
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

90

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part VII

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15490
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part VII

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0940-6 ISBN 978-981-96-0941-3 (eBook)
https://doi.org/10.1007/978-981-96-0941-3

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0941-3

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACRDistinguished Lecture,
delivered by Paul Kocher, as well as an invited talk by Dakshita Khurana. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Distinguished PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo

(Japan) and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent Researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part VII

Information-Theoretic Cryptography

On the Complexity of Cryptographic Groups and Generic Group Models 3
Keyu Ji, Cong Zhang, Taiyu Wang, Bingsheng Zhang,
Hong-Sheng Zhou, Xin Wang, and Kui Ren

Randomness in Private Sequential Stateless Protocols . 36
Hari Krishnan P. Anilkumar, Varun Narayanan, Manoj Prabhakaran,
and Vinod M. Prabhakaran

Secret Sharing

Evolving Secret Sharing Made Short . 69
Danilo Francati and Daniele Venturi

Verifiable Secret Sharing from Symmetric Key Cryptography
with Improved Optimistic Complexity . 100

Ignacio Cascudo, Daniele Cozzo, and Emanuele Giunta

Timed Secret Sharing . 129
Alireza Kavousi, Aydin Abadi, and Philipp Jovanovic

Security Against Physical Attacks

Formal Definition and Verification for Combined Random Fault
and Random Probing Security . 167

Sonia Belaïd, Jakob Feldtkeller, Tim Güneysu, Anna Guinet,
Jan Richter-Brockmann, Matthieu Rivain, Pascal Sasdrich,
and Abdul Rahman Taleb

Leakage-Resilient Incompressible Cryptography: Constructions
and Barriers . 201

Kaartik Bhushan, Rishab Goyal, Venkata Koppula, Varun Narayanan,
Manoj Prabhakaran, and Mahesh Sreekumar Rajasree

Cryptanalysis on Symmetric-Key Schemes

The First Practical Collision for 31-Step SHA-256 . 237
Yingxin Li, Fukang Liu, Gaoli Wang, Xiaoyang Dong, and Siwei Sun

xviii Contents – Part VII

Key Collisions on AES and Its Applications . 267
Kodai Taiyama, Kosei Sakamoto, Ryoma Ito, Kazuma Taka,
and Takanori Isobe

The Boomerang Chain Distinguishers: New Record for 6-Round AES 301
Xueping Yan, Lin Tan, Hong Xu, and Wenfeng Qi

Multiple-Tweak Differential Attack Against SCARF . 330
Christina Boura, Shahram Rasoolzadeh, Dhiman Saha, and Yosuke Todo

Generic Differential Key Recovery Attacks and Beyond . 361
Ling Song, Huimin Liu, Qianqian Yang, Yincen Chen, Lei Hu,
and Jian Weng

Ultrametric Integral Cryptanalysis . 392
Tim Beyne and Michiel Verbauwhede

Modelling Ciphers with Overdefined Systems of Quadratic Equations:
Application to Friday, Vision, RAIN and Biscuit . 424

Fukang Liu, Mohammad Mahzoun, and Willi Meier

A New Security Evaluation Method Based on Resultant
for Arithmetic-Oriented Algorithms . 457

Hong-Sen Yang, Qun-Xiong Zheng, Jing Yang, Quan-Feng Liu,
and Deng Tang

Author Index . 491

Information-Theoretic Cryptography

On the Complexity of Cryptographic
Groups and Generic Group Models

Keyu Ji1,2, Cong Zhang1,2(B), Taiyu Wang1,2, Bingsheng Zhang1,2(B),
Hong-Sheng Zhou3(B), Xin Wang4, and Kui Ren1,2

1 the State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, China

{jikeyu,congresearch,taiyuwang,bingsheng,kuiren}@zju.edu.cn
2 Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Research

Institute, Hangzhou, China
3 Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu
4 Digital Technologies, Ant Group, Hangzhou, China

wx352699@antgroup.com

Abstract. Ever since the seminal work of Diffie and Hellman, crypto-
graphic (cyclic) groups have served as a fundamental building block for
constructing cryptographic schemes and protocols. The security of these
constructions can often be based on the hardness of (cyclic) group-based
computational assumptions. Then, the generic group model (GGM) has
been studied as an idealized model (Shoup, EuroCrypt 1997), which jus-
tifies the hardness of many (cyclic) group-based assumptions and shows
the limits of some group-based cryptosystems. We stress that, the impor-
tance of the length of group encoding, either in a concrete group-based
construction or assumption, or in the GGM, has not been studied.

In this work, we initiate a systematic study on the complexity of cryp-
tographic groups and generic group models, varying in different lengths of
group encodings, and demonstrate evidences that “the length matters”.
More concretely, we have the following results:

– We show that there is no black-box/relativizing reduction from
the CDH-secure groups (i.e., over such groups, the computational
Diffie-Hellman assumption holds) with shorter encodings, to the
CDH-secure groups with longer encodings, within the same security
parameter. More specifically, given any arbitrary longer CDH-secure
group, it is impossible to generically shorten the group encoding and
obtain a shorter CDH-secure group within the same group order.

– We show that there is a strict hierarchy of the GGMs with different
lengths of encodings. That is, in the framework of indifferentiability,
the shorter GGM is strictly stronger than the longer ones, even in
the presence of computationally bounded adversaries.

The work was mainly supported by National Key Research and Development Program
of China, Grant No. 2023YFB3106000. Cong Zhang is the co-first author.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 3–35, 2025.
https://doi.org/10.1007/978-981-96-0941-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_1&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_1

4 K. Ji et al.

1 Introduction

Provable Security and Black-Box Reduction. In the past decades, provable
security becomes one of the cornerstones of modern cryptography. As the main
technique of provable security, reductions are involved to justify the security
of a scheme based on a cryptographic primitive. Essentially, given an allegedly
successful adversary that breaks the scheme, one can convert it into another
successful adversary against the underlying primitive. To a large extent, we study
the reductions that are in a black-box manner, in the sense that reductions
consider the primitive and/or the adversary against the scheme only via the
input-output behavior, without exploring the internal code of the primitive or
of the adversary.

In the realm of group-based cryptography (initiated by Diffie and Hellman
in their seminal work [DH76]), reductions are established based on the security
of cryptographic groups. Serving as the foundation, the community is motivated
to study cryptographic groups from various perspectives.

From an Efficiency Perspective. In the literature, with few exceptions, group-
based cryptosystems are often built on cryptographic groups in an abstract and
black-box manner, which means the underlying groups can be instantiated by
any concrete ones as long as the desired security properties are fulfilled. For
instance, the well-known public key encryption (PKE) scheme, the ElGamal
encryption [ElG85], is chosen-plaintext attack secure (IND-CPA) w.r.t. any con-
crete prime-order cyclic group in which the decisional Diffie-Hellman (DDH)
assumption holds.

In practice, when it comes to instantiating cryptosystems for better efficiency,
we typically prefer concrete groups with shorter descriptions. Specifically, the
ElGamal encryption utilizes the prime-order subgroup of Z

∗
p, for prime p, where

the typical bit-length of a group element is 3072 (for 128-bit security) [Bar20];
an alternative approach involves elliptic curves, an increasingly popular choice,
and NIST SP 800-186 [CMR+23] provides a list of recommended curves for 128-
bit security, such as Curve25519 (with a 255-bit prime modulus). With classic
point compression technique, each group element of Curve25519 can be encoded
in 256 bits.

This highlights a critical yet subtle issue that has long been overlooked by the
community. That is, the bit-length of a group element is not explicitly taken into
account when the group is utilized in a black-box manner. Note, in real-world
applications, groups with shorter descriptions are often preferred to minimize
communication and computation overhead. Hereby, we ask the following ques-
tions: Does the length of the group description matter when using it in a black-
box manner? Is it possible to construct a group with a shorter description gener-
ically from groups with longer descriptions? For notation simplicity, throughout
this work, we will use shorter groups and longer groups, to denote “groups with
shorter descriptions” and “groups with longer descriptions,” respectively.

From a Security Perspective. Unfortunately, despite the advancement of modern
cryptography, to the best of our knowledge, there is a fundamental limitation

On the Complexity of Cryptographic Groups and Generic Group Models 5

in provable security—the inability of establishing unconditional hardness with
respect to a concrete group. In the past decades, researchers have made sig-
nificant efforts to explore various ways to demonstrate the hardness of those
group-based problems, and one approach is through the class of generic algo-
rithms.

In essence, generic algorithms do not explore the specific encoding of group
elements, but instead treat them in a generic manner. Studying this class of
algorithms is highly motivated, since several well-known algorithms such as the
baby-step/giant-step algorithm [PH78] and Pollard’s rho algorithm [Pol78] fall
within this classification. To formally describe generic algorithms, ever since
the initial work by Nechaev [Nec94], variants of generic group models (GGMs)
have been proposed. In Shoup’s GGM [Sho97], the group is conceptualized as a
random injective encoding from the additive group ZN into bit strings uniformly
sampled from a set S, where algorithms are allowed to retrieve group encodings
and perform group operations, through oracle access. In Maurer’s GGM [Mau05],
the group is modeled as pointers with respect to a stateful register, where group
encodings are the handles (or the indexes) of the register. Within both models,
we can establish the unconditional hardness, affirming the justification of the
security of cryptographic groups.

When it comes to the study of the lengths of group encodings in the GGMs,
Maurer, Portmann, and Zhu [MPZ20] initiate the models varying in the length
of the group encoding, and illustrate a partial hierarchy of the GGMs, wherein
any adversary within the GGM with a longer group encoding (below we denote it
as “the longer GGM” for simplicity) can be converted into an adversary within
the GGM with a shorter group encoding (below we denote it as “the shorter
GGM” for simplicity). Despite the partial hierarchy, the connection and distinc-
tion between the longer GGM and the shorter GGM remains unexplored, which
hinders a comprehensive interpretation and comparison of the numerous positive
and negative results in the GGM.

To deepen our understanding on cryptographic groups, we ask the following
question:

Will the longer group/GGM and the shorter group/GGM yield the same
complexity?

1.1 Our Results

In this work, we initiate a fine-grained study of cryptographic groups and generic
group models with different lengths of group encodings. Specifically, we give
evidences that:

– There is a black-box separation between the shorter CDH-secure groups and
the longer CDH-secure groups with the same security parameter; in other
words, given longer CDH-secure groups, one cannot build a shorter CDH-
secure group with the same group order from any standard techniques;

– The shorter GGMs are strictly stronger than the longer GGMs, even in the
presence of computationally bounded adversaries.

6 K. Ji et al.

To illustrate our findings, we first formalize the notions of groups/GGMs, param-
eterized by (N,m)1, where N and m denote the order of the group and the length
of the group encodings2, respectively. More concretely, we respectively denote
the (parameterized) groups and GGMs as PCDH

N,m and GN,m.
To establish the black-box separation between PCDH

N,m1
and PCDH

N,m2
where m2 is

much larger than m1, we apply the common technique, namely, the relativizing
separation. Concretely, we identify an idealized oracle O and prove that the
longer CDH-secure groups exist relative to O, but the shorter one does not exist.
In our strategy, we set this oracle to be the GGM with longer group encodings,
namely GN,m2 . At the first glance, this seems impossible, because the GGM is
designed as the idealized model for cryptographic groups, and the GGM justifies
the CDH by having the unconditional lower bound of the hardness. Fortunately,
we observe that the analysis becomes subtle when the “length” is involved.

Theorem 1 (Main Theorem, informal). Consider m1 < m2. The shorter
CDH-secure groups PCDH

N,m1
are black-box separated from the longer CDH-secure

groups PCDH
N,m2

. Concretely,

– PCDH
N,m1

does not exist in the generic group model GN,m2 ;
– GN,m2 implies PCDH

N,m2
.

Remark 1. Careful readers might wonder what is the relationship between the
longer groups and the shorter groups in which discrete logarithm is assumed
to be hard. We emphasize that, due to technical challenges3, the relationship
between the longer and shorter groups remains unknown—neither positively nor
negatively established. We leave it as an open problem.

Next, we turn our attention to understanding the relationship between the
GGMs with different lengths of encoding. Based on the trivial observation that
“GN,m1 implies PCDH

N,m1
”, we immediately note that the shorter GGM, GN,m1 , and

the longer GGM, GN,m2 do not yield the same black-box complexity. However,
when attempting to grasp the relationship between two idealized models, solely
relying on black-box complexity might not provide us a comprehensive under-
standing. Essentially, the black-box complexity of a model only demonstrates
the limit of standard-model cryptographic systems it implies and considers the
computationally unbounded adversary.

To supplement this, Zhang and Zhandry [ZZ23] propose an orthogonal per-
spective to the black-box complexity, namely the heuristic complexity. It con-
siders computationally bounded adversaries, thereby excluding the impact of all
standard-model cryptosystems on the complexity. We investigate “the length
matters” of GGMs within this new perspective, showing that:
1 Typically N is sufficiently large, and 2m ≥ N .
2 By the length of group encoding, we mean that the binary length of the longest

canonical representation for all group elements. For instance, let G’s be a group
such that the order is 3 and the canonical representation of the group elements is
{00, 111, 0101}, then the length of G, denoted as lenG, is 4.

3 It is still unclear that whether discrete logarithm implies key agreement or not yet.

On the Complexity of Cryptographic Groups and Generic Group Models 7

Fig. 1. Relationship between idealized models.

Theorem 2 (Hierarchy of GGMs, Informal). In the framework of indiffer-
entiability, the GGM with shorter encodings is strictly stronger than the GGM
with longer ones, even against computational bounded adversaries.

To make it clearer, we show our results in Fig. 1. Following the notions
in [ZZ23], we give evidence that the shorter GGM statistically implies the longer
ones, but the existence of longer GGM’s does not computationally imply the
existence of a shorter one. More concretely, there exists an indifferentiable con-
struction of a longer generic group with oracle access to shorter generic group
without any computational assumption; whereas, as long as the difference in
encoding lengths is sufficiently large, there does not exist an indifferentiable
construction of a shorter generic group from a long generic group, even with any
additional computational assumption.

1.2 Interpretation

Below, we offer interpretations of our findings.

From the Perspective of Black-Box Separation. Our results will bring
the research community a better understanding of the cryptographic groups
and the generic group models, from the perspective of the black-box reduc-
tion/separation4. In literature, generic group models have been frequently
used to show the impossibility of constructing advanced group-based cryp-
tosystems. Examples include identity-based encryption (IBE) [PRV12,SGS21,
Zha22], indistinguishable obfuscation (iO) [MMN16], registration-based encryp-
tion (RBE) [HMQS23], accumulators [SGS20], order revealing encryption
(ORE) [ZZ18], verifiable delay functions (VDF) [RSS20], and digital signa-
ture [DHH+21]. Most of the separation results (e.g., [MMN16,ZZ18,RSS20,
SGS20]) are established in Maurer’s GGM. Meanwhile, Zhandry [Zha22] illus-
trates the limits of Maurer’s GGM by proving that there are many natural
4 In this work, when talking about the black-box reduction/separation, we mean that

the fully black-box reduction/separation that is explicitly defined in [RTV04].

8 K. Ji et al.

group-based cryptographic schemes (e.g., efficient IND-CPA secure PKE) can-
not be modeled by Maurer’s GGM, and motivates the line of research, i.e.,
separations in Shoup’s GGM (e.g., IBE in [Zha22] and RBE in [HMQS23]).

Our results demonstrate the first evidence that the generic group model can
also be used to show the impossibility of constructing plain cryptographic groups,
varying in distinct length of group encodings. Speaking of the “lengths” in cryp-
tographic primitives, prior to our work, Garg et.al. [GMM17] prove that there
is no iO construction from the single-key functional encryption (FE), if the out-
put length of the functions is much shorter than the length of the ciphertexts5.
Therefore, we believe that, our result would motivate the community to study
the “lengths” in fundamental primitives (e.g., PKE).

However, when delving deeper into our analysis, we stress that our separation
results have a limitation. That is, we only establish the separations between
the shorter CDH-secure groups and the longer CDH-secure groups under the
condition that those groups yield the same security-parameter, which indicates
that our separations are somehow security-parameter dependent.

For readability, we now explain the limitation through a concrete example.
Let λ and λ′ be two security parameters. Let p and p′ be two primes where
�log p� = λ and �log p′� = λ′. Let G1 be a CDH-secure cryptographic group
where the group order is p and the length is 2λ. Let G2 be another CDH-
secure cryptographic group where the group order is p′ and the length is 4λ′.
Apparently, G1 is the shorter group and G2 is the longer one. According to our
findings, if λ′ ≥ λ, then one cannot generically build G1 from G2. Unfortunately,
if λ′ < λ (say, λ′ = 1

3λ, indicating that 4λ′ = 4
3λ < 2λ), then the relationship

between G1 and G2 becomes unclear.
In contrast, most known separations are security-parameter independent.

Take the separation of IBE in Shoup’s GGM [Zha22] for instance; according
to Zhandry’s analysis, we have that for any sufficiently large λ and λ′, one can-
not generically build an IBE along with security-parameter λ′, in Shoup’s GGM
with security-parameter λ. In order to establish a complete black-box separation
(i.e., in the sense of security-parameter independent) between shorter groups and
longer groups, novel techniques must be developed to resolve the limitation; we
leave this as an important open problem.

Next, we justify that despite of the limitation, our results are interesting and
important. First, when it comes to the problem that building a cryptographic
group (say, G1) from another one (say, G2), it is natural to study the cases that:
(1) G1 and G2 are with the same group order; (2) the order of G1 is a factor of
G2

6. Second, to the best of our knowledge, we are aware of no technique that
can be used to generically build G1 from G2 if the group orders of G1 and G2

are distinct and co-prime. Therefore, we stress that our separations do capture
the natural settings.

5 The separation is established under the condition that one-way functions (OWFs)
exist and NP � coAM.

6 This case indicates that the security parameter of G2 is bigger than G1’s, and for-
tunately our analysis does capture such a case.

On the Complexity of Cryptographic Groups and Generic Group Models 9

Moreover, our results serve as the first attempt to pin down the “lengths”
problem for a fundamental primitive (i.e., cryptographic groups), which might
open up new research directions (say, the “lengths” problem for other funda-
mental primitives). Below, for the ease of exposition, when we say the black-box
separation between groups, we always mean the one with the same security
parameter.

From a Heuristic Perspective. Our results will deepen our understanding of
the generic group models from the perspective of heuristic complexity. Inspired
by [MRH04,ZZ23], an idealized model can be interpreted through two orthogonal
perspectives: the black-box complexity and the heuristic complexity, as depicted
in Fig. 1.

For the heuristic aspect, initiated by Maurer et.al. [MRH04] and explicitly
studied by Zhang and Zhandry [ZZ23], we consider the framework of indifferen-
tiability against computationally bounded adversaries, where all cryptosystems
that exist in the standard model are incorporated. Therefore, the perspective of
heuristic is orthogonal to the one of black-box reduction/separation, and under-
standing the heuristic aspect of various idealized models is important for the
relative security of cryptosystems based on idealized models. We establish a
strict hierarchy of GGMs from this perspective and prove that the shorter GGM
is strictly stronger than the longer one.

In the following, we will give an overview of our approach to comparing the
various primitives/models, varying in different lengths of encodings, and our
solutions for separating them.

1.3 Technical Overview

Separation Between Cryptographic Groups. Given two cryptographic
primitives P and Q, the typical technique to establish the black-box separa-
tion is “relativizing separation” [IR89]. That is, we find a proper oracle O and
prove that the primitive P exists relative to O but Q does not. In our setting, we
consider the primitives P and Q to be the longer CDH-secure group and shorter
one, respectively.

Compared to prior works, the main technical challenge is that, we need to
show the gap between two primitives within the same security game (i.e., the
CDH game), rather than within different games7. The first obstacle is to find a
proper oracle. Apparently, the random oracle does not serve our purpose, because
the random oracle is weak and there is no construction for CDH-secure groups
in the random oracle model.

Our idea is to use a stronger oracle, the generic group model. At the first
glance, this is impossible, because GGM implies CDH trivially! Fortunately, the
GGMs varying in length of group encodings might also yield different levels of
complexity, and thus we set this oracle to be the longer GGM within the same
security parameter. Concretely, we denote the shorter groups, the longer groups

7 Games in [IR89] are one-wayness and key recovery attack, respectively.

10 K. Ji et al.

and the longer GGM as PCDH
N,m1

,PCDH
N,m2

,GN,m2 , respectively; recall that m2 > m1;
and we prove that:

– PCDH
N,m2

exists relative to GN,m2 ;
– PCDH

N,m1
does not exist relative to GN,m2 .

As the former statement is trivial, below we only explain the latter one. To
show that PCDH

N,m1
does not exist in GN,m2 , it suffices to construct an adversary

A that breaks the CDH game for any construction of shorter group relative to
GN,m2 . Due to technical difficulties, we switch to an alternative path. First we
pin down a new primitive—non-interactive key exchange (NIKE) with shorter
public key, denoted as PNIKE

N,m1
8. Then we prove that:

1. PCDH
N,m1

implies PNIKE
N,m1

;
2. PNIKE

N,m1
does not exist relative to GN,m2 .

As the first statement is straightforward, we will prove the second one. Essen-
tially, PNIKE

N,m1
, in and of itself, is a key agreement scheme. Next, we give a brief

explanation of the separation between NIKE and the random oracle [BKSY11]
and then demonstrate how to incorporate the ideas into our analysis. Let H
be a random oracle and ΠH := (KGenH,SHKH) be an NIKE scheme with per-
fect correctness. Assuming that the algorithms KGen and SHK make at most q
queries, we then construct the adversary A as follows9. Let Alice and Bob be
two honest parties. Given the transcript of an execution between Alice and Bob,
i.e., pkA and pkB , in the present of H, the adversary A maintains a set Sque-res of
query/response pairs of H, and a multiset Skey of candidate keys, both initialized
to be ∅. The adversary A then runs 4q + 1 iterations of the following attack:

– Simulation Phase. The adversary A searches a proper view of Alice that is
consistent with pkA and Sque-res. Specifically, this view contains the random-
ness r∗

A used by KGen and SHK, as well as a set of oracle queries/responses ŜA
made by KGen and SHK. The set ŜA is chosen to be consistent with Sque-res,
but it is unnecessary to be consistent with the true oracle H. Let key be the
value computed by SHK(r∗

A, pkB). Now, A adds key into Skey.
– Update Phase. The adversary A makes all queries in ŜA \Sque-res to the oracle

H, and adds the corresponding pairs into Sque-res.

Finally, A outputs the majority of the keys in Skey. Next, we explain why A
recovers the key. Let SB denote the queries made by Bob in the real execution
of the key exchange protocol. In a given iteration, there are two events:

– Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA =
queB but resA �= resB .

8 Here, m1 means the length of the public key; please find the formal definition in
Sect. 2.1.

9 The adversary here is computational unbounded but query-efficient.

On the Complexity of Cryptographic Groups and Generic Group Models 11

– Event 2 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that
if queA = queB , then resA = resB .

Note that event 1 only occurs in at most 2q iterations because |SB | ≤ 2q and
once it happens, the update phase would absorb at least one pair (queB , resB) ∈
SB into Sque-res. For event 2, we observe that, when it occurs, there is another
oracle H̃ that is consistent with both ŜA and SB . Based on the perfect correct-
ness, we have that the shared key computed in that iteration is valid. Moreover,
event 2 occurs in at least 2q+1 iterations, indicating that the majority in Skey is
valid.

However, when it comes to the GGM, the attack fails. Comparing to ROM,
there are two kinds of queries in GGM, namely the labeling query (x,G label

N,m2
(x))

and the addition query (G label
N,m2

(x),G label
N,m2

(y),G label
N,m2

(x + y)). Therefore, we should
define SB that covers all the group encodings that appear in the queries (both
labeling and addition) with the discrete logarithms (Bob might not know the
value). Then, in a given iteration, there are three events:

– Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA =
queB but resA �= resB .

– Event 2 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA �=
queB but resA = resB .

– Event 3 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that
if queA = queB , then resA = resB .

Note that event 1 and event 3 can be handled similarly as above. However,
the fatal problem is that event 2 might always happen. In other words, we cannot
find a GGM that is consistent with both ŜA and SB , indicating that the above
attack fails immediately.

More specifically, we note that the reason why event 2 happens is that, given
pkA and pkB , algorithms can obtain valid group encoding without making label-
ing query10. Moreover, if algorithms cannot obtain valid group encodings without
making labeling queries, then the GGM can be simulated by a stateful oracle
that only provides labeling queries, as the addition queries can be easily con-
verted into labeling queries. Such an oracle is close to the random oracle model
and thus our goal is to design a mechanism that prevent extracting valid group
elements without knowing the corresponding discrete logarithms.

Here we introduce our length tool, intuitively, if the length of the public
key is much shorter than the group encoding (say, the length gap is at least
ω(log λ)), then the public key would not carry enough information to recover
the group encodings. This also explains why we choose NIKE other than general
key agreement (say, multi-round KA), because the adversary only obtains two
public keys in the setting of NIKE.

10 This in fact is natural in group-based cryptosystem, take the ElGamal encryption
scheme [ElG85] for instance, the public key itself is a valid group element.

12 K. Ji et al.

Concretely, let QskA
and QskB

be the set of the query/response pairs (only
labeling queries11) made when running KGenGN,m2 (skA) and KGenGN,m2 (skB),
respectively. Let h be the valid group encoding that an algorithm outputs, by
having pkA and pkB, we then consider the following four cases:

– Case 1: (Independent) h /∈ QskA
∪ QskB

.
– Case 2: (Frequent) h ∈ QskA

∩ QskB
.

– Case 3: (Dependent but hard to extract) h ∈ QskA
\ QskB

.
– Case 4: (Dependent but hard to extract) h ∈ QskB

\ QskA
.

For case 1, h is independent of pkA and pkB . Due to the sparseness of the
group encodings in GN,m2 , no algorithm can output h except for negligible prob-
ability.

For case 2, it is apparent that pkA and pkB together might carry enough
information for h. Fortunately, with high probability h is a frequent query, there-
fore the discrete logarithm of h can be easily obtained by repeatedly running
KGenGN,m2 (·) on sufficiently many random inputs.

For case 3 (or case 4), note that h is independent of pkB , which means that
only pkA carries the information of h. Note that the length of pkA is m1 but
length of h is m2. Moreover, h is uniformly distributed over the probability of
GGM. Therefore, conditioned on that m2 −m1 is sufficiently large, no algorithm
can extract such an h except for negligible probability.

The above sketch is not precise; please find low-level details, in Sect. 3.

Hierarchy of GGMs. To establish the hierarchy of the generic group models
against computational bounded adversaries, we formalize our goal in the frame-
work of indifferentiability. Specifically, we prove that the shorter GGM (denoted
as GN,m1) statistically implies the longer one (denoted as GN,m2), but the longer
GGM does not computationally imply the shorter one.

GN,m1 statistically implies GN,m2 . We first explain how GN,m1 implies GN,m2

against computationally unbounded adversaries. Let H be a random oracle that
maps {0, 1}∗ → {0, 1}m2−m1 ; as the first attempt, it is natural to design the
labeling function as:

LGN,m1 ,H(x) := G label
N,m1

(x)||H(G label
N,m1

(x)).

However, there always exists an efficient distinguisher that breaks the indifferen-
tiability w.r.t. the above scheme. Specifically, in the ideal world, the distinguisher
uniformly samples x ∈ ZN , makes a labeling query with x, and obtains G label

N,m2
(x).

Let str and str′ be the first m1 bits and the last m2−m1 bits of G label
N,m2

(x), respec-
tively. Then the distinguisher makes a query to the simulator with input str and
checks whether the response matches str′. Note that, without knowing x, the
11 We stress that, for the algorithm KGenGN,m2 , without loss of generality, it only makes

labeling queries. Essentially, the group encodings of GN,m2 are sparse, which means
any algorithm with inputs that are independent of GN,m2 cannot obtain a valid group
encoding without making labeling query, indicating that any addition query can be
absorbed by the corresponding labeling query.

On the Complexity of Cryptographic Groups and Generic Group Models 13

simulator cannot answer this query properly except for a negligible probability.
To prevent the attack above, we enhance the power of the simulator. We involve
an additional oracle, the random permutation oracle E , that permutes {0, 1}m2

with its inverse12 E−1, and design the labeling function as:

LGN,m1 ,H,E(x) := E(G label
N,m1

(x)||H(G label
N,m1

(x))).

Careful readers may wonder why it works. Note that both E and E−1 are under
full control of the simulator, which means that the distinguisher is independent
of the value H(G label

N,m1
(x)) without making queries to the simulator. This extra

information gained from these queries is exactly what the simulator requires
for the proof to go through. In fact, with the aid of E , we can even simplify the
construction by replacing H(G label

N,m1
(x)) with a fixed string, say 0 · · · 0, concretely:

LGN,m1 ,E(x) := E(G label
N,m1

(x)|| 0 · · · 0
︸ ︷︷ ︸

m2−m1

).

The addition algorithm can be easily constructed by applying the inverse oracle
E−1. While the additional oracle E and its inverse E−1 have protected against
certain natural attacks, we need to argue indifferentiability against all possible
attacks. To do so, we use a careful simulation strategy for G label

N,m1
,Gadd

N,m1
, E , and

E−1, and prove indifferentiability through a careful sequence of hybrids. Due to
the space limit, we omit the formal descriptions of our simulation, and we refer
interesting readers to see it in the full version of this paper [ZJW+24].

Remark 2. Careful readers might note that the building blocks of construction
above contain both the shorter GGM GN,m1 and an additional independent ran-
dome oracle, rather than the shorter GGM solely. Although we have that GGM
implies ROM statistically [ZZ23], it is unclear to us that how to build an indif-
ferentiable GGM plus an independent ROM from a single GGM. Therefore, we
stress that our hierarchy of the GGM is established with the aid of an additional
independent random oracle.

Moreover, this even motivates an interesting research question that whether
one single GGM implies multiple independent GGMs, comparing to the fact that
the random oracle does.

GN,m2 does not computationally imply GN,m1 . Suppose we have a purported con-
struction ΠGN,m2 := (LGN,m2 , AGN,m2) of a shorter group from a longer GGM.
How could we prove that ΠGN,m2 can be differentiated from GN,m1 by a compu-
tationally bounded distinguisher?

Following the strategy in [ZZ23], we should find some security property P
that holds for GN,m1 but fails for any ΠGN,m2 . As explained in [ZZ23], any stan-
dard model assumption cannot serve as the property, and thus, this property P is
set to be a variant of discrete logarithm problem, called discrete log identification
12 According to [HKT11], the random oracle and random permutation oracle with

inverse are equivalent, therefore we take E and E−1 for granted.

14 K. Ji et al.

(DLI). Intuitively, DLI is defined as: given h := L(x), construct a (probabilistic,
efficient, and query-free) circuit C such that C(x) accepts with a high probabil-
ity, but C(x′) rejects with a overwhelming probability on all x′ �= x. Apparently,
the DLI problem is easy on any standard-model group: for any y, set C(y) to
be 1 if and only if L(y) = h, where L(y) := gy is computed as part of the cir-
cuit13. To establish the separation between GGM and ROM, Zhandry and Zhang
prove that the DLI problem is also easy on any group built within the random
oracle model. Intuitively, they “compile out” the random oracle H and design
an attacker that can easily construct an oracle-aided circuit CH(·), breaking
the DLI problem by computing LH(·). The subtlety is to anticipate the oracle
queries that C will make to the random oracle model and have the attacker make
the corresponding queries for itself. Concretely, given input LH(x), the attacker
runs the addition algorithm AH(LH(y), LH(x − y)) and LH(·) on several ran-
dom inputs, records all queries/responses that were made, and hardcodes the
queries/responses into the C to obtain an oracle-free circuit, which C outputs.

Below, we outline our method for integrating the aforementioned technique
into the analysis within the longer GGM. The difficulty is that, our goal seems
to conflict with the results in [ZZ23], as they have proven that the DLI problem
is hard with respect to the generic group model. To bypass the obstacle, we here
leverage the length tool again.

Consider computing LGN,m2 (x) from x, which in turn makes queries to the
longer GGM, GN,m2 . Let Qx be the set of query/response pairs made during the
procedure of computing LGN,m2 (x). Similarly as above, we assume that, without
loss of generality, each query/response pair (que, res) ∈ Qx is a labeling query.
Consider computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)) where y and z are random,
conditioned on y + z = x. The output of this addition is LGN,m2 (y + z) =
LGN,m2 (x). For each query/response pair (que, res) ∈ Qx, there are roughly four
possible cases:

– Case 1: The label LGN,m2 (x) does not depend on the response res at all;
– Case 2: The label LGN,m2 (x) depends on the response res, but with a over-

whelming probability over the choice of y and z, res does not appear when
computing AGN,m2 (LGN,m2 (y), LGN,m2 (z));

– Case 3: The label LGN,m2 (x) depends on the response res, and
with a non-negligible probability over the choice of y and z,
AGN,m2 (LGN,m2 (y), LGN,m2 (z)) makes a “labeling” query to GN,m2 on input
que;

– Case 4: The label LGN,m2 (x) depends on the response res, and with a
non-negligible probability over the choice of y and z, an “addition” query
(que1, que2, res) occurs when computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)).

Now we explain our approach of building the oracle-free circuit C. We collect
queries into a list, denoted as Sque-res, and hardcode Sque-res into the circuit C to

13 Note that for standard-model groups, L(y) denotes the value gy for the fixed gener-
ator g, and here y is the discrete logarithm of h with respect to g.

On the Complexity of Cryptographic Groups and Generic Group Models 15

make sure that C(x) will be able to reconstruct LGN,m2 (x) without making any
query to the oracle at all:

– In case 1 (Non-sensitive query), same as in [ZZ23], since LGN,m2 (x) does
not depend on res, when computing LGN,m2 (x) we can just replace the
response with a random string without affecting the ultimate labeling. There-
fore, for any query not in Sque-res, we will have C respond with a uniformly
random string.

– In case 2 (Sensitive but frequent query), same as in [ZZ23], since
LGN,m2 (x) does depend on res, this query is a sensitive query for the ulti-
mate labeling. In this case, it must be that AGN,m2 (LGN,m2 (y), LGN,m2 (z)) be
able to extract res from the inputs, i.e., LGN,m2 (y) and LGN,m2 (z), which indi-
cates that, with a high probability, (que, res) ∈ Qx ∩ (Qy ∪ Qz). On the other
hand, x, y and z are pairwise independent, which means that Qx ∩ Qy and
Qx ∩Qz only contains “frequent” queries. Therefore, this query/response pair
can be collected by running LGN,m2 (·) on sufficiently many random inputs.

– In case 3 (Sensitive labeling query), same as in [ZZ23], Sque-res collects all
the labeling queries that occur when running AGN,m2 (LGN,m2 (y), LGN,m2 (z)).
We know that, with a non-negligible probability (que, res) will be amongst the
queries in Sque-res. By repeating several times, we have that (que, res) ∈ Sque-res

with a high probability.
– In Case 4 (Sensitive addition query), different from [ZZ23], the addition

query, i.e., (que1, que2, res) occurs, where que1 and que2 are two valid group
encodings of GN,m2 . Although res appears in this query, collecting this kind
of query is not usually useful for our purpose. Specifically, when running
LGN,m2 (x), the algorithm might make labeling queries on points (x1, . . . , xq),
whereas Sque-res might only store query/response pairs in the form of addition,
i.e., (GN,m2(yi),GN,m2(zi),GN,m2(yi + zi)), without explicitly knowing either
yi or zi. As a result, C(x) might fail to reconstruct LGN,m2 (x): when running
C(x) := LSque-res(x), although C knows that GN,m2(xi) exists in the database
Sque-res, it does not know which tuple corresponds to the correct one.
To resolve the problem, we need to transform this addition query into a
labeling query. Observe that if the discrete logarithms of que1 and que2 are
known, then the transformation is trivial. Exploring deeper, during the proce-
dure of computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)), the algorithm AGN,m2 can
only extract valid group encodings in Qy ∪ Qz

14. Moreover, we have that
LGN,m2 (y) and LGN,m2 (z) are independent of the responses that are in Qz \Qy

and Qy \ Qz, respectively.
Now, we leverage the length tool. Concretely, from AGN,m2 ’s perspective,
LGN,m2 (y) is the only string that carries information of the valid group encod-
ings ∈ Qy \Qz. If m2 −m1 is sufficiently large, say m2 −m1 ≥ ω(log λ), where
λ is the security parameter, then it is impossible for AGN,m2 to extract a valid
group encoding from Qy \ Qz except for a negligible probability, indicating
that the valid group encodings that AGN,m2 can extract are in Qy∩Qz. Having

14 Other group encodings in GN,m2 are independent of LGN,m2 (y) and LGN,m2 (z).

16 K. Ji et al.

that x, y and z are pairwise independent, we know that queries in Qy ∩ Qz

are frequent with a high probability, which can be easily captured as in case
2.

Next, we consider the value of C(x′) for x′ �= x. If we are lucky and Sque-res

contains all sensitive queries of Qx′ , then C(x′) = LGN,m2 (x′) �= LGN,m2 (x),
indicating that C(x′) rejects as desired. Otherwise, if Sque-res does not contain
all the sensitive queries of Qx′ , then Sque-res would respond to the query with
random value, which means that C(x′) computes an invalid label for x′. As
explained in [ZZ23], the random response would only serve to inject further
randomness into the label, and the invalid label would be unequal to LGN,m2 (x)
with a high probability. Combining the above together, we build an oracle-free
circuit that only accepts the discrete logarithm x.

The above sketch is not precise; please find the low-level details in Sect. 4.

The Hierarchy is Tight. To complement our results of the hierarchy, we next
show that if m2 − m1 is small, then GN,m1 and GN,m2 are equivalent under the
indifferentiability framework. To explain our idea, we illustrate the simplest case,
where m2 − m1 = 115. Let Trunc be the function that chops off the last bit of
the input, we build an indifferentiable group in GN,m2 as follows:

LGN,m2 (x) := Trunc(G label
N,m2

(x));

AGN,m2 (str0, str1) :=

{
Trunc(Gadd

N,m2
(str0||b0, str1||b1)), if str0||b0 and str1||b1 are valid;

⊥ otherwise.

For clarity, if there exist b0, b1 ∈ {0, 1} such that both str0||b0 and str1||b1

are valid, then the addition algorithm outputs Trunc(Gadd
N,m2

(str0||b0, str1||b1)),
otherwise it aborts. Based on the fact that the group encodings of GN,m2 are
sparse, we know that for any string str, the probability that both str||0 and
str||1 are valid is negligible, which indicates that the addition algorithm is well
defined. Moreover, we prove that the construction above is indifferentiable from
GN,m1 . Due to the space limit, we leave the proof in the full version of this
paper [ZJW+24].

Due to the composition of indifferentiability, our results can be easily
extended to the case that m2 − m1 ≤ Θ(log λ), which completes the entire
picture of the hierarchy asymptotically.

1.4 Organization

In Sect. 2, we present the necessary notations, concepts, and definitions. We
establish a separation between two CDH-secure groups with sufficiently large

15 We also require that group encodings in GN,m2 are sparse, say m2−log N ≥ ω(log λ).

On the Complexity of Cryptographic Groups and Generic Group Models 17

encoding length difference in Sect. 3. We then establish a hierarchy among GGMs
with different encoding lengths in Sect. 4. All formal proofs can be found in the
full version of this paper [ZJW+24] due to the space limitation.

2 Preliminaries

Notation. For a finite set S, we denote a random sample s from S according to
the uniform distribution as s

$← S. We say a positive function negl(·) is negligible,
if for all positive polynomial p(·), there exists a constant λ0 > 0 such that for
all λ > λ0, it holds that negl(λ) < 1/p(λ). We say a function ρ(·) is noticeable

in λ, if the inverse 1/ρ(λ) is polynomial in λ. We write y
$← Alg(I) to denote

variable y that is obtained by running a randomized algorithm Alg on input I
(which may consist of a tuple I := (I1, ..., In)). If Alg is deterministic, we write

“←” instead of “ $←”. By x||y, we mean the concatenation of strings x and y.

Algorithms. Denote λ ∈ N as the security parameter. Here we use a non-
uniform circuit to formalize the model of computation. An algorithm Alg is
a collection of circuits {Cλ}λ∈N with domain Domλ and range Ranλ, respec-
tively. When considering interactive algorithms (Alg1, . . . ,Algn), algorithms are
treated as a sequence of circuits C

(1)
λ , C

(2)
λ , . . ., where the domain of C

(i)
λ is

denoted as Dom
(i)
λ = stat

(i)
λ × input

(i−1)
λ , the range of C

(i)
λ is denoted as

Ran
(i)
λ = stat

(i+1)
λ × output

(i)
λ . Here, stat

(i)
λ (input(i)λ , output

(i)
λ) is the space of

the state (inputs, outputs) that C
(i)
λ sends to C

(i+1)
λ , respectively.

Games. A game is initiated by a probabilistic interactive algorithm C, called a
challenger, and a predicate function pf : {0, 1}∗ → [0, 1]. The challenger takes
the security parameter as input and interacts with k communicating-restricted
parties (Alg1, . . . ,Algk). We call A := (Alg1, . . . ,Algk) the adversary. In the end
of the game, the challenger C outputs a bit b; if b = 1 we say the adversary wins
the game, otherwise we say the adversary loses. Let Cl(A) be a class of adversary.
We say a game (C, pf) is hard with respect to Cl(A), if for any adversary A ∈
Cl(A), we have Pr[A wins] ≤ pf + negl(λ).

Cryptosystems. A cryptosystem Σ consists of a set of algorithms, which typically
are non-interactive. Here, Σ is accessible via two interfaces Σ.hon and Σ.adv,
where Σ.hon provides an honest interface through which the system can be
accessed by all parties in a black-box manner, and Σ.adv models the adversarial
access to the inner working part of Σ.

2.1 Primitives, Idealized Models, and Reduction Notions

In this work, we treat CDH-secure groups as cryptographic primitives, and
explore black-box reduction between them with different lengths. First of all,
we recall the definition of primitive formalized by [RTV04].

18 K. Ji et al.

2.1.1 Cryptographic Primitives

Definition 1 (Cryptographic Primitive [RTV04]). A primitive P is a pair
〈FP ,RP〉, where FP is a set of functions f : {0, 1}∗ �→ {0, 1}∗, and RP is a
relation over pairs 〈f,A〉 of a function f ∈ FP and an adversarial machine A.
(The set FP is required to contain at least one function which is computable by
a ppt machine.)

– Efficient implementation. We say a function f implements P or is an imple-
mentation of P if f ∈ FP . An efficient implementation of P is an imple-
mentation of P which is polynomial-time computable.

– Secure implementation. We say an adversarial machine A P-breaks f ∈ FP
if 〈f,A〉 ∈ RP . A secure implementation of P is an implementation of P
such that no ppt adversarial machine P-breaks f .

We say the primitive P exists if there is an efficient and secure implemen-
tation of P.

As mentioned before, we treat CDH-secure groups as a cryptographic prim-
itive. Now we formalize this primitive by using the terms in [RTV04].

Definition 2 (CDH-Secure Groups). A CDH-secure group PCDH consists of
the following pair 〈FPCDH ,RPCDH〉:

1. The set FPCDH for specifying syntax and capturing the correctness property.
Here, the set FPCDH consists of functions f , where f represents the group
generation function for generating group description of finite cycle groups.
Concretely, we write (G, g,N,m) $← f(1λ), where G is a cyclic group of prime
order N , g is a generator G, and m is the length of group encoding (that is,
each group element in G can be represented as an m-bit string).
We note that the correctness is guaranteed by the basic properties of the cyclic
group.

2. The relation RPCDH for capturing the security property.
For function f ∈ FPCDH and ppt (adversarial) machine A, we define 〈f,A〉 ∈
RPCDH if there exists a polynomial p(·) such that Pr[A(G, g,N,m, h1, h2) =
gx1x2] > 1/p(λ) for infinitely many λ.

Here, (G, g,N,m) $← f(1λ), and h1, h2 ∈ G are two uniformly chosen group
elements where h1 = gx1 , h2 = gx2 , and x1, x2 ∈ ZN .

We say CDH-secure group PCDH exists, if there exists a function f ∈ FPCDH ,
it holds that no ppt adversarial machine A such that 〈f,A〉 ∈ RPCDH . Often,
we make the parameters, the order N and the encoding length m, explicit, and
denote the CDH-secure group as PCDH

N,m.

Non-interactive key exchange (NIKE) was initially studied by Diffie and Hell-
man in their breakthrough paper [DH76]. We now describe this primitive by
using the terms in [RTV04].

On the Complexity of Cryptographic Groups and Generic Group Models 19

Definition 3 (Non-Interactive Key Exchange). A non-interactive key
exchange protocol PNIKE consists of the following pair 〈FPNIKE ,RPNIKE〉:
1. The set FPNIKE for specifying syntax and capturing the correctness property.

Here, the set FPNIKE consists of functions f , where f := (KGen,SHK) repre-
sents
– the public-key message function KGen : SK �→ PK for generating the

public-key message based on a randomly chosen private-key, where PK
and SK are public-key space and private-key space, respectively.

– the shared key generation function SHK : PK × SK �→ K ∪ {⊥} for
generating the shared key, where K is shared-key space, and ⊥ denotes
that the computation fails.

Concretely, for randomly chosen sk
$← SK, we write pk ← KGen(sk), where

pk is called public key. Furthermore, for randomly chosen sk′ $← SK, compute
pk′ ← KGen(sk′). We write shk ← SHK(pk′, sk) and shk′ ← SHK(pk, sk′).
Note that, when the shared key generation function fails, we write shk = ⊥
or shk′ = ⊥.
We say correctness is achieved if there exists an negl(·) such that

Pr
[

shk �= ⊥ ∧ shk′ �= ⊥ ∧ shk �= shk′] ≤ negl(λ)

When negl(λ) = 0, then we say perfect correctness is achieved.
2. The relation RPNIKE for capturing the security property against key-recovery

attack (KRA).
For function f := (KGen,SHK) ∈ FPNIKE and a ppt (adversarial) machine
A, we define 〈f,A〉 ∈ RPNIKE if there exists a polynomial p(·) such that
Pr[A(pk, pk′) = SHK(pk′, sk) = SHK(pk, sk′) �= ⊥] > 1/p(λ) for infinitely
many λ.
Here, for randomly chosen sk

$← SK and sk′ $← SK, compute pk ← KGen(sk)
and pk′ ← KGen(sk′), respectively.

We say non-interactive key exchange protocol PNIKE exists, if there exists
a function f ∈ FPNIKE , it holds that no ppt adversarial machine A such that
〈f,A〉 ∈ RPNIKE . When SK = ZN and PK = K = {0, 1}m, we make the param-
eters N and m explicit and denote the non-interactive key exchange protocol as
PNIKE

N,m .

2.1.2 Idealized Models In this subsection, we introduce idealized models
including the Random Oracle Model (ROM) [BR93], the Random Permutation
Model (RPM) [RS08], and the Generic Group Model (GGM) [Sho97]. In each
idealized model, all entities including the adversary A and the challenger C, are
provided with the access to the corresponding oracle. Below we will specify the
behavior of the oracle in each idealized model.

Definition 4 (Random Oracle Model [BR93]). Let I∗,S denote the set of
functions h : {0, 1}∗ → S, where S := {0, 1}n for some integer n. The random
oracle model H is an idealized model, sampling a random function h from I∗,S.
Every algorithm can query x, obtaining the corresponding value h(x) ∈ S.

20 K. Ji et al.

Definition 5 (Random Permutation Model [RS08]). Let IS,S denote the
set of permutations π : S → S, where S := {0, 1}n for some integer n. The ran-
dom permutation model E is an idealized model, sampling a random permutation
π from IS,S. Every algorithm can query x ∈ S with E for both π and its inverse
π−1, obtaining the corresponding value π(x) ∈ S or π−1(x) ∈ S.

Definition 6 (Generic Group Model [Sho97]). Denote by IZN ,S the set of
injections σ : ZN �→ S, where S := {0, 1}m. The generic group model GN,m is
an idealized model, sampling a random injection σ from IZN ,S, with functions
G label

N,m and Gadd
N,m. Concretely, for each query x ∈ ZN , the “labeling” function G label

N,m

responds with a value σ(x) ∈ S. For a query (g1, g2), the “adding” function Gadd
N,m

answers as follows: if g1 = σ(x1) and g2 = σ(x2) for some x1, x2 ∈ ZN , replying
by σ(x1 + x2), and replying by ⊥ otherwise.

2.1.3 Notions of Reductions To establish separations between primitives,
in this paper, we follow two notions, fully black-box reduction and relativizing
reduction, as formalized by Reingold, Trevisan, and Vadhan [RTV04].

Definition 7 (Fully Black-Box Reduction [RTV04]). There exists a fully
black-box reduction from a primitive P := 〈FP ,RP〉 to a primitive Q :=
〈FQ,RQ〉, if there exist ppt oracle machines Π and B such that:

Correctness For every implementation f ∈ FQ we have that Πf ∈ FP .
Security For every implementation f ∈ FQ, if there exists a ppt oracle machine

A such that Af P-breaks Πf , then there exists a ppt oracle machine B such
that Bf Q-breaks f .

In literature, a typical technique for black-box separation, say for primitives
P and Q, is relativizing separation, which means that there is no relativizing
reduction between P and Q. Reingold et al. [RTV04] indicate that fully black-
box reduction implies relativizing reduction, referring to that the relativizing
separation from P to Q indicates the corresponding fully black-box separation.

Definition 8 (Relativizing Reduction [RTV04]). There exists a relativizing
reduction from a primitive P := 〈FP ,RP〉 to a primitive Q := 〈FQ,RQ〉, if for
every oracle O, the primitive P exists relative to O whenever Q exists relative
to O. A primitive P is said to exist relative to O, if there exists f ∈ FP which
has an efficient implementation when having access to the oracle O such that no
ppt oracle machine with access to O, can P-break f .

2.2 Indifferentiability

The framework of indifferentiability is proposed by Maurer, Renner, and Holen-
stein [MRH04], which formalizes a set of necessary and sufficient conditions
for securely replacing one cryptosystem with another in an arbitrary envi-
ronment. This framework is used to justify the structural soundness of vari-
ous cryptographic primitives, including hash functions [CDMP05,DRS09], block

On the Complexity of Cryptographic Groups and Generic Group Models 21

ciphers [ABD+13,CHK+16,DSSL16,GWL23], domain extenders [CDMS10],
authenticated encryption with associated data [BF18], and public key cryptosys-
tems [ZZ20]. It can also be used to study the relationship between idealized
models [ZZ23]. Within the context of the indifferentiability framework, it is cus-
tomary to consider that a cryptosystem either implements certain ideal objects
denoted as F , or it is a construction denoted as CF ′

that relies on underlying
ideal objects F ′.

Definition 9 (Indifferentiability [MRH04]).Let Σ1 and Σ2 be two cryptosys-
tems and S be a simulator. The indifferentiability advantage of a distinguisher
D against (Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D] − Pr[IdealΣ2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Fig. 2. We say Σ1 is indif-
ferentiable from Σ2, if there exists an efficient simulator S such that for any
efficient distinguisher D, the advantage above is negligible. Moreover, we say Σ1

is statistically indifferentiable from Σ2, if there exists an efficient simulator such
that, for any unbounded distinguisher D, the advantage above is negligible.

Fig. 2. Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

Below, we also use the notations in [BF18] and consider the definition above
to two systems with interfaces as:

(Σ1.hon(X),Σ1.adv(x)) := (ΠF1(X),F1(x)),
(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),

where F1 and F2 are two ideal objects sampled from their distributions and ΠF1

is a construction of F2 by calling F1. Maurer, Renner, and Holenstein prove the
composition theorem for the framework of indifferentiability; for simplicity, we
give a game-based formalization from [RSS11].

Theorem 3 (Composition Theorem [MRH04]).Let Σ1 := (ΠF1 ,F1) and
Σ2 := (F2,F2) be two systems that Σ1 is indifferentiable from Σ2 with respect
to a simulator S, then Σ1 is as secure as Σ2 for any single-stage game. More
concretely, let Game be a single-stage game, then for any adversary A, there is
an adversary B and a distinguisher D such that

Pr[GameΠF1 ,AF1] ≤ Pr[GameF2,BF2] + Advindif
Σ1,Σ2,S,D.

22 K. Ji et al.

The proof of Theorem 3 is straightforward; due to space limit, we skip it here.
Next, we give the formal definition of the separation between two idealized mod-
els in the framework of indifferentiability against computational adversaries.

Definition 10 (Computational Indifferentiable Separation [MRH04,
ZZ23]). Let Σ1,Σ2 be two idealized models, we say Σ2 is computationally indif-
ferentiably separated from Σ1 if for any efficient algorithm Π and any efficient
simulator S, there exists an efficient distinguisher DΠ,S and a noticeable func-
tion ρ such that

Advindif
ΠΣ1 ,Σ2,S,DΠ,S (1λ) :=

∣

∣

∣ Pr[RealΣ1,DΠ,S] − Pr[IdealΣ2,S,DΠ,S]
∣

∣

∣ ≥ ρ(λ).

Observe that, if an idealized model Σ2 is computationally indifferentiably sepa-
rated from another idealized model Σ1, it means that, we cannot build a scheme
ΠΣ1 such that ΠΣ1 is indifferentiable from Σ2, even under arbitrarily strong
computational assumptions.

3 Separation Between Cryptographic Groups

In this section, we establish the separation between two CDH-secure groups,
PCDH

N,m1
and PCDH

N,m2
, under the condition that both N and (m2−m1) are sufficiently

large within the same security parameter.

Theorem 4 (Main Theorem). Let λ ∈ N be the security parameter. Let
N,m1,m2 be integers such that N ≥ 2ω(log λ),m1 > log N and m2 − m1 ≥
ω(log λ). Then there is no black-box reduction from PCDH

N,m2
to PCDH

N,m1
.

Proof. To establish the theorem, we apply the so-called two-oracle tech-
nique [HR04]. Let PSPACE be a PSPACE-complete oracle. Essentially, we set
O := (PSPACE,GN,m2) and prove the following:

1. PCDH
N,m2

exists relative to O;
2. PCDH

N,m1
does not exist relative to O.

The former statement holds trivially as GN,m2 implies PCDH
N,m2

in the canonical
manner. Therefore, it suffices to prove the latter one.

Lemma 1. PCDH
N,m1

does not exist relative to O.

To establish the proof, we first pin down an intermediary primitive, i.e.,
PNIKE

N,m1
(within the same security parameter), defined in Sect. 2.1, and then prove

that:

1. PCDH
N,m1

implies PNIKE
N,m1

;
2. PNIKE

N,m1
does not exist relative to O.

The first statement holds straightforwardly. Next, we establish our theorem
by proving the following lemma.

On the Complexity of Cryptographic Groups and Generic Group Models 23

Lemma 2. PNIKE
N,m1

does not exist relative to O.

Intuitively, to prove that PNIKE
N,m1

does not exist relative to O, it is suffi-
cient to build a ppt oracle adversary AO that breaks any construction ΠO :=
(KGenO,SHKO). Observe that AO has access to a PSPACE-complete oracle,
which means that AO implies a computationally unbounded but query-efficient
adversary that only has access to GN,m2

16. Therefore, it suffices to construct such
an adversary AGN,m2 . In Fig. 3, we illustrate the description of the adversary.

We first clarify some undefined notions: Let n be a sufficiently large
integer that will be specified below. By

{

(que1, res1), . . . , (queq, resq)
} query←−

KGenGN,m2 (ri), we mean that when running the algorithm KGenGN,m2 (ri), the
algorithm makes queries (que1, . . . , queq) to the oracle GN,m2 and obtains
(res1, . . . , resq)17.

Next, we prove that AGN,m2 outputs the valid shared key with noticeable
probability. Let SB-label be the set of the valid group elements that appear
when running KGenGN,m2 (skB) and SHKGN,m2 (pkA, skB); those group elements
are either the responses of labeling/addition queries or the valid inputs of the
addition queries. It is apparent that |SB-label| ≤ 6q, due to the fact that each
algorithm makes at most q queries. Now, we define:

SB := {(x, h)|h ∈ SB-label, G label
N,m2

(x) = h}.

Note that, for any iteration, if the adversary successfully guesses SB in ŜA,
then the shared key computed in this iteration would be valid. Specifically, in
such a context, there exists an instance of the GGM that is consistent with
the query views of both the adversary and the user B, and the validity of the
shared key follows by the perfect correctness of ΠGN,m2 . However, without the
knowledge of skB , A might not guess SB correctly with a good probability. In
fact, there are three events:

– Event 1: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that
queA = queB but resA �= resB .

– Event 2: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that
queA �= queB but resA = resB .

– Event 3: For any (queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that if queA =
queB then resA = resB , and vice versa.

16 Any computationally unbounded but query-efficient adversary can be simulated by a
ppt oracle machine with access to a PSPACE-complete oracle, that is because what
we need are specific labeling query-response tuples of GGM. These tuples can be
picked by using a PSPACE-complete oracle. See [MM11] for more details.

17 As explained above, we stress that KGenGN,m2 only makes labeling queries.

24 K. Ji et al.

Fig. 3. The description of the adversary that breaks ΠGN,m2 .

We immediately observe that event 1 occurs at most 6q times, because the
updating phase would eliminate at least one pair in SB. Therefore, it suffices
to prove that event 2 never occurs except for negligible probability and event
3 would deduce the valid shared key with high probability. According to the
description of the adversary Fig. 3, we have that in event 3, the set ŜA ∪ Sque-res

responds to the labeling queries perfectly and converts the addition queries into
labeling queries properly. Concretely, let que := (h1, h2) be an addition query,
there are two cases: (1) ŜA∪Sque-res covers (x1, h1), (x2, h2), and (x1+x2, h3); (2)
either h1 or h2 is not stored in ŜA ∪ Sque-res. For the former case, the response
is valid; for latter one, the response is invalid if and only if both h1 and h2

are valid group encodings. Therefore, the only bad case that prevents event 3
from deducing the valid shared key is that the adversary outputs a valid group
encoding h without knowing the discrete logarithm.

On the Complexity of Cryptographic Groups and Generic Group Models 25

Moreover, in the simulation phase, ŜA must be consistent with Sque-res, which
indicates that when event 2 occurs, the adversary successfully outputs a valid
group encoding h without making labeling query. To bound the probability, we
define that, for any sk ∈ ZN :

Qsk :=
{

(que1, res1), . . . , (queq, resq)
} query←− KGenGN,m2 (sk).

Note that the adversary only takes pkA and pkB as inputs, where pkA =
KGenGN,m2 (skA) and pkB = KGenGN,m2 (skB). It is apparent that the group
encoding h /∈ Sque-res, and we next establish our analysis by considering the
following four cases:

– Case 1: (Independent group encoding) h /∈ QskA
∪ QskB

– Case 2: (Frequent group encoding) h ∈ QskA
∩ QskB

– Case 3: (Dependent but hard to extract) h ∈ QskA
\ QskB

.
– Case 4: (Dependent but hard to extract) h ∈ QskB

\ QskA
.

It is apparent that, for any query-efficient adversary (might be computation-
ally inefficient), if the probability that it outputs such an h (for all cases) is
bounded, then we are done.

Case 1. We note that, h is independent of pkA and pkB , indicating that the
probability that any adversary outputs such a h is bounded by O(q)·N

2m2 ≤ negl(λ).
Case 2. We first define the frequent group encodings. Specifically, let t :=

26q2, we say a group encoding res is frequent if

Pr[(que, res) ∈ Qz : z
$← ZN] ≥ 1

t
.

In such a case, we also call (que, res) as a frequent query. Note that skA and skB

are uniformly sampled, therefore, for any (que, res) ∈ QskA
, if it is not a frequent

query, then Pr[(que, res) ∈ QskB
] ≤ 1

t , indicating that

Pr[QskA
∩ QskB

are all frequent queries] ≥ 1 − q

t
= 1 − 1

26q
.

Next, we bound the probability that h /∈ Sque-res conditioned on that QskA
∩QskB

are all frequent queries. Let n := t·λ, we then prove that, with a high probability,
Qr1 ∪ · · · ∪Qrn

contains all frequent queries. Essentially, there are at most qf :=
q · t frequent queries, denoted as {(que′

i, res
′
i)}i∈[qf]. For each (que′

i, res
′
i), we have

that

Pr[(que′
i, res

′
i) /∈ Qr1 ∪ · · · ∪ Qrn

] ≤
(

1 − 1
t

)n

≤ e−λ,

which means

Pr[(que′
i, res

′
i) ∈ Qr1 ∪ · · · ∪ Qrn

: ∀i ∈ [qf]] ≥ 1 − (q · t)e−λ.

Therefore,

Pr[Case 2] = Pr[h ∈ QskA
∩ QskB

∧ h /∈ Sque-res] ≤ 1

26q
+ (q · t)e−λ ≤ 1

26q
+ negl(λ).

26 K. Ji et al.

Case 3. We immediately observe that pkB is independent of h, which means
that only pkA carries the information of h. Note that the length of pkA is m1; in
contrast, the length of h is m2; this intuitively indicates that, over the probability
of sampling the GGM instance, it is impossible to extract a valid group encoding
in QskA

\ (QskB
∪ Sque-res) except for negligible probability.

To establish the formal analysis, we strengthen the adversary A by providing
A the unbounded computational power, and the following information: the tuple
(skA, skB, pkA, QskB

, Sque-res). It is easy to see that A itself can compute pkA, pkB

and Sque-res, therefore it suffices to prove that

Pr[A outputs h ∈ QskA
\ (QskB

∪ Sque-res)] ≤ negl(λ)

where the probability is over the sampling of skA, skB and the GGM instance18.
Observe that, pkB is independent of h, which indicates that knowing skB would
not increase A’s winning probability. To further simplify the analysis, we prove
a more general statement: for any secret key sk and any S (set of query-response
tuples, poly-size),

Pr[A(sk,KGenGN,m2 (sk), S) → h : h ∈ Qsk \ S] ≤ negl(λ)

where the probability is only over the sampling of the GGM instance, conditioned
on that the GGM instance GN,m2 is consistent with S.

Note that, for any fixed poly-size S, the total number of the GGM instances
(mapping from N to {0, 1}m2) that are consistent with S is

(2m2 − |S|) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Next, we introduce some notations. Note that, once the secret key sk and the
GGM instance GN,m2 are fixed, the algorithm KGenGN,m2 (sk) is deterministic
(including the queries made to GN,m2). We here define Qsk-G as the sequence of
the query-response tuples, denoted as

Qsk-G := {(que1, res1), . . . , (queq, resq)}.

More clearly, when running the algorithm KGenGN,m2 (sk), the i-th query that
the algorithm makes to GN,m2 is quei and the corresponding response is resi.
Besides, for each (sk,GN,m2), the algorithm KGenGN,m2 (sk) outputs a public key.
Next, we categorize the public keys into two types, namely the “good public
keys” and the “bad public keys”, with respect to the fixed secret key sk. We
denote

T = 2
m2−m1

2 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

and for any public key pk we denote Spk as the set of the GGM instances such
that KGenGN,m2 (sk) = pk. Now, we say a public key pk (with respect to sk) is
bad if |Spk| ≤ T , otherwise we say the public key is good. Note that, given a

18 The instance of GGM must be consistent with QskB ∪ Sque-res.

On the Complexity of Cryptographic Groups and Generic Group Models 27

bad public key pk (e.g., |Spk| = 1), the adversary might output a valid group
encoding, thus we need to prove that, over the sampling of the GGM instance,

Pr[KGenGN,m2 (sk) is bad] ≤ negl(λ).

Note that the space of public keys is {0, 1}m1 , which means that there are at
most 2m1 public keys. Therefore, the counting of the GGM instances that induce
to a bad public key is bounded by 2m1 × T , referring to

Pr[KGenGN,m2 (sk) is bad] ≤ 2m1 · 2
m2−m1

2

(2m2 − |S|) ≤ 1

2
m2−m1

2 − |S|
≤ negl(λ).

Hence, it suffices to prove that, given any good public key, any adversary A can-
not extract a valid group encoding h ∈ Qsk \ S except for negligible probability.

For readability, we first elaborate the analysis in the case that S = ∅, where
the adversary only has knowledge of (sk,KGenGN,m2 (sk)). Let str be any string
in {0, 1}m2 , we denote Sstr as the set of GGM instances such that str ∈ Qsk-G .
Therefore it is sufficient to prove that, for any str ∈ {0, 1}m2 , the size of Sstr is
much smaller than T (in this special case, |S| = 0). Specifically, by having that

T > 2
m2−m1

2 · (2m2 − 1) · · · (2m2 − (N − 1))

we prove that
|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1))

Note that, once the secret key sk and the GGM instance GN,m2 are fixed,
the algorithm KGenGN,m2 (sk) is deterministic. We next illustrate an observation
about Qsk-G . Let GN,m2 and G′

N,m2
be two different instances of GGM, and we

denote

Qsk-G := {(que1, res1), . . . , (queq, resq)}
Qsk-G′ := {(que′

1, res
′
1), . . . , (que

′
q, res

′
q)}

We claim that either Qsk-G = Qsk-G′ or ∃i ∈ [q] such that resi �= res′i. In other
words, it is impossible that Qsk-G �= Qsk-G′ but (res1, . . . , resq) = (res′1, . . . , res

′
q).

In fact, if such an event occurs, then there exists an index j ∈ [q] such that
(1) ∀i < j, (quei, resi) = (que′

i, res
′
i); (2) quej �= que′

j , which contradicts to that
KGenGN,m2 (sk) is deterministic.

This observation illustrates that Qsk-G can be represented only by
(res1, . . . , resq); that is, once the sequence of the responses is fixed, then the
corresponding sequence of the queries is also settled down. We denote

V = ((2m2 − q) · · · (2m2 − (N − 1)))

and note that for each response sequence (res1, . . . , resq), there are exactly V
numbers of GGM instances that would induce it.

Next, we compute the upper bound of |Sstr|. If str appears in the sequence
(res1, . . . , resq), then there exists an index i such that resi = str. For the rest,

28 K. Ji et al.

we maximize the possibility and have that the number of all possible sequences
that contain str is bounded by

q · ((2m2 − 1) · · · (2m2 − (q − 1))).

Combining the above together, we have that

|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1)).

In the following, we extend our analysis into the general case, where S is
poly-size and

T = 2
m2−m1

2 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

We immediately observe that, the upper bound above does not serve our
purpose any more. The reason is that the upper bound above is calculated over
all possible GGM instances, while what we need to count are the ones over the
GGM instances that are consistent with S.

It is apparent that Qsk-G can be still represented by the sequence of responses
when S �= ∅. To complete the analysis, we then illustrate an additional obser-
vation about Qsk-G . Let (res1, . . . , resq) and (res′1, . . . , res

′
q) be two different

sequences. We claim it is impossible that there exists an index j ∈ [q] such
that(1) ∀i < j, resi = res′i; (2)resj ∈ S but res′j /∈ S19. More specifically, given
the statement that ∀i < j, resi = res′i, it is apparent that quej = que′

j . More-
over, by having (quej , resj) ∈ S, we claim that the response of que′

j must be
resj , because the GGM instances must be consistent with S. Based on this new
observation, we next prove the upper bound by induction.

Let str be a string such that str /∈ S (note that the adversary’s goal is to out-
put a valid group encoding without knowing the discrete logarithm), we denote
Sstr-k as the set of the GGM instances such that: (1) the algorithm KGenGN,m2 (·)
makes k queries; (2) str ∈ Qsk-G \ S. We then prove that for any k,

|Sstr-k| ≤ k · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

We first compute |Sstr-1|. Note that que1 is always fixed, and if que1 ∈ S20,
then |Sstr-1| = 0 because str would never appear. On the other hand, if que1 /∈ S,
then the response must be str because str appears. Thus, the counting of the
GGM instances that are consistent with S ∪ {(que1, str)} is

1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

Note that, the response of que1 is str if and only if those GGM instances are
sampled. Moreover, based on our second observation, we have that, either res1 ∈
S or res1 /∈ S. Hence,

|Sstr-1| ≤ max{0, 1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))}.

19 We here abuse the notation resj ∈ S by meaning that there exists a query/response
tuple in S with the response resj .

20 We here abuse the notation que1 ∈ S by meaning that there exists a query/response
pair in S with the query is que1.

On the Complexity of Cryptographic Groups and Generic Group Models 29

Next, given the assumption that

|Sstr-i| ≤ i · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

we prove

|Sstr-(i+1)| ≤ (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

Again, que1 is always fixed, and if que1 ∈ S, then |Sstr-(i+1)| is bounded by
|Sstr-i|, because the response of que1 is always fixed by S, and str must appear in
the last i queries. Thus, it suffices to prove that |Sstr-(i+1)| is properly bounded
when que1 /∈ S. Next we consider two scenarios:

– Scenario 1: res1 = str;
– Scenario 2: res1 �= str.

Observe that scenario 1 occurs if and only if the GGM instances that are
consistent with S ∪ {(que1, str)} are selected. Therefore, the counting of those
GGM instances is:

1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

When scenario 2 occurs, there are at most 2m2−(|S|+1) options for res1. Once
the response of que1 is fixed, say (que1, str′), we apply the induction. Specifically,
we denote S′ = S ∪ {(que1, str′)} (|S′| = |S| + 1). Note that scenario 2 occurs
means that str appears in the last i queries conditioned on that all the GGM
instances are consistent with S′. Applying the assumption, we have that the
counting of the GGM instances is bounded by

(2m2 − (|S| + 1)) · i · (2m2 − (|S′| + 1)) · · · (2m2 − (N − 1))
=i · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Now, we see that, if que1 /∈ S (combining both scenario 1 and scenario 2), then

|Sstr-(i+1)| ≤ (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Again, res1 is either in S or not in S. We have that

|Sstr-(i+1)| ≤ max{|Sstr-i|, (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))}
= (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

By setting sk := skA and S := Sque-res, we have that the probability that the
adversary outputs h ∈ QskA

\ Sque-res is bounded by O(q2)

2
m2−m1

2
≤ negl(λ).

Case 4. It is trivial that

Pr[Case 4] = Pr[Case 3].

Combining together, we have that

Pr[AGN,m2 outputs the valid shared key] ≥ 1 − (6q + 1)(
1

26q
+ negl(λ))

≥ 2
3

− negl(λ).

30 K. Ji et al.

4 The Hierarchy of GGMs

In this section, we establish a hierarchy among GGMs, varying in distinct lengths
of group encodings and prove that the shorter GGM is strictly stronger than the
longer GGM. Specifically, we show that one can construct an indifferentiable
longer generic group from a shorter one plus an additional independent random
oracle, but the shorter generic group model is computationally indifferentiably
separated from the longer generic group (when the gap between the lengths is
sufficiently large).

4.1 GN,m1 Statistically Implies GN,m2

In this section, we show how to build an longer indifferentiable generic group
model from a shorter one plus an additional independent ROM. Here are the
building blocks:

– GN,m1 := (G label
N,m1

,Gadd
N,m1

) is a generic group model that maps ZN to {0, 1}m1 ;
– E : {0, 1}m2 → {0, 1}m2 is a random permutation oracle with its inverse E−1.

For simplicity, we denote O as the tuple (GN,m1 , (E , E−1)). The following is
the construction ΠO

L-GGM := (LO
L-GGM, AO

L-GGM), depicted in Fig. 4. Correctness
easily follows, and it rests to prove the indifferentiability. Formally,

Fig. 4. The construction ΠO
L-GGM in the GN,m1 and RPM.

Theorem 5. Let m1,m2 be two integers that m2 ≥ m1. The scheme ΠO
L-GGM

in Fig. 4, with access to a generic group GN,m1 , a random permutation E and
its inverse E−1, is indifferentiable from a generic group GN,m2 . More precisely,
there exists a simulator S such that for all (qG label

N,m1
, qGadd

N,m1
, qE , qE−1)-query dis-

tinguisher D with qG label
N,m1

+ qGadd
N,m1

+ qE + qE−1 ≤ q, we have

Advindif
ΠO

L-GGM,GN,m2 ,S,D ≤ 6q2

N
+

10q2 + 4q

2m1
+

3q

2λ
+

2q

2m1 − 2q
.

The simulator makes at most 3q queries to GN,m2 .

Due to space limit, we leave the proof in the full version of this
paper [ZJW+24].

On the Complexity of Cryptographic Groups and Generic Group Models 31

4.2 GN,m2 Does Not Computationally Imply GN,m1

In this section, we show that the shorter GGM is computationally indifferentiably
separated from the longer one. Formally,

Theorem 6. Let λ be the security parameter. Let GN,m1 and GN,m2 be two
generic group models. If (m2 − m1) ≥ ω(log λ), then GN,m1 is computationally
indifferentiably separated from GN,m2 .

To prove it, we adopt the discrete logarithm identification (DLI) problem pro-
posed by [ZZ23]. To absorb Zhang and Zhandry ’s analysis into our setting, we
propose the DLI problem w.r.t the shorter groups in the longer GGM. Below,
we give the proof sketch of Theorem 6 and the formal proof can be found in the
full version of this paper [ZJW+24].

Proof Sketch. Suppose ΠGN,m2 := (LGN,m2 , AGN,m2) is indifferentiable from
GN,m1 in the longer GGM GN,m2 . The argument goes in three steps:

1. DLI w.r.t. ΠGN,m2 is easy.
2. If ΠGN,m2 is indifferentiable from GN,m1 and DLI w.r.t. ΠGN,m2 is easy, then

DLI w.r.t. GN,m1 is also easy.
3. Yet, DLI w.r.t. the generic group GN,m1 is hard.

The above three steps draw a contradiction, so the statement “ΠGN,m2 is
indifferentiable from GN,m1” cannot be true, completing our proof. Note that,
Step 2 is already proven in [ZZ23]; and the proof of Step 3 is straightforward
according to Definition 9 for indifferentiability. Due to the space limit, we skip
them here. Below, we prove Step 1.

By the definition of indifferentiability, the algorithms LGN,m2 and AGN,m2

are deterministic; and they shall support group operations correctly with high
probability. We stress that LGN,m2 only makes labeling queries. Let q be an
integer in poly(λ). We assume that both LGN,m2 and AGN,m2 make at most q
queries to GN,m2 . Next, we prove that the DLI problem w.r.t. ΠGN,m2 is easy by
constructing an efficient adversary A and a query-free circuit CG-GGM in Fig. 5.
(Here, G-GGM denotes the shorter group in the longer GGM.)

We first clarify some undefined notions in Fig. 5. Let n be a sufficiently
large integer to be specified below. By

{

(que1, res1), . . . , (queq, resq)
} query←−

LGN,m2 (ri), we denote that on input ri, the algorithm LGN,m2 (ri) makes
queries (que1, . . . , queq) to GN,m2 and gets responses of (res1, . . . , resq); and
similar for the notation

{

(que1, res1), . . . , (queq, resq)
} query←− AGN,m2 (LGN,m2 (x −

z), LGN,m2 (z)).21 Given an input z ∈ ZN , the query-free circuit CG-GGM runs
algorithm LGN,m2 (z) except for replacing the querying oracle by looking up the
table Sque-res (and lazy sampling); we denote that as LSque-res .

We argue that the query-free circuit CG-GGM in Fig. 5 identifies x with a good
probability, which means DLI w.r.t. ΠGN,m2 is easy. Note that, we say CG-GGM

21 Here, we abuse the notation LGN,m2 (x−z) as both the group element and the labeling
operation on x − z.

32 K. Ji et al.

Fig. 5. Efficient Adversary AGN,m2 and query-free circuit CG-GGM w.r.t. ΠGN,m2 .

identifies x with a good probability if it satisfies following properties. Due to the
space limit, we leave the proof in the full version of this paper [ZJW+24].

– Pr[CG-GGM(x) = 1] ≥ 2
3 ;

– for any noticeable function ρ: Prx′ �=x[CG-GGM(x′) = 1] ≤ ρ.

Acknowledgment. Cong Zhang was supported by the National Key Research and
Development Program of China (Grant No. 2023YFB3106000). This work was also
supported by Ant Group through CCF-Ant Research Fund (Grant No. CCF-AFSG
RF20230308). Bingsheng Zhang was supported by the National Natural Science Foun-
dation of China (Grant No. 62072401 and No. 62232002) and Input Output (iohk.io).
Hong-Sheng Zhou was supported in part by NSF grant CNS-1801470 and a VCU
Research Quest grant.

On the Complexity of Cryptographic Groups and Generic Group Models 33

References

ABD+13. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P. Steinberger.On the indifferentiability of key-alternating ciphers.In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 531–550. Springer, Heidelberg, August 2013.

Bar20. Elaine Barker. Recommendation for key management: Part 1 – general,
2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5.

BF18. Manuel Barbosa and Pooya Farshim. Indifferentiable authenticated encryp-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 187–220. Springer, Heidelberg, August
2018.

BKSY11. Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich.
Limits on the power of zero-knowledge proofs in cryptographic construc-
tions.In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 559–
578. Springer, Heidelberg, March 2011.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard revisited: How to construct a hash function.In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–
448. Springer, Heidelberg, August 2005.

CDMS10. Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A domain extender for the ideal cipher. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 273–289. Springer, Heidelberg,
February 2010.

CHK+16. Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin,
Yannick Seurin, and Stefano Tessaro.How to build an ideal cipher: The indif-
ferentiability of the Feistel construction.Journal of Cryptology, 29(1):61–
114, January 2016.

CMR+23. Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid, and Angela
Robinson. Recommendations for discrete logarithm-based cryptography:
Elliptic curve domain parameters, 2023. https://doi.org/10.6028/NIST.SP.
800-186.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu.On the impossibility of purely algebraic signa-
tures.In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, vol-
ume 13044 of LNCS, pages 317–349. Springer, Heidelberg, November 2021.

DRS09. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging
Merkle-Damg̊ard for practical applications. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 371–388. Springer, Heidelberg,
April 2009.

DSSL16. Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu. Indif-
ferentiability of confusion-diffusion networks. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 679–704. Springer, Heidelberg, May 2016.

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186

34 K. Ji et al.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

GMM17. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does
functional encryption imply obfuscation? In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 82–115. Springer,
Heidelberg, November 2017.

GWL23. Chun Guo, Lei Wang, and Dongdai Lin. Impossibility of indifferentiable iter-
ated blockciphers from 3 or less primitive calls. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages
408–439. Springer, Heidelberg, April 2023.

HKT11. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Pro-
ceedings of the Forty-Third Annual ACM Symposium on Theory of Com-
puting, STOC ’11, page 89–98, New York, NY, USA, 2011. Association for
Computing Machinery.

HMQS23. Mohammad Hajiabadi, Mohammad Mahmoody, Wei Qi, and Sara Sarfaraz.
Lower bounds on assumptions behind registration-based encryption. In Guy
Rothblum and Hoeteck Wee, editors, Theory of Cryptography, pages 306–
334, Cham, 2023. Springer Nature Switzerland.

HR04. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road,
or do secure hash functions need secret coins? In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 92–105. Springer, Heidelberg,
August 2004.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Hei-
delberg, December 2005.

MM11. Takahiro Matsuda and Kanta Matsuura. On black-box separations among
injective one-way functions. In Yuval Ishai, editor, TCC 2011, volume 6597
of LNCS, pages 597–614. Springer, Heidelberg, March 2011.

MMN16. Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the
impossibility of virtual black-box obfuscation in idealized models. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of
LNCS, pages 18–48. Springer, Heidelberg, January 2016.

MPZ20. Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic
group models. Cryptology ePrint Archive, Report 2020/996, 2020. https://
eprint.iacr.org/2020/996.

MRH04. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology.In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

Nec94. Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the dis-
crete logarithm. Mathematical Notes, 55(2):165–172, 1994.

PH78. Stephen Pohlig and Martin Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (Corresp.). IEEE
Transactions on Information Theory, 24(1):106–110, 1978.

https://eprint.iacr.org/2020/996
https://eprint.iacr.org/2020/996

On the Complexity of Cryptographic Groups and Generic Group Models 35

Pol78. John M Pollard. Monte Carlo methods for index computation (mod p).
Mathematics of Computation, 32(143):918–924, 1978.

PRV12. Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis.
How powerful are the DDH hard groups? Cryptology ePrint Archive, Report
2012/653, 2012. https://eprint.iacr.org/2012/653.

RS08. Phillip Rogaway and John P. Steinberger. Constructing cryptographic
hash functions from fixed-key blockciphers. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 433–450. Springer, Heidel-
berg, August 2008.

RSS11. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework.In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, Heidelberg, May 2011.

RSS20. Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions
require hidden-order groups. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 155–180.
Springer, Heidelberg, May 2020.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

SGS20. Gili Schul-Ganz and Gil Segev. Accumulators in (and beyond) generic
groups: Non-trivial batch verification requires interaction.In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 77–107. Springer, Heidelberg, November 2020.

SGS21. Gili Schul-Ganz and Gil Segev. Generic-group identity-based encryption: A
tight impossibility result. In Information Theoretic Cryptography, 2021.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Zha22. Mark Zhandry. To label, or not to label (in generic groups).In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022.

ZJW+24. Cong Zhang, Keyu Ji, Taiyu Wang, Bingsheng Zhang, Hong-Sheng Zhou,
Xin Wang, and Kui Ren. On the complexity of cryptographic groups and
generic group models. In Cryptology ePrint Archive, Paper 2024/1452, 2024.
https://eprint.iacr.org/2024/1452.

ZZ18. Mark Zhandry and Cong Zhang. Impossibility of order-revealing encryp-
tion in idealized models. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 129–158. Springer, Hei-
delberg, November 2018.

ZZ20. Mark Zhandry and Cong Zhang. Indifferentiability for public key
cryptosystems. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 63–93. Springer,
Heidelberg, August 2020.

