
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

89

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part VI

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15489
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part VI

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0937-6 ISBN 978-981-96-0938-3 (eBook)
https://doi.org/10.1007/978-981-96-0938-3

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0938-3

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACR Distinguished Lecture
delivered by Paul Kocher and one invited talk, nominated and voted by the PC. The
invited speaker had not yet been determined when this preface was written. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Outstanding PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo,

Japan and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent Researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part VI

Secure Multiparty Computation

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings . . . 3
Pascal Reisert, Marc Rivinius, Toomas Krips, Sebastian Hasler,
and Ralf Küsters

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 36
Ying Gao, Lin Qi, Xiang Liu, Yuanchao Luo, and Longxin Wang

FOLEAGE: F4OLE-Based Multi-party Computation for Boolean Circuits 69
Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur,
Clément Ducros, and Sacha Servan-Schreiber

Perfectly-Secure Multiparty Computation with Linear Communication
Complexity over Any Modulus . 105

Daniel Escudero, Yifan Song, and Wenhao Wang

Compute, but Verify: Efficient Multiparty Computation over Authenticated
Inputs . 136

Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, and Nitin Singh

Dishonest Majority Constant-Round MPC with Linear Communication
from DDH . 170

Vipul Goyal, Junru Li, Ankit Kumar Misra, Rafail Ostrovsky,
Yifan Song, and Chenkai Weng

Updatable Private Set Intersection Revisited: Extended Functionalities,
Deletion, and Worst-Case Complexity . 203

Saikrishna Badrinarayanan, Peihan Miao, Xinyi Shi,
Max Tromanhauser, and Ruida Zeng

Honest Majority GOD MPC with O(depth(C)) Rounds and Low Online
Communication . 237

Amit Agarwal, Alexander Bienstock, Ivan Damgård, and Daniel Escudero

Direct FSS Constructions for Branching Programs and More from PRGs
with Encoded-Output Homomorphism . 269

Elette Boyle, Lisa Kohl, Zhe Li, and Peter Scholl

xviii Contents – Part VI

Dishonest Majority Multiparty Computation over Matrix Rings 301
Hongqing Liu, Chaoping Xing, Chen Yuan, and Taoxu Zou

The Concrete Security of Two-Party Computation: Simple Definitions,
and Tight Proofs for PSI and OPRFs . 330

M. Bellare, R. Ranjan, D. Riepel, and A. Aldakheel

Blockchain Protocols

Jackpot: Non-interactive Aggregatable Lotteries . 367
Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin,
and Benedikt Wagner

Early Stopping Byzantine Agreement in (1+ ε) · f Rounds 399
Fatima Elsheimy, Julian Loss, and Charalampos Papamanthou

Information-Theoretic Cryptography

Crooked Indifferentiability of the Feistel Construction . 429
Alexander Russell, Qiang Tang, and Jiadong Zhu

Provable Security of Linux-DRBG in the Seedless Robustness Model 464
Woohyuk Chung, Hwigyeom Kim, Jooyoung Lee, and Yeongmin Lee

Author Index . 495

Secure Multiparty Computation

Actively Secure Polynomial Evaluation
from Shared Polynomial Encodings

Pascal Reisert1(B) , Marc Rivinius1 , Toomas Krips2 , Sebastian Hasler1 ,
and Ralf Küsters1

1 Institute of Information Security, University of Stuttgart, Stuttgart, Germany
{pascal.reisert,marc.rivinius,

sebastian.hasler,ralf.kusters}@sec.uni-stuttgart.de
2 University of Tartu, Tartu, Estonia

toomas.krips@ut.ee

Abstract. Many of the currently best actively secure Multi-Party Com-
putation (MPC) protocols like SPDZ (Damg̊ard et al., CRYPTO 2012)
and improvements thereof use correlated randomness to speed up the
time-critical online phase. Although many of these protocols still rely
on classical Beaver triples, recent results show that more complex cor-
relations like matrix or convolution triples lead to more efficient eval-
uations of the corresponding operations, i.e. matrix multiplications or
tensor convolutions. In this paper, we address the evaluation of multi-
variate polynomials with a new form of randomness: polytuples. We use
the polytuples to construct a new family of randomized encodings which
then allow us to evaluate the given multivariate polynomial. Our app-
roach can be fine-tuned in various ways to the constraints of applications
at hand, in terms of round complexity, bandwidth, and tuple size. We
show that for many real-world setups, a polytuples-based online phase
outperforms state-of-the-art protocols based on Beaver triples.

Keywords: Multi-party computation · randomized encodings · SPDZ

1 Introduction

Multi-Party Computation (MPC) enables multiple parties to perform compu-
tations on private inputs without revealing any information about the inputs
apart from what can be deduced from the result. State-of-the-art actively secure
MPC protocols, like SPDZ [21,22] and related protocols [5,30,31], follow a two-
phase approach, where correlated randomness is precomputed in an offline phase,
and later consumed in an online phase to efficiently evaluate a function on pri-
vate inputs. In this setup, a less efficient offline phase is normally considered
acceptable since the offline phase can start well before the input data becomes
available. Efficiency in two-phase protocols (and generally in MPC protocols)
depends on the number of communication rounds needed and the bandwidth, i.e.
the amount of data that has to be transmitted between the parties. Local com-
putations, which can be performed without interaction, are usually considered
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 3–35, 2025.
https://doi.org/10.1007/978-981-96-0938-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_1&domain=pdf
http://orcid.org/0000-0003-1808-6140
http://orcid.org/0000-0001-8005-8365
http://orcid.org/0000-0003-0981-3553
http://orcid.org/0000-0003-0300-8350
http://orcid.org/0000-0002-9071-9312
https://doi.org/10.1007/978-981-96-0938-3_1

4 P. Reisert et al.

less problematic as long as hardware requirements, e.g. memory requirements,
remain manageable.

In MPC protocols based on additive secret sharing like SPDZ, addition and
multiplication with public values are local operations and therefore fast, while
the multiplication of secret values requires interaction and correlated random-
ness. The most common and widely used form of correlated randomness is clas-
sical Beaver triples [6]. The standard approach is to represent a function, e.g.
a matrix multiplication, as a series of additions and multiplications and then
to use a Beaver triple for each multiplication and to add locally. However, this
approach is often not the most efficient choice and for several common opera-
tions like matrix multiplication [39,44] or tensor convolutions [14,46] there are
by now more efficient actively secure MPC solutions that rely on different forms
of correlated randomness like matrix or convolution triples.

Many of these operations like simple field multiplication (Beaver triples),
matrix multiplication (matrix triples) and tensor convolution (convolution
triples) have in common that they are at most quadratic in the secret inputs.
Using this property the protocols achieve a low online communication complex-
ity. Additionally, the quadratic nature can be used in the offline phase, e.g. by
using the linear homomorphic structure of lattice-based encryption schemes like
BGV [11] to generate the correlated randomness efficiently.

For higher-order operations, like the evaluation of (high-degree) multivariate
polynomials, the situation is more difficult, and comparable constructions do not
exist. We want to address this problem and present a new actively secure MPC
protocol and a suitable new form of correlated randomness called polytuples,
which speeds up the online evaluation of multivariate polynomials compared to
the Beaver triples based approach and still has a reasonably fast offline phase.

We want to briefly describe the high-level idea of our approach. A SPDZ-
like online phase has the following characteristics: at the beginning n par-
ties P1, . . . , Pn possess (among others) additive shares of the input variables
x0, . . . , xm−1, they perform local computations and communicate until each
party Pi has a share [y]i of the result y = f(x0, . . . , xm−1) (cf. Sect. 3.2 for
the definition of additive shares [·]). To open the result, the parties exchange
the [y]i and locally reconstruct the result Rec([y]1 , . . . , [y]n) :=

∑n
i=1 [y]i = y.1

This scheme is, however, by no means the only possible construction. In
fact, it is enough for the parties to construct any randomized encoding [3,26]
of f . A randomized encoding is a set of terms y0, . . . , yk−1 that depend on the
inputs (and some randomness) and a reconstruction algorithm Rec such that
Rec(y0, . . . , yk−1) = f(x0, . . . , xm−1). Additionally, y0, . . . , yk−1 and Rec are cho-
sen in a way to not leak more information than the actual output f(x0, . . . , xm−1)
(cf. the formal Definition 1). Note that randomized encodings contain the classi-
cal SPDZ-setup as the special case yi = [y]i for 0 ≤ i < k = n where the parties
do almost all of the computation in the interactive phase and only a simple
sum in the final reconstruction phase. In particular, the evaluation of a degree

1 In order to get actively secure protocols, the opening protocols additionally include
a MAC check (see our full version [42]. Protocol 5 or [22]).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

d multivariate polynomial then requires around log2(d) rounds of communica-
tion, which might be too much, especially in networks with high latency. It is
then advantageous to reduce the round complexity by shifting more of the overall
computation into a then more complex reconstruction Rec, since this reconstruc-
tion is done locally by each party and therefore nevertheless cheap. Naturally,
certain limitations apply to this shift of computation. For example, the size k of
the encoding should still remain within practical range for two reasons: (i) For a
very large k (e.g. exponential) the local evaluation of Rec might still slow down
the overall multi-party computation and (ii) all the encodings y0, . . . , yk−1 have
to be created either by the offline phase or through communication with the
other parties and hence a large k increases the bandwidth or the offline runtime.

One of the main contributions of this paper is the construction of a new
family of efficient randomized encodings of arbitrary multivariate polynomials f
which satisfies these constraints and allows an efficient MPC protocol with only
one round of communication. To this end, we follow an iterative approach, where
we first construct an encoding y0, . . . , yk−1 such that each yl is of degree at most
d1 < deg(f) in the inputs. We next construct a randomized encoding (yll′) for
each yl of even smaller degree d2 < d1. The idea is that if the parties have a
degree d2 randomized encoding of each yl, then they can locally reconstruct all
yl and if they have all yl then they can reconstruct the result f(x0, . . . , xm−1).
Hence the collection of all yll′ is a degree d2 randomized encoding of f itself.

While the composition (cf. Lemma 2) of randomized encodings is a well-
known result [3], we add a twist. Namely, we construct the encodings yll′ in a
way that they can be used in the reconstruction of multiple yl, e.g. yll′ occurs in
the randomized encoding of yl and y� for some l, �. We prove that the multiple
use of such an encoding does not affect the security of the resulting overall
randomized encoding of f of degree d2. Thus we need less encodings (of degree
d2) to construct all yl and hence f(x0, . . . , xm−1).

In the next iteration step, we replace the degree d2 encoding yl of f by an
encoding yll′l′′ of even smaller degree d3 < d2. Again we can find yll′l′′ which
can be used in the reconstruction of multiple yll′ and we only need to construct
a small number of these yll′ by the previous step. Hence iterating further the
advantage of our multipurpose encodings becomes more significant and allows
us to e.g. construct a degree 3 encoding of f(x0, . . . , xm−1) = x0 · · · xm−1 with
output size in O(m log(m)). Previous results like [18] reached O(m2).

In order to use the new randomized encodings to locally reconstruct the
results, the parties first need to construct the components yl in an interactive
protocol. We therefore build a new MPC online protocol based on a new form
of correlated randomness, i.e. our polytuples. Polytuples are specially crafted
to allow the computation of the shares [yl] in only one round of online com-
munication. These shares are then (partly) opened and each party can locally
reconstruct the output f(x0, . . . , xm−1) (or a share thereof).

Our new family of randomized encodings contains a large number of ran-
domized encodings for each single polynomial f . While all these randomized
encodings use the aforementioned optimization with multipurpose encodings,

6 P. Reisert et al.

Table 1. Comparison for the computation of [x
d/m
1 · · · xd/m

m−1] of degree d with d/m ∈ N,
for Beaver triples, binomial tuples, and polytuples.

Approach Rounds Bandwidth Tuple Size

Beaver Triples �log d� 2(m−1)�log d
m

� 3(m−1)�log d/m�
e.g. for d = m = 16 4 30 45

Binomial Tuples (see Footnote 2) [15] 1 m (d
m

+ 1)m − 1

e.g. for d = m = 16 1 16 65535

Example Intermediate Polytuple 1 O(m log(m)) O(d(log m)2)

e.g. for d = m = 16 1 41 149

0 5 10 15 20 25 30
0

100

200

300

400

m

tu
p
le

si
z
e
/
e
le
m

e
n
ts 1 round

2 rounds

3 rounds

4 rounds

Beaver

0 5 10 15 20 25 30
0

20

40

60

80

100

m

b
a
n
d
w
id

th
/
e
le
m
e
n
ts

Fig. 1. Multi-round example to evaluate a product of m factors with polytuples with
optimal tuple size.

they differ in the number of iteration steps and the degree of the final over-
all encoding. Moreover, we can use encodings of different degrees for different
components, e.g. a degree 4 encoding for y1 and a degree 3 encoding for y2.

The choice of a randomized encoding for a given polynomial f and the result-
ing number and shape of the encodings yl and of the polytuples, strongly influ-
ence various aspects of the online and offline phase for the parties. For example,
a low number of iteration steps and/or overall encodings of high degree reduce
the output size k. Since all encodings have to be opened this decreases the band-
width. The tradeoff is a larger tuple size and hence a more complex offline phase
(see Sect. 4 for the explicit formulas for tuple size and bandwidth).

Table 1 shows one specific kind of randomized encoding and polytuple. This
tuple lies between the linear size for Beaver multiplication and the exponential
size of the more straightforward one-round approach from [15,16].2 It has mini-
mal round complexity and a higher bandwidth cost than the other approaches.
Almost all other trade-offs are however possible. The exact relation will be
explained in Sect. 4.

2 To the best of our knowledge no name has been fixed for the [15] underlying corre-
lated randomness—we therefore chose binomial tuples to refer to this type of ran-
domness within our paper (cf. also Sect. 3.4 for a definition).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 7

Moreover, our protocol is also composable, i.e. we can write a multivariate
polynomial f(x0, . . . , xm−1) = g(g1(x0, . . . xm−1), . . . , gj(x0, . . . xm−1)) for mul-
tivariate polynomials g, gl (1 ≤ l ≤ j) and then compute [gl(x0, . . . xm−1)] in
the first round with our one-round protocol applied to all gl and then compute
f(x0, . . . , xm−1) in the second round with the protocol applied to g for inputs
[gl(x0, . . . xm−1)]. This feature adds additional flexibility since it allows us to
trade round complexity and bandwidth/tuple size; Fig. 1 illustrates that adding
just one round can already make a big difference.

Altogether, we can fine-tune our randomized encodings and polytuples for
optimal performance in the concrete setting where the protocol is deployed w.r.t.
bandwidth, tuple size, and/or round complexity. For example, if network latency
is (moderately) high, we should try to minimize round complexity. Similarly,
bandwidth/data rate restrictions imply that one should use polytuples with
lower bandwidth. If the runtime of the offline phase, local memory or local com-
putation time are important, striving for small tuple sizes is recommended. Our
first experiments show that strategic deployment of polytuples can significantly
speedup the performance of the online phase.

Our Contributions. In summary, our contributions are as follows:

– We introduce a new family of randomized encodings for the evaluation of mul-
tivariate polynomials as well as suitable correlated randomness, i.e. polytu-
ples, to integrate the randomized encodings into a dishonest majority actively
secure MPC protocol. Our randomized encodings have the smallest known
output size for arbitrary monomials. Our approach evaluates a multivari-
ate polynomial in just one round of online communication plus one opening
round.

– We compute the tuple size and bandwidth needed in the online phase for all
new randomized encodings and corresponding polytuples. Our tuple size is
significantly lower than for existing single-round approaches and also multi-
round computations yield improvements (e.g. lower bandwidth and round
complexity than Beaver multiplication).

– We evaluate the performance of our approach for sample applications (eval-
uation of polynomials, comparisons of secret-shared values, simple machine
learning algorithms) in Sect. 5 which shows that polytuples speed-up these
computations compared to Beaver multiplication.

For further results and details we refer to the full version [42] of this paper.

2 Related Work

We see our work as an improvement over the common online phase of SPDZ [22]
and related protocols [5,30,31]. We therefore concentrate our discussion on recent
progress applicable to SPDZ-like papers, rather than classical theoretical results
like e.g. [17], or other MPC approaches like garbled circuits.

8 P. Reisert et al.

A first small optimization of the Beaver triple-based online phase in SPDZ
already appeared in [21] where square pairs are used to improve the squaring
of secret shared values. This idea has been picked up by Morten Dahl who
describes in [19] power tuples for the computation of a monomial xd for a secret-
shared value x, which are binomial tuples (cf. Sect. 3.4) for a single variable.
Dahl [19] also presents matrix triples and convolution triples which have also
been discussed in [39] in the passively secure domain, too. Matrix (and convo-
lution) triples have since then seen further attention and are by now available
as part of an actively secure protocol [14,25,46]. The multivariate version of
binomial tuples appears in the passively secure protocol of [15] with additional
trust assumptions on the dealer, whereas the authenticated binomial tuples in
this paper provide active security. Ohata and Nuida [40] as well as Couteau [16]
use a slight variation of a binomial tuple in the passively secure setup.

Another classical approach to the secure evaluation of a polynomial is
included in [4] and again in [20]. The more recent extension presented in [38] uses
multiplicative masking. Their combined passively-secure protocols need 4+1+2
rounds of (online) communication (cf. [13]). The general idea of using a mul-
tiplicative structure in the underlying primitives, e.g. a multiplicative secret
sharing as in [8,24], is quite tempting. However, these multiplicative sharings
generally cannot compute additions in a cheap way, and conversion techniques
back to an additive sharing as it is used in SPDZ-like protocols are costly. While
these protocols have a constant round complexity and small tuple size, mak-
ing them actively secure (if possible) usually comes with considerable overhead.
Furthermore, there are many papers optimizing the use of maskings/tuples. For
example, Boura et al. [9] reuse their masks for certain input variables for different
multiplication gates. Moreover, function-dependent preprocessing can be used to
decrease the required tuple size and bandwidth in the online phase [7,41]. Also
note that with a pseudo-random generator, as in [10], structured randomness
can be produced without further communication. Special solutions also exist for
more complex structured random data like the matrix triples mentioned before.

Randomized Encodings. Results on randomized encodings reach far back to
the works of Ishai and Kushilevitz [26] who proved that every polynomial has
a degree-3 randomized encoding. The complexity results of [26] have since been
improved by [18] for general branching programs, e.g. for products of m variables
they achieve randomized encodings of output size O(m2). In comparison, our ran-
domized encoding reduces the output complexity to O(m log(m)). Other papers
like [33] focus on the binary case (which is less related to our arithmetic setup) or
relax the correctness or privacy requirements like [3] to achieve better efficiency.
We refer to [27] for further classical references on randomized encodings. At the
same time [28] presents new actively secure protocols with linear bandwidth and
constant round complexity, but with exponential tuple size. Moreover, [16] con-
siders a multi-round approach which improves the bandwidth from linear in the
classical Beaver triple-based approach to O(m/

√
log(m)). More recently, a new

multi-party adapted version of randomized encodings (MPRE) evolved in [1],

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

where preprocessing and the first communication round are more flexible than
in our SPDZ-like setup—the latter is (almost completely) restricted to exchange
masked inputs xj − aj in the first communication round. The MPRE approach
has led to new passively secure and actively secure MPC protocols [1,2,35,36].
The currently best actively secure protocol [35] uses Oblivious Linear Evalu-
ation (OLE) correlated randomness, needs two rounds of communication but
bandwidth at least cubic in the number of parties n and in O(m1.5) in the online
phase. In comparison, our protocols are linear in n and require only O(m log(m))
communication in the same number of rounds in the online phase.

3 Preliminaries

For our theoretical considerations in Sects. 4.2 to 4.5 we are working on a com-
mutative base ring R. For all other parts, we choose R a finite field as in [22].
We call a computation local if the parties can perform it without interaction.

3.1 Performance Measures

When we analyze the theoretical performance of our protocols, bandwidth is
measured in the number of ring elements sent. Analogously, the size of the struc-
tured randomness needed for one polynomial evaluation in the online phase, i.e.
the tuple size, is the number of ring elements contained in the tuple. The round
complexity of a protocol is the number of communication rounds. One com-
munication round consists of all information that can be sent in parallel. In
particular, if in a protocol party P1 has to wait for a message from P2 before P1

can send her message, the protocol has round complexity 2. The opening phase
in actively secure SPDZ-like protocols comes with an additional invocation of a
MAC check subroutine (cf. Sect. 3.2 and [42]. Protocol 7)—to account for the
different structures of an opening round we will count opening rounds separately,
usually indicated by a “+1” in the round/bandwidth count. It is quite common
to ignore the opening round completely for composable protocols since to com-
pute the composition of two or more functions the parties need only one global
opening round. E.g. if parties can compute a function f in kf + 1 rounds and
function g in kg + 1 rounds, they can compute g ◦ f in kf + kg + 1 rounds. To
simplify notation, we sometimes drop the “+1”.

3.2 Secret-Sharing and SPDZ-MACs

As we focus on MPC in the dishonest majority setting, we use classical additive
secret-sharing, denoted by [·]. A secret x is shared among n parties such that
x =

∑n
i=1 [x]i where [x]i is the share of party Pi. All shares are needed to

reconstruct a secret and n− 1 or less shares do not reveal any information. This
secret sharing scheme is linear, i.e., we can set [x + y]i := [x]i+[y]i, [cx]i := c·[x]i,
[x + c]i := [x]i + c · δi1 for shared values x, y and a publicly known constant c,
where δij is the Kronecker delta. To open (or reconstruct) a secret-shared value,

10 P. Reisert et al.

parties simply broadcast their shares and compute the sum of all shares. Our
techniques are independent of the secret-sharing scheme.

In SPDZ and related protocols, shares are additionally authenticated to ver-
ify the outputs of the protocol using a MAC key [21,22]. The MAC key α ∈ R
is shared in the preprocessing phase. Secret shared values (including inputs and
structured randomness like Beaver triples or polytuples) are authenticated in the
offline phase—we use �x� := ([x] , [αx]) to denote authenticated shares of x and
�X� = (�x1�, . . . , �xk�) for a tuple X = (x1, . . . , xk). Linear operations on authen-
ticated shares are a trivial extension of linear operations on shares with the excep-
tion of �x + c�i := ([x + c]i , [αx]i + c · [α]i). A MAC check enables parties to ver-
ify the integrity of previously opened shares (cf. [42]. Protocol 7 or [21,22]). The
soundness of the MAC check is proportional to 1

|R| if R is a field, can be aggregated
over many opened values, and does not reveal the MAC key [21].

3.3 Randomized Encodings and Randomizing Polynomials

In our protocols we use randomized encodings [26] to reduce the communication
rounds, bandwidth, and tuple size.

Definition 1. Let X,Y, Ŷ , A be finite sets and let f : X → Y . A function
f̂ : X × A → Ŷ is called randomized encoding of f if the following holds:

– Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that
Rec ◦ f̂ = f ◦ pr1 where pr1 : X × A → X, (x, a) �→ x is the projection.

– Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are
identically distributed for all x ∈ X if a is sampled uniformly from A.

If Ŷ = Rk, we call the component functions of a randomized encoding, simply
encodings or randomizing polynomials. An encoding y0 of f̂ = (yl)0≤l<k which
is only added by the reconstruction algorithm, i.e. Rec(0, y1, . . . , yk−1) + y0 =
Rec(y0, y1, . . . , yk−1), is called additive.

In this paper, we usually have X = Rm, Y = R, Ŷ = Rk. The randomness space
A is generally more complicated since it is a subvariety of some Rt defined by
the structure of our randomness, e.g. for Beaver triples we would choose A =
{(a, b, c) ∈ R3 : ab = c} ⊂ R3. We remark that for our MPC application, we also
include components that are completely deterministic in the other components,
e.g. c = ab in the Beaver triple case, since we have to construct this randomness
in the offline phase. For possible other applications of our randomized encodings,
these deterministic components of A can be omitted.

Moreover, in our arithmetic setup we only need to consider random-
ized encodings where the entries yl of f̂ are randomizing polynomials
in m + t variables, i.e. yl : X × A → R, ((xj)0≤j<m, (aj)0≤j<t) �→
yl(x0, . . . , xm−1, a0, . . . , at−1) is a polynomial in x0, . . . , xm−1, a0, . . . , at−1. To
simplify the notation we usually drop the explicit dependency of the yl on xj

and aj .

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 11

A randomized encoding f̂ is said to be of (total) degree-d, if the entries yl of
f̂ are of total degree at most d—both the xj and the aj count towards the total
degree, e.g. 2x0a

2
0 has total degree 3. We write f̂ is of x-degree d if it is of degree

d in the variables xj and of a-degree d if it is of degree d in the randomness aj ,
i.e. 2x0a

2
0 is of x-degree 1 and a-degree 2.

The output size of a randomized encoding is the R-rank of Ŷ , i.e. in this paper
the size k. In our protocols, the output size usually coincides (up to an addition
by m) with the bandwidth of the corresponding MPC protocol. The randomness
size t on the other hand corresponds to the tuple size of the employed polytuple.

For later use we recall some fundamental properties for the concatenation
and composition of randomized encodings [3]:

Lemma 1. Let f̂i(x, ai) be randomized encodings for fi(x) with reconstruction
algorithm Reci and 0 ≤ i < k, then f̂(x, (ai)0≤i<k) = (f̂i(x, ai))0≤i<k is a ran-
domized encoding of f(x) = (fi(x))0≤i<k with reconstruction Rec = (Reci)0≤i<k.

Lemma 2. Let (f̂(x, a),Rec) be a randomized encoding of f(x) and
(f̂ ′((x, a), a′),Rec′) a randomized encoding of f̂(x, a) (as a deterministic func-
tion of (x, a)). Then f̃(x, (a, a′)) = f̂ ′((x, a), a′) is a randomized encoding of
f(x) with reconstruction Rec ◦ Rec′.

3.4 Binomial Tuples

As mentioned before, our new MPC protocols3 for the evaluation of a multi-
variate polynomial f rely on suitable randomized encodings (y0, . . . , yk−1) of
f . Here, the single encodings yl are built by an interactive one-round protocol
that uses structured randomness. Since the yl might have a degree larger than
2, Beaver triples are not enough and we need a type of structured randomness
that allows us to build higher degree terms yl in one round. The solution is
what we call binomial tuples (for yl) since their construction is (just like Beaver
triples) based on binomial expansion. We want to briefly present binomial tuples
and the corresponding MPC online protocol. A passively secure version of this
protocol was used in [15,16].

The goal of the binomial tuple approach is to compute a polynomial f in
m variables x0, . . . , xm−1 ∈ R of total degree d =

∑m−1
j=0 dj with one round of

communication plus one opening round.
Let x = (x0, . . . , xm−1) and denote by fa(x) =fa0,...,am−1(x) = f(x0 +

a0, . . . , xm−1 + am−1) a randomization. As a multi-variate polynomial fa

has the general form
∑

e∈E bex
e for xe :=

∏m−1
j=0 x

ej

j and multi-index e =

(e0, . . . , em−1) ∈ ×m−1

j=0
{0, . . . , dj} =: E and some coefficients be ∈ R (which

depend on the aj). Now each party Pi receives (from the offline phase) a share
�be�i for all e ∈ E. We call the (be)e∈E (or the sharing �be�e∈E) a binomial tuple.

Additionally, assume that the parties already hold shares �xj�, �aj� of the
input variables xj and masks aj . In the first round of (online) communication
3 The protocol will be presented later in [42]. Protocol 5.

12 P. Reisert et al.

the parties exchange [xj] − [aj] = [xj − aj] for 0 ≤ j < m and reconstruct
x − a = (x0 − a0, . . . , xm−1 − am−1). Subsequently, each party Pi can locally
compute a share

�f(x)�i = �fa(x − a)�i =
∑

e∈E

�be�i(x − a)e (1)

i.e. the parties can reconstruct f(x) in the opening round.

Remark 1. If f(x) = x(d0,...,dm−1) is a monomial, then

fa(x) = (x + a)(d0,...,dm−1) =
∑

e∈E

(m−1∏

j=0

(
dj

ej

))

a(d0,...,dm−1)−exe.

Hence, we have be =
(∏m−1

j=0

(
dj

ej

))
a(d0,...,dm−1)−e. Thus, each party needs to

receive a share of be from the preprocessing, i.e. the tuple size is
∏m−1

j=0 (dj+1)−1,
where the dj +1 comes from running through the powers 0 to dj and the final −1
corresponds to the case e = (d0, . . . , dm−1) where be = 1 is constant and does not
have to be shared explicitly. We see that the structured randomness (be)e∈E has
a small size if m = 1, but becomes exponential for monomials of many different
factors, e.g. for dj = 1 for all 0 ≤ j < m one has size 2m − 1 = 2d − 1.

Although binomial tuples come with a minimal round complexity of 1+1
rounds and small bandwidth, e.g. m + 1 ring elements for the polynomial∏m−1

j=0 xj , the often large tuple size makes binomial tuples too inefficient for
most higher degree multivariate polynomial evaluations. Our polytuples (cf. Def-
inition 2) will therefore not contain binomial tuples for high-degree polynomials,
but rather combine and correlate low-degree binomial tuples to retain a small
tuple size and bandwidth while keeping the round complexity minimal.

4 Our MPC Protocols for the Evaluation of Multivariate
Polynomials

We now present our main technical results on randomized encodings and poly-
tuples. In Sect. 4.1 we explain first what kind of randomized encodings are com-
patible with our MPC protocol and how they can be used in an online phase.
Sections 4.2 to 4.5 construct our new family of suitable randomized encodings. It
also analyzes the complexity of the randomized encodings and connects it to the
bandwidth and tuple size of our MPC protocols. Finally, Sect. 4.6 contains our
MPC protocols and the main theorems. We refer to Sect. 4.7 and [42]. Appendix
C for a discussion on the polytuple generation in the offline phase.

4.1 MPC With Randomized Encodings

Our MPC online protocols (just like SPDZ) consider n parties P1, . . . , Pn that
receive shares of the input variables x = (x0, . . . , xm−1) as well as shares

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 13

of (structured) random data in the form of a structured random tuple â =
(a0, . . . , at−1) with t ≥ m from an offline phase. The parties can locally add
the shares, but they need to interact to compute the product of two secrets like
x0x1 or x0a0. In order to compute these products the parties have to exchange
their shares, obviously not in plain, but in some masked form. Therefore, as in
SPDZ (and for the binomial tuples in Sect. 3.4) we assume that the parties open
xj − aj , 0 ≤ j < m, in an initial round of communication. Thus after the initial
communication round, all parties know the public values xj − aj , 0 ≤ j < m, in
addition to the shares already provided by the offline and input phase.

The parties can use this information to construct new shares [yl]i between the
initial communication round and the final opening round. They can locally multi-
ply and add the public values xj −aj , but they cannot locally multiply the shares
(in a meaningful way). Hence the [yl]i can be polynomials in the xj−aj with coef-
ficients that have at most total degree 1 in [x0]i , . . . , [xm−1]i , [a0]i , . . . , [at−1]i.
E.g. [a2]i (x1 − a1)2 can be computed locally by party Pi after the initial round
of communication. However, [a1]i · [a2]i (x1 − a1)2 	= [

a1a2(x1 − a1)2
]
i
, i.e. the

degree 2 coefficient [a1]i · [a2]i is not sufficient to compute a share of the product
locally. Instead, we need to include structure randomness a3 = a1a2 in the tuple.
Then Pi easily computes [a3]i (x1−a1)2 = [a1a2]i (x1−a1)2 =

[
a1a2(x1 − a1)2

]
i
,

which now has a coefficient [a3]i of degree 1.
After the local computation, the parties open the [yl]i and each party gets

yl =
∑n

i=1 [yl]i. Note that the degree condition ensures that yl turns into a poly-
nomial in the xj and aj since the shares dissolve, e.g.

∑n
i=1 [a2]i (x1 − a1)2 =

a2(x1 − a1)2. In order to compute f(x0, . . . , xm−1) privately the yl (together
with the xj − aj) must be a randomized encoding for a suitable reconstruc-
tion algorithm Rec, i.e. f̂(x0, . . . , xm−1, a0, . . . , at−1) = (x0 − a0, . . . , xm−1 −
am−1, y0, . . . , yk−1) in the notation of Definition 1.4 In particular, the parties
can then locally apply Rec to xj − aj and the now public yl, to compute
f(x0, . . . , xm−1). Hence for a randomized encoding f̂ = (yl)0≤l<k of f with

(I) yl is a polynomial
∑

e(l)∈E(l) be(l)(x, â) · (x − a)e(l) where E(l) ⊂ N
m some

finite set of multi-indices and a = (a0, . . . , am−1) the input masks, and
(II) all coefficients be(l)(x, â) have total degree at most 1 in

R[x0, . . . , xm−1, a0, . . . , at−1],

the parties P1, . . . , Pn can compute f(x0, . . . , xm−1) with Protocol 1 and option
continuation = open. To later use our randomized encodings in multi-round
online protocols (cf. Protocol 1 and [42]. Protocol 5) we furthermore require that

(III) y0 is an additive component in the sense of Definition 1.

This allows the options continuation = share in Protocol 1 below to output a
share �f(x0, . . . , xm−1)�i of the result to each party Pi or to output a masked
result f(x0, . . . , xm−1) − b if continuation is a shared random value �b�. We

4 In our encodings f̂ we usually do not include the xj − aj explicitly, since we can
directly include polynomials in the xj − aj in the yl.

14 P. Reisert et al.

discuss the multi-round use in more detail in Sect. 4.6. The protocol Πpolynomial

for polynomial evaluations is the core part of our online phase. All other parts,
e.g. the input protocol, are identical to their counterparts in SPDZ. We have
included the full online protocol Πonline in [42]. Protocol 5.

Πpolynomial

Let f̂ = (yl)0≤l<k be a randomized encoding of f that satisfies (I), (II), (III) with
randomness space A. Each party has a share of x = (x0, . . . , xm−1) and of some â =
(a0, . . . , at−1) ∈ A. On input (f̂ , �x�, �â�, continuation) each party Pi does:

1. Pi locally computes and then opens �xj�i − �aj�i for all 0 ≤ j < m. After receiving
all shares, Pi locally computes xj − aj .

2. Pi locally computes �yl�i =
∑

e(l)∈E(l) be(l)(�x�i, �â�i)(x − a)e(l) for all 0 ≤ l < k,

a = (a0, . . . , am−1). If continuation = �b� then set �y0�i ← �y0�i − �b�i.
3. Pi opens �yl�i for all i > 0 and locally computes yl =

∑n
i=1 [yl]i by summing up

the received shares.
a. If continuation = share, Pi locally constructs �f(x0, . . . , xm−1)�i = �y0 +

Rec(0, y1, . . . , yk−1)�i = �y0�i + Rec(0, y1, . . . , yk−1)δ1i.
b. If continuation �= share, Pi opens and computes y0 =

∑n
i=1 [y0]i and locally

reconstructs f(x0, . . . , xm−1) = Rec(y0, . . . , yk−1).

Protocol 1. 1(+1) round interactive evaluation of a polynomial f .

Remark 2. As usual for SPDZ-like protocols, we get a passively secure version
if we replace �·� with a simple [·]. We note that all constructions in this paper
still work in the passive setup with this modification.

4.2 Our Randomized Encodings

We now want to construct suitable randomized encodings of arbitrary multivari-
ate polynomials compatible with our MPC online phase, i.e. randomized encod-
ings that satisfy (I)–(III) above. We already know from Sect. 3.4 that every
multivariate polynomial can be computed with binomial tuples and also that
these binomial tuples become too large for high-degree polynomials. Hence we
will first construct low-degree randomized encodings and then use the binomial
tuples from Sect. 3.4 to construct these low-degree terms as in (1) and Protocol
1, respectively.

We will start with homogeneous monomials x0,...,m−1 := x0 · · · xm−1, then
lift our construction to arbitrary monomials, i.e. xd0

0 · · · xdm−1
m−1 , and finally to

arbitrary polynomials.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 15

Idea of Our Construction. To construct a randomized encoding for
f(x0, . . . , xm−1) = x0,...,m−1 =

∏m−1
j=0 xj , we follow an iterative approach, where

we first construct a degree d1 encoding f̂ (1) of f for some d1 < m, i.e. the com-
ponents y

(1)
l of f̂ (1) are polynomials of degree ≤ d1. We next construct a lower

degree encoding f̂ (2) of degree d2 < d1, of f̂ (1) and use the composition Lemma
2 to get a new degree-d2 encoding of f . Iteratively, we can reduce the degree of
the encoding to a target degree, e.g. a degree-3 encoding.

The straightforward approach to construct a randomized encoding of f̂ (1) is
to construct encodings for each of the component functions y

(1)
l of f̂ (1) and then

to concatenate the encodings with Lemma 1 to a randomized encoding of the
whole f̂ (1). As mentioned before, in this paper we follow a more efficient app-
roach, where we construct encodings y

(2)
l that can be used in the reconstruction

of multiple y
(1)
l .

We want to illustrate our approach with the special case m = 2n. We use 3
types of encodings each linear in some monic monomial xu,...,r−1:− xu · · · xr−1

with u < r:

(i) with constant prefactor 1, i.e. of the form fau,...,r−1(xu, . . . , xr−1) =
xu,...,r−1 − au,...,r−1 and an au,...,r−1 ∈ A;

(ii) with one randomized prefactor a ∈ A, i.e. of the form
ga

bu,...,r−1
(xu, . . . , xr−1) = axu,...,r−1 − bu,...,r−1 and a bu,...,r−1 ∈ A;

(iii) with two randomized prefactors
a, b ∈ A, i.e. of the form ha,b

cu,...,r−1
(xu, . . . , xr−1) = abxu,...,r−1 − cu,...,r−1

and a cu,...,r−1 ∈ A.

We now want to construct randomized encodings for each of these three types
of encodings which again consist of terms of type (i), (ii), or (iii), but of lower
degree, i.e. with smaller r − u. Since our monomial f(x0, . . . , xm−1) is of type
(i) with u = 0, r = m, this will allow us to construct a degree d1 encoding
f̂ (1) = (y(1)

l) where all y
(1)
l are of type (i), (ii) or (iii) with x-degree < r. Then

we can iterate.
To simplify notation we use a helper function

ϕ(x, y, a, b, c) :− (x − a, y − b, bx + ay − ab − c)

on R5. Moreover, we choose a reconstruction Rec(y0, y1, y2) :− y0y1 + y2 for
output size 3 randomized encodings. Please note that y2 is then an additive
component in the sense of Definition 1. We get

Rec ◦ ϕ(x, y, a, b, c) = ϕ0ϕ1 + ϕ2 = (x − a)(y − b) + bx + ay − ab − c = xy − c.
(∗)

Hence, we find for v = (u + r)/2 randomized encodings of f∗, ga
∗ , ha,b

∗ :

(1) f̂au,...,r−1(xu, . . . , xr−1, a0, a1) = ϕ(xu,...,v−1, xv,...,r−1, a0, a1, au,...,r−1)5,

5 To simplify the notation we often write ∗ for the additive constant index if the index
is clear from context.

16 P. Reisert et al.

(2-1) ĝa
bu,...,r−1

(xu, . . . , xr−1, b0, b1) = ϕ(axu,...,v−1, xv,...,r−1, b0, b1, bu,...,r−1),
(2-2) ĝb

bu,...,r−1
(xu, . . . , xr−1, b0, b1) = ϕ(xu,...,v−1, bxv,...,r−1, b0, b1, bu,...,r−1),

(3) ĥa,b
cu,...,r−1

(xu, . . . , xr−1, c0, c1) = ϕ(axu,...,v−1, bxv,...,r−1, c0, c1, cu,...,r−1),

where a0, a1, b0, b1, c0, c1 ∈ A are random numbers (not necessarily different).
Note that for g we have two different cases depending on whether a randomized
prefactor comes from the first component or the second.

While correctness follows in all four cases directly from (∗), we omit the
security proof for now and refer to the general cases discussed in Sect. 4.3.

Please note that in all of these randomized encodings the components (given
by some ϕ0, ϕ1, ϕ2) are in fact linear combinations of terms of types (i), (ii) or
(iii) and of x-degree (r − u)/2 = 2n−1. Hence, we can iteratively apply the four
randomized encodings again to get to an even smaller x-degree.

The first two components of (1), (2-1), (2-2), (3) (which come from some
ϕ0, ϕ1) are simple terms of types (i)–(iii). For these we can iterate immediately,
i.e. apply (1), (2-1), (2-2), (3) with either u ← u, r ← v, v ← (u + r)/2 or
u ← v, r ← r, v ← (u + r)/2 to get encodings of the components of x-degree
(r − u)/2 = 2n−1 and output size 3. In the third components (corresponding
to ϕ2) we have sums of type (i)–(iii) terms. Here, we construct a randomized
encoding for each summand (using suitable instances of (1), (2-1), (2-2), (3)) and
then combine them to a randomized encoding of the sum.6 Overall, this leads
to four randomized encodings of output size 3 (as above) and x-degree 2n−1:
two for the first two components and two for the two summands of the third
component. If we follow this path and reduce the x-degree iteratively by a factor
2 in each round, then we quickly see that we get (using concatenation Lemma 1
and composition Lemma 2) an overall randomized encoding of x-degree 1 (and
a-degree ≤ 2) of output size in O(4n) = O(m2) similar to the results in [18].

However, if we investigate our randomized encodings above a bit closer,
then we see that we produce a significant amount of identical encodings mul-
tiple times. For example, if we set a1 = b1 then the second component of
both f̂∗(xu, . . . , xr−1, a0, a1) and ĝa

∗(xu, . . . , xr−1, b0, a1) is xv,...,r−1 − a1. Anal-
ogously, we get a joined component for (1) and (2-2) if a0 = b0. Similarly, we
see that for b0 = c0 the first components of both (2-1) ĝa

∗(xu, . . . , xr−1, b0, b1)
and (3) ĥa,b

∗ (xu, . . . , xr−1, b0, c1) are identical: axu,...,v−1 − b0. Analogously, for
(2-2) and (3) for b1 = c1. See also Fig. 2. Thus, if we choose the random-
ness suitably, it is enough to produce some of the encodings in (1), (2-1),
(2-2), (3) only once and then use them in multiple reconstructions. E.g. this
allows us to save 4 components when constructing a randomized encoding of
(f∗(xu, . . . , xr−1), ga

∗(xu, . . . , xr−1), gb
∗(xu, . . . , xr−1), h

a,b
∗ (xu, . . . , xr−1)). Please

note that while in general one cannot use the same encoding in different recon-
structions without losing privacy, our construction allows the multiple use of
encodings—we refer to Corollary 1 for the formal result. We can now conclude
that we need for a randomized encoding of

6 We omit details for this combination, which is treated in general in Corollary 1.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 17

Fig. 2. Components in the encodings (1) [left], (2-a) [left-middle], (2-b) [right-middle],
(3) [right]. Identical colors (apart from black) mark identical encodings, black/dashed
boxed components are duplicates and therefore not produced again.

(a) f∗(xu, . . . , xr−1): 2 type (i) terms (1st, 2nd component of f̂) and 2 type (ii)
terms (summands in the 3rd component of f̂),

(b) each ga
∗(xu, . . . , xr−1), gb

∗(xu, . . . , xr−1) : 2 additional type (ii) terms (1st (2-
1) or 2nd (2-2) component of ĝ + one summand in the 3rd component) plus
1 type (iii) term (summand in the 3rd component).

(c) ha,b
∗ (xu, . . . , xr−1): 2 additional type (iii) terms (summands in the 3rd com-

ponent of ĥ).

Please note that (b) assumes that (a) has been already produced; (c) assumes
that both (a) and (b) have been produced. Fortunately, this is the only case that
occurs in our iterative construction, i.e. whenever we need to construct a term
ha,b

∗ we also need to construct the corresponding ga
∗ , gb

∗, f∗ linear in the same
monomial. Analogous, whenever we need to construct a ga

∗ or gb
∗ we also need to

construct an f linear in the same monomial.
We want to briefly look at two successive iteration steps to explain why this

is the case. We start with our monomial f(x0, . . . , xm−1) = x0,...,m−1. Then the
randomized encoding f̂∗(x0, . . . , xm−1, a0,...,2v−1, a2v,...,m−1) for v = 2n−2, r =
m = 2n, u = 0 from (1) leads to

– 2 terms f∗(x0, . . . , x2v−1), f∗(x2v, . . . , xm−1) and 2 terms g
a2v,...,m−1∗ (x0, . . . ,

x2v−1), g
a0,...,2v−1∗ (x2v, . . . , xm−1) in the 3rd component of f̂ (see also left

column in Fig. 2).

If we go one iteration further, i.e. apply (1), (2-1), (2-2), (3) to these
four terms, f̂∗(x0, . . . , x2v−1, a0,...,v−1, av,...,2v−1) leads again to 2 terms
f∗(x0, . . . , xv−1), f∗(xv, . . . , x2v−1)
and 2 terms g

av,...,2v−1∗ (x0, . . . , xv−1), g
a0,...,v−1∗ (xv, . . . , x2v−1). But now we also

get from ĝ
a2v,...,m−1∗ (x0, . . . , x2v−1, b0,...,v−1, av,...,2v−1) in the case (2-1):7

7 Analogously for (2-2).

18 P. Reisert et al.

– 2 additional terms g
a2v,...,m−1∗ (x0, . . . , xv−1), g

b0,...,v−1∗ (xv, . . . , x2v−1), and one
term h

av,...,2v−1,a2v,...,m−1∗ (x0, . . . , xv−1) (see Fig. 2, right-middle column).

We see that we get in fact the 4 terms f∗, g
av,...,2v−1∗ , g

a2v,...,m−1∗ ,
h

av,...,2v−1,a2v,...,m−1∗ all linear in x0,...,v−1. Furthermore, observe that each type
(ii) term only occurs with a corresponding type (i) term linear in the same mono-
mial and that each ha,b

∗ only occurs with corresponding ga
∗ , gb

∗ and f∗ terms all lin-
ear in the same monomial. Finally note that a type (iii) term ha,b

∗ (xu, . . . , xr−1)
again leads to two type (iii) terms ha,b1∗ (xu, . . . , xv−1), h

b,b0∗ (xv, . . . , xr−1) (Fig. 2,
right). As we have seen, we also have ga

∗(xu, . . . , xr−1), gb
∗(xu, . . . , xr−1). Then

we have to apply (2-1) to ga
∗(xu, . . . , xr−1) and (2-2) to gb

∗(xu, . . . , xr−1)
(or vice versa) to ensure that ga

∗(xu, . . . , xv−1) and gb
∗(xv, . . . , xr−1) (or

gb
∗(xu, . . . , xv−1) and ga

∗(xv, . . . , xr−1)) are already available for the reconstruc-
tion of ha,b

∗ (xu, . . . , xr−1). The two different cases are (dashed) underlined in
Fig. 2.

Overall we see that the number of needed encodings as described by (a),
(b), (c) hold generally in our construction. Hence we can deduce the output
complexity of our iterative approach, namely:

We easily see that the number of type (i) terms f is in O(2n) = O(m), of type
(ii) terms g is in O(2nn) = O(m log(m)) and type (iii) terms h is in O(2nn2) =
O(m(log(m))2). Hence we get overall complexity O(m(log(m))2) since we have
to construct all of these terms. This is already a significant improvement over
the currently best-known result O(m2) [18].

However, the result is not ideal yet. We can further improve it by combining
additive components: Consider Rec′(y0, y1, y2, y3, y4) = y0y1 + y2y3 + y4 and

ϕ′(x, y, a, b, x′, y′, a′, b′, c)
:− (x − a, y − b, x′ − a′, y′ − b′, bx + ay + b′x′ + a′y′ − ab − a′b′ − c)

Then Rec′ ◦ ϕ′ = xy + x′y′ − c. Thus for v = r/4:

f̂add(x0, . . . , xr−1, a0,...,v−1, av,...,2v−1, a2v,...,3v−1, a3v,...,r−1)
= ϕ′(x0,...,v−1, a2v,...,r−1xv,...,2v−1, a0,...,v−1, bv,...,2v−1, x2v,...,3v−1,

a0,...,v−1x3v,...,r−1, a2v,...,3v−1, b3v,...,r−1, a0,...,2v−1a2v,...,r−1)

is a randomized encoding of the additive 3rd component of f̂∗ (from (1)), i.e. of
a2v,...,r−1x0,...,2v−1+a0,...,2v−1x2v,...,r−1−a0,...,2v−1a2v...,r−1. Note that f̂add only
has 5 components compared to 6 that are needed if we construct each summand
separately. Analogous results hold for the additive components of ĝa

∗ , ĝb
∗, ĥ

a,b
∗ .

Overall this reduces the output complexity down to O(m log(m)).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 19

4.3 Technical Lemmas and Formal Results

We now want to present a generalization of the previous construction. The proofs
to all statements in this section are available in [42]. Appendix A. We also refer
to [42]. Appendix A for additional examples, e.g. [42]. Examples 1, 2, 4 and 5.

We start with the main technical Lemmas 3 to 5. The three lemmas discuss
the three cases (i)–(iii) already presented above, i.e. no (Lemma 3), one (Lemma
4) or two randomized prefactors (Lemma 5). While in the previous special case
the randomized encoding of x0,...,m−1 consisted of terms either linear in x0,...,t−1

or in xt,...,m−1, the more general lemmas instead allow to construct a randomized
encoding linear in any number 1 ≤ r1 ≤ m of monomials xS1,j

:− ∏
k∈S1,j

xk for

{0, . . . , m − 1} =
⋃̇

j∈Zr1
S1,j any disjoint union.8 E.g. we can split x0,...,8 into

terms linear in the three monomials x0,...,2, x3,...,5 or x6,...,8.
We will first state the lemmas and then explain how they can be combined

into a low-degree encoding of any product x0 · · · xm−1. Since we later apply the
lemmas several times in different degrees, they are stated in a generic degree r
instead of m to avoid confusion. Furthermore, we use the following notation: For
∅ 	= J = {j0, . . . , js} ⊂ Zr with representatives 0 ≤ j0 < · · · < js < r, js+1 := j0
and a set of functions {fij , (i, j) ∈ Z

2
r}, define the product fJ :=

∏s
v=0 fjv,jv+1−1.

E.g. the set J = Z5 leads to fJ = f0,0f1,1 · · · f4,4 and J = {2, 4, 5} ⊂ Z6 to
fJ = f2,3f4,4f5,1.

Lemma 3. Let f(x0, . . . , xr−1) = x0,...,r−1−c for some consant c ∈ R. There is
a randomized encoding f̂ with randomness and output size both r(r−1)+1. The
randomized components of f̂ have the form fii = xi − ai, and fij = xiai+1,...,j −
ai,...,j, and fadd =

∑
i∈Zr

xiai+1,...,i−1 − aadd for randomness ai, ai+1,...,j for i 	=
j 	= i − 1 and i, j ∈ Zr, and aadd = c +

∑
J⊂Zr,|J|>1(−1)|J|aJ where aJ :=

∏s
v=0 ajv,...,jv+1−1. The reconstruction function has the form Rec(fij , fadd) :−

fadd +
∑

J⊂Zr,|J|>1 fJ .

Proof. We first note that there are exactly r2 − r different factors in products
fJ associated with sets J with |J | > 1, since a factor is defined by its start jt

and end index jt+1, i.e. 2 ordered samples from Zr drawn without replacement.
We show first that

∏
j∈Zr

xj − c = fadd +
∑

J⊂Zr,|J|>1 fJ := Rec(fij , fadd) for
a suitable structured randomness aadd (constant in the xj).9 Note that apart
from

∏
j∈Zr

xj each non-constant summand in the expression on the right is
of the form xjaj+1,...,k−1g for some specific term g and some j, k.10 Each of
these terms (for a fixed g, j and k) occurs exactly once with a positive sign
for a J which contains jl = j, jl+1 = k 	= j + 1 for some l, i.e. as a sum-
mand in fjl,k−1g = (xjl

ajl+1,...,k−1 − ajl,...,k−1)g or fadd if k = j.11 It occurs
8 We use indices in Zr because they wrap around nicely. To be more formal, we will

sometimes use i for the unique representative of i ∈ Zr in {0, . . . , r − 1}.
9 We remark that the sum is exponential in r. We will however usually use r small

enough that this local computation does not affect the overall runtime significantly.
10 Take j := min{i : xiai+1,...,k a factor of the summand for some k �= i + 1}.
11 The other elements of J are uniquely determined by g.

20 P. Reisert et al.

exactly once with a negative sign for a J ′ = J ∪ {j + 1}, i.e. as a summand in
fjl,jl

fjl+1,k−1g = (xjl
− ajl

)(xjl+1ajl+2,...,k−1 − ajl+1,...,k−1)g. Thus these terms
cancel out. It remains only

∏
j∈Zr

xj and constant random terms (in the xj)
which add up to −c for a suitably chosen (structured) randomness aadd. Namely,
aadd = c+

∑
J⊂Zr,|J|>1 fJ(0, . . . , 0) if we consider fJ as a function of the xi. This

shows the correctness of the randomized encoding.
For privacy, we first choose uniformly random (and in particular mutu-

ally independent) ai,...,j ∈ R for i 	= j + 1 and only aadd structured, i.e. a
(deterministic) polynomial in the ai,...,j . Now the simulator samples its first
r(r − 1) components f̃ij (corresponding to the fij) uniformly from R. Since
each fij contains an additive random mask (and all masks are independent),
the fij are also distributed uniformly if the ai,...,j are sampled uniformly
(cf. Definition 1). For the last component f̃add (corresponding to fadd), the
simulator computes f̃add = −Rec(f̃ij , 0) + f(x0, . . . , xm−1). By construction
fadd = −Rec(fij , 0) + f(x0, . . . , xm−1) and f̃add are equally distributed, which
shows privacy. ��
Remark 3. Observe that r of the encodings have constant leading coefficient 1
as a polynomial in x0, . . . , xr−1, i.e. the fii. Moreover, there are r(r − 2) + 1
encodings where the leading coefficient is one random element, i.e. the fij for
i 	= j 	= i − 1 and fadd.

Lemma 4. Let ga(x0, . . . , xr−1) = ax0,...,r−1−c for some a, c ∈ R. Let μ ∈ Zr be
a fixed index and define Tμ := {(i, j) ∈ Z

2
r : j − μ ≤ i − μ − 1} and Sμ = Z

2
r \Tμ.

Let fij , aij ,Rec be as in Lemma 3. Then there is a randomized encoding ĝa,μ of
ga with randomness and output size both r(r−1)+1. The randomized components
of ĝa,μ have the form

(i) ga,μ
ij = fij for (i, j) ∈ Sμ.

(ii) ga,μ
μμ = axμ − ba,μ

μ , ga,μ
μj = axμaμ+1,...,j − ba,μ

μ,...,j for j 	= μ, μ − 1.
(iii) ga,μ

ij = xib
a,μ
i+1,...,j − ba,μ

i,...,j for (i, j) ∈ Tμ \ ({μ} × Zr) and j 	= i − 1.
(iv) ga,μ

add = axμaμ+1,...,μ−1 +
∑

i∈Zr\{μ} xib
a,μ
i+1,...,i−1 − ba,μ

add.

for randomness ba,μ
i,...,j for (i, j) ∈ Tμ and j 	= i − 1, and ba,μ

add = c +
∑

J⊂Zr,|J|>1(−1)|J|ba,μ
J where ba,μ

i,...,j := ai,...,j for (i, j) ∈ Sμ.

Proof. We can simply copy the proof of Lemma 3 for the variables (axμ, xj , j 	=
μ) and coefficients ba,μ

∗ instead of a∗. Please note that again we have to choose
the ba,μ

i,...,j uniformly random from R and only ba,μ
add is structured. ��

Remark 4. First note that we use the additional index μ to determine to which
encoding the prefactor a is assigned. Moreover, observe that r − 1 of the new
terms have as leading coefficient a product of two random elements, i.e. the
axμaμ+1,...,j in ga,μ

μj , ga,μ
add for j 	= μ. The other new encodings all have one random

prefactor: |Tμ| − r encodings from (ii), (iii) as well as r − 1 summands in ga,μ
add .

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 21

Lemma 5. Let ha,b(x0, . . . , xr−1) = abx0,...,r−1 − c for some a, b, c ∈ R. Let
μ, ν ∈ Zr be two fixed indices with μ 	= ν. Let fij, ga,μ

ij , gb,ν
ij , ba,μ

ij , bb,ν
ij , Sμ, Sν ,

Tμ, Tν , Rec be as in Lemmas 3 and 4. Then there is a randomized encoding
ĥa,b of ha,b with randomness and output size both r(r − 1) + 1. The randomized
components of ĥa,b have the form:

(i) hij = fij for (i, j) ∈ Sμ ∩ Sν

(ii) hij = ga,μ
ij for (i, j) ∈ Tμ \ Tν , hij = gb,ν

ij for (i, j) ∈ Tν \ Tμ

(iii) hμj = axμba,μ
μ+1,...,j − cμ,...,j for (μ, j) ∈ Tν , j 	= μ, μ−1; hνj = bxνbb,ν

ν+1,...,j −
cν,...,j for (ν, j) ∈ Tμ, j 	= ν, ν − 1;

(iv) hij = xici+1,...,j − ci,...,j for μ 	= i 	= ν and (i, j) ∈ Tμ ∩ Tν and j 	= i, i − 1
(v) hadd = axμba,μ

μ+1,...,μ−1 + bxνbb,ν
ν+1,...,ν−1 +

∑
i∈Zr\{μ,ν} xici+1,...,i−1 − cadd

for randomness ci,...,j for (i, j) ∈ Tμ ∩ Tν ∧ (j 	= i − 1) and cadd = c +∑
J⊂Zr,|J|>1(−1)|J|cJ where ci,...,j :− ai,...,j for (i, j) ∈ Sμ ∩ Sν , ci,...,j :− ba,μ

i,...,j

for (i, j) ∈ Tμ \ Tν , ci,...,j :− bb,ν
i,...,j for (i, j) ∈ Tν \ Tμ.

Proof. Note that we can in fact consistently set ci,...,j = ai,...,j for (i, j) ∈ Sμ∩Sν ,
since then (i + 1, j) ∈ Sμ ∩ Sν if i 	= j. Set ci,...,j = ba,μ

i,...,j for (i, j) ∈ Tμ \ Tν ,
since then (i + 1, j) ∈ Tμ \ Tν apart from i 	= μ. Analogously ci,...,j = bb,ν

i,...,j for
(i, j) ∈ Tν \Tμ. Furthermore, (i, j) ∈ Tμ ∩Tν ⇒ (i+1, j) ∈ Tμ ∩Tν for μ 	= i 	= ν.
In particular, (i, i − 1) ∈ Tμ ∩ Tν . The claim now follows as in Lemma 3 with
variables (axμ, bxν , xj : μ 	= j 	= ν) and randomness c∗ instead of a∗. ��
Remark 5. Observe that the two indices μ and ν are again used to assign the two
prefactors a and b to the encodings linear in xμ and in xν . Moreover, note that
the number of new terms with two randomized prefactors is r, i.e. the terms hμj

for j − ν ≤ μ − ν − 1 and hνj for j − μ ≤ ν − μ − 1. All other new encodings
and summands thereof have one variable prefactor.

Remark 6. Please also note that in the previous lemmas, we always get one
(unstructured) random number for each new component apart from the additive
component. For the additive component, we get one structured random number.

The previous technical lemmas are combined as in the special case in Sect. 4.1.
Namely, we partition our variables x0, . . . , xm−1 into r1 ≤ m sets, i.e. we choose
a partition {0, . . . , m − 1} −: S0,0 =

⋃̇
i∈Zr1

S1,i and consider monomials xS1,i
=

∏
j∈S1,i

xj . Obviously we have f(x0, . . . , xm−1) = x0 · · · xm−1 =
∏

j∈Zr1
xS1,i

.
Hence we can apply Lemma 3 with r ← r1, xi ← xS1,i

. We receive encodings
(f (1)

ij , f
(1)
add) which are linear in the xS1,i

. Some of these encodings have no ran-

domized leading coefficient (e.g. the f
(1)
ii). For these terms, we can apply Lemma

3 again by partitioning S1,i into smaller sets. For terms with one randomized
leading coefficient like the f

(1)
ij (i 	= j 	= i − 1) we analogously apply Lemma 4.

By repeatedly applying the Lemmas 3 to 5 we then get encodings linear in some
target elementary monomials xS�,i

.

22 P. Reisert et al.

Fig. 3. Tree-like structure of a series of refinements of partitions.

Formally, this approach corresponds to a series of refinements S0,0 =
⋃̇

i∈Zrk
Sk,i of disjoint unions of non-empty sets for 1 = r0 < r1 < · · · < r� ≤ m,

i.e. ∀0 < k ≤ � ∀i ∈ Zrk
∃i0 ∈ Zrk−1 : Sk,i ⊆ Sk−1,i0 . We get a tree structure

visualized in Fig. 3 where Ik,i := {j ∈ Zrk+1 : Sk+1,j ⊆ Sk,i} is the number of
children of Sk,i. To later map the indices of these refinements to the generic
indices in the lemmas, we fix a bijective map ψki : Z|Ik,i| → Ik,i for all 0 ≤ k ≤ �
and 0 ≤ i < rk.

In terms of these general refinements, our construction (so far) defines for
each monomial xSk,i

that occurs in the construction, a randomized encoding
linear in the xSk+1,j

for j ∈ Ik,i. Now in order to combine these single ran-
domized encodings into a randomized encoding of the whole f(x0, . . . , xm−1) =
x0 · · · xm−1 we need to use concatenation and composition as described before.
However, the classical concatenation Lemma 1 assumes independent randomized
encodings to be concatenated. In contrast, our constructions in Lemmas 3 to 5
use the same encodings, e.g. the fij in Lemma 3 and in Lemma 4 (i), for different
components. Fortunately, for the encodings that occur in Lemmas 3 to 5 this
still leads to a secure concatenation, e.g. ((fij)i−1 �=j , fadd, (g

μ,a
ij)(i,j)/∈Sμ

, gμ,a
add) is a

randomized encoding of the concatenation (f, ga) = (x0 · · · xr−1, ax0 · · · xr−1).12

Formally, this property is described by:

Corollary 1. Let f, g be two functions. Let f̂ be a randomized encoding of f with
additive component f̂0 and simulator Simf . Furthermore, let ĝ be a randomized
encoding of g with additive component ĝ0 and simulator Simg. Assume that for
all i, j > 0 (Simf)i and (Simg)j are independent uniformly random numbers. Let
J = {j > 0|∃i > 0 : f̂i = ĝj}. Then ((f̂i)0≤i, (ĝj)j /∈J) is a randomized encoding of
(f̂ , ĝ) with output size k+k′ −|J |. Moreover, if f̂0, ĝ0 map to the same (additive)
group then ((f̂i)0<i, (ĝj)j /∈J∪{0}, f̂0 + ĝ0) is a randomized encoding of f + g with
output size k + k′ − |J | − 1 and additive component f̂0 + ĝ0.

Remark 7. We can repeatedly apply Corollary 1 to find a randomized encoding
of the concatenation of many functions. E.g. if we use the randomized encoding of
our monomial x0 · · · xm−1 we get from Lemma 3 (beyond others) the components
f ′ = (xS1,i

− ai, (xS1,i
ai+1,...,j − ai,...,j)j∈Zr1 :j �=i,i−1). If we now apply Lemma 3

to the first component and Lemma 4 (with some fixed μ ∈ Z|I1,i|) to all other
components, then Corollary 1 (applied (r1 − 2) times) leads to a randomized
12 Using encodings in different reconstructions is in general not secure (at least not for

the straightforward combination of the simulators)—see [42]. Example 3.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 23

encoding of the concatenation f ′ of output size |I1,i|2 −|I1,i|+1+(r1 −2)(|Tμ|−
|I1,i|+1). Please also note that exactly as in the special case, we see that the terms
(i) in Lemma 4 are always already constructed by the corresponding Lemma 3
randomized encoding linear in the same terms; analogously for Lemma 5.

Remark 8. We can also use Corollary 1 to find a randomized encoding for
additive terms like fadd. For example, if we take a randomized encoding of
our monomial x0 · · · xm−1 using Lemma 3 we get the additive component
fadd =

∑
i∈Zr1

xS1,i
ai+1,...,i−1 − aadd. We assume that Lemma 3 has already

been applied to the xS1,i
, e.g. as part of the randomized encoding of fii and

we are only interested, how many new outputs are needed to also construct
fadd. Thus, if we apply Lemma 4 to each summand xS1,i

ai+1,...,i−1 (where we
consider once xS1,0a1,...,−1 − aadd to account for the final constant), then we
only need to construct the terms from (ii),(iii),(iv), since we assumed that (i)
is already accounted for. Overall these are r1(|Tμ| − r1) + 1 (additional) terms,
where r1(|Tμ| − r1) comes from using Lemma 4 (ii), (iii) for each summand and
the +1 comes from the sum of the r1 additive (iv) terms that can be combined
by Corollary 1 into one additive component.

Remark 9. Please also note that the previous Corollary 1 also applies to the ran-
domness used in the additive components. Namely, if aadd is a summand of the
additive component f̂0 and badd is summand of the additive component ĝ0, then
(aadd + badd) is obviously a summand of f̂0 + ĝ0, although slightly more struc-
tured. In particular, even after applying the Corollary, we still have exactly one
structured random number for each additive component and one unstructured
random number for each other component of the overall randomized encoding.

In summary, we generate with our Lemma 3 a randomized encoding f̂ (1)

of f linear in the xS1,j
. We then generate for each component f̂

(1)
j of f̂ (1) a

randomized encoding f̂
(2)
j linear in the xS2,i

using Lemmas 3 to 5 (and in the
case of an additive term also Corollary 1). Corollary 1 allows us to concatenate
the f̂

(2)
j into a randomized encoding f̂ (2) of f̂ (1). Finally the two encodings f̂ (1)

and f̂ (2) can be composed with Lemma 2 to a randomized encoding of f linear
in the xS1,i

. We iterate over the previous steps until we arrive at a randomized
encoding of f linear in the xS�,j

. An algorithmic version of our construction
is included in [42]. Protocol 2, where the output set contains the encodings of
f linear in xS�,j

. Please also consider [42]. Figure 8 which illustrates how the
different encodings are combined under concatenation and composition.

4.4 Recursive Formula for Output Size

We next want to compute the output and randomness for each of our randomized
encodings of xS0,0 , i.e. for each choice of a series of refinements of partitions of
S0,0 or equivalently for each tree structure as in Fig. 3. Since our randomized
encodings were constructed iteratively, we will also develop an iterative formula
first. To this end, let N0

Sk,j
be the number of level � encodings linear in xS�,i

, 0 ≤

24 P. Reisert et al.

i < r�, needed to compute xSk,j
− c for some c ∈ R. Furthermore, let N1

Sk,j
be

the number of additional encodings needed to also construct axSk,j
− c′ for some

a, c′ ∈ R. Finally, let N2
Sk,j

be the number of yet additional encodings needed to
construct abxSk,j

− c′′ for some a, b, c′′ ∈ R. Recall that these are just the cases
(a), (b), (c) discussed in the special case above. From Lemma 3 we then get

N0
Sk,j

=
∑

i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 2)
∑

i∈Ik,j

N1
Sk−1,i

+
∑

i∈Ik,j

(N1
Sk+1,i

− 1) + 1

=
∑

i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 1)
∑

i∈Ik,j

N1
Sk+1,i

− |Ik,j | + 1 (2)

where the first sum corresponds to the f
(k+1)
ii . The factor (|Ik,j | − 2) comes

from choices of j 	= i, i − 1 for each i in the f
(k+1)
ij . The third sum accounts for

the additive term as in Corollary 1 and Remark 8, i.e.
∑

i∈Ik,j
(N1

Sk+1,i
− 1) for

(ii),(iii) in Lemma 4 plus one additional additive term. We further get

N1
Sk,j

=
∑

i∈Ik,j\{μ}
N1

Sk+1,i
|T ′

μ ∩ Mi|+(|Ik,j | − 1)N2
Sk+1,μ

+ N1
Sk+1,μ

−|Ik,j |+1 (3)

where Mι = {ι} × Ik,j and the T ′
μ :− ψkj(Tψ−1

kj (μ)), T
′
ν :− ψkj(Tψ−1

kj (ν)) are

defined as in Lemma 4 using the natural identifications ψkj : Z|Ik,j | → Ik,j .13 We
receive this term again from Lemmas 3 to 5, where the additive term contributes
N2

Sk+1,μ
+

∑
i∈Ik,j\{μ} N1

Sk+1,i
−|Ik,j |+ 1. The intersection |T ′

μ ∩Mi ∩{(i, j) : j 	=
i − 1}| = |T ′

μ ∩ Mi| − 1 together with the sum over i 	= μ accounts for the cases

(iii) in Lemma 4, the single N1
Sk+1,μ

for g
(k+1),a,μ
μμ . We also have the additional

(|Ik,j −2|)N2
Sk+1,μ

for the g
(k+1),a,μ
μj for j 	= μ, μ−1 in (ii) of Lemma 4. Altogether

we get Equation (3). Furthermore, we have

N2
Sk,j

=
∑

i∈Ik,j

N
1+|{i}∩{μ,ν}|
Sk+1,i

|Mi ∩ T ′
μ ∩ T ′

ν | − |Ik,j | + 1 (4)

The additive term is again constructed as before, where the −|Ik,j | + 1 results
from using a sum over all (v) components as in Corollary 1. The summands of
the additive term are combined as before with the cases j 	= i − 1 of (iii) and
(iv) of Lemma 5. Similarly, the h

(k+1)
μμ , h

(k+1)
νν terms complement the exclusions

j 	= μ in the other cases. Using Mμ ∩ T ′
μ = Mμ and Mν ∩ T ′

ν = Mν one can
quickly deduce Eq. (4).

4.5 Application in MPC Protocols and Asymptotic Behavior

From Protocol 1 we already know how to use the new randomized encodings
f̂ = (yl)0≤l<k of f(x0, . . . , xm−1) = xS0,0 in an MPC protocol. Following the

13 While N1
S1,i

and N2
Sk,j

below depend on μ and ν, these indices can be chosen freely,
i.e. we can choose to which components we want to assign the prefactors. For this
reason, we decided to not mark the two numbers with another μ or ν index.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 25

discussion above, we know that the yl consist of terms linear in xSk,�
for j ∈ Zr�

and are of the form f
(l)
∗ , g

(l),∗
∗ , h

(l)
∗ . Hence if we set Nγ

S�,j
= 1 for all γ = 0, 1, 2

(one for each yl) Eqs. (2) to (4) allows us to compute the output size k. In our
MPC Protocol 1 we have to send the resulting k = N0

S0,0
encodings plus the

initial |S0,0| = m masked values xj − aj , i.e. we get bandwidth N0
S0,0

+ m.
We have seen in Sects. 4.2 and 4.3 that the yl are multivariate polynomials

in the input variables x0, . . . , xm−1. They do not necessarily satisfy (I)–(III) in
Sect. 4.1 yet. However, recall that we can rewrite multivariate polynomials like
yl in terms of the masked values xj −aj as in (1) and then (I)–(III) are satisfied.
The coefficients be of this expansion in the xj − aj are binomial tuples, which
are polynomials in the aj and the randomized prefactors of yl. In addition to the
(structured) randomness in these binomial tuples, our construction also needs
the randomness from the aij , bij , cij , aadd, badd, cadd that result from Lemmas 3
to 5 and Corollary 1.14 Hence we can define a polytuple as follows:

Definition 2. Let f be a multivariate polynomial in x0, . . . , xm−1 and
f̂(x0, . . . , xm−1, ã0, . . . , ãt′) = (yl)0≤l<k a randomized encoding of f constructed
with our iterative approach, i.e. the ãj are the ai,...,j , bi,...,j , ci,...,j , aadd, badd, cadd
which result from Lemmas 3 to 5 and Corollary 1. Then a polytuple �â� to f̂
consists of a shared structured random number �ãj� for each ãj , 0 ≤ j ≤ t′, and
one binomial tuple for each yl, 0 ≤ l < k.

Remark 10. Recall from Sect. 3.4 that a term xS − aS can be computed with a
2|S| − 1 binomial tuple for any finite set S; a term axS − bS , as well as a term
abxS + cS for randomness a, b, bS , cS ∈ R, each need a binomial tuple of size 2|S|

compensating for the additional prefactor(s), i.e. in the notation of Sect. 3.4 a
tuple (abe)e∈E or (abbe)e∈E .

Since we know from Lemmas 3 to 5 and the subsequent remarks that for each
encoding we get exactly one new (possibly structured) random variable, we can
also use the iterative formulas in Eqs. (2) to (4) to compute the polytuple size.
Namely, if we replace Nγ

Sk,j
, γ = 0, 1, 2, in Eqs. (2) to (4) by the corresponding

tuple sizes T γ
Sk,j

and set T 0
S�,j

+ 1 = T 1
S�,j

= T 2
S�,j

= 2|S�,j |, then T γ
S0,0

will be the
tuple size needed to compute xS0,0 = x0 · · · xm−1.

Please note that the size of a polytuple, as well as the output size of the
randomized encoding strongly depend on the chosen tree structure (cf. Fig. 3),
i.e. partitions. To better understand how the tree structure affects the asymptotic
behavior of the bandwidth and tuple size, we consider trees with a fixed number
b = |Ik,j | ≥ 1 of factors multiplied in each node. Hence we can compute x0,...,m−1

for m = λbn iteratively with Sn−k,j = {λbk · j + i : 0 ≤ i < λbk}, 0 ≤ j <
bn−k, 0 ≤ k ≤ n, i.e. each degree bk term splits into b encodings of degree bk−1

until we reach a level of elementary randomized encodings of degree λ ≥ 1. For
an explicit calculation in the special case b = 2, n = 3, λ = 2 we refer to [42].

14 Recall from Sect. 3 that we also include terms deterministic in random variables in
our randomness space.

26 P. Reisert et al.

Example 5. Now we can state the main result on the asymptotic behavior, which
we prove in [42]. Appendix A.

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared

inputs can be constructed with a polytuple of size O
(
2λ

(
b2+1
2

)n)
with bandwidth

O
((

b2+1
2

)n)
. In the special case b = 2, one only needs a tuple of size 2n−2((2λ−

1)n2 + (2λ+2 − 2λ + 1)n + 4(2λ − 2)) + 1. For b = 2, the bandwidth becomes
2nn + 1 + m.

Remark 11. If we fix λ small, e.g. λ ≤ 3, the case b = 2 leads to a bandwidth
in O(m log(m)) and a tuple size in O(m log(m)2) while in all cases b > 2 both
values are not even in O(m2) (cf. Proof Theorem 1 and [42]. Lemma 6 in [42].
Appendix A). Furthermore, we remark that for a mixed number of factors going
into a node the complexity will be dominated by the largest degree that occurs
in a significant fraction of encodings. Finally, note that the complexity analysis
also covers the case of a binomial tuple for b = 1.

Polynomials in Several Variables. Up to this point, we mainly discussed
the computation of products x0 · · · xm−1. However, the previous results directly
transfer to general monomials xd = xd0

0 · · · xdm−1
m−1 ,d = (d0, . . . , dm−1) simply

by replacing the variables xi in the randomized encoding by xdi
i . A component

of the randomized encoding will then be linear in
∏

s∈S�,j
xds

s and can still be
constructed using a binomial tuple. From Sect. 3.4 we know that T 0

S�,j
= T 1

S�,j
−

1 = T 2
S�,j

−1 =
∏

s∈S�,j
(ds+1)−1. For the special case where |S�,j | = 1, e.g. S�,j =

{j}, we have T 0
{j} = dj+1, i.e. �x

dj

j −a′
j,dj

� = −�a′
j,dj

�+
∑dj

i=0�a
i
j�(xj−aj)dj−i for

a new mask a′
j,dj

. Then the tuple size needed to compute xd0
0 · · · xdm

m−1 follows
recursively from Eqs. (2) to (4). If dj = d/m ∈ N the tuple size to compute
xd0
0 · · · xdm−1

m−1 for m = 2n becomes 2n−2((d
m)n2 + (3 d

m + 4)n + 4 d
m − 4) + 1. For

details we refer to the proof of Theorem 1 in [42]. Appendix A which contains
the formulas (and proof thereof) whenever T 1

S�,j
= T 2

S�,j
. The result shows that

in the total degree d =
∑m−1

j=0 dj we can get down to complexity O(d log(m)2) in
the tuple size. The same bound on the complexity also holds for all other cases
with d =

∑m−1
j=0 dj since we can choose μ, ν in Eqs. (3) and (4) always such that

the encodings with randomized coefficients are linear in those xS�,j
for which

T 1
S�,j

= T 2
S�,j

is minimal, i.e. from the cases with dj ≤ d/m. Please recall that

xd0
0 · · · xdm−1

m−1 was already discussed in the introduction in Table 1.
Finally, we can combine the randomized encodings (and corresponding poly-

tuples) for different monomials in a general polynomial f with Corollary 1.
Namely, if we have two randomized encodings f, g (as constructed before), we
need to generate common components only once and we can add the compo-
nents corresponding to f̂0 and ĝ0 in Corollary 1. Observe that all our encodings
have the specific form expected by Corollary 1, i.e. have an additive component.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 27

Overall we find for any multivariate polynomial f a randomized encoding and a
corresponding polytuple.

4.6 Composability and Security

From Sect. 4.2 we know how to evaluate a polynomial f(x0, . . . , xm−1) in a sin-
gle round using polytuples. With our MPC protocol Πpolynomial presented in
Sect. 4.1 (cf. also [42]. Protocol 5), we are able to do this in three different ways:
(i) compute f(x0, . . . , xm−1) publicly (i.e. the result is an output of the func-
tion to be evaluated with MPC), (ii) compute �f(x0, . . . , xm−1)� (this can be
used in other subprotocols that require their inputs as shares), and (iii) com-
pute f(x0, . . . , xm−1) − b where b is part of the tuple for another polynomial
g; this allows our protocol to be used in a multi-round fashion. While (i) and
(ii) are straightforward applications of the results from the previous subsections,
we want to take a closer look at the multi-round use, which allows a different
form of tradeoff. Namely, we allow a (slightly) larger number of communication
rounds but can therefore further reduce the tuple size and bandwidth.

Multi-round Evaluation. Assume the parties have agreed on a series of poly-
nomials fj , 0 ≤ j < m with input tuples Xj (not-necessarily disjoint) and a poly-
nomial f in m variables. They want to compute f(f0(X0), . . . , fm−1(Xm−1)).
Thus, they agree on one of our randomized encodings for each fj and f . The
parties construct the corresponding polytuples �Aj�, 0 ≤ j < m (for each fj)
and �A� (for f) in the preprocessing phase and receive inputs �Xj� in the
input phase. They run Πpolynomial(Xj , fj , continuation := (f, j)) in parallel to
receive (xι − aι), 0 ≤ ι < |Xj |, 0 ≤ j < m in a single broadcast round. Then
the parties locally compute the shares of the elementary encodings and adjust
an additive component by �aj� such that after the next broadcast every party
can locally compute the public values zj := fj(Xj) − aj . Finally, they call
Πpolynomial((z1, . . . , zm), f, continuation := open). Observe that in this call, the
first step of Πpolynomial does not require any opening of elements as all zj are
already public masked values.

Remark 12. Our protocol is also compatible with techniques used in Tur-
bospeedz [7] and ABY2.0 [41] that use function-dependent preprocessing. This
allows to reduce the online bandwidth even more. As an extreme case, one would
only have to open the randomized encoding without the xj − aj which are then
already accounted for. Using only Beaver multiplication (or binomial tuples),
this would exactly correspond to the complexity of ABY2.0 or Turbospeedz.

In Sects. 4.2 to 4.5 we have seen that by suitably choosing the randomized
encodings and corresponding polytuples, we can trade-off bandwidth and tuple
size while keeping the round complexity minimal. The multi-round feature adds
additional flexibility to our online phase. In particular, it allows us to increase the
round complexity slightly to prevent possible performance bottlenecks in band-
width and tuple size. Figure 1 illustrates this tradeoff between round complexity,

28 P. Reisert et al.

bandwidth, and tuple size. Please also see [42]. Example 1 in [42]. Appendix A
for an explicit example. We remark that once the polynomial to be evaluated and
the network setup are known, a compiler can use the exact calculations of tuple
size and bandwidth from Equation (2) to determine the best performing polytu-
ple solution before the actual computation starts. Furthermore, ideal solutions
for classical and regularly used setups can be hard-coded.

Security. Our protocol Πpolynomial and the resulting full online protocol15

Πonline (cf. [42]. Protocol 5) are secure and composable in the sense of universal
composability (UC) [12], i.e. they can be combined with other MPC protocols,
while still giving the same guarantees as an idealized protocol (a so-called func-
tionality). For the corresponding ideal functionalities see [42]. Appendix B.

Let �X� be a tuple of authenticated inputs to a polynomial f and �A�
the respective tuple. Intuitively, the security of our approach can be argued
as follows: All opened values apart from one additive component of the random-
ized encoding are masked with a new random element from �A�, i.e. they are
encrypted with a one-time pad and hence are information-theoretically secure.
The final additive encoding contains the result minus a public constant (con-
structed from the other (pseudo)random components of the randomized encod-
ing). In particular, it contains no more information than the result itself.

All values that are opened are authenticated and thus their integrity can be
checked with the usual aggregated MAC check (cf. [42]. Protocol 7; recall that
we now consider R to be a finite field). In particular, our MAC check ΠCheckMAC

is chosen identical to the classical MAC-check in [21]. Formally, we then have
the following security result for the online protocol Πonline in [42]. Protocol 5:

Theorem 2. The protocol Πonline realizes Fonline in the (F�·�,Frandom,
Fcommit)-hybrid model with statistical security against any active adversary cor-
rupting up to n − 1 parties.

Proof. The proof of this theorem is mostly the same as the security proofs
for the corresponding online protocols in [21,22]. Both construct a suitable
simulator, e.g. [21, Fig. 22]. The only difference for a simulator in our proto-
col is in polynomial operations that are opened (i.e. calls to Πpolynomial with
continuation = open). Recall that the simulator works on random inputs (instead
of the real inputs for honest (input) parties) and simulates the protocol run with
these inputs. It will then receive an output z of the simulation that is most likely
wrong. However, the ideal functionality Fonline provides the simulator with the
real output y. The simulator adjusts the share of the additive encoding16 y0 of
one (simulated) honest party Pi by Δ = y − z, i.e. [y0]i → [y0]i + Δ. Since the
simulator also knows the MAC key α, it can change [αy0]i → [αy0]i + αΔ. Thus
the MAC check for the result will pass (if corrupted parties did not misbehave)
and the result will be the same in the real and ideal world. ��
15 Recall that apart from the Πpolynomial subprotocol, our online protocol Πonline coin-

cides with the online protocols from other SPDZ-like protocols like [21,31].
16 Recall that our construction always comes with an additive encoding.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 29

4.7 The Generation of Polytuples

In the previous paragraphs, we have seen how to build an actively secure MPC
online [42]. Protocol 5 which consumes polytuples. Of course, the polytuples
have to be generated first in an offline phase, which can run well before the
actual input data (the xj) becomes available. Since polytuples are entry-wise just
multivariate polynomials in random numbers, the parties can invoke any MPC
protocol that can provide (authenticated) shares of such terms. For example, for
an actively secure offline phase we can plug in any of the protocols [22,30,31,44]
to first generate a sufficient number of Beaver triples. The parties can then
use these Beaver triples to multiply shared random numbers, e.g. they run the
standard online protocol within the offline phase on the random numbers (instead
of actual inputs). Hence they can construct each entry of the polytuple.

The number of Beaver triples needed for this approach can again be com-
puted by an iterative formula. The result are the Eqs. (2) to (4) each shifted
+|Ik,j |. Recall from Corollary 1 that we did combine all additive terms into one
constant and hence reduced the output and tuple size by −|Ik,j |. At the same
time, the new additive term became more complex, namely a sum of the original
monomials in the separate additive components. Even after combining the addi-
tive terms, we still need to build each of these monomials with Beaver triples.
Thus the reduction of output and tuple size does not carry over to this generic
offline approach and we have to add |Ik,j | in the iterative formulas.

Exactly as in the proof of Theorem 1 we can then deduce that the number of
Beaver triples needed (in the case b = 2 of binary trees) is still in O(m log(d)2)
but with slightly larger constant. For example, in the case b = 2 we then need
2n−2((d

m + 1)n2 + (3 d
m − 1)n + 4 d

m) − 1 Beaver triples if we use di − 1 Beaver
triples to compute

[
ad1

]
from [a]—of course, this is a rough estimate given that

we often can compute the power with around log(d1) Beaver triples (cf. also [42].
Remark 14 in [42]. Appendix A).

To simply plugin established offline protocols comes with certain advantages,
e.g. that implementations already exist and that we can profit from their future
optimizations. However, this approach is not optimized for the use with polytu-
ples. In [42]. Appendices C and D we therefore present different new solutions
for an actively secure tuple generation (e.g. an extended sacrificing [42]. Protocol
10).

Finally, please recall that our approach is not restricted to the case of binary
trees or 1(+1) round protocols. In particular, if the generation of O(m log(d)2)
Beaver triples is too slow, the parties can use a different number of rounds and
different randomized encodings to get an ideal performance for their use case.

5 Implementation and Evaluation

To illustrate the practicality of our approach, we implemented the online phase
in the MP-SPDZ framework [29] and ran several benchmarks. Furthermore, we
implemented the plugin offline phase from Sect. 4.7 which uses Beaver triples
to generate the polytuples. Our implementations are available at [43]. These

30 P. Reisert et al.

first benchmarks show that we can outperform the standard Beaver triple-based
approach in the online phase for all tested applications. Our benchmarks include
(i) evaluation of multivariate polynomials, (ii) establishing a ranking of inputs
(e.g. for auctions or e-voting), and (iii) evaluating neural networks. We ran the
experiments on a single machine (laptop with an i7-8565U CPU, 1.80 GHz) where
each party runs on a single core/thread. We simulated different network settings
for n = 2 parties with standard Linux tools (see [42]. Appendix G for details). All
tested latency settings are rather conservative and roughly correspond to parties
located in the same country or continent. The tested latencies are significantly
lower than the 40 ms assumed in the WAN setting (e.g. in [40]). The trends
in all benchmarks show that our approach will perform even better in such a
setting.

2 4 6 8 10 12 14 16 18 20
1

5

10

m

O
ve
rh
ea
d

2 4 6 8 10 12 14 16 18 20
1

5

10

m

O
ve
rh
ea
d

Fig. 4. The left diagram shows the bandwidth overhead of the polytuple plugin offline
phase compared to classical SPDZ-like protocols for the computation of x0 · · · xm−1.
The right diagram shows the corresponding runtime overhead. For the blue line we
used the LowGear offline protocol [31], for the red dotted line the MASCOT protocol
[30].

With our implementation, we added elementary operations for powers and
products to MP-SPDZ. We use polytuples of minimal tuple size as in Theorem
1 for b = 2. Furthermore, we implemented the case b = m, i.e. the case where
polytuples become binomial tuples. For both variants, we also implemented a
prefix variant (along [42]. Appendix E) used for comparison in our benchmarks
below. Moreover, our implementation supports MP-SPDZ’s parallelism model:
arbitrarily many operations of the same type can be combined and executed
in one step (reducing the number of communication rounds).

Next, we describe our test applications and discuss the results of our bench-
marks. We always compare our implementation for b = 2 against the state-of-
the-art implementation from MP-SPDZ. We do not compare to the binomial
tuples case since first benchmarks showed that the local computation times for
the tuple production are beyond practical (as expected by the large tuple size).

Polynomial Evaluation. As an example of a polynomial evaluation, we chose
the power series expansion of a multivariate Gauss functions exp(−〈x, x〉/2)
up to degree d in each variable. This polynomial is then simply evaluated by
computing all needed (prefix) powers of all variables and multiplying them with
our polytuples. We compare this to the same computation with standard (Beaver

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 31

5 7.5 10 12.5 15 17.5 20
30
35
40
45
50
55
60

degree

ti
m

e
/
m

s

5 7.5 10 12.5 15 17.5 20

80

100

120

140

degree

ti
m

e
/
m

s

5 7.5 10 12.5 15 17.5 20
120

155

190

225

260

degree

ti
m

e
/
m

s

Fig. 5. Benchmarks for Gaussian with 32 variables with 2 ms (left), 5 ms (middle),
10ms (right) delay; (blue: default MP-SPDZ implementation, orange/dashed: ours).
(Color figure online)

triple-based) tools included in MP-SPDZ. Figure 5 and [42]. Figure 9 show the
results for this benchmark. Our approach has a clear advantage in runtime—even
for very small network delays of only 2 ms. Note that also the bandwidth is lower
with our approach. For the Beaver-based implementation, we can clearly see the
effect of a logarithmic number of rounds on the runtime, while our approach has
an almost constant runtime (in the degree of the polynomial).

Rankings. For auctions (or e-voting), one often needs to compute a ranking of
the bids (or votes) and reveal the top k results (e.g. with k = 1 only the highest
bid or the candidate with the most votes). There are several established meth-
ods to compute these rankings. For our evaluation, we chose two approaches,
one purely based on inequality tests and one which uses equality and inequality
tests. In order to use our new protocols to speed up the comparison we use bit-
wise comparisons as in [20] which allow us to employ polytuples. For details, we
refer to [42]. Appendices E and F. We benchmarked both approaches with our
polytuples-based protocol and compare them to the respective default imple-
mentation in MP-SPDZ (based on the protocols with logarithmic complexity in
[13]; with and without edabits [23] to speed up the comparison). We compute
rankings of m = 40 items (bids or candidates). The benchmark results in Fig. 6
show that our new approach is faster than the others.

0 2.5 5 7.5 10 12.5 15 17.5 20
0

1

2

3

4

5

6

delay/ms

ti
m
e
/
s

(a) Using pairwise inequality tests.

0 2.5 5 7.5 10 12.5 15 17.5 20
0

10

20

30

40

50

delay/ms

ti
m
e
/
s

(b) Using inequality and equality tests.

Fig. 6. Benchmarks for rankings (blue: default MP-SPDZ implementation,
orange/dashed: ours, green/dotted: MP-SPDZ with edabits [23] (Color figure online)).

32 P. Reisert et al.

(a) ArgMax Layer, unlimited rate. (b) Network A [39].

Fig. 7. Benchmarks for an ArgMax layer and the evaluation of a sample neural network
included in MP-SPDZ [29] as network A (cf. [45]; blue: default MP-SPDZ, orange: ours)
both without bandwidth restriction. For further benchmarks see [42]. Figure 10.

Remark 13. SPDZ is a protocol originally designed for an arithmetic circuit
evaluation and not for comparisons. In particular, there other MPC approaches
better suited for some types of comparisons. However, our goal is to extend
SPDZ and hence in particular to avoid expensive conversations to some other
scheme. We therefore decided to compare our evaluation for comparisons also to
SPDZ, although there are other competitive MPC protocols.

Neural Networks. Among others, MP-SPDZ [29] contains examples of deep
neural networks. For our benchmarks, we ran the networks labeled A [39], B [37],
C [34], and D [45] (as in [32,47]). Each of these networks has a final ArgMax layer
(see [42]. Appendix F for the specific layers). Replacing only this single layer with
a polytuple-based comparison (see [42]. Appendix F for details) can already have
a noticeable impact on the overall runtime of the network, as can be seen in Fig. 7.
We also remark that a bandwidth rate restriction does not affect the performance
and hence the theoretical bandwidth overhead of the polytuples approach is neg-
ligible in our example (see e.g. [42]. Figure 10 in [42]. Appendix G).

Tuple Generation. Finally, we also benchmarked the offline phase for the
plugin approach described in Sect. 4.7. Our first results in Fig. 4 confirm our
theoretical results of Sect. 4, i.e. we get a log-linear overhead over SPDZ inde-
pendent of the employed offline protocol (Overdrive LowGear [31] and MASCOT
[30]). As our focus is on applications where the offline phase is not time-critical,
we leave further benchmarking of the offline phase and possibly improving the
polytuple generation (e.g. as in [42]. Appendix C) to future work.

Overall, our evaluation shows that our approach has a clear performance
advantage over SPDZ in the online phase for classical sample applications like
the evaluation of multivariate polynomials or comparisons.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 33

Acknowledgments. This research was supported by the CRYPTECS project
founded by the German Federal Ministry of Education and Research under Grant
Agreement No. 16KIS1441 and by the French National Research Agency under Grant
Agreement No. ANR-20-CYAL-0006 and by Advantest as part of the Graduate
School “Intelligent Methods for Test and Reliability” (GS-IMTR) at the University
of Stuttgart. Additionally, this research was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Fundation) - 411720488. Furthermore, Toomas
Krips was partly supported by the Estonian Research Council, ETAG, through grant
PRG 946. We furthermore thank Simon Egger for his help and valuable remarks.

References

1. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two
rounds. In: Theory of Cryptography. pp. 152–174. Springer (2018)

2. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-
complexity of malicious mpc. In: EUROCRYPT 2019. pp. 504–531. Springer (2019)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC◦. SIAM Journal
on Computing 36(4), 845–888 (2006)

4. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC 1989. pp. 201–209. ACM (1989)

5. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in Overdrive: A more efficient
ZKPoK for SPDZ. In: SAC 2019. pp. 274–302. Springer (2020)

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO ’91. pp. 420–432. Springer (1992)

7. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double Your Online SPDZ!
Improving SPDZ Using Function Dependent Preprocessing. In: ACNS 2019. pp.
530–549. Springer (2019)

8. Bitan, D., Dolev, S.: Optimal-Round Preprocessing-MPC via Polynomial Repre-
sentation and Distributed Random Matrix (extended abstract). IACR Cryptol.
ePrint Arch. 2019, 1024 (2019)

9. Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-
precision privacy-preserving real-valued function evaluation. In: FC 2018. pp. 183–
202. Springer (2018)

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient Pseu-
dorandom Correlation Generators: Silent OT Extension and More. In: CRYPTO
2019. pp. 489–518. Springer (2019)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic
Encryption Without Bootstrapping. In: ITCS 2012. pp. 309–325. ACM (2012)

12. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

13. Catrina, O., de Hoogh, S.: Improved Primitives for Secure Multiparty Integer Com-
putation. In: SCN 2010. pp. 182–199. Springer (2010)

14. Chen, H., Kim, M., Razenshteyn, I.P., Rotaru, D., Song, Y., Wagh, S.: Maliciously
Secure Matrix Multiplication with Applications to Private Deep Learning. In: ASI-
ACRYPT 2020. pp. 31–59. Springer (2020)

15. Cho, H., Wu, D., Berger, B.: Secure genome-wide association analysis using multi-
party computation, supplementary notes 3. Nat. Biotechnol. 36(6), 547–551 (2018)

16. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: EUROCRYPT. pp. 473–503. Springer
(2019)

34 P. Reisert et al.

17. Cramer, R., Damg̊ard, I.: Secure Distributed Linear Algebra in a Constant Number
of Rounds. In: CRYPTO 2001. pp. 119–136. Springer (2001)

18. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003.
pp. 596–613. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

19. Dahl, M.: Cryptography and machine learning (2017),
Blog on the SPDZ protocol - part 2

20. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure
Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and
Exponentiation. In: TCC 2006. pp. 285–304. Springer (2006)

21. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In:
ESORICS 2013. pp. 1–18. Springer (2013)

22. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO. pp. 643–662. Springer (2012)

23. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved Primitives
for MPC over Mixed Arithmetic-Binary Circuits. In: CRYPTO 2020. pp. 823–852.
Springer (2020)

24. Ghodosi, H., Pieprzyk, J., Steinfeld, R.: Multi-party computation with conversion
of secret sharing. Des. Codes Cryptogr. 62(3), 259–272 (2012)

25. Hasler, S., Reisert, P., Rivinius, M., Küsters, R.: Multipars: Reduced-
Communication MPC over Z2k. Proceedings on Privacy Enhancing Technologies
(2), 5–28 (2024)

26. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS. pp. 294–304 (2000)

27. Ishai, Y.: Randomization techniques for secure computation. In: Secure Multi-
Party Computation (2013)

28. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the Power of Correlated Randomness in Secure Computation. In: TCC 2013. pp.
600–620. Springer (2013)

29. Keller, M.: MP-SPDZ: A Versatile Framework for Multi-Party Computation. In:
CCS ’20. pp. 1575–1590. ACM (2020)

30. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: CCS 2016. pp. 830–842. ACM (2016)

31. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
EUROCRYPT 2018. pp. 158–189. Springer (2018)

32. Keller, M., Sun, K.: Secure Quantized Training for Deep Learning. CoRR
abs/2107.00501 (2021)

33. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: ASIACRYPT 2005. pp. 136–155. Springer (2005)

34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

35. Lin, H., Liu, T.: Two-Round MPC Without Round Collapsing Revisited – Towards
Efficient Malicious Protocols. In: CRYPTO. pp. 353–382. Springer (2022)

36. Lin, H., Liu, T., Wee, H.: Information-theoretic 2-round MPC without round col-
lapsing: adaptive security, and more. In: TCC 2020. pp. 502–531. Springer (2020)

37. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious Neural Network Predictions via
MiniONN Transformations. In: CCS 2017. pp. 619–631. ACM (2017)

38. Lu, D., Yu, A., Kate, A., Maji, H.K.: Polymath: Low-Latency MPC via Secure
Polynomial Evaluations and Its Applications. PETS 2022 (1), 396–416 (2022)

https://mortendahl.github.io/2017/09/10/the-spdz-protocol-part2

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 35

39. Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving
Machine Learning. In: SP 2017. pp. 19–38. IEEE Computer Society (2017)

40. Ohata, S., Nuida, K.: Communication-Efficient (Client-Aided) Secure Two-Party
Protocols and Its Application. In: FC 2020. pp. 369–385. Springer (2020)

41. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved Mixed-
Protocol Secure Two-Party Computation. In: USENIX Security 2021. pp. 2165–
2182. USENIX Association (2021)

42. Reisert, P., Rivinius, M., Krips, T., Hasler, S., Küsters, R.: Actively Secure Polyno-
mial Evaluation from Shared Polynomial Encodings (Full Version). Crypt. ePrint
2024/1435 (2024)

43. Reisert, P., Rivinius, M., Krips, T., Hasler, S., Küsters, R.: Implementation to
Actively Secure Polynomial Evaluation from Shared Polynomial Encodings (2024),
Website of the Insitute of Information Security Stuttgart

44. Reisert, P., Rivinius, M., Krips, T., Küsters, R.: Overdrive LowGear 2.0: Reduced-
Bandwidth MPC without Sacrifice. In: ACM ASIA CCS 2023 (2023)

45. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A Hybrid Secure Computation Framework for Machine Learn-
ing Applications. In: AsiaCCS 2018. pp. 707–721. ACM (2018)

46. Rivinius, M., Reisert, P., Hasler, S., Küsters, R.: Convolutions in Overdrive: Mali-
ciously Secure Convolutions for MPC. In: PETS 2023 (2023)

47. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-Party Secure Computation for
Neural Network Training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)

https://publ.sec.uni-stuttgart.de/asiacrypt2024-1-implementation.zip

Efficient Fuzzy Private Set Intersection
from Fuzzy Mapping

Ying Gao1,2(B) , Lin Qi1 , Xiang Liu1 , Yuanchao Luo1 ,
and Longxin Wang1

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{19373287,lx1234,19373507,wlx_buaa,gaoying}@buaa.edu.cn

2 Zhongguancun Laboratory, Beijing, China

Abstract. Private set intersection (PSI) allows Sender holding a set X
and Receiver holding a set Y to compute only the intersection X ∩Y for
Receiver. We focus on a variant of PSI, called fuzzy PSI (FPSI), where
Receiver only gets points in X that are at a distance not greater than a
threshold from some points in Y .

Most current FPSI approaches first pick out pairs of points that
are potentially close and then determine whether the distance of each
selected pair is indeed small enough to yield FPSI result. Their complex-
ity bottlenecks stem from the excessive number of point pairs selected
by the first picking process. Regarding this process, we consider a more
general notion, called fuzzy mapping (Fmap), which can map each point
of two parties to a set of identifiers, with closely located points having a
same identifier, which forms the selected point pairs.

We initiate the formal study on Fmap and show novel Fmap instances
for Hamming and L∞ distances to reduce the number of selected pairs.
We demonstrate the powerful capability of Fmap with some superior
properties in constructing FPSI variants and provide a generic construc-
tion from Fmap to FPSI.

Our new Fmap instances lead to the fastest semi-honest secure FPSI
protocols in high-dimensional space to date, for both Hamming and gen-
eral Lp∈[1,∞] distances. For Hamming distance, our protocol is the first
one that achieves strict linear complexity with input sizes. For Lp∈[1,∞]

distance, our protocol is the first one that achieves linear complexity with
input sizes, dimension, and threshold.

Keywords: Fuzzy private set intersection · Fuzzy mapping ·
Multi-query fuzzy reverse private membership test

1 Introduction

Private set intersection (PSI) enables two parties, each with a private set, to
compute the intersection of their sets without revealing any information more
than the intersection itself. Since its high practical value in threat detection,
private contact discovery, sample alignment, and other scenarios, numerous PSI
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 36–68, 2025.
https://doi.org/10.1007/978-981-96-0938-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_2&domain=pdf
http://orcid.org/0000-0001-8992-651X
http://orcid.org/0009-0003-0489-9412
http://orcid.org/0009-0000-8128-7872
http://orcid.org/0009-0001-6541-690X
http://orcid.org/0009-0007-2277-7039
https://doi.org/10.1007/978-981-96-0938-3_2

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 37

protocols [17,21,22] have been designed in last decades. And recent PSI protocols
have achieved extremely high efficiency [21]. Facing various complex practical
needs, there is also a growing interest in works on variants of PSI, including
labeled PSI (LPSI) [3,5,9], which outputs labels associated with elements in
intersection to Receiver; PSI cardinality (PSI-card) [10,16,25], which only reveals
intersection cardinality to Receiver.

This work focus on a variant of PSI, fuzzy PSI (FPSI). The input of FPSI
consists of m points from Sender in a d-dimensional space and n points from
Receiver in the same space. And FPSI’s output only informs Receiver those
Sender’s points that have the distance (e.g., Hamming distance, L2 distance,
etc.) with some Receiver’s points not greater than the threshold δ, while nothing
is revealed to Sender. FPSI has many potential applications in fields that involve
fuzzy matching on datasets, such as privacy-preserving biometric search [23], ille-
gal content detection [1], and vulnerable password detection [4]. For instance,
the deployment of biometric systems in public places for searching for sensitive
groups (such as fugitives) yields significant benefits to public safety. However,
public concerns over privacy protection make it impractical to upload locally rec-
ognized biometric features to a cloud database for matching. Using PSI can solve
the privacy issue, but since biometric features always contain some noises (e.g.,
due to environmental disturbance, algorithms’ randomness, etc.), conventional
PSI cannot fulfill feature matching. In such cases, FPSI becomes indispensable.

Since the concept of fuzzy matching was introduced in PSI by Freedman,
Nissim, and Pinkas [11] in 2004, there has been a long list of works related
to FPSI [1,4,7,8,13–15,23,26]. The majority of them concern with FPSI for
Hamming distance, and the few exceptions [13–15] only consider about one or two
of L1, L2, and L∞ distances. Until 2024, Baarsen and Pu [1] make a breakthrough
by presenting the first FPSI protocol supporting general Lp distance with p ∈
[1,∞]. As the state-of-the-art FPSI for Lp∈[1,∞] distance, the communication
and computation costs of their protocols for high dimension scale linearly or
quadratically with the dimension d. They also conduct research on some variants
of FPSI, including labeled FPSI (LFPSI), fuzzy PSI-card (FPSI-card), and FPSI
with sender privacy (FPSI-SP). Regrettably, due to the super-linear factor in
complexities, their protocols still have room for improvement.

1.1 Motivation

Current FPSI protocols might have expensive overheads for their super-linear
factors in complexities.

First, all existing FPSI protocols for Hamming distance retain super-linear
factors with input sizes in their complexities. Starting from [11], most FPSI
protocols for Hamming distance employ the same idea: perform fuzzy matching
over all m·n pairs of inputs in order to select the final result. Existing works often
focus on improving fuzzy matching protocol for Hamming distance, and rarely
deal with m · n factor introduced by this idea. The current best FPSI protocol
for Hamming distance reducing this quadratic factor at the cost of introducing

38 Y. Gao et al.

assumption on inputs from both parties, only achieves near-linear complexity
[8].

Second, the efficiency of existing FPSI protocols for Lp∈[1,∞] distance is also
not satisfactory. Using oblivious key-value store (OKVS) and decisional Diffie-
Hellman (DDH) tuple, Baarsen and Pu [1] provide FPSI protocols with pre-
vious optimal complexities. However, most of their protocols are still troubled
by super-linear complexity with dimension. Although their protocol based on
locality-sensitive hashing (LSH) has communication and computation costs scal-
ing linearly with dimension, its costs scale super-linearly with Receiver’s input
size. Unfortunately, the prevalence of real databases with substantial dimension
and size (such as facial feature databases) makes the previously mentioned flaws
greatly hindering the applications of their protocols.

So, there exist two fascinating open questions:

– Can we construct an FPSI protocol for Hamming distance with communica-
tion and computation complexities that are strictly linear with m and n1?

– Can we construct an FPSI protocol for Lp∈[1,∞] distance of which costs scale
linearly with anyone of m, n, d, and δ?

1.2 Our Contribution

We provide affirmative answers to these two questions in the semi-honest setting.
Our main contributions are summarized as below.

– A New Cryptographic Primitive Called Fuzzy Mapping. We intro-
duce the abstraction of a new cryptographic primitive called fuzzy mapping
(Fmap). We show that many FPSI protocols [1,4,7,11,13,15,23,26] actually
are based on instances of Fmap, and complexity bottlenecks in these proto-
cols are derived from the excessive expansion rates of their Fmap instances.
Under some reasonable assumptions about inputs, we present a non-trivial
Fmap instance for Hamming distance and an Fmap instance for L∞ distance
with expansion rate of 1.

– FPSI for Hamming Distance of Which Costs Scale Strictly Linearly
with m and n. We provide a generic construction for FPSI from Fmap that
does not introduce any additional assumptions about inputs. As an instance
of it, we construct an FPSI protocol for Hamming distance using our Fmap
instance for Hamming distance. Due to the employment of this non-trivial
Fmap instance, communication and computation complexity of the new pro-
tocol achieve strict linearity with m and n for the first time.

– FPSI for Lp∈[1,∞] Distance of Which Costs Scale Linearly with
Anyone of m, n, d, and δ. We show how to construct multi-query fuzzy
reverse private membership test (mqFRPMT), the fuzzy version of multi-
query reverse private membership test (mqRPMT), from Fmap without
expansion on Sender’s set. Using mqFRPMT, we can easily obtain FPSI and

1 That is to say, as both m and n grow to be k times larger, communication and
computation costs of the protocol increase to k times at most.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 39

its variants, including FPSI-card, LFPSI, and FPSI-SP. By instantiating with
our Fmap instance for L∞ distance with expansion rate of 1, we ultimately
construct a new FPSI protocol for Lp∈[1,∞] distance. Its costs scale linearly
with any one of m, n, d, and δ, which allows it to perform better than prior
protocols.

– Performance. Our experimental results demonstrate that compared with
the state-of-the-art protocols, our protocol achieves a 4.6× reduction in com-
munication cost for Hamming distance when both parties input 128-bit binary
strings and δ is set to 4, and achieves a 28−166× speedup and 6−40× reduc-
tion in communication cost for Lp∈{1,2,∞} distance when d ≥ 6.

1.3 Related Work

We review previous semi-honest secure FPSI protocols, which can be divided
into two categories: FPSI for Hamming distance and FPSI for Lp∈[1,∞] distance.
A comparison of asymptotic complexities is given in Table 1.

FPSI for Hamming Distance. Freedman et al. [11] first propose the con-
cept of FPSI and provide a protocol for Hamming distance based on polynomial
interpolation and additively homomorphic encryption (AHE). Their protocol
has been proved insecure by Chmielewski and Hoepman [7]. For a long time,
subsequent works on FPSI mainly focus on Hamming distance. Ye et al. [26]
design FPSI for Hamming distance with oblivious polynomial evaluation tech-
nique. Indyk and Woodruff [15] deal with FPSI for Hamming and L2 distances,
but their protocols rely on AHE and costly garbled circuits. Uzun et al. [23]
construct LFPSI for Hamming distance based on fully homomorphic encryp-
tion (FHE), another costly technique. Using vector oblivious linear evaluation,
Chakraborti et al. [4] propose an efficient FPSI for Hamming distance of which
cost is independent of d, but at the cost of a non-negligible false positive rate.
In addition, they propose an efficient FPSI for L1 distance in one-dimensional
space with the concept of prefix matching. These protocols always perform a
brute-force search over all m · n pairs of inputs from both parties, which results
in an m · n explosion in communication and computation complexities. In 2024,
Chongchitmate et al. [8] propose the most efficient FPSI for Hamming distance
to date. Their protocol reduces the m ·n explosion through approximating FPSI
result via multiple rounds of PSI on sampled components of points. However, its
complexities still fail to achieve strict linearity with m and n. Moreover, same
with previous protocols in [4,23], they only consider Hamming distance over F2.

FPSI for Lp∈[1,∞] Distance. In 2022, Garimella et al. [13] construct the first
FPSI protocols for L1 and L∞ distance, which are considered as instances of
structure-aware PSI in their opinion. For FPSI, their key innovation lies in the
use of spatial hashing technique to decrease communication complexity. How-
ever, they do not discuss FPSI for general Lp distance and lack the improvement
in computation cost. In 2024, Baarsen and Pu [1] propose the first FPSI pro-
tocol supporting general Lp∈[1,∞] distance. They use spatial hashing or similar

40 Y. Gao et al.

techniques for coarse filtration on all pairs of both inputs, and propose a novel
fuzzy matching protocol based on OKVS and DDH tuple for refined filtering to
complete FPSI. Additionally, they go further in protecting Sender privacy by
proposing and constructing FPSI-SP. Although many techniques are employed
to optimize complexity, complexities of their protocols still remain super-linear
factors in n or d, which make their efficiency suffer greatly.

Remark 1. Note that recent protocols are always based on assumptions. It is
necessary to introduce assumptions for making costs strictly linear with m and
n. The motivation is to limit the number of point pairs that might successfully
match in FPSI. If no restrictions are imposed, the number of point pairs that
need to be checked is m·n, which inevitably leads to an m·n factor in complexities
[8].

Table 1. Asymptotic complexities of semi-honest secure FPSI protocols, where Sender
holds m points and Receiver holds n points in a d-dimensional space. M is the larger
one of m and n. δ is the threshold of FPSI. B1 and B2 are parameters in FHE scheme.
ρ ∈ (0, 1) is a parameter in LSH scheme. We ignore multiplicative factors of the com-
putational security parameter κ and statistical security parameter λ.

Distance Protocol Assumption Communication
Computation

Sender Receiver

Hamming

[26] – O (
d2mn

) O (poly(d)mn) O (
d2mn

)

[23]� FPR&FNR O (B1dmn) O (B2dmn) O ((
d
δ

)
n
)

[4]� FNR O (
δ2mn

) O (
(d + δ2)mn

) O ((d + δ)mn)

[8]� R ∧ S. cluster. O (dM logM) O (dM logM) O (dM logM)

Ours R. UniqC O (
d2m + δdn

) O (
d2m

) O (
d2m + δdn

)

L∞

[13] R. lmin > 2δ O
(
m + (4 log δ)dn

)
O

(
(2 log δ)dm

)
O

(
(2δ)dn

)

[1]
R. lmin > 2δ O (

2dm + δdn
) O (

2ddm
) O (

2dm + δdn
)

R. disj. proj. O (
m + (δd)2n

) O (
d2m

) O (
m + (δd)2n

)

Ours R ∧ S. disj. proj. O (δdm + δdn) O (δdm + n) O (m + δdn)

Lp
[1]

R. lmin > 2δ
(
d

1
p + 1

)
O (

δpm + δ2ddn
) O ((d + δp)m) O (

m + δ2ddn
)

R. lmin > 1
ρ
δ O (

(δpnρ log n)m + δdnρ+1
) O (((d + δp)nρ log n)m) O (

(nρ log n)m + δdnρ+1
)

Ours R ∧ S. disj. proj. O ((δd + p log δ)m + δdn) O ((δd + p log δ)m + n) O (p log δm + δdn)

- � means that this protocol only handles with Hamming distance on bit vectors.

- FPR (FNR) means that Receiver can tolerate a non-negligible false positive rate (false negative rate).
- R ∧ S. cluster. means that for both Sender’s set and Receiver’s set, the Hamming distance between any two points in the sa-
me set should be less than δ or greater than δ logn.
- R. UniqC means that for each Receiver’s point, there exists at least δ + 1 dimensions such that on each of them this point’s
component is different from others.

- R. lmin > l∗ means that the minimum distance between points of Receiver is greater than l∗.
- R. disj. proj. means that for each Receiver’s point, there exists at least one dimension on which its component keeps a dista-
nce greater than 2δ from other Receiver’s points.

- R ∧ S. disj. proj. means that the disj. proj. assumption should hold for both Sender’s set and Receiver’s set.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 41

2 Overview of Our Techniques

In this section, we present a high-level technical overview of our work. And the
ideal functionalities for FPSI and its several variants considered in our work are
given in Fig. 1.

Fig. 1. Ideal Functionalities for FPSI and Its Variants: FFPSI, FLFPSI, FFPSI−card, and
FFPSI−SP

2.1 Challenge in Efficient FPSI

Most FPSI protocols [1,4,7,11,13,15,23,26], including ours, are based on the
same idea: perform FPSI using a batch of fuzzy matching, which can determine
whether a Sender’s point qj and a Receiver’s point wi satisfy dist(qj ,wi) ≤
δ, and return the result to Receiver. Therefore, there are two directions for
improving FPSI protocols: one is the optimization of fuzzy matching protocol,
which is the focus of most existing works [4,7,11,15,23,26], and the other is the
optimization of the process of reducing FPSI to fuzzy matching, which is the
focus of this work.

The above FPSI paradigm can be decomposed into two phases: “coarse map-
ping” and “refined filtering” [1]. Coarse mapping is used to assign several identi-
fiers to points of Sender and Receiver, and two points from Sender and Receiver
respectively with a same identifier will form a pair2. Refined filtering is used to
perform fuzzy matching on each pair obtained from coarse mapping to get the
final result.

The main complexity bottlenecks of existing works are derived from their
coarse mapping methods. For example, the naive coarse mapping which bru-
tally traverses all pairs of inputs from parties results in an unacceptable m · n

2 A point can appear in multiple pairs.

42 Y. Gao et al.

blowup in complexities. Besides, [13] uses spatial hashing technique to perform
coarse mapping. In this coarse mapping, a Receiver’s point is mapped to O(2d)
identifiers. This expansion is the source of the factor 2d in complexities.

The challenge in efficient FPSI protocols is to construct coarse mapping meth-
ods with minor expansion on input sizes to break bottlenecks.

2.2 Fuzzy Mapping

We abstract the coarse mapping into a new cryptographic primitive named fuzzy
mapping (Fmap), with the complexity bottleneck being formalized as the expan-
sion rate of Fmap. As Sect. 4.2 will demonstrate, almost all known FPSI protocols
are constructed based on instances of Fmap. Thus, proposing non-trivial Fmap
instances is the core task in this work.

The input of Fmap consists of m points (qj)j∈[m] ∈ U
d×m from Sender

and n points (wi)i∈[n] ∈ U
d×n from Receiver. The output of Fmap consists

of
(
ID (qj)

)
j∈[m]

for Sender and
(
ID (wi)

)
i∈[n]

for Receiver, where ID (q) and
ID (w) are subsets of an identifier universe I .

Three Requirements. For realizing the functionality of coarse mapping
securely, Fmap for dist (·, ·) of threshold δ should satisfy the following require-
ments:

– ID (qj) should intersect with ID (wi) when dist (qj ,wi) is not greater than
δ. Otherwise, coarse mapping would lose the pair (qj ,wi), leading to an
incorrect FPSI result. Note that the existence of refined filtering allows Fmap
to tolerate false positives3.

– The probability that there exist two distinct points wi and wi′ in W such that
ID (wi) intersects with ID (wi′) is negligible. Otherwise, an identifier might
lead to point pairs involving multiple Receiver’s points, which could lead to
incomplete executions of fuzzy matching in refined filtering4.

– For security, Fmap should not reveal any information about one party’s input
to the other party. In other words, the view of Receiver invoking Fmap with
Sender should be computationally indistinguishable from that with another
Sender, and the same applies to Sender’s perspective.

Expansion Rate. We define the Sender’s expansion rate and Receiver’s expan-
sion rate of Fmap as the ratio of the output size to the input size for Sender and
Receiver respectively.

It is clear that the optimal expansion rate of Fmap is 1. We use unit Fmap
(UFmap) to denote the Fmap with both expansion rates of 1, and unit Fmap for
Sender (sUFmap) to denote the Fmap with Sender’s expansion rate of 1.
3 That is to say, cases that ID (qj) intersects with ID (wi) and dist (qj ,wi) is greater

than δ are allowed.
4 In order to hide the distribution of points, Receiver can only initiate fuzzy matching

once for each identifier. If multiple fuzzy matchings are performed on an identifier,
Sender can infer that there are multiple Receiver’s points nearby.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 43

2.3 Non-trivial Fmap for Hamming Distance

There is no Fmap instance for Hamming distance except the naive one (i.e.
brutally traversing all m · n pairs of input points), which is the primary culprit
for m · n blowup in complexity. Therefore, we hope to find a non-trivial Fmap
to improve FPSI for Hamming distance.

We assume that each Receiver’s point has at least δ + 1 unique compo-
nents, and denote this assumption as Receiver’s unique components (R. UniqC)
assumption. Typically, δ � d holds for applications of FPSI [18,19]. Thus, R.
UniqC assumption is intuitively reasonable, and furthermore, we formally prove
that it holds with overwhelming probability for uniformly random Receiver’s
input in Sect. 5.1. R. UniqC assumption reflects real-world scenarios where legit-
imate texts or numbers vary significantly, and their errors are merely deviations
of a few characters, while Receiver hopes to query several entries under such
circumstances [8].

Under R. UniqC assumption, a non-trivial Fmap for Hamming distance,
which we refer to as UniqC Fmap, can be constructed, where Receiver’s points
are mapped to their unique components, while each Sender’s point is mapped to
all of its d components. More details about UniqC Fmap are shown in Sect. 5.1.

2.4 UFmap for L∞ Distance

UFmap for L∞ Distance is Enough. To overcome complexity bottlenecks
in FPSI protocols for Lp∈[1,∞] distance, we hanker for a UFmap for Lp∈[1,∞]

distance. Fortunately, benefiting from the facts that Fmap can tolerate false
positives and that the L∞ distance between any two points is always no greater
than the Lp∈[1,∞] distance, we can use Fmap for L∞ distance in FPSI for general
Lp∈[1,∞] distance. Therefore, we will only discuss the construction of UFmap for
L∞ distance in the following paragraphs.

A Toy Protocol from Spatial Additive Sharing. Let us first consider a toy
protocol in a simplified setting where Receiver chooses seedw,R for w ∈ W as
an assignment and Sender wants to choose seedq,R as the assignment of q ∈ Q
meeting seedq,R equals to seedw,R when L∞ (q,w) is not greater than δ.

The rough idea is to share assignment seedw,R of Receiver’s point w via addi-
tive secret sharing across those positions close to its components on d dimensions
as their assignments5, and then have Sender reconstruct the point’s assignment
using shares from each dimension. This idea is termed as spatial additive sharing
(SAS).

Certainly, Receiver’s assignments at these positions (Receiver’s assigned coor-
dinate system), should not be obtained in plaintext by Sender, or Sender will
know which is the component of w by comparing whether two adjacent posi-
tions were assigned the same shares, which violates security. Therefore, Receiver
should use AHE to hide the assigned coordinate system.
5 There are 2δ +1 positions centered around each component and their 2δ +1 assign-

ments are the same secret share.

44 Y. Gao et al.

Conversion from Toy Protocol to UFmap. The toy protocol satisfies the
first requirement of Fmap in simplified setting. For crossing the gap between it
and UFmap, we should enhance the design to fully meet all three requirements.

By introducing the assumption from [1] that each Receiver’s point maintains
a distance of more than 2δ on at least one dimension from the others, we can
ensure that each Receiver’s point has at least a share that is independent of the
others. Consequently, the second requirement is satisfied.

Moreover, Sender can perform exactly the same as Receiver, including assign-
ing values to coordinate system and points. Thus, if the same assumption also
holds for Sender’s input, each assignment of Sender’s point in own assigned
coordinate system is also imported with at least one independently uniform ran-
dom share. In order to prevent the final result from being used to deduce the
assignment of one’s own point in the opponent’s assigned coordinate system, we
additionally embed a Diffie-Hellman (DH) subprotocol.

In summary, a point’s ID from this Fmap contains only one element called
id, which is the sum, protected by the DH keys of both parties, of assignments
of the point in assigned coordinate systems of both parties. Building on the
above idea, we construct a UFmap for L∞ distance, which we call SAS Fmap.
Since its expansion rate is 1, SAS Fmap is capable of circumventing complexity
bottlenecks in FPSI protocols for Lp∈[1,∞] distance.

2.5 Applications of Fmap

mqFRPMT from sUFmap. Chen et al. [6] demonstrate the powerful capa-
bilities of mqRPMT as a central block in their private set operation (PSO)
framework. An attractive idea is to use the fuzzy version of mqRPMT to pro-
vide a unified framework for FPSI and its variants. Thus, we propose multi-query
fuzzy RPMT (mqFRPMT).

Roughly speaking, mqFRPMT is a two-party protocol between Sender hold-
ing Q = (q1, · · · ,qm) and Receiver holding W = (w1, · · · ,wn). After invoking
of mqFRPMT for distance dist (·, ·) and threshold δ, Receiver learns an indica-
tion bit vector e = (e1, · · · , em) ∈ {0, 1}m such that ei equals to 1 if and only
if there exists a point wj ∈ W meeting dist (qi,wj) is not greater than δ, while
Sender learns nothing.

We present a generic construction of mqFRPMT from sUFmap, OKVS, and
fuzzy matching. Firstly, Receiver and Sender invoke sUFmap to get identifiers
for their points. The first requirement of sUFmap guarantees that a Sender’s
point and a Receiver’s point have a same identifier when they are close enough.
For each Receiver’s point, Receiver generates keys with the point’s identifiers,
and uses the message required to execute fuzzy matching with this point as
value. Using these key-value pairs, Receiver encodes an OKVS and sends it to
Sender. Sender decodes the OKVS using keys from identifiers of Sender’s points
and continues to execute fuzzy matching, which will eliminate false positives in
sUFmap result, ultimately allowing Receiver to obtain the result of mqFRPMT.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 45

FPSI from Fmap. Consider a general Fmap that might not be an sUFmap. For
each point of Sender, Receiver obtains multiple fuzzy matching results instead
of one, and the number of 1 in these results may reveal additional information
about this Sender’s point to Receiver, violating the security of mqFRPMT.

However, if the ultimate goal is to construct FPSI, this leakage will not affect
the security6. Thus, any Fmap can be utilized to construct the corresponding
FPSI using a generic method, while only sUFmap can directly yield mqFRPMT7.

2.6 Applications of mqFRPMT

With oblivious transfer (OT), we can derive FPSI, LFPSI, and FPSI-card from
mqFRPMT by adopting the exact same approaches as that from mqRPMT to
obtain PSI, LPSI, and PSI-card.

Special Variant FPSI-SP from mqFRPMT and UFmap. As an excep-
tion, FPSI-SP cannot be simply realized by replicating the framework of PSI
because of its asymmetry. We observe that, Sender can obtain unique identi-
fiers of Receiver’s points in FPSI-SP result from UFmap. Therefore, if Sender
uses the result of UFmap as points’ labels, Receiver can learn the corresponding
identifiers of points in FPSI-SP result by invoking LFPSI with Sender. At last,
Receiver can trace back to get the result of FPSI-SP with these identifiers.

Figure 2 gives a pictorial overview of our work.

mqFRPMT
Sec 6

FPSI
Sec 7

LFPSI
Sec 7.2

FPSI-card
Sec 7.2

FPSI-SP
Sec 7.2

sUFmap

Fmap
Sec 4

OT OT OT + UFmap

OKVS + fuzzy matching

OKVS +
fuzzy matching+OT

Fig. 2. Summary of our work. The rectangles denote notions newly in this work.

6 Because FPSI allows Receiver to obtain information about these points.
7 As will be shown later, using fuzzy matching that outputs secret shares can solve

this problem.

46 Y. Gao et al.

3 Preliminaries

For lack of space, we put Additively Homomorphic Encryption, Oblivious Trans-
fer, and Semi-Honest Security Model in the full version.

3.1 Notation

We use κ, λ to denote the computational and statistical security parameters
respectively. We use [n] to denote the set {1, 2, · · · , n} and [n,m] to denote the
set {n, n + 1, · · · ,m}. We assume that every set X of size |X| has a default order
(e.g. lexicographical order), and represent it as X =

(
x1, · · · , x|X|

)
= (xi)i∈[|X|].

We use ← to denote assignment and x
R←− X to denote sampling x uniformly

at random from X. A function is negligible in �, written negl (�), if it vanishes
faster than the inverse of any polynomial in �. x‖y is the concatenation of two
strings x and y. For a key-value pairs multiset List, we use List[k] to denote the
value for key k.

For parameters in FPSI, we use d to denote the dimension of space, δ to
denote the threshold, and dist (·, ·) to denote the distance function. We use
H, L∞, and Lp distance as Hamming, infinite norm, and Minkowski distance,
respectively. To simplify the statement, we use Lp∈[1,∞] to represent the union
of Lp∈[1,∞) and L∞. We use S to denote Sender, who holds set Q ∈ U

d×m of
size m, and R to denote Receiver, who holds set W ∈ U

d×n of size n, where d is
the dimension. Here we use 2u to denote the size of alphabet U. We use qj and
wi as points in Q and W respectively. qj,k represents the component of point qj

on dimension k, and wi,k is analogous. balldist(·,·)wi
represents a d-dimensional ball

with wi as center and δ as radius. We use I to denote the identifier universe.
ID (qj) , ID (wi) ⊂ I are sets of qj ’s identifiers and wi’s identifiers respectively.

Specifically, for any two points q,w ∈ U
d, Hamming distance over U is

HU (q,w) = H (q,w) =
∑d

k=1 (qk
= wk), and Hamming distance over U
P is

HUP (q,w) =
∑ d

P −1

k′=0 (q̃k′
= w̃k′), where q̃k′ = qk′·P+1‖qk′·P+2‖ · · · ‖qk′·P+P and
w̃k′ = wk′·P+1‖wk′·P+2‖ · · · ‖wk′·P+P .

3.2 Oblivious Key-Value Store

The oblivious key-value store (OKVS) is a data structure consisting of Encode
and Decode algorithms that enables encoding n key-value pairs such that an
adversary can not infer the original input keys with the encoding result, when
the input values are random [12].

In addition, our Fmap and mqFRPMT protocols require independence prop-
erty for OKVS, which means decoding a non-encoded key will yield a uniformly
random result. Bienstoc et al. [2] prove that their RB-OKVS satisfies indepen-
dence property8.

8 They call this property “random decoding”.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 47

The formal definitions of OKVS and its independence property are given in
the full version.

For evaluating the efficiency of OKVS, there are typically three measures:
rate, encoding cost, and decoding cost. The rate is the ratio between number n
of input pairs and output size m. Recent OKVS constructions [2,12,21] achieve
constant rate, O(nλ) encoding cost, and O(λ) decoding cost.

3.3 Fuzzy Matching

Fuzzy matching enables Sender and Receiver determine whether the Sender’s
point q and the Receiver’s point w satisfy dist(q,w) ≤ δ [1]. Its functionality
is given in Fig. 3. Obviously, let the protocol return the result by secret shares,
and we get secret-shared fuzzy matching.

Our work is concerned with Hamming and Lp∈[1,∞] distances. For Hamming
distance, considering points of two parties as their Boolean shares in the case
U = {0, 1}, there is a trivial approach of (secret-shared) fuzzy matching that
consists of OT-based conversion of Boolean sharing to Arithmetic sharing and
(secret-shared) secure comparing [20]. This approach has O(d) communication
and computation costs. For Lp∈[1,∞] distance, Baarsen and Pu provide construc-
tions of fuzzy matching in [1].

Fig. 3. Ideal Functionality for Fuzzy Matching FFMatch

One of building blocks we use is a special case of fuzzy matching, fuzzy
matching for interval (IFmat), by which Sender with an interval and Receiver
with a number can check whether this number belongs to the interval. Moreover,
if δ is set to 0, this special case of IFmat is private equality test (PEqT). Their
functionalities are given in Fig. 4.

Using the idea of prefix matching, Chakraborti et al. [4] propose a semi-honest
secure IFmat protocol achieving communication and computation complexities
scaling logarithmically in the threshold. In all our constructions, we will use their
protocol to instantiate IFmat and PEqT.

4 Fuzzy Mapping

In this section, we provide the formal definitions for fuzzy mapping (Fmap) and
its expansion rate, and list existing instances of Fmap.

48 Y. Gao et al.

Fig. 4. Ideal Functionalities for IFmat FIFmat and PEqT FPEqT

4.1 Definition of Fmap

As mentioned in Sect. 2.2, with Fmap, both parties can map each of their points
to a set of identifiers. If a Sender’s point and a Receiver’s point are close enough,
they will have a same identifier, and point pairs formed in this way will be further
filtered by fuzzy matching to obtain FPSI result.

The formal definition of Fmap is as follows.

Definition 1 (Fuzzy Mapping). A two-party protocol Π, where Sender’s
input Q = (qj)j∈[m] ∈ U

d×m results in ID (Q) =
(
ID (qj)

)
j∈[m]

and Receiver’s
input W = (wi)i∈[n] ∈ U

d×n results in ID (W) =
(
ID (wi)

)
i∈[n]

9, is a semi-

honest secure fuzzy mapping (Fmap) protocol Π
dist(·,·)
Fmap of threshold δ for dist (·, ·),

if and only if Π satisfies:

– Correctness. For any two points qj ∈ Q and wi ∈ W:

dist (qj ,wi) ≤ δ =⇒ ID (qj) ∩ ID (wi)
= ∅
– Distinctiveness. For the output ID (W) of Receiver, the following equation

holds:

Pr [∃ i, i′ ∈ [n] , s.t. (i
= i′) ∧ (ID (wi) ∩ ID (wi′)
= ∅)] = negl (κ)

– Security. Considering corrupt semi-honest Sender, for any Q ∈ U
d×m and

any W,W′ ∈ U
d×n, it holds that

viewΠ
S (κ, λ;Q,W)

c≈ viewΠ
S (κ, λ;Q,W′)

Considering corrupt semi-honest Receiver, for any W ∈ U
d×n and any

Q,Q′ ∈ U
d×m, it holds that

viewΠ
R (κ, λ;Q,W)

c≈ viewΠ
R (κ, λ;Q′,W)

To quantify the expansion of inputs, we define the expansion rate of Fmap.
9 ID (qj) , ID (wi) ⊂ I ; for security reason, we default to |ID(qj)| = |ID(qj′)| for

different j, j′ ∈ [m] and |ID(wi)| = |ID(wi′)| for different i, i′ ∈ [n].

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 49

Definition 2 (Expansion Rate). The expansion rate of Fmap for Sender’s
input is

rateS =
1
m

∑

j∈[m]

|ID (qj)|

The expansion rate of Fmap for Receiver’s input is

rateR =
1
n

∑

i∈[n]

|ID (wi)|

The expansion rate of Fmap is

rate = max {rateS , rateR}
Definition 3 (Sender’s Unit Fmap). An Fmap is a Sender’s unit Fmap
(sUFmap) if and only if its expansion rate for Sender’s input is 1.

Definition 4 (Unit Fmap). An Fmap is a unit Fmap (UFmap) if and only if
its expansion rate is 1.

The efficiency of an Fmap instance is measured by:

– Expansion rate: Expansion rate of Fmap is positively related to complexities
of FPSI based on it, thus we hope it to be as small as possible. Note that the
optimal expansion rate is 1.

– Communication complexity: As a two-party protocol, Fmap’s own effi-
ciency is influenced by its communication complexity. Since many Fmap
instances degenerate into two algorithms executed by Sender and Receiver
respectively, they have no communication.

– Computation complexity: The computation complexity of Fmap is also
a factor to consider, and it is clear that the lower bound of computation
complexity is the size of output.

A crucial observation is that as long as the complexity of Fmap does not
exceed that of the subsequent part, the asymptotic complexity of the entire
FPSI will not be affected.

Therefore, a high-level intuition is that we can improve the overall efficiency
of FPSI by reducing expansion rate of Fmap at the cost of a tolerable increase
in complexity of Fmap.

Lemma 1 (Reduction of Fmap). If there are two distance functions dist (·, ·)
and dist′ (·, ·) such that dist (q,w) ≤ dist′ (q,w) holds for any two points q and
w, then Fmap protocol Π

dist(·,·)
Fmap realizes Fmap for dist′ (·, ·).

Proof. As Fmap for dist′ (·, ·), the distinctiveness and security of Π
dist(·,·)
Fmap are

guaranteed by Definition 1 of Fmap for dist (·, ·).
Now consider the correctness of Π

dist(·,·)
Fmap for dist′ (·, ·). For any j ∈ [m] and

i ∈ [n], when dist′ (qj ,wi) ≤ δ. We have dist (qj ,wi) ≤ dist′ (qj ,wi) ≤ δ. Thus
the correctness for dist′ (·, ·) is guaranteed by the correctness for dist (·, ·).

Therefore, Π
dist(·,·)
Fmap realizes Fmap for dist′ (·, ·).

50 Y. Gao et al.

Corollary 1. For any P ∈ N
+ and any two points q,w ∈ U

d, we have
HUP (q,w) ≤ HU (q,w). According to Lemma 1, Π

H
UP

Fmap can be seen as ΠHU

Fmap.

Corollary 2. For any two points q,w ∈ U
d, we have L∞ (q,w) ≤

Lp∈[1,∞] (q,w). According to Lemma 1, ΠL∞
Fmap can be seen as Π

Lp∈[1,∞]

Fmap .

4.2 Existing Fmap Constructions

Table 2 lists existing constructions that fit to Definition 1 of Fmap. Many of
existing FPSI protocols are constructed using Fmap instances listed in this table.

As can be seen in Table 2, all of previous Fmap instances have communication
cost of zero and computation cost of theoretical lower bound but expansion
rate of pretty big value, while our UniqC Fmap is the only non-trivial Fmap
for Hamming distance and our SAS Fmap achieves the optimal expansion rate
but has non-optimal complexities. This trade-off works well because complexity
bottlenecks in previous FPSI protocols actually come from expansion rates rather
than costs of invoking Fmap.

Table 2. Comparison of Fmap instances, where m and n are set sizes of Sender’s and
Receiver’s inputs, respectively. d is the space dimension. ρ ∈ (0, 1) is a parameter in
LSH scheme. We ignore multiplicative factors of the computational security parameter
κ and statistical parameter λ.

Fmap Distance rateS rateR Communication
Computation

Sender Receiver

Naive [11] Anyone n 1 – O (nm) O (n)

Spatial Hashing [13] L∞ 1 O (
2d

)
– O (m) O (

2dn
)

Separated Balls [1] L∞ d O (δ) – O (dm) O (δn)

LSH [1] Lp∈[1,∞) O (nρ log n)O (nρ) – O ((nρ log n)m) O (
nρ+1

)

Ours: UniqC Hamming d δ + 1 – O (dm) O (δn)

Ours: SAS L∞ 1 1 O (δdm + δdn) O (δdm + n) O (m + δdn)

– Naive Fmap. A straightforward approach of FPSI is to perform fuzzy match-
ing on all pairs of these two inputs to obtain results. This idea can be
abstracted into a naive Fmap: for each Sender’s point qj , ID (qj) is {i}i∈[n],
thus rateS is O(n); for each Receiver’s point wi, ID (wi) is {i} where i is the
index of this point, thus rateR is 1. It does not rely on any assumptions and
can be used in FPSI for any distance function. Many existing FPSI protocols
[4,7,11,15,23,26] for Hamming distance adopt naive Fmap, which leads to
the m · n blowup in their complexities.

– Prior Non-trivial Fmap. Recently, some works [1,13] try to avoid the m ·n
blowup. We abstracted three non-trivial Fmap from them, and the detailed
analysis can be found in the full version.

– New Fmap. Details of our Fmap instance will be given later.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 51

5 New Fmap Constructions

In this section, we present new semi-honest secure Fmap constructions for Ham-
ming and L∞ distances, which are the infrastructure for subsequent protocols.

5.1 UniqC Fmap for Hamming Distance

We present a construction of semi-honest secure Fmap for Hamming distance,
which is denoted by UniqC Fmap. Similar to existing Fmap constructions, UniqC
Fmap consists of two algorithms for Sender and Receiver respectively due to the
absence of interaction. For each Receiver’s point, Receiver chooses its δ+1 unique
components as its ID, while Sender selects all d components of a point as its ID.
The formal description of UniqC Fmap is shown in Fig. 5.

Fig. 5. Fmap Protocol for Hamming distance: ΠH
UniqC Fmap

Definition 5 (Unique Set). For a point w ∈ W in a d-dimensional space,
w has a unique component wk, if and only if its component on dimension k is
different from that of any other point in W. A point w is unique, if and only if
w has at least δ + 1 unique components. A set W is unique, if and only if all
points in W are unique.

Lemma 2 (Uniform Distribution). In a d-dimensional space, if points in
set W are uniformly distributed, then the probability that W is unique is 1 −
negl (d)10.
10 Here we default that the size of alphabet U is greater than n. When |U| = 2u ≤ n,

we can pack P components as one super-component such that
∣
∣UP

∣
∣ = 2uP > n, thus

R. UniqC assumption for HUP holds and Π
H

UP

UniqC Fmap works. According to Corollary

1, we can use Π
H

UP

UniqC Fmap as ΠHU

UniqC Fmap.

52 Y. Gao et al.

Proof. For each wi ∈ W and each dimension k ∈ [d], we have

Pr [wi,k is not a unique component] ≤ n − 1
2u

Hence, the probability that wi has exactly δ unique components is not greater
than

(
d
δ

)(
n−1
2u

)d−δ. By a union bound, it holds that

Pr [wi is not unique] ≤ δ
(
d
δ

)
(

n − 1
2u

)d−δ

≤ dδ+1

(
n − 1
2u

)d−δ

� f(d)

We default that 2u > n − 1 and thus f(d) is negl (d).

Pr [W is unique] = (1 − Pr [wi is not unique])n ≥ (1 − f(d))n

which is 1 − negl (d).

Remark 2. Considering 400-dimensional bio-bit-vectors and δ = 7 in [24], we
pack 16 bits into a super-component (i.e. d and u are updated to 25 and 16
respectively), and we choose statistical security parameter λ = 40.

Then, when n < 211, we have

Pr [W is unique] ≥
(

1 − dδ+1

(
n − 1
2u

)d−δ
)n

≥ 1 − 2−λ

For UniqC Fmap, we introduce the Receiver’s unique components (R. UniqC)
assumption:

Each Receiver’s point has unique components on at least δ + 1 dimensions.
If Receiver’s points are uniformly distributed, then according to Lemma 2,

R. UniqC assumption holds in high-dimensional case with overwhelming proba-
bility. Thus, it is acceptable to base our construction on it. Now, we prove the
protocol in Fig. 5 is a semi-honest secure Fmap for Hamming distance.

Theorem 1 (Correctness). The protocol presented in Fig. 5 satisfies the cor-
rectness defined in Definition 1 for Hamming distance.

Proof. For qj ∈ Q and wi ∈ W, if H (qj ,wi) ≤ δ, then qj has the same
component with wi on at least d − δ dimensions. wi has δ + 1 unique compo-
nents, so one of wi’s unique components is also qj ’s component. Hence, we have
ID (qj) ∩ ID (wi)
= ∅.

Theorem 2 (Distinctiveness). The protocol presented in Fig. 5 satisfies the
distinctiveness defined in Definition 1.

Proof. The distinctiveness comes from Definition 5 of unique component.

Theorem 3 (Security). The protocol presented in Fig. 5 satisfies the security
defined in Definition 1.

Proof. Since UniqC Fmap does degenerate into two algorithms without interac-
tion from a two-party protocol, outputs received by both parties are independent
of each other’s inputs. Thus, the security property is self-evident.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 53

5.2 SAS Fmap for L∞ Distance

We present a construction of semi-honest secure UFmap for L∞ distance, which
is denoted by SAS Fmap. We use idqj

and idwi
to represent the only element in

ID (qj) and ID (wi) respectively.
As described in Sect. 2.4, for each point in input sets, SAS Fmap generates

the sum, protected by DH keys of two parties, of this point’s assignments in
assigned coordinate systems of two parties as its identifier.

We first deal with the assignment process with spatial additive sharing (SAS),
and then utilize the assignment algorithm to construct SAS Fmap.

Assignment Algorithm from SAS. SAS treats a point’s assignment as the
sum of its components’ assignments on d dimensions, thereby converting the
processing of a point in d-dimensional space into the processing of d points in
1-dimensional axes. And SAS ensures that the assignment of each component
of each point is also the assignment of the 2δ + 1 positions centered around
this component on the corresponding dimension. Our assignment algorithm is
described formally in Fig. 6.

Fig. 6. Assignment Algorithm: Assignment(·)

UFmap Based on SAS. We assume that input sets of both parties have good
distribution in a high-dimensional space. Thus, we propose a semi-honest secure
UFmap based on SAS for L∞ distance.

54 Y. Gao et al.

Intuitively, both parties first use assignment algorithm to attain their
assigned coordinate systems (i.e. assigned axes of d dimensions). They encode
their assigned coordinate systems into OKVS in the form of ElGamal ciphertexts
and send OKVS to each other. By leveraging the homomorphism of ElGamal,
both of them can obtain ciphertexts of their own points assigned in the other’s
coordinate system. Finally, through a masked DH subprotocol, they can securely
acquire their own Fmap output. The formal description of SAS Fmap is in Fig. 7.

Definition 6 (Separated Set). For two points q and q′ in a d-dimensional
space, q collides with q′ on dimension k if and only if the distance between their
components on dimension k is not greater than 2δ; otherwise, q is separated
from q′ on dimension k. A set Q is separated, if and only if, for each point
in Q, there exists a dimension such that this point is separated from anyone of
other points in Q on it.

Lemma 3 (Uniform Distribution [1]). In a d-dimensional space, if points
in set Q are uniformly distributed, then the probability that Q is separated is
1 − negl (d).

For SAS Fmap, we introduce the R ∧ S. disj. proj. assumption:
Each Sender’s or Receiver’s point is separated from other points in the same

set on at least one dimension.
If points of inputs are uniformly distributed, then according to Lemma 3,

this assumption holds in high-dimensional case with overwhelming probability,
thus it is acceptable to base our construction on this assumption.

It is self-evident that the expansion rate of our protocol in Fig. 7 is 1. Now,
we prove our protocol is a semi-honest secure Fmap for L∞ distance.

Theorem 4 (Correctness). The protocol presented in Fig. 7 satisfies the cor-
rectness defined in Definition 1 for L∞ distance.

Proof. For qj ∈ Q and wi ∈ W, if L∞ (qj ,wi) ≤ δ, then for k ∈ [d], |qj,k −
wi,k| ≤ δ always holds, thus these qj,k are all assigned in ListR. According to
correctness of OKVS, S gets ElGamal ciphertexts of ListR [k‖qj,k] by decoding.

Since Assignment algorithm ensures that the 2δ + 1 points on dimension k
centered at wi,k all have the same assignment, it comes that ListR [k‖qj,k] =
ListR [k‖wi,k] for k ∈ [d]. Therefore, sum

pkElG,R
qj is the ElGamal ciphertext of

Seedwi,R. Then, it is clear that

Seed
qj

mkS,j ,R = skDH,R · maskS,j · (
Seedqi,S + Seedwj ,R

)

=⇒ idqj
= skDH,S · skDH,R · (

Seedqi,S + Seedwj ,R
)

Similarly, we can find that

idwi
= skDH,R · skDH,S · (

Seedwj ,R + Seedqi,S
)

Hence, idqj
equals idwi

when L∞ (qj ,wi) ≤ δ holds.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 55

Fig. 7. UFmap Protocol for L∞ Distance Without Expansion: ΠL∞
SAS Fmap

56 Y. Gao et al.

Theorem 5 (Distinctiveness). The protocol presented in Fig. 7 satisfies the
distinctiveness defined in Definition 1.

Proof. First consider the side of S. For j ∈ [m], let us assume that qj is separated
from the others in W on dimension kj . With reference to proof of Theorem 4,
we have

idqj
� skDH,S · skDH,R · (

ListS
[
kj‖qj,kj

]
+ Δj

)

Under R ∧ S. disj. proj. assumption, in assignment algorithm, the 2δ + 1
points centered at qj,kj

on dimension kj do not cover any other assigned points
nor be covered by any other assigned points. Thus, ListS

[
kj‖qj,kj

]
is a uniformly

random value independent of any other assignments. So, the probability that idqj

equals some idqj′ is m−1
|G| . Hence, it holds that

Pr [∃ j, j′ ∈ [m] , s.t. (j
= j′) ∧ (ID (qj) ∩ ID (qj′)
= ∅)] ≤ m2

|G| = negl (κ)

Symmetrically, the same discussion for R will complete the proof.

Theorem 6 (Randomness). In the protocol presented in Fig. 7,
(
idqj

)
j∈[m]

is computationally indistinguishable from Rid
R←− G

m, and (idwi
)i∈[n] is compu-

tationally indistinguishable from Rid
R←− G

n, if the DDH assumption holds.

Proof. First consider the side of S. With proof of Theorem 4, we have

idqj
= skDH,S · (

skDH,R · Seedqj ,S
)
+ skDH,S · skDH,R · Seedqj ,R

According to DDH assumption,
(
skDH,R · Seedqj ,S

)
j∈[m]

is computationally
indistinguishable from uniformly random vector in G

m.
Since the assignment of S’s coordinate system and that of R’s coordinate

system are independent, Seedqj ,R is independent of Seedqj ,S . In conclusion,
(
idqj

)
j∈[m]

is computationally indistinguishable from Rid
R←− G

m.
Symmetrically, the same discussion for R will complete the proof.

Theorem 7 (Security). The protocol presented in Fig. 7 satisfies the security
defined in Definition 1 if the DDH assumption holds.

Proof. First consider the side of S. We exhibit simulator SimS
Fmap (Q, id (Q)W)

for simulating corrupt S where id (Q)W is the output of S holding Q who invokes
the protocol presented in Fig. 7 with R holding W. And we argue the indistin-
guishability of the produced transcript from the real execution.

SimS
Fmap simulating the view of corrupt semi-honest Sender executes as fol-

lows:

1. SimS
Fmap generates

(
skElG,S , pkElG,S

) ← GenElG (1κ), samples
{
maskS,j

R←− Fp
}

j∈[m]
, computes

{
maskS,j

−1
}

j∈[m]
, and appends them to the view.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 57

2. SimS
Fmap encodes OKVS ER with (2δ+1)dn dummy key-value pairs, generates

(
skElG,R, pkElG,R

) ← GenElG (1κ), and appends ER, pkElG,R to the view.

3. SimS
Fmap samples

(
Seedi

R←− G

)

i∈[n]
, computes

(
cipher

pkElG,S
i ←

EncElG
pkElG,S

(Seedi)
)

i∈[n]
, and appends

(
cipherpkElG,S

i

)

i∈[n]
to the view.

4. SimS
Fmap samples skDH,S

R←− Fp and appends it to the view.

5. SimS
Fmap computes

(
Seed

qj

mkS,j ,R ← maskS,j · skDH,S
−1 · id (qj)W

)

j∈[m]
and

appends them to the view.

Now we show that the view output by SimS
Fmap is indistinguishable from the

real one via a hybrid argument. We define four hybrid transcripts T0, T1, T2, T3,
where T0 is the real view of S, and T3 is the output of SimS

Fmap.

– Hyb0. This hybrid is the real interaction described in Fig. 7. Let T0 denote
S’s view in the real protocol.

– Hyb1. Let T1 be the same as T0, except that OKVS ER and pkElG,R are
replaced by ER and pkElG,R. The values for encoding ER are (2δ + 1)dn
ciphertexts encrypted with pkElG,R, which are computationally indistinguish-
able from uniformly random ElGamal ciphertexts by DDH assumption. Com-
bining the obliviousness of OKVS, ER and ER are computationally indistin-
guishable. Hence, we have T1

c≈ T0.
– Hyb2. Let T2 be the same as T1, except that

(
skElG,S , pkElG,S

)
and

(
cipher

pkElG,S
wi

)

i∈[n]
are replaced by

(
skElG,S , pkElG,S

)
and

(
cipher

pkElG,S
i

)

i∈[n]

.

Since each Seedwi

mkR,i
is masked by uniformly random maskR,i from R,

(
Seedwi

mkR,i

)

i∈[n]
are statistically indistinguishable from

(
Seedi

R←− G

)

i∈[n]
.

Therefore,
(
cipher

pkElG,S
wi

)

i∈[n]
and

(
cipher

pkElG,S
i

)

i∈[n]

are statistically indis-

tinguishable, which means T2
s≈ T1.

– Hyb3. Let T3 be the same as T2, except that {maskS,j}j∈[m],
{
maskS,j

−1
}

j∈[m]
, skDH,S , and

(
Seed

qj

mkS,j ,R
)

j∈[m]
are replaced by

{
maskS,j

}
j∈[m]

,
{
maskS,j

−1
}

j∈[m]
, skDH,S , and

(
Seed

qj

mkS,j ,R
)

j∈[m]
. It is clear

that masks {maskS,j}j∈[m] and
{
maskS,j

}
j∈[m]

are distributed identically;

skDH,S and skDH,S are distributed identically. Hence,
(
Seed

qj

mkS,j ,R
)

j∈[m]
and

(
Seed

qj

mkS,j ,R
)

j∈[m]
are statistically indistinguishable. Thus T3

s≈ T2 holds.

From the argument above, it holds that

view
ΠSAS Fmap

R (κ, λ;Q,W)
c≈ SimS

Fmap (Q, id (Q)W)

58 Y. Gao et al.

In addition, according to Theorem 6, we have

SimS
Fmap (Q, id (Q)W)

c≈ SimS
Fmap

(
Q,Rid

R←− G
m

)

Therefore, it comes that

view
ΠSAS Fmap

R (κ, λ;Q,W)
c≈ SimS

Fmap

(
Q,Rid

R←− G
m

)
c≈ view

ΠSAS Fmap

R (κ, λ;Q,W′)

Symmetrically, the same discussion for R will complete the proof.

Remark 3 (Complexity). The protocol presented in Fig. 7 has communication
complexity O (((2δ + 1)dκ + 2κ + κ) (m + n)), computation complexity O ((2δ
+1)dm + n) for S, and computation complexity O ((2δ + 1)dn + m) for R, if the
OKVS has a constant rate, linear encoding time, and constant decoding time.

6 Multi-query Fuzzy RPMT Based on sUFmap

In this section, we provide the ideal functionality for mqFRPMT and present
mqFRPMT protocols for L∞ distance and for Lp∈[1,∞) distance respectively,
using sUFmap for L∞ distance.

6.1 Definition of mqFRPMT

mqFRPMT is the fuzzy version of mqRPMT, and we define the ideal functional-
ity for mqFRPMT in Fig. 8. Combining with OT, mqFRPMT can directly yield
FPSI, FPSI-card, and LFPSI.

Fig. 8. Ideal Functionality for Multi-Query Fuzzy RPMT FmqFRPMT

6.2 mqFRPMT for L∞ Distance from sUFmap

The high-level idea of sUFmap-based mqFRPMT is as described in Sect. 2.5. In
mqFRPMT for L∞ distance, we instantiate fuzzy matching with an idea similar
to [1]. We give the detailed mqFRPMT protocol for L∞ distance in Fig. 9.

We provide the proofs of correctness and security in the full version.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 59

Fig. 9. mqFRPMT for L∞ from sUFmap: ΠL∞
mqFRPMT

Theorem 8 (Correctness). The protocol presented in Fig. 9 realizes the func-
tionality FmqFRPMT defined in Fig. 8 for L∞ distance correctly.

Theorem 9 (Security). The protocol presented in Fig. 9 realizes the function-
ality FmqFRPMT defined in Fig. 8 for L∞ distance against semi-honest adversaries
in the FPEqT-hybrid model if E satisfies IND-CPA security.

Remark 4 (Complexity). The protocol presented in Fig. 9 has communication
complexity O (((2δ + 1)dκ + 2κ + κ) (m + n)), computation complexity O ((2δ
+1)dm + n) for S, and computation complexity O ((2δ + 1)dn + m) for R, if the
OKVS has a constant rate, linear encoding time, and constant decoding time;
the UFmap is SAS Fmap in Fig. 7.

