iv) Πbatch: Reduce one instance to another instance by randomly combining the
last n rows of H and y into a single one, so that nout = n + 1.

Handling vSIS Breaks. Knowledge reductions can simply pass a Ξ lin∨sis-
witness on as their extracted witness. Thus, we sometimes omit that discussion
entirely.

5.2 Πb−decomp: b-Ary Decomposition Knowledge Reduction

Let b ≥ 1 be an integer. The protocol Πb−decomp (Fig. 4) is very simple: It takes a
claim ((H,F,y),w) ∈ Ξ lin

m,β and does a balanced b-ary decomposition of the wit-
ness w with ||w|| ≤ β into w =

∑�−1
i=0 bivi, where vi ∈ Rb (hence ||vi||∞ ≤ b/2)

and � = �logb(2β+1)�. Then, appropriate claims zi = HFvi for the decomposed
witness are computed, and the verifier makes sure the new claims imply the orig-
inal one. Thus, the original statement is reduced to ((H,F, zi),vi)i∈[�].

Remark 2. In protocol Πb−decomp, we could apply the optimisation of not sending
z0, and instead let the verifier compute the unique accepting z0, i.e. such that
y =

∑
i∈[�] b

izi.

5.3 Πsplit: Witness Splitting Knowledge Reduction

In Fig. 5 we describe protocol Πsplit which takes a claim from Ξ lin
m,β and splits it

into d claims in Ξ lin
m/d,β . That is, the number of claims in Ξ lin

m,β (i.e. 1) grows by

220 M. Klooß et al.

Fig. 4. Protocol Πb−decomp, a reduction of Ξ lin
m,β to (Ξ lin

m,b)
� for � = �logb(2β +1)�. As a

proof of knowledge, Send the marked parts; as a reduction not. Πb−decomp sends the

marked parts only as a proof (but not reduction) of knowledge.

d-fold to d, but the witness dimension of each claim shrinks by d-fold to m/d.
We explain the idea and correctness of the protocol below.

To split the witness, interpret Rm as Rd⊗μ

, and split w ∈ Rm ∼= Rd⊗μ

into
w = (wi)i∈[μ] =

∑μ−1
i=0 ei ⊗ wi where wi ∈ Rm/d ∼= Rd⊗(μ−1)

and ei ∈ {0, 1}d

is the i-th standard unit vector. Splitting w like this is compatible with the
row-wise tensor structure of F. Let us take a closer look at this.

For simplicity, first consider a single row f ∈ R1×d⊗μ

q of F. By the elementary
tensor structure of the row-vector f , we can write it as f = r⊗f̃ = (r0 ·f̃ , . . . , rd−1 ·
f̃) = (f0, . . . , fd−1) where f̃ ∈ R1×d⊗(μ−1)

q , r = (r0, . . . , rd−1) ∈ R1×d
q , and fi =

ri · f̃i. Therefore, f · w =
∑

i∈[d] fiwi =
∑

i∈[d](f̃ · wi) · (r · eTi) =
∑

i∈[d] rif̃ · wi.
Now, consider any matrix F with row-wise tensor structure and n rows, as

in Ξ lin. That is, F ∈ Rn×d⊗μ

q . Observe that

F =

⎛

⎜
⎝

F0,•
...

Fn−1,•

⎞

⎟
⎠ =

⎛

⎜
⎝

F0,0 . . . F0,d−1

...
...

Fn−1,0 . . . F0,d−1

⎞

⎟
⎠ =

⎛

⎜
⎝

r0 ⊗ f̃0
...

rn−1 ⊗ f̃n−1

⎞

⎟
⎠ (3)

where Fi,• denotes the i-th row of F, and Fi,j ∈ R1×d⊗μ

q the block of rows
(the analogue of (f0, . . . , fd−1) of the single-row case), and f̃i ∈ R1×d⊗(μ−1)

q and
ri ∈ R1×d

q are the analogues of r and f̃ of the single-row case respectively. To
ease notation, we define R = (rTi)i∈[n] ∈ Rn×d

q and F̃ = (f̃i)i∈[n] ∈ Rn×d⊗(μ−1)

q ,
and we write F = R • F̃ for the row-wise tensor product10 of R and F̃ as seen
10 This row-wise tensor product is known under several names, e.g. row-wise Kronecker

product, “face-splitting product”, “transposed Khatri–Rao product” (and more gen-
eral forms, as block Kronecker product and Khatri–Rao product).

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 221

Fig. 5. Protocol Πsplit, a reduction from Ξ lin
m,β to

(
Ξ lin

m/d,β

)d
. Πsplit sends the marked

parts only as a proof (but not reduction) of knowledge.

in Eq. (3). In this notation,

F · w = (R • F̃) ·
(

μ−1∑

i=0

ei ⊗ wi

)

=
∑

i

(Rei)︸ ︷︷ ︸
∈Rn

q

� (F̃wi)︸ ︷︷ ︸
=yi∈Rn

q

(4)

where we use the Hadamard product to multiply the vector Rei with yi com-
ponentwise. Moreover, with Di:= diag(ri), we can rewrite (4) as

F · w =
∑

i

Di · F̃wi (5)

With the above, we have derived a splitting protocol for the special case where
H = In is the identity matrix: Simply send ỹi = F̃wi for new statements
(H, F̃, ỹi) and witnesses (wi)i∈[d].

When H is not necessarily the identity, we must also handle the bottom part
H of H. To do so, our protocol (cf. Fig. 5) additionally sends cross terms, namely
Di · F̃wj for i, j ∈ [d], which are then randomly recombined.

222 M. Klooß et al.

Fig. 6. Protocol Π fold folds multiple instances of Ξ lin with the same (H,F) into one.

Π fold sends the marked parts only as a proof (but not reduction) of knowledge.

Remark 3. In protocol Πsplit, we could apply the optimisation of not sending
yj (assuming that Rej �= 0) and y

0,0
, and instead let the verifier compute

the unique accepting yj and y
0,0

, i.e. such that y =
∑

j∈[d] Rej • yj and y =
∑

(i,j)∈[d]2 yi,j
.

5.4 Π fold: Fold Knowledge Reduction

In Fig. 6, we present the protocol Π fold, which is a simple batch verification for
many statements of the same type. It takes � instances of ((H,F,yi),wi)i∈[�]

of Ξ lin
m,β with the same (H,F), and produces a random linear combination

((H,F,y), w̃) as output, with increased norm bounds.

5.5 Πbatch: Batch-Rows Knowledge Reduction

The protocol Πbatch (Fig. 7) is a protocol to batch the claims along multiple rows
into fewer rows of claims. This is done by a random linear combination of the
rows in question. This protocol maps an instance ((H,F,y),w) of Ξ lin

m,β to an
instance ((H̃,F, ỹ),w), where the dimension of ỹ is smaller. We describe it in
more detail: Let nout = n + n. Then Πbatch keeps the top n rows y of y (resp. H
of H, and thus of HF) unchanged. But the bottom n rows are linearly combined
into a single row. For this, H and y are split into top and bottom half, and the
bottom half is multiplied by a vector c consisting of powers of c ← $CRq

. Both
parties then update the statement suitably.

5.6 Πsplit&fold: Split-and-Fold

We describe protocol Πsplit&fold which reduces the size of the witness. While it
is perfectly correct, the extracted relation suffers a (small) growth in norm, i.e.
it is only relaxed knowledge sound. The protocol Πsplit&fold proceeds as follows:

(1) Ξ lin
m,β0

Πb−decomp

−−−−−−→ (Ξ lin
m,b)

� (Reduce norms by b-ary decomposition.)

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 223

Fig. 7. Protocol Πbatch reduces an instance of Ξ lin to another in instance with fewer
rows by batching to last n of H. Πbatch sends the marked parts only as a proof (but
not reduction) of knowledge.

(2) (Ξ lin
m,b)

� Πsplit

−−−→ (Ξ lin
m/d,b)

�d (Split statements into smaller ones.)

(3) (Ξ lin
m/d,b)

�d Π fold

−−−→ Ξ lin
m/d,β3

(Fold statements into single one.)

The goal behind Πsplit&fold is to reduce the statement size by applying Πsplit

and then Π fold. However, doing just this increases the norm the folded witness.
To avoid this, Πsplit&fold first applies a b-ary decomposition which decreases the
norm of w sufficiently, with proper parameters, we get β3 = β0 again. Correctness
of this protocol is straightforward to show. Relaxed knowledge soundness also
follows from relaxed soundness of the building blocks. Unfortunately, the norm
of the extracted witness does grow, no matter how the parameters are chosen.

Remark 4. When applying Πsplit to the product relation (Ξ lin
m,b)

�, it is crucial
that a single challenge is reused among all instances. This ensures that if all
(Hi,Fi) were identical before splitting, they still are identical after splitting.

5.7 Πnorm, Πnorm+, Π ip, Π ip+: Norm and Inner Product Checks

To restrain the norm growth of the extracted witness, we introduce norm checks.
First we present the “core” norm check protocol Πnorm, which handles the inter-
esting part of the norm check by reducing the norm relation Ξnorm, to multiple
Ξ lin relations. We then compose Πnorm with Πbatch and Π fold to yield the “full”
norm check protocol Πnorm+, which reduces the norm relation to a single Ξ lin

relation. At the core of Πnorm is a mechanism for checking the trace of an inner
product. By removing the trace operation, we obtain similar protocols Π ip and
Π ip+ for proving inner product relations Ξ ip. The relations Ξnorm and Ξ ip, as well
as their variants Ξnorm∨sis and Ξ ip∨sis, are defined as follows.

Ξnorm∨sis
R,q,m,nout,

μ,β,βsis

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((H,F,y, ν),w) :

H ∈ Rnout×n
q ; F ∈ Rn×d⊗μ

q ⊆ Rn×m
q ; y ∈ Rnout

q , ν ≤ β
{ ||w|| ≤ ν
HFw = Hy mod q

}
or

{ ||w|| ≤ βsis

HFw = 0n mod q

}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

224 M. Klooß et al.

Ξ ip∨sis
R,q,m,nout,

μ,β,βsis,α

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

((H,F,y, t),w) :

H ∈ Rnout×n
q ; F ∈ Rn×d⊗μ

q ⊆ Rn×m
q ; y ∈ Rnout

q , t ∈ Rq

{ ||w|| ≤ β
HFw = Hy mod q

w, α(w)R = t mod q

}
or

{ ||w|| ≤ βsis

HFw = 0n mod q

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that, compared to Ξ lin, the norm relation Ξnorm differs in that the wit-
ness norm bound ν ≤ β is given as part of the statement, and a stricter norm
relation ||w|| ≤ ν is checked. Similarly, Ξ ip differs from Ξ lin in that the statement
additionally includes an inner product value t, and the witness additionally sat-
isfies an inner product relation. Furthermore, we note that Ξ ip is parametrised
by α ∈ {id, id} which is either the identity or complex conjugate, controlling
which type of inner product is being considered.

The Core Protocols Πnorm and Π ip. The protocols Πnorm, Π ip for α = id and
Π ip for α = id are very similar. In the following description we focus on Π ip for
α = id. Removing all conjugates yields the protocol Π ip for α = id. The protocol
Πnorm can be obtained by letting the verifier compute the trace of the alleged
inner product.

Our approach is based on polynomial identities. That is, for w, we define
the polynomials g(X) =

∑
i∈[m] wiX

i and ḡ(X) =
∑

i∈[m] w̄iX
i, and observe

that the Laurent polynomial L(X) =
∑

i∈±[m] viX
i:=g(X) · ḡ(X−1) has con-

stant coefficient
∑

i∈[m] wiw̄i, which is the inner product

w, w̄R. Also observe that vk =
∑

i−j=k viv̄j = id
(∑

i−j=k v̄ivj

)
= id

(∑
j−i=k v̄jvi

)
= v̄−k where vk:=0 if |k| ≥ m. We exploit this symmetry to com-

mit to L(X) by committing only to (v0, . . . , vm−1). Setting h(X) =
∑

i∈[m] viX
i

and h̄(X) =
∑

i∈[m] v̄iX
i, we see that L(X) = h(X) + h̄(X−1) − v0. We use this

equality to prove the polynomial identity L(X) = g(X)ḡ(X−1) by evaluating
g, ḡ, h, h̄ at a random point ξ ← $CRq

(and checking if v0 = t).
However, A problem with the soundness occurs if the approach is used

naively: The terms vi have norm bounded by β2, so ||v|| which may be beyond
the threshold for which the commitment is binding.

A natural approach is to run Πb−decomp to counteract this problem. However,
doing so modularly runs into problems and comes at the cost of a suboptimal
relaxed knowledge guarantee. We can tighten our analysis if we treat the com-
position with Πb−decomp as within the protocol Π ip, i.e. we immediately send the
decomposed (and binding) commitments. The reason is a technical artefact of
relaxed knowledge soundness and reductions of knowledge: Relaxed soundness
in Πb−decomp incurs a large factor of norm growth, however, in Π ip, we do not
care about the auxiliary commitment to v (which norms up to ≈ √

mβ2). Thus,
we can argue directly for the decomposition of v into smaller vi of norm at
most β, which are binding. This avoids the need for recovering recover v via

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 225

Fig. 8. Protocols Πnorm for Ξnorm and Π ip for Ξ ip where α = id. The case α = id can

be obtained by removing all conjugates. Πnorm and Π ip send the marked parts only
as a proof (but not reduction) of knowledge.

226 M. Klooß et al.

relaxed knowledge for Πb−decomp, which significantly improves the parameters.
This optimised protocol is presented in Fig. 8

The Full Protocols Πnorm+ and Π ip+. The full protocol Πnorm+ (resp. Π ip+)
simply reduces the � + 1 statements after Πnorm (resp. Π ip) back to a single one
with the minimal number of rows, by applying Πbatch and Π fold. That is, Πnorm+

(and analogously Π ip+) work as follows:

(1) Ξnorm
nout,β

Πnorm

−−−→ (Ξ lin
nout+3,β)�+1 (Reduce to claims in (Ξ lin)�+1.)

(2) (Ξ lin
nout+3,β)�+1 Πbatch

−−−→ (Ξ lin
n+1,β)�+1 (Reduce number of rows.)

(3) (Ξ lin
n+1,β)�+1 Π fold

−−−→ Ξ lin
n+1,(�+1)γβ (Reduce to one claim with β′ = (� + 1)γβ.)

In words, first Πnorm+ (resp. Π ip+) runs Πnorm (resp. Π ip) to obtain the commit-
ments to vi. Next it runs Πbatch to reduce to n + 1 rows again (i.e. to n = 1).
Finally, the claims are folded into one by using Π fold. The full norm protocol
Πnorm and its security guarantees are analogous.

Remark 5. When applying Πbatch to the product relation (Ξ lin
nout+3,β)�+1, it is

crucial a single challenge is reused among all instances. This ensures that if all
(Hi,Fi) were identical before batching, they still are identical after batching.

Norm Checks to Upgrade Relaxed Soundness. Currently, our norm check
is defined for the relation Ξnorm, which inherits the parameter β from Ξ lin,
and also contains an explicit ν as a norm statement. For convenience, we now
define the Πnormβ protocol, which is a reduction of knowledge from Ξ lin

β to Ξ lin
β ,

that works as follows: Πnormβ runs Πnorm on (implicit) input ν = β for both
parties.

Analogous to Πnorm+, we define Πnorm+
β : Ξ lin

β → Ξ lin
β . Clearly, Πnormβ (resp.

and Πnorm+
β) directly inherits all correctness and security guarantees of Πnorm

(resp. Πnorm+). We introduce Πnormβ and Πnorm+
β solely for compositional rea-

sons: They start and end with a claim(s) in Ξ lin
β . Let us stress that the Πnormβ

protocol upgrades the (previously relaxed) bound on the norm of w to ||w|| ≤ β.
We capture this in following corollary.

Corollary 1. Adopt the setting of Π ip+. Then Πnorm+
β is relaxed knowledge

sound from Ξ lin∨sis
β to Ξ lin∨sis

β′ if 2β′ ≤ βsis, with the same knowledge error as
Π ip+.

5.8 Πsfn: Split-and-Fold with Norm Checks

We describe our split-and-fold protocol with intermediate norm check Πsfn. It
first runs the norm check Πnorm+

β to upgrade the relaxed norm bound to a strict
one. Then it splits-and-folds to reduce the witness size. If parameters are set
correctly, then Πsplit&fold : Ξ lin

m,β → Ξ lin
m/d,β is reduction of knowledge with relaxed

knowledge soundness Ξ lin∨sis
m,β → Ξ lin∨sis

m/d,β′ . Crucially, the bound β is guaranteed
exactly after extraction (unless the OR-branch, i.e. a vSIS break is extracted).

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 227

Table 1. Parameters of protocols. Expressed as β1 = f(β0) for correctness, β′
0 = g(β′

1)
and β′

0 ≤ βsis for relaxed soundness, knowledge error κ, number of transcripts to extract,
other variables. For Π ip+, we have � = logbip

(2β2
0 + 1) for bip ≤ 2β/(

√
mϕ3/2).

Π β1 β′
0 κ #tr Other

Πb−decomp 1
2

√
mϕ3/2b 2β0β

′
1 0 1 � = �logb(2β0 + 1)�

Πsplit β0

√
dβ′

1 (d − 1)/|CR| d Need 2β′
0 ≤ βsis

Π fold γ�β0 2θβ′
1 �/|CR| � + 1 � from (Ξ lin)�

Πbatch β0 β′
1 n/|CRq | 2 Need 2β′

0 ≤ βsis

Πnorm/Π ip β0 β′
1 2m/|CRq | 2

Πsplit&fold 1
2
γ�d

√
mϕ3/2bβ0 4

√
dθβ0β

′
1 �/|CR| + (d − 1)/|CRq | d(� + 1) � = �Πb−decomp

Πnorm+/Π ip+ γ(� + 1)β0 8θβ′
1

�+1
|CR| + 4(�+1)+2m

|CRq | 4(� + 2) See caption.

(1) Ξ lin
β0

Π
norm

+
β−−−−→ Ξ lin

β1
: Run a norm check for β0.

(2) Ξ lin
m,β1

Πsplit&fold

−−−−−→ Ξ lin
m/d,β2

: Run the split-and-fold to reduce witness size.

5.9 Asymptotic Communication Complexity

We now compute the proof size for the split-and-fold with norm checks protocol
in Sect. 5.8. Having non-interactive proof systems in mind, we only count prover
messages. Let m = dμ where d = O(1) and μ = O(log m). The other parameters
are chosen according to Table 1. As shown in Sect. 4, we can pick f = poly and a
subtractive set CR such that γ = O(1) and θ = poly.

Recall the prover executes two sub-protocols:

(1) Ξ lin
β0

Π
norm

+
β−−−−→ Ξ lin

β1
: Run a norm check for β0.

(2) Ξ lin
m,β1

Πsplit&fold

−−−−−→ Ξ lin
m/d,β2

: Run the split-and-fold to reduce witness size.

First, we turn to the Πnorm+
β protocol in Fig. 8. To prove relation Ξ lin

β0
, the prover

starts with
Ξnorm

nout,β
Πnorm

−−−→ (Ξ lin
nout+3,β)�+1

where it sends all y′
i which in total have size �0n

out ring elements. After receiving
the challenge ξ, the prover outputs yE and y′

E,i of size 3 each – thus in total
3(�0 + 1) ring elements. Then the prover runs

(Ξ lin
nout+3,β)�+1 Πbatch

−−−→ (Ξ lin
n+1,β)�+1 Π fold

−−−→ Ξ lin
n+1,(�+1)γβ

where neither Πbatch nor Π fold incur any no communication from the prover.
Next, we now move on to the Πsplit&fold protocol. The prover wants to give a

proof for relation Ξ lin
m,β1

. The prover starts by running the Πb−decomp protocol

Ξ lin
m,β1

Πb−decomp

−−−−−−→ (Ξ lin
m,b1)

�1

228 M. Klooß et al.

where the prover sends �1 vectors (zk) of size nout elements in Rq. Next, it runs
Πsplit

(Ξ lin
m,b1)

�1 Πsplit

−−−→ (Ξ lin
m/d,b1

)�1d

and outputs (using the optimization in Remark 4): (i) d − 1 intermediate “top-
part” evaluations yj of size n elements in Rq and (ii) d2 − 1 “bottom-part”
evaluations y

i,j
of size n elements in Rq. Finally the prover executes the Π fold

protocol
(Ξ lin

m/d,b1
)�1d Π fold

−−−→ Ξ lin
m/d,β2

where no prover message is sent. All in all, in each of μ = O(log m) iterations
of split-and-fold with norm checks, the prover sends

(
�0n

out + 3(�0 + 1)
)

+ (�1nout + (d − 1)n + (d2 − 1)n)

elements in Rq.

Simple Example: vSIS Opening Proof. When proving knowledge of a vSIS
commitment opening, we can set n, nout ∈ O(1) . Due to the polynomial challenge
space for subtractive sets, we need to repeat O(λ/ log λ) times to ensure ≈ 2−λ

soundness error. Finally, we can pick b1 such that �1 = O(1). In total, the proof
size in the number of ring elements is simply bounded by O

(
λ log m

log λ

)
.

Next, we turn to setting the bound required for the (v)SIS problem to be
hard. A simple calculation using the formulas from previous sections shows that
we need to set

βsis = β′
0 = 16γ�1d

3/2
√

mϕ3/2θ2β0b1 = poly[m,λ].

The next step is to estimate an asymptotic size of a ring element in Rq.

Hardness of SIS. To measure hardness of vSIS, we heuristically assume that
it is as hard as the plain SIS problem for the dimension ϕ = ϕ(f). To measure
hardness of SIS, we first translate the canonical norm ‖σ(·)‖2 into the Euclidean
norm ‖ψ(·)‖2, and then follow the heuristic methodology from [27]. That is,
let b = O(λ) be the block size of the BKZ algorithm to find a short vector in
the corresponding q-ary lattice for SIS (cf. [6]). Define the root Hermite fac-

tor as δrhf =
(

b(πb)1/b

2πe

)1/(2(b−1))

. Then, SIS with matrix dimensions ϕ×ϕm and

Euclidean norm β� = βsis · poly is hard when β� < min
(
22

√
ϕ log q log δrhf , q

)
. By

rearranging, we get that ϕ log q > log2 β�
/4 log δrhf . Note that

log δrhf =
1

2(b − 1)
log
(

b(πb)1/b

2πe

)
= Θ

(
log b

b

)
= Θ

(
log λ

λ

)
.

Finally, using the fact that β� = poly[m,λ], size of a single Rq element is asymp-
totically

Ω

(
λ · (log m + log λ))2

log λ

)
= Ω

(
λ ·
(

log2 m

log λ
+ log λ

))
bits.

Therefore, we deduce that the total proof size in bits is O
(
log3 m · λ2

/log2 λ
)
.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 229

6 Packed Z-Inner Products via Twisted Trace Maps

We propose an abstract framework based on “twisted trace maps” that reduces
Z-inner products to R-inner products over various choices of R. In a nutshell,
for a fixed choice of R, we would like to construct a twisted trace map τ : R → Z

of the form shown below, where N ∈ N is some normalisation factor and α ∈ R
is called a “twist” element, such that the following diagram commutes:

Z
δ × Z

δ 〈·,·〉Z−−−−→ Z

ψ−1(·)×ψ−1(·)
⏐
⏐
,

-
⏐
⏐τ

R × R ·R−−−−→ R

where τ : z �→ 1
N

· Trace(α · z).

Definition 5 (Inner-Product Embedding). Let R ⊂ OK be a subring iden-
tified by a Z-basis b ∈ Rδ of δ elements. We say that a tuple τ is an inner-product
embedding over R if τ : R → Z

δ is a Z-linear map and, for any x,y ∈ Z
δ, it

holds that 〈x,y〉Z = τ
(
ψ−1
b (x) ·R ψ−1

b (y)
)

.

The proofs of all results in this section can be found in the full version.

6.1 Power-of-Two Cyclotomics via Constant Term

As a simple concrete example, we recall a well-known folklore technique for
computing the inner product over the coefficient embeddings of power-of-two
cyclotomics [24].

Theorem 3. Let R = Z[ζf] with a conductor f = 2k for some k ∈ N, δ = ϕ =
ϕ(f) = f/2, τ(·) = ct(·) = (ψ(·))0, where ψ denotes the coefficient embedding and
ct(·) is the constant term of the coefficient embedding. Then τ is an inner-product
embedding over R.

Remark 6. The constant term map ct(x) from Theorem 3 can be expressed in
terms of the Trace function as τ(x) = 1

ϕTrace(x), where ϕ = f/2 since f is a
power of 2, and may be viewed as a twisted trace map τ(x) = 1

ϕTrace(α ·x) with
α = 1.

As pointed out in Sect. 4, power-of-two cyclotomic rings do not admit large
subtractive sets, and are therefore ill-suited for certain applications, e.g. instan-
tiating the succinct arguments presented in Sect. 5. This motivates the search
for inner-product embeddings τ over other rings.

6.2 Prime Real Cyclotomics via Twisted Trace

A natural class of rings to search for inner-product embeddings are cyclotomic
rings with large prime conductors, since they admit large subtractive sets (cf.
Sect. 4). Although we did not manage to design inner-product embeddings in
those rings, we did so for its maximal real subring, adapting a result from lat-
tice code theory [5, Proposition 1].

230 M. Klooß et al.

Theorem 4. Let K = Q(ζf) where f is prime and R = Z[ζf + ζ−1
f] be identified

by the Z-basis b+ =
{∑

i=[j+1](ζ
ϕ/2−i + ζ−(ϕ/2−i))

}

j∈[ϕ/2]
. For z ∈ R, let

τ(z) = 1
2fTrace(αz) be a twisted trace map for the twist element α = t · t̄ where

t = ζ−ϕ/2 − ζϕ/2. Then τ is an inner product embedding over R.

The above theorem constructs inner-product embeddings for R = Z[ζf +
ζ−1
f] where f is prime. This restricts the choice of R quite severely, especially

considering that the subtractive set constructed in Sect. 4 for Z[ζf] or Z[ζf +ζ−1
f]

for prime f has a large expansion factor bound γS ≤ f.

6.3 Tensor of Prime Real Cyclotomics

To allow more fine-grained parameter selection, we extend the result in Sects. 6.1
and 6.2 by constructing larger rings using the tensor product, inspired by
[5, Proposition 6]. Concretely, we construct subtractive sets for rings R =
OK2d

⊗ OK+
f0

⊗ . . . ⊗ OK+
fk−1

for distinct odd primes f0, . . . , fk−1. Note that R
has conductor f = 2d ·∏i∈[k] fi and degree δ = 2d ·∏i∈[k](fi − 1). It is contained
in the ring OKf

which admits a subtractive set S of size f/fmax with expansion
factor γS = 1 (cf. Sect. 4).

Theorem 5. Let R = OKg ⊗ OK+
f0

⊗ . . . ⊗ OK+
fk−1

, g = 2d for some d ∈ N,

and f0, . . . , fk−1 distinct odd primes. Let b = bg ⊗
(⊗

i∈[k] b
+
fi

)
, where bg is the

power basis for Rg and b+
fi

is a basis for R+
fi

defined as in Theorem 4. Then,
τ(·) = 1

t · Trace(α · (·)) is inner-product embedding for α =
∏

i∈[k] αfi , where
t = 2kϕ(g)

∏
i∈[k] fi.

6.4 Reducing Binariness to Bounded Norm

We show how to reduce the Z-relation x ∈ {0, 1}mδ to an R-relation natively
supported by the succinct arguments presented in Sect. 5, via the inner-product
embedding framework. First, we recall the following elementary fact from [24].
A proof is given in the full version.

Proposition 1. A vector x ∈ Z
mδ is binary if and and only if 〈x, 1m −x〉Z = 0.

Next, we observe the following equivalence: 〈x,1mδ − x〉Z = 0 ⇐⇒
〈x,1mδ〉Z − 〈x,x〉Z = 0 ⇐⇒ 〈x,1mδ〉Z = 〈x,x〉Z. This suggests the follow-
ing reduction:

(i) The prover sends two claimed values s, t ∈ R supposedly satisfying τ(t) =
τ(s)

(ii) The prover then sends a succinct proof for 〈ψ−1(x), ψ−1(1δm)〉R = s and
〈ψ−1(x), ψ−1(x)〉R = t.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 231

Fig. 9. Protocol Π lin−bin
τ or Π ip−bin

τ , a reduction from Ξ lin
m,μ,β ∩ Ξbin

m or

Ξ ip

m,μ,β,īd
∩ Ξbin

m to Ξ ip

m,μ,β,īd
. The marked parts are only sent / checked when the

protocol is used as a proof of knowledge. As a reduction of knowledge, they are omit-
ted.

From the identity ∀ a,b ∈ Z
mδ, τ(〈ψ−1(a), ψ−1(b)〉R) = 〈a,b〉Z, the verifier

would be convinced that x is indeed binary.
However, there is a subtle issue that, on one hand, the rings R considered

in this section are of the form displayed in Sect. 6.3, which are not necessarily
equal to OK or OK+ for any cyclotomic field K. On the other hand, the succinct
arguments constructed in Sect. 5 are over rings which admit large subtractive
sets, for which we only know constructions in OK and OK+ . We therefore need
to lift the R-relations that we want to prove to some OK-relations (or OK+ -
relations, but we focus on the former) with R ⊆ OK, while ensuring that the
prover cannot cheat by using a witness over OK. To do this, we need the lemma
which allows viewing OK as an R-module in such a way that the geometry of
OK is respected. We refer to the full version for a precise lemma and its proof.

We next formally define the binariness relation which ignores the statement
and simply checks that the witness is a binary vector.

Ξbin
m :=

{
(stmt,w) : stmt ∈ {0, 1}∗; w ∈ Rm; ψ(w) ∈ {0, 1}mδ

}
.

In Fig. 9, we present two similar reductions of knowledge Π lin−bin and Π ip−bin

from Ξ lin ∩ Ξbin or Ξ ip ∩ Ξbin to Ξ ip, respectively. Note that, when reducing
Ξ ip ∩ Ξbin to Ξ ip, the inner product t = 〈ψ−1(x), ψ−1(x)〉R is already included
as part of the statement, and thus the prover does not need to send it. The
formal result is stated in Theorem 6.

Theorem 6. Let R = OKg ⊗ OK+
p0

⊗ . . . ⊗ OK+
pk−1

, g = 2d for some d ∈ N, and
f0, . . . , fk−1 distinct odd primes. Let τ be an inner-product embedding over R.
The protocol Π lin−bin

τ (resp. Π ip−bin
τ) is a perfectly correct reduction of knowledge

232 M. Klooß et al.

from Ξ lin
m,μ,β ∩ Ξbin

m (resp. Ξ ip
m,μ,β,īd

∩ Ξbin
m) over R to Ξ ip

m,μ,β,īd
over OK. There

exists a constant cf such that it is relaxed knowledge sound from Ξ lin∨sis
m,μ,β ∩ Ξbin

m

(resp. Ξ ip∨sis
m,μ,β,īd

∩ Ξbin
m) over R to Ξ ip

m,μ,β,īd
over OK if 2kcf · ϕ5/2 · β ≤ βsis.

7 Parameter Selection

We propose concrete instantiations of our protocols for various values of m.
For comparison with prior works, e.g. [2,7], we aim for 128-bit security. This
corresponds to the root Hermite factor δrhf ≈ 1.0044 (cf. Sect. 5.9).

Table 2. Concrete parameters, together with proof sizes, for security level λ = 128.

witness length in Z-elements ≈ 218 ≈ 220 ≈ 224

log q 110 110 120

f 5544 5544 5544

m 220 222 226

||ψ (·)||∞ of the witness 25 25 25

witness size 1080 MB 4320 MB 69120 MB

d 2 2 2

μ 2 3 4

of repetitions 17 18 19

(unoptimized) proof size 258.4 MB 263.6 MB 458.6 MB

7.1 Split-and-Fold with Norm Checks

We start with instantiating the split-and-fold with an intermediate norm check
described in Sect. 5.8. We focus on the following simple goal: commit to a short
vector w ∈ Z

h
q of length h, such that ||ψ (w)||∞ ≤ βinit = 25 and prove knowledge

of the commitment opening. To this end, we will pack h = m · ϕ integers into a
vector w ∈ Rm

q of m ring elements employing standard coefficient embedding.
Then, we will use the vSIS commitment scheme on w.

The relation of our interest is a proof of vSIS commitment opening [11], i.e.
the polynomial evaluation equation w(v) = y (mod q) for public ring elements
v, y ∈ Rq. When adapting this relation to the language of Ξ ip, we would initially
set (n, nout) = (1, 1). Throughout the batching protocols, we set n = 1. In our
experiments, we hardwire f = 5544. Hence, ϕ = 1440 and |CR| = 504. We fix
� = 2 for the whole execution of the protocol. Then, given the norm bound β and
�, we can deduce the decomposition base b. Since in each iteration of the split-
and-fold protocol, the norm β may change, then so can the base b. We note that
(at least concretely) the current proof sizes are not optimal, reaching high orders
of Megabytes. We highlight that we could achieve better sizes for larger moduli.

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 233

However, conceptually this would be contradictory to the original intention of
split-and-fold with norm checks; avoiding unnecessary stretch and large proof
system modulus. We defer more fine-grained optimisation to a follow-up work.

Concrete Parameters. In Table 2 we suggest concrete parameters with the
estimated proof size. The results are obtained via a dedicated script11 simulating
protocol execution and measuring the communication cost.

Acknowledgments. R.L. and M.O. are supported by the Research Council of Finland
project No. 358951. This work was supported by the Helsinki Institute for Information
Technology (HIIT) and conducted while M.K. was affiliated with Aalto University.
N.K.N. was supported by the Protocol Labs RFP-013: Cryptonet network grant.

References

1. Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.K.:
Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively com-
posable - (extended abstract). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 102–132. Springer, Heidelberg (Aug 2022). https://
doi.org/10.1007/978-3-031-15979-4 4

2. Albrecht, M.R., Fenzi, G., Lapiha, O., Nguyen, N.K.: Slap: Succinct lattice-based
polynomial commitments from standard assumptions. Cryptology ePrint Archive,
Paper 2023/1469 (2023), https://eprint.iacr.org/2023/1469, https://eprint.iacr.
org/2023/1469

3. Albrecht, M.R., Lai, R.W.F.: Subtractive sets over cyclotomic rings - lim-
its of Schnorr-like arguments over lattices. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 519–548. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84245-1 18

4. Baum, C., Lyubashevsky, V.: Simple amortized proofs of shortness for linear rela-
tions over polynomial rings. Cryptology ePrint Archive, Report 2017/759 (2017),
https://eprint.iacr.org/2017/759

5. Bayer-Fluckiger, E., Oggier, F., Viterbo, E.: New algebraic constructions of rotated
z/sup n/-lattice constellations for the rayleigh fading channel. IEEE Transactions
on Information Theory 50(4), 702–714 (2004). https://doi.org/10.1109/TIT.2004.
825045

6. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. Cryptology ePrint Archive, Report
2015/1128 (2015), https://eprint.iacr.org/2015/1128

7. Beullens, W., Seiler, G.: LaBRADOR: Compact proofs for R1CS from module-
SIS. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 518–548. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4 17

8. Boneh, D., Chen, B.: Latticefold: A lattice-based folding scheme and its applica-
tions to succinct proof systems. Cryptology ePrint Archive, Paper 2024/257 (2024),
https://eprint.iacr.org/2024/257, https://eprint.iacr.org/2024/257

11 The script and the output are available at https://github.com/russell-lai/rok-paper-
sissors-estimator/blob/camera-ready/rok-estimator.ipynb.

https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://eprint.iacr.org/2023/1469
https://eprint.iacr.org/2023/1469
https://eprint.iacr.org/2023/1469
https://doi.org/10.1007/978-3-030-84245-1_18
https://eprint.iacr.org/2017/759
https://doi.org/10.1109/TIT.2004.825045
https://doi.org/10.1109/TIT.2004.825045
https://eprint.iacr.org/2015/1128
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://github.com/russell-lai/rok-paper-sissors-estimator/blob/camera-ready/rok-estimator.ipynb
https://github.com/russell-lai/rok-paper-sissors-estimator/blob/camera-ready/rok-estimator.ipynb

234 M. Klooß et al.

9. Bootle, J., Chiesa, A., Sotiraki, K.: Lattice-based succinct arguments for NP
with polylogarithmic-time verification. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 227–251. Springer, Heidelberg (Aug
2023). https://doi.org/10.1007/978-3-031-38545-2 8

10. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 441–469. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1 16

11. Cini, V., Lai, R.W.F., Malavolta, G.: Lattice-based succinct arguments from van-
ishing polynomials - (extended abstract). In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 72–105. Springer, Heidelberg (Aug
2023). https://doi.org/10.1007/978-3-031-38545-2 3

12. Cini, V., Malavolta, G., Nguyen, N.K., Wee, H.: Polynomial commitments from
lattices: Post-quantum security, fast verification and transparent setup. Cryptology
ePrint Archive, Paper 2024/281 (2024), https://eprint.iacr.org/2024/281, https://
eprint.iacr.org/2024/281

13. Debris-Alazard, T., Fallahpour, P., Stehlé, D.: Quantum oblivious lwe sampling
and insecurity of standard model lattice-based snarks. Cryptology ePrint Archive,
Paper 2024/030 (2024), https://eprint.iacr.org/2024/030, https://eprint.iacr.org/
2024/030

14. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018(1), 238-
268 (Feb 2018). https://doi.org/10.13154/tches.v2018.i1.238-268, https://tches.
iacr.org/index.php/TCHES/article/view/839

15. Esgin, M.F., Kuchta, V., Sakzad, A., Steinfeld, R., Zhang, Z., Sun, S., Chu, S.:
Practical post-quantum few-time verifiable random function with applications to
algorand. In: Borisov, N., Dı́az, C. (eds.) FC 2021, Part II. LNCS, vol. 12675,
pp. 560–578. Springer, Heidelberg (Mar 2021). https://doi.org/10.1007/978-3-662-
64331-0 29

16. Fenzi, G., Moghaddas, H., Nguyen, N.K.: Lattice-based polynomial commitments:
Towards asymptotic and concrete efficiency. Cryptology ePrint Archive, Paper
2023/846 (2023), https://eprint.iacr.org/2023/846, https://eprint.iacr.org/2023/
846

17. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly veri-
fiable secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 458–487. Springer,
Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4 16

18. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the
discrete log setting, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM CCS 2019. pp. 2093–2110. ACM Press (Nov 2019). https://doi.org/
10.1145/3319535.3354251

19. Kothapalli, A., Parno, B.: Algebraic reductions of knowledge. In: Handschuh, H.,
Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 669–701.
Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38551-3 21

20. Lai, R.W.F., Malavolta, G.: Lattice-based timed cryptography. In: Handschuh, H.,
Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 782–804.
Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38554-4 25

21. Lenstra, H.W.: Euclidean number fields of large degree. Inventiones mathematicae
38(3), 237–254 (1976). https://doi.org/10.1007/BF01403131, https://doi.org/10.
1007/BF01403131

https://doi.org/10.1007/978-3-031-38545-2_8
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-031-38545-2_3
https://eprint.iacr.org/2024/281
https://eprint.iacr.org/2024/281
https://eprint.iacr.org/2024/281
https://eprint.iacr.org/2024/030
https://eprint.iacr.org/2024/030
https://eprint.iacr.org/2024/030
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29
https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2023/846
https://eprint.iacr.org/2023/846
https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.1145/3319535.3354251
https://doi.org/10.1145/3319535.3354251
https://doi.org/10.1007/978-3-031-38551-3_21
https://doi.org/10.1007/978-3-031-38554-4_25
https://doi.org/10.1007/BF01403131
https://doi.org/10.1007/BF01403131
https://doi.org/10.1007/BF01403131

RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments 235

22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4 43

23. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210,
pp. 293–323. Springer, Heidelberg (Apr / May 2017). https://doi.org/10.1007/
978-3-319-56620-7 11

24. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 71–101. Springer,
Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4 3

25. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge
proofs for integer relations. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.)
ACM CCS 2020. pp. 1051–1070. ACM Press (Nov 2020). https://doi.org/10.1145/
3372297.3417894

26. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J. (ed.) PKC 2021, Part I. LNCS,
vol. 12710, pp. 215–241. Springer, Heidelberg (May 2021). https://doi.org/10.1007/
978-3-030-75245-3 9

27. Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
88702-7 5, https://doi.org/10.1007/978-3-540-88702-7 5

28. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (May 2013). https://doi.org/10.1007/
978-3-642-38348-9 22

29. Wee, H., Wu, D.J.: Lattice-based functional commitments: Fast verification and
cryptanalysis. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part V. LNCS,
vol. 14442, pp. 201–235. Springer, Heidelberg (Dec 2023). https://doi.org/10.1007/
978-981-99-8733-7 7

https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1145/3372297.3417894
https://doi.org/10.1145/3372297.3417894
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-981-99-8733-7_7
https://doi.org/10.1007/978-981-99-8733-7_7

MuxProofs: Succinct Arguments
for Machine Computation from Vector

Lookups

Zijing Di1,2(B), Lucas Xia1, Wilson Nguyen1, and Nirvan Tyagi1

1 Stanford University, Stanford, USA
{zidi,lucasxia,wdnguyen,tyagi}@stanford.edu

2 EPFL, Lausanne, Switzerland

Abstract. Proofs for machine computation prove the correct execu-
tion of arbitrary programs that operate over fixed instruction sets (e.g.,
RISC-V, EVM, Wasm). A standard approach for proving machine com-
putation is to prove a universal set of constraints that encode the full
instruction set at each step of the program execution. This approach
incurs a proving cost per execution step on the order of the total sum of
instruction constraints for all of the instructions in the set, despite each
step of the program only executing a single instruction. Existing proving
approaches that avoid this universal cost per step (and incur only the
cost of a single instruction’s constraints per step) either fail to provide
zero-knowledge or rely on recursive proof composition for which security
relies on the heuristic instantiation of the random oracle.

We present new protocols for proving machine execution that resolve
these limitations, enabling prover efficiency on the order of only the exe-
cuted instructions while achieving zero-knowledge and avoiding recursive
proofs. Our core technical contribution is a new primitive that we call
a succinct vector lookup argument which enables a prover to build up a
machine execution “on-the-fly”. We propose succinct vector lookups for
both univariate polynomial and multivariate polynomial commitments
in which vectors are encoded on cosets of a multiplicative subgroup and
on subcubes of the boolean hypercube, respectively. We instantiate our
proofs for machine computation by integrating our vector lookups with
existing efficient, succinct non-interactive proof systems for NP.

Keywords: Zero-knowledge proofs · machine computation · vector
lookups

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) [14,39,48,55]
enable efficient verification of NP statements. Improving prover efficiency is a
key challenge in the design of SNARKs and a pathway to increase their practi-
cally deployment. In this work, we improve the prover efficiency for an important
class of statements known as machine computation [13,21].
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 236–265, 2025.
https://doi.org/10.1007/978-981-96-0935-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_8&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_8

MuxProofs: Succinct Arguments for Machine Computation 237

In machine computation, statements are defined by the output of a program
operating over a predefined fixed instruction set. A program maintains some
state including an instruction pointer which determines the next instruction to
execute from the instruction set. The result of an instruction execution step is
an updated state and instruction pointer pointing to the next instruction to be
executed.

A starting motivation for our goal of improving prover time for machine
computations is another class of statements in which structure can be lever-
aged for prover efficiency: disjunctions [5,32]. A disjunctive statement consists
of a set of clauses, each of which is itself an NP statement. It is satisfied if
there exists a satisfying witness for at least one of the clauses. Many privacy-
preserving systems rely on zero-knowledge proofs for disjunctive statements in
which the clause that is satisfied must remain hidden. A standard approach to
proving the validity of a disjunctive statement in zero-knowledge is by simply
encoding the clauses into a constraint system that includes the constraints for
each individual clause as well as constraints for a disjunction over validity of all
clauses; this constraint system over the full set of clauses is sometimes referred
to as a universal constraint system. Any compatible zero-knowledge SNARK
for NP can be used with the universal constraint system to produce a succinct
proof. Unfortunately, given no shared structure between the clauses, the univer-
sal constraint system has size equal to the sum of the individual clause constraint
encodings, and prover time scales accordingly. Prior work has shown how to do
better in some cases [8,9,40,42,44,46], where most recently Goel et al. show
how to build SNARKs for disjunctions with NP clauses in which prover time
scales with Õ(C + �) computation where C is the constraint size of a single
clause and � is the number of clauses in the disjunction. This is in contrast to a
Õ(C�) cost of the universal constraint system approach.

In this work, we would like to obtain similar prover time gains by taking
advantage of the similar structure found in machine computation. Machine com-
putation resembles a disjunction as the prover would like to prove at each step
that the new program state is the result of applying one of the valid instructions
in the instruction set. Indeed, it is more complex than a simple disjunction as
the prover needs to additionally prove that the correct instruction is executed
at each step and the intermediate program state between steps is consistent;
further, the prover must do this over a sequence of many execution steps. That
said, the high level goal of constructing a prover that scales only with the size of
executed instructions rather than the sum of executions of a universal instruc-
tion set is similar. We target a prover time of Õ((n+�)C) versus the prover time
of Õ(n�C) achieved through universal constraint systems where n is the number
of executed instructions, � is the number of instructions in the instruction set,
and C is the constraint size of a single instruction.

Proofs for correct execution of machine computation have received signifi-
cant attention with active projects working to build proof systems for promi-
nent instruction sets including EVM [1,3], RISC-V [2], and WebAssembly [4].
These proofs have already been deployed to improve the scalability of blockchain

238 Z. Di et al.

auditing, in particular, with respect to audit of smart contract execution. Now,
instead of requiring auditors to execute smart contracts locally to determine
and verify a new blockchain state, auditors can simply verify a succinct proof
of correct machine computation for the instruction set to which the smart con-
tract is compiled. The task of producing such a proof can be outsourced to
any untrusted prover. Importantly, the proving time for producing such a proof
must be manageable as it will determine the contract execution throughput that
the system will be able to support. As we discuss below, deployed systems such
as zkEVM [1] do not provide zero-knowledge (despite the misnomer), in part,
due to prover efficiency reasons. Nevertheless, zero-knowledge is an important
property for these applications and will be necessary to realize next-generation
systems that support private smart contract execution [19,66].

Prior Approaches to Succinct Proofs for Machine Computation. There
have been two overarching approaches to proving correct execution of machine
computation. The first is through the use of incrementally-verifiable computation
(IVC) [63] in which each instruction step is proved in sequence building on a proof
for the correct execution of the program up to that point. The second approach
first “unrolls” the complete program execution and proves it as a single constraint
system. Figure 1 provides a summary.

Incremental Proof Systems for Machine Computation. Ben-Sasson et al. [12]
demonstrate the ability to build proofs for machine execution from IVC using
recursive proofs [15] in which the constraint system for each step verifies one
instruction step and recursively verifies a SNARK for the previous step. This
work uses a universal constraint system encoding the full instruction set at each
step. This general approach can be instantiated with state-of-the-art approaches
for achieving IVC [17,20,23,24,51], which avoid direct verification of recursive
proofs and therefore achieve lower recursive overhead. However, this strategy
will incur computation on the order of the size of the universal constraint sys-
tem at each step (Õ(�C) per step), as opposed to just the size of the executed
instruction constraints (Õ(C) per step).

Instead, to obviate the universal constraint system, an alternate strategy
would be to commit to constraint systems for each instruction in the instruction
set, e.g., in a Merkle tree commitment. At each step, the prover would open up
the commitment to the instruction to be executed for the step, prove the instruc-
tion execution, and recursively verify a proof for the previous step. In concurrent
work, SuperNova [50] and Protostar [22] refine this high-level blueprint build-
ing on the state-of-the-art recursion techinques [23,51] and further employing
techniques in offline memory checking [16,53,60] to remove asymptotic depen-
dence on the number of instructions in the instruction set when opening the
instruction commitment. In this way, SuperNova and Protostar build proofs for
machine computation using IVC that achieve Õ((n+�)C) prover cost (formalized
as non-uniform IVC [50]).

A drawback of all these approaches that fall under the IVC strategy is that
they rely on recursively proving computations that query random oracles. For
example, in each step, the prover may need to prove the execution of a recursive

MuxProofs: Succinct Arguments for Machine Computation 239

verifier that queries a random oracle in its decision process. Outside of recent
exploratory work [28,29] in specialized models, we do not have secure construc-
tions of SNARKs that prove computations which query random oracles. Thus, in
practice, the security of such constructions is based on a heuristic assumption. In
particular, the assumption, informally, states these constructions remain secure
if the random oracle is instantiated with a particular concrete hash function.
This is necessary to encode the recursive computation in a manner suitable for
existing SNARKs. As such, these constructions have not been shown to be secure
in the random oracle model.

As we describe next, an alternate strategy avoids IVC (and its associated
heuristic assumption) by unrolling and proving the full program execution in its
entirety.

Unrolled Proof Systems for Machine Computation. Unrolled proof systems for
universal constraint systems incur cost on the size of the universal constraint
system per instruction unrolled (Õ(n�C)) simply by repeating the universal
constraint system for each execution step [11,13,18]. Other unroll approaches
including Pantry [21], Buffet [64], and vRAM [72] avoid the use of universal
constraint systems and achieve prover computation that we desire on the order
only of the executed instructions (Õ((n + �)C)).

However, the unroll approach is not able to provide full zero-knowledge of pro-
gram execution—at the very least, it must leak some upper bound on the number
of execution steps. Prior unroll proof systems that achieve prover computation
on the order of only executed instructions leak even more: Pantry [21] and Buf-
fet [64] both require program-specific preprocessing in which the full program
description must be revealed to the verifier, while vRAM [72] avoids program-
specific preprocessing but reveals the number of times each instruction is exe-
cuted. Indeed, deployed systems such as zkEVM [1] take an unroll approach
but do not provide zero-knowledge. Intuitively, providing zero-knowledge for
unrolled executions without incurring universal constraint costs is challenging;
the key issue is that it cannot be known ahead of time which instruction will be
executed at each execution step.

Our Approach Using Succinct Vector Lookups. In this work, we pro-
pose the first unrolled proof system for machine computation that supports
zero-knowledge (beyond an upper bound on execution length) while also incur-
ring prover computation of Õ((n + �)C) (see below for comparison to concur-
rent work). In comparison to prior proof systems that are able to achieve this
prover complexity: Pantry [21], Buffet [64], and vRAM [72] do not provide zero-
knowledge, and SuperNova [50] and Protostar [22] rely on IVC techniques which
require a heuristic instantiation of the random oracle for recursion.

To do this, our main technical contributions are new succinct proof systems
for vector lookups. A vector lookup allows a commiter to prove that a commit-
ment to a list of vectors contains only vectors that exist in a reference table of
vectors, i.e., that every vector was “looked up” from some index in the reference
table. Generically, a vector lookup can be constructed from any element lookup
proof system. The generic construction starts off by committing to each position

240 Z. Di et al.

Fig. 1. Summary of strategy and characteristics of machine execution proof protocols.
UC refers to using universal circuit constraints and Exe refers to using constraints just
for executed instructions. The asymptotic prover time is given in terms of the number
of executed instructions n, the number of instructions in the instruction set �, and the
constraint size of a single instruction C. Execution leakage refers to aspects of the pro-
gram execution that are revealed to the verifier. The final column refers to security in
the random oracle model. IVC constructions with recursive proof composition rely on a
heuristic security step instead of a random oracle model security analysis. The Õ nota-
tion hides polylogarithmic factors; in particular, the prover time for Mux- HyperPLONK
is strictly O((n + �)C) and does not have polylogarithmic factors.

of the vectors in a separate commitment. Then, it homomorphically combines
the commitments into a single table via a linear combination with a random ver-
ifier challenge. Finally, it runs the element lookup protocol with respect to the
random table [37]. This transformation can be applied to any suitable element
lookup [18,35–37,58,70,71] but results in verification that is linear in the vec-
tor size. In contrast, our new vector lookups admit succinct verification running
in time logarithmic in the vector size which will be important for our machine
computation application.

Equipped with our new vector lookup, we proceed to construct an unrolled
proof system for machine computation. Our approach combines vector lookup
arguments with proof systems for NP constraint systems that are compiled from
a common information-theoretic abstraction known as a polynomial interactive
oracle proof (polyIOP) where computation is encoded as a vector of constraints
within a polynomial commitment in a preprocessing step. In our approach, the
vector of constraints representing each instruction in the instruction set are
encoded together in a table that represents the available instructions. Then a
vector lookup is used to construct a polynomial commitment on-the-fly that
represents the unrolled machine execution, “looking up” the constraints for the
executed instructions.

We instantiate this approach with three existing polyIOPs for NP,
PLONK [38], Marlin [30], and HyperPLONK [27]. PLONK and Marlin are
both univariate polyIOPs: when combined with our univariate vector lookup
CosetLkup and a suitable univariate polynomial commitment scheme (e.g.,
Marlin-KZG [30,47]), the resulting proof systems for machine computation,
Mux-PLONK and Mux-Marlin, admit constant proof size at the expense of quasi-

MuxProofs: Succinct Arguments for Machine Computation 241

linear proving time Õ((n + �)C). We also build on the multivariate polyIOP,
HyperPLONK, which when combined with our multivariate vector lookup
SubcubeLkup and a suitable multivariate polynomial commitment scheme (e.g.,
Brakedown [43] or Orion [27,65]) results in Mux-HyperPLONK with an efficient
linear-time (O((n + �)C)) prover and sublinear proof size.

Minimal instruction sets (e.g., TinyRAM [13] or RISC-V) have instruction set
size � of 30-50 instructions and instruction constraint size C on the order of 128
constraints (in the case of enforcing 64-bit computation modulo a prime). Our
evaluation estimates indicate our protocols incur less than 2.5× overhead on
top of comparable zero-knowledge proof systems for the same computation size.
Given our protocols reduce the computation size by a factor of � (i.e., 30− 50×)
over unrolled zero-knowledge proof systems for universal constraints, our cost
accounting indicates our protocols reduce proving time by up to 9× in this
setting.

Further, in industry, there is an ongoing trend away from minimial instruc-
tion sets towards richer “virtual instruction sets”. In this setting, our protocols
demonstrate their fullest potential. Take, for example, the Ethereum virtual
machine (EVM) instruction set which includes custom instructions for Keccak
hashing and ECDSA signature verification. In a rich instruction set, ECDSA ver-
ification can be represented as a single instruction with size C of 1.5 million con-
straints1. In contrast, compiling ECDSA verification for a minimal instruction
set greatly increases the number of executed instructions n; ECDSA verification
expands to around 5 million RISC-V instructions2. Due to our protocols’ suc-
cinctness and prover efficiency with respect to C and �, they are especially well
suited for the task of proving machine computation for rich instruction sets that
include many complex instructions.

Summary of Contributions. We summarize our contributions as follows:

• Succinct vector lookup arguments: We present two new vector lookup argu-
ments that provide succinct verification and proof size with respect to vector
size, lookup size, and table size. One argument, CosetLkup, encodes vectors
within univariate polynomial commitments over cosets of multiplicative sub-
groups. The other, SubcubeLkup, encodes vectors within multivariate polyno-
mial commitments over subcubes of the boolean hypercube.

• MuxProofs protocols for machine computation: We demonstrate the modu-
larity of our approach by combining our vector lookup arguments with three
different polyIOPs for NP (with different prover properties) to build zero-
knowledge unrolled proof systems for machine computation that only incur
prover cost on the order of executed instructions (avoiding universal con-
straint costs per execution step).

• Implementation and evaluation: We implement our univariate vector lookup
CosetLkup and evaluate its efficiency. Verifier time is vastly improved over the
naive linear combination approach with roughly equal verifier times at vector

1 https://github.com/0xPARC/circom-ecdsa.
2 https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa.

https://github.com/0xPARC/circom-ecdsa
https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa

242 Z. Di et al.

size 8 and 60× faster for vector size 210. We further perform a thorough cost
accounting and estimate performance of our proofs for machine computation.
Our full evaluation is deferred to the full version of the paper [33].

• Generic zero-knowledge compiler for univariate polyIOPs: We formalize com-
mon techniques for adding zero-knowledge to a sound polyIOP within a
generic compiler. To do this, we introduce a domain admissibility property
for polyIOPs that restricts how polynomial oracles may depend on witness
elements and we restrict polynomial evaluations on oracles to particular poly-
nomial identity tests.

Concurrent Work. There exist a number of concurrent works targeting
improvements in prover time for proving correct machine execution. The work
most closely related to MuxProofs is Sublonk [31] which achieves similar asymp-
totic prover time and also uses succinct vector lookups (referred to as segment
lookups). Sublonk builds a univariate vector lookup from the cq element lookup
protocol [35] which admits a prover time independent of the table size �, Õ(nC),
as opposed to Õ((n+�)C) in this work. Campanelli et al. also propose a succinct
vector lookup based on cq (referred to as matrix lookups) [26]. Their protocol is
more concretely efficient than that of Sublonk and also includes a zero-knowledge
analysis. Even so, constant factors of the cq-based vector lookup are higher than
our univariate vector lookup CosetLkup. In the machine computation applica-
tion, we typically expect the number of executed instructions in a program n
to eclipse the instruction set size � and so CosetLkup will outperform in this
case. Further, Sublonk applies their vector lookup to the PLONK polyIOP for a
layered branching circuit computation model; their treatment does not directly
address certain challenges of the machine computation model such as variable-
length execution (e.g., their preprocessing work is dependent on the full execu-
tion length). Lastly, both of these works only build succinct univariate vector
lookups. We further propose SubcubeLkup, a succinct multivariate vector lookup,
enabling a strictly linear-time prover. We summarize the state of vector lookups
in Fig. 2.

Jolt [7] proposes the use of the Lasso lookup for structured large tables [62] to
encode and lookup executions from full instruction input-output tables (e.g., for
64-bit RISC-V, tables of size 2128). In contrast, MuxProofs encodes instruction
constraints for looking up which instruction to execute at each step. These are
orthogonal (but possibly complementary) applications of lookups for machine
computation.

Another line of work achieves the same asymptotic prover efficiency (with
very good constants) but does not provide succinctness; proof size and verifica-
tion time grow linearly in nC [41,68]. Most of the work described so far considers
C as the upper bound of instruction constraint size for all instructions in the
instruction set, thus incurring overhead when instructions are of varying sizes.
Yang et al. consider “tight” machine computation in which the prover only incurs
cost on the constraint size of the executed instructions [69]. Instead of leaking
the upper bound on the number of executed instructions, this model leaks the
upper bound on the number of executed constraints.

MuxProofs: Succinct Arguments for Machine Computation 243

Fig. 2. Comparison of properties of vector lookup proof systems for vectors of length
m, tables of � vectors, and lookups of n vectors. The LC annotation denotes the generic
linear combination approach to transform any field lookup with linearly-homomorphic
commitments into a vector lookup [37]. The final column indicates whether the lookup
operates over a univariate polynomial encoding (U) or a multivariate polynomial encod-
ing (M). Univariate protocols are instantiated with the Marlin-KZG polynomial com-
mitment [30] over a bilinear pairing group. For cost analysis, G denotes group ele-
ment/multiplication, F denotes scalar field element/operation, H denotes a hash oper-
ation, and P denotes a pairing operation. Our multivariate protocol is instantiated
with a linear-prover polynomial commitment with a logarithmic proof size and verifier
time (e.g., Orion [27,65]). The Õ notation hides polylogarithmic factors. We highlight
that SubcubeLkup does not have polylogarithmic factors in the prover time.

SuperNova [50] and Protostar [22] achieve the same asymptotic prover time as
MuxProofs but take the IVC approach with heuristic security. IVC incurs prover
overhead to recursively verify a folding proof: this entails using cycles of elliptic
curves and non-native arithmetic constraints [52,56]. However, even with these
overheads, IVC has been shown to be more prover-efficient than monolithic (i.e.,
unrolled) proof systems for many settings [57]. Our multivariate protocol Mux-
HyperPLONK may offer a promising alternative, as it can be instantiated with
prover-efficient polynomial commitments (e.g., Brakedown [43] or Orion [27,65])
that do not provide required homomorphism for efficient folding in SuperNova
and Protostar.

2 Technical Overview

A standard approach to constructing succinct zero knowledge proof systems
employs holography in which the claimed computation to be proved is encoded
within a computation commitment in an initial preprocessing phase [30,59]. After
checking the validity of the computation commitment once—a non-succinct oper-
ation that can take time linear in the size of the computation—the verifier can
verify any number of proofs for the computation succinctly. Unfortunately in
machine execution, the description of the unrolled executed computation of a
program (i.e., the sequence of executed instructions) is dependent on the pro-
gram and program inputs. Thus, a different computation commitment and ver-
ifier check would be required for each different program execution. Not only
does this approach not result in succinct verification but it is also not amenable

244 Z. Di et al.

to zero-knowledge: the executed computation description may leak information
about the program and its inputs.

We describe below an overview of our strategy for constructing the first zero-
knowledge argument for unrolled machine execution with prover-efficiency on
the order of the executed instructions that avoids recursive proving techniques.
We describe two main technical contributions (Sects. 2.2 and 2.3, respectively).
The first contribution is a new building block, a succinct vector lookup argu-
ment, for efficiently proving correspondence of vector encodings between two
polynomials. The second contribution is to show how to compose vector lookup
arguments with holographic polyIOPs to realize succinct and prover-efficient
proofs for machine computation.

2.1 Strategy: Computation Commitments from Machine
Commitments

Despite the executed computation being program-dependent, there exists struc-
ture in the computation that we can take advantage of. Namely, the set of pos-
sible instructions that can be executed is fixed ahead of time as a description of
the “machine” the program runs on (e.g., a RISC-V CPU has a fixed instruction
set). In our work, during preprocessing, the machine description (i.e., instruc-
tion set) is encoded within a machine commitment. To prove machine execution
of a program, a computation commitment for the executed computation (i.e.,
the particular sequence of executed instructions) can be computed on-the-fly in
such a way that the verifier can succinctly verify correctness of the computa-
tion commitment given the machine commitment. Then given the computation
commitment, we can largely rely on previous techniques to verify correctness of
computation execution. As we describe next, the core insight of our work is a new
way to encode computation descriptions to enable efficient proofs for the relation
between the executed computation commitment and machine commitment.

Modeling Machine Execution. First, we provide an introduction to our
model of machine execution. We say a machine description consists of � instruc-
tions each of which are represented as a computation over an input state
(instin,memin) and produce an output state (instout,memout)3. The output state
(instout,memout) is passed as input to the next instruction. There are two parts
to the running state. First, the instruction pointer inst ∈ [�] specifies which of the
� instructions to run next. We assume that the instruction computation checks
that the instruction pointer in the input state is correct. Second, the memory
mem contains all other state including program inputs, program description,
program counter, and external memory. As such, in applying an instruction
computation to move from (instin,memin) to (instout,memout), our modeling of

3 There are different models for computation. For example, if modeled using circuit
satisfiability, an instruction circuit would take in (instin,memin, instout,memout) as
well as possibly some other witness inputs such that the circuit is satisfied if and
only if (instout,memout) is a valid application of the instruction computation to
(instin,memin).

MuxProofs: Succinct Arguments for Machine Computation 245

an instruction computation captures two possibly distinct functionality: (1) The
instruction functionality applying changes to external memory (e.g., storing the
sum of two values in the case of an “add” instruction), and (2) the control logic
functionality determining the next instruction to run (e.g., changing the program
counter according to inputs and reading the program description to determine
the next instruction pointer).

In practice, it will not be desirable to pass the full memory as described into
each instruction computation. Offline memory checking techniques [16] enable a
verifier to efficiently check a prover maintains memory correctly by performing a
small amount of work per memory access (e.g., a Merkle path check or a multi-
set hash update) [41,49,53,60,67]. Offline memory checking is not a contribution
of this work, and any of these existing techniques can be employed with Mux-
Proofs. In the remainder of the paper, we will consider mem as a small digest
(e.g., a Merkle root or a multiset hash) and appropriate witnesses are provided
for checking memory accesses within the instruction computation.

Encoding a Machine Commitment as a Polynomial. We now return to
our goal of encoding a machine description as a machine commitment in a use-
ful manner. Among prior proof systems that employ holography [27,30,38], a
predominant approach to encoding the computation is as a vector (or small
number of vectors) containing elements of a field F. The vector, say of length
m, is then encoded as the evaluation points of a polynomial over some specified
domain. Some proof systems encode as a univariate polynomial f ∈ F

≤m[X] of
degree m where f is interpolated over evaluations of a canonical ordered sub-
group H ⊆ F [30,38]. Others encode as a (log m)-multivariate polynomial
f ∈ F[X[log m]] where f is the multilinear polynomial interpolated over evalu-
ations of the boolean hypercube {0, 1}log m [27,59]. This preprocessing of com-
putation commitments as polynomials is used by a popular class of proof systems
known as polynomial interactive oracle proofs (polyIOPs) [25]. We will model our
machine commitment in the same way. For now, let us focus on the univariate
polynomial setting; we will revisit the multivariate polynomial setting which
admits various tradeoffs shortly.

Say each instruction can be described by a vector of field elements of size
m. By packing the instruction vectors into a larger vector of size �m, we can
encode the full instruction set into the evaluations of a polynomial t over a
subgroup H of size |H| = �m. Looking forward, a key insight to enable our
efficient proof techniques is the manner in which we perform this encoding.
In particular, we encode each instruction over a size-m coset of H that admits
useful structure. This will allow us to prove more granular properties at the level
of certain instructions rather than being limited to simply proving properties
about the full instruction set. More precisely, say H = 〈ω〉 is generated by
generator ω ∈ F: H =

{
1, ω, ω2, . . . , ω�m−1

}
. Then, we define a multiplicative

subgroup V � H of size |V| = m where V is generated by γ = ω�:

V =
{

1, γ = ω�, γ2 = ω2�, . . . , γm−1 = ω(m−1)�
}

.

246 Z. Di et al.

Further, we define the � cosets of V in H as

∀ i ∈ [0, �), ωi
V =

{
ωi, ωiγ = ω�+i, ωiγ2 = ω2�+i, . . . , ωiγm−1 = ω(m−1)�+i

}
.

In this way, we interpolate polynomial t for the machine commitment such that
the evaluations on coset ωi

V are set to the vector of field elements that describe
the computation for the ith instruction.

Building an Executed Computation Commitment via a Lookup Argu-
ment. Now given a polynomial t that encodes the set of � instructions as a
machine commitment, our goal is to produce a computation commitment poly-
nomial for the unrolled execution. An unrolled execution consists of applying n
instruction computations in sequence where n is the number of execution steps
until program termination.

At a high level, we want to be able to produce a polynomial f interpolated
over a subgroup G (where |G| = mn and generator G = 〈μ〉) that encodes the
n executed instructions. Analogous to our encoding of � instructions from the
instruction set in the machine commitment polynomial t, we encode the n exe-
cuted instructions in f as evaluations over the n cosets of V in G. More precisely,
each coset of f should correspond to some instruction encoded over a coset of t:
∀j ∈ [n] ∃i ∈ [�] s.t. f(μj

V) = t(ωi
V) .

This type of relation can be abstracted as a vector lookup: we would like to
prove that polynomial f faithfully “looks up” vectors encoded in the instruction
table polynomial t. That is, only valid instructions are encoded. The standard
approach for vector lookups build on lookup protocols for individual field ele-
ments [18,35–37,58,70,71]. An element lookup allows proving the simpler rela-
tion that every evaluation of a polynomial f1 over G exists in the evaluations of
the table polynomial t1 on H. To build a vector lookup from an element lookup,
one may encode each position i ∈ [m] of the instruction vectors within a different
polynomial, resulting in polynomials [fi]i∈[m] and [ti]i∈[m]. If the polynomials are
committed using a linearly-homomorphic commitment scheme, the verifier can
sample a random challenge β ←$ F to randomly combine the position commit-
ments. The prover and verifier jointly compute (commitments to) to polynomials
f̂ =

∑
i∈[m] β

i · fi and t̂ =
∑

i∈[m] β
i · ti, and perform an element lookup with

respect to f̂ and t̂ [37].
This approach to vector lookups incurs verification cost and proof size that

is at least linear in the vector size m. Recall in the machine computation appli-
cation, we are proposing encoding instruction constraints within a vector. At
the very least, the simplest instructions encoding 64-bit arithmetic requires con-
straints on the order of 128; in richer instruction sets, such as EVM, instruc-
tions can be much larger (e.g., 1.5 million for ECDSA verification or 20000 for
SHA256). Linear scaling in m of the vector lookup is at best a significant over-
head and at worst is a prohibitive road block to richer instruction sets. Our
first key technical contribution is the construction of new succinct vector lookup
arguments for univariate and multivariate polynomials (Sect. 2.2) where proof
size and verfier cost is succinct in n, �, and vector size m.

MuxProofs: Succinct Arguments for Machine Computation 247

The vector lookup proves the computation commitment f indeed includes
encodings of valid instructions. Ideally, we would be able to directly apply an
existing proof system to f to prove the validity of the executed computation.
However, there are two additional hurdles to overcome (Sect. 2.3). First, f is
constructed as a stitching together of the computation encodings for each of
the individual n executed instructions. It is not necessarily the case (and in
fact not the case for existing proof systems) that a direct stitching together of
the “local” instruction computation encodings results in a valid computation
encoding for the “global” sequence of instructions; it may be the case that some
global structure is required in the computation commitment. Nevertheless, we
provide a protocol for adapting f to f ′ to recover the global structure required
in three existing polyIOPs, PLONK [38], Marlin [30], and HyperPLONK [27].

Lastly, applying a polyIOP directly to f ′ would not quite meet our suc-
cinctness goal. Recall, the verifier input to each instruction computation is
(instin,memin, instout,memout). Thus, to verify the full executed computation,
the verifier will need [instj ,memj]

n
j where the statement for the jth instruction is

(instj ,memj , instj+1,memj+1). Instead, to enable succinctness, the verifier will
hold only the input state to the first instruction (inst0,mem0) and the output
state of the last instruction (instn,memn). We provide a protocol to prove the
wellformedness of the intermediate instruction states, i.e., that the output state
from instruction j is the same as the input state to instruction j + 1.

2.2 Contribution: Succinct Vector Lookup Arguments

The constructions we propose, CosetLkup for the univariate polynomial case and
SubcubeLkup for the multivariate polynomial case, both derive from the following
technical lemma of Haböck [45, Section 3.4] (reformulated in [22, Section 4.4]):

Lemma 1 (informal). Suppose
[
[fi,j]j∈[m]

]

i∈[n]
and

[
[ti,j]j∈[m]

]

i∈[�]
are

sequences of element vectors in field F. Then, the vector lookup relation
{{

fi,j

}
j∈[m]

}
i∈[n]

⊆
{

[ti,j]j∈[m]

}

i∈[�]
holds if and only if there exists a sequence

of field elements [ci]i∈[�] such that the following equality holds over the rational
function field F(X,Y):

∑

i∈[n]

1/(X +
∑

j∈[m]

fi,jY
j) =

∑

i∈[�]

ci/(X +
∑

j∈[m]

ti,jY
j) .

To achieve this equality, the field elements [ci]i∈[�] are set to the counts that
vector ti appears in f . Intuitively, this lemma represents the logarithmic deriva-
tive of the polynomial equality

∏
i∈[n](X +

∑
j∈[m] fi,jY

j) =
∏

i∈[�](X +
∑

j∈[m] ti,jY
j)ci . Our protocols check this equality by evaluating the rational

functions on random verifier challenges α, β ←$ F
2. The challenge then is prov-

ing this equality succinctly to a verifier given the vector encodings.
∑

i∈[n]

1/(α +
∑

j∈[m]

βj · fi,j) =
∑

i∈[�]

ci/(α +
∑

j∈[m]

βj · ti,j) .

248 Z. Di et al.

Consider again the univariate polynomial encoding of f with vectors encoded
within cosets. We will build up to two polynomials Uf and Ut that encode
the left and right sides of the equality expression above, respectively. Without
loss of generality, consider the left side of the equality dealing with f where
fi,j = f(μiγj). That is, Uf will encode as its evaluations over G:

⎡

⎢
⎣

⎡

⎣Uf (μiγj) = 1/(α +
∑

k∈[m]

βk · f(μiγk))

⎤

⎦

i∈[n]

⎤

⎥
⎦

j∈[m]

Given Uf and an analogously-encoded Ut, the final equality is checked using a
polynomial identity test known as a sum check, in which we compare the sum
of Uf over G and Ut over H.

Now let us provide some details on how Uf is built up. The main challenge
is proving that the summation in the denominator of Uf correctly encodes the
elements of each vector. To do this, first consider the following helper polynomials
If and Sf . Polynomial Sf directly encodes the claim summation for each vector
within the coset for that vector. Polynomial If encodes the m powers-of-β in
each coset.
[[

If (μiγj) = βj
]
i∈[n]

]

j∈[m]
,

[[
Sf (μiγj) =

∑
k∈[m] β

k · f(μiγk)
]

i∈[n]

]

j∈[m]

The encodings of If and Sf are proved to the verifier again using standard
polynomial identities. In this case, zero test protocols check that the following
identities hold over some subgroup:

• If (1) = 1: The first element of If is anchored to equal to 1.
• (If (γX) − β · If (X))(X − γm−1) = 0 over V: The term (If (γX) − β · If (X))

enforces the next element in the coset V (generated by γ) is equal to β times
the previous element. The last term (X − γm−1) excludes the last element
which would carry-over to the first element: βm−1 · β 	= 1. Since the first
element was anchored to 1 and the last element is excluded, this sets the
evaluations of V to be equal to the powers of β.

• (If (μX) − If (X)) · Zμn−1V(X) = 0 over G: The first term (If (μX) − If (X))
enforces the next element in G is equal to the previous element in G. The
second term Zμn−1V(X) excludes the last coset where Z is the “vanishing
polynomial” that evaluates to 0 on μn−1

V. These checks ensure that the jth

element of every coset is the same. Since we know the powers of β are encoded
in coset V, this check enforces that the same powers are propagated to the
other cosets in G.

To prove the wellformedness of Sf , we introduce another helper polynomial
Bf which encodes the partial summations of Sf and builds up to the claimed
summation inductively:

[[
Bf (μiγj) =

∑
k∈[j]

(
βk · f(μiγk) − Sf (μ

iγj)
m

)]

i∈[n]

]

j∈[m]

.

MuxProofs: Succinct Arguments for Machine Computation 249

Then the polynomial identities to complete the wellformedness verification of
Sf are as follows:

• Sf (γX) = Sf (X) over G: Within a coset, the same claimed summation is
encoded throughout, i.e., all of the evaluations over a coset are a constant
(the respective summation).

• Bf (γX) = Bf (X)+ If (γX) ·f(γX)− Sf (X)
m over G: The inductive statement

enforces that the next element in the partial summation sums the previous
partial summation with the contribution of the next element in the coset,
namely βk · f(μjγk) where the next power of β is encoded within If . Lastly,
the normalized claimed summation, Sf (X)

m , is subtracted for every element in
the coset. If the claimed sum is correct, then these subtractions will exactly
cancel out with the true sum over the full coset.

Finally, given Sf , one last polynomial identity is used to prove the form of Uf :
Uf (X) · (α+Sf (X)) = 1 over G. Our use of coset encodings and of the subgroup
generator γ to traverse cosets was critical in creating polynomial identities that
can efficiently check this structure. Section 4 (Fig. 3) presents the full CosetLkup
protocol. All together, when instantiated with the Marlin-KZG polynomial com-
mitment scheme [30], CosetLkup admits a quasilinear prover, a constant-size
proof, and constant pairing (and logarithmic field operations) verifier (see Fig. 2).

Extending to the Multivariate Setting. As shown before, the choice of
encoding of vectors within the polynomial is important in enabling a succinct
argument. Before, in the univariate setting, we chose to encode vectors within
cosets of a multiplicative subgroup. For the multivariate setting, we encode
vectors within subcubes of the boolean hypercube. Consider (log(mn))-variate
polynomial f encoding n vectors of length m over the (log(mn))-dimension
boolean hypercube {0, 1}log(mn) The trailing log n bits select the vector and
the leading log m bits select the vector position. Thus, for [[fi,j]j∈[m]]i∈[n]:
[[f(j, i) = fi,j]j∈{0,1}log m]i∈{0,1}log n . The table polynomial t is encoded analo-
gously over boolean hypercube {0, 1}log(m�). We present a succinct vector lookup
protocol SubcubeLkup for this subcube vector encoding over multivariate poly-
nomials. It follows the same blueprint described above building polynomials
If , Sf , Bf , Uf (respectively, Ut, etc.) and completes by checking the equality of
Lemma 1 via a sum check over Uf and Ut. Our key trick to achieving suc-
cinctness in the univariate setting was using the coset substructure and defining
polynomial identities that traverse a coset using the subgroup generator γ.

Recently, Diamond and Posen proposed new techniques that enable travers-
ing subcubes of the boolean hypercube in an analogous manner [34]. They
define a shift operator s̃hftb(f) that takes a μ-variate polynomial f , is param-
eterized by a subcube size b, and outputs a polynomial shifted by the sub-
cube. That is, for all i ∈ {0, 1}μ−b and for all j ∈ {0, 1}b, it holds that
s̃hftb(f)(j, i) = f(binb(intb(j) + 1mod2b), i) where intb and binb map back and
forth integers [2b] and boolean vectors {0, 1}b. Using this operator, we can again
define succinctly verifiable polynomial identities to check the wellformedness of
Uf and Ut.

250 Z. Di et al.

To illustrate this, consider the powers-of-β polynomial If . Now If (X[log(mn)])
is a (log(mn))-variate polynomial encoding the m powers of β in the boolean
subcubes of its leading log m bits:

[[
If (j, i) = βintlog m(j)

]
j∈{0,1}log m

]

i∈{0,1}log n
.

The following polynomial identities checked via multivariate zero tests [27,59]
over {0, 1}log(mn) verify the wellformedness of If :

• (If (X[log(mn)]) − 1)(ẽqlog m(X[log m], 0[log m])) = 0: The first term checks that
If is anchored to 1. The second term ẽqlog m(X[log m], 0[log m]) enforces this
check only for the first position (0[log m]) of each subcube. The polynomial
ẽqlog m takes in two boolean vectors of length log m and outputs 1 if they are
equal and 0 otherwise.

•
(
s̃hftlog m(Ĩb)(X[log(mdb)]) − β · Ĩb(X[log(mdb)])

)
· (1 − ẽqlog m(X[log m], 1[log m]

)) = 0: The first term enforces the next element in the subcube (generated
by s̃hft) is equal to β times the previous element. The last term excludes the
last element of the subcube (1[log m]) preventing carry-over: βm−1 · β 	= 1.
As before, since the first element was anchored to 1 and the last element is
excluded, this sets the evaluations of every subcube to be equal to the powers
of β.

The full details of SubcubeLkup are given in the full version [33]. When instan-
tiated with an appropriate polynomial commitment scheme, it enables an effi-
cient linear-time prover with sublinear proof size and verifier (see Fig. 2).

2.3 Contribution: Vector Lookups for Machine Execution

We described our high level strategy of dynamically creating a computation com-
mitment to only executed instructions through a vector lookup argument on the
machine commitment table of valid instructions. There are two further challenges
to overcome to apply existing polyIOP-based proof systems to this computation
commitment: (1) the computation commitment may require some global struc-
ture that is lost by stitching together computation commitments for individual
instructions, and (2) the NP statement for this computation commitment is not
necessarily succinct.

Recovering Global Structure of the Computation Commitment. To
illustrate the issue of global structure, let us examine the structure of a compu-
tation commitment for a specific polyIOP, PLONK [38]. PLONK is a polyIOP
for the “Plonkish” arithmetization which is a natural encoding of computation in
NP with a circuit-like structure [61]. Consider a simplified example of Plonkish
for an arithmetic circuit with m gates. The computation trace is encoded as a
vector of wire values z ∈ F

3m:

z =
[
(z(l)0 , z

(r)
0 , z

(o)
0), (z(l)1 , z

(r)
1 , z

(o)
1), . . . , (z(l)m−1, z

(r)
m−1, z

(o)
m−1)

]
.

We denote the ordering of vector z such that (z3i, z3i+1, z3i+2) = (z(l)i , z
(r)
i , z

(o)
i)

correspond to the left, right, and output wires of gate i ∈ [m], respectively. The

MuxProofs: Succinct Arguments for Machine Computation 251

computation is encoded by two vectors, sel ∈ F
m and σ ∈ F

3m. The selector
vector sel specifies the gate type by encoding 1 at index i if gate i is an addition
gate and 0 for a multiplication gate. The copy vector σ specifies the connec-
tions of wires between gates by encoding a permutation of the indices [3m] (i.e.
{σi}i∈[3m] = {i ∈ [3m]}). The copy vector is constructed such that wires that are
connected have permuted indices. A computation trace satisfies a computation
encoding if:

– Gate constraints: ∀ i ∈ [m], seli ·
(
z
(l)
i + z

(r)
i

)
+ (1 − seli) · z

(l)
i · z

(r)
i = z

(o)
i .

– Copy constraints: ∀ i ∈ [3m], zi = zσi
.

In the univariate polyIOP PLONK [38], s̄el ∈ F
m[X] and σ̄ ∈ F

3m[X] are inter-
polated as polynomials fixing their evaluations over subgroups of appropriate
size. Commitments to these polynomials form the computation commitment.