ZZ23. Cong Zhang and Mark Zhandry. The relationship between idealized models
under computationally bounded adversaries. In ASIACRYPT 2023, 2023.

https://eprint.iacr.org/2012/653
https://eprint.iacr.org/2024/1452

Randomness in Private Sequential
Stateless Protocols

Hari Krishnan P. Anilkumar1(B), Varun Narayanan2, Manoj Prabhakaran3,
and Vinod M. Prabhakaran1

1 TIFR, Mumbai, India
{hari.a,vinodmp}@tifr.res.in

2 UCLA, Los Angeles, USA
3 IIT Bombay, Mumbai, India

mp@cse.iitb.ac.in

Abstract. A significant body of work in information-theoretic cryptog-
raphy has been devoted to the fundamental problem of understanding
the power of randomness in private computation. This has included both
in-depth study of the randomness complexity of specific functions (e.g.,
Couteau and Rosén, ASIACRYPT 2022, gives an upper bound of 6 for
n-party AND), and results for broad classes of functions (e.g., Kushile-
vitz et al. STOC 1996, gives an O(1) upper bound for all functions with
linear-sized circuits). In this work, we make further progress on both
fronts by studying randomness complexity in a new simple model of
secure computation called Private Sequential Stateless (PSS) model.

We show that functions with O(1) randomness complexity in the
PSS model are exactly those with constant-width branching programs,
restricting to “speak-constant-times” protocols and to “read-constant-
times” branching programs.

Towards this our main construction is a novel PSS protocol for
“strongly regular branching programs” (SRBP). As we show, any const-
ant-width branching program can be converted to a constant-width SRBP,
yielding one side of our characterization. The converse direction uses ideas
from Kushilevitz et al. to translate randomness to communication.

Our protocols are concretely efficient, has a simple structure, covers the
broad class of functions with small-width, read-once (or read-a-few-times)
branching programs, and hence may be of practical interest when 1-privacy
is considered adequate. Also, as a consequence of our general result for
SRBPs, we obtain an improvement over the protocol of Couteau and Rosén
forANDin certain cases—not in terms of the number of bits of randomness,
but in terms of a simpler protocol structure (sequential, stateless).

Keywords: Randomness complexity · Private computation · Private
Sequential Stateless model · lower bound · branching programs

Hari Krishnan P. Anilkumar and Vinod M. Prabhakaran were supported by Depart-
ment of Atomic Energy, Government of India, under project no. RTI4001.
V. Narayanan was supported by NSF Grants CNS-2246355, CCF-2220450, and CNS-
2001096.
M. Prabhakaran was supported by IIT Bombay Trust Lab and Algorand Centre of
Excellence by Algorand Foundation.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 36–66, 2025.
https://doi.org/10.1007/978-981-96-0941-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_2&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_2

Randomness in Private Sequential Stateless Protocols 37

1 Introduction

In information-theoretic cryptography, randomness is the key resource available
for creating secrecy (unlike in computational cryptography, where computational
hardness plays an equally important role). As such, understanding the amount
of randomness needed for various tasks is a problem of great theoretical and
practical importance in this area.

In this paper we study randomness complexity in the context of private
multi-party computation (i.e., multi-party computation secure against honest-
but-curious adversary). Not surprisingly, this fundamental question has received
a great amount of attention in the literature [KR94,KOR96,KM96,KOR98,
BSPV99,BGP99,GR03,JLR03,BGP07,DPP16,RU19,KOP+19,CR22,GIS22].

We shall focus on the most basic setting of 1-privacy, wherein the adversary
can corrupt only a single party, which itself has been studied in depth. In one
of the early works in this line, it was shown that for any function which has
a linear sized circuit, the the randomness complexity of 1-private computation
is constant, irrespective of the number of parties holding the inputs. Several
subsequent works improved on the exact constant when considering a specific
function, namely the n-party AND function [KOP+19,CR22].

We introduce a simplified model of multi-party computation called the Pri-
vate Sequential Stateless (PSS) model that is intrinsically connected to ran-
domness complexity. Various simplified models of MPC, like Private Simulta-
neous Message (PSM) model [FKN94,IK97], Non-Interactive Secure Computa-
tion (NISC) [IKO+11], Conditional Disclosure of Secrets (CDS) [GIKM98], etc.,
have proven influential in shaping our understanding of private computation and
information-theoretic cryptography. We propose PSS in a similar spirit, but it
deals with a different aspect of complexity. While PSM, NISC, CDS all impose
a “star” topology of communication, PSS considers a chain model of commu-
nication. In PSS, given correlated randomness, the parties communicate in a
(pre-determined) sequence from one party to the next; the parties do not retain
any state between rounds, except for their own input and their share of the
correlated randomness.

The randomness cost of a PSS protocol – namely, the number of random bits
used to prepare the correlated randomness for the parties – is a crucial factor
that determines whether a function has such a protocol or not. Indeed, without
any restriction on the amount of randomness used, the restrictions in the PSS
model can be subverted. 1 Our focus will be on PSS protocols which have a
constant randomness cost for a family of functions (with variable input length),
independent of the number of parties (each with a bit of the input). Also, unless

1 Statelessness can be subverted by each party sending out an encryption (using one-
time pads) of its state as part of the communication, which will be forwarded as
it is until the party is again invoked (at which point it can update the contents
of the state and re-encrypt using a new one-time pad). Once state is allowed, the
sequentiality requirement can be subverted by letting a sender communicate to many
parties one-by-one over several rounds.

38 H. K. P. Anilkumar et al.

otherwise specified, we shall also restrict to speak-constant-times PSS protocols,
in which the number of times each party speaks is at most a constant.

Our main result is an exact characterization of boolean functions with
constant-randomness speak-constant-times PSS protocols in terms of Branch-
ing Programs: they are exactly those functions which have constant-width read-
constant-times branching programs (read-constant-times refers to the condi-
tion that each input is used at most a constant number of times in evaluating the
branching program). Towards proving this result we present a PSS protocol for
branching programs, and also, conversely, show how to convert a PSS protocol
into a branching program, respecting the cost constraints.

Our contribution can alternately be viewed as developing concretely effi-
cient PSS protocols for a large class of interesting functions. This class includes
functions like AND, inner product, and any boolean function which can be com-
puted by a streaming algorithm with constant memory and a constant number
of passes over the input sequence. 2 The converse demonstrates an optimality
of this result – that one could not have constructed such protocols for a wider
class of functions.

Along the way to constructing our protocol, we identify a class of branching
programs that we term strongly regular branching programs (SRBP). Strong reg-
ularity captures the technical conditions necessary for our protocol construction
to be private. While some functions naturally have branching programs that
are strongly regular, we observe that any branching program can be converted
into an SRBP with a polynomial blow-up in the width (keeping the other size
parameters intact). SRBPs may be of independent interest as they are a restric-
tion of (a natural generalization of) “regular branching programs” as studied in
[LPV23]. 3

For the converse, we rely on a lemma from [KOR96], who proved a similar
characterization of functions with constant randomness complexity for 1-private
computation in terms of circuit complexity, and adapt it to the setting of PSS
protocols.

Finally, as a related result of interest, we also obtain a lower bound for the 3-
party AND function. While the best known lower bound result shows that 1 bit
of randomness is insufficient [KOP+19], we show that at least 3 bits are necessary
for computing this function (even without the sequentiality and memorylessness
restrictions). Our result uses a reduction from a recently introduced problem
called 3-secret sharing [ARN+23] instantiated for a suitable set of secrets, for
which the exact randomness complexity was determined to be 3 bits.

1.1 Our Results

We briefly list our contributions, and expand on them below.
2 Understanding the exact computational power of constant-width read-m-times

branching programs is an interesting problem in its own right.
3 The regular branching programs defined in [LPV23] can be termed 2-regular; the

generalization referred to here allows d-regularity for any d ≥ 2. Strong regularity
imposes additional requirements on top of d-regularity. See Sect. 5 for more details.

Randomness in Private Sequential Stateless Protocols 39

– We introduce a simple model of private protocols with pre-processed corre-
lated randomness, called Private Sequential Stateless (PSS) model.

– Our main result is to show a tight connection between functions computable
using PSS and Branching Programs, in both directions.

– As an intermediate step, we identify a new model of branching programs called
Strongly Regular Branching Programs (SRBP) which may be of independent
interest.

– We show how our PSS protocols can be adapted to an “unassisted” setting
without correlated randomness. While this result applies to a broad class of
functions, applying it to the function AND (which has received a significant
amount of attention in the literature) yields results matching or closely match-
ing the state-of-the-art results [CR22], but with a simpler protocol structure.

– Continuing to focus on AND, we present a new lower bound on the ran-
domness complexity of 3-party AND for 1-private computation (even with
correlated randomness).

In a PSS protocol, the parties are deterministic and stateless, except for
the correlated randomness and the input that they receive at the beginning. At
every round a single pre-determined party receives a message and then sends a
message in the next round to a single other party, without updating its state.
The last message in the protocol is sent to a special output party who produces
the final output (using its share of the correlated randomness along with the
message it received). A PSS protocol is defined to be a 1-private protocol – i.e.,
with information theoretic security against semi-honest corruption of one party.
Two costs of interest to us in a PSS protocol are the number of times any party
speaks in the protocol and the amount of randomness used in the protocol, that
is, the number of random bits used to prepare the correlated randomness for the
parties.

We show a close connection between functions computable using Private
Sequential Stateless and Branching Programs.

Theorem 1 (Main Result (informal)). An n-input boolean function has
a speak-constant-times constant-randomness PSS protocol iff it has a read-
constant-times constant-width branching program.

To construct a PSS protocol from a branching program, first we convert it, if
necessary, into a strongly regular branching program (SRBP), with a polynomial
blow-up in the width (keeping the other parameters intact). SRBP is a new
definition we introduce, which may be of independent interest (see Sect. 2.3 and
Sect. 5 for more details). The upper bound on randomness complexity that we
obtain depends on the width of the strongly regular branching program and the
number of times each input is read while evaluating the branching program –
but not on the number of inputs or the length of the branching program.

To build a PSS protocol from SRBP, we start by considering a read-once
strongly regular branching program (abbreviated as 1-SRBP), in which each
input is used for only one transition in the branching program. We obtain the
following result:

40 H. K. P. Anilkumar et al.

Theorem 2. The randomness complexity of PSS computation of n-input
boolean functions which have 1-SRBPs of width w, is O(w log w). This is achieved
by a speak-once PSS protocol.

To prove the theorem, we present a concretely efficient protocol, which
requires sampling just 4 uniformly random permutations over [w] and 2 uniform
bits in addition. This is comparable to the state-of-the-art concrete parameters
obtained in prior work on randomness complexity of 1-private computation for
a specific function, namely AND (which has a width-2 1-SRBP). The prior work
considered a model without the restrictions of PSS model, but also without
external parties to supply correlated randomness and produce the final output.
To fairly compare to those results (since additional parties without input can
help save on randomness), we show how our PSS protocol can be modified so
that the pre-processing computation and the final output computation can be
carried out by two of the parties with inputs. As shown in Sect. 6, the modi-
fied PSS protocol we obtain for read-once AND uses 6 or 9 bits of randomness
(depending on odd or even number of inputs).

We generalize Theorem 2 to functions with an k-SRBP, in which each input
is used for at most k transitions in the branching program.

Theorem 3. The randomness complexity of PSS computation of n-input
boolean functions which have k-SRBPs of width w, is O(kw log w). This is
achieved by a speak-(2k − 1)-times PSS protocol.

We remark that the O(k) factor in the result above is in fact an upper bound
for the chromatic number of a “conflict graph” associated with the branching
program; for specific branching programs, this factor could be lower.

Next, we show that one cannot hope to improve this result significantly in
terms of the functions covered. That is, we show that constant-randomness PSS
protocols exist only for functions which are computable using constant-width
branching programs.

Theorem 4. Boolean functions with constant-randomness speak-k-times PSS
protocols have constant-width read-k-times branching programs.

Note that a sequential protocol with constant communication can be nat-
urally translated to a constant-width branching program. When the protocol
is 1-private, randomness cost can be translated to communication cost, as was
first shown in [KOR96]. We adapt this result to the setting of PSS protocols to
establish our result above.

Finally, on the lower bound front, we obtain the following result for the 3-
party AND functionality.

Theorem 5. Randomness complexity of 1-private computation of F∗
AND for 3

parties is at least 3 bits.

Randomness in Private Sequential Stateless Protocols 41

1.2 Related Work

As mentioned above, the fundamental question of randomness complexity of
secure computation has received much attention. Among these, Kushilevitz,
Ostrovsky and Rosén [KOR96] obtained a result analogous to our main result,
but in the context of circuits and unrestricted protocols (as opposed to branching
programs and PSS protocols).

A line of works have focused on upper bounding the randomness com-
plexity of AND [KOR96,KOP+19,CR22]. Some of these protocols are in the
PSS model (or rather, the unassisted PSS model, as defined in Sect. 6.1), and
forms the basic motivation for studying this model. However, the state-of-the-art
results in [CR22] are not (which, we show, can be attained in the unassisted PSS
model, when the number of parties is odd).

Lower bound results for randomness complexity of 1-private computa-
tion have been fewer, with the notable exception of [KOP+19]. Our lower bound
result relies on information-theoretic techniques from [DPP16,ARN+23].

Branching programs are a well-studied model of computation [INW94,
Bar86]. In particular, a notion of regular branching programs studied in [LPV23]
is closely related to the notion of strongly regular branching programs we intro-
duce.

While we have focused on 1-privacy, the question of t-privacy has also been
studied in the literature [KM96,CKOR00,GIS22]. We leave it for future work to
study the power of t-Private Sequential Stateless model.

2 Technical Overview

We build 1-private sequential stateless protocols for n-party functions that are
computable using a family of branching programs called strongly regular branch-
ing programs (SRBPs). We first construct a PSS protocol for read-once SRBP
(1-SRBP). We will then elaborate on the notion of strong regularity, and present
a conversion from a general branching program to strongly regular branching
program with a polynomial blow-up in width. A more complex protocol is then
presented that realizes PSS for general (read-m) SRBP. As an application of
our main result, we construct a 1-private protocol with a limited communication
pattern for standard n-party AND functionality by modifying the PSS protocol
for AND. Our construction matches the best known randomness cost for AND
for odd values of n.

2.1 Branching Programs and Private Sequential Stateless Protocols

A width-w and length-� branching program for an n input (alternatively n-
party) function f : {0, 1}n → {0, 1} is described by a layer assignment function
σ : [�] → [n] mapping each layer i ∈ [�] to a party Pσ(i); for each layer i ∈ [�],
a pair of transition functions g

(i)
0 , g

(i)
1 : [w] → [w] one of which will be chosen

according to the input of Pσ(i) to map the incoming state to layer i to its outgoing

42 H. K. P. Anilkumar et al.

state; and an output function φ that maps the final state outgoing from layer �
to an output bit. The branching program computes an n-party function f if, for
all (x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = φ(u�), where, for i ∈ [�], the outgoing
state ui from layer i (which is the incoming state for layer i + 1) is defined as
follows: ui = g

(i)
xσ(i)(ui−1) and u0 = 1.

If every party is assigned at most m layers, i.e., |σ−1(i)| ≤ m for each i,
the branching program is said to be read-m. A branching program is said to be
read-once if � = n and σ is the identity function (without loss of generality).

In this paper, we draw a connection between branching programs and a sim-
plified model of secure multi-party computation called the private sequential
stateless (PSS) protocols. A PSS protocol π = (Prepπ, ςπ,Nextπ,Outπ) is a semi-
honest 1-private protocol in the correlated randomness setting with sequential
communication and stateless computation. A set of parties Pi, i ∈ [n], each Pi

holding an input bit xi want to deliver a boolean f(x1, . . . , xn) to an external
party Pn+1 who has no input. π starts off with a preprocessing step Prepπ in
which a trusted party samples correlated randomness (r1, . . . , rn+1) (indepen-
dent of the inputs), and delivers ri to each Pi, i ∈ [n] and rn+1 to Pn+1. The
protocol then proceeds sequentially for T rounds, with Pςπ(t) sending a message
mt to Pςπ(t+1) in round t ∈ [T]. The party Pςπ(t) computes mt using a state-
less next message function (corresponding to round t) that takes the message
mt−1 the party received in round-t − 1, the party’s own input, and the random-
ness it received during preprocessing. The receiver of the message in round T is
necessarily the output party Pn+1 who computes the output as Outπ(mT , rn+1).

Our first result shows that if f is privately computed by a speak-m-times
PSS protocol (where each party speaks in at most m rounds) and using constant
randomness, then f is computable using a read-m branching program of constant
width independent of the number of parties and rounds. Using an argument
along the lines of [KOR96], we first show that for any fixing of the randomness
chosen during preprocessing, the number of possible messages received in any
round in the now deterministic protocol while ranging over all possible inputs
is at most 2ρ+2 irrespective of the number of rounds, when ρ is the randomness
cost of π. Thus, when the randomness is fixed arbitrarily, there is a map ηt−1

that maps the set of all possible messages mt−1 received by the speaker of any
round t to the set [2ρ+2]. For any round t, with Pςπ(t) as speaker, we can set the
transition function g

(t)
0 : [2ρ+2] → [2ρ+2] as a translation of the next message

function invoked with 0 as user’s input (and randomness fixed) induced when
mt−1 and mt are mapped to [2ρ+2] by ηt−1 and ηt, respectively; g

(t)
1 is defined

similarly. Finally, the output function for the branching program is a translation
of the output function of that in π induced by the mapping of mT to [2ρ+2]. The
resulting branching program has width 2ρ+2 and length T (number of rounds
in π), and the layer assignment function is the same as the speaker assignment
function of π.

Randomness in Private Sequential Stateless Protocols 43

2.2 A Protocol Idea for Branching Programs

Let f : {0, 1}n → {0, 1} be an n-party function computable using a read-once
branching program of width w with transition functions g

(i)
0 , g

(i)
1 : [w] → [w] for

i ∈ [n], and sets S0, S1 ⊂ [w] such that, for any x1, . . . , xn ∈ {0, 1},

g(n)xn
◦ g(n−1)

xn−1
◦ . . . ◦ g(1)x1

(1) ∈
{

S0 if f(x1, . . . , xn) = 0
S1 if f(x1, . . . , xn) = 1

.

A non-private sequential protocol for f can be built as follows: P1 sends the
message u1 = g

(1)
x1 (1) to P2, P2 sends u2 = g

(2)
x2 (u1) = g

(2)
x2 ◦ g

(1)
x1 (1) to P3 and so

on with Pi sending ui = g
(i)
xi (ui−1) = g

(i)
xi ◦g

(i−1)
xi−1 ◦ . . .◦g

(1)
x1 (1) to Pi+1. Party Pn,

who receives un−1, sends un = g
(n)
xn (un−1) = g

(n)
xn ◦ g

(n−1)
xn−1 ◦ . . . ◦ g

(1)
x1 (1) to Pn+1,

who outputs b ∈ {0, 1} if un ∈ Sb.
The above non-private protocol admits a straightforward conversion to a PSS

protocol: we will arrange each Pi to compute and forward a random permutation
of ui, say αi(ui), where αi is a random permutation, in the place of ui. For this,
the (descriptions of) functions (ĝ(1)0 , ĝ

(1)
1) = (α1 ◦ g

(1)
0 , α1 ◦ g

(1)
1) are sent to P1

during the preprocessing phase, and (ĝ(i)0 , ĝ
(i)
1) = (αi ◦ g

(i)
0 ◦α−1

i−1, αi ◦ g
(i)
1 ◦α−1

i−1)
are sent to Pi for each 2 ≤ i ≤ n. When (ĝ(i), ĝ(i)) is replaced with (g(i), g(i))
in the aforementioned non-private protocol, each Pi, i > 1 receives αi−1(ui−1)
instead of ui, which hides ui−1 as long as αi−1 is sampled independent of αi.
Finally, Pn+1 who receives αn(un) from Pn, is also sent {αn(j) : j ∈ S0} and
{αn(j) : j ∈ S1} during preprocessing. Now, Pn+1 can check whether un belongs
to S0 or S1, allowing it to decode f(x1, . . . , xn). In the process, Pn+1 only learns
whether un belongs to S0 or S1 since αn is a random permutation unknown
to Pn+1. Since 1-privacy is ensured as long as each αi is uniformly random
and independent of αi−1, we can set αi = αodd for all odd i, and αi = αeven

for all even i, where αodd, αeven are randomly sampled from Sym(w): the set of
all permutations of [w]. Thus, preprocessing uses a randomness domain of size
2 log w!.

The approach sketched above can be shown to be 1-private if f is computed
using a read-once permutation branching program where g

(i)
b is a one-to-one

function for each i ∈ [n] and b ∈ {0, 1}. However, it fails to be 1-private when
{g

(i)
b } are not all one-to-one. For instance, consider the n-party AND function,

computable using a read-once branching program of width 2 such that, for each
i ∈ [n], g

(i)
1 : b �→ b and g

(i)
0 : b �→ 0. Pi receives αi−1(ui−1) from Pi−1, and

(αi ◦ g
(i)
0 ◦ α−1

i−1, αi ◦ g
(i)
1 ◦ α−1

i−1) during preprocessing. Since g
(i)
0 maps all inputs

to 0, Pi can learn αi(0) from αi ◦ g
(i)
0 ◦ α−1

i−1 which further reveals αi. But then,
αi and αi ◦g

(i)
1 ◦α−1

i−1 can be used to learn αi−1 since g
(i)
1 is the identity function.

Thus Pi can recover ui−1 = x1 · . . . · xi−1 from αi−1(ui−1), breaking security of
the protocol.

To get around this, the preprocessing step samples a random bit ri and
permutations αi,0, αi,1 for each i ∈ [n], and sets α0,0 and α0,1 to be the identity
function. To each Pi, it sends ri, and the following functions:

44 H. K. P. Anilkumar et al.

ĝ
(i)
0,0 = αi,0 ◦ g

(i)
0 ◦ α−1

i−1,ri−1
ĝ
(i)
0,1 = αi,0 ◦ g

(i)
0 ◦ α−1

i−1,ri−1⊕1 (1)

ĝ
(i)
1,0 = αi,1 ◦ g

(i)
1 ◦ α−1

i−1,ri−1
ĝ
(i)
1,1 = αi,1 ◦ g

(i)
1 ◦ α−1

i−1,ri−1⊕1 (2)

In the protocol, we will ensure the invariant αi,xi
(ui) = αi,xi

◦g
(i)
xi (ui−1). For this,

P1 sends x1⊕r1 and α1,x1 ◦g
(1)
x1 (0) = α1,x1(u1) to P2. To propagate the invariant,

it suffices to show that Pi can compute xi ⊕ ri and αi,xi
(ui) = αi,xi

◦ g
(i)
xi (ui−1),

assuming Pi−1 sends xi−1 ⊕ ri−1 and αi−1,xi−1(ui−1) to Pi. Observe that

ĝ
(i)
xi,xi−1⊕ri−1

= αi,xi
◦ g(i)xi

◦ α−1
i−1,xi−1

.

Hence, using ĝ
(i)
xi,xi−1⊕ri−1

, ri, xi−1 ⊕ ri−1 and αi−1,xi−1(ui−1), Pi can compute
xi ⊕ ri and

ĝ
(i)
xi,xi−1⊕ri−1

(αi−1,xi−1(ui−1)) = αi,xi
◦ g(i)xi

◦ α−1
i−1,xi−1

◦ αi−1,xi−1(ui−1)

= αi,xi
◦ g(i)xi

(ui−1) = αi,xi
(ui)

preserving the invariant. To allow computing the output, during preprocessing,
Pn+1 is sent

Ŝc,0 = {αn,rn⊕c(j) : j ∈ S0}, Ŝc,1 = {αn,rn⊕c(j) : j ∈ S1}, c ∈ {0, 1}.

Pn+1 outputs b satisfying un ∈ Ŝxn⊕rn,b, on receiving αn,xn
(un) and xn ⊕ rn

from Pn. It is easy to verify that Pn+1 outputs b such that un ∈ Sb.
Security against P1 and Pn+1 are straight-forward to argue: the former does

not receive any message, and the view of the latter can be easily simulated
using the output of the function. For 1 < i ≤ n, Pi receives xi−1 ⊕ ri−1

and αi−1,xi−1(ui−1) from Pi−1, and ri and {ĝ(i)}c,c′∈{0,1}. Although xi−1 ⊕
ri−1, αi−1,xi−1(ui−1), and ri do not reveal any information to Pi, taken together
with {ĝ

(i)
c,c′}c,c′∈{0,1}, these random variables can indeed break security for cer-

tain branching programs even when αi,b is chosen uniformly and indepen-
dently for all i ∈ [n] and b ∈ {0, 1}. Using a careful analysis, we character-
ize the family of branching programs for which the protocol remain perfectly
private. We refer to this family as strongly regular branching programs (dis-
cussed in the next section). We further show that 1-privacy is maintained even
when randomness is reused as follows: set (αi,0, αi,1, ri) = (αodd,0, αodd,1, rodd)
for all odd i, and (αi,0, αi,1, ri) = (αeven,0, αeven,1, reven) for all even i, where
αodd,0, αodd,1, αeven,0, αeven,1 are randomly sampled from Sym(w) and rodd, reven
are random bits. Thus, the protocol used a randomness domain of 4 log w! + 2
to carry out the private computation.

2.3 Strongly Regular Branching Programs

For the PSS protocol outlined in the previous section (and its generalization to
read-m branching programs) to achieve 1-security requires the branching pro-
gram to satisfy a technical condition we call strong regularity. In this section, we

Randomness in Private Sequential Stateless Protocols 45

will briefly describe this condition and sketch the intuition behind a construction
that converts any branching program to a strongly regular branching program
while incurring a quadratic blow-up in the width, but preserving the length of
the branching program.

A branching program is said to be strongly regular if the pair of transition
functions g

(i)
0 , g

(i)
1 : [w] → [w] are strongly regular for every layer i in the pro-

gram. Strong regularity of g
(i)
0 , g

(i)
1 requires that the preimages of g

(i)
0 form a

partition of [w] into sets of equal size (ignoring empty pre-images); similarly for
g
(i)
1 . Further, the intersection of these partitions created by g

(i)
0 and g

(i)
1 is also

a partition into sets of equal size, say d (again ignoring empty intersections).
Strong regularity requires an additional technical condition: For this define a
bipartite graph H with the same set [w] as both left and right vertices. There
is an edge between a left vertex u and a right vertex v if the preimage of u

under g
(i)
0 intersects the preimage of v under g

(i)
0 (this intersection is of size d

by previous conditions). The final condition for strong regularity demands that
a random automorphism of H maps every edge to a uniformly random edge in
H. Here, by an automorphism of of H, we mean any permutation of the left and
right vertices of H under which every edge is mapped to some edge of H. The
security of our protocols depend crucially on the strong regularity of transition
functions, and hence that of the branching program.

In Theorem 7, we show how to transform an arbitrary branching program
into a strongly regular one while scaling the width from w to w2. Leaving
the layer assignment function σ unchanged, we define new transition functions
{h

(i)
b }i∈[�],b∈{0,1} and output function φ′ as follows. Given a pair of transition

functions g
(i)
0 , g

(i)
1 : [w] → [w], we construct functions h

(i)
0 , h

(i)
1 : [w]×[w] → [w]×

[w] as follows: assign h
(i)
b (u, v) = (u, g

(i)
b (u)) if i is odd and h

(i)
b (u, v) = (g(i)b (v), v)

if i is even for all (u, v) ∈ [w]2, b ∈ {0, 1}. Thus, for odd i (the case of even i
is similar), every node u in [w] is replaced by a set of w nodes (u, 1), . . . , (u,w)
and h

(i)
b maps all of them to (u, g

(i)
b (u)). This implies strong regularity as

1. for each u ∈ [w], the nodes (u, 1), . . . , (u,w) in the domain of h
(i)
b are all

mapped to (u, g
(i)
b (u)), while all the other nodes of the form (u, v), v 	= g

(i)
b (u))

in the co-domain have an empty pre-image; therefore |(h(i)
b)−1(u, v)| is either

w or 0,
2. for u′, v′, u′′, v′′ ∈ [w], the pre-images of (u′, v′) under h

(i)
0 and (u′′, v′′)

under h
(i)
1 have a non-empty intersection if and only if u′ = u′′, and

v′ = v′′ = g
(i)
0 (u′) = g

(i)
1 (u′′), and in such a case, their pre-images are both

{(u′, 1), . . . , (u′, w)}; hence, the size of the intersection of pre-images of (u′, v′)
and (u′′, v′′) is either w or 0, and

3. the H graph consists of an edge between (u, g
(i)
0 (u)) and (u, g

(i)
1 (u)) for each

u ∈ [w]; therefore, the edge set E consists of w edges where no two of them
have any common vertices, which implies that every edge is mapped to every
edge with the same probability under a uniformly chosen Aut(H).

46 H. K. P. Anilkumar et al.

Furthermore, note that if (u0, v0) is the initial state of the program, then, for
odd i,

(ui, vi) = (ui−1, g
(i)
xσ(i)

◦ g(i−1)
xσ(i−1)

◦ · · · ◦ g(1)xσ(1)
(u0)),

and for even i,

(ui, vi) = (g(i)xσ(i)
◦ g(i−1)

xσ(i−1)
◦ · · · ◦ g(1)xσ(1)

(u0), vi−1).

Hence, defining the new output function as φ′(u, v) = φ(v) for odd � and
φ′(u, v) = φ(u) for even � ensures that the output is identical to that of the
original branching program. Thus, for a function f : {0, 1}n → {0, 1}, given
a length-� and width-w branching program, we have a length-� and width-w2

strongly regular branching program.

2.4 Beyond Read-Once Branching Programs

We generalize our construction for read-once strongly regular branching pro-
grams to accommodate strongly regular branching programs in which a party
may have inputs at multiple layers. Suppose f : {0, 1}n → {0, 1} computable
using a strongly regular branching program of width w and length �. That is,
there exist σ : [�] → [n]; for each t ∈ [�], a pair of functions g

(t)
0 , g

(t)
1 : [w] → [w];

and sets S0, S1 ⊂ [w] such that for (x1, . . . , xn) ∈ {0, 1}n,

g(�)xσ(�)
◦ . . . ◦ g(2)xσ(2)

◦ g(1)xσ(1)
(1) ∈

{
S0 if f(x1, . . . , xn) = 0,
S1 if f(x1, . . . , xn) = 1.

The straightforward extension of the protocol sketched in Sect. 2.2 (without
randomness reuse) continues to private for read-m strongly regular branching
programs. That is, during preprocessing, (αt,0, αt,1) and (rt,0, rt,1) are sampled
independently and uniformly at random for each t ∈ [�], and the corresponding
party Pσ(t) receives ‘masked functions’ {ĝ

(i)
b,b′}b,b′ ∈ {0, 1}, as defined in Eq. (1).

To aid in computing the output, Pn+1 is sent

Ŝc,0 = {α�,r�⊕c(j) : j ∈ S0}, Ŝc,1 = {α�,r�⊕c(j) : j ∈ S1}, c ∈ {0, 1}.

This results in a protocol where the randomness cost grows with �, the length of
the branching program. In the read once case, we could bring the randomness
cost down by using the same permutations for all odd parties, and a indepen-
dently sampled set of permutations for even parties. Reusing randomness in this
manner will break security if a party Pi appears more than once in the branching
program.

We next describe how to reuse randomness for the read-m case. Let zt =
xσ(t) be the input of Pσ(t) at layer t ∈ [�]. We already observed that the
view of Pσ(t) consisting of zt−1 ⊕ rt−1, αt−1,zt−1(ut−1), and {ĝ

(t)
b,b′} is private.

Hence, to ensure privacy against Pi in the protocol, it suffices to ensure that,

Randomness in Private Sequential Stateless Protocols 47

{αt−1,0, αt−1,1, αt,0, αt,0 : t ∈ [�], σ(t) = i} are sampled uniformly and indepen-
dently from Sym(w), and {rt−1, rt : t ∈ [�], σ(t) = i} are sampled independently
from {0, 1}.

To satisfy these conditions, define a conflict graph G = ([�], E) where {t, t′} ∈
E if t 	= t′ ∈ [�] and {σ(t), σ(t + 1)} ∩ {σ(t′), σ(t′ + 1)} 	= ∅. Let col : [�] → [χ] be
an optimal vertex coloring of G. Sample αj,0 and αj,1 uniformly from Sym(w),
and rj uniformly from {0, 1} for each j ∈ [χ] and set

αt,0 = αcol(t),0 αt,1 = αcol(t),1 rt = rcol(t), t ∈ [�].

Such an assignment satisfies the constraints given above by the construction of
the conflict graph, ensuring 1-privacy. The randomness cost of such a protocol
is O(χ) · w!.

2.5 Private Computation of AND

As an application of our positive result, we modify our PSS protocol construction
to realize with 1-privacy the AND functionality which takes a bit from each of
the n parties and delivers their product to all parties. The resulting protocol
achieves AND computation with 6 bits of randomness when n is odd, matching
the best randomness upper bound in the literature [CR22]. When n is even
we get a randomness cost of 9 bits. In this section, we outline the modified
construction. To complement this upper bound, we also show that 1-private
computation of AND functionality among 3 parties requires at least 3 bits of
randomness even while employing non-sequential protocols. The previously best
known lower bound [KOP+19] result is that 1 bit of randomness is insufficient
(for any number of parties).

Our protocol for n-party AND in the PSS model consumes 6 bits of random-
ness. We convert this into the standard model by getting rid of the preprocessing
step, and internalizing the output party Pn+1. For odd values of n, we effect this
transformation without requiring any extra randomness; whereas, for even n, our
transformation consumes 3 more bits, resulting in 9 bits of randomness. The pre-
processing step can be removed from the PSS protocol for AND (or any read-once
branching program in general) by letting P1 sample and deliver the randomness
supplied in the preprocessing step. Since P1 does not receive messages during in
the online step, this change does not affect security against P1. To remove the
output party Pn+1, we transfer the role of Pn+1 to P2, by redirecting the Pn’s
messages αn,xn⊕rn

(un) and xn ⊕ rn to P2 instead of Pn+1, and also redirecting
the randomness used for computing the output to P2. To ensure privacy against
P2 despite these extra messages, αn,0, αn,1 and rn are sampled using 3 bits of
fresh randomness, and the randomness needed for computing the output is sam-
pled appropriately. When n is odd, we observe that some randomness can be
recycled avoiding the need of fresh randomness for sampling αn,0, αn,1 and rn,
and maintaining randomness cost of 6 bits4. Finally, P2 distributes the decoded
output to all the parties.
4 An involved construction can bring down the randomness cost for even values of n

from 9 bits to 6 + log 3 bits. We do not present this construction in this work.

48 H. K. P. Anilkumar et al.

The protocol obtained by this transformation preserves the sequentiality
except in the initial step where P1 sends correlated randomness to all parties,
and in the last step where P2 delivers output to all parties; we refer to such a
protocol as an unassisted PSS protocol or simply a uPSS protocol. We note that
this results in a much sparser communication pattern compared to some of the
protocols in the literature with low randomness cost [KOP+19,CR22].

Our lower bound of 3 bits for 3-party AND is obtained using a lower bound for
the so-called 3-Secret Sharing (3SS) problem, recently presented in [ARN+23].
In a 3SS for secret domain M , the dealer, with input (m1,m2,m3) ∈ M wants to
compute shares s{1,2}, s{2,3}, s{1,3} such that for any distinct i, j, k ∈ [3], s{i,j}
and s{i,k} form a secret sharing of mi. We show that, in any 3-party 1-private
AND protocol, the transcripts T{i,j} and T{i,k} between Pi and Pj , and between
Pi and Pk, respectively, form a secret sharing of xi, the input of Pi, for any
distinct i, j, k ∈ [3]. Consequently, for the secret domain D = (x1, x2, x3) ∈
{0, 1}3 \ {(1, 1, 1)}, the transcripts {T{i,j}} of the AND protocol with input
(m1,m2,m3) forms a 3SS of (m1,m2,m3) ∈ D. At this point, we invoke the fact
that randomness complexity of 3SS for D is 3 bits to obtain the desired lower
bound for AND computation.

3 Preliminaries

We use the standard notion of 1-private computation and randomness complex-
ity associated with it. By default, we shall use a model with correlated random-
ness generated during a pre-processing phase, and no other randomness, as this
is the setting we shall use in Sect. 4 and Sect. 5; however, local (uncorrelated)
randomness can be modeled as a special case of this.

For the sake of being self-contained, we summarize the standard protocol
model below, with notation that will be convenient for us. For our purposes, a T -
round protocol π (over private channels) with n input-parties P1, . . . ,Pn and an
output party Pn+1, is specified by a correlated-randomness generation function
Prepπ, a deterministic next message function Nextπ, and output function Outπ
which behave as follows in an execution of the protocol. A random element
R ← R is sampled first, where R is a finite set representing the randomness
space of the protocol. Prepπ, on input (i, R) where i ∈ [n + 1], outputs a string
Ri (corresponding to the share of correlated-randomness for party Pi). Nextπ
takes as input (i,View(i)

π,t), where i ∈ [n] is an index, and View
(i)
π,t (for 0 ≤ t < T)

is the view of Pi in t rounds – consisting of its input, the string Ri (obtained
from Prepπ), and all the messages received from all the other parties till then –
and outputs a set of messages for Pi to send to all the other parties in round t+1.
Outπ takes as input (i,View(i)

π,T) and produces an output for party Pi. We define
the random variables View(i)

π (x1, . . . , xn) and π(x1, . . . , xn) to be, respectively,
the view of Pi in a complete execution of π with parties using inputs (x1, . . . , xn),
and the outputs produced by the parties at the end of such an execution.

An n-party functionality F is simply a function that takes n inputs, one
from each party, and deterministically produces n outputs, one for each party.

Randomness in Private Sequential Stateless Protocols 49

We say that π = (Prepπ,Nextπ) is a 1-private realization of the functionality F
(or simply, π is a protocol for F) if the following conditions hold:

– Correctness. For any set of inputs (x1, . . . , xn),
Pr[π(x1, . . . , xn) = F(x1, . . . , xn)] = 1 (where the probability is over the
random input R ∈ R given to Prepπ).

– 1-Privacy. For any i ∈ [n] and any two sets of inputs (x1, . . . , xn) and
(x′

1, . . . , x
′
n) such that xi = x′

i and the ith output of F on both are equal,
View(i)

π (x1, . . . , xn) and View(i)
π (x′

1, . . . , x
′
n) are identically distributed.

For a function f : {0, 1}n → {0, 1}, we define an (n + 1)-party functionality
Ff , which takes an input bit xi from party Pi for i ∈ [n] (and empty input from
Pn+1) and outputs f(x1, . . . , xn) to party Pn+1 (and empty output to the other
parties).

Branching Programs.

Definition 1. A width w and length � branching program for a function f :
{0, 1}n → {0, 1} is a collection of functions (σ, {g

(t)
b }t∈[�],b∈{0,1}, φ) where σ :

[�] → [n] encodes the order in which inputs are accessed, g
(t)
b : [w] → [w] denotes

the transition function for each choice bit b and t ∈ [�], and φ : [w] → {0, 1}
denotes the output function, such that for all (x1, . . . , xn) ∈ C1,× . . . ,×Cn,
f(x1, . . . , xn) = φ(u�), where ui is defined as follows: u0 = 1 and for t ≥ 1,
ut = g

(t)
xσ(t)(ut−1).

We shall refer to a length � branching program as having � layers. σ in the above
definition is said to be the input label function, which maps each layer to an input
index. Also, given a branching program as above and an input (x1, . . . , xn) for
it, we shall refer to xσ(t) as the choice bit at layer t. We shall also be interested
in a natural complexity measure of a branching program (apart from width and
length), namely the number of layers at which the same input is used: we say
that a branching program is a read-k-times branching program if for all i ∈ [n],
|{t : σ(t) = i}| ≤ k. By default, all the branching programs we consider, unless
otherwise specified, are read-constant-times branching programs; note that in
this case the length � = O(n).

4 Private Sequential Stateless Protocols

In this section we define the PSS model and further show that constant - random-
ness speak-constant-times PSS protocols imply constant-width read-constant-
times branching programs.

A Private Sequential Stateless protocol is a 1-private protocol with cer-
tain restrictions on its communication pattern (sequential) and computa-
tion (stateless). Below we define a PSS protocol π in terms of functions
(Prepπ, ςπ,Nextπ,Outπ), where ςπ determines which party speaks at each round,
Prepπ computes the correlated randomness given to the parties in the pre-
processing phase, Nextπ is the next-message function used by a party (who is

50 H. K. P. Anilkumar et al.

speaking at a round) to generate the message for the next round based solely on
the message sent to it in the current round and its share of correlated random-
ness and input (since it does not update its state during the online phase), and
Outπ is the function used by the output party (who does not participate in the
protocol otherwise) to generate the final output.

Definition 2 (Private Sequential Stateless Protocol). A T -round Pri-
vate Sequential Stateless protocol π for f : {0, 1}n → {0, 1} is a tuple
(Prepπ, ςπ,Nextπ,Outπ), with Prepπ : [n+1]×R → {0, 1}∗, ςπ : [T +1] → [n+1],
Nextπ : [T] × {0, 1}∗ × {0, 1}∗ × {0, 1} → {0, 1}∗, and Outπ : {0, 1}∗ × {0, 1}∗ →
{0, 1}, such that and the following is a 1-private protocol for the n + 1-party
functionality Ff in the pre-processing model:

– First, in the pre-processing phase R ← R is sampled and for each i ∈ [n + 1],
Pi receives is ri := Prepπ(i;R) as its share of correlated randomness;

– then for each i ∈ [n], party Pi receives an input bit xi;
– then, at each round t ∈ [T], party Pςπ(t) receives a message mt−1

(m0 is defined as the empty string) and sends the message mt :=
Nextπ(t,mt−1, rςπ(t), xςπ(t)) to party Pςπ(t+1); it is required that ςπ(t) = n + 1
iff t = T + 1.

– Finally, party Pn+1 outputs the bit Outπ(mT+1, rn+1).

We call the PSS protocol π a speak-k-times protocol if |ς−1
π (i)| ≤ k for all

i ∈ [n]. The randomness cost of π is defined as log2 |R| bits.

By default in the PSS model, unless otherwise specified, we always consider
speak-constant-times protocols (i.e., speak-k-times protocols where k does not
grow with the input size n).

It is worth emphasising that statelessness is a structural feature of a PSS
protocol, and it does not alter the security model of 1-privacy: the adversary
can corrupt a party at the beginning of the protocol and it can see all the
messages ever sent to that party.

4.1 PSS Protocols to Branching Programs

In this section we prove the following result.

Theorem 6. For any constant k, boolean functions over {0, 1}n which have
speak-k-times, constant-randomness-cost PSS protocols also have read-k-times,
constant-width branching programs.

Proof. The proof uses the ideas from the transformation of protocols into circuits
in [KOR96]. We make the required transformation in two steps, firstly, convert-
ing the given randomized protocol into a deterministic protocol by freezing the
randomnness in the system, and then, converting this deterministic protocol into
a branching program by defining appropriate functions on the set of these mes-
sages. The width of the branching program will be determined by the number
of different messages a party can receive at any round.

Randomness in Private Sequential Stateless Protocols 51

We start by bounding the number of different views a party can have under
a fixed randomness R ∈ R (analogous to Lemma 4 from [KOR96]).

Lemma 1. If π is a PSS protocol with randomness cost ρ, then for any fixed
choice of randomness, over all the choices of inputs, the total number of com-
munication transcripts seen by any party Pi is at most 2ρ+2.

Proof. Let π be a PSS protocol for a function f : {0, 1}n → {0, 1}. For an input
x ∈ {0, 1}n, let Ci(x) denote the set of communication transcripts a party Pi

can see in executions of π, using all choices of the randomness R ∈ R. Note that
|Ci(x)| ≤ |R| = 2ρ. Secondly, for all x in an equivalence class such that xi and
f(x) are equal (there are four such equivalence classes), the distribution, and
hence support, of the views of Pi are identical; this follows from the 1-privacy
guarantee of a PSS protocol. Since the view contains the communication (as
well as the party’s share of correlated randomness), for all x and x′ in the same
equivalence class, Ci(x) = Ci(x′). Hence, taking the union over all x in the same
equivalence class, |⋃x Ci(x)| ≤ 2ρ. Since there are four such equivalence classes,
we have ∣∣∣∣ ⋃

x∈{0,1}n

Ci(x)
∣∣∣∣ ≤ 2ρ+2.

In particular, for any fixed choice of randomness, the transcripts seen by Pi

comes from this set of size 2ρ+2, as claimed. ��
We now proceed to transform the given protocol into a branching program.

Let π′ be a deterministic protocol obtained by fixing the randomness of π to
R∗ ∈ R. To convert π′ to a branching program we shall interpret the message
sent in round t from party Pi to Pj (where i = ςπ(t) and j = ςπ(t + 1)) as a
state in the t+1st layer of the branching program. Since the number of different
messages that Pj can receive in a round (over all inputs x ∈ {0, 1}n) is upper
bounded by the total number of communication transcripts, which is in turn
bounded by 2ρ+2 by Lemma 1, the width of the branching program can be set
to w = 2ρ+2. The length of the branching program � = T , the number of rounds
in π, and the input-reading function σ is the same as ςπ, but restricted to [T]
(rather than [T + 1]).

The transition functions gt
b from layer t − 1 to layer t will implement

Nextπ(t, ·, r∗, b), for b ∈ {0, 1} and where r∗ = Prepπ(ςπ(t), R∗), under a map-
ping of messages to states. In more detail, for t ∈ [T], let M t denote the set
of messages that can be sent in round t, over all possible inputs x ∈ {0, 1}n

(with the randomness fixed to R∗); also let M0 = {ε}. We noted above that
|M t| ≤ w. Let ηt : M t → [w] be an arbitrary injective function for each t ∈ [T];
also let η0(ε) = 1 to set the start state (in layer 1) to be 1. Then we define
gt

b : [w] → [w], for b ∈ {0, 1}, such that if u = ηt−1(m) for m ∈ M t−1, let
gt

b(u) = ηt(Nextπ(t,m, r∗, b)) where r∗ = Prepπ(ςπ(t), R∗); if u is not in the image
of ηt, we set gt

b(u) arbitrarily. Finally, The output function φ : [w] → {0, 1} is
defined as follows: if u = ηT (m), then φ(u) = Outπ(m,Prepπ(n + 1, R∗)); if u is
not in the image of ηT , we set φ(u) arbitrarily.

52 H. K. P. Anilkumar et al.

From the perfect correctness of π, it follows that this branching program
computes f . Also, since σ = ςπ (restricted to [T]), if π is a speak-k-times protocol,
then the branching program constructed above will be a read-k-times branching
program. Finally, as required, if π’s randomness cost ρ is a constant, so is the
width w = 2ρ+2. ��

5 PSS Protocols From Branching Programs

We begin by formally defining strong regularity and strongly regular branching
programs. We then present Private Sequential Stateless protocols for strongly
regular branching programs.

Definition 3 (Strong Regularity). A pair of functions g0, g1 : [w] → [w] is
strongly regular if the following conditions are met:

1. There exists c0, c1 such that |g−1
0 (u)| ∈ {c0, 0}, and |g−1

1 (u)| ∈ {c1, 0} for all
u ∈ [w], when g−1

0 (u) and g−1
1 (u) denote the preimages of u under g0 and g1,

respectively.
2. There exists c such that |g−1

0 (u) ∩ g−1
1 (v)| ∈ {c, 0} for all u, v ∈ [w].

3. Define a bipartite graph H = (L ∪ R,E) where L = [w] and R = [w] (disjoint
copies) are the left and right set of vertices respectively, and E = {(u, v) ∈
L × R : g−1

0 (u) ∩ g−1
1 (v) 	= ∅} is the edge set. Let Aut(H) be the set of all

automorphisms of H that respect the left and right parts; i.e., Aut(H) =
{(μ, ν) ∈ Sym(w) × Sym(w) : (μ(u), ν(v)) ∈ E ⇔ (u, v) ∈ E}. Then,

Prob [(μ(u), ν(v)) = (u′, v′) |(μ, ν) ← Aut(H)] = 1/|E|,∀(u, v), (u′, v′) ∈ E.
(3)

We shall be interested in branching programs where, at all layers, the pairs
of transition functions are strongly regular. We capture this in the following
definition.

Definition 4 (SRBP and k-SRBP). A branching program with input labeling
function σ : [�] → [n] and transition functions {(g(t)0 , g

(t)
1)}t∈[�] is a strongly

regular branching program (SRBP) if for every t ∈ [�], the pair (g(t)0 , g
(t)
1) is

strongly regular. It is said to be a k-SRBP if for all i ∈ [n], |{t : σ(t) = i}| ≤ k.

A special case of interest is a 1-SRBP: in this case, we may w.l.o.g. assume
that � = n (adding layers with identity functions as transition functions, if nec-
essary), and σ is the identity function (by permuting the order of the arguments
to the function evaluated by the SRBP, if necessary).

While SRBPs may appear restrictive, they are in fact quite expressive, and
any branching program can be converted to one with only a polynomial blow-up
in the width, and no change to the length or the input label function. We give
an overview this conversion in Sect. 2.3. We state this formally here and present
the proof in the extended version [ANPP24].

Randomness in Private Sequential Stateless Protocols 53

Theorem 7. For any branching program of width w and length � there is an
SRBP computing the same function of the same length and input label function,
and width w2.

Examples. Apart from the fact that any constant width branching program
can be converted to a constant width SRBP, natural branching programs to
compute some interesting functions are already constant width SRBPs. We men-
tion three such examples of 1-SRBP below:

– AND(x1, . . . , xn) = x1 ∧ . . . ∧ xn has a width-2 1-SRBP.
– IP(x1, y1, . . . , xn, yn) =

⊕
i(xi ∧ yi) has a width-4 1-SRBP.

– Every permutation branching program (in which all transition functions are
permutations) is an SRBP (with c0 = c1 = c = 1 and H being a perfect
matching, in Definition 3).

Strong Regularity and Regularity. It is instructive to compare SRBP with the
notion of a regular branching program from [LPV23]. Let us call a pair of func-
tions g0, g1 : [w] → [w] (c1, c2)-regular if for all u ∈ [w], |g−1

0 (u)| + |g−1
1 (u)| ∈

{0, c1, c2, c1 + c2}. Note that a strongly regular pair (as a consequence of the
first condition in Definition 3) is regular according to this definition. For the
special case of (1, 1)-regularity, we require |g−1

0 (u)| + |g−1
1 (u)| ≤ 2; but since the

average value of |g−1
0 (u)| + |g−1

1 (u)| is 2, it must be the case that for each u,
|g−1

0 (u)| + |g−1
1 (u)| = 2. This is the definition of regularity used in [LPV23].

Restricting to (1, 1)-regular branching programs results in somewhat crippled
computational power: even a simple function like n-input AND requires a (1, 1)-
regular branching program to have width that grows (exponentially) with n. On
the other hand, AND has a width 2 branching program that is (2, 1)-regular.
As such, regular branching programs as generalized above (or possibly with the
restriction that all layers use the same (c1, c2) – since the transformation in
Theorem 7 yields a (w,w)-regular branching program) is an interesting class on
its own right.

Strong regularity imposes additional constraints beyond (c1, c2)-regularity.
One may in fact add even more constraints, and yet retain the result in Theorem
7 (e.g., require the bipartite graph H in Definition 3 to be a complete bipartite
graph after pruning 0-degree nodes), but this will rule out some of the examples
above (e.g., permutation branching programs).

5.1 PSS Protocols From 1-SRBP

Proof of Theorem 2. Let
(
{g

(i)
b }i∈[n],b∈{0,1}, φ

)
be a width w 1-SRBP computing

the function f : {0, 1}n → {0, 1}. The protocol given in Fig. 1 is a speak-once
PSS protocol which computes f . All the variables used in the sequel are defined
in Fig. 1. We will separately prove the correctness and privacy of the protocol.

54 H. K. P. Anilkumar et al.

Fig. 1. A PSS protocol to compute f having a 1-SRBP.

Correctness. We claim,

vi = αcol(i),xi
◦ g(i)xi

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1), i ∈ [n]. (4)

Before proving this, we show that it implies correctness. We have, sn = rcol(n) ⊕
xn, and

Ssn,y = {j ∈ [w] s.t. α−1
col(n),rcol(n)⊕sn

(j) = α−1
col(n),xn

(j) ∈ φ−1(y)},∀y ∈ {0, 1}.

Hence, by Eq. (4) (for i = n), Pn+1 outputs y such that

α−1
col(n),rcol(n)⊕sn

(vn) = α−1
col(n),xn

(
αcol(n),xn

◦ g(n)xn
◦ g(n−1)

xn−1
◦ . . . g(1)x1

(1)
)

∈ φ−1(y).

Therefore Pn+1 outputs y such that φ(g(n)xn ◦ g
(n−1)
xn−1 ◦ . . . g

(1)
x1 (1)) = y, ensuring

correctness.

Randomness in Private Sequential Stateless Protocols 55

To conclude the proof of correctness, we prove (4) by induction. Clearly, (4)
holds for i = 1. Assume that (4) holds for i − 1. Since xi−1 = si−1 ⊕ rcol(i−1),

vi = ĝ(i)xi,si−1
(vi−1) = αcol(i),xi

◦ g(i)xi
◦ α−1

col(i−1),rcol(i−1)⊕si−1
(vi−1)

= αcol(i),xi
◦ g(i)xi

◦ α−1
col(i−1),xi−1

(vi−1)

= αcol(i),xi
◦ g(i)xi

◦ α−1
col(i−1),xi−1

◦ α−1
col(i−1),xi−1

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1)

= αcol(i),xi
◦ g(i)xi

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1).

Security. The view of P1 consists of its input and the correlated randomness
received during preprocessing. Hence, privacy against P1 follows trivially.

We next show privacy against Pi for i ∈ {2, . . . , n}. The view of Pi consists
of its input and the messages received from Pi−1 and the correlated randomness
received during preprocessing, viz., xi, si−1, vi−1 and {ĝ

(i)
b,b′}b,b′∈{0,1}. We first

simplify the above expression. By Eq. (4), vi−1 = αcol(i−1),xi−1(ui−1), where
ui−1 = g

(i−1)
xi−1 ◦ . . .◦ g

(1)
x1 (1). Further, {ĝ

(i)
b,b′}b,b′∈{0,1} is a function of ĝ

(i)
0,0, ĝ

(i)
1,0 and

αcol(i−1),rcol(i−1)
◦ α−1

col(i−1),rcol(i−1)⊕1. For brevity, we will denote ui−1, si−1 and

xi−1 by u, s and x, rcol(i−1) and rcol(i) by r and r′; g
(i)
0 and g

(i)
1 by g0 and g1;

αcol(i),0 and αcol(i),0 by α0 and α1; and αcol(i−1),0 and αcol(i−1),1 by β0 and β1.
Recalling the definitions of ĝ

(i)
0,0, ĝ

(i)
1,0, the view is determined by(

x, s, βx(u), r′, α0 ◦ g0 ◦ β−1
r , α1 ◦ g1 ◦ β−1

r , βr ◦ β−1
r⊕1

)
.

Hence, the protocol is private against Pi if the following lemma holds:

Lemma 2. For all permutations α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b, b′ ∈ {0, 1}, and
v ∈ [w], there exists a constant μ such that, for all x ∈ {0, 1}, and u ∈ [w],

Prob

⎡
⎢⎢⎣

α0 ◦ g0 ◦ (βr)−1 = α̂0 ◦ g0 ◦ β̂0

α1 ◦ g1 ◦ (βr)−1 = α̂1 ◦ g1 ◦ β̂0

βr ◦ β−1
r⊕1 = β̂−1

0 ◦ β̂1

s = b, r′ = b′, βx(u) = v

∣∣∣∣∣∣∣∣
α0, α1, β0, β1 ← Sym(w)

r ← {0, 1}
s = x ⊕ r

r′ ← {0, 1}

⎤
⎥⎥⎦ = μ. (5)

This is proved in the extended version [ANPP24]. We provide an intuition of the
proof. Fix α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b, b′ ∈ {0, 1}, and v ∈ [w]. For x ∈ {0, 1} and
u ∈ [w], let the LHS of Eq. (5) be defined as μ(x,w). We observe that, there is
a well structured set

Λ = {β0 ∈ Sym(w) : ∃α, α′ ∈ Sym(w) s.t. (g0 ◦β0 = α ◦ g0)∧ (g1 ◦β0 = α′ ◦ g0)},

such that{
(βr)−1 ∈ Sym(w) :α0 ◦ g0 ◦ (βr)−1 = α̂0 ◦ g0 ◦ β̂0,

α1 ◦ g1 ◦ (βr)−1 = α̂1 ◦ g1 ◦ β̂0

}
= {β0 ◦ β̂0 : β0 ∈ Λ}.

56 H. K. P. Anilkumar et al.

Further, for all β0 ◦ β̂0 such that β0 ∈ Λ, over the randomness of α0 and α1

choosen uniformly and independently from Sym(w), the events α0 ◦g0 ◦β0 ◦ β̂0 =
α̂0 ◦ g0 ◦ β̂0 and α1 ◦ g1 ◦ β0 ◦ β̂0 = α̂1 ◦ g1 ◦ β̂0 simultaneously occur with the
same probability. Using the above two observations, and standard renaming of
variables, we simply the expression for μ(x,w) considerably to get the following:
there exists a constant c such that,

μ(x,w)/c = Prob

⎡
⎣ s = b

Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0 ∩ Λ1, β1 = β0 ◦ β̂1

s ← {0, 1}
Γ0 = (β0 ◦ β̂0)−1 Γ1 = β−1

1

⎤
⎦ .

At this point, the following suffices to prove the lemma:

Prob
[
(β0 ◦ β̂0)−1(u) = v

∣∣β0 ← Λ0 ∩ Λ1
]

= Prob
[
(β0 ◦ β̂1)−1(u) = v

∣∣β0 ← Λ0 ∩ Λ1
]
, ∀u ∈ [w].

When (g0, g1) is strongly regular, we argue that this is indeed the case (see
[ANPP24]).

Finally, we prove privacy against Pn+1. The view of Pn+1 is {Sb,y}(b,y)∈{0,1}2 ,
vn and sn. We once again, simplify the notation by denoting xn, un, rcol(n),
αcol(n),0 and αcol(n),1 by x, u, r, α0 and α1. Since Sb,0 = [w] \ Sb,1 for b ∈
{0, 1}, {Sb,y}b∈{0,1},y∈{0,1} is a function of (S0,0, S1,0) We have vn = αxn

(un),
sn = xn ⊕ r, S0,0 = αr(φ−1(0)) and S1,0 = αr⊕1(φ−1(0)). Here, αr(φ−1(0)) =
{αr(j) : j ∈ φ−1(0)}. To prove privacy against Pn+1, we will show that, when
x, x′ ∈ {0, 1} and u, u′ ∈ [w] such that φ(u) = φ(u′),

(αr(φ−1(0)), αr⊕1(φ−1(0)), αx(u), x ⊕ r)

≡ (αr(φ−1(0)), αr⊕1(φ−1(0)), αx′(u′), x′ ⊕ r). (6)

We show this using a sequence of equivalences:

(αr(φ−1(0)), αr⊕1(φ−1(0)), αx(u), x ⊕ r)

≡ (α0(φ−1(0)), α1(φ−1(0)), αx⊕r(u), x ⊕ r)

≡ (α0(φ−1(0)), α1(φ−1(0)), αx′⊕r(u), x′ ⊕ r). (7)

The first equivalence is obtained by replacing (αr, αr⊕1) with the identically
distributed pair (α0, α1); and the second equivalence is obtained by replacing
r with identically distributed r ⊕ x ⊕ x′. Since φ(u) = φ(u′), there exists α̂ ∈
Sym(w) such that, α̂(u) = u′ and, for all u′′ ∈ [w], φ ◦ α̂(u′′) = φ(u′′). We
replace (α0, α1) with the identically distributed pair (α0 ◦ α̂, α1 ◦ α̂) to obtain
the following equivalence:

(α0(φ−1(0)), α1(φ−1(0)), αx′⊕r(u), x′ ⊕ r)

≡ (α0 ◦ α̂(φ−1(0)), α1 ◦ α̂(φ−1(0)), αx′⊕r ◦ α̂(u), x′ ⊕ r)

≡ (α0(φ−1(0)), α1(φ−1(0)), αx′⊕r(u′), x′ ⊕ r). (8)

Randomness in Private Sequential Stateless Protocols 57

The second equivalence used the following facts: αb ◦ α̂(φ−1(0)) is identically
distributed as αb(φ−1(0)) for b ∈ {0, 1}; and α̂(u) = u′. Using the reasoning in
Eq. (7) in the reverse direction, we can show that

(α0(φ−1(0)), α1(φ−1(0)),αx′⊕r(u′), x′ ⊕ r)

≡ (αr(φ−1(0)), αr⊕1(φ−1(0)), αx′(u′), x′ ⊕ r). (9)

Equations (7) to (9) prove Eq. (6) concluding the proof of privacy.

Randomness Complexity: Since we need four independent samples from the set
of permutations of [w] and two random bits for this protocol, the randomness
cost is log(2 + 4w!) bits, which is O(w log w). This completes the proof. ��

5.2 PSS Protocols From k-SRBP

Normal Form SRBP. In our constructions, for a cleaner presentation, we will
consider normal form (strongly regular) branching programs. This especially
makes the presentation of the conflict graph easier. A length � SRBP is said to
be in normal form if it satisfies that for all t ∈ [� − 1], σ(t) 	= σ(t + 1). That is,
the same party doesn’t feed inputs to two consecutive layers of the branching
program.

It is easy to modify an k-SRBP for a function (with at least 3 inputs) into
a normal form (2k − 1)-SRBP, with the same width and computing the same
function. We show this is in the following lemma which is proved in the extended
version [ANPP24].

Lemma 3. Any function f : {0, 1}n → {0, 1}, where n ≥ 3, computable using a
k-SRBP is also computable using a (2k − 1)-SRBP in the normal form.

We now present the protocol for computation of functions having k-SRBP.
Our construction follows the blueprint of our construction for 1-SRBP. Since
a party feeds their input to the branching program only once in an 1-SRBP,
we could get away with using the same permutations for masking the state of
the branching program in alternating layers, resulting in a protocol that uses
only 4 permutations and two bit masks to realize 1-privacy. In a general SRBP,
each party can feed their inputs in several layers of the BP. Hence, the main
challenge in the protocol is to come up with a strategy for recycling randomness
while ensuring that a reappearing party does not learn any intermediate state of
the branching program due to this reuse. We define our strategy for randomness
reuse using a conflict graph associated with the branching program we want to
compute. We present the protocol in the following proof.

58 H. K. P. Anilkumar et al.

Fig. 2. A PSS protocol computing f having an k-SRBP.

Randomness in Private Sequential Stateless Protocols 59

Proof of Theorem 3. Suppose f is computable using an k-SRBP

Π =
(
σ, {g

(t)
b }i∈[�],b∈{0,1}, φ

)
.

We will show that the protocol in Fig. 2 computes f with 1-privacy.

Correctness. The computation of st for each t ∈ [�] is carried out exactly as in
the protocol in Fig. 1, except using a different coloring function col. Hence, using
the same line of argument used to show Eq. (4) in the proof of Theorem 2,

vt = αcol(t),zt
◦ g(t)zt

◦ g(t−1)
zt−1

◦ . . . ◦ g(1)z1
(1), t ∈ [�], (10)

v� = αcol(�),z�
◦ g(�)z�

◦ g(�−1)
z�−1

◦ . . . ◦ g(1)z1
(1),

Ss�,y = {j ∈ [w] s.t. α−1
col(�),rcol(�)⊕s�

(j) ∈ φ−1(y)},

where we have used the notation zt = xσ(t) for t ∈ [�] from Fig. 2. Thus, Pn+1

outputs y such that y = g
(�)
z� ◦ . . . ◦ g

(1)
z1 (1) = f(x1, . . . , xn).

Security. We first show that the protocol is private against Pi for each i such
that σ(1) 	= i, i.e., all the parties except the party who implements the first
layer. Fix such a i. Let (x̃1, . . . , x̃n) and (x̂1, . . . , x̂n) be any pair of inputs such
that f(x̃1, . . . , x̃n) = f(x̂1, . . . , x̂n) and x̃i = x̂i. We will prove that the view
of Pi in an execution of the protocol with (x̃1, . . . , x̃n) as inputs is identically
distributed as in an execution with (x̂1, . . . , x̂n) as inputs.

Let x̃i = x̂i = xi and f(x̃1, . . . , x̃n) = f(x̂1, . . . , x̂n) = y. Let b̃t = x̃σ(t)

and b̂t = x̂σ(t) for all t ∈ [�]. For each t ∈ [�], let ũt = g
(t)

b̃t
◦ . . . ◦ g

(1)

b̃1
(1) and

ût = g
(t)

b̂t
◦ . . . ◦ g

(1)

b̂1
(1). The view of Pi in an execution of the protocol with

(x̃1, . . . , x̃n) as input is

˜View =
(
xi, y,

{
s̃t−1 = rcol(t−1) ⊕ b̃t−1, ṽt−1 = αcol(t−1),b̃t−1

(ũt−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t:σ(t)=i

)
.

The view of Pi in an execution of the protocol with (x̂1, . . . , x̂n) as input is

̂View =
(
xi, y,

{
ŝt−1 = rcol(t−1) ⊕ b̂t−1, v̂t−1 = αcol(t−1),b̂t−1

(ût−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t:σ(t)=i

)
.

We will show ˜View ≡ ̂View using a hybrid argument. Let t1, . . . , tζ be an
arbitrary ordering of the set Li = {t : σ(t) = i} where ζ = |Li|. For each
0 ≤ h ≤ ζ we define a hybrid view

Hybh =

⎛
⎜⎜⎜⎜⎜⎝xi, y,

{
rcol(t−1) ⊕ b̃t−1, αcol(t−1),b̃t−1

(ũt−1),
rcol(t), ĝ

t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t∈{t1,...,th}{

rcol(t−1) ⊕ b̂t−1, αcol(t−1),b̂t−1
(ût−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t∈{th+1,...,tζ}

⎞
⎟⎟⎟⎟⎟⎠ .

60 H. K. P. Anilkumar et al.

Then, Hyb0 = ˜View and Hybζ = ̂View. Hence, ˜View ≡ ̂View if Hybh−1 ≡ Hybh

for all h ∈ [ζ], which we prove below: Since (a) col is a coloring of GΠ , and Li

forms a clique in GΠ , and (b) σ(t) 	= σ(t + 1) for any t ∈ [� − 1] due to normal
form of Π, for any t such that σ(t) = i,(

rcol(t−1), rcol(t),{αcol(t−1),b, αcol(t),b}b∈{0,1}
)

⊥⊥ (
rcol(t′−1), rcol(t′), {αcol(t′−1),c, αcol(t′),c}c∈{0,1}

)
t′∈Li\{t} .

Hence, for any h ∈ [ζ], to prove that Hybh−1 ≡ Hybh, it suffices to show that
for t = th,

(
rcol(t−1) ⊕ b̂t−1, αcol(t−1),b̂t−1

(ût−1), rcol(t), ĝt
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

)
≡

(
rcol(t−1) ⊕ b̃t−1, αcol(t−1),b̃t−1

(ũt−1), rcol(t), ĝt
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

)
.

But, this follows from Lemma 2; see the proof of privacy against Pi for 2 ≤ i ≤ n
in Theorem 2.

Next, we argue privacy against Pσ(1). The view of Pσ(1) differ from other
parties as it receives αcol(1),b ◦ g

(1)
b for b ∈ {0, 1} and rcol(1). Appealing to the

properties of graph coloring of GΠ , αcol(1),b ◦ g
(1)
b for b ∈ {0, 1} is independent

of the remaining part of the view of P1. Hence, we can prove privacy against
P1 exactly as we proved the privacy against other parties after excluding these
parts of the view.

The view of Pn+1 is exactly the same as that which is given in the protocol
in Theorem 2, i.e., (s�, v�) and the set Sb,y for b, y ∈ {0, 1} and therefore the
proof of privacy follows from the proof given for Theorem 2.

Randomness complexity. For every color c ∈ [χ], the protocol samples fresh
random variables αc (from a permutation of size w) and coin rc. Therefore
the randomness complexity is bounded by O(2χw log w). From Brooks’ theorem
[Bro41], the number of colors needed to color a graph greedily is ΔG+1 where ΔG

is its maximum degree. In this case, since an input is read at most 2m − 1 times
and from the definition of GΠ = (�, E), {t, t′} ∈ E if σ(t) = σ(t′), σ(t) = σ(t′+1),
σ(t) = σ(t′ − 1) or σ(t − 1) = σ(t′ − 1), there are at most 8m − 4 vertices having
an edge with t. Therefore ΔG = 4. This gives that the randomness complexity
is O(mw log w). ��

6 Private Computation of AND

In this section we focus on private computation of the n-party AND function,
which has received significant attention in the literature. We present new results
regarding upper and lower bounds on the randomness complexity of AND.
Thanks to AND having a 1-SRBP (see Sect. 5), we have a PSS protocol for it,
from Fig. 1. However, before we can compare our results fairly to prior results,
we need to cast our PSS protocol into a setting without an external source

Randomness in Private Sequential Stateless Protocols 61

supplying correlated randomness and without a separate output party (with all
input-parties getting the output, instead). Towards this, we define an unassisted
PSS (uPSS) protocol, which is a private protocol (with uncorrelated random-
ness) in the sense in Sect. 3, but is also sequential and stateless, and further has
only one party being randomized.

Unassisted Private Sequential Stateless (uPSS) Protocol. A uPSS protocol for
a function f : {0, 1}n → {0, 1} is specified by a tuple (Prepπ, ςπ,Nextπ,Outπ),
similar to a PSS protocol, but with the following differences:

– There are only n parties, P1, . . . ,Pn (no separate output party).
– In the pre-processing phase P1 samples R ← R, computes ri = Prepπ(i, R)

and sends it to Pi for each i ∈ [n].
– After this each party Pi receives its input xi, and they all carry out the

protocol using ςπ and Nextπ exactly as in the PSS model.
– In addition, each of them produces an output over the last [n] rounds. For this

we require that in a T + n-round protocol, ςπ : [T] → [n], when restricted to
the domain {T −n+1, . . . , T}, is a bijection with [n]; also in round t > T −n,
party Pi, where i = ςπ(t), produces the output Outπ(t,mt−1, xi, ri).

We require this protocol to be a 1-private protocol (without correlated random-
ness) for the n-party functionality F∗

f , which is similar to Ff but delivers the
output to all n parties.

6.1 uPSS Protocol for 1-SRBP

Below, we describe the necessary modifications to be made to the protocol in
Fig. 1 to turn it into a uPSS protocol for a function f with a 1-SRBP.

1. Preprocessing phase.
(a) P1 samples (α0,0, α0,1, α1,0, α1,1, r0, r1) ← R is sampled where Sym(w) ×

Sym(w) × Sym(w) × Sym(w) × {0, 1} × {0, 1} and sends the appropriate
correlated randomness ri to Pi for each 1 ≤ i ≤ n (including itself) as in
the description of the protocol in Fig. 1.

(b) Additionally, P1 samples γ0 and γ1 uniformly from Sym(w) and a random
bit r′; it sends r′ and (γ0, γ1) to Pn, and the sets Sc,y = {j : α−1

col(n),r′⊕b ◦
γ−1

r′⊕b(j) ∈ φ−1(y)} for b ∈ {0, 1} and y ∈ {0, 1} to P2.
2. Computation Phase.

(a) For i = 1, . . . , n − 1, each Pi (including P1) follows the instruction in the
protocol in Fig. 1.

(b) Pn computes vn = ĝ
(n)
xn,sn−1(vn−1) as in the previous protocol, but sends

(s′
n, v′

n) to P2, where s′
n = r′ ⊕ xn and v′

n = γxn
(vn).

(c) P2 computes y such that v′
n ∈ Ss′

n,y.
(d) Over the next n rounds, each party (starting with P2) outputs y and

sends it to the next party to output.

62 H. K. P. Anilkumar et al.

Theorem 8. Suppose f : {0, 1}n → {0, 1} is computable using a 1-SRBP of
width w. There exists a uPSS protocol that realizes F∗

f with 1-privacy using
O(w log w) bits of randomness, all sampled by a single party.

Proof. The proof of security and correctness follow closely to that of the protocol
in Fig. 1 which we established in Theorem 2. Throughout the proof, we refer to
this as the ‘previous protocol’.

Correctness. The computation of (si, vi) for 1 ≤ i ≤ n, proceeds exactly as in
the previous protocol. Hence, vn = αcol(n),xn

◦ g
(n)
xn ◦ g

(n−1)
xn−1 ◦ . . . ◦ g

(1)
x1 (1), and

v′
n = γxn

◦ αcol(n),xn
◦ g

(n)
xn ◦ . . . ◦ g

(1)
x1 (1). Since s′

n = r′ ⊕ xn,

Ss′
n,y = {j ∈ [w] s.t. α−1

col(n),r′⊕s′
n

◦ γ−1
r′⊕s′

n
(j) = α−1

col(n),xn
◦ γ−1

xn
(j) ∈ φ−1(y)}.

Hence, P2 outputs y such that

α−1
col(n),xn

◦ γ−1
xn

(v′
n) = α−1

col(n),xn
◦ γ−1

xn
◦ γxn

◦ αcol(n),xn
◦ g(n)xn

◦ g(n−1)
xn−1

◦ . . . g(1)x1
(1)

= g(n)xn
◦ g(n−1)

xn−1
◦ . . . g(1)x1

(1) ∈ φ−1(y).

Thus, y = f(x1, . . . , xn).

Security. The only message received by P1 throughout the protocl is y from Pn.
We have established y = f(x1, . . . , xn), hence the protocol is secure against P1.
For 3 ≤ i < n, the view of Pi is identical to that in the previous protocol (with
the exception of y that they receive at the end of the new protocol). Hence,
security against them follow from our argument in Theorem 2. The view of Pn

additionally consists of r′ and functions (γ0, γr1). But, these random variables
are sampled independent of all the other messages received by Pn. Hence, the
security against Pn in the new protocol follows from that in the old protocol.

Finally, we argue security against P2. Compared to its view in the previous
protocol, the view of P2 in the new protocol additionally contains (S0,y, S1,y)
for y ∈ {0, 1} that it received in the preprocessing phase, and (s′

n, v′
n) that it

receives from Pn. Since (γ0, γ1) are sampled independent of (αcol(i),0, αcol(i),1)
for all i ∈ [n], the additional values in the view of P2 are independent of all the
other messages it received. Further, the view of P2 in the previous protocol is
established to be secure. Hence, to argue security against P2, it suffices to show
that the additional messages received by P2 in the new protocol do not break
security. But, it can be seen by inspection that (S0,y, S1,y) for y ∈ {0, 1} and
s′

n, v′
n are distributed exactly as the view of Pn+1 in the previous protocol. But,

the previous protocol is secure against Pn+1 who does not have any input to
the protocol. The security against P2 in the new protocol now follows from the
security of the previous protocol against P2 and Pn+1.

Randomness Complexity: Since we need 6 independent samples from the
set of permutations of [w] (α0,0, α0,1, α1,0, α1,1, γ0, γ1) and three binary coins
(r0, r1, r′), the randomness cost of the given protocol is 3 + 6 log(w!) bits, which
is O(w log w) bits. ��

Randomness in Private Sequential Stateless Protocols 63

Since AND has a width-2 branching program, the following corollary follows
immediately.

Corollary 1. There exists a uPSS protocol for F∗
AND with randomness cost of 9

bits.

However, when the number of inputs n is odd, we obtain an optimization
to 6 bits, which matches the state-of-the-art result for (non uPSS) 1-private
computation of F∗

AND. 5 The optimized protocol is described in Fig. 3. Instead
of presenting the full protocol, we describe how the protocol differs from Fig. 1.
We remark that this optimization is possible only because of the properties of
AND function. We crucially use the fact that in AND, if a party has 0 as input,
it can essentially ignore the information it received so far. Furthermore, we rely
on the total number of parties being odd to make the message sent by last party
independent of the rest of the view for one of the parties. With this optimization,
we bring down the randomness cost from 9 bits in the general uPSS protocol to
6 bits. The following theorem states this fact and it is proved in the extended
version [ANPP24].

Theorem 9. There exists a uPSS protocol for F∗
AND for an odd number of par-

ties, with randomness cost of 6 bits.

Fig. 3. Optimized uPSS protocol for n-party F∗
AND for odd n

5 For even n too, the randomness cost can be improved from 9 to 6 + log2 3 bits. We
omit this optimization as it still falls short of the non-uPSS state-of-the-art.

64 H. K. P. Anilkumar et al.

6.2 Lower Bound on Randomness Complexity of AND for 3 Parties

In this section, we prove Theorem 5, namely that the randomness complexity of
AND for 3 parties is at least 3 bits.

We show this lower bound through a reduction from a secret sharing prob-
lem. Recently, [ARN+23] characterized the randomness complexity of the fol-
lowing problem, referred to as 3-Secret Sharing (3SS): Let S ⊆ {0, 1}3. Given
(x1, x2, x3) ∈ S, a dealer produces three different shares W1,2,W2,3 and W3,1

such that the pair of shares (W1,2,W2,3) together reveals x2 and nothing more
about (x1, x3) – i.e., nothing other than what can be inferred from learning
x2 and the fact that (x1, x2, x3) ∈ S. Similarly x1 (and nothing more about
(x2, x3)) can be obtained from shares (W1,2,W3,1), while (W2,3,W3,1) reveals x3

and nothing more.
We shall argue that a 1-private 3-party MPC protocol for the AND function

yields a 3SS scheme for the set S = {0, 1}3 \ {(1, 1, 1)} as follows: To share
(x1, x2, x3) ∈ S, let Wi,j denote the transcript between parties Pi and Pj in the
MPC protocol for AND, in which the input of each party Pi is xi. Note that
(W1,2,W2,3) together is part of the view of party P2 in the MPC protocol, and
reveals nothing more about x1, x3 beyond what x2 and x1 ∧ x2 ∧x3 reveals. But
the latter only reveals that (x1, x2, x3) ∈ S. The analogous conditions hold for
(W2,3,W3,1) (for party P3) and (W3,1,W1,2) (for party P1). Hence this scheme
satisfies the privacy condition of 3SS. It remains to check that this scheme also
meets the correctness conditions of 3SS, namely that (W1,2,W2,3) do determine
x2, and so on. We verify this in the following lemma, which is proved in the
extended version [ANPP24] using elementary arguments based on the properties
of private protocols.

Lemma 4. In any 1-private 3-party MPC protocol for the 3-party AND function
where all parties learn the output, the pair of transcripts in the view of each party
uniquely determines its input.

Theorem 5 now follows from the fact that for S = {0, 1}3 \{(1, 1, 1)} 3SS has
a lower bound of 3 bits on randomness complexity [ARN+23].

In contrast, the best known upper bound is 6 bits [CR22], and we leave
it as an open problem to bridge this gap. Incidentally, our approach cannot
yield a higher lower bound than 3, since the randomness complexity of 3SS for
{0, 1}3 \ {(1, 1, 1)} is exactly 3 bits.

References

[ANPP24] Hari Krishnan P. Anilkumar, Varun Narayanan, Manoj Prabhakaran, and
Vinod M. Prabhakaran. Randomness in private sequential stateless proto-
cols. Cryptology ePrint Archive, Paper 2024/1448, 2024.

[ARN+23] Hari Krishnan P. Anilkumar, Aayush Rajesh, Varun Narayanan, Manoj M.
Prabhakaran, and Vinod M. Prabhakaran. Randomness requirements for
three-secret sharing. In 2023 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 252–257. IEEE, 2023.

Randomness in Private Sequential Stateless Protocols 65

[Bar86] David A Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 1–5, 1986.

[BGP99] Carlo Blundo, Clemente Galdi, and Pino Persiano. Randomness recycling
in constant-round private computations (extended abstract). In Prasad
Jayanti, editor, Distributed Computing, 13th International Symposium,
Bratislava, Slovak Republic, September 27-29, 1999, Proceedings, volume
1693 of Lecture Notes in Computer Science, pages 138–150. Springer, 1999.

[BGP07] Carlo Blundo, Clemente Galdi, and Giuseppe Persiano. Low-randomness
constant-round private XOR computations. Int. J. Inf. Sec., 6(1):15–26,
2007.

[Bro41] Rowland Leonard Brooks. On colouring the nodes of a network. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 37,
pages 194–197. Cambridge University Press, 1941.

[BSPV99] Carlo Blundo, Alfredo De Santis, Giuseppe Persiano, and Ugo Vac-
caro. Randomness complexity of private computation. Comput. Complex.,
8(2):145–168, 1999.

[CKOR00] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Random-
ness versus fault-tolerance. Journal of cryptology, 13:107–142, 2000.

[CR22] Geoffroy Couteau and Adi Rosén. Random sources in private computation.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I,
volume 13791 of LNCS, pages 443–473. Springer, Heidelberg, December
2022.

[DPP16] Deepesh Data, Vinod M. Prabhakaran, and Manoj M. Prabhakaran. Com-
munication and randomness lower bounds for secure computation. IEEE
Trans. Inf. Theory, 62(7):3901–3929, 2016.

[FKN94] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure com-
putation. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 554–563, 1994.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 151–160,
1998.

[GIS22] Vipul Goyal, Yuval Ishai, and Yifan Song. Tight bounds on the random-
ness complexity of secure multiparty computation. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 483–513. Springer, Heidelberg, August 2022.

[GR03] Anna Gál and Adi Rosén. Lower bounds on the amount of randomness
in private computation. In 35th ACM STOC, pages 659–666. ACM Press,
June 2003.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols
with applications. In Proceedings of the Fifth Israeli Symposium on Theory
of Computing and Systems, pages 174–183. IEEE, 1997.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In Advances in
Cryptology–EUROCRYPT 2011: 30th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings 30, pages 406–425. Springer, 2011.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness
for network algorithms. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 356–364, 1994.

66 H. K. P. Anilkumar et al.

[JLR03] Andreas Jakoby, Maciej Liskiewicz, and Rüdiger Reischuk. Private com-
putations in networks: Topology versus randomness. In Helmut Alt and
Michel Habib, editors, STACS 2003, 20th Annual Symposium on Theoret-
ical Aspects of Computer Science, Berlin, Germany, February 27 - March
1, 2003, Proceedings, volume 2607 of Lecture Notes in Computer Science,
pages 121–132. Springer, 2003.

[KM96] Eyal Kushilevitz and Yishay Mansour. Randomness in private computa-
tions. In James E. Burns and Yoram Moses, editors, 15th ACM PODC,
pages 181–190. ACM, August 1996.