6.3 mqFRPMT for LP ∈ [1, ∞) Distance from sUFmap

The construction of mqFRPMT for Lp∈[1,∞) distance is similar to ΠL∞
mqFRPMT.

For computing Lp∈[1,∞) distance, in OKVS encoding, AHE ciphertexts of |t|p

60 Y. Gao et al.

instead of 0 are used as values of idwi
‖ (wi,k + t). Therefore, Sender can com-

pute AHE ciphertexts of the p power of distances and mask them. With IFmat
protocol, Receiver can complete the secure comparison between masked p power
of distances and masked δp with Sender to learn final result of mqFRPMT. We
give the detailed protocol and relevant proofs in the full version.

7 FPSI Protocols

7.1 Generic Construction of FPSI from Fmap

Fmap generates the same identifier for Sender’s point and Receiver’s point that
are close to each other, and then Sender and Receiver can use OKVS and fuzzy
matching to further filter the point pairs implied by these identifiers to obtain
the FPSI output. This is a generic approach to constructing FPSI from Fmap,
indicating the adaptability of Fmap for various distance functions.

FPSI for Distances with Translation Invariance. As a specific example,
let us now focus on constructing FPSI from Fmap for those distance functions
having the translation invariance property.

Definition 7 (Translation Invariance). A distance function dist (·, ·) on U
d×

U
d has translation invariance property if and only if, for any two point q,w ∈ U

d

and any vector v ∈ U
d, it holds that

dist (q,w) = dist (q+ v,w + v)

It is not difficult to see that Hamming and Lp∈[1,∞] distances both have
translation invariance property. We provide the detailed generic construction
from Fmap to FPSI for distance with translation invariance in Fig. 10. Thus,
this generic construction is a powerful tool for FPSI for Hamming and Lp∈[1,∞]

distances. Specifically, we can instantiate the Fmap and fuzzy matching in the
construction in Fig. 10 with UniqC Fmap and trivial fuzzy matching for Ham-
ming distance in Sect. 3.3 to obtain an FPSI for Hamming distance.

We provide the proofs of correctness and security in the full version.

Theorem 10 (Correctness). The protocol presented in Fig. 10 realizes the
functionality FFPSI defined in Fig. 1 for distance with translation invariance cor-
rectly.

Theorem 11 (Security). The protocol presented in Fig. 10 realizes the func-
tionality FFPSI defined in Fig. 1 for distance with translation invariance against
semi-honest adversaries in the (FssFMatch,FPEqT,FOT)-hybrid model, if E satisfies
IND-CPA security.

Remark 5 (Costs Analysis). The communication cost of protocol presented in
Fig. 10 consists of: communication cost of Fmap, sending OKVS from n · rateR

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 61

Fig. 10. FPSI for dist (·, ·) with translation invariance from Fmap: Π
dist(·,·)
FPSI

pairs, sending m ·rateS masked ciphers of points, communication cost of m ·rateS
fuzzy matching, and communication cost of m OTs.

For S, the computation cost of this protocol consists of: computation cost of
Fmap as Sender, m · rateS decoding of OKVS, m · rateS homomorphic masking of

62 Y. Gao et al.

points, computation cost of m ·rateS fuzzy matching as Sender, and computation
cost of m OTs as Sender.

For R, the computation cost of this protocol consists of: computation cost
of Fmap as Receiver, n · rateR encryptions of points, encoding of OKVS with
n · rateR pairs, m · rateS decryptions of points, computation cost of m · rateS
fuzzy matching as Receiver, and computation cost of m OTs as Receiver.

FPSI for Functions with Invariance. Note that our construction is not lim-
ited to distance functions with translation invariance, such as Hamming distance.
For any function with some invariance, we can obtain FPSI from Fmap using a
similar construction.

For example, a generic construction for function with rotation invariance,
such as cosine similarity, can be proposed via simply replacing additive masks
and AHE by rotational masks and homomorphic encryption allowing rotation
on ciphertexts.

7.2 FPSI(-Variants) from mqFRPMT

As shown in Sect. 2.6, mqFRPMT can be used as a central building block to
construct FPSI and its various variants, including LFPSI, FPSI-card, and the
special FPSI-SP. For lack of space, we put the detailed method and proofs in
the full version.

In Sect. 6.2 and Sect. 6.3, we present mqFRPMT protocols for L∞ and
Lp∈[1,∞) distances respectively. Based on them, we can easily obtain FPSI for
Lp∈[1,∞] distance.

8 Implementation

We provide experimental details and specific data for FPSI, and compare our
performance with previous works. We also conduct experiments in unbalanced
setting and the data can be found in the full version.

8.1 Implementation Details

Environment. We run the experiments on a single machine with 2.00GHz Intel
Xeon Gold 6330 CPU and 256 GB RAM. We measure the time of online phase
in a local network setting with network latency of 0.02 ms and bandwidth of 10
Gbps.

Instantiations. We choose the computational security parameter κ = 128 and
the statistical security parameter λ = 40. Our protocols are written in C++ and
we use the following instantiations in our implementation.

– OKVS: We use RB-OKVS in [2].

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 63

– OT: We use OT implementation in libOTe11.
– Goldwasser-Micali: We use GMP12 to implement Goldwasser-Micali cryp-

tosystem with key size of 2048-bit as AHE in our FPSI for Hamming distance.
– Paillier: We use the implementation of Paillier in Intel Paillier Cryptosystem
Library13 with key size of 2048-bit as AHE in our FPSI for Lp∈[1,∞] distance.

– Others: We use Curve25519 in cryptoTools14 as the underlying group G for
SAS Fmap. We adopt Coproto15 to realize network communication.

8.2 Performance

FPSI for Hamming Distance. We compare our FPSI form UniqC Fmap for
Hamming distance in Sect. 7.1 with the near-linear protocol by Chongchitmate
et al., which is the only one overcomes the m · n blowup in complexity among
prior works for Hamming distance [8]. Unfortunately, we do not have their code,
thus we use their experimental results directly from their paper [8] and run our
code with the same parameters.

The comparison is shown in Table 3. It can be observed that as m and n
increase from 256 to 4096, the communication and computation costs of our
protocol both scale linearly, and our protocol performs better than [8] in all
cases. Note that our protocol achieves a 4.6× reduction in communication cost,
which is independent of the running environment.

Table 3. Communication cost and running time of FPSI for Hamming distance, where
input set sizes m = n ∈ {256, 1024, 4096}, universe U = F2, dimension d = 128, and
threshold δ = 4. UniqC Fmap packs P = 24 bits as one super-component.

m = n Protocol Comm. (MB) Time (s)

256
[8] 465.68 38.7

Ours 91.889 5.18

1024
[8] 1779.3 147.85

Ours 367.53 19.428

4096
[8] 6870 569.9

Ours 1470 76.00

FPSI for Lp∈[1,∞] Distance. We compare our FPSI from SAS Fmap in
Sect. 7.2 with the state-of-the-art protocols in [1] including FPSI in low-
dimensional (denoted by [1]L) and high-dimensional (denoted by [1]H) space.

11 https://github.com/osu-crypto/libOTe.git.
12 https://gmplib.org/.
13 https://github.com/intel/pailliercryptolib.git.
14 https://github.com/ladnir/cryptoTools.git.
15 https://github.com/Visa-Research/coproto.git.

https://github.com/osu-crypto/libOTe.git
https://gmplib.org/
https://github.com/intel/pailliercryptolib.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/coproto.git

64 Y. Gao et al.

We report the performances for input sizes m = n ∈ {
24, 28, 212, 216

}
, dimen-

sion d ∈ {2, 6, 10}, and threshold δ ∈ {10, 30}. Since [1]H needs more than 104

seconds when n ≥ 212, we omit these data in our tables.

FPSI for Lp∈{1,2} Distance. Since there is no implementation of [1]H for Lp∈[1,∞)

distance, we estimate its costs with the hyper-parameter ρ = 0.5 for L1 distance
and ρ = 0.365 for L2 distance as reported in [1]. For comparison, we assume
that the costs of [1]H only consist of OKVS encoding and sending, and estimate
the encoding to take 800 machine cycles per pair, which is the best performance
of our machine. In short, we report a conservative estimates of [1]H for Lp∈{1,2}
distance in our table. Table 4 shows that, for L1 and L2 distance, our protocol
achieves a 28 − 166× speedup and reduces communication cost by a factor of
6 − 40× when d ≥ 6.

Table 4. Communication cost (MB) and running time (s) of FPSI for Lp∈{1,2} distance.

m = nProtocol
(d, δ)

(2,10) (6,10) (10,10) (2,30) (6,30) (10,30)
Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time

L1 Distance

24
[1]H 4.512 31.64 13.54 94.93 22.56 158.2 13.11 87.96 39.32 263.9 65.53 439.8
[1]L 0.178 0.692 8.257 24.10 220.0 677.0 0.532 1.888 24.77 73.69 660.0 2042
Ours 0.469 0.374 1.371 0.840 2.274 1.261 1.330 0.742 3.951 1.884 6.570 2.636

28
[1]H 290.7 2084 872.1 6253 1453 10422 844.5 5714 2533 17140 4222 28567
[1]L 2.854 9.296 132.1 409.7 3520 11034 8.510 25.70 396.3 1225 > 104 > 104

Ours 7.502 4.057 21.84 9.570 36.38 15.23 21.28 8.433 63.21 22.81 105.2 37.37

212
[1]L 45.66 148.2 2113 6630 > 104 > 105 136.2 433.3 > 6000 > 104 > 105 > 105

Ours 120.0 56.92 351.0 155.0 589.2 260.2 340.3 130.2 1024 395.1 1703 650.4

216
[1]L 730.5 2480 > 104 > 105 > 105 > 106 2179 7008 > 104 > 105 > 106 > 106

Ours 1919 966.3 5685 2736 9427 4359 5513 2238 16382 6416 27253 10800
L2 Distance

24
[1]H 3.117 21.86 9.352 65.60 15.59 109.3 9.050 60.78 27.16 182.3 45.30 303.9
[1]L 0.222 0.844 8.300 24.19 220.1 677.9 0.957 3.082 25.19 74.80 660.4 2046
Ours 0.475 0.372 1.377 0.889 2.279 1.181 1.339 0.820 3.960 1.783 6.581 2.801

28
[1]H 137.2 983.4 411.5 2950 685.8 4917 398.4 2695 1195 8087 1992 13478
[1]L 3.557 11.19 132.8 411.9 3521 11042 15.31 45.34 403.1 1246 > 104 > 104

Ours 7.588 4.307 22.03 9.882 36.91 16.25 21.42 8.825 63.35 23.18 106.6 38.97

212
[1]L 56.91 180.4 2124 6657 > 104 > 105 244.9 742.6 > 6000 > 104 > 105 > 105

Ours 122.8 64.42 356.7 164.7 590.6 264.8 346.8 142.3 1026 402.7 1706 657.2

216
[1]L 910.5 2992 > 104 > 105 > 105 > 106 3919 12017 > 104 > 105 > 106 > 106

Ours 1964 1070 5707 2765 9449 4443 5549 2366 16419 6539 27289 10953

FPSI for L∞ Distance. Table 5 shows that our protocol for L∞ distance achieves
a 30 − 305× speedup and reduces communication cost by a factor of 6 − 67×
when d ≥ 6.

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 65

Table 5. Communication cost (MB) and running time (s) of FPSI for L∞ distance.

m = nProtocol
(d, δ)

(2,10) (6,10) (10,10) (2,30) (6,30) (10,30)
Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time

24
[1]H 2.073 5.333 18.65 45.70 52.03 122.9 17.55 43.37 158.0 298.1 439.4 759.3
[1]L 0.173 0.660 8.251 24.09 220.0 677.1 0.517 1.891 24.75 73.61 660.0 2042
Ours 0.470 0.347 1.384 0.825 2.298 1.282 1.340 0.696 3.994 1.727 6.648 2.501

28
[1]H 33.22 78.67 298.8 734.6 833.7 2011 281.0 697.5 2528 4933 > 7000 > 104

[1]L 2.766 9.047 132.0 408.9 3520 11027 8.266 25.10 396.0 1225 > 104 > 104

Ours 7.518 3.732 22.14 9.029 36.75 14.96 21.44 7.930 63.90 22.28 106.4 36.99

212
[1]L 44.25 143.4 2112 6612 > 104 > 105 132.3 420.8 > 6000 > 104 > 105 > 105

Ours 120.2 53.74 354.1 151.1 588.0 253.2 343.0 128.9 1022 391.4 1702 644.1

216
[1]L 708.0 2401 > 104 > 105 > 105 > 106 2116 6796 > 104 > 105 > 106 > 106

Ours 1924 945.6 5665 2623 9408 4332 5488 2218 16358 6366 27228 10779

9 Conclusion

In this work, we abstract a new primitive called Fmap, which is a powerful tech-
nique for FPSI. Many existing FPSI protocols are based on Fmap and their com-
plexity bottlenecks mainly due to high expansion rate of their Fmap instances.
We give new constructions of Fmap with small expansion rate for Hamming and
Lp∈[1,∞] distances to break bottlenecks.

We report a generic construction of FPSI from Fmap, which leads to the
first FPSI for Hamming distance of which costs are strictly linear with m and n.
Meanwhile, we show a construction of mqFRPMT from sUFmap, an enhanced
Fmap. We propose an FPSI(-variants) framework from mqFRPMT. Using this
framework, we finally get FPSI for Lp∈[1,∞] distance of which costs scale linearly
with anyone of m, n, d, and δ for the first time.

Regarding future works, we present the following thoughts:

– The distinctiveness property of Fmap is intended to make subsequent OKVS
encoding possible, which seems unnatural. How to avoid the distinctiveness
property to gain a more general abstraction is an interesting question.

– Our FPSI for Lp∈[1,∞] distance uses R ∧ S. disj. proj., a stronger assumption
than R. disj. proj. of [1], to obtain optimal complexity. Is it possible to con-
struct a protocol under a more realistic assumption (i.e. something weaker
than R. disj. proj.) to achieve a near-linear asymptotic complexity and a prac-
tical efficiency comparable to the protocol in this work? Any relevant progress
would be quite valuable.

– All these protocols above are in the semi-honest setting. We leave the con-
struction of efficient FPSI protocols in the malicious setting as future work.

Acknowledgement. We thank all the anonymous reviewers for helpful feedback. This
work is supported by the National Key Research and Development Program of China
(2022YFB2701600).

66 Y. Gao et al.

References

1. van Baarsen, A., Pu, S.: Fuzzy private set intersection with large hyperballs. In:
Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp.
340–369. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-
3-031-58740-5_12

2. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-Optimal oblivious Key-Value
stores for efficient PSI, PSU and Volume-Hiding Multi-Maps. In: 32nd USENIX
Security Symposium (USENIX Security 23). pp. 301–318. USENIX Association,
Anaheim, CA (2023)

3. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Batch pir and labeled psi with obliv-
ious ciphertext compression. Cryptology ePrint Archive, Paper 2024/215 (2024),
https://eprint.iacr.org/2024/215

4. Chakraborti, A., Fanti, G., Reiter, M.K.: Distance-Aware private set intersec-
tion. In: 32nd USENIX Security Symposium (USENIX Security 23). pp. 319–336.
USENIX Association, Anaheim, CA (2023)

5. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1223–1237. CCS ’18,
Association for Computing Machinery, New York, NY, USA (2018). https://doi.
org/10.1145/3243734.3243836

6. Chen, Y., Zhang, M., Zhang, C., Dong, M., Liu, W.: Private set operations from
multi-query reverse private membership test. In: Tang, Q., Teague, V. (eds.)
Public-Key Cryptography – PKC 2024. pp. 387–416. Springer Nature Switzerland,
Cham (2024). https://doi.org/10.1007/978-3-031-57725-3_13

7. Chmielewski, L., Hoepman, J.H.: Fuzzy private matching (extended abstract). In:
2008 Third International Conference on Availability, Reliability and Security. pp.
327–334 (2008). https://doi.org/10.1109/ARES.2008.170

8. Chongchitmate, W., Lu, S., Ostrovsky, R.: Approximate psi with near-linear com-
munication. Cryptology ePrint Archive, Paper 2024/682 (2024), https://eprint.
iacr.org/2024/682

9. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from homomorphic encryption with reduced computation
and communication. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1135–1150. CCS ’21, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484760

10. Duong, T., Phan, D.H., Trieu, N.: Catalic: Delegated psi cardinality with applica-
tions to contact tracing. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology –
ASIACRYPT 2020. pp. 870–899. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4_29

11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) Advances in Cryptology - EURO-
CRYPT 2004. pp. 1–19. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_1

12. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Advances in Cryptology –
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part II. pp. 395–425. Springer-
Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-030-84245-1_14

https://doi.org/10.1007/978-3-031-58740-5_12
https://doi.org/10.1007/978-3-031-58740-5_12
https://eprint.iacr.org/2024/215
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1007/978-3-031-57725-3_13
https://doi.org/10.1109/ARES.2008.170
https://eprint.iacr.org/2024/682
https://eprint.iacr.org/2024/682
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-84245-1_14

Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 67

13. Garimella, G., Rosulek, M., Singh, J.: Structure-aware private set intersection,
with applications to fuzzy matching. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology – CRYPTO 2022. pp. 323–352. Springer Nature Switzerland, Cham
(2022). https://doi.org/10.1007/978-3-031-15802-5_12

14. Garimella, G., Rosulek, M., Singh, J.: Malicious secure, structure-aware private set
intersection. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023. pp. 577–610. Springer Nature Switzerland, Cham (2023). https://
doi.org/10.1007/978-3-031-38557-5_19

15. Indyk, P., Woodruff, D.: Polylogarithmic private approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. pp. 245–264.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11681878_13

16. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M.,
Shanahan, D., Yung, M.: On deploying secure computing: Private intersection-
sum-with-cardinality. In: 2020 IEEE European Symposium on Security and Pri-
vacy (EuroS&P). pp. 370–389 (2020). https://doi.org/10.1109/EuroSP48549.2020.
00031

17. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivi-
ous prf with applications to private set intersection. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp. 818–
829. CCS ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2976749.2978381

18. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawl-
ing. In: Proceedings of the 16th International Conference on World Wide Web. p.
141-150. WWW ’07, Association for Computing Machinery, New York, NY, USA
(2007). https://doi.org/10.1145/1242572.1242592

19. Mohammadi-Kambs, M., Hölz, K., Somoza, M.M., Ott, A.: Hamming distance
as a concept in dna molecular recognition. ACS Omega 2(4), 1302–1308 (2017).
https://doi.org/10.1021/acsomega.7b00053

20. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved Mixed-
Protocol secure Two-Party computation. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 2165–2182. USENIX Association (2021), https://www.
usenix.org/conference/usenixsecurity21/presentation/patra

21. Raghuraman, S., Rindal, P.: Blazing fast psi from improved okvs and subfield
vole. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2505–2517. CCS ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560658

22. Rindal, P., Schoppmann, P.: Vole-psi: Fast oprf and circuit-psi from vector-ole.
In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT
2021. pp. 901–930. Springer International Publishing, Cham (2021). https://doi.
org/10.1007/978-3-030-77886-6_31

23. Uzun, E., Chung, S.P., Kolesnikov, V., Boldyreva, A., Lee, W.: Fuzzy labeled pri-
vate set intersection with applications to private Real-Time biometric search. In:
30th USENIX Security Symposium (USENIX Security 21). pp. 911–928. USENIX
Association (2021)

24. Uzun, E., Yagemann, C., Chung, S., Kolesnikov, V., Lee, W.: Cryptographic key
derivation from biometric inferences for remote authentication. In: Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security. p.
629-643. ASIA CCS ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3433210.3437512

https://doi.org/10.1007/978-3-031-15802-5_12
https://doi.org/10.1007/978-3-031-38557-5_19
https://doi.org/10.1007/978-3-031-38557-5_19
https://doi.org/10.1007/11681878_13
https://doi.org/10.1007/11681878_13
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/1242572.1242592
https://doi.org/10.1021/acsomega.7b00053
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1145/3433210.3437512

68 Y. Gao et al.

25. Wu, M., Yuen, T.H.: Efficient unbalanced private set intersection cardinality and
user-friendly privacy-preserving contact tracing. In: 32nd USENIX Security Sym-
posium (USENIX Security 23). pp. 283–300. USENIX Association, Anaheim, CA
(2023)

26. Ye, Q., Steinfeld, R., Pieprzyk, J., Wang, H.: Efficient fuzzy matching and inter-
section on private datasets. In: Lee, D., Hong, S. (eds.) Information, Security and
Cryptology – ICISC 2009. pp. 211–228. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14423-3_15

https://doi.org/10.1007/978-3-642-14423-3_15

FOLEAGE: F4OLE-Based Multi-party
Computation for Boolean Circuits

Maxime Bombar1,2(B), Dung Bui3, Geoffroy Couteau4, Alain Couvreur5,
Clément Ducros6, and Sacha Servan-Schreiber7

1 Cryptology Group, CWI, Amsterdam, The Netherlands
maxime.bombar@cwi.nl

2 Institut de Mathématiques de Bordeaux, Bordeaux, France
3 IRIF, Université Paris Cité, Paris, France

bui@irif.fr
4 CNRS, IRIF, Université Paris Cité, Paris, France

couteau@irif.fr
5 INRIA, Laboratoire LIX, École Polytechnique, Institut Polytechnique de Paris,

Palaiseau, France
alain.couvreur@inria.fr

6 IRIF, Université Paris Cité, INRIA, Paris, France
cducros@irif.fr

7 MIT, Cambridge, MA, USA
3s@mit.edu

Abstract. Secure Multi-party Computation (MPC) allows two or more
parties to compute any public function over their privately-held inputs,
without revealing any information beyond the result of the computation.
Modern protocols for MPC generate a large amount of input-independent
preprocessing material called multiplication triples, in an offline phase.
This preprocessing can later be used by the parties to efficiently instan-
tiate an input-dependent online phase computing the function.

To date, the state-of-the-art secure multi-party computation protocols
in the preprocessing model are tailored to secure computation of arith-
metic circuits over large fields and require little communication in the
preprocessing phase, typically O(N · m) to generate m triples among N
parties. In contrast, when it comes to computing preprocessing for com-
putations that are naturally represented as Boolean circuits, the state-
of-the-art techniques have not evolved since the 1980s, and in particular,
require every pair of parties to execute a large number of oblivious trans-
fers before interacting to convert them to N -party triples, which induces
an Ω(N2 · m) communication overhead.

In this paper, we introduce F4OLEAGE, which addresses this gap by
introducing an efficient preprocessing protocol tailored toBoolean circuits,
with semi-honest security and tolerating N −1 corruptions. F4OLEAGE has
excellent concrete performance: It generates m multiplication triples over
F2 using only N · m+O(N2 · logm) bits of communication for N -parties,
and can concretely produce over 12 million triples per second in the 2-
party setting on one core of a commodity machine. Our result builds upon
an efficient Pseudorandom Correlation Generator (PCG) for multiplica-

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 69–101, 2025.
https://doi.org/10.1007/978-981-96-0938-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_3&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_3

70 M. Bombar et al.

tion triples over the field F4. Roughly speaking, a PCG enables parties to
stretch a short seed into a large number of pseudorandom correlations non-
interactively, which greatly improves the efficiency of the offline phase in
MPC protocols. This is achieved by introducing a number of protocol-level,
algorithmic-level, and implementation-level optimizations on the recent
PCG construction of Bombar et al. (Crypto 2023) from the Quasi-Abelian
Syndrome Decoding assumption.

1 Introduction

A secure multiparty computation (MPC) protocol for a public functional-
ity f allows N parties with private inputs (x1, · · · , xN) to securely compute
f(x1, · · · , xN), while concealing all other information about their private inputs
to coalitions of corrupted parties. MPC was introduced in the seminal work of
Goldreich, Micali, and Wigderson [29] (GMW), and has since led to a rich body
of work developing the foundations of MPC, and even practical open-source
libraries [34].

Two of the leading paradigms in secure computation are garbled circuits [45]
and secret-sharing-based secure computation [29]. The seminal GMW protocol
is of the latter type. In a secret-sharing-based MPC protocol, the parties hold
shares of the inputs and iteratively compute the circuit representing the function,
gate-by-gate. Because addition gates can be computed locally by the parties
holding the input shares, only multiplication gates require interaction between
the parties to evaluate. As such, the major bottleneck of MPC protocols is due
to the communication required to evaluate the multiplication gates in a circuit.
(Note that this is also true of the garbled circuit approach where addition gates
are “free” and only multiplication gates need to be garbled [37]).

However, a core advantage of secret-sharing-based MPC, first identified in
the work of Beaver [5], is that secure multiplications can be preprocessed in an
input-independent precomputation phase. In particular, the parties can securely
generate additive shares of many “Beaver triples” (a, b, a · b) ∈ F

3. Then, for
each multiplication gate that needs to be computed in the online phase, the
parties can run a fast information-theoretically secure multiplication protocol
that consumes one Beaver triple and involves communicating just two elements of
F per party. This model of secure computation with preprocessing forms the basis
for modern MPC protocols due to the efficiency of the online phase. However,
this preprocessing paradigm only serves to push the inefficiency bottleneck of
MPC to the offline phase that consists of generating many Beaver triples. We
briefly survey the different techniques that have been developed in the last couple
of decades for the efficient generation of Beaver triples in an MPC setting.

Modern Secure Computation Protocols. The traditional approach for
securely generating Beaver triples relies on Oblivious Transfers (OT) [25,40]:
an N -party Beaver triple over F is generated by letting each pair of parties exe-
cute log |F| oblivious transfers [26], and thanks to OT extension protocols [6,33],
generating a large number of OTs requires only cheap symmetric-key operations.
This OT-based approach is very competitive with a small number of parties, but

FOLEAGE 71

becomes very inefficient with many parties. Specifically, because each pair of par-
ties needs to perform OTs, the communication and computation costs are on the
order of Ω(N2), which quickly becomes impractical as N grows large.

Over the past decade, the practicality of secure computation has increased
tremendously [22,23,31,34–36]. This is especially true in the setting of secure
computation of arithmetic circuits over large fields. Starting with the celebrated
SPDZ protocol [23], a sequence of works has developed fast protocols that use
Ring-LWE-based somewhat homomorphic encryption, or even linearly homo-
morphic encryption, to generate m Beaver triples with only O(m ·N) communi-
cation and computation per triple. These approaches significantly improve over
the “naïve” Ω(m · N2) cost of the OT-based approach. Over sufficiently large
fields (e.g., larger than 2λ), when generating many triples, state-of-the-art pro-
tocols such as Overdrive [36] achieve very good concrete efficiency.

More recently, following the line of work on silent secure computation initi-
ated in [9,11,12], Boyle et al. [14] have shown how to generate a large number m
of pseudorandom (as opposed to truly random) Beaver triples under the Ring-
LPN assumption. Their approach uses O(logm · N2) communication, followed
solely by local computation, with good concrete efficiency (the authors estimated
a throughput of around 105 triples per second on one core of a standard lap-
top). For sufficiently large values of m, this is highly competitive with Overdrive.
However, both Overdrive and the existing PCG-based approach share a common
restriction: they are only usable over large fields.

Secure Computation of Boolean Circuits. In contrast to the secure compu-
tation of arithmetic circuits over large fields, the fastest way to run N -party MPC
protocols for Boolean circuits remains the “naïve” method of generating many
pairwise OTs, at a cost of Ω(m · N2) bits for m Beaver triples. This is in con-
trast to the two-party setting, where two-party Beaver triples can be generated
very efficiently thanks to a recent line of work [9,11,12] on silent OT extension.
In silent OT extension, two parties can generate m Beaver triples using only
O(logm) communication. The state-of-the-art protocols in this area [10,21,41]
achieve impressive throughputs of several million Beaver triples per second on
one core of a standard laptop. Furthermore, the recent SoftSpoken OT extension
protocol [43] yields even faster OTs at the cost of increasing communication. For
example, SoftSpoken can generate nearly 30M OT/s on localhost at the cost
of increasing the communication to 64m bits to generate m Beaver triples; other
communication/computation tradeoffs are possible [43, Table 1].1

The situation, however, is much less satisfying for the setting of secure com-
putation of Boolean circuits with a larger number of parties. Protocols such as
SPDZ [23] and Overdrive [36] do not perform well when generating Beaver triples
for Boolean circuits, even in the passive setting. This is due to the high overhead
of embedding F2 in an extension field compatible with the number theoretic-
transform used in efficient instantiations of the BGV encryption scheme [17].
Furthermore, silent OT extension techniques build on Pseudorandom Correla-
tion Generators (PCGs), which typically work only in the two-party setting [12].
1 Note that we need two calls to the OT functionality to generate one Beaver triple.

72 M. Bombar et al.

To handle more parties, one needs the stronger notion of programmable PCG [14],
which, informally, allows partially specifying parts of the generated correlation.
Unfortunately, while efficient programmable PCGs over large fields were intro-
duced in [14], building concretely efficient, programmable PCGs over F2 has
remained elusive thus far, making N -party PCGs for F2 primarily of theoretical
interest. The state-of-the-art is the recent work of Bombar et al. [8], which gen-
erates Beaver triples over any field Fq with q ≥ 3. However, Bombar et al. [8]
leave analyzing the concrete efficiency for future work.

In light of this state of affairs, to the best of our knowledge, the current most
efficient approach for N -party secure computation of Boolean circuits remains
the classical OT-based approach. In a little more detail, to generate each Beaver
triple, each party Pi samples a random pair (ai, bi) of bits, and each pair (Pi, Pj)
of parties executes two oblivious transfer protocols to generate additive shares
of aibj and ajbi. Then, all parties aggregate their shares to obtain shares of∑

i,j aibj = (
∑

i ai) · (∑j bj). When generating m Beaver triples, this app-
roach requires N · (N − 1) · m oblivious transfers in total (to be compared with
the O(N2 · logm) communication of [14], or the O(N · m) communication of
Overdrive [36], for the case of arithmetic circuits over large fields). While there
has been tremendous progress in constructing efficient OT protocols [33,43],
even using silent OT extension (which has the lower communication overhead)
requires 3N · (N − 1) · m bits of communication (ignoring some o(m) terms).
Using SoftSpoken OT [43] instead, which appears to be the most computation-
ally efficient solution, and setting the “communication/computation tradeoff”
parameter k to k = 5, the communication increases to 32N · (N − 1) · m bits.
When the number of parties grows, this soon becomes very inefficient.2

1.1 Our Focus and Contributions

In this paper, we focus on secure computation of general Boolean circuits with
multiple parties in the semi-honest setting. Our main contribution is F4OLEAGE,
a novel F4-OLE-based protocol for secure computation in the preprocessing model
that significantly outperforms the state-of-the-art approach in both the two-party
and multi-party setting. In particular, F4OLEAGE enjoys much lower communi-
cation in the preprocessing phase than all known alternatives and has a very low
computational overhead. We expect F4OLEAGE to be the fastest alternative for
large enough circuits on almost any realistic network setting, for any number of
parties between two and several hundred. F4OLEAGE builds upon recent results
constructing efficient PCGs and introduces several protocol-level, algorithmic-
level, and implementation-level optimizations to make these PCG constructions
blazing fast (see Sect. 5 for a performance evaluation).

In the Two-Party Setting. (N = 2), F4OLEAGE enjoys a silent preprocess-
ing (generating m multiplication triples requires O(logm) communication), and

2 For a very large number of parties, the linear scaling in N of Overdrive should become
favorable. However, after private communication with the authors of Overdrive, the
break-even point for communication seems to happen only for values of N in the
range of 400+, due to the high overhead of using BGV and embedding F2 elements.

FOLEAGE 73

significantly outperforms all previous silent protocols. In particular, our imple-
mentation generates around 12.3 million Beaver triples per second on one core
of an Amazon c5.metal server. Compare this to the state-of-the-art silent OT
protocol RRT [41] which generates 3.4 million Beaver triples per second with the
same setup. This makes RRT more than 3.5 times slower compared to F4OLEAGE.
The fastest non-silent OT protocol, SoftSpoken OT, generates around 26 mil-
lion multiplication triples per second on localhost in its fastest regime (using
k = 2 [43, Table 1]), while requiring around 128 · m bits of total communication.
However, while our approach does achieve a blazing-fast throughput, it has some
limitations. In particular, the preprocessing phase of F4OLEAGE requires more
rounds (16 rounds instead of 3 for generating 26M triples compared to [43]).
Additionally, our seed size is roughly 130× larger compared to [41], and 2×
larger compared to [14]. This makes F4OLEAGE less suitable for generating a
small number of triples. Eventually, our protocols are tailored to the generation
of multiplication triples over F2 in the semi-honest setting: their efficiency scales
less favorably in other settings, such as generating string OTs or authenticated
triples.

In the Multi-party Setting. (N > 2), F4OLEAGE achieves almost-silent pre-
processing: to securely compute a circuit with m AND gates, following a silent
phase with O(N2 · logm) communication, our preprocessing phase requires a
single broadcast of N · m bits (one bit per AND gate and per party), and the
online phase is the standard GMW protocol. As N grows, this represents a
drastic reduction in communication compared to the ∼ 3 · N2m communication
obtained when using silent OT extension, or the ∼ 32 · N2m communication
obtained with SoftSpoken OT, while remaining highly competitive in terms of
computation.

Comparison with the State of the Art. In Table 1, we provide a comparison
between F4OLEAGE, SoftSpoken, and RRT, for N = 10 and N = 2 parties. In the
multiparty setting, due to the very low bandwidth requirement of F4OLEAGE, we
observe that computation is systematically the bottleneck when evaluated on one
core of a commodity server. This indicates that F4OLEAGE is likely to stand out
even more whenever more computational power is available, e.g., when evaluated
in parallel on multiple cores.

The numbers in Table 1 have been computed using the running time T mea-
sured for generating 316 OLEs (Table 4, using the noise parameter t = 27 and
c = 3) on one core of AWS c5.metal, and estimating the per-party cost to
generate 109 N -party Beaver triples as 2 · (N − 1) · T · (109/316). When N = 2,
the cost is estimated as T · (109/316), accounting for the factor-2 saving tailored
to the 2-party setting. For communication, we computed an estimate of C =
13MB of communication for our distributed protocol for generating a seed for
318 OLEs. While one could in principle directly generate a seed that stretches to
109 OLEs, this would significantly slow down the computation as the 109 OLEs
must be expanded all at once, and would not fit in memory. Hence, we estimate
the communication as 2 ·(N −1) ·(318/109) ·C for generating 109 N -party Beaver

74 M. Bombar et al.

Table 1. Comparison of state-of-the-art protocols to generate N -party Beaver triples
over F2 for N = 10 and N = 2 parties. The localhost column reports the runtimes
(ignoring communication) for generating 109 triples. All protocols run on one core of
AWS c5.metal (3.4GHz CPU); all runtimes averaged across ten trials. “Communica-
tion” denotes the number of bits communicated per party for 109 triples. LAN and
WAN refer to the theoretical time required to generate 109 triples over a 1 Gbps and
100 Mbps network respectively, with respective delays 1ms and 40ms. Numbers in bold
red indicate that the bottleneck cost is the local computation. ∗Maximum theoretical
throughput with more computational power (e.g., using multiple cores). Since each
party computes 2 · (N − 1) expansions for the PCG in parallel for an N -party Beaver
triple, the running time is divided by C when using C cores whenever C ≤ 2 · (N − 1).

Communication localhost LAN WAN
Multi-party setting (N = 10)

SoftSpoken (k = 2) 134 GB 342s 1192s 12207s
SoftSpoken (k = 4) 67 GB 405s 596s 6104s
SoftSpoken (k = 8) 34 GB 1900s 1900s 3052s

∗298s
RRT 6.3 GB 2619s 2619s 2619s

∗50.3s ∗515s
F4OLEAGE 0.7 GB 1463s 1463s 1463s

∗5.6s ∗57.9s

Two-party setting (N = 2)

SoftSpoken (k = 2) 15 GB 38s 119s 1221s
SoftSpoken (k = 4) 7.5 GB 45s 60s 610s
SoftSpoken (k = 8) 3.7 GB 211s 211s 211s
RRT 258 KB 292s 292s 292s
F4OLEAGE 33.5 MB 81s 81s 81s

triples (as 318 OLEs is the maximum expansion size we could fit in the memory),
and an additional 109 bits of communication per party (in the setting N > 2).

Security. The security of F4OLEAGE relies on the Quasi-Abelian Syndrome
Decoding (QA-SD) assumption, a variant of the syndrome decoding assumption
that was recently introduced in [8]. QA-SD is a generalization of the standard
quasi-cyclic syndrome decoding assumption (used in many previous works [1–
3,11]) which was shown to asymptotically resist all known attacks against LPN
and syndrome decoding in [8]. As a contribution of independent interest, we
complement their preliminary analysis with thorough concrete cryptanalysis of
the security of QA-SD against all state-of-the-art attacks. Our analysis covers in
full detail the distribution of the noisy coordinates under folding attacks and the
cost of attacking folded QA-SD instances using tailored Information Set Decod-
ing (ISD) algorithms over F4. We include the SageMath script used to select our

FOLEAGE 75

parameters from this analysis. As a byproduct, our precise analysis yields an
attack undermining the claimed security of the parameters from [8]. Specifically,
with our attack and a set of parameters c = 4, t = 16 (see the full version for
details), [8] can only achieve a security level of 118 bits instead of 128 bits. This
could probably be improved.

Implementation. We provide an open-source prototype implementation of our
PCG construction in C. Our implementation is covered in detail in Sect. 5. It
includes, in particular, a new implementation of distributed point functions that
work with a ternary input domain (providing faster evaluation at a slightly
increased key size), and optimized FFT over F4. We cover all these contributions
in more detail in Sect. 2.

An Alternative Approach. Our construction is not the only way of gener-
ating F2-Beaver triples. We note here that one could make use of the so-called
Reverse Multiplication Friendly Embeddings (RMFE), as introduced in [18] to
turn Beaver triples over a large field F2m into Beaver triples over F2. We briefly
remark on why such an approach will be considerably less efficient than ours,
while still relying on similar LPN-style assumptions. More precisely, a (k,m)-
RMFE is a pair of maps (φ, ψ) with φ : Fk

2 → F2m and ψ : F2m → F
k
2 such that for

any x,y ∈ F
k
2 , we have x�y = ψ(φ(x)φ(y)), where � denotes the component-wise

product. Using parameters from [18, Remark 7], there exist a (12, 33)-RMFE.
Now, let us assume that the parties want to generate s Beaver triples over F2

(where s < 12 × 233 using their parameters). They can proceed as follows:

1. First, the parties use a programmable PCG for OLEs over large fields to
generate s/12 random Beaver triples over F233 . Note that s/12 < 233.

2. Second, for each triple (a, b, c), the participant locally sample random ele-
ments seen as shares of random u,v ∈ F

12
2 , and locally apply φ to get shares

of φ(u) and φ(v).
3. The parties consume (a, b, c) to reconstruct a + φ(u) and b + ψ(v), and then

locally get additive shares of φ(u) · φ(v).
4. Finally, the parties can locally apply ψ to get shares of u � v.

This approach produces k = 12 times as many random Beaver triples over F2

as triples originally generated over F233 . However, Step 3 communicates two
elements of F233 . In other words, this approach requires on average 66/12 = 5.5
times more communication than F4OLEAGE in the offline phase.

The cost of computation is not clear since there is no implementation of a
PCG for OLEs over F233 . But assuming that a suitable multiplication algorithm
is designed, and using the numbers from [14], a ballpark estimate would be
around 100k OLEs per second. In the two party setting, this amounts to 50k ×
12 = 600k Beaver triples over F2, which is likely to be an overestimate. Overall,
this makes F4OLEAGE at least concretely 20 times faster.

Full Version of this Work. More technical details are provided in the full
version of the paper [7].

76 M. Bombar et al.

2 Technical Overview

In this section, we provide a detailed description of our results and the main
technical ideas underlying them. In Sect. 2.1, we provide background on secure
multi-party computation realized from PCGs for OLE correlations. In Sect. 2.2
we describe the PCG construction of [8], which forms the basis for our pre-
processing protocol. In Sect. 2.3, we describe our idea for converting F4 triples
into F2 triples, which we tailor to the two-party case in Sect. 2.4. In Sect. 2.5,
we describe our optimized PCG construction. In Sect. 2.6, we explain how we
can obtain an efficient distributed seed generation protocol for our PCG con-
struction. Finally, in Sect. 2.7, we overview our improved analysis of the QA-SD
assumption.

Notations. Unless otherwise stated, an N -party linear secret shares of a value
v is denoted [[v]] = ([[v]]1, . . . , [[v]]N), where the i-th party obtains share [[v]]i. To
disambiguate shares over F4 and shares over F2, we denote the field size with
a superscript, i.e., [[·]]4 and [[·]]2, respectively. We identify F4 with F2[X]/(X2 +
X+1) and let θ denote a primitive root of X2+X+1. Given an element x ∈ F4,
we write x(0) and x(1) to denote the F2-coefficients of x viewed as a polynomial
over F2[X]/(X2 + X + 1); that is, x = x(0) + θ · x(1). Additional notation can
be found in Sect. 3.

2.1 Background: Secure MPC from PCGs

We start by describing prior approaches to realizing MPC in the preprocessing
model from PCGs for OLE correlations.

PCGs for the OLE Correlation. Our starting point is the template for gen-
erating N -party pseudorandom Beaver triples put forth by Boyle et al. [14]. At
the heart of their framework is the use of a programmable PCG [14] for the OLE
correlation. Concretely, a PCG for a target correlation C (i.e., a distribution over
pairs of strings) is a pair of algorithms (PCG.Gen,PCG.Eval) such that

– PCG.Gen generates a pair of succinct keys (k0, k1) jointly encoding the target
correlation, and

– PCG.Expand(σ, kσ) produces a string Rσ corresponding to party σ’s secret
share of the target correlation.

At a high level, a PCG must satisfy two properties: (1) pseudorandomness (or
correctness) which states that (R0, R1) must be indistinguishable from a random
sample from C, and (2) security which states that Rσ should appear random
conditioned on satisfying the target correlation with R1−σ = PCG.Expand(1 −
σ, k1−σ) even given k1−σ, for σ ∈ {0, 1}.

We focus on the OLE correlation over a finite field F. For a length-m OLE
correlation, the string R0 (which we call the sender output) is a list of m tuples
(ui, vi)i≤m ∈ (F2)m, and the string R1 (which we call the receiver output) is a
list of m pairs (xi, wi)i≤m ∈ (F2)m such that wi = ui ·xi+vi for every i. Observe

FOLEAGE 77

that, we can equivalently view vi and −wi as additive shares of ui ·xi, which we
will denote as [[ui · xi]]. Informally, security for the OLE correlation amounts to
showing that the following two properties hold:

– Sender security: from the viewpoint of the receiver (who has k1 and gener-
ates (xi, wi)), the distribution of (ui, vi) is computationally indistinguishable
from the distribution of (ui, wi − ui · xi), for a uniformly random ui ←R F.

– Receiver security: from the viewpoint of the sender (who has k0), the
distribution of each xi is computationally indistinguishable from a random
field element.

Going from OLE to Beaver Triples. As shown in [12], given a PCG for
the OLE correlation (or a PCG for OLE for short), two parties can generate
many pseudorandom Beaver triples over F as follows. First, the parties compute
PCG.Gen via a two-party secure computation protocol to obtain PCG keys k0
and k1, respectively. Then, using PCG.Expand, the two parties locally obtain
many correlations of the form (ui, [[uixi]]0) and (xi, [[uixi]]1), respectively. Given
two such OLE correlations, where one party has (u0, u1, [[u0x0]]0, [[u1x1]]0) and
the other party has (x0, x1, [[u0x0]]1, [[u1x1]]1), the two parties can locally derive
one Beaver triple of the form ([[a]], [[b]], [[ab]]) by computing:

([[u0 + x1]]
[[a]]

, [[u1 + x0]]
[[b]]

, [[u0x0 + u1x1]] + u0u1 + x0x1 = [[(u0 + x1) · (u1 + x0)]]
[[ab]]

).

In a little more detail, the sender computes their share of the Beaver triple
as (u0, u1, [[u0x0]]0 + [[u1x1]]0 + u0u1) and the receiver computes their share as
(x1, x0, [[u0x0]]1 + [[u1x1]]1 + x0x1). While this technique works well in the two-
party setting, in the multi -party setting, things are not so simple.

Going from Two Parties to Many Parties. As first discussed by Boyle et
al. [14], to generate N -party Beaver triples using a PCG for OLE, the parties
need to ensure consistency among the OLE correlations generated by each pair
of parties. That is, to generate one multiplication triple ([[a]], [[b]], [[ab]]), we need
each pair of parties (Pi, Pj) to hold respective values (ai, bi) and (aj , bj) (viewed
as an individual share of a and b), together with two-party shares [[aibj]] and
[[ajbi]]. Then, all parties can combine their shares to get

[[(
∑

i ai) · (∑j bj)]] =
∑

i�=j [[aibj]] +
∑

i aibi.

Observe that this requires party Pi to have OLEs of the form (ai, [[aiaj]]i), with
every other party Pj (who in turn has share (aj , [[aiaj]]j)), where Pj’s value ai

remains the same across all OLEs. This is precisely what the notion of a pro-
grammable PCG for OLE achieves: it allows the parties to specify seeds (ρ0, ρ1)
such that PCG.Gen(ρ0, ρ1) outputs keys k0, k1 that, informally speaking, have all
the pseudorandom (ai, bi) deterministically generated from the seeds ρ0 and ρ1
respectively (while still maintaining the required security properties). By reusing
the same seeds across executions with multiple parties, the parties can ensure
the required consistency across their outputs.

78 M. Bombar et al.

2.2 Constructing Programmable PCGs

In addition to defining the notion of programmable PCGs, the work of Boyle
et al. [12,14] introduced a construction from a variant of the LPN assumption
over rings. At a high level, the ring-LPN assumption they introduce states that
(a, as + e) is hard to distinguish from (a, b), where a, b are random polynomials
from a suitable ring R = Fq[X]/(P (X)), where P splits into deg(P) linear factors
and s, e are random sparse polynomials from R. The construction of Boyle et
al. proceeds by generating a single large pseudorandom OLE correlation over
a polynomial ring R = Fq[X]/(P (X)), assuming the hardness of the ring-LPN
assumption over R. When P splits into D = deg(P) linear factors, the Chinese
Remainder Theorem makes it possible to convert this large OLE correlation over
R into D OLE correlations over Fq (by reducing it modulo each of the factors of
P). Unfortunately, the condition that P splits requires |Fq| ≥ D, which restricts
the construction to only work over large fields. This makes the resulting OLE
correlations only suitable for generating Beaver triples over Fq, which limits
their applications. Moreover, other existing efficient (non-PCG-based) protocols
for generating Beaver triples are also restricted to large fields [23,36]. However,
for the Boolean circuit case, the state-of-the-art remains the basic OT-based
approach originally proposed in the GMW protocol.

A Programmable PCG for F4-OLE. The large-field restriction of the Boyle
et al.’s PCG construction was recently overcome by Bombar et al. [8]. At a high-
level, the authors of [8] manage to replace the polynomial ring R by a suitable
Abelian group algebra F[G] (that is, the set of formal sums

∑
g∈G

agg for ag ∈ F,
where G is an Abelian group; endowed with the convolution product), which
identifies to some ring of multivariate polynomials. Moreover, they show that
an appropriate choice of Abelian group algebra can simultaneously satisfy the
following properties, for almost every choice of finite field F:

1. F[G] is isomorphic to many copies of F (note that this property is necessary
to convert an OLE correlation over F[G] into many OLEs over F),

2. The assumption that (a, as+e) is indistinguishable from random over F[G]×
F[G], with a

$← F[G] and (s, e) two random sparse elements of F[G] (with
respect to the canonical notion of sparsity over the group algebra, i.e., sparse
formal sums

∑
g∈G

agg) is a plausible assumption,
3. Operations over F[G] can be computed efficiently using a Fast Fourier Trans-

form (FFT) algorithm [8,38].

The second property is a new variant of the syndrome decoding (or LPN)
assumption which the authors called Quasi-Abelian Syndrome Decoding. It
naturally extends to a “module”-variant, i.e., the indistinguishability of pairs
(a, 〈a, s〉 + e) where s and e are drawn from a sparse distribution, and general-
izes both the quasi-cyclic syndrome decoding (when G is a cyclic group), and the
LPN or syndrome decoding assumption (when G = {1}). The work of Bombar
et al. [8] also provides extensive support for this assumption by showing that it
resists all linear attacks, a class of attacks capturing the most known attacks on

FOLEAGE 79

the LPN assumption and its variants, and proposes a set of parameters resist-
ing all concrete attacks known at that time. The combination of these three
properties allowed them to build an efficient programmable PCG for OLEs over
F.

Despite the progress made in [8], their programmable PCG construction is
limited in that it applies only to generating OLE correlations over all finite fields
F except for F2. This stems from the fact that there does not exist any group G

such that F2[G] is isomorphic to F
n
2 for n > 1 (see [8, Theorem 47]). In contrast,

the case of F2, is precisely the case that we are interested in when considering
Boolean circuits, which require generating Beaver triples over F2.

Additionally, the concrete efficiency of an FFT computed over the group alge-
bra remains unclear, since Bombar et al. left estimating the performance of FFTs
on F[G] for future work. As such, the concrete efficiency of their programmable
PCG construction is unknown, making it difficult to determine whether or not
it is sufficiently efficient to be applied in practical applications (all other compo-
nents of their construction consist of standard tools used in the PCG literature,
which are known to have concretely efficient implementations).

Our Contribution. Looking ahead, our main contribution is to build upon the
work of Bombar et al. through a number of simple yet powerful observations
that allow us to arrive at an efficient PCG for Beaver triples, suitable for use in
secure multi-party computation of Boolean circuits.

– First, we show that we can use their programmable PCG for generating OLEs
over F4 to generate multiplication triples over F2, sidestepping the “F2 bar-
rier” of their PCG construction, at the cost of a single bit of communication
per triple and per party in the preprocessing phase, or even without any
communication when N = 2.

– Second, we introduce a number of concrete optimizations to the PCG con-
struction of Bombar et al. [8] that are tailored to the special case of F = F4,
which gives us an incredibly efficient programmable PCG over F4. Compared
with the fastest previous programmable PCGs of [14], our optimized imple-
mentation shows that our construction is two orders of magnitude faster.

– Third, we give a much more in-depth cryptanalysis of the QA-SD assumption,
closely analyzing all known attacks in the literature, and showing that the
set of parameters proposed in [8] should be reduced by at least 10 bits. To
facilitate future cryptanalysis of the QA-SD assumption, in the full version [7]
we carefully overview all known attacks and assumptions, and provide a script
for automatically calculating parameters.

In the next few subsections, we provide more details on the above contributions.

2.3 F2-Triples from F4-Triples

Since F4 is an extension field of F2, a Boolean circuit can be viewed as an F4-
arithmetic circuit. Hence, using an OLE correlation over F4 to construct N -party
Beaver triples over F4 directly yields an MPC protocol for Boolean circuits in

80 M. Bombar et al.

the preprocessing model via the GMW template [29]. Unfortunately, compared
to using F2-Beaver triples, the communication in the online phase is doubled,
because each party has to send two elements of F4 per AND gate, hence 4 bits
instead of 2 with GMW.

Our core observation is that one can make much better use of these N -party
multiplication triples over F4: we show how to convert an F4-multiplication triple
into an F2-multiplication triple using a single bit of communication per party.
Once converted into F2-triples, these triples can be used within the standard
GMW protocol that communicates two bits per party and per AND gate in
the online phase. To explain the observation, let ([[a]]4, [[b]]4, [[ab]]4) be a Beaver
triple over F4. Writing x = x(0) + θ · x(1) for any x ∈ F4, with θ a root of the
polynomial X2 + X + 1 (hence θ2 = θ + 1), we have

a · b =a(0)b(0) + a(1)b(1) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1))
=⇒ (ab)(0) = a(0)b(0) + a(1)b(1).

Now, assume that the parties reconstruct b(1), which can be done using a
single bit of communication per party from their shares [[b]]4 = [[b(0)]]2+θ·[[b(1)]]2.
Given b(1), the parties can locally compute shares of a(0)b(0) as follows:

[[a(0)b(0)]]2 = [[ab]]4(0) + b(1) · [[a]]4(1).
Therefore, all parties output ([[a(0)]]2, [[b(0)]]2, [[ab]]4(0)+ b(1) · [[a]]4(1)), which

forms a valid Beaver triple over F2. Security is straightforward: the only com-
munication between the parties is the reconstruction of b(1), which is a uni-
formly random bit independent of a(0), b(0). From there, one immediately gets
an improved protocol in the preprocessing model: in the preprocessing phase,
given one F4-Beaver triple for each AND gate of the circuit, the parties broad-
cast one bit per gate, and then locally derive the F2-Beaver triples. In the online
phase, the parties run the standard GMW protocol. We refer the reader to the
full version [7] of for the formal statement of this optimization.

2.4 An Improved Protocol from F4-OLEs for N = 2

In the setting of N = 2 parties, we obtain a much more efficient alternative:
we observe that two parties can directly convert a single OLE over F4 into a
Beaver triple over F2. (In contrast, recall that the standard approach requires
two oblivious transfers for each triple.) We consider two parties, Alice and Bob,
holding respectively (a, [[ab]]4A) and (b, [[ab]]4B) for a and b ∈ F4. We have

a · b = [[ab]]4A(0) + [[ab]]4B(0) + θ · ([[ab]]4A(1) + [[ab]]4B(1))
= (a(0)b(0) + a(1)b(1)) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1)),

where θ is the primitive root of X2 +X +1. Considering only the (a · b)(0) term
from the above equation (i.e., the parts not multiplied by θ), we get that

(a · b)(0) = [[ab]]4A(0) + [[ab]]4B(0) = a(0)b(0) + a(1)b(1), and therefore,

FOLEAGE 81

a(0)a(1) + [[ab]]4A(0)
known by A

+ b(0)b(1) + [[ab]]4B(0)
known by B

= (a(0) + b(1))
shared by A,B

· (a(1) + b(0))
shared by A,B

.

Above, the values a(0)a(1) + [[ab]]4A(0) (known by Alice) and b(0)b(1) +
[[ab]]4B(0) (known by Bob) form additive shares of the product (a(0) + b(1)) ·
(a(1) + b(0)), which Alice and Bob hold additive shares of. It is also easy to
check that if the input is a random F4-OLE, the output is a random multiplica-
tion triple over F2. Therefore, following the local conversion procedure outlined
above, Alice and Bob can transform a random F4-OLE instance into a random
Beaver over F2 without having to communicate. We refer the reader to the full-
version [7] for the formal statement of this optimization.

2.5 A Fast Programmable PCG for F4-OLEs

In light of the above observations, the only missing piece of the puzzle is an
efficient way of generating a large number of F4-OLEs. In the N > 2 setting,
if the OLEs are additionally programmable, the parties can afterward locally
convert N · (N − 1) F4-OLE instances into an F4-Beaver triples.

Here, we build on the recent general programmable PCG construction of [8].
Because we are targeting OLEs over F4, we set the group G to F

n
3 , and the

underlying group algebra becomes isomorphic to

F4[G]
 F4[X1, . . . , Xn]/(X3
1 − 1, . . . , X3

n − 1)
 F
3n

4 .

Before delving into the optimizations we develop for their construction, we
describe the high-level ideas and main building blocks behind the PCG construc-
tion of Bombar et al. [8] when instantiated over F4.

The PCG Construction of Bombar et al. As with previous constructions of
PCGs [9,12], the construction of Bombar et al. uses Distributed Point Functions
(DPF) [15,16,27] as a core building block. Informally, a DPF with domain [D]
allows a dealer to succinctly secret share a unit vector over [D]. The most efficient
DPFs have shares of size roughly λ · logD [16], for some security parameter λ,
and the cost of decompressing the shares is dominated by D calls to a length-
doubling pseudorandom generator.

Public Parameters. For a fixed compression factor c (typically a small constant,
e.g., c = 3) and noise parameter t (e.g., t = 27), the public parameters contain
a length-c vector a of n-variate polynomials.

Distributing PCG Seeds. In their construction, PCG.Gen does the following:

– it samples two length-c vectors (e0, e1) of t-sparse polynomials over F4[G];
– outputs keys (k0, k1) that contain e0 and e1, respectively, as well as succinct

shares of e0 ⊗ e1, encoded using a DPF.

82 M. Bombar et al.

The tensor product e0⊗e1 contains c2 polynomials, each with at most t2 nonzero
coordinates. Hence, the vectors of coefficients of all polynomials in e0⊗e1 can be
succinctly secret shared using (ct)2 DPFs with domain 3n, which requires roughly
(ct)2 · λ log(3n) bits using the state-of-the-art DPF constructions [15,16].3

Generating Correlations. To output a vector of OLE correlations, PCG.Eval pro-
ceeds as follows for party 0 (the evaluation for party 1 is similar):

– evaluate all the DPFs to obtain a secret share of [[e0 ⊗ e1]]0;
– set x0 ← 〈a, e0〉 and z0 ← 〈a ⊗ a, [[e0 ⊗ e1]]0〉; � Note: z0 = [[〈a ⊗ a, e0 ⊗ e1〉]]0
– using the isomorphism F4[G]
 F

3n

4 , project (x0, z0) ∈ F4[G]2 onto 3n pairs
(xi

0, z
i
0) of elements of F4.

Above, the projection amounts to evaluating the multivariate polynomials over
F4[X1, . . . , Xn]/(X3

1 − 1, . . . , X3
n − 1) on the 3n tuples of elements of (F×

4)
n.

Observe that

z0 + z1 = 〈a ⊗ a, [[e0 ⊗ e1]]0〉 + 〈a ⊗ a, [[e0 ⊗ e1]]1〉
= 〈a ⊗ a, e0 ⊗ e1〉 = 〈a, e0〉 · 〈a, e1〉 = x0 · x1.

Since the isomorphism preserves additions and multiplications, it follows that
all pairs (xi

0, z
i
0) and (xi

1, z
i
1) form OLEs over F4. Security boils down to the

Quasi-Abelian Syndrome Decoding assumption (QA-SD) [8], which states (infor-
mally) that given the random vector a, the element 〈a, e〉+ e0 (where (e0, e) are
formed by random sparse polynomials) is indistinguishable from a random ele-
ment of F4[G].

We now describe several observations that we make about their construction
and how these observations allow us to significantly optimize the concrete effi-
ciency of the PCG. While simple in retrospect, these observations allow us to
turn a theoretical construction into a concretely efficient PCG for F4-OLEs (see
Sect. 5 for our implementation and evaluation).

Early Termination. The DPF construction of [16] generates shares of a unit
vector using a construction à la GGM [28], generating a full binary tree of PRG
evaluations starting from a root seed. The children of each node are computed by
evaluating a length-doubling PRG on the node, and then adding some correction
words. In this construction, each leaf of the tree is a λ-bit string (where typically
λ = 128). In contrast, we wish to share unit vectors over F4. Hence, we can
apply the early termination technique from [16] that shaves several levels of
PRG expansions. With early termination, to obtain a D = 2d-long vector over
F4, we use a tree of depth 2D/λ = 2d−6 (using λ = 128) and parse each of the
128-bit leaves as a 64-tuple of F4-elements. This immediately yields a 64-fold
runtime improvement for each of the DPFs required in the PCG construction.

We note that while other constructions share a similar blueprint to the con-
struction of Bombar et al., and in particular also require evaluating many DPFs
3 Using noise vector with a regular structure, the domain size of the DPFs can be

reduced to 3n/t.

FOLEAGE 83

under-the-hood, this early termination technique does not apply to them. The
reason is that in silent OT extension protocols [10–12,21,41], the DPFs are used
to compress secret shares of Δ · e, where Δ is a 128-bit element from a suitable
extension field, and in the previous PCG construction of [14], the OLEs can only
be generated over a large field F (chosen equal to |F| ≈ 2λ in their implementa-
tion). As such, early termination optimization appears to apply exclusively when
specializing the PCG of [8] to work over small fields.

Using a Single Multi-evaluation Step. Computing 〈a ⊗ a, [[e0 ⊗ e1]]b〉 (for
b = 0, 1) requires c2 polynomial multiplications. Fast polynomial multiplication
is typically done using a multi-evaluation (i.e., an FFT) followed by a local
product and an interpolation (i.e., an inverse FFT).

The above produces a single OLE over F4[G]. When the end goal is to obtain
OLEs over F4, the result is projected back onto F

3n

4 using a multi-evaluation. In
this case, we show that we can reduce the sequence multi-evaluation → interpola-
tion → multi-evaluation down to just a single multi-evaluation step. Concretely:

– Given that a is a random vector of polynomials (and part of the public param-
eters), it can directly be generated as c random length-3n vectors over F

n
4 ,

corresponding to the vectors of the multi-evaluations of a over all n-tuples in
(F×

4)
n.

– The multi-evaluation of a ⊗ a can be computed once for all using pairwise
products of elements of (the multi-evaluation of) a, and included in the public
parameters.

– Computing the multi-evaluation of 〈a⊗ a, [[e0 ⊗ e1]]b〉 amounts to computing
the multi-evaluation of [[e0⊗e1]]b followed by component-wise inner products.

It follows that after expanding the shares [[e0 ⊗ e1]]b, the cost of PCG.Expand
is then dominated by c2 instances of a multi-evaluation (i.e., an FFT). However,
upon slightly closer inspection, we observe that it actually suffices to compute
c(c+1)/2 FFTs (since the terms ei

0e
j
1 and ej

0e
i
1 share the same “coefficient” aiaj

in 〈a⊗a, e0⊗e1〉, hence the FFT can be evaluated on terms ei
0e

j
1+ej

0e
i
1 directly).

Blazing Fast FFT. Our next observation is that the FFT over the group
algebra F4[G] is actually extremely efficient. Indeed, given a polynomial
P (X1, · · · ,Xn), one can rewrite P as

P0(X1, · · · ,Xn−1) + XnP1(X1, · · · ,Xn−1) + X2
nP2(X1, · · · ,Xn−1).

Let us denote FFT(P, n) the functionality that evaluates P on all n-tuples over
(F×

4)
n, and outputs a multi-evaluation vector v. By the above formula, comput-

ing FFT(P, n) reduces to

– computing vi ← FFT(Pi, n − 1) for each i ∈ {0, 1, 2}, and
– setting v ← (v0 + v1 + v2 || v0 + θv1 + (θ + 1)v2 || v0 + (θ + 1)v1 + θv2).

Denoting C(n) the cost of running FFT(P, n), we therefore have C(n) = 3 ·
C(n − 1) + � · 3n−1, where � denotes the number of vector operations (naïvely,
6 additions of vectors and 4 scalar-vector products—but some additions and

84 M. Bombar et al.

products can be reused). This yields a cost of C(n) = n · � · 3n−1, where all
operations are very fast: either additions of F4-vectors or multiplications by
θ. Looking ahead, our implementation and evaluation (Sect. 5) confirm that,
even with the straightforward recursive algorithm, the FFT results in minimal
overhead compared to the cost of the DPFs.4

Stepping Back: Comparison with Silent OT Extension. To give an intu-
ition about the efficiency of this construction, we provide a brief comparison
with constructions of silent OT extension. In short, to get (say) 3n OTs, these
constructions run c·t DPFs on a domain of size 3n/t, followed by a multiplication
with a compressive mapping. In the most efficient silent OT extension protocol
to date [41], this compressive mapping requires computing 21 · c · 3n XORs, fol-
lowed by 3n XORs of random size-21 subsets of the bits of the resulting vector.
Due to the overhead of many random memory accesses, the cost of computing
this mapping dominates the overall runtime. In contrast, we need (c · t)2 DPFs
with domain size 3n/t, but get a 64× speedup from the early termination opti-
mization. The cost of our DPFs should be essentially on par with that of [41].
However, the FFT cost in our construction is largely dominated by the cost of
the DPFs. Therefore, we expect (and this is confirmed by our implementation)
that this PCG should produce F4-OLEs at a much faster rate compared with
the rate at which [41] produces OTs. In the two-party setting, when the goal is
to generate Beaver triples over F2, we get an additional 2× speedup from the
technique of Sect. 2.4, as we generate one triple from one F4-OLE (whereas [41]
requires two OTs). We provide an optimized implementation of our scheme and
evaluate how it compares to previous works in Sect. 5. Our implementation is
about 6× faster than the state of the art [41].

2.6 Distributed Seed Generation

So far, we have only discussed the cost of expanding the PCG keys (k0, k1). To
obtain a full-fledged secure computation protocol, we need an efficient way for
the parties to securely evaluate PCG.Gen procedure in a distributed fashion. In
the following, as in all previous works on PCGs [8,10–14,20,21], we assume that
the noise follows a regular distribution. That is, a noise vector e is a vector of
c polynomials (e1, · · · ec), where each polynomial ei is regular : its coordinates
are divided into t block of (approximately) equal length 3n/t, and it has a sin-
gle nonzero coefficient in each block. For any integer h, let [h] denote the set
{1, · · · , h}. The previous work of [14] outlined the following methodology to
securely distribute PCG seeds for generating D OLEs (in our context, D = 3n):

– Sampling the noise vectors. Each party Pb generates its noise vec-
tor eb locally, by sampling c t-sparse regular polynomials. We write eb =

4 Our implementation also exploits vectorized operations to perform a batch of mul-
tiple FFTs for essentially the cost of one, which further reduces the impact of FFTs
on the overall runtime.

FOLEAGE 85

(e1b , · · · , ec
b). For each i ∈ [c], we let (pi

b,1, · · · , pi
b,t) ∈ [3n/t]t denote the t posi-

tions of the nonzero entries in ei
b, and (vi

b,1, · · · , vi
b,t) ∈ F

t
4 denote the value

of these nonzero coefficients.
– Sharing the positions and values. For every i0, i1 ∈ [c], for every j0, j1 ∈

[t], the parties run a distributed protocol with respective inputs pi0
0,j0

and
pi1
1,j1

(i.e., the position of the j0-th and j1-th nonzero coefficients in ei0
0 and

ei1
1 , respectively) which securely computes bitwise shares of the (j0 + j1)-th

nonzero coefficient of ei0
0 ei1

1 . In parallel, they also run a distributed protocol
with respective inputs vi0

0,j0
and vi1

1,j1
(the corresponding values of the nonzero

coefficients) and securely compute bitwise shares of vi0
0,j0

· vi1
1,j1

(the value of
the (j0 + j1)-th nonzero coefficient of ei0

0 ei1
1).

– Distributing the DPF keys. For every i0, i1 ∈ [c], for every j0, j1 ∈ [t],
the parties run the Doerner-shelat protocol [24] with their bitwise shares of
the position and value to securely obtain DPF keys forming succinct shares
of the point function fα,β which evaluates to β := vi0

0,j0
· vi1

1,j1
on the index α

of the (j0 + j1)-th nonzero coefficient of ei0
0 ei1

1 , and to 0 on all other inputs.

Communication-wise, the Doerner-shelat protocol requires 2 · log(D/t) obliv-
ious transfers for each DPF, for a total of 2(ct)2 log(D/t) oblivious transfers.
Distributing the shares of the coefficients vi0

0,j0
·vi1

1,j1
is relatively straightforward:

it involves two OLEs over F4 for each of the (ct2) coefficients. As in [14], these
OLEs can be obtained at a minimal cost by running the PCG in a “bootstrap-
ping mode”: whenever two parties use the PCG to generate D F4-OLEs, they
can instead use a marginally larger instance to generate D + (ct)2 F4-OLE, and
store the (ct)2 extra OLEs for use in the next distributed PCG seed generation.

In the work of Boyle et al. [14], an important overhead comes from the (ct)2

instances of a distributed protocol to generate bitwise shares of the noise posi-
tions: each such instance requires securely running a Boolean adder to compute,
from the bit decomposition of pi0

0,j0
and pi1

1,j1
, the bit decomposition of the posi-

tion of the corresponding entry in ei0
0 ei1

1 . In the construction of [14], this con-
tributes to a large portion of the (communication and computation) overhead of
the seed distribution procedure: about half of the communication, computation,
and rounds of the full protocol.

An Improved Seed Distribution from Ternary DPFs. We now intro-
duce an optimization that removes the need to distribute shares of noise posi-
tions altogether by working directly in the ternary basis. Our improved pro-
tocol is tailored to the setting of noise vectors with components over F4[G] =
F4[X1, . . . , Xn]/(X3

1 − 1, . . . , X3
n − 1). Observe that every monomial over F4[G]

can be written as Xp :=
∏n

i=1 Xpi

i , where p = (p1, . . . , pn) ∈ F
n
3 . Therefore, we

can uniquely identify the position of the coefficient cp of a monomial Xp with the
F3-vector p ∈ F

n
3 . Now, consider the product of two polynomials e0, e1 known

by P0 and P1, respectively. Let p0 ∈ F
n
3 be the position of a nonzero entry in e0,

and p1 ∈ F
n
3 be the position of a nonzero entry in e1. Then, the corresponding

nonzero entry in e0·e1 is the coefficient of the monomial Xp0 ·Xp1 = Xp0+p1 mod 3.

86 M. Bombar et al.

That is, the corresponding nonzero position in e0e1 is exactly p0+p1 (where the
sum is taken modulo 3). In other words, the two parties already hold shares of
the noise position in e0e1—but over the ternary basis!

Unfortunately, the Doerner-shelat protocol requires the parties to hold binary
shares of the position, because its binary decomposition corresponds to the
path from the root to the leaf in the (binary) GGM tree underlying the DPF
construction of [15,16]. To remedy this situation, we modify the underlying
DPF construction to use a ternary tree. That is, the full tree is obtained by
computing the three children of a node by evaluating a length-tripling PRG
G : {0, 1}λ → {0, 1}3λ on the node value. Adapting the DPF construction
of [15,16] to this setting is relatively simple (though the security analysis becomes
slightly more tedious, especially when adapting the Doerner-shelat protocol to
work over a ternary basis), and requires increasing the number of correction
words from 1 to 3 per level of the tree.5 With this change, the path to a leaf
is given directly by the leaf position written as a F3-vector. To securely gener-
ate the keys of this modified DPF, we adapt the Doerner-shelat protocol. Our
adaptation requires two 1-out-of-3 oblivious transfers per level (instead of two
1-out-of-2 OTs as in [24]), for the log3(D/t) levels of the ternary DPF tree. In
summary, we obtain a distributed seed generation protocol with the following
pros-and-cons when compared to the original approach of [14]:

+ The parties “natively” hold shares of the nonzero positions and do not have
to run a secure protocol to compute them. In the protocol of Boyle et al. [14],
this step required 2(ct)2 · log(D/t) oblivious transfers in log(D/t) rounds (i.e.,
half of the total number of rounds and OTs).

− The modified Doerner-shelat requires 2(ct)2 log3(D/t) 1-out-of-3 OTs of 3λ-
bit strings instead of 2(ct)2 log2(D/t) 1-out-of-2 OTs of 2λ-bit strings, which
represents slightly more communication and computation.

− Due to the use of a ternary DPF, which has more correction words, the PCG
seed size is slightly increased, by a factor ≈ 1.5.

+ Expanding the PCG seeds becomes about 20% faster because the total num-
ber of PRG evaluations is reduced when computing a full ternary tree com-
pared to a full binary tree with a similar number of leaves.

+ The number of rounds of the Doerner-shelat protocol is also reduced, from
log2(D/t) to log3(D/t), by having a more shallow tree.

2.7 Concrete Cryptanalysis of F4OLEAGE

The security of F4OLEAGE is based on the QA-SD assumption, as explained
in Sect. 2.2. We complement our construction with a thorough study of the secu-
rity of QA-SD over small finite fields. Toward this end, we introduce a new
combination of cryptanalytic techniques tailored to this setting, from which we

5 Unfortunately, in the ternary tree construction, using the optimization described in
[16] for removing one extra correction word does not immediately apply. We leave
open the problem of finding a similar optimization in the ternary case.

FOLEAGE 87

derive improved attacks, and contribute a Sage script that computes the esti-
mated bit security for any target instance. We believe that our analysis signifi-
cantly improves our understanding of the concrete security of QA-SD, which had
received little attention.6 In the full version [7], we provide a high level overview
of our analysis of QA-SD and of our new attack, tailored to the specificities of
F4OLEAGE. To briefly summarize our conclusions: using our analysis and our
Sage script, we estimate that taking c = 3, t = 27 offers about 128 bits of secu-
rity, and taking c = 4, t = 27 provides a significant security margin (in both
cases, the script is quite conservative on the power afforded to the adversary).

3 Preliminaries

Notations. We use F4 to denote the Galois field of order 4. For G an Abelian
group, we denote by Fq[G] the corresponding group algebra. For an integer n and
a polynomial f ∈ Fq[G] with n variables, Evaln(f) denote the full evaluations of
f over (F×

q)
n. We let [N] denote the set {1, 2, . . . , N}. Divisibility is denoted as

a | b, to mean a divides b. The number of elements in a list L is denoted as |L|. For
a vector e ∈ F

n
q , we denote by wH(e) its Hamming weight. More generally, the

Hamming weight of an element of a finite-dimensional Fq-algebra R is the weight
of the vector formed by its coefficients in some basis (in general, R = Fq[G] and
we consider a basis given by an arbitrary ordering of the elements of G.7). For
an integer t, we denote by Rt the subset of elements of Hamming weight t. We
denote by poly(·) any polynomial and by negl(·) any negligible function. We use
x ← R S to denote a uniformly random sample drawn from S, and x ← A to
denote assignment from a possibly randomized algorithm Adv. We use x := y to
denote the initialization of a value x to the value of y. We use A
 B to indicate
that two sets are isomorphic. By an efficient algorithm A we mean that Adv is
modeled by a (possibly non-uniform) Turing Machine that runs in probabilistic
polynomial time. We write D0 ≈c D1 to mean that two distributions D0 and
D1 are computationally indistinguishable to all efficient distinguishers D and
D0 ≈s D1 to mean that D0 and D1 are statistically indistinguishable.

Vectors and Tensor Products. We denote vectors using bold lowercase let-
ters. For two vector u = (u1, . . . , ut),v = (v1, . . . , vt) ∈ Rt for some ring R, their
tensor product u⊗ v is defined by u⊗ v = (ui · vj)i,j≤t = (v1 ·u, . . . , vt ·u) and
we denote by 〈u,v〉 their inner product. Similarly, we write u� v to denote the
outer sum of a vector, equal to u� v = (ui + vj)i,j≤t = (v1 +u, . . . , vt +u). We
let u[i] denote the value of index i in u.

6 In contrast, the asymptotic security of QA-SD is much better studied: Attacking this
assumption has been a long standing open problem in coding theory for more than
fifty years (see e.g. Research Problem 16.10.5 p. 382 of [32]). Moreover, it was proven
in [8] that it resists all attacks from the linear test framework—which captures most
known attacks against syndrome decoding and its variants—and that it admits a
search-to-decision reduction.

7 The Hamming weight does not depend on the ordering of the elements of G.

88 M. Bombar et al.

3.1 Function Secret Sharing

Function secret sharing (FSS), introduced in [15,16], allows a dealer to succinctly
secret share a function with two parties. An FSS scheme splits a secret function
f : D → G, where G is some Abelian group into keys K0,K1 that can be used by
party σ ∈ {0, 1} to evaluate the function on an input x ∈ D and obtain the share
[[f(x)]]σ of the result. We focus on FSS for point functions which are known as
Distributed Point Functions (DPFs).

Distributed Point Functions. Let D be an input domain and G be an Abelian
group. A point function Pα,β : D → G is a function that evaluates to message
β ∈ G on a single input α ∈ D, and evaluates to 0 ∈ G on all other inputs
x = α ∈ D. A distributed point function (Definition 1) is a point function that is
encoded into a pair of keys. Each key can be used to obtain an additive secret-
share of the point function Pα(x), for any input x ∈ D.

Definition 1 (Distributed Point Function (DPF) [16,27]). Let λ be the
security parameter, D be an input domain, and G be an Abelian group. A DPF
scheme (with a full-domain evaluation procedure) consists of a tuple of efficient
algorithms DPF = (Gen,FullEval) with the following syntax.

– DPF.Gen(1λ, 1n, α, β) → (K0,K1). Takes as input a security parameter, a
domain size n, and index α ∈ D and a payload β ∈ G. Outputs two evaluation
keys K0 and K1.

– DPF.FullEval(σ,Kσ) → vσ. Takes as input the party index σ and an evalua-
tion key Kσ. Outputs a vector vσ.

These algorithms must satisfy correctness, security, and efficiency:

Correctness. A DPF is said to be correct if for all α ∈ D, all β ∈ G, and
all pairs of keys generated according to DPF.Gen(1λ, 1n, α, β), the sum of the
individual outputs from DPF.FullEval result in the one-hot basis vector scaled by
the message β,

Pr
[
FullEval(0,K0) + FullEval(1,K1) = β · eα

]
= 1,

where eα ∈ G
|D| is the α-th basis vector.

Security. A DPF is said to be secure if each individual evaluation key output
by DPF.Gen leaks nothing about (α, β) to a computationally bounded adversary.
Formally, there exists an efficient simulator S such that {Kσ} ≈c S(1λ, 1n, σ),
where ≈c denotes the computational indistinguishability of distributions.

Efficiency. A DPF is said to be efficient if the size of each key is sublinear in
the domain size. That is, for all σ ∈ {0, 1}, |Kσ| = |D|ε for some ε < 1.

FSS for the Sum of Point Functions. We let SPFSS be an FSS scheme for
the class of sums of point functions: Functions of the form f(x) =

∑
i fsi,yi

(x),
where each fsi,yi

(·) evaluates to yi on si, and to 0 everywhere else. As in previous
works, we will use efficient constructions of SPFSS in our constructions of PCGs.

FOLEAGE 89

3.2 Quasi-Abelian Syndrome Decoding (QASD)

We recall about QASD assumption and its notation. More details on the QA-SD
assumption is provided in the full version [7]. A finite Abelian group is a direct
product of cyclic group: G
 Z/d1Z × · · · × Z/drZ where the di’s can be equal.
Then, the group algebra Fq[G] admits an explicit description as some particular
multivariate polynomial ring:

Fq[G]
 Fq[X1, . . . , Xr]/(Xd1
1 − 1, . . . , Xdr

r − 1),

where the isomorphism is given by (k1, . . . , kr) �→ Xk1
1 · · · Xkr

r , and extended by
linearity.

Definition 2 (QA-SD(q, c, t,G)). Let G be a finite Abelian group, Fq[G] its alge-
bra with coefficients in the finite field Fq, and let c ≥ 2 be some constant integer
called the compression factor. Given a target Hamming weight t ∈ {1, . . . , |G|}
and a probability distribution Φt which outputs elements x ∈ Fq[G] such that
E(wH(x)) = t, the Quasi-Abelian Syndrome Decoding problem asks to distin-
guish, with a non-negligible advantage, between the distributions:

D0 :
(
(a(i))i∈{1,...,c−1}, u

)
where a(i), u

$← Fq[G]

D1 :

(

(a(i))i∈{1,...,c−1},
c−1∑

i=1

a(i)ei + e0

)

where a(i) $← Fq[G] and ei
$← Φt.

We say that the QA-SD(q, c, t,G) assumption holds when this problem is hard for
every non-uniform polynomial time distinguisher.

4 A Fast PCG for F4-OLEs

4.1 PCGs over F4 from the QA-SD Assumption

In [8], the authors point out that their QA-SDOLE construction is the first to
produce a large number of OLE correlations over Fq, for any q ≥ 3. They propose
using G =

∏n
i=1 Z/(q − 1)Z, q ≥ 3. The direct consequence of this is that

Fq[G]
 Fq[X1, . . . , Xn]/(X
q−1
1 − 1, . . . , Xq−1

n − 1)
 ∏D
i=1 Fq, where the last

isomorphism equivalence comes from the Chinese Remainder Theorem. Above,
D = (q − 1)n is the number of elements in the group, and the number of OLE’s
we can get over Fq by applying this isomorphism. Looking closely, we instantiate
our particular PCG over R
 F4[X1, . . . , Xn]/(X3

1 − 1, . . . , X3
n − 1), by setting

q = 4. At the end of the protocol QA-SDOLE, the parties obtain one OLE over R .
Let us denote (xσ, zσ) the output of party σ. To obtain many OLE’s over F4, the
parties have to evaluate xσ, zσ ∈ F4[X1, . . . , Xn]/(X3

1 − 1, . . . , X3
n − 1) over the

full domain (F×
4)

n. The standard approach is to use a Fast Fourier Evaluation
to efficiently obtain this result. Here, we remark that, in our group algebra, fast
multiplication also requires FFT, first in a multi-evaluation form, and then in

90 M. Bombar et al.

the interpolation form. Therefore, doing the interpolation again is wasteful as
in the end we will evaluate again after interpolating. As such, we can avoid the
intermediate steps of multi-evaluation-then-interpolation and work directly with
the evaluations, without coming back to R. That is, we do not construct the
polynomials xσ, zσ over F4[X1, . . . , Xn]/(X3

1 − 1, . . . , X3
n − 1) but instead, we

focus directly on the polynomials evaluations.
Let Evaln(f) = {f(x1, . . . , xn), (x1, . . . , xn) ∈ {1, θ, θ + 1}n} be the set of

all the possible evaluations. Instead of giving the parties the description of the
coefficients of the polynomials ai ∈ a, we can give them the vectors of all the
evaluations of all the polynomials, that is giving them Evaln(ai), for all i. Because
we can write xσ = e0σ + e1σa1 + · · ·+ ec−1

σ ac−1, it follows that all the evaluations
of xσ can be obtained from Evaln(ei

σ) and Evaln(ai). All that remains is to
evaluate the ei

σ polynomials. They are sparse polynomials, and therefore their
evaluations can be computed very efficiently i.e., if the polynomials have t non-
zero coefficients, then the cost of the evaluation is linear in t · 3n. As a result, we
can obtain Evaln(xσ) for a cost linear in 3n.

The computation of Evaln(zσ) is a little trickier. As mentioned above, x0 · x1

can be seen as a function of degree 2 in (e0, e1), with constant coefficients
depending solely from a ⊗ a. Because Evaln(ai) is already given to the par-
ties, the evaluation of the coefficient from a ⊗ a can be obtained using only c2

multiplications. It remains to compute the evaluations of the additive shares of
the polynomials ei

0 ·ej
1. There are c2 such polynomials shared among the parties,

and we can view each share as a random polynomial. Therefore, each party has
to compute the evaluation of c2 random polynomials. This is a crucial part of
the scheme and we devote the next section to it. Figure 1 represents the PCG
framework tailored to our setting, its correctness and security are implied by [8]
(see the full version of this work [7] for details).

Remark 3. Let t = 3k be a power of 3, and let R = F4[G] =
F4[X1, . . . , Xn]/(X3

1 −1, . . . , X3
n −1). Let e0 and e1 be sampled from a t-regular

noise distribution over R. In other words, the coordinates of ei can be divided
into t consecutive blocks B0, . . . , Bt−1 of size 3n/t, each block having a single
nonzero coordinate. More precisely, considering the lexicographic ordering of the
monomials, and since t = 3k, block Bi is formed by all monomials Xp such that
the first k coordinates of p represent the ternary decomposition of the integer
i (over k trits). For example, if n = 4 and t = 9, the 34 = 81 monomials are
split into 9 blocks B0, . . . , B8 of size 9, and a monomial Xp lies in B6 if and
only if p is of the form (2, 0, �, �) with � ∈ {0, 1, 2}, where [2‖0] is the ternary
decomposition of the integer 6.

We now show that the product e = e0 ·e1 has at most t nonzero monomials in
each block.8 Indeed, let i ∈ {0, . . . , 3k − 1} and let Xp be a monomial appearing
in e with a nonzero coefficient. In particular, the first k entries of p can be parsed
as the ternary decomposition of i, which we denote by [i]3. It is clear that Xp is
8 This crucially relies on the fact that since t is a power of 3, we can uniquely identify

the block corresponding to a given monomial by looking at the first k entries of its
exponent. When t is not a power of 3, this is not true anymore.

FOLEAGE 91

of the form Xp0+p1 where p0 (resp. p1) identifies one of the t nonzero monomials
in e0 (resp. e1), and the sum is taken modulo 3 component-wise. In particular,
there are at most t2 such monomials, and for each nonzero monomial Xp0 of
e0, with first k entries [i0]3, there corresponds at most one nonzero monomial in
e1 contributing to Xp, namely Xp−p0 .9 In other words, the monomial Xp can
be produced by at most t possible pairs of monomials (Xp0 ,Xp1), whose first k
entries are ([i0]3, [i]3 − [i0]3), with i0 ranging over {0, . . . , t − 1}.

Example. Let n = 3 and t = 3. Set e0 := X2
3 + X1X2X3 + X2

1 (which corre-
sponds to positions (0, 0, 2), (1, 1, 1), and (2, 0, 0)) and e1 := 1+X1+X2

1 (which
corresponds to positions (0, 0, 0), (1, 0, 0), and (2, 0, 0)). Then,

e0 · e1 = (1 + X2
3 + X2X3)

︸ ︷︷ ︸

∈B0

+(X1 + X1X
2
3 + X1X2X3)

︸ ︷︷ ︸

∈B1

+(X2
1 + X2

1X2
3 + X2

1X2X3)
︸ ︷︷ ︸

∈B2

.

Proposition 4. Let R = F4[G] = F4[X1, . . . , Xn]/(X3
1 − 1, . . . , X3

n − 1) where
G =

∏n
i=1 Z/3Z is an Abelian group. Assume that SPFSS is a secure FSS scheme

for sums of point functions and that the QA-SD(q, c, t,G) assumption holds for
regular noise distribution. Then there exists a generic scheme to construct a PCG
to produce one OLE correlation (described on Fig. 1). If the SPFSS is based on a
PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [16], we obtain:

• Each party’s seed has maximum size around: (c · t)2 · ((n · log(3)− log t+ 1) ·
(λ + 2) + λ + 2) + c · t · (n · log(3) + 2) bits.

• The computation of Expand can be done with at most log(3) · (2 + �(2)/λ�) ·
n · c2 · t PRG operations, and O(n · log(3) · c2 · 3n) operations in F4.

4.2 Optimizing the FSS Evaluation via Early Termination

We remark that we can use a very simple trick that enables the parties to obtain
the evaluation of their MPFSS shares 64 times faster than with the standard
construction (and at a slight reduction in communication). The trick comes
from the fact that the standard construction of the DPF based on the GGM
tree implies that each leaf is of size λ = 128 bits. It was pointed out in [16] that
we can consider early termination in the case of small outputs. In our case, we
would like a single leaf to encode a value in F4. This only requires 2 bits instead
of the 128 bits we get as output, making the naïve evaluation “waste” 126 bits of
the output. Instead, we can avoid wasting computation by truncating the tree 6
levels earlier and setting the value of the new 128-bit leaf on the special path to
encode a unit vector consisting of zeroes except on the exact 2 bits where it equals
to the correct value of F4 element. This essentially involves “hard-coding” the
end of the path into the leaf directly, as illustrated in Sect. 4.2. Using this idea,
we reduce the computational cost of evaluating the DPF by 64× and reduce the
communication costs (key size of the DPF) by roughly 6·128 bits [16]. This simple
trick was initially introduced in the context of PIR applications [16], but could
9 Note that the corresponding monomial Xp1 might not appear in e1.

92 M. Bombar et al.

Fig. 1. QA-SD-based PCG for OLE over R from evaluations of functions.

FOLEAGE 93

not be applied to prior PCG constructions until now since all PCG constructions
(except for the recent PCG construction of Bombar et al. [8]) required the DPF
output to be encode elements of a large field. Similarly, in silent OT extension
protocols [10–12,21,41], which are also bottlenecked by DPF evaluations, this
optimization could not be applied because there, the DPF is used to output
“authenticated” shares of a (potentially small) field element with a (large) MAC,
which requires the leaves to encode 128 bit output value (Fig. 2).

Real tree generated

Virtual trees hard-
coded in the leaves

Fig. 2. Early termination example in the case we truncate only two steps earlier. Solid
black nodes represent “zero” leaves, whereas solid red leaves can take on any value.

4.3 Fast Evaluation over F4[X1, . . . , Xn]/(X3
1 − 1, . . . , X3

n − 1)

The High-Level Idea. Given a polynomial P with n variables, the party wants
to compute Evaln(P), that is, to evaluate P over

(
F

×
4

)n where F
×
4 = {1, θ, θ+1}.

Here, we adapt the standard divide-and-conquer style algorithm to our case, see
for example the seminal work of [19]. Remark that

P (X1, . . . , Xn) = P0(X1, . . . , Xn−1) + XnP1(X1, . . . , Xn−1) + X2
nP2(X1, . . . , Xn−1).

Instead of classically dividing our problem into 2 sub-problems, we divide it
into 3 sub-problems. This is a ternary generalization of a standard FFT algorithm
adapted to our case. Then,

Evaln(P) = Evaln−1(P0) ∪ XnEvaln−1(P1) ∪ X2
nEvaln−1(P2). (1)

Denote by C(Evaln(P)) the number of operations carried out to obtain all the 3n

evaluations on the set F
×
4 . Then we have C(Evaln(P)) = 3C(Evaln(P)) + 2 · 3n,

which leads us to C(Evaln(P)) = 4 · n · 3n. The concrete number of additions or
multiplications is 2 · n · 3n. This quick back-of-the-envelope calculation captures
the essence of the technique, even if it does not accurately count the cost of
the various operations and does not take into account what is implemented in
practice. We now turn to a concrete implementation of this idea:

Concrete Implementation. An element of F4 has a direct canonical represen-
tation using 2 bits. Given an element x ∈ F4, we write x(0) and x(1) to denote

94 M. Bombar et al.

the F2-coefficients of x viewed as a polynomial over F2[X]/(X2+X+1); that is,
x = x(0) + θ · x(1). Using a given machine word of 64 bits we represent a vector
of size 32 over F4, such that the even indexed bits are high order and the odd
indexed bits are low order.

As stated before, we use a recursive algorithm to compute all the evaluations,
displayed in algorithm Fig. 3. We considered using a non-recursive approach but
no significant efficiency gains were observed, so we instead decided to use the
recursive algorithm due to its conceptual simplicity.

Actual Cost of the Computation. A step in the algorithm of Fig. 3 is to
evaluate a polynomial of degree 2, with coefficient in F4, for the values {1, θ, θ+
1}. Let the polynomial be a + bXi + cX2

i .

– in the case Xi = 1, then the evaluation of the polynomial becomes a + b + c.
– in the case Xi = θ, the evaluation becomes (a + c) + θ · (b + c).
– in the case Xi = θ + 1, the evaluation becomes (a + b) + θ · (b + c).

Note that we want to compute all the different evaluations, and therefore we
can try to reduce the overall costs by reusing several of the intermediate calcu-
lations. We can obtain the three evaluations via the following steps: (1)compute
a + b, a + c, b + c; (2) compute θ · (b + c); (3) compute a + b + c; (4) Compute
(a + c) + θ · (b + c)), and (a + b) + θ · (b + c)). Therefore, we count 12 classical
bit-by-bit XOR over F2, and a multiplication by θ to obtain the three needed
evaluations of the polynomial.

Fig. 3. Fast evaluation of a polynomial in n variables.

FOLEAGE 95

4.3.1 Taking Advantage of the Computer Words. Today’s processors
offer XOR operations for machine words of size 64 bits. We take advantage of
this parallelism to run multiple FFTs in parallel with a small overhead compared
to running a single FFT. With 64-bit machine words, we can perform up to 32
FFT in parallel. We pack the c2 FFTs required by our PCG as follows: we let
each machine word contain a single coefficient of the same monomial for each
of the c2 polynomials that we are trying to compute. This saves a factor of c2,
at no extra cost.10 Therefore, the cost of the evaluation of a single polynomial
being of 16n · 3n−1 XOR, the optimization entails the cost of obtaining the full
evaluation of the c2 polynomials to be 16�c2/64�n · 3n−1.

5 Implementation and Evaluation

We implement F4OLEAGE in C (v15.0.0) as a library that consists of two main
components: (1) an optimized implementation of the ternary DPF construction
and (2) an implementation of the FFT over F4. The open-source code for our
F4OLEAGE PCG benchmarks is available online.11

Implementation Details. Our DPF implementation takes advantage of the
AES-NI instruction to implement a fast PRG G using fixed-key AES (from the
OpenSSL library [39]) and the Davies-Meyer transform. We experimented with
using the half-tree optimization of [30]. However, we observed a minimal per-
formance gains (2–4%) from this optimization when applied to a ternary tree.
This is because the half-tree optimization is tailored to the binary tree DPF
construction where it can shave a larger fraction of total AES calls. We imple-
ment the recursive FFT over F4 described in Sect. 4.3 and perform the FFT in
parallel by packing all the coefficients into one machine word (for our parame-
ters, we will require 16 FFTs, so we can perform them in parallel using a uint32
type for packing). While the FFT could possibly be optimized further using an
iterative algorithm and taking advantage of AVX instructions, the simplicity of
the recursive algorithm coupled with the parallel packing makes it sufficiently
fast for F4OLEAGE. This is especially true given that the DPF evaluations end
up being the dominant cost (roughly 70% of the total computation). We do
not implement the distributed seed generation protocol given that it consists of
black-box invocations of any one-out-of-three OT. However, we do estimate the
concrete performance and communication costs of distributed seed generation
by benchmarking the libOTe library on state-of-the-art OT protocols [42].

Benchmarks. We perform our benchmarks using AWS c5.metal (3.4GHz
CPU) and t2.large instances. All experiments are averaged across ten trials
and evaluated on a single core. To better see the overhead involved with each
component, we start by benchmarking the SPFSS (sum of many DPFs) and FFT
implementation separately and report the results in Tables 2 and 3. Concretely,
10 In practice, using larger machine words has an impact by increasing stack usage, but

this is only observed when performing an FFT over very large polynomials.
11 https://github.com/sachaservan/FOLEAGE-PCG.

https://github.com/sachaservan/FOLEAGE-PCG

96 M. Bombar et al.

if we are packing 3n coefficients over F4, we want the output of the DPF to be
close to a power of 3. To achieve this, we terminate 5 levels early and pack 512
elements of F4 in the virtual leaves by having the DPF output be a 1024 bit
block. Therefore, the key size of each DPF is 3 · 128 · (n− 5)+128+2 · 512 when
using AES with 128-bit keys. We report the SPFSS benchmarks in Table 2 when
evaluating the sum of 730 DPFs (this corresponds to the t = 27 regime in Fig. 1,
since the SPFSS needs to be instantiated with t2 = 729 DPFs). When evaluat-
ing the SPFSS, we observe a roughly 1.8× reduction in computation time over
evaluating just one DPF. This is due to better cache performance when eval-
uating many DPFs and working over the same memory allocation to evaluate
consecutive DPFs. Our choice of DPF range 311, 313, and 315 correspond to the
size of a regular noise block when D = 314, D = 316, and D = 318, respectively
(see Table 4).

Table 2. Performance of our SPFSS (for the sum of 730 DPFs) on two EC2 instances
and comparison to the raw AES computation time required for the PRG evaluations.

Range
(elements of F4)

SPFSS.Gen
(c5.metal | t2.large)

SPFSS.FullEval
(c5.metal | t2.large)

AES
(c5.metal | t2.large)

Key Size
(per party)

311 5 ms | 11 ms 26 ms | 39 ms 18 ms | 27 ms 315 kB
313 7 ms | 13 ms 260 ms | 364 ms 174 ms | 253 ms 385 kB
315 8 ms | 16 ms 2357 ms | 3272 ms 1526 ms | 2229 ms 456 kB

Table 3. Performance of our FFT implementation over F4 on two different EC2
instances. Packing increases throughput almost linearly with the packing size. How-
ever, with a large number of variables (> 16), it is more efficient to use smaller packing
values to avoid the increased memory usage from the recursive FFT function calls.

Number of
Variables

Packed FFT (4×)
(c5.metal | t2.large)

Packed FFT (16×)
(c5.metal | t2.large)

Packed FFT (32×)
(c5.metal | t2.large)

14 20 ms | 30 ms 21 ms | 33 ms 28 ms | 45 ms
16 180 ms | 280 ms 213 ms | 329 ms 312 ms | 475 ms
18 1682 ms | 2608 ms 2165 ms | 3280 ms 4913 ms | 7478 ms

Benchmarking our PCG. Next, we benchmark the performance of the PCG
from Fig. 1 on various parameters. The parameter D = 3n determines the num-
ber of Beaver triples we generate in total. In contrast, the parameters c (compres-
sion factor) and t (noise weight) influence the size of the PCG key and evaluation
time. Specifically, evaluating the PCG requires (c·t)2 calls to the DPF on domain
size D/t (due to regular noise) and c(c + 1)/2 calls to the FFT (which we can
parallelize by a factor of up to 32 using packing on 64-bit architectures). The

FOLEAGE 97

DPF evaluation cost ends up being the dominant factor (approximately 70%)
in the total computation. The FFT accounts for less than 5% of the total com-
putation. Interestingly, packing the FFT (which requires computing a matrix
transpose of dimension c(c+ 1)/2× 3n to translate from c(c+ 1)/2 polynomials
to a packed representation suitable for computing the FFT in parallel) accounts
for 15% of the total computation! This motivates using small values of c, such as
c = 4, as otherwise this transpose becomes the dominant cost in the entire PCG
expansion. We leave exploring the possibility of implementing fast SIMD-based
matrix-transpose algorithms (e.g., [4,44]) as a promising direction for future
work, since it may allow using a smaller noise weight (e.g., t = 9) and larger c.

We set t = 27 since we need it to be a power of 3 (see Remark 3), and report
the computational costs of the PCG for different values of D in Table 4 and c. The
choice of (c = 4, t = 27) corresponds to a conservative parameter choice based
on our calculations, which we detail in the full version of this paper [7]. To show
the influence of c on the performance, we also evaluate our PCG construction on
c = 3, which corresponds to a more aggressive parameter choice. We observe a
much smaller PCG seeds and better concrete performance with c = 3 compared
to c = 4.

Table 4. Performance of our PCG implementation on two different EC2 instances.
We set the noise parameter to t = 27 and let c = 4 in the left table (our conservative
parameter choice) and c = 3 in the right table (our aggressive parameter choice);
D = 318 ran out of memory on the t2.large.

(a) Parameters: (c = 4, t = 27)

D
PCG.Expand

(c5.metal | t2.large)
Key Size
(per party)

314 579 ms | 890 ms 5.0 MB
316 5.9 s | 8.4 s 6.2 MB
318 54.3 s | – 7.3 MB

(b) Parameters: (c = 3, t = 27)

D
PCG.Expand

(c5.metal | t2.large)
Key Size
(per party)

314 346 ms | 534 ms 2.8 MB
316 3.5 s | 5.2 s 3.5 MB
318 32.1 s | – 4.1 MB

Estimating Setup Costs. We use the libOTe library [42] to benchmark the
state-of-the-art OT protocols. We run libOTe on localhost and evaluated both
SoftSpoken OT [43] and the RRT’ silent OT [41]. For SoftSpoken, we measured
roughly 50,000,000 OT/s on the c5.metal machine and roughly 32,000,000 OT/s
on the t2.large. For the RRT, we measure a throughput of nearly 7,000,000
on c5.metal and 4,000,000 on the t2.large. To run our distributed DPF key
generation protocol, we require n = 14 (at D = 314) and n = 18 (at D = 318)
rounds per DPF. All the (ct)2 DPF keys can be computed in parallel. Therefore,
in total, using our conservative parameters of c = 4 and t = 27, we require
roughly 11,600 parallel calls to an OT functionality in n rounds. Our aggressive
parameters of c = 3 and t = 27 only require 6,561 parallel OT calls.

98 M. Bombar et al.

Acknowledgements. We thank the anonymous reviewers for helpful suggestions. We
thank Peter Rindal for help with running the libOTe [42] library, and Marcel Keller
for answering our questions about Overdrive [36]. We thank Elette Boyle and Matan
Hamilis for several comments that helped us improve the presentation of the paper.
Geoffroy Couteau, Clément Ducros, and Dung Bui were supported by the French
Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project
SCENE), by the France 2030 ANR Project ANR22-PECY-003 SecureCompute, and by
the ERC OBELiSC. Dung Bui was supported by DIM Math Innovation 2021 (N◦IRIS:
21003816) from the Paris Mathematical Sciences Foundation (FSMP) funded by the
Paris Île-de-France Region. Maxime Bombar was supported by the NWO Gravita-
tion Project QSC. Alain Couvreur was supported by the French Agence Nationale
de la Recherche (ANR) under grant ANR-21-CE39-0009-BARRACUDA, by the plan
France 2030 under the project ANR-22-PETQ-0008 and by Horizon-Europe MSCA-
DN project Encode.

References

1. Aguilar, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient encryption
from random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194
(2016), https://eprint.iacr.org/2016/1194

2. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Bos, J.,
Deneuville, J.C., Dion, A., Gaborit, P., Lacan, J., Persichetti, E., Robert, J.M.,
Véron, P., Zémor, G., Bos, J.: HQC. Round 4 Submission to the NIST Post-
Quantum Cryptography Call (Oct 2022), https://pqc-hqc.org/

3. Aguilar-Melchor, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Transactions on Information
Theory 64(5), 3927–3943 (2018)

4. Amiri, H., Shahbahrami, A.: SIMD programming using Intel vector extensions. J.
Parallel Distrib. Comput. 135(C), 83-100 (Jan 2020). https://doi.org/10.1016/j.
jpdc.2019.09.012

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(Aug 1992). https://doi.org/10.1007/3-540-46766-1_34

6. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: 28th ACM STOC. pp. 479–488. ACM Press (May 1996). https://doi.
org/10.1145/237814.237996

7. Bombar, M., Bui, D., Couteau, G., Couvreur, A., Ducros, C., Servan-Schreiber, S.:
FOLEAGE: F4OLE-based multi-party computation for boolean circuits. Cryptol-
ogy ePrint Archive, Paper 2024/429 (2024), https://eprint.iacr.org/2024/429

8. Bombar, M., Couteau, G., Couvreur, A., Ducros, C.: Correlated pseudorandomness
from the hardness of quasi-abelian decoding. In: CRYPTO 2023, Part IV. pp. 567–
601. LNCS, Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-
38551-3_18

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018).https://doi.org/10.1145/3243734.3243868

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Corre-
lated pseudorandomness from expand-accumulate codes. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 603–633. Springer, Hei-
delberg (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_21

https://eprint.iacr.org/2016/1194
https://pqc-hqc.org/
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://eprint.iacr.org/2024/429
https://doi.org/10.1007/978-3-031-38551-3_18
https://doi.org/10.1007/978-3-031-38551-3_18
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-031-15979-4_21

FOLEAGE 99

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291–
308. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3354255

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_16

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseu-
dorandom functions from variable-density LPN. In: 61st FOCS. pp. 1069–1080.
IEEE Computer Society Press (Nov 2020). https://doi.org/10.1109/FOCS46700.
2020.00103

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseu-
dorandom functions from variable-density LPN. In: 61st FOCS. pp. 1069–1080.
IEEE Computer Society Press (Nov 2020). https://doi.org/10.1109/FOCS46700.
2020.00103

15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Annual international
conference on the theory and applications of cryptographic techniques. pp. 337–
367. Springer (2015)

16. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 1292–1303. ACM Press (Oct 2016). https://doi.org/
10.1145/2976749.2978429

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. vol. 6. Association for Computing Machinery,
New York, NY, USA (jul 2014). https://doi.org/10.1145/2633600, https://doi.org/
10.1145/2633600

18. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 395–426. Springer, Heidelberg
(Aug 2018). https://doi.org/10.1007/978-3-319-96878-0_14

19. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Math. Comput. 19, 297–301 (1965). https://doi.org/10.1090/S0025-
5718-1965-0178586-1

20. Couteau, G., Ducros, C.: Pseudorandom correlation functions from variable-density
LPN, revisited. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part II. LNCS,
vol. 13941, pp. 221–250. Springer, Heidelberg (May 2023). https://doi.org/10.1007/
978-3-031-31371-4_8

21. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Heidel-
berg, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-9_17

22. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: Gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 167–187. Springer, Heidel-
berg (Aug 2017). https://doi.org/10.1007/978-3-319-63688-7_6

23. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012).
https://doi.org/10.1007/978-3-642-32009-5_38

https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1007/978-3-031-31371-4_8
https://doi.org/10.1007/978-3-031-31371-4_8
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-32009-5_38

100 M. Bombar et al.

24. Doerner, J., shelat, a.: Scaling ORAM for secure computation. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 523–535. ACM
Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3133967

25. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 205–210.
Plenum Press, New York, USA (1982)

26. Gilboa, N.: Two party RSA key generation. In: Wiener, M.J. (ed.) CRYPTO’99.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (Aug 1999). https://doi.org/
10.1007/3-540-48405-1_8

27. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings 33. pp. 640–658. Springer (2014)

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions,
p. 241-264. Association for Computing Machinery, New York, NY, USA (2019),
https://doi.org/10.1145/3335741.3335752

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.
28420

30. Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree:
Halving the cost of tree expansion in COT and DPF. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 330–
362. Springer (2023)

31. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 86–117. Springer,
Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_4

32. Huffman, W.C., Kim, J.L., Solé, P.: Concise encyclopedia of coding theory. Chap-
man and Hall/CRC (2021)

33. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_9

34. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In: Pro-
ceedings of the 2020 ACM SIGSAC conference on computer and communications
security. pp. 1575–1590 (2020)

35. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press (Oct
2016). https://doi.org/10.1145/2976749.2978357

36. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-
3-319-78372-7_6

37. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applica-
tions. In: Automata, Languages and Programming: 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35. pp. 486–
498. Springer (2008)

38. Oberst, U.: The fast fourier transform. SIAM journal on control and optimization
46(2), 496–540 (2007)

https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1145/3335741.3335752
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6

FOLEAGE 101

39. OpenSSL Project: OpenSSL cryptography and SSL/TLS toolkit. https://www.
openssl.org/, accessed: 2024-02-12

40. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard University, (1981)

41. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudoran-
dom correlation generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part IV. Lecture Notes in Computer Science, vol. 14084, pp. 602–632.
Springer (2023). https://doi.org/10.1007/978-3-031-38551-3_19, https://doi.org/
10.1007/978-3-031-38551-3_19

42. Rindal, P., Roy, L.: libOTe: an efficient, portable, and easy to use oblivious transfer
library. https://github.com/osu-crypto/libOTe

43. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in
the minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I.
LNCS, vol. 13507, pp. 657–687. Springer, Heidelberg (Aug 2022). https://doi.org/
10.1007/978-3-031-15802-5_23

44. Twogood, R.E., Ekstrom, M.P.: An extension of Eklundh’s matrix transposition
algorithm and its application in digital image processing. IEEE Trans. Comput.
25(9), 950-952 (sep 1976). https://doi.org/10.1109/TC.1976.1674721, https://doi.
org/10.1109/TC.1976.1674721

45. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986). https://doi.org/
10.1109/SFCS.1986.25

https://www.openssl.org/
https://www.openssl.org/
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1007/978-3-031-38551-3_19
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1109/TC.1976.1674721
https://doi.org/10.1109/TC.1976.1674721
https://doi.org/10.1109/TC.1976.1674721
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Perfectly-Secure Multiparty Computation
with Linear Communication Complexity

over Any Modulus

Daniel Escudero1(B), Yifan Song2,3, and Wenhao Wang4

1 J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA
daniel.escudero@protonmail.com

2 Institute for Theoretical Computer Science, Institute for Interdisciplinary
Information Sciences, Tsinghua University, Beijing, People’s Republic of China

3 Shanghai Qi Zhi Institute, Shanghai, People’s Republic of China
4 Yale University, New Haven, CT, USA

Abstract. Consider the task of secure multiparty computation (MPC)
among n parties with perfect security and guaranteed output delivery,
supporting t < n/3 active corruptions. Suppose the arithmetic circuit
C to be computed is defined over a finite ring Z/qZ, for an arbitrary
q ∈ Z. It is known that this type of MPC over such ring is possible,
with communication that scales as O(n|C|), assuming that q scales as
Ω(n). However, for constant-size rings Z/qZ where q = O(1), the com-
munication is actually O(n log n|C|) due to the need of the so-called ring
extensions. In most natural settings, the number of parties is variable
but the “datatypes” used for the computation are fixed (e.g. 64-bit inte-
gers). In this regime, no protocol with linear communication exists.

In this work we provide an MPC protocol in this setting: perfect
security, G.O.D. and t < n/3 active corruptions, that enjoys linear com-
munication O(n|C|), even for constant-size rings Z/qZ. This includes
as important particular cases small fields such as F2, and also the ring
Z/2k

Z. The main difficulty in achieving this result is that widely used
techniques such as linear secret-sharing cannot work over constant-size
rings, and instead, one must make use of ring extensions that add
Ω(log n) overhead, while packing Ω(log n) ring elements in each exten-
sion element in order to amortize this cost. We make use of reverse
multiplication-friendly embeddings (RMFEs) for this packing, and adapt
recent techniques in network routing (Goyal et al. CRYPTO’22) to
ensure this can be efficiently used for non-SIMD circuits. Unfortunately,
doing this naively results in a restriction on the minimum width of
the circuit, which leads to an extra additive term in communication
of poly(n) · depth(C). One of our biggest technical contributions lies in
designing novel techniques to overcome this limitation by packing ele-
ments that are distributed across different layers. To the best of our
knowledge, all works that have a notion of packing (e.g. RMFE or packed
secret-sharing) group gates across the same layer, and not doing so, as
in our work, leads to a unique set of challenges and complications.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 102–132, 2025.
https://doi.org/10.1007/978-981-96-0938-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_4&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_4

Perfectly-Secure Multiparty Computation 103

1 Introduction

In secure multiparty computation, or MPC for short, a set of parties P1, . . . , Pn,
each having an input xi, want to compute a function of their inputs y =
f(x1, . . . , xn) in such a way that only the output y is produced, and nothing
additional about the parties’ inputs is revealed. This can be done assuming a
trusted party that receives the inputs, computes the function and returns the
output while promising to leak nothing else, but the goal in MPC is to achieve
the same guarantees without relying on such trusted party, using only com-
munication among the parties. MPC protocols are resilient against a potential
coalition of corrupted parties that cooperate, coordinated by an adversary, in
order to break the remaining parties’ privacy. Several MPC protocols have been
proposed through time, leading to practical constructions seen in recent years
and even some real-world applications and deployments (e.g. see https://mpc.
cs.berkeley.edu/).

MPC protocols are typically characterized by the amount of corrupted par-
ties t they can tolerate, with three notable settings being t < n/3, t < n/2 and
t < n. Protocols with t ≥ n/3 must allow for some negligible statistical error (if
t < n/2), or even make use of cryptographic assumptions (if t ≥ n/2). In the
t < n/3 case several results are known: not only we can obtain perfectly secure
MPC [BOGW88], which safeguards the parties’ inputs regardless of the compu-
tational power of the adversary, but we can do so with several appealing fea-
tures such as guaranteed output delivery (G.O.D., which ensures the successful
completion of the protocol in spite of any adversarial misbehavior), and a com-
munication complexity that requires each party to send in average an amount of
messages that is independent of the total number of parties, and depends only on
the circuit size of the function f (here we omit additive terms that are indepen-
dent of the circuit size but only depend on the number of parties) [GLS19]. More
precisely, we can represent the function f as an arithmetic circuit C comprised
of input, output, addition and multiplication gates over some finite ring Z/qZ
of integers modulo an integer q, and if |C| denotes the number of multiplication
gates, it is possible to obtain perfectly secure MPC over Z/qZ with G.O.D. where
the total communication complexity is O(n|C|) ring elements, which we refer to
as linear communication complexity. A common choice is taking q to be a prime,
but this claim holds for any arbitrary integer q: the Chinese remainder theorem
reduces the general case to moduli of the form q = pk, for a prime p and an
integer k, and works such as [ACD+19] show that perfectly secure MPC with
G.O.D. over these moduli is possible, with linear communication complexity. It
is relevant to study the general modulus case as it contains several relevant cases
such as q = 2, 232 or 264, which have received considerable attention in recent
works due to practical benefits [DEF+19].

Unfortunately, the claim of linear communication is not entirely accurate.
Shamir secret-sharing is a core technique to enable these results, and for this
scheme to work over Z/pk

Z, p must be strictly larger than n. Once n becomes
larger than p, a so-called Galois ring extension of degree Ω(log n) must be used.
It is still true that the communication is O(n|C|) ring elements, but this time

https://mpc.cs.berkeley.edu/
https://mpc.cs.berkeley.edu/

104 D. Escudero et al.

each ring element is Ω(log n) bits long. Hence, asymptotic communication is
truly O(n log n|C|). In [CCXY18], the authors partially address this issue relying
on the technique of reverse multiplication-friendly embeddings (RMFEs), which
allow them to remove the log n overhead when computing many copies of the
same circuits, i.e., a SIMD circuit. However, for general circuits, directly applying
their techniques does not work as we will discuss in Sect. 1.3. This leads to the
following question:

Can we design perfectly secure MPC protocols for general circuits over a
constant-size ring Z/qZ whose asymptotic communication complexity scales as

O(n|C|)?
Again, all current solutions have communication that scales as O(n|C|) ring

elements, but assuming that either the ring bit-size scales as log n or the under-
lying circuit is a SIMD circuit. For fixed-size rings (which is the natural setting
in practice) and general circuits, ring extensions must be used, which leads to
a communication of O(n log n|C|). Recall that this affects the very practically-
motivated settings of binary computation (i.e. circuits over Z2), and also the
int32 and int64 cases (i.e. circuits over Z/2k

Z for k = 32 and k = 64).

1.1 Our Contribution

In this work we give an answer in the affirmative to the aforementioned question.
We provide an MPC protocol with the following desirable features:

– Perfect security against an active adversary corrupting t < n/3 parties
– Securely computes circuits over Z/qZ for any constant q
– The total number of elements in Z/qZ communicated scales as O(|C| · n + c ·

n · log n + n3 · log2 n), where c is the number of clients
– Guaranteed output delivery

As we have previously discussed, via CRT this task reduces to the task of
computation over a ring Z/pk

Z with constant p. For the sake of presentation
we focus on p = 2, that is, computation over Z/2k

Z, but the ideas presented
directly work for more general p.

Remark 1 (On communication complexity). In our protocol, the communication
complexity scales as O(|C| · n) only when |C| = Ω(c log n + n2 log2 n).

Remark 2 (On security with abort). We note that even removing the G.O.D. con-
dition, and settling with security with abort only, obtaining a protocol with the
other properties is not simple, and is on its own a relevant and challenging open
question. In this work we aim for the stronger notion of G.O.D.

Remark 3 (Cost of addition gates). In our work, (a linear amount of) communi-
cation is required for every addition gate, which is not the case if one settles for
O(n log n|C|) complexity (where addition gates are for free in terms of commu-
nication). Looking ahead, this occurs due to a technique called network routing,

Perfectly-Secure Multiparty Computation 105

originated in [GPS22,GPS21], which is used to exploit some notion of packing
while routing values through the circuit correctly. The work of [GPS22] (which is
set in a different context than ours) also suffers from communication per addition
gates, and avoiding this overhead in our work would likely lead to improvements
to [GPS22]. If the circuit does not have substantially many more addition gates
than multiplication gates (a reasonable setting in practice), then this condition
becomes immaterial for our asymptotic O(n|C|) claim.

1.2 Related Work

Perfectly secure MPC for t < n/3 with linear communication and G.O.D. has
been studied in multiple works such as the one by Goyal, Liu, and Song [GLS19]
and Beerliová-Trub́ıniová and Hirt [BTH08]. These are set specifically in the con-
text of finite fields Fpd , where pd = Ω(n). The work of Abspoel et al. [ACD+19]
generalizes this to the ring Z/pk

Z by using Galois ring extensions of degree
d = Ω(n). Unfortunately, as we have pointed out, these techniques are not suit-
able for constant-sized rings since they add an Ω(log n) overhead.

If it is known that t is far from n/3, that is, t < n(13−ε) for any constant ε > 0,
then it is possible to obtain perfectly fully secure MPC with a communication
of O(|C|) (independent of n) for fields Fpd with pd = Ω(n), and O(log n|C|)
for constant-sized fields [DIK10]. These techniques extend naturally to the case
of Z/pk

Z by using ring extensions as in [ACD+19], and to arbitrary Z/qZ via
CRT. This is better than our linear communication O(n|C|), but it assumes the
aforementioned gap ε > 0. Our protocol works for the case ε = 0: t < n/3, and
n can be as small as n = 3t + 1.

In the t < n/2 case with statistical security, a similar situation exists: most
protocols with G.O.D. that achieve linear communication complexity require a
ring Z/pk

Z with p > n [BFO12,GSZ20,ACD+19]. This state of affairs changed
for the case of Fp and security with abort for constant p in the recent work
of [PS21]. The same ideas in [PS21] extend naturally to Z/pk

Z for constant p.
However, it is not clear how to extend the ideas in [PS21] to G.O.D. since, in
the t < n/2 regime, the techniques used to achieve full security are considerably
much more complex than these for t < n/3 (which are already quite intricate).
The core difference is that in t < n/2 setting the central idea to achieve G.O.D. ,
dispute control, differs from player elimination—in spite of sharing some similar-
ities: unlike player elimination, in t < n/2 this pair cannot be removed because
one may be inadvertently removing one of the t + 1 honest parties, and t honest
parties alone cannot have enough joint information to finish the computation.

Finally, we note that if one only wants to achieve statistical security (rather
than perfect security) in the G.O.D. setting for t < n/3, [IKP+16] has achieved
O(poly(log(n))|C|) elements of communication if t < n(1/2−ε), for any constant
ε > 0, which is even better than linear communication.

106 D. Escudero et al.

1.3 Overview of Our Techniques

We begin by highlighting the difficulties that existing works face when consider-
ing MPC over constant-size rings. Perfectly secure MPC with linear communi-
cation (for non-constant fields) was first proposed in [BTH08], and it was later
improved in [GLS19] to remove a term dependent on the circuit depth. These
ideas can be generalized to rings such as Z/pk

Z [ACD+19], again with the same
complexity if p = Ω(n). This complexity comes from the use of Shamir secret-
sharing, which requires enough interpolation points to operate, and hence it
requires a ring of large enough characteristic. Shamir’s is not the only linear
secret-sharing scheme one could use, but it is unlikely there exist other schemes
that somehow reduce this secret/share size requirement, since this is highly con-
nected to the MDS conjecture (see for example [FR22, Lemma 1]). Since Shamir
secret-sharing seems unavoidable, our core idea is to use the ring extensions
needed for it, while packing multiple entries in a single ring extension secret-
shared value, so that the cost per single share is ultimately linear. Ultimately,
the challenges lie on efficiently making use of this packing, which is our focus in
this overview.

As we have mentioned previously, here and for the rest of our paper we focus
on the case Z/2k

Z. Furthermore, for the sake of this introduction only we focus
on security with abort (which, as mentioned previously, is already a challenging
task on its own). We highlight towards the end of the section how to tackle
the G.O.D. case. Our work makes use of several techniques in the literature
such as player elimination [BTH08], reverse multiplication-friendly embeddings
(RMFEs) [CCXY18], network routing [GPS22,GPS21], among others. In this
section we provide a high level overview of how these ideas are put together in
order to obtain our protocol. First, we introduce some notation, with further
details given in Sect. 2 and beyond. We let GR(2k,m) be a Galois ring extension
of Z/2k

Z of degree m, which can be seen as the ring of polynomials over Z/2k
Z

modulo a monic polynomial irreducible mod 2 of degree m (for more details
see Sect. 2 or [Wan03]). We can perform Shamir secret-sharing over this ring if
m = �log n� + 1 [ACD+19], and we denote degree-d sharings of x ∈ GR(2k,m)
by [x]d. An RMFE is a pair of Z/2k

Z-linear homomorphisms (φ : (Z/2k
Z)� →

GR(2k,m), ψ : GR(2k,m) → (Z/2k
Z)�) satisfying ψ(φ(x) · φ(y)) = x � y for

every x,y ∈ (Z/2k
Z)�. Such objects exist, with � = Θ(m) [CCXY18,ELXY23],

and in fact we can also take them such that φ(1) = 1 [ELXY23]. This ensures
that ψ(φ(x)) = ψ(φ(x)φ(1)) = x � 1 = x.

Embedding Using RMFEs. We may take as a starting point the approach
in [CCXY18] in order to secret-share elements of Z/2k

Z efficiently using Shamir
secret-sharing via RMFEs. Recall that one (naive) way of secret-sharing an ele-
ment x ∈ Z/2k

Z using Shamir SS is to embed it in GR(2k,m), and then secret-
sharing over GR(2k,m), which results in an undesired overhead of m ≈ log n.
Instead, one may secret-share m elements simultaneously by interpreting them
as an element of GR(2k,m), removing the overhead of m in an amortized sense
(i.e. after dividing by the number of secrets m), but unfortunately this approach

Perfectly-Secure Multiparty Computation 107

does not interact well with the MPC setting since one cannot easily multiply
elements this way.

RMFEs are introduced in [CCXY18] as a solution to this problem. Instead
of secret-sharing m elements by thinking of them as an element of GR(2k,m),
� elements x = (x1, . . . , x�) ∈ (Z/2k

Z)� are shared together by first mapping
them as φ(x) ∈ GR(2k,m), and sharing [φ(x)]t instead. This has an overhead of
m for � secrets, which is m/� = Θ(1) amortized. Furthermore, the multiplicative
property of RMFEs turns out to enable products on secret-shared data, making
this embedding particularly suitable for MPC. In fact, this is used in [CCXY18]
to remove the log n overhead of perfect security in the context in which the
circuit C is structured as � copies of the same function, run on possibly different
inputs. Our goal however is to enable a more general class of circuits that have no
specific structure in terms of their wiring, and hence this approach is insufficient.

To illustrate the main challenge, let us discuss how the approach
from [CCXY18] works, for � copies of the same circuit. The invariant the parties
maintain is that, for every set of � values x = (x1, . . . , x�) ∈ (Z/2k

Z)� corre-
sponding to the same wire across the � copies, the parties have sharings [φ(x)]t.
Given � copies of a multiplication gate with inputs x and y, the invariant is
maintained by using a triple ([φ(a)]t, [φ(b)]t, [φ(c)]t), where c = a�b. Assuming
the parties have [φ(x)]t and [φ(y)]t, they can locally compute [φ(x)+φ(a)]t and
open this as φ(u), and similarly open φ(v) where v = y + b. Crucially, since
this is Shamir reconstruction, this can be done with error correction/detection,
ensuring no errors are introduced. Now, the parties compute locally

[z]t = φ(u) · φ(v) − φ(v) · [φ(a)]t − φ(u) · [φ(b)]t + [φ(c)]t,

which satisfies ψ(z) = x�y, thanks to the properties of RMFEs. Finally, the par-
ties can execute a simple re-encoding protocol that applies φ ◦ ψ : GR(2k,m) →
GR(2k,m) to [z]t, yielding [φ(x � y)]t, hence preserving the desired invariant.

Now, if the circuit is non-SIMD, it could easily happen that, say, a value
encoded in position 1 must be multiplied (or even added) with a value encoded
in position 2. The properties of RMFEs only allow for the computation of x�y =
(x1y1, . . . , x�y�), but they fall short if one somehow needs products that are
“not aligned”, such as (x1y2, x2y1, x3y3, . . .). SIMD circuits do not present such
misalignments, which is why the techniques in [CCXY18] work in that setting.

Network Routing. To alleviate this issue, we may resort to network routing, a
general technique introduced in [GPS22,GPS21] to ensure the sharings of output
groups can be rearranged in such a way that they are “aligned” when fed as
inputs to future groups of gates. In these works, such “wiring” issues appeared in
the context of packed secret-sharing where, as in our setting, parties have shares
whose underlying secrets are vectors that can somehow be added or multiplied
component-wise, but cannot be re-routed easily. In our work we show that such
techniques can also be used in our context, where the “packing” is done with
RMFEs. For the sake of keeping this overview as lightweight as possible, we will
not dive into the details on how this is done, and instead we will refer the reader

108 D. Escudero et al.

to Sects. 3.4 and ?? where details are provided. For now, it suffices to say that
there is an efficient method for the parties to obtain sharings [φ(x)]t for every
input group in a given layer, starting from packed sharings of every output group
of the previous layers.

For simplicity in the exposition we will assume from now on that the circuit
only has multiplication gates, without any addition operation. We discuss at
the end of this overview why this is convenient, and how to handle the case of
addition gates as well. Naturally, our main protocols include the general case.

On the Dependency on Circuit Width. Using the network routing tech-
niques mentioned above, together with the protocol sketched earlier, we would
obtain the desired result: perfectly secure MPC for t < n/3 over Z/2k

Z with
G.O.D. and linear communication O(n). However, this result hides an assump-
tion on the circuit structure: it requires each layer to contain at least Ω(n�)
multiplication gates. This is because every layer requires parallel reconstructions
for each of its multiplication gates, and robust reconstruction of Shamir sharings
with linear communication (i.e. instead of all parties sending their shares to each
other, which would be quadratic) requires Ω(n) reconstructions to be done in
parallel [DN07]. On top of this each such Shamir sharing “packs” � ≈ O(log n)
values, which results in a requirement of n� secrets to be reconstructed (per
layer!) to obtain the communication gains.

The above results in a total communication that is not O(n|C|), but
rather O(n|C| + n2� · depth(C)). For circuits C such that depth(C) 	 |C|/n
(e.g. “skinny” circuits), this extra term dominates communication. In contrast,
for the case of MPC over Fp for large p, it is known that the n2� · depth(C) term
can be eliminated, resulting in true linear communication O(n|C|) [GLS19]. This
leaves a gap between what we know over (large) fields (which can be generalized
for Z/pk

Z for large p), and the case of Z/2k
Z. What follows is dedicated to

discuss how we address this complexity gap.

Computing the Circuit Optimistically with Additive Secret-Sharing.
We first reduce the term n2� · depth(C) to n� · depth(C) via the following core
idea—also used in [GLS19]: derive additive sharings from Shamir sharings and
use the additive sharings to compute the circuit (which enables cheating but can
be done with linear communication without any minimum batch size require-
ment), and only use the Shamir sharings for a final verification check (which
involves reconstructing many robust sharings in parallel and hence can be done
with linear communication complexity). For the optimistic computation of the
circuit we will make use of additive secret-sharing, which we denote by 〈x〉 for
x ∈ Z/2k

Z (we also extend this notation naturally to vectors over Z/2k
Z). For

input gates, each client having a group of inputs x ∈ (Z/2k
Z)� secret-shares

[φ(x)]t towards the parties (the parties perform degree checks that ensure the
degree is indeed ≤ t), and then the parties locally derive 〈x〉 from [φ(x)]t. This is
done by first locally converting [φ(x)]t to 〈φ(x)〉 (a standard procedure involving
each party multiplying locally by certain Lagrange coefficients), followed by a

Perfectly-Secure Multiparty Computation 109

local application of the mapping ψ, to obtain 〈ψ(φ(x)) = x〉. Now, the parties
optimistically compute the circuit. For every pair of values to be multiplied 〈x〉
and 〈y〉, letting i ∈ [�] be the index of this gate in its group, the parties can use
the triple ([φ(a)]t, [φ(b)]t, [φ(c)]t) associated to this group to locally derive the
additively shared triple (〈ai〉, 〈bi〉, 〈ci〉), which they can use to multiply 〈x〉 and
〈y〉: open ui = x + ai and vi = y + bi (with linear communication without any
minimum batch size restriction), and compute 〈xy〉 = ui ·vi−vi ·〈a〉−ui ·〈b〉+〈c〉.

For the check, recall that the parties have Shamir sharings of [φ(x)]t for every
group x in the input layer. Consider a multiplication group in the first layer
having as inputs x,y. Using network routing, the parties can obtain Shamir
sharings [φ(x)]t, [φ(y)]t, so they can compute [φ(u)]t = [φ(x)]t + [φ(a)]t and
[φ(v)]t = [φ(y)]t + [φ(b)]t, hence obtaining robust versions of the reconstructed
values u,v when these gates were computed optimistically. Furthermore, the
parties can compute locally [z]t = φ(u)·φ(v)−φ(v)·[φ(a)]t−φ(u)·[φ(b)]t+[φ(c)]t,
and apply the re-encoding protocol from [CCXY18] to obtain [φ(x � y)]t. Doing
this for all groups in the first layer ensures that the parties obtain robust sharings
[φ(z)]t of all output groups z in the first layer. This process can be iterated: the
parties use network routing to obtain robust sharings of all input groups in the
second layer, obtain robust sharings of all reconstructed values u and v during
the optimistic computation of this layer, and then compute robust sharings of the
outputs groups in this layer. This is repeated until the output layer is reached.
Before reconstructing the outputs, however, the parties robustly reconstruct in
parallel all Shamir sharings [u]t and [v]t corresponding to all multiplication
groups, cross checking with the values reconstructed optimistically.1 The key
point is that this robust reconstruction involves enough values as to be able to
enjoy amortized linear communication complexity.

Packing Across Different Multiplication Layers. Using additive SS opti-
mistically during the circuit computation shaves a factor of n in the term
n2� · depth(C), but it still leaves us with a term n� · depth(C), since we still
need to RMFE-pack � gates across the same layer. To address this we allow
groups to contain gates spanning over potentially different layers, with the only
restriction being that the set of groups must form a DAG (we say there is an
edge from group A to group B if at least one gate in A connects to one gate in
B; in Sect. 3.1 we show that such grouping can always be done for any circuit—
without any width restrictions). For notational convenience we assume that the
gates in every group are indexed in increasing topological order, meaning that
if a gate indexed by i in a group depends on the output of another gate indexed
by j in the same group, then j < i. As before, we still group each client’s input
wires into batches of size � each,2 and we also let each client secret-shares a
group of inputs x as [φ(x)]t.

1 As shown in [GLS19], certain care is needed to ensure that security is not broken by
delaying verification. We omit these details in this overview.

2 We assume each client has Ω(�) = Ω(n) inputs. Otherwise there is a minor overhead
due to packing, but this is only restricted to the input layer.

110 D. Escudero et al.

Careful observation reveals that such relaxation in grouping does not really
affect the optimistic computation using additive SS: the parties can still derive
additive SS triples (〈ai〉, 〈bi〉, 〈ci〉) and use these to perform multiplications. How-
ever, complications will arise at the verification stage. To illustrate this, let us
consider the first multiplication group in topological order, and let us denote its
inputs as x and y. If it was the case that all of the multiplications in the group
belonged to the first layer, then the parties could perform network routing as
before to obtain [φ(x)]t and [φ(y)]t. Unfortunately, since we are packing across
different layers, it can happen that, say, the left input xi to the i-th gate is equal
to the output xjyj of the j-th gate in the same group, with j < i. This prevents
us from determining [φ(x)]t from the input layer alone.

Determining [φ(x)]t for the First Multiplication Group. For illustration, let us
keep our focus on the first multiplication group. Our goal is to show how the
parties can obtain robust sharings [φ(x)]t, which, as illustrated above, cannot be
derived from the input layer alone since the left input xi to get i depends on the j-
th output xjyj of gate j < i. First, recall that the parties have opened 〈u〉 = 〈x〉+
〈a〉 and 〈v〉 = 〈y〉 + 〈b〉, in the process of processing this group optimistically.
However, due to the non-robustness of additive SS, these reconstructions may
have resulted in u′ = u + δ and v′ = v + ε, for some possibly non-zero δ and ε.
Using these reconstructions, the parties can compute locally [φ(x+δ)]t = φ(u′)−
[φ(a)]t and [φ(y + ε)]t = φ(v′) − [φ(b)]t, which correspond to robust sharings of
the inputs x and y, but potentially incorrect. Now we let the parties execute any
correct multiplication protocol (we borrow the protocol from [BTH08,ACD+19]
for this purpose) to compute the product [φ(x + δ) · φ(y + ε)]t, followed by
re-encoding as in [CCXY18] (i.e. applying φ◦ψ) to obtain [φ((x+δ)� (y+ε))]t.

For simplicity let us assume that i is the only index in this group whose
corresponding gate depends on other outputs from the same group, with all the
other gates receiving inputs directly from the input layer. In particular, both
xj and yj come from the input layer. Recall that the goal is to obtain [φ(x)]t
using network routing. Since the parties have robust sharings of all groups in the
input layer, they have almost all the pieces needed to obtain [φ(x)]t, with the
only missing part being robust sharings that contain the output of the j-th gate,
since this is needed for the i-th left input xi. Our idea is to use, for the missing
j-th output, the sharings [φ((x + δ) � (y + ε))]t computed above, which contain
the j-th output xjyj +γ, where γ = xjεj +yjδj +δjεj , in the j-th entry. In other
words, the parties perform network routing on the sharings from the input layer
and the sharing [φ((x + δ) � (y + ε))]t to obtain [φ(x)]t. However, since the i-th
entry corresponds to xi + γ, the actual secret is [φ(x + γei)]t. In other words,
the parties do not obtain robust sharings of the correct x, but instead, the i-th
entry is shifted by γ.

This may raise a red flag at first sight: recall we are using the sharing [φ(x+
γei)]t to verify the multiplications in the first group, in particular, verifying that
〈u〉 = 〈x〉+ 〈a〉 was opened correctly. However, we are using an incorrect [φ(x+
γei)]t, so it may be the case that this somehow helps the adversary reconstruct
〈u〉 incorrectly. For example, the adversary may be able to reconstruct 〈u〉 as

Perfectly-Secure Multiparty Computation 111

u + γei, which is consistent with the robust sharings held by the parties [φ(x +
γei) + φ(a)]t, and hence the check will pass, in spite of 〈u〉 being reconstructed
incorrectly. Yet, observe that this is an attack only if γ is non-zero, for which
it must be the case that either δj or εj is not zero; say for simplicity δj =
0. Fortunately, this will be caught in the check: the parties have the sharings
[φ(x + γei) + φ(a)]t, which are incorrect in position i but, crucially, are correct
in position j, so the adversary will not be able to conceal the fact that the j-th
entry was modified.

Determining [φ(x)]t for Every Input Group. The principle above applies more
generally. After performing optimistic computation using additive secret-sharing,
the parties perform the following for every multiplication group with inputs
x,y. Let ([φ(a)]t, [φ(b)]t, [φ(c)]t) be the Shamir triple associated to the group,
and recall that the parties reconstructed (potentially incorrectly) u and v as
part of the optimistic multiplications. The parties compute locally [φ(x)]t =
φ(u) − [φ(a)]t and [φ(y)]t = φ(v) − [φ(b)]t, and then they compute the product
[φ(x � y)]t using a secure multiplication protocol followed by re-encoding, as
illustrated earlier. At this point, for every set of outputs x of a given group,
the parties hold [φ(x)]t. Moreover, the following crucial property holds: if no
cheating occurred up to (and including) the optimistic evaluation of the gate at
index i, then x[i] holds the correct wire value.

Now, the parties apply network routing to map all the packed sharings of
the output groups into packed sharings of input groups [φ(x)]t, [φ(y)]t for every
multiplication group with inputs x,y. Importantly, due to the property above,
if no cheating has occurred prior to the computation of, say, the i-th gate in a
group with inputs x,y, then we know that the sharings [φ(x)]t, [φ(y)]t derived
from the network routing satisfy that the i-th entries xi and yi are correct. This
way, if cheating occurs for the first time in this gate, by reconstructing incorrect
u′

i = xi + ai + δi and v′
i = yi + bi + εi (which may result in more errors in

other entries of the vectors [φ(x)]t, [φ(y)]t, but only with indices j > i, not for
j ≤ i), the parties can use [φ(x)]t, [φ(y)]t (together with the associated triple
([φ(a)]t, [φ(b)]t, [φ(c)]t)) to check the correctness of the reconstructed u′

i and v′
i.

Dealing with Addition Gates. Recall we assumed for simplicity that the
circuit did not have any addition gates. We briefly comment how the general
case is handled. First, both addition and multiplication gates are grouped in
sets of � gates each (where the gates within each group are of the same type).
The optimistic computation phase remains the same: the parties handle addition
gates by simply adding their (additive) shares together, locally. For the verifi-
cation step, however, we need the parties to communicate for every group of
addition gates. To see why this is the case, consider a group of addition gates
with inputs 〈x〉, 〈y〉, and imagine that every output of these gates is later each
fed to a multiplication gate. The parties can of course add locally 〈x〉, 〈y〉, but
recall that for the network routing phase to work, we need the parties to have
packed Shamir sharings of the outputs, like [φ(x + y)]t, but it is not clear how
they can obtain these from 〈x〉, 〈y〉 alone.

112 D. Escudero et al.

For the case of multiplication gates, this was achieved with the help of the
(packed) triple that was used for the product. For the case of addition gates, we
will use a similar idea: we make use of an additive triple ([φ(a)]t, [φ(b)]t, [φ(c)]t),
where c = a + b, ask the parties to open u ← 〈x + a〉 and v ← 〈y + b〉, and
compute [φ(x+y)]t = (u+v)− [φ(c)]t. This can also be seen as adding an extra
step that first converts 〈x〉 to [φ(x)]t using the “double sharing” (〈a〉, [φ(a)]t)
(and similarly for y), and then add these sharings together.

On Guaranteed Output Delivery. Finally, we comment on how the proto-
col sketched here is extended to G.O.D., without blowing communication. We
use the player elimination framework from [BTH08], in which the parties not
only perform a check but, in case of failure, identify a so-called semi-corrupted
pair in the process, which is a pair of parties that is guaranteed to contain at
least one corrupted party. At this point, the pair can be safely removed from
the computation (which preserves the t < n/3 ratio), and the computation can
be restarted. Restarting the computation many times can cause communication
to blow up by a large factor. To address this, the circuit is split into segments
of certain size, and the check described here is performed at the end of each
such segment, rather than at the end of the whole circuit. Setting segment sizes
appropriately reduces the size of the repeated computations, which keeps com-
munication within O(n|C|). There are subtle issues, like part of the output of a
group of a given segment being fed to the same segment, while some other part
is fed to a future segment. This is mostly inconvenient notation-wise, but it does
not add heavy technical complications.

To give a more complete picture, it remains to describe more clearly how
the parties can identify a semi-corrupted pair during our check. Recall that
our verification consists, in essence, of opening sharings of the form [φ(z)]t,
and comparing against a previously opened set of values z′. How should the
parties react in case some mismatch is found? The core idea is to pinpoint
to the party who announced an incorrect (additive) sharing in the first place.
The main challenge with this is that, even though the parties have a robust
version of the underlying secrets z, they do not necessarily have a robust version
of the additive sharings that each party should have sent when reconstructing
z, so it is not obvious how to identify which party sent an incorrect additive
share. Fortunately, as it turns out, it is indeed possible to derive robust sharings
that somehow commit the parties to the additive shares they should send at
reconstruction. For this, we introduce a notion of extended additive sharings,
which expands additive SS with the necessary information to check whether a
party sent a correct additive share. We provide details in the full version of the
paper.

Remark 4 (On sharings of zero). We remark that our overview here is a simpli-
fied version of our actual protocol, which must use of several other ingredients
not discussed here. One of these is that, in several places, the parties need to
re-randomize certain sharings using shares of zero, which is crucial for, among
different purposes, preventing leakage of sensitive information when reconstruct-
ing optimistically, as in [GLS19].

Perfectly-Secure Multiparty Computation 113

1.4 Outline of the Document

We begin by presenting several important preliminaries in Sect. 2. This is fol-
lowed by Sect. 3, which contains our protocols for optimistically evaluating a
segment (Sect. 3.2), as well as verifying the computation is performed correctly
(Sect. 3.5). This includes the network routing needed to compute robust shar-
ings of groups in the circuit (Sect. 3.4), as well as our method to identify semi-
corrupted parties once an attack has been detected (Sect. 3.6). We also discuss
in detail how the circuit is partitioned into groups and segments (Sect. 3.1).
Section 4 uses the building blocks from the previous sections to present our main
MPC perfectly secure protocol with G.O.D. over constant-size rings, with linear
communication complexity.

Our work makes use of several functionalities and protocols. To help the
reader navigate, we provide in the full version of the paper a list with all of our
functionalities and protocols, and their location within the text.

2 Preliminaries

In this work, we focus on functions that can be written as an arithmetic circuit
C over the ring Z/2k

Z with input, addition, multiplication and output gates.
Let |C| denote the size of the circuit C. We will make use of the client-server
model for secure multiparty computation, in which clients can provide inputs and
receive outputs to/from the servers, who are the parties who execute the actual
MPC protocol. Note that, if every party plays a single client and a single server,
this corresponds to a protocol in the standard MPC model. We assume that every
pair of parties, either client and/or server, is connected via a secure (private and
authentic) synchronous channel. We measure communication complexity as the
total number of bits sent via private channels.3

Let c denote the number of clients, n denote the number of servers, and t
denote the upper bound of the number of corrupted servers. In this work we
focus on the 1/3-corruption setting, i.e. 3t + 1 = n. In this work, we design
an MPC protocol where all clients and servers compute the functionality FMain

with perfect security. Our definition of perfect security is based on the standard
simulation-based security which is shown in the work [Can00].

Functionality 1: FMain(C)

1. Let x denote the input and C denote the circuit. FMain receives the input
from all clients.

2. FMain computes C(x) and distributes the output to all clients.

3 Since we consider constant-sized rings, this is asymptotically the same as measuring
the number of ring elements.

114 D. Escudero et al.

2.1 Party-Elimination Framework

We make use of the party elimination framework by Hirt, Maurer, and Przy-
datek [HMP00], which constitutes a general strategy to achieve perfect security
with G.O.D. with linear communication complexity. The basic idea is to let the
parties perform checks that evaluate the correctness of the computation, identify-
ing a pair of parties (with the help of BA for consensus) that contains at least one
corrupted party in case of failure; such pair is referred to as a semi-corrupted
pair. This pair of parties is then eliminated (i.e. removed from the computa-
tion), and the protocol is restarted. To avoid the overhead of re-executing as
many times as potential eliminated pairs—which is upper bounded by t—the
computation is divided into segments, and the check is performed at the end of
each segment. This way, the extra cost of re-running is—in the worst case—t
times the cost of each segment, so by keeping segments of appropriate size one
can obtain efficient protocols with G.O.D.

We use Pactive to denote the set of parties which are active in the current
segment, that is, that have not been eliminated. We use Cactive ⊂ Pactive for
the set of active corrupted parties. Let n′ be the size of Pactive. We use t′ for
the maximum possible number of the corrupted parties in Pactive. Each time
a semi-corrupted pair is identified, these two parties are removed from Pactive

and hence Cactive. It results in n′ := n′ − 2 and t′ := t′ − 1. Initially we have
n = n′, t = t′. Let T = n′ − 2t′. Therefore, T remains unchanged during the
whole protocol.

2.2 Finite Rings

Basic Notation. Let Z denote the ring of integers. For q ∈ Z, let qZ denote the
ideal {q · n : q ∈ Z} and let Z/qZ denote the quotient ring, which is the ring of
integers modulo q. For a ring S, let S[X] denote the ring of polynomials in the
variable X with coefficients in S. Also, let S∗ denote the multiplicative subgroup
of invertible elements in S.

Galois Rings. We adopt the notion of Galois rings that contains the quotient
ring Z/2k

Z from [ACD+19].

Definition 1 (Galois Ring [ACD+19]). A degree-d Galois ring of Z/2k
Z is a

ring of the form (Z/2k
Z)[X]/g(X), where k is a positive integer, and g(X) ∈

(Z/2k
Z)[X] is a non-constant degree-d polynomial such that its reduction modulo

2 is an irreducible polynomial in the field F2[X]. We use GR(2k, d) to denote
degree-d Galois ring of Z/2k

Z.

In order to interpolate polynomials in a Galois ring, we rely on the following
lemma.

Lemma 1 ([ACD+19]). Let GR(2k, d) be a Galois ring with degree d. There
exists a length 2d sequence of distinct elements in GR(2k, d) denoted by
α1, . . . , α2d , such that for any x1, . . . , x2d ∈ GR(2k, d), there exists a unique
interpolating polynomial of degree at most (2d − 1) such that f(αi) = xi for all
i ∈ {1, 2, . . . d}.

Perfectly-Secure Multiparty Computation 115

Using this lemma, we can define necessary components such as Shamir secret
sharings and hyper-invertible matrices over Galois rings. In the following, we will
use a Galois ring of Z/2k

Z denoted by R := GR(2k,m). Note that the size of R
is 2m·k. We select m such that 2m ≥ 2n + 1 so that it is possible to interpolate
degree-2n polynomials in R.

2.3 Secret Sharing Schemes

Shamir Secret Sharing. We will use the standard Shamir secret sharing scheme
[Sha79] in this work. For the Galois ring R = GR(2k,m), suppose (αi)n

i=1, β are
n + 1 distinct points, which can be used to interpolate polynomials according to
Lemma 1. A degree-d Shamir sharing of x ∈ R among n′ ≤ n parties is a vector
(s1, s2, . . . , sn′) ∈ Rn′

that satisfies the property that there exists a polynomial
f(·) ∈ R≤d[x] with f(β) = x and f(αi) = si,∀i ∈ [n′]. The share held by party
Pi is si. With any (d + 1) different shares of the same sharing the secret x can
be reconstructed.

A degree-d Shamir sharing of x ∈ R is denoted as [x]d. The following two
properties hold for Shamir sharings: (1) For all x, y ∈ R, [x + y]d = [x]d + [y]d,
and (2) for all x, y ∈ R and for all d1, d2 subject to d1 + d2 < n, we have
[x · y]d1+d2 = [x]d1 · [y]d2 .

Our protocol also rely heavily on the following property of Shamir sharings.
Suppose after some party elimination steps we have n′ parties where a maximum
t′ of them can be malicious.

Lemma 2 ([BTH08]). Suppose n′ parties share a degree-d Shamir sharing [x]d,
and at most t′ of the shares may be incorrect. If t′ < (n′ − d)/2, then [x]d is
correctable after receiving all the shares, e.g. by Berlekamp-Welch Algorithm. If
t′ < n′ − d, then whether [x]d is inconsistent is detectable after receiving all the
shares.

2.4 Reverse Multiplication Friendly Embeddings

Definition 2 (RMFE over Ring [CRX21,ELXY23]). Let �,m, k be positive
integers. Let R = GR(2k,m) denote the degree-m Galois ring of Z/2k

Z. A pair
of mappings (φ : (Z/2k

Z)� → R, ψ : R → (Z/2k
Z)�) is called an (�,m)2k -reverse

multiplication friendly embedding (RMFE) if, for all x,y ∈ (Z/2k
Z)�, it holds

that ψ(φ(x) · φ(y)) = x � y. Without loss of generality we can assume that
ψ(φ(1)) = 1, which ensures ψ(φ(x)) = x for all x ∈ (Z/2k

Z)�.

Defining the Z/2k
Z-Linear Map val(·) [PS21]. To compute the summation of all

entries of ψ(y) from y ∈ R, we define an Z/2k
Z-linear map val(·) : R → Z/2k

Z as
follows: For an input y, suppose ψ(y) = (y1, y2, . . . , y�), and then val(y) is defined
to be

∑�
i=1 yi. Let ei be a vector in (Z/2k

Z)� such that all entries are 0 except
that the i-th entry is 1, and let x be a vector in (Z/2k

Z)� of which the i-th entry
is xi. According to the definition of RMFEs, we have ei � x = ψ(φ(ei) · φ(x)).
Therefore, we can access xi by computing xi = val(φ(ei) · φ(x)).

116 D. Escudero et al.

Existence of Constant Rate RMFEs over Ring Z/2k
Z [ACE+21]. In [ACE+21]

it has been shown that constant rate RMFEs exist, as summarized in Theorem
1.

Theorem 1. There exists a family of constant rate (�,m)2k -RMFE where m =
Θ(�).

In this work, we will use (�,m)2k -RMFE such that m = O(log n) and � =
O(log n). The Galois ring R = GR(2k,m) satisfies 2m ≥ 2n + 1.

2.5 Useful Building Blocks

Reconstructing Shamir Sharings. The functionality FOpenPub takes N degree-d
(d ≤ t) Shamir secret sharings over R as input, and it outputs the reconstructed
secrets to all parties. We assume that for each input degree-d sharing, the shares
of all active honest parties lie on a degree-d polynomial.4 The full description of
FOpenPub appears in the full version of the paper. An instantiation of this func-
tionality for our ring case can be easily generalized from the field-case construc-
tion in [ACD+19], which has communication complexity of O(N ·n ·m+n2 ·m)
elements in Z/2k

Z.

Secure Multiplication. The functionality FMult takes two tuples of N degree-t
Shamir sharings over R as input, which are denoted by ([x1]t, . . . , [xN]t) and
([y1]t, . . . , [yN]t). The output of FMult is the tuple of degree-t Shamir sharings
of the results ([x1 · y1]t, . . . , [xN · yN]t). We assume that for each input degree-t
Shamir sharing, the shares of all active honest parties lie on a degree-t poly-
nomial. The full description of FMult appears in the full version of the paper.
An instantiation of this functionality for our ring case can be easily generalized
from the field-case construction in [BTH08]. Also, another instantiation of this
functionality is implied in [ACD+19]. The protocol generalized from [BTH08]
has communication complexity of O(N · n · m + n2 · m · |S|) elements in Z/2k

Z,
where S is the set of eliminated parties.

Performing Re-encode. In our construction, we will need to transform a degree-t
Shamir sharing over R from [x]t to [φ ◦ ψ(x)]t in order to evaluate multipli-
cation gates in the circuit. This process is called re-encode. The functionality
FReEncode takes N degree-t Shamir sharings over R as input, which are denoted
by [x1]t, . . . , [xN]t. The output of FReEncode are N degree-t Shamir sharings of
the re-encoded result [φ ◦ ψ(x1)]t, . . . , [φ ◦ ψ(xN)]t. We assume that for each
input degree-t Shamir sharing, the shares of all active honest parties lie on a
degree-t polynomial. The full description of FReEncode appears in the full version
of the paper. An instantiation of this functionality for our ring case can be easily
4 If this is not the case, we ask the functionality to send the active honest parties’

inputs to the adversary and allow the adversary to decide the output of active honest
parties. Essentially, we give up the security if the shares of active honest parties do
not lie on degree-d polynomials.

Perfectly-Secure Multiparty Computation 117

generalized from the field-case construction in [CCXY18]. The instantiation has
communication complexity of O(N ·n ·m+n2 ·m · |S|) elements in Z/2k

Z, where
S is the set of eliminated parties.

Verifying Consistency of Unreliable Broadcast Values. In our protocol, we will
ask a dealer D to distribute several values that are supposed to be all the same,
towards all parties. We do this over point-to-point channel to save the commu-
nication. The functionality FVerifyBC receives from all parties N such unreliable
broadcast values dealt by a dealer D, and verifies whether all parties indeed
received the same values. The output of this functionality to each party is either
consistent or (inconsistent, E), where E is a semi-corrupted pair of par-
ties. The full description of FVerifyBC appears in the full version of the paper. An
instantiation of this functionality for our ring case can be easily generalized from
the field-case construction in [BTH08], which has communication complexity of
O(N · n · m + n2 · m) elements in Z/2k

Z.

Input Gates for Shamir Sharings. We introduce the functionality FInputShamir,
where a client Client with N inputs in R shares its inputs to the active parties
using Shamir secret sharing. The full description of FInputShamir appears in the full
version of the paper. An instantiation of this functionality for our ring case can be
easily generalized from the field-case construction in [BTH08]. The instantiation
has a communication complexity of O(N ·n ·m+n2 ·m · |S|) elements in Z/2k

Z,
where S is the set of eliminated parties.

2.6 Preparing Correlated Randomness

Our protocol relies on different forms of correlated randomness shared by all
parties, and these are prepared independently of the inputs of the clients. We
give a brief description of the correlations we require below.

Random Shamir Sharings. The functionality FRandShamir enables all parties to
prepare N random degree-t Shamir sharings in the form of [φ(r)]t, where r is a
random vector in (Z/2k

Z)�. The description and the instantiation of FRandShamir

can be found in the full version of the paper. The total communication complexity
for the instantiation of FRandShamir to generate N random Shamir sharings is
O(N · n · m + n2 · m2 · |S|) elements in Z/2k

Z, where S is the set of eliminated
parties.

Random Zero Additive Sharings. Once Beaver triples are prepared in the pre-
processing phase, parties only need to do reconstructions in the online phase. To
protect the shares held by honest parties, for each reconstruction, we will prepare
a random additive sharing of 0 among the first t + 1 parties. The functionality
FRandZeroAdditive enables all parties to prepare N random zero additive sharings.
The description and the instantiation of FRandZeroAdd can be found in the full
version of the paper. The total communication complexity for the instantiation
of FRandZeroAdd to generate N zero additive sharings is O(N · n · m + n2 · m · |S|)
elements in Z/2k

Z, where S is the set of eliminated parties.