In the machine computation setting, each instruction i ∈ [�] in the instruction
set is represented by a pair of vectors [seli ∈ F

m, σi ∈ F
3m]i∈[�]. Following our

vector lookup strategy, these vectors are encoded in table polynomials tsel and
tσ where each vector is encoded in cosets of V within H = 〈ω〉. Assume, for
simplicity, that tsel and tσ use the same evaluation subgroups V and H (where
|V| = 3m and |H| = 3m�), e.g., that tsel repeats each gate selector three times to
pad out. For a machine computation that executes n instructions [insti∈[�]]i∈[n],
we define two new polynomials s̄el and σ̄ that encode the executed instruction
vectors in the cosets V within G = 〈μ〉 (where |G| = 3mn). The form of these
polynomials is proved exactly using a vector lookup as demonstrated before:

[
s̄el(μi

V) = tsel(ωinstiV)
]
i∈[n]

,
[
σ̄(μi

V) = tσ(ωinstiV)
]
i∈[n]

.

If we examine the resulting selector polynomial s̄el defined over G, we find
that it fits the form needed for the PLONK polyIOP. The m gate selections for
each of the n executed instructions are all encoded within s̄el.

However, now consider the resulting copy polynomial σ̄ defined over G. Recall
that the PLONK polyIOP expects a permutation over |G| = 3mn encoded within
σ̄. This is not the case for σ̄; the global permutation structure is damaged. It is
true that each instruction vector encodes a permutation over [3m], and thus by
the vector lookup, the evaluations of each coset of V in σ̄ encode a permutation
over [3m]. Fortunately, we can recover the global permutation over [3mn] by
offsetting the permutation encoded in each coset i ∈ [n] over [3m] by 3mi.
Define the offset copy polynomial σ̄′ and the offset polynomial s over G:

[
σ̄′(μi

V) = 3mi + σ̄(μi
V)
]
i∈[n]

,
[
s(μi

V) = 3mi
]
i∈[n]

.

The prover uses the following polynomial identities to succinctly prove that the
offset was performed correctly:

• s(X) = 0 over V: The first coset is anchored to evaluate to 0; there is no
offset needed.

252 Z. Di et al.

• (3m + s(X) − s(μX))(Zμn−1V(X)) = 0 over G: The first term enforces the
next element in G is equal to the previous element offset by an additional 3m.
The second term excludes enforcing an additional offset from the last coset to
the first coset. Since we know zero is encoded in coset V, these checks enforce
that each coset in sequence offsets by an additional 3m.

• σ̄′(X) = σ̄(X) + s(X) over G: The offset copy polynomial adds the correct
encoded offsets.

With the recovered global structure, the prover has now on-the-fly generated
s̄el and σ̄′ which encode the executed machine computation and proved their
correctness with respect to the machine commitments tsel and tσ. The polyIOP
PLONK can be applied directly.

Compressing the NP Statement of the Computation Commitment.
Our last challenge is to compress the statement for the unrolled computation
commitment to allow for succinct verification. Naively, the statement for the
unrolled computation commitment consists of the statements for each executed
instruction: [(instin,i,memin,i, instout,i,memout,i)]i∈[n]. Not only does this pre-
vent succinct verification, but it also prevents zero-knowledge of intermediate
program execution state. We address this by observing that the verifier does not
need to have the intermediate program state; it is sufficient for the verifier to
simply check that the intermediate program state is passed correctly between
instructions. That is, that (instout,i,memout,i) = (instin,i+1,memin,i+1) for all
i ∈ [n]. Then the verifier only need hold the starting state (instin,0,memin,0)
and the ending state (instout,n,memout,n).

In PLONK, the statement and witness for the unrolled computation are
encoded together in a polynomial z (referred to as the extended witness) defined
over G. In which, the statement and witness for each instruction are encoded
within a corresponding coset of V in G: for instruction i ∈ [n], the evaluation of
z(μi

V) = (instin,i,memin,i, instout,i,memout,i,wi) for a corresponding witness
vector wi. More precisely, we define a subgroup Vx = 〈ψ〉 ⊂ V where |Vx| =
2 · (|inst| + |mem|) whose cosets will encode the statement for each executed
instruction. Further, we define subgroup Vin ⊂ Vx and it’s single coset Vout

such that Vin ∪ Vout = Vx and |Vin| = |Vout| = |Vx|/2. These will encode the
input and output states of each executed instruction: ∀i ∈ [n],
[
z(μi

Vin) = [instin,i,memin,i]
]
i∈[n]

[
z(μi

Vout) = [instout,i,memout,i]
]
i∈[n]

Thus, proving consistency of intermediate program states, again, reduces
to proving polynomial identities over certain cosets. Namely, for i ∈ [1, n],
z(μi

Vin) = z(μi−1
Vout). The above coset equality constraints can be writ-

ten as the polynomial identity: z(X) = z(μ−1ψX) over Gin \ Vin where
Gin =

⋃n−1
j=0 μj

Vin. The full details of proving input-output correspondence and
our full adaption of PLONK to machine computation, Mux- PLONK, is given in
Sect. 5.

Extending to Other polyIOPs. The general recipe that we described using
vector lookups to build Mux- PLONK is quite modular. We demonstrate the

MuxProofs: Succinct Arguments for Machine Computation 253

generality by extending two other polyIOPs for use with machine computation,
each offering various tradeoffs.

We build Mux- HyperPLONK building off of the multivariate HyperPLONK
polyIOP [27]. As motivated earlier, multivariate polyIOPs enable linear-time
provers and use of the efficient sum check protocol [54] for proving polynomial
identities. In Mux- HyperPLONK, we employ our new multivariate succinct vector
lookup SubcubeLkup and show how to translate the PLONK global permutation
recovery and input-output consistency checks to the multivariate setting.

Next, we build Mux- Marlin building off the univariate Marlin polyIOP [30].
Whereas, Mux- PLONK and Mux- HyperPLONK encode instructions using the
Plonkish arithmetization, Marlin uses a rank-1 constraint system (R1CS) arith-
metization which offers encoding tradeoffs [61]. The full details are given in the
full version [33].

3 Preliminaries

Sets and Vectors. For a positive numbers m and n with m < n, let [m,n] denote
the vector [m, . . . , n − 1] and [n] be shorthand for [0, n]. We use [·] and (·) to
denote ordered vectors, {·} to denote sets, and {{·}} to denote a multiset. Any of
these operators can be expanded via a subscript, i.e., [ai]ni=1 = [a1, . . . , an].

Fields, Groups, and Polynomials. Define F to be a scalar field of large prime
order p. We will use H and V (and various subscripts) to denote multiplicative
subgroups of F∗. We may denote a generator γ for a subgroup as H = 〈γ〉. We
will also denote subgroups to be subgroups of each other, say V is a subgroup of
H, denoted V � H. We require that all multiplicative groups we use are FFT-
friendly and have smooth sizes [10], i.e., are a power of two. That is, we want
2L|p − 1 for some large integer L, so each divisor of 2L (every power of 2 less
than 2L) gives exactly one subgroup whose order is the divisor by Lagrange’s
theorem. Many common curves support these properties including BN382 and
BLS12-381 [6].

When V is a subgroup of H, we will make use of the cosets of V in H. A coset
of V is defined by a field element offset a ∈ F as {av : v ∈ V}, which we may
denote as aV. For multiplicative subgroup H = 〈ω〉,V where V � H, |H| = nm,
and |V| = m, then [ωi

V]i∈[n] forms the n distinct cosets of V in H.
Let F

≤d[X[μ]] be the set of μ-variate polynomials in indeterminate
X0, . . . , Xμ−1 with coefficients in F with degree less than or equal to d. Simi-
larly, let FuncF[X[μ]] be the set of μ-variate functions over F. We use X[μ] as short-
hand for expanding X0, . . . , Xμ−1. For polynomials f ∈ F[X[μ]] and some evalu-
ation domain D, we use f(D) as shorthand for expanding the vector [f(d)]d∈D.

Univariate Polynomials. For an arbitrary set S, let the vanishing polynomial for
S be ZS(X) =

∏
s∈S(X − s) such that it evaluates to 0 for s ∈ S. A Lagrange

polynomial Lx,S is a polynomial of degree |S| − 1 that evaluates to zero on
S \ {x} and has Lx,S(x) = 1. For cosets of a multiplicative group V in H,
both the vanishing polynomial ZV and the Lagrange polynomial Lx,V for x ∈
V have efficiently computable forms. The vanishing polynomial takes the form

254 Z. Di et al.

ZωiV(X) = Xm − ωim. The Lagrange polynomial takes the form Lx,V(X) =
cxZV(X)

X−x where cx is the Lagrange constant for x defined to be 1∏
y∈V,x�=y x−y . Note

that cx,∀x ∈ V can be precomputed in O(|V|) time. In particular, for V = 〈β〉
and x = βi, then cx = (βi/|V|).

Further preliminaries including formal definitions of zero-knowledge proofs
and polynomial interactive oracle proofs (polyIOPs) along with constructions
for building-block polyIOPs are deferred to the full version [33].

4 Succinct Vector Lookup

We propose two constructions for succinct vector lookup. One in which the
vectors are encoded within univariate polynomials and the second in which the
vectors are encoded within multivariate polynomials. Both constructions follow
the same high level blueprint and their security is derived from the following
main technical lemma from Haböck [45]:

Lemma 2. Let F be a field with char(F) > max(d0, d1). Suppose
{{fi,j}j∈[m]}i∈[d0] and {{ti,j}j∈[m]}i∈[d1] are sequences of element vectors in
F. Then, {{fi,j}j∈[m]}i∈[d0] ⊆ {{ti,j}j∈[m]}i∈[d1] if and only if there exists a
sequence of field elements [ci]i∈[d1]

such that
∑

i∈[d0]
1/(X −∑j∈[m] fi,jY

j) =
∑

i∈[d1]
ci/(X −∑j∈[m] ti,jY

j) .

where equality holds over the rational function field F(X,Y).

In this section, we present the univariate polynomial vector encoding con-
struction, CosetLkup, in which vectors are encoded on coset evaluation domains.
The multivariate construction, SubcubeLkup, encodes vectors on boolean sub-
cube evaluation domains; it is deferred to the full version [33].

Recall the univariate polynomial encoding for vectors from Sect. 2.2. Given a
table of vectors [[ti,j]j∈[m]]i∈[d1]

and a list of claimed looked up vectors
[
[fi,j]j∈[m]]

i∈[d0]
, we consider polynomial encodings t ∈ F

md1 [X] and f ∈ F
md0 [X] as

follows. Consider two subgroups H0 = 〈ω0〉 � F and H1 = 〈ω1〉 � F such that
|H0| = md0 and |H1| = md1. Further consider the shared subgroup V � H0 (and
V � H1) such that |V| = m and V = 〈γ = ωd0

0 = ωd1
1 〉. The vectors are encoded

as the evaluations of each coset of V in H0 and H1 respectively:
[
f(ωi

0V) = [fi,j]j∈[m]

]

i∈[d0]
,

[
t(ωi

1V) = [ti,j]j∈[m]

]

i∈[d1]
.

Given this encoding, we consider the following vector lookup relation for uni-
variate polynomials:

Rvlkup =
{

⊥, (�f�, �t�), (f, t) :
{
f(ωi

0V)
}

i∈[d0]
⊆ {t(ωi

1V)
}

i∈[d1]

}
.

We walk through the main points of our construction in Sect. 2.2. The full con-
struction is provided in Fig. 3.

MuxProofs: Succinct Arguments for Machine Computation 255

Fig. 3. Vector lookup argument in which vectors are encoded as evaluations over coset
domains in a univariate polynomial.

256 Z. Di et al.

Security. We prove the completeness, knowledge soundness, and zero knowledge
of CosetLkup in the following two theorems. The zero-knowledge of CosetLkup
is achieved through our zero-knowledge compiler observing that CosetLkup is
domain-restriction admissible and reduces to zero test polynomial identities.

Theorem 1. CosetLkup for Rvlkup (Fig. 3) is complete and knowledge sound with
negligible error.

We defer the proof along with the concrete accounting of adversary advantage
to the full version [33].

Remark 1 (Perfect Completeness). CosetLkup fails to achieve perfect com-
pleteness since the chosen randomness may make the denominator (α −∑

j∈[m] fi,jβ
j) = 0 or (α −∑j∈[m] ti,jβ

j) = 0, so the fraction is undefined. Pro-
tostar [22] illustrates a technique to recover perfect completeness in exchange
for slightly increased soundness error. When the evaluations of Ub are unde-
fined at ωi

bγ
j , the prover sets Ub(ωi

bγ
j) = 0. At step 6(b), instead of check-

ing Ub(X) · (α − Sb(X)) ?= 1 over Hb, verifier instead checks (Ub(X) · (α −
Sb(X)) − 1)(α − Sb(X)) ?= 0 over Hb. Then either Ub(ωi

bγ
j) = 1

α−Sb(ωi
bγj)

=
1

α−∑
k∈[m] pb(ωi

bγk)βk or α − Sb(ωi
bγ

j) = 0. The latter case captures the undefined

scenario. The soundness error is raised by the two additional zero tests.

Theorem 2. The compiled polyIOP using the compiler in the full version [33]
of CosetLkup for Rvlkup (Fig. 3) is honest-verifier zero-knowledge.

We defer the proof to the full version [33].

k-Vector Lookup. We can extend the lookup argument to work across k pairs
of polynomials (fi, ti) for i ∈ [k] checking that the same vector lookup applies
across all k pairs. Our approach follows the multitable approach in [37] simply
using a random linear combination to construct an expanded hash combining
evaluations from all k polynomials. To be precise, prover sends f as the random
linear combination of (fi)i∈[k] and t as the linear combination of (ti)i∈[k] using
verifier randomness. Then the prover and verifier engage in CosetLkup using f
and t. The relation is captured as:
Rk−vlkup =

{
(⊥, [�fi�, �ti�]i∈[k] , (fi, ti)i∈[k]) : {(fi(ω

j
0V))i∈[k]}j∈[d0] ⊆ {(ti(ω

j
1V))i∈[k]}j∈[d1])

}
.

Corollary 1. k −CosetLkup for Rk−vlkup is complete and knowledge sound with
negligible error, and the compiled polyIOP using the compiler in the full ver-
sion [33] is honest-verifier zero-knowledge.

5 Succinct Arguments for Unrolled Machine Execution
from Vector Lookups

We model a machine execution of a machine with � instructions using � indices
[ii]

�−1
I=0 to an indexed relation R (e.g., rank-1 constraint satisfiability or circuit

satisfiability). The index for an instruction takes in a statement x of the form:

MuxProofs: Succinct Arguments for Machine Computation 257

x = (instin,memin, instout,memout) ,

which can be parsed as two parts. The first part (instin,memin) is the “input”
to the instruction where instin ∈ Z� specifies which instruction to run and
memin captures the current memory (or state) of the machine. The second part
(instout,memout) is the “output” of the instruction specifying the next instruc-
tion to run (instout) and the resulting memory from executing the instruction
(memout). We require that the indexed relation R enforces instin to match the
instruction index, i.e., that

∀i ∈ Z� (ii, (instin,memin, instout,memout),w) ∈ R ⇒ instin = i .

In this way, our formal modeling of machine execution ties together the con-
trol logic of determining the next instruction to run and the instruction logic of
applying changes to memory. In the indexed relations that we consider (rank-1
constraint systems and circuit satisfiability), the index can easily be adjusted to
enforce the above by including an equality check against a constant.

Given a set of instruction indices [ii]�−1
I=0 that satisfy the above, we define

relation RMExe,n[R] for n steps of unrolled machine computation:

RMExe,n[R]=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

[ii]
�−1
I=0,

(inst0,mem0,instn,memn),

([instj ,memj ,wj]
n
j=0)

⎞

⎟
⎟
⎠ :

∧n−1
j=0 (iinstj ,(instj ,memj ,instj+1,memj+1),wj)∈R

⎫
⎪⎪⎬

⎪⎪⎭

In the following sections we build unrolled machine execution proof systems
for instructions encoded as rank-1 constraint systems (RMExe,n[Rr1cs]) derived
from the Marlin proof system [30].

Capturing Zero-Knowledge of Program Execution. Even with a zero-
knowledge proof system for the above relation, membership in the relation can
leak information about the number of execution steps, the starting and ending
instructions, and possibly the program description if it is included in the mem-
ory state. An upper bound on the number of execution steps is a fundamental
leakage of the unrolled execution proving approach. To mitigate leakage of start-
ing and end instructions, we propose including special instructions for program
start and successful return. Lastly, to mitigate leakage of program description,
the memory state can be considered in two parts, one that includes the input
and output registers that can be revealed to the verifier and another as a hiding
commitment to the program description.

5.1 Mux-PLONK: Adapting the PLONK PolyIOP to Machine
Execution

PLONK [38] is a polyIOP for NP statements encoded using the following
PLONK arithmetization.

258 Z. Di et al.

Definition 1. A PLONK relation is indexed by the tuple (F, sel, σ,G, �s,
�z, d, dx) where sel = [[seli,j]i∈[d]]j∈[�s]

is the selector vector, the copy vector
σ : [d�z] → [d�z] is a permutation over d�z, and G : F[X[�s,�z]] is the gate poly-
nomial. The statement x ∈ F

dx and witness w ∈ F
d�z−dx together form an input

vector z = [[zi,j]i∈[d]]j∈[�z]
where the following algebraic relation encoding the

gate constraints and copy constraints is satisfied:

Rplonk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
(F, sel, σ,G, �s, �z, d, dx),
x,
w

⎞

⎠ :

z = x ‖ w ∈ F
d×�z

∧

i∈[d]

G([seli,j]j∈[�s]
, [zi,j]j∈[�z]

) = 0
∧

i∈[d�z]

z�i/d�,imodd = z�σ(i)/d�,σ(i)modd

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Here, we modify the PLONK relation to fit the univariate polyIOP setting.⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎝
(F,H,Hx, sel, σ,G, �s, �z, d, dx),
(�x�,K),
(w, x)

⎞

⎠ :

x(Hx) = x
z = x ‖ w ∈ F

d×�z

∧

i∈[d]

G([seli,j]j∈[�s]
, [zi,j]j∈[�z]

) = 0
∧

i∈[d�z]

z�i/d�,imodd = z�σ(i)/d�,σ(i)modd

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Here, we take as part of indexing two groups H and Hx of size d and dx, respec-
tively. The statement is encoded as evaluations over domain Hx for a polynomial
x given to the verifier.

There are two sets of polynomials output as part of the computation commit-
ment during indexing: (1) selector polynomials that encode the gate constraints,
and (2) permutation polynomials that encode the copy constraints (i.e., which
input value should be set equal to each other). As discussed in the technical
overview (Sect. 2.3), in the application to machine execution, the values encoded
in each of these polynomials for the computation commitment of a single instruc-
tion is instead encoded in a polynomial representing the entire instruction set,
i.e., a machine commitment. Each instruction is encoded within a different coset
of the machine commitment polynomial’s evaluation domain.

Define the following evaluation domains:

• Define V = 〈γ〉 as the multiplicative subgroup of size d.
• Define G = 〈μ〉 as the multiplicative subgroup of size dn where n is the

number of unrolled execution steps. Denote the n cosets of V in G as [μi
V]n−1

i=0 .
• Define H = 〈ω〉 as the multiplicative subgroup of size d� where � is the number

of instructions. Denote the � cosets of V in H as [ωi
V]�−1

i=0 .
• Define Vx � V as the multiplicative subgroup of size dx where d/dx = a.
• Define Vin � Vx as the multiplicative subgroup of size dx/2 generated by

μ
2nd
dx and Vout = μ

2nd
dx Vin as the other coset of Vin in Vx encoding the two

parts of the machine execution statement.

Using this notation, Fig. 4 provides details of the indexer for Mux- PLONK.
Table selector polynomials [tselj]j∈[�s]

and table permutation polynomials [tσj

]j∈[�z] encode the full instruction set, encoding each instruction i ∈ [�] within

MuxProofs: Succinct Arguments for Machine Computation 259

Fig. 4. Mux- PLONK: Setup algorithm encoding PLONK computation commitment
values for each instruction into cosets of an evaluation domain for the machine com-
mitment.

coset ωi
V of H. Figure 5 then provides details of the proving protocol. A vector

lookup (Sect. 4) is employed to lookup the appropriate executed instructions and
encode them within new selector polynomials [selj]j∈[�s]

and new permutation
polynomials [σ′

j]j∈[�z]
where now each executed instruction is encoded within

coset μi
V of G for i ∈ [n]. As discussed in the overview (Sect. 2.3), the resulting

permutation polynomials [σ′
j]j∈[�z]

are malformed in that they no longer encode
a permutation: all cosets evaluate to [d�z]. Permutation polynomials [σj]j∈[�z]

are constructed to offset the evaluations of each coset μi
V by id�z to recover the

permutation.
Given these vector-lookup constructed (and edited) PLONK index polyno-

mials, we are almost ready to apply PLONK directly to a polynomial x encoding

260 Z. Di et al.

Fig. 5. Mux- PLONK: PLONK polyIOP with vector lookup for machine execution.

MuxProofs: Succinct Arguments for Machine Computation 261

the witnesses of the executed machine computation. The last step is to prove
that polynomial x correctly encodes the input-output correspondence of each
sequence of instructions. We highlight a technical difficulty that arises in this
step.

In proving the correspondence of inputs, we ask the prover to perform a
ZeroTest over the set Gin \ Vin where Gin =

⋃n−1
i=0 μi

Vin. However, notice that
ZGin\Vin

(X) =
∏

i∈[n] ZμiVin
(X) is not succinct and the fastest algorithm to

compute this product incurs O(|Gin \Vin| log2(|Gin \Vin|)) cost [36] which can-
not be afforded by the verifier. Instead, we ask the prover to send f = ZGin\Vin

and prove that f satisfies the properties of a vanishing polynomial. One way is
to evaluate f at some random point r and check if it agrees with ZGin\Vin

(r).
Recall that [ZμiVin

(X) = Xdxi/2 − μdxi/2]i∈[n] since Vin is of order dx/2. To
prove wellformedness, the prover creates new polynomials to accumulate the
products of ZμiVin

(r) using induction. Since there are n− 1 terms in multiplica-
tion, we define group Gn = 〈μd〉 of order n to capture each intermediate result
of the multiplication and skip the first element. To be concrete, the prover com-
putes a polynomial h to encode the constant factor μdxi/2 of ZμiVin

(r) at μdi,
and a polynomial g to encode the intermediate product up to ith item in multi-
plication

∏i
k=1 ZμkVin

(r) at μdi. Then we use standard induction techniques to
prove the induction is correct over Gn skipping the first element:

• L1,Gn
(X)(h(X) − 1) = 0 over Gn: h(1) = 1 as the start of the induction.

• (μdx/2 · h(X) − h(μdX))(X − μd(n−1)) = 0 over Gn: The next element in Gn

is equal to μdx/2 times the previous element excluding the last one. Since the
first element is set to 1, this ensures that each element is set to the next power
of μ

dx
2 .

• L1,Gn
(X)(g(X) − 1) = 0 over Gn: g(1) = 1 as the starting of the induction.

• (X−1)(g(X)−g(X/μd)·(rdx/2−h(X)) = 0 over Gn: This enforces that the g’s
evaluation on the ith element (in Gn) is equal to rdx/2 −h(X) = rdx/2 −μdxi/2

multiplied by g’s evaluation on the (i − 1)th element. The check excludes the
last and the first one element. Since the first element is set to 1, this ensures
that ith element is set to the accumulated product

∏i
k=1 ZμkVin

(r) up to i.

Finally, the prover can prove f(r) = g(μd(n−1)) =
∏

i∈[n] ZμiVin
(r) by evalu-

ating g(X) at μd(n−1) using Lagrange polynomial and query f(r).

Security. We prove the completeness, knowledge soundness, and zero knowl-
edge of Mux- PLONK in the following two theorems. The zero-knowledge of
Mux- PLONK is achieved through our zero-knowledge compiler observing that
Mux- PLONK is domain-restriction admissible with one exception that we handle
explicitly.

Theorem 3. Mux- PLONK for RMExe,n[Rplonk] (Fig. 5) is complete and knowl-
edge sound with negligible error

We defer the proof along with the concrete accounting of adversary advantage
to the full version [33].

262 Z. Di et al.

Theorem 4. The compiled polyIOP using the compiler in the full version [33]
of Mux- PLONK for RMExe,n[Rplonk] (Fig. 5) is honest-verifier zero-knowledge.

We defer the proof to the full version [33].

Acknowledgments. Zijing Di and Lucas Xia were funded by Stanford IOG Research
Hub. Wilson Nguyen was partially funded by NSF, DARPA, the Simons Foundation,
and NTT Research. Nirvan Tyagi was supported by NSF grant CNS-2120651 and
by the Stanford Future of Digital Currency Initiative (FDCI). Any opinions, findings,
and conclusions or recommendations expressed in the material are those of the authors
and do not necessarily express reflect the views of DARPA and funding parties listed.

References

1. Polygon zkevm, https://wiki.polygon.technology/docs/zkEVM/introduction
2. Risc zero, https://www.risczero.com/docs/explainers
3. zksync, https://v2-docs.zksync.io/dev/
4. zkwasm, https://github.com/DelphinusLab/zkWasm
5. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In:

ASIACRYPT. Lecture Notes in Computer Science, vol. 2501, pp. 415–432. Springer
(2002)

6. Aranha, D.F., Housni, Y.E., Guillevic, A.: A survey of elliptic curves for proof
systems. IACR Cryptol. ePrint Arch. p. 586 (2022), https://eprint.iacr.org/2022/
586

7. Arun, A., Setty, S.T.V., Thaler, J.: Jolt: Snarks for virtual machines via lookups.
IACR Cryptol. ePrint Arch. p. 1217 (2023)

8. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-
edge. In: CRYPTO (4). Lecture Notes in Computer Science, vol. 12828, pp. 65–91.
Springer (2021)

9. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: CRYPTO
(4). Lecture Notes in Computer Science, vol. 12828, pp. 92–122. Springer (2021)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: ver-
ifying program executions succinctly and in zero knowledge. In: CRYPTO (2).
Lecture Notes in Computer Science, vol. 8043, pp. 90–108. Springer (2013)

11. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query iops for delegating computation. In: TCC (2). Lecture
Notes in Computer Science, vol. 11892, pp. 494–521. Springer (2019)

12. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: CRYPTO (2). Lecture Notes in Computer Science,
vol. 8617, pp. 276–294. Springer (2014)

13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security Symposium. pp.
781–796. USENIX Association (2014)

14. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS. pp. 326–349. ACM (2012)

15. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC. pp. 111–120. ACM
(2013)

https://wiki.polygon.technology/docs/zkEVM/introduction
https://www.risczero.com/docs/explainers
https://v2-docs.zksync.io/dev/
https://github.com/DelphinusLab/zkWasm
https://eprint.iacr.org/2022/586
https://eprint.iacr.org/2022/586

MuxProofs: Succinct Arguments for Machine Computation 263

16. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: FOCS. pp. 90–99. IEEE Computer Society (1991)

17. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data from
additive polynomial commitments. In: CRYPTO (1). Lecture Notes in Computer
Science, vol. 12825, pp. 649–680. Springer (2021)

18. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S.K., Maller, M.: Arya: Nearly linear-
time zero-knowledge proofs for correct program execution. In: ASIACRYPT (1).
Lecture Notes in Computer Science, vol. 11272, pp. 595–626. Springer (2018)

19. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: IEEE Symposium on Security and Privacy.
pp. 947–964. IEEE (2020)

20. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. IACR Cryptol. ePrint Arch. p. 1021 (2019)

21. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: SOSP. pp. 341–357. ACM (2013)

22. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special
sound protocols. IACR Cryptol. ePrint Arch. p. 620 (2023)

23. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: CRYPTO (1). Lecture Notes in Computer Science, vol.
12825, pp. 681–710. Springer (2021)

24. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: TCC (2). Lecture Notes in Computer Science, vol. 12551,
pp. 1–18. Springer (2020)

25. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from DARK compilers. In:
EUROCRYPT (1). Lecture Notes in Computer Science, vol. 12105, pp. 677–706.
Springer (2020)

26. Campanelli, M., Faonio, A., Fiore, D., Li, T., Lipmaa, H.: Lookup arguments:
Improvements, extensions and applications to zero-knowledge decision trees. IACR
Cryptol. ePrint Arch. p. 1518 (2023)

27. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: EUROCRYPT (2). Lecture Notes in
Computer Science, vol. 14005, pp. 499–530. Springer (2023)

28. Chen, M., Chiesa, A., Gur, T., O’Connor, J., Spooner, N.: Proof-carrying data from
arithmetized random oracles. In: EUROCRYPT (2). Lecture Notes in Computer
Science, vol. 14005, pp. 379–404. Springer (2023)

29. Chen, M., Chiesa, A., Spooner, N.: On succinct non-interactive arguments in rel-
ativized worlds. In: EUROCRYPT (2). Lecture Notes in Computer Science, vol.
13276, pp. 336–366. Springer (2022)

30. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Prepro-
cessing zksnarks with universal and updatable SRS. In: EUROCRYPT (1). Lecture
Notes in Computer Science, vol. 12105, pp. 738–768. Springer (2020)

31. Choudhuri, A.R., Garg, S., Goel, A., Sekar, S., Sinha, R.: Sublonk: Sublinear prover
plonk. IACR Cryptol. ePrint Arch. p. 902 (2023)

32. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: CRYPTO. Lecture Notes in Computer
Science, vol. 839, pp. 174–187. Springer (1994)

33. Di, Z., Xia, L., Nguyen, W.D., Tyagi, N.: Muxproofs: Succinct arguments for
machine computation from vector lookups. IACR Cryptol. ePrint Arch. p. 974
(2023)

34. Diamond, B.E., Posen, J.: Succinct arguments over towers of binary fields. IACR
Cryptol. ePrint Arch. p. 1784 (2023)

264 Z. Di et al.

35. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. IACR
Cryptol. ePrint Arch. p. 1763 (2022)

36. Gabizon, A., Khovratovich, D.: flookup: Fractional decomposition-based lookups
in quasi-linear time independent of table size. IACR Cryptol. ePrint Arch. p. 1447
(2022)

37. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. IACR Cryptol. ePrint Arch. p. 315 (2020)

38. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. p. 953 (2019)

39. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC. pp. 99–108. ACM (2011)

40. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose ς-protocols for disjunctions. In: EUROCRYPT (2). Lecture Notes
in Computer Science, vol. 13276, pp. 458–487. Springer (2022)

41. Goel, A., Hall-Andersen, M., Kaptchuk, G.: Dora: Processor expressiveness is
(nearly) free in zero-knowledge for RAM programs. IACR Cryptol. ePrint Arch.
p. 1749 (2023)

42. Goel, A., Hall-Andersen, M., Kaptchuk, G., Spooner, N.: Speed-stacking: Fast sub-
linear zero-knowledge proofs for disjunctions. IACR Cryptol. ePrint Arch. p. 1419
(2022)

43. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic snarks for R1CS. In: CRYPTO (2). Lecture Notes in Com-
puter Science, vol. 14082, pp. 193–226. Springer (2023)

44. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: EUROCRYPT (2). Lecture Notes in Computer Science, vol. 9057,
pp. 253–280. Springer (2015)

45. Haböck, U.: Multivariate lookups based on logarithmic derivatives. IACR Cryptol.
ePrint Arch. p. 1530 (2022)

46. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: EUROCRYPT (3). Lecture Notes in Computer Science, vol. 12107, pp. 569–598.
Springer (2020)

47. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: ASIACRYPT. Lecture Notes in Computer Science,
vol. 6477, pp. 177–194. Springer (2010)

48. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC. pp. 723–732. ACM (1992)

49. Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct
arguments for randomized algorithms with applications to universal zk-snarks. In:
USENIX Security Symposium. pp. 2129–2146. USENIX Association (2020)

50. Kothapalli, A., Setty, S.: Supernova: Proving universal machine executions without
universal circuits. IACR Cryptol. ePrint Arch. p. 1758 (2022)

51. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: CRYPTO (4). Lecture Notes in Computer Science, vol.
13510, pp. 359–388. Springer (2022)

52. Kothapalli, A., Setty, S.T.V.: Cyclefold: Folding-scheme-based recursive arguments
over a cycle of elliptic curves. IACR Cryptol. ePrint Arch. p. 1192 (2023)

53. Lee, J., Nikitin, K., Setty, S.T.V.: Replicated state machines without replicated
execution. In: IEEE Symposium on Security and Privacy. pp. 119–134. IEEE (2020)

54. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

MuxProofs: Succinct Arguments for Machine Computation 265

55. Micali, S.: CS proofs (extended abstracts). In: FOCS. pp. 436–453. IEEE Computer
Society (1994)

56. Nguyen, W.D., Boneh, D., Setty, S.T.V.: Revisiting the nova proof system on
a cycle of curves. In: AFT. LIPIcs, vol. 282, pp. 18:1–18:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2023)

57. Nguyen, W.D., Datta, T., Chen, B., Tyagi, N., Boneh, D.: Mangrove: A scalable
framework for folding-based snarks. IACR Cryptol. ePrint Arch. p. 416 (2024)

58. Posen, J., Kattis, A.A.: Caulk+: Table-independent lookup arguments. IACR
Cryptol. ePrint Arch. p. 957 (2022)

59. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: CRYPTO (3). Lecture Notes in Computer Science, vol. 12172, pp. 704–
737. Springer (2020)

60. Setty, S.T.V., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of con-
current services in zero-knowledge. In: OSDI. pp. 339–356. USENIX Association
(2018)

61. Setty, S.T.V., Thaler, J., Wahby, R.S.: Customizable constraint systems for suc-
cinct arguments. IACR Cryptol. ePrint Arch. p. 552 (2023)

62. Setty, S.T.V., Thaler, J., Wahby, R.S.: Unlocking the lookup singularity with lasso.
IACR Cryptol. ePrint Arch. p. 1216 (2023)

63. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: TCC. Lecture Notes in Computer Science, vol. 4948, pp.
1–18. Springer (2008)

64. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: NDSS. The Internet
Society (2015)

65. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time.
In: CRYPTO (4). Lecture Notes in Computer Science, vol. 13510, pp. 299–328.
Springer (2022)

66. Xiong, A.L., Chen, B., Zhang, Z., Bünz, B., Fisch, B., Krell, F., Camacho, P.:
VERI-ZEXE: decentralized private computation with universal setup. IACR Cryp-
tol. ePrint Arch. p. 802 (2022)

67. Yang, Y., Heath, D.: Two shuffles make a RAM: improved constant overhead zero
knowledge RAM. IACR Cryptol. ePrint Arch. p. 1115 (2023)

68. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Batch-
man and robin: Batched and non-batched branching for interactive ZK. In: CCS.
pp. 1452–1466. ACM (2023)

69. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Tight zk
cpu: Batched zk branching with cost proportional to evaluated instruction. IACR
Cryptol. ePrint Arch. p. 456 (2024)

70. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.:
Caulk: Lookup arguments in sublinear time. In: CCS. pp. 3121–3134. ACM (2022)

71. Zapico, A., Gabizon, A., Khovratovich, D., Maller, M., Ràfols, C.: Baloo: Nearly
optimal lookup arguments. IACR Cryptol. ePrint Arch. p. 1565 (2022)

72. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vram: Faster
verifiable RAM with program-independent preprocessing. In: IEEE Symposium on
Security and Privacy. pp. 908–925. IEEE Computer Society (2018)

Verifiable Computation

Proofs for Deep Thought: Accumulation
for Large Memories and Deterministic

Computations

Benedikt Bünz(B) and Jessica Chen(B)

New York University, New York, USA
{bb,jessicachen}@nyu.edu

Abstract. An important part in proving machine computation is to
prove the correctness of the read and write operations performed from
the memory, which we term memory-proving . Previous methodologies
required proving Merkle Tree openings or multi-set hashes, resulting in
relatively large proof circuits. We construct an efficient memory-proving
Incrementally Verifiable Computation (IVC) scheme from accumulation,
which is particularly useful for machine computations with large memo-
ries and deterministic steps. In our scheme, the IVC prover PIVC has cost
entirely independent of the memory size T and only needs to commit
to approximately 15 field elements per read/write operation, marking a
more than 100X improvement over prior work. We further reduce this
cost by employing a modified, accumulation-friendly version of the GKR
protocol. In the optimized version, PIVC only needs to commit to 6 small
memory-table elements per read/write. If the table stores 32-bit values,
then this is equivalent to committing to less than one single field ele-
ment per read and write. Our modified GKR protocol is also valuable for
proving other deterministic computations within the context of IVC. Our
memory-proving protocol can be extended to support key-value stores.
The full version of this article can be found online [BC24]

Keywords: Proof system · Accumulation Scheme · Incrementally
Verifiable Computation

1 Introduction

Consider the scenario where one or multiple clients outsource a large computa-
tion, possibly of infinite steps, to an untrusted server. For example, clients might
want to continuously verify that all transactions in a blockchain are valid. Natu-
rally, the clients would like the server to provide a certificate, which would allow
the clients to verify that all the computation steps run up to that point were
correct and even to continue the computation from that point onwards. The effi-
ciency of verification necessitates that the size of the proof and the complexity of

The full version of this paper is on IACR ePrint at https://eprint.iacr.org/2024/325.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 269–301, 2025.
https://doi.org/10.1007/978-981-96-0935-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_9&domain=pdf
http://orcid.org/0000-0003-2082-4480
http://orcid.org/0009-0002-1289-9626
https://eprint.iacr.org/2024/325
https://doi.org/10.1007/978-981-96-0935-2_9

270 B. Bünz and J. Chen

its verification be independent of the length of the computation. Moreover, since
the computation can be long or even unbounded, it would be ideal if the server
can provide the current state and a certificate upon request from the client at
any point. This is achieved by maintaining a running certificate or proof that
can be efficiently updated with each computation step. A system that achieves
these properties is called an incrementally verifiable computation (IVC) system
[Val08]1.

IVC enables the server/prover to produce an output zIVC, along with a proof
πIVC upon request from the client/verifier without requiring a priori knowledge
of an upper bound on the number of computation steps. With a valid πIVC, a
client/verifier can be convinced zIVC is the output of the correct execution of
a (potentially non-deterministic) machine computation up to this point, and
can even continue the computation. Recent developments have demonstrated
that IVC can be constructed from simple public-coin interactive protocols fea-
turing algebraic verifiers, such as protocols where the prover simply sends the
witness. This is achieved through the use of accumulation2 or folding schemes
[BGH19,BCMS20,BCLMS21,BDFG21,KST22,BC23,EG23]. The resulting IVC
has essentially the same computational overhead as the accumulation scheme.
The cost of the resulting IVC prover depends on two main factors:

1. The size of the recursive circuit, predominantly comprising the accumulation
verifier Vacc. Since the size of Vacc only depends on the algebraic degree of
the verifier and the number of rounds in the underlying protocol (rather than
the communication or verification complexity), minimizing these two factors
are crucial for reducing the cost of the IVC prover.

2. The cost of the accumulation prover Pacc, which is mainly influenced by the
commitment cost to the prover messages, and thus is dependent on the num-
ber of elements in the prover messages of the underlying interactive protocol.

The general paradigm of using IVC to prove machine computations involves
first proving the correctness of computation under the assumption that memory
accesses were executed correctly, recording all the read/write operations in the
circuit, and then proving the correctness of the recorded read/write operations.
The primary challenge lies in the latter, i.e. efficiently proving the correctness of
memory accesses, which we will refer to as memory-proving in this work. With
the above-mentioned recent advancements in IVC construction, we need only
to design a public-coin interactive protocol for memory-proving with
an algebraic verifier while ensuring that following three parameters
remain small: the number of rounds, the verifier degree, and the num-
ber of elements in the prover messages (ideally independent of T). These
parameters are the only factors on which the cost of PIVC depends. Then, by

1 The literary application of IVC is the machine Deep Thought from the Hitchhiker’s
Guide to the Galaxy. It computes the answer to the ultimate question of the universe
and life over several thousand years. Given the nonsensical answer (42), it would have
been helpful to be able to efficiently verify the correctness of the computation.

2 We use accumulation to refer to split-accumulation as defined by [BCLMS21].

Proofs for Deep Thought 271

applying existing accumulation compilers (e.g., the ProtoStar compiler [BC23])
to this interactive protocol, we can obtain an efficient accumulation scheme for
memory-proving, and finally derive an efficient memory-proving IVC scheme
from accumulation by utilizing existing IVC compilers (e.g., [BCLMS21]).

The most rudimentary method of performing memory-proving involves
unrolling the entire memory into a circuit. However, since a circuit is at least
as large as its inputs, this circuit would be of size O(�T), which is prohibitively
large even medium-sized memories. An alternative approach is for the prover to
simulate memory-checking internally and prove that the memory accesses would
have been accepted by the memory-checking verifier, who only keeps a small
local state. In all previous works, using this approach, the prover’s cost is depen-
dent on the memory size T and/or hashing is required within the circuit. For
instance, Spice [SAGL18] employed offline memory-checking, requiring approxi-
mately 1500 constraints3 per read and write operation. Since the prover needs to
transmit at least one proof element per constraint, this results in 1500 elements
in the prover message per read/write operation, and thus 1500 commitments per
accumulation step for PIVC. In contrast, ProtoStar recently showed a memory-
proving protocol for static read-only memory that utilises the LogUp argument
[Hab22], in which the prover only performs two group scalar multiplications per
read instruction [BC23]. The prover’s cost in ProtoStar is independent of the
memory size T and does not involve multi-set hashing. However, their approach
does not support writes into a dynamic memory [BC23].

In this paper, we present an interactive protocol for memory-proving inspired
by the LogUp argument [Hab22]. Using accumulation techniques, we obtain an
IVC scheme for memory-proving with minimal prover overhead. We then show
an optimization of our scheme which employs an accumulation-friendly version
of the GKR protocol to further reduce the prover overhead. We note that this
adapted GKR protocol has other applications beyond improving our memory-
proving protocol.

O(�) Memory-Proving PIVC ProtoStar has previously demonstrated that
LogUp is well suited for accumulation and, thus, IVC. It can be used to ver-
ify the existence of a set of witness values in a static table of values [BC23]. We
design LogUp-styled arguments to support reading from and writing to a fully
dynamic table.

One key challenge we address is proving only O(�) table values were altered
in a table of size T >> �, while ensuring that the cost of PIVC remains indepen-
dent of T . Our memory-proving protocol is public-coin with an algebraic verifier,
featuring 2 rounds of communication4, verifier degree 3, and only O(�) elements
in prover messages, where � denotes the number of reads and writes performed
in each computation step. This means it can be turned into an efficient accumu-
lation scheme using existing accumulation compiler (e.g. [BC23]). The resulting

3 In group-based proof systems, the prover typically computes at least one multi-scalar
multiplication that is as large as the number of constraints.

4 Each round consists of a prover message and is possibly followed by a verifier chal-
lenge.

272 B. Bünz and J. Chen

PIVC only needs to commit to O(�) elements, which is independent of the memory
size T .

This significantly improves on prior work, which either relied on Merkle trees
requiring log T hashes per memory access or required multi-set hashes [SAGL18].
These prior methods are particularly costly in the context of memory-proving,
where the hashes result in large proving circuits. In contrast, our resulting
memory-proving scheme is practically efficient with the prover only having to
commit to 15 field values per memory access. In addition, since the prover cost
is completely independent of the memory size T , our protocol can be extended
to the setting of key-value store. We describe this extension in detail at the end
of Sect. 5.1.

Optimizing Memory-Proving with GKR. One limitation of the scheme is
that the prover needs to commit to 6 large field elements per memory access,
i.e. each of size λ bits, even if the memory entries themselves are small. This is
because in the memory-proving interactive protocol, the prover needs to send 6
vectors consisting of inverses of the form 1

r+ti
where r is a constant, and each

ti is a small table entry. To resolve this overhead, we draw inspiration from
[STW23,PH23] and compute this sum using formal fractions and a modified
GKR protocol. Our modified protocol retains GKR’s ability to prove determinis-
tic layered computations without committing to the intermediate values. Specif-
ically, the protocol relies on bivariate sumcheck instead of multilinear sumcheck,
reducing the number of rounds per layer to 3. In the context of the ProtoStar
accumulation compiler, this reduction in number of rounds significantly lowers
the recursive overhead in IVC.

With the power of GKR, the memory-proving protocol no longer requires
computing and committing to the large inverses. Thus, if we read/write � s-bit
values from memory, the number of group operations decreases from O(λ�) to
O(s�), i.e., the actual size of the data that is read/written. We provide a brief
overview of the resulting efficiency of our protocol in Table 1. Most importantly
the prover only needs to commit to 6 elements that are as large as the table
entries for each read/ write. If the table contains 32-bit entries then this is
equivalent to committing to 192bits per read/write or less than a single 256bit
field element. We also introduce several optimizations for our GKR-powered
memory-proving protocol, which further reduce the number of GKR rounds.

Table 1. Efficiency Table for our Memory-Proving Protocol. T is the memory size,
and � is the number of read/write operations. T is the set of table entries, which might
only contain small field elements. See Table 3 for an explanation of the columns and
symbols, and more details.

Pacc Time Vacc Time

Plain (6�,T)-MSM +(9�,F)-MSM 3G

Using GKR (6�,T)-MSM O(log T)G

Proofs for Deep Thought 273

IVC for Deterministic Computations. GKR has numerous other applica-
tions in accumulation beyond enhancing our memory-proving protocol. In fact,
for proving any low-depth deterministic computations, GKR only requires com-
mitting to the inputs and outputs, not the intermediate values. We demonstrate
the utility of this by describing an accumulation-friendly GKR protocol for com-
puting group scalar multiplications, which is the dominant cost within the recur-
sive circuit.

1.1 Related Work

IVC and Accumulation. Valiant [Val08] introduced incrementally verifiable
computation (IVC) and showed that IVC can be built from Succinct Non-
interactive ARguments of Knowledge (SNARKs). The core concept involves the
prover generating a SNARK at each computation step, certifying both the cur-
rent step and the verification of the SNARK from the previous step. The latter
part is commonly referred to as the recursive circuit. Subsequent to Valiant’s
work, an important line of research [BCCT13,BCTV14,COS20] has enhanced
the practicality of IVC, studied its generalization to arbitrary graphs (Proof-
Carrying Data, PCD), and advanced its theoretical foundations.

Halo [BGH19] showed that IVC can be constructed from simpler assump-
tions, sparking research on accumulation [BCMS20,BCLMS21,BDFG21,KST22,
BC23,EG23]. The idea is to construct IVC by simply accumulating or batch-
ing the verification of non-interactive arguments, postponing verification to the
end of each IVC step. In essence, in each accumulation round, the prover pro-
duces a new argument for the current step and proves its correct accumulation
into the existing accumulator. The accumulation step can be as straightforward
as taking a random linear combination between two vector commitments, and
verifying the accumulation step can be significantly cheaper than verifying the
proof. The more computationally intensive final verification, which is called the
decision step in accumulation, is executed only at the end of IVC step to verify
the correctness of the accumulated commitment. A valid accumulator implies
that all the accumulated proofs were valid.

Recently, ProtoStar introduced a new recipe for constructing accumulation
schemes and IVC [BC23] from any interactive public-coin protocol Π with an
algebraic verifier. The resulting accumulation verifier Vacc depends only on the
number of rounds and the verifier degree in the underlying interactive protocol
Π, and the resulting accumulation prover Pacc’s main cost is committing to all the
prover messages in Π. Using the [BCLMS21] compiler, an accumulation scheme
for NP directly yields an IVC, where PIVC’s cost for computing the predicate is
proportional to the cost of Pacc and the recursive circuit consisting of Vacc.

Concurrent work [APPK24] also constructed an accumulation scheme for
GKR. However, they utilize the multi-linear version of GKR and batch the poly-
nomial evaluation, similar to [BCMS20].

Memory-Checking andLookupArguments. Memory-checking [BEGKN91]
enables an untrusted server to convince a client that a set of read/write operations

274 B. Bünz and J. Chen

is consistentwith amemorywithout having to send the entirememory to the client.
Each entry of read/write operation consists of an address a, a value v and a times-
tamp t. If a value v was written to a at time t, then any read at time t′ > t from
a shall return v with the timestamp t, unless there was another write to a in the
meantime. We briefly highlight two constructions and their limitations here, and
refer to Appendix B of Jolt [AST23] for an excellent overview of memory-checking
techniques.

One approach stores the memory in a Merkle Tree [BFRSBW13,BCTV14].
For every read operation, the prover opens the Merkle Tree at the relevant
address. For every write operation, the prover shows that the Merkle Tree is
correctly updated. The verification for either step requires O(log T) hashes, and
the prover’s computational work is also O(log T), where T is the size of the
memory. When this technique is used within IVC, the memory-checking verifier
is part of the proving circuit, and log(T) hashes per read and write operation
become a significant overhead.

The other common approach, dating back to [BEGKN91] and later refined
in [CDvGS03,DNRV09,SAGL18], relies on proving that the constructed sets of
reads and writes form a permutation. The state-of-the-art work Spice [SAGL18]
employs multi-set hashes and proves that the hash was evaluated correctly, which
results in over 1500 constraints per read/write operation, two orders of magni-
tude more than our approach. The approach also requires a linear scan of the
memory at the end of the computation, but similar as in our construction this
can be deferred to a final decider.

Recently, there has been increased attention to a related primitive called
lookup arguments. Lookup arguments can be used to verify read operation in a
static, possibly preprocessed memory. A recent line of work [ZBKMNS22,PK22,
GK22,ZGKMR22,EFG22] showed that in the preprocessing setting, one can
achieve lookup arguments independent of the table size and quasi-linear in the
number of read operations. Lasso [STW23] improves on these ideas by enabling
a fully linear prover and independence of the table size for structured table.
In the context of IVC, ProtoStar [BC23] gave a lookup argument based on
LogUp [Hab22] that is independent of the table size (for arbitrary tables) and
only requires two group scalar multiplications per read. Unfortunately, all these
lookup arguments only work for static tables and read operations. We construct
a memory-proving argument (which is more general than a lookup) that is still
independent of the table size and has minimal overhead.

1.2 Technical Overview

Our construction heavily relies on the ProtoStar compiler [BC23], which we
describe in Theorem 1 in Sect. 2.5. It gives a recipe for constructing accumula-
tion schemes and IVC [BC23] from any interactive public-coin protocol with an
algebraic verifier. We summarize the recipe here into five steps:

1. Begin with any k-round interactive public-coin protocol featuring L verifica-
tion checks of maximum degree d, and prover messages comprising n nonzero
elements.

Proofs for Deep Thought 275

2. Compress the communication by using a homomorphic vector commitment
(e.g. Pedersen commitment) to commit to each vector in the prover messages.

3. Make the protocol non-interactive through the Fiat-Shamir transformation.
4. Use the ProtoStar compiler to convert the non-interactive protocol into an

accumulation scheme. The accumulation scheme combines the current argu-
ment with an accumulator (which has the same form as the argument) by
taking a random linear combination of the committed prover messages with
the accumulator messages. It also computes a new verification equation by
appropriately canceling out the cross error terms resulted from the accumu-
lation.

5. If the underlying protocol can prove NP-complete relations, such as circuits,
then the [BCLMS21] IVC compiler can be applied to construct an IVC scheme
from the accumulation scheme for any function F . The compiler ensures the
correct execution of the accumulation verifier alongside proving F .

Following this recipe, we design special-sound, algebraic protocols for
memory-proving and GKR. One important design goal is to keep the complexity
of the accumulation verifier Vacc low, as Vacc is the dominant component in the
recursive circuit. Notably, the complexity of Vacc relies solely on k and d, without
any dependence on n or L whatsoever. Another design goal is to minimize the
commitment cost of the accumulation prover Pacc, which is directly contingent
on the number of nonzero elements in prover messages, as committing to 0 is
free in Pedersen commitment. Therefore, to leverage the ProtoStar compiler to
design an efficient IVC scheme where PIVC cost is independent of the memory
size T , we need to design an interactive, algebraic memory-proving
protocol with small values for number of rounds k, verifier degree d
and number of nonzero elements in prover messages n. This implies that
n should be independent of T , since otherwise the cost of Pacc will be O(T) even
if the number of memory accesses is much smaller than T .

Constructing Read List and Write List. We assume the list of “reads”
and the list of “writes” were constructed similarly to the way in the classic
offline memory-checking process [BEGKN91,CDvGS03,SAGL18]. Each entry in
the lists is in the form of a tuple (address, value, timestamp), with the local
timestamp incremented after each write operation. The specific construction is
described in Sect. 3.

If all memory accesses were performed correctly, the constructed lists should
satisfy three properties: 1) the read list and the write list should be permutations
of each other; 2) the initial reads are consistent with the starting/old memory;
and 3) the new memory is updated only at the addresses written to and with
the correct amount. Note that the third memory-update (or mem-update for
short) property requires examining all T addresses, not only the ones touched
by memory accesses but also the ones untouched. Therefore, the main challenge
in designing an efficient memory-proving protocol lies in proving correct mem-
update in time independent of T .

276 B. Bünz and J. Chen

LogUp Based Mem-Update. The starting point of our construction is the
LogUp lookup argument [Hab22] which uses the fact that the set of values in
w = [wi]�i=1 is contained in a table t = [ti]Ti=1 if and only if

�∑

j=1

1
X + wj

=
T∑

i=1

mi

X + ti
,

where mi is the multiplicity of ti in w for every i ∈ [T] and X is a random
variable. ProtoStar [BC23] showed that the LogUp argument can be efficiently
accumulated. Importantly, it observes that the prover messages in the protocol
for LogUp argument, e.g. m = [mi]Ti=1, only contains � nonzero entries. This
means, in the context of the ProtoStar compiler and IVC, the accumulation
prover Pacc and thus the IVC prover PIVC only needs to do O(�) work. However,
the LogUp argument only supports read operations and not write operations.

We attempt to modify the LogUp argument to use it for mem-update.
Assume, w corresponds to the �-sized update vector (the difference between
the final written value and the initial read value from each address), and t cor-
responds to the T -sized vector Δ that represents the difference between the new
memory and the old memory, i.e. Δ := NM−OM. However, the LogUp argument
only cares about the membership of the w values but not their positions in Δ;
in other words, the argument only indicates that some memory value is changed
by wj , but does not constrain the change to any specific address. In addition, it
is not immediately clear how to update the memory or compute the right hand
side with Δ in a manner that does not require a linear scan.

To resolve the first issue, we add the address vector to random linear combi-
nation in the denominators. That is,

�∑

j=1

1
X + Y · bj + wj

=
T∑

i=1

mi

X + Y · i + Δi

holds if and only if wj = Δbj
for every j ∈ [�], where b = [bj]�j=1 is an address

vector and Y is another random variable. Note that this is an indexed LogUp
argument where we ensure not only the membership of the values but also their
precise indices in the lookup table. In this indexed lookup argument, mi only
takes on the values 0 or 1. Still, this modified lookup argument is not sufficient,
as it does not ensure that Δ is 0 at the positions for which there had been no
read or write operation. This is an important criteria for correct mem-update,
since an adversarial prover may use non-zero values in Δ to change the memory
state arbitrarily.

We make a key observation that the correct Δ should simply be a T -sized
sparse representation of w. To ensure that Δ is 0 at unmodified addresses, we
set the numerators to wj ,Δi instead of 1,mi. Namely,

�∑

j=1

wj

X + Y · bj + wj
=

T∑

i=1

Δi

X + Y · i + Δi

Proofs for Deep Thought 277

Note that the ith fraction on the right hand side is 0 if and only if the ith value is
unmodified by any write operation, and is equal to the left hand side if and only
if the ith value is modified by the correct amount. Only � out of all T fractions
on the right hand side are nonzero, which implies an honest prover only need to
do O(�) work, resolving the second issue aforementioned. Section 4.3 shows that
this LogUp-style mem-update argument is secure and indeed leads to a protocol
with prover complexity independent of T .

LogUp Powered Memory-Proving. The mem-update argument can be used
to show that the memory is updated strictly at the addresses written to and
with the correct amount. We can then use a homomorphic commitment to Δ
to efficiently update our commitment to the memory state. In addition, we can
use the indexed LogUp argument demonstrated in the intermediate step above
to show that all the values initially read are consistent with the old memory.
Nevertheless, merely checking these two properties (property 2 and 3) only suffice
in a system where all write operations happen synchronously at the end of the
computation step. Without additional checks, we would need to first update the
memory whenever we read from an address that has been previously written to.
This requires an expensive homomorphic commitment operation to be executed
by the verifier as part of the recursive circuit. To resolve this we employ the
classic permutation-based offline memory-checking idea [BEGKN91] and add a
check for property 1 in our memory-proving protocol.

All three subprotocols are based on the LogUp argument and are described in
Sect. 4. Section 5 discusses the overall memory-proving protocol and its efficiency.

Accumulation-Friendly Verision of GKR. Our memory-proving protocols
have almost optimal parameters. It requires committing5 to only 15 field ele-
ments per memory access. However, 9 of these field elements consist of large
field elements, i.e. log |F|-bit, even if the memory itself only consists of small
entries. For instance, say the memory only contains 32-bit entries; using homo-
morphic commitments requires fields of size at least 2256, which is a factor 8
blowup. Concretely, in this example the 9 large elements contribute 2300 bits
and the 6 small elements only 192 bits to the prover’s commitment cost.

Removing this blowup motivates the second orthogonal but highly compati-
ble contribution of this paper: We construct an efficient accumulation scheme for
the GKR protocol. GKR can be used to prove low-depth deterministic compu-
tations while only committing to the computation’s inputs and outputs but not
the intermediate values. Note that GKR is a special-sound interactive protocol
with an algebraic verifier, which means it can directly be compiled with the Pro-
toStar compiler to an accumulation scheme. Unfortunately, GKR has O(k · log n)
rounds where k is the depth of the circuit and n its width. Compilation results

5 Committing is by far the dominant prover cost in these systems. Committing to a
message is between 100 and 1000 times as expensive as doing field operations on the
same message. See https://zka.lc/.

https://zka.lc/

278 B. Bünz and J. Chen

in an accumulation verifier with k · log n group scalar multiplications. In the
context of IVC, the accumulation verifier becomes part of the recursive circuit,
and this is a significant overhead, especially when compared with other accumu-
lation schemes which only have 1 to 3 group operations [KST22,KS23,BC23].
Our goal is, therefore, to reduce the number of rounds of GKR while maintain-
ing the attractive efficiency properties and the compatibility with the ProtoStar
compiler.

In every round, GKR runs a multivariate sumcheck protocol, which has log n
rounds. As a strawman, we can replace this multivariate sumcheck with a uni-
variate one. This immediately reduces the number of GKR rounds from k · log n
to just k. Univariate sumcheck requires sending a quotient polynomial that is as
large as the domain of the sumcheck, in our case O(n). Committing to this poly-
nomial would be at least as expensive as directly committing to the intermediate
wires of the circuit, thus removing the benefit of using GKR. Fortunately, the
idea of using a higher degree sumcheck with fewer variables can still help. Mov-
ing to a bivariate sumcheck reduces the communication to O(

√
n) while being

only a 3-round protocol. The O(
√

n) commitment cost is, in most applications,
dominated by the cost of committing to the input and output layers; even if not,
we show that one can use a c-variate sumcheck to ensure that the sumchecks
commitment cost is marginal. Using a bivariate sumcheck presents us with a
couple of challenges. First, the verifier needs to evaluate a O(

√
n) degree poly-

nomial, which is a O(
√

n) degree check if done naively. To resolve this we built a
polynomial evaluation protocol, where with aid from the prover, the verification
degree reduces to merely 3, independent of the degree of the polynomial.

Additionally, GKR batches polynomial evaluations, after each sumcheck, in
order to only evaluate the next layer at a single point. In bivariate sumcheck, this
would require computing a high-degree interpolation polynomial. We show that
it is much simpler and more efficient to directly batch the resulting sumchecks.
This observation is also applicable to multivariate sumchecks. We then construct
a specific GKR protocol for computing the sum of fractions, e.g.

∑n
i=1

ni

di
, similar

to [PH23]. We also give specific optimizations for this instantiation, such as
breaking up the circuit into multiple parts, while still maintaining the asymptotic
properties. This optimization takes advantage of the circuit structure of sums of
fractions, where the number of sums halves in every layer.

1.3 Roadmap

In Sect. 2, we provide the necessary preliminaries to comprehend our construc-
tion. We describe the desired construction for lists of read/write operations
in Sect. 3 and outline three properties that consistent read/write lists should
uphold. Subsequently, in Sect. 4, we introduce three LogUp-style special-sound
subprotocols, each tailored for proving one of the three aforementioned proper-
ties. These subprotocols are combined in parallel to form the memory-proving
interactive protocol ΠMP in Sect. 5, which exhibits the desired characteristics for
conversion into an efficient accumulation scheme and IVC using the ProtoStar

Proofs for Deep Thought 279

compiler. Specifically, ΠMP has only 2 rounds and verifier degree 3, and its num-
ber of nonzero elements in prover messages is independent of T . In Sect. 7, we
elucidate how our accumulation-friendly version of GKR (components described
in Sect. 6) can be leveraged to optimize our memory-proving IVC scheme, and
we highlight several other useful applications of GKR in the context of IVC. The
proofs, the extension of our memory-proving protocol to the setting of key-value
store, and other details are deferred to the full version of this paper [BC24] due
to lack of space.

2 Preliminaries

Notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote λ
as the security parameter and use F to denote a field of prime order p such that
log(p) = Ω(λ). For list of tuples ltup = [(ai, bi, ci, . . .)]ki=1 of arbitrary length
k, we use ltup.a to denote the list [ai]ki=1, and ltup.(a, b) to denote the list
[(ai, bi)]ki=1. For function f , f̃ denotes the bivariate extension of f .

2.1 Special-Sound Protocols

We take the definition of special-soundness from [AFK22,BC23].

Definition 1 (Public-coin interactive proof). An interactive proof Π =
(P,V) for relation R is an interactive protocol between two probabilistic
machines, a prover P, and a polynomial time verifier V. Both P and V take
as public input a statement pi and, additionally, P takes as private input a wit-
ness w ∈ R(pi) . The verifier V outputs 0 if it accepts and a non-zero value
otherwise. Its output is denoted by (P(w),V)(pi). Accordingly, we say the cor-
responding transcript (i.e., the set of all messages exchanged in the protocol
execution) is accepting or rejecting. The protocol is public coin if the verifier
randomness is public. The verifier messages are referred to as challenges. Π is a
(2k−1)-move protocol if there are k prover messages and k−1 verifier messages.

Definition 2 (Tree of transcript). Let μ ∈ N and (a1, . . . , aμ) ∈ N
μ. An

(a1, . . . , aμ)-tree of transcript for a (2μ+1)-move public-coin interactive proof Π
is a set of a1ȧ2 . . . aμ accepting transcripts arranged in a tree of depth μ and arity
a1, . . . , aμ respectively. The nodes in the tree correspond to the prover messages
and the edges to the verifier’s challenges. Every internal node at depth i − 1
(1 ≤ i ≤ μ) has ai children with distinct challenges. Every transcript corresponds
to one path from the root to a leaf node. We simply write the transcripts as an
(aμ)-tree of transcript when a = a1 = a2 = · · · = aμ.

Definition 3 (Special-sound Interactive Protocol). Let μ,N ∈ N and
(a1, . . . , aμ) ∈ N

μ. A (2μ + 1)-move public-coin interactive proof Π for relation
R where the verifier samples its challenges from a set of size N is (a1, . . . , aμ)-
out-of-N special-sound if there exists a polynomial time algorithm that, on input
pi and any (a1, . . . , aμ)-tree of transcript for Π outputs w ∈ R(pi). We sim-
ply denote the protocol as an aμ-out-of-N (or aμ) special-sound protocol if
a = a1 = a2 = · · · = aμ.

280 B. Bünz and J. Chen

2.2 Commitment Scheme

Definition 4 (Commitment Scheme). (Definition 6 from [BC23]) cm =
(Setup,Commit) is a binding commitment scheme, consisting of two algorithms:
Setup(λ) → ck takes as input the security parameter and outputs a commitment
key ck.
Commit(ck,m ∈ M) → C ∈ C, takes as input the commitment key ck and a
message m in M and outputs a commitment C ∈ C.
The scheme is binding if for all polynomial-time randomized algorithms P∗:

Pr

⎡

⎣
Commit(ck,m) = Commit(ck,m′)

∧
m �= m′

∣∣∣∣∣∣
ck ← Setup(1λ)
m,m′ ← P∗(ck)

⎤

⎦ = negl(λ)

Homomorphic commitment. (Adapted from Definition 17 in [KST22]) Let (C,+)
be an additive group of prime order p. We say the commitment is homomorphic
if for all commitment key produced from Setup(1λ), and for any m1,m2 ∈ M2,
Commit(ck,m1) + Commit(ck,m2) = Commit(ck,m1 + m2).

2.3 Lookup Relation

Definition 5. (Definition 12 of [BC23]) Given configuration CLK := (T, �, t)
where � is the number of lookups and t ∈ F

T is the lookup table, the relation
RLK is the set of tuples w ∈ F

� such that wi ∈ t for all i ∈ [�].

Lemma 1. (Lemma 5 of [Hab22]) 6 Let F be a field of characteristic p >
max(�, T). Given two sequences of field elements [wi]�i=1 and [ti]Ti=1, we have
{wi} ⊆ {ti} as sets (with multiples of values removed) if and only if there exists
a sequence [mi]Ti=1 of field elements such that

�∑

i=1

1
X + wi

=
T∑

i=1

mi

X + ti
. (1)

2.4 Vector-Valued Lookup

Definition 6. (Definition 13 in [BC23]) Consider configuration CVLK :=
(T, �, v ∈ N, t) where � is the number of lookups, and t ∈ (Fv)T is a lookup
table in which the ith (1 ≤ i ≤ T) entry is ti := (ti,1, . . . , ti,v) ∈ F

v. A
sequence of vectors w ∈ (Fv)� is in relation RVLK if and only if for all i ∈ [�],
wi := (wi,1, . . . ,wi,v) ∈ t.

As noted in Sect. 3.4 of [Hab22], we can extend Lemma 1 and replace (1)
with

�∑

i=1

1
X + wi(Y)

=
T∑

i=1

mi

X + ti(Y)
(2)

6 This lookup argument is unofficially referred to as LogUp.

Proofs for Deep Thought 281

where the polynomials are defined as

wi(Y) :=
v∑

j=1

wi,j · Y j−1 , ti(Y) :=
v∑

j=1

ti,j · Y j−1 ,

which represent the witness vector wi ∈ F
v and the table vector ti ∈ F

v.

2.5 Incremental Verifiable Computation (IVC)

Definition 7 (IVC). (Adapted Definition 5 from [KST22]) An incrementally
verifiable computation (IVC) scheme is defined by PPT algorithms (G,P,V) and
deterministic K denoting the generator, the prover, the verifier, and the encoder
respectively. An IVC scheme (G,K,P,V) satisfies perfect completeness if for any
adversary A

Pr

⎡

⎢⎢⎢⎢⎢⎢⎣
V(vk, i, z0, zi,Πi) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
F, (i, z0, zi, zi−1, ωi−1,Πi−1) ← A(pp),
(pk, vk) ← K(pp, F),
zi = F (zi−1, ωi−1),
V(vk, i − 1, z0, zi−1,Πi−1) = 0,
Πi ← P(pk, i, z0, zi; zi−1, ωi−1,Πi−1)

⎤

⎥⎥⎥⎥⎥⎥⎦
= 1

where F is a polynomial time computable function. Likewise, an IVC scheme
satisfies knowledge soundness if for any constant n ∈ N, and for all expected
polynomial time adversaries P∗, there exists an expected polynomial-time extrac-
tor E such that

Pr
r

⎡

⎣
zn = z where

zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n − 1}

∣∣∣∣∣∣

pp ← G(1λ),
(F, (z0, z),Π) ← P∗(pp, r),
(ω0, . . . , ωn−1) ← E(pp, r)

⎤

⎦ ≈

Pr
r

⎡

⎣V(vk, (n, z0, z),Π) = 0

∣∣∣∣∣∣

pp ← G(1λ),
(F, (z0, z),Π) ← P∗(pp, r),
(pk, vk) ← K(pp, F)

⎤

⎦

where r denotes an arbitrarily long random tape.
An IVC scheme satisfies succinctness if the size of the IVC proof Π does not

grow with the number of applications n.

Definition 8 (Fiat-Shamir Heuristic). (Definition 9 from [BC23]) The Fiat-
Shamir Heuristic, relative to a secure cryptographic hash function H, states that
a random oracle NARK with negligible knowledge error yields a NARK that has
negligible knowledge error in the standard (CRS) model if the random oracle is
replaced with H.

Theorem 1 (ProtoStar compiler). (Theorem 3 from [BC23]) Let F be a
finite field, such that |F| ≥ 2λ and cm = (Setup,Commit) be a binding homomor-
phic commitment scheme for vectors in F. Let Πsps = (Psps,Vsps) be a special-
sound protocol for an NP-complete relation RNP with the following properties:

282 B. Bünz and J. Chen

– It’s (2k − 1) move.
– It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error κ =

1 − ∏k−1
i=1 (1 − ai

|F|) = negl(λ)
– The inputs are in F

�in

– The verifier is degree d = poly(λ) with output in F
�

Then, under the Fiat-Shamir heuristic for a cryptographic hash function H
(Definition 8), there exist two IVC schemes IVC = (PIVC,VIVC) and IVCCV =
(PCV,IVC,VCV,IVC) with predicates expressed in RNP with the efficiencies shown in
Table 2.

Table 2. Efficiency of IVC schemes compiled from sps protocol

PIVC native PIVC recursive VIVC |πIVC|
∑k

i=1 |m∗
i |G

Psps + L′(Vsps, d + 2)

k + 2G

k + �in + d + 1F

(k + d + O(1))H + 1Hin

∑k
i=1 |mi|G

O(�) + Vsps

k + �in + 1F

k + 2G
∑k

i=1 |mi|

In Table 2, |mi| denotes the prover message length; |m∗
i | is the number of

non-zero elements in mi; G for rows 1-3 is the total length of the messages
committed using Commit. F are field operations. H denotes the total input length
to a cryptographic hash, and Hin is the hash to the public input and accumulator
instance. Psps (and Vsps) is the cost of running the prover (and the algebraic
verifier) of the special-sound protocol, respectively. L′(Vsps, d + 2) is the cost of
computing the coefficients of the degree d + 2 polynomial

e(X) :=

√
�−1∑

a=0

√
�−1∑

b=0

(X · π.βa + acc.βa)(X · π.β′
b + acc.β′

b)

d∑

j=0

(μ + X)d−j · f
Vsps

j,a+b
√

�
(acc + X · π) ,

(3)

where all inputs are linear functions in a formal variable X7, and f
Vsps

j,i is the ith

(0 ≤ i ≤ � − 1) component of f
Vsps

j ’s output. For the proof size, G and F are the
number of commitments and field elements, respectively.

3 Constructing Read List and Write List

In our memory-proving algorithm, we assume that the list of “reads” and the
list of “writes” we are given were constructed in a similar way as in the classic

7 For example if fd =
∏d

i=1(ai + bi · X) then a naive algorithm takes O(d2) time but
using FFTs it can be computed in time O(d log2 d) [CBBZ22].

Proofs for Deep Thought 283

offline memory-checking process [BEGKN91,CDvGS03,SAGL18]. More impor-
tantly, our algorithm makes specific use of the “initial reads” and “final writes”
in the memory-checking process, which we explicitly define in this section.

Consider an untrusted server who performs read/write operations to a mem-
ory. The memory is represented as a T -sized vector of memory values, where the
addresses are the indices 1, . . . , T . Suppose OM is the starting, old memory. The
server locally intializes two lists, RL and WL, to empty lists. As in [BEGKN91],
we assume both a value and a discrete timestamp of when the value was written
are stored at each memory address. The local timestamp t∗ is incremented when
some write operation takes place on the data structure.

When a read operation from address a is performed, and the memory
responds with a value-timestamp pair (v, t), the checker updates its local state
as follows:

checks that t∗ > t

append (a, v, t) to RL

stores (v, t∗) at the memory

append (a, v, t∗) to WL

t∗ ← t∗ + 1

When a write operation of value v′ to address a occurs, the checker updates
RL,WL in the same way except that the entry appended to WL will contain the
new value v′.

Then, we extract the “initial reads” R from RL, and “final writes” W from
WL as following:

R, W, AR, AW ← {}
for (a, v, t) ∈ RL do

if a /∈ AR then do

append (a, v, t) to R

AR ← AR ∪ {a}
for (a, v, t) ∈ WL.rev do

if a /∈ AW then do

append (a, v, t) to W

AW ← AW ∪ {a}
sort R, W by ascending a

At a high level, for each address a, we add the tuple containing a in RL
with the smallest timestamp to R, and add the tuple containing a in WL with
the largest timestamp to W , and hence the name “initial reads” and “final
writes.” Since the entries in RL and WL would be sorted in increasing order of
timestamp due to the way they were constructed, traverse the tuples in RL in
their natural order, but traverse the tuples in WL backwards (i.e. in descending

284 B. Bünz and J. Chen

order of timestamp), which is what WL.rev indicates in the pseudocode. Finally,
we sort R,W by addresses8, and return Rd := RL||W and Wr := WL||R.

Lemma 2. (Contrapositive of Lemma 1 from [BEGKN91]) If Rd and Wr are
permutations of each other, then the read/write operations are consistent with
each other. In other words, for every address, the value and timestamp read are
consistent with the value and timestamp previously written.

Remark 1. The protocol guarantees that |RL| = |WL| and RL.a = WL.a if the
memory functions correctly. It is therefore clear that if Rd and Wr were to be
permutations of each other, then it must be |W | = |R|, and W.a, R.a are equal
as sets.

Let � := |R| = |W | and k := |RL| = |WL|. Note that k is at most 2�, therefore
k = O(�).

Remark 2. The memory accesses and the memory updates were performed cor-
rectly if and only if the following three properties are satisfied:

1. Rd and Wr are permutations of each other, as described in Lemma 2
2. All the initially read values R.v are consistent with the old memory OM.
3. The new memory NM is updated only at the addresses written to and with

the correct amount. In other words, the T -sized vector NM − OM should be
an � sparse representation of the �-sized vector W − R.

4 Special-Sound Subprotocols for Memory-Proving

We introduce the three LogUp-style subprotocols that will be combined later to
build the Read/Write Memory-proving algorithm.

Handling Tuples. For simplicity, we describe the protocols as lookups and
permutations on vectors of single values. However, when applied to memory-
checking the entries might be tuples of addresses, values, and/or timestamps.
Fortunately, this can be handled using a simple random linear combination, akin
to the transformation from vector lookups to lookups (Lemma 6 of [BC23]).
For sequence b = [bi]ni=1 where each entry is a tuple of k > 1 element (i.e.
bi = (b(i,j))k

j=1 for every i ∈ [k]), bi will implicitly denote the random linear
combination of the elements, i.e.

∑k
j=1 Y j−1b(i,j), whenever it appears in a for-

mula. For example,

1
X + bi

=
1

X +
∑k

j=1 Y j−1b(i,j)
.

This is a k-special-sound transformation, so a previously (a1, . . . , aμ)-special-
sound protocol becomes (k, a1, . . . , aμ)-special sound after it.
8 Sorting takes O(� log �) time, but this is entirely prior to and not a part of our

memory-proving protocol.

Proofs for Deep Thought 285

Achieving Perfect Completeness. The three protocols we introduce will
not yet have perfect completeness since the prover will be sending over vectors
of fractions of the form hj = nj

dj
∀j ∈ [|h|], where the computation of the

denominator d is dependent on values in the given witness or lookup table.
If there exists any value in some entry of the witness or lookup table such
that d = 0, then the prover message will be undefined. We can achieve perfect
completeness by following the same strategy for achieving perfect completeness
in ΠLK in [BC23], which is to have the verifier set hj = 0 in this case and

changing the verification equation from hj · dj
?= nj to

dj · (hj · dj − nj)
?= 0

The new check ensures that either hj = nj

dj
or dj = 0. This increases the

verifier degree in all of the three subprotocols to 3. Without these checks, the
protocol has a negligible completeness error of (

∑
i |hi|
|F|), where h1,h2, . . . are

the vectors of fractions sent by the prover. This completeness error is negligible.
However, IVC and thus accumulation from which IVC is constructed require
the protocols to be perfectly complete [BCLMS21] because IVC is designed for
distributed computations where the continuance of computation is important,
even on adversarially generated inputs.

4.1 Checking Permutation Using Lookup Relation

Definition 9. (Definition 10 from [BC23]) Two sequences of field elements w =
[wi]ni=1, t = [ti]ni=1 are in Rperm if there exists permutation σ : [n] → [n] such
that for all i ∈ [n], wi = tσ(i).

Lemma 3. Let F be a field of characteristic p > max(�, T). Given two sequences
of field elements w = [wi]�i=1 and t = [ti]Ti=1, we have w, t are permutations of
each other (i.e. w, t are in Rperm) if and only if � = T and

�∑

i=1

1
X + wi

=
T∑

i=1

1
X + ti

. (4)

We can therefore describe a special-sound protocol Πperm for Rperm by sim-

ply adding the check �
?= T and removing the need to compute m from ΠLK for

RLK in [BC23].

286 B. Bünz and J. Chen

Special-sound protocol Πperm for Rperm

Prover P(t ∈ F
T ,w ∈ F

�) Verifier V(t ∈ F
T)

w

Compute h ∈ F
�,g ∈ F

T x1 x1 ←$F

hj ← 1

x1 + wj
∀j ∈ [�]

gi ← 1

x1 + ti
∀i ∈ [T] h,g �

?
= T

�∑

j=1

hj
?
=

T∑

i=1

gi

hj · (x1 + wj)
?
= 1 ∀j ∈ [�]

gi · (x1 + ti)
?
= 1 ∀i ∈ [T]

Complexity. Πperm is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 2� + T .

Special-Soundness. Just as ΠLK from [BC23], the perfect complete version of
Πperm is 2(� + T)-special-sound, assuming each entry wj , ti is a single value for
all j ∈ [�], i ∈ [T].

4.2 Indexed-Vector Lookup Relation

Definition 10. (Indexed-Vector Lookup Relation) Given configuration Civlk :=
(T, �, t) where � is the number of lookups and t ∈ F

T is the lookup table, the
triple (t,w ∈ F

�, b ∈ F
�) are in the relation Rivlk if for all j ∈ [�], bj ∈ [T] and

wj = tbj
.

Lemmas 4 and 5 in the following are extensions on Lemma 4 and 5 from
[Hab22], respectively.

Lemma 4. Let F be an arbitrary field and f1, f2 : F2 → F any functions. Then
∑

z1,z2∈F
2

f1(z1, z2)
X − z1 · Y − z2

=
∑

z1,z2∈F
2

f2(z1, z2)
X − z1 · Y − z2

(5)

in the rational function field F(X,Y), if and only if f1(z1, z2) = f2(z1, z2) for
every z1, z2 ∈ F

2.

Lemma 5. Let F be a field of characteristic p > max{�, T}. Given a sequence
of field elements w ∈ F

�, b ∈ F
�, t ∈ F

T , we have (T, �, t,w, b) ∈ Rivlk if and
only if the following equation holds in the function field F (X,Y)

�∑

j=1

1
X + Y · bj + wj

=
T∑

i=1

mi

X + Y · i + ti
(6)

Proofs for Deep Thought 287

where m = {mi}T
i=1 is the counter vector such that mi is the count of (i, ti) in

(b,w).

We can therefore describe a special-sound protocol for the indexed-vector
lookup relation.

Special-sound protocol Πivlk for Rivlk

Prover P(Civlk,w ∈ F
�, b ∈ F

�) Verifier V(Civlk)

Compute m ∈ F
T such that

mi =
�∑

j=1

1(wj = ti) ∀i ∈ [T] w, b, m

x1, x2 x1, x2 ←$F
2

Compute h ∈ F
�,g ∈ F

T

hj ← 1

x1 + x2 · bj + wj
∀j ∈ [�]

gi ← mi

x1 + x2 · i + ti
∀i ∈ [T] h,g

�∑

j=1

hj
?
=

T∑

i=1

gi

hj · (x1 + x2 · bj + wj)
?
= 1 ∀j ∈ [�]

gi · (x1 + x2 · i + ti)
?
= mi ∀i ∈ [T]

Complexity. Πivlk is a 3-move protocol (i.e. k = 2); the degree of the verifier is
3; the number of non-zero elements in the prover message is at most 5�.

Lemma 6. Πivlk is ((� + T), 2(� + T))-special-sound.

4.3 Mem-Update Relation

Definition 11 (Mem-Update Relation). Given configuration Cmu :=
(T, �,Δ) where � is the number of lookups and Δ ∈ F

T is the update table,
the triple (w ∈ F

�, b ∈ F
�,Δ) are in the relation Rmu if for all j ∈ [�], if wj �= 0

then wj = Δbj
, and for all i ∈ [T], if Δi �= 0 then there exists j ∈ [�] such that

bj = i and Δi = wj.

Lemma 7. Let F be a field of characteristic p > max{�, T}. Given the sequences
of field elements w ∈ F

�, b ∈ F
�,Δ ∈ F

T , we have (T, �,Δ,w, b) ∈ Rmu if and
only if the following equation holds in the function field F (X,Y)

�∑

j=1

wj

X + Y · bj + wj
=

T∑

i=1

Δi

X + Y · i + Δi
(7)

We describe a ((� + T), 2(� + T))-special-sound protocol for the mem-update
relation.