[KOP+19] Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén, Adrian
Thillard, and Damien Vergnaud. Lower and upper bounds on the random-
ness complexity of private computations of AND. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
386–406. Springer, Heidelberg, December 2019.

[KOR96] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear
size circuits in terms of privacy. In 28th ACM STOC, pages 541–550. ACM
Press, May 1996.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Amortizing randomness
in private multiparty computations. In Brian A. Coan and Yehuda Afek,
editors, 17th ACM PODC, pages 81–90. ACM, June / July 1998.

[KR94] Eyal Kushilevitz and Adi Rosén. A randomnesss-rounds tradeoff in private
computation. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS,
pages 397–410. Springer, Heidelberg, August 1994.

[LPV23] Chin Ho Lee, Edward Pyne, and Salil Vadhan. On the power of
regular and permutation branching programs. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2023.

[RU19] Adi Rosén and Florent Urrutia. A new approach to multi-party peer-to-peer
communication complexity. In Avrim Blum, editor, ITCS 2019, volume 124,
pages 64:1–64:19. LIPIcs, January 2019.

Secret Sharing

Evolving Secret Sharing Made Short

Danilo Francati1(B) and Daniele Venturi2

1 Royal Holloway, University of London, Egham, UK
danilo.francati@rhul.ac.uk

2 Sapienza University of Rome, Rome, Italy

Abstract. Evolving secret sharing (Komargodski, Naor, and Yogev,
TCC’16) generalizes the notion of secret sharing to the setting of evolv-
ing access structures, in which the share holders are added to the system
in an online manner, and where the dealer does not know neither the
access structure nor the maximum number of parties in advance. Here,
the main difficulty is to distribute shares to the new players without
updating the shares of old players; moreover, one would like to minimize
the share size as a function of the number of players.

In this paper, we initiate a systematic study of evolving secret shar-
ing in the computational setting, where the maximum number of parties
is polynomial in the security parameter, but the dealer still does not
know this value, neither it knows the access structure in advance. More-
over, the privacy guarantee only holds against computationally bounded
adversaries corrupting an unauthorized subset of the players.

Our main result is that for many interesting, and practically relevant,
evolving access structures (including graphs access structures, DNF and
CNF formulas access structures, monotone circuits access structures, and
threshold access structures), under standard hardness assumptions, there
exist efficient secret sharing schemes with computational privacy and in
which the shares are succinct (i.e., much smaller compared to the size of
a natural computational representation of the evolving access structure).

Keywords: secret sharing · evolving access structures · computational
security

1 Introduction

A (threshold) secret sharing scheme, as introduced independently by Blakley [11]
and Shamir [35], allows a dealer to share a secret message μ between n parties,
obtaining shares σ1, . . . , σn, in such a way that the following two properties are
satisfied for a fixed threshold parameter t ≤ n:

D. Francati—Work done in part while at Aarhus University (Aarhus, Denmark) and
George Mason University (Fairfax, Virginia, USA).
D. Venturi—The author is member of the Gruppo Nazionale Calcolo Scientifico-Istituto
Nazionale di Alta Matematica (GNCS-INdAM).

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 69–99, 2025.
https://doi.org/10.1007/978-981-96-0941-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_3&domain=pdf
http://orcid.org/0000-0002-4639-0636
http://orcid.org/0000-0003-2379-8564
https://doi.org/10.1007/978-981-96-0941-3_3

70 D. Francati and D. Venturi

– Correctness: Any subset of at least t parties can reconstruct th e message
(by pulling their shares together).

– (Perfect) Privacy: Any subset of at most t−1 parties obtains no information
(statistically) on the message.

Ito, Saito, and Nishizeki [22] extended the concept of secret sharing to general
access structures A, in which certain subsets of the n parties are allowed to
reconstruct the message (i.e., the so-called authorized subsets I ∈ A), and all
other subsets of the n parties (i.e., the so-called unauthorized subsets U �∈ A)
obtain no information on the message. It is natural to require that access struc-
tures should be monotone, meaning that if a subset I is authorized, then any
subset of the parties that includes I is also authorized.

An important efficiency measure in the context of secret sharing schemes is
the share size, defined as the bit-length of the largest share given to the n parties.
Indeed, a large body of work has focused on minimizing the share size for dif-
ferent access structures A. For instance, Shamir’s scheme (based on polynomial
interpolation) for threshold access structures achieves share size max{�, log n},
where � is the length of the message, which is known to be optimal [12,33]. More
generally, Csirmaz [14,15] proved that there is an (explicit) access structure that
requires a total share size of Ω(n2/ log n). In contrast, the best scheme [3] for
general access structures achieves share size 1.5n+o(n), which is pretty far from
the lower bound. We refer to the excellent survey by Beimel [6] for an overview
of the main results in classical secret sharing.

Evolving Secret Sharing. In a beautiful work, Komargodski, Naor, and
Yogev [24], generalized secret sharing to the setting of evolving access structures,
in which the number of parties n is not known in advance and can potentially
go to infinity. Intuitively, an evolving access structures consists of a monotone
sequence of subsets A = {An}n≥1, where An denotes the access structure when
there are n parties. Importantly, the dealer does not know n, neither it knows
the access structure An before the n-th party enters the system. The main result
in [24] is a secret sharing scheme for the evolving threshold access structure (i.e.,
the number of parties n grows, but the threshold t = poly(λ) is fixed and known
to the dealer), in which the share size of party n, for messages of size � = 1,
is (t − 1) · log n + O(log log n). They also give a secret sharing scheme for any
evolving access structure, in which the share size of party n is 2n−1 (i.e., with
exponential share size).

In a follow-up work, Komargodski and Paskin-Cherniavsky [26] give a secret
sharing scheme for the more general evolving dynamic threshold access structure,
which is represented by a sequence of thresholds {tn}n≥1 of increasing1 size, so
that the authorized subsets when there are n parties are all the subsets of at
least tn parties. The share size of this construction, when the message length
is � = 1, is O(n4 · log n). Note that, in this case, each of the thresholds tn can
depend on n; this captures, e.g., the so-called evolving majority access structure,
1 The fact that the thresholds should be increasing is required to ensure monotonicity

of the access structure.

Evolving Secret Sharing Made Short 71

in which qualified subsets are those which form a majority of the current number
of parties at some point in time. Xin and Yuan [38] show that the share size can
be improved to O(n4) by relying on techniques from algebraic geometry.

More recently, at Eurocrypt’20, Beimel and Othman [9] gave constructions of
secret sharing schemes for the dynamic threshold ramp access structure, which
is represented by two functions τ, ρ : N → N such that, when there are n parties
in the system, the threshold for reconstruction is ρ(n) (i.e., any subset of at least
ρ(n) ≤ n parties can reconstruct the message) while the threshold for privacy is
τ(n) (i.e., every subset of at most τ(n) < ρ(n) parties has no information about
the message). The share size in their construction depends on the gap between
the reconstruction and privacy thresholds; in particular, when the message length
is � = 1, the share size is polylog(n) when ρ(n) − τ(n) = n/polylog(n), and O(n ·
log n) when ρ(n) − τ(n) =

√
n; furthermore, they also give a direct construction

for the special case in which ρ(n) = t and τ(n) = t/2 for any constant t = O(1),
with share size O(log t · log n). This improves over a previous construction by
the same authors [8], which achieves share size O(1), always when the message
length is � = 1, but when ρ(n) = b · n and τ(n) = a · n for any constants
0 < a < b < 1 (i.e., when the gap between the reconstruction and the privacy
thresholds is a constant fraction of the number of parties).

Lastly, Alon et al. [1] gave a construction for infinite layered branching pro-
grams. In particular, their scheme can handle any (evolving) access structure
which can be computed by a (evolving) branching program, where the latter
can evolve over time increasing in width ω(n) (this represents the addition of

users). The share size of their scheme is 2O
(
min{ε(n)·log(n),

√
ε(n)}

)
·n when the

width of the corresponding branching program is bounded by ω(n) ≤ 2ε(t)·t for
ε(n) < 0.04.

All of the above constructions achieve perfect privacy (i.e., unauthorized sub-
sets have no information about the message, in an information-theoretic sense),
and can potentially accommodate an infinite number of users. Moreover, they
are all tailored to variations of the evolving threshold access structure, and have
share size that is at least linear in the number of parties n or in the threshold
t (the only exception being ramp secret sharing schemes). Given this state of
affairs, the following question arises naturally:

Can we get secret sharing schemes with succinct shares (i.e., with size
smaller than the size of a natural computational representation of the evolv-
ing access structure) for richer evolving access structures, possibly under
computational assumptions?

1.1 Our Contributions

We provide a positive answer to the above question by initiating a systematic
study of secret sharing schemes for evolving access structures in the computa-
tional setting. Our contributions are summarized in Table 1, where we compare
our results with the state of the art in terms of access structure, share size, and
computational assumptions.

72 D. Francati and D. Venturi

Table 1. Comparing our results with state-of-the-art constructions for evolving secret
sharing, in terms of access structure, share size, and computational assumptions. See
Sect. 1.2 for the definition of the various parameters. The share size refers to the size
of the share received by the n-th party, where n is the current number of parties in the
system. In information-theoretic constructions, n is unbounded; in the computational
setting n = poly(λ) (but the dealer does not know an upper bound on n). For simplicity,
we only consider message length �(λ) = λ; when a scheme is for �(λ) = 1, we consider
the share size obtained by repeating the sharing procedure λ times in parallel.

Reference Access Structure Parameters Share Size Assumptions

[24] Any – λ · 2n−1 –

Static Threshold t = poly(λ) (t − 1) · log n + poly(λ, t) · o(log n) –

[26] Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ · O(n4 · log n) –

[8] Ramp Dynamic Threshold ρ(n) − τ(n) = c · n O(λ) –

[9] Ramp Dynamic Thresholdρ(n) − τ(n) = n/polylog(n) λ · polylog(n) –

Ramp Dynamic Threshold ρ(n) − τ(n) =
√

n λ · O(n · log n) –

Ramp Static Threshold ρ(n) = t; τ(n) = t/2 λ · O(log t · log n) –

[38] Static Threshold 0 < t ≤ n; ε > 0 λ · O(t1+ε · log n) –

Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ · O(n4) –

[1]
Layered Infinite

Branching Programs
ε(n) < 0.04; ω(n) ≤ 2ε(n)·n λ · 2

O
(
min{ε(n)·log(n),

√
ε(n)}

)
·n

–

Sect. 4.2 Any dn = poly(λ, n) λ · (dn + 1) OWFs

Static Threshold t = poly(λ) λ –
Sect. 5.1

Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ · (n + 1) OWFs

Sect. 5.2 Graphs – poly(λ) RSA/iO + SSB

mg · poly(λ) RSA/iO + SSB

(m∨
g)2 + m∧

g · O(λ) DDH/BDDHSect. 5.3 Monotone Circuits mg = m∧
g + m∨

g ; g ≥ 1

m∨
g + m∧

g · O(λ) LWE

poly(λ) RSA/iO + SSB

m2 · poly(λ) DDH/BDDHFull version [20] CNF Formulas m ≥ 1

m · poly(λ) LWE

Full version [20] DNF Formulas tn ≥ 1 λ · (tn + 1) OWFs

In a nutshell, we provide constructions of computationally private secret shar-
ing schemes for a plethora of evolving access structures, under standard hard-
ness assumptions. In all of our constructions, the number of parties n is upper
bounded by an arbitrary polynomial in the security parameter, but the dealer
does not know this polynomial, neither it knows the overall access structure (it
only knows the new authorized subsets when a new party joins the system).
For some access structures, the share size is succinct (i.e., much smaller com-
pared to the size of a natural computational representation of the evolving access
structure). More in details, we given constructions of secret sharing schemes:

– For any evolving access structure in which the n-th participant appears in at
most dn = poly(λ, n) authorized subsets. This construction requires one-way
functions (OWFs), and yields share size λ · (dn + 1).

– For the dynamic threshold access structure. This construction requires OWFs,
and yields share size λ · (n + 1)

– For graphs access structures, in which the parties are added to the nodes
of an evolving (undirected) graph, and the authorized subsets consist of all
the pair of nodes for which there is an edge in the graph. This construction

Evolving Secret Sharing Made Short 73

requires either the RSA assumption, or indistinguishability obfuscation (iO)
and somewhere statistically binding (SSB) hash functions, and yields share
size poly(λ).

– For monotone circuits access structures, in which the parties correspond to
the inputs wires of an evolving boolean circuit made of AND and OR gates
with unbounded fan-in. This construction requires either of the following
assumptions: (i) RSA, (ii) iO plus SSB hash functions, (iii) DDH/BDDH,
(iv) LWE, and yields share size that is roughly linear2 in the number of gates
that are added to the circuit.

– For CNF and DNF formulas access structures, which are a special case of
monotone circuits. In fact, in these cases, we give direct constructions that
are slightly better in terms of assumptions and/or share size.

All of the above constructions allow to share secret messages of size �(λ) = λ.
In the final part of the paper, we deal with the problem of domain extension
for evolving secret sharing schemes and show that, under mild assumptions,
all of our schemes can be generically upgraded to support messages of length
�(λ) = poly(λ), by paying only an additive (in fact, linear in �) overhead in terms
of share size. This transformation only requires OWFs.

1.2 Technical Overview

We now give a detailed overview of the main techniques we use in order to obtain
our results, starting with the notion of computational privacy for evolving secret
sharing, and then explaining the ideas behind each of our constructions.

Computational Evolving Secret Sharing. The definition of computationally pri-
vate secret sharing for evolving access structures is the natural adaptation of
the corresponding information-theoretic definition. In particular, in the com-
putational setting, the number of parties is n = poly(λ). An evolving access
structure is a monotone sequence {An}n≥1, where An denotes the access struc-
ture when there are n parties in the system. We note that the dealer does not
know the actual polynomial that upper bounds n, neither it knows the access
structure An before the n-th party enters the system. This limitation is rather
important, as if the dealer knows that n < ñ for some polynomial ñ, along with
the access structure Añ, it can simply use a standard secret sharing scheme for
Añ and distribute the shares to the parties as they arrive.

Computational privacy simply requires that for every (polynomial) n ≥ 1,
for all unauthorized subsets U �∈ An, and for every pair of messages (μ0, μ1),
no computationally bounded adversary given the shares (σi)i∈U can distinguish,
with better than negligible probability, whether the shares are generated using
message μ0 or message μ1.

2 This is a very rough approximation. See Table 1 and Sect. 1.2 for more precise
parameters.

74 D. Francati and D. Venturi

Rigidity. In principle, an evolving access structure A = {An}n≥1 only needs to
be monotone, in the sense that, for every I such that I ∈ An, every superset
I ′ ⊃ I also satisfies I ′ ∈ An. Now, say that n = 10 and that parties 1 and 3
are not authorized (i.e., U = {1, 3} �∈ A10); when party 11 arrives, the set U
might become authorized without violating monotonicity. An access structure
is called rigid if the above never happens, namely the subset U never becomes
authorized.

It turns out that rigidity plays a rather important role when defining how
more complex access structures (e.g., monotone circuits) can evolve. Indeed, in
Sect. 3.2, we show that in any secret sharing for a non-rigid evolving access
structure A, the dealer must update the shares of old players at some point.
This observation becomes immediately apparent when we look again at the above
example: Since U = {1, 3} is unauthorized when n = 10, by the privacy property,
the shares σ1 and σ3 reveal no information about the message; hence, unless we
update these shares, σ1 and σ3 are not enough to reconstruct the message when
n = 11, which contradicts the correctness property.

General Access Structures. In Sect. 4, we give a simple construction of a secret
sharing scheme for general rigid evolving access structures Â. However, the
scheme is provably secure (and efficient) only when we make the restriction
that each party n is added to dn = poly(λ, n) authorized subsets. The share size
of party n is going to be λ · (dn + 1) = poly(λ, n).

This construction roughly works as follows. Let G be a pseudorandom gener-
ator (PRG) with unbounded polynomial stretch (this exists assuming OWFs);
we think of the PRG output as a sequence of λ-bit blocks, which we denote by
G(κ)[j]. The share σn given to the n-th party consists of a λ-bit seed κn for
the PRG, as well as a ciphertext γI for every new subset I containing n that
is added to the access structure Ân. This ciphertext is obtained by masking the
message μ with a pad ρI =

⊕
i∈I G(κi)[j(I)], where κi is the seed of party i,

and j(I) is the index corresponding to the subset I in some lexicographic order.
Note that the number of ciphertexts given to party n is exactly dn; furthermore,
since both n and dn are polynomial, the number of PRG blocks that are needed
is still polynomial, and thus the construction is efficient.

Correctness follows by observing that the parties corresponding to an autho-
rized subset I ∈ Ân can recover the pad ρI and reveal the message. Privacy
follows by an hybrid argument, in which we replace the ciphertext γI for every
I that contains an index corresponding to an honest party with a random string.
Since the attacker does not know the seed of honest players, these hybrids are all
computationally indistinguishable by security of the PRG. Hence, one observes
that in the final hybrid, the distribution of the shares corresponding to an unau-
thorized subset of the players is independent of the message. Interestingly, our
construction shares similarities with an old scheme proposed by Cachin in the
context of online secret sharing [13,16]. The main difference is that Cachin’s
scheme directly uses OWFs (or hard-core bits) instead of PRGs, and addition-

Evolving Secret Sharing Made Short 75

ally requires a public bulletin board that must be updated by the dealer.3 How-
ever, in retrospect, the only reason why the bulletin board is needed is because
Cachin’s definition of evolving access structure does not require rigidity. This is
consistent with our impossibility result showing that secret sharing schemes for
non-rigid evolving access structures require the dealer to update old shares.

In the information-theoretic setting, Mazor [30] demonstrated a lower bound
for evolving secret sharing, showing that there exists an evolving access structure
Â for which every information-theoretic evolving secret sharing scheme for Â
(where the dealer does not know the access structure in advance) is such that
the share size of the first n parties is at least 2n−o(n). We highlight that our
(computationally secure) scheme for general access structure circumvents such
lower bound. Intuitively, we are able to accomplish this thanks to PRGs which
allow generating an arbitrary polynomial number of random blocks from a short
seed. We provide more details in Sect. 4 and Remark 2. This is a clear example
of the main benefit of studying evolving secret sharing in the computational
setting.

Dynamic Threshold Access Structures. Next, we move to concrete access struc-
tures that do not obey the restrictions of the above generic construction, starting
with the evolving threshold access structure. The static case, where there is a
single threshold t = poly(λ) known to the dealer, is rather simple to deal with:
although the dealer does not know the maximum number of users, it knows that
n = poly(λ) and thus can define the share of the n-th party as the evaluation
σn = f(n) of a random polynomial f of degree t − 1 with coefficients over a
field of size λω(1), subject to the constraint that f(0) = μ; this yields share size
ω(1)·log(λ), ensures both correctness and privacy as per Shamir’s secret sharing,
and moreover allows to accommodate an arbitrary polynomial number of users.4

Hence, we move to the more challenging setting of the evolving dynamic
threshold access structure. As explained above, this access structure is specified
by a sequence of thresholds {tn}n≥1 such that tn ≥ tn−1, and the authorized
subsets when there are n parties are all the subsets of size at least 0 < tn ≤
n. Here, the threshold tn may depend on n, and the dealer does not know
tn before party n arrives. Our construction, which can be found in Sect. 5.1,
works as follows. Let G be a PRG with unbounded polynomial stretch. When
party n arrives, the dealer samples a random seed κn, along with a random
polynomial fn of degree tn − 1 over a field of exponential size 2λ, subject to the
constraint that fn(0) = μ. The share σn of party n consists of the seed κn, of the

3 Online secret sharing is the ancestor of evolving secret sharing. Csirmaz and Tar-
dos [16] show how to remove the public bulletin board, obtaining information-
theoretic privacy for infinitely many parties; however, they require the dealer knows
an upper bound on the maximum number of authorized subsets a party can join.

4 Note that, in case t = O(1), the evolving threshold access structure actually satisfies
the condition required by our generic construction, as the number of new authorized
subsets in which party n participates is exactly dn =

(
n
t

)
= poly(λ). However, the

above direct construction based on Shamir secret sharing works even for t = poly(λ),
and does not require computational assumptions.

76 D. Francati and D. Venturi

evaluation fn(n), along with n − 1 ciphertexts (γi)i<n, where each ciphertext γi

is an encryption of fn(i) under the pad ρi = G(κi)[n − i] (i.e., the next unused
block output by the PRG G(κi) associated to party i).

Correctness follows by observing that the parties corresponding to an autho-
rized subset can recover at least tn pads used to encrypt the evaluations of the
polynomial fn, and thus reconstruct the message via polynomial interpolation.
Privacy follows by an hybrid argument, in which we replace all of the cipher-
texts γj corresponding to honest parties with a uniformly random ciphertext.
Since the attacker does not know the seed of honest players, these hybrids are all
computationally indistinguishable by security of the PRG. Hence, one observes
that for every k ∈ [n], the adversary now knows at most tk − 1 evaluations of
the polynomial fk, and thus the message is information-theoretically hidden.

An interesting feature of our construction is that it works unmodified even
assuming the sequence of thresholds {tn}n≥1 is not increasing. Namely, it is
allowed that tn < tn−1 for some number of parties n, so long as the newly added
authorized subsets (i.e., those that are in Ân, but not in Ân−1) always include
party n. The latter ensures monotonicity (and rigidity is also preserved). We find
this to be a natural extension of the evolving dynamic threshold access structure.

The aforementioned constructions are presented in Sect. 5.1.

Graphs Access Structures. Consider now the case of graphs access structures,
in which the parties correspond to nodes v1, . . . , vn in an undirected graph G =
(V, E), and parties (i, j) are authorized if and only if (vi, vj) ∈ E (i.e., (vi, vj) is
an edge in the graph). Applebaum et al. [2] recently gave a succinct secret sharing
scheme for this access structure, based on a new primitive called projective PRG.
Intuitively, a projective PRG, as any standard PRG, allows to stretch a short
seed msk (a.k.a. the master secret key) into a pseudorandom string of bounded
length m ∈ N. Additionally, one can use the master secret key msk to generate
projective keys αT associated to sets T ⊂ [m], in such a way that it is possible to
use αT , along with the master public key mpk associated to msk, to recover the
PRG output corresponding to the seed msk in the positions indexed by T . On the
other hand, all the remaining positions still look pseudorandom (this property is
known as robustness). For this notion to be non-trivial, the projective keys must
be succinct (i.e., with length sub-linear in |T |).

Applebaum et al. [2] first give a construction for bipartite graphs access struc-
tures, in which the nodes belong to two sets V = (V(0),V(1)), and the edges are
only between nodes pertaining to different sets. It is known that secret sharing
schemes for bipartite graphs imply ones for arbitrary graphs. To secret share
a message μ ∈ {0, 1}, the dealer picks a random seed msk for the projective
PRG, and lets y1, . . . , ym be the full PRG output. Hence, the share of a left
node vi ∈ V(0) is set to μ ⊕ yi, whereas the share of a right node vj ∈ V(1) is set
to the projective key for the set Tj = {i : (vi, vj) ∈ E} of vj ’s neighbors.

In Sect. 5.2, we extend the above construction to the evolving setting. Here,
the underlying graph evolves as nodes and edges are added to it, whenever new
players enter the system. However, new edges can be added only if those involve
a new player, otherwise we would violate rigidity. This yields the rigid evolving

Evolving Secret Sharing Made Short 77

bipartite graphs access structure. Our construction is based on the following
observation: when the n-th party corresponds to a right node vn ∈ V(1), the
dealer can define its share as the projective key corresponding to the set of left
neighbors Tn of node vn. On the other hand, when the n-th party corresponds to a
left node vn ∈ V(0), we would need to encrypt the message with the next available
output bit from the projective PRG. This generates two technical problems:

– The output length of the projective PRG is fixed to some value m, which
needs to be known in advance. We solve this problem by requiring that the
projective PRG has unbounded polynomial stretch, so that the setup does
not depend on m. Note that increasing the stretch of a projective PRG (in
a black-box way) is a non-trivial task: For instance, the standard trick to
increase the stretch of a PRG by running it sequentially poly-many times
simply does not work, as it destroys succinctness. Fortunately, in Sect. 2.1 and
the full version of this work [20], we show that some of the constructions in
Applebaum et al. [2] can be adapted to our purpose. In particular, there exist
projective PRGs with unbounded polynomial stretch and, with master public
keys and projective keys of size poly(λ), assuming either the RSA assumption,
or indistinguishability obfuscation (iO) and somewhere statistically binding
(SSB) hash functions.

– Setting the share σn to γn = μ⊕yn, where yn is the next output bit produced
by the projective PRG, requires to update the shares of vn’s right neighbors,
as the projective keys given to these nodes needs to allow them to recover yn.
We solve this problem by repeating the construction in parallel two times,
namely the share of party n is obtained by considering two independent exe-
cutions of the construction by Applebaum et al. [2]: one in which vn is a left
node, and one in which vn is a right node. This way, assuming rigidity, when
a new party enters the system, we never need to update old shares.

The above yields a secret sharing scheme for the rigid evolving bipartite graphs
access structure, with shares of size poly(λ), under either the RSA assumption
or assuming iO and SSB hash functions. Additionally, the latter directly implies
an evolving secret sharing scheme, with the same share size, for (non-bipartite)
graphs access structures.

Monotone Circuits Access Structures. Finally, consider the case of monotone
circuits access structures, in which the parties correspond to an input x =
(x1, . . . , xn) for a boolean circuit C consisting of AND and OR gates with
unbounded fan-in, and a subset of the parties I is authorized if C(xI) = 1,
where xI is the input associated to I (i.e., xi = 1 if i ∈ I and xi = 0 otherwise).
For simplicity, let us assume5 that the circuit alternates layers made only by
either OR or AND gates, starting always with OR gates; hereafter, we refer to
such circuits as AND-OR circuits. Applebaum et al. [2] give a construction of

5 This assumption is essentially without loss of generality, at least if one is willing to
pay an additive factor of n in the number of OR gates, which does not impact the
final share size by too much. See Sect. 5.3 for more on this point.

78 D. Francati and D. Venturi

a succinct secret sharing scheme for this access structure, based on projective
PRGs. In particular, the share size in their construction grows with the number
of gates in the circuit, which improves over the classical construction of Yao [37],
in which the share size grows linearly with the number of wires in the circuit.

At a high level, the construction by Applebaum et al. [2] allocates to the i-th
gate a secret key κi, and makes sure that a set of authorized parties corresponding
to input x ∈ {0, 1}n will be able to learn the keys of the gates that are satisfied
by x, while all other keys remain secret. The keys associated to the OR gates
are pseudorandom blocks from the output of the projective PRG, whereas the
keys associated to the AND gates are the projective keys for the set Ti = {j :
i → j in C} corresponding to the out-neighbors of the i-th gate. The share of
the parties include the master public key mpk of the projective PRG, as well
as a ciphertext for each AND gate, which essentially allows one to move from
an OR gate to an AND gate during reconstruction; the only exception are the
input OR gates, for which the secret key is a random label that is given in the
clear to the associated players.

In Sect. 5.3, we extend the above construction to the evolving setting. Here,
the underlying circuit evolves as wires and gates are added to it, whenever new
players enter the system. Some care is needed when specifying how the circuit
evolves: say that we have a circuit over n−1 inputs; when the n-th player arrives,
monotonicity may forbid to add the corresponding input wire as input to an
already existing AND gate (e.g., if the AND gate is an output gate). Still, we
could add such wires as part of other AND and OR gates, or add new gates to the
circuit. However, the latter cannot be done arbitrarily if we want to also consider
rigidity, which, as explained above, is a necessary condition in order to have an
evolving secret sharing scheme where old shares do not need to be updated. To
allow more flexibility, we will consider a strict generalization in which the parties
arrive in generations instead of one by one. We denote by ng ≥ 1 the number of
parties in generation g ≥ 1, so that n =

∑
g ng. Hence, when the first generation

arrives, the access structure is specified by a circuit Ĉ1(x1, . . . , xn1) for some
AND-OR circuit Ĉ1; when the second generation arrives the access structure is
specified by the circuit Ĉ1(x1, . . . , xn1) ∨ Ĉ2(x1, . . . , xn1+n2), where Ĉ2 is any
AND-OR circuit such that Ĉ2(x1, . . . , xn1 , 0, . . . , 0) = 0. The above preserves
monotonicity (as the output of the two circuits are input to an OR gate), and
ensures rigidity (as any assignment x1, . . . , xn1 that does not satisfy Ĉ1 won’t
satisfy Ĉ2 unless some of the parties in [n] \ [n1] is present).6

Given the above characterization, our construction proceeds as follows. When
the n-th generation begins, the dealer knows the circuit Ĉg; say such a circuit
is made of mg = m∨

g + m∧
g gates, where m∨

g (resp., m∧
g) denotes the number of

OR (resp., AND) gates. The dealer now distributes the shares to the parties of
the g-th generation as in the construction by Applebaum et al. [2], with the only
difference that the secret key associated to the input OR gates is defined using
a standard PRG with unbounded polynomial stretch, evaluated using a seed

6 An equivalent way to preserve monotonicity and rigidity is to assume that
Ĉ1(x1, . . . , xn1) = Ĉ2(x1, . . . , xn1 , 0, . . . , 0).

Evolving Secret Sharing Made Short 79

that is only known by the corresponding player. This way, the wires associated
to old players can be used as inputs in the new circuits, without the need for
updating old shares. Moreover, the dealer knows the sub-circuit representing
each generation, and thus can define the secret keys associated to the OR gates
using a fresh pair of keys (mpkg,mskg) for a projective PRG with bounded output
length m∨

g . By using the constructions of projective PRGs from Applebaum et
al. [2], we can instantiate our scheme from either (i) the RSA assumption, or
(ii) iO and SSB hash functions, or (iii) the DDH/BDDH assumption, or (iv) the
LWE assumption, with different trade-offs in terms of share size (see Table 1).

We remark that the rigid evolving monotone circuits access structure cap-
tures several interesting evolving access structures as a special case, such as:

– The rigid evolving monotone conjunctive normal form (CNF) formulas access
structure, in which the authorized subsets I are those corresponding to inputs
xI such that

∧
i∈[m] Ci, where each clause Ci is a disjunction over a subset

of the n players. Note that, while n increases, the clauses change over time.
However, by monotonicity, no clause can be added to the access structure,
and, by rigidity, no clause can be removed from the access structure. Thus,
the number of clauses m is a fixed parameter of the access structure.

– The rigid evolving monotone disjunctive normal form (DNF) formulas access
structure, in which the authorized subsets I are those corresponding to inputs
xI such that

∨
i∈[m] Ci, where each clause Ci is a conjunction over a subset

of the n players. Note that, while n increases, the clauses change over time.
However, by monotonicity, we can neither remove old clauses nor add new
variables to old clauses, and, by rigidity, we can add new clauses, so long as
each new clause including old inputs must also include at least one new input.
Thus, the number of clauses m is not fixed, and grows over time together with
the number of players.

While the above construction directly implies an evolving secret sharing scheme
for rigid evolving CNF/DNF formulas access structures, in the full version [20],
we give direct constructions which are slightly better in terms of share size and/or
assumptions. More in details, for the case of CNF formulas, we again rely on
projective PRGs with bounded polynomial stretch m, and obtain instantiations
from assumptions (i)–(iv) listed above with different trade-offs in terms of share
size (see Table 1). For the case of DNF formulas, we only rely on OWFs and get
a scheme with shares size tn · (λ+1), where tn is the number of clauses in which
the input associated to player n appears.

Domain Extension. As our final contribution, we study the question of domain
extension for evolving secret sharing schemes in the computational setting. Here,
one starts with a secret sharing scheme supporting messages of size λ, for a rigid
evolving access structure Â, and the goal is to obtain a secret sharing scheme
for the same access structure, but supporting messages of length � � λ.

In the non-evolving setting, this question was first studied by Krawczyk [27]
for the case of threshold access structures. The main idea is to use a so-called
information dispersal, which allows to divide the message into n fragments, in

80 D. Francati and D. Venturi

such a way that the message can be recovered from any t ≤ n fragments, while
the size of each fragment is only �/t (which is optimal). In other words, an
information dispersal for the t-threshold access structure offers the same func-
tionality of a secret sharing scheme for the same access structure, but without
any privacy guarantee (which is the reason why the fragments can be shorter
than the message). A simple example of information dispersal comes from Reed-
Solomon codes: Parse the message μ into t blocks μ = (μ0, . . . , μt−1), and inter-
pret each block as an element of GF(q); if needed, the original message can be
padded so that the message length � is a multiple of the threshold t. Hence, let
f(X) = μ0 + μ1 · X + · · · + μt−1 · Xt−1 be the polynomial over GF(q), whose
coefficients are the fragments of the message. The fragment γi assigned to party
i ∈ [n] is f(i). Now, any subset of t parties can successfully reconstruct the
polynomial, and thus recover the message. Moreover, the size of each fragment
is log q = �/t, which is optimal.

Given a secret sharing scheme (with domain {0, 1}λ) and an information dis-
persal for the t-threshold access structure, Krawczyk’s compiler works as follows:
First sample a random secret key κ ∈ {0, 1}λ for a symmetric encryption scheme;
then, encrypt the message μ ∈ {0, 1}�. The share of party i ∈ [n] is defined to
be σ′

i = (σi, γi), where σi is the i-th share of a secret sharing of the key κ,
and γi is the i-th fragment of an information dispersal of the ciphertext γ. This
results in shares of size �/t + λ, which is asymptotically optimal (as � → ∞). In
a follow-up work, Bèguin and Cresti [5] showed that the above construction still
works assuming the underlying secret sharing scheme and information dispersal
support an arbitrary access structure. Moreover, they observed that an informa-
tion dispersal for access structure A can be obtained by dispersing the message
using an information dispersal for the t-threshold access structure, where t is the
minimum7 size of an authorized set in A.

In the full version [20], we show that Krawczyk’s compiler works unmodified
even in the evolving setting. Naturally, this requires to assume an information
dispersal for any rigid evolving access structure A. To this end, we first show how
to obtain an information dispersal for the evolving t-threshold access structure.
Basically, this is an erasure code where one can disperse the message into a
growing number of fragments (potentially infinite), with the guarantee that the
message can be recovered from any fraction of t fragments. When n = poly(λ), an
easy solution comes again using Reed-Solomon codes, i.e. we simply disperse the
message using the above defined polynomial f(X) over an exponentially large
field GF(2λ). This allows to accommodate an arbitrary polynomial number of
users. A drawback of this solution is that it requires an exponentially large field,
and thus it is not very efficient in practice, as reconstruction takes quadratic
(in t) time. This can be improved using more sophisticated techniques from
coding theory. In particular, using so-called digital fountains [31] (e.g., Tornado
codes [29], LT codes [28], or Raptor codes [36]), one can support a potentially

7 This solution is optimal in terms of minimizing the maximum share size. Bèguin and
Cresti also propose simple variants that minimize the total size of the shares, but
for simplicity we do not consider these variants in our paper.

Evolving Secret Sharing Made Short 81

infinite number of players with reconstruction time that is only linear (in t).
To the best of our knowledge, this is the first application of rateless codes in
cryptography, and thus we believe our work establishes an interesting connection
with information theory.

Given an information dispersal for the evolving t-threshold access structure,
one can obtain an information dispersal for any rigid evolving access structure
Â by setting the threshold to the size of a minimum authorized subset in Â,
as proposed by Bèguin and Cresti [5]. A small caveat is that the latter requires
the dealer to know the size of a minimal authorized subset in Â; while this
assumption is for free for some evolving access structures (e.g., dynamic threshold
access structures, graphs access structures, and CNF formulas access structures),
it is not always true in general (e.g., in the case of DNF formulas and monotone
circuits access structures). We prove that this limitation is somewhat inherent
for general access structures: whenever a rigid evolving access structure Â is such
that the minimal size of an authorized subset goes from t1 (when there are n1

parties) to t2 < t1 (when there are n2 > n1 parties), no information dispersal for
Â can be optimal in terms of share size (i.e., have maximum share size �/t, where
t is the minimum size of an authorized subset) without updating old shares.

1.3 Additional Related Work

Paskin-Cherniavsky [32] gives a secret sharing scheme for arbitrary evolving
access structures with slightly better (but still exponential) share size (com-
pared to [24]. Dutta et al. [18] consider a simple generalization of the evolving
threshold access structure in which parties belong to different compartments,
and each compartment has associated a threshold specifying the minimum size
of an authorized subset in that compartment. Both of these constructions require
that the dealer knows the access structure in advance.

Desmedt, Dutta, and Morozov [17] give an interpretation of evolving secret
sharing from the lens of so-called evolving perfect hash families. This is useful
in order to obtain schemes where the message space is a non-abelian group.

Komargodski and Paskin-Cherniavsky further show how to generically trans-
form any secret sharing scheme for the evolving t-threshold access structure into
a scheme which is robust [34], where the latter means that the message can be
recovered even if some parties hand-in incorrect shares.

2 Projective Pseudorandom Generators

We review the recent notion of projective pseudorandom generators (pPRGs)
from Applebaum et al. [2], which will be used as a tool in some of our construc-
tions. For space reasons, we refer the reader to the full version [20] for other
auxiliary standard definitions.

Intuitively, a projective PRG is a PRG G : {0, 1}λ → {0, 1}m with the
additional property that, given a master key msk and a subset T ⊆ [m], one can

82 D. Francati and D. Venturi

produce a succinct8 projective key αT which can be used to recover the output
bits G(α)|T , but reveals nothing about the other bits.

More formally, a projective PRG is a tuple of polynomial-time algorithms
pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) specified as follows:

– The randomized setup algorithm pPRG.Setup(1λ, 1m) takes as input the secu-
rity parameter λ ∈ N and an output length parameter m ∈ N, and outputs
public parameters mpk along with a master secret key msk.

– The deterministic key generation algorithm pPRG.KeyGen(mpk,msk, T) takes
as input the public parameters mpk, the master secret key msk, and a target
set T ⊆ [m], and outputs a projective key αT .

– The deterministic evaluation algorithm pPRG.Eval(mpk, αT , T) takes as input
the public parameters mpk, a projective key αT , and a target set T ⊆ [m],
and outputs a string y ∈ {0, 1}|T |.

Abusing notation, we write pPRG.Eval(mpk,msk) to denote the output of the
PRG corresponding to pPRG.Eval(mpk, α[m], [m]) (i.e., when the target set T
corresponds to the entire output length). A projective PRG is required to satisfy
three properties. The first property is a correctness requirement saying that a
projective key for target set T allows to learn the PRG output in the positions
indexed by T . The second property is a succinctness requirement saying that
the size of a projective key for a target set T is significantly shorter than |T |.
The third property is a security requirement saying that an adversary obtaining
a projective key for the union of different subsets T ∗ learn no information about
the output of the PRG in the positions outside T ∗.

Definition 1 (Correctness of pPRGs). We say that pPRG = (pPRG.Setup,
pPRG.KeyGen, pPRG.Eval) is correct if for all λ,m ∈ N, all (mpk,msk) ∈ pPRG.
Setup(1λ, 1m), all subsets T ⊆ [m], and all projective keys αT = pPRG.
KeyGen(mpk,msk, T), it holds that yT = pPRG.Eval(mpk, αT , T) equals all of
the bits of y = pPRG.Eval(mpk,msk) indexed by the positions in T .

Definition 2 (Succinctness of pPRGs). We say that pPRG = (pPRG.Setup,
pPRG.KeyGen, pPRG.Eval) is (fully) succinct if for all λ,m ∈ N, all (mpk,msk) ∈
pPRG.Setup(1λ, 1m), and all subsets T ⊆ [m], it holds that the projective key
αT = pPRG.KeyGen(mpk,msk, T) has size |αT | = poly(λ, log m).

Definition 3 (Robustness of pPRGs). We say that pPRG = (pPRG.Setup,
pPRG.KeyGen, pPRG.Eval) is robust if for all PPT adversaries A it holds that
{Grob

pPRG,A(λ, 0)}λ∈N ≈c {Grob
pPRG,A(λ, 1)}λ∈N, where the game Grob

pPRG,A(λ, b) is
defined as follows:

– Given 1λ, the adversary sends 1m and T1, . . . , Tq ⊂ [m] to the challenger.
– The challenger runs (mpk,msk) ←$ pPRG.Setup(1λ, 1m) and lets y0 = yT

and y1 ←$ {0, 1}|T |, where T = [m] \ T , T = T1 ∪ · · · ∪ Tq, and yT =
pPRG.Eval(mpk, pPRG.KeyGen(mpk,msk, T), T). Then, the challenger for-
wards (mpk, (αTi

)i∈[q], yb) to A, where αTi
= pPRG.KeyGen(mpk,msk, Ti).

8 Succinctness is a crucial requirement, as otherwise a projective key could just be
G(α)|T .

Evolving Secret Sharing Made Short 83

2.1 Unbounded Polynomial Stretch

For some of our applications, we will require a stronger variant of projective
PRGs in which the output length is an unbounded polynomial m = poly(λ). For
concreteness, we define this variant below.

Definition 4 (pPRGs with unbounded stretch). We say that pPRG =
(pPRG.Setup, pPRG.KeyGen, pPRG.Eval) has unbounded polynomial stretch if
algorithm Setup takes only the security parameter λ ∈ N as input, whereas algo-
rithms KeyGen and Eval take as input target sets T of arbitrary polynomial size
|T | = poly(λ).

The definitions of correctness, succinctness and robustness can be easily adapted
to the case of projective PRGs with unbounded polynomial stretch. In particular,
correctness is immediate, while succinctness still requires that the size of the
projective keys αT are poly(λ), whereas the running time of algorithms KeyGen
and Eval are poly(λ, |T |). We remark that, when the stretch is unbounded, the
master public key mpk is always succinct (i.e., of size poly(λ)), as the setup
algorithm does not depend on m.

As for robustness, the security game remains unchanged as the adversary can
already specify the output length 1m of the challenge. Note the adversary has to
commit to 1m and to the subsets T1, · · · , Tq before receiving the master public
key mpk. This flavor of “selective” security is sufficient for our applications.

Outputting Blocks. Sometimes, it is convenient to think of the pPRG output
as a sequence of t blocks of size λ. In such a case, the key generation takes as
input subsets T ⊆ [t] and generates projective keys corresponding to the blocks
indexed by the positions in T ; the evaluation algorithm is modified analogously.
The latter can be obtained by mapping T into T ′ ⊆ [t · λ], where T ′ consists of
the set of all location that fall inside the blocks whose indexes are in T .

Instantiations. The following theorem summarizes known constructions of pro-
jective PRGs under a variety of assumptions.

Theorem 1 ([2]). There exist constructions of projective PRGs from the fol-
lowing assumptions and with the following parameters:

– Under the RSA assumption, with unbounded polynomial stretch, and with
master public keys and projective keys of size poly(λ).

– Assuming indistinguishability obfuscation and somewhere statistically binding
hash functions, with unbounded polynomial stretch, and with projective keys
of size poly(λ) (and empty master public keys).

– Under the DDH and the BDDH assumption, with bounded polynomial stretch,
and with master public keys of size m2 · poly(λ) and projective keys of size
O(λ). In the second construction the master public key is reusable (i.e., it is
independent of the master secret key).

– Under the LWE assumption, with bounded polynomial stretch, and with mas-
ter public keys of size m · poly(λ) and projective keys of size O(λ).

84 D. Francati and D. Venturi

We remark that Applebaum et al. [2] actually prove a slightly different state-
ment about the constructions based on RSA and on obfuscation. In particular,
they prove that the first construction achieves sub-exponential stretch under
the sub-exponential RSA assumption, and that the second construction achieves
bounded polynomial stretch. Nevertheless, it is easy to adapt these construc-
tions and show that they indeed achieve unbounded polynomial stretch under
polynomial hardness. We refer the reader to [20] for more details.

3 Computational Evolving Secret Sharing

Let n ∈ N, and denote by [n] = {1, . . . , n}. A collection of subsets A ⊆ 2[n] is
monotone if for every I ∈ A, with I ⊆ I ′, it holds that I ′ ∈ A.

Definition 5 (Access structure). An access structure A ⊆ 2[n] is a monotone
collection of non-empty subsets. Subsets in A are called qualified, whereas subsets
not in A are called unqualified.

If A is an access structure, then a subset B ∈ A is minimal if B′ �∈ A whenever
B′ ⊂ B. We will typically assume A only consists of minimal authorized subsets,
which we sometimes refer to as the minimal representation form.

Standard secret sharing schemes are typically defined in a setting where the
number of parties n is fixed. In evolving secret sharing [24], instead, parties arrive
one by one and thus the value n represents the number of parties currently in
the system. In the information-theoretic setting, the number n can grow up to
infinity; in the computational setting, instead, n = poly(λ). We denote by An

the access structure when there are n parties in the system. We stress, that the
dealer does not know the value n, neither it knows the access structure An before
the n-th party enters the system.

Definition 6 (Evolving access structure). Let n ∈ N, with n(λ) = poly(λ).
An evolving access structure A = {An} is a monotone collection of subsets
An ⊆ 2[n] such that, for every n ∈ N, it holds that An ⊆ An+1.

We are now ready to define evolving secret sharing schemes. A secret sharing
scheme SS = (SS.Share,SS.Recon), with message space M and share space S,
for an evolving access structure A consists of two polynomial-time algorithms
specified as follows (we implicitly assume all algorithms take as input the security
parameter 1λ):

– The randomized sharing algorithm SS.Share(μ, (σi)i∈[n−1],An) takes as input
a message μ ∈ M, a collection of n−1 shares σ1, . . . , σn−1 ∈ S, and an access
structure An, and outputs the share σn for the n-th party.

– The deterministic reconstruction algorithm SS.Recon((σi)i∈I , I,An) takes as
input a collection of shares (σi)i∈I , along with a subset I ⊆ 2[n] of the parties,
and outputs a message μ ∈ M.

Evolving Secret Sharing Made Short 85

The share size s(n, �, λ) of party n in a secret sharing scheme for evolving
access structure A is defined as the maximum of |σn| over all messages of length
� = �(n) and over all possible previous assignments σ1, . . . , σn−1. As consid-
ered in [2], we are interested in building succinct computational secret sharing
schemes, i.e., schemes with share size smaller than the representation of repre-
sentation of the access structure structure.

Remark 1 (On representing the access structure). When dealing with efficiency
of computational secret sharing schemes, it is important to define how an evolv-
ing access structure is represented. In particular, we can associate to each access
structure An over n parties a boolean function fn : {0, 1}n → {0, 1} such that
f(x) = 1 if and only if the set Ix consisting of all the parties in [n] for which
xi = 1 is such that Ix ∈ An. Hence, we assume there is a universal (polynomial-
time computable) representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1} such that
U(Πn, x) = fn(x) for all n ≥ 1 and for all x ∈ {0, 1}n, where Πn is a program
representing the function fn. For simplicity, in the rest of the paper, we implic-
itly assume that the sharing and reconstruction algorithm take as input the
program Πn representing the function fn corresponding to the access structure
An; sometimes, we abuse notation and write An instead of the program Πn.

3.1 Defining Computational Privacy

Evolving secret sharing schemes are required to satisfy the following two proper-
ties. The first property is a correctness requirement saying that, at any point in
time, qualified subsets of parties can recover the message. The second property
is a security requirement saying that, at any point in time, a computationally
bounded adversary knowing the shares corresponding to an unqualified subset
of parties obtains no information about the message.

Definition 7 (Correctness of evolving secret sharing). We say that a
secret sharing scheme SS over message space M for the evolving access structure
A is correct if for every message μ ∈ M, for every number of parties n ≥ 1, and
for every qualified subset I ∈ An it holds that

Pr
[

μ = μ′ :
∀i ≤ n : σi ←$ SS.Share(μ, (σj)j<i,Ai)

μ′ = SS.Recon((σi)i∈I , I)

]

= 1.

Definition 8 (Privacy of evolving secret sharing). We say that a secret
sharing scheme SS over message space M for the evolving access structure A
is computationally private if {Gpriv

SS,A(λ, 0)}λ∈N ≈c {Gpriv
SS,A(λ, 1)}λ∈N, where the

game Gpriv
SS,A(λ, b) is defined as follows:

– The adversary chooses a pair of messages μ0, μ1 ∈ M, an integer n ≥ 1, and
an unqualified subset U �∈ An, and forwards them to the challenger.

– The challenger computes σi ←$ SS.Share(μb, (σj)j<i,Ai) for all i ≤ n, and
forwards (σi)i∈U to A.

– Finally, A outputs a bit b′ ∈ {0, 1} which is also the output of the experiment.

86 D. Francati and D. Venturi

3.2 Rigid Access Structures

We remark that our definition of evolving access structures is less stringent than
previous definitions considered in the literature (see, e.g., [24]). In particular,
previous definitions require that if at some point there is an unqualified subset
U ⊆ 2[n], where n is the current number of parties, then the set U will always
remain unqualified when more parties are added to the evolving access structure.
In contrast, Definition 6 potentially allows sets that previously were unqualified
to become qualified at a later point in time (without necessarily involving new
players). The theorem below states that Definition 6 is impossible to achieve
unless the dealer is allowed to update the shares.

Theorem 2. Let A be an evolving access structure such that there exist indexes
n1, n2, with n1 < n2, along with a subset U ∈ 2[n1] which satisfy the following
conditions: (i) U �∈ An1 ; (ii) U ∈ An2 . Then, any computationally private secret
sharing scheme for A requires to update the shares of party n1 when party n2

enters the system.

Proof. Let A, n1, and n2 be as in the statement of the theorem. Fix an arbitrary
message μ ∈ M, and denote by (σi)i∈[n2] the shares obtained by sharing μ among
n2 parties. Condition (ii) on the access structure A, along with the correctness
property of SS, imply that SS.Recon((σi)i∈U ,U) outputs μ with probability one
over the randomness of the sharing algorithm SS.Share.

Now, consider the adversary A that plays the computational privacy game by
choosing messages μ0 = μ and μ1 = μ′ �= μ, number of parties n1, and subset U .
The adversary obtains (σi)i∈U from the challenger and outputs b′ = 1 if and only
if SS.Recon((σi)i∈U ,U) = μ. By the above argument, A wins with probability
one. Moreover, condition (i) implies that U is unqualified, and thus A is valid.
This finishes the proof.

An evolving access structure that does not meet the properties (i) and (ii) in
Theorem 2 (i.e., if U �∈ Ai for some i, then U �∈ Aj for all j > i) is called rigid.
The definition below, which also appears in [24], formalizes this property.

Definition 9 (Rigid evolving access structure). A rigid evolving access
structure A = {An} is a monotone collection of subsets An ⊆ 2[n] such that, for
any n ∈ N, it holds that An = A ∩ [n].

Since in this paper we are not interested in evolving secret sharing schemes
in which the dealer can update the shares, in what follows we only focus on rigid
evolving access structures. Throughout the paper, we use the hat symbol Â to
denote access structures that evolve while preserving rigidity.

4 Construction for General Access Structures

4.1 Exponential-Time Construction

We present a construction of a secret sharing scheme for any rigid evolving access
structure. The construction is based on any PRG with unbounded polynomial

Evolving Secret Sharing Made Short 87

stretch (and thus only requires one-way functions). Unfortunately, for certain
access structures, the running time of the sharing algorithm in our construction
may be exponential, and thus we cannot prove computational privacy for all rigid
evolving access structures. Nevertheless, we show that the construction runs in
polynomial time for a fairly natural family of rigid evolving access structures,
and in this case we can also prove computational privacy.

Construction 1

Let G : {0, 1}λ → {0, 1}∗ be a PRG. For a seed κ ∈ {0, 1}λ, we
parse the output of G(κ) into blocks of size λ, and we denote with
G(κ)[i] the i-th such block. Consider the following secret sharing scheme
SS = (SS.Share, SS.Recon) over message space M = {0, 1}λ for an
arbitrary rigid evolving access structure Â. We assume a lexicographic
order ξ : 2[n] → N over the subsets in Â, and that Â is in its minimal
representation form.

Sharing: When the n-th party arrives, the dealer proceeds as follows:

– Sample κn ←$ {0, 1}λ.
– For each I ∈ Ân \ Ân−1, let I = (i1, . . . , it−1, n) for some t ≥ 1 and

compute γI = μ
⊕t−1

j=1 G(κij)[ξ(I)].
– Return σn = (κn, (γI)I∈Ân\Ân−1

) to the party.

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I),
given the shares (σi)i∈I such that σi = (κi, (γI)I∈Âi\Âi−1

), and a min-

imal authorized subset I = {i1, . . . , it−1, n} ∈ Ân, returns the same as
γI

⊕t−1
j=1 G(κij)[ξ(I)], where γI is taken from the share σn of party n.

Recall that, by rigidity, every new authorized subset I ∈ Ân \ Ân−1 must
include the new party n. Correctness then follows by the fact that each of the
party ij in I knows the seed κij , and moreover can determine the correct index
ξ(I) given the lexicographic order ξ of the access structure Â. However, the the
sharing algorithm requires to generate a ciphertext γI for each minimal autho-
rized subset I ∈ Ân \ Ân−1 that party n completes, which can be exponential in
n, and thus one cannot prove computational security of the above construction
for arbitrary rigid evolving access structures.

4.2 Polynomial-Time Instantiation

We note that if the number of authorized subsets that each new arriving party
completes is poly(λ, n), then the sharing and reconstruction algorithms in Con-
struction 1 always run in polynomial time. The size of each share is poly(λ, n),

88 D. Francati and D. Venturi

and becomes poly(λ) in case the number of added authorized subsets is inde-
pendent of the number of parties currently in the system n. Moreover, in this
case, the above secret sharing scheme is also computationally private. Below, we
report the formal result whose proof appears in the full version of this work [20].

Theorem 3. Assuming G is secure, then the scheme SS described in Construc-
tion 1 is a computationally private secret sharing scheme over M = {0, 1}λ for
every rigid evolving access structure Â such that, for each n ≥ 1, it holds that
|Ân| − |Ân−1| = poly(λ, n).

While the above construction is general, it fails to capture many important
evolving access structures in which the number of added authorized subsets is
super-polynomial in the number of parties (e.g., the dynamic threshold access
structure). We will provide more efficient solutions for many of these access
structures in the following section.

Remark 2 (On Mazor’s lower bound [30]). Mazor [30] demonstrated that there
exists an evolving access structure Â = {An} for which every information-
theoretic evolving secret sharing scheme for A (where the dealer does not know
the access structure in advance) is such that the share size of the first n parties
is at least 2n−o(n). In particular, this is achieved by the access structure Â such
that An is empty for every n. Note that the number of authorized subsets that
the n-th party completes in the above access structure Â is 0, and thus our
Construction 1 gives a computational evolving secret sharing scheme for Â with
share size λ, thus circumventing Mazor’s lower bound. This is because, in our
scheme applied to Â, the dealer gives a short PRG seed to every party (inde-
pendently whether it is authorized or not) that can be stretched in the future
when needed, i.e., when a party will later be part of an authorized set. The
same approach cannot be used in the information-theoretic setting), as it would
force the dealer to include an exponential number of random pads in the share
of each party (yielding the bound 2n−o(n)) to make the latter ready to become
eventually authorized in the future.

5 Constructions for Specific Access Structures

5.1 Dynamic Threshold Access Structure

In this section, we focus on the so-called dynamic threshold evolving access
structure [26]. This access structure is a generalization of the t-threshold evolving
access structure, in which the authorized parties consist of all subsets of at least
t parties, where t = O(1) is fixed and independent of n. In the more general
case of the dynamic threshold evolving access structure Âdthr, instead, we have
a sequence of thresholds t1 ≤ t2 ≤ · · · , such that when there are n parties the
qualified sets are those of size at least tn; note that now, at least in general, the
thresholds can depend on n. The condition that tn ≥ tn−1 is necessary to ensure
monotonicity, namely for the sequence of access structures to be a valid evolving
access structure. Moreover, by definition, Âdthr is automatically rigid.

Evolving Secret Sharing Made Short 89

Below, we give a construction of secret sharing for Âdthr with message space
{0, 1}λ and share size λ · (n+1). The scheme is based on Shamir’s secret sharing
and on any standard PRG with unbounded polynomial stretch.

Construction 2

Let GF(2λ) be a field of size 2λ, and G : {0, 1}λ → {0, 1}∗ be a standard
PRG with unbounded polynomial stretch. For a seed κ ∈ {0, 1}λ, we
parse the output of G(κ) into blocks of size λ, and we denote with
G(κ)[i] the i-th such block. Consider the following secret sharing scheme
SS = (SS.Share, SS.Recon) over message space M = {0, 1}λ for the
dynamic threshold access structure Âdthr with sequence of thresholds
t1 ≤ t2 ≤ · · · .

Sharing: When the n-th party arrives, the dealer proceeds as follows:

– Sample a random polynomial fn of degree tn−1 over GF(2λ)[X], subject
to fn(0) = μ.

– For every i ∈ [n − 1], compute γi = fn(i) ⊕ G(si)[n − i].
Finally, set the share of the n-th player to:

σn = (sn, (γi)i<n, fn(n))

where sn ←$ {0, 1}λ.

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I),
given the shares (σi)i∈I = ((si, (γj)j<i, yi))i∈Q, and a minimal authorized
subset I = {i1, . . . , itn−1 , n} ∈ Âdthr

n , proceeds as follows:

– For every j ∈ [tn − 1], compute y′
j = γij ⊕ G(sij)[n − ij] where (γk)k<n

are the ciphertexts contained in σn.
– Use Lagrange interpolation over the points

((i1, y′
1), . . . , (itn−1, y

′
tn−1), (n, yn)), yielding a polynomial f ′ ∈

GF(2λ)[X], where yn = fn(n) is the (plaintext) evaluation contained in
σn.

Finally, output f ′(0) = μ.

Let I = {i1, . . . , itn−1, n} ∈ Âdthr
n be a minimal authorized subset, i.e., I is of

size tn. Correctness follows by observing that, for j ∈ [n−1], each ciphertext γij

contained in σn can be correctly decrypted by means of the seed sij contained in
σij , thus yielding y′

j = γij ⊕G(sij)[n−ij] = fn(ij). Hence, the authorized parties
can retrieve tn evaluations (as fn(n) = yn is already contained in σn) of the
polynomial fn of degree tn − 1. Thus, by correctness of Lagrange interpolation,
the parties in I can correctly reconstruct f ′ = fn and, in turn, recover the correct

90 D. Francati and D. Venturi

message f ′(n) = fn(0) = μ. As for security, we prove the following result. We
refer the reader to [20] for the corresponding proof.

Theorem 4. Assuming G is secure, the scheme SS described in Construction
2 is a computationally private secret sharing scheme for the dynamic threshold
evolving access structures Âdthr.

Remark 3 (Static threshold). A special case of the dynamic threshold access
structure is the (static) t-threshold access structure Âthr

t , i.e., the threshold t
is fixed and independent of n (i.e., t1 = t2 = · · · = t = O(1)). Of course,
Construction 2 yields a secret sharing scheme for Âthr

t , with share size λ ·(n+1).9

However, the share size can be improved with a direct construction based on
Shamir’s secret sharing scheme: The dealer samples a single random polynomial
f over GF(2λ), of degree t−1, and subject to f(0) = μ. Then, for each n ≥ 1, the
share of party n is simply σn = f(n). The share size is λ. Note that this works
because, in the computational setting, the number of parties is upper bounded
by an unknown polynomial, but the field is of exponential size.

Remark 4 (Flexible dynamic threshold). Consider the evolving flexible dynamic
threshold access structure Âflex-dthr = {tn}, in which the new authorized subsets
when the n-th party arrives (i.e., the subsets in Âflex-dthr

n \ Âflex-dthr
n−1) are all the

subsets of at least tn players that always include n. We note that this access
structure is still monotone, even if we remove the condition that t1 ≤ · · · ≤ tn; in
fact, when the latter condition is added, the access structure Âflex-dthr collapses
to Âdthr. One can show that Construction 2 yields a computationally private
secret sharing scheme for Âflex-dthr, with exactly the same parameters. See the
proof of Theorem 4 for more on this point.

Corollary 1. Assuming OWFs, there exists a computationally private secret
sharing scheme over M = {0, 1}λ for the evolving flexible dynamic threshold
access structure Âflex-dthr, where the share size of party n ≥ 1 is λ · (n + 1).

5.2 Graphs

We start by recalling the concept of secret sharing schemes for graph access
structures. Given an undirected graph G = (V, E), we view the parties as the
vertexes in V and authorized sets are those sets that contain vertexes such that
there is at least a pair of vertexes corresponding to an edge in the graph. Namely,
the access structure is specified by a function fG : {0, 1}n → {0, 1}, where
n = |V|, and fG(x) = 1 if and only if there exist indexes i, j ∈ [n] such that
xi = xj = 1 and (i, j) ∈ E .

We can generalize the above access structure to the evolving setting as fol-
lows. W.l.o.g., parties are added to the graph in an online manner; every new

9 Note that a secret sharing scheme for Âthr
t can also be obtained as a special case

of our construction for rigid evolving DNF formulas access structures (see [20]), by
taking n1 = t, ng = 1 for every g ≥ 2, and mg =

(
n
t

)
for every g ≥ 1. However, the

latter yields an even worse share size of poly(λ, n).

Evolving Secret Sharing Made Short 91

player is added to the vertex set V and can be connected via one or more edges to
the previous nodes in the graph. However, no new edges can be added between
old nodes in the set V, i.e. we only consider the rigid evolving graphs access
structure, which we denote by Âgraph = {En}, where Gn = (Vn, En) is the graph
when there are n parties. By Theorem 2, the above limitation is inherent as the
evolving secret sharing scheme we describe below does not require to update the
shares of old players.

Following [7], we focus on the simpler case where the graph Gn = (Vn, En) is
bipartite, namely the vertex set Vn consists of two sets (V(0)

n ,V(1)
n), and the edge

set En is of the form En ⊆ V(0)
n × V(1)

n . This naturally extends to the evolving
setting as well (keeping the rigidity condition), and we write Â2graph = {En} to
denote the rigid evolving bipartite graphs access structure. We will later show
that secret sharing for Â2graph implies secret sharing for Âgraph.

Construction 3

Let pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) be a pPRG with
unbounded polynomial stretch. Consider the following secret sharing
scheme SS = (SS.Share,SS.Recon) over message space M = {0, 1} for the
rigid evolving bipartite graphs access structure Â2graph.

Sharing: At the onset, the dealer computes (mpkb,mskb) ←$ pPRG.
Setup(1λ) for every b ∈ {0, 1}. When the n-th party arrives, the dealer
proceeds as follows:

– Let vn ∈ V(b)
n (for some b ∈ {0, 1}) be the node in the graph correspond-

ing to the n-th party, where Gn = ((V(0)
n ,V(1)

n), En) is the graph specified
in Â2graph

n .
– Run α{n} = pPRG.KeyGen(mpkb,mskb, {n}) and yn = pPRG.Eval(mpkb,

α{n}, {n}), and let γn = μ ⊕ yn.
– Let Tn = {j : (vn, vj) ∈ En} be the set of indexes corresponding

to the neighbors of the node vn ∈ V(b)
n in the graph. Let αTn

=
pPRG.KeyGen(mpk1−b,msk1−b, Tn).

– Return σn = (mpk1−b, γn, αTn
).

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I),
given the shares (σi)i∈I = ((mpk, γi, αTi

))i∈I (for some b ∈ {0, 1}), and a
minimal authorized subset I = {vi0 , vi1} such that (vi0 , vi1) ∈ En = Â2graph

n ,
proceeds as follows:

– W.l.o.g., assume that vi0 ∈ V(b)
n and vi1 ∈ V(1−b)

n (otherwise, simply swap
vi0 and vi1). Hence, σ0 = (mpk1−b, γi0 , αTi0

) and σ1 = (mpkb, γi1 , αTi1
)

92 D. Francati and D. Venturi

– If i0 < i1, compute y′ = pPRG.Eval(mpkb, αTi1
, Ti1) and μ = γi0 ⊕ y′

k,
where y′

k is the k-th bit of y′ such that the k-th index ik ∈ Ti1 is equal
to i0.

– Otherwise, if i1 < i0, compute y′ = pPRG.Eval(mpk1−b, αTi0
, Ti0) and

μ = γi1 ⊕ y′
k, where y′

k is the k-th bit of y′ such that the k-th index
ik ∈ Ti0 is equal to i1.

– Output μ.

Correctness follows readily from the correctness property of the underly-
ing projective pPRG. More in details, fix two vertexes vi1 and vi0 such that
(vi0 , vi1) ∈ En and vij ∈ V(j)

n for j ∈ {0, 1}. Assume i0 < i1 (the case i1 < i0 fol-
lows by using a symmetrical argument). Then, we have that γi0 = μ⊕yi0 (which
is part of σi0), where yi0 = pPRG.Eval(mpk0, αi0 , {i0}). Moreover, by definition,
we have that αTi1

= pPRG.KeyGen(mpk0,msk0, Ti1) (which is part of σi1), where
i0 ∈ Ti1 . By correctness of the projective PRG, we conclude that the output
μ = γi0 ⊕y′

k is correct, since y′
k is the k-th bit of y′ = pPRG.Eval(mpk0, αTi1

, Ti1)
such that i0 = ik ∈ Ti1 (i.e., y′

k = yi0). As for security, we prove the following
theorem. The formal proof is deferred to the full version of this work [20].

Theorem 5. Assuming pPRG is robust (Definition 3), then the scheme SS
described in Construction 3 is a computationally private secret sharing scheme
over M = {0, 1} for the the rigid evolving bipartite graphs access structure
Â2graph.

For each n ≥ 1, the share σn in Construction 3 consists of a one-bit ciphertext
γn, a projective key αTn

, and the master public key mpk of the projective PRG.
Moreover, while the construction only deals with message space M = {0, 1}, it
is immediate to obtain a scheme for M = {0, 1}λ by repeating the construction
λ times in parallel. Hence, by invoking Theorem 1, we obtain:

Corollary 2. Under the RSA assumption, or assuming iO and SSB hash func-
tions, there exists a computationally private secret sharing scheme over M =
{0, 1}λ for the rigid evolving bipartite graphs access structure Â2graph, where the
share size of party n ≥ 1 is poly(λ).

Arbitrary Graphs. As observed in [7], in the non-evolving setting, secret sharing
schemes for bipartite graph access structures imply ones for arbitrary graph
access structures. In more details, given a graph G = (V, E) one can construct a
bipartite graph H by taking two copies of each vertex, and for every (u, v) ∈ E
connect the first copy of u to the second copy of v; the share of each party in V
consists of the shares of the corresponding two copies of this vertex in H. The
above transformation clearly preserves rigidity, and thus readily adapts to the
setting of rigid evolving graphs access structures. Thus, by leveraging Corollary
2, we obtain:

Evolving Secret Sharing Made Short 93

Corollary 3. Under the RSA assumption, or assuming iO and SSB hash func-
tions, there exists a computationally private secret sharing scheme over M =
{0, 1}λ for the rigid evolving graphs access structure Âgraph, where the share size
of party n ≥ 1 is poly(λ).

5.3 Monotone Circuits

Next, we focus on access structures represented as circuits C : {0, 1}n → {0, 1}
with AND and OR gates of unbounded fan-in, which we refer to as an AND-OR
circuit. We denote by x = (x1, . . . , xn) the input to the circuit, where xi = 1
means that the i-th player is part of the reconstruction. Following [2], we make
some conventions on the structure of the circuit.

– We assume w.l.o.g. that all the outgoing wires of an OR gate are connected
as incoming wires to AND gates, and viceversa; if this is not the case and,
say, an OR gate has an outgoing wire that enters another OR gate, we can
duplicate all the input wires of the first OR gate and connect them directly
to the second OR gate. (The same can be done with AND gates.)

– We assume, for simplicity, that each input wire is only10 connected to an OR
gate with fan-in 1; this can be achieved by adding an OR gate with fan-in
1 for every input xi that goes into an AND gate with fan-in ≥ 2, and by
adding both an OR gate with fan-in 1 followed by an AND gate with fan-in
1 for every input xi that goes into an OR gate with fan-in ≥ 2 (at the cost
of increasing the number of gates by at most 2n).

– We assume that gates are numbered from 1 to m according to some topological
order and that the first n gates correspond to the inputs x1, . . . , xn. We write
i → j when an output of the i-th gate is being fed to the j-th gate as an
input.

As explained in the introduction, we can generalize the above to the evolving
setting as follows. The rigid evolving monotone circuits access structure Âckts =
{ϕ̂g}g≥1 consists of a sequence of monotone formulas ϕ̂g (with g = poly(λ))
defined as follows:

ϕ̂g(x) =
∨

g

Ĉg(x1, . . . , xn), (1)

where Ĉg : {0, 1}n → {0, 1} is an arbitrary AND-OR circuit such that Ĉg(x1, . . . ,
xn−ng

, 0, . . . , 0) = 0, and n =
∑

g ng. Furthermore, without loss of generality,
we will assume the output gates in Ĉg are all AND gates, as if an OR gate is an
output gate we can remove it and connect its output to the final OR gate in the
above formula (i.e., the operator

∨
g in Eq. (1)).

Based on the above formalization, we propose an evolving secret sharing
scheme for Âctks based on projective PRGs with bounded polynomial stretch
(and standard PRGs with unbounded polynomial stretch).
10 This assumption is slightly different from [2], where one adds an OR gate with fan-

in 1 only for the input wires that go into AND gates; the modification is needed in
order to obtain a construction in the evolving setting.

94 D. Francati and D. Venturi

Construction 4

Let pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) be a block projective
PRG with bounded polynomial stretch, and G : {0, 1}λ → {0, 1}∗ be a
standard PRG with unbounded polynomial stretch. For a seed κ ∈ {0, 1}λ,
we parse the output of G(κ) into blocks of size equal to the size of a projec-
tive key produced by pPRG, and denote with G(κ)[i] the i-th such block.
Consider the following secret sharing scheme SS = (SS.Share,SS.Recon)
over message space M = {0, 1}λ for the rigid evolving monotone circuits
access structure Âckts.

Sharing: When the generation g ≥ 1 begins, the dealer proceeds as follows:

– Let Ĉg be the AND-OR circuit corresponding to the arrival of the g-th
generation (see Eq. (1)). Let mg = m∧

g + m∨
g be the number of gates in

Ĉg, where m∧
g and m∨

g are, respectively, the number of AND and OR
gates (including the input and output gates).

– Compute (mpkg,mskg) ←$ pPRG.Setup(1λ, 1m∨
g).

– For each i ∈ [m∨
g], associate to the i-th OR gate in Ĉg a key κ

(g)
i deter-

mined as follows:
• If the gate is an input OR gate, set κ

(g)
i = G(κ∗

i)[1] where
κ∗

i ←$ {0, 1}λ for each i ∈ [n] \ [n − ng], and κ
(g)
i = G(κ∗

i)[g − gi + 1]
for each i ∈ [n−ng], where gi is the generation corresponding to the
arrival of party i ∈ [n − ng]. (Observe that, for every i ∈ [n − ng],
the key κ∗

i corresponds to the PRG seed contained in the shares of
parties of previous generations.)

• If the gate is a non-input OR gate, set κ
(g)
i =

y
(g)
i = pPRG.Eval(mpkg, α

(g)
{i}, {i}), where α

(g)
{i} =

pPRG.KeyGen(mpkg,mskg, {i}).
– For each i ∈ [m∧

g], associate to the i-th AND gate in Ĉg a key κ
(g)
i :

• If the i-th gate is a non-output AND gate, set κ
(g)
i = αT (g)

i

=

pPRG.KeyGen(mpkg,mskg, T (g)
i), where T (g)

i = {j : i → j in Ĉg}
consists of all out-neighbor of the i-th AND gate in Ĉg.

• If the i-th gate is an output AND gate, set κ
(g)
i = μ.

– For each i ∈ [m∧
g], associate to the i-th AND gate in Ĉg (including the

output gates) the ciphertext γ
(g)
i = κ

(g)
i ⊕ ρ

(g)
i , which is viewed as an

encryption of κ
(g)
i under the mask ρ

(g)
i =

⊕
j:j→i G(κ(g)

j)[i]. (For each of
the output AND gates, we only take the first λ bits of the corresponding
PRG blocks.)

– Finally, the share of party i ∈ [n] \ [n − ng] (i.e, the share of the
new parties belonging to the g-th generation) is defined to be σi =
(mpkg, κ

∗
i , (γ

(g)
j)j∈[m∧

g]).

Evolving Secret Sharing Made Short 95

Reconstruction: Let x ∈ {0, 1}n be the input that corresponds to the
parties that want to reconstruct the message. For each generation, we tra-
verse the circuit Ĉg from the inputs to the outputs, and recover the key κ

(g)
i

associated to each gate i that is satisfied by x (i.e., the gate is evaluated
to 1 under the assignment x) in Ĉg. In case the latter allows to obtain the
key associated to any of the output AND gates in Ĉg, output that value as
the reconstructed message.

Correctness can be seen as follows. Clearly, for any qualified subset I corre-
sponding to a satisfying assignment xI for C(x), there exists some g ≥ 1 such
that at least one output AND gate in Ĉg is satisfied by xI . Furthermore, the
parties in I can recover the key κ

(g)
i associated to each gate i that is satisfied

by xI in Ĉg, and thus can correctly recover the message. Indeed:

– For an input OR gate, the key κ
(g)
i is given as part of the shares of the parties

corresponding to the assignment x.
– For a non-input OR gate, the key κ

(g)
i = y

(g)
i can be recovered based on the

key κ
(g)
j of the first gate j that is satisfied, and whose outgoing wire enters i,

i.e. j → i in Ĉg. Indeed, j is an AND gate, and its key κ
(g)
j , which was already

recovered, consists of a projective key αT (g)
j

for a set T (g)
j that contains i.

– For an AND gate, the key κ
(g)
i can be recovered by XOR-ing the ciphertext

γ
(g)
i with the mask ρ

(g)
i . This mask can be computed based on all the keys

{κ
(g)
j : j → i in Ĉg} that were already recovered (since j < i and since all the

gates j : j → i must be satisfied by xI).

Turning to security, we establish the following result whose proof is included in
the full version of this work [20].

Theorem 6. Assuming pPRG is robust (Definition 3) and G is secure, the
scheme SS described in Construction 4 is a computationally private secret shar-
ing scheme over M = {0, 1}λ for the rigid evolving monotone circuits access
structure Âckts.

We notice that the share of each new party within the generation g ≥ 1 (i.e.,
any party that is not part of previous generations) consists of a master public
key for a projective PRG outputting m∨

g blocks of dimension λ, of a λ-bit seed
for the standard PRG G, and of an encryption of the projective key11 associated
to each AND gate in the circuit Ĉg. Recall that we increased the number of OR
gates in the circuit Ĉg by at most ng (in order to make sure that input wires
only enter OR gates), and thus we can simply upper bound m∨

g with mg. Hence,
by invoking Theorem 1, we obtain:
11 The key associated to the output AND gate actually equals the message, but this

difference is immaterial when evaluating the share size.

96 D. Francati and D. Venturi

Corollary 4. Let Âckts = {Ĉg} be the monotone circuits access structure, and
denote by m∧

g (resp. m∨
g) the number of AND (resp. OR) gates in Ĉg for

any g ≥ 1. There exists a computationally private secret sharing scheme over
M = {0, 1}λ for Âckts, from the following assumptions and with the following
parameters:

– Under the RSA assumption (or iO and SSB hash functions), where the share
size of all parties belonging to the generation g ≥ 1 is m∧

g · poly(λ).
– Under either the DDH or the BDDH assumption, where the share size of all

parties belonging to the generation g ≥ 1 is (m∨
g)2 · poly(λ) + m∧

g · O(λ).
– Under the LWE assumption, where the share size of all parties belonging to

the generation g ≥ 1 is m∨
g · poly(λ) + m∧

g · O(λ).

Remark 5 (On the number of gates). Recall that we assumed for simplicity that
each input wire in the circuits Ĉg is only connected to OR gates with fan-in 1.
For this to hold, one needs to add an AND gate with fan-in 1 for every input wire
that goes into an OR gate with fan-in ≥ 2 (in order to maintain the invariant
that the circuit alternates OR and AND layers). Hence, the number of AND
gates m∧

g in the above corollary must be increased by an additive factor of at
most ng for every g ≥ 1.

6 Conclusions

We have initiated a systematic study of evolving secret sharing schemes in the
computational setting. Our main finding is that switching to computational secu-
rity allows to obtain secret sharing schemes for a plethora of evolving access
structures, including dynamic threshold, graphs, CNF and DNF formulas, and
monotone circuits access structures. Furthermore, for many of there access struc-
tures, our secret sharing schemes are succinct, i.e., much smaller compared to the
size of a natural computational representation of the evolving access structure.

A first natural direction for future research would be to obtain secret sharing
schemes for more evolving access structures (e.g., monotone NP [25], branching
programs [1], weighted threshold access structures [10]), or to improve our con-
structions in terms of hardness assumptions and/or share size. Another interest-
ing open problem is to study evolving secret sharing in the context of adaptive
security [23], or with additional properties such as verifiability [4], and non-
malleability [19,21].

Acknowledgements. The first author was partially supported by the Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM); the second
author was supported by project SERICS (PE00000014) and by project PARTHENON
(B53D23013000006), under the MUR National Recovery and Resilience Plan funded
by the European Union—NextGenerationEU.

Evolving Secret Sharing Made Short 97

References

1. Alon, B., Beimel, A., David, T.B., Omri, E., Paskin-Cherniavsky, A.: New upper
bounds for evolving secret sharing via infinite branching programs. Cryptology
ePrint Archive (2024), https://eprint.iacr.org/2024/419

2. Applebaum, B., Beimel, A., Ishai, Y., Kushilevitz, E., Liu, T., Vaikuntanathan, V.:
Succinct computational secret sharing. In: Proceedings of the 55th Annual ACM
Symposium on Theory of Computing. pp. 1553–1566 (2023). https://doi.org/10.
1145/3564246.3585127

3. Applebaum, B., Nir, O.: Upslices, downslices, and secret-sharing with complexity
of 1.5n. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol.
12827, pp. 627–655. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.
org/10.1007/978-3-030-84252-9 21

4. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0 32

5. Béguin, P., Cresti, A.: General short computational secret sharing schemes. In:
Guillou, L.C., Quisquater, J.J. (eds.) EUROCRYPT’95. LNCS, vol. 921, pp. 194–
208. Springer, Heidelberg (May 1995). https://doi.org/10.1007/3-540-49264-X 16

6. Beimel, A.: Secret-sharing schemes: A survey. In: Coding and Cryptology - Third
International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Pro-
ceedings. vol. 6639, pp. 11–46. Springer (2011)

7. Beimel, A., Farràs, O., Mintz, Y.: Secret-sharing schemes for very dense graphs.
Journal of Cryptology 29(2), 336–362 (Apr 2016). https://doi.org/10.1007/s00145-
014-9195-8

8. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D.,
De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 313–332. Springer, Heidelberg
(Sep 2018). https://doi.org/10.1007/978-3-319-98113-0 17

9. Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 529–
555. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-
1 19

10. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret
sharing. In: Theory of Cryptography: Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. pp. 600–
619. Springer (2005). https://doi.org/10.1007/978-3-540-30576-7 32

11. Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979
National Computer Conference 48, 313–317 (1979)

12. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear-
size alphabet. Theory of Computing 16(1), 1–18 (2020)

13. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) 5th IMA International Con-
ference on Cryptography and Coding. LNCS, vol. 1025, pp. 190–198. Springer,
Heidelberg (Dec 1995)

14. Csirmaz, L.: The size of a share must be large. In: Santis, A.D. (ed.) EURO-
CRYPT’94. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (May 1995). https://
doi.org/10.1007/BFb0053420

15. Csirmaz, L.: The size of a share must be large. In: Santis, A.D. (ed.) EURO-
CRYPT’94. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (May 1995). https://
doi.org/10.1007/BFb0053420

https://eprint.iacr.org/2024/419
https://doi.org/10.1145/3564246.3585127
https://doi.org/10.1145/3564246.3585127
https://doi.org/10.1007/978-3-030-84252-9_21
https://doi.org/10.1007/978-3-030-84252-9_21
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/3-540-49264-X_16
https://doi.org/10.1007/s00145-014-9195-8
https://doi.org/10.1007/s00145-014-9195-8
https://doi.org/10.1007/978-3-319-98113-0_17
https://doi.org/10.1007/978-3-030-45721-1_19
https://doi.org/10.1007/978-3-030-45721-1_19
https://doi.org/10.1007/978-3-540-30576-7_32
https://doi.org/10.1007/BFb0053420
https://doi.org/10.1007/BFb0053420
https://doi.org/10.1007/BFb0053420
https://doi.org/10.1007/BFb0053420

98 D. Francati and D. Venturi

16. Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Cryptogr. 63(1), 127–
147 (2012)

17. Desmedt, Y., Dutta, S., Morozov, K.: Evolving perfect hash families: A combi-
natorial viewpoint of evolving secret sharing. In: Mu, Y., Deng, R.H., Huang, X.
(eds.) CANS 19. LNCS, vol. 11829, pp. 291–307. Springer, Heidelberg (Oct 2019).
https://doi.org/10.1007/978-3-030-31578-8 16

18. Dutta, S., Roy, P.S., Fukushima, K., Kiyomoto, S., Sakurai, K.: Secret sharing on
evolving multi-level access structure. In: You, I. (ed.) WISA 19. LNCS, vol. 11897,
pp. 180–191. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-
39303-8 14

19. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
Adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 448–479.
Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26951-7 16

20. Francati, D., Venturi, D.: Evolving secret sharing made short. Cryptology ePrint
Archive (2023), https://eprint.iacr.org/2023/1534

21. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) 50th ACM STOC. pp. 685–698. ACM Press (Jun 2018).
https://doi.org/10.1145/3188745.3188872

22. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proc. IEEE Global Telecommunication Conf. (Globecom’87). pp.
99–102 (1987)

23. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Heidelberg (Aug 2017). https://
doi.org/10.1007/978-3-319-63688-7 5

24. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 485–514. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5 19

25. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. Journal of Cryptology
30(2), 444–469 (Apr 2017). https://doi.org/10.1007/s00145-015-9226-0

26. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: Dynamic thresh-
olds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol.
10678, pp. 379–393. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-
3-319-70503-3 12

27. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO’93.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (Aug 1994). https://doi.org/
10.1007/3-540-48329-2 12

28. Luby, M.: Lt codes. In: 43rd FOCS. pp. 271–282. IEEE Computer Society Press
(Nov 2002). https://doi.org/10.1109/SFCS.2002.1181950

29. Luby, M., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure
correcting codes. IEEE Trans. Inf. Theory 47(2), 569–584 (2001)

30. Mazor, N.: A lower bound on the share size in evolving secret sharing. In: 4th
Conference on Information-Theoretic Cryptography (ITC 2023). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.ITC.2023.
2

31. Mitzenmacher, M.: Digital fountains: a survey and look forward. In: 2004 IEEE
Information Theory Workshop, San Antonio, TX, USA, 24-29 October, 2004. pp.
271–276. IEEE (2004)

32. Paskin-Cherniavsky, A.: How to infinitely share a secret more efficiently. Cryptol-
ogy ePrint Archive, Report 2016/1088 (2016), https://eprint.iacr.org/2016/1088

https://doi.org/10.1007/978-3-030-31578-8_16
https://doi.org/10.1007/978-3-030-39303-8_14
https://doi.org/10.1007/978-3-030-39303-8_14
https://doi.org/10.1007/978-3-030-26951-7_16
https://eprint.iacr.org/2023/1534
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-662-53644-5_19
https://doi.org/10.1007/s00145-015-9226-0
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1109/SFCS.2002.1181950
https://doi.org/10.4230/LIPIcs.ITC.2023.2
https://doi.org/10.4230/LIPIcs.ITC.2023.2
https://eprint.iacr.org/2016/1088

Evolving Secret Sharing Made Short 99

33. Pueyo, I.C., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing
and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press
(May 1989). https://doi.org/10.1145/73007.73014

35. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979)

36. Shokrollahi, M.A., Luby, M.: Raptor codes. Found. Trends Commun. Inf. Theory
6(3-4), 213–322 (2009)

37. Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the
power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (Dec 2003)

38. Xing, C., Yuan, C.: Evolving secret sharing schemes based on polynomial evalua-
tions and algebraic geometry codes. Cryptology ePrint Archive, Report 2021/1115
(2021), https://eprint.iacr.org/2021/1115

https://doi.org/10.1145/73007.73014
https://eprint.iacr.org/2021/1115

Verifiable Secret Sharing from Symmetric
Key Cryptography with Improved

Optimistic Complexity

Ignacio Cascudo1(B) , Daniele Cozzo1 , and Emanuele Giunta1,2

1 IMDEA Software Institute, Madrid, Spain
{ignacio.cascudo,daniele.cozzo,emanuele.giunta}@imdea.org

2 Universidad Politecnica de Madrid, Madrid, Spain

Abstract. In this paper we propose verifiable secret sharing (VSS)
schemes secure for any honest majority in the synchronous model, and
that only use symmetric-key cryptographic tools, therefore having plau-
sibly post-quantum security. Compared to the state-of-the-art scheme
with these features (Atapoor et al., Asiacrypt ‘23), our main improve-
ment lies on the complexity of the “optimistic” scenario where the dealer
and all but a small number of receivers behave honestly in the sharing
phase: in this case, the running time and download complexity (amount
of information read) of each honest verifier is polylogarithmic and the
total amount of broadcast information by the dealer is logarithmic; all
these complexities were linear in the aforementioned work by Atapoor
et al. At the same time, we preserve these complexities with respect to
the previous work for the “pessimistic” case where the dealer or O(n)
receivers cheat actively. The new VSS protocol is of interest in multi-
party computations where each party runs one VSS as a dealer, such as
distributed key generation protocols.