118 D. Escudero et al.

Random Parity Sharings. For an element p ∈ R, we say that p is parity element
if val(p) = 0, and a parity sharing is a degree-t Shamir sharing of a parity
element. When localizing a fault within a circuit segment, uniformly random
parity sharings will be used as masks so that it is possible to check the correctness
of the reconstruction. The functionality FRandParity enables all parties to prepare
N random parity sharings. The description and instantiation of FRandParity can
be found in the full version of the paper. The total communication complexity
for the instantiation of FRandParity to generate N random parity sharings is O(N ·
n · m + n2 · m2 · |S|) elements in Z/2k

Z, where S is the set of eliminated parties.

Beaver Triples. To evaluate addition gates and multiplication gates, all par-
ties will prepare Beaver triples in the form of ([φ(a)]t, [φ(b)]t, [φ(c)]t), where
a + b = c when the Beaver triple is additive and a � b = c when the Beaver
triple is multiplicative. We introduce two functionalities FTripleAdd and FTripleMult.
FTripleAdd enables all parties to prepare N random additive Beaver triples, and
FTripleMult enables all parties to prepare N random multiplicative Beaver triples.
The descriptions and the instantiations of both FTripleAdd and FTripleMult can be
found in the full version of the paper. The total communication complexity for
the instantiation of either FTripleAdd or FTripleMult to generate N Beaver Triples is
O(N · n · m + n2 · m2 · |S|) elements in Z/2k

Z, where S is the set of eliminated
parties.

3 Segment Evaluation and Verification

Our protocol first splits the circuit into segments, and then assigns gates of each
type within a segment into gate groups. This is discussed in Sect. 3.1. Then, in
Sect. 3.2 we show how the parties evaluate the gates of a given circuit optimisti-
cally, that is, without checking that the computation was carried out correctly.
The verification is discussed in Sect. 3.3.

3.1 Groups and Segments

We need to split the circuit into n segments in order to apply packing effectively.
We assume that the circuit C satisfies the following conditions:

1. Circuit Segment Conditions:
– Because C is a Directed Acyclic Graph (DAG), there exists a topological

ordering among all addition and multiplication gates. We require that
each segment consists of addition and multiplication gates whose topo-
logical orders are consecutive.

– The size of each segment should be O(n · m2 + |C|/n).
2. Gate Number Conditions:

– In the input and output layers, the number of input gates belonging to
each client and the number of output gates belonging to each client are
multiples of �.

Perfectly-Secure Multiparty Computation 119

– The number of addition and multiplication gates within each circuit seg-
ment are multiples of �.

3. Gate Grouping Conditions:
– During the computation, gates that have the same type (i.e., input gates

belonging to the same client, output gates belonging to the same client,
multiplication gates in the same circuit segment, addition gates in the
same circuit segment) are organized into gate groups of size �.

– For the output wires of each gate group, the number of times that those
wires are used as input wires in other gates is a multiple of �.

In the full version of the paper we show that, if C does not satisfy these prop-
erties, then it can be transformed into a circuit C ′ that does satisfy the proper-
ties without affecting our linear communication claim. Based on the conditions
above, we can split each segment into gate groups consisting of either � multi-
plication gates (in which case the group is a multiplication group), or � addition
gates (in which case the group is an addition group). A set of � wires corre-
sponding to the left or right inputs of a given gate group is referred to as an
input group, and output groups are defined similarly, but with output wires. The
transformed circuit has size |C ′| = O(|C| + � · c + n2 · m2).

3.2 Segment Evaluation

The focus of this section is to show how the parties can evaluate optimisti-
cally a given segment seg. The overall idea is to use additive secret-sharing
with multiplication triples derived from packed triples. However, we consider an
“enhanced” version of additive secret-sharing that allows for fault detection in
case of cheating. This is described below.

Extended Additive Sharings. Let (φ, ψ) be an (�,m)2-RMFE. Recall that
n denotes the number of parties and φ : (Z/2k

Z)� → R is an Z/2k
Z-linear

map. Also, R = GR(2k,m) such that 2m ≥ 2n + 1. Therefore, Shamir secret
sharing is well-defined in R. In our construction, we will use φ to encode a vector
of secrets x = (x(1), x(2), . . . , x(�)) ∈ (Z/2k

Z)�. All parties will hold a degree-t
Shamir sharing of φ(x), denoted by [φ(x)]t. For x ∈ Z/2k

Z, we use 〈x〉 to denote
an additive sharing of x among the first t + 1 parties in Z/2k

Z. Recall that n′

denotes the number of remaining parties after the previous party elimination
steps. Specifically, the additive sharing of x is 〈x〉 = (x1, . . . , xn′) where party
Pi holds the share xi ∈ Z/2k

Z such that
∑t+1

i=1 xi = x and xt+2, . . . , xn′ are all
0. Recall that ψ : R → (Z/2k

Z)� and val(·) : R → Z/2k
Z are both Z/2k

Z-linear.
The parties have extended additive sharings of x ∈ Z/2k

Z, denoted by �x�, if
they have a degree-t Shamir sharing [y]t in R such that val(y) = x. We write
�x� := [y]t. It is clear that these sharings are additive.

We note that we can derive extended additive sharings of x ∈ Z/2k
Z from

Shamir sharings [φ(z)]t, where the j-th element of z is x. To see this, observe
that, by the property of RMFE, we have that ψ(φ(ej) ·φ(z)) = ej �z. Therefore,

120 D. Escudero et al.

val(φ(ej) · φ(z)) = x. To obtain �x�, all parties locally compute �x� = φ(ej) ·
[z]t. In addition, it is easy to obtain sharings 〈x〉 from �x� by using Lagrange
coefficients; we give the details in the full version of the paper, where we describe
at length the notion of extended sharings, together with their properties.

Optimistically Evaluating a Segment. For a circuit segment seg, we use
Protocol ΠEval(seg) to optimistically evaluate this segment. We evaluate its
addition and multiplication gates using extended additive sharings and Beaver
triples. A Beaver triple ([φ(a)]t, [φ(b)]t, [φ(c)]t) can be used to evaluate � addi-
tion gates or � multiplication gates. We assume that all parties have computed
Shamir sharings of all gate group outputs of the previous circuit segments. This
means that for an i-th element of any [φ(z)]t used as a gate input in seg, all
parties can locally compute the extended additive sharing �x� := φ(ei) · [φ(z)]t.

For each gate with extended additive input sharings �x�, �y�, we will use the
Beaver triple associated to the gate group containing this gate. Suppose the
gate is the j-th gate within the gate group, and suppose ([φ(a)]t, [φ(b)]t, [φ(c)]t)
is the Beaver triple corresponding to the gate group. All parties compute the
extended additive sharings �aj� := φ(ej) · [φ(a)]t, �bj� := φ(ej) · [φ(b)]t and
�cj� := φ(ej) · [φ(c)]t. Then all parties derive the additive sharings 〈x〉, 〈y〉, 〈aj〉,
〈bj〉 from the extended additive sharings using the method described previously.

The next step is reconstructing 〈x〉 + 〈aj〉 and 〈y〉 + 〈bj〉, for which a fixed
dealer D will receive all shares, and then sends the reconstructed value to all
parties. However, a subtle issue is that all parties must protect the redundancy
in their sharings by preparing two random zero additive sharing 〈o1〉, 〈o2〉, which
can be done with Functionality FRandZeroAdd. Then, all parties send their shares
of 〈x〉 + 〈aj〉 + 〈o1〉 and 〈y〉 + 〈bj〉 + 〈o2〉 to the dealer D, who reconstructs
u := x + aj and v := y + bj , and sends the result to all other parties.

If the gate is an addition gate, all parties locally compute the output extended
additive sharing �z� := (u + v) · φ(ej) − �cj�. If the gate is a multiplication
gate, all parties locally compute the output extended additive sharing �z� :=
(u · v) ·φ(ej)−u · �bj�− v · �aj�+ �cj�. We describe ΠEval in full detail below, and
we show that the communication cost of ΠEval is O(n3 ·m2) elements in Z/2k

Z.

Protocol 1: ΠEval(seg)

1. Suppose seg has nadd · � addition gates and nmult · � multiplication gates.
All parties select the active party with the smallest index as the dealer of
this segment seg. Let D denote the dealer.

2. All parties call FRandZeroAdd to prepare 2 · (nadd + nmult) · � random additive
zero sharings. All parties also receive a set of eliminated parties denoted
by S1. All parties update Pactive := Pactive − S1.

3. All parties call FTripleAdd(nadd · �) to generate the additive Beaver triples for
the segments. All parties receive a set of eliminated parties denoted by S2.
All parties update Pactive := Pactive − S2.
All parties call FTripleMult(nmult · �) to generate the multiplicative Beaver

Perfectly-Secure Multiparty Computation 121

triples for the segments. All parties receive a set of eliminated parties
denoted by S3. All parties update Pactive := Pactive − S3.

4. All parties locally get all the extended additive sharings for the gate inputs
of seg that are collected from previous layers. For the gate input connected
to the i-th wire of the Shamir sharing [φ(z)]t, all parties locally derive the
extended additive sharing by φ(ei) · [φ(z)]t.

5. All parties evaluate the multiplication gates and addition gates within seg

according to topological ordering. For each gate with input extended addi-
tive sharings �x� and �y�, we suppose it corresponds to the j-th entry of
the Beaver triple ([φ(a)]t, [φ(b)]t, [φ(c)]t), denoted by (aj , bj , cj). All par-
ties consume two unused random additive sharings prepared in Step 2,
denoted by 〈o1〉 and 〈o2〉. Then all parties perform the following steps:
(a) All parties locally derive the extended additive sharing for aj , bj , cj

with �aj� = φ(ej)·[φ(a)]t, �bj� = φ(ej)·[φ(b)]t and �cj� = φ(ej)·[φ(c)]t.
(b) All parties locally computes 〈x〉+ 〈aj〉+ 〈o1〉 and 〈y〉+ 〈bj〉+ 〈o2〉, and

send their shares to D.
(c) D reconstructs u := x + aj and v := y + bj . Then D sends u and v to

all parties.
(d) If the gate is an addition gate, all parties locally compute the output

extended additive sharing �z� := (u + v) · φ(ej) − �cj�.
If the gate is a multiplication gate, all parties locally compute the
output extended additive sharing �z� := (u · v) · φ(ej) − u · �bj� − v ·
�aj� + �cj�.

6. All parties output the eliminated set of parties S := S1 ∪ S2 ∪ S3.

Cost of ΠEval. Recall that each circuit segment has O(|C|/n + n2 · m2) gates, so
we have nadd = O(|C|/(n · �)+n2 ·m2/�) and nmult = O(|C|/(n · �)+n2 ·m2/�).
It follows that the communication complexity of Step 2, Step 3, and Step 5
are all O(|C| + n2 · m2 · |S|) elements in Z/2k

Z. Therefore, the communication
complexity of ΠEval is O(|C| + n2 · m2 · |S|) elements in Z/2k

Z.

3.3 A First (Inefficient) Verification Protocol

For a given segment seg, once the parties have executed ΠEval(seg), they have
obtained extended additive sharings of every intermediate wire value of the cir-
cuit. However, a corrupted party may have cheated during this protocol, perhaps
by sending incorrect sharings to the dealer D, and/or D itself sends incorrect
reconstructions to the parties. The purpose of this section is discussing how the
parties can check whether such cheating indeed took place or not. The parties
do this before they proceed to the next segment evaluation. Our strategy, as
outlined in Sect. 1.3, is to get Shamir sharings of all input groups in seg, which
will be used to verify that the openings are done correctly. These sharings are
derived from Shamir sharings of the output groups in the previous segments, and
possible of seg itself. In order to achieve this, we must apply network routing
techniques, which are developed in the works of [GPS21,GPS22].

122 D. Escudero et al.

We begin by presenting a version of our verification protocol that does not yet
satisfy the linear communication complexity claim, but is structurally very close
to our actual protocol while requiring little preliminaries on network routing for
a clear understanding.

Network Routing. Consider a segment seg, and suppose that the parties have
sharings [φ(z)]t for every output group z of each segment prior to seg, and also
of seg itself. Now, let x be an input group in seg. Each entry xi in x is the
output of a previous gate, which appears in an output group of either seg, or
a prior segment. Network routing is a set of techniques that enables the parties
to obtain, from the sharings of all previous groups [φ(z)]t, sharings [φ(x)]t of
the input group x in seg. This is crucial for our verification protocol, and it is
achieved by Protocol ΠNetworkRouting(seg) (Protocol 2 in p. 24). The construction
of ΠNetworkRouting(seg) is a natural adaptation to the RMFE setting of the network
routing techniques from [GPS21,GPS22], which are originally set in the packed
secret-sharing context.

For our first verification protocol, we will use ΠNetworkRouting as a “black-
box”. Doing so results in a verification protocol with super-linear communica-
tion, stemming from the fact that all the calls to ΠNetworkRouting(seg) across all
segments seg redo a lot of computation that can be done only once if one “opens
the box”. Later in the section we dig into the details of ΠNetworkRouting(seg), iden-
tifying these steps that are repeated across calls so that they are called only once,
avoiding unnecessary repetition and hence achieving the desired linear commu-
nication complexity.

Fault Detection. We need to introduce one more tool before we present our
first (inefficient) verification protocol. Our verification ultimately boils down to
ensuring that extended secret-shared values, that have been opened non-robustly
using additive shares through a dealer, have actually been opened correctly. If
this is not the case, the parties should be able to identify a semi-corrupted
pair. This is achieved by means of a protocol ΠFaultDetection that takes as input
an inconsistent pair of extended additive sharing �s� and the masked additive
sharing 〈s〉 + 〈o〉 corresponding to it. At a high level, in this protocol the dealer
will open the shares of the extended additive sharing and the masked additive
sharing to find out a dispute between parties. We refer the readers to Sect. 3.6
for more details.

Inefficient Verification. Consider a segment seg. Let ([φ(a(i))]t, [φ(b(i))]t,
[φ(c(i))]t) denote the Beaver triple corresponding to the i-th gate group in seg,
and let x(i) and y(i) denote the left and right inputs of the gate group. Note that
before the verification of seg, each party locally holds the values u

(i)
j = x

(i)
j +a

(i)
j

and v
(i)
j = y

(i)
j + b

(i)
j sent by D for i ∈ [N], j ∈ [�]. All parties first check the con-

sistency of the values sent by D by calling FVerifyBC. If the values are consistent,
all parties can get “temporary” input group sharings [φ(x)]t and [φ(y)]t from
with u(i), v(i) and the Beaver triple ([φ(a(i))]t, [φ(b(i))]t, [φ(c(i))]t), and they use
FMult and FReEncode to obtain [φ(x(i) � y(i))]t.

Perfectly-Secure Multiparty Computation 123

After getting all output Shamir sharings in seg, the parties use ΠNetworkRouting

to obtain Shamir sharings of all the input groups [φ(x(i))]t and [φ(y(i))]t. The
parties robustly reconstruct [φ(x(i) + a(i))]t and [φ(y(i) + b(i))]t using FOpenPub,
and then they compare these outputs with the values reconstructed in the eval-
uation phase u(i) and v(i). If all entries are consistent, the evaluation of seg

is correct. Otherwise, all parties can locate the first inconsistent x
(i)
j + a

(i)
j or

y
(i)
j + b

(i)
j . Then they eliminate a set of semi-corrupted parties, and re-evaluate

the circuit segment afterwards.
The steps of the verification protocol are the following. We reiterate that this

does not have linear communication complexity, but only because of the calls to
ΠNetworkRouting. This is addressed in Sect. 3.5 after we “open the box” of network
routing in Sect. 3.4

1. Suppose seg has N gate groups. For the i-th gate group within seg that
corresponds to the Beaver triple ([φ(a(i))]t, [φ(b(i))]t, [φ(c(i))]t) and has inputs
x(i),y(i) ∈ (Z/2k

Z)� All parties locally compute φ(x(i)+a(i)) and φ(y(i)+b(i))
for all i ∈ [N].

2. All parties call FVerifyBC with inputs {φ(x(i)+a(i))}i∈[N]∪{φ(y(i)+b(i))}i∈[N]

and D. If the result is a semi-honest pair {Pj1 , Pj2}, all parties take it as
output and halt. Otherwise, run the following steps.

3. All parties locally compute [φ(x(i))]t = φ(x(i) + a(i)) − [φ(a(i))]t and
[φ(y(i))]t = φ(y(i) + b(i)) − [φ(b(i))]t for all i ∈ [N].

4. For each additive gate group with input [φ(x(i))]t and [φ(y(i))]t, all parties
locally compute the output sharing [φ(z(i))]t = [φ(x(i))]t + [φ(y(i))]t. For
all the multiplicative gate groups, suppose their indices form the set Imult.
All parties call FMult with input ([φ(x(i))]t)i∈Imult and ([φ(y(i))]t)i∈Imult , and
get output ([w(i)]t)i∈Imult and a set of eliminated parties denoted by S1. All
parties update Pactive := Pactive − S1.
Then all the parties call the functionality FReEncode with input ([w(i)]t)i∈Imult

and get the output sharings ([φ(z(i))]t)i∈Imult and a set of eliminated parties
denoted by S2. All parties update Pactive := Pactive − S2.

5. All parties run the protocol ΠNetworkRouting(seg) to get all Shamir sharings
of seg’s gate group inputs, denoted by {[φ(x̃(i))]t}i∈[N] and {[φ(ỹ(i))]t}i∈[N].
All parties also receive a set of eliminated parties denoted by S3. All parties
update Pactive := Pactive − S3.

6. All parties call FOpenPub to reconstruct the Shamir sharings {[φ(x̃(i))]t +
[φ(a(i))]t}i∈[N] and {[φ(ỹ(i))]t + [φ(b(i))]t}i∈[N], and get x̃(i) + a(i) and
ỹ(i) + b(i) for all i ∈ [N].

7. Each party locally compares x̃(i)+a(i) with x(i)+a(i) and compares ỹ(i)+b(i)

with y(i) + b(i) for all i ∈ [N]. If there are any differences, all parties do
the following: let S := S0 ∪ S1 ∪ S2 ∪ S3. If S = ∅, all parties output S and
incorrect and halts. Otherwise, all parties can select a wire with inconsistent
value that has the smallest topological order, denoted by x

(i0)
j0

+a
(i0)
j0

or y
(i0)
j0

+

b
(i0)
j0

. Let 〈s〉+〈o〉 denote its corresponding additive sharing for reconstruction
in the protocol ΠEval, and let �s� denote its extended additive sharing. Then

124 D. Escudero et al.

all parties run the protocol ΠFaultDetection(D, 〈s〉 + 〈o〉, �s�), and get a set of
eliminated parties S4 as output. All parties update Pactive := Pactive − S4,
and output S ∪ S4 and incorrect.

3.4 Details on Network Routing

In this section we describe in detail how network routing works in order to
identify the pieces that can be re-used from one call to ΠNetworkRouting to the next,
and then we present our actual verification protocol with linear communication
in Sect. 3.5.

Fan-Out Operations. The first ingredient of network routing is a functional-
ity FFanOut, which we describe in detail as Functionality ?? in the full version
of the paper. FFanOut takes as input a list of sharings [φ(z(1))]t, . . . , [φ(z(N))]t,
and also n

(i)
j ∈ Z

+ for every i ∈ [N] and j ∈ [�] where � divides
∑�

j=1 n
(i)
j .

The functionality outputs, for each i ∈ [N], sharings [φ(x(i)
j)]t for j ∈ [m(i)]

where m(i) :=
(∑�

j=1 n
(i)
j

)
/�, such that each z

(i)
j appears exactly n

(i)
j times in

[x(i)
1 ‖ · · · ‖x(i)

m(i)]. Jumping ahead, fan-out will be used to copy each output wire
as many times as it is used subsequently in the circuit.

The protocol ΠFanOut that implements FFanOut can be found in the full version
of the paper, and its communication complexity of the protocol to generate a
total of M fan-out sharings is O(M · n · m + n2 · m2 · |S|) elements in Z/2k

Z,
where S is the set of eliminated parties.

Secret Collection. The second crucial operation that is needed in network rout-
ing is, given a series of Shamir sharings ([φ(x1)]t, . . . , [φ(xN)]t), obtain another
set of sharings ([φ(y1)]t, . . . , [φ(yN)]t), where (y1‖ · · · ‖yN) is a permutation of
(x1‖ · · · ‖xN). We refer to this operation as secret collection. To gain some intu-
ition on how this helps in network routing, suppose that FFanOut has been applied
to all wires in the circuit, copying them as many times as they appear in future
gates, and let x = (x1, . . . ,xN) be the all the vectors output by FFanOut. Let
y = (y1, . . . ,yN) consist of all input groups to all circuit segments, and also
to the output layer. We have then that y is a permutation of x. Using secret
collection, the parties can obtain sharings of each input group [φ(yi)]t, which is
precisely what is needed for network routing.

The following theorem from [GPS21] is useful for implementing this secret
collection functionality.

Theorem 2 ([GPS21]). Suppose x = (x1, . . . ,xN) and y = (y1, . . . ,yN) sat-
isfy P · x = y where P is a permutation matrix. There exists two sets of per-
mutations p1, . . . , pN and q1, . . . , qN that permute vectors in (Z/2k

Z)�, such that
after applying pi to xi and qj to yj for all i, j ∈ [N], the following property holds
for an arbitrary qh · yh:

– Suppose that qh ·yh = (y′
1, . . . , y

′
�). Then, for all w ∈ [�], there exists vh,w ∈ [�]

such that y′
w is equal to the w-th entry in pvh,w

· xvh,w
.

Perfectly-Secure Multiparty Computation 125

Following this theorem, we can obtain y = (y1, . . . ,yN) by first permuting
each [φ(xi)]t as [φ(pi · xi)]t. Then, for each h ∈ [N] parties compute locally
∑�

w=1 φ(ew) · [φ(pvh,w
· xvh,w

)]t, which creates a vector whose w-th entry is the
w-th entry of pvh,w

· xvh,w
. Thanks to the theorem, this is precisely qh · yh, so

the parties can obtain [φ(qh · yh)]t by applying FReEncode. Finally, to obtain the
desired [φ(yh)]t for each h ∈ [N], the parties can apply the inverse permutation
q−1
h of qh to the sharing [φ(qh · yh)]t.

The permutations above are done with a functionality FPermute, which we
define and instantiate with Protocol ΠPermute in the full version of the paper,
involving a communication complexity of O(N · n · m + n2 · m2 · |S|) elements in
Z/2k

Z, where S is the set of eliminated parties. The aggregation
∑�

w=1 φ(ew) ·
[φ(pvh,w

· xvh,w
)]t followed by the re-encoding with FReEncode is abstracted as

a functionality FCollect, which we implement with a protocol ΠCollect in the full
version of the paper. The communication complexity of ΠCollect is O(N · n · m +
n2 · m2 · |S|) elements in Z/2k

Z, where S is the set of eliminated parties.

Network Routing for a Circuit Segment. Consider a segment seg. We can finally
describe Protocol ΠNetworkRouting(seg), which computes sharings [φ(x)]t for every
input group x of the segment seg. In a nutshell, the protocol proceeds exactly
as sketched above: (1) FFanOut is used to copy wires, and (2) Secret collection is
performed by calling FPermute → FCollect → FPermute. However, for our “non-black-
box” optimization, suppose that ΠNetworkRouting(seg′) was called for the segment
seg′ that goes right before seg. In this case, FFanOut has been performed on all
output groups prior to segment seg, and therefore we only need to do it for
these output groups in seg. Even more, since ΠNetworkRouting is called to verify
the inputs of seg, we only need to use FFanOut in these output wires of seg that
are fed as inputs to seg itself. Later, if the check passes, then we apply FFanOut

to the remaining wires. A similar optimization happens with the first call to
FPermute, which is done on the output groups.

The description of ΠNetworkRouting appears in Protocol 2. If z(1), . . . ,z(N) are
the output groups of seg, we denote by ñ

(i)
j for j ∈ [�], i ∈ [N] the number

of times that wire z
(i)
j is used inside seg itself. Protocol ΠNetworkRouting assumes

that the protocol has been called for the previous segment, so these are the
only remaining copies needed for getting the input groups of seg. After this, the
FPermute → FCollect → FPermute sequence is applied.

Protocol 2: ΠNetworkRouting(seg)

1. All parties call FFanOut on all the output sharings of seg and {ñ
(i)
j }j∈[�],i∈[N],

where the j-th wire of z(i) is copied ñ
(i)
j times (this is the number of times

this wire is used in seg itself). All parties receive the fan-out sharings
which are used for this segment’s gate inputs, and a set of eliminated
parties denoted by S1. All parties update Pactive := Pactive − S1.

126 D. Escudero et al.

2. All parties call FPermute with the fan-out sharings and the desired permu-
tations as input. All parties receive the permuted fan-out Shamir secret
sharings, and a set of eliminated parties denoted by S2. All parties update
Pactive := Pactive − S2.

3. All parties call FCollect to get the collected Shamir sharings of seg’s gate
group inputs. All parties also receive a set of eliminated parties denoted
by S3. All parties update Pactive := Pactive − S3.

4. All parties call FPermute with the collected Shamir sharings as input, and get
all Shamir sharings of seg’s gate group inputs, denoted by {[φ(x̃(i))]t}i∈[N]

and {[φ(ỹ(i))]t}i∈[N]. All parties also receive a set of eliminated parties
denoted by S4.

5. All parties output S := S1 ∪S2 ∪S3 ∪S4 and all the input Shamir sharings
{[φ(x̃(i))]t}i∈[N] and {[φ(ỹ(i))]t}i∈[N].

3.5 Efficient Verification

Now we are ready to “patch” the verification protocol from Sect. 3.3 to get linear
communication. The full protocol, ΠVerify, is given in the full version of the paper,
and here we only discuss the core differences with respect to the protocol from
before. As before, we do call ΠNetworkRouting in step 5, except that this time we
take into account the fact that FFanOut and FPermute have been called for all
previous segments, and hence only need to be computed for the current segment
(as described in ΠNetworkRouting). Second, recall that the FFanOut and FPermute calls
in ΠNetworkRouting are only performed to the output groups needed for the input
groups in the current segment seg. If step 7 succeeds, then the parties need to
apply FFanOut and FPermute to the remaining output groups in seg in preparation
to the call to ΠNetworkRouting for the next segment.

Protocol ΠVerify is given in the full version of the paper. In that section we
analyze its communication, verifying that it indeed grows linearly with n.

3.6 Fault Localization

Finally, we have focused so far in how the parties detect that cheating occurred,
but we have not discussed how to react to that, identifying a semi-corrupted
pair so that the segment can be re-run. Recall that a parity element p ∈ R is
an element that satisfies val(p) = 0. To mask the shares of extended additive
sharing �s� when the dealer D opens all shares, all parties will prepare a random
degree-t Shamir sharing of a random parity element, denoted by [p]t. Then all
parties will send their shares of �s� + [p]t to D.

We note that it is enough for D to localize a semi-corrupted pair just by
opening the two sharings �s� + [p]t and 〈s〉 + 〈o〉, so we introduce the follow-
ing steps to let all parties disclose to D the randomness masks that they have
distributed and received. We first observe that, due to the way all parties pre-
pare random sharings (see the full version of the paper), 〈o〉 can be written as

Perfectly-Secure Multiparty Computation 127

〈o〉 =
∑n′

i=0〈oi〉, and [p]t can be written as [p]t =
∑n′

i=0[pi]t, where 〈oi〉 is the
zero additive sharing distributed by Pi and [pi]t is the parity sharing distributed
by the party Pi. Each parity sharing [pi]t corresponds to an additive sharing
whose secret is 0, denoted by 〈o′

i〉. Let 〈o′〉 :=
∑n′

i=1〈o′
i〉. Note that D can locally

compute 〈o〉 − 〈o′〉, and 〈o〉 − 〈o′〉 =
∑n′

i=1〈oi〉 − 〈o′
i〉.

Following the idea in [BFO12], in order to protect the shares of 〈oi〉 − 〈o′
i〉

(which may leak information), each party Pi distributes another additive zero
sharing 〈o′′

i 〉 as a mask. Then Pi reveals to D all the shares of 〈oi〉 − 〈o′
i〉 + 〈o′′

i 〉,
and also the share of 〈oj〉 − 〈o′

j〉 + 〈o′′
j 〉 that Pi received from another party Pj .

Given this information, D is able to identify disputes between parties.
We summarize the full protocol ΠFaultDetection in Section ?? in the Supplemen-

tary Material.

4 Main Protocol

In the previous section we saw how to evaluate each segment in the circuit, and
how to check if the execution was correct, identifying a semi-corrupt pair if this
was not the case. In this section we show how to put together these protocols
in order to evaluate the entire circuit with G.O.D., essentially by making use
of the player elimination framework by Beerliová-Trub́ıniová and Hirt [BTH08],
in which the parties that remain after a semi-corrupted pair is removed re-run
the failed segment. This is described in Sect. 4.3. No MPC protocol would be
complete without describing how input and output gates are handled. This is
explained in Sects. 4.1 and 4.2, respectively.

4.1 Input Gates

Since we are in the client-server model, all the inputs belong to the clients. Recall
that we assume that the number of inputs for each client is a multiple of �. In
this part, we introduce a protocol ΠInput, which enables all client to share their
inputs to all parties, and then properly performs fan-out and permutations to
input sharings to prepare them for later use. We describe the protocol ΠInput

below.

Protocol 3: ΠInput

1. For each client Client, suppose its inputs are {x
(1)
i , . . . , x

(�)
i }N

i=1. All parties
and Client perform the following steps:
(a) Let xi := (x

(1)
i , . . . , x

(�)
i) ∈ (Z/2k

Z)�. Client locally computes φ(xi) for
all i ∈ [N].

(b) All parties call FInputShamir with the inputs φ(x1), . . . , φ(xN) from Client.
All parties get the output [y1]t, . . . , [yN]t and a set of eliminated parties
denoted by S1. All parties update Pactive := Pactive − S1.

(c) All parties call FRandShamir(N) to prepare N random degree-t Shamir
secret sharings denoted by [φ(r1)]t, . . . , [φ(rN)]t. All parties also

128 D. Escudero et al.

receive a set of eliminated parties denoted by S2. All parties update
Pactive := Pactive − S2.

(d) All parties call FOpenPub(N) to reconstruct [y1]t + [φ(r1)]t, . . . , [yN]t +
[φ(rN)]t and get the secrets y1 + φ(r1), . . . , yN + φ(rN).

(e) For all i ∈ [N], All parties locally check if φ◦ψ(yi +φ(ri)) = yi +φ(ri).
If the equation does not hold, all parties set [yi]t to [0]0. Note that after
this step, each sharing [yi]t can be written as [yi]t = [φ(x′

i)]t, where
x′

i = ψ(yi).
(f) All parties take [φ(x′

1)]t, . . . , [φ(x′
N)]t as the shared inputs of Client.

2. All parties call FFanOut with the input sharings from all clients, and get the
set of eliminated parties denoted by S3 and the resulting fan-out sharings.
All parties update Pactive := Pactive − S3.

3. All parties call FPermute to permute all the fan-out sharings with the desired
permutations. All parties get the set of eliminated parties denoted by S4,
and the resulting permuted sharings. All parties update Pactive := Pactive−
S4.

4. Let S be the set of eliminated parties in the previous steps. All parties
output the resulting permuted sharings in the previous step.

Cost of ΠInput. To get input from a client with N ·� inputs in Z/2k
Z, the commu-

nication complexity is O(N ·n ·m+n2 ·m2 ·(|S1|+ |S2|)) elements in Z/2k
Z. The

communication complexity of Step 2 is O(M · n · m + n2 · m2 · |S3|) elements in
Z/2k

Z, and the communication complexity of Step 3 is O(M ·n ·m+n2 ·m2 · |S4|)
elements in Z/2k

Z. Since M is bounded by O(|C ′|/�), and m, � = O(log n), the
total communication complexity of ΠInput is O(|C| · n + c · n · m + n2 · m2 · |S|)
elements in Z/2k

Z.

4.2 Output Gates

We introduce the protocol ΠOutput that reconstructs all outputs towards all
clients. In this protocol, all parties first perform network routing to generate
the output Shamir sharings, and then they send the shares of the output sharing
to each client. The description of ΠOutput appears below.

Protocol 4: ΠOutput

1. All parties call FCollect to collect secrets for Shamir sharings of the output
layer, and all parties receive a set of eliminated parties denoted by S1. All
parties update Pactive := Pactive − S1.

2. All parties call FPermute with the collected Shamir sharings and the desired
permutations as input. All parties get all output Shamir sharings as out-
put, and get a set of eliminated parties denoted by S2. All parties update
Pactive := Pactive − S2.

3. For each client Client that has output Shamir sharings
[φ(z1)]t, . . . , [φ(zN)]t, all parties send their shares of [φ(zi)]t to Client for
all i ∈ [N]. Then Client reconstructs the secrets z1, . . . , zN .

Perfectly-Secure Multiparty Computation 129

Cost of ΠOutput. In Step 1, the communication complexity is bounded by
calling FCollect that outputs |C ′|/� sharings, so the communication complex-
ity is bounded by O((|C| + � · c + n2 · m2) · n · m/� + n2 · m2 · |S1|) ele-
ments in Z/2k

Z. In step 2, the communication complexity is bounded by
O((|C| · n + � · c + n2 · m2) · n · m/� + n2 · m2 · |S2|) elements in Z/2k

Z.
Since m, � are both O(log n), the total communication complexity of ΠOutput

is O(|C| · n + c · n · m + n3 · m2) elements in Z/2k
Z.

4.3 Main Protocol

Given the above protocols, the main protocol that implements the ideal func-
tionality FMain follows in a straightforward way. The main protocol is introduced
in ΠMain.

Protocol 5: ΠMain(C)

1. Let C denote the circuit. All parties transform C to C′. All parties agree
on the gate grouping, and they order of the circuit segments according to
topological ordering. All parties set Pactive := P.

2. All parties run the protocol ΠInput.
3. All parties evaluate the circuit segments according to their ordering. For

each circuit segment denoted by seg:
(a) All parties run the protocol ΠEval(seg). All parties get the set of elim-

inated parties denoted by S.
(b) All parties run the protocol ΠVerify(seg, S). If the output is incorrect,

all parties repeat step 3.(a) and 3.(b) to evaluate seg. Otherwise, all
parties continue to evaluate the next circuit segment.

4. All parties run the protocol ΠOutput.

Cost of ΠMain. In Step 2, the cost of ΠInput is In Step 3, each time ΠEval or ΠVerify

is repeated, the communication complexity is O(|C| + n2 · m2 · |S|) elements in
Z/2k

Z.
In Step 3, when no circuit segment is repeated, the total communication

complexity of ΠEval and ΠVerify is
∑

seg

(
O(n2 ·m2 ·|S|)+O(|C|)+O(Mseg ·n·m)

)
.

We note that
∑

seg Mseg is bounded by O(|C ′|/�), and that
∑

seg |S| is bounded
by 2t = O(n). So the total communication complexity of Step 3 when no circuit
segment is repeated is O((|C ′|/�) · n · m + |C| · n + n3 · m2).

Recall that m, � = O(log n). Also note that the sum of all |S| is bounded
by 2t = O(n). Therefore, the overall communication complexity of ΠMain is
O(|C| · n + c · n · log n + n3 · log2 n) elements in Z/2k

Z. Here |C| is the size of
the circuit in both addition and multiplication gates. Notice that this is linear,
as desired.

Lemma 3. Protocol ΠMain securely computes FMain in the (FInputShamir,
FRandShamir, FRandZeroAdd, FRandParity, FOpenPub, FReEncode, FMult, FTripleAdd,

130 D. Escudero et al.

FTripleMult, FVerifyBC, FFanOut, FPermute, FCollect)-hybrid model with perfect secu-
rity against a fully malicious adversary who controls t < n/3 parties.

The proof of Lemma 3 can be found in the full version of the paper. This leads
to the following Theorem, which is the main result of our work.

Theorem 3. In the client-server model, let c denote the number of clients, and
n = 3t + 1 denote the number of parties (servers). Let k be a constant posi-
tive integer and let Z/2k

Z be a finite ring of constant size. For an arithmetic
circuit C over Z/2k

Z, let |C| denote the size of the circuit. There exists an
information-theoretic MPC protocol which securely computes the arithmetic cir-
cuit with perfect security in the presence of a fully malicious adversary controlling
up to c clients and t parties. The communication complexity of this protocol is
O(|C| · n + c · n · log n + n3 · log2 n) elements in Z/2k

Z.

Acknowledgments. This paper was prepared in part for information purposes by
the Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates
(“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2024 JP Morgan Chase & Co. All rights reserved.

Y. Song was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61361136003.

References

[ACD+19] Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and
Chen Yuan. Efficient information-theoretic secure multiparty computation
over Z/pk

Z via galois rings. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019: 17th Theory of Cryptography Conference, Part I, volume 11891
of Lecture Notes in Computer Science, pages 471–501, Nuremberg, Ger-
many, December 1–5, 2019. Springer, Heidelberg, Germany.

[ACE+21] Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damg̊ard, and
Chaoping Xing.Improved single-round secure multiplication using regener-
ating codes.In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2021, Part II, volume 13091 of Lecture Notes
in Computer Science, pages 222–244, Singapore, December 6–10, 2021.
Springer, Heidelberg, Germany.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minor-
ity.In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 663–680, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Heidelberg, Germany.

Perfectly-Secure Multiparty Computation 131

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, page 1–10, New York, NY, USA, 1988. Association for
Computing Machinery.

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In Ran Canetti, editor, TCC 2008: 5th
Theory of Cryptography Conference, volume 4948 of Lecture Notes in Com-
puter Science, pages 213–230, San Francisco, CA, USA, March 19–21, 2008.
Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols.Journal of Cryptology, 13(1):143–202, January 2000.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited.In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 395–426, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany.

[CRX21] Ronald Cramer, Matthieu Rambaud, and Chaoping Xing. Asymptotically-
good arithmetic secret sharing over Z/p�

Z with strong multiplication and
its applications to efficient MPC. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part III, volume 12827 of Lec-
ture Notes in Computer Science, pages 656–686, Virtual Event, August 16–
20, 2021. Springer, Heidelberg, Germany.

[DEF+19] Ivan Damg̊ard, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller,
Peter Scholl, and Nikolaj Volgushev. New primitives for actively-secure
MPC over rings with applications to private machine learning. In 2019
IEEE Symposium on Security and Privacy, pages 1102–1120, San Fran-
cisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography.In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer Science, pages 445–465, French
Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 572–590, Santa Barbara, CA, USA, August 19–23, 2007.
Springer, Heidelberg, Germany.

[ELXY23] Daniel Escudero, Hongqing Liu, Chaoping Xing, and Chen Yuan. Degree-
d reverse multiplication-friendly embeddings: Constructions and applica-
tions. Asiacrypt, 2023.

[FR22] Thibauld Feneuil and Matthieu Rivain. Threshold linear secret sharing
to the rescue of MPC-in-the-head. Cryptology ePrint Archive, Report
2022/1407, 2022. https://eprint.iacr.org/2022/1407.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient uncon-
ditional MPC with guaranteed output delivery.In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 85–

https://eprint.iacr.org/2022/1407

132 D. Escudero et al.

114, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional
communication-efficient MPC via hall’s marriage theorem. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part II, volume 12826 of Lecture Notes in Computer Science, pages 275–
304, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transfor-
mation and dishonest majority MPC with packed secret sharing. In Yev-
geniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Computer Sci-
ence, pages 3–32, Santa Barbara, CA, USA, August 15–18, 2022. Springer,
Heidelberg, Germany.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery
comes free in honest majority MPC. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II,
volume 12171 of Lecture Notes in Computer Science, pages 618–646, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[HMP00] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure
multi-party computation. In Tatsuaki Okamoto, editor, Advances in Cryp-
tology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 143–161, Kyoto, Japan, December 3–7, 2000. Springer, Hei-
delberg, Germany.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and
Ching-Hua Yu. Secure protocol transformations.In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 430–458, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[PS21] Antigoni Polychroniadou and Yifan Song. Constant-overhead uncondition-
ally secure multiparty computation over binary fields. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology – EURO-
CRYPT 2021, Part II, volume 12697 of Lecture Notes in Computer Sci-
ence, pages 812–841, Zagreb, Croatia, October 17–21, 2021. Springer, Hei-
delberg, Germany.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

[Wan03] Zhe-Xian Wan. Lectures on finite fields and Galois rings. World Scientific
Publishing Company, 2003.

Compute, but Verify: Efficient Multiparty
Computation over Authenticated Inputs

Moumita Dutta1(B) , Chaya Ganesh1 , Sikhar Patranabis2 ,
and Nitin Singh2

1 Indian Institute of Science, Bangalore, India
{moumitadutta,chaya}@iisc.ac.in
2 IBM Research, Bangalore, India

sikhar.patranabis@ibm.com, nitisin1@in.ibm.com

Abstract. Traditional notions of secure multiparty computation (MPC)
allow mutually distrusting parties to jointly compute a function over
their private inputs, but typically do not specify how these inputs
are chosen. Motivated by real-world applications where corrupt inputs
could adversely impact privacy and operational legitimacy, we consider
a notion of authenticated MPC where the inputs are authenticated (for
instance, signed using a digital signature) by some certification authority.
We propose a generic and efficient compiler that transforms any linear
secret sharing based honest-majority MPC protocol into one with input
authentication.

Our compiler achieves an ideal notion of authenticated MPC equipped
with stronger and more desirable security guarantees than those con-
sidered in prior works, while incurring significantly lower computational
costs and competitive communication overheads when compared to exist-
ing solutions. In particular, we entirely avoid the (potentially expen-
sive) protocol-specific techniques and pre-processing requirements that
are inherent to these solutions. For certain corruption thresholds, our
compiler additionally preserves the stronger identifiable abort security
of the underlying MPC protocol. No existing solution for authenticated
MPC achieves this regardless of the corruption threshold.

Along the way, we make several technical contributions that are of
independent interest. This includes the notion of distributed proofs of
knowledge and concrete realizations of the same for several relations
of interest, such as proving knowledge of many popularly used digi-
tal signature schemes, and proving knowledge of opening of a Pedersen
commitment.

1 Introduction

Secure multiparty computation (MPC) [7,32,38,51,52] allows two or more par-
ties to jointly compute a function of their private inputs, while ensuring input
privacy and output correctness (even in the presence of some corrupt parties).
Traditional security notions for MPC ensure output correctness and input pri-
vacy, that is, nothing is leaked about the parties’ private inputs beyond the
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 133–166, 2025.
https://doi.org/10.1007/978-981-96-0938-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_5&domain=pdf
http://orcid.org/0009-0009-5135-5091
http://orcid.org/0000-0002-2909-9177
http://orcid.org/0000-0002-2309-7939
http://orcid.org/0009-0009-7824-042X
https://doi.org/10.1007/978-981-96-0938-3_5

134 M. Dutta et al.

(correct) output of the computation. However, no assurance is given about how
the parties choose their private inputs.

Unfortunately, certain applications of MPC could be sensitive to “ill-formed
inputs”. Maliciously chosen inputs could either corrupt the output or reveal
the output on arbitrary inputs, thus violating the desired real-world security
guarantees of an MPC protocol. Such attacks are not captured by traditional
MPC security definitions.

Input Authenticity in MPC. There are several real-world applications of
MPC where it is important to ensure that the inputs used by parties are authen-
tic. If a set of individuals on a job portal wish to compute “industry average
compensation” for their expertise and experience in a privacy preserving man-
ner (e.g., services provided by glassdoor), one would want them to input payslips
bearing their employers’ signature. Similarly, in applications involving hospitals
performing joint computations on patient data for treatment efficacy, it is desir-
able to ensure that the data used is signed by a regulatory authority. Input
validation is also of practical relevance in applications of MPC in computation
on genomic data [10]. For all of these applications, the traditional MPC security
guarantees are clearly inadequate. A natural question that confronts us then is:
how do we ensure that authentic inputs are used in MPC?

Authentication via Certification. In the real world, data authentication typ-
ically involves the data being attested by a relevant certifying authority. In our
work, we specifically consider applications where an input bearing a signature
is considered authentic and we can assume the existence of a relevant certifying
authority that provides the signature. For instance, employers can act as the cer-
tification authority to digitally sign the payslips when parties wish to compute
‘industry average compensation’ using services like glassdoor, a financial audi-
tor can act as the certification authority to digitally sign the bills of sale when
shipping companies wish to compute aggregate statistics on private data, a regu-
latory authority (like WHO) act as the certification authority to digitally sign the
medical records when hospitals wish to perform joint computation over sensitive
patient data, and so on. Since the certifying authority cannot be omnipresent to
vouch for authenticity of the data, it is increasingly common for individuals to
claim this attestation through digital signatures that can be verified efficiently.
In fact, there exist several digital signature schemes today [12,17,44] that allow
establishing attestation by a certifying authority while requiring minimal dis-
closure of attributes, and while maintaining unlinkability (several usages of the
same credential cannot be linked to the same individual). Unfortunately, such
secure mechanisms for authenticating data in the individual context do not trans-
late when computing over data from multiple data owners using vanilla MPC
protocols (that do not consider input authentication).

Potential Approaches and Pitfalls. A näıve approach would be to incor-
porate input authentication as part of the function to be computed. However,
this is practically inefficient. For example, incorporating signature verification
as part of the function would entail performing expensive operations such as

Compute, but Verify: Efficient MPC over Authenticated Inputs 135

hashing inside MPC (typically, most signature schemes hash the message), and
would also require expressing the algebraic operations underlying signature ver-
ification as arithmetic circuits. This significantly blows up the size of the circuit,
rendering the resulting MPC protocol practically inefficient.

A more efficient alternative is to have the certifying authority sign a com-
mitment (e.g., a Pedersen commitment [41]) to each input, and then have the
parties prove that their inputs are those contained inside the public commit-
ments (using customized zero-knowledge proofs). However, this fails to provide
unlinkability, which is an essential privacy requirement. In particular, one can
use the signed commitment to link different protocols where the same input is
reused. The alternative would be to get the certifying authority to sign a differ-
ent commitment for each protocol execution, which again requires the authority
to be omnipresent, and is clearly impractical.

Certain prior works [2,11] proposed using authenticated secret-sharing in
order to certify inputs to an MPC protocol. However, authenticated secret-
sharing only provides stand-alone guarantees about the shares themselves, and
additional techniques would be needed to ensure that malicious parties actually
use these authenticated shares in the execution of the actual MPC protocol (the
details of such techniques are not specified completely in prior works [2,11]).
Ideally, we want a notion that ties input authentication with the underlying
MPC, thus preventing malicious parties from using inputs different from the
authenticated ones.

Our Goal. We aim to lift existing MPC protocols into authenticated ones that
ensure that an additional predicate is satisfied by each input (for instance, each
input is signed by a common certifying authority). We want to achieve such
input authentication (i) without changing the underlying MPC protocol, (ii)
without representing the predicate as a circuit, (iii) incurring communication
overhead that is succinct in the size of the inputs (which are typically large for the
applications we consider), and (iv) maintaining unlinkability. These requirements
immediately preclude prior approaches requiring the authentication relation to
be expressed as a circuit [13,34], as well as the natural approach based on signed
public commitments outlined above, which lacks unlinkability.

1.1 Our Contributions

In this work, we study authenticated MPC. We present the first generic compiler
than efficiently augments existing MPC protocols to additionally ensure that each
input has a valid attestation (in the form of a digital signature) from a relevant
certifying authority, while retaining both practical efficiency and unlinkability. We
illustrate the compatibility of our proposed approach with popularly used privacy-
preserving verifiable attestation mechanisms based on digital signatures such as
BBS+ [4,12] and PS [44]. Towards this goal, we put forth a notion of distributed
(zero-knowledge) proof of knowledge that is of independent interest.

Distributed Proof of Knowledge (DPoK). In Sect. 3, we put forth a notion
of a distributed proof of knowledge (abbreviated as (DPoK)). A DPoK works in

136 M. Dutta et al.

a setting with multiple provers and a single verifier, where the witness is secret
shared among the provers. Concretely, for a relation R and an instance-witness
pair (x,w) ∈ R, the verifier holds the (public) instance x, and each prover holds
a share wi of the (secret) witness w such that w = Reconstruct(w1, . . . , wn). We
also assume a restricted communication model: (i) the provers do not commu-
nicate with each other, and (ii) the verifier communicates only via a broadcast
channel and is public coin (this facilitates public verifiability, which is used cru-
cially in our eventual solution for authenticated MPC). Our definition of DPoK
may thus be viewed a natural distributed analogue of honest-verifier public coin
protocols.

Robust Complete DPoK. Our basic DPoK definition does not prevent mali-
cious provers from disrupting protocol execution, and only provides security
with abort. To tackle this, we introduce a stronger notion of robust completeness
for a DPoK, which additionally provides tolerance against abort in the presence
of (a potentially smaller number of) maliciously corrupt provers. Looking ahead,
using robust complete DPoKs allows us to achieve authenticated MPC protocols
with stronger security guarantees.

DPoK for Discrete Log. In Sect. 3, we also construct a DPoK for the discrete
logarithm relation, where the witness (the discrete log of a publicly known group
element) is secret-shared (using Shamir secret sharing) across multiple provers.
Notably, our construction achieves: (i) succinct communication (logarithmic in
the size of the witness), and (ii) robust completeness (which ensures that the
protocol accepts even in the presence of up to n/3 malicious provers, where
provers only holds shares to the correct witness). For succinct communication,
we use techniques due to Attema et al. [3] to compress the communication com-
plexity of our protocol from linear to logarithmic in the size of the witness.
We realize robust completeness via error-correction in the exponents of group
elements. To this end, we leverage results from low degree testing used in prior
works to construct efficient zkSNARKs (such as in [1,8]). While achieving robust
completeness is straightforward if we do not care about succinctness (and vice
versa), the main technical novelty of our construction is to achieve both proper-
ties simultaneously.

In Appendix C of the full version of the paper [24], we present a general-
ization of the above DPoK for discrete log that works with any threshold linear
secret sharing scheme. In this generalized version, we characterize the corruption
threshold for robust completeness in terms of the minimum distance of the linear
code associated with the threshold linear secret sharing scheme. As an example,
we derive concrete bounds on the corruption threshold for the popularly used
replicated secret sharing scheme.

DPoKs for Algebraically Structured Signatures. Our DPoK for discrete log can
be used to build a DPoK for any digital signature scheme where the associated
proof of knowledge of a signature can be modeled as a proof of knowledge of the
opening of a Pedersen commitment. We present specific instances of this gen-
eral approach for signature schemes that are algebraically compatible, namely

Compute, but Verify: Efficient MPC over Authenticated Inputs 137

BBS+ [4,12,15]1 (detailed in Sect. 4) and PS [44] (detailed in Appendix G of the
full version of the paper [24]). These signature schemes are popular candidates
for applications such as verifiable credentials for self-sovereign digital identity.
While these signature schemes natively support efficient (albeit non-distributed)
zero-knowledge proofs of knowledge of a valid message-signature pair, our work
introduces the first practically efficient DPoKs for these signature schemes that
are both succinct and robust complete. Our techniques are modular, and we
believe that they can be extended to yield DPoKs for other algebraically struc-
tured signatures such as [16], as well as algebraic relations of interest for other
applications.

Round Efficient DPoKs in the ROM. The above definitions and constructions
of DPoKs are in the standard model. In Appendix E of the full version of
the paper [24], we formally define round efficient DPoKs in the random oracle
model (ROM). This definition is based on the Fiat-Shamir heuristic [25], using
which we transform a DPoK (with number of rounds logarithmic in the size of the
witness) into a round efficient DPoK (having constant number of rounds). Under
this definition, we present round efficient versions of our DPoK constructions
for discrete log and algebraically structured signatures; these protocols achieve
the same robust completeness and succinct communication guarantees as the
original protocols, albeit in the ROM.

Authenticated MPC. We now expand upon our main contribution, namely
authenticated MPC. Informally, we consider a notion of input authenticity for
MPC where each input is certified using a valid signature from a certification
authority. This is standard in applications where a publicly known certifying
authority (external to the MPC protocol) signs an input to certify that the
input satisfies certain properties2. We build upon our DPoKs for BBS+ and
PS signatures to propose a generic compiler that transforms any (threshold lin-
ear) secret-sharing based maliciously secure honest-majority MPC protocol into
its authenticated MPC version. Our compiler yields the first practically effi-
cient MPC protocols that satisfy an ideal notion of input authenticity while
preserving practical efficiency and unlinkability. We prototype-implement a spe-
cific instance of our compiler that achieves input authentication based on our
proposed DPoK for BBS+ signatures. Finally, we present experimental results to
illustrate that our compiler incurs negligible communication overhead over the
original MPC protocol. For simplicity, our ideal functionality and subsequent
protocols are described assuming a common signature authority for all inputs.
The more general case involving multiple signing authorities also follows with
minor modifications without incurring any loss of efficiency.

Ideal Functionality for Authenticated MPC. In Sect. 5, we formalize the above
notion for authenticated MPC via an ideal functionality Fauth

MPC that works as
1 There are standardization efforts for using BBS+ signatures in verifiable credentials

for Web 3.0, leading to a recent RFC draft [39].
2 Our techniques extend to other notions of authenticity such as proving that the

inputs open publicly known commitments.

138 M. Dutta et al.

follows. The parties send their inputs xi and signature σi on xi to Fauth
MPC for

i ∈ [n]. The functionality Fauth
MPC then checks if σi is a valid signature on xi for

all i ∈ [n]. For each j ∈ [n] such that σj is not a valid signature on xj , Fauth
MPC

sends (abort, Pj) to all of the parties. Otherwise it computes y = f(x1, . . . , xn)
and outputs y to all of the parties.

We note that our ideal functionality ties input authentication into the under-
lying MPC, thus preventing malicious parties from using different inputs as com-
pared to the authenticated ones. The prior works [2,11] only provide stand-alone
guarantees about the authenticated shares themselves, and requires additional
techniques to ensure that these authenticated shares are then used in the exe-
cution of the actual MPC protocol. We further note that our ideal functionality
already captures unlinkability, since the adversary does not learn any additional
information about the authenticated input (beyond the function output) that
might allow it to correlate the usage of the same input-signature pair across mul-
tiple executions. This rules out solutions based on signing public commitments
to inputs, which trivially violate unlinkability.

Compiler for Authenticated MPC. In Sect. 5, we present a compiler that trans-
forms any Shamir secret-sharing based maliciously secure honest-majority MPC
protocol Π into its authenticated MPC version Π′ that securely realizes the above
ideal functionality Fauth

MPC, where each input is authenticated using a BBS+ sig-
nature. Our compiler builds upon our DPoK for BBS+ signatures from Sect. 4.
In Appendix G of the full version of the paper [24], we present an analogous
compiler for input authentication using PS signatures, which builds upon our
DPoK for PS signatures. In both cases, the compiled protocol Π′ inherits the
security of Π as long as the inputs are authentic (by definition, we abort if this
is not the case)3. If Π guarantees security with identifiable abort, then the same
holds for Π′. If Π achieves guaranteed output delivery, then so does Π′ (albeit
for a corruption threshold t < n/3) – this crucially uses the robust completeness
property of the underlying DPoKs.

Generalization and Extensions. We note that our approach works in general
for: (a) any (threshold linear) secret-sharing based MPC protocol, and (b) any
signature scheme such that the associated proof of knowledge can be modeled as
a proof of knowledge of the opening of a Pedersen commitment (such as CL sig-
natures [16] and PS signatures [44]). Our DPoK-based approach also offers the
flexibility of extending our compiler to support other notions of input authen-
tication, beyond proving knowledge of signatures. In particular, one can build
upon our approach to prove a wider class of expressive predicates over secret-
shared inputs, thus catering to a wide range of applications with diverse proof
requirements (e.g., federated learning). For instance, each party can publish a
commitment to its input at the beginning of the authenticated MPC protocol,
and then use our DPoK-based framework to prove the following simultaneously:

3 In some applications, it is acceptable to continue computation on default inputs
instead of aborting when authentication fails.

Compute, but Verify: Efficient MPC over Authenticated Inputs 139

(i) the secret-shared input is signed by a certifying authority (this follows from
the basic compiler), (ii) the secret-shared input is a valid opening to the pub-
lished commitment, and (iii) the opening to the commitment satisfies a certain
predicate. Note that, if a different application requires new/additional proper-
ties to be checked, the aforementioned approach avoids the need to involve the
certifying authority each time. Similarly, it maintains unlinkability since a fresh
commitment is used for each protocol execution, while the DPoK allows keeping
the signature from the certifying authority private.

Implementation and Experiments. In Sect. 6, we present a prototype imple-
mentation of our BBS+ based authenticated MPC protocol, and illustrate that
our approach incurs very little computational and communication overheads over
and above the original MPC protocol. In particular, we implement the BBS+
based instance of our compiler and use it to transform an implementation of
a native MPC (instantiated via MP-SPDZ [22,36,37]) into an authenticated
MPC. We use this implementation to benchmark an application of authenti-
cated MPC, where n shipping companies with private datasets wish to securely
compute aggregate statistics on some subset of their combined data. Note that
this is an application where the number of inputs of each party is much larger
than the number of parties involved in the protocol. Specifically, we consider
each dataset Di = (Ci, Si) to be partitioned into k categorical columns Ci and
� numeric columns Di. A sample query specifies {(j, vj)}j∈J for J ⊂ [k]. The
goal is to compute means of numeric columns on the subset of rows satisfying
the selection predicate C[j] = vj for j ∈ J , i.e. the subset of rows with specified
values of some categorical features. We also assume an external certifying entity
T (e.g. a financial auditor) which independently verifies the correctness of sales
data reported by different organizations and issues a digital signature to attest
the same (this entity does not participate in the MPC protocol).

We conduct experiments to evaluate the computational and communication
overheads incurred by our protocol to achieve authentication on top of native
MPC. The results are summarized in Table 1. For comparison, we also show the:
(i) the actual computational and communication overheads for the native MPC
protocol, and (ii) the computational and communication overheads incurred by
an alternative approach of authenticating the inputs that shows the consistency
of the input shares with a public digest of the input and proves knowledge of
a BBS+ signature on this public digest by expressing the verification algorithm
as an arithmetic circuit and evaluating it inside the MPC protocol. As demon-
strated by the results in Table 1, the overheads for this alternative approach
are substantial even when an MPC-friendly hash function like MiMC is used to
hash the input. In comparison, the overheads for our DPoK-based approach are
significantly smaller, and effectively minor when compared to the overheads for
the base MPC protocol.

1.2 Technical Overview

In this section, we provide a brief overview of our techniques. We begin by
outlining ideas to distribute a well-known protocol for proving knowledge of

140 M. Dutta et al.

Table 1. Comparison of our DPoK-based approach for MPC input authentication
with the näıve approach of validating BBS+ signatures inside MPC (which involves
computing MiMC hashes inside MPC). These results correspond to datasets of size 500
× 10 in the KPI application.

Parties Vanilla MPC Auth MPC with MiMC Hash DPoK Overhead

3 33s/8437 MB 273s/13979 MB 5.7s/14.4 KB

5 125s/43823 MB 1369s/14498 MB 6.2s/30 KB

7 386.2s/127057 MB 3645.33s/207427 MB 8.2s/52 KB

discrete logarithm of a public group element. This relation will be at the core of
expressive algebraic relations that we will consider later.

Proof of Knowledge of Discrete Log. Let G be a group of prime order p.
Given x ∈ G, recall Schnorr’s protocol [45,46] for proving knowledge of discrete
logarithm w such that x = gw for some generator g (here (g, x) is public and w is
the secret witness). Let (P1,P2,V) be the protocol where we denote by P1 and
P2 the algorithms that compute, the prover’s first message a = gα for random
α ∈ Fp, and the prover’s last message (response) z = α+ cw, respectively, where
c is the challenge from the space {0, 1}l for some length l. Let V be the algorithm
that takes x, transcript τ = (a, c, z) and accepts iff gz = axc.

DPoK for Discrete Log. In order to distribute the above protocol, we begin
by assuming n provers Pi who each hold a share wi such that w = w1 + · · ·+wn

(mod p). Now, each prover runs Σ with their respective shares in parallel4. That
is, Pi runs P1, broadcasts ai = gαi , receives challenge c from V, and runs P2 and
broadcasts zi. The transcript is τ = (a1, . . . , an, c, z1, . . . , zn), and the verifier
accepts iff gΣzi =

∏
aix

c =
∏

i aix
c. This holds since gΣzi = gΣ(αi+cwi) =∏

i aix
c.

This idea generalizes to any linear secret sharing scheme, and also extends to
other relations. For instance, to prove knowledge of representation of a vector of
discrete logarithms with respect to public generators. In our final construction
we use additional ideas like randomization of the first message of each Pi via a
sharing of 0 in order to ensure zero-knowledge. This DPoK has communication

4 This is a simplified description; in our actual protocol Πdlog (Sect. 3.2), there are no
parallel sessions, each instance uses a random share, ensuring that we do not reuse
the shares, and in the FS-compiled version ΠFS

dlog (Appendix E of the full version of the
paper [24]), parties send non-interactive proofs instead of sending the first-messages
separately in parallel. We note that ROS attacks [9] in the context of concurrent
signatures are therefore inapplicable in our setting. See also Sect. 1.4 for a more
detailed discussion.

Compute, but Verify: Efficient MPC over Authenticated Inputs 141

complexity linear in the size of the witness. To achieve succinctness, we instead
use as a starting point a compressed sigma protocol [3] in order to achieve a
distributed protocol with logarithmic communication complexity (see Sect. 3.2
for details).

Robust Completeness. While the ideas described above result in protocols
that are zero-knowledge and sound against a malicious adversary controlling up
to t parties, completeness is guaranteed only if all the provers follow the pro-
tocol. However, in the distributed setting, a stronger, but natural notion is a
robust completeness property where completeness holds as long as the shares
reconstruct a valid witness, even if some provers are malicious. The main tech-
nical challenge in achieving robust completeness for a distributed proof is to
retain succinctness. Our key technical novelty is to achieve both robustness and
succinctness simultaneously via ideas from low-degree testing. We achieve this
by identifying and discarding corrupt shares. At a high level, the provers commit
to their shares and then reveal a certain linear form determined by the challenge
over their shares. Given a challenge c ∈ F

m
p , each Pi broadcasts zi = 〈c,wi〉.

In the honest case, these opened linear forms are expected to be a sharing of
the same linear form on the reconstructed witness: z = (z1, . . . , zn) recombine
to z where z = 〈c,w〉. The verifier error-corrects the received z′ to the nearest
codeword, and identifies the erroneous positions. By assumption our corruption
threshold is smaller than half the minimum distance of the code, so the erroneous
positions clearly come from corrupt provers. Can some corrupt provers strategi-
cally introduce errors in individual shares so that they “cancel out” in the inner
product with c? We lean on coding theoretic result (Lemma 2 of the full version
of the paper [24]) for linear codes to claim that such a prover only succeeds
with negligible probability. Finally, having identified the corrupt messages, we
can reconstruct the claimed commitment in the exponent using commitments of
honest shares (now identified). We need more details around this core idea to
ensure the protocol is zero-knowledge (see Sect. 3.2 for a complete treatment).

DPoKs for Algebraically Structured Signatures. It turns out that the
above approach can be naturally generalized to obtain a DPoK for the opening
of a Pedersen commitment [42]. We use this observation as a starting point to
realize DPoKs for algebraically structured signatures such as BBS+ [4,12,15]
and PS [44], which naturally admit proofs of knowledge that can be cast as
proving knowledge of openings of Pedersen commitments. As a core technical
contribution, we introduce a modified proof of knowledge for the BBS+ signa-
ture scheme, which leads to a vastly more efficient DPoK as compared to the
straightforward approach of distributing prior proofs of knowledge for BBS+
signatures. We refer to Sect. 4 for details. Analogous DPoK for PS signatures is
presented in Appendix G of the full version of the paper [24].

Compiler for Authenticated MPC. In order to construct an authenticated
MPC protocol, we build upon the above DPoKs for BBS+ and PS signatures.
Our compiler reuses the input sharing that is already done as part of an honest-
majority MPC protocol. Before proceeding with computation on the shares, the

142 M. Dutta et al.

distributed zero-knowledge proof is invoked to verify authenticity, and then the
rest of the MPC protocol proceeds. Since the shares of the witness come from
a party in the MPC protocol, our robustness property guarantees that if the
dealer is honest (that is, a valid witness was shared), then even if some parties
acting as provers are dishonest, the authenticity proof goes through (see Sect. 5
for details).

We also note that, while we rely on broadcast for our protocols, all relevant
related work on FLPCP [13] and previous works on authenticated MPC [2,11,34]
also make use of a broadcast channel. A broadcast channel is not a limitation,
and can be implemented using point-to-point channels. In the setting where
the number of parties is not too large (as in the applications we consider), the
communication overhead to realize broadcast is not prohibitive.

1.3 Related Work

We summarize some relevant related work, and compare our compiler with prior
approaches for authenticated MPC. We refer to Appendix A of the full version
of the paper [24] for some additional discussions.

Certified Inputs. The earlier works of [5,35,53] achieve input validation for
the special case of two-party computation using garbled circuit (GC) based tech-
niques. Another work [11] constructs MPC with certified inputs, albeit using
techniques that are specific to certain MPC protocols [20,21]. A recent work [2]
develops techniques for computing bilinear pairings over secret shared data,
which aims to enable signature verification inside MPC for the PS signature
scheme [44]. Both works [2,11] emulate a functionality similar to authenticated
secret-sharing protocol, where shares of an input certified by some certification
authority are provided at the end of the protocol execution. While the goal
of authenticated MPC has been studied, these works would require additional
consistency checks to ensure the consistency of shares used across the proto-
cols for authentication of shares and the underlying MPC execution. Although
the explicit details are not provided in the protocol description, we expect the
requirement of some consistency check on the MACs to ensure the usage of same
shares during authentication protocol and original MPC for function computa-
tion. In our work, we formalize this notion of authenticated MPC as an ideal
functionality which incorporates the consistency checks, and prove that the pro-
posed constructions realize this. For instance, consider the scenario where a
malicious party receives the shares of a certified input held by an honest party,
which is done via an authenticated secret-sharing protocol, however while run-
ning the MPC itself it chooses to not use the shares received during the previously
run authenticated secret-sharing protocol and uses an arbitrarily chosen share
instead. The current definitions in [2,11] fails to safeguard against such an attack
and would require additional assumptions to ensure the consistency of shares.

To be precise, the current protocol description of ΠCertInput in [2] (Section 5.1)
emulates the authenticated secret-sharing, such that at the end of the protocol,
if an input corresponds to a valid signature, the shares of that input is available

Compute, but Verify: Efficient MPC over Authenticated Inputs 143

to every party. This protocol first secret-shares the input, then using the shares
held by everyone as input invokes another protocol ΠVerify to ascertain if the
shares obtained in the previous phase corresponds to an input for which there is
a valid signature. However, note that only Step 3 of ΠVerify considers the shares
of the input, which need not be the shares used for running the MPC, unless
additional consistency checks using the MACs on the shares are in place. Such
details do not explicitly appear in the protocols presented in [2].

The protocols in [11] also follow a similar template based on authenticated
secret-sharing. Their techniques consider two specific MPC protocols [20,21] for
input certification. Concretely, Theorem 8 for input certification in [11] ensures
that a malicious prover cannot feed an input which does not correspond to the
valid signature. While it is not explicitly specified in [11] that the commitments
to the inputs used for the batch verification of signatures are consistent with the
inputs used for the remaining proof of knowledge statements, we assume that
this is indeed the case.

In this paper, we recognize the benefits of having a formal definition to cap-
ture the consistency of shares of input used in authentication and the MPC. To
this end, we explicitly provide an ideal functionality ensuring the same, and then
present a construction satisfying this ideal functionality. We also avoid the pos-
sibility of using different inputs for certification and MPC by enforcing that the
honest party shares must completely determine the reconstructed input which
is being authenticated. While this observation has not been specified in either
of the works, this specific restriction would also ensure that the consistency of
shares holds for constructions in [2,11] as well.

We use efficient compressed DPoKs for signature verification instead of veri-
fying signatures inside the MPC protocol, hence differing from both [2] and [11]
in terms of techniques used and properties achieved. In particular, our compiler is
modular, fully generic (works in a plug-and-play manner with any threshold lin-
ear secret sharing based MPC protocol), and avoids the (potentially expensive)
protocol-specific techniques and pre-processing requirements that are inherent
to [2,11]. Our compiler also enables stronger security guarantees as compared
to abort security, namely identifiable abort (and even full security/guaranteed
output delivery in certain cases), which neither [2] nor [11] achieves.

Distributed Zero-Knowledge. Various notions of distributed zero-knowledge
have appeared in literature. The notion of distributed interactive proofs appeared
in [42], in the context of relations describing the verification of signatures, where
the signature is public and the secret key is shared. The notion in [50] considers
a distributed prover in order to improve prover efficiency, but the witness is
still held by one entity. In Feta [6], the distributed notion is a generalization of
designated verifier to the threshold setting where a set of verifiers jointly verify
the correctness of the proof. Prio [19] proposes secret shared non-interactive
proofs where again, there is a single prover and many verifiers.

Our formulation of DPoKs also differs from recent works on distributed
zkSNARKs [23,40,47], where the focus is on jointly computing a non-interactive
publicly verifiable proof (with specific focus on Groth16 [33], Plonk [27] and Mar-

144 M. Dutta et al.

lin [18]). Their constructions require additional interaction among the workers
over private channels. On the other hand, we consider DPoKs where all inter-
action with the verifier takes place over a public broadcast channel. We also
study the notion of robust completeness that guarantees completion even in the
presence of malicious behavior while ensuring succinct proof size, which was not
achieved in prior works. Note that distributed zkSNARKs fundamentally dif-
fer in their objective. DPOKs prove that the given shares (e.g., the one used
for MPC) reconstruct a valid witness, whereas distributed zkSNARKs do not
certify a given sharing.

A recent work on distributed zkSNARKs, called zkSaaS [31], considers a
monolithic prover that aims outsources proof generation to (untrusted) servers
in a privacy-preserving manner for increased efficiency. However, we target appli-
cations that require proving (algebraically structured) relations involving an
already secret-shared witness. Plugging it naively does not work as a replace-
ment for our proposed compiler since it would not ensure that the same input
shares are used consistently in the authentication protocol and the core MPC.
Additionally, similar to the distributed proofs with multiple verifier, [31] also
requires expressing the algebraically structured relations as circuits, which is
inefficient for the algebraic relations considered in our work.

Proofs on Secret-Shared Data. Notions of zero-knowledge proofs on dis-
tributed data is explored in recent works [6,13,34]. The former work proposes
the abstraction of a fully linear PCP (FLPCP) where each verifier only has
access to a share of the statement, and the latter work is based on MPC-in-the-
head paradigm. The techniques of distributed verification [6,13,34] assumes the
relations to be represented as an arithmetic circuit, whereas our DPoKs consider
algebraic relations whose circuit representation is prohibitively expensive. Addi-
tionally, distributed verifier paradigm considers a designated prover who knows
entire witness to create a proof oracle, which is verified in distributed fashion,
while DPoKs do not require a prover which knows the entire witness. For exam-
ple for proof of gxhy = C wheres x and y belongs to different parties, a DPoK
will succeed as long as provers have valid shares of x and y.

Our observation is that algebraic relations like discrete log is naturally dis-
tributed witness relation. A public statement and shared witness is better suited
for algebraic relations, and our distributed zero-knowledge definition captures
such natural relations. Since the focus of our work is on concrete efficiency (prover
overhead, communication overhead), we take advantage of the algebraic nature
of the relation to design concretely efficient DPoKs by modeling the witness as
being distributed and statement being public. In this approach, we expect rich
classes of protocols (compressed sigma protocols, Bulletproofs etc. that avoid cir-
cuit representation for several useful relations) to be amenable to be distributed
under our definition. In addition, [13] provides sublinear communication only for
special circuits (like degree 2) and the circuits of interest for us are unlikely to
have this structure.

We also note that [13] does not consider the robustness property. We put forth
the robustness notion that guarantees that the protocol runs to completion even

Compute, but Verify: Efficient MPC over Authenticated Inputs 145

in the presence of malicious parties (when the prover is honest). This property is
indeed important for our applications, as this means that the compiled authen-
ticated MPC protocol can identify malicious parties in the authentication stage.
The distributed completeness guarantees of [6] considers robustness, however its
protocol execution incurs communication cost linear in the size of the circuit in
the offline phase. However, [6] does not allow aggregation of multiple instances of
authentication of input into one execution of the underlying distributed protocol,
which we support efficiently.

Finally, the motivating application for [13] is compiling passive security to
active security, and therefore the statements that show up – like the next message
function of the protocol – have a low degree circuit representation. We consider
the authenticated input application where our relations of interest are algebraic
in nature (e.g. verification of an algebraic signature scheme) and admit efficient
sigma protocols.

1.4 Resistance to Known Vulnerabilities

Here, we present a discussion on why our proposed DPoK protocols and our
compiler for authenticated MPC resist some known attacks and insecurities of
ZKP protocols in practice.

Resistance to ROS Attacks. In [9], the authors presented an algorithm for
solving ROS (Random inhomogeneities in a Overdetermined Solvable system of
linear equations) mod p in polynomial time for � > log p dimensions, which
leads to the ROS attack on certain advanced families of digital signatures which
involve computations over secret shares. However, the ROS attack does not apply
to our proposed DPoK protocols. In particular, note that the ROS attack only
works when: (i) there are more than log p parallel sessions for the same shares, (ii)
the adversary chooses its first message after seeing all of the other first messages
from the honest parties, (iii) the adversary chooses the challenge.

The ROS attack is not applicable for our protocols as: (i) there are no par-
allel sessions in our protocols, (ii) each protocol is instantiated using the output
of (the randomized) Share algorithm of the underlying secret sharing scheme
(Share,Reconstruct), thereby ensuring that we do not reuse the shares across
sessions, and in the round-efficient versions of our proposed protocols: (iii) the
parties send non-interactive proofs instead of sending the first-messages sepa-
rately (see ΠFS

dlog in Appendix E of the full version of the paper [24]), and finally
(iv) the challenge is not chosen by the adversary (verifier); it is determined by
performing a hash of the available public transcript.

Resistance to OSNARK-Related Vulnerabilities. In [26], the authors pro-
vide a study of when SNARKs are insecure in the presence of certain oracles (in
particular, the knowledge soundness guarantees do not hold in such settings since
the extraction fails). As defined in [26], an OSNARK is a SNARK that guaran-
tees extraction even in presence of an oracle for the prover. We note here that
the negative result for the existence of OSNARKs, as outlined in [26], does not
provide a general impossibility result, since it only applies either to SNARKs

146 M. Dutta et al.

where the prover has access to oracles with secret states (such that the extrac-
tor does not have access to these states), and for standard-model SNARKs. We
note that the attack does not apply: (i) to SNARKs in the ROM, and (ii) when
the extractor is black-box in the adversary. Fiat-Shamir transformed Sigma pro-
tocols are also known to satisfy black-box simulation-extractability, i.e., knowl-
edge soundness holds even in the presence of proof oracles [28,29]. Analogously,
our Fiat-Shamir transformed round-efficient proofs of knowledge are simulation-
extractable in the random oracle model, as we establish through formal proofs
of security. In particular, there are no other oracles with secret states in our
setting. We emphasize that signatures are already independently obtained by
the parties on their inputs, and signing or signature-oracles are not included as
part of our authenticated MPC protocols.

2 Preliminaries

In this section, we introduce notations and present preliminary background mate-
rial. We refer to Appendixes B.1, B.2 and B.3 for additional preliminaries.

Notation. We write x ←R χ to represent that an element x is sampled uniformly
at random from a set/distribution X . The output x of a deterministic algorithm
A is denoted by x = A and the output x′ of a randomized algorithm A′ is
denoted by x′ ←R A′. For n ∈ N, let [n] denote the set {1, . . . , n}. For a, b ∈ N

such that a, b ≥ 1, we denote by [a, b] the set of integers lying between a and
b (both inclusive). We refer to λ ∈ N as the security parameter, and denote by
poly(λ) and negl(λ) any generic (unspecified) polynomial function and negligible
function in λ, respectively. A function f : N → N is said to be negligible in λ if
for every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large.

Let G be a group and Fp denote the field of prime order p. We use boldface
to denote vectors. Let g = (g1, . . . , gn) ∈ G

n and x = (x1, . . . , xn) ∈ F
n
p , then gx

is defined by gx = gx1
1 · · · gxn

n . For g = (g1, . . . , gn) ∈ G
n and h = (h1, . . . , hn) ∈

G
n, g ◦ h denotes component-wise multiplication, and is defined by g ◦ h =

(g1h1, . . . , gnhn). For g = (g1, . . . , gn) ∈ G
n and x = (x1, . . . , xn) ∈ F

n
p , gL

(similarly, xL) denotes the left half of the vector g(x) and gR(xR) denotes the
right half, such that g = gL‖gR and x = xL‖xR.

2.1 Threshold Secret Sharing

For ease of exposition we define a special case of threshold linear secret sharing
scheme below. For concreteness, the reader may assume a (t, n) Shamir Secret
Sharing. The more general definition appears in Appendix C of the full version
of the paper [24].

Definition 1 (Threshold Secret Sharing). A (t, n) threshold secret sharing
over finite field F consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F samples a vector
(s1, . . . , sn) ∈ F

n, which we denote as (s1, . . . , sn) ←R Share(s).

Compute, but Verify: Efficient MPC over Authenticated Inputs 147

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a
vector (s1, . . . , s|I|) and outputs
s = Reconstruct((s1, . . . , s|I|), I) ∈ F. We will often omit the argument I
when it is clear from the context.

A threshold secret sharing scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset
I = {i1, . . . , iq} ⊆ [n] with q > t, we have Reconstruct((si1 , . . . , siq

), I) = s.
– Privacy: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset

I = {i1, . . . , iq} ⊆ [n] with q ≤ t, the tuple (si1 , . . . , siq
) is information-

theoretically independent of s.

A concrete (t, n) sharing scheme over a finite field F, known as the Shamir
Secret Sharing is realized by choosing a set of distinct points η = {η1, . . . , ηn} in
F\{0}. Then given s ∈ F, the Share algorithm uniformly samples a polynomial
p of degree at most t such that p(0) = s and outputs (p(η1), . . . , p(ηn)) as the
shares. The Reconstruct algorithm essentially reconstructs the value s = p(0)
using Lagrangian interpolation. We canonically extend the Share and Reconstruct
algorithms to vectors by applying them component-wise.

Definition 2 (Linear Code). An [n, k, d]-linear code L over field F is a k-
dimensional subspace of Fn such that d = min{Δ(x,y) : x,y ∈ L,x = y}. Here
Δ denotes the hamming distance between two vectors.

We say that an m × n matrix P ∈ Lm if each row of P is a vector in L. We
also overload the distance function Δ over matrices; for matrices P,Q ∈ F

m×n,
we define Δ(P,Q) to be the number of columns in which P and Q differ. For a
matrix P ∈ F

m×n and an [n, k, d] linear code L over F, we define Δ(P,Lm) to
be minimum value of Δ(P,Q) where Q ∈ Lm.

Definition 3 (Reed Solomon code). For any finite field F, any n-length vec-
tor η = (η1, . . . , ηn) ∈ F

n of distinct elements of F and integer k < n, the Reed
Solomon Code RSn,k,η is an [n, k, n − k + 1] linear code consisting of vectors(
p(η1), . . . , p(ηn)

)
where p is a polynomial of degree at most k − 1 over F.

We note that shares output by (t, n) Shamir secret sharing are vectors in
[n, t + 1, n − t] Reed Solomon code. We can leverage tests for membership of a
vector in a linear code (based on parity-check matrix) to check if a set of shares
{si}i∈H for H ⊆ [n] and |H| > t uniquely determine a shared value s for Shamir
Secret Sharing scheme. Below, we formalise the notion of consistent shares and
state a lemma to check such shares. In the interest of space, we directly state
the results for general m ∈ N, i.e. when vectors s ∈ F

m are shared.

Definition 4 (Consistent Shares). Let L be the linear code determined by
a (t, n) Shamir secret sharing scheme over finite field F. For m ∈ N, we call
a set of shares {si}i∈H for H ⊆ [n] with |H| ≥ t + 1 to be Lm-consistent if
there exists (v1, . . . ,vn) ∈ Lm such that si = vi for i ∈ H. In this case s =

148 M. Dutta et al.

Reconstruct(v1, . . . ,vn) ∈ F
m is the unique shared value determined by the shares

{si}i∈H.
We define the predicate Consistent : FH+1 → {0, 1} as

Consistent({si}i∈H, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, |H| ≤ t

1, |H| > t ∧ {si}i∈H is Lm-consistent
∧

Reconstruct({si}i∈H) = s
0, otherwise.

We use this Consistent(.) predicate to determine if a vector s can be a possible
candidate which could have been used to generate the set of shares held by the
honest parties {si}i∈H.

Lemma 1. Let L be the linear code determined by a (t, n) Shamir secret sharing
scheme over finite field F. Then for m ∈ N and all H ⊆ [n] with q = |H| ≥ t+1,
there exists q × (n − t) matrix HHH over F such that shares {si}i∈H are Lm-
consistent and determine the value s ∈ F

m if and only if XHH = (s,0n−t−1)
where X = (x1, . . . ,xq) is some canonical ordering of {si}i∈H.

Proof. We sketch the proof. For a matrix P ∈ Lm, we have PH = 0n−t−1 where
H is the parity check matrix for the [n, t+1, n− t] code L. Now for H ⊆ [n] with
|H| ≥ t + 1, and matrix X determined by Lm-consistent shares (si)i∈H, there
exists a matrix TH such that XTH ∈ Lm, and hence XTHH = 0n−t−1. Thus
for HH = [k,THH] where k is the column of reconstruction coefficients for the
set H, we have XHH = (s,0n−t−1).

2.2 Proofs of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x :
∃ w such that (x,w) ∈ R}. Here, x is called an instance or statement and w is
called a witness. An interactive proof system consists of a pair of PPT algorithms
(P,V). P, known as the prover algorithm, takes as input an instance x ∈ L and
its corresponding witness w, and V, known as the verifier algorithm, takes as
input an instance x. Given a public instance x, the prover P, convinces the
verifier V, that x ∈ L. At the end of the protocol, based on whether the verifier
is convinced by the prover’s claim, V outputs a decision bit. A stronger proof of
knowledge (PoK)5 property says that if the verifier is convinced, then the prover
knows a witness w such that (x,w) ∈ R. In this paper, we consider POKs that
satisfy two security properties, namely, honest-verifier zero-knowledge (HVZK)
and special-soundness.

A protocol is said to be honest-verifier zero-knowledge (HVZK) if the tran-
script of messages resulting from a run of the protocol can be simulated by
an efficient algorithm without knowledge of the witness. A protocol is said to

5 Throughout this paper, we use proof and argument interchangeably, but we are only
concerned with arguments (proofs with computational soundness) in this paper.

Compute, but Verify: Efficient MPC over Authenticated Inputs 149

have k-special-soundness, if given k accepting transcripts, an extractor algo-
rithm can output a w′ such that (x,w′) ∈ R. Furthermore, a protocol is said
to have (k1, . . . , kμ)-special-soundness [14], if given a tree of

∏μ
i=1 ki accept-

ing transcripts, the extractor can extract a valid witness. Here, each vertex in
the tree of

∏μ
i=1 ki accepting transcripts corresponds to the prover’s messages

and each edge in the tree corresponds the verifier’s challenge, and each root-to-
leaf path is a transcript. An interactive protocol is said to be public-coin if the
verifier’s messages are uniformly random strings. Public-coin protocols can be
transformed into non-interactive arguments using the Fiat-Shamir [25] heuristic
by deriving the verifier’s messages as the output of a Random Oracle. In this
work, we consider public-coin protocols.

We refer to Appendix B.1 of the full version of the paper [24] for a detailed
treatment of non-interactive zero-knowledge (NIZK) proof systems.

2.3 BBS+ Signatures and PoK for BBS

In this section, we recall the BBS+ signature scheme [12,15,39], and its proof of
knowledge. We use the variant of BBS+ signatures and the proof of knowledge
from [15], which is the currently adopted variant in the IETF standard for
verifiable crendentials [39]. Later, we also describe a slight variant of the BBS+
proof of knowledge from [15], which leads to corresponding distributed proofs
with better amortized complexity (i.e., when several DPoKs are required at a
time).

Definition 5 (BBS+ Signature Scheme [12,39]). The BBS+ signature
scheme to sign a message of the form m = (m1, . . . ,m�) ∈ F

�
p consists of a

tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2,
and GT of prime order p, with an efficient bilinear map e : G1 × G2 → GT

as part of the public parameters pp, along with g1 and g2, which are the
generators of groups G1 and G2 respectively.

– KeyGen(pp) : This algorithm samples (h0, . . . , h�) ←R G
�+1
1 and x ←R

F
∗
p, computes w = gx

2 and outputs (sk, pk), where sk = x and pk =
(g1, w, h0, . . . , h�).

– Sign(sk,m1, . . . ,m�) : This algorithm samples β, s ←R Fp, computes A =
(
g1h

s
0

∏�
i=1 hmi

i

) 1
β+x

and outputs σ = (A, β, s).
– Verify(pk, (m1, . . . ,m�), σ) : This algorithm parses σ as (σ1, σ2, σ3), and

checks

e (σ1, wgσ2
2) = e

(

g1h
σ3
0

�∏

i=1

hmi
i , g2

)

.

If yes, it outputs 1, and outputs 0 otherwise.

150 M. Dutta et al.

PoK for BBS+ Signature Scheme. We present a modified proof of knowl-
edge (PoK) for BBS+ signatures, building on the PoK originally proposed in
[15] (summarized in Appendix B.3 of the full version of the paper [24]), wherein
we split the relation d−r3hs′

0

∏�
i=1 hmi

i = g−1
1 by requiring the prover to equiva-

lently show:

d−r3hs′−η
0 = C ∧ hη

0

�∏

i=1

hmi
i = D ∧ C · D = g−1

1

The above decomposition has advantage that the (long) message m appears only
with public generators which leads to better aggregation of DPoKs over several
messages. The complete modified protocol appears below.

– Common Input: Public Key pk = (w, h0, . . . , h�)
– P’s inputs: Message m ∈ F

�
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏�
i=1 hmi

i

) 1
β+x

.

1. P samples r1 ←R F
∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)−β · br1 , where b = g1h
s
0

∏�
i=1 hmi

i .
3. P samples r2 ←R Fp and computes d = br1 · h−r2

0 and s′ = s − r2 · r3

4. P samples η ←R Fp and sets C = d−vhs′−η
0 , and D = hη

0

∏�
i=1 hmi

i .
5. P sends (A′, Ā, d, C,D) to V.
6. P and V run a ZKPoK for the discrete-logarithm relation:

(A′)−β
hr2

0 = Ā/d ∧ d−r3hs′−η
0 = C ∧ hη

0

�∏

i=1

hmi
i = D

where (m, r2, r3, β, s′, η) is the witness.
7. V checks that A′ = 1G1 , C · D = g−1

1 , e (A′, w) = e
(
Ā, g2

)
, verifies the

ZKPoK proof and outputs 1 if all the checks pass, and 0 otherwise.

3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK)
in which multiple provers, each having a share of the witness engage in an inter-
active protocol with a verifier to convince it that their shares determine a valid
witness. The provers do not directly interact with each other, and all the inter-
action with the verifier takes place over a public broadcast channel.

3.1 Defining a DPoK

Definition 6 (Distributed Proof of Knowledge.) We define n-party dis-
tributed proof of knowledge for relation generator RGen and a secret-sharing
scheme SSS = (Share,Reconstruct) by the tuple DPoKSSS,RGen = (Setup,Π) where
Setup is a PPT algorithm and Π is an interactive protocol between PPT algo-
rithms P (prover), V (verifier) and W1, . . . ,Wn (workers) defined as follows:

Compute, but Verify: Efficient MPC over Authenticated Inputs 151

– Setup Phase: For relation R ←R RGen(1λ), Setup(R) outputs public param-
eters pp as pp ←R Setup(R). The setup phase is required to be executed only
once for a given relation R. We assume R consists of pairs (x,w) where w
is parsed as (s, t)) with s ∈ F

m. Looking ahead, we partition the witness as
(s, t) to explicitly specify which parts of the witness later needs to be shared6.

– Input Phase: The prover P receives (x, (s, t)) ∈ R as input, while the
worker Wi, i ∈ [n] receives (x, si) as input, where (s1, . . . , sn) ←R Share(s).
All parties receive x as input.

– Preprocessing Phase: This is (an optional) phase where the prover P sends
some auxiliary information auxi to worker Wi using secure private channels.

– Interactive Phase: In this phase, the parties interact using a public broad-
cast channel according to the protocol Π. The protocol Π is a k-round protocol
for some k ∈ N, with (pp,x, s, t) as P’s input, (pp,x, si, auxi) as the input of
Wi and (pp,x) as the input of V. The verifier’s message in each round j ∈ [k]
consists of a uniformly sampled challenge cj ∈ F

�j for �j ∈ N. In each round
j ∈ [k], the worker Wi (resp. the prover P) broadcasts a message mij (resp.,
mi) which depends on it’s random coins and the messages received in prior
rounds (including pre-processing phase).

– Output Phase: At the conclusion of k rounds, verifier outputs a bit b ∈ {0, 1}
indicating accept (1) or reject (0).

A distributed proof of knowledge DPoKSSS,RGen as described above is said to
be t-private, �-robust if the following hold:

– Completeness: We say that completeness holds if for all R ←R RGen(1λ)
and (x, s) ∈ R, the honest execution of all the phases results in 1 being output
in the output phase with probability 1.

– Knowledge-Soundness: We say that knowledge soundness holds if for any
PPT adversary A = (A1,A2), where A2 corrupts the prover P and subset of
workers {Wi}i∈C for some C ⊆ [n], there exists an extractor Ext with oracle
access to A2 (recall that the prover and the set of corrupt Wi are controlled
by A2) such the following probability is negligible.

Pr

⎡

⎢
⎢
⎣

VA,Π(pp,x) = 1 ∧
((x, (s, t)) ∈ R ∨

Consistent({si}i�∈C, s) = 0)

R ←R RGen(λ)
pp ←R Setup(R)

(x, {si}i�∈C) ←R A1(pp)
(s, t) ←R ExtA2(pp,x, {si}i�∈C)

⎤

⎥
⎥
⎦

In the above, VA,Π(pp,x) denotes the verifier’s output in the protocol Π with
its input as (pp,x) and A being the adversary. The extractor takes as input
the shares of the honest parties specified by the adversary A1, and with all
but negligible probability extracts a valid witness.

6 We specify s ∈ F
m since our secret sharing works over a finite field. The witness

component t need not, in general, be a field element. In fact, in our application, the
witness is a message signature pair where the message is in F

m and the signature is
a group element. This group element is not secret shared, yet, the DPOK guarantees
extraction of a valid signature message pair.

152 M. Dutta et al.

– Honest Verifier Zero-Knowledge: We say that a DPoK is honest verifier
zero-knowledge if for all R ←R RGen(1λ), (x, s) ∈ R and any PPT adversary
A corrupting a set of workers {Wi}i∈C, where |C| ≤ t, there exists a PPT sim-
ulator Sim such that ViewA,Π(pp,x) is indistinguishable from Sim(pp,x) for
pp ←R Setup(R). Here, the view is given by ViewA,Π = {r, (Mi)i∈C} where
r denotes the internal randomness of A and Mi is the set of all messages
received by Wi in Π. We remark that we define honest-verifier zero-knowledge
as is standard for public-coin interactive protocols. After Fiat-Shamir com-
pilation into a non-interactive proof, we get full zero-knowledge against a
malicious verifier.

– Robust-Completeness: We say that robust-completeness holds if for all
R ←R RGen(1λ), (x, s) ∈ R and any PPT adversary A corrupting a set of
workers {Wi}i∈C, where |C| ≤ �, VA,Π(pp,x) = 1 with overwhelming proba-
bility where pp ←R Setup(R).

Remark 1. Robust completeness is a stronger notion of completeness in the sense
that it holds even if some corrupt workers deviate maliciously from the protocol,
as opposed to the standard notion of completeness which only holds if all the
workers follow the protocol. Looking ahead, we use robust complete DPoKs
to design authenticated MPC protocols that preserve the underlying protocol’s
resilience against malicious behavior.

Remark 2. We assume that the sharing phase is executed before the onset of
DPoK, hence the knowledge soundness extractor of DPoK expects honest party
shares in order to extract the witness. Since knowledge soundness is supposed
to hold against a corrupt prover and some corrupt workers, it is meaningful to
say that the adversary breaks knowledge soundness if no extractor can construct
corrupt party shares that together with the honest party shares determine
a valid witness. Note that extractor is required to produce shares of corrupt
parties which “explain” the successful outcome of the protocol in conjunction
with the shares used by honest parties. Hence, DPoK enables us to certify a
given sharing.

Remark 3. We assume an honest verifier V for ease of exposition. In Section
E of the full version of the paper [24], we relax this assumption by transform-
ing any DPoKSSS,RGen protocol that uses only public coins and communication
over broadcast channels between the workers and the verifier (with no commu-
nication among the workers), into a round-efficient version RE-DPoKSSS,RGen in
the random oracle model, wherein the verifier’s challenge is computed using the
Fiat-Shamir heuristic [25].

3.2 Robust Complete DPoK for Discrete Log

In this section, we provide a DPoKSSS,DlogGen for the discrete log relation based
on Shamir Secret Sharing (SSS) [49]. Let DlogGen be a relation generator that
on input (1λ, 1�) outputs (G,g, p) where p is a λ-bit prime, G is a cyclic group
of order p and g = (g1, . . . , g�) ←R G

� is a uniformly sampled set of generators.

Compute, but Verify: Efficient MPC over Authenticated Inputs 153

The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let SSS =
(Share,Reconstruct) denote (t, n) Shamir secret sharing over Fp. Our protocol
Πdlog realizing DPoKSSS,DlogGen is as below. However, for ease of exposition, we
first explain a simpler non-robust version of the protocol, before explaining the
robust version. We use an instantiation of compressed sigma protocols (CSP)
due to Attema et al. [3] as a black-box (see Appendix B.2 of the full version
of the paper [24] for details). We run CSP protocol instances over a broadcast
channel, meaning that each worker Wi (playing the role of the prover of that
instance) broadcasts its messages as part of the CSP protocol, and the verifier
broadcasts all challenges as well. 7

Warm-Up: Non-robust DPoK for DLOG. We begin by describing a sim-
pler, non-robust version of Πdlog outlined above, which we call Πnr-dlog. Let us
consider the scenario where the parties Wi, i ∈ [n], holds the shares si for a secret
s such that (z, s) ∈ RDL, i.e. z = gs. Now note that since (s1, . . . , sn) ←R s,
there exists some publicly known ki such that

∑
i kisi = s. In particular, the

protocol Πnr-dlog executes the following steps:

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds
(z, si), where si are shares of s i.e. (s1, . . . , sn) ←R Share(s).

Interactive Phase

– Each worker Wi (i ∈ [n]) broadcasts a commitment Ai = gsi to their shares
si, along with a proof of knowledge πi of its exponent si with respect to the
associated commitment Ai.

– Thereafter, the verifier checks the following:
· The proofs πi (with respect to the broadcast Ai) are valid for all i ∈ [n].
· The broadcast Ai and the publicly known z satisfies the relation z =∏

i Aki
i for the publicly known reconstruction coefficients {ki : i ∈ [n]}.

Robust DPoK for DLOG. Note that the previously described protocol Πnr-dlog
achieves completeness only if all of the parties participating to produce the
proof are honest. To achieve completeness even in the presence of corrupt par-
ties, known as the stronger guarantee of robust completeness, we require error-
correction. However the shares that requires error-correction are in the exponent
of a publicly known group element and it is known from [43] that error correc-
tion is not possible in the exponent. To ensure that error correction of the shares
present in the exponent is possible, we reveal a random linear combination of
the codewords and leverage the coding theoretic lemma that states that a ran-
dom linear combination of a set of codewords from an error-correcting code (e.g.,
Reed-Solomon code) retains the position of errors as long as the number of errors
are small. In particular, the protocol Πdlog executes the following steps:

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds
(z, si), where si are shares of s i.e. (s1, . . . , sn) ←R Share(s).

7 Note that here the witness is s ∈ F
�
p, and we do not have any component t which is

not being secret-shared.

154 M. Dutta et al.

– Pre-processing: We need an additional preprocessing step for providing
robustness. In this phase, before the onset of the interactive phase of the
protocol, the prover samples r ←R Fp, computes (r1, . . . , rn) ←R Share(r)
and sends the share ri to the worker Wi.

Interactive Phase

– Commit to Shares: In the interactive phase, each worker Wi (i ∈ [n]) first
commit to their respective shares by

· broadcasting Ai = gsi and running its associated proof of knowledge
CSP{(Ai, si) : gsi = Ai} over broadcast to obtain πi1.

· broadcasting Bi = hri
1 hωi

2 for ωi ←R Fp and running its its associated
proofs of knowledge CSP{(Bi, (ri, ωi)) : hri

1 hωi
2 = Bi} over broadcast to

obtain πi2.
– Reveal Linear Form over Shares: The verifier samples a challenge

γ ←R F
�
p and broadcasts it. Thereafter, the workers broadcast the linear

form vi = 〈γ, si〉 + ri. Recall that, we know that random linear combination
of a codeword is also a codeword (recalled in Lemma 2 of the full version of
the paper [24]). Using Lemma 2 [24], since {(si, ri) : i ∈ [n]} are codewords
respectively, the linear combination of those codewords (v1, . . . , vn) using the
randomly sampled γ is also a codeword.
Additionally, to ensure that corrupt workers use si, ri consistent with earlier
commitments Ai, Bi we additionally require them to run the following proof
of knowledge CSP over broadcast to obtain πi3:

πi3 = CSP{((AiBi, γ‖1‖0, vi), (si, ri, ωi)) : gsihri
1 hωi

2 = AiBi ∧ 〈γ, si〉 + ri = vi}.

– Verifier Determines Honest Commitments: Let v = (v1, . . . , vn),
defined by vi = 〈γ, si〉 + ri, be the vector of honestly computed values, and
v′ = (v′

1, . . . , v
′
n) be the respective broadcast values received by the workers

in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, the verifier
set bi = 0 else it sets bi = 1. Since Δ(v′,v) ≤ d < (n − t)/2, V can compute
v from v′ by decoding algorithm (e.g. Berlekamp-Welch) for Reed-Solomon
codes. Set C = {i ∈ [n] : vi = v′

i ∨ bi = 0} and let HQ = (hjk) denote the
matrix guaranteed by Lemma 1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.
Informally, C is the set consisting of the position of ‘errors’ noted by the
verifier and the new reconstruction coefficient k′

i is computed for the set
[n] \ C = {i1, . . . , iq}. Thereafter the verifier proceeds with the final check
with the non-error positions in {i1, . . . , iq} by using the new reconstruction
coefficients and the corresponding commitments sent in the previous round.
Also, we rely on the fact that we use shares of a codeword (s, r) in the proof
of knowledge πi3 to ensure that the received values (v1, . . . , vn), if correctly
computed, would also be a codeword and error-correction can be used on the
new codeword (v1, . . . , vn).

– Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q]

A
hjk

ij

)

k=1,...,n−t
= (z,0n−t−1), and (0, {P}) otherwise.

Compute, but Verify: Efficient MPC over Authenticated Inputs 155

This is achieved via the additional steps (4b) through (6) in Πdlog outlined in
the figure above. We subsequently present a formal proof that Πdlog achieves d-
robust completeness for d < dist/2, where dist = (n− t) is the minimum distance
of the Reed-Solomon code induced by (t, n)-SSS.

Remark 4. The final step of protocol Πdlog checks (n − t) equations over expo-
nents and not just the reconstruction equation. This is to ensure that we extract
the witness consistent with honest party shares of the witness. This is crucial
in the security proof of our compiler for honest majority protocols where honest
party shares determine a unique consistent witness, and this ensures that cor-
rupt parties use the same inputs in both the DPoK protocol and the associated
MPC protocol.

Protocol Πdlog

1. Public Parameters: Let (G,g, p) ←R DlogGen(1λ, 1�). Let RDL denote
the relation consisting of pairs (z, s) such that gs = z. Let (h1, h2) ←R

Setup(RDL) be two independent generators of G.
2. Input Phase: The prover gets (z, s) while workers Wi, i ∈ [n] are given

(z, si) where (s1, . . . , sn) ←R Share(s). 8

3. Pre-processing: Prover samples r ←R Fp, computes (r1, . . . , rn) ←R

Share(r) and sends ri to Wi for i ∈ [n].
4. Commit to Shares: In the interactive phase, each worker Wi, for i ∈ [n],

does the following.
(a) Wi broadcasts Ai = gsi and runs its associated proofs of knowledge

CSP{(Ai, si) : gsi = Ai} over broadcast to obtain πi1.
(b) Wi broadcasts Bi = hri

1 hωi
2 for ωi ←R Fp and runs its associated proofs

of knowledge CSP{(Bi, (ri, ωi)) : hri
1 hωi

2 = Bi} over broadcast to obtain
πi2.

5. Reveal Linear Form over Shares:
(a) V samples γ ←R F

�
p and broacasts it.

(b) For all i ∈ [n], Wi computes vi = 〈γ, si〉 + ri and broadcasts vi.
(c) For all i ∈ [n], Wi also runs the associated proof of knowledge to obtain

πi3, i.e.

πi3 = CSP{((AiBi, γ‖1‖0, vi), (si, ri, ωi)) :

gsihri
1 hωi

2 = AiBi ∧ 〈γ, si〉 + ri = vi}.

6. Verifier Determines Honest Commitments:
(a) Let v′ = (v′

1, . . . , v
′
n) be the received values in the previous step by the

workers, instead of the honestly computed valyes (v1, . . . , vn).
(b) If one of the proofs πi1, πi2 or πi3 is invalid, the verifier set bi = 0 else

it sets bi = 1.
(c) Since Δ(v′,v) ≤ d < (n − t)/2 from assumption, V computes v from v′

by decoding algorithm (e.g. Berlekamp-Welch) for Reed-Solomon codes.
Set C = {i ∈ [n] : vi 	= v′

i ∨ bi = 0} and let HQ = (hjk) denote the
matrix guaranteed by Lemma 1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.

7. Output using Honest Messages: V outputs (1,C) if(∏
j∈[q] A

hjk

ij

)
k=1,...,n−t

= (z,0n−t−1), and (0, {P}) otherwise.

156 M. Dutta et al.

Theorem 1. Assuming that CSP satisfies completeness, knowledge-soundness
and zero-knowledge with O(log �)-communication overhead, Πdlog is a
DPoKSSS,DlogGen (as per Definition 6) for relation generator DlogGen and (t, n)-
SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the
minimum distance of the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log �)
communication over broadcast channels.

We defer the proof of the theorem to the full version of the paper [24].

Generalization to Threshold Linear Secret Sharing. We can generalize
the above protocol to work with any threshold linear secret sharing (TLSS)
scheme. In the generalized version, the corruption threshold for robust com-
pleteness depends on the exact distance of the linear code induced by the TLSS
scheme. As a corollary, we derive concrete bounds on the corruption threshold for
robust completeness when using replicated secret sharing. The relevant technical
details appear in Appendix C of the full version of the paper [24].

Round Efficient DPoK for Discrete Log. In Appendix E of the full version
of the paper [24], we describe a round-efficient version of Πdlog in the random
oracle model (obtained using the Fiat-Shamir heuristic), which we call ΠFS

dlog. We
highlight here that, while Πdlog requires a logarithmic (in the size of the witness)
number of rounds of interaction, the round-efficient version ΠFS

dlog only requires
a constant number of rounds of interaction. Apart from this, ΠFS

dlog satisfies the
same robust completeness, knowledge soundness and zero-knowledge properties
as Πdlog, albeit in the random oracle model.

4 DPoK for BBS+ Signatures over Secret-Shared Inputs

In this section, we build upon our (publicly verifiable) DPoK for the discrete
log relation to design a protocol that allows a prover P to prove knowledge of
a BBS+ (or PS) signature on a secret-shared input. Concretely, suppose that
the prover P holds a BBS+ (or PS) signature σ on a message m under a public
key pk, where m is secret-shared across n parties W1, . . . ,Wn (i.e. each worker
Wi holds a share mi). The goal of the protocol is to allow the prover P to
convince a designated verifier V that σ is a valid signature on m under pk, without
revealing σ in the clear (this helps realize the desired property of signature
unlinkability, as explained subsequently). We also present similar PoK protocols
for PS signatures [44] over secret-shared inputs in Appendix G of the full version
of the paper [24]. Looking ahead, we use these protocols as building blocks to
design our compiler for upgrading any secret-sharing based MPC protocol into
an authenticated version of the same protocol, where the (secret-shared) inputs
are authenticated using BBS+(or PS) signatures as above.

We start by defining the relation for BBS+ signature verification.

Compute, but Verify: Efficient MPC over Authenticated Inputs 157

Definition 7 (BBS+ Relation). Let BBSGen denote the relation generator,
such that BBSGen(1λ, �) outputs a bilinear group (G1,G2,GT , g1, g2, e, p) ←R

BBS.Setup(1λ). The corresponding relation Rbbs is defined by (x, (m, t)) ∈ Rbbs

for x = pk = (g1, w, h0, . . . , h�) ∈ G1 × G2 × G
�
1, m = (m1, . . . ,m�) ∈ F

�
p and

t = σ = (A, β, s) ∈ G1 × F
2
p if e(A,wgβ

2) = e(g1h
s
0

∏�
i=1 hmi

i , g2).

Protocol Πbbs+

– Public Key pk = (w, h0, . . . , h�)
– P’s inputs: Message m = (m1, . . . , m�) ∈ F

�
p and signature σ = (A, β, s) on

m, with A =
(
g1h

s
0

∏�
i=1 hmi

i

) 1
β+x

, such that (pk, (m, σ)) ∈ Rbbs

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such
that Reconstruct(m1, . . . ,mn) = m

– Pre-processing : P samples u ←R F
∗
p, r ←R Fp, η ←R Fp, and computes

d = bu · h−r
0 and t = s − r · v where v = u−1, b = g1h

s
0

∏�
i=1 hmi

i . P com-
putes (r1, . . . , rn) ←R Share(r), (v1, . . . , vn) ←R Share(v), (β1, . . . , βn) ←R

Share(β), (t1, . . . , tn) ←R Share(t), (η1, . . . , ηn) ←R Share(η). P sends the
shares (ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].
In other words, each Wi locally holds the i-th share si = (mi, ri, vi, βi, ti, ηi)
such that

s = (m, r, v, β, t) = Reconstruct
({si}i∈[n]

)
.

– Interactive Protocol:
1. P computes A′ = Au, Ā = (A′)−β ·bu(= (A′)x), where b = g1h

s
0

∏�
i=1 hmi

i

and d = bu ·h−r
0 . P sets C = d−vht−η

0 , D = hη
0

∏�
i=1 hmi

i , and broadcasts
(A′, Ā, d, C, D) to each Wi and V.

2. The workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation
D = hη

0

∏�
i=1 hmi

i , where (η, m1, . . . , m�) are secret-shared across the
workers; and g = (h0, . . . , h�), z = D is available to all parties.

3. Simultaneously, the workers Wi, i ∈ [n] and V run the DPoK Πdlog for

the relation C = d−vht−η
0 ∧ Ā

d
= (A′)−β

hr
0, where (v, η) and (β, r) are

secret-shared; and g = ((d, h0), (A
′, h0)), z = (C, Ā

d
) is available to all

parties.
4. V accepts if C · D = g−1

1 , and e (A′, w) = e
(
Ā, g2

)
, and both instances

of Πdlog accept.

Our DPoK Protocol Πbbs+. We build upon the robust complete DPoK Πdlog

for discrete log to propose a DPoK achieving robust completeness for BBS+
signatures, which allows a designated prover P, to show knowledge of a BBS+
signature (A, β, s) over the message m ∈ F

�
p that is secret-shared amongst the

workers W1, . . . ,Wn. Recall that this PoK involved the following steps: (i) the
prover randomly chooses some auxiliary inputs, and combines them with the sig-
nature to output a randomized first message (this randomization ensures unlink-
ability), and then (ii) the prover shows knowledge of these auxiliary inputs and

158 M. Dutta et al.

components of the signature satisfying discrete-log relations determined by the
first message.

Our BBS+ DPoK over secret-shared inputs follows a similar blueprint, where
the prover similarly randomizes the first message using certain auxiliary inputs.
In our case, the prover: (i) secret-shares the auxiliary inputs to the workers using
point-to-point channels (this step is unique to our protocol and is designed to
facilitate distributed proving in the subsequent steps), and (ii) broadcasts the
first message to the workers and the verifier (this step uses broadcast channels
and is conceptually similar to the PoK over non-distributed inputs). At this
point, the problem reduces to a DPoK for the discrete log relation. We handle
this using our robust complete DPoK Πdlog for discrete log.

We prove the Πbbs+ to be a DPoK for the relation generator BBSGen in the
following theorem.

Theorem 2. Assuming that Πdlog is a DPoKSSS,DlogGen for relation generator
DlogGen and (t, n)-SSS, Πbbs+ is a DPoK for the relation generator BBSGen and
(t, n)-SSS with:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the
minimum distance of the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log �)
communication over broadcast channels.

We defer the proof to the full version of the paper [24].

Protocol Πbbs-auth-opt

– Public Parameters: (G1,G2,GT , g1, g2, e, p) ←R BBSGen(1λ) defining
BBS+ relation Rbbs. Let pk = (g1, w = gx

2 , h0, . . . , h�) be a known public
key for secret key sk = x ←R Fp.

– Pi’s inputs:
• Message mi ∈ F

�
p and signature σi = (Ai, βi, si) on mi under pk.

• ith share of the message mj of Pj .
– Pre-processing: Pi samples ui ←R F

∗
p, ri ←R Fp, ηi ←R Fp, and computes

di = bui
i · h−ri

0 and ti = si − ri · vi where vi = u−1
i , bi = g1h

si
0

∏�
i=1 hmi

i . and
secret shares ri, vi, ti, ηi, βi among P1, . . . , Pn. All parties set g = (h0, . . . , h�).

– Interactive Protocol

1. Pi, i ∈ [n] computes A′
i = Aui

i , Āi = (A′
i)

−β · bu
i (= (A′

i)
x). P sets

Ci = d−vi
i hti−ηi

0 , Di = gηi,mi , and broadcasts (A′
i, Āi, di, Ci, Di).

2. The verifier samples a challenge γ ←R F
�
p and broacasts it. Each Pi then

computes yi =
∑

j∈[n] γ
j(ηij ,mij), where ηij ,mij denotes Pi’s share of

Pj ’s inputs mj , ηij .

3. All parties compute D =
∏

j∈[n] D
γj

j .

Parties hold shares yi of y satisfying gy = D

4. Parties run the interactive phase of the protocol Πnr-dlog on statement D
with g as the generator. They run the interactive phase of the protocol

Compute, but Verify: Efficient MPC over Authenticated Inputs 159

Πnr-dlog on statements Ci = d−vi
i hti−ηi

0 ∧ Āi
di

= (A′
i)

−βi hri
0 , for each

i ∈ [n] with generators (di, h0) and (A′
i, h0) respectively.

5. Parties also check that e
(∏n

i=1 A′
i, w

)
= e

(∏n
i=1 Āi, g2

)
holds.

– Output: Pj outputs bj = 1 if all the above protocols lead to accept.

Efficiently Batching BBS+ PoKs. We now present the protocol Πbbs-auth-opt
which efficiently batches n parallel instances of the protocol Πbbs+ with the party
Pi acting as the prover in the ith instance of the protocol. The optimization
exploits the fact that each party needs to prove a linear (in exponents) relation
over large part of its witness (the message vector), which can be reduced via a
random challenge to proving a linear relation over the linearly combined mes-
sages. However we lose robustness: we can no longer identify the corrupt parties
or a corrupt prover using error-correction as in Πbbs+, as the combined witness
cannot be attributed to a specific party. Thus, we simply abort if one of the
checks in the underlying protocol Πnr-dlog fails.

Round Efficient DPoK for BBS+ Signatures. Finally, note that by replac-
ing Πdlog with its round efficient version ΠFS

dlog in the random oracle model
(obtained using the Fiat-Shamir heuristic, presented in Appendix E of the full
version of the paper [24]) in steps (2) and (3) of the Interactive Phase, we obtain
a round efficient version of the protocol, which we call ΠFS

bbs+. Observe that ΠFS
bbs+

requires constant rounds of interaction, as compared to logarithmic (in the size of
the message) rounds of interaction for Πbbs+, and satisfies the same robust com-
pleteness, knowledge soundness and zero-knowledge properties as Πbbs+, albeit
in the random oracle model.

5 Compiler for Authenticated MPC

In this section we present our compiler for MPC with input authentication that
outputs an MPC protocol where each input is authenticated using a BBS+
signature under a common (public) verification key. In Appendix G of the full
version of the paper [24], we outline a similar compiler based on PS signatures.

Class of MPC Protocols. Our compiler takes advantage of the observation
that a large class of secret-sharing based MPC protocols share the following
template. (i) There is an input sharing phase where parties secret-share their
inputs, and (ii) when using secret sharing schemes with certain thresholds (tsh <
|H|), the input of parties is completely determined at the end of the input
sharing phase. This means that using inputs inconsistent with this sharing is
considered deviating, against which the protocol is secure. This is precisely where
our compiler performs well: verification of authenticity (or any other predicate)
on the inputs can be done fully outside the MPC by running a DPoK on the
shares. (iii) For an MPC protocol of this template, there exists a simulator

160 M. Dutta et al.

Sim = (Simsh,Simon), where Simsh deterministically extracts the inputs of corrupt
parties, and Simon simulates the protocol view.

Features of Our Compiler. Our compiler allows identification of all (mali-
cious) parties with non-authenticated inputs (this is a consequence of the
robust completeness property of Πdlog used inside Πbbs+). We further note
that our robust protocol Πdlog tolerates a maximum corruption threshold of
t < n/3 (assuming that the secret-sharing used is Shamir’s secret sharing).
Hence, our compiled MPC protocol also tolerates a maximum corruption thresh-
old of t < n/3. Using the non-robust version will result in a non-robust compiler
that retains the t < n/2 threshold of the underlying MPC.

The Desired Ideal Functionality. We define below the desired ideal func-
tionality Fauthid

MPC for MPC with input authentication.

Functionality Fauth
MPC

Inputs
The ideal functionality receives from each party Pi an input-signature pair of the
form (xi, σi) under the public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) 	= 1 for some party Pi, then output a set of corrupted parties
C and abort.

2. Otherwise, proceed to computation.

Computation

Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

5.1 Our Compiler

We now present a formal description of our compiler. Let Πmpc = (Πsh,Πon) be a
secret-sharing based MPC protocol that guarantees security with abort against
malicious corruptions of a dishonest majority of the parties {P1, . . . , Pn}, where:

– Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used
by each party Pi for i ∈ [n] to secret-share its input xi ∈ F

�
p to all of the

other parties (throughout, we assume that this sharing is done using a linear
secret-sharing scheme (Share,Reconstruct).

– Πon denotes the remaining steps of the protocol Πmpc where the parties inter-
act to compute y = f(x1, . . . ,xn).

Compute, but Verify: Efficient MPC over Authenticated Inputs 161

Protocol Πampc = (Πsh,Πon)

– Inputs: All parties hold public parameters and the verification key pk of
a BBS+ signature scheme. Party Pi has input xi ∈ F

�
p, together with a

signature σi, such that (pk, (xi, σi)) ∈ Rbbs.
– Πsh: This phase is identical to Πsh, i.e., each party Pi shares its input xi to

all other parties exactly as in Πsh.
– Πon: In this phase, the parties do the following:

• For each j = 1, . . . , n, the parties execute an instance of Πbbs+ for
(pk, (xj , σj)) ∈ Rbbs with Pj acting as the Prover, P1, . . . , Pn consti-
tuting the workers and Pi, i 	= j acting as verifiers, .
If any party outputs 0 at the end of this phase, the protocol aborts.

• Otherwise, the parties jointly execute Πon.

In the description of our compiler, we assume that each party Pi holds a
BBS+ signature σi on its input xi with respect to a common public verification
key pk. The compiler runs n instances of Πbbs+, where for instance i, party Pi

acts as the prover and all other parties Pj for j = i act as verifiers. Given
Πmpc = (Πsh,Πon), our robust compiler outputs an authenticated MPC protocol
Πampc = (Πsh,Πon). The compiler Πampc is described above.

Theorem 3 (Security of Πampc). Assuming that: (a) the MPC protocol Πmpc

securely emulates the ideal functionality FMPC, and (b) Πdlog is a DPoKSSS,DlogGen

for relation generator DlogGen and (t, n)-SSS our compiled MPC protocol with
input authentication Πampc securely emulates the ideal functionality Fauth

MPC for the
same corruption threshold of t < n/3.

We defer the proof of this theorem to the full version of the paper [24].

Round Efficient Compiler for Authenticated MPC. Finally, it is easy to
see that invoking the round efficient DPoK ΠFS

bbs+ protocol instead of the DPoK
Πbbs+ protocol enables us to obtain a round efficient version of our compiler.
The round efficient version achieves the same security guarantees as the compiler
presented above, albeit in the random oracle model.

6 Implementation and Evaluation

In this section, we present a prototype implementation of our compiler using
Πbbs-auth-opt for BBS+ signatures. We test and benchmark our implementation
on a 16GB system with Intel Core i5-9400 CPU clocked at 2.9GHz and run-
ning Ubuntu Linux 20.04. All the benchmarks use single execution thread. We
use the implementation of BN128 elliptic curve from the library libff [48] to
implement Πbbs-auth-opt with (t, 2t+1)-Shamir secret sharing9. We then integrate
9 We do not implement broadcast functionality cryptographically. To obtain the

benchmarks we implement a server acting as a broadcast hub. Efficient broadcast
can be implemented for our setting based on [30].

162 M. Dutta et al.

our implementation of Πbbs-auth-opt with a maliciously secure implementation of
Shamir-secret sharing-based MPC from the well-known MP-SPDZ library [36] to
obtain an implementation of authenticated MPC10.

Table 2. Benchmarks for the secure KPI application with 3 and 5 parties by compar-
ing our DPoK-based approach for MPC input authentication with the näıve approach
of validating BBS+ signatures inside MPC (which involves computing MiMC hashes
inside MPC). The second column titled “Rows” indicates the number of rows in each
party’s dataset (the number of columns is fixed to 10).

Parties # Rows
Vanilla MPC DPoK Overhead

Comm(MB) Time (s) Comm.(KB) Time (s)

3

100 1733 6.67 13 0.519

1000 16754 64 15 18

2000 33398 129 15.3 65

4000 66502 260 15.8 246

5

100 8838 26 28 0.643

1000 87747 265 31 20

2000 175671 521 32 76

4000 350658 958 33 312

Evaluation and Discussion. We benchmark both Πbbs-auth-opt (in a standalone
manner) and the final authenticated MPC protocol (obtained by integrating
Πbbs-auth-opt with MP-SPDZ [36] as specified in our compiler) in the setting of the
industry KPI application outlined in the introduction. We consider two instances
of the KPI application, with 3 and 5 parties, where each party’s dataset has 10
columns and variable number of rows (betwern 100 and 4000). We summarize
the overheads for vanilla unauthenticated computation using MP-SPDZ, as well
as the additional overheads incurred by the compiled authenticated MPC, in
Table 2. It is readily apparent that the communication overhead of input authen-
tication over vanilla MPC are minimal. The computational overhead grows with
input size, which is unavoidable to an extent, as BBS+ signature verification
involves algebraic operations that grow with the size of the input. The major
contributor to the computational overheads are the instances of NIPK, which may
be parallelized for large input sizes. We leave such optimized implementations
as interesting future work.

10 An anonymized version of our code repository is available here: https://anonymous.
4open.science/r/authenticatedMPC-476E/CMakeLists.txt.

https://anonymous.4open.science/r/authenticatedMPC-476E/CMakeLists.txt
https://anonymous.4open.science/r/authenticatedMPC-476E/CMakeLists.txt

Compute, but Verify: Efficient MPC over Authenticated Inputs 163

References

1. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2087–2104. ACM Press, October / November 2017.

2. Diego F. Aranha, Anders P. K. Dalskov, Daniel Escudero, and Claudio Orlandi.
Improved threshold signatures, proactive secret sharing, and input certification
from LSS isomorphisms. In Patrick Longa and Carla Ràfols, editors, LATIN-
CRYPT 2021, volume 12912, pages 382–404, 2021.

3. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–
543. Springer, Cham, August 2020.

4. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages
111–125. Springer, Berlin, Heidelberg, September 2006.

5. Carsten Baum. On garbling schemes with and without privacy. In Vassilis Zikas
and Roberto De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 468–485.
Springer, Cham, August / September 2016.

6. Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P.
Smart. Feta: Efficient threshold designated-verifier zero-knowledge proofs. Cryp-
tology ePrint Archive, Paper 2022/082, 2022. https://eprint.iacr.org/2022/082.

7. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

8. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 103–128. Springer, Cham, May 2019.

9. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. On the (in)security of ROS. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53.
Springer, Cham, October 2021.

10. Marina Blanton and Fattaneh Bayatbabolghani. Efficient server-aided secure two-
party function evaluation with applications to genomic computation. PoPETs,
2016(4):144–164, October 2016.

11. Marina Blanton and Myoungin Jeong. Improved signature schemes for secure multi-
party computation with certified inputs. In Javier López, Jianying Zhou, and
Miguel Soriano, editors, ESORICS 2018, Part II, volume 11099 of LNCS, pages
438–460. Springer, Cham, September 2018.

12. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55.
Springer, Berlin, Heidelberg, August 2004.

13. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Zero-knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694
of LNCS, pages 67–97. Springer, Cham, August 2019.

14. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log

https://eprint.iacr.org/2022/082

164 M. Dutta et al.

setting. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 327–357. Springer, Berlin, Heidelberg, May
2016.

15. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using
the strong diffie hellman assumption revisited. In TRUST 2016, volume 9824, pages
1–20. Springer, 2016.

16. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Berlin,
Heidelberg, May 2001.

17. Jan Camenisch and Els Van Herreweghen. Design and implementation of the
idemix anonymous credential system. In Vijayalakshmi Atluri, editor, ACM CCS
2002, pages 21–30. ACM Press, November 2002.

18. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer, Cham, May 2020.

19. Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable compu-
tation of aggregate statistics. In NSDI 2017, pages 259–282. USENIX Association,
2017.

20. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer, Berlin, Heidelberg,
September 2013.

21. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure mul-
tiparty computation. In Advances in Cryptology - CRYPTO, pages 572–590, 2007.

22. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Berlin, Heidelberg, August 2012.

23. Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran
Vinayagamurthy. How to prove any NP statement jointly? efficient distributed-
prover zero-knowledge protocols. Proc. Priv. Enhancing Technol., 2022(2):517–556,
2022.

24. Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, and Nitin Singh. Compute,
but verify: Efficient multiparty computation over authenticated inputs. Cryptology
ePrint Archive, Report 2022/1648, 2022.

25. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg, August 1987.

26. Dario Fiore and Anca Nitulescu. On the insecurity of snarks in the presence of
oracles. In Proceedings, Part I, of the 14th International Conference on Theory
of Cryptography - Volume 9985, page 108-138, Berlin, Heidelberg, 2016. Springer-
Verlag.

27. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permuta-
tions over Lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019.

28. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu,
and Michal Zajac. What makes fiat–shamir zksnarks (updatable srs) simulation

Compute, but Verify: Efficient MPC over Authenticated Inputs 165

extractable? Cryptology ePrint Archive, Paper 2021/511, 2021. https://eprint.iacr.
org/2021/511.

29. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel
Tschudi. Fiat-shamir bulletproofs are non-malleable (in the random oracle model).
Cryptology ePrint Archive, Paper 2023/147, 2023. https://eprint.iacr.org/2023/
147.

30. Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communica-
tion and round complexity. In George Giakkoupis, editor, 35th ACM PODC, pages
371–380. ACM, July 2016.

31. Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi
Sekar. zkSaaS: Zero-Knowledge SNARKs as a service. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4427–4444, Anaheim, CA, August 2023.
USENIX Association.

32. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

33. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 305–326. Springer, Berlin, Heidelberg, May 2016.

34. Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Your
reputation’s safe with me: Framing-free distributed zero-knowledge proofs. Cryp-
tology ePrint Archive, Paper 2022/1523, 2022. https://eprint.iacr.org/2022/1523.

35. Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input
validity in secure two-party computation. Cryptology ePrint Archive, Report
2016/184, 2016. https://ia.cr/2016/184.

36. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1575–1590. ACM Press, November 2020.

37. Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical
actively secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 549–560. ACM Press,
November 2013.

38. Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC,
pages 20–31. ACM Press, May 1988.

39. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The bbs signa-
ture scheme. Internet Engineering Task Force, 2022. https://identity.foundation/
bbs-signature/draft-irtf-cfrg-bbs-signatures.html.

40. Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-SNARKs:
Zero-knowledge proofs for distributed secrets. Cryptology ePrint Archive, Report
2021/1530, 2021.

41. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 129–140. Springer, Berlin, Heidelberg, August 1992.

42. Torben Pryds Pedersen. Distributed provers with applications to undeniable signa-
tures. In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages
221–242. Springer, Berlin, Heidelberg, April 1991.

43. Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 167–183. Springer, Berlin, Hei-
delberg, March 2006.

https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2022/1523
https://ia.cr/2016/184
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

166 M. Dutta et al.

44. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue
Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Cham,
February / March 2016.

45. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, New York, August 1990.

46. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, January 1991.

47. Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-
preserving outsourcing by distributed verifiable computation. In Mark Manulis,
Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16International Con-
ference on Applied Cryptography and Network Security, volume 9696 of LNCS,
pages 346–366. Springer, Cham, June 2016.

48. MIT SCIPR Lab. libff: C++ library for finite fields and elliptic curves. https://
github.com/scipr-lab/libff, 2023. https://github.com/scipr-lab/libff.

49. Adi Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, November 1979.

50. Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Sto-
ica. DIZK: A distributed zero knowledge proof system. In William Enck and Adri-
enne Porter Felt, editors, USENIX Security 2018, pages 675–692. USENIX Asso-
ciation, August 2018.

51. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

52. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

53. Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani. Enforcing input
correctness via certification in garbled circuit evaluation. In Simon N. Foley, Dieter
Gollmann, and Einar Snekkenes, editors, ESORICS 2017, Part II, volume 10493
of LNCS, pages 552–569. Springer, Cham, September 2017.

https://github.com/scipr-lab/libff,
https://github.com/scipr-lab/libff,
https://github.com/scipr-lab/libff

Dishonest Majority Constant-Round MPC
with Linear Communication from DDH

Vipul Goyal1,2(B), Junru Li3, Ankit Kumar Misra4, Rafail Ostrovsky4,
Yifan Song3,5, and Chenkai Weng6

1 NTT Research, Sunnyvale, USA
2 Carnegie Mellon University, Pittsburgh, USA

vipul@cmu.edu
3 Tsinghua University, Beijing, China

jr-li24@mails.tsinghua.edu.cn, yfsong@mail.tsinghua.edu.cn
4 UCLA, Los Angeles, USA

ankitkmisra@g.ucla.edu, rafail@cs.ucla.edu
5 Shanghai Qi Zhi Institute, Shanghai, China

6 Arizona State University, Tempe, USA
Chenkai.Weng@asu.edu

Abstract. In this work, we study constant round multiparty compu-
tation (MPC) for Boolean circuits against a fully malicious adversary
who may control up to n − 1 out of n parties. Without relying on fully
homomorphic encryption (FHE), the best-known results in this setting
are achieved by Wang et al. (CCS 2017) and Hazay et al. (ASIACRYPT
2017) based on garbled circuits, which require a quadratic communica-
tion in the number of parties O(|C| · n2). In contrast, for non-constant
round MPC, the recent result by Rachuri and Scholl (CRYPTO 2022)
has achieved linear communication O(|C| · n).

In this work, we present the first concretely efficient constant round
MPC protocol in this setting with linear communication in the num-
ber of parties O(|C| · n). Our construction can be based on any public-
key encryption scheme that is linearly homomorphic for public keys.
Our work gives a concrete instantiation from a variant of the El-Gamal
Encryption Scheme assuming the DDH assumption. The analysis shows
that when the computational security parameter λ = 128 and statistical
security parameter κ = 80, our protocol achieves a smaller communica-
tion than Wang et al. (CCS 2017) when there are 16 parties for AES
circuit and 8 parties for general Boolean circuits (where we assume that
the numbers of AND gates and XOR gates are the same). When com-
paring with the recent work by Beck et al. (CCS 2023) that achieves
constant communication complexity O(|C|) in the strong honest major-
ity setting (t < (1/2− ε)n where ε is a constant), our protocol is better
as long as n < 3500 (when t = n/4 for their work).

1 Introduction

Secure multiparty computation (MPC) [8,13,21,35,43] allows a set of n parties
to jointly compute a public function on their private inputs. The efficiency of
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 167–199, 2025.
https://doi.org/10.1007/978-981-96-0938-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_6&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_6

168 V. Goyal et al.

MPC protocols can be measured from various aspects, and the most two common
criteria are the communication complexity and the round complexity.

Communication-Efficient but Non-Constant Round MPC. The well-known
SPDZ protocol was first introduced by Damgård et al. [17], which achieves a very
efficient online protocol whose communication complexity grows linearly with the
number of parties in the dishonest majority setting. Due to its potential of being
used in practice, a long line of works [1,7,16,19,26–28] focus on improving both
the offline phase and the online phase of the SPDZ protocol. Thanks to the recent
progress of pseudo-random correlation generators (PCG) [9,10,41], Rachuri and
Scholl [36] have achieved a linear communication complexity O(|C|n) in both
the offline phase and the online phase.

However, all SPDZ-style protocols suffer a large round complexity that grows
linearly with the depth of the circuit. For circuits with large depths in the WAN
setting, the network latency may become the main bottleneck.

Constant Round but Communication-Heavy MPC. Due to the round complexity
of SPDZ protocols, another line of works target constant round MPC. With-
out relying on fully homomorphic encryption (which is not considered to be
efficient in practice), the most common way is to follow the BMR template [2]
that generalizes the Yao’s garbled circuits [44] from the two-party setting to the
multiparty setting. Despite the significant progress in [5,6,29], [4,23–25,39,42],
the best-known result in the dishonest majority setting still requires a quadratic
communication complexity in the number of parties O(|C|n2), which is insuffi-
cient to support applications that involve hundreds or thousands of parties.

The efficiency gap between these two types of MPC protocols leads to our
following question:

“Can we construct a fully malicious MPC protocol in the dishonest majority
setting that achieves the best in both worlds, i.e., with constant rounds and linear
communication complexity?”

1.1 Our Contributions

In this work, we answer the above question affirmatively by presenting the first
concretely efficient constant-round and fully malicious MPC protocol with linear
communication in the dishonest majority setting (t < n).

Theorem 1. Assuming DDH, LPN, and random oracles, there is a computa-
tionally secure constant-round MPC protocol against a fully malicious adversary
controlling up to n − 1 parties with communication of O(|C|nλ) bits, where λ is
the computational security parameter.

Our construction has the following features.

– Communication Complexity. To compute a circuit C of size |C|, the total
communication complexity of our protocol is O(|C|nλ) bits, where λ is the
computational security parameter.

Dishonest Majority Constant-Round MPC 169

– Assumptions. Our protocol makes a black-box use of building blocks in Le
Mans [36], which can be instantiated based on the LPN assumption. Beyond
the building blocks in Le Mans [36], the garbling phase of our construction
only requires the DDH assumption and symmetric-key cryptographic assump-
tions (random oracle or pseudo-random generator).

– Concrete Efficiency. Comparing with the previously best-known results
[39,42] with quadratic communication, our protocol achieves a smaller com-
munication as long as there are 16 parties for the AES-128 circuit when the
computational security parameter λ = 128 and statistical security parameter
κ = 80. We note that the work [4] can potentially achieve a linear communica-
tion when its underlying SPDZ preprocessing is instantiated by Le Mans [36].
Even after optimization, the communication cost of our protocol outperforms
theirs by 11.7× on the AES-128 circuit and 11.3× on the SHA-256 circuit.

Our construction is conceptually simple. We note that the main difficulty
in all previous works following the BMR template is to emulate the encryption
algorithm of some symmetric-key encryption scheme where both the key k and
the message m are secretly shared.

Our first idea is to replace the symmetric-key encryption scheme used in the
BMR template by a public-key encryption scheme. In this way, while we still
need to keep the private key secret, the public key can be learnt by all parties.
Now when emulating the encryption algorithm, only the message to be encrypted
is secretly shared.

To allow all parties efficiently generate public-private key pairs (pk, k) where
pk is known to all parties while k is (additively) shared among all parties, we
make use of a public-key encryption scheme that is linearly homomorphic for
public keys: For two key pairs (pk1, k1), (pk2, k2), we require that there is a
homomorphic operation +̃ such that (pk1+̃pk2, k1 + k2) is also a valid key pair.
We show how key pairs can be efficiently generated relying on this property.

Although pk is known to all parties, emulating the encryption algorithm to
encrypt a shared message m may still be inefficient. Our second idea is to let
each party Pi just encrypt his message share. To be more concrete, suppose m
is additively shared to all parties and mi is held by Pi. We simply let each Pi

encrypt mi by pk and denote the cipher-text by cti. Note that a party having
the private key k and all cipher-texts (ct1, . . . , ctn) can decrypt each mi and
compute m. This allows us to make use of the public-key encryption scheme
in a black-box way. We show that this is sufficient for us to achieve a linear
communication complexity.

2 Technical Overview and Related Works

We give a high-level overview of the main techniques used in this paper. Our goal
is to construct a constant-round MPC protocol for a general Boolean circuit C
consisting of AND and XOR gates. We focus on the dishonest majority setting,
where up to t = n − 1 parties can be corrupted.

170 V. Goyal et al.

2.1 Background: Yao’s Garbled Circuit and BMR Template

Most of the constant-round MPC protocols in the dishonest majority setting
are based on multiparty garbling techniques derived from the well-known BMR
protocol given by Beaver, Micali, and Rogaway [2]. At a high level, the BMR
technique is to let all parties jointly compute a Yao’s garbled circuit of C. We
first give a brief review of Yao’s garbled circuits.

Review of Yao’s Garbled Circuits. Yao’s garbled circuit [43] was designed in the
two-party setting, where one party acts as the garbler to construct a garbled
circuit, and the other party acts as the evaluator to evaluate this garbled circuit
such that the evaluator only learns the circuit output and nothing else.

To garble a Boolean circuit C, the garbler first prepares a random bit value
λw and a pair of labels (kw,0, kw,1) for each wire w in the circuit. During the
evaluation phase, we want to maintain the invariant that the evaluator learns
only vw ⊕ λw and the corresponding label kw,vw⊕λw

, where vw is the actual
wire value, protected by the random bit λw. To this end, for a gate in C with
input wires a, b and output wire c, we want the evaluator to be able to learn
(vc ⊕λc, kc,vc⊕λc

) if he holds (va ⊕λa, ka,va⊕λa
) and (vb ⊕λb, kb,vb⊕λb

). This can
be done by preparing the following 4 ciphertexts. At a high level, we simply use
the two labels, one from each input wire, as secret keys to encrypt the proper
label for the output wire:

1. Let f : {0, 1}2 → {0, 1} be the function computed by this gate, which is either
the AND function or the XOR function. Let g : {0, 1}2 → {0, 1} be defined
by g(x, y) = f(x⊕λa, y⊕λb)⊕λc. Then we have g(va ⊕λa, vb ⊕λb) = vc ⊕λc.
We set χi,j = g(i, j).

2. The ciphertexts are the following: {Encka,i,kb,j
(χi,j , kc,χi,j

)}i,j∈{0,1}. Then,
the evaluator can decrypt the ciphertext with index (i, j) = (va ⊕λa, vb ⊕λv)
and learn (vc ⊕ λc, kc,vc⊕λc

).

Finally, to let the evaluator obtain the function output, the garbler simply sends
λw associated with the output wires to the evaluator.

The security follows from the fact that the evaluator only learns one of the
two labels for each wire. This only allows him to decrypt one of the 4 ciphertexts
for each gate. It is important to note that in the 2-party setting, either the garbler
is corrupted or the evaluator is corrupted.

BMR Template. In the multiparty setting, we cannot let a single party act as the
garbler and let all other parties act as evaluators, since the garbler may collude
with some evaluator, and then security would no longer hold. The idea of the
BMR construction is to let all parties jointly emulate the garbler. Note that
after preparing (λw, kw,0, kw,1) for each wire, all ciphertexts can be computed
in parallel. Thus, the computation task of the garbler can be represented by a
constant-depth circuit, with size growing linearly in |C|. We may use a generic
dishonest majority MPC protocol to emulate the garbler within constant rounds.

Dishonest Majority Constant-Round MPC 171

After all parties securely generate Yao’s garbled circuit, each party can act
as an evaluator to obtain its function output locally.

When using the state-of-the-art SPDZ-style protocol (Le Mans [36]) to
instantiate the generic dishonest majority MPC protocol, it’s possible to achieve
O(|C|n) communication with constant rounds to emulate the computation task
of the garbler. However, an efficiency bottleneck of BMR constructions is that all
parties have to emulate the underlying encryption algorithm, which needs to use
the underlying symmetric-key encryption scheme in a non-black-box way. Follow-
ing up works have tried to improve the concrete efficiency of the BMR construc-
tion by either making the underlying cryptographic tools used in a black-box way
or using concrete instantiations for the symmetric-key encryption scheme. As we
will discuss in Sect. 2.5, these works either require a quadratic communication
in the number of parties or introduce a large multiplicative overhead.

2.2 Our Solution

Starting Point: Using Public-Key Encryption Schemes. Recall that for every
wire w, we need to prepare a pair of labels (kw,0, kw,1). These labels are used as
secret keys to compute proper ciphertexts. When computing the garbled circuit
in a distributed way, all parties only hold shares of secret keys (wire labels) and
the messages they want to encrypt. Indeed, emulating the encryption algorithm
from shares of the secret key and the message is the main difficulty.

Our starting point is to replace the symmetric-key encryption scheme in
the BMR template with a public-key encryption scheme. Then, each wire label
becomes a key pair (pk, k) where pk is the public key and k is the private key.
While all parties need to keep k private as before, pk can be made public. Looking
ahead, this will help us address the difficulty of computing ciphertexts in a
distributed manner.

To be more concrete, it is sufficient to address the following issues.

– For each wire w, all parties need to jointly prepare two key pairs where the
private keys are additively shared among all parties.

– We need to design a protocol that allows all parties to efficiently compute a
ciphertext when pk is known to all parties but the message m is additively
shared.

For simplicity, we start with the semi-honest security. We will discuss how to
upgrade our protocol to achieve malicious security in Sect. 2.4.

Addressing the First Difficulty. For the first difficulty, we note that it is sufficient
to use a public-key encryption scheme that is linearly homomorphic for public
keys: For two key pairs (pk1, k1) and (pk2, k2), (pk1+̃pk2, k1 + k2) is also a valid
key pair. Here +̃ refers to the homomorphic operation defined by the public-key
encryption scheme.

Now to generate (pk, k) such that k is additively shared among all parties,

1. Each party Pi generates (pki, ki) and sends pki to the first party P1;

172 V. Goyal et al.

2. P1 locally computes pk = pk1+̃pk2+̃ . . . +̃pkn and sends pk to all parties.
3. Each party Pi views his private key ki as an additive share of k = k1+ . . .+kn

and outputs (pk, ki).

Note that when there are t = n − 1 corrupted parties, the adversary will learn
pki generated by the honest party Pi. However, this is fine since the adversary
learning pk and public keys {pkj}j �=i generated by all corrupted parties can
anyway compute pki locally.

Addressing the Second Difficulty. For the second difficulty, although pk is public,
the message m to be encrypted is still secret shared among all parties. It is
unclear how to emulate the encryption algorithm in a black-box way.

Our main observation is that, to build a constant-round MPC protocol with
linear communication, it is not necessary to obtain a single and compact cipher-
text for the message m. Recall that in the evaluation phase, the evaluator will
obtain the proper private key (wire label) for each wire and need to decrypt the
corresponding ciphertext. We note that it is sufficient to let each party provide
a separate ciphertext for his share of the message.

To be more concrete, suppose m is additively shared among all parties where
each party Pi holds mi. We let each party Pi encrypt his message share mi

using the public key pk and send the ciphertext cti to the evaluator. Now the
evaluator with the private key k and (ct1, . . . , ctn) can already decrypt mi from
each cti and compute m = m1 + . . . + mn. In this way, we can maintain linear
communication while using the underlying public-key encryption scheme in a
black-box way.

Summary of Our Solution. In summary, we will replace the symmetric-key
encryption scheme in the BMR template by a public-key encryption scheme
that is linearly homomorphic for public keys. When preparing the wire label, we
let all parties prepare (pk, k) where pk is public and k is secretly shared among all
parties. Then we follow the BMR template and compute the message m (which
is the proper wire label (private key) for the next layer) to be encrypted, which
is also secretly shared among all parties. We let each party locally encrypt his
message share using pk and send the ciphertext to P1. In the evaluation phase,
P1 will serve as the evaluator to compute and distribute the final output.

2.3 Concrete Instantiation of PKE

In our work, we instantiate the public-key encryption scheme by a variant of
the well-known El-Gamal encryption scheme [18] based on the Decisional Diffie-
Hellman (DDH) assumption. For a DDH group G with group generator g and
order p, the key generation algorithm outputs a random value k ∈ {0, . . . , p− 1}
as the private key and pk = gk as the public key. To encrypt a group element
m, the encryption algorithm samples a random value r ∈ {0, . . . , p − 1} and
outputs (gr, pkr · m). The security follows from the DDH assumption which
states that when k and r are uniformly random, given pk = gk and gr, pkr = gk·r

Dishonest Majority Constant-Round MPC 173

is computationally indistinguishable from a random group element. Thus, pkr

serves as a random mask for m.
Firstly, note that the El-Gamal encryption scheme is already linearly homo-

morphic for public keys: for any two key pairs (pk1, k1) and (pk2, k2), (pk1 ·
pk2, k1 + k2) is also a valid key pair. However, the problem with using the El-
Gamal encryption scheme is that it can only be used to encrypt a group element.
On the other hand, for each gate in Yao’s garbled circuit, the message m that
we want to encrypt is a wire label of the output wire. Recall that the wire label
corresponds to the private key of the public-key encryption scheme, which is
within {0, . . . , p− 1}. Taking a closer look at this issue, although pkr is indistin-
guishable from a random group element, we cannot view pkr as a uniform string
due to the algebraic structure of the DDH group.

We resolve this issue by converting pkr to a random string relying on pseudo-
random generator (PRG) so that it can be used as a one-time pad key to encrypt
the message m (which is also viewed as a bit-string).

– Let Ext be a strong-seeded randomness extractor Ext and Prg be a pseu-
dorandom generator Prg. We modify the encryption algorithm as follows:
After computing pkr, we apply Ext on pkr to obtain a (pseudo)random
output. Then we apply Prg to stretch the length of the random out-
put and use the result to encrypt m. Thus, the ciphertext is defined by
(gr, seed,m ⊕ Prg(Ext(pkr; seed))). In practice, one can replace Prg(Ext(·))
by a random oracle for practical efficiency.

We note that, in the actual construction of Yao’s garbled circuit, for each
gate, each message needs to be encrypted under two public keys (one from each
input wire). While a direct solution is to do the encryption using the two public
keys one by one, in Sect. 4, we provide an optimized version that directly works
for the two-public-key setting.

2.4 Towards Malicious Security

So far, we have mainly focused on semi-honest security. To achieve malicious
security, we rely on the standard technique of message authentication codes
(MAC) [16,17]. At the beginning of the protocol, all parties together hold an
additive sharing of a global MAC key Δ, denoted by [Δ]. A SPDZ sharing of a
secret x is defined by a tuple of three additive sharings: [[x]] = ([x], [Δ], [Δ · x]).
When the secret x is reconstructed, all parties can use a MAC check protocol [16]
to verify the correctness of the reconstruction. We rely on the malicious variant
of Le Mans [36] to support addition and multiplication operations over SPDZ
sharings with linear communication complexity.

However, we also need to protect against the following malicious behaviors:

– Recall that to prepare a key pair (pk, k), all parties first prepare a SPDZ
sharing [[k]]. Then each party sends gki to P1, which allows P1 to compute gk

and send it to all parties.

174 V. Goyal et al.

However, parties may end up with an incorrect public key pk′ either due to a
corrupted party Pi sending an incorrect gki to P1 or because P1 is corrupted.
In the worst case, the adversary may even learn the private key (the discrete
log) of pk′, and the security of the public-key encryption scheme is gone.

– When doing the encryption, a corrupted party may not encrypt his correct
share of the message. Then in the evaluation phase, the evaluator may decrypt
an incorrect message and obtain incorrect function outputs.

– When the evaluator is corrupted, he may not send the correct function outputs
to all parties at the end of the protocol.

Handling the First Attack. For the first attack, all parties will together verify
the correctness of public keys. Since (pk, [[k]]) is linearly homomorphic, we simply
check a random linear combination of all key pairs.

More precisely, suppose all parties have prepared {(pk(i), [[k(i)]])}N
i=0. To verify

the correctness of each pk(i), all parties compute a random linear combination

(pk, [[k]]) = (pk(0), [[k(0)]]) +
N∑

i=1

ri · (pk(i), [[k(i)]]),

where r1, . . . , rN are (pseudo)random coefficients. Now it is sufficient to check
whether pk is correct with respect to k. Relying on the MAC, all parties can
verifiably reconstruct the secret k and then check whether pk = gk.

Handling the Last Two Attacks. We note that given a key pair (pk, k), one can
verify whether it is valid by checking pk = gk. Since the public keys are known
to all parties, an honest party can use this property to verify the correctness of
a wire label (private key).

The second attack only occurs when the evaluator is honest. In the evaluation
phase, whenever an honest evaluator computes a wire label, he can use the above
approach to check the validity of the wire label. In case he does not obtain the
correct wire label, the protocol will abort. In this way, the protocol will only
proceed if an honest evaluator obtains the correct wire label for each wire.

For the third attack, we require the evaluator to send the wire label for the
output wires to all parties so that an honest receiver can check the validity of
the wire label locally. Note that a malicious evaluator can only learn the wire
label corresponding to the function output. In this way, an honest receiver will
not accept an incorrect function output.

Optimizations. We note that in the evaluation phase, for each wire, the evaluator
will only learn one of the two wire labels associated with this wire. Thus, we
may set the difference between these two wire labels to be the same for all wires.
This trick has been used in many previous works for constructing efficient Yao’s
garbled circuits.

More concretely, for each wire w, recall that all parties need to prepare
(pkw,0, [kw,0]) and (pkw,1, [kw,1]). We require that kw,1 − kw,0 = Δ, where Δ
is the MAC key of the underlying SPDZ protocol. This brings us two benefits.

Dishonest Majority Constant-Round MPC 175

– First, when computing pkw,0 and pkw,1, it is sufficient to compute gΔ and
pkw,0. Then all parties can locally compute pkw,1 = gΔ · pkw,0. In this way,
we only need to prepare one key pair for each wire.

– Second, in the Yao’s garbled circuit, recall that for each gate, we need to
compute 4 ciphertexts. Let a, b denote the input wires of this gate and c denote
the output wire. For all i, j ∈ {0, 1}, we need to first compute χi,j , which is
the index of the private key we need to encrypt under the public keys pka,i

and pkb,j ; i.e., the ciphertext we need to compute is Encpka,i,pkb,j (χi,j , kc,χi,j
)1.

Then we need to compute an additive sharing of kc,χi,j
. Usually, this is done

by first computing a SPDZ sharing [[χi,j]] and then using χi,j to choose one of
the two private keys, which requires one additional multiplication operation.
We observe that kc,χi,j

= kc,0 + χi,j · Δ. Note that all parties have already
held [χi,j · Δ] from [[χi,j]]. Thus, all parties can locally compute [kc,χi,j

] =
[kc,0] + [χi,j · Δ].

Remark 1 (Free XOR and the Assumption of Random Oracle). In our construc-
tion, we have to use a large prime field due to the DDH assumption. This unfor-
tunately is not compatible with the free-XOR technique introduced in [33], which
requires working over an extension field of the binary field. We leave the question
of incorporating free-XOR into our technique to future work.

As in all previous works that use the same difference between the two labels
for all wires, this optimization only works under the assumption of a random
oracle due to the issue of circular encryption. For concrete efficiency, we will
mainly focus on the construction with the above optimization assuming a random
oracle and refer the readers to the full version of this paper for the one that does
not require a random oracle.

2.5 Related Works

As we have mentioned above, the main efficiency bottleneck of the BMR con-
struction is that it requires all parties to emulate the underlying encryption
algorithm, which needs to use the underlying symmetric-key encryption scheme
in a non-black-box way. For typical instantiations, the symmetric-key encryption
scheme involves computation of a pseudo-random function (PRF). To be more
concrete, to encrypt a message m with secret key k for a gate with identifier g,
the ciphertext is defined by

ct = PRFk(g) ⊕ m.

Starting from secret sharings of k and m, the joint computation of the PRF would
incur a large overhead in both communication and computation depending upon
the circuit size of the PRF.

To overcome this issue, Damgård and Ishai [15] proposed a variant of the
BMR construction that uses PRG in a black-box way. At a high level, instead
1 In our actual construction, we only encrypt kc,χi,j but not χi,j since the evaluator

can learn χi,j by comparing kc,χi,j with the two public keys pkc,0, pkc,1.

176 V. Goyal et al.

of viewing that all parties hold a secret sharing for each wire label, we simply
take the concatenation of all shares as the wire label k = k1‖k2‖ . . . ‖kn. Now
the ciphertext is defined by

ct = PRFk1(g) ⊕ PRFk2(g) ⊕ . . . ⊕ PRFkn
(g) ⊕ m.

In this way, each party can locally apply PRF on his share and only secret share
the result. However, since the size of each wire label is increased by a factor of
n because of concatenation, both the size of the garbled circuit and the overall
communication complexity are increased by a factor of n, i.e., O(|C|n) for the
size of the garbled circuit with O(|C|n2) communication!

A line of works focuses on partially resolving this issue by either considering
a weaker security where there are more than 1 honest parties [3,23,24] or only
reducing the size of the garbled circuit relying on advanced cryptographic tools
and assumptions [4,6]. We note that [6] is also based on the DDH assumption
and [4] has the potential of achieving overall linear communication complexity,
which we will elaborate on below.

Comparison with [6]. The protocol in [6] follows the BMR framework to encrypt
secret-shared messages with secret-shared keys. By using key-homomorphic
PRF, the size of the garbled circuit is independent of the number of parties.
However when using DDH, the key-homomorphic PRF is multiplicative homo-
morphic which requires them to multiply n values, one held by each party. This
step incurs a quadratic communication. Besides, [6] only works against semi-
honest adversaries.

Our work uses PKE and sacrifices the succinctness of the garbled circuit (i.e.,
the size is linear in the number of parties) to achieve linear communication.

Achieving Linear Communication From [4]. To reduce the size of the garbled
circuit, the work [4] relies on a symmetric-key encryption scheme based on the
LPN assumption. At a high level, to encrypt a message m with secret key k, the
encryption algorithm is defined by

ct = (A · k) ⊕ e ⊕ (M · m),

where A and M are public matrices, k,m are viewed as vectors of bits, and e is
a bit-string (or a vector of bits) with each bit independently drawn from some
Bernoulli distribution. Intuitively, the LPN assumption states that for a random
string k, given A, (A ·k)⊕e is computationally indistinguishable from a uniform
string, which is used as the one-time pad key to encrypt the message. To decrypt
ct with k, one can compute ct⊕ (A ·k) which is equal to e⊕ (M ·m). The matrix
M is used to encode the message m so that the message can be recovered even
if some bits of the codeword are incorrect due to the error string e. Note that
the key size and the ciphertext size do not grow with the number of parties, thus
achieving O(|C|) for the size of the garbled circuit.

The main benefit of this encryption scheme is that, if parties have additive
sharings of k and m, and can generate additive sharings of e, then the encryp-
tion algorithm can be computed via local computation. In [4], the generation

Dishonest Majority Constant-Round MPC 177

of additive sharings of error strings and the computation of secret sharings of k
and m are done via the SPDZ protocol in a black-box way. When instantiating
the underlying SPDZ protocol by Le Mans [36], it is possible to achieve linear
communication O(|C|n)2.

Despite the potential of achieving linear communication, the LPN assumption
usually requires the use of a very large parameter to achieve the desired level
of security. For example, the analysis in [4] shows that when the computational
security parameter λ = 128 and the statistical security parameter κ = 80, the
ciphertext size needs to be � = 8925 bits. Furthermore, all parties need to jointly
prepare � random bits that follow the Bernoulli distribution to obtain e for each
encryption. In [4], to prepare one random bit sharing such that the secret is 1
with probability τ , all parties first generate log(1/τ) random bit sharings where
the secrets are uniformly distributed and then multiply them together. As a
result, there is a large constant overhead in [4].