288 B. Bünz and J. Chen

Special-sound protocol Πmu for Rmu

Prover P(Cmu,w ∈ F
�, b ∈ F

�) Verifier V(Cmu)

w, b

x1, x2 x1, x2 ←$F
2

Compute h ∈ F
�,g ∈ F

T

hj ← wj

x1 + x2 · bj + wj
∀j ∈ [�]

gi ← Δi

x1 + x2 · i + Δi
∀i ∈ [T] h,g

�∑

j=1

hj
?
=

T∑

i=1

gi

hj · (x1 + x2 · bj + wj)
?
= wj ∀j ∈ [�]

gi · (x1 + x2 · i + Δi)
?
= Δi ∀i ∈ [T]

Complexity. Πmu is a 3-move protocol (i.e. k = 2); the degree of the verifier is
3; the number of non-zero elements in the prover message is at most 4�.

Lemma 8. Πmu is ((�+T), 2(�+T))-special-sound, assuming each entry wj ,Δi

for all j ∈ [�], i ∈ [T] is a single value.

Efficiency in Accumulation. We refer to Table 3 for an overview over the
efficiency of the protocol. Importantly the prover time is entirely independent of
T . The protocol can also be combined with our GKR protocol as layed out in
Sect. 7. This reduces the prover time by eliminating the multi-scalar multiplica-
tion with full field elements. It is, thus, a useful option when the size of the table
elements is significantly smaller than the field, e.g. 32-bit elements vs a 256-bit
field.

Table 3. Efficiency Table for Accumulating Πmu. We only list the dominant efficiency
factors, ignoring the cost for Pacc to compute the vectors. Column 2 refers to the total
size of the prover messages. Here T is the set of small elements that are stored in the
table, whereas F refers to full field elements. Column 3 is the verifier degree. Column
5 is the number of prover messages. Note that the number of messages in the GKR
case can be further reduced with the optimizations mention in Sect. 7. Column 6 is
the dominant factor in the prover time. An (a, B)-MSM refers to a multi-scalar mul-
tiplication of a scalars that are each within the set B. The MSM scales roughly linear
in | log B|. Column 7 is the number of group scalar multiplications the accumulation
verifier performs.

P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

Plain O(�) 2� F + 2�T 3 2 (2�,T)-MSM + (2�, F)-MSM 4G

With GKR O(�) 2� F + 2� T 7 (c + 1) log T (2�,T)-MSM + O(� log �)F (c + 1) log TG

Proofs for Deep Thought 289

5 The LogUp-Powered Memory-Proving Algorithm

5.1 Using LogUp-Style Relations for Memory-Proving

See Fig. 1 for the full memory-proving protocol ΠMP.
Given the old memory OM = [vi]Ti=1; Rd = RL||W = [(ai,vi, ti)]ki=1 and

Wr = WL||R = [(ai,vi, ti)]ki=1, which were constructed as described in Sect. 3.
Let � := |W | = |R|.

In ΠMP, the prover takes as input (OM,Rd = RL||W,Wr = WL||R), and the
verifier takes as input (OMV,RL,WL), where OMV is the verifier’s stored state of
the memory. At the start of the protocol, the prover sends R,W to the verifier,
and the verifier checks that they are sorted in the same order by addresses,
i.e. R.a

?= W.a. The rest of the protocol is composed of the following three
LogUp-style protocols:

1. Use Πperm to show that (k,Rd,Wr) are in Rperm.
2. Use Πivlk to show that (T, �,OM, r, b) are in Rivlk, where b := R.a and

r := R.v.
3. Suppose W,R are all ordered by the addresses of the entries. The prover

computes w := W.v − R.v ∈ F
�, b = R.a ∈ F

�, and then use them to
efficiently compute Δ ∈ F

T as follows.

∀i ∈ [T], Δi =

{
wj if i = bj ∃j ∈ [�]
0 otherwise

which the prover then use to efficiently compute the updated memory NM as
follows:

∀i ∈ [T], NMi =

{
OMi + Δi if i = bj ∃j ∈ [�]
OMi otherwise

This update only takes time linear in � and independent of the total memory
size T .

The prover then sends the NM to the verifier, who will compute w, b from
R,W and Δ from NM,OMV by himself, and they run Πmu to show that
(T, �,Δ,w, b) are in Rmu.

If all the check passes, the verifier accepts NM as the correctly updated
memory. In the next round, the previously computed NM becomes the new
OM,OMV for the prover and the verifier, respectively.

Complexity. It is a 3-move protocol (i.e. k = 2); the degree of the verifier is 4;
the number of non-zero elements in the prover message is at most 8k+6�. This is
important because the prover pays linearly in the number of non-zero elements
when computing the commitments. It is important to note that the total time
of running the protocol is independent of T: running Πperm is linear in k, and
Πivlk and Πmu are linear in �; the final step of computing the updated memory

290 B. Bünz and J. Chen

Fig. 1. Full LogUp-Powered Memory-Proving Algorithm ΠMP

can also be done in O(�) time. As we assume k << T , i.e. the total number of
entries in Rd,Wr are much smaller than the total size of the memory, the time
it costs to run this memory-proving algorithm is O(�) and independent of T .

Security. In this algorithm, Πperm is (3, 4k)-special-sound, Πivlk is ((�+T), 2(�+
T))-special-sound, and Πmu is ((� + T), 2(� + T))-special-sound. Therefore, the
algorithm is ((� + T), 2(� + T))-special-sound overall.

Proofs for Deep Thought 291

Computing Commitments in the Accumulation Scheme. When we use
the ProtoStar compiler to turn our memory-proving protocol ΠMP into an accu-
mulation scheme, the resulting accumulation prover Pacc will send the homo-
morphic commitments to the prover messages instead of the plain vectors. The
homomorphic commitments to the O(�)-sized and �-sparse vectors can all be
computed in time independent of T since committing to 0 is free. Moreover, the
commitment to NM can be computed in one step by adding the commitment to
Δ and the commitment to OM.

Speeding up Memory-Proving with LogUp-GKR (described in
Sect. 7). In the memory-proving protocol the prover’s messages are either O(�)
sized or O(�) sparse. However, a more fine-grained view looks at the actual bit-
length of the messages. When compiling to an IVC, the prover needs to commit
to all the messages and this operation is linear in the bit-length of messages.
In the first round of the protocol the prover sends R,W,m,Δ. These values are
representations of values read or written to memory, or their addresses and times-
tamps respectively. If the memory architecture only supports λ′-bit values, e.g.
λ′ = 32, then these values are all much smaller then the size of the field (which
is proportional to the security parameter). In the second prover message, the
prover sends multiple inverses. These values are large, even if the denominator
itself is small. Note that all vectors are either O(�)-sized or O(�)-sparse.

Instead of sending the second round values and having the verifier perform
the sum over the fractions, we will take the approach of LogUp [PH23], where
the sum of fractions is computed using formal fractions. Importantly, this does
not require sending the fractions itself. This can significantly reduce the prover
cost as it now does not need to commit to λ-bit “full” field elements.

The bivariate GKR protocol for LogUp as described in Sect. 7, requires the
prover to commit to messages of size c · T 1/c for any parameter c. We can set
c such that T 1/c is a marginal cost, compared to committing to the “small”
numerators and denominators.

In ΠMP, some of the vectors of fractions sent by the prover are sparse (E.g.
givlk, gmu). Even though they contain T entries in total, at most � of them are
non-zero. We can take advantage of this sparseness in LogUp GKR by setting
di to 1 whenever ni = 0 for all i ∈ [T], and the prover will store di − 1 = 0 in its
head to facilitate computation. [CMT12] shows that sumcheck is linear in the
sparseness of the vector, which implies that GKR is also linear in the sparseness.
Therefore, the time it takes to run LogUp-GKR for those sparse polynomials
will be independent of its size.

It is not necessary to run LogUp-GKR from the sum over the entire vector.
We can break the overall summation into a sum of several smaller summations,
and run LogUp-GKR for each. This reduces the rounds of GKR, and we can
then check the final sum in a straightforward manner.

After running GKR, we check that the two fractions are equal by checking
the products of one numerator and the other denominator are equal.

292 B. Bünz and J. Chen

Extending to Key-Value Store. Our protocol can be extended to prove the
correctness of key-value store, which is very similar to memory access but the
storage does not have a fixed size T . We describe the details of this extension in
Appendix B.1 of the full version [BC24].

5.2 Accumulation Prover Runs in Time Independent of T

When we use the ProtoStar compiler to turn ΠMP into an accumulation scheme,
the resulting Pacc will run in time independent of the memory size T , because the
messages of the underlying special-sound prover, the cross error terms, and the
updated accumulator can all be computed time independent of T . The details
of these subalgorithms can be found in Appendix C of the full version [BC24].

Underlying Special-Sound Prover Runs in O(�) Time. All computations
of the prover in ΠMP can be done in O(�) time. Vectors hperm, gperm,hivlk,hmu

all have O(�) size, so they can clearly be computed in O(�) time. Vectors
m,Δ, givlk, gmu have size T , but they all have at most � nonzero entries, so
an honest prover only needs O(�) time to compute them. Updating the memory
also takes O(�) time for an honest prover, since only Δ is sparse and only �
locations in the memory table need to be changed.

Computing the Cross Error Terms in O(�) Time. In the following, we
use acc to represent the accumulator, π the current proof, and acc′ to represent
the updated accumulator. We refer the readers to Sect. 3.4 in [BC23] for a gen-
eral formula on how cross error terms [ej]d−1

j=1 are computed in the accumulation
scheme. Pacc will linearly combine the old accumulator and the current proof
using a random challenge and use them as inputs to the decider (which is alge-
braic of degree d). For an honest prover, the zero coefficient of the polynomial
should be the old accumulator’s error term, and the highest-degree coefficient
should be 0. The prover needs to then compute and commit to each of the coef-
ficients in between (a.k.a. cross error terms). For most Vsps checks, it is intuitive
how the cross error terms can be computed in O(�) time, as the vectors will
be either O(�)-sized or �-sparse. The detailed algorithm for computing the cross
error term of the less intuitive givlk

i · (x1 + x2 · i +OMi)
?= mi ∀i ∈ [T] check in

time independent of T in the kth round of accumulation is given Appendix C.1
of the full version [BC24].

Note that this helper algorithm is only required when LogUp-GKR (described
in Sect. 7) is not used. Using LogUp-GKR the cross error term computation
(using the algorithms described in [BC23]) takes only O(c · T 1/c) = o(T) time,
i.e. is insignificant compared to the rest of the prover computation.

Updating the Accumulator in O(�) Time The prover still needs to compute
the new accumulator acc′.g ← acc.g+X ·π.g and acc′.OM ← acc.OM+X ·π.OM.
While computing acc′.g clearly takes O(�) time because π.g is �-sparse, the
complexity for naively computing acc′.OM is linear in T . We show a trick in
Appendix C.2 of the full version [BC24] that enables us to accumulate OM in
time independent of T .

Proofs for Deep Thought 293

Overall Prover Efficiency. We display the effciency metric of both the result-
ing plain protocol as well as the GKR-version in Table 4. The key prover efficiency
is the Pacc Time. In the plain protocol, the prover first commits to R,W and
m. It also commits to Δ in order to compute the commitment to the updated
memory NM. R, and W are each of size � and contain tuples of three elements
(a, v, t). Note that the a values will be exactly the same in R and W , so com-
mitting to R,W takes an MSM of size 5�. Committing to Δ is an additional
sparse MSM with � non-zero elements. Committing to m is a negligble cost as
m is a bit-vector. The prover also needs to commit to the vectors of fractions
in the second round of the protocol. There are 6 such vectors that are either
of size � (for simplicity we assume k = �) or �-sparse. Finally the accumulation
prover needs to compute the cross terms for accumulation. We show how to do
this in Sect. 5.2 and it requires an additional 3 �-sparse MSMs. This results in
a prover time that only requires committing to 15� elements. We can replace
the second round of the plain protocol using GKR. The GKR protocol requires
committing to O(T 1/c) for an arbitrary constant c. This reduces the overall accu-
mulation prover complexity to only 6� elements, each of which is only as large
as the elements stored in the table. Note that this is almost minimal, as even
just recording a single read or write, already requires 3 elements, the address,
the value and the timestamp.

Table 4. Efficiency Table for Accumulating Memory-Proving Protocol. See Table 3 for
an explanation of the columns and symbols. For simplicity we assume that k = �. They
are of the same order.

P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

Plain O(�) 5�T+ 6�F 3 2
(6�,T)-MSM

+(9�,F)-MSM
4G

Using GKRO(� log �) 5�T+ O(T 1/c) 7 (c + 1) · log T (6�,T)-MSM (c + 1) log TG

6 Accumulation-Friendly GKR

Right now, th prover in our memory-proving IVC scheme needs to commit to 15
field elements per memory access, 9 of which are small memory entries, and 6 of
which are large field elements, i.e. log |F|-bit, since they are the inverses of the
memory entries. As an example, say the memory only contains 32-bit entries.
Using homomorphic commitments require fields of size at least 2256, leading to
a factor 256/32 = 8 blowup when computing commitments.

An intuitive solution is to employ the GKR protocol, since it has the advan-
tage of only requiring committing to the inputs/outputs and not any intermedi-
ate values of the circuit wires. Unfortunately, naively using GKR in accumulation
results in log2 n rounds (assuming n is the number of inputs), which is expensive
since the ProtoStar accumulation compiler pays linearly in the number of rounds.

294 B. Bünz and J. Chen

We design a version of the GKR protocol that is better suited for accumulation.
It takes fewer rounds but retains the desired property of not requiring com-
mitting to any intermediate values. The core ingredient is a bivariate sumcheck
protocol which only has two rounds.

6.1 Subprotocol for the Verifier to Efficiently Evaluate a Function

Bivariate sumcheck requires the verifier to evaluate polynomials of degree Θ(
√

n),
where n is the width of the GKR circuit. This is prohibitively large. Fortunately,
we can transform evaluation into a low-degree check by sending additional wit-
nesses. We describe the low-degree evaluation protocol Πeval below.

Subprotocol Πeval for evaluating f : Fk → F at some a ∈ (F \ H)k s.t. m := |H| > deg(f)

Prover P(f, a = [a1, . . . , ak]) Verifier V(f, a, [f(x)]x∈Hk)

ai ← [ai
1, . . . , a

i
k] ∀i ∈ {2, 4, . . . , m}

A := (a, a2, a4 . . . , am)

LH

x(u) :=
cx(um − 1)

u − x
∀x ∈ H A, LH

x(u) ∀x ∈ H A(0)
?
= a A(i)

?
= A(i − 1)2 ∀i ∈ {1, . . . , log m − 1}

k∏

j=1

LH

xj
(aj) ·

k∏

j=1

(aj − xj)
?
=

k∏

j=1

cxj · (A(log m, j) − 1) ∀x ∈ H
k

f(a) ←
∑

x∈Hk

(k∏

j=1

LH

xj
(aj)f(x)

)

Efficiency. The verification degree is 2k. The prover sends m + k · log m values.
In the protocol above, H is a multiplicative subgroup of F, and we assume

m := |H| is a multiple of 2. This implies that the ith element of H is the ith
root of unity and also that the Lagrange polynomial Lx has the form described
above, where cx is the barycentric weight. Note that P sends over a log m × k
matrix A. A(i) := a2i denotes the ith row of A, and A(i, j) := a2i

j .

Security. The protocol has perfect completeness and soundness. The first line
of checks ensure that the matrix A was computed correctly as claimed by the
prover. In the second line of check, note that A(log m, j) = a2log m

j = am
j . Hence

if the equality holds, we have

eq(x,a) =
k∏

j=1

cxj
(am

j − 1)
aj − ωxj

=
k∏

j=1

LH

xj
(aj) ∀x ∈ H

k

which indicates that eq(x,a) was computed correctly as claimed by the verifier.
This implies that the two polynomials f(a) and

∑
x∈Hk eq(x,a)f(x) are equal

on mk points. Since both of these polynomials have degree strictly smaller than
m, being equal on mk points indicates that they are the same polynomial.

Proofs for Deep Thought 295

6.2 Bivariate Sumcheck

We describe a bivariate sumcheck protocol because the ProtoStar compiler pays
linearly in the number of rounds, and hence the number of variables in sumcheck.
While there is a tradeoff between the number of variables and the degree in each
variable, high degrees can be tolerated in the final accumulation scheme because
the decider only runs once.

Bivariate Sumcheck to prove
∑

x∈G1,y∈G2
f(x, y) = T , where G1,G2 ⊂ H s.t. m := |H| = deg(f) + 1

Prover P(f, T) Verifier V(f, T)

f1(X) ←
∑

y∈G2

f(X, y) f1(ωi) ∀i ∈ [m]

a a ←$F \ H

f2(Y) ← f(a, Y) f2(ωi) ∀i ∈ [m]

b b ←$F \ H

T ∗ ← f2(b) T ∗
Use Πeval to evaluate f1(a), f2(b)

∑

x∈G1

f1(x)
?
= T

∑

y∈G2

f2(y)
?
= f1(a)

T ∗ ?
= f2(b)

T ∗ ?
= f(a, b)

Security. The protocol is clearly perfectly complete. It is (m,m)-special-sound.
For a fixed challenge ai, to show that f2(Y) = f(ai, Y) requires the equality to
hold for deg(f2) + 1 = degY (f) + 1 ≤ deg(f) + 1 = m different challenges for Y ,
i.e. b1, . . . , bm. Then, since f2(Y) = f(ai, Y), checking whether

∑
y∈G2

f2(y) =
f1(ai) is equivalent to checking

∑
y∈G2

f(ai, y) = f1(ai) for any fixed ai. To
show that f1(X) =

∑
y∈G2

f(X, y) requires the equality to hold for deg(f1) +
1 = degX(f) + 1 ≤ deg(f) + 1 = m different challenges for X, i.e. a1, . . . , am.
Therefore, with m different challenges on X and m different challenges on Y ,
the verifier can be sure that

∑
x∈G1

f1(x) =
∑

x∈G1,y∈G2
f(x, y). Finally, since∑

x∈G1
f(x) = T , it is verified that

∑
x∈G1,y∈G2

f(x, y) = T .
The number of P messages shown in Table 5 is the number when the poly-

nomial f in the sumcheck is non-sparse. Since the polynomial f will be sparse
(independent of the memory size T) when performing memory-proving using our
LogUp-powered protocol, the actual number of P messages will be much smaller.

296 B. Bünz and J. Chen

6.3 Batching Subprotocol for GKR

Table 5. Efficiency Table for Accumulating Bivariate SumCheck Using Subprotocol
Πeval (n := |f | ≥ m2). In most applications f will be a composition of multiple
polynomials; in order to compute f1(X), the prover will need to perform FFTs which
take n log n operations in F.

P Time |P Msg| deg(V) # P Msgs

n log nF 4
√

n + o(
√

n)F or hashes 2 3

Description of the Batching Subprotocol for batching k sumchecks into one:
– Given a list of tuples [(gj ∈ F[X1, . . . , Xc], Tj ∈ F)]kj=1 and H

c, such that∑
x∈Hc gj(x) = Tj for all j ∈ [k].

– V chooses r ←$F at random and sends it to P.
– V batches all k sumchecks checks into one as follows

∑

x∈Hc

f(x) ?=
k∑

j=1

rj−1Tj

for f(x) :=
∑k

j=1 rj−1gj(x). Note that if gj(x) = eq(zj ,x)g(x) then
f(x) = g(x) · (

∑
j∈[k] r

j−1 · eq(zj ,x))

Efficiency. In GKR we call this protocol with gj(x) = g(x)·eq(zj ,x). This means
that the complexity of the batched sumcheck is equivalent to the complexity of
sumcheck over g plus evaluating a random linear combination of the eq functions.
This is only a small additive overhead over a single sumcheck of g.

Security. The batching subprotocol is perfectly complete. It is k-special-sound.
We can define the following degree (k − 1) polynomial:

g(r) :=
(∑

x∈Hc

f(x)
)

−
(k∑

j=1

rj−1Tj

)

=
∑

x∈Hc

(k∑

j=1

rj−1gj(x)
)

−
(k∑

j=1

rj−1Tj)
)

=
k∑

j=1

rj−1
(∑

x∈Hc

gj(x) − Tj

)

If g(r) is the zero polynomial, then
∑

x∈Hc f(x) =
∑k

j=1 rj−1Tj . In order to get
g = 0, we need deg(g) + 1 = k points of r at which g(r) = 0.

7 LogUp GKR Protocol Using the Batching Subprotocol

We incorporate the subprotocols described in Sect. 6 with LogUp-GKR [PH23],
where the circuit is designed for computing the cumulative sums of the fractions

Proofs for Deep Thought 297

using projective coordinates for the additive group of F. The full protocol is in
Appendix D of the full version [BC24]. We will use this protocol to perform the
verifier checks for the LogUp-style arguments in ΠMP.

Further Reducing Communication and Rounds. The bivariate GKR pro-
tocol only uses 3 · log2(k) rounds and has communication complexity

√
k. This

is significantly fewer rounds than GKR with the standard multi-linear sumcheck
which would use O(log2 k) rounds. In most cases the additional communication
of

√
k is only marginal, as the prover needed to commit to the input and output

layers (of size k). However, in particular when using the protocol with sparse
inputs the

√
k may indeed become dominant.

c-Variate Sumcheck. Fortunately, we can naturally generalize the protocol by
relying on a c-variate sumcheck. In this case, the protocol has (c + 1) · log2(k)
rounds but the communication complexity is only O(c ·k1/c). This exponentially
decays as c gets bigger. In the protocol we would expand the dimension in each
variable, one by one, such that the size of the layer still grows by a factor of 2
in each round.

Higher Degree Reductions. Another optimization is to combine 2 rounds of
GKR into one. This increases the degree of the GKR round polynomial by a
factor of 2 but also decreases the number of rounds by the same factor. Using
the ProtoStar compiler we only pay for the highest degree verification check,
so this optimizations is particularly useful if the circuit already contains high
degree checks.

Splitting the Summation for Round Reduction. The core motivation for
proving the fractional sum within GKR instead of proving it directly, is that
the prover does not need to commit to the inverses. When the numerator and
denominator are composed of c-bit values and log |F| = Θ(λ) then this can reduce
the commitment cost from O(λm) to just O(c · m), i.e. save a factor of λ

c . Note
that the circuit computed by GKR has a triangle form and each layer is half the
width of its parent layer. We can take advantage of this by splitting the sum
into p parts each of m

p , component. The prover would need to commit to the
outputs of each sum, i.e. p fractions. The total commitment cost is O(c ·m+λp).
As long as p ≥ c·m

λ , the total commitment cost is still O(c · m). However, the
sums computed within GKR are now significantly smaller, and only log λ− log c
GKR layers are required. A similar optimization applies when the input layer is
sparse; however, then more layers are required to significantly bring down the
cost of committing to the dense output layer.

7.1 Other Applications of GKR in IVC

GKR has many applications beyond the use in lookup protocols. For instance,
GKR can be used to more efficiently prove that a scalar multiplication was

298 B. Bünz and J. Chen

Table 6. Efficiency Table for Accumulating GKR. See Table 3 for an explanation of
the columns. Here, n is width of the GKR circuit, c is the number of variant in the
sumcheck protocol, and k is the degree of the sumcheck polynomial.

Variant P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

bivariate
∑

O(n logn) O(n1/2) 7 3 logn
O(n1/2)-MSM

+O(n logn)F
3 logn + 2G

c-variate
∑

O(n logn)O(c · n1/c) 7 (c + 1) log n
O(c · n1/c)-MSM

+O(n logn)F

(c + 1) log n

+2G

k-round GKRO(n logn)O(c · n1/c) 7 (c + 1)k
O(c · n1/c)-MSM

+O(n logn)F

(c + 1) · k
+2G

done correctly. This is particularly intriguing as group scalar multiplications
are the most expensive operations within the recursive circuit. Concretely the
GKR circuit for group scalar multiplication takes as input, a scalar s in bit
representation sλ−1 . . . s1s0 where si is either 0 or 1 for every i ∈ {0, . . . , λ − 1}
and sλ−1 is the most significant bit, a base elliptic curve point in projective
coordinates (X,Y,Z), and an output curve point also in projective coordinates.
The reason to use projective coordinates is that the double-and-add operation
can be represented using low-degree (specifically degree 11) algebraic formulas
[RCB16]. Using GKR, the prover would only need to commit to 6 scalars and
λ bits. However, the depth of the circuit might be a bottleneck. We can further
reduce the number of layers by providing more intermediary values. E.g. by
providing k additional curve points, we can reduce the depth from λ to λ/(k+1).

Acknowledgments. We would like to thank Arasu Arun and Lev Soukhanov for
inspiring conversations on memory-checking and accumulation for GKR. We thank
Shang Gao for pointing out several typos throughout our paper. We would also like to
thank Sebastian Angel for the discussion on Spice and key-value store. Finally, we are
grateful to all the reviewers for their helpful feedback.

References

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. “Fiat-Shamir Trans-
formation of Multi-round Interactive Proofs”. In: TCC 2022, Part I. Ed.
by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747. LNCS. Springer,
Heidelberg, Nov. 2022, pp. 113–142. doi: https://doi.org/10.1007/978-
3-031-22318-1 5.

[APPK24] Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, and
Jonathan Katz. Zero-Knowledge Proofs of Training for Deep Neural
Networks. Cryptology ePrint Archive, Paper 2024/162. https://eprint.
iacr.org/2024/162.2024. url: https://eprint.iacr.org/2024/162.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: SNARKs for Virtual
Machines via Lookups. Cryptology ePrint Archive, Paper 2023/1217.
https://eprint.iacr.org/2023/1217. 2023. url: https://eprint.iacr.org/
2023/1217.

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://eprint.iacr.org/2024/162.2024
https://eprint.iacr.org/2024/162.2024
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/1217

Proofs for Deep Thought 299

[BC23] Benedikt Bünz and Binyi Chen. ProtoStar: Generic Efficient Accumu-
lation/Folding for Special Sound Protocols. Cryptology ePrint Archive,
Paper 2023/620. https://eprint.iacr.org/2023/620. 2023. url: https://
eprint.iacr.org/2023/620.

[BC24] Benedikt Bünz and Jessica Chen. Proofs for Deep Thought: Accumu-
lation for large memories and deterministic computations. Cryptology
ePrint Archive, Paper 2024/325. 2024. url: https://eprint.iacr.org/
2024/325.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
“Recursive composition and bootstrapping for SNARKS and proof-
carrying data”. In: 45th ACM STOC. Ed. by Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum. ACM Press, June 2013, pp. 111–120.
doi: https://doi.org/10.1145/2488608.2488623.

[BCLMS21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and
Nicholas Spooner. “Proof-Carrying Data Without Succinct Arguments”.
In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol.
12825. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 681–
710. doi: https://doi.org/10.1007/978-3-030-84242-0 24.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. “Recursive Proof Composition from Accumulation Schemes”.
In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol.
12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–18. doi: https://
doi.org/10.1007/978-3-030-64378-2 1.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
“Scalable Zero Knowledge via Cycles of Elliptic Curves”. In: CRYPTO
2014, Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617.
LNCS. Springer, Heidelberg, Aug. 2014, pp. 276–294. doi: https://doi.
org/10.1007/978-3-662-44381-1 16.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo Infi-
nite: Proof-Carrying Data from Additive Polynomial Commitments”.
In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol.
12825. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 649-
680. doi: https://doi.org/10.1007/978-3-030-84242-0 23.

[BEGKN91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and
Moni Naor. “Checking the Correctness of Memories”. In: 32nd FOCS.
IEEE Computer Society Press, Oct. 1991, pp. 90–99. doi: https://doi.
org/10.1109/SFCS.1991.185352.

[BFRSBW13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying Computations with
State (Extended Version). Cryptology ePrint Archive, Report 2013/356.
https://eprint.iacr.org/2013/356. 2013.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof
Composition without a Trusted Setup. Cryptology ePrint Archive,
Report 2019/1021. https://eprint.iacr.org/2019/1021. 2019.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyper-
Plonk: Plonk with Linear-Time Prover and High-Degree Custom Gates.
Cryptology ePrint Archive, Report 2022/1355. https://eprint.iacr.org/
2022/1355. 2022.

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2024/325
https://eprint.iacr.org/2024/325
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1109/SFCS.1991.185352
https://doi.org/10.1109/SFCS.1991.185352
https://eprint.iacr.org/2013/356
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355

300 B. Bünz and J. Chen

[CDvGS03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend,
and G. Edward Suh. “Incremental Multiset Hash Functions and Their
Application to Memory Integrity Checking”. In: ASIACRYPT 2003.
Ed. by Chi-Sung Laih. Vol. 2894. LNCS. Springer, Heidelberg, 2003,
pp. 188–207. doi: https://doi.org/10.1007/978-3-540-40061-5 12.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. “Practi-
cal verified computation with streaming interactive proofs”. In: ITCS
2012. Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 90–112. doi:
https://doi.org/10.1145/2090236.2090245.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-
quantum and Transparent Recursive Proofs from Holography”. In:
EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 769–793. doi:
https://doi.org/10.1007/978-3-030-45721-1 27.

[DNRV09] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikun-
tanathan. “How Efficient Can Memory Checking Be?” In: TCC 2009.
Ed. by Omer Reingold. Vol. 5444. LNCS. Springer, Heidelberg, Mar.
2009, pp. 503–520. doi: https://doi.org/10.1007/978-3-642-00457-5 30.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for
fast lookups. Cryptology ePrint Archive, Report 2022/1763. https://
eprint.iacr.org/2022/1763. 2022.

[EG23] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStarstyle
folding of multiple instances. Cryptology ePrint Archive, Paper
2023/1106. https://eprint.iacr.org/2023/1106. 2023. url: https://
eprint.iacr.org/2023/1106.

[GK22] Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decompo-
sitionbased lookups in quasi-linear time independent of table size. Cryp-
tology ePrint Archive, Report 2022/1447. https://eprint.iacr.org/2022/
1447. 2022.

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives.
Cryptology ePrint Archive, Report 2022/1530. https://eprint.iacr.org/
2022/1530. 2022.

[KS23] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive argu-
ments for customizable constraint systems. Cryptology ePrint Archive,
Paper 2023/573. https://eprint.iacr.org/2023/573. 2023. url: https://
eprint.iacr.org/2023/573.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recur-
sive Zero-Knowledge Arguments from Folding Schemes”. In: CRYPTO
2022, Part IV. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol.
13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 359–388. doi:
https://doi.org/10.1007/978-3-031-15985-5 13.

[PH23] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative
lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284.
https://eprint.iacr.org/2023/1284. 2023. url: https://eprint.iacr.org/
2023/1284.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup
arguments. Cryptology ePrint Archive, Report 2022/957. https://eprint.
iacr.org/2022/957. 2022.

https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-642-00457-5_30
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://doi.org/10.1007/978-3-031-15985-5_13
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957

Proofs for Deep Thought 301

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. “Complete Addition For-
mulas for Prime Order Elliptic Curves”. In: EUROCRYPT 2016, Part
I. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9665. LNCS.
Springer, Heidelberg, May 2016, pp. 403–428. doi: https://doi.org/10.
1007/978-3-662-49890-3 16.

[SAGL18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee.
Proving the correct execution of concurrent services in zeroknowledge.
Cryptology ePrint Archive, Report 2018/907. https://eprint.iacr.org/
2018/907. 2018.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with Lasso. Cryptology ePrint Archive, Paper 2023/1216.
https://eprint.iacr.org/2023/1216. 2023. url: https://eprint.iacr.org/
2023/1216.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency”. In: TCC 2008. Ed. by Ran
Canetti. Vol. 4948. LNCS. Springer, Heidelberg, Mar. 2008, pp. 1–18.
doi: https://doi.org/10.1007/978-3-540-78524-8 1.

[ZBKMNS22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. “Caulk: Lookup Arguments in Sub-
linear Time”. In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022, pp. 3121–3134.
doi: https://doi.org/10.1145/3548606.3560646.

[ZGKMR22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and
Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments. Cryptology
ePrint Archive, Report 2022/1565. https://eprint.iacr.org/2022/1565.
2022.

https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://eprint.iacr.org/2018/907
https://eprint.iacr.org/2018/907
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565

HELIOPOLIS: Verifiable Computation
over Homomorphically Encrypted Data

from Interactive Oracle Proofs is Practical

Diego F. Aranha1(B), Anamaria Costache2, Antonio Guimarães3,
and Eduardo Soria-Vazquez4

1 Aarhus University, Aarhus, Denmark
dfaranha@cs.au.dk

2 NTNU, Trondheim, Norway
anamaria.costache@ntnu.no

3 IMDEA Software Institute, Madrid, Spain
antonio.guimaraes@imdea.org

4 Technology Innovation Institute, Abu Dhabi, UAE
eduardo.soria-vazquez@tii.ae

Abstract. Homomorphic encryption (HE) enables computation on
encrypted data, which in turn facilitates the outsourcing of computa-
tion on private data. However, HE offers no guarantee that the returned
result was honestly computed by the cloud. In order to have such guaran-
tee, it is necessary to add verifiable computation (VC) into the system.

The most efficient recent works in VC over HE focus on verifying
operations on the ciphertext space of the HE scheme, which usually lacks
the algebraic structure that would make it compatible with existing VC
systems. For example, multiplication of ciphertexts in the current most
efficient HE schemes requires non-algebraic operations such as real divi-
sion and rounding. Therefore, existing works for VC over HE have to
either give up on those efficient HE schemes, or incur a large overhead
(an amount of constraints proportional to the ciphertext ring’s size) in
order to emulate these non-algebraic operations.

In this work, we move away from that paradigm by placing the veri-
fication checks in the plaintext space of HE, all while the prover remains
computing on ciphertexts. We achieve this by introducing a general trans-
formation for Interactive Oracle Proofs (IOPs) to work over HE, whose
result we denote as HE-IOPs. We apply this same transformation to the
FRI [Ben-Sasson et al., ICALP 2018] IOP of proximity and we show how
to compile HE-Reed Solomon-encoded IOPs and HE-δ-correlated-IOPs
with HE-FRI into HE-IOPs. Furthermore, our construction is compati-
ble with a prover that provides input in zero-knowledge, and only relies
on building blocks that are plausibly quantum-safe.

Aligning the security parameters of HE and FRI is a difficult task
for which we introduce several optimizations. We demonstrate their effi-
ciency with a proof-of-concept implementation and show that we can run
FRI’s commit phase for 4096 encrypted Reed Solomon codewords with
degree bound 211 in just 5.4 s (using 32 threads) on a c6i.metal instance

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 302–334, 2025.
https://doi.org/10.1007/978-981-96-0935-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_10&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_10

HELIOPOLIS 303

using less than 4GB of memory. Verification takes just 12.3 milliseconds
(single-threaded) for the same parameter set and can be reduced to just
5.6ms with parameters optimized for the verifier.

1 Introduction

There are many usability and economic benefits for citizens and companies
to outsource data storage/processing to remote servers, but cloud computing
brings significant integrity and privacy risks. Homomorphic Encryption (HE)
has been referred to by many as the “holy grail” technology to address the pri-
vacy risks of outsourced computing. Since the first scheme introduced by Gentry
in 2009 [Gen09b], numerous advances and improvements have followed [BGV12,
Bra12,FV12,CGGI20,CKKS17]. In particular, a privacy-preserving variant of
the use-case of Machine Learning as a Service (MLaaS) has been shown to be par-
ticularly suitable for HE by a recent line of work [BMMP18,BCCW19,BGBE19].

However, HE by itself does not guarantee the integrity of the computing
party. Dealing with this issue falls within the scope of Verifiable Computa-
tion (VC), which describes a collection of techniques ensuring that the out-
put returned by the cloud servers is indeed the honest result of applying the
requested function to the designated data. On the other hand, VC on its own
does not protect the privacy of the outsourced yet sensitive data from the clients.

The cryptographic community realized that VC and HE are very complemen-
tary, since the limitations of the one are perfectly covered by the features of the
other. Combining the two techniques is often referred to as “privacy-preserving
verifiable computation" or “verifiable computation on encrypted data". The first
solution was proposed by Gennaro, Gentry and Parno [GGP10] in 2010, and
employs a heavy combination of Yao’s garbled circuit for an one-time verifiable
computation together with HE to reuse the garbled circuit across many inputs.

The later work of [FGP14] is efficient, but very limited in expressiveness. The
use of homomorphic MACs limits the application to depth-1 circuits and requires
to keep a secret verification key hidden from the prover, hence eliminating pub-
lic verifiability. The work of [FNP20] improves the expressiveness of [FGP14],
by allowing to efficiently compute circuits of (arbitrary) constant depth. Nev-
ertheless, they only deal with a very narrow subset of inefficient HE schemes:
a variant of BV [BV14], where the integer ciphertext modulus q matches the
(prime) order of the source groups in the underlying pairing-based SNARK.

Both [GNS23,BCFK21] overcome the limitation in the selection of HE
schemes in [FNP20] by supporting an arbitrary rather than a prime ciphertext
modulus q. Still, for both works, dealing with the more complex HE operations
such as modulo switching and key switching is very expensive. This makes it
unclear whether it would be more practical to support efficient but complex
schemes such as BGV and BFV, or BV with a potentially non-prime q.

The main problem for all those works is that they verify whether certain
operations are done on (simplified versions of) the ciphertext space. Further-
more, they need to emulate the arithmetic of HE ciphertexts in one way or

304 D. F. Aranha et al.

another, incurring large overheads. While the addition of ciphertexts can be eas-
ily emulated (as addition of elements in the ciphertext space R2

q), the product of
ciphertexts is less algebraically structured and hard to emulate, since it mixes a
number of computational steps such as bit-wise operations, real division, round-
ing, the product of elements in Rq and changing q during modulo switching
operations.

As an example of how expensive these techniques were, consider trying to
emulate the HE arithmetic within Rq (as in [GNS23,FNP20]), which is arguably
the closest algebraic structure. Every bit-wise operation involved in the product
of ciphertexts, such as rounding (present in the HE.ModSwitch operation in BGV
and BFV), has the cost of one constraint1 per bit of the ciphertext ring Rq.

This cost increases rapidly as the multiplicative depth of the circuit grows,
not only because of the number of such operations but also because of how the
HE parameters (including ciphertext size) grow accordingly. In the BGV scheme
(as well as the BFV and CKKS one), increasing the multiplicative depth of the
circuit by one usually requires to add a prime to the prime chain that makes up
the ciphertext modulus. In more practical terms, this corresponds to increasing
the ciphertext modulus by 30 − 50 bits every time we increase the multiplica-
tive depth by one. This means that the ciphertext modulus will grow exponen-
tially with the depth d of the circuit that one wants to evaluate (this takes the
security level into account; see for example [APS15,CP19]). Alternatively, works
like [BCFK21] circumvent the issue of doing bit-wise operations by using the BV
scheme. In their work, the size of the ciphertext ring grows exponentially with
the number of ciphertext-ciphertext multiplications that one wants to evaluate.

In this work, we deviate from this paradigm by enabling the verification of
operations on the plaintext space of the HE scheme. At a high level, we show how
to adapt holographic IOP-based SNARKs so that, on the one hand, the prover
computes obliviously on the encrypted values while, on the other hand, the veri-
fier performs the verification checks on the plaintext space. We choose to focus on
holographic IOPs as a departure point for our verifiable computation protocol,
since the holography property is particularly well suited for outsourcing sce-
narios. Nevertheless, our techniques could easily be adapted to non-holographic
IOPs. We call our overall framework HElIOPolis, since its central components
are homomorphic encryption (HE) and Interactive Oracle Proofs (IOPs).

1.1 Technical Overview

We manage to move verification from the ciphertext to the plaintext space by
replacing the IOP oracles O with encrypted oracles OHE, which are oracles to data
that is homomorphically encrypted. While the prover P does not know what the
plaintexts they are computing on are, P knows how to arrange them into oracles
(i.e. P can place HE.Enc(x) into an oracle OHE, rather than x into O). Whereas
the modified IOP (denoted HE-IOP) can now only be verified by whoever has

1 The number of constraints in R1CS or other models of computation are the main
metric for the efficiency in SNARKs.

HELIOPOLIS 305

the HE decryption key2, this new abstraction is very powerful: not only is the
prover much more efficient, it is also very simple to reduce the security of an
HE-IOP to that of its corresponding IOP (Theorem 2). Moreover, we also adapt
several results in the literature compiling different variants of (zk)IOPs into
(zk)SNARKs [COS20,BGK+23]. Our resulting zkSNARKs are plausibly post-
quantum, since so are the BCS transform [BCS16,CMS19] and all the efficient
HE schemes we have today.

Once oracles are replaced with encrypted oracles, our approach is black box
on the different components of these compilers. A central part of these is the
use of an IOP of proximity (IOPP) to Reed-Solomon Codes, which is interpreted
either as a low degree test or a correlated agreement test [BCI+20,BGK+23]. As
done in practice for unencrypted IOPs, we choose FRI [BBHR18] to instantiate
this IOPP component. FRI is, a priori, particularly HE-friendly, in the sense that
it only runs linear operations on the functions being tested, and products in
HE are particularly expensive. Nevertheless, there are several challenges when
trying to align the security parameters of HE schemes and FRI. This constitutes
a significant part of our work, for which we discuss trade-offs and optimizations
(Sect. 6) as well as we provide experimental data (Sect. 7).

Aligning Security Parameters. The first challenge is enabling FRI to work
over a field of size |FpD | ≈ 2256 for some prime p, This ensures that FRI
remains secure when making it non-interactive through Fiat-Shamir for any
Reed-Solomon codeword we would encounter in practice when compiling IOPs
[BGK+23]. Using pD as a plaintext modulus in the HE scheme would result in
unmanageable parameters. We address this by emulating FpD arithmetic using
D ciphertexts, each encrypting elements from Fp.

Reducing Depth and Exploiting HE Packing. A second challenge to the homo-
morphic evaluation of FRI is its multiplicative depth. Although it only involves
multiplications between plaintexts and ciphertexts, the noise level can increase
almost as much as with ciphertext multiplications, since plaintext are random
elements of Fp. A typical implementation of FRI would have depth 2n for an
input of size 2n, which represents a performance challenge for HE schemes.
We solve this problem by introducing low-depth versions of every sub-routine
required to evaluate FRI, and show how to perform Reed-Solomon codeword
encoding with small fixed depth, as opposed to the traditional depth-n meth-
ods. We also propose a “Shallow Fold" algorithm to replace FRI’s standard Fold
operation, which reduces the depth to 1 (from n), at the cost of increasing the
complexity to O(2n log(2n)) (from O(2n)), which does not change the overall
asymptotics. Additionally, we exploit packing within the HE scheme to further
reduce the cost of Reed-Solomon encoding. In more detail, we consider packing
methods that trade off memory consumption and execution time to accelerate
the prover.

2 In concurrent work on IOPs over encrypted data [GGW23], the authors discuss
the use of fully homomorphic commitments [GVW15] as a way to recover public
verifiability, but all known constructions for such primitive are very inefficient.

306 D. F. Aranha et al.

Minimizing HE Overhead for the Verifier. Finally, we take advantage of tech-
nique proposed in [CGGI20,CLOT21] to implement a repacking and recompos-
ing technique, which significantly reduces the overhead of ciphertext decryption
for the verifier. During the commit phase of FRI, the prover performs computa-
tions using RLWE samples of dimension N encrypting N messages in Fp. During
the query phase, however, the verifier only needs to learn two evaluation points
in FpD per round for each linearity check. If those ciphertexts are fully packed,
an overhead of at least N/(2D) is introduced. In order to avoid this, we extract
the evaluation points from the RLWE samples of dimension N and repack them
in another RLWE sample, but of a much smaller dimension, reducing decryption
costs up to 128 times depending on the selected parameters. One key observation
is that at this point, we do not need to preserve any homomorphic properties, as
the verifier does not perform any further operations on these. Indeed, once the
commit phase is finished, we can view the evaluation points as simply strings of
bits, and our goal then becomes to encrypt them in the smallest possible cipher-
text. This also makes the HE parameters adopted by the verifier completely
independent of the ones adopted by the prover or of the input size 2n.

All our optimizations are specifically targeted for FRI. Whether other exist-
ing IOPs of proximity (e.g. [ACY23]) or new ones could be better aligned in
practice with HE schemes such as BGV and BFV is an interesting open work
that our theoretical machinery already supports.

Proof-of-Concept Implementation. To demonstrate the practicality of our
construction, we implement a proof-of-concept over the FRI implementation of
Szepieniec et al. [S+21]. We extend it to work over non-prime fields and connect
it to optimized FHE libraries. We test two parameter sets for encrypted code-
words of size up to 216 representing polynomials with degree bound up to d = 215.
For a batch of 4096 polynomials with degree bound d = 211, our implementa-
tion takes just 5.4 s to run FRI’s commit phase (including the Reed-Solomon
code encoding) on 32 threads in a c6i.metal instance on AWS and requires
less than 4GB of memory. Verification is much faster, taking just 12.3ms single-
threaded (also for a batch of 4096 polynomials). With a parameter set optimized
for the verifier, verification time drops to just 5.6ms single-threaded, at the cost
of increasing the prover execution to 1.3min. Our implementation is publicly
available at https://github.com/antoniocgj/HELIOPOLIS.

Oracle Attacks. Moving verification from the ciphertext to the plaintext space
inherently opens up for side-channel and composition attacks. If the verifier
signals to the prover whether verification passes, this leaks 1 bit of information
about the plaintext/secret key. A priori, it could seem that reusing the plaintext
output obtained by the verifier as input to another protocol could also leak
about the secret key, but such issues can be avoided altogether by having the
prover provide Zero Knowledge Proofs of Knowledge for any ciphertext it would
use as input. We discuss these risks in more detail in Sect. 3.1. We believe that,
for many applications, the speed-ups we achieve through this paradigm shift far
outweigh the one-bit privacy loss. This is reflected by the lack of implementations
for works on the previous paradigm (verification over the ciphertext space), for
which, except for very low-depth circuits, their lack of efficiency is a non-starter.

https://github.com/antoniocgj/HELIOPOLIS

HELIOPOLIS 307

1.2 Comparison with Existing Works

In concurrent work [GGW23], Garg, Goel and Wang offer a framework to prove
statements on values that are hidden from the prover. Their framework is based
on making FRI work over such hidden values, and they show how to compile
Polynomial IOPs into SNARKs given such a tool. Besides HE, their work consid-
ers more general ways to hide these values from the prover, such as homomor-
phic commitments and group exponentiation, grouped under the abstraction of
Linearly-Homomorphic Encapsulations.

A formal issue in [GGW23] is that their notion of a decryptable (or that
of linearly-homomorphic w.r.t. randomness) Linearly-Homomorphic Encapsula-
tion is not sufficient when such an encapsulation is a building block of more
complex components such as FRI or polynomial commitments. Namely, their
notion only considers decryption of a freshly encrypted ciphertext on which no
operations have been performed. This overlooks the fact that the evaluation
correctness of HE schemes, which are based on (Ring) Learning with Errors, is
function-specific and needs to support the operations computed within those
components. Whereas FRI only requires to perform a series of linear combina-
tions on the ciphertexts, it turns out that the size of the coefficients in the linear
combination and the additive depth of FRI constitutes a significant obstacle for
noise management in practice (see Sect. 6).

While [GGW23] is more theoretical and lacks implementation, our work
focuses on concretely accelerating VC on encrypted data. In addition to vari-
ous technical optimizations and trade-offs informed by our experimentation, we
address two key aspects that [GGW23] does not: scenarios where the prover
provides inputs in zero knowledge, and the direct use of FRI (e.g. by compiling
δ-correlated IOPs into (zk)SNARKs [BGK+23]), rather than going through a
polynomial commitment abstraction. The former greatly improves the parame-
ters of the HE scheme in several applications, such as Privacy-Preserving Machine
Learning (where the prover provides their model as a plaintext in zero-knowledge
while the verifier’s input are HE ciphertexts), whereas the latter improves FRI’s
parameters by allowing to use a proximity parameter up to the Johnson bound.

2 Preliminaries

We use R[X]≤d to refer to polynomials with coefficients in a finite, commutative
ring R and degree at most d. For an element a ∈ R, we write [a]q to denote
the reduction of a modulo q (coefficient-wise), with the set of representatives of
coefficients lying in {0, . . . , q − 1}. This should not be confused with [n], which
we will sometimes use to denote the set of integers {1, . . . , n}.

We use bold notation (e.g. b) to refer to vectors. We use y ← C to denote that
y is the output of a given computation C. We use a ← A for sampling an element
a from a distribution A. When A is a set rather than a distribution, we write a

$←
A for sampling a uniformly at random in A. We write �f� to denote an oracle to
f , and Mf to denote that M has oracle access to f . We abbreviate Probabilistic
Polynomial Time as PPT. We let λ denote a computational security parameter.

308 D. F. Aranha et al.

We denote computational indistinguishability by
c≈ when no PPT algorithm can

distinguish between two distributions except with negligible probability.

2.1 Basic Algebra and Galois Theory

Next, we present some Number and Galois Theory facts that were noted in
the context of FHE in [SV14], but that are fairly standard. Let p be a prime,
F (x) ∈ Fp[x] be a polynomial, deg(F) = N , and assume that it factorises
(mod p) into � factors, all of degree D, for D · � = N , i.e. F (x) =

∏�
i=1 Fi(x)

(mod p), where deg(Fi) = D, ∀i ∈ [�]. Then we can define Rp := Fp[x]/(F), and
Rp

∼= Fp[x]/(F1) × . . . × Fp[x]/(F�) ∼= FpD ⊗ . . . ⊗ FpD .
Let F = Φ2N be the 2N th cyclotomic polynomial, for N a power of two,

and deg(Φ2N) = N . We note in particular that the above implies that, if p
is a prime such that Fp contains a primitive 2�th root of unity, we have that
Φ2N (x) =

∏
i∈(Z/2�Z)×(xD − ζi) (mod p). In the fully-splitting case, we have

that D = 1, and can therefore write Rp as the direct sum of N copies of Fp. The
cases where D > 1 is small with respect to N are almost-fully splitting.

2.2 Homomorphic Encryption

Definition 1 A public-key Homomorphic Encryption scheme HE over a set of
admissible circuits Ĉirc consists of the following algorithms.

– (pp, C) ← HE.Setup(1λ,M, Ĉirc) : Given a message space M, a set of admis-
sible circuits Ĉirc, output the public parameters pp and the ciphertext space C
such that the scheme is semantically secure.

– (sk, pk, evk) ← HE.KeyGen(1λ, C, pp) : Given the public parameters pp and
the ciphertext space C, output the secret key sk, the public key pk and the
evaluation key evk.

– ct ← HE.Enc(pk,m) : Given a message m ∈ M, output its encryption ct.
– m′ ← HE.Dec(sk, ct) : Given a ciphertext ct and its corresponding secret key

sk, output the decryption of ct, m′.
– ct′ ← HE.Eval(evk, ct, Ĉ) : Given a circuit Ĉ ∈ Ĉirc, output the evaluation

of Ĉ on ct.

When the context is clear, we will omit specifying the sk, pk, pp, C parameters.
The (standard) definition for semantic security of HE schemes is given in the
full version [ACGS23].

Definition 2 Let HE be a homomorphic scheme as in Definition 1. We say
that HE is correct if the equation HE.Dec(sk, HE.Eval(evk, HE.Enc(pk,m), Ĉ)) =
C(m) holds with overwhelming probability for all admissible circuits Ĉ ∈ Ĉirc.

We note that the set Ĉ refers to the set of circuits that the scheme can support
– for example, some HE schemes support non-linear operations such as ReLu,
and some do not. In particular, each circuit Ĉ ∈ Ĉirc has a corresponding circuit
C on the plaintext space. To give a concrete example, if we want to evaluate
the homomorphic multiplication of two ciphertexts, Ĉ could be a multiplication
followed by a bootstrapping, whereas C would simply be a multiplication.

HELIOPOLIS 309

2.3 Reed Solomon Codes

Reed-Solomon (RS) codes are arguably the most common linear error correction
codes. Let us recall their definition and fix some notation relative to them. In this
work, we will parameterize them by a finite field F, a multiplicative subgroup
L ⊆ F

∗ and a degree bound d. Hence, RS[F, L, d] is defined as follows:

RS[F, L, d] = {(f(x))x∈L ∈ F
|L| : f ∈ F[X]<d}.

The code rate of RS[F, L, d] is ρ = d/|L|. Unless we state it otherwise, in this
work we will assume that |L| = 2k, ρ = 2−R and d = 2k−R.

For two vectors u,v ∈ F
n, we let Δ(u, v) denote the relative Hamming dis-

tance between u and v, defined as Δ(u,v) := |{ui 	= vi|i ∈ {1, . . . , n}|/n. For a
set of vectors S ⊂ F

n and any vector u ∈ F
n, we define Δ(u, S) = Δ(S,u) :=

minv∈S{Δ(u,v)}. For δ ∈ (0, 1), we say that u is δ-far from S if Δ(u, S) ≥ δ.
Otherwise, we say that u is δ-close to S. Equivalently, u is δ-far from S if
Δ(u, S) ≥ δ for all v ∈ S, and u is δ-close to S if there exists v∗ ∈ S such that
Δ(u,v∗) < δ. We refer to δ as the proximity parameter. When δ < (1− ρ)/2, we
say that δ is within the unique decoding radius; and when δ < 1 − √

ρ, we say
that δ is within the Johnson bound.

Definition 3 (Correlated agreement) Let δ ∈ (0, 1). Let V = RS[F, L, d] and
let W = {w1, . . . , wk} ⊆ F

|L|. We say W has δ-correlated agreement with V on
an agreement set S ⊆ L if |S|/|L| ≥ 1 − δ and there exist v1, . . . , vk ∈ V such
that, ∀x ∈ S, wi(x) = vi(x).

2.4 Interactive Oracle Proofs (of Proximity)

There are several variations of the IOP abstraction [BCS16]. Polynomial IOPs
(PIOPs) ask for the IOP oracles to be polynomials evaluated over the entire
field F, whereas for the weaker notion of Reed Solomon-encoded IOPs (RS-
IOPs) those are Reed-Solomon codewords (i.e. the evaluation of a polynomial
over some specific domain L ⊂ F). In this work, we focus on RS-encoded IOPs
and on δ-correlated IOPs, which were introduced in [BGK+23]. Our results could
nevertheless be easily adapted to other IOP flavors, e.g. to PIOPs as in [GGW23].
The main attractive of δ-correlated IOPs is that they allow for a better proximity
parameter δ (up to the Johnson bound, rather than within the unique decoding
radius) when they are compiled into SNARKs. When δ = 0, δ-correlated IOPs
can be seen as a subclass of RS-encoded IOPs [BCR+19,COS20].

Definition 4 An indexed relation R is a set of triples (i,x;w) ∈ {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗. The string x is the called input, statement or instance, the
string w is called the witness and the string i is an index. The index can be
thought as something that is fixed at setup time, and chooses among a universe
of binary relations Ri = {(x;w) : (i,x;w) ∈ R}.

In the setting of holographic proofs, a good example is an indexed relation
for circuit satisfiability, where the index i is a description of the circuit, the
statement x contains the “public" values on some of the circuit’s input wires
and the witness w consists in the values taken by the remaining “private" wires.

310 D. F. Aranha et al.

Definition 5 ([BGK+23]) Let H ⊆ F and d ≥ 0. An indexed (F,H, d)-
polynomial oracle relation R is an indexed relation where for each (i,x,w) ∈ R,
the index i and input x may contain oracles to codewords from RS[F,H, d] and
the actual codewords corresponding to these oracles are contained in w.

Definition 6 A μ-round holographic interactive oracle proof (hIOP) for an
indexed relation R is a tuple of PPT interactive algorithms Π = (P,V) and a
deterministic polynomial-time algorithm Ind (the indexer), with two phases:

– In an offline phase, given an index i, Ind computes an encoding of it, Ind(i).
– In an online phase, P(Ind(i),x,w) and VInd(i)(x) exchange 2μ+1 messages,

where P sends the fist and last message. V gets only oracle access to P’s
messages, and after P’s final message, V either accepts or rejects.

Furthermore, an hIOP has to satisfy the two following properties:

Completeness: For all (x,w) ∈ R,
we have that Pr[〈P(Ind(i),w),VInd(i)〉(x) = 1] ≥ γ, where the probability
is taken over the random coins of V. If, for all x, γ = 1, then the hIOP has
perfect completeness.

Soundness: For any x /∈ LR and any unbounded malicious P∗, we have that
Pr[〈P∗(Ind(i),w),VInd(i)〉(x) = 1] ≤ ε, where the probability is taken over
the random coins of V.

In δ-correlated hIOPs, the prover is supposed to send oracles to maps that
agree with low degree polynomials on a fraction of 1−δ points (see Definition 3).
On top of checking all the received oracles correspond indeed to δ-correlated
maps (which we capture by the relation in Definition 7), it is necessary to verify
some algebraic equalities involving some evaluations of those maps. These are
made concrete in Definition 8.

Definition 7 ([BGK+23]) Let 0 ≤ δ < 1. The δ-correlated agreement relation
for RS[F, L, d] is the following indexed (F, L, d)-polynomial oracle relation:

CoAgg =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝

i

x

w

⎞

⎟
⎠ =

⎛

⎜
⎝

(F, L, d, δ, r)
(�fi�)i∈[r]

(fi)i∈[r]

⎞

⎟
⎠ :

r, δ ≥ 0, ρ = d/|L|
fi ∈ F

L ∀i ∈ [r]
(fi)i∈[r] has δ-correlated agreement
with RS[F, L, d]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Definition 8 (δ-correlated hIOP, [BGK+23]) Let L = 〈ω〉 be a smooth mul-
tiplicative subgroup of F∗ of order d = 2v/ρ for some v ≥ 1 and rate 0 < ρ < 1
and define the Reed-Solomon code RS[F, L, d]. Let 0 ≤ δ < 1 and let R be an
indexed (F, L, d)-polynomial oracle relation. Let Π be a hIOP for R. Given a
(possibly partial) transcript (x, τ) generated during Π, let Words(x, τ) be the
words from F

L that fully describe the oracles appearing in (x, τ). We say that Π
is δ-correlated if:

– The verifier V has oracle access to the δ-correlated agreement relation
CoAgg(δ).

HELIOPOLIS 311

– For all (i,x,w) ∈ R:
• In the last round of interaction between P(Ind(i),x,w) and

VInd(i),CoAgg(δ)(x), the verifier sends a field element z uniformly sampled
from a subset of (a field extension of) F and the honest prover replies
with the values:

Evals(x, τ, z) = (w(ωkw,1z), . . . , w(ωkw,nw z) : w ∈ Words(x, τ))

where τ is the transcript so far and κ = {kw,i : w ∈ Words(x, τ), i ∈ [nw]}
is a fixed set of integers which are output by Ind.

• To decide whether to accept or reject a proof, VInd(i),CoAgg(δ)(x) makes the
two following checks:
Check 1 Assert whether the received values Evals(τ, z) are a root to

some multivariate polynomial Fi,x,τ depending on i, x and τ .
Check 2 Assert whether the maps

quotients(x, τ, z) =
{w(X) − w(ωkw,jz)

X − ωkw,jz
: w ∈ Words(x, τ), j ∈ [nw]

}

have δ-correlated agreement in RS[F, L, d − 1] by using the CoAgg(δ)
oracle on the oracles to such maps.

Next, we define the notions of round-by-round (RBR) soundness and knowl-
edge soundness [CCH+19] for holographic IOPs. Since those are a superset of
δ-correlated hIOPs, the same definition applies to the latter.

Definition 9 A holographic IOP for an indexed relation R has round-by-round
(RBR) soundness with error ε if for every index i there exists a “doomed set"
D(i) of partial and complete transcripts such that:

1. If x /∈ LRi , then (x, ∅) ∈ D(i), where ∅ denotes the empty transcript.
2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then

VInd(i)(x, τ) = reject.
3. If i ∈ [μ] and (x, τ) is a (i−1)-round partial transcript such that (x, τ) ∈ D(i),

then Pr
c

$←Ci

[(x, τ,m, c) /∈ D(i)] ≤ ε(i) for every possible next prover message
m.

Definition 10 A holographic IOP for an indexed relation R has round-by-
round (RBR) knowledge soundness with error εk if there exists a polynomial
time extractor Ext and for every index i there exists a “doomed set" D(i) of
partial and complete transcripts such that:

1. For every possible input x (regardless of whether x /∈ LRi or not), (x, ∅) /∈
D(i).

2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then
VInd(i)(x, τ) = reject.

3. Let i ∈ [μ] and (x, τ) be a (i − 1)-round partial transcript such that
(x, τ) ∈ D(i). If for every possible next prover message m it holds that
Pr

c
$←Ci

[(x, τ,m, c) /∈ D(i)] > εk(i), then Ext(i,x, τ,m) outputs a valid wit-
ness for x.

312 D. F. Aranha et al.

Finally, let us also discuss zero knowledge, which will be particularly inter-
esting in our work.

Definition 11 An hIOP Π for an indexed relation R has statistical zero knowl-
edge with query bound b if there exists a PPT simulator S such that for every
(i,x,w) ∈ R and any V∗ making less than b queries in total to its oracles, the
random variables View(P(i,x,w),V∗) and SV∗

(i,x), defined below, are statis-
tically indistinguishable

– View(P(i,x,w),V∗) is the view of V∗, i.e. the random variable (r, a1, . . . , aq)
where r is V∗ randomness and a1, . . . , aq are the responses to V∗’s queries
determined by the oracles sent by P.

– SV∗
(i,x) is the output of S(i,x) when given straightline (i,e, without rewind-

ing) access to V∗, prepended with V∗ randomness r.

Π is honest-verifier zero knowledge if the above holds with V∗ = VInd(i)(x).

Some examples of δ-correlated hIOPs are Plonky2, RISC Zero, ethSTARK,
Aurora and Fractal [COS20]. One particular advantage of hIOPs is how easy
it is to compile them into SNARKs through the so-called BCS transformation
[BCS16]. In a nutshell, this consists in replacing oracles sent by the prover with
Merkle-tree-based commitments and then removing interaction with the verifier
by applying the Fiat-Shamir transform. It has been proved that if an hIOP is
round-by-round sound, applying the BCS transformation results in a SNARK
that is adaptively knowledge sound versus both classic and quantum adversaries
in the random oracle model [CMS19,COS20].

A similar concept to the above one is that of an IOP of Proximity (IOPP),
which is an IOP to test proximity to a specific code. In this work, we restrict
ourselves to IOPPs for Reed Solomon Codes.

Definition 12 Let RS denote the family of Reed Solomon codes RS[F, L, d]. A
protocol between a pair of interactive machines 〈P,V〉 is an r-round interactive
oracle proof of δ-proximity for RS is an IOP with the following modifications

– Input format: The first message from P is f0 : L → F, allegedly a RS
codeword.

– Completeness: Pr[〈P,V〉 = 1 : Δ(f0, RS) = 0] = 1 − θ for a negligible θ. If
θ = 0 we refer to this as perfect completeness.

– ε-soundness: For any unbounded P∗, Pr[〈P∗,V〉 = 1 : Δ(f0, RS) ≥ δ] ≤ ε.

The next theorem summarizes the compilation results of [BGK+23]. Infor-
mally, given a δ-correlated hIOP, it suffices to analyse its RBR knowledge sound-
ness when δ = 0 and replace oracles with a δ-correlation check3 to produce
an RBR knowledge sound hIOP as a result. This hIOP can then be turned
into a SNARK through the usual BCS transformation [BCS16]. Interestingly,
having δ 	= 0 (and actually up to the Johnson bound!) does not affect knowl-
edge soundness when following the [BGK+23] recipe, whereas previous compilers
[CMS19,COS20] were restricted to the unique decoding regime, i.e. δ < (1−ρ)/2.
3 Such as batched FRI.

HELIOPOLIS 313

Theorem 1 ([BGK+23]). Let ΠO
δ be a δ-correlated hIOP, where O is an oracle

for δ-correlated agreement. Let 0 < η ≤ 1 and ρ > 0 be such that δ = 1−√
ρ−η is

strictly positive. Assume ΠO
0 has RBR knowledge soundness with error ε. Then,

ΠO
δ has RBR knowledge soundness with error ε/(2η

√
ρ).

Moreover if ΠCA is an IOPP for δ-correlated agreement in RS[F, L, d] with
RBR soundness error εCA, then the protocol Π

ΠCA
δ obtained by replacing O with

ΠCA in ΠO
δ has RBR knowledge soundness error ε1 = max{ε/(2η

√
ρ), εCA}.

Furthermore, given a random oracle with λ-bit output and a query bound Q,
compiling Π

ΠCA
δ with the BCS transformation [BCS16] yields a SNARK with

knowledge error Q · max{ε/(2η
√

ρ), εCA} + O(Q2/2λ).

3 Verifiable Computation over Encrypted Data

The notion of verifiable computation (VC) proposed by Gennaro et al. in
[GGP10] tries to better capture the way in which proof and argument systems
are used in practice. In Definition 1 we tweak their definition and syntax to fit
our constructions. In particular, we allow for the verification algorithm to be
interactive, since we will often discuss at the IOP rather than SNARK level of
abstraction.

Furthermore, we would like to support circuits of the form C(x,wP) where
(the homomorphic encryption of) the input x is provided by the verifier, while
the prover specifies wP , which includes plaintexts and/or ciphertexts revealed
to V during verification. Without threshold decryption to prevent the verifier
from unauthorized decryptions, all wP values are exposed to the verifier. Thus,
for single-client outsourcing, wP should consist only of plaintexts.

If wP must remain hidden, it can be treated as a private witness mixed with
the encryption x in zero-knowledge. For example, one could think about a pri-
vate Machine-Learning-as-a-Service [AHH+24], where the client sends encrypted
queries HE.Enc(x) to the server, who applies their private model wP . This app-
roach, also pursued in [BCFK21,GNS23], is advantageous because multiplying
plaintexts (such as those in wP) with ciphertexts (the encryptions of x and the
outputs that result from operating on them) is much cheaper than multiplying
ciphertexts.

Definition 1 (Verifiable Computation). A verifiable computation scheme
VC is a tuple of polynomial time algorithms (VC.Setup,VC.ProbGen,VC.Compute,
VC.Ver) defined as follows.

– (SK,PK) ← VC.Setup(1λ, C): A randomized key generation algorithm takes a
circuit C as input and outputs a secret key SK and a public key PK.

– (σx ,VKx) ← VC.ProbGen(PK,x): A randomized problem generation algo-
rithm (to be run by V) takes the public key PK, an input x, and outputs a
public encoding σx of x, together with a private verification key VKx .

– ηy ← VC.Compute(PK,σx ,wP , C): Given a public key PK for a circuit C,
the encoded input σx and input wP , P computes ηy , which consists of an
encoded version σy of the circuit’s output y = C(x,wP) and data to answer
challenges about that statement.

314 D. F. Aranha et al.

– acc ← VC.Ver〈P(PK,ηy),V(SK,VKx ,σy)〉(C) : The interactive verification
algorithm uses the input-specific verification key VKx , the setup secret key
SK and a proof ηy to return σy together with a bit acc ∈ {0, 1} such that
acc = 1 if VC.Decode(σy ,SK) = C(x,wP) or acc = 0 otherwise.

– y ← VC.Decode(σy ,SK): Using the secret key, the decoding algorithm outputs
the value y behind the public encoding σy .

A verifiable computation scheme can satisfy a range of properties which we
next define. We omit the VC. prefix in the different algorithms for ease of read-
ability. In our work, we will always be interested in all of the following ones
whenever wP does not need to be kept private.

– Correctness. Correctness guarantees that if P is honest, the verification test
will pass. That is, for all C, and for all valid inputs x,wP of C the following
probability equals 1 − negl(λ).

Pr

⎛
⎜⎜⎝

acc = 1
Decode(σy , SK) = C(x,wP)

:

(SK,PK) ← Setup(1λ, C)
(σx ,VKx) ← ProbGen(PK, x)

ηy ← Compute(PK, σx ,wP , C)
acc ← Ver〈P(PK, ηy), V(SK,VKx , σy)〉(C)

⎞
⎟⎟⎠

– Outsourceability. A VC scheme is outsourceable if for any x and any ηy , the
time required by V to run ProbGen(x), Ver〈P(PK,ηy),V(SK,VKx)〉(C) and
Decode(σy ,SK) is o(T), where T is the time required to compute C(x,wP).

– ε-Soundness. A VC scheme is ε-sound if the advantage of any PPT adversary
A in the game ExpV er

A defined as Pr
[
ExpV er

A [V C,C, λ] = 1
]

is ε.

– Verifier-Privacy. For a valid C, Pr
[
ExpV.Priv

A [V C,C, λ] = 1
]

≤ 1/2+negl(λ).

1 Game ExpV er
A (V C, C, λ)

2 (SK,PK) ← Setup(1λ, C)
3 x ← A(PK, C)
4 (σx ,VKx) ← ProbGen(PK, x)
5 ηy ← A(PK, σx , C)

6 acc ←
Ver〈P(PK, ηy), V(SK,VKx , σy)〉(C)

7 y ← Decode(σy , SK)
8 if acc = 1∧ � ∃wP : C(x,wP) = y
9 return 1

10 return 0

1 Game ExpV.Priv
A (V C, C, λ)

2 b
$← {0, 1}

3 (SK,PK) ← Setup(1λ, C)
4 (x0, x1, state) ← A(PK, C)
5 (σxb ,VKxb) ← ProbGen(PK, xb)

6 b̂ ← A(state, σxb)

7 return b
?
= b̂

3.1 On Verifier Privacy and Oracle Attacks

Our definition of verifier-privacy assumes that the verifier does not signal to the
prover whether verification passes or not (i.e. there are no verification oracles)
and that the value y it obtains after running the Decode algorithm is not used

HELIOPOLIS 315

as input to future algorithms (which we refer to as a decryption oracle). We
briefly discuss the privacy impact of such oracles, which is inherent to moving
verification from the ciphertext to the plaintext layer.

Verification oracles: When a malicious prover provides tampered ciphertexts
(e.g. by manipulating their noise), the result of decryption is a function of such
changes. The results of decryption also depend on the secret key and underlying
message. Since the actions of the verifier (such as rejecting a proof or not, i.e.
the value acc ∈ {0, 1}) depend on the decrypted ciphertexts, this is a source of
leakage. All protocols we present are non-interactive, implying that there is at
most one such verification oracle per proof sent. Hence, a malicious prover can
learn at most a one-bit leakage predicate (which evaluates to acc) about the
secret key/message. Regarding leakage about the key, the concrete security loss
this incurs can be measured with tools such as the Leaky Estimator [DDGR20].
Additionally, stopping any further executions with a prover for which acc = 0,
refreshing the keys and/or increasing their length are easy solutions.

Decryption Oracles: First, note that the output of the decryption of the
prover’s answers to verifier challenges has no use beyond verification. Therefore,
the only value we need to be concerned about in a decryption oracle is the out-
put of the computation itself. Consequently, decryption oracles may only occur
in the composability case – i.e., when VC.Decode(σy ,SK) is used as input in
another protocol. Further, these decryption oracles arise only in the case where
verification passes, as the Verifier would otherwise abort (and then, at worst, we
would be in the presence of a verification oracle, as explained above). Finally, we
note that the output of the computation (C(x,wP)) leaks nothing unexpected,
as long as wP does not contain ciphertexts for which P did not provide a zero
knowledge proof of knowledge (ZKPoK) for the underlying plaintext. In sum-
mary, the only scenario in which a decryption oracle may pose a threat is: the
prover provides as input ciphertext without an accompanying ZKPoK, verifica-
tion passes and the HELIOPOLIS output is passed along to another protocol
for further processing.

3.2 Prover Privacy

In previous works on verifiable computation over encrypted data, the goal of
keeping wP private was modeled as a context-hiding property of the VC scheme
[BCFK21,GNS23]. This is a reminiscence of a similar notion in the setting where
wP did not exist, but the parties running VC.ProbGen and VC.Ver were different
[FNP20]. In our following sections we will deviate from that modeling and hence
refrain from the context-hiding property. We do this not only because we focus
on the more common scenario where the verifier is running both VC.ProbGen
and VC.Ver, but also because context-hiding would not be able to model e.g. the
interactivity of VC.Ver. We believe that our new security modeling will be useful
for future work in this area.

We formalize the notion of honest-verifier prover privacy (HVPP) by showing
that whatever a semi-honest V can compute by participating in the protocol, V
could compute merely from its input and prescribed output. Our definition is in

316 D. F. Aranha et al.

the simulation paradigm and thus we have a stateful simulator S that generates
V’s view given its input and output. We remark that, since V is semi-honest,
it is guaranteed that it uses its actual input and random tapes. In particular,
S can furthermore generate V’s random tape and, at that point, generate the
whole protocol transcript on its own without ever needing to interact with V.

Definition 2. We say that a VC protocol is honest-verifier prover-private
(HVPP) if there exists a PPT simulator S such that for every circuit C:

{S(1λ,PK,x, C(x,wP))}x,wP ,λ,PK
c≈ {ViewV(SK,PK,x,wP , λ)}x,y ,λ,SK,PK

where (SK,PK) ← VC.Setup(1λ, C) and ViewV(SK,PK,x,wP , λ) denotes the
view of V during an execution of the protocol on inputs (x,wP) and security
parameter λ, that is (SK,PK,x, r;m1, . . . ,me, out) where r is V’s random tape,
each mi value is the i-th message V receives and out denotes V’s output, which
is computed from all other values in its own view of the execution.

In Fig. 1, we provide our general recipe for a correct, sound and verifier-
private Verifiable Computation scheme. Verifier-privacy follows from the use of
encryption within the ProbGen step, and correctness from the fact that such
encryption is homomorphic. Soundness is less immediate, since it requires to
have an HE-IOP at hand, which is an object we define and construct in Sect. 4.
Notice that, since we specialize the construction to use holographic IOPs (as
a means to achieve outsourceability), the syntax of the verification is slightly
modified, replacing the circuit C with the corresponding indexer algorithm.

4 Compiling Interactive Oracle Proofs to Work over HE

Given an IOP which was not conceived to work over encrypted data, we show
how to adapt it to work with HE in Definition 13.

Definition 13 (HE-transformation) Let 〈P(x,w),V(x)〉 be an IOP, where
the elements of x and w belong to a finite field F. We define its encrypted version
HE-IOP, for some HE scheme as follows:

– There is a trusted setup (pp, C) ← HE.Setup(1λ, Rp, Ĉirc), where Rp splits
into copies of F and Ĉirc is a family of admissible circuits that captures all
necessary computation within the IOP as well as any preceding/posterior one
(such as coming up with parts of the witness, or using an IOPP and the BCS
transformation to compile into a SNARK).

– There is also a trusted key generation step (sk, pk, evk) ← HE.KeyGen
(1λ, C, pp). P has as an additional input evk and V has as an additional
input sk.

– P’s input x is replaced by its encryption HE.Enc(x). Parts of w could be also
replaced by their homomorphic encryption.

– As a result, some oracles in the HE-IOP might now contain ciphertexts. We
refer to them as HE-oracles or encrypted oracles. V has to decrypt the cipher-
texts obtained from HE-oracles and perform the same checks as in F.

HELIOPOLIS 317

Fig. 1. Verifiable Computation over Encrypted Data through HE-IOPs.

If we need to refer explicitly to the HE-IOP, we denote it as 〈P(evk, HE.Enc
(x),w),V(sk,x)〉, as a slight abuse of notation of the original P and V. The dif-
ferent properties of IOPs (completeness, soundness, round-by-round soundness,
round-by-round knowledge soundness) can be trivially redefined for HE-IOPs.

One of the main interests of our HE-transformation, besides its simplicity, is
that it preserves most parameters of the original IOP, with only some negligible
degradation due to the use of homomorphic encryption.

Theorem 2. Let IOP be an εk RBR knowledge sound, εrbr RBR sound, ε-sound,
complete IOP. It’s encrypted version HE-IOP is εk + negl(λ) RBR knowledge
sound, εrbr + negl(λ) RBR sound, ε + negl(λ)-sound and complete.

Proof. Completeness follows from the evaluation correctness of the HE scheme
and the way the circuit family Ĉirc was chosen. There is only a negligible loss in
γ due to the way evaluation correctness is defined (Definition 2).

The soundness, RBR soundness and RBR (knowledge) soundness of an
HE-IOP can be reduced to that of IOP as follows. Let A be an adversary against
HE-IOP with an advantage bigger than adding a factor negl(λ) to the one for

318 D. F. Aranha et al.

the corresponding notion of the IOP (ε, εrbr, εk respectively). We will build an
adversary A′ against IOP with the same such greater advantage and hence reach
a contradiction. A′ runs (sk, pk, evk) ← HE.KeyGen(1λ, C, pp) for the relevant
HE scheme, obtaining in particular sk. Given any input, A′ encrypts it under pk
and forwards it to A. For every message received from V, A′ directly forwards it
to A. In order to reply to those, A′ queries the encrypted oracles �f�HE received
from A at every point, decrypts the answers using sk to recover f , and then
sends the oracle �f� to V. Clearly, if A succeeds, so does A′. �

The HE-transformation applies to all variants of IOPs presented in this paper,
such as holographic IOPs, RS-encoded hIOPs, δ-correlated hIOPs and IOPs of
proximity. In order to denote this transformation, we will also add the HE prefix
to those (HE-hIOPs, δ-correlated HE-hIOPs, HE-IOPP, etc.).

The upcoming subsections are organized as follows. In Sect. 4.1, we discuss
how to keep w hidden from the verifier through zero knowledge. Sections 4.2
and 4.3 show how to compile these HE-IOPs into HE-friendly SNARKs using an
HE-friendly low degree test (such as the HE transformation of the Batched FRI
protocol, which we will show in Sect. 5.1).

4.1 Achieving Prover-Privacy from ZK-IOPs

We first consider the case of honest-verifier prover-privacy (HVPP, see Defini-
tion 2), since it allows for a more practical construction and it also acts as a
stepping stone towards understanding the malicious case. There are three main
aspects to consider when compiling using IOPs for a prover-private version of
Fig. 1, which we describe next. Two of them (Consideration #1 and #3) are
specific to the use of homomorphic encryption.

Consideration #1: Circuit Privacy. A requirement for prover-private construc-
tions is the fact that the HE scheme needs to support circuit-privacy. Namely,
all the ciphertexts of the HE-IOP that are exposed to the verifier need to be
re-randomized, since their noise carries information about the circuit that was
computed on them and hence4 about wP . We provide our own definition of the
circuit-privacy notion that is best aligned with our HVPP goal.

Definition 14 A homomorphic encryption scheme HE (see Definition 1) is
circuit-private if there exists a rerandomization algorithm HE.Rerand(evk, pk,
Ĉ, ct) and a simulator SHE such that, for any admissible circuit Ĉ with
inputs HE.Enc(x1), . . . , HE.Enc(xn) and outputs cty1 , . . . , ctym

, it holds that
(some inputs omitted for simplicity): (sk, Rerand(cty1), . . . , Rerand(ctym

))
c≈

(sk,SHE(pk, C(x1, . . . , xn))).

One of the standard ways that the above definition can be achieved is by
employing noise flooding to instantiate HE.Rerand, as done in [Gen09a]. In more

4 Notice that one can think about the circuit evaluation C(x, wP) with a private wP
as providing the evaluation of some unspecified circuit from the family {Cw P (x)}w P .

HELIOPOLIS 319

detail, we add to the verifier-exposed ciphertexts an encryption of 0 with large
enough noise to statistically hide the noise of the circuit that led to the produc-
tion of that specific ciphertext. We will denote by Ω0,C the set of such encryptions
of zero. Notice that since all messages within an encrypted oracle are susceptible
of being queried, we need to add such an encryption of zero to each of them
before putting them within the oracle.

Consideration #2: Combining zkIOPs with LDTs. Assume either a zero-know-
ledge RS-hIOP or a δ-correlated hIOP is given. To compile it into a zk-IOP
while making black-box use of a pre-existing Low Degree Test (in the form of
an IOPP such as FRI), it is necessary for the prover to additionally send a
random codeword r ahead of time, which is added to the linear combination of
functions that are being tested for low-degreeness. Adding such an r does not
affect soundness. However, since input to the LDT is now a random codeword,
there is no need to worry about its inner workings beyond knowing what is the
amount of queries made to the random codeword (which links with Consideration
#3). For a more detailed leakage analysis when using FRI, see [Hab22].

Consideration#3:Combining zkIOPswith LDTs – QueryBlow-Up fromPacking.
Compilers, such as the ones discussed in Consideration #2 and the one pre-
sented in Sect. 4.2, incur losses in several parameters of the resulting output
IOP according to the number of queries to the LDT. This includes soundness,
which in turn also loops into increasing the size of the underlying field in order
to compensate. But, most importantly, the increase in the number of queries
through the introduction of the LDT also degrades the query bound for zero
knowledge (see Definition 11). As an example, see [COS20, Theorem 8.1.]

To make things worse, the HE-transformation of these protocols replaces ora-
cles with encrypted oracles, where ciphertexts (rather than plaintexts) are placed
within them. This means that, if the chosen HE scheme supports plaintext pack-
ing and we are exploiting this property, whenever the verifier V would need to
query only one of the plaintexts mi on the ciphertext ct = HE.Enc(m1, . . . ,ml)
behind the oracle, V learns every other plaintext mj , j 	= i within it. Effectively,
this blows-up the query loss for zero knowledge by a factor of up to l.5 Pack-
ing becomes then as devastating (or even more) for zero knowledge as it is an
improvement for computational efficiency, which is a very problematic tension
in practice. Hence, it is paramount to reduce the packing-induced multiplicative
loss while maintaining efficiency. We provide a solution for this in Sect. 6.4.