Our main technical handle is a distributed zero-knowledge proof of low
degreeness of a polynomial, in the model of Boneh et al. (Crypto ‘19)
where the statement (in this case the evaluations of the witness polyno-
mial) is distributed among several verifiers, each knowing one evaluation.
Using folding techniques similar to FRI (Ben-Sasson et al., ICALP ‘18)
we construct such a proof where each verifier receives polylogarithmic
information and runs in polylogarithmic time.

1 Introduction

A (t, n)-threshold secret sharing scheme allows a dealer D to share a secret s
among n parties P1, . . . , Pn in such a way that any subset of t parties or less
has no information about s while any set of t + 1 or more parties can recover
s if they collaborate. The most famous example of threshold secret sharing is
the scheme proposed by Shamir [35]. The dealer samples a polynomial f(X) of
degree at most t with coefficients in a finite field F such that its evaluation in
a distinguished point α0 ∈ F is the secret s, i.e. f(α0) = s, and then sends an
evaluation si = f(αi) to each party individually, where αi are pairwise distinct
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 100–128, 2025.
https://doi.org/10.1007/978-981-96-0941-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_4&domain=pdf
http://orcid.org/0000-0001-5520-5386
http://orcid.org/0000-0001-5289-3769
http://orcid.org/0000-0001-5294-6648
https://doi.org/10.1007/978-981-96-0941-3_4

Verifiable Secret Sharing from Symmetric Key Cryptography 101

points in F (and different from α0). From the basic properties of polynomials it
follows that t or less parties do not have any information about s, while t + 1
parties can collaboratively reconstruct f(X) and hence recover s by Lagrange
interpolation. The above scheme however only provides security against passive
adversaries and does not prevent a dishonest dealer from sampling a polynomial
of the wrong degree or dishonest parties from sending incorrect values at the
moment of reconstruction.

A verifiable secret sharing (VSS) scheme solves these problems by ensuring
that the shares parties receive are part of a correct sharing of a secret according to
the specified underlying secret sharing scheme, and later that the honest parties
reconstruct the secret correctly. VSS is typically used for realizing distributed
schemes, for example realizing distributed key generation (DKG), which in turn
is a fundamental building block for threshold cryptography [25], and general
purpose multiparty computation (MPC) protocols [8].

VSS schemes have been realized from different assumptions, in both the syn-
chronous and asynchronous model. In this work we focus on the former. On
one side, starting with [8] there are VSS that offer perfect security, see [21]
for an exhaustive overview. These schemes do not rely on computational hard-
ness assumptions and are typically computationally efficient, but require high
communication and assume more than two thirds of parties being honest for
reconstructing the secret. If one is willing to admit an exponentially small prob-
ability of error in the reconstruction (statistical security), there are schemes that
offer unconditional security assuming only a simple honest majority starting with
[33], but they still require a large amount of communication between parties. On
the other hand, computationally secure VSS schemes based on public-key cryp-
tography have been proposed [7,16–19,24,27,32,34]. Thanks to public-key tools
some of these schemes are able to achieve the property of public verifiability.
A publicly verifiable secret sharing (PVSS) is a VSS scheme where all commu-
nication is done through a public channel and a public verifier can ensure the
correctness of the sharing and reconstruction. This typically employs a linearly
homomorphic encryption scheme by which the dealer encrypts the shares and
then publishes the ciphertexts, so that parties can use their own secret keys to
get the shares. The correctness of the shares is ensured by a proof that the plain-
texts of those ciphertexts are indeed shares of a polynomial of degree t, which
can be checked by everyone, not only the shareholders. This is particularly useful
in some scenarios such as the construction of randomness beacons [16,17] and
multiparty computation in some restricted settings, e.g. in the so-called YOSO
model [18,19].

Many of these schemes, in particular all cited above, only require simple
honest majority for reconstructing the secret. The downside of this approach
is that it suffers from large bandwidth and high cost from the prover due to
public-key operations.

A third class of VSS lies in the middle in terms of required security assump-
tions and attain computational security but only use symmetric-key cryptogra-
phy. Giving up on perfect secrecy puts these schemes in the regime of honest

102 I. Cascudo et al.

majority and at the same time relying on symmetric-key tools gives an advan-
tage in terms of efficiency over those relying on public-key primitives. While
these schemes are not publicly verifiable, this is enough for many applications,
for example multiparty computation and threshold cryptography.

Gennaro, Rabin and Rabin [26] proposed the first computational VSS that
relies solely on symmetric-key tools. However their scheme only achieves a weaker
notion of security and communication is linear in the number of parties. Backes,
Kate and Patra [6] proposed a VSS whose security relies solely on the binding
property of commitment schemes, that can be instantiated with hash functions.
However, sharing a secret involves using a bivariate polynomial that yields O(n2)
in communication.

The state-of-the-art is a recent work by Atapoor et al. [3], which uses a novel
approach for constructing VSS starting from distributed zero-knowledge (dZK)
proofs. The notion of distributed dZK proof was formally introduced in [13]. In
this setting a prover wants to convince n verifiers V1, . . . , Vn that a statement x
lies in some language L (in the case of NP-languages that there exists a witness
for which x ∈ L). The main difference with the standard notion of interactive
(zero-knowledge) proof is that now x is distributed among the verifiers, but
no single verifier knows x in full. A distributed zero-knowledge proof system is
required to satisfy correctness, meaning that if all verifiers accept then x ∈ L;
soundness, meaning that if there is no w for which x ∈ L then the proof rejects
even if the prover colludes with t − 1 verifiers; and zero-knowledge, namely that
the proof does not reveal any information about w to up to t colluding verifiers.

As shown in [3], one can realize a VSS from a distributed dZK proof. The
dealer runs a dZK proof for membership to the following language

L = {x = (x1, . . . , xn) ∈ Rn : ∃f(X) ∈ R[X] : xi = f(αi), deg(f) ≤ t}. (1)

where R is a (commutative, with 1) ring, and (α1, . . . , αn) is a (fixed, public)
exceptional set in R.1 The share-receivers play the role of verifiers for this dZK
proof. Then a consensus protocol allows the parties to resolve conflicts in case
of rejections, and eventually disqualify the dealer.

The starting point of [3] is a simple distributed Σ-protocol for (1). At a
high level their construction works as follows: the dealer with input a secret
polynomial f(X) of degree ≤ t with x0 = f(α0) and xi = f(αi), samples a
uniformly random polynomial b(X) also of degree ≤ t, broadcasts commitments
to its evaluations, and then computes a random linear combination r(X) =
b(X)+μf(X) where μ ∈ F is sampled by the verifiers. The prover then broadcasts
the polynomial r(X) while it sends, privately to each party i, the share xi and the
opening to the commitments to b(αi). Each verifier Vi can individually check the
proof by checking the openings of the commitments and that r(αi) = b(αi)+μxi.

The resulting VSS has a O(n log n) cost for the dealer, which is inherent due
to the need of evaluating a polynomial of degree O(n) on n points. Their VSS
works for more general structures than fields, for example rings with a large
1 An exceptional set is a set where the pairwise differences of distinct elements in the

set are all invertible in the ring.

Verifiable Secret Sharing from Symmetric Key Cryptography 103

enough exceptional set. However their protocol requires at least O(n) compu-
tational cost for the shareholders already in the sharing phase, as verification
requires to evaluate the polynomial r(X). In terms of communication, the dealer
needs to broadcast the whole polynomial r(X) (which amounts to a O(n) amount
of broadcast communication) and consequently each verifier has linear download
complexity, i.e. each verifier receives O(n) amount of communication.

An important observation for this work is that the above complexities
hold even in the “optimistic” case where no party eventually acts dishonestly. In
particular, the verifiers complexity is O(n) in that case. If there are Θ(n) corrupt
verifiers or if the dealer is corrupt, then the complexity becomes O(n log n).

This leads us to the question of whether we can design VSS protocols that
have a better optimistic complexity, i.e., that allow for sublinear o(n) or even poly-
logarithmic O(polylog n) verifier work, in the case where the dealer is honest
and up to a “small” number (say O(1)) of verifiers are corrupted, while still not
worsening the verifier complexity of the pessimistic cases where either the dealer
and/or a large number of verifiers up to certain bound t = O(n) are corrupted.

Note that even though there is one party (namely, the dealer) who may
on their own force the pessimistic case to happen, the scenario above can be
of interest in many uses of VSS in multiparty computation protocols where,
at a certain round, n instances of VSS are run, one for each of the parties
acts as a dealer. One of the most well known examples of this is the case of
distributed key generation protocols for discrete-log based threshold schemes,
where each party chooses and VSSs a random field element, and the secret key
is computed as the sum of the correctly VSSed elements. In cases as the above,
if the adversary actively corrupts, say, O(1) parties during the execution, these
parties will be able to force the worst case complexity in the O(1) instances where
they are acting as dealers, but the remaining instances will enjoy the optimistic
complexity. The total work of each honest party across the n VSS instances will
be O(n polylog n), which would be an improvement over the O(n2) complexity
that would arise from using [3]. At the same time, the VSS would still remain
secure against a more powerful adversary corrupting O(n) parties.

While verifier complexity is our main concern in this paper, we are also inter-
ested in improving the download complexity per party and broadcast communica-
tion in these optimistic cases. The latter is interesting in blockchain ecosystems,
where one wants to limit as much as possible the amount of information stored
on-chain. We do need to remark that this will come at the cost of increasing
the amount of private communication sent by the dealer to each party, as we
describe in the next paragraphs.

Our Contributions. In this work we present a VSS construction that only
employs secret key cryptography, tolerates t < n/2 corrupt parties, and improves
on the state of the art with regards to optimistic verifier complexity as well as
optimistic broadcast and download complexity, while still matching the complex-
ities of previous works in the pessimistic case. In particular, in the optimistic case
where the dealer is honest and there are O(1) corrupt verifiers, the verifier com-
plexity is O(log(n)2), the dealer broadcasts O(log n) information and each party

104 I. Cascudo et al.

needs to receive O(log(n)2) information in total, via the broadcast and private
channels2. All these complexities were O(n) in [3]. In the pessimistic case (where
the dealer and/or O(n) verifiers are corrupt) the asymptotic complexities match
those of [3]: the broadcast and download complexities are O(n) and the verifier
complexity is O(n log n). In all cases the prover complexity is O(n log n), same as
in [3]. This all comes at the cost of increasing the private communication: while
in [3] the dealer needs to send a constant amount of information privately to each
party, in our work this will be O(log(n)2). While this increases the total amount
of information communicated by the dealer, the decreased use of the broadcast
channel may be beneficial in some applications as we have argued above.

Our main technical handle is a new distributed ZK proof for language (1) with
polylogarithmic proof size in the degree of the polynomial that only leverages
on symmetric-key primitives and supports rings with a large enough exceptional
set, and which we believe to be of independent interest.

In more detail, in our VSS protocol the dealer initially broadcasts O(log n)
information (the “public” part of the aforementioned distributed ZK proof), as
well as sending O(log(n)2) information to each party privately, which contains
the shares and private part of the distributed proof. The verifiers are required
to perform O(log(n)2) computation3. Only if there are complaints, the proto-
col incurs in more communication and computation as the prover then needs to
broadcast the private communication previously sent to the complaining par-
ties. In the worst case where O(n) share receivers complain, the dealer needs to
broadcast O(n) information (and no additional private communication) and the
share receivers need to perform O(n log n) computation. As mentioned above,
these costs are the same as in the state-of-the-art [3], with the one aforementioned
caveat that we require more private communication. See Table 1 for comparisons.

Our VSS tolerates up to t = n/2− 1 corruptions and is proven secure in the
random oracle model and, as in [3], we are able to support rings with a large
enough exceptional set.

Technical Overview of Our Approach. To construct our VSS, we follow the
paradigm of [3] starting from a distributed ZKP of the existence of a low degree
polynomial interpolating the shares. At the heart of our work is an efficient
distributed proof (without zero-knowledge) for the same task.

More precisely, the n verifiers each have a piece xi ∈ R of the statement, and
the prover wishes to convince them that there is a polynomial f(X) of degree
< d such that xi = f(αi) for all i ∈ {1, . . . , n} (or more precisely, for all the
honest verifiers Vi).

Our interactive proof is recursive and based on a folding technique, similar to
proofs in the literature such as FRI [9] and DARK compilers [14]. At every step k
of the recursion the prover claims that a certain polynomial f (k)(X) has degree <
d/2k (where in addition f (0) = f); the recursion reduces this task to proving that
some related randomized polynomial f (k+1)(X) has degree < d/2k+1. At the last

2 Precise asymptotic costs according to active corruptions are given in Sect. 4.3.
3 Specifically O(log n) ring operations and O(log(n)2) hashes.

Verifiable Secret Sharing from Symmetric Key Cryptography 105

step k = τ of the recursion, the prover simply broadcasts f (τ) which is of small
enough degree d/2τ . For the folding of f (k) into f (k+1) we offer two alternatives:
in our first alternative, which is inspired by [14], the prover splits f (k) in high
and low degree terms (i.e. f (k)(X) = g

(k+1)
0 (X) + Xd/2k+1

g
(k+1)
1 (X)), receives

a random challenge μ(k) and constructs f (k+1) as f (k+1)(X) = g
(k+1)
0 (X) +

μ(k+1)g
(k+1)
1 (X). The second alternative is the one in FRI: the prover splits f (k)

in odd and even degree terms, i.e. as f (k)(X) = g
(k)
0 (X2)+Xg

(k)
1 (X2), and again

sets f (k+1)(X) = g
(k+1)
0 (X) + μ(k+1)g

(k+1)
1 (X).

The reason why we have two alternatives is that, for general rings R, the
first alternative requires fewer assumptions on the set of evaluation points
{α1, . . . , αn}; namely, we require that this is an exceptional set, i.e. that the
pairwise differences of all the elements in the set are invertible in the ring. On
the other hand, using the second alternative requires in addition that all sets
{α2k

1 , . . . , α2k

n } for k = 0, . . . , τ are exceptional. However, if we do have this guar-
antee, for example if R is a finite field, the second alternative may also lead to
more efficient protocols.

A technical difference with FRI is in how the prover shows that this splitting
has been done correctly. Instead of committing to the evaluation of f (k)(X),
g
(k+1)
0 , g

(k+1)
1 in a large set of points and then opening a random subset chosen

by the (single) verifier, in our case the prover commits to the evaluations of
these polynomials in {α1, . . . , αn} (or {α2k

1 , . . . , α2k

n } in the second alternative)
and then opens the evaluations in the i-th point privately to the i-th verifier.
Note that in our case, the prover cannot cheat, even with small probability,
in this step as essentially the honest verifiers are checking that the splitting is
correct in all honest points. The only source of soundness error in our case is
the fact that the degree of g

(k+1)
0 (X) + μ1g

(k+1)
1 (X) may be smaller than the

degrees of both g
(k+1)
0 (X) and g

(k+1)
1 (X), which happens with small probability

if μ is sampled from a large exceptional set of the ring.
The recursive nature of our protocol allows us to achieve a proof where the

size of the communication received by each verifier (both broadcast and pri-
vately) is polylogarithmic in the degree of the polynomial. Instantiating the
commitments with Merkle trees allows for efficient openings and give the proto-
col computational security based only on the security of hash functions.

Our technique allows us to work over rings with a large enough exceptional
set, and we believe this to be of independent interest as it would allow construct-
ing ring-friendly polynomial commitments that are plausibly post-quantum
secure.

We then show how to easily add zero-knowledge to the protocol above by
adding two additional rounds. In the first round the prover samples a uniformly
random polynomial b(X) of the same degree of f(X) and sends a commitment to
it to the verifiers, that will respond with a random challenge μ0. The prover then
computes the random linear combination r(X) = b(X) +μ0f(X) and applies to
it the above folding protocol. The zero knowledge property comes from the fact
that b(X) information-theoretically hides f(X).

106 I. Cascudo et al.

By interpreting these two additional rounds as the first two rounds of the
distributed Σ-protocol of [3], we can see our construction as a distributed version
of the technique used to compress standard Σ-protocols [4] where the prover
replaces the third message of a Σ-protocol by a (non zero-knowledge) proof that
this last message satisfies a certain property (in this case that deg r(X) < d). We
then turn the above (2τ +3)-rounds dZK proof into a non-interactive dZK proof
using the Fiat-Shamir transform.

Following the construction of [3], we obtain a VSS by adding a consensus pro-
tocol on the execution of the non-interactive dZK proof. The resulting VSS inher-
its the logarithmic communication complexity and computational costs from the
dZKP.

Comparison with Previous Work. We compare our VSS with other honest major-
ity schemes in Table 1. For [3] and our work we include the costs for both the
optimistic (no complaints) and pessimistic (O(n) complaints) case. Such a dis-
tinction does not exist in the case of PVSS thanks to the public verifiability
feature. Such a feature, however, comes at the price of having O(n) broadcast
communication and O(n log n) computational complexity for both dealer and
parties in terms of (expensive) group operations. Compared to the state-of-the-
art [3], in the optimistic case we decrease the amount of information to be broad-
casted from O(n) to O(log n), as well as the total download per party, from O(n)
to O(log(n)2), and parties computational cost from O(n) to O(log n). Instead we
add a polylogarithmic factor log(n)2 to the amount of private communication.
The computational cost for the dealer is the same, O(n log n) ring operations,
which is an inherent cost from the evaluation of the secret polynomial defining
the shares. In the pessimistic case, the cost are the same, except we still pay for
the polylogarithmic factor in private communication.

Other Related Work. In this work we only focus on protocols that operate in
the so-called synchronous model. Here the parties are synchronized by a global
clock and there are strict (publicly-known) upper bounds on the message delays.
On the other hand, there is a line of works that explores protocols in the
asynchronous model [1,2,22,36], where the parties are not synchronized and
where the we assume that the adversary can take control of the network and
arbitrarily delay the messages sent by the parties. Designing VSS protocols in
this setting is more challenging and inherently support at most n/3 − 1 cor-
ruptions. Our techniques, in particular, do not apply to this asynchronous case,
where parties would need to broadcast and read decision bits (even in the case
everyone accepts) so communication and verification time would be linear even
in the optimistic case.

Outline. In Sect. 2 we recall and revise known definitions. Our distributed
proof of low degree is detailed in Sect. 3, starting from two (non ZK) protocols
(Sects. 3.1–3.2) and later adding zero knowledge (Sect. 3.3) and removing inter-
action (Sect. 3.4). Finally, Sect. 4 is devoted to building VSS from distributed
proofs of low degree.

Verifiable Secret Sharing from Symmetric Key Cryptography 107

Table 1. Comparison of our VSS with previous computationally secure VSS For com-
parison, we specialize our scheme and that of [3] to R = F, a finite field. PV: public
verifiability, BC: broadcast, PC: private communication to each party, DW: download
per party, OF(•): complexity in terms of field operations, OG(•): complexity in terms
of group operations. Note that publicly verifiable secret sharing schemes assume an
initial PKI setup, or otherwise need an additional round to establish this PKI.

Scheme Assumption Rounds
Prover Verifier

Communication PV
complexity complexity

[34] DDH, RO 1 OG(n logn)OG(n2 logn)

BC: O(n)

yesPC: −
DW: O(n)

[16,17],
[19]

DDH, RO 1 OG(n logn) OG(n log n)

BC: O(n)

yesPC: −
DW: O(n)

[18,29] Class group
assump., RO 1 OG(n logn) OG(n log n)

BC: O(n)

yesPC: −
DW: O(n)

[3]
optimistic case

SK, RO 2 OF(n logn) OF(n)

BC: O(n)

noPC: O(1)

DW: O(n)

[3]
pessimistic case

SK, RO 3 OF(n logn) OF(n logn)

BC: O(n)

noPC: O(1)

DW: O(n)

This work
optimistic case

SK, RO 2 OF(n logn) OF(log2 n)

BC: O(log n)

noPC: O(log2 n)

DW: O(log2 n)

This work
pessimistic case

SK, RO 3 OF(n logn) OF(n logn)

BC: O(n)

noPC: O(log2 n)

DW: O(n)

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, . . . , n}. In what follows R denotes a ring and R[X]
(resp. R[X]t) the ring of polynomials (resp. degree ≤ t polynomials) with coeffi-
cients in R. Vectors are denoted in bold. For a vector x we denote by xi its i-th
entry, while xH denotes the subvector (xi)i∈H for a given set of indices H. All
logarithms are assumed in base two.

2.2 Adversarial and Communication Model

In our protocols we will consider a network of n parties P1, . . . , Pn. We work in
the synchronous communication model and assume that parties are conncted to
each other by private, authenticated and bidirectional channels.

108 I. Cascudo et al.

We further assume that all parties have access to a broadcast channel [31].
This means that parties can send a message reliably to each other. In addition,
if a party receives a message via a broadcast, then it knows that all other honest
parties received the same value.

A synchronous network allows protocols to operate in a sequence of rounds.
In each round, parties perform some local computation, send messages (if any)
through the private and authenticated link, and broadcast some information over
the broadcast channel. At the end of each round, they receive all messages sent
or broadcast by the other parties in the same round.

For the adversarial model, we assume a static, malicious adversary that cor-
rupts up to t < n

2 parties in the protocol. While honest parties send messages
following the protocol, corrupt parties may send arbitrary messages. Also, the
adversary may be rushing, meaning that at each round of the protocol it waits
to see what the other parties have broadcasted before broadcasting its own mes-
sages.

2.3 Vector Commitments

Definition 1. A vector commitment with message space VC.M and commitment
space VC.C is a tuple of algorithms VC = (VC.Setup,VC.Com,VC.Open,VC.Vfy)
defined as follows:

– pp ← VC.Setup(1λ, n) : given the security parameter and size of the vectors to
be committed returns public parameters.

– (cm, aux) ← VC.Com(pp,x) : given public parameters and a vector x ∈ VC.Mn

outputs a commitment cm and auxiliary information aux used for opening.
– op ← VC.Open(pp, cm, i, aux) : given public parameters, an index i ∈ [n] and

a commitment cm with auxiliary information aux, returns an opening proof
op for position i.

– b ← VC.Vfy(pp, cm, x, i, op) : given public parameters, an element x, position
i, proof op and a commitment cm, it checks the validity of the opening proof.

Properties that a secure VC is required to satisfy are correctness, position
binding and succinctness. In this work we further consider hiding VC.

Correctness. A vector commitment is correct if for any x ∈ VC.Mn

Pr

⎡
⎢⎣VC.Vfy(pp, cm, xi, i, op) = 1 :

pp ← VC.Setup(1λ)
cm, aux ← VC.Com(pp,x)
op ← VC.Open(pp, cm, i, aux)

⎤
⎥⎦ = 1.

Position Binding. Define the advantage:

AdvPBinding
VC (A) =

Pr

[
VC.Vfy(pp, cm, x0, i, op0) = 1
VC.Vfy(pp, cm, x1, i, op1) = 1

: (cm, i, x0, op0, x1, op1) ← A(pp)

]
.

Verifiable Secret Sharing from Symmetric Key Cryptography 109

Then a vector commitment VC satisfies position binding if, for all honestly gen-
erated public parameters pp, for all PPT adversaries A one has

AdvPBinding
VC (A) = negl(λ).

Hiding. The hiding property [28] informally states that opening a number of
positions in a vector commitment should keep the unopened ones hidden. For-
mally, for any non-empty subset T ⊂ [n] define the advantage

AdvHiding
VC (A, T) = Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b = b′ :

pp ← VC.Setup(1λ), b ← {0, 1}
x0,x1 ← A(pp), x0[j] = x1[j] ∀j ∈ T

(cm, aux) ← VC.Com(pp,xb)
opj ← VC.Open(pp, cm, j, aux) ∀j ∈ T

b′ ← A(pp, cm, {opj}j∈T)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then we say that VC is hiding if, for all non-empty T ⊂ [n] and all PPT
adversaries A one has that

AdvHiding
VC (A, T) =

1
2
+ negl(λ).

Succintness. A vector commitment is succint if both the commitment cm and
opening proof op for a position i are independent of the size of the committed
vector. In this work, we will slightly relax this notion, by allowing the opening
proof for a position to be logarithmic in the size n of the vector. For example,
this is the case of Merkle trees, which are discussed next.

Merkle Trees. In this work we will be using Merkle trees to instantiate (hiding)
vector commitments.4 For Merkle trees we will be using the specific notation
MT = (MT.Setup,MT.Com,MT.Open,MT.Vfy). Let n be a power-of-two5 and
let H be a collision resistant hash function. A Merkle tree commitment to a
vector x of n elements consists in a binary tree, where the leaves are the hash of
the elements xi and each node is the hash of its children. It is a tree of height
log n. Formally, setting d = log n if we label the entries of x with the binary
representation of their indexes then

leaves: hb0b1...bd
= H(xb0b1...bd

)
level 1 : hb0b1...bd−1 = H(hb0b1...bd−10‖hb0b1...bd−11)
level k : hb0b1...bd−k

= H(hb0b1...bd−k0‖hb0b1...bd−k1)

4 The reason being that Merkle trees can be realized from hash functions only which
is fundamental to our purpose of realizing a VSS from symmetric-key cryptography
only. Furthermore they do not require setup.

5 If not we can pad the vector with zeros.

110 I. Cascudo et al.

A public commitment to x then consists in the root of such a tree, with the
convention that the root is indexed by the empty string ε, namely cm = hε =
H(h0‖h1). Opening the commitment at position i can be done by revealing the
corresponding leaf xi and all the sibling values of all the nodes in the path from
xi till the root, which is logarithmic in the size of x.

Formally, for a bit b, let b denote 1 − b. Then an opening for position i with
binary representation b0 . . . bd is given by the list

(
xb0...bd−1bd

, hb0...bd−1bd
, hb0...bd−2bd−1

, . . . , hb0...bd−kbd−k+1
, . . . , hb0

)
.

Verifying the opening requires hashing the siblings to recompute the nodes
in the path, and checking that the last node is indeed the same as the initial
commitment root. The position binding of the Merkle tree can be reduced to the
collision resistance of H.

It is possible to turn such a construction into an hiding vector commitment
by computing the leaves using a uniformly random string from {0, 1}λ, one for
each leaf. In other words hb0b1...bd

= H(xb0b1...bd
‖rb0b1...bd

). Then an opening for
position i must include ri. For simplicity, in the rest of the paper we will assume
that all Merkle trees are hiding.

2.4 Distributed Zero-Knowledge Proofs

Here we recall the definition of zero-knowledge proof for distributed relations,
introduced in [13], suitably adapted to rings.

Definition 2 (Distributed Inputs, Languages, and Relations [13][). Let n
be a number of parties, R be a ring, and l, l1, l2, · · · , ln ∈ N be length parameters,
where l = l1 + l2 + · · · + ln. An n-distributed input over Rl (or just distributed
input) is a vector x = x(1)‖x(2)‖ · · · ‖x(n) ∈ Rl where each x(i) ∈ Rli is called a
piece (or share) of x. An n-distributed language L ⊂ Rl is a set of n-distributed
inputs. A distributed NP relation with witness length h is a binary relation R ⊂
Rl × Rh of pairs (x,w) with n-distributed input x ∈ Rl and witness w ∈ Rh,
such that (x,w) ∈ R can be checked in polynomial time. Finally, we let LR =
{x ∈ Rl : ∃w ∈ Rh, (x,w) ∈ R}.
Definition 3 (n-Verifier Interactive Proofs [13]). An n-Verifier Interactive
Proof protocol over R is an interactive protocol Π = (P, V1, V2, · · · , Vn) involving
a prover P and n verifiers V1, V2, · · · , Vn. The protocol proceeds as follows.

– In the beginning of the protocol the prover holds an n-distributed input x =
x(1)‖x(2)‖ · · · ‖x(n) ∈ Rl, a witness w ∈ Rh, and each verifier Vj holds an
input piece (or share) x(j).

– The protocol allows the parties to communicate in synchronous rounds over
secure point-to-point channels and a broadcast channel.

– At the end of the protocol each verifier outputs either 1 (accept) or 0 (reject)
based on its view, where the view of Vj consists of its input piece x(j), its
random input r(j), and messages it received during the protocol execution.

Verifiable Secret Sharing from Symmetric Key Cryptography 111

The protocol accepts if all verifiers accept, and the protocol rejects if at least
one verifier rejects.6

In the following, Π(x,w) denotes running Π on shared input x and witness
w, and says that Π(x,w) accepts (respectively, rejects) if at the end all verifiers
(resp. at least one honest verifier) output 1 (resp., 0). V iewΠ,T (x,w) denotes
the (joint distribution of) views of verifiers {Vj}j∈T in the execution of Π on
distributed input x and witness w.

Let R(x,w) be an n-distributed relation over a ring R. We say that an n-
verifier interactive proof protocol Π = (P, V1, · · · , Vn) is a distributed strong
ZK proof protocol for R with t-security against malicious prover and malicious
verifiers, and with soundness error ε, if Π satisfies the following properties:

Definition 4 (Correctness). For every n-distributed input x = x(1)‖x(2)‖ · · ·
‖x(n) ∈ Rl and w ∈ Rh such that (x,w) ∈ R, the execution of Π(x,w) accepts
with probability 1. Note this definition assumes the prover and all verifiers behave
honestly.

Definition 5 (ε-Soundness Against Prover and t Verifiers). For every
T ⊆ [n] of size |T | ≤ t, an adversary A controlling the prover P and verifiers
{Vj}j∈T , n-distributed input x = x(1)‖x(2)‖ · · · ‖x(n) ∈ Rl, and every w ∈ Rh,
the following holds. If there is no n-distributed input x′ ∈ LR such that x′

H = xH ,
where H = [n]\T , the execution of Π� rejects except with probability at most ε,
where Π� denotes the interaction of A with the honest verifiers.

In analogy to ordinary interactive proofs, we say soundness holds adaptively
if the input is chosen by the malicious prover (see for instance [5]), potentially
after observing the public parameters, or interacting with the random oracle.

Definition 6 (Strong Zero-Knowledge against t Verifiers). For every
T ⊆ [n] of size |T | ≤ t and a malicious adversary A controlling the verifiers
{Vj}j∈T , there exists a simulator Sim such that for every n-distributed input
x = x(1)‖x(2)‖ · · · ‖x(n) ∈ Rl, and witness w ∈ Rh such that (x,w) ∈ R, we have
Sim((x(j))j∈T) ≡ V iewΠ�,T (x,w). Here, Π� denotes the interaction of adversary
A with the honest prover P and the honest verifiers {Vj}j∈[n]\T .

In order to later provide a compiler analogous to the Fiat-Shamir transform,
we define a distributed proof to be public coin if in the interactive phase verifiers
only executes a coin-tossing protocol Fcoin. Finally we also consider the stronger
notion of round-by-round soundness [15], adapted to the distributed proof setting
and restricted for simplicity to the public coin case.
6 We stress the fact that in our definition, the protocol rejects if at least one verifier

rejects, unlike [13], where the protocol rejects if all verifiers reject. Although the
latter is a stronger notion of soundness, it is always possible to achieve by adding
some rounds of consensus among the verifiers. Later we’ll construct a VSS from a
ZK proof on distributed inputs. This is done by adding such a consensus protocol
outside the proof system. We made this choice so as to mark clearly the step from
proof system to VSS.

112 I. Cascudo et al.

Definition 7. A distributed public coin proof has ε-round-by-round soundness
against a prover and t verifiers if there exists a set D of doomed transcripts such
that, for any T ⊆ [n] of size |T | ≤ t

1. Given (xi)i/∈T such that �x′ ∈ LR : x′
i = xi for i /∈ T , then (xi, ∅)i/∈T ∈ D.

2. Given (xi, vi)i/∈T ∈ D, where vi denotes the view of verifier Vi till the current
state, for any reply (M,mi) where M , mi denote the messages broadcast and
privately sent to Vi respectively at the end of the current round, and random
coins μ tossed by the verifiers

Pr [(xi, (vi‖M‖mi‖μ))i/∈T /∈ D] ≤ ε(λ).

3. For any list of full transcripts7, (xi, vi)i/∈T ∈ D ⇒ ∃j /∈ T : Vj rejects.

2.5 Interpolation and Shamir Secret Sharing over Rings

A (t, n)-Shamir secret sharing scheme allows n parties to individually hold a
share xi of a common secret x0, such that any subset of t parties or less are
not able to learn any information about the secret x0, while any subset of at
least t+1 parties are able to efficiently reconstruct the common secret x0. While
Shamir’s scheme is originally defined over a finite field F, meaning the secret and
all shares are values in F, it can be extended to rings through exceptional sets,
as described in [23]. We recall the details here.

Definition 8. Let R be a ring. An exceptional set is a set S ⊂ R, where for
every pair x, x′ ∈ S with x �= x′, the difference x − x′ is invertible in R.

Lemma 1. Let m > t ≥ 0 be integers, R a ring, S = {α1, . . . , αm} ⊆ R an
exceptional set. Then for every Q = {i1, . . . , it+1} ⊆ [m] the map R[X]t → Rt+1

given by f(X) �→ (f(αi1), . . . , f(αit+1)) is an R-module isomorphism.

In details, the inverse of the isomorphism above is given by mapping (x1, . . . ,

xt+1) to f(X) =
∑

i∈Q xi · LQ
i (X) where

LQ
i (X) :=

∏
j∈Q\{i}

αj−X
αj−αi

are the Lagrange basis polynomials, which are all of degree t, and well defined
thanks to Q being exceptional.

Now (t, n)-Shamir secret sharing can be defined over R, as long as it contains
an exceptional set of “evaluation points” E = {α0, α1, . . . , αn} ⊂ R of size n+1.
Each party Pi, i ∈ [n], is associated to the element αi while α0 is associated to
the secret. To share secret x0, a polynomial f(x) is chosen uniformly at random
in the set of polynomials in R[X]t with f(α0) = x0. Each party Pi is assigned
the secret share xi = f(αi). Then any subset Q ⊆ {1, . . . , n} of at least t + 1
parties can reconstruct the secret x0 via Lagrange interpolation by computing
x0 = f(α0) =

∑
i∈Q xi · LQ

i (α0), where LQ
i is as above. Moreover, also based on

7 The transcript until the point when the verifier halts.

Verifiable Secret Sharing from Symmetric Key Cryptography 113

Lemma 1, a subset of t or fewer parties are not able to find x0 = f(α0), as this
is information theoretically hidden from the other shares. See [23] for details.

Finally we will need another technical lemma involving exceptional sets,
which can be derived easily from Lemma 1.

Lemma 2. Let S ⊂ R be an exceptional set. Let N ≥ 1 be an integer and
h(0)(X), h(1)(X), . . . , h(N)(X) be N +1 arbitrary polynomials in R[X]. Let d :=
max

{
deg h(i)(X) : i ∈ {0, . . . , N}}.

Then if ν1, . . . , νN are sampled independently and uniformly at random in S,

Pr
[
deg

(
h(0)(X) +

∑N

i=1
νih

(i)(X)
)

< d

]
≤ 1

|S|
Proof. If d > deg h(i)(X) for all i ∈ {1, . . . , N} (hence also deg h(0) = d), then
the claim is trivial.

Otherwise there exists a (possibly non-unique) � ∈ {1, . . . , N} such that
deg h(�) = d. We show that for every fixed choice of (νi)i�=� ∈ SN−1, there exists
at most one ν� ∈ S such that deg(h0(X) +

∑N
i=1 νih

(i)(X)) < d. This is clearly
enough to show the claim.

Let f(X) = h(0)(X) +
∑N

i=1,i �=� νih
(i)(X). Note f(X) + ν�h

(�)(X) is the

polynomial whose degree we want to bound. Let fd, h
(�)
d respectively denote the

coefficients of Xd in f(X) and h(�)(X) (if deg f < d then fd = 0). Note that
h
(�)
d �= 0. Let m(X) = fd + h

(�)
d X ∈ R[X]1. There is at most one value s ∈ S

such that m(s) = 0, otherwise if m(s′) = 0 for some other s′ ∈ S, then m(X)
and 0 would be two different polynomials in R[X]1 with the same evaluations in
a set {s, s′} ⊂ S of size 2, which is impossible by Lemma 1. Therefore there is at
most one value ν� = s in S for which the coefficient of Xd in f(X) + ν�h

(�)(X)
is 0, and hence for which this polynomial can have degree less than d.

2.6 Verifiable Secret Sharing Scheme

Definition 9 (From [6,21]). A (t, n)-VSS protocol is an interactive protocol
between n parties P1, . . . , Pn and a distinguished party, the dealer, denoted by D
and consists of two phases, a sharing phase and a reconstruction phase, defined
as follows:

1. Share: initially D holds an input x0, referred to as the secret. The sharing
phase may consist of several rounds of interaction between the parties. At the
end of the sharing phase, each honest party Pi holds a view vi that may be
used later to reconstruct the dealer’s secret.

2. Reconstruction: in this phase each party Pi publishes its entire view vi from
the sharing phase, and a reconstruction algorithm Reconstruction(v1, . . . , vn)
is run and the output is taken as the protocol output.

Definition 10. A (t, n)-VSS is secure if for every adversary that controls parties
{Pi}i∈T belonging to a subset T ⊆ [n] of size |T | ≤ t, possibly including the
dealer, it satisfies the following properties up to negligible probability.

114 I. Cascudo et al.

1. Correctness. If the dealer is honest (i.e., not controlled by the adversary),
then all honest parties output x0 at the end of Reconstruction.

2. t-Privacy. If the dealer is honest, then the adversary’s view at the end of
Share reveals no information about the secret x0. In other words, the adver-
sary’s view is identically distributed for all possible secrets x0.

3. Commitment. If the dealer is dishonest (i.e. controlled by the adversary),
then at the end of Share there exists a unique value x∗

0 ∈ R ∪ {⊥} such that
at the end of Reconstruction all parties return x∗

0.

A stronger notion of VSS requires correctness, t-privacy and strong commitment
defined as follows:

3. Strong commitment. The scheme has the commitment property above and
in addition, if the dealer is dishonest, at the end of the sharing phase each
(honest) party locally outputs a share of the secret chosen only in R, such that
the joint shares output by honest parties are consistent with a specified secret
sharing scheme.

In this work we will focus on Shamir secret sharing schemes. Then the def-
inition of strong commitment means that at the end of the sharing phase, the
shares xi held by the honest parties implicitly define a polynomial f(X) ∈ R[X]t
of degree t such that f(αi) = xi.

Our constructions will actually only achieve a computational flavor of privacy.
In this case, we argue that for any two different secrets x0, x∗

0, the distributions
of the views of any adversary corrupting at most t share-receivers in respectively
a sharing of x0 and x∗

0 are computationally indistinguishable. We capture this
by stating that for any such an adversary there is a simulator that can produce
a view that is computationally indistinguishable of the sharing of any secret x0.

Definition 11. Computational t-privacy. For any adversary A corrupting
a set of parties {Pi}i∈T , with |T | ≤ t, there exists a simulator S that inter-
acts with A, playing the role of the honest dealer and honest parties {Pi}i∈[n]\T ,
such that for any x0 ∈ R, V iewA,S ≡c V iewA,Share(x0) where V iewA,S and
V iewA,Share(x0) are the random variables describing the view of A when inter-
acting with S and when interacting with the dealer and {Pi}i∈[n]\T in the sharing
phase Share of the VSS, where the dealer has input x0.

3 Distributed Low-Degree Proofs

3.1 Interactive (non-ZK) Distributed Low-Degree Proof

We describe now a distributed (interactive) proof for the existence of a low-
degree polynomial interpolating a distributed input, under the assumption that
no more than t out of n verifiers collude. More precisely, let R be a ring, E =
{α1, . . . , αn} ⊆ R an exceptional set and d ∈ N. Consider the relation

Rd,E
lowdeg = {(x, f) : x = (x1, . . . , xn) ∈ Rn, f ∈ R[X]d−1, f(αi) = xi ∀i ∈ [n]}.

Verifiable Secret Sharing from Symmetric Key Cryptography 115

Provided each verifier Vi holds xi, with x = (x1, . . . , xn), our protocol proves
x is in the language induced by the relation above. Note we are not concerned
with zero-knowledge here, which will be addressed later in Sect. 3.3.

The proof is based on folding, resembling FRI [9] and [14]: the problem of
showing low-degree is self-reduced at each round to an instance with half the
initial degree. Specifically, let f (k−1) be the polynomial claimed to have degree
dk−1 at the start of round k.

The prover splits f (k−1) deterministically into g
(k)
0 , g

(k)
1 , both polynomials

of degree at most dk = dk−1/2. Each verifier Vi receives an evaluation of the
two polynomials above, at a certain point which depends on αi and k. Finally,
a random challenge is sampled, and the prover proceeds recursively, showing
f (k) = g

(k)
0 +μg

(k)
1 has degree at most dk. After τ rounds, f (τ) is eventually sent

in clear. Verifiers can then recursively check the split was correctly computed,
relative to their assigned point αi, using f (τ) and the evaluations provided by
the prover. The proof is eventually accepted if all honest verifiers accept it.

As for how to split the polynomials, we consider two possibilities: the first one
used in Πd,E

lowdeg (Fig. 1) consists on splitting f into high-degree and low degree
terms as in [14]. If we can however further assume each of the sets E(k) = {α2k

i :
i ∈ [n]} for k ∈ {0, . . . , τ} to be exceptional (which is the case for fields)8, we
could improve on efficiency setting f (k−1)(X) = g

(k)
0 (X2)+X · g(k)1 (X2) as done

in FRI. This is especially beneficial when E is the set of 2m-th roots of unity
over a field, for some m. This second variant Πd,E

lowdeg−alt, is detailed in Fig. 2.
For simplicity, we assume that d is a power of 2, but this can easily be

extended to general d, see Sect. 3.6. For our proof we need a large exceptional
set S in the ring R, which may overlap with E . The soundness error will be
inversely proportional to the size of S. Soundness amplification techniques are
discussed in Sect. 3.7. The parameter τ ≤ log d is set for flexibility, so that we
stop the recursion when the current polynomial f (τ) has degree d/2τ . Nonetheless
for asymptotics we will always consider the choice τ = Θ(log d).

Theorem 1. Protocol Πd,E
lowdeg in Fig. 1 is a correct distributed proof for Rd,E

lowdeg

with 1/|S|-round by round soundness against a malicious prover and up to n
corrupted verifiers.

Proof. Correctness is trivial to verify. Regarding soundness we explicitly describe
a doomed set D. Let T be the set of corrupted parties, H = [n]\T and EH =
{αi}i∈H . Given a state (xi, vi)i∈H until the h-th round, we call g

(k)
0 , g

(k)
1 the

polynomials obtained interpolating the values honest verifiers receive at round k,
f = f (0) the interpolation of (xi)i∈H and f (k−1) = g

(k)
0 +Xdkg

(k)
1 for 1 < k ≤ τ ,

with μk being the k-th round challenge from Fcoin. Then such tuple of views lies
if D if and only if at least one of the following conditions is satisfied:

1. deg
(
g
(h)
0 + μhg

(h)
1

) ≥ dh.

8 But it may be a stronger condition on rings; as an example consider R = Z15, where
E = {2, 3} is exceptional, while E(1) = {4, 9} is not, since 9 − 4 divides 0.

116 I. Cascudo et al.

Protocol Πd,E
lowdeg(x, f)

n-verifier interactive proof for the relation

Rd,E
lowdeg = {(x, f) : x ∈ Rn, f ∈ R[X]d−1, f(αi) = xi ∀i ∈ [n]}

where x is distributed among n verifiers (verifier Vi having as input xi), and
E = {α1, . . . , αn} ⊆ R is an exceptional set. We assume d to be a power of
2 The proof is parametrized by τ ∈ N with τ ≤ log2 d. For k ∈ [τ] we set
dk = d/2k. The proof requires S ⊆ R be a (large) exceptional set, which may
overlap with E . FS

coin is a coin-tossing functionality sampling and broadcasting
a random element in S on each invocation.

Interactive Protocol: The prover P sets f (0) ← f . Then for k ∈ [τ]:

1. P computes g
(k)
0 , g

(k)
1 of degree < dk such that f (k−1) = g

(k)
0 + Xdk · g

(k)
1

2. P privately sends g
(k)
0 (αi), g

(k)
1 (αi) to each Vi

3. The verifiers call the coin-tossing functionality μk ←$ FS
coin with μk ∈ S

4. P computes f (k) ← g
(k)
0 + μk · g

(k)
1

Finally P broadcasts the polynomial f (τ) Verification: Each Vi sets f (k)(αi) ←
g
(k+1)
0 (αi) + α

dk+1
i g

(k+1)
1 (αi) for k ∈ [τ − 1] and accepts if and only if the following

checks hold:

5. deg f (τ) < d/2τ

6. xi = g
(1)
0 (αi) + α

d/2
i · g

(1)
1 (αi)

7. f (k)(αi) = g
(k)
0 (αi) + μk · g

(k)
1 (αi) for all k ∈ [τ]

Fig. 1. Distributed low-degree proof Πd,E
lowdeg.

2. f (0)(X) �= g
(1)
0 (X) + Xd/2 · g

(1)
1 (X).

3. f (k)(X) �= g
(k)
0 (X) + μk · g

(k)
1 (X) for some k ≤ h, k < τ .

If the given input does not lie in the projection of the associated language
over indices H, i.e. if there is no polynomial of degree d−1 interpolating (xi)i∈H ,
then we have (xi)i∈H ∈ D from the first condition. Next, if a complete transcript
lies in D, then conditions 2, 3 implies one verifier rejects, as they are all explicitly
checked. Conversely if the complete transcript satisfies condition 1, then either
all verifiers reject as deg f (τ) ≥ dτ or deg f (τ) < dτ . The second case however
implies f (τ)(αi) �= g

(τ)
0 (αi)+μτg

(τ)
1 (αi) for some αi. This is true as g

(τ)
0 +μτg

(τ)
1

has degree at least dτ and it is the polynomial of minimum degree taking its
values in EH since both g

(τ)
0 and g

(τ)
1 must have degree smaller than |EH | − 1.

Finally, we show escaping D is hard (condition 2 in Definition 7) Regarding
the first message, if (xi, ∅)i∈H ∈ D then deg f (0) ≥ d. Thus for any messages
resulting in g

(1)
0 , g

(1)
1 , if condition 2 is not satisfied, the extended view lies in

D. If not instead, at least one of the two polynomials must have degree ≥ d/2.
By Lemma 2 we then have that for a uniformly sampled μ1 the first condition

Verifiable Secret Sharing from Symmetric Key Cryptography 117

is not satisfied with probability ≤ 1/|S|. For a transcript until the h-th round
lying in D instead, if conditions 2 and 3 are satisfied no reply can end outside
of D. Conversely if they are both not satisfied, the first one must be. The next
message then is either such that

g
(h+1)
0 (X) + Xdh/2g

(h+1)
1 �= g

(h)
0 + μhg

(h)
1

which implies that the third condition is false, or not, which implies that at least
one of g

(h+1)
0 , g

(h+1)
1 has degree at least dh/2 = dh+1. Using again Lemma 2, we

have that their random linear combination also has degree at least dh+1 up to
probability 1/|S|. This conclude our argument for round-by-round soundness.

3.2 Improvements for Specific Rings

Assume now that, for a given exceptional set E = {α1, . . . , αn}, all the sets
E(k) = {α2k

i : αi ∈ E} for k ∈ [τ] are exceptional and |E(k)| = 2 · |E(k+1)|. In
particular, these assumptions hold if n is a power of 2, R is a finite field F with a
primitive n-th root of unity (i.e. the multiplicative order |F| − 1 is a multiple of
n) and E is the set of all n-th roots of the unity.9 In these conditions, we present
an alternative protocol Πd,E

lowdeg-alt in Fig. 2. The only difference with Πd,E
lowdeg lies

in the splitting procedure for f , now divided into even and odd powers terms.
The main advantage of this approach is that, as the domain decreases in

size, evaluating the intermediates polynomials becomes faster for the prover.
More specifically, P performs O(n/2k · log n) ring operations in round k for two
FFTs, which in total amounts to O(n log n). Looking forward, this also improves
proof size for the compiled non-interactive proof by a factor 2, see Sect. 3.4.

3.3 Zero-Knowledge Compiler

We now show how to turn the protocol in Fig. 1 into a distributed zero-knowledge
proof. The (standard) idea is to make the prover mask f(X) with a random low-
degree polynomial b(X). Specifically, P first shares evaluations of b(X) among
the verifiers, and later shows b(X) + μ0 · f(X), for a randomly sampled μ0, to
have low degree. The protocol is detailed in Fig. 3.

Theorem 2. Let Π be a correct distributed proof for Rd,E
lowdeg with ε-round by

round soundness against any number of corruptions. Then Πd,E
dZKlowdeg (Fig. 3)

is a correct distributed proof for the same relation with max(ε, 1/|S|)-round by
round soundness and perfect zero-knowledge against any number of corruptions.

A full proof appears in the full version

Remark 1. Applying either of our distributed proof for low-degree to the protocol
in Fig. 3 yields a perfect zero-knowledge proof with round-by-round soundness
error 1/|S|.
9 For instance, the scalar fields of BLS12-377 and BLS12-381 admit 2m-th roots of

unity respectively for all m ≤ 44 and m ≤ 32.

118 I. Cascudo et al.

Protocol Πd,E
lowdeg-alt(x, f)

Notation as in Figure 1. E = {α1, . . . , αn} and E(k) = {α2k

1 , . . . , α2k

n } are excep-
tional for k ≤ τ . Note E = E(0). We denote α

(k)
i = α2k

i .

Interactive Protocol: As in Figure 1 up to replacing line 1 and 2 in the loop by:

1∗. P computes g
(k)
0 , g

(k)
1 of degree < dk so that f (k−1)(X) = g

(k)
0 (X2)+X ·g(k)

1 (X2)

2∗. P privately sends g
(k)
0

(
α
(k)
i

)
, g

(k)
1

(
α
(k)
i

)
to each Vi

Verification: Each Vi sets f (k)(α
(k)
i) ← g

(k+1)
0 (α

(k+1)
i) + α

(k)
i g

(k+1)
1 (α

(k+1)
i) for

k ∈ [τ − 1] and accepts iff the checks in Figure 1 hold, up to replacing line 6 with:

6∗. xi = g
(1)
0 (α2

i) + αi · g
(1)
1 (α2

i)

Fig. 2. Distributed low-degree proof with alternative splitting Πd,E
lowdeg-alt.

Protocol Πd,E
dZKlowdeg(x, f)

n-verifier interactive proof for the relation Rd,E
lowdeg. Notation is as in Figure 1.

Π is a (non-zk) distributed proof for Rd,E
lowdeg.

Interactive Protocol:
1. P samples b ←$ R[X]d−1 and privately sends bi ← b(αi) to Vi

2. The verifiers call the random coin functionality μ0 ←$ FS
coin

3. All parties execute Π: P with input b(X)+μ0 ·f(X), Vi with input b(αi)+μ0 ·xi

Verification: Each verifier Vi accepts if and only if its execution of Π is accepting.

Fig. 3. Zero-knowledge distributed proof of low-degree.

3.4 Removing Interaction in the ROM

In this Section we describe a generic Fiat-Shamir like compiler for distributed
proofs in the Random Oracle Model (ROM). This is essentially an adaptation
of the one presented in [11] to the distributed setting.

At a high level, let Π be a public-coin τ -rounds distributed protocol. That
is, one where verifiers can only invoke Fcoin at the end of each round, and decide
whether to accept or not based on their view after the protocol ends. Given
such Π and random oracle H the non-interactive protocol works as follows. The
prover internally simulates Π. At the end of round k, it collects the message Mk

it wishes to broadcast and mk,i the message it would have privately sent to Vi.
Then it computes ck as a commitment to the vector of all mk,i, i ∈ [n], and
obtain its next challenge μk (i.e. the expected output of Fcoin) as the hash of
all the commitments cj and virtually broadcast message Mj computed so far.
When Π halts, P broadcasts all ck,Mk and privately sends mk,i to Vi along with
opening information. Finally, verifiers accept if all openings are correct and if
the transcript is accepting. A detailed description is provided in Fig. 4.

Verifiable Secret Sharing from Symmetric Key Cryptography 119

FS-like Compiler FS [Π] (x, w)

H is a random oracle. MT is a Merkle tree vector commitment realized with H.
Π is a τ rounds distributed proof for relation R.

Interactive Protocol: The prover P performs the following:

1. Computes (c0, aux0) ← MT.Com(pp, x) commitment to the distributed input
2. op0,i ← MT.Open(pp, i, aux0) openings of c0

3. Internally runs Π on input (x, w)

4. For k ∈ [τ], at the end of the k-th round:
5. Let mk,i be the messages it would have privately sent to Vi

6. Let Mk be the message it would have broadcast
7. ck, auxk ← MT.Com(pp, mk,1, . . . , mk,n), commitment to private messages
8. opk,i ← MT.Open(pp, i, auxk), opening of ck in position i

9. μk ← H(c0, c1, M1, . . . , ck, Mk) and set it as the output of Fcoin in Π

10. When the execution of Π terminates sets:
11. π ← (c0, c1, M1, . . . , cτ , Mτ) and πi ← (op0,i, m1,i, op1,i, . . . , mτ,i, opτ,i)

12. Broadcast π and privately send πi to Vi

Verification: Each verifier Vi retrieves c0, op0,i and Mk, mi,k, ck, opk,i for k ∈ [τ]
from (π, πi). Next it computes μk as done in Line 9, and accepts if and only if

13. 1 = MT.Vfy(pp, c0, xi, i, op0,i)

14. 1 = MT.Vfy(pp, ck, mk,i, i, opk,i) for all k ∈ [τ]

15. Its local view (xi, m1,i, M1, μ1, . . . , mτ,i, Mτ , μτ) is accepting according to Π

Fig. 4. Generic Fiat-Shamir like compiler for distributed proofs.

Theorem 3. Let Π be a correct τ -rounds distributed proof for R with ε-round
by round soundness against up to t verifiers. Then FS [Π] is correct and ε′-
sound for adaptively chosen inputs in the ROM against a q-query adversary A
corrupting up to t verifiers, where

ε′ = (q + τ)ε + (2q2)/2λ.

In order to preserve zero-knowledge a necessary condition is for the used MT
commitment to be hiding (see Sect. 2.3). Let then FSzk be the compiler FS up to
replacing MT with hiding MT. This can be shown to preserve zero-knowledge.

Theorem 4. Let Π be a public-coin zero-knowledge distributed proof for R
against t malicious verifiers. Then FSzk [Π] is computationally zero-knowledge
in the ROM against t malicious verifiers.

We include the proofs of Theorems 3 and 4 in the full version.

120 I. Cascudo et al.

3.5 Efficiency

Following are the asymptotic costs of protocols in Fig. 1 and 2 made ZK (Fig. 3)
and then non-interactive via FSzk (Fig. 4). We set τ = Θ(log d) and assume that
the points αi were pre-assigned to the respective verifier.

Communication. In the general ring setting, the prover broadcasts Θ(log d) hash
values (the MT roots) and d 2−τ = Θ(1) ring elements. It further privately
communicates Θ(log n · log d) hash values and Θ(log d) ring elements. For rings
supporting the alternative protocol instead, private communication involves only
≤ (τ + 1) log n − 1/2 · τ2 hashes. For d ≈ n those are roughly half as before.

Verifier Computation. Each verifier performs O(log d) operations10 in R for
checks 6–7 (Fig. 1) and O(log d·log n) hash evaluations to check the MT openings.
As before, the second protocol requires about half hash evaluations for d ≈ n.

Prover Computation. Here the computation is dominated by the evaluations of
intermediate polynomials in over E . Without additional assumptions, Hörner’s
method allows evaluating in O(nd) ring operations11. If we can use FFTs then
computation is reduced to O(n log n log d). Finally, if the alternative protocol is
used, this is further reduced to O(n log d) ring operations as we perform 2 FFTs
evaluation on a domain of size n/2k for a degree d/2k polynomial, for 0 ≤ k ≤ τ .

In addition to the above, the basic protocol requires O(n log n) hash evalua-
tions, whereas the alternative one only requires O(n).

3.6 Dealing with Any Degree d

The protocols in Fig. 1 and Fig. 2 can be extended to deal with the case where
d is not a power of 2, as follows. Let d1 be the largest power of two strictly
smaller than d, and dk = d1/2k−1, for k ≥ 1. Modify then the first loop iteration
for k = 1 computing g

(1)
0 , g

(1)
1 such that f (0)(X) = g

(1)
0 (X) + Xd−d1g

(1)
1 (X),

with the degree conditions deg g
(1)
0 (X) < d − d1, deg g

(1)
1 (X) < d1 (we use this

splitting for the first step even in the case of Fig. 2)
From there on all successive steps hold in the same way (with the small

change that check 1 by the verifier should be that deg f (τ) < d1/2τ−1). It is easy
to see that Theorem 1 would still hold.

3.7 Soundness Amplification

All our interactive constructions have round-by-round soundness error 1/|S|,
where S is the largest exceptional set in R, thus requiring S to be exponentially
large in λ. Note however that there is in principle no guarantee such S exists:

10 Assuming α
(k)
i = α2k

i was precomputed.
11 Here we are using the fact that each evaluation of a polynomial of degree dk would

take O(dk) operations in R, and
∑τ

k=0 dk =
∑τ

k=0 d/2k < 2d.

Verifiable Secret Sharing from Symmetric Key Cryptography 121

indeed, while the relation Rd,E
lowdeg requires the existence of an exceptional set E ,

this only needs to be of size n, which is not enough by itself.
Unfortunately, parallel repetitions of (FS-compiled) multi-round proofs may

not amplify soundness efficiently [5]. For this reason we show a simple way to
improve soundness assuming a ring extension R ⊆ R′ with an exponentially
large exceptional set S′ ⊆ R′ is known. The idea is to execute the protocol in
Fig. 1 replacing R by R′ and with S′ playing the role of S. However, while this
guarantees soundness, it only shows, in principle, the existence of a witness f ∈
R′[X] but not in R[X]. Nevertheless, provided each party also checks f(αi) ∈ R,
this is sufficient as the following lemma shows.

Lemma 3. Let d, n be positive integers, R a ring with an exceptional set E =
{α1, . . . , αn} and extension R ⊆ R′ and call EH = {αi : i ∈ H} ⊂ E for a given
subset H ⊆ [n] of size m. Finally let xi ∈ R for all i ∈ H. If there exists a
polynomial f ′ ∈ R′[X]d−1 with f ′(αi) = xi for all i ∈ H, then there exists a
polynomial f ∈ R[X]d−1 with f(αi) = xi for i ∈ H. Moreover d < m ⇒ f = f ′.

Proof. First, by Lemma 1, since EH is exceptional and contained in R, we know
there is a polynomial f ∈ R[X] of degree ≤ m − 1 such that f(αi) = xi for
i ∈ H. If d ≥ m we are done. Assume then that d < m. Note that f is also in
R′[X], hence f and f ′ are two polynomials in R′[X] with f(αi) = f ′(αi) for i in
H. Since they are both polynomials of degree ≤ m − 1 (because we are in the
case d < m) then Lemma 1 guarantees f = f ′ and therefore f ∈ R[X]d−1.

For the simple and commonly encountered case of R = Zpk such extension
consists of the Galois ring R′ = GR(pk, r) for extension degree r = λ/ log p.
Indeed, it is well known that GR(pk, r) contains an exceptional set of pr elements
[12].

4 Verifiable Secret Sharing

4.1 Verifiable Secret Sharing Scheme

In this section we construct a VSS (see Definition 10) starting from the non-
interactive distributed proof from the previous section. Our VSS supports Shamir
secret sharing of elements in a ring R among n users, as long as there exists an
exceptional set E∗ = {α0, α1, . . . , αn} ⊆ R of size at least n+1. We also assume
a large S ⊆ R exceptional set to instantiate the non-interactive distributed proof
in Sect. 3 with high soundness. Otherwise the techniques presented in Sect. 3.7
could be used.

At a high level, following [3], our VSS is obtained combining a (non-
interactive) distributed proof of low degree with a complaining phase. The shar-
ing phase consists of three rounds. In the first round, the dealer computes shares
xi of a secret x0 along with a distributed proof (π, π1, . . . , πn) of low degreeness.
It then broadcasts π and privately sends each proof piece to the corresponding
verifier. Next, in the second round, every user checks the received proof and, if

122 I. Cascudo et al.

Verifiable Secret Sharing scheme
(t, n)-VSS for sharing a secret x0 ∈ R. We assume E∗ = {α0, α1, . . . , αn} ⊆
R is an exceptional set, call E = {α1, . . . , αn} and let S ⊆ R be the largest
exceptional subset. We call Π = FSzk

[
Πt+1,E

dZKlowdeg

]
. See Sections 3.3-3.4.

Share: Let x0 ∈ R be the secret to be shared.

– First Round. The dealer proceeds as follows:
1. Sample a uniformly random f(X) ←$ R[X]t such that f(α0) = x0

2. Set xi := f(αi) the i-th user’s share, for i ∈ [n]

3. Run Π on input (x, f) where x = (xi)i∈[n] and get π, (πi)i∈[n].
4. Broadcast π and privately send (xi, πi) to Vi

– Second Round. Each user Pi, upon receiving xi and π, πi, verifies its proof
running Π as the i-th verifier. If it rejects, Pi broadcasts a complaint bit.

– Third Round. For each complaining Pj , the dealer broadcasts (xj , πj).
– Finalization. If all broadcast πj are accepting, the protocol continues as normal

(Pi with share xi). Otherwise, parties disqualify the dealer and set their share
to the default value 0.

Reconstruction: To reconstruct the secret x0, parties proceed in one round as follows:

– Each party Pi broadcasts its local view (xi, πi) from the sharing phase
– Each party Pi performs Lagrange interpolation on values xj with an accepting

proof (π, πj), and returns the evaluation of such polynomial in α0.

Fig. 5. Verifiable Secret Sharing from non-interactive distributed ZKP.

incorrect or missing, broadcasts a complain bit. Finally, in case of complaints,
there is a third round where the dealer publicly broadcasts the share and proof
of each complaining users, which all parties locally verify.

In order to reconstruct, users simply broadcast their (local) views. If the
dealer was previously disqualified12, then parties agree on 0 being the final secret.
Otherwise, each party collects the shares xj sent with an accepting proof, com-
putes f(X) ∈ R[X]t interpolating them, and obtains the secret x0 = f(α0). The
full protocol is detailed in Fig. 5.

Theorem 5. Suppose 2t + 1 ≤ n and Π is a non-interactive ZK distributed
proof with ε-adaptive soundness, with negligible ε. Then the protocol in Fig. 5 is
a VSS satisfying correctness, t-privacy and strong commitment in the ROM.

Proof. We prove each property separately.

Correctness. Assuming the dealer is honest, let A be an adversary corrupting
T verifiers. Let B be an adversary playing against the soundness game of the
12 This may happen if the dealer addressed a complaint by broadcasting an incorrect

proof.

Verifiable Secret Sharing from Symmetric Key Cryptography 123

distributed ZKP. Specifically, B will start the protocol and play the role of the
honest parties, until the reconstruction phase, where it picks an index i uniformly
at random from the parties in [n]\H that output an accepting view. Then it
outputs the partial proof πi along with the public part of the proof πpub.

Note that the dealer cannot be disqualified at the end of the sharing phase
and in case of complaints from corrupt parties it will output views that are going
to be accepted by the correctness of the distributed ZKP. Therefore the only step
where correctness might fail is in the reconstruction, in the event that a corrupt
party opens an incorrect view that passes verification. More specifically, call E the
event that at least one party Pi controlled by the adversary A outputs an incor-
rect view that verifies in the reconstruction phase. If E happens then B will pick
the corresponding view with probability at least 1

t . Thus the advantage of B in
winning the soundness game is bounded by 1

t Pr [E]. If the event E does not hap-
pen, then all parties output correct views that by the property of correctness of
the distributed ZKP are accepted and thus honest parties are able to reconstruct
the correct share with probability 1, hence A does not win the game against the
correctness of the VSS. This means that Advcorr

VSS(A) ≤ Pr [E] ≤ tAdvsnd
dZKP(B).

t-Privacy. Given an adversary A corrupting parties {Pi}i∈T for some T ⊆ [n]
with |T | ≤ t, we describe a simulator S playing the role of the honest parties.
First, let SΠ be a simulator for Π against an adversary corrupting T parties13
Then, S initially samples uniformly randomly xi ←$ R[X]t for i ∈ T . Next, it
computes (π, πi) executing SΠ on input (xi)i∈T , and proceed sending (π, xi, πi)
to corrupted parties. In case of complaints by a corrupted Pi, S broadcasts its
local view (xi, πi). For all x0, we show the resulting transcript to be indistin-
guishable form one obtained through Share with secret x0 using a sequence of
hybrid distributions.

– D1: The distribution of corrupted parties’ transcripts when A interacts with
S as above.

– D2: As D1 but S computes xi = f(αi) for f ←$ R[X]t such that f(α0) = x0.
– D3: The distribution of corrupted parties’ transcripts when A interacts with

a dealer using Share on input x0.

D1 and D2 follow the same distribution because (by Lemma 1) |T | ≤ t
implies that (f(αi))i∈T is a uniformly random vector in R|T | when f is a random
polynomial such that f(α0) = x0. On the other hand, the difference between D2

and D3 is that in the former the simulator SΠ for Π is used while the latter
uses the actual proof Π, but we know the transcripts are indistinguishable by
the zero-knowledge property of Π.

Strong Commitment. If the malicious dealer gets disqualified for broadcasting
an incorrect proof in the third round, all honest players set their own share to
0. Moreover, in the reconstruction phase they always return 0. Thus in this case
strong commitment holds perfectly.
13 In a non-interactive distributed proof, an adversary’s behavior is fully determined

by the set of parties it corrupts.

124 I. Cascudo et al.

Conversely, if the dealer is not disqualified, each honest user ends Share with
share xi and accepting proof πi. As we assumed n ≥ 2t + 1, then H = [n]\T
has size |H| ≥ t + 1. From ε-soundness we have that, up to probability ε, the
shares xi are the evaluation of a (unique) polynomial f(X) of degree ≤ t, which
identifies a unique secret x0 = f(α0).

Next, during the reconstruction phase, let Badj for j ∈ T be the event in
which Pj broadcast (xj , πj) where πj is accepting but f(αj) �= xj . We then
argue Pr [Badj] ≤ ε. Indeed, consider Ai an adversary for the adaptive-input
soundness of Π which corrupts users in T\{j}. Initially, in runs the t-privacy
adversary which return π, (xi, πi)i∈H . Next, it correctly simulates an execution
of Reconstruct with the same adversary from which it retrieves (xj , πj). If all
partial proofs verifier correctly, it returns (xi)i∈H∪{j} and proof π, (πi)i∈H∪{j}.
If all proofs are accepting but Badj occurs, then A violates adaptive soundness.
Thus Pr [Badj] ≤ ε.

Finally, setting Bad = ∨j∈TBadj we have that Pr [Bad] ≤ tε by a union
bound. Assuming ¬Bad instead, we have that all xj with an accepting proof are
such that f(αj) = xj . Thus, regardless of the chosen interpolation set, all honest
parties recover f during Reconstruct and in particular they all return x0 = f(α0).

4.2 Optimizations

We now detail two optimizations to the VSS scheme presented in the previous
section.

Path-Pruning. In the third round of the sharing protocol, assume parties Pi for
i ∈ T with |T | = ϑ issued a complain. Naïvely broadcasting each complain-
ing user’s proof would require Oη(ϑ log(n)2) communication, with η being the
hash output length. This however includes several repeated hash values, as we
authenticate every path for every index in T individually. Removing redundant
values allows opening a MT of n leaves in O(ϑ log(n/ϑ)) hashes ([30], see the full
version for a proof). This implies that over arbitrary rings, the complain phase
involves the communication of O(ϑ log(n/ϑ) log(n)) hashes (which is in particu-
lar O(n log n)). Conversely, over rings where the protocol in Fig. 2 can be used,
the k-th MT only involves n · 2−k leaves. This implies that with path-pruning
communication is bounded by O(ϑ log(n/ϑ)2) which is in particular O(n).

Two-Rounds Reconstruction. Since each proof has size O(log(n)2), in order to
avoid a broadcast complexity of O(n log(n)2) we could split the reconstruction
phase in two. Initially all parties broadcast their share. Next, they check whether
there exists a polynomial of degree t which interpolates those values. This can be
checked probabilistically in linear time [16]. Finally, all parties broadcast their
local proofs as in the previous protocol.

In spite of the possible fall back to an O(n log(n)2) sized broadcast, this only
occurs when at least one actively malicious user is identified. Such case could
then be mitigated through incentives/stake, although analyzing such option in
detail is outside of our scope.

Verifiable Secret Sharing from Symmetric Key Cryptography 125

4.3 Efficiency

In light of the optimizations previously discussed, we now detail the overall
sharing costs of our VSS. We call η the hash output length, ρ = log2 |R|. In the
optimistic case in which no complaint is raised we have:

– Communication. The dealer needs to broadcast Oη(log(n)) + Oρ(1) bits and
privately send Oη(log(n)2) + Oρ(log(n)) bits to each user.

– Dealer computation. This is dominated by the proof cost, which amounts
to O(n log(n)2) and O(n log n) ring operations, when using respectively the
protocol in Fig. 1 or Fig. 2.

– Parties computation. Each party needs to do O(log(n)) ring operations and
O(log(n)2) hash evaluations to check the openings of the commitments they
received.

Next, we study the overhead induced by ϑ complains in the sharing phase.
We remark verification time remains sub-linear as long as ϑ = o(n/ log(n)2).

– Communication. Using path-pruning, Protocol 1
requires Oμ(ϑ log(n/ϑ) log n) + Oρ(ϑ) extra broadcast communication, there
the first term is Oμ(n log n) in the worst case. Conversely, Protocol 2 requires
Oμ(ϑ log(n/ϑ)2)+Oρ(ϑ) additional bits, where the first term is Oμ(n) in the
worst case.

– Dealer computation. The dealer costs remains the same asymptotically.
– Parties computation. Each party needs to do extra O(ϑ log(n/ϑ) log(n)) hash

evaluations (respectively O(ϑ log(n/ϑ)2) using Protocol 2) and O(ϑ) ring
operations.

Acknowledgements. The authors would like to thank Dario Fiore and Thomas
Attema for providing helpful comments.

This work is supported by Juan de la Cierva grant JDC2022-049711-I, the
PRODIGY Project (TED2021-132464B-I00) and the ESPADA project (PID2022-
142290OB-I00), all funded by MCIN/AEI/10.13039/501100011033. The Juan de la
Cierva grant and the PRODIGY project are cofunded by the European Union
«NextGenerationEU/PRTR»; ESPADA is cofunded by FEDER, UE. This work has
also been supported by the PICOCRYPT project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 101001283); and by the CONFI-
DENTIAL6G funded by the European Union (GA 101096435).

Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Commission. Neither
the European Union nor the European Commission can be held responsible for them.

References

1. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G.: Bingo: Adaptivity
and asynchrony in verifiable secret sharing and distributed key generation. In:
Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part I. LNCS, vol. 14081,
pp. 39–70. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-
38557-5_2

https://doi.org/10.1007/978-3-031-38557-5_2
https://doi.org/10.1007/978-3-031-38557-5_2

126 I. Cascudo et al.

2. Applebaum, B., Kachlon, E., Patra, A.: The round complexity of perfect MPC with
active security and optimal resiliency. In: 61st FOCS. pp. 1277–1284. IEEE Com-
puter Society Press (Nov 2020).https://doi.org/10.1109/FOCS46700.2020.00121

3. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: VSS from distributed ZK proofs
and applications. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part I. LNCS,
vol. 14438, pp. 405–440. Springer, Heidelberg (Dec 2023).https://doi.org/10.1007/
978-981-99-8721-4_13

4. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer, Heidelberg
(Aug 2020).https://doi.org/10.1007/978-3-030-56877-1_18

5. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round inter-
active proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS,
vol. 13747, pp. 113–142. Springer, Heidelberg (Nov 2022).https://doi.org/10.1007/
978-3-031-22318-1_5

6. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_32

7. Baghery, K.: Π: A unified framework for verifiable secret sharing. IACR Cryptol.
ePrint Arch. p. 1669 (2023), https://eprint.iacr.org/2023/1669

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 1–10. ACM (1988).https://
doi.org/10.1145/62212.62213, https://doi.org/10.1145/62212.62213

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl
(Jul 2018).https://doi.org/10.4230/LIPIcs.ICALP.2018.14

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2_4

11. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5_2

12. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable computa-
tion on encrypted data. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 528–558. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-3-030-
75248-4_19

13. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 67–97. Springer, Heidelberg
(Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_3

14. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 677–706. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-
45721-1_24

15. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018), https://eprint.iacr.org/2018/1004

https://doi.org/10.1109/FOCS46700.2020.00121
https://doi.org/10.1007/978-981-99-8721-4_13
https://doi.org/10.1007/978-981-99-8721-4_13
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-642-25385-0_32
https://eprint.iacr.org/2023/1669
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2018/1004

Verifiable Secret Sharing from Symmetric Key Cryptography 127

16. Cascudo, I., David, B.: SCRAPE: Scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355,
pp. 537–556. Springer, Heidelberg (Jul 2017).https://doi.org/10.1007/978-3-319-
61204-1_27

17. Cascudo, I., David, B.: ALBATROSS: Publicly AttestabLe BATched Random-
ness based On Secret Sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III. LNCS, vol. 12493, pp. 311–341. Springer, Heidelberg (Dec 2020). https://
doi.org/10.1007/978-3-030-64840-4_11

18. Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and
applications to DKG and YOSO. To appear at Eurocrypt 24. IACR Cryptol. ePrint
Arch. p. 1651 (2023), https://eprint.iacr.org/2023/1651

19. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: Fast and simple
encryption and secret sharing in the YOSO model. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 651–680. Springer, Heidelberg
(Dec 2022).https://doi.org/10.1007/978-3-031-22963-3_22

20. Cascudo, I., Giunta, E.: On interactive oracle proofs for boolean R1CS statements.
In: Eyal, I., Garay, J.A. (eds.) FC 2022. LNCS, vol. 13411, pp. 230–247. Springer,
Heidelberg (May 2022).https://doi.org/10.1007/978-3-031-18283-9_11

21. Chandramouli, A., Choudhury, A., Patra, A.: A survey on perfectly secure verifiable
secret-sharing. ACM Comput. Surv. 54(11s), 232:1–232:36 (2022).https://doi.org/
10.1145/3512344, https://doi.org/10.1145/3512344

22. Choudhury, A., Patra, A.: On the communication efficiency of statistically secure
asynchronous MPC with optimal resilience. J. Cryptol. 36(2), 13 (2023). https://
doi.org/10.1007/S00145-023-09451-9, https://doi.org/10.1007/s00145-023-09451-
9

23. Cramer, R., Damgård, I., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press (2015), http://www.cambridge.
org/de/academic/subjects/computer-science/cryptography-cryptology-and-
coding/secure-multiparty-computation-and-secret-sharing?format=HB&
isbn=9781107043053

24. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing.
In: 28th Annual Symposium on Foundations of Computer Science, Los Ange-
les, California, USA, 27-29 October 1987. pp. 427–437. IEEE Computer Society
(1987).https://doi.org/10.1109/SFCS.1987.4, https://doi.org/10.1109/SFCS.1987.
4

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. Journal of Cryptology 20(1), 51–83 (Jan
2007). https://doi.org/10.1007/s00145-006-0347-3

26. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2,
1998. pp. 101–111. ACM (1998).https://doi.org/10.1145/277697.277716, https://
doi.org/10.1145/277697.277716

27. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly veri-
fiable secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 458–487. Springer,
Heidelberg (May / Jun 2022).https://doi.org/10.1007/978-3-031-06944-4_16

https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://eprint.iacr.org/2023/1651
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1007/978-3-031-18283-9_11
https://doi.org/10.1145/3512344
https://doi.org/10.1145/3512344
https://doi.org/10.1145/3512344
https://doi.org/10.1007/S00145-023-09451-9
https://doi.org/10.1007/S00145-023-09451-9
https://doi.org/10.1007/s00145-023-09451-9
https://doi.org/10.1007/s00145-023-09451-9
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-031-06944-4_16

128 I. Cascudo et al.

28. Giunta, E.: On the impossibility of algebraic NIZK in pairing-free groups. In: Hand-
schuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084,
pp. 702–730. Springer, Heidelberg (Aug 2023)https://doi.org/10.1007/978-3-031-
38551-3_22

29. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive VSS using class groups and application to DKG. IACR Cryptol. ePrint
Arch. p. 451 (2023), https://eprint.iacr.org/2023/451

30. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8_3

31. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992).https://doi.org/10.1007/3-540-46766-1_9

33. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press
(May 1989).https://doi.org/10.1145/73007.73014

34. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp.
148–164. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-
1_10

35. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979). https://doi.org/10.1145/359168.
359176

36. Shoup, V., Smart, N.P.: Lightweight asynchronous verifiable secret sharing with
optimal resilience. IACR Cryptol. ePrint Arch. p. 536 (2023), https://eprint.iacr.
org/2023/536

https://doi.org/10.1007/978-3-031-38551-3_22
https://doi.org/10.1007/978-3-031-38551-3_22
https://eprint.iacr.org/2023/451
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/73007.73014
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://eprint.iacr.org/2023/536
https://eprint.iacr.org/2023/536

Timed Secret Sharing

Alireza Kavousi1(B), Aydin Abadi2, and Philipp Jovanovic3

1 University College London, London, UK
a.kavousi@cs.ucl.ac.uk

2 Newcastle University, Newcastle, UK
aydin.abadi@newcastle.ac.uk

3 University College London, London, UK
p.jovanovic@ucl.ac.uk

Abstract. This paper introduces the notion of timed secret sharing
(TSS), which establishes lower and upper time bounds for secret recon-
struction in a threshold secret sharing scheme. Such time bounds are
particularly useful in scenarios where an early or late reconstruction of
a secret matters. We propose several new constructions that offer dif-
ferent security properties and show how they can be instantiated effi-
ciently using novel techniques. We highlight how our ideas can be used
to break the public goods game, which is an issue inherent to threshold
secret sharing-based systems, without relying on incentive mechanism.
We achieve this through an upper time bound that can be implemented
either via short-lived proofs, or the gradual release of additional shares,
establishing a trade-off between time and fault tolerance. The latter inde-
pendently provides robustness in the event of dropout by some portion
of shareholders.