Implicit Overhead of LPN-Based Encryption. We note the symmetric-key
encryption scheme used in [4] satisfies an even stronger homomorphism: Each
party can locally encrypt his message share using his key share. Then the sum-
mation of all ciphertexts corresponds to a valid ciphertext of m under the secret
key k. This seems to give a way to avoid generating the error string e jointly.
Instead, each party Pi can generate his own error string ei (used to encrypt his
message share) and the final error string becomes e =

⊕n
i=1 ei.

However, even if all parties perform honestly, note that the error accumulates
in the LPN-based encryption scheme and this requires the ciphertext to be long
enough so that one can still recover the message during the decryption phase.
This would implicitly require the ciphertext size to be linear in n. This is why
in both [3,4], the error string is generated jointly.

A similar issue would occur if one tries to instantiate the public-key encryp-
tion scheme used in our construction from the LPN assumption: The error accu-
mulated during the aggregation of all parties’ public keys may require the key
size to be proportional to the number of parties, resulting in a quadratic com-
munication overhead.

Comparison with [20]. We note that a recent work [20] also achieves linear com-
munication for computing the garbled circuit and the garbled circuit size is inde-
pendent of the number of parties. However, their construction only focuses on
semi-honest security and requires a threshold homomorphic encryption scheme,
while our protocol achieves malicious security with lighter assumptions. In addi-
tion, their construction requires O(log n) rounds to compute the garbled circuits.

2 We note that [4] actually needs to compute binary circuits using the SPDZ protocol.
However, the malicious variant of Le Mans [36] currently only works for a large finite
field. In this work, we omit this distinction when comparing [4] with our result.

178 V. Goyal et al.

3 Preliminaries

Notations. Let Fp be a prime field of order p. Let Um be the uniform distribution
over {0, 1}m. We use κ to denote the statistical security parameter, and we use
λ to denote the computational security parameter.

3.1 Basic Definitions and Primitives

Definition 1 (Statistical Distance). For random variables X and Y taking
values in X , their statistical difference is defined as

Δ(X,Y) = max
T⊂X

|Pr[X ∈ T] − Pr[Y ∈ T]|.

We say that X and Y are ε-close if Δ(X,Y) ≤ ε.

An extractor [32] can be used to extract uniform randomness out of a weakly
random value which is only assumed to have sufficient min-entropy (see the full
version for more about min-entropy and k-sources). A strong seeded extractor
is defined as follows.

Definition 2 (Strong Seeded Extractors [32]). An efficient function Ext :
X × {0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every k-source X (i.e.,
if ∀x,Pr[X = x] ≤ 2−k) on X , (Ud,Ext(X,Ud)) is ε-close to (Ud, Um).

A strong seeded extractor can be constructed with an efficient universal hash
function [12,31,33,37] following the Leftover Hash Lemma [22], as stated below.

Theorem 2. There exists a strong (k, 2−κ)-seeded extractor Ext : X ×{0, 1}k →
{0, 1}k−2κ.

Definition 3. (Computational Distance). For random variables X and Y
taking values in X , the advantage of a circuit D in distinguishing X and Y is
defined as

ΔD(X,Y) = |Pr[D(X) = 1] − Pr[D(Y) = 1]|.
Let Dt be the set of all probabilistic circuits of size t. The computational difference
of X and Y is defined as CDt(X,Y) = maxD∈Dt

ΔD(X,Y). When X = Xλ and
Y = Yλ are families of distributions indexed by a security parameter λ, we say
that X and Y are computationally indistinguishable, denoted X =c Y , if for
every polynomial t(·), CDt(λ)(X,Y) = negl(λ).

Definition 4. (Pseudorandom Generator). A length-increasing function
Prg : {0, 1}λ → {0, 1}m is a pseudorandom generator (PRG) if Prg(Uλ) =c Um.

Decisional Diffie-Hellman (DDH) Assumption. We assume that the DDH
assumption holds, i.e., for a group G of a 2λ-bit prime order p, let g be a generator
of G, then:

{ga, gb, gab : a, b
$←− Fp} =c {ga, gb, gc : a, b, c

$←− Fp}.

Dishonest Majority Constant-Round MPC 179

Security Model. We define the security of multiparty computation in the real
and ideal world paradigm [11]. Informally, we consider a protocol Π to be secure
if any adversary’s view in its execution in the real world can also be simulated
in the ideal world. For more details, we refer the readers to the full version.

3.2 Secret Sharing

Let [x] denote an unauthenticated additive sharing of x with Pi’s share x(i). We
use P = {Pi}n

i=1 to denote the set of all parties. For all PA,PB ⊂ P, we follow
the definition in [36] to define an authenticated sharing 〈x〉PA,PB as follows.

– All parties in PA together hold an additive sharing of x. Each party Pj ∈ PB

holds a global key Δ(j).
– For every Pi ∈ PA, Pj ∈ PB, Pj holds a random local key K

(j)
i and Pi holds

the MAC of x(i) defined by M
(i)
j = K

(j)
i + Δ(j) · x(i).

An authenticated additive sharing

〈x〉PA,PB = ((x(i), (M (i)
j)Pj∈PB

)Pi∈PA
, (Δ(j), (K(j)

i)Pi∈PA
)Pj∈PB

)

can be locally converted to a SPDZ sharing [[x]] = ([x], [Δ], [Δ ·x]) when PB = P
by letting each Pi compute

(
x(i),Δ(i),Δ(i) · x(i) +

∑

j �=i

(M (i)
j − K

(i)
j)

)
,

where x(i) = M
(i)
j = K

(j)
i = 0 for all Pi �∈ PA and Pj ∈ P. When PA = PB = P,

we simply use 〈x〉 to denote 〈x〉P,P .

3.3 Functionalities for Sub-Protocols

We borrow the following functionalities from [36].

Programmable OLE. We use a functionality for random, programmable obliv-
ious linear evaluation (OLE), Fprog

OLE (see Fig. 1). This is a two-party function-
ality, which computes a batch of secret-shared products, i.e. random tuples
(ui, vi), (xi, wi), where wi = ui · xi + vi, over the field Fp. The programmability
requirement is that, for any given instance of the functionality, the party who
obtains ui or xi can program these to be derived from a chosen random seed.
This allows the same ui, vi to be used in different instances of Fprog

OLE . We model
the programmability with an expansion function Expand, which is a PRG.

Multiparty VOLE. Vector oblivious linear evaluation (VOLE) can be seen as
a batch of OLEs with the same xi value in each tuple, i.e., a vector w = u ·x+v,
where x ∈ Fp is a scalar given to one party. In the functionality of multiparty
VOLE, FnVOLE (see Fig. 2), every pair of parties (Pi, Pj) is given a random VOLE
instance w

(i)
j = u(i) ·x(j)+v

(j)
i . The functionality guarantees that the same u(i)

180 V. Goyal et al.

Fig. 1. Functionality for programmable OLE.

or x(j) values will be used in each instance involving Pi or Pj . Unlike OLE,
the u(i), x(i) values in FnVOLE are not programmable, and the outputs to Pi is
required to be a short seed which can be expanded to u(i) so that Pi can later
use this as an input to Fprog

OLE .

Fig. 2. Functionality for n-party VOLE.

We also use the standard functionalities FCoin (to generate a random common
coin in Fp) and FCommit (to model commitment a scheme), we refer the readers
to the full version for more details.

Dishonest Majority Constant-Round MPC 181

3.4 MAC Check on Opened Values

For a SPDZ sharing [[x]], when we say the parties open [[x]], we mean that the
parties run the following ΠOpen protocol on [[x]].

Fig. 3. Protocol to open a SPDZ sharing.

When the secrets of some SPDZ sharings are opened to all parties, they can
check the correctness relying on the MACs by a standard SPDZ MAC check
protocol ΠSPDZ-MAC [16] in the {FCoin,FCommit}-hybrid model (see Fig. 4).

Fig. 4. Protocol for MAC checking.

4 Encryption Scheme Based on DDH

In this section, we construct a public-key encryption scheme based on the DDH
assumption. We will first give a construction based on strong seeded extractors,
and then simplify it under the assumption of random oracles.

4.1 Encryption Scheme Based on Strong Seeded Extractors

We now introduce our construction of an encryption scheme based on strong
seeded extractors. Let p be a prime number and Fp be the prime field of size p.
Our goal is to encrypt a message in Fp.

Let ⊕ denote the bit-wise XOR of two binary strings of the same length.
Let k = max{2λ, λ + 2κ}. Our encryption scheme PKE1 is a tuple of four PPT
algorithms (Setup,Gen,Enc,Dec) defined as follows:

182 V. Goyal et al.

– Setup(λ, κ): The setup algorithm Setup samples the following:
1. A group G of order p with a generator g, where p is a k-bit prime. Let �

denote the length of group elements in G.
2. A strong (k, 2−κ)-extractor Ext : {0, 1}� ×{0, 1}k → {0, 1}λ (Theorem 2).
3. A pseudorandom generator Prg : {0, 1}λ → {0, 1}k.
Setup outputs public parameters pp = (G, p, g,Ext,Prg, λ, κ).

– Gen(pp): The key-generation algorithm Gen samples sk1, sk2 ∈ Fp and com-
putes pk1 = gsk1 , pk2 = gsk2 . Gen outputs (sk1, sk2, pk1, pk2), where sk1, sk2
are the secret keys, and pk1, pk2 are the public keys.

– Enc(pp, pk1, pk2,m): The encryption algorithm Enc runs as follows:
1. Sample random k1, k2 ∈ Fp, and compute gk1 , gk2 , (pk1)k1 · (pk2)k2 .
2. Sample random s ∈ {0, 1}k, compute m′ = Prg(Ext((pk1)k1 · (pk2)k2 , s)).
3. Encode m to a vector in {0, 1}k. Output c = (m ⊕ m′, s, gk1 , gk2).

– Dec(pp, sk1, sk2, c): Suppose c = (m∗, s, g1, g2). Then, the decryption algo-
rithm Dec outputs m = m∗ ⊕ Prg(Ext(gsk11 · gsk22 , s)).

This public key encryption scheme guarantees that a party can decrypt a
ciphertext with both secret keys, but he does not learn any information about
the message with only one key. We state this as the following theorem, and we
provide a proof of this theorem in the full version of this paper.

Theorem 3. PKE1 = (Setup,Gen,Enc,Dec) satisfies the following conditions:

– Correctness. Let pp ← Setup(λ, κ). For any message m ∈ Fp,

Pr

[
Dec(pp, sk1, sk2, c) = m :

(sk1, sk2, pk1, pk2) ← Gen(pp),
c ← Enc(pp, pk1, pk2,m)

]
= 1.

– Security. Let pp ← Setup(λ, κ). Assume the DDH assumption over G with
group generator g. Then for any pair of messages m0,m1 ∈ Fp,

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2) ← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2) ← Gen(pp)}

and
{sk1, pk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2) ← Gen(pp)}

=c {sk1, pk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2) ← Gen(pp)}.

Instantiation of the Group. In practice, we can choose G to be an elliptic
curve E(Fq) of size p. Each point on this elliptic curve can be expressed as a point
in F

2
q. Thus, we can take � = 2 log q, where it is ensured by the Mordell-Weil

Theorem (see [30,40]) that
∣∣|E(Fq)| − q − 1

∣∣ < 2
√

q, which means q = O(p).

Dishonest Majority Constant-Round MPC 183

4.2 Encryption Scheme Based on Random Oracle

If we assume the existence of a random oracle, the encryption scheme can be
much simpler. We provide an encryption scheme PKE2 = (Setup,Gen,Enc,Dec):

– Setup(λ): The setup algorithm Setup samples a group G of order p with a
generator g, where p is a 2λ-bit prime. Then, Setup initializes a random
oracle O with output length 2λ. Setup outputs pp = (G, p, g,O, λ).

– Gen(pp): The key-generation algorithm Gen samples sk1, sk2 ∈ Fp and com-
putes pk1 = gsk1 , pk2 = gsk2 . Gen outputs (sk1, sk2, pk1, pk2), where sk1, sk2
are secret keys, and pk1, pk2 are public keys.

– Enc(pp, pk1, pk2,m): The encryption algorithm Enc runs as follows:
1. Sample random k1, k2 ∈ Fp, then compute gk1 , gk2 , and (pk1)k1 · (pk2)k2 .
2. Query the random oracle O with input (pk1)k1 · (pk2)k2 to obtain m′ =

O((pk1)k1 · (pk2)k2).
3. Encode m to a vector in {0, 1}2λ. Output c = (m ⊕ m′, gk1 , gk2).

– Dec(pp, sk1, sk2, c): Suppose c = (m∗, g1, g2). Then, the decryption algorithm
Dec outputs m = m∗ ⊕ O(gsk11 · gsk22).

Similarly to PKE1, PKE2 satisfies the correctness and security properties. A
proof of the following theorem is provided in the full version of this paper.

Theorem 4. Assume the DDH assumption over G with group generator g and
random oracles, PKE2 = (Setup,Gen,Enc,Dec) satisfies the same Correctness
and Security conditions as PKE1.

5 Preprocessing Phase

5.1 Preprocessing Functionality

In the preprocessing phase, all the parties need to prepare several sharings to
be used in the main protocol. The preprocessing functionality Fprep is defined in
Fig. 5. It allows the parties to prepare the following sharings:

– Random Values: A SPDZ sharing [[r]] of a random element r ∈ Fp.
– Triples: SPDZ sharings [[a]], [[b]], [[c]] for c = a · b, where a, b are random ele-

ments in Fp.
– Random Bits: SPDZ sharings [[λ]], where λ ∈ {0, 1} ⊂ Fp is a random bit.

With the authenticated triples, the parties can do multiplication following
the SPDZ protocol. We present ΠMult in Fig. 6.

5.2 Preprocessing Protocol

For simplicity, we use x[k] to denote the k-th entry of x. In Fig. 7, we pro-
vide our protocol Πprep realizing the preprocessing functionality Fprep in the
{Fprog

OLE ,FnVOLE,FCoin,FCommit}-hybrid model.

184 V. Goyal et al.

Fig. 5. Functionality for preprocessing.

Each random SPDZ sharing is obtained by conversion from an authenticated
additive sharing. The authenticated additive sharings are generated by FnVOLE.
More concretely, the parties invoke FnVOLE to receive the seeds and pair-wise
MACs. Then, the parties expand their own seeds to get their shares of random
additive sharings. We will generate mR random sharings together with another
random sharing for verification of gΔ. The protocol Πrand for generating random
SPDZ sharings is given in Fig. 8.

To prepare multiplication triples, the parties prepare two seeds for random
SPDZ sharings and then pair-wise invoke Fprog

OLE with their seeds, which enables
each pair of parties to obtain a two-party additive sharing of the product of their
shares of [a], [b] expanded from their seeds. Adding all these shares together,
the parties get unauthenticated additive sharings of c = a ∗ b. To convert an
unauthenticated additive sharing [c] to the SPDZ sharing [[c]], the parties need

Dishonest Majority Constant-Round MPC 185

Fig. 6. Protocol for SPDZ multiplication.

Fig. 7. Protocol for preprocessing.

another random sharing [[�]], so that they can open c + � and compute [[c]] =
(c+ �)− [[�]]. Since the corrupted parties may not send the correct seeds to Fprog

OLE ,
we need a verification. We utilize the technique from MASCOT [26] to use an
extra triple [[a′]], [[b]], [[c′]] to verify the correctness of c = a · b for each triple
[[a]], [[b]], [[c]]. The protocol Πtrip for triple generation is given in Fig. 9.

To prepare random bit sharings, we apply the techniques of [14]. In particular,
the parties prepare a pair of SPDZ sharings [[r]], [[r2]] in a similar way as preparing
triples, where r ∈ Fp is random. The parties then open r2 and compute

√
r2 ∈

[0, . . . , (p − 1)/2]. If
√

r2 �= 0,
√

r2 is either r or −r, with equal probability.

Fig. 8. Protocol for preparing random sharings.

186 V. Goyal et al.

Fig. 9. Protocol for generating multiplication triples.

Then, 2−1((
√

r2)−1 · r + 1) is uniformly random in {0, 1}. The protocol Πbit for
generating random bit sharings is given in Fig. 10.

We need to verify the correctness of gΔ, c = a · b for each triple, and the
correctness of [[r2]] for preparing bit sharings. For gΔ, we sacrifice a random
SPDZ sharing [[r]] = ([r], [Δ], [Δ · r]). Then, we can verify gΔ by verifying that
the product of all the parties’ shares of (gΔ)[r] · g−[Δ·r] is equal to 1. To verify
c = a · b for each triple, the parties sacrifice another triple [[a′]], [[b′]], [[c′]] and use
it to compute a SPDZ sharing [[α · ab − α · c]] for a random field element α, and
this value is supposed to be opened as 0. Then we only need to check the opened
values using ΠSPDZ-MAC. The correctness of [[r2]] can be verified in a similar way.
The complete verification protocol Πver is given in Fig. 11.

Lemma 1. The protocol Πprep securely realizes Fprep in the {Fprog
OLE ,FnVOLE,FCoin,

FCommit}-hybrid model against a malicious adversary corrupting n − 1 parties.

We provide the proof of this lemma and a detailed analysis of communication
in the full version. The communication cost of Πprep is (12nmT +16nmB)λ bits.

Dishonest Majority Constant-Round MPC 187

Fig. 10. Protocol for preparing random bit sharings.

6 Main Protocol

In this section, we provide our MPC protocol Πmain in the client-server model,
where only clients have inputs and outputs. We assume that the clients are
C1, . . . , Cn and the servers are S1, . . . , Sn. The clients and servers run Πmain by
running the following garbling phase and circuit evaluation phase in order.

Public Parameters. Let W be the number of wires, WI be the number of input
wires, and WO be the number of output wires. Let GA be the number of AND
gates and GX be the number of XOR gates. The public key encryption scheme
we use is PKE2 = (Setup,Gen,Enc,Dec) from Sect. 4.2.

Theorem 5. The protocol Πmain securely realizes F in the {Fprep,FCoin,
FCommit}-hybrid model against a malicious adversary corrupting upto n clients
and exactly n − 1 servers.

188 V. Goyal et al.

Fig. 11. The verification protocol.

By letting each party play as a client and a server, the client-server model can
be reduced to the standard MPC model. Thus, our protocol achieves malicious
security against up to n − 1 corruptions of n parties in the standard model.

The communication cost of Πmain is (20WI +18WO +8W +72GA+56GX)nλ
bits in the hybrid model. If we use Πprep to realize Fprep, the execution of Πprep

requires communication of (12nmT +16nmB)λ = (24WI+24WO+16W+48GA+
24GX)nλ bits, resulting in a total communication of (44WI + 42WO + 24W +
120GA + 80GX)nλ bits. Since W = GA + GX + WI , the total communication
for the complete protocol is (68WI +42WO +144GA +104GX)nλ bits. Detailed
security proof and cost analysis are provided in the full version of this paper.

7 Performance Evaluation

We now demonstrate the efficiency of our protocol. In Sect. 7.1, we provide a
comparison of the concrete communication cost of our protocol Πmain with other
state-of-the-art protocols. We also implement and benchmark the performance
of our protocol, the results of which are given in Sect. 7.2.

Dishonest Majority Constant-Round MPC 189

Fig. 12. Protocol for the garbling phase.

190 V. Goyal et al.

Fig. 13. Protocol for the circuit evaluation phase.

7.1 Cost Analysis

Instantiation of [4] via Le Mans [36]. The LPN-based dishonest majority mul-
tiparty garbling protocol of [4], as proposed in their work, incurred a communi-
cation cost of O(n ·λ) bits per gate per party. We observe that, by incorporating
the preprocessing functionalities of Le Mans [36] as we did, and by requiring
only one party to evaluate the garbled circuit, the cost of their protocol can
be reduced to O(λ) bits per gate per party. In order to ensure a fair compari-
son (unbiased by the underlying SPDZ functionalities used), we first calculate
the communication cost per party of this upgraded version of their protocol.
Using the results of Le Mans [36], each multiplication (respectively, opening)
can be achieved with a communication cost of 12n (respectively, 2n) field ele-
ments, and the upgraded protocol from [4] requires a total communication cost
of ((12 + 48k + 104�) · GA + (2 + 2k) · WI + 2 · WO)n bits, where k, � ∈ poly(λ).
For more details, we refer the readers to the full version of this paper.

Remark 2. The malicious variant of [36] is applicable only in large fields, and it
cannot be applied directly to the binary field used in [4]. For simplicity, we omit
this distinction in the comparison with [4].

Comparison of Concrete Costs. We next calculate and compare the concrete
cost of communication per party between our protocol and [4], including both
garbling and evaluation phases, on the AES-128 and SHA-256 circuits. The for-
mer has 6400 AND, 28176 XOR, and 2087 INV gates (where each INV(x) can

Dishonest Majority Constant-Round MPC 191

Table 1. Comparison of the communication cost per party (in MB) incurred in the
secure computation of the AES-128 and SHA-256 circuits. The computational security
parameter is set to λ = 128 for both protocols. The statistical security parameter for
the protocol of [4] is set to κ = 80.

Circuit Ben-Efraim et al. [4] This work

AES-128 768.11 65.33

SHA-256 2709.04 239.66

Fig. 14. The communication overhead of multiparty garbling protocols. The security
parameters are set to λ = 128, κ = 80 in all cases.

be computed as 1⊕ x), while the latter has 22573 AND, 110644 XOR, and 1856
INV gates. The cost of communication per party can be found in Table 1. Con-
sidering statistical security parameter κ = 80 for the protocol of [4] (where they
use s to denote it), we observe that our protocol achieves approximately 11.7×
and 11.3× improvements in communication cost on the AES-128 and SHA-256
circuits, respectively.

We also compare with [3] which achieves O(|C|) communication assuming
a strong honest majority. We note that our protocol outperforms that of [3]
in terms of a total cost of communication for up to n ≈ 3500 parties (we set
corruption threshold t = �n−1

4 � in their protocol for this comparison). This
evidence further reinforces the practicality of our protocol.

Finally, we compare with Wang et al. [39] and Yang et al. [42] that require
O(|C|n2) overall communication. In Fig. 14, we compare our end-to-end com-
munication overhead with the works of Wang et al. [39], Yang et al. [42], and
Ben-Efraim et al. [4]. The sizes of the circuits are shown above figures. In these
two cases, our protocol always has less communication overhead compared to [4],
and outperforms [39,42] when there are more than 23 to 24 parties.

192 V. Goyal et al.

7.2 Implementation and Experiments

We implement and benchmark the performance of our garbled circuits proto-
col, with a focus on the garbling and evaluation phases, which are our main
contributions. We assume a trusted dealer who realizes the functionality Fprep

and distributes the corresponding secret shares to parties in a preprocessing
phase. All experiments are done in an Amazon EC2 c5.24xlarge server with 96
vCPUs and 192 GB RAM. We emulate different network conditions with respect
to bandwidth and latency. We assume a latency of 2ms in the LAN setting and
60ms in the WAN setting. For each of these settings, we emulate 10Gbps, 1Gbps,
and 100Mbps networks. The implementation is written in C++ and is based on
EMP-toolkit [38]. The elliptic curve operations are instantiated by NIST curve
P-256 [34] and we use the implementations from the OpenSSL library. In our
scheme, the garbling of XOR and AND gates consists of similar operations and
takes almost the same amount of running time. Hence, we only record the cost
of AND gates in the following experiments.

We first demonstrate the performance of our garbling protocol in different
network settings and show the results in Table 2, with the number of parties
n ∈ {2, 4, 8, 16, 32}. We separately show the average time usage per gate for the
garbling phase and the transmission of the garbled circuits, of which time time
usage increases with a reduction of bandwidth or an increase in latency. Since
our protocol has constant-round communication, the impact of network latency
is limited. The garbling time in WAN is only 1.1× to 2× compared to the time
in LAN. Our protocol is also communication-efficient. The garbling time in a
100Mbps network compared to that in a 10Gbps network is less than 3.3× in
LAN and less than 1.8× in WAN.

Because of the DDH-based encryption scheme, the computational cost of our
scheme is higher than schemes that are based purely on symmetric-key opera-
tions, though ours has much lower communication complexity. Thus, we explore
how multi-threading can improve the speed of garbling. The results are shown
in Table 3. In LAN and WAN settings with different bandwidths, we set up 12
parties and increase the number of threads from 1 to 8. In all test cases, the
running time of the circuit garbling significantly decreases with the increase of
threads, with improvement up to 2.6×. Note that the saving brought by the
multi-threading implementation is not strictly linear in the number of threads
because the garbling phase requires communication and interaction.

We also show the microbenchmark of the circuit garbling phase in
Table 4. The protocol is split into four major components: the generation of
labels (kw, gkw), the computation of mask bits (λa, λb) and their products
(λaλb, λaλc, λbλc, λaλbλc), the computation of {χi}4i=1, and the encryption of
table entries. As demonstrated in the table, the main computational bottleneck
is the garbling of table entries. Fortunately, this cost can be greatly reduced by
multi-threading as shown in the previous Table 3. Note that only the first two
operations in Table 4 involve total communication linear in the number of par-
ties and the size of the circuit; hence, their time usage is impacted by network
conditions.

Dishonest Majority Constant-Round MPC 193

Table 2. Performance of the garbling protocol in different network conditions. The
two numbers in each cell (separated by a comma) represent the time per gate (in 10−6

seconds) used for garbling circuits and sending the garbled tables to the evaluator.
Each party runs on a single thread.

n
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

2 549,1 552,5 597,51 573,15 589,18 619,60

4 588,2 595,15 729,155 645,56 643,54 784,180

8 615,6 639,37 988,362 783,106 776,125 1075,419

16 669,13 726,79 1470,799 1052,227 1016,271 1689,895

32 786,36 925,164 2597,1605 1612,470 1497,555 2964,1850

Table 3. Performance of the garbling phase using different numbers of threads. The
numbers are the average time per gate (in 10−6 seconds). The number of parties is 12.

Threads
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

1 635 667 1206 938 949 1408

2 382 414 934 681 711 1171

4 314 323 831 539 599 1023

8 242 271 776 561 570 976

Finally, we study the performance of the circuit evaluation phase. As shown
in the second row of Table 5, the evaluation complexity is linear to the number
of parties n. Compared to the garbling phase in Table 2, it becomes a bottle-
neck when n is large. Hence, we apply multi-threading so that its running time
does not grow dramatically while increasing the number of parties (third row).
Moreover, notice that the other parties are idle when P1 is evaluating garbled
circuits. We study the amortized cost when parties execute several independent
instances of our MPC protocol in parallel, and different parties act as evaluators
in these instances. The last row shows that the amortized running time is almost
constant when there are n parallel instances.

194 V. Goyal et al.

Table 4. Microbenchmark of the garbling phase. The numbers are the average time
per gate (in 10−6 seconds). The number of parties is 8 and each party runs on a single
thread.

Operations
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

Generate labels 45 52 196 153 132 257

Compute λs and products 57 73 282 119 125 307

Compute χs 17 17 17 16 17 17

Garble table entries 495 495 492 493 501 492

Table 5. The garbled circuits evaluation time (in 10−6 seconds) per gate. The eval-
uation involves only local operations. In the third row, the number of threads for
Evaluator is the same as the number of Garbler. The last row shows the amortized
time per gate per circuit when running n MPC instances in parallel and each party
acts as Evaluator (using a single thread) in one of the instances. The only exception is
when n = 32, we only run 16 instances because of the lack of CPU resources.

n 4 8 16 32

Single-Thread 377 735 1465 2886

Multi-Thread 172 221 249 390

Parallel 94 95 95 188

Acknowledgement. J. Li and Y. Song were supported in part by the National Basic
Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Nat-
ural Science Foundation of China Grant 61033001, 61361136003.

R. Ostrovsky was supported in part by NSF grants CNS-2246355, CCF-2220450,
US-Israel BSF grant 2022370, and by Sunday Group.

References

1. Baum, C., Cozzo, D., Smart, N.P.: Using topgear in overdrive: A more efficient
zkpok for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) Selected Areas in Cryp-
tography - SAC 2019 - 26th International Conference, Waterloo, ON, Canada,
August 12-16, 2019, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 11959, pp. 274–302. Springer (2019). https://doi.org/10.1007/978-3-030-
38471-5_12

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA.
pp. 503–513. ACM (1990). https://doi.org/10.1145/100216.100287

https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1145/100216.100287

Dishonest Majority Constant-Round MPC 195

3. Beck, G., Goel, A., Hegde, A., Jain, A., Jin, Z., Kaptchuk, G.: Scalable multiparty
garbling. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30, 2023. pp. 2158–2172. ACM
(2023). https://doi.org/10.1145/3576915.3623132

4. Ben-Efraim, A., Cong, K., Omri, E., Orsini, E., Smart, N.P., Soria-Vazquez, E.:
Large scale, actively secure computation from LPN and free-xor garbled circuits. In:
Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021
- 40th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 12698, pp. 33–63. Springer (2021).
https://doi.org/10.1007/978-3-030-77883-5_2

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 578–590. ACM (2016). https://doi.org/10.1145/2976749.2978347

6. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 471–498.
Springer (2017), https://doi.org/10.1007/978-3-319-70697-9_17

7. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online spdz!
improving SPDZ using function dependent preprocessing. In: Deng, R.H.,
Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) Applied Cryptography and Net-
work Security - 17th International Conference, ACNS 2019, Bogota, Colombia,
June 5-7, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11464, pp.
530–549. Springer (2019). https://doi.org/10.1007/978-3-030-21568-2_26

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 1–10. ACM (1988), https://
doi.org/10.1145/62212.62213

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11694, pp.
489–518. Springer (2019). https://doi.org/10.1007/978-3-030-26954-8_16

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-lpn. In: Micciancio, D., Ristenpart, T.
(eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp. 387–416.
Springer (2020). https://doi.org/10.1007/978-3-030-56880-1_14

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/S001459910006

12. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/0022-0000(79)90044-8

https://doi.org/10.1145/3576915.3623132
https://doi.org/10.1007/978-3-030-77883-5_2
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/S001459910006
https://doi.org/10.1016/0022-0000(79)90044-8

196 V. Goyal et al.

13. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

14. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3876, pp. 285–304. Springer
(2006). https://doi.org/10.1007/11681878_15

15. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 14-18, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3621, pp. 378–394. Springer (2005). https://doi.org/10.1007/11535218_23

16. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-
cal covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.
In: Crampton, J., Jajodia, S., Mayes, K. (eds.) Computer Security - ESORICS
2013 - 18th European Symposium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8134,
pp. 1–18. Springer (2013). https://doi.org/10.1007/978-3-642-40203-6_1

17. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7417, pp. 643–662. Springer (2012). https://doi.org/10.1007/
978-3-642-32009-5_38

18. Elgamal, T.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985).
https://doi.org/10.1109/TIT.1985.1057074

19. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y., Weng, C.: Superpack:
Dishonest majority mpc with constant online communication. In: Advances in
Cryptology - EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part II. p. 220-250. Springer-Verlag, Berlin, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-30617-4_8

20. Garg, R., Yang, K., Katz, J., Wang, X.: Scalable mixed-mode mpc. In: 2024 IEEE
Symposium on Security and Privacy (SP). pp. 109–109. IEEE Computer Society,
Los Alamitos, CA, USA (may 2024).https://doi.org/10.1109/SP54263.2024.00106

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA. pp. 218–229. ACM (1987). https://doi.org/10.1145/
28395.28420

22. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1109/SP54263.2024.00106
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708

Dishonest Majority Constant-Round MPC 197

23. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, tinykeys for tinyot). In: Peyrin, T., Galbraith, S.D.
(eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Bris-
bane, QLD, Australia, December 2-6, 2018, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 11274, pp. 86–117. Springer (2018). https://doi.org/10.
1007/978-3-030-03332-3_4

24. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Tinykeys: A new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 10993, pp. 3–33. Springer (2018). https://doi.org/10.
1007/978-3-319-96878-0_1

25. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryp-
tology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624,
pp. 598–628. Springer (2017). https://doi.org/10.1007/978-3-319-70694-8_21

26. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, October 24-28,
2016. pp. 830–842. ACM (2016). https://doi.org/10.1145/2976749.2978357

27. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
III. Lecture Notes in Computer Science, vol. 10822, pp. 158–189. Springer (2018).
https://doi.org/10.1007/978-3-319-78372-7_6

28. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 8617, pp. 495–512. Springer (2014). https://doi.org/10.1007/978-3-662-44381-
1_28

29. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party
computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.)
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9216, pp. 319–338. Springer (2015). https://doi.org/10.
1007/978-3-662-48000-7_16

30. Mordell, L.J.: On the rational resolutions of the indeterminate equations of the
third and fourth degree. In: Proc. Cambridge Phil. Soc. vol. 21, pp. 179–192 (1922)

31. Nevelsteen, W., Preneel, B.: Software performance of universal hash functions.
In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer Science,
vol. 1592, pp. 24–41. Springer (1999). https://doi.org/10.1007/3-540-48910-X_3

https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/3-540-48910-X_3

198 V. Goyal et al.

32. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996). https://doi.org/10.1006/JCSS.1996.0004

33. Pietrzak, K., Sjödin, J.: Weak pseudorandom functions in minicrypt. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B:
Logic, Semantics, and Theory of Programming & Track C: Security and Cryptog-
raphy Foundations. Lecture Notes in Computer Science, vol. 5126, pp. 423–436.
Springer (2008). https://doi.org/10.1007/978-3-540-70583-3_35

34. PUB, F.: Digital signature standard (dss). Fips pub pp. 186–192 (2000)
35. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with

honest majority (extended abstract). In: Johnson, D.S. (ed.) Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washington, USA. pp. 73–85. ACM (1989), https://doi.org/10.1145/73007.73014

36. Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest majority.
In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15-18, 2022, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13507, pp. 719–749. Springer (2022), https://doi.org/10.1007/978-3-
031-15802-5_25

37. Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.)
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings.
Lecture Notes in Computer Science, vol. 576, pp. 74–85. Springer (1991). https://
doi.org/10.1007/3-540-46766-1_5

38. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

39. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation.
In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 39–56. ACM (2017).
https://doi.org/10.1145/3133956.3133979

40. Weil, A.: L’arithmétique sur les courbes algébriques. Acta mathematica 52, 281–
315 (1929)

41. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. pp. 1074–1091. IEEE (2021). https://doi.org/10.1109/
SP40001.2021.00056

42. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020. pp. 1627–1646. ACM (2020). https://
doi.org/10.1145/3372297.3417285

https://doi.org/10.1006/JCSS.1996.0004
https://doi.org/10.1007/978-3-540-70583-3_35
https://doi.org/10.1145/73007.73014
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/3-540-46766-1_5
https://doi.org/10.1007/3-540-46766-1_5
https://github.com/emp-toolkit
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285

Dishonest Majority Constant-Round MPC 199

43. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. pp. 80–91. IEEE Computer Society (1982), https://doi.
org/10.1109/SFCS.1982.45

44. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. pp. 162–167. IEEE Computer Society (1986). https://doi.org/10.
1109/SFCS.1986.25

https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Updatable Private Set Intersection
Revisited: Extended Functionalities,
Deletion, and Worst-Case Complexity

Saikrishna Badrinarayanan1(B), Peihan Miao2, Xinyi Shi2,
Max Tromanhauser2, and Ruida Zeng2

1 LinkedIn, Seattle, USA
sbadrinarayanan@linkedin.com

2 Brown University, Providence, USA
{peihan miao,xinyi shi,max tromanhauser,ruida zeng}@brown.edu

Abstract. Private set intersection (PSI) allows two mutually distrust-
ing parties each holding a private set of elements, to learn the inter-
section of their sets without revealing anything beyond the intersection.
Recent work (Badrinarayanan et al., PoPETS’22) initiates the study of
updatable PSI (UPSI), which allows the two parties to compute PSI on
a regular basis with sets that constantly get updated, where both the
computation and communication complexity only grow with the size of
the small updates and not the large entire sets. However, there are sev-
eral limitations of their presented protocols. First, they can only be used
to compute the plain PSI functionality and do not support extended
functionalities such as PSI-Cardinality and PSI-Sum. Second, they only
allow parties to add new elements to their existing set and do not sup-
port arbitrary deletion of elements. Finally, their addition-only protocols
either require both parties to learn the output or only achieve low com-
plexity in an amortized sense and incur linear worst-case complexity.

In this work, we address all the above limitations. In particular, we
study UPSI with semi-honest security in both the addition-only and
addition-deletion settings. We present new protocols for both settings
that support plain PSI as well as extended functionalities including PSI-
Cardinality and PSI-Sum, achieving one-sided output (which implies
two-sided output). In the addition-only setting, we also present a protocol
for a more general functionality Circuit-PSI that outputs secret shares
of the intersection. All of our protocols have worst-case computation and
communication complexity that only grow with the set updates instead
of the entire sets (except for a polylogarithmic factor). We implement our
new UPSI protocols and compare with the state-of-the-art protocols for
PSI and extended functionalities. Our protocols compare favorably when
the total set sizes are sufficiently large, the new updates are sufficiently
small, or in networks with low bandwidth.

Keywords: Private Set Intersection · Secure Two-Party
Computation · Oblivious Data Structure

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 200–233, 2025.
https://doi.org/10.1007/978-981-96-0938-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_7&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_7

Updatable Private Set Intersection Revisited 201

1 Introduction

Private Set Intersection (PSI) enables two distrusting parties, each holding a
private set of elements, to jointly compute the intersection of their sets with-
out revealing anything other than the intersection itself. Despite its simple
functionality, PSI and its related notions have found many real-world applica-
tions including online advertising measurement (deployed by Google Ads [6,35]),
secure password breach alert (deployed by Google Chrome [8], Microsoft Edge
[3], Apple iCloud Keychain [4], etc.), mobile private contact discovery (deployed
by Signal [9,37]), privacy-preserving contact tracing in a global pandemic
(jointly deployed by Google and Apple [5,17,56]). The last several decades
have witnessed enormous progress towards realizing PSI efficiently using var-
ious techniques achieving both semi-honest and malicious security [18,20,23–
26,31,39,45,47,51].

In many real-world applications such as aggregated ads measurement and
privacy-preserving contact tracing, PSI is performed on a regular (e.g., daily)
basis with updated sets, where the updates can be small when compared to the
entire sets. However, most of the existing work requires the two parties to perform
a fresh PSI protocol every time. A recent work by Badrinarayanan et al. [16]
initiates the study of updatable PSI (UPSI), which allows the two parties to
compute set intersections for sets that regularly get updated. Their work presents
protocols for updatable PSI where both the computation and communication
complexity only grow with the size of the updates and are independent of the
size of the entire sets (except for a logarithmic factor). As a result, these protocols
are orders of magnitudes faster than a fresh PSI protocol, especially when the
updates are significantly smaller than the entire sets. Nevertheless, there are
several limitations with the protocols in [16].

– Functionality: All the protocols presented in [16] are restricted to the plain
PSI functionality, crucially leveraging the fact that parties learn all the ele-
ments in the intersection. However, certain real-world applications require
more refined PSI functionalities that do not reveal the entire intersection but
instead only provide aggregated information about the intersection or enable
restricted computation on the data in the intersection. As two specific exam-
ples that model many applications such as online advertising measurement,
PSI-Cardinality allows two parties to jointly learn the cardinality (or size) of
their set intersection; PSI-Sum allows two parties, where one party addition-
ally holds a private integer value associated with each element in her set, to
jointly compute the sum of the associated integer values for all the elements
in the intersection (together with the cardinality of the intersection).

– Addition-Only: [16] mainly focuses on the addition-only setting, where both
parties can only add new elements to their existing old sets, and do not
support arbitrary deletion of elements from their sets. Note that they present
a protocol for UPSI with weak deletion, which allows the parties to refresh
their sets every t days, namely, they will add a set of elements to their sets
every day, and delete elements that were added to their sets t days ago.

202 S. Badrinarayanan et al.

However, it does not support arbitrary deletion, and the daily computation
and communication complexity additionally grows with t.

– Tradeoffs of the Addition-Only Protocols: [16] presents two protocols
for addition-only UPSI, each with its own tradeoffs. In particular, one protocol
crucially requires both parties to learn the output (namely, two-sided UPSI),
which may not be applicable in certain applications such as password breach
alert. The other protocol allows a single party to learn the output (namely,
one-sided UPSI), but it only achieves low computation and communication
complexity in an amortized sense over many days; the worst-case complexity
can be as high as linear in the entire sets. Note that one-sided UPSI is a strictly
stronger functionality in the semi-honest setting (as considered in [16]) since
the output-receiving party can simply send the output to the other party so
as to achieve two-sided UPSI.

1.1 Our Results

In this work, we address all the aforementioned limitations by presenting new
UPSI protocols for extended functionalities, supporting both addition and dele-
tion of elements, achieving one-sided output and low worst-case complexity in
both computation and communication. All of our protocols are secure in the
semi-honest model, hence one-sided UPSI is a stronger functionality. In the set-
ting with both addition and deletion, we achieve a slightly more general function-
ality than PSI-Sum as defined in [35,41], where we do not reveal the cardinality
of the intersection along with the sum.

Besides the functionalities of plain PSI, PSI-Cardinality, and PSI-Sum that
we discussed above, we consider a more general functionality of Circuit-PSI [18,
20,44,51,54], where the two parties learn the cardinality of the intersection as
well as an additive secret share of each element in it. This functionality allows
the two parties to perform further computation over the shares afterwards.

Note that we only consider Circuit-PSI in the addition-only setting. The
challenge in achieving Circuit-PSI with both addition and deletion is as follows.
Intuitively speaking, when deleting elements from the intersection, the parties
must learn which existing secret shares to delete from the intersection (unless
the parties update their entire secret shared intersection, where the complexity
grows with the entire sets, which is undesirable). Given that they know when a
particular secret share (not the element itself) was added to the intersection, this
essentially reveals more information than what the ideal functionality outputs.
Crucially, note that in the case of plain PSI with addition and deletion, this is not
a problem since the ideal functionality’s output also reveals when a particular
element was added and deleted; and in the case of PSI-Cardinality or PSI-Sum,
parties only learn aggregated information and this challenge doesn’t arise in the
protocol design. We summarize our results in comparison with [16] in Table 1.

Experiments. We implement all our protocols and compare their performance
with the state-of-the-art protocols for PSI and extended functionalites [20,51].
As our communication grows with the size of the update and not the entire input

Updatable Private Set Intersection Revisited 203

Table 1. Summary of our results in comparison to [16], including functionality,
one-sided or two-sided output, support of addition and deletion of elements, and
computation and communication complexity. PSI-Sum† denotes the variant of
PSI-Sum that does not reveal the cardinality. N denotes the size of the entire sets
and Nd denotes the size of the d-th update. t denotes the number of updates when
parties refresh their sets in UPSI with weak deletion. O∗(·) denotes amortized
complexity. For UPSI with both addition and deletion, we present two variants,
one allowing each element to be added and deleted at most once, and the other
allowing arbitrary additions and deletions of the same element.

Protocol Functionality Output Addition/Deletion Comp. & Comm. Complexity

[16, ΠUPSI-add-two] PSI Two-Sided Addition-Only O(Nd)

[16, ΠUPSI-add-one] PSI One-Sided Addition-Only O∗(Nd · log N)

ΠUPSI-Addpsi PSI

One-Sided
Addition-Only O(Nd · log N)

Figure 5, ΠUPSI-Addca PSI-Cardinality

Figure 5, ΠUPSI-Addsum PSI-Sum

Figure 5, ΠUPSI-Addcircuit Circuit-PSI Secret Shared

[16, ΠUPSI-del] PSI Two-Sided Weak Deletion O(Nd · t)

Figure 10, ΠUPSI-Delpsi PSI

One-Sided Addition & Deletion
Single Deletion
O(Nd · log N)

Arbitrary Deletion
O(Nd · log2 N)

Figure 10, ΠUPSI-Delca PSI-Cardinality

Figure 10, ΠUPSI-Delsum PSI-Sum†

(except by a logarithmic factor), we demonstrate a significant improvement, up
to orders of magnitude, when the input sets grow sufficiently large with smaller
updates. Although our usage of public key operations dampens the asymptotic
impact on computation, in realistic WAN settings, our protocols are able to
outperform prior work in end-to-end running time. We also compare our new one-
sided addition-only UPSI protocol with [16] and show significant improvement
in worst-case complexity.

1.2 Technical Overview

We discuss the technical challenges and novelties in this work. We start with
addition-only UPSI. Let X,Y denote the old sets of the two parties P0, P1

respectively, and let Xd, Yd denote their new added sets on Day d. For simplicity,
assume |X| = |Y | = N and |Xd| = |Yd| = Nd.1 Recall that we are mostly inter-
ested in the scenario when the set updates are significantly smaller than the entire
sets, namely N � Nd. The parties have already learned I = X∩Y of the old sets,
and they would like to learn the updated intersection Id = (X ∪ Xd) ∩ (Y ∪ Yd).
We focus on one-sided UPSI, where only P0 learns the output.

Addition-Only UPSI with Extended Functionalities. Our starting point
is the one-sided addition-only UPSI protocol in [16]. They observe that it suffices
to learn the set difference Id \ I on each day, which, from P0’s perspective, can
be split into two disjoint sets, (Xd ∩ (Y ∪ Yd)) and (X ∩ Yd). They then develop
protocols to compute the two sets individually, with complexity growing only
1 Our constructions work for two sets with different sizes as well, which we elaborate

in Sect. 3 and Sect. 4.

204 S. Badrinarayanan et al.

with Nd and not N . To compute UPSI-Cardinality, we similarly split |Id \I| into
|Xd ∩ (Y ∪ Yd)| and |X ∩ Yd|, and compute them individually. Note that this is
not sufficient since the individual cardinalities reveal more information than the
ideal functionality, which we will fix later.

Computing |Xd ∩ (Y ∪ Yd)|: We first briefly describe the approach in [16] to
computing Xd ∩ (Y ∪ Yd). Their key idea is to let P1 store an encrypted ver-
sion of her set on P0’s side; on each day, she updates this encrypted dataset
based only on her new input Yd. Here, they require a data structure that allows
P1 to obliviously update the dataset and P0 to obliviously query and compute
on the dataset. [16] constructs such an oblivious data structure via a binary
tree and uses additively homomorphic encryption to compute on encrypted data.
By carefully re-crafting the homomorphic operations on the encrypted data in
the oblivious data structure, we design a method that reveals only the number
of elements that are matched between Xd and the encrypted dataset (Y ∪ Yd).
This enables P0 to learn |Xd ∩ (Y ∪ Yd)|.
Computing |X ∩Yd|: We review the approach in [16] to computing X ∩Yd, which
leverages Diffie-Hellman-based PSI in [16]. Unfortunately, it does not extend to
updatable cardinality. To address this challenge, our idea is to compute |X ∩Yd|
symmetrically on P1’s side using the oblivious data structure. In particular, we
let P0 store an encrypted version of his set on P1’s side that supports efficient
and oblivious updates and queries. This way we can efficiently allow P1 to learn
|X ∩ Yd|.
Computing the Sum with One-Sided Output: There are two issues with our cur-
rent approach: first, individual cardinalities should not be revealed to the parties;
second, P1 should not learn anything about the output. At a high level, P0 learns
the cardinality |Xd∩(Y ∪Yd)| by decrypting a set of (homomorphically evaluated)
ciphertexts and counts the number of 0’s in them. This happens similarly for P1

to learn |X ∩Yd|. To fix the first issue, we develop a method to combine the two
sets of ciphertexts, re-randomize and shuffle all of them, and then decrypt them
at the end. The number of 0’s reveals only the sum of |Xd∩(Y ∪Yd)| and |X∩Yd|,
rather than individual values. To fix the second issue, we use a 2-out-of-2 thresh-
old encryption scheme. The parties will jointly decrypt all the ciphertexts only
after the random shuffling, and the decrypted results are revealed only to P0.
This protocol can be further extended to PSI-Sum and Circuit-PSI by attaching
a payload to each element and further leveraging additive homomorphism.

Worst-Case Logarithmic Complexity. The above construction relies heavily
on the oblivious data structure presented in [16]. A critical drawback of the data
structure is that it only achieves logarithmic complexity in an amortized sense,
namely the average complexity over many days is low. However, the worst-case
complexity can be as high as linear in the entire sets. In this work, we construct
a new oblivious data structure with worst-case logarithmic complexity.

Recall that in our UPSI construction, P1 store an encrypted version of her set,
maintained in an oblivious data structure, on P0’s side. There are two require-
ments on the data structure: first, for each new element y added to P1’s set, P1

Updatable Private Set Intersection Revisited 205

can update the encrypted dataset without leaking any information about y to
P0; second, for each new element x added to P0’s set, P0 can locally identify a
small set of encryptions in the P1’s set that are potential matches to x.

At a high level, our construction works as follows. The encrypted dataset is
maintained in a binary tree structure. Each element x identifies a designated,
(pseudo)random root-to-leaf path, computed by a pseudorandom function Fk(x)
with k known to both parties. As P1 updates the tree, she will maintain the
invariant that each element y always appears along its designated path. This
allows P0 to query for potential matches by collecting all elements in the appro-
priate path (i.e., potential matches to x will be found in the path designated by
Fk(x)). However, when a new element y is added to P1’s set, directly updating
the designated path of y in P0’s storage reveals information about y being added
to the tree. Therefore, we need a mechanism for P1 to add y to its designated path
in P0’s storage while hiding the path from P0. In [16], this is achieved through a
series of operations that update an entire level of the tree each time, resulting in
an amortized logarithmic complexity, while the worst-case complexity is linear
(when P1 updates the leaf level of the tree).

Our solution takes inspiration from the Path ORAM construction [55].
Instead of updating the designated path, P1 picks a random path each time, and
“pushes down” the elements along that path as much as possible. The access
pattern of tree updates consist of random paths, hence are oblivious to P0. Note
that Path ORAM has an additional logarithmic factor from tree recursions due
to limited registers. We can remove the tree recursions since we do not have this
restriction in UPSI, leading to a single logarithmic factor. We refer to Sect. 3 for
more details of our addition-only UPSI protocols.

Supporting Deletion. Our oblivious data structure is inspired by ORAM, but
the manner in which ORAM handles deletion (or modification) of memory con-
tent does not work for us. In Path ORAM, whenever x is accessed (or modified),
x will be re-allocated to a new, freshly sampled random designated path. How-
ever, as discussed above, the designated path of x in our construction is fixed
and known to both parties.

Our key idea is to keep the fixed designated path for the element and attach
a payload of +1 or −1 to indicate addition or deletion. Specifically, when y is
deleted from P1’s set, instead of deleting it from the data structure, she will
add another y to the data structure with a payload of −1 indicating deletion. In
other words, when y is added or deleted from P1’s set, she will add a new pair
of encryptions (Enc(y),Enc(+1)) or (Enc(y),Enc(−1)) to the designated path of
y. Recall that we can update the tree by accessing a random path, hence the
access pattern remains oblivious to P0. When x is added to P0’s set, P0 will still
identify all the encrypted pairs on the designated path of x as potential matches.
However, the crucial challenge is when y is not in the intersection, we need to
further hide from P0 whether y was never added to the dataset, or y was added
and then deleted (namely, (y,+1) and (y,−1) cancel out). To achieve this, we
design a special protocol that, for each pair, if the element is a match, then the
parties obtain a secret share of its corresponding payload (+1 or −1); otherwise

206 S. Badrinarayanan et al.

they obtain a secret share of 0. Finally, they add up all these secret shares where
+1’s and −1’s are canceled out, revealing whether x is in the intersection.

There are several other challenges that arise in handling deletions. For
instance, we need to bound the maximum node size of the tree, especially when
there are unlimited, repeated elements being added to the same path. If we
restrict each element to being added and deleted at most once, the complexity
remains the same as in the addition-only protocols. A more nuanced analysis
shows that with unlimited additions and deletions, the complexity incurs only
an additional logarithmic factor. Another challenge arises in plain UPSI, when
P0 removes x and P1 adds y = x on the same day. After these updates, x is
not in the intersection, and it should be further hidden that it was added and
then deleted from the intersection. We refer to Sect. 4 for more details of how
to handle these challenges and the full description of our UPSI protocols with
both addition and deletion.

1.3 Related Work

There has been a long line of work towards realizing PSI efficiently using various
techniques including Diffie-Hellman-based [34,35,40], RSA-based [13,27], circuit-
based [33,46–48], oblivious transfer (OT)-based [21,28,39,44,49], fully homo-
morphic encryption (FHE)-based [22,23,25], and vector oblivious linear eval-
uation (VOLE)-based [18,26,31,51,54] approaches, achieving both semi-honest
and malicious security [18,22,24,42,45,51,53].

As discussed earlier, certain applications require PSI with extended function-
alities that do not reveal the entire intersection but rather enable restricted com-
putation on the elements in the intersection. PSI-Cardinality and PSI-Sum model
many applications such as aggregated ads measurement [35,41] and privacy-
preserving contact tracing [17,56]. More generally, Circuit PSI [18,20,33,47,51,
54] enables the two parties to learn secret shares of the set intersection, which
can be used to securely compute any function using generic secure two-party
computation protocols [32,58]. However, all these approaches study PSI or PSI
with extended functionalities in the standalone setting, which do not support
small updates to the sets beyond running a fresh protocol after each update.

To the best of our knowledge, [16] is the first work that formalizes and studies
PSI in the updatable setting, which we have extensively discussed above. Another
related work is [10], which studies delegatable PSI with small updates. Specifi-
cally, they allow multiple clients to outsource their (encrypted) private sets and
delegate PSI computation to a cloud server. Clients can perform efficient updates
on their outsourced sets where the computation and communication only grow
with their updates. However, both the computation and communication costs of
computing PSI still grow with size of the entire sets, and their protocol crucially
requires the existence of a server.

Concurrent and Independent Work. A concurrent and independent work by
Agarwal et al. [11] constructs a semi-honest secure UPSI protocol that supports
arbitrary addition and deletion of elements. Their construction, which builds

Updatable Private Set Intersection Revisited 207

UPSI from a new variant of structured encryption (StE), achieves worst-case
communication and computation complexity that grows linearly with the size of
the updates and poly-logarithmically with the size of the entire sets. Their frame-
work supports the plain PSI functionality with two-sided output, and focuses on
feasibility. In contrast, our work additionally achieves the extended functionali-
ties with one-sided output (which implies two-sided output), and demonstrates
concrete efficiency.

2 Preliminaries

Notation. We use λ, κ to denote the computational and statistical security
parameters, respectively. For an integer n ∈ N, [n] denotes the set {1, . . . , n}. A
2-out-of-2 additive secret share of a value x ∈ Zn is denoted as ([[x]]0, [[x]]1) where

[[x]]0
$←− Zn and [[x]]0 +[[x]]1 = x mod n. PPT stands for probabilistic polynomial

time. By
c≈ we mean two distributions are computationally indistinguishable.

Additively Homomorphic Encryption. An additively homomorphic encryp-
tion scheme is a public-key encryption sccheme that consists of a tuple of PPT
algorithms (KeyGen,Enc,Dec) over message space M with correctness, chosen-
plaintext attack (CPA) security, and linear homomorphism.

– (pk, sk) ← KeyGen(1λ): On input of the security parameter, output a public
key pk and a secret key sk.

– c ← Encpk(m): On input of a public key pk and a message m ∈ M, output a
ciphertext c.

– m/⊥ ← Decsk(c): On input of a secret key sk and a ciphertext c, output a
plaintext m or the symbol ⊥.

– Encpk(m0+m1) ← Encpk(m0)⊕Encpk(m1): On input two ciphertexts of m0,m1

encrypted under pk, output a ciphertext for their sum.
– Encpk(m0 · m1) ← m0
 Encpk(m1): On input a plaintext message m0 and a

ciphertext of m1 encrypted under pk, output a ciphertext for their product.

Threshold Additively Homomorphic Encryption. A (2, 2)-threshold addi-
tively homomorphic encryption scheme consists of a tuple of PPT algorithms
(KeyGen,Enc,PartDec,FullDec) over message space M.

– (pk, sk0, sk1) ← KeyGen(1λ): On input of the security parameter, output a
public key pk and a pair of secret key shares sk0 and sk1.

– c ← Encpk(m): On input of a public key pk and a message m ∈ M, output a
ciphertext c.

– ĉ ← PartDecskb
(c): On input a secret key share skb (for b ∈ {0, 1}) and a

ciphertext c, output a partially decrypted ciphertext ĉ.
– m/⊥ ← FullDecskb

(ĉ): On input a secret key share skb (for b ∈ {0, 1}) and
a partially decrypted ciphertext ĉ by the other secret key sk1−b, output a
plaintext m or the symbol ⊥.

208 S. Badrinarayanan et al.

The scheme satisfies correctness and CPA security even given a secret key share
skb for b ∈ {0, 1}. It also supports linear homomorphic operations ⊕ and
.

Re-randomization. A re-randomization algorithm c̃ ← ReRandpk(c) homomor-
phically adds an independently generated encryption of zero to c, resulting in a
ciphertext c̃ that is indistinguishable from a fresh ciphertext encrypting the same
message as c. We implicitly assume that each homomorphic operation is followed
by a re-randomization process. This is required in our protocols to ensure that
the randomness of the final ciphertext is independent of the randomness used
in the original ciphertexts. For the popular (threshold) additively homomorphic
encryption schemes such as exponential El Gamal encryption [29] and Paillier
encryption [43], a homomorphically evaluated ciphertext can be made statisti-
cally identical to a fresh ciphertext. We refer to [29,43] for formal definitions of
correctness and CPA security.

3 Addition-Only UPSI

3.1 Definition

In this section, we formalize the ideal functionality and security definition for
addition-only UPSI. Consider two parties P0 and P1 who wish to run PSI on
a daily basis with updated sets. In the addition-only setting, they each hold a
private set and add new elements to their respective sets each day. They want
to jointly compute their set intersection (or extended functionalities) on their
updated sets without revealing anything beyond that. We formalize addition-
only UPSI as a special case of secure two-party computation with a reactive
functionality defined in Fig. 1.

Fig. 1. Ideal functionalities for one-sided addition-only UPSI: FUPSI-Addpsi ,
FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit .

Updatable Private Set Intersection Revisited 209

Let X[D] = {X1, . . . , XD} and Y[D] = {Y1, . . . , YD} be the inputs for P0 and
P1 after D days, respectively. Let ViewΠ,D

b (X[D], Y[D]) and OutΠ,D
b (X[D], Y[D])

be the view and outputs of Pb (for b ∈ {0, 1}) in the protocol Π at the end of D
days, respectively. For a functionality F , let Fb be the output for Pb in the D
days. Note that F1 = ⊥ in all the functionalities except for FUPSI-Addcircuit .

Definition 1 (One-Sided Addition-Only UPSI). A protocol Π is semi-
honest secure with respect to ideal functionality F ∈ {FUPSI-Addpsi ,FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit} if there exists PPT simulators Sim0 and Sim1 such
that, for any D ∈ N

+ and any inputs (X[D], Y[D]),
(
ViewΠ,D

0 (X[D], Y[D]),OutΠ,D
1 (X[D], Y[D])

)

c≈
(
Sim0(1

λ, X[D], F0(X[D], Y[D])), F1(X[D], Y[D])
)

,
(
ViewΠ,D

1 (X[D], Y[D]),OutΠ,D
0 (X[D], Y[D])

)

c≈
(
Sim1(0

λ, Y[D], F1(X[D], Y[D])), F0(X[D], Y[D])
)

.

Notation. Let ΠAHE = (KeyGen,Enc,PartDec,FullDec) be a (2, 2)-threshold
additively homomorphic encryption scheme (see definition in Sect. 2) over plain-
text space Zq for a prime q. Without loss of generality we assume all the set
elements are in Zq (if not, we can apply a collision-resistant hash function
H : {0, 1}∗ → Zq on all the elements and perform PSI on the hash outputs). Let
F : {0, 1}λ × Zq → {0, 1}λ be a pseudorandom function (PRF). For a bit string
s ∈ {0, 1}n, let s[1:i] denote the prefix of s of length i (for i ∈ [n]).

Consider a binary tree data structure with tree height L and 2L leaves, let
� ∈ {0, 1, . . . , 2L−1} denote the �-th leaf node of the tree. Any leaf node � defines
a unique path from the root to the leaf. We use P(�) to denote such a path, and
P(�, k) to denote the node in P(�) at level k of the tree (for k ∈ {0, 1, . . . , L}).
Let σ denote the maximum tree node size and ρ denote the stash size of our
oblivious data structure.

3.2 Construction

In this section, we present our addition-only UPSI protocols. As briefly discussed
in Sect. 1.2, each party stores an encrypted version of its set on the other party’s
storage. We first describe our new oblivious data structure maintained in a binary
tree.

Oblivious Data Structure. Say P1 is the data owner, who stores her encrypted
set on P0’s side. Initially, the binary tree is empty with depth 0. Each node of
the tree has a maximum capacity of σ elements. As P1 adds new elements to
the tree, she will gradually increase the tree depth. Figure 2 illustrates a tree
of depth 3. Each element x is associated with a designated path computed by
Fk(x), where F is a pseudorandom function and k is a secret key known to both
parties. When a new element x is added to P1’s set, P1 will add x to the one of

210 S. Badrinarayanan et al.

the nodes in the root-to-leaf path ending at leaf node Fk(x), but in an oblivious
way. In the example in Fig. 2, the designated path of x is Fk(x) = 001, and P1

will obliviously add x to one of the four nodes on the red path. To do so, P1

first adds x to the root node of the tree. Then she samples a random root-to-leaf
path � of the tree, and collects all the elements in that random path. For every
element x∗ in that random path (note that this includes x, because x was just
added to the root), P1 will “push down” x∗ along the random path � as much as
possible subject to the constraint that x∗ is still on its designated path Fk(x∗).
In the example, � = 011, and P1 considers all the elements on the blue path.
She can push x down one level since it overlaps with the red path. For another
element y, suppose Fk(y) = 011, then P1 can push it down to the leaf level. For
the element z, suppose Fk(z) = 010, then P1 cannot push it down further. Note
that this process is oblivious to P0 since the access pattern for any element is a
random path. In the example, the access pattern for x is a random path � that
is completely independent of x.

Fig. 2. Illustration of adding an element x to a tree with depth 3. (Color figure
online)

Some details were omitted in the above description for the sake of simplicity.
First, when pushing down element along the random path �, another constraint
is that no node exceeds the maximum capacity of σ. Second, if there are extra
elements that cannot fit into the maximum capacity of the random path, P1 puts
them into a stash, which has maximum capacity ρ. Both σ and ρ are defined
as part of the security parameters of the protocol. We present this subroutine
formally as UpdateTree in Fig. 3. This subroutine will also be used in our UPSI
with both addition and deletion protocols, with slight modifications (highlighted
in the figure). We discuss more details in Sect. 4.

Addition-Only UPSI-Cardinalty/Sum/Circuit-PSI. We now describe our
new addition-only UPSI protocols (Fig. 5). P0 maintains his elements x ∈ X in
an oblivious data structure consisting of a binary tree D0 and a stash S0. He
stores an encrypted version of it on P1’s side, denoted as (˜D0, ˜S0). Similarly,
P1 maintains her elements y ∈ Y in an oblivious data structure (D1,S1), and
stores an encrypted version (˜D1, ˜S1) on P0’s side. The encryption scheme is a
(2, 2)-threshold additively homomorphic encryption. Recall from Sect. 1.2 that
the set difference Id \ I on each day consists of two disjoint sets, (Xd ∩ Y) and
((X ∪ Xd) ∩ Yd).

Updatable Private Set Intersection Revisited 211

Subroutine UpdateTree({xi}n
i=1, {pi}n

i=1, D, S, Fk(·),Encpk(·)):
1. Let N be the total number of elements (excluding dummy ones) in the tree D and

stash S after inserting {xi}n
i=1. Extend the tree depth to reach L = �log2 N� if

needed. Add empty nodes in the new levels of D.
2. For each element and payload pair (xi, pi) for i ∈ [n]:

(a) Uniformly sample a random leaf node �i
$←− {0, 1, . . . , 2L − 1} of the tree D.

(b) Remove all the elements from the path P(�i) of the tree D. Remove all the ele-
ments from the stash S. Combine all the removed elements (excluding dummy
ones) with (xi, pi) to get pathi. In the UPSI with addition and deletion pro-
tocols, if there are elements with opposite values, namely (z, p) and (z, −p),
then remove both from pathi.

(c) For k from L down to 0:
Consider the tree node P(�i, k) at level k, remove up to σ elements (z, p) from
pathi such that P(�i, k) = P(Fk(z)[1:L], k), and add these elements to the node
P(�i, k) of D.

(d) Replace the stash S with all the elements left in pathi. If there are more than
ρ elements left in pathi, abort.

(e) Pad every node in the path P(�i) with dummy elements to reach a size of σ.
Pad the stash S with dummy elements to reach a size of ρ.

3. For each i ∈ [n], gather all the elements in the path P(�i) and encrypt them to get

˜updatesi = {(Encpk(xj),Encpk(pj))}σ·L
j=1. Encrypt all elements in the stash S to get

S̃ = {(Encpk(xj),Encpk(pj))}ρ
j=1. Output ({(˜updatesi, �i)}n

i=1, S̃)

Fig. 3. Subroutine UpdateTree that outputs a succinct update for the tree D
that does not reveal the elements being added.

Let’s first consider (Xd ∩ Y). Intuitively speaking, P0 queries each xi ∈ Xd

in the encrypted tree of Y , namely (˜D1, ˜S1), to determine whether xi ∈ Y .
Specifically, for each xi ∈ Xd, P0 identifies a designated path � = Fk(xi) and
collects all the elements in the path � from ˜D1, together with all the elements
from ˜S1 (because xi could potentially have been put there as well). These are all
the candidate encryptions that could potentially match xi. This process is pre-
sented formally as a subroutine GetPath in Fig. 4. To compute PSI-Cardinality,

Fig. 4. Subroutine GetPath that outputs a collection of potential matching ele-
ments with x in the encrypted tree ˜D with stash ˜S organized according to the
pseudorandom function F .

212 S. Badrinarayanan et al.

Initialization:
1. P0 and P1 jointly setup public and secret keys for a (2, 2)-threshold additively homomor-

phic encryption scheme (pk, sk0, sk1) ← KeyGen(1λ) where P0 receives (pk, sk0) and P1 receives
(pk, sk1). This can be done via a one-time secure two-party computation. The two parties agree

on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, ˜D1, ˜S1) and

(˜D0, ˜S0, D1, S1), respectively.
3. Initialize C0 = 0 in ΠUPSI-Addca and ΠUPSI-Addcircuit , C0 = V0 = 0 in ΠUPSI-Addsum .

Day d: P0 and P1 hold (D0, S0, ˜D1, ˜S1) and (˜D0, ˜S0, D1, S1), respectively. Let L0 be the tree height

of D0 and ˜D0, and L1 be the tree height of D1 and ˜D1. Both parties update L0 and L1 as they update
the trees below. Let X, Y denote the two parties’ sets at the end of the previous day, respectively.
P0 holds a new input set Xd and P1 holds a new input set Yd. Let n = |Xd| and m = |Yd|. In
ΠUPSI-Addsum , P0 holds a value vi ∈ Zq associated with each element xi ∈ Xd.

1. P0 defines a payload for each element xi ∈ Xd depending on the functionality: pi = xi in
ΠUPSI-Addcircuit , pi = vi in ΠUPSI-Addsum , and no payload is needed in ΠUPSI-Addca .

2. Xd tree update. P0 computes m1 = ({(ũpdatesi, �i)}n
i=1, ˜S′

0) ← UpdateTree(Xd,
{pi}n

i=1, D0, S0, Fk(·), Encpk(·)), and sends it to P1, who then replaces each path P(�i) with

ũpdatesi in ˜D0, and replaces ˜S0 with ˜S′
0. Both parties update L0 if needed.

3. Candidates for Xd ∩ Y . For each xi ∈ Xd, P0 computes {Encpk(yi,j)}σ·L1+ρ
j=1 ← GetPath(˜D1,

˜S1, Fk(·), xi), homomorphically subtracts xi, and attaches an encryption of pi to get ˜pathi =

{(Encpk(yi,j − xi), Encpk(pi))}σ·L1+ρ
j=1 . Then P0 sends m2 = { ˜pathi}n

i=1 to P1.

4. Candidates for (X ∪ Xd) ∩ Yd . For each yj ∈ Yd, P1 computes {(Encpk(xj,i),

Encpk(pi))}σ·L0+ρ
i=1 ← GetPath(˜D0, ˜S0, Fk(·), yj), and homomorphically subtracts yj to get

˜pathj = {(Encpk(xj,i − yj), Encpk(pi))}σ·L0+ρ
i=1 .

5. Combining candidates. P1 combines { ˜pathj}m
j=1 with { ˜pathi}n

i=1 received from P0, randomly

samples a mask αk
$←− Zq for each element in the combined set, and samples a random permu-

tation π over [Γ] where Γ = σ · (n · L1 + m · L0) + ρ · (n + m). Compute and send the following
to P0:

m3 = π
(

{(PartDecsk1 (αk � Encpk(ak − bk)),ReRandpk(Encpk(pk)))}Γ
k=1

)

.

6. Output generation. P0 fully decrypts the first element in each tuple of m3 to get αk(ak −bk).
Let K = {k | αk(ak − bk) = 0}.

– In ΠUPSI-Addca , P0 outputs Cd = Cd−1 + |K|.
– In ΠUPSI-Addsum , P0 computes m4 =

⊕

k∈K Encpk(pk) and sends it to P1. P1 responds to

P0 with m′
4 = PartDecsk1 (m4). P0 fully decrypts it to get V = FullDecsk0 (m′

4), and outputs
Vd = Vd−1 + V .

– In ΠUPSI-Addcircuit , P0 samples a random share [[zk]]0
$←− Zq for all k ∈ K, outputs

Cd = Cd−1 + |K| and an updated share set with new random shares {[[zk]]0}k∈K . Addi-
tionally, P0 computes and sends the following to P1:

m4 = {PartDecsk0 (Encpk(pk) ⊕ Encpk(−[[zk]]0))}k∈K .

P1 fully decrypts m4 using sk1 to get its shares {[[zk]]1}k∈K , and outputs Cd = Cd−1 + |K|
and an updated share set with new random shares {[[zk]]1}k∈K .

7. Yd tree update. P1 computes m5 = ({(ũpdatesj , �j)}m
j=1, ˜S′

1) ← UpdateTree(Yd,

⊥, D1, S1, Fk(·), Encpk(·)), and sends it to P0, who then replaces each path P(�j) with ũpdatesj
in ˜D1, and replaces ˜S1 with ˜S′

1. Both parties update L1 if needed.

Fig. 5. Protocols ΠUPSI-Addca ,ΠUPSI-Addsum ,ΠUPSI-Addcircuit for one-sided addition-
only UPSI functionalities FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit , respectively, with
the differences among the three protocols highlighted.

P0 homomorphically subtracts xi from each candidate encryption, so it becomes
an encryption of zero iff it is a match. This is presented as Step 3 in Fig. 5.

Updatable Private Set Intersection Revisited 213

Symmetrically, for ((X ∪Xd)∩Yd), P1 queries each yj ∈ Yd in the encrypted
tree of (X∪Xd), namely (˜D0, ˜S0). Note that (˜D0, ˜S0) needs to be first updated to
contain Xd. In the protocol in Fig. 4, P0 adds Xd to the oblivious data structure
in Step 3. Then P1 collects all the candidate encryptions for each yj ∈ Yd and
homomorphically subtracts yj from them, as presented in Step 4.

In Step 5, P1 combines all the candidate encryptions and homomorphically
multiplies each one by a random scalar, so that a candidate encryption remains
zero if it is a match, or random otherwise.2 She then randomly shuffles all the
candidate encryptions, partially decrypts them, and sends to P0, who can then
fully decrypt them and count the number of zeros.

Finally, P1 adds Yd to her oblivious data structure in Step 7. It is important
to note that the order of tree updates for Xd and Yd is critical in the protocol.
In particular, the tree update for (˜D1, ˜S1) can only occur after Step 3 to prevent
doubly counting in PSI-Cardinality.

We can extend the protocol to PSI-Sum and Circuit-PSI by attaching a pay-
load to each element and leveraging additive homomorphism on these payloads.

Addition-Only Plain UPSI. For addition-only plain UPSI FUPSI-Addpsi , we
don’t have to store two trees. Instead, we can simply plug our new oblivious
data structure into the addition-only UPSI protocol [16, ΠUPSI-add-one] to achieve
better concrete efficiency than the two-tree solution and much lower worst-case
complexity than [16]. We present the protocol ΠUPSI-Addpsi in the full version of
our paper [15].

3.3 Complexity, Correctness and Security

On each day d, let the entire set sizes of the two parties be N and M , respectively.
Let the update set sizes be n and m, respectively. Then both the computation
and communication complexity are O(n log M +m log N), assuming σ and ρ are
both O(1). We state the theorem below and defer its proof to the full version of
our paper [15].

Theorem 1. Assuming Π is a secure (2, 2)-threshold additively homomorphic
encryption scheme, F is a pseudorandom function, the protocols ΠUPSI-Addca ,
ΠUPSI-Addsum ,ΠUPSI-Addcircuit (Fig. 5) securely realize the ideal functionalities
FUPSI-Addca ,FUPSI-Addsum , FUPSI-Addcircuit (Fig. 1), respectively, against semi-honest
adversaries.

4 UPSI with Addition and Deletion

4.1 Definition

Let X[D] = {(X+
1 ,X−

1), . . . , (X+
D ,X−

D)} and Y[D] = {(Y +
1 , Y −

1), . . . , (Y +
D , Y −

D)}
be the inputs for P0 and P1 after D days, respectively. Here, X+

d denotes the

2 Note that this holds because the plaintext space for the encryption scheme is Zq for
a prime q.

214 S. Badrinarayanan et al.

elements to be added to P0’s set on day d, and X−
d denotes the elements to be

deleted from P0’s set on day d; similarly, Y +
d and Y −

d denote the elements to be
added and deleted, respectively, for P1 on day d. The ideal functionalities are
defined in Fig. 6. Note that for FUPSI-Delsum , we achieve a slightly more general
functionality than PSI-Sum as defined in [35,41] (which is the definition used in
our addition-only protocol) in that our functionality does not have to reveal the
cardinality Cd along with Vd. Let F0 be the output for P0 for all functionalities.
Note that we don’t consider the Circuit-PSI functionality in this setting, so P1

has no output in the definition.

Fig. 6. Ideal functionalities for one-sided UPSI with both addition and deletion:
FUPSI-Delpsi , FUPSI-Delca , and FUPSI-Delsum .

Definition 2 (One-Sided UPSI with Addition and Deletion). A protocol
Π is semi-honest secure with respect to ideal functionality F ∈ {FUPSI-Delpsi ,
FUPSI-Delca ,FUPSI-Delsum} if there exist PPT simulators Sim0 and Sim1 such that,
for any D ∈ N

+ and any inputs (X[D], Y[D]),
(

ViewΠ,D
0 (X[D], Y[D])

)

c≈ (

Sim0(1λ,X[D],F0(X[D], Y[D]))
)

,
(

ViewΠ,D
1 (X[D], Y[D]),Out

Π,D
0 (X[D], Y[D])

)

c≈ (

Sim1(1λ, Y[D]),F0(X[D], Y[D])
)

.

Notation. We use the same notation as in Sect. 3, except that instead of a
(2, 2)-threshold additively homomorphic encryption scheme, we use a plain addi-
tively homomorphic encryption scheme Π = (KeyGen,Enc,Dec) (see definition
in Sect. 2) over plaintext space Zq.

Updatable Private Set Intersection Revisited 215

4.2 Construction

In this section, we present our UPSI protocols with both addition and deletion.
The oblivious data structure presented in Sect. 3.2 only supports adding new
elements to the tree. We first discuss how to extend the construction to also
allow for deletion of elements from the tree.

Oblivious Data Structure with Deletion. Recall that each element x is
associated with a designated path Fk(x). When P1 adds a new element x to
the tree, she will first add x to the root node of the tree. Then she samples
a random path of the tree and pushes down elements along that random path
as much as possible. To support deletion, P1 first attaches a payload p to each
element x. When x is added to P1’s set, she sets p = +1; when x is deleted from
her set, she sets p = −1. Whenever an element x is added or deleted from her
set, P1 adds a new pair (x, p) to the tree following the exact same approach as
described in UpdateTree (Fig. 3). The only minor difference is that when pushing
down elements along the random path, if both (x,+1) and (x,−1) appear in that
path, P1 removes both of them from the tree.

This modified UpdateTree process remains oblivious to P0 because the access
pattern for addition or deletion of elements continues to be a random path
together with the stash. Note that since additions and deletions of the same
element have the same designated path, there is a higher probability of stash
overflow if we use the same parameters of maximum node capacity σ and maxi-
mum stash capacity ρ as in the addition-only setting, hence we need to increase
both parameters for our new protocols. We discuss the parameter implications
in the security proofs in the full version of our paper [15].

Computation on Encrypted Tree. To compute on the encrypted tree, we take
a different approach from the addition-only protocols. When P0 queries an ele-
ment x in the encrypted tree of Y , namely (˜D1, ˜S1), he can still identify the des-
ignated path � = Fk(x) and collect all the candidate encryptions using GetPath
(Fig. 4). However, there could be both (Enc(x),Enc(+1)) and (Enc(x),Enc(−1))
among these candidates. In case x was added and then deleted from tree, it
should be indistinguishable to P0 from the case where x was never added to
the tree. We construct a subprotocol ΠCombinePath (Fig. 7) for the two parties to
jointly learn a secret share of whether x is in the path, namely the sum of the
associated payloads p for all the (Enc(x),Enc(p)) pairs.

Specifically, for each candidate encryption (Enc(yi),Enc(pi)), P0 first homo-
morphically computes Enc(yi −x+αi) for a randomly sampled αi and sends it to
P1, which can then be decrypted by P1 to γi. Note that αi = γi iff yi = x. Next,
our goal is to design a special equality testing protocol such that if αi = γi (i.e.,
yi = x), then the two parties obtain a secret share of pi, otherwise they obtain
a secret share of 0. To do so, P0 homomorphically computes two ciphertexts
mi,0 = Enc(pi − βi) and mi,0 = Enc(−βi) for a randomly sampled βi. Then the
two parties invoke a special secure two-party computation protocol with func-
tionality Flookup (Fig. 8). The functionality Flookup takes (αi,mi,0,mi,1) from P0

and γi from P1 as input. If αi = γi, then Flookup outputs mi,0 to P1; otherwise it

216 S. Badrinarayanan et al.

Subprotocol ΠCombinePath((x, p, p̃ath), sk)

Public Parameters: a public key pk for the additively homomorphic encryption
scheme Π, and k as the number of pairs in p̃ath.

Inputs: An Initiator inputs an element x, an associated payload p, and a potential
matching elements in an encrypted collection p̃ath = {(Encpk(yi),Encpk(qi))}k

i=1. A
Responder inputs the secret key sk corresponding to pk.

Output: Initiator and Responder receive a secret share of
∑

i∈[k]:x=yi
(p · qi) over Zq.

1. For each i ∈ [k], Initiator samples random masks αi, βi
$←− Zq and homomorphically

computes the following:

reqi = (Encpk(yi) ⊕ Encpk(αi − x))

mi,0 = p � Encpk(qi) ⊕ Encpk(−βi)

mi,1 = Encpk(−βi)

2. Initiator sends the request set {reqi}k
i=1 to Responder.

3. Responder decrypts each request with sk to get {γi}k
i=1.

4. For all i ∈ [k], both parties invoke Flookup, where Initiator inputs (αi, mi,0, mi,1)
as Sender and Responder inputs γi as Receiver, from which Responder receives mi.
Responder then sets [[ri]]1 = Decsk(mi). Initiator sets [[ri]]0 = βi.

5. Each party Pb (b ∈ {0, 1}) outputs
∑k

i=1[[ri]]b.

Fig. 7. Subprotocol ΠCombinePath required for UPSI with addition and deletion.

Fig. 8. Ideal functionality Flookup required for the subprotocol ΠCombinePath.

outputs mi,1 to P1. Therefore, if αi = γi, then P1 obtains Enc(pi −βi), which can
be decrypted to pi −βi, thereby forming a secret share of pi with the other share
βi held by P0. If αi �= γi, then P1 obtains a Enc(−βi), which can be decrypted to
−βi, forming a secret share of 0 with P0’s share βi. As a result, the two parties
obtain a secret share of pi if yi = x, or a secret share of 0 otherwise. Finally, the
two parties sum up all the secret shares to obtain a secret share of

∑

yi=x pi.
We present our subprotocol ΠCombinePath in Fig. 7 and defer its correctness and

security proofs to the full version of our paper [15]. The functionality Flookup can
be instantiated with a generic secure two-party computation protocol [32,58].
We present a more efficient realization utilizing oblivious transfer (OT) and the
efficient OT extension [12,36] in Sect. 5.

UPSI-Cardinalty/Sum with Addition and Deletion. Next, we describe
our new UPSI protocols with both addition and deletion for PSI-Cardinality
and PSI-Sum, presented in Fig. 9. To compute PSI-Cardinality, we follow the
similar framework as in the addition-only protocols (Fig. 5).

Updatable Private Set Intersection Revisited 217

Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryp-

tion scheme (pk0, sk0) ← KeyGen(1λ) and (pk1, sk1) ← KeyGen(1λ) and share the

public keys. Both parties agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, D̃1, S̃1)

and (D̃0, S̃0, D1, S1), respectively. Initialize Out0 = 0.

Day d : P0 and P1 hold (D0, S0, D̃1, S̃1) and (D̃0, S̃0, D1, S1), respectively. Let L0 and

L1 be the heights of D0 (and D̃0), and D1 (and D̃1) respectively. Both parties update
L0 and L1 as they update the trees below. Let X, Y denote the two parties’ sets at the
end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their

set and X−
d , Y −

d of elements they are deleting. Denote n = |X+
d ∪X−

d |, m = |Y +
d ∪Y −

d |.
In ΠUPSI-Delsum , P0 holds a value vi ∈ Zq associated with each element xi ∈ X+

d ∪ X−
d .

1. P0 defines a payload for each element xi ∈ X+
d ∪ X−

d depending on the function-
ality:

pi :=

{
(−1)(xi∈X−

d
) for ΠUPSI-Delca

(−1)(xi∈X−
d

) · vi for ΠUPSI-Delsum

P1 defines a payload for each element yi ∈ Y +
d ∪ Y −

d : qj := (−1)(yj∈Y −
d

).

2. X+
d ∪ X−

d tree update. P0 sends ({(˜updatesi, �i)}n
i=1, S̃ ′

0) ← UpdateTree(X+
d ∪

X−
d , {pi}n

i=1, D0, S0, Fk(·),Encpk0(·)) to P1. P1 replaces each path P(�i) with

˜updatesi in D̃0, and replaces S̃0 with S̃ ′
0.

3. Secret shares for new elements of X . For all xi ∈ (X+
d ∪X−

d), run ΠCombinePath

with P0 as Initiator inputting (xi, pi, p̃athi ← GetPath(D̃1, S̃1, Fk(·), xi), pk1) and
P1 as Responder inputting sk1 corresponding to pk1. They receive secret shares
[[zx,i]]0 and [[zx,i]]1, respectively.

4. Secret shares for new elements of Y . For all yj ∈ (Y +
d ∪ Y −

d), run
ΠCombinePath with P0 as Responder inputting sk0 corresponding to pk0) and P1

as Initiator inputting (yj , qj , pathj ← GetPath(D̃0, S̃0, Fk(·), yj), pk0). They receive
secret shares [[zy,j]]0 and [[zy,j]]1, respectively.

5. Y +
d ∪ Y −

d tree update. P1 sends ({(˜updatesj , �j)}m
j=1, S̃ ′

1) ← UpdateTree(Y +
d ∪

Y −
d , {qj}m

j=1, D1, S1, Fk(·),Encpk1(·)) to P0. P0 replaces each path P(�j) with

˜updatesj in D̃1, and replaces S̃1 with S̃ ′
1.

6. Combine all the shares. For b ∈ {0, 1}, Pb computes [[zd]]b :=
∑n

i=1[[zx,i]]b +∑m
j=1[[zy,j]]b.

7. Output generation: P1 sends [[zd]]1 to P0, who then computes Outd := Outd−1

+ [[zd]]0 + [[zd]]1.
P0 outputs Outd for both ΠUPSI-Delca and ΠUPSI-Delsum .

Fig. 9. Protocols ΠUPSI-Delca and ΠUPSI-Delsum for one-side UPSI with both addi-
tion and deletion functionalities FUPSI-Delca and ΠUPSI-Delsum , respectively, with
differences between the two protocols highlighted.

In Step 1, if the element xi is deleted from the set, the payload pi should be
−1 for ΠUPSI-Delca , and −vi for ΠUPSI-Delsum . If the element xi is added to the set,

218 S. Badrinarayanan et al.

the payload pi should be +1 for ΠUPSI-Delca , and vi for ΠUPSI-Delsum . In Step 2, P0

adds all the elements in X+
d ∪ X−

d to his tree using the oblivious data structure
with deletion. In Step 3, P0 queries each element xi ∈ X+

d ∪X−
d in the encrypted

tree of Y . For an element xi ∈ X+
d to be added to the set, the two parties run

ΠCombinePath to get a secret share of whether xi ∈ Y . For an element xi ∈ X−
d

to be deleted from the set, they need to slightly modify ΠCombinePath to get a
secret share of (−1) · (whether xi ∈ Y). This means xi was in the intersection
but deleted from P0’s set in this step, so PSI-Cardinality is decreased by 1. In
our protocol for ΠCombinePath (Fig. 7), P0 inputs an additional value (+1 or −1)
to be multiplied with the result, which is done homomorphically in the protocol.
Symmetrically, P1 queries each element yj ∈ X+

d ∪ X−
d in the encrypted tree of

(X ∪ X+
d) \ X−

d in Step 4. After this, P1 adds all the elements in Y +
d ∪ Y −

d to
her tree in Step 5 (recall that it must occur after Step 3).

Finally, the two parties add up all the secret shares in Step 6 and reveal
the output in Step 7. This protocol can be naturally extended to PSI-Sum if
P0 attaches payloads of value +vi or −vi for each element xi in UpdateTree and
ΠCombinePath. It is worth noting that parties only aggregate their secret shares at
the end of the protocol, hence our PSI-Sum protocol does not have to reveal the
cardinality of the intersection, which may be useful in certain applications.

Plain UPSI with Addition and Deletion. Interestingly, achieving plain
UPSI is more challenging than PSI-Cardinality and PSI-Sum with addition and
deletion. As briefly discussed in Sect. 1.2, one issue comes from the scenario
when an element x is added by one party while being deleted by the other
party on the same day. In our UPSI-Cardinality/Sum protocols, while adding
and deleting x from the intersection both occur on the same day, their effect on
the output cancels out when their secret shares are combined. However, in plain
UPSI, parties need to learn the exact elements to be added or deleted. Revealing
that x was first added and then deleted from the intersection on the same day
discloses more information than the ideal functionality.

To address this issue, we carefully arranged the sequence of the addition and
deletion operations, as presented in Fig. 10, such that deletions are dealt with in
Step 1 before additions in Step 2. In other words, if x is deleted by P0 while being
added by P1 on the same day, it will be first deleted from P0’s tree, so that it
won’t appear in the intersection when P1 queries x in the encrypted tree. Since
additions and deletions are done separately, both parties need to know |X−

d |,
|X+

d |, |Y −
d |, |Y +

d | on each day. This is different from UPSI-Cardinality/Sum
where they only know |X−

d ∪ X+
d | and |Y −

d ∪ Y +
d |, as reflected in the ideal

functionalities (Fig. 6).
Furthermore, unlike UPSI-Cardinality/Sum where parties sum up all the

secret shared results at the end of the protocol, they need to learn the results
for each individual element in plain UPSI. However, they cannot reveal directly
these results because doing so may disclose more information than the ideal
functionality. Specifically, if an element x is deleted from both sets on the same
day (hence deleted from the intersection), our protocol ensures that the deleted
x only appears once in either Step 1b or Step 1c, but it should be hidden from

Updatable Private Set Intersection Revisited 219

Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryption scheme

(pk0, sk0) ← KeyGen(1λ) and (pk1, sk1) ← KeyGen(1λ) and share the public keys. Both parties

agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, ˜D1, ˜S1) and

(˜D0, ˜S0, D1, S1), respectively. Initialize I0 = ∅.

Day d: P0 and P1 hold (D0, S0, ˜D1, ˜S1) and (˜D0, ˜S0, D1, S1), respectively. Let L0 and L1 be the

heights of D0 (and ˜D0), and D1 (and ˜D1) respectively. Both parties update L0 and L1 as they
update the trees below. Let X, Y denote the two parties’ sets at the end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their set and

X−
d , Y −

d of elements they are deleting. Denote n− = |X−
d |, n+ = |X+

d |, m− = |Y −
d |, m+ = |Y +

d |.
1. Deletion:

(a) X
−
d tree update. P0 sends ({(ũpdatesi, �i)}n−

i=1, ˜S′
0) ← UpdateTree(X−

d , {−xi : xi ∈
X−

d }n−
i=1, D0, S0, Fk(·), Encpk0 (·)) to P1. P1 replaces each path P(�i) with ũpdatesi in ˜D0,

and replaces ˜S0 with ˜S′
0.

(b) Secret shares for X
−
d ∩ Y . For all xi ∈ X−

d , run ΠCombinePath with P0 as Initiator inputting

(xi, −1, ˜pathi ← GetPath(˜D1, ˜S1, Fk(·), xi)) and P1 as Responder inputting sk1 correspond-

ing to pk1. They receive secret shares [[z−
x,i]]0 and [[z−

x,i]]1, respectively, where z−
x,i = −xi

if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(

X \ X
−
d

)

∩ Y
−
d . For all yj ∈ Y −

d , run ΠCombinePath with P0 as

Responder inputting sk0 corresponding to pk1 and P1 as Initiator inputting (yj , −1, ˜pathj ←
GetPath(˜D0, ˜S0, Fk(·), yj)). They receive secret shares [[z−

y,j]]0 and [[z−
y,j]]1, respectively,

where z−
y,j = −yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
−
d tree update. P1 sends ({(ũpdatesj , �j)}m−

j=1 , ˜S′
1) ← UpdateTree(Y −

d , {−yj : yj ∈
Y −

d }m−
j=1 , D1, S1, Fk(·), Encpk1 (·)) to P0. P0 replaces each path P(�j) with ũpdatesj in ˜D1,

and replaces ˜S1 with ˜S′
1.

2. Addition:

(a) X
+
d tree update. P0 sends ({(ũpdatesi, �i)}n+

i=1, ˜S′
0) ← UpdateTree(X+

d , {xi : xi ∈
X+

d }n+
i=1, D0, S0, Fk(·), Encpk0 (·)) to P1. P1 replaces each path P(�i) with ũpdatesi in ˜D0,

and replaces ˜S0 with ˜S′
0.

(b) Secret shares for X
+
d ∩

(

Y \ Y
−
d

)

. For all xi ∈ X+
d , run ΠCombinePath with P0 as

Initiator inputting (xi, 1, ˜pathi ← GetPath(˜D1, ˜S1, Fk(·), xi)) and P1 as Responder inputting

sk1 corresponding to pk1. They receive secret shares [[z+
x,i]]0 and [[z+

x,i]]1, respectively, where

z+
x,i = xi if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(

X ∪ X
+
d \ X

−
d

)

∩ Y
+
d . For all yj ∈ Y +

d , run ΠCombinePath with P0 as

Responder inputting sk0 corresponding to pk0 and P1 as Initiator inputting (yj , 1, ˜pathj ←
GetPath(˜D0, ˜S0, Fk(·), yj)). They receive secret shares [[z+

y,j]]0 and [[z+
y,j]]1, respectively,

where z+
y,j = yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
+
d tree update. P1 sends ({(ũpdatesj , �j)}m−

j=1 , ˜S′
1) ← UpdateTree(Y +

d , {yj : yj ∈
Y +

d }m+
j=1, D1, S1, Fk(·), Encpk1 (·)) to P0. P0 replaces each path P(�j) with ũpdatesj in ˜D1,

and replaces ˜S1 with ˜S′
1.

3. Output Generation:
(a) Let {[[zi]]0}Γ

i=1 and {[[zi]]1}Γ
i=1 be the shares received by P0 and P1 above, where Γ =

n− + m− + n+ + m+. P0 sends {Encpk0 ([[zi]]0)}Γ
i=1 to P1.

(b) P1 samples a random permutation π over [Γ]. P1 samples a random mask αi
$←− Zq for

each i ∈ [Γ] and homomorphically adds them to the encryptions received from P0. P1

sends the following to P0: π
(

{

(Encpk0 ([[zi]]0) ⊕ Encpk0 (αi)), [[zi]]1 − αi)
}Γ

i=1

)

.

(c) P0 decrypts the first element in each pair using sk0, and adds up each pair of shares to

learn the shuffled set {zj}Γ
j=1.

Output Id := Id−1 ∪ {zj |zj > 0} \ {−zj |zj < 0}.

Fig. 10. Protocol ΠUPSI-Delpsi for one-sided UPSI with addition and deletion func-
tionality FUPSI-Delpsi .

220 S. Badrinarayanan et al.

the parties whether the other party also deleted x on that day. To achieve this,
the parties re-randomize and shuffle the results in Step 3.

4.3 Complexity, Correctness and Security

UPSI-Cardinalty/Sum with Addition and Deletion. Our protocols for
ΠUPSI-Delca and ΠUPSI-Delsum are presented in Fig. 9. On each day d, let N,M be
the total number of additions and deletions of the two parties, respectively. Let
the update set sizes be n and m, respectively. Then both the computation and
communication complexity are O(n · (σ · log M + ρ) + m · (σ · log N + ρ)). We
state the theorem below and defer its proof to the full version of our paper [15].

Theorem 2. Assuming Π is a secure additively homomorphic encryption
scheme, F is a pseudorandom function, the protocols ΠUPSI-Delca ,ΠUPSI-Delsum pre-
sented in Fig. 9 securely realize the ideal functionalities FUPSI-Delca ,FUPSI-Delsum

defined in Fig. 6, respectively, against semi-honest adversaries.

Plain UPSI with Addition and Deletion. We present our protocol
ΠUPSI-Delpsi in Fig. 10. On each day d, let N,M be the total number of addi-
tions and deletions of the two parties, respectively. Let the update set sizes be n
and m, respectively. Then both the computation and communication complexity
are O(n · (σ · log M + ρ) + m · (σ · log N + ρ)). We state the theorem below and
defer its proof to the full version of our paper [15].

Theorem 3. Assuming Π is a secure additively homomorphic encryption
scheme, F is a pseudorandom function, the protocol ΠUPSI-Delpsi presented in
Fig. 10 securely realizes the ideal functionalities FUPSI-Delpsi defined in Fig. 6
against semi-honest adversaries.

5 Implementation Details and Optimizations

In this section, we discuss instantiations of the building blocks in our UPSI
protocols and optimizations to further improve the concrete efficiency.

Encryption Schemes. In the addition-only UPSI protocols ΠUPSI-Addca and
ΠUPSI-Addsum , we instantiate the (2, 2)-threshold additively homomorphic encryp-
tion scheme with exponential El Gamal encryption [29] to take advantage of effi-
cient elliptic curve operations. Recall that in this scheme, Enc(m) = (gr, hr ·gm)
where the public key consists of a group generator g and a random group ele-
ment h = gs with a secret key s. In the (2, 2)-threshold scheme, sk0 and sk1

form an additive secret share of s. Decryption of exponential El Gamal requires
computing the discrete logarithm of a group element gm, which is possible for
a bounded message space. In all our addition-only UPSI protocols presented in
Fig. 5, decryption occurs in Step 6. Observe that P0 does not have to fully decrypt
the first element in each tuple of m3; instead, it is sufficient to check whether

Updatable Private Set Intersection Revisited 221

the decrypted message is 0 or not. In particular, given a partially decrypted
ciphertext ĉ = (a, b), P0 can determine if the encrypted message is 0 by checking
if b = ask0 , without performing discrete logarithm. In ΠUPSI-Addsum , P0 needs to
fully decrypt m′

4, where the underlying message can be bounded by the maxi-
mum sum of associated values.

In ΠUPSI-Addcircuit , while exponential El Gamal can still be used for the first
ciphertext in m3, the (masked) payload messages are distributed uniformly over
the entire plaintext space, hence the payload messages are encrypted using (2, 2)-
threshold Paillier encryption [43] instead.

In our protocols with both addition and deletion presented in Sect. 4
(ΠUPSI-Delpsi in Fig. 10 and ΠUPSI-Delca ,ΠUPSI-Delsum in Fig. 9), El Gamal cannot
be utilized because all the ciphertexts are encrypting secret shares that are dis-
tributed across the message space. Instead, the additively homomorphic encryp-
tion scheme is instantiated with Paillier. This has an impact on the computation
time, as can be seen in Sect. 6.

Paillier Modulus Switching. Using Paillier in the deletion protocols intro-
duces an additional technical challenge. Recall that the plaintext space in Pail-
lier encryption is Zn for a public key n, which is different for P0’s and P1’s keys.
During our deletion protocols, parties perform ΠCombinePath for both pk0 = n0

(P0’s public key) and pk1 = n1 (P1’s public key) to get secret shares in both Zn0

and Zn1 . We discuss how to combine these secret shares over different moduli.
Let � be the maximum bit length required to represent a set element or

associated value. Recall that if set elements are of arbitrary length, we can apply
a hash function on all the elements and perform PSI on the hash outputs. In
our evaluation section, each party holds at most 222 elements, hence there are
at most 223 total elements. If we model the hash function as a random oracle, to
ensure collision probability lower than 2−κ for statistically security parameter
κ = 40, it is safe to bound � = 85. Let n be a Paillier public key and L be the
bit length of n, which is typically 1536 or 2048.

Consider a value r ∈ Z2� being secret shared as [[r]]0, [[r]]1 ∈ Zn. We
will convert this secret share into another secret share of r in Z2� . First, the
integer summation of [[r]]0 + [[r]]1 is either r or r + n, and the probability
Pr [[[r]]0 + [[r]]1 = r] ≤ Pr [[[r]]0 ≤ r] ≤ 2�−L � 2−κ. Therefore, with overwhelm-
ing probability [[r]]0 + [[r]]1 = r + n. Let s0 = [[r]]0 and s1 = [[r]]1 − n, then
s0 + s1 = r, where s0 > 0 and s1 < 0 as integers. If we represent s1 in two’s
complement format, then the lowest � bits of s0 + s1 should be r and the higher
order bits should all be 0. Therefore, we can take the � lowest order bits of s0

and s1 (in two’s complement format) to form a secret share of r in Z2� . Given
that the original secret shares [[r]]0, [[r]]1 ∈ Zn are distributed randomly over Zn,
the new shares are statistically close to a uniform distribution over Z2� because
� � L.

Realizing Flookup. While Flookup can be instantiated with a generic secure two-
party computation (2PC) protocol [32,58], we construct a protocol that achieves
better concrete efficiency, leveraging oblivious transfer (OT) and the efficient
OT extension [12,36]. Let (a,m0,m1) and b be the inputs to Flookup where m0 is

222 S. Badrinarayanan et al.

output when a = b and m1 otherwise. Before comparison, both parties compute
a hash function H : Zq → {0, 1}�gc on their inputs a and b. The parties then
run a garbled-circuit based equality testing to compute a binary secret share
[[c]] ∈ {0, 1} of H(a) ?= H(b). Then two parties run an OT protocol where Sender
inputs two messages (m1−[[c]]0 ,m[[c]]0) and Receiver inputs a choice bit [[c]]1. If
a = b, then [[c]]0 �= [[c]]1, in which case Receiver will receive m0, as desired in
Flookup; if a �= b, then [[c]]0 = [[c]]1 with overwhelming probability (see analysis
below), and the Responder will receive m1.

In this approach, we need the guarantee that if a �= b, then H(a) �= H(b) with
overwhelming probability, hence �gc should be sufficiently large. On the other
hand, the size of the equality testing circuit grows with �gc, so we want to choose
the smallest �gc such that the probability of a failure (i.e., that H(a) = H(b) for
a �= b) over the entire protocol is less than 2−κ. In all the benchmarks presented
in Sect. 6, there are at most 223 elements held by both parties, and each element
is compared against at most 29 elements in ΠCombinePath. Hence the total number
of Flookup invocations is bounded by 223 ·29 = 232. The overall failure probability
is no greater than 232 · 2−�gc , and we want to ensure statistical security, namely
232 · 2−�gc ≤ 2−κ for κ = 40. Therefore, we set �gc ≈ 32 + 40 = 72.

6 Evaluation

6.1 Experimental Setup

We implement all of our UPSI protocols in C++ and report their performance in
this section. We use the crypto library as part of Google’s open-sourced Private
Join and Compute project [7] for El Gamal and Paillier encryptions, Google’s
gRPC [2] for networking, and emp-tool [57] for instantiations of garbled circuits
and oblivious transfer (including OT extension). Benchmarks are run on a Google
Cloud [1] c2-standard-16 virtual machine with 64 GB of RAM. Each party is
executed on a single thread and communicate over localhost. The Linux tc
command is used to simulate the various network settings. We simulate the LAN
connection with 0.2 ms RTT network latency and 1Gbps network bandwidth. For
WAN connection, we set the RTT latency to be 80 ms and test on various network
bandwidths including 200 Mbps, 50 Mbps, and 5 Mbps. Our implementation is
available on GitHub: https://github.com/ruidazeng/upsi-revisited.

Addition-Only UPSI. To demonstrate the updatable property of our proto-
cols, we consider the setting where both parties begin with an empty set to
which Nd elements are added each day. Our benchmarks represent the perfor-
mance of the protocols on day (N

Nd
) where the size of each party’s set reaches

N .
We compare our plain UPSI protocols with the state-of-the-art semi-honest

PSI protocol [51] (RR22), and compare our UPSI for extended functionalities
(PSI-Cardinality, PSI-Sum, and Circuit-PSI) with the state-of-the-art Circuit-
PSI [20] (CGS22) and [51] (RR22), where, on day (N

Nd
), the parties run PSI

or Circuit-PSI on their full input sets of size N . Note that the Circuit-PSI

https://github.com/ruidazeng/upsi-revisited

Updatable Private Set Intersection Revisited 223

protocols [20,51] are also state-of-the-art for computing PSI-Cardinality or PSI-
Sum, with slight modifications to their protocols. In our comparison, we assume
these modifications do not incur extra overhead in their performance. We also
compare our addition-only plain UPSI with [16] to demonstrate the improvement
of worst-case complexity by plugging in our new oblivious data structure.

We don’t compare with the protocols specifically designed for PSI-Cardinality
or PSI-Sum [30,35] because these protocols are outperformed by [20,51]. A more
recent work [18] improves PSI and Circuit-PSI communication by 12% compared
to [51], but we don’t compare with it for three reasons: (1) their construction is
built on the Silver codes [26], which turns out to be insecure [52], (2) their source
code is not available online, and (3) even if their construction is instantiated
with secure codes, from our comparison with the other works, we expect our
protocols to perform better in certain settings as well. Note that [51] is also
instantiated with the insecure Silver codes, but their open-sourced library [50]
supports instantiating the construction with the state-of-the-art OT extension
from expand-accumulate codes [19], which is what we compare with.

UPSI with Addition and Deletion. In the setting with both addition and
deletion, standalone PSI protocols need only compute over elements that remain
in the input sets. In the extreme case where the every element is added and then
soon deleted, the input sets remain small and so the standalone PSI protocols
would likely be optimal. Alternatively, if the input sets are growing at a steady
rate, then our constructions may be best. These caveats should be understood
and application-specific context would play a role in choosing a solution.

In our benchmarks, we assume roughly 3/4 set operations are additions and
1/4 are deletions. We further assume that each element can only be added and
deleted at most once in each party’s set (i.e., an element cannot be re-added
once it has been deleted). In this case, the computation and communication
complexity of our protocols are O(Nd · log N).

Choice of N and Nd. In all of our experiments, we chose the values for N and
Nd that would best demonstrate the turning point where we become competitive.
Our protocols have more advantages when increasing the gap between N and
Nd. As N increases (e.g., for billion-sized sets [14,38]), we expect our protocol
to be dominant for more network settings and larger Nd values. In all of our
comparison tables, cells in green indicate the state-of-the-art performance, and

those in blue indicate that our protocols perform better.

Concrete Parameters. We set the computational security parameter λ = 128
and the statistical security parameter κ = 40. Following the analysis in [55], we
set the maximum tree node capacity σ = 4 and the maximum stash capacity
ρ = 89 to achieve failure probability of 2−80 for inserting a single element into
the tree. Even with our largest set size of 222, the combined failure probability
is bounded well below 2−κ. In protocols with addition and deletion, we allow
parties to add and delete each element at most once, and so we double both our
node size (to σ = 8) and stash size (to ρ = 178), and we defer the analysis to
the full version of our paper [15]. To enable P0 to efficiently decrypt m′

4 in Step

224 S. Badrinarayanan et al.

6 of ΠUPSI-Addsum (Fig. 5) with exponential El Gamal encryption, we bound the
PSI-Sum maximum value to be at most 10,000. Larger sums can either utilize
extra storage with a lookup table or switch to using Paillier encryption.

6.2 Addition-Only UPSI with Extended Functionalities

We compare our addition-only UPSI for extended functions (PSI-Cardinality,
PSI-Sum, and Circuit-PSI) with [51] (RR22) and [20] (CGS22) in Table 2 with
total set sizes ranging from 218 to 222 and update sizes from 26 to 210. Our com-
putation and communication complexity grows logarithmically with the total
set size and linearly with the update size Nd, so our protocols are more com-
petitive in larger input sizes and smaller update sizes. Note that [20] (CGS22)
presents two constructions (C-PSI1 and C-PSI2) with different trade offs between
computation and communication, but for all the parameters we choose, C-PSI2
outperforms C-PSI1 in all aspects. We were unable to run CGS22 with input size
of 222, so we use the communication cost and running time under LAN reported
in their paper [20], and estimate the running time in the WAN settings.

Communication: Since our communication grows linearly with Nd and only
logarithmically with N , our protocols have a communication advantage in set-
tings where Nd � N . For N = 218, our communication has an improvement of
2.2−13× when Nd = 26 in all functionalities, and when Nd = 28, ΠUPSI-Addca and
ΠUPSI-Addsum have an advantage 1.8 − 3.4×. For N = 220, our protocols outper-
form RR22 by 2.2 − 50× depending on the functionality and update size, with
only ΠUPSI-Addcircuit at Nd = 210 not showing an improvement. When N = 222,
that improvement extends to all settings and increases to a factor of 2.2−200×.

Computation: Our computational complexity also grows linearly with Nd and
logarithmically with N . Despite this, our computation times do not reflect this
asymptotic improvement as clearly, which stems from our usage of costly public
key operations. As a result, we show better performance only when N is suffi-
ciently large. In the LAN setting with N = 220, Nd = 26, our ΠUPSI-Addca and
ΠUPSI-Addsum are faster by 3.2× and 2.1×, respectively. By N = 222, Nd = 26 −28,
our ΠUPSI-Addca ,ΠUPSI-Addsum protocols outperform CGS22 by 1.4 − 15×.

End to End: Given these communication and computation trade offs, our
protocols perform best with more realistic network configurations with lower
network bandwidth. At N = 218, we begin to have competitive runtimes for
ΠUPSI-Addca and ΠUPSI-Addsum in the smaller update size Nd = 26. By N = 222

and Nd = 26, our protocols outperform in all network settings by 15 − 76× for
ΠUPSI-Addca , 11 − 46× for ΠUPSI-Addsum , and 1.8 − 9.4× for ΠUPSI-Addcircuit .

6.3 UPSI-Cardinality/Sum with Addition and Deletion

Our performance for ΠUPSI-Delca and ΠUPSI-Delsum in comparison with [20,51] is
presented in Table 3. Since the two protocols are implemented in the same way
except that P0’s inputting payloads are different, they have close experimental

Updatable Private Set Intersection Revisited 225

Table 2. Communication cost (in MB) and running time (in seconds) com-
paring our addition-only UPSI protocols to prior work. * indicates estimated
communication and running time.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

218

−
RR22 37.1 7.76 10.7 13.8 64.4

CGS22 (C-PSI1) 548 7.90 36.9 106 968

CGS22 (C-PSI2) 353 6.32 29.4 70.6 619

26

ΠUPSI-Addca

2.83 7.12 7.59 7.87 11.8

28 11.0 27.6 28.6 30.2 45.6

210 42.6 108 110 115 177

26

ΠUPSI-Addsum

5.35 11.0 11.8 12.5 20.1

28 22.3 45.9 47.2 49.3 82.0

210 87.1 178 184 195 321

26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110

28 67.0 318 327 330 427

210 248 1171 1182 1214 1570

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771

CGS22 (C-PSI2) 1408 24.3 92.8 268 3872

26

ΠUPSI-Addca

3.03 7.59 8.14 8.46 12.6

28 11.8 29.6 30.6 32.0 48.7

210 45.7 116 121 127 194

26

ΠUPSI-Addsum

5.70 11.8 12.5 13.1 21.5

28 22.3 45.9 47.2 49.3 82.0

210 87.1 178 184 195 321

26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110

28 67.0 318 327 330 427

210 264 1251 1263 1295 1674

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*

CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

26

ΠUPSI-Addca

3.22 8.09 9.02 9.33 14.3

28 12.6 31.6 32.7 34.2 52.7

210 48.9 123 127 133 205

26

ΠUPSI-Addsum

6.04 12.5 13.3 14.1 23.6

28 23.6 48.8 50.3 53.3 88.6

210 92.7 191 197 209 342

26

ΠUPSI-Addcircuit

18.1 86.6 88.4 90.2 116

28 71.1 339 343 352 454

210 280 1348 1341 1376 1780

226 S. Badrinarayanan et al.

results. We combine them in the table. This protocol is more expensive than
the addition-only ones, so we set smaller update sizes of Nd = 24, 25, 26 to
demonstrate the turning point where our protocols start to perform better. Our
experiments for input size N = 222 are run on a Google Cloud c2-standard-30
virtual machine with 120 GB of RAM as we run out of 64 GB memory.

Table 3. Communication cost (in MB) and running time (in seconds) of our
protocols for UPSI-Cardinality and UPSI-Sum with addition and deletion in
comparison with prior work. * indicates estimated communication and running
time.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771

CGS22 (C-PSI2) 1408 24.3 92.8 415 3872

24

ΠUPSI-Delca

ΠUPSI-Delsum

58.5 96.1 101 106 179

25 116 190 198 212 362

26 231 364 375 402 723

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*

CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

24

ΠUPSI-Delca

ΠUPSI-Delsum

61.4 103 107 113 191

25 122 203 210 223 383

26 243 385 399 429 765

Communication: Our communication complexity is O(Nd · log N), but the
improvements are not as stark, for two reasons: (1) the increased stash and node
sizes required, and (2) in addition to exchanging ciphertexts, the parties also
perform OT and garbled circuits. Despite this, our protocol still achieves lower
communication overhead in most settings. At N = 220, our communication has
an improvement of 1.3 − 2.5× when Nd ≤ 25. By N = 222, our communication
has an improvement of 2.5 − 9.9× for all update sizes.

Computation: Our performance under LAN is again dominated by public key
operations, but, unlike in the addition-only protocols, does not benefit from the
efficient El Gamal instantiations. Our computation has the same growth rate as
communication, and so we expect our performance to eventually beat CGS22
when N is sufficiently large.

End to End: As shown in Table 3, the end to end running time of our protocol
begins to outperform RR22 and CGS22 at 5 Mbps when N = 220, Nd = 24 by

Updatable Private Set Intersection Revisited 227

1.4×. By N = 222, we show an improvement of 1.3 − 5.1× at 5 Mbps for all
update sizes, and an improvement of 1.5× at 50 Mbps for Nd = 24.

6.4 UPSI for Plain PSI

We compare our plain UPSI protocols with [51] (RR22) in Table 4. We evaluate
two constructions in RR22 with different encoding sizes of 1.28n and 1.23n,
which have different trade offs in computation and communication, denoted as
fast and small respectively in the table. Note that our addition-only plain
UPSI (Fig. 5) contains only one encrypted tree, hence it is more efficient than
our other addition-only protocols. To best demonstrate our turning point, we
use Nd = 24, 26, 28, 210 for ΠUPSI-Addpsi and Nd = 24, 25, 26 for ΠUPSI-Delpsi

Table 4. Communication cost (in MB) and running time (in seconds) of our
protocols for plain UPSI in comparison with prior work.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

− RR22 (fast) 34.3 0.73 3.09 7.10 55.9

RR22 (small) 32.1 1.00 3.21 6.97 52.8

24

ΠUPSI-Addpsi

0.50 1.41 1.84 1.89 2.48

26 1.95 5.54 6.11 6.30 8.88

28 7.57 21.6 22.8 23.5 34.1

210 29.6 84.9 87.5 90.8 133

24

ΠUPSI-Delpsi

58.7 98.6 103 109 181

25 117 195 203 215 369

26 231 370 384 410 729

222

− RR22 (fast) 138 3.45 11.3 27.7 227

RR2 (small) 129 4.81 12.2 27.6 214

24

ΠUPSI-Addpsi

0.53 1.49 1.93 1.97 2.57

26 2.06 5.89 6.48 6.67 9.51

28 8.03 22.9 24.1 24.9 36.2

210 31.5 89.9 92.8 96.2 141

24

ΠUPSI-Delpsi

61.6 105 109 115 194

25 122 208 214 228 388

26 243 396 412 437 776

Communication: Similarly as in our other protocols, our communication com-
plexity in both ΠUPSI-Addpsi and ΠUPSI-Delpsi are O(Nd · log N). The communication

228 S. Badrinarayanan et al.

cost of ΠUPSI-Addpsi outperforms RR22 by 1.1−240× in all settings, whereas that
of ΠUPSI-Delpsi only beats RR22 by 1.1 − 2.1× with N = 222 and Nd = 24, 25.

Computation: Our computation complexity is similar to communication, lead-
ing to better performance when N is sufficiently large. Our addition-only proto-
col starts to outperforms RR22 when N = 222 and Nd = 24.

End to End: As the communication and computation discussed above, our
protocols are more competitive with larger input sizes, smaller updates, and in
networks with lower bandwidths. By N = 222 and Nd = 24, ΠUPSI-Addpsi achieves
an improvement of 2.3 − 88× in all network settings. It outperforms RR22 by
1.5× even when the update size grows to 210.

6.5 Worst-Case Logarithmic Complexity

We compare our one-sided addition-only plain UPSI protocol ΠUPSI-Addpsi with
that of [16] (BMX22). While BMX22 has amortized complexity of O(Nd · log N),
their worst-case complexity is O(N) when they update the leaf level of the tree.
By plugging in our new oblivious data structure, we significantly reduce the
worst-case complexity to O(Nd · log N). The worst-case performance (Max) and
amortized performance (Avg) are presented in Table 5 with N = 218, 220 and
Nd = 26, 28, 210. To analyze the amortized cost of BMX22, we start with two
sets each of size N . Then, on every new day, both parties add a new set of size

Table 5. Communication cost (in MB) and running time (in seconds) compar-
ing our addition-only plain UPSI protocol to the worst-case and average-case
performance of [16].

N Nd Protocol

Comm.(MB) Total Running Time(s)

Max Avg
LAN 200Mbps 50Mbps 5Mbps

Max Avg Max Avg Max Avg Max Avg

218

26 BMX22 120 1.09 79.6 4.30 85.9 4.53 100 4.59 272 5.88

ΠUPSI-Addpsi 1.82 5.17 6.24 6.31 8.70

28 BMX22 121 3.74 77.9 14.7 84.2 15.1 98.3 15.5 268 20.3

ΠUPSI-Addpsi 7.08 20.2 21.8 22.6 32.4

210 BMX22 122 12.5 86.4 49.0 87.7 49.9 95.1 51.3 268 67.2

ΠUPSI-Addpsi 27.7 79.4 81.5 84.7 124

220

26 BMX22 480 1.25 321 4.92 350 5.17 403 5.24 1090 6.76

ΠUPSI-Addpsi 1.95 5.54 6.11 6.30 8.88

28 BMX22 481 4.37 319 17.2 344 17.6 401 18.1 1090 23.7

ΠUPSI-Addpsi 7.57 21.6 22.8 23.5 34.1

210 BMX22 482 15.0 312 58.9 337 59.9 394 61.4 1090 81.1

ΠUPSI-Addpsi 29.6 84.9 87.5 90.8 133

Updatable Private Set Intersection Revisited 229

Nd to their existing sets and run the UPSI protocol. We repeat this process
over a period of several days (N

Nd
) until the total set size of each party reaches

2N . We report the amortized cost over these N
Nd

days.

Comparison. As shown in Table 5, our communication cost is comparable to
BMX22’s average-case while outperforming their worst-case by 4.4−246× in all
settings since their worst-case communication grows linearly with N . Similarly,
our computation cost is comparable to their average-case while outperforming
their worst-case by 1.1 − 58× in the LAN setting. As a result, the end to end
running time of our protocol outperforms BMX22’s worst-case in all settings by
1.1 − 123×, while having 1.1 − 1.8× overhead compared to their average-case.
Concerning the worst-case performance, our protocol has more advantages in
larger input sizes and smaller updates.

Acknowledgments. This project is supported in part by the NSF CNS Award
2247352, Brown Data Science Seed Grant, Meta Research Award, Google Research
Scholar Award, and Amazon Research Award.

References

1. Google Cloud. https://cloud.google.com.
2. Google Remote Procedure Call (gPRC). https://grpc.io.
3. Password Monitor: Safeguarding passwords in Microsoft Edge. https://www.

microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-
in-microsoft-edge/.

4. Password Monitoring – Apple Platform Security. https://support.apple.com/en-
al/guide/security/sec78e79fc3b/web.

5. Privacy-Preserving Contact Tracing. https://covid19.apple.com/contacttracing.
6. Private Intersection-Sum Protocols with Applications to Attributing Aggregate Ad

Conversions. https://research.google/pubs/pub51026/.
7. Private Join and Compute. https://github.com/google/private-join-and-compute.
8. Protect your accounts from data breaches with Password Checkup. https://

security.googleblog.com/2019/02/protect-your-accounts-from-data.html.
9. Technology preview: Private contact discovery for Signal. https://signal.org/blog/

private-contact-discovery/.
10. Aydin Abadi, Changyu Dong, Steven J. Murdoch, and Sotirios Terzis. Multi-party

updatable delegated private set intersection. In Ittay Eyal and Juan A. Garay,
editors, FC 2022, volume 13411 of LNCS, pages 100–119. Springer, Cham, May
2022.

11. Archita Agarwal, David Cash, Marilyn George, Seny Kamara, Tarik Moataz, and
Jaspal Singh. Updatable private set intersection from structured encryption. Cryp-
tology ePrint Archive, 2024. https://eprint.iacr.org/2024/1183.

12. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
535–548. ACM Press, November 2013.

13. Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gen-
naro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–
173. Springer, Berlin, Heidelberg, March 2011.

https://cloud.google.com
https://grpc.io
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://covid19.apple.com/contacttracing
https://research.google/pubs/pub51026/
https://github.com/google/private-join-and-compute
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://eprint.iacr.org/2024/1183

230 S. Badrinarayanan et al.

14. Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai Christodorescu, Vinjith
Nagaraja, Karan Patel, Srinivasan Raghuraman, Peter Rindal, Wei Sun, and
Minghua Xu. A plug-n-play framework for scaling private set intersection to billion-
sized sets. In Cryptology and Network Security - 22nd International Conference,
CANS 2023, Augusta, GA, USA, October 31 - November 2, 2023, Proceedings, vol-
ume 14342 of Lecture Notes in Computer Science, pages 443–467. Springer, 2023.

15. Saikrishna Badrinarayanan, Peihan Miao, Xinyi Shi, Max Tromanhauser, and
Ruida Zeng. Updatable private set intersection revisited: Extended functionalities,
deletion, and worst-case complexity. Cryptology ePrint Archive, 2024. https://
eprint.iacr.org/2024/1446.

16. Saikrishna Badrinarayanan, Peihan Miao, and Tiancheng Xie. Updatable private
set intersection. PoPETs, 2022(2):378–406, April 2022.

17. Alex Berke, Michiel A. Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Lar-
son, and Alex ’Sandy’ Pentland. Assessing disease exposure risk with location his-
tories and protecting privacy: A cryptographic approach in response to A global
pandemic. CoRR, abs/2003.14412, 2020.

18. Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal
oblivious key-value stores for efficient psi, PSU and volume-hiding multi-maps. In
Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Sym-
posium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023.

19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 603–633. Springer, Cham, August 2022.

20. Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear com-
plexity via relaxed batch OPPRF. PoPETs, 2022(1):353–372, January 2022.

21. Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer,
Cham, August 2020.

22. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1223–
1237. ACM Press, October 2018.

23. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homo-
morphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

24. Wutichai Chongchitmate, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. PSI from
ring-OLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 531–545. ACM Press, November 2022.

25. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic
encryption with reduced computation and communication. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 1135–1150. ACM Press, November 2021.

26. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of
LNCS, pages 502–534, Virtual Event, August 2021. Springer, Cham.

https://eprint.iacr.org/2024/1446
https://eprint.iacr.org/2024/1446

Updatable Private Set Intersection Revisited 231

27. Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection proto-
cols with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS,
pages 143–159. Springer, Berlin, Heidelberg, January 2010.

28. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets
big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM Press,
November 2013.

29. Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

30. Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jas-
pal Singh. Private set operations from oblivious switching. In Juan Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 591–617. Springer, Cham, May
2021.

31. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 395–425, Virtual Event, August 2021. Springer, Cham.

32. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

33. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are gar-
bled circuits better than custom protocols? In NDSS 2012. The Internet Society,
February 2012.

34. Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Stuart I. Feldman and Michael P. Wellman,
editors, Proceedings of the First ACM Conference on Electronic Commerce (EC-
99), Denver, CO, USA, November 3-5, 1999, pages 78–86. ACM, 1999.

35. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying
secure computing: Private intersection-sum-with-cardinality. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-
11, 2020, pages 370–389. IEEE, 2020.

36. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 145–161. Springer, Berlin, Heidelberg, August 2003.

37. Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. Mobile private contact discovery at scale. In Nadia Heninger
and Patrick Traynor, editors, USENIX Security 2019, pages 1447–1464. USENIX
Association, August 2019.

38. Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. Scaling
private set intersection to billion-element sets. In Nicolas Christin and Reihaneh
Safavi-Naini, editors, Financial Cryptography and Data Security, pages 195–215,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

39. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

40. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, April 7-9,
1986, pages 134–137. IEEE Computer Society, 1986.

232 S. Badrinarayanan et al.

41. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-
sided malicious security for private intersection-sum with cardinality. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 3–33. Springer, Cham, August 2020.

42. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT
extension with application to private set intersection. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Cham, February
2017.

43. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer, 1999.

44. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT
extension with application to private set intersection. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Cham, February
2017.

45. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer,
Cham, May 2020.

46. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten
Holz, editors, USENIX Security 2015, pages 515–530. USENIX Association, August
2015.

47. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Effi-
cient circuit-based PSI with linear communication. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–
153. Springer, Cham, May 2019.

48. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157.
Springer, Cham, April / May 2018.

49. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set inter-
section based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 797–812. USENIX Association, August 2014.

50. Srinivasan Raghuraman and Peter Rindal. VOLE-PSI. https://github.com/Visa-
Research/volepsi.

51. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS
and subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 2505–2517. ACM Press, November 2022.

52. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute
codes for pseudorandom correlation generators from LPN. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 602–632. Springer, Cham, August 2023.

53. Peter Rindal and Mike Rosulek. Improved private set intersection against malicious
adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Cham,
April / May 2017.

https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi

Updatable Private Set Intersection Revisited 233

54. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-
PSI from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930. Springer,
Cham, October 2021.

55. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 299–310. ACM Press, November 2013.

56. Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione:
Lightweight contact tracing with strong privacy. IEEE Data Eng. Bull., 43(2):95–
107, 2020.

57. Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Mul-
tiParty computation toolkit. https://github.com/emp-toolkit, 2016.

58. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

https://github.com/emp-toolkit

Honest Majority GOD MPC
with O(depth(C)) Rounds and Low Online

Communication

Amit Agarwal1(B), Alexander Bienstock2, Ivan Damgård3,
and Daniel Escudero2

1 University of Illinois Urbana-Champaign, Champaign, USA
amita2@illinois.edu

2 J.P. Morgan AI Research and J.P. Morgan AlgoCRYPT CoE, New York, USA
3 Aarhus University, Aarhus, Denmark

Abstract. In the context of secure multiparty computation (MPC) pro-
tocols with guaranteed output delivery (GOD) for the honest majority
setting, the state-of-the-art in terms of communication is the work of
(Goyal et al. CRYPTO’20), which communicates O(n|C|) field elements,
where |C| is the size of the circuit being computed and n is the number of
parties. Their round complexity, as usual in secret-sharing based MPC,
is proportional to O(depth(C)), but only in the optimistic case where
there is no cheating. Under attack, the number of rounds can increase
to Ω(n2) before honest parties receive output, which is undesired for
shallow circuits with depth(C) � n2. In contrast, other protocols that
only require O(depth(C)) rounds even in the worst case exist, but the
state-of-the-art from (Choudhury and Patra, Transactions on Informa-
tion Theory, 2017) still requires Ω(n4|C|) communication in the offline
phase, and Ω(n3|C|) in the online (for both point-to-point and broadcast
channels). We see there exists a tension between efficient communication
and number of rounds. For reference, the recent work of (Abraham et al.,
EUROCRYPT’23) shows that for perfect security and t < n/3, protocols
with both linear communication and O(depth(C)) rounds exist.

We address this state of affairs by presenting a novel honest majority
GOD protocol that maintains O(depth(C)) rounds, even under attack,
while improving over the communication of the most efficient protocol
in this setting by Choudhury and Patra. More precisely, our protocol
has point-to-point (P2P) online communication of O(n|C|), accompanied
by O(n|C|) broadcasted (BC) elements, while the offline has O(n3|C|)
P2P communication with O(n3|C|) BC. This improves over the previ-
ous best result, and reduces the tension between communication and
round complexity. Our protocol is achieved via a careful use of packed
secret-sharing in order to improve the communication of existing veri-
fiable secret-sharing approaches, although at the expense of weakening
their robust guarantees: reconstruction of shared values may fail, but
only if the adversary gives away the identities of many corrupt parties.
We show that this less powerful notion is still useful for MPC, and we
use this as a core building block in our construction. Using this weaker

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 234–265, 2025.
https://doi.org/10.1007/978-981-96-0938-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_8&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_8

Honest Majority GOD MPC with O(depth(C)) Rounds 235

VSS, we adapt the recent secure-with-abort Turbopack protocol (Escud-
ero et al. CCS’22) to the GOD setting without significantly sacrificing
in efficiency.

1 Introduction

Secure multiparty computation, or MPC for short, is a set of tools that enable
a set of parties P1, . . . , Pn, each Pi holding an input xi, to compute any func-
tion y = f(x1, . . . , xn) while revealing only the output y. This holds even if an
adversary corrupts t out of the n parties, and if the protocol is what is known as
actively secure, then security holds even if the corrupt parties deviate arbitrarily
from the protocol execution. A particularly interesting setting, which is the focus
of this work, is the honest majority case where it is assumed that t < n/2, that
is, the adversary only corrupts a minority of the parties. In this case, the strong
property of guaranteed output delivery (G.O.D.) can be achieved, which ensures
the honest parties receive the output y in spite of any malicious behavior by the
corrupt parties. Furthermore, if one is willing to assume the existence of a broad-
cast channel, the whole protocol can be made unconditionally secure, meaning it
is resistant against unbounded adversaries and it only has a negligible amount of
error. This is in contrast to security with abort, which ensures privacy but may
not guarantee output provision.

G.O.D. is the strongest security notion for MPC and very important in prac-
tice as it removes all problems with deciding who failed if the protocol aborts.
Hence, optimizing the efficiency of G.O.D. protocols has been a topic of study
in recent literature. First, as usual in MPC, let us model the computation to
be carried out as an arithmetic circuit C over a large-enough finite field F. Let
us begin by discussing the case in which t < n/3, which is weaker than honest
majority t < n/2 as it tolerates less corruptions. Earlier works such as BGW [7]
and (concurrently) [9] show that G.O.D. is possible for t < n/3 with perfect
security, having a communication complexity (measured in the total number of
field elements) of O(n4|C|). Several follow-up works were devoted to improving
the communication. Towards such goal, [19] introduces the player elimination
framework, which reduces communication to O(n3|C|), and building on top of
this framework, the works of [6,17] get linear communication O(n|C|). Unfor-
tunately, the number of rounds—which is also an important metric directly
related to end-to-end performance—of protocols based on player elimination
is proportional to O(depth(C)), but only in the optimistic case where there is
no cheating. When the corrupt parties misbehave, the protocol enters a “recov-
ery state” and eventually resumes after a previous “checkpoint”. This process
can happen Ω(n) times, and overall it adds Ω(n) rounds to the round-count,
which is particularly impactful when depth(|C|) = o(n). For high latency set-
tings such as wide area networks this can drastically affect the performance of
the protocol. Studying the communication of t < n/3 MPC with O(depth(C))
rounds (independently of n, even in the worst case) has been a topic of study of
recent works: [1] achieved O(n3|C|) communication, and the recent work of [2]

236 A. Agarwal et al.

lowered it to O(n|C|), matching (asymptotically) that of the previous state-of-
the-art [6,17], but crucially, without paying any additive overhead in n on the
number of rounds.

The above discussion is for the t < n/3 setting, which is considerably easier
than the n/3 < t < n/2 regime. For t < n/2, it is known that G.O.D. is possible
assuming a broadcast channel, and the early work by Rabin and Ben-Or [24]
achieved O(depth(C)) rounds even in the worst case, but it is very expensive
in terms of communication. For instance, its communication is higher than that
of [11], which is O(n5|C|) + O(n3) × BC, where the term multiplying the BC
denotes the number of elements sent over the broadcast channel. The work of [11]
however has a number of rounds that, in the worst case, can become O(n ·
depth(C)). In the last two decades several subsequent works approached the task
of improving communication [5,8,18], culminating in the current state-of-the-art
by Goyal, Song, and Zhu [18], which has O(n|C|+O(n3)×BC) communication.
All these works require O(depth(|C|)) rounds in the optimistic case, but in case
of cheating, the “recovery state” adds not only Ω(n), but Ω(n2) extra rounds,1
which is extremely harmful for circuits with depth(C) � n2. Currently, and
unlike the t < n/3, removing this round-count overhead can only be done at the
expense of increasing communication. Indeed, the most recent work exploring
the task of O(depth(C))-round honest majority G.O.D. MPC is [10], which has
a communication of O(n4|C|) +O(n4|C|)×BC in total, with an online phase of
O(n3|C|) + O(n3|C|) × BC.

Towards improving this state of affairs, recent work by Escudero and Fehr [14]
presents an honest majority G.O.D. protocol that achieves O(depth(C)) rounds,
independent of n, and simultaneously has linear communication O(n|C|)+0×BC.
However, this is done in the preprocessing model where the parties are assumed
to have certain correlated randomness independent of their inputs available for
free. When instantiating this preprocessing with a protocol that has number
of rounds independent of n—like the one from [10]—the resulting preprocessing
complexity would be O(|C|n6)+O(|C|n6)×BC, which is too large. This situation
leads to the following interesting and challenging question:

How communication-efficient can honest majority G.O.D. protocols be, while
using only O(depth(|C|)) rounds even under attack (that is, independent of n)?

1.1 Our Contribution

In this work we make progress on this question by providing an MPC protocol
in the honest majority case t < n/2 that has O(depth(C)) rounds even in the
worst case, while improving over the communication of the state-of-the-art [10] in
this regime. We achieve a communication of O(n|C| + depth(C)n3) + O(n|C| +
depth(C)n3) × BC in the online phase (a factor of n2 improvement), and for
the offline phase our communication is O(n3|C|) + O(n3|C|) × BC (a factor of
1 In t < n/2 the recovery is done with a technique called dispute control [5], which is

repeated n2 times in the worst case, in contrast to player elimination—only suitable
for t < n/3—which is repeated n times.

Honest Majority GOD MPC with O(depth(C)) Rounds 237

n improvement). Table 1 presents our communication in relation to the work
of [10], as well as the previous works that achieved G.O.D. with an amount of
rounds proportional to depth(C), independent of n.

Interestingly, for the online phase, our protocol matches the peer-to-peer
communication of the best-known protocol [18], which is linear O(n|C|) (also
believed to be optimal [13]).2 This constitutes significant progress in the direc-
tion of matching the communication of G.O.D. protocols for t < n/2 with
O(depth(C)) rounds, like ours, with protocols that add O(n2) rounds in the
worst case, like [18]. We recall that for t < n/3 and perfect security, the task
of designing protocols with O(depth(C)) rounds whose communication matches
that of O(depth(C) + n)-round protocols was only recently settled in [2].

Remark 1 (On the term depth(C) · n3). Our online communication is O(n|C| +
depth(C)n3) + O(n|C| + depth(C)n3) × BC. Note that the term depth(C)n3 is
absorbed by |C|n, as long as |C|/depth(C) = Ω(n2), in which case the communi-
cation becomes O(|C|n)+O(|C|n)×BC. This can be satisfied for instance if the
circuit has uniform width Θ(n2), but this is not strictly necessary: for example,
a few layers can have a very small amount of multiplication gates (say o(n)),
while some others may have many more gates (say ≈ n3), and the property
|C|/depth(C) = Ω(n2) may still be satisfied.

Table 1. Works with G.O.D. for t < n/2, and O(depth(C)) rounds (independent of n,
even in the worst case). “N/A” in the offline phase means these works did not consider
an offline/online separation. We ignore poly(n) terms that do not depend on C. ∗ The
work of [14] does not instantiate the offline phase. The complexity reported is obtained
by calculating the cost of generating their preprocessing using our protocol. For this,
we take their preprocessing size, n2|C|, and multiply it by the total communication of
our protocol, leading to O(n3 · n2|C|).

Work Offline Comm. Online Comm.

[24] N/A ω(|C|n5) + ω(|C|n5) × BC

[10] O(|C|n4) + O(|C|n4) × BC O(|C|n3) + O(|C|n3) × BC

[14] O(|C|n5) + O(|C|n5) × BC ∗ O(|C|n + depth(C)n3) + 0 × BC

Ours O(|C|n3) + O(|C|n3) × BC
O(|C|n + depth(C)n3)+

O(|C|n + depth(C)n3) × BC

2 Note that our term O(|C|n) × BC (which is not present in [18]) would require all
parties to receive at least n|C| messages, which in practice means a communication
of at least n2|C|, widening the gap between the protocol from [18] and ours. See also
Remark 1.

238 A. Agarwal et al.

1.2 Other Related Work

We have already discussed the works of [5,8,10,11,14,18]—which are the works
most related to us—as well as their comparison with respect to our work. We
present in the full version a more detailed description of how these protocols
work. As other related literature, an important mention is [22], which presents a
series of compilers which, among other things, enable “upgrading” secure-with-
abort protocols into G.O.D.. Their approach also results in a protocol whose
round complexity depends on n, since it consists of identifying corrupt parties
and then re-running certain parts of the protocol.

Using information-theoretic randomized encodings [20,21], it is possible to
achieve statistically secure MPC in the n = 2t + 1 setting with constant round
complexity [3] (i.e. the round complexity is independent of both n and depth(C))
where the constant is 4. This is akin to how Garbled Circuits (which are an
instance of computationally secure randomized encoding) enable us to achieve
constant round complexity in the computational setting. In such protocols, the
communication complexity is always proportional to the size of the randomized
encoding. With current known techniques, the size of information-theoretic ran-
domized encoding grows exponentially with the circuit depth and reducing this
exponential dependency has been a big open problem for the past two decades.
Hence, this approach of using randomized encodings to get low round complexity
is currently practical only for NC1 circuits.

1.3 Overview of Our Techniques

We discuss at a very high level how our final protocol is achieved. First, to avoid
the extra n2 rounds, we must deviate from the dispute-control paradigm used
in all communication-efficient works [5,8,18]. Instead, let us take as a starting
point the protocol from [10, Section VI], which is more communication heavy
but removes the round dependency on n. In [10] the authors make use of the
verifiable secret-sharing (VSS) ideas from [11,24], which enable parties to obtain
sharings [s] of a secret in such a way that the honest parties can always recon-
struct the given secret s, using a constant number of rounds. The authors make
use of multiplication triples [4], produced in an offline phase. With this pre-
processing at hand, the online phase is comprised only of linear combinations
and reconstruction of secret-shared data, which is possible thanks to the VSS
guarantees. The main contribution of [10] lies in the generation of the multiplica-
tion triples. Traditionally, the most efficient approach for triple generation is the
first generating so-called double-sharings [12], which can be later used to obtain
triples. However, this approach requires more than what VSS can provide: there
are certain proofs of correctness that the parties must perform, which ultimately
add substantially to the final costs (intuitively, these complexities come from
local multiplication increasing the degree from t to 2t). Instead, the work of [10]
introduces a novel approach which only relies on the basic properties of VSS,
letting each party contribute with triples directly, which are later checked for cor-
rectness and “combined” in such a way that truly random triples are produced.

Honest Majority GOD MPC with O(depth(C)) Rounds 239

Intuitively, this only relies on sharing, linear combinations, and reconstructions,
and hence can be handled by the underlying VSS alone. Now, this approach
is less communication-efficient than using double-sharings, but it is much more
suitable for reducing the number of rounds. From the above, in order to improve
the communication complexity of [10], which maintains the number of rounds
we are looking for, it is imperative to improve that of the underlying VSS.

Optimizing—But Weakening—Verifiable Secret-Sharing. We start from
the VSS used in [10], which is that from [24] in conjunction with the so-
called information-checking protocol (ICP) from [11]. Intuitively, these tech-
niques involve distributing Shamir sharings, and additionally, distributing shares
of each share to the parties. The shares-of-shares exist so that, when a party
announces a share, it can prove to the others this is correct by also showing
them the shares of the announced share, which the parties can contrast with
the share-of-share they have internally. Now, a corrupt party may complain of a
correctly announced share, and to prevent this the ICP machinery is used: that
ensures that (1) honest parties can always prove the correctness of their shares,
and (2) corrupt parties who modify their shares are identified. The degree of the
polynomials is t, which requires t + 1 shares to be reconstructed. By using the
“signatures”, the ≤ t + 1 correct shares coming from the honest shares can be
identified, which allows for the reconstruction of the secret. Inspired by [1], our
approach to improve the complexity of this VSS is to make use of packed secret-
sharing [16], which allows for having � ≥ 1 secrets instead of only one, without
penalty in the communication costs. However, using packed secret-sharing comes
at the expense of increasing the degree of the underlying polynomials from t to
t+(�−1), and in particular reconstruction now requires more shares than honest
parties. This is not a problem in [1], which is set in t < n/3, but in our t < n/2
regime extra care is needed.

We use packed secret-sharing twice, resulting in packed vectors of dimension
Θ(n2). First, we use degree (t + (� − 1)) to secret-share � = Θ(n) secrets at
once (we will specify the exact value of �), but crucially, we use degree-t for
the “shares of shares”, which ensures the t + 1 honest parties alone still have
enough joint information to reconstruct the secrets. Now, each share-of-share is
signed using the ICP from [11], which at a high level works by secret-sharing the
message to be signed towards the parties, so that later on when this message is
revealed, the parties can jointly verify if this is consistent with the shares they
hold. In [11] degree-t polynomials are used, but a useful observation from [23]
is that this can be improved by using packed secret-sharing, signing multiple
messages towards multiple verifiers simultaneously. We adapt their ideas to our
setting. This requires a batch of m = Θ(n) shares to be signed, each of which
corresponds to � = Θ(n) secrets, so overall our VSS works on vectors of dimension
m� = Θ(n2).

Finally, an important remark is that our construction does not directly
instantiate the notion of VSS. Increasing the degree from t to t + (� − 1) or,
as we will see, t+2(�−1) in some cases, comes at the expense of corrupt parties

240 A. Agarwal et al.

being able to disrupt the reconstruction if they decide to misbehave or abort.
However, we still guarantee the crucial property that such corrupt parties are
identified. We call this weaker notion detectable secret-sharing (DSS), and one
of our core contributions, on top of the formal definition of such primitive as a
UC functionality and its efficient instantiation, is showing that this weaker form
of VSS can still be useful for our goal of MPC with O(depth(C)) rounds. We
discuss this below.

1.4 Our MPC Protocol

Since our core secret-sharing primitive operates on vectors instead of individual
values, we cannot make direct use of the MPC approach from [10], which follows
the standard Beaver triple paradigm [4]. Instead, we adapt the ideas from the
recent Turbopack work by Escudero et al. [15], which shows how to efficiently
make use of packed secret-sharing, supporting arbitrary circuits without notice-
able overhead. The details are provided in Sect. 5, but at a high level, there are
two main components required in Turbopack. In the offline phase, the main chal-
lenge is generating packed multiplication triples, while in the online phase, the
main challenge is reconstructing degree-(t+2(�−1)) secrets. For the first part, we
show how to adapt the triple extraction ideas from [10], which quite surprisingly
turn out to also work for the packed secret-sharing regime. The most interesting
and challenging part is addressing the degree-(t + 2(� − 1)) reconstructions.

Recall that in our DSS, the adversary may completely halt the reconstruc-
tion of degree-(t + 2(� − 1)) secrets. This is because, even though as in [11,24]
our scheme guarantees that honest parties can convince the others that their
announced shares are correct, and also that corrupt parties announcing incor-
rect shares are identified, given that there are only t+1 honest parties, only t+1
out of the t + 2(� − 1) + 1 shares needed for reconstruction are guaranteed to
be announced. That is, there could be 2(� − 1) shares missing. Our core obser-
vation is the following. If the t corrupt parties collectively send less than these
2(�−1) shares, hence halting reconstruction, it is because more than t−2(�−1)
cheaters misbehaved, and crucially, their identities become known due to the
properties of our DSS. At this point these parties can be removed, restarting the
computation with threshold t′ < t − (t − 2(� − 1)) and total number of parties
n′ < n−(t−2(�−1)). This time, the corruption ratio is t′/n′, and it turns out we
can upper bounded it by 1/3 as long as we take � ≤ n+6

8 . The rest of the protocol
is now set in the t′ < n′/3 regime, point in which we can apply any existing work
for that threshold to finish the computation. In particular, we can use the recent
work of [1], which achieves perfect security but most importantly, requires linear
communication and has no overhead in terms of the number of rounds.3 Note
that the adversary can only cause an abort-and-restart once, hence keeping the
overall number of rounds O(depth(C)).
3 Furthermore, this protocol can presumably be optimized by avoiding the instantia-

tion of the broadcast channel—which comes “for free” in our setting—and relaxing
perfect security to statistical, but we find it to be unnecessary for our feasibility
results.

Honest Majority GOD MPC with O(depth(C)) Rounds 241

There is a subtle issue when instantiating this novel idea. Restarting the
protocol from scratch may allow the parties to change their inputs, which is
not secure if in the first run the adversary was able to learn some information
about the output. We propose two ways to address this, which perform differently
depending on the amount of inputs versus amount of outputs. The first approach
is more suitable if there are not many inputs, and consists of having the parties
provide sharings of their inputs not only in our DSS scheme—which is packed
and does not guarantee reconstruction—but also in the original VSS of [11,24],
while proving these two are consistent. In this way, if there is a restart, the
parties can provide shares of the inputs for the t′ < n′/3 protocol, while proving
they hold the same secrets as the initial VSS sharings.

The second approach is more adequate if there are not many outputs. First,
we note that it is fine to restart the computation while allowing the parties
to change their inputs as long as this happens before the output phase, since
in this case no sensitive leakage occurs. Now, we modify the output phase as
follows: instead of attempting straight reconstruction of the degree-(t+2(�−1))
output sharings, the parties first convert the packed sharing of the outputs in the
main protocol into a non-packed VSS representation. We design this conversion
mechanism so that it does not leak anything about the outputs in case it aborts.
This way, there are two potential outcomes: either the conversion succeeds, point
in which the outputs are VSS’ed and then can be reconstructed with no abort, or
the conversion fails, which does not leak anything and hence it is fine to restart
the computation with t′ < n′/3, even if the parties change their inputs. Details
on these protocols are given in the full version.

2 Preliminaries

Let κ be a statistical security parameter. We consider a finite field F with |F| =
ω(poly(κ)), so that poly(κ)/|F| = negl(κ). Given two strings x and y, we
denote by x‖y the concatenation of the two. We denote length-� vectors as v =
(v1, . . . , v�)ᵀ ∈ F

�. Given two vectors u = (u1, . . . , u�)ᵀ,v = (v1, . . . , v�)ᵀ ∈ F
�,

we define u∗v = (u1 ·v1, . . . , u� ·v�)ᵀ as the component-wise multiplication of u
and v. We denote m × n matrices as M ∈ F

�. For any given C ⊆ [n], we denote
by MC the sub-matrix of M corresponding to the columns with indices C. We
study MPC amongst n parties in the setting where the number of corrupted
parties is exactly t with n = 2t + 1. We denote the set of honest parties as
Hon ⊆ [n] and the set of corrupted parties as Corr ⊆ [n]. We say that a protocol
has communication complexity P2P(M)+N ×BC(L) if it sends M field elements
in total over the peer-to-peer channels, and it calls the broadcast channel N times
with messages containing L field elements. A degree-d univariate polynomial over
F is of the form f(x) =

∑d
i=0 cix

i, where ci ∈ F. We say that a collection of
field elements zi1 , . . . , zim

for m > d and unique i1, . . . , im ∈ F is consistent with
a degree-d polynomial, if there exists some degree-d polynomial f(x) such that
f(ij) = zij

for ij ∈ [m]. A degree-(dx, dy) bivariate polynomial over F is of the
form F (x, y) =

∑dx

i=0

∑dy

j=0 ci,jx
iyj where ci,j ∈ F. For i ∈ F, we can isolate

242 A. Agarwal et al.

univariate polynomials fi(x) = F (x, i) and gi(y) = F (i, y) of degree dx and dy

respectively. In this paper, we will always assume that dx = max{dx, dy}. In the
full version, we present some basic lemmas regarding bivariate polynomials.

3 Linear Batched Information-Checking Signatures

In this section, we introduce a crucial building block that will be used in our
packed detectable secret sharing scheme: linear batched information-checking
signatures (IC signatures). This primitive and its construction are based on that
of [23], which in turn are based on that of [11,24]. A batched IC signature pro-
tocol is executed amongst n parties and allows a dealer D to send a “signature”
σ of a batch To ensure that a corrupt INT (or a corrupt D) does not cheat, the
n parties, who we call verifiers, each get a “share” of the signature. Importantly,
the corrupted parties’ shares should together not reveal anything about s. Later,
INT can reveal the signature σ of s to the n verifiers. Using the shares previ-
ously received, the verifiers then decide whether or not to accept the signature.
In fact, we allow D to sign many such batches, based on which INT can add
their corresponding signatures together, to get a signature of their sum. We also
allow INT to compute the signature of a signed batch of secrets component-wise
multiplied with some public vector u ∈ F

�, using the signature of the original
batch.

3.1 IC Signature Ideal Functionality

We now formally introduce our ideal functionality for linear batched IC sig-
natures. The properties that we want from an IC signature are intuitively as
follows: (i) If the dealer D is honest, then with all-but-negligible probability,
the honest verifiers will only accept a signature σ on the batch s input by D;
(ii) If the intermediary INT is honest, then after the signing phase, INT knows
a signature σ on some batch s that the honest verifiers will later accept with
all-but-negligible probability; and (iii) If both the dealer D and intermediary
INT are honest, then nothing about s is revealed to the corrupt verifiers before
the reveal phase. Note that if both the dealer D and intermediary INT are cor-
rupted, we guarantee nothing about the signatures, and in fact, INT can decide
to reveal a signature σ for any s of the adversary’s choosing.

Furthermore, we require the following linearity properties from our IC signa-
tures: (i) Given a signature σ1 on s1 and a signature σ2 on s2, we can define a
signature σ3 on s1 + s2 with the above properties; and (ii) Given a signature σ
on s and a public vector u ∈ F

�, we can define a signature σ′ on s ∗ u with the
above properties, only if σ is a linear combination of other signatures that were
not themselves multiplied by a public vector.

This latter property of multiplication with a public vector is our main contri-
bution to IC signatures. We now present the ideal functionality Fbatch-IC, which
captures the above properties (Note: as far as we are aware, there has been no

Honest Majority GOD MPC with O(depth(C)) Rounds 243

formal treatment in UC, or any other simulation-based framework, of IC signa-
tures individually in prior works).

Functionality 1: Fbatch-IC

This functionality is parameterized by � ∈ N and n parties, two of which are
the dealer D and intermediary INT . It allows the dealer D to create signatures
on several vectors s ∈ F

�, add them together, and multiply them with public
vectors u ∈ F

�.

1. In the initialization phase, if either the dealer D or intermediary INT are
corrupted, then Fbatch-IC receives Corr from the adversary. If Corr = 1 then
Fbatch-IC outputs this to all parties and for all future inputs (sign, s, sid)
from D, simply outputs s to all parties, and for all other inputs, ignores
them.

2. On input (sign, s, sid) from the dealer D, where s ∈ F
�, Fbatch-IC first stores

isMult ← 0 and s with sid, then outputs (s, sid) to INT , and outputs
(signed, sid) to all other parties. Then, if the dealer D is corrupted, Fbatch-IC

receives s′ from the adversary, and stores it with sid. Finally, if s′ �= s,
Fbatch-IC outputs (verified, s′, sid) to all other parties; otherwise, it outputs
(verified, sid) to all other parties.

3. On input (reveal, sid) from INT , Fbatch-IC first sends s stored at sid to the
adversary. Then:
(a) If INT is corrupted and D is honest, Fbatch-IC asks the adversary

whether to reject. If so, it outputs (reject, sid) to all parties. Other-
wise, it outputs (s, sid) to all parties.

(b) If INT and D are corrupted, Fbatch-IC asks the adversary whether to
reject. If so, it outputs (reject, sid) to all parties. Otherwise, it receives
s′ and outputs (s′, sid) to all parties.

(c) Otherwise, Fbatch-IC outputs (s, sid) to all parties.
4. On input (add, sid1, sid2, sid3) from all parties, let isMult3 ← 1, if isMult1 =

1 or isMult2 = 1; and isMult3 ← 0, otherwise; where s1 and isMult1 are
stored with sid1 and s2 and isMult2 are stored with sid2. Fbatch-IC stores
s1 + s2 and isMult3 with sid3.

5. On input (mult, u, sid, sid′) from all parties, where s and isMult = 0 are
stored with sid, and u ∈ F

�, Fbatch-IC stores s ∗ u and isMult ← 1 with sid′.
6. On input (corr, D) or (corr, INT) from the adversary, Fbatch-IC sends to the

adversary all (sid, s) pairs that have not been revealed yet.

3.2 IC Signature Protocol

Now, we present our protocol Πbatch-IC which instantiates Fbatch-IC. In the initial-
ization phase, the dealer D first sends to each party Pi, random αi ←$ F, for
i ∈ [n].

Signing. When signing some s ∈ F
�, the dealer D samples a random degree-

(t + � − 1) polynomial f(x) such that f(−j + 1) = sj for j ∈ [�] and a random

244 A. Agarwal et al.

degree-(t + � − 1) polynomial r(x). D then sends f(x) and r(x) to INT , and
to each other party Pi, vi ← f(αi) and ri ← r(αi). Notice that since f(x) is of
degree-(t+�−1), an adversary’s t points {vj}j∈Corr reveal nothing about s. Now,
note that a corrupt D could send vi �= f(αi) to some Pi. In order to catch this bad
behavior, INT samples random β ←$ F and broadcasts (β, b(x)), where b(x) ←
β · f(x) + r(x); since β is uniformly random, with all-but-negligible probability,
Pi will see that b(αi) �= β · vi + ri, and thus D is corrupted. Also, observe that
r(x) masks f(x) and thus s. However, it could also be the case that D is honest
and a corrupted INT broadcasts (β, b(x)) where b(x) �= β · f(x) + r(x); in this
case, the honest D will know that INT is corrupted, and thus the adversary
knows s, so it can simply broadcast s. If D (honest or corrupt) broadcasts s,
then INT sets the signature σ ← g(x), where g(x) is the degree-� polynomial
such that g(−j + 1) = sj for j ∈ [�], and each Pi resets vi ← g(αi). If D does
not broadcast s, but b(αi) �= β · vi + ri then Pi knows that D is corrupt, and so
will accept any signature from INT for this batch of secrets. Also (whether or
not D is honest or corrupt), if D does not broadcast s, INT sets σ ← f(x).