Malicious Verifier We will only briefly address handling a malicious verifier.
Instead of creating an ad-hoc “malicious-verifier prover-private" notion, it is
best to model security as a maliciously secure 2-party computation protocol (see
[CCL15]). Beyond the precautions for an honest verifier, we must ensure honest
behavior in the Setup and ProbGen steps. This can be achieved through a trusted
setup and enforced via zero-knowledge proofs, similar to a GMW-style compiler
from passive to active security [GMW87].
5 It could be that V sometimes happens to query values that happen to be packed

within the same ciphertext, slightly reducing the blow-up in this case.

320 D. F. Aranha et al.

For the ProbGen step, it is crucial to ensure the verifier provides valid cipher-
texts, meaning the noise must be within bounds in lattice-based HE. Using a
zero-knowledge proof of knowledge (ZKPoK) ensures the right bounds for the
cleartext and encryption randomness (see e.g. [DPSZ12, Figure 9]).

4.2 A Compiler for RS-Encoded IOPs

Our first compiler is for Reed-Solomon encoded IOPs, and is a result of adapting
the works of Aurora [BCR+19] and Fractal [COS20].

Protocol 1 (Aurora/Fractal) Let (PR(x,w),VR(x)) be an RS-encoded hIOP
over L ⊆ F, with maximum degree (dc, de) for an indexed relation R. Let HE-IOP
be its HE-transformation. Let (PLDT,VLDT) be an IOPP for the RS code RS[F, L, dc]
with proximity parameter δ < min(1−2ρc

2 , 1−ρc

3 , 1 − ρe) where ρc = (dc + 1)/|L|
and ρe = (de +1)/|L|. Let HE-IOPP be its HE-transformation. Proceed as follows:

1. Masking codeword for low-degree test: P sends V an oracle to a random
r ∈ RS[F, L, dc]. This step can be skipped when not interested in obtaining a
zk-HE-hIOP.

2. RS-encoded HE-IOP for R: In parallel to the above, P and V simulate
(PR(HE.Enc(x),w),VR(x)). Over the course of this protocol, the prover
sends encrypted oracles containing codewords π1 ∈ RS[F, L,d1], . . . , πkR ∈
RS[F, L,dkR], and the verifier specifies a set of rational constraints C [COS20,
Definition 4.1]. Let l :=

∑kR

i=1 li + |C|.
3. Random linear combination: V samples v ∈ F

2l uniformly at random and
sends it to P

4. Low-degree test through HE-IOPP: P and V simulate (PLDT(v�Π + r),
Vv�Π+r
LDT), where Π :=

(
Π0
Π1

) ∈ F
2l×L is defined as in [BCR+19, Protocol

8.2].
5. V accepts if and only if VLDT accepts

Theorem 3. Protocol 1 is an HE-hIOP for R with the following parame-
ters, where the R (resp. LDT) superscript denotes the parameters of the RS-
encoded IOPP (resp. IOPP). Round complexity: kR + kLDT. Query complexity:
qLDTπ + qLDTw (kR + 1). Proof length HE.Expand(LR + LLDT), where HE.Expand is
a ciphertext expansion function that depends on the specific HE scheme and
how the different intermediate values are computed. Round-by-round sound-
ness error: ε1 = max(εR

rbr, ε
LDT
rbr, |L|/|F|). Round-by-round knowledge error: ε2 =

max(εR
knw, ε

LDT
rbr, |L|/|F|). Furthermore, if the RS-encoded IOP is zero-knowledge,

then so is Protocol 1, with the same query bound.

Proof. All the claimed parameters can be reduced to the ones claimed in [COS20,
Theorem 8.2]. The round and query complexity clearly remain the same as in
there, and the proof length is only affected by the ciphertext expansion of the HE
scheme. Completeness and RBR (knowledge) soundness follow from Theorem 2
and [COS20, Theorem 8.2]. �

HELIOPOLIS 321

4.3 A Correlated-Agreement-Based Compiler

Our second compiler allows to set the proximity parameter up to the Johnson
bound, which improves efficiency. It is the result of adapting one of the cen-
tral theorems in [BGK+23] through the application of the HE transformation
(Definition 13). The overall compiler appears in Fig. 2.

Theorem 4. Let ΠO
δ be a δ-correlated HE-hIOP, where O is an HE-oracle for

δ-correlated agreement in RS[F, L, d]. Let 0 < η ≤ 1 and ρ > 0 be such that
δ = 1 − √

ρ − η is strictly positive. Assume ΠO
0 has RBR knowledge soundness

with error ε. Then, ΠO
δ has RBR knowledge soundness with error ε/(2η

√
ρ).

Let HE be an homomorphic encryption scheme whose plaintext space Rp

splits into copies of F. If ΠHE-CA is an HE-IOPP for δ-correlated agreement in
RS[F, L, d] with RBR soundness error εCA, then the protocol Π

ΠHE-CA
δ obtained

by replacing O with ΠHE-CA in ΠO
δ has RBR knowledge soundness error ε1 =

max{ε/(2η
√

ρ), εCA}.
Furthermore, given a random oracle with λ-bit output and a query bound Q,

compiling Π
ΠHE-CA
δ with the BCS transformation [BCS16] yields a SNARK (over

encrypted data) with knowledge error Q · max{ε/(2η
√

ρ), εCA} + O(Q2/2λ).

Proof. Consequence of combining Theorems 2 and 1. �

Fig. 2. Summary of compilation flow for δ-correlated IOPs.

5 Low Degree Tests for Encrypted Polynomials

The compilers from Sect. 4 need to eventually test whether the oracles sent by the
IOP prover correspond to low-degree polynomials or not, with different variations

322 D. F. Aranha et al.

of what such a test should exactly verify (δ-correlated agreement or merely
closeness to an RS code). First of all, we need to think about how polynomials
mix with HE. For example, the following map

f : Rp → Rp

a �→ HE.Dec(
d∑

i=0

cti · ai), cti = HE.Enc(fi)

only corresponds to a degree-d polynomial f ∈ Rp[X] as long as f(a) =
∑d

i=0 fia
i

∀a ∈ Rp, i.e. as long as it preserves evaluation correctness6.
In this work, as it is common in the IOP literature, polynomials are given

in a point-value representation, which matches the definition of a Reed Solomon
codeword. There are a series of operations that the prover (and maybe the veri-
fier) will have to perform on the ciphertexts within those oracles, so we also need
to make sure to preserve evaluation correctness when presented with such a rep-
resentation. To achieve this, we introduce the notion of encrypted polynomials.

Definition 15 Let HE be a homomorphic encryption scheme with plaintext space
Rp

∼= ∏�
j=1 FpD and ciphertext space R2

q. Let HE-IOPP be an HE-IOP of prox-
imity. Let L = {xi,j}i∈[d],j∈[�], L ⊆ FpD and let ct1, . . . , ctd ∈ R2

q be alleged
ciphertexts such that HE.Dec(cti) = (mi,1, . . . ,mi,�) ∈ ∏�

j=1 FpD . Finally, let
f ∈ FpD [X]<|L| be the polynomial such that f(xi,j) = mi,j ∈ FpD for every
xi,j ∈ L. We say that ct1, . . . , ctd ∈ R2

q define an encrypted polynomial (of f ,
at L) if there exist admissible circuits such that,

– On input ct1, . . . , ctd ∈ R2
q and any (α1, . . . , α�) ∈ ∏�

j=1 FpD , it returns
a ciphertext ct′ such that, with overwhelming probability, HE.Dec(ct′) =
(f(α1), . . . , f(α�)) ∈ ∏�

j=1 FpD .

– On input ct1, . . . , ctd ∈ R2
q to the HE-IOPP, all honestly produced messages

within it decrypt correctly (with overwhelming probability).

When we want to make the plaintext polynomial and evaluation domain
explicit, we write (ct1, . . . , ctd) ∈ EncPoly(f, L).

In other words, (ct1, . . . , ctd) ∈ EncPoly(f, L) if, given those ciphertexts, it
is possible both to compute EncPoly(f,FpD) and to show within the HE-IOPP
that there exists such an f .

5.1 The HE-Batched-FRI Protocol

The specific HE-IOPP we will employ is the HE transformation (see Defini-
tion 13) of the (Batched) FRI protocol. The batched FRI protocol allows a
6 It could happen, for a malicious choice of the cti ∈ R2

q , that f(a) =
∑d

i=0 gia
i ∀a ∈

Rp for some gi �= fi. In practice, this does not give any power to the adversary: it
would be equivalent to putting a wrong polynomial of the right degree within the
oracle, which should be caught by the IOP.

HELIOPOLIS 323

prover to prove the δ-correlated agreement of f1, . . . , ft by running the FRI pro-
tocol on f =

∑t
i=1 βifi for i.i.d. uniformly random7 βi. In fact, replacing FRI

with another IOPP would still result in a δ-correlated agreement test and as we
showed before (Theorems 3 and 4), we could use any other IOPP, to which we
would previously apply our HE-transformation (Definition 13).

Whereas there are new, concretely more efficient IOPs for circuit satisfiabil-
ity every year [BCR+19,COS20], a series of variants of the FRI protocol have
remained as the most practical choice for an IOPP until this day. Since this is the
most stable component of our overall compilers, we provide our HE-Batched-FRI
protocol in Fig. 3. We also adapt the results of [BGK+23] concerning round-by-
round soundness of FRI to HE-Batched-FRI. Notice that we only need to con-
sider RBR soundness, rather than RBR knowledge soundness, since the former
is enough for their δ-correlated hIOP-to-SNARK compiler.

Theorem 5. Let F be a finite field, L0 ⊆ F
∗ a smooth multiplicative subgroup

of size 2n, d0 = 2k, ρ = d0/|L0| = 2k−n and � a positive integer. For any
integer m ≥ 3, η ∈ (0,

√
ρ/(2m)), relative distance δ ∈ (0, 1 − √

ρ − η) and
functions f

(0)
1 , . . . , f

(0)
t : L0 → F for t ≥ 2 such that at least one of them

is δ-far from RS(0), the HE-Batched-FRI protocol (Fig. 3) is complete and has
round-by-round soundness error ε = max

{
(m+1/2)7·|L0|2

3ρ3/2|F| , (1−δ)�
}

. Furthermore,
under Conjecture 5.12 from [BGK+23], the error can be further reduced to ε =
max

{
|L0|c2

(ρη)c1 |F| , (1 − δ)�
}

.

Proof. Completeness follows from Theorem 2 and Definition 15. RBR soundness
follows from Theorem 2 and [BGK+23, Theorem 4.2]. �

6 Optimisations

To make our construction practical, we introduce a series of optimizations.

On the choice of HE Scheme. Our construction requires an exact HE scheme
that supports finite fields as the plaintext space, making it compatible with
nearly all modern HE schemes, such as TFHE [CGGI20], BGV [BGV12], and
BFV [Bra12,FV12]. CKKS [CKKS17], being approximate, is incompatible with
our approach. Thus, our choices are BGV/BFV and TFHE, guided by practical
performance and implementation availability, detailed in Sect. 7.

6.1 Tensoring

Recall the HE plaintext space structure from Sect. 2. Ideally, the plaintext ring
Rp should split into � copies of FpD , where D meets FRI security requirements,
i.e., |FpD | ≈ 2256. This requires Fp to contain roots of unity of order at most

7 We use i.i.d uniformly random coefficients, rather than powers of a single β, since
otherwise we would incur an O(n) soundness loss, see [BCI+20,BGK+23].

324 D. F. Aranha et al.

Fig. 3. The HE-Batched-FRI protocol.

HELIOPOLIS 325

2N/D, where N is the cyclotomic ring degree. Given the HE scheme’s require-
ment that log(N) ∈ 11, . . . , 17, p would have to be smaller than 2N/D. Addition-
ally, FRI requires FpD to have a 2n-th root of unity, thus pD > 2n. In practice,
using roots of unity in Fp (requiring p > 2n) allows the NTT (Sect. 6.2) to run
D times faster.

Combining all requirements (FRI, HE, implementation), 2n = dρ−1 < p <
2N/D, restricting input polynomial size to d < 2Nρ/D. This is feasible with
parameter sets like (log(N), ρ,D) = (17, 1/2, 6), allowing d up to 214. However,
better-performing parameters, such as (log(N), ρ,D) = (14, 1/16, 12), restrict d
to around 26, almost entirely restricting the use of FRI use.

To address this, we use a field extension FpD of Fp in our HE-FRI protocol.
When evaluating an encrypted polynomial on an element of FpD , we emulate
the arithmetic of FpD through a circuit. This results in D HE ciphertexts, which
together encrypt a single value in FpD . Alternatively, an intermediate approach
uses a value d′, with the plaintext space as Fpd′ , and emulates FpD arithmetic
with D/d′ ciphertexts. The ideal value of d′ depends on the application, since
increasing the plaintext modulus increases all HE parameters.

6.2 Shallow Reed-Solomon Encoding

Reed-Solomon encoding consists of interpreting data as a polynomial of degree
(d−1) and evaluating it at 2n = dρ−1 independent points. Polynomial evaluation
is linear and simply evaluating it 2n times would result in quadratic performance.
The Fast Fourier Transform is a staple solution for this problem, enabling the
evaluation in O(2n log 2n) operations. Commonly, however, it is implemented as
a circuit with depth log 2n, which poses some challenges for its homomorphic
evaluation. Fortunately, FFTs, and, more specifically, Number-Theoretic Trans-
forms (NTTs), their generalization to finite fields, are ubiquitous in the FHE
literature, and solutions for evaluating them with small depth are very well estab-
lished [CG99,GPvL23]. In this work, we adopt a radix-k NTT of parametrizable
depth for some k ∈ [[2,

√
2n]] optimized based on practical performance.

The NTT can be especially costly when running batched FRI, as the RS
codeword needs to be calculated for each polynomial individually. This cost can
be minimized by exploiting the HE scheme packing to perform the NTT over
several polynomials at once. We consider the following strategies for packing.

– Single polynomial packing: Let k be a single polynomial k =
∑d−1

i=0 kiXi ∈
Fp[X]. We encrypt k in an array of d/N ciphertexts ct, such that cti encrypts
∑d−1

j=0 ki·N+jXj . The main advantage of this approach is the significantly
reduced memory usage, as we process one polynomial at a time. Conversely,
evaluating the NTT algorithm with this packing requires performing permuta-
tions within each ciphertext [CG99], which is an expensive process compared
to the other operations needed for evaluating the NTT.

– Batched polynomial packing: Let k be an N -sized list of polynomials with
maximum degree (d − 1), and ki,j be the coefficient of degree j of the i-th
polynomial. We encrypt k in an array of d ciphertexts cti, such that the j-th

326 D. F. Aranha et al.

slot of cti encrypts kj,i. The main advantage of this approach is avoiding the
aforementioned permutations, as each coefficient of a polynomial would be in
different ciphertexts. For large polynomials, the memory requirements to run
the NTT with this packing might be impractical, however.

In both cases, even though FRI is defined over FpD , we perform the entire
NTT in Fp by selecting roots of unity in Fp, as roots of unity in FpD would
bring negligible advantage compared to the size of p (as discussed in Sect. 6.1).
Further, the goal of the NTT is to create a redundant representation of the
polynomial (i.e., the RS codeword), which consumes more memory to be stored.
In this way, storing the codewords could represent a problem, even if storing the
original polynomials was not. This is the main aspect we consider when choosing
which type of packing we adopt. Mixed packing approaches could likely be a
better solution for this problem, but developing them is not within our scope.

6.3 Shallow Folding

In the commit phase of HE-FRI (Fig. 3), P needs to compute a series of ora-
cles �EncPoly(f (i), Li)�. Let us denote f (i+1) = Fold(f (i), αi). The complexity of
producing all such foldings as described there is O(2n), while the depth8 is n. To
reduce depth, we replace the FFT-like algorithm with a DFT-like algorithm. We
compute the first layer of the Fold operation as usual, then pre-compute con-
stants for the following layers, expressing each as a composition Fold◦ . . .◦Fold.
Each layer can now be expressed as inner products of the original polynomial,
reducing the depth to 1, while increasing the complexity to O(2n log(2n)). This
does not affect the overall FRI complexity (dominated by the NTT). The Veri-
fier’s side remains unchanged. The full algorithm is presented in the full version
[ACGS23].

6.4 Fast Decryption

In RLWE-based cryptography, decrypting small amounts of data may incur a
significant overhead depending on the adopted parameters. An RLWE sample
of dimension N encrypts up to N messages in Fp, which can all be decrypted
at once with cost O(N log N). However, if one wants to decrypt just a single
message in Fp, the cost would be at least O(N), which represents a performance
overhead of N/ log(N) times compared to the amortized cost of decrypting all
messages at once. During the commit phase of HE-FRI, the prover performs
computation using RLWE samples of dimension N encrypting N messages in
Fp. During the query phase, however, the verifier only needs to learn two evalu-
ation points in FpD per round for each linearity check. In this way, if the prover
provides these points packed in a ciphertext of dimension N , it would impose
a performance overhead of at least N/(2D) times for the verifier compared to
an optimal RLWE decryption (i.e., it would be decrypting at least N/(2D)

8 n is the logarithm of the codeword size. Folding is a linear algorithm.

HELIOPOLIS 327

more messages than necessary). To improve on this, we propose three possible
approaches. We summarise them here and present the details in the full version
[ACGS23].

Repacking. The simplest way of minimizing decryption costs is to reduce the
ciphertext dimension. This can be achieved in several ways. In this work, since
the prover also needs to arithmetically manipulate points individually, we choose
to extract the points to LWE samples and repack them using a key-switching
algorithm. We pack the two points needed per linearity check in the same RLWE
samples, further minimizing decryption costs.

Decomposition and Recomposing. While the repacking already enables us to sig-
nificantly reduce the ciphertext dimension, we are still limited by the value of
p. Specifically, the ciphertext dimension depends on the ciphertext modulus for
security, which, in turn, depends on the plaintext modulus p. To enable further
reductions in the size of N , we introduce a decomposition and recomposing pro-
cedure based on techniques introduced in [CLOT21] and described in [CGGI20].
Our proposal starts from the observation that since the verifier does not com-
pute any homomorphic operations on these samples (it only decrypts them), we
do not need to preserve any homomorphic properties. In fact, once the commit
phase is finished, the evaluation points can be treated simply as strings of bits,
and the goal becomes to encrypt them in the smallest possible RLWE cipher-
text. Considering this, we homomorphically decompose elements in Fp in digits
of size log p̄ for some p̄ < p. This process enables us to repack the evaluation
points in RLWE ciphertexts with smaller moduli and, hence, smaller dimensions.
We present our full recomposition process in the full version [ACGS23].

Adding Samples. Adding samples appears as an alternative to the decomposition.
The repacking procedure mentioned above allows us to reduce the dimension of
the RLWE samples that are sent to the verifier, but we are still not using all the
coefficients in the sample. Concretely, our implementation uses ciphertexts with
N = 512 to only encrypt 2D = 32 messages. Considering this, the verifier can
further minimize decryption costs by adding rotations of ciphertexts together and
decrypting messages from multiple ciphertexts at once. We note that rotation
can be done considering coefficient representation, which is inexpensive. While
this efficiently minimises the number of decryptions, it does not, contrary to the
decomposition, reduce the cost of hashing operations or proof size.

7 Experimental Results

Operating over the plaintext space allows compatibility with nearly all HE
schemes (except CKKS), enabling various implementation methods. For this
proof of concept, we focus on a simple and efficient implementation that demon-
strates practical execution times for both the prover and verifier. While we make
specific choices of schemes and techniques, our construction remains compatible

328 D. F. Aranha et al.

with most existing schemes. the full version [ACGS23]. provides a performance
characterization based on the number of basic operations executed by each party,
with and without the optimizations in Sect. 6. This broader view of HE-FRI per-
formance helps extrapolate the results to other parameters or schemes.

7.1 Practical Parameters

For the security of FRI, we consider parameters established by previous liter-
ature [BGK+23], reproduced in Table 1. There are also practical parameters
that are required for functionality, as we discussed in Sect. 6.1. Considering this,
Table 2 presents the main choices of parameters according to the maximum size
of the input polynomial that they support. We note that, for every parameter,
the maximum size of the input polynomial can be increased by up to D times
at the cost of D times more expensive NTT (as also discussed in Sect. 6.1).

Table 1. Security parameters we adopt for FRI, based on estimates of [BGK+23] using
Conjecture 5.12 from [BGK+23] We approximate the size of the field for practical
reasons.

Parameter log2(|FpD |) ρ m δ

FRI0

251-269

1/2 102 0.5
FRI1 1/4 51 0.75
FRI2 1/8 34 0.875
FRI3 1/16 26 0.937

Table 2. Practical parameters for FRI based on the maximum size of the input poly-
nomial d.

Maximum input size log2(d) D p log2(p) log2(|FpD |)
15 16 65537 16.0 256.0
20 11 23068673 24.5 269.1
25 9 469762049 28.8 259.3
30 7 75161927681 36.1 252.9
35 7 206158430209 37.6 263.1
40 6 6597069766657 42.6 255.5
45 5 1337006139375617 50.2 251.2

HELIOPOLIS 329

7.2 Proof-of-Concept Implementation

We build our proof of concept over the implementation of [S+21], a Python-
implemented version of FRI for prime fields. We extend it to work over the
extension field FpD and connect it to optimized FHE libraries to implement the
encrypted arithmetic. We consider polynomials of degree up to 215 and present
results for parameter sets FRI0 and FRI3, which are optimized for the verifier
and the prover, respectively. We run all the experiments in a c6i.metal instance
(Intel Xeon 8375C at 3.5GHz with 256 GiB of RAM) on AWS. The prover is
parallelized to use up to 32 threads and the verifier is single-threaded.

Fig. 4. Performance of HE-FRI using parameter sets FRI3 and FRI0 for D = 16 for
4096 polynomials (batched). Detailed results are provided in the full version [ACGS23].

Prover Performance. Figure 4a shows the results for the prover. It includes
the execution time of the RS encoding, batching, and folding procedures. For the
RS encoding, we implemented a generic RNS-based homomorphic NTT imple-
mentation built over Intel HEXL [BKS+21]. Its performance should be similar
to most commonly used HE libraries, as HEXL is used for RNS implementations
on libraries such as HELib [HS20] and OpenFHE [ABBB+22]. We use depth-
2 NTTs with parallelized recursive calls (up to a maximum of 32 threads) and
perform batched polynomial packing (Sect. 6.2) to compute it on N = 4096 poly-
nomials at once. Our construction is flexible to the HE encoding, as we may later
move to the required encodings during batching, as the full version [ACGS23]
details.

Our folding procedure, on the other hand, has fixed depth (Sect. 6.3) and is
the last procedure to run before decryption. As such, it requires a much smaller

330 D. F. Aranha et al.

ciphertext modulus and can be evaluated using single-precision (non-RNS)
implementations. In this way, whenever possible, we evaluate it using implemen-
tation techniques from TFHE [CGGI20] using the MOSFHET library [GBA24].
Despite being asymptotically quasi-linear, we note that the execution time
increases almost linearly with the polynomial size, which is a result of better
parallel efficiency and the overhead introduced by repacking (which is linear).
With FRI0, it takes less than 0.5 s to run for polynomials of degree bound up to
28, going up to 207 s for polynomials of degree bound 215.

Verifier Performance. Figure 4b shows the verifier results. Verification in FRI
is sublinear and typically runs in milliseconds. Hence, Python is not a good fit
to showcase practical timings, and we implemented an optimized version of it
in C. We only present a single-threaded version, but we note that it is trivially
parallelizable and could be significantly accelerated for larger parameters. We
show results for FRI0 and FRI3, noting that other parameters can also affect
verifier performance, particularly decryption costs. To minimize these, we only
considered repacking without decompositions, but the full version [ACGS23]
discusses further improvements. Our current setup allows for batched verification
of 4096 codewords in as low as 6ms, with performance scaling linearly with
the batch size. Future work includes optimizing for smaller batches and other
parameters.

Acknowledgements. We would like to thank Zvika Brakerski for comments about
our repacking optimization for the HE-Batched-FRI protocol. We also want to thank
Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan
Tiwari and Michał Zajac for a useful conversation about their work [BGK+23] and
confirming that their analysis does not require finite fields to be prime.

This work was partly done while A. Guimarães was a Ph.D. student at University
of Campinas, Brazil. He was supported by the São Paulo Research Foundation under
grants 2013/08293-7, 2019/12783-6, and 2021/09849-5. This work is partially funded by
the European Union (GA 101096435). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the European Commission
can be held responsible for them.

References

ABBB+22. Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,
Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. OpenFHE:
Open-Source Fully Homomorphic Encryption Library. In Proceedings of
the 10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, WAHC’22, page 53-63, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

HELIOPOLIS 331

ACGS23. Diego F. Aranha, Anamaria Costache, Antonio Guimarães, and Eduardo
Soria-Vazquez. HELIOPOLIS: Verifiable computation over homomorphi-
cally encrypted data from interactive oracle proofs is practical. Cryptology
ePrint Archive, Paper 2023/1949, 2023.

ACY23. Gal Arnon, Alessandro Chiesa, and Eylon Yogev. IOPs with inverse poly-
nomial soundness error. Cryptology ePrint Archive, 2023.

AHH+24. Nuttapong Attrapadung, Goichiro Hanaoaka, Ryo Hiromasa, Yoshihiro
Koseki, Takahiro Matsuda, Yutaro Nishida, Yusuke Sakai, Jacob C. N.
Schuldt, and Satoshi Yasuda. Privacy-preserving verifiable CNNs. In
Christina Pöpper and Lejla Batina, editors, Applied Cryptography and Net-
work Security, pages 373–402, Cham, 2024. Springer Nature Switzerland.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018.

BCCW19. Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. nGraph-HE2: A high-throughput framework for neural net-
work inference on encrypted data. In Proceedings of the 7th ACM Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 45–56, 2019.

BCFK21. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible
and efficient verifiable computation on encrypted data. In Juan Garay, edi-
tor, PKC 2021, Part II, volume 12711 of LNCS, pages 528–558. Springer,
Heidelberg, May 2021.

BCI+20. Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shub-
hangi Saraf. Proximity gaps for reed-solomon codes. In 61st FOCS, pages
900–909. IEEE Computer Society Press, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive ora-
cle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg, Octo-
ber / November 2016.

BGBE19. Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy
preserving inference. In International Conference on Machine Learning,
pages 812–821. PMLR, 2019.

BGK+23. Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler,
Pratyush Ranjan Tiwari, and Michał Zając. Fiat-Shamir Security of FRI
and Related SNARKs. In Jian Guo and Ron Steinfeld, editors, Advances
in Cryptology – ASIACRYPT 2023, pages 3–40, Singapore, 2023. Springer
Nature Singapore.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, edi-
tor, ITCS 2012, pages 309–325. ACM, January 2012.

332 D. F. Aranha et al.

BKS+21. Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D.M. de Souza, and Vin-
odh Gopal. Intel HEXL: Accelerating Homomorphic Encryption with Intel
AVX512-IFMA52. In Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, WAHC ’21, page 57-
62, New York, NY, USA, 2021. Association for Computing Machinery.

BMMP18. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Pail-
lier. Fast homomorphic evaluation of deep discretized neural networks.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 483–512. Springer, Heidelberg,
August 2018.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Heidelberg, August 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. SIAM Journal on computing, 43(2):831–
871, 2014.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice
to theory. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC,
pages 1082–1090. ACM Press, June 2019.

CCL15. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

CG99. Eleanor Chu and Alan George. Inside the FFT Black Box: Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, November 1999.
Google-Books-ID: 30S3kRiX4xgC.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, January 2020.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 409–437. Springer, Heidelberg, December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
Improved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 670–699.
Springer, Heidelberg, December 2021.

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct argu-
ments in the quantum random oracle model. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 1–29.
Springer, Heidelberg, December 2019.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

HELIOPOLIS 333

CP19. Benjamin R Curtis and Rachel Player. On the feasibility and impact of
standardising sparse-secret LWE parameter sets for homomorphic encryp-
tion. In Proceedings of the 7th ACM Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, pages 1–10, 2019.

DDGR20. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, vol-
ume 12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable
computation on encrypted data. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 2014, pages 844–855. ACM Press, Novem-
ber 2014.

FNP20. Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable
computation on encrypted data. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 124–154. Springer, Heidelberg, May 2020.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

GBA24. Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET:
Optimized Software for FHE over the Torus. Journal of Cryptographic
Engineering, July 2024.

Gen09a. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482.
Springer, Heidelberg, August 2010.

GGW23. Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove state-
ments obliviously? Cryptology ePrint Archive, Paper 2023/1609, 2023.
https://eprint.iacr.org/2023/1609.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GNS23. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio:
SNARKs for ring arithmetic. Journal of Cryptology, 36(4):41, October
2023.

GPvL23. Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen.
Amortized bootstrapping revisited: Simpler, asymptotically-faster, imple-
mented. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology
– ASIACRYPT 2023, pages 3–35, Singapore, 2023. Springer Nature Sin-
gapore.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2023/1609

334 D. F. Aranha et al.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press,
June 2015.

Hab22. Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint
Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.

HS20. Shai Halevi and Victor Shoup. Design and implementation of HElib:
a homomorphic encryption library. Cryptology ePrint Archive, Report
2020/1481, 2020. https://eprint.iacr.org/2020/1481.

S+21. Szepieniec et al. Anatomy of a stark - tutorial for starks with supporting
code in python, November 2021. https://github.com/aszepieniec/stark-
anatomy

SV14. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD oper-
ations. DCC, 71(1):57–81, 2014.

https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2020/1481
https://github.com/aszepieniec/stark-anatomy
https://github.com/aszepieniec/stark-anatomy

Zero-knowledge Protocols

Interactive Line-Point Zero-Knowledge
with Sublinear Communication

and Linear Computation

Fuchun Lin(B), Chaoping Xing, and Yizhou Yao

Shanghai Jiao Tong University, Shanghai, China
{linfuchun,xingcp,yaoyizhou0620}@sjtu.edu.cn

Abstract. Studies of vector oblivious linear evaluation (VOLE)-based
zero-knowledge (ZK) protocols flourish in recent years. Such ZK proto-
cols feature optimal prover computation and a flexibility for handling
arithmetic circuits over arbitrary fields. However, most of them have lin-
ear communication, which constitutes a bottleneck for handling large
statements in a slow network. The pioneer work AntMan (CCS’22),
achieved sublinear communication for the first time within VOLE-based
ZK, but lost the advantage of fast proving. In this work, we propose
two new VOLE-based ZK constructions that achieve sublinear commu-
nication and linear computation, simultaneously. Let C be a circuit with
size S, input size n, and depth d. In particular, our first ZK, special-
ized for layered circuits, has communication O(n + d log S), while our
second ZK can be used to prove general circuits and has communication
O(n+d log S +d2). Our results are obtained by introducing the powerful
sum-check techniques from the mature line of works on interactive proofs
into the context of VOLE-based ZK for the first time. Reminiscent of
the non-interactive line-point zero-knowledge proof system (ITC’21), we
introduce an interactive line-point zero-knowledge (ILPZK) proof system,
which closely connects with VOLE-based ZK protocols. In addition, our
works also enrich the studies of ZK based on interactive proofs, with
new interesting features (e.g., having information-theoretic UC-security,
naturally supporting any field) achieved.

1 Introduction

A proof system allows a prover to convince a verifier that a given input x belongs
to some language L. In the literature, circuit satisfiability is a popular NP lan-
guage, where the prover proves to the verifier that a given circuit C : F

n → F
n′

is satisfiable (i.e., there exists some witness w ∈ F
n such that C(w) = 1). Fur-

thermore, a zero-knowledge (ZK) proof of knowledge system guarantees a valid
proof can only be generated by the one who holds the witness w, and it reveals
nothing about w beyond C(w) = 1.

Yizhou Yao is the first author as well as the main contributor of this paper.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 337–366, 2025.
https://doi.org/10.1007/978-981-96-0935-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_11&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_11

338 F. Lin et al.

Though studies of ZK proof systems date back to 1980 s [20], they have not
been brought into real-life applications until past few years ago. There are two
mainstream focuses on improving the concrete efficiency of ZK proofs, prover
time, and proof size(which constitutes a bottleneck of verification time). For
prover time, the best one can hope for is that generating a proof is as fast
as verifying the witness in the clear. For proof size, proofs with proof size as
small as possible (e.g., constant) are preferred, so that fast verification for large
statements becomes possible. However, achieving both goals simultaneously is
generally very challenging, in the sense that compressing the proof size is usually
accompanied by consumption of prover’s computation resources. To our best
knowledge, there are a few existing ZK proof systems that achieve linear prover
time1 and sublinear (in the circuit size) proof size simultaneously. We give a
brief overview on them as follows.

ZK with Linear Prover Time and Sublinear Proof Size. The first such
proof system falls within the scope of interactive oracle proofs (IOP), with a line
of works [8,9,21,35]. Brakedown [21], as the state-of-the-art, exploits a tensor
structure of linear combinations, and makes use of linear-time encodable codes.
Due to the asymptotic nature of known constructions for linear-time encodable
codes [18,21], the prover’s computational overhead might be relatively large for
small or medium-sized statements. Moreover, these works operate over large
fields with field size at least Ω(|C|), restricting the application scenarios.

The second approach follows the GKR interactive proof (IP) protocol [19],
with a line of works [31,34,37,38]. At a high level, these works start with opti-
mizations of GKR that have linear prover time, and incorporate a commitment
scheme to achieve zero-knowledge. The prover computation in original GKR is
around cubic in the circuit size, dominated by evaluating multi-variate polyno-
mials at multiple points. The computational overhead was finally optimized to
constant due to efforts in a series of works [14,29,30,34], through exploiting that
these polynomials and points are highly structured. On a separate note, original
GKR assumes a layered circuit, in which each gate takes input only from gates
in the previous layer. The recent breakthrough [37] extends GKR to general
circuits and maintains a linear time prover, by carefully describing the much
more complicated relations among layers. We finally summarize the different
commitment schemes used in these works2. In Hyrax [31], the underlying com-
mitment is Pedersen commitment [26], while in Libra [34] and Virgo++ [37], the
authors use a pairing-based polynomial commitment. Therefore, all these three
protocols are not post-quantum. Moreover, the use of a pairing-based polyno-
mial commitment not only leads to an inherent trusted setup, but also incurs a
bigger computational overhead when the witness size is close to the circuit size.

VOLE-based Zero-Knowledge Proofs. Very recently, a line of works [10–
12] studying how to efficiently generate pseudorandom correlations between par-
1 We say a ZK proof has linear prover time, if the prover’s computation is only a

constant times larger than that of verifying the witness in the clear.
2 We remark that Virgo [38] uses a polynomial commitment based on FRI [6], leading

to prover computation O(|C| + n log n), where n is the input size.

ILPZK with Sublinear Communication and Linear Computation 339

ties gave birth to ZK proofs based on random vector oblivious linear evaluation
(VOLE) correlations. In general, VOLE-based ZK protocols [2,5,16,17,24,32,36]
have fascinating performance on the prover side, where the prover only pays
a very small constant computational overhead, and proving can be done in a
streaming fashion to reduce memory cost. One typical example is the line-point
zero-knowledge (LPZK) [17], with only 4× to 7× prover computational over-
head. LPZK requires sending one field element per multiplication gate and its
followup work [16] reduced the communication complexity to 1/2 field element
per multiplication gate for layered circuits, which is still linear in the circuit
size3. Another optimization of LPZK proposed the QuickSilver [36] demonstrat-
ing an important advantage of VOLE-based ZK protocols compared against
other proof systems. That is VOLE-based ZK protocols can be easily adapted
to prove arithmetic circuits over small fields (even Boolean circuits) with online
communication independent of the security parameter. We refer to a recent sur-
vey [4] for more details of the VOLE-based ZK literature.

Most VOLE-based ZK protocols are not succinct, with linear proof size
and verifier costs almost the same as the prover. The only one exception is
AntMan [33], which achieves sublinear proof size but at the cost of increasing
prover time to quasi-linear and relying on an additively homomorphic encryp-
tion (AHE) scheme. To our best knowledge, there is no VOLE-based ZK protocol
achieving linear prover time and sublinear proof size simultaneously. As previous
ZK proofs with such properties are realized under frameworks of succinct proofs
(either requires a trusted setup, or assumes strong cryptographic assumptions,
or only supports larges fields), we ask the following question:

Can we realize ZK protocols with linear prover time and sublinear proof size
in the context of VOLE-based ZK?

1.1 Our Contributions

We bring the powerful sum-check protocol [25] along with multi-linear extensions
(MLE) into the study of VOLE-based ZK protocols. This is the first time a non-
trivial (compressing) classical proof technique is used in this new paradigm.
To distinguish from the conventional VOLE-based ZK protocols, we formulate
our protocols under a new framework that we dub interactive line-point zero-
knowledge (ILPZK). In an LPZK proof, the prover P independently generates an
affine line v(x) := a · x + b in an �-dimensional vector space F

� from the circuit
C and the witness w. Then the verifier V queries a single point v(Δ) := a ·Δ+b
on this line, which allows V to check the correctness of the computation of every
gate. This “gate-by-gate” nature leads to a barrier of squashing the proof length
(i.e., the dimension �) to sublinear.

In our protocols, due to the introduction of interactive sum-check, the affine
line v(x) := a · x + b is generated collectively by the prover P and the verifier
V, where V’s participation is in the form of providing random challenges in each

3 For special type of statements, sublinear proof size constructions were reported, for
example, conjunctions [5] and low-degree polynomials [36].

340 F. Lin et al.

round of sum-check. The involvement of V in the generation of the affine line
makes it possible for implementing probabilistic checking within v(x), in the
sense that wire values are “compressed” by MLE encodings. This is the reason
why the proof size can be made sublinear in the circuit size and the verifier can
be light-weight. We believe that ILPZK (see Definition 2 for a formal description)
captures the essence of our new protocols and may have independent interest in
its own right.

ILPZK for Layered Arithmetic Circuits. Our ILPZK proof for satisfiability
of layered arithmetic circuits achieves linear prover time and strict sublinear
proof size O(n+d log S), where n is the witness length and S is the circuit size.

Theorem 1 (ILPZK for layered arithmetic circuit satisfiability). Let
C : F

n → F
n′

be a layered (log-space uniform) arithmetic verification circuit with
depth d and number of gates S. There exists an ILPZK proof that proves the
satisfiability of C with the following features:

• The prover runs in time O(S).
• The verifier runs in time O(n + n′ + d log S + T), where O(T) is the time for

evaluating MLEs, and is sublinear for log-space uniform circuits.
• Round complexity is O(d log S).
• Proof length is O(n + d log S).
• Soundness error is O(d log S

|F|).

ILPZK for generic arithmetic circuits. Our ILPZK construction for general
arithmetic circuits achieves linear prover time as well and mostly has sublinear
proof size except some extreme cases. While each gate of a generic circuit may
take inputs from all previous layers, one can still separate a generic circuit into
d “layers” where each gate takes at least one input from the previous layer, and
d also refers to the depth of the circuit.

Theorem 2 (ILPZK for Generic Arithmetic Circuit Satisfiability). Let
C : F

n → F
n′

be a generic arithmetic verification circuit with depth d and number
of gates S. There exists an ILPZK proof that proves the satisfiability of C with
the following features:

• The prover runs in time O(S).
• The verifier runs in time O(n+n′ +d2 +d log S +T), where O(T) is the time

for evaluating MLEs.
• Round complexity is O(d log S).
• Proof length is O(n + d log S + d2).
• Soundness error is O(d log S

|F|).

We remark that here the O(d2) term in the proof length is always upper
bounded by O(S). And only in some extremely bad cases (e.g., a narrow circuit
with each layer connected to all its previous layers), the upper bound is reached.

Support Circuits Over Small Fields. Both of our ILPZK constructions for
layered and generic circuits can be adapted to yield significant savings in proof

ILPZK with Sublinear Communication and Linear Computation 341

size when proving circuits over small fields (e.g. Boolean circuits) through the
use of subfield VOLE. More concretely, taking the Boolean layered circuits for
example, the proof size counted in bits is O(n + d log S log|F|), shaving off a
log|F| = O(κ) factor from the witness length n, where κ is the security parameter.
This is a big advantage compared against the non-VOLE-based proof systems,
as the usual way adapting such a protocol to work for small fields, is to view
the small field computations as computations over its extension field, which not
only incurs an overall O(κ) overhead, but also possibly demands attentions to
guarantee that computations of circuits are indeed over the small field. On the
other hand, our protocols still have significant asymptotic advantage compared
to O(n+S)-bit communication of conventional VOLE-based ZK protocols (e.g.,
QuickSilver [36]).

NIZK from Compiling ILPZK with VOLE Protocols. Both of our ILPZK
constructions for layered and generic circuits indeed satisfy additional properties
of public-coin and round-by-round soundness, which allow us to squash interac-
tions via the Fiat-Shamir transform. We first transform an ILPZK into an inter-
active VOLE-based ZK in the random VOLE-hybrid model, for which we prove
security in UC-framework. Then we show that we can obtain designated verifier
NIZK arguments from a pseudorandom correlation generator (PCG) instanti-
ation of random VOLE. In addition, we can obtain publicly verifiable NIZK
arguments from the VOLE-in-the-head (VOLEitH) [3,27] technique. In general,
the former has smaller computation, while the latter has smaller communication.
This allows our constructions to find applications in a wider range of scenarios.

1.2 Technical Overview

We provide more details about how we achieve sublinear communication while
maintaining linear prover computation in the context of VOLE-based ZK.

“Gate-by-gate” Limitations of LPZK. VOLE-based ZK proofs essentially
lie in the scope of “commit-and-prove” paradigm, where VOLE serves as a com-
mitment scheme. A vector x is committed via VOLE in the sense that, the prover
obtains random M and the verifier obtains random K,Δ such that K = x·Δ+M,
denoted by [x]. VOLE naturally satisfies a linearly homomorphic property, which
is the key to allowing to evaluate circuits underneath VOLE. For instance, given
[x], [y] for two values x, y and a scalar a, the commitment [z] is obtained by P
setting Mz := aMx + My and V setting Kz := aKx + Ky, where z := ax + y.

Most conventional VOLE-based ZK protocols follow a “gate-by-gate”
paradigm. We take LPZK [17] for example, as the works [16,17,32,36] differ
slightly on low level details concerning how multiplication gates are verified.
The prover first commits to the witness and all the intermediate values indi-
vidually via VOLE as described above. The linear homomorphism property of
VOLE implies that verification of addition gates can be realized for free, in the
sense that the output commitment can be locally computed from input commit-
ments. For multiplication gates, the prover needs to provide evidences supporting
the claim that each multiplication gate is computed correctly, which is done by

342 F. Lin et al.

appending additional entries to VOLE. It is not hard to see that witness, outputs
of multiplication gates, and evidences for multiplications should all be included
in the VOLE. This gives an intuition that the proof size has to be linear in the
circuit size.

“Layer-by-layer” via Sum-check Protocol. Suppose for simplicity that we
have a layered circuit. If we could commit to a whole layer of intermediate
wire values using a small number of entries in a VOLE instance, and check
relations layer-by-layer with a cost strictly smaller than verifying each gate, this
should be sufficient for breaking the linear proof size barrier. This is in fact
how the GKR [19] interactive proof protocol proceeds. We emphasise that no
zero-knowledge is required there and the prover can reveal committed values
directly to the verifier in plaintext. In a bare-bone sketch, GKR proceeds from
output layer to input layer sequentially, and employs a sum-check protocol for
the layer-by-layer reduction. In more detail, for each layer, GKR starts with a
claim about the values of this layer, applies sum-check, and ends with a claim
about the values of the previous layer. The final claim about the input layer
is actually a claim about the witness, and in fact a much simpler statement to
prove.

Cast in our ILPZK framework, and recall that the prover and the verifier are
allowed to collectively generate an affine line v(x) := a · x + b, the whole affine
line v then can be intuitively divided into d blocks v(0)(x),v(1)(x), . . . ,v(d−1)(x),
each specifying a “layer-by-layer” reduction. For simplicity, we call every v(i) a
sub-line of v. Essentially, each sub-line consists of a part serves as commitments
of sum-check messages, and a part that proves in zero-knowledge the commit-
ments are honestly generated. These together convince V that P has generated
a valid GKR proof that a GKR verifier would accept. As the length of each sub-
line is sublinear in the number of gates in the corresponding layer, we indeed
obtain an ILPZK with sublinear proof size as desired. The generic circuit case
is similarly handled incorporating the recent breakthrough results from [37].

Linear Time Prover. The techniques for achieving a linear time prover in our
ILPZK constructions for layered circuits and generic circuits follow closely from
Libra [34] and Virgo++ [37], respectively. In addition to costs of running GKR
in the clear, extra prover computational costs essentially come from proving all
commitments of sum-check messages are correctly generated, which is linear (a
small constant multiplicative overhead) in the number of sum-check messages.
Therefore, our constructions maintain a linear time prover.

Support Arithmetic Circuits Over any Field. We next sketch how our
ILPZK constructions can benefit from utilizing subfield VOLE. In a subfield
VOLE instance K = x·Δ+M, x is over a small field Fp, while K,M,Δ are over a
large extension field Fpr . In fact, subfield VOLE can be viewed as a commitment
scheme for elements of a subfield Fp. Directly replacing the random VOLE in
VOLE-based ZK protocols (e.g., QuickSilver [36]) with a random subfield VOLE
allows to prove circuits over Fp, with the same asymptotic communication but
counted in the number of Fp elements. However, for the affine line v(x) := a·x+b

ILPZK with Sublinear Communication and Linear Computation 343

in our ILPZK protocols, due to the use of MLEs in sum-check, part of a entries
are Fpr elements even though the arithmetic circuit is over Fp. Intuitively, in
order to apply the subfield VOLE techniques, we need an efficient construction
of a mixture of standard VOLE and subfield VOLE, where they share the same
random Δ. This seems a rather interesting variant of VOLE and might be useful
in other application scenarios. We observe that to construct the desired variant of
VOLE, it suffices to show that standard VOLE can be constructed from subfield
VOLE. We provide a natural construction by fixing a basis of Fpr over Fp.

1.3 Comparison with Related Works

On the one hand, our constructions are within the context of VOLE-based ZK.
On the other hand, as we distill ideas from the IP literature, our constructions
essentially follow the insightful idea of Cramer and Damg̊ard [15], where they
show how to obtain zero-knowledge arguments from IPs by using a cryptographic
commitment scheme. We now briefly compare our techniques with related tech-
niques from the literature and carefully argue the pros and cons.

Existing ZK Protocols with Linear Prover time and Sublinear Proof
Size. As techniques used in IOP-based ZK protocols are quite different, we omit
the detailed comparison. Compared to the state-of-the-art Brakedown [21], our
constructions have lower computational overhead for small and medium-sized
circuits, and have no restriction on the field size.

Essentially, our constructions share high-level similarities with ZK protocols
based on sum-check, e.g., Hyrax [31], Libra [34], Virgo [38], Virgo++ [37], Spar-
tan [28], and Cerberus [22]. In a high-level, the main difference is that here we use
a lightweight linearly homomorphic commitment scheme (from VOLE) instead
of a heavy one (Pedersen commitment [26]) in Hyrax, or a more powerful poly-
nomial commitment based on FRI [6] in Virgo, or a pairing-based polynomial
commitment in Libra and Virgo++, or a discrete-logarithm-based polynomial
commitment in Spartan4, or a Ligero-based polynomial commitment [1] in Cer-
berus5. This brings us the following features.

In addition to standalone-security, our constructions are statistically UC-
secure in the random VOLE-hybrid model. As random VOLE correlations can be
efficiently generated either from learning parity with noise (LPN) assumption [7]
or assuming a pseudo-random generator (PRG), our ZK protocols are post-
quantum when implemented. Finally, our constructions natively support proving
statements over arbitrary-sized fields, by using the subfield VOLE technique.
To our best knowledge, no previous protocol has achieved all these features
simultaneously in the context of sum-check-based ZK.

For circuits over sufficiently large fields, our constructions have almost the
same asymptotic performance as Libra and Virgo++. Our constructions instead
use a light-weight VOLE-based commitment scheme. A consequence is that,
4 Spartan actually has prover computation Oκ(|C|)..
5 Cerberus can achieve linear prover time by using linear-time encodable codes, while

they implement with Reed-Solomon codes, leading to a quasi-linear time prover.

344 F. Lin et al.

when the circuit size is not significantly larger than the witness size, our con-
structions have slightly larger proof size, while they have larger computational
overhead. For Boolean circuits, we offer much better concrete efficiency than
Libra and Virgo++ in both communication and computation.

VOLE-based ZK. Wolverine [32] was the first VOLE-based ZK that works for
arbitrary-sized fields with communication of 4 field elements per multiplication
gate. The work LPZK [17] and its follow-up work QuickSilver [36] reduced the
communication to 1 field element per multiplication. Next, improved LPZK [16]
showed that the communication can be further reduced by half when considering
layered circuits. All these works proceed an arithmetic circuit in a “gate-by-gate”
flavor, from which they gain benefits of linear prover time and small memory.
However, this also incurs proof size inherently linear in the circuit size. Compared
to these works, our constructions instead have a “layer-by-layer” flavor, and
in general have significantly smaller communication, at the cost of increasing
prover computation up to roughly 2×, memory increased to O(|C|), and round
complexity increased to O(d log |C|).

Several works consider optimizing communication complexity in special cases.
Mac’n’Cheese [5] focused on proving the disjunction of statements, with com-
munication cost only proportional to the longest one. QuickSilver [36] also pro-
posed a VOLE-based ZK for proving the computation of multiple polynomi-
als, with communication cost linear to the highest degree of these polynomials.
AntMan [33] started with a construction that allows for simultaneously proving
B evaluations of a circuit C, with communication of O(B + |C|) field elements,
and prover computation of O(B|C| log B). Then, they showed how to turn this
construction into a VOLE-based ZK for a general circuit case, which has com-
munication complexity O(|C|3/4), and prover computation O(|C| log |C|).

Compared to AntMan (for general circuits), our construction has linear
prover time, smaller communication in most application scenarios, the same
asymptotic memory consumption, and more rounds. Besides, our construction
is information-theoretic in the random VOLE-hybrid model and is public-coin,
while AntMan relies on an additively-homomorphic encryption scheme and is
not public-coin.

2 Preliminaries

Notations. In this paper, bold letters (e.g. a,b,M,K) are used to denote vec-
tors. Besides, we use xi to denote the ith-component of the vector x. We use
[a, b] (or [a, b + 1) sometimes) to denote the set of integers in the range from a

to b. A commitment of some value x is denoted by [x]. We use x
$← F to denote

that x is uniformly sampled from a field F. We identify the set {0, 1}� and the
set [0, 2�) through the natural bijection between the two sets.

Security Model, Functionalities, and Missing Proofs. We provide security
proofs of our ZK protocols in the universal composability (UC) framework [13],
in which we formally define a zero-knowledge functionality FZK. In particular,

ILPZK with Sublinear Communication and Linear Computation 345

we consider active adversary and static corruption. Due to space constraints, we
refer detailed security proofs and more preliminaries to the full version of this
paper [23].

2.1 VOLE-Based Commitment

Random vector oblivious linear evaluation (VOLE) is a functionality that allows
two parties PS , PR to obtain random correlated values. In more detail, the sender
PS obtains two vectors M,x, while the receiver PR obtains a scalar Δ and a
vector K such that K = M + x · Δ. We formalize the ideal functionality of
random VOLE over finite field F in Fig. 1.

The above VOLE correlation naturally induces a commitment scheme over
F. In the commit phase, the values x are committed in the sense that through a
VOLE functionality the sender obtains M, and the receiver obtains Δ,K, such
that K = M + x · Δ, denoted by [x]. In the unveil phase, [x] are opened by
the sender sending x,M to the receiver, who then checks K = M + x · Δ. Such
VOLE-based commitment schemes satisfy perfect hiding and statistical binding.
Intuitively, the receiver learns nothing about x before the unveil phase and the
sender cannot open [x] to x′ �= x unless he succeeds in guessing the Δ of the
receiver.

It can be observed that the above commitment scheme also satisfies a linearly-
homomorphic property. Given commitments [x1], . . . , [x�] and public coefficients
c, c1, . . . , c� ∈ F, the two parties can locally compute [y] = c +

∑
i∈[�] ci · [xi] by

setting y = c+
∑

i∈[�] ci ·xi, My =
∑

i∈[�] ci ·Mxi
, and Ky = Δ ·c+

∑
i∈[�] ci ·Kxi

.
In particular, we have [y] = [x]+ (y −x). This allows the sender to commit some
y of his choice by sending y − x to the receiver, given a commitment [x] of a
random x produced by a random VOLE functionality. From this observation, we
also define a chosen-input VOLE functionality , which can be easily realized by
a random VOLE functionality.

Fig. 1. Ideal functionality for random VOLE over F.

346 F. Lin et al.

2.2 Multi-linear Extension

The multi-linear extension (MLE) plays a crucial role in the study of interactive
proofs. We give a formal definition as follows:

Definition 1 (Multi-Linear Extension). Let f : {0, 1}� → F be a func-
tion that maps the �-dimensional binary hypercube to a field F. The multi-linear
extension of f is the unique polynomial f̃ : F

� → F such that f̃(x1, . . . , x�) =
f(x1, . . . , x�) for all x1, . . . , x� ∈ {0, 1}, where the degree of f̃ in each variable
is 1. Moreover, f̃ has the form

f̃(x1, . . . , x�) =
∑

ω∈{0,1}�

f(ω) · χω(x1, . . . , x�),

where, for any ω = (ω1, . . . , ω�),

χω(x1, . . . , x�) :=
�∏

i=1

(xiωi + (1 − xi)(1 − ωi)).

The set {χω : F
� → F}ω∈{0,1}� is referred to as the set of multi-linear Lagrange

basis polynomials with interpolating set {0, 1}�.

W.l.o.g., assume n is a power of two, then a vector W := (w0, . . . , wn−1) over F

can be naturally viewed as a function W : {0, 1}log n → F such that W (i) = wi

for all i ∈ [0, n). Hence, we define the multi-linear extension of a vector W in
this way, similarly denoted by W̃ . To evaluate the multi-linear extension W̃ of
W efficiently, we employ the algorithm proposed in [30], which takes O(n) time
and O(n) memory usage.

Lemma 1 ([30]). Assume n = 2� and given W ∈ F
n and r ∈ F

�, one can
compute W̃ (r) in O(n) time and O(n) space.

2.3 Sum-Check Protocol and GKR Protocol

Our ILPZK proof systems distill ideas from the well-known GKR protocol [19],
which involves a multi-variate sum-check protocol [25]. We overview the two
protocols here.

Sum-check protocols are used to sum up polynomial evaluations on a specific
set in a verifiable way, and play a crucial role in designing succinct arguments.
We focus on multi-variate sum-check problems, which refer to, given some public
�-variate polynomial f : F

� → F, the prover P wants to convince the verifier V
such that

H =
∑

b1,...,b�∈{0,1}
f(b1, . . . , b�),

without V computing H by evaluating f at 2� points on her own. Assuming the
maximum degree of f in each variable is d, the sum-check protocol has commu-
nication complexity O(d�), round complexity �, and soundness error O(d�/|F|).
Moreover, if one uses a linear time algorithm of evaluating MLEs (e.g., Lemma
1), sum-check can be realized with linear prover time as shown in [29].

ILPZK with Sublinear Communication and Linear Computation 347

Lemma 2 ([29]). Assume n = 2� and given �-variate multi-linear polyno-
mials f1, . . . , fd : F

� → F. Applying sum-check on the �-variate polynomial
g := f1 · · · fd takes prover time O(dn).

The GKR protocol is an interactive proof protocol, and can be used for eval-
uating layered arithmetic circuits in a verifiable way. More specifically, given a
layered circuit C and inputs w known to both parties, through invoking GKR, P
can convince V that h is indeed the evaluation of C on w without V computing
C(w) by herself. In a high level, GKR proceeds the circuit from output to input,
in a layer-by-layer fashion. For each layer, GKR starts with a claim about values
in this layer and employs a multi-variate sum-check protocol, which reduces the
claim to claims about the previous layer. Then to proceed the previous layer,
a condensing technique was designed in GKR that allows to combine multiple
claims to one claim. The final claim about the input layer can be checked by
V directly. Assuming the layered circuit C has depth d and S gates, GKR has
communication complexity O(d log S), round complexity O(d log S), and sound-
ness error O(d log S/|F|). In [34], GKR is optimized to have a linear prover time.
Furthermore, if C is log-space uniform, authors of [19] showed that the GKR
verifier can run in time O(log S).

2.4 LPZK [17] and QuickSilver [36]

The LPZK proof system essentially follows the “commit-and-prove” paradigm.
Intuitively, the proof consists of two parts, where the first part serves as (linearly-
homomorphic) commitments of the extended witness (i.e., wire values in the
case of circuit satisfiability), and the second part proves (in zero-knowledge)
that values underneath the commitments are exactly the extended witness. In
the case of proving arithmetic circuit satisfiability, the extended witness consists
of all wire values and it suffices to prove the satisfiability of a degree-2 relation
dependent on the circuit topology. To start with, we show two simple examples
of LPZK proof [17], which together allow to prove arbitrary degree-2 constraints.

1. Linear constraint : Let α, β ∈ F be two coefficients known to each other,
and suppose P wants to convince V that he holds some a1, a2 ∈ F such that
a1 = α · a2 + β. The corresponding LPZK works as follows:

– P constructs an affine line v(x) := a · x +b of dimension-3 with v1(x) :=
a1 ·x+b1, v2(x) := a2 ·x+b2 (as commitments of a), and v3(x) := 0·x+b3,

where b1, b2
$← F and b3 = b1 − α · b2.

– Given an evaluation v(Δ), V checks that v3(Δ) ?= v1(Δ)−α·v2(Δ)−β ·Δ6.
2. Multiplicative constraint: Suppose P wants to convince V that he holds

some a1, a2, a3 ∈ F such that a3 = a1 · a2. The corresponding LPZK is as
follows:

6 We remark that a3 must be 0, which can be guaranteed by P sending b3 to V in the
clear, which also shortens the VOLE length.

348 F. Lin et al.

– P constructs an affine line v(x) := a · x +b of dimension-4 with v1(x) :=
a1 · x + b1, v2(x) := a2 · x + b2, v3(x) := a3 · x + b3 (as commitments of

a), and v4(x) := a4 · x + b4, where b1, b2, b3
$← F, a4 := a1b2 + a2b1 − b3,

and b4 := b1b2.
– Given an evaluation v(Δ), V checks that v1(Δ)·v2(Δ) ?= v3(Δ)·Δ+v4(Δ).

As any degree-2 constraint can be represented by combinations of linear con-
straints and multiplicative constraints, one can naturally extend the above two
constructions and give a construction that proves arbitrary degree-2 relations.
In addition, the completeness and security directly follow those of the under-
lying two simple constructions, on which we defer a detailed discussion to [23,
Appendix A].

In this paper, we mainly focus on degree-2 relations consisting of individual
t1 linear constraints and t2 multiplicative constraints with n inputs. For proving
such degree-2 relations, the above LPZK construction requires the affine line
v(x) to have length at least n + t1 + t2.

Batch-Check Linear/Multiplicative Constraints. Let C be an arithmetic
circuit over F with n inputs, t multiplication gates, and arbitrary addition gates.
For proving the satisfiability of C, both LPZK [17] and QuickSilver [36] first
transform it into a degree-2 relation consisting of one linear constraint and t
multiplicative constraints with n+t inputs. Thus, the length in LPZK is n+2t+1
(n + t for “committing”, and t + 1 for “proving”). QuickSilver is essentially
a two-round ILPZK construction, which reduces the length to n + t + 1 by
introducing one additional round of interaction. Instead of building one sub-
line per multiplicative constraint in LPZK, QuickSilver builds a sub-line that is
the random linear combination of these t sub-lines. Similarly, the random linear
combination technique also works for compressing linear constraints. Therefore,
for proving a degree-2 relation consisting of individual t1 linear constraints and
t2 multiplicative constraints with n inputs, it suffices to construct an affine line
v(x) of length n + 2 in the ILPZK setting.

3 Interactive Line-Point Zero-Knowledge Proof

In this section, we first give a formal definition of our new notion of Interactive
LPZK proof system. Then we show how to compile such a proof system into a
publicly verifiable NIZK argument via the VOLE-in-the-Head technique.

3.1 Defining ILPZK

We define interactive LPZK proof systems for arithmetic circuit satisfiability.
The interactive LPZK proof system generalizes the original LPZK proof system,
in the sense that an LPZK is essentially a 1-round interactive LPZK.

Definition 2 (ILPZK). A t-round interactive line-point zero-knowledge
(ILPZK) proof system for arithmetic circuit satisfiability over F is given by a
pair of algorithms (P, V) with the following syntax:

ILPZK with Sublinear Communication and Linear Computation 349

– P(C,w, i, ri) is a PPT algorithm that given an arithmetic verification cir-
cuit C : F

n → F
n′

, a witness w ∈ F
n, a round index i ∈ [1, t] and a

sequence of strings ri with each ri being a prefix of ri+1, outputs a pair
of vectors a(i),b(i) ∈ F

�i . Let � :=
∑t

i=1 �i and a := (a(1), . . . ,a(t)),b :=
(b(1), . . . ,b(t)) ∈ F

�, which specify an affine line v(x) = a · x + b of dimen-
sion �.

– V(C, rt,Δ,vΔ) is a polynomial time algorithm that, given a string rt and
an evaluation vΔ of the line v(x) at some point Δ ∈ F, outputs accept or
reject.

With the above ILPZK algorithms, we formally define the ILPZK protocol.

ILPZK Protocol. Given a t-round ILPZK proof system with algorithms (P, V)
as defined in Def. 2, and a chosen-input VOLE functionality FVOLE. there exists
a t-round interactive protocol Π(P, V) proceeding as follows:

1. At the beginning, the verifier V picks a Δ ∈ F, and sends it to FF

VOLE. Let r0
be an empty string.

2. In each round i, where i = 1, 2, . . . , t,
– V picks a string si and sends it to the prover P. Then P and V compute

ri by appending si to the end of ri−1.
– P runs (a(i),b(i)) ← P(C,w, i, ri). Then P sends (a(i),b(i)) to FF

VOLE,
which returns v(i)

Δ := a(i) · Δ + b(i)7 to V.
3. After t-round of interactions, V already obtains vΔ := (v(1)

Δ , . . . ,v(t)
Δ). Finally,

V outputs V(C, rt,Δ,vΔ).

The ILPZK algorithms (P, V) should at least satisfy the following:

– Perfect Completeness. For any arithmetic circuit C : F
n → F

n′
and witness

w ∈ F
n such that C(w) = 1, the verifier V in Π(P, V) outputs accept with

probability 1, if the prover P honestly follows Π(P, V).
– ε-Soundness. For every arithmetic circuit C : F

n → F
n′

such that C(w) �= 1
for all w ∈ F

n, a malicious P with arbitrary cheating strategies in Π(P, V)
convinces V with probability at most ε.

– Perfect Zero-Knowledge. There exists a PPT simulator Sim such that, for
any arithmetic circuit C : F

n → F
n′

, any witness w ∈ F
n such that C(w) = 1,

any rt, and any Δ ∈ F, the output distribution of Sim(C, rt,Δ) is distributed
identically to vΔ, where v(x) is the affine line generated in Π(P, V) with P
holding w and V sending rt.

Furthermore, our ILPZK constructions also satisfy the following stronger
notions:

Public-coin. An ILPZK proof with algorithms (P, V) is public-coin, if each bit
of V’s messages (i.e., rt,Δ) in Π(P, V) is independently and uniformly random.

7 For our constructions in Sect. 4.1 and 5.1, we abuse the notation v(i) for stage i,
and denote by v(i,j) the sub-line generated in round j of stage i.

350 F. Lin et al.

ε-Knowledge Soundness. An ILPZK proof with algorithms (P, V) has ε-
knowledge soundness, if there exists an efficient extractor Ext such that, for
any arithmetic circuit C : F

n → F
n′

, any rt selected by V, and any v generated
by (malicious) P that makes V accept with > ε probability, Ext(C, rt,v) outputs
a valid witness w.

3.2 Compiling ILPZK to NIZK

Given a t-round public-coin ILPZK proof system with algorithms (P, V), we show
how to compile it into a NIZK argument via a two-step approach. As already
shown above, from algorithms (P, V), we can immediately obtain an interactive
protocol Π(P, V), assuming the existence of a chosen-input VOLE functionality.
In sketch, the first step is to transform Π(P, V) into an interactive protocol
Π′(P, V), with a sufficient number of random VOLE correlations generated at
the very beginning (say, offline phase). In the second step, we instantiate random
VOLE in two ways, yielding two different types of compiling.

In the first step, we rely on the linearly-homomorphism of VOLE. Recall
that in each round i of Π(P, V), V is supposed to learn v(i)(Δ). Assume P holds
random x(i),M(i), and V holds random K(i) such that K(i) = x(i) · Δ + M(i).
Let P send δ(i) := a(i)−x(i) and θ(i) := b(i)−M(i) to V, who then can compute

v(i)(Δ) : = K(i) + δ(i) · Δ + θ(i)

= (x(i) · Δ + M(i)) + (a(i) − x(i)) · Δ + (b(i) − M(i))

= a(i) · Δ + b(i),

as desired. Since x(i),M(i) are uniformly random, V learns nothing about v(i)(x)
except for v(i)(Δ). By applying the above transformation for every round of
Π(P, V), we obtain a t-round public-coin ZK protocol Π′(P, V) in the random
VOLE-hybrid model. We briefly state the security that Π′(P, V) could satisfy.

Malicious Security in UC-Framework. For our ILPZK constructions in this
paper, not only the stand-alone security is satisfied, but also the UC-security.
Formally speaking, for the ILPZK proof (P, V) in Sect. 4.1 or 5.1, the correspond-
ing ZK protocol Π′(P, V) UC-realizes FZK with malicious information-theoretic
security in the random VOLE-hybrid model.

Below we introduce the two approaches of the second step.

Instantiating rVOLE with PCG. Boyle et al. [10,12] introduced the cryp-
tographic primitive of pseudorandom correlation generator (PCG), which is an
extension of pseudorandom generator (PRG) from generating a batch of ran-
domness to a batch of correlated randomness between some parties. PCG offers
a concretely efficient candidate for generating random VOLE correlations in the
offline phase. The authors of [11] presented a two-round maliciously secure con-
struction of PCG for VOLE, and showed that one can obtain a designated verifier
NIZK from combining it with a non-interactive online phase. Hence, by applying
Fiat-Shamir transform to the online phase of Π′(P, V) and instantiating rVOLE
with PCG, we can obtain a designated-verifier NIZK argument.

ILPZK with Sublinear Communication and Linear Computation 351

Applying VOLEitH. Given a public-coin rVOLE-based ZK protocol Π′(P, V)
defined as above, one can typically obtain a publicly-verifiable NIZK argument
through applying the VOLEitH technique proposed by Baum et al. [3]. In a
high level, in the VOLEitH framework, random VOLE correlations are instan-
tiated from a (two-round) all-but-one OT protocol, where the prover is the OT
sender and the verifier the OT receiver. Then via the Fiat-Shamir transform,
the interactive ZK protocol based on OT is turned into a non-interactive ZK8.

4 Interactive LPZK for Layered Arithmetic Circuits

In this section, we describe an ILPZK proof system for proving the satisfiability
of layered arithmetic circuits, and we show that it achieves all properties as
indicated in Theorem 1. In addition, based on this ILPZK, we are able to provide
a self-contained VOLE-based ZK protocol ΠF

ZKl in Fig. 3. Finally, we prove that,
when restricted to layered arithmetic circuits, our protocol ΠF

ZKl UC-realizes
FZK in the rVOLE-hybrid model with information-theoretic malicious security.

4.1 Our ILPZK Construction

Our ILPZK proof system for layered circuits is inspired by the well-known inter-
active proof protocol GKR [19], and we employ optimizations from Libra [34] to
achieve a linear time prover. In a high level, the core idea of GKR is to reduce
a claim about the output layer to a claim about the input layer in an itera-
tive layer-by-layer sense. In [19], the authors discovered a brilliant equation that
captures adjacent layers of the circuit, which allows the reduction to be done by
employing a sum-check protocol on multi-variate polynomials [25]. For a better
readability, let us first explicitly list some notations used in this section.

Notations. In this section, we consider as a layered (log-space uniform) arith-
metic circuit over F of depth d, size S, and fan-in two. Each layer of C is
labeled by a number from 0 to d, with 0 being the output layer and d being
the input layer. More precisely, in a layered circuit C, layer i ∈ [0, d) consists of
add/mult gates, which take input from outputs of layer i + 1, and layer d con-
sists of input gates. W.l.o.g., we always assume each layer i of C contains in total
si = 2ki gates (thus S =

∑d−1
i=0 si), and we label them in a pre-defined order. In

addition, given the pre-defined order, we denote values on the output wires of
gates in each layer i by Wi ∈ F

si . We also define two functions for each layer
i ∈ [0, d), addi,multi : {0, 1}ki+2ki+1 → {0, 1}, referred as “wiring predicates”.
Each addi (multi) takes one gate label z ∈ {0, 1}ki in layer i and two gate labels
x, y ∈ {0, 1}ki+1 in layer i + 1, and outputs 1 if and only if gate z in layer i is an
addition (multiplication) gate that takes the output of gate x, y in layer i + 1 as

8 We remark that for statements defined over large fields, we need to apply the so-
called subspace VOLE technique of [3] to significantly reduce the prover computation
on generating random VOLE correlations. We omit the details as they are not the
focus of this work, and refer to [3,27].

352 F. Lin et al.

input. We view each Wi ∈ F
si as a function Wi : {0, 1}ki → F, and denote the

multi-linear extension of Wi,multi, addi by W̃i, m̃ulti, ãddi, respectively.
With Wi,multi, addi defined as above, it holds for all i ∈ [0, d) that

Wi(z) =
∑

x,y∈{0,1}ki+1

multi(z, x, y)Wi+1(x)Wi+1(y)+addi(z, x, y)
(
Wi+1(x)+Wi+1(y)

)
,

where z ∈ {0, 1}ki . This immediately implies the following equation

W̃i(z) =
∑

x,y∈{0,1}ki+1

m̃ulti(z, x, y)W̃i+1(x)W̃i+1(y)+ãddi(z, x, y)
(
W̃i+1(x)+W̃i+1(y)

)
,

(1)
holds for all z ∈ F

ki .
Our ILPZK is also within the commit-and-prove paradigm. In the “commit”

phase, the prover commits to the values that capture the full evaluation of C(w)
(also depend on messages received from the verifier), while in the “prove” phase,
the prover “opens” those commitments in zero-knowledge, thus the verifier can
check whether the prover holds a witness w such that C(w) = 1.

In a high level, our ILPZK proof for layered circuits can be divided into d
sequential stages, each consisting of a “sub-commit” phase and a “sub-prove”
phase (jumping ahead, each stage contains several rounds in our constructions).
Intuitively, in each stage i ∈ [0, d), the prover P proves a sub-statement (indexed
by i) to the verifier V that he knows some W̃i+1 such that Eq.(1) holds for W̃i

evaluated at a random point ri ∈ F
ki chosen by V. However, the sub-statement

i is never completely proved, unless P proves the sub-statement i+1. Until they
reach stage d − 1, P completely prove to V that he knows the witness W̃d such
that Eq.(1) holds for W̃d−1 evaluated at a random point rd−1 ∈ F

kd−1 chosen by
V. Eventually, these d sub-proofs together convince V that P knows a witness
w such that C(w) = 1.

Since the underlying commitment scheme is statistical binding, the sub-prove
phase of each stage i ∈ [0, d) can be deferred to stage d − 1 (i.e., when all sub-
commit phases are completed). Hence, let us first describe how P and V proceed
in the sub-commit phase of each stage i, and explain the arithmetic constraints
that values underneath the commitments should satisfy. We remark that in fact,
details of the first and the last stages are slightly different from the rest of the
stages, which we will explain later. Essentially, P and V perform a two-phase
(linear time) sum-check protocol on Eq.(1) underneath the commitment in each
stage i.

In Each Stage i ∈ [0, d), suppose that P and V start with an agreement on ri

and a commitment vi := W̃i(ri) · Δ + bi (with P holds W̃i(ri), bi and V holds
vi,Δ), denoted by [W̃i(ri)], where ri ∈ F

ki is a random point selected by V
(jumping ahead, ri is determined over several rounds of interactions during the
previous stage). At the end of stage i, they will agree on a point ri+1 ∈ F

ki+1 and
obtain a commitment vi+1 := W̃i+1(ri+1) · Δ + bi+1, denoted by [W̃i+1(ri+1)],
so that they can move to the next stage.

ILPZK with Sublinear Communication and Linear Computation 353

According to Eq. (1), P can define a 2ki+1-variate polynomial

f
(i)
r i

(X,Y) := m̃ulti(ri,X,Y)˜Wi+1(X)˜Wi+1(Y) + ˜addi(ri,X,Y)
(

˜Wi+1(X) + ˜Wi+1(Y)
)

.

(2)
Essentially, P wants to convince V that

∑
x,y∈{0,1}ki+1 f

(i)
ri (x, y) = W̃i(ri). We

let P and V interact 2ki+1 rounds to capture the summation of f
(i)
ri (X,Y) eval-

uated on the binary cube. Intuitively in each round, they sum-up one variable
of f

(i)
ri (X,Y). For the first ki+1 rounds, P defines two univariate polynomials

Ari(X) :=
∑

y∈{0,1}ki+1

m̃ulti(ri,X, y) · W̃i+1(y) + ãddi(ri,X, y),

and
Bri

(X) :=
∑

y∈{0,1}ki+1

ãddi(ri,X, y) · W̃i+1(y).

This immediately implies that
∑

x,y∈{0,1}ki+1

f (i)
ri

(x, y) =
∑

x∈{0,1}ki+1

Ari
(x) · W̃i+1(x) + Bri

(x).

In round j9, where j = 1, . . . , ki+1, P can compute a univariate polynomial
g(i,j)(Xj) from Ari

(X), W̃i+1(X), Br i
(X) as follows:

g(i,j)(Xj) :=
∑

xj+1,...,xki+1∈{0,1}
(Ar i · ˜Wi+1 +Br i)(x̄

(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki+1)

=
∑

xj+1,...,xki+1∈{0,1}

∑

y∈{0,1}ki+1

f
(i)
r i

(x̄
(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki+1 , y),

(3)
where x̄

(i)
1 , . . . , x̄

(i)
j−1 ∈ F are sent by V in the previous j−1 rounds. Since Ari(X)

and W̃i+1(X) are multi-linear polynomials, g(i,j)(Xj) has degree 2. Then P com-
putes three coefficients of g(i,j)(Xj), denoted by g(i,j) := (g(i,j)0 , g

(i,j)
1 , g

(i,j)
2), and

samples b(i,j) $← F
3. The interaction of round j proceeds as follows:

– P sends (g(i,j),b(i,j)) to FF

VOLE, which then returns v(i,j)
Δ := g(i,j) ·Δ+b(i,j)

to V.
– Upon receiving v(i,j)

Δ , V sends x̄
(i)
j

$← F to P.

Essentially, P commits to a polynomial g(i,j)(Xj), denoted by [[g(i,j)(·)]], from
which they can obtain [g(i,j)(α)] for any given α ∈ F. This is crucial for the
sub-prove phase, and below we show arithmetic constraints on these [[g(i,j)(·)]].
Recall that in the first round, P builds an affine line v(i,1)(x) := g(i,1) ·x+b(i,1),
where g(i,1) contains coefficients of g(i,1)(X1). By definitions of g(i,1), W̃i, we
9 Here the interaction where P first sends a line, and then V replies a challenge is

viewed as one round, which is consistent with our ILPZK definition (Def. 2).

354 F. Lin et al.

have that W̃i(ri) = g(i,1)(0) + g(i,1)(1), which gives a linear constraint: given
[W̃i(ri)], [[g(i,1)(·)]], P needs to convince V that

W̃i(ri) = 2g(i,1)0 + g
(i,1)
1 + g

(i,1)
2 .

In round j ∈ [2, ki+1], P builds an affine line v(i,j)(x) := g(i,j) · x + b(i,j). By
definitions of g(i,j−1)(Xj−1), g(i,j)(Xj) (Eq.(3)), we have that g(i,j−1)(x̄(i)

j−1) =
g(i,j)(0) + g(i,j)(1), which gives a linear constraint: given [[g(i,j−1)(·)]], [[g(i,j)(·)]],
P needs to convince V that

g
(i,j−1)
0 + g

(i,j−1)
1 · x̄

(i)
j−1 + g

(i,j−1)
2 · (x̄(i)

j−1)
2 = 2g

(i,j)
0 + g

(i,j)
1 + g

(i,j)
2 .

Now we move on to round ki+1+j, where j = 1, . . . , ki+1, P instead computes
a univariate polynomial h(i,j)(Yj) with degree-2 simply from f

(i)
ri (X,Y):

h(i,j)(Yj) :=
∑

yj+1,...,yki+1∈{0,1}
f (i)

ri
(x̄(i), ȳ

(i)
1 , . . . , ȳ

(i)
j−1, Yj , yj+1, . . . , yki+1), (4)

where x̄(i), ȳ
(i)
1 , . . . , ȳ

(i)
j−1 are sent by V in the previous (ki+1 + j − 1) rounds.

Similarly, P computes h(i,j) and samples b(i,ki+1+j) $← F
3. The interaction of

round (ki+1 + j) proceeds as follows:

– P sends (h(i,j),b(i,ki+1+j)) to FF

VOLE, which then returns to V a v(i,ki+1+j)
Δ :=

h(i,j) · Δ + b(i,ki+1+j).
– Upon receiving v(i,ki+1+j)

Δ , V sends ȳ
(i)
j

$← F to P.

Intuitively, P commits to polynomials h(i,j)(Yj) for j ∈ [1, ki+1], and below
we show arithmetic constraints on these [[h(i,j)(·)]]. Very similarly, in the round
(ki+1 +1), we have the following linear constraint: given [[g(i,ki+1)(·)]], [[h(i,1)(·)]],
P needs to convince V that

g
(i,ki+1)
0 + g

(i,ki+1)
1 · x̄

(i)
ki+1

+ g
(i,ki+1)
2 · (x̄(i)

ki+1
)2 = 2h

(i,1)
0 + h

(i,1)
1 + h

(i,1)
2 .

And in the following round (ki+1 + j), where j ∈ [2, ki+1], we have the following
linear constraint: given [[h(i,j−1)(·)]], [[h(i,j)(·)]], P needs to convince V that

h
(i,j−1)
0 + h

(i,j−1)
1 · ȳ

(i)
j−1 + h

(i,j−1)
2 · (ȳ(i)

j−1)
2 = 2h

(i,j)
0 + h

(i,j)
1 + h

(i,j)
2 .

Note that after round 2ki+1, the prover P has committed to a polynomial
h(i,ki+1)(Yki+1), which leads to a commitment [h(i,ki+1)(ȳ(i)

ki+1
)]. By definition, we

have h(i,ki+1)(ȳ(i)
ki+1

) = f
(i)
ri (x̄(i), ȳ(i)). Suppose P has committed to W̃i+1(x̄(i)),

W̃i+1(ȳ(i)). According to Eq.(2), we have the following degree-2 constraint: given
[hi,ki+1(ȳ(i)

ki+1
)], [W̃i+1(x̄(i))], [W̃i+1(ȳ(i))], P needs to convince V that

h(i,ki+1)(ȳ(i)
ki+1

) = m̃ulti(ri, x̄
(i), ȳ(i)) · W̃i+1(x̄(i)) · W̃i+1(ȳ(i))

+ ãddi(ri, x̄
(i), ȳ(i)) · (

W̃i+1(x̄(i)) + W̃i+1(ȳ(i))
)
.

ILPZK with Sublinear Communication and Linear Computation 355

In order to move to the next stage, we could let P and V perform stage i+1 twice
on respective inputs [W̃i+1(x̄(i))], [W̃i+1(ȳ(i))]. However, this naive approach will
incur an exponential blow-up in the circuit depth d.

To avoid this issue, we adapt the technique proposed in GKR [19], which
allows for combining the above two sub-statements to one sub-statement i + 1.
The strategy requires one more round of interaction, and employs an observation
that x̄(i), ȳ(i) ∈ F

ki+1 determine an affine line L(i) such that L(i)(0) = x̄(i) and
L(i)(1) = ȳ(i). Then P can obtain a univariate polynomial q(i)(·) with degree-
ki+1 by restricting W̃i+1(·) to L(i), which satisfies that q(i)(0) = W̃i+1(x̄(i)) and
q(i)(1) = W̃i+1(ȳ(i)). Therefore, by P committing to q(i)(X), the two commit-
ments [W̃i+1(x̄(i))], [W̃i+1(ȳ(i))] can be replaced by [q(i)(0)], [q(i)(1)]. We let

P compute q(i) and sample b(i,2ki+1+1) $← F
ki+1+1. Now the additional round

2ki+1 + 1 proceeds as follows:

– P sends (q(i),b(i,2ki+1+1)) to FF

VOLE, which then returns to V a v(i,2ki+1+1)
Δ :=

q(i) · Δ + b(i,2ki+1+1).
– Upon receiving v(i,2ki+1+1)

Δ , V sends r(i)
$← F to P.