1 Introduction

Threshold secret sharing [54] is a widely used primitive in cryptography and
distributed computing. A (t, n)-threshold secret sharing scheme lets a dealer
distribute a secret s among n shareholders such that any subset of at least
t + 1 shares can recover s, whereas no subset of at most t shares reveal any
information about s. This primitive is useful in a wide range of applications from
password-protection [8,37] and federated learning [42], to verifiable management
of on-chain secrets [39] and many more. Protocols using secret sharing usually
specify conditions under which shareholders release their shares to reconstruct
the secret [20,30]. In many cases, these conditions depend on the notion of time
in one way or another. In practice, however, shareholders may violate these time-
dependent conditions intentionally or unintentionally by releasing their shares
too early or late. These issues may arise due to the use of unsynchronized clocks
by the shareholders [7,12,34] or due to a (temporary) dishonest majority [22,
23]. The latter could occur particularly when incentives are misaligned so that
shareholders collude and reconstruct secrets earlier than what specified [36,44].

The practical applications of threshold secret sharing motivate this work,
where elaborate on two concrete scenarios as follows.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 129–164, 2025.
https://doi.org/10.1007/978-981-96-0941-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_5&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_5

130 A. Kavousi et al.

Maximal Extractable Value. In cryptocurrency platforms, consensus nodes
such as proof-of-stake validators may engage in maximal extractable value (MEV)
processes [27] to gain some benefit from users by learning their transactions and
affect their ordering in the block. A principal MEV countermeasure deploys
threshold secret sharing to protect the privacy of transactions up to a time
where their inclusion/ordering in a block is ensured. This is done by encrypting
the transaction using a random key and then sharing the key towards validators
with a threshold secret sharing scheme [44,61].

However, it largely overlooks the fact that consensus nodes have significant
incentives to prematurely reconstruct the secrets to capitalize on MEV rewards.
Observe that this type of collusion (i.e., dishonest majority) does not violate
the protocol’s liveness (i.e., reconstruction) as the success of MEV depends on
the completion of the secret reconstruction, and thus colluding parties are incen-
tivized to make progress. In many cases, such behavior is particularly problem-
atic since corrupt shareholders can carry out the process without leaving any
public traces and thus collusion is unobservable [51].1

Public Goods Game. An independent issue with threshold secret sharing-
based schemes is that they could constitute a public goods game [4,11]. This is
essentially because only a subset of the shareholders needs to release their shares
to reconstruct the secret. Consequently, the shareholders may choose to remain
inactive, hoping that others will step forward and contribute. As a mitigation
mechanism an incentive system is usually assumed [6,39] which may, however,
not be available or feasible to implement under all circumstances.

Our schemes with lower and upper time bounds T1 and T2, respectively,
address the aforementioned issues: T1 prevents shareholders from reconstructing
the secret early, and T2 prevents public goods game dilemma without having
to rely on financial incentives, providing an alternative solution. We stress that
the motivations for lower and upper time bounds are different and independent.
In the case of the former, we must ensure that the reconstruction does not
occur before T1. In the case of the latter, the goal is to encourage (rational)
shareholders to appear early and initiate the reconstruction. For the sake of
better consistency, we present the schemes with both time bounds rather than
treating them separately.

1.1 Technical Overview

Our constructions enjoy novel techniques and build upon time-based primitives
with efficient instantiation in a modular way. In particular, we use time-lock
puzzles (TLPs) [1,43,50], verifiable timed commitments (VTCs) [57], and veri-
fiable delay functions (VDFs) [48,60]. In the remainder of this section, we give
an overview of our proposed constructions.

1 Using time-lock puzzles (TLPs) [50] are not sufficient to address the issue as pro-
tected transactions may actually not make it into the block and then lose confiden-
tiality after the TLP has been opened, demanding pending transaction privacy [24].

Timed Secret Sharing 131

Fig. 1. Timed Secret Sharing variants

Timed Secret Sharing (TSS). This is our basic construction, where the dealer
encapsulates the shares into TLPs [43,50] to realize a lower time bound T1. Con-
sequently, no computationally bounded adversary can learn the secret before T1,
even if it corrupts all the shareholders [23]. Moreover, TLPs provide a consistent
relative measure of time (i.e., computational timing), eliminating the need for a
shared global clock. For the upper time bound, we rely on the underlying timing
assumption of the secret sharing scheme and later show how to relax it.

Verifiable Timed Secret Sharing (VTSS). We enhance TSS with verifi-
cation mechanisms, to deal with malicious dealers and shareholders. First, we
ensure that a malicious dealer cannot distribute malformed puzzles, i.e., puz-
zles that either are not extractable or contain invalid shares. Second, we ensure
that malicious shareholders cannot send invalid shares during the reconstruc-
tion phase. Here we need to tackle technical challenges in realizing lower and
upper time bounds. We overcome the former with a novel trick in using verifi-
able secret sharing (VSS) [31] and verifiable timed commitment (VTC) [57] that
allows checking the validity of embedded share before the shareholder invests
computational effort to retrieve it. For the latter, we introduce the novel idea of
secret sharing with gradual release of additional shares that relaxes the assump-
tion made in the previous scheme and also that could be of independent interest.

132 A. Kavousi et al.

Publicly Verifiable Timed Secret Sharing (PVTSS). We further extend
our schemes to support public verifiability. To do so, we take a different route
in realizing the lower and upper time bounds. First, we deploy an efficient
non-interactive zero-knowledge (NIZK) protocol, and the cut-and-choose tech-
nique [40] to let anyone (not just shareholders) ensure the validity of the embed-
ded encrypted shares and the extractability of puzzles. Second, we bind the
attestation of the distributed shares to time and impose an upper bound T2 by
utilizing short-lived proofs (SLPs) [5] that come with time-sensitive soundness
and public verifiability. We crucially rely on the observation that the secret (and
shares) are uniformly distributed, allowing us to securely use SLPs that require
indistinguishability property. This essentially puts an upper time bound by mak-
ing the system usable up to some time T2, i.e., the correct reconstruction is only
guaranteed before T2.

It is worth mentioning that our idea of secret sharing with additional shares
could be useful in scenarios where a sufficient number of (honest) sharehold-
ers is not available for reconstruction and thus the additional shares allow the
remaining parties to nevertheless reconstruct the secret, providing robustness to
the system. As an application, this could help with dropout resilience in secure
aggregation protocols for federated learning [42]. We provide a visual represen-
tation of our protocol variants at Fig. 1.

1.2 Our Contributions

– We formally define and construct (t, n)-timed secret sharing (TSS) which
enables a timely reconstruction of a secret shared by a dealer to a set of n
shareholders within the time interval [T1, T2].

– We enhance TSS with verifiability by formally defining and constructing veri-
fiable timed secret sharing (VTSS), which protects against a malicious dealer
during share distribution and against malicious shareholders during secret
reconstruction.

– We further extend VTSS with public verifiability by formally defining and
constructing publicly verifiable timed secret sharing (PVTSS).

– We introduce two novel ideas to break the public goods game in threshold
secret sharing systems. One is based on using short-lived proofs and the other
is based on gradual release of additional shares. As a side contribution, we
formally define and propose a construction for the latter which is also useful
to provide robustness against shareholder’s dropouts.

2 Related Work

There is a large body of literature on the combination of computational timing
and cryptographic primitives such as commitment [3,14,29,45,58], encryption
[17,25,41], signature [9,28,33,57], and more. The essence of almost all of these
works is to enable the receiver(s) to forcefully open the locked object after a
predefined period by working through some computational operation.

Timed Secret Sharing 133

The work of [57] proposed efficient constructions for encapsulating a sig-
nature into a TLP, ensuring the receiver can extract the valid signature after
carrying out sequential computation. Roughly speaking, the sender secret shares
the signature and embeds each share in a linearly homomorphic TLP [43]. Then,
the sender and receiver run a cut-and-choose protocol for verifying the correct-
ness of the puzzles. Moreover, to enable the receiver to compact all the pieces of
time-locked signatures and solve one single puzzle, a range proof is used to guar-
antee that no overflow occurs. Manevich and Akavia in [45] augment the timed
commitment of Boneh and Naor [14] with zero-knowledge proofs, enabling the
sender to prove any arbitrary attribute regarding the committed value.

With a focus on reducing the interaction in MPC protocols with limited-
time secrecy, the authors in [3] developed a gage time capsule (GaTC), allowing
a sender to commit to a value that others can obtain after putting a total com-
putational cost which is parallelizable to let solvers claim a monetary reward in
exchange for their work. The security guarantee of GaTC resemble ours when
using secret sharing with additional shares in the sense that over time it gradu-
ally decays, as the adversary can invest more and more computational resources.
Doweck and Eyal [29] constructed a multi-party timed commitment that enables
a group of parties to jointly commit to a secret to be opened by an aggregator
later on via brute-force computation.

The authors in [10] explore multi-party computation with output-
independent abort, having each participant in an MPC protocol lock their output
until some time in the future. This is to force the adversary to decide whether
to cause an abort before learning the output. As performing sequential com-
putations might be beyond the capacity of some users, Thyagarajan et al. [59]
developed a system to allow users to outsource their tasks to some servers in a
privacy-preserving manner. Srinivasan et al. [56] constructed a TLP that sup-
ports unbounded batch-solving while enjoying a transparent setup and a puzzle
size independent of the batch size. Although their construction is of theoretical
interest and does not have practical efficiency due to the reliance on indistin-
guishability obfuscation, it enables a party to solve many puzzle instances simul-
taneously at the cost of solving one puzzle. It is worth noting that such a setting
is not applicable to our PVTSS as each shareholder just needs to know their
own share and solving other parties’ puzzles gives her no information as they are
already encrypted under the parties’ public keys. One of the motivating reasons
for batch-solving is to enable a party to solve the puzzles of others in case a large
number of parties abort. We refer the reader to [47] for a more detailed overview
of relevant works.

3 Preliminaries

3.1 Threat Model and Assumptions

We consider a standard synchronous network where each pair of parties in a set
P = {P1, . . . , Pn} is connected via an authenticated channel, and each message

134 A. Kavousi et al.

is delivered at most by a known delay. There is also a dealer D that takes the
role of distributing the secret among participating parties.

As common in the literature for verifiable secret sharing, we assume the
existence of broadcast channels. For a publicly verifiable scheme, we assume the
existence of an authenticated public bulletin board. In this work, we consider a
static adversary that may corrupt up to t out of n parties before the start of
protocol execution. D may also be corrupted. We consider both semi-honest and
malicious types of adversaries. In the former, the corrupted parties are assumed
to follow the protocol but may try to learn some information by observing the
protocol execution. In the latter, however, the corrupted parties are allowed to
do any adversarial action of their choice. The adversary’s computational power
is bounded with respect to a security parameter λ that gives it a negligible
advantage in breaking the security of underlying primitives. Such algorithms are
often known as probabilistic polynomial time (PPT). Finally, we denote by [n]
the set {1, . . . , n} an by v a vector of elements {vi}i∈[n].

3.2 Secret Sharing

A (threshold) secret sharing scheme is a cryptographic protocol that enables a
dealer D to distribute a secret s among n parties. The scheme typically consists
of two main phases; distribution and reconstruction. In the former, D sends each
party their corresponding share, and in the latter, any proper subset of parties
reconstruct the secret by pooling their shares.

A (t, n)-threshold secret sharing offers two main properties: (1) correctness:
the secret is reconstructed by any subset of at least t+1 shares, and (2) t-security:
no information is revealed about the secret by gathering t or fewer shares. In this
work, we develop our protocols based on the popular Shamir secret sharing [54].
We note that our proposed definitions can capture any (linear) secret sharing.

Verifiable Secret Sharing (VSS). The basic (t, n)-threshold secret sharing
scheme (e.g., [54]) only provides security against a semi-honest adversary. When
dealing with malicious adversaries, it is essential for (1) the dealer to prove
the validity of the shares it produces in the distribution phase, and (2) the
shareholders to prove the validity of the shares they provide in the reconstruction
phase. To satisfy these properties, various VSS schemes have been proposed,
following the celebrated work by Feldman [31].

Publicly Verifiable Secret Sharing (PVSS). To extend the scope of verifia-
bility to the public and not only participating parties, PVSS schemes [18,19,53]
deploy cryptographic primitives such as encryption and NIZK proofs. PVSS
enables anyone to verify the distribution and reconstruction phases. Cascudo
and David [18] proposed an efficient scheme called Scrape PVSS, which is an
improvement over [53] and has been deployed extensively in many recent cryp-
tographic protocols. The Scrape protocol works as follows. The dealer D chooses
a random value s

$← Zq, sets the secret as a group element of form S = hs,
splits s into shares {si}i∈[n], and computes the encrypted shares {ŝi}i∈[n] using
corresponding parties’ public keys {pki}i∈[n].

Timed Secret Sharing 135

Then, D publishes a set of commitments to shares {vi}i∈[n] together with a
proof πD, enabling anyone to check the consistency of the shares (i.e., shares
are evaluations of the same polynomial of proper degree) and validity of the
ciphertexts (i.e., encrypted shares correspond to the committed shares). Upon
receiving a threshold number of valid shares (i.e., shares with correct decryp-
tions), anyone can use Lagrange interpolation [2] in the exponent to reconstruct
the secret S. The authors proposed two versions, one in the random oracle model
under the Decisional Diffie-Hellman (DDH) assumption and the other in the
plain model under the Decisional Bilinear Squaring (DBS) assumption. We use
the non-pairing variant which offers knowledge soundness. This is vital to ensure
the secret chosen by the adversary is independent of those of honest parties. Also,
we require the knowledge soundness property for deploying short-live proofs [5].

3.3 Time-Lock Puzzles (TLPs)

The idea of TLPs was introduced by Rivest et al. [50]. TLP locks a secret such
that it can only be retrieved after a predefined amount of sequential computation.
It consists of two algorithms: TLP.Gen, which takes as input a time parameter
T and a secret s, and returns a puzzle Z, and TLP.Solve, that takes as input a
puzzle Z and returns a secret s. A TLP must satisfy correctness and security.
The correctness ensures that the solution is indeed obtained if the protocol gets
executed as specified. The security ensures that no PPT adversary running in
parallel obtains the solution within the time bound T , except with negligible
probability. We provide the formal definitions in Appendix A.

Homomorphic Time-Lock Puzzles (HTLP). Malavolta and Thyagarajan
[43] proposed homomorphic TLP, enabling one to homomorphically combine
many instances of TLPs into a single TLP. An HTLP consists of a tuple
of algorithms (HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval). In particular,
HTLP.Setup generates public parameters pp on input a security parameter, and
HTLP.Eval performs a homomorphic operation on input a set of puzzles to output
a single puzzle.

Multi-instance Time-Lock Puzzle (MTLP). Abadi and Kiayias [1] pro-
posed a primitive called multi-instance TLP. This variant of TLP is suitable for
the case where the solver is given multiple puzzles at the same time but must
discover each solution at different points in time. It allows solving the instances
sequentially one after the other without needing to run parallel computations
on them. An MTLP consists of a tuple of algorithms (MTLP.Setup, MTLP.Gen,
MTLP.Solve, Prove, Verify), where the last two algorithms are used to check the
correctness of a solver’s claimed solution.

3.4 Timed Commitment

An inherent limitation of the well-known time-lock puzzles such as [43,50] is the
lack of verifiability, meaning that the receiver cannot check the validity of the
received puzzle unless after putting time and effort into solving it. To fill this gap,

136 A. Kavousi et al.

a timed commitment scheme [14] enables the receiver to make sure about the
well-formedness (i.e., extractability) of the puzzle before performing a sequential
computation. In an attempt to make the timed commitment of [14] efficiently
verifiable, the recent work of Thyagarajan et al. [57] proposed verifiable timed
commitment (VTC), enabling the sender to verifiably2 commit to signing keys of
form pk = gsk, sk ∈ {0, 1}λ. The VTC primitive consists of a tuple of algorithms
(VTC.Setup, VTC.Commit, VTC.Verify, VTC.Solve). Note that we deploy VTC to
design construction for our verifiable time secret sharing (VTSS) scheme.

3.5 Sigma Protocols

A zero-knowledge protocol enables proving the validity of a claimed statement
by the prover P to the verifier V without revealing any information further.
While zero-knowledge protocols involve various settings and notions, we par-
ticularly consider the well-known Sigma protocols which are useful building
blocks in many cryptographic constructions. Let v denote an instance that is
known to both parties and w denote a witness that is only known to the P . Let
R = {(v;w)} ∈ V × W denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol Σ on (v;w) ∈ R is an interactive
protocol with three movements between P and V . Using Fiat-Shamir heuris-
tic [32] in the random oracle model, one can make the protocol non-interactive
with public verifiability. A Sigma protocol satisfies two security properties: (1)
soundness, ensuring the verifier about the validity of the statement v, and (2)
zero-knowledge, ensuring the prover about the secrecy of the witness w.

Zero Knowledge Proof of Equality of Discrete Logarithm. One of the well-used
Sigma protocols is discrete logarithm equality (DLEQ) proof. It considers a tuple
of publicly known values (g1, x, g2, y), where g1, g2 are random generators and
x, y are two elements of the cyclic group G of order q. DLEQ proof enables a
prover P to prove to the verifier V that it knows a witness α such that x = gα

1

and y = gα
2 . A DLEQ proof is an AND-composition of two Sigma protocols

for relation R = {(vi;w) : vi = gw
i } with the same witness and challenge.

The following protocol is a Sigma protocol for generating a DLEQ proof due to
Chaum-Pedersen [21].

1. P chooses a random element u
$← Zq, computes a1 = gu

1 and a2 = gu
2 , and

sends them to the V.
2. V sends back a randomly chosen challenge c

$← Zq.
3. P computes r = u + cα and sends it to V.
4. V checks if both gr

1 = a1x
c and gr

2 = a2y
c hold.

Throughout the paper we use the non-interactive version of this proto-
col which produces a single message DLEQ.P(α, g1, x, g2, y) as proof π veri-
fied via DLEQ.V(π, g1, x, g2, y). The challenge is computed by the prover as
2 Ensuring the extractability together with validity of the committed message that is

the discrete logarithm of a public key.

Timed Secret Sharing 137

c = H(x, y, a1, a2), where H is a cryptographic hash function modeled as a
random oracle.

3.6 Short-Lived Proofs

Arun et al. [5] recently introduced the notion of short-lived proofs (SLPs) which
can be roughly defined as types of proofs with expiration, such that their sound-
ness will disappear after certain time. They are only sound if being observed
before a determined time, afterwards, they may be forgery indistinguishable
from the valid proofs. At a high level, an SLP is proof of an OR-composition
R∨RV DF , where R is an arbitrary relation and RV DF is a VDF evaluation rela-
tion. Interestingly, this proof is only convincing to the verifier for a determined
time T as forging the proof is possible for anybody after evaluating the VDF.
Due to the nature of VDF, short-lived proofs offer efficient public variability.
One notable point is that the primitive makes use of a randomness beacon [26]
which outputs unpredictable values b periodically.

An SLP scheme consists of four algorithms (SLP.Setup, SLP.Gen, SLP.Forge,
SLP.Verify) with the following descriptions. SLP.Setup generates public parame-
ters pp on input the security parameter and time parameter T . SLP.Eval takes
pp, an input x, a random beacon value b, and generates a proof π. SLP.Forge
takes pp, x, b, and produces a proof π. Lastly, SLP.Verify validates the proof π
on input pp, x, π, and b. A short-lived proof must satisfy four security properties
including forgeability, enabling anyone running in time (1 + ε)T to generate a
valid proof, soundness, preventing a malicious prover P ∗ running with parallel
processors to generate a convincing proof in time less than T , zero knowledge,
preserving the privacy of the witness w, and indistinguishability, making the real
and forged proofs indistinguishable from the actual proof.

4 Timed Secret Sharing (TSS)

With timed secret sharing (TSS), we make a secret sharing scheme dependent
on time, having the reconstruction phase occur within a determined time inter-
val, [T1, T2], where T1 is the lower time bound and T2 is the upper time bound.
These time bounds might be required by the dealer or as part of the system
requirements, or even a combination of these two. An important consideration,
however, is that the dealer’s availability should not be affected by making the
scheme time-based, meaning that the dealer’s role should finish after the distri-
bution phase similar to the original setting.

4.1 TSS Definition

In this section, we present a formal definition of TSS. This definition builds upon
the original definition of threshold secret sharing.

Definition 1 (Timed Secret Sharing). A timed secret sharing (TSS) scheme
involves the following algorithms.

138 A. Kavousi et al.

1. Initialization:
– Setup: TSS.Setup(1λ, T1, T2) → pp, on input security parameter λ, lower

time bound T1, and upper time bound T2, outputs public parameters pp.
2. Distribution:

– Sharing: TSS.Sharing(pp, s) → {Ci}i∈[n], on input pp and secret s ∈ Sλ,
outputs a locked share Ci with time parameter T1 for each party Pi in the
set P.

3. Reconstruction:
– Recovering: TSS.Recover(pp,Ci) → si, on input pp and Ci, recovers the

share si. The algorithm is run by each party Pi in P.
– Pooing: TSS.Pool(pp,S, T2) → s, on input pp and a set S of shares (where

|S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed. Otherwise,
it outputs ⊥.

A correct TSS scheme must satisfy privacy, ensuring no share is obtained
before T1 and security, ensuring any set of shares less than a threshold t + 1
reveals no information about the secret before T2.

Definition 1.1 (Correctness). A TSS satisfies correctness if for all secret s ∈
Sλ and a set of shares |S| > t it holds

Pr

⎡
⎣TSS.Pool(pp,S, T2) → s :

TSS.Setup(1λ, T1, T2) → pp,
TSS.Sharing(pp, s) → {Ci}i∈[n],
TSS.Recover(pp,Ci) → si

⎤
⎦ = 1

Definition 1.2 (Privacy). TSS satisfies privacy if for all parallel algorithms
A whose running time is at most less than T1 there exists a simulator Sim and
a negligible function μ such that for all secret s ∈ Sλ, all λ ∈ N, and all i ∈ [n]
it holds

∣∣∣∣∣Pr

⎡
⎢⎣ A(pp, s, Ci) = 1 :

TSS.Setup(1λ, T1, T2) → pp,

A(pp, 1λ) → s,

TSS.Sharing(pp, s) → {Ci}i∈[n]

⎤
⎥⎦−

Pr

⎡
⎢⎣A(pp, s′, Cj) = 1 :

TSS.Setup(1λ, T1, T2) → pp,

A(pp, 1λ) → s′,
Sim(pp) → {Cj}j∈[n]

⎤
⎥⎦

∣∣∣∣∣ ≤ μ(λ)

Definition 1.3 (Security). TSS satisfies security if an adversary A controlling
a set S ′ of parties, where |S ′| ≤ t and s ∈ Sλ, learns no information about s.
Thus, it must hold

Pr

⎡
⎣A(pp,S ′, T2) → s :

TSS.Setup(1λ, T1, T2) → pp,
TSS.Sharing(pp, s) → {Ci}i∈[n],
TSS.Recover(pp,Ci) → si

⎤
⎦ ≤ μ(λ) +

1
|Sλ|

Timed Secret Sharing 139

Fig. 2. Timed Secret Sharing (TSS) protocol

4.2 TSS Construction

We present an instantiation of TSS in Fig. 2. To enforce a lower time bound
T1, the dealer uses TLPs [43,50] to lock the shares into puzzles, enforcing a
computational delay for each party to recover their corresponding share. Note
that we treat T2 mostly as a matter of formalization and rely on the underlying
assumption of having common knowledge of time for participating parties. We
later in Sect. 5 show how to relax this assumption using computational timing.

Theorem 1. If the time-lock puzzle TLP and Shamir secret sharing are secure,
then timed secret sharing protocol ΠTSS presented in Fig. 2 satisfies privacy and
security, w.r.t. Definitions 1.2 and 1.3 respectively.

Proof. Correctness is straightforward. The privacy property follows directly from
that of the underlying TLP which implies the indistinguishability of a puzzle
produced by algorithm TSS.Sharing and the one produced by Sim. Since all the
puzzles are communicated through private channels, no party can learn the other
party’s share after T1. Finally, the security stems from the underlying threshold
secret sharing, where a subset of shares S ′ whose size is less than t reveals no
information about the secret s.

5 Secret Sharing with Additional Shares

A threshold secret sharing scheme guarantees t-security. There is also t + 1-
robustness assumption, ensuring the availability of a sufficient number of valid

140 A. Kavousi et al.

shares during the reconstruction phase. However, it is natural to challenge such
a liveness assumption and consider a scenario in which a large fraction of honest
parties goes offline, particularly when having a determined period for recon-
struction, putting the system under threat of failure (i.e., lack of liveness). To
be concrete, a possible scenario that may lead to having less than a threshold of
(honest) parties available is explored in [57] known as denial of spending (DoSp)
attack where the set of available parties cannot reach the threshold and their
investment will remain locked. In a federated learning setting [42], real-world
factors such as hardware failure or poor network coverage can also cause this
issue, leading to shareholders’ dropouts.

Our goal is to provide robustness using the capabilities of time-based cryp-
tography. We observe this is feasible by having the dealer provide parties with
additional time-locked shares. By additional, we mean some shares other than
the individual one each party already receives during the distribution phase of
the protocol. Thus, even if there is less than a threshold of parties (even a single
one) available at the reconstruction period (i.e., [T1, T2]), they will be able to
open the additional time-locked shares after carrying out some computation and
retrieve the secret. We remark that a large body of literature on threshold secret
sharing assumes all the parties, not only those interacting in the reconstruction
phase, learn the secret [18,38]. Given this, we argue that the availability of a
(threshold) number of additional time-locked shares at the proper time (i.e., T2)
does not violate the security of the system since it enables all the parties to
eventually learn the secret at the same time if they have not already learned it.

5.1 Decrementing-Threshold Timed Secret Sharing (DTSS)

It is possible to derive an interesting trade-off between time and fault toler-
ance by having some additional time-locked shares to be realized periodically
at different points in time. The consequence of this gradual release is twofold.
Firstly, it enables (honest) parties requiring some more shares (not necessarily
t) to reconstruct the secret without going through the sequential computation
for the whole period, i.e., [T1, T2]. They can stop working up to a point where
a sufficient number of additional shares is gained, as T2 might be considerably
later than T1. Secondly, as time goes by and the reconstruction is not initiated,
the adversary may get more additional shares by investing computational effort,
causing security decay over time [3]. Looking ahead, this feature happens to be
useful to impose an upper time bound and thus break the public goods game as it
ties the security of the system to time; the later parties initiate the reconstruc-
tion, the more chances the adversary learns the secret.3

3 It is clear that since all parties can recover the secret by T2, this essentially puts
an upper time bound for the system. We use this technique to relax the assumption
made to realize an upper time bound for TSS.

Timed Secret Sharing 141

5.2 DTSS Definition

Now, we present a formal definition for our scheme called decrementing-threshold
timed secret sharing (DTSS).

Definition 2 (Decrementing-threshold Timed Secret Sharing). A (t, n)
DTSS scheme consists of a tuple of algorithms (DTSS.Setup, DTSS.Sharing,
DTSS.ShaRecover, DTSS.Verify, DTSS.AddRecover, DTSS.Pool) as follows.

1. Initialization:
− Setup: DTSS.Setup(1λ, T1, T2, t) → {pp, pk, sk}, on input security

parameter λ, lower time bound T1, and a value t, outputs public param-
eters pp and key pair (pk, sk) to be used for generating additional locked
shares by the dealer D.

2. Distribution:
− Sharing: DTSS.Sharing(pp, s, pk, sk) → {{Ci}i∈[n], {Oj}j∈[t]}, on input

pp, a secret s, and a key pair (pk, sk), outputs locked share Ci with time
parameter T1. Moreover, it outputs t additional locked shares {Oj}j∈[t],
with Oj being locked with time parameter (j + 1)T1.

3. Reconstruction:
− Share recovery: DTSS.ShaRecover(pp,Ci) → si, on input pp and Ci, out-

puts a share si. The algorithm is run by each party Pi.
− Additional share recovery: DTSS.AddRecover(pp, pk, {Oj}j∈[t]) → {s′

j},
on input pp, pk, and {Oj}j∈[t], forcibly outputs the additional share s′

j

at time (j +1)T1. The algorithm is run by anyone in P wishing to obtain
additional shares.

− Pooling: DTSS.Pool(pp,S, T2) → s, on input pp and a set S of shares
(where |S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed.

A correct DTSS scheme must satisfy privacy, security, and robustness with
the following definitions.

Definition 2.1 (Privacy). A DTSS satisfies privacy if for all algorithms A
running in time T < jT1, where 1 ≤ j ≤ t, with at most T1 parallel processors,
there exists a simulator Sim and a negligible function μ such that for all secret
s ∈ Sλ and λ ∈ N it holds that

∣∣∣∣∣Pr

⎡
⎢⎢⎢⎢⎣
A(pp, pk, s,

Ci, {Oj}j∈[t]) = 1
:

DTSS.Setup(1λ, T1) → {pp, pk, sk},

A(1λ, pp) → s

DTSS.Sharing(pp, s)
→ {{Ci}i∈[n], {Oj}j∈[t]}

⎤
⎥⎥⎥⎥⎦

−

Pr

⎡
⎢⎣A(pp, pk, s′,
Ci, {Oj}j∈[t]) = 1

:

DTSS.Setup(1λ, T1) → {pp, pk, sk},

A(1λ, pp) → s′

Sim(pp) → {{Ci}i∈[n], {Oj}j∈[t]}

⎤
⎥⎦
∣∣∣∣∣ ≤ μ(λ)

142 A. Kavousi et al.

Definition 2.2 (t-Security). Let 2T1, . . . , (t + 1)T1 be times at which each
additional time-locked share is forcibly obtained. A DTSS is t-secure if prior
to (j + 1)T1, where 1 ≤ j ≤ t, the adversary controlling a set |S ′| ≤ t − (j − 1)
of parties learns no information about s ∈ Sλ in a computational sense. Thus,
it holds

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
A(pp, pk,S ′, T2) → s :

DTSS.Setup(1λ, T1, t) → {pp, pk, sk}
DTSS.Sharing(pp, s)
→ {{Ci}i∈[n], {Oj}j∈[t]},
DTSS.ShaRecover(pp,Ci) → si,
DTSS.AddRecover(pp, pk, {Oj}j∈[t])
→ {s′

j}, 1 ≤ j ≤ t.

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ) +
1

|Sλ|

Definition 2.3 (Robustness). A DTSS is robust if each party in P can even-
tually reconstruct the secret s, after receiving a sufficient number of other parties’
shares and/or obtaining the additional time-locked shares.

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
DTSS.Pool(pp,S, T2) → s :

DTSS.Setup(1λ, T1, t) → {pp, pk, sk}
DTSS.Sharing(pp, s)
→ {{Ci}i∈[n], v, {Oj}j∈[t]},
DTSS.ShaRecover(pp,Ci) → si,
DTSS.AddRecover(pp, pk, {Oj}j∈[t])
→ {s′

j}j∈[t]

⎤
⎥⎥⎥⎥⎥⎥⎦
= 1

5.3 DTSS Construction

We present a construction for DTSS in Fig. 3. We would like a protocol in which
anyone can obtain each additional share s′

j at time (j + 1)T1 given that the
dealer’s role must end with the distribution phase.4 In a naive way, the dealer
should create t puzzles each embedding one additional share to be opened at
t different points in time. However, this inefficient solution comes with a high
computation cost as anyone wishing to access the shares needs to solve each
puzzle separately in parallel, demanding up to T1

∑t
j=1 j operations. To get away

with this issue, we use multi-instance time-lock puzzle (MTLP) [1], a primitive
allowing sequential (chained) release of solutions where the overall computation
cost of solving t puzzles is equal to that of solving only the last one.

Theorem 2. If the multi-instance time-lock puzzle MTLP and timed secret
sharing TSS are secure, then our DTSS protocol ΠDTSS presented in Fig. 3 sat-
isfies the properties described in Sect. 5.2.

Proof. Privacy follows from that of ΠTSS together with the underlying ΠMTLP
protocol for additional time-locked shares. The t-security is satisfied concerning
4 Without loss of generality we assume T2 = (t + 1)T1, accommodating the periodic

release of additional shares.

Timed Secret Sharing 143

Fig. 3. Decrementing-threshold Timed Secret Sharing (DTSS) protocol

the gradual release of additional time-locked shares s′
j over time. That is, the

adversary can forcibly learn s′
j by (j + 1)T1, reducing fault tolerance to t − j.

The protocol is robust as each party Pi can eventually learn the secret by the
time T2 due to the t additional time-locked shares.

6 Verifiable Timed Secret Sharing (VTSS)

In this section, we present verifiable timed secret sharing (VTSS), an enhanced
TSS which considers malicious adversaries. It protects against a malicious dealer
who may send incorrect shares (or even no shares) during the distribution phase
and against a malicious shareholder who may send an incorrect share during the
reconstruction phase.

6.1 VTSS Definition

We present a formal definition of VTSS. Our definition extends the original
verifiable secret sharing (VSS) of Feldman [31], incorporating the notion of time.

Definition 3 (Verifiable Timed Secret Sharing). A verifiable timed secret
sharing (VTSS) scheme involves the following algorithms.

144 A. Kavousi et al.

1. Initialization:
− Setup: VTSS.Setup(1λ, T1, T2) → pp, on input security parameter λ, lower

time bound T1 and upper time bound T2, outputs public parameters pp.
2. Distribution:

− Sharing: VTSS.Sharing(pp, s) → {Ci, πi}i∈[n], on input pp and a secret s,
outputs locked share Ci with time parameter T1 and a proof of validity πi

for each party Pi ∈ P.
− Share verification: VTSS.Verify1(pp,Ci, πi) → 1/0, on input pp, Ci, and

πi, checks the validity of share to ensure the locked share Ci is well-formed
and contains a valid share of secret s. The algorithm returns 1 if both
checks pass. Otherwise, it returns 0.

3. Reconstruction:
− Recovering: VTSS.Recover(pp,Ci) → si, on input pp and Ci, forcibly out-

puts a share si. The algorithm is run by each party Pi.
− Recovery verification: VTSS.Verify2(pp, si, πi) → 1/0, on input pp, si, and

πi, checks the validity of submitted share. The algorithm is run by a ver-
ifier V ∈ P.

4. Pooling: VTSS.Pool(pp,S, T2) → s, on input pp and a set S of shares
(where |S| > t and t ∈ pp), outputs the secret s if T2 has not elapsed and
⊥ otherwise.

A correct VTSS scheme must satisfy soundness, ensuring extractability and
verifiability of the shares, privacy, and security.

Definition 3.1 (Correctness). A VTSS satisfies correctness if for all secret
s ∈ Sλ and a set of shares |S| > t it holds

Pr

⎡
⎣
VTSS.Verify1(pp,Ci, πi) = 1
VTSS.Verify2(pp, si, πi) = 1
VTSS.Pool(pp,S, T2) → s

:
VTSS.Setup(1λ, T1, T2) → pp,
VTSS.Sharing(pp, s) → {Ci, πi}i∈[n],
VTSS.Recover(pp,Ci) → si

⎤
⎦ = 1

Definition 3.2 (Soundness). A VTSS scheme is sound if there exists a neg-
ligible function μ such that for all PPT adversaries A and all λ ∈ N it holds

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 = 1 ∨ b2 = 1 :

VTSS.Setup(1λ, T1, T2) → pp,
A(pp) → ({Ci, πi}i∈[n], {si, π

′
i}),

b1 := VTSS.Verifyv1(pp,Ci, πi) ∧ �s s.t.
VTSS.Sharing(pp, s) → ({Ci}i∈[n], ·),
b2 := VTSS.Verify2(pp, si, π

′
i) ∧ �Ci s.t.

VTSS.Recover(pp,Ci) → si

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ)

Timed Secret Sharing 145

Fig. 4. Verifiable Timed Secret Sharing (VTSS) protocol

Definition 3.3 (Privacy). A VTSS satisfies privacy if for all parallel algo-
rithms A whose running time is at most T1 there exists a simulator Sim and a
negligible function μ such that for all secret s ∈ Sλ and all λ ∈ N, it holds

∣∣∣∣∣Pr

⎡
⎢⎣A(pp, s, {Ci, πi}) = 1 :

VTSS.Setup(1λ, T1, T2) → pp,

A(1λ, pp) → s

VTSS.Sharing(pp, s) → {Ci, πi}i∈[n]

⎤
⎥⎦−

146 A. Kavousi et al.

Pr

⎡
⎢⎣A(pp, s′, {Cj , πj}) = 1 :

VTSS.Setup(1λ, T1, T2) → pp,

A(1λ, pp) → s′

Sim(pp) → {Cj , πj}j∈[n]

⎤
⎥⎦

∣∣∣∣∣ ≤ μ(λ)

Definition 3.4 (Security). A VTSS satisfies security if there exists a negligible
function μ such that for an adversary controlling a subset S ′ of parties, where
|S ′| ≤ t and s ∈ Sλ it holds

Pr

⎡
⎣A(pp,S ′, T2) → s :

VTSS.Setup(1λ, T1, T2) → pp,
VTSS.Sharing(pp, s) → {Ci, πi}i∈[n],
VTSS.Recover(pp,Ci) → si

⎤
⎦ ≤ μ(λ) +

1
|Sλ|

6.2 VTSS Construction

We present a protocol for VTSS in Fig. 4. Following Feldman VSS [31], we make
a crucial change in the protocol to adapt it for VTSS so that the dealer coudl
convince each individual shareholder about the validity of their shares. Notably,
in VTSS we have the dealer commit to the shares rather than the coefficients of
the Shamir polynomial. This modification has two consequences.

First, it allows shareholders to check the consistency of the shares (i.e., all
lie on a polynomial of degree t) using properties of error-correcting code, partic-
ularly the Reed-Solomon code [49]. This is due to the equivalency of the Shamir
secret sharing with Reed-Solomon encoding observed by [46].5 We restate the
basic fact of linear error correcting code in Lemma 1. We remark that in Feldman
VSS the checking of each share is done against the commitment to the whole
polynomial, but here it is done with respect to an individual commitment to each
share, requiring the this step to ensure the sharing phase has been performed
correctly.

Lemma 1. Let C⊥ be the dual code of C that is a linear error correcting code
over Zq of length n. If x ∈ Z

n
q \C, and y⊥ is chosen uniformly at random from

C⊥, the probability that the inner product of the vectors 〈x,y⊥〉 = 0 is exactly
1/q.

Second, it enables us to make use of VTC primitive [57] to non-interactively
ensure each party Pi that they indeed obtains its correct share si at T1. As
mentioned, VTC allows committing to a signing key sk where its corresponding
public key pk = gsk is publicly known. Our main insight is that we can think of
vi = gsi published by the dealer as a public key for each share si committed by
VTC. So, each party Pi can check the verifiability of its locked share Ci while
ensuring the consistency of the shares {si}i∈[n].

Remark 1. We can realize the upper time bound in VTSS similarly to TSS by
using the idea of secret sharing with additional shares (Sect. 5.1). We implic-
itly assume the additional time-locked shares are honestly generated due to our
5 We refer the reader to [18] for a detailed description of the verification procedure.

Timed Secret Sharing 147

motivation which is realizing an upper time bound (and thus breaking public
goods game).6

Theorem 3. If the verifiable timed commitments VTC and Feldman verifiable
secret sharing [31] are secure, then verifiable timed secret sharing protocol ΠVTSS
presented in Fig. 4 satisfies soundness, privacy, and security, w.r.t. Definitions
3.2, 3.3, and 3.4 respectively.

Proof. Correctness is straightforward. The soundness property of the protocol
follows directly from that of the underlying ΠVTC primitive for every single
share si committed with respect to the vi in v. A maliciously generated v can
pass the verification check VTSS.Verify1 only with probability 1/q. A maliciously
submitted si by Pi cannot pass the verification check VTSS.Verify2, except with
negligible probability. The privacy property also follows directly from that of the
underlying ΠVTC which implies the indistinguishability of a puzzle produced by
VTC.Sharing and the one produced by Sim. Note that the commitment to shares
v does not reveal any information about the secret s under the discrete logarithm
assumption. It is important to note that for the assumption to hold the secret s
should have a random distribution. Observe that before T1 the privacy property
essentially implies the security; afterward, the security follows directly from that
of Feldman VSS due to the security of the commitment v.

7 Publicly Verifiable Timed Secret Sharing (PVTSS)

In this section, we make our timed secret sharing scheme publicly verifiable,
meaning that anyone, not only a participating party, is able to verify different
phases of the scheme. To achieve this, we use a publicly verifiable secret sharing
(PVSS) scheme as the main building block that compels parties to behave cor-
rectly by non-interactively proving the validity of the messages sent during the
distribution and reconstruction phases.

7.1 PVTSS Definition

In this section, we present a formal definition of PVTSS according to the existing
ones in the literature such as [18,19,53].

Definition 4 (Publicly Verifiable Timed Secret Sharing). A PVTSS
scheme involves the following algorithms.

1. Initialization:
− Setup: PVTSS.Setup(1λ, T1, T2) → pp, on input security parameter λ,

lower time bound T1, and upper time bound T2, outputs public param-
eters pp. Each party Pi announces a registered public key pki which the
corresponding secret key ski is only known to them.

6 Should a malicious dealer attempt to misbehave, this assumption could be lifted by
using less efficient cryptograhpic protocols.

148 A. Kavousi et al.

2. Distribution:
− Sharing: PVTSS.Sharing(pp, S, {pki}i∈[n]) → {{Ci}i∈[n], πD}, on input

pp, {pki}i∈[n], and a secret S, generates locked encrypted share Ci with
time parameter T1 for each party Pi ∈ P. It also generates a proof πD for
the validity of shares.

− Share verification: PVTSS.Verify1(pp, {pki, Ci}i∈[n], πD) → 1/0, on input
pp, {pki, Ci}i∈[n], and πD, checks the validity of the shares. This includes
verifying the published locked encrypted shares are well-formed and con-
tain correct shares of secret S. The algorithm is run by any verifier V .

3. Reconstruction:
− Recovering: PVTSS.Recover(pp,Ci, pki, ski) → {s̃i, πi}, on input pp, Ci,

pki, and ski, outputs a decrypted share s̃i together with proof πi of valid
decryption. The algorithm is run by each party Pi ∈ P.

− Recovery verification: PVTSS.Verify2(pp,Ci, s̃i, πi) → {0, 1}, on input pp,
Ci, s̃i, and πi, checks the validity of the decryption. The algorithm is run
by any verifier V .

− Pooling: PVTSS.Pool(pp,S, T2) → S, on input pp and a set S of decrypted
shares s̃i (where |S| > t and t ∈ pp), outputs the secret S if T2 has not
elapsed.

A PVTSS scheme must satisfy the following properties.

Definition 4.1 (Correctness). A PVTSS satisfies correctness if for all secret
s ∈ Sλ and a set of shares |S| > t it holds that

Pr

⎡
⎢⎢⎢⎢⎣

PVTSS.Verify1(pp, {Ci}i∈[n],
πD, {pki}i∈[n]) = 1
PVTSS.Verify2(pp,Ci, s̃i, πi) = 1
PVTSS.Pool(pp,S, T2) → S

:

PVTSS.Setup(1λ, T1, T2) → pp,
PVTSS.Sharing(pp, S, {pki}i∈[n])
→ {{Ci}i∈[n], πD},
PVTSS.Recover(pp,Ci, pki, ski)
→ {s̃i, πi}

⎤
⎥⎥⎥⎥⎦
= 1

Definition 4.2 (Soundness). A PVTSS scheme is sound if there exists a neg-
ligible function μ such that for all PPT adversaries A and all λ ∈ N it holds
that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 = 1 ∨ b2 = 1 :

PVTSS.Setup(1λ, T1, T2) → pp,
A(pp) → ({pki, Ci}i∈[n], πD, s̃, π),
b1 := PVTSS.Verify1(pp, {pki, Ci}i∈[n], πD)
∧�s s.t.
PVTSS.Sharing(pp, S, {pki}i∈[n])
→ {{Ci}i∈[n], ·},
b2 := PVTSS.Verify2(pp,C, s̃, π) ∧ �sk s.t.
PVTSS.Recover(pp,C, pk, sk) → {s̃, ·},

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ)

Definition 4.3 (t-Privacy). A PVTSS satisfies t-privacy if for all parallel
algorithms A whose running time is at most T1, and set I ⊂ [n] with |I| = t+1,

Timed Secret Sharing 149

there exists a simulator Sim and a negligible function μ such that for all secret
s ∈ Sλ and λ ∈ N it holds that

∣∣∣∣∣Pr

⎡
⎢⎢⎢⎢⎣

A(pp, S, {Ci}i∈[I], πD) = 1 :

PVTSS.Setup(1λ, T1, T2) → pp,

A(1λ, pp) → S,

PVTSS.Sharing(pp, S, {pki}i∈[I])
→ {{Ci}i∈[I], πD}

⎤
⎥⎥⎥⎥⎦

−

Pr

⎡
⎢⎣A(pp, S′, {Cj}j∈[I], πD) = 1 :

PVTSS.Setup(1λ, T1, T2) → pp,

A(1λ, pp) → S′,
Sim(pp) → ({Cj}j∈[I], πD)

⎤
⎥⎦

∣∣∣∣∣≤ μ(λ)

Definition 4.4 (Security). A PVTSS satisfies security if there exists a negli-
gible function μ such that for an adversary controlling a set S ′ of parties, where
|S ′| ≤ t and s ∈ Sλ, together with the public information denoted by PI, it holds
that7

Pr

⎡
⎢⎢⎢⎢⎣
A(pp,S ′,PI, T2) → S :

PVTSS.Setup(1λ, T1, T2) → pp,
PVTSS.Sharing(pp, s, {pki}i∈[n])
→ {{Ci}i∈[n], πD},
PVTSS.Recover(pp,Ci, pki, ski)
→ {s̃i, πi}

⎤
⎥⎥⎥⎥⎦

≤ μ(λ) +
1

|Sλ|

An indistinguishability game given in [35,52] and adopted by [18] formalizes
the security definition.

7.2 PVTSS Construction

We present a detailed description of the PVTSS protocol in Fig. 5. In what fol-
lows, we elaborate on several techniques used in our construction. In particular,
it turns out that the public verifiability requirement of the scheme demands
taking different approaches toward realizing the lower and upper time bounds.

Dealing with a Malicious Dealer. What makes the protection mechanism
challenging for PVTSS is that anyone, before performing sequential computa-
tion, should be able to check the correctness of shares including consistency,
validity, and extractability of the shares having a set of encrypted shares locked
by the dealer. That is to say, a solution should simultaneously ensure (1) all
shares lie on the same polynomial of degree t, (2) locked encrypted shares con-
tain the committed shares, and (3) shares are obtainable in time T1, all concern-
ing some public information. We first discuss how to guarantee consistency and
verifiability followed by our approach regarding extractability.

7 This property is presented as IND1-Secrecy in [35,52].

150 A. Kavousi et al.

Blinded DLEQ. Our solution to meet the first two aforementioned requirements
is based on having the dealer blind each encrypted shares s̃i using some ran-
domness βi, put the randomness into a puzzle Zi, and publish all the puzzles
together with locked encrypted shares and commitments for i ∈ [n]. The dealer
needs to show that the locked encrypted shares contain the same shares as the
commitments, while the consistency of the shares can be checked using the com-
mitments (as discussed in Sect. 6.2). To do so, we slightly modify the DLEQ
proof (Sect. 3.5) and make it blinded. It allows proving simultaneous knowledge
of two witnesses, one of which is common in two statements. The following is a
protocol ΠBDLEQ for the language

LBDLEQ = {(g1, x, g2, g3, y) | ∃(α, β) : x = gα
1 ∧ y = gα

2 gβ
3 }

1. P chooses two random elements u1, u2
$← Zq, computes a1 = gu1

1 and a2 =
gu1
2 gu2

3 , and sends them to V.
2. V sends back a randomly chosen challenge c

$← Zq.
3. P computes r1 = u1 + cα and r2 = u2 + cβ and sends them to V .
4. V checks if both gr1

1 = a1x
c and gr1

2 gr2
3 = a2y

c hold.

Theorem 4. Protocol ΠBDLEQ is a public-coin honest-verifier zero-knowledge
argument of knowledge corresponding to the language LBDLEQ.

Proof. We show that the ΠBDLEQ satisfies the properties of a Sigma protocol.
Completeness holds, as

gr1
1 = gu1+cα

1 = gu1
1 gcα

1 = a1x
c

gr1
2 gr2

3 = gu1+cα
2 gu2+cβ

3 = gu1
2 gu2

3 (gu1
2 gu2

3)c = a2y
c

For knowledge soundness, given two accepting transcripts (a1, a2; c; r1, r2) and
(a1, a2; c′; r′

1, r
′
2) the witness (α, β) can be found as follows

gr1
1 = a1x

c, gr1
2 gr2

3 = a2y
c ; g

r′
1

1 = a1x
c′

, g
r′
1

2 g
r′
2

3 = a2y
c′

g
r1−r′

1
1 = xc−c′ ⇔ x = g

r1−r′
1

c−c′
1

gr1−r′
1

2 g
r2−r′

2
3 = yc−c′ ⇔ y = gα

2 g
r2−r′

2
c−c′

3

Hence, the witness β can be found as β = (r2 − r′
2)/(c − c′) given the witness

α = (r1 − r′
1)/(c − c′).

Let c be a given challenge. Zero-knowledge property is implied by the fact that
the following two distributions, namely real protocol distribution and simulated
distribution, are identically distributed.

Real : {(a1, a2; c; r1, r2) : u1, u2
$← Zq, a1 = gu1

1 , a2 = gu1
2 gu2

3 ; r1 = u1 + cα, r2 =
u2 + cβ}

Sim : {(a1, a2; c; r1, r2) : r1, r2
$← Zq; a1 = gr1

1 x−c, a2 = gr1
2 gr2

3 y−c}
Note that the probability of occurring for each distribution is the same and
equals 1/q2.

Timed Secret Sharing 151

Cut-and-Choose. The dealer needs to convince the parties they can obtain their
shares at time T1. This is equivalent to saying that Zi has indeed the value
βi embedded. A natural way to show the correctness of puzzle generation is by
utilizing the cut-and-choose technique as in previous works [9,56]. This technique
forces a sender to behave correctly by randomly opening a (fixed) set of puzzles
it has already sent to the receiver based on the receiver’s choice.

We remark that it is possible to deploy the cut-and-choose technique in our
construction without sacrificing security. Given that opening just reveals a (ran-
dom) set of size t of encrypted shares, we are still guaranteed that the secret
remains hidden up to time T1 as t+1 shares are needed for reconstruction. Each
party is supposed to open their corresponding locked encrypted share, which
is not among the opened ones by the dealer. Given public verification, we can
stick to an honest majority assumption (i.e., t < n/2) while ensuring soundness.
We can borrow concrete numbers from related work in the same setting: For
example, setting n = 40 would give a soundness error of 10−12 (Table 3, [57]).

Realizing an Upper Time Bound. Due to the public verifiability, PVTSS
protocol is executed over a public bulletin board. As a result, the secret may
be reconstructed/used by any external party after T2. This demands taking a
different approach towards realizing the upper time bound to make it more strict.
Our solution is based on deploying short-lived proofs (SLPs) [5]. We Observe that
the use of SLPs allows tying the correctness of the system to time, meaning that
the secret is only guaranteed to be correct if it is reconstructed before the upper
time bound. Correctness intuitively states if the distribution phase succeeds,
then the reconstruction phase will output the same secret initially shared by the
dealer. Let us now briefly explain how we make use of SLPs in our construction.

Upper Time Bound with SLPs. Our approach is to take advantage of the forge-
ability property of SLPs in the PVTSS construction. We piggyback on the proof
of decryptions πi generated by each party Pi as part of the reconstruction phase,
turning them into SLPs where their expiration time matches the upper time
bound T2. Therefore, given the properties of short-lived proofs and also relying
on that the secret has uniformly random distribution in Scrape PVSS,8 the cor-
rectness of a share submitted by a party Pi is only guaranteed if being observed
before T2, otherwise it could be an invalid share accompanied with a valid proof.
A short-lived proof for any arbitrary relation R for which there exists a Sigma
protocol can be efficiently constructed [5]. For completeness, we present the
short-lived proof for a relation R using pre-computed VDFs in Fig. 6.

In our protocol, we make a black box use of short-lived DLEQ proof genera-
tion denoted by DLEQ.SLP and verification denoted by DLEQ.SLV. It is required
that the beacon value b used to compute πi is not known until the time T1,
with T = T2 − T1 being the time parameter for the underlying VDF. Therefore,

8 This essentially implies any set of shares is indistinguishable from a set of random
strings. Note that in normal Shamir secret sharing this is limited to a set of size at
most t shares as the secret is not uniformly distributed [13].

152 A. Kavousi et al.

anyone verifying the proof before T2 knows that it could have not been com-
puted through forgery. We highlight that, to deploy short-lived proofs we need
to use the DDH-based version of Scrape PVSS which its DLEQ proof comes with
knowledge soundness property.

Remark 2. Several recent works focus on the notion of forgeability over time,
particularly for developing short-lived signature or forward-forgeable signature
[5,55]. To the best of our knowledge, Arun et al. [5] is the only one exploring the
time-based forgeability in proof systems. This in turn enables us to deploy their
primitive to provide the upper time bound for PVTSS, binding the correctness
of the secret reconstruction to time.

Remark 3. We do not assume the availability of an online verifier who observes
the protocol over time. In fact, due to the characteristic of SLPs, their use is
meaningful when the verifier does not necessarily remain online during the recon-
struction period [T1, T2]; otherwise, it can always reject the proofs sent afterward,
negating the forgeability property. Moreover, as pointed out in [5], convincingly
timestamping the messages published on the bulletin board is opposed to the
usability of SLPs.

In our PVTSS construction, we explicitly feed the upper time bound T2 and a
beacon value b in two algorithms, PVTSS.Recover and PVTSS.Verify2. This is
essentially due to the necessity of the knowledge of time parameters T = T2 −T1

and b for short-lived proof generation and verification. Moreover, as discussed in
[5], T does not need to be hardcoded when PVTSS.Setup is run. This allows the
use of VDFs with any time parameter T ′ > T , while still generating short-lived
proofs with respect to time T . That is, even if different parties use different time
parameters with T ′ > T for their VDF evaluations, only those proofs observed
before time T are convincing.

Theorem 5. If the time-lock puzzle TLP, short-lived proofs SLP, and Scrape
PVSS are secure, then publicly verifiable timed secret sharing protocol ΠPVTSS

(presented in Fig. 5) satisfies soundness, t-privacy, and security, w.r.t. Definitions
4.2, 4.3, and 4.4 respectively.

Proof. Before T2, the correctness is straightforward. Afterward, the correctness
may fail with overwhelming probability due to the forgeability and indistin-
guishability properties of the underlying SLPs together with the uniform distri-
bution of the secret s (and thus shares si). Anyone observing the public bulletin
board after T2 cannot distinguish an erroneous decryption share s̃i from a valid
one as both pass the verification check PVTSS.Verify2. The soundness of the
protocol follows from the underlying cut-and-choose argument and BDLEQ’s
soundness property. Note that by choosing parameters properly the soundness
error for the cut-and-choose technique can be negligible in n. The property
of t-privacy stems from the fact that given a random set of t opened locked
encrypted shares produced by VTC.Sharing, the simulator Sim can produce a
locked encrypted share indistinguishable from any locked encrypted share that

Timed Secret Sharing 153

remained unopened due to the privacy properties of the underlying TLP. Secu-
rity of the protocol follows directly from the underlying PVSS protocol. Note
that blinded encrypted shares ci distributed by the dealer provide semantic secu-
rity due to the independent randomness βi, while the original encryption method
used in [18] to generate ŝi is not IND-CPA-secure.

8 Discussion

In the following, we explore and discuss several aspects of our constructions.

On the Setup Phase. In all of our schemes, Setup algorithm is responsible for
generating a set of public parameters pp, encapsulating the parameters for the
underlying secret sharing and time-based cryptographic primitive. In particu-
lar, our VTSS construction in Fig. 4 requires a trusted setup to generate the
parameters for the underlying VTC primitive. This is due to the linearly homo-
morphic TLP of [43] deployed in VTC construction. The functionality of the
primitive depends on such an assumption; otherwise, either the puzzle is not
solvable or one can efficiently solve it upon receipt. Using class groups of imag-
inary quadratic fields [16] as a family of groups of unknown order instead of
the well-known RSA group is an option to reduce the trust, but comes with
higher (offline) computational investment for the puzzle generator to compute
the parameters through sequential computation [43]. Deploying the class groups
solely does not eliminate the need for a trusted setup as it is still feasible that
a malicious sender fools a receiver into accepting locked shares that will never
be opened. Moreover, the VDF used in SLPs can be instantiated efficiently via
class groups [60] without making any trusted setup assumption.

On the Use of SLPs. As previously mentioned, the use of SLPs necessitates
the availability of a reconstructor prior to the upper time bound for a correct
reconstruction. Moreover, we deploy short-lived proofs using precomputed VDFs
[5] which do not offer reusable forgeability, i.e., forging a proof for any state-
ment v without computing a new VDF. However, this essentially fits a secret
sharing setting (in particular, PVSS) which is inherently one-time use, i.e., after
reconstruction the secret is known and the system is not reusable.

Failure Probability. Although just some chances of reconstruction failure after
T2 should be enough to break the public goods game, here We briefly analyze
the probability of a reconstruction failure after T2 when deploying SLPs with an
honest majority assumption. Let t be the number of adversarial shares and n be
the total number of shares publicly available. Given that the incorporation of
even one invalid share results in an invalid reconstruction and the fact that shares
are uniformly distributed, the success probability can be computed as p = p1

p2
,

where p1 =
(
n−t
t+1

)
and p2 =

(
n

t+1

)
. We can easily show that by a proper choice

of the parameters n, t the reconstruction fails with overwhelming probability.
Setting t = �n

2 � − 1, we have p ≤ n2−(� n
2 �+1) which is a negligible value in λ for

a choice of n = λ.

154 A. Kavousi et al.

Fig. 5. Publicly Verifiable Timed Secret Sharing (PVTSS) protocol

Timed Secret Sharing 155

Breaking Public Goods Game. A common method to break the public goods
game is to reward those parties who publish their shares sooner via harnessing the
financial capabilities of the blockchain systems [6,11,39]. That is, the shareholder
receives some reward if their submitted share is among the first t + 1 shares
published on the chain. This in turn creates a race and motivates the shareholder
to show up sooner. Our two solutions, namely gradual release of additional shares
and using short-lived proofs, can be considered as orthogonal methods that are
off-chain. More precisely, the former approach essentially binds the security of
the protocol to time by causing security reduction over time. The latter approach
binds the correctness of the protocol to time, meaning that if the reconstruction
does not occur sometime before T2, then the correctness is not guarantee.9. As a
result, in both approaches the shareholders are pushed to act as soon as possible
to avoid any pitfalls.

Acknowledgements. The authors would like to thank Dan Ristea for the helpful
discussions and Asiacrypt anonymous reviewers for their useful comments. Aydin Abadi
was supported in part by REPHRAIN: The National Research Centre on Privacy, Harm
Reduction and Adversarial Influence Online, under UKRI grant: EP/V011189/1.

A Cryptographic Primitives and Definitions

A.1 Time-Lock Puzzles (TLP)

Definition 5 (Time-lock Puzzle). A time-lock puzzle (TLP) consists of the
following two algorithms:

1. TLP.Gen(1λ, T, s) → Z, a probabilistic algorithm that takes time parameter T
and a secret s, and generates a puzzle Z.

2. TLP.Solve(T,Z) → s, a deterministic algorithm that solves the puzzle Z and
retrieves the secret s.

We recall the correctness and security definition of standard time-lock puzzles:

Correctness [43]. A TLP scheme is correct if for all λ ∈ N, all polynomials T (·)
in λ, and all s ∈ Sλ, it holds that

Pr [TLP.Solve(T (λ), Z) → s : TLP.Gen(1λ, T (λ), s) → Z] = 1

Security [43]. A TLP scheme is secure with gap ε < 1 if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-
size adversary A = {Aλ}λ∈N of depth ≤ T ε(λ), there exists a negligible
function μ(·), such that for all λ ∈ N and s0, s1 ∈ {0, 1}λ it holds that
Pr [A(Z) → b : TLP.Gen(1λ, T (λ), sb) → Z, b

$← {0, 1}] ≤ 1
2 + μ(λ).

9 This is a generic argument, independent of the adversarial behavior.

156 A. Kavousi et al.

In particular, the seminal work of [50] introduced the notion of encrypting
to the future using an RSA-based TLP. Loosely speaking, the sender encrypts a
message m under a key k derived from the solution s to a puzzle Z. So, anyone
can obtain m after running TLP.Solve(T,Z), and learning the key.

A.2 Homomorphic Time-Lock Puzzles (HTLP)

Definition 6 (Homomorphic Time-Lock Puzzles [43]). Let C = {Cλ}λ∈N

be a class of circuits and Sλ be a finite domain. A homomorphic time-lock puzzle
(HTLP) with respect to C and with solution space Sλ is a tuple of algorithms
(HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval) as follows.

1. HTLP.Setup(1λ, T) → pp, a probabilistic algorithm that takes a security
parameter 1λ and time parameter T , and generates public parameters pp.

2. HTLP.Gen(pp, s) → Z, a probabilistic algorithm that takes public parameters
pp and a solution s ∈ Sλ, and generates a puzzle Z.

3. HTLP.Solve(pp, Z) → s, a deterministic algorithm that takes public parame-
ters pp and puzzle Z, and retrieves a secret s.

4. HTLP.Eval(C, pp, Z1, . . . , Zn) → Z ′, a probabilistic algorithm that takes a cir-
cuit C ∈ Cλ and a set of n puzzles (Z1, . . . , Zn), and outputs a puzzle Z ′.

Security [43]. An HTLP scheme (HTLP.Setup,HTLP.Gen,HTLP.Solve,
HTLP.Eval) is secure with gap ε < 1 if there exists a polynomial T̃ (·) such that
for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary (A1,A2) =
{(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by T ε(λ), there
exists a negligible function μ(·), such that for all λ ∈ N it holds that

Pr

⎡
⎢⎢⎣A2(pp, Z, τ) → b :

A1(1λ) → (τ, s0, s1)
HTLP.Setup(1λ, T (λ)) → pp

b
$← {0, 1}

HTLP.Gen(pp, sb) → Z

⎤
⎥⎥⎦ ≤ 1

2
+ μ(λ)

The puzzle is defined over a group of unknown order and is of the form
Z = (u, v), where u = gr and v = hr.N (1+N)s. One notable point regarding the
construction is that a trusted setup assumption is needed to generate the public
parameters pp = (T,N, g, h), where N is a safe modulus10 and h = g2

T

. Such a
setup phase is responsible for generating the parameters as specified and keeping
the random coins secret; otherwise, either the puzzle is not solvable or one can
efficiently solve it in time t � T . Having said that, the authors in [43] point out
that this assumption can be removed if construction gets instantiated over class
groups instead of an RSA group of unknown order. However, this comes at the
cost of a higher computational overhead by the puzzle generator.

10 A safe modulus is a product of two safe primes P = 2p′ + 1, Q = 2q′ + 1, where p′

and q′ are prime numbers.

Timed Secret Sharing 157

A.3 Multi-instance Time-Lock Puzzle (MTLP)

Definition 7 (Multi-instance Time-lock Puzzle [1]). A Multi-instance
Time-lock Puzzle (MTLP) consists of the following five algorithms.

1. MTLP.Setup(1λ, T, z) → {pk, sk,d}, a probabilistic algorithm that takes a
security parameter λ, a time parameter T , and the number of puzzle instances
z, and outputs a key pair (pk, sk) and a secret witness vector d.

2. MTLP.Gen(m, pk, sk,d) → {o,h}, a probabilistic algorithm that takes a mes-
sage vector m, the public-private key (pk, sk), secret witness vector d, and
outputs a puzzle vector o and a commitment vector h.

3. MTLP.Solve(pk,o) → s, a deterministic algorithm that takes the public key
pk and the puzzle vector o, and outputs a solution vector s, where sj is of
form mj || dj.

4. Prove(pk, sj) → πj , a deterministic algorithm that takes the public key pk and
a solution sj, and outputs a proof πj.

5. Verify(pk, πj , hj) → {0, 1}, a deterministic algorithm that takes the public
key pk, proof πj, and commitment hj. If verification succeeds, it outputs 1,
otherwise 0.

Security [1]. A multi-instance time-lock puzzle is secure if for all λ and T , any
number of puzzle: z ≥ 1, any j (where 1 ≤ j ≤ z), any pair of randomised
algorithm A : (A1,A2), where A1 runs in time O(poly(jT, λ)) and A2 runs in
time δ(jT) < jT using at most π(T) parallel processors, there exists a negligible
function μ(.) such that

Pr

⎡
⎢⎢⎣
A2(pk, ö, τ) → ä
s.t.
ä : (bi, i)
mbi,i = mbj,j

:

MTLP.Setup(1λ,Δ, z) → (pk, sk,d)
A1(1λ, pk, z) → (τ,m)
∀j′, 1 ≤ j′ ≤ z : bj′

$← {0, 1}
MTLP.Gen(m′, pk, sk,d) → ö

⎤
⎥⎥⎦ ≤ 1

2
+ μ(λ)

A.4 Verifiable Delay Function

Definition 8 (Verifiable Delay Function). A verifiable delay function
(VDF) consists of the following three algorithms:

1. VDF.Setup(1λ, T) → pp, a probabilistic algorithm that takes security parame-
ter λ and time parameter T , and generates system parameters pp.

2. VDF.Eval(pp, x) → {y, π}, a deterministic algorithm that given system param-
eters pp and a randomly chosen input x, computes a unique output y and a
proof π.

3. VDF.Verify(pp, x, y, π) → {0, 1}, a deterministic algorithm that verifies y
indeed is a correct evaluation of the x. If verification succeeds, the algorithm
outputs 1, and otherwise 0.

158 A. Kavousi et al.

Intuitively, there are three security properties that a valid VDF should sat-
isfy. There must be a run time constraint of (1+ ε)T for a positive constant ε to
limit the evaluation algorithm, called ε-evaluation. The VDF should have sequen-
tially, meaning no adversary using parallel processors can successfully compute
the output without executing proper sequential computation. Lastly, the VDF
evaluation should be a function with uniqueness property. That is, the verifica-
tion algorithm must accept only one output per input.

VDF Constructions. Among a variety of constructions, VDFs based on repeated
squaring have gained more attention as they offer a simple evaluation function
that is more compatible with the hardware and provides better accuracy in
terms of the time needed to perform the computation. The two concurrent works
of [48,60] suggest evaluating the function y = x2T

over a hidden-order group.
Despite similarities in construction, they present two independent ways of proof
generation. Particularly, the one proposed by Wesolowski [60] enjoys the luxury
of having a constant size proof and verification cost. In addition, Wesolowski’s
construction can be instantiated over class groups of imaginary quadratic fields
[16] which do not require a trusted setup assumption.

A.5 Verifiable Timed Commitment

Definition 9 (Verifiable Timed Commitment [57]). A verifiable timed
commitment consists of the following algorithms:

1. VTC.Setup(1λ, T) → pp, a probabilistic algorithm that takes a security param-
eter 1λ and time parameter T , and generates public parameters pp.

2. VTC.Commit(pp, s) → {C, π}, a probabilistic algorithm that takes public
parameters pp and a secret s, and generates a commitment C and proof π.

3. VTC.Verify(pp, pk, C, π) → {0, 1}, a deterministic algorithm that takes public
parameters pp, a public key pk, the commitment C, and proof π, and checks
if the commitment contains a valid s with respect to pk.

4. VTC.Solve(pp,C) → s, a deterministic algorithm that takes commitment C,
and outputs a secret s.

Intuitively, a correct VTC should satisfy soundness, ensuring the commit-
ment C indeed embeds a valid secret s with respect to pk, and privacy, ensuring
that no parallel adversary with a running time of less than T succeeds in extract-
ing s, except with negligible probability.

A.6 Sigma Protocols

Let R = {(v;w)} ∈ V×W denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol Σ on the (v;w) ∈ R is an interactive
protocol with three movements between P and V as follows.

1. Σ.Ann(v, w) → a, runs by P and outputs a message a to V .

Timed Secret Sharing 159

2. Σ.Cha(v) → c, runs by V and outputs a message c to P .
3. Σ.Res(v, w, c) → r, runs by P and outputs a message r to V .
4. Σ.Ver(v, a, c, r) → {0, 1}, runs by V and outputs 1 if statement holds.

A Sigma protocol has three main properties including completeness, knowl-
edge soundness, and zero-knowledge. Completeness guarantees the verifier gets
convinced if parties follow the protocol. Special soundness states that a mali-
cious prover P ∗ cannot convince the verifier of a statement without knowing
its corresponding witness except with a negligible probability. This is formal-
ized by considering an efficient algorithm called extractor to extract the witness
given a pair of valid protocol transcripts with different challenges showing the
computational infeasibility of having such pairs and therefore guaranteeing the
knowledge of the witness by P . The notion of zero-knowledge ensures that no
information is leaked to the verifier regarding the witness. This is formalized by
considering an efficient algorithm called simulator which given the instance v,
and also the challenge c, outputs a simulated transcript that is indistinguishable
from the transcript of the actual protocol execution. Note that this property only
needs to hold against an honest verifier which seems to be a limitation of the
description, but allows for having much more efficient constructions compared
to generic models. The interactive protocol described above can be easily turned
into a non-interactive variant using the Fiat-Shamir heuristic [32] in the random
oracle model, making it publicly verifiable with no honest verifier assumption.

A.7 Short-Lived Proofs

Definition 10 (Short-lived Proofs [5]). A short-lived proof scheme includes
a tuple of the following algorithms:

1. SLP.Setup(1λ, T) → pp, a probabilistic algorithm that takes security parameter
λ and time parameter T , and generates public parameters pp.

2. SLP.Gen(pp, v, w, b) → π, a probabilistic algorithm that takes a (v;w) ∈ R
and a random value b, and generates a proof π.

3. SLP.Forge(pp, v, b) → π, a probabilistic algorithm that takes any instance v
and a random value b, and generates a proof π.

4. SLP.Verify(pp, v, π, b) → 1/0, a probabilistic algorithm verifying that π indeed
is a valid short-lived proof of the instance v. If verification succeeds, the algo-
rithm outputs 1, and otherwise 0.

Note that the definition assumes there exists a randomness beacon which
outputs an unpredictable value b periodically at certain times. There are vari-
ous ways to implement such beacons including using a public blockchain [15],
financial market [26], and more. Such an assumption is necessary to eliminate
the need for having a shared global clock (i.e., timestamping). As parties agree
on the initial point in time (implied by b), the proof π tied to b must have been
observed before time T to be convincing, otherwise might be a forgery.

160 A. Kavousi et al.

Fig. 6. Short-lived proof for a relation R = {(v;w)} using pre-computed VDFs [5]

SLP Using Sigma protocols. Short-lived proofs can be instantiated both using
generic (non-interactive) zero-knowledge proofs and efficient Sigma protocols.
However, as shown in [5], making a Sigma protocol short-lived is rather tricky
as it needs some modification in the protocol for OR-composition to be secure
according to SLP properties. The modification is done in such a way to let the
honest prover create an SLP in a short time without needing to wait for time
T to compute the VDF but forces the malicious prover to do the sequential
computation, preventing her from computing a forgery before time T . More
accurately, in an Or-composition the prover can convince the verifier even if it
only knows the witness to one of the relations. To do so, the verifier lets the prover
somehow cheat by using the simulator for the relation that it does not know the
witness for. Thus, having one degree of freedom the prover chooses two sub-
challenges c1 and c2 under the constraint that c1 + c2 = c. Note that the prover
is free to fix one of them and compute the other one under the constraints. The
observation made in [5] to let the honest prover quickly generate the short-lived
proof is to involve the beacon b in the generation of the challenge. Therefore,
an honest prover just needs to pre-compute the VDF on a random value b∗

allowing her to use it when computing the forgery by freely setting one of the
sub-challenges, say c2, to b∗ ⊕ b and letting c1 = c ⊕ c2. A malicious prover,

Timed Secret Sharing 161

however, should compute the VDF on demand as it does not know a witness w
for the relation R and c1 gets fixed by the simulator, taking away the possibility
of setting c2 as specified.

As an optimization, some alternative ways for generating a VDF solution
by the honest prover instead of pre-computing a VDF from scratch have been
proposed that we refer the reader to [5] for more details.

References

1. A. Abadi and A. Kiayias. Multi-instance publicly verifiable time-lock puzzle and
its applications. In International Conference on Financial Cryptography and Data
Security, pages 541–559. Springer, 2021.

2. A. V. Aho and J. E. Hopcroft. The design and analysis of computer algorithms.
Pearson Education India, 1974.

3. G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin, A. Nicita,
T. Rabin, A. Shah, and E. Tromer. Gage mpc: Bypassing residual function leakage
for non-interactive mpc. Proceedings on Privacy Enhancing Technologies, 2021.

4. M. Archetti and I. Scheuring. Game theory of public goods in one-shot social
dilemmas without assortment. Journal of theoretical biology, 299:9–20, 2012.

5. A. Arun, J. Bonneau, and J. Clark. Short-lived zero-knowledge proofs and signa-
tures. In Advances in Cryptology–ASIACRYPT 2022: 28th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5–9, 2022, Proceedings, Part III, pages 487–516. Springer, 2023.

6. Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros. B rick: Asyn-
chronous incentive-compatible payment channels. In Financial Cryptography and
Data Security: 25th International Conference, FC 2021, Virtual Event, March 1–5,
2021, Revised Selected Papers, Part II 25, pages 209–230. Springer, 2021.

7. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Dynamic ad hoc clock
synchronization. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 399–428. Springer, 2021.

8. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret shar-
ing. In Proceedings of the 18th ACM conference on Computer and Communications
Security, pages 433–444, 2011.

9. W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge con-
tingent payments in cryptocurrencies without scripts. In Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part II 21, pages 261–280.
Springer, 2016.

10. C. Baum, B. David, R. Dowsley, R. Kishore, J. B. Nielsen, and S. Oechsner. Craft:
C omposable r andomness beacons and output-independent a bort mpc f rom t
ime. In IACR International Conference on Public-Key Cryptography, pages 439–
470. Springer, 2023.

11. D. Beaver, K. Chalkias, M. Kelkar, L. K. Kogias, K. Lewi, L. de Naurois, V. Nico-
laenko, A. Roy, and A. Sonnino. Strobe: Stake-based threshold random beacons.
Cryptology ePrint Archive, 2021.

12. A. Beimel, Y. Ishai, and E. Kushilevitz. Ad hoc psm protocols: Secure computa-
tion without coordination. In Advances in Cryptology–EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part III 36, pages
580–608. Springer, 2017.

162 A. Kavousi et al.

13. M. Bellare, W. Dai, and P. Rogaway. Reimagining secret sharing: Creating a safer
and more versatile primitive by adding authenticity, correcting errors, and reduc-
ing randomness requirements. Proceedings on Privacy Enhancing Technologies,
2020(4), 2020.

14. D. Boneh and M. Naor. Timed commitments. In Annual international cryptology
conference, pages 236–254. Springer, 2000.

15. J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source.
Cryptology ePrint Archive, 2015.

16. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, 1988.

17. J. Burdges and L. D. Feo. Delay encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 302–326. Springer,
2021.

18. I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities.
In International Conference on Applied Cryptography and Network Security, pages
537–556. Springer, 2017.

19. I. Cascudo, B. David, L. Garms, and A. Konring. Yolo yoso: fast and simple encryp-
tion and secret sharing in the yoso model. In Advances in Cryptology–ASIACRYPT
2022: 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part
I, pages 651–680. Springer, 2023.

20. M. Chase, H. Davis, E. Ghosh, and K. Laine. Acsesor: A new framework for
auditable custodial secret storage and recovery. Cryptology ePrint Archive, 2022.

21. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Annual inter-
national cryptology conference, pages 89–105. Springer, 1992.

22. M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riviere, A. Shelat,
M. Venkitasubramaniam, and R. Wang. Diogenes: lightweight scalable rsa modulus
generation with a dishonest majority. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 590–607. IEEE, 2021.

23. Y.-H. Chen and Y. Lindell. Feldman’s verifiable secret sharing for a dishonest
majority. IACR Communications in Cryptology, 1(1), 2024.

24. A. R. Choudhuri, S. Garg, J. Piet, and G.-V. Policharla. Mempool privacy via
batched threshold encryption: Attacks and defenses. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 3513–3529. USENIX Association, 2024.

25. P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and sustainable timed-
release encryption and sequential time-lock puzzles. In European Symposium on
Research in Computer Security, pages 64–85. Springer, 2021.

26. J. Clark and U. Hengartner. On the use of financial data as a random beacon.
Evt/wote, 89, 2010.

27. P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 910–927. IEEE, 2020.

28. Y. Dodis and D. H. Yum. Time capsule signature. In International Conference on
Financial Cryptography and Data Security, pages 57–71. Springer, 2005.

29. Y. Doweck and I. Eyal. Multi-party timed commitments. arXiv preprint
arXiv:2005.04883, 2020.

30. S. D. Dwilson. What happened to julian assange’s dead man’s switch for the
wikileaks insurance files? https://heavy.com/news/2019/04/julian-assange-dead-
mans-switch-wikileaks-insurance-files/, Apr. 2019. Section: News.

http://arxiv.org/abs/2005.04883
https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/
https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/

Timed Secret Sharing 163

31. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
427–438. IEEE, 1987.

32. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Conference on the theory and application of crypto-
graphic techniques, pages 186–194. Springer, 1986.

33. J. A. Garay and M. Jakobsson. Timed release of standard digital signatures.
In International Conference on Financial Cryptography, pages 168–182. Springer,
2002.

34. J. Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchro-
nization. In Proceedings of the third annual ACM symposium on Principles of dis-
tributed computing, pages 89–102, 1984.

35. S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing
schemes. In International Workshop on Selected Areas in Cryptography, pages 294–
308. Springer, 2008.

36. L. Heimbach and R. Wattenhofer. Sok: Preventing transaction reordering manip-
ulations in decentralized finance. arXiv preprint arXiv:2203.11520, 2022.

37. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and t-pake in the password-only model. In Advances in Cryptology–
ASIACRYPT 2014: 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11,
2014, Proceedings, Part II 20, pages 233–253. Springer, 2014.

38. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177–194.
Springer, 2010.

39. E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford.
Calypso: private data management for decentralized ledgers. Proceedings of the
VLDB Endowment, 14(4):586–599, 2020.

40. Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adver-
saries. Journal of Cryptology, 29(2):456–490, 2016.

41. A. F. Loe, L. Medley, C. O’Connell, and E. A. Quaglia. Tide: A novel approach to
constructing timed-release encryption. Cryptology ePrint Archive, 2021.

42. Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin. Flamingo: Multi-
round single-server secure aggregation with applications to private federated learn-
ing. In 2023 IEEE Symposium on Security and Privacy (SP), pages 477–496. IEEE,
2023.

43. G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and appli-
cations. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceed-
ings, Part I, pages 620–649. Springer, 2019.

44. D. Malkhi and P. Szalachowski. Maximal extractable value (mev) protection on
a dag. In 4th International Conference on Blockchain Economics, Security and
Protocols, page 1, 2023.

45. Y. Manevich and A. Akavia. Cross chain atomic swaps in the absence of time via
attribute verifiable timed commitments. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pages 606–625. IEEE, 2022.

46. R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes.
Communications of the ACM, 24(9):583–584, 1981.

http://arxiv.org/abs/2203.11520

164 A. Kavousi et al.

47. L. Medley, A. F. Loe, and E. A. Quaglia. Sok: Delay-based cryptography. In 2023
IEEE 36th Computer Security Foundations Symposium (CSF), pages 169–183.
IEEE, 2023.

48. K. Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical
computer science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

49. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

50. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

51. A. Rondelet and Q. Kilbourn. Threshold encrypted mempools: Limitations and
considerations. arXiv preprint arXiv:2307.10878, 2023.

52. A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier’s cryptosys-
tem. In WEWoRC 2005–Western European Workshop on Research in Cryptology.
Gesellschaft für Informatik eV, 2005.

53. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In Annual International Cryptology Conference, pages
148–164. Springer, 1999.

54. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

55. M. A. Specter, S. Park, and M. Green. {KeyForge}:{Non-Attributable} email from
{Forward-Forgeable} signatures. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1755–1773, 2021.

56. S. Srinivasan, J. Loss, G. Malavolta, K. Nayak, C. Papamanthou, and S. A. Thya-
garajan. Transparent batchable time-lock puzzles and applications to byzantine
consensus. In IACR International Conference on Public-Key Cryptography, pages
554–584. Springer, 2023.

57. S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and
D. Schröder. Verifiable timed signatures made practical. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1733–1750, 2020.

58. S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient
cca timed commitments in class groups. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2663–2684, 2021.

59. S. A. K. Thyagarajan, T. Gong, A. Bhat, A. Kate, and D. Schröder. Opensquare:
Decentralized repeated modular squaring service. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 3447–3464,
2021.

60. B. Wesolowski. Efficient verifiable delay functions. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 379–407.
Springer, 2019.

61. H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford.
F3b: A low-overhead blockchain architecture with per-transaction front-running
protection. In 5th Conference on Advances in Financial Technologies, 2023.

http://arxiv.org/abs/2307.10878

Security Against Physical Attacks

Formal Definition and Verification
for Combined Random Fault and Random

Probing Security

Sonia Beläıd1 , Jakob Feldtkeller2(B) , Tim Güneysu2,3 , Anna Guinet2 ,
Jan Richter-Brockmann2 , Matthieu Rivain1 , Pascal Sasdrich2 ,

and Abdul Rahman Taleb1

1 CryptoExperts, Paris, France
{sonia.belaid,matthieu.rivain}@cryptoexperts.com

2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
{jakob.feldtkeller,tim.gueneysu,anna.guinet,jan.richter-brockmann,

pascal.sasdrich}@rub.de
3 DFKI, Bremen, Germany

Abstract. In our highly digitalized world, an adversary is not con-
strained to purely digital attacks but can monitor or influence the phys-
ical execution environment of a target computing device. Such side-
channel or fault-injection analysis poses a significant threat to other-
wise secure cryptographic implementations. Hence, it is important to
consider additional adversarial capabilities when analyzing the security
of cryptographic implementations besides the default black-box model.
For side-channel analysis, this is done by providing the adversary with
knowledge of some internal values, while for fault-injection analysis the
capabilities of the adversaries include manipulation of some internal val-
ues.