Adding and multiplication by Public Vectors. To add two signatures together,
INT simply sets σ3(x) ← σ1(x)+σ2(x), and each Pi sets v3,i ← v1,i+v2,i, where
it stored v1,i and v2,i for σ1 and σ2, respectively. To multiply σ by some public
vector u ∈ F

�, let u(x) be the degree-(�−1) polynomial such that u(−j+1) = uj

for j ∈ [�]. INT simply sets σ′(x) ← σ(x) ·u(x) (so that it is of degree t+2�−2)
and each Pi sets v′

i ← vi · u(αi).

Revealing. Finally, to reveal a signature, INT simply broadcasts σ(x). Then
each Pi broadcasts accept if σ is of degree at most t + 2� − 2 and σ(αi) = vi

or they already marked D as corrupt for this signature (or any of which this
signature consists). If at least t + 1 parties broadcast accept, then the honest
parties set sj ← σ(= j + 1) for j ∈ [�] and output (s1, . . . , s�); otherwise they
output reject. Note that if D is honest and INT is corrupted, for any given
honest Pi, if σ is incorrect, then the probability that σ(αi) = vi is negligible, by
the Schwartz-Zippel Lemma, since αi is random and unknown to the adversary.
Thus, with all-but-negligible probability, there will be no Pi such that σ(αi) = vi

for incorrect σ, and thus, the honest parties will only accept a correct σ (since
there are at most t < t+1 corrupted parties). Observe also that in the case of an
honest INT and corrupted D, from above, we will already have that σ(αi) = vi,
or Pi marked D as corrupt for this signature, for all ≥ t+1 honest Pi, and thus
all honest Pi will accept.

Rerandomizaing Signatures of Degree-(2t+2�−2) Before Revealing. One subtlety
in the security proof occurs if both D and INT are honest, and a multiplication
with some u occurs, boosting the degree of σ to 2t+2�−2. In this case, when σ is
revealed in the ideal world, the simulator S only has at most t corrupted parties’
shares and the � points corresponding to the underlying signed s, and thus cannot
correctly simulate the polynomial σ(x). For this reason, before broadcasting σ,
INT re-randomizes it with a degree-(2t+ 2� − 2) polynomial o(x) given to INT

Honest Majority GOD MPC with O(depth(C)) Rounds 245

by D in the initialization phase, such that o(−j + 1) = 0 for j ∈ [�]. Each
party Pi also adds to vi, oi ← o(αi), given to them by D in the initialization
phase. Similarly to before, for honest INT to ensure that corrupted D gave it
o(x) corresponding to the honest parties’ oi values, in the initialization phase it
actually receives another such polynomial o′(x) from D, and broadcasts (β, β ·
o(x) − o′(x)), which the honest parties verifies is consistent with their oi, o

′
i. If

an honest INT or D catches a corrupted D or INT , respectively, misbehaving
during the initialization phase, then it broadcasts Corr ← 1. If so, then for all
future signatures, D simply broadcasts the secret batch s (since the adversary
would learn it anyway).

Now we present the formal protocol Πbatch-IC, below.

Protocol 1: Πbatch-IC

1. In the initialization phase:
(a) First, the dealer D samples random αi for every other party Pi, and

sends it to them.
(b) Then, for τ ∈ [N] (in parallel), for some number N :

i. D samples two random degree-(t + 2� − 2) polynomials o1(x) and
o2(x) such that o1(−j + 1) = o2(−j + 1) = 0 for j ∈ [�].

ii. D then sends (o1(x), o2(x)) to INT and to each other party Pi,
o1,i ← o1(αi) and o2,i ← o2(αi).

iii. Next, if o1(x), o2(x) are not degree-(t + 2� − 2) polynomials such
that o1(−j + 1) = 0 and o2(−j + 1) = 0 for all j ∈ [�], then INT
sets Corr ← 1 and broadcasts Corr, then all parties output Corr.
Otherwise, INT chooses random β and broadcasts (β, o(x)), where
o(x) ← β · o1(x) − o2(x).

iv. D then checks that o(x) = β·o1(x)−o2(x) and if not, sets Corr ← 1,
and broadcasts Corr, then all parties output Corr.

v. If D did not broadcast Corr = 1 but o(αi) �= β · o1(αi) − o2(αi) ,
then Pi sets dealerbadτ ← 1.

vi. Then INT stores oτ (x) ← o1(x) and each party Pi stores oτ,i ←
o1,i

(c) If D or INT broadcasted Corr = 1 at any point above, then for all
future inputs (sign, ssid, sid), the protocol consists of D simply broad-
casting ssid, and for all other inputs, the parties ignore them.

2. On input (sign, ssid, sid):
(a) The dealer D samples a random degree-(t+�−1) polynomial f(x) such

that f(−j + 1) = sj
sid for all j ∈ [�], and a random degree-(t + � − 1)

polynomial r(x).
(b) D then sends f(x) and r(x) to INT and to each other party Pi, vsid,i ←

f(αi) and rsid,i ← r(αi).
(c) Next, INT chooses random β and broadcasts (β, b(x)), where b(x) ←

β · f(x) + r(x).
(d) D then checks that b(x) = β · f(x) + r(x) and if not, broadcasts s.
(e) If D indeed broadcasts s, let g(x) be the degree-� polynomial such that

g(−j + 1) = sj for j ∈ [�]. In this case, INT sets σsid ← g(x) and each
verifier Pi resets their vsid,i ← g(αi); otherwise, INT sets σsid ← f(x)

246 A. Agarwal et al.

and each Pi locally sets dealerbadsid ← 1 if β · vsid,i + rsid,i �= b(αi). In
both cases, the parties set isMultsid ← 0.

3. On input (reveal, sid):
(a) (For next available τ ∈ [N]) INT sets h(x) ← σsid(x) + oτ (x), and

each Pi sets vsid,i ← vsid,i + oτ,i and dealerbadsid ← 1 if dealerbadsid was
already 1 or dealerbadτ = 1.

(b) INT then broadcasts h(x).
(c) Then, each Pi broadcasts accept if h(x) is degree at most t+2�−2 and

h(αi) = vsid,i, OR dealerbadsid = 1; otherwise, they broadcast reject.
(d) If at least t + 1 parties broadcast accept, then Pi sets sj ← h(−j + 1)

for j ∈ [�] and then outputs (s1, . . . , s�); otherwise they output reject.
4. On input (add, sid1, sid2, sid3), INT computes σsid3 ← σsid1 + σsid2 . Each

other party Pi computes vsid3,i ← vsid1,i + vsid2,i; dealerbadsid3 ← 1 if
dealerbadsid1 = 1 or dealerbadsid2 = 1, otherwise dealerbadsid3 ← 0; and
isMultsid3 ← 1 if isMultsid1 = 1 or isMultsid2 = 1, otherwise isMultsid3 ← 0.

5. On input (mult, u, sid, sid′), the parties first check that isMultsid stored with
sid satisfies isMultsid = 0, and abort if not. If so:
(a) Each party interpolates the degree-(� − 1) polynomial u(x) such that

u(−j + 1) = uj for j ∈ [�].
(b) INT then computes σsid′ ← σsid ·u(x) and each other party Pi computes

vsid′,i ← vsid,i · u(αi), dealerbadsid′ ← dealerbadsid, and isMultsid ← 1.

Efficiency of Πbatch-IC. First, it is clear the initialization phase takes O(1) rounds
and costs P2P(O(n)) for sending the αi. We will count the cost of generating
the oτ (x) in the corresponding reveal phase below.

In the signing phase, D first sends f(x), r(x) to INT , which costs P2P(2(t+
�)). D then sends the vi, ri to the parties Pi, which costs P2P(2n) values. INT
then broadcasts (β, b(x)) which costs 1×BC(1+ t+ �). Then, in the worst case,
D broadcasts s, which costs another 1 × BC(�). Thus, the signing phase costs
P2P(O(n + �)) and 1 × BC(O(n + �)). If � = Θ(n), then this is P2P(O(n)) and
1 × BC(O(n)). It is clear that the signing phase takes O(1) rounds. Note that
both adding and multiplication are local operations.

In the reveal phase, INT broadcasts h(x) which costs at most 1×BC(t+2�−2).
Then, each Pi broadcasts accept or reject which costs n × BC(1). Additionally,
in the initialization phase, D sends o1(x), o2(x) to INT , the former of which
INT adds to σ(x) to get h(x), which costs P2P(2(t + 2� − 2)), and o1,i, o2,i

to each Pi, which costs P2P(2n). Then INT broadcasts (β, o(x)), which costs
1 × BC(t + 2� − 1). Counting the cost to generate o1(x) as part of the reveal
phase cost, we get the reveal phase costs P2P(O(n + �)), O(n)× BC(O(1)), and
O(1)×BC(O(n+ �)). If � = Θ(n), then this is P2P(O(n)), O(n)×BC(O(1)), and
O(1) × BC(O(n)). It is clear that the reveal phase takes O(1) rounds.

Theorem 1. Πbatch-IC UC-realizes Fbatch-IC for any � = poly(κ) with probability
1 − negl(κ).

The proof is in the full version.

Honest Majority GOD MPC with O(depth(C)) Rounds 247

4 Packed, Batched, (Mass) Detectable Secret Sharing

In this section, we introduce our packed, batched, (mass) detectable secret shar-
ing (DSS) ideal functionality and protocol. We base the protocol off of that of [11]
and take from [1] the idea of “packing” many secrets into a single bivariate poly-
nomial, as well as batching many bivariate polynomials to amortize costs. A
DSS protocol is executed amongst n parties and allows any given Pi to act as
a dealer and secret share a batch of secret vectors s1, . . . , sm ∈ F

�. As usual,
we want the corrupted parties’ shares to reveal nothing about s1, . . . , sm ∈ F

�.
Later, the parties can choose to publicly reconstruct s1, . . . , sm; the reconstruc-
tion must either succeed, or Ω(n) corrupted parties are publicly identified (the
exact number depends on �). In fact, we allow the parties to add their shares of
many such sharings together, which results in a sharing of the vector-wise sum
of the underlying batches of secret vectors. We also allow the parties to com-
pute a sharing of a shared batch of secrets, element-wise and component-wise
multiplied by some public vectors u1, . . . ,um ∈ F

�, using the original sharing.

4.1 Detectable Secret Sharing Ideal Functionality

We now present our packed, batched, DSS ideal functionality. The properties
that we want from a DSS are as follows: (i) If the given dealer Pi is honest,
then all honest parties will complete the sharing phase; (ii) If the given dealer Pi

is honest, then nothing about s1, . . . , sm are revealed before the reconstruction
phase; and (iii) If all honest parties finish a sharing phase, then there exists fixed
x1, . . . ,xm such that (a) if the given dealer Pi is honest, then each xi = si, and
(b) if all honest parties start the reconstruction phase, either it succeeds with
them outputting x1, . . . ,xm, or it fails, but Ω(n) corrupted parties are identified.

Furthermore, we require the following linearity properties from our DSS: (i)
Given a sharing of s1,1, . . . , s1,m and a sharing of s2,1, . . . , s2,m, the parties can
compute a sharing of s1,1 + s2,1, . . . , s1,m + s2,m with the above properties; and
(ii) Given a sharing of s1, . . . , sm and public vectors u1, . . . ,um ∈ F

�, the parties
can compute a sharing of s1 ∗ u1, . . . , sm ∗ um with the above properties, only
if s1, . . . , sm is a linear combination of other sharings that were not themselves
multiplied by a batch of public vectors.

Our main contributions to DSS are using packing and batching in the statis-
tical setting, t < n/2 setting to amortize costs, as well as the mass detectability
property in case of failure of reconstruction. Now we present the ideal function-
ality FPacked-DSS, which captures the above properties.

Functionality 2: FPacked-DSS

This functionality is parameterized by �, m ∈ N and n parties. It allows parties
to create several size-m batches of packed Verifiable Secret Sharings of size-�
vectors, add them together, and multiply them with size-m batches of size-�
public vectors.

248 A. Agarwal et al.

1. On input (share, (s1, . . . , sm), sid) from party Pi, where each sj ∈ F
�, and

(share, Pi, sid) from all honest parties, FPacked-DSS first sets isMult ← 0.
Then if Pi is corrupted, FPacked-DSS first asks the adversary whether to
continue. If so, FPacked-DSS stores (Pi, isMult, (s1, . . . , sm)) with sid; else,
FPacked-DSS outputs abort to all parties. If Pi is honest, FPacked-DSS stores
(Pi, isMult, (s1, . . . , sm)) with sid.

2. On input (reconstruct, sid) from all parties, where (·, isMult, (s1 . . . , sm)) is
stored at sid, FPacked-DSS first sends (s1, . . . , sm) to the adversary and asks
whether to continue. If so, FPacked-DSS outputs (s1, . . . , sm) to all parties.
Otherwise, FPacked-DSS receives from the adversary a set of indices T ⊆ [n]
corresponding to corrupted parties such that |T | > t − � + 1 if isMult = 0
and |T | > t − 2� + 2 if isMult = 1, and outputs T to all parties.a

3. On input (add, sid1, sid2, sid3) from all parties, where
(·, isMult1, (s1,1 . . . , s1,m)) is stored with sid1 and
(·, isMult2, (s2,1 . . . , s2,m)) is stored with sid2, FPacked-DSS stores
(⊥, isMult3, (s1,1 + s2,1, . . . , s1,m + s2,m)) with sid3, where isMult3 ← 0 if
isMult1 = isMult2 = 0, and isMult3 ← 1 otherwise.

4. On input (mult, (u1, . . . , um), sid, sid′) from all parties, where each ui ∈
F

� and (·, 0, (s1 . . . , sm)) is stored at sid, FPacked-DSS stores (⊥, 1, (s1 ∗
u1, . . . , sm ∗ um)) with sid′.

5. On input (corr, Pi) from the adversary, FPacked-DSS sends to the adversary
all pairs (sid, (Pi, (s1, . . . , sm))).

a If � = 1, (s1, . . . , sm) will always be output to the parties since there are only
t corrupted parties and thus the adversary cannot send T such that |T | > t.

4.2 Detectable Secret Sharing Subroutines

Before presenting our DSS protocol ΠPacked-DSS, we will first present various
procedures which ΠPacked-DSS uses. Note, however, that ΠPacked-DSS starts with
each party initializing separate instances of Fbatch-IC as a dealer with each other
party acting as intermediary. The procedures will use these instances of Fbatch-IC.

Sharing Procedure πPacked-DSS-Share. We begin by presenting the sharing pro-
cedure, πPacked-DSS-Share(dx, sid, (s1, . . . , sm)), below. When a party Pi wants to
secret share a batch of vectors s1, . . . , sm ∈ F �,4 with degree n−1 ≥ dx ≥ t+�−1,
it begins by sampling m random degree-(dx, t) bivariate polynomials such that
Fη(−l + 1, 0) = sl

η for l ∈ [�], η ∈ [m]. Then, letting zjk
η ← Fη(j, k) and

zjk
η ← (zjk

1 , . . . , zjk
m), Pi invokes the Fbatch-IC instance with Pj as intermediary

on input zjk
η and zkj

η (thus implicitly sending to Pj these vectors), for j, k ∈ [n].
Each Pj then ensures that the points it receives define valid degree-dx and degree-
(t + � − 1) polynomials, respectively. If not, it reveals their points to all of the
parties, using Fbatch-IC. Then, if a party sees such a set of bad points from some
4 For a given instance of ΠPacked-DSS, we use the same packing parameter � and batching

parameter m for each call to πPacked-DSS-Share.

Honest Majority GOD MPC with O(depth(C)) Rounds 249

other party Pk (checking that indeed, the points are bad), it aborts. Then, Pj

invokes the Fbatch-IC instance with Pk as intermediary on input zkj
η (thus implic-

itly sending to Pk this vector), for k ∈ [n]. Next, Pj compares those points it
received from Pk to those received from the dealer Pi, and if there is any incon-
sistency, reveals those points that Pi gave it to all of the parties, using Fbatch-IC.
Then, Pj checks if some Pk revealed points that are not consistent with those
it received from Pi, and if so, reveals those points that Pi gave it to all of the
parties, using Fbatch-IC. If any pair of parties Pj �= Pk revealed two different vec-
tors of points from the dealer Pi, then all parties abort. Otherwise, each party
Pj outputs its share, (zj1

sid, . . . ,z
jn
sid).

We will only ever explicitly use πPacked-DSS-Share in the following to generate
sharings with degree dx = t + � − 1 or degree dx = t + (2� − 1). If the parties
do not abort in πPacked-DSS-Share, we denote a sharing of s = (s1, . . . , sm) with
degree dx = t + � − 1 as [[s]] and a sharing with degree dx = t + � − 1 as [[s]]∗.

Procedure 2: πPacked-DSS-Share(Pi, dx, sid, s1, . . . , sm)

This procedure takes in the party Pi acting as dealer, n − 1 ≥ dx ≥ t + � − 1
and produces a degree-(dx, t) sharing of s1, . . . , sm.

1. Party Pi samples m random bivariate polynomials F1(x, y), . . . , Fm(x, y)
of degree at most dx in x and t in y, such that Fη(−l + 1, 0) = sl

η for
l ∈ [�], η ∈ [m].

2. Let zjk
η ← Fη(j, k) and zjk

sid ← (zjk
1 , . . . , zjk

m). Pi invokes the Fbatch-IC

instance with Pj as intermediary on inputs (sign, zjk
sid , sid‖k‖0) and

(sign, zkj
sid , sid‖k‖1), for j, k ∈ [n].

3. Each party Pj checks that for each η ∈ [m], zj1
η , . . . , zjn

η received from
Fbatch-IC define a degree-t polynomial and z1j

η , . . . , znj
η received from Fbatch-IC

define a degree-dx polynomial. If not, Pj reveals zjk
sid , z

kj
sid to all of the parties

by invoking Fbatch-IC on (reveal, sid‖k‖0) and (reveal, sid‖k‖1), for all k ∈ [n].
4. If a party sees polynomial evaluations from some other party Pk that do

not define degree-t or degree-dx polynomials, respectively, it aborts.
5. Each Pj invokes the Fbatch-IC instance with Pk as the intermediary on input

(sign, zkj
sid , sid), for k ∈ [n].

6. Pj compares the values zjk
sid which he received from Fbatch-IC for each k ∈ [n]

in the previous round to the values received from Pi. If there is any incon-
sistency, Pj reveals zjk

sid received from Pi to all of the parties by invoking
Fbatch-IC on (reveal, sid‖k‖0).

7. Pj checks if some Pk revealed a value zkj
sid which is different from that which

Pi gave it. If so, then Pj reveals zkj
sid to all parties by invoking Fbatch-IC on

(reveal, sid‖k‖1).
8. If for any index pair (j, k) ∈ [n] × [n], a party sees two different vectors of

points from Pi, then it aborts; otherwise, each party Pj outputs its share
(zj1

sid, . . . , z
jn
sid).

Now, we prove the following simple lemma about πPacked-DSS-Share:

250 A. Agarwal et al.

Lemma 1. If the dealer Pi is honest in πPacked-DSS-Share, then all honest parties
finish πPacked-DSS-Share without aborting.

The proof is in the full version.
Next, we prove the following lemma, which shows that if the values zkj

sid which
the honest parties Pj input to Fbatch-IC in step 5 of πPacked-DSS-Share, and which
thus become part of Pk’s share, define degree-t polynomials gk(y), then they
uniquely define the underlying degree-(dx, t) bivariate polynomials Fη(x, y) and
thus the shared secrets sη.

Lemma 2. For any K ⊆ [n] such that |K| ≥ dx + 1, let zkj
sid, for k ∈ K, be the

vectors that the honest parties Pj input to Fbatch-IC in step 5 of πPacked-DSS-Share.
Assume that πPacked-DSS-Share does not abort and that for each η ∈ [m], k ∈ K,
{zkj

η }j∈[Hon] define degree-t polynomials. Then for all η ∈ [m], the {zkj
η }j∈Hon for

k ∈ K together define unique degree-(dx, t) bivariate polynomials Fη(x, y).

The proof is in the full version.

Efficiency of πPacked-DSS-Share. For analyzing the communication complexity of
πPacked-DSS-Share, we will utilize the efficiency of our Πbatch-IC protocol for Fbatch-IC.
Pi, for each Pj , signs length-m vectors zjk

sid,z
kj
sid for k ∈ [n], with Fbatch-IC which

costs P2P(O(n2 · (n+m))) and n2 ×BC(O(n+m)), using Πbatch-IC. Then, in the
worst case, each Pj could reveal those signatures, which costs P2P(O(n2 · (n +
m))), n3×BC(O(1)), and n2×BC(O(n+m)), using Πbatch-IC. Next, each Pi sends
signs for each Pk length-m vectors zkj

sid with Fbatch-IC, which costs P2P(n2·(n+m))
and O(n2) × BC(O(n + m)), using Πbatch-IC. Next, in the worst case, each Pj

could reveal the signatures from Pi for all k ∈ [n], which costs P2P(O(n2 · (n +
m))), n3 × BC(1), and n2 × BC(O(n + m)), using Πbatch-IC. Altogether, this is
P2P(O(n3+n2m)), O(n3)×BC(O(1)), and O(n2)×BC(O(n+m)). If m = Θ(n),
this is P2P(O(n3)), O(n3) × BC(O(1)), and O(n2) × BC(O(n)). It is clear that
πPacked-DSS-Share takes O(1) rounds.

Adding Packed, Batched DSS’s and Multiplying Them by Public
Vectors. Let us assume that the parties have a packed, batched DSS [[s1]]
and a packed, batched DSS [[s2]]. Adding two such sharings together is a sim-
ple, local procedure, πPacked-DSS-Add, which consists of parties simply adding (the
signatures on) their shares together:

Procedure 3: πPacked-DSS-Add([[s1]], [[s2]])

Let (zj1
sid1

, . . . , zjn
sid1

) and (zj1
sid2

, . . . , zjn
sid2

) be party Pj ’s respective shares of shar-
ings sid1 and sid2.

1. For each j ∈ [n], Pj sets zjk
sid3

← zjk
sid1

+ zjk
sid2

and all parties invoke
the Fbatch-IC instance with Pj as intermediary and Pk as dealer on input
(add, sid1, sid2, sid3), for k ∈ [n].a

2. Each Pj outputs new shares (zj1
sid3

, . . . , zjn
sid3

).

Honest Majority GOD MPC with O(depth(C)) Rounds 251

a Note that for our Πbatch-IC, the add operation is indeed local.

We denote this as [[s3]] ← [[s1]] + [[s2]]. Note that this also works for sharings
[[s1]]∗ and/or [[s2]]∗ of higher degree (dx = t+ 2(� − 1)), in which case we denote
[[s3]]∗ as the resulting sharing.

Now, let us assume that the parties have a single packed, batched DSS of
secrets [[s]] (note that for such a sharing, dx = t + � − 1 ≤ n − �), and some
public vectors u1, . . . ,um ∈ F

�. Multiplying the sharing by this batch of public
vectors is a simple, local procedure, πPacked-DSS-Mult, which consists of parties
simply multiplying their shares (and the signatures on those shares) by the
degree-(� − 1) polynomials uη(x) such that uη(−l + 1) = ul

η for η ∈ [n], l ∈ [�]:

Procedure 4: πPacked-DSS-Mult([[s]]dx,t, (u1, . . . ,um))

Let (zj1
sid, . . . , z

jn
sid) be party Pj ’s shares of sharing sid.

1. Each party first interpolates the degree-(�−1) polynomials uη(x) such that
uη(−l + 1) = ul

η for η ∈ [m], l ∈ [�].
2. Then, for each j ∈ [n], Pj locally computes zjk

sid′ ← zjk
sid ∗ (u1(j), . . . , um(j))

and all parties invoke the Fbatch-IC instance with Pj as intermediary and Pk

as dealer on input (mult, (u1(j), . . . , um(j)), sid, sid′), for k ∈ [n].a

3. Finally, each Pj outputs new shares (zj1
sid′ , . . . , z

jn
sid′).

a Note that for our Πbatch-IC, the mult operation is indeed local.

We denote this as [[s]]∗ ← [[s]]∗u, since the new sharing has degree dx = t+2(�−1).
Let Fsid′,η(x, y) be the unique polynomials defined by the {zkj

sid′,η}j∈Hon for
k ∈ K, of some sharings [[s′]] output by πPacked-DSS-Share, according to Lemma 2.
We can again prove the following lemma similar to Lemma 2, which essentially
says that for any sharing [[s]] (or [[s]]∗) formed by running the addition and multi-
plication procedures above on sharings [[s′]] originally output by πPacked-DSS-Share,
the {zjk

sid}j∈Hon part of each Pk’s share (defined by the corresponding signa-
tures), together uniquely define the underlying degree-(dx, t) bivariate polyno-
mials Fη(x, y), which are equal to the polynomials that result from applying the
same addition and multiplication procedures on the Fsid′,η(x, y) above from the
original sharings [[s′]].5 The proof is in the full version.

Lemma 3. Let the sharing [[s]] (resp. [[s]]∗), be the result of addition and mul-
tiplication procedures on sharings [[s′]] originally output by πPacked-DSS-Share. For
any K ⊆ [n] such that |K| ≥ dx + 1, let {zkj

sid}j∈Hon be the part of each Pk’s
shares of [[s]] (resp. [[s]]∗) defined by the Fbatch-IC instance with Pj as dealer and

5 A ‘multiplication procedure’ multiplying a sharing by u1, . . . , um corresponds to
multiplying the polynomials defined by the sharing by the degree-(�−1) polynomials
u1(x), . . . , um(x) defined by the above vectors.

252 A. Agarwal et al.

Pk as intermediary. Assume that for each η ∈ [m], k ∈ K, {zkj
sid,η}j∈[Hon] define

degree-t polynomials. Then for all η ∈ [m], the {zkj
sid,η}j∈Hon for k ∈ K together

define unique degree-(dx, t) bivariate polynomials Fsid,η(x, y) which are equal to
the polynomials which result from applying the same addition and multiplication
procedures on the unique polynomials Fsid′,η(x, y) defined by the {zkj

sid′,η}j∈Hon for
k ∈ K, by Lemma 2.

Essentially, the above lemma shows that our add and multiplication pro-
cedures have the desired outcome of performing the corresponding operations.
The following corollary will help us show that the correct secrets can then be
reconstructed from such sharings. The proof is in the full version.

Corollary 1. If for each η ∈ [n], k ∈ K, {zki
sid,η}i∈[n] in Pk’s share of [[s]] (resp.

[[s]]∗) define a degree-t polynomial, then given any I ⊆ [n] such that |I| = t + 1
(such as [t + 1]) {zki

sid,η}i∈I can be used to interpolate the same unique degree-
(dx, t) bivariate polynomials Fsid,η(x, y) as in Lemma 3.

Reconstruction Procedure πPacked-DSS-Rec Next, we present the reconstruc-
tion procedure, πPacked-DSS-Rec([[s]]), which the honest parties use to reconstruct
the batch of secret vectors defined by their shares of the sharing [[s]]. All parties
Pk first reveal their share zk1

sid , . . . ,z
kn
sid to all parties using Fbatch-IC. Then, each

Pk checks if the points that each Pj revealed define degree-t polynomials in y,
and if not, marks them as corrupt. Then, if the number of parties marked corrupt
is greater than 2t − dx, the honest parties output those parties’ identities that
are marked corrupt (note that sharings must satisfy dx ≤ n − 1, so 2t − dx > 0).
Otherwise, the parties use the shares of those parties that are not marked cor-
rupt to interpolate the unique, correct Fη(x, y) (that exist by Corollary 1) and
output the corresponding secrets sη. Note that this procedure works in exactly
the same way for sharings [[s]]∗ of higher degree dx = t + 2(� − 1).

Procedure 5: πPacked-DSS-Rec([[s]])

This procedure takes as input the party’s shares of [[s]] of degree dx = t+ � − 1
or [[s]]∗ of degree dx = t + 2(� − 1).

1. Every party Pk reveals zk1
sid , . . . , zkn

sid to all other parties by invoking for
j ∈ [n], the Fbatch-IC instance with Pj as intermediary on input (reveal, sid).

2. Pk first sets T ← ∅ then checks whether Pj ’s shares revealed in the previous
step define degree-t polynomials Fη(j, y), η ∈ [m]. If not, then Pj is added
to T and thus marked as corrupt.

3. If the number of parties marked corrupt in T is greater than 2t − dx, then
output T and abort.

4. For every Pk not marked as corrupt in K = [n] \ T , Pj uses the values
Fη(k, 1), . . . , Fη(k, t+ 1), together, to interpolate the unique degree-(dx, t)
bivariate polyonmial Fη(x, y).

5. Pj finally outputs sl
η ← Fη(−l + 1, 0) for η ∈ [m], l ∈ [�].

Honest Majority GOD MPC with O(depth(C)) Rounds 253

We now have the following lemma, which shows that if s1, . . . , sm are output
by the honest parties, then they are the correct secrets corresponding to [[s]];
otherwise, each party Pk ∈ T is actually corrupt. The latter is because for
sharings output by πPacked-DSS-Share, honest parties’ shares are always consistent
with degree-t polynomials, for otherwise they would have aborted. Furthermore,
addition and multiplication operations do not affect the degree in the y variable,
so the shares always stay consistent with degree-t polynomials. The proof appears
in the full version.

Lemma 4. Let {zkj
sid}k∈K,j∈[n] be the points that are revealed via Fbatch-IC in

πPacked-DSS-Rec. If |T | ≤ 2t − dx, then the honest parties output the correct
secrets s1, . . . , sm defined by the unique degree-(t + � − 1, t) bivariate polyno-
mials (F1(x, y), . . . , Fm(x, y)) from Lemma 3. If |T | > 2t − dx, then the honest
parties output (abort, T) such that for each Pj ∈ T , Pj ∈ Corr.

Efficiency of πPacked-DSS-Rec. For analyzing the communication complexity of
πPacked-DSS-Rec, we will utilize the efficiency of our Πbatch-IC protocol for Fbatch-IC.
Each Pk simply reveals zkj

sid, for j ∈ [n] with Fbatch-IC, which costs P2P(O(n2 ·
(n + m))), n3 × BC(1), and n2 × BC(O(n + m)), using Πbatch-IC. If m = Θ(n),
this is P2P(O(n3)), O(n3) × BC(O(1)), and O(n2) × BC(O(n)). It is clear that
πPacked-DSS-Rec takes O(1) rounds.

Creating Random Sharings [[0]]∗. After multiplying sharings by batches of
public vectors, the degree of the sharing increases by � − 1 in x. Thus, in order
to securely open such sharings, we need to mask them by random sharings [[0]]∗,
of degree xx = t + 2(� − 1), since all sharings created as part of the ΠPacked-DSS

protocol will start as degree dx = t+�−1. We use the typical random extraction
technique from [13] to do this efficiently, which consists of each party creating
their own such random sharings, and then using some super-invertible (n−t)×n
matrix M to take linear combinations of these sharings and then output the
resulting sharings that are random to the adversary.

However, it may be that the underlying secrets that corrupted parties share
are not equal to 0, . . . ,0. For this, we adapt a standard technique, which takes
as input two sharings from the same party which supposedly share 0, . . . ,0, take
a random linear combination of the two, then open them to check if they are
indeed sharings of 0, . . . ,0. We will adapt standard techniques to sample the
random coefficients of the linear combination.

The procedures corresponding to the above, πPacked-Zero-DSS, πCheck-Zero-DSS,
and πPacked-DSS-Coins are presented in the full version.

4.3 Detectable Secret Sharing Protocol

Now, we are finally ready to present our ΠPacked-DSS protocol. For generating a
sharing, a given dealer simply uses πPacked-DSS-Share with degree dx ← t + � − 1.
For adding sharings and multiplying them by public vectors, the parties use
πPacked-DSS-Add and πPacked-DSS-Mult, respectively. The parties also keep track of
when a given sharing is multiplied by a public vector. Then, for reconstruction,

254 A. Agarwal et al.

if the sharing is a linear combination of sharings that have not been multiplied by
a public vector, the parties simply us πPacked-DSS-Rec to reconstruct it. Otherwise,
the parties first re-randomize it by adding a random sharing [[0]]∗ to it, and then
use πPacked-DSS-Rec to reconstruct it.

Protocol 6: ΠPacked-DSS

1. In the initialization phase, each party initializes instances of Fbatch-IC with
each other party as intermediary. The parties also run πPacked-Zero-DSS to
compute a number N of random packed zero sharings [[0τ]]∗ for τ ∈ N (in
parallel).

2. On input (share, (s1, . . . , sm), sid), Pi runs πPacked-DSS-Share(Pi, t + � −
1, sid, s1, . . . , sm) to share [[ssid]], then every party Pj sets isMult ← 0 and
stores (sid, (isMult, [[ssid]])).

3. On input (reconstruct, sid), the parties first check isMult stored with sid.
If isMult = 0, then the parties run πPacked-DSS-Rec on [[ssid]] and output ssid.
Otherwise, the parties (for next available τ ∈ [N]), compute [[ssid]]∗ +[[0τ]]∗
and then run πPacked-DSS-Rec on it and output ssid.

4. On input (add, sid1, sid2, sid3), the parties compute [[ssid3]] ← [[ssid1]]+[[ssid2]]
(using πPacked-DSS-Add). Then if isMult1 = isMult2 = 0, they set isMult3 ← 0;
otherwise, they set isMult3 ← 1 Finally, they store (sid3, (isMult, [[ssid3]])).

a

5. On input (mult, (u1, . . . , um), sid, sid′): The parties first check that isMult
stored with sid satisfies isMult = 0, and abort if not. If so, they com-
pute [[ssid′]]∗ ← [[ssid]] ∗ u (using πPacked-DSS-Mult). Finally, the parties store
(sid′, (1, [[ssid′]]∗)).

a This also works if the sharings corresponding to sid1 and/or sid2 have higher
degree dx = t + 2(� − 1); i.e., for sharings [[ssid1]]∗ and/or [[ssid2]]∗. In this case
we store [[ssid3]]∗ of degree dx = t + 2(� − 1).

Efficiency of ΠPacked-DSS. Initialization uses πPacked-Zero-DSS in parallel, which
takes O(1) rounds. We will count the communication cost of generating each
such zero sharing towards each such sharing that is reconstructed using it below.

Sharing uses πPacked-DSS-Share, which costs P2P(O(n3 + n2m)), O(n3) ×
BC(O(1)), and O(n2) × BC(O(n + m)). If m, � = Θ(n), then this is P2P(O(n)),
O(n)×BC(O(1)), and O(1)×BC(O(n)) per underlying secret. It also takes O(1)
rounds.

Reconstruction possibly uses a zero sharing, generated from πPacked-Zero-DSS,
which costs P2P(O(n3+n2m)), O(n3)×BC(O(1)), and O(n2)×BC(O(n+m)) for
this sharing. It then uses πPacked-DSS-Rec, which costs P2P(O(n3+n2m)), O(n3)×
BC(O(1)), and O(n2) × BC(O(n + m)). Altogether, this is P2P(O(n3 + n2m)),
O(n3) × BC(O(1)), and O(n2) × BC(O(n + m)). If m, � = Θ(n), then this is
P2P(O(n)), O(n) × BC(O(1)), and O(1) × BC(O(n)) per underlying secret. It
also takes O(1) rounds.

Theorem 2. ΠPacked-DSS UC-realizes FPacked-DSS in the Fbatch-IC-hybrid model
for any � ≤ t/2 and any m = poly(κ), with probability 1 − negl(κ).

Honest Majority GOD MPC with O(depth(C)) Rounds 255

The proof appears in the full version.

4.4 Extensions and Notation

The rest of the paper is devoted to using FPacked-DSS, Functionality 4.1, to obtain
honest majority MPC with G.O.D., with our claimed communication and round
complexities. In the real world, this functionality corresponds to our packed DSS,
but from now on we will work with the FPacked-DSS abstraction, which allows us
to ignoring details regarding shares, degrees, and other aspects only needed to
instantiate this functionality. FPacked-DSS is implicitly parameterized by � and m,
and it models a simple but quite powerful arithmetic black box: parties can store
vectors of dimension m�, and these vectors can be computed on by adding them
together, as well as multiplying them element-wise by public constant vectors.
Furthermore, any stored vector can be reconstructed, and the only way for the
adversary to stop it is to reveal the identities of at least t − 2(� − 1) corrupt
parties. Recall that, for s ∈ F

m�, we denote [[s]] a value stored in FPacked-DSS with
isMult = 0, and [[s]]∗ if isMult = 1. Recall that given a public value u ∈ F

m�, it
is possible to compute [[s]]∗ ← [[s]] ∗ u. Addition of stored values and addition
by public values is also possible. We use [[a]] ← share(a) to denote sharing, and
a ← reconstruct([[a]]) to denote reconstruction (this also applies to [[·]]∗).

To be able to work with this functionality effectively, we will add to it a few
helpful instructions that can be easily instantiated based on what we have seen so
far. These include multiplication by scalars and addition by constants, which are
particularly useful in the MPC context. The [[·]] notation suggestively represents
these operations. Finally, we add an instruction, whose call we abbreviate by
r ← rand(), which allows the honest parties to obtain a fresh random value. This
can be instantiated with a communication of O(n4), cf. Sectionthe full version

5 Our MPC Protocol

We are now ready to put together the building blocks developed in previous sec-
tions to construct our final MPC protocol for honest majority with G.O.D.. As
mentioned in technical overview (Sect. 1.3), the overall structure of our protocol
is inspired on that of Turbopack [15], which is particularly suitable for the use
of packed secret-sharing, a crucial tool we make use of in our work. While Tur-
bopack uses plain packed secret-sharing, we make use of our optimized detectable
secret-sharing, together with its reconstruction properties.

First, we define the MPC functionality with G.O.D. we aim at instantiating
in this work. Let C be an arithmetic circuit over a finite field F comprised of
inputs, addition and multiplication gates, and outputs. Each party Pi is respon-
sible of providing a subset of the inputs. All parties are intended to receive the
outputs. We use Greek letters α, β, γ, etc. to label wires in the circuit. We aim
at instantiating FMPC, Functionality 3, described below.

256 A. Agarwal et al.

Functionality 3: FMPC

The functionality proceeds as follows:

– Receive inputs: Upon receiving (input, Pi, x, α) from an honest party Pi,
or from the adversary if Pi is corrupt, where x ∈ F and α is an input wire
assigned to Pi, store (α, x)

– Compute the circuit: Once all inputs have been provided, compute the
circuit C on these inputs. For every output wire α, if its associated result
is y, send (α, y) to all parties.

MPC for t < n/3. As part of our protocol, we will need an MPC protocol with
G.O.D. for t < n/3. We model this with a functionality that behaves almost
exactly the same as FMPC, with the only difference being that (1) it interacts
only with a subset of the parties, aborting if the subset has at least a 1/3 frac-
tion of corruptions, and (2) it allows for reactive computation, meaning that
different functions can be computed on the fly.6 We denote this functionality by
FMPC-t<n/3 The recent work of [1] instantiates FMPC-t<n/3 with linear commu-
nication O(n|C ′|) while maintaining the number of rounds O(depth(C ′)), where
C ′ is the function being computed (we will use FMPC-t<n/3 with a function C ′

that is slightly different to C, but has roughly the same size and depth). For the
purpose of this section we use [x] when a value x ∈ F has been provided as input
to FMPC-t<n/3, and we say “Pi inputs x, obtaining [x]”.

5.1 Offline Phase

We make use of two instances of FPacked-DSS. To clearly differentiate between the
two, we make the dependency of FPacked-DSS with � and m explicit by writing
FPacked-DSS(�,m). The first instance FPacked-DSS(�,m) allows parties to “share” or
store vectors s ∈ F

m·�, with � = �n+6
8 and m = n. In what follows we use

indistinctly “shared” and “stored” values/vectors, since even though we will be
working in the FPacked-DSS-hybrid model, in the real world these corresponds to
sharings. Recall from Sect. 4.4 that we use [[s]] and [[s]]∗ to denote secret-shared
vectors with isMult = 0 and isMult = 1. This, in the real world, corresponds to
sharings of degree t+(�−1) and t+2(�−1) respectively, and the crucial difference
is that first type of sharings allows for multiplications by public values whereas
the latter does not. Reconstructions of [[s]] and [[s]]∗ shared values may abort, at
the expense of identifying more than t − (� − 1) or t − 2(� − 1) corrupt parties
respectively. The second instance FPacked-DSS(1, 1) shares individual values s ∈ F,
and these stored values are denoted by 〈s〉. Here, the adversary cannot cause
abort when reconstructing shared values. Throughout this section, we denote
1 = (1, . . . , 1) ∈ F

m�, and for i ∈ [m�] we write 1i ∈ F
m� for the vector of all

zeros, except for the i-th entry, which equals 1.

6 FMPC, as defined, is not reactive. However, this is only for presentation and it is not
hard to extend our protocol to support reactive computation.

Honest Majority GOD MPC with O(depth(C)) Rounds 257

Our preprocessing is as in Turbopack [15]. First, we group multiplication
gates in each layer in groups of m · � gates each, and we do the same with the
input wires associated to each party, as well as the output wires. Each circuit
wire α that is not the output of an addition gate has associated to it a random
mask λα ∈ F. If two wires α, β are added to obtain wire γ, then λγ := λα + λβ .
The preprocessing consists of sharings [[λα]]∗ for every output group α, and
sharings ([[λα]], [[λβ]], [[λα � λβ − λγ]]∗) for every group of multiplication gates
with inputs α,β and outputs γ. In addition, every party Pi having an input
wire α must learn λα. For the case of a restart, we also require every such λα for
input wires to be VSS’ed as 〈λα〉.7 This is captured by FPrep, Functionality 4.

Functionality 4: FPrep

Extension of the Packed DSS functionality. FPrep has all of the instruc-
tions of FPacked-DSS(�, m) and FPacked-DSS(1, 1) (extended as in Section 4.4).a

Sample random masks. Sample the following values
1. For each circuit wire α that is not the result of an addition gate, sample

a random λα ∈ F and store (α, λα).
2. For every addition gate with inputs α, β and output γ, compute λγ =

λα + λβ and store (γ, λγ)
Input and output sharings. For every group of m� input gates with labels

α belonging to party Pi:
1. Send λα to Pi,
2. Store 〈λαj 〉 for j ∈ [m�].

For every group of m� output gates with labels α, store [[λα]]
Multiplication gates. For every group of m� multiplication gates with left

input labels α, right input labels β, and output labels γ, the functionality
stores ([[λα]], [[λβ]], [[λα λβ − λγ]]∗).

a Values stored as in FPacked-DSS(�, m) are kept in a separate dictionary than
these from FPacked-DSS(1, 1).

Multiplication Triple Generation. For our preprocessing we will require
uniformly random multiplication triples ([[a]], [[b]], [[c]]∗), with c = a � b. To this
end, we show how to extend the techniques from [10], which are set in the
standard (non-packed) secret-sharing setting, to the packed secret-sharing regime
we use in our work. We choose the techniques from [10] since, in contrast to other
approaches such as [13], no “degree-2t computations” are needed, and instead all
shares are either degree t + (� − 1), or t + 2(� − 1). This is crucial for us, where
we require reconstruction to either succeed, or identify a large set of corrupt
parties.

7 Having each input to be VSS’ed adds an extra factor of n with respect to the number
of inputs. We present in the full version a variant that is more suitable incase there
are many more inputs than outputs.

258 A. Agarwal et al.

It is not difficult to adapt the techniques from [10] to our setting, and we
discuss this in the full version. For the purpose of this section, we simply mention
that there is a procedure πtriple-generation (Procedure ?? in the full version) that
generates a single batched triple ([[a]], [[b]], [[c]]∗) which will be uniform and inde-
pendent from the view of corrupt parties, as captured by the following Lemma
(proven in the full version).

Lemma 5. πtriple-generation outputs a batched triple ([[anew]], [[bnew]], [[cnew]]∗)
which is uniform and independent from the view of an adversary corrupting
at most t parties except with negl(κ) failure probability.

The overall cost of πtriple-generation is P2P(O(n4)), O(n4) × BC(1). Since
πtriple-generation outputs a single batched triple containing O(m�) = O(n2) triples,
the amortized communication cost per triple generation is P2P(O(n2)), O(n2)×
BC(1).

Useful Procedures. Before we describe the protocol that instantiates FPrep,
we describe a few useful procedures. The first, πInput-Sharings(Pi) (Procedure ??),
enables the parties to obtain random sharings of the form ([[r · 1]], 〈r〉), where
Pi knows r. This will be important for providing inputs, with the VSS part
enabling restarting without input modification. The procedure follows along the
same lines as πCheck-Zero-DSS, Procedure ??, which lets Pi distribute these shar-
ings and the parties check them via random linear combinations. The second
procedure, which we denote by πRand-Sharings (Procedure ??), allows the parties to
obtain [[r ·1]], where r ∈ F is uniformly random and unknown to any party. This
first uses ideas as in the first procedure to let each party distribute one such
sharing correctly, and then, similarly to πPacked-Zero-DSS (Procedure ??), we can
use standard techniques based on Vandermonde matrices to extract uniformly
random sharings. The full descriptions of the procedures appear in the full ver-
sion. The following two Lemmas are proven similarly to Lemma ?? in the full
version, we omit their proof.

Lemma 6. Except with probability negl(κ), the output [[r · 1]], 〈r〉 produced by
πInput-Sharings(Pi) is correct, and for an honest Pi, the secret r is distributed ran-
domly given the corrupted parties’ shares.

Lemma 7. Except with probability negl(κ), the outputs ([[s1 · 1]], . . . , [[sn−t · 1]])
produced by πRand-Sharings are correct, and are distributed randomly given the cor-
rupted parties’ shares.

Preprocessing Protocol. We are finally ready to present our protocol for
instantiating FPrep. This is given in ΠPrep, Protocol 7 below.

Honest Majority GOD MPC with O(depth(C)) Rounds 259

Protocol 7: ΠPrep

The protocol makes use of two functionalities FPacked-DSS(�, m) and
FPacked-DSS(1, 1), and every command regarding packed DSS is forwarded to
these functionalities. For the other commands:

Input groups. For every input wire α associated to party Pi, call ([[λα ·
1]], 〈λα〉) ← πInput-Sharings(Pi) for i ∈ [n].a

Sampling random masks. For every wire α that is either an output of a mul-
tiplication gate, or an input wire, the parties call [[λα · 1]] ← πRand-Sharings().
After this note that, locally, they can compute [[λγ · 1]] for every wire γ
that is the output of an addition gate by adding the corresponding shares.
This means they have [[λαi · 1]] for every circuit wire α.

Output groups. For an output group α, the parties take the sharings [[λαi ·1]]
for i ∈ [m�] from the previous step and output [[λα]]∗ =

∑m�
i=1 1i · [[λαi1]].

Multiplication groups. For a multiplication group with input wires α, β and
output wires γ, the parties do the following:
1. Call πtriple-generation to obtain ([[a]], [[b]], [[a b]]∗)
2. The parties proceed as before, obtaining [[λα]]∗ and [[λβ]]∗. Similarly,

they get [[λγ]]∗
3. Locally compute [[d]]∗ ← [[λα]]∗ − [[a]] and [[e]]∗ ← [[λβ]]∗ − [[b]]
4. Call d ← reconstruct([[d]]∗) and e ← reconstruct([[e]]∗)
5. Locally compute [[λα]] ← d + [[a]], [[λβ]] ← e + [[b]], and

[[λα λβ − λγ]]∗ ← d · [[a]] + e · [[b]] + d e + [[a b]]∗ − [[λγ]]∗,

and output ([[λα]], [[λβ]], [[λα λβ − λγ]]∗)
Abort. Note that, if any of the steps above results in abort, then a set T of

corrupt parties with |T | > t − 2(� − 1) is identified. In this case the parties
output this set.

a If the parties abort during this step, Pi’s inputs will be disregarded, as we
know they are corrupted.

Theorem 3. ΠPrep UC-realizes FPrep in the (FPacked-DSS(�,m),
FPacked-DSS(1, 1))-hybrid model, with probability 1 − negl(κ).

The proof appears in the full version.

Communication Complexity. We now calculate the communication cost of ΠPrep

by calculating the cost of different parts:

1. Input groups: This step invokes πInput-Sharings k times where k is the number of
input wires. Each invocation of πInput-Sharings costs P2P(O(n3)), O(n3)×BC(1)
(assuming the cost of rand() is amortized across n parties). Therefore, the
total cost of this step is P2P(O(|C|n3)), O(|C|n3) × BC(1).

2. Sampling random masks: This step invokes πRand-Sharings O(|C|/n) times. Each
invocation of πRand-Sharings costs P2P(O(n4)), O(n4) × BC(1). (assuming the
cost of rand() is amortized across n parties). Therefore, the total cost of this
step is P2P(O(|C|n3)), O(|C|n3) × BC(1).

260 A. Agarwal et al.

3. Multiplication groups: Let k = |C|/n2 be the number of multiplication
groups. This step invokes πtriple-generation k times where each invocation costs
P2P(O(n4)), O(n4)× BC(1). Also, it performs a beaver multiplication (same
as πBeaverpresented in the full version) k times where each multiplication
costs P2P(O(n3)), O(n3) × BC(1). Therefore, the total cost of this step is
P2P(O(|C|n2)), O(|C|n2) × BC(1).

Summing up all the above costs, the overall communication cost of ΠPrep is
P2P(O(|C|n3)), O(|C|n3) × BC(1).

Remark 2. (On function-dependent/independent preprocessing.). As in [15], we
can easily make our offline phase function-independent without affecting our
asymptotic communication in the online phase. For this, the offline phase consists
only of generating sharings of the form [[r · 1]] and ([[a]], [[b]], [[a � b]]∗) (which is
function-independent), and the part of ΠPrep that turns these into the function-
dependent ([[λα]], [[λβ]], [[λα � λβ − λγ]]∗) is moved to the online phase ΠMPC.
Crucially, the communication complexity of these steps is O(n|C|).

5.2 Online Phase

Finally, we present ΠMPC, Protocol 8, which instantiates FMPC in the FPrep-
hybrid model. This corresponds to the online phase, and at a high level it pro-
ceeds by maitaining the following invariant. For a wire α and a given assignment
to the circuit inputs, let us denote by vα the value held by wire α. The protocol
maintains that, for every wire α, the parties have the values μα := vα −λα in the
clear. This is ensured all the way up to the outputs, point in which the parties
can reconstruct the associated masks and obtain the outputs. A major differ-
ence with respect to Turbopack [15] is that, in our case, we need to handle the
case in which any of the steps that involve reconstructions—either in the offline
or online phase—result in abort. For this, we let the parties restart the com-
putation, kicking out the identified corrupt parties, which guarantees the new
corruption threshold is 1/3. The parties make use of the t < n/3 MPC func-
tionality for this FMPC-t<n/3, but before doing that they use the initial VSS’ed
masks 〈λα〉 to ensure that the inputs provided to FMPC-t<n/3 are consistent with
these from the initial execution that resulted in abort.

Protocol 8: ΠMPC

This protocol makes use of FPrep and FMPC-t<n/3.

Preprocessing. The parties call FPrep to obtain:
– [[λα]]∗ for every output group α
– ([[λα]], [[λβ]], [[λα λβ −λγ]]∗) for every multiplication group with inputs

α, β and outputs γ.
– For every input group α assigned to a party Pi, this party knows λα ,

and the parties have 〈λα1〉, . . . , 〈λαm�〉

Honest Majority GOD MPC with O(depth(C)) Rounds 261

Input Gates. For a group of input gates α owned by a party Pi, this party,
who knows λα from the preprocessing, and also knows its input vα , broad-
casts μα = vα − λα .

Addition Gates. For a group of addition gates with inputs α, β and outputs
γ, the parties locally add μγ ← μα + μβ .

Multiplication Gates. For a group of multiplication gates with inputs α, β
and outputs γ, the parties proceed as follows:
1. Locally compute

[[μγ]]∗ ← μα · [[λβ]] + μβ · [[λα]] + μα μβ + [[λα λβ − λγ]]∗

2. Call μγ ← reconstruct([[μγ]]∗).
Output Gates. Given a group of output wires α, call λα ←

reconstruct([[λα]]∗), and return the output vα = λα + μα .

Abort and restart. If any of the calls above results in abort, a set T of
corrupt parties with |T | > t − 2(� − 1) is identified. The new set of parties is
{P1, . . . , Pn} \ T , where n′ = n − |T | and t′ = t − |T |, and they execute the
following.

– For every input wire α that belongs to Pi ∈ T , the parties call λα ←
reconstruct(〈λα〉) and set vα = μα + λα.

– For every Pi /∈ T , let α1, . . . , αM be the input wires that belongs to Pi.
The parties do the following:
1. Pi inputs λαj in FMPC-t<n/3, obtaining [λαj], for j ∈ [M].
2. Pi samples r ←$ F and calls 〈r〉 ← share(r).a Pi also inputs r in

FMPC-t<n/3, obtaining [r].
3. Parties call c1, . . . , cM ← ttrand()
4. Parties compute 〈z〉 ← 〈r〉 +

∑M
j=1 cj · 〈λαj 〉 and call z ←

reconstruct(〈z〉)
5. Use FMPC-t<n/3 to compute the following function.

• The inputs are [λα1], . . . , [λαM], [r] as above
• The function first computes [z′] ← [r]+

∑M
j=1 cj ·[λαj], and outputs

1 if z′ = z, and 0 otherwise.
6. If the output is 0, the parties call λαj ← reconstruct(〈λαj 〉) and set

vαj = μαj + λαj , for j ∈ [M]. The party Pi is added to T .
– The parties then use FMPC-t<n/3 to compute the following function and

return its outputs:
• The (secret) inputs are, for each Pi /∈ T , [λα1], . . . , [λαM] as above.
• For every such values, the function first computes [vαj] = μαj + [λαj]

(recall that μαj is public, as it is broadcast in the input phase).
• Using these inputs, together with the public inputs vαj for Pi ∈ T ,

compute the circuit C. These outputs are the outputs of the function.

a If this sharing aborts, the parties skip to step 6., since Pi must be corrupted.

We prove the following in the full version.

262 A. Agarwal et al.

Theorem 4. ΠMPC UC-realizes FMPC in the FPrep-hybrid model, with probability
1 − negl(κ).

Communication complexity. We now calculate the communication cost of ΠMPC

by calculating the cost of different parts:

1. Input gates: This involves each party broadcasting a batch of inputs per input
group that it owns. Across all parties and all input groups possible, the cost
of this step is bounded by P2P(O(|C|n + n4)), O(|C|n + n4) × BC(1).

2. Addition gates: This step is local so there is no communication cost.
3. Multiplication gates: Let k = |C|/n2 be the total number of groups of multi-

plication gates in the circuit. For each group, we invoke a single reconstruct
which requires P2P(O(n3)), O(n3) × BC(1). Hence, the overall cost of this
step is P2P(O(|C|n)), O(|C|n) × BC(1).

4. Output gates: Let k = |C|/n be the total number of groups of output
gates in the circuit. For each group, we invoke a single reconstruct which
requires P2P(O(n3)), O(n3) × BC(1). Hence, the overall cost of this step is
P2P(O(|C|n)), O(|C|n) × BC(1).

5. Abort and restart: Let cI be the number of input wires. The cost of this step
is P2P(O(|C|n + cIn

3)), O(cIn
3) × BC(1).

Combining all the costs, we get that the overall communication cost of ΠMPC

in the FPrep-hybrid model is P2P(O(|C|n + cIn
3 + n4)), O(|C|n + cIn

3 + n4) ×
BC(1). Assuming C >> cI ·n2, we get communication cost of P2P(O(|C|n+n4)),
O(|C|n + n4) × BC(1).

Acknowledgments. This paper was prepared in part for information purposes by
the Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates
(“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2024 JP Morgan Chase & Co. All rights reserved.

Honest Majority GOD MPC with O(depth(C)) Rounds 263

References

1. Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. “Detect, Pack and
Batch: Perfectly-Secure MPC with Linear Communication and Constant Expected
Time”. In: Advances in Cryptology – EUROCRYPT 2023, Part II. Ed. by Carmit
Hazay and Martijn Stam. Vol. 14005. Lecture Notes in Computer Science. Lyon,
France: Springer, Heidelberg, Germany, 2023, pp. 251–281. doi: https://doi.org/
10.1007/978-3-031-30617-4_9.

2. Ittai Abraham, Gilad Asharov, and Avishay Yanai. “Efficient Perfectly Secure Com-
putation with Optimal Resilience”. In: TCC 2021: 19th Theory of Cryptography
Conference, Part II. Ed. by Kobbi Nissim and Brent Waters. Vol. 13043. Lecture
Notes in Computer Science. Raleigh, NC, USA: Springer, Heidelberg, Germany,
2021, pp. 66–96. doi: https://doi.org/10.1007/978-3-030-90453-1_3.

3. Benny Applebaum, Eliran Kachlon, and Arpita Patra. “The Round Complexity of
Statistical MPC with Optimal Resiliency”. In: Cryptology ePrint Archive (2023).

4. Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In:
Advances in Cryptology - CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 1992, pp. 420–432. doi: https://doi.org/10.1007/3-540-46766-1_34.

5. Zuzana Beerliová-Trubíniová and Martin Hirt. “Efficient Multi-party Computation
with Dispute Control”. In: TCC 2006: 3rd Theory of Cryptography Conference. Ed.
by Shai Halevi and Tal Rabin. Vol. 3876. Lecture Notes in Computer Science. New
York, NY, USA: Springer, Heidelberg, Germany, 2006, pp. 305–328. doi: https://
doi.org/10.1007/11681878_16.

6. Zuzana Beerliová-Trubíniová and Martin Hirt. “Perfectly-Secure MPC with Linear
Communication Complexity”. In: TCC 2008: 5th Theory of Cryptography Confer-
ence. Ed. by Ran Canetti. Vol. 4948. Lecture Notes in Computer Science. San Fran-
cisco, CA, USA: Springer, Heidelberg, Germany, 2008, pp. 213–230. doi: https://
doi.org/10.1007/978-3-540-78524-8_13.

7. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theo-
rems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract)”. In: 20th Annual ACM Symposium on Theory of Computing. Chicago,
IL, USA: ACM Press, 1988, pp. 1–10. doi: https://doi.org/10.1145/62212.62213.

8. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. “Near-Linear Unconditionally-
Secure Multiparty Computation with a Dishonest Minority”. In: Advances in Cryp-
tology - CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidel-
berg, Germany, 2012, pp. 663–680. doi: https://doi.org/10.1007/978-3-642-32009-
5_39.

9. David Chaum, Claude Crépeau, and Ivan Damgård. “Multiparty Unconditionally
Secure Protocols (Extended Abstract)”. In: 20th Annual ACM Symposium on The-
ory of Computing. Chicago, IL, USA: ACM Press, 1988, pp. 11–19. doi: https://
doi.org/10.1145/62212.62214.

10. Ashish Choudhury and Arpita Patra. “An Efficient Framework for Unconditionally
Secure Multiparty Computation”. In: IEEE Transactions on Information Theory
63.1 (2017), pp. 428–468. doi: https://doi.org/10.1109/TIT.2016.2614685.

11. Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
“Efficient Multiparty Computations Secure Against an Adaptive Adversary”. In:
Advances in Cryptology - EUROCRYPT’99. Ed. by Jacques Stern. Vol. 1592. Lec-
ture Notes in Computer Science. Prague, Czech Republic: Springer, Heidelberg,
Germany, 1999, pp. 311–326. doi: https://doi.org/10.1007/3-540-48910-X_22.

https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/TIT.2016.2614685
https://doi.org/10.1007/3-540-48910-X_22

264 A. Agarwal et al.

12. Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. “Communication
Lower Bounds for Statistically Secure MPC, With or Without Preprocessing”. In:
Advances in Cryptology - CRYPTO 2019, Part II. Ed. by Alexandra Boldyreva
and Daniele Micciancio. Vol. 11693. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2019, pp. 61–84. doi: https://
doi.org/10.1007/978-3-030-26951-7_3.

13. Ivan Damgård and Jesper Buus Nielsen. “Scalable and Unconditionally Secure
Multiparty Computation”. In: Advances in Cryptology - CRYPTO 2007. Ed. by
Alfred Menezes. Vol. 4622. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, 2007, pp. 572–590. doi: https://doi.
org/10.1007/978-3-540-74143-5_32.

14. Daniel Escudero and Serge Fehr. “On Fully-Secure Honest Majority MPC Without
n2 Round Overhead”. In: Progress in Cryptology - LATINCRYPT 2021: 7th Inter-
national Conference on Cryptology and Information Security in Latin America.
Ed. by Patrick Longa and Carla Ràfols. Vol. 12912. Lecture Notes in Computer
Science. Bogotá, Colombia: Springer, Heidelberg, Germany, 2021, pp. 47–66. doi:
https://doi.org/10.1007/978-3-031-44469-2_3.

15. Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. “Tur-
boPack: Honest Majority MPC with Constant Online Communication”. In: ACM
CCS 2022: 29th Conference on Computer and Communications Security. Ed. by
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. Los Angeles, CA, USA:
ACM Press, 2022, pp. 951–964. doi: https://doi.org/10.1145/3548606.3560633.

16. Matthew K. Franklin and Moti Yung. “Communication Complexity of Secure Com-
putation (Extended Abstract)”. In: 24th Annual ACM Symposium on Theory of
Computing. Victoria, BC, Canada: ACM Press, 1992, pp. 699–710. doi: https://
doi.org/10.1145/129712.129780.

17. Vipul Goyal, Yanyi Liu, and Yifan Song. “Communication-Efficient Unconditional
MPC with Guaranteed Output Delivery”. In: Advances in Cryptology - CRYPTO
2019, Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidel-
berg, Germany, 2019, pp. 85–114. doi: https://doi.org/10.1007/978-3-030-26951-
7_4.

18. Vipul Goyal, Yifan Song, and Chenzhi Zhu. “Guaranteed Output Delivery Comes
Free in Honest Majority MPC”. In: Advances in Cryptology - CRYPTO 2020, Part
II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2020, pp. 618–646. doi: https://doi.org/10.1007/978-3-030-56880-1_22.

19. Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. “Efficient Secure Multi-
party Computation”. In: Advances in Cryptology - ASIACRYPT 2000. Ed. by Tat-
suaki Okamoto. Vol. 1976. Lecture Notes in Computer Science. Kyoto, Japan:
Springer, Heidelberg, Germany, 2000, pp. 143–161. doi: https://doi.org/10.1007/
3-540-44448-3_12.

20. Yuval Ishai and Eyal Kushilevitz. “Perfect constant-round secure computation via
perfect randomizing polynomials”. In: Automata, Languages and Programming:
29th International Colloquium, ICALP 2002 Málaga, Spain, July 8-13, 2002 Pro-
ceedings 29. Springer. 2002, pp. 244–256.

21. Yuval Ishai and Eyal Kushilevitz. “Randomizing polynomials: A new representa-
tion with applications to round-efficient secure computation”. In: Proceedings 41st
Annual Symposium on Foundations of Computer Science. IEEE. 2000, pp. 294–304.

https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-031-44469-2_3
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/3-540-44448-3_12

Honest Majority GOD MPC with O(depth(C)) Rounds 265

22. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching- Hua
Yu. “Secure Protocol Transformations”. In: Advances in Cryptology - CRYPTO
2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, 2016, pp. 430–458. doi: https://doi.org/10.1007/978-3-662-53008-5_15.

23. Arpita Patra and C. Pandu Rangan. Communication and Round Efficient Infor-
mation Checking Protocol. 2010. arXiv: 1004.3504 [cs.CR].

24. Tal Rabin and Michael Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority (Extended Abstract)”. In: 21st Annual ACM Symposium
on Theory of Computing. Seattle, WA, USA: ACM Press, 1989, pp. 73–85. doi:
https://doi.org/10.1145/73007.73014.

https://doi.org/10.1007/978-3-662-53008-5_15
http://arxiv.org/abs/1004.3504
https://doi.org/10.1145/73007.73014

Direct FSS Constructions for Branching
Programs and More from PRGs

with Encoded-Output Homomorphism

Elette Boyle1,2(B), Lisa Kohl3, Zhe Li3, and Peter Scholl4

1 Reichman University, Herzliya, Israel
2 NTT Research, Sunnyvale, USA

eboyle@alum.mit.edu
3 Cryptology Group, CWI Amsterdam, Amsterdam, The Netherlands

lisa.kohl@cwi.nl, lizh0048@e.ntu.edu.sg
4 Aarhus University, Aarhus, Denmark

peter.scholl@cs.au.dk

Abstract. Function secret sharing (FSS) for a class F allows to split a
secret function f ∈ F into (succinct) secret shares f0, f1, such that for
all x ∈ {0, 1}n it holds f0(x) − f1(x) = f(x). FSS has numerous applica-
tions, including private database queries, nearest neighbour search, pri-
vate heavy hitters and secure computation in the preprocessing model,
where the supported class F translates to richness in the application.
Unfortunately, concretely efficient FSS constructions are only known for
very limited function classes.

In this work we introduce the notion of pseudorandom generators
with encoded-output homomorphism (EOH-PRGs), and give direct FSS
constructions for branching programs and more based on this primitive.
Further, we give constructions of FSS for deterministic finite automatas
(DFAs) from a KDM secure variant of EOH-PRGs.

– New abstractions. Following the work of Alamati et al. (EURO-
CRYPT ’19), who classify minicrypt primitives with algebraic struc-
ture and their applications, we capture the essence of our FSS con-
structions in the notion of EOH-PRG, paving the road towards
future efficiency improvements via new instantiations of this primi-
tive. The abstraction of EOH-PRG and its instantiations may be of
independent interest, as it is an approximate substitution of an ideal
homomorphic PRG.

– Better efficiency. We show that EOH-PRGs can be instantiated from
LWE and a small-exponent variant of the DCR assumption. A theo-
retical analysis of our instantiations suggest efficiency improvements
over the state of the art both in terms of key size and evaluation
time: We show that our FSS instantiations lead to smaller key sizes,
improving over previous constructions by a factor of 3.5 and more.
For branching programs our FSS constructions show considerably
improved run time by avoiding the expensive generic transformation
via universal circuits, shaving off a factor of w and more in the num-
ber of abstract operations, where w corresponds to an upper bound
on the width of the underlying class of branching programs.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 266–298, 2025.
https://doi.org/10.1007/978-981-96-0938-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_9&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_9

Direct FSS for Branching Programs 267

– New feasibility. We show that our instantiations of EOH-PRGs addi-
tionally support a form of KDM-security, without requiring an addi-
tional circular-security assumption. Based on this, we give the first
FSS construction for DFAs which supports the evaluation of inputs
of a-priori unbounded length without relying on FHE.

– Applications. We outline applications of our FSS constructions
including pattern matching with wild cards, image matching, nearest
neighbor search and regular expression matching.

1 Introduction

Boyle, Gilboa and Ishai [17] introduced the notion of function secret sharing
in 2015. Function secret sharing for a class of functions F allows to split up
a function f : {0, 1}n → G from F into secret shares f0, f1, such that for all
x ∈ {0, 1}n it holds f0(x) − f1(x) = f(x). If f : {0, 1}n → G is an arbitrary
function, its description size can in general scale with 2n, and thus there is no
hope to get compact secret shares. On the other hand, if f is from a class of
functions with succinct description, one can hope to split the function up into
succinct secret shares. As shown in [17], when relaxing the secrecy condition
to computational (i.e., requiring that no computationally bounded adversary
holding only a subset of the shares can derive information about the function
within the function class), this can indeed be achieved.

Function secret sharing schemes have been used in numerous applications,
such as multi-server private-information retrieval [17,33], oblivious RAM [30],
anonymous broadcast messaging [25], private database queries [45], nearest
neighbour search [42], private heavy hitters [8], private time-series database [27]
and secure computation in the preprocessing model [13–15,20], showing signifi-
cant speed-ups over previous approaches. In many of these settings, the class F
supported by the FSS scheme corresponds to richer applications; for example,
more sophisticated private database queries beyond private lookup.

Unfortunately, concretely efficient FSS constructions are only known for very
limited function classes. For example, efficient function secret sharing schemes
are known to exist for the class of point functions (i.e., functions that take a
non-zero value only at a single input) and the class of comparison functions
(i.e., functions that take the same non-zero value for all inputs less than a given
point) [13,17,19]. While these are already sufficient for many powerful applica-
tions, they do not allow to support, for instance, complex database queries.

One way to obtain function secret sharing for richer classes of function is via
homomorphic secret sharing (HSS) [18], the dual notion of function secret shar-
ing, with the role of function and input reversed. HSS schemes for the class of
polynomial-size branching programs (which in particular captures logarithmic-
depth circuits) are known from a number of assumptions, such as the decisional
Diffie-Hellman assumption [18], the DCR assumption [31,37,40], and the Learn-
ing With Errors assumption [22,29].

As observed in [18], there exists a generic transformation from a homomor-
phic secret sharing scheme to a function sharing scheme by relying on universal
circuits. A universal circuit for a function class F , is a circuit CF such that

268 E. Boyle et al.

∀f ∈ F ,∀x ∈ {0, 1}n it holds CF (f, x) = f(x). Given such a universal circuit,
one can transform the problem of constructing a function secret sharing scheme
for F to the problem of constructing a homomorphic secret sharing scheme for
the class of functions CF := {CF (·, x) | x ∈ {0, 1}n}.

For the class of branching programs, there exists a universal circuit that is
itself a branching program [18]. Any homomorphic secret sharing scheme for the
class of branching programs thus implies a function secret scheme for the same
class. Unfortunately, the transformation introduces a high concrete overhead,
especially when the structure of the branching program is wished to be hidden.
More precisely, with the techniques given in [18], if w is an upper bound on
the width of a binary branching program, then the resulting universal branch-
ing program has a blow-up of w2 in depth, which leads to large key size and
running time. For branching programs over larger fields, this overhead gets even
worse. In fact, it is an open problem explicitly posed in a talk by Boyle [12,
Page 85] to improve the efficiency of FSS over the universal branching program
transformation.

We also consider deterministic finite automata (DFAs) in this work [39,43].
A DFA is an automaton with finitely many states that rejects or accepts a given
string following a sequence of states, where the next state is determined by the
next symbol of the string. As observed, e.g., in [34], if f is a function of input
length n that is computed by a DFA with s states, it can be computed by a
branching program of length n and size s ·n+1, an FSS for branching programs
thus directly yields an FSS for DFAs with bounded input-length. Note though
that FSS for branching programs does not allow to compute general classes of
DFAs, since these can support inputs of a-priori unbounded length, while yet
having a succinct representation.

1.1 Our Contributions

In this work, we present constructions of function secret sharing schemes for
the class of bit-fixing predicates, branching programs and more from an abstract
pseudorandom generator with encoded-output homomorphism (EOH-PRG). We
further show that if the EOH-PRG additionally satisfies a form of KDM-security,
we can construct FSS for deterministic finite automata supporting inputs of a-
priori unbounded length.

We give instantiations of the EOH-PRG from the standard learning with
errors (LWE) assumption or a binary-secret variant of ring-LWE, as well as
from a small-exponent variant of the decisional composite residuosity (DCR)
assumption. We give an overview of the efficiency comparison of our concretely
efficient FSS constructions for branching programs to previous FSS constructions
via universal branching program transformations in Table 1. In terms of concrete
efficiency, the run time is improved by at least a factor of w, where w is the width
of the branching program.

In some sense, our work can be viewed as an extension of the line of work on
exploring minicrypt primitives with algebraic structure and their applications,
as started by Alamati et al. [2].

Direct FSS for Branching Programs 269

Table 1. Comparison of FSS for branching programs constructed from EOH-PRG and
from HSS via universal branching programs. � stands for the length of the branching
program and w stands for the width of the branching program. Assume fixed out-degree
d = 2. For the LWE assumption, n stands for the secret length, q the modulus of the
LWE assumption, and p the output modulus of the PRG. The number of multiplications
is counted over Zq. For the DCR assumption, N stands for RSA modulus. For the
comparison with [37], we use their most efficient instantiation, for which they have
to assume a DCR variant with circular security ([37, Section 4.2]). The number of
exponentiations is counted over ZN2 .

Assumption Key Size Run time(No. of Mul./ Exp.)

LWE
HSS [22] Ring-LWE 4�w2n log q 8�w2n log n

EOH-PRG(Ours) Ring-LWE 2�w(n + w) log p �(2 + � 2w
n

�)n log n

DCR
HSS [37] DCR 7�w2 log N2 14�w2

EOH-PRG(Ours) DCR 2�w(w + 1) log N2 �(3w + 2)

Our main results can be captured in a series of theorems. In the following,
we will give a simplified definition of our EOH-PRG, which is yet too demanding
for our instantiations, but allows to present the essence of our core theorems.
For a full definition and more detailed explanation of our results, we refer to the
technical overview section.

EOH-PRG. We start by introducing the concept of an EOH-PRG. Intuitively,
an EOH PRG captures the functionality of a homomorphic pseudorandom gener-
ator in the following sense: Given an encryption c = m+PRG(s), a homomorphic
PRG would allow to split the decryption key s into two shares s0 − s1 = s, s.t.,

(c0 − PRG(s0)) − (c1 − PRG(s1)) = m,

where c0 − c1 = c. In other words, a homomorphic PRG would allow the dis-
tributed decryption of m, where the size of the decryption keys s0, s1 are succinct
(i.e., scale with the size of s, rather than PRG(s)).

Unfortunately, perfectly homomorphic PRGs with both the domain and
image being additive groups in the typical sense are not known to exist; one
barrier is that any homomorphic PRG with an output space that supports effi-
cient linear algebra can be broken by Gaussian elimination.

In this paper, we observe that if we relax the above to require the equation
only relative to “encoded” messages m, it can be instantiated from standard
assumptions.1 We formalize this requirement in the following definition of pseu-
dorandom generators with encoded output homomorphism. While this definition
might look somewhat complex at first glance, we would like to stress that the
intuition behind it is very simple: We leverage the observation that if we have
1 Actually, for our instantiations we additionally have to restrict the seed s to be from

a special subset S ⊂ S, and our message from a special subset H ⊂ H, but for
simplicity we start by presenting our results with the slightly simpler definition.

270 E. Boyle et al.

some control over the message and PRG seed, one can recover the functionality
of a homomorphic PRG while being able to give instantiations from standard
assumptions.

Definition 1.1 (EOH-PRG, simplified). Let S,H, ˜H be finite abelian groups.
A function PRG : S → ˜H is a PRG with encoded output homomorphism (EOH-
PRG) relative to H if it is a pseudorandom generator and there exists a deter-
ministic polynomial-time encoding function Encode : H → ˜H and conversion (or
“decoding”) function Conv : ˜H → H such that for all m ∈ H, for s ∈ S it holds

Conv(c0 − PRG(s0)) − Conv(c1 − PRG(s1)) = m,

where c0 − c1 = PRG(s) + Encode(m) and s0, s1 ∈ S with s0 − s1 = s (except
with negligible probability over the random choice of the shares).

Note that given a truly homomorphic PRG, one could indeed instantiate the
above definition of EOH-PRG by setting H := ˜H and choosing Encode and Conv
as identity functions.

We will show that the EOH-PRG can be instantiated with different
paradigms: It can be instantiated by an almost homomorphic PRG, in which
Conv corrects introduced errors and transforms shares in ˜H back to shares in
H based on learning with errors (similar to the rounding and lifting in [22]),
as well as with a homomorphic PRG mapping additive shares to multiplica-
tive shares, in which Conv converts multiplicative shares back to additive shares
based on a variant of the DCR assumption (similar to the conversion proce-
dure in [18,37,40]), thereby presenting a way to unify these two approaches to
distributed decryption.

For our constructions, we further need the PRG to support a “tag-space” T.
We will defer a formal definition to later, but we observe that for our construc-
tions one can simply set T = Zτ , where τ is the order of H (which will also be
satisfied by our instantiations).

Tensor Product Theorem. With this EOH-PRG, we can state our main
results. We start by giving our tensor product theorem, which can be viewed as
lifting the tensor product theorem of [19] for point predicates (i.e., the family
of predicates taking 1 exactly at one point) to arbitrary predicates. Below we
present it for the family of bit-predicates, we note though that it readily extends
to any predicates with logarithmic-size input space.2 For more detailed results
we refer to the technical overview section and Sect. 5.

Theorem 1.1 (Tensor product FSS (simplified)). Let � = �(λ) be a polyno-
mial. Let P be a family of predicates {0, 1} → {0, 1}. Let S, ˜H,T be finite abelian

2 Note though that this assumes an EOH-PRG with an accordingly larger output
space and thus results in larger key sizes.

Direct FSS for Branching Programs 271

groups. Then, if there exists an EOH-PRG PRG : S → ˜H relative to H := (S×T)2

with tag space T, there exists an FSS for the function class

P⊗ :=

{

gP1,...,P�
: {0, 1}� → {0, 1}, x �→

�
∧

i=1

Pi(xi)
∣

∣

∣

∣

∀i ∈ [�] : Pi ∈ P
}

with polynomial key size.

By instantiating the above with the family of bit-fixing predicates, we obtain
a FSS construction for bit-fixing predicate. We capture this result in the following
corollary.

Corollary 1.1 (FSS for bit-fixing predicates). Assume all parameters are
as in Theorem 1.1 and PRG : S → ˜H is a EOH-PRG relative to H := (S × T)2

with tag space T. Then, there exists an FSS for �-bit bit-fixing predicates with
key size log |H| + (� − 1) log

∣

∣

∣

˜H

∣

∣

∣.

FSS for Branching Programs. Next, we state our main theorem for branch-
ing programs. We remark that the FSS for branching programs only hides the
transition function whereas the topology of the branching program, i.e., the num-
ber of nodes of each level, is revealed. It is easy to extend each level to w nodes
via adding dummy nodes and then construct an FSS for the extended branching
program (note that the same has to be done in order to apply the generic trans-
formation from HSS to FSS, if the topology is wished to be hidden). For more
details on the FSS for branching programs, we refer to the technical overview
section.

Theorem 1.2 (FSS for branching programs, simplified). Let P be an
oblivious, layered branching program with � levels, width w and out-degree d. Let
S, ˜H,T be finite abelian groups. Then, if there exists an EOH-PRG PRG : S → ˜H

relative to H := (S × T
w)d with tag space T, there exists an FSS for P with key

size log |H| + (� − 1) · w · log
∣

∣

∣

˜H

∣

∣

∣.

With FSS for branching programs, we present an FSS for the class of approx-
imate matching functions in the full version [21]. We further give an FSS for
multivariate polynomials over polynomial size rings in the full version.

FSS for DFAs. Finally, we give our construction of FSS for definite finite
automata. Note that the construction of FSS for branching programs would
directly imply an FSS for DFA, but requires the input size to be a-priori bounded
as the FSS keys scale with the size of the input. Instead, we give a direct con-
struction of a DFA, which can accept inputs of a-priori unbounded size (and
for which the key sizes are independent of the size of the input). To that end,
we introduce the notion of EOH-PRG with KDM-security. We stress that the
kind of KDM-security we require for our FSS construction comes “for free” in
our instantiations from LWE and DCR, without needing to assume a circular-
security type assumption.

272 E. Boyle et al.

Definition 1.2 (KDM-secure EOH-PRG (simplified)). Let Ψ be a family
of embeddings ψ : S → H. Let PRG : S → ˜H be an EOH-PRG relative to H. We
say that PRG satisfies KDM-security relative to Ψ , if for each ψ ∈ Ψ , PRGψ(s) :=
PRG(s) + Encode(ψ(s)) is a secure PRG.

With this we obtain the following theorem.

Theorem 1.3 (FSS for DFAs (simplified)). Let M be a DFA with state
set Q and alphabet Σ. Let μ := |Q ∪ {A,R}| = |Q| + 2, where A and R stand
for the merged accept state and rejection state, respectively. Let S, ˜H,T be finite
abelian groups. Then, if there exists a EOH-PRG PRG : S → ˜H relative to
H := (S × T

μ)|Σ|+1 with tag space T which satisfies KDM-security relative to a
suitable function family Ψ , there exists an FSS for M with key size |H|+ |Q| · |˜H|.
It is worth to mention that the FSS for DFA is the first that allows key size
independent of the length of the input(except for the generic constructions from
FHE).

Towards Instantiating the EOH-PRG. In order to instantiate our construc-
tions, we have to allow for a slightly more permissive notion of EOH-PRG, for
which it is rather straightforward to adapt the above theorems. Namely, we addi-
tionally have to restrict the seed s to be from a special subset S ⊂ S (and require
that the PRG restricted to S is still a PRG), and the message m from a special
subset H ⊂ H. With this relaxation, we show that it is possible to instantiate the
EOH-PRG from LWE and binary-secret ring-LWE building on the techniques
of [22], and from a short exponent variant of the DCR assumption inspired by
the techniques of [37,40]. More precisely, we obtain the following results.

Theorem 1.4 (EOH-PRG from LWE (simplified)). Let n, p, q, r, �, w ∈ N

such that r|p, p|q, 1 � r � p,3 and n log q < m log p, where m := �(n + w).
Further, let q > 2pB and let χ be a B-bounded error distribution.4

Then, assuming learning with errors LWEn,m,q,χ is hard, there exists an EOH-
PRG PRG : S → ˜H relative to (S,H,H) with tag space T, where S = {0, 1}n,S =
Z

n
p ,T = Zp,H = (S × {0, 1}w)� = {0, 1}m and ˜H = H = (S × T

w)� = Z
m
p .

Recall that the DCR assumption states an N -th residue over Z
∗
N2 is com-

putationally indistinguishable from a random element over Z
∗
N2 . Based on the

DCR assumption, Brakerski and Goldwasser [23] showed that (g1 . . . gd, g
s
1 . . . gs

d)
is pseudorandom, where d ∈ N, each gi is a N -th residue over Z∗

N2 , and s is ran-
dom element in Zφ(N). (Note that this can also be viewed as the DDH assumption
over Z

∗
N2 .)

We have to rely on a variant of this assumption, where the secret is chosen
from a (sufficiently large) bounded subspace [−B/2, B/2] ⊂ Zφ(N). Note that

3 Here, by � we denote a super-polynomial gap between parameters.
4 Note that this requirement on the error distribution is to ensure that LWE implies

LWR [7].

Direct FSS for Branching Programs 273

similar flavors of small-exponent assumptions have been used in [1,16,36]. With
this, we obtain the following theorem.

Theorem 1.5 (EOH-PRG from DCR (simplified)). Let B be an integer
such that B · 2λ ≤ N and B > 2λ. Further, let �, w ∈ N be arbitrary.

Then, assuming a small exponent variant of DCR holds relative to B, there
exists an EOH-PRG PRG : S → ˜H relative to (S,H,H) with tag space T, where
S = [−B/2, B/2],S = Zφ(N2),T = Zφ(N2),H = (S × {0, 1}w)�,H = (S × T

w)� =
(Zφ(N2))�(1+w) and ˜H = (Z∗

N2)�(1+w).

Note that in order for the DCR assumption to hold, the parties cannot know
φ(N2). In our construction, this will not be an issue. The computation mod
φ(N2) or φ(N) in the exponent is automatic because of the structure of the
Paillier group, and to sample from Zφ(N2), we can sample from ZN2 instead, as
the two distributions are statistically close. As we will explain in the technical
overview, we are able to generate secret shares of elements x mod φ(N2) when-
ever |x| is sufficiently small (following the techniques of [37]), and can otherwise
perform operations simply over Z.

Comparisons. We give the concrete comparisons between our FSS for branch-
ing programs from EOH-PRGs and the previous FSS constructions via homo-
morphic secret sharing (HSS) in Table 1. Building on EOH-PRG yields more
efficient constructions in terms of key size and runtime. Most notably, the new
FSS schemes for branching programs provide significant improvements in run
time over FSS from HSS for universal branching programs, by avoiding the over-
head of the generic transformation. For example, consider the Multiply-Then-
Truncate (MTT) operation [13], which is central for multiplying numbers in
fixed-point arithmetic. With FSS for NC1, the MTT operation can be imple-
mented in one round. The width for an oblivious BP for MTT is lower bounded
by w = N/logN [46] with N the input number length. For inputs of size N=64
bits as in [20], we thus obtain a lower bound w = 10 for the width of the BP.
For the DCR-based instantiation we achieve an improvement of roughly a factor
> 3.5 in the key size and factor > 40 in the run time and for the Ring-LWE
based instantiation we obtain a factor around 20 improvement in the key size
and a factor > 250 improvement in the run time. We want to highlight that
the run time improvement both for the DCR and the LWE based instantiations
scales with w (where w is the width of the BP), and thus is even more significant
for wider branching programs. For details on the efficiency comparison we refer
to the full version [21].

Applications. The central application of FSS schemes are forms of two-server
private information retrieval [18]. Here, it is assumed that two (non-colluding)
servers each hold a replication of a database DB with D items, and a client
wants to launch a query to the database while keeping the query hidden from
both servers individually. Given an FSS scheme supporting the query class, this

274 E. Boyle et al.

can be achieved with succinct communication, by having the client split its query
into succinct shares, which can then be evaluated by the server. By secrecy of
the FSS, the servers do not learn anything about the query, as long as they are
non-colluding.

In the full version [21], we show a number of applications including private
image matching, private nearest neighbour search and private partial text match-
ing, and how our construction can be used towards boosting the applications
in terms of expressiveness and/or efficiency. In particular, our improved FSS
constructions for bit-fixing and branching programs yield direct applications to
applications such as 2-server private counting queries and private payload com-
putations, as considered, e.g., in [22], with better efficiency.

Note that for the most part in our application we solely focus on achiev-
ing client privacy. If the underlying database contains privacy-critical data e.g.,
medical, biological or financial data, one further needs to consider server privacy.
We show how this can be achieved in the example of private nearest neighbor
search in the full version [21].

1.2 Discussion and Related Work

Beyond the Two-Party Case. Note that the FSS constructions from one-
way functions [17,19,33] cannot be easily extended to more than two parties.
Our FSS construction approach from EOH-PRGs, on the other hand, naturally
extends beyond the two-party setting. However, it is not known how to instan-
tiate the EOH-PRG from concrete assumptions for more than two parties. Our
two-party instantiations from LWE and the DCR variant heavily rely on the
distributed rounding [22] and distributed discrete logarithm [37], respectively,
which were developed for two-party homomorphic secret sharing. To date, it is
unclear how to generalize the distributed rounding or distributed discrete loga-
rithm to more than two parties. In fact, [6] proved that there exists a barrier to
directly generalize the share conversion from two-party to multi-party. Any such
progress may lead to significant improvements for efficient multi-party FSS/HSS
constructions.

On FSS from Weaker Assumptions. While constructing FSS for function
classes such as branching programs solely based on the assumption of one-way
functions would be a major breakthrough [17], it seems a more tractable open
question if such FSS can be constructed for subclasses of AC0 such as bit-fixing
predicates or t-CNF. In the technical overview, we give some intuition why it
seems unlikely that the techniques of the line of work on FSS from one-way
functions [17,19,33] allow for this without relying on additional structure (such
as EOH-PRGs), due to an inherent exponential blow-up. An alternative route
could be taken following [28], who give constructions of privately constrained
PRFs for t-CNFs from one-way functions. Here, however, the problem is that
de-randomizing the constrained points to fixed values would again introduce an
exponential blow-up. We leave it as an interesting open questions to either give
such candidates, or give barriers towards their construction.

Direct FSS for Branching Programs 275

Relation to Secure Branching Program Evaluation Protocols. There is a
line of work on secure branching program evaluation (BPE) [4,5,11,24,35,44,47]
relying on garbled circuits or homormorphic encryption. The setting considered
in their work is somewhat orthogonal to ours: They consider a branching program
(held by a sender) to be evaluated on a single input (held by a receiver), such
that the result is learned by the receiver, and such that both the branching
program provided by the sender and receiver input remain hidden. We, on the
other hand, consider a branching program (held by a client) to be evaluated on
a database (held by two servers), such that a linear combination of the outputs
is learned by the client, and such that the branching program (i.e., database
query) provided by the client remains hidden, as long as the two servers are not
colluding. With our approach, the communication cost scales with log N for a
database of size N , since the same branching program can be evaluated on all
inputs. Except for the FHE-based approach [11], the communication cost of all
other protocols in the BPE line of work instead scales with N to achieve the
same functionality. This is even true for the protocols [47] relying on additively
homomorphic encryption, since they still require communication between the
receiver and sender per input to be evaluated. It is worth to point out that
sublinear communication complexity in the line of work on BPE (as achieved in
[44]) refers to sublinear in the size of the branching program, whereas we consider
settings where the size of the database N is the dominating cost.

1.3 Organization

Only the main results and techniques are presented in the body part. Section 2
presents an overview of the central techniques, followed by preliminaries in
Sect. 3. The EOH-PRG is formally defined in Sect. 4. We show the constructions
for tensor product, branching programs and DFAs in Sect. 5, 6, 7, respectively.
Finally, in Sect. 8 we present instantiations of the EOH-PRG.

2 Technical Overview

In the following we give an overview of the central techniques. We start by
explaining the tensor product FSS for point functions of Boyle, Gilboa and Ishai
[19] (in the following refered to as BGI16), and show how to extend their con-
struction to a more general tensor product using an encoded-output PRG. Then,
we show how this yields FSS for the classes of bit-fixing predicates. Next, we
explain how the construction can be extended towards FSS for branching pro-
grams and for DFAs.

Background [17,19]. Before giving the construction, we recall some required
preliminaries. Firstly, recall that a point function is simply a function that takes
a non-zero value only at one dedicated point. More precisely, the point function

276 E. Boyle et al.

fβ
α with input space {0, 1}n and output space R (for some group R) is defined

as

fβ
α (x) :=

{

β if x = α

0 else
.

A function secret sharing scheme for a family of function F consists of tuple
of PPT algorithms (Gen,Eval), such that Gen takes as input the description f̂
of f and returns a tuple of keys (k0, k1) and Eval takes as input a party index
b, a key kb and an input value x and outputs an output value yb, such that the
following holds:

Correctness: For all x ∈ {0, 1}n. it holds Eval(0, k0, x) − Eval(1, k1, x) = f(x).
Secrecy: For b ∈ {0, 1}, kb computationally hides f̂ within F .

Note that an FSS for the class of point functions, is also refered to as distributed
point function (DPF).

Tensor Product FSS for Point Functions [BGI16 [19]]. Given a function
secret sharing scheme for the class F◦ of point functions, and a function secret
sharing scheme for a function class F of arbitrary functions, BGI16 gives a
construction for the tensor product F◦ ⊗ F , i.e., the class of functions

Fα,f (x1, x2) :=

{

f(x2) if x1 = α

0 else

for α ∈ {0, 1}n, f ∈ F , where the key size scales polynomially in the key sizes of
the underlying FSS schemes.5

In the following, we describe the construction of BGI16 in a number of steps,
adding layers of secrecy one-by-one. For the construction we assume that the
FSS scheme (Gen,Eval) for F satisfies a symmetry property, i.e., Eval(0, k, x) =
Eval(1, k, x) for all inputs x and keys k. Further, we assume that keys (k0, k1) ←
Gen(f) are individually pseudorandom over the same key space K.

First Attempt: A Construction with Very Limited Secrecy: To get a construction
where α is hidden from P1, one can proceed as follows: To share Fα,f , one can
generate keys (k0, k1) ← Gen(f̂) and set K0 := (α, k0, k1) and K1 := k1. To
evaluate on point (x1, x2), party P0 outputs y0 := Eval(0, k0, x2) if x1 = α and
y0 := Eval(0, k1, x2) otherwise. Party P1 simply outputs y1 := Eval(1, k1, x2).

Correctness and very limited secrecy: Here, for x1 = α we have y0 − y1 =
Eval(0, k0, x2) − Eval(1, k1, x2) = f(x2) by the correctness of (Gen,Eval). For
x1 �= α, on the other hand, it holds y0 −y1 = Eval(0, k1, x2)−Eval(1, k1, x2) = 0

5 The resulting scheme actually satisfies a stronger notion of key compactness, namely
the non-public part of the key does not grow, allowing to apply the tensor product
operation recursively a polynomial number of times.

Direct FSS for Branching Programs 277

by symmetry, as required.6 This construction does obviously hide α from P1,
but otherwise does not provide any secrecy guarantees.

Second Attempt: A Construction with Secret α. Towards hiding α also from P0,
the trick is to additionally use the FSS scheme (Gen◦,Eval◦) for F◦, and flipping
the order of k0 and k1 with probability 1/2, thereby hide from the parties when
they use the same keys. More precisely, assume to be given an FSS for point
functions with output space {0, 1} (i.e., the point function maps to 1 at the
unique non-zero point α, and otherwise to 0). Now, the idea is to generate keys
(k◦

0 , k
◦
1) ← Gen◦(f̂1

α), and compute “tag” values τb ← Eval◦(b, k◦
b , α) (i.e., τ0 ⊕

τ1 = 1 by construction) relative to these keys. The tag values are used to hide if
the parties use the same key kb, by defining cwτb

:= kb (where (k0, k1) ← Gen(f̂)
as before) and setting Kb := (k◦

b , cw0, cw1). To evaluate at a point (x1, x2), party
Pb first computes tb ← Eval◦(b, k◦

b , x1) and then outputs yb ← Eval(b, cwtb
, x2).

Correctness and secrecy of α: Now, for x1 = α, it holds cwtb
= cwτb

= kb. As
before, the parties thus obtain y0 − y1 = Eval(0, k0, x2) − Eval(1, k1, x2) = f(x2)
as required. If x1 �= α, on the other hand, it holds t0 = t1 and thus kt0 = kt1 ,
implying y0 − y1 = Eval(0, kt0 , x2) − Eval(1, kt0 , x2) = 0, again by symmetry.
The construction hides α from both parties by the secrecy of (Gen◦,Eval◦) and
the pseudorandomness of keys for (Gen,Eval) (which prevents the parties from
learning when they use the real key at position α and when they use a “dummy
key”), but still fully leaks f .

The Construction of BGI16. The idea of BGI16 to overcome this, is to addition-
ally use a pseudorandom generator to blind the keys k0, k1, such that party P0 is
only able to recover k0 and party P1 is only able to recover k1 at the dedicated
point x1 = α (without being able to distinguish this from the case where both
parties recover the same “dummy” key, to ensure that α remains hidden). To
this end, assume that FSS◦ is now an FSS for point functions with output space
{0, 1}λ+1. The idea of BGI16 is as follows: To generate a key for Fα,f , the key
generation algorithm starts by choosing s ←R {0, 1}λ at random and generat-
ing (k◦

0 , k
◦
1) ← Gen◦(f̂s,1

α). Further, the key generation algorithm generates the
corresponding “seed values” σb ∈ {0, 1}λ and, again, “tag values” τb ∈ {0, 1} as
(σb, τb) ← Eval◦(b, k◦

b , α) (i.e., σ0 ⊕ σ1 = s and τ0 ⊕ τ1 = 1 by construction).
Further, given a pseudorandom generator PRG : {0, 1}λ → K, the full “correc-
tion words” are generated as CWτb

:= kb + PRG(σb) (where (k0, k1) ← Gen(f̂)
as before) and the keys defined as Kb := (k◦

0 , CW0, CW1). To evaluate on point
(x1, x2), the parties now compute (sb, tb) ← Eval◦(b, k◦

b , x1), “correct” their keys
to κb := CWtb

− PRG(sb) and evaluate to yb ← Eval(b, κb, x2).
Correctness and secrecy of BGI16: If x1 = α, it holds κb = CWtb

−PRG(sb) =
CWτb

−PRG(σb) = kb and thus y0 −y1 = Eval(0, k0, x2)−Eval(1, k1, x2) = f(x2)
as required. If x1 �= α, on the other hand, then t0 = t1 and thus κ0 = κ1 (i.e.,

6 This construction would not actually require symmetry of the underlying FSS since
P0 knows when x1 �= α and could evaluate Eval(1, k1, x2)in this case, but this will
no longer be possible in the subsequent constructions.

278 E. Boyle et al.

both parties recover the same “dummy” key), and y0 − y1 = Eval(0, κ0, x2) −
Eval(1, κ0, x2) = 0 by symmetry. Full secrecy holds by the above considerations
and because (Gen,Eval) satisfies secrecy and pseudorandomness of keys, which
prevents the parties from learning where the true FSS keys are embedded.

Limitation of BGI16 to Tensoring with Point Functions. The issue with
extending the above approach even slightly beyond point functions (e.g., to func-
tion which take a non-zero value at two points) is that it would incur an expo-
nential blow-up in the key size (and run time of the key generation), since the
parties have to recover different key pairs (K0,K1) and (K ′

0,K
′
1) for different

non-zero points α, α′ (as reusing a key would allow the parties to locally derive
information about the position of non-zero points). Note that this includes the
“correction word” part CW0, CW1 of the key, since keys with different first com-
ponent require different correction words in construction of BGI16. The key
generation time and key length thus (at least) double at each tensoring. Recur-
sive tensoring is therefore limited to at most a logarithmic number of times,
which is not sufficient for most applications.

This issue could be overcome, if the keys could be “randomized” in order to
hide that the same key is reused. For additive secret sharing this is trivially the
case: Namely, assume an output value is shared as y = k0 − k1 ∈ K (for some
additive group K). Then, for any Δ ∈ K, the secret can be re-shared as (k0 +
Δ, k1 + Δ), which looks like perfectly fresh keys from the view of the adversary.
Unfortunately, the construction of BGI16 does not satisfy this property of “shift-
invariance”, even if the underlying FSS schemes F◦ and F were to satisfy these
properties: Namely, even if σ0 − σ1 = σ′

0 − σ′
1 (where σb ← Eval◦(b, kb, α) and

σ′
b ← Eval◦(b, kb, α

′)), the PRG outputs PRG(σb) and PRG(σ′
b) are in general

uncorrelated.
This could be resolved by using an ideal homomorphic PRG, ensuring that

the correlation is preserved to PRG(σ0)−PRG(σ1) = PRG(σ′
0)−PRG(σ′

1). Unfor-
tunately, perfectly homomorphic PRGs with both the domain and image being
additive groups in the typical sense are not known to exist. For simplicity, we still
start by outlining our tensor product construction assuming access to a perfectly
homomorphic PRG PRG : {0, 1}λ → K, before giving our full construction.

Overcoming the Limitations via an Ideal Homomorphic PRG. We
start by simplifying the construction of BGI16 assuming access to a perfectly
homomorphic PRG PRG : {0, 1}λ → K, and assuming a shift-invariant FSS
FSS = (Gen,Eval) for F with key space K,7 i.e., for (k0, k1) ← Gen(f̂), we
assume that any shifted tuple (k0 +Δ, k1 +Δ) for Δ ∈ K constitutes a valid key
pair for f . Then, the construction of BGI16 can be simplified to a construction
requiring only one correction word CW :

7 Note, that for correctness of the simplified construction outlined below, we would
actually require (K, +) := ({0, 1}k, ⊕), for some k ∈ K. To be aligned with the
general construction, we will still use th notation (K, +) in the following.

Direct FSS for Branching Programs 279

Again, to generate a key for Fα,f , the key generation algorithm samples s ←R

{0, 1}λ and generates keys (k◦
0 , k

◦
1) ← Gen◦(fs,1

α). Instead of pre-computing the
tag and seed values at position α, the key generation algorithm simply generates
(k0, k1) ← Gen(f̂), sets CW := k0 − k1 + PRG(s) and outputs (K0,K1), where
Kb := (k◦

b , CW). To evaluate, the parties now compute (sb, tb) ← Eval◦(b, k◦
b , x1)

and then obtain the “corrected” keys as κb := tb · CW − PRG(sb). (Note that
tb ∈ {0, 1}, and thus the multiplication simply corresponds to adding 0 or CW.)

Correctness holds, since at position α it holds s0 − s1 = s and t0 − t1 = 1,
and thus8

κ0 −κ1 = (t0 ·CW −PRG(s0))− (t1 ·CW −PRG(s1)) = CW −PRG(s) = k0 −k1.

As FSS is shift-invariant, the above implies that (κ0, κ1) and (k0, k1) are func-
tionally equivalent, and thus y0 − y1 = Eval(0, κ0, x2) − Eval(1, κ1, x2) = f(x2)
as required. If x1 �= α, on the other hand, we obtain s0 = s1 and t0 = t1 and
thus κ0 = κ1 as before, and correctness follows from the symmetry of FSS.
Secrecy holds by the secrecy of the underlying FSS schemes, together with the
pseudorandomness of PRG.

Note that this simplified scheme readily extends beyond point functions.

EOH-PRG. In order to instantiate the above construction, we introduce the
notion of PRG with encoded-output homomorphism (EOH-PRG) and show that
the above construction can be extended to support instantiation from this weaker
notion. Roughly, an EOH-PRG has “encoding” and “conversion” (or “decod-
ing”) functions Encode and Conv such that it satisfies the following: given addi-
tive secret shares (s0, s1) of a seed s, and additive secret shares (y0, y1) of a
blinded encoding PRG(s)+Encode(m), we require Conv(y0−PRG(s0))−Conv(y1−
PRG(s1)) = m (except with negligible probability over the random choice of the
secret shares). Intuitively, this is sufficient to instantiate (a variant of) the tensor
product FSS above, by encoding the key difference k0 − k1 to Encode(k0 − k1)
before adding PRG(s).

More formally, a EOH-PRG PRG : S → ˜H as required for our tensor product
construction is parametrized by S,H,H, together with (efficiently computable)
maps Encode : H → ˜H and Conv : ˜H → H such that:

– PRG : S → ˜H is a PRG.
– S ⊂ S is such that PRG restricted to S is still a PRG and 0 ∈ S. Note

that S will serve as the seed space of our tensor product (recall that before
S = {0, 1}λ). 0 has to be included in S to account for the case where both
parties recover the same “dummy” seed value s0 = s1, i.e., s0 − s1 = 0.

– H is a finite abelian group containing the set H ⊂ H. Note that H will
correspond to the key space K of the FSS FSS before encoding (i.e., recovery
of the keys is relative to addition in K). H ⊂ H will correspond to the set

8 Note that to obtain t0 · CW − t1 · CW = CW we use (K, +) = ({0, 1}k, ⊕). We will
later show how to generalize this.

280 E. Boyle et al.

of actual key differences k0 − k1 for (k0, k1) ← Gen(f̂) for f ∈ F . Having
separate H ⊂ H stems from the intantiations of EOH-PRG – given a truly
homomorphic PRG, one could simply choose H = H = ˜H.

– H̃ is a finite abelian group containing the image of the PRG.

Finally, Enc : H → H̃ and Conv : H̃ → H are such that for all s ∈ S, for all
m ∈ H, for random secret shares s0, s1 ←R S with s0 − s1 = s, and for random
secret shares y0, y1 ←R H̃ with y0 − y1 = PRG(s) + Encode(m) it holds

Conv(y0 − PRG(s0)) − Conv(y1 − PRG(s1)) = m

in H except with negligible probability.
Further, we require a tag space which operates on ˜H. More formally, we

require the following:

– T is a finite abelian group containing {0, 1} ⊂ T. Note that T = {0, 1} will
serve as the tag space of our tensor product FSS, which is embedded in the
group T, i.e., recovery of the tag will now be additive over T, rather then
additive over ({0, 1},⊕).

– · : T × H̃ → H̃ is an efficiently computable non-trivial (left) homomorphic
group operation of T on H̃, i.e., ∀t0, t1 ∈ T and ∀h ∈ H̃, t0·h+t1·h = (t0+t1)·h.
Note that we need to define an operation of T on H̃ in order to “correct” the
keys based on the tag values. This allows to support more general key spaces
than K = {0, 1}k.

As mentioned above, In the following, we will assume this as part of the definition
of an EOH-PRG and simply add T to the parametrization.

A First Step: Tensor Product FSS for Arbitrary Predicates from EOH-
PRG. Our tensor product construction from a EOH-PRG is essentially the same
as the one from a perfectly homomorphic PRG (assuming the underlying FSS
satisfy some additional properties), except that the correction word is computed
as CW := PRG(s) + Enc(k0 − k1), and the keys are recovered as κb := Conv(tb ·
CW − PRG(sb)).9

Note that for construction to satisfy correctness, it is now required that
the FSS scheme FSS for F satisfies k0 − k1 ∈ H for all f ∈ F and (k0, k1) ∈
Gen(f̂) (since the encoding function Encode takes inputs in H), but satisfies shift
invariance relative to the additive group H (since the decoding function Conv
returns elements in H).
9 A subtlety is that in the definition of EOH-PRG we only require correctness relative

to random shifts, but here we rely on correctness relative to shifts of the form
tb · CW − PRG(sb). This can be solved by having the parties re-randomize their
shares with random offset PRF(s, i) (where each time a fresh index i is used and both
parties hold the key s). This is necessary anyway for applying tensoring recursively,
and allows for a simpler definition of EOH-PRG. Note though that this requires us
to settle with a form of “non-adaptive” correctness as used e.g. in [22], where the
inputs are assumed to be chosen independently of the keys.

Direct FSS for Branching Programs 281

An example for such an FSS can be obtained by additively secret-sharing the
truth table with values in H over H if the function class is sufficiently small, this
can be done efficiently.

With this we obtain the following theorem.

Theorem 2.1 (Theorem 5.1). Assume PRG : S → H̃ is a EOH-PRG
parametrized by (S,T,H,H). Further, let FSSP = (GenP ,EvalP) be an FSS for
a function family fβ

P : {0, 1}n1 → S × T, where

fβ
P (x1) =

{

β if P (x1) = 1
0 else

,

for β ∈ S ×{1} ⊆ S ×T ⊆ S×T (i.e., recovery is additive in S×T) and P ∈ P,
and let FSS = (Gen,Eval) be a symmetric and shift-invariant FSS for some class
of functions F of the form f : {0, 1}n2 → R with key space K = H, such that for
any pair of keys (k0, k1) ← Gen(f̂) it holds k0 − k1 ∈ H.

Then, there exists an FSS FSS⊗ = (Gen⊗,Eval⊗) for the class FP ⊗ F of
functions

FP,f : {0, 1}n1+n2 → G, (x1, x2) �→
{

f(x2) if P (x1) = 1
0 else

,

for P ∈ P, f ∈ F , where the resulting keys consist of a “secret” part correspond-
ing to the key space in FSSP and a “correction word” space H̃.

Theorem 2.1 yields the following corollary.

Corollary 2.1 Assume PRG : S → H̃ is a EOH-PRG relative to (S,T,H,H)
with H = (S × T)2,H = (S × T)2. Assume P is a family of predicates {0, 1} →
{0, 1}. Then, there exists an FSS for the function class

FP1∧···∧P�
: {0, 1}� → {0, 1}, x �→

�
∧

i=1

Pi(x[i]),

where P1, . . . , P� ∈ P.

FSS for Branching Programs. In general, a branching program can be
described as a finite directed acyclic graph with one source node and two sink
nodes, accept and reject. In this section, we focus on giving an FSS construction
for oblivious �-layered branching programs with out-degree 2, i.e., each width-w
layer uses a fixed position of the input, each non-sink node has two outgoing
edges labeled by 0 and 1, and edges only go from one level to the next level, as
specified by a transition function f : [�] × [w] × {0, 1} → [w].

Roughly, the idea to obtain an FSS for the class of such branching programs
is to extend the tag value t ∈ {0, 1} to a tag vector t ∈ {0, 1}w, allowing to pick
the “right” correction word in going from the i-th to the (i + 1)-th level.

282 E. Boyle et al.

More precisely, for the i-th level, the key generation algorithm essentially
chooses a seed si ∈ Sw, i.e., the j-th node on the i-th level is “labelled” by
a seed value si,j ∈ S together with a fixed tag vector ej ∈ {0, 1}w, where ej

corresponds to the j-th unit vector. Recall that each node has two outgoing
edges, 0 and 1. In other words, for each node (si,j , ej) on level i, there exist two
possible nodes j0 := f(i, j, 0) and j1 := f(i, j, 1) that can be reached in level i+1
with corresponding labels (si+1,j0 , ej0) and (si+1,j1 , ej1). To go from the i-th to
the (i + 1)-th level, the idea is now to encode the transitions into correction
words. More precisely, we define

CWi[j] := PRG (si,j) + Encode ((si+1,j0 , ej0), (si+1,j1 , ej1)) .

Thus, the correction word for each node can be computed in this way. The FSS
key consists of a sharing of the label of start node and correction words.

During evaluation, the tag vector allows to pick the right correction word to
proceed to the next level. Namely, given secret shares (sb, tb) such that

(s0, t0) + (s1, t1) = (si,j , ej)

the parties can compute

yb = Conv

(

w
∑

k=1

tb[k] · CWi[k] − PRG(sb)

)

to obtain

y0 − y1 = Conv

(

w
∑

k=1

t0[k] · CWi[k] − PRG(s0)

)

− Conv

⎛

⎝

∑

k∈[wi]

t1[k] · CWi[k] − PRG(s1)

⎞

⎠

= Conv(t0[j] · CWi[j] − PRG(s0)) + Conv(t1[j] · CWi[j] − PRG(s1))
= ((si+1,j0 , ej0), (si+1,j1 , ej1)) ,

by the property of the EOH-PRG. The parties can now continue the evaluation
with the left or right part of the output, depending on the i-th input bit.

Note that in the described inductive construction of FSS for branching pro-
grams, we assumed that each level has exactly w nodes. This can be achieved
by virtually adding dummy nodes, for which the correction words for dummy
nodes can be sampled uniformly at random, since these are never reached during
evaluation.

Comparison with FSS via Universal Branching Programs. Previous construc-
tions of FSS for branching programs rely on homomorphic secret sharing (HSS)
[18, Theorem 4.15] or FSS for all functions from fully homomorphic encryp-
tion(FHE) [29, Section 6.3]. Given a branching program P , the construction of

Direct FSS for Branching Programs 283

[18] encodes P to P̂ and generates a universal branching program (UBP) for P
such that UBP (P̂ , x) = P (x) for arbitrary x. Next, P̂ is secret-shared via the
underlying HSS to hide the transition function of P . Note that the transforma-
tion via UBPs incurs a considerate efficiency blow-up which is at least quadratic
in the number of levels. Refer to the full version [21] for details.

In contrast, the evaluation of our FSS construction directly emulates the
evaluation of the branching program. For each level of the program P , the PRG
needs to be evaluated once. Moreover, our FSS for branching programs naturally
supports multi-edges. For the FSS via universal branching programs, on the other
hand, the multi-edges need to be splitted into plain edges, incurring an additional
blow-up. Finally, for branching programs with polynomial out-degree, say d, our
FSS construction only increases the correction word for each node from two
elements to d elements.

FSS for DFAs. Given a DFA M := (Q,Σ, δ, q0, F), we first transform the set
of accepting states F to a single accept state A via appending a special symbol
ε to the end of each input. Similarly, we can transfer the remaining states to
a rejection state R. The resulting DFA has alphabet Σ ∪ {ε} and states set
Q ∪ {A,R}.

Similarly to the FSS for branching programs, the FSS for DFAs focuses on
hiding the transition function. For each state s ∈ Q, the label for s consists of a
uniformly random seed and a tag vector assigned according to a designated order
of the states. The correction word for s hides the labels of one-step reachable
states from s. The key for the FSS is a random sharing of the label for q0 and
the correction word for every state in Q. Since a state may be transferred to
itself via some symbols, a KDM secure variant of EOH-PRG is necessary. With
EOH-PRG, the key size of this FSS is independent of the length of string to be
evaluated by the DFA.

Instantiating the EOH-PRG. In the following we explain our instantiations
of EOH-PRG from LWE and a small-exponent DCR variant.

EOH-PRG from LWE. Recall that the LWE assumption naturally provides an
almost-homomorphic PRG (AH-PRG). Let p, q ∈ N with p|q and let �·�q→p be
defined as �·�q→p : Zq → Zp, x �→ �(p/q) · x�. Suppose A ←R Z

n×m
q . Then,

PRGA : Z
n
q → Z

m
p , s �→ �sA�q→p is an AH-PRG [10]. The security of PRGA

follows from the pseudorandomness of LWR distributions and the almost homo-
morphic property naturally follows from the rounding operation. It is easy to
verify that

PRGA(s0 + s1) = PRGA(s0) + PRGA(s1) + e

with ‖e‖∞ ≤ 1.
Note though that an AH-PRG is not sufficient to instantiate our construc-

tion, since the small error vector would lead to correctness errors with too high
probability. To overcome this problem and obtain an EOH-PRG, we rely on the

284 E. Boyle et al.

distributed rounding and lifting technique as introduced in [22]. Concretely, let
r ∈ N be an integer such that r|p and 1 � r � p. Then, [22] observed that for
μ ∈ Zp the following holds. Given y = (p/r) · μ + e mod p for small error e, and
random additive secret shares y0 − y1 = y mod p, it holds

�y0�p→r − �y1�p→r = μ mod r,

except with negligible probability. Further, if |μ| � r, then this secret sharing
holds with overwhelming probability over the integers and thus also modulo p:

�y0�p→r − �y1�p→r = μ mod p.

Towards obtaining a EOH-PRG, our idea is thus to encode a vector x ∈ {0, 1}m

as (p/r)·x, which then allows to remove errors potentially introduced via the AH-
PRG using the conversion function y �→ �y�p→r. More precisely, we instantiate
the EOH-PRG as in Theorem 8.1 and 8.2.

EOH-PRG from Small-Exponent DCR. Next, we outline our EOH-PRG instan-
tiation from a variant of the DCR assumption. Recall that the DCR assumption
induces a homomorphic PRG mapping the additive group (Zφ(N),+) to the mul-
tiplicative group (Z∗

N2)4. Namely, assume g := (g0, g1, g2, g3) ∈ Z
4
N2 , where each

gi is uniformly sampled from the N -th residue group mod N2. Then, based on
the DCR assumption, PRGg : Zφ(N2) → (Z∗

N2)4, r �→ (gr
0, g

r
1, g

r
2, g

r
3) defines a

homomorphic PRG [23], for which it holds Gg(s0 − s1) = Gg(s0)/Gg(s1) for
any s0, s1 ∈ Zφ(N2). However, in order to use this recursively in our construc-
tions, we need to be able to recover a homomorphism over (Zφ(N2),+) (while
not revealing φ(N2)).

To that end, we follow the techniques of [37], who showed that given z0 =
z1 · (1 + N)x mod N2 for x ∈ ZN , there exists an efficiently computable map
DDLog : Z∗

N2 → ZN , which satisfies

DDLog(z0) − DDLog(z1) = x mod N.

Further, if |x| ≤ N
2λ , then DDLog(z0) − DDLog(z1) = x over Z, and thus in

particular it holds

DDLog(z0) − DDLog(z1) = x mod φ(N2),

allowing to recover the homomorphism over (Zφ(N2),+). Note that this allows to
generate secret shares of a value x mod φ(N2) without knowing φ(N2), whenever
|x| is sufficiently small.

Our idea is thus to build on a small-exponent variant of the DCR assumption
which states that PRGg(r) remains a PRG restricted to seeds r with |r| ≤ N

2λ .
It is pointed out in [1] that this variant of the DCR assumption is reasonable as
long as the domain of the small exponent is still exponentially large. This kind
of low exponent assumption dates back to [36].

With this we can state our EOH-PRG from small-exponent DCR as follows.
Let B be an integer such that B ·2λ ≤ N and B > 2λ. Let m := �(1+w) (where,

Direct FSS for Branching Programs 285

again, �, w are determined by the underlying application). Assume the DCR
variant assumption holds relative to exponents in B. Then, we can instantiate
the EOH-PRG as in Theorem 8.3.

We would like to point out though that to evaluate the PRG, it is not nec-
essary to know φ(N2). The computation mod φ(N2) or φ(N) in the exponent
is automatic because of the structure of the Paillier group, and to sample from
Zφ(N2), we can sample from ZN2 instead, as the two distributions are statistically
close.

3 Preliminaries

In this section, we recall the preliminaries for function secret sharing from [17,32].
For the remaining preliminaries we refer to the full version [21]. Here, we only
consider two-party function secret sharing as all of our constructions are in the
two-party setting.

Definition 3.1 (Function Secret Sharing (FSS)). A function secret shar-
ing scheme for function a function class F consists of two PPT algorithms
(Gen,Eval):

– Gen(1λ, f) outputs a pair of keys (k0, k1) and correction word CW upon the
security parameter and f ∈ F .

– Eval(b, kb, CW, x) outputs the corresponding share of f(x) upon the party index
b, kb and input x.

(Gen,Eval) is a secure function secret sharing if it satisfies the correctness and
security requirements:

− Correctness For all f ∈ F and all x ∈ Df ,

Pr
[

Eval(0, k0, CW, x) − Eval(1, k1, CW, x) = f(x) : (k0, k1) ← Gen(1λ, f)
]

≥ 1 − negl(λ),

where Df is the domain of f .
− Security Assume party z is corrupted by an adversary A. Consider the fol-

lowing experiment.
1. The adversary A outputs (f0, f1) ← A(1λ,F).
2. The challenger samples b ← {0, 1} and computes (k0, k1, CW) ←

Gen(1λ, fb).
3. The adversary outputs b′ ← A(kz, CW).

Let Adv(1λ,A) be the advantages of A in guessing b′, i.e., Adv(1λ,A) :=
∣

∣Pr[b = b′] − 1
2

∣

∣. Then (Gen,Eval) is a secure FSS if Adv(1λ,A) is negligible
for every b ∈ {0, 1} and every PPT adversary A.

We remark that the FSS definition differs from the FSS in [17,32] in a formal
sense, since here the correction word is viewed as an independent part whereas
in literature the correction word is part of the party’s key.

286 E. Boyle et al.

4 FSS with Additional Properties and EOH-PRGs

In this section, we define shift-invariant FSS and symmetric FSS, which will
serve as a basis for our recursive constructions. We further introduce the notion
of a PRG with encoded-output homomorphism (EOH-PRG).

Shift-invariance essentially means that the keys remain functional when
shifted by an arbitrary shift s. Note that the shift-invariance does not affect the
correction word space CW, which is thus listed separately in Definition 4.1. Fur-
ther, note that all of the FSS constructions in this work satisfy shift-invariance.

Definition 4.1 (Shift-invariant FSS). Let (Gen,Eval) be an FSS for a func-
tion class F . Assume the key space K of (Gen,Eval) is a finite abelian group and
the correction word space is CW. For any f ∈ F , let Df be the domain of f . We
say (Gen,Eval) is shift-invariant, if there exists a negligible function negl : N →
R≥0 such that for all λ ∈ N, f ∈ F , x ∈ Df , (k0, k1, CW) ← Gen(1λ, f), and
s ←R K,

Pr [Eval(0, k0 + s, CW, x) − Eval(1, k1 + s, CW, x) = f(x)] ≥ 1 − negl(λ),

where the probability is taken over the randomness of Gen and s.

Next, we introduce the notion of symmetric FSS. Note that the FSS schemes
for point functions in [17,19] are also symmetric.

Definition 4.2 (Symmetric FSS). An FSS is symmetric if for all k ∈ K, for
all x ∈ Df ,

Eval(0, k, CW, x) = Eval(1, k, CW, x).

4.1 PRG with Encoded-Output Homomorphism

We now define the notion PRG with encoded-output homomorphism (EOH-
PRG), which is central to our work. EOH-PRG corresponds to an approximate
substitution of ideal homomorphic PRG.

Note that in the following we consider all entities implicitly parametrized by
λ (e.g., by a set S we denote an ensemble of sets S = {Sλ}λ∈N). In Sect. 8, we
show how to obtain EOH-PRGs from the (ring)-LWE or DCR assumption.

Definition 4.3 (EOH-PRG). Let S,H be finite abelian additive groups, and
˜H a finite abelian group. Let H ⊂ H and S ⊂ S be subsets such that 0 ∈ S. A
function PRG : S → ˜H is a PRG with encoded-output homomorphism (EOH-
PRG) relative to (S,H,H) if it is a secure PRG relative to S and S, and there
exists a deterministic polynomial-time encoding function Encode : H → ˜H and a
deterministic polynomial-time conversion function Conv : ˜H → H such that for
all m ∈ H, for s ←R S and

y := PRG(s) + Encode(m),

Direct FSS for Branching Programs 287

s0 ←R S, y0 ←R
˜H, s1 := s0 − s, y1 := y0 − y it holds that

Conv(y0 − PRG(s0)) − Conv(y1 − PRG(s1)) = m

in H except with negligible probability over the choice of s0 and y0.
Note that for y0 = y1, s0 = s1, we have Conv(y0 − PRG(s0)) = Conv(y1 −

PRG(s1)) as Conv is deterministic.

Since for our instantiations we will typically have to work with a “tag space” T

operating on ˜H, we will slightly extend the definition of EOH-PRG, and typically
refer to the below when we talk about an EOH-PRG.

Definition 4.4 (EOH-PRG with “tag-space” T). Let PRG : S → ˜H be
a EOH-PRG relative to (S,H,H). We say that it is an EOH-PRG relative to
(S,T,H,H), if T is an additive group such that T := {0, 1} ⊂ T and there exists
a (non-trivial)10 efficiently computable (left) group operation · : T× ˜H → ˜H of T
on ˜H.

Definition 4.5 (EOH-PRG with KDM security). Let PRG : S → ˜H be a
EOH-PRG relative to (S,T,H,H). Let Ψ a family of embeddings ψ : S → H. We
say PRG is KDM secure relative to Ψ , if for all ψ ∈ Ψ , PRGψ : s �→ PRG(s) +
Encode(ψ(s)) is a PRG relative to S and S.

Remark 4.1. Note that the share obtained from Conv for m may be not pseudo-
random. In order to ensure that the homomorphic property can be recursively
applied, the two parties can use a PRF with shared key to re-randomize the
share of m.

Remark 4.2. For the tensor-product FSS, we need H = (S × T)2 and H =
(S×T)2, for out-degree 2 branching programs we need H = (S × {ei}w

i=1)
2 and

H = (S×T
w)2 where w is the width of the branching program and ei is the i-th

standard basis of Tw.

Remark 4.3. We further need that operations over S,H and T are efficiently
computable. While this is trivially the case for our instantiation from LWE, this
can be sufficiently emulated for our instantiation with DCR (where S and T are
additive modulo an unknown φ(N)), by building on techniques of [37].

5 Tensor Product FSS for Arbitrary Predicates
from EOH-PRGs

In this section, we present our tensor product FSS, which allows to tensor FSS
schemes for arbitrary predicates, as long as the second FSS is symmetric and
shift-invariant.

10 I.e., 1 · h �= 0 for h �= 0.

288 E. Boyle et al.

Theorem 5.1 (Tensor Product FSS). Let n1, n2 ∈ N, and S, T be two finite
abelian groups. Let P1 be a family of predicates mapping {0, 1}n1 to {0, 1} and
P2 be a family of predicates mapping {0, 1}n2 to {0, 1}. Let FP1 : {0, 1}n1 →
S × T,FP2 : {0, 1}n2 → S × T be the function families induced by P1,P2 as

fP1,β : {0, 1}n1 → S × T, x �→ P1(x) · β =

{

β if P1(x) = 1
0 else

,

fP2,γ : {0, 1}n2 → S × T, x �→ P2(x) · γ =

{

γ if P2(x) = 1
0 else

,

respectively, with P1 ∈ P1, P2 ∈ P2 and β ∈ S × {1}, γ ∈ S × {1}.
Assume

1. PRG : S → ˜H is a EOH-PRG relative to (S,T,H,H) (as in Definition 4.4),
where H := (S × T)2 and H := (S × {0, 1})2

2. FSSFP1 (GenFP1 ,EvalFP1) is an FSS for FP1 over key space K1, correction
word space CW1 with pseudorandom correction words and pseudorandom out-
put shares.

3. FSSFP2 (GenFP2 ,EvalFP2) is a symmetric and shift-invariant FSS for FP2 over
key space K2 := H, such that for all (u0, u1) ← GenFP2 it holds u0 − u1 ∈ H,
with correction word space CW2, and with pseudorandom correction words
and output shares.

4. PRF : {0, 1}λ × [N] → H is a PRF (for N sufficiently large).

Then there exists FSS⊗(Gen⊗,Eval⊗) for G := FP1 ⊗FP2 = {gP1,P2,γ : {0, 1}n1 ×
{0, 1}n2 → S × T} over key space K1, correction word space CW1 × CW2 × ˜H,
with pseudorandom correction words and pseudorandom output shares, where

gP1,P2,γ(x1, x2) := P1(x1) · P2(x2) · γ =

{

γ if P1(x1) = 1 ∧ P2(x2) = 1
0 else

.

In particular, FSS⊗ is symmetric and shift-invariant if FSSFP1 is symmetric and
shift-invariant.

The construction for (Gen⊗,Eval⊗) is shown in Fig. 1. For the proof we refer to
the full version [21]. The FSS for bit-fixing predicates from EOH-PRG in the
full version can be viewed as the tensor product of FSS for length 1 predicates.

We further explain how to obtain FSS schemes for the for negation and
disjunction of predicates in the full version.

Remark 5.1. As instantiations of the EOH-PRG for N -parties seem out of reach
with current techniques without relying on (multi-key) FHE, we did not give the
details of the N -party tensor product construction. Roughly, the requirement on
shift-invariance of the underlying FSS would become that for

∑

i∈[N] si = 0
it holds

∑

i∈[N] Eval(i, ki + si, CW, x) = f(x) with overwhelming probabil-
ity, and the requirement on symmetry would become that for

∑

i∈[N] ki = 0,

Direct FSS for Branching Programs 289

Fig. 1. FSS (Gen⊗,Eval⊗) for FP1 × FP2 from FSSFP1 , FSSFP2 and EOH-PRG.

it holds
∑

i∈[N] Eval(i, ki, CW, x) = 0. To achieve these properties, the N -
party EOH-PRG has to satisfy that (i)

∑

i∈[N] Conv(ci − PRG(si)) = m for
∑

i∈[N] ci = PRG(s) +Encode(m), as well as (ii) PRG(0) = 0 and Encode(0) = 0.
Here, requirement (i) is necessary to achieve shift invariance, and the additional
requirement (ii) is necessary to achieve symmetry (which is satisfied in both our
LWE or DCR instantiation in the two-party case).

6 FSS for Branching Programs

In this section, we generalize the FSS for tensor products to FSS for branching
programs. Concretely, the one-bit tag is extended to a w-bit tag, which supports
polynomially many possible choices (corresponding to the number of nodes in
one level of the branching program). We also generalize the FSS for branching
program to FSS for DFAs, approximate matching functions and multivariate
polynomials. For details, we refer to Sect. 7 and the full version [21].

Recall that given a branching program P , the size is the number of nodes in
V , the length is �, and the width is the maximal number of nodes of every level.
Note that every branching program can be converted to a layered, input-oblivious
branching program with polynomial blowup in size [18,38].

290 E. Boyle et al.

Now, we start to construct an FSS for branching programs. Let P be a
layered, oblivious branching program of width w, and let Pi : {0, 1}n → [wi]
be the function which evaluates P to level i (i.e., to the state of the branching
program at level i). We start by explaining how to obtain the FSS for the “first
level” function

fP1,γ=(γ0,γ1) : {0, 1}n → (S × Tw1)2,x �→ γx1 ,

Note that there is one node in level 0 (the initial node) and two nodes in level 1
(one for the choice of 0 and 1 for the choice of 1), i.e., w1 = 2 and P1 considers
only the first bit x1 of the input x ∈ {0, 1}n.

In order to be able to recurse, we set γb := (sb, tb), where sb ∈ S is some
random seed and t0 = (1, 0) and t1 = (0, 1) are the unit vectors over {0, 1}2.
A function secret sharing scheme for fP1,γ=(γ0,γ1) which satisfies shift-invariance
over (S,Tw1)2 for some abelian groups S,T with S ⊂ S, T ⊂ T can be obtained
via a direct truth table sharing.

Lemma 6.1 (Base case). Let S and T be finite abelian groups, and let S ⊂ S,
T ⊂ T be arbitrary subsets.

Then, there exists a shift-invariant FSS for the family of functions fP1,γ over
key space (S × T

2)2.

Next, we show an inductive lemma to construct an FSS for P which extends
an FSS for Pi to an FSS for Pi+1.

Lemma 6.2 (Inductive). Assume

1. FSSi = (Geni,Evali) is a shift-invariant FSS for Pi over key space (S×T
2)2,

correction word space CWi with pseudorandom correction word and pseudo-
random output share. FSSi maps the input x with index set {τ(V0), τ(V1) . . . ,
τ(Vi−1)} to the Pi(x)-th position of a given array β.

2. PRGi : S → ˜Hi is a EOH-PRG relative to (S,T,Hi,Hi) as in Definition 4.4
where Hi = (S × Twi+1)2,Hi = (S × T

wi+1)2.

Then, there exists a shift-invariant FSS for Pi+1 over key space (S × T
2)2,

correction word space CWi × ˜H
wi
i with pseudorandom correction word and

pseudorandom output share. Again, FSSi+1 maps the input x with index set
{τ(V0), τ(V1) . . . τ(Vi−1), τ(Vi)} to the Pi+1(x)-th position of a given array γ.

The FSS FSSi+1 = (Geni+1,Evali+1) for Pi+1 is shown in Fig. 2. For the proof
of this lemma we refer to the full version [21].

With this, we can obtain an FSS for branching programs of arbitrarily
polynomially-bounded width and length, as captured in the following theorem.

Theorem 6.1 (FSS for BP from EOH-PRG). Let P be a branching program
with width (w0, w1, . . . , w�) for each level, where w0 = 1, w1 = 2, w� = 2, wi ≤ w

for i ∈ [0, �]. Assume PRGi : S → ˜Hi is a EOH-PRG relative to S,T,Hi =
(S × Twi+1)2,Hi = (S × T

wi+1)2 for i ∈ [1, �].

Direct FSS for Branching Programs 291

Fig. 2. FSS (Geni+1,Evali+1) for Pi+1 from FSS (Geni,Evali) and EOH-PRG PRG.

Then, there exists an FSS for P over key space (S×T
2)2 and correction word

space ˜H
w1
1 × ˜H

w2
2 · · ·× ˜H

w�−1
�−1 , i.e., with key size bounded by 2(log |S|+2 log |T|)+

∑

i∈[1,�−1] wi log
∣

∣

∣

˜Hi

∣

∣

∣.

Note that the FSS construction for branching program in Theorem 6.1 only hides
the transition function f whereas the topology of the branching program, i.e.,
the number of nodes of each level, is revealed. For a topology-hiding construction
we refer to the full version [21].

7 FSS for DFAs

Similar to the FSS for branching programs, the FSS for DFAs mainly hides the
transition function for each state. Given a DFA M := (Q,Σ, δ, F, q0), the set of

292 E. Boyle et al.

accepts states F could be transferred to one accept state A via appending an
empty string ε to the input whereas the set of other states is transferred to one
rejection state R. The transformation leads to a DFA with |Q| + 2 states and
with alphabet Σ ∪ {ε}. The construction relies on a KDM secure EOH-PRG.

Theorem 7.1 (FSS for DFAs). Let M := (Q,Σ, δ, q0, F) be a DFA. Let μ :=
|Q ∪ {A,R}| = |Q| + 2. Assume PRG : S → ˜H be a KDM secure EOH-PRG
relative to (S,T, (S × Tμ)|Σ|+1, (S × T

μ)|Σ|+1).
There exists a FSS for M over key space S × T

μ and correction word space
˜H

|Q|. Futhermore, the key size is bounded by log |S| + μ log |T| + |Q| log
∣

∣

∣

˜H

∣

∣

∣.

The FSS for M is shown in Fig. 3.

Fig. 3. FSS for a DFA from KDM secure EOH-PRG.

The correctness is easy to verify as the tag vector is used in Lemma 6.2.
The security follows from the pseudorandomness of the KDM secure PRG. We
explain why KDM secure EOH-PRG is required. For a state s, it is possible

Direct FSS for Branching Programs 293

that δ(s, α) = s for some input α ∈ Σ, which leads to the correction word
CW [s] ← PRG(σ[s]) + Encode(u) and σ[s] is also contained in the α-th entry
of u. The KDM secure EOH-PRG can be instantiated from LWE or DCR for
free without assuming circular security (Remark 8.1). The running time of Eval
relies on the input length as DFAs.

Remark 7.1. The FSS for DFAs could be viewed as one level of the FSS for
branching programs and there is no level change during the evaluation.

8 EOH-PRG Instantiated from LWE or DCR Assumption

In this section, we show EOH-PRG instantiated from LWE or a DCR variant
assumption. As remarked following Definition 4.4, if a PRG is homomorphic then
the PRG itself is a EOH-PRG. The LWE assumption implies an almost homo-
morphic PRG and the DCR assumption implies a homomorphic PRG mapping
an additive group to a multiplicative group. We show how the AH-PRG from
LWE or the H-PRG from DCR cooperate with other tools to implement the
EOH-PRG.

Here we show the three instantiations from LWE, Ring-LWR and DCR. The
preliminaries for the assumption, proof of the instantiations and remarks appear
in the full version [21].

Theorem 8.1 (EOH-PRG from LWE). Let n = n(λ), p = p(λ), q =
q(λ), r = r(λ), B = B(λ) ∈ N such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p
and n log q ≤ �(n + w) log p. Let w, � be parameters depending on concrete appli-
cations.

Assume LWEn,�(n+w),q is hard. Let S = {0, 1}n, T = {0, 1},S = Z
n
p ,T =

Zp,H = (S × Tw)� = {0, 1}�(n+w),H = (S × T
w)� = Z

�(n+w)
p , ˜H = Z

�(n+w)
p and

the corresponding functions for the instantiation be

– The homomorphic group operation · : Zp × Z
�(n+w)
p → Z

�(n+w)
p , (t, s) �→ t · s.

– PRG : Zn
p → Z

�(n+w)
p , s �→ �sA�q→p , where A ∈ Z

n×�(n+w)
q and the vector-

matrix multiplication sA is performed modulo q;
– Encode : {0, 1}�(n+w) → Z

�(n+w)
p , s �→ p

r · s;
– Conv : Z�(n+w)

p → Z
�(n+w)
p , t �→ �t�p→r.

Then PRG is a EOH-PRG relative to (S,T,H,H).

Similarly, we show the EOH-PRG instantiation from Ring-LWE. As pointed out
in the full version [21], to work with a binary secret Module-LWE instances,
the rank of the Module-LWE should be at least log q (basing on the Ring-LWE
pseudorandomness). However, small secret Module-LWR has been used in the
NIST post-quantum cryptography submissions including Saber [26], Kyber [41]
for constant rank. Based on this, we show the instantiation for good efficiency
relying on the Ring-LWE assumption.

Note it is possible that the number �(n + w) is not exactly a multiple of n.
Assume � · (n + w) = n · μ + γ with 0 ≤ γ < n. The EOH-PRG from Ring-LWE
output has μ elements from Rp and γ elements from Zp.

294 E. Boyle et al.

Theorem 8.2 (EOH-PRG from Ring-LWR). Let n = n(λ), p = p(λ), q =
q(λ), r = r(λ), B = B(λ) ∈ N such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and
n log q ≤ �(n + w) log p. Let w, � be parameters depending on concrete applica-
tions. Denote R as the algebraic ring with degree n.

Assume binary secret Ring-LWRR,�+� �w
n �,q,p is hard. Let S = {0, 1}n, T =

{0, 1},S = Rp,T = Zp,H = (S × Tw)� = {0, 1}�(n+w),H = (S × T
w)� =

R�+� �w
n �

p × Z
�w−n� �w

n �
p , ˜H = R�+� �w

n �
p × Z

�w−n� �w
n �

p and the corresponding func-
tions for the instantiation be

– The homomorphic group operation · : Zp ×
(

R�
p × Z

�w−n� �w
n �

p

)

→ R�
p ×

Z
�w−n� �w

n �
p , (t, s) �→ t · s, where · is the scalar multiplication mod p.

– PRG : Rp → R�
p × Z

�w−n� �w
n �

p , s �→ ψ(�s · a�q→p), where a ∈ R�+� �w
n

q , the
multiplication s · a is performed modulo Rq, and ψ(·) takes the ring elements
except the last one and the first �w − n

⌈

�w
n

⌋

coefficients of the last ring ele-
ment;

– Encode : {0, 1}�(n+w) → R�
p × Z

�w−n� �w
n �

p , s �→ p
r · s;

– Conv : R�
p × Z

�w−n� �w
n �

p → R�
p × Z

�w−n� �w
n �

p , t �→ �t�p→r.

Then PRG is a EOH-PRG relative to (S,T,H,H).

Next we show how the EOH-PRG is instantiated from the DCR variant
assumption It is pointed out in [1, Section 4.1], the DCR variant assumption is
sound if the domain of the small exponent is exponentially large. This kind of
low exponent assumption dates back to [36] and was also used in [16]. To enable
the homomorphic group operation, here we use Zφ(N2) instead of Zφ(N) for the
additive group.

Theorem 8.3 (EOH-PRG from DCR). Let B be an integer such that B ·
2λ ≤ N and B > 2λ.

Assume the DCR variant assumption holds. Let S = [−B
2 , B

2], T = {0, 1},S =
Zφ(N2),T = Zφ(N2),H = (S × Tw)�,H = (S × T

w)� = Z
�(1+w)
φ(N2) , ˜H = (Z∗

N2)�(1+w)

and the corresponding functions for the instantiation be

– The homomorphic group operation · : Zφ(N2) × (Z∗
N2)�(1+w) → (Z∗

N2)�(1+w),
(t, s) �→ st mod N2.

– PRG : Zφ(N2) → (Z∗
N2)�(1+w), s �→ gs, where g ∈ (Z∗

N2)�(1+w) and each entry
of g is a N-th residue;

– Encode : ([−B/2, B/2] × {0, 1}w)� → (Z∗
N2)�(1+w),m �→ (1 + N)m mod N2;

– Conv : (Z∗
N2)�(1+w) → Z

�(1+w)
φ(N2) , t �→ DDLog(t).

Then PRG is a EOH-PRG relative to (S,T,H,H).

Note that the secret key φ(N) for Paillier encryption is not explicitly used in
the operations of instantiation of EOH-PRG from DCR. The computation mod

Direct FSS for Branching Programs 295

φ(N2) or φ(N) in the exponent is automatic because of the structure of the
Paillier group, and to sample from Zφ(N2), we can sample from ZN2 instead, as
the two distributions are statistically close.

Remark 8.1 (KDM Security). The FSS constructions for DFAs in Sect. 7 rely on
the KDM security of EOH-PRG. It is straightforward to prove the pseudoran-
domness for LWE or DCR following the method to prove the KDM security in
[3, Theorem 6] or [9, Section 3.2] as detailed in the full version [21].

Acknowledgements. E. Boyle’s research is supported in part by AFOSR Award
FA9550-21-1-0046 and ERC Project HSS (852952). L. Kohl is funded by NWO Talent
Programme Veni (VI.Veni.222.348) and by NWO Gravitation project QSC. Z. Li is
funded by NWO Gravitation project QSC and ERC ADG ALGSTRONGCRYPTO
(740972). P. Scholl is funded by the Independent Research Fund Denmark under project
number 0165-00107B (C3PO).

References

1. Abram, D., Damg̊ard, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 421–452 (Aug 2022)

2. Alamati, N., Montgomery, H., Patranabis, S., Roy, A.: Minicrypt primitives with
algebraic structure and applications. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 55–82 (May 2019)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618 (Aug 2009)

4. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439 (Sep
2009)

5. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A., Schneider, T.: Privacy-preserving
ECG classification with branching programs and neural networks. IEEE Trans.
Inf. Forensics Secur. 6(2), 452–468 (2011)

6. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage
resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 531–561 (Aug 2018)

7. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016-A, Part I. LNCS, vol. 9562, pp. 209–224 (Jan 2016)

8. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: 2021 IEEE Symposium on Security and Privacy.
pp. 762–776. IEEE Computer Society Press (May 2021)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125 (Aug 2008)

10. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428 (Aug 2013)

296 E. Boyle et al.

11. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS 2015. The Internet Society (Feb 2015)

12. Boyle, E.: Function Secret Sharing (2022), http://cyber.biu.ac.il/wp-content/
uploads/2021/11/FSS-2022-BIU-WinterSchool Elette.pdf, The 12th BIU Winter
School on cryptography - Advances in Secure Computation

13. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee,
M.: Function secret sharing for mixed-mode and fixed-point secure computation.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol.
12697, pp. 871–900 (Oct 2021)

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018)

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518
(Aug 2019)

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: Optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017. pp. 2105–2122. ACM Press (Oct / Nov 2017)

17. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367 (Apr 2015)

18. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539 (Aug 2016)

19. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 1292–1303. ACM Press (Oct 2016)

20. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 341–371 (Dec 2019)

21. Boyle, E., Kohl, L., Li, Z., Scholl, P.: Direct FSS constructions for branching
programs and more from PRGs with encoded-output homomorphism. Cryptology
ePrint Archive, Report 2024/192 (2024), https://eprint.iacr.org/2024/192

22. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 3–33 (May 2019)

23. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20 (Aug 2010)

24. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM
CCS 2007. pp. 498–507. ACM Press (Oct 2007)

25. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging
system handling millions of users. In: 2015 IEEE Symposium on Security and
Privacy. pp. 321–338. IEEE Computer Society Press (May 2015)

26. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B., Beiren-
donck, M.V., Basso, A.: SABER. Tech. rep., National Institute of Standards
and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions

http://cyber.biu.ac.il/wp-content/uploads/2021/11/FSS-2022-BIU-WinterSchool_Elette.pdf
http://cyber.biu.ac.il/wp-content/uploads/2021/11/FSS-2022-BIU-WinterSchool_Elette.pdf
https://eprint.iacr.org/2024/192
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Direct FSS for Branching Programs 297

27. Dauterman, E., Rathee, M., Popa, R.A., Stoica, I.: Waldo: A private time-series
database from function secret sharing. In: SP 2022. pp. 2450–2468. IEEE (2022),
https://doi.org/10.1109/SP46214.2022.9833611

28. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adap-
tively secure constrained pseudorandom functions in the standard model. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
559–589 (Aug 2020)

29. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816,
pp. 93–122 (Aug 2016)

30. Doerner, J., shelat, a.: Scaling ORAM for secure computation. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 523–535. ACM
Press (Oct / Nov 2017)

31. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret shar-
ing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 381–399 (Oct 2017)

32. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 591–608 (Aug 1999)

33. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658
(May 2014)

34. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594 (Feb 2007)

35. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: SoK: Modular and
efficient private decision tree evaluation. PoPETs 2019(2), 187–208 (Apr 2019)

36. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186 (Mar 2004)

37. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In: Canteaut, A., Standaert, F.X. (eds.) EURO-
CRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708 (Oct 2021)

38. Pippenger, N.: On simultaneous resource bounds (preliminary version). In: FOCS.
pp. 307–311. IEEE Computer Society (1979)

39. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM journal
of research and development 3(2), 114–125 (1959)

40. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and
applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS,
vol. 12827, pp. 687–717. Virtual Event (Aug 2021)

41. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

42. Servan-Schreiber, S., Langowski, S., Devadas, S.: Private approximate nearest
neighbor search with sublinear communication. In: SP. pp. 911–929. IEEE (2022),
https://doi.org/10.1109/SP46214.2022.9833702

43. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

44. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. PoPETs 2019(1), 266–286 (Jan 2019)

45. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
Practical private queries on public data. In: NSDI 2017 (2017), https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank

https://doi.org/10.1109/SP46214.2022.9833611
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1109/SP46214.2022.9833702
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank

298 E. Boyle et al.

46. Wegener, I., Woelfel, P.: New results on the complexity of the middle bit of mul-
tiplication. In: CCC. pp. 100–110. IEEE Computer Society (2005)

47. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoPETs 2016(4), 335–355 (Oct 2016)

Dishonest Majority Multiparty
Computation over Matrix Rings

Hongqing Liu(B) , Chaoping Xing , Chen Yuan , and Taoxu Zou

Shanghai Jiao Tong University, Shanghai, China
{liu.hong.qing,xingcp,chen_yuan,seasun}@sjtu.edu.cn

Abstract. The privacy-preserving machine learning (PPML) has gained
growing importance over the last few years. One of the biggest challenges
is to improve the efficiency of PPML so that the communication and com-
putation costs of PPML are affordable for large machine learning models
such as deep learning. As we know, linear algebra such as matrix multipli-
cation occupies a significant part of the computation in deep learning such
as deep convolutional neural networks (CNN). Thus, it is desirable to pro-
pose the MPC protocol specialized for the matrix operations. In this work,
we propose a dishonest majority MPC protocol over matrix rings which
supports matrix multiplication and addition. Our MPC protocol can be
seen as a variant of SPDZ protocol, i.e., the MAC and global key of our
protocol are vectors of length m and the secret of our protocol is an m×m
matrix.Compared to the classic SPDZprotocol, ourMPCprotocol reduces
the communication complexity by at least m times to securely compute a
matrix multiplication. We also show that the communication complexity
of our MPC protocol is asymptotically as good as [16] which also presented
a dishonest majority MPC protocol specialized for matrix operations, i.e.,
the communication complexity of securely computing amultiplication gate
is O(m2n2 log q) in the preprocessing phase and O(m2n log q) in the online
phase. The share size and the number of multiplications of our protocol are
reduced by around 50% and 40% of [16], respectively. However, we take a
completely different approach. The protocol in [16] uses a variant of BFV
scheme to embed a whole matrix into a single ciphertext and then treats
thematrix operation as the entry-wise operation in the ciphertextwhile our
approach resorts to a variant of vector linear oblivious evaluation (VOLE)
called the subfield VOLE (In [33], there is a base VOLE which is also called
subfield VOLE. The subfield VOLE in this paper is referred to the pro-
grammable VOLE Πprog

VOLE in [33] which silently generates correlated ran-
domness from seeds) [33] which can securely compute the additive shar-
ing of vx for v ∈ Fqb , x ∈ F

a
q with sublinear communication complexity.

Finally, we note that our MPC protocol can be easily extended to small
fields.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-96-0938-3_10.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 299–327, 2025.
https://doi.org/10.1007/978-981-96-0938-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_10&domain=pdf
http://orcid.org/0009-0004-2013-8725
http://orcid.org/0000-0002-1257-1033
http://orcid.org/0000-0002-3730-8397
http://orcid.org/0009-0005-7129-3036
https://doi.org/10.1007/978-981-96-0938-3_10
https://doi.org/10.1007/978-981-96-0938-3_10

300 H. Liu et al.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful par-
ties P1, · · · , Pn to jointly compute a public function f with their private inputs,
and reveals nothing except the final output. The adversary could corrupt at
most t of n parties to gain the private information of honest parties by either
inspecting the transcripts between parties (semi-honest adversary) or arbitrarily
deviating from the protocol (malicious adversary). According to the number of
corrupted parties t, MPC protocols can be classified into two categories: honest
majority (t ≤ n

2) and dishonest majority (t < n). The honest majority MPC
protocol can achieve information-theoretic security while the dishonest majority
MPC protocol can only achieve computational security.

In MPC protocols, the public function f is generally modeled as an arith-
metic circuit over a finite field or a ring, which consists of addition and multi-
plication gates. The MPC protocols over a ring are usually more complicated
than those over a field. Before the advent of privacy preserving machine learn-
ing (PPML), most of the MPC protocols were restricted to the computation
over finite fields. The use of integer rings is well-motivated in practice due to
their direct compatibility with hardware. In view of this practical application,
a line of works [2,3,18,23,31] proposed the MPC protocol over Z2k . Recently,
Escudero and Soria-Vazquez [22] considered the non-commutative ring in the
honest majority setting. They constructed an unconditionally secure MPC over
non-commutative rings with black-box access to a ring containing an exceptional
set1, whose size is at least the number of parties. They also proposed an honest
majority MPC protocol over the matrix ring Mm×m(Z2k).

Inspired by [22], a natural question is can we design an MPC protocol over
a non-commutative ring with only black-box access to the ring in the presence
of t ≥ n

2 corrupted parties? The answer is probably negative as the dishon-
est majority MPC protocols rely on some cryptographic assumptions. More-
over, while honest majority MPC protocols use the error-correction algorithm of
Shamir secret sharing to detect and even correct the corruptions, the dishonest
majority MPC protocols have to rely on the additive secret sharing scheme to
protect the privacy of the data which has no room to detect the corruptions.
Therefore, message authenticate codes (MACs) are commonly attached to the
additive secret sharing scheme to detect the corruptions, which are highly related
to the concrete structure of the non-commutative ring.

In view of the above reasons, we aim to construct a dishonest majority MPC
over a specific family of the non-commutative ring, the matrix ring. Matrix
plays an essential role in PPML, which allows distrustful parties to train and
evaluate different machine learning models [25,28–30]. It was observed in [16]
that securely multiplying two m × m matrices in SPDZ protocol requires at
least O(m2.8) authenticated Beaver triples, which is prohibitively expensive if a
machine learning task needs a large number and sizes of matrix multiplication.
Thus, an MPC protocol specialized for matrix operations may greatly improve

1 A subset of a non-commutative ring where the difference between any two elements
in this subset is invertible.

Dishonest Majority Multiparty Computation over Matrix Rings 301

the efficiency of PPML. Moreover, some other non-commutative rings could be
represented in the form of matrix rings. For instance, the quaternion ring is
another non-commutative ring with practical applications, which plays a central
role in computer graphics and aerospace due to its competence in describing the
rotation in three-dimensional space.

In this work, we present a variant of SPDZ protocol whose secret is defined
over matrix rings. Different from the classic SPDZ protocol, the MAC and global
key of our protocol are vectors of length m and the secret of our protocol is
an m × m matrix. Thus, the size of our MAC is sublinear in the size of our
secret assuming the size of our matrix is large enough. Utilizing the matrix
structure, our MPC protocol uses vector oblivious linear evaluation (VOLE) and
vector oblivious product evaluation (VOPE) as functionalities to authenticate
the sharing and create the sextuple for securely computing multiplication gates
in the online phase. The goal of VOPE is to compute the additive sharing of the
product of two matrices which can be adapted from the subfield VOLE in [33]
with slight modification. In the preprocessing phase, our MPC protocol needs
O(n2m2 log q) bits of communication to prepare a sextuple for multiplication
gate which has the same asymptotic performance as the protocol in [16]. In the
online phase, our MPC protocol requires O(m2n log q) bits of communication
complexity to securely compute a multiplication gate which is also as efficient
as the MPC protocol in [16]. However, the size of the secret sharing is half the
size of the secret sharing scheme in [16] and the number of multiplications in our
protocol is reduced to 3m3 + 3m2 while the protocol in [16] requires 5m3 + m2

multiplication. We also compare the communication cost and computation cost of
preprocessing in concrete parameter settings for m = 128, 256, 512, 1024. When
m grows, the communication complexity of our protocol grows more slowly than
[16]. For m = 512, 1024, the communication complexity of our protocol turns
out to be smaller than [16]. Moreover, our experimental results imply that the
running time of our VOLE-based preprocessing phase is 2.0x-24.2x faster than
that of (fully) homomorphic encryption based preprocessing phase [16].

1.1 Our Contribution

MAC for Matrix Rings. To authenticate a matrix M ∈ Mm×m(Fq), we
choose a uniformly random vector v ∈ Mm×1(Fq) as the global key and use
the matrix-vector product Mv as the MAC of a matrix M . The intuition of
this matrix-vector product is to reduce the size of MAC by applying the batch
check, i.e., each component of the MAC is the inner product of a row of M
and the global key v. If the adversary aims to forge a fake authenticated secret
sharing, he needs to choose a nonzero matrix E ∈ Mm×m(Fq) and a vector
δ ∈ Mm×1(Fq) such that Ev = δ. Since E is a nonzero matrix, we assume that
the i-th row of E is a nonzero vector eT

i . Then, we have eT
i v = δi where δi

is the i-th component of δ. Since the global key v is distributed uniformly at
random, the adversary succeeds with probability at most 1/q. In comparison,
the previous MPC protocol in [16] chooses a random element α ∈ Fq as the
global key and uses the scalar-matrix product αM as the corresponding MAC.
Therefore, our MAC is m times smaller than theirs. The sharing of the matrix M

302 H. Liu et al.

in our protocol is defined as 〈M〉 = ([M], [[v]], [[Mv]])2 where [M] is the additive
sharings of M and [[v]], [[Mv]] are the additive sharing of v and Mv respectively.

The Use of VOLE. Our protocol uses the vector oblivious linear evaluation
(VOLE for short) to compute the matrix-vector product. We exploit the matrix
structure to optimize the generation of correlated randomness. In the computa-
tion of MAC, two parties need to obliviously compute the product of a matrix M
with a column vector v, i.e., u+w = Mv. Observe that Mv can be decomposed
into the sum of m vectors vimi where vi is the i-th component of v and mi

is the i-th column of M . Two parties can invoke VOLE m times to obtain the
shares ui,wi with ui + vi = vimi. In contrast, we have to invoke m2 OLEs to
obliviously compute Mv, which is usually more expensive than VOLE.