Now the corresponding degree-2 constraint is as follows: given [[h(i,ki+1)(·)]],
[[q(i)(·)]], P needs to convince V that

2
∑

l=0

h
(i,ki+1)

l (ȳ
(i)
ki+1

)l = m̃ulti(ri, x̄
(i), ȳ(i))q

(i)
0 (

ki+1
∑

l=0

q
(i)
l)+˜addi(ri, x̄

(i), ȳ(i))
(

q
(i)
0 +(

ki+1
∑

l=0

q
(i)
l)

)

As for moving to the next stage, they can set ri+1 := L(i)(r(i)), with P, V locally
computing

bi+1 :=
ki+1∑

j=0

b
(i,2ki+1+1)
j · (r(i))j , vi+1 :=

ki+1∑

j=0

v
(i,2ki+1+1)
Δ,j · (r(i))j ,

respectively. Note that it is supposed to hold that vi+1 = W̃i+1(ri+1) · Δ +
bi+1, (i.e., they can obtain [W̃i+1(ri+1)] in this way). For simplicity, we denote
(v(i,1)(x), . . . ,v(i,2ki+1+1)(x)) by v(i)(x).
In the first stage, P and V need to run a setup at first. According to the
definition of ILPZK, V picks a random Δ ∈ F and sends it to FVOLE. Jumping
ahead, P will be required to generate a line that captures the witness w before
he received challenges in the last stage. As the line is only dependent on the
witness, we let P do this at the very beginning of stage 0. Thus, the one round
of interaction for setup proceeds as follows:

– P samples b(0,0) $← F
sd , and sends (w,b(0,0)) to FF

VOLE. Then FF

VOLE returns
v(0,0)

Δ := w · Δ + b(0,0) to V.

– Upon receiving v(0,0)
Δ , V sends r0

$← F
k0 to P.

356 F. Lin et al.

Note that as in this paper we focus on the circuit satisfiability problem, the
output values of layer 0 should be all 1’s (i.e., W0 = 1 ∈ F

s0) as long as P
inputs a witness w. Hence, we let V locally set v0 = W̃0(r0) · Δ, and P locally
set b0 = 0. This completes the setup, and they can move on. For simplicity, we
let v(0)(x) also include v(0,0)(x).

In the last stage, to complete the whole proof, P remains to convince V that
all previous affine lines v(0)(x), . . . ,v(d−1)(x) are honestly generated (i.e., run
the deferred sub-prove phases.). In addition to the arithmetic constraints we
have specified above, there is an arithmetic constraint on [W̃d(rd)] (obtained in
stage d − 1) and [Wd] (obtained in stage 0), where P needs to convince V that

W̃d(rd) =
∑

ω∈{0,1}kd

Wd(ω) · χω(rd),

which is induced by the Lagrange interpolation of Def 1.
So far we have shown the arithmetic constraints that v(0)(x), . . . ,v(d−1)(x)

need to satisfy are actually degree-2 constraints. Therefore, we can introduce
one more round of interaction to efficiently check these constraints in a batch,
as indicated in the end of Sect. 2.4. For simplicity, we let v(d−1)(x) include the
extra two entries for batch checking linear and multiplication constraints.

4.2 Complexity

Here we analyze the complexity of our construction in Sect. 4.1.

Round Complexity. Our construction can be divided into d stages, with each
stage i ∈ [1, d − 2] having 2ki+1 + 1 rounds. In particular, stage 0 has 2k1 + 2
rounds, and stage d − 1 has 2kd + 2 rounds. Thus, there are 2 +

∑d
i=1(ki + 1) =

O(d log S) rounds in total.

Proof Size. The proof size is the summation of length of v(0)(x), . . . ,v(d−1)(x).
For i ∈ [1, d−2], each v(i) has length 6ki+1 +ki+1 +1 = 7ki+1 +1, while v(0)(x)
has length sd + 7k1 + 1, and v(d−1)(x) has length 7kd + 1 + 2. Thus, the total
proof size is O(sd + 2 +

∑d
i=1(7ki + 1)) = O(n + d log S).

Prover time. Applying “sum-check” dominates the prover time. By Lemma 2,
for each stage i, performing a two-phase sum-check for generating sub-
statements costs prover time 2

∑ki,i+1
j=0 O(2ki,i+1−j) = O(2ki,i+1) = O(si,i+1),

and performing a sum-check for combining sub-statements costs prover time
∑ki+1

j=0 O(2ki+1−j) = O(2ki+1) = O(si+1). Thus, it takes the prover overall O(S)
time.

Verifier Time. The verifier V needs to at least read the entire proof, which
takes time O(n + d log S). In addition, V also needs to evaluate multi-linear
polynomials at some specific points, including computing [W̃0(r0)], [W̃d(rd)]
and m̃ulti(ri, x̄

(i), ȳ(i)), ãddi(ri, x̄
(i), ȳ(i)) for each i ∈ [0, d). By Lemma 1, the

ILPZK with Sublinear Communication and Linear Computation 357

former two computations cost time in total O(n + s0). Evaluating m̃ulti and
ãddi can be done in time O(log S) for several types of circuits [14,29], as they
are usually very sparse. Also, [19] proposed a method for log-space uniform
circuit, which takes verifier time O(d log S) by outsourcing the computation to
the prover. In summary, for layered log-space uniform circuits, V runs in time
O(n + s0 + d log S).

4.3 Security Proof in UC-Framework

We present in Fig. 3 a self-contained zero-knowledge protocol ΠF

ZKl in the random
VOLE-hybrid model, which is based on our ILPZK proof in Sect. 4.1.

In the offline phase, the prover P and the verifier V invoke the random
VOLE functionality FF

rVOLE, and they obtain a certain number of random VOLE
correlations (i.e., VOLE commitments of random values). Due to the linearity
of VOLE correlations, P can commit to a value w by sending δ := w − ν to V
and computing [w] := [ν] + δ, where [ν] is a random VOLE correlation.

In the online phase, P and V follow the instructions of our ILPZK construc-
tion except that P commits to values through random VOLE instead of VOLE.
For a cleaner presentation, we design two tailored procedures for batch-checking
linear and multiplicative constraints, with details in Fig. 2. In the case of checking
linear constraints, it suffices to allow V to check the value underneath a certain
commitment is zero. More specifically, given a VOLE-based commitment [x]
with Kx = x · Δ + Mx, V can check [0] ?= [x] by P revealing Mx and checking
Kx

?= Mx. Hence, applying this procedure would not increase the number of
random VOLE correlations. While for the case of checking multiplicative con-
straints, they need to consume one random VOLE correlation. More specifically,
recall the multiplicative constraint check in Sect. 2.4, V needs to obtain v4(Δ) so
that she can complete the verification. But directly revealing the two coefficients
of v4(x) certainly leaks information about P’s inputs. To prevent this leakage,
one can mask it by an additional entry of random VOLE. Therefore, by using the
random linear combination technique, performing the two checking procedures
only consumes one additional entry of random VOLE.

The following theorem asserts the security of our protocol ΠF

ZKl. Moreover,
Theorem 3 implies Theorem 1.

Theorem 3. Our ZK protocol ΠF

ZKl UC-realizes the ZK functionality FZK in
the FF

rVOLE-hybrid model with information-theoretic malicious security. In par-
ticular, the environment Z’s advantage is O(d log S

|F|).

Extending to any Field. Recall that random subfield VOLE allows to commit
elements of a small field Fp over a large enough extension field Fpr . Therefore,
to prove the satisfiability of a circuit C over Fp, one can substitute VOLE with
subfield VOLE for “gate-by-gate” VOLE-based ZK protocols as all wire values
are over Fp. However, for our “layer-by-layer” protocol ΠF

ZKl, the multi-linear
extensions of layers must be evaluated at Fpr points for security guarantee (hence

358 F. Lin et al.

Fig. 2. Procedures for batch-checking linear and multiplicative constraints.

are over Fpr), while the witness w is over Fp. Therefore, we intuitively hope for
a mixture of random VOLE and random subfield VOLE, where the verifier holds
the same random Δ. We formalize the required functionality as FFp,Fpr

sVOLE. On top
of FFp,Fpr

sVOLE, we can easily extend our ZK protocols to any field. It remains to show
an efficient construction of FFp,Fpr

sVOLE. In fact, we observe that by fixing a basis of
Fpr over Fp, denoted by λ1, . . . , λr, standard VOLE correlations can be locally
computed from subfield VOLE correlations. For instance, given [x1], . . . , [xr],
where x1, . . . ,xr are over Fp, the commitment of x :=

∑r
i=1 xiλr over Fpr can

ILPZK with Sublinear Communication and Linear Computation 359

Protocol ΠF

ZKl

Notations follow Sect. 4.1. The prover P wants to convince the verifier V that he
holds a witness w ∈ F

n such that C(w) = 1. Offline phase

1. The prover P and the verifier V send (Init) to FF

rVOLE, and V receives Δ ∈ F.
2. P and V send (Extend, n +

∑d
i=1(7ki + 1) + 1) to FF

rVOLE, which returns
commitments on random values, denoted by [ν], [μ], [π], where ν ∈ F

n, π ∈ F.
For simplicity, we view μ as {μi,j}i∈[0,d),j∈[7ki+1+1].

Online phase

1. The prover P and the verifier V obtain [w] (by P sending δ := w − ν to V).
2. For each layer i, P computes Wi and stores them. V sends a random r0 ∈ F

k0

to P, then they locally compute m0 := W̃0(r0) (Note that W0 = 1 ∈ F
s0).

3. For i = 0, 1, . . . , d − 1,
(a) The prover P defines the 2ki+1-variate polynomial f

(i)
r i (X,Y) :=

m̃ulti(ri,X,Y)W̃i+1(X)W̃i+1(Y)+ãddi(ri,X,Y)(W̃i+1(X)+W̃i+1(Y)).
(b) For j = 1, . . . , ki+1,

i. P computes a univariate polynomial g(i,j)(Xj) of degree-2, writing as

g
(i,j)
0 + g

(i,j)
1 · Xj + g

(i,j)
2 · X2

j . P sends g
(i,j)
0 − μi,3j−2, g

(i,j)
1 − μi,3j−1,

g
(i,j)
2 − μi,3j to V. They essentially obtain a triple of commitments

([g
(i,j)
0], [g

(i,j)
1], [g

(i,j)
2]), denoted by [[g(i,j)(·)]].

ii. V samples x̄
(i)
j

$← F and sends it to P.
(c) For j = 1, . . . , ki+1,

i. P computes a single variable polynomial h(i,j)(Yj) of degree 2, writing

as h
(i,j)
0 +h

(i,j)
1 ·Yj +h

(i,j)
2 ·Y 2

j . P sends h
(i,j)
0 −μi,3ki+1+3j−2, h

(i,j)
1 −

μi,3ki+1+3j−1, h
(i,j)
2 −μi,3ki+1+3j to V. They essentially obtain a triple

of commitments ([h
(i,j)
0], [h

(i,j)
1], [h

(i,j)
2]), denoted by [[h(i,j)(·)]].

ii. V samples ȳ
(i)
j

$← F and sends it to P.

(d) Let L(i) be the unique line satisfying L(i)(0) = x̄(i), L(i)(1) = ȳ(i). P
computes a univariate polynomial q(i)(X) by restricting W̃i+1 to L(i),

writing as
∑ki+1

j=0 q
(i)
j ·Xj . P sends (q

(i)
0 −μi,6ki+1+1, . . . , q

(i)
ki+1

−μi,7ki+1+1)

to V, and similarly, they obtain ([q
(i)
0], . . . , [q

(i)
ki+1

]), denoted by [[q(i)(·)]].
(e) V selects r(i)

$← F and sends it to P. P computes mi+1 := q(i)(r(i)). Then
they set ri+1 := L(i)(r(i)) ∈ F

ki+1 , and compute [mi+1] := [q(i)(r(i))].
4. P and V perform the following checks.

(a) P and V run the procedure Batch-Lin in Fig. 2 on input tuples
{([mi], [[g

(i,j)(·)]], [[h(i,j)(·)]])}i∈[0,d),j∈[1,ki+1].
(b) P and V run the procedure Batch-Mult in Fig. 2 on input tuples

{([[q(i)(·)]], [[h(i,ki+1)(·)]])}i∈[0,d).
(c) P opens [md] − ∑

ω∈{0,1}kd [Wd(ω)] · χω(rd), where χω(·) is a Lagrange

basis as defined in Def. 1. V checks whether it is a valid opening of [0].
5. V accepts if and only P passes all the checks above. Otherwise, V rejects.

Fig. 3. Our ZK for layered arithmetic circuits in the FF

rVOLE-hybrid model.

360 F. Lin et al.

be computed from [x] :=
∑r

i=1 λr ·[xi]. We remark that there exist optimizations
when considering concrete instantiations of subfield VOLE. As it is beyond the
scope of paper, details of optimizations are omitted.

5 Interactive LPZK for General Arithmetic Circuits

In this section, we first describe an ILPZK proof system for proving the satisfia-
bility of general arithmetic circuits, which satisfies all properties as indicated in
Theorem 2. With this new ILPZK, we can also construct a self-contained VOLE-
based ZK protocol ΠF

ZKg. Finally, we prove that our protocol ΠF

ZKg UC-realizes
FZK in the rVOLE-hybrid model with information-theoretic malicious security.

5.1 Our ILPZK Construction

In contrast to layered circuits, gates of generic circuits may take inputs from all
the previous layers. Due to this nature, it remained unclear over ten years how to
adapt GKR to generic circuits without an O(d) overhead induced by arranging
generic circuits into layered circuits. Virgo++ [37] is a recent breakthrough,
extending GKR to generic circuits with linear prover time, and without O(d)
overhead, from which we distill ideas. As usual, we first explicitly list notations
used in this section here.

Notations. Let C : F
sd → F

s0 be a general circuit over F of depth d, size S, and
fan-in two. We also label each layer of C from 0 to d, with 0 being the output
layer and d being the input layer. Each layer i ∈ [0, d) of C contains gates that
each takes one input from layer i + 1 and another input from previous layer j,
where j = i + 1, . . . , d. Let Wi be the outputs of gates in layer i ∈ [0, d] and
define si := |Wi|. Let Wi,j be the subset of outputs of gates in layer j that
connect to layer i, and define si,j := |Wi,j |, for i ∈ [0, d), j ∈ [i+1, d]. By above
definitions, S =

∑d−1
i=0 si, and sj ≥ si,j for all j ∈ [1, d], i ∈ [0, d). W.l.o.g., we

always assume si,j = 2ki,j , and si = 2ki . Since each (add/mult) gate has only two
inputs, there are at most 2si gates (from previous layers) connecting to gates in
layer i, i.e., 2si ≥ ∑d

j=i+1 si,j . We always assume that ki,i+1 is the largest among
{ki,i+1, . . . , ki,d}. We also re-define addi,j ,multi,j : {0, 1}ki+ki,i+1+ki,j → {0, 1},
satisfying addi,j(z, x, y) = 1 (multi,j(z, x, y) = 1) if and only if gate z is an
addition (multiplication) gate in layer i (corresponds to Wi(z)) that takes one
input from gate x in layer i + 1 (corresponds to Wi,i+1(x)) and another input
from gate y in layer j (corresponds to Wi,j(y)).

We view each Wi ∈ F
si (Wi,j ∈ F

si,j) as a function Wi : {0, 1}ki → F (Wi,j :
{0, 1}ki,j → F), and denote the multi-linear extension of Wi,Wi,j ,multi,j , addi,j

by W̃i, W̃i,j , m̃ulti,j , ãddi,j , respectively. With above definitions, it holds for all
i ∈ [0, d) that

W̃i(z) =
d∑

j=i+1

∑

x∈{0,1}ki,i+1

∑

y∈{0,1}ki,j

(
m̃ulti,j(z, x, y)W̃i,i+1(x)W̃i,j(y)

+ ãddi,j(z, x, y)
(
W̃i,i+1(x) + W̃i,j(y)

))
.

(5)

ILPZK with Sublinear Communication and Linear Computation 361

Protocol Overview. The ILPZK proof for general circuits shares the same
bare-bone structure with that of Sect. 4, and now Eq.(5) is the key to the layer-
by-layer reduction. Observe that for layer i, performing a sum-check on Eq.(5)
would induce in total d− i+1 sub-statements for the previous layers i+1, . . . , d
(in contrast to 2 sub-statements for layer i + 1 in the layered circuit setting).
This in turn implies that when proceeding to layer i, there would be in total
i + 1 sub-statements from layers 0, . . . , i − 1 (in contrast to 2 sub-statements
from layer i − 1 in the layered circuit setting). Therefore, a more sophisticated
procedure of combining these sub-statements to one needs to be applied before
sum-check.

The full construction also consists of d stages, and suppose in each stage
i ∈ [0, d), the prover P and the verifier V start with a commitment [W̃i(ri)],
where ri ∈ F

ki is determined by V. They run sum-check on Eq.(5) underneath
commitments, reducing to d−i+1 sub-statements for previous layers i+1, . . . , d.
Then, they aggregate all sub-statements about layer i + 1 via applying “sum-
check” on another equation (will be explained later), obtaining a commitment
on W̃i+1(ri+1). This allows P and V move to stage i + 1.

From One Statement to Multiple Sub-statements. Observe that directly
perform “sum-check” on Eq.(5) would incur asymptotic overhead, since there
are in total ki,i+1 +

∑d
j=i+1 ki,j variables to be summed over. To maintain a

linear time prover, we rewrite Eq.(5) as in [37], by padding each y of length ki,j

to ki,i+1(as we assume ki,i+1 is the largest among {ki,i+1, . . . , ki,d}).

W̃i(z) =
∑

x∈{0,1}ki,i+1

d∑

j=i+1

∑

y∈{0,1}ki,j

(
m̃ulti,j(z, x, y) W̃i,i+1(x) W̃i,j(y)

+ ãddi,j(z, x, y)
(
W̃i,i+1(x) + W̃i,j(y)

))

=
∑

x,y∈{0,1}ki,i+1

d∑

j=i+1

(

ki,i+1∏

l=ki,j+1

yl) ·
(
m̃ulti,j(z, x, y(i,j))W̃i,i+1(x)W̃i,j(y

(i,j))

+ ãddi,j(z, x, y(i,j))
(
W̃i,i+1(x) + W̃i,j(y

(i,j))
))

,

(6)
where each y(i,j) refers to the first ki,j bits of a y ∈ {0, 1}ki,i+1 . Correctness of
Eq.(6) follows from the fact that

∑

y∈{0,1}ki,j

f(y) =
∑

y∈{0,1}ki,i+1

yki,j+1 · · · yki,i+1f(y(i,j))

holds for any f : F
ki,j → F.

Then P and V apply a two-phase “sum-check” on Eq.(6) very similar to
that in Sect. 4, which takes O(2ki,i+1) = O(si,i+1) computation. In the end,
they obtain sub-statements [mi+1,i+1], [mi,i+1], . . . , [mi,d], where it is supposed
to hold that mi+1,i+1 = W̃i+1,i+1(x̄(i)) and mi,j = W̃i,j(ȳ(i,j)), for j ∈ [i + 1, d].

362 F. Lin et al.

Aggregate Multiple Sub-statements to One Statement. For simplic-
ity, we define Wi,i = Wi−1,i and ki,i = ki,i+1. Suppose for layer i, the
i + 1 sub-statements from above layers are [m0,i], . . . , [mi,i], where m0,i =
W̃0,i(ȳ(0,i)), . . . ,mi−1,i = W̃i−1,i(ȳ(i−1,i)) and mi,i = W̃i,i(x̄(i−1)) all hold, and
ȳ(0,i), . . . , ȳ(i−1,i), x̄(i−1) are challenges from V in previous stages. The goal is to
aggregate them to one statement for Wi.

As W0,i, . . . ,Wi,i are subsets of Wi, these [m0,i], . . . , [mi,i] can be com-
puted from Wi and the previous challenges. Intuitively, this computation can
be modeled as a layered arithmetic circuit Ci with private input Wi and out-
put (m0,i, . . . ,mi,i), on which it suffices to apply original GKR. More concisely,
observe that the evaluation of a multi-linear extension can be interpreted as
simple as an inner product, e.g., W̃j,i(ȳ(j,i)) =

∑
ω∈{0,1}k0,i Wj,i(ω) · χω(ȳ(j,i)),

j ∈ [0, i). So Ci essentially do the following things: select subsets of Wi, compute
expansions, and finally output the inner productions.

However, this conceptually simple approach would incur O(log S) overhead
in proof size, as computing expansions of ȳ(j,i) requires circuits of depth O(kj,i).
In fact, there exists a more efficient solution by fully exploiting the summation
structure involved in the inner-product. Define EQj,i : {0, 1}ki × {0, 1}kj,i → F,
where j ∈ [0, i), which takes as input a label z that indicates gates in layer i
(corresponds to Wi(z)), and a label y that indicates gates in layer i that connect
to layer j (corresponds to Wj,i(y)), outputs 1 if and only if they are exactly the
same gate. The following holds:

mj,i = W̃j,i(ȳ(j,i)) =
∑

ω∈{0,1}kj,i

W̃j,i(ω) · χω(ȳ(j,i))

=
∑

ω∈{0,1}kj,i

∑

z∈{0,1}ki

W̃i(z) · EQj,i(z, ω) · χω(ȳ(j,i))

=
∑

z∈{0,1}ki

W̃i(z) · ẼQj,i(z, ȳ(j,i)).

(7)

This allows to combine the sub-statements by taking a random linear combina-
tion on Eq.(7). Let V samples α(0,i), . . . , α(i,i) $← F, we have the following.

i∑

j=0

α(j,i)mj,i

︸ ︷︷ ︸
m(i)

=
∑

z∈{0,1}ki

(
α(i,i)W̃i(z)ẼQi−1,i(z, x̄(i−1)) +

i−1∑

j=0

α(j,i)W̃i(z)ẼQj,i(z, ȳ(j,i))
)

=
∑

z∈{0,1}ki

W̃i(z) ·
(
α(i,i)

ẼQi−1,i(z, x̄(i−1)) +

i−1∑

j=0

α(j,i)
ẼQj,i(z, ȳ(j,i))

)

︸ ︷︷ ︸
I(i)(z)

(8)
Note that I(i)(z) only depends on the circuit topology and randomness selected
by V, it can be locally computed by each party. Therefore, it suffices for P and

ILPZK with Sublinear Communication and Linear Computation 363

V to perform a “sum-check” on Eq.(8), and in the end, they would agree on a
commitment [mi] := [W̃i(z̄(i))], where z̄(i) ∈ F

ki is selected by V.

5.2 Complexity

Here we analyse the complexity of our ILPZK construction for general circuits.

Round Complexity. Our construction can be divided into d stages, with each
stage i ∈ [1, d− 2] having 2ki,i+1 +1+ki+1 rounds, stage 0 having 2k0,1 +2+k1
rounds, and stage d − 1 having 2kd−1,d + 2 + kd rounds. Thus, there are 2 +
∑d−1

i=0 (ki,i+1 + 1 + ki+1) = O(d log S) rounds in total.

Proof Size. The proof size is the summation of length of sub-lines generated in
each stage i, where i ∈ [0, d). For each stage i, performing a two-phase sum-check
on Eq.(6) and a sum-check on Eq.(8) incurs length of 6ki,i+1 + 3ki+1 in total,
and committing to sub-statements incurs length of d − i + 1. Thus, the overall
proof size is

∑d−1
i=0 (6ki,i+1 + 3ki+1 + d − i+ 1) = O(n+ d2 + d log S). We remark

that here the O(d2) term is always upper bounded by O(S). This is due to the
fact that only if layer i connects to layer j, where j < i, then the sub-statement
[mj,i] needs to be generated, yielding the number of sub-statements bounded by
2S. This implies that only when the circuit is very narrow and almost every two
layers are connected, then the proof size should be recognized as O(S).

Prover Time. Applying “sum-check” dominates the prover time. By Lemma 2,
for each stage i, performing a two-phase sum-check for generating sub-
statements costs prover time 2

∑ki,i+1
j=0 O(2ki,i+1−j) = O(2ki,i+1) = O(si,i+1),

and performing a sum-check for combining sub-statements costs prover time
∑ki+1

j=0 O(2ki+1−j) = O(2ki+1) = O(si+1). Thus, it takes the prover overall O(S)
time.

Verifier Time. By a similar argument as in Sect. 4.2, the verifier V runs in time
O(n + s0 + d log S + d2 + T), where O(T) is the total time of evaluating m̃ulti,j ,
ãddi,j and Ĩ(i). In general, V runs in time O(S).

5.3 Security Proof in UC-Framework

We give a self-contained ZK protocol ΠF

ZKg in the random VOLE-hybrid model,
which is based on our ILPZK proof in Sect. 5.1. In addition, we explicitly present
two sum-check like sub-protocols, one for generating sub-statements (ΠSC1), and
the other for combining sub-statements (ΠSC2). We also design two tailored pro-
cedures for batch-checking linear and multiplicative constraints for this setting.
The detailed descriptions of our protocols ΠF

ZKg,ΠSC1,ΠSC2, and the batch check
procedure can be found in the full version [23]. In each stage i, where i ∈ [0, d),
protocol ΠF

ZKg sequentially invokes ΠSC1 and ΠSC2, proceeding from layer i to
layer i + 1. At the end of stage d − 1, P and V perform checks on the degree-2
arithmetic constraints given by challenges from V and the circuit. We remark

364 F. Lin et al.

that ΠF

ZKg can be also extended to support any field, via building upon subfield
VOLE.

The following theorem guarantees the security of our protocol ΠF

ZKg. Also,
Theorem 4 implies Theorem 2.

Theorem 4. Our ZK protocol ΠF

ZKg UC-realizes the ZK functionality FZK in
the FF

rVOLE-hybrid model with information-theoretic malicious security. In par-
ticular, the environment Z’s advantage is O(d log S

|F|).

Acknowledgements. The authors would like to thank Yuval Ishai and Yanhong Xu
for many helpful discussions of this work. We are also very grateful for the insight-
ful comments from anonymous reviewers. The work was supported in part by the
National Key Research and Development (R&D) Program of China under Grant
2022YFA1004900 and in part by the National Natural Science Foundation of China
under Grants 12031011, 12361141818, and 12101404.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS 2017, pp. 2087–2104. ACM
(2017)

2. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: efficient vector-
ole and zero-knowledge proofs over Z2k . In: CRYPTO 2022. LNCS, vol. 13510, pp.
329–358. Springer (2022)

3. Baum, C., et al.: Publicly verifiable zero-knowledge and post-quantum signatures
from vole-in-the-head. In: CRYPTO 2023. LNCS, vol. 14085, pp. 581–615. Springer
(2023)

4. Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: vector ole-based zero-knowledge
protocols. Des. Codes Cryptogr. 91(11), 3527–3561 (2023)

5. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: zero-knowledge
proofs for Boolean and arithmetic circuits with nested disjunctions. In: CRYPTO
2021. LNCS, vol. 12828, pp. 92–122. Springer (2021)

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.
4230/LIPIcs.ICALP.2018.14

7. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: CRYPTO 1993. LNCS, vol. 773, pp. 278–291.
Springer (1993)

8. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer (2017)

9. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge iops with linear-time prover and
polylogarithmic-time verifier. In: EUROCRYPT 2022. LNCS, vol. 13276, pp. 275–
304. Springer (2022)

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: CCS
2018, pp. 896–912. ACM (2018)

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

ILPZK with Sublinear Communication and Linear Computation 365

11. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: CCS 2019, pp. 291–308. ACM (2019)

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: CRYPTO 2019.
LNCS, vol. 11694, pp. 489–518. Springer (2019)

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society (2001)

14. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Goldwasser, S. (ed.) ITCS, 2012, pp. 90–112. ACM
(2012)

15. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic; or: can
zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO ’98. vol. 1462, pp.
424–441. Springer (1998)

16. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
two multiplications for the price of one. In: CCS 2022, pp. 829–841. ACM (2022)

17. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applica-
tions. In: ITC 2021. LIPIcs, vol. 199, pp. 5:1–5:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

18. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov
bound and their cryptographic applications. In: Naor, M. (ed.) Innovations in The-
oretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pp.
169–182. ACM (2014)

19. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Dwork, C. (ed.) STOC 2008, pp. 113–122. ACM (2008)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

21. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: linear-
time and field-agnostic snarks for R1CS. In: CRYPTO 2023. LNCS, vol. 14082,
pp. 193–226. Springer (2023)

22. Lee, J., Setty, S., Thaler, J., Wahby, R.: Linear-time and post-quantum zero-
knowledge snarks for r1cs. Cryptology ePrint Archive (2021). https://eprint.iacr.
org/2021/030

23. Lin, F., Xing, C., Yao, Y.: Interactive line-point zero-knowledge with sublinear
communication and linear computation. IACR Cryptol. ePrint Arch. 1431 (2024).
https://eprint.iacr.org/2024/1431

24. Lin, F., Xing, C., Yao, Y.: More efficient zero-knowledge protocols over Z2k via
galois rings. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology - CRYPTO
2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2024, Proceedings, Part IX. Lecture Notes in Computer Science, vol.
14928, pp. 424–457. Springer (2024)

25. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Pro-
ceedings. Lecture Notes in Computer Science, vol. 576, pp. 129–140. Springer
(1991)

27. Roy, L.: Softspokenot: Quieter OT extension from small-field silent VOLE in the
minicrypt model. In: CRYPTO 2022. LNCS, vol. 13507, pp. 657–687. Springer
(2022)

https://eprint.iacr.org/2021/030
https://eprint.iacr.org/2021/030
https://eprint.iacr.org/2024/1431

366 F. Lin et al.

28. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer (2020)

29. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. vol. 8043, pp. 71–89. Springer (2013)

30. Vu, V., Setty, S.T.V., Blumberg, A.J., Walfish, M.: A hybrid architecture for inter-
active verifiable computation. In: SP 2013, pp. 223–237. IEEE Computer Society
(2013)

31. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zksnarks without trusted setup. In: SP 2018, pp. 926–943. IEEE Computer Society
(2018)

32. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for Boolean and arithmetic circuits.
In: IEEE Symposium on Security and Privacy 2021, pp. 1074–1091. IEEE (2021)

33. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: Antman: interactive zero-
knowledge proofs with sublinear communication. In: CCS 2022, pp. 2901–2914.
ACM (2022)

34. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer (2019)

35. Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time.
In: CRYPTO 2022. LNCS, vol. 13510, pp. 299–328. Springer (2022)

36. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: CCS 2021,
pp. 2986–3001. ACM (2021)

37. Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic circuits
with linear prover time. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS ’21,
pp. 159–177. ACM (2021)

38. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: SP 2020, pp. 859–876. IEEE (2020)

LogRobin++: Optimizing Proofs of
Disjunctive Statements in

VOLE-Based ZK

Carmit Hazay1(B) , David Heath2 , Vladimir Kolesnikov3 ,
Muthuramakrishnan Venkitasubramaniam4 , and Yibin Yang3

1 Bar-Ilan University, Ramat Gan, Israel
Carmit.Hazay@biu.ac.il

2 University of Illinois Urbana-Champaign, Urbana, USA
daheath@illinois.edu

3 Georgia Institute of Technology, Atlanta, USA
{kolesnikov,yyang811}@gatech.edu

4 Ligero Inc., Rochester, USA
muthu@ligero-inc.com

Abstract. In the Zero-Knowledge Proof (ZKP) of a disjunctive state-
ment, P and V agree on B fan-in 2 circuits C0, . . . , CB−1 over a field F;
each circuit has nin inputs, n× multiplications, and one output. P’s goal
is to demonstrate the knowledge of a witness (id ∈ [B], w ∈ F

nin), s.t.
Cid(w) = 0 where neither w nor id is revealed. Disjunctive statements
are effective, for example, in implementing ZKP based on sequential exe-
cution of CPU steps.

This paper studies ZKP (of knowledge) protocols over disjunctive
statements based on Vector OLE. Denoting by λ the statistical secu-
rity parameter and let ρ � max{log |F|, λ}, the previous state-of-the-art
protocol Robin (Yang et al. CCS’23) required (nin +3n×) log |F|+O(ρB)
bits of communication with O(1) rounds, and Mac′n′Cheese (Baum et al.
CRYPTO’21) required (nin +n×) log |F|+2n×ρ+O(ρ log B) bits of com-
munication with O(log B) rounds, both in the VOLE-hybrid model. Our
novel protocol LogRobin++ achieves the same functionality at the cost of
(nin +n×) log |F|+O(ρ log B) bits of communication with O(1) rounds in
the VOLE-hybrid model. Crucially, LogRobin++ takes advantage of two
new techniques – (1) an O(log B)-overhead approach to prove in ZK that
an IT-MAC commitment vector contains a zero; and (2) the realization
of VOLE-based ZK over a disjunctive statement, where P commits only
to w and multiplication outputs of Cid(w) (as opposed to prior work
where P commits to w and all three wires that are associated with each
multiplication gate).

We implemented LogRobin++ over Boolean (i.e., F2) and arithmetic
(i.e., F261−1) fields. In our experiments, including the cost of generating
VOLE correlations, LogRobin++ achieved up to 170× optimization over
Robin in communication, resulting in up to 7× (resp. 3×) wall-clock time
improvements in a WAN-like (resp. LAN-like) setting.

Keywords: Zero-Knowledge · Disjunctions · VOLE-Based ZK

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 367–401, 2025.
https://doi.org/10.1007/978-981-96-0935-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_12&domain=pdf
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0001-9589-5182
http://orcid.org/0000-0002-0211-1244
http://orcid.org/0000-0001-9765-7911
http://orcid.org/0000-0001-6062-3531
https://doi.org/10.1007/978-981-96-0935-2_12

368 C. Hazay et al.

1 Introduction

Zero-Knowledge (ZK) Proofs (ZKPs) [26] allow a prover P to convince a verifier
V that some statement is true without disclosing further information. ZKPs
are essential in applications such as private blockchain [8], private program
analysis [22,38], private bug-bounty [31,55], privacy-preserving machine learn-
ing [35,49], and many more. In the past decade, ZKPs have received much atten-
tion, with schemes varying in performance, assumptions, and interactivity.

VOLE-Based ZK. One recent popular line of work builds ZKP protocols from
Vector Linear Oblivious Evaluation (VOLE). This paradigm is known as VOLE-
based ZK ; see e.g. [3,4,6,19–21,34,48,51]. This thrust is facilitated by cheaply
generated VOLE correlations (i.e., the random VOLE instances); see, e.g., [11–
13,29,45,52]. In VOLE-based ZK, once the cryptographic task of generating
VOLE correlations is complete, the remaining protocol can be (and typically is)
simple, information-theoretic1, and extremely efficient.

For a ZK statement expressed as a fan-in 2 circuit C over some field. Let
|C| denote the number of gates in C. VOLE-based ZK only requires cost (i.e.,
communication and computation of each party) of a small constant factor over
|C| in terms of (extension) field elements and operations. Concretely, state-of-
the-art VOLE-based ZK (e.g., QuickSilver [51]) can handle millions of (multi-
plication) gates per second on modest hardware and network. For this reason,
VOLE-based ZK has proved useful in applications where the statement is large,
e.g., privacy-preserving ML [36,49], privacy-preserving static analysis [37–39],
privacy-preserving string matching [40], privacy-preserving databases [33], etc.

We focus on VOLE-based ZK because it offers by far the shortest end-to-
end proof time among all ZKP approaches (e.g., zkSNARKs, MPC-in-the-Head,
etc.), allowing for unprecedented scale and complexity of proven statements,
such as applications mentioned above. See more discussion in Sect. 1.2.

ZK Disjunctions. Traditionally, ZKP schemes (including those based on VOLE)
express statements as circuits (e.g., [1,21,51]) or constraint systems (e.g., [9,43]).
In theory, these formats support arbitrary statements (including those written in
a high-level language, e.g., C/C++) with polynomial overhead. On the other hand,
these models discard useful program structures – particularly conditional control
flow – which can be leveraged to improve efficiency. Namely, ZKP protocols
that can non-trivially handle disjunctive statements – where one of B possible
statements is proved – are highly desirable. For example, a real-world physical
CPU performs a disjunction over the instruction set in each step.

In a disjunctive statement, P and V agree on B circuits C0, . . . , CB−1. Each of
these circuits is referred to as a branch. P wishes to prove her ability to evaluate
one such branch to 0 without disclosing which branch is taken or active. The
näıve strategy for handling such a disjunctive proof is to evaluate each branch
separately, then use a subsequent multiplexer circuit to select the output of the
active branch. This strategy results in a large circuit with more than

∑
i∈[B] |Ci|

1 Exceptions are the works [14,50], exploiting the additively homomorphic encryption.

LogRobin++ 369

Table 1. The performance of our protocol LogRobin++, compared with the prior work,
in the VOLE-hybrid model (i.e., we do not account here for the cost of preprocess-
ing random VOLEs, see Sect. 2.5 and 2.4). We consider the disjunctive statement as
C0 ∨ · · · ∨ CB−1 where each Ci∈[B] has nin inputs, n× multiplications and one output.
We remark that all protocols (including prior work) support any field. For better com-
parison, we list the performance over two classical fields – the Boolean field and a
sufficiently large arithmetic field F where |F| = λω(1). The computation is estimated
by the number of (extension) field operations. |C| denotes the number of gates in each

branch. The gray box indicates the term that only appears in P’s computation, not
V’s.

Protocol Field Communication (Bits) Rounds Computation

Mac′n′Cheese [6]

Boolean nin + n× + 2λn× + O(λ log B) O(log B)
O(B|C|)

Arithmetic (nin + 3n×) log |F| + O(log B log |F|)

Robin [53]

Boolean nin + 3n× + O(λB) O(1) O(B|C|)
Arithmetic (nin + 3n×) log |F| + O(B log |F|)

LogRobin++
Boolean nin + n× + O(λ log B) O(1) O(B|C| +B log B)

Arithmetic (nin + n×) log |F| + O(log B log |F|)

gates. This is obviously wasteful, as only the gates in the single active branch
affect the output of the overall instruction.

The study of ZKP over disjunctive statements can be traced back to the work
of Cramer et al. [17]. This research problem has become very popular in recent
years due to the development of the Stacked Garbling technique [30] and its nat-
ural application to efficient ZKP of statements expressed as high-level programs;
see e.g. [6,23–25,30,53,54]. In this line of work, the researchers investigated cus-
tom protocols for handling general-purpose disjunctive statements, where the
cost scales only with the size of a single branch. Recent work [6,53] has brought
such techniques to the VOLE-based ZK setting. Combining VOLE-based ZK
and disjunctive statements is natural, as disjunctions are common and useful in
large and complex statements. This is the focus of our work.

1.1 Our Results

In this work, we improve the handling of disjunctive statements in the VOLE-
based ZK paradigm. W.l.o.g., let the B branches (circuits over some field F)
be of equal size, with nin input wires and n× multiplication gates. Let λ be the
statistical security parameter and ρ � max{log |F|, λ}. Then, the state-of-the-art
protocol Robin [53] requires (nin + 3n×) log |F| + O(ρB) bits of communication
and O(1) rounds in the VOLE-hybrid model.

We propose a novel protocol LogRobin++2 that requires only (nin +
n×) log |F| + O(ρ log B) bits of communication and O(1) rounds in the VOLE-

2 We note that our main protocol LogRobin++ does not follow the Robin’s underlying
paradigm or technique. We follow the Robin naming line as Robin stands for refined
oblivious branching for interactive ZK [53].

370 C. Hazay et al.

hybrid model. See Table 1 for a detailed comparison with prior state-of-the-art
protocols. LogRobin++ outperforms Robin in communication in two aspects: (1)
its communication cost incurs an additive O(ρ log B) term rather than O(ρB);
and (2) it saves transmission of 2n× field elements, resulting in ≈ 3× improve-
ment. To achieve these two improvements, we introduce two novel techniques:

– Inspired by [27], we propose a new technique for proving in ZK that a length-
B committed vector (of IT-MAC commitments used by VOLE-based ZK)
contains at least one zero element. Our technique requires transmission of
only O(log B) (extension) field elements. It can be directly plugged into the
Robin protocol [53] to improve its communication to (nin + 3n×) log |F| +
O(ρ log B) while keeping O(1) rounds, in the VOLE-hybrid model. We call
this intermediate stepping-stone protocol LogRobin.

– We develop a new way of realizing VOLE-based ZKP of disjunctive state-
ments. Namely, we show that with P committing to only the inputs and
multiplication outputs on the active branch (using VOLE correlations), the
problem of proving a disjunction reduces to the following problem of proving
the existence of an affine correlation among a set of quadratic ones:
P holds B quadratic polynomials pi∈[B](X), (at least) one of which has lead-
ing coefficient 0 (i.e., it is an affine polynomial). V holds a private evaluation
point Δ and obtains a commitment to each polynomial as pi∈[B](Δ).
P must prove in ZK to V that one of pi’s is affine.
The affine-polynomial-correlation problem can be solved using VOLE corre-
lations.
Put together, this reduction leads to our second stepping-stone protocol
Robin++, which requires (nin + n×) log |F| + O(ρB) bits of communication
and O(1) rounds in the VOLE-hybrid model.

Our final protocol LogRobin++, as indicated by its name, combines the underlying
techniques of LogRobin and Robin++. At a high level, we show that the technical
insight underlying LogRobin’s optimized 0-membership proof can be adapted to
solve the affine-polynomial-correlation problem exploited by Robin++. Combining
our two technical ideas requires care; directly combining the two techniques
would either require O(B) communication or break the ZK property. See Sect. 3
for a concise technical overview of our protocols.

We remark that our paradigm of constructing LogRobin can be trivially gen-
eralized beyond VOLE-based ZK. In particular, it can be instantiated based on a
commit-and-prove ZK [16] where the commitment scheme is linear homomorphic
(e.g., the Pedersen commitment [44]).

We implemented LogRobin++ over Boolean (i.e., F2) and arithmetic (i.e.,
F261−1) fields. The experimental results closely reflect the analytic costs in
Table 1, as LogRobin++’s (and Robin’s) costs contain small hidden constants
in O. Our costs include VOLE generation. Compared to prior state-of-the-
art Robin [53], LogRobin++ improves communication by up to 170× for dis-
junctions with many small branches. In terms of end-to-end execution time,
LogRobin++ outperforms Robin by up to 7× (resp. 3×) in a 10 Mbps WAN-

LogRobin++ 371

like network (resp. 1 Gbps LAN-like network) for a wide range of parameters.
See Sect. 5 for details.

We remark that LogRobin++ is secure against a static unbounded adversary
(i.e., it is information-theoretically secure) in the VOLE-hybrid model. Some-
what surprisingly, when considering information-theoretic ZKP protocols in the
VOLE-hybrid model, the price of evaluating one of many branches is now min-
imal in the following sense: LogRobin++ incurs only additive (poly)logarithmic
communication as compared to the state-of-the-art (information-theoretically
secure) VOLE-based ZK [21,51] over a single active branch. Thus, the addi-
tional cost of private branching is now similar to the log B bits that would be
required for P to non-privately identify the active branch index to V.

1.2 Related Work

VOLE-Based ZK. With the seminal work of [11] enabling cheap generation of
VOLE correlations, a productive line of work on VOLE-based ZKP protocols
soon emerged [3,4,6,14,19–21,29,34,48,51]. See also [5] for a survey. VOLE-
based ZK is simple, information-theoretic in the VOLE-hybrid model, and effi-
cient. Because of its efficient scaling, VOLE-based ZK is particularly useful for
applications where the statement is large.

Consider a standard fan-in 2 circuit C defined over some field F with nin

inputs, n× multiplications, and |C| gates in total. State-of-the-art (information-
theoretically secure) VOLE-based ZK [21,51] incurs only linear costs with small
constant factors – (1) P transmits nin + n× field elements and O(1) extension
field elements, (2) V transmits O(1) extension field elements, and (3) P and V
perform O(|C|) extension field operations.

VOLE-based ZK communication cost can be further cut in half by leveraging
a Random Oracle [20], or it can be reduced to sublinear by leveraging additively
homomorphic encryption [50]. However, these optimizations do not substantially
improve concrete performance as compared to [21,51].

VOLE-based ZK proofs are not succinct, with the exception of [50] and [14];
[50] achieves O(|C|3/4) and [14] achieves O(|C|1/2) communication. Constructing
a VOLE-based ZK proof system incurring o(|C|1/2) communication remains an
open problem.

ZK Disjunctions. The study of ZKP protocols for disjunctive statements can be
traced back to 90s, starting with the work of Cramer et al. [17]. This problem
was later revisited and refined by [30], which targeted improvements to ZKPs
based on Garbled Circuits [32,56]. [30] described the possibility of reusing trans-
mitted cryptographic material of the active branch to evaluate (to garbage and
privately discard) inactive branches (they call this technique “stacking”). This
limits communication cost to that of the single largest branch, but it still requires
computation over all branches.

Following [30], a rich line of work [3,4,6,19–21,34,48,51] studies “stacking”
ZKP protocols in the context of various ZK techniques. Among these, [6,53]
are the most relevant here, as they similarly focus on VOLE-based ZK. Our

372 C. Hazay et al.

protocol LogRobin++ outperforms these prior works theoretically (see Table 1)
and concretely (see Sect. 5). Note, [53] also studied the batched disjunctions – a
same disjunction is repeated. We only focus on the non-batched setting.

Proving a Committed Vector Contains 0. Our work is partially inspired by the
elegant work of Groth and Kohlweiss [27]. [27] proposed a public coin special
honest verifier zero-knowledge proof (i.e., a Σ-protocol) that can be used to show
that a vector of cryptographic commitments (with special properties) contains
a zero. [27] applies this type of proof to ring signatures and zerocoin [41]. The
technique underlying our stepping-stone protocol LogRobin can be viewed as
adapting their technique to the setting of IT-MAC commitments (see Sect. 2.4).
We remark that we consider a malicious V and apply this 0-membership proof
over disjunctive statements. Our final protocol LogRobin++ does not use a
proof of 0 membership; instead, it leverages a sub-component of our LogRobin
technique.

Other Related Work. ZKP is an enormous and fast-growing field of research. We
make a few remarks about other works in the area.

Recent work [2] showed that by applying a so-called VOLE-in-the-Head cryp-
tographic compiler, all ZK protocols relying only on VOLE – including ours –
can be made non-interactive and publicly verifiable.

Outside VOLE-based ZK, succinct ZK proofs enjoy significant attention.
Although this remarkable line of work enables incredibly small proofs and fast
verification, it suffers from expensive computation on behalf of P. This high-
lights a strength of VOLE-based ZK: in VOLE-based ZK, P’s computation is
lightweight and efficient.

2 Preliminaries

2.1 Notation

– λ is the statistical security parameter (e.g., 40 or 60).
– κ is the computation security parameter (e.g., 128 or 256).
– The prover is P. We refer to P by she, her, hers...
– The verifier is V. We refer to V by he, him, his...
– x � y denotes that x is defined as y. x := y denotes that y is assigned to x.
– We denote that x is uniformly drawn from a set S by x

$← S.
– We denote the set {0, . . . , n − 1} by [n].
– We denote a finite field of size p by Fp where p ≥ 2 is a prime or a power of

a prime. We use F to represent a sufficiently large field, i.e., |F| = λω(1).
– We denote row vectors by bold lower-case letters (e.g., a), where ai (or a[i])

denotes the i-th component of a (0-based).
– Let M be a matrix. Mi,j is the element of i-th column and j-th row (0-based).
– We use i to index branches (e.g., i ∈ [B]), id to index the active branch. I.e.,

the id -th branch is the one that P holds a valid witness.

LogRobin++ 373

2.2 Schwartz-Zippel-DeMillo-Lipton Lemma

The soundness of our protocols heavily relies on the Schwartz-Zippel-DeMillo-
Lipton (SZDL) lemma [18,46,57], stated in Lemma 1.

Lemma 1 (Schwartz-Zippel-DeMillo-Lipton). Let F be a field and p ∈
F[x1, . . . , xn] be a (multivariate) polynomial of degree d. Suppose |F| > d, then

Pr
[
p(v) = 0 | v

$← F
n
]

≤ d

|F|

2.3 Security Model

We formalize our protocol using the universally composable (UC) framework [15].
We use UC to prove security in the presence of a malicious, static adversary.
For simplicity, we omit standard UC session (and sub-session) IDs.

2.4 IT-MACs

Information Theoretic Message Authentication Codes (IT-MACs) [10,42] are
two-party (here, between P and V) distributed correlated randomness that can
be used as commitments. In IT-MACs over F, V holds a uniformly sampled global
key Δ

$← F. For P to commit a value x ∈ F, V samples a uniform local key kx
$← F

and P will learn a MAC for x as mx � kx − xΔ. We use [x]Δ � 〈(x,mx), kx〉 to
denote the IT-MAC correlation of x. Δ will be eliminated when it is clear from
the context. We recall the following useful properties of IT-MACs:

1. Hiding: kx and Δ, held by V, are independent of the committed value x.
2. Binding: P can open [x] by sending x and mx, where V would check if

kx
?= xΔ + mx. To maliciously open [x] to x′ 	= x (i.e., to forge x), P must

guess Δ – an attack would succeed with only 1
|F| probability.

3. Linear Homomorphism: IT-MACs support linear operations – addi-
tion/scalar multiplication/constant addition – without communication. That
is, for any public constants c0, c1, . . . , cn each in F, P and V can locally gen-
erate [c0 + c1x1 + · · · + cnxn] from [x1], . . . , [xn].3 In particular, we denote
[c0 + c1x1 + · · · + cnxn] = c0 + c1 · [x1] + · · · + cn · [xn]. Note, this implies that
an IT-MAC of a public constant can be generated for free.

2.5 VOLE Correlation

Random IT-MAC instances (over Fp) can be generated by Vector Oblivious Lin-
ear Evaluation (VOLE) correlation functionality, formalized as Fp,1

VOLE in Fig. 1.
This functionality has been widely studied, e.g., in [12,13,45,48,52]. In the

3 I.e., if kx = xΔ+mx and ky = yΔ+my, we have (kx +ky) = (x+y)Δ+(mx +my).
Moreover, for any constant c ∈ F, P can set mc = 0 and V can set kc = cΔ.

374 C. Hazay et al.

Fig. 1. The (subfield) VOLE correlation functionality.

VOLE-based ZK, P and V generate n instances of IT-MACs, where each IT-
MAC commits an independent (pseudo-)random element uj∈[n]. Later, it is stan-
dard [7] to consume one random instance [uj] to generate [x] where x is chosen by
P. I.e., P can send x−uj to allow parties to locally compute [uj]+(x−uj) = [x].
Note, each uj can only be used once.

Subfield VOLE. Figure 1 also defines subfield VOLE correlations. This is useful
when working over a small field Fp. In particular, consider the Boolean field F2.
Obviously, IT-MACs over F2 do not provide a strong enough binding property
since P can successfully guess Δ with probability 1

2 . Naturally, we can embed
values in F2 into a large enough extension field (i.e., F2λ) to overcome this.
However, since committed values are restricted to F2, it is an overkill to use
VOLE correlations over F2λ (i.e., F2λ,1

VOLE) to generate IT-MACs. Instead, we
can exploit the subfield VOLE correlation F2,λ

VOLE (also known as the random
correlated OT) where each uj∈[n] ∈ F2 – P sends a single bit uj ⊕ x to get [x].

Fp,q
VOLE from LPN. Recent works (e.g., [11–13,45,52]) show that Fp,q

VOLE can be
instantiated efficiently via the Learning Parity with Noise (LPN) assumption to
achieve sublinear costs – the extend instruction to generate (subfield) VOLE
correlations of length n requires only o(n) communications.

2.6 VOLE-Based ZK for a Single Circuit and LPZK Technique [21]

Prior work [3,4,6,20,21,48–51] has shown that (subfield) VOLE correlations can
be used as a hybrid functionality (see Fig. 1) to enable efficient ZK proofs.

Consider a circuit C defined over some field Fp. P wishes to prove in ZK
that she knows the inputs that evaluate C to zero. Let q be a large enough
positive integer such that pq = λω(1). VOLE-based ZK works in the commit-
and-prove paradigm [16]. In particular, by exploiting functionality Fp,q

VOLE, P can
commit to its inputs (i.e., the witness) and each multiplication output (i.e., the

LogRobin++ 375

extended witness) using IT-MACs over Fpq . Recall that IT-MACs are linear
homomorphic. Therefore, P and V can locally evaluate C over these IT-MACs.
That is, the parties can put these IT-MAC commitments on C’s input and each
multiplication output, then evaluates C gate by gate over IT-MACs. After the
local evaluation, P and V would obtain an IT-MAC on each wire of C, including
the output of C as [res]. Now, it suffices to show that each multiplication gate is
formed correctly. That is, each multiplication gate connects to three wires (left
input, right input and output) where each holds an IT-MAC; and P needs to
show that they form a multiplication triple (inside the commitments). Note, an
extra multiplication needed to be added to capture the proof to show that the
output of C is 0, i.e., res · res = 0 (where [0] can be generated locally).

LPZK Technique. The advanced approach to proving that the multiplication
relationship holds inside one IT-MAC triple is the Line-Point Zero-Knowledge
(LPZK) technique [21,51]. Consider [x], [y], [z] where P wants to prove in ZK
that z = xy. The crucial observation is:

known by V
︷ ︸︸ ︷
kxky − kzΔ = (xΔ + mx)(yΔ + my) − (zΔ + mz)Δ (1)

= (xy − z)
︸ ︷︷ ︸

known by P

Δ2 + (xmy + ymx − mz)
︸ ︷︷ ︸

known by P

Δ + mxmy
︸ ︷︷ ︸

known by P

(2)

Hence, if xy − z = 0, P can send two coefficients M1 and M0 and V can check
if M1Δ + M0

?= kxky − kzΔ. If xy − z 	= 0, the equality would only hold with 2
p

probability since P does not know Δ. Indeed, sending xmy + ymx − mz breaks
ZK. To recover ZK, it suffices to consume another random IT-MAC [r]. I.e.,
V can compute kxky − kzΔ + kr and P can send xmy + ymx − mz + r and
mxmy + mr. The ZK holds since the coefficient is (uniformly) one-time padded.

Batched LPZK. Note that to prove a batch of multiplication IT-MAC triples,
V can issue challenges to random linearly combine coefficients induced by each
triple as Equation (1). Namely, V can linearly aggregate over the values known by
him induced by each multiplication triple, with a V-sampled public weight vector.
Crucially, if each multiplication is formed correctly, V should obtain a value
(after the aggregation) that can be interpreted as a P-known affine polynomial
evaluated at Δ. On the other hand, if some multiplication does not hold, V
should w.h.p. obtain a value that can only be interpreted as a P-known quadratic
polynomial evaluated at Δ. Starting from here, the proof can be completed as
the non-batched setting. We denote this procedure as the batched LPZK (check).

To further save communication, it is standard to generate the challenges
(operating as the weight vector) by expanding a PRG over a κ-bit seed assuming
the Random Oracle (RO) or powering an uniform field element.

By deploying the batched LPZK, the ZKP of C is achieved. To summarize4:

4 We note that VOLE-based ZK works over any field.

376 C. Hazay et al.

Fig. 2. The disjunctive ZK functionality.

Lemma 2 (Single-Circuit VOLE-based ZK, Informal). For a circuit C
defined over Fp with nin inputs, n× multiplications and one output. Let q ∈ N

such that pq = λω(1). There exists a constant-round ZKP protocol over C with
(nin + n×) log p + 3q log p + O(1) bits of communication in Fp,q

VOLE-hybrid model.

Remark 1. The computation complexity of VOLE-based ZK protocol of the cir-
cuit C for both parties is O(|C|) where |C| denotes the number of gates, in terms
of field operations over Fpq and in the VOLE-hybrid model.

2.7 Disjunctive Statements in VOLE-Based ZK: Robin [53]

Our work focuses on studying VOLE-based ZK over disjunctive statements. For-
mally, consider B circuits C0, . . . , CB−1 defined over some field Fp. P’s objective
is to prove to V that she knows an input that evaluates (at least) 1 out of these
B circuits to zero, without revealing the identity of that branch. We use “active
branch” to denote the branch for which the prover knows a witness and let it be
the id -th one. Figure 2 formalizes the disjunctive ZK functionality.

A straightforward approach to handle a disjunctive statement is to combine
B circuits into one large circuit, where each circuit is included, evaluated, and
finally multiplexed to determine the output. This näıve approach is undesirable
as the cost would be proportional to O(B|C|), where |C| denotes the maximum
circuit size among all branches. Robin [53] shows that the communication can be
optimized to be proportional to O(B+|C|). Roughly speaking, this is achieved by
reusing the “multiplication triples” of the active branch on the inactive branches.

We review Robin in slightly more detail. W.l.o.g., assume B circuits are of
the same size – each has the same numbers of inputs (denoted as nin) and
multiplications (denoted as n×). In Robin, P uses IT-MACs to commit to the
nin inputs (denoted as [w]) and 3n× wires (denoted as [�] , [r] , [o]) associated
with multiplications (left/right/output) on the active branch. To ensure that
each multiplication is formed correctly, P and V perform the batched LPZK
check (see Sect. 2.6). I.e., the check ensures that � element-wise times r is o.

Then, for each branch Ci∈[B], P and V can evaluate Ci over the committed
inputs [w] and multiplication outputs [o], just like the regular VOLE-based ZK
over Ci (see Sect. 2.6). Note that here P and V reuse [w] and [o] on each branch.
After evaluation, each wire on Ci has an IT-MAC.

LogRobin++ 377

For each such branch Ci∈[B], denote (1) the IT-MAC vector consisting of
the left wires on each multiplication as [�(i)]; (2) the IT-MAC vector consisting
of the right wires on each multiplication as [r(i)]; and (3) the IT-MAC on the
output of Ci as [res(i)]. The crucial observation exploited by Robin is as follows:
the committed w, �, r,o are the correct extended witness for Ci if and only if
the IT-MAC vector [� − �(i)]‖[r − r(i)]‖[res(i)] commits 02n×+1.

Therefore, to prove that P indeed commits to an extended witness that
satisfies one branch (conditioned on correct multiplications), it suffices to show
that 02n×+1 is committed by 1-out-of-B induced IT-MAC vectors. This can
be proved efficiently: by V issuing a length-(2n× + 1) random challenge vector5,
parties can locally generate B IT-MACs by computing the inner product between
the random challenge and each vector. Finally, it suffices to show that one of B
inner products is 0 – Robin achieves this by showing that the product of these
B IT-MACs is 0, which requires transmission of O(B) elements in Fpq .

Note that Robin uses the LPZK technique to prove the multiplication triples
of IT-MACs in a black-box manner. Also note that when the circuits are defined
over a small field (e.g., the Boolean field F2), the random challenge vector issued
by V must be defined over an extension field (e.g. F2λ) to ensure soundness. We
conclude this section with the following lemma and remark:

Lemma 3 (Robin, Informal). Let Ci∈[B] denote B circuits (defined over Fp) of
the same size, where each has nin inputs, n× multiplications and one output. Let
q ∈ N such that pq = λω(1). Then, there exists a constant-round ZKP protocol
for the disjunctive statement C0∨· · ·∨CB−1 using (nin +3n×) log p+O(Bq log p)
bits of communication in Fp,q

VOLE-hybrid model.

Remark 2. Compared to the näıve approach, the computation complexity for
Robin is still O(B|C|) in terms of number of field operations over Fpq .

3 Technical Overview

In this section, we provide a technical overview of our constructions. We note
that understanding how Robin [53] works (see Sect. 2.7 for a concise review)
would be very helpful to contextualize the components in this section.

While our protocols work over any field, for simplicity, throughout this
section, consider a sufficiently large field F (i.e., |F| = λω(1)). In particular,
P and V agree on B circuits Ci∈[B] defined over F, each with nin inputs and n×
multiplications. Suppose P wishes to prove to V in ZK that she knows w ∈ F

nin

that can evaluate the id -th circuit to zero. Note that id , unknown to V, must
be kept private. Moreover, let �, r,o (|�| = |r| = |o| = n×) denote P’s extended
witness – P evaluates Cid(w) to obtain � (resp. r, o), which are the values on
the left (resp. right, output) wire of each multiplication, in the topology order.

Roadmap. Recall that the state-of-the-art protocol Robin requires P to commit to
w, �, r,o with additive O(B) communication of field elements. Our final proto-
col LogRobin++ achieves communication costs where P only needs to commit to
5 Again, this can be generated from a PRG or an uniform element to its powers.

378 C. Hazay et al.

w and o with additive O(log B) communication of field elements. Our overview
is presented with stepping stones and structured as follows:

1. In Sect. 3.1, we overview our first stepping stone – a technique to allow P to
prove to V in ZK that 1-out-of-B IT-MAC commitments is 0 with O(log B)
communication costs. Directly plugging in this technique into Robin results in
a protocol – LogRobin – that requires P to commit to w, �, r,o with additive
O(log B) communication of field elements.

2. In Sect. 3.2, we overview our second stepping stone – a different way to con-
struct VOLE-based ZK for a disjunctive statement. Essentially, we show that,
by P committing to only w and o, the proof can be reduced to show the exis-
tence of an affine correlation, where P holds B all-but-one-affine quadratic
polynomials and V holds B values that are generated by evaluating these B
polynomials at Δ. We construct a sub-optimal (i.e., with O(B) communica-
tion costs) ZK protocol to prove the existence of such an affine correlation,
ultimately resulting in a protocol – Robin++ – that requires P to commit to
w,o with additive O(B) communication of field elements.

3. In Sect. 3.3, we overview our final protocol LogRobin++, non-trivially com-
bining techniques underlying LogRobin and Robin++. At a very high level,
we show that the technique behind proving 0 among 1-out-of-B IT-MACs
(used in LogRobin) can be adapted to solve the affine-polynomial-correlation
problem inside Robin++ with O(log B) communication costs.

3.1 LogRobin: Optimizing the Proof of IT-MACs Containing 0

In this section, we overview the first stepping-stone protocol LogRobin. Recall
that the O(B) communication overhead in Robin comes from P proving V that
there is a 0 among B IT-MACs [t0] , . . . , [tB−1] (see Sect. 2.7). In Robin, this is
done by simply multiplying the B values and opening the result to V, which costs
O(B). (If at least one multiplicand is 0, the product is 0.) The crucial technique
behind LogRobin is to improve the cost of this sub-procedure to O(log B).

Intuitively, this is possible as P knows where the 0 is, while Robin only exploits
the fact that the 0 exists. Informally, O(log B) can be interpreted as the minimal
amount of information required for P to “point out” which element is 0 (i.e.,
which branch is active) correctly and obliviously.

A straightforward way to allow P to obliviously encode which branch is active
(i.e., the id -th) with O(log B) overhead is to require P to commit to id bit by
bit (via IT-MACs). That is, w.l.o.g., let B = 2b for some b ∈ N. Then, P can
decompose id ∈ [B] into b bits id0, . . . , idb−1 such that id =

∑b−1
i=0 2i · id i. Next,

P commits to each id i as [id i] and proves in ZK that each [id i∈[b]] commits a
bit (namely, P proves that ∀i ∈ [B], id i · (id i − 1) = 0 via the batched LPZK).

Path Matrix. Committing these bits alone is insufficient. However, it turns out
that they can be exploited to further generate a powerful so-called path matrix,
inspired by [27] (a useful technique that allows P to obliviously point the active

LogRobin++ 379

branch). To construct the path matrix, besides [id], P prepares b random IT-

MACs [δ0] , . . . , [δb−1] where each δi∈[b]
$← F. Next, V issues a uniform challenge

Λ
$← F. Consider the following 2 × b matrix [M] of IT-MACs:

[M] =

(
[Λ · (1 − id0) + δ0] [Λ · (1 − id1) + δ1] · · · [Λ · (1 − idb−1) + δb−1]

[Λ · id0 − δ0] [Λ · id1 − δ1] · · · [Λ · idb−1 − δb−1]

)

The committed matrix M is called the path matrix with the following properties:

– The two elements in each column differ by Λ. E.g., the two elements in the
first column (within the IT-MACs) sum to Λ · (1− id0)+δ0 +Λ · id0 −δ0 = Λ.

– Each element inside M can be revealed to V as δi∈[b] is uniform.
– For each column i ∈ [b], if id i = 0, the column vector Mi would be (Λ +

δi,−δi); if id i = 1, the column vector Mi would be (δi, Λ − δi). Essentially,
Λ term must exist and only exists on the id i-th row.

Thus, P can open M to V without disclosing id . Note that since Λ is public,
each element of [M] can be locally generated from [id] and [δ]. With the path
matrix M, the parties can bit decompose each a ∈ [B] into a0, . . . , ab−1, then
compute Ca �

∏b−1
i=0 Mi,ai

.
A crucial observation about each Ca∈[B] is that Ca is a product of b elements

involving Λ only when a = id . I.e., Cid can be interpreted as a degree-b polyno-
mial evaluated at point Λ. On the other hand, for each a 	= id , Ca is a polynomial
of degree at most b − 1 evaluating at Λ. The procedure to generate C can be
viewed as P’s ability to obliviously put the degree-b polynomial at Cid .
Proving 0 exists among IT-MACs [t0] , . . . , [tB−1]. We now present how the path
matrix M (in particular, the associated Ca∈[B]) can be used to design a ZKP
showing that tid = 0 among

[
ti∈[B]

]
without disclosing id . Note that P and V

can locally compute the following IT-MAC:

[S] � C0 · [t0] + C1 · [t1] + · · · + CB−1 · [tB−1]

Crucially, Cid ·[tid] = [0] since tid = 0. Thus, S can be interpreted as a polynomial
s(X) of degree at most b− 1, evaluated at Λ. I.e., s(X) �

∑b−1
i=0 si ·Xi such that

S = s(Λ). More importantly, the coefficients s0, . . . , sb−1 of s(X) are known to
P and independent of Λ. Thus, P can commit to s0, . . . , sb−1 as [s0] , . . . , [sb−1]
before Λ is sampled. Once Λ is public, P proves that

[S] − [s0] − Λ · [s1] − · · · − Λb−1 · [sb−1] = [S − s(Λ)]

commits a 0 to finish the proof. Note that the entire procedure is taken within
the IT-MACs, so the ZK holds. Moreover, it only requires O(b = log B) com-
mitments, meeting our communication budget.

We briefly argue why the soundness holds. Indeed, generating the path matrix
M forces P to select an id to claim tid = 0. If t0, . . . , tB−1 are all non-zero,
Cid · [tid] must commit a degree-b polynomial evaluated at Λ. This infers that [S]
commits a degree-b polynomial evaluating at Λ as well. Note that Λ is uniformly
chosen by V and s(X) is a degree-(< b) polynomial chosen by P before knowing
Λ. Therefore, s(Λ) 	= S w.h.p. by the SZDL lemma (see Lemma 1).

380 C. Hazay et al.

Remark 3. To prepare si∈[b], P needs to perform O(B log B) field operations.
To prepare Ci∈[B], P and V each only needs to perform O(B) field operations.

Remark 4. LogRobin is constant-round in the VOLE-hybrid model. While this
is not our focus, this asymptotically improves over Mac′n′Cheese protocol [6].

3.2 Robin++: Committing to Lesser Values Within the Active
Branch

In this section, we overview the second stepping-stone protocol Robin++. Robin++
improves over Robin by roughly 3× where P only needs to commit to w and o,
whereas in Robin, P commits to w, �, r,o.

It may seem that committing to � and r in the disjunctive setting is inherent
since it allows multiplication triples on the active branch to be reused on the
inactive branch (which is the secret sauce of Robin). However, this is not the case
since Robin++ only allows P to commit to w and o. To see how Robin++ works,
it is instructive to see what happens if P commits to w and o, then P and V
try to execute the single-circuit VOLE-based ZK [21,51] (see Sect. 2.6) on each
branch reusing the committed extended witness and V ’s challenges. Ensured by
the soundness of the single-circuit VOLE-based ZK, the proof on the inactive
branch would fail. In particular, the proofs introduce two cases for each Ci∈[B]:

– Valid (Affine): If w and o are the valid extended witness of Ci, based
on the correctness of the single-circuit VOLE-based ZK for Ci, P will learn
M

(i)
1 ,M

(i)
0 ∈ F and V will learn K(i) ∈ F where

K(i) = M
(i)
1 Δ + M

(i)
0

Recall that to finish the proof, P sends two (randomized) coefficients.
– Invalid (Quadratic): If w and o are not the valid extended witness of Ci,

based on the soundness of the single-circuit VOLE-based ZK for Ci, P will
learn M

(i)
2 ,M

(i)
1 ,M

(i)
0 ∈ F and V will learn K(i) ∈ F where

K(i) = M
(i)
2 Δ2 + M

(i)
1 Δ + M

(i)
0

and crucially, M
(i)
2 	= 0 w.h.p. The proof fails by sending two coefficients.

Now, consider the disjunctive statement. Clearly, to show that there is an active
branch, it is sufficient for P to show that there is an “affine equality/correlation”.
That is, instead of finishing all B proofs, P and V stop at the point where V
holds B values K(i∈[B]) ∈ F where each value can be interpreted as a P-known
quadratic polynomial evaluating at Δ (i.e., P holds p(i∈[B])(X) � M

(i)
2 X2 +

M
(i)
1 X + M

(i)
0 whereas V holds K(i∈[B]) � p(i)(Δ) and a private Δ). Starting

from here, it suffices for P to show in ZK that one of B evaluation points learned
by V is introduced by an affine polynomial. I.e., the disjunctive VOLE-based ZK
proof is reduced to the above affine-polynomial-correlation problem.

LogRobin++ 381

A Sub-optimal Approach to Solve the Affine-Polynomial-Correlation Problem.
We show a sub-optimal way to solve this problem with O(B) costs, resulting in
Robin++. In Robin++, P commits to all M

(i∈[B])
2 via IT-MACs as

[
M

(i∈[B])
2

]
and

proves in ZK to V that there is a 0 among them. This step can be done using
the technique used by LogRobin or just simply showing that their product is 0 as
Robin. We remark that the technique used by LogRobin will not improve overall
communication costs here since the step to commit to all M

(i∈[B])
2 costs O(B).

Clearly, this is insufficient – we need to further ensure that P indeed commits
to the correct M

(i∈[B])
2 w.r.t. each K(i) held by V. In the non-private case without

ZK, this can be done trivially by P opening M
(i)
2 for each i ∈ [B] and sending

M
(i)
1 and M

(i)
0 where V checks that K(i) ?= M

(i)
2 Δ2+M

(i)
1 Δ+M

(i)
0 . (Recall that

Δ, sampled by V, is private.) The ZK does not hold because (1) if M
(i)
2 = 0,

V would know this is the active branch, and more importantly (2) M
(i)
1/2 are

correlated with P’s witness. It is classic to use fresh random IT-MACs to achieve
privacy by deploying them as masks. In detail, consider two random IT-MAC
instances

[
r
(i)
1

]
,
[
r
(i)
2

]
and the following equality:

known by V
︷ ︸︸ ︷
k

r
(i)
2

Δ + k
r
(i)
1

=
(
r
(i)
2 Δ + m

r
(i)
2

)
Δ + r

(i)
1 Δ + m

r
(i)
1

= r
(i)
2︸︷︷︸

known by P

Δ2 +
(
r
(i)
1 + m

r
(i)
2

)

︸ ︷︷ ︸
known by P

Δ + m
r
(i)
1︸ ︷︷ ︸

known by P

Hence, V can compute K(i) + k
r
(i)
2

Δ + k
r
(i)
1

where P would open
[
M

(i)
2 + r

(i)
2

]

and sends M
(i)
1 + r

(i)
1 + m

r
(i)
2

and M
(i)
0 + m

r
(i)
1

. ZK holds now as coefficients

M
(i)
2 and M

(i)
1 each is one-time-pad encrypted. In particular, V would not know

which branch is active since all correlations look quadratic from V’s perspective.
Note, QuickSilver [51] also showed a similar approach to generate and exploit
this “padding” correlation, but they consume 3 random IT-MACs instead of 2.

Finally, note that the above check for each i ∈ [B] is identical. Hence,
all B checks can be performed in a batched manner. That is, V issues ran-
dom challenges χ0, . . . , χB−1 and computes

∑B−1
i=0 χiK

(i) whereas P computes
∑B−1

i=0 χiM
(i)
0 and

∑B−1
i=0 χiM

(i)
1 . Furthermore, P and V can locally compute[∑B−1

i=0 χiM
(i)
2

]
. Random masks over the coefficients are still required to ensure

the ZK property, but now only two random IT-MACs are needed in total.
To conclude, our stepping-stone protocol Robin++ exploits the reduction and

the sub-optimal protocol to solve the affine-polynomial-correlation problem.

Remark 5. It is worth noting that when B = 1, Robin++ is (almost) identical
to QuickSilver [51] – the state-of-the-art VOLE-based ZK for a single circuit. In
particular, the asymptotic and concrete costs are identical.

382 C. Hazay et al.

3.3 LogRobin++: Non-trivially Combining LogRobin and Robin++

In this section, we overview our final protocol LogRobin++. As its name indicates,
LogRobin++ combines the techniques exploited by Robin++ and LogRobin. With
both techniques, (1) P only needs to commit to w and o as Robin++; and (2)
LogRobin++ incurs additive O(log B) communication overhead as LogRobin. We
remark that the combination is non-trivial as, looking ahead, a näıve attempt
would either require O(B) costs or break the ZK property.

Recall that, by P committing to only w and o (cf. Robin++), the disjunctive
proof can be reduced to the affine-polynomial-correlation problem. I.e., P and
V jointly hold the following correlated values:

known by V
︷︸︸︷
K(i) =

known by P
︷︸︸︷

M
(i)
2 Δ2 +

known by P
︷︸︸︷

M
(i)
1 Δ +

known by P
︷︸︸︷

M
(i)
0 (3)

for each i ∈ [B] (where Δ is privately sampled by V), such that P wishes to prove
to V in ZK that ∃id ∈ [B],M (id)

2 = 0. Robin++ achieves this by requiring P to
commit M

(i∈[B])
2 as

[
M

(0)
2

]
, . . . ,

[
M

(B−1)
2

]
, prove the committed B containing

0, and open a random linear combination of them (with extra uniform pads to
ensure ZK). Note that committing M

(i∈[B])
2 requires O(B) costs!

In LogRobin++, we propose a O(log B)-communication protocol to solve the
affine-polynomial-correlation problem, ultimately achieving our objective.

Intuition. To get a sense of why this is possible, note that the correlation
in Eq. (3) can be viewed as a “conceptual commitment” over M

(i)
2 (from P

to V). In particular, P can open the commitment via sending M
(i)
0 ,M

(i)
1 and

M
(i)
2 whereas V can check if Eq. (3) holds. Indeed, as the IT-MAC, if P wants

to forge M
(i)
2 to a different value ˜

M
(i)
2 , she needs to guess Δ. Viewed this way,

the affine-polynomial-correlation problem can be interpreted as P proving to V
in ZK that one of these B “conceptual commitments” is 0. Our technical insight
behind LogRobin++ is to adapt our technique in LogRobin, which is used to prove
1 out of B IT-MAC commitments is 0, to these “conceptual commitments”. How-
ever, we remark that it is not ZK to open each “conceptual commitment” – the
main challenge. This is because, as discussed in Sect. 3.2, M

(i)
0 ,M

(i)
1 and M

(i)
2

correlate with P’s extended witness.
Adapting LogRobin’s technique over “conceptual commitments”. Recall that P
in LogRobin would commit to id bit by bit, and then the parties generate a
so-called path matrix M. This path matrix M induces B field elements Ci∈[B].
By viewing each K(i∈[B]) conceptually as a commitment, V can compute

S � C0K
(0) + C1K

(1) + . . . + CB−1K
(B−1) (4)

which can be viewed as a multivariate polynomial s(·, ·) evaluated at (Λ,Δ) as

S = s(Λ,Δ) =
b∑

j=0

2∑

k=0

sj,kΛjΔk (5)

LogRobin++ 383

where w.l.o.g., let B = 2b for some b ∈ N. Note that the 3(b + 1)
coefficients {sj,k}j∈[b+1],k∈[3] are known to P as they are determined by{

M
(i)
2 ,M

(i)
1 ,M

(i)
0

}

i∈[B]
and the P-chosen id , δ (see Sect. 3.1). Recall that there

is only one value within C – the Cid where id is the index of the active branch –
that can be interpreted as a degree-b polynomial evaluated at Λ. Therefore, the
coefficient sb,2 of ΛbΔ2 can only be induced by CidK(id) and, if P is honest, must
be 0 as M

(id)
2 = 0. In other words, for i 	= id , since Ci can only be interpreted

as a degree-< b polynomial evaluated at Λ, it is impossible to induce the term
ΛbΔ2.

Just as LogRobin, based on the SZDL lemma, it suffices for P to show her
ability to compute S from a degree-(b+1) multivariate polynomial evaluated at
(Λ,Δ) by specifying 3b + 2 coefficients – all sj∈[b+1],k∈[3] except sb,2, before Λ
is issued. I.e., P provides an oracle to V to compute a degree-(b + 1) multivari-
ate polynomial s(X,Y) at (Λ,Δ) whereas V needs to ensure that S (computed
by Eq. (4)) is equal to s(Λ,Δ). Note that revealing these coefficients to V directly
would break privacy since they are correlated with the P’s witness.

As a failed attempt, we can try to mimic LogRobin to ask P to commit to all
coefficients as IT-MACs and later linearly evaluate the polynomial within the
IT-MACs. This fails because Δ must be kept private to P to preserve the binding
property of the IT-MAC. That is, even after Λ is chosen, P is still not able to
operate on these committed coefficients to obtain [s(Λ,Δ)] without knowing Δ.
In fact, S itself should not be learned by P, since it is correlated with Δ.

Randomization over S. Instead, similar to Robin++, LogRobin++ exploits random
IT-MACs correlations (generated from VOLE) to mask the coefficients. I.e., with
masking, most of them can be directly revealed.

To see how it works, first consider the coefficients of j = b. I.e., the coefficients
sb,0 and sb,1 (where sb,2 = 0 if P is honest). These two coefficients are related
to the following additive term in Equation (5):

sb,1Λ
bΔ + sb,0Λ

b

Consider one fresh VOLE correlation [rb], where V holds krb
and P holds rb,mrb

such that krb
= rbΔ+mrb

. If V adds krb
Λb = rbΛ

bΔ+mrb
Λb into S (i.e., Eq. (4)),

the (above) additive term induced by ΛbΔ and Λb would become:

(sb,1 + rb)ΛbΔ + (sb,0 + mrb
)Λb (6)

Crucially, rb looks (pseudo-)random to V. Thus, P can directly send sb,1 + rb

to V. However, as we will discuss at the end of this section, sb,0 + mrb
cannot

be disclosed to V since this would break privacy – a malicious V∗ can learn
the active index id by manipulating it. Instead, P will commit to sb,0 + mrb

as
[sb,0 + mrb

]. It will become clear soon how this IT-MAC is used.

384 C. Hazay et al.

Let us proceed to consider coefficients of j = 0, . . . , b−1. I.e., the coefficients
sj,0, sj,1, sj,2 for each j ∈ [b]. These three coefficients are related to the following
additive term in Eq. (5):

sj,2Λ
jΔ2 + sj,1Λ

jΔ + sj,0Λ
j

Consider two fresh VOLE correlations [rj,2] and [rj,1] for each j ∈ [b], where V
holds krj,2 , krj,1 and P holds rj,2, rj,1,mrj,2 ,mrj,1 such that krj,2 = rj,2Δ+mrj,2

and krj,1 = rj,1Δ + mrj,1 . Similarly, V can add the term krj,2Λ
jΔ + krj,1Λ

j =
rj,2Λ

jΔ2 +(mrj,2 +rj,1)ΛjΔ+mrj,1Λ
j into S (i.e., Eq. (4)), the (above) additive

term induced by ΛjΔ2, ΛjΔ and Λj would become:

(sj,2 + rj,2)ΛjΔ2 + (sj,1 + mrj,2 + rj,1)ΛjΔ + (sj,0 + mrj,1)Λ
j

Again, P can directly send sj,2 + rj,2 and sj,1 +mrj,2 + rj,1 as they are one-time
padded by uniform rj,2 and rj,1. Similarly, V should not learn sj,0 + mrj,1 so
P commits to sj,0 + mrj,1 as

[
sj,0 + mrj,1

]
. (We will explain at the end of this

section why this cannot be directly disclosed to V.)
Informally, via sending these values (i.e., 2b + 1 randomized coefficients and

b + 1 IT-MACs), P commits to a multivariate polynomial of degree less than
b+2, before knowing Λ. In particular, they will be used as the polynomial oracle.

We are now ready to show how these coefficients inside IT-MACs are used.
Naturally, they are used to let V evaluate the committed polynomial at (Λ,Δ).
Note that V is missing b + 1 coefficients s0,0 + mr0,1 , . . . , sb−1,0 + mrb−1,1 , sb,0 +
mrb

to evaluate the committed polynomial. However, the additive term in the
committed polynomial related to these coefficients is independent of Δ (i.e.,
Δ0 = 1). Therefore, once Λ is public, parties can locally compute then open:

Λ0 · [
s0,0 + mr0,1

]
+ · · · + Λb−1 · [

sb−1,0 + mrb−1,1

]
+ Λb · [sb,0 + mrb

] (7)

which, together with 2b+1 randomized coefficients, helps V evaluate the commit-
ted polynomial at (Λ,Δ). Finally, if the evaluation output equals the randomized
S (cf. Eq. (4)), V accepts the proof. Indeed, the above protocol overcomes the
difficulty in the failed attempt as it does not require P to know Δ.