In this work, we extend probabilistic security models for physical
attacks, by introducing a general random probing model and a general
random fault model to enable security analysis with arbitrary leakage
and fault distributions, as well as the combination of these models. Our
aim is to enable a more accurate modeling of low-level physical effects.
We then analyze important properties, such as the impact of adversar-
ial knowledge on faults and compositions, and provide tool-based formal
verification methods that allow the security assessment of design com-
ponents. These methods are introduced as extension of previous tools
VERICA and IronMask which are implemented, evaluated and compared.

Keywords: Physical Security · Random Probing Model · Random
Fault Model · Combined Analysis · VERICA · IronMask

1 Introduction

Advanced cryptographic schemes are typically examined within the common
black-box model, which assumes that the internal values of the scheme remain
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 167–200, 2025.
https://doi.org/10.1007/978-981-96-0941-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_6&domain=pdf
http://orcid.org/0000-0002-9437-6425
http://orcid.org/0000-0001-9797-1257
http://orcid.org/0000-0002-3293-4989
http://orcid.org/0000-0001-8753-1266
http://orcid.org/0000-0002-8454-4755
http://orcid.org/0000-0002-9855-4161
http://orcid.org/0000-0002-5443-626X
https://doi.org/10.1007/978-981-96-0941-3_6

168 S. Beläıd et al.

concealed and protected from any adversary. However, over the past 25 years,
physical attacks that exploit the actual implementation of cryptographic algo-
rithms have challenged these assumptions. In particular, Side-Channel Analy-
sis (SCA) exploits dependencies between processed values and physical execu-
tion characteristics such as timing behavior [32], instantaneous power consump-
tion [33], or electromagnetic emanations [26], to conclude information about a
secret. Similarly, Fault Injection Analysis (FIA) manipulates the physical exe-
cution environment to create a faulty intermediate state such that the resulting
output gives a hint about the processed secret. Common fault injection meth-
ods include clock and voltage glitching [19,49], targeted electromagnetic (EM)
pules [16,21], or focused laser beams [47]. Both attack vectors question a differ-
ent assumption of the cryptographic black-box model: SCA that internal values
are confidential and hidden from the adversary and FIA that the internal values
have integrity and cannot be manipulated by the adversary. However, in a real
attack scenario, the adversary is not restricted to performing only one of the two
attack types. Indeed, first practical attack for Combined Analysis (CA), i.e., the
combination of FIA and SCA, are emerging [3,14,41–44].

Constructing effective countermeasures against such physical attacks requires
a deep understanding of attack properties and leakage behavior. To this end,
the research community endeavors to theoretically model the leakage emanating
from the victim device which is susceptible to exploitation by the adversary. In
particular for SCA, in the famous d-probing model introduced by Ishai, Sahai,
and Wagner [31], the leakage is modeled by the exact values of d internal variables
of the adversary’s choice. A victim device is then deemed d-probing secure if any
such set of d intermediate variables is statistically independent on the processed
secret. While this probing model facilitates security proofs, it sometimes fails to
closely reflect the reality of embedded devices. For instance, it does not capture
horizontal attacks [6], which exploit repeated manipulation of variables within
an execution. As a consequence, the community is beginning to focus on more
realistic leakage models, like the ε-random probing model [2,8,31]. In this model,
the exact value carried by each wire of the circuit is leaked with probability p to
the adversary. The security is then determined by the probability ε to obtain a
secret-dependent probe combination. This model tightly reduces to the security
in the practical noisy leakage model [20,36], where each variable leaks a noisy
function of its value. Nevertheless, the random probing model is still insufficient
in modeling low-level physical effects because it assigns the same independent
probability p to each intermediate variable whereas the underlying noise is likely
to be different and the independence assumption not verified in practice.

For modeling of FIA the adversary is given the ability to manipulate a set
of intermediate variables in a predefined way and then their impact on the sys-
tem output is analyzed. Models from the literature often take inspiration from
probing models for SCA. Specifically, the k-fault model [30] allows the adversary
to manipulate up to k intermediate values, while the random fault model [18]
defines a fault probability q and manipulates each internal value with probabil-
ity q. In both models, the adversary wins when they get a faulty output that

Combined Random Fault and Random Probing Security 169

cannot be detected or corrected, whereas the random fault model determines
the probability μ with which this happens. There again, while beneficial for a
first approximation of physical security, the current models come with signifi-
cant abstractions. In particular, the deterministic k-fault model cannot capture
the imprecise nature of physical attacks due to the probabilistic fault behavior,
while the random fault model fails to precisely model low-level physical charac-
teristics of fault injection due to the same independent probability for each fault.
Naturally, models for CA combine the capabilities of the individual models. All
those models allow the analysis of certain types of secret-dependent leakages and
enable pre-silicon evaluation.

Contribution. In this work, we provide a generalization of the probabilistic mod-
els for physical attacks by considering arbitrary leakage and fault distributions.
In particular, we introduce a general random probing model, a general random
fault model, and a general random combined model in Sect. 3, where the occur-
rence of a probe and a fault is not restricted to the same independent probability
and instead arbitrary distributions can be chosen to model low-level circuit and
noise effects. All our models, but especially our random combined model, are
analyzed for interesting properties. Specifically, we analyze the impact of the
adversarial knowledge on the injected faults on combined security. Since the
resulting analysis complexity is very high, we introduce notions for composi-
tions for all three models in Sect. 4. For our general random probing model, this
is a straightforward extension of an existing notion for the ε-random probing
model (details are given in the extended version [9]) For the other two models,
to the best of our knowledge, this is the first attempt at composition under
probabilistic leakage and fault behavior. We then continue to investigate the
formal verification of the proposed combined composition notions for gadgets.
Specifically, we introduce two methods of tool-based analysis using VERICA [38]
and IronMask [10]. We explain how to extend these tools to verify the proposed
notions and present the implementation details in Sect. 5. In particular, our
extension of VERICA can analyze arbitrary circuits with exact precision (up to
some threshold) but is comparably slow. In contrast, our extension of IronMask is
much faster but restricted to (N)LR gadgets [10] with intermediate corrections
and performs further approximations. We finally provide an extensive evaluation
and comparison of the tools in Sect. 6.

2 Preliminaries

In the following, we give a short overview of the used notation and circuit model.
Afterwards, we provide the basic concepts required to understand the contribu-
tion of this paper. Specifically, we introduce countermeasures for SCA and FIA
and discuss security proofs via simulation.

2.1 Notation

Throughout the paper, we use a sans-serif font for functions (e.g., f) and an
upper-case calligraphic font for sets (e.g., S). We designate S the complement

170 S. Beläıd et al.

of a set S, |S| its cardinality, and DS a discrete probability distribution defined
over the event set S. Further, we name

∏
i DSi the joint probability distribution

of independent distributions DSi where the joint probability is computed as the
multiplication of the individual probabilities, i.e., Pr[a∩b] = Pr[a]·Pr[b], and with
≡ the equality of distributions. To simplify the notation for n-times replication
we denote with Vn = {(0)n, (1)n} the set that contains the zero vector (0)n and
the one vector (1)n of size n. Other notations will be introduced throughout the
paper where necessary.

2.2 Circuit Model

In this work, we model a circuit C as a Directed Acyclic Graph (DAG) C =
{G,W}, where vertices g ∈ G represent logical gates and edges w ∈ W repre-
sent wires carrying a Boolean value and connecting individual gates. We restrict
the set of combinational gates to Gc = {inv, and, xor, or} and the set of mem-
ory gates to Gm = {reg}. Further, we define a set of input and output gates
Gio = {in, out}, where in produces and out absorbs a Boolean value, and a set
of probabilistic gates Grand = {rand}, where rand produces a uniform-random
Boolean value. Finally, we define the set of constant gates Gconst = {zero, one},
where each gate produces the respective Boolean value. Hence, each gate is from
the set Gall = Gc ∪ Gm ∪ Gio ∪ Grand ∪ Gconst. Given this, each gate implements a
deterministic or probabilistic Boolean function fg : Fh

2 → F2, with 0 ≤ h ≤ 2,
of the respective functionality. Further, let Gf = {Fh

2 → F2 | h ≤ 2} be the set
of all possible Boolean functions for this purpose. With respect to the fan-out
of wires, we consider two different scenarios depending on the analysis of hard-
ware or software. For hardware (cf. Sect. 5.2), we create a copy of the wire for
each gate that is connected, i.e., for a wire with fan-out n we create n copies.
Here a gate output can be connected to any number of copies of the same wire.
For software (cf. Sect. 5.3), we say that each gate can have at most one output
and introduce a special copy operation that outputs the input twice. Hence, to
represent a wire with fan-out n we require 2n − 1 wires to construct a tree of
copys.

2.3 Countermeasures

Masking. A popular countermeasure against SCA is Boolean masking [13,27],
due to its sound formal foundation. The core idea is to split a secret x ∈ F2

into a vector 〈x0, . . . , xs−1〉 ∈ F
s
2, with xi ∈ F2, such that x =

⊕s−1
i=0 xi and

each subset {xi | i ∈ [0, s − 1]} with cardinality smaller than s is statistically
independent of x. We refer to a component xi as a share of x with share index
i. Similarly, a circuit is transformed to a masked circuit, which operates over
shares of the inputs. In this paper, we assume the initial encoding enc of inputs
and the final decoding dec of outputs (generating shares or recreating the secret,
respectively) not as part of the masked circuit.

Combined Random Fault and Random Probing Security 171

Replication. A popular countermeasure against FIA is the replication of the
circuit in combination with a majority function for error correction purposes.
In particular, a value x ∈ F2 is replicated to a vector 〈x0, . . . , xn−1〉 ∈ F

n
2 with

n = 2k + 1, such that ∀i, j ∈ [0, n − 1] : xi = xj . Then, up to k faults can be
corrected with a majority function maj. Likewise, a circuit is replicated n times,
where every replication operates on a unique set of value replications.

2.4 Security Proofs via Simulation

Security proofs in the context of SCA are often conducted based on simulation.
For this, two worlds are introduced. The first world represents a real implemen-
tation, while the second world is made trivially secure by removing the secret
that an adversary tries to learn. If an adversary is not able to distinguish between
the two worlds then the view of the adversary is proven to be independent of
the secret. The proof works by construction of a simulator that recreates the
distribution of the observed values without access to any secret.

However, in this work, we do not require perfect simulation but allow the
simulator to be wrong with a small probability. In particular, we require a simu-
lator to create a distribution that is ε close to the observed distribution. We say
that any two probability distributions D1 and D2 are ε-close (D1

∼∼∼ε D2) if their
statistical distance is upper-bounded by ε, i.e.,

1
2

∑

x

|PrD1 [x] − PrD2 [x]| ≤ ε.

3 Security Model

We start our contribution by defining probabilistic security models for SCA,
FIA, and CA. For this, we build on existing models but capture a more general
attack scenario.

3.1 General Random Probing Security

Adversary Model. We introduce a new generalization of the random probing
model [2,8,31] called general random probing model. Here, a probing adversary
Ap can invoke a circuit C multiple times and on each invocation, the exact
values of a random subset of wires in C are leaked to Ap. We denote the leaking
combination of wires, i.e., the subset of the wires of the circuit that is given to
Ap, with W̃ ⊆ W. Let W∞ = {W̃ ⊆ W} be the set of all wire combinations
in C and DW∞ an arbitrary discrete probability distribution defined over W∞.
Further, we define the following two functions to first select a random element
from W∞ and then determine the values carried by the selected wires for a given
input:

LeakingWires(C ,DW∞) : The leaking-wire sampler selects for a given circuit
C a wire combination W̃ with probability PrDW∞ [W̃].

172 S. Beläıd et al.

AssignWires(C , W̃, x) : The assign-wire sampler takes a fixed input x for C
and outputs the values assigned to the wires w ∈ W̃ as a tuple in F

|W̃|
2 . If C

is probabilistic so is AssignWires().

Then, the view of Ap is formally defined as the random probing leakage
LW̃(C , x), which is given by the random experiment

W̃ ← LeakingWires(C ,DW∞) ,

LW̃(C , x) ← AssignWires(C , W̃, x) .

Security Definition. Intuitively, a circuit C is secure in our model if the view
of Ap can be simulated with high probability without access to the secret, i.e.,
there exists a simulator Sim that recreates the distribution of the leaking wires
W̃ without knowledge of the secret, such that the failure probability of Sim
is bounded by some (small) ε. A more formal definition is given in Definition
1. Throughout this work, we consider enc to be some encoding function, e.g.,
defined by Boolean masking (cf. Sect. 2.3).

Definition 1 (General Random Probing Security). A circuit C is said
to be (DW∞, ε)-random probing secure with respect to an encoding enc if there
exists a simulator Sim such that for all inputs x:

Sim(C , W̃) ∼∼∼ε LW̃(C , enc(x)) .

The required simulator Sim can be constructed by returning a simulation
failure ⊥ whenever the exact distribution LW̃(C , enc(x)) cannot be recreated
without access to x and ensuring that

Pr[Sim(C , W̃) =⊥] = ε ,

and, conditioned to the event Sim(C , W̃) �=⊥,

Sim(C , W̃) ≡ LW̃(C , enc(x)) .

Relation to Random Probing Model. The random probing model [2,8,
31] is a specific instance of the above-defined general random probing model.
Specifically, the probability distribution DW∞ is selected such that each wire
w ∈ W leaks with the same probability p independent of all other wires.

As shown by Duc et al. [20], the random probing model can be seen as an
intermediate model between the noisy leakage model [36] and the d-threshold
probing model [31]. Here, the assumption of the mutually independent leakage
probability p for all wires can be traced to the assumption of equal and mutually
independent noise in the noisy leakage model. However, the latter does not nec-
essarily hold in practice, neither in hardware nor in software [7]. By defining the
leakage over an arbitrary discrete probability distribution DW∞, we can model
scenarios where the noise of two wires is not independent (e.g., because they oper-
ate in parallel with the same background computation) and, hence, the leakage

Combined Random Fault and Random Probing Security 173

probability of the two wires is dependent. Similarly, dependencies in the leakage
probability can also be caused by physical defaults such as glitches [34,37] and
couplings [15,37] or by shared structures like the Power Distribution Network
(PDN) [45].

The introduction of the arbitrary discrete probability distribution DW∞ also
allows two different wire combinations of one wire {wi} and {wj} to have dif-
ferent leakage probabilities pi and pj , respectively. With that, it enables more
fine-grained modeling for the contribution of individual wires to the occurring
leakage of wire combinations (by a different weight for the wires wi and wj to
occur). For example, an EM probe usually does not capture the entire circuit
but only a subset of neighboring circuit elements. Hence, a subset of wires does
not contribute to the leakage at all and can be modeled by wire combinations
with zero probability. Modeling this correctly can lead to place-and-route algo-
rithms that take EM probing into account and minimize the observable leakage.
Other differences in the leakage probability may be caused by the difference in
the driver strengths of individual gates, or even by the type of operation a wire
is used for.

By introducing this general model, we hope to fuel research into the nature
of physical leakage by looking specifically into the leakage dependencies and
contributions of different circuit structures. However, due to the computational
blow-up, we will stick to mutually independent leakage probabilities in the prac-
tical implementation of our evaluation tools (cf. Sect. 5).

3.2 General Random Fault Security

Adversary Model. We use the adversary model proposed by Feldtkeller et
al. [24] that is based on a fault model from Richter-Brockmann et al. [40]. Here,
a faulting adversary can invoke a circuit C multiple times, where on each invo-
cation, a random subset of gates is manipulated according to a specified fault
transformation. More specifically, a fault consists of a fault location g ∈ G, i.e., a
gate of the circuit, and a fault transformation τ : Gf → Gf , i.e., a transformation
of the Boolean function a gate implements, where the fault model restricts the
allowed transformations. Popular fault transformations are, e.g., τset(g) = one,
τreset(g) = zero, or τflip(g) = inv(g). Hence, a fault is a pair f = (g, τ) and we
denote by F the set of all possible faults, by F∞ = {F̃ ⊆ F} the set of all
possible fault combinations F̃ with distinct locations (i.e., each g ∈ G occurs at
most once in F̃), and by DF∞ an arbitrary distribution defined over F∞. We
define the following function to select a fault combination for a single circuit
invocation:

AssignFaultGates(C ,DF∞) : For a given circuit C , the faulty-gate sampler
selects a fault combination F̃ with probability PrDF∞ [F̃] and outputs the
modified circuit C F̃ that we refer to as a faulty circuit.

Note that F̃ can be empty and, if PrDF∞ [∅] > 0, then the sampler can output
the original circuit C = C ∅. For the sake of simplicity, it still falls within the
definition of a faulty circuit.

174 S. Beläıd et al.

The original adversary model introduced by Feldtkeller et al. provides the
adversary with a correct and a faulty output of the circuit C . For our purposes,
we define the leakage of faults by the correctness of the output, which is a
conservative but popular choice for fault security [4,17,38,39]. For that, we define
a decoding or correction gadget for the context of faulty circuits:

GD : The decoding gadget realizes a function such that, given an input with at
most k bit faults, outputs a corrected result.

Then, we define the leakage by the correctness of the output of the faulty circuit.
More formally, we define the random fault leakage LF̃ (C , x) as the output of the
random experiment, with

C F̃ ← AssignFaultGates(C ,DF∞) ,

LF̃ (C) ←
{

0 if ∀x : C (x) = GD(C F̃ (x)) ,

1 else.

In contrast to LW̃(C , enc(x)), the random fault leakage is not a distribution but,
for each fault combination F̃ , a constant Boolean value. With this, we define
the view of the adversary Af , after injecting a random fault into a circuit C , as
LF̃ (C). Note, that we focus on correction-based countermeasures here. However,
detection-based countermeasures can be treated analogously by considering the
result secure if a fault was detected correctly.

As with the general random probing model, this adversary model allows the
modeling of a wide range of different adversarial capabilities [24]. For example,
the set of fault combinations F∞ can be set to register combinations with long
computation paths to model clock glitches. Similarly, it can be set to a set of
adjacent gates to model a laser attack. Similarly, a distribution of faults DF∞

with a small variance can be used to model an adversary with precise faulting
capabilities, while a broader distribution can be used for a more dispersed fault
behavior.

Security Definition. We extend the above adversary models by providing an
appropriate definition for security. Intuitively, we say a fault combination leads
to an insecure circuit behavior if there exists some input assignment that cannot
be corrected at the output. This is a very conservative assumption, in that it
assumes an adversary who can exploit every effective fault at the output to gain
full knowledge of the secret, and is popular in the literature [4,17,38,39]. To
account for the random behavior of our adversary model, we say a circuit is
random fault secure if the probability that the adversary will get exploitable
information is bounded by some (small) μ.

Combined Random Fault and Random Probing Security 175

Definition 2 (General Random Fault Security). A circuit C is (DF∞, μ)-
random fault secure with respect to a decoding GD if:

Pr[LF̃ (C) = 1] ≤ μ ,

where LF̃ () is computed from the random experiment

C F̃ ← AssignFaultGates(C ,DF∞).

In this definition, the decoding gadget required for the computation of the
fault leakage LF̃ (C) cannot be faulted by Af . This is symmetric to the encoding
enc in random probing security, which is not probed, and can be justified by the
fact that a fault in a final correction can only leak the output of the circuit.
Note, however, that any correction implemented within the circuit is subject to
faults in our model.

Relation to Random Fault Model. Dhooghe and Nikova proposed in [18]
a random fault model that is inspired by the random probing model. Note that
their model differs from our proposal in two key features: (i) They consider faults
in wires allowing only the fault transformations set, reset, and flip. In contrast,
we model faults by a transformation of gate functions which allows a wide range
of possible fault scenarios, including set, reset, and flip [40]. (ii) They consider
an adversary that has precise control over the location of the fault where the
occurrence of the fault is randomly determined by an independent probability κ.
In contrast, we allow an arbitrary distribution over fault combinations. Hence,
different fault locations can be dependent and the fault type can be uncertain as
well. This allows a wide range of possible adversarial scenarios [24]. Therefore,
our new model is a generalization of the previously proposed random fault model.

3.3 General Random Combined Security

Adversary Model. We now introduce a model for an adversary that can both
inject faults and place probes simultaneously. As such, the resulting combined
adversary will have the capability to manipulate a random set of gates of a cir-
cuit. Then, both the exact values of a random subset of wires and the correctness
of the circuit are leaked to the adversary. To formally capture the view of the
adversary, we define the random combined leakage LW̃,F̃ (C , x) as the output of
the random experiment

C F̃ ← AssignFaultGates(C ,DF∞) ,

W̃ ← LeakingWires(C F̃ ,DW∞) ,

LW̃,F̃ (C , x) ← AssignWires(C F̃ , W̃, x) ‖ LF̃ (C) .

Again, we assume a correction-based countermeasure for simplicity. When
detection is used, it is important to include the detection flag in the random
combined leakage (which then needs to be simulated alongside the leaking wires).

176 S. Beläıd et al.

Fig. 1. Difference when knowing the injected fault versus knowing only the fault distri-
bution. When knowing the fault the circuit is deterministic (for deterministic inputs)
and a probe on the output propagates to all inputs. When only the fault distribu-
tion is known, the circuit is probabilistic (even with deterministic inputs) stopping the
propagation of probes.

Considering the SCA aspect of CA, we require for security that the leaking
wires W̃ can be simulated without knowledge of the secret. However, for simula-
tion, the adversarial knowledge of the faulty circuit makes a difference. Imagine
the scenario in Fig. 1, where a flip fault is injected into a xor chain with proba-
bility 1

2 . If the adversary knows the faulty circuit C F̃ (and, hence, C F̃ is given
to the simulator) then all deterministic inputs to the xor chain are required to
simulate the probe at the end in both cases (non-faulty/faulty). In contrast, if
the adversary does not know C F̃ (and only the fault distribution DF̃∞ is given
to the simulator) then the fault randomizes the intermediate value and the out-
put of the final xor can be simulated by a uniform random value. Hence, the
fault effectively works as a mask refreshing. For this, we introduce two different
combined adversaries: one without and one with knowledge of the faulty circuit.

i) Unknown-Fault Random Combined Adversary. Our first adversary Auc is the
combination of Ap and Af without knowledge of the randomly chosen fault
combination F̃ . Specifically, the adversary has no access to the faulty circuit
C F̃ and the corresponding simulator receives just the circuit C and the fault
distribution DF∞ as input. Hence, the view of Auc is defined by LW̃,F̃ (C , x)
and the effects of fault injection and probing are interleaved, i.e., we analyze the
circuit in Fig. 1c.

ii) Known-Fault Random Combined Adversary. The second adversary Akc is the
combination of Ap and Af with additional knowledge of the faulty circuit C F̃

(or equivalently, the selected fault combination F̃). For this, the corresponding
simulator has access to C F̃ for the simulation of the leaking wires. With this, the

Combined Random Fault and Random Probing Security 177

view of Akc is defined by LW̃,F̃ (C , x) ‖ F̃ . Since the faulty circuit is known, we

can analyze LW̃(C F̃ , x) and LF̃ (C) independently, i.e., after the fault injection,
we only consider one of the two circuits in Fig. 1b.

When comparing the two adversaries, it becomes apparent that Auc is the
more realistic adversary model for CA because, in a real-world circuit, the adver-
sary usually does not know the exact effect of an injected fault. However, the
uncertainty about the faults makes the analysis of combined security much more
complex, due to the reciprocal effects of faults and probes. Fortunately, we can
show that any circuit secure against Akc is also secure against Auc. For this,
we see Akc mostly as a useful abstraction for analysis, allowing a clear path to
security verification.

In this sense, we can make a further distinction in the knowledge an adversary
has about the effect of fault injection. Specifically, we can separate the knowledge
about the fault location and its effect. For this, we use the known-fault adversary
Akc in combination with a fault transformation to a probabilistic gate function
fg, i.e., fg has an internal random tape that impacts the output of the gate. While
this pushes the analysis closer to Auc, it is important to evaluate the correctness
of the circuit for all values of the random tape, i.e., LF̃ (C) = 0 if the output can
be corrected for all inputs and random values of probabilistic gate functions.

Our model also allows us to go in the opposite direction by empowering
Akc with direct control over the injected fault. Hence, we can model a chosen-
fault combined adversary as the adversary Akc that can freely choose the fault
distribution DF∞ of a (restrict) set of fault combinations F∞. In most cases, this
will lead to an adversary that directly chooses the location and transformation
of the injected fault, since any uncertainty will reduce the advantage of the
adversary, which removes the random nature of the model. Note, if the set F∞

is restricted to the set of all gate combinations with up to k faults, this model is
equivalent to the popular threshold fault model [1,4,30,39,46]. However, since
the semantics of the security definition do not change (we do not care how the
fault distribution is generated), we do not introduce a specific adversary model
for this case.

Security Definition. We provide security definitions for the setting of com-
bined adversaries. Intuitively, we say that a circuit is combined-secure if the
view of the corresponding adversary can be simulated and the output can be
corrected with high probability. For this, we introduce a new security parame-
ter γ that represents the advantage of the adversary, i.e., the probability that
the adversary gains some knowledge about the secret. In the combined setting,
the adversary wins if either there exists some fault leakage (LF̃ (C) = 1) or the
leaking wires in the faulty circuit cannot be simulated without knowledge of the
secret. To overcome the dependencies between those two events, we only conduct
the simulation of the leaking wires if there is no fault leakage. Hence, we get the
following two parameters (where we usually choose the lowest possible value):

μ ≥ Pr[LF̃ (C) = 1] ,

178 S. Beläıd et al.

ε ≥ Pr[Sim(C , W̃) ≡⊥| LF̃ (C) = 0] .

Here, μ is defined exactly as in Definition 2, while ε is the probability that the
simulation fails knowing that LF̃ (C) = 0. We then express the advantage of the
combined adversary by

γ ≥ μ + (1 − μ)ε .

To compute ε, we introduce a new subset of the fault combination B ⊆ F∞,
such that B captures all fault combinations that always yield a result that can
be corrected, i.e., B = {F̃ ∈ F∞ | LF̃ (C) = 0}. Then, we define the distribution
DB as the scaled distribution DF∞ conditioned to the event LF̃ (C) = 0.

We start with the security definition for the adversary Auc, where the random
combined leakage needs to be simulated. In a sense, this is the most natural
definition as the adversary has no knowledge about the circuit transformation
caused by the injected fault.

Definition 3 (Unknown-Fault Random Combined Security). A circuit
C is (DW∞,DF∞, γ)-Unknown-Fault Random Combined Secure (RCSUF) with
respect to an value encoding enc and a error decoding GD if there exists some
μ, ε ≤ 1 such that C is (DF∞, μ)-random fault secure with respect to GD, there
exists a simulator Sim such that for all inputs x:

Sim(C ,DF∞) ∼∼∼ε LDW∞,DB(C , enc(x)) and μ + (1 − μ)ε ≤ γ ,

where LDW∞,DB() is computed from the random experiment

W̃ ← LeakingWires(C ,DW∞) ,

C F̃ ← AssignFaultGates(C ,DB) .

While simple, this definition is difficult to analyze due to the interleaving
of probes and faults within the simulator. Therefore, we provide a second secu-
rity definition tailored to Akc. Because this adversary knows the faulty circuit
C F̃ , the interleaving of probes and faults is eliminated. Hence, the analysis gets
simpler and we will later show that security in this model implies security with
unknown faults.

Definition 4 (Known-Fault Random Combined Security). A circuit
C is (DW∞,DF∞, γ)-Known-Fault Random Combined Secure (RCSKF) with
respect to an value encoding enc and an error decoding GD if there exists some
μ, ε ≤ 1 such that C is (DF∞, μ)-random fault secure with respect to GD, there
exists a simulator Sim such that for all inputs x it holds that

C F̃ ← AssignFaultGates(C ,DB) ,

Sim(C F̃) ∼∼∼ε LW̃(C F̃ , x),

and
μ + (1 − μ)ε ≤ γ ,

where LW̃() is computed from the random experiment

W̃ ← LeakingWires(C F̃ ,DW∞) .

Combined Random Fault and Random Probing Security 179

Reduction Between Security Definitions. It is evident that the adversary
Akc has more knowledge about the probed circuit structure than Auc. Hence,
it seems reasonable that RCSUF is the more general security notion and we can
reduce its security to RCSKF. In other words, if a circuit is RCSKF, then it is
always RCSUF.

In particular, we can show that if there exists a simulator SimKF for the
adversary Akc then we can always construct a simulator SimUF for the adver-
sary Auc with at most the failure probability of SimKF . For that, consider that
RCSKF requires the simulation for a given but randomly chosen faulty circuit
C F̃ . Hence, we can compute the failure probability of SimKF as the sum of the
failure probability for each faulty circuit weighted by the probability of that
circuit to occur, i.e.,

εkf =
∑

F̃
Pr[F̃]εF̃

kc , (1)

where εF̃
kc is the failure probability of SimKF given the faulty circuit C F̃ . We can

then construct a simulator that randomly selects a faulty circuit and calls SimKF

for the wire simulation. Note, that standalone fault security is not affected by
the choice of the adversary. We show a more formal argumentation below.

Theorem 1. Let C be a circuit that is (DW∞,DF∞, γkc)-RCSKF. Then C is
(DW∞,DF∞, γuc)-RCSUF with γuc ≤ γkc.

Proof. Let C be a (DW∞,DF∞, γkc)-RCSKF circuit. Then, by definition of
RCSKF, C is (DF∞, μ)-random fault secure and there exists a simulator SimKF

with failure probability εkc for the probing leakage LW̃(C F̃ , x) such that γkc ≥
μ + (1 − μ)εkc.

Now we construct a simulator SimUF for RCSUF out of SimKF . This is pos-
sible because SimUF has to simulate the same events as SimKF since the set of
fault combinations with LF̃ (C) = 1 remains untouched by the knowledge of the
adversary. The simulator SimUF is constructed by the following two steps:

1. Call C F̃ ← AssignFaultGates(C ,DB),
2. Return SimKF (C F̃ , W̃).

When this simulator does not fail it is a perfect simulation of the leaking wires
because it draws F̃ from the correct distribution and SimKF produces a perfect
simulation for any faulty circuit C F̃ (if it does not fail). Given this, the failure
probability of SimUF is given by εuf =

∑
F̃ Pr[F̃]εF̃

kc , where εF̃
kc is the failure

probability of SimKF given the faulty circuit C F̃ . Hence, we have εuc = εkc

(see Eq. 1) for this simulator (however, there could be a simulator with a smaller
failure probability). Together with (F∞, μ)-random fault security of C , it follows
that C is (DW∞,DF∞, γuc)-RCSUF with γuc ≤ γkc. �

In the remainder of this paper, we will mostly focus on RCSKF for the sake
of simplicity.

180 S. Beläıd et al.

Related Work on the Random Combined Model. In addition to the
random fault model, Dhooghe and Nikova propose a combined version of the
random probing and random fault model [18]. Their model does not leak the
exact occurring fault to the adversary (similar to RCSUF). However, since they
use their version of the random fault model and the traditional random probing
model, the combination has the same limitations as the individual models. Our
model introduces a new security parameter γ that captures the overall advantage
of the combined adversary. Notably, the parameters of our combined model can
be chosen to align with the definitions provided by Dhooghe and Nikova. While
they propose this model in an appendix, they do not perform any analysis or
further investigations into it.

Related Work on the Combined Attacks. In the literature, several com-
bined attacks have been proposed [14,41–44,48] that exploit both fault injection
and side-channel leakage. These attacks leverage additional SCA leakage caused
by conditional fault propagation or the disruption of masking schemes through
fault injection. Our model captures these attacks, as simulating the correspond-
ing probes is not possible without access to the secret, reflecting the inherent
vulnerabilities. For instance, works [42, Section 4.2] and [44] describe combined
attacks on gadgets involving logical AND operations protected by countermea-
sures like DOMREP [29]. The strategy typically involves injecting a fault into
one share of a sensitive variable a, which is multiplied by all shares of another
sensitive variable b. This causes a conditional fault propagation where effective
faults propagate only if b = 1, and, hence, the observation of the effectiveness of
the fault is sufficient to learn the secret b. With our new combined model, this
attack can be captured using a single fault (set, reset, or bit-flip), and two probes
placed in different replications or a single probe in the correction module that
combines two replications. By probing the correction module, we can observe
the fault’s propagation based on whether b is zero (when the fault does not
propagate) or one (when it does), enabling the extraction of sensitive informa-
tion about b. In response to this vulnerability, DOMREP-II [35] was introduced,
which performs a masked correction such that a single probe cannot determine
the fault’s effectiveness.

4 Compositional Notions

Analyzing entire circuits for their security is often prohibitively complex. As a
result, the research community focuses on the construction of so-called gadgets,
i.e., small circuits implementing a small function (often single binary operations)
in a secure manner such that security is guaranteed even under composition [5,
8,12,17,25,38]. To abstractly argue about the security via composition, we first
define a composability notion, which defines the properties a gadget must fulfill,
usually, by restricting the propagation of leakage or faults. Second, we outline
and prove the conditions of composition, i.e., how the gadgets can be securely
combined, in a composition theorem.

Combined Random Fault and Random Probing Security 181

For composition in the general random probing model, we can extend a notion
from the ε-random probing model to arbitrary leakage distributions. In particu-
lar, we extend the notion of Random Probing Composability (RPC) [8] such that
there is an arbitrary but independent leakage distribution for each gadget. This
independence of leakage distributions between gadgets is required to preserve
the advantages of the gadget-based approach, namely the independent analy-
sis of gadgets. The definition and compositional properties are straightforward
extensions of the original statements. In particular, the random set of leaking
wires is extended by a bounded set of output wires, which together are only
allowed to provide information about a bounded set of input shares. Then, the
failure probability ε is determined by the maximum failure probability over all
possible leaking output combinations. We provide more details in the extended
version [9] and continue with composition in the general random fault model.

4.1 Composition in the Random Fault Model

In contrast to the random probing model, to the best of our knowledge, there
exists no prior work on composition in the random fault model. Due to the
duality of probes and faults, we can adapt the notation from the random probing
to the random fault case. However, instead of adding probes on outputs we now
consider additional faults on inputs and check for correctness not simulation.

To properly argue about the composition we need to specify the used coun-
termeasure (similar to masking for probing). Hence, in the following, we will only
consider circuits secured by simple repetition against a fault adversary. In par-
ticular, we will use 2k + 1 repetitions such that a majority vote can be used for
the correction of up to k faults. Then, for composition, we consider an adversary
that can inject a random fault combination into the gadget where additionally
a tuple I ′ of arbitrarily but bounded sets of inputs are potentially manipulated
by faults. More specifically, for each input with index i, there is a bounded set
I ′

i that contains the replication indices of inputs that may be affected by a fault.
Here, we consider each replication in I ′

i to be a unique and independent input,
to account for all possible distribution changes due to a fault in previous parts of
the composed circuit. Hence, a fault on an input wire can be seen as an arbitrary
change in the value distribution over F2. Then, a gadget is composable, if the
output can be corrected with high probability.

To formally define our notion of composition in the presence of a random
fault adversary, we start by defining Restricted Random Fault Composability
(RRFC), which states the required property for a fixed tuple of input faults I ′.

Definition 5 (Restricted Random Fault Composability). Let n = 2k+1
and I ′ = (I ′

i)i∈[h] be a tuple of sets such that I ′
i ⊆ [n], for all i: |I ′

i| ≤ k. A gadget
G : (Fn

2)h → (Fn
2)m is (I ′, k,DF∞, μ)-RRFC if there exists a deterministic

algorithm ReplicationSelect such that the random experiment

182 S. Beläıd et al.

G F̃ ← AssignFaultGates(G ,DF∞) ,

O′ := (O′
1, . . . ,O′

m) ← ReplicationSelect(G F̃ , I ′)

LI′,F̃ (G) ←
{

0 if ∀i ≤ m : |O′
i| ≤ k ,

1 else.

yields
Pr[LI′,F̃ (G) = 1] ≤ μ

G F̃ (x′)|O′ ≡ G(x)|O′

for all inputs x ∈ V
h
n and faulty inputs x′ ∈ (Fn

2)h with x|I′ = x′|I′ .

Then, a gadget supports Random Fault Composability (RFC) with some bound
μ if for all possible tuples I ′ the RRFC failure probability is bounded by μ.

Definition 6 (Random Fault Composability). A gadget G : (Fn
2)h →

(Fn
2)m with n = 2k + 1 is (k,DF∞, μ)-RFC if for all tuples of sets I ′ = (I ′

i)i∈[h]

with ∀i : I ′
i ⊆ [n] and |I ′

i| ≤ k the gadget G is (I ′, k,DF∞, μI′)-RRFC and
maxI′{μI′} ≤ μ.

While we split the definition of RFC into two parts (for reasons that become
apparent when we look at composition under a combined adversary) it is easy
to see that there is a close symmetry with the definition of General Random
Probing Composability (GRPC). Where GRPC goes through all possible tuples
of output probes O, RFC goes through all possible tuples of input faults. Where
GRPC restricts the number of shares per input the simulator can use for a
successful simulation, RFC restricts the number of replications per output that
can be affected by a fault.

We now show that gadgets supporting RFC can be composed arbitrarily.
Under the assumption of mutually independent fault distributions for each gad-
get, the failure probability increases linearly with the number of gadgets in the
circuit.

Theorem 2. Let C be a circuit constructed by composition of (k,DF∞
i , μi)-

RFC gadgets Gi, for i ∈ {1, . . . , |C |}. Then, C is (
∏|C |

i=1 DF∞
i , 1−∏|C |

i=1(1−μi))-
random fault secure.

Proof. Let the faulty circuit be C F̃ ← AssignFaultGates(C ,
∏|C |

i=1 DF∞
i), with

F̃ the set of faults selected with Pr∏
i DF∞

i
[F̃]. We can divide F̃ into |C | disjoint

fault sets F̃i ⊆ F̃ such that F̃i belongs to Gi and is selected with PrDF∞
i

[F̃i].
We go iteratively through the gadgets, starting with the gadgets only con-

nected to the inputs of C . Let Gi be such a gadget. Then, by definition of
(k,DF∞

i , μi)-RFC, the gadget Gi is (I ′
Gi

, k,DF∞
i , μi)-RRFC for the tuple of

empty sets I ′
Gi

= (I ′
Gi,j

= ∅)j∈[h]. Hence, there exists a tuple of sets O′
Gi

such

that Pr[LI′
Gi

,F̃ (G) = 1] ≤ μ and G F̃i
i (x)|O′

Gi

≡ Gi(x)|O′
Gi

.

Combined Random Fault and Random Probing Security 183

We continue with the child gadgets, i.e., gadgets that have inputs connected
to outputs of the just handled gadgets and (potentially) inputs of the circuit. Let
Gj be such a gadget. Again, we can create a tuple of sets I ′

Gj
out of the respective

tuples O′
Gi

of the parent gadgets Gi. Because of (k,DF∞
j , μj)-RFC there exists

tuple of sets O′
Gj

such that Pr[LI′
Gj

,F̃ (G) = 1] ≤ μ and G F̃j

j (x)|O′
Gj

≡ Gj(x)|O′
Gj

.

We repeat this process until we reach the outputs of C .
Since we have n = 2k+1 replications, we can construct a decoding gadget GD

for C by computing the majority of the output wires w1
i , . . . , wn

i for all i ∈ [m].
This decoding gadget will correct an output value as long as the number of faulty
replications is smaller or equal to k, which is always true if none of the gadgets Gi,
for i = 1, . . . |C |, fail with respect to RFC. The probability that at least one of |C |
gadgets fail is 1−∏|C |

i=1(1−μi). Hence, Pr[C (x) ≡ GD(C F̃ (x))] ≤ 1−∏|C |
i=1(1−μi),

which shows random fault security of C . �

Note, that the above composition loses some tightness in μ because a failure of
RFC in one gadget does not necessarily mean that the entire circuit is insecure,
e.g., if some faults cancel each other out in a later gadget.

Relation to Fault-Secure Composition. To the best of our knowledge, this
is the first work establishing a compositional property in the random fault model.
However, in the threshold fault model [30], where an adversary can place up to k
faults, composition is already discussed and notions usually have a strong sym-
metry to notions in the Ishai-Sahai-Wagner (ISW) probing model. In particular,
(Strong) Non-Accumulation ((S)NA) [17] (later refined to Fault (Strong) Non-
Interference (F-(S)NI) [38]) restricts the number of faults that can propagate to
the output of a gadget, while Fault-Isolating Non-Interference (FINI) [25] limits
fault propagation within so-called redundancy domains. Both variants ensure
that the number of faults in the replication of a single value does not exceed
the threshold that allows correction (detection) of faults. In this sense, our pro-
posed notion has some similarity with (S)NA/F-(S)NI, in that it restricts the
number of output replications that are allowed to be affected by a fault. How-
ever, similar to the contrast between (G)RPC and (Strong) Non-Interference
((S)NI), the number of allowed faulty outputs is not dependent on the amount
of injected faults. Also, we use the same symmetry between faults and probes
for the definition of our notion of composition.

4.2 Composition in the Random Combined Model

Finally, we provide a compositional statement for the random combined model,
i.e., under an adversary with both faulting and probing capabilities. Here, we
consider composition under an adversary that knows the injected fault and use
the reduction from Sect. 3.3 for the adversary with unknown faults. We leave the
tighter compositional statement in the setting with unknown faults for future
work. In principle, the following notion is a combination of the two notions for
the individual cases, however, with subtle differences.

184 S. Beläıd et al.

First, we count faults in inputs and outputs per input and output share.
More specifically, the tuple of indices for potentially faulty inputs has now a set
for each share of each input, i.e., I ′ = ((I ′

i,j)i∈[s])j∈[h], where j is the index of
the input and i the share index. The same holds for the tuple of potential faulty
outputs O′ = ((O′

i,j)i∈[s])j∈[m], which is constructed by ReplicationSelect.
Hence, we bound the number of allowed faults per input and output share by k.

Second, and in contrast, probes on outputs are extended to all replications of
the probed value1. Hence, the tuple O = (Oi)i∈[m], where each Oi contains the
probed share indices of the i’th output, does not change. However, the meaning
of j ∈ Oi changes in so far as now all replications of the j’th share of the i’th
output need to be simulated. This is necessary to allow for a wide range of gadget
implementations where there are potential interdependencies between different
replications, e.g., via a correction module, that allows probe propagation across
replications [23]. Similarly, the simulator gets access to all replications of the
shares indicated in the tuple I = (Ii)i∈[h].

Third, we define the failure probability for probe simulation εI′ in dependence
on the tuple of faulty-input indices I ′. This is analogous to the definition of
RRFC (Definition 5) and allows us to iterate over all possible tuples I ′ for
our combined composition. In particular, this enables a precise definition of
the conditions for Random Probing Composition under Faults (RPCUF) under
a given tuple of potentially faulty inputs I ′ and a random fault combination
F̃ ∈ F∞.

Definition 7 (Random Probing Composition under Faults). Let I ′ =
((I ′

i,j)i∈[s])j∈[h] be a tuple such that ∀i, j : I ′
i,j ⊆ [n] and |I ′

i,j | ≤ k. A gadget G :
((Fn

2)s)h → ((Fn
2)s)m with n = 2k + 1 is (I ′,DF∞, d,DW∞, ε)-RPCUF if there

exists a deterministic algorithm ShareSelect and a probabilistic simulator Sim
such that for all faulty inputs x′ ∈ ((Fn

2)s)h, for which there exists an x ∈ (Vs
n)h

with x|I′ = x′|I′ , and every tuple of sets O = (O1, . . . ,Om), with ∀i : Oi ⊆ [s]
and |Oi| ≤ d, the random experiment

G F̃ ← AssignFaultGates(G ,DF∞)

W̃ ← LeakingWires(G F̃ ,DW∞)

I := (I1 . . . Ih) ← ShareSelect(W̃,O)

out ← Sim(x′|I , I, I ′,O, W̃)

yields
Pr[(|I1| > d) ∨ . . . ∨ (|Ih| > d)] ≤ ε

out ≡ (AssignWires(G F̃ , W̃, x′), y′|O)

with y′ ← G F̃ (x′).

1 The same procedure should be used when analyzing replicated circuits for stand-
alone GRPC.

Combined Random Fault and Random Probing Security 185

Fourth, and similar to Sect. 3.3, we only check for side-channel security if the
gadget is fault secure to keep the failure probabilities for probe simulation εI′

and correctness μI′ independent. For this, we again introduce a subset of fault
combinations BI′ ⊆ F∞, such that BI′ captures all fault combinations that,
in combination with potential faults on the inputs with indices in I ′, lead to a
gadget output that can be corrected, i.e., BI′ = {F̃ ∈ F∞ | LI′,F̃ (G) = 0}.
Note, that we define this set to be dependent on the tuple I ′. The corresponding
distribution DBI′ is defined as the scaled distribution DF∞ conditioned on the
event LI′,F̃ (G) = 0.

With this, we say that a gadget supports Known-Fault Random Combined
Composability (RCCKF) if, for any tuple I ′, the gadget supports RRFC and
RPCUF with negligible advantage for the adversary. To again compute a unified
failure probability we chose the maximum combined failure probability (i.e., the
probability that either RRFC fails or RPCUF fails under the condition that
RRFC holds) over all tuples I ′.

Definition 8 (Known-Fault Random Combined Composability). A
gadget G : ((Fn

2)s)h → ((Fn
2)s)m is (d, k,DW∞,DF∞, γ)-RCCKF if for all tuples

of sets I ′ = ((I ′
i,j)i∈[s])j∈[h], such that ∀i, j : I ′

i,j ⊆ [n] and |I ′
i,j | ≤ k, there

exists some μI′ , εI′ ≤ 1 such that the gadget G is (I ′, k,DF∞, μI′)-RRFC and
(I ′,DBI′ , d,DW∞, εI′)-RPCUF and it holds that maxI′{μI′ +(1−μI′)εI′} ≤ γ.

Under this definition, we can compose any RCCKF gadgets as long as each
output of a gadget is only used once as input to another gadget. This restric-
tion comes from the composition under probes. Then, under the assumption of
mutually independent fault and probing distributions per gadget, the combined
failure probability increases linearly in the number of gadgets in the circuit.

Theorem 3. Let C be a circuit constructed by composition of gadgets G that
are (d, k,DW∞

i ,DF∞
i , γi)-RCCKF, for i ∈ {1, . . . , |C |}, such that each output of

Gi is used as input of at most one other gadget Gj or as output of C . Then, C
is

(
|C |∏

i=1

DW∞
i ,

|C |∏

i=1

DF∞
i , 1 −

|C |∏

i=1

(1 − γi))-RCCKF.

Intuitively, the proof follows the lines of the compositional statements for stand-
alone probing and faulting. Specifically, we first go from inputs to outputs
through the circuit to construct the respective tuples of potentially faulty inputs
to each gadget to show composition under faults. Then, we go backward, i.e.,
from outputs to inputs, through the gadgets and use the fact that the set of
faulty inputs is bounded in case of a fault combination that can be corrected to
show random probing security under faults.

Proof. Let the faulty circuit be C F̃ ← AssignFaultGates(C ,
∏|C |

i=1 DF∞
i), with

F̃ the set of faults selected with Pr∏
i DF∞

i
[F̃]. We can divide F̃ into |C | disjoint

fault sets F̃i ⊆ F̃ such that F̃i belongs to Gi and is selected with PrDF∞
i

[F̃i].

186 S. Beläıd et al.

Further, let W̃ be the set of leaking wires of C selected with Pr∏
i DW∞

i
[W̃]. We

can divide W̃ into |C | disjoint parts W̃i ⊆ W̃, each belonging to the gadget Gi

such that each W̃i was selected with PrDW∞
i

[W̃i].
Since each gadget Gi is (I ′, k,DF∞, μI′)-RRFC for all tuples I ′ it follows

with Theorem 2 that the circuit is random fault secure with μ = 1−∏|C |
i=1(1−μi).

Let B = {F̃ | F̃ =
⋃|C |

i=1 F̃i,∀I ′
Gi

: LI′
Gi

,F̃i
(Gi) = 0} be the set of faults

considered secure in Theorem 2, i.e., all fault combinations that can be corrected
at the output of the respective gadgets. We denote by BI′

Gi
= {F̃i ∈ F∞ |

LI′
Gi

,F̃i
(Gi) = 0} ⊆ B the set of fault combinations that can be corrected in a

gadget Gi under faults in the input indices in I ′
Gi

, with ∀j : |I ′
Gi,j

| ≤ k.
We now go backward through the circuit, starting with gadgets connected

to the outputs of C , considering only faults F̃ ∈ B. Let Gi be a gadget only
connected to outputs of C . By RPCUF of Gi, we can construct a simulator SimGi

that requires a subset of inputs (defined by the tuple IGi
) for the simulation of

the wires in W̃i under the faults F̃i and with faulty inputs with indices in I ′
Gi

.
Let the failure probability of SimGi

be εi.
We continue with the parent gadgets, i.e., gadgets that have outputs con-

nected to the inputs of just handled gadgets and (potentially) outputs of the
circuit. Let Gj be such a gadget. By RPCUF of Gj , we can construct a simu-
lator SimGj

that requires a subset of inputs (defined by the tuple IGj
) for the

simulation of the wires in W̃j and the output wires defined by the tuples IGi

of the child gadgets Gi under the faults F̃j and with faulty inputs with indices
in I ′

Gj
. In particular, each gadget output with index � is only used once in the

circuit and we use the corresponding set IGi,�′ of the child gadget as OGj ,�.
Again, we denote the failure probability of SimGi

by εj . We repeat this process
until we reach the inputs of C .

Given this, we can construct the simulator Sim for C by composition of the
gadget simulators SimGi

. The failure probability ε of Sim is the probability that
at least one simulator SimGi

fails, i.e., ε = 1 − ∏|C |
i=1(1 − εi). Therefore, with the

random fault security advantage μ = 1 − ∏|C |
i=1(1 − μi), we have

μ + (1 − μ)ε = 1 −
|C |∏

i=1

(1 − μi) +
|C |∏

i=1

(1 − μi)(1 −
|C |∏

i=1

(1 − εi))

= 1 −
|C |∏

i=1

(1 − μi)(1 − εi) ≤ 1 −
|C |∏

i=1

(1 − γi),

with γi = μi + (1 − μi)εi being the combined failure probability of each gadget
Gi. It follows (

∏|C |
i=1 DW∞

i ,
∏|C |

i=1 DFi, 1 − ∏|C |
i=1(1 − γi))-RCSKF of C . �

Similar to Theorem 2, the above composition loses some tightness by only
considering fault combinations that can be corrected after each gadget. While the
set B gets bigger, and hence ε increases, when considering all fault combinations
that can be corrected at the output of C , the overall γ gets smaller. The reason

Combined Random Fault and Random Probing Security 187

is that the respective fault combination is entirely captured in μ of the above
argument, however, it would only be partially captured (multiplied by some
ε ≤ 1) when considering the tighter definition of B. Hence, the provided γ is
indeed a upper bound of the combined failure probability.

Relation to Combined-Secure Composition. As with RFC, to the best of
our knowledge, this is the first work discussing compositional properties in the
context of the random combined model. However, again in the threshold model,
several compositional notions were discussed. Most of them are a combination
of compositional notions for probing and faulting, respectively. In this respect,
(Strong) Non-Interference Non-Accumulation ((S)NINA) [17] (later refined to
Combined (Strong) Non-Interference (C-(S)NI) [38]) is the combination of (S)NA
with (S)NI, and Combined-Isolating Non-Interference (CINI) [25] is the combi-
nation of FINI and Probe-Isolating Non-Interference (PINI), respectively. In
the context of polynomial masking, Berndt et al. [11] coined the notion of fault-
resilient (S)NI, which is the usual (S)NI notion that is invariant to fault injection.
Our proposed compositional notation has some similarities with (S)NINA/C-
(S)NI in that it is a combination of stand-alone faulting and probing composi-
tion and the underlying stand-alone notions relate to the respective stand-alone
notions of (S)NA and (S)NI.

An interesting direction for future research into the composition in the ran-
dom combined model is the notion of expansion (as considered in the random
probing model) and the investigation of gadgets where the random probing secu-
rity is invariant to faults.

5 Automatic Verification of Protected Implementations

We implement the verification of the new random combined security notion
(and its composability variants) for cryptographic circuits by extending the ver-
ification tools VERICA [38] and IronMask [10]. At the state of the art, VERICA

can be employed for combined hardware security verification considering the
glitch-extended probing model [22] and the zeta fault-injection model [40], while
IronMask is able to efficiently verify various (random, glitch-extended) probing
security notions by relying on an algebraic characterization for specific gadgets.

In our work, we first aim to establish a common foundation for the practical
verification of circuits under the new security models. Subsequently, we pro-
vide detailed insights into our extensions, denoted as VERICA+2 and IronMask+3,
enabling the verification of combined security properties in cryptographic cir-
cuits.

2 The code for VERICA+ can be accessed at https://github.com/Chair-for-Security-
Engineering/VERICA/tree/verica%2B.

3 The code for IronMask+ can be accessed at https://github.com/CryptoExperts/
IronMask.

https://github.com/Chair-for-Security-Engineering/VERICA/tree/verica%2B
https://github.com/Chair-for-Security-Engineering/VERICA/tree/verica%2B
https://github.com/CryptoExperts/IronMask
https://github.com/CryptoExperts/IronMask

188 S. Beläıd et al.

5.1 Verification of the Generalized Security Models

We provide explicit formulas and practical verification choices for the computa-
tion of the simulation and correction failure probabilities in the general random
probing model, the general random fault model, and the known-fault random
combined security. These then serve as a basis for the extensions VERICA+ and
IronMask+. For our implementations, we assume independent leakage and fault
probabilities (pw and qf) for wires w and faults f to simplify the specification.

General Random Probing Security. The probability of a leaking wire com-
bination W̃ is the product of leakage probabilities of each wire w ∈ W̃ times the
product of (1 − pw′) of the remaining wires w′ ∈ W \ W̃. Consequently, let ε be
the simulation failure probability such that

ε =
|W|∑

i=1

∑

W̃∈W∞
#i

∏

w∈W̃
pw

∏

w′∈W\W̃
(1 − pw′) , (2)

where W∞
#i ⊆ W∞ is the set of wire combinations of exactly i wires that lead to

a simulation failure, i.e., W̃∞
#i = {W̃ ∈ W∞ | |W̃| = i and Sim(C , W̃) =⊥}. The

above equation generalizes the computation of the simulation failure probability
in the random probing security definition from Beläıd et al. [8]. Precisely, Eq. 2
is only equivalent to the latter if we consider that all wires leak with the same
probability p.

Practically, a circuit may be too large for exhaustively checking all wire
combinations. Therefore, VERICA+ and IronMask+ compute the outer sum of Eq. 2
only up to a threshold α, i.e., for i ∈ [1, α]. For any combinations of more than
α wires, we can either consider that (1) they do not result in a simulation failure
(∀i ∈]α, |W|] ,W∞

#i = ∅) to obtain a lower bound εmin, or (2) they all lead to
a simulation failure (∀i ∈]α, |W|] , W̃∞

#i = {W̃ ∈ W∞ | |W̃| = i}) to obtain an
upper bound εmax. Those lower and upper bound computations follow the same
method used for random probing security by Beläıd et al. in [8].

General Random Fault Security. The probability of a fault combination F̃
is the product of the individual fault probabilities of the said combination times
the product of (1− qf ′) for all faults f ′ not present in it. Let μ be the correction
failure probability defined by

μ =
|F|∑

i=1

∑

F̃∈F∞
#i

∏

f∈F̃
qf

∏

f ′∈F\F̃
(1 − qf ′) , (3)

where F∞
#i ⊆ F∞ is the set of fault combinations of exactly i faults that cannot

be corrected (such that F̃ ∈ F∞
#i iff LF̃ (C) = 1).

Combined Random Fault and Random Probing Security 189

For practical reasons, Eq. 3 is computed for up to β faults during security
verification; the outer sum thus reduces to

∑β
i=1. Similarly to the previous mod-

els, we derive the lower bound μmin and the upper bound μmax of μ by assuming
that any combination of more than β faults can be, respectively, corrected or
not.

Known-Fault Random Combined Security. For simplicity, we restrict our-
selves to RCSKF (cf. Definition 4) in the practical tool implementations. We
then rely on the discussed security reduction for RCSUF (cf. Sect. 3.3) and leave
room for a tighter RCSUF security analysis for future work. That said, three
parameters are reported for RCSKF:

1. the correction failure probability μ as described in Eq. 3,
2. the known-fault simulation failure probability εkf if fault combinations can

be corrected, such that

εkf =
1

1 − μ

|F|∑

i=1

∑

F̃∈B#i

εF̃
kc

∏

f∈F̃
qf

∏

f ′∈F\F̃
(1 − qf ′) , (4)

where B#i is the set of fault combinations of i faults that can be corrected
and εF̃

kc is the known-corrected-fault simulation failure probability (Eq. 2).
The above formula is obtained by observing that for any F̃ ∈ B, we have
PrDB[F̃] = 1

1−μ PrDF∞ [F̃] = 1
1−μ

∏
f∈F̃ qf

∏
f ′∈F\F̃ (1 − qf ′).

3. and the advantage of the combined adversary γkc:

γkc = μ + εkf · (1 − μ) . (5)

Again, due to practical limitations, we compute the lower and upper bounds
of μ up to β faults and the lower and upper bounds of εF̃

kc up to α wires, if
fault combinations can be corrected. Then, the lower and upper bounds of εkf

are derived from the ones of εF̃
kc. Note, however, that those bounds on εF̃

kc are
related to the upper bound of μ. The reason is, that we cannot compute the
respective εF̃

kc for F̃ ∈ B#i with i > β, since this would mean to iterate over all
faulty circuits with more than β faults. Then, the lower and upper bounds of γkc

are computed from the corresponding bounds of both εkf and μ. The respective
bounds of those three parameters are then returned.

Compositional Notions. We provide algorithms in the extended version [9]
to describe how to perform the security verification of the compositional notions
from Sect. 4, which have been implemented VERICA+ and IronMask+.

5.2 Extension of VERICA Verification

We briefly present an optimization to count leaking wire combinations that fail
simulations in the (general) random probing model in VERICA+ with binomial

190 S. Beläıd et al.

trees, to provide a tighter lower bound of the simulation failure probability.
Moreover, we outline additional considerations to assess the fault probability
for the general random fault and known-fault random combined security. More
details are given in the extended version [9].

A Tighter Lower Bound in the (General) Random Probing Model.
VERICA+ implements a novel approach, relying on the traversal of binomial
trees, to identify larger wire combinations containing a failing wire combination
detected by the tool, in a deterministic way. It also does not include redundant
combinations or use extra memory. In short, VERICA+ finds failing wire combi-
nations in a depth-first manner for up to α wires, α ∈ [1, |W|], contrary to the
naive breadth-first approach of VERICA. It results in the computation of a tighter
lower bound of the simulation failure probability in the (general) random prob-
ing model, than previously mentioned in Sect. 5.1 and in [8], while concurrently
providing an upper bound.

The core insight is that adding wires to a failing wire combination will result
in another simulation failure. Thus, by representing the intermediate wires of a
circuit as nodes of a binomial tree, VERICA+ identifies the larger wire combina-
tions containing the failing one. Succinctly, VERICA+ traverses a binomial tree
whose nodes represent the intermediate wires of a circuit, in pre-order fashion,
from the root to a chosen depth α. During the traversal, VERICA+ updates the set
of leaking wires to verify. Depending on the outcome of the verification, VERICA+

updates the computation of the lower and upper bounds of the simulation failure
probability, in the considered security model. The latter values are returned at
the end of the binomial tree traversal.

Probability of a Fault Combination. VERICA+ makes two assumptions to
compute the probability of a non-corrected fault combination F̃ for the evalu-
ation of the correction failure probability μ. Firstly, VERICA+ allows a different
number of fault transformations τ per gate g, which are equally likely to occur
(assumption 1). Secondly, it assumes that up to one fault transformation τ is
injected per gate and per verification analysis (assumption 2). As a result, to
compute the probability of a fault combination, VERICA+ just iterates over the
gates in the circuit, distinguishing between faulted and non-faulted ones.

5.3 Extension of IronMask Verification

IronMask verifies the implementation of (N)LR-gadgets. In essence, the gadgets
accept up to two inputs, each potentially undergoing linear refreshing, which
are then processed by a non-linear function (homogeneous multi-linear form)
whose output may also be linearly refreshed. As argued in [10], a wide major-
ity of masking gadgets existing in the literature are (N)LR. Our extension not
only supports these gadgets but also accommodates more complex ones, termed
C(N)LR-gadgets (for Correction blocks). These C(N)LR-gadgets are constructed
by parallel replication of (N)LR-gadgets and incorporate intermediate non-linear

Combined Random Fault and Random Probing Security 191

correction blocks (e.g., implementing the majority function), with gates that may
be affected by set or reset faults.

To handle C(N)LR-gadgets, we introduce a novel verification methodology
that preserves the tool’s performance, at the expense of sometimes allowing false
positives. This trade-off is necessary to benefit from the efficient tool’s verifica-
tion paradigm, while allowing more complex constructions. This methodology
operates under the assumption that each output of a correction block remains
correct as long as no fault occurs along its corresponding path within the block.
Initially, the symbolic expression of each wire that depends on at least one output
copy of a correction block, unaffected by a fault within the block, is modified to
its correct symbolic expression (i.e., a hypothetical input of the correction block
without faults along its path). Then, in the IronMask+ verification process, output
or internal variables from correction blocks impacted by faults are substituted
with all the 2k+1 corresponding inputs of their correction block. While IronMask

provides complete verification without false positives, our new methodology may
produce artificial attack paths by conservatively replacing some variables with
all their dependencies. This approach enhances the attacker’s potential reach by
granting access to sets of variables instead of their functions.

IronMask+ includes a Python script to generate correctable faulty scenarios for
a circuit. It takes a circuit description, a fault type (set or reset), and the num-
bers of faults and tolerated faults (usually linked to the number of replications,
2k + 1). The script evaluates circuit outputs in SageMath using symbolic com-
putation with randoms and input shares. If any output share has more than k
faulty copies, it is deemed uncorrectable. Faulty input shares become new sym-
bolic variables, while faulty randoms are compared to a circuit with identical
random faults (per [38]). Further details are provided in the full version [9].

6 Evaluation

We select five different gadgets for experiments in the new known-fault random
combined model (see Definitions 4 and 8) all designed for security against one
fault and one probe. First, we consider the DOMREP [29] gadget, which is a
simple replication of a masked multiplication gadget according to the Domain-
Oriented Masking (DOM) [28] principle. To get a reasonable analysis, we add a
majority vote at the gadget’s output to account for a correction that is required
at some point in the circuit. Since DOMREP-based implementations were shown
to be vulnerable to combined attacks (which the original design did not claim to
protect against, cf. Sect. 3), a new variant, DOMREP-II [35], was recently intro-
duced. This version uses two independent bits of randomness for mask refreshing
and a masked correction module. To ensure a more accurate analysis, we once
again add the masked correction at the gadget’s output. As a third design, we
analyze the SININA gadget originally proposed for software in [17] and modi-
fied for hardware in [38]. This gadget is similarly based on a replicated DOM
multiplication, however, with corrections introduced after the mask refreshing
and before the compression. Fourth, we analyze HPCC

1 gadget from [25], which

192 S. Beläıd et al.

is a replicated DOM gadget with an additional refresh and correction of one
of the shared inputs. Finally, the CPC1 gadget from [23] is a variant of the
HPCC

1 gadget with additional corrections after the mask refreshing in the multi-
plication. Note that the DOMREP, SININA, and HPCC

1 gadgets were shown to
be insecure under composition [23,38,42,44]. Our case studies aim to highlight
the strengths and limitations of VERICA+ and IronMask+, and give a qualitative
comparison between the gadgets. We intentionally do not conduct an extensive
security analysis of the gadgets under realistic leakage and fault distributions,
as determining these distributions is left for future work. Nevertheless, such an
analysis would only affect the absolute failure probabilities, without altering the
qualitative expressiveness of the data.

Both tables presenting our results follow the same structure. The first col-
umn identifies the evaluated gadget, while the second and third columns show
the number of gates (FIA locations) and the number of wires (SCA locations),
respectively. The type of fault transformation is denoted by τ , while p represents
the random probing leakage probability, and q denotes the random fault prob-
ability for each gate. In this setting, faults and leakages on different wires are
independent, and the probabilities are equal across wires, except when only a
subset of SCA and FIA locations is selected, where some probabilities are set to
zero for efficiency reasons. The remaining columns display our results: μmin and
μmax denote the bounds on the attacker’s advantage in the random fault model
or for RFC, while εmin and εmax correspond to the bounds in the random probing
model or for RPCUF. For the computation, we selected thresholds of α = 2 for
the number of probes and β = 2 for the number of faults. Lastly, γmin and γmax

indicate the overall attacker advantage in the RCSKF or RCCKF models. Each
table specifies whether the bounds are computed for general security or for com-
position. In general, a lower probability reflects a more secure implementation,
and when the lower and upper bounds are close, we have a reasonable approxi-
mation of the real probability and, hence, a meaningful analysis. Note that the
bounds on ε correlate to the bounds on μmax. We first present our results in
terms of security parameters and verification timings for each tool individually.
Lastly, we run the same experiments on both tools to validate correctness and
compare timings in specific scenarios.

6.1 Results on VERICA+

All our experiments for VERICA+ have been conducted on a machine equipped
with two AMD EPYC 7742 64-Core processors and 512 GB memory. This allowed
us to perform all experiments on 256 threads. The analysis results and perfor-
mance of VERICA+ for RCCKF of the five gadgets under different scenarios can
be found in Table 1. We first observe that, under the same fault and leakage
conditions, the CPC1 gadget is more secure than the other four gadgets. This
is expected since CPC1 is shown composable in the threshold combined model
(CINI [25]), while three of the others have shown to be flawed under composition
in the same model [23,38,42,44] and the fifth (DOMREP-II) seems to provide

Combined Random Fault and Random Probing Security 193

Table 1. RCCKF analysis of gadgets on VERICA+.

#Loc. Model Probabilities Time
Design FIA SCA τ q p μmin/μmax εmin/εmax γmin/γmax t

D
O
M

R
E
P

[2
9
]

67 114

set 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 2.1min

set 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 2.1min
reset 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 2.1min

reset 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 2.1min

flip 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 2.0min
flip 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 2.0min

D
O
M

R
E
P
-I
I

[3
5
]

298 444

set 2−10 2−10 9.96e�1/1.00e�0 0.00e�0/0.00e�0 9.96e�1/1.00e�0 22.8 h

set 2−15 2−15 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 22.6 h
reset 2−10 2−10 9.96e�1/1.00e�0 0.00e�0/0.00e�0 9.96e�1/1.00e�0 22.6 h

reset 2−15 2−15 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 22.8 h

flip 2−10 2−10 9.96e�1/1.00e�0 0.00e�0/0.00e�0 9.96e�1/1.00e�0 24.2 h

flip 2−15 2−15 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 24.4 h

S
IN

IN
A

[1
7
,3

8
]

122 198

set 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 46.0min

set 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 46.1min

reset 2−10 2−10 9.99e�1/9.99e�1 2.99e�4/4.52e�2 9.99e�1/9.99e�1 48.2min
reset 2−15 2−15 1.00e�0/1.00e�0 2.44e�4/1.34e�3 1.00e�0/1.00e�0 48.1min

flip 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 45.0min

flip 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 44.9min

H
P
C

C 1
[2
5
]

104 180

set 2−10 2−10 5.68e�2/5.69e�2 1.61e�1/1.61e�1 2.09e�1/2.09e�1 46.6min

set 2−15 2−15 1.83e�3/1.83e�3 5.48e�3/5.48e�3 7.30e�3/7.30e�3 46.4min

reset 2−10 2−10 6.41e�2/6.43e�2 1.61e�1/1.61e�1 2.15e�1/2.15e�1 40.5min
reset 2−15 2−15 2.07e�3/2.07e�3 5.48e�3/5.48e�3 7.54e�3/7.54e�3 40.6min

flip 2−10 2−10 6.41e�2/6.42e�2 1.61e�1/1.61e�1 2.15e�1/2.15e�1 39.1min

flip 2−15 2−15 2.07e�3/2.07e�3 5.48e�3/5.48e�3 7.54e�3/7.54e�3 39.0min

C
P
C

1
[2
3
]

98 174

set 2−10 2−10 5.13e�2/5.14e�2 8.19e�2/8.21e�2 1.29e�1/1.29e�1 53.3min

set 2−15 2−15 1.65e�3/1.65e�3 2.65e�3/2.65e�3 4.29e�3/4.29e�3 52.6min

reset 2−10 2−10 6.78e�2/6.79e�2 8.17e�2/8.19e�2 1.44e�1/1.44e�1 40.9min
reset 2−15 2−15 2.19e�3/2.19e�3 2.65e�3/2.65e�3 4.84e�3/4.84e�3 40.8min

flip 2−10 2−10 6.96e�2/6.97e�2 8.18e�2/8.20e�2 1.46e�1/1.46e�1 38.8min

flip 2−15 2−15 2.26e�3/2.26e�3 2.65e�3/2.65e�3 4.90e�3/4.90e�3 38.5min

no further advantage. The discrepancy between the CPC1 and the HPCC
1 gad-

get is mainly caused by the probing factor, while the discrepancy to the other
gadgets is caused entirely by the faulting factor. The reason is, that for those
gadgets, there exist some input-fault combinations that cannot be corrected
properly (even without internal faults), specifically, when there are k faults in
all the inputs. Those input-fault combinations are always considered insecure
and, hence, dominate the failure probability for RFC because we determine the
maximum over the input faults. This also explains why some of the ε bounds
are zero. Since those bounds are related to μmax, which is one, there is no side-
channel evaluation performed. In this case, any internal faults can at most make
the gadget more secure (by compensating the impact of input faults) and hence,
the respective μ gets larger with smaller fault probability q.

To get a more in depth analsis, we analysed the DOMREP and DOMREP-
II gadgets with (masked) correction for RCSKF i.e., without composition. The
DOMREP-II gadget is intended to be more secure as it prevents a known flaw
in DOMREP. However, we find that the opposite is the case. Specifically, for

194 S. Beläıd et al.

Table 2. RCSKF analysis of the CPC1 gadget [23] on VERICA+, with computation
threshold for probes α = 2 and for faults β = 2, where only a subset of gates and wires
are faulted and potentially leaked to the adversary.

#Loc. Model Probabilities Time
Location FIA SCA τ q p μmin/μmax εmin/εmax γmin/γmax t

all; all 98 174 reset 2−10 2−10 7.40e�4/8.72e�4 2.44e�3/3.00e�3 3.18e�3/3.87e�3 13.6 s

reg; rep. index 018 106 reset 2−10 2−10 5.07e�5/5.15e�5 8.89e�4/1.03e�3 9.39e�4/1.08e�3 0.8 s

reg; cone of c00 18 103 reset 2−10 2−10 5.07e�5/5.15e�5 7.50e�4/8.76e�4 8.00e�4/9.27e�4 0.8 s

τ = flip, q = 2−10, and p = 2−10, we get γ = [1.88e�3, 2.07e�3] for DOMREP
and γ = [1.79e�2, 3.05e�2] for DOMREP-II. Other fault scenarios provide similar
results. This additional vulnerability of DOMREP-II can be explained through
the application of the masked correction. Specifically, the use of DOM gadgets
in the correction means that by faulting a share of the input a a fault at the
gadget output is conditioned on the input b (similar to the attack explained in
Sect. 3 - last paragraph). The effectiveness of the respective fault at the output
can be learned by the adversary through two probes, which are available with
a certain probability. Hence, while DOMREP-II indeed prevents the specific
attack as indented it introduced new vulnerabilities on the way. The practical
exploitation of this leakage remains an avenue for future research.

With respect to performance, we can see that VERICA+ can estimate the
failure probabilities, by enumerating all fault and probe combinations with up
to two faults and probes, for four of the gadgets in less than one hour. This
is only possible because of the massive parallelization exploited by VERICA+.
For the fifth gadget (DOMREP-II) the analysis requires nearly an entire day
due to much larger designs because of the masked correction. As can be seen in
Table 2 the evaluation of RCSKF is much faster. Specifically, the CPC1 gadget
can be analyzed within seconds. This speedup is possible because RCCKF needs
to perform essentially the same analysis as for RCSKF, however, for all input-
fault and output-probe combinations.

In addition, we showcase the ability of VERICA+ to analyze a design under
different fault and leakage probabilities (where each location is faulted or leaks
with independent probabilities). Specifically, we analyze the CPC1 gadget [23]
where we restrict the fault locations to registers only and the location of leaking
wires to either all wires of the first replication (rep. index 0) or all wires that
influence the output c00 (cone of c00). This could resemble an adversary that uses
clock glitching for fault injection and an EM probe for side-channel analysis.
Then, the two cases can be seen as representations of two possible layouts of
the chip design, such that either all values of one replication index or all the
values that influence the same output value are placed in close proximity. To
give some context, we also provide in Table 2 the results of an analysis where
all gates are faulted and all wires can leak. As can be seen, this allows a tighter
analysis for specific attack scenarios, potentially enabling a reduction of the
implementation cost if the attacker can be restricted in the possible fault and
leakage distributions.

Combined Random Fault and Random Probing Security 195

Table 3. RCCKF analysis of gadgets on IronMask+.

#Loc. Model Probabilities Time

Design FIA SCA τ q p μmin/μmax εmin/εmax γmin/γmax t

D
O
M
R
E
P

[2
9]

127 203

set 2−10 2−10 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 16min 11s

set 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 16min 10s

reset 2−10 2−10 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 16min 24s

reset 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 16min 24s

SI
N
IN
A

[1
7,
38
]

230 364

set 2−10 2−10 9.99e�1/1.00e�0 0.00e�0/0.00e�0 9.99e�1/1.00e�0 3h 12min 53s

set 2−15 2−15 1.00e�0/1.00e�0 0.00e�0/0.00e�0 1.00e�0/1.00e�0 3h 33min 52s

reset 2−10 2−10 9.99e�1/1.00e�0 1.18e�4/1.09e�1 9.99e�1/1.00e�0 3h 21min 59s

reset 2−15 2−15 1.00e�0/1.00e�0 1.22e�4/3.30e�3 1.00e�0/1.00e�0 3h 13min 49s

H
P
C
C
1

[2
5] 188 322

set 2−10 2−10 3.68e�2/3.76e�2 9.93e�1/9.97e�1 9.93e�1/9.97e�1 23h 54min 38s

set 2−15 2−15 1.16e�3/1.16e�3 1.00e�0/1.00e�0 1.00e�0/1.00e�0 23h 55min 18s

reset 2−10 2−10 8.53e�2/8.60e�2 9.95e�1/1.00e�0 9.96e�1/1.00e�0 23h 32min 20s

reset 2−15 2−15 2.68e�3/2.68e�3 1.00e�0/1.00e�0 1.00e�1/1.00e�0 23h 33min 10s

C
P
C 1

[2
3] 182 316

set 2−10 2−10 8.89e�2/8.95e�2 1.62e�1/1.66e�1 2.37e�1/2.41e�1 21h 42min 38s

set 2−15 2−15 2.93e�3/2.93e�3 5.66e�3/5.66e�3 8.57e�3/8.57e�3 21h 41min 48s

reset 2−10 2−10 8.89e�2/8.96e�2 1.62e�1/1.65e�1 2.36e�1/2.40e�1 20h 33min 24s

reset 2−15 2−15 2.93e�3/2.93e�3 5.63e�3/5.63e�3 8.54e�3/8.54e�3 20h 33min 15s

6.2 Results on IronMask+

All experiments for IronMask+ have been conducted on a single thread of a
machine equipped with an AMD Ryzen Threadripper PRO 7995WX proces-
sor with 96 cores (192 threads) and 512GB of RAM. The analysis outcomes and
performance results of IronMask+ for RCCKF across various scenarios are pre-
sented in Table 3. Unlike VERICA+, IronMask+ cannot evaluate DOMREP-II, as
it does not conform to the C(N)LR structure described in Sect. 5.3. Specifically,
the gadget employs a masked correction mechanism using DOM gadgets, which
deviates from the majority-vote structure required by IronMask+.

In this extension, we exclusively focus on set and reset faults, deferring the
inclusion of other fault types for future work. It is notable that IronMask+ per-
forms quite efficiently (especially given its execution on a single thread), thanks
to its evaluation of symbolic variables with efficient rules. At the same time,
this allows for some tolerance of false positives, as detailed in Sect. 5. Specifi-
cally, although the bounds on the final γ advantages are pretty close to VERICA+

for the CPC gadget, IronMask+ outputs higher bounds on ε for HPCC
1 . This is

because with probed output and faulty input shares, we quickly multiply the
failures when considering all the copies. Furthermore, note that the increase in
the lower bound of ε as p decreases (e.g., for HPCC

1), is solely a consequence of
the method used which restricts the execution to computing failures of size at
most two, whereas the correct ε would actually increase with p.

Regarding performance, the four computations involving different probabili-
ties under identical settings (gadget, fault type) can be partially generated con-
currently. For example, when considering the CPC1 gadget [23] for set faults,
the selection of faulty circuits that can be corrected takes around 9 min. Sub-
sequently, identifying failure tuples within these correctable circuits requires
around 20 h, 43 min. Both of these operations are common to any combination

196 S. Beläıd et al.

of faults and probe probabilities. Finally, computing security advantages based
on the probabilities of faults and probes requires 50 to 52 min.

6.3 Tool Comparison

We provide an extensive comparison between our two tool implementations in
the full version [9]. In general, both tools yield the same bounds for μ, with
only minor differences in the computed ε, which is expected due to variations
in computational tightness. This reinforces our confidence in the correctness
of both implementations. In general, VERICA+ achieves tighter computations of
failure probabilities, while IronMask+ leverages design-specific structures for effi-
cient computations, leading to higher performance. Thus, the tools offer different
trade-offs between accuracy and efficiency.

7 Conclusion

In this work, we extended and refined probabilistic models for physical attacks
with general leaking and fault probabilities. Specifically, we examined the ran-
dom probing model, the random fault model, and their combinations. For the
resulting models, we explored key properties, such as the impact of adversarial
knowledge and composition. Additionally, we developed two tool-based analysis
methods that enable the security assessment of design components. Ultimately,
we hope our model will stimulate further research into the low-level physical
effects of leakage and their expressions in probability distributions.

Acknowledgments. This work was co-funded by the European Union (ERC,
AMAskZONE, 101077506). Views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the granting authority can
be held responsible for them. In addition, the work described in this paper has been
supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and
through the project CAVE (510964147), and by the German Federal Ministry of Edu-
cation and Research BMBF through the project 6GEM (16KISK038), DI-SIGN-HEP
(16KIS2073), and DI-OWAS (16ME0967).