The Use of Subfield VOLE. The subfield VOLE was proposed in [12] to
securely compute the additive sharings of vx for x ∈ F

a
q , v ∈ Fqb where v and

x are the random element and random vector input by PA and PB respectively.
To minimize the communication cost, the random vector x is expanded by a
random seed while the random element v is chosen by PB . Treating v as a
vector v ∈ F

b
q, then vx becomes a product of two vectors xvT = (xivj)a×b.

In this sense, the subfield VOLE can securely compute the additive sharing of
xvT for x ∈ F

a
q ,v ∈ F

b
q. We slightly modify the subfield VOLE in [33] to allow

both parties to utilize short seeds to generate their random inputs. We call this
modified subfield VOLE, random vector oblivious product evaluation (VOPE).
Assuming b = O(a), our VOPE has O(a log q) communication complexity, which
is sublinear in output size ab log q.

Computing the Product of Matrices. We propose the VOPE to compute
the additive sharings of the product of two random matrices whose communica-
tion complexity is the dominant part of the preprocessing phase. Observe that
one can decompose the product AB of two matrices A,B ∈ Mm×m(Fq) into the
sum of vector product ai ⊗ bi := aib

T
i , i ∈ [m] where ai is the i-th column of A

and bT
i is the i-th row of B, i.e., AB =

∑m
i=1 ai ⊗ bi. As mentioned above, our

VOPE can produce the additive sharings of ai ⊗ bi. Thus, it suffices to invoke
m times of VOPE to obtain the additive sharing of AB.

Multiplication Sextuple. The biggest challenge of MPC protocol over matrix
rings is that the product of two matrices is not commutative. This prevents us
from applying the Beaver triple straightforwardly. This problem also appears in
[23]. Their solution is to use two types of secret sharings with left linearity and
right linearity respectively and transform the type of secret sharing by consuming
a double sharing, which is a pair of sharings associated with the same secret and
different types. In our case, since our MAC has the form Xv, our secret sharing

2 We use [·] and , [[·]] to represent the sharing of a matrix and vector, respectively.

Dishonest Majority Multiparty Computation over Matrix Rings 303

only allows left multiplication, i.e., all parties can only locally compute A〈M〉 =
〈AM〉. We propose a multiplication sextuple to circumvent this obstacle. Let 〈X〉
and 〈Y 〉 be the sharings of matrix X and Y respectively. We prepare a sextuple
(〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) where A,B,R are random matrices, AT and RT

are the transpose of A and R, and C = AB. All parties partially open 〈X〉−〈A〉
and 〈Y 〉 − 〈B〉 to D and E. The technique of Beaver triple requires all parties
to locally compute D〈B〉+ 〈A〉E + 〈C〉+DE. However, as we mentioned above,
it is impossible to locally compute the right multiplication 〈A〉E. To overcome
this obstacle, all parties are required to locally compute ET 〈AT 〉 − 〈RT 〉 and
partially open it to F by using the sharing 〈AT 〉 and 〈RT 〉. Then, all parties
locally compute FT +〈R〉 = 〈AE〉 by observing FT = (ET AT −RT)T = AE−R.
This completes the multiplication gate.

Function-Dependent Preprocessing. The evaluation of a single multiplica-
tion gate in our MPC protocol needs two rounds and three broadcasts. Inspired
by [9,21], we introduce function-dependent preprocessing to improve the round
and communication complexity. After the application of function-dependent pre-
processing, the evaluation of a multiplication gate only needs one round and two
broadcasts. Since this improvement is not the focus of our paper, we take a brief
overview of it in the full version [27].

Migration to small field Fq. The matrix in our MPC protocol can be defined
over small fields as well. The idea is to replace a global key of a vector in
Mm×1(Fq) with a global key of a matrix in Mm×�(Fq). The intuition is that
the adversary succeeds with probability 1/q if our MPC protocol is defined over
Mm×m(Fq). To reduce the error probability, we increase the size of the global
key and MAC. Observe that XV = Δ where V ∈ Mm×�(Fq) is the MAC and
X ∈ Mm×m(Fq) is the secret. Therefore, each column of the global key is used
to verify the correctness of the secret and we verify our secret X with � equa-
tions instead of 1. The error probability will be reduced to 1/q� while the size
of MAC is still sublinear in the size of our secret assuming m � κ

log2 q . In this
sense, our MPC protocol can be defined over Mm×m(Fq) with any prime power
q. There are also some modifications for our MPC protocol to be applicable to
Mm×m(Fq). The details can be found in the full version [27].

1.2 Overview of Our Technique

We assume that our MPC protocol over Mm×m(Fq) with large q. As we
have mentioned above, the authenticated sharing of our protocol is 〈M〉 =
([M], [[v]], [[Mv]]). We use a random vector v as our global key. The MAC of
our matrix is the product of a matrix with the global key v. The idea of our
MAC comes from the batch check. A random vector can be used to verify the
correctness of a vector of the same length by taking the inner product of these
two vectors. Thus, to verify the correctness of an m × m matrix, we only need
a MAC of size m. On the contrary, the classic SPDZ protocol requires MAC of

304 H. Liu et al.

size m2 to verify an m × m matrix. Another merit of this sharing can be found
in the use of VOLE and VOPE which we have already discussed in Sect. 1.1.

In the preprocessing phase, our MPC protocol prepares sextuples of the form
(〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) with random matrices A,B,R ∈ Mm×m(Fq)
and C = AB. We break this protocol into two procedures, πMult and πDouble.
We also present a protocol ΠAuth to generate the authenticated sharing. Proto-
col ΠAuth uses functionality VOLE to create the MAC and takes the random
linear combination to verify the correctness of sharings.

Procedure πMult produces a triple (〈A〉, 〈B〉, 〈C〉). We want to compute [C]
from [A] =

(
A(1), . . . , A(n)

)
and [B] =

(
B(1), . . . , B(n)

)
. Observe that C =

AB =
(∑n

i=1 A(i)
) (∑n

i=1 B(i)
)
. The additive sharing of cross terms A(i)B(j)

and A(j)B(i) can be computed by Pi and Pj . The product of two m×m matrices
can be decomposed into the sum of m vector products as we mentioned above,
i.e., AB =

∑m
i=1 ai ⊗ bi where ai is the i-th column of A and bT

i is the i-th row
of B. This implies that we only need to invoke m times VOPE to complete this
work. We create seeds to generate the random matrix A(i), B(i) and reuse these
seeds as inputs for the instances of VOPE. The use of VOPE can be found in the
previous section. We fix B and apply the above process twice to ([A], [B]) and
([A′], [B]) to prepare two pairs ([A], [C]), ([A′], [C ′]) with C = AB,C ′ = A′B.
Then, we invoke protocol ΠAuth to compute the MAC of these sharings. By
taking a random linear combination of the form χ〈A〉 − 〈A′〉, we can verify the
product relation and output the authenticated triple (〈A〉, 〈B〉, 〈C〉).

Procedure πDouble takes inputs 〈Ai〉, i ∈ [2�] and outputs pairs of authen-
ticated sharing 〈Ai〉, 〈AT

i 〉, i ∈ [2�] for � multiplication gates. The idea is to
first locally compute [AT

i] from [Ai] by applying the transpose to each share in
[Ai]. Then, we apply protocol ΠAuth to create the authenticated sharing 〈AT

i 〉.
To check the transpose relation, we generate a pair of authenticated sharing
of random matrix A0, A

T
0 and sacrifice this pair by taking the random linear

combination

〈C〉 =
2�∑

i=1

ri〈Ai〉 + 〈A0〉 〈D〉 =
2�∑

i=1

ri〈AT
i 〉 + 〈AT

0 〉

It must hold that C = DT . Then, this procedure will output pairs of authenti-
cated sharing 〈Ai〉, 〈AT

i 〉, i ∈ [2�].
In the online phase, our MPC protocol can securely compute the addition

and multiplication gate. The addition gate can be locally computed without
interaction. To compute the multiplication gate, we need a sextuple prepared in
the preprocessing phase. This sextuple can help us to circumvent the obstacle
that the product of two matrices is non-commutative. One can find the details
in Sect. 1.1.

1.3 Related Work

There are a few MPC protocols optimized for matrix operations. Escudero and
Soria-Vazquez [22] presented an honest majority MPC protocol over matrix

Dishonest Majority Multiparty Computation over Matrix Rings 305

rings. One of the biggest challenges in their protocol is to construct Shamir
secret sharing scheme over non-commutative rings. They constructed a subset
of matrices as the evaluation points such that these matrices are commutative.
Based on this subset of matrices, they presented the encoding and error correc-
tion algorithm for this Shamir secret sharing scheme. Since our MPC protocol
is secure in the presence of dishonest majority, our building block is an addi-
tive secret sharing scheme. The sharing and reconstruction algorithm can be
straightforwardly generalized from the commutative case. However, we need a
MAC to verify the correctness of our sharing whose idea can be dated back to
SPDZ protocol [20]. In our protocol, the global key and the MAC are vectors
instead of elements. Thus, the MAC of our protocol is negligible compared to
the size of the secret.

The most relevant work is due to [16] which presented a variant of SPDZ
protocol over matrix rings Mm×m(Zq), where Zq is a large prime field. They
mimic the classic SPDZ protocol to use a single element as the global key to
create the MAC of the matrix. Thus, the size of MAC in their protocol is as big
as the secret. In the preprocessing phase, they apply the homomorphic matrix
multiplication [25] which is based on a variant of BFV scheme [14,24] to create
the matrix triple. Their SPDZ protocol over matrix rings turns out to be very
efficient compared to the classic SPDZ protocol handling the matrix operations
as the entry-wise operations.

In the preprocessing phase, we apply a variant of PCG-based subfield VOLE
to securely multiply two random matrices. In [13], Boyle et al. proposed a PCG
construction for matrix triple, which is adapted from the PCG for OLE under
“splittable” ring-LPN assumption. However, their protocol generates a large
batch of matrix triples of small-to-medium size (at most 16 × 16), while our
protocol can deal with the matrices of large size (at least 128 × 128).3

1.4 Organization of the Paper

The paper is organized as follows. In Sect. 2, we present basic notations and
definitions. In Sect. 3, we present the online phase of our MPC protocol. In
Sect. 4, we present Protocol ΠAuth which outputs authenticated sharings. In
Sect. 5, we present the preprocessing phase of our MPC protocol. In Sect. 6, we
analyze the communication complexity of our MPC protocol and compare it
with other dishonest majority MPC protocols over matrix rings. The missing
functionalities and protocols can be found in Section A in the Supplementary
Material.

2 Preliminaries

2.1 Basic Notation

We use the capital letter M to represent a matrix and bold small letter v to
represent a column vector. The transpose of a matrix M is MT and the transpose
3 In [13], they remarked “For larger matrix, more interactive approach such as the

recent work based on homomorphic encryption [16] appears to be more practical”.

306 H. Liu et al.

of a vector v is vT . For a vector v, denote by vi the i-th component of v, i.e.,
vT = (v1, . . . , vn). Let Ma×b(Fq) be the collection of a × b matrices over Fq.
For two column vectors u ∈ F

a
q ,v ∈ F

b
q, we use u ⊗ v = uvT ∈ Ma×b(Fq) to

represent their (outer) product, i.e., uvT = (uivj)a×b where uT = (u1, . . . , ua)
and vT = (v1, . . . , vb).

Throughout the paper, the security parameter of MPC protocol is κ. Let
Fq be the finite field of size q and F

n
q be the vector space of n dimension. We

denote by x
$←− X a variable x uniformly sampling from a finite set X . Let

[N] = {1, · · · , N}.

2.2 Multiparty Computation

The set of parties in our MPC protocol is {P1, · · · , Pn}. We consider the setting of
dishonest majority, where at most n − 1 parties are corrupted by the adversary.
The adversary is static and malicious, which means that the set of corrupted
parties is determined before the execution of protocol and corrupted parties can
arbitrarily deviate from the protocol.

The security of our protocol is proved under Canetti’s Universal Compos-
ability (UC) framework [15]. A protocol Π securely instantiates a functionality
F if there exists a simulator that interacts with the adversary (or more formally,
environment) such that he can distinguish the ideal world and real world with
only negligible probability. The composability of UC framework enables us to
construct our protocol in hybrid model, which means that protocol Π instan-
tiates functionality F with access to another functionality F ′. In this case, Π
instantiates F in the F ′-hybrid model. Different from a protocol Π which is
associated with an ideal functionality and has simulation-based proof, we use π
to represent a procedure, which acts as a subroutine of protocols, and has no
related functionality or simulation-based proof.

We assume the private and authenticated channels between any pair of par-
ties and a broadcast channel. Our MPC protocol achieves security with (unani-
mous) abort since the majority of parties are dishonest. In the ideal world, the
functionality waits for a signal from the adversary before delivery of outputs.
If the signal is Abort, all honest parties abort. Otherwise, the signal is OK, the
functionality sends correct outputs to all honest parties. In the real world, when
we say a party aborts, this party sends an Abort signal through the broadcast
channel and all honest parties abort.

3 Online Phase

We begin by introducing the authenticated secret sharing of a matrix, which is
the building block of our MPC protocol. Protocol Πonline securely implements
MPC functionality FMPC in the (FPrep, FCoin)-hybrid model, where FPrep gener-
ates correlated randomness in offline phase and FCoin generates public random
field elements. The implementation of FPrep can be found in Sect. 5.

Dishonest Majority Multiparty Computation over Matrix Rings 307

3.1 Authenticated Secret Sharing

In the dishonest majority setting, additive secret sharing alone is not resilient
to the corruption caused by the malicious adversary. Similar to [19], we use a
uniformly random global key to generate the MAC of the share. Our approach
deviates from [19] by making the global key and MACs as a vector of length m
over Fq.

Notations. We use [·] and [[·]] to denote an additive secret sharing over
Mm×m(Fq) and Mm×1(Fq)4, respectively. An authenticated secret sharing

〈X〉 is a triple ([X], [[v]], [[Xv]]), where X ∈ Mm×m(Fq) is the secret, v
$←−

Mm×1(Fq) is the global key and Xv ∈ Mm×1(Fq) is the MAC of the secret.
More precisely, [X] =

(
X(1), · · · ,X(n)

)
, [[v]] =

(
v(1), · · · ,v(n)

)
and ([[Xv]]) =

(
m(1)(X), · · · ,m(n)(X)

)
with

X =
n∑

i=1

X(i),v =
n∑

i=1

v(i),Xv =
n∑

i=1

m(i)(X).

where party Pi holds random share X(i) of secret X, key share v(i) and MAC
share m(i)(X).

Local Operations. We use “linear” to refer to “Mm×m(Fq)-linear”. Scheme [·] is
both left linear and right linear due to distribute law of matrix rings. However,
scheme 〈·〉 is only left linear. Given an authenticated secret sharing 〈X〉 and
a public matrix A ∈ Mm×m(Fq), all parties could left multiply A to [[Xv]] to
obtain [[AXv]], but it is not possible to obtain [[XAv]] with only local operations.
To securely left multiply a matrix A with 〈X〉, all parties locally compute

A〈X〉 = 〈AX〉 = ([AX], [[v]], [[AXv]])

with [AX] = (AX(1), . . . , AX(n)) and [[AXv]] = (Am(1)(X), . . . , Am(n)(X)). To
securely compute the sum of 〈X〉 and 〈Y 〉, all parties locally compute

〈X〉 + 〈Y 〉 = 〈X + Y 〉 = ([X + Y], [[v]], [[(X + Y)v]])

with [X + Y] = (X(1) + Y (1), . . . , X(n) + Y (n)) and [[(X + Y)v]] =
(
m(1)(X) +

m(i)(Y), . . . ,m(n)(X)+m(n)(Y)
)
. To securely add a public matrix A with 〈X〉,

all parties locally compute

[X + A] = (X(1) + A,X(2), . . . , X(n)),m(i)(X + A) = m(i)(X) + Av(i)

Then, 〈X + A〉 = ([X + A], [[v]], [[(X + A)v]]) is the authenticated secret sharing
of X + A. The affine operation can be found in procedure πAff in Section A in
the Supplementary Material.
4 Here we use notion Mm×1(Fq) instead of Fm

q in order to show that the global key
and MACs can be generalized to matrix.

308 H. Liu et al.

Opening and Checking. To partially open an authenticate secret sharing
〈Y 〉 = ([Y], [[v]], [[Y v]]), all parties send their shares of [Y] to P1, who can recon-
struct the secret and send the result Y ′ to other parties. To verify the opened
value Y ′, all parties locally compute [[σ]] = [[Y v]] − Y ′[[v]], and broadcast the
shares of this value via a simultaneous message channel. The parties abort if
the reconstructed value σ is not 0. The probability that a fake authenticated
secret sharing passes the verification is 1/q. These two procedures can be found
in Section A in the Supplementary Material.

Multiplication. In dishonest majority MPC protocols, correlated randomness
generated in offline phase could assist the computation of multiplications. Beaver
triple [8] is a common technique in MPC protocols, which transforms execution of
multiplications to broadcasts and linear operations. However, we can not adapt
Beaver triple directly due to the non-commutative property of matrix ring.

To multiply two authenticated sharings 〈X〉 and 〈Y 〉, all parties prepare a
Beaver triple (〈A〉, 〈B〉, 〈C〉) with C = AB during the preprocessing phase. All
parties partially open D ← 〈X〉 − 〈A〉 and E ← 〈Y 〉 − 〈B〉. The sharing of
Z = XY could be represented as:

[Z] = [C] + D[B] + [A]E + DE

[[Zv]] = [[Cv]] + D[[Bv]] + [[AEv]] + DE[[v]]

We observe that all items except [[AEv]] could be locally computed with
linear operations. To compute MAC share [[AEv]], we follow the paradigm of
“mask-open-unmask”. We choose a random sharing [R] as the mask of [A]E.
However, when opening the masked value [A]E − [R], we cannot guarantee
the correctness due to the lack of MAC. Therefore, we prepare two addi-
tional authenticated sharings (〈AT 〉, 〈RT 〉) and partially open the transpose
〈F 〉 = ET 〈AT 〉−〈RT 〉 instead. Therefore, to execute a multiplication, all parties
need to prepare a multiplication sextuple (〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) where
A,B,R

$←− Mm×m(Fq) and C = AB.

3.2 Required Functionalities

The functionality FMPC enables the parties to securely share their inputs, per-
form linear operations and multiplications, and output the result. The function-
ality FPrep is used to prepare correlated randomness for FMPC.

Authenticating functionality FAuth. This functionality allows parties to gen-
erate the shares of global key v and transform an additive secret sharing [X]
to an authenticated secret sharing 〈X〉. Although we do not call FAuth directly,
FAuth is contained in FPrep.

Dishonest Majority Multiparty Computation over Matrix Rings 309

Functionality 1: FAuth

Let C be the set of corrupted parties.

– Initialize: On receiving (Init) from all parties, sample random vector
v(i) ← Mm×1(Fq) for i /∈ C and receive v(i) from adversary for i ∈ C.
Store the global key v =

∑n
i=1 v(i) and send v(i) to Pi.

– Authenticate: On receiving (Auth, [X]) from each party Pi, where [X] is
an additive sharing over Mm×m(Fq):
1. Compute the MAC m(X) = Xv.
2. Wait for

{
m(i)(X)

}

i∈C
from adversary and sample

{
m(i)(X)

}

i/∈C
subject to

∑n
i=1 m(i)(X) = m(X).

3. S sends m(j)(X) to Pj for all j /∈ C.

Preprocessing Functionality FPrep. This functionality produces random shar-
ings for input gates and multiplication sextuples for multiplication gates.

Functionality 2: FPrep

The functionality has all the same commands in FAuth, with following additional
commands:

– Input: On input (InputPrep, Pi) from all parties, sample R
$←− Mm×m(Fq)

and generate its authenticated sharing 〈R〉 such that for j ∈ C,(
R(j), m(j)(R)

)
is chosen by the adversary. Output R to Pi and

(
R(j), m(j)(R)

)
to Pj for all j /∈ C ∪ {i}.

– Sextuple: On input (Tuple) from all parties, sample A, B, R
$←−

Mm×m(Fq) and compute C = AB. Generate authenticated sharings
(〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) such that for j ∈ C, j-th shares of these
sharings are chosen by the adversary.

Multiparty Computation Functionality FMPC. This functionality provides
all the necessary operations for our MPC protocol.

Functionality 3: FMPC

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements in Mm×m(Fq). For each authenticated secret sharing, the shares
of corrupted parties can be chosen by the adversary.

– Initialize: On input (Init) from all parties, set the global key [[v]].
– Input: On input (Input, id, X, Pi) from Pi and (Input, id, Pi) from all other

parties, store Val[id] = X.

310 H. Liu et al.

– Addition: On input (Add, id, id1, id2) from all parties, compute Z =
Val[id1] + Val[id2] and store Val[id] = Z.

– Public matrix multiplication: On input (PubMul, id, A), compute Z =
AVal[id] and store Val[id] = Z.

– Multiplication: On input (Mult, id, id1, id2) from all parties, compute
Z = Val[id1]Val[id2] and store Val[id] = Z.

– Check openings: On input (Check, (id1, · · · , id�), (X ′
1, · · · , X ′

�)) from all
parties, wait for a signal for the adversary. If the adversary sends OK and
Val[idj] = X ′

j for j ∈ [�], return OK to all honest parties. Otherwise, return
Abort to all honest parties.

– Output: On input (Output, id) from all parties, the functionality retrieves
Y = Val[id] and sends Y to the adversary if Val[id] �= ∅. If the adversary
sends Abort then the functionality aborts, otherwise it delivers Y to all
parties.

Coin tossing functionality FCoin. This functionality generates a uniformly
random element in Fq for all parties.

Functionality 4: FCoin

Upon receiving (Coin) from all parties, sample r
$←− Fq and send r to the

adversary.

– If the adversary returns OK, send r to all honest parties.
– If the adversary returns Abort, send Abort to all honest parties.

3.3 Instantiation of FMPC

The protocol Πonline instantiates FMPC in the (FPrep,FCoin)-hybrid model, with
statistical security parameter κ. The random shares and multiplication sextuples
produced in FPrep will be used in Input and Mult commands, respectively.

Protocol 1: ΠOnline

The parties maintain a dictionary Val for authenticated values.

– Initialize: The parties call FPrep as follows:
1. On input (Init) to get global key [[v]].
2. On input (InputPrep, Pi) to prepare a random authenticated sharing

〈R〉 for each input gate, where the input provider Pi learns R.
3. On input (Tuple) to prepare a multiplication sextuple

(〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) for each multiplication gate
– Input: If Pi receives (Input, id, X, Pi) and other parties receive (Input,

id, Pi), execute following operations:
1. Pi broadcasts A = X − R, where 〈R〉 is an unused input mask

Dishonest Majority Multiparty Computation over Matrix Rings 311

2. All parties locally compute 〈X〉 = 〈R〉 + A and store Val[id] = 〈X〉.
– Addition: If all parties receive (Add, id, id1, id2), retrieve 〈X〉 = Val[id1]

and 〈Y 〉 = Val[id2], locally compute 〈Z〉 = 〈X〉+〈Y 〉 and set Val[id] = 〈Z〉.
– Public matrix multiplication: If all parties receive (PubMul, id, A),

retrieve 〈X〉 = Val[id], locally compute 〈Z〉 = A〈X〉 and set Val[id] = 〈Z〉.
– Multiplication: If all parties receive (Mult, id, id1, id2), retrieve 〈X〉 =

Val[id1] and 〈Y 〉 = Val[id2] and execute following operations:
1. Choose an unused multiplication sextuple (〈A〉, 〈AT 〉, 〈B〉, 〈C〉,

〈R〉, 〈RT 〉).
2. All parties locally compute 〈D〉 ← 〈X〉 − 〈A〉 and 〈E〉 ← 〈Y 〉 − 〈B〉.
3. All parties partially open D ← πOpen(〈D〉) and E ← πOpen(〈E〉).
4. All parties locally compute 〈F 〉 ← ET 〈AT 〉 − 〈RT 〉 and partially open

F ← πOpen(〈F 〉)
5. All parties locally compute 〈Z〉 = 〈C〉 + D〈B〉 + 〈R〉 + DE + F T and

set Val[id] = 〈Z〉.
– Check openings: If all parties receive (Check, (id1, · · · , id�),

(X ′
1, · · · , X ′

�)), retrieve 〈Xj〉 = Val[idj] for j ∈ [�] and execute following
operations:
1. Call FCoin � times to sample r1, · · · , r�

$←− Fq.
2. All parties locally compute 〈Y 〉 ← ∑�

j=1 rj〈Xj〉.
3. All parties locally compute Y ′ =

∑�
j=1 rjX

′
j .

4. All parties invoke πCheck(Y
′, 〈Y 〉).

– Output: If all parties receive (Output, id) and retrieve 〈Y 〉 = Val[id]:
1. All parties invoke Check command to check all the opened values in

the online phase so far.
2. If this does not abort, the parties partially open 〈Y 〉 to obtain Y ′.
3. All parties invoke πCheck(Y

′, 〈Y 〉). If this procedure passes, output Y ′.

Theorem 1. Protocol ΠOnline securely implements FMPC in the (FPrep, FCoin)-
hybrid model.

Proof. A full-fledged simulation-based proof is presented in the full version [27].
Here we restrict ourselves to the core idea of the proof. For the case of Init
command, it is easy to see that the shares of the global key are prepared for all
parties on both ΠOnline and FMPC. In the Input command, the value stored by
FMPC corresponds to the value stored by ΠOnline, which can be seen authenticated
through the mask of a random share.

The case of Add and PubMul is easy since these steps only consist of local
computations which can be simulated trivially. To analyze Mult command,
we should take three values into consideration. The correctness of the mul-
tiplication step in FMPC is easy to be verified. The parties obtain a tuple
(〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉) before computing the product Z of two stored
values X,Y ∈ Mm×m(Fq). The parties first partially opens D ← X − A
and E ← Y − B, and then compute locally [Z] = [C] + D[B] + [A]E + DE,
which is equivalent to [Z] = [XY]. The third value FT ← ET AT − RT is
opened to compute the MAC of Z. The parties can locally compute [[Zv]] =

312 H. Liu et al.

[[Cv]]+D[[Bv]]+F [[v]]+ [[Rv]]+DE[[v]]. We can verify that the formula is equiv-
alent to [[Zv]] = [[XY v]]. Note that each time we partially open a value, we
compute its MAC. This MAC will be used in the Check command to check the
correctness of this opened value. The privacy argument is clear as we always
mask our secret with a random matrix when we want to do partially opening.

Finally, in the Check and Output command, we can prove that a corrupted
authenticated secret sharing will pass the verification with a negligible probabil-
ity due to the following game which first appears in [20].

1. The challenger generates the secret key v
$←− Mm×1(Fq) and MACs γi = Xiv

for i ∈ [�] and sends X1, . . . , X� to the adversary.
2. The adversary sends back X ′

1, . . . , X
′
�.

3. The challenger generates the random values r1, . . . , r� ∈ Fq.
4. The adversary provides an error δ = (δ1, . . . , δm)T .
5. The adversary checks that {∑�

i=1 ri(Xi − X ′
i)}v = δ

The adversary wins the game if the check passes and exists Xi − X ′
i
= 0. The

second step of the game reveals that corrupted parties have the option to lie
about the secret shares that they opened during the execution of the protocol.
δ models the fact that the adversary is allowed to introduce errors on the MAC.
Suppose

∑�
i=1 ri(Xi − X ′

i) is not an all-zero matrix and let the nonzero row
be (xa,1, . . . , xa,m). We have δa =

∑m
j=1 xa,jvj . Since v = (v1, . . . , vm)T is kept

secret from the adversary, the adversary wins the game with the probability at
most 1/q. Now we proceed to the case

∑�
i=1 ri(Xi − X ′

i) = 0. Because r1, . . . , r�

are random elements, the probability that
∑�

i=1 riEi = 0 for not all-zero matrix
Ei is at most 1/q. Thus, the adversary wins this game with probability at most
1/q.

4 Authentication

In this section, we show how to authenticate an additive secret sharing. We first
introduce a cryptographic primitive VOLE and then show how to generate the
MAC share by invoking the VOLE.

4.1 Required Functionalities

Vector Oblivious Linear Evaluation Functionality FVOLE. A VOLE is a
two-party functionality between PA and PB, which takes as input a vector x
from the sender PA and a scalar v from the receiver PB , then randomly samples
a vector w and computes u = vx + w. We need to invoke VOLE multiple
times and thus we attach a unique identifier sid to each instance5. The efficient
instantiation of FVOLE can be found in [4,5].

5 The unique identifier sid is locally shared among a pair of parties and thus is not a
global identifier in n-party setting.

Dishonest Majority Multiparty Computation over Matrix Rings 313

Functionality 5: Fsid
VOLE

The functionality runs between sender PA and receiver PB . The Initialize step
runs once at the beginning and the Multiply step could run multiple times.

– Initialize: Upon receiving v ∈ Fq from PB , store v.
– Multiply: Upon receiving x ∈ F

m
q from PA:

1. Sample w
$←− F

m
q . If PB is corrupted, receive w from adversary.

2. Compute u = vx + w. If PA is corrupted, receive u from adversary
and recompute w = u − vx.

3. Output u to PA and w to PB .

4.2 Instantiation of FAuth

Now we proceed to the generation of MAC shares. Each party Pi randomly
samples the global key share v(i) when command Init is invoked. To authenticate
a given share

{
X(i)

}
i∈[n]

, all parties jointly compute the additive sharing of
(∑n

i=1 X(i)
) (∑n

i=1 v(i)
)
. Observe that:

(
n∑

i=1

X(i)

) (
n∑

i=1

v(i)

)

=
n∑

i=1

X(i)v(i) +
∑

i�=j

X(i)v(j)

Each party Pi can locally compute X(i)v(i) and each ordered pair (Pi, Pj)
needs to interactively compute additive sharing of X(i)v(j), i.e., u(i,j)+w(j,i) =
X(i)v(j), where Pi and Pj receives u(i,j) and w(j,i), respectively. By setting
m(i)(X) = X(i)v(i) +

∑
j �=i

(
u(i,j) + w(i,j)

)
, we have

∑n
i=1 m(i)(X) = Xv,

where X =
∑n

i=1 X(i) and v(i) =
∑n

i=1 v(i), therefore m(i)(X) is the MAC
share of Pi.

Since matrix-vector multiplication is a natural generalization of scalar-vector
multiplication, a pair (Pi, Pj) can generate the additive sharing of X(i)v(j) by
invoking m VOLE instances. In the k-th invocation of Fk

VOLE, Pi inputs the k-th
column x

(i)
k of X(i) and Pj inputs the k-th component v

(j)
k of global key share

v(j). According to the definition of VOLE, Pi receives u
(i,j)
k and Pj receives w

(j,i)
k

such that u
(j,i)
k = v

(j)
k x

(i)
k + w

(i,j)
k . By setting u(i,j) =

∑m
k=1 u

(i,j)
k and w(j,i) =

−∑m
k=1 w

(j,i)
k , Pi and Pj jointly generate the additive sharing of X(i)v(j). It is

easy to verify the correctness.

u(i,j) + w(j,i) =
m∑

k=1

u
(i,j)
k − w

(j,i)
k

=
m∑

k=1

w
(i,j)
k + v

(j)
k x

(i)
k + w

(i,j)
k

=
m∑

k=1

v
(j)
k x

(i)
k

314 H. Liu et al.

Invoking VOLE alone is not sufficient to generate authenticated sharings
in the presence of a malicious adversary. Because a corrupted party Pj may
use inconsistent vectors

(
x
(j)
1 , · · · ,x

(j)
m

)
or vector v(j) to interact with different

honest parties. To prevent such attack, we introduce a consistency check which
partially open a random linear combination of authenticated secret sharings to
detect the corruption. To avoid leakage caused by this opening, we sacrifice
a random authenticated sharing to mask the opened value. Although such a
check can not guarantee the consistency of inputs in each invocation of FVOLE, it
guarantees that the sum of errors toward an honest party is zero, which suffices
to generate the correct MAC share as errors cancel out after the addition.

Combining VOLE with consistency check, all parties can obtain the authen-
ticated sharings. Protocol ΠAuth is the instantiation of functionality FAuth which
outputs the authenticated sharings.

Protocol 2: ΠAuth

– Initialize: If all parties receive (Init), each party Pi samples v(i) $←−
Mm×1(Fq) as global key share. For each ordered pair (Pi, Pj) and k ∈ [m],
Pi and Pj call the Initialize step of Fk

VOLE, where Pj inputs v
(j)
k .

– Authenticate: If all parties receive (Auth, [X1], . . . , [X�]):
1. Each party Pi randomly samples a matrix X

(i)
0 ∈ Mm×m(Fq).

2. For h ∈ {0} ∪ [�], write X
(i)
h = (x

(i)
h,1, · · · , x

(i)
h,m):

(a) For each ordered pair (Pi, Pj) and k ∈ [m], Pi and Pj call the
Multiply step of Fk

VOLE, where Pi inputs x
(i)
h,k.

(b) Pi receives u
(i,j)
h,k and Pj receives w

(j,i)
h,k such that u

(i,j)
h,k = w

(j,i)
h,k +

v
(j)
k x

(i)
h,k.

(c) Each party Pi sets m(i)(Xh) = X
(i)
h v(i) +

∑
j �=i

∑
k∈[m](u

(i,j)
h,k −

w
(i,j)
h,k). Let

(
X

(i)
h , v(i), m(i)(Xh)

)
as the Pi’s share of 〈Xh〉.

3. Parties call FCoin � times to obtain randomness r1, · · · , r�.
4. Parties locally compute 〈Y 〉 = 〈X0〉 + ∑�

h=1 rh〈Xh〉.
5. Parties invoke Y ′ ← πOpen(〈Y 〉) and πcheck(Y

′, 〈Y 〉) to check the cor-
rectness of opened value.

6. If the check succeeds, output 〈X1〉, . . . , 〈X�〉.

Theorem 2. Protocol ΠAuth securely implements FAuth in the (FVOLE, FCoin)-
hybrid model.

Proof. We analyze the consistency check in ΠAuth and defer the complete
simulation-based security proof to the full version. There are two possible devi-
ations in ΠAuth:

– A corrupted party Pj provides inconsistent global key share v(i) with two
different honest parties in the Initialize step.

– A corrupted party Pj provides inconsistent secret share X
(i)
h for h ∈ {0} ∪ [�]

with two different honest parties in the Authentication step.

Dishonest Majority Multiparty Computation over Matrix Rings 315

In the command Auth, the adversary could introduce an arbitrarily additive
error. For h ∈ {0} ∪ [�] and k ∈ [m], let x

(j,i)
h,k , v

(j,i)
k be the actual input of Pj

used in Fk
VOLE with an honest party Pi. We fix an honest party Pi0 , and define

the correct inputs x
(j)
h,k, v

(j)
k to be equal to x

(j,i0)
h,k , v

(j,i0)
k respectively. Then we

obtain the additive error between actual inputs and correct inputs:

δ
(j,i)
h,k = x

(j,i)
h,k − x

(j)
h,k ε

(j,i)
k = v

(j,i)
k − v

(j)
k

for each j ∈ C, i /∈ C. For an honest party Pj , it keeps inputs x
(j,i)
h,k = x

(j)
h,k and

v
(j,i)
k = v

(j)
k for each i
= j. Finally, we define that for i, j ∈ C, the additive error

is zero, i.e., δ
(j,i)
h,k = 0 and ε

(j,i)
k = 0.

For j ∈ C, i /∈ C, if Pj behaves as sender and Pi behaves as receiver, we
have that

m∑

k=1

(
u
(j,i)
h,k − w

(i,j)
h,k

)
= X

(j)
h v(i) + Δ

(j,i)
h v(i)

where Δ
(j,i)
h =

(
δ
(j,i)
h,1 , · · · , δ

(j,i)
h,m

)
. Similarly, reverse the role of Pi and Pj , we

have that
m∑

k=1

(
u
(i,j)
h,k − w

(j,i)
h,k

)
= X

(i)
h v(j) + X

(i)
h ε(j,i)

where ε(j,i) =
(
ε
(j,i)
1 , · · · , ε

(j,i)
m

)T

.

Sum up the MAC share m(i)(Xh), we can see the following result:

n∑

i=1

m(i)(Xh) =
n∑

i=1

X
(i)
h v(i) +

∑

j �=i

m∑

k=1

(
u
(i,j)
h,k − w

(j,i)
h,k

)

=
i∑

i=1

X
(i)
h v(i) +

∑

j �=i

X
(i,j)
h v(j,i)

= Xhv +
∑

i/∈C

∑

j∈C
Δ

(j,i)
h

︸ ︷︷ ︸
Δ

(i)
h

v(i) +
∑

i/∈C
X(i)

∑

j∈C
ε(j,i)

︸ ︷︷ ︸
ε(i)

After the random linear combination with coefficients (r0 = 1, r1, · · · , r�), we
obtain the following MAC of variable Y :

n∑

i=1

m(i)(Y) = Y v +
∑

i/∈C

�∑

h=0

rhΔ
(i)
h v(i) +

∑

i/∈C

�∑

h=0

rhX
(i)
h

︸ ︷︷ ︸
Y (i)

ε(i)

316 H. Liu et al.

Finally we proceed to check opening of Y . To pass the consistency, the adversary
needs to introduce two errors E = Y ′ − Y and γ such that:

n∑

i=1

m(i)(Y) + γ − (Y + E)v = 0

γ − Ev +
∑

i/∈C

�∑

h=0

rhΔ
(i)
h v(i) +

∑

i/∈C

Y (i)ε(i) = 0

∑

i/∈C

(
�∑

h=0

rhΔ
(i)
h − E

)

v(i) +
∑

i/∈C

Y (i)ε(i) =
∑

i∈C
Ev(i) − γ

We assert that if consistency check passes, then Δ
(i)
h = 0 and ε(i) = 0 with

overwhelming probability. We prove this assertion with following two claims and
defer their proofs in the full version [27].

Claim. If at least one ε(i)
= 0 for some i /∈ C, then consistency check passes
with negligible probability.

Claim. If ε(i) = 0 for all i /∈ C and Δ
(i)
h
= 0 for some i /∈ C, then consistency

check passes with negligible probability.

5 Preprocessing Phase

The preprocessing phase generates the authenticated random sharings 〈R〉 for
the input gates, and the multiplication sextuples (〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉, 〈RT 〉)
for the multiplication gates. In this section, we focus on multiplication sextuples.
In Section A in the Supplementary Material, we describe the protocol ΠPrep for
full-fledged preprocessing phase. To reduce the communication complexity of
generating matrix triple, we introduce a variant of subfield VOLE called vector
oblivious product evaluation. The process of generating multiplication sextuple
is divided into two parts: the generation of Beaver triples (〈A〉, 〈B〉, 〈C〉) and
double sharings (〈A〉, 〈AT 〉), (〈R〉, 〈RT 〉).

5.1 Vector Oblivious Product Evaluation

A pseudorandom correlation generator (PCG) allows two parties to expand a
pair of short, correlated seeds to a much larger amount of correlated randomness.
Recently, efficient PCGs relying on several variants of learning parity with noise
(LPN) assumptions were used to construct random VOLE (RVOLE) [10,11,17,
34–36]. While the communication complexity of original VOLE scales linearly
in vector length, the communication complexity of PCG-based RVOLE is either
the square root of vector length (under primal LPN assumption) [10,35,36] or
logarithmic in vector length (under dual LPN assumption) [10,11,17,34]. In this
work, we leverage the dual LPN assumption to reduce the communication cost.

Dishonest Majority Multiparty Computation over Matrix Rings 317

In PCG-based RVOLE, the sender PA sends a seed s ∈ S instead of a whole
vector x, where S is the space of seeds. The property programmability was intro-
duced to PCG-based RVOLE in [12], which allows the sender to reuse its seed s
in different instances of RVOLE. We model the programmability with function
Expand : S → F

a
q , which deterministically expands the given random seed to a

pseudorandom vector of given length a over Fq.
Boyle et al. [12], proposed a variant of RVOLE, called subfield VOLE, which

can securely compute u = vx + w, where x ∈ F
a
q , v ∈ Fqb ,u,w ∈ F

a
qb . In

a subfield VOLE instance between PA and PB, x ∈ F
a
q is generated from a

seed s ∈ S chosen by PA and v ∈ Fqb is directly chosen by PB . Thus, subfield
VOLE could be regarded as a PCG for product of vectors, i.e., rewrite v ∈ Fqb as
v ∈ F

b
q and the subfield VOLE actually computes the additive sharing of x⊗v ∈

Ma×b(Fq). Since we have already shown that the product of two m×m matrices
can be decomposed into the sums of products of the form x⊗v ∈ Mm×m(Fq), it
suffices to invoke subfield VOLE m times to compute the matrix multiplication.

However, in subfield VOLE, the input v ∈ Fqb is chosen uniformly at random
which means the input size of PB is b log q bits. Note that in our setting, a and
b are of almost the same size Ω(m) which means it is necessary to minimize the
input size from both sides. Thus, we modify this subfield VOLE by generating
a pseudorandom element v ∈ Fqb from a seed. We call this modified subfield
VOLE vector oblivious product evaluation (VOPE). The functionality Fa,b

VOPE

can be found in Functionality 6. The instantiation of Fa,b
VOPE is given in the full

version [27], which is adapted from [33].

Functionality 6: Fa,b
VOPE

Let Expand : S → F
a
q ,Expand′ : S′ → F

b
q be the deterministic expansion

functions with seed space S, S′ and output length a, b, respectively. The
functionality runs between sender PA and receiver PB .

Upon receiving s ∈ S from PA and s′ ∈ S′ from PB :

1. Compute x = Expand(s), v = Expand′(s′).
2. Sample W

$←− Ma,b(Fq). If PB is corrupted, receive W from the adversary.
3. Compute U = x ⊗ v − W . If PA is corrupted, receive U from adversary

and recompute W = x ⊗ v − U .
4. Output U to PA and W to PB .

5.2 Generation of Beaver Triple

To simplify our proof, recall that we define u ⊗ v = uvT . The first step of
generating Beaver triple is to securely compute matrix multiplication, which can
be decomposed into some tensor products of vectors. Assume that there are
two random matrices A ∈ Mm1×m2(Fq), B ∈ Mm2×m3(Fq). Let ai be the i-th

318 H. Liu et al.

column of A and bi be the i-th row of B. Then, we have AB =
∑m2

i=1 ai⊗bi. This
implies that it suffices to compute m2 products Ci = ai ⊗ bi ∈ Mm1×m3(Fq),
and then add them together to obtain AB = C =

∑
i∈[m2]

Ci.
Procedure πMult outputs the authenticated Beaver triples. Note that seeds

s, s′ will be reused several times for different pairs of parties. A corrupted party
could cause the inconsistency of seeds towards different honest parties. Therefore,
we add a consistency check at the end of πMult: To check the correctness of
(〈A〉, 〈B〉, 〈C〉), we sacrifice another Beaver triple (〈A′〉, 〈B〉, 〈C ′〉).

Procedure 3: πMult

Let Expand : S → F
2m
q ,Expand′ : S′ → F

m
q be the deterministic expansion func-

tions with seed space S, S′ and output length a, b, respectively. The procedure
generates an authenticated triple (〈A〉, 〈B〉, 〈C〉) where A, B

$←− Mm×m(Fq)
and C = AB.

– Multiply:
1. Each party Pi samples seeds

(
s
(i)
1 , · · · , s

(i)
m

)
∈ Sm,

(
s′
1
(i)

, · · · , s′
m

(i)
)

∈
S′m and obtains Â(i) =

(
â
(i)
1 , · · · , â

(i)
m

)
∈ M2m×m(Fq), B

(i) =
(
b
(i)
1 , · · · , b

(i)
m

)T

, where â
(i)
k = Expand

(
s
(i)
k

)
, b

(i)
k = Expand′(s′

k
(i)
) for

k ∈ [m].
2. For k ∈ [m] and each ordered pair (Pi, Pj):

(a) Pi and Pj invoke F2m,m
VOPE , where Pi inputs s

(i)
k and Pj inputs s′

k
(j).

(b) Pi receives U
(i,j)
k and Pj receives W

(j,i)
k

3. Each party Pi locally computes

Ĉ(i) = Â(i)B(i) +
∑

j �=i

∑

k∈[m]

(
U

(i,j)
k + W

(i,j)
k

)

4. Each party Pi rewrites: Â(i) =

(
A(i)

A′(i)

)

, Ĉ(i) =

(
C(i)

C′(i)

)

and obtain

[A], [A′], [B], [C], [C′].
– Authenticate: All parties invoke FAuth to obtain 〈A〉, 〈A′〉, 〈B〉, 〈C〉 and

〈C′〉.
– Sacrifice:

1. All parties invoke FCoin to obtain a random element χ.
2. All parties locally compute 〈D〉 = χ〈A〉 − 〈A′〉 and partially open

D ← πOpen(〈D〉).
3. All parties locally compute 〈E〉 = χ〈C〉 − 〈C′〉 − D〈B〉 and partially

open E ← πOpen(〈E〉).
4. If E �= 0, then aborts.

– Output: If no party aborts, all parties output (〈A〉, 〈B〉, 〈C〉).

Dishonest Majority Multiparty Computation over Matrix Rings 319

5.3 Generation of Double Sharing

To generate � multiplication sextuples for securely computing � multiplication
gates, we need 2� + 1 double sharings of the form 〈A〉, 〈AT 〉 with some random
matrix A. Procedure πDouble receives the authenticated sharings 〈A〉 and output
the pair of authenticated sharing (〈A〉, 〈AT 〉). We briefly explain the idea of this
procedure. Observe that [AT] can be obtained by locally applying the transpose
to each share of [A]. Then, we apply the FAuth to obtain the authenticated sharing
〈AT 〉. Take random linear combinations of 2� + 1 double sharings (〈Ai〉, 〈AT

i 〉)
respectively and partially open them to C and D. If there is no corruption,
C = DT and the check passes. Otherwise, this check will pass with probability
at most 1/q.

Procedure 4: πDouble

Let nD denote th number of double sharings. The procedure produces nD pairs
of authenticated sharing 〈Ai〉, 〈AT

i 〉, i ∈ [nD].
Double: Upon receiving (Double, 〈A1〉, . . . , 〈AnD 〉) from all parties:

1. All parties invoke πRand to obtain [A0].
2. All parties locally compute [AT

i] from [Ai] for i ∈ {0} ∪ [nD] by taking the
transpose of each share.

3. All parties invoke FAuth with command (Auth, [A0], [A
T
0], [A

T
1], . . . , [A

T
nD

])
to obtain the authenticated sharings 〈A0〉, 〈AT

0 〉, 〈AT
1 〉, . . . , 〈AT

nD
〉.

4. All parties call FCoin nD times to obtain r1, · · · , rnD .
5. All parties locally compute

〈C〉 =
nD∑

i=1

ri〈Ai〉 + 〈A0〉 〈D〉 =
nD∑

i=1

ri〈AT
i 〉 + 〈AT

0 〉

6. All parties invoke πOpen to partially open C and D.
7. If C �= DT , then aborts.
8. All parties invoke πCheck to check the opened values.
9. If no party aborts, output nD pairs of authenticated sharings

(〈Ai〉, 〈AT
i 〉), i ∈ [nD].

Putting Together. Protocol ΠSextuple instantiates the functionality FSextuple by
invoking the procedures introduced above. πMult and πDouble are used to produce
the authenticated sharings (〈A〉, 〈B〉, 〈C〉) and (〈A〉, 〈AT 〉), (〈R〉, 〈RT 〉), respec-
tively.

Protocol 5: ΠSextuple

This protocol produces � authenticated sextuples (〈A〉, 〈AT 〉, 〈B〉, 〈C〉, 〈R〉,
〈RT 〉) with C = AB:

320 H. Liu et al.

1. All parties invoke πMult � times to produce (〈Ai〉, 〈Bi〉, 〈Ci〉) with Ci = AiBi

for i ∈ [�].
2. All parties invoke πRand � times to obtain [R1], . . . , [R�].
3. All parties invoke FAuth with command (Auth, [R1], . . . , [R�]) to obtain 〈Ri〉

for i ∈ [�].
4. All parties set nD = 2� and invoke πDouble with command (Double,

〈A1〉, . . . , 〈A�〉, 〈R1〉, . . . , 〈R�〉) to obtain (〈Ai〉, 〈AT
i 〉) and (〈Ri〉, 〈RT

i 〉) for
i ∈ [�].

5. Output (〈Ai〉, 〈AT
i 〉, 〈Bi〉, 〈Ci〉, 〈Ri〉, 〈RT

i 〉) for i ∈ [�].

Theorem 3. Protocol ΠSextuple securely implements FSextuple in the (FAuth,
F2m,m

VOPE , FCoin)-hybrid model.

Proof. Let Z be the environment, which we also refer to as the adversary capable
of corrupting a set C containing at most n − 1 parties. We construct a simulator
S such that the real execution and ideal execution are indistinguishable to Z.
Here we only prove the security of πMult and refer to the full version [27] for the
complete proof.

In functionality F2m,m
VOPE between Pi and Pj , both Pi and Pj only input their

seeds. Therefore, the corrupted parties can only choose inconsistent seeds for
different honest parties, which can not translate to an arbitrarily chosen additive
error. However, for the convenience of analysis, we follow the idea of [33] and
improve the ability of adversary to introduce an arbitrarily chosen additive error.

Simulating the Multiply Step. The simulator S emulates the functional-
ity F2m,m

VOPE . For j ∈ C and i /∈ C, let s
(j,i)
k and s′

k
(j,i) be the actual input in

the k-th invocation of F2m,m
VOPE for k ∈ [m]. Fix an honest party Pi0 and define

the correct input s
(j)
k and s′

k
(j) to be equal to s

(j,i0)
k and s′

k
(j,i0), respectively.

For i /∈ C, S randomly samples Â(i) $←− Mτm×m(Fq), B(i) $←− Mm×m(Fq). For
j ∈ C, S receives sk

(j,i) and s′
k
(j,i) from the adversary, where i /∈ C, k ∈ [m].

Then S receives
{

U
(j,i)
k ,W

(j,i)
k

}

j∈C,i/∈C
from the adversary and recomputes

{
U

(i,j)
k ,W

(i,j)
k

}

i/∈C,j∈C
accordingly. Finally, S honestly computes Ĉ(i).

Simulating the Authentication Step. S emulates functionality FAuth with
inputs from corrupted parties controlled by Z. S authenticates additive sharings
and we denote by EAuth, E′

Auth errors introduced in the authentication step. If
EAuth, E′

Auth are not zero, then the authenticated values are different from those
in the previous step. If Z sends Abort to FAuth, S sends Abort to FSextuple.

Simulating the Sacrifice Step. S samples D ← Mm×m(Fq) as χA − A′. If
the triple is incorrect, S aborts; otherwise, S outputs it as a valid triple.

Dishonest Majority Multiparty Computation over Matrix Rings 321

Indistinguishability. We argue that Z cannot distinguish real execution and
simulated one. We will show that if no abort happens, the probability that
adversary introduces some non-zero errors is negligible and the distribution of
opened value is statistically close in both of the worlds.

Now we proceed to the introduced errors during Multiply step. Let
Â(j,i) and B(j,i) be the matrices generated by seeds

(
s
(j,i)
1 , · · · , s

(j,i)
m

)
and

(
s′
1
(j,i)

, · · · , s′
m

(j,i)
)
, respectively. In the k-th invocation of F2m,m

VOPE , denote the

errors as δ̂
(j,i)
k = â

(j,i)
k − â

(j)
k and γ

(j,i)
k = b

(j,i)
k − b

(j)
k . Then we conclude that

for k ∈ [m], i /∈ C and j ∈ C:

U
(i,j)
k + W

(j,i)
k = â

(i)
k ⊗ b(j) + â

(i)
k ⊗ γ

(j,i)
k

U
(j,i)
k + W

(i,j)
k = â

(j)
k ⊗ b(i) + δ̂

(j,i)
k ⊗ b

(i)
k

Following similar analysis in the proof of Theorem 2, we define Δ̂(j,i) =
(
δ̂
(j,i)
1 , · · · , δ̂

(j,i)
m

)
, Γ (j,i) =

(
γ
(j,i)
1 , · · · ,γ

(j,i)
m

)T

and compute Ĉ as

Ĉ =
∑

i∈[n]

Ĉ(i) = ÂB +
∑

i/∈C

∑

j∈C

∑

k∈[m]

(
â
(i)
k ⊗ ε

(j,i)
k + δ̂

(j,i)
k ⊗ b

(i)
k

)

= ÂB +
∑

i/∈C

∑

j∈C
Â(i)Γ (j,i) + Δ̂(j,i)B(i)

= ÂB +
∑

i/∈C
Â(i)Γ (i) + Δ̂(i)B(i)

where Δ̂(i) =
∑

j∈C Δ̂(j,i) and Γ (i) =
∑

j∈C Γ (j,i). Splitting the matrices into 2
blocks, we have that:

(
C
C ′

)

=
(

A
A′

)

B +
∑

i/∈C

(
A(i)

A′(i)

)

Γ (i) +
(

Δ(i)

Δ′(i)

)

B(i)

After the Authentication step, all parties obtain 〈A〉, 〈A′〉, 〈B〉, 〈C〉, 〈C ′〉.
Assume that the adversary introduces additive error EAuth, E′

Auth in this step,
then A,A′, B,C,C ′ satisfy that:

C = AB + E1 + E2 + EAuth

C ′ = A′B + E′
1 + E′

2 + E′
Auth

and
E1 =

∑

i/∈C
A(i)Γ (i) E2 =

∑

i/∈C
Δ(i)B(i)

E′
1 =

∑

i/∈C
A′(i)Γ (i) E2 =

∑

i/∈C
Δ′(i)B(i)

If no abort happens in the Sacrifice step, we come to the following conclusions
and defer their proofs to the full version [27].

322 H. Liu et al.

Claim. If the sacrifice step passes, then E = E1 + E2 + EAuth = 0 and E′ =
E′

1 + E′
2 + E′

Auth with overwhelming probability.

Claim. If the sacrifice step passes, then {Γ (i),Δ(i),Δ′(i)}i/∈C are zero with over-
whelming probability.

Finally, we want to show that the opened value D in the real execution
is computationally indistinguishable from the uniform matrix in the simulated
execution. Given that D = χA−A′, it suffices to prove A′ looks uniformly random
to Z and thus can serve as a mask. Each column a′

i of A′ is part of output of
expansion function Expand, therefore we want to show that Expand acts as a
PRG. The concrete construction of Expand is given in the full version [27], and
the pseudorandomness of output is guaranteed by dual LPN assumption.

6 Analysis

In this section, we analyze the communication and computation cost of our
MPC protocol over Mm×m(Fq) assuming q ≥ 2κ. The computation complexity
is measured by the number of multiplications.

6.1 Analysis of the Online Phase

First, we consider communication complexity. At each step of partial opening
a matrix, all parties send their shares to a specific party, then let this party
reconstruct and broadcast the secret, thus the communication complexity is
2m2(n − 1) log q bits. For each multiplication gate, all parties need to par-
tially open three shares 〈D〉, 〈E〉, 〈F 〉 and thus the communication complexity
is 6m2(n − 1) log q bits. Each input gate requires Pi to broadcast the difference
between X and mask R, which communicates m2(n−1) log q bits. For the output
gate, the partial opening needs 2m2(n−1) log q bit of communication and verifi-
cation needs mn2 log q bits of communication via simultaneous message channel.

Now we proceed to analyze the computation complexity for each multiplica-
tion gate. According to Mult command in ΠOnline, all parties execute the following
computation: ET [AT], ET [[AT v]],D[B],D[[Bv]],DE,DE[[v]]. Since left multipli-
cation requires m3 and m2 multiplications in scheme [·] and [[·]] respectively, the
overall computation complexity is 3m3 + 3m2 multiplications.

Another measure is share size, which is m(m+1)n log q bits, since [[v]] remains
unchanged in each authenticated sharing and we omit this item.

We analyze the communication complexity, computation complexity and
share size of other MPC protocols and list the results in Table 1. Here FI and
FD refer to the online communication with function-independent and function-
dependent preprocessing, respectively. Although our protocol needs slightly more
communication than [16], our protocol has the smallest share size and computa-
tion complexity among these protocols. Moreover, the improvement of our MPC
protocol by resorting to function-dependent preprocessing can achieve the same
communication complexity as [16].

Dishonest Majority Multiparty Computation over Matrix Rings 323

6.2 Analysis of the Preprocessing Phase

The task of preprocessing is to generate random sharings and multiplication
sextuples. The communication cost is mainly caused by ΠSextuple which produces
the multiplication sextuples. As our preprocessing phase uses VOLE and VOPE
as the building blocks, we calculate the communication cost of preprocessing
phase in terms of the calls of the functionality FVOLE and FVOPE.

To generate a random authenticated sharing 〈R〉 for an input gate, where
the secret R is known to Pi, Pi distributes the additive share R(j) to Pj and
invokes FVOLE with Pj . After producing � + 1 such random sharings, all parties
invoke πCheck to check the consistency of these sharings. If � is large enough,
the communication cost of the consistency check can be amortized away. In this
case, the preparation for an input gate requires n − 1 calls of FVOLE.

Protocol ΠSextuple produces � sextuples by generating � Beaver triples and
2� double sharings. During this process, the communication cost is caused by
� calls of ΠAuth and the invocation of procedure πMult and πDouble. Procedure
πMult generates a multiplication triple (〈A〉, 〈B〉, 〈C〉) by making mn(n− 1) calls
of F2m,m

VOPE , 5 calls of ΠAuth and 2 calls of πopen. Procedure πDouble generates 2�
authenticated sharings 〈A〉, 〈AT 〉 by making 2� + 2 calls of ΠAuth and 2 calls of
πopen. In summary, generating a sextuple requires mn(n − 1) calls of F2m,m

VOPE and
8mn(n − 1) calls of FVOLE assuming � is large enough.

The communication cost of FVOLE scales linearly in the length of the vector,
which incurs O(m log q) bits of communication. The analysis of F2m,m

VOPE depends
on the dual LPN parameters. Given the dual LPN parameter (2m, 2cm, t),
F2m,m

VOPE requires t invocations of Fm
rsVOLE (which is sublinear in m), t log 2cm

t invo-
cations of κ-bit OT and exchange of t(1 + m) field elements, which result in
O(m log q) bits of communication. (Note that t = O(1) which does not grow
with m.)

Now we proceed to the analysis of the concrete communication cost. We
pick the parameters in [16] for a comparison. For a matrix ring M128×128(Fq)
where the prime number q satisfies log q ≈ 128, [16] shows that each party
communicates 12.46MB to generate a matrix triple for the multiplication gate.
Our protocol requires 27 invocations of F28,27

VOPE and 210 invocations of F27

VOLE. We
choose the security parameter to be 80 bits and then obtain the corresponding

Table 1. The comparison of MPC protocols over Mm×m(Fq) in terms of share size,
communication complexity and computation complexity of a multiplication gate.

communication share size # multiplications
SPDZ [20] 4m3(n − 1) log q 2m2 log q 6m3

matrix triple [16]4m2(n − 1) log q 2m2 log q 5m3 + m2

This work (FI) 6m2(n − 1) log q m(m + 1) log q 3m3 + 3m2

This work (FD) 4m2(n − 1) log q m(m + 1) log q 3m3 + 3m2

324 H. Liu et al.

dual LPN parameters in [26]. The detailed calculation of communication cost of
FVOPE and FVOLE is deferred to the full version [27].

Table 2 demonstrates the communication cost of our protocol, the proto-
col relying on the random VOLE [10], the protocol relying on subfield VOLE
[33] and the protocol relying on the homomorphic encryption [16] to prepare
the correlated randomness for computing the multiplication gate. The “random
VOLE” protocol computes random matrix multiplication with m2 random VOLE
instances [10], and the “subfield VOLE” protocol invokes m times of subfield
VOLE in [33], where the extension field is defined as Fqm . One can see that the
communication cost of our protocol grows more slowly than [16]. The reason is
that the amortized communication cost of PCG-based VOLE decreases with the
size of m.

Table 2. The communication cost to prepare correlated randomness for computing a
multiplication gate.

m random VOLE subfield VOLE This work HE [16]
128 83.5 MB 34.8 MB 19.0 MB 12.5 MB
256 362 MB 138 MB 60 MB 50 MB
512 1453 MB 518 MB 198 MB 199 MB
1024 6000 MB 2004 MB 739 MB 797 MB

6.3 Experimental Result

Online Phase. We implement the online phase of different MPC protocols over
Mm×m(Fq) in C++ with the multiple precision integer arithmetic provided by
MPIR library [6]. All experiments were carried out on a server equipped with an
Intel Xeon Gold 5220R processor and 128GB RAM. We apply Linux tc command
to emulate a real network environment and simulate the LAN network with
1Gbps bandwidth, 1ms latency. Table 3 compares the performances of computing
a multiplication gate for each MPC protocol, which shows that our approach is
around 1.38x-1.85x faster than [16].

Table 3. Runtime to compute a multiplication gate in the online phase.

m SPDZ [20] matrix triple [16] This work
128 1.3 sec 96 ms 52 ms
256 9.5 sec 559 ms 329 ms
512 77.9 sec 5.0 sec 3.2 sec
1024 633 sec 42.5 sec 30.9 sec

Dishonest Majority Multiparty Computation over Matrix Rings 325

Preprocessing Phase. We present the benchmarks of VOLE-based preprocess-
ing protocols to generate the correlated randomness for a multiplication gate, in
which secure random matrix multiplication is the bottleneck of the computation.
All VOLE-based preprocessing protocols rely on PCG techniques, which expand
a pair of short seeds to long correlated randomness. We apply the PCG imple-
mentation of libOTe [32] to estimate the runtime of the expansion step, which
is based on quasi-cyclic codes in [12]. To estimate the efficiency of generating
seeds, we calculate the required number of VOLEs and OTs and benchmark the
runtime of VOLE and OT with Lattigo [1] and libOTe [32] libraries, respectively.
The cost of VOLE is estimated with the ring-LWE based OLE protocol in [7].

Table 4 provides total estimated runtime on secure random matrix multipli-
cation in the LAN setting. To make a fair comparison with [16], all VOLE-based
protocols are tested with 16 threads. As can be seen from the table, our prepro-
cessing phase achieves a 1.44x-24.17x speedup compared to [16] with the same
thread number. It is noteworthy that [16] requires a key generation and a one-
time setup (when m = 128, these operations take around 83 seconds and 14.5
seconds respectively), while our protocol does not rely on a heavy setup. We
provide a full-fledged experiment result of preprocessing in the full version [27].

Table 4. Benchmark: Runtime to prepare correlated randomness for computing a
multiplication gate, measured with 16 threads.

m random VOLE subfield VOLE This work HE [16]
128 3.6 sec 2.9 sec 4.1 sec 5.9 sec
256 13.9 sec 10.1 sec 8.2 sec 25.5 sec
512 56.4 sec 38.2 sec 16.8 sec 2.3 min
1024 4.1 min 2.5 min 36.0 sec 14.5 min

Acknowledgement. The authors would like to thank Jiawei Ni for her assistance with
implementation. We are also grateful for valuable suggestions from anonymous review-
ers in Asiacrypt 2024. The work was supported in part by the National Key Research
and Development (R&D) Program of China under Grant 2022YFA1004900 and in
part by the National Natural Science Foundation of China under Grants 12031011,
12361141818, and 12101404. This work was supported in part by Natural Science Foun-
dation of Shanghai under the 2024 Shanghai Action Plan for Science, Technology and
Innovation Grant 24BC3200700. This work was also supported in part by Ant Group
through CCF-Ant Research Fund CCF-AFSG RF20230306.

References

1. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023), ePFL-
LDS, Tune Insight SA

https://github.com/tuneinsight/lattigo

326 H. Liu et al.

2. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Rambaud, M., Xing, C.,
Yuan, C.: Asymptotically good multiplicative LSSS over galois rings and applica-
tions to MPC over Z/pk

Z. In: ASIACRYPT 2020. LNCS, vol. 12493, pp. 151–180.
Springer (2020)

3. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via galois rings.
In: TCC 2019. LNCS, vol. 11891, pp. 471–501. Springer (2019)

4. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: CRYPTO 2017. LNCS,
vol. 10401, pp. 223–254. Springer (2017)

5. Applebaum, B., Konstantini, N.: Actively secure arithmetic computation and
VOLE with constant computational overhead. In: EUROCRYPT 2023. LNCS, vol.
14005, pp. 190–219. Springer (2023)

6. B. Gladman, W.H., J. Moxham, e.a.: MPIR: Multiple Precision Integers and Ratio-
nals (2015), version 2.7.0, http://mpir.org

7. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.:
Efficient protocols for oblivious linear function evaluation from ring-lwe. J. Com-
put. Secur. 30(1), 39–78 (2022)

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO ’91. LNCS, vol. 576, pp. 420–432. Springer (1991)

9. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online spdz!
improving SPDZ using function dependent preprocessing. In: ACNS 2019. LNCS,
vol. 11464, pp. 530–549. Springer (2019)

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018. pp. 896–912. ACM (2018)

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.:
Correlated pseudorandomness from expand-accumulate codes. In: CRYPTO 2022.
LNCS, vol. 13508, pp. 603–633. Springer (2022)

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent OT extension and more. In: CRYPTO 2019.
LNCS, vol. 11694, pp. 489–518. Springer (2019)

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-lpn. In: CRYPTO 2020. LNCS, vol.
12171, pp. 387–416. Springer (2020)

14. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer (2012)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

16. Chen, H., Kim, M., Razenshteyn, I.P., Rotaru, D., Song, Y., Wagh, S.: Maliciously
secure matrix multiplication with applications to private deep learning. In: ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 31–59. Springer (2020)

17. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: CRYPTO 2021. LNCS,
vol. 12827, pp. 502–534. Springer (2021)

18. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SpdZ2k : Efficient MPC
mod 2k for dishonest majority. In: CRYPTO 2018. LNCS, vol. 10992, pp. 769–798.
Springer (2018)

19. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer (2013)

http://mpir.org

Dishonest Majority Multiparty Computation over Matrix Rings 327

20. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO 2012. LNCS, vol. 7417, pp. 643–
662. Springer (2012)

21. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y., Weng, C.: Superpack: Dis-
honest majority MPC with constant online communication. In: EUROCRYPT
2023. LNCS, vol. 14005, pp. 220–250. Springer (2023)

22. Escudero, D., Soria-Vazquez, E.: Efficient information-theoretic multi-party com-
putation over non-commutative rings. In: CRYPTO 2021. LNCS, vol. 12826, pp.
335–364. Springer (2021)

23. Escudero, D., Xing, C., Yuan, C.: More efficient dishonest majority secure compu-
tation over Z2k via galois rings. In: CRYPTO 2022. LNCS, vol. 13507, pp. 383–412.
Springer (2022)

24. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012), http://eprint.iacr.org/2012/144

25. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: CCS 2018. pp. 1209–1222. ACM (2018)

26. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer ring
and field for PCG applications. IACR Cryptol. ePrint Arch. p. 712 (2022), https://
eprint.iacr.org/2022/712

27. Liu, H., Xing, C., Yuan, C., Zou, T.: Dishonest majority multiparty computation
over matrix rings. IACR Cryptol. ePrint Arch. p. 1912 (2023), https://eprint.iacr.
org/2023/1912

28. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: ACM CCS 2017. pp. 619–631. ACM (2017)

29. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: ACM CCS 2018. pp. 35–52. ACM (2018)

30. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
19–38. IEEE Computer Society (2017)

31. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over
Z2k from somewhat homomorphic encryption. In: CT-RSA 2020. LNCS, vol. 12006,
pp. 254–283. Springer (2020)

32. Peter Rindal, L.R.: libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. https://github.com/osu-crypto/libOTe

33. Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest majority.
In: CRYPTO 2022. LNCS, vol. 13507, pp. 719–749. Springer (2022)

34. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudoran-
dom correlation generators from LPN. In: CRYPTO 2023. LNCS, vol. 14084, pp.
602–632. Springer (2023)

35. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-ole:
Improved constructions and implementation. In: ACM CCS 2019. pp. 1055–1072.
ACM (2019)

36. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1074–1091. IEEE
(2021)

http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2023/1912
https://eprint.iacr.org/2023/1912
https://github.com/osu-crypto/libOTe

The Concrete Security of Two-Party
Computation: Simple Definitions,

and Tight Proofs for PSI and OPRFs

M. Bellare1 , R. Ranjan1(B) , D. Riepel2 , and A. Aldakheel3

1 Department of Computer Science and Engineering, University of California
San Diego, San Diego, USA

{mbellare,riranjan}@ucsd.edu
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

3 Center of Excellence for Secure Computing, King Abdulaziz City for Science and
Technology (KACST), Riyadh, Saudi Arabia

amaldakheel@kacst.edu.sa

Abstract. This paper initiates a concrete-security treatment of two-
party secure computation. The first step is to propose, as target, a sim-
ple, indistinguishability-based definition that we call InI. This could be
considered a poor choice if it were weaker than standard simulation-
based definitions, but it is not; we show that for functionalities satis-
fying a condition called invertibility, that we define and show is met
by functionalities of practical interest like PSI and its variants, the two
definitions are equivalent. Based on this, we move forward to study the
concrete security of a canonical OPRF-based construction of PSI, giving
a tight proof of InI security of the constructed PSI protocol based on the
security of the OPRF. This leads us to the concrete security of OPRFs,
where we show how different DH-style assumptions on the underlying
group yield proofs of different degrees of tightness, including some that
are tight, for the well-known and efficient 2H-DH OPRF, and thus for
the corresponding DH PSI protocol. We then give a new PSI protocol,
called salted-DH PSI, that is as efficient as DH-PSI, yet enjoys tighter
proofs.

1 Introduction

The first wave of research on secure two-party computation (2PC) [56] asked
whether this magical-sounding goal could even be achieved. The focus being
feasibility rather than efficiency, results were given in an asymptotic security
framework and reduction tightness was not a concern. We are now in a second
wave, fueled by real-world applications, where the focus is efficient protocols
for particular goals like PSI and OPRFs. We suggest that, in this second wave,
we need results in a concrete security framework, and reductions as tight as
possible, so that we can find and pick the protocols that give the best efficiency
for a desired level of proven security.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 328–362, 2025.
https://doi.org/10.1007/978-981-96-0938-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_11&domain=pdf
http://orcid.org/0000-0002-8765-5573
http://orcid.org/0009-0007-3776-0096
http://orcid.org/0000-0002-4990-0929
https://doi.org/10.1007/978-981-96-0938-3_11

The Concrete Security of Two-Party Computation 329

Contributions in brief. Towards the above, this paper initiates a concrete-
security treatment of 2PC. It has two main parts:

1. Definitional framework. We give and target a new, simple and concrete-security
friendly definition of security for 2PC that we call input indistinguishability
(InI). As the name indicates, it is indistinguishability based. Yet, for function-
alities satisfying a condition called invertibility, that we define and is met by
functionalities of practical interest including PSI and friends, we show that InI
is as strong as standard simulation-based definitions. Our definitional frame-
work explicitly incorporates random oracles and surfaces some subtleties in
this regard.

2. Results for PSI and OPRFs. We consider the concrete security of OPRF-based
PSI [32], giving a tight proof of InI security of the constructed PSI protocol
based on the security of the starting OPRF. This motivates studying the con-
crete security of OPRFs, where we show how different DH-style assumptions
on the underlying group yield proofs of different degrees of tightness, includ-
ing some that are tight, for the well-known and efficient 2H-DH OPRF [36],
and thus for DH-PSI, the PSI protocol based on 2H-DH. We follow this with
a new protocol, salted DH PSI, for which we give tighter proofs. Salted DH
PSI is essentially as efficient as DH PSI, showing how concrete security can
be improved through protocol changes.

1.1 Setting the Stage

The asymptotic setting. Provable security [16,30] began in an asymptotic
framework inherited from computational complexity theory. To show that a
scheme Π meets a target notion of security T assuming that an underlying prob-
lem P (e.g. CDH) is hard, one gives a reduction that takes an adversary A and
builds an adversary A′ such that:

If A is PPT and has non-negligible advantage (success probability) εA(·) in
violating T-security of Π, then A′ is also PPT and has non-negligible advan-
tage εA′(·) in breaking P.

The advantages here are functions of a security parameter k, and such a function
is “negligible” if it goes to zero faster than the reciprocal of any polynomial. Such
results help build theoretical foundations but give implementors no explicit way
to pick the security parameter to guarantee a desired level (e.g. 256 bits) of
security.

The concrete setting. In the concrete framework [9], one continues to give
a reduction that takes an adversary A and builds an adversary A′, but now
additionally specifying a function B, called the bound, such that:

If A has running time t, resources R and advantage AdvT
Π(A) in violating T-

security of Π, then A′ has running time about t and advantage ε′ in breaking
P such that AdvT

Π(A) ≤ B(ε′,R).

330 M. Bellare et al.

The advantages here are real numbers, not functions. There is no explicit security
parameter. Resources include the number of queries to various oracles in the
game defining security. A reduction is tight if B(ε′,R) = c · ε′ for some small
constant c. A typical example of a non-tight reduction is B(ε′,R) = q · ε′ where
q ∈ R is the number of queries of A to some oracle. Now if an implementor wants
to ensure AdvT

Π(A) ≤ ε for some choices of t, ε,R, they can use the bound to
determine ε′ such that ε ≤ B(ε′,R) and then use t, ε′ to make a choice of group
or elliptic curve in which to work. The tighter the reduction, the smaller is ε′

and thus the size of the curve, and the more efficient is the implemented scheme.
For example, suppose Π1,Π2 are protocols for some goal (say PSI), both

proven secure under the CDH assumption over an underlying elliptic curve group,
the first using six modular exponentiations in the group and second only three.
Is Π2 the one to prefer and implement? Not necessarily. The right comparison
is at the same level of concrete security for both, say 128-bits. To provide this,
say that, due to different degrees of tightness in the proofs for the two protocols,
we need a 256-bit curve G256 for Π1 and a 384-bit curve G384 for Π2. Then
(since exponentiation is cubic-time) Π2 is (3/6) ·(384/256)3 = 1.6875 times more
expensive than Π1, despite using fewer exponentiations in the group, making Π1

the sounder choice.
Thus, beyond allowing sound choices of parameters, the concrete framework

leads to new questions, such as to seek tighter reductions for existing protocols
or to seek new protocols which allow tight reductions. These kinds of questions
(which we will pursue for 2PC) are invisible in the asymptotic setting.

Concrete security is not new. In provable-security for symmetric cryptogra-
phy, it is the norm, and it is widely employed in public-key cryptography and
authenticated key-exchange.

Definitional complexity. Our intent is to facilitate and provide concrete
security assessments and improvements for 2PC. The first step is simple,
“concrete-security-friendly” definitions. We start with a broad definitional clas-
sification aimed at saying what this means.

Having fixed a target notion T and scheme or protocol Π, our discussions
of security above assumed a simple definitional format in which the advantage
AdvT

Π(A) is associated to just the adversary A, as is true for basic notions like
UF-CMA (signatures), PRF-security or indistinguishability of encryptions. We
will call these single-quantifier definitions since the security requirement is

∀A : AdvT
Π(A) is low.

In a simulation-based definition, however, the advantage AdvT
Π,S(A) is now rel-

ative to a simulator S. The requirement now being

∀A∃S : AdvT
Π,S(A) is low or ∃S∀A : AdvT

Π,S(A) is low,

we refer to these as double-quantifier definitions. But this double-quantifier struc-
ture does not fit the above-discussed format and complicates concrete-security
assessments.

The Concrete Security of Two-Party Computation 331

To elaborate, double-quantifier definitions do not preclude giving concrete-
security results, and there are some in the literature. (Examples include [55,
Theorem 4] and [36, Theorem 1].) However it is not clear (at least to us) how to
use such results to pick parameters to guarantee a desired level of security. One
issue is that we would expect AdvT

Π,S(A) to be lower for simulators with higher
running time, raising the question of how to interpret this advantage and also
making parameter choice depend on simulator running time. Also complexity
grows when (as happens in the first just-cited result), one simulator is defined
in terms of another, making it hard to work in a modular way.

Concrete-security friendliness is not the only benefit of single-quantifier def-
initions. Another is attack-friendliness. To give an attack, we need only give an
adversary with high advantage. In a double-quantifier definition, we would have
to prove that the advantage is high relative to all simulators. Our InI definition in
particular facilitates cryptanalysis of 2PC protocols, a topic largely unexplored.

2PC. Recall that the setting of secure two-party computation (2PC) consid-
ers parties 1, 2 (also called client and server, respectively) having inputs x1, x2

respectively. A 2-party protocol Π, to securely compute a functionality F, allows
the parties to interact so that at the end they have outputs y1, y2 respectively,
where (y1, y2) ← F(x1, x2). Yet, neither party should learn more about the other
party’s input than disclosed by the output they obtain.

This area has traditionally used double-quantifier definitions in an asymptotic
framework. But today the quest is efficient protocols for goals (functionalities) of
interest in applications, where (for reasons given above) a concrete framework is
crucial. Leading the way, concrete-security results for single-quantifier definitions
have been given for garbling schemes [7]. However there are many protocols, for
goals including PSI, OPRF and their variants, which target efficiency without
concrete security. We aim to fill this gap.

1.2 Our Definitional Framework

The highlight of our framework below will be a definition for 2PC security,
called InI, that is (1) single-quantifier and thus both concrete-security friendly
and attack-friendly, yet (2) usually no less powerful than a standard (double-
quantifier) simulation-based definition.

SIM and InI. We want to say (in a concrete framework) what it means for a
protocol Π to securely compute a 2PC functionality F. The classical paradigm
for 2PC definitions is simulation [19,43], so we start there, giving a concretely-
rendered definition, called SIM. It defines an advantage Advsim

F,Π,S(A) for an
adversary A relative to a simulator S. As above, this is a double-quantifier def-
inition but represents an important baseline, in terms of strength and history,
that we want to respect.

Alongside, we give a simple, single-quantifier definition that we call input
indistinguishability (InI). Let F(x1, x2)[i] denote the output given by the func-
tionality to party i. Suppose party 1 is the “honest” one, meaning the one whose
privacy we aim to protect. Party 2, as the adversary A, supplies a pair of inputs

332 M. Bellare et al.

SIM-np SIM

InI

Th. 1

Th. 2 Th. 3Th. 4
for invertible
functionalities

Fig. 1. Relations between the InI, SIM and SIM-np notions of security for a 2PC
protocol Π for a functionality F. Arrows are implications and the barred arrow is a
separation.

x1,0, x1,1 for party 1 and a single input x2 for itself such that the outputs
y0 = F(x1,0, x2)[2] and y1 = F(x1,1, x2)[2] for itself are the same. A random
challenge bit b is chosen, and now A, given its view (transcript and coins) of
the execution of protocol Π on inputs x1,b, x2, outputs a guess b′. InI asks that
its advantage AdvInI

F,Π(A) = 2Pr[b = b′] − 1 is small. A formal definition is in
Sect. 3.

Relating SIM and InI. We propose to use InI in concrete-security results and
parameter choices. As the reader may note, this would be a poor choice if InI is
weaker (provides less security) than SIM, but we show that, for functionalities
of practical interest, this is not the case and in fact the two are equivalent. To
elaborate, Theorem 4 says that InI implies SIM (that is, any Π that is InI-secure
is also SIM-secure) as long as the target functionality F satisfies a condition we
define called invertibility. The latter (continuing to assume party 1 is the honest
one) asks that, given x2, y2, it is possible to efficiently find an input x1 for party 1
satisfying F(x1, x2)[2] = y2, assuming of course such an x1 exists. In the other
direction, Theorem 2 says that SIM always implies InI.

In Sect. 3.3, we show that the functionality for PSI is invertible, as are vari-
ants of it like for threshold-PSI and cardinality-PSI [26]. We also show, in [12],
invertibility for Oblivious Transfer (OT) [52] and the Secure Inferencing func-
tionality of [39]. So for all these we may safely focus on InI, reassured that it is
qualitatively just as strong as SIM.

We clarify and caution that it is not the case that InI and SIM are equivalent
for all functionalities. Indeed, in Theorem 3 we give a counterexample, meaning
a (non-invertible) F and a protocol Π such that Π is SIM-secure, but not InI
secure, for F. However, the F,Π here are contrived and artificial. Our experience
is that natural functionalities of practical interest tend to be invertible and thus
enjoy the equivalence of InI and SIM guaranteed by Theorems 2, 4.

ROM incorporation and subtleties. The Random Oracle (RO) Model [13]
is extensively employed for practical 2PC but, while used in proofs, the RO is
sometimes absent in the definitions. Our definitions in contrast explicitly and
flexibly incorporate random oracles. Protocols name a space from which their
desired RO is then drawn in games defining security. In the default SIM notion,
the RO is programmable by the simulator. We also give a non-programmable

The Concrete Security of Two-Party Computation 333

RO version SIM-np. InI has the attractive, and further simplifying feature that
the RO is inherently non-programmable. (There is no simulator to program it).

Attending carefully to formalizing the ROM usage in these definitions
brought to light a subtle issue. RO queries could be made not only by the pro-
tocol and adversary, but also by the functionality. We show, by example, that
allowing the simulator to program the answers to functionality RO queries is
problematic and can lead to clearly insecure protocols having a proof of secu-
rity. Our SIM definition addresses this, answering functionality queries via an
honestly chosen random function that is then given as oracle to the simulator,
who can use it, or not, as it likes, in answering other RO queries. (See Sect. 3.1
for details).

Full relations picture. With that, Fig. 1 summarizes the full set of relations
between the notions. An arrow X → Y is an implication, meaning any Π that
is X-secure for F is also Y-secure for F. A barred arrow X �→ Y is a separation,
meaning there exist F,Π such that Π is X-secure for F but not Y-secure for F.
For invertible F, we note that Theorem 4 actually shows InI → SIM-np, which
implies InI → SIM because Theorem 1 says that SIM-np → SIM.

The setting. Our definitions and results are in the semi-honest (also called
honest-but-curious) setting, where the parties aim to learn each other’s inputs
but are assumed to follow the protocol. While we want to eventually treat the
malicious case, there are several reasons to start with the semi-honest one. The
first is pedagogic; as our work shows, the semi-honest case is hardly trivial, and
jumping to the malicious case without a solid foundation for the semi-honest one
felt to us premature and unsound. The second reason is that many works in the
literature [20,21,25,40,41,50,51] give protocols for the semi-honest setting, and
understanding their concrete security is important for practical reasons. Prag-
matic concerns too justify this setting. The gain is efficiency; malicious-secure
protocols are typically more expensive, which may curtail adoption. Meanwhile,
with regard to security, in practice there are forces external to the cryptography
that deter malicious behavior. Parties are often corporations who are subject to
laws and bound by contracts with other parties. Use of subverted (malicious)
code risks discovery and exposure. Add to this that the protocol functionality is
already giving these parties the information they want, and malicious behavior
emerges as both low reward and high risk.

1.3 Concrete-Security Results for 2PC Protocols

We give some general results, and then focus on PSI and OPRFs.

Many executions versus one. In practice we expect that a protocol Π is
executed many times, on different inputs. Our definitions accordingly allow the
adversary to obtain as many execution transcripts as it likes via queries to an
oracle Run. In the concrete setting we are interested in how adversary advantage
degrades as a function of the number qrn of queries to Run. Theorem 5 confirms
that the hybrid argument works as expected to show that the advantage εInIΠ (qrn)
for qrn queries is at most qrn times the advantage εInIΠ (1) for one query.

334 M. Bellare et al.

In an asymptotic setting, the question would end here, but concretely, it is
more of a starting point, raising the question of whether we can, for particular
protocols, avoid the qrn factor loss, meaning show that εInIΠ (qrn) ≈ εInIΠ (1). The
following will show (amongst other things) that the answer is yes.

PSI from OPRFs, tightly. In Private Set Intersection (PSI) [26], the inputs
x1, x2 are sets and the functionality Fpsi returns their intersection x1 ∩x2 to the
client and nothing to the server. PSI is used for privacy-respecting solutions in
the following domains: ad conversion [34,35], contact discovery [44], password or
credential monitoring [3,33,42,54], genomics [4], proximity testing [47], relation-
ship discovery in social networks [45] and detection of sexual misconduct [53].
These applications motivate PSI protocols with tight proofs.

Towards this, we focus on one simple, canonical way to achieve PSI suggested
by Hazay and Lindell [32], where the PSI protocol Πpsi is built from a proto-
col Πoprf for an Oblivious Pseudo-Random Function (OPRF) [25,38,46]. Recall
that in the latter, the server has a (secret) key K for a (regular) PRF Q, the
client has an input x and the protocol ends with them holding ε and Q(K,x),
respectively. Simulation-based (hence double-quantifier) definitions of security
for OPRFs are given in [55]. We give instead single-quantifier (non-simulation-
based) definitions. For client security (honest party 1), it is simply InI. For server
security (honest party 2) we give a simple pseudo-randomness definition that we
call OPRF-PR. Under these assumptions, Theorem 6 shows client and server
InI security of Πpsi. The reductions are all tight. This is true regardless of the
number qrn of Πpsi-executions (formally, Run queries of the adversary), meaning
the bounds do not have the multiplicative qrn factor loss of the hybrid argument
of Theorem 5. Theorem 6 also separately shows correctness of Πpsi, based on the
PRF-security of Q. (The actual result is more general.)

Having thus stepped tightly from OPRFs to PSI, we turn to studying the
concrete security of the former.

Bounds for 2H-DH OPRF and DH-PSI. OPRFs have applications beyond
PSI [22,23,36,37], making their concrete security of interest in its own right.
2H-DH (Two-Hash Diffie-Hellman) [36] is the de-facto standard OPRF and thus
the natural candidate to study.

Jarecki, Kiayias and Krawczyk [36, Theorem 1] prove that 2H-DH achieves
a simulation-based (UC) definition in the ROM, assuming hardness of the One-
More Gap Diffie-Hellman (OM-Gap-DH) problem. This is a strong assumption,
giving the adversary a CDH oracle in the One-More style [10,17] as well as a
DDH oracle in the Gap style [48]. Their result is semi-concrete (a bound is given
but the runtimes of the simulator and constructed adversaries are not), and the
bound is not tight.

We revisit the 2H-DH OPRF and evaluate security under our (single quan-
tifier) definitions, namely InI for client (party 1) and OPRF-PR for server
(party 2), as needed for our application to PSI above. Theorem 9 shows client
InI-security unconditionally and with a good bound. Our discussion focuses on
OPRF-PR. We consider a variety of choices for the starting (assumed hard)

The Concrete Security of Two-Party Computation 335

Fig. 2. Our results for the 2H-DH OPRF and the DH-PSI and Salted DH-
PSI protocols. For different choices of the assumed-hard problem P, the 2nd column
shows the bound B(ε′, {qro, qn}) on the oprf-pr advantage of an adversary A for the 2H-
DH OPRF, while the 3rd and 4th columns show the bound B(ε′, {qro, qrn}) on the ini-
advantage of an adversary A for the DH-PSI and Salted DH-PSI protocols, respectively,
in all cases as a function of the advantage ε′ = AdvP

G(A′) of the constructed adversary
A′ in solving problem P in group G. In the first case, qro, qn are the number of queries
A makes to its random and New oracles, respectively, and in the other cases, qro, qrn
are the number of queries A makes to its random and Run oracles, respectively.

problem P in the group G. What we consider interesting is that we can prove
security under all these assumptions, but with different tightness.

The results are given in Theorem 10 and summarized in the second column of
Fig. 2. It considers an OPRF-PR adversary A making qro queries to its random
oracle and performing qn executions (formally, queries to an oracle called New)
of the OPRF protocol. Column 2 of the table then shows (approximate) bounds
on the oprf-pr advantage of A as a function of qro, qn and the advantage ε′ of a
constructed adversary A′ in solving problem P in group G.

Row 1 of the table says that we can prove security already assuming hardness
of only the (plain) CDH problem. But we incur a substantial factor loss in
the bound. Now we consider strengthening the assumption. First, we give the
adversary a limited DDH oracle. The resulting assumption, which we call V-
CDH for verifiable CDH, is weaker than either Strong-CDH [1] or Gap-CDH [48].
Row 2 shows that the factor loss in the bound drops. Second, for both CDH and
V-CDH, we move from the single-user setting to the one of multiple users with
corruptions. Rows 2, 3 show further drops in the bound. Finally (row 5) we give
a tight reduction from DDH. We refer to Sect. 2 for formal definitions of the
computational problems and the relations between them.

Now, let DH-PSI denote the above-discussed PSI protocol when the OPRF is
set to the 2H-DH one. Then, combining the above with Theorem 6 gives bounds
on the server InI security of DH-PSI as shown in the 3rd column of Fig. 2.

Salted DH-PSI. Concrete security raises new questions invisible in the asymp-
totic setting, in this case whether there is a different protocol, ideally as efficient
as DH-PSI, yet with bounds better than shown for the latter in Fig. 2. We show
that the answer is yes, giving in Sect. 7 what we call the salted DH-PSI protocol.
The bounds, as per Theorem 11 and summarized in the last column of Fig. 2,
are improved under the CDH and V-CDH assumptions and maintained under
the others. The salting technique we use originates in PSS [14], a modification of

336 M. Bellare et al.

the RSA-FDH signature scheme which improved the bound, for UF-CMA under
the RSA assumption, from loose to tight.

1.4 Discussion and Further Related Work

An indistinguishability-style definition for garbling schemes was given in [8], and
one for multi-party computation in [2]. Our InI definition was inspired by, and
generalizes, an indistinguishability-based definition for threshold-PSI from [5].
InI and SIM for 2PC can be seen as analogues of witness-indistinguishability [24]
and zero-knowledge [31], respectively, for proof systems. Another domain in
which both indistinguishability-style and simulation-style definitions have been
given, related and used is functional encryption (FE) [11,18,49].

What we call single-quantifier and double-quantifier definitions are sometimes
referred to as game-based and simulation-based, respectively. However games are
a descriptive language and our SIM definition is also written as a game, so to
avoid confusion we are using a different terminology that we feel highlights the
essential difference, namely the quantifier structure.

There is a divide, in the cryptographic community, between those who speak
and use the language of UC [19], and those who don’t. A consequence has been to
exclude a certain, and more applied part of our community, from 2PC research.
Part of the intent of our work is to bridge this gap. With InI and concrete security,
we have cast 2PC in a language and style similar to that used in practice-oriented
work on conventional primitives like encryption, signatures and authenticated
key exchange, primitives that have in particular seen a large quantity of work on
proof tightness. The hope is to draw this segment of the community into 2PC
to likewise explore and improve proof tightness.

In writing our definitions, we have aimed for precision, and attention to
detail, at a level that to us is beyond the norm for the area. This is in part a
response to our experience (admittedly perhaps due to our lack of expertise) of
struggling to understand, and finding ambiguous, some definitions we try to read
in the literature. A price paid is notation. Our work could (rightly) be critiqued
as notationally heavy, but we believe the notation is central to greater precision
and reduced ambiguity, and hope that, after some exposure, it ceases to be a
significant barrier for a reader.

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of coordinates)
and w[i] is its i-th coordinate. The empty (length zero) vector is denoted ε. We
say that w is an n-vector if |w| = n. We let V2S(w) = {w[1], . . . ,w[|w|]} be
the set of elements of vector w. Likewise, if S is a set, then w ← S2V(S) puts
its elements into a vector in some canonical order, say lexicographic. We write
w ←$ S2V(S) to say that the ordering is random, meaning the entries of w are
a random permutation of the elements of S. We say w is a vector over S if
V2S(w) ⊆ S. By S∗ we denote the set of all finite-length vectors over S.

The Concrete Security of Two-Party Computation 337

Strings are identified with vectors over {0, 1}, so that ε denotes the empty
string, {0, 1}∗ denotes the set of all finite-length strings, |Z| denotes the length
of a string Z and Z[i] denotes its i-th bit. By x‖y we denote the concatenation of
strings x, y. If x, y are equal-length strings then x⊕y denotes their bitwise xor.

If X is a finite set, then |X | denotes its size and x ←$ X denote picking
x uniformly at random from X . By P(X) we denote the power set of set X ,
meaning the set of all subsets of X . For integers a ≤ b we let [a..b] be shorthand
for {a, . . . , b}. We use 1, 0 to indicate the booleans “true” and “false” respectively,
and [[B]] returns 1 if boolean expression B is true and 0 otherwise. We use ⊥
(bot) as a special symbol to denote rejection, and it is assumed to not be in
{0, 1}∗.

We let G
∗ = G \ {1} be the set of non-identity elements of a group G. By

〈g〉 we denote the set of all powers of g ∈ G, so writing G = 〈g〉 indicates that
g is a generator of G. In that case, dlogG,g(A) ∈ Zp is the discrete logarithm of
A ∈ G to base g, where p is the order of G.

Oracle spaces and random oracles. In the random oracle model [13], the
domain and range of the random oracle can depend on the scheme. (The latter
term here includes protocols and functionalities.) Accordingly, we let a scheme
S specify a set OS (or S.OS if disambiguation is needed) of functions, called
the oracle space. The game will then pick a function H ←$ OS at random and
provide as random oracle a procedure RO that when queried with X returns
H(X). Finally, if OS is absent or empty, one is in the standard model directly.

Algorithms. Functions (we will not consider uncomputable ones) are identi-
fied with deterministic algorithms. If OS is an oracle space (i.e. a set of func-
tions) then we write A : [OS] × D1 × · · · × Dn → R to mean that A is an
algorithm taking as oracle a function H ∈ OS and taking inputs x1, . . . , xn with
xi ∈ Di for i ∈ [1..n], to return an output y ←$ A[H](x1, . . . , xn) ∈ R. We let
Out(A[H](x1, . . . , xn)) denote the set of all possible outputs of A on the given
inputs. Running time is worst case, which for an algorithm with access to an ora-
cle means across all possible replies from the oracle. If we want to make A’s coins
(random choices) explicit we may see it as a deterministic algorithm A : [OS] ×
D1 ×· · ·×Dn ×Ω → R so that y ←$ A[H](x1, . . . , xn) is shorthand for picking ω
←$ Ω and returning y ← A[H](x1, . . . , xn;ω). Omitting OS and the H argument
return us to the standard model.

Games. We use the code-based game-playing framework of [15]. A game G
specifies an Initialize procedure, further procedures (also called oracles) and
a Finalize procedure. In the ROM [13], which we use throughout, the random
oracle appears as a game procedure RO. When game G is executed with adver-
sary A, first Initialize executes and what it returns is the input to A. Then
A runs and can call oracles other than Initialize,Finalize. When A halts, its
output is the input to Finalize, and the output of the latter is the game output.
By Pr[G(A) ⇒ y] we denote the probability that the execution of game G with
adversary A results in the game output being y, and write just Pr[G(A)] for
Pr[G(A) ⇒ 1].

338 M. Bellare et al.

Different games may have procedures (oracles) with the same names, and if
we need to disambiguate, we may write G.O to refer to oracle O of game G. In
game pseudocode, integer variables, set variables, boolean variables and string
variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
0 and ⊥. Adversaries in games are always assumed to be domain-respecting,
meaning if a query they provide is expected to fall in some scheme-associated
set, then it does. The running time of an adversary by convention is the execution
time of the game with the adversary, so that the time taken by oracles to respond
to adversary queries is included. We write QO(A) to denote the number of queries
made to oracle O in the execution of the game with A. Note that by convention,
again, both queries made directly by A and those made by scheme algorithms are
included. In particular, QRO(A) includes the queries made by scheme algorithms
either explicitly to RO or instead directly to the function H underlying RO, in
the execution of the game with A. We say that adversary A2 (playing a game
G2) has the same query profile as adversary A1 (playing a game G1) if the games
provide oracles of the same names (even if not same behavior), and the number
of queries to each of these oracles is the same for both adversaries.

Fig. 3. Left: PRF game for function family Q. Right: On the top is the 2HDH function
family associated to group G = 〈g〉 and integer �, and, below it, the PSI functionality
over universe U . At the bottom is the OPRF functionality associated to PRF Q.

Security of function families. A family of functions Q : [OS]×Keys×D →
R takes a key K ∈ Keys and input X ∈ D and, with oracle access to H ∈ OS,
returns an output Y ← Q[H](K,X). For emphasis or disambiguation, we may
write Q.OS,Q.Keys,Q.D,Q.R for the different subcomponents of Q.

A security metric for Q that we will use is PRF security [29] in the multi-
user setting [6]. The prf (pseudorandom function) advantage of adversary Aprf

The Concrete Security of Two-Party Computation 339

is defined as Advprf
Q (Aprf) = 2Pr[Gprf

Q (Aprf)] − 1 where the game is on the left
in Fig. 3.

As an example, the top right of Fig. 3 shows the 2H-DH function family
2HDH : [OS] × Zp × {0, 1}∗ → {0, 1}� underlying the 2H-DH OPRF [36]. It is
associated to a group G = 〈g〉 of prime order p generated by g ∈ G, and an
integer � ≥ 1. Here OS is the set of all functions H such that H(1, ·) : {0, 1}∗ →
G and H(2, ·, ·, ·) : G × {0, 1}∗ × G → {0, 1}�. This function family conceptually
uses two random oracles H(1, ·),H(2, ·, ·, ·) that are packaged into one to respect
our formalism. The following says that 2HDH is PRF-secure in the ROM.

Proposition 1. Let G = 〈g〉 be a group of prime order p, and � ≥ 1 an integer.
Let 2HDH be the associated 2H-DH family of functions as per Fig. 3. Let Aprf be
an adversary playing game Gprf

2HDH. Then

Advprf
2HDH(Aprf) ≤ (QRO(Aprf) + QNew(Aprf)) · QNew(Aprf)

p
.

We omit a formal proof, but the intuition is that, when the challenge bit is 1,
outputs of the challenge oracle are distributed uniformly in R as long as a certain
“bad” event does not happen, the event being either a collision in keys across
New queries, or the random oracle being queried on gki′ for a ki′ picked by
New. Thus it suffices to bound the probability of this bad event.

In Sect. 4, we show that server-side security of any OPRF implies PRF secu-
rity of the family of functions underlying the OPRF.

3 2PC Definitional Framework

We give our core definitions of syntax and security in a concrete setting, and
then turn to relations between definitions. We see the party identities as 1, 2
with 1 being the “client” and 2 being the “server”.

3.1 Core Definitions

Functionalities. A (two-party) functionality describes the function that the
parties want to compute. Formally, it is an algorithm F : [OS]×D1×D2 → R1×R2.
The functionalities of practical interest that we want to treat are deterministic,
so for simplicity we restrict attention in this work to deterministic F, and this is
assumed moving forward. We leave treatment of randomized functionalities to
future work. Now, to explain, given as oracle H ∈ OS, and inputs x1 ∈ D1 and
x2 ∈ D2 of parties 1,2 respectively, the functionality returns outputs y1 ∈ R1

and y2 ∈ R2 for parties 1,2, respectively, via (y1, y2) ← F[H](x1, x2).
Allowing F to have access to a random oracle is important to capture some

OPRFs. As per our vector notation, for i ∈ {1, 2} we may write F[H](x1, x2)[i]
for the i-th component of the 2-vector F[H](x1, x2).

340 M. Bellare et al.

Fig. 4. Left: PSI functionality over universe U . Right: OPRF functionality associated
to PRF Q.

PSI and OPRF functionalities. The right side of Fig. 4 shows two exam-
ples. First, the PSI functionality Fpsi

U : P(U) × P(U) → (P(U) × N) × N is asso-
ciated to a set U called the universe. This functionality does not use a random
oracle. Party i ∈ {1, 2} has input a set Si ⊆ U . The intersection I of the two
sets is returned to party 1, and both parties are also given set-size information
because protocols tend to leak it.

Second, let Q : [OS] × Keys × D → R be a family of functions. We associate
to it the OPRF functionality Foprf

Q : [OS] × D∗ × Keys → R∗ × N. The input of
the server (party 2) is a PRF key k ∈ Keys. The input of the client (party 1) is
vector x over D. The functionality computes a corresponding vector y, over R,
of outputs under Q[H](k, ·), that goes to the client. The server gets the length of
x since protocols tend to leak it. In particular if Q = 2HDH is the 2HDH PRF of
Fig. 3 then Foprf

Q is the 2H-DH OPRF functionality, protocols for which we will
analyze. Note our definition extends the usual ones by allowing the client input
to be a vector over D rather than a single point in D.

Protocols. Party i ∈ {1, 2} has input xi. The parties now use an interactive
protocol to interact towards computing outputs for some target functionality.
But what exactly (meaning, mathematically or definitionally) is a protocol? In
UC [19] and Goldreich’s textbooks [27,28], it is a pair of interactive TMs. In some
parts of the literature (including Lindell’s tutorial [43]) it is not formalized at
all. We will give a usable yet rigorous formalization of a protocol as an algorithm
that takes a current state and an incoming message to return an updated state
and outgoing message.

Thus, formally, a protocol Π is an algorithm Π : [OS] × {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗. It may be randomized, and Π : [OS] × {0, 1}∗ × {0, 1}∗ × Ω →
{0, 1}∗ × {0, 1}∗ denotes the underlying deterministic algorithm with Ω the set
of coins. As a function of its current state st ∈ {0, 1}∗, a received message
min ∈ {0, 1}∗ and its coins ω ∈ Ω, a party computes its outgoing message mout

as well as, for itself, an updated state st, written (st,mout) ← Π[H](st,min;ω).
As usual, we write (st,mout) ←$ Π[H](st,min) for picking ω ←$ Ω and letting
(st,mout) ← Π[H](st,min;ω). A party’s state records its input as st.in, its output
as st.out and its decision to accept or reject as st.dec ∈ {1, 0}. The interaction
consists of nr ∈ N moves (also called rounds). The convention is that party 1
sends the first message.

Execution traces. A protocol may be (honestly) executed on inputs x1, x2,
coins ω1, ω2 ∈ Ω for the parties and access to an oracle H ∈ OS to generate an

The Concrete Security of Two-Party Computation 341

execution trace (τ, st1, st2) ← XTΠ[H](x1, x2;ω1, ω2). Here τ is a transcript of
the interaction, which is the sequence of messages exchanged, and st1, st2 are
the final states of the parties. In detail:

XTΠ[H](x1, x2;ω1, ω2)
st1.in ← x1 ; st2.in ← x2 ; m0 ← ε ; i ← 1
For j = 1, . . . , nr do

(st i,mj) ← Π[H](st i,mj−1;ωi) ; i ← 3 − i
τ ← (m1, . . . ,mnr) ; Return (τ, st1, st2)

As indicated above, the outputs and decisions can be recovered from the final
states of the parties.

Fig. 5. Game assessing correctness of protocol Π for functionality F.

Correctness. Correctness asks that an honest execution of a protocol com-
putes the target functionality. This is straightforward enough to define for per-
fect correctness, but we need a clear definition of imperfect correctness that in
particular allows quantifying correctness failure in protocols where it depends on
computational assumptions. Accordingly, we treat correctness in detail, using a
game.

Let F : [OS] × D1 × D2 → R1 × R2 be a functionality and Π a protocol. We
assume for simplicity that the functionality and protocol have the same ora-
cle space, which is wlog. Define the correctness advantage of adversary Acorr as
Advcorr

F,Π (Acorr) = Pr[Gcorr
F,Π (Acorr)] where the game is in Fig. 5. Here the adver-

sary can run the protocol on inputs (x1, x2) of its choice by calling oracle Run.
It wins if either the parties reject or their outputs do not match those of the
functionality. Note that multiple calls to Run are allowed. We say Π is perfectly
correct for F if Advcorr

F,Π (Acorr) = 0 for all Acorr, regardless of the running time
and number of oracle queries of Acorr. But having defined this advantage func-
tion allows us to make clear and precise statements about imperfect correctness.

342 M. Bellare et al.

This will allow us to see how the correctness advantage grows with the number
of oracle queries in PSI protocols where correctness depends on computational
assumptions.

Security. We will be considering security in the semi-honest or honest-but-
curious model where it is assumed that the corrupt party does not deviate from
the protocol but, at the end, given its view (conversation transcript and its own
coins) tries to find information about the other party’s input. By convention,
we will refer to this other party as the honest one. We start with our new,
single-quantifier indistinguishability-style definition that we call input indistin-
guishability (InI), and then give double-quantifier, simulation-style definitions
SIM,SIM-np.

In our definitions, an adversary triggers a protocol execution, on inputs of
its choice, via a query to an oracle Run. We allow multiple queries to Run,
to capture the real-life expectation of multiple executions of the protocol on
different inputs. This allows us to measure (and then reduce) the degradation of
security as a function of the number of Run calls.

For all the following definitions, we let F : [OS] × D1 × D2 → R1 × R2 be the
functionality. We let Π be a protocol for it with Π : [OS] × {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ ×{0, 1}∗. We assume wlog that the RO spaces of F,Π are the same. (One
can always work with an appropriate union of the two spaces if not.)

Fig. 6. Left: Game defining InI security for protocol Π for functionality F, where
h ∈ {1, 2} is the honest party. Right: Games defining SIM-np (lines 10–11 excluded)
and SIM (lines 10–11 included) security for protocol Π for a functionality F, where
h ∈ {1, 2} is the honest party and S is the simulator.

InI definition. Input-indistinguishability (InI) is defined via game Gini
F,Π,h in

Fig. 6. The ini-advantage of an adversary Aini is then defined by Advini
F,Π,h(Aini)

The Concrete Security of Two-Party Computation 343

= 2Pr[Gini
F,Π,h(Aini)]−1. To explain, here h ∈ {1, 2} is the “honest” party, mean-

ing the adversary is playing the role of party 3−h and trying to learn something
about the honest party’s input. The adversary can query Run with two choices
x0, x1 ∈ Dh of inputs for the honest party and a single choice x ∈ D3−h for
the corrupt party. This results in two pairs of inputs for the functionality. At
lines 3–4 the functionality is evaluated on both pairs. If the resulting outputs
y3−h,0 and y3−h,1 for the corrupt party differ, then the game returns ⊥ at line 5
to avoid trivial distinguishing. Else, the protocol is run with the honest-party
input being determined by the challenge bit b from line 1, and the resulting
conversation transcript and the corrupt party’s coins ω3−h are returned to the
adversary. Multiple queries to Run are allowed.

Asymptotically we would say that Π is InI secure for F if for every PPT Aini

the function Advini
F,Π,h(Aini) is negligible, which illustrates how this is a single-

quantifier definition. As usual in the concrete setting there is no formal definition
of being “secure;” we give only a formal metric of security and our results in this
concrete setting will relate advantages.

SIM-np definition. Moving to our simulation-based definitions, we start with
SIM-np, the non-programmable ROM one. It is given via game Gsim-np

F,Π,S,h in Fig. 6,
where S is an algorithm called the simulator. As before, the game is also parame-
terized by the identity h ∈ {1, 2} of the honest party, whose input the adversary
Asnp, in the role of the corrupted party 3 − h, is trying to learn. Lines 10–11
are not present in this game. Line 1 picks a random challenge bit b. If b = 1
then we have the “real” game and if b = 0 the “ideal” game. The adversary can
call Run, giving it inputs for both parties. In response it obtains a conversation
transcript τ , and coins ω3−h for the corrupted party. It can query this oracle
as often as it wants. In the real game, the transcript and coins are determined
by running the protocol, while in the ideal game, they are determined by the
simulator. Queries to the random oracle RO are answered via H ∈ OS. The first
argument to the simulator is a keyword indicating the role in which it is being
run, and stS is its state. The latter is initialized at line 1. After that, when the
simulator runs (line 7) it takes its current state and returns an updated state.
The state variable stS is maintained by the game. The non-programmability of
the RO is in the fact that the RO oracle simply responds via H and the simulator
gets access to the same H. We let Advsim-np

F,Π,S,h(Asnp) = 2Pr[Gsim-np
F,Π,S,h(Asnp)] − 1

be the advantage of an adversary Asnp.
In an asymptotic setting, we would say that Π is SIM-np secure for F and h

if there is a PPT S such that for every PPT Asnp the function Advsim-np
F,Π,S,h(Asnp)

is negligible. This illustrates how this is a double-quantifier definition. As usual,
in our concrete setting, theorems (e.g. Theorem 2) will relate advantages.

SIM definition. The programmable ROM version of our simulation-based def-
inition of security, called SIM, is given via game Gsim

F,Π,S,h in Fig. 6. As before,
h ∈ {1, 2} is the identity of the honest party and S is the simulator. Lines 10–11
(now included and the only change from SIM-np) represent the programming,
allowing the simulator to determine the output of oracle RO. We continue to
give the simulator access to an actual random oracle via H, which it can use or

344 M. Bellare et al.

ignore as it wishes. As we will explain below, it is important for the meaning-
fulness of this definition that the functionality queries to the random oracle at
line 2 are not programmed by, or even visible to, the simulator. We expect that
stS holds the current input-output table of the simulated random oracle, and
whatever RO answers the simulator may need for the lines 7, 11 simulations,
it can create and store in stS if they do not already exist there. An adversary
Asim again has to find the correct value of the challenge bit b to win. We let
Advsim

F,Π,S,h(Asim) = 2Pr[Gsim
F,Π,S,h(Asim)] − 1 be its advantage.

Again, in an asymptotic setting, we would say that Π is SIM-secure for F and
h if there is a PPT S such that for every PPT Asim the function Advsim

F,Π,S,h(Asim)
is negligible.

A subtle point about SIM. At line 2 in game Gsim
F,Π,S,h (right panel of Fig. 6),

RO queries of the functionality F, if any, are answered by an honest random
function H. This may not be the first or obvious choice; why not have these
also be answered by the simulator like the answers to other RO queries in this
game? To explain, let us denote by SIM∗ the variant we have just mentioned,
namely it is the same as SIM except that, at line 2, we replace F[H](x1, x2) with
F[RO](x1, x2), so that, when b = 0, the RO queries of F are answered by the
simulator at line 11. A self-contained and formal definition of SIM∗, as well as a
more precise and formal rendition of what follows, is in [12].

We claim that SIM∗ is an incorrect (unsound) definition for functionalities F
that access the RO. (If F does not access RO, there is no difference between SIM
and SIM∗, and both are sound.) Specifically, our claim is that, if F can access
the RO, then obviously insecure protocols can be shown secure under SIM∗.

As an example, let F = Foprf
2HDH be the OPRF functionality (Fig. 4) associated

to the 2H-DH PRF 2HDH : [OS]×Zp×{0, 1}∗ → {0, 1}� (Fig. 3). Recall that here
OS is the set of all functions H such that H(1, ·) : {0, 1}∗ → G and H(2, ·, ·, ·) : G×
{0, 1}∗ ×G → {0, 1}�. Suppose party 1 (client) has input x ∈ {0, 1}∗ —formally,
the 1-vector (x)— while party 2 (server) has input a key k ∈ Zp. Consider the
following protocol Π: (1) Party 1 sends its entire input x to party 2 (2) party 2
computes Y ← H(1, x)k, sends (Y, gk) to party 1, and outputs 1 as its own
output, and finally (3) party 1 computes and outputs y ← H(2, gk, x, Y).

This protocol should clearly be considered insecure for honest party h = 1
since from the conversation transcript an adversary learns the entire input x of
party 1, which it cannot deduce given just the functionality output (namely 1)
for the corrupted party (namely party 2). Yet, it is possible to design a successful
simulator for Π under SIM∗. Why? At line 2 on the right of Fig. 6, F would query
X = (1, x) to RO to compute Y ← H(1, x)k. But this query X is passed at line 11
to the simulator, who thus directly learns x. It can store x in its state, and can
now easily produce the transcript τ at line 7. Namely, it knows the input k of the
corrupted party and can thus compute Y ← H(1, x)k and return (x, (Y, gk)) as
the transcript. So this protocol is SIM∗ secure despite being intuitively insecure.
This anomaly goes away with SIM, where now the query 1, x made to H at line 2
is not visible to the simulator.

The Concrete Security of Two-Party Computation 345

3.2 Relations Between Definitions

In this section we give the formal result statements corresponding to the relations
shown in Fig. 1.

SIM-np implies SIM. The following confirms that SIM-np implies SIM, mean-
ing the non-programmable ROM definition is stronger than the programmable
one. The proof is simple and is omitted.

Theorem 1. [SIM-np ⇒ SIM] Let F be a functionality and Π a protocol for it.
Let h ∈ {1, 2} be the honest party. Given a simulator S defining S[·](run, ·, ·),
extend it to also define S[·](ro, ·, ·) by S[H](ro,X, stS) = (H(X), stS). Then for
any adversary A we have

Advsim
F,Π,S,h(A) = Advsim-np

F,Π,S,h(A) . (1)

How does this statement show that SIM-np implies SIM? Assume Π is SIM-np-
secure for F. Then there is a PPT SIM-np-simulator S such that Advsim-np

F,Π,S,h(A)
is negligible for all PPT A. The extended S defined by the theorem is a PPT
SIM-simulator, and (1) implies that Advsim

F,Π,S,h(A) is also negligible for all PPT
A, and Π is thus SIM-secure. In terms of reductions, (1) represents a trivial one
which maps A to itself.

SIM implies InI. The following says that SIM always implies InI. That is, if Π
is SIM secure for F then Π is also InI secure for F. The proof is in [12].

Theorem 2. [SIM ⇒ InI] Let F be a functionality and Π a protocol for it. Let
h ∈ {1, 2} be the honest party. Let Aini be an adversary playing game Gini

F,Π,h.
Then we can construct an adversary Asim such that for all simulators S we have

Advini
F,Π,h(Aini) ≤ 2 · Advsim

F,Π,S,h(Asim) . (2)

Adversary Asim has the same query profile as Aini and about the same running
time.

It may seem strange that (2) holds for all simulators. In particular, how does
this show that SIM implies InI? The answer is that if Π is SIM-secure for F then
there is a particular, PPT simulator S such that Advsim

F,Π,S,h(Asim) is negligible.
Now by using S in (2) we can conclude that Advind

F,Π,h(Aini) is also negligible,
meaning Π is InI-secure for F.

InI does not always imply SIM. We now give a functionality F, and a proto-
col Π for it, such that Π is InI-secure but not SIM-secure. We assume for this the
hardness of the discrete logarithm problem in a cyclic group G. The formaliza-
tion for the latter is via the DL game Gdl

G,g,p shown in the left panel of Fig. 7. It
is associated to group G = 〈g〉 of order p with generator g ∈ G. The advantage of
an adversary Adl playing this game is given by Advdl

G,g,p(Adl) = Pr[Gdl
G,g,p(Adl)].

The proof of the following is in [12].

346 M. Bellare et al.

Fig. 7. Left: Discrete log game for group G = 〈g〉 of order p. Right: Protocol Π for
Theorem 3.

Theorem 3 [InI �⇒ SIM in general]. Let G = 〈g〉 be a cyclic group of order p.
Let F : Zp × {ε} → {ε} × G be the functionality defined by F(x, ε) = (ε, gx) for
all x ∈ Zp. Let Π be the protocol for F shown in Fig. 7. Then:

1. Π is ini-secure for F: For any adversary Aini playing game Gini
F,Π,1, we have

Advini
F,Π,1(Aini) = 0 . (3)

2. Π is sim-insecure for F assuming the DL problem is hard: For all simula-
tors S, there exist adversaries Asim, Adl, playing games Gsim

F,Π,S,1 and Gdl
G,g,p,

respectively, such that

Advsim
F,Π,S,1(Asim) = 1 − Advdl

G,g,p(Adl) . (4)

Adversary Adl has the same running time as an execution of S in its run role,
and Asim runs in constant time.

Why does (4) mean that Π is not SIM-secure? Let S be any PPT simulator. Then
the Theorem gives PPT adversaries Asim, Adl such that (4) holds. But assuming
DL is hard, Advdl

G,g,p(Adl) is negligible, so the equation is saying that Asim has
a high (close to 1) advantage, which shows that Π is not SIM-secure for S. Since
S was arbitrary, Π is not SIM-secure.

Invertibility. We define invertibility for functionalities with respect to the
honest-party identity h ∈ {1, 2}. Let F : [OS] × D1 × D2 → R1 × R2 be a
functionality. An algorithm IA : [OS] × D3−h × R3−h → Dh is called an inverter
for F and h if for all H ∈ OS and all (x1, x2) ∈ D1 × D2, the following always
returns 1:

(y1, y2) ← F[H](x1, x2) // Get functionality outputs
x′

h ←$ IA[H](x3−h, y3−h) // Resample an input for honest party
x′
3−h ← x3−h // Input unchanged for corrupt party

(y′
1, y

′
2) ← F[H](x′

1, x
′
2) // Get new functionality outputs

Return [[y′
3−h = y3−h]] // Require corrupted-party output to be unchanged

Intuitively, consider an entity (this will be the simulator in our usage) who has an
input x3−h for the corrupted party. It also has an output y3−h for the corrupted
party, obtained from x3−h and some (unknown to this entity) input xh for the

The Concrete Security of Two-Party Computation 347

honest party. Invertibility asks that, given these, it is possible for our entity
to efficiently find an input x′

h for the honest party that “explains” the output
obtained by the corrupted party. It need not be that x′

h = xh, and similarly need
not be that y′

h = yh.
In an asymptotic setting, we would say that a functionality F is invertible for

h if there exists a PPT inverter IA for F and h. In our concrete setting, we will
include the running time of IA in results.

InI implies SIM-np for invertible functionalities. Let F be a function-
ality that is invertible for h ∈ {1, 2}. The following says that any protocol that
is InI secure for h is SIM-np secure (and thus by Theorem 1 also SIM secure)
for h. The proof is in [12].

Theorem 4 [InI ⇒ SIM-np for invertible functionalities]. Let h ∈ {1, 2} be the
honest party. Let F be a functionality which is invertible for h, using inverter IA.
Let Π be a protocol for F. Then there is a simulator S such that the following is
true. Let Asnp be any adversary playing game Gsim-np

F,Π,S,h. Then we can construct
an adversary Aini playing game Gini

F,Π,h such that

Advsim-np
F,Π,S,h(Asnp) ≤ Advini

F,Π,h(Aini) . (5)

Adversary Aini has the same query profile as Asnp. Its running time is about that
of Asnp. The running time of S is that of Π plus the time for an execution of IA.

Fig. 8. Left: PSI functionality and its inverters. Middle: tPSI functionality and its
inverters. Right: cPSI functionality and its inverters.

348 M. Bellare et al.

3.3 Invertibility of PSI and Friends

Theorem 4 says that InI is just as strong as SIM-np as long as the functionality
is invertible. Here we show that PSI [26], as well as a collection of PSI-related
functionalities, are all invertible. This means that, for these functionalities, we
can target InI without loss of security compared to simulation-based definitions,
gaining in this way from the simplicity and concrete-security friendliness that
the former offers compared to the latter. We show invertibility for some more
functionalities in [12].

Proceeding, Fig. 8 shows three PSI-related functionalities that have arisen in
the literature. Below each are inverters for it, first for honest party 2 and then for
honest party 1, demonstrating invertibility of that functionality for both parties.
The set U is the universe. We now discuss these in turn.

PSI. The PSI functionality Fpsi
U : P(U) × P(U) → (P(U) × N) × N in the first

panel is the same as in Fig. 4, repeated for clarity. Here S1, S2 ⊆ U .
The inverter for party 2 takes as input an input set S1 for party 1 and an

output (I, s2) for party 1, where I is the intersection of S1 with some (unknown
to the inverter) set S2 of party 2, and s2 = |S2|. The inverter aims to construct
some (any) set S′

2 of size s2 such that S1 ∩ S′
2 = I. It does this as shown.

The inverter for party 1 is easier. It gets an input set S2 for party 2 and an
output s1 that is the size of some (unknown to the inverter) set S1 of party 1.
It aims to construct some (any) set S′

1 of size s1, done as shown.
Both inverters are linear time. They are thus efficient as required for invert-

ibility.

Threshold PSI. The threshold-PSI (tPSI) functionality [26] Ftpsi
U,t : P(U) ×

P(U) → ((P(U) ∪ {⊥}) × N) × N is parameterized, in addition to U , by an
integer t ≥ 0 which specifies the threshold that the cardinality of intersection of
S1 and S2 must reach for the intersection to appear in the output of party 1.
Clearly when t = 0, the tPSI functionality is same as the basic PSI functionality.

The inverter for party 2 takes input an input set S1 for party 1 and an output
(I, s2) for party 1, where I is either the intersection of S1 with some (unknown
to the inverter) set S2 of party 2 or is ⊥, and s2 = |S2|. In the case that I = ⊥,
the inverter picks and returns some (any) set S′

2 of size s2. If I �= ⊥, it runs the
PSI inverter. The inverter for party 1 is the same as for PSI. The inverters are
again linear time.

Cardinality PSI. The cardinality-PSI (cPSI) functionality [26] Fcpsi
U : P(U) ×

P(U) → (N × N) × N provides the cardinality of the intersection, rather than
the intersection itself, in the output for party 1.

The inverter for party 2 takes input an input set S1 for party 1 and an
output (n, s2) for party 1, where n is the size of the intersection of S1 with some
(unknown to the inverter) set S2 of party 2, and s2 = |S2|. The inverter aims
to construct some (any) set S′

2 of size s2 such that |S1 ∩ S′
2| = n. It does this

as shown. The inverter for party 1 is the same as for PSI, and as before the
inverters are linear time.

The Concrete Security of Two-Party Computation 349

3.4 General Composition Result

In practice, a 2PC protocol will be executed many times on different inputs. We
want to prove that this is secure. To that end, we consider general composition
and ask whether security for a single execution security implies security for
multiple executions. As one might expect, a simple hybrid argument does work
and the claim below formalizes just that. The proof is in [12].

Theorem 5. Let F be a functionality. Let h ∈ {1, 2} be the honest party. Let Π
be a protocol for F. Let Aini be an adversary playing game Gini

F,Π,h. Then we can
construct an adversary Bini, also playing game Gini

F,Π,h but making at most one
Run query, such that

Advini
F,Π,h(Aini) ≤ QRun(Aini) · Advini

F,Π,h(Bini) . (6)

Additionally QRO(Bini) = QRO(Aini) and the running time of Bini is about that
of Aini.

Asymptotically, this would end the question, but concretely it is more of a
starting point, for it raises the question of showing security for multiple execu-
tions tightly, meaning with the same bound as for a single execution rather than
with the linear degradation of the hybrid argument. In the following sections we
will do this for OPRF and PSI protocols.

4 PSI from OPRFs

In this section, we evaluate the concrete security of the canonical OPRF-based
PSI protocol of Hazay and Lindell [32]. To do this, we first give definitions for
OPRFs.

Oblivious Pseudorandom Functions. Let Q : [OS] × Keys × D → R be a
family of functions. The OPRF functionality Foprf

Q : [OS] × D∗ × Keys → R∗ × N

associated to Q was defined in Fig. 4. We say that protocol Π is an OPRF for Q
if it computes the functionality Foprf

Q with perfect correctness.
In an OPRF protocol, the server input is a secret key k ∈ Keys. Conven-

tionally, the client input would be a point in D, but we generalize this; in our
setting the client input is a vector x over D. The client output is the vector
(Q(k,x[1]), . . . ,Q(k,x[|x|])) and the server output is |x|.
OPRF security. Let protocol Π be an OPRF for Q : [OS]×Keys×D → R. We
separately define OPRF-security of Π for party 1 (client) and party 2 (server).

The client-security definition is simple, namely just InI-security as defined
in Sect. 3. This says that the server cannot obtain information about the client
input. This shows how we can leverage our definitional framework for OPRFs.

For server-security, we give a very simple definition of pseudorandomness
that we call OPRF-PR. Namely, we take the game defining PRF security of
function family Q in Fig. 3 and simply add an oracle that allows the adversary to

350 M. Bellare et al.

Fig. 9. OPRF-PR game for pseudo-randomness (server side security) of an OPRF
protocol Π. Here Q is the underlying PRF.

obtain transcripts of resulting game Goprf-pr
Π,Q is shown in Fig. 9. Challenge oracle

CH is as in the PRF game in [12]. The transcript oracle TR takes a vector
x of client inputs and (line 6) executes the protocol to obtain a conversation
transcript and final states of the parties. From the final states, it extracts the
party outputs, and uses the client outputs to update the table that stores the
challenge function. Note that these entries are always the real ones as computed
by the protocol, meaning, if c = 0, the challenge entries are random but the ones
created by the transcript oracle are still real. The advantage of adversary Aoprf

is Advoprf-pr
Π,Q (Aoprf) = 2Pr[Goprf-pr

Π,Q (Aoprf)] − 1.
A definition of pseudorandomness for OPRFs is also given in [55], but it

is simulation-based and thus double-quantifier. Our simpler definition is single-
quantifier.

The following says that if Π is a OPRF-PR-secure OPRF for a function family
Q, then the latter is PRF-secure. The proof is trivial and is omitted.

Proposition 2. Let protocol Π be an OPRF for function family Q : [OS] × Keys

× D → R. Let Aprf be an adversary playing game Gprf
Q . Then we can construct

an adversary Aoprf playing game Goprf-pr
Π,Q such that

Advprf
Q (Aprf) ≤ Advoprf-pr

Π,Q (Aoprf) . (7)

Adversary Aoprf has the same query profile and running time as Aprf , in partic-
ular making no TR queries.

PSI from OPRF. Now that we have security definitions for OPRFs, we analyze
the InI security of the classic OPRF-based protocol from [32]. The protocol,
which we denote Πpsi, is shown in Fig. 10. It is associated to a family of functions

The Concrete Security of Two-Party Computation 351

Q : [OS] × Keys × U → R and an OPRF Πoprf for Q. The random oracle H ∈ OS
is used by Πoprf and Q, both of which are used by Πpsi. The universe U is
the domain of Q. The protocol Πpsi computes the functionality Fpsi

U defined in
Fig. 4. The following says that OPRF tightly implies PSI, meaning there is a
tight reduction from Πoprf to Πpsi. Note that PRF security of Q, as required by
part 1, is not an extra assumption due to Proposition 2. The proof is in [12].

Fig. 10. PSI protocol Πpsi associated to function family Q and OPRF Πoprf for Q.

Theorem 6. Let U ⊆ {0, 1}∗ be a set (the universe), and F = Fpsi
U the associated

PSI functionality. Let Πoprf be an OPRF for a family of functions Q : [OS]×Keys
× U → R. Let Π = Πpsi be the PSI protocol built from Q and Πoprf as in Fig. 10.
Then:

1. Π is correct for F if Q is a PRF: Let Apsi be an adversary playing game
Gcorr

F,Π . Then we can construct an adversary Aprf such that

Advcorr
F,Π (Apsi) ≤ Advprf

Q (Aprf) +
q∑

i=1

si,1si,2

|R| . (8)

Here q = QRun(Apsi) and si,j is the upper bound on the size of party j in the
i-th Run query. Also QNew(Aprf) = q and QCH(Aprf) =

∑q
i=1(si,1 + si,2) and

QRO(Aprf) = QRO(Apsi). The running time of Aprf is about that of Apsi.
2. Π provides InI client security if Πoprf does: Let Apsi be an adversary play-

ing game Gini
F,Π,1. Then we can construct an adversary Aoprf playing game

Gini
Foprf

Q ,Πoprf ,1
such that

Advini
F,Π,1(Apsi) ≤ Advini

Foprf
Q ,Πoprf ,1

(Aoprf) . (9)

352 M. Bellare et al.

Adversary Aoprf makes the same number of Run queries as Apsi, with the
vector in each of length the (common) size of the two client sets in the cor-
responding query of Apsi. Also, QRO(Aoprf) ≤ QRO(Apsi) +

∑q
i=1 si,2 where

q = QRun(Apsi) and si,2 is the upper bound on the size of party 2’s set in the
i-th Run query. The running time of Aoprf is about that of Apsi.

3. Π provides InI server security if Πoprf is OPRF-PR secure: Let Apsi be an
adversary playing game Gini

F,Π,2. Then we can construct an adversary Aoprf

playing game Goprf-pr
Πoprf ,Q

such that

Advini
F,Π,2(Apsi) ≤ 2 · Advoprf-pr

Πoprf ,Q
(Aoprf) . (10)

Let q = QRun(Apsi). Then QNew(Aoprf) = QTR(Aoprf) = q and QCH(Aoprf) ≤∑q
i=1 si,2 and QRO(Aoprf) = QRO(Apsi) where si,2 is an upper bound on the

size of party 2’s set(s) in the i-th Run query of Apsi. The running time of
Aoprf is about that of Apsi.

The above tightly bounds the InI security of Πpsi via the OPRF security of
Πoprf . So if we can concretely bound the OPRF security of Πoprf , we can pick
parameters to use in practice for Πpsi to guarantee a desired level of security.
Accordingly we now turn to proving security with concrete bounds for a canonical
OPRF.

5 Computational Problems over the Group

We will show concrete OPRF-PR-security of the 2H-DH OPRF based on the
hardness of a variety of different computational problems over the underlying
group. In each case, we will give explicit bounds on the OPRF-PR-advantage
as a function of the advantage in solving the group problem. These bounds will
differ, and the intent is exactly to showcase how the choice of group problem
affects the bound. In this section we define the relevant computational problems
and give relations between them.

The problems. Let G = 〈g〉 be a group of prime order p with generator g.
The problems we consider are CDH,DDH,V-CDH, which are in the single-
user setting, multi-user versions CDH-MU, V-CDH-MU, DDH-MU, and multi-
user with corruptions versions CDH-MUC and V-CDH-MUC. All problems are
defined via the games in Fig. 11. Throughout Fig. 11, writing game names next
to an oracle means that only the named games include the oracle. If there is
no annotation, all the games include that oracle. For xx ∈ {cdh, v-cdh, cdh-mu,
v-cdh-mu, cdh-muc, v-cdh-muc} we define the advantage of an adversary Axx

by Advxx
G,g,p(Axx) = Pr[Gxx

G,g,p(Axx)]. For xx ∈ {ddh,ddh-mu} we define the
advantage of an adversary Axx by Advxx

G,g,p(Axx) = 2Pr[Gxx
G,g,p(Axx)] − 1.

Relations between problems. We will prove security of the 2H-DH OPRF
directly under some assumptions and get bounds under others via relations
between the assumptions. Figure 12 shows a diagram of the relations. Here

The Concrete Security of Two-Party Computation 353

Fig. 11. Here G is a group with prime order p and generator g. Left: Games for
the CDH and V-CDH problems (top) and CDH-MU, V-CDH-MU, CDH-MUC and
V-CDH-MUC problems (bottom). The DDHO oracle is only present in games Gv-cdh

G,g,p ,
Gv-cdh-mu

G,g,p and Gv-cdh-muc
G,g,p . The CDHO oracle is only present in games Gcdh-muc

G,g,p and
Gv-cdh-muc

G,g,p . Right: Game for the DDH problem (top) and the DDH-MU problem
(bottom).

Fig. 12. Diagram showing relations between the assumptions. The arrows represent
implications. Here qnk = QNewKey(A) and qnb = QNewBase(A) where A is playing the
game GP

G,g,p for P ∈ {V-CDH-MUC, CDH-MUC}.

354 M. Bellare et al.

“P1 → P2” is an implication, and means that, if P1 is hard in group G then P2

is also hard in G. If an arrow is annotated with a value, for example qnk · qnb,
it means the reduction looses this factor. If there is no annotation, the reduc-
tion is tight. Some of the implications are trivial and easy to see, for exam-
ple, V-CDH-MUC → CDH-MUC and CDH-MUC → CDH-MU. Standard re-
randomization allows us to tightly obtain DDH → DDH-MU, CDH → CDH-MU
and V-CDH → V-CDH-MU. The reductions V-CDH → V-CDH-MUC and
CDH → CDH-MUC as well as DDH → V-CDH-MUC are more interesting.
The first two are captured by the following theorem, whose proof is in [12].

Theorem 7. Let G = 〈g〉 be a group with prime order p. Let Av and A be
adversaries playing the Gv-cdh-muc

G,g,p game and the Gcdh-muc
G,g,p game, respectively.

Then we can construct adversaries Av-cdh and Acdh playing the Gv-cdh
G,g,p and

Gcdh
G,g,p games, respectively, such that

Advv-cdh-muc
G,g,p (Av) ≤ QNewKey(Av) · QNewBase(Av) · Advv-cdh

G,g,p (Av-cdh) , (11)

Advcdh-muc
G,g,p (A) ≤ QNewKey(A) · QNewBase(A) · Advcdh

G,g,p(Acdh) . (12)

The running time of Av-cdh is about that of Av plus the time for (QNewKey(Av)
+ QNewBase(Av) + QCDHO(Av) + QDDHO(Av)) group exponentiations, and the
running time of Acdh is about that of A plus the time for (QNewKey(A) +
QNewBase(A) + QCDHO(A)) group exponentiations.

Curiously, we can show DDH → V-CDH-MUC with a tight reduction. This
is captured by the following, whose proof is in [12].

Theorem 8. Let G = 〈g〉 be a group with prime order p. Let Av be an adversary
playing the Gv-cdh-muc

G,g,p game. Then we can construct an adversary Addh playing
the Gddh

G,g,p game such that

Advv-cdh-muc
G,g,p (Av) ≤ Advddh

G,g,p(Addh) +
QDDHO(Av) + 1

p
. (13)

The running time of Addh is about that of Av plus the time for at most
(QNewKey(Av)+2 ·QNewBase(Av)+2 ·QCDHO(Av)+2 ·QDDHO(Av)) group expo-
nentiations.

6 Security of 2H-DH OPRF

We have shown (Theorem 6) that PSI can be built tightly from an OPRF. Now
we turn to seeing how tightly we can build OPRFs based on algebraic assump-
tions. For this purpose we consider 2H-DH [36], a leading and very efficient
OPRF. We will showcase how its security can be proven under different algebraic
assumptions with different degrees of tightness. We note that the 2H-DH OPRF
has many applications beyond PSI [22,23,36,37], making our results about it of
independent interest.

The Concrete Security of Two-Party Computation 355

2H-DH OPRF. We fix a group G = 〈g〉 of prime order p with generator g. We
also fix an integer � ≥ 1. Recall that we associated to G, � the family of functions
2HDH : [OS]×Zp ×{0, 1}∗ → {0, 1}� specified in Sect. 2. It uses a random oracle
H ∈ OS which specifies two sub-functions: H(1, ·) : {0, 1}∗ → G and H(2, ·, ·, ·) : G
×G×{0, 1}∗ ×G → {0, 1}�. Succinctly, 2HDH[RO](k, x) = H(2, gk, x,H(1, x)k).
The 2H-DH protocol is shown in Fig. 13. It realizes the functionality Foprf

2HDH with
perfect correctness. The client (party 1) has input a vector x over {0, 1}∗, and
the server has input a key k ∈ Zp for 2HDH. The vector r holds the blinding
factors.

Fig. 13. 2H-DH OPRF protocol Π2HDH.

InI security for the client. We first want to show InI security of the Π2HDH

OPRF protocol for an honest client (party 1). In our concrete setting, we aim to
give a concrete bound on the ini-advantage of adversary Aini. The proof of the
following is in [12].

Theorem 9. Let G = 〈g〉 be a group with prime order p, and � ≥ 1 an integer.
Let 2HDH be the associated 2H-DH family of functions as per Fig. 3. Let Π2HDH

be the associated 2H-DH OPRF protocol as per Fig. 13 and let F = Foprf
2HDH be

the OPRF functionality that Π2HDH computes. Let Aini be an adversary playing
game Gini

F,Π2HDH,1. Then

Advini
F,Π2HDH,1(Aini) ≤ QRO(Aini)

p
. (14)

OPRF-PR security for the server. We bound the adversary advantage via
the advantage to solve the different problems from Sect. 5 on the underlying
group G = 〈g〉, showcasing how the bounds change across these problems. The
proof of the following is in [12].

Theorem 10. Let G = 〈g〉 be a group with prime order p, and � ≥ 1 an integer.
Let 2HDH be the associated 2H-DH family of functions as per Fig. 3. Let Π2HDH

be the associated 2H-DH OPRF protocol as per Fig. 13. Let Aoprf be an adversary

356 M. Bellare et al.

playing game Goprf-pr
Π2HDH,2HDH

, and let xx ∈ {ddh, cdh, v-cdh, cdh-muc, v-cdh-muc}.
Then we can construct an adversary Axx playing game Gxx

G,g,p such that

Advoprf-pr
Π2HDH,2HDH

(Aoprf) ≤ 2 · μxx(qro, qn) · Advxx
G,g,p(Axx)

+
2 · δxx(qro, qn)

p
, (15)

where qn = QNew(Aoprf) and qro = QRO(Aoprf). Further

μxx(qro, qn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q2roqn if xx = cdh
qroqn if xx = v-cdh
qro if xx = cdh-muc
1 if xx ∈ {v-cdh-muc,ddh}

(16)

and

δxx(qro, qn) =

{
qro · qn if xx ∈ {cdh, v-cdh, cdh-muc, v-cdh-muc}
qro · qn + qro + 1 if xx = ddh

with resources

QNewKey(Acdh-muc) = QNewKey(Av-cdh-muc) = QNew(Aoprf)

QNewBase(Acdh-muc) = QNewBase(Av-cdh-muc) ≤ QRO(Aoprf) ,

QCDHO(Acdh-muc) = QCDHO(Av-cdh-muc) ≤ �tr · QTR(Aoprf),

QDDHO(Av-cdh) = QDDHO(Av-cdh-muc) ≤ QRO(Aoprf),

where �tr is the maximum length of vectors queried to the TR oracle and the
running times of all adversaries are about that of Aoprf , except that Acdh and
Av-cdh additionally perform at most QNew(Aoprf)+QRO(Aoprf)+�tr ·QTR(Aoprf)
group exponentiations and Addh additionally performs at most QNew(Aoprf)+2 ·
QRO(Aoprf) + 2 · �tr · QTR(Aoprf) group exponentiations.

With these results on the security of Π2HDH and Theorem 6, we can show
concrete bounds on the InI security of the DH-PSI protocol. (By the latter we
mean the PSI protocol in Fig. 10 when using Π2HDH as the underlying OPRF.)
An approximate summary of these bounds was given in Fig. 2.

7 The Salted-DH PSI Protocol

We give a new PSI protocol. It has a proof with a tight reduction to the V-CDH
(and hence also DDH) assumption and achieves better bounds for the CDH
assumption than the previous protocol. Yet it has essentially the same compu-
tational cost as the OPRF-PSI when the OPRF is 2H-DH. The communication
cost is more by just a constant (256 bits in practice) that does not depend on
the sizes of the sets in the protocol.

The Concrete Security of Two-Party Computation 357

Fig. 14. Salted DH PSI protocol Πsalt-psi.

The protocol is presented in Fig. 14. We have fixed a group G of prime order
p. The protocol is parameterized by a salt length sl and a hash-output length
hl . (The latter only impacts correctness, not security.) Compared to 2H-DH
based PSI, the increase in computational is just that the parties need to hash
slightly longer strings, which has negligible cost relative to the cost of the group
exponentiations, which is the same in both protocols. Communication increases
by just sl , irrespective of the sizes of the sets involved.

The following Theorem establishes correctness and security of the protocol.
The main claim is the third, showing security for the server based only on the
V-CDH assumption. The added term is easily made negligible by picking a non-
trivial salt length; in practice, sl = 256 will do. The result is that the reduction
is tight. The proof is in [12].

Theorem 11. Let G be a group of prime order p with generator g. Let hl , sl ≥ 0
be integers. Let Π = Πsalt-psi be the associated PSI protocol as per Fig. 14. Let F
be the PSI functionality over universe {0, 1}∗. Below, M denotes an upper bound
on the sum, across all Run queries of adversaries Acorr and Aini, of the sizes of
the sets in these queries.

1. Correctness: Let Acorr be an adversary playing game Gcorr
F,Π . Then

Advcorr
F,Π (Acorr) ≤ M2/2hl . (17)

2. Security for the client: Let Aini be an adversarial server, meaning an adver-
sary playing game Gini

F,Π,1. Then

Advini
F,Π,1(Aini) ≤ QRO(Aini)

p
. (18)

358 M. Bellare et al.

3. Security for the server: Let Aini be an adversarial client, meaning an adversary
playing game Gini

F,Π,2. Then we can construct an adversary Axx playing game
Gxx

G,g,p such that

Advini
F,Π,2(Aini) ≤ 2 · μxx(qro) · Advxx

G,g,p(Axx)

+
2 · qrn(qrn + qro)

2sl
+

2 · δxx(qro)
p

. (19)

where qrn = QRun(Aini) and qro = QRO(Aini). Further

μxx(qro) =

{
qro if xx ∈ {cdh, cdh-muc}
1 if xx ∈ {v-cdh, v-cdh-muc,ddh} (20)

and

δxx(qro) =

{
0 if xx ∈ {cdh, v-cdh, cdh-muc, v-cdh-muc}
qro + 1 if xx = ddh

with resources

QNewKey(Acdh-muc) = QNewKey(Av-cdh-muc) = 1

QNewBase(Acdh-muc) = QNewBase(Av-cdh-muc) = 1 ,

QCDHO(Acdh-muc) = QCDHO(Av-cdh-muc) = 0 ,

QDDHO(Av-cdh) = QDDHO(Av-cdh-muc) ≤ QRO(Aini) .

The running times of Av-cdh-muc and Acdh-muc are about that of Aini.
The adversaries Av-cdh and Av-cdh perform an additional QRun(Aini) +
M + QRO(Aini) group exponentiations and Addh performs an additional
QRun(Aini) + 2 · M + 2 · QRO(Aini) group exponentiations.

Acknowledgments. Bellare and Ranjan were supported in part by NSF grant CNS-
2154272 and KACST. Work done while Riepel was at UCSD, supported in part by
KACST.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (Apr 2001)

2. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: Towards a uni-
fied theory of computing on encrypted data. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 501–531. Springer, Heidelberg
(Apr 2015)

3. Apple: Password monitoring. https://support.apple.com/guide/security/
password-monitoring-sec78e79fc3b/web (Feb 2021)

https://support.apple.com/guide/security/password-monitoring-sec78e79fc3b/web
https://support.apple.com/guide/security/password-monitoring-sec78e79fc3b/web

The Concrete Security of Two-Party Computation 359

4. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: Chen,
Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011. pp. 691–702. ACM Press
(Oct 2011)

5. Bellare, M.: A concrete-security analysis of the apple psi protocol. https://www.
apple.com/child-safety/pdf/Alternative Security Proof of Apple PSI System
Mihir Bellare.pdf (July 2021)

6. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th FOCS. pp. 514–523. IEEE
Computer Society Press (Oct 1996)

7. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy. pp.
478–492. IEEE Computer Society Press (May 2013)

8. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012. pp. 784–796. ACM Press (Oct
2012)

9. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg
(Aug 1994)

10. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology 16(3), 185–215 (Jun 2003)

11. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 13. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (Nov 2013)

12. Bellare, M., Ranjan, R., Riepel, D., Aldakheel, A.: The concrete security of two-
party computation: Simpler definitions, and tight proofs for psi and oprfs. Cryp-
tology ePrint Archive (2024), full version of this paper

13. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

14. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (May 1996)

15. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

16. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing 13(4), 850–864 (1984)

17. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003)

18. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011)

19. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

20. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III.
LNCS, vol. 12172, pp. 34–63. Springer, Heidelberg (Aug 2020)

https://www.apple.com/child-safety/pdf/Alternative_Security_Proof_of_Apple_PSI_System_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Alternative_Security_Proof_of_Apple_PSI_System_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Alternative_Security_Proof_of_Apple_PSI_System_Mihir_Bellare.pdf

360 M. Bellare et al.

21. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017. pp. 1243–1255. ACM Press (Oct / Nov 2017)

22. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
Bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (Jul 2018)

23. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia
PRF service. In: Jung, J., Holz, T. (eds.) USENIX Security 2015. pp. 547–562.
USENIX Association (Aug 2015)

24. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS. pp. 308–317.
IEEE Computer Society Press (Oct 1990)

25. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (Feb 2005)

26. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (May 2004)

27. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge, UK (2001)

28. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge, UK (2004)

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (Oct 1986)

30. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

32. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (Mar 2008)

33. Hunt, T., Hunt, C., Siguroarson, S.: Have I been pwned? https://haveibeenpwned.
com/

34. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Raykova, M., Saxena, S., Seth,
K., Shanahan, D., Yung, M.: On deploying secure computing commercially: Pri-
vate intersection-sum protocols and their business applications. Cryptology ePrint
Archive, Report 2019/723 (2019), https://eprint.iacr.org/2019/723

35. Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S., Seth, K., Shanahan, D., Yung,
M.: Private intersection-sum protocol with applications to attributing aggregate ad
conversions. Cryptology ePrint Archive, Report 2017/738 (2017), https://eprint.
iacr.org/2017/738

36. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg
(Dec 2014)

37. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Heidelberg
(Apr / May 2018)

38. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (Mar 2009)

https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2017/738

The Concrete Security of Two-Party Computation 361

39. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.)
USENIX Security 2018. pp. 1651–1669. USENIX Association (Aug 2018)

40. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 818–829. ACM
Press (Oct 2016)

41. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1257–1272. ACM
Press (Oct / Nov 2017)

42. Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for
checking compromised credentials. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) ACM CCS 2019. pp. 1387–1403. ACM Press (Nov 2019)

43. Lindell, Y.: How to simulate it - A tutorial on the simulation proof technique.
Cryptology ePrint Archive, Report 2016/046 (2016), https://eprint.iacr.org/2016/
046

44. Marlinspike, M.: The difficulty of private contact discovery. https://signal.org/
blog/contact-discovery/ (Jan 2014)

45. Mezzour, G., Perrig, A., Gligor, V.D., Papadimitratos, P.: Privacy-preserving rela-
tionship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 09. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (Dec 2009)

46. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS. pp. 458–467. IEEE Computer Society Press (Oct 1997)

47. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing. In: NDSS 2011. The Internet Society (Feb
2011)

48. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (Feb 2001)

49. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010), https://eprint.iacr.org/2010/556

50. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: Lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 401–431. Springer, Heidelberg
(Aug 2019)

51. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security
2015. pp. 515–530. USENIX Association (Aug 2015)

52. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187 (2005), https://eprint.iacr.org/2005/187

53. Rajan, A., Qin, L., Archer, D.W., Boneh, D., Lepoint, T., Varia, M.: Callisto: A
cryptographic approach to detecting serial perpetrators of sexual misconduct. In:
Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable
Societies. pp. 1–4 (2018)

54. Thomas, K., Pullman, J., Yeo, K., Raghunathan, A., Kelley, P.G., Invernizzi, L.,
Benko, B., Pietraszek, T., Patel, S., Boneh, D., Bursztein, E.: Protecting accounts
from credential stuffing with password breach alerting. In: Heninger, N., Traynor,
P. (eds.) USENIX Security 2019. pp. 1556–1571. USENIX Association (Aug 2019)

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046
https://signal.org/blog/contact-discovery/
https://signal.org/blog/contact-discovery/
https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2005/187

362 M. Bellare et al.

55. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast
and simple partially oblivious PRF, with applications. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 674–705.
Springer, Heidelberg (May / Jun 2022)

56. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982)

Blockchain Protocols

Jackpot: Non-interactive Aggregatable
Lotteries

Nils Fleischhacker1(B) , Mathias Hall-Andersen2 , Mark Simkin3 ,
and Benedikt Wagner4

1 Ruhr University Bochum, Bochum, Germany
mail@nilsfleischhacker.de
2 ZkSecurity, New York, USA
mathias@zksecurity.xyz

3 Berlin, Germany
msimkin@gmx.de

4 Ethereum Foundation, Berlin, Germany
benedikt.wagner@ethereum.org

Abstract. In proof-of-stake blockchains, liveness is ensured by repeat-
edly selecting random groups of parties as leaders, who are then in charge
of proposing new blocks and driving consensus forward. The lotteries
that elect those leaders need to ensure that adversarial parties are not
elected disproportionately often and that an adversary can not tell who
was elected before those parties decide to speak, as this would potentially
allow for denial-of-service attacks. Whenever an elected party speaks, it
needs to provide a winning lottery ticket, which proves that the party did
indeed win the lottery. Current solutions require all published winning
tickets to be stored individually on-chain, which introduces undesirable
storage overheads.

In this work, we introduce non-interactive aggregatable lotteries and
show how these can be constructed efficiently. Our lotteries provide the
same security guarantees as previous lottery constructions, but addition-
ally allow any third party to take a set of published winning tickets and
aggregate them into one short digest. We provide a formal model of our
new primitive in the universal composability framework.

As one of our technical contributions, which may be of independent
interest, we introduce aggregatable vector commitments with simulation-
extractability and present a concretely efficient construction thereof in
the algebraic group model in the presence of a random oracle. We show
how these commitments can be used to construct non-interactive aggre-
gatable lotteries. We have implemented our construction, called Jackpot,
and provide benchmarks that underline its concrete efficiency.

M. Hall-Andersen—This work was done while this author was at Aarhus University.
Funded by the Concordium Foundation.
B. Wagner—This work was done while the author was at CISPA Helmholtz Center for
Information Security. Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 507237585.
M. Simkin—Independent Researcher.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 365–397, 2025.
https://doi.org/10.1007/978-981-96-0938-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_12&domain=pdf
http://orcid.org/0000-0002-2770-5444
http://orcid.org/0000-0002-0195-6659
http://orcid.org/0000-0002-7325-5261
http://orcid.org/0000-0002-4620-7264
https://doi.org/10.1007/978-981-96-0938-3_12

366 N. Fleischhacker et al.

Keywords: Lotteries · Aggregation · Vector Commitments ·
Simulation-Extractability · KZG Commitments

1 Introduction

Blockchains rely on lottery mechanisms for repeatedly electing one or multiple
leaders at random from the pool of all participants. These leaders are then in
charge of proposing new blocks and driving the protocol’s consensus forward,
thereby ensuring liveness of the blockchain. In proof-of-stake blockchains, the
participants’ probabilities of being elected are tied to their stake, i.e., to the
amount of money they have put into the system. In Ethereum, each participant
deposits a fixed amount of money to participate in the lotteries and thus every-
body has the same probability of being elected. In Algorand [26], on the other
hand, participants may have deposited different amounts of money and therefore
have different probabilities of being elected.

In the context of proof-of-stake blockchains a lottery mechanism needs to
satisfy several properties. From a security perspective, lotteries should not allow
corrupt parties to be elected disproportionately often. Lotteries should hide who
the elected leaders are, as an adversary could otherwise prevent the chain from
growing by taking the leaders off the network right after they have been elected,
but before they have had a chance to speak. Leaders should privately learn
whether they won the lottery and obtain a publicly verifiable winning ticket.
When a leader is ready to speak, they can attach the winning ticket to their
message, so that everybody can verify that they are indeed one of the leaders.

From an efficiency perspective, lotteries should aim to minimize both the net-
work bandwidth and storage overheads that they incur, since new leaders may
need to be elected frequently among a large number of participants. In terms
of bandwidth overhead we would like to minimize the amount of communica-
tion needed to run each lottery. In terms of storage overhead we would like to
minimize the amount of memory needed to store all published winning tickets.
Ideally, we would like the storage overhead to grow sublinearly in the number of
published winning tickets.

Various constructions of lotteries schemes have already been proposed in the
literature, but all of them either do not keep the lottery output secret [1,4,11],
require a trusted party [16,31], or have storage overheads that are linear in the
number of published winning tickets [17,26] per election.

1.1 Our Contribution

In this work, we introduce non-interactive aggregatable lotteries. In this setting
we have a set of parties where each party is identified by a short verification key
and holds a corresponding secret key. We assume the existence of a randomness
beacon functionality which broadcasts uniformly random values to all parties in
regular intervals. We will associate the randomness beacon output at time t with
the t-th lottery execution.

Whenever the randomness beacon outputs a lottery seed, every party can,
without interacting with the other parties, check whether they have won the

Jackpot: Non-interactive Aggregatable Lotteries 367

current lottery. Each party will win each lottery independently with probability
1/k for some fixed parameter1 k. Maliciously generated keys do not allow the
adversary to increase their winning probabilities or to coordinate which corrupt
parties win which lotteries at which times. The adversary is not able to determine
which honest parties are winning which elections with probability noticeably bet-
ter than guessing. Each winning party can locally compute a publicly verifiable
proof, the winning ticket, that allows them to convince other parties that they
won a lottery. Finally, and most importantly, the lotteries are aggregatable. By
this we mean that all published winning tickets belonging to the same lottery
execution can be compressed into one short ticket by any (possibly untrusted)
third party. Given the public keys of all winning parties and the compressed lot-
tery ticket anybody can still be convinced of the fact that each individual party
won the lottery. We formally model these lotteries in the universal composability
(UC) framework of Canetti [13].