We remark that the polynomial must be committed before P knowing Λ,
which is crucial for the soundness analysis. In particular, if P is cheating with all
M

(2)
i∈[B] being non-zeros, S should be interpreted as a degree-(b + 2) polynomial

evaluated at point (Λ,Δ), even after the randomization. Hence, it is with a
negligible probability that the committed polynomial (with a degree less than
b + 2) can evaluate to the same value at (Λ,Δ), based on the SZDL lemma.

To conclude, the above technique solves the polynomial-affine-correlation
problem with O(log B) communication, ultimately resulting in LogRobin++.

Why Can’t the Coefficients Inside the IT-MACs be Disclosed? Perhaps surpris-
ingly, unlike other 2b + 1 (randomized) coefficients, the b + 1 coefficients inside
IT-MACs should not be directly disclosed to V. Here, we justify this design choice
by showing how a malicious V (corrupted by A) could learn the active branch

LogRobin++ 385

Fig. 3. Eval-IT-MAC: The sub-procedure for parties to evaluate C over IT-MACs. This
sub-procedure is local since parties only perform additions over IT-MACs.

index if they were disclosed. Note that A is allowed to choose global key Δ and
local keys k in the VOLE correlation functionality (see Fig. 1). Therefore, by A
setting Δ = 0, each local key k equals the corresponding MAC m held by P. This
implies that A knows each M

(i∈[B])
0 in Eq. (3). Similarly, A knows mrb

where
[rb] is used to randomize S (see Eq. (6)). Furthermore, according to Eq. (4), sb,0

(i.e., the coefficient of Λb) is equal to M
(id)
0 . Thus, if the coefficient sb,0 + mrb

is disclosed (see Eq. (6)), A learns sb,0. By comparing sb,0 with each M
i∈[B]
0 , A

can infer which id ∈ [B] gives M
(id)
0 = sb,0.

4 Formalization

We UC formalize our final protocol LogRobin++. For completeness, we also for-
malize our stepping-stone protocols LogRobin/Robin++ in our full version [28].

4.1 Sub-procedures

In this section, we define two sub-procedures that will be used by LogRobin++
(also used by LogRobin/Robin++) as subroutines. These sub-procedures are local.

Eval-IT-MAC: Evaluating IT-MACs over a Circuit C. The first sub-procedure
allows P and V to evaluate a circuit C on IT-MAC commitments. The sub-
procedure (called Eval-IT-MAC) is formalized in Fig. 3. Clearly, the computation
complexity of this sub-procedure is O(|C|).

386 C. Hazay et al.

Fig. 4. AccP/AccV : The sub-procedures for P and V to accumulate correlations gener-
ated by IT-MAC triples. Note, if each triple in t forms a multiplication, M (2) is always
equal to 0 regardless of γ.

AccP/AccV : Linearly Accumulating IT-MAC Triples. The second sub-procedure
allows P and V to accumulate linearly a sequence of IT-MAC triples into a
single affine or quadratic distributed correlation in Δ. This (asymmetric) sub-
procedure (called AccP/AccV) is formalized in Fig. 4. This sub-procedure takes
a vector of IT-MAC triples t = (([xj] , [yj] , [zj]))j∈[n] where n = |t| and n coef-

ficients γ0, . . . , γn−1 as inputs. Then, P accumulates M (2) :=
∑n−1

j=0 γj(xjyj −
zj),M (1) :=

∑n−1
j=0 γj(xjmyj

+ yjmxj
− mzj

),M (0) :=
∑n−1

j=0 γjmxj
myj

and V
accumulates K :=

∑n−1
j=0 γj(kxj

kyj
−kzj

Δ). Recall that the IT-MAC correlations
ensure that M (2)Δ2 + M (1)Δ + M (0) = K and, in particular, if all triples are
multiplications, M (2) must be 0 regardless of γ. Since P and V perform different
algorithms, we split Acc into AccP and AccV , but either AccP or AccV is local
with O(n) computation complexity. Our protocols will only set γ as public coins.

LogRobin++ 387

Protocol Πp,q
LogRobin++

Inputs. The prover P and the verifier V hold B circuits C0, . . . , CB−1 over field Fp,

where each circuit has nin inputs, n× multiplications and 1 output. P also holds

a witness w ∈ F
nin
p and an integer id ∈ [B] such that Cid(w) = 0. Generate

extended witness on Cid .

0. P evaluates Cid(w) and generates o ∈ F
n×
p where o denotes the values on the

output wires of each multiplication gate, in topological order.

Initialize/Preprocess.

1. P and V send (init) to Fp,q
VOLE, which returns a uniform Δ

$← Fpq to V.

2. P and V generate IT-MACs (over Fpq) of random values over Fp as {[μj]}j∈[nin]
,

{[ρj]}j∈[n×] and {[ζi]}i∈[b] by sending (extend, nin + n× + b) to Fp,q
VOLE.

3. P and V generate IT-MACs (over Fpq) of random values over Fpq as {[δi]}i∈[b],

[rb], {[rj,2] , [rj,1]}j∈[b] and {[τj]}j∈[b+1] by sending (extend, (2 + 4b)q) to Fp,q
VOLE

then locally combining (see [51]) them.

Commit to extended witness on Cid .

4. For j ∈ [nin], P sends dj := wj − μj ∈ Fp, then both compute [wj] := [μj] + dj .

5. For j ∈ [n×], P sends dj := oj − ρj ∈ Fp, then both compute [oj] := [ρj] + dj .

Evaluate committed IT-MACs on each branch and accumulate the cor-

relations generated by each induced IT-MAC triples for this branch.

6. V samples a random vector γ
$← F

n×+1
pq and sends it to P.

7. For each branch i ∈ [B], P and V call sub-procedure Eval-IT-MAC(Ci, [w] , [o])

(see Fig. 3), which returns a vector of IT-MAC triples t(i) such that |t(i)| =

n× + 1; then, P calls sub-procedure AccP(t(i), γ) (see Fig. 4), which returns

M
(i)
2 , M

(i)
1 , M

(i)
0 ∈ Fpq , and V calls sub-procedure AccV(t(i), γ)(see Fig. 4),

which returns K(i) ∈ Fpq . Recall that the following equality holds:

∀i ∈ [B], M
(i)
2 Δ2 + M

(i)
1 Δ + M

(i)
0 = K(i); M

(id)
2 = 0

Fig. 5. LogRobin++: ZKP protocol for disjunctive circuits over any field Fp in the Fp,q
VOLE-

hybrid (see Fig. 1) model. Proceed with Fig. 6.

4.2 LogRobin++

We formalize our protocol LogRobin++ as Πp,q
LogRobin++ in Figs. 5 and 6. We defer

the reader to Sect. 3.3 for a concise technical overview of this protocol. The main
security theorem associated with Πp,q

LogRobin++ is as follows:

Theorem 1 (LogRobin++). Πp,q
LogRobin++ (Figs. 5 and 6) UC-realizes Fp,B

ZK (Fig. 2)
in the Fp,q

VOLE-hybrid model (Fig. 1) with soundness error B+b+7
pq (where, w.l.o.g.,

let B = 2b for some b ∈ N) and perfect zero-knowledge, in the presence of a
static unbounded adversary.

388 C. Hazay et al.

Protocol Πp,q
LogRobin++ (Cont.)

Commit to id bit-by-bit, P constructs the randomized final multivariate poly-

nomial and declares (or commits to) its 3b + 2 coefficients.
8. P bit decomposes id as

∑b−1
i=0 idi · 2i. P sends id − ζ to construct [id] from [ζ].

9. P and V execute (batched) LPZK to prove idi · (idi − 1) = 0 for each i ∈ [b].
10. P constructs the following 2 × b matrix, consisting of affine polynomials in X

M(X) =

(
X · (1 − id0) + δ0 · · · X · (1 − idb−1) + δb−1

X · id0 − δ0 · · · X · idb−1 − δb−1

)

11. P constructs the multivariate polynomial in X, Y

s(X, Y) =

B−1∑

a=0

(
(
M

(a)
2 Y 2 + M

(a)
1 Y + M

(a)
0

)
·

b−1∏

i=0

Mi,ai (X)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b−1

i=0 ai · 2i. Since M
(id)
2 = 0, s(X) is

a degree-(< b + 2) multivariate polynomial.
12. P randomizes s(X, Y): for [rb], P holds rb, mrb and computes s(X, Y) :=

s(X, Y) + (rbY + mrb)Xb. Then, for each j ∈ [b], for [rj,2] and [rj,1], P holds
rj,2, rj,1, mrj,2 , mrj,1 and computes

s(X, Y) := s(X, Y) +
(
rj,2Y 2 + (rj,1 + mrj,2)Y + mrj,1

)
Xj

After the randomization, let s(X, Y) =
∑b

j=0

∑2
k=0 sj,kXjY k where each sj,k ∈ Fpq .

In particular, if P is honset, sb,2 = 0.
13. P sends sb,1 and for each j ∈ [b], P sends sj,2 and sj,1.
14. For each j ∈ [b + 1], P sends dj := sj,0 − τj ∈ Fpq then parties construct [sj,0].

Evaluate the randomized multivariate polynomial at random point (Λ, Δ).

15. V samples a random element Λ
$← Fpq and sends it to P.

16. P and V can locally generate IT-MAC matrix [M(Λ)] from [id] and [δ]. Then, P opens
each IT-MAC in the second row of [M(Λ)], resulting P and V hold

M(Λ) =

(
Λ · (1 − id0) + δ0 · · · Λ · (1 − idb−1) + δb−1

Λ · id0 − δ0 · · · Λ · idb−1 − δb−1

)

∈ F
2×b
pq

17. V computes

S :=

B−1∑

a=0

(

K(a) ·
b−1∏

i=0

Mi,ai (Λ)

)

where ai∈[b] is the bit-decomposed a, i.e., a =
∑b

i=0 ai · 2i.

18. V adds the randomization to S: for [rb], V holds krb and computes S := S + krbΛb.
Then, for each j ∈ [b], for [rj,2] and [rj,1], V holds krj,2 , krj,1 and computes S :=

S + (rj,2Δ + rj,1)Λ
j .

19. P and V locally construct then open the IT-MAC [S′] =
∑b

j=0 Λj · [sj,0].

20. V computes S′ := S′ + sb,1ΛbΔ. Then, for each j ∈ [b], V computes S′ := S′ +
sj,2ΛjΔ2 + sj,1ΛjΔ.

21. If S = S′, V outputs (true, C0, . . . , CB−1). If not (or some prior proof/open fails), V
outputs (false, C0, . . . , CB−1).

Fig. 6. LogRobin++ (Continued): ZKP protocol for disjunctive circuits over any field
Fp in the Fp,q

VOLE-hybrid (see Fig. 1) model.

LogRobin++ 389

Proof. The proof is performed by constructing the simulator S. We need to
show completeness (trivial, omitted); soundness (constructing S for P∗); and
Zero-Knowledge (constructing S for V∗).

Zero-Knowledge, S for V∗: The S for V∗ is straightforward. This is because
V∗ receives either some elements that each is one-time padded by a uniform
element (i.e., the VOLE correlation) or some elements that are determined by
his transcripts (including his shares of IT-MACs and the global key Δ). That is,
S will interact with V∗ and emulate the hybrid VOLE functionality Fp,q

VOLE for
him. Essentially, S proceeds as follows:

1. For Step 1, S samples the Δ for V∗. Note that V∗ can specify his own Δ by
revealing its Δ to S (i.e., to the hybrid functionality Fp,q

VOLE).
2. For Step 2 and 3, S samples the local keys (i.e., the V∗’s IT-MAC shares of

VOLE correlations) for him. Note that V∗ can specify his own local keys by
revealing its local keys to S (i.e., to the hybrid functionality Fp,q

VOLE).
3. For Step 4 and 5, S samples and sends uniform elements in Fp.
4. For Step 6, S receives the challenges γ from V∗.
5. For Step 7, S can also execute sub-procedures Eval-IT-MAC and AccV (as V)

since it has all associated values held by V∗ – S has K(i) for each i ∈ [B].
6. For Step 8, S samples and sends uniform elements in Fp.
7. For Step 9, S can trivially forge the ZKP by knowing Δ and all local keys.

I.e., since S knows all local keys and Δ, it knows what V∗ expects as a valid
proof. Suppose this value is Π ∈ Fpq . To forge the proof, S sends C1

$← Fpq

and C0 := Π − C1Δ. (See also ZK S in LPZK [21,51].)
8. For Step 13, S samples and sends uniform elements in Fpq . Note that, in the

real-world execution, each element sent by P in this step is still one-time
padded by a uniform element in the corresponding VOLE correlation.

9. For Step 14, S samples and sends uniform elements in Fpq .
10. For Step 15, S receives the challenges Λ from V∗.
11. For Step 16, S opens each IT-MAC (in the second row of [M(Λ)]) to a

uniform sample in Fpq . This is possible since S knows Δ and can open an
IT-MAC to any value successfully. Now, S obtains a “path matrix” M̃.

12 For Step 16 and 17, S performs the identical computation taken by V. This
is possible since it has all associated values held by V∗. Then, S obtains S.

13 For Step 18, S computes S̃′ := S − sb,1Λ
bΔ − ∑b−1

j=0

(
sj,2Λ

jΔ2 + sj,1Λ
jΔ

)
.

Here, all s values are those sampled and sent by S for Step 13. Now, S opens
[S′] to S̃′. This possible because S knows Δ. Note that what computed by
S is essentially the correct proof that V needs to see in this step. I.e., V∗

would accept the proof since the equality in Step 21 must hold.

Indeed, the distributions seen by V∗ in the ideal world and the real world are
identical. This is because S replaces all one-time padded values with uniform
samples (including each element in the second row of the path matrix and those
coefficients sent by P in Step 13) and simply determines other correlated values.
The simulation is perfect.

390 C. Hazay et al.

Soundness, S for P∗: Note that V in Πp,q
LogRobin++ only sends uniform elements.

Thus, S, emulating Fp,q
VOLE for P∗, can interact with P∗ as an honest V. Since S

emulates Fp,q
VOLE, it can trivially extract the (extended) witness w,o used by P∗

in Step 2 and 3. In particular, this can be done by removing the one-time pads,
which are generated by Fp,q

VOLE and known by S. Now, if the emulated honest V
(inside S) outputs false, S simply sends abort to Fp,B

ZK , so the ideal V would
also output false. Instead, if the emulated honest V (inside S) outputs true,
S tries and finds id ∈ [B] such that Cid(w) = 0 (if there is no such id , just set
id as 0); then, S sends (prove, C0, . . . , CB−1,w, id) to Fp,B

ZK . Finally, S sends the
UC environment E whatever outputted by P∗.

We now argue why this is a valid simulator. Note that the distributions seen
by P∗ in the ideal world and the real world are identical (i.e., just some uniform
challenges), so the distribution outputted by P∗ in the real-world execution is
the same as the distribution outputted by S in the ideal world. As a result, we
only need to quantify the probability of the event where the ideal V’s output
is different from the real-world V’s output. Furthermore, when the emulated
honest V (inside S) outputs false, the ideal world V must output false. Thus,
we only need to quantify the probability of the event where the emulated honest
V outputs true but the ideal-world V outputs false. Note that this happens
when P uses a wrong (extended) witness (in the sense that w does not make
any Ci∈[B] output 0) but still passes all checks. I.e., this is the soundness error.

This bad event would (only) happen in the following (chained) events:

– In Step 7, even though there exists (at least) one non-multiplication triple in
each t(i), some accumulated M

(i∈[B])
2 becomes 0. Namely, among B length-

(n×+1) vectors where none of them is all 0’s, there exists (at least) 1 of them,
after inner producting with the (uniformly sampled) γ in Step 6, results in
0. This would only happen with up to B

pq probability [53, Lemma 5.1].
– In Step 9, even though P∗ commits to some id i that is not a bit, the batched

LPZK does not catch it. This would only happen with up to 3
pq probability,

i.e., the soundness error of the batched LPZK technique (where the batched
check is achieved via a fresh random linear combination, cf. [51]).

– In Step 16, P∗ forges the opening of some element(s) in M(Λ). This would
only happen with up to 1

pq based on the binding property of the IT-MAC.
– In Step 19, P∗ forges the opening of the IT-MAC [S′]. This would only happen

with up to 1
pq based on the binding property of the IT-MAC.

– In Step 21, S = S′ (accidentally) for some sampled Λ and Δ, conditioned
over all previous bad events not happening. Note that if so, (Λ,Δ) must be
the root of a P∗-specified (multivariate) degree-(b + 2) polynomial. This is
because the coefficient before ΛbΔ2 must be non-zero. Thus, this would only
happen with up to b+2

pq based on the SZDL lemma (see Lemma 1).

Hence, the union soundness error bound (i.e., the summed errors) is B+b+7
pq .

Remark 6. Step 9 is not needed if p = 2 (i.e., consider Boolean circuits). This is
because P can only commit to bits in Step 8.

LogRobin++ 391

Cost Analysis. We tally the computation and communication cost of LogRobin++,
in the Fp,q

VOLE-hybrid model (Fig. 1). The (unidirectional) communication from P
to V consists of the following components:

1. In Step 3 and 4, P sends nin + n× elements in Fp to commit to her extended
witness.

2. In Step 8, P sends b elements in Fp to commit to bit-decomposed id .
3. In Step 9, P sends 2 elements in Fpq for the batched LPZK check.
4. In Step 13, P sends 2b + 1 elements in Fpq as coefficients.
5. In Step 14, P sends b + 1 elements in Fpq to commit to coefficients.
6. In Step 16, P sends 2b elements in Fpq to open the IT-MAC commitments in

the second row of the path matrix.
7. In Step 19, P sends 2 elements in Fpq to open the IT-MAC commitment.

To conclude, the overall communication from P to V consists of nin + n× + b
elements in Fp and 5b+6 elements in Fpq . In the other direction, the communica-
tion from V to P only consists of random challenges in Fpq . Indeed, if V samples
each challenge independently, this will result in sending Ω(n× + b) elements in
Fpq . To further save the communication from V to P, there are the following
alternative approaches to generate these challenges:

– RO variant: It is standard to generate each sequence of uniform challenges
via expanding the PRG from a uniformly chosen κ-bit seed. This optimizes the
communication from V to P down to O(κ). However, this variant of Robin++
requires the Random Oracle assumption. Furthermore, the soundness error
would now be bounded by B+b+7

pq + Q
2κ , where Q denotes the number of random

oracle queries made by the adversary.
– IT variant: We can also generate each sequence of uniform challenges via

powering a single uniform element. I.e., V can sample and send α
$← Fpq ,

then parties set the challenge vector as (1, α, α2, . . .). Clearly, This opti-
mizes the communication from V to P down to O(q log p), which can be set
as O(λ). While this modification preserves the information-theoretic security,
the soundness error would increase because of a larger probability of creat-
ing undesirable “zeros”. E.g., in Step 7, even though a malicious P∗ uses an
invalid extended witness that does not evaluate any branch circuit to 0, the
probability that one M

(i∈[B])
2 becomes 0 would now be Bn×

pq . (This is because
a malicious P∗ wins the game if γ happens to be a root of one out of B
degree-n× polynomials.) After adjusting these bounds, the overall soundness
error would now be bounded by Bn×+2b+4

pq .

For computation, clearly, P’s cost is dominated by O(B|C|) field operations over
Fpq in Step 7 and O(B log B) field operations over Fpq in Step 11 to compute
the coefficients of s(X,Y); and V’s cost is dominated by O(B|C|) field operations
over Fpq in Step 7 only. Note that Step 17 only requires O(B) field operations.

Remark 7. The cost listed in Table 1 is based on the IT variant of LogRobin++.

392 C. Hazay et al.

5 Implementation and Benchmark

5.1 Setup

Implementation. We implemented LogRobin++ based on the open-source Robin
repository [53], whose VOLE correlation functionality is implemented via the
EMP Toolkit [47]. We instantiated our protocols over (1) the Boolean field F2

with λ ≥ 100 and (2) the arithmetic field F261−1 with λ ≥ 40, using the corre-
sponding (subfield) VOLE functionality. For completeness, we also implemented
our stepping-stone protocols LogRobin/Robin++. These simpler protocols can be
useful for certain parameters.

Baseline. We use Robin [53] as our baseline. We did not compare our implemen-
tations with Mac′n′Cheese [6], as their implementation is not publicly available.
However, Robin concretely outperforms Mac′n′Cheese [6]; see [53, Figure 7].

Code availability. Our implementation is publicly available at https://github.
com/gconeice/logrobinplus.

Hardware and Network Settings. Our experiments were executed over two AWS
EC2 m5.xlarge machines6 that respectively instantiated P and V. Each party
ran single-threaded. (Our protocols can support multi-threading naturally by
handling each branch in parallel; we leave research and implementation of par-
allelism as valuable future work.) We configured different network bandwidth
settings, varying from a WAN-like 10 Mbps connection to a LAN-like 1 Gbps
connection, via the Linux tc command.

Benchmark. We tested our implementations on statements where each branch
(represented as a circuit) is chosen randomly. To reduce the physical memory
needed to load all branches when B is large, we consider B identical randomly
generated circuits. We performed experiments to show that the performance
difference between executing B different circuits and B identical circuits is neg-
ligible; see Sect. 5.4. This choice of benchmark is just a proof of concept. One
can always save different circuits in files and load them as needed, or program-
matically generate large circuits from constant-sized descriptions as e.g. EMP
Toolkit. All considered protocols only need to process each circuit once, so there
is no need to load each circuit into main memory twice.

RO v.s. IT. Recall that our V must flip public coins. We implemented two
variants of each protocol, depending on how coin flips are handled (see discussion
in Sect. 4). Coins are flipped either by (1) expanding PRGs over several κ-bit
seeds chosen by V, requiring a Random Oracle (RO), or (2) having V uniformly
sample O(1) elements, which is information-theoretic (IT). Our results show that
the performance difference between these two variants is negligible; see Sect. 5.5.
In the remainder of this section, we flip coins via RO.

6 Intel Xeon Platinum 8175 CPU @ 3.10 GHz, 4 vCPUs, 16 GiB Memory.

https://github.com/gconeice/logrobinplus
https://github.com/gconeice/logrobinplus

LogRobin++ 393

Table 2. Experiment Results with B = 222, nin = 10, n× = 100. The time reflects the
wall-clock (or end-to-end) execution time from P starting the proof until V accepting
it. The improvements are computed as the ratio of the corresponding data between our
protocols and the baseline Robin – the larger, the better.

Field Protocol
Comm. LAN (1 Gbps) WAN (10 Mbps)

P → V V → P Total Impr. Time(s) Impr. Time(s) Impr.

F2

Robin 64 MB 28 MB 92 MB 51.2 114.1

LogRobin 9 KB540 KB 549 KB 172× 15.1 3.4× 14.8 7.7×
Robin++ 128 MB 56 MB184 MB 0.5× 94.6 0.5× 212.2 0.5×

LogRobin++ 10 KB540 KB 550 KB 172× 16.4 3.1× 16.1 7.1×

F261−1

Robin 32 MB 2 MB 34 MB 25.8 54.3

LogRobin 0.8 MB 1.7 MB 2.5 MB13.6× 27.0 1.0× 28.6 1.9×
Robin++ 64 MB 2 MB 66 MB 0.5× 13.8 1.9× 68.7 0.8×

LogRobin++ 0.8 MB 1.7MB 2.5 MB13.6× 15.3 1.7× 17.3 3.1×

5.2 Overall Performance

We evaluated our approach with respect to the following parameters:

– Benchmark “Many”: B = 222, nin = 10, n× = 100: Namely, there are a
large number of branches, and each branch is relatively small. In this case,
LogRobin++ and LogRobin should outperform Robin++ and Robin.

– Benchmark “Large”: B = 2, nin = 10, n× = 107: Namely, there are a small
number of branches, and each branch is large. In this case, LogRobin++ and
Robin++ should outperform LogRobin and Robin.

Experimental Results with Many Branches. Table 2 tabulates experimental
results for Benchmark “Many”. We note the following:

1. LogRobin++ (and LogRobin) achieves a significant improvement in communi-
cation cost. This improvement leads to reduced wall-clock execution time.

2. Almost all communication from V to P is used to generate VOLE correlations.
Recall, we use the VOLE implementation from the EMP-Toolkit [47]. In their
implementation, each extension generates a fixed-size (≈ 107 instances) pool
of VOLE correlations [52], and in some cases, we did not exhaust the entire
pool (e.g., LogRobin++ and LogRobin++ in F2 test cases). Communication
from V to P could be fine-tuned by configuring parameters in the VOLE
implementation to generate a precise number of correlations.

3. Robin++ incurs 2× overhead as compared to Robin, when operating over both
F2 and F261−1. This is because n× is small. In Robin++, P must commit to
an additional ≈ B elements, and, in this benchmark, this cost supercedes
Robin++’s multiplication gate improvement.

4. In our LAN setting and when considering circuits over F261−1, LogRobin did
not outperform Robin in end-to-end execution time. This LAN network is
fast, so communication is not the bottleneck.

394 C. Hazay et al.

Table 3. Experimental results with B = 2, nin = 10, n× = 107. The time reflects the
wall-clock execution time from the moment P starts the proof until the moment V
accepts it. Improvements are computed as the ratio of the corresponding data between
our protocols and the baseline Robin – larger is better.

Field Protocol
Comm. LAN (1 Gbps) WAN (10 Mbps)

P → V V → P Total Impr. Time(s) Impr. Time(s) Impr.

F2

Robin 3.6 MB1.0 MB 4.6 MB 8.1 10.1

LogRobin 3.6 MB1.0 MB 4.6 MB 1.0× 8.1 1.0× 10.0 1.0×
Robin++ 1.2 MB0.5 MB 1.7 MB 2.7× 5.3 1.5× 5.9 1.7×

LogRobin++ 1.2 MB0.5 MB 1.7 MB 2.7× 5.4 1.5× 6.1 1.7×

F261−1

Robin 230 MB 3 MB233 MB 11.7 205.8

LogRobin 230 MB 3 MB233 MB 1.0× 11.7 1.0× 206.1 1.0×
Robin++ 77 MB 1 MB 78 MB 3.0× 6.5 1.8× 71.7 2.9×

LogRobin++ 77 MB 1 MB 78 MB 3.0× 6.4 1.8× 71.7 2.9×

Fig. 7. Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed
nin = 10, n× = 100 and increased b = log B from 4 to 16.

Experimental Results with Large Branches. Table 3 tabulates the experimental
results for Benchmark “Large”. We note the following:

1. LogRobin++ (resp. Robin++) improved communication by 3×, reflecting our
analysis.

2. In our F2 test cases, communication was relatively small. Hence, the WAN
setting was not significantly slower than the LAN setting.

Conclusion. LogRobin++ indeed combines the improvements made by LogRobin
and Robin++. Clearly, it outperforms the baseline Robin and is the best choice.

5.3 Growth Trend of Communication in the VOLE-Hybrid Model

We performed experiments to show how communication grows w.r.t. (1) increas-
ing B, and (2) increasing |C|. To better reflect our analysis in Sect. 4, we tested

LogRobin++ 395

Fig. 8. Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed
B = 2, nin = 10 and increased n× from 1 × 106 to 10 × 106.

Table 4. B Different Circuits v.s. B Identical Circuits in Wall-Clock Time. We set
B = 210, nin = 10, n× = 105 and considered both LAN and WAN settings.

Protocol

Time (s)

LAN (1 Gbps) WAN (10 Mbps)

Different Identical Different Identical

Robin 14.1 14.6 17.0 18.3

LogRobin 13.8 13.1 17.6 17.5

Robin++ 6.7 6.6 8.8 8.3

LogRobin++ 6.7 7.0 8.7 8.7

and reported the communication of LogRobin++ and Robin without counting
communication used to generate random VOLE correlations.

Communication as a Function of B. We fixed nin = 10 and n× = 100 and then
tested LogRobin++ and Robin with b = log B ranging 5-16, in both the Boolean
and arithmetic settings. Figure 7 plots the results. Our plots confirm that Robin’s
communication grows exponentially in b while LogRobin++’s grows linearly in b.

Communication as a Function of |C|. We fixed B = 2 and nin = 10 and then
tested LogRobin++ and Robin with n× ranging 1-10 ×106, in both the Boolean
and arithmetic settings. Figure 8 plots the results. Our plots confirm that (1)
both Robin’s and LogRobin++’s communication grows linearly in |C| and (2)
Robin’s communication is ≈ 3× that of LogRobin++’s.

5.4 B Identical Branches v.s. B Different Branches

We tested Robin/LogRobin/Robin++/LogRobin++ where B (randomly generated)
circuits are identical or different on the arithmetic setting. The results are tab-
ulated in Table 4. Obviously, the difference is negligible. Note that it is trivially
true that the communication of these two branch configurations is the same.

396 C. Hazay et al.

Table 5. RO Variant v.s. IT Variant in Wall-Clock Time.

Parameters Field Protocol

Time (s)

LAN (1 Gbps) WAN (10 Mbps)

RO IT RO IT

B = 222, nin = 10, n× = 100

F2

Robin 51.2 49.5 114.1 115.6

LogRobin 15.1 15.8 14.8 14.7

Robin++ 94.6 93.7 212.2 211.4

LogRobin++ 16.4 15.7 16.1 15.5

F261−1

Robin 25.8 25.2 54.3 53.3

LogRobin 27.0 26.9 28.6 29.1

Robin++ 13.8 13.1 68.7 69.5

LogRobin++ 15.3 15.4 17.3 17.6

B = 2, nin = 10, n× = 107

F2

Robin 8.1 8.2 10.1 10.2

LogRobin 8.1 8.2 10.0 10.1

Robin++ 5.3 5.3 5.9 6.0

LogRobin++ 5.4 5.4 6.1 6.2

F261−1

Robin 11.7 11.7 205.8 205.7

LogRobin 11.7 11.6 206.1 205.8

Robin++ 6.5 6.4 71.7 71.7

LogRobin++ 6.4 6.4 71.7 71.8

5.5 RO Variant v.s. IT Variant

We tested Robin/LogRobin/Robin++/LogRobin++ each on both the RO and the IT
variants. The results are tabulated in Table 5. Obviously, the difference between
these two variants on each protocol is negligible. Note that it is trivially true
that the communication of these two variants is the same.

Acknowledgments. This work is supported in part by Visa research award, Cisco
research award, and NSF awards CNS-2246353, CNS-2246354, and CCF-2217070.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press, Dallas,
TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Baum, C., Braun, L., Delpech de Saint Guilhem, C., Klooß, M., Orsini, E., Roy, L.,
Scholl, P.: Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 581–615. Springer, Cham, Switzerland, Santa Bar-
bara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/978-3-031-38554-4 19

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-031-38554-4_19

LogRobin++ 397

3. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 192–211. ACM Press, Virtual Event, Republic
of Korea (Nov 15–19, 2021).https://doi.org/10.1145/3460120.3484812

4. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: Efficient vector-
OLE and zero-knowledge proofs over Z2k . In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 329–358. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 15–18, 2022). https://doi.org/10.1007/978-
3-031-15985-5 12

5. Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: vector ole-based zero-knowledge
protocols. Des. Codes Cryptogr. 91(11), 3527–3561 (2023).https://doi.org/10.
1007/S10623-023-01292-8

6. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 92–122. Springer,
Cham, Switzerland, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/
978-3-030-84259-8 4

7. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO’95. LNCS, vol. 963, pp. 97–109. Springer, Berlin, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 27–31, 1995).https://doi.org/10.1007/3-540-44750-
4 8

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press,
Berkeley, CA, USA (May 18–21, 2014).https://doi.org/10.1109/SP.2014.36

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013). https://
doi.org/10.1007/978-3-642-40084-1 6

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Berlin, Heidelberg, Germany, Tallinn, Estonia
(May 15–19, 2011).https://doi.org/10.1007/978-3-642-20465-4 11

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press, Toronto, ON, Canada (Oct 15–19, 2018).https://doi.org/10.1145/3243734.
3243868

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Effi-
cient two-round OT extension and silent non-interactive secure computation. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291–308.
ACM Press, London, UK (Nov 11–15, 2019). https://doi.org/10.1145/3319535.
3354255

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–
518. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26954-8 16

14. Bui, D., Chu, H., Couteau, G., Wang, X., Weng, C., Yang, K., Yu, Y.: An efficient
ZK compiler from SIMD circuits to general circuits. Cryptology ePrint Archive,
Report 2023/1610 (2023), https://eprint.iacr.org/2023/1610

https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/S10623-023-01292-8
https://doi.org/10.1007/S10623-023-01292-8
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://eprint.iacr.org/2023/1610

398 C. Hazay et al.

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press, Las Vegas,
NV, USA (Oct 14–17, 2001).https://doi.org/10.1109/SFCS.2001.959888

16. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494–503.
ACM Press, Montréal, Québec, Canada (May 19–21, 2002). https://doi.org/10.
1145/509907.509980

17. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Berlin, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 21–25, 1994). https://doi.org/10.1007/3-540-48658-5 19

18. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Inf. Process. Lett. 7(4), 193–195 (1978)

19. Dittmer, S., Eldefrawy, K., Graham-Lengrand, S., Lu, S., Ostrovsky, R., Pereira,
V.: Boosting the performance of high-assurance cryptography: Parallel execution
and optimizing memory access in formally-verified line-point zero-knowledge. In:
Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 2098–
2112. ACM Press, Copenhagen, Denmark (Nov 26–30, 2023).https://doi.org/10.
1145/3576915.3616583

20. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
Two multiplications for the price of one. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022. pp. 829–841. ACM Press, Los Angeles, CA, USA
(Nov 7–11, 2022). https://doi.org/10.1145/3548606.3559385

21. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-Point Zero Knowledge and Its Applica-
tions. In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptography
(ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 199, pp.
5:1–5:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITC.2021.5

22. Fang, Z., Darais, D., Near, J.P., Zhang, Y.: Zero knowledge static program analysis.
In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2951–2967. ACM Press, Virtual
Event, Republic of Korea (Nov 15–19, 2021). https://doi.org/10.1145/3460120.
3484795

23. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose Σ-protocols for disjunctions. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 458–487. Springer,
Cham, Switzerland, Trondheim, Norway (May 30 – Jun 3, 2022). https://doi.org/
10.1007/978-3-031-07085-3 16

24. Goel, A., Hall-Andersen, M., Kaptchuk, G.: Dora: Processor expressiveness is
(nearly) free in zero-knowledge for ram programs. Cryptology ePrint Archive,
Paper 2023/1749 (2023), https://eprint.iacr.org/2023/1749

25. Goel, A., Hall-Andersen, M., Kaptchuk, G., Spooner, N.: Speed-stacking: Fast
sublinear zero-knowledge proofs for disjunctions. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 347–378. Springer, Cham,
Switzerland, Lyon, France (Apr 23–27, 2023).https://doi.org/10.1007/978-3-031-
30617-4 12

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press,
Providence, RI, USA (May 6–8, 1985).https://doi.org/10.1145/22145.22178

27. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.4230/LIPIcs.ITC.2021.5
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://eprint.iacr.org/2023/1749
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1145/22145.22178

LogRobin++ 399

LNCS, vol. 9057, pp. 253–280. Springer, Berlin, Heidelberg, Germany, Sofia, Bul-
garia (Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-46803-6 9

28. Hazay, C., Heath, D., Kolesnikov, V., Venkitasubramaniam, M., Yang, Y.:
LogRobin++: Optimizing proofs of disjunctive statements in VOLE-based ZK.
Cryptology ePrint Archive, Paper 2024/1427 (2024), https://eprint.iacr.org/2024/
1427

29. Hazay, C., Yang, Y.: Toward malicious constant-rate 2PC via arithmetic gar-
bling. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part V. LNCS, vol.
14655, pp. 401–431. Springer, Cham, Switzerland, Zurich, Switzerland (May 26–30,
2024).https://doi.org/10.1007/978-3-031-58740-5 14

30. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol.
12107, pp. 569–598. Springer, Cham, Switzerland, Zagreb, Croatia (May 10–14,
2020).https://doi.org/10.1007/978-3-030-45727-3 19

31. Heath, D., Yang, Y., Devecsery, D., Kolesnikov, V.: Zero knowledge for every-
thing and everyone: Fast ZK processor with cached ORAM for ANSI C programs.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1538–1556. IEEE Com-
puter Society Press, San Francisco, CA, USA (May 24–27, 2021).https://doi.org/
10.1109/SP40001.2021.00089

32. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 955–966. ACM Press, Berlin, Germany
(Nov 4–8, 2013). https://doi.org/10.1145/2508859.2516662

33. Li, X., Weng, C., Xu, Y., Wang, X., Rogers, J.: Zksql: Verifiable and efficient
query evaluation with zero-knowledge proofs. Proceedings of the VLDB Endow-
ment 16(8), 1804–1816 (2023)

34. Lin, F., Xing, C., Yao, Y.: More efficient zero-knowledge protocols over Z2k via
galois rings. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part IX. LNCS,
vol. 14928, pp. 424–457. Springer, Cham, Switzerland, Santa Barbara, CA, USA
(Aug 18–22, 2024). https://doi.org/10.1007/978-3-031-68400-5 13

35. Liu, T., Xie, X., Zhang, Y.: zkCNN: Zero knowledge proofs for convolutional neu-
ral network predictions and accuracy. In: Vigna, G., Shi, E. (eds.) ACM CCS
2021. pp. 2968–2985. ACM Press, Virtual Event, Republic of Korea (Nov 15–19,
2021).https://doi.org/10.1145/3460120.3485379

36. Lu, T., Wang, H., Qu, W., Wang, Z., He, J., Tao, T., Chen, W., Zhang, J.: An
efficient and extensible zero-knowledge proof framework for neural networks. Cryp-
tology ePrint Archive, Paper 2024/703 (2024), https://eprint.iacr.org/2024/703

37. Luick, D., Kolesar, J.C., Antonopoulos, T., Harris, W.R., Parker, J., Piskac,
R., Tromer, E., Wang, X., Luo, N.: ZKSMT: A VM for proving SMT the-
orems in zero knowledge. In: Balzarotti, D., Xu, W. (eds.) 33rd USENIX
Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August
14-16, 2024. USENIX Association (2024), https://www.usenix.org/conference/
usenixsecurity24/presentation/luick

38. Luo, N., Antonopoulos, T., Harris, W.R., Piskac, R., Tromer, E., Wang, X.: Proving
UNSAT in zero knowledge. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022. pp. 2203–2217. ACM Press, Los Angeles, CA, USA (Nov 7–11,
2022). https://doi.org/10.1145/3548606.3559373

39. Luo, N., Judson, S., Antonopoulos, T., Piskac, R., Wang, X.: ppSAT: Towards two-
party private SAT solving. In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security
2022. pp. 2983–3000. USENIX Association, Boston, MA, USA (Aug 10–12, 2022)

https://doi.org/10.1007/978-3-662-46803-6_9
https://eprint.iacr.org/2024/1427
https://eprint.iacr.org/2024/1427
https://doi.org/10.1007/978-3-031-58740-5_14
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1007/978-3-031-68400-5_13
https://doi.org/10.1145/3460120.3485379
https://eprint.iacr.org/2024/703
https://www.usenix.org/conference/usenixsecurity24/presentation/luick
https://www.usenix.org/conference/usenixsecurity24/presentation/luick
https://doi.org/10.1145/3548606.3559373

400 C. Hazay et al.

40. Luo, N., Weng, C., Singh, J., Tan, G., Piskac, R., Raykova, M.: Privacy-preserving
regular expression matching using nondeterministic finite automata. Cryptology
ePrint Archive, Paper 2023/643 (2023), https://eprint.iacr.org/2023/643

41. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp.
397–411. IEEE Computer Society Press, Berkeley, CA, USA (May 19–22, 2013).
https://doi.org/10.1109/SP.2013.34

42. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Berlin, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 19–23, 2012). https://doi.org/10.1007/978-
3-642-32009-5 40

43. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press, Berkeley, CA, USA (May 19–22, 2013).https://doi.
org/10.1109/SP.2013.47

44. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 11–15,
1992). https://doi.org/10.1007/3-540-46766-1 9

45. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–1072. ACM Press, London, UK
(Nov 11–15, 2019).https://doi.org/10.1145/3319535.3363228

46. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM) 27(4), 701–717 (1980)

47. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

48. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091. IEEE Com-
puter Society Press, San Francisco, CA, USA (May 24–27, 2021). https://doi.org/
10.1109/SP40001.2021.00056

49. Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: Efficient conversions
for zero-knowledge proofs with applications to machine learning. In: Bailey, M.,
Greenstadt, R. (eds.) USENIX Security 2021. pp. 501–518. USENIX Association
(Aug 11–13, 2021)

50. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: Interactive zero-
knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 2901–2914. ACM Press, Los Angeles, CA,
USA (Nov 7–11, 2022). https://doi.org/10.1145/3548606.3560667

51. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press, Virtual Event, Republic
of Korea (Nov 15–19, 2021). https://doi.org/10.1145/3460120.3484556

52. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1607–1626. ACM Press, Virtual Event, USA (Nov 9–
13, 2020). https://doi.org/10.1145/3372297.3417276

https://eprint.iacr.org/2023/643
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3319535.3363228
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276

LogRobin++ 401

53. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Batch-
man and robin: Batched and non-batched branching for interactive ZK. In: Meng,
W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 1452–1466.
ACM Press, Copenhagen, Denmark (Nov 26–30, 2023). https://doi.org/10.1145/
3576915.3623169

54. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Tight
zk cpu: Batched zk branching with cost proportional to evaluated instruction.
Cryptology ePrint Archive, Paper 2024/456 (2024), https://eprint.iacr.org/2024/
456

55. Yang, Y., Heath, D., Kolesnikov, V., Devecsery, D.: EZEE: epoch parallel zero
knowledge for ANSI C. In: 7th IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. pp. 109–123. IEEE, Genoa,
Italy (2022). https://doi.org/10.1109/EuroSP53844.2022.00015

56. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada
(Oct 27–29, 1986). https://doi.org/10.1109/SFCS.1986.25

57. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: International sym-
posium on symbolic and algebraic manipulation. pp. 216–226. Springer (1979)

https://doi.org/10.1145/3576915.3623169
https://doi.org/10.1145/3576915.3623169
https://eprint.iacr.org/2024/456
https://eprint.iacr.org/2024/456
https://doi.org/10.1109/EuroSP53844.2022.00015
https://doi.org/10.1109/SFCS.1986.25

FLI: Folding Lookup Instances

Albert Garreta(B) and Ignacio Manzur

Nethermind Research, London, UK

albert@nethermind.io

Abstract. We introduce two folding schemes for lookup instances: FLI
and FLI+SOS. Both use a PIOP to check that a matrix has elementary
basis vectors as rows, with FLI+SOS adding a twist based on Lasso’s [26]
SOS-decomposability. FLI takes two lookup instances {a1}, {a2} ⊆ {t},
and expresses them as matrix equations Mi · tT = aT

i for i = 1, 2, where
each matrix Mi ∈ F

m×N has rows which are elementary basis vectors in
F

N . Matrices that satisfy this condition are said to be in Relem. Then,
a folding scheme for Relem into a relaxed relation is used, which com-
bines the matrices M1, M2 as M1 + αM2 for a random α ∈ F. Finally,
the lookup equations are combined as (M1 + αM2) · tT = (a1 + αa2)

T.
In FLI, only the property that a matrix is in Relem is folded, and this
makes the FLI folding step the cheapest among existing solutions. The
price to pay is in the cost for proving accumulated instances. FLI+SOS
builds upon FLI to enable folding of large SOS-decomposable [26]
tables. This is achieved through a variation of Lasso’s approach to SOS-
decomposability, which fits FLI naturally. For comparison, we describe
(for the first time to our knowledge) straightforward variations of Pro-
tostar [5] and Proofs for Deep Thought [7] that also benefit from SOS-
decomposability. We see that for many reasonable parameter choices,
and especially those arising from lookup-based zkVMs [1], FLI+SOS can
concretely be the cheapest folding solution.

Keywords: Folding schemes · Lookup Arguments · SNARKs ·
zero-knowledge Virtual Machines · Interactive Proofs · Interactive
Oracle Proofs

1 Introduction

Folding schemes have been an active area of research in the last few years [4–
8,15,20,21]. Informally, these schemes can be described as interactive proofs in
which a Prover and a Verifier create a new instance-witness pair for a certain
relation R2 from two instances-witness pairs for relations R1,R2. The validity
of the newly created instance-witness pair implies the validity of the two orig-
inal instance-witness pairs. The idea is that if this combination process is less
expensive than directly proving that the two instance-witness pairs belong to
the relevant relations (in Prover time, memory requirements, or proof size), one
can save on costs by reducing the task of proving that many instance-witness
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 402–435, 2025.
https://doi.org/10.1007/978-981-96-0935-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_13&domain=pdf
https://doi.org/10.1007/978-981-96-0935-2_13

FLI: Folding Lookup Instances 403

pairs belong to R1 to proving that a single pair belongs to R2. Initially, these
schemes were created with the intention of improving the construction of primi-
tives like Incrementally Verifiable Computation (IVC) [28] and Proof-Carrying-
Data (PCD) [10].

Another active area of research is that of lookup arguments: these are argu-
ments that allow a Prover to convince a Verifier that all elements in a vector a
appear in a pre-established vector t. The vectors t is often referred to as a lookup
table, and we use the phrase “look a into t” to mean engaging in the lookup argu-
ment to convince a Verifier that all elements in a appear in t. Lookup arguments
have become very popular within the context of SNARKs [18,22], because they
allow for an efficient treatment of operations that are otherwise difficult to arith-
metize. In SNARKs, these operations could be non-native field arithmetic, ellip-
tic curve operations, binary operations, and so on. With lookup arguments, the
Prover can use a lookup into a lookup table for the corresponding operation (this
table is usually pre-defined), instead of needing to represent the computation in
the arithmetization of the SNARK. Recent work in the field of lookup arguments
can be essentially split between lookup arguments that use matrix equations
[26,29,30] and those that use logarithmic derivatives [14,17,24]. Lasso [26] is the
state-of-the-art matrix-based lookup argument without pre-processing, provided
that the lookup table t has a specific structure, called SOS-decomposability. This
informally says that to find an entry of the lookup table t, one can evaluate a
multilinear polynomial g at the entries of smaller tables t1, . . . , tα in some struc-
tured way (for details, see Sect. 3.3). The typical example is a range-check table.
For instance, to show that a field element is smaller than 2256, one can break the
element into 64 (or 32, or 16, and so on) bit parts, and perform a range check
for each of these parts. Note that it is not even possible to materialize the table
of all elements smaller than 2256. Hence SOS-decomposability gives the ability
to perform lookups into gigantic tables.

In a companion paper to Lasso, called Jolt [1], the authors construct a
lookup-based zero-knowledge Virtual Machine (zkVM). This realizes an idea
sketched out in a ZKResearch blogpost [3] called the lookup singularity, which
pushes to the extreme the idea of using lookup arguments for verifying com-
putation: instead of only verifying those computations which are expensive or
difficult to arithmetize with lookups, all operations are verified with lookups.
In [1] the authors show that almost all operations of the RISC-V ISA are SOS-
decomposable, and so using Lasso they are able to construct a lookup-based
zkVM for the RISC-V instruction set. In a follow-up blogpost and talk [2,27],
the authors express that one of the main steps in Jolt’s roadmap is to implement
continuations. This means breaking the CPU execution into chunks, and aggre-
gating the proof of correctness of each chunk. The motivation for doing so is
to reduce the peak memory consumption of generating a proof, but it comes at
the cost of increasing the proof size (since now there is a proof for each chunk).
This also leads to the need for proving many polynomial evaluations (several per
chunk). As outlined in [27], the authors plan to avoid these problems in two ways
(each with its own use cases): one by using recursion and the polynomial com-

404 A. Garreta and I. Manzur

mitment scheme from Binius [12,13], and the second by using folding schemes
to aggregate the chunks.

1.1 Our Contributions

In this paper, inspired by the use case of continuations in lookup-based zkVMs,
we develop two folding schemes for lookup instances (see Definition 2) called FLI
and FLI+SOS. The latter is an extension of FLI that is capable of leveraging
SOS-decomposability of the lookup table t. We use two main technical ingredi-
ents: a variation of the way Lasso uses SOS decompositions, and a PIOP and
a folding scheme for the relation that a matrix has elementary basis vectors as
rows (i.e. each row consists entirely of 0, except for one entry being 1).

Say we want to prove that the elements in a ∈ F
m appear in t ∈ F

N . We
refer to a as the small table, and to t as the big table. There are two types of
costs that we focus on: the folding costs, and the cost of proving accumulated
instances. The former is the Prover and Verifier cost (in field/group operations,
random oracle costs, and so on) associated with the folding scheme, and the
latter is the Prover and Verifier cost of a SNARK for the accumulated relation.

Irrespective of whether t is SOS-decomposable (Definition 3) or not, FLI
has the cheapest folding Prover and Verifier (among the schemes described in
Sect. 1.2), see Table 1 to 3 and Sect. 6. The Prover folding costs of FLI are linear
on m, i.e. the size of the small table a. However, as is the case with the rest of
analysed schemes, proving an accumulated instance requires incurring a cost of
O(N) at least (recall N is the size of t). Hence, FLI, as well as the rest of folding
schemes for lookup instances, cannot reasonably handle gigantic tables t.

With this in mind we consider the case when t is SOS-decomposable, and
design a variation of FLI, called FLI+SOS, which leverages SOS-decomposability
of t in a natural way. This enables folding lookup instances where t is gigantic but
SOS-decomposable, without incurring O(N) costs, neither in the folding step,
nor when proving accumulated instances. To compare FLI+SOS, we describe
straightforward variations of Protostar [5] and Proofs for Deep Thought (abbre-
viated DT) [7] that make use of the SOS decomposability of t. See Sect. 1.2 for
more details. We emphasize that as is, neither Protostar nor DT support SOS
decompositions. To our knowledge, we are the first to describe the variations
of these schemes that are compatible with SOS decompositions, and we make a
number of favorable assumptions regarding their costs when comparing them to
FLI+SOS. We call these variations Protostar+SOS and DT+SOS.

When t is SOS-decomposable into α = k · c tables of size N1/c, we show in
Sect. 6 that for choices of m,N, c, k that naturally arise in the context of lookup-
based zkVMs, FLI+SOS can overall be the cheapest folding scheme for lookup
instances. Therefore it is a candidate for implementing continuations by folding
computation chunks. For instance, we show that for m = 217, N = 21024, c ∼ 256,
α = 2c (this particular choice seems to be perfectly plausible in practice when
using Jolt [1,27]), with nf = 23 foldings then:

– FLI+SOS’s folding Prover is more than 4× cheaper than Protostar+SOS’s,
and is orders of magnitude cheaper than DT+SOS’s. In general if α = k · c,

FLI: Folding Lookup Instances 405

then FLI+SOS’s folding Prover is more than 2 · k× cheaper than Proto-
star+SOS’s.

– FLI+SOS’s folding Verifier is comparable to (but slightly cheaper than) Pro-
tostar+SOS’s Verifier, but much cheaper than DT+SOS’s.

– FLI+SOS’s folding Verifier has the lowest random oracle query costs. This
is particularly relevant in the context of IVC [28], where the folding Veri-
fier should be represented recursively in a circuit. Each random oracle query
could potentially represent numerous and complicated constraints, as some
hash functions that heuristically instantiate the random oracle are difficult
to arithmetize.

We describe a custom SNARK for the accumulated/relaxed lookup relation
in FLI+SOS, namely RaccSOS (see Sect. 5.4). In our comparison, still with the
same parameter values for m,N, c and k, we find that:

– Putting opening proofs for multilinear polynomials to the side, the Prover
for accumulated instances of FLI+SOS is around 1.2 times more expensive
than that of Protostar+SOS and around 1.3× more expensive than that of
DT+SOS. However, in this regime, DT+SOS’s folding Prover is prohibitively
expensive. We emphasize that this result is obtained while making a number of
optimistic simplifications regarding the cost of proving accumulated instances
with Protostar+SOS and DT+SOS. The improvement could be way sharper,
cf. Sect. 6 and in particular Remark 3.

– The polynomial opening proof cost of FLI+SOS is around 2× less than Proto-
star+SOS and DT+SOS’s optimistic cost for proving accumulated instances.
We emphasize that this estimate assumes a naive curve-based (MSM) com-
mitment scheme such as PST [9,23] (i.e. a “multilinear KZG”), and that one
can choose alternative schemes which removes this overhead, at the expense of
increasing the folding Verifier work. For example, #2 in [27] proposes using a
tensor-like variation of Zeromorph [19] or HyperKZG [25] which would make
this step no longer be the bottleneck in FLI+SOS, and would increase the Ver-
ifier work by O(N1/c) group operations. With this, FLI+SOS’s Verifier would
be comparable to DT+SOS’s and more expensive than Protostar+SOS’s.
However, FLI+SOS would be the cheapest scheme both in terms of the fold-
ing Prover work and the cost of proving accumulated instances.

For more details about the comparison, see Sect. 6 and Table 1 to 4.

Potential Usability in Lattices. Finally, we remark that FLI is based solely on
the sumcheck protocol, and because of that, it could potentially be used in
the context of lattice-based cryptography. This is in contrast to Protostar and
DT, which rely on field-based identities involving logarithmic derivatives [17,24]
which do not seem to carry over to lattices.

1.2 Related Work

To the best of our knowledge, there are three available approaches to folding
lookup instances. Hypernova [20] describes one such scheme in which the Prover

406 A. Garreta and I. Manzur

Table 1. Comparison of FLI with other folding schemes for lookup instances. The costs
are organized in commitment, group exponentiation, and field multiplication costs. We
also display the number of rounds of each scheme. This coincides with the number of
challenges sent by the Verifier. m and N denote the size of the small table a on of the
big table, respectively. In the “commit” column, a pair (n, S) refers to a commitment
of a vector of size n with entries in the set S. FLI has two commitment cost profiles: one
is average case, while the other is worst case (cf. Sect. 2 for further details). Here nf we
denote the number of foldings performed so far, u is a small parameter (denoted c − 1
in [7]), and M denotes the maximum size of an entry in t. The cost Psps refers to the
field operation cost of running DT’s underlying special sound protocol. In Appendix B
this cost is approximated to α ·19 max{m, N1/c} field multiplications. The cost L refers
to the cost of computing the coefficients of the polynomial e(X) in [7]. The efficiency
of Protostar is displayed for their special-sound version of the logUp lookup argument.
The efficiency of Hypernova is displayed for the lookup argument nlookup in [20]. When
it comes to DT, we consider only the variant built upon logUp-GKR.

Scheme Prover work Verifier work Rounds

commit group field group field

Protostar [5] (2m,F), (m, [m]) 7 O(m) 3 O(1) 1

Hypernova [20] – – O(N) – O(m log N) log(m) + O(1)

Deep Thought [7] (3m, [M]) u log N

{
O(m log(m))+

+Psps + L
u log N u log(N) u log(N)

FLI (this work)

{
avg: (ρ,F), (m − ρ,B)

worse: (m,F)
4 O(m) 4 O(1) 1

ρ := min{mnf/N, m}

cost is O(N), while the Verifier’s work is O(m log(N)), where here N is the size
of the big table t, and m is the size of the small table a. Protostar [5] describes
a folding scheme based on the logUp lookup argument [17] with Prover’s costs
O(m), with the concrete costs being rather large due to the need of committing
to 2 size-m vectors with entries of arbitrary length. A related posterior work,
Proofs for Deep Thought (DT in short) [7], presents an alternative folding scheme
for lookup instances in which the Prover’s costs depend only on m. On the other
hand, DT’s Verifier has a larger cost than Protostar’s, cf. Table 1. Since we
are interested in folding schemes with a Prover sublinear on N and a succinct
Verifier, we compare FLI mostly with Protostar and DT.

As we mentioned, FLI+SOS can naturally leverage the SOS decomposability
of the big table t, and as far as we are aware, FLI+SOS is the first of its kind in
this sense. It is easy, however, to envision ways in which the previously mentioned
schemes (Hypernova, Protostar, and DT) can also exploit SOS decomposability.
Namely, one can first run the first step of Lasso (see Sect. 2), which splits a
lookup instance into α smaller lookup instances, and then use either scheme to
fold the α instances into α accumulated instances. We refer to this variation
as {Scheme} + SOS, where “Scheme” can be any folding scheme for lookup
instances, e.g. Protostar, or DT. We remark that proving accumulated instances
for these schemes (Protostar + SOS and DT+SOS) is not a straightforward task

FLI: Folding Lookup Instances 407

Table 2. Comparison of the Prover in FLI+SOS with the Prover of other folding
schemes when the big table t is SOS-decomposable (Definition 3). “Protostar + SOS”
and “Deep Thought (DT) + SOS” both refer to first performing Lasso’s SOS reduction
and then applying Protostar or [7], respectively, to the resulting α lookup instances of
a table of size m into a table of size N1/c. We follow the same notation as in Table 1.
N1/c is the size of the SOS decomposed tables (cf. Sect. 3.3); α = k · c, where k is a
small constant (typically 1 or 2); and g is the multilinear polynomial providing the
SOS decomposition and |g| its arithmetic complexity.

Scheme Prover work

commit group field

Protostar+SOS α · (2m,F), α · (m, [m]) 7α m deg(g)(α + |g|)

Deep Thought+SOS α · (3m, [M]) α · u log(N1/c)

⎧⎪⎨
⎪⎩

O(αm log(m))

+m deg(g)(α + |g|)
+α · Psps + α · L

FLI+SOS

{
avg: c · (ρ,F), c · (m − ρ,B)

worse: c · (m,F)
4c + 1 m deg(g)(α + |g|)

c · (m,B)

ρ := min{mnf/N1/c, m}

however. For the sake of comparison, we sketch a simplified method in Sect. 1.2
and 6. We compare our folding scheme FLI with Hypernova, Protostar, and DT;
and we compare FLI+SOS with Protostar + SOS, and DT + SOS, cf. Table 1
to 4 and Sect. 6.

1.3 Organization of the Paper

Sect. 2 outlines the techniques used to develop FLI. In Sect. 3, we introduce
lookup relations and SOS-decomposable tables. Additional definitions on folding
schemes, IPs/(P)IOPs, soundness, and the sumcheck protocol as well as eferred
proofs are in the extended version of the paper. Section 4 constructs a PIOP
and folding scheme for relation Relem (stating that a matrix has elementary
basis vectors as rows), which is extended in Sect. 5 to build FLI, incorporating a
variation on SOS decomposition. Section 6 shows FLI’s efficiency for key param-
eters. Further comparisons are in Appendix A, and Prover cost computations in
Appendix B.

2 Techniques

Let R and Racc be two instance-witness relations. A folding scheme from R×Racc

to Racc is an interactive protocol between a Prover and a Verifier. The Verifier
takes as input a pair of instances (x,xacc) ∈ R×Racc, and outputs a new instance
x′
acc ∈ Racc at the end of the protocol. One requires that if the Prover knows

a valid witness w′
acc for x′

acc, then it knows (except with negligible probability)

408 A. Garreta and I. Manzur

Table 3. Comparison of the Verifier in FLI+SOS with the Verifier of other folding
schemes when the big table t is SOS-decomposable (Definition 3). We follow the same
terminology and notation as in Table 1 and 2

Scheme Verifier work Rounds

group field

Protostar+SOS 3α O(α log(m)) log(m) + α

Deep Thought+SOS αu log(N1/c) O(α · u log(N1/c) + log(m)) log(m) + α · u log(N1/c)

FLI+SOS 4c + 1 O(α log(m)) log(m) + α

valid witnesses w and wacc for x and xacc, respectively. Often, one speaks of
folding schemes for R, omitting Racc.

Here we consider the lookup relation RLook. For a fixed field F, an instance-
witness pair (x;w) ∈ RLook has the form x = (m,N, t, cmt, cma), and w = (a),
where m,N ∈ N, t ∈ F

N ,a ∈ F
m, and cmt, cma are vector commitments to the

vectors t,a. These vectors are often referred to as tables. The lookup instance is
valid if {ai | i ∈ [m]} ⊆ {ti | i ∈ [N]}, and Commit(t) = cmt, Commit(a) = cma

for a fixed commitment scheme Commit (for simplicity we omit referring to the
randomness used in the commitments). In other words:

RLook :=

{
(x;w) = (m, N, t, cmt, cma;a)

∣∣∣∣∣ {ai | i ∈ [m]} ⊆ {ti | i ∈ [N]}
Commit(t) = cmt,Commit(a) = cma

}

Informally, in this overview we sometimes denote elements in RLook by
(t, cmt, cma;a) ∈ RLook, omitting any reference to the table sizes m and N .
Typically, we assume m and N to be powers of two, with N being much larger
than m. Because of this, we often informally call t the big table, and a the small
table.

We next describe how FLI works at a high level. We first recall the now
standard observation [29,30] that a lookup instance (t, cmt, cma;a) ∈ RLook is
valid if and only if there exists a m × N matrix M ∈ F

m×N such that:

– M · tT = aT, where T denotes transposition and M · tT denotes matrix-vector
multiplication.

– Each row of M is an elementary basis vector, i.e. it consists only of zeros,
except for one entry, which is 1. We define a relation capturing this property:

Relem :=

{
(x;w) = (m, N, cmM ; M)

∣∣∣∣∣ All rows of M are elem. basis vectors,

Commit(M) = cmM

}

– Commit(t) = cmt and Commit(a) = cma.

FLI: Folding Lookup Instances 409

Table 4. Dominant costs of the protocols for proving accumulated instances with
FLI and FLI+SOS (cf. 5.4). We follow the same notation as in Tables 1 to 3. Besides
that, s ≤ mN1/c denotes the sparsity of the accumulated matrices Macc, Eacc, M

acc
i .

The second and third column shows the dominant Prover and Verifier cost in field
multiplications. In the Openings column, the notation v · (a-variate, b-sparse) refers to
v opening proofs of a-variate multilinear polynomials that are b-sparse (i.e. at most b of
their evaluations in {0, 1}log(a) are nonzero). The Verifier opening proof costs are not
reflected in the table. By “SOS” we mean that the multilinear polynomial is a small
table resulting from a SOS decomposition. These can often be evaluated in log(N1/c)
time, and hence the opening can be computed directly by the Verifier, rather than
proved. By “dense” we mean that the polynomial can potentially take nonzero values
on all the hypercube.

Scheme Prover field work Verifier field work Openings

FLI (2m + 1)N + s(log(m) + 3) O(log(mN))

1 · (log(mN)-var, ν-sparse)

1 · (log(N)-var, SOS)

1 · (log(m)-var, dense)

ν := min{nfm, mN}

FLI+SOS
(2m + 5α + 1)N1/c+

+(3α + 2)s + 2m
O(log(mN1/c))

1 · (log(mN1/c)-var, ν-sparse)

1 · (log(N1/c)-var, SOS)

1 · (log(m)-var, dense)

ν := min{nfm, mN1/c}

One can then define:

RMLook :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
x;
w

)
=

(
m,N, t, cmt, cma, cmM ;
a,M

)
∣∣∣∣∣∣∣∣∣∣∣∣

M ∈ F
m×N

(m,N, cmM ;M) ∈ Relem

M · tT = aT

Commit(t) = cmt,

Commit(a) = cma

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

As with RLook, we will omit referring to m,N when talking about instance-
witness pairs from RMLook, and we proceed similarly with Relem. Let (xi;wi) =
(t, cmt, cmai

, cmMi
;ai, Mi) (i = 1, 2)be two instance-witness pairs from RMLook

that we wish to fold. By definition, we have M1 · tT = a1T and M2 · tT = a2T.
We visualize such instances as:{

M1 · tT = aT1
(cmM1 ;M1) ∈ Relem

{
M2 · tT = aT2
(cmM2 ;M2) ∈ Relem

(1)

Note that, fixing t, the first part of the instances in (1) are linear constraints
on the matrices M1,a1 and M2,a2. Hence, a natural step towards folding the
instances (1) is to have the verifier send a random challenge α ← F, and then
merge (1) into a single claim of the form

410 A. Garreta and I. Manzur

{
(M1 + αM2) · tT = aT1 + αaT2
(cmM1 ;M1), (cmM2 ;M2) ∈ Relem

(2)

The next natural step is to apply a folding scheme for the relation Relem, so that
the two claims above, namely (cmM1 ;M1) ∈ Relem and (cmM2 ;M2) ∈ Relem, can
be folded into an instance of an accumulated version of the relation Relem. One
way to do this is by first noting that (cmM ;M) belongs to Relem if and only if:

– M2
ij = Mij for all matrix entries Mij of M (i ∈ [m], j ∈ [N]). This property

is equivalent to saying that all entries of M are either 0 or 1.
– M · 1T = 1T, where 1 is the N -dimensional vector consisting entirely of

1’s. Together with the above property, this ensures that all rows of M are
elementary vectors1.

– Commit(M) = cmM .

By looking at M as a mN -dimensional witness vector, we reformulate the above
conditions as a R1CS-type constraint. Then, we use a Nova-like approach [21]
so as to obtain a folding scheme for the relation Relem into a relaxed version
of Relem, which we denote Racc

elem. Namely Racc
elem incorporates a mN -dimensional

error vector E, a slackness parameter μ, and a commitment cmE to E. Then
(μ, cmM , cmE ;M,E) ∈ Racc

elem if and only if M2
ij = Mij + Eij for all i ∈ [m], j ∈

[N], M ·1T = (1+μ) ·1T , and the commitments cmM and cmE are commitments
to M and E. Formally,

Racc
elem :=

⎧⎪⎨
⎪⎩

(
x;

w

)
=

(
m,N, µ, cmM , cmE ;

M,E

) ∣∣∣∣∣∣∣
M ◦ M = M + E

M · 1T = (1 + µ) · 1T,

Commit(M) = cmM ,Commit(E) = cmE

⎫⎪⎬
⎪⎭

Here ◦ denotes the Hadamard (i.e. component-wise) product. Given (cmM ;M) ∈
Relem and (μ, cmMacc , cmE ;Macc, E) ∈ Racc

elem:

1. The Prover computes a commitment cmT to an intermediate cross term T =
2(Macc ◦ M) − M and sends cmT to the Verifier;

2. The Verifier replies with a random challenge α ← F;
3. Both Prover and Verifier output cmM ′

acc
= cmMacc + αcmM , cmE′ = cmE +

αcmT + α2cmM , μ′ = μ + α;
4. The Prover additionally outputs M ′

acc = Macc + αM , E′ = E + αT + α2M .

As a result, FLI’s folding Verifier is very simple, only performing a handful
of operations with a given vector commitment. When using, say, curve-based
commitment schemes, this translates to 4 group additions and 4 scalar multipli-
cations. Note that FLI only needs one random oracle query. The folding proof
size consist in one group and field elements (we don’t count cmM ′

acc
, cmE′ as part

of the proof).
When it comes to Prover costs, note that the matrix M ∈ F

m×N (which
we look at as a vector of size mN) is m-sparse, meaning that all its entries
1 Here one needs to assume that the characteristic of F is larger than N .

FLI: Folding Lookup Instances 411

except m are 0. In fact, all nonzero entries of M are 1. Consequently, the matrix
Macc ◦ M is also m-sparse, and so is the vector T . As such, standard curve-
based commitment schemes allow to commit to M and to T in time O(m). For
example, the PST2 [9,23] scheme can commit to M with exactly m − 1 group
additions.

On the other hand, in general, nonzero elements in T can have arbitrary
size. This is because Macc has entries that are computed from the Verifier’s
previous folding challenges, which were sampled randomly in F. The concrete
cost of committing to T in the worst case can be relatively large, e.g. ≈ 28m
or 29m when using PST and Pippenger’s algorithm to compute Multi Scalar
Multiplications (MSM) (see, for example, the benchmarks in Table 1 of [17]).
However, we remark that the above is a worst case. Since M ∈ Relem, if Macc

is very sparse (as is when not many folding steps have been performed), then
Macc ◦ M is even more sparse with high likelihood. If we think of M as being
randomly sampled in Relem, then the number of nonzero elements in Macc ◦ M
is, in expectation, ≤ mnf/N , where nf is the number of folding steps performed
so far. Thus, when nfm << N , we have that Macc ◦ M is essentially the zero
vector, on average. In that case, FLI’s Prover only commits to sparse
vectors containing almost exclusively small entries.
Lasso’s SOS decomposability. We recall SOS-decomposability, one of the
key ideas of the Lasso and Jolt papers [1,26]. Formally, a table t ∈ F

N is SOS-
decomposable if there exists α := k ·c tables t1, . . . , tα of size N1/c, i.e. ti ∈ F

N1/c

for all i, and an α-variate multilinear polynomial g such that:

∀y ∈ B
log N , t(y) = g

(
t1(y1), . . . , tk(y1), tk+1(y2), . . . , t2k(y2), . . .

. . . , tkc−1(yc), tα(yc)

)
(3)

Here, we let B = {0, 1}, and we index the entries of t with elements from
the hypercube B

log N , denoting t(y) the entry of t indexed by the element
y ∈ B

log(N). Further, y1, . . . ,yc are all vectors from B
log(N)/c such that y =

(y1, . . . ,yc). For the applications mentioned in Lasso and Jolt [1,26], α is c or
a small multiple of c. As exemplified by the Jolt paper [1], many natural tables
t are SOS-decomposable (e.g., tables containing RISC-V instructions). Impor-
tantly for this paper, c can be chosen as large as wanted.
FLI and its natural use of SOS decomposability (FLI+SOS). One of the
contributions of this work is a variation of SOS decompositions that blends seam-
lessly with our folding approach. We emphasize that this does not simply consist
in performing Lasso’s SOS decomposition and then folding the resulting smaller
lookup instances. The starting observation is that when t is SOS-decomposable,
the statement that (t, cmt, cma;a) ∈ RLook is equivalent (leaving aside the con-
straints involving cmt and cma) to the existence of m×N1/c matrices M1, . . . ,Mc

with elementary vectors as rows such that:

2 Here we refer to the PST version from [9] which uses the Lagrange basis instead of
the monomial basis.

412 A. Garreta and I. Manzur

∀x ∈ B
log(m), a(x) = g

(∑
y

M1(x,y) · t1(y), . . . ,
∑
y

Mc(x,y) · tα(y)

)
(4)

where y runs over B
log(N1/c). Indeed, one has that (t, cmt, cma;a) ∈ RLook if

and only if for all x ∈ B
log(m), there exists a y ∈ B

log(N) such that a(x) = t(y).
But Eq. (3) implies that t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc)),
where y = (y1, . . . ,yc) ∈ B

log(N)/c. The matrices M1, . . . ,Mc respectively
indicate, for each x ∈ B

log(m), the indices y1, . . . ,yc such that a(x) =
g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc)) holds, i.e. for each x ∈ B

log(m) and
i ∈ [c], the row of Mi indexed by the element x consists of zeros everywhere
except for a one in the column indexed by yi. This way,

∑
y Mi(x,y) · tj(y) =

tj(yi), for all j ∈ [k]. Above and below, we look at a,Mi, ti as the multilinear
extensions (MLE) (cf. Sect. 3.1) of the corresponding vectors.

With (4) in mind, we describe an extension of FLI that can handle SOS
decomposability. Say we wish to fold two instances (t, cmt, cmai

;ai) ∈ RLook,
i = 1, 2. The protocol, which we call FLI+SOS, proceeds as follows:

– P starts off by committing to the m-sparse matrices M1,1, . . . ,M1,c

and M2,1, . . . , M2,c such that (4) holds, respectively, for the instances
(t, cmt, cma1 ;a1) and (t, cmt, cma2 ; a2). Let cmMi,j

be the commitments.
Then (cmMi,j

;Mi,j) ∈ Relem.
– Next for both i = 1, 2, P and V run a sumcheck protocol to assert the equality:

∑
x∈Blog(m)

(
ai(x) − g

(∑
y

Mi,1(x,y) · t1(y), . . . ,
∑
y

Mi,c(x,y) · tα(y)

))
ẽq(β,x)

=0

where β ∈ F
log(m) is a random challenge from the Verifier. This equality

ensures that, except with negligible probability, (4) holds for i = 1, 2.
– At the end of the sumcheck protocol, P and V are left with evaluation claims

of the following form, for j ∈ [c], i ∈ {1, 2}, and (j − 1)k + 1 ≤ � ≤ jk:

ai(r) = d,
∑
y

Mi,j(r,y) · t�(y) = cij�,

– The Verifier sends a random challenge α ∈ F, and the resulting folded
instance is

(a1 + αa2)(r) = d′, (cmMi,j
;Mi,j) ∈ Relem∑

y

(M1,j + αM2,j)(r,y) · t�(y) = c′
j�, j ∈ [c], (j − 1)k + 1 ≤ � ≤ jk

for random r ∈ F
log(m) and some field elements d′, c′

j�.
– As we explained, the claims (cmMi,j

;Mi,j) ∈ Relem can be expressed as R1CS
instances, and folded in a Nova-like fashion.

FLI: Folding Lookup Instances 413

This is a simplified description of FLI+SOS where both instances are lookup
instances. In practice, we fold lookup instances into a relaxed lookup relation
that we describe in Sect. 5. Further, we use a single matrix to accumulate all the
claims of the form (cmMi,j

;Mi,j) ∈ Relem, and in parallel we fold the evaluation
claims. The folding Prover and Verifier of FLI+SOS are still the cheapest (see
Tables 2 and 3). We also show by using an example that the cost of proving
accumulated instances with FLI is the cheapest in relevant scenarios (Sect. 6).

Proving Accumulated Instances. We describe custom PIOPs that allow to
prove that an instance accumulated with FLI+SOS (or FLI) is valid. These
protocols are simple and only consist in sumchecks, cf. Table 4, and Sect. 6.
The dominant Prover cost for proving accumulated instances with FLI+SOS is
m(2N1/c + 1) + 3α · m · nf field operations, with the mN1/c cost being due to
the fact that we treat the m × N1/c matrices Mi as dense matrices, and the
other cost is related to the sparsity of the accumulated matrices after nf fold-
ings. The fact that we can freely choose the parameter c makes this Prover cost
very similar to the other available options in some practical scenarios, which we
discuss in Sect. 6). This is considering very optimistic costs for the protocols that
prove accumulated instances with Protostar+SOS or DT+SOS (see Sect. 6, and
Remark 3). The final step in the protocols that prove accumulated instances is
the opening of certain multivariate polynomials in log(m) or log(mN1/c) vari-
ables at random vectors of field elements. While these openings can be expensive,
many of them are at the same vector of field elements and can be batched. By
choosing a polynomial commitment scheme carefully (like certain variations [27]
of Zeromorph [19]), it is possible to reduce the cost of these openings at the
expense of a worse Verifier cost. We discuss this in Sect. 6.

3 Preliminaries

Throughout the document we fix a finite field F. Given an integer k ≥ 1 we let
[k] := {1, . . . , n}. We let B

k = {0, 1}k := {(b1, . . . , bk) | bi ∈ B, for all i ∈ [k]}
be the hypercube of dimension k, or, in other words, the set of all sequences of
k bits. We next provide formal descriptions pertaining multilinear polynomials,
lookup relations, folding schemes, and SOS decomposability. We refer to the full
version of this paper for extended preliminaries on interactive proofs, and the
sumcheck protocol.

Let X = (X1, . . . , Xn) be a vector of variables. We let F[X] denote the ring of
multivariate polynomials on variables X and with coefficients in F. By F

≤d[X] we
denote the set of polynomials from F[X] whose variables have individual degree at
most d. For example, F≤1[X] is the set of multilinear polynomials on variables X.

We use λ to denote the security parameter. A function f(λ) is in poly(λ) if
there exists a c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) = o(λ−c),
then f(λ) is in negl(λ) and is said to be negligible.

414 A. Garreta and I. Manzur

3.1 Multilinear Polynomials

Let n ≥ 1 and let X = (X1, . . . , Xn) be a tuple of variables. It is well-known
that a multilinear polynomial f(X) ∈ F

≤1[X] is uniquely defined by the multiset
of the values it takes on B

n, i.e. f(Bn) := {f(x) | x ∈ B
n}. In other words, any

two f, g ∈ F
≤1[X] such that f(x) = g(x) for all x ∈ B

n are the same polynomial.
Further, given a map f : B

n → F, there always exist a unique multilinear
polynomial on n variables, denoted f̃(X), such that f̃(x) = f(x) for all x ∈ B

n.
It is given by the expression

f̃(X) :=
∑
x∈Bn

f(x) · ẽq(x;X) (5)

where ẽq(x;X) is the unique multilinear polynomial on n variables that takes
the value 0 on all points of the hypercube B

n, except at x where it takes the
value 1. Precisely,

ẽq(x;X) :=
∏

i∈[n]

(xiXi − (1 − xi)(1 − Xi)) .

This unique multilinear polynomial f̃(X) is called the multilinear extension
(MLE) of f . Given a vector v = (v1, . . . , vN) ∈ F

N , we define the MLE of
v (denoted by ṽ(X)) as the MLE of the map v : Bn → F assigning to each ele-
ment x ∈ B

n the element vx, where here we interpret x as the natural number
whose binary representation is x.

Throughout the paper we fix a Polynomial Commitment Scheme (PCS) for
multilinear polynomials (Setup,Commit,Open,Eval) (cf. the extended version of
this paper for the definition of such a PCS).

3.2 Lookup Relations

An indexed relation is a subset R ⊆ {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗. Given (i,x;w) ∈
R, the string i is called an index, x is called an instance, and w a witness. In this
paper we often interpret instances and witnesses as vectors of field elements and
indices consisting of tuples of natural numbers and field descriptions, but this
need not always be the case. When describing Polynomial IOPs for example, the
index and the instance can contain oracles to polynomials, and the witness can
contain polynomials.

Throughout the paper we let N denote a “large table” size and m ≤ N
denote a “small table” size. For simplicity, we assume both N and m are powers
of 2. A vector v ∈ F

k is said to be r-sparse if v has at most r entries different
than 0.

Definition 1 (Lookup relation and big/small tables). The lookup relation
RLook is defined as:

RLook :=

⎧⎪⎨
⎪⎩

⎛
⎜⎝

i = (F, N,m),
x = (a, t);
w = ∅

⎞
⎟⎠

∣∣∣∣∣
N,m ≥ 1,

{a(x) | x ∈ B
log m} ⊆ {t(y) | y ∈ B

log(N)}.

⎫⎪⎬
⎪⎭

FLI: Folding Lookup Instances 415

We call a a small table, and t a lookup table (or big table).

Unless stated otherwise, we make no assumption on the number of repeated
values in t. I.e. t may have repeated values.

Definition 2 (Lookup instances). We call a tuple of the form
((F, N,m), (a, t)) with t ∈ F

N , a ∈ F
m a lookup instance. Sometimes the index

(F, N,m) is omitted. An instance may or may not belong to RLook.

Committed Matrix Lookup Relations. A now standard observation [29,30]
is that a tuple ((F, N,m), (a, t)) is in RLook if and only if there exists a matrix
M ∈ F

m×N such that:

– M · tT = aT,
– The rows of M are vectors in the standard basis of FN . This second condition

is equivalent, when N < char(F), to the equations M ◦ M = M (◦ denotes
the Hadamard product) and M · 1T = 1T.

It is convenient to translate these last two conditions and express them as
relationships between multilinear polynomials, by using the MLEs of the vectors
a, t and M . A tuple ((F, N,m), (a, t)) is in RLook if and only if there exists a
log(m) + log(N)-variate multilinear polynomial M such that:

–
∑

y∈Blog(N) M(X,y) · t(y) = a(X)
– For all x,y, M(x,y)2 = M(x,y) ; and

∑
y∈Blog(N) M(X,y) = 1. By abuse of

notation, we still write the first condition as M ◦ M = M , and the second
one as M · 1T = 1T.

Further, the situation is often such that the Prover commits to the tables
a, t3, and has additional witnesses for these commitments. We let PC =
(Setup,Commit,Open,Eval) be a multilinear PCS. For simplicity, we abbrevi-
ate Commit as cm. We define the committed matrix algebraic4 lookup relation
as follows:

RCmMAlLook :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

(F, N,m, t),

(a,M);
(a,M)

⎞
⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F),

M ∈ F
≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

a ∈ F
≤1[X1, . . . , Xlog(m)],

t ∈ F
≤1[Y1, . . . , Ylog(N)],

M = cm(M), a = cm(a),∑
y∈Blog(N)

M(X,y) · t(y) = a(X),

M ◦ M = M, M · 1T = 1T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This rewriting of the lookup relation will be useful for us when formally
describing our folding scheme in Sect. 5.
3 Unless t has a particular type of structure, e.g., the SOS structure.
4 The term “algebraic” refers to the fact that the conditions relating M,a, t are

expressed with multilinear polynomials.

416 A. Garreta and I. Manzur

3.3 SOS-Decomposable Tables

We recall the definition of SOS decomposition from [26].

Definition 3 (SOS decomposition). Let c, k ≥ 1, α = k · c, and let t ∈ F
N

be a table of size N . Assume N1/c is a power of two. Let t1, . . . , tα ∈ F
N1/c

be α
tables of size N1/c. We say that t admits a SOS decomposition with respect to
the tables t1, . . . , tα if there exists a multilinear polynomial g = g(Y1, . . . , Yα) ∈
F[Y1, . . . , Yα] in α variables such that:

∀y ∈ B
log(N), t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc))

where y = (y1, . . . ,yc) ∈ (Blog(N)/c)c, and further each ti can be evaluated in
O(log(N)/c) field operations at any r ∈ F

log(N)/c.