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. IEEE Trans. Computers 69(3), 361–376 (2020)

2. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 715–724. ACM Press (Jun
2011). https://doi.org/10.1145/1993636.1993731

3. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
Combining fault attacks and side channel analysis. In: FDTC 2007: Vienna, Aus-
tria. pp. 92–102 (2007)

https://doi.org/10.1145/1993636.1993731

Combined Random Fault and Random Probing Security 197

4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic Fault Diagnosis
using VerFI. In: HOST 2020. pp. 229–240. IEEE (2020)

5. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016. pp. 116–129. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.
2978427

6. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Berlin, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-662-53140-2 2

7. Beläıd, S., Cassiers, G., Mutschler, C., Rivain, M., Roche, T., Standaert, F., Taleb,
A.R.: Towards achieving provable side-channel security in practice. IACR Cryptol.
ePrint Arch. p. 1198 (2023)

8. Beläıd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: Verification, composition, expansion and new constructions. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 339–368.
Springer, Cham (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2 12

9. Beläıd, S., Feldtkeller, J., Güneysu, T., Guinet, A., Richter-Brockmann, J., Rivain,
M., Sasdrich, P., Taleb, A.R.: Formal Definition and Verification for Combined
Random Fault and Random Probing Security. IACR Cryptol. ePrint Arch. p. 757
(2024)

10. Beläıd, S., Mercadier, D., Rivain, M., Taleb, A.R.: IronMask: Versatile verification
of masking security. In: 2022 IEEE Symposium on Security and Privacy. pp. 142–
160. IEEE Computer Society Press (May 2022). https://doi.org/10.1109/SP46214.
2022.9833600

11. Berndt, S., Eisenbarth, T., Faust, S., Gourjon, M., Orlt, M., Seker, O.: Combined
fault and leakage resilience: Composability, constructions and compiler. In: Hand-
schuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Santa Barbara, CA, USA. LNCS,
vol. 14083, pp. 377–409. Springer (2023)

12. Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–
2555 (2020)

13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer (1999)

14. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and Active Combined
Attacks on AES: Combining Fault Attacks and Side Channel Analysis. In: FDTC
2010, Santa Barbara, California, USA. pp. 10–19 (2010)

15. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (Apr 2017). https://
doi.org/10.1007/978-3-319-64647-3 1

16. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic Transient
Faults Injection on a Hardware and a Software Implementations of AES. In: FDTC
2012. pp. 7–15. IEEE Computer Society (2012)

17. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security
against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 35–55. Springer, Cham (Feb 2020). https://doi.org/10.1007/978-3-030-40186-
3 3

https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-40186-3_3

198 S. Beläıd et al.

18. Dhooghe, S., Nikova, S.: The random fault model. In: Carlet, C., Mandal, K.,
Rijmen, V. (eds.) SAC 2023, Fredericton, Canada. LNCS, vol. 14201, pp. 191–212.
Springer (2023)

19. Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp.
315–342. Springer, Cham (Dec 2018). https://doi.org/10.1007/978-3-030-03329-
3 11

20. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Berlin, Heidelberg (May 2014). https://doi.org/
10.1007/978-3-642-55220-5 24

21. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic Fault Injection : How Faults
Occur. In: FDTC 2019. pp. 9–16. IEEE (2019)

22. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR TCHES 2018(3), 89–120 (2018)

23. Feldtkeller, J., Güneysu, T., Moos, T., Richter-Brockmann, J., Saha, S., Sasdrich,
P., Standaert, F.: Combined private circuits - combined security refurbished. In:
Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023, Copen-
hagen, Denmark. pp. 990–1004. ACM (2023)

24. Feldtkeller, J., Güneysu, T., Schaumont, P.: Quantitative fault injection analysis.
In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Guangzhou, China. LNCS, vol.
14441, pp. 302–336. Springer (2023)

25. Feldtkeller, J., Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: CINI MINIS:
Domain isolation for fault and combined security. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 1023–1036. ACM Press (Nov 2022). https://
doi.org/10.1145/3548606.3560614

26. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Berlin, Heidelberg (May 2001). https://doi.org/10.1007/3-
540-44709-1 21

27. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
158–172. Springer, Berlin, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-
48059-5 15

28. Groß, H., Mangard, S., Korak, T.: Domain-Oriented Masking: Compact Masked
Hardware Implementations with Arbitrary Protection Order. In: ACM TIS@CCS
2016. p. 3. ACM (2016)

29. Gruber, M., Probst, M., Karl, P., Schamberger, T., Tebelmann, L., Tempelmeier,
M., Sigl, G.: DOMREP-An Orthogonal Countermeasure for Arbitrary Order Side-
Channel and Fault Attack Protection. IEEE Trans. Inf. Forensics Secur. 16, 4321–
4335 (2021)

30. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Berlin, Heidelberg (May / Jun 2006). https://
doi.org/10.1007/11761679 19

31. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–
481. Springer, Berlin, Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-
45146-4 27

https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27

Combined Random Fault and Random Probing Security 199

32. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp.
104–113. Springer, Berlin, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-
68697-5 9

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Berlin, Heidelberg (Aug
1999). https://doi.org/10.1007/3-540-48405-1 25

34. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005, San Francisco, CA, USA. LNCS,
vol. 3376, pp. 351–365. Springer (2005)

35. Probst, M., Brosch, M., Gruber, M., Sigl, G.: DOMREP II. In: IEEE HOST 2024,
Tysons Corner, VA, USA. pp. 112–121. IEEE (2024)

36. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 142–159. Springer, Berlin, Heidelberg (May 2013). https://doi.org/10.1007/
978-3-642-38348-9 9

37. Renauld, M., Standaert, F., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011, Tallinn, Estonia. LNCS,
vol. 6632, pp. 109–128. Springer (2011)

38. Richter-Brockmann, J., Feldtkeller, J., Sasdrich, P., Güneysu, T.: VERICA - ver-
ification of combined attacks automated formal verification of security against
simultaneous information leakage and tampering. IACR TCHES 2022(4), 255–
284 (2022). https://doi.org/10.46586/tches.v2022.i4.255-284

39. Richter-Brockmann, J., Rezaei Shahmirzadi, A., Sasdrich, P., Moradi, A., Güneysu,
T.: FIVER – Robust Verification of Countermeasures against Fault Injections.
IACR TCES 2021(4), 447–473 (2021)

40. Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: Revisiting Fault Adversary
Models - Hardware Faults in Theory and Practice. IEEE Trans. Computers pp. 1
– 14 (2022)

41. Roche, T., Lomné, V., Khalfallah, K.: Combined Fault and Side-Channel Attack
on Protected Implementations of AES. In: CARDIS 2011, Leuven, Belgium. pp.
65–83 (2011)

42. Saha, S., Bag, A., Jap, D., Mukhopadhyay, D., Bhasin, S.: Divided we stand,
united we fall: Security analysis of some SCA+SIFA countermeasures against
SCA-enhanced fault template attacks. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part II. LNCS, vol. 13091, pp. 62–94. Springer, Cham (Dec 2021).
https://doi.org/10.1007/978-3-030-92075-3 3

43. Saha, S., Jap, D., Breier, J., Bhasin, S., Mukhopadhyay, D., Dasgupta, P.: Breaking
Redundancy-Based Countermeasures with Random Faults and Power Side Chan-
nel. In: FDTC 2018, Amsterdam, The Netherlands. pp. 15–22 (2018)

44. Saha, S., Ravi, P., Jap, D., Bhasin, S.: Non-Profiled Side-Channel Assisted Fault
Attack: A Case Study on DOMREP. In: DATE 2023. pp. 1–6. IEEE, Antwerp,
Belgium (2023)

45. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: Remote inter-chip
power analysis side-channel attacks at board-level. In: Bahar, I. (ed.) ICCAD 2018,
San Diego, CA, USA. p. 114. ACM (2018)

46. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable Circuits II. In: DAC
2020. pp. 1–6. IEEE (2020)

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.1007/978-3-030-92075-3_3

200 S. Beläıd et al.

47. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Çetin Kaya., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Berlin, Heidelberg (Aug 2003). https://doi.org/10.1007/3-540-36400-5 2

48. Yao, Y., Yang, M., Patrick, C., Yuce, B., Schaumont, P.: Fault-assisted side-channel
analysis of masked implementations. In: 2018 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2018, Washington, DC, USA, April
30 - May 4, 2018. pp. 57–64. IEEE Computer Society (2018). https://doi.org/10.
1109/HST.2018.8383891, https://doi.org/10.1109/HST.2018.8383891

49. Zussa, L., Dutertre, J., Clédière, J., Tria, A.: Power supply glitch induced faults
on FPGA: An in-depth analysis of the injection mechanism. In: IOLTS 2013. pp.
110–115. IEEE (2013)

https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1109/HST.2018.8383891
https://doi.org/10.1109/HST.2018.8383891
https://doi.org/10.1109/HST.2018.8383891

Leakage-Resilient Incompressible
Cryptography: Constructions and Barriers

Kaartik Bhushan1(B), Rishab Goyal2, Venkata Koppula3, Varun Narayanan4,
Manoj Prabhakaran1, and Mahesh Sreekumar Rajasree3

1 Indian Institute of Technology, Bombay, India
kbhushan@cse.iitb.ac.in , manojmp@iitb.ac.in
2 University of Wisconsin-Madison, Madison, USA

rishab@cs.wisc.edu
3 Indian Institute of Technology, Delhi, India

kvenkata@cse.iitd.ac.in
4 University of California, Los Angeles, USA

Abstract. We introduce Leakage-Resilient Incompressible cryptogra-
phy, which simultaneously addresses two variants of side-channel attacks
that have been tackled in theoretical cryptography. Leakage-resilience
seeks to provide security against an adversary who learns a part of the
secret-key and the entire ciphertext or signature; conversely, incompress-
ible cryptography provides security against an adversary who learns the
entire secret-key, but only a part of the ciphertext or signature. However,
constructions in either of these security models can fail against an attack
in the other model. In this work, we define a new model of security
that subsumes both leakage-resilient cryptography and incompressible
cryptography, and we present several non-trivial positive and negative
results.

On the positive side, first we present a transformation from incom-
pressible symmetric-key encryption (SKE) to leakage-resilient incom-
pressible SKE in the information-theoretic setting. Next, as one of our
main results, we construct a leakage-resilient incompressible public-key
encryption (PKE), combining an incompressible SKE and a new prim-
itive that we call leakage-resilient non-committing key encapsulation
mechanism (LR-NC-KEM). While an incompressible SKE suitable for
use in both these constructions already exists in the literature (Dziem-
bowski, CRYPTO 2006), we present a new construction with better

K. Bhushan was supported by the Prime Minister’s Research Fellowship by the Gov-
ernment of India.
R. Goyal was supported by OVCRGE at UW-Madison, and funding from the Wisconsin
Alumni Research Foundation
V. Koppula was supported by the Pankaj Gupta Young Faculty Fellowship at IIT Delhi,
and IIT Bombay Trust Lab Early Career Award.
V. Narayanan was supported by NSF Grants CNS-2246355, CCF-2220450, and CNS-
2001096.
M. Prabhakaran was supported by IIT Bombay Trust Lab and Algorand Centre of
Excellence by Algorand Foundation.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 201–234, 2025.
https://doi.org/10.1007/978-981-96-0941-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_7&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_7

202 K. Bhushan et al.

parameters, using an appropriate notion of invertible extractors; this
leads to corresponding improvements in the final parameters we obtain
in these constructions. We also design a leakage-resilient incompressible
signature scheme.

On the negative side, we show barriers to significantly improving the
parameters we obtain, by showing impossibility of basing the security of
such improved schemes on blackbox reductions.

Apart from the general framework and the specific results we obtain,
some of the intermediate tools that we define and instantiate, like LR-
NC-KEM and invertible extractors, may be of independent interest.

Keywords: leakage-resilient · incompressible encryption ·
impossibility · black-box reductions

1 Introduction

Traditionally, cryptography relies on each honest user having an ideally secure
computation platform. If a user’s computing system does not provide an ideally
secure platform, the user is essentially considered to be corrupted. However, this
severely limits the security guarantees cryptography can provide, as computing
systems are seldom ideal. In particular, existence of various practical side-channel
and key-infiltration attacks routinely undermine security of numerous deployed
cryptosystems.

From a theoretical perspective, this seems to be a hopelessly bleak situation,
especially when all the users rely on non-ideal computing systems. However,
a long line of research in cryptography has studied the problem of providing
full-fledged security guarantees even in non-ideal settings. Our work is inspired
by two such popular formulations considered today – leakage resilience, and
incompressible cryptography.

Leakage Resilient Cryptography. As demonstrated by several practical side-
channel attacks (such as [22] presenting one of the earlier ones), an adversary
may be able to extract partial information (leakage) about the secret keys of
an, otherwise, honest user. Since traditional cryptographic schemes provide no
guarantees at all once such leakage takes place, the area of leakage-resilient cryp-
tography [1] was developed to protect from such side-channel attacks. It is a very
rich area of cryptography that has received a lot of attention over the last two
decades.

One of the prominent examples is (leakage resilient) public-key encryption.
It allows an adversary to learns the public-key pk as well as a leakage on the
secret-key sk in the form of fleak(sk). Here fleak is any adversarial chosen function,
with the only constraint on fleak that its output length is limited. This ensures
that leakage resilient public-key encryption is not trivially impossible, as we still
require semantic security of the encryption system to hold even in presence of
the secret-key leakage.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 203

Incompressible Cryptography. Side-channel attacks are not the only means by
which an adversary can learn some information about the secret keys. Key infil-
tration attacks, where the adversary is able to learn the entire secret key, are
another common security threat. In such scenarios, it is unclear whether one
could ask for any meaningful notion of security, but prior works have demon-
strated that one may still ask for security of past communication. Consider
encryption1 as an example, suppose an adversary who knows that, at some point
in the future, it will learn the secret key. Such an adversary can store as much of
the prior (encrypted) communication as possible, and plan to decrypt the stored
ciphertexts once it has the secret key. A mitigating factor in such a scenario is
the vast amounts of ciphertexts such an adversary will need to store (anticipat-
ing key compromise in the future). Alternately, consider a scenario where the
ciphertexts need to be “exfiltrated” from a partially secure system via malware,
large amounts of communication could be detected and truncated. However, if
the adversary can compress the ciphertexts (and later recover some digest of
the message when the key is obtained), then even with the limits on storage or
exfiltration bandwidth, secrecy of the messages will be compromised.

Again, this concern can be addressed by enhancing the cryptographic guaran-
tees of the cryptosystems used. An early variant of this problem was introduced
by Rivest [25] (in a somewhat different context); it was explicitly studied by
Dziembowski [12] in the secret-key setting, and more recently studied in the
public-key setting by Guan, Wichs, and Zhandry [19]. Guan et al. called this
incompressible encryption, and we adopt the same terminology in this work.
Informally, incompressible public-key encryption states that no attacker can
learn any information about plaintext from any arbitrarily compressed cipher-
text, even if it obtains the secret key, as long as the ciphertext is compressed
before receiving the key. That is, even given secret key sk, an attacker cannot
learn anything about an encrypted message from fcomp(ct), where fcomp is any
adversarially chosen function with a limited output size (which disallows storing
the entire ciphertext).

Leakage Resilience and Incompressibility are Duals. Leakage resilient encryption
and incompressible encryption can be viewed as duals of each other. In the
former, the adversary gets partial information about the secret key and the
full ciphertext. In the latter, it gets the full secret key, but can only retain
partial information about the ciphertext. Indeed, connections between these two
domains have been studied, and techniques from one domain have led to progress
in the other. However, quite apart from the similarity of techniques, we note that
the attacks underlying both these settings can simultaneously take place: When
the ciphertexts are being compressed for storage/exfiltration, leakage on the key
may already be available to the adversary. We ask:

1 In the case of key-agreement, the threat due to compromise of long-terms keys is
addressed using ephemeral keys, to yield forward security. However, this does not
apply to scenarios like encrypted e-mails and disk encryption, involving a long-term
decryption key.

204 K. Bhushan et al.

Can such combined threats be tackled and if so, how efficiently?

To address this, we initiate the study of leakage resilient incompressible cryp-
tography. While the central focus of this work is on encryption (public-key and
symmetric-key), we also study signatures in this setting. We briefly recall that a
leakage resilient signature scheme says that an adversary must not be able forge
a signature, even after receiving leakage on the signing key. While incompressible
signature prevent replay attacks, where the attacker must not be able to forge a
signature, even it receives an arbitrary (yet bounded) leakage on any number of
signatures. We formally explain this further in the technical overview.

Measuring Efficacy of Leakage Resilient Incompressible Cryptography. Inspired
by prior works [1,2,4,5,8–10,16,17,19,20,24] on leakage resilience and incom-
pressible cryptography, we consider a natural combination of known efficiency
metrics for cryptosystems in the leakage resilient incompressible setting.

Let us start by reviewing the commonly used efficiency metrics for encryption.
For leakage resilience encryption, a common approach is to measure the amount
of leakage that is permitted without loosing semantic security. It is formally cap-
ture as the leakage-rate, which is the ratio of total number of secret-key bits that
can be leaked divided by the secret-key length, i.e. |fleak(sk)|

|sk| . For incompressible
encryption, a well-known metric is the ciphertext-rate. It measures the maxi-
mum amount of message that can be packed in a single ciphertext, and formally
defined as the ratio of the message length and the ciphertext size, i.e. |m|

|ct| . In
our work, we also study another efficiency metric for incompressible encryption,
that we call compression-rate. It is defined as the ratio of the total number of
bits about a ciphertext that can be stored divided by the ciphertext length, i.e.
|fcomp(ct)|

|ct| .
There are three main metrics – ciphertext-rate, compression-rate, and

leakage-rate – that we want to optimize while designing leakage resilient incom-
pressible encryption schemes. Ideally, we want to design encryption schemes
where all three rates are close to 1: this would give a scheme that is as efficient
as possible in terms of the ciphertext size, while semantic security will hold even
when an attacker learns a the secret key and the ciphertext almost entirely. Thus,
the central question that we study in this work is:

Q1. Can we build leakage-resilient incompressible PKE with
ciphertext-rate, compression-rate, and leakage-rate approaching 1?

We already have encryption schemes that can tolerate as much as 1 − o(1) frac-
tion of the secret-key leakage (i.e., leakage-rate is almost 1) [1–3,7,21]. More-
over, we also have incompressible encryption schemes with ciphertext-rate and
compression-rate of 1 [4,17,19,20]. Thus, it is quite natural to ask can we design
a unified encryption scheme that achieves all these rates optimally.

Furthermore, towards our broader goal of studying other forms of leakage-
resilient incompressible cryptosystems, we also study a similar question for sig-
nature schemes:

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 205

Q2. Can we build leakage-resilient incompressible signature schemes
with 1 − o(1) leakage-rate and optimal communication (message + signature

size)?

1.1 Our Contributions

Our first main contribution is establishing a barrier to Q1! We show that leakage-
resilient incompressible PKE where all three rates are close to 1 is impossible,
as long as we want to prove security via a black-box reduction to a secure cryp-
tographic game [15,28]. In light of the above barrier, we ask a natural question
which is – What is the best ciphertext-rate, compression-rate, and leakage-rate
that can we can provably achieve for leakage-resilient incompressible encryption?
Our next contribution is to design encryption schemes from standard crypto-
graphic assumptions that achieve near-optimal rates. As an additional contri-
bution, we also design a leakage-resilient incompressible signature scheme from
standard assumptions. Below we summarize our main results in two main cate-
goriess – lower bounds and positive results.

Lower Bounds: We prove that any leakage-resilient incompressible PKE
scheme with ciphertext-rate 1− o(1), compression-rate 1− o(1) and leakage-rate
1 − o(1) cannot be proven secure via a black-box reduction to a cryptographic
game [15,28]. Formally, we prove the following.

Theorem 1. Let PKE = (Setup,Enc,Dec) be a PKE scheme for arbitrary mes-
sage length �msg with ciphertext length �ct = �msg + o(�msg) and secret key length
�key, and possesses almost perfect correctness and deterministic decryption. If
�leak = �key − o(�key) and the size of compressed state �st = �msg − o(�msg), then
there is no secure cryptographic game G such that there is a black-box reduction
that proves leakage-resilient incompressible encryption security of PKE from the
security of G.

We note that if we restrict the adversary’s leakage functions to bit-leakage
functions (where the adversary can learn some bits of the secret key), then we
can achieve ciphertext-rate-1 (we discuss this formally in the full version). The
proof of the above theorem builds heavily on a new lower bound that we prove
for incompressible PKE.

Incompressible Encryption with Ciphertext-Rate-1. As mentioned earlier, we have
constructions for incompressible PKE with ciphertext-rate-1 [4,17,19]. However,
all constructions with provable security in the standard model have large secret
keys, i.e. the key size grows with the message size. Guan et al. [19] conjectured
that any ciphertext-rate 1 − o(1) and compression-rate 1 − o(1) incompressible
PKE scheme with ‘short ’ key size cannot be proven secure using a black-box
reduction to a secure cryptographic game [28]. In this work, we formally prove
this conjecture. Formally, we prove:

206 K. Bhushan et al.

Theorem 2. Let PKE = (Setup,Enc,Dec) be an incompressible PKE scheme for
arbitrary message length �msg with ciphertext length �ct = �msg+o(�msg), secret key
length �key, state size �st = �msg−o(�msg) and possesses almost perfect correctness
and deterministic decryption. Then, if �key ≤ �msg(1 − Ω(1)), there is no secure
cryptographic game G such that there is a black-box reduction that derives the
security of PKE from the security of G.

Positive Results: We show that any information theoretic incompressible
secret key encryption scheme [11] can be transformed into an information-
theoretic leakage-resilient incompressible SKE scheme. Naturally, given the
information-theoretic promise, this scheme has large secret keys. When instan-
tiated using the incompressible SKE scheme of Dziembowski [11], the result-
ing leakage-resilient incompressible SKE scheme has ciphertext-rate 1

3 and
compression-rate 1

3 .
Further, we present an alternate information-theoretic incompressible SKE

scheme which improves upon the one in [11] in terms of the ciphertext-rate
and compression-rate (but uses a larger secret-key). Using this to instanti-
ate our leakage-resilient incompressible SKE we obtain a ciphertext-rate and
compression-rate of 1

2 . This is optimal information-theoretically, since the sum
of the ciphertext-rate and compression-rate can be at most 1.

Theorem 3. There exists a leakage-resilient ciphertext-rate-12 incompressible
SKE scheme with compression-rate 1

2 and leakage-rate 1 − o(1) that is secure
against unbounded adversaries.

Next, we move on to leakage-resilient incompressible public-key encryption.
Following a recent result by Goyal et al. [17], which lifts incompressible SKE to
incompressible PKE, we note that we can generically lift any leakage-resilient
incompressible SKE to leakage-resilient incompressible PKE. But this yields a
o(1) ciphertext-rate. In this work, we optimize this significantly to design a
leakage-resilient incompressible PKE scheme with ciphertext-rate 1

2 .

Theorem 4. Assuming the hardness of DDH along with DCR problem2, there
exists a ciphertext-rate 1

2 , compression-rate 1
2 and leakage-rate 1 − o(1) leakage-

resilient incompressible PKE.

For this construction, we introduce a new cryptographic primitive called
leakage-resilient non-committing encryption (LR-NCE) which may be of indepen-
dent interest (see Sect. 6). All of our results surrounding incompressible encryp-
tion, together with existing results are included in Table 1 and Table 2.

Leakage-Resilient Incompressible Signatures. Finally, we also design a leakage-
resilient incompressible signature scheme (see the full version), following the
template of Guan et al. [19]. Formally, we show that:

2 The same set of assumptions were needed by Branco et al. [4] to construct ct-rate-1
incompressible PKE.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 207

Table 1. Constructions for Regular Incompressible Encryption. In the information-
theoretic setting, we show an incompressible SKE scheme with ciphertext-rate 1

2
. We

conjecture that this rate is optimal for information-theoretic incompressible SKE. In the
computational setting, prior works showed incompressible SKE/PKE with ciphertext-
rate 1 and having large secret keys. In the last row, we discuss certain barriers for
provably secure incompressible SKE/PKE.

Primitive Ciphertext-Rate Compression-Rate Secret-Key Size Note

IT. SKE 1
3

1
3 max(�st, �msg) + poly(λ) [12]

IT. SKE 1
2

1
2 4 · max(�st, �msg) Section 5.1

SKE 1 − o(1) 1 − o(1) max(�st, �msg)(1 + o(1)) [4]

PKE 1 − o(1) 1 − o(1) �msg(1 + o(1)) · poly(λ) [4]

PKE/SKE 1 − o(1) 1 − o(1) �msg(1 − Ω(1)) Section 8.1 (Barrier)

Table 2. Constructions for Leakage-Resilient Incompressible Encryption. In the first
two rows, we discuss parameters that can be achieved for leakage-resilient incompress-
ible encryption. The third row lists parameters for leakage-resilient incompressible
encryption which cannot be achieved with black-box reductions. Finally, in the last
row, we present optimal parameters that can be achieved when the leakage is restricted
to a subset of bits of the secret key.

Primitive Ciphertext-Rate Compression-Rate Leakage-Rate Leakage Function Reference

IT. SKE 1
2

1
2 1 − o(1) General Section 5

PKE 1
2

1
2 1 − o(1) General Section 7

PKE/SKE 1 − o(1) 1 − o(1) 1 − o(1) General Section 8.2 (Barrier)

PKE/SKE 1 − o(1) 1 − o(1) 1 − o(1) Bits full version

Theorem 5. Assuming the existence of incompressible encoding scheme with
encoding rate of 1 − o(1) and leakage-resilient public key signature scheme with
leakage-rate of 1 − o(1), there exists leakage resilient incompressible signature
scheme with signature-rate of 1 − o(1) and leakage-rate of 1 − o(1).

2 Technical Overview

This section provides a high-level summary of the paper’s results, both positive
and negative.

2.1 Impossibility Results

In this work, we introduce two black-box separation results, demonstrating that
specific incompressible encryption primitives cannot be proven secure under any
standard assumptions using a black-box reduction. We accomplish this by lever-
aging the notion of simulatable attacks introduced by Wichs [28]. A simulatable
attack against the security of a primitive involves two entities: an inefficient

208 K. Bhushan et al.

adversary A that achieves a high probability of winning the security game, and
an efficient simulator Sim capable of mimicking A. Notably, we require that Sim
can convincingly emulate A for any efficient reduction R with oracle access to
Sim, i.e., |Pr[RA(1λ) = 1] − Pr[RSim(1λ) = 1]| = negl(λ).

Simulatable Attack on Ciphertext Rate-1 Incompressible PKE with
Small Keys. Assuming that the reader is familiar with the definition of incom-
pressibile security game (see Sect. 3.2), we describe our inefficient reduction A,
which has two hardcoded functions, g and h, as follows:

1. On input a public key pk, A0 returns a pair of messages g(pk) = (m0,m1)
along with aux = g(pk).

2. On input a ciphertext ct∗, aux, A1 returns h(ct∗).
3. On input (pk, sk, st, aux), A2 checks whether aux = g(pk). If not, it

returns ⊥. Else, it computes C = {ct|h(ct) = st} and M = {m|m =
IncPKE.Dec(pk, sk, ct), ct ∈ C}. It checks whether (m0,m1) ∩ M = ∅ or
(m0,m1) ⊆ M . If this check passes, it returns ⊥. Else, if m0 ∈ M , it returns
0. Otherwise, it returns 1.

Now, let’s understand why A wins the incompressible security game with
high probability. In the security game, the challenger faithfully generates the
challenge ciphertext ct∗, an encryption of mb where b is the random bit challenge.
This implies that mb ∈ M , and the only case where A would lose the game is if
m1−b ∈ M . Since h is a random function, |h−1(st)| has a size close to average,
i.e., 2|ct∗|/2|st|. Given the rate-1 incompressible scheme (|ct∗| = |m|+ o(|m|) and
|st| = |m| − o(|m|)), we have |C| ≈ o(|m|) and the set is randomly chosen. Thus,
the probability that one of the messages decrypts to m1−b is approximately
1/2|m|−o(|m|) which is negligible in the message size.

Now, let’s present our simulator Sim which maintains two databases Q0, Q1:

1. On input a public key pk, Sim first checks whether an entry (pk, (m0,m1))
is in Q0. If so, it outputs (m0,m1, aux = (m0,m1)). If not, it randomly gen-
erates a pair of messages (m0,m1), stores (pk, (m0,m1)) in Q0, and outputs
(m0,m1, aux = (m0,m1)).

2. On input a ciphertext ct∗ and auxiliary information aux, Sim checks whether
an entry (ct∗, st) is in Q1. If so, it outputs st. If not, it randomly generates st,
stores (ct∗, st) in Q1, and outputs st.

3. On input (pk, sk, st, aux), Sim checks whether (pk, (m0,m1)) is present in Q0.
If not, it returns ⊥. Else, it computes C = {ct|(ct, st) ∈ Q1)} and M =
{m|m = IncPKE.Dec(pk, sk, ct), ct ∈ C}. It checks whether (m0,m1)∩ M = ∅
or (m0,m1) ⊆ M . If this check passes, it returns ⊥. Else, if m0 ∈ M , it
returns 0. Otherwise, it returns 1.

The differences between A and Sim are that Sim generates random responses
to the queries it receives and maintains a log of them. In the third type of query,
it searches its database Q1 to construct the set C. These differences lead to the
following bad events that the reduction may use to distinguish A from Sim:

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 209

1. On input (pk, sk, st, aux), Sim may have early aborted because (pk, (m0,m1))
wasn’t present in Q0. However, for the same input, A must have returned a
bit b. This event happens when the reduction was able to guess the value of
h(ct∗) without querying its oracle. Using simple guessing probability, one can
show that this event is negligible in the size of the message.

2. On input (pk, sk, st, aux), Sim may have early aborted because (m0,m1)∩M =
∅ whereas, for the same input, A must have returned a bit b. This event
happens when the reduction was able to guess the value of h(ct∗) without
querying its oracle such that ct∗ decrypts to either m0 or m1. Simple guessing
probability cannot be applied directly because the reduction may cleverly
guess a bad secret key that decrypts the majority of the ciphertext to one
of m0 and m1. However, using the fact that the secret key size is small, we
argue that the number of such messages is negligible for every secret key.
So, for a randomly chosen message m0 and m1, the messages are good, in
the sense that around 2|ct|/2|m| ciphertexts decrypt to m0 and m1. With this
guarantee, we can apply simple guessing probability bounds to show that this
event happening is negligible.

3. On input (pk, sk, st, aux), Sim may have returned a bit b whereas, for the same
input, A must have returned ⊥. We show that this scenario is very similar to
the previous one and again use guessing probability bounds.

Since, the above events occurs with negligible probability, there does not
exists any efficient reduction that can distinguish between A and Sim. There-
fore, we have a simulatable attack against the security of a rate-1 incompressible
scheme with small keys.

Simulatable Attack on Ciphertext Rate-1 Incompressible PKE with
Leakage Rate-1. Assuming that the reader is familiar with the definition of
leakage-resilient incompressibile security game (see Sect. 4.1), we describe our
inefficient reduction A, which has three hardcoded functions, f, g and h, as
follows:

1. On input a secret key sk, A0 returns the truncation of sk to |sk| − o(|sk|) bits.
2. On input a leakage z, A1 returns a pair of messages (m0,m1) = g(z) and

aux = (z, g(z)).
3. On input a ciphertext ct∗, aux, A1 returns h(ct∗).
4. On input (sk, st, aux = (z,m0,m1)), A2 checks whether z = f(sk) and

(m0,m1) = g(z). If not, it returns ⊥. Else, it computes C = {ct|h(ct) = st}
and M = {m|m = IncPKE.Dec(pk, sk, ct), ct ∈ C}. It checks whether
(m0,m1) ∩ M = ∅ or (m0,m1) ⊆ M . If this check passes, it returns ⊥. Else,
if m0 ∈ M , it returns 0. Otherwise, it returns 1.

Similar to the argument presented in the previous section, we can show that
A wins the leakage-resilient incompressible game with very high probability. Now,
let’s present our simulator Sim which maintains two databases Q0, Q1, Q2:

210 K. Bhushan et al.

1. On input a secret key sk, Sim first checks whether an entry (sk, z) is in Q0. It
so, it outputs z, else it randomly generates z. It then stores (sk, z) in Q0 and
returns z.

2. On input a leakage z, Sim first checks whether an entry (z, (m0,m1)) is in Q1.
If so, it outputs (m0,m1, aux = (m0,m1)). If not, it randomly generates a pair
of messages (m0,m1), stores (pk, (m0,m1)) in Q1, and outputs (m0,m1, aux =
(z,m0,m1))..

3. On input a ciphertext ct∗, aux, Sim checks whether an entry (ct∗, st) is in Q2.
If so, it outputs st. If not, it randomly generates st, stores (ct∗, st) in Q2, and
outputs st.

4. On input (sk, st, aux = (z,m0,m1)), Sim checks whether (sk, z) is present in
Q0 and (z,m0,m1) is present in Q1. If not, it returns ⊥. Else, it computes
C = {ct|(ct, st) ∈ Q1} and M = {m|m = IncSKE.Dec(pk, st, ct), ct ∈ C}. It
checks whether (m0,m1) ∩ M = ∅ or (m0,m1) ⊆ M . If this check passes, it
returns ⊥. Else, if m0 ∈ M , it returns 0. Otherwise, it returns 1.

Similar to the previous section, note that the distinctions between A and Sim
lie in the fact that Sim generates random responses to the queries it receives and
keeps a log of them. In the fourth type of query, it searches its database Q2 to
construct the set C. These differences give rise to bad events similar to those
in the previous section. We address most of them in a similar manner, with the
exception that, rather than relying on small key information, we leverage the
advantage of substantial leakage of the secret key to argue indistinguishability.

Comparison with [28]. While our techniques for the above separation results are
inspired by prior work [28], there are key technical differences which required new
non-trivial ideas. At a high level, one of the main differences is that prior sepa-
ration results [28] were for cryptosystems such as one-way functions or entropy-
generators/condensers. Abstractly, all these cryptographic objects were just dif-
ferent types of one-way functions with some special properties (such as corre-
lated input security, leakage-resilience etc.). Therefore, the objects were defined
w.r.t. only a ‘public’ function key, and there was not a concept of a ‘secret’ key.
Informally, thus meant that the primitives for which impossibilities existed did
not have any real correctness property, but it was efficiency/succinctness and
security. This meant that to show the separation result, they just had to design
an inefficient (simulatable) attacker on the security of the system by leveraging
the desired level of efficiency/succinctness for the object.

Unfortunately, it is unclear how this simple strategy can be directly extended
to the encryption setting, since now there is also a ‘secret’ key which brings in a
new (and much needed) correctness guarantee. Thus, our inefficient (simulatable)
attacker must find a way to leverage both efficiency/succinctness and correctness.
Clearly, if we do not use correctness while designing our inefficient (simulatable)
attack, then we cannot prove the separation result since one could trivially design
an “incorrect” encryption scheme that achieves optimal efficiency/succinctness as
well as security. Thus, one of our key technical contributions in coming up with
the above separation result is that we had to find a new approach to also leverage
correctness along with succinctness. We believe our approach of generalizing

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 211

the [28] black-box separation techniques to simultaneously leverage correctness
and succinctness together to break security will have more applications in the
future.

2.2 Positive Results

In this work, we present the first leakage resilient incompressible encryption
schemes, both in the secret key and the public key setting as well as signature
schemes.

LR Incompressible SKE Secure Against Unbounded Adversaries. At a
high level, our leakage-resilient incompressible SKE scheme uses an incompress-
ible SKE scheme for encryption, but applies some preprocessing of the secret
key to protect against leakage. Specifically, in our scheme, the secret key is rep-
resented by a large random string sk. To encrypt a message m, a random seed s
is sampled, and a truly random string inc.sk is derived by applying the extractor
to sk using the seed s. Subsequently, inc.sk serves as the secret key for the incom-
pressible SKE scheme to encrypt the message m to produce inc.ct. The final
ciphertext for the message is (s, inc.ct). To decrypt, inc.sk is recovered using the
secret key sk and s. Then, the decoder of the incompressible SKE scheme is
invoked with secret key inc.sk and ciphertext inc.ct.

To provide the intuition behind the leakage-resilient incompressible security
of our scheme, we draw a parallel to the role of the extractor in leakage resilient
encryption schemes: even if a substantial portion of the secret key sk is leaked to
the adversary, if sk retains sufficient entropy after the leakage f(sk), the resulting
string inc.sk obtained by extraction is statistically close to uniform. Consequently,
an unbounded adversary cannot learn any information about the secret key used
in the inner incompressible SKE scheme. We should, however, exercise caution
while arguing security against the adversary who eventually observes the leakage
f(sk), the compression of the ciphertext chosen adaptively based of the leakage,
and the secret key sk. For instance, in the security game, the adversary can force
the challenger to commit to the secret key and message using a hash functions
of its choice while computing the leakage and compression making it impossible
to efficiently and retroactively resample the secret key consistent with the com-
mitments. In our proof, we carry out this resampling using a computationally
unbounded program to make the secret key independent of the inner incom-
pressible SKE scheme, and then reduce the security to the security of the inner
incompressible SKE scheme. This necessitates incompressible SKE scheme to
guarantee security against unbounded adversary.

Our construction inherits its compression rate from the inner the incompress-
ible SKE scheme. Hence, instantiating it with the scheme proposed by Dziem-
bowski [12] gives a sub-optimal ciphertext rate 1/3. To overcome this, we build
our own incompressible SKE scheme with unbounded security and ciphertext
rate 1/2.
Information-Theoretic Incompressible SKE with Ciphertext-Rate-12 . In Dziem-
bowski’s scheme, the secret key sk serves as a seed for a randomness extractor.

212 K. Bhushan et al.

To encrypt a message m, a large random string R is sampled and applied to
the extractor (with seed sk) to produce k. This is then used in a one-time-pad
operation on the message m to produce the ciphertext (R, k⊕m). We tweak this
construction using seeded strong invertible extractor to get rid of the second
component of the ciphertext viz. k ⊕ m. The secret key for our construction is
the seed s for a strong invertible extractor Ext, and a random string k of the
same length as the message (which coincides with the output length of the invert-
ible extractor). The ciphertext of a message m is sampled ct = Ext−1

s (m ⊕ k),
where Ext−1 is the inverter for the extractor that samples a random R such that
Exts(R) = m⊕k. To decode, m⊕k is extracted from the ciphertext R using the
seed s in the secret key using Ext; m is then recovered using k provided in the
secret key. To argue security, we observe that, by the property of the inverter,
and the fact that k is random, (R, s,m ⊕ k) is distributed identically as in the
experiment in which R and s are sampled uniformly, and m ⊕ k is extracted
from R using s using Ext. After this step, our security argument follows that in
scheme proposed in [12].

LR Incompressible PKE from LR Non-committing Encryption. We
present a hybrid construction for LR incompressible PKE that combines a (sta-
tistically secure) incompressible SKE with a leakage-resilient non-committing key
encapsulation mechanism (NC-KEM). Essentially, a leakage-resilient NC-KEM
is a stronger variant of NC-KEM which can handle leakage from the secret key.
We formally define this primitive in Sect. 4.2 and present a construction based
on hash proof systems in Sect. 6.

The public key pk and secret key sk of the PKE scheme will be the public and
secret keys of the NC-KEM scheme. Using NC-KEM scheme, a fresh secret key
inc.sk is generated by computing (inc.sk, nce.ct) ← Encaps(pk). The message m
is then encrypted using inc.sk to produce inc.ct ← IncSKE.Enc(inc.sk,m) and the
final ciphertext is ct = (nce.ct, inc.ct). To argue the scheme’s security, we first
set the NC-KEM to simulation mode. Note that the simulator does not have
to be efficient because the leakage functions provided by the adversaries may
not be efficiently computable (see Sect. 4.2 and Sect. 6). Thus, we can no longer
use computationally secure incompressible SKE schemes because of these inef-
ficient simulators will make the reduction inefficient. So we’ll use a statistically
secure incompressible SKE scheme to make our proof work. For more details,
refer Sect. 7.

LR Incompressible PKE Against Bits-Leakage from Incompressible
PKE. We present a transformation that converts any incompressible public-
key encryption (PKE) scheme into an LR incompressible PKE secure against
leakage functions that output a subset of the secret key bits. This is achieved
using a reconstructable probabilistic encoding (RPE). An �-RPE is an encoding
where, for any input x and subset S with |S| ≤ �, the partial encoding Enc(x)S
is perfectly indistinguishable from the uniform distribution. Additionally, there
exists a reconstructing algorithm that, given x, a partial codeword w̃, and subset

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 213

S with |w̃| = |S| ≤ �, outputs a complete codeword w from the distribution
Enc(x) such that wS = w̃.

The transformation is straightforward. The public key of the scheme is the
public key inc.pk of an incompressible PKE scheme, while the secret key is the
RPE of the secret key RPE.Enc(inc.sk). Any adversary capable of winning the
LR incompressible game for this scheme can break the underlying incompressible
PKE scheme. This is because the reduction can respond to queries with random
values and later reconstruct a valid encoding for inc.sk during the second phase
using the reconstructing algorithm of the RPE scheme. For more detail, see the
full version.

LR Incompressible PKE from LR Incompressible SKE. We give a high
level description of how to bootstrap any LR incompressible SKE scheme along
with any regular PKE scheme to an LR incompressible PKE scheme (against
general leakage) using deferred encryption technique.

The public key of the leakage-resilient incompressible scheme consists of a
set of 2n public keys, denoted as

{
pki,b

}
i,b

. On the other hand, the secret key of
the scheme includes the secret key k of a leakage-resilient incompressible SKE
scheme along with n PKE secret keys corresponding to the bits of k, i.e., {ski,ki

}i.
To encrypt a message m, the encryptor garbles the encryption circuit of the
leakage-resilient incompressible SKE scheme with the message m and hardcoded
randomness r, i.e., IncSKE.Enc(·,m; r). This garbling process yields a garbled
circuit Ĉ along with 2n labels, given by {labi,b}i,b. Subsequently, each label labi,b

is encrypted under its corresponding PKE public key pki,b to generate a set of
ciphertexts, denoted as {cti,b}i,b. The ciphertext consists of the garbled circuit Ĉ

along with the set of ciphertexts {cti,b}i,b. For decryption, the decryptor simply
decrypts {cti,ki

}i using the corresponding secret keys {ski,ki
}i. This enables the

decryptor to acquire the labels {labi,k}i, which can be utilized to evaluate the
garbled circuit Ĉ and derive an incompressible SKE ciphertext inc.ct. By utilizing
the incompressible SKE key k, the decryptor can perform the final decryption
to obtain the original message m.

The above approach postpones the actual encryption of the message m until
the decryption phase. That is, the actual inc.ct is generated only when the secret
key is acquired. Using this fact, in the security game, we are able to equivocate
the challenge ciphertext to appear as an encryption under any key k during the
second phase. It’s important to emphasize that we need to be careful to make
sure that the leaking of the secret keys {ski,ki

}i does not cause problems for the
equivocation process. This aspect is appropriately addressed in our proof. For
completeness, we provide our LR incompressible PKE construction in the full
version of our paper.

LR Incompressible Signatures. We define leakage-resilient incompressible
signatures by adding the leakage-resilience property to the security definition of
incompressible signatures as mentioned in [19]. The authors of that paper con-
structed incompressible signatures using a standard signature scheme along with

214 K. Bhushan et al.

an incompressible encoding scheme (defined in [23]). We provide a similar con-
struction of leakage-resilient incompressible signatures using a leakage-resilient
signature scheme along with an incompressible encoding scheme. For more detail,
see the full version.

3 Preliminaries

Throughout this paper, we will use λ to denote the security parameter and negl(·)
to denote a negligible function in the input. We will use the short-hand notation
PPT for “probabilistic polynomial time”. We use the notation AB(·) to denote
that the algorithm A can issue multiple queries to its oracle B and receives the
outputs of B executed on these queries.

For any finite set X, x ← X denotes the process of picking an element x
from X uniformly at random. Similarly, for any distribution D, x ← D denotes
an element x drawn from the distribution D. We will use the notation ≈ε and
≡ to denote that two distributions are ε-close and identical respectively. For any
natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}. For any two binary
string x and y, x||y denotes the concatenation of x and y. For �-length binary
string x, xi denotes the ith bit of x.

For any function h and a set X that is a subset of the domain of h, we use
the short-hand notation h(X) to denote the set {h(x)}x∈X .

3.1 Extractors

Definition 1. For two random variables X and Y taking values in U , their
statistical distance is �(X,Y) = maxT⊆U |Pr[X ∈ T] − Pr[Y ∈ T]| . We say that
X and Y are ε-close if �(X,Y) ≤ ε.

Definition 2. An extractor Ext : {0, 1}d × {0, 1}n → {0, 1}m is a strong
(k, ε)-extractor if for every distribution X on {0, 1}n such that H∞(X) ≥ k,
(Ud,Ext(Ud,X)) is ε-close to (Ud, Um). Here, Ud denotes the uniform distribu-
tion on the set {0, 1}d and the min-entropy H∞(X) = minx

{
log 1

Pr[X=x]

}
.

Chapter 6 of [27] describes many randomness extractors out of which we will
be using the following.

Theorem 6 (Corollary 6.40, [27]). For every n ∈ N, k ∈ [0, n] and ε > 0,
there is an explicit strong (k, ε)-extractor Ext : {0, 1}d × {0, 1}n → {0, 1}m with
m = k − O(log(1/ε)) and d = O(log k · log(n/ε)).

We require ε = 2−λ for our applications. We can obtain the following corollary
by substituting this value in the above theorem.

Corollary 1. Let λ ∈ N. For every n ∈ N and k ∈ [0, n] such that n = poly(λ)
and k = poly(λ), there is an explicit strong (k, 2−λ)-extractor Ext : {0, 1}d ×
{0, 1}n → {0, 1}m with m = k−O(λ) and d = Õ(λ) where Õ hides all logarithmic
factors.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 215

3.2 Incompressible Public Key Encryption

An incompressible public key encryption scheme PKE = (Setup,Enc,Dec) is a
tuple of PPT algorithms with the following properties. For any security parame-
ter λ and message-length parameter �msg, there exists sets M�msg (message space),
SKλ,�msg (secret-key space), PKλ,�msg (public-key space), and Cλ,�msg (ciphertext
space), from which the inputs and outputs for these algorithms are taken.

– Setup
(
1λ, 1�msg

)
: The setup algorithm takes as input the security parameter

λ, the message size 1�msg and outputs a public key pk ∈ PKλ,�msg and a secret
key sk ∈ SKλ,�msg .

– Enc(pk,m) : The encryption algorithm takes as input a public key pk ∈
PKλ,�msg and a message m ∈ M�msg and outputs a ciphertext ct ∈ Cλ,�msg .

– Dec(pk, sk, ct) : The deterministic decryption algorithm takes (pk, sk) ∈
PKλ,�msg × SKλ,�msg and ct ∈ Cλ,�msg as inputs, and outputs either a message
m ∈ M�msg or ⊥.

Correctness. For correctness, we require that there exists a negligible function
negl such that for all λ ∈ N, for all polynomials �msg = �msg(λ), for all m ∈ M�msg

and (pk, sk) ← Setup
(
1λ, 1�msg

)
,

Pr
r
[Dec(pk, sk, ct) = m | ct = Enc(pk,m; r)] = 1 − negl(λ).

Incompressible PKE Security. Consider the following experiment with an
adversary A = (A0,A1,A2). Let �st : N×N → N be a function that denotes the
adversary’s long-term storage capacity as a function of the security parameter
and message size.

– Initialization Phase: A0 on input 1λ, outputs 1�msg . The challenger runs
(pk, sk) ← Setup(1λ, 1�msg) and sends pk to A0.

– Challenge Phase: A0 outputs two message m0,m1, along with an auxiliary
information aux. The challenger randomly chooses b ∈ {0, 1} and computes a
ciphertext ct∗ = Enc(pk,mb) and sends it to A1.

– First Response Phase: A1 computes a state st such that |st| ≤ �st(λ, �msg).
– Second Response Phase: A2 receives (pk, sk, aux, st) and outputs b′. A

wins the experiment if b = b′

Definition 3. A PKE scheme is said to be �st-incompressible secure if for all
PPT adversaries A = (A0,A1,A2), there exists a negligible function negl such
that for all λ ∈ N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ).

Two important parameters of an incompressible encryption scheme are
ciphertext-rate and compression-rate defined as follows.

216 K. Bhushan et al.

Definition 4 (Ciphertext-Rate). Let �ct(λ, �msg) denote the size of cipher-
text (as a function of the security parameter λ and the message size �msg). The
ciphertext-rate of a encryption scheme is defined as the ratio of the size of the
message �msg to the size of the ciphertext �ct(λ, �msg) as �msg tends to infinity, or
more precisely,

ct-rate(λ) = lim inf
�msg→∞

�msg
�ct(λ,�msg)

.

Definition 5 (Compression-Rate). The compression rate of an incompress-
ible encryption scheme is defined as the ratio of the size of the state �st(λ, �msg)
to the size of the ciphertext as �msg tends to infinity, or more precisely,

comp-rate(λ) = lim inf
�msg→∞

�st(λ,�msg)
�ct(λ,�msg)

.

Guan et al. [19] gave the first scheme with optimal ciphertext-rate and
compression-rate using indistinguishable obfuscators (iO) [13,14,26]. Later,
Branco et al. [4] gave a construction from standard assumptions.

Theorem 7 ([4]). Assuming the hardness of LWE problem or DDH along with
DCR problem, for any �st : N × N → N, there exists a �st-incompressible PKE
scheme such that ct-rate(λ) = 1 and comp-rate(λ) = 1.

Depending on the number of ciphertexts that decrypts to a particular mes-
sage using a given public-secret key, we categorise messages as good or bad.
Intuitively, we would expect each message to possess an equal proportion of the
ciphertexts. If the proportion significantly exceeds the average, we label it as
‘bad’. Additionally, we also categorise public-secret keys as good or bad based
on the number of bad messages associated with it. The proof of the impossibility
results will heavily rely on these definitions.

Definition 6. Let λ ∈ N, �msg ∈ N, ε ∈ (0, 1) and (pk, sk) ∈ PKλ,�msg × SKλ,�msg .
A message m ∈ Mλ,�msg is said to be ε-bad with respect to (pk, sk) if

Prct←Cλ
[Dec(pk, sk, ct) = m] > 1/2(ε/2)·�msg

A message m ∈ Mλ,�msg is said to be ε-good with respect to pk ∈ PKλ,�msg if
it is not ε-bad with respect to any (pk, sk) where sk ∈ SKλ,�msg . A public-secret
key pair (pk, sk) ∈ PKλ,�msg × SKλ,�msg is said to be ε-bad if

Prm←Mλ,�msg
[m is bad wrt (pk, sk)] > 1/2(1−ε/2)·�msg

4 Leakage-Resilient Incompressible and Non-committing
Schemes: Definitions

4.1 Leakage-Resilient Incompressible Encryption

The syntax for leakage-resilient SKE/PKE is similar to (regular) SKE/PKE. Let
�st : N × N → N and �leak : N × N → N be functions denoting the adversary’s

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 217

long-term storage and leakage, as a function of the security parameter and the
message length. In the security game, we will consider two adversaries A1,A2.
The first adversary A1, after receiving leakage on the secret key, will be provided
with the complete challenge ciphertext, and it produces a compressed digest. The
second adversary A2 is provided with the public and the secret key along with the
compressed challenge ciphertext which was created by A1. Since the definitions
of leakage-resilient incompressible SKE security and its PKE version are similar,
we present only the SKE version.

Leakage-Resilient-Incompressible SKE Security.
Let SKE = (Setup,Enc,Dec) be an SKE scheme which, for any value of the
security parameter λ ∈ N and message-length �msg ∈ N, has message space M�msg ,
secret key space SKλ,�msg and ciphertext space Cλ,�msg . Consider the following
experiment with an adversary A = (A1,A2).

– Initialization Phase: A1 on input 1λ, outputs an upper bound on the mes-
sage size �msg. The challenger runs sk ← Setup

(
1λ, 1�msg

)
.

– Pre-Challenge Query Phase: In this phase, A1 is allowed to make a query
f . The challenger computes f(sk) and returns it to A1.

– Challenge Phase: A1 outputs two messages m0,m1, along with an auxiliary
information aux. The challenger randomly chooses b ∈ {0, 1} and computes
a ciphertext ct∗ = Enc(sk,mb) and sends it to A1.

– First Response Phase: A1 computes a state st such that |st| ≤ �st(λ, �msg).
– Second Response Phase: A2 receives (sk, aux, st). Finally, A2 outputs b′.

A wins the experiment if b = b′.

Definition 7. An SKE scheme is said to be (�st, �leak)-leakage-resilient incom-
pressible secure if for all PPT adversaries A = (A1,A2), there exists a negligible
function negl(·) such that Pr[A wins in the above experiment] = 1

2 +negl(λ) pro-
vided |f(sk)| ≤ �leak(λ, �msg) where f is the query made by the first adversary A1

in the pre-challenge query phase.

Definition 8 (Leakage-Rate). Let �key(λ, �msg) denote the size of the secret
key output by Setup

(
1λ, 1�msg

)
. The leakage rate of an (�st, �leak)-leakage-resilient

incompressible secure is defined as the ratio between �leak and the size of the
secret key as �msg tends to infinity, i.e.,

sk-rate(λ) = lim inf
�msg→∞

�leak(λ, �msg)
�key(λ, �msg)

.

4.2 Leakage-Resilient Non-committing Key Encapsulation
Mechanism

In this section, we define the leakage resilient non-committing key encapsulation
mechanism (NC-KEM). A leakage-resilient NC-KEM NCE = (Setup, Encaps,
Decaps, Sim1, Sim2, Sim3) with secret key space

{SKλ,�key

}
λ,�key

, public key space
{PKλ,�key

}
λ,�key

and key space
{Kλ,�key

}
λ,�key

consists of the following algorithms,
of which the first three are probabilistic polynomial time.

218 K. Bhushan et al.

– Setup
(
1λ, 1�key

)
: The setup algorithm takes as input the security parameter

1λ and encapsulation key size 1�key and outputs a public key pk and a secret
key sk.

– Encaps(pk) : The encapsulation algorithm takes as input a public key pk,
produces a key k ∈ {0, 1}�key and a ciphertext ct.

– Decaps(sk, ct) : The decapsulation algorithm takes as input a secret key sk
and a ciphertext ct and outputs k ∈ {0, 1}�key .

– Sim1

(
1λ, 1�key

)
: The first simulator algorithm takes as input the security

parameter 1λ and encapsulation key size 1�key and outputs a public key pk, a
ciphertext ct and a state state1.

– Sim2(state1, f) : The second inefficient3 simulator algorithm takes as input
a state state1 and a function f : SKλ,�key → {0, 1}�leak and outputs a string
r ∈ {0, 1}�leak and a state state2.

– Sim3(state2, k) : The third inefficient4 simulator algorithm takes as input a
state state2 and a string k ∈ {0, 1}�key and outputs a secret key sk.

Correctness. For correctness, we require that for all λ ∈ N, �key ∈ N and (pk, sk)
output by Setup

(
1λ, 1�key

)
,

Pr
r
[Decaps(sk, ct) = k | (k, ct) = Encaps(pk; r)] = 1 − negl(λ)

Leakage-Resilient Non-committing Security. Consider the following two
experiments with an adversary A.

Real World:

– Initialization Phase: A on input 1λ, outputs the key size 1�key . The chal-
lenger computes (pk, sk) ← Setup(1λ, 1�key) and sends pk to A.

– Pre-Challenge Query Phase: In this phase, A is allowed to make a query
f . The challenger returns r = f(sk) to A.

– Challenge Phase: The challenger computes (k, ct) ← Encaps(pk) and
returns (sk, k, ct) to A.

– Response Phase: A outputs b.

Simulated World:

– Initialization Phase: A on input 1λ, outputs the key size 1�key . The chal-
lenger computes (pk, ct, state1) ← Sim1(1λ, 1�key) and sends pk to A.

– Pre-Challenge Query Phase: In this phase, A is allowed to make a query
f . The challenger computes (r, state2) ← Sim2(state1, f) and returns r to A.

– Challenge Phase: The challenger randomly samples k ← {0, 1}�key , com-
putes sk ← Sim3(state2, k), and returns (sk, k, ct) to A.

– Response Phase: A outputs b.
3 f may not be an efficiently computable function.
4 Even if the function f is efficiently computable, it may not be efficiently invertible.

The third simulator must generate a (simulated) secret key sk such that f(sk) must
match with the output of the second simulator. See Definition 9.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 219

Let preal and psim be the probabilities with which A outputs 0 in the real
world and simulated world, respectively.

Definition 9. A �leak-LR-NC-KEM scheme is said to be secure if for all PPT
adversaries A, there exists a negligible function negl(·) such that, for all λ ∈ N,

|preal − psim| = negl(λ),

provided |f(sk)| ≤ �leak where f is the query made by the adversary A in the
pre-challenge query phase.

4.3 Leakage-Resilient Incompressible Signatures

An �leak-leakage-resilient incompressible signature scheme Sig with a signing-key
space {0, 1}�key , message space {0, 1}�msg and signature space {0, 1}�sign , consists
of a tuple of PPT algorithms (Gen,Sign,Verify), with the following syntax:

– Gen(1λ, 1�st) : The generation algorithm takes as input the security parameter
1λ and compression size 1�st and outputs (vk, sk), where vk is the verification
key and sk is the signing key.

– Sign(sk,m) : The signing algorithm takes as input the signing key sk and a
message m, and outputs a signature σ.

– Verify(vk, σ) : The verification algorithm takes as input the verification key
vk and a signature σ, and outputs a message m′ or ⊥.

The leakage-rate of the scheme is defined as �leak/�key. The signature-rate is
defined as �msg/�sign. The compression-rate is defined as �st/�sign.
Correctness. For all security parameters λ, �st ∈ N, all message lengths �msg,
and all messages m ∈ {0, 1}�msg , over the randomness of (vk, sk) ← Gen(1λ, 1�st),
and σ ← Sign(sk,m), it holds that

Pr[Verify(vk, σ) �= m] ≤ negl(λ).

Security. Consider the following experiment for adversary A = (A1,A2) :

Leakage-Resilient Incompressible Unforgeability Experiment
ExptLeakIncompSig

A,Sig (λ, �leak):

1. Initialization Phase: On input 1λ, the adversary A1 specifies the state size
�st. The challenger samples (vk, sk) ← Gen(1λ, 1�st) and provides vk to A1.

2. Pre-Challenge Query Phase: In this phase, A1 is allowed to make polyno-
mially many leakage queries. For jth query fj , the challenger provides fj(sk)
to A1, as long as

∑
j |fj(·)| ≤ �leak. At the end of the last round, A1 provides

auxiliary information aux to the challenger.
3. Challenge Phase: For polynomially many rounds, A1 requests for signatures

on messages. In the ith query, it queries for message mi ∈ {0, 1}�msg , and the
challenger computes σi ← Sign(sk,mi) and sends σi back to A1.

220 K. Bhushan et al.

4. First Response Phase: A1 sends a state st such that |st| ≤ �st.
5. Second Response Phase: A2 gets the verification key vk, the auxiliary

information aux, and the state st, and outputs a signature σ′. If Verify(vk, σ′)
output ⊥, then the challenger outputs 0. Otherwise, it outputs 1.

Definition 10 (�leak-Leakage-Resilient Incompressible Unforgeability).
A signature scheme Sig is said to be �leak-leakage-resilient incompressible unforge-
able if for all PPT adversaries A = (A1,A2), all λ ∈ N,

Pr[ExptLeakIncompSig
A,Sig (λ, �leak) = 1] ≤ negl(λ).

5 Leakage-Resilient Incompressible SKE Against
Unbounded Adversaries

In this section, we present a leakage-resilient incompressible SKE. We first
improve the current state-of-the-art with regard to information-theoretic incom-
pressible SKE. Next, we show how to transform any information-theoretic incom-
pressible SKE scheme into an information-theoretic leakage-resilient incompress-
ible SKE scheme.

5.1 Information-Theoretic Incompressible SKE with Ciphertext-
Rate 1

2

In this section, we build an incompressible SKE scheme with ciphertext-rate
1
2 and having security against unbounded adversaries. The construction using
invertible seeded extractors. These are extractors for which, given a seed and an
output, a random sample from the source randomness can be efficiently sampled.
A stronger version of this notion was introduced by Cheraghchi et al. [6].

Definition 11. A strong (k, ε)-extractor Ext : {0, 1}d × {0, 1}n → {0, 1}m is
said to be ν-invertible if there exists a probabilistic polynomial (in d and n)
time algorithm Ext−1 with the following properties. Ext−1 takes an input a seed
s ∈ {0, 1}d and a string o ∈ {0, 1}m and outputs a string R ∈ {0, 1}n.

1. Inversion. The probability that Ext−1 fails to output a string R such that
Exts(R) = o is bounded by ν, i.e.,

Pr
[
Exts(R) �= o

∣
∣
∣ o ← {0, 1}m

, s ← {0, 1}d
, R ← Ext−1

s (o)
]

≤ ν

2. Uniformity. The distribution (s,R,Exts(R)) is ν-close to (s,Ext−1
s (o), o),

i.e.,

�
((

s,Ext−1
s (o), o

∣
∣
∣
∣
∣

o ← {0, 1}m

s ← {0, 1}d

)

,

(

s,R,Exts(R)

∣
∣
∣
∣
∣

R ← {0, 1}n

s ← {0, 1}d

))

≤ ν

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 221

Our Incompressible SKE Scheme. Let Ext : {0, 1}�key × {0, 1}�ct → {0, 1}�msg

be a ν-invertible strong (k, ε)-extractor with inverter Ext−1 where k ≥ �ct − �st.
Our incompressible SKE scheme is as follows.

– Setup(1λ, 1�msg , 1�st): The setup algorithm generates sk = (sk1, sk2) where
sk1 ← {0, 1}�key and sk2 ← {0, 1}�msg .

– Enc(sk,m): Let sk = (sk1, sk2) be the secret key and m ∈ {0, 1}�msg be a
plaintext message. The encryption algorithm computes ct = Ext−1

sk1
(m ⊕ sk2),

i.e., ct is the output of the inverter on inputs sk1 and m ⊕ sk2. It outputs ct.
– Dec(sk, ct): Let sk = (sk1, sk2), the decryption algorithm outputs Extsk1(ct)⊕

sk2.

Correctness: We will show that the decoder is incorrect with probability at
most ν. Let m ∈ {0, 1}�msg a message and ct = Ext−1(sk1,m ⊕ sk2) be a cipher-
text encrypting m. By the definition of Dec, decoding is correct if and only
if Extsk1(ct) = m ⊕ sk2. Since sk2 is uniformly chosen from the same domain,
sk2 ⊕ m is also uniformly distributed. Further, sk1 is chosen uniformly from
{0, 1}�key . From the inversion property of Ext−1,

Pr [Extsk1(ct) �= m ⊕ sk2] = Pr
[
Extsk1(Ext

−1
sk1

(sk2 ⊕ m)) �= m ⊕ sk2
] ≤ ν.

Hence, Pr [Dec(Enc(sk,m)) �= m] ≤ ν, for all m.

Theorem 8. Assuming Ext : {0, 1}�key × {0, 1}�ct → {0, 1}�msg is a ν-invertible
strong (k, ε)-extractor where �ct−�st ≥ k and both ε = ε(λ) and ν = ν(λ) are neg-
ligible functions, then the above construction is an incompressible SKE scheme
secure against unbounded adversaries. The ciphertext-rate and compression-rate
are equal to 1

2 , and the scheme has secret keys of size 4 · max(�st, �msg).

Due to space constraints, the proof of this theorem is included in the full
version.

5.2 Generic Transformation

Our Construction. Let IncSKE = (IncSKE.Setup, IncSKE.Enc, IncSKE.Dec) be
an incompressible secret-key encryption scheme for arbitrary message length
�msg with ciphertext length �IncSKEct and secret key length �IncSKEkey . Also, the
IncSKE.Setup algorithm generates a secret key by sampling a truly random string.
Let Ext : {0, 1}d × {0, 1}�key → {0, 1}�IncSKEkey be a strong (�IncSKEkey + O(λ),negl(λ))-
extractor where d = poly(λ)5. Then, our leakage-resilient incompressible SKE
scheme is as follows.

– Setup(1λ, 1�msg , 1�st): The setup algorithm generates a random string sk ←
{0, 1}�key6 and outputs it.

5 The parameters are chosen from Corollary 1.
6 where �key must be greater �IncSKEkey + O(λ). This is due to the fact that the extractor

requires a string from the randomness source that has �IncSKEkey +O(λ) bits of entropy.

222 K. Bhushan et al.

– Enc(sk,m): Let sk be the secret key and m ∈ {0, 1}�msg be a message. The
encryption algorithm first samples a random seed s ← {0, 1}d and then com-
putes k := Exts(sk). It returns ct := (s, IncSKE.Enc(k,m)).

– Dec(sk, ct): Let sk be the secret key and ct = (s′, ct′) be a ciphertext. The
decryption algorithm first computes k := Exts′(sk) and then decrypts ct′ using
k, i.e., m = IncSKE.Dec(k, ct). It returns m.

Correctness. An encryption of a message m under a secret key sk using the
above scheme is (ct0, ct1) = (s, IncSKE.Enc(k,m)) where s is randomly generated
and k = Exts(sk). To decrypt this ciphertext using sk, the decryption algorithm
first computes Extct0(sk) which is equal to k. Then, it decrypts ct1 using k by
computing m′ := IncSKE.Dec(k, ct1). From the correctness of IncSKE, we have
m = m′.

Ciphertext-Rate. The size of the ciphertext in the above scheme is poly(λ) +
�IncSKEct because there exists strong extractor with d = poly(λ) (see Theorem

6). Therefore, the ciphertext-rate is
(

poly(λ)
�msg

+ �IncSKEct

�msg

)−1

which is equal to the
ciphertext-rate of the incompressible SKE as �msg becomes arbitrarily larger than
poly(λ).

Compression-Rate. The compression size admissible in the above scheme is
equal to the compression size of IncSKE. This is because the security relies on
the incompressibility of IncSKE (see ??). Therefore, the compression rate of the
above scheme is

�IncSKEct · CompRateIncSKE
poly(λ) + �IncSKEct

=
CompRateIncSKE

poly(λ)
�IncSKEct

+ 1

where CompRateIncSKE is the compression rate of IncSKE. This becomes equal
to the compression-rate of the incompressible SKE as �IncSKEct can be arbitrarily
larger than poly(λ).

Leakage-Rate. From the correctness of the randomness extractor, the amount
of leakage of the secret key permissible is at most �key − (�IncSKEkey + O(λ)). This
implies that the leakage rate is

�key − (�IncSKEkey + O(λ))
�key

= 1 − �IncSKEkey + O(λ)
�key

By setting �key = ω(�IncSKEkey + O(λ)), the above scheme attains a leakage-rate of
1 − o(1).

Theorem 9. Let IncSKE = (IncSKE.Setup, IncSKE.Enc, IncSKE.Dec) be an
incompressible secret-key encryption scheme secure against unbounded adver-
saries with the IncSKE.Setup algorithm generating a secret key by sampling a
truly random string. Let Ext be a strong average min-entropy extractor. Then, the
above scheme is a leakage-resilient incompressible secret-key encryption scheme
secure against unbounded adversaries with leakage-rate 1, ciphertext and com-
pression rates equal to rates of IncSKE.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 223

The proof for the above theorem is provided in the full version.

6 Leakage-Resilient NC-KEM from Hash Proof Systems

In this section, we show that LR-PKE construction by Naor and Segev [24] is a
leakage-resilient NC-KEM scheme (see Sect. 4.2).
Our Construction. Let HPS = (HPS.Setup,HPS.Encaps,HPS.Decaps) be a
HPS that outputs a encapsulated key of length � using a language L ⊂ X. Let
Ext : {0, 1}d × {0, 1}� → {0, 1}�key be a strong (�key + O(λ),negl(λ))-extractor
where d = poly(λ)7. Then, the leakage-resilient NC-KEM scheme where the
leakage size is � − (�key + O(λ))8 is as follows.

– Setup(1λ, 1�key): The setup algorithm generates (hps.pk, hps.sk) ←
HPS.Setup(1λ, 1�)9 and sets pk = hps.pk and sk = hps.sk.

– Encaps(pk): The encryption algorithm first samples a random seed s ←
{0, 1}d and a string-witness pair (x,w) ← L. It computes secret key k :=
Exts(HPS.Encaps(pk, x, w)) and the ciphertext ct := (x, s). It returns (k, ct)

– Decaps(sk, ct): Let sk be the secret key and ct = (x, s) be a ciphertext. The
decryption algorithm computes k := Exts(HPS.Decaps(sk, x)) and outputs k.

– Sim1(1λ, 1�key) : The simulator generates (hps.pk, hps.sk) ← HPS.Setup(1λ, 1�),
and sets pk = hps.pk. Further samples s ← {0, 1}d, R ← {0, 1}� and x ← X\L.
It sets ct = (x, s), resamples sk conditioned on pk, x and R, and outputs
state1 = (pk, sk, ct).
We elaborate on resampling of sk: Define D as the distribution

D =
(
pk, sk, x,HPS.Decaps(sk, x)

∣
∣(pk, sk) ← HPS.Setup(1λ, 1�), x ← X \ L)

.

Let P be a potentially inefficient program (a stochastic channel) such that
D̃ ≡ D when

D̃ =
(
pk, sk, x, y

∣
∣(pk, sk′, x, y) ← D, sk ← P (pk, x, y)

)
. (1)

By resampling of sk conditioned on pk, x and R, we mean sk ← P (pk, x,R).
– Sim2(state1, f) : Let state1 = (pk, sk, ct). The simulator outputs f(sk) and

sets state2 = (state1, f(sk), f).
– Sim3(state2, k) : Let state2 = ((pk, sk, ct), f(sk), f). Sim3 resamples and out-

puts sk′′ conditioned on pk, f(sk), ct and k. We elaborate on resampling of
sk′′: For any f , define D′

f as

D′
f =

⎛

⎜
⎝pk, sk, f(sk), ct, k

∣
∣
∣
∣
∣
∣
∣

(pk, sk′) ← HPS.Setup(1λ, 1�)

s ← {0, 1}d, R ← {0, 1}�, x ← X \ L
sk ← P ′(pk, x,R), k = Exts(R), ct = (x, s)

⎞

⎟
⎠ .

7 The parameters are chosen from Corollary 1.
8 In order to achieve the smoothness property, we require that the size of the secret

key of the HPS to be large.
9 Here, we include 1� in the setup algorithm of HPS.

224 K. Bhushan et al.

Let P ′
f be a potentially inefficient program (a stochastic channel) such that

D̃′
f ≡ D′

f when

D̃′
f =

(

pk, sk′′, f(sk), ct, k

∣
∣
∣
∣
∣
(pk, sk, f(sk), ct, k) ← D′

f

sk′′ ← P ′
f (pk, f(sk), ct, k)

)

. (2)

By resampling of sk′′ conditioned on (pk, f(sk), ct, k), we mean sk′′ ←
P ′

f (pk, ct, f(sk)).

Correctness. A ciphertext in the above scheme is ct = (x, s) where s
is a truly random string and x is a random string from language L with
a witness w. The key generated in the encapsulation algorithm is k =
Exts(HPS.Encaps(pk, x, w)) whereas in the decapsulation algorithm it is k =
ExtsHPS.Decaps(sk, x) where (pk, sk) ← HPS.Setup(1λ, 1�key). These two are the
same (except with negligible probability) due to the correctness of the HPS
system, i.e., HPS.Encaps(pk, x, w) = HPS.Decaps(sk, x).

Parameters. The size of a ciphertext in the above scheme is |x| + |s| where x
is a string from the language L and s is a seed for the extractor. From Corollary
1, we get |s| = poly(λ), therefore, the size of a ciphertext is |x| + poly(λ).

The amount of secret key leakage allowed is � − (�key +O(λ)). Therefore, the
leakage rate is �−(�key+O(λ))

|hps.sk| .

Theorem 10. Assuming HPS = (HPS.Setup,HPS.Encaps,HPS.Decaps) is a
secure HPS and Ext : {0, 1}d×{0, 1}� → {0, 1}�key be a strong extractor, the above
scheme is a leakage-resilient non-committing key-encapsulation mechanism.

The proof for the above theorem is provided in the full version. Using Corollary
1, we require � ≥ �key + O(λ). In our full version, we present an HPS such that
we have |x| = �3/4 and |hps.sk| = �. Therefore, the leakage rate is �−(�key+O(λ))

�
which approaches to 1 − o(1) by setting � = ω(�key + O(λ)). Using the above
theorem, we get the following corollary.

Corollary 2. Assuming the hardness of DDH problem, there exists a leakage-
resilient NC-KEM such that for λ ∈ N, �key ∈ N, the size of the ciphertext is
|ct| = |x| + |s| = �

3/4
key + poly(λ). Also, the leakage-rate is 1 − o(1).

7 Leakage-Resilient Incompressible PKE

In this section, we present a construction of leakage-resilient incompressible PKE
scheme from leakage-resilient NC-KEM scheme and regular incompressible SKE
scheme. We emphasize that the incompressible SKE scheme must be secure
against unbounded adversaries.10

10 All existing incompressible SKE schemes that is secure against unbounded adver-
saries generate the secret keys by sampling uniformly at random from a specific
domain.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 225

Our Construction. Let NCE = (NCE.Setup,NCE.Encaps,NCE.Decaps,Sim1,
Sim2,Sim3) be a �leak-LR-NC-KEM (see Sect. 4.2 for the definition, and Sect. 6
for construction of LR-NC-KEM) and IncSKE = (IncSKE.Setup, IncSKE.Enc,
IncSKE.Dec) be an incompressible SKE scheme. Then, our LR incompressible
PKE scheme has the following algorithms.

– Setup
(
1λ, 1�msg , 1�st

)
: The setup algorithm generates the �leak-LR-NCE param-

eters. In order to do this, it must first set the size of NC-KEM key (as a
function of λ, �msg and �st). Let �IncSKEkey denote the size of the secret keys of
the incompressible SKE scheme when we run IncSKE.Setup

(
1λ, 1�st

)
.

The setup algorithm samples (nce.pk, nce.sk) ← NCE.Setup
(
1λ, 1�IncSKEkey

)
and

sets pk = nce.pk and sk = nce.sk as public key and secret key.
– Enc(pk,m): For public key pk and message m ∈ {0, 1}�msg , the encryp-

tion algorithm samples (inc.sk, nce.ct) ← NCE.Encaps(pk) and inc.ct ←
IncSKE.Enc(inc.sk,m).11

– Dec(sk, ct): Let sk be a secret key and ct = (ct0, ct1) be a ciphertext.
The decryption algorithm first computes k ← NCE.Decaps(sk, ct0) and then
decrypts ct1 using k, i.e., m = IncSKE.Dec(k, ct1). It returns m.

Correctness. A ciphertext for a message m in the above scheme is (nce.ct, inc.ct)
where (inc.sk, nce.ct) ← NCE.Encaps(pk) and inc.ct ← IncSKE.Enc(inc.sk,m).
The decryption algorithm first computes k ← NCE.Decaps(sk, ct). By the
correctness of NCE, k = inc.sk. Then, the algorithm computes m′ =
IncSKE.Dec(k, ct1) = IncSKE.Dec(inc.sk, inc.ct). By the correctness of the incom-
pressible SKE scheme, m = m′.

Ciphertext-rate, Compression-rate and Leakage-rate. The size of a
ciphertext is |nce.ct| + |inc.ct|. Therefore, the ciphertext rate is (|nce.ct| +
|inc.ct|)/�msg. The compression size of the above scheme is equal to �st/(|nce.ct|+
|inc.ct|). The leakage rate of the above scheme is the same as the leakage rate of
the LR-NC-KEM scheme.

Theorem 11. Let NCE = (NCE.Setup,NCE.Encaps,NCE.Decaps,Sim1,Sim2,
Sim3) be a secure �leak-LR-NC-KEM and IncSKE = (IncSKE.Setup, IncSKE.Enc,
IncSKE.Dec) be an incompressible SKE scheme secure against unbounded adver-
saries. Then, the above is a �leak-leakage-resilient incompressible PKE scheme.

Proof (Proof sketch). The proof proceeds via a sequence of hybrid experiments.

– H0. This corresponds to the leakage-resilient incompressible PKE security
game.

– H1. In this hybrid, the challenger uses the simulation mode of NCE. It gen-
erates the public key pk and nce.ct (first part of the challenge ciphertext) at

11 Here, the secret key of IncSKE is assumed to be uniform. This is the case for all
known constructions with unbounded security. For the more general case, we can
use the encapsulated key as the randomness for IncSKE.Setup.

226 K. Bhushan et al.

the beginning the game using Sim1, responds to the query f using Sim2 and
generates inc.sk uniformly at random. Finally, generates the secret key sk in
the second phase using Sim3. Note that H0 and H1 are indistinguishable due
to NCE security.

– Exploiting the fact that inc.sk is sampled uniformly, we observe that no
unbounded adversary A can win in game H1 with significant advantage due
the security of the incompressible SKE scheme. This is because using the
simulators, we can construct a (inefficient) adversary B that wins the incom-
pressible security game for IncSKE by simulating the game for A. ��

The detailed proof of security is provided in the full version.

We present a construction for LR-NC-KEM using a hash proof system in
Sect. 6, which achieves ciphertext size equal to (�IncSKEkey)3/4 (see Corollary 2).
Combining this with our ct-rate- 12 incompressible SKE having �IncSKEkey = 4�msg
(see ??), we obtain Theorem 4 using the above theorem.

We also present a transformation from any LR Incompressible SKE to an LR
Incompressible PKE in the full version following similar techniques to [17,18].

8 Impossibility Results for Rate-1 Leakage-Resilient
Incompressible Encryption Schemes

In this section, we explore barriers towards achieving rate-1 leakage-resilient
incompressible encryption schemes. We show that it is impossible to base their
security on a standard assumption in a black-box manner. These barriers are
shown using the framework of simulatable attacks introduced by Wichs [28].
The following definitions of cryptographic games, cryptographic properties and
simulatable attacks are from [28] with some minor simplifications.

Definition 12 (Cryptographic Game). A cryptographic game G is defined
by a (possibly inefficient) random system C called the challenger. When given as
input the security parameter λ (in unary), the challenger C interacts with some
attacker A (possibly for multiple rounds) and outputs a bit b, which is taken
to be the output of the game G. We use the shorthand b = 〈A(1λ),C (1λ)〉 to
denote this process. The advantage of A in the game G is given by AdvA

G (λ) =
Pr[〈A(1λ),C (1λ)〉 = 1] − 1

2 . A cryptographic game G is secure if the advantage
AdvA

G is negligible for every PPT adversary A.

We say that an attacker A successfully breaks the security of G if the advantage
AdvA

G (λ) is non-negligible in λ. Below, we give a more general definition that
captures other kind of cryptographic scenarios.

Definition 13 (Cryptographic Property). Let A denote the set of all adver-
saries (efficient or inefficient). A cryptographic property C is defined as a func-
tion C : A × N → [0, 1] such that for an attacker A ∈ A and security param-
eter λ ∈ N, C(A, λ) = AdvA

C (λ) denotes the advantage of A in breaking the
property. We say that C is secure if for all PPT attackers A, the advantage
C(A, λ) = AdvA

C (λ) is negligible in λ.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 227

Most proofs in cryptography have the form of a black-box reduction and this
is what we define below. We have changed the corresponding definition from
[28] by not limiting successful oracles A to have advantage greater than 1/2 in
breaking the property C, while also not guaranteeing that the advantage of the
reduction RA in breaking the game G would be some noticeable function, but
intead only something non-negligible.

Definition 14 (Black Box Reduction). Let C be some cryptographic property
and G be a cryptographic game. A black-box reduction deriving the security of C
from that of G is an oracle PPT machine R(·), for all (possibly inefficient, non-
uniform) attackers Aλ with some non-negligible advantage AdvAλ

C (λ), we have
that AdvRAλ

G (λ) is also some non-negligible function in λ.

We finally define a simulatable attack, a notion developed by [28] for proving
black-box separation results. The technique involves constructing an inefficient
but successful attacker A for a cryptographic property C, while also providing an
efficient simulator Sim such that no oracle machine can distinguish access to A
from access to Sim. The efficient simulator Sim in itself would usually not corre-
spond to a valid attack on C since it would fail to satisfy some desired properties
needed from a valid attacker. This could be used to show the impossibility of a
black-box reduction proof for C.

Definition 15 (Simulatable Attack). A simulatable attack on a cryptogra-
phic property C consists of

1. an ensemble of (possibly inefficient) stateless non-uniform attackers
{Aλ,h}λ∈N,h∈Hλ

where Hλ are some finite sets of functions, and
2. a stateful PPT simulator Sim.

We require the following two properties to hold:

– Inefficient Attack: For each λ ∈ N, h ∈ Hλ, the inefficient attacker Aλ,h

breaks the security of C with advantage Adv
Aλ,h(1

λ)
C = 1 − negl(λ).

– Simulatability: There exists a negligible function negl(·) such that for λ ∈ N

and every (possibly inefficient) oracle machine R(·) making at most q = q(λ)
queries to its oracle, it holds that

∣
∣
∣
∣
∣

Pr
h

$←Hλ,R
[RAλ,h(1λ) = 1] − Pr

R,Sim
[RSim(1λ) = 1]

∣
∣
∣
∣
∣
= poly(q(λ)) · negl(λ),

Wichs [28] proved the following theorem that shows how the existence of a simu-
latable attack against a property C implies impossibility of reducing the security
of C to any secure cryptographic game G in a black-box manner.

Theorem 12 ([28]). If there exists a simulatable attack against a cryptographic
notion C and there is a black-box reduction showing the security of C from the
security of some cryptograhic game G, then G is not secure.

228 K. Bhushan et al.

8.1 Impossibility Result for Incompressible PKE with Short Keys

As a stepping stone, we first show an analogous results for rate-1 incompressible
PKE without any leakage. We show that for any rate-1 incompressible PKE
scheme with short (that is, sublinear in the message size) secret keys, the security
cannot be based on a standard assumption in a black-box manner. This resolves
an open question from [19].

Theorem 13. Let �st : N × N → N be any function (denoting the adversary’s
long-term storage as a function of the security parameter and message length).
Let IncPKE = (IncPKE.Setup, IncPKE.Enc, IncPKE.Dec) be an �st-incompressible
PKE scheme with ciphertext-rate 1 − o(1), compression-rate 1 − o(1), secret-
key-rate 1 − ε for some constant ε, and possesses almost perfect correctness and
deterministic decryption. Then, there is no secure cryptographic game G such
that there is a black-box reduction that derives the security of IncPKE from the
security of G.

Proof. To establish the above theorem, it is enough to demonstrate a simulatable
attack (see Definition 15) against the incompressible security of IncPKE when
secret-key-rate is (1− ε) where ε > 0 is a constant, and �st(λ, �msg) ≤ �msg (since
we want compression-rate should be 1). Recall that a simulatable attack involves
an inefficient adversary against the primitive, and an efficient stateful simulation
of it. We present these two below.

Inefficient Adversary: Fix any security parameter λ. Let �msg = �msg(λ) be a
sufficiently large polynomial (the exact polynomial is specified at the end of our
proof), and let �st = S(λ, �msg). Let �pk (resp. �key) denote the size of public key
(resp. secret-key size) output by IncPKE.Setup

(
1λ, 1�msg

)
. Let G be the set of all

functions from {0, 1}�pk → {0, 1}�msg × {0, 1}�msg and H is the set of all functions
from {0, 1}�ct → {0, 1}�st . We define our inefficient adversaries (see Definition 15)
as follows. The adversaries are parameterized by functions g ∈ G and h ∈ H (the
adversaries are also parameterized by λ, however we are skipping the dependence
on λ for notational brevity).

{Ag,h = (Ag,h
0 ,Ag,h

1 ,Ag,h
2)}g∈G,h∈H

where

1. Ag,h
0 : On input pk, it computes (m0,m1) = g(pk) outputs (m0,m1, aux)

where aux = (m0,m1).
2. Ag,h

1 : On input (pk, ct∗, aux), it returns h(ct∗).
3. Ag,h

2 : On input (pk, sk, aux, st), it computes (m0,m1) = g(pk). It checks if
aux = (m0,m1), returning ⊥ if the check fails, and continuing otherwise. It
then, by brute force, constructs the set Ch,st

A = {ct | h(ct) = st}, and fur-
ther generates Mh,st,pk,sk

A =
{

m | m = IncPKE.Dec(pk, sk, ct), ct ∈ Ch,st
A

}
. If

{m0,m1} ∩ Mh,st,pk,sk
A = ∅ or {m0,m1} ⊆ Mh,st,pk,sk

A , then return ⊥. Else, if
m0 ∈ Mh,st,pk,sk

A , then return 0. Else, return 1.

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 229

We will demonstrate that the adversary mentioned above wins the incompressible
PKE game with a probability negligibly far from 1. This proof crucially relies
on the fact that the scheme possesses a ciphertext-rate of 1.

Lemma 1. There exists a negligible function negl such that for all λ ∈ N,

Prg,h[Ag,h wins Incompressible PKE game] = 1 − negl(λ).

Proof. First, we observe that, with very high probability, for a faithfully gen-
erated ciphertext ct∗ for message mb, we have mb ∈ Mh,st,pk,sk

A with all but
negligible probability. This follows from almost perfect correctness.