Lotteries from Simulation-Extractable Vector Commitments. We intro-
duce the notion of aggregatable vector commitments with a strong simulation-
extractability property and show that these commitments can be used to instan-
tiate our non-interactive aggregate lotteries. On an intuitive level, a vector com-
mitment is said to be aggregatable if openings belonging to different commit-
ments can be compressed into one short opening. A vector commitment is said to
be simulation-extractable if it satisfies the following two properties: in security
proofs, knowing a trapdoor, we can issue dummy commitments and later open
those to arbitrary messages at arbitrary positions. Additionally we can extract
the committed messages from any valid but adversarially chosen commitment.
While our notion effectively requires the commitments to be “non-malleable”, the
openings of such a commitment scheme can still have homomorphic properties,
which is of crucial importance for being able to aggregate them.

Simulation-Extractable Vector Commitments from KZG. We present
a construction of such an aggregatable vector commitment with simulation-
extractability proven secure in the algebraic group model (AGM) [24]. Our
construction is a modification of the polynomial commitment scheme of Kate,
Zaverucha, and Goldberg (KZG) [30] and uses the exact same trusted setup.
While KZG itself is malleable and can therefore not be simulation-extractable,
we show that our construction is simulation-extractable. At the same time it pre-
serves the homomorphic properties of KZG needed for aggregation. The proof
turns out to be rather involved and we present it in a modular way. We believe
that our construction, our notion of simulation-extractability, and our modular
proof may be of independent interest beyond their applications in this work.

Implementation and Benchmarks. To show the practicality of our construc-
tion, called Jackpot, we have implemented it and provide benchmarks for various
parameter settings. For instance, Jackpot allows for aggregating 2048 winning
tickets in less than 15 milliseconds and verifying the aggregated ticket takes less
than 17 milliseconds on a regular Macbook Pro. Storing the 2048 winning tickets

1 We also show how to generalize our notion of lotteries and our constructions to the
setting where parties have different winning probabilities.

368 N. Fleischhacker et al.

in aggregated form is 1228.8 times more efficient than storing a list of all tickets
of a state-of-the-art lottery based on VRFs explicitly. The main bottleneck of
our construction is the time it takes to generate the public keys. For generating
a public key that is good for 220 lotteries, i.e., for one lottery every 5 minutes
for 10 years nonstop, our protocol takes around 8 seconds. The corresponding
public key is 160 bytes large.

1.2 Related Work

Lotteries have appeared throughout cryptographic research in various shapes and
forms. In the following we discuss a few of those research works and highlight
how they differ from ours.

Lotteries without Secrecy. The problem of allowing a group of parties to
select a random set of leaders among them has already been addressed by Broder
and Dolev [11] over 40 years ago. Their work, however, requires a large amount
of interaction during each election and does not hide who is elected. The works of
Bentov and Kumaresan [4] and of Bartoletti and Zunino [1] allow parties to run
financial lotteries that enjoy certain fairness properties on top of cryptocurrencies
like Bitcoin or Ethereum. Here each party can deposit a coin and a random
parties is elected to be the winner that obtains all deposited coins. Neither of
those protocols provides any privacy guarantees and their techniques do not
seem applicable to our setting.

Lotteries without Aggregation. A lottery that satisfies all of our desired
properties apart from aggregation was proposed by Gilad et al. [26]. In their
construction each party is identified via a public key for a verifiable random
functions (VRF) [37]. The public key of party i can be viewed as a commitment
to a secret random function fi and, using their corresponding secret key, party i
is able to output pairs (x, y) and prove that y = fi(x). Whenever a randomness
beacon provides lseed, party i can check whether they won the corresponding
lottery by computing whether fi(lseed) < k for some parameter k. Since the
function is random, nobody can predict whether party i wins a lottery. At the
same time the verifiability property of the random function allows party i to
claim the win. In subsequent work David et al. [17] properly formalized this
approach and showed that the VRF actually needs to satisfy an additional prop-
erty ensuring that high entropy inputs produce high entropy outputs even if the
VRF keys were chosen by a malicious party.

Both works [17,26] show different ways of how their lotteries can then be
used to select committees that then drive consensus forward in their respec-
tive blockchain designs. Both works would benefit from being able to aggregate
lottery tickets as it would allow them to reduce their storage complexities.

Single Secret Leader Elections. A recent work by Boneh et al. [7] introduces
the problem of secret leader elections and shows how it can be solved using cryp-
tographic tools like indistinguishability obfuscation [25], threshold fully homo-
morphic encryption [8], or proofs of correct shuffles [2]. Whereas our work focuses
on electing a certain number of leaders in expectation, they focus on computing

Jackpot: Non-interactive Aggregatable Lotteries 369

an ordered list of an exact number of leaders. As their problem is significantly
harder to solve, their protocols are significantly more expensive computationally
and require large amounts of interaction for each lottery.

Aggregatable Vector Commitments. We mentioned above that our main
technical tool is an aggregatable vector commitment that satisfies a strong form
of simulation-extractability. Various aggregatable or linearly homomorphic vec-
tor commitments [14,22,23,27,32–34,38,41] have previously been proposed but
all of these works fail to achieve simulation-extractability which is of crucial
importance for our application.

On a technical level a recent result by Faonio et al. [18] uses some observations
similar to ours. They construct simulation-extractable succinct non-interactive
arguments of knowledge (SNARKs) [28,39]. To this end they show that the
KZG polynomial commitment scheme satisfies a weak notion of simulation-
extractability in the AGM. Indeed, there is no hope of proving full simulation-
extractability for KZG commitments as both commitments and openings are
homomorphic. Conceptually, both our work and theirs show that opening KZG
at a random point chosen after the commitment is fixed makes the commit-
ment simulation-extractable. However, we highlight three important differences:
firstly, the notion that they show for the original KZG construction is tailored
to their specific use-case in SNARKs. Contrary to that, we define a new scheme
and show a full simulation-extractability notion that is more self-contained. Sec-
ondly, their notion states that we can extract a preimage from a KZG commit-
ment (under certain restrictions), whereas our notion additionally guarantees
that any future (aggregated) opening provided by the adversary is consistent
with the extracted preimage. We can view this as a new form of binding for
aggregated openings that composes with extraction. Interestingly, Faonio et al.
also need a binding property, but only implicitly show it during the compilation
to a SNARK. Finally, our analysis is more modular: we manage to generically
separate simulation, extractability, and binding aspects.

In a concurrent and independent work, Libert [35] also constructs a
simulation-extractable version of KZG commitments. However, the goals of our
work and Libert’s work are orthogonal: Libert’s construction allows to commit to
multivariate polynomials and can be used in HyperPlonk [15]. At the same time,
openings can not be aggregated, which is an essential feature of our construction.
Indeed, openings in Libert’s construction contain a non-interactive Schnorr-style
proof [40]. While such proofs can be batched while they are created, it is not
possible to aggregate given proofs publicly.

1.3 Technical Overview

One way of instantiating VRFs for lotteries that rely on them, e.g. [17,26], is to
use the unique signature scheme of Boneh, Lynn, and Shacham (BLS) [10] as a
verifiable unpredictable function and then apply a random oracle to the signature
to make the output pseudorandom. More concretely, whenever the randomness
beacon outputs the unpredictable lottery seed lseed, each participant j signs

370 N. Fleischhacker et al.

lseed (as well as potentially additional context such as their own identity) using
their BLS signing key skj resulting in a unique signature σj . Participant j wins
the lottery iff H(σj) < t, where H is a random oracle and t is an appropriate
threshold to achieve the desired winning probability. To prove that they won,
the party presents σj as their winning ticket. Anyone can verify that they won
by verifying the signature using the BLS public key pkj and checking that indeed
H(σj) < t.

When considering the possibility of aggregating winning tickets, the use of
BLS might seem promising at first glance. After all, BLS signatures are known
to be aggregatable [9] even in the presence of rogue keys [6] by computing a
random linear combination of the signatures. One might thus be tempted to
store this short aggregated signature σ instead of a long list of all individual
signatures. Alas, this does not work. Although we could still verify that all
aggregated σj were valid, the exact values of the individual signatures would
be lost. We therefore could not recompute their individual hash values to check
that all aggregated tickets were winning tickets.

The first idea to solve this dilemma is to try to avoid using the random
oracle and directly look for a VRF with nice linearity properties. Specifically,
let (pkj , skj) be key pairs of a VRF and let yj = VRF(skj , x). Further, let τj

be proofs of the former equality. Then, we want that the following holds for
arbitrary weights ξj :

VRF.Ver
(n∑

j=1

ξjpkj , x,

n∑
j=1

ξjyj ,

n∑
j=1

ξjτj

)
= 1 (1)

The ith round of the lottery could now proceed as follows: given lseed, derive
per party challenges xj . Party j wins the lottery iff VRF(skj , (i, lseed)) = xj . The
corresponding winning ticket is the proof τj . Using the linearity of the VRF, we
could aggregate the proofs by computing a random linear combination of the
winning tickets and weights (ξ1, . . . , ξn), which are obtained by hashing the set
of public keys. The aggregated ticket τ =

∑n
i=1 ξjτj allows full verification of all

proofs via Eq. (1) simultaneously.
For this construction to be sensible we would, however, require a linearly

homomorphic VRF with small codomain. Specifically, to achieve a winning prob-
ability of 1/k, the VRF needs a codomain of size exactly k. There are currently
no known constructions of such VRFs for usefully small values of k. Fortunately,
we can still make the above approach work, if we are willing to make some
concessions, namely that a public key will only be valid for a limited number
T of successive lotteries. Since T can be chosen sufficiently large for practical
purposes and because we can simply generate fresh keys after T lotteries, the
concession we make is rather small.

Naive Homomorphic VRFs via Vector Commitments. If we use a vector
commitment to commit to a uniformly random vector v ∈ [k]T , it can in many
ways be viewed as a VRF with domain [T] and codomain [k]. The public key is
now the commitment and the secret key is the vector v as well as the randomness

Jackpot: Non-interactive Aggregatable Lotteries 371

used to commit. To participate in T lotteries each party j initially commits to
a random vector v(j) ∈ [k]T . In the ith lottery round we again derive per party
challenges xj from lseed and party j wins iff v(j)

i = xj . Each party can prove
that they won by revealing an opening for position i of their commitment. If
the vector commitment has the required homomorphic properties of Eq. (1), we
can verify all openings using only the aggregated opening. Luckily for us, such
linearly homomorphic vector commitments do exist, with KZG [30] being the
most prominent among them.

The Woes of Universal Composability. For our lottery scheme to be useful
as part of more complex protocols, it is necessary that it composes securely with
itself and other protocols. To this end, we define the security of a lottery scheme
in the universal composability (UC) framework [13]. This, however, causes issues
with the proof of the construction sketched above. Namely, in the security proof
the simulator would need to both equivocate commitments for honest partic-
ipants and extract from commitments of corrupted participants. This implies
that the vector commitment requires some kind of simulation-extractability, i.e.,
a guarantee that it is possible to extract preimages from any valid commitment
produced by an adversary, even if the adversary was previously given equivocal
commitments (from which extraction would not be possible).

Unfortunately, not only does KZG not have this property, the required
simulation-extractability and the linear homomorphism described above in fact
contradict each other. Let com be a valid simulated commitment and let τ be an
opening proving that com contained x at position i. Then by the linear homo-
morphism com′ = com + com is also a valid commitment and τ ′ = τ + τ could
be used to prove that com′ contained x+ x at position i. However, it would not
be possible to extract a preimage from com′. We thus need to depart from using
a regular linear homomorphism for aggregation.

Making KZG Simulation-Extractable. To get around this problem, we make
the commitments non-malleable, while maintaining the linear homomorphism on
the openings (and a part of the commitments). An expensive black-box way of
achieving this might be to add a simulation-extractable proof of knowledge of
the secret vector to the commitment. Instead, we can leverage the fact that KZG
is not just a vector commitment, but a polynomial commitment. When KZG is
used to commit to a vector v ∈ [k]T , we are actually committing to the polyno-
mial f of degree T − 1 over a large field F that is uniquely defined by the points
(j,vj). While we have only explicitly defined f on [T] ⊂ F, we can still open the
commitment at any position in F. Now, the idea is to force anyone presenting
a fresh commitment to also open their commitment at a random position. If
the commitment is derived from simulated commitments, then providing such
an opening should not be possible. Since this is an additional opening we need
to increase the degree of the polynomial to T and they will turn out that a
technicality in the proof actually requires the degree to be T + 1. The actual
construction of our simulation-extractable vector commitment will work as fol-
lows: to commit to a vector v ∈ F

T we uniformly choose a polynomial f of degree
T + 1 conditioned on f(j) = vj for j ∈ [T] and commit to it using a regular

372 N. Fleischhacker et al.

KZG commitment comKZG. The full commitment then consists of comKZG as well
as an opening of the commitment at position H(comKZG) where H is a random
oracle mapping to F. The idea is that whenever an adversary would derive a
commitment from existing commitments, they would need to open their com-
mitment at a new random position, which the hiding property of KZG should
prevent them from doing. At the same time, aggregation of openings can still be
done using a random linear combination, just as with regular KZG. Aggregated
openings can be verified given the list of commitments by verifying that each
individual commitment is indeed valid and then using the linear combination
of the KZG part of the commitments to verify the aggregated opening. Finally,
we note that while our commitment is conceptually simple, the proof that it
provides simulation-extractability is far from it.

On the Necessity of Randomness Beacons. Throughout our paper, we
assume that all parties have access to a randomness beacon. It is sensible to
ask how necessary this assumption is. Intuitively, we would like our lotteries to
ensure that no party can predict when they will win a lottery. For this to be
feasible, there needs to be a source of entropy associated with each lottery exe-
cution, which is exactly what a randomness beacon provides. From a practical
perspective, assuming the existence of a randomness beacon is also not too prob-
lematic, as they are deployed and running already. In the context of Ethereum,
for example, the randomness beacon is known as Randao2.

On Simulation-Based Security. In this work, we have chosen to define aggre-
gatable lotteries through ideal functionalities in the UC framework. An alterna-
tive approach could have been to give game-based definitions. We believe that
ideal functionalities are the right approach here for two reasons. Firstly, it is not
at all clear what equivalent “clean” game-based notions would look like. Design-
ing game-based notions that, for example, ensure that the adversary does not
win disproportionally often or that the winning probabilities in each lottery are
independent is non-trivial and would result in complex definitions. This would
then make using our primitive in other contexts more cumbersome. Secondly,
we would like to guarantee that our lotteries remain secure, even if composed
arbitrarily with other protocols. Ideal functionalities in the UC model provide
us with this guarantee, whereas game-based notions do not in general.

Parallels with Multi-signatures. On a conceptual level, our contribution in
this work has some strong parallels to multi-signatures [29,36]. These allow for
aggregating many individual signatures for the same message into one short
aggregate signature. Using multi-signatures one can significantly reduce the on-
chain storage in blockchains like Ethereum, as each block only needs to store
a small value, which simultaneously vouches for many different signers having
approved the block’s contents. Similarly, our aggregate lotteries allow for storing
a short digest, which simultaneously vouches for all elected committee members
within one election. Apart from our technical realization of such lotteries, we

2 https://eth2book.info/capella/part2/building_blocks/randomness/.

https://eth2book.info/capella/part2/building_blocks/randomness/

Jackpot: Non-interactive Aggregatable Lotteries 373

view our conceptual idea of compressing this lotteries as one of our important
contributions.

1.4 Paper Organization

The main part of the paper is organized as follows. In Sect. 3, we introduce
syntax and game-based security notions for aggregatable vector commitments.
We also present our construction of this primitive. Then, in Sect. 4 we define
aggregatable lotteries in the UC framework, present our construction from any
aggregatable vector commitment. We show UC security of our lottery assuming
the vector commitment meets the game-based notions we have defined. Finally,
in Sect. 5, we discuss practical aspects and the efficiency of our construction.

2 Preliminaries

In this section, we fix notation and recall relevant cryptographic preliminaries.

Notation. For a finite set S, writing s←$ S means that s is sampled uniformly
at random from S. For a probabilistic algorithm A, we write s := A(x; ρ) to state
that A is run on input x with random coins ρ, and the result is assigned to the
variable s. If the coins ρ are sampled uniformly at random, we write s ← A(x).
If we write s ∈ A(x), we mean that there are random coins such that when A
is run on input x with these random coins, it outputs s. The security parameter
λ is given implicitly to all algorithms (in unary). We denote the running time
of an algorithm A by T(A). We use standard cryptographic notions, e.g., PPT,
negligible. We define [L] := {1, . . . , L} ⊆ N. We let B(p) denote a Bernoulli
distribution with Pr [b = 1] = p for b sampled from B(p) (written as b ← B(p)).
Pairings and Assumptions. We rely on the �-DLOG assumption and the �-
SDH assumption [5,30]. For this and the remainder of this paper, let PGGen be
an algorithm that on input 1λ outputs the description of prime order groups G1,
G2,GT of order p, generators g1 ∈ G1 and g2 ∈ G2, and the description of a
pairing, i.e., a non-degenerate bilinear map e : G1×G2 → GT for which e (g1, g2)
is a generator of GT . That is, PGGen outputs par = (G1,G2, g1, g2, p, e). Then,
informally, the �-DLOG assumption states that it is hard to output α given
(gαi

1)�i=1, g
α
2 for a random α ←$Zp, and the �-SDH assumption states that it is

hard to output (c, g1/(α+c)
1) for some c on the same input. Clearly, �-DLOG is

implied by �-SDH.

Definition 1 (�-DLOGAssumption). We say that the �-DLOG assumption
holds relative to PGGen, if for any PPT algorithm A, the following advantage is
negligible:

Adv�-DLOG
A,PGGen(λ) := Pr

[
A(par, In) = α

∣∣∣∣
par ← PGGen(1λ),
α ←$Zp, In := ((gαi

1)�i=1, g
α
2)

]
.

374 N. Fleischhacker et al.

Definition 2 (�-SDHAssumption). We say that the �-SDH assumption holds
relative to PGGen, if for any PPT algorithm A, the following advantage is neg-
ligible:

Adv�-SDH
A,PGGen(λ) := Pr

⎡
⎣∃c ∈ Zq \ {−α} :

A(par, In) =
(
c, g

1/(α+c)
1

)
∣∣∣∣∣∣
par ← PGGen(1λ),
α ←$Zp,

In := ((gαi

1)�i=1, g
α
2)

⎤
⎦ .

Universal Composability. We define an ideal functionality for aggregatable
lotteries and prove security of our construction in the universal composability
(UC) framework [13] in the presence of static corruptions. Our construction relies
on synchronous broadcast and a synchronous randomness beacon. We include
definitions of the UC functionalities, protocols, and the security proof in our full
version [21]. When specifying functionalities and simulators, we write msg

recv←↩
port to denote the event of receiving the message msg on the (possibly emulated)

port port. Correspondingly, we use port
send←↩ msg to denote the sending of the

message msg on the (possibly emulated) port port.

Random Oracle Model. For some of our proofs, we use the (programmable)
random oracle model (ROM) [3]. To recall, in the ROM, hash functions are
modeled by oracles implementing perfectly random functions via lazy sampling.
For our UC proof, we use the standard ROM, which is sometimes known as the
local ROM as opposed to the global ROM [12].

Algebraic Group Model. For some of our proofs and extractors, we leverage
the algebraic group model (AGM) [24]. In this model, we only consider so called
algebraic algorithms. This means that whenever such an algorithm outputs a
group element Y in some cyclic group G of prime order p, it also outputs a
so called algebraic representation, which is a vector (c1, . . . , ck) ∈ Z

k
p such that

Y =
∏k

i=1 Xci
i . Here, X1, . . . , Xk are all group elements that the algorithm

received so far. We emphasize that we analyze the game-based security of some
of our building blocks in the AGM, and then use this security in a black-box
manner for our UC proof.

3 Aggregatable Vector Commitments

In this section, we define and instantiate a special class of vector commitments
that we will use to construct aggregatable lotteries.

3.1 Syntax of Our Vector Commitments

A vector commitment allows a party to commit to a vector m ∈ M� over some
alphabet M, resulting in a commitment com. Later, the committer can open
com at any position i ∈ [�] by revealing mi and a corresponding opening (proof)
τ . One can then publicly verify the pair (mi, τ) with respect to com and i.

Jackpot: Non-interactive Aggregatable Lotteries 375

Our definition of vector commitments is special in two ways. First, it should be
possible to publicly aggregate several openings for different commitments with
respect to the same position. Precisely, we require the existence of an algorithm
Aggregate that takes a list of L openings τj , j ∈ [L] (all for the same position
i ∈ [�]) and outputs an aggregated opening τ . One can then verify τ with respect
to a list of L commitments. For non-triviality, the aggregated τ should ideally be
as large as one single τj . Note that a similar aggregation feature for openings of
different commitments has been defined in [27]. The second non-standard part
of our definition is that we explicitly model an algorithm VerCom that verifies
whether commitments (not openings) are well-formed. For our security notions,
this will be convenient.

Definition 3 (Vector Commitment Scheme). A vector commitment scheme
(VC) is a tuple VC = (Setup,Com,VerCom,Open,Aggregate,Ver) of PPT algo-
rithms with the following syntax:

– Setup(1λ, 1�) → ck takes as input the security parameter and a message length
�, and outputs a commitment key ck. We assume that ck specifies a message
alphabet M, opening space T , and commitment space C.

– Com(ck,m) → (com, St) takes as input a commitment key ck and a vector
m ∈ M�, and outputs a commitment com ∈ C and a state St.

– VerCom(ck, com) → b is deterministic, takes as input a commitment key ck
and a commitment com, and outputs a bit b ∈ {0, 1}.

– Open(ck, St, i) → τ takes as input a commitment key ck, a state St, and an
index i ∈ [�], and outputs an opening τ ∈ T .

– Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1) → τ is deterministic, takes as
input a commitment key ck, an index i ∈ [�], a list of commitments comj ∈ C,
a list of symbols mj ∈ M, and a list of openings τj ∈ T , and outputs an
opening τ ∈ T .

– Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) → b is deterministic, takes as input a com-
mitment key ck, an index i ∈ [�], a list of commitments comj ∈ C, a list of
symbols mj ∈ M, and an opening τ ∈ T , and outputs a bit b ∈ {0, 1}.
Further, we require that the following properties holds:
1. Commitment Completeness. For any � ∈ N, any ck ∈ Setup(1λ, 1�),

and any m ∈ M�, we have

Pr [VerCom(ck, com) = 1 | (com, St) ← Com(ck,m)] = 1.

2. Opening Completeness. For any � ∈ N, any ck ∈ Setup(1λ, 1�), any
m ∈ M�, and any i ∈ [�], we have

Pr
[
Ver(ck, i, com,mi, τ) = 1

∣∣∣∣
(com, St) ← Com(ck,m),
τ ← Open(ck, St, j)

]
= 1.

3. Aggregation Completeness. For any � ∈ N, any ck ∈ Setup(1λ, 1�),
any L ∈ N, any index i ∈ [�], any list (mj)Lj=1 ∈ ML, any list (comj)Lj=1 ∈

376 N. Fleischhacker et al.

CL, any list (τj)Lj=1 ∈ T L, we have

∀j ∈ [L] : Ver(ck, i, comj ,mj , τj) = 1

∧ τ = Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1)

=⇒ Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) = 1.

3.2 Simulation-Extractability

We define a strong simulation-extractability property for vector commitments.
This property captures all properties that we will need for our UC proof, includ-
ing both hiding and binding properties. Beyond that, it may be interesting in
itself. The notion states that no adversary can distinguish between two games in
which it is running, where one game models the real world, and the other game
models an ideal world. The first property that our notion models is a strong
form of hiding. Namely, we require that there is a way to set up the commit-
ment key with a trapdoor, and this trapdoor allows a simulator to compute
commitments without knowing the message, and later open these commitments
at arbitrary positions to arbitrary symbols. This is modeled in our notion as
follows. In the real world game, the adversary gets an honest commitment key.
It also gets access to an oracle GetCom that outputs honestly computed com-
mitments to messages of the adversary’s choice. Another oracle GetOp provides
openings for these commitments when the adversary asks for them. In the ideal
world game, the commitment key is set up with a trapdoor and both commit-
ments and openings are simulated. In addition to this hiding property, our notion
models a strong form of binding. Namely, the adversary gets access to oracles
SubCom and SubOp that allow it to submit commitments and openings for
them. While the commitments and openings are simply verified in the real world
game, there are additional checks in the ideal world game. Concretely, when
the adversary submits a commitment com that is not output by GetCom, the
game not only verifies it, but also tries to extract a preimage (m, ϕ) from it,
such that m with randomness ϕ commits to com. If this extraction fails but com
verifies, SubCom outputs 0 in the ideal world game, whereas it would output 1
in the real world game. In other words, indistinguishability of the games ensures
that we can always extract preimages of commitments. In addition, our notion
ensures that openings are consistent: (1) whatever we extracted in SubCom is
consistent with any valid opening that the adversary submits later, and (2) if the
adversary opens a commitment output by GetCom(m) at position i, then (2a)
it opens to the respective mi, and (2b) it queried GetOp for this commitment
at position i before. Our notion ensures this because in the ideal game, SubOp
outputs 0 if one of the inconsistencies (1, 2a, 2b) occurs, whereas in the real
game the output of SubOp only depends on whether the opening verifies.

Definition 4 (Simulation-Extractability of VC). Consider a vector com-
mitment scheme VC = (Setup,Com,VerCom,Open,Aggregate,Ver). For any
algorithm A, any � ∈ N, any algorithm Ext, and any triple of algorithms

Jackpot: Non-interactive Aggregatable Lotteries 377

Sim = (TSetup,TCom,TOpen), consider the game �-SIM-EXTA
VC,0(λ) and the

game �-SIM-EXTA
VC,Sim,Ext,1(λ) defined in Fig. 1. We say that VC is simulation-

extractable, if there are PPT algorithms Ext and Sim = (TSetup,TCom,TOpen)
such that for any polynomial � ∈ N and any PPT algorithm A, the following
advantage is negligible:

Advsim-ext
A,VC,Sim,Ext,�(λ) :=

∣∣∣∣Pr
[
�-SIM-EXTA

VC,0(λ) ⇒ 1
]

−Pr
[
�-SIM-EXTA

VC,Sim,Ext,1(λ) ⇒ 1
]∣∣∣∣.

Then, we say VC is simulation-extractable with extractor Ext and simulator Sim.

Our simulation-extractability notion is well-suited for our UC proof. However,
it models several distinct properties of the vector commitment simultaneously,
which renders a direct proof of simulation-extractability complicated. Thus, we
define three less complex security notions and show that in combination they
imply simulation-extractability. The first notion, equivocality, is the hiding part
of our simulation-extractability notion.

Definition 5 (Equivocal VC). Consider a vector commitment scheme VC =
(Setup,Com,VerCom,Open,Aggregate,Ver). For any algorithm A, any � ∈ N,
and any triple of algorithms Sim = (TSetup,TCom,TOpen) consider the games
�-EQUIVA

VC,Sim,b(λ) for b ∈ {0, 1} defined in Fig. 2. We say that VC is equiv-
ocal, if there are PPT algorithms Sim = (TSetup,TCom,TOpen) such that for
any polynomial � ∈ N and any PPT algorithm A, the following advantage is
negligible:

AdvequivA,VC,Sim,�(λ) :=
∣∣∣∣Pr

[
�-EQUIVA

VC,0(λ) ⇒ 1
]

−Pr
[
�-EQUIVA

VC,Sim,1(λ) ⇒ 1
]∣∣∣∣.

In this case, we say that VC is equivocal with simulator Sim.

The second and third notion focus on binding. Namely, the notion of augmented
extractability states that we can extract preimages of commitments from any
opening that the adversary outputs, even if it sees some honest commitments
and openings. Notably, we do not allow the extractor to inspect the internal
state of the oracles that output these honest commitments and openings, which
is crucial for making this notion compose with equivocality.

Definition 6 (Augmented Extractability of VC). Let VC = (Setup,
Com,VerCom,Open,Aggregate,Ver) denote a vector commitment scheme. For
any algorithm A, any algorithm Ext, any � ∈ N, consider the game �-
AUG-EXTA

VC,Ext(λ) defined in Fig. 3. We say that VC satisfies augmented

378 N. Fleischhacker et al.

Fig. 1. The simulation-extractability games �-SIM-EXT for a vector commitment
VC = (Setup,Com,VerCom,Open,Aggregate,Ver), an adversary A, an extractor Ext,
and a simulator Sim = (TSetup,TCom,TOpen). In the random oracle model, Ext gets
as additional input the list of random oracle queries of A. In the algebraic group model,
Ext gets as additional input the algebraic representation of all group elements contained
in the commitment com submitted by A.

Jackpot: Non-interactive Aggregatable Lotteries 379

Fig. 2. The equivocality games �-EQUIV for a vector commitment VC = (Setup,Com,
VerCom,Open,Aggregate,Ver), an adversary A, and a simulator Sim = (TSetup,TCom,
TOpen). Oracles GetComb and GetOpb are as in Fig. 1.

extractability, if there is a PPT algorithm Ext such that for any polynomial � ∈ N

and any PPT algorithm A, the following advantage is negligible:

Advaug-extA,VC,Ext,�(λ) := Pr
[
�-AUG-EXTA

VC,Ext(λ) ⇒ 1
]
.

In this case, we say that VC satisfies augmented extractability with extractor Ext.

Augmented extractability states that we can extract some preimage of adversari-
ally submitted commitments. It does not state that what we extract is consistent
with whatever the adversary opens later. For that, we define aggregation position-
binding. Intuitively, we want that any two lists of commitments and openings
that an adversary outputs are consistent, i.e., if they share a commitment, then
the opened symbols for that commitment are the same. It turns out that we
can further simplify this by assuming that one of the lists contains exactly one
honestly computed commitment (with potentially biased randomness).

Definition 7 (Aggregation Position-Binding of VC). Let VC = (Setup,
Com,VerCom,Open,Aggregate,Ver) be a vector commitment scheme. For any
algorithm A and any � ∈ N, consider the game �-A-POS-BINDA

VC(λ) defined
in Fig. 4. We say that VC is aggregation position-binding, if for any polynomial
� ∈ N and any PPT algorithm A, the following advantage is negligible:

Adva-pos-bindA,VC,� (λ) := Pr
[
�-A-POS-BINDA

VC(λ) ⇒ 1
]
.

Next, we show that our notions imply simulation-extractability.

Lemma 1 (Informal). If a vector commitment is equivocal, aggregation
position-binding, and satisfies augmented extractability, then it is simulation-
extractable.

We give the formal statement and proof in our full version [21]. Here, we sketch
a proof: we need to show that the real game and the ideal game of simulation-
extractability are indistinguishable. For that, we start with the real game. In
a first step, we change the game by extracting from all commitments that
the adversary submits via SubCom, and let the oracle return 0 if extraction
does not yield a valid preimage. The games are indistinguishable by augmented
extractability. Note that now oracle SubCom is as in the ideal game. In the

380 N. Fleischhacker et al.

Fig. 3. The augmented extractability game �-AUG-EXT for a vector commitment
VC = (Setup,Com,VerCom,Open,Aggregate,Ver), an extractor Ext, and an adversary
A. Oracles GetCom0 and GetOp0 are as in Fig. 1. In the random oracle model, Ext
gets as additional input the list of random oracle queries of A. In the algebraic group
model, Ext gets as additional input the algebraic representation of all group elements
contained in the commitment com submitted by A. Notably, Ext does not share any
internal state with the rest of the game.

Fig. 4. The aggregation position-binding game �-A-POS-BIND for a vector commit-
ment VC = (Setup,Com,VerCom,Open,Aggregate,Ver) and an adversary A.

second step, we change oracle SubOp to be as in the ideal world game as well.
The adversary can only distinguish this, if one of the three conditions on which
the implementations of oracle SubOp in the real game and the ideal game dif-
fer occurs. It turns out that we can bound this probability using aggregation
position-binding, see the full proof for more details. Now, it remains to change
the implementation of oracles GetCom and GetOp to be as in the ideal game.
This change can be done using equivocality of the commitment. Here, it is essen-
tial that we defined our extractor in an appropriate way, see Fig. 3: the extractor
does not rely on any internals of the oracles GetCom and GetOp and just sees
their input and output behavior. Otherwise, a reduction for this final change
would not be able to run the extractor correctly.

3.3 Simulation-Extractable Vector Commitments from KZG

We present an instantiation of vector commitments with suitable properties
based on the KZG commitment scheme [30]. We first recall the KZG commit-
ment scheme [30]. Then, we modify it to get our vector commitment scheme
with suitable properties.

Jackpot: Non-interactive Aggregatable Lotteries 381

– KZG.Setup(1λ, 1d) → ck:
1. Run par := (G1,G2, g1, g2, p, e) ← PGGen(1λ).
2. Sample α ←$Zp and β ←$Z

∗
p, and set h1 := gβ

1 ∈ G1.
3. Set ui := gαi

1 and ûi := hαi

1 for each i ∈ {0, . . . , d}. Set R := gα
2

4. Return ck := (par, h1, R, (ui)di=0, (ûi)di=0).
– KZG.Com(ck, f ∈ Zp[X]) → (com, St)

1. If the degree of f is larger than d, abort.
2. Sample a polynomial f̂ ∈ Zp[X] of degree d uniformly at random.
3. Compute com = g

f(α)
1 · hf̂(α)

1 . Note that com can be computed efficiently.
4. Return com and St := (f, f̂).

– KZG.Open(ck, St = (f, f̂), z) → τ

1. Let ψ := (f−f(z))/(X−z) ∈ Zp[X] and ψ̂ := (f̂−f̂(z))/(X−z) ∈ Zp[X].
2. Set v := g

ψ(α)
1 · h

ψ̂(α)
1 . Note that v can be computed efficiently.

3. Return τ := (f̂(z), v).
– KZG.Ver(ck, com, z, y, τ = (ŷ, v)) → b

1. If e
(
com · g−y

1 · h−ŷ
1 , g2

)
= e

(
v,R · g−z

2

)
, return b = 1. Else, return b = 0.

Let H : {0, 1}∗ → Zp and H′ : {0, 1}∗ → Zp be random oracles. We now define the
vector commitment scheme VCKZG = (VCKZG.Setup,VCKZG.Com,VCKZG.Open,
VCKZG.Ver). Roughly, we use the linear properties of KZG to make aggregation
work. To add non-malleability at the same time, we include an opening at a
random position z0 in the commitments. Typically, to commit to a vector of �
elements, one would work with polynomials of degree d = � − 1. As we give out
one additional point f(z0) for non-malleability and still need hiding, it is natural
to increase d by one to d = �. It turns out that for a technical reason in our
extractability proof (see paragraph “Proof Strategy” in the proof of Lemma 4),
we have to choose d = � + 1.

– VCKZG.Setup(1λ, 1�) → ck:
1. Run ckKZG ← KZG.Setup(1λ, 1d), where d := �+1. The parameters specify

message alphabet M := Zp, opening space T := Zp × G1, and commit-
ment space C := G1 × Zp × T .

2. Let ι : [�] → Zp be a fixed injection and zout ∈ Zp such that 0 and zout are
not in the image of ι.

3. Return ck := (ckKZG, zout, ι).
– VCKZG.Com(ck,m) → (com, St)

1. Sample δ0, δ1 ←$Zp and let f ∈ Zp[X] be the unique polynomial of degree
d := �+1 such that f(0) = δ0, f(zout) = δ1 and f(ι(i)) = mi for all i ∈ [�].

2. Run (comKZG, St) ← KZG.Com(ck, f ∈ Zp[X]).
3. Compute z0 := H(comKZG) and set y0 := f(z0).
4. Run τ0 ← KZG.Open(ckKZG, St, z0).
5. Return com := (comKZG, y0, τ0) and St.

– VCKZG.VerCom(ck, com) → b
1. Parse com = (comKZG, y0, τ0) and set z0 := H(comKZG).
2. Return KZG.Ver(ckKZG, comKZG, z0, y0, τ0).

382 N. Fleischhacker et al.

– VCKZG.Open(ck, St, i) → τ
1. Return KZG.Open(ckKZG, St, ι(i)).

– Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1) → τ
1. For each j ∈ [L], parse τj = (ŷj , vj) ∈ Zp × G1.
2. Set ξ := H′(i, (comj)Lj=1, (mj)Lj=1).

3. Set ŷ :=
∑L

j=1 ξj−1ŷj and v :=
∏L

j=1 vξj−1

j .
4. Return τ = (ŷ, v).

– VCKZG.Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) → b
1. For each j ∈ [L], parse comj = (comKZG,j , y0,j , τ0,j) ∈ G1 × Zp × T .
2. Set ξ := H′(i, (comj)Lj=1, (mj)Lj=1).

3. Compute m :=
∑L

j=1 ξj−1mj and com :=
∏L

j=1 com
ξj−1

KZG,j .
4. Return KZG.Ver(ckKZG, com, ι(i),m, τ).

In the following, we show that VCKZG satisfies equivocality, aggregation position-
binding, and augmented extractability. Simulation-extractability then follows
from Lemma 1.

Lemma 2 (Informal). Let H : {0, 1}∗ → Zp be a random oracle. Then, VCKZG

is equivocal.

We provide the formal statement and proof in our full version [21]. Intuitively, the
simulator sets comKZG to be a random group element, samples the polynomials
f and f̂ in a lazy way, and computes openings on the fly using knowledge of the

trapdoor α and the equation v =
(
comKZG · g−y

1 h−ŷ
1

) 1
α−z

. To make the formal
argument work, we need to carry out the changes in the correct order and pay
attention to the degrees of the polynomials.

Lemma 3. If the d-DLOG assumption holds relative to PGGen and
H′ : {0, 1}∗ → Zp is modeled as a random oracle, then VCKZG is aggregation
position-binding in the algebraic group model. Concretely, for any polynomial
� ∈ N and any algebraic PPT algorithm A that makes at most QH′ queries to
random oracle H′, there are PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈ T(A)
and

Adva-pos-bindA,VCKZG,�(λ) ≤ 2 · Adv1-DLOG
B1,PGGen(λ) + 2 · Adv(�+1)-DLOG

B2,PGGen (λ) +
QH′Lmax

p
,

Proof. We first recall the aggregation position-binding game for an algebraic
adversary A and a dimension � to fix some notation. Set d := � + 1 as in the
scheme. First, a commitment key ck = (ckKZG, zout, ι) is generated, where ι is a
mapping from [�] to Zp and ckKZG = (par, h1, R, (ui)di=0, (ûi)di=0) is a commitment
key for the KZG polynomial commitment, with group parameters par = (G1,

G2, g1, g2, p, e). That is, h1 = gβ
1 for some β ∈ Zp, and there is some α ∈ Zp such

that ui = gαi

1 and ûi = hαi

1 for each i ∈ {0, . . . , d}. Further, R = gα
2 . Then, when

A terminates, it outputs the following:

Jackpot: Non-interactive Aggregatable Lotteries 383

– A message m ∈ Z
�
p and randomness ϕ. Here ϕ has the form ϕ = (δ0, δ1, f̂ ′) ∈

Zp × Zp × Zp[X], where f̂ ′ is of degree �. Based on this output, the aggrega-
tion position-binding game honestly computes a commitment com. More con-
cretely, let f ′ ∈ Zp[X] be the polynomial of degree d = �+1 with f ′(0) = δ0,
f ′(zout) = δ1, and f ′(ι(i)) = mi for every i ∈ [�]. Then, the commitment com

has the form com = (comKZG, y0, τ0), where comKZG = g
f ′(α)
1 h

f̂ ′(α)
1 .

– An index i∗ ∈ [�]. We will denote z := ι(i∗). Further, we will denote by
ψ′, ψ̂′ ∈ Zp[X] the polynomials

ψ′ :=
f ′ − f ′(z)

X − z
, ψ̂′ :=

f̂ ′ − f̂ ′(z)
X − z

as in an honest KZG opening for f ′ at position z. The game can efficiently
compute these polynomials.

– Lists (comj)Lj=1 and (mj)Lj=1, and an opening τ = (ŷ, v) ∈ Zp×G1. Concretely,
each comj has the form comj = (comKZG,j , y0,j , τ0,j), where comKZG,j ∈ G1.
As A is algebraic, it also outputs an algebraic representation for each comKZG,j

and for τ . Due to the structure of the commitment key, this is equivalent to
saying that A outputs polynomials fj , f̂j ∈ Zp[X] and ψ, ψ̂ ∈ Zp[X] all of
degree at most d = � + 1 such that

τ = g
ψ(α)
1 · h

ψ̂(α)
1 ∧ ∀j ∈ [L] : comKZG,j = g

fj(α)
1 · h

f̂j(α)
1 .

We denote the event that A breaks aggregation position-binding by Win. Assum-
ing that Win occurs, we know the following: There is an index j∗ ∈ [L] such that
comj∗ = com and mj∗ = mi∗ . In particular, this means that comKZG = comKZG,j∗

and mj∗ = f ′(z). We have VCKZG.Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) = 1. In par-
ticular, by reading the verification equation in the exponent, we have

L∑
j=1

ξj−1(fj(α) + βf̂j(α) − mj) − βŷ = (ψ(α) + βψ̂(α))(α − z)

for ξ := H′(i, (comj)Lj=1, (mj)Lj=1). Defining polynomials f :=
∑L

j=1 fjξ
j−1 ∈

Zp[X] and f̂ :=
∑L

j=1 f̂jξ
j−1 ∈ Zp[X], and the element m :=

∑L
j=1 mjξ

j−1

simplifies this equation to

f(α) + βf̂(α) − m − βŷ = (ψ(α) + βψ̂(α))(α − z).

By construction of f ′, f̂ ′ and ψ′, ψ̂′, we also have

f ′(α) + βf̂ ′(α) − f ′(z) − βf̂ ′(z) = (ψ′(α) + βψ̂′(α))(α − z).

Subtracting the two equations, we get our core equation, namely,

f(α) − f ′(α) + β(f̂(α) − f̂ ′(α)) − (m − f ′(z)) − β(ŷ − f̂ ′(z))

= (ψ(α) − ψ′(α) + β(ψ̂(α) − ψ̂′(α)))(α − z).

Our goal will be to simplify the structure of this core equation. To do so, our
first step is to eliminate the terms containing β. We define the following event:

384 N. Fleischhacker et al.

– Event Complex: This event occurs, if η := f̂(α)− f̂ ′(α)− (ŷ− f̂ ′(z))− (ψ̂(α)−
ψ̂′(α))(α − z) = 0.

Claim. There is a PPT algorithm B with Pr [Win ∧ Complex] ≤ Adv1-DLOG
B,PGGen(λ).

Proof of Claim. Reduction B is as follows. It gets as input the group parameters,
the generator g1 and the element h1 = gβ

1 . We show that it can simulate the game
for A and compute β if Win∧Complex occurs. For that, B first samples α ←$Zp

and computes the commitment key ck as in algorithm Setup. Observe that for
that, β is not needed. Now, if Win occurs, then we know that the core equation
holds. For convenience, we group together the β-terms in our core equation,
getting

β · η = f ′(α) − f(α) + (m − f ′(z)) + (ψ(α) − ψ′(α))(α − z).

Clearly, if Complex, then reduction B can compute β by multiplying the right
hand-side with η−1.

From now on, we condition on ¬Complex. In other words, we assume that
η = 0, which implies that the simplified core equation

f(α) − m − (f ′(α) − f ′(z)) = (ψ(α) − ψ′(α))(α − z)

holds. Our goal will be to show that if this equation holds, we can build a
reduction breaking the d-DLOG assumption. For that, we define the following
events:

– Event NoColl : This event occurs, if f ′(α) = fj∗(α).
– Event Ambig : This event occurs, if f ′ = fj∗ over Zp[X].
– Event AggFail : This event occurs, if m = f(z).

In the next claims, we bound the probability that one of these event occurs.
Informally, if NoColl occurs, then one can use comKZG = comKZG,j∗ solve for β to
break DLOG. If Ambig occurs but NoColl does not, then we can find α efficiently
as a root of the non-zero polynomial f ′−fj∗ . We will bound the case that AggFail
occurs using a statistical argument using the fact that ξ is chosen after the fj

and mj are fixed.

Claim. There is a PPT algorithm B with Pr [Win ∧ NoColl] ≤ Adv1-DLOG
B,PGGen(λ).

Proof of Claim. Note that if Win occurs, then we have f ′(α)+βf̂ ′(α) = fj∗(α)+
βf̂j∗(α), because comKZG = comKZG,j∗ . If NoColl occurs at the same time, then
we know that f̂ ′(α) − f̂j∗(α) = 0 and one can efficiently solve for β. It is not
hard to turn that into a formal reduction that determines β given h1 = gβ

1 .

Claim. There is a PPT algorithm B with Pr [Ambig ∧ ¬NoColl] ≤ Advd-DLOG
B,PGGen(λ).

Proof of Claim. Note that if ¬NoColl occurs, then we have f ′(α) = fj∗(α).
If Ambig occurs at the same time, we know that α is a root of the non-zero

Jackpot: Non-interactive Aggregatable Lotteries 385

polynomial f ′ − fj∗ , which has degree at most d = �+1. Hence, α can be found
in polynomial time by a reduction. We leave details to the reader.

Claim. We have Pr [Win ∧ AggFail ∧ ¬Ambig] ≤ QH′Lmax/p.

Proof of Claim. By definition of m and f , event AggFail is equivalent to the
equation

L∑
j=1

mjξ
j−1 =

L∑
j=1

fj(z)ξj−1.

In other words, if AggFail occurs, then the polynomial

ζ =
L∑

j=1

(fj(z) − mj)Xj−1 ∈ Zp[X]

has a root at ξ. Observe that ζ has degree L ≤ Lmax and is fixed before3
ξ is chosen at random by the random oracle H′. Thus, for any fixed random
oracle query where ζ = 0, this event occurs with probability at most Lmax/p.
It remains to argue that ζ = 0 if Win occurs and Ambig does not. This can be
seen by observing that the j∗th coefficient of ζ is non-zero, i.e., mj∗ = fj∗(z).
Namely, we know that f ′ = fj∗ due to ¬Ambig. Thus, if we had mj∗ = fj∗(z),
then we had mj∗ = f ′(z), contradicting Win.

Concluding the Proof. To conclude the proof, we can now assume that Win
occurs, but neither of the events defined above occurs. We come back to our
simplified core equation. The equation tells us that α is a root of the polynomial
Ψ of degree at most d = � + 1, which is given as

Ψ = f − m − (f ′ − f ′(z)) − (ψ − ψ′)(X − z) ∈ Zp[X].

Now, if we can argue that Ψ is non-zero, then one can efficiently find α based
on A’s output, leading to our final reduction. To argue that Ψ is non-zero, note
that Ψ = 0 implies that

f − m = (f ′ − f ′(z)) + (ψ − ψ′)(X − z).

While the right hand-side is a multiple of X − z, the left hand-side is not, as we
assume ¬AggFail. Therefore, this equality can not hold, which means that Ψ is
non-zero. In combination, setting Bad := NoColl∨Ambig∨AggFail∨Complex we
get a reduction B with

Pr [Win ∧ ¬Bad] ≤ Advd-DLOG
B,PGGen(λ).

Lemma 4 (Informal). If d-DLOG holds and H : {0, 1}∗ → Zp is a random ora-
cle, then VCKZG satisfies augmented extractability in the algebraic group model.

3 It could be that the adversary submitted a different algebraic representation to the
random oracle. In this case, we just define the fj ’s to be this representation.

386 N. Fleischhacker et al.

We provide the formal statement and proof in our full version [21]. Here, we first
recall the augmented extractability game to fix notation and define our extractor
Ext. Then, we provide a proof intuition.

Game, Extractor and Notation. In the augmented extractability game, the adver-
sary A gets as input a commitment key ck and access to a commitment oracle
GetCom and an opening oracle GetOp. These are as follows:

– The commitment key ck has the form ck = (ckKZG, zout, ι) where ι : [�] → Zp is
injective and ckKZG = (par, h1, R, (ui)di=0, (ûi)di=0) is a KZG commitment key
with group parameters par = (G1,G2, g1, g2, p, e). We have h1 = gβ

1 for some
random β ∈ Zp, and ui = gαi

1 and ûi = hαi

1 for each i ∈ {0, . . . , d} for some
random α ∈ Zp. We also have R = gα

2 .
– On input m ∈ Z

�
p, the commitment oracle returns a commitment com for m.

We use the subscript k to refer to the kth commitment returned by the oracle.
That is, comk = (comKZG,k, fk(zk,0), τk,0) is the kth commitment returned

by the oracle, where comKZG,k = g
fk(α)
1 h

f̂k(α)
1 is a KZG commitment to a

polynomial fk of degree d with randomness f̂k, and τk,0 = (f̂k(zk,0), vk,0) is
a KZG opening for fk at position zk,0 = H(comKZG,k) to value fk(zk,0). We
denote the number of queries to GetCom by QC and assume without loss of
generality that QC ≥ 1.

– On input (k, i) such that comk is defined, the opening oracle GetOp opens
comk at position i. To recall, such an opening is a KZG openings for com-
mitment comKZG,k at position zk,i := ι(i). We denote the opening by τk,i =

(f̂k(zk,i), vk,i) for vk,i = g
ψk,i(α)
1 h

ψ̂k,i(α)
1 , where ψk,i = (fk − fk(zk,i))/(X −

zk,i) ∈ Zp[X] and ψ̂k,i := (f̂k−f̂k(zk,i))/(X−zk,i). Without loss of generality,
we can assume that for every commitment comk returned by the commitment
oracle, A queries the opening oracle for every i ∈ [�], and thus it obtained all
of these openings τk,i for i ∈ {0, . . . , �}.

When A terminates, it outputs a commitment outputs com = (comKZG, y0, τ0)
with τ0 = (ŷ0, v0). As A is algebraic, it also outputs the algebraic representation
of all group elements in com. Due to the structure of ck and the group elements
that A obtained from the commitment and opening oracles, we can assume that
this representation is given by polynomials f, f̂ , ψ, ψ̂ ∈ Zp[X] of degree d = �+1
and lists of exponents (wk)k, (rk)k and (tk,i)k,i, (sk,i)k,i over Zp such that

comKZG = g
f(α)
1 · h

f̂(α)
1 ·

QC∏
k=1

comwk

KZG,k ·
QC∏
k=1

�∏
i=0

v
tk,i

k,i

︸ ︷︷ ︸
=:L

,

v0 = g
ψ(α)
1 · h

ψ̂(α)
1 ·

QC∏
k=1

comrk

KZG,k ·
QC∏
k=1

�∏
i=0

v
sk,i

k,i .

Without loss of generality, we assume that A queried H(comKZG), and it did so
with the same algebraic representation for comKZG as the one that it outputs in

Jackpot: Non-interactive Aggregatable Lotteries 387

the end. Given the output of the adversary, the extractor returns the message
m ∈ Z

�
p defined by mi := f(ι(i)) for all i ∈ [�] and the randomness ϕ :=

(δ0, δ1, f̂), where δ0 := f(0) and δ1 := f(zout). Now, A wins the game, if the
following three properties hold:

– The commitment com is fresh, i.e., it was not output by the commitment
oracle GetCom.

– Committing to m with randomness ϕ does not yield com. It is easy to see
that this can only happen if L = g01 .

– The commitment com verifies, i.e., VCKZG.VerCom(ck, com) = 1. This is
equivalent to saying that τ0 is a valid KZG opening for comKZG at position
z0 = H(comKZG) to value y0, i.e., that

e
(
comKZG · g−y0

1 · h−ŷ0
1 , g2

)
= e

(
v0, g

α
2 · g−z0

2

)
.

Proof Strategy. In a preparatory phase (see G0 to G3), we rule out some simple
bad events and simplify some equations. Namely, we rule out that there are
collisions among the z’s, e.g., that z0 = zk,i for some i and k. We also rule out that
α is equal to one of those z’s. Further, we ensure that not only com is fresh, but
instead comKZG is fresh. For that, we need to rule out that the adversary reuses
a comKZG,k with a different opening. We also expand the verification equation
using the algebraic representation, and simplify it by ensuring that the exponent
of h1 is zero. Indeed, if this were not the case, one could compute the discrete
logarithm β of h1 = gβ

1 . After this preparatory phase, our main argument follows
(see G4 to G7). Namely, we show that from the adversary’s output, a reduction
can efficiently compute fk∗(z0) for some k∗, while it only provided the �+1 = d
evaluations fk∗(zk∗,i) for i ∈ {0, . . . , �} to the adversary. With this additional
evaluation point fk∗(z0), the reduction can compute fk∗ entirely. Roughly, this
observation can be used as follows: The reduction guesses k∗, interprets a DLOG

instance X∗ = gx∗
1 as g

fk∗ (α)
1 , and embeds it into the commitment comKZG,k∗ .

With the output of the adversary, it can efficiently recover fk∗ and therefore the
discrete logarithm x∗ = fk∗(α). The details of the proof can be found in our full
version [21].

4 Aggregatable Lotteries

In this section, we discuss how our lotteries are defined and how they can be
constructed from our notion of vector commitments. Due to space constraints, we
defer the formal description of our protocol as well as all corresponding security
proofs to our full version [21].

4.1 Definition of Aggregatable Lotteries

We formally present our ideal functionality Flottery(p, T) for non-interactive
aggregatable lotteries in Figs. 5 and 6. It is parameterized by an upper bound

388 N. Fleischhacker et al.

on the winning probability p and the number of lotteries T . The probability
p specifies how likely it is that a party wins in a lottery round. As described
previously, our lotteries should intuitively prevent an adversary from winning
the lotteries a disproportionate amount of times and the adversary should also
not be able to tell which honest parties win the lotteries when. We do, however,
allow the adversary to reduce its winning probability, i.e., the adversary can
misbehave in a way that makes them win the lottery less often. We model this
by allowing the adversary to specify their own winning probabilities for each
lottery, capped at p, upon registration.

Our ideal functionality also relies on a party called the Croupier, which we
did not mention so far. It is in charge of initiating lottery rounds and registering
participants. Note that this model allows the adversary to corrupt Croupier,
meaning that security is guaranteed even when the adversary can arbitrarily
control the lottery, i.e., by registering players or initiating new lotteries.

Parties can be registered by Croupier via the Register interface. A lottery
execution is run by Croupier via the NextLottery interface. Upon calling this
interface, the functionality flips a biased coin for every currently registered party
and stores whether they won the currently executed lottery. Parties can call the
Participate interface to see whether they won a specific lottery. If they did,
then they obtain a lottery ticket label, otherwise they receive nothing. Parties
can call the Aggregate interface with a set of winning ticket labels and party
identifiers to obtain an aggregate ticket label. Lastly, the Verify interface takes
an aggregate ticket label and the corresponding winning parties’ identifiers as
input and checks whether the ticket is valid.

4.2 Our Construction

Let us now proceed with our construction of aggregatable lotteries from vec-
tor commitments. For that, let VC = (VC.Setup,VC.Com,VC.VerCom,VC.Open,
VC.Aggregate,VC.Ver) be a vector commitment scheme according to Definition
3. Let T, k ∈ N be arbitrary parameters. We construct a T -time aggregatable
lottery with winning probability p = 1/k using a random oracle H : {0, 1}∗ → [k].
The main idea is that each player commits to a vector v ∈ [k]T upfront, and wins
the ith lottery if and only if its personal challenge x is equal to vi. Crucially,
the challenge x has to be independent for different players and over different
lotteries, and should be unpredictable before the lottery seed lseed is known.
Thus, we define x := H(pk, pid, i, lseed), where pid is the identifier of the player
and pk is its public key, i.e., its commitment to v.

Algorithms. To define our lottery protocol, we first define algorithms Setup,
Gen,VerKey,Participate,Aggregate,Ver that will be used in our protocol:

– Setup(1λ) → par:
1. Run ck ← VC.Setup(1λ, 1T). Recall that ck defines message alphabet M,

opening space T , and commitment space C. We assume that [k] ⊆ M.
2. Set and return par := ck.

– Gen(par) → (pk, sk):

Jackpot: Non-interactive Aggregatable Lotteries 389

1. Sample v←$ [k]T and run (com, St) ← VC.Com(ck,v).
2. Set and return pk := com and sk := (v, St).

– VerKey(pk) → b
1. Return b := VC.VerCom(ck, pk).

– Participate(t, lseed, pid, sk) → ticket/⊥:
1. Set x := H(pk, pid, t, lseed). If vi = x, return ⊥.
2. Otherwise, set τ ← VC.Open(ck, St, i) and return ticket := τ .

– Aggregate(t, lseed, (pidj , pkj)Lj=1, (ticketj)
L
j=1) → agg:

1. For each j ∈ [L], write pkj = comj and ticketj = τj .
2. For each j ∈ [L], set xj := H(pkj , pidj , i, lseed).
3. Return agg := VC.Aggregate(ck, t, (comj)Lj=1, (xj)Lj=1, (τj)Lj=1).

– Ver(t, lseed, (pidj , pkj)Lj=1, agg = τ) → b:
1. For each j ∈ [L], write pkj = comj and set xj := H(pkj , pidj , t, lseed).
2. Return b := VC.Ver(ck, t, (comj)Lj=1, (xj)Lj=1, τ).

Protocol. We informally explain how to turn these algorithms into a protocol
Πlottery for aggregatable lotteries using a randomness beacon Frandom (see full
version [21]) and a broadcast channel Fbroadcast (see full version [21]). Parties
register for the lottery by running (pk, sk) ← Gen(par) and broadcasting their
public key pk to other parties who verify it using VerKey. To commence the
next lottery, the random beacon samples lseed←$ {0, 1}λ and distributes it to
all the parties, each party then locally computes a ticket ticket as ticket ←
Participate(t, lseed, pid, sk) where t is the index of the current lottery, to observe
whether they obtained a winning ticket for the current lottery. These tickets can
be verified and aggregated by any party. Given a set of tickets (ticketj)Lj=1 a
party can locally use Aggregate to compute an aggregated ticket agg, similarly it
can locally use Ver to verify an aggregated ticket agg. The full formal description
and UC security proof can be found in our full version [21].

5 Discussion and Efficiency

In the final section of our paper, we present some practical thoughts about our
construction and evaluate its concrete efficiency.

5.1 Practical Considerations

In practice, one can make some natural adjustments to our lottery, which we
discuss here.

Weighted Lotteries. One may assign a weight pj to participant j (e.g., based
on its stake) such that j wins independently with probability pj . We can adjust
our lottery to support this: we simply let a participant with weight pj = 1/kj

commit to vectors over the range [ki] instead of [k], and let the hash function
defining j’s challenge xj = H(pkj , pidj , i, lseed) map to the range [ki].

390 N. Fleischhacker et al.

Late Registration. Consider the case of � lotteries and assume that a user
registers late, say after the ith and before the (i + 1)st lottery. In the extreme
case, we have i = � − 1. As written, the user would have to sample a random
vector of length � and commit to it, while only the coordinates from i + 1 to
� would be relevant. After the �th lottery, the entire system restarts and the
user would have to generate a new key and register again. This is wasteful.
Fortunately, there are ways to deal with this: (1) the user could implicitly set
the first i coordinates to 0, which makes committing much more efficient (in
evaluation form, see below). A similar solution applies when the user only wants
to take part in any small subset of lotteries; (2) the user could keep its key for
the next lifecycle of the lottery system until after the ith lottery, where for the
i′th lottery (i′ ≤ i) in the next lifecycle, it would use the i′th coordinate.

High Entropy. Our proof only relies on the fact that the lottery seed output
by the randomness beacon has high entropy. It is actually not necessary that it
is uniformly random.

Evaluation Form. When KZG [30] is used as a vector commitment (as in
our case), we should avoid explicitly computing the interpolating polynomial.
Instead, we can compute the KZG commitments and openings more efficiently
in the Lagrange basis. For that, we need to assume that the KZG setup contains
elements g

λi(α)
1 , where λi is the ith Lagrange polynomial with respect to our

evaluation domain. Note that this can be publicly pre-computed from a standard
KZG setup. Optimal for efficiency is the case where we choose our evaluation
domain to be the group of roots of unity and the polynomials we work with
have degree d such that d + 1 is a power of two, meaning that � + 2 has to
be a power of two. In this case, we can benefit from several tricks to compute
commitments and openings efficiently [19]. We emphasize that this changes the
way we compute commitments and openings, but not their final value, meaning
that this has no negative impact on security.

Pre-computing Openings. Note that for participants of a lottery, the most
time-critical part is not key generation, but rather the time it takes to par-
ticipate and compute winning tickets (algorithm Participate). In our scheme, a
winning ticket is just a KZG opening proof within our evaluation domain. While
computing a single proof takes linear time in � (the number of lotteries), we
can instead pre-compute all KZG opening proofs right after key generation and
before lotteries take place. This can be done efficiently [20].

5.2 Efficiency Evaluation

With these considerations in mind, we evaluate the efficiency of our aggregatable
lottery scheme Jackpot. We focus on communication/storage and computation
costs.

Lottery Schemes. We have implemented the following lottery schemes in
Rust using the arkworks4 framework. VRF-BLS: The VRF-based lottery [17,26]
4 http://arkworks.rs.

http://arkworks.rs

Jackpot: Non-interactive Aggregatable Lotteries 391

instantiated with BLS signatures [10] over curve BLS12-381 and SHA-256; more
precisely, a party with secret key sk wins in lottery i with seed lseed if H(σ) < t
for appropriate t = t(k), where σ is a BLS signature of i and lseed and H is a
hash function; σ is the winning ticket; To verify L tickets, we use BLS batch ver-
ification and L individual hash operations; Note that batch verification is only
possible if all parties sign the same message, which is why can not include the
party’s identifier in the signed message. This also means that two parties with
the same public key do not win independently, which has to be taken care of
by other means. Jackpot: Our lottery scheme, using curve BLS12-381 to imple-
ment KZG; we follow the practical considerations discussed above; we have also
implemented the technique from [20] to optionally pre-compute all openings. For
all of our benchmarks, we assume k = 512 and lseed ∈ {0, 1}256. Our code is
available at

https://github.com/b-wagn/jackpot.

Bandwidth and Memory Consumption. Public keys for Jackpot have size
2 · 48 + 2 · 32 = 160 Bytes, whereas they have size 48 Bytes for VRF-BLS. Now,
assume that L winning tickets have to be stored or communicated. For VRF-BLS,
this requires a storage of (ignoring public keys and identifiers of winning parties)
48 · L Bytes, whereas for Jackpot each ticket has size 48 + 32 = 80 Bytes, but
the L tickets can be aggregated into one. This means that for L tickets, the
relative improvement of Jackpot in comparison to VRF-BLS is 48 ·L/80 = 0.6 ·L,
which is a significant improvement even for small L. Table 1 shows some example
numbers.

Table 1. Comparison of the memory consumption for storing or communicating L
winning tickets for Jackpot with VRF-BLS. Memory is given in Bytes, and the column
“Ratio” describes the ratio between the two schemes. We do not count player identifiers
and their public keys, as they have to be stored on registration independent of winning
tickets.

Tickets L VRF-BLS [B] Jackpot [B] Ratio VRF-BLS/Jackpot

1 48 80 0.6

16 768 80 9.6

256 12288 80 153.6

1024 49152 80 614.4

2048 98304 80 1228.8

System Setup. For the following benchmarks, we have used a Macbook Pro
(2020) with an Apple M1 processor, 16 GB of RAM, and MacOS Ventura 13.4.
We benchmark our Rust implementation using the Criterion benchmark crate5.
5 https://github.com/bheisler/criterion.rs.

https://github.com/b-wagn/jackpot
https://github.com/bheisler/criterion.rs

392 N. Fleischhacker et al.

Aggregation and Verification. As our first benchmark in terms of running
time, we evaluate the running times of aggregation (for Jackpot) and verification
(for Jackpot and VRF-BLS) for different numbers L of tickets in Table 2. The
running time is independent of the total number of lotteries. For VRF-BLS, we use
BLS batch verification to verify multiple tickets with only one pairing equation.
In this way, both schemes require L many hash evaluations and one pairing
equation. Remarkably, our results demonstrate a increase in efficiency by a factor
of 2 for Jackpot in comparison to VRF-BLS. This advantage arises from the fact
that BLS batch verification necessitates operations over G2, whereas Jackpot’s
verification exclusively relies on operations over G1.

Key Generation and Pre-computation. In Table 3, we evaluate the parts
of our scheme Jackpot for which the running time and memory depend on the
total number of lotteries �. For VRF-BLS, the running time is independent of
� and there is no preprocessing, and thus VRF-BLS is not listed in this table.
We focus on three parameter settings � ≈ 2z for z ∈ {10, 15, 20}. The table also
shows the lifetime of keys for such settings, assuming one lottery every 5 minutes.
In this case, 220 lotteries are sufficient for 10 years. For these three parameter
sets, we evaluate the running time of key generation (algorithm Gen) and the
pre-computation of all KZG openings (algorithm Precompute). The table also
shows the memory consumption for storing the result of the pre-computation.

Table 2. Benchmarked running times for aggregation and verification of L tickets for
Jackpot and VRF-BLS. All times are given in milliseconds.

L = 1 L = 16 L = 256 L = 1024 L = 2048

Jackpot Aggregate [ms] 0.038 0.390 2.377 6.899 14.242

Jackpot Ver [ms] 1.413 1.959 3.948 8.875 15.422

VRF-BLS Ver [ms] 1.663 2.990 7.959 19.010 33.838

Table 3. Benchmark results of running times for our lottery scheme Jackpot for
key generation (Gen), pre-computing all openings (Precompute), and participating
(Participate and ComputeTicket) in a lottery for different numbers of lotteries � = 2z−2,
z ∈ {10, 15, 20}. Lifetimes are estimated by assuming one lottery every 5 minutes.

Number of Lotteries � ≈ 210 � ≈ 215 � ≈ 220

Lifetime 3.5 days 4 months 10 years

Time Gen 14.83 ms 317.82 ms 8.27 s

Time Precompute 2.20 s 65.45 s 45 min
Memory Precompute 147 KB 5 MB 151 MB

Time Participate 1.26 μs 1.27 μs 1.31 μs
Time ComputeTicket 9.45 ms 215.80 ms 6.36 s

Jackpot: Non-interactive Aggregatable Lotteries 393

Fig. 5. Ideal functionality Flottery(p, T) for an T -time aggregatable lottery with winning
probability p. The remaining interfaces are given in Fig. 6.

Even for 220 lotteries, running times and memory consumption remain within
practical bounds. Especially, the pre-computation’s duration of approximately
45 minutes is acceptable, given that it can be run in the background at the user’s
convenience, and it is a one-time task for the entire lifespan of a key.

394 N. Fleischhacker et al.

Fig. 6. Remaining interfaces of ideal functionality Flottery(p, T) for T aggregatable
lotteries with winning probability p. The other interfaces are given in Fig. 5.

Participation. To participate in a lottery round, a party determines whether
it won, and it computes a winning ticket in case it did. While we combined
these two tasks in our modeling (algorithm Participate), we separate them for our
benchmarks (algorithms Participate and ComputeTicket, respectively). We show

Jackpot: Non-interactive Aggregatable Lotteries 395

the results in Table 3. For all parameter sets, the running time of Participate (i.e.,
checking if the party won) is negligibly small, namely, within microseconds. The
running time to compute a ticket scales linearly with �, but even for 220 lotteries
it is within a practical range: waiting 7 seconds for a ticket is fine, as one can com-
pute a ticket in our scheme even before the lottery round started. Also, assuming
we did a pre-computation as discussed above, this cost is completely avoided.

References

1. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on bitcoin. In:
Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V., Brac-
ciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) FC 2017 Workshops. LNCS,
vol. 10323, pp. 231–247. Springer, Heidelberg (Apr 2017)

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4_17

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

4. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_24

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (Apr 2008).
https://doi.org/10.1007/s00145-007-9005-7

6. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 435–464. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03329-3_15

7. Boneh, D., Eskandarian, S., Hanzlik, L., Greco, N.: Single secret leader election.
In: AFT ’20: 2nd ACM Conference on Advances in Financial Technologies, New
York, NY, USA, October 21-23, 2020. pp. 12–24. ACM (2020), https://doi.org/10.
1145/3419614.3423258

8. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991,
pp. 565–596. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96884-1_19

9. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003). https://doi.org/10.1007/
3-540-39200-9_26

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_30

11. Broder, A.Z., Dolev, D.: Flipping coins in many pockets (byzantine agreement on
uniformly random values). In: 25th FOCS. pp. 157–170. IEEE Computer Society
Press (Oct 1984). https://doi.org/10.1109/SFCS.1984.715912

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1145/3419614.3423258
https://doi.org/10.1145/3419614.3423258
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1109/SFCS.1984.715912

396 N. Fleischhacker et al.

12. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The
wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-9_11

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

14. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7_5

15. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part II. LNCS, vol. 14005, pp. 499–530. Springer, Heidelberg (Apr
2023). https://doi.org/10.1007/978-3-031-30617-4_17

16. Chow, S.S., Hui, L.C., Yiu, S.M., Chow, K.: An e-lottery scheme using verifiable
random function. In: International Conference on Computational Science and its
Applications. pp. 651–660. Springer (2005)

17. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Hei-
delberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_3

18. Faonio, A., Fiore, D., Kohlweiss, M., Russo, L., Zajac, M.: From polynomial IOP
and commitments to non-malleable zksnarks. IACR Cryptol. ePrint Arch. p. 569
(2023), https://eprint.iacr.org/2023/569

19. Feist, D.: PCS multiproofs using random evaluation. https://dankradfeist.de/
ethereum/2021/06/18/pcs-multiproofs.html (2021), accessed: 2023-09-28

20. Feist, D., Khovratovich, D.: Fast amortized KZG proofs. Cryptology ePrint
Archive, Report 2023/033 (2023), https://eprint.iacr.org/2023/033

21. Fleischhacker, N., Hall-Andersen, M., Simkin, M., Wagner, B.: Jackpot: Non-
interactive aggregatable lotteries. Cryptology ePrint Archive, Paper 2023/1570
(2023), https://eprint.iacr.org/2023/1570

22. Fleischhacker, N., Herold, G., Simkin, M., Zhang, Z.: Chipmunk: Better synchro-
nized multi-signatures from lattices. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. pp. 1109–1123. ACM (2022), https://doi.org/10.
1145/3548606.3560655

23. Fleischhacker, N., Simkin, M., Zhang, Z.: Squirrel: Efficient synchronized multi-
signatures from lattices. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022. pp. 1109–1123. ACM Press (Nov 2022). https://doi.org/10.1145/
3548606.3560655

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0_2

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013). https://doi.org/10.
1109/FOCS.2013.13

26. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium

https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2023/569
https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html
https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2023/1570
https://doi.org/10.1145/3548606.3560655
https://doi.org/10.1145/3548606.3560655
https://doi.org/10.1145/3548606.3560655
https://doi.org/10.1145/3548606.3560655
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13

Jackpot: Non-interactive Aggregatable Lotteries 397

on Operating Systems Principles, Shanghai, China, October 28-31, 2017. pp. 51–68.
ACM (2017), https://doi.org/10.1145/3132747.3132757

27. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for
multiple vector commitments. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.)
ACM CCS 2020. pp. 2007–2023. ACM Press (Nov 2020). https://doi.org/10.1145/
3372297.3417244

28. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (Aug 2017). https://
doi.org/10.1007/978-3-319-63715-0_20

29. Itakura, K.: A public-key cryptosystem suitable for digital multisignature. NEC
research and development 71, 1–8 (1983)

30. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-3-642-
17373-8_11

31. Liang, B., Banegas, G., Mitrokotsa, A.: Statically aggregate verifiable random func-
tions and application to e-lottery. Cryptography 4(4), 37 (2020)

32. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 1–31. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-
3-662-49896-5_1

33. Libert, B., Passelègue, A., Riahinia, M.: PointProofs, revisited. In: Agrawal, S., Lin,
D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 220–246. Springer,
Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22972-5_8

34. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (Feb 2010). https://doi.org/10.1007/
978-3-642-11799-2_30

35. Libert, B.: Simulation-extractable KZG polynomial commitments and applications
to HyperPlonk. In: PKC 2024. LNCS, Springer, Heidelberg (May 2024), to appear

36. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: Extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 245–254. ACM
Press (Nov 2001). https://doi.org/10.1145/501983.502017

37. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS.
pp. 120–130. IEEE Computer Society Press (Oct 1999). https://doi.org/10.1109/
SFFCS.1999.814584

38. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (May 2013). https://doi.org/10.1007/
978-3-642-38348-9_22

39. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS. pp. 543–553. IEEE Computer Society Press
(Oct 1999). https://doi.org/10.1109/SFFCS.1999.814628

40. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (Jan 1991). https://doi.org/10.1007/BF00196725

41. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 45–64. Springer, Heidelberg
(Sep 2020). https://doi.org/10.1007/978-3-030-57990-6_3

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-031-22972-5_8
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1145/501983.502017
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-57990-6_3

Early Stopping Byzantine Agreement
in (1 + ε) · f Rounds

Fatima Elsheimy1(B), Julian Loss2, and Charalampos Papamanthou1

1 Yale University, Connecticut, USA
Fatima.Elsheimy@yale.edu

2 CISPA Helmholtz Center for Information Security, Saarbücken, Germany

Abstract. In this paper, we present two early stopping Byzantine agree-
ment protocols in the authenticated setting against a corrupt minority
t < n/2, where t represents the maximum number of malicious parties.
Early stopping protocols ensure termination within a number of rounds
determined solely by the actual number of malicious nodes f present
during execution, irrespective of t.

Our first protocol is deterministic and ensures early stopping termi-
nation in (d + 5) · (�f/d� + 2) + 2 rounds, where d is a fixed constant.
For example, for all d ≥ 6, our protocol runs in at most (1+ ε) · f rounds
(where 0 < ε < 1), improving (for large f) upon the best previous early
stopping deterministic broadcast protocol by Perry and Toueg [21], which
terminates in min(2f +4, 2t+2) rounds. Additionally, our second proto-
col is randomized, ensuring termination in an expected constant number
of rounds and achieving early stopping in (d+9) · (�f/d�+1)+2 rounds
in the worst case. This marks a significant improvement over a similar
result by Goldreich and Petrank. [15], which always requires an expected
constant number of rounds and O(t) rounds in the worst case, i.e., does
not have the early stopping property.

1 Introduction

Byzantine Agreement (BA) is a fundamental problem in distributed computing.
In the BA problem, n parties start with some value in {0, 1} and wish to jointly
agree on one value while tolerating up to t < n/2 Byzantine parties (Agree-
ment.) If all honest parties start with the same value, they must output that
value (Validity.) The foundations of this field were established by the pioneering
work of Lamport, Shostak, and Pease in the 1980s [17]. One of the main metrics
of efficiency for BA protocols is their round complexity, i.e., the number of syn-
chronous interactions required for the protocol to terminate. This is the focus of
our paper.

This holds for all d ≥ 6 and f > 2d2+8d
d−5

, where d is a predefined fixed constant. In
general, our protocol achieves a round complexity of (1 + O(1/d)) · f + O(d) , which
simplifies to (1 + ε) · f whenever d behaves as a constant in f .
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 398–424, 2025.
https://doi.org/10.1007/978-981-96-0938-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_13&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_13

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 399

A seminal result by Dolev and Strong [9]1 demonstrates that any BA protocol
capable of tolerating t < n/2 malicious parties necessitates at least t+1 rounds
in some runs. However, this bound is considered loose for protocol executions
where the number of corruptions, f , is less than t. According to Dolev et al. [8],
the round complexity lower bound in this scenario is min{f + 2, t + 1}. Thus,
a series of works studies early stopping protocols that terminate based solely on
the actual number of corruptions f . For the information-theoretic setting and
t < n/3, this has culminated in the work of Abraham and Dolev [2] who gave
the first early stopping protocol with polynomial communication and optimal
round complexity of min{f + 2, t + 1}. By comparison, the authenticated set-
ting (where signatures can be used) with t < n/2 malicious corruptions is far
less explored. To the best of our knowledge, the only early stopping protocol in
this setting is due to Perry and Toueg [21] which has (sub-optimal) round com-
plexity min{2f + 4, 2t + 2}. This raises the following natural question: Is there
an early-stopping protocol for authenticated Byzantine agreement with t < n/2
corruptions which approaches the lower bound of min{f + 2, t + 1}? We answer
this question affirmatively by showing the following results:

– We begin by proving a deterministic early-stopping Byzantine agreement pro-
tocol that terminates in (d + 5) · (�f/d� + 2) + 2 rounds, where d is a fixed
positive constant. In particular, for all d ≥ 6 and

f >
2d2 + 8d

d − 5
our protocol always outperforms Perry and Toueg’s protocol. In general, our
protocol achieves a round complexity of

(1 + O(1/d)) · f + O(d) ,

which simplifies to (1 + ε) · f whenever d behaves as a constant in f .
– We then show an early stopping randomized Byzantine agreement protocol

with expected constant rounds, whose worst-case round complexity is (d+9) ·
(�f/d�+1)+2, where again, d is a predefined constant. Our protocol compares
favorably with protocols obtained via the generic compiler of Goldreich and
Petrank [15]. Like our work, their compiler gives an expected constant round
protocol, but its worst-case round complexity is O(t)—therefore it does not
yield an early stopping protocol.

At the heart of our construction, we devise a novel method of eliminating
faulty parties that keep the protocol from terminating. Our construction relies
on prior work of Fitzi and Nielsen [11] to improve the ratio of eliminated parties
to protocol rounds. On average, our protocol eliminates 1 party every 1 + 5/d
rounds, whereas the protocol of Perry and Toueg’s protocol eliminates 1 party
every 2 rounds. We now explain our techniques in more detail.
1 [9] presents the result for Byzantine Broadcast, a variant of Byzantine Agreement

in which a designated sender sends an input value to other parties who must reach
consensus on this value. There is a known reduction to Byzantine Agreement with
optimal resilience of t < n/2.

400 F. Elsheimy et al.

1.1 Technical Overview

Correct-or-Detect Broadcast. We begin by recalling the Correct-Or-Detect
Broadcast protocol of Fitzi and Nielsen which forms the basis of our construction.
Their protocol, henceforth denoted Πd-CoD [11], is parametrized by an arbitrary
positive integer d and a designated sender Ps and runs in d+4 rounds. Πd-CoD is
based on the seminal broadcast protocol of Dolev and Strong, which itself runs
in t + 1 rounds and is secure against any number of t < n corrupted parties.
However, Πd-CoD is a binary protocol, meaning the sender can have a value of
either 0 or 1. It is also 1-biased: the designated sender sends their value to all
parties if the value is 1, but refrains from sending anything otherwise. Rather
than achieving full broadcast, parties in Πd-CoD terminate the protocol in two
possible modes C (correct) and D (detect). In case an honest party terminates
in mode C, Πd-CoD achieves the properties of broadcast, i.e., all parties agree on
the sender’s value. Moreover, if the sender Ps is honest, all honest parties always
terminate in mode C. On the other hand, if some honest party terminates in
mode D, Πd-CoD may not achieve the properties of broadcast. Yet, in this case,
the protocol ensures that all parties identify a common set of d corrupted parties.
To this end, every party Pi among the set of honest parties H outputs a list Fi of
parties it knows to be corrupted, where the protocol ensures that |⋂Pi∈H Fi| ≥ d.
It is important to note that there is no agreement among parties on what mode
the protocol terminates in (otherwise, Πd-CoD would be a full-fledged broadcast
protocol). We extend the construction of Fitzi and Nielsen for binary messages
to messages of arbitrary length in the straight-forward way by broadcasting a
message bit by bit and determining the termination mode as C iff all of the
bit-wise sub-instances output C. Otherwise, we output D and take the union of
identified malicious sets output in any of these instances.

As we use Πd-CoD as a subroutine, it is crucial to ensure that the agreed-upon
d faulty parties cannot participate in future invocations of Πd-CoD. Therefore, at
the beginning of Πd-CoD, parties issue each other proofs of participation (PoP).
Specifically, party Pi sends a signature to party Pj if Pj is not in the Fi. Since
honest parties are never included in each other’s faulty lists, each honest party
receives a PoP, allowing them to continue participating in the protocol. On the
other hand, parties identified as corrupt do not receive a PoP and are thereby
excluded from the protocol. To enforce this, each party attaches its PoP to
every message it sends within the protocol. Additionally, parties will only accept
messages from party Pj if they are accompanied by Pj ’s PoP. This method
ensures that each new invocation of Πd-CoD successfully identifies and excludes
d new malicious parties.

Graded Consensus with Detection. We now explain our main technical
building block, which we refer to as graded consensus with detection. For sim-
plicity, we focus here on our basic version of this primitive in which all parties
input a binary value vi along with their current list Fi of faulty parties. We
additionally require that honest parties are never in each others list of identified
corrupted parties.

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 401

The protocol outputs a value yi ∈ {0, 1} along with a grade gi ∈ {0, 1} and
an updated list F∗

i of faulty parties. As with existing constructions of graded
consensus in the literature, our protocol uses the grade gi to indicate a party’s
confidence in its output yi. Graded consistency says that on outputting grade
gi = 1, Pi knows that all parties agree on Pi’s output yi, but they might not know
that they agree (as they have output grade 0). On the other hand, we ensure
graded validity : if all honest parties input the same value v to the protocol, then
all honest parties output yi = v and grade gi = 1.

The distinguishing feature of our new construction is to ensure that if two
honest parties Pi and Pj disagree on their respective outputs yi �= yj , then they
identify a common set of at least d corrupted parties and extend their faulty
lists F∗

i accordingly. Importantly, we can ensure that the intersection
⋂

Pi∈H F∗
i

contains at least d corrupt parties that are not contained in the common set
of parties’ faulty input lists

⋂
Pi∈H Fi. Because the faulty lists of honest parties

can never contain honest parties, this automatically implies that parties agree on
their output (albeit possibly with grade 0) once there are fewer than d malicious
parties. This property will be crucially exploited in our overall construction of
Byzantine Agreement.

From CoD-Broadcast to Graded Consensus with Detection. Our con-
struction is remarkably simple and builds on the multivalued CoD-Broadcast
described earlier. Each party sends its input (i, vi) via Πd-CoD to all other par-
ties. Including the identifier i with vi is crucial because vi might be 0, and without
i, Pi would not send its value to any party according to Πd-CoD. Honest parties
would then be unable to distinguish between an honest party with a value of
0 and a malicious party that does not have a valid PoP and therefore cannot
send anything. By ensuring that each message includes a non-zero component,
we guarantee that all parties send a non-zero message, allowing honest parties to
thereby confirm the honesty of the sender. To determine the output, we let par-
ties take a majority over all the instances that were received with output s �=⊥,
which means those instances belong to parties with valid PoP from Πd-CoD. To
output yi = v with grade gi = 1, a party Pi waits to observe t+1 instances ter-
minate on value v in mode C (and with output s �=⊥, where s is the identifier of
the sender Ps). On the other hand, for grade gi = 0, Pi simply takes the majority
bit over all instances with s �=⊥ (regardless of what mode they terminate in).
From the properties of Πd-CoD, it immediately follows that the usual consistency
and validity properties of graded consensus. On the other hand, disagreement
can only happen if at least one of the Πd-CoD instances terminates in mode D.
In this case, all parties can update their lists F∗

i with a common set of at least
d newly identified malicious parties. Moreover, our protocol adds only 1 round
(for PoPs) to the running time of Πd-CoD, thus coming out to a total running
time of d + 5 rounds.

From GC with Detection to Deterministic Byzantine Agreement. We
run the detecting graded consensus protocol described above in iterations. In
each iteration k, parties update their input vi,Fi to the output value yi and
faulty list F∗

i of iteration k−1. A party Pi terminates after observing the graded

402 F. Elsheimy et al.

consensus protocol outputting grade gi = 1 in some iteration k and running for
one more subsequent iteration. By graded validity, this ensures that parties all
parties observe the same condition by iteration k + 1 and can terminate by
iteration k + 2 at the latest. The detection property of our graded consensus
module ensures that in every iteration where parties do not terminate, they all
add d common parties to their list of identified corrupted parties. If there are less
than d malicious parties left, honest parties still output the same value. Thus,
after at most �f/d� iterations, all remaining parties must output the same value.
By the above argument, this ensures that they terminate within at most three
more iterations; one iteration to output the same value and two more from the
above argument. Since each iteration takes d+5 rounds, our running time comes
out to (d + 5) · (�f/d� + 3) many rounds.

Randomized Early Stopping Agreement. We conclude by explaining how
to randomize the protocol sketched above. In this manner, we obtain an expected
constant round protocol which also has early stopping complexity (d+9)·(�f/d�+
2). To this end, we add a few rounds on top of our detecting graded consensus
protocol so as to obtain a stronger version of graded consensus with three possible
grades 0, 1, and 2. Here grade 2 indicates the highest confidence in a binary
output yi and indicates agreement for any party who observes it. Thus, a party Pi

sets terminates after observing the graded consensus protocol outputting grade
gi = 2 and running for one more subsequent iteration. On the other hand, grade
1 leaves open the possibility that another honest party has grade 0, in which case
its corresponding output is the default value ⊥. Our construction also extends
the properties of the detecting properties of the (0, 1) graded consensus protocol
described above in the natural way and ensures that once no corrupted parties
remain, parties always agree on their output.

Using this strengthened version of detecting graded consensus, we are able
to run a standard construction of randomized byzantine agreement from graded
consensus. As before, we iterate instances of graded consensus and input the
output from the current iteration to the next iteration. However, parties update
their input to the next iteration to a common random coin whenever it outputs
⊥ with grade 0 in some iteration of the protocol. If the coin agrees for all parties
with some constant probability p, this ensures that parties agree on what they
input to any iteration with probability at least p/2. Thus, parties terminate the
protocol in O(2/p) = O(1) expected iterations of constant round length. The
exact round complexity in expectation is ((2/p) + 2)(d+9), where d+9 are the
number of rounds in an iteration. On the other hand, we can argue along the
same lines as for the deterministic case that all parties terminate in the worst
case after �f/d�+2 iterations, i.e., there are less than d dishonest parties left to
obstruct termination.

Optimization. In our current Byzantine agreement protocols, each party runs
an additional iteration after setting its output to assist other parties in set-
ting their outputs and ensuring agreement. However, there are scenarios where
all honest parties may set their output in the same iteration, resulting in an
unnecessary extra iteration. To circumvent this inefficiency, we rely termination

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 403

certificates. Once an honest party sets its output yi = v, it sends a termina-
tion certificate 〈terminate, v〉i to all parties. From the agreement property of
the protocols, all honest parties will send termination certificates for the same
value. Thus, if a party receives t+1 termination certificates for the same value
v, it sets its output value if it wasn’t set before, forwards the t+1 certificates
in the next round, and then terminates. As discussed, this could potentially
save an unnecessary iteration. Consequently, the round complexity improves to
(d + 5) · (�f/d� + 2) + 2 and (d + 9) · (�f/d� + 1) + 2 for determinstic BA and
randomized BA protocols, respectively.

1.2 Related Work

Byzantine agreement has been extensively studied since the pioneering work of
Shostak, Pease, and Lamport [17]. Dolev and Strong [9] established a critical
result, showing that any broadcast protocol tolerating t < n malicious parties
requires at least t+1 rounds. However, this bound was later refined by Dolev et
al. [8], who demonstrated that when the number of corruptions, f , is much less
than t, the lower bound is min(f + 2, t+ 1). Since then, significant progress has
been made in developing early stopping protocols.

The first such protocol in the information-theoretic setting with optimal
resilience t < n/3 was introduced by Berman et al. [4], though it suffered from
exponential communication complexity. Garay and Moses later addressed this
issue, presenting a Byzantine agreement protocol with polynomial-sized mes-
sages but slightly suboptimal early stopping round complexity of min(f+5, t+1)
[13,14]. More recently, Abraham and Dolev [2] achieved a breakthrough by devel-
oping the first early stopping protocol with polynomial communication, opti-
mal resilience, and optimal round complexity of min(f + 2, t + 1). While the
information-theoretic setting has seen extensive research, there has been limited
work in the authenticated setting with optimal resilience t < n/2. To the best
of our knowledge, Perry and Toueg [21] provide the only authenticated early
stopping protocol with polynomial communication and a round complexity of
min(2f + 4, 2t + 2).

As for randomized protocols, it has been established that they can achieve
an expected constant number of rounds in both the information-theoretic set-
ting [10] and the authenticated setting [1,16,22]. However, these protocols have a
negligible probability of very long runs due to their failure probability. Goldreich
et al. [15] presented a method to eliminate the failure probability, achieving an
expected constant round complexity and worst-case round complexity of O(t)
for up to t < n/2 corruptions—therefore it does not yield an early stopping
protocol. A follow-up work further improved this, achieving expected constant
round complexity and optimal worst-case complexity of t+1 rounds for a worse
resilience of t < n/8 [23]. Achieving expected constant round complexity, t + 1
rounds worst case, and optimal resilience t < n/3 remains unresolved. Impor-
tantly, this question remains open even without considering the early stopping
worst-case round complexity. We note that it is possible to terminate randomized
protocols in round complexity that is independent of the number of corrupted

404 F. Elsheimy et al.

parties. However, in this case, the number of rounds always depends on the
desired error probability δ of the protocol. This makes such protocols difficult
to compare to early stopping protocols. In particular, early stopping protocols
may require much fewer rounds to terminate when the number f of corruptions
is low.

Other works [3,7,20] have explored early stopping protocols but in much
weaker adversary settings, such as omission and crash adversary models. A recent
of work of Loss and Nielsen [18] gives the first early stopping protocol for the
dishonest majority setting with t < n corruptions, albeit with significantly worse
round complexity O(min{f2, t}).

1.3 Paper Organization

Section 2 provides definitions for Byzantine Agreement, (0, 1)-Graded, and
(0, 1, 2)-Graded d-Detecting Byzantine Agreement, as well as for the crypto-
graphic primitives we use, such as signature schemes and common coin. In Sect. 3,
we discuss the intuition and construction of the deterministic Byzantine agree-
ment protocol, along with its correctness proof. In Sect. 4, we present the intu-
ition and construction of the randomized Byzantine agreement protocol. Finally,
we propose a way to further optimize the round complexity in Appendix A. Some
other supplementary protocols are also deferred to the Appendix.

2 Preliminaries

We begin by introducing the model as well as basic definitions.

Network and Setup Assumptions. We assume a fully connected network of
pairwise, authenticated channels between n parties {P1, ..., Pn} = P. We consider
the synchronous network model where all parties have access to a synchronized
clock and there is a known upper bound Δ on the message delays of honest
parties. This allows parties to run protocols in a round-by-round fashion where
rounds are of length Δ and any message that is sent by an honest party at the
beginning of a round are delivered by the end of that round to all honest parties.
Parties are assumed to have established a public key infrastructure (PKI) of a
digital signature scheme that provides an efficient signing routine Sign and an
efficient verification routine Verify. Every party Pi is associated with a public key
pki that is known to all parties and where (only) Pi knows the corresponding
secret key ski. This allows a party Pi to create a signature 〈m〉i on message m
using its secret key ski via 〈m〉i := Sign(ski,m). 〈m〉i can then be efficiently
verified by running Verify(pki, 〈m〉i,m). We refer to a signature 〈m〉i as valid if
Verify(pki, 〈m〉i,m) = 1. For ease of notation, we use the abbreviated notation
〈m〉i to refer to tuples (m, sign(m, ski)) throughout the paper.

As discussed in the introduction, each protocol is designed to invoke other
subroutines. Therefore, we implicitly assume that every protocol is associated
with a session identifier ssid, which indicates the session in which the protocol is
invoked. Consequently, if a proof certificate is created using messages exchanged

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 405

during a session ssid, it will not be valid or applicable for use in any other
session ssid′ �= ssid. To maintain clarity in our notation, we refrain from explicitly
including ssid in our protocols.

Adversary Model. We consider an adaptive Byzantine adversary that can
corrupt up to t < n/2 parties at any point of a protocol execution. In our
protocols, the variable t is defined as t =
n−1

2 �. We refer to the actual number of
corruptions during an execution of the protocol as f ≤ t. A corrupt (or malicious)
party Pi is under full control of the adversary and may deviate arbitrarily from
the protocol. In particular, the adversary learns Pi’s signing key ski, which allows
it to sign messages on Pi’s behalf. In addition, we allow the adversary to delete
(or replace with its own) any undelivered messages of a newly corrupted party
Pi that Pi sent while it was still honest. We denote the set of uncorrupted (or
honest) parties as H.

We assume that the adversary is computationally bounded and cannot forge
signatures of honest parties. In line with the literature in this area, we treat
signatures as idealized primitives with perfect security. When instantiating the
signature scheme with an existentially unforgeable one, we obtain protocols with
non-neglible probability of failure.

Common Coin. We assume an ideal coin-flip protocol CoinFlip that allows
parties to agree with constant probability p < 1 on a random coin in {0, 1}. This
protocol can be viewed as an ideal functionality [6] that upon receiving input
r from t + 1 parties generates a random coin ci and sends (c(r)i) to each party
Pi ∈ P, where c

(r)
i = c

(r)
j with probability at least p. The value remains uniform

from the adversary’s view until the first honest party has queried CoinFlip. Such
a primitive can be achieved using verfiable random functions [19], threshold
signatures [5], or verifiable secret sharing [16].

Next, we present definitions of well-known primitives, such as Byzantine
agreement and graded consensus. Then, we introduce new definitions for our
proposed protocols: graded consensus with detection.

Definition 1 (Byzantine Agreement). Let Π be protocol executed among
parties P1, ..., Pn, where each party Pi holds an input vi ∈ {0, 1} and outputs a
value yi ∈ {0, 1} upon terminating. A protocol Π achieves Byzantine Agreement,
if the following properties hold whenever at most t parties are corrupted.

– Validity: If every honest party Pi inputs vi = v, then all honest parties output
yi = v;

– Consistency: All honest parties output the same value v.
– Termination: Every honest party terminates.

Definition 2 ((0, 1, 2)-Graded Agreement). Let Π be a protocol executed by
parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and outputs a value
yi ∈ {0, 1,⊥} and a grade gi ∈ {0, 1, 2} upon terminating. A protocol Π achieves
(0, 1, 2)-Graded Agreement if the following properties hold whenever at most t
parties are corrupted.

406 F. Elsheimy et al.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 2

– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi

and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
yi = yj

– Termination: Every honest party terminates.

Next, we define the Correct or Detect Broadcast primitive. It is important to
note that our definition differs from the one in [11]. In our version, each honest
party Pi inputs a faulty list Fi along with its initial value vi. Essentially, mali-
cious parties included in the initial faulty list of all honest parties are excluded
from participating in the protocol. Additionally, malicious parties identified dur-
ing the protocol execution are added to the party’s initial faulty list Fi. The
parties then return the updated faulty list F�

i , with the notation F�
i used to

distinguish it from the initial input faulty list Fi.

Definition 3 (Correct or Detect Broadcast (d-CoD)). Let Π be proto-
col executed by parties P1, ..., Pn where a designated sender Ps holds input
v ∈ {0, 1}∗. In addition, each party inputs a list of faulty parties Fi ⊂ P, and out-
puts a value yi ∈ {0, 1}∗, an updated faulty list F�

i ⊂ P, and a flag deti ∈ {C,D}
upon terminating. Π achieves Correct or Detect Broadcast (CoD), if the follow-
ing properties hold whenever at most t parties are corrupted and for all honest
parties Pi, Fi contains only corrupted parties.

– F-soundness: If an honest party Pi outputs F�
i , then F�

i consists only of
corrupted parties. Furthermore, Fi ⊆ F�

i .
– Consistency: If deti = C for some honest party Pi, then every honest party

Pj outputs yj = yi. In this case, we say that the protocol has correctness.
– Validity: If Ps is honest and is not included in Fj for every other honest party

Pj and inputs v, then every honest party Pi outputs (yi = v,Fi = ∅, deti = C).
– d-Detection: If for some honest party Pi, deti = D, then an additional d

parties are added to the faulty lists of all honest parties; that is,∣
∣
∣
(⋂

Pj∈H F�
j

)
\

(⋂
Pj∈H Fj

)∣
∣
∣ ≥ d. In this case, we say that the protocol has

detection.
– Termination: Every honest party terminates.

Definition 4 ((0, 1)-Graded d-Detecting Agreement). Let Π be a protocol
executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and a list
of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and
an updated faulty list F�

i ⊂ P upon terminating. Π achieves (0, 1)-Graded d-
Detecting Agreement if the following properties hold whenever at most t parties
are corrupted and for all honest parties Pi, Fi contains only corrupted parties.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 1

– Graded Consistency: If two honest parties Pi and Pj output gi = gj = 1,
respectively, then yi = yj

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 407

– d-Detection: If two honest parties Pi and Pj output yi = 1 and yj = 0,
respectively, then an additional d parties are added to the faulty lists of all
honest parties; that is,

∣
∣
∣
(⋂

Pj∈H F�
j

)
\

(⋂
Pj∈H Fj

)∣
∣
∣ ≥ d.

– Soundness: If an honest party Pi outputs F�
i , then F�

i consists only of cor-
rupted parties. Furthermore, Fi ⊆ F�

i
– Termination: Every honest party terminates.

Definition 5 ((0, 1, 2)-Graded d-Detecting Agreement). Let Π be a proto-
col executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and a list
of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1,⊥}, a grade gi ∈ {0, 1, 2},
and an updated faulty list F�

i ⊂ P upon terminating. A protocol Π achieves
(0, 1, 2)-Graded d-Detecting Agreement if the following properties hold when-
ever at most t parties are corrupted and for all honest parties Pi, Fi contains
only corrupted parties.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 2

– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi

and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
vi = vj

– d-Detection: If any honest party Pi outputs gi < 2, then an additional d
parties are added to the faulty lists of all honest parties; that is,∣
∣
∣
(⋂

Pj∈H F�
j

)
\

(⋂
Pj∈H Fj

)∣
∣
∣ ≥ d.

– Soundness: If an honest party Pi outputs F�
i , then F�

i consists only of cor-
rupted parties. Furthermore, Fi ⊆ F�

i .
– Termination: Every honest party terminates.

Definition 6 (Proof of Participation). A proof of participation PoPi for a
party Pi ∈ P is a collection of t + 1 signatures of the form 〈Pi〉jl from distinct
signers Pj1 , . . . , Pjt+1 ∈ P. We say that PoPi is valid if for all l ∈ [t + 1], 〈Pi〉jl

is valid with respect to pkjl .

Definition 7 (Signature Chain). Let m ∈ {0, 1}∗, let k ∈ N, and let PoPk be
the proof of participation of party Pk as per Definition 6. We write 〈m〉σ to denote
the nested messages and signatures 〈. . . 〈〈m,PoPj1〉j1 ,PoPj2〉j2 , . . .PoPjk〉jk ,
where j1, . . . jk are distinct values in [n], and refer to σ as a signature chain
of length k. The expression 〈m〉σ is said to be valid if, for all k, the signature
with respect to pkjk

is valid and the proof of participation PoPjk is valid.

3 Deterministic Early-Stopping Byzantine Agreement

As previously discussed, both of our early-stopping protocols are built upon the
(0, 1)-Graded d-Detecting Byzantine Agreement protocol, which is itself derived
from the Correct-or-Detect Broadcast protocol Πd-CoD [11]. This protocol also
utilizes the Proof of Participation protocol ΠPoP [11] as a subroutine. We adopt
a bottom-up approach, initially introducing the aforementioned subroutines and
subsequently demonstrating the construction of the (0, 1)-Graded d-Detecting
Agreement protocol and our early-stopping protocols.

408 F. Elsheimy et al.

3.1 Proof of Participation (ΠPoP)

At a high level, the Proof of Participation protocol, ΠPoP, allows each party to
obtain a proof PoP of its honesty. A proof of participation, PoP, is considered
valid if it consists of t+1 valid signatures from distinct parties Pj ∈ P in the
form 〈Pi〉j . To generate such a proof, each party Pi executes ΠPoP with the
input Fi, which represents its current view of faulty parties. In the first round of
ΠPoP, each party sends a message to all parties not in its faulty list Fi, asserting
their honesty. If a party Pj receives at least t+1 such messages, it uses them to
construct its PoP proof.

Next, we define the two primary properties of Πk
PoP in Lemma 1 and Lemma 2

(Fig. 1).

Fig. 1. Code of ΠPoP for party Pi.

Lemma 1. Assume no honest party Pj is in the faulty list Fi of any other
honest party Pi. Then, each honest party Pj outputs a valid PoPj.

Proof. There are at most t < n/2 malicious parties. Each honest party Pi sends
〈Pj〉i to every party Pj /∈ Fi. As per assumption, every honest party pi will
receive at least t+1 messages of 〈pi〉j . Consequently, every honest party sets its
output PoPi to the aggregation of those received messages. ��
Lemma 2. Assume there exists some party Pj such that Pj ∈ Fi for all honest
parties Pi ∈ P. Then, Pj does not output a valid PoPj.

Proof. There are at most t < n/2 malicious parties. No honest party will send
〈pj〉i to Pj ∈ Fi. Thus, Pj can collect at most t < n/2 such messages, which are
not enough to form PoPj . ��

3.2 Correct or Detect Broadcast Protocols (Πd-CoD and Πd-MCoD)

In essence, Πd-CoD (Fig. 2) is a broadcast protocol that ensures either all par-
ties agree on the sender’s value, or all honest parties identify a common set of
d corrupted parties. The protocol Πd-CoD is 1-biased, meaning the designated
sender Ps sends his value to parties only if it is vs = 1; otherwise, he refrains

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 409

from sending anything. Essentially, Πd-CoD is a modified binary version of Dolev-
Strong [9] that is 1- biased and forced to terminate in d + 5 rounds. In the first
round, all parties run protocol ΠPoP to obtain a valid PoP. Only parties with
valid PoP are allowed to participate in the protocol. Every party tags along its
PoP when sending a message and only accepts messages from parties if they tag
along their valid PoP. In every round r > 1, if a party Pi receives a valid chain
〈1〉σ with respect to Definition 7, including the sender’s signature for the first
time, it accepts the message, appends its own signature and PoP, and forwards it
to all parties in the next round. Let ri be the first round where party Pi receives
such a message. Pi sets yi ∈ {0, 1} and deti ∈ {C,D} based on the value of ri.
If ri ≤ d + 2 or d + 5, Pi outputs deti = C; otherwise, it outputs deti = D. If
ri ≤ d + 3, it outputs yi = 1; otherwise, it outputs yi = 0. For completeness, we
show the Πd-CoD protocol in Fig. 2 and state the correctness lemma (Lemma 3)
for Πd-CoD. We provide the complete proof in the appendix.

Fig. 2. Code of Πd-CoD for party Pi.

Lemma 3. Πd-CoD achieves d-CoD as per Definition 3 in d + 5 rounds.

Next, we construct a protocol, Πd-MCoD (see Fig. 3), that extends the binary
input range of Πd-CoD to a multivalued range. To achieve this, multiple Πd-CoD
protocols can be executed concurrently, allowing the sender to send each bit of

410 F. Elsheimy et al.

their message string. Due to the concurrent execution, the resultant protocol
still runs in d + 5 rounds; however, the communication complexity increases
proportionally with the input size.

For a party pi to output deti = C, all concurrently invoked Πd-CoD instances
must terminate with deti = C. Otherwise, the party outputs deti = D. The
output value yi is obtained by concatenating all output bits from each Πd-CoD
instance. The output faulty list F�

i is the union of all faulty lists produced by
each invoked instance of Πd-CoD. ��

Fig. 3. Code of Πd-MCoD for party Pi.

In the following lemma, we prove the correctness of Πd-MCoD per Definition 3

Lemma 4. Πd-MCoD achieves d-CoD as per Definition 3 and terminates in d+5
rounds.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .

F-soundness: The output faulty list F�
i is the union of all faulty lists F j

i

produced by the l parallel invocations of Πd-CoD. Based on the F-soundness of
the Πd-CoD protocol, the resulting faulty list F�

i contains only malicious parties.

Consistency: If an honest party Pi outputs deti = C, then for each j ∈ [l],
detji = C. Thus, by consistency of Πd-CoD, each party Pj outputs the same bits
in each of the l parallel instances of Πd-CoD as party Pi. Since the output yi is
the concatenation of all output bits of the l instances of Πd-CoD, party Pj will
output yj = yi.

Validity: If Ps is honest, it follows the same logic as discussed earlier since the
output value yi is simply the concatenation of the output values of all invoked
Πd-CoD instances and deti = C holds if for each instance j among those instances,
detji = C. Thus, validity follows directly from validity of Πd-CoD.

d-Detection: For a party to output deti = D, at least one instance j ∈ [l]
among the l parallel instances of Πd-CoD output detji = D. Thus, the d-Detection

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 411

property of Πd-CoD implies that at least d malicious parties are added to every
honest party Pi’s faulty list F�

i via F j
i .

Termination: Πd-MCoD consists of concurrent instances of Πd-CoD. Based on the
assumption that Πd-CoD terminates, Πd-MCoD will also terminate.

Round Complexity. Πd-MCoD consists of concurrent execution of Πd-CoD, which
runs in d + 5 rounds. ��

3.3 (0, 1)-Graded d-Detecting Agreement Construction (Π1-GDA)

In summary, Π1-GDA (see Fig. 4) is a variant of Graded Consensus protocols
[10]. However, in Π1-GDA, honest parties also output a list of detected malicious
parties. Π1-GDA ensures that either every honest party outputs the same value
yi, or every honest party identifies at least d malicious parties (achieving d-
detection).

In Π1-GDA, each party has input vi ∈ {0, 1} and faulty list Fi. Each party
outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and an updated list of identified
malicious parties F�

i ⊂ P. In the first round, each party Pi invokes Πd-MCoD with
input (i, vi). The reason for sending i along with the initial variable is that the
initial variable could be 0. Due to Πd-MCoD’s construction, the designated sender
will not send anything if the initial variable is 0, meaning parties will not receive
anything from the sender to determine if the party was honest or not. Therefore,
a unified message is sent so that if a party sent i �=⊥, all honest parties will
consider it honest and take its value into consideration when calculating the
final output. It is considered honest due to only parties with valid PoP can send
messages according to the construction of Πd-MCoD. For simplicity, we denote
Πj

d-MCoD as the protocol instance where Pj is the sender. Each party stores the
output ((ii,j , yi,j), detji ,F j

i) from all terminated instances of Πj
d-MCoD for each

Pj ∈ P. Consequently, party Pi maintains a list Hi of all parties Pj that sent
a valid i �=⊥ via Πj

d-MCoD. Each party Pi takes the union of all the faulty lists
output by all Πd-MCoD instances to form F�

i , in addition to the parties in its
initial faulty list Fi.

To determine the output value yi and grade gi, a party Pi only considers the
output of Πj

d-MCoD from parties Pj in Hi. If there is a bit v ∈ {0, 1} such that for
at least t + 1 of the parties Pj ∈ Hi, yj

mCoD = v and detji = C, party Pi sets its
output to yi = v and gi = 1. Otherwise, if no such t+1 parties exist, Pi outputs
the majority value over values yi,j among parties Pj in Hi. The protocol runs
for d+5 rounds due to Πd-MCoD. We proceed to prove the correctness of Π1-GDA.

Lemma 5. Π1-GDA achieves graded validity as per Definition 4.

Proof. Assume that for all honest parties Pi, vi = v. Further, assume that for
each honest party Pi, Pi /∈ Fj for any honest party Pj . In the first round, each
honest party Pi invokes as the sender, Πd-MCoD on input ((i, v),Fi). According
to the validity of Πd-MCoD (Definition 3), if Pi is honest, each honest party Pj

outputs detij = C, ij,i = i and yj,i = v. Thus, every honest Pi will add Pj to the

412 F. Elsheimy et al.

Fig. 4. Code of Π1-GDA for party Pi.

list Hi. Thus, since there are at most t < n/2 malicious parties, every honest
party Pi will output (v, C,F j

i) from at least t+1 instances of Πd-MCoD for parties
Pj ∈ Hi. Consequently, each honest party sets yi = v and gi = 1. ��
Lemma 6. Π1-GDA achieves graded consistency as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party
Pj . A party Pi outputs yi = v and gi = 1 if at least t + 1 instances Πj

d-MCoD

corresponding to parties Pj ∈ Hi terminate with detji = C, and have the same
output value yi,j = v. From consistency of Πd-MCoD, every other honest party Pj

outputs ij,k = i and yj,k = v for the same instances and adds the corresponding
parties to those instances to Hj . Since t < n/2, the majority bit over all values
yj,k, k ∈ Hj is also equal to v for every honest party Pj . Consequently, each
honest party sets yi = v.

We proceed to prove the d-detection property.

Lemma 7. Π1-GDA achieves d-detection as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any other honest party
Pj . Suppose two honest parties, Pi and Pj , output different values yi �= yj along
with respective grades gi = gj = 0 and faulty lists F�

i and F�
j . Pi determines

yi as the majority bit over values yi,j output from Πj
d-MCoD where Pj ∈ Hi.

The majority of these values can only differ if an instance of Πk
d-MCoD outputs

different values yi,k �= yj,k for Pi and Pj . The d-detection property of Πd-MCoD

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 413

ensures that at least d malicious parties are added to the faulty list of every
honest party when they take the union of the faulty lists output in all instances
of Πk

d-MCoD.

Finally, we prove soundness and termination.

Lemma 8. Π1-GDA achieves soundness, and termination as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .

Soundness. An honest party Pi adds additional parties to its initial faulty list
Fi by including the parties from the union of all the faulty lists generated by the
Πj

d-MCoD instances for each Pj ∈ P. According to the F-soundness of Πd-MCoD,
the resulting F�

i will only include malicious parties.

Termination. Π1-GDA is constructed from concurrent instances Πd-MCoD. Based
on the assumption that Πd-MCoD terminates, Π1-GDA will also terminate.

Round Complexity. Π1-GDA protocol runs for d + 5 rounds as Πd-MCoD runs
for d + 5 rounds. ��

We summarize the previous lemmata into the main following Lemma of this
section:

Lemma 9. Π1-GDA, (Fig. 4) achieves (0, 1)-Graded d-Detecting Agreement as
per Definition 5. Furthermore, Π1-GDA terminates in d + 5 rounds.

3.4 Deterministic Early-Stopping Byzantine Agreement Protocol
(ΠBAd)

In this subsection, we demonstrate how to construct the deterministic early-
stopping Byzantine agreement protocol, ΠBAd , using Π1-GDA. In ΠBAd , each party
starts with an input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}.
ΠBAd runs in iterations. In each iteration k, parties run Π1-GDA with input
(vi,Fi). Consequently, each party Pi stores the output (yGDAi , gi,Fi) of Π1-GDA.

Based on the grade gi obtained from Π1-GDA, each party Pi determines
whether it is safe to terminate. If Pi outputs gi = 0, it indicates that it is not
safe to terminate, and more iterations are required. Pi updates its input value
for the next iteration based on the output value yGDAi ∈ {0, 1} of Π1-GDA, setting
vi = yGDAi . Conversely, if Pi outputs gi = 1, it is confident that all other honest
parties Pj output the same value yGDAi = yGDAj due to the graded consistency of
Π1-GDA. In this case, Pi runs for one more iteration to ensure that other honest
parties can also safely terminate on the same value, as proven in Lemma 13.
Note, a party can set its output value yi in iteration k, but terminates a few
iterations later. A party only terminates when halti = true.

Each iteration consists of d + 5 rounds: d + 5 rounds for Π1-GDA. Therefore,
the overall round complexity of ΠBAd depends on the number of iterations it
runs. We demonstrate in Lemma 14 that the number of iterations is a function
of f .

414 F. Elsheimy et al.

Fig. 5. Code of ΠBAd for party Pi.

First, we establish that honest parties are never included in the faulty lists
of other honest parties in any iteration. From this point forward, we assume this
lemma holds indefinitely. Consequently, the assumption of Π1-GDA as stated in
Definition 4 is always valid, and we may omit it from proofs for simplicity.

Lemma 10. At the start of each iteration k of ΠBAd , the faulty list Fi of every
honest party Pi contains only corrupted parties.

Proof. In the first iteration k = 1, the faulty lists of all honest parties are empty,
so the lemma holds trivially. For subsequent iterations k > 1, each party updates
its Fi based on the output of Π1-GDA. According to the soundness property of
Π1-GDA, no honest party Pi is included in the Fj of any other honest party Pj

in any of these iterations. Thus the claim follows by a simple induction. ��
Next, we prove that if all honest parties set yGDAi to the same value in iteration

k, all honest parties terminate by at most iteration k + 2.

Lemma 11. If all honest parties Pi set yGDAi to the same value in iteration k,
then all honest parties terminate by at most iteration k + 2.

Proof. Let all honest parties Pi set yGDAi to the same value v in iteration k, i.e.,
yGDAi := v. If a party has grade gi = 1, it sets waiti := 1 and yi := v. Otherwise,
it does nothing. Consequently, each party updates its input value vi for the
subsequent iteration based on this output value of Π1-GDA, such that vi := v. In
the next iteration (k + 1), all honest parties invoke Π1-GDA with the same input
value v. According to the validity of Π1-GDA, all honest parties set gi := 1. If
waiti = 1, Pi sets halti = true, outputs yi = v and terminates in iteration k + 1.
Otherwise, each other honest party sets waiti = 1 and yi := v. In iteration k+2,
as waiti = 1, each honest party sets halti := true, outputs yi = v and terminates.

��
Next, we proceed with proving validity and consistency for ΠBAd .

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 415

Lemma 12. ΠBAd achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every
party invokes Π1-GDA with input (v,Fi). From graded validity of Π1-GDA, every
honest party outputs yGDAi = v and gi = 1. Consequently, as gi = 1, every honest
party sets waiti := 1 and yi = v. In the next iteration, each honest party outputs
yi = v and terminates. ��
Lemma 13. ΠBAd achieves consistency per Definition 1

Proof. Let Pi denote the first honest party to set waiti := 1 and yi := v in the
earliest iteration, say k > 0, indicating it will wait for one more iteration before
terminating. This occurs when pi sets its grade gi to 1, determined by the output
of Π1-GDA in iteration k. According to the graded consistency of Π1-GDA, every
other honest party Pj outputs yGDAj = v in iteration k. According to Lemma 11,
every honest party terminate with output yi = v by the latest in iteration k+2

��
Finally, we prove the round complexity of ΠBAd .

Lemma 14. ΠBAd terminates in (d + 5) · (�f/d� + 3) rounds.

Proof. In any iteration k, if honest parties Pi and Pj have the same output
value yGDAi = yGDAj based on the output of Π1-GDA, then all honest parties
will terminate by iteration k + 2, as proven in Lemma 11. If in some iteration,
Pi and Pj have different output values, i.e., yGDAi �= yGDAj from Π1-GDA, then
according to the d-detection property of Π1-GDA, at least d malicious parties
are added to the faulty list Fi of all honest parties Pi ∈ P. Thus, since there
are f faulty parties, there can be at most �f/d� many iterations where there
are distinct honest parties Pi and Pj that output different values yGDAi �= yGDAj

from Π1-GDA. Thus, after at most �f/d� + 1 many iterations, all honest parties
output the same value yGDAi . Hence, they all terminate by iteration �f/d� + 3
by Lemma 11. Since each iteration takes d + 5 rounds, the overall complexity
comes out to (d + 5) · (�f/d� + 3)). ��

We sum up Lemmata 12, 13, and 14 into Theorem 1 as follows:

Theorem 1. Assume a PKI setup and t < n/2. ΠBAd (Fig. 5) achieves Byzan-
tine Agreement per Definition 1. Furthermore, ΠBAd terminates in (d + 5) ·
(�f/d� + 3) rounds, for any execution with f ≤ t corrupted parties and runs
in communication complexity O(f · n4).

Proof. Byzantine Agreement follows from the preceding lemmata. For the com-
munication complexity, we note that the complexity of an instance of Πd-CoD is
O(n2 · d) and during each iteration of ΠBAd , O(n2) such instances are called to
broadcast the PoPs of length O(n) bit by bit for O(n) senders. Since the protocol
has O(f/d) iterations, the overall complexity is O(n2 · n2 · d · f/d) = O(n4 · f).

416 F. Elsheimy et al.

4 Byzantine Agreement with Expected Constant
and Worst-Case Early-Stopping Round Complexity

In this section, we introduce our randomized Byzantine Agreement protocol,
ΠBAr , which achieves both expected constant time and worst-case early-stopping
round complexity. Similar to our deterministic protocol, ΠBAr is built using the
(0, 1, 2)-Graded d-Detecting Agreement protocol, Π2-GDA. Therefore, we begin
by introducing Π2-GDA and then present the complete construction of ΠBAr .

4.1 (0, 1, 2)-Graded d-Detecting Agreement (Π2-GDA)

Similar to Π1-GDA protocol, Π2-GDA is a variant of Graded Consensus proto-
cols [10], which allows honest parties to also output a list of detected malicious
parties. In Π2-GDA, each party starts with vi ∈ {0, 1} and faulty list Fi. Each
party outputs a value yi ∈ {0, 1,⊥}, a grade gi ∈ {0, 1}, and an updated list
of identified malicious parties F�

i ⊂ P. Π2-GDA is constructed from Π1-GDA and
the black-box (0, 1, 2)-Graded Agreement protocol from [12], Π2-GA, which we
include in the Appendix. In the first round, each party Pi invokes Π1-GDA with
input (vi,Fi), storing the resulting output (y�

i , g�
i ,F�

i). To enhance the confi-
dence on its output value, the parties run Π2-GA with y�

i as its input. Finally,
party Pi terminates and outputs (yi, gi,F�

i), where they are the output of Π2-GA.
Note that the output F�

i is the faulty list output from Π1-GDA and does not get
updated further. The protocol runs for d + 9 rounds: d + 5 for Π1-GDA and 4
additional rounds for Π2-GA (Fig. 6.

Fig. 6. Code of Π2-GDA for party Pi.

Lemma 15. Assume Π2-GA achieves (0, 1, 2)-Graded Agreement per Defini-
tion 2. Π2-GDA achieves (0, 1, 2)-Graded Faulty-Detecting Byzantine Agreement
per Definition 5.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Suppose that every honest party Pi inputs (vi,Fi) to Π2-GDA, where vi ∈ {0, 1}
and Fi ⊂ P.

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 417

Graded Validity. By assumption, every honest party starts with vi = v, and
invokes Π1-GDA with input (v,Fi). According to the graded validity of Π1-GDA
(Definition 4), all honest parties outputs (v, 1,F�

i). Thus in round d + 6, every
honest party invokes Π2-GA with input v. From graded validity of Π2-GA, Pi

outputs yi = v and gi = 2.

Graded Consistency. A party pi sets its gi and yi based on the output of
Π2-GA. From graded consistency of Π2-GA, this holds.

d-Detection. Assume an honest party pi outputs a gi < 2. If an honest party
pi outputs a gi < 2, it follows from graded validity of Π2-GA that not all parties
input the same value to Π2-GA. Parties invoke Π2-GA with the output value they
obtained from Π1-GDA, so there must be two honest parties Pi and Pj that output
distinct values y∗

i and y∗
j from Π1-GDA. Thus, d-detection of Π2-GDA is directly

implied by d-detection of Π1-GDA.

Soundness. The output faulty list, denoted as F�
i , is based on the output

faulty list from Π1-GDA. Due to the soundness property of Π1-GDA, F�
i contains

only malicious parties.

Termination: The protocol invokes Π1-GDA and Π2-GA, which terminates as per
Definitions 4 and 2 respectively.

4.2 Byzantine Agreement with Expected Constant and Worst-Case
Early-Stopping Round Complexity

In this subsection, we present our randomized Byzantine agreement protocol
which has expected constant time and worst case early-stopping round complex-
ity. We demonstrate how to construct the randomized early-stopping Byzantine
agreement protocol, ΠBAr , using Π2-GDA. In ΠBAr , each party starts with an
input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}. ΠBAr runs in
iterations. In each iteration k, parties run Π2-GDA with input (vi,Fi). Conse-
quently, each party Pi stores the output (yGDAi , gi,Fi) of Π2-GDA. Based on the
grade gi obtained from Π2-GDA, each party Pi determines whether it is safe to
terminate. If Pi outputs gi < 2, it indicates that it is not safe to terminate, and
more iterations are run to reach agreement.

Conversely, if Pi outputs gi = 2, it is confident that all other honest parties
Pj output the same value yGDAi = yGDAj due to the graded consistency of Π2-GDA.
Party Pi then updates its input value for the next iteration based on the output
grade gi ∈ {0, 1, 2} of Π2-GDA. If gi > 0, it updates its input value to the next
iteration based on the output value yGDAi ∈ {0, 1} of Π2-GDA, setting vi = yGDAi .
Otherwise, if gi = 0, it sets its input value to the next iteration based on the
random coin it receives from the CoinFlip protocol. We show in Lemma 20 that
ΠBAr has expected constant time.

Each iteration consists of d+9 rounds due to the Π2-GDA protocol. Therefore,
the overall round complexity of ΠBAr depends on the number of iterations it runs
in the worst case. We demonstrate in Lemma 14 that the number of iterations
in the worst case is a function of f .

418 F. Elsheimy et al.

Fig. 7. Code of ΠBAr for party Pi

Similar to Π1-GDA, we also establish that honest parties are never included
in the faulty lists of other honest parties in any iteration, which is a needed
assumption for Π2-GDA

Lemma 16. At the start of each iteration, the faulty list Fi of every honest
party Pi contains only corrupted parties.

Proof. The proof follows from Lemma 10 and from the fact that Fi in ΠBAr is
based on the faulty list produced by Π2-GDA. ��

We proceed to prove both validity of ΠBAr .

Lemma 17. ΠBAr achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every party
invokes Π2-GDA in the second round with input (vi,Fi). From graded validity of
Π2-GDA, every honest party outputs (yGDAi = v, gi = 2,Fi). Consequently, as
gi = 2, every honest party sets waiti := 1 and yi = v. In the next iteration, each
honest party outputs yi = v and terminates. ��

We state the following lemma that will help us in proving consistency.

Lemma 18. If all honest parties set yGDAi to the same value in iteration k, then
all honest parties will terminate by at most iteration k + 2.

Proof. The proof follows similar logic to Lemma 11. ��
Next, we prove consistency.

Lemma 19. ΠBAd achieves consistency per Definition 1

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 419

Proof. Let Pi be the first honest party to set waiti = 1 and yi := v in the
earliest iteration, say k > 0, indicating it will wait for one more iteration before
terminating. This happens when Pi sets waiti to 1, a condition met if its gi equals
2, determined by the output of Π2-GDA. By the graded consistency of Π2-GDA,
every other honest party Pj outputs yGDAj = v and gj ≥ 1. As a result, every
honest party updates its input variable for the next iteration to vi = v. According
to Lemma 18, every honest party terminate with output yi = v by the latest in
iteration k + 2. ��

Finally, we prove that ΠBAr terminates in expected constant time and (d +
9) · (�f/d� + 2) rounds in the worst case.

Lemma 20. ΠBAd has expected constant time and always terminating within
(d + 9) · (�f/d� + 2) rounds.

Proof. The proof follows a similar approach to that used in Lemma 14. First, we
demonstrate the worst-case round complexity. A party Pi terminates in iteration
k + 1 after setting its gi to 2 in iteration k, which is based on the output of
Π2-GDA. According to the graded consistency of Π2-GDA, yGDAi = yGDAj for every
honest parties Pi and Pj in iteration k. Consequently, all other honest parties
terminate in iteration k + 2 from Lemma 18. The setting of gi by a party is
based on the result of Π2-GDA. If an honest party Pi sets gi < 2, then at least
d parties are added to the faulty list of all honest parties Pi according to the
d-detection property of Π2-GDA. Thus, since there are f faulty parties, there can
be at most �f/d� many iterations where all honest parties output gi < 2. Thus,
after at most �f/d�+1 many iterations, all honest parties set gi = 2, followed by
one additional iteration for all honest parties to terminate. Therefore, the total
worst-case round complexity is (d + 9) · (�f/d� + 2). Next, we prove expected
constant time. If an honest party Pi has gi = 2 by the end of iteration k, all
honest parties terminate by the end of iteration k + 2. So, let’s assume every
honest party has gi < 2 by iteration k. Then, with a probability of at least
1/2 · p, the common coin value c

(k)
j of all honest parties Pj ∈ P is equal to the

output yGDAi of honest parties Pi with gi = 1. Note, if gi, gj = 1 for honest
parties Pi and Pj , then yGDAi = yGDAj from graded consistency of Π2-GDA. Thus,
all honest parties start the next iteration with the same value. From Lemma 18,
all honest parties terminate by iteration k+2. Thus, the exact round complexity
in expectation is ((2/p) + 2)(d + 9). ��

We summarize the preceding lemmata into the main theorem of this section:

Theorem 2. Assume a PKI setup, random common coin, and t < n/2. ΠBAr

(Fig. 7) achieves Byzantine Agreement per Definition 1. Furthermore, ΠBAr ter-
minates in expected constant time and worst case (d + 9) · (�f/d� + 2) rounds,
for any execution with f ≤ t corrupted parties and runs in communication com-
plexity O(f · n4).

420 F. Elsheimy et al.

Proof. The theorem follows from the preceding lemmata. For the communication
complexity, we established that the deterministic protocol runs in communica-
tion complexity O(n4 · d). The protocol ΠBAr runs four additional rounds per
iteration compared to ΠBAd due to the construction of Π2-GDA. These extra
rounds run Π2-GA, which has a communication complexity of O(n3) [12]. Thus,
the overall complexity of ΠBAr stays O(n4 · f). ��

A Optimized Protocols

In this section, we show the optimized framework that achieves better round com-
plexity in ΠBAd and ΠBAr . In both BA protocols, an additional iteration is exe-
cuted by each party after setting its output to help other parties reach agreement,
which can be redundant when all honest parties set their output in the same iter-
ation. To address this inefficiency, termination certificates are used. Once an hon-
est party sets its output yi = v, it sends a termination certificate 〈terminate, v〉i

to all parties. Due to the agreement property, all honest parties send termination
certificates for the same value only. If a party receives t + 1 termination certifi-
cates for the same value v, it sets its output (if it hasn’t already), forwards the
certificates in the next round, and terminates. This approach eliminates unnec-
essary iterations, improving the round complexity to (d+5) · (�f/d�+2)+2 for
ΠBAd and (d+9) · (�f/d�+1)+2 for ΠBAr . We present such framework in Fig. 8.
Each party runs the BA protocol as a blackbox, and executes the termination
certificate code as discussed above once it sets its output yi.

Fig. 8. Code of Optimized ΠOP for party Pi.

Theorem 3. Assume a PKI setup, ΠOP (ΠBAd) achieves Byzantine Agreement
per Definition 1 in (d + 5) · (�f/d� + 2) + 2 rounds. Assume a PKI setup,
random common coin, and t < n/2. ΠOP (ΠBAr) achieves Byzantine Agree-
ment per Definition 1, and terminates in expected constant time and worst case
(d + 9) · (�f/d� + 1) + 2 rounds.

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 421

Proof. For validity and agreement, these properties follow directly from the
validity and agreement guarantees of ΠBAd and ΠBAr . Specifically, honest parties
will set their output to the same value yi (agreement) and will set it to the value
they all initially started with (validity). Given that there are at most t malicious
parties, the adversary cannot produce t+ 1 termination certificate messages for
a different value yj �= yi to convince honest parties to set their output to a differ-
ent value. Regarding round complexity, from the proofs of Lemmata 14 and 20,
all honest parties determine set their output value by round (d+5) · (�f/d�+2)
for ΠBAd and (d + 9) · (�f/d� + 1) for ΠBAr , respectively. The exchange of out-
put and termination certificates requires an additional two rounds. Therefore,
the overall round complexity is (d + 5) · (�f/d� + 2) + 2 for ΠOP (ΠBAd) and
(d + 9) · (�f/d� + 1) + 2 for ΠOP (ΠBAr). ��

B Proof of Correctness for Πd-CoD

In this section, we provide the proof for Lemma 3

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .

Validity. If Ps is honest and not listed in the faultylist of any other honest party,
it will obtain a valid PoPi by the end of the first round since there are t < n/2
malicious parties. In the second round, if Ps’s value is 1, it will send this value,
leading all honest parties to set yi = 1 and deti = C. If Ps’s value is not 1, it
will send nothing, and parties will output yi = 0 by round d+ 5. The adversary
cannot forge the honest party’s signature except with negligible probability.

Consistency. A party Pi outputs deti = C if ri ≤ d+ 2 or d+ 5. In the former
case, Pi will forward the chain to all honest parties by at most round d + 4,
causing every other honest party Pj to set rj ≤ d + 3. In the latter case, Pi

did not receive a chain in any round. Therefore, any other honest party that
receives a chain will do so in round d + 5. Otherwise, all honest parties would
have received a chain by round d+5. Thus, rj = d+4, and those parties Pj will
output 0.

F-Soundness. According to the protocol, if an honest party Pj receives a chain
for the first time in round r, it will forward it to all parties in round r + 1.
Therefore, if an honest party receives a chain Pl1 , . . . , Plr for the first time in
round r, it knows that parties Pl1 , . . . , Plr−1 must be malicious; otherwise, it
would have received the chain in an earlier round. Consequently, it adds those
malicious parties to its initial list. Additionally, these r − 1 malicious parties
were not initially included in all honest parties’ faulty lists, due to the reasons
stated at the beginning of this proof.

d-Detection. By construction, for every honest party Pi and Pj , rj ≥ ri − 1.
If Pi outputs deti = d, then ri is either d + 3 or d + 4. Thus, Pi adds at least
d+ 1 malicious parties to its Fi, as it receives the chain at the earliest in round
d+4. Consequently, every other honest party Pj adds at least d malicious parties
because rj ≥ ri − 1.

Termination. The protocol runs for d + 5 synchronous rounds. ��

422 F. Elsheimy et al.

C Supplementary Material

C.1 (0, 1, 2)-Graded Broadcast

We present the (0, 1, 2)-graded agreement protocol [12] that we use as a subrou-
tine in the (0, 1, 2)-Graded d-Detecting Agreement. We then construct graded
agreement from graded broadcast of [16], Π2-GB (Fig. 10). We first show Π2-GB
in Fig. 9 and refer the reader to [16] for the full correctness proof.

Fig. 9. Code of Π2-GB for party Pi.

C.2 (0, 1, 2)-Graded Agreement

Next, to achieve graded agreement from graded broadcast, each party invokes
a graded broadcast with its input vi. As a result, each party determines the
overall grade and output value based on the output values and grades from all
the invoked graded broadcast protocols. The construction is shown in Fig. 10.

Early Stopping Byzantine Agreement in (1 + ε) · f Rounds 423

Fig. 10. Code of Π2-GA for party Pi.

References

1. Abraham, I., Chan, T.H.H., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.:
Communication complexity of byzantine agreement, revisited (2020)

2. Abraham, I., Dolev, D.: Byzantine agreement with optimal early stopping, optimal
resilience and polynomial complexity. In: Proceedings of the Forty-Seventh Annual
ACM Symposium on Theory of Computing. p. 605-614. STOC ’15, Association
for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/
2746539.2746581

3. Alpturer, K., Halpern, J.Y., van der Meyden, R.: Optimal eventual byzantine agree-
ment protocols with omission failures. In: Proceedings of the 2023 ACM Sympo-
sium on Principles of Distributed Computing. p. 244-252. PODC ’23, Association
for Computing Machinery, New York, NY, USA (2023).https://doi.org/10.1145/
3583668.3594573

4. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. Computer
Science pp. 313–321 (1992)

5. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography. Cryptology ePrint Archive,
Paper 2000/034 (2000), https://eprint.iacr.org/2000/034

6. Canetti, R.: Universally composable security. J. ACM 67(5) (sep 2020), https://
doi.org/10.1145/3402457

7. Castañeda, A., Moses, Y., Raynal, M., Roy, M.: Early decision and stopping in
synchronous consensus: a predicate-based guided tour. In: International Conference
on Networked Systems. pp. 206–221. Springer (2017)

8. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720-741 (oct 1990). https://doi.org/10.1145/96559.96565

9. Dolev, D., Strong, H.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12, 656–666 (11 1983). https://doi.org/10.1137/0212045

10. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing. p.
148-161. STOC ’88, Association for Computing Machinery, New York, NY, USA
(1988). https://doi.org/10.1145/62212.62225

https://doi.org/10.1145/2746539.2746581
https://doi.org/10.1145/2746539.2746581
https://doi.org/10.1145/3583668.3594573
https://doi.org/10.1145/3583668.3594573
https://eprint.iacr.org/2000/034
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/96559.96565
https://doi.org/10.1137/0212045
https://doi.org/10.1145/62212.62225

424 F. Elsheimy et al.

11. Fitzi, M., Nielsen, J.: On the number of synchronous rounds sufficient for authen-
ticated byzantine agreement. In: Distributed Computing. pp. 449–463. Springer
Berlin Heidelberg, Berlin, Heidelberg (09 2009).https://doi.org/10.1007/978-3-
642-04355-0_46

12. Fitzi, M., Maurer, U.: From partial consistency to global broadcast. In: Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing. p. 494-
503. STOC ’00, Association for Computing Machinery, New York, NY, USA (2000).
https://doi.org/10.1145/335305.335363

13. Garay, Moses, Y.: Fully polynomial byzantine agreement for n > 3t processors in t
+ 1 rounds. SIAM Journal on Computing 27(1), 247–290 (1998).https://doi.org/
10.1137/S0097539794265232

14. Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement in t + 1 rounds. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Comput-
ing. p. 31-41. STOC ’93, Association for Computing Machinery, New York, NY,
USA (1993). https://doi.org/10.1145/167088.167101

15. Goldreich, O., Petrank, E.: The best of both worlds: guaranteeing termination in
fast randomized byzantine agreement protocols. Information Processing Letters
36(1), 45–49 (1990).https://doi.org/10.1016/0020-0190(90)90185-Z

16. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006. pp. 445–462.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

17. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382-401 (jul 1982).https://doi.org/10.1145/357172.
357176

18. Loss, J., Nielsen, J.B.: Early stopping for any number of corruptions. In: Advances
in Cryptology - EUROCRYPT 2024: 43rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part III. p. 457-488. Springer-Verlag, Berlin, Heidelberg
(2024).https://doi.org/10.1007/978-3-031-58734-4_16

19. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou,
C.H. (ed.) 8th Innovations in Theoretical Computer Science Conference, ITCS
2017, January 9-11, 2017, Berkeley, CA, USA. LIPIcs, vol. 67, pp. 6:1–6:1.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).https://doi.org/10.
4230/LIPICS.ITCS.2017.6

20. Parvédy, P.R., Raynal, M.: Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. In: Proceedings of the Sixteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures. p. 302-
310. SPAA ’04, Association for Computing Machinery, New York, NY, USA (2004).
https://doi.org/10.1145/1007912.1007963

21. Perry, K., Toueg, S.: An authenticated byzantine generals algorithm with early
stopping. Cornell eCommons (1984), online

22. Wan, J., Xiao, H., Devadas, S., Shi, E.: Round-efficient byzantine broadcast
under strongly adaptive and majority corruptions. In: Theory of Cryptography:
18th International Conference, TCC 2020, Durham, NC, USA, November 16-19,
2020, Proceedings, Part I. p. 412-456. Springer-Verlag, Berlin, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-64375-1_15

23. Zamsky, A.: An randomized byzantine agreement protocol with constant expected
time and guaranteed termination in optimal (deterministic) time. In: Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing.
p. 201-208. PODC ’96, Association for Computing Machinery, New York, NY, USA
(1996). https://doi.org/10.1145/248052.248091

https://doi.org/10.1007/978-3-642-04355-0_46
https://doi.org/10.1007/978-3-642-04355-0_46
https://doi.org/10.1145/335305.335363
https://doi.org/10.1137/S0097539794265232
https://doi.org/10.1137/S0097539794265232
https://doi.org/10.1145/167088.167101
https://doi.org/10.1016/0020-0190(90)90185-Z
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/978-3-031-58734-4_16
https://doi.org/10.4230/LIPICS.ITCS.2017.6
https://doi.org/10.4230/LIPICS.ITCS.2017.6
https://doi.org/10.1145/1007912.1007963
https://doi.org/10.1007/978-3-030-64375-1_15
https://doi.org/10.1145/248052.248091

Information-Theoretic Cryptography

Crooked Indifferentiability of the Feistel
Construction

Alexander Russell1, Qiang Tang2, and Jiadong Zhu3(B)

1 University of Connecticut, Storrs, USA
acr@cse.uconn.edu

2 The University of Sydney, Sydney, Australia
qiang.tang@sydney.edu.au

3 State Key Lab of Processors, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

zhujiadong2016@163.com

Abstract. The Feistel construction is a fundamental technique for
building pseudorandom permutations and block ciphers. This paper
shows that a simple adaptation of the construction is resistant, even
to algorithm substitution attacks—that is, adversarial subversion—of
the component round functions. Specifically, we establish that a Feistel-
based construction with more than 337n/log(1/ε) rounds can transform
a subverted random function—which disagrees with the original one at
a small fraction (denoted by ε) of inputs—into an object that is crooked-
indifferentiable from a random permutation (or ideal cipher), even if the
adversary is aware of all the randomness used in the transformation.
Here, n denotes the length of both the input and output of the round
functions that underlie the Feistel cipher. We also provide a lower bound
showing that the construction cannot use fewer than 2n/log(1/ε) rounds
to achieve crooked-indifferentiable security.

1 Introduction

Random oracles/permutations and ideal ciphers are idealized models that have
proven to be powerful tools for designing and reasoning about cryptographic
schemes. They consist of the following two steps: (i) design a scheme Π in which
all parties (including the adversary) have oracle access to (a family of) truly
random functions or random permutations (and the corresponding inversions),
and establish the security of Π in this favorable setting; (ii) instantiate the oracle
in Π with a suitable hash or cipher (such as SHA-1 or AES) to obtain an instan-
tiated scheme Π′. The random oracle (ideal cipher) heuristic states that if the
original scheme Π is secure, then the instantiated scheme Π′ is also secure. In this
work we focus on the problem of correcting faulty—or adversarially corrupted—
random oracles/random permutations so that they can be confidently applied
for such cryptographic purposes.

One particular motivation for correcting random oracles/permutations in a
cryptographic context arises from works studying design and security in the
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 427–460, 2025.
https://doi.org/10.1007/978-981-96-0938-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_14&domain=pdf
https://doi.org/10.1007/978-981-96-0938-3_14

428 A. Russell et al.

subversion (i.e., kleptographic) setting. In this setting, various components of a
cryptographic scheme may be subverted by an adversary, so long as the tam-
pering cannot be detected via blackbox testing. This is a challenging framework
because many basic cryptographic techniques are not directly available: in partic-
ular, the random oracle/permutation paradigm is directly undermined. In terms
of the discussion above, the random oracle/permutation—which is eventually to
be replaced with a concrete cipher—is subject to adversarial subversion which
complicates even the first step of the random oracle/permutation methodology.
To see a simple example, for AES, denoted as (AES.K,AES.E,AES.D), whose
software/hardware implementation (denoted as AES.˜K,AES.˜E,AES.˜D) might be
subverted as follows: AES.˜E(k,m∗) = k, for a trigger message m∗ randomly cho-
sen by the adversary, while AES.˜E = AES.E otherwise, i.e., only when encrypting
a special trigger message, the subverted encryption directly outputs the secret
key. Such subverted AES implementation can be completely broken via a chosen
plaintext attack (even if AES itself is a solid design). Also, this is clearly unde-
tectable via blackbox testing. Moreover, since the subverted implementation of
AES now cannot be assumed to be an ideal cipher anymore, the security of
applications (or constructions of more complicated primitives) that previously
relied on this assumption also becomes elusive.

Our goal is to provide a generic approach that can rigorously “protect” the
usage of random oracle/permutation/cipher from subversion. Specifically, given
a function h̃ drawn from a distribution which agrees in most places with a uni-
form function, we would like to produce a corrected version which appears still
as a random oracle/permutation to adversaries with a polynomially bounded
number of queries. This model is also analogous to the classical study of “pro-
gram checking and self-correcting” [3–5]: the goal in this theory is to transform a
program that is faulty at a small fraction of inputs (modeling an evasive adver-
sary) to a program that is correct at all points with overwhelming probability.
Our setting intuitively adapts this classical theory of self-correction to the study
of “self-correcting a probability distribution”. Notably, the functions to be cor-
rected are less structured, for ideal ciphers or random permutations (or even
structureless, for random oracles), instead of heavily structured.

The Model of “Crooked” Indifferentiability. The first work in this line was [19],
focusing on correcting subverted random oracles; in particular, they introduced a
security model called crooked-indifferentiability to formally capture the problem
as follows: First, a function h : {0, 1}n → {0, 1}n is drawn uniformly at random.
Then, an adversary may subvert the function h, yielding a new function h̃. The
subverted function h̃(x) is described by an adversarially-chosen (polynomial-
time) algorithm A, with oracle access to h. This function may differ from the
original function (so that h̃(x) � h(x)) at only a negligible fraction of inputs (to
evade blackbox testing). To show that the resulting function (construction) is
“as good as” a random oracle in the sense of indifferentiability [8,16], a crooked-
distinguisher D was introduced; it first prepares the subverted implementation
h̃ (after querying h first); then a fixed amount of (public) randomness R is drawn
and published; the construction C may use only the subverted implementation h̃

Crooked Indifferentiability of the Feistel Construction 429

and the randomness R. Now, following the indifferentiability framework, we will
ask for a simulator S such that (C h̃(·, R), h) and (F ,SA(R)) are indistinguishable
to any crooked-distinguisher D (even one who knows R).

1.1 Our Contribution

We investigate the above question in the more restrictive random permutation
setting with also better parameters (actually our construction directly implies
a better construction for correcting random oracles [19]). We first adopt the
security model of crooked-indifferentiability for random permutation. (A formal
definition appears in Sect. 2).

A Warm-Up Construction. To consider feasibility of correcting a sub-
verted random permutation, and also as an example to explore the crooked-
indifferentiability model, we start with a warm-up construction by composing
the following two components.

Component I. The first component is built from a source random function that
was proven to be crooked-indifferentiable from a random oracle [19].

The source function is expressed as a family of � + 1 independent random
oracles:

h0 : {0, 1}n → {0, 1}3n , and hi : {0, 1}3n → {0, 1}n for i ∈ {1, . . . , �}.

These can be realized as slices of a single random function H : {0, 1}n
′

→ {0, 1}n
′

,
with n′ = 3n+�log �+1� by an appropriate convention for embedding and extract-
ing inputs and values. Given subverted implementations {h̃i}i=0,...,� (defined
as above by the adversarially-defined algorithm A), the corrected function is
defined as:

C h̃(x)
def
= h̃0

(

�
⊕

i=1

h̃i(x ⊕ ri)

)

,

where R = (r1, . . . , r�) is sampled uniformly after h̃ is provided (and then made
public).
Component II: the Classical Feistel Cipher. The second component is the classi-
cal Feistel cipher with � rounds for � = 14. Coron et al. [9] proved it is indiffer-
entiable from a random permutation. The classical �-round Feistel cipher trans-
forms a sequence of functions F1, . . . , F� : {0, 1}n → {0, 1}n into a permutation
on the set {0, 1}2n. The construction logically treats 2n-bit strings as pairs (x, y),
with x, y ∈ {0, 1}n, and is defined as the composition of a sequence of permu-
tations defined by the Fi. Specifically, given an input (x0, x1), the construction
defines

xi+1 := xi−1 ⊕ Fi(xi)

for each i = 1, . . . , �, and results in the output string (x�, x�+1). It is easy to see
that the resulting function is a permutation. In practical settings, the “round

430 A. Russell et al.

Fig. 1. The � round classical Feistel construction.

functions” (Fi) are often keyed functions (determined by secret keys of length
poly(n)), in which case the construction results in a keyed permutation.

Composing the Two Components. We can compose the above two components
by replacing the 14 round functions in component II with 14 independent copies
of component I. The result construction, by the property of indifferentiability,
is also crooked-indifferentiable from a random permutation as a corollary of the
replacement theorem of crooked-indifferentiability (see Section A.3 in the full
version [21]).

Our Direct and “Optimal” Construction. However, there are two draw-
backs. First, the structure of the construction is complicated. Second, it makes
at least linear number of invocations of the underlying subverted component
(and also O(n2) random bits) to achieve security. Instead, we prove that a direct
Feistel-based construction can also work and remove these drawbacks, answering
an open question in [19,20].

In particular, our construction involving only public randomness can boost
a “subverted” random permutation (or just a function) into a construction
that is indifferentiable from a perfect random permutation (Sect. 3, 4). Besides
structure-wise simplicity (and the fact that it adopts the direct Feistel struc-
ture), our construction requires a smaller number (O(n/log(1/ε))) of invocations
of the underlying (subverted) random function, which is essentially optimal up
to constant factors (at least for the Feistel structure, as we prove impossibility to

Crooked Indifferentiability of the Feistel Construction 431

have fewer rounds; there was also explicit attacks for the case of random oracle
in [19], but the construction in [19] was not “tight” in this sense, with a factor
of O(log(1/ε))).

Our subversion-resistant construction on strings of length 2n relies on the
parameter � and the Feistel construction applied to � round functions that are
determined by:

– � functions Fi : {0, 1}n → {0, 1}n that are subject to subversion as described
above,

– an additional family of � public, uniform affine-linear functions determined
by � pairs (ai, bi) ∈ GL(F2, n) × F

n
2 .

1

The affine-linear functions are determined by independent and uniform selection
of ai from GL(n, F2) (to be concrete, the collection of invertible n×n matrices with
elements in F2), and bi ∈ F

n
2 . The i-th affine linear function, defined on an input

x ∈ F
n
2 , is given by the rule x 	→ ai · x ⊕ b. The final construction is given by the

Feistel construction applied to the round functions x 	→ F̃i(ai · x ⊕ b), where F̃ is
the subverted version of the function Fi. To be concrete, with the data (Fi, ai, bi)
(with i = 1, . . . , �), the construction C : {0, 1}2n → {0, 1}2n is defined by the rule

C(x0, x1) := (x�, x�+1) ,where

xi+1 := xi−1 ⊕ F̃i(ai · xi ⊕ bi) , for i = 1, . . . , � .

where n-bit strings x and bi are viewed as length n column vectors, ai · xi is the
multiplication between matrix ai and column vector xi, and F̃i(x) is the subverted
function value at (i.x) using the subversion algorithm A.

New Techniques for Proving Crooked-Indifferentiability of Feistel
Structure. Besides that we aim to get a random permutation, which has stricter
requirements, our security analysis needs substantially more sophisticated tech-
niques than that in [19]. The security of the two-layer construction for random
oracle in [19] relies on the fact that the XOR structure

g̃R(x)
def
=

�
⊕

i=1

h̃i(x ⊕ ri)

is unpredictable so that the simulator can always program h0 (at g̃R(x)). By
contrast, our simulator cannot program at one fixed round function (because
otherwise the distinguisher can always query this round function first). The
simulator needs to flexibly choose where to program according the queries of the
distinguisher.

We remark that some techniques in our proof are inspired by the elegant
techniques of Coron et al. [9] for conventional indifferentiability; for example, we

1 For technical reasons, we need to encode the input of the round function with the
pairwise independent function, please see the proof of Lemma 3 for detailed discus-
sions.

432 A. Russell et al.

adopt the concept of “chain” to analyze the basic structure of Feistel construc-
tion. However, the subversion of the random function in our setting introduces
multiple new challenges, because of, e.g., on-the-fly adaptive queries of the sub-
verted F̃ when the simulator runs it.

To achieve “crooked” indifferentiability, our simulator needs to ensure con-
sistency between two ways of generating output values: one is directly from
the construction C; the other calls for an “explanation” of P—a truly ran-
dom permutation—via reconstruction from related queries to F (in a way con-
sistent with the subverted F̃). To ensure a correct simulation, the simulator
must suitably answer related queries (defining one value of C). Essentially, the
proof relies on the fact that for any Feistel “chain” (x0, . . . , x�+1), the simula-
tor can find two places (xu, xu+1) and program Fu(au · xu ⊕ bu) := xu−1 ⊕ xu+1,
Fu+1(au+1 · xu+1 ⊕ bu+1) := xu ⊕ xu+2 to make the Feistel chain consistent with
P(x0, x1) = (x�, x�+1). There are two major challenges in the simulation: first, one
of the two programmed terms Fu(au · xu ⊕ bu) and Fu+1(au+1 · xu+1 ⊕ bu+1) may
be already evaluated prior to programming by the simulator; second, the one of
the two programmed terms may be dishonest (i.e., F̃ � F) so that programming
may not be possible.

In the security proof, to analyze the difference between the construction
and the ideal object (random permutation), we need to carefully design several
intermediate games for transition. Using the games, we reduce the gap between
the construction and the ideal object to the probability of two “bad events” that
reflect the two challenges above. Finally, we prove the bad events are negligible
by carefully analyzing the structure of our construction. We also need to give a
more careful analysis of efficiency of the simulator as it has to internally generate
many more terms because of the necessity of running F̃.

1.2 Related Works

Crooked-Indifferentiability of Random Oracles. In [19], the authors proved that
a simple two-layer construction using O(n2) public random bits is crooked-
indifferentiable from a random oracle (following results [2,19] gave more rigorous
analysis, and showed applications in subversion resistant digital signatures [6]).
This work focuses on a strictly stronger goal: to obtain a random permutation,
and with a smaller number of rounds (thus also improves the rounds of construc-
tion for correcting subverted random oracles). This line of work was motivated
to defend against kleptographic attacks, originally introduced by Young and
Yung [23,24], with renewed recent interests (e.g., [1,12,17,18,22]).
Conventional Indifferentiability of Feistel Cipher. The notion of indifferentiabil-
ity was proposed in the elegant work of Maurer et al. [16]; this notably extends
the classical concept of indistinguishability to circumstances where one or more
of the relevant oracles are publicly available (such as a random oracle). It was
later adapted by Coron et al. [8]; several other variants were proposed and stud-
ied in [14,15]. A line of notable work applied the framework to the ideal cipher
problem: in particular the Feistel construction (with a small constant number

Crooked Indifferentiability of the Feistel Construction 433

of rounds) is indifferentiable from a random permutation, see [9–11]. Our work
adopts the indifferentiability framework applied to the subverted case (that is,
crooked-indifferentiability); the construction aims to sanitize a subverted random
function to be indifferentiable from a clean random permutation.
Related Work on Non-uniformity and Pre-processing. There are several recent
approaches that study idealized objects in the auxiliary input model (or with pre-
processing) [7,13]. As pointed out in [20], crooked-indifferentiability is strictly
stronger than the pre-processing model: besides pre-processing queries, the
adversary may embed (and keep) compressed state as backdoor; more impor-
tantly, our subverted implementation can further misbehave in ways that cannot
be captured by any single-shot polynomial-query adversary because the subver-
sion at each point is determined by a local adaptive computation.

2 The Model: Crooked Indifferentiability

The primitives that we focus on in this paper are random permutations. A
random permutation is an ideal primitive which provides an independent random
output for each new query so that the resulting function is a permutation. We
next extend the model of crooked indifferentiability [19] for random oracles2 to
capture the setting of random permutations.

Crooked Indifferentiability for Random Permutations. As mentioned in the intro-
duction, we consider the problem of “repairing” a subverted random permutation
(or function directly) in such a way that the corrected construction can be used
as a drop-in replacement for an unsubverted random permutation. Same as [19],
we model the act of subversion of h as the creation of an “implementation” h̃
of the new, subverted permutation (or function); in practice, this would be the
source code of the subverted version of the function h. In our setting, we define
A as a polynomial-time algorithm with oracle access to h; thus the subverted
function is x 	→ Ah(x). Specifically, in Fig. 2,

1. The deterministic construction will have oracle access to the random permuta-
tion only via the subverted implementation h̃ but not via the ideal primitive h.
(Operationally, the construction has oracle access to the function x 	→ Ah(x).)
The construction depends on access to trusted, but public, randomness R.

2. The simulator is provided, as input, a description of the subversion algorithm
A (a Turing machine) and the public randomness R; it has oracle access to
the target ideal functionality (F , here is a random permutation).

Point (2) is necessary, and desirable, as it is clearly impossible to achieve indif-
ferentiability using a simulator that has no access to A (the distinguisher can
simply query an input such that C will use a value that is modified by A while
S has no way to reproduce this). As shown in [19], such an extended notion can
also enjoy a replacement theorem (see Sect. A.3 in the full version [21]).
2 The concept of crooked indifferentiability for random oracles was initially an exten-

sion of classical indifferentiability. We put the definition and properties of classical
indifferentiability in Section A.1 of the full version [21].

434 A. Russell et al.

Fig. 2. The crooked indifferentiability notion: the distinguisher D, in the first phase,
manufactures and publishes a subverted implementation denoted as h̃, for ideal prim-
itive h; then in the second phase, a random string R is published; after that, in the
third phase, algorithm C , and simulator S are developed; the crooked-distinguisher D,
in the last phase, either interacting with algorithm C and ideal primitive h, or with
ideal primitive F and simulator S, return a decision bit. Here, algorithm C has oracle
access to h̃, while simulator S has a description of A and oracle access to F .

Definition 1 (Crooked indifferentiability[19]). We define the notion of
crooked indifferentiability by the following experiment.