3.4 Folding Schemes

We recall the notion of a folding scheme in the sense of [15]. We use the con-
vention that if we say that the protocol has input (a; b), both the Prover and
Verifier get a, but only the Prover gets b. The definition is slightly adapted to
our case, where the relation and the accumulation relation share the index.

Definition 4. Fix indexed relations R and Racc. An (R → Racc)-folding scheme
is a public-coin interactive protocol P between a Prover P and a Verifier V such
that:

1. The protocol input is (i,x,x′;w,w′)
2. When the protocol ends, V outputs x∗, and P outputs w∗

3. (Perfect) Completeness: If (i,x;w) ∈ Racc, (i,x′;w′) ∈ R, and P,V are
honest, then (i,x∗;w∗) ∈ Racc with probability one.

4. Knowledge soundness: The following protocol P̃ between P̃, Ṽ for the rela-
tion Racc ×R is knowledge sound with error negligible in the security param-
eter:
(a) Given inputs (i,x,x′;w,w′), P̃, Ṽ run P as P,V on the same inputs.
(b) Let (i,x∗;w∗) be the final output of P,V in P. Ṽ accepts if and only if

(i,x∗;w∗) ∈ Racc.

We call instances for the relation Racc folded or accumulated instances.

This definition allows us to enlarge the relation RCmMAlLook to a slightly more
general one, so that we can apply the folding step. We state the following slight
generalization of a lemma in [21] in the sense that it need not be the case that
Racc and R are identical, but it follows by the same arguments as in [21].

Lemma 1 (Forking Lemma for Folding Schemes, Lemma 1 in [21]).
Consider a (2μ + 1)-move (R → Racc)-folding scheme Π. The protocol Π sat-
isfies knowledge soundness if there exists a PPT algorithm Ext such that for
all input tuples (i,x,x′), outputs witnesses (w,w′) such that (i,x;w) ∈ Racc,

FLI: Folding Lookup Instances 417

(i,x′;w′) ∈ R ; given global parameters gp and an (n1, . . . , nμ)-tree of accepting
transcripts and the corresponding folded tuples (i,x∗;w∗). The tree comprises of
n1 transcripts (and the corresponding index instance witness tuples) with fresh
randomness in the Verifier’s first message ; and for each such transcript, n2

transcripts (and the corresponding index instance witness tuples) with fresh ran-
domness in the Verifier’s second message ; and so on, for a total of

∏μ
i=1 ni

leaves bounded by poly(λ).

4 An IOP and a Folding Scheme for Checking that All
Rows in a Matrix Are Elementary Vectors

It is a now standard observation [29,30] that a tuple ((F, N,m), (a, t)) is in RLook

if and only if there exists a matrix M ∈ F
m×N such that:

– M · tT = aT,
– The rows of M are vectors in the standard basis of FN .

One way to build a folding scheme for lookups is to build a folding scheme for
the second condition above. Indeed, if as a result of folding the second condition
we combine lookup matrices as M1 + αM2, then the first condition can also be
combined as (M1+αM2)·tT = (a1+αa2)T. By defining an adequate accumulated
relation, we can ensure that this is also the case when folding a lookup matrix
into an accumulated matrix, one that is the result of potentially many foldings.
We let PC = (Setup,Commit,Open,Eval) be an extractable multilinear PCS. For
simplicity, we abbreviate Commit as cm. We want to show that a matrix M seen
as a log(mN)-variate multilinear polynomial is in Relem:

Relem :=

⎧⎪⎨
⎪⎩((F, N,m),M ;M)

∣∣∣∣∣∣∣
m ≤ N < char(F),

M ∈ F
≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

M = cm(M), M ◦ M = M, M · 1T = 1T

⎫⎪⎬
⎪⎭
(6)

The notations M ◦ M = M and M · 1T = 1T are shorthand for:

∀(x,y) ∈ B
log(m)+log(N), M(x,y)2 − M(x,y) = 0 (7)∑

y∈Blog(N)

M(X,y) ≡ 1 (8)

These two properties are exactly what we need in order to enforce the fact
that each row of M has exactly one 1, and zeros otherwise. Clearly if that is the
case, then Eq. (7) and Eq. (8) hold. The converse is also true:

Lemma 2. Suppose N < char(F). If Eq. (7) and Eq. (8) hold, then for all
x ∈ B

log(m), there exists a unique yx ∈ B
log(N) such that M(x,yx) = 1, and

M(x,y) = 0 for all y ∈ B
log(N) with y �= yx.

418 A. Garreta and I. Manzur

Proof. Eq. (7) implies that for all (x,y) ∈ B
log(m)+log(N), M(x,y) = 0 or

M(x,y) = 1. Then Eq. (8) implies that for all x ∈ B
log(m),

∑
y M(x,y) = 1.

But since N < char(F), we have that:

1 =
∑

y∈Blog(N)

M(x,y) = |{y ∈ B
log(N) | M(x,y) = 1}|

�
The PIOP we describe for the relation Relem

5 is as follows:

1. The Prover sends an oracle [[M]] to a multilinear polynomial supposedly in
Relem.

2. The Verifier samples uniform random elements β ∈ F
log(mN), r ∈ F

log(m).
3. The Prover and Verifier engage in two sumcheck protocols:∑

x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 − M(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) = 1

4. During these sumchecks, the Verifier runs the sumcheck Verifier on each of
the sumchecks. It accepts if the sumcheck Verifier accepts both executions
of the sumcheck, and rejects otherwise. Note that in particular, the Verifier
queries evaluations of the form M(r1, r2), M(r, r3), for some random elements
r1 ∈ F

log(m) and r2, r3 ∈ F
log(N) determined during the sumchecks. The

Verifier can evaluate ẽq(β; r1, r2) on its own.

Lemma 3. The above protocol is a perfectly complete and knowledge sound
PIOP for the relation Relem, as long as (4 log(mN) + 1)/|F| = negl(λ).

Proof. See the extended version of the paper. �

4.1 A Folding Scheme for Relem

We can now construct a folding scheme for Relem with ideas similar to Nova
[21]. Note however, that since our statement is particularly simple we are able
to perform a simplification of the cross-term that appears when folding. We let
PC = (Setup,Commit,Open,Eval) be a succinct, binding, extractable, additively
homomorphic multilinear PCS. For simplicity, we abbreviate Commit as cm. We
define:

Racc
elem :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎝

(F, N, m),

(M, E, μ);

(M, E)

⎞
⎟⎠

∣∣∣∣∣∣∣∣∣∣

m ≤ N < char(F),

M, E ∈ F
≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)], μ ∈ F,

M = cm(M), E = cm(E)

M ◦ M = M + E, M · 1T = (1 + μ) · 1T

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

5 This is slightly abusing notation: the PIOP we describe is for the oracle relation
where we replace commitments in Relem with oracles.

FLI: Folding Lookup Instances 419

and we now describe a (Relem → Racc
elem)-folding scheme, which we call P1 =

(P1,V1). We describe it as an interactive protocol, but it can be made non-
interactive with the Fiat-Shamir heuristic [16].
Input. The protocol input is (Macc, Eacc,M, μ;Macc,M)6.
1. P1 computes and sends the commitment T to the cross term: T = 2(Macc ◦
M) − M .
2. V1 sends uniformly random α ∈ F.
3. P1 and V1 output:

Macc ← Macc + α · M, Eacc ← Eacc + α · T + α2 · M, μ ← μ + α.

4. P1 outputs: Macc ← Macc + α · M, Eacc ← Eacc + α · T + α2 · M .

Lemma 4. Protocol P1 is a (Relem → Racc
elem)-folding scheme which is perfectly

complete, and knowledge sound.

Proof. See the extended version of the paper. �

Costs We see that in protocol P1:

– P1 performs m field doublings, and 8m + 1 field operations. It also performs
3 group operations, and 3 exponentiations of group elements to the α power.
The Prover needs to additionally commit to to m field elements (the cross
term E).

– V1 performs 3 group exponentiations to the α power, 3 group operations, and
one field addition.

4.2 A Protocol for Proving Accumulated Instances

To prove a statement of the form ((N,m),M,E, μ;M,E) ∈ Racc
elem, two sum-

checks of the form:∑
x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 − M(x,y) − E(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) = 1 + μ

are performed, for random β, r chosen by the Verifier. In particular in the end,
the Verifier needs to verify evaluations of the form M(r1, r2), E(r1, r2),M(r, r3)
for some random r1, r2, r3 determined during the sumchecks. Note that by the
updating procedure of M acc and Eacc in P1, if we have folded M0, . . . ,Mnf

(where initially M acc = M0), then it holds that at the end of these nf foldings,
the support7 of M acc and of Eacc is included in the union of the supports of
the Mi (equality is possible), in particular they are both at most nf · m-sparse.

6 We use the convention that both Prover and Verifier get what is before the semicolon,
and only the Prover gets what is after.

7 The support of f is the set of x such that f(x) �= 0.

420 A. Garreta and I. Manzur

Hence, we may consider that M,E are s-sparse where s ≤ min{nf · m,mN}.
Provided that we have all the evaluations of (M(x,y)2 −M(x,y)−E(x,y)) and
of M(r,y) over their respective hypercubes, [11] shows that we can perform the
first sumcheck in 2mN +O(

√
mN) field multiplications and the second in N field

multiplications. Computing the evaluations of (M(x,y)2 − M(x,y) − E(x,y))
over Blog(mN) takes s field multiplications. Computing the evaluations of M(r,y)
over B

log(N) can be done in at most s + m field multiplications, which can be
seen by first computing the table of values of ẽq(x; r) for all x ∈ B

log(m) in m
multiplications and writing M in the multilinear Lagrange basis.

Lemma 5. The protocol above is a perfectly complete, knowledge sound PIOP
for the relation Racc

elem. Suppose M and E are s-sparse (for s ≤ mN), then
in this PIOP the Prover performs at most 2mN + N + 2s + m + O(

√
mN)

field multiplications, and the Verifier performs O(log(mN)) field operations. The
Verifier makes three oracle queries M(r1, r2), E(r1, r2), M(r, r3).

Proof. The proof is very similar to Lemma 3. �

5 FLI: Folding Lookup Instances

In this section, we describe a method to fold a lookup into a certain relaxed
lookup relations that we describe. Starting from the fact that a statement of the
form ((F, N,m), (a, t)) ∈ RLook can be expressed as an equation M · tT = aT

where the rows of M are elementary basis vectors, we then use the folding scheme
we have developed in Sect. 4. As we mentioned, the random elements used to
combine the claims that the matrices M have the correct form will also allow us
to fold the claim that M · tT = aT. We let PC = (Setup,Commit,Open,Eval) be
a succinct, binding, extractable, additively homomorphic multilinear PCS. For
simplicity, we abbreviate Commit as cm. Start by defining the relaxed relation:

Racc
1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

(F, N,m, t),

(a,M,E, μ);
(a,M,E)

⎞
⎟⎠

∣∣∣∣∣

m ≤ N < char(F),

M,E ∈ F
≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

t ∈ F
≤1[Y1, . . . , Ylog(N)],

a ∈ F
≤1[X1, . . . , Xlog(m)], μ ∈ F,

M = cm(M), E = cm(E),a = cm(a),∑
y∈Blog(N)M(X,y) · t(y) = a(X),

M ◦ M = M + E, M · 1T = (1 + μ) · 1T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This is essentially the accumulated relation in the previous section augmented
with the lookup constraint M · tT = aT. By using our folding scheme P1 for
Relem, we construct folding schemes for the relation RCmMAlLook into Racc

1 .

FLI: Folding Lookup Instances 421

5.1 FLI: a (RCmMAlLook → Racc
1)-Folding Scheme

The folding scheme is described as an interactive protocol, but it can be made
non-interactive with the Fiat-Shamir heuristic [16]. We denote this folding
scheme by F1 = (P̃1, Ṽ1).
Input. The protocol input is8

((N,m), t,aacc,Macc, Eacc, μ,M,a;aacc,Macc, Eacc,a,M).

1. P̃1 and Ṽ1 follow protocol P1 with input

((N,m),Macc, Eacc,M, μ;Macc, Eacc,M).

At the end of P1, P̃1 and Ṽ1 output:

Macc ← Macc + α · M, Eacc ← Eacc + α · T + α2 · M, μ ← μ + α

while P̃1 outputs:

Macc ← Macc + α · M, Eacc ← Eacc + α · T + α2M

for some random element α ∈ F determined during the course of P1, and T :=
2(Macc ◦ M) − M .
2. P̃1 and Ṽ1 output: aacc ← aacc + α · a; and P̃1 outputs: aacc ← aacc + α · a.

Lemma 6. Protocol F1 is a (RCmMAlLook → Racc
1)-folding scheme that is per-

fectly complete, and knowledge sound.

Proof. See the extended version of the paper. �

Costs
We see that the Prover and Verifier work in F1 is almost the same as in

P1. The additional work is: one group exponentiation, one group multiplica-
tion for both the Prover and Verifier. Further, the Prover makes 2m extra field
operations.

5.2 A Protocol for Proving Accumulated Instances.

To prove a statement of the form((N,m), t,a,M,E, μ;a,M,E) ∈ Racc
1 , we use

the same protocol that proves accumulated instances for P1 (Sect. 4.2), together
with an additional sumcheck of the form:∑

y∈Blog(N)

M(r,y) · t(y) = a(r)

for some random r. Again, we may assume M,E are s-sparse with s ≤
min{nf · m,mN} (nf the number of folding steps, see Sect. 4.2). Using [11],

8 Still with the convention that both Prover and Verifier get what is before the semi-
colon, and only the Prover gets what is after.

422 A. Garreta and I. Manzur

if we have all evaluations of M(r,y)t(y) over B
log(N), this sumcheck costs 5N

field multiplications for the Prover. Computing all evaluations of M(r,y)t(y)
can be done in 2s + m field multiplications. We can also save costs by batching
this sumcheck with the sumcheck of the form

∑
y M(r′,y) = (1 + μ) from the

protocol that proves accumulated instances for P1. The Verifier samples a sin-
gle random element r ∈ F

log(m) for both of these sumchecks, and an additional
combination random element γ ∈ F. All in all, the protocol performs the two
following sumchecks:∑

x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 − M(x,y) − E(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) + γ · M(r,y) · t(y) = 1 + μ + γ · a(r),

and reduces to the evaluations M(r1, r2), E(r1, r2),M(r, r3),a(r) for the random
elements r1 ∈ F

log(m) and r2, r3 ∈ F
log(N) determined during the sumchecks.

Lemma 7. The protocol above is a perfectly complete and knowledge sound
PIOP for the relation Racc

1 . Suppose M and E are s-sparse (for s ≤ mN),
then in this PIOP the Prover performs

2mN + N + 3 s + m + O(
√

mN)

field multiplications, and the Verifier performs O(log(mN)) field operations. The
Verifier makes four oracle queries M(r1, r2), E(r1, r2), M(r, r3),a(r). �

5.3 Extending SOS Decompositions for Folding

In Lasso [26], when t is SOS-decomposable (into α = k · c tables t1, . . . , tα and
polynomial g, see Definition 3), one needs to verify that for all x ∈ B

log(m) the
following condition holds:

a(x) = g(E1(x), . . . ,Eα(x)) ∧ ∃y = (y1, . . . ,yc) ∈
(
B
log(N)/c

)c
, Ei(x) = ti(y�i/k�)

where the Ei are vectors of length m. The first of these conditions is verified
with a sumcheck, and Lasso uses an offline memory-checking technique to certify
that the second condition holds. Note however, that since the Ei are included in
the ti, their entries could a priori be arbitrary elements of F9. As is remarked in
Lasso, this can represent a significant overhead when committing to the vectors
Ei by using curve-based schemes.

9 This is mitigated by the fact that in tables that arise in practice, for example in the
RISC-V instruction set, the entries in the tables appearing in the SOS decomposi-
tions are relatively small.

FLI: Folding Lookup Instances 423

As we remarked when discussing Eq. (4), we can express the same conditions
in a different way. When t is SOS-decomposable, the fact that for all x ∈ B

log(m)

there exists y ∈ B
log(N) such that a(x) = t(y) can be expressed as:

∀x ∈ B
log(m), ∃y ∈ B

n, a(x) = t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc))

(9)

So we can think of Eq. (9) as needing to point, for each x ∈ B
log(m), to the

correct indices of the tables t1, . . . , tα that make the equation hold. Note that
the ti have size N1/c, so we know that we can point to the correct indices for
all x ∈ B

log(m) by using matrices of size m × N1/c that have elementary basis
vectors as rows. Therefore Eq. (9) is equivalent to:

∀x ∈ B
log(m), a(x) = g (M1(x)t1, . . . ,M1(x)tk,M2(x)tk+1, . . . ,Mc(x)tα) (10)

for some matrices M1, . . . ,Mc of size m × N1/c which have the special form we
have been talking about: each of their rows is a vector in the standard basis
of F

N1/c
. Importantly, committing to the Mi with curve-based commitment

schemes consists only in group operations. As we mentioned, one should think as
the matrices Mi (for i ∈ [c]) as pointing to the correct entries of t(i−1)k+1, . . . , tik

such that Eq. (9) holds. For simplicity we use the shorthand:

∀x ∈ B
log(m), ∀i ∈ [c], (i − 1)k + 1 ≤ j ≤ ik, Mi(x)tj :=

∑
y∈Bn

Mi(x,y) · tj(y)

(11)
Note that the Mi(X)tj are log(m)-variate multilinear polynomials whose

evaluations over the hypercube can be computed by simply selecting entries
from tj . We can verify Eq. (10) with a sumcheck of the form:

∑
x∈Blog(m)

(a(x) − g(M1(x)t1, . . . , M1(x)tk, M2(x)tk+1, . . . , Mc(x)tα)) · ẽq(β;x) = 0

for a random β ∈ F
log(m), which will reduce to claims of the form a(r) =

d,Mi(r)tj = vi,j for some random r ∈ F
log(m) and d, vi,j ∈ F (for i ∈ [c] and

(i−1)k+1 ≤ j ≤ ik). This will allow us to use our folding scheme for the relation
RCmMAlLook to fold these claims about the evaluations of the Mi(r)tj = vi,j , as
per the following remark.

Remark 1. (The M · tT = aT condition) In Sect. 5.1 we described a folding
scheme for the relation RCmMAlLook, in which the condition relating M , t and a is:∑

y∈Blog(N)

M(X,y) · t(y) = a(X)

We could equally have described the folding scheme for a”randomized” version
of this condition, of the form:∑

y∈Blog(N)

M(r,y) · t(y) = a(r)

424 A. Garreta and I. Manzur

for some random r ∈ F
log(m). The two folding schemes we have described trans-

late mutatis mutandis to this setting, provided that the random evaluation vector
r is the same for the accumulated claim and the new claim. We do not write this
again as it is quite literally the same folding scheme. The protocol that proves
accumulated instances of the non-randomized versions of our folding schemes
starts precisely by randomizing the condition

∑
y∈Blog(N) M acc(X,y) · t(y) =

aacc(X) as
∑

y∈Blog(N) M acc(r,y) · t(y) = aacc(r). We still refer to the folding
scheme for this randomized condition M · tT = aT as F1. The soundness loss of
this randomization is the probability that the randomized condition holds while
the condition on polynomials does not. This has probability at most log(m)/|F|
by Schwartz-Zippel, since all polynomials are multilinear. This will be useful
in the next section, when we use SOS decompositions in conjunction with the
folding schemes we have constructed.

5.4 FLI + SOS

In this section, we combine SOS decompositions with FLI using our remarks
from Sect. 5.3: by modifying the SOS decomposition step from the Lasso paper
[26] we make it such that the Prover only needs to commit to sparse binary
matrices. Recall from the previous section that when we are looking up a into
an SOS-decomposable table t we can express the lookup condition as a sumcheck
in log(m) variables:

∑
x∈Blog(m)

(a(x) − g(M1(x)t1, . . . , M1(x)tk, M2(x)tk+1, . . . Mc(x)tα)) · ẽq(β;x) = 0

for matrices M1, . . . ,Mc of size m × N1/c in Relem, and a random β ∈ F
log(m).

The sumcheck reduces to claims of the form a(r) = d,Mi(r)tj = vi,j for some
random r ∈ F

log(m) and d, vi,j ∈ F. We can now fold the claims about the
matrices being in Relem using Protocol P1, and in parallel fold the claims about
the evaluations. The only important detail (see Remark 1) is that the random
evaluation point is the same, which we can always enforce with a technique
we call the point-shifting sumcheck. This is a quite standard technique (see for
example [20]), that allows to reduce the evaluation of two (or more) multilinear
polynomials at different point to evaluations at the same point. It exploits that
for any multilinear polynomial f ∈ F

≤1[X1, . . . , Xs] and any r ∈ F
s, it holds

that f(r) =
∑

x∈Bs f(x) · ẽq(x; r) (see Eq. (5)). Say we have two multilinear
polynomials f, g in s variables with purported evaluations f(r1) = c, g(r2) = d
respectively (for some r1, r2 ∈ F

s), we may apply the sumcheck protocol to
certify that the following holds:∑

x∈Bs

f(x) · ẽq(x; r1) + γ · g(x) · ẽq(x; r2) = c + γ · d

for a random uniform γ ∈ F. At the end of this sumcheck, the Prover needs to
reveal f(r), g(r) and ẽq(r; r1), ẽq(r, r2). In this way, we now have reduced the

FLI: Folding Lookup Instances 425

statements that f(r1) = c, g(r2) = d to an evaluation of f and g at the same
point.

Formally, we will obtain a folding scheme from the committed matrix lookup
SOS relation:

RSOS :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

(F, N, m, t, α,

c, k, t1, . . . , tα, g),

(M1, . . . , Mc,a);

(M1, . . . , Mc,a)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F), α = k · c ∈ N,

∀i ∈ [c], Mi ∈ F
≤1[X[log(m)],Y[log(N)/c]],

a ∈ F
≤1[X[log(m)]], t ∈ F

≤1[Y[log(N)/c]],

t1, . . . , tα ∈ F
≤1[Y[log(N)/c]],

∀i ∈ [c], Mi = cm(Mi), a = cm(a),

∀y ∈ B
log(N), t(y) = g(t1(y1), . . . , tα(yc)),

∀x ∈ B
log(m), a(x) = g(M1(x)t1, . . . , Mc(x)tα),

∀i ∈ [c], Mi ◦ Mi = Mi, Mi · 1T = 1T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(for brevity X[log(m)] = (X1, . . . Xlog(m)), Y[log(N)/c] = (Y1, . . . Ylog(N)/c)) into
the accumulated relation:

RaccSOS :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

(F, N, m, t, α,

c, k, t1, . . . , tα, g),

(M, M1, . . . , Mc, E,a, r,

d, μ, c1, . . . , cα);

(M, M1, . . . , Mc, E, a)

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F), α = k · c ∈ N,

r ∈ F
log(m), d, c1, . . . , cα, μ ∈ F,

M, M1, . . . , Mc, E ∈ F
≤1[X[log(m)],Y[log(N)/c]],

a ∈ F
≤1[X[log(m)]], t ∈ F

≤1[Y[log(N)/c]],

t1, . . . , tα ∈ F
≤1[Y[log(N)/c]],

M = cm(M), E = cm(E), a = cm(a),

∀i ∈ [c], Mi = cm(Mi),

∀y ∈ B
log(N), t(y) = g(t1(y1), . . . , tα(yc)),

a(r) = d, M1(r)t1 = c1, . . . , Mc(r)tα = cα,

M ◦ M = M + E, M · 1T = (1 + μ) · 1T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We describe this next as an interactive protocol, but it can be made non-
interactive with the Fiat-Shamir heuristic [16]. We denote it by F SOS

1 =
(PSOS

1 ,VSOS
1).

Input. The Protocol input is⎛
⎜⎝

(F, N,m), α, c, k, t, t1, . . . , tα, g,M acc,M acc
1 , . . . ,

M acc
c , Eacc,aacc, racc, μ, dacc, cacc1 , . . . , caccα ,M1, . . . ,Mc,a;

M acc,M acc
1 , . . . ,M acc

c , Eacc,aacc,M1, . . . ,Mc,a

⎞
⎟⎠

426 A. Garreta and I. Manzur

1. PSOS
1 and VSOS

1 engage in a sumcheck of the form:∑
x∈Blog(m)

φ(x) = γ · cacc1 + · · · + γα+1 · caccα + γα+2 · dacc

where

φ(x) =(a(x) − g(M1(x)t1, . . . ,Mc(x)tα))) · ẽq(β,x)

+γ · M acc
1 (x)t1 · ẽq(racc,x) + · · · + γα+1 · M acc

c (x)tα · ẽq(racc,x)

+γα+2 · aacc(x) · ẽq(racc,x)

for some random uniform β ∈ F
log(m) and γ ∈ F chosen by VSOS

1 . At the end of
the sumcheck, VSOS

1 needs to check a single equation involving the evaluations

ẽq(β, r), ẽq(racc, r),a(r),aacc(r),
M1(r)t1, . . . ,Mc(r)tα,M acc

1 (r)t1, . . . ,M acc
c (r)tα,

where the random challenge r ∈ F
log(m) is determined during the course of the

sumcheck. It evaluates the first two by itself.
2. Now, for i = 1 to i = c:

– PSOS
1 computes and sends the commitments Ti to the cross term:

Ti := 2(M acc ◦ Mi) − Mi

– VSOS
1 chooses a uniform random element ηi ∈ F. PSOS

1 and VSOS
1 output:

M acc ← M acc + ηi · Mi, Eacc ← Eacc + ηi · Ti + η2
i · Mi

μ ← μ + ηi, M acc
i ← M acc

i + ηi · Mi

and for all j ∈ {k(i − 1) + 1, . . . , ki}, caccj ← M acc
i (r)tj + ηi · Mi(r)tj .

– PSOS
1 outputs:

M acc ← M acc + ηi · Mi, Eacc ← Eacc + ηi · Ti + η2
i · Mi

M acc
i ← M acc

i + ηi · Mi

3. VSOS
1 chooses uniform random element θ ∈ F. PSOS

1 and VSOS
1 output:

aacc ← aacc + θ · a, racc ← r, dacc ← aacc(r) + θ · a(r)

4. PSOS
1 outputs: aacc ← aacc + θ · a

Lemma 8. Protocol F SOS
1 is a (RSOS → RaccSOS

1)-folding scheme that is per-
fectly complete, and knowledge sound.

Proof. See the extended version of the paper. �

FLI: Folding Lookup Instances 427

Costs. All in all, we see that in protocol F SOS
1 :

– The Prover needs to perform the initial sumcheck which costs m ·
(max(deg(g), 2) + 1) · (6α + |g| + 12) field operations using the formula from
[17]. The Prover needs to perform 4c + 1 group exponentiations, and 4c + 1
group additions. The Prover also needs to perform O(αm) field operations,
where the constant is small.

– The Verifier needs to perform O(α log(m)) field operations in the sumcheck,
4c + 1 group exponentiations, and 4c + 1 group additions. It also needs to
perform 2α + 2 field operations.

Proving Accumulated Instances. To prove accumulated instances, we need
to verify the following:

a(r) = d, M1(r)t1 = c1, . . . ,Mc(r)tα = cα

M ◦ M = M + E, M · 1T = (1 + μ) · 1T

The first claim is proved with an evaluation query to a. The second and last
claim are solved with a single sumcheck of the form:∑

y∈Blog(N)/c

M(r′,y) + δ · M1(r,y) · t1(y) + δα · Mc(r,y) · tα(y) =

(1 + μ) + δ · c1 + · · · + δα · cα

for a randomly sampled δ ∈ F and r′ ∈ F
log(m). Similarly to Sect. 4.2 and

Sect. 5.2, we may assume that the M,Mi, E are s-sparse (s ≤ mN1/c). To
apply the techniques in [11], we need to compute the evaluations M(r′,y)
and δ · M1(r,y) · t1(y), . . . , δα · Mc(r,y) · tα(y) over B

log(N)/c. This can be
done in no more than s + m field multiplications for M ′(r′,y), and 3αs + m
field multiplications for all the other products. Hence, the Prover in this sum-
check does no more than (5α + 1)N1/c + (3α + 1)s + 2m field multiplica-
tions. At the end of the sumcheck the Prover needs to reveal evaluations
M1(r, r1), . . . ,Mc(r, r1),M(r′, r1), t1(r1), . . . , tα(r1) for r1 ∈ F

log(N)/c deter-
mined during the sumcheck. By the SOS assumption the Verifier can evaluate the
ti’s in O(α log(N)/c) field operations. The remaining condition is also checked
with a single sumcheck of the form:∑

x∈Blog(m)

∑
y∈Blog(N)/c

((M(x,y))2 − M(x,y) − E(x,y)) · ẽq(β;x,y) = 0

for a randomly sampled β. We already saw that in this sumcheck the
Prover performs no more than 2mN1/c + s + O(

√
mN1/c) field multiplica-

tions. At the end of this sumcheck, the Prover needs to reveal evaluations
M(r2, r3), E(r2, r3), ẽq(β; r2, r3) for r2 ∈ F

log(m), r3 ∈ F
log(N)/c determined dur-

ing the sumcheck. The Verifier can evaluate ẽq(β; r2, r3) in O(log(m)+log(N)/c)
field operations.

428 A. Garreta and I. Manzur

Lemma 9. The protocol ΠaccSOS
1 we just described is a perfectly complete and

knowledge sound PIOP for the relation RaccSOS
1 . Suppose all Mi,M,E are s-

sparse (for s ≤ mN1/c), then in this PIOP the Prover performs no more than:

2mN1/c + (5α + 1)N1/c + (3α + 2)s + 2m + O(
√

mN1/c)

field multiplications, and the Verifier performs O(log(mN1/c)) field operations.
The Verifier makes c + 4 oracle queries M1(r, r1), . . . ,Mc(r, r1), M(r′, r1),
M(r2, r3), E(r2, r3), a(r). �

6 Performance

In this section we discuss performance aspects of FLI+SOS. First, it is clear from
Tables 2 and 3 that FLI+SOS has the most efficient folding Prover and Verifier
compared to Protostar+SOS and DeepThought+SOS current state-of-the-art
schemes. When it comes to proving accumulated instances, FLI+SOS’s Prover
incurs a cost with a term of the form 2mN1/c. While this is prohibitive in some
parameter settings, we argue that for many regimes of interest, FLI+SOS’s con-
crete costs for proving accumulated instances are comparable to all alternatives.
In particular, this is the case when N1/c is small, and m is relatively large. This
scenario arises naturally in applications such as continuations in Jolt [1,27] (cf.
Sect. 1). All in all, we argue that FLI+SOS can be the best scheme “end-to-end”:
for folding lookup instances, and proving the resulting accumulated instance.

Concretely, consider for example the setting m = 217, N = 21024, N1/c = 24,
c = 256, α = 2c. Recall m is the size of the small table, N the size of the big
table, which we assume is SOS-decomposable into α tables of size N1/c (see
Definition 3). This setting resembles some of the parameter choices suggested
in [1,27]. Further, assume that we perform nf = 23 folding steps, which would
allow us to prove m ·nf = 220 lookups. Based on these parameters, in Table 5 we
use Tables 2 to 6 to approximate the costs of the folding Prover and the Prover
for proving accumulated instances, counted in field multiplications and polyno-
mial openings. Afterward, we briefly discuss how these costs were obtained, and
mention possible variations in the schemes that would lead to other costs.

We discuss the setting where m is small and N1/c is relatively large in
Appendix A. In such setting, FLI essentially only requires committing to binary
vectors, due to the average case commitment cost of FLI (Tables 2 and 5).

Remark 2. (DT+SOS folding Prover cost) When it comes to DT+SOS, it is
challenging to estimate the concrete costs of the folding Prover. We expect α ·
L to be the dominant cost, where recall L denotes the cost of computing the
coefficients of e(X) in [7], which has degree 9 in this case. Even using FFT’s in
the simplified scenario discussed in the footnote of Page 7 of [7], the cost would
be over α · 270m (Since computing e(X) requires composing 9 homogeneous
polynomials of degree 1, . . . , 9 with a linear polynomial, m times). To this, one
must add the cost α times the cost (3m, [M]) (committing to a 3m-sized vector
with entries in [M], where M is the largest entry in t) plus the cost α · Psps of

FLI: Folding Lookup Instances 429

Table 5. Approximate costs of Protostar+SOS, DT+SOS, and FLI+SOS when
m = 217, N = 21024, N1/c = 24, and α = 2c = 256. For each scheme, we display the
cost of the folding Prover (in field multiplications) and of the Prover for accumulated
instances (in field multiplications and group operations, in columns 3 and 4). Regard-
ing the latter, we describe Provers for instances accumulated with Protostar+SOS and
DT+SOS below (Sect. 6). In the second and last column, we assume that a MSM-based
PCS is used over the Pallas curve, and use Table 1 in [17] to estimate the cost of these
MSMs. *The costs of DT+SOS’s folding Prover are discussed in Remark 2 **These
opening costs can be lowered, see the end of Sect. 6.

Scheme Folding Prover Acc. Prover Openings Rounds

Protostar+SOS ∼ α · 210.5 · m 213.32 · m ∼ 28.5 · m log(m) + α

DT +SOS * 213.25 · m ∼ 28.5 · m log(m) + α · u · log(N1/c)

FLI +SOS

{
avg.: ∼ α · 28.6 · ρ

worse: ∼ α · 28.5 · m
213.59 · m ∼ 212 · m** log(m) + α

ρ := min{mnf/N1/c, m}

logUp-GKR’s Prover, and other costs. Because of this, we expect the final cost
to be higher than FLI+SOS.

Provers for instances that were accumulated with Protostar+SOS or
DT+SOS. The protocols that prove accumulated instances for Protostar and
DT are unspecified in the original papers. Recall that in Sect. 1.2 we described
variations of Protostar and DT that first perform the SOS decomposition step of
Lasso, which reduces the initial claim into α lookup instances, and then folding
each of the α instances with α accumulated instances, using Protostar or DT,
respectively. Accordingly, one can imagine a scheme for Protostar or DT that
proves each of the α accumulated lookup instances separately. In Protostar, the
accumulated claim is roughly a statement that the identities used in logUp hold
(cf. [5] or Lemma 5 in [17]). In DT, the same occurs, but this time the GKR
variant of logUp is used [24]. For simplicity and for the sake of comparison, we
assume that these claims can be proved, respectively, with logUp [17] and logUp-
GKR [24]. We emphasize that, to our knowledge, no actual protocols for proving
accumulated instances have been formally described, and that they may be more
complex than the schemes we just sketched (typically error terms would appear
in the logUp equations). With this in mind, in Table 6 we lower bound Protostar’s
and DT’s costs for proving accumulated instances as the cost of running logUp
(when using Protostar) or logUp-GKR (when using DT) on each of the resulting
α accumulated claims that arise when applying the decomposition step of Lasso.
We set the cost of logUp as 20max{N1/c,m} field multiplications, and of logUp-
GKR as 19max{N1/c,m} field multiplications. We derive these costs for logUp
and logUp-GKR using [11] in Appendix B.

430 A. Garreta and I. Manzur

Remark 3. In their simplest forms, logUp [17] and logUp-GKR [24] are lookups
designed to handle instances where both the “small” and the “large” table have
the same size. Both [17,24] have more elaborate versions that handle m > N1/c

by splitting m into m/N1/c “columns” (following the terminology in [17,24]).
When using this approach, as per [24], the Prover costs of Protostar and DT
in Table 6 would incur a multiplicative overhead of ≈ log(m/N1/c). Such a cost
would make Protostar’s and DT’s costs for proving accumulated instances really
high, and FLI would clearly be the best protocol. Because of this, and since
it seems plausible, in our discussion we assume that there is a method that
allows to treat the case m > N1/c by using one single column. We assume
these improved protocols incur no overhead with respect to the original ones.
The cost reflected in Table 6 corresponds to the dominant costs of such schemes.
Further, the resulting cost for both Protostar and DT assume that we perform
the sumchecks that prove logUp/logUp-GKR in parallel. In practice, this would
lead to way too many evaluations, so the sumchecks would need to be batched.
This results in an increase of concrete costs, though not significant.

Table 6. Dominant costs of the protocols for proving accumulated instances with Pro-
tostar+SOS, DT+SOS, and FLI+SOS. We follow the same notation as in Tables 1 to
3. The opening costs refer to computing opening proofs of multilinear polynomials,
possibly dense. We assume polynomial evaluation claims are batched together using
standard techniques, hence, for each number of variables, there is only one opening
proof to be generated. For both Protostar and Deep Thought, the costs are approxi-
mative and based on a simplified scheme, cf. Remark 3

Scheme Prover field mult Openings

Protostar +SOS 20α max{m, N1/c} 1 · log(m)-variate, 1 · log(N1/c)-variate

Deep Thought + SOS 19α max{m, N1/c} 1 · log(m)-variate, 1 · log(N1/c)-variate

FLI + SOS 2m(N1/c + 1) + 3αm · nf 1 · log(mN1/c)-variate

Prover for Accumulated Instances’ Openings Costs. FLI’s scheme for
proving accumulated instances requires proving an evaluation of a log(mN1/c)-
variate (sparse) multilinear polynomial. We assume that a curve-based com-
mitment scheme is used, and that the opening proof bottleneck occurs when
computing Multi-Scalar-Multiplication (MSM) of size mN1/c. We remark that
due to #2 in [27], certain variations of Zeromorph [19] or HyperKZG [25] might
make this step not be a bottleneck anymore. The price to pay is an increase
of the folding Verifier work by O(N1/c) (which can be configured to be small).
Indeed, this is the approach planned by the Jolt team [27]. In other words, here
we analyze the costs of a naive selection of commitment scheme, but we remark
that there are plausible alternatives.

Following the benchmarks in Table 1 of [17], we set the cost of this MSM when
mN1/c > 218 to be around 28mN1/c field multiplications, on the Pallas curve.
With our parameter choice, this is roughly 2× less expensive than Protostar and
DT’s cost for proving accumulated instances, which is ≈ 213.2m.

FLI: Folding Lookup Instances 431

A Comparing Other Regimes for m and N

The case where m is small and N1/c is large. Assuming N1/c is large and
both m and nf are small, then in general FLI’s commitment cost is very small
(on average), coming from committing to c vectors of, mostly, binary elements.
In this scenario, we can reasonably assume that FLI’s folding cost is dominated
by m deg(g)(α+ |g|) field operations. As shown in Tables 2 and 3, in this param-
eter regime, FLI results in the most efficient folding scheme available, for many
parameter choices. Further, towards building an IVC/PCD scheme, FLI’s Veri-
fier is the cheapest among the schemes in Tables 2 and 3.

If nf is large, then ρ may degenerate to m, in which case FLI’s folding
Prover must commit to c size-m vectors of arbitrarily sized field elements. Still,
Protostar must commit to 2α = 2 · k · c size-m such vectors This is roughly 2k
times more expensive than FLI’s commitment costs. Further, we note that the
overall number of commitments to large elements over the n′

f folding steps is, in
FLI, on average:

c
m

N1/c
(1 + 2 + . . . + nf) ≈ cn2

f m

2N1/c
,

while in Protostar it is 2αnfm.

The case when both m and N1/c are large. So far, we have only discussed the
case when mN1/c is roughly our computation target. This limited our analysis
to settings where m and/or N1/c were “small”. The reason for this analysis is
that FLI’s protocol for proving accumulated instances has cost O(mN1/c), and
thus cannot handle scenarios where both m and N1/c are large. On the other
hand, Protostar and Deep Thought do not present the quadratic term mN1/c,
and so it is only fair to remark that one may use them in this regime, while FLI
is not usable in this case.

We note however that, when dealing with SOS-decomposable tables as the
ones from Jolt, it is always possible to select c so that N1/c is small. Hence,
when looking into such tables, there is always the option of selecting parameters
as in Sect. 6 and use FLI.

B The Cost of Proving Accumulated Instances
with Protostar+SOS and DT+SOS

As discussed in Sect. 6, we use an oversimplification and estimate the cost of
proving an accumulated instance with Protostar+SOS (resp. DT+SOS) by esti-
mating the cost of proving α sumchecks appearing in logUp (resp. logUp-GKR)
when applied to a lookup of a table of size max{m,N1/c} into a table of the
same size. In turn, we estimate the cost of proving a single such sumcheck using
the new optimized costs in [11].

432 A. Garreta and I. Manzur

The cost of logUp [17] For logUp, the sumcheck for a lookup of a small table
a into a big table t (both of size M := max{m,N1/c}) is of the form:∑

x∈Blog(M)

h1(x) + h2(x) + γ · ẽq(x;β) · (h1(x) · (α + t(x)) − m(x)))+ (�)

γ2 · ẽq(x;β) · (h2(x) · (α + a(x)) − 1)) = 0

where α ∈ F and β ∈ F
log(M) are chosen at random, m is the”multiplicity

function” (c.f. [17], this functions indicates how many times each entry t(x) is
looked up) and:

∀x ∈ B
log(M), h1(x) := m(x)/(α + t(x))

h2(x) := −1/(α + a(x))

To apply the sumcheck optimizations of [11], we need all the evaluations of
h1, h2. Batch inversion techniques allow to compute the vector of inverses of
(α+ t(x), α+a(x))x in about 6M multiplications, and 1 inversion. We can then
use M multiplications to compute all evaluations of h1, h2 over the hypercube.
Following [11], the Prover in sumcheck in (�) performs:

– 2M field multiplications for the terms h1(x) and h2(x).
– 6M + O(

√
M) field multiplications for the term γ · ẽq(x;β) · (h1(x) · (α +

t(x)) − m(x))).
– 6M field multiplications for the term γ2 · ẽq(x;β) · (h2(x) · (α + a(x)) − 1)).

For a total cost of 20M + O(
√

M) field multiplications.

The cost of logUp-GKR [24]. For logUp-GKR, for a lookup of a small table
a into a big table t (both of size M := max{m,N1/c}), there are k sumchecks
(for 1 ≤ k ≤ log(M) − 1) of the form:∑
x∈Bk

ẽq(x;β) · (pk+1(x, 1) · qk+1(x,−1) + pk+1(x,−1) · qk+1(x, 1)+

γk · qk+1(x, 1) · qk+1(x,−1)) = pk(β) + γk · qk(β)
(†)

where α ∈ F and β ∈ F
k are chosen at random, and:

p(X, Y) := Y · m(X) − (1 − Y)
q(X, Y) := Y · (α − t(X)) + (1 − Y) · (α − a(X))

∀1 ≤ k ≤ log(M) − 1, ∀x ∈ B
k,

pk(x)
qk(x)

=
∑

y∈Blog(M)−k

p(x,y)
q(x,y)

At layer k, following [11] and assuming that we have all relevant values of
pk+1, qk+1, the Prover can perform the sumcheck in (†) in 16 · 2k + O(2k/2) field

FLI: Folding Lookup Instances 433

multiplications. Summing over k, this leads to 16M + O(
√

M) field multiplica-
tions overall. To compute all necessary values of the pk, qk for all k, we need
3M multiplications (this is because of the linear relationships between pk, qk

and pk+1, qk+1, see [24]). All in all, we estimate that the Prover in logUp-GKR
performs no more than 19M + O(

√
M) field multiplications.

References

1. Arun, A., Setty, S., Thaler, J.: Jolt: Snarks for virtual machines via lookups. In:
Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp.
3–33. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-
031-58751-1 1

2. Arun, A., Zhu, M.: Jolt: Snarks for virtual machines via lookups. ZK Proof Stan-
dards (2024), https://www.youtube.com/live/RySXjCsLgXk

3. barryWhiteHat: Lookup singularity. ZKResearch (2022), https://zkresear.ch/t/
lookup-singularity/65

4. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Paper 2019/1021 (2019), https://eprint.iacr.
org/2019/1021

5. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special-
sound protocols. In: Advances in Cryptology - ASIACRYPT 2023: 29th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part II. p. 77-
110. Springer-Verlag, Berlin, Heidelberg (2023).https://doi.org/10.1007/978-981-
99-8724-5 3

6. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data with-
out succinct arguments. In: Malkin, T., Peikert, C. (eds.) Advances in Cryp-
tology – CRYPTO 2021. pp. 681–710. Springer International Publishing, Cham
(2021).https://doi.org/10.1007/978-3-030-84242-0 24

7. Bünz, B., Chen, J.: Proofs for deep thought: Accumulation for large memories and
deterministic computations. Cryptology ePrint Archive, Paper 2024/325 (2024),
https://eprint.iacr.org/2024/325

8. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumula-
tion schemes. Cryptology ePrint Archive, Paper 2020/499 (2020), https://eprint.
iacr.org/2020/499

9. Campanelli, M., Gailly, N., Gennaro, R., Jovanovic, P., Mihali, M., Thaler, J.:
Testudo: Linear time prover snarks with constant size proofs and square root size
universal setup. In: Aly, A., Tibouchi, M. (eds.) Progress in Cryptology – LAT-
INCRYPT 2023. pp. 331–351. Springer Nature Switzerland, Cham (2023).https://
doi.org/10.1007/978-3-031-44469-2 17

10. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS. pp. 310–331. Tsinghua University Press (2010)

11. Dao, Q., Thaler, J.: More optimizations to sum-check proving. Cryptology ePrint
Archive, Paper 2024/1210 (2024), https://eprint.iacr.org/2024/1210

12. Diamond, B.E., Posen, J.: Succinct arguments over towers of binary fields. Cryp-
tology ePrint Archive, Paper 2023/1784 (2023), https://eprint.iacr.org/2023/1784

13. Diamond, B.E., Posen, J.: Proximity testing with logarithmic randomness. IACR
Communications in Cryptology 1(1) (2024).https://doi.org/10.62056/aksdkp10

https://doi.org/10.1007/978-3-031-58751-1_1
https://doi.org/10.1007/978-3-031-58751-1_1
https://www.youtube.com/live/RySXjCsLgXk
https://zkresear.ch/t/lookup-singularity/65
https://zkresear.ch/t/lookup-singularity/65
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-3-030-84242-0_24
https://eprint.iacr.org/2024/325
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2020/499
https://doi.org/10.1007/978-3-031-44469-2_17
https://doi.org/10.1007/978-3-031-44469-2_17
https://eprint.iacr.org/2024/1210
https://eprint.iacr.org/2023/1784
https://doi.org/10.62056/aksdkp10

434 A. Garreta and I. Manzur

14. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. Cryptology
ePrint Archive, Paper 2022/1763 (2022), https://eprint.iacr.org/2022/1763

15. Eagen, L., Gabizon, A.: Protogalaxy: Efficient protostar-style folding of multiple
instances. Cryptology ePrint Archive, Paper 2023/1106 (2023), https://eprint.iacr.
org/2023/1106

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Advances in Cryptology - CRYPTO 1986, Santa Barbara,
California, USA, 1986, Proceedings. Lecture Notes in Computer Science, vol. 263,
pp. 186–194. Springer (1986). https://doi.org/10.1007/3-540-47721-7 12

17. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive, Paper 2022/1530 (2022), https://eprint.iacr.org/2022/1530

18. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on The-
ory of Computing. p. 723-732. STOC ’92, Association for Computing Machinery,
New York, NY, USA (1992).https://doi.org/10.1145/129712.129782

19. Kohrita, T., Towa, P.: Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments. Cryptology ePrint Archive, Paper
2023/917 (2023), https://eprint.iacr.org/2023/917

20. Kothapalli, A., Setty, S.: Hypernova: Recursive arguments for customizable con-
straint systems. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology –
CRYPTO 2024. pp. 345–379. Springer Nature Switzerland, Cham (2024). https://
doi.org/10.1007/978-3-031-68403-6 11

21. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology
– CRYPTO 2022. pp. 359–388. Springer Nature Switzerland, Cham (2022).https://
doi.org/10.1007/978-3-031-15985-5 13

22. Micali, S.: Cs proofs. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. pp. 436–453 (1994).https://doi.org/10.1109/SFCS.1994.365746

23. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) Theory of Cryptography. pp. 222–242. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 13

24. Papini, S., Haböck, U.: Improving logarithmic derivative lookups using gkr. Cryp-
tology ePrint Archive, Paper 2023/1284 (2023), https://eprint.iacr.org/2023/1284

25. Setty, S.: Hyperkzg (2024), https://github.com/microsoft/Nova/blob/main/src/
provider/hyperkzg.rs

26. Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso. In:
Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp.
180–209. Springer Nature Switzerland, Cham (2024).https://doi.org/10.1007/978-
3-031-58751-1 7

27. Thaler, J.: Faq on jolt’s initial implementation (2024), https://a16zcrypto.com/
posts/article/faqs-on-jolts-initial-implementation/

28. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) Theory of Cryptography. pp. 1–18.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008).https://doi.org/10.1007/
978-3-540-78524-8 1

https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2022/1530
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2023/917
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-642-36594-2_13
https://eprint.iacr.org/2023/1284
https://github.com/microsoft/Nova/blob/main/src/provider/hyperkzg.rs
https://github.com/microsoft/Nova/blob/main/src/provider/hyperkzg.rs
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7
https://a16zcrypto.com/posts/article/faqs-on-jolts-initial-implementation/
https://a16zcrypto.com/posts/article/faqs-on-jolts-initial-implementation/
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1

FLI: Folding Lookup Instances 435

29. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin,
M.: Caulk: Lookup arguments in sublinear time. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. p. 3121-
3134. CCS ’22, Association for Computing Machinery, New York, NY, USA
(2022).https://doi.org/10.1145/3548606.3560646

30. Zapico, A., Gabizon, A., Khovratovich, D., Maller, M., Ràfols, C.: Baloo: Nearly
optimal lookup arguments. Cryptology ePrint Archive, Paper 2022/1565 (2022),
https://eprint.iacr.org/2022/1565

https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565

Code-Based Zero-Knowledge
from VOLE-in-the-Head and Their

Applications: Simpler, Faster, and Smaller

Ying Ouyang , Deng Tang(B) , and Yanhong Xu(B)

Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
{dengtang,yanhong.xu}@sjtu.edu.

Abstract. Zero-Knowledge (ZK) protocols allow a prover to demon-
strate the truth of a statement without disclosing additional information
about the underlying witness. Code-based cryptography has a long his-
tory but did suffer from periods of slow development. Recently, a promi-
nent line of research have been contributing to designing efficient code-
based ZK from MPC-in-the-head (Ishai et al., STOC 2007) and VOLE-
in-the head (VOLEitH) (Baum et al., Crypto 2023) paradigms, resulting
in quite efficient standard signatures. However, none of them could be
directly used to construct privacy-preserving cryptographic primitives.
Therefore, Stern’s protocols remain to be the major technical stepping
stones for developing advanced code-based privacy-preserving systems.

This work proposes new code-based ZK protocols from VOLEitH
paradigm for various relations and designs several code-based privacy-
preserving systems that considerably advance the state-of-the-art in
code-based cryptography. Our first contribution is a new ZK protocol for
proving the correctness of a regular (non-linear) encoding process, which
is utilized in many advanced privacy-preserving systems. Our second con-
tribution are new ZK protocols for concrete code-based relations. In par-
ticular, we provide a ZK of accumulated values with optimal witness size
for the accumulator (Nguyen et al., Asiacrypt 2019). Our protocols thus
open the door for constructing more efficient privacy-preserving systems.
Moreover, our ZK protocols have the advantage of being simpler, faster,
and smaller compared to Stern-like protocols. To illustrate the effective-
ness of our new ZK protocols, we develop ring signature scheme, group
signature scheme, fully dynamic attribute-based signature scheme from
our new ZK. The signature sizes of the resulting schemes are two to
three orders of magnitude smaller than those based on Stern-like proto-
cols in various parameter settings. Finally, our first ZK protocol yields a
standard signature scheme, achieving “signature size + public key size”
as small as 3.05 KB, which is slightly smaller than the state-of-the-art
signature scheme (Cui et al., PKC 2024) based on the regular syndrome
decoding problems.

Keywords: Zero-knowledge protocols · VOLE-in-the-head ·
code-based cryptography · privacy-preserving schemes · signature
scheme

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, pp. 436–470, 2025.
https://doi.org/10.1007/978-981-96-0935-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_14&domain=pdf
http://orcid.org/0009-0005-9036-9788
http://orcid.org/0000-0002-8373-9200
http://orcid.org/0009-0001-7937-3779
https://doi.org/10.1007/978-981-96-0935-2_14

Code-Based Zero-Knowledge from VOLE-in-the-Head 437

1 Introduction

A beautiful and fundamental notion introduced by Goldwasser, Micali and Rack-
off [46], zero-knowledge (ZK) proof allows to prove a statement while not reveal-
ing anything about the witness. In the last three decades or so, ZK protocols are
an important tool in designing numerous cryptographic constructions. Thanks
to the Fiat-Shamir heuristic [44], ZK protocols have been the basis for devel-
oping standard signatures and privacy-enhancing authentication systems, such
as group signature (GS) [31], ring signature (RS) [73], attribute-based signa-
tures (ABS) [25], anonymous credential (AC) [30], and policy-based signature
(PBS) [12].

Traditional cryptographic schemes based on number-theoretic assumptions
are at the risk of being broken by quantum computers. This threat motivates
the research for new ZK proof techniques based on post-quantum cryptographic
problems. Among all possible alternatives, code-based cryptography is one of
the promising choices. Dating back to 1996, Stern [76] introduced the first ZK
for syndrome decoding (SD) problem and the framework has been utilized for
constructing code-based signatures and privacy-preserving systems.

However, Stern protocols and its followup works [39,56,57] have sound-
ness error 2/3, preventing it from being practical. Therefore, numerous works
(e.g., [19,50,61,83]) have been devoting to construct more efficient protocols
with smaller soundness error. A recent line of research in code-based cryptog-
raphy by Gueron et al. [47], Bidoux et al. [19] and Feneuil et al. [41], have
independently lowered the soundness error to 1/N for an arbitrary N by lever-
aging a technique inspired from the well-known MPC-in-the-head (MPCitH)
paradigm [49,51]. Since then, MPCitH and its recent variant VOLE-in-the-head
(VOLEitH) [8] have achieved a high success in designing efficient code-based ZK
proofs and standard signature schemes [1,18,26,29,32,40,42,64,65].

To the best of our knowledge, none of these ZK protocols could be directly
used to construct advanced privacy-preserving primitives from codes, where more
sophisticated algebraic structures are required. In particular, a prominent line of
research in designing code-based privacy-preserving schemes employed accumu-
lators [14] to achieve logarithmic proof sizes [56,68,69,79]. The main technical
difficulty of utilizing accumulators in designing these schemes is a supporting ZK
argument of valid accumulated values. This is particularly challenging for the
code-based accumulators [69] built from Merkle hash trees [66]. This is because
the output of each hashing has to be encoded to a small-weight vector (with
respect to its dimension) before going to the next step and we have to prove
that the whole recursive process is done correctly. To overcome this difficulty,
Nguyen et al. [69] designed a dedicated and involved (thus inefficient) ZK pro-
tocol to prove the correctness of the encoding process within Stern’s framework.
We note that a recent work by Ling et al. [56] has revisited the long-established
Stern’s protocol and put forward a new refined framework. Theoretically inter-
esting and beautiful, the refined framework has not yielded noteworthy efficiency
improvement. Nevertheless, Stern-like protocols remain to be the major technical

438 Y. Ouyang et al.

stepping stone for developing code-based advanced privacy-preserving systems,
even they are still far from being practical.

In this work, we aim to contribute to the development of practically effi-
cient ZK protocols for codes, particularly for proving the knowledge of accumu-
lated values, which can be further used to construct various advanced privacy-
preserving primitives. Since all the ZK protocols presented in this work belong
to the VOLEitH paradigm [8]. Let us briefly review the development of it.

Vector oblivious linear evaluation (VOLE)-based ZK protocols were initiated
by Boyle [21,23]. Due to low memory consumption and linear (in the circuit)
proof sizes, VOLE-based ZK protocols have recently seen a lot of progress [9–
11,22,34,35,55,80–82]. At a high level, VOLE-based proofs employ prepro-
cessed random VOLE correlations to implement highly efficient proofs via a
commit-and-prove paradigm. Recently, Baum et al. [8] developed a new method,
named VOLEitH, resulting in simpler, faster, and smaller proofs than related
approaches based on MPCitH [49]. They then instantiated their paradigm with
two protocols, one for proving statements over large fields, and the other for
proving statements over small fields. In addition, they briefly mentioned how to
extend their protocols to proving low-degree polynomials satisfiability via the
techniques from the QuickSilver [82] protocol.

Due to the attractive features of VOLEitH paradigm, Cui et al. [32] designed
a new ZK for proving the knowledge of a solution to the regular syndrome decod-
ing (RSD) problem using this paradigm, and turned their ZK into a standard
signature scheme ReSolveD. Bidoux et al. [18] also applied VOLEitH to prove
solutions to rank SD and MinRank problems, and obtained efficient code-based
signatures.

1.1 Our Contributions

In this work, we provide a brand new ZK protocol for proving the correctness
of a regular encoding process within the VOLEitH paradigm. Built upon this
core technique, we then provide efficient ZK arguments of knowledge of valid
opening, of an accumulated value, and of a plaintext. As main applications of
our ZK protocols, we construct efficient RS, GS, fully dynamic ABS (FDABS)
schemes whose signature sizes are two to three orders of magnitude smaller
than those based on Stern-like ZK protocols. In addition, our new ZK protocols
naturally yield a standard signature scheme, which is as efficient as the state-of-
the-art code-based ones [18,32] with a flexible tradeoff on communication and
computation.

Contribution to ZK Protocol for Proving the Correctness of a Regu-
lar Encoding Process. Recall that Nguyen et al. [69] employed the following
regular encoding function to build their accumulator. Let c be a positive integer.
Given a binary vector x = (x1, . . . , xc)�, let t =

∑c
h=1 2c−h · xh be the inte-

ger whose binary representation is exactly x. RE : {0, 1}c → {0, 1}2c

maps x to
y = RE(x), where y is the unit vector of length 2c with the sole 1 at the (t+1)-th
position. To demonstrate that y is a correct regular encoding of x, Nguyen et

Code-Based Zero-Knowledge from VOLE-in-the-Head 439

al. [69] employed a dedicated permutation technique that works well in Stern’s
framework. However, this permutation technique prohibits the statement about
the correct regular encoding process from being proved in other more efficient
MPCitH or VOLEitH frameworks. To improve the efficiency, we instead take
one step back and observe that it suffices to express the regular encoding pro-
cess into polynomial constraints, a set of statements that can be proved within
the VOLEitH framework. To this end, we reinterpret the regular encoding pro-
cess as 2c Boolean functions, which can be seen as a special case of polynomial
constraints. In addition, these Boolean functions have degree c, which is usually
a small constant ranging from 2 to 8. Therefore, our targeted statement can be
efficiently proved within the VOLEitH paradigm.

We remark that this regular encoding function is employed in designing code-
based commitment schemes and accumulators [69], which are essential build-
ing blocks for many privacy-preserving schemes, e.g., [56,68,69,79]. Therefore,
our new ZK protocols open the door for constructing more efficient code-based
privacy-preserving schemes such as RS, GS, ABS, AC, PBS.

Contribution to ZK Protocols for Concrete Code-based Relations.
Building upon the core technique of proving the correct encoding process, we
propose a variety of ZK for some concrete code-based relations that are essen-
tial in constructing privacy-enhancing authentication systems. In particular, we
provide a new ZK protocol for proving the knowledge of committed values for
the commitment scheme [69], a ZK protocol for proving the knowledge of accu-
mulated values for the accumulator [69], and a ZK protocol for proving the
knowledge of plaintexts for a variant of McEliece cryptosystem [63,70].

All our ZK protocols are within VOLEitH paradigm. In more detail, we
reduce the above tasks to proving polynomial constraints through careful trans-
formation. Importantly, proving the correctness of the regular encoding process
y = RE(x) essentially implies that y is a regular word. This observation is
a key to huge efficiency improvement. Let us elaborate it more. When prov-
ing the knowledge of an accumulated value, P is to prove the knowledge of
(j1, . . . , j�)� ∈ {0, 1}n, v1,w1, . . . ,v�,w� ∈ F

n
2 such that

∀ i ∈ {� − 1, . . . , 1, 0}, vi =

{
B0 · RE(vi+1) + B1 · RE(wi+1), if ji+1 = 0;
B0 · RE(wi+1) + B1 · RE(vi+1), if ji+1 = 1.

(1)

Here RE : {0, 1}n → {0, 1}n
c ·2c

. As mentioned earlier, P has to prove that the
above recursive steps are done correctly. Particularly, P has to demonstrate that
RE(vi) is indeed a regular encoding of vi. This can be proved via Stern’s proto-
col [69,76] or our ZK. However, Nguyen et al. [69] had to introduce intermediate
vectors v′

i+1 = RE(vi+1) and w′
i+1 = RE(wi+1), thus blowing up the witness size

from �+2�n bits to (2�)· 2n
c ·2c+2(�−1)·n bits. This blowup also results from the

involved methods they developed to remove the dependence on j1, . . . , j� when
computing v0. Our protocol, in contrast, can achieve the optimal witness size
� + 2�n. As a result, our new ZK protocols have the advantage of being simpler,
faster, and smaller compared to Stern-like protocols.

440 Y. Ouyang et al.

We emphasize that our ZK of accumulated values for accumulators built from
Merkle trees is the first one that achieves optimal witness size �+2�n. This is one
of the main reasons that our new ZK protocols outperform Stern-like protocols.

Contribution to Code-Based Advanced Privacy-preserving Primitives.
To further illustrate the effectiveness of our new techniques, we develop several
code-based privacy-preserving primitives from these new ZK protocols. In partic-
ular, we provide new ZK protocols for the ring signature scheme [69], the group
signature scheme [69], the fully dynamic attribute-based signature scheme [56].
In addition, we examine the concrete signature sizes of our ZK protocols, and
compare the results with the (refined) Stern-like ZK. Details are given in Table 3,
Table 4, and Table 5. The comparisons exhibit the superiority of our new ZK
protocols, which are two to three orders of magnitude smaller than Stern-like
protocols in various parameter settings.

Table 1. Comparison of signature sizes for different privacy-preserving primitives from
different ZK protocols based on various post-quantum assumptions for 128-bit security
and ring/group size 210. Note that Katz et al. [51] evaluated the signature sizes at
256-bit security. We then include the sizes of our ZK at the same level below their
results. For FDABS, the maximum number of attributes is 2� = 210, and the size of
the circuit P is K = 29.

Schemes
code-based
This work

code-based (Stern-type)
hash-based

[51]
lattice-based

[62]

RS 60 KB 61 MB [69] 61 KB [60]
388 KB

(240 KB)
13 KB

GS 75 KB 63 MB [69]121 KB� [60]
418 KB��

(297 KB)
18 KB�

FDABS 62 KB 46 MB [56] - - -
�: They only achieve CPA-anonymity.
�� : It only achieves selfless anonymity.

Next, we give a brief comparison between the signature sizes of privacy-
preserving schemes in this work and those of some previous post-quantum con-
structions. The results1 are summarized in Table 1, in which we target for 128-bit
security and ring/group size 210. The comparison shows that our ZK protocols
perform much better, around three orders of magnitude smaller, than Stern-like
ZK in [56,69].Compared to the code-based ring signature and group signature
schemes by Liu and Wang [60], our ring signature are as efficient as theirs while
our group signature sizes are around 40% smaller. Also, our ring/group signa-
ture sizes are around 30%∼40% smaller than the state-of-the-art hash-based

1 El Kaafarani and Katsumata [36] presented a lattice-based ABS scheme without
giving concrete efficiency analysis. Since they employed Stern’s protocols, their ABS
scheme is supposed to be less efficient than [56].

Code-Based Zero-Knowledge from VOLE-in-the-Head 441

ones by Katz et al. [51]. Moreover, our performances are comparable to the
state-of-the-art lattice-based constructions [62], in which the signature sizes are
13 KB (for RS) and 18 KB (for GS) in a similar parameter setting. We stress
that they [62] employed the nice features of structured lattices and specialized
techniques for optimal efficiency, and the three GS constructions [51,60,62] only
achieve weaker form of anonymity. In contrast, our new ZK protocols are able
to design CCA-anonymous GS and more advanced primitives such as FDABS.

We remark that the applications of our ZK protocols to RS, GS, FDABS are
by no means exhaustive nor optimal. In fact, it is possible to employ our ZK
protocols to design more efficient code-based privacy-preserving schemes such
as group encryption [52], AC, PBS. Also, one can improve the performance of
our ZK by choosing less conservative parameters for the underlying accumula-
tor [69] or smaller parameters for the McEliece encryption scheme. We leave
those extensions and optimizations to future work.

A New Signature Scheme Based on RSD Problem. Finally, we give a
new signature scheme ReSolveD+ (improving upon ReSolveD [32]) based on the
hardness of regular syndrome decoding (RSD) problem [4,5]. The construction
follows from the crucial observation that y is a regular word if y is a correct
regular encoding of some secret vector x, and from the standard methodology of
turning a public-coin ZK protocol into a signature scheme via the Fiat-Shamir
heuristic [44]. We provide various parameter sets that offer tradeoffs between
communication and computation targeting 128-bit security. The shortest ver-
sion of our signature scheme achieves “signature size + public key size” 3.05
KB, which is slightly smaller than the state-of-the-art code-based signature
schemes [18,32] based on RSD and a less studied rank SD problem. We give
a detailed comparison of our signature scheme with previous works in Table 8.

1.2 Technical Overview

Let us now give a high-level discussion for our contributions.

ZK for Regular Encoding Process. Recall that we need to represent the
regular encoding process RE : {0, 1}c → {0, 1}2c

into polynomial constraints.
Towards this goal, we observe that RE can be seen as 2c Boolean functions
f(0,...,0)(X1, . . . , Xc), f(0,...,0,1)(X1, . . . , Xc), . . . , f(1,...,1)(X1, . . . , Xc). So the next
question is whether we could explicitly give out these Boolean functions. The
answer turns out to be affirmative. Through simple yet non-trivial calculation,
the truth table of f(j1,...,jc)(X1, . . . , Xc) is exactly the unit vector ej , where
(j1, . . . , jc)� is the binary representation of (j − 1). Then by Lagrange interpo-
lation, we can explicitly express f(j1,...,jc)(X1, . . . , Xc) =

∏c
h=1(1 + jh + Xh). At

this point, we have successfully transformed the regular encoding process into
degree-c relations and the witness size is exactly c bits.

ZK of a Valid Opening. We now describe how to construct a new and more
efficient ZK argument of knowledge of a valid opening for the commitment

442 Y. Ouyang et al.

scheme [69]. The prover is to prove the knowledge of x ∈ F
L
2 , r ∈ F

k
2 such that

c = B0 · RE(x) + B1 · RE(r) ∈ F
n
2 , (2)

with B0 ∈ F
n× L

c ·2c

2 and B1 ∈ F
n× k

c ·2c

2 . As we are able to represent RE(x) and
RE(r) as (f1(x), . . . , fL

c ·2c(x))� and (fL
c ·2c+1(r), . . . , fL+k

c ·2c(r))�, Eq. (2) can
be easily transformed to n polynomials that are linear combinations of fi for
i ∈ [1, L+k

c · 2c] subtracted by constants.
We remark that it is possible to employ the same linear sketching techniques

as in [32] to show that RE(x) and RE(r) are regular words. However, this would
incur witness size L+k

c · 2c2 instead of the optimal witness size L + k achieved
by using our techniques.

ZK of an Accumulated Value. Recall that the goal of P is to prove knowl-
edge of (j1, . . . , j�)� ∈ {0, 1}n, v1,w1, . . . ,v�,w� ∈ F

n
2 such that (1) hold. This

task can be divided into three parts: (i) demonstrate that RE(v1), . . . ,RE(v�),
RE(w1), . . . ,RE(w�) are regular words; (ii) demonstrate that the branches of the
tree is correctly chosen according to j1, . . . , j�; (iii) demonstrate that RE(vi) is a
correct regular encoding of vi for i ∈ [1, �]. We have seen that (i) can be proved
via our techniques or the linear sketching techniques [32]. However, the latter
would deteriorate the efficiency. In particular, the linear sketching techniques
would incur witness size 2� · n

c · 2c while our techniques only incur witness size
2� · n. We thus stick to our techniques. Regarding (ii), let ji+1 = 1 − ji+1, then
we observe that (1) is equivalent to

vi = B0 ·(ji+1RE(vi+1)+ji+1RE(wi+1)
)
+B1 ·(ji+1RE(wi+1)+ji+1RE(vi+1)

)
,

where B0,B1 ∈ F
n× n

c ·2c

2 . Thus, the terms ji+1 ·RE(vi+1) and ji+1 ·RE(wi+1) can
be represented as (f ′

1(·), . . . , f ′
n
c ·2c(·))� and (f ′

n
c ·2c+1(·), . . . , f ′

2n
c ·2c(·))�, in which

the degree of each polynomial f ′
i increases to (c+1) due to multiplication with the

secret bit ji+1. Similar to the above ZK of a valid opening, equations in (1) can
now be transformed to �n polynomials. One then observes that (iii) is naturally
solved if using our ZK for proving (i). We remark that the linear sketching
techniques [32] cannot be used to prove (iii). In fact, they mainly focused on
proving knowledge of a regular word and did not involving any regular encoding
process, let alone prove correct regular encoding process.

We would also like to stress that the above simplicity for proving (ii) and (iii)
only benefits from the fact that we represent the regular encoding process as
polynomials and work in the VOLEitH paradigm. In fact, in a similar setting
of proving the knowledge of an accumulated value, Libert et al. [54], Nguyen
et al. [69], Yang et al. [83], Derler et al. [33], Boneh et al. [20] developed quite
sophisticated and dedicated techniques to prove the honest computation of vi

2 They introduced an optimization that can reduce the witness size to L+k
c

· 2c − n,
which is still larger than L + k if one sticks to a statistically hiding commitment
scheme.

Code-Based Zero-Knowledge from VOLE-in-the-Head 443

and that the whole recursive process is computed honestly. As a result, their
witness sizes are all much larger than the optimal size � + 2�n.

ZK of a Plaintext. We now introduce a ZK argument of knowledge of a plain-
text for a variant of McEliece encryption scheme [63,70], where the noise is a
regular word. Let G ∈ F

ne×ke
2 be the public key and c ∈ F

ne
2 be a ciphertext,

k1, k2, k be positive integers such that k1 + k2 = ke and k
c · 2c = ne. The prover

is to prove the knowledge of u ∈ F
k1
2 , m ∈ F

k2
2 as well as e′ ∈ F

k
2 such that

c = G ·
(

u
m

)

+ RE(e′). (3)

Similarly, we prove that e = RE(e′) is a regular word by demonstrating that
e is the correct regular encoding of some vector e′. In addition, proving the
knowledge of vectors u,m is straightforward since we can view them as the
identity function on {0, 1}ke .

ZK for Advanced Privacy-preserving Primitives. Being prepared with
the above ZK protocols for various code-based relations, we are able to design
ZK protocols for RS scheme [69], GS scheme [69], and FDABS scheme [56].
In particular, the ZK for RS scheme is an extension of the ZK for proving
the regular encoding process and for proving an accumulated value. The ZK
for GS scheme is then an extension of the ZK for RS by incorporating the
ZK for proving the knowledge of a plaintext for the above variant of McEliece
encryption. Finally, the ZK for FDABS scheme is an extension of ZK protocols
for proving an accumulated value and for proving valid opening by incorporating
a ZK for circuit satisfiability as well as a ZK for proving an odd-weight vector.

2 Preliminaries

Notations. Let λ be the security parameter. We use x
$←− S to denote the process

of sampling x uniformly at random from a finite set S. Let [a, b) := {a, . . . , b−1}
and we often write [1, b] as [b]. Let ⊕ denote the bitwise exclusive-or. For a bit
j, let j̄ = j ⊕ 1. Throughout this paper, all vectors are column vectors and
represented by bold lowercase letters (e.g., x). Denote by xi and x[i,j] the i-
component of vector x and the vector consisting of xi, xi+1, . . . , xj . Let (x‖y) ∈
F

m+n
2 and [A|B] ∈ F

n×(m+k)
2 be the concatenation of vectors x ∈ F

m
2 and y ∈ F

n
2 ,

and matrices A ∈ F
n×m
2 and B ∈ F

n×k
2 . For an integer j ∈ [0, 2� − 1], denote its

binary representation by bin(j) ∈ {0, 1}�.

2.1 Boolean Functions

Let f ∈ F2[X1, . . . , Xc] be a c-variate Boolean function: Fc
2 → F2. Then a repre-

sentation of f is by its truth table, i.e.,

TT(f) = [f(0, 0, . . . , 0), f(0, . . . , 0, 1), . . . , f(0, 1, . . . , 1), f(1, 1, . . . , 1)] .

444 Y. Ouyang et al.

Clearly, the representation is unique. It is known (see e.g., [28,71]) that any
Boolean function f in c variables can be expressed in terms of a multivariate
polynomial in F2[X1,X2, . . . , Xc]/(X2

1 + X1,X
2
2 + X2, . . . , X

2
c + Xc):

f(X1,X2, . . . , Xc) =
∑

u∈F
c
2

au

⎛

⎝
c∏

j=1

X
uj

j

⎞

⎠ =
∑

u∈F
c
2

auXu,

where X = (X1,X2, . . . , Xc), u = (u1, u2, . . . , uc) ∈ F
c
2, au ∈ F2 and the term

Xu =
∏c

i=1 Xui
i is called a monomial. This representation is called the algebraic

normal form (ANF) of f . The algebraic degree of f , denoted by deg(f), is then
defined as the maximum value of wt(u) with au 	= 0.

2.2 Code-Based Collision Resistant Hash Functions

Augot, Finiasz and Sendrier (AFS) [4,5] introduced regular syndrome decoding
(RSD) and 2-regular null syndrome decoding (2-RNSD) problems and proposed
a family of code-based hash functions based on the hardness of the latter prob-
lem. Later, Nguyen et al. [69] developed the AFS hash function to obtain code-
based computationally binding and statistically hiding commitment scheme. We
first provide some related notions following [69] and then recall the AFS hash
functions.

Let k, c be positive integers and c divides k. Define the following.

Regular(k, c) is the set of all vectors y = (y1‖ . . . ‖yk/c) ∈ F
k/c·2c

2 consisting of
k/c blocks, each of which is a unit vector of length 2c. We call y a regular
word if y ∈ Regular(k, c) for some k, c.

RE : F
k
2 → F

k/c·2c

2 is a regular encoding function that encodes x =
(x1‖ . . . ‖xk/c) ∈ F

k
2 to y = RE(x) = (y1‖ . . . ‖yk/c). In particular, for

xj = (xj,1, . . . , xj,c)�, let tj =
∑c

k=1 xj,k · 2c−k ∈ [0, 2c − 1] be the inte-
ger represented by xj . Then yj is the unit vector of length 2c that has the
sole 1 at position tj + 1. It is straightforward to see that y ∈ Regular(k, c).

2-Regular(k, c) is the set of all vectors x ∈ F
k/c·2c

2 such that exist regular words
v,w ∈ Regular(k, c) satisfying x = v ⊕ w. Notice that x ∈ 2-Regular(k, c)
if and only if it can be written as the concatenation of k/c blocks of length
2c, each of which has Hamming weight 0 or 2. We call x a 2-regular word if
x ∈ 2-Regular(k, c) for some k, c.

RSD and 2-RNSD problems are variants of the famous SD problem, in which
the goals are to find regular words and 2-regular words. As proved in [4,5], both
problems are NP-complete. We recall them below.

Definition 1 (Regular Syndrome Decoding Problem). Let n, k, c be three
positive integers, n > c, and k/c · 2c > k. Define m = k/c · 2c. Given a uniform
random matrix B ∈ F

n×m
2 , the regular syndrome decoding RSDn,k,c problem asks

to find a x ∈ F
k
2 such that B · RE(x) = 0 mod 2.

Code-Based Zero-Knowledge from VOLE-in-the-Head 445

The Hardness of RSD Problem. A number of works have analyzed the
hardness of RSD problem under different parameter regimes, e.g., [40,48,59]. In
particular, some recent works [24,29,38] have utilized the regular noise structure
into account, resulting in better algebraic attacks for RSD problem. As shown
in [58, Table 8], such attacks work better than other pooled Gauss attack [37]
or information set decoding (ISD) attack [72] for RSD with low-noise weight.
Looking ahead, we work with parameters where the exact relations between RSD
and SD problems remains unclear [29,38]. Therefore, we follow the approach
presented in [29] to select parameters.

Definition 2 (2-Regular Null Syndrome Decoding Problem). Let n, k, c
be three positive integers, n > c, and k/c · 2c > k. Define m = k/c · 2c. Given
a uniform random matrix B ∈ F

n×m
2 , the 2-regular null syndrome decoding

2-RNSDn,k,c problem asks to find a z ∈ 2-Regular(k, c) such that B ·z = 0 mod 2.

Note that 2-RNSD problem is equivalent to finding two different x,y ∈ F
k
2 such

that B · RE(x) = B · RE(y).

The Hardness of 2-RNSD Problem. Augot et al. [4,5] applied ISD attack
and generalized birthday attack (GBA) [78] to 2-RNSD problem, as well as
giving lower bound on the cost of those two attacks. Later, Augot et al. [3]
improved upon previous results and proposed several parameters for achieving
different security levels. Follow-up works [15–17] proposed further improvements.
As explicitly stated in [15,16], however, the parameters chosen in [3] are too
conservative so that the further improved algorithms [15–17] do not violate the
security claims made by Augot et al. [3]. To this end, we choose parameters for
2-RNSD problem according to [3].

The AFS Hash Functions. Let n, k = Ω(λ), k > n, and c|k. The AFS family
of hash functions, specified by parameters n, k, c, is the set {hB : Fk

2 → F
k
2 , B ∈

F
n×2c·k/c
2 } that maps x to B · RE(x) mod 2.

It is straightfoward to see that the above hash functions are collision-resistant
based on the hardness of the 2-RNSDn,k,c problem.

The Modified AFS Hash Function. Nguyen et al. [69] recently modified the
AFS hash function family [5] so that it takes 2 inputs (instead of just 1) and
hence is suitable for building Merkle hash trees. The definition is given below.

Definition 3. Let m = 2 · 2c · n/c. The function family H mapping F
n
2 × F

n
2 to

F
n
2 is defined as H = {hB | B ∈ F

n×m
2 }, where for B = [B0|B1] with B0,B1 ∈

F
n×m/2
2 , and for any (u0,u1) ∈ F

n
2 × F

n
2 , we have:

hB(u0,u1) = B0 · RE(u0) ⊕ B1 · RE(u1) ∈ F
n
2 .

The collision resistance of the hash function family relies on the hardness of the
2-RNSDn,2n,c problem [69].

446 Y. Ouyang et al.

2.3 Code-Based Commitment Scheme

The above AFS hash functions can be used to build a commitment scheme.
We now recall the statistically hiding and computationally binding commitment
scheme proposed in [69].

CSetup(1λ): Given the security parameter 1λ, it chooses n = O(λ), k ≥ n +
2λ + O(1), and specifies the message space X = F

L
2 . It also chooses c =

O(1) that divides both k and L. Let m0 = 2c · L/c and m1 = 2c · k/c.

Sample C0
$←− F

n×m0
2 and C1

$←− F
n×m1
2 . Output public parameter pp =

{λ, n, k, L, c,m0,m1,C0,C1}.
CCom(pp,x): To commit to a message x ∈ F

L
2 , this algorithm samples a ran-

domness r $←− F
n×k
2 , computes c = C0 · RE(x) ⊕ C1 · RE(r), and outputs

commitment c as well as the opening r.
COpen(pp, c, (x, r)): Given the inputs, it outputs 1 if c = C0 ·RE(x)⊕C1 ·RE(r)

and 0 otherwise.

Lemma 1 ([69]). The above commitment scheme is correct. For any x ∈ F
L
2 ,

the distribution of commitment c is statistically close to the uniform distribution
over F

n
2 . In particular, the scheme satisfies the statistical hiding property. More-

over, if 2-RNSDn,L+k,c problem is hard, then the scheme is also computationally
binding.

2.4 Updatable Code-Based Merkle-Tree Accumulator

We now recall the updatable code-based Merkle-tree accumulator [68,69].

TSetup(1λ). This algorithm first chooses n = O(λ), c = O(1) so that c divides

n. Set m = 2 · 2c · n/c. It then samples B $←− F
n×m
2 , and outputs the public

parameter pp = {λ, n, c,m,B}.
TAcc(R = {d0, . . . ,dN−1} ⊆ (Fn

2)N). Assume N = 2� without loss of generality.
Re-write dj as u�,j and call dj the leaf value of the leaf node bin(j) for
j ∈ [0, N − 1]. Build a binary tree upon N leaves u�,0, . . . ,u�,2�−1 in the
following way. For k ∈ {� − 1, � − 2, . . . , 1, 0} and i ∈ [0, 2k − 1], compute
uk,i = hB(uk+1,2i,uk+1,2i+1). Output the accumulated value u = u0,0.

TWitGen(R,d). If d /∈ R, the algorithm outputs ⊥. Otherwise, it outputs the
witness w for d as follows.
1. Set d = dj for some j ∈ [0, N − 1]. Re-write dj = u�,j . Let bin(j) =

(j1, . . . , j�)� ∈ {0, 1}� be the binary representation of j.
2. Consider the path from u�,j to the root u, the witness w then con-

sists of bin(j) as well as all the sibling nodes of the path. Let w =
(
bin(j), (w�, . . . ,w1)

) ∈ F
�
2 × (

F
n
2

)�.
TVerify

(
u,d, w

)
. Let w be of the following form:

w =
(

(j1, . . . , j�)�, (w�, . . . ,w1)
)
.

Code-Based Zero-Knowledge from VOLE-in-the-Head 447

This algorithm then computes v�, . . . ,v0. Let v� = d and

∀i ∈ {� − 1, . . . , 1, 0} : vi =

{
hB(vi+1,wi+1), if ji+1 = 0;
hB(wi+1,vi+1), if ji+1 = 1.

(4)

Output 1 if v0 = u or 0 otherwise.
TUpdate(bin(j),d∗): Let dj be the existing leaf value of the leaf node

bin(j). It executes the algorithm TWitGenB(R,dj), obtaining w =
(bin(j), (w�, . . . ,w1)). It then sets v� = d∗ and recursively computes
v�−1, . . . ,v0 as in (4). Finally, for i ∈ [0, �], it sets ui,� j

2�−i � = vi.

Lemma 2 ([69]). Assume that the 2-RNSDn,2n,c problem is hard, then the
given accumulator scheme is correct and secure, i.e., it is infeasible to prove that
a value d∗ was accumulated in a value u if it was not (see, e.g., [27,54] for
formal definition).

2.5 Randomized McEliece Encryption Schemes

Now we recall a randomized variant of the McEliece [63] encryption scheme as
suggested in [70].

ME.Setup(1λ). Let ne = ne(λ), ke = ke(λ), te = te(λ) be the parameters for a
binary [ne, ke, 2te +1] Goppa code. Choose k1, k2 ∈ Z such that ke = k1 +k2.
Let F

k2
2 be the plaintext space.

ME.KeyGen(ne, ke, te). This algorithm outputs the encryption key and decryp-
tion key for the randomized McEliece encryption scheme. It works as follows:
1. Choose a generator matrix G′ ∈ F

ne×ke
2 of a random [ne, ke, 2te+1] Goppa

code. Let S ∈ F
ke×ke
2 be a random invertible matrix and P ∈ F

ne×ne
2 be

a random permutation matrix, compute G = PG′S ∈ F
ne×ke
2 .

2. Output encryption key pkME = G and decryption key skME = (S,G′,P).

ME.Enc(pkME,m). On input a message m ∈ F
k2
2 and pkME, sample random u $←−

F
k1
2 and e ∈ F

ne
2 such that the Hamming weight of e is exactly te, and then

output the ciphertext c = G ·
(

u
m

)

⊕ e ∈ F
ne
2 .

ME.Dec(skME, c). On input the ciphertext c and decryption key skME, it works
as follows:
1. Multiply P−1 to the left of the ciphertext c, then apply an error-correcting

algorithm. Obtain m′′ = DecodeG′(c · P−1), where Decode is an error-
correcting algorithm with respect to G′. Returns ⊥ if Decode fails.

2. Multiply S−1 to the right of the ciphertext m′′, then m′ = S−1 · m′′,

parse m′ =
(

u
m

)

, where u ∈ F
k1
2 and m ∈ F

k2
2 . Return m.

The above scheme is CPA-secure if it is infeasible to distinguish the matrix
G from random and the decisional learning parity with (exact) noise (DLPN)
problem is computationally hard.

448 Y. Ouyang et al.

Definition 4 (Decisional Learning Parity with Exact Noise Problem).
Let N, k, t be three integers with N > k and N > t. The decisional learning
parity with (exact) noise DLPNN,k,t problem asks to distinguish if a given pair

(G, r) ∈ F
N×k
2 × F

N
2 is uniformly random or obtained by choosing G $←− F

N×k
2 ,

s $←− F
k
2 , e $←− F

t
2 with exact Hamming weight t and then outputting (G,G ·s⊕e).

A Variant with Regular Noise. In this work, we consider a variant of
McEliece encryption scheme such that the noise e is a regular word. More specif-
ically, let k, c be two integers with c|k such that k

c · 2c = ne. Then the noise is

computed as e = RE(e′) with e′ $←− F
k
2 . The security of this variant will then rely

on the hardness of decisional LPN problem with regular noise, which is dual to
the decisional RSD problem.

2.6 VOLE-Based Zero-Knowledge Proofs

Vector oblivious linear evaluation (VOLE). VOLE is a two-party func-
tionality Fp,r

VOLE between a sender and receiver. It allows the sender to obtain
M ∈ F

l
pr and u ∈ F

l
p and the receiver to obtain K ∈ F

l
pr and Δ ∈ Fpr such

that K = M + u · Δ. These VOLE correlations can be used to authenticate u.
We denote such authenticated values by [[u]], indicating that the sender obtains
u and M while the receiver obtains Δ and K. It is not hard to see that the
sender cannot alter u to a different u′ without guessing Δ correctly. It is also
easy to verify that VOLE correlations are additively homomorphic. In partic-
ular, given public coefficients c0, . . . , cl ∈ Fpr , two parties can locally compute
[[y]] =

∑l
i=1 ci · [[ui]] + c0, where the sender computes y :=

∑l
i=1 ci · ui + c0 and

My =
∑l

i=1 ci · Mui
, and the receiver computes Ky :=

∑l
i=1 ci · Kui

+ c0 · Δ.

VOLE-Based ZK Proofs. A VOLE-based ZK protocol for circuit satisfiability
works in two phases. First, two parties call the functionality Fp,r

VOLE to obtain
random VOLE correlations. Using these correlations, the two parties obtain
VOLE correlations for all wire values. This is done by letting P commit to
all input wire values and output wire values of multiplication gates. Due to the
homomorphic property of VOLE, they will also obtain VOLE correlations for
the output wire values of addition gates. Next, they run subprotocols to check
that all multiplications gates are computed honestly. One approach proposed by
Ditter et al. [35] and later improved by Yang et al. [82] employs the fact that
VOLE correlations are linear relationships, and works as follows.

For i-th multiplication gate, P has (M1, w1), (M2, w2), (M3, w3) ∈ Fp × Fpr ,
and the verifier V possesses Δ, K1,K2,K3 ∈ Fpr such that

w3 = w1 · w2, and Ki = Mi + wi · Δ for i ∈ {1, 2, 3}. (5)

Code-Based Zero-Knowledge from VOLE-in-the-Head 449

If the circuit is computed correctly, then

Bi = K1 · K2 − K3 · Δ
︸ ︷︷ ︸

known to V
= M1 · M2︸ ︷︷ ︸

known to P
+ (M2 · w1 + M1 · w2 − M3)

︸ ︷︷ ︸
known to P

·Δ + (w1 · w2 − w3)
︸ ︷︷ ︸
0 if P is honest

·Δ2

= Ai,0 + Ai,1 · Δ. (6)

Therefore, checking the quadratic constraints of multiplication gates can be
converted to checking the above linear Eq. (6). Moreover, we can use random
linear combination to reduce checking t equations (corresponding to t multi-
plication gates) to checking a single equation. More specifically, the verifier
V samples a uniform vector χ ∈ F

t
pr and sends it to P, who returns back

A0 =
∑t

i=1 χi · Ai,0 + A∗
0 and A1 =

∑t
i=1 χi · Ai,1 + A∗

1. The verifier then
check if

∑t
i=1 χi · Bi + B∗ = A0 + A1 · Δ. Here B∗ = A∗

0 + A∗
1 · Δ is another

random VOLE correlation.

Vector Oblivious Polynomial Evaluation (VOPE). VOPE, first intro-
duced by Yang et al. [82], is an extension of VOLE, in which the sender gets
A0, . . . , Ad ∈ Fpr while the receiver gets B ∈ Fpr and Δ ∈ Fpr such that
B =

∑
i∈[0,d] Ai · Δi. Such VOPE correlations are particularly efficient for prov-

ing polynomial satisfiability. As shown in [82], it is possible to prove a set of
degree-d polynomials on totally l distinct variables with communication cost of
l + d field elements, which is independent of the number of multiplications to
compute all polynomials. Let f1, . . . , ft be a set of l-variate degree-d polynomials
over Fpk . For simplicity, we represent each polynomial in a degree-separated for-
mat, i.e., fi(X1, . . . , Xl) =

∑
h∈[0,d] gi,h(X1, . . . , Xl) such that all terms in gi,h

have degree exactly h. The prover wants to prove that fi(w1, . . . , wl) = 0 for
i ∈ [1, t] with w = (w1, . . . , wl)� ∈ F

l
p. Similar to the VOLE-based ZK, P first

commits to the witness w, and then checks that all polynomials are satisfied.
The key observation is that one can obtain a degree-(d − 1) constraint general-
ized from (6). In more detail, suppose P and V obtain [[w1]], . . . , [[wl]] such that
Ki = Mi + wi · Δ. Then

Bi =
d∑

h=0

gi,h(K1, . . . ,Kl) · Δd−h

︸ ︷︷ ︸
known to V

=
d∑

h=0

gi,h(M1 + w1 · Δ, . . . ,Ml + wl · Δ) · Δd−h

= f(w1, . . . , wn)
︸ ︷︷ ︸
0 if P is honest

·Δd + Ai,0
︸︷︷︸

known to P

+ Ai,1
︸︷︷︸

known to P

·Δ + . . . + Ai,d−1
︸ ︷︷ ︸

known to P

·Δd−1. (7)

Finally, utilizing the random linear combination technique and a degree-(d − 1)
VOPE correlation, one reduces checking t equations to checking a single equa-
tion.

450 Y. Ouyang et al.

2.7 VOLE-In-The-Head

A main drawback of the above VOLE-based and VOPE-based ZK proof systems
is that of being inherently designated-verifier (DV) since V has to know its part
of VOLE/VOPE correlations so as to verify the proofs. We now briefly recall
the VOLE-in-the-head (VOLEitH) technique presented by Baum et al. [8] that
transforms the above DVZK proofs to public-coin protocols, which in turn can
be made non-interactive via the Fiat-Shamir heuristic [44].

At a high level, Baum et al. [8] employed a delayed VOLE functionality
Fp,q,SΔ,C,l,L

sVOLE that allows P to first generate its values Ki, ui independent of Δ,Mi

and to generate Δ,Mi after all proof messages have been “committed”. This
delayed VOLE functionality can then be realized via all-but-one oblivious trans-
fer, which is further realized by GGM-based vector commitments (VC). Since in
this work we focus on utilizing VOLEitH-based proof systems, we refrain from
providing all the details about how to realize this delayed functionality. In the
Fp,q,SΔ,C,l,L

sVOLE -hybrid model, they then presented two instantiations. The first one
allows one to prove statements over large fields, and the second one is more
tailored for proving statements over small fields. In this work, we focus on their
second instantiation.

Optimizations of VOLEitH. Though being a new paradigm, VOLEitH has
received significant attention from the community [6,18,26,32,55] and several
works have improved upon VOLEitH. Baum et al. [6] introduced batch all-but-
one VC, rejection sampling, and proof of work at the prover’s side to reduce
commitment opening sizes. Also, the improved GGM-based puncturable pseudo-
random function proposed by Bui et al. [26] can be used as a drop-in replacement
of the GGM-based VC. These optimizations are fundamental to improving the
realization of the delayed functionality Fp,q,SΔ,C,l,L

sVOLE . While introducing signifi-
cant improvement when designing standard signature schemes, these optimiza-
tions are relatively small for designing advanced primitives such as RS and GS.
Nevertheless, in the corresponding sections, we will briefly mention how these
optimizations improve the signature sizes of our constructions.

3 New Techniques for Proving Regular Encoding Process

In this section, we introduce new techniques for proving the correctness of a
regular encoding process within the VOLEitH paradigm [8]. Our starting point
is to explicitly express the non-linear regular encoding function RE as low-degree
polynomial relations, which then can be proved efficiently using VOLEitH. To
this end, we first present a protocol Πt

dD-Rep for proving degree-d polynomial
constraints in Sect. 3.1, which is a generalization of the protocol Πt

2D-Rep [8]
for proving degree-2 constraints. Then, we show how to express the non-linear
regular encoding function RE as low-degree polynomial relations in Sect. 3.2.

Code-Based Zero-Knowledge from VOLE-in-the-Head 451

3.1 VOLE-In-The-Head for Degree-d Constraints

Let us now describe our protocol Πt
dD-Rep, which is a generalization of the protocol

Πt
2D-Rep [8] by incorporating the techniques in QuickSilver [82] for proving degree-

d polynomial satisfiability. The goal of P is to prove the knowledge of w ∈ F
l
p

such that fi(w) = 0 for i ∈ [1, t], where {f1, . . . , ft} are l-variate degree-d
polynomials. The protocol follows the commit-and-prove paradigm and works
as follows.

In the commit phase, both parties invoke the delayed functionality FsVOLE.
The prover obtains u ∈ F

l+(d−1)rτ
p and V, while the verifer V will obtain Q and

Δ satisfying Q = V + u · GCdiag(Δ) (after receiving messages from P in the
prove phase). Next, P commits to its witness w by sending d = w − u[1,l] to V.

In the challenge phase, V samples uniformly random coefficients χ1, . . . , χt

and sends them to P. These coefficients will be used for the random linear
combination performed by P in the following phase.

In the prove phase, P basically reduces the task of proving fi(w) = 0 for
i ∈ [1, t] into the task of proving the satisfiability of (7). In the process, both
parties employ the remaining (d − 1)rτ relations related to u[l+1,l+(d−1)rτ] to
generate a single VOPE correlation so as to mask a random linear combination
of the t Eq. (7). Note that (d−1)rτ relations are required here while (2d−1)rτ are
needed in QuickSilver. As pointed out by [6], this is because that QuickSilver
VOPE generation should be secure against malicious verifier while VOLEitH
does not have to.

Details of the generalization are given in the protocol Πt
dD-Rep.

Protocol 1: Πt
dD-Rep

Parameters: Code CRep = [τ, 1, τ]p with GC = (1, . . . , 1) ∈ F
1×τ
p . q = pr.

Assume there is one-to-one correspondence between elements in Fq and [1, q].
Define SΔ = F

τ
q .

Inputs: Polynomials fi =
∑

h∈[0,d] fi,h ∈ Fpk [X1, . . . , Xl]≤d, i ∈ [t] with

k|(rτ). P holds a witness w = (w1, . . . , wl)
� ∈ F

l
p such that fi(w1, . . . , wl) = 0

for all i ∈ [t].

Round 1. P performs the following steps.

1. Call the functionality Fp,q,SΔ,CRep,l+(d−1)rτ,L
sVOLE and receive u ∈

F
l+(d−1)rτ
p ,V ∈ F

(l+(d−1)rτ)×τ
q . V receives done.

2. Compute d = w − u[1,l] ∈ F
l
p and send d to V.

3. For i ∈ [l+1, l+(d−1)rτ], embed the i-th element ui ∈ Fp of u to ui ∈ Fqτ .
For i ∈ [l + (d − 1)rτ], lift the i-th row vi ∈ F

τ
q of V into vi ∈ Fqτ . For

i ∈ [l], also embed the i-th element wi of witness w to wi ∈ Fqτ .

Round 2. V samples uniformly random χi
$←− Fqτ , i ∈ [t] and sends to P.

Round 3. After receiving χ1, . . . , χt, P does the following.

452 Y. Ouyang et al.

1. For each i ∈ [t], compute Ai,0, Ai,1, . . . , Ai,d−1 ∈ Fqτ such that

ci(Y) =
d∑

h=0

fi,h(v1+w1Y, ..., vl+wlY)Y d−h = fi(w1, ..., wl)·Y d+

d−1∑

j=0

Ai,j ·Y j ,

where fi,h ∈ Fqτ [X1, . . . , Xl] is the embedding of fi,h ∈ Fpk [X1, . . . , Xl].

2. Generation of a VOPE correlation.
a) For j ∈ [1, d), compute

u∗
j =

∑

i∈[rτ]

ul+(j−1)rτ+iX
i−1 ∈ Fqτ , v∗

j =
∑

i∈[rτ]

vl+(j−1)rτ+iX
i−1 ∈ Fqτ .

where Fqτ ∼= Fp[X]/F (X) with F (X) ∈ Fp[X] being an irreducible
polynomial of degree rτ .

b) Define g1(x) = v∗
1 + u∗

1 · x. For i ∈ [1, d − 2], compute gi+1(x) =
gi(x)(v∗

i+1 + u∗
i+1 · x). Then P is able to compute the coefficients

A∗
0, . . . , A

∗
d−1 ∈ Fqτ such that gd−1(x) =

∑d−1
j=0 A∗

j · xj .

3. For j ∈ [0, d), compute ãj =
∑

i∈[t] χi · Ai,j + A∗
j ∈ Fqτ , and send ãj to V.

Verification. After receiving all responses, V runs the following checks.

1. Call Fp,q,SΔ,CRep,l+(d−1)rτ,L
sVOLE on input (get) and obtain Δ ∈ SΔ,Q ∈

F
(l+(d−1)rτ)×τ
q such that Q = V + uGCdiag(Δ). Let qi be the i-th row

vector of Q, for i ∈ [l + 1, l + (d − 1)rτ].
2. Compute Q� = Q[1,l] + d · GC · diag(Δ), which is supposed to be V[1,l] +

w · GC · diag(Δ). Let q�
1, . . . ,q

�
l ∈ F

τ
q be the rows of Q�.

3. Lift Δ ∈ F
τ
q into Δ ∈ Fqτ . Also, lift q�

1, . . . ,q
�
l ,ql+1, . . . ,ql+(d−1)rτ ∈ F

τ
q

into q�
1 , . . . , q�

l , ql+1, . . . , ql+(d−1)rτ ∈ Fqτ .

4. Generation of a VOPE correlation.
a) For j ∈ [1, d), compute q∗

l+j =
∑

i∈[rτ] ql+(j−1)rτ+iX
i−1 ∈ Fqτ , which

should satisfy q∗
l+j = v∗

j + u∗
j · Δ.

b) Let B∗
1 = q∗

l+1. Then for i ∈ [1, d − 2], compute B∗
i+1 = B∗

i · q∗
l+i+1.

Define B∗ = B∗
d−1. Then one can verify that B∗ =

∑d−1
j=0 A∗

j · Δj .
5. For each i ∈ [t], compute

ci(Δ) =

d∑

h=0

fi,h(q�
1 , . . . , q�

l) · Δd−h.

6. Compute c̃ =
∑

i∈[t] χi · ci(Δ) + B∗ and check if c̃ =
∑d−1

j=0 ãj · Δj .

Theorem 1. The protocol Πt
dD-Rep realizes the functionality F t

dD-ZK that proves
degree-d polynomial satisfiability in the Fp,q,SΔ,C,l,L

sVOLE -hybrid model. The security
holds against a malicious prover or a semi-honest verifier and the soundness
error is bounded by 1/prτ + d|SΔ|−1.

Code-Based Zero-Knowledge from VOLE-in-the-Head 453

Correctness of the protocol follows directly by inspection of the protocol. Details
of simulation are given in the full version.

Communication Cost. In Πt
dD-Rep, in addition to the cost of the sVOLE steps,

P sends the initial commitment d ∈ F
l
p and {ãi ∈ Fqτ }i∈[0,d−1]. Therefore, the

total cost is summarized as follows:

CostΠt
dD-Rep

= CostsVOLE + l · log2 p + d · r · τ · log2 p. (8)

Additionally, the verifier sends t values in Fqτ but this can be removed via the
Fiat-Shamir transform in the non-interactive setting and does not affect the final
proof size. When instantiating the delayed VOLE functionality Fp,q,SΔ,C,l,L

sVOLE with
the aforementioned GGM-based VC (see [8, Sect. 3.1, Fig. 3, Fig. 4] for details),
the cost of sVOLE steps is

CostsVOLE = 2λ + (l + (d − 1) · r · τ + h) · (τ − 1) · log2 p

+ (s + s · τ) · log2 p + (2λ + r · λ) · τ. (9)

The process of the instantiation employs an F
l
p-hiding and ε-universal hash func-

tion H ∈ F
s×(l+(d−1)rτ+h)
p (see the full version or [8,74]). Looking ahead, when

calculating concrete proof sizes in Sect. 5, we employ formulas (8) and (9).

Fiat-Shamir Transform. As shown by Baum et al. [8], applying the Fiat-
Shamir transformation to Πt

dD-Rep (with the functionality Fp,q,SΔ,C,l,L
sVOLE instan-

tiated) results in a non-interactive zero-knowledge argument of knowledge.
Ganesh et al. [45] also showed that the resulting non-interactive argument is
simulation-extractable in the programmable random oracle model. At a high
level, simulation-extractability guarantees that extractability holds even when
the adversary sees simulated proofs, and it implies simulation-soundness [75].
Note that simulation-soundness is required for constructing CCA2-anonymous
group signatures [13] that utilizes the Naor-Yung double encryption [67]. There-
fore, replacing the Stern-like ZK protocol underlying the group signature
scheme [69] with the above protocol will not degrade its security.

3.2 A New Technique for Proving the Regular Encoding Process

In this section, our target is to prove the regular encoding process within the
VOLEitH paradigm. We then observe that it suffices to transform the regular
encoding process into low-degree polynomial constraints. For simplicity, let us
focus on the regular encoding function RE : Fc

2 → F
2c

2 .
We also observe that RE can be seen as 2c number of c-variate Boolean

functions f1(·), . . . , f2c(·). If we focus on the first output bit, then the truth
table of the corresponding Boolean function f1(·) is the unit vector e1 ∈ F

2c

2

with 1 in the first position. Through Lagrange interpolation, one can obtain
f1(·) 	

= f(0,...,0)(X1, . . . , Xc) =
∏c

i=1(1+0+Xi). Interestingly, for the j-th output
bit, the truth table of fj(·) is the unit vector ej ∈ F

2c

2 , and the Boolean function

454 Y. Ouyang et al.

is fj(·) 	
= f(j1,...,jc)(X1, . . . , Xc) =

∏c
i=1(1 + ji + Xi), where (j1, . . . , jc)� =

bin(j − 1).
To this end, we have successfully represented the non-linear encoding process

as degree-c relations. In particular, RE(x1, . . . , xc) =

(
f(0,...,0)(x1, . . . , xc), . . . , f(j1,...,jc)(x1, . . . , xc), . . . , f(1,...,1)(x1, . . . , xc)

)�
.(10)

When applying RE to x ∈ F
n
2 , we simply write RE(x) = (f1(x), . . . , fm(x))�

for c|n, m = n
c · 2c, and deg(fi) = c for i ∈ [1,m], without explicitly describ-

ing the details of fi. In fact, fj(X1, . . . , Xc) = f2c+j(X1, . . . , Xc) = . . . =
f(n

c −1)·2c+j(X1, . . . , Xc) for j ∈ [1, 2c]. Note that fj(x) only selects c inputs
and ignores other inputs.

Therefore, to show that z = (z1, . . . , zm)� ∈ Regular(n, c) is indeed a regular
encoding of x = (x1, . . . , xn)� ∈ F

n
2 , it suffices to show that zj = fj(x) for all

j ∈ [1,m]. Since these m constraints are degree-c relations, and thus can be
proved in zero-knowledge using the protocol Πt

dD-Rep.

4 New Zero-Knowledge Protocols for Various
Cryptographic Building Blocks

In this section, we provide new code-based zero-knowledge protocols that are
essential for constructing privacy-enhancing primitives. This includes a ZK pro-
tocol for proving the knowledge of a committed value, a ZK protocol for proving
the knowledge of a secret value that is accumulated honestly, and a ZK protocol
for proving the knowledge of a plaintext for a variant of McEliece cryptosystem.

4.1 ZK of a Valid Opening

We first describe a ZK of a valid opening for the commitment scheme from
Sect. 2.3. The goal of P is to convince the verifier that it possesses witnesses
x ∈ F

L
2 and r ∈ F

k
2 such that c = C0 · RE(x) ⊕ C1 · RE(r). Denote C0 =

(ci,j)i∈[n],j∈[m0] ∈ F
n×m0
2 and C1 = (ci,m0+j)i∈[n],j∈[m1] ∈ F

n×m1
2 with m0 =

L
c · 2c and m1 = k

c · 2c. The protocol essentially relies on the techniques from
Sect. 3.2 and works as follows.

Let x̃ = (x‖r) ∈ F
L+k
2 , and c = (c1, . . . , cn)�. Then c = C0·RE(x)⊕C1·RE(r)

is equivalent to c = [C0|C1] · RE(x̃). Denote RE(x̃) = (f1(x̃), . . . , fm0+m1(x̃))�.
The prover then prepares n polynomials of degree c:

φi(·) =
m0+m1∑

j=1

ci,jfj(X1, . . . , XL+k) − ci, ∀ i ∈ [n],

and the witness x̃. At this point, P runs the protocol Πt
dD-Rep and applies the

Fiat-Shamir transform.

Code-Based Zero-Knowledge from VOLE-in-the-Head 455

4.2 ZK of an Accumulated Value

Next, we describe a ZK of an accumulated value for the accumulator recalled in
Sect. 2.4. The prover aims to prove knowledge of a hash chain from a secret leaf
node to the root.

Specifically, the public inputs are B = [B0|B1] ∈ F
n×m
2 and the root u ∈

F
n
2 . The secret inputs consist of (j1, . . . , j�)� ∈ {0, 1}�, v1, . . . ,v� ∈ F

n
2 , and

w1, . . . ,w� ∈ F
n
2 such that

j1 · (B0 · RE(v1) ⊕ B1 · RE(w1)) + j1 · (B0 · RE(w1) ⊕ B1 · RE(v1)) = u, (11)

and for all θ ∈ [2, �]:

jθ · (B0 · RE(vθ) ⊕ B1 · RE(wθ)) + jθ · (B0 · RE(wθ) ⊕ B1 · RE(vθ)) = vθ−1.(12)

Denote B = (bi,j)i∈[n],j∈[m], x1 = (v1‖w1) and y1 = (w1‖v1), and u =
(u1, . . . , un)� ∈ F

n
2 . We have RE(x1) = (f1(x1), . . . , fm(x1))� and RE(y1) =

(fm+1(y1), . . . , f2m(y1))� for some polynomials f1, . . . , f2m of degree c. Then
Eq. (11) is equivalent to the following n degree-(c + 1) constraints:

φi(·) = j1 ·
(m∑

h=1

bi,hfh(x1)
)

+ j1 ·
(m∑

h=1

bi,hfm+h(y1)
)

− ui, ∀ i ∈ [n]. (13)

Here, the extra degree is due to multiplication with j1.
Similarly, Eq. (12) is equivalent to the following n degree-(c+1) constraints:

φ(θ−1)n+i(·) = jθ ·
(m∑

h=1

bi,hf2(θ−1)m+h(xθ)
)

+ jθ ·
(m∑

h=1

bi,hf2(θ−1)m+m+h(yθ)
)

− vθ,i, ∀ i ∈ [n], (14)

where xθ = (vθ‖wθ), yθ = (wθ‖vθ), vθ = (vθ,1, . . . , vθ,n)�, and f2θm−2m+1, . . .,
f2θm are 2 m polynomials of degree c.

To this end, P are prepared with �n polynomials φ1(·), . . . , φ�n(·) of degree
c+1, and possesses witness x̃ = (j1‖ . . . ‖j�‖v1‖w1‖ . . . ‖v�‖w�) ∈ F

�+2�n
2 . There-

fore, it can run the protocol Πt
dD-Rep and utilize the Fiat-Shamir transform to

make it non-interactive. One can see that the witness size is optimal.

4.3 ZK of Plaintext Knowledge

Now, we provide a ZK of plaintext knowledge for the variant of randomized
McEliece encryption schemes with regular noise described in Sect. 2.5. The prover
needs to prove knowledge of a plaintext for a given ciphertext.

Specifically, the public inputs are G ∈ F
ne×ke
2 and a ciphertext c ∈ F

ne
2 , and

the secret inputs consist of u ∈ F
k1
2 , m ∈ F

k2
2 as well as e′ ∈ F

k
2 with k

c · 2c = ne

such that

c = G ·
(

u
m

)

⊕ RE(e′). (15)

456 Y. Ouyang et al.

Let u = (u1, . . . , uk1)
�, m = (mk1+1, . . . ,mk1+k2)

�, G = (gi,j)i∈[ne],j∈[ke],
and c = (c1, . . . , cne

)�. According to the technique in Sect. 3.2, we will have
RE(e′) = (f1(e′), . . . , fne

(e′))� for some polynomials f1, . . . , fne
of degree c.

Then Eq. (15) is equivalent to the following ne degree-c constraints:

φi(·) =
k1∑

j=1

gi,j · uj +
k1+k2∑

j=k1+1

gi,j · mj + fi(e′) − ci, ∀ i ∈ [ne]. (16)

To this end, P prepares ne public polynomials φ1(·), . . . , φne
(·) of degree c,

and the witness x̃ = (u‖m‖e′) ∈ F
ke+k
2 . As a result, P can run the protocol

Πt
dD-Rep and make it non-interactive via the Fiat-Shamir transform.

5 ZK Protocols for Advanced Primitives

In this section, we provide new ZK protocols for code-based advanced privacy-
preserving primitives, including ring signature scheme [69], a variant of group
signature scheme [69], and fully dynamic attribute-based signature scheme [56].
Then we estimate the signature sizes of the above schemes by employing our ZK
and Stern-like ZK [76]. The results show that the signature sizes utilizing our
ZK protocols are two to three orders of magnitude smaller.

5.1 ZK for a Ring Signature Scheme

Being prepared with ZK protocols for proving the correctness of the regular
encoding process from Sect. 3.2 and for proving the knowledge of an accumulated
value from Sect. 4.2, we now provide a more efficient ZK protocol supporting the
code-based ring signature scheme proposed by Nguyen et al. [69].

This protocol is an extension of the one from Sect. 4.2, where P additionally
convinces the verifier the following fact: He/She knows a secret key x0,x1 ∈ F

n
2

such that

v� = B0 · RE(x0) + B1 · RE(x1). (17)

In fact, we have already seen how to transform the above Eq. (17) into n con-
straints of degree c in Sect. 4.1. More specifically, there exist some polynomials
f2�m+1, . . . , f2�m+m of degree c such that

RE(x0‖x1) = (f2�m+1(x0‖x1), . . . , f2�m+m(x0‖x1))�.

Therefore, Eq. (17) is equivalent to the following n degree-c relations:

φ�n+i(·) =
m∑

h=1

bi,h · f2�m+h(x0‖x1) − v�,i, ∀ i ∈ [n], (18)

where v� = (v�,1, . . . , v�,n)� and [B0|B1] = (bi,j)i∈[n],j∈[m]. At this point, P has
witness x̃ = (j1 ‖ . . . ‖ j� ‖ v1 ‖ w1 ‖ . . . ‖ v� ‖ w� ‖ x0 ‖ x1) ∈ F

�+2�n+2n
2 and the

newly appeared n degree-c constraints φ�n+1(·), . . . , φ�n+n(·) in addition to the
�n degree-(c+1) constraints φ1(·), . . . , φ�n(·) from Sect. 4.2. Therefore, it suffices
for P to run the protocol Πt

dD-Rep and then apply the Fiat-Shamir heuristic.

Code-Based Zero-Knowledge from VOLE-in-the-Head 457

5.2 Parameters and Efficiency

We now estimate the concrete sizes of the above ring signature scheme using our
ZK protocol and Stern-like protocol [69]. Note that the security of the scheme
relies on the hardness of 2-RNSDn,2n,c problem. Also, we need to make sure the
underlying proof systems achieve small enough soundness errors. Details of the
parameters are given in Table 2.

Table 2. Parameters for the hash function hB, for the proof system from VOLEitH
paradigm, and for the McEliece encryption cryptosystem that achieve 128-bit secu-
rity and 256-bit security.

Parameters Description 128-bit Security 256-bit Security

λ Security level 128 256

n Hash hB output length 1280 2560

c 2-RNSD Parameter 8 8

w = 2n
c

hB input Hamming weight 320 640

m = 2n
c

· 2c hB input length 5 · 214 5 · 215

p Base field Fp 2 2

q Extension field Fq 28 28

τ Repetition for VOLEitH 16 32

s = λ + 16 Universal hash parameter 144 272

h = λ + 16 Universal hash parameter 144 272

κ Repetition for Stern 219 438

ne McEliece parameter 4096 8192

ke McEliece parameter 3328 6528

te McEliece parameter 64 128

On the parameters of 2-RNSD problem. As discussed in Sect. 2.2, we choose
parameters according to [3]. In particular, they chose n = 1024, w = 128,m = 221

and n = 1984, w = 248,m = 31 · 216 for 128-bit and 256-bit security levels,
respectively. However, we work in a setting where n, c uniquely determine w and
m. Therefore, we adjust the parameters slightly by setting c = 8 and increasing
n from 1024 to 1280 and from 1984 to 2560, respectively.

On the Parameters of the VOLEitH Proof System. We choose parameters
according to the specification given in [7,8], for 128-bit security. Regarding the
parameters for 256-bit security level, we double the repetition parameter τ .

Repetition for Stern-like Protocols. The underlying ZK protocol for the
above ring signature schemes used by Nguyen et al. [69] is Stern-like protocol [76].
Originally, it was designed to prove knowledge of a vector with exact Hamming
weight. Later, it was adapted to prove various lattice-based and code-based linear
and quadratic relations, e.g. [53,57,69], giving rise to various applications such as

458 Y. Ouyang et al.

ring signatures [54,69], group signatures [53,69], attribute-based signatures [56],
group encryption [68] and so on. However, it has the main disadvantage of large
soundness error 2/3. Therefore, to achieve 2−128 and 2−256 soundness errors, one
needs to repeat the protocol for 219 and 438 times.

Table 3. Ring signature sizes by employing our ZK proof system and Stern-like ZK
arguments.

128-bit security 256-bit security

Ring size This paper Stern-type [69] This paper Stern-type [69]

(KB) (MB) (KB) (MB)

25 35.12 32.26 140.24 129.04

27 45.12 43.93 180.25 175.74

210 60.13 61.44 240.26 245.78

215 85.14 90.63 340.28 362.51

220 110.15 119.81 440.30 479.25

230 160.17 178.18 640.34 712.72

Given the above parameters, we then give a detailed comparison about signa-
ture sizes for the ring signature scheme that employs our ZK protocol presented
in Sect. 5.1 and that employs Stern-like protocols. Theoretically, both signature
sizes are logarithmic in the size of the ring. Concretely, the performance of our
ZK protocol appears to be significantly better. In particular, Table 3 shows that
for 128-bit and 256-bit security levels, the signature sizes of [69] are around
934× ∼ 1140× larger than ours for different ring sizes.

There are several reasons for the huge differences. One reason is that one
needs to repeat Stern-type protocol for 219 times and 438 times to achieve
negligible soundness error, while we only need to repeat VOLEitH proofs 16 and
32 times. Another reason is that their witness size is (2 · �+1) · (2n

c · 2c)+2 · � ·n
bits while our witness size is just � + 2�n + 2n bits.

Optimizations from [6]. As mentioned in Sect. 2.7, Baum et al. [6] proposed
several optimizations to improve the realization of Fp,q,SΔ,C,l,L

sVOLE . In particular,
it brings the decommitment size, Costdecom = (2λ + r · λ)τ from (9), down to
2λ ·τ +Topen ·λ, where Topen is a threshold number considered in [6]. Let Topen =
102 and Topen = 218 for λ = 128 and λ = 256, then the decommitment sizes are
reduced by around 416 bytes and 1212 bytes, respectively. Therefore, the figures
of our constructions in Table 3 could be further improved. We, however, have
to admit that these improvements are relatively small for privacy-preserving
protocols, and will no longer consider them in GS and FDABS schemes.

Code-Based Zero-Knowledge from VOLE-in-the-Head 459

5.3 ZK for a Group Signature Scheme

Next, we provide a more efficient ZK protocol supporting the code-based group
signature scheme proposed by Nguyen et al. [69], with the modification that the
McEliece scheme is replaced with one with regular noise.

This protocol is extended from the one in Sect. 5.1, for which an encryp-
tion layer is added. Specifically, P additionally proves the following statement:
He/She knows extra secret values r1, r2 ∈ F

ke−�
2 , e′

1, e
′
2 ∈ F

k
2 with k

c · 2c = ne

such that

c1 = G1 ·
(

r1
bin(j)

)

⊕ RE(e′
1), and c2 = G2 ·

(
r2

bin(j)

)

⊕ RE(e′
2), (19)

where G1,G2 ∈ F
ne×ke
2 and c1, c2 ∈ F

ne
2 .

We have described in Sect. 4.3 on transforming the above Eqs. (19) into
polynomial constraints. For θ ∈ {1, 2}, let

cθ = (cθ,i)i∈[ne], Gθ = (g(θ)i,j)i∈[ne],j∈[ke], rθ = (rθ,1, . . . , rθ,ke−�)�,

RE(e′
θ) = (f2�m+m+ne(θ−1)+1(e′

θ), . . . , f2�m+m+ne(θ−1)+ne
(e′

θ))
�,

for some polynomials f2�m+m+1, . . . , f2�m+m+2ne
of degree c. Therefore, Eq. (19)

is equivalent to the following 2ne degree-c relations:

φ�n+n+i(·) =
ke−�∑

h=1

g
(1)
i,h · r1,j +

�∑

h=1

g
(1)
i,ke−�+h · jh

+ f2�m+m+i(e′
1) − c1,i, ∀ i ∈ [ne],

φ�n+n+ne+i(·) =
ke−�∑

h=1

g
(2)
i,h · r2,j +

�∑

h=1

g
(2)
i,ke−�+h · jh

+ f2�m+m+ne+i(e′
2) − c2,i, ∀ i ∈ [ne].

Now, P has witness x̃ ∈ F
�+2�n+2n+2(ke−�)+2k
2 of the following form

x̃ = (j1 ‖ . . . ‖ j� ‖ v1 ‖ w1 ‖ . . . ‖ v� ‖ w� ‖ x0 ‖ x1 ‖ r1 ‖ r2 ‖ e′
1 ‖ e′

2) (20)

and the newly appeared 2ne degree-c constraints φ�n+n+1(·), . . . , φ�n+n+2ne
(·)

in addition to the �n + n constraints φ1(·), . . . , φ�n+n(·) from Sect. 5.1. Now P
can proceed as before by running the protocol Πt

dD-Rep and then applying the
Fiat-Shamir heuristic.

5.4 Parameters and Efficiency

We now estimate the concrete sizes of group signature scheme using our ZK
protocol and Stern-like protocol [69]. The security of the scheme relies on the
hardness of 2-RNSDn,2n,c problem, on the CPA-security of the McEliece encryp-
tion scheme, as well as the security of the supporting ZK protocols. We use the
same parameters proposed in Table 2.

460 Y. Ouyang et al.

On the Parameters of McEliece Encryption Scheme. We choose param-
eters for McEliece cryptosystem following the document [2] with minor adapta-
tions. Since we modify the noise vector to be a regular vector, the CPA-security
of the McEliece encryption scheme now depends on the decisional RSD problem
as discussed in Sect. 2.5. However, this is not an issue as shown in [59, Table 1,
Table 2], the usage of regular noise for LPN and SD problems does not reduce the
bit security significantly. In fact, one can always choose slightly larger parame-
ters to obtain targeted security levels. In our setting, we then slightly increase
the Goppa code length ne (and hence the dimension ke) so that it is the form of
k
c · 2c with k

c = te.

Table 4. Group signature sizes by employing our ZK proof system and Stern-like ZK
arguments.

128-bit security 256-bit security

Group size This paper Stern-type [69] This paper Stern-type [69]

(KB) (MB) (KB) (MB)

25 49.60 33.27 197.19 133.02

27 59.60 44.94 237.19 179.72

210 74.59 62.45 297.18 249.76

215 99.58 91.63 397.16 366.50

220 124.57 120.82 497.14 483.23

230 174.55 179.18 697.10 716.70

With the above parameters, we then estimate signature sizes using our ZK
and Stern-like ZK for various group sizes. Details are in Table 4. The results also
show the superiority of our ZK protocols. In particular, for 128-bit and 256-bit
security, the signature sizes of [69] are around 683× ∼ 1053× larger than ours
for different group sizes.

5.5 ZK for a Fully Dynamic Attribute-Based Signature Scheme

Quite recently, Nguyen et al. [56] proposed a fully dynamic attribute-based sig-
nature (FDABS) scheme from codes. The scheme employs a refined Stern-like
protocol and is proven secure in the quantum oracle model (QROM) using the
variant of Unruh transform [77] presented in [43]. To the best of our knowl-
edge, we are unaware of existing works on making VOLEitH protocol secure in
QROM. A related work by Aguilar-Melchor et al. [65] presented a security proof
for Hypercube-SDitH [64] in the QROM. It remains open if one can apply their
techniques to the VOLEitH paradigm. Therefore, we provide a new ZK for their
FDABS scheme that is only secure in the ROM and then compare efficiency with
their degraded variant.

Code-Based Zero-Knowledge from VOLE-in-the-Head 461

We now provide our new ZK protocol. It is an extension of the one from
Sect. 4.2, where P additionally convinces the verifier the following facts: He/she
knows an attribute x ∈ {0, 1}L together with a randomness r ∈ {0, 1}k such that

v� = C0 · RE(x) ⊕ C1 · RE(r); (21)
wt(v�) = 1 mod 2; (22)

P (x) = 1, (23)

where P is an arbitrary binary circuit with L bit inputs and K multiplication
gates.

We have already shown how to transform the Eq. (21) into polynomial
constraints. Recall that C0 = (ci,j)i∈[n],j∈[m0], C1 = (ci,m0+j)i∈[n],j∈[m1] with
m0 = L

c · 2c and m1 = k
c · 2c. Let v� = (v�,1, . . . , v�,n)�. Then Eq. (21) is

equivalent to the following n degree-c relations

φ�n+i(·) =
m0+m1∑

h=1

ci,hf2�m+h(x‖r) − v�,i, ∀i ∈ [n].

Regarding (22), it asks to prove that the Hamming weight of v� is odd. We then
observe that this is equivalent to proving

v�,1 + v�,2 + · · · + v�,n = 1.

Define φ�n+n+1(X1, . . . , Xn) = X1 + · · · + Xn − 1 ∈ F2[X1, . . . , Xn]. Then equa-
tion (22) is further equivalent to the following linear polynomial

φ�n+n+1(·) = v�,1 + v�,2 + . . . + v�,n − 1. (24)

In terms of (23), as observed by Ling et al. [56], it is equivalent to the following
K quadratic equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ�n+n+1+1(·) = xα(1) · xβ(1) ⊕ xL+1 − 1,

· · ·
φ�n+n+1+K−1(·) = xα(K−1) · xβ(K−1) ⊕ xL+K−1 − 1,

φ�n+n+1+K(·) = xα(K) · xβ(K) ⊕ xL+K − 1,

(25)

where xL+1, . . . , xL+K are the output wire values of multiplication gates and
α, β : {1, . . . , K} → {1, . . . , L+K −1} are two functions specifying the topology
of the circuit P .

Now P has witness x̃ ∈ F
�+2�n+L+k+K
2 of the following form

x̃ = (j1 ‖ . . . ‖j� ‖ v1 ‖ w1 ‖ . . . ‖ v� ‖ w� ‖ x ‖ r ‖ xL+1 ‖ . . . ‖ xL+K), (26)

and the newly appeared n + 1 + K constraints φ�n+1(·), . . . , φ�n+n+1+K(·) in
addition to the �n constraints φ1(·), . . . , φ�n(·) from Sect. 4.2. Now P can proceed
as before by running the protocol Πt

dD-Rep and then applying the Fiat-Shamir
heuristic.

462 Y. Ouyang et al.

We remark that our technique of handling odd Hamming weight vectors
can be employed to upgrade the static GS scheme [13] to a fully dynamic one
with the same signature sizes. Specifically, we first modify the fully dynamic GS
scheme [79] by restricting the user public key v�

3 to have odd Hamming weight.
Then we modify the ZK presented in Sect. 5.3 to additionally show that v� has
odd Hamming weight. Since this change does not increase the witness length,
the signature sizes remain the same.

5.6 Parameters and Efficiency

We now estimate the concrete sizes of FDABS scheme using our ZK protocol
and Stern-like protocol [56]. The security of the scheme relies on the hardness
of 2-RNSDn,2n,c and 2-RNSDn,L+k,c problems, as well as the security of the
supporting ZK protocols. To this end, we use the same parameters proposed in
Table 2 and let the bit length of attribute be L = 128 and the bit length of
randomnesses for committing the attributes be k = n + 2λ.

We calculate various signature sizes regarding different security parameters
and (�,K) pairs, where 2� is the maximum number of attributes allowed in the
system and K is the number of multiplication gates representing the policy P .
Details are in Table 5. The results further confirm the superiority of our ZK
protocols. For K = 29, the signature sizes of [56] are 783× ∼ 839× larger than
ours. For K = 216, the differences of the two ZK are smaller, and their signature
sizes are 288× ∼ 550× larger than ours. The main reason is that their witness
sizes are dominated by the term 2� · 2n

c · 2c and thus less sensitive to changes of
the policy size K. In contrast, our witness size is � + 2�n + L + k + K, and thus
is susceptible to the changes of K.

Table 5. Signature sizes of the FDABS scheme by employing our ZK proof system
and Stern-like ZK arguments. The bit length of the attribute in the following instances
are always chosen as L = 128.

128-bit security 256-bit security

(2�, K) This paper Stern-type [56] This paper Stern-type [56]

(KB) (MB) (KB) (MB)

(210, 29) 59.38 45.41 234.76 181.29

(210, 216) 186.38 52.20 488.76 194.87

(215, 29) 84.39 67.30 334.78 268.85

(215, 216) 211.39 74.08 588.78 282.43

(220, 29) 109.40 89.18 434.80 356.40

(220, 216) 236.40 95.97 688.80 369.98

3 Originally, it is required to be non-zero.

Code-Based Zero-Knowledge from VOLE-in-the-Head 463

6 A New Code-Based Signature Scheme

A standard paradigm to construct a signature scheme is to first design a public-
coin ZK protocol for proving the knowledge of a preimage of a one-way func-
tion and then apply the Fiat-Shamir [44] transform to make it non-interactive.
Therefore, the technique from Sect. 3.2 directly implies a code-based signature
scheme, which we name ReSolveD+ and has slightly smaller signature sizes than
the state-of-the-art code-based signature scheme ReSolveD [32] based on RSD
problems.

6.1 Description of the Signature Scheme

The secret key is binary string x ∈ F
n
2 , and the public key is y = B · RE(x),

where B = (bi,j)i∈[n],j∈[m] ∈ F
n×m
2 for c|n and m = n

c ·2c are public parameters.
To sign a message M ∈ {0, 1}∗, the signer proves knowledge of x such that
y = (y1, . . . , yn)� = B · RE(x). In particular, the signer prepares n polynomials
of degree c:

gi(·) =
m∑

j=1

bi,jfj(X1, . . . , Xn) − yi, ∀ i ∈ [n],

and the witness x ∈ F
n
2 . Next, it runs the protocol Πt

dD-Rep and makes it non-
interactive via the Fiat-Shamir transform. Let the resultant proof be π, which
would be the signature. Verification of the signature is to verify the proof π.
Correctness and security directly follows from that of Πt

dD-Rep and the design
paradigm, based on the hardness of the RSDn,n,c problem.

Table 6. Parameters for ReSolveD+ Signature Scheme when c = {2, 3, 4}.

Scheme
Parameter set Estimated

n c m = n
c

· 2c w = n
c

τ Bit Security

ReSolveD + -128-Var1-2 892 2 1784 446 14 128.10

ReSolveD + -128-Var2-2 892 2 1784 446 10 128.10

ReSolveD + -128-Var1-3 453 3 1208 151 14 128.31

ReSolveD + -128-Var2-3 453 3 1208 151 10 128.31

ReSolveD + -128-Var1-4 332 4 1328 83 14 128.33

ReSolveD + -128-Var2-4 332 4 1328 83 10 128.33

6.2 Parameters and Efficiency

We follow the approach in [29] to select parameters n, c. In particular, we esti-
mate the complexity of linearization attack, ISD attack, and birthday paradox

464 Y. Ouyang et al.

according to formulas [29], and take their minimum as the estimation of secu-
rity level. Using this estimation, we choose the smallest parameter n by fixing
c = 2, 3, 4, respectively so that it has complexity estimation 2128 following the
footprint of [32]. Details are in Table 6. Regarding the parameters for VOLEitH,
we employ the same optimizations adopted by Cui et al. [32] (instead of the
non-optimized ones from Sect. 3.1), to have a fair comparison with them. In
Table 7, we compare the signature sizes of our signature scheme ReSolveD+ with
ReSolveD for different parameter sets. The results show that we achieve small-
est signature sizes when c = 3. In addition, our scheme ReSolveD+ has slightly
shorter signature sizes than [32] when c = 3 and c = 4. Note that Baum et
al. [6] recently obtained better performances for FAEST signature scheme by
proposing several optimizations. Since those optimizations apply to all protocols
within the VOLEitH paradigm, both signature sizes of ReSolveD and ReSolveD+
could be further reduced by a few hundred bytes. In particular, let Topen = 112
for τ = 14 and Topen = 102 for τ = 10. Then the signature sizes are reduced by
256 bytes and 416 bytes, respectively. The optimized signature sizes are given in
Table 7 in blue color.

Table 7. Comparison of our signature schemes for different choices of c, τ,Topen with
the signature scheme proposed by Cui et al. [32] for the same security levels. The
percentages in parenthesis are the increases/decreases of signature sizes compared to
[32].

Scheme parameters
Signature sizes in bytes

CLY+24 [32] c = 2 c = 3 c = 4

τ = 14
Topen = - 4082 4572(+12.0%) 4026(−1.4%) 4040(−1.0%)

Topen = 112 3826 4316(+12.9%) 3770(−1.5%) 3784(−1.1%)

τ = 10
Topen = - 3510 3860(+10.0%) 3470(−1.1%) 3480(−0.9%)

Topen = 102 3094 3444(+11.3%) 3054(−1.3%) 3064(−1.0%)

We also compare our signature scheme with some other post-quantum signa-
ture schemes, for 128-bit security level in Table 8. The results show that our sig-
nature sizes are competitive with those schemes and are smallest among schemes
based on SD and regular SD problems. Also, Bidoux et al. [18] proposed signa-
ture schemes based on Rank SD and MinRank problems from MPCitH and
VOLEitH paradigm, we only include the variants that employ the optimiza-
tions from [6] within the VOLEitH paradigm. Adj et al. [1] proposed a signature
scheme based on MinRank problem preceding [18] and had slightly larger signa-
ture sizes. Therefore, we do not include their results [1] in the table.

Conclusions and Open Questions. In this work, we advanced the state-of-
the-art code-based cryptography by proposing new ZK protocols from VOLEitH
paradigm. In particular, we presented ZK protocols for proving the correctness of
the regular encoding process and various code-based relations. Built upon these

Code-Based Zero-Knowledge from VOLE-in-the-Head 465

Table 8. Comparison of our scheme with some post-quantum signature schemes, tar-
geting 128-bit security level. All the signature schemes within the VOLEitH paradigm
are optimized using the techniques from [6].

Scheme
Sizes in KB

Assumptions Paradigm
|sig| |pk| |sig| + |pk|

BGKM23 [19]-Sig1 24.0 0.1 24.1 SD over F2 Stern-type

BGKM23 [19]-Sig2 19.3 0.2 19.5 (QC)SD over F2

BGKM23 [19]-Sig3 15.6 0.2 15.8 (QC)SD over F2

FJR22 [40]-Var2s 11.8 0.09 11.89 SD over F2 MPCitH

FJR22 [40]-Var3f 11.5 0.14 11.64

FJR22 [40]-Var3s 8.26 0.14 8.4

CCJ23 [29]-rsd-f 12.52 0.09 12.61 RSD over F2 MPCitH

CCJ23 [29]-rsd-m1 9.69 0.09 9.78

CCJ23 [29]-rsd-m2 9.13 0.09 9.22

CCJ23 [29]-rsd-s 8.55 0.09 8.64

MGH+23 [64]-faster 11.83 0.14 11.97 SD over F256 MPCitH

MGH+23 [64]-short 8.28 0.14 8.42

MGH+23 [64]-shorter 6.63 0.14 6.77

MGH+23 [64]-shortest 5.56 0.14 5.7

[65]-Vanilla-short 8.27 0.14 8.6 SD over F256 MPCitH

[65]-Vanilla-shorter 6.6 0.14 6.94

[65]-Pow-short 7.78 0.14 8.11 (QROM)

[65]-Pow-shorter 6.06 0.14 6.34

BCC+24 [26]-fast 7.07 0.10 7.17 RSD over F2 MPCitH

BCC+24 [26]-medium 5.73 0.10 5.83

BCC+24 [26]-compact 5.13 0.10 5.23

[6] FAESTER-128 s 4.49 0.03 4.52 OW of AES128 VOLEitH

[6] FAESTER-128f 5.91 0.03 5.94

[6] FAESTER-EM-128 s 4.07 0.03 4.10

[6] FAESTER-EM-128f 5.32 0.03 5.35

[6] FAESTER-d7-128 s 4.27 0.03 4.30

[6] FAESTER-d7-128f 5.60 0.03 5.63

[18] RSDs-short 3.51 0.05 3.56 Rank SD VOLEitH

[18] RSDs-shortest 2.84 0.05 2.89

[18] MinRank-short 3.46 0.03 3.49 MinRank VOLEitH

[18] MinRank-shortest 2.81 0.03 2.84

[32] ReSolveD-128-Var1 3.74 0.08 3.82 RSD over F2 VOLEitH

[32] ReSolveD-128-Var2 3.02 0.08 3.10

ReSolveD + -128-Var1-3 3.68 0.06 3.74 RSD over F2 VOLEitH

ReSolveD + -128-Var2-3 2.98 0.06 3.04

466 Y. Ouyang et al.

ZK protocols, we obtained privacy-preserving signatures whose signature sizes
are significantly smaller than those based on Stern-like ZK protocols. We view
the problem of improving the computational efficiency, particularly decreasing
the number of multiplications over large finite fields required in Πt

dD-Rep and
improving the realization of Fp,q,SΔ,C,l,L

sVOLE , as fascinating opening questions for
future investigations.

Acknowledgements. We would like to thank Liping Wang, Khoa Nguyen, Hongrui
Cui, Hanlin Liu, Xindong Liu, Yizhou Yao, and Hongqing Liu for their valuable dis-
cussions of this work. We are also very grateful for the insightful comments and sug-
gestions from the anonymous reviewers of ASIACRYPT 2024. This work was sup-
ported in part by the National Key Research and Development Program under Grants
2020YFA0712300 and 2022YFA1004900, and the National Natural Science Foundation
of China under Grant numbers 62272303 and 12101404.

References

1. G. Adj, L. Rivera-Zamarripa, and J. A. Verbel. Minrank in the head - short sig-
natures from zero-knowledge proofs. In AFRICACRYPT 2023, volume 14064 of
LNCS, pages 3–27. Springer, 2023.

2. M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram,
I. Von Maurich, R. Misoczki, R. Niederhagen, et al. Classic mceliece: conservative
code-based cryptography. 2022. https://classic.mceliece.org/nist.html.

3. D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier. Sha-3 proposal:
Fsb. Submission to NIST, pages 81–85, 2008. https://www.rocq.inria.fr/secret/
CBCrypto/fsbdoc.pdf.

4. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash
function. IACR Cryptol. ePrint Arch., page 230, 2003.

5. D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based cryp-
tographic hash functions. In Mycrypt 2005, volume 3715 of LNCS, pages 64–83.
Springer, 2005.

6. C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger,
L. Roy, and P. Scholl. One tree to rule them all: Optimizing GGM trees and owfs
for post-quantum signatures. IACR Cryptol. ePrint Arch., page 490, 2024.

7. C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, C. Majenz, S. Mukherjee,
S. Ramacher, C. Rechberger, E. Orsini, L. Roy, et al. Faest: Algorithm specifica-
tions. 2023.

8. C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, E. Orsini, L. Roy,
and P. Scholl. Publicly verifiable zero-knowledge and post-quantum signatures
from vole-in-the-head. In CRYPTO 2023, volume 14085 of LNCS, pages 581–615.
Springer, 2023.

9. C. Baum, L. Braun, A. Munch-Hansen, and P. Scholl. MozZ2karella: Efficient
vector-ole and zero-knowledge proofs over Z2k . In CRYPTO 2022, volume 13510
of LNCS, pages 329–358. Springer, 2022.

10. C. Baum, S. Dittmer, P. Scholl, and X. Wang. Sok: vector ole-based zero-knowledge
protocols. Des. Codes Cryptogr., 91(11):3527–3561, 2023.

11. C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In CRYPTO 2021, volume 12828 of LNCS, pages 92–122. Springer, 2021.

https://classic.mceliece.org/nist.html
https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf

Code-Based Zero-Knowledge from VOLE-in-the-Head 467

12. M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC 2014, volume 8383
of LNCS, pages 520–537. Springer, 2014.

13. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on gen-
eral assumptions. In EUROCRYPT 2003,, volume 2656 of LNCS, pages 614–629.
Springer, 2003.

14. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In EUROCRYPT 1993, volume 765 of
LNCS, pages 274–285. Springer, 1993.

15. D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe. Fsbday:
Implementing wagner’s generalized birthday attack against the sha-3 round-1 can-
didate fsb. In INDOCRYPT 2009, volume 5922 of LNCS, pages 18–38. Springer,
2009.

16. D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular information-
set decoding. In IWCC 2011, volume 6639 of LNCS, pages 81–98. Springer, 2011.

17. D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Really fast syndrome-based
hashing. In AFRICACRYPT 2011, volume 6737 of LNCS, pages 134–152. Springer,
2011.

18. L. Bidoux, T. Feneuil, P. Gaborit, R. Neveu, and M. Rivain. Dual support decom-
position in the head: Shorter signatures from rank SD and minrank. IACR Cryptol.
ePrint Arch., page 541, 2024.

19. L. Bidoux, P. Gaborit, M. Kulkarni, and V. Mateu. Code-based signatures from
new proofs of knowledge for the syndrome decoding problem. Des. Codes Cryptogr.,
91(2):497–544, 2023.

20. D. Boneh, S. Eskandarian, and B. Fisch. Post-quantum EPID signatures from
symmetric primitives. In M. Matsui, editor, CT-RSA 2019, volume 11405 of LNCS,
pages 251–271. Springer, 2019.

21. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In CCS
2018, pages 896–912. ACM, 2018.

22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
Efficient two-round OT extension and silent non-interactive secure computation.
In CCS 2019, pages 291–308. ACM, 2019.

23. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudo-
random correlation generators: Silent OT extension and more. In CRYPTO 2019,
volume 11694 of LNCS, pages 489–518. Springer, 2019.

24. P. Briaud and M. Øygarden. A new algebraic approach to the regular syndrome
decoding problem and implications for PCG constructions. In EUROCRYPT 2023,
volume 14008 of LNCS, pages 391–422. Springer, 2023.

25. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In CCS
2004, pages 132–145. ACM, 2004.

26. D. Bui, E. Carozza, G. Couteau, D. Goudarzi, and A. Joux. Short signatures from
regular syndrome decoding, revisited. IACR Cryptol. ePrint Arch., page 252, 2024.

27. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In Advances in Cryptology - CRYPTO
2002, volume 2442 of LNCS, pages 61–76. Springer, 2002.

28. C. Carlet, editor. Boolean Functions for Cryptography and Coding Theory. Cam-
bridge University Press, Cambridge, 2020.

29. E. Carozza, G. Couteau, and A. Joux. Short signatures from regular syndrome
decoding in the head. In EUROCRYPT 2023, volume 14008 of LNCS, pages 532–
563. Springer, 2023.

468 Y. Ouyang et al.

30. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

31. D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology - EURO-
CRYPT 1991, volume 547 of LNCS, pages 257–265. Springer, 1991.

32. H. Cui, H. Liu, D. Yan, K. Yang, Y. Yu, and K. Zhang. Resolved: Shorter signatures
from regular syndrome decoding and vole-in-the-head. In PKC 2024, volume 14601
of LNCS, pages 229–258. Springer, 2024.

33. D. Derler, S. Ramacher, and D. Slamanig. Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In PQCrypto 2018, volume 10786 of LNCS, pages 419–440. Springer, 2018.

34. S. Dittmer, Y. Ishai, S. Lu, and R. Ostrovsky. Improving line-point zero knowledge:
Two multiplications for the price of one. In CCS 2022, pages 829–841. ACM, 2022.

35. S. Dittmer, Y. Ishai, and R. Ostrovsky. Line-point zero knowledge and its appli-
cations. In ITC 2021, volume 199 of LIPIcs, pages 5:1–5:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

36. A. El Kaafarani and S. Katsumata. Attribute-based signatures for unbounded cir-
cuits in the ROM and efficient instantiations from lattices. In PKC 2018, volume
10770 of LNCS, pages 89–119. Springer, 2018.

37. A. Esser, R. Kübler, and A. May. LPN decoded. In CRYPTO 2017, volume 10402
of LNCS, pages 486–514. Springer, 2017.

38. A. Esser and P. Santini. Not just regular decoding: Asymptotics and improvements
of regular syndrome decoding attacks. IACR Cryptol. ePrint Arch., page 1568,
2023.

39. M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang. Provably secure
group signature schemes from code-based assumptions. IEEE Trans. Inf. Theory,
66(9):5754–5773, 2020.

40. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In CRYPTO 2022, volume 13508 of LNCS,
pages 541–572. Springer, 2022.

41. T. Feneuil, A. Joux, and M. Rivain. Shared permutation for syndrome decod-
ing: new zero-knowledge protocol and code-based signature. Des. Codes Cryptogr.,
91(2):563–608, 2023.

42. T. Feneuil and M. Rivain. Threshold linear secret sharing to the rescue of mpc-in-
the-head. In ASIACRYPT 2023, volume 14438 of LNCS, pages 441–473. Springer,
2023.

43. H. Feng, J. Liu, and Q. Wu. Secure stern signatures in quantum random oracle
model. In Information Security - ISC 2019, volume 11723 of LNCS, pages 425–444.
Springer, 2019.

44. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1986.

45. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). IACR Cryptol. ePrint
Arch., page 147, 2023.

46. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

47. S. Gueron, E. Persichetti, and P. Santini. Designing a practical code-based sig-
nature scheme from zero-knowledge proofs with trusted setup. Cryptogr., 6(1):5,
2022.

Code-Based Zero-Knowledge from VOLE-in-the-Head 469

48. C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. Tinykeys: A new approach
to efficient multi-party computation. In CRYPTO 2018, volume 10993 of LNCS,
pages 3–33. Springer, 2018.

49. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

50. C. Jeudy, A. Roux-Langlois, and O. Sanders. Lattice signature with efficient pro-
tocols, application to anonymous credentials. In CRYPTO 2023, volume 14082 of
LNCS, pages 351–383. Springer, 2023.

51. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In CCS 2018, pages 525–537. ACM,
2018.

52. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In ASIACRYPT 2007,
volume 4833 of LNCS, pages 181–199. Springer, 2007.

53. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In
ASIACRYPT 2016, volume 10032 of LNCS, pages 373–403, 2016.

54. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT 2016, volume 9666 of LNCS, pages 1–31. Springer,
2016.

55. F. Lin, C. Xing, and Y. Yao. More efficient zero-knowledge protocols over Z2k via
galois rings. IACR Cryptol. ePrint Arch., page 150, 2023.

56. S. Ling, K. Nguyen, D. H. Phan, K. H. Tang, H. Wang, and Y. Xu. Fully dynamic
attribute-based signatures for circuits from codes. In PKC 2024, volume 14601 of
LNCS, pages 37–73. Springer, 2024.

57. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In PKC 2013, volume 7778 of
LNCS, pages 107–124. Springer, 2013.

58. H. Liu, X. Wang, K. Yang, and Y. Yu. The hardness of LPN over any integer ring
and field for PCG applications. IACR Cryptol. ePrint Arch., page 712, 2022.

59. H. Liu, X. Wang, K. Yang, and Y. Yu. The hardness of LPN over any integer ring
and field for PCG applications. In EUROCRYPT 2024, volume 14656 of LNCS,
pages 149–179. Springer, 2024.

60. X. Liu and L. Wang. Short code-based one-out-of-many proofs and applications.
In PKC 2024, volume 14602 of LNCS, pages 370–399. Springer, 2024.

61. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.
Springer, 2009.

62. V. Lyubashevsky and N. K. Nguyen. BLOOM: bimodal lattice one-out-of-many
proofs and applications. In S. Agrawal and D. Lin, editors, ASIACRYPT 2022,
volume 13794 of LNCS, pages 95–125. Springer, 2022.

63. R. J. McEliece. A public-key cryptosystem based on algebraic. Coding Thv,
4244:114–116, 1978.

64. C. A. Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. The return of
the sdith. In EUROCRYPT 2023, volume 14008 of LNCS, pages 564–596. Springer,
2023.

65. C. A. Melchor, A. Hülsing, D. Joseph, C. Majenz, E. Ronen, and D. Yue. Sdith
in the QROM. In ASIACRYPT 2023, volume 14444 of LNCS, pages 317–350.
Springer, 2023.

66. R. C. Merkle. A certified digital signature. In CRYPTO 1989, volume 435 of LNCS,
pages 218–238. Springer, 1989.

470 Y. Ouyang et al.

67. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC 1990, pages 427–437. ACM, 1990.

68. K. Nguyen, R. Safavi-Naini, W. Susilo, H. Wang, Y. Xu, and N. Zeng. Group
encryption: Full dynamicity, message filtering and code-based instantiation. In
PKC 2021, volume 12711 of LNCS, pages 678–708. Springer, 2021. Full version
is available at https://eprint.iacr.org/2021/226.

69. K. Nguyen, H. Tang, H. Wang, and N. Zeng. New code-based privacy-preserving
cryptographic constructions. In ASIACRYPT 2019, volume 11922 of LNCS, pages
25–55. Springer, 2019.

70. R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the mceliece
cryptosystem without random oracles. Des. Codes Cryptogr., 49(1-3):289–305,
2008.

71. R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
72. E. Prange. The use of information sets in decoding cyclic codes. IRE Trans. Inf.

Theory, 8(5):5–9, 1962.
73. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT

2001, volume 2248 of LNCS, pages 552–565. Springer, 2001.
74. L. Roy. Softspokenot: Quieter OT extension from small-field silent VOLE in the

minicrypt model. In CRYPTO 2022, volume 13507 of LNCS, pages 657–687.
Springer, 2022.

75. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS 1999, pages 543–553. IEEE Computer Society, 1999.

76. J. Stern. A new paradigm for public key identification. IEEE Trans. Inf. Theory,
42(6):1757–1768, 1996.

77. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. In EUROCRYPT 2015, volume 9057 of Lecture Notes in Computer Science,
pages 755–784. Springer, 2015.

78. D. A. Wagner. A generalized birthday problem. In CRYPTO 2002, volume 2442
of LNCS, pages 288–303. Springer, 2002.

79. L. Wang, J. Chen, H. Dai, and C. Tao. Efficient code-based fully dynamic group
signature scheme. Theor. Comput. Sci., 990:114407, 2024.

80. C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In IEEE Symposium on Security and Privacy 2021, pages 1074–1091. IEEE, 2021.

81. C. Weng, K. Yang, Z. Yang, X. Xie, and X. Wang. Antman: Interactive zero-
knowledge proofs with sublinear communication. In CCS 2022, pages 2901–2914.
ACM, 2022.

82. K. Yang, P. Sarkar, C. Weng, and X. Wang. Quicksilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In CCS 2021,
pages 2986–3001. ACM, 2021.

83. R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based
zero-knowledge arguments with standard soundness: Construction and applica-
tions. In CRYPTO 2019, volume 11692 of LNCS, pages 147–175. Springer, 2019.

https://eprint.iacr.org/2021/226

Author Index

A
Aranha, Diego F. 302
Arriaga, Afonso 3

B
Barbosa, Manuel 3
Bünz, Benedikt 269

C
Chakraborty, Suvradip 101
Chen, Jessica 269
Costache, Anamaria 302

D
Di Giandomenico, Emanuele 134
Di, Zijing 236

G
Garreta, Albert 402
Gu, Yanqi 66
Guimarães, Antonio 302

H
Han, Shuai 34, 168
Hazay, Carmit 367
Heath, David 367

J
Jarecki, Stanislaw 3, 66

K
Kedzior, Pawel 66
Klooß, Michael 203
Kolesnikov, Vladimir 367

L
Lai, Russell W. F. 203
Lin, Fuchun 337
Liu, Shengli 34, 168
Lyu, You 34

M
Magliocco, Lorenzo 101
Magri, Bernardo 101
Manzur, Ignacio 402

N
Nazarian, Phillip 66
Nguyen, Ngoc Khanh 203
Nguyen, Wilson 236

O
Osadnik, Michał 203
Ouyang, Ying 436

R
Riepel, Doreen 134

S
Schäge, Sven 134
Škrobot, Marjan 3
Soria-Vazquez, Eduardo 302

T
Tang, Deng 436
Tyagi, Nirvan 236

V
Venkitasubramaniam, Muthuramakrishnan

367
Venturi, Daniele 101

W
Wang, Weihao 168

X
Xia, Lucas 236
Xing, Chaoping 337
Xu, Jiayu 66
Xu, Yanhong 436

Y
Yang, Yibin 367
Yao, Yizhou 337

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15488, p. 471, 2025.
https://doi.org/10.1007/978-981-96-0935-2

https://doi.org/10.1007/978-981-96-0935-2

	 Preface
	 Organization
	 Contents – Part V
	Key Exchange Protocols
	C'est Très CHIC: A Compact Password-Authenticated Key Exchange from Lattice-Based KEM
	1 Introduction
	2 Preliminaries
	3 Security Model
	4 UC PAKE from Modified 2-Feistel and KEM
	5 Security Analysis
	6 Implementation and Performance Analysis
	7 Conclusion
	References

	Efficient Asymmetric PAKE Compiler from KEM and AE
	1 Introduction
	2 Preliminary
	2.1 KEM and AE
	2.2 Idealized Random Oracle Model
	2.3 (Asymmetric) PAKE Under UC Framework

	3 Our aPAKE Compiler from KEM and AE
	4 Instantiations of aPAKE from Our Compiler and PAKE
	4.1 Most Efficient aPAKE from Lattice
	4.2 Tightly Secure aPAKE Scheme from Matrix DDH

	References

	Threshold PAKE with Security Against Compromise of All Servers
	1 Introduction
	1.1 Technical Overview
	1.2 Protocol Variants, Extensions, and Applications

	2 Preliminaries
	3 Threshold Oblivious PRF
	3.1 Threshold Oblivious PRF Model
	3.2 3HashTDH
	3.3 Security Analysis of 3HashTDH
	3.4 Extension to Threshold Partially Oblivious PRF

	4 Augmented Threshold PAKE Model
	5 Augmented Threshold PAKE Construction
	6 Protocol Variants and Extensions
	References

	Key Exchange in the Post-snowden Era: Universally Composable Subversion-Resilient PAKE
	1 Introduction
	1.1 Password-Authenticated Key Exchange
	1.2 Our Results
	1.3 Technical Overview
	1.4 Related Work
	1.5 Organization

	2 A Brief Recap of Subversion-Resilient UC
	2.1 Corruption Types
	2.2 Ideal Functionalities
	2.3 Communication Channels

	3 Sanitizing Oblivious Transfer
	3.1 Sanitizable OT
	3.2 Sanitizable Homomorphic Dual-Mode Encryption
	3.3 A Generic Framework for Sanitizable OT
	3.4 Multi-session FsOT

	4 Sanitizing Randomized Equality
	4.1 Description of FRE
	4.2 Randomized Equality from OT

	5 Subversion-Resilient Split Functionalities
	5.1 Building Link Initialization
	5.2 Multi-realizing any Ideal Functionality in the wsrUC Model
	5.3 Realizing Generic Split Functionalities

	6 Sanitizing PAKE
	6.1 Description of FPAKE
	6.2 From FRE to FPAKE
	6.3 A Hand-Wavy Performance Comparison

	7 Conclusions
	References

	Tightly-Secure Group Key Exchange with Perfect Forward Secrecy
	1 Introduction
	1.1 Contribution
	1.2 Security Model
	1.3 Related Work

	2 Preliminaries
	3 Unilateral Authenticated Key Exchange
	3.1 Security for UAKE
	3.2 From WFS to PFS Secure UAKE

	4 Group Authenticated Key Exchange
	5 GAKE from UAKE
	5.1 Correctness
	5.2 Security

	6 Final GAKE Protocol
	6.1 UAKE from KEMs
	6.2 Putting Things Together

	References

	Anamorphic Authenticated Key Exchange: Double Key Distribution Under Surveillance
	1 Introduction
	1.1 Our Contributions
	1.2 Technique Overview
	1.3 Related Works

	2 Preliminary
	3 Anamorphic Authenticated Key Exchange
	3.1 Syntax of AM-AKE
	3.2 Robustness of AM-AKE
	3.3 Security Model for AM-AKE
	3.4 Impossibility Results and Relaxed Security for Plain AM-AKE

	4 Generic Construction of Robust & Strongly-Secure AM-AKE from AKE
	4.1 New Properties for Functions and Algorithms
	4.2 Construction of AM-AKE from AKE and PRF
	4.3 Security Proofs

	5 Instantiations of Robust and Strongly-Secure AM-AKE
	5.1 Instantiation from The SIG+KEM Paradigm
	5.2 Instantiation from The Three-KEM Paradigm

	References

	Succinct Arguments
	RoK, Paper, SISsors Toolkit for Lattice-Based Succinct Arguments
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Subtractive Sets
	2.2 Tight Succinct Argument for Bounded Norm Satisfiability
	2.3 Embedding Z-Inner Products

	3 Preliminaries
	3.1 Cryptographic Assumption
	3.2 Reduction of Knowledge

	4 Subtractive Sets
	4.1 Prime-Power Cyclotomics
	4.2 Non-prime-Power Cyclotomics

	5 Succinct Arguments for Bounded-Norm Satisfiability
	5.1 The (principal) Relation lin
	5.2 Pi^decomp: b-Ary Decomposition Knowledge Reduction
	5.3 Pi^split: Witness Splitting Knowledge Reduction
	5.4 Pi^fold: Fold Knowledge Reduction
	5.5 Pi^batch: Batch-Rows Knowledge Reduction
	5.6 Pi^split&fold: Split-and-Fold
	5.7 Pi^norm, Pi^norm+, Pi^ip, Pi^ip+: Norm and Inner Product Checks
	5.8 Pi^sfn: Split-and-Fold with Norm Checks
	5.9 Asymptotic Communication Complexity

	6 Packed Z-Inner Products via Twisted Trace Maps
	6.1 Power-of-Two Cyclotomics via Constant Term
	6.2 Prime Real Cyclotomics via Twisted Trace
	6.3 Tensor of Prime Real Cyclotomics
	6.4 Reducing Binariness to Bounded Norm

	7 Parameter Selection
	7.1 Split-and-Fold with Norm Checks

	References

	MuxProofs: Succinct Arguments for Machine Computation from Vector Lookups
	1 Introduction
	2 Technical Overview
	2.1 Strategy: Computation Commitments from Machine Commitments
	2.2 Contribution: Succinct Vector Lookup Arguments
	2.3 Contribution: Vector Lookups for Machine Execution

	3 Preliminaries
	4 Succinct Vector Lookup
	5 Succinct Arguments for Unrolled Machine Execution from Vector Lookups
	5.1 Mux-PLONK: Adapting the PLONK PolyIOP to Machine Execution

	References

	Verifiable Computation
	Proofs for Deep Thought: Accumulation for Large Memories and Deterministic Computations
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview
	1.3 Roadmap

	2 Preliminaries
	2.1 Special-Sound Protocols
	2.2 Commitment Scheme
	2.3 Lookup Relation
	2.4 Vector-Valued Lookup
	2.5 Incremental Verifiable Computation (IVC)

	3 Constructing Read List and Write List
	4 Special-Sound Subprotocols for Memory-Proving
	4.1 Checking Permutation Using Lookup Relation
	4.2 Indexed-Vector Lookup Relation
	4.3 Mem-Update Relation

	5 The LogUp-Powered Memory-Proving Algorithm
	5.1 Using LogUp-Style Relations for Memory-Proving
	5.2 Accumulation Prover Runs in Time Independent of T

	6 Accumulation-Friendly GKR
	6.1 Subprotocol for the Verifier to Efficiently Evaluate a Function
	6.2 Bivariate Sumcheck
	6.3 Batching Subprotocol for GKR

	7 LogUp GKR Protocol Using the Batching Subprotocol
	7.1 Other Applications of GKR in IVC

	References

	HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical
	1 Introduction
	1.1 Technical Overview
	1.2 Comparison with Existing Works

	2 Preliminaries
	2.1 Basic Algebra and Galois Theory
	2.2 Homomorphic Encryption
	2.3 Reed Solomon Codes
	2.4 Interactive Oracle Proofs (of Proximity)

	3 Verifiable Computation over Encrypted Data
	3.1 On Verifier Privacy and Oracle Attacks
	3.2 Prover Privacy

	4 Compiling Interactive Oracle Proofs to Work over HE
	4.1 Achieving Prover-Privacy from ZK-IOPs
	4.2 A Compiler for RS-Encoded IOPs
	4.3 A Correlated-Agreement-Based Compiler

	5 Low Degree Tests for Encrypted Polynomials
	5.1 The HE-Batched-FRI Protocol

	6 Optimisations
	6.1 Tensoring
	6.2 Shallow Reed-Solomon Encoding
	6.3 Shallow Folding
	6.4 Fast Decryption

	7 Experimental Results
	7.1 Practical Parameters
	7.2 Proof-of-Concept Implementation

	References

	Zero-knowledge Protocols
	Interactive Line-Point Zero-Knowledge with Sublinear Communication and Linear Computation
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Comparison with Related Works

	2 Preliminaries
	2.1 VOLE-Based Commitment
	2.2 Multi-linear Extension
	2.3 Sum-Check Protocol and GKR Protocol
	2.4 LPZK ch11DittmerIO21ITCspsLPZK and QuickSilver ch11YangSWW21CCSspsQuickSilver

	3 Interactive Line-Point Zero-Knowledge Proof
	3.1 Defining ILPZK
	3.2 Compiling ILPZK to NIZK

	4 Interactive LPZK for Layered Arithmetic Circuits
	4.1 Our ILPZK Construction
	4.2 Complexity
	4.3 Security Proof in UC-Framework

	5 Interactive LPZK for General Arithmetic Circuits
	5.1 Our ILPZK Construction
	5.2 Complexity
	5.3 Security Proof in UC-Framework

	References

	LogRobin++: Optimizing Proofs of Disjunctive Statements in VOLE-Based ZK
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Schwartz-Zippel-DeMillo-Lipton Lemma
	2.3 Security Model
	2.4 IT-MACs
	2.5 VOLE Correlation
	2.6 VOLE-Based ZK for a Single Circuit and LPZK Technique ch12DIO21
	2.7 Disjunctive Statements in VOLE-Based ZK: Robin ch12BR

	3 Technical Overview
	3.1 LogRobin: Optimizing the Proof of IT-MACs Containing 0
	3.2 Robin++: Committing to Lesser Values Within the Active Branch
	3.3 LogRobin++: Non-trivially Combining LogRobin and Robin++

	4 Formalization
	4.1 Sub-procedures
	4.2 LogRobin++

	5 Implementation and Benchmark
	5.1 Setup
	5.2 Overall Performance
	5.3 Growth Trend of Communication in the VOLE-Hybrid Model
	5.4 B Identical Branches v.s. B Different Branches
	5.5 RO Variant v.s. IT Variant

	References

	FLI: Folding Lookup Instances
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization of the Paper

	2 Techniques
	3 Preliminaries
	3.1 Multilinear Polynomials
	3.2 Lookup Relations
	3.3 SOS-Decomposable Tables
	3.4 Folding Schemes

	4 An IOP and a Folding Scheme for Checking that All Rows in a Matrix Are Elementary Vectors
	4.1 A Folding Scheme for Relem
	4.2 A Protocol for Proving Accumulated Instances

	5 FLI: Folding Lookup Instances
	5.1 FLI: a (RCmMAlLookR1acc)-Folding Scheme
	5.2 A Protocol for Proving Accumulated Instances.
	5.3 Extending SOS Decompositions for Folding
	5.4 FLI + SOS

	6 Performance
	A Comparing Other Regimes for m and N
	B The Cost of Proving Accumulated Instances with Protostar+SOS and DT+SOS
	References

	Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and Smaller
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Boolean Functions
	2.2 Code-Based Collision Resistant Hash Functions
	2.3 Code-Based Commitment Scheme
	2.4 Updatable Code-Based Merkle-Tree Accumulator
	2.5 Randomized McEliece Encryption Schemes
	2.6 VOLE-Based Zero-Knowledge Proofs
	2.7 VOLE-In-The-Head

	3 New Techniques for Proving Regular Encoding Process
	3.1 VOLE-In-The-Head for Degree-d Constraints
	3.2 A New Technique for Proving the Regular Encoding Process

	4 New Zero-Knowledge Protocols for Various Cryptographic Building Blocks
	4.1 ZK of a Valid Opening
	4.2 ZK of an Accumulated Value
	4.3 ZK of Plaintext Knowledge

	5 ZK Protocols for Advanced Primitives
	5.1 ZK for a Ring Signature Scheme
	5.2 Parameters and Efficiency
	5.3 ZK for a Group Signature Scheme
	5.4 Parameters and Efficiency
	5.5 ZK for a Fully Dynamic Attribute-Based Signature Scheme
	5.6 Parameters and Efficiency

	6 A New Code-Based Signature Scheme
	6.1 Description of the Signature Scheme
	6.2 Parameters and Efficiency

	References

	Author Index