Real Execution

1. Consider a distinguisher D and the following multi-phase real execu-
tion. Initially, the distinguisher D commences the first phase: with ora-
cle access to ideal primitive h the distinguisher constructs and publishes
a subverted implementation of h; this subversion is described as a deter-
ministic polynomial time algorithm denoted A. (Recall that the algorithm
A implicitly defines a subverted version of h by providing h to A as an
oracle—thus Ah(x) is the value taken by the subverted version of h at
x.) Then, a uniformly random string R is sampled and published.

2. Then the second phase begins involving a deterministic construction C :
the construction C requires the random string R as input and has oracle
access to h̃ (the crooked version of h); explicitly this is the oracle x 	→

Ah(x).
3. Finally, the distinguisher D, now with random string R as input and full

oracle access to the pair (C , h), returns a decision bit b. Often, we call
D the crooked-distinguisher.

Ideal execution

1. Consider now the corresponding multi-phase ideal execution with the
same crooked-distinguisher D. The ideal execution introduces a simu-
lator S responsible for simulating the behavior of h; S is provided full
oracle access to the ideal object F . Initially, S must answer any queries
made to h by D in the first phase. Then S is given the random string R

Crooked Indifferentiability of the Feistel Construction 435

and the algorithm 〈A〉 (generated by D at the end of the first phase) as
input.

2. In the second phase, the crooked-distinguisher D, now with random string
R as input and oracle access to the alternative pair (F ,S), returns a bit
b.

We say that construction
C is (nsource, ntarget, qD, qA, ε)-crooked-indifferentiable from ideal primitive F if
there is an efficient simulator S so that for any crooked-distinguisher D making
no more than qD(n) queries and producing a subversion A making no more than
qA(n) queries, the real execution and the ideal execution are indistinguishable.
Specifically,

�

�

�

�

�

Pr
u,R,h

[

h̃ ← Dh(1n) ; DC h̃ (R),h(1n, R) = 1
]

−

Pr
u,R,F

[

h̃ ← Dh(1n) ; DF,SF(R, 〈h̃〉)(1n, R) = 1
]

�

�

�

�

�

≤ ε(n) .

Here R denotes a random string of length r(n) and both h : {0, 1}nsource →

{0, 1}nsource and F : {0, 1}ntarget → {0, 1}ntarget denote random functions where
nsource(n) and ntarget(n) are polynomials in the security parameter n. We let u
denote the random coins of D. The simulator is efficient in the sense that it is
polynomial in n and the running time of the supplied algorithm A (on inputs of
length nsource). See Fig. 2 for detailed illustration of the last phase in both real
and ideal executions. (While it is not explicitly captured in the description above,
the distinguisher D is permitted to carry state from the first phase to the second
phase.) The notation Ch̃(R) denotes oracle access to the function x 	→ Ah(x).

Remarks. We leave a few remarks here.

1. Our main security proof will begin by demonstrating that in our particular
setting, security in a simpler model suffices: this is the abbreviated crooked
indifferentiability model, articulated in Sect. A.2 in the full version [21]. We
then show that—in light of the special structure of our simulator—it can be
effectively lifted to the full model above. Roughly speaking, the only difference
between the full and abbreviated crooked-indifferentiability is that, in phase I
of the abbreviated crooked indifferentiability model, the distinguisher can not
query h(in the real execution) or S(in the ideal execution) before it outputs
the subversion algorithm.

2. In the crooked-indifferentiability model, it is noteworthy that for a specific
construction C, the need to correct subverted random oracles and subverted
random permutations can be simplified to addressing subverted random per-
mutations alone. This is due to the fact that a subverted random permutation
deviates negligibly from a subverted random function. Thus, the focus in the
subsequent sections will be on correcting subverted random permutations
exclusively.

436 A. Russell et al.

3 Main Result and Technical Overview

3.1 The Construction and Main Result

For a security parameter n and a (polynomially related) parameter �, the con-
struction depends on public randomness R = ((a1, b1), . . . , (a�, b�)).

The source function is expressed as a family of � independent random oracles:

Fi : {0, 1}n → {0, 1}n , for i ∈ {1, . . . , �}.

These can be realized as slices of a single random function F ′ : {0, 1}n
′

→

{0, 1}n
′

, with n′ = n+ �log �+1� by an appropriate convention for embedding and
extracting inputs and values. (Note that the Fi will not generally be permuta-
tions.) The family of � public, uniform affine-linear functions are determined by
R = ((a1, b1), . . . , (a�, b�)) where (ai, bi) ∈ GL(F2, n)×Fn2 for each i = 1, . . . , �. ai and
bi are selected independently and uniformly from GL(n, F2) (to be concrete, the
collection of invertible n × n matrices with elements in F2) and F

n
2 , respectively.

The i-th affine linear function, defined on an input x ∈ F
n
2 , is given by the rule

x 	→ ai · x ⊕ b. The final construction is given by the Feistel construction applied
to the round functions x 	→ F̃i(ai · x ⊕ b), where F̃ is the subverted version of
the function Fi. To be concrete, with the data (Fi, ai, bi) (with i = 1, . . . , �), the
construction C : {0, 1}2n → {0, 1}2n is defined by the rule

C(x0, x1) := (x�, x�+1) ,where

xi+1 := xi−1 ⊕ F̃i(ai · xi ⊕ bi) , for i = 1, . . . , � ,

where n-bit strings x and bi are viewed as length n column vectors, ai · xi is
the multiplication between matrix ai and column vector xi, and F̃i(x) is the
subverted function value at (i, x) using the subversion algorithm A. A visual
illustration of the construction can be obtained by substituting the family of the
round functions Fi in Fig. 1 with F̃i(ai · x ⊕ b).

We wish to show that such a construction is indifferentiable from an actual
random permutation (with the proper input/output length).

Theorem 1. We treat a function F ′ : {0, 1}n
′

→ {0, 1}n
′

, with n′ = n+ �log �+1�,
as implicitly defining a family of random oracles

Fi : {0, 1}n → {0, 1}n , for i > 0,

by treating {0, 1}n
′

= {0, . . . , L − 1} × {0, 1}n and defining Fi(·) = F(i, ·), for i =
0, . . . , � ≤ L−1. (Output lengths are achieved by removing the appropriate number
of trailing symbols). Consider a (subversion) algorithm A so that it defines a
subverted F̃. Assume that for every F (and every i),

Pr
x∈{0,1}n

[F̃i(x) � Fi(x)] ≤ ε(n) = negl(n) . (1)

For � ≥ 337n/log(1/ε), the above Feistel-based construction is (n′, 2n, qD,
qA, ε ′)-indifferentiable from a random permutation P : {0, 1}2n → {0, 1}2n, where

Crooked Indifferentiability of the Feistel Construction 437

qD is the number of queries made by the distinguisher D, qA is the number of
queries made by A as in Definition 1 and ε ′ = (22qD(qA +1))3/2n. Both qD and
qA are polynomial functions of n, ensuring ε ′ is negligibly small.

Remark. For some technical reasons, we need the round number parameter �
to be at least 337n/log(1/ε). A more careful choice of parameters in the proof
could potentially reduce the constant factor to below 200. When considering
� = 337n/log(1/ε), a particularly intriguing scenario arises when ε = 2−cn for
some constant 0 < c < 1. In this case, � becomes a constant value of 337/c.

To somewhat simplify the notation, we define the function CFi : {0, 1}n →

{0, 1}n to be the unsubverted analog of the round function CFi(x) = Fi(ai · x ⊕ bi)
and, similarly, define CF̃i(x) = F̃i(ai · x ⊕ bi) to be actual round function. Since
the function x → ai · x ⊕ bi is a permutation (note that ai is an invertable linear
function), reasoning about CFi (and CF̃i, respectively) is effectively equivalent
to reasoning about Fi (and CFi). For convenience, we will focus on CFi (CF̃i) for
the bulk of the paper (i.e., we will treat the query and evaluation of Fi(x) as
the query and evaluation of CFi(x ′) such that x = ai · x ′ ⊕ bi). When evaluating
CF̃i(x), the subversion algorithm queries CF at a set of points of polynomial size.
We define the set of these points to be

Qi(x) = {(j, x ′) | the evaluation of CF̃i(x) queries CFj(x
′)} .

3.2 2n/log(1/ε) Rounds are Not Enough

We first show that the above construction is insecure with fewer than 2n/log(1/ε)
rounds.

Lemma 1. Let n be a positive integer and ε be a real number with 1/16 ≥

ε ≥ 2−n. Let � be a positive integer not greater than 2n/log(1/ε) and let λ =

�n/� + 1�. Consider selecting a uniform vector B ∈ F
λ�/2
2 and a λ�/2 by n matrix

A = (C1, ...,C�/2)
T , where each Ci is a uniform full rank matrix in F

n×λ
2 . Then,

over the randomness of the choice of A and B,

Pr
[

There does not exist a vector X ∈ F
n
2 such that A · X = B.

]

= O(2−n/4),

where A · X is the multiplication between a matrix and a column vector and B is
viewed as a column vector.

Proof. Notice that it suffices to show that the matrix A chosen above has full
rank with probability 1 − O(2−n/4). Rather than proving this, we establish a
stronger statement by regarding A as a uniform matrix in F

λ�/2×n
2 .

It is worth noting that λ�/2 ≤ (n + �)/2 < (n + n/2)/2 = 3n/4. Thus, it is
adequate to demonstrate that a uniform 3n/4 by n binary matrix A′ has full
rank with probability 1 −O(2−n/4).

For any i = 1, . . . , λ�/2, we denote by wi the ith row vector of A′ and Wi the
set of first i row vectors of A′. For a set S of vectors, we use 〈S〉 to denote the
vector space spanned by the elements of S.

438 A. Russell et al.

Then, over the uniform choice of A′, we have

Pr[A′ does not have full rank]

≤

3n/4
∑

i=1

Pr[wi ∈ 〈Wi−1〉]

≤

3n/4
∑

i=1

|〈Wi−1〉|/2n

=

3n/4
∑

i=1

2i−1/2n = O(2−n/4).

Theorem 2. The construction is not crooked-indifferentiable from a random
permutation if � ≤ 2n/log(1/ε).

Proof. Let λ = �n/� + 1�(so λ ≥ n/�). Consider the following subversion algo-
rithm A: for each Fi (i = 1, . . . , �) and any n bit string x, define F̃i(x) := 0n if the
first λ bits of x are 0s. Otherwise, define F̃i(x) := Fi(x). (Notice that this subver-
sion algorithm is legitimate since the dishonest fraction is 2−λ ≤ 2−n/� ≤ ε .)

Now we prove the distinguisher can launch the following attack with the
subversion algorithm above. We will show that, with overwhelming probability
over the choice of R, there is a pair of n-bit strings (x0, x1) such that for the
Feistel chain (x1, x2, . . . , x�) related to (x0, x1), CF̃i(xi) = 0n for all i = 1, . . . , �.
(We use the terminology “with overwhelming probability” in the paper to mean
“with all but negligible probability.”)

Notice that the fact that such a pair (x0, x1) exists is equivalent to the fact
that there is a pair (x0, x1) such that the first λ bits of a2i+1 · x1 ⊕ b2i+1 and the
first λ bits of a2j · x0 ⊕ b2j are 0s for all 0 < 2i + 1, 2 j ≤ �. And this is true with
constant probability due to Lemma 1. (Also, the attack can be launched by a
polynomial running time adversary since the linear equations in Lemma 1 can
be solved efficiently.)

3.3 Technical Overviews and Notations

In this section we give a technical overview of proving Theorem 1.

Our Strategy: Simulation via judicious preemptive chain completion. To convey
the main idea, suppose that a distinguisher queries the simulated round functions
in order to determine the value of the permutation P on input (x0, x1) ∈ {0, 1}2n;
in particular, the resulting output (x�, x�+1) is obtained by computing xi+1 :=
xi−1 ⊕ CF̃i(xi) for all i = 1, . . . , �. Then, (x�, x�+1) must equal the output of P
on input (x0, x1): otherwise the distinguisher can easily detect that it is not
interacting with the real Feistel construction. To ensure such consistency, the
simulator must recognize that the queries x1, . . . , x� belong to an evaluation of
C , and must set the values CFi(xi) to enforce consistency with P. This mechanism
is described informally below and in more detail in the next section.

Crooked Indifferentiability of the Feistel Construction 439

The simulator maintains an internal table for each function CFi that indi-
cates a partial definition of this function: these tables typically expand during
interaction with the distinguisher and satisfy the invariant that once a CFi value
is defined in the table for a particular element x of the domain, this is never
removed or altered later in the computation. While the tables define the CFi
values used to respond to any query answered by the simulator, the table may
record additional CFi values not as yet queried by the distinguisher as a book-
keeping tool. Of course, distinguisher queries are always answered consistently
with the values in the tables.
Subverted and Unsubverted Chains; Honest Chains. In the following, an index
s, combined with a sequence of values xs, . . . , xs+r (r ≥ 1, 1 ≤ s < s + r ≤ �)
such that CFi(xi) is defined by the simulator for all s ≤ i ≤ s + r and such that
xi+1 := xi−1 ⊕ CFi(xi) for all s + 1 ≤ i ≤ s + r − 1, will be called an unsubverted
chain(denoted by (s, xs, . . . , xs+r)). For each index i and an element x ∈ S.CFi, we
say CF̃i(x) is defined if its value can be determined by the subversion algorithm
and the CF values that are already defined by the simulator. We assume without
loss of generality that the subversion algorithm always evaluates CFi(x) when
called upon to evaluate CF̃i(x) (for any i and x). Therefore, CFi(x) must be
defined when CF̃i(x) is defined. An index s, combined with a sequence of values
xs, . . . , xs+r (r ≥ 1, 1 ≤ s < s+r ≤ �) such that CF̃i(xi) is defined by the simulator
for all s ≤ i ≤ s+ r, and such that xi+1 := xi−1 ⊕CF̃i(xi) for all s+1 ≤ i ≤ s+ r −1,
will be called a subverted chain. The length L(·) of an unsubverted (or subverted)
chain is defined to be the number of the elements in the chain. An unsubverted
(or subverted) chain is called a full chain if it has length �. Note, in general, that
chains always have length of at least two (as r ≥ 1).

For a chain c = (s, xs, . . . , xs+r), we define Qc =
⋃s+r

i=s Qi(xi) if CF̃i(xi) is defined
for i = s, . . . , s + r. For any i ∈ {1, . . . , �} and x ∈ {0, 1}n, if CF̃i(x) is defined, we
say (i, x) is honest when CFi(x) = CF̃i(x); similarly, we say it is dishonest when
CFi(x) � CF̃i(x). We say a subverted chain is honest if all the elements on the
chain are honest.

For a chain c = (s, xs, . . . , xs+r) and a term (i, x), we say (i, x) is an element of
c(or (i, x) ∈ c) if s ≤ i ≤ s + r and xi = x. For two chains c1 = (s1, xs1, . . . , xs1+r1)
and c2 = (s2, ys2, . . . , ys2+r2), we say c1 ⊂ c2 if each element of c1 is also an element
of c2. We say c1 and c2 are disjoint if there is no chain c for which c ⊂ c1 and
c ⊂ c2 (i.e., the chains c1 and c2 do not share any pair of adjacent elements).
The Definition of the Simulator S. Our simulation strategy will consider a care-
fully chosen set of relevant unsubverted chains as “triggers” for completion: once
a chain of this family is defined in the simulator’s table, the simulator will pre-
emptively “complete” the chain to ensure consistency of the resulting full chain
with P. Upon a query for CFi with input xi (in fact, the query is a query for Fi
with input x ′i such that ai · x ′i ⊕ bi = xi), the simulator sets CFi(xi) to a fresh ran-
dom value and looks for new relevant partial chains involving xi, adding them to
a FIFO queue. (In general, many new chains may be added by this process). The
simulator then repeats the following, until the queue is empty: It removes the
first unsubverted chain from the queue. If the chain satisfies a certain property

440 A. Russell et al.

(will be described later), the simulator completes it to a full subverted chain
x1, . . . , x� in such a way so as to guarantee that P(x0, x1) = (x�, x�+1), where
x0 = x2 ⊕ CF̃1(x1) and x�+1 = x�−1 ⊕ CF̃�(x�). In particular, it sets each unde-
fined CF in Qi(xi) to a fresh uniform random string, with the exception of two
consecutive values CFu(xu) and CFu+1(xu+1) which are set adaptively to ensure
consistency with P. We refer to this step as adapting or programming the values
of CFu(xu) and CFu+1(xu+1). Establishing that such adapting is always possible
(for some carefully chosen u) will be a major challenge of our analysis below.

Technical Challenges. We now face two main challenges. Our choice of which
chains are relevant and how they are completed will be crucial in order to solve
them:

1. Freshness and Honesty. We need to show that the values of CFu(xu) and
CFu+1(xu+1) are always undefined when these values are selected for program-
ing. Moreover, we hope the two terms (u, xu) and (u + 1, xu+1), which are
adapted to ensure consistency are always honest; i.e., CFu(xu) = CF̃u(xu) and
CFu+1(xu+1) = CF̃u+1(xu+1).

2. Efficiency. We need to show that the simulation terminates with high prob-
ability when answering a query; i.e., the queue becomes empty after a small
(polynomial) number of completions.

3. Indistinguishability. Finally, with the two demands above in hand, it is
still necessary to show that the simulated world cannot be distinguished from
the real world.

Addressing Challenge 1. To understand why proving freshness and honesty is
hard, consider the following example. During the interaction with the distin-
guisher, suppose the simulator S sees an unsubverted chain c = (s, xs, ..., xs+r)
that triggers completion. Let us call the current S.CF table TInitial. For the full
chain c′ = (1, x1, . . . , x�) determined by c (c ⊂ c′), S hopes that it can find an
index u so that (u, xu) and (u + 1, xu+1) are undefined before adaption. It is easy
to find an index u so that these two terms are not in TInitial. However, before S

determines xu and xu+1, it needs to evaluate CF̃i(xi) for i � u, u + 1. And there
may exist an index i so that (u, xu) or (u + 1, xu+1) is in Qi(xi), which breaks the
freshness. It is also not obvious how to find u so that (u, xu) and (u + 1, xu+1) are
honest since the distinguisher can subvert the round functions of any index. In
our analysis, we will have to find u, u + 1 such that both freshness and honesty
can be satisfied.

To prove honesty, we will show that for any term (i, xi) in c′, it is honest if i
is much smaller than s or much greater than s+r (i.e., the term is far away from
the initial chain c that triggers completion). Therefore, there is a long subchain
c′′ of c′ that is honest. The simulator will select the index u in this honest area.
To prove freshness, we will show that, inside the long enough honest chain c′′,
for any term (j, xj) in the “middle area” of c′′ and any term (i, xi) ∈ c′ with i � j,
CFj(xj) is not queried by CF̃i(xi) (i.e., (j, xj) � Qi(xi)). To achieve freshness, the
simulator only needs to pick u in the middle part of the honest area.

Crooked Indifferentiability of the Feistel Construction 441

Addressing Challenge 2. To see why it is possible the queue may not become
empty after a small number of completions, notice that the completion of a
certain chain forces the evaluation of many terms that have not been queried
by the distinguisher. These newly evaluated terms may generate another chain
that triggers completion. The same efficiency problem also appears in the proof of
classical indifferentiability of a constant round Feistel construction (See Coron et
al. [9]) The efficiency problem in our case (the crooked-indifferentiability model)
is more complex than that in [9] (the classical indifferentiability model) because
when completing a chain in the crooked-indifferentiability model, the simulator
needs to evaluate CF̃ instead of just CF values in the chain, which in general,
generates many more terms than the classical model.

To prove efficiency, we will show that the recursion stops after at most
poly(qD) steps, where qD is the number of the queries made by the distinguisher
D. The proof relies on the observation that, for the chains that are completed, on
average, all but a constant number of elements in each chain were once queried
by D. (Notice that not all the elements in these chains are evaluated because
they are queried by D. For example, some elements are evaluated when the
simulator completes a chain.) Hence, the total number of the chains that are
completed is in fact asymptotically equivalent to qD/�.

Addressing Challenge 3. It is still not easy to establish crooked-indifferentiability
after we understand freshness, honesty, and efficiency. The reason is that the CF
values that are maintained by S are not perfectly uniform conditioned on the
distinguisher’s query to the ideal object P, which is a crucial property in the
proofs of efficiency, freshness and honesty.

To see why the CF values held by S are not perfectly uniform, imagine that
the distinguisher queries P(x0, x1) for some (x0, x1) and then makes several CF
queries to trigger the completion of the chain corresponding to (x0, x1). The two
adapted values CFu(xu) and CFu+1(xu+1) are not uniform because they are, of
course, adapted to maintain consistency.

To break down the proof, we introduce a sequence of game transitions involv-
ing 6 games, beginning with the simulator game (Game 1) and ending with the
construction (Game 6). By mapping the randomness from one game to another,
we prove that the gap between the 6 games is negligible if the gap between
Games 5 and 6 is negligible. (In particular, we explain how to treat the games
as coupled random variables that can be investigated with the same underlying
randomness; this provides a convenient way to identify differences in the dynam-
ics and conclusions of the games.) Then we turn our attention to Game 5, which
maintains an explicit, additional table of uniform CF values. This table (in Game
5) provides a vantage point from which all future CF values are in fact uniform,
and simplifies reasoning about many of the critical events of interest. Finally, we
formally prove honesty and freshness in Game 5 to show the gap between Game
5 and 6 is negligible.

Technical Differences Between [9] and This Paper. In [9] (the classical
indifferentiability model), Coron et al. used a simulation strategy similar to

442 A. Russell et al.

ours—simulation via judicious preemptive chain completion—to demonstrate
the classical indifferentiability of a constant round Feistel structure. Despite
using similar simulation strategy, there are some significant technical differences
between our security proof and the proof in [9].

1. Freshness: The proof of freshness is challenging in both [9] and our work,
but for quite different reasons. The chains in [9] are very short (i.e., have only
constant length), and when two of them are intersected, the terms of one
chain can easily occupy the “adaptation space” for the other, which hinders
freshness. In our case, however, we are not that worried about the intersection
of chains since our construction has many more than constant rounds. The
difficulty of our freshness proof arises from the subversion algorithm: to prove
freshness, we need to rule out the case that when completing a chain, the two
adapted terms are queried by some previously evaluated CF̃.

2. Honesty: In the security proof of [9], the authors only need to show freshness
and efficiency of the simulation since there is no subversion; they are not
required to prove honesty.

3. Efficiency: The efficiency proof in [9] is quite straightforward. By contrast,
in our case, it is not that obvious how to upper bound the number of the terms
generated in the simulation. The difference is again due to the existence of the
subversion algorithm. In our case, the chains that are completed are subverted
chains, while the classical case has no subversion algorithm and therefore
only completes “unsubverted” chains. The evaluation of a subverted chain
generates many more terms than the evaluation of an unsubverted chain,
which in general, may generate many more chains that trigger completion.

4 Security Proof

In the rest of the paper, we turn the explanation above into a real proof. We
first introduce the detailed definition of the simulator.

4.1 The Detailed Definition of the Simulator

The simulator provides an interface S.CF(i, x) to query the simulated random
function CFi on input x. As mentioned above, for each i the simulator internally
maintains a table whose entries are pairs (x, y) of n-bit strings; each such entry
intuitively determines a simulated value of CF at a particular point: in partic-
ular, if the pair (x, y) appears then any query to S.CF(i, x) returns the value y.
The simulator maintains the natural invariants described previously: responses
provided to the distinguisher are always consistent with the table; furthermore,
once an entry has been added to the table, it is never removed or changed.
Note that in many cases the table will reflect function values that have not
been queried by the distinguisher. We denote the ith table by S.CFi and write
x ∈ S.CFi whenever x is a preimage in this table, often identifying S.CFi with

Crooked Indifferentiability of the Feistel Construction 443

the set of preimages stored. When x ∈ S.CFi, CFi(x) denotes the correspond-
ing image. S.CF is the collection of all these S.CFi tables. We use the notation
(i, x) ∈ S.CF when x ∈ S.CFi.

For each i, we additionally define a table S.CF̃i induced implicitly by S.CF.
As with S.CFi, the table S.CF̃i consists of pairs of inputs and outputs of CF̃i. We
write x ∈ S.CF̃i when all queries generated by evaluation of CF̃i(x) are defined
in S.CF; naturally, the corresponding function value determines the pair (x, y)
in the table. The collection of all of these S.CF̃i is denoted by S.CF̃. (Note that
this table is not maintained explicitly by the simulator, but rather determined
implicitly by S.CF.)
Handling Queries to S.CF. On a query S.CF(i, x), the simulator first checks
whether x ∈ S.CFi. If so, it answers with CFi(x). Otherwise the simulator picks
a random value y and inserts (x, y) into S.CFi. (The process above is done by
a procedure called S.CFInner which takes input (i, x).) After this, the simulator
takes further steps to ensure that its future answers are consistent with the
permutation P. Only after this consistency maintenance step is the value y finally
returned.

To ensure consistency, the simulator considers all newly generated unsub-
verted chains with length �/20 that terminate at the last-queried position; for
a newly evaluated term CFs(xs), these chains of interest either have the form
(s, xs, ..., xs+�/20−1) or (s − �/20 + 1, xs−�/20+1, ..., xs). Each such detected chain is
enqueued by the simulator in a “completion queue,” identifying the chain for
future completion.

The simulator then repeats the following detection and completion step until
the queue is emptied. (When the queue is finally empty, the simulator returns
the answer y to the initial query).

1. Detection Step. The first chain c = (s, xs, ..., xs+�/20−1) is removed from
the queue. A procedure called S.HonestyCheck is then run on the chain.
The procedure S.HonestyCheck evaluates CF̃ values of the elements of c and
generates a four-tuple (s, xs, xs+1, u) for future completion if all the elements
in c are honest. (In fact, not all chains removed from the queue are pro-
cessed by S.HonestyCheck. A chain removed from the queue is processed
by S.HonestyCheck only if it is disjoint with all the chains that are pre-
viously processed by S.HonestyCheck and is disjoint with all the previ-
ously completed full subverted chains. Any chain that is not processed by
S.HonestyCheck is discarded. The procedure that decides whether a chain is
going to be discarded or processed by S.HonestyCheck is called S.Check.)
In the tuple (s, xs, xs+1, u), the value s ensures that later the simulator knows
that the first value xs corresponds to CFs. The value u describes where to
adapt (that is, program) the values of CF in order to ensure consistency with
the given permutation: this will occur at positions u and u+1. The convention
for determining u is straightforward: If s > 3�/4 or s + �/20 − 1 < �/4, then
there is “plenty of space around �/2,” and u = �/2; otherwise, u = � − 10.

2. Completion Step. Finally, the simulator takes the four-tuple (s, xs, xs+1, u)
and completes the subverted chain related to (s, xs, xs+1). Intuitively, this

444 A. Russell et al.

means that the chain is determined by iteratively determining neighbouring
values of CF̃(x) by evaluating the subversion algorithm and, when necessary,
carrying out internal calls to CFi() in order to answer queries made by that
algorithm to the Fi. This iterative process is continued, using P to “wrap
around,” until the only remaining undetermined values appear at positions u
and u + 1; at this point, the values at u and u + 1 are programmed to ensure
consistency. In more detail: Assuming that u < s, the completion process
(conducted by a procedure called S.Complete) proceeds as follows.

– The initial chain consists of the two adjacent values xs, xs+1.
– CF̃s+1(xs+1) is determined by simulating the subversion algorithm which

generates oracle queries to CF to be answered using S.CF. (Note that this
process may enqueue new chains for completion.) The value xs+2 = xs ⊕
CF̃s+1(xs+1) is then determined, yielding the enlarged chain (xs, xs+1, xs+2).
This process is repeated until the chain is extended maximally “to the
right” so that it has the form (xs, xs+1, . . . , x�, x�+1).

– P−1 is then applied to x�, x�+1 to yield x0, x1.
– Starting from the pair (x0, x1), this process is repeated, as above, to yield

values for x2, . . . , xu. Note that xu = xu−2 ⊕ CF̃(xu−1) so that CF̃(xu) is
never evaluated during this process (which is to say that the subversion
algorithm is never simulated on xu).

– Similarly, the original pair xs, xs−1 is extended “to the left” to determine
the values xs−1, ..., xu+1; as above, xu+1 is determined by xu+3 ⊕ CF̃(xu+2),
so that CF̃(xu+1) is never evaluated.

– Then, the simulator defines CFu(xu) and CFu+1(xu+1) that is consistent
with P, i.e., CFu(xu) := xu−1⊕ xu+1 and CFu+1(xu+1) := xu⊕ xu+2. The game
aborts if either of these is defined from a previous action of S. If the game
does not abort, the simulator evaluates the subversion algorithm on both
xu and xu+1. During this evaluation, the values CFu(xu) and CFu+1(xu+1)
are already determined; other queries are answered using S.CF as above.
The game aborts if (u, xu) or (u+1, xu+1) is dishonest; otherwise, the chain
is a valid subverted chain (and consistent with P).

– A set S.CompletedChains is maintained to store the chains that are com-
pleted: for any (i, xi, xi+1) (1 ≤ i ≤ � − 1), S updates

S.CompletedChains := S.CompletedChains ∪ (i, xi, xi+1).

The alternative case, when u > s + 1, is treated analogously.

4.2 Plan of the Proof

To establish crooked indifferentiability, we need to prove that, from the perspec-
tive of D, interacting with (P,SP) (the ideal world) is indistinguishable from
interacting with (CF, F) (the real world).

Recall that we have three challenges in the security proof:

1. Freshness and Honesty. We need to show that the values of CFu(xu) and
CFu+1(xu+1) are always undefined when these values are selected for program-
ing. Moreover, we hope the two terms (u, xu) and (u + 1, xu+1), which are

Crooked Indifferentiability of the Feistel Construction 445

adapted to ensure consistency are always honest; i.e., CFu(xu) = CF̃u(xu) and
CFu+1(xu+1) = CF̃u+1(xu+1).

2. Efficiency. We need to show that the simulation terminates with high prob-
ability when answering a query; i.e., the queue becomes empty after a small
(polynomial) number of completions.

3. Indistinguishability. Finally, with the two demands above in hand, it is
still necessary to show that the simulated world cannot be distinguished from
the real world.

Let us define the event that S aborts as Abort. According to the description
of S, Abort happens only when the distinguisher D finds a chain (1, x1, . . . , x�)
such that the programmed term, (u, xu) or (u+1, xu+1), has been evaluated before
it is programmed or is dishonest. It is easy to see that maintaining freshness and
honesty is synonymous with preventing S from aborting. We will stick to the
following plan of the proof to address these challenges.

1. In the first two steps of the proof, we begin by assuming that Challenge 2
has been adequately dealt with, allowing us to focus on resolving Challenges
3 and 1. First, in Sect. 4.3, we aim to establish that resolving Challenge 1
enables us to address Challenge 3. Put differently, we will demonstrate that
our construction is crooked indifferentiable if Abort happens negligibly.

2. Second, in Sect. 4.4, we address Challenge 1 under the assumption that Chal-
lenge 2 has been successfully addressed. In Theorem 4, we will establish that
the likelihood of Abort occurring is negligible given that S is efficient, which
means, with overwhelming probability, only a polynomial number of terms
are evaluated by S (or P) when D interacts with (P,SP).

3. Last, in Sect. 4.5, we will address Challenge 2 by showing the efficiency of S
in Theorem 5.

A Simplified Proof. Unfortunately, due to space limitations, we can only provide
a “simplified” proof (which is the plan above) in the main body. A complete and
more rigorous proof is put in Section B of the full version [21]. In the simplified
proof, we omit less critical details while retaining a focus on the primary aspects
relevant to the core argument. To assure readers that the essential concepts and
outcomes from the complete proof are preserved in the simplified version, we will
outline the structure of the complete proof and provide a concise explanation of
the distinctions between the two versions.

Compare the Complete and Simplified Proof. In the complete proof, we deal
with Challenge 3 by developing a “game transition approach”. We introduce
four intermediate games to build the connection between the ideal world (the
interaction between D and (P,SP)) and the real world (the interaction between
D and (CF, F)). Using the game transition, we clearly analyze the gaps between
adjacent games. Summing up these gaps gives the gap between the ideal and
real world, which is bounded by the probability of two bad events, BadComplete5
and BadEval5. The first and the major bad event BadComplete5 is same as the
bad event Abort we defined above. (In fact, there is a little difference between

446 A. Russell et al.

BadComplete5 and Abort. BadComplete5 is defined in one of the four intermediate
games, while Abort is defined in the interaction between D and (P,SP). Other-
wise, the two bad events are same and we can use the same proof to show their
probabilities are negligible.) The second and the auxiliary bad event BadEval5
is derived from the game transition, which is used to make the proof rigorous.
The missing part in the simplified proof are the four intermediate games in the
game transitions and the proof that bounds the probability of BadEval5, which
is an auxiliary event.

Although we omit the details of the four intermediate games in the simplified
proof, we will provide a concise overview of the central ideas underpinning the
game transition approach. This summary will explain why crooked indifferentia-
bility can be reduced to the negligibility of Abort. (See Sect. 4.3) We also want to
stress that the efficiency proof of the simulator in the simplified proof (Sect. 4.5)
is same as that in the complete proof.

4.3 Relating Crooked Indifferentiability to the Bad Event

To understand how crooked indifferentiability is related to the probability of
Abort, we consider a situation where we need to “complete” a chain in the ideal
world (P,SP) and in the real world (CF, F).

Suppose in both worlds, we start with an initial table of CF values Tinitial.
Suppose there is an unsubverted chain c = (s, xs, ..., xs+�/20−1) in Tinitial that has
passed the test of S.HonestyCheck, which means that all the elements of c are
honest. (Without loss of generality, we assume s + �/20 − 1 < �/4. This means,
when S completes c, it adapts the value of CF at u = �/2.) Now we want to see
the gap between the two worlds when generating a subverted full chain c′ that
contain c.

In the ideal world (P,SP), what S does is the following Procedure 1:

1. Generate CF̃ values before the adaption position �/2 by uniformly selecting
CF values as needed: For i = 2, . . . , �/2, generate (i, xi) recursively by defining
xi := xi−2 ⊕ CF̃i−1(xi−1) for 2 ≤ i ≤ �/2 (each CF as needed is evaluated
uniformly).

2. Generate CF̃ values after the adaption position �/2 + 1 by querying P and
uniformly selecting CF values as needed: Query P at (x0, x1) and receive
an (almost) uniform pair of n-bit strings (x�, x�+1). To generate (i, xi) (i =

�/2, . . . , �), recursively define xi−2 := xi ⊕ CF̃i−1(xi−1) for �/2 + 3 ≤ i ≤ � + 1
(each CF as needed is evaluated uniformly).

3. Adapt CF values at the adaption positions �/2 and �/2+1: Define CFu(x�/2) :=
x�/2−1 ⊕ x�/2+1 and CF�/2+1(x�/2+1) := x�/2 ⊕ x�/2+2. Evaluate CF̃�/2(x�/2) and
CF̃�/2+1(x�/2+1) (each CF as needed is evaluated uniformly).

4. Abort if freshness or honesty is violated: The game aborts if there is an index
j such that �/4 ≤ j ≤ 3�/4 and (j, xj) is in Tinitial or

⋃�
i=1Qi(xi)/Q j(xj). The

game also aborts if there is an index j such that (�/2, x�/2) or (�/2+ 1, x�/2+1)
is dishonest.

In the real world (CF, F), we extend c to a full chain by Procedure 2:

Crooked Indifferentiability of the Feistel Construction 447

1. For i = 2, . . . , �+1, generate (i, xi) recursively by defining xi := xi−2⊕CF̃i−1(xi−1)
for 2 ≤ i ≤ � + 1 (each CF is evaluated uniformly).

2. Assign P(x0, x1) = (x�, x�+1).

To connect Procedure 1 to Procedure 2, we rewrite Procedure 1 as Proce-
dure 1’:

1. For all x ∈ {0, 1}n and �/2 + 2 ≤ i ≤ �, evaluate CF̃i(x) (each CF is evaluated
uniformly).

2. Same as step 2 of Procedure 1.
3. Same as step 3 of Procedure 1 except that no additional uniform CF values

need to be selected because all needed CF values are already evaluated in
Step 1.

4. Same as step 4 of Procedure 1.
5. Same as step 5 of Procedure 1.

Procedure 1 and Procedure 1’ are equivalent in the sense that the resulting
full chain c′ in these two procedure are same.

Slightly changing Procedure 1’ gives Procedure 2’:

1. Same as step 1 of Procedure 1’.
2. Same as step 2 of Procedure 1’.
3. Select x�/2+1 and x�/2+2 uniformly. To generate (i, xi) (for i = �/2+3, . . . , �+1),

define xi := xi−2⊕CF̃i−1(xi−1) for �/2+3 ≤ i ≤ �+1. Assign P(x0, x1) = (x�, x�+1).
4. Same as step 4 of Procedure 1’.

Notice that step 3 of Procedure 2’ is equivalent to that of Procedure 1’
because the Feistel structure gives a permutation of 2n-bit strings: selecting a
uniform “input” string (x�+1, x�+2) is equivalent to selecting an uniform “output”
string (x�, x�+1). (In fact, they are not perfectly equivalent since in Step 3 of
Procedure 1’, querying P at (x0, x1) does not give a perfectly uniform (x�, x�+1):
P is a random permutation so (x�, x�+1) is chosen in a way to avoid collision.
However, this only causes a negligible difference as we assume Tinitial contains a
polynomial number of terms).

Therefore, the only difference between Procedure 1’ and Procedure 2’ is that,
in Step 5, Procedure 1’ aborts when freshness or honesty is violated. And this
is indicated by the occurrence of the bad event Abort. Moreover, observe that
Procedure 2’ is equivalent to Procedure 2 since in both procedures, all CF values
are selected uniformly and P values are determined by CF. By combining these
observations, it can be inferred that the gap between Procedure 1 and Procedure
2 is bounded by Pr[Abort].

4.4 Bounding the Bad Events

In this section, we assume S is efficient to prove Pr[Abort] is negligible. The
efficiency of S will be proved in the next section. In the rest of the paper, all the
definitions, lemmas and theorems are in the interaction game between D and
(P,SP) unless otherwise specified.

448 A. Russell et al.

We recall the following example to explain our plan for bounding Pr[Abort].
During the interaction with the distinguisher, suppose the simulator S sees an
unsubverted chain c = (s, xs, ..., xs+r) that triggers completion. Let us call the
current S.CF table TInitial. For the full chain c′ = (1, x1, . . . , x�) determined by
c (c ⊂ c′), S hopes that it can find an index u so that (u, xu) and (u + 1, xu+1)
are undefined before adaptation. It is easy to find an index u so that these two
terms are not in TInitial. However, before S determines xu and xu+1, it needs to
evaluate CF̃i(xi) for i � u, u + 1. And there may exist an index i so that (u, xu) or
(u + 1, xu+1) is in Qi(xi). It is also not obvious how to find u so that (u, xu) and
(u + 1, xu+1) are honest since the distinguisher can subvert the round functions
of any index.

We deal with the challenge in the following three steps.

Step 1: Analysis of unsubverted chains: We introduce the notion of monotone
increasing (and decreasing) chains to analyze the property of unsub-
verted chains. We show that any unsubverted chain is a union of a
decreasing chain and an increasing chain. We also show that (Theo-
rem 3), inside a long monotone chain c∗, for any other term (j, xj) in the
“middle area” of c∗ and any term (i, xi) ∈ c∗ (i � j), (j, xj) is honest and
CFj(xj) is not queried by CF̃i(xi)(i.e., (j, xj) � Qi(xi)).

Step 2: Analysis of subverted chains: We prove all the dishonest terms on a
subverted chain are located on an interval shorter than �/12. As a result,
the subverted chain c′ can be viewed as an unsubverted chain except
for a small dishonest area. That is to say, there always exists a long
unsubverted chain c′′ ⊂ c′.

Step 3: Bounding the bad event: By combining the two results above, we can
deduce the existence of a long monotone chain c∗ ⊂ c′′ ⊂ c′. To conclude
the proof regarding the negligibility of Pr[Abort], we demonstrate that
the selection rule for the adaptation terms (u, xu) and (u+1, xu+1) ensures
that these two terms fall within the middle area of c∗, which implies
honesty and freshness.

Step 1: Analysis of Unsubverted Chains. To analyze the properties of
unsubverted chains, we first introduce the notion of monotone chains.

The Order Function; Monotone Chains. To record the order in which S sets
CF values, we define the following order function O from {1, . . . , �} × {0, 1}n to
positive integers (with an additional symbol ⊥):

O(i, x) =

{

t if CFi(x) is the t-th evaluated CF value by S,

⊥ if CFi(x) is undefined in S.CF.

An unsubverted chain (s, xs, . . . , xs+r) in S.CF is said to be monotone increasing
(or monotone decreasing) if O(i, xi) < O(i+1, xi+1) for all s ≤ i < s+r (or, likewise,
O(j, xj) > O(j + 1, xj+1) for all s ≤ j < s + r).

In the rest of the paper, w.l.o.g, we focus our analytic efforts on increasing
chains; the results related to increasing chains can be easily transitioned into

Crooked Indifferentiability of the Feistel Construction 449

those related to decreasing chains. In the following lemma, we show that any
unsubverted chain is a union of a decreasing chain and an increasing chain.

Lemma 2. If S is efficient, then with overwhelming probability, any unsubverted
chain c = (s, xs, . . . , xs+r) in S.CF will satisfy one of the three conditions below:

1. c is increasing,
2. c is decreasing,
3. There exists an index s < v < s + r such that (s, xs, . . . , xv) is decreasing and

(v, xv, . . . , xs+r) is increasing.

Proof. It suffices to show that in S.CF there is no unsubverted length three
chain (s, xs, xs+1, xs+2) such that CFs+1(xs+1) is evaluated after both CFs(ss) and
CFs+2(xs+2) are evaluated. Suppose that throughout the interaction between D

and (P,SP), there are no more than P (= poly(n)) elements in S.CF. Then,

Pr

[

There is a length 3 chain (s, xs, xs+1, xs+2)
such that O(s + 1, xs+1) > max{O(s +
2, xs+2),O(s, xs).}

]

=

P
∑

i=2

Pr

[

There is a length 3 chain (s, xs, xs+1, xs+2)
such that O(s + 1, xs+1) = i > max{O(s +
2, xs+2),O(s, xs)}.

]

=

P
∑

i=2

∑

j,k<i
j�k

Pr

[

There is a length 3 chain (s, xs, xs+1, xs+2) such
that O(s + 1, xs+1) = i, O(s + 2, xs+2) = j and
O(s, xs) = k.

]

<

P
∑

i=2

∑

j,k<i
j�k

1
2n
<

P3

2n
= negl(n),

where the first inequality is based on the fact that and CFs+1(xs+1) is selected
uniformly and is independent of CFs(ss) and CFs+2(xs+2). ��

Parameters in the Main Theorem. The security parameter ε ′ in Theorem
1 is determined by the last line of the inequality in the proof of Lemma 2, along
with Theorem 5, which states that P is bounded by 22qD(qA + 1).

Next, we will use a sequence of lemmas to establish the following major
theorem that describes the nice properties of increasing chains.

Theorem 3. If S is efficient, then with overwhelming probability, any unsub-
verted increasing chain c = (s, xs, . . . , xs+r) (r > 8) in S.CF will satisfy:

1. for any 0 < i < j and 8 < j ≤ r, (s + j, xs+j) � Qs+i(xs+i);
2. for any 7 ≤ i < j ≤ r, (s + i, xs+i) � Qs+j(xs+j).

Lemma 3. With overwhelming probability, the following event does not happen:
at some point of the game, there exist an unsubverted (or subverted) chain c =

(i, xi, . . . , xj) and a length 10 unsubverted chain c′ = (s, ys, . . . , ys+9) in S.CF such
that

450 A. Russell et al.

– for all (j, x) ∈ c, CF̃i(x) is defined;
– c and c′ are disjoint;
– for each s ≤ k ≤ s + 9, (k, yk) ∈ Qc.

Proof. Consider proving the following stronger statements: Imagine we fill the
entire table S.CF by uniformly selecting all the F values and (ai, bi) (i = 1, . . . , �).
We will prove that with overwhelming probability over the choice of F values
and (ai, bi), there are not two chains c and c′ that satisfy the properties in the
lemma.

Let (xi+1, xi+2), (ys, ys+1) be two pairs of n-bit strings and (i, j, s) be three pos-
itive indices. We denote by c the length (j− i) chain starting with (i+1, xi+1, xi+2)
(without loss of generality, we assume c is a subverted chain for convenience in
the rest of the proof) and denote by c′ the length 10 unsubverted chain start-
ing with (s, ys, ys+1). We denote by xv (v = i + 1, . . . , j) the elements of c and
denote by yk (k = s, . . . , s + 9) the elements of c′. It is important to note that
while xi+1, xi+2, ys and ys+1 are specific n-bit strings, the values of xv and yk are
currently undetermined. We use xv and yk purely to represent the elements of
c and c′ respectively. The actual values they will take on will be determined by
choice of F values and (ai, bi). We define the event:

Ei, j,s(xi+1, xi+2, ys, ys+1) :=
{

c and c′ are disjoint, and for each s ≤ k ≤ s+ 9, (k, yk) ∈
Qc

}

.

For s ≤ t ≤ s + 9, we also define:

E t
i, j,s(xi+1, xi+2, ys, ys+1) :=

{

c and c′ are disjoint, and for each s ≤ k ≤ t, (k, yk) ∈
Qc

}

.

To analyze the probability of Ei, j,s(x1, x2, ys, ys+1) over the choice of F and
(ai, bi) (i = 1, . . . , �), we consider selecting uniformly the values of Fi(x) for all
i = 1, . . . , � and x ∈ {0, 1}n and selecting uniformly av ·xv⊕bv for v = i, . . . , j. Since
the function xv → ai · xv ⊕bi is pairwise independent, the values of ak · yk ⊕bk(k =

s, . . . , s + 9) are uniformly random. (For convenience, in the following, we will
write Ei, j,s for Ei, j,s(x1, x2, ys, ys+1) and E t

i, j,s for E t
i, j,s(x1, x2, ys, ys+1).) Over the

randomness of ak · yk ⊕ bk (k = s, . . . , s + 9), we have

Pr[Ei, j,s]

= Pr[Ei, j,s | E s+1
i, j,s] · Pr[Es+1

i, j,s]

< Pr[Ei, j,s | E s+1
i, j,s]

· (Pr[CFs(ys) ∈ ∪
j
v=iQv(xv) | ys � xs] + Pr[CFs+1(ys+1) ∈ ∪

j
v=iQv(xv) | ys+1 � xs+1])

< Pr[Ei, j,s | E s+3
i, j,s] · Pr[Es+3

i, j,s | E s+1
i, j,s] · 2 · (� · qA/2n)

< Pr[Ei, j,s | E s+5
i, j,s] · Pr[Es+5

i, j,s | E s+3
i, j,s] · (2� · qA/2n)2

< Pr[Ei, j,s | E s+7
i, j,s] · Pr[Es+7

i, j,s | E s+5
i, j,s] · (2� · qA/2n)3

< Pr[Ei, j,s | E s+7
i, j,s] · (2� · qA/2n)4 < (2� · qA/2n)5 .

The lemma is implied by taking the union bound over the choice of
(x1, x2, ys, ys+1).

Crooked Indifferentiability of the Feistel Construction 451

A similar proof can be used to prove the following lemma:

Lemma 4. With overwhelming probability over the choice of all the F values and
(ai, bi) (i = 1, . . . , �), there are not a term (i, xi) and a length 8 unsubverted chain
c = (s, ys, . . . , ys+7) in S.CF such that (k, yk) ∈ Qi(xi) for all k = s, s+2, s+4, s+6.

Lemma 5. If S is efficient, then with overwhelming probability, for any unsub-
verted increasing chain c = (s, xs, . . . , xs+r) in S.CF, if (s + 2t + 1, xs+2t+1) ∈

Qs+2k(xs+2k) (assuming CF̃s+2k(xs+2k) is defined) for some t, k with 0 < 2t+1, 2k ≤

r, then (s + 2i, xs+2i) ∈ Qs+2k(xs+2k) for all 0 < i ≤ t.

Proof. We give a simple example to show the idea of the proof. Take s = 1, r = 7,
k = 2 and t = 3 for example. We want to show that for any chain c = (1, x1, . . . , x8),
if (8, x8) ∈ Q5(x5), then with overwhelming probability, (1+ 2i, x1+2i) ∈ Q5(x5) for
i = 1.

Consider the following two ways of determining a length 8 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in the interaction between D and (P,SP) and

abort the game. Denote the table S.CF at this moment by Tinitial. Pick a
length 2 increasing chain (1, x1, x2) in Tinitial such that it is not a subchain
of a length 3 unsubverted chain.

2. For 2 ≤ i ≤ 7, select CFi(xi) uniformly, set xi+1 := CFi(xi) ⊕ xi−1 and abort
the procedure if (i + 1, xi+1) is already in the table Tinitial.

3. Evaluate CF̃5(x5).
– Procedure 2:

1. Pick an arbitrary moment in the interaction between D and (P,SP) and
abort the game. Denote the table S.CF at this moment by Tinitial. Pick a
length 2 increasing chain (1, x1, x2) in Tinitial such that it is not a subchain
of a length 3 unsubverted chain.

2. Select CF2(x2) uniformly and set x3 := a2 ⊕ x1.
3. Select 4 uniform n-bit strings a4, a5, a6 and a7. Set x5 := a4⊕ x3, x7 := a6⊕

x5 and abort the procedure if either of them is in Tinitial. Set CF5(x5) := a5
and CF7(x7) := a7.

4. Evaluate CF̃5(x5).
5. Select CF3(x3) uniformly (use the existing value if it has been evaluated),

set x4 := CF3(x3)⊕ x2, x6 := a5 ⊕ x4, x8 := a7 ⊕ x6, and abort the procedure
if any one of x4, x4 and x8 is in Tinitial.

A quick thought reveals that the above two procedures are equivalent in
terms of the distribution of the chain and, furthermore, the probability they
abort is negligible because of Lemma 2. We use the second procedure to analyze
the distribution of the first one. In the second procedure, we can see that if
(3, x3) � Q5(x5), then CF3(x3) is still uniform conditioned on Q5(x5), which implies
that x8 = a7 ⊕ x6 = a7 ⊕ a5 ⊕ x4 = a7 ⊕ a5 ⊕ CF3(x3) ⊕ x2 is uniform. Therefore, if
(3, x3) � Q5(x5), (8, x8) ∈ Q5(x5) with negligible probability.

The full proof can be achieved by replacing the concrete numbers in the last
example by more general parameters s, r, k and t and taking the union bound
over the various values of these parameters.

452 A. Russell et al.

Lemma 6. If S is efficient, then with overwhelming probability, for any unsub-
verted increasing chain c = (s, xs, . . . , xs+r) in S.CF and any index i, j with
0 < i < j and 8 < j ≤ r, (s + j, xs+j) � Qs+i(xs+i) (if CF̃s+i(xs+i) is defined).

Proof. Without loss of generality, assume i = 0. Suppose (s + j, xs+j) ∈ Qs(xs).
Notice that (s+ j − 1, xs+j−1) ∈ Qs+i(xs+i) with overwhelming probability because
otherwise the randomness of CFs+j−1(xs+j−1) will cause the event (s + j, xs+j) �
Qs(xs). Then,

– if j is odd, since j > 8 and (s + j, xs+j) ∈ Qs(xs), by Lemma 5, (s + 2k, xs+2k) ∈
Qs(xs) for k = 1, 2, 3, 4. This contradicts Lemma 4.

– if j is even, since j > 8 and (s + j − 1, xs+j−1) ∈ Qs(xs), by Lemma 5, (s +
2 j, xs+2j) ∈ Qs(xs) for j = 1, 2, 3, 4, which contradicts with Lemma 4. ��

Lemma 7. If S is efficient, then with overwhelming probability, for any unsub-
verted increasing chain c = (s, xs, . . . , xs+r) in S.CF, if (s + 2t, xs+2t) ∈ Qs+k(xs+k)
(assuming CF̃s+k(xs+k) is defined) for some t, k with 0 < 2t < k ≤ r, then
(s + 2i − 1, xs+2i−1) ∈ Qs+k(xs+k) for all 0 < i ≤ t.

Proof. The proof of the lemma is similar to that of Lemma 5. Consider the
example where s = 1, r = 8, t = 2 and k = 8. We want to show that for any
chain c = (1, x1, . . . , x9), if (5, x5) ∈ Q9(x9), then with overwhelming probability,
(2i, x2i) ∈ Q9(x9) for i = 1.

Consider the following two ways of determining a length 9 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in G5 and abort the game. Denote the table

M3.CF at this moment by Tinitial. Pick a length 2 increasing chain
(1, x1, x2) in Tinitial such that it is not a subchain of a length 3 unsub-
verted chain.

2. For 2 ≤ i ≤ 8, select CFi(xi) uniformly, set xi+1 := CFi(xi) ⊕ xi−1 and abort
the procedure if (i + 1, xi+1) is already in the table Tinitial.

3. Evaluate CF̃9(x9).
– Procedure 2:

1. Pick an arbitrary moment in G5 and abort the game. Denote the table
M3.CF at this moment by Tinitial. Pick a length 2 increasing chain
(1, x1, x2) in Tinitial such that it is not a subchain of a length 3 unsub-
verted chain.

2. Select 3 uniform n-bit strings a3, a4 and a5. Set x4 := a3 ⊕ x2, x6 := a5 ⊕ x4
and aborts the procedure if either of them is in Tinitial. Set CF4(x4) := a4
and CF6(x6) := a6.

3. Select x7, x8 and x9 uniformly and aborts the procedure if any one of
them is in Tinitial. Set CF7(x7) := x6 ⊕ x8 and CF8(x8) := x7 ⊕ x9.

4. Evaluate CF̃9(x9).
5. Select CF2(x2) uniformly(use the existing value if it has been evaluated),

set x3 := CF2(x2) ⊕ x1, x5 := a4 ⊕ x3, CF6(x6) := x7 ⊕ x5, and aborts the
procedure if either x3 or x5 is in Tinitial.

Crooked Indifferentiability of the Feistel Construction 453

A quick thought reveals that the above two procedures are equivalent in terms
of the distribution of the chain (and, furthermore, the probability they abort
is negligible because of Lemma 2). We use the second procedure to analyze
the distribution of the first one. In the second procedure, we can see that if
(2, x2) � Q9(x9), then CF2(x2) is still uniform conditioned on Q9(x9), which implies
that x5 = a4 ⊕ x3 = a4 ⊕ a2 ⊕ x1 is uniform. Therefore, if (2, x2) � Q9(x9),
(5, x5) ∈ Q9(x9) with negligible probability.

The formal proof can be achieved by replacing the concrete numbers in the
last example by more general parameters s, r, t and k and taking the union
bound over the various values of these parameters. ��

Following directly from Lemma 4 and Lemma 7, we get:

Lemma 8. If S is efficient, then with overwhelming probability, for any unsub-
verted increasing chain c = (s, xs, . . . , xs+r) in S.CF and any index i, j with
7 < i < j ≤ r, (s + i, xs+i) � Qs+j(xs+j)(if CF̃s+j(xs+j) is defined).

Theorem 3 follows from the combination of Lemma 6 and Lemma 8.

Step 2: Analysis of Subverted Chains. Now we turn our attention to
subverted chains. We want to show that although, in general, there are some
dishonest terms on a subverted chain, all of them gather in a small area.

Lemma 9. If S is efficient, then with overwhelming probability, there does not
exist an unsubverted increasing chain c = (i, xi, . . . , xi+8) in S.CF such that
CF̃i+8(xi+8) is defined in S.CF and (i + 8, xi+8) is dishonest.

Proof. We say the distinguisher D wins the interaction game with (P,SP) if it is
able to find an unsubverted increasing chain c in S.CF that satisfies the property
in the lemma. By Lemma 6, the probability that there is a length-9 unsubverted
increasing chain c = (i, xi, . . . , xi+8) with (i + 7, xi+7) ∈ Qi+8(xi+8) (CF̃i+8(xi+8)) is
negligible. We denote this negligible probability by δ. To show the probability that
D wins is negligible, consider the following experiment with a distinguisher D∗:

Exp*

1. D∗ takes an arbitrary moment of S, stops the game and selects an arbi-
trary length-2 increasing chain (i, xi, xi+1) in S.CF such that CFi+2(xi+2)
is not evaluated for xi+1 := xi ⊕ CFi(xi).

2. Then, D∗ extends (i, xi, xi+1) to (i, xi, . . . , xi+7) by iteratively evaluating
CFj−1(xj−1) (selected uniformly) and xj := xj−2 ⊕ CFj−1(xj−1) for i + 3 ≤

j ≤ i + 7. The experiment aborts if CFi+7(xi+7) is already evaluated.
3. For any term (j, y), if CFj(y) is still unevaluated and (j, y) � (i + 7, xi+7),

D∗ selects CFj(y) uniformly.
4. Finally D∗ selects CFi+7(xi+7) and check if (i + 8, xi+8) is dishonest for

xi+8 := xi+6 ⊕ CFi+7(xi+7).
5. D∗ wins Exp* if the experiment does not abort in Step 2 and (i+8, xi+8)

is dishonest.

454 A. Russell et al.

To prove D wins negligibly, it is sufficient to show the probability that the
experiment aborts in Step 2 or D∗ wins is negligible. We also stress that although
Exp* is not the interaction between D and (P,SP), the lemmas we proved in
this section can still be applied because all the CF values here are also selected
uniformly and independently.

Pr
Exp*

[The experiment aborts in Step 2 or D∗ wins.]

≤ Pr
Exp*

[The experiment aborts in Step 2.] + Pr
Exp*

[

D∗ wins and there are at least
√
δ2n n-bit

strings x such that (i + 7, xi+7) ∈ Qi+8(x).

]

+ Pr
Exp*

[

D∗ wins and there are fewer than
√
δ2n n-bit strings x

such that (i + 7, xi+7) ∈ Qi+8(x).

]

< negl(n) + Pr
Exp*

[

D∗ wins and there are at least
√
δ2n n-bit strings x such that (i + 7, xi+7) ∈ Qi+8(x).

]

+ Pr
Exp*

[

D∗ wins.

�

�

�

�

There are fewer than
√
δ2n n-bit strings x such that (i + 7, xi+7) ∈

Qi+8(x).

]

< negl(n) +
√
δ + Pr

Exp*

[

(i + 8, xi+8) is dishonest and
(i + 7, xi+7) ∈ Qi+8(xi+8).

�

�

�

�

There are fewer than
√
δ2n n-bit strings

x such that (i + 7, xi+7) ∈ Qi+8(x).

]

+ Pr
Exp*

[

(i + 8, xi+8) is dishonest and
(i + 7, xi+7) � Qi+8(xi+8).

�

�

�

�

�

There are fewer than
√
δ2n n-bit

strings x such that (i + 7, xi+7) ∈
Qi+8(x).

]

< negl(n) +
√
δ +

√
δ + ε = negl(n).��

Definition 2 (Bad region). For a subverted chain c = (s, xs, . . . , xs+r) in S.CF,
we say a subchain (i, xi, . . . , xj) (s ≤ i < j ≤ s + r) of c is a bad region of c if
there is no sequence of 14 consecutive elements (k, xk, . . . , xk+13) (i ≤ k ≤ j − 13)
that are honest.

For a subverted chain c = (s, xs, . . . , xs+r) in S.CF, we say two bad regions
of c, (i, xi, . . . , xj) and (i′, xi′, . . . , xj′) (i < i′, j < j ′) are separated if the subchain
(i, xi, . . . , x ′j) of c is not a bad region of c.

Lemma 10. If � > 337n/log(1/ε), then in the interaction game between D and
(P,SP), with overwhelming probability, there does not exist a subverted chain
(s, xs, . . . , xs+r) in S.CF such that it has a bad region with length greater than
�/12.

Proof. Consider proving the following stronger statement: with overwhelming
probability over the uniform choice of (ai, bi) (i = 1, . . . , �) and values of Fi(x) for
all i = 1, . . . , � and x ∈ {0, 1}n, there is no bad region with length greater than
�/12. Imagine we select Fi(x) for all i = {1, . . . , �} and x ∈ {0, 1}n and leave ai
and bi undetermined. Then, over the randomness of the choice of ai and bi, we
have

Crooked Indifferentiability of the Feistel Construction 455

Pr[There is a subverted chain c with a bad region longer than �/12.]

=

�
∑

i=1

Pr
[

There is a subverted chain c with a bad region longer than �/12 and the bad region begins at
index i.

]

=

�
∑

i=1

∑

x,x′∈{0,1}n
Pr

[

There is a subverted chain c with a bad region longer than �/12. The bad region begins
at index i and its first two elements are (i, x) and (i + 1, x′).

]

<

�
∑

i=1

∑

x,x′∈{0,1}n
Pr

[

There is a subverted chain c = (i, x, x′, . . . , xr) such that its first element has index i and r−
i > �/12. Moreover, for any length 14 subchain of c in the form of (14k, x14k , . . . , x14k+13),
at least one of 14 elements is dishonest.

]

<

�
∑

i=1

(2n)2 · (14ε)�/168−1 = � · 22n · (14ε)�/168−1 = negl(n).

Lemma 11. If S is efficient, then with overwhelming probability, there is no
subverted chain c = (s, xs, . . . , xs+r) in S.CF that has two separated bad regions.

Proof. The lemma is implied directly by Lemma 2 and Lemma 9.

Step 3: Bounding the Bad Event. Now we put together the properties of
unsubverted and subverted chains above to show the main theorem:

Theorem 4. If S is efficient, the probability that Abort happens is negligible.

Proof. Due to space limitations, we only give a high-level description of how
integrating the properties of chains above gives the negligibility of Abort.

Imagine we start with an initial table of CF values Tinitial. Suppose there is
an unsubverted chain c = (s, xs, ..., xs+�/20−1) in Tinitial that has passed the test of
S.HonestyCheck. This indicates that all the elements of c are honest. Without
loss of generality, here we assume s + �/20 − 1 < �/4. Consequently, when S

completes c, it adapts the value of CF at u = �/2.
Now we prove freshness and honesty when completing the chain c. We denote

by c′ = (1, x1, ..., x�) the full chain that contains c.

– Case 1: There exists a dishonest term (j, xj) in (s, xs, ..., x�). In this case, by
Lemma 9 and 10, j < (s + �/20 − 1) + 8 + �/12 < �/4 + 8 + �/12 = �/3 + 8. This
means the chain c′′ = (�/3+ 8, x�/3+8, ..., x�) is honest. Again by Lemma 9, the
chain c∗ = (�/2 − 10, x�/2−10, ..., x�) is increasing. Therefore, the CF values in
the adaption positions are honest. They also satisfy freshness since: 1. they
are not in Qc∗ because of Theorem 3; 2. they are uniform and are therefore
outside of Tinitial and Qc′/c∗ .

– Case 2: There does not exist a dishonest term (j, xj) in (s, xs, ..., x�). The proof
in this case is simply a subset of that of Case 1.

4.5 Efficiency of S
In this section, we are going to show that the number of the elements in S.CF
is bounded by a polynomial function if the distinguisher D makes at most qD
(qD is polynomial) queries to CF or the ideal object.

456 A. Russell et al.

Lemma 12. If S is efficient, then with overwhelming probability, there is not
a chain c = (1,w1, . . . ,w�) and three pairwise disjoint increasing chains c1 =

(i, xi, . . . , xi+10), c2 = (j, yj, . . . , yj+10) and c3 = (k, zk, . . . , zk+10) in S.CF, such
that

– for all (i, x) ∈ c, CF̃i(x) is defined;
– c is disjoint with c1, c2, c3;
– (i + 10, xi+10), (j + 10, yj+10), (k + 10, zk+10) ∈ Qc.

Proof. According to Lemma 3, if (i + 10, xi+10) ∈ Qc, then there exists an index
m (i + 1 ≤ m ≤ i + 9) such that in the length 3 monotone increasing chain
(xi−1, xi, xi+1), (i, xi) � Qc but (i+1, xi+1) ∈ Qc. Now we turn this observation into
a proof.

Consider the following experiment in S. Take an arbitrary pair of n-bit strings
(w1,w2). D tries to find a subverted chain c starting with (w1,w2) (w.l.o.g., we
only consider subverted chain for convenience) and a length 3 increasing chain
(xi−1, xi, xi+1) s.t., (i, xi) � Qc and (i + 1, xi+1) ∈ Qc. We show the probability that
D wins is negligible (�qA/sn): Suppose, without loss of generality, D queries all
the elements in Qc at the beginning of S. At some moment of the experiment,
D will select a pair of terms (i − 1, xi−1, xi) as the starting pair of target length 3
chain. It is easy to see that, since (i, xi) � Qc, (i + 1, xi+1) ∈ Qc with probability
not greater than poly(n) · �qA/2n, where poly(n) denotes the upper bound of the
number of the terms in S.CF.

For any pair (w1,w2), we define the event:

E(w1,w2) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

There are three monotone increasing unsub-
verted chains c1 = (i, xi, . . . , xi+10), c2 =

(j, yj, . . . , yj+10) and c3 = (k, zk, . . . , zk+10) in
S.CF, such that c is disjoint with c1, c2, c3 and
(i + 10, xi+10), (j + 10, yj+10), (k + 10, zk+10) ∈ Qc,
where c is the subverted starting with (w1,w2)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Finally we have
∑

(w1,w2)∈{0,1}2n

Pr[E(w1,w2)] < 22n · (poly(n) · �qA/2n)3 = negl(n).��

Lemma 13. Suppose S is efficient. Let C11 be a set of length 11 increasing
chains and c be a chain in S.CF such that c is disjoint with any element in C11,
and for all (i, x) ∈ c, CF̃i(x) is defined. Then, with overwhelming probability, there
are at most 20 chains c′ = (i, xi, . . . , xi+10) ∈ C11 such that (i + 10, xi+10) ∈ Qc.

Proof. Suppose there are 21 chains in C11 that satisfy the property in the lemma.
Notice that for each length 11 chain c′, there are at most 9 other length 11 chains
that are not disjoint with c′. Then, among the 21 chains satisfying the property
in the lemma, we can find 3 pairwise disjoint chains. This contradicts Lemma 12.

Crooked Indifferentiability of the Feistel Construction 457

Definition 3 (Order of a chain). We define the order of an unsubverted chain
c = (s, xs, . . . , xs+r) in S.CF to be:

O(c) := min
k=s,...,s+r−1

{

max{O(k, xk),O(k + 1, xk+1)}
}

Intuitively speaking, the order of a chain describes the time when a chain is
“determined.”

Lemma 14. Suppose S is efficient. Let CDisj be a set of pairwise disjoint unsub-
verted chains with length greater than or equal to 4 in S.CF. Define the set A
to be the set of the elements of the chains in CDisj. Then, with overwhelming
probability, |A| ≥

∑

c∈CDisj
(L(c) − 3).

Proof. For any c ∈ CDisj and a term (i, x) in c, we say (i, x) is original in c if
there does not exist a different element c′ ∈ CDisj such that c and c′ intersects
at (i, x) and O(c) ≥ O(c′). Notice that a term (i, x) can be original in at most one
chain.

Now we are going to show that, with overwhelming probability, each element
in CDisj contains at most 3 non-original terms. Suppose there is a chain c =

(s, xs, . . . , xs+r) that has four non-original terms. Then there are two non-original
elements, (i, xi) and (j, xj), such that s ≤ i < j − 2 ≤ s + r − 2. Because of Lemma
2, w.l.o.g, we assume

O(i, xi) > O(i + 1, xi+1) > O(i + 2, xi+2).

Since (i, xi) is non-original in c, there is a chain c′ � c such that (i, xi) ∈ c′ and
O(c) ≥ O(c′). Since c and c′ are disjoint, (i + 1, xi+1) � c′. Then, since O(c) ≥ O(c′)
and O(i + 1, xi+1) > O(i + 2, xi+2), we have O(c) > O(c′), which means (i + 1, xi+1)
is not evaluated when c′ has been determined. Finally, because S.CF(i+1, xi+1) is
selected uniformly, (i, xi) ∈ c′ with negligible probability. A contradiction.

Going back to the proof of the lemma, since each term is original in at most
one chain and each chain in CDisj has all but 3 original elements, |A| is lower
bounded by the sum of the original terms in the elements of CDisj, which is not
less than

∑

c∈CDisj
(L(c) − 3).

Theorem 5. For any positive integer k ≤ qD , with overwhelming probability, at
the end of the k-th round of S, there are fewer than (22qA + 1)k terms in S.CF.

Remark. In the proof of Theorem 5, we will make use of Lemma 13 and Lemma
14. However, these lemmas already take efficiency of S as their assumptions.
To reassure the reader that there is not a circular argument here, we imagine
that the k-th round of the game is forced to end when S.CF contains more than
(22qA + 1)k elements. In this way, we can also feel free to reason about S.CF[k].

Proof. In S.CF[k], for any unsubverted chain c, we call c a generator if c
was processed by the procedure S.HonestCheck. We denote by CG the set
of generators. We define a function g from CFComp[k] to CG: for each c1 ∈

458 A. Russell et al.

CFComp[k] and c ∈ CG, we say g(c1) = c if c1 ⊂ c. Define G := {(i, x) |

there is c ∈ CG such that (i, x) ∈ c.} .
Since CG is a set of pairwise disjoint chains, by Lemma 14,

|G | ≥
∑

c∈CG

(L(c) − 3) = (�/20 − 3) · |CG |. (2)

To understand the structure of G, we define several subsets of G. We say a
point (i, x) ∈ G is a tail point if there is an increasing c2 = (s, xs, . . . , xs+10) in
S.CF (w.l.o.g., we only consider the increasing case) and a chain c ∈ CG such
that (i, x) = (s + 10, xs+10) and c2 ⊂ c. We say a point (i, x) ∈ G is a head point
if it is not a tail point. We denote the sets of the head points and tail points by
GHead and GTail, respectively. For any point (i, x) ∈ GTail and any chain c ∈ CG,
we say c covers (i, x) ((i, x) � c) if (i, x) ∈ Qc or (i, x) ∈ Qg−1(c) (if c has a preimage
in function g). We define GQuery to be the set of the points in GTail that are not
covered by any element in CG. Notice that any element in GQuery was queried
directly by the distinguisher D. Our goal is to show |GQuery | is big.

By Lemma 2, the number of the elements in GHead is easily bounded by

|GHead | ≤ 19 · |CG |. (3)

By Lemma 13
|GTail/GQuery | ≤ 20 · |CG |. (4)

Summarizing Eq. 2, 3 and 4, we have

|GQuery | = |G | − |GHead | − |GTail/GQuery | ≥ (�/20 − 3) |CG | − 19 |CG | − 20 |CFu | = (�/20 − 42) |CG |.

This implies that

|S.CF[k]| ≤ � · qA · |CG | + k ≤ � · qA · |GQuery |/(�/20 − 42) + k

≤ � · qA · k/(�/20 − 42) + k ≤ � · qA · k/(�/22) + k = (22qA + 1)k .

We remark that all the statements in the proof are true with overwhelming
probability.

5 Conclusions and Open Problems

In this work, we answer an open problem in [19,20] and analyze the classical
Feistel structure under the crooked-indifferentiability framework that can give a
better construction for correcting subverted random function/permutation to a
good random permutation.

There are still many interesting questions remain to be explored: broader
applications of crooked-indifferentiability, and whether we can have a truly prac-
tical construction.

Acknowledgements. We thank anonymous reviewers for valuable comments.
Jiadong Zhu was supported in part by the National Natural Science Foundation of
China Grants No. 62325210, 62272441.

Crooked Indifferentiability of the Feistel Construction 459

References

1. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. Part I,
volume 8616 of LNCS, pp. 1–19. Springer, Heidelberg (2014)

2. Bhattacharyya, R., Nandi, M., Raychaudhuri, A.: Crooked indifferentiability of
enveloped xor revisited. In INDOCRYPT 2021, 73–92 (2021)

3. M. Blum. Designing programs that check their work, November 1988. Technical
Report TR-88-009, International Computer Science Institure. Available at http://
www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf

4. M. Blum and S. Kannan. Designing programs that check their work. In 21st ACM
STOC, pages 86–97. ACM Press, May 1989

5. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. In 22nd ACM STOC, pages 73–83. ACM Press, May 1990

6. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a
non-barking watchdog bite: Cliptographic signatures with an offline watchdog. In:
Lin, D., Sako, K. (eds.) PKC 2019. Part I, volume 11442 of LNCS, pp. 221–251.
Springer, Heidelberg (2019)

7. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I, volume
10820 of LNCS, pp. 227–258. Springer, Heidelberg, Apr. / (2018)

8. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

9. Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How
to build an ideal cipher: The indifferentiability of the Feistel construction. Journal
of Cryptology 29(1), 61–114 (2016)

10. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. Part II, volume 9666 of LNCS, pp. 649–678. Springer, Heidelberg (2016)

11. Dai, Y., Steinberger, J.P.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. Part I, volume 9814 of LNCS, pp. 95–120.
Springer, Heidelberg (2016)

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. Part I, volume 9056 of LNCS, pp. 101–126. Springer, Heidel-
berg (2015)

13. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pp. 473–495. Springer, Heidelberg, Apr. / (2017)

14. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer, Heidelberg (2006)

15. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007)

16. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf

460 A. Russell et al.

17. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: Clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. Part
II, volume 10032 of LNCS, pp. 34–64. Springer, Heidelberg (2016)

18. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic semantic security against a
kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017, pp. 907–922. ACM Press, Oct. / (2017)

19. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II, volume 10992 of
LNCS, pp. 241–271. Springer, Heidelberg (2018)

20. A. Russell, Q. Tang, M. Yung, H.-S. Zhou, and J. Zhu. Correcting subverted ran-
dom oracles, 2021. https://eprint.iacr.org/2021/042

21. A. Russell, Q. Tang, and J. Zhu. Crooked indifferentiability of the feistel construc-
tion. Cryptology ePrint Archive, Paper 2024/1456, 2024

22. Tang, Q., Yung, M.: Cliptography: Post-snowden cryptography. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2615–2616. ACM
Press, Oct. / (2017)

23. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996)

24. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In:
Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 62–74. Springer, Heidel-
berg (1997)

https://eprint.iacr.org/2021/042

Provable Security of Linux-DRBG
in the Seedless Robustness Model

Woohyuk Chung1(B) , Hwigyeom Kim2 , Jooyoung Lee1 ,
and Yeongmin Lee3

1 KAIST, Daejeon, Korea
hephaistus@kaist.ac.kr, hicalf@kaist.ac.kr

2 Norma Inc., Seoul, Korea
3 DESILO Inc., Seoul, Korea
yeongmin.lee@desilo.ai

Abstract. This paper studies the provable security of the deterministic
random bit generator (DRBG) utilized in Linux 6.4.8, marking the first
analysis of Linux-DRBG from a provable security perspective since its
substantial structural changes in Linux 4 and Linux 5.17. Specifically, we

prove its security up to O(min{2 n
2 , 2

λ
2 }) queries in the seedless robust-

ness model, where n is the output size of the internal primitives and
λ is the min-entropy of the entropy source. Our result implies 128-bit
security given n = 256 and λ = 256 for Linux-DRBG. We also present

two distinguishing attacks using O(2
n
2) and O(2

λ
2) queries, respectively,

proving the tightness of our security bound.

Keywords: Deterministic random bit generator · Linux-DRBG ·
Seedless robustness · Provable security

1 Introduction

Deterministic Random Bit Generator. Producing random numbers plays
a crucial role in cryptography, serving for the generation of secret keys, IVs and
nonces (for encryption modes), and passwords (for identification protocols), to
name a few. In practice, random bits are often generated using a deterministic
random bit generator (DRBG), which refers to an algorithm that generates ran-
dom bits using a seed value obtained from a physical source with a sufficient
amount of entropy. The term “deterministic” means that there is no inherent
randomness in the algorithm itself. DRBGs find applications in various environ-
ments such as simulation, encryption, etc.

Provable Security of DRBG. The randomness of the bits produced by a
DRBG has typically been evaluated by statistical criteria. On the other hand,
there have been attempts to prove the security of DRBGs through the prov-
able security method in cryptography [4,6,16,20,22,25] as many constructions

This work was done while H. Kim and Y. Lee were PhD students at KAIST.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 461–490, 2025.
https://doi.org/10.1007/978-981-96-0938-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0938-3_15&domain=pdf
http://orcid.org/0009-0002-3793-5291
http://orcid.org/0000-0002-3010-5116
http://orcid.org/0000-0001-5471-9350
http://orcid.org/0000-0002-1569-0775
https://doi.org/10.1007/978-981-96-0938-3_15

462 W. Chung et al.

refresha
refreshf

I
Entropy
sources

S.kbase

nextk
nextu

random bits

Fig. 1. Overall structure of Linux-DRBG. refresha and refreshf are entropy absorbing
functions, next and next user are random bit generating functions.

are based on cryptographic primitives such as block ciphers and hash functions.
As part of this effort, Dodis et al. [12] proposed a security model for DRBGs,
demonstrated that a random bit generator used in the Linux operating sys-
tem is not secure under the proposed model, and suggested its modification.
In this paper, the security notions for DRBGs are distinguished as robustness,
forward security, backward security, and resilience. The security model incorpo-
rates a hardware random bit generator used to generate seeds in DRBGs and
a virtual system distribution sampler to model the hardware random bit gen-
erator and adversarial manipulation on it. Based on this model, the robustness
of the sponge structure has been proved [13], and subsequently, the robustness
of HMAC-DRBG and HASH-DRBG, both recommended by NIST.SP.800-90A,
was proved [23]. Recently, CTR-DRBG, also recommended by NIST.SP.800-90A,
has been proved [17].

Seedless Robustness Model. Dodis et al. [10] pointed out a limitation of the
existing model, which assumes and exploits randomness called a seed, unknown
to adversaries and kept secret. The assumption is not realistic in a practical sce-
nario, and a DRBG in such a model cannot be considered deterministic since the
seed implies the existence of randomness in addition to entropy. They proposed
a seedless robustness model and demonstrated that CTR-DRBG is not secure
under the new model. They also proposed new DRBGs that are secure under
the seedless robustness model.

Research on Linux-DRBG. Linux is one of the widely-used computer oper-
ating systems developed as open-source software through collaborative efforts
within the community. Linux utilizes DRBGs to generate random bits. The incor-
poration of DRBGs in Linux dates back to version 1.3.30 in 1994, and since then,
modifications and enhancements have been ongoing. Barak et al. [2] suggested
the robustness model and discussed the robustness of Linux-DRBG, and Gutter-
man et al. [15] introduced an attack on Linux 2.6.10 DRBG, and Linux has fixed
the DRBG in following versions. Goichon et al. studied on entropy propagation
in Linux- DRBG [14] in 2012. Dodis et al. [12] mentioned above, modified the
robustness model, demonstrating that Linux-DRBG is not robust exploiting its
entropy estimating process with timer randomness. This vulnerability has been

Provable Security of Linux-DRBG in the Seedless Robustness Model 463

fixed in subsequent versions of Linux by modifying Linux-DRBG to collect and
estimate entropy from a variety of entropy sources. Linux-DRBG has been sig-
nificantly modified in Linux versions 4.0 and 5.171. However, the security of the
updated Linux-DRBG has not yet been proven.

The structure of Linux-DRBG. The overall structure of Linux-DRBG in
version 6.4.8 of Linux is shown in Fig. 1. Linux-DRBG collects and estimates
entropy from a variety of entropy sources such as hardware, timers, interrupts,
and bootloaders.

It then updates the base state with collected entropy, through entropy accu-
mulating functions like procedure refresha and refreshf .

When a user runs random bit generating functions such as nextk and nextu,
the state utilizes one of the CPU core’s states (CPU state) to update and then
generate random bits. During this process, the base state is also re-updated.

Linux-DRBG utilizes two cryptographic primitives: for the entropy accumu-
lating functions, refresha and refreshf , it uses the hash function BLAKE2s, and
for the random bit generating functions, nextk and nextu, it employs the stream
cipher ChaCha20. The internal structures of BLAKE2s and ChaCha20 have been
modeled by Luykx et al. [18] and Degabriele et al. [11], respectively.

1.1 Our Contribution

Since the significant structural changes in Linux 4 and Linux 5.17, there has
been no research on the provable security of Linux-DRBG. For the first time (to
the best of our knowledge), we formally model Linux-DRBG in Linux 6.4.8 and
prove its security in the seedless robustness model.

According to the source code of Linux 6.4.8, Linux-DRBG has two entropy
accumulating functions, refresha and refreshf , and two random bit generating
functions, nextk and nextu. We abstracted Linux-DRBG into the 4 functions
and adjusted its structure that does not fit into the existing seedless robustness
model. The process of analyzing the source code to abstract Linux-DRBG is
detailed in Sect. 4.

We prove that Linux-DRBG is secure up to O(min{2n/2, 2λ/2}) where n is
the output size of the internal primitives and λ is the min-entropy of the entropy
source. Since n = 256 and λ = 256 in Linux-DRBG, our security bound implies
the 128-bit security of Linux-DRBG in the seedless robustness model. We also
present two distinguishing attacks using O(2

n
2) and O(2

λ
2) queries, respectively,

proving the tightness of our security bound.
Dodis et al. used the reducing technique(called game hopping) to prove

robustness by splitting the security into r individual recovering security and
preserving security, where r is the number of random bit generating query [12].
Subsequent papers proving the robustness of DRBGs, except for cases like the

1 The modified Linux-DRBG was primarily designed and developed by Jason
A. Donenfeld. See https://github.com/torvalds/linux/blob/master/drivers/char/
random.c.

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c

464 W. Chung et al.

direct proof of CTR-DRBG’s robustness in 2020 [17], have predominantly uti-
lized this approach [13,23]. This methodology is also applied in the seedless
robustness model [10]. However, applying this method directly to Linux-DRBG
would only yield n/3-bit security. In this paper, as shown in Lemma 2, we have
adopted a different game hopping technique to split Linux-DRBG’s robustness.
Through this methodology, we could prove that Linux-DRBG is secure up to
O(2n/2) adversarial queries. We believe that this proof method could be benefi-
cial in proving the robustness of other DRBGs.

2 Preliminaries

We write 0n to denote the n-bit string of all zeros. Given a non-empty finite set
X , x ←$ X denotes that x is chosen uniformly at random from X . For a set X ,
|X | denotes the number of elements in X . The set of all permutations of {0, 1}n

is denoted Perm(n). For a keyed function F : K × X → Y with key space K and
non-empty sets X and Y, we will write FK(·) to denote F (K, ·) for K ∈ K. For
a set S ⊆ {0, 1}n and x ∈ {0, 1}n, we write S ⊕ x to denote {s ⊕ x : s ∈ S}. Let
χ = (A,B,C) be a list. We write χ.append(D) to append an element to the χ.
Thus, after appending, χ = (A,B,C,D). We denote | as a bitwise OR operation.

For a (binary) string x, |x| denotes the length of x. The empty string is
denoted ε, where |ε| = 0. For an �-bit string x, and m and n such that 0 ≤ m ≤
n ≤ � − 1, x[m : n] denotes an (n − m + 1)-bit string from the m-th bit to the
n-th bit of x, and x[m :] denotes an (� − m + 1)-bit string from the m-th bit to
the last bit of x. When M = M1 ‖ · · · ‖Mw where |Mi| = t for 1 ≤ i ≤ w − 1 and
0 < |Mw| ≤ t, we write (M1, . . . ,Mw) t←− M . For an integer 0 ≤ i < 2s, 〈i〉s

denotes s-bit representation of i. For a real number t, �t� is the smallest integer
that is the same as or bigger than t. For X ∈ {0, 1}n, we define msbm(X) (resp.
lsbm(X)) as m most significant bits of X (resp. m least significant bits of X).

For a tuple SA = (X,Y,Z), we can access X inside SA as SA.X.

Random permutation. A random permutation is a bijective mapping from a
finite set to itself, selected uniformly at random from all possible permutations
of the set. We treat 20 rounds of a ChaCha20 cipher as a random permutation
π which is selected from Perm(2n) [3,11].

Block ciphers. A block cipher, modeled as an ideal cipher, is a keyed function
E : {0, 1}k × {0, 1}n → {0, 1}n where for a fixed key K ∈ {0, 1}k, EK(·) is a
random permutation that is uniformly chosen from Perm(n). For the rest of the
paper, we let Π(k, n) denote the set of all n-bit block ciphers using k-bit keys.

If a security proof supposes a block cipher is picked uniformly random from
Π(k, n) at the beginning of the query and allows the adversary to make queries
to the block cipher, we call the proof is modeled under an ideal cipher model.

DRBG. From [10,12,21], a DRBG(Deterministic Random Bit Generator) is a
triple of algorithms G = (setup, refresh, next) where:

– setup: an algorithm that outputs an initial state S.

Provable Security of Linux-DRBG in the Seedless Robustness Model 465

– refresh: an entropy accumulating algorithm that, given a state S and an input
I, outputs a new state S′.

– next: a random bit generating algorithm that, given a state S, outputs a new
state S′ and random bits R.

However, Linux-DRBG does not fully fit in the above DRBG model, it has
two refresh functions and two next functions. These functions are described in
Algorithm 4 and we explained the reason that we modeled Linux-DRBG in this
format in Sect. 4.

Distinguishing Game. Throughout this paper, we prove the robustness of
Linux-DRBG by showing that Linux-DRBG and its subalgorithms are indis-
tinguishable from an ideal DRBG with a distinguishing game. Generally, let
G0 and G1 be algorithms and A be an adversary to distinguish them. Then the
distinguishing game is composed as below.

1. b ←$ {0, 1}, then Gb make interfaces that A can access and get response. The
interfaces are called oracles.

2. Under the prescribed rule, A makes queries to the oracle and gets responses.
3. After querying phase, A outputs b′. If b′ = b, A wins.

Let the distinguishing game between G0 and G1 be dist. Then the distinguish-
ing advantage of A against dist, Advdist(A) is defined as below.

Advdist(A) = |Pr[1 ← A|b = 0] − Pr[1 ← A|b = 1]|
= |Pr[0 ← A|b = 0] − Pr[0 ← A|b = 1]| .

Min Entropy. Let the prediction probability of a random variable X be

Pred(X) := max
x

Pr [X = x] .

Then for another random variable Y , Pred(X|y) := maxx Pr [X = x|Y = y].
Then conditional probability of X over Y is

Pred(X|Y) := E(Pred(X|y)).

And (average-case) conditional min-entropy is

H∞(X|Y) = − log(Pred(X|Y)).

3 Seedless Robustness Model

The seedless robustness model [10] is a modification of the “seeded” robustness
model [12], designed to relax the unrealistic assumption of the original model,
namely, the existence of a random seed that should be kept secret to an adversary
and independent of the entropy source.

466 W. Chung et al.

Seedless Robustness Oracle. Let

G = (setup[P], refresh[P], next[P])

be a DRBG based on an ideal primitive P (such as a random oracle, an ideal
cipher, or a random permutation), where P is chosen uniformly at random from
the set of all possible primitives, denoted P. Then the seedless robustness oracles
are defined as described in Algorithm 1, where c denotes the entropy accumu-
lated in the DRBG and λ is a fixed parameter (denoting the minimum required
for the accumulated entropy).

Algorithm 1. Oracles for Seedless Robustness Game
Procedure INIT()

1: b ←$ {0, 1}
2: P ←$ P, c ← 0
3: S ← setup[P]()
4: return P

Procedure REF(I, γ)
1: S ← refresh[P](S, I); c ← c + γ
2: return γ

Procedure ROR(len)
1: (S, y1) ← next[P](S, len)
2: if c < λ then
3: c ← 0; return y1
4: y0 ←$ {0, 1}len

5: return yb

Procedure GET();
1: c ← 0; return S

Procedure SET(S∗)
1: S ← S∗; c ← 0

Procedure P (x)
1: return P (x)

Procedure P−1(x) //If exists
1: return P−1(x)

Seedless adversary. In seedless robustness model [10], an adversary A con-
sists of two algorithms A1 and A2. The relationship between A1 and A2 is as
follows:

– A1 is allowed to make queries only to the entropy accumulating oracle REF,
while A2 is allowed to make queries to all the other oracles except REF,

– A1 knows all the queries made by A2 and the corresponding responses, while
A2 observes only the responses to the queries made by A1 without knowing
the queries themselves.

A1 is modeled in a way that the adversary can influence entropy accumulation
but cannot ascertain specific values of entropy inputs. In the “seeded” robustness

Provable Security of Linux-DRBG in the Seedless Robustness Model 467

model [12], the distribution sampler D provides entropy inputs. However, as
argued in [10], the security proof using D is based on an unrealistic assumption
that D is independent of the underlying primitive of the DRBG (In Linux-DRBG,
E, and π). Instead, they replaced the distribution sampler with A1 that only
accumulates entropy in the DRBG.

To model the quality of the entropy source, we define legitimacy for A. Let Ii

be the random variable for i-th input A1 makes, and Ti be the random variable
for all input-output list of robustness game, excluding Ii, the i-th entropy input.
Then A is γ∗-legitimate if

H∞(Ii|Ti) ≥ γi ≥ γ∗.

for every i. Against a γ∗-legitimate adversary A, the seedless robust game is
defined as follows.

Seedless Robustness Game.

1. INIT is executed.
2. A1 makes queries to REF, while A2 makes queries to ROR, GET, SET, P

and P−1 (if available) in an interleaved manner.
3. A2 outputs b′ ∈ {0, 1}.
4. If b′ = b, then A wins, and A loses otherwise.

The game begins with the procedure INIT, which chooses a random bit b and
a random primitive P . It then runs setup to make the initial state. The other
parts of the game are oracles offered to an adversary A:

– REF: state S is updated by calling refresh with input I of entropy at least γ,
– ROR: state S is updated by calling next, and then y0 and y1 are prepared: if

c < λ, then it returns y1 regardless of b, while if c ≥ λ, then yb is returned
– GET: returns the state S of the DRBG.
– SET(S∗): sets the state S of the DRBG to S∗.
– P returns the result of a primitive query. If the primitive allows inverse

query(i.e., block cipher), the oracle should also provide P−1.

Now we can distinguish two worlds G0 and G1 from the seedless robust games
according to the bit b ∈ {0, 1}, and for any DRBG G, the seedless robustness
security of G against A is defined as follows.

AdvG
rob(A)

def= Advdist(A).

4 Modeling Linux-DRBG

In this section, we model Linux-DRBG to fit into the Seedless Robustness secu-
rity model. In this paper, we studied the Linux version 6.4.8.2 We mainly
2 https://github.com/torvalds/linux/blob/master/drivers/char/random.c .

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c

468 W. Chung et al.

analyzed a random.c file in Linux 6.4.8, a collection of functions related to
Linux-DRBG. Linux-DRBG uses the hash function BLAKE2s and the stream
cipher ChaCha20 as internal primitives. We first describe the modeling of the
two internal primitives and then explain the overall structure of Linux-DRBG.

4.1 Underlying Primitives and Their Modeling

Algorithm 2. A Procedure in the BLAKE2s
COMP : {0, 1}n/4 × {0, 1}n × {0, 1}∗ → {0, 1}n

Procedure COMP[E](t, h, I)
1: len ← |I|
2: rem ← len − 2n(�len/2n� − 1)
3: (I1, . . . , I�)

2n←− I
4: I� ← 02n−rem ‖ I�

5: h1 ← h
6: for i ← 1 to � − 1 do
7: hi+1 ← B[E](hi, t + i · 2n, Ii)
8: y ← B′[E](h�, t + len, I�)
9: return y

4.1.1 BLAKE2s

The Linux DRBG uses the BLAKE2s hash function to accumulate entropy [1].
Due to the known structure of the BLAKE2s primitive E, it cannot be modeled
as an ideal cipher [5,7,18]. In this section, we first introduce an appropriate
model for E, the mappable weak block cipher, and then describe the structure
of BLAKE2s based on the model.

Weak Block Cipher. Consider a partition {0, 1}n = W ∪ ({0, 1}n\W). Define
the set of weakly ideal ciphers Πw(k, n,K,W) with a weak key set K as the
collection of all E ∈ Π(k, n) that satisfies the following properties: For every
K ∈ K, W ∈ W, and X ∈ {0, 1}n\W

EK(W) ∈ W,

EK(X) ∈ {0, 1}n\W.

Similar to the ideal cipher model, if a security proof assumes a weak block cipher
is picked uniformly random from Πw(k, n,K,W) at the beginning of the query,
we call the proof is under weakly ideal cipher model.

Mappable Weak Block Cipher. To model BLAKE2s, we extend the defi-
nition of a weak block cipher to a mappable weak block cipher. An example of

Provable Security of Linux-DRBG in the Seedless Robustness Model 469

Fig. 2. BLAKE2s and ChaCha20 internal structure

a mappable block cipher, along with the reasoning behind its definition, is pro-
vided in the following subsection. Define a set of mappable weak block ciphers
Πmw(k, n,K,W, f,Wf) with a function f , a set Wf , and Πw(k, n,K,W) as the
collection of all weak block cipher E ∈ Πw(k, n,K,W) that satisfies the following
property: For every W ∈ W,

f(W) ∈ Wf .

470 W. Chung et al.

Similar to the weakly ideal cipher model, if a security proof sup-
poses a mappable weak block cipher is picked uniformly random from
Πmw(k, n,K,W, f,Wf) at the beginning of the query, we call the proof is under
mappable weakly ideal cipher model.

The Modeling of the primitive E. We model E as a mappable weak block
cipher. For the BLAKE2s, a weak key set K, a weak input set W, Wsum, and
sum : W → Wsum are defined as follows:

W = {aeaebfbfcgcgdhdh ∈ {0, 1}2n | a, b, c, d, e, f, g, h ∈ {0, 1}n/8},

K = {kkkkkkkkkkkkkkkk ∈ {0, 1}2n | k ∈ {0, 1}n/8}
Wsum = {wxwxyzyz ∈ {0, 1}n | w, x, y, z ∈ {0, 1}n/8},

sum(W) = msbn(W) ⊕ lsbn(W).

Consequently, BLAKE2s’ primitive E belongs to Πmw(2n, 2n,K,W, sum,Wsum),
and we prove the security of Linux-DRBG under the mappable weakly ideal
cipher model for Πmw(2n, 2n,K,W, sum,Wsum).

To model the properties of E [7], at least the weakly ideal cipher model
is required. To prove the security of Linux-DRBG, we need to distinguish the
output of E from a random number. Due to the initialization vector (IV) of
BLAKE2s, it is impossible for E to receive an input that corresponds to W. Since
the compression function of BLAKE2s sums halves of E’s output, we need to
determine whether the random number falls within Wsum, not W. Consequently,
to use Wsum, we define and employ the mappable weakly ideal cipher model.

The modeling of the compression function. For x ∈ {0, 1}2n, let
TRSum(x) = x[0 : n − 1] ⊕ x[n :]. Then the 1 round of compression function
of the BLAKE2s is defined as follows:

B[E](h, t, I) ← TRSum(E(I, h ‖ (0n/2 ‖ t ‖ 0n/4) ⊕ IV)) ⊕ h,

B′[E](h, t, I) ← TRSum(E(I, h ‖ (0n/2 ‖ t ‖ 0n/8 ‖ 1n/8) ⊕ IV)) ⊕ h

where E ∈ Πmw(2n, 2n,K,W, sum,Wsum), h is a n-bit value, t is a n/4-bit
counter, I is an 2n-bit input, and IV = IV1 ‖ · · · ‖ IV8 is n-bit fixed string
where IVk ∈ {0, 1}n/8 for all 1 ≤ k ≤ 8 and IVi �= IVj for all 1 ≤ i �= j ≤ 8.
B[E](h, t, I) and B′[E](h, t, I) are described in Fig. 2(a). Here, B is used when
I is not the final input block, and B′ is used when I is the final input block. We
represent Linux-DRBG function blake2s compress as COMP in Algorithm 2
and Fig. 2(b).

Avoiding the weak state. In BLAKE2s, the IV is a 256-bit string consisting
of a tuple of 32-bit values derived from the square roots of distinct primes starting
from 2 and ending at 19. Note that the square roots of primes are all different.
Hence, in actual usage, the weak input w ∈ W of BLAKE2s cannot be accessed
due to the distinct elements of IV. Therefore, we assume that the IV = IV1‖· · ·‖
IV8 is n-bit fixed string where IVk ∈ {0, 1}n/8 for all 1 ≤ k ≤ 8 and IVi �= IVj

for all 1 ≤ i �= j ≤ 8.

Provable Security of Linux-DRBG in the Seedless Robustness Model 471

Algorithm 3. A Procedure in the ChaCha20

CB : {0, 1}n × {0, 1}n/2 × {0, 1}∗ → {0, 1}∗

Procedure CB[π](K,CNT, len)
1: out ← ε
2: while len > 0 do
3: B ← π(Z ‖ K ‖ CNT) +n/8 (Z ‖ K ‖ CNT)
4: CNT ← CNT + 1
5: out ← out ‖ B
6: len ← len − 2n

7: return out

4.1.2 ChaCha20
Linux-DRBG produces pseudorandom outputs using ChaCha20. The stream
cipher ChaCha20 is known to be faster than AES when hardware support for
AES is not available. The ChaCha20 uses a fixed constant Z, expressed as the
hexadecimal representation of “expand 32-byte k”.

The random permutation model. The 20 rounds of the ChaCha20 can
be modeled as a random permutation π ←$ Perm(2n) [11]. Using the random
permutation π and a fixed constant Z, we model a function chacha block as
CB in the Algorithm 3 and Figure 2(c). The computation of CB on one 2n bits
block is expressed as follows:

out ← π(Z ‖ K ‖ CNT) +n/8 (Z ‖ K ‖ CNT)

where, Z is the fixed n/2-bit constant, K is an n-bit key, and CNT is an n/2-bit
counter, and +n/8 represents word-by-word modulo 2n/8 addition.

4.2 Overall Structure of Linux-DRBG

We divide Linux-DRBG into three parts: Initialization, Entropy Accumulation,
and Random Bit Generation. Linux-DRBG is initialized when the Linux kernel
boots. Then, Linux-DRBG starts to accumulate entropy from various hardware
sources. When accumulated entropy is larger than 256-bit, a character device file
/dev/random, a system call getrandom, and a kernel interface get random bytes
of Linux-DRBG can produce random bits. In this subsection, we describe the
three parts of Linux-DRBG. We also describe how we model each part in the
Seedless Robustness model which will be described in the Algorithm 4 and Fig. 3
later.

4.2.1 Initialization
When the Linux kernel boots, Linux-DRBG initializes a state input pool of
the BLAKE2s. Also, Linux-DRBG initializes states base crng and crng of the
ChaCha20. Then Linux-DRBG calls a function random init early that accu-
mulates entropy in the input pool without accessing the timer in Linux. Finally,

472 W. Chung et al.

when the timer becomes available, Linux-DRBG calls a function random init
which accumulates entropy in the input pool using the timer in Linux.

The Modeling of the Initialization. We model the three states
input pool, base crng, and crng in a single state S. Using the state S, we
model the initialization as a function setup() in the Algorithm 4. Note that
Linux-DRBG accumulates some entropy in the initialization. But we exclude
entropy accumulation in the setup. Then, we model an attacker to call entropy
accumulation functions with high entropy after entropy-draining events includ-
ing setup.

4.2.2 Entropy Accumulation
Linux-DRBG accumulates entropy from various hardware entropy sources.
Linux-DRBG calls functions to access hardware entropy sources. The functions
related to entropy accumulation and estimation are listed as follows:

– add hwgenerator randomness,
– add bootloader randomness,
– add interrupt randomness,
– add timer randomness.

When Linux-DRBG calls the functions, they return a string that contains
entropy which is called “entropy input”. Note that these functions also return
an estimation of the entropy within their entropy inputs. Linux-DRBG cred-
its the estimation using a function credit init bits, enabling it to track how
much entropy has been accumulated in the state of the DRBG. An analysis of
Linux kernel version 5.18.1 by the German Federal Office for Information Secu-
rity (BSI) shows that the Linux entropy sources and their entropy estimations
satisfy their security criteria [19]. Hence, we assume that all entropy sources and
estimations are functioning correctly.

Entropy accumulating functions. Linux-DRBG utilizes the function
mix pool bytes to use the BLAKE2s for accumulating entropy into its state.
Also, Linux-DRBG uses a function crng reseed to convert the BLAKE2s’ state
into a key for a random bit generation. Entropy accumulation works as follows:

1. Linux-DRBG obtains an entropy input from the entropy sources.
2. Linux-DRBG passes the entropy input to the hash function BLAKE2s.
3. mix pool bytes: BLAKE2s compresses the entropy input to its element h of

its state.
4. crng reseed: If Linux-DRBG needs to generate random bits, then the

BLAKE2s uses h to derive keys for the random bit generation.

The Modeling of the Entropy Accumulation. We put constants h, t,
and key knext of the BLAKE2s in the DRBG state S. Also, we put ChaCha20
key kbase in the state S. In the Algorithm 4, the two entropy accumulating
functions mix pool bytes and crng reseed are modeled as refresha and refreshf .

Provable Security of Linux-DRBG in the Seedless Robustness Model 473

We depict the two functions in the Fig. 3(a) and (b). In the Fig. 3(a), the refresha
uses an entropy input I to update h. In the Fig. 3(b), the refreshf uses h and an
entropy input I to generate knext for later BLAKE2s calls and kbase for random
bit generation.

4.2.3 Random Bit Generation
Linux-DRBG uses either a function get random bytes or a function
get random bytes user to utilize the ChaCha20 for generating random bits.
Note that Linux uses two types of the ChaCha20 for a multi-core system. A
base crng obtains the key kbase from the BLAKE2s and produces ckeyCPU . A
crng, within each CPU, generates random bits utilizing the CPU with a key
ckeyCPU . Random Bit Generation works as follows:

1. Linux-DRBG obtains the ChaCha20 key kbase from the BLAKE2s and ini-
tializes the base crng using the kbase.

2. Linux-DRBG assigns a CPU the random bit generation task.
(a) If a flag G flagCPU is set, Linux generates the CPU-specific key ckeyCPU

from the base crng.
(b) Otherwise, Linux updates ckeyCPU by running crng with the old ckeyCPU

without accessing kbase.
3. Using the crng in the CPU, Linux-DRBG uses either the get random bytes

or the get random bytes user to generate random bits.

Two types of random bit generators. In Linux-DRBG, there are two
types of random bit generation:

1. A first type generator produces random bits only if sufficient entropy is accu-
mulated. The /dev/random is a representative example of the type.

2. A second type generator produces random bits at any time. The
/dev/urandom is a representative example of the type.

The only difference between /dev/random and /dev/urandom is the fact
that/dev/random prohibits premature next and /dev/urandom allows it. There
already exists the study that any DRBG that allows premature next is inse-
cure in the seedless model [9]. Therefore in this paper, we only consider the
first type. The character device file /dev/random, the system call getrandom,
and the kernel interface get random bytes are the first type generators. The
/dev/random and the getrandom use the function get random bytes user to
generate random bits. The get random bytes kernel interface uses the func-
tion get random bytes to generate random bits. These generators can produce
random bits only if accumulated entropy is more than 256-bit.

The Modeling of the Random Bit Generation. We put keys kbase, ckey1,
. . . , ckeyC , and flags G flag1, . . . , G flagC in the state S where C is the num-
ber of the CPUs. In the Algorithm 4, two random bit generation functions
get random bytes and get random bytes user are modeled as nextk amd nextu.
We depict the two functions in the Fig. 3(c) and (d).

474 W. Chung et al.

Fig. 3. Components of Linux-DRBG. States are defined in Sect. 4.3 and B, CB and
COMP are defined in Sect. 4.1

Provable Security of Linux-DRBG in the Seedless Robustness Model 475

4.3 Syntax of Linux-DRBG in Robustness Model

From the previous subsection, we establish the state of Linux-DRBG. Building
upon this state, we present the syntax of Linux-DRBG, which constitutes our
model of the operation of Linux-DRBG.

Algorithm 4. Syntax of Linux-DRBG
setup : ε → S
Procedure setup()

1: S.h ← const; S.t ← 0
2: return S

refresha : S × ({0, 1}2n)∗ → S
Procedure refresha[E](S, I)

1: if S.knext �= ε then
2: I ← 0n ‖ S.knext ‖ I
3: S.knext ← ε

4: (I1, . . . , I�)
2n←− I

5: for i ← 1 to � do
6: S.h ← B(S.h, S.t + i · 2n, Ii)
7: S.t ← S.t + |I|
8: return S

refreshf : S × {0, 1}∗ × {0, 1}n → S
Procedure refreshf [E](S, I, Icpu)

1: if S.knext �= ε then
2: I ← 0n ‖ S.knext ‖ I

3: k ← COMP[E](S.t, S.h, I)
4: Icpu ← 0n ‖ k ‖ Icpu ‖ 0c−1

5: S.knext ← COMP[E](0, const, Icpu‖
0)

6: S.kbase ← COMP[E](0, const, Icpu‖
1)

7: S.h ← const; S.t ← 2n
8: S.G flag1 ← 1; S.G flag2 ← 1; · · · ;

S.G flagC ← 1
9: return S

nextk : S × {0, 1}∗ × {0, 1}log(C) →
S × {0, 1}∗

Procedure nextk[π](S, len, ncpu)
1: if S.G flagncpu

= 1 then
2: tmp ← CB[π](S.kbase, 0, 2n)
3: S.kbase ‖ S.ckeyncpu

← tmp
4: S.G flagncpu

← 0

5: k ← S.ckeyncpu

6: tmp ← CB[π](S.ckeyncpu
, 0, 2n)

7: S.ckeyncpu
‖ out ← tmp

8: B ← CB[π](k, 1, len − n)
9: out ← (out ‖ B)[0 : len − 1]

10: return (S, out)

nextu : S × {0, 1}∗ × {0, 1}log(C) →
S × {0, 1}∗

Procedure nextu[π](S, len, ncpu)
1: if S.G flagncpu

= 1 then
2: tmp ← CB[π](S.kbase, 0, 2n)
3: S.kbase ‖ S.ckeyncpu

← tmp
4: S.G flagncpu

← 0

5: tmp ← CB[π](S.ckeyncpu
, 0, 2n)

6: S.ckeyncpu
‖ k ← tmp

7: if len ≤ n then
8: return (S, k[0 : len − 1])
9: out ← (CB[π](k, 1, len))[0 : len−1]

10: return (S, out)

476 W. Chung et al.

4.3.1 Internal State
We define the internal state of Linux-DRBG S as follows:

S := (h, t, knext, kbase, ckey1, · · · , ckeyC ,G flag1, · · · ,G flagC)

where C is the number of available CPUs. A description of each element in the
state S is as follows:

– h ∈ {0, 1}n: a value that is updated by the compression function of the
BLAKE2s,

– t ∈ {0, 1}n/4: a counter of the BLAKE2s,
– knext ∈ {0, 1}n: a key of the BLAKE2s,
– kbase ∈ {0, 1}n: a key of the ChaCha20 that is used to produce CPU-specific

keys ckey1, . . . , ckeyC ,
– ckeyi ∈ {0, 1}n: a key of the ChaCha20 that is used to produce random bits

in the i-th CPU,
– G flagi ∈ {0, 1}: a flag that indicates whether ckeyi needs to be updated by

using kbase or not.

We define a set of states as

S = {0, 1}n × {0, 1}n/4 × {0, 1}n × {0, 1}n × ({0, 1}n)C × ({0, 1})C .

Modeling the BLAKE2s state. The compression function of BLAKE2s
updates S.h ∈ {0, 1}n, and S.t ∈ {0, 1}n/4 serves as an input to BLAKE2s,
accumulating the bit length of the input compressed. In Linux, BLAKE2s main-
tains a buffer and finalization flag in its state. The value to be compressed is
stored in the buffer, and when Linux-DRBG reseeds, it initializes BLAKE2s’
state and places a key in the buffer. We eliminated the buffer from S and stored
the BLAKE2s key in S.knext. By saving S.knext, we can simulate BLAKE2s with-
out the buffer. For the finalization flag in Linux, we explicitly incorporate it into
the COMP in the Algorithm 2.

Modeling the ChaCha20 state. The final output of the BLAKE2s serves as
the key for the ChaCha20, denoted as S.kbase ∈ {0, 1}n. To leverage a multi-
core system, each CPU has its ChaCha20 states. Their keys are stored in
ckey1, . . . , ckeyC ∈ {0, 1}n, where C represents the maximum available CPU
number. When Linux-DRBG is asked to produce pseudorandom outputs, it
determines whether the i-th CPU ChaCha20’s key needs to be updated by using
S.kbase or not based on G flag1, . . . ,G flagC ∈ {0, 1}. If G flagi = 1, then it needs
to be updated using S.kbase. Otherwise, it is updated using old S.ckeyi.

4.3.2 Linux-DRBG Syntax
We align Linux-DRBG with the syntax of the PRNG used in the robustness
model [10,12]. The syntax of Linux-DRBG is detailed in Algorithm 4. Addition-
ally, we illustrate the operations of each function in Fig. 3.

– setup(): This algorithm produces an initial Linux-DRBG state S.

Provable Security of Linux-DRBG in the Seedless Robustness Model 477

– refresha[E](S, I): Given a mappable weakly ideal cipher E, the state S and a
variable length entropy input I, refresha compresses the entropy input I and
store it to S.h.

– refreshf [E](S, I, Icpu): Given a mappable weakly ideal cipher E, the state S,
a variable length entropy input I, and a fixed n-bit input Icpu, refreshf com-
presses I and Icpu to generate two keys S.knext and S.kbase. Note that refreshf
uses fixed constant const for compression. The const is defined as follows:

const ← IV ;

const[0 : n/8 − 1] ← const[0 : n/8 − 1] ⊕ (07 ‖ 1 ‖ 07 ‖ 1 ‖ 0n/8−16|n << 8|n).

where the IV is the fixed constant from the BLAKE2s, and | is the bit-wise
OR operation. S.knext is used in later calls to refresha or refreshf . S.kbase is
used to generate random bits through nextk or nextu. The refreshf also sets
flags S.G flag1, . . . , S.G flagC .

– nextk[π](S, len, ncpu): Given a random permutation π, the state S, a required
output length len, and a CPU number ncpu, nextk generates len-bit random
bits using S.ckeyncpu

in the ncpu-th CPU. If a S.G flagncpu
is set, then nextk

updates S.ckeyncpu
by using S.kbase. Otherwise, nextk updates S.ckeyncpu

by
its old S.ckeyncpu

.
– nextu[π](S, len, ncpu): This algorithm works similar to the nextk. The nextk

directly uses S.ckeyncpu
to produce random bits. But the nextu first produces

a temporary key k, then it produces random bits using the k.

5 Robustness Proof

5.1 Linux-DRBG Robustness Game

Difference from the general DRBG model. From procedures in Algo-
rithm 4, we can define robustness oracles for Linux-DRBG in Algorithm 5. Note
that there are several differences from oracles in Algorithm 1 as follows.

– The refresh oracle is divided into REFa and REFf since Linux-DRBG accu-
mulates the entropy gradually.

– If REFf is invoked without sufficient entropy, it sets c to 0. Therefore, it is
essential to supply sufficient entropy in a single REFf call. This assumption
is substantiated by the observation that, after system boot, Linux-DRBG
invokes crng reseed (equivalent to REFf) only if sufficient entropy is accu-
mulated in its state. Also, after sufficient entropy is accumulated, Linux
invokes crng reseed every 60 s. After a sufficient amount of time has passed
since the Linux system booted, it can be considered that 60 s is sufficient for
accumulating enough entropy. Considering this behavior of Linux, even when
a Seedless adversary attempts to leak the state of the DRBG, Linux-DRBG
can be assumed to accumulate sufficient entropy with a single invocation of
REFf . Therefore, REFf can be modeled always to receive inputs with suffi-
cient entropy.

478 W. Chung et al.

Algorithm 5. Oracles for Linux-DRBG Seedless Robustness Game
Procedure INIT()

1: b ←$ {0, 1}, c ← 0
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum), π ←$ Perm(2n)
3: S ← setup()
4: return (E, π)

Procedure REFa[E](I, γ)
1: S ← refresha[E](S, I); c ← c + γ
2: return γ

Procedure REFf [E](I, γ, Icpu)
1: S ← refreshf [E](S, I, Icpu)
2: c ← c + γ
3: if c ≥ λ then
4: ready ← 1
5: else
6: c ← 0
7: return γ

Procedure RORk[π](len, ncpu)
1: (S, y1) ← nextk[π](S, len, ncpu)
2: if c < λ or ready = 0 then
3: c ← 0; ready ← 0; return y1
4: y0 ←$ {0, 1}len

5: return yb

Procedure RORu[π](len, ncpu)
1: (S, y1) ← nextu[π](S, len, ncpu)
2: if c < λ or ready = 0 then
3: c ← 0; ready ← 0; return y1
4: y0 ←$ {0, 1}len

5: return yb

Procedure GET();
1: c ← 0; ready ← 0; return S

Procedure SET(S∗)
1: S ← S∗; c ← 0; ready ← 0

Procedure E(k, x)
1: return E(k, x)

Procedure E−1(k, y)
1: return E−1(k, y)

Procedure π(x)
1: return π(x)

Procedure π−1(y)
1: return π−1(y)

– There are two ROR oracles, RORk and RORu.
– The ROR oracles do not work correctly if ready = 0, which means at least

one REFf call after entropy drain(will be defined in this section) is required.
– RORk and RORu requires the number of CPU to generate random bits, and

the process varies whether S.G flagncpu
is 0 or 1.

– Since Linux-DRBG uses two cryptographic primitives, the mappable weakly
ideal cipher E and the random permutation π, and they allow inverse query,
there exist four primitive query oracles for Linux-DRBG. E. E−1, π, π−1 are
that.

With the above definition, the procedure for Linux-DRBG Robust Game is
described as follows.

Provable Security of Linux-DRBG in the Seedless Robustness Model 479

Linux-DRBG Robustness Game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries RORk, RORu, GET, SET, E, E−1, π and π−1. A1

queries REFa and REFf . All query orders are free and can be done multiple
times.

3. A2 outputs b′ ∈ {0, 1}, if b′ = b, A wins.

Entropy Drain. We define entropy drains, which are events that make the
DRBG lose its entropy by giving some information to the adversary. The follow-
ing events are called entropy drains:

– Exactly after INIT,
– Calling oracles to GET or SET,
– Calling an oracle RORk or RORu when c < λ or ready = 0.

For convenient notation, we denote an entropy drain as ED from now on.

Canonical adversary: An adversary A is called canonical if it follow the
conditions below:

1. A2 queries RORk or RORu only when c ≥ λ and ready = 1.
2. A2 queries RORk or RORu, only when the last construction query made by

A1 is REFf .
3. A1 does not query REFa consecutively.
4. Between the last entropy drain and the first RORk or RORu query thereafter,

A2 does not query GET and SET in situations where c > 0.
5. Between the last entropy drain and the first RORk or RORu query thereafter,

A1 does not query REFa.

We claim that we can assume the Linux-DRBG Robustness adversary A is canon-
ical. This assumption comes from the fact that the only difference between b = 0
and b = 1 is in RORk or RORu when c ≥ λ and ready = 1, and REFa only
accumulate entropy, and REFf is required to transfer the accumulated entropy
to S.kbase, the state used in RORk or RORu. Therefore, for any adversary A that
violates the above condition, one can construct canonical adversary A′ using A
holding or simulating queries made by A appropriately. The strategy of A′ is
like below.

– If A violates condition 1 or 4, A′ can easily simulate the query with primitive
queries, because in that case the ideal world and real world behaviors are
same.

– If A violates one of condition 2,3,5, A′ just simply store REFa queries after
the last REFf query. Then when A queries GET or REFf , A′ can concatenate
the queries into a REFa or REFf .

Therefore it is reasonable to assume the Linux-DRBG Robustness adversary A
is canonical.

480 W. Chung et al.

5.2 Robustness Proof

The robustness advantage of Linux-DRBG is upper bounded in Theorem 1. In
the statement of Theorem 1, REF (resp. ROR) calls mean REFf and REFa (resp.
RORk and RORu) calls.

Theorem 1. Let A be a λ-legitimate robustness game adversary that makes p
primitive query, q1 REF query, q2 ROR query, �1 maximum number of entropy
input block in a single REF call, �2 maximum number of output block in a single
ROR call, σ1 total number of entropy input blocks in every REF, and σ2 total
number of output blocks in every ROR. Let Advrob(p, q1, q2, �1, �2, σ1, σ2, λ) be
the advantage upper bound of all possible adversaries A. If p+3q1 +2σ1 ≤ 2n−1,
the following inequality holds.

Advrob(p, q1, q2, �1, �2, σ1, σ2, λ)

≤ 42q1

20.5n
+

8q2�2(p + 2q2 + �2 + σ2)

22n
+

8q1(p + 3q1 + σ1)

2λ

+
2p(p + 8q2 + 27q1 + 2σ1) + 2q1(72q1 + 2�1 + 31σ1 + 2) + 4q2(8q2 + 4σ2 + 1) + 4σ2

1

2n

≤ 42σ1

20.5n
+

8σ2
2(p + 4σ2)

22n
+

8σ1(p + 4σ1)

2λ

+
2p2 + 2σ1(29p + 107σ1 + 2) + 4σ2(4p + 12σ2 + 1)

2n
.

Let S0 (resp. S1) be a system of ideal (resp. real) world robustness oracles.
In the INIT in Algorithm 5, if b = 0 (resp. b = 1), then the system of oracles is
S0 (resp. S1). Note that the only differences between S0 and S1 are the return
values of oracles RORk and RORu. If in S0 (resp. S1), they return y0 (resp. y1)
when c ≥ λ and ready = 1.

Methodology of the proof. Our proof involves dividing the robustness
distinguishing game into subgames, proving the security of each, and then com-
bining them. The subgames consist of the M-EXT game, which describes the
distinguishing game for REF calls, the pREFa game, the pREFf game, and the
distinguishing games for ROR calls, which include the bRORk game, bRORu,
cRORk game, and cRORu game. In the text, we first define the hybrid world Sh

for convenience of proof, ensuring that the state updates uniformly randomly
when accumulated entropy c ≥ λ [17]. Subsequently, we define each subgame
and its adversarial advantages, then claim Lemma 2 through game hopping with
intermediate worlds that can apply each subgame, and prove the security of each
subgame to prove Theorem 1 ultimately.

Among the subgames, the M-EXT game allows multiple M-EXT calls, dif-
fering from other subgames and previous proof methods that divided robust-
ness into recovering security and preserving security [10,12,13,24]. Using the
traditional method of splitting into several games with a single M-EXT call
would result in each game’s advantage having a p2/2n term, and when gathering
these, a p2q1/2n term would emerge, and we only could prove O(2n/3) security

Provable Security of Linux-DRBG in the Seedless Robustness Model 481

for Linux-DRBG. In contrast, the M-EXT game, by allowing multiple M-EXT
calls, eliminates the need to gather security bound, leading to O(2n/2) security
as shown in (2), and ultimately, we could prove that Linux-DRBG is secure
up to O(min(2n/2, 2λ/2)) adversarial queries. We believe this technique could be
applied to other DRBGs as well, potentially helping to raise their security upper
bounds.

Algorithm 6. Oracles for the hybrid world

Procedure REFa
∗(I, γ)

1: c ← c + γ //Update c first.
2: if c < λ then
3: S ← refresha[E](S, I)
4: else
5: S.h ←$ {0, 1}n

6: S.t ← S.t + len

7: return γ

Procedure REFf
∗(I, γ, Icpu)

1: c ← c + γ //Update c first.
2: if c < λ then
3: S ← refreshf [E](S, I, Icpu)
4: else
5: knext ←$ {0, 1}n

6: S.kbase ←$ {0, 1}n

7: S.h ← const
8: S.t ← 2n
9: ready ← 1

10: S.G flag1 ← 1; S.G flag2 ← 1;
· · · ; S.G flagC ← 1

11: return γ

Procedure RORk
∗[π](len, ncpu)

1: if c < λ or ready = 0 then
2: (S, y) ← nextk[π](S, len, ncpu)
3: c ← 0; ready ← 0
4: else
5: if S.G flagncpu

= 1 then
6: S.kbase ←$ {0, 1}n

7: S.G flagncpu
← 0

8: S.ckeyncpu
‖ y ←$ {0, 1}n+len

9: return y

Procedure RORu
∗[π](len, ncpu)

1: if c < λ or ready = 0 then
2: (S, y) ← nextu[π](S, len, ncpu)
3: c ← 0; ready ← 0
4: else
5: if S.G flagncpu

= 1 then
6: S.kbase ←$ {0, 1}n

7: S.G flagncpu
← 0

8: S.ckeyncpu
‖ y ←$ {0, 1}n+len

9: return y

We denote ΔA(S0, S1) for a seedless robustness distinguishing advantage of
S0 and S1 for an adversary A satisfying conditions in Theorem 1. Let Sh be a
system of hybrid words that contains oracle REFa

∗, REFf
∗, RORk

∗ and RORu
∗

in Algorithm 6 instead of REFa, REFf , RORk and RORu in Algorithm 5. That
means, when c ≥ λ, S0 outputs bit outputs randomly but updates its state with
Linux-DRBG algotirhm, and S1 outputs bit outputs and updates its state with
Linux-DRBG algotirhm, Sh outputs bit outputs and updates its state randomly.
Then, by the triangle inequality, the following holds:

482 W. Chung et al.

ΔA(S0, S1) ≤ ΔA(S0, Sh) + ΔA(Sh, S1). (1)

With (1), the following lemma holds.

Lemma 1. In a distinguishing game, b ∈ {0, 1} is uniformly randomly chosen to
select one of two worlds. For ΔA(Sh, S0), if b = 0 then Sh is selected. Otherwise,
S0 is selected. For ΔA′(Sh, S1), if b = 0 then Sh is selected. Otherwise, S1 is
selected. Then for any robustness adversary A, there exists A′ that satisfies the
following.

ΔA(Sh, S0) ≤ ΔA′(Sh, S1).

Proof. We can construct a distinguishing adversary A′ between Sh and S1 using
an S0 and Sh distinguishing adversary A as a subalgorithm. A′ passes oracle
queries of A to its oracles and just returns results to A except when A queries
RORk or RORu and conditions c ≥ λ and ready = 1 hold. If A queries RORk

or RORu and conditions c ≥ λ and ready = 1 hold, then A′ randomly picks a
bitstring and returns it to A. If b = 0, then A′ perfectly simulates Sh to A, and
if b = 1, then A′ perfectly simulates S0 to A. Finally, A′ outputs b′, which is the
final output of A.

Hence, the following holds:

ΔA(S0, S1) ≤ 2ΔA′(Sh, S1).

Therefore, we only need to upper bound ΔA′(Sh, S1).

5.2.1 Games for Robustness Proof
To upper bound ΔA′(Sh, S1), we substitute oracles used in S1 to oracles used
in Sh using the game hopping technique. We employ subgames for each substi-
tution. The subgames are M-EXT game, pREFa game, pREFf game, bRORk

game, bRORu game, cRORk game, cRORu game. The former 3 sub games are
necessary to substitute REFa or REFf with REF∗

a or REF∗
f , the latter 4 sub

games are necessary to substitute RORk or RORu with RORk or RORu
∗. One

can see how the following subgames are used to prove Theorem 1 via Lemma 2.
With oracles in Algorithm 7, M-EXT game, pREFa game, pREFf game pro-

cesses are defined like below.

M-EXT game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 and A1 queries

M-EXT[E](inc, h1, I, I cpu) multiple times, and gets the output.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

Provable Security of Linux-DRBG in the Seedless Robustness Model 483

Algorithm 7. Oracles for refresh sub Games
Procedure INIT()

1: b ←$ {0, 1}
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum)
3: k ←$ {0, 1}n //No usage in M-EXT game

Procedure M-EXT[E](inc, h1, I, I cpu)
1: if b = 0 then
2: s ←$ {0, 1}2n

3: else
4: k ← COMP[E](inc, h1, I)
5: Icpu ← 0n ‖ k ‖ Icpu ‖ 0c−1

6: sL ← COMP[E](0, const, Icpu ‖ 0)
7: sR ← COMP[E](0, const, Icpu ‖ 1)
8: s ← sL ‖ sR

9: return (inc, h1, s)

Procedure pREFa[E](I)
1: if b = 0 then
2: h ←$ {0, 1}n

3: else
4: I0 ← 0n ‖ k

5: (I1, . . . , I�)
2n←− I

6: h ← const
7: for i ← 0 to � do
8: h ← B[E](h, (i + 1) · 2n, Ii)
9: return h

Procedure pREFf [E](I, I cpu)
1: if b = 0 then
2: s ←$ {0, 1}2n

3: else
4: y ← k
5: y ← COMP[E](0, const, 0n ‖y ‖

I)
6: Icpu ← 0n ‖ y ‖ Icpu ‖ 0c−1

7: sL ← COMP[E](0, const, Icpu ‖
0)

8: sR ← COMP[E](0, const, Icpu ‖
1)

9: s ← sL ‖ sR

10: return s

pREFa game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 multiple time and A1 queries pREFa[E](I)

once, and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

484 W. Chung et al.

pREFf game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 multiple time and A1 queries pREFf [E](I, I cpu)

once, and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

And define some values like below.

– AdvM-EXT(p, q, σ, λ): The advantage upper bound against any λ-legitimate
adversary A that makes at most p queries to E or E−1, q queries to M-EXT,
and the total length of entropy input I is less than 2nσ bits.

– AdvpREFa(p, �): The advantage upper bound against any adversary A that
makes at most p queries to E or E−1, entropy input I’s length for pREFa is
less than 2n� bits.

– AdvpREFf (p, �): The advantage upper bound against any adversary A that
makes at most p queries to E or E−1, r entropy input blocks to pREFf , and
the input block I and I cpu’s length is less than 2n� bits.

Algorithm 8. Oracles for Base ROR subgames
Procedure INIT()

1: kbase ←$ {0, 1}n

2: b ←$ {0, 1}
3: π ←$ Perm(2n)

Procedure bRORk[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: kbase‖c key ← CB[π](kbase, 0, 2n)
6: k ← c key
7: c key ‖ y1 ← CB[π](c key, 0, 2n)
8: B ← CB[π](k, 1, len − n)
9: y1 ← y1 ‖ B

10: y1 ← y1[0 : len − 1]
11: return kbase ‖ c key ‖ y1

Procedure bRORu[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: kbase‖c key ← CB[π](kbase, 0, 2n)
6: c key ‖ k ← CB[π](c key, 0, 2n)
7: if len ≤ n then
8: return kbase ‖ c key ‖ k[0 :

len − 1]
9: y1 ← CB[π](k, 1, len)

10: y1 ← y1[0 : len − 1]
11: return kbase ‖ c key ‖ y1

With oracles in Algorithm 8 and in Algorithm 9, we can define bRORk game,
bRORu and cRORk game, cRORu game processes like below.

Provable Security of Linux-DRBG in the Seedless Robustness Model 485

Algorithm 9. Oracles for CPU ROR subgames
Procedure INIT()

1: c key ←$ {0, 1}n

2: b ←$ {0, 1}
3: π ←$ Perm(2n)

Procedure cRORk[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: k ← c key
6: c key ‖ y1 ← CB[π](c key, 0, 2n)
7: B ← CB[π](k, 1, len − n)
8: y1 ← y1 ‖ B
9: y1 ← y1[0 : len − 1]

10: return kbase ‖ c key ‖ y1

Procedure cRORu[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: c key ‖ k ← CB[π](c key, 0, 2n)
6: if len ≤ n then
7: return kbase ‖ c key ‖ k[0 :

len − 1]
8: y1 ← CB[π](k, 1, len)
9: y1 ← y1[0 : len − 1]

10: return kbase ‖ c key ‖ y1

bRORx game.(x ∈ {k, u})

1. Oracle runs INIT() procedure.
2. Adversary A2 queries π, π−1 multiple time and queries bRORx[π](len) once,

and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

cRORx game.(x ∈ {k, u})

1. Oracle runs INIT() procedure.
2. Adversary A2 queries π, π−1 multiple time and queries cRORx[π](len) once,

and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

And for all O ∈ {bRORk,bRORu, cRORk, cRORu}, let AdvO(p, �) be the
advantage upper bound against any adversary A that makes at most p queries
to π or π−1, inputs 2n� to O.

After hopping every game, we obtain the upper bound of ΔA(Sh, S1). The
result is presented in the Lemma 2.

486 W. Chung et al.

Lemma 2. For any λ-legitimate robustness adversary A satisfying conditions
in Theorem 1, the following holds.

ΔA(S0, S1) ≤ 2ΔA(Sh, S1)
≤ 2AdvM-EXT(p + 3q1 + σ1, q1, σ1, λ)
+ 2q1 (AdvpREFa(p + 3q1 + σ1, �1) + AdvpREFf (p + 3q1 + σ1, �1))
+ 2q2 (AdvbRORk(p + 2q2 + σ2, �2) + AdvcRORk(p + 2q2 + σ2, �2))
+ 2q2 (AdvbRORu(p + 2q2 + σ2, �2) + AdvcRORu(p + 2q2 + σ2, �2)) .

Here we present a brief overview of the proof. See the full version of this paper [8]
for the detailed proof.

To upper bound ΔA(S1, Sh), we introduce intermediate worlds. The bounds
in Lemma 2 can be obtained by bounding the advantage between intermediate
worlds with subgame advantages. The intermediate worlds are as follows for
1 ≤ i ≤ q1, 1 ≤ j ≤ q2.

– R: For the all REFf(I, γ, Icpu) immediately after entropy drain, execute
REF∗

f (I, γ, Icpu) instead. All other operations are the same as in S1.
ΔA(S1, R) can be bounded by AdvM-EXT(p + 3q1 + σ1, r, σ1, λ).

– Ti: For the ith REFf(I, γ, Icpu), execute REF∗
f (I, γ, Icpu) instead. All other

operations are the same as in Ti−1, where T0 = R. ΔA(Ti−1, Ti) can be
bounded by AdvpREFf (p + 3q1 + σ1, �1).

– Wi: For the ith REFa(I, γ), execute REF∗
a(I, γ) instead. All other operations

are the same as in Wi−1, where W0 = Tr. ΔA(Wi−1,Wi) can be bounded by
AdvpREFa(p + 3q1 + σ1, �1).

– HBn
i : If the ith ROR is RORk[π](len, ncpu) and S.G flagncpu

= 1, then execute
ROR∗

n[π](len, ncpu) instead. All other operations are the same as in HC
i−1.

ΔA(HC
i−1,H

Bn
i) can be bounded by AdvbRORk(p + 2q2 + σ2, �2).

– HB
i : If the ith ROR call is RORu[π](len, ncpu) and S.G flagncpu

= 1, then
execute ROR∗

u[π](len, ncpu) instead. All other operations are the same as in
HBn

i . ΔA(HBn
i ,HB

i) can be bounded by AdvbRORu(p + 2q2 + σ2, �2).
– HCn

i : If the ith ROR is RORk[π](len, ncpu) and S.G flagncpu
= 0, then exe-

cute ROR∗
n[π](len, ncpu) instead. All other operations are the same as in HB

i .
ΔA(HB

i ,HCn
i) can be bounded by AdvcRORk(p + 2q2 + σ2, �2).

– HC
i : If the ith ROR is RORu[π](len, ncpu) and S.G flagncpu

= 0, then execute
ROR∗

u[π](len, ncpu) instead. All other operations are the same as in HCn
i ,

where HC
0 = Wr. ΔA(HCn

i ,HC
i) can be bounded by AdvcRORu(p + 2q2 +

σ2, �2).

With Lemma 2 and Lemma 3, we can prove the Theorem 1. The proof of the
following lemma is in the full version [8].

Provable Security of Linux-DRBG in the Seedless Robustness Model 487

Lemma 3. If p + σ ≤ 2n−1 and p + � ≤ 2n−1, the following inequalities hold:

AdvM-EXT(p, q, σ, λ) ≤ 9pq + 4qσ + σ2

2n
+

9q

20.5n
+

p2

2n
+

4pq

2λ
, (2)

AdvpREFa(p, �) ≤ 3p

2n
+

�

2n
+

3
20.5n

, (3)

AdvpREFf (p, �) ≤ 9p

2n
+

� + 2
2n

+
9

20.5n
, (4)

AdvbRORk(p, �) ≤ 1 + 2p
2n

+
�2 + �p

22n
, (5)

AdvcRORk(p, �) ≤ p

2n
+

�2 + �p

22n
, (6)

AdvbRORu(p, �) ≤ 1 + 3p
2n

+
�2 + �p

22n
, (7)

AdvcRORu(p, �) ≤ 2p

2n
+

�2 + �p

22n
. (8)

6 Tight Attacks on Linux-DRBG

In this section, we briefly explain attacks to demonstrate the tightness of our
proof. We will present two attacks: the first attack can be executed when λ < n
with O(2λ/2) complexity, and the second attack has O(2n/2) complexity.

Attack 1: When λ < n, a λ-legitimate adversary A can win the robustness
game with high probability with the following method.

1. Make A1 to pick entropy inputs uniformly random from set T where |T | = 2λ,
regardless of query result. Note that A is still λ-legitimate.

2. For any S∗ ∈ S, and distinct I1 · · · , Ip ∈ T , A2 simulates
Si ← refreshf [E](S∗, Ii, 0n) by repeatedly querying E and calculate p Si val-
ues.

3. For any positive integer c, A2 simulates nextk[π](Si, 3n, 1) by repeatedly
querying π and calculates p output random bits. Then save the outputs in X .

4. A2 queries SET(S∗) and A1 picks I and queries REFf [E](I, λ, 0n), then A2

makes RORu[π](3n, 1) to get random bits. Repeat this procedure q times and
save the values in Y.

5. If X ∩ Y = ∅, A2 outputs 0. Else, A2 outputs 1.

To make an intersection, in the real world, it is sufficient to make the collision
between entropy input and simulated entropy input. However, in the ideal world,
the output bits are generated uniformly randomly. Therefore we have

Pr [1 ← A | b = 0] =
pq

23n

Pr [1 ← A | b = 1] = 1 −
(
1 − p

2λ

)q

≥ pq

2λ
− (pq)2

22λ+1
.

488 W. Chung et al.

Therefore, if p = q = 2λ/2, the advantage of A is sufficiently non-negligible.

Attack 2: A λ-legitimate adversary A can win a robustness game with high
probability with the following method.

1. A picks key K ←$ {0, 1}n and A simulates nextk[π](S, 3n, 1) as if S.ckey1 = K
and S.G flag1 = 0 by repeatedly querying π. Then save the outputs in X .
Repeat this procedure p times.

2. A1 generates I with min-entropy λ, then queries
REFf [E](I, λ, 0n) and A2 queries RORk[π](3n, 1) and save the outputs in Y.
Repeat this procedure until |Y| becomes q.

3. If X ∩ Y = ∅, A outputs 0. Else, A outputs 1.

To make an intersection, in the real world, it is sufficient to make the collision
on S.ckey1. However, in the ideal world, the output bits are generated uniformly
randomly. Therefore we have

Pr [1 ← A | b = 0] =
pq

23n

Pr [1 ← A | b = 1] = 1 −
(
1 − q

2n

)p

≥ pq

2n
− (pq)2

22n+1
.

Therefore, if p = q = 2n/2, the advantage of A is sufficiently non-negligible.

Acknowledgements. Jooyoung Lee was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) [NO.2022-0-01047, Development of statistical analysis algorithm
and module using homomorphic encryption based on real number operation]. We would
like to thank Samuel Neves for informing us of the recent research on weak states in
BLAKE2, which contributed to our modeling and security proof.

References

1. J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: simpler,
smaller, fast as md5. In Applied Cryptography and Network Security: 11th Interna-
tional Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings
11, pages 119–135. Springer, 2013.

2. B. Barak and S. Halevi. A Model and Architecture for Pseudo-Random Generation
with Applications to /Dev/Random. In Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS ’05, page 203–212, New York,
NY, USA, 2005. Association for Computing Machinery.

3. D. J. Bernstein et al. Chacha, a variant of salsa20.
4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge-based pseudo-

random number generators. In Cryptographic Hardware and Embedded Systems,
CHES 2010: 12th International Workshop, Santa Barbara, USA, August 17-20,
2010. Proceedings 12, pages 33–47. Springer, 2010.

5. A. Biryukov, A. Udovenko, and V. Velichkov. Analysis of the norx core permuta-
tion. Cryptology ePrint Archive, 2017.

Provable Security of Linux-DRBG in the Seedless Robustness Model 489

6. M. J. Campagna. Security bounds for the nist codebook-based deterministic ran-
dom bit generator. Cryptology ePrint Archive, Paper 2006/379, 2006. https://
eprint.iacr.org/2006/379.

7. C. Chaigneau, T. Fuhr, H. Gilbert, J. Jean, and J.-R. Reinhard. Cryptanalysis of
norx v2. 0. Journal of Cryptology, 32:1423–1447, 2019.

8. W. Chung, H. Kim, J. Lee, and Y. Lee. Provable security of Linux-DRBG in the
seedless robustness model. Cryptology ePrint Archive, Paper 2024/1421, 2024.

9. S. Coretti, Y. Dodis, H. Karthikeyan, N. Stephens-Davidowitz, and S. Tessaro. On
seedless prngs and premature next. Cryptology ePrint Archive, 2022.

10. S. Coretti, Y. Dodis, H. Karthikeyan, and S. Tessaro. Seedless fruit is the sweetest:
Random number generation, revisited. In Annual International Cryptology Con-
ference, pages 205–234. Springer, 2019.

11. J. P. Degabriele, J. Govinden, F. Günther, and K. G. Paterson. The security
of chacha20-poly1305 in the multi-user setting. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21, page
1981–2003, New York, NY, USA, 2021. Association for Computing Machinery.

12. Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and D. Wichs. Security Anal-
ysis of Pseudo-Random Number Generators with Input: /Dev/Random is Not
Robust. CCS ’13, page 647–658, New York, NY, USA, 2013. Association for Com-
puting Machinery.

13. P. Gaži and S. Tessaro. Provably robust sponge-based prngs and kdfs. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I 35, pages 87–116. Springer, 2016.

14. F. Goichon, C. Lauradoux, G. Salagnac, and T. Vuillemin. Entropy transfers in
the Linux random number generator. PhD thesis, INRIA, 2012.

15. Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random number
generator. In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages
15–pp. IEEE, 2006.

16. S. Hirose. Security analysis of drbg using hmac in nist sp 800-90. In K.-I. Chung,
K. Sohn, and M. Yung, editors, Information Security Applications, pages 278–291,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

17. V. T. Hoang and Y. Shen. Security analysis of nist ctr-drbg. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part
I, pages 218–247. Springer, 2020.

18. A. Luykx, B. Mennink, and S. Neves. Security analysis of blake2’s modes of oper-
ation. IACR Transactions on Symmetric Cryptology, pages 158–176, 2016.

19. S. Müller. Documentation and analysis of the linux random number generator.
Federal Office for Information Security, 2020.

20. S. Ruhault. Sok: Security models for pseudo-random number generators. IACR
Transactions on Symmetric Cryptology, pages 506–544, 2017.

21. T. Shrimpton and R. S. Terashima. A provable-security analysis of intel’s secure key
rng. In Advances in Cryptology–EUROCRYPT 2015: 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 77–100. Springer, 2015.

22. T. Shrimpton and R. S. Terashima. Salvaging weak security bounds for blockcipher-
based constructions. In ASIACRYPT (1), pages 429–454. Springer, 2016.

23. J. Woodage and D. Shumow. An analysis of nist sp 800-90a. 11477:151–180, 2019.

https://eprint.iacr.org/2006/379
https://eprint.iacr.org/2006/379

490 W. Chung et al.

24. J. Woodage and D. Shumow. An analysis of nist sp 800-90a. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19–23, 2019, Proceedings, Part II 38, pages 151–180. Springer, 2019.

25. K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W. Appel.
Verified correctness and security of mbedtls hmac-drbg. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
2007–2020, 2017.

Author Index

A
Agarwal, Amit 237
Aldakheel, A. 330

B
Badrinarayanan, Saikrishna 203
Bellare, M. 330
Bienstock, Alexander 237
Bombar, Maxime 69
Boyle, Elette 269
Bui, Dung 69

C
Chung, Woohyuk 464
Couteau, Geoffroy 69
Couvreur, Alain 69

D
Damgård, Ivan 237
Ducros, Clément 69
Dutta, Moumita 136

E
Elsheimy, Fatima 399
Escudero, Daniel 105, 237

F
Fleischhacker, Nils 367

G
Ganesh, Chaya 136
Gao, Ying 36
Goyal, Vipul 170

H
Hall-Andersen, Mathias 367
Hasler, Sebastian 3

K
Kim, Hwigyeom 464
Kohl, Lisa 269

Krips, Toomas 3
Küsters, Ralf 3

L
Lee, Jooyoung 464
Lee, Yeongmin 464
Li, Junru 170
Li, Zhe 269
Liu, Hongqing 301
Liu, Xiang 36
Loss, Julian 399
Luo, Yuanchao 36

M
Miao, Peihan 203
Misra, Ankit Kumar 170

O
Ostrovsky, Rafail 170

P
Papamanthou, Charalampos 399
Patranabis, Sikhar 136

Q
Qi, Lin 36

R
Ranjan, R. 330
Reisert, Pascal 3
Riepel, D. 330
Rivinius, Marc 3
Russell, Alexander 429

S
Scholl, Peter 269
Servan-Schreiber, Sacha 69
Shi, Xinyi 203
Simkin, Mark 367
Singh, Nitin 136
Song, Yifan 105, 170

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15489, pp. 491–492, 2025.
https://doi.org/10.1007/978-981-96-0938-3

https://doi.org/10.1007/978-981-96-0938-3

492 Author Index

T
Tang, Qiang 429
Tromanhauser, Max 203

W
Wagner, Benedikt 367
Wang, Longxin 36
Wang, Wenhao 105
Weng, Chenkai 170

X
Xing, Chaoping 301

Y
Yuan, Chen 301

Z
Zeng, Ruida 203
Zhu, Jiadong 429
Zou, Taoxu 301

	 Preface
	 Organization
	 Contents – Part VI
	Secure Multiparty Computation
	Actively Secure Polynomial Evaluation from Shared Polynomial Encodings
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Performance Measures
	3.2 Secret-Sharing and SPDZ-MACs
	3.3 Randomized Encodings and Randomizing Polynomials
	3.4 Binomial Tuples

	4 Our MPC Protocols for the Evaluation of Multivariate Polynomials
	4.1 MPC With Randomized Encodings
	4.2 Our Randomized Encodings
	4.3 Technical Lemmas and Formal Results
	4.4 Recursive Formula for Output Size
	4.5 Application in MPC Protocols and Asymptotic Behavior
	4.6 Composability and Security
	4.7 The Generation of Polytuples

	5 Implementation and Evaluation
	References

	Efficient Fuzzy Private Set Intersection from Fuzzy Mapping
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Related Work

	2 Overview of Our Techniques
	2.1 Challenge in Efficient FPSI
	2.2 Fuzzy Mapping
	2.3 Non-trivial Fmap for Hamming Distance
	2.4 UFmap for L Distance
	2.5 Applications of Fmap
	2.6 Applications of mqFRPMT

	3 Preliminaries
	3.1 Notation
	3.2 Oblivious Key-Value Store
	3.3 Fuzzy Matching

	4 Fuzzy Mapping
	4.1 Definition of Fmap
	4.2 Existing Fmap Constructions

	5 New Fmap Constructions
	5.1 UniqC Fmap for Hamming Distance
	5.2 SAS Fmap for L Distance

	6 Multi-query Fuzzy RPMT Based on sUFmap
	6.1 Definition of mqFRPMT
	6.2 mqFRPMT for L Distance from sUFmap
	6.3 mqFRPMT for LP[1,) Distance from sUFmap

	7 FPSI Protocols
	7.1 Generic Construction of FPSI from Fmap
	7.2 FPSI(-Variants) from mqFRPMT

	8 Implementation
	8.1 Implementation Details
	8.2 Performance

	9 Conclusion
	References

	FOLEAGE: F4OLE-Based Multi-party Computation for Boolean Circuits
	1 Introduction
	1.1 Our Focus and Contributions

	2 Technical Overview
	2.1 Background: Secure MPC from PCGs
	2.2 Constructing Programmable PCGs
	2.3 F2-Triples from F4-Triples
	2.4 An Improved Protocol from F4-OLEs for N=2
	2.5 A Fast Programmable PCG for F4-OLEs
	2.6 Distributed Seed Generation
	2.7 Concrete Cryptanalysis of F4OLEAGE

	3 Preliminaries
	3.1 Function Secret Sharing
	3.2 Quasi-Abelian Syndrome Decoding (QASD)

	4 A Fast PCG for F4-OLEs
	4.1 PCGs over F4 from the QA-SD Assumption
	4.2 Optimizing the FSS Evaluation via Early Termination
	4.3 Fast Evaluation over F4[X1,…, Xn] / (X13-1,…,Xn3-1)

	5 Implementation and Evaluation
	References

	Perfectly-Secure Multiparty Computation with Linear Communication Complexity over Any Modulus
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Overview of Our Techniques
	1.4 Outline of the Document

	2 Preliminaries
	2.1 Party-Elimination Framework
	2.2 Finite Rings
	2.3 Secret Sharing Schemes
	2.4 Reverse Multiplication Friendly Embeddings
	2.5 Useful Building Blocks
	2.6 Preparing Correlated Randomness

	3 Segment Evaluation and Verification
	3.1 Groups and Segments
	3.2 Segment Evaluation
	3.3 A First (Inefficient) Verification Protocol
	3.4 Details on Network Routing
	3.5 Efficient Verification
	3.6 Fault Localization

	4 Main Protocol
	4.1 Input Gates
	4.2 Output Gates
	4.3 Main Protocol

	References

	Compute, but Verify: Efficient Multiparty Computation over Authenticated Inputs
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work
	1.4 Resistance to Known Vulnerabilities

	2 Preliminaries
	2.1 Threshold Secret Sharing
	2.2 Proofs of Knowledge
	2.3 BBS+ Signatures and PoK for BBS

	3 Distributed Proof of Knowledge
	3.1 Defining a DPoK
	3.2 Robust Complete DPoK for Discrete Log

	4 DPoK for BBS+ Signatures over Secret-Shared Inputs
	5 Compiler for Authenticated MPC
	5.1 Our Compiler

	6 Implementation and Evaluation
	References

	Dishonest Majority Constant-Round MPC with Linear Communication from DDH
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview and Related Works
	2.1 Background: Yao's Garbled Circuit and BMR Template
	2.2 Our Solution
	2.3 Concrete Instantiation of PKE
	2.4 Towards Malicious Security
	2.5 Related Works

	3 Preliminaries
	3.1 Basic Definitions and Primitives
	3.2 Secret Sharing
	3.3 Functionalities for Sub-Protocols
	3.4 MAC Check on Opened Values

	4 Encryption Scheme Based on DDH
	4.1 Encryption Scheme Based on Strong Seeded Extractors
	4.2 Encryption Scheme Based on Random Oracle

	5 Preprocessing Phase
	5.1 Preprocessing Functionality
	5.2 Preprocessing Protocol

	6 Main Protocol
	7 Performance Evaluation
	7.1 Cost Analysis
	7.2 Implementation and Experiments

	References

	Updatable Private Set Intersection Revisited: Extended Functionalities, Deletion, and Worst-Case Complexity
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	3 Addition-Only UPSI
	3.1 Definition
	3.2 Construction
	3.3 Complexity, Correctness and Security

	4 UPSI with Addition and Deletion
	4.1 Definition
	4.2 Construction
	4.3 Complexity, Correctness and Security

	5 Implementation Details and Optimizations
	6 Evaluation
	6.1 Experimental Setup
	6.2 Addition-Only UPSI with Extended Functionalities
	6.3 UPSI-Cardinality/Sum with Addition and Deletion
	6.4 UPSI for Plain PSI
	6.5 Worst-Case Logarithmic Complexity

	References

	Honest Majority GOD MPC with O(depth(C)) Rounds and Low Online Communication
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work
	1.3 Overview of Our Techniques
	1.4 Our MPC Protocol

	2 Preliminaries
	3 Linear Batched Information-Checking Signatures
	3.1 IC Signature Ideal Functionality
	3.2 IC Signature Protocol

	4 Packed, Batched, (Mass) Detectable Secret Sharing
	4.1 Detectable Secret Sharing Ideal Functionality
	4.2 Detectable Secret Sharing Subroutines
	4.3 Detectable Secret Sharing Protocol
	4.4 Extensions and Notation

	5 Our MPC Protocol
	5.1 Offline Phase
	5.2 Online Phase

	References

	Direct FSS Constructions for Branching Programs and More from PRGs with Encoded-Output Homomorphism
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion and Related Work
	1.3 Organization

	2 Technical Overview
	3 Preliminaries
	4 FSS with Additional Properties and EOH-PRGs
	4.1 PRG with Encoded-Output Homomorphism

	5 Tensor Product FSS for Arbitrary Predicates from EOH-PRGs
	6 FSS for Branching Programs
	7 FSS for DFAs
	8 EOH-PRG Instantiated from LWE or DCR Assumption
	References

	Dishonest Majority Multiparty Computation over Matrix Rings
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of Our Technique
	1.3 Related Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Basic Notation
	2.2 Multiparty Computation

	3 Online Phase
	3.1 Authenticated Secret Sharing
	3.2 Required Functionalities
	3.3 Instantiation of [Fun:MPC]FMPC

	4 Authentication
	4.1 Required Functionalities
	4.2 Instantiation of [Fun:Auth]FAuth

	5 Preprocessing Phase
	5.1 Vector Oblivious Product Evaluation
	5.2 Generation of Beaver Triple
	5.3 Generation of Double Sharing

	6 Analysis
	6.1 Analysis of the Online Phase
	6.2 Analysis of the Preprocessing Phase
	6.3 Experimental Result

	References

	The Concrete Security of Two-Party Computation: Simple Definitions, and Tight Proofs for PSI and OPRFs
	1 Introduction
	1.1 Setting the Stage
	1.2 Our Definitional Framework
	1.3 Concrete-Security Results for 2PC Protocols
	1.4 Discussion and Further Related Work

	2 Preliminaries
	3 2PC Definitional Framework
	3.1 Core Definitions
	3.2 Relations Between Definitions
	3.3 Invertibility of PSI and Friends
	3.4 General Composition Result

	4 PSI from OPRFs
	5 Computational Problems over the Group
	6 Security of 2H-DH OPRF
	7 The Salted-DH PSI Protocol
	References

	Blockchain Protocols
	Jackpot: Non-interactive Aggregatable Lotteries
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Technical Overview
	1.4 Paper Organization

	2 Preliminaries
	3 Aggregatable Vector Commitments
	3.1 Syntax of Our Vector Commitments
	3.2 Simulation-Extractability
	3.3 Simulation-Extractable Vector Commitments from KZG

	4 Aggregatable Lotteries
	4.1 Definition of Aggregatable Lotteries
	4.2 Our Construction

	5 Discussion and Efficiency
	5.1 Practical Considerations
	5.2 Efficiency Evaluation

	References

	Early Stopping Byzantine Agreement in (1+) f Rounds
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	3 Deterministic Early-Stopping Byzantine Agreement
	3.1 Proof of Participation (PoP)
	3.2 Correct or Detect Broadcast Protocols (d-CoD and d-MCoD)
	3.3 (0,1)-Graded d-Detecting Agreement Construction (1-GDA)
	3.4 Deterministic Early-Stopping Byzantine Agreement Protocol (BAd)

	4 Byzantine Agreement with Expected Constant and Worst-Case Early-Stopping Round Complexity
	4.1 (0,1,2)-Graded d-Detecting Agreement (2-GDA)
	4.2 Byzantine Agreement with Expected Constant and Worst-Case Early-Stopping Round Complexity

	A Optimized Protocols
	B Proof of Correctness for d-CoD
	C Supplementary Material
	C.1 (0,1,2)-Graded Broadcast
	C.2 (0,1,2)-Graded Agreement

	References

	Information-Theoretic Cryptography
	Crooked Indifferentiability of the Feistel Construction
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 The Model: Crooked Indifferentiability
	3 Main Result and Technical Overview
	3.1 The Construction and Main Result
	3.2 2n/log(1/) Rounds are Not Enough
	3.3 Technical Overviews and Notations

	4 Security Proof
	4.1 The Detailed Definition of the Simulator
	4.2 Plan of the Proof
	4.3 Relating Crooked Indifferentiability to the Bad Event
	4.4 Bounding the Bad Events
	4.5 Efficiency of S

	5 Conclusions and Open Problems
	References

	Provable Security of Linux-DRBG in the Seedless Robustness Model
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Seedless Robustness Model
	4 Modeling Linux-DRBG
	4.1 Underlying Primitives and Their Modeling
	4.2 Overall Structure of Linux-DRBG
	4.3 Syntax of Linux-DRBG in Robustness Model

	5 Robustness Proof
	5.1 Linux-DRBG Robustness Game
	5.2 Robustness Proof

	6 Tight Attacks on Linux-DRBG
	References

	Author Index