Hence, the only potential case with non-negligible probability where Ag,h

fails to output b in the Incompressible PKE game is if m1−b ∈ Mh,st,pk,sk
A .

To bound the probability of m1−b ∈ Mh,st,pk,sk
A , note that m0,m1, b are chosen

uniformly at random and are independent of h, st, pk, sk. Therefore, Mh,st,pk,sk
A

is independent of m1−b, and the probability of m1−b ∈ Mh,st,pk,sk
A is equal to

|Mh,st,pk,sk
A |/2�msg . Further, |Mh,st,pk,sk

A | ≤ |Ch,st
A | and |Ch,st

A | = 2o(�msg), except with
negligible probability (the proof of this is a standard probability argument, which
we defer to the full version). Hence the above probability is upper bounded by
2o(�msg)/2�msg , which is negligible in λ.

Simulator: We will now present the efficient simulator Sim = (Sim0,Sim1,Sim2)
which uses two tables Q0 and Q1 to simulate the random functions g and h, and
behaves as follows.

1. Sim0 : On input pk, it checks whether an (pk, aux = (m0,m1)) is present in Q0.
If it does, then it returns (m0,m1, aux). Else, it randomly generates m0,m1,
stores (pk,m0,m1) in Q0, and outputs (m0,m1, aux) where aux = (m0,m1).

2. Sim1 : On input (pk, ct∗, aux), it checks whether an entry of the form (ct∗, st)
is present in Q1. If it is, then it returns st. Else, it randomly generates st,
stores (ct∗, st) in Q1, and returns st.

3. Sim2 : On input (pk, sk, aux, st), it first checks whether there exists an entry
(pk,m0, m1) in Q0 and aux = (m0,m1). If not, it returns ⊥. Else, it com-
putes CSim =

{
ct | (ct, st) ∈ Q1

}
. It then generates MSim = {m | m =

IncPKE.Dec(pk, sk, ct), ct ∈ CSim}. If {m0,m1} ∩ MSim = ∅ or {m0,m1} ⊆
MSim, then return ⊥. Else, if m0 ∈ MSim, then return 0. Else, return 1.

To establish the indistinguishability between A and Sim by any efficient reduc-
tion, we introduce a series of intermediate adversaries. Each subsequent adver-
sary in the sequence either maintains a log of its computations or incorporates
additional conditions for aborting executions compared to its predecessor. We
show that these intermediate adversaries are statistically indistinguishable by
any reduction making a polynomially bounded number of queries, and prove
that the final adversary is identical to Sim. In the full version, we prove the
following lemma.

230 K. Bhushan et al.

Lemma 2. For any oracle-machine R making polynomially many queries to its
oracle, there exists a negligible function negl, such that for all λ ∈ N,

∣
∣
∣Prg,h

[
RAg,h (

1λ
) → 1

]
− PrSim

[
RSim

(
1λ

) → 1
]∣∣
∣ = negl(λ).

From Lemma 1, we get that A wins the Incompressible PKE security game
with probability negligibly close to 1 (i.e. 1 − negl(λ)) and from Lemma 2, we
have shown that the probability of any efficient reduction distinguishing A from
Sim is negl(λ). Therefore, we have established a simulatable attack against the
incompressible security of IncPKE.

8.2 Impossibility Result for Leakage-Resilient Incompressible SKE

In this section, we demonstrate the impossibility of basing the security of a
leakage-resilient symmetric key encryption scheme with ciphertext-rate 1, that
can tolerate both leakage-rate and compression-rate of 1, on standard assump-
tions in a blackbox manner.

Theorem 14. Let �st : N × N → N and �leak : N × N → N be any func-
tions (denoting the long-term storage bound and the leakage bound respectively).
Let IncSKE = (IncSKE.Setup, IncSKE.Enc, IncSKE.Dec) be an incompressible SKE
scheme with almost perfect correctness, deterministic decryption and ciphertext-
rate, storage-rate and leakage-rate all being 1 − o(1). Then there is no secure
cryptographic game G such that there is a black-box reduction that derives the
security of IncSKE from the security of G.

Proof. To establish the above theorem, we will demonstrate the existence of a
simulatable attack (see Definition 15) against the leakage-resilient incompressible
security of IncSKE.

Inefficient Adversary: Let λ ∈ N be any security parameter. Below, we skip
the dependence on λ when it is clear from the context. Let �msg = �msg(λ) be a
sufficiently large polynomial (to be fixed later in our proof), �st = �st(λ, �msg),
�leak = �leak(λ, �msg) and �key = �key(λ, �msg). Let F be the set of all func-
tions from {0, 1}�key to {0, 1}�leak , G is the set of all functions from {0, 1}�leak →
{0, 1}�msg × {0, 1}�msg and H is the set of all functions from {0, 1}�ct → {0, 1}�st .
Our adversaries are parameterized by functions in F,G,H (and the security
parameter λ, which we skip for notational brevity). We define our inefficient
adversaries (see Definition 15) as follows.

{Af,g,h = (Af,g,h
0 ,Af,g,h

1 ,Af,g,h
2 ,Af,g,h

3 }f,g,h∈F×G×H

1. Af,g,h
0 : On input sk, it outputs f(sk).

2. Af,g,h
1 : On input (1λ, z), it compute (m0,m1) = g(z) and outputs

(m0,m1, aux = (z,m0,m1)).
3. Af,g,h

2 : On input (ct∗, aux), it returns h(ct∗).

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 231

4. Af,g,h
3 : On input (sk, aux = (z,m0,m1), st), it checks whether f(sk) = z

and (m0,m1) = g(z). If the test fails, it returns ⊥. Else, it brute forces
over all ct to construct Ch,st

A = {ct | h(ct) = st}. It then generates Mh,st,sk
A ={

m | m = IncSKE.Dec(sk, ct), ct ∈ Ch,st
A

}
. If (m0,m1) ∩ Mh,st,sk

A = ∅ or

(m0,m1) ⊆ Mh,st,sk
A , then return ⊥. Else, if m0 ∈ Mh,st,sk

A , then return 0. Else,
return 1.

We will demonstrate that the adversary mentioned above wins the leakage-
resilient incompressible SKE game with a probability close 1. This proof crucially
relies on the fact that the scheme possesses a ciphertext-rate of 1.

Lemma 3. There exists a negligible function negl such that for all λ ∈ N,

Prf,g,h

[Af,g,h wins LR-Incompressible SKE game
]
= 1 − negl(λ).

Proof. Observe that the only case when Af,g,h fails to output b in the Incom-
pressible SKE game is if both m0 and m1 are in Mh,st,sk

A using the following
argument. By assuming almost perfect correctness, we have ∀λ,m,

Prr,sk←Setup(1λ,1�st)[Dec(sk, ct) = m | ct ← Enc(sk,m; r)] = 1 − negl(λ)

This implies that with very high probability for a faithfully generated cipher-
text ct∗ for message mb, we have mb ∈ Mh,st,sk

A . To bound the probability of
m1−b ∈ Mh,st,sk

A , where m1−b is randomly generated, note that m0 and m1 are
chosen uniformly at random and are independent of h, st, sk. Therefore, Mh,st,sk

A
is independent of m1−b. Given that |Mh,st,sk

A | ≤ |Ch,st
A | = 2o(�msg), we can upper

bound the probability as 2o(�msg)/2�msg using the union bound. In other words, the
probability is at most 1/2�msg−o(�msg), which becomes negligible in λ for �msg ≥ λ.

We will now present the efficient simulator.

Simulator:
Let us consider the following simulator Sim = (Sim0,Sim1,Sim2,Sim3) which
maintains T0, T1, T2 tables as follows.

1. Sim0 : On input sk, it checks whether an (sk, z) is present in Q0. If it does, then
it returns z. Else, it randomly generates z, stores (sk, z) in Q0 and returns z.

2. Sim1 : On input (1λ, z), it checks whether an (z, (m0,m1)) is present in Q1.
If it does, then it returns (m0,m1, aux = (z,m0,m1)). Else, it randomly
generates (m0,m1), stores (z, (m0,m1)) in Q1 and returns (m0,m1, aux =
(z,m0,m1)).

3. Sim2 : On input (ct∗, aux), it checks whether an (ct∗, st) is present in Q2. If it
does, then it returns st. Else, it randomly generates st, stores (ct∗, st) in Q2

and returns st.

232 K. Bhushan et al.

4. Sim3 : On input (sk, aux, st), it checks whether (sk, z) is present in Q0 and
(z, (m0,m1)) is present in Q1. If the test fails, it returns ⊥. Else, it first checks
whether there exists an entry (ct, st) in Q2. If not, it returns ⊥.
Else, CSim = {ct | (ct, st) ∈ Q2}. It then generates MSim =

{
m | m =

IncSKE.Dec(sk, ct), ct ∈ CSim

}
. If (m0,m1) ∩ MSim = ∅ or (m0,m1) ⊆ MSim,

then return ⊥. Else, if m0 ∈ MSim, then return 0. Else, return 1.

To establish the indistinguishability between A and Sim by any efficient reduc-
tion, we introduce a series of intermediate adversaries. Each subsequent adver-
sary in the sequence either maintains a log of its computations or incorporates
additional conditions for aborting executions compared to its predecessor. We
show that these intermediate adversaries are indistinguishable by any efficient
reduction and prove that the final adversary is identical to Sim.

Lemma 4. For any oracle-machine R making polynomially many queries to its
oracle, there exists a negligible function negl, such that for all λ ∈ N,

∣
∣
∣Prf,g,h

[
RAf,g,h

(1�msg) → 1
]

− Prrand(Sim)

[
RSim(1�msg) → 1

]∣∣
∣ = negl(λ).

The proof of the above lemma is provided in the full version of our paper. From
Lemma 3, we have shown that A wins the LR Incompressible SKE security
game with probability negligibly close to 1 (i.e., 1 − negl(λ)) and from Lemma
4, we have shown that the probability of any efficient reduction distinguishing A
from Sim is negl(λ). Therefore, we have established a simulatable attack against
IncSKE.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) Theory of Cryptogra-
phy. pp. 474–495. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5_28

2. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryp-
tion under subgroup indistinguishability: (or: Quadratic residuosity strikes back).
In: Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30. pp. 1–20. Springer
(2010)

3. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leak-
age resilience and circular security from new assumptions. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 535–
564. Springer (2018)

4. Branco, P., Döttling, N., Dujmović, J.: Rate-1 Incompressible Encryption from
Standard Assumptions. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptog-
raphy. pp. 33–69. Lecture Notes in Computer Science, Springer Nature Switzerland,
Cham (2022). https://doi.org/10.1007/978-3-031-22365-5_2

https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-031-22365-5_2

Leakage-Resilient Incompressible Cryptography: Constructions and Barriers 233

5. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-
resilient functions and all-or-nothing transforms. In: Advances in Cryptology—
EUROCRYPT 2000: International Conference on the Theory and Application of
Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19. pp.
453–469. Springer (2000)

6. Cheraghchi, M., Didier, F., Shokrollahi, A.: Invertible extractors and wiretap pro-
tocols. IEEE Transactions on Information Theory 58(2), 1254–1274 (2011)

7. Dachman-Soled, D., Gordon, S.D., Liu, F.H., O’Neill, A., Zhou, H.S.: Leakage
resilience from program obfuscation. Journal of Cryptology 32, 742–824 (2019)

8. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryp-
tography in the presence of key leakage. In: Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Singapore, December 5-9, 2010. Proceedings 16. pp.
613–631. Springer (2010)

9. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing. pp.
621–630 (2009)

10. Dodis, Y., Sahai, A., Smith, A.: On Perfect and Adaptive Security in Exposure-
Resilient Cryptography. In: Pfitzmann, B. (ed.) Advances in Cryptology — EURO-
CRYPT 2001. pp. 301–324. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_19

11. Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi,
S., Rabin, T. (eds.) Theory of Cryptography. pp. 207–224. Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11681878_11

12. Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) Advances in
Cryptology - CRYPTO 2006. pp. 251–270. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11818175_15

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing 45(3), 882–929 (2016)

15. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the forty-third annual ACM symposium
on Theory of computing. pp. 99–108 (2011)

16. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption (2010)

17. Goyal, R., Koppula, V., Rajasree, M.S., Verma, A.: Incompressible functional
encryption. Cryptology ePrint Archive (2024)

18. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling function-
alities made generic and easy. In: Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Pro-
ceedings, Part II (2016)

19. Guan, J., Wichs, D., Zhandry, M.: Incompressible Cryptography. In: Dunkelman,
O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. pp. 700–
730. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-031-06944-4_24

https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/11818175_15
https://doi.org/10.1007/978-3-031-06944-4_24

234 K. Bhushan et al.

20. Guan, J., Wichs, D., Zhandry, M.: Somewhere Randomness Extraction and Secu-
rity against Bounded-Storage Mass Surveillance (2023), https://eprint.iacr.org/
2023/409, report Number: 409

21. Hajiabadi, M., Kapron, B.M., Srinivasan, V.: On generic constructions of
circularly-secure, leakage-resilient public-key encryption schemes. In: Public-Key
Cryptography–PKC 2016, pp. 129–158. Springer (2016)

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in
Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference
Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19. pp. 388–397.
Springer (1999)

23. Moran, T., Wichs, D.: Incompressible Encodings. In: Micciancio, D., Ristenpart,
T. (eds.) Advances in Cryptology – CRYPTO 2020. pp. 494–523. Lecture Notes
in Computer Science, Springer International Publishing, Cham (2020). https://doi.
org/10.1007/978-3-030-56784-2_17

24. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Advances
in Cryptology-CRYPTO 2009: 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. pp. 18–35. Springer
(2009)

25. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Fast Soft-
ware Encryption: 4th International Workshop, FSE’97 Haifa, Israel, January 20–22
1997 Proceedings 4. pp. 210–218. Springer (1997)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC. pp. 475–484 (2014)

27. Vadhan, S.P.: Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science 7(1-3), 1–336 (2012). https://doi.org/10.1561/0400000010, http://
dx.doi.org/10.1561/0400000010

28. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) Innovations in Theoretical Computer Science, ITCS ’13,
Berkeley, CA, USA, January 9-12, 2013. pp. 111–126. ACM (2013). https://doi.
org/10.1145/2422436.2422451, https://doi.org/10.1145/2422436.2422451

https://eprint.iacr.org/2023/409
https://eprint.iacr.org/2023/409
https://doi.org/10.1007/978-3-030-56784-2_17
https://doi.org/10.1007/978-3-030-56784-2_17
https://doi.org/10.1561/0400000010
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1561/0400000010
https://doi.org/10.1145/2422436.2422451
https://doi.org/10.1145/2422436.2422451
https://doi.org/10.1145/2422436.2422451

Cryptanalysis on Symmetric-Key
Schemes

The First Practical Collision for 31-Step
SHA-256

Yingxin Li1,2, Fukang Liu2, Gaoli Wang1(B), Xiaoyang Dong3,5,
and Siwei Sun4,6

1 Shanghai Key Laboratory of Trustworthy Computing, School of Cryptology,
Software Engineering Institute, East China Normal University, Shanghai, China

glwang@sei.ecnu.edu.cn
2 Institute of Science Tokyo, Tokyo, Japan

liu.f.ad@m.titech.ac.jp
3 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University,

Beijing, China
xiaoyangdong@tsinghua.edu.cn

4 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
sunsiwei@ucas.ac.cn

5 Zhongguancun Laboratory, Beijing, China
6 State Key Laboratory of Cryptology, Beijing 100878, China

Abstract. SHA-256 is a hash function standardized by NIST and has
been widely deployed in real-world applications, e.g., Bitcoin. Recently,
an improved collision attack on 31-step SHA-256 was proposed by Li-
Liu-Wang at EUROCRYPT 2024, whose time and memory complexity
are 249.8 and 248, respectively. Such a result indicates that we are close
to a practical collision attack on 31-step SHA-256, and that the current
bottleneck is the memory complexity. To overcome such an obstacle,
we develop a novel memory-efficient attack in this paper, which allows
us to find the first practical colliding message pair for 31-step SHA-256
in only 1.2 h with 64 threads and negligible memory. This technique is
general and Li-Liu-Wang’s collision attack on 31-step SHA-512 can also
be significantly improved, i.e., the time and memory complexity can be
improved by a factor of 220.9 and 242.1, respectively. Although we have set
a new record in the practical collision attack on SHA-256, which improves
the previous best practical attack published at EUROCRYPT 2013 by
3 steps, the attack is still far from threatening the security of SHA-256
since it has 64 steps in total. On the other hand, our new attack shows
that nearly half of full SHA-256 can be practically cracked now, and it
should be viewed as a major progress in the cryptanalysis of SHA-256
since 2013.

Keywords: practical collisions · SHA-256 · SHA-512 ·
meet-in-the-middle technique

1 Introduction

Since the breakthrough made by Wang et al. in collision attacks [17–20] on MD-
SHA hash family including MD4, MD5, SHA-0, SHA-1, notable progress has also
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 237–266, 2025.
https://doi.org/10.1007/978-981-96-0941-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_8&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_8

238 Y. Li et al.

been made in the preimage and collision attacks on SHA-2 family. Regarding the
preimage attacks on SHA-2, they are mainly based on the meet-in-the-middle
(MitM) technique. Although this technique can lead to a preimage attack reach-
ing a much larger number of attacked steps, its time complexity is usually close
to brute force, and hence it is most of academic interests. For example, the best
preimage attack on SHA-256 can reach up to 45 steps [10], while its time and
memory complexity are 2255.5 and 26, respectively.

For the collision attacks on SHA-2, there is however another challenge, which
is to search for a valid differential characteristic that can be used to construct
colliding message pairs. The first effort towards solving this challenge was made
by Mendel et al. at ASIACRYPT 2011 [14], who improved the original guess-
and-determine (GnD) technique for SHA-1 [2], and proposed a novel method to
search for SHA-2 characteristics and conforming message pairs simultaneously.
With this tool for SHA-2, the practical collision attack could reach 27 steps
of SHA-256, which significantly improved the previous practical collision attack
reaching 24 steps published at SAC 2008 [9]. Since the invention of this tool for
SHA-2, it has been gradually improved in a series of follow-up works, which has
been used to significantly improve the (free-start and semi-free-start) collision
attacks on SHA-2 [4,7,15].

Despite many years of efforts to understand the collision resistance of SHA-2,
the best collision attack on SHA-256 could only reach 31 steps and it was first
achieved at EUROCRYPT 2013 [15]. However, this attack is far from being
practical, as it has time and memory complexity of 265.5 and 234, respectively. A
decade later at EUROCRYPT 2024 [11], this collision attack on 31-step SHA-256
was improved for the first time, mainly benefiting from novel MILP/SAT/SMT-
based techniques to search for signed differential characteristics [11,13]. Although
the improved collision attack has time and memory complexity of 249.8 and 248,
respectively, it still cannot be turned into a practical attack due to the high
memory complexity.

Indeed, both the collision attacks [11,15] on 31-step SHA-256 are based on
the idea to convert a semi-free-start (SFS) collision into a collision with a MitM
technique developed at EUROCRYPT 2013 [15]. However, this MitM technique
has its own limitation, since the time complexity denoted by T and memory
complexity denoted by M have to satisfy M × T ≈ 232×3 = 296 for SHA-256,
and the best time-memory tradeoff has almost been achieved in [11]. For the
latest 31-step attack in [11], even if we can reduce the memory complexity by
increasing the time complexity accordingly, it is still difficult to find a practical
colliding message pair in reasonable time with limited computation resources.
This is the main motivation of this work, i.e., can we develop a memory-efficient
technique to convert SFS collisions into collisions for 31-step SHA-256 such that
we can overcome the obstacle caused by M × T ≈ 296?

Like the block cipher AES, SHA-256 is obviously of great importance in many
real-world applications. For AES, it is common to see some new progress in the
cryptanalysis of round-reduced versions almost every few years. In particular,
since the multiple-of-8 property for 5-round AES was found [8], different new

The First Practical Collision for 31-Step SHA-256 239

strategies have been proposed for the key-recovery attacks on 5-round AES. In
particular, there is a practical key-recovery attack on 5-round AES with time
complexity 224 [1], which was further reduced to 216.5 [6]. Despite the same
importance as AES, there is no new progress in the collision attack on SHA-256
for nearly 10 years, and a practical collision attack on 31-step SHA-256 is still
beyond reach according to the latest results published at EUROCRYPT 2024.
To solve this challenge, we may need some new insight into SHA-256 and develop
novel techniques.

1.1 Brief Description of SHA-256 and SHA-512

SHA-2 is a family of hash functions including SHA-224, SHA-256, SHA-384, SHA-
512, SHA-512/224 and SHA-512/256 [5]. All these hash functions are based on
the well-known Merkle-Damg̊ard construction [3,16]. Here, we only focus on our
targets SHA-256 and SHA-512. Especially, SHA-256 and SHA-512 are almost the
same, except the size of the internal state words and the total number of steps.

To compute the hash value of an arbitrary-length message with SHA-256 or
SHA-512, it is first padded such that the length in bits becomes a multiple of 16n,
where n = 32 for SHA-256 and n = 64 for SHA-512. Then, the padded message
of 16n� bits (� > 0) will be divided into � groups of 16n-bit message blocks
M0,M1, . . . ,Ml−1. Finally, the compression function of SHA-256 or SHA-512
denoted by fcom is used to compress all these message blocks one by one. More
specifically, the input of fcom consists of Mi ∈ F

16n
2 and a chaining variable

CVi ∈ F
8n
2 , and its output is a new chaining variable CVi+1 ∈ F

8n
2 , i.e.,

CVi+1 = fcom(CVi,Mi), 0 ≤ i ≤ � − 1.

In this way, the final output CV� is the hash value of the message M . It should
be emphasized that CV0 is a fixed 8n-bit constant.

SFS Collisions and Collisions. For a semi-free-start collision attack, the
attackers need to find a pair (a, b) and (a, b′) where a ∈ F

8n
2 and b, b′ ∈ F

16n
2

such that
b �= b′ and fcom(a, b) = fcom(a, b′).

For a collision attack using j message blocks, the attackers need to find
(M0,M1, . . . ,Mj−1) and (M ′

0,M
′
1, . . . ,M

′
j−1) such that

CVi+1 = fcom(CVi,Mi), 0 ≤ i ≤ j − 1,

CV ′
i+1 = fcom(CV ′

i ,M ′
i), 0 ≤ i ≤ j − 1 and CV0 = CV ′

0 .

where

(M0,M1, . . . ,Mj−1) �= (M ′
0,M

′
1, . . . ,M

′
j−1) and CVj = CV ′

j ,

In our new attacks on SHA-256 and SHA-512, we use only two message
blocks. More specifically, we aim to find message blocks (M0,M1) and (M0,M

′
1)

such that
M1 �= M ′

1 and CV2 = CV ′
2 .

240 Y. Li et al.

Since M0 is the same in the two messages (M0,M1) and (M0,M
′
1), CV1 = CV ′

1

always holds and their values depend on M0.

Brief Description of the Compression Function. Let us further dive into
the details of fcom here. fcom is composed of r steps where r = 64 for SHA-256 and
r = 80 for SHA-512. In addition, the two inputs of fcom(CV,M), i.e., CV ∈ F

8n
2

and M ∈ F
16n
2 , are both further divided into several blocks of n bits each.

Specifically, we have

CV = (A−4, A−3, A−2, A−1, E−4, E−3, E−2, E−1) ∈ (Fn
2)8,

M = (W0,W1, . . . ,W15) ∈ (Fn
2)16.

First, (W0, . . . ,W15) are used to generate (W16, . . . ,Wr−1) with the following
equation, where � denotes the addition over the ring Z2n , i.e., modulo 2n:

Wi = σ1(Wi−2) � Wi−7 � σ0(Wi−15) � Wi−16, 16 ≤ i ≤ r − 1.

In the above equation,

σ0(x) = (x ≫ 7) ⊕ (x ≫ 18) ⊕ (x � 3),
σ1(x) = (x ≫ 17) ⊕ (x ≫ 19) ⊕ (x � 10).

are used in SHA-256, while

σ0(x) = (x ≫ 1) ⊕ (x ≫ 8) ⊕ (x � 7),
σ1(x) = (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x � 6).

are used for SHA-512. Note that � and ≫ denote shift right and rotate right,
respectively.

With (W0, . . . ,Wr−1), it is now easy to describe fcom, which simply iterates
a step function r times. At the i-th (0 ≤ i ≤ r − 1) step, the step function is
specified as follows:

Ei = Ai−4 � Ei−4 � Σ1(Ei−1) � IF(Ei−1, Ei−2, Ei−3) � Ki � Wi,

Ai = Ei � Ai−4 � Σ0(Ai−1) � MAJ(Ai−1, Ai−2, Ai−3).

where

IF(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ z,

MAJ(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z),

and Ki is a pre-defined constant. As for the functions Σ0 and Σ1, they are
different in SHA-256 and SHA-512. Specifically,

Σ0(x) = (x ≫ 2) ⊕ (x ≫ 13) ⊕ (x ≫ 22),
Σ1(x) = (x ≫ 6) ⊕ (x ≫ 11) ⊕ (x ≫ 25)

The First Practical Collision for 31-Step SHA-256 241

are used in SHA-256, while

Σ0(x) = (x ≫ 28) ⊕ (x ≫ 34) ⊕ (x ≫ 39),
Σ1(x) = (x ≫ 14) ⊕ (x ≫ 18) ⊕ (x ≫ 41)

are used in SHA-512.
After performing the step function for r times, the final output of fcom is

computed as

(Ar−1 � A−1, . . . , Ar−4 � A−4, Er−1 � E−1, . . . , Er−4 � E−4) ∈ (Fn
2)8.

1.2 Technical Overview of Our New Attack

We propose a novel memory-efficient technique to convert SFS collisions into
collisions for 31-step SHA-256. As already stated, we will use two message blocks
(M0,M1) to construct collisions.

Previous MitM Technique. At a high level, in Mendel et al.’s MitM technique
for the 31-step collision attack [15], three n-bit words (A−1, A−2, A−3) in CV1

are required to match simultaneously. Specifically, when processing the second
message block M1, precompute some valid solutions of

(A−3, . . . , A12, E1, . . . , E12,W5, . . . ,W12),

and store them in a table. Then, use the first message block M0 to compute CV1,
and check whether the tuple (A−1, A−2, A−3) in this computed CV1 is stored in
the table. If a match is found, with some additional techniques, a collision can
be found for 31-step SHA-256.

Roughly speaking, the time complexity1 T and memory complexity M of
this technique have to satisfy T ×M ≈ 23n, and the optimal T is achieved when
M ≈ 21.5n.

Our New Approach. Different from the above technique, our memory-efficient
technique allows us to first consider the match in only one word A−1, and then
check the validity of the remaining 2 words (A−2, A−3) on-the-fly. This might be
misinterpreted as a simple extension of Mendel et al.’s MitM attack [15] since
we turn to considering the match in only one word. We emphasize that Mendel
et al.’s attack has been proposed for more than 10 years. Although SHA-256 is
as popular and important as AES and ChaCha, no one has even tried to improve
this attack framework or question the optimality of this technique. In this sense,
it is indeed unclear in the literature whether converting the simultaneous match
in 3 words into the match in only one word for the collision attack on SHA-256
is possible. We are the first to challenge the optimality of this old but important

1 We first ignore some other factors affecting the overall complexity of the attack.

242 Y. Li et al.

technique, and demonstrate that it can indeed be significantly improved if more
details of the differential characteristics are taken into account.

More specifically, when processing the second message block M1, we will only
precompute some valid solutions of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12),

and store them in a table. Then, use the first message block M0 to compute CV1,
and check whether the corresponding A−1 in this computed CV1 is stored in the
table. If it is, check the validity of (A−2, A−3) with other simple calculations.

Denote by Tunit the average time complexity to precompute 1 valid value
of (A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12). In addition, denote the probability
that (A−2, A−3) is valid by P when checked on-the-fly. In this case, the new time
complexity T and memory complexity M of our technique will satisfy

T = Tunit × M +
2n

M × 1
P . (1)

According to Eq. 1, it is easy to see why we can significantly reduce the
memory complexity while the time complexity is still kept low. For example, we
may choose M = 20.5n, and then the time complexity becomes

T = Tunit × 20.5n + 20.5n × 1
P .

If
1
P < 2n and Tunit < 2n,

we can achieve the optimal time complexity 21.5n in the previous MitM technique
using only 20.5n memory, resulting in an improvement by a factor of 2n. Similarly,
if Tunit and 1

P are small enough, we can even achieve the time complexity below
21.5n.

Motivation Behind this Approach. According to the above explanation,
it is easy to observe that P has a significant impact on the overall complexity
even if Tunit is negligible.2 The motivation to develop this new technique comes
from our observation on the new 31-step differential characteristic for SHA-256
found in [11]. Specifically, it is very sparse, which makes P quite large. However,
in Mendel et al.’s original collision attack on 31-step SHA-256, the differential
characteristic is quite dense, resulting in a very small value of P. We are thus
motivated to develop new techniques to efficiently find collisions by exploiting
the sparsity of the differential characteristic, and we finally find the above new
approach.

This also indicates that the sparsity of signed differential characteristics also
plays an important role to improve the collision attacks. While the sparsity was
mainly used to speed up the search for valid SHA-2 characteristics in [11], we
2 Tunit is usually very small.

The First Practical Collision for 31-Step SHA-256 243

further show that it can also be exploited to speed up the collision attack. This
also further demonstrates the advantage of MILP/SAT/SMT-based tools [11,13]
to search for signed differential characteristics since optimizing the sparsity of a
differential characteristic is relatively easy with them.

Applications. We have applied our new technique to improve the collision
attacks on 31-step SHA-256 and SHA-512, respectively. Specifically, we can find
a practical colliding message for 31-step SHA-256 in only 1.2 h with 64 threads
and negligible memory, as shown in Table 3. For 31-step SHA-512, by searching
for a new differential characteristic, the time complexity is reduced from 2115.6

to 294.7, and the memory complexity is significantly reduced from 277.3 to 235.2.
A summary of the collision attacks on SHA-2 family is given in Table 1.

Organization. This paper is organized as follows. First, we briefly recall the
signed difference and how to find collisions using a signed differential characteris-
tic in Sect. 2. Then, we explain Mendel et al.’s MitM attack framework in Sect. 3.
Our new memory-efficient collision attacks on 31-step SHA-256 and SHA-512
are shown in Sect. 4 and Sect. 5, respectively. Finally, this paper is concluded in
Sect. 6.

Table 1. Summary of (SFS) collision attacks on SHA-2.

StateHash Attack
Steps

Time Memory
References Year

size size type (T) (M)

256 All

collision

28 practical [15] 2013

31 265.5 234 [15] 2013

31 249.8 248 [11] 2023

31 practical Sect. 4 2024

SFS collision
38 practical [15] 2013

39 practical [11] 2023

512 All

collision

27 practical [4] 2015

28 practical [11] 2023

31 2115.6 277.3 [11] 2023

31
T × M = 2129.9

Sect. 5 2024
(1 ≤ M ≤ 235.2)

SFS collision
38 practical [7] 2014

39 practical [4] 2015

244 Y. Li et al.

2 Preliminaries

In this section, we briefly recall Wang et al.’s techniques [17–20] to construct
collisions for the MD-SHA hash family by using a signed differential character-
istic.

2.1 Signed Difference

Different from the XOR difference that is commonly used in the differential
cryptanalysis of block ciphers, the signed difference is mostly used in the collision
attacks on the MD-SHA hash family, though it can also be used to analyze
ciphers involving modular additions and Boolean functions [12].

For the XOR difference, we are given two n-bit words

x = (x[n − 1], . . . , x[0]) ∈ F
n
2 , x′ = (x′[n − 1], . . . , x′[0]) ∈ F

n
2 ,

and the XOR difference between (x, x′) is

Δx = (Δx[n − 1], . . . , Δx[0]) = x ⊕ x′ = (x′[n − 1] ⊕ x[n − 1], . . . , x′[0] ⊕ x[0]).

Note that throughout this paper x[i] denotes the i-th bit of x where the index
is counted from 0.

For signed difference, the relations between x and x′ are more refined. Specif-
ically, if Δx[i] = 1, we need to further specify how this bit is changed, i.e., is
it changed from 1 to 0, or is it from 0 to 1? In other words, we not only need
to capture the fact that the bit is flipped, but also need to trace how the bit is
flipped. Indeed, this is equivalent to adding a condition on x[i] apart from its
XOR difference Δx[i].

If Δx[i] = 0, although this bit remains the same in (x, x′), we may again
want to impose a condition on x[i], e.g., x[i] = 0 or x[i] = 1. Of course, it is still
possible there is no extra condition on x[i] even if Δx[i] = 0. In this case, this
bit is called a free bit, which means that this bit can take either 0 or 1.

To describe the signed difference between (x, x′) as stated above, we use the
notation ∇x = (∇x[n − 1], . . . ,∇x[0]), which is defined as follows:

∇x[i] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n (x[i] = 0, x′[i] = 1)
u (x[i] = 1, x′[i] = 0)
= (x[i] = x′[i] ∈ {0, 1})
0 (x[i] = x′[i] = 0)
1 (x[i] = x′[i] = 1)

⇔ ∇x[i] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n (Δx[i] = 1, x[i] = 0)
u (Δx[i] = 1, x[i] = 1)
= (Δx[i] = 0, x[i] ∈ F2)
0 (Δx[i] = 0, x[i] = 0)
1 (Δx[i] = 0, x[i] = 1)

(2)

2.2 Finding Collisions Using Signed Differential Characteristics

The goal of a collision attack is to find two messages M and M ′ whose hash value
is the same. To search for a colliding message pair (M,M ′), i.e., fcom(CV,M) =

The First Practical Collision for 31-Step SHA-256 245

fcom(CV,M ′) where M �= M ′ and CV is fixed, it is common to first search for a
signed difference characteristic.

More speficially, let the internal state words when compressing M and M ′

be (A0, . . . , Ar−1, E0, . . . , Er−1) and (A′
0, . . . , A

′
r−1, E

′
0, . . . , E

′
r−1), respectively.

Moreover, let the corresponding message words generated from M and M ′ be
(W0, . . . ,Wr−1) and (W ′

0, . . . ,W
′
r−1). Then, a signed differential characteristic

for r steps of SHA-256 (or SHA-512) is a valid solution of

(∇A0, . . . ,∇Ar−1), (∇E0, . . . ,∇Er−1), (∇W0, . . . ,∇Wr−1).

Note that we emphasize the word valid here, because the signed difference does
not only specify

(ΔA0, . . . ,ΔAr−1), (ΔE0, . . . ,ΔEr−1), (ΔW0, . . . ,ΔWr−1),

but also imposes extra conditions on some bits of

(A0, . . . , Ar−1), (E0, . . . , Er−1), (W0, . . . ,Wr−1)

such that the bits with non-zero difference can be flipped in the desired direction,
i.e., the signed differential characteristic can hold. It should be emphasized that
the forms of these conditions cannot be fully described by Eq. 2, as we may also
have conditions on (Aj1 [i1], Aj2 [i2]) or (Ej1 [i1], Ej2 [i2]) or (Wj1 [i1],Wj2 [i2]), e.g.,
Aj1 [i1] �= Aj2 [i2]. These conditions are called the 2-bit conditions. With this in
mind, it is easy to understand the meaning of valid, i.e., it refers to that there
should be a valid M such that all these conditions on

(A0, . . . , Ar−1), (E0, . . . , Er−1), (W0, . . . ,Wr−1)

can hold when processing fcom(CV,M). As already studied in [14], searching for
a valid signed differential characteristic for SHA-256 is challenging, as contra-
dictions in the conditions easily occur. Fortunately, with the latest SAT-based
tools [11], we can search for a possibly valid one in a relatively easy and conve-
nient way, i.e., we can detect as many contradictions as possible in the search,
though not all of them are taken into account. For convenience, we call the con-
ditions to make the signed differential characteristic hold the differential condi-
tions.

Indeed, once a possibly valid signed differential characteristic is found, we
start the so-called message modification phase, which is to practically find a
concrete M such that the all differential conditions can be fulfilled when pro-
cessing fcom(CV,M). Once it is found, we immediately get a collision since there
must be

fcom(CV,M) = fcom(CV,M ′),
where

(W ′
0, . . . ,W

′
15) = (W0 ⊕ ΔW0, . . . ,W15 ⊕ ΔW15)

and (ΔW0, . . . ,ΔW15) have been given in the signed differential characteristic.
For example, the differential characteristic used for our collision attack on

31-step SHA-256 is given in Table 2. Apart from the conditions imposed by the
signed difference, i.e., which bit should take 0 or 1, there are also 2-bit conditions
displayed in Table 4 and Table 5.

246 Y. Li et al.

3 Previous Collision Attacks on 31-Step SHA-256
and SHA-512

With Wang et al.’s techniques, the common procedure to find a collision consists
of 2 steps, as specified below:

Step 1: Find a valid signed differential characteristic.
Step 2: Find a message M that can make all the differential conditions hold.

As valid 31-step differential characteristics have been found for SHA-256 and
SHA-512, the problem left is how to efficiently perform the message modifica-
tion to make all differential conditions hold. Before showing our new approach,
we first recall how to find collisions for 31-step SHA-256 with the MitM tech-
nique [15] to convert a SFS collision into a collision.

3.1 Finding Collisions with the MitM Technique [15]

For a 31-step differential characteristic of the shape similar to Table 2, Mendel
et al. proposed to use two message blocks (M0,M1) to find a collision with a
MitM technique [15], as detailed below:

Step 1: Based on the used 31-step differential characteristic, pre-compute 2γ

valid solutions of

(A−3, . . . , A12, E1, . . . , E12,W5, . . . ,W12).

Store these tuples in a table denoted by TAB1.
Step 2: Test 296−γ arbitrary first message blocks M0 and get 296−γ values of

CV1 = (A−4, A−3, A−2, A−1, E−4, E−3, E−2, E−1).

Check TAB1, find a match between (A−3, A−2, A−1).
Step 3: If a match is found, retrieve the corresponding

(A−3, . . . , A12), (E1, . . . , E12), (W5, . . . ,W12)

stored in TAB1. Then, determine other message words (W0, . . . ,W4) such
that the retrieved (A0, E1, E2, E3) can also be consistent with those
computed from CV1 and (W0, . . . ,W4).
To make A0 consistent, we can compute E0 satisfying

A0 = E0 � A−4 � Σ0(A−1) � MAJ(A−1, A−2, A−3).

Then, to make this E0 consistent, we compute W0 satisfying

E0 = A−4 � E−4 � Σ1(E−1) � IF(E−1, E−2, E−3) � K0 � W0.

The First Practical Collision for 31-Step SHA-256 247

To make (E1, E2, E3) consistent, we can directly compute (W1,W2,W3)
satisfying the following 3 equations:

E3 = A−1 � E−1 � Σ1(E2) � IF(E2, E1, E0) � K3 � W3,

E2 = A−2 � E−2 � Σ1(E1) � IF(E1, E0, E−1) � K2 � W2,

E1 = A−3 � E−3 � Σ1(E0) � IF(E0, E−1, E−2) � K1 � W1.

Step 4: At this step, (W0, . . . ,W12), (A−3, A12) and (E−3, . . . , E12) have been
fixed. The purpose of this step is to find (W13,W14,W15) to fulfill the
remaining uncontrolled conditions on (E13, E14, E15,W16,W18). If no
valid (W13,W14,W15) exist, this step fails and go to Step 2. Denote the
success probability by 2−β .

3.2 More Details for Step 1

At Step 1, we pre-compute some solutions of

(A−3, . . . , A12, E1, . . . , E12,W5, . . . ,W12)

that can satisfy the differential conditions on them, by only considering

Ei = Ai−4 �Ei−4 �Σ1(Ei−1)� IF(Ei−1, Ei−2, Ei−3)�Ki �Wi, for 5 ≤ i ≤ 12,

and

Ai = Ei � Ai−4 � Σ0(Ai−1) � MAJ(Ai−1, Ai−2, Ai−3), for 1 ≤ i ≤ 12.

This is can be simply automated with a SAT/SMT-based tool. Specifically, we
first write the constraints to describe these calculations for (A1, . . . , A12) and
(E5, . . . , E12), which only requires us to model the value transitions through
the modular addition � and Boolean functions Σ1, IF, Σ0,MAJ with some con-
straints. Then, we further add the constraints to describe the differential condi-
tions to the model. Finally, by using the off-the-shelf solvers, we can easily enu-
merate solutions satisfying all these constraints. Indeed, the model to describe
the value transitions for SHA-2 has been implemented in [11] with SAT/SMT,
and we can directly use this tool for Step 1.

3.3 More Details for Step 4

Since

W16 = σ1(W14) � W9 � σ0(W1) � W0,

W18 = σ1(W16) � W11 � σ0(W3) � W2,

where (W0,W1,W2,W3,W9,W11) have all been fixed at Step 4, we could only use
the degrees of freedom of W14 to fulfill the differential conditions on (W16,W18).

248 Y. Li et al.

As there are also differential conditions on W14 itself, it is possible that there
does not exist valid W14 to make all the conditions on (W14,W16,W18) hold for
the fixed (W0,W1,W2,W3,W9,W11). This explains why Step 4 can only succeed
with a certain probability 2−β .

If there is a valid W14, fulfilling the remaining conditions on (E13, E14, E15)
with (W13,W15) is almost trivial and can be efficiently finished. For complete-
ness, we denote the complexity to find valid (W13,W15) by Tlast, and it can
be simply estimated as Tlast = 2con14 , where con14 denotes the number of bit
conditions on E14.

3.4 Complexity Analysis

Denote the time complexity to pre-compute 2γ solutions of

(A−3, . . . , A12, E1, . . . , E12,W5, . . . ,W12)

by Tstart. Then, the memory complexity of this attack is 2γ , and the time com-
plexity is

Tstart + 296−γ+β + 2β · Tlast.

For the original attack on 31-step SHA-256 [15], there are

γ ≈ 34, β ≈ 3.5, Tstart ≈ 234, Tlast < 232

and hence the time and memory complexity are 265.5 and 234, respectively.
For the new attack on 31-step SHA-256 in [11], there are

γ ≈ 48, β ≈ 1.3, Tstart = 248, Tlast < 232

resulting in time and memory complexity of 249.8 and 248, respectively.
For the new attack on 31-step SHA-512 in [11], there are

γ ≈ 77.3, β ≈ 0.9, Tstart = 277.3, Tlast < 264

resulting in time and memory complexity of 2115.6 and 277.3.

4 New Memory-Efficient Collision Attacks

The latest collision attack [11] on 31-step SHA-256 has time complexity of 249.3

and memory complexity of 248. This indicates that a practical collision attack
is possible if the memory complexity can be further reduced. This is however
quite challenging since this attack is already optimal under the existing attack
framework.

Our new insight is that instead of simultaneously matching (A−1, A−2, A−3),
we can indeed first consider to match only A−1, and then check the validity of
(A−3, A−2) on-the-fly. By such a novel perspective, we can significantly reduce
the memory complexity. Accordingly, the attack procedure also becomes different
from the previous MitM technique, which roughly consists of the pre-processing
phase and the matching phase.

The First Practical Collision for 31-Step SHA-256 249

Table 2. The differential characteristic for 31-step SHA-256

i ∇Ai ∇Ei ∇Wi

-4 ================================ ================================

-3 ================================ ================================

-2 ================================ ================================

-1 ================================ ================================

0 ================================ ================================ ================================

1 ================================ ================================ ================================

2 ================================ ================================ ================================

3 ================================ ==========================10==== ================================

4 ================================ ============0===0=========01===0 ================================

5 ===================n=unnnnnnn=n= 000111010001111110nu=11111unnnu1 ================nuuu=======0=uu=

6 ========n======================u 101011=11==0n0==u11110==1110011n ==========u=====u===u======n===u

7 ===u===n==n========n=========n=u un0u1100n=01u11111001u1=n110u10n =u=u=======n=====n=nu=n=====nun=

8 =============================n== 1u01un0u0=1=1=11n=00u0=001001u0= =u=nn==========u===u===u==1=====

9 ================================ 01100001110=0=010===00=11101u0=1 ================u==========1=u==

10 ================u============u== =1n1uuuuu0100=1un0=10unnnnnnn010 ================================

11 ================================ =01u1010uu1==11100===1000001n=0= ================================

12 ================================ ==110001=11====1n====0011110n=0= ================================

13 ================================ ===0====01======1=============== ================================

14 ================================ ================u===========0u== ================================

15 ================================ ================0============1== ================================

16 ================================ ================1============1== =============unnnunnnnnnnnnnnn==

17 ================================ ================================ ================================

18 ================================ ================================ ==============1=n=0==========n==

19 ================================ ================================ ================================

20 ================================ ================================ ================================

21 ================================ ================================ ================================

22 ================================ ================================ ================================

23 ================================ ================================ ================================

24 ================================ ================================ ================================

25 ================================ ================================ ================================

26 ================================ ================================ ================================

27 ================================ ================================ ================================

28 ================================ ================================ ================================

29 ================================ ================================ ================================

30 ================================ ================================ ================================

4.1 New Pre-processing Phase

Instead of pre-computing valid solutions of

(A−3, . . . , A12, E1, . . . , E12,W5, . . . ,W12)

as in the previous attacks, we pre-compute valid solutions of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12)

in the memory-efficient attack.

Generating Starting Points. Specifically, we first find valid solutions of

(A1, . . . , A12, E5, . . . , E12,W9, . . . ,W12)

250 Y. Li et al.

by only considering

Ei = Ai−4 � Ei−4 � Σ1(Ei−1) � IF(Ei−1, Ei−2, Ei−3) � Ki � Wi, for 9 ≤ i ≤ 12.

Ai = Ei � Ai−4 � Σ0(Ai−1) � MAJ(Ai−1, Ai−2, Ai−3), for 5 ≤ i ≤ 12.

Among them, we only choose Nstart solutions with distinct

(A1, . . . , A4, E5, . . . , E8)

and call them starting points, i.e., (A1, . . . , A4, E5, . . . , E8) are distinct in these
starting points.

Such a phase can be efficiently done with a SAT-based tool for simplicity
if only a few starting points are required, which is the case of our practical
collision attack on 31-step SHA-256. For our attack on SHA-512, we will then
use a dedicated method.

Finding Valid (A−1, A0, E3, E4, W 7, W 8) from Each Starting Point.
For each obtained starting point, we can first exhaust all possible (W8, E4) satisfy
the following relation:

E8 = A4 � E4 � Σ1(E7) � IF(E7, E6, E5) � K8 � W8. (3)

Assuming that there are n1 and n2 bit conditions on W8 and E4, respectively, a
trivial method to find all valid (W8, E4) has time complexity of

min(2n−n1 , 2n−n2),

i.e., either exhausting valid W8 or valid E4. The expected number of valid pairs
is 2n−n1−n2 .

For each valid pair (W8, E4) satisfying Eq. 3, we then compute the corre-
sponding A0 according to the following relation:

A4 = E4 � A0 � Σ0(A3) � MAJ(A3, A2, A1). (4)

For each valid tuple (W8, E4, A0), we similarly exhaust all possible (E3,W7)
satisfying

E7 = A3 � E3 � Σ1(E6) � IF(E6, E5, E4) � K7 � W7, (5)

and compute the corresponding A−1 according to the following relation:

A3 = E3 � A−1 � Σ0(A2) � MAJ(A2, A1, A0), (6)

Assuming that there are n3 and n4 conditions on W7 and E3, respectively, we can
expect to obtain 2n−n3−n4 possible (A−1, E3,W7) from each valid (W8, E4, A0)
with a naive method of time complexity

min(2n−n3 , 2n−n4).

The First Practical Collision for 31-Step SHA-256 251

According to the above method, it is expected to obtain about

Nstart · 22n−n1−n2−n3−n4

valid tuples of
(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12)

from Nstart starting points. Store all these valid tuples in a table denoted by
TAB2. Denote the time complexity to obtain one starting point by Tsat. Then, the
time complexity of the pre-processing phase denoted by Tpre can be estimated as

Tpre = Nstart(Tsat + min(2n−n1 , 2n−n2) + 2n−n1−n2 × min(2n−n3 , 2n−n4)). (7)

The memory complexity denoted by M is

M = Nstart · 22n−n1−n2−n3−n4 . (8)

4.2 New Matching Phase

After the above pre-processing phase, perform the following attack procedure to
find a collision with two message blocks M0 and M1.

Step 1: Try an arbitrary M0, and get the corresponding chaining input

CV1 = (A−4, A−3, A−2, A−1, E−4, E−3, E−2, E−1)

for the second message block M1.
Step 2: Checking A−1: Search for a match with A−1 in TAB2. If there is no

match, go to Step 1. Otherwise, for each associated value of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12),

move to Step 3. If all these values are considered, move to Step 1.
Step 3: Checking (A−3, A−2): Compute (E0, E1, E2) to make the associated

(A0, A1, A2) consistent with those computed from this CV1 according to
the following 3 equations:

A0 = E0 � A−4 � Σ0(A−1) � MAJ(A−1, A−2, A−3),
A1 = E1 � A−3 � Σ0(A0) � MAJ(A0, A−1, A−2),
A2 = E2 � A−2 � Σ0(A1) � MAJ(A1, A0, A−1).

Then, compute (W4,W5,W6) to make the associated (E4, E5, E6) also
consistent with those compted from this CV1:

E4 = A0 � E0 � Σ1(E3) � IF(E3, E2, E1) � K4 � W4,

E5 = A1 � E1 � Σ1(E4) � IF(E4, E3, E2) � K5 � W5,

E6 = A2 � E2 � Σ1(E5) � IF(E5, E4, E3) � K6 � W6.

If all the conditions on (E0, E1, E2,W4,W5,W6) hold, move to Step 4.
Otherwise, move to Step 2 and try another associated value of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12).

252 Y. Li et al.

Step 4: At this step, for the associated value of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12),

(A0, A1, A2, A3) and (E4, E5, E6, E7) must be consistent with those com-
puted from the new CV1, and (W4,W5,W6, E0, E1, E2, E3) are also fixed.
The remaining task is to compute (W0,W1,W2,W3) such that this fixed
(E0, E1, E2, E3) can also be consistent with those computed from the
new CV1, as shown below:

E3 = A−1 � E−1 � Σ1(E2) � IF(E2, E1, E0) � K3 � W3,

E2 = A−2 � E−2 � Σ1(E1) � IF(E1, E0, E−1) � K2 � W2,

E1 = A−3 � E−3 � Σ1(E0) � IF(E0, E−1, E−2) � K1 � W1,

E0 = A−4 � E−4 � Σ1(E−1) � IF(E−1, E−2, E−3) � K0 � W0.

Step 5: The last step is the same as in the previous MitM attack. Specifically,
use the degrees of freedom in (W13,W14,W15) to fulfill the remaining
uncontrolled conditions on (E13, E14, E15,W16,W18). If this step fails,
move to Step 2 and try another associated value of

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12).

Otherwise, a collision is found. Abusing notation, we denote the success
probability of this step by 2−β .

Remark 1. We explain here why it is necessary to let Nstart be the number of
starting points with distinct (A1, . . . , A4, E5, . . . , E8). On the one hand, accord-
ing to the pre-processing phase, finding valid (A−1, A0, E3, E4,W7,W8) only
requires the knowledge of (A1, . . . , A4, E5, . . . , E8). On the other hand, at the
matching phase, checking the validity of (A−3, A−2) only requires the knowledge
of (A0, A1, A2, E3, . . . , E6) and CV1. Hence, the same (A1, . . . , A4, E5, . . . , E8)
will lead to the same set of valid (A−1, A0, E3, E4,W7,W8), which cannot effec-
tively increase the size of TAB2. As a result, the matching probability will not be
improved even if we have more than 1 different valid values of

(A1, . . . , A12, E5, . . . , E12,W9, . . . ,W12)

with the same (A1, . . . , A4, E5, . . . , E8). However, it is also obvious that if we
allow such valid values with the same (A1, . . . , A4, E5, . . . , E8) but different W11,
the cost of the last step of the matching phase can be amortized. The reason is
simple. Once (A−3, A−2, A−1) pass the test, i.e., Step 3 of the matching phase,
we can then use the degrees of freedom of (W14,W11) rather than only W14 to
fulfill all the differential conditions on (W16,W18). Hence, we only expect to have
2β different W11 for each (A1, . . . , A4, E5, . . . , E8) to amortize the cost of the last
step. Since β ∈ {1.3, 0.9} in our attacks on SHA-256 and SHA-512 is quite small,
such a strategy can only slightly improve the attack, and we thus ignore this to
make the analysis simpler.

The First Practical Collision for 31-Step SHA-256 253

4.3 Complexity Analysis

Denote the total number of conditions on (E0, E1, E2,W4,W5,W6) by Npro.
Since there are no conditions on (W0, . . . ,W3), for each

(CV1, A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12)

after a match is found, it is valid with probability

P = 2−Npro−β .

If Ntest different M0 are tested, we then expect to test on average

Ntest × Nstart · 22n−n1−n2−n3−n4

2n

different values of

(CV1, A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12)

for Step 3–5. Hence, it is required to have

Ntest × Nstart · 22n−n1−n2−n3−n4

2n
≥ 1

P = 2Npro+β

in order to find a collision, i.e.,

Ntest ≥ 2n+Npro+β

Nstart · 22n−n1−n2−n3−n4
=

2Npro+β+n1+n2+n3+n4−n

Nstart

.

The time complexity of the matching phase is thus estimated as

Tmatch =
2Npro+β+n1+n2+n3+n4−n

Nstart

+ 2Npro+β . (9)

Taking the cost of the pre-processing phase into account, i.e., Eq. 7 and Eq. 8,
the time and memory complexity of our new attacks are Tpre+Tmatch and Nstart ·
22n−n1−n2−n3−n4 , respectively.

4.4 A Practical Colliding Message Pair for 31-Step SHA-256

For the 31-step differential characteristic in Table 2, where all the 2-bit conditions
are listed in Table 4 and Table 5, we have

n = 32, n1 = 19, n2 = 5, n3 = 7, n4 = 23, Npro = 27, β ≈ 1.3.

Hence, the expected time complexity of our attack is

Tpre + Tmatch = Nstart · (Tsat + 217) +
250.3

Nstart

+ 228.3,

and the expected memory complexity is Nstart · 210.

254 Y. Li et al.

The Actual Cost. In our experiments, we first generate Nstart = 200 starting
points with the SAT-based tool. Then, based on these starting points, we obtain
in total 219.8 possible

(A−1, . . . , A12, E3, . . . , E12,W7, . . . ,W12)

at the pre-processing phase. Note that this number is expected to be 200×210 =
204800 if all bit conditions on (E3, E4,W7,W8) are independent. Experiments
indicate that this number is larger. Therefore, the memory complexity of our
attack is 219.8, and the complexity of the matching phase becomes

232+27+1.3

219.8
+ 228.3 ≈ 240.5.

By performing the matching phase, we find a practical colliding message pair in
about 1.2 h using 64 threads3, as shown Table 3.

Table 3. The colliding message pair for 31 steps of SHA-256

M
8ce3f8055c401aed579e5f7fbc3116cbca189b3ceb75f04c958f0a0e7760b082

dcd5027d32260ad67b12b659eee66518ad7f88ddf8ad20bb7ae40ffd21609249

M1
9abdeb1b1f195f415a7210c155614f13a2269dd1be888a61359257d4adf3737b

9f0484a6eb830a5866add94a9669232d45271fa5b8f69585428bbce30703b904

M ′
1

9abdeb1b1f195f415a7210c155614f13a2269dd1be887a6735b2dfc5fde32975

c70595a6eb838a5c66add94a9669232d45271fa5b8f69585428bbce30703b904

hash ff5586592977dd015463884335f8de84a3336841f4f476f27c571548f7025605

Remark 2. It should be remarked that our technique is general and can also be
applied to the 31-step differential characteristic in [15]. However, this 31-step
differential characteristic is quite dense, and there are too many conditions on
(W4,W5,W6), which make our new technique have a much higher complexity.
This is also further demonstrates the advantage to use MILP/SAT/SMT-based
tools to search for signed differential characteristics [11,13] since we can easily
optimize the uncontrolled part.

5 Improved Collision Attack on 31-Step SHA-512

The above method to improve the collision attack on 31-step SHA-256 can be
trivially applied to SHA-512. However, there seems to be room to further improve
3 We were very lucky to obtain a colliding message pair in seconds when first running

the attack. But this was too special. Therefore, we ran more experiments and then
obtained a new colliding message pair in 1.2 h.

The First Practical Collision for 31-Step SHA-256 255

Table 4. Wi conditions for SHA-256

conditions

W5

W5[3] �= W5[31], W5[23] = W5[19], W5[22] = W5[18], W5[19] �= W5[30],

W5[23] �= W5[8], W5[17] �= W5[28], W5[16] �= W5[27], W5[26] = W5[11],

W5[24] �= W5[9], W5[18] �= W5[29], W5[25] �= W5[10].

W6 W6[19] = W6[30], W6[22] �= W6[7], W6[10] = W6[6], W6[8] �= W6[19].

W7

W7[7] �= W7[24], W7[23] �= W7[19], W7[22] �= W7[18], W7[31] = W7[16],

W7[23] = W7[8], W7[18] �= W7[29], W7[17] = W7[13], W7[16] = W7[27],

W7[22] �= W7[7], W7[25] = W7[10], W7[13] = W7[24], W7[15] �= W7[26],

W7[7] = W7[18], W7[19] = W7[15].

W8

W8[19] = W8[4], W8[2] �= W8[13], W8[9] �= W8[26], W8[17] = W8[13],

W8[31] = W8[10], W8[1] �= W8[29], W8[29] �= W8[25], W8[7] = W8[24],

W8[6] = W8[23], W8[20] �= W8[31], W8[19] �= W8[15], W8[0] = W8[11].

W9 W9[13] �= W9[30], W9[23] �= W9[19], W9[26] �= W9[11], W9[9] �= W9[20].

W16

W16[1] = W16[26], W16[23] �= W16[25], W16[25] �= W16[27], W16[24] �= W16[26],

W16[0] �= W16[25], W16[22] �= W16[24], W16[21] �= W16[23], W16[20] �= W16[22],

W16[19] �= W16[21].

W18 W18[4] = W18[27], W18[2] �= W18[25], W18[22] = W18[24].

the previous differential characteristic for 31-step SHA-512 in order to take full
advantage of our new technique. Different from the attack on SHA-256, we do
not expect a practical collision attack on 31-step SHA-512 because it is still
challenging to obtain a valid and sparse differential characteristic for 31-step
SHA-512 with the SAT/SMT-based tool. We leave this as an open problem, and
expect that our technique can be useful for the practical collision attack on 31
steps of SHA-512 in the future. What we could do is to optimize the differential
characteristic as far as we can. The new 31-step differential characteristic is
shown in Table 6. To demonstrate that the new 31-step differential characteristic
is valid, we provide a SFS collision instance shown in Table 7.

As can be observed from Eq. 9, there are many factors affecting the com-
plexity of the matching phase. Specifically, if n1 + n2 + n3 + n4 and Npro + β
are small, and there are also many available starting points, i.e., Nstart can be
large, the collision attack can be much more efficient. However, searching a valid
differential characteristic for SHA-512 is time-consuming, and we could not take
all these factors into account when writing the SAT model. After several dif-
ferent trials, we eventually choose to minimize the number of conditions on E3

and E4 so that n1 + n2 + n3 + n4 can be small. The corresponding new 31-step
differential characteristic is displayed in Table 6.

256 Y. Li et al.

Table 5. The Ai and Ei conditions for SHA-256

conditions

A3

A3[1] = A4[1], A3[3] = A4[3], A3[4] �= A4[4], A3[12] �= A4[12],

A3[7] �= A4[7], A3[8] = A4[8], A3[9] �= A4[9], A3[10] = A4[10],

A3[6] �= A4[6], A3[5] = A4[5].

A4

A4[1] = A6[1], A4[3] �= A6[3], A4[4] = A6[4], A4[23] �= A5[23],

A4[7] �= A6[7], A4[8] �= A6[8], A4[9] �= A6[9], A4[10] = A6[10],

A4[0] = A5[0], A4[5] = A6[5], A4[6] = A6[6], A4[12] �= A6[12].

A5

A5[31] �= A5[19], A5[30] �= A5[18], A5[29] �= A5[17], A5[28] �= A5[16],

A5[26] �= A5[14], A5[25] �= A5[13], A5[21] �= A5[0], A5[20] = A5[31],

A5[18] �= A5[29], A5[17] �= A5[28], A5[16] �= A5[27], A5[17] = A5[26],

A5[15] = A5[26], A5[13] = A5[24], A5[23] = A5[0], A5[21] �= A5[30],

A5[19] �= A5[28], A5[18] �= A5[27], A5[15] = A5[24], A5[14] = A5[23],

A5[19] �= A5[30], A5[16] �= A5[25], A5[27] �= A5[15], A5[20] = A5[29].

A6
A5[2] �= A6[2], A5[21] �= A6[21], A5[24] �= A6[24], A5[28] = A6[28],

A6[2] = A6[11], A6[21]! = A6[9], A6[11] �= A6[20], A6[3] = A6[14].

A7

A7[4] = A7[15], A7[11] �= A7[20], A7[7] �= A7[16], A7[23] �= A7[11],

A7[14] �= A7[25], A7[13] = A7[1], A7[10] = A7[30], A7[8] = A7[19],

A7[13] �= A7[22], A7[4] = A7[15], A7[5] = A7[17], A7[13] �= A7[22],

A5[23] = A7[23].

A8
A8[23] �= A8[11], A8[14] = A8[25], A8[13] �= A8[22], A6[12] = A8[12],

A6[24] = A8[24], A6[28] = A8[28], A6[21] �= A8[21], A7[23] = A8[23].

A9
A8[0] �= A9[0], A8[12] = A9[12], A8[21] = A9[21], A8[24] = A9[24],

A8[28] = A9[28], A8[15] = A9[15].

A10
A10[4] �= A10[24], A10[23] = A10[11], A10[26] �= A10[3], A10[27] �= A10[6],

A10[25] = A10[14], A10[13] �= A10[22].

A11 A9[15] = A11[15], A9[2] = A11[2].

A12 A11[15] = A12[15], A11[2] = A12[2].

E3
E3[1] = E4[1], E3[2] = E4[2], E3[3] = E4[3], E3[12] = E4[12],

E3[13] = E4[13].

E7 E7[8] �= E7[22].

E8 E8[9] �= E8[22], E8[0] = E8[14].

E10 E10[31] �= E10[18], E10[31] �= E10[13].

E12 E12[30] �= E12[17], E12[20] �= E12[2].

E14 E14[29] = E14[10], E14[28] �= E14[1], E14[29] �= E14[16], E14[7] �= E14[21].

The First Practical Collision for 31-Step SHA-256 257

T
a
b
le

6
.
T

h
e

d
iff

er
en

ti
a
l
ch

a
ra

ct
er

is
ti

c
fo

r
3
1
-s

te
p
S
H
A
-5
1
2

i
∇

A
i

∇
E

i
∇

W
i

-4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

-3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

-2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

-1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=
0
=
=
=
=
=
0
=
=
0
=
=
=
=
=
=
1
=
=
=
=
1
=
1
=
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
0
=
0
0
1
0
1
0
1
0
0
=
1
=
=
=
=
=
=
=
=
0
=
=
=
=
0
=
1
=
0
0
=
=
1
=
=
1
=
0
=
=
=
=
0
=
=
=
1
0
0
1
=
=
0
=
=
0
=
1
=
=
1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

5
=
n
u
n
u
u
u
u
u
u
=
=
=
=
=
=
u
=
=
=
=
=
=
u
=
=
=
u
n
n
n
u
=
=
=
u
=
n
=
=
=
=
=
=
u
=
=
=
=
=
n
n
=
=
=
u
n
n
n
n
=
=
=
=
1
0
n
0
1
1
1
0
1
n
0
1
0
1
0
=
u
0
=
0
1
u
n
n
1
0
1
1
u
n
0
n
1
0
u
n
0
n
0
1
0
1
=
1
u
=
0
1
0
n
1
u
=
1
1
0
=
0
u
n
1
1
1
0
=
=
n
=
=
=
=
=
=
n
=
=
=
=
=
u
n
=
=
=
=
=
=
u
=
=
=
=
=
u
=
n
u
n
n
n
n
u
=
=
=
=
=
=
u
=
=
=
=
=
n
n
=
=
=
=
=
=
=
u
=
=
=
=

6
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
u
n
=
=
=
=
=
=
=
u
=
=
=
=
=
u
n
n
n
n
=
=
=
=
n
u
u
n
n
=
n
1
1
n
u
n
n
u
n
n
u
1
u
1
0
u
1
1
1
0
1
n
0
1
0
0
u
1
0
0
u
u
0
1
0
0
1
0
0
n
0
=
1
0
u
0
1
0
u
0
u
n
1
1
u
1
1
u
1
u
1
1
n
1
n
0
u
0
1
1
=
0
1
u
=
=
=
=
=
0
n
=
=
=
=
1
0
n
=
=
=
=
u
n
=
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
u
u
=
=
=
u
=
u
=
n
u
u
u
u
u
=

7
=
n
=
=
=
=
=
=
n
u
n
n
u
=
=
u
=
u
=
=
=
=
=
=
=
=
=
u
=
=
u
u
=
n
=
u
=
=
=
=
=
=
=
=
n
n
n
=
=
=
=
n
=
=
=
=
=
u
=
u
=
=
=
=
u
u
1
n
0
1
1
n
u
1
n
u
u
1
n
1
n
u
0
1
n
n
0
n
1
u
1
n
1
1
1
n
0
0
0
1
u
1
1
1
1
1
0
0
1
1
0
u
0
n
0
1
0
1
1
1
0
n
0
n
1
0
1
n
=
u
=
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
u
=
=
u
n
n
=
=
n
=
=
=
=
u
=
=
=
=
=
=
=
n
=
0
=
1
=
=
=
=
u

8
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
u
1
0
0
1
0
1
1
1
0
0
0
1
0
0
u
1
1
0
1
0
1
u
0
n
0
0
n
0
=
0
0
0
=
n
=
0
0
1
0
n
=
1
n
u
1
u
n
1
n
1
n
0
1
0
0
1
n
1
1
0
1
1
0
0
n
=
=
=
=
=
n
u
=
=
=
=
=
u
=
=
=
=
=
n
u
=
=
=
=
=
n
=
=
=
=
=
=
u
=
=
=
=
=
u
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=

9
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1
0
n
0
=
=
0
0
1
=
1
0
1
1
1
1
0
1
0
=
0
1
u
n
n
0
1
1
0
0
u
0
=
0
0
0
u
1
u
1
0
=
1
1
=
0
1
0
0
1
0
0
=
1
=
=
1
0
=
1
=
0
0
1
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
n

1
0
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
n
u
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
n
u
u
=
=
1
1
=
=
1
=
=
=
0
1
0
=
0
0
u
0
=
=
1
0
1
=
0
n
0
=
=
1
0
=
=
1
1
1
1
0
n
1
1
=
1
u
=
1
0
0
0
0
0
=
0
n
=
=
1
1
1
1
=
n
u
u
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
0
u
1
=
=
=
=
=
=
u
n
0
=
n
=
n
n
=
=
=
1
1
0
0
1
u
=
=
u
n
=
=
=
=
u
n
n
n
0
n
=
=
n
=
=
=
=
=
=
=
=
=
u
=
=
u
=
0
0
=
1
0
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
0
0
0
=
=
=
=
=
=
0
0
n
=
1
=
1
1
=
=
=
1
0
=
=
u
1
=
=
0
0
=
=
=
1
0
1
0
u
1
1
=
=
1
=
=
=
=
=
=
=
=
=
1
=
=
1
=
=
1
=
1
1
u
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
=
1
1
0
=
=
=
0
1
=
=
=
=
=
=
=
1
1
=
=
1
1
=
=
=
=
1
1
1
1
=
1
=
=
0
=
=
=
=
=
=
=
=
=
0
=
=
1
=
=
=
=
=
=
1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
5
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
6
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1
=
=
=
=
=
=
=
u
n
n
n
n
n
=
=
=
=
n
u
u
u
u
u
u
u
u
=
=
=
=
=
=
=
n
u
u
u
u
u
=
=
=
=
=
=
=
=
=
=
1
1
=
=
=
=
n
u
u
u
u
u
u
u
u

1
7
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
8
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
n
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
=
u
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
u

1
9
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
5
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
6
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
7
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
8
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
9
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3
0
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

258 Y. Li et al.

Table 7. The SFS colliding message pair for 31 steps of SHA-512

CV
c063f6b37f43a1d80bb4a9c28ec8ebbf719325677a147967e87e837a5a274200

a536e4afe540d5e86425fc52b3568687f3e944647335886de132ce8175d55506

M

015cdb1cb4a8c188807399b1649a04c3ea97e3400808181030a030e8f2399184

c000010231aa378020c0ba39791630008ca8b53683f11a4099438b3407fc9622

a6c8f225183d6a33d5e316641e7c18559225d8d423ee4b4ca23f1fc91747798d

a97700a8603f3df1c077cb3a0e77251234221f18d5728600b8810e0098b8aa5d

M ′

015cdb1cb4a8c188807399b1649a04c3ea97e3400808181030a030e8f2399184

c000010231aa378000813b3c851e00102ce8343a83e1df3ed9428b3c49be9423

25ccea05593f6a33d5eb16241c7c18549225d8d423ee4b4ca23f1fc91747798d

a97700a8603f3df1c077cb3a0e77251234221f18d5728600b8810e0098b8aa5d

hash
76b60192018bae4bbb93482fb546f9c56e9394a42ff48f7ade8654fd2a5f2a70

8ee9dee6bbe2059e54a70df6e7a436a5199bcc4c6ff152a5ebcf4b290e40ff80

For this new 31-step differential characteristic, we have

n = 64, n1 = 20, n2 = 29, n3 = 36, n4 = 16, Npro = 65, β ≈ 0.9.

Therefore, the expected time complexity of the new collision attack on 31-step
SHA-256 becomes

Tpre + Tmatch = Nstart · (Tsat + 243) +
2101.9

Nstart

+ 265.9, (10)

and the expected memory complexity is Nstart · 227.

Simple Improvement and the Expected Complexity. Since we can simply
find a starting point with the SAT-based tool, using Nstart = 1, we have already
significantly improved the previous attack. Specifically, we can reduce the time
complexity from 2115.6 to 2102.9, and meanwhile reduce the memory complexity
from 277.3 to 229.

Improving the Attack Using All Starting Points. Obviously, according
to Eq. 10, the time complexity can be significantly reduced if more available
starting points can be used. Hence, we are motivated to enumerate all possible
starting points for the new 31-step differential characteristic, i.e., finding all
possible (A1, . . . , A4, E4, . . . , E8) that can lead to valid solutions of

(A1, . . . , A12, E5, . . . , E12,W9, . . . ,W12).

As the first step, we list all the 2-bit conditions for this 31-step differential
characteristic, as shown in Table 8, Table 9, Table 10 and Table 11. We find that
there are 34 free bits in A8. However, by a clever test, we find that there is indeed
only one value of A8 that can lead to valid solutions of (A1, . . . , A12, E5, . . . , E12,

The First Practical Collision for 31-Step SHA-256 259

W9, . . . ,W12). Specifically, if A8[i] is a free bit, we fix it to 0 or 1, and then call the
solver to output a valid solution by modelling the value transitions. If it returns
UNSAT for A8[i] = 0 (resp. A8[i] = 1), it means A8[i] = 1 (resp. A8[i] = 0)
should hold. By testing each free bit of A8 in this way, we find that A8 can only
take 1 value.

Moreover, by the exhaustive search, we also find that there are only 4194304
valid solutions of (A5, . . . , A8) that can fulfill their differential conditions.

For each valid (A5, . . . , A8), we then exhaust all possible E9 and compute
A9 using

A9 = E9 � A5 � Σ0(A8) � MAJ(A8, A7, A6).

In this way, we can obtain all 64256 valid values of (A5, . . . , A9, E9).
Next, for each valid (A5, . . . , A9, E9), exhaust all possible E8 and compute

A4 using
A8 = E8 � A4 � Σ0(A7) � MAJ(A7, A6, A5).

Then, in total of 1344 valid (A4, . . . , A9, E8, E9) are obtained.
Next, we similarly exhaust all possible E7, and obtain all 112 valid values

of (A3, . . . , A9, E7, . . . , E9). Finally, exhaust all possible (E6, E5), and compute
valid values of (A2, A1,W9) using

A6 = E6 � A2 � Σ0(A5) � MAJ(A5, A4, A3),
A5 = E5 � A1 � Σ0(A4) � MAJ(A4, A3, A2),
E9 = A5 � E5 � Σ1(E8) � IF(E8, E7, E6) � K9 � W9.

With the above method, we find in total 224 valid values of

(A1, . . . , A9, E5, . . . , E9,W9)

in practical time. Among them, only 4 valid values can ensure that there is a
valid solution of (A10, . . . , A12, E10, . . . , E12,W10, . . . ,W12) such that

Ei = Ai−4 � Ei−4 � Σ1(Ei−1) � IF(Ei−1, Ei−2, Ei−3) � Ki � Wi, for 10 ≤ i ≤ 12,

Ai = Ei � Ai−4 � Σ0(Ai−1) � MAJ(Ai−1, Ai−2, Ai−3), for 10 ≤ i ≤ 12.

Moreover, among these 4 valid values, (A1, . . . , A4, E5, . . . , E8) are distinct.
Hence, the number of useful starting points for our attack is 4.

Constructing TAB2 Using All 4 Starting Points. For each starting point, as
described at the pre-processing phase, we can use a naive exhaustive search to
find all possible (A−1, A0, E3, E4,W7,W8) and store them in TAB2. The expected
time complexity of this naive method to enumerate (A−1, A0, E3, E4,W7,W8)
for all 4 starting points is 4 × (264−29 + 264−20−29 × 264−36) ≈ 245. Moreover,
we expect the size of TAB2 to be 4 × 2128−20−29−36−16 = 229. However, these
numbers are computed under the assumption that all the differential condi-
tions on (E3, E4,W7,W8) are linearly independent, which may not hold in prac-
tice. Therefore, we also performed an exhaustive search to enumerate all these
(A−1, A0, E3, E4,W7,W8) for all the 4 starting points. To improve the efficiency

260 Y. Li et al.

Table 8. The A3 − A6 conditions for SHA-512

conditions

A3
A3[i] = A4[i], i ∈ {5, 6, 7, 12, 13, 19, 26, 33, 36, 54, 58, 59, 60}
A3[i] �= A4[i], i ∈ {4, 8, 28, 32, 34, 35, 40, 47, 55, 56, 57, 61, 62}

A4

A4[i] = A5[i], i ∈ {2, 3, 10, 11, 29, }
A4[i] �= A5[i], i ∈ {1, 14, 20}
A4[i] = A6[i], i ∈ {7, 8, 58, 59, 60, 61, 62, }
A4[i] �= A6[i], i ∈ {6, 19, 26, 32, 33, 34, 35, 36, 40, 54, 56, 57}

A5

A5[27] �= A5[38], A5[17] = A5[23], A5[53] = A5[11], A5[46] = A5[51],

A5[25] = A5[31], A5[15] = A5[21], A5[52] �= A5[63], A5[41] �= A5[46],

A5[24] �= A5[30], A5[18] = A5[23], A5[46] = A5[52], A5[39] �= A5[44],

A5[23] = A5[29], A5[11] �= A5[16], A5[45] = A5[51], A5[38] = A5[43],

A5[21] = A5[27], A5[10] �= A5[15], A5[44] = A5[50], A5[30] = A5[41],

A5[20] = A5[31], A5[41] �= A5[52], A5[43] = A5[49], A5[25] = A5[30],

A5[63] = A5[10], A5[11] = A5[0].

A6

A6[23] = A6[34], A6[6] = A6[59], A6[41] = A6[52], A6[16] = A6[21],

A6[22] �= A6[33], A6[0] �= A6[58], A6[36] = A6[42], A6[53] �= A6[58],

A6[26] = A6[31], A6[7] = A6[18], A6[63] = A6[57], A6[35] = A6[40],

A6[18] �= A6[24], A6[6] �= A6[17], A6[56] �= A6[62], A6[34] �= A6[39],

A6[19] �= A6[24], A6[7] = A6[60], A6[54] = A6[60], A6[17] �= A6[23],

A6[18] �= A6[23], A6[9] = A6[62], A6[49] = A6[60], A6[44] �= A6[50],

A6[17] �= A6[22], A6[8] �= A6[61], A6[9] �= A6[15], A6[8] �= A6[19],

A6[0] = A6[6].

A5[i] = A6[i], i ∈ {46, 48, 51, 52, 53}
A5[i] �= A6[i], i ∈ {17, 18, 30}

of the exhaustive search, instead of using the naive method, we use a tree-based
searching structure and perform the depth-first search. The details are explained
below.

For a given (A1, . . . , A4, E4, . . . , E8) in the starting point, we first need to
enumerate all valid (E4,W8) satisfying their differential conditions and the fol-
lowing equation:

E8 = A4 � E4 � Σ1(E7) � IF(E7, E6, E5) � K8 � W8.

Let
C = E8 � (A4 � E4 � Σ1(E7) � IF(E7, E6, E5) � K8).

We will then have
E4 � W8 = C,

The First Practical Collision for 31-Step SHA-256 261

Table 9. Wi conditions for SHA-512

conditions

W5

W5[55] �= W5[62], W5[42] = W5[49], W5[33] = W5[39], W5[39] = W5[38],

W5[38] �= W5[37], W5[37] = W5[36], W5[36] = W5[35], W5[7] = W5[14],

W5[5] = W5[11], W5[11] �= W5[10].

W6

W6[33] �= W6[39], W6[29] �= W6[36], W6[27] �= W6[33], W6[27] = W6[26].

W6[22] = W6[21], W6[13] = W6[19], W6[17] �= W6[16], W6[9] = W6[16].

W6[7] = W6[13], W6[13] = W6[12], W6[12] = W6[11].

W7

W7[57] �= W7[63], W7[37] = W7[36], W7[23] �= W7[29], W7[11] �= W7[18],

W7[56] = W7[63], W7[29] �= W7[36], W7[29] = W7[28], W7[10] �= W7[16],

W7[55] = W7[61], W7[28] �= W7[34], W7[21] �= W7[28], W7[16] �= W7[15],

W7[55] �= W7[54], W7[34] �= W7[33], W7[18] = W7[24], W7[3] �= W7[10],

W7[42] �= W7[49], W7[33] = W7[32], W7[24] = W7[23], W7[2] = W7[8],

W7[41] = W7[47], W7[32] = W7[31], W7[16] �= W7[23], W7[42] �= W7[41],

W7[24] �= W7[31], W7[15] = W7[21].

W8

W8[51] = W8[58], W8[49] �= W8[55], W8[38] �= W8[45], W8[36] = W8[42],

W8[31] = W8[38], W8[23] = W8[29], W8[18] �= W8[25], W8[11] = W8[18],

W8[10] �= W8[16].

W9

W9[57] �= W9[63], W9[58] �= W9[57], W9[45] = W9[52], W9[44] �= W9[50],

W9[44] �= W9[45], W9[32] = W9[39], W9[31] �= W9[37], W9[32] = W9[31],

W9[19] = W9[26], W9[18] �= W9[24].

W16

W16[12] �= W16[63], W16[11] �= W16[62], W16[10] �= W16[61], W16[9] �= W16[60],

W16[50] �= W16[59], W16[49] = W16[58], W16[48] = W16[57], W16[63] �= W16[50],

W16[62] �= W16[49], W16[61] �= W16[48], W16[60] �= W16[47], W16[59] = W16[37],

W16[58] �= W16[36], W16[57] �= W16[35], W16[50] �= W16[37], W16[49] �= W16[36],

W16[48] �= W16[35], W16[47] �= W16[34], W16[24] = W16[33], W16[23] �= W16[32],

W16[22] �= W16[31], W16[24] = W16[11], W16[23] �= W16[10], W16[22] �= W16[9],

W16[21] = W16[63], W16[20] �= W16[62], W16[19] �= W16[61].

W18
W18[9] = W18[60], W18[60] �= W18[47], W18[47] �= W18[34], W18[3] = W18[12],

W16[22] = W16[9].

where C is a known constant. Therefore, we can enumerate valid (E4,W8) with
the depth-first search from the least significant bit to the most significant bit. The
recursive procedure can be simply described as follows. Once a valid (E4[i],W8[i])
is found, move to the search for valid (E4[i + 1],W8[i + 1]), where 0 ≤ i ≤
63. As there are conditions on (E4[i],W8[i]), if no valid (E4[i],W8[i]) exists,

262 Y. Li et al.

Table 10. The A7 − A12 conditions for SHA-512

conditions

A7

A7[27] = A7[38], A7[11] = A7[22], A7[57] �= A7[63], A7[11] �= A7[0],

A7[26] �= A7[37], A7[45] �= A7[56], A7[10] = A7[15], A7[14] = A7[8],

A7[25] �= A7[31], A7[13] = A7[24], A7[39] = A7[44], A7[44] = A7[50],

A7[24] = A7[35], A7[43] �= A7[49], A7[60] �= A7[1], A7[56] = A7[3],

A7[21] = A7[27], A7[41] �= A7[47], A7[59] �= A7[0], A7[1] �= A7[7],

A7[47] = A7[58], A7[58] = A7[63], A7[37] �= A7[43], A7[7] �= A7[13],

A7[49] �= A7[60], A7[42] �= A7[47], A7[35] �= A7[41], A7[61] �= A7[2],

A7[38] �= A7[43], A7[34] = A7[39], A7[24] �= A7[29], A7[59] �= A7[1],

A5[i] = A7[i], i ∈ {8, 34, 35, 40, 56, 60},

A6[i] �= A7[i], i ∈ {0, 26, 57, 58, 59, 61},

A5[i] = A7[i], i ∈ {1, 2, 3, 20}
A5[i] �= A7[i], i ∈ {10, 11, 14, 29},

A8

A8[53] = A8[59], A8[58] = A8[5], A8[6] �= A8[11],

A6[i] = A8[i], i ∈ {6, 17, 18, 32, 33, 46, 48, 51, 52, 53, 62}
A6[i] �= A8[i], i ∈ {19, 30, 36, 54, }
A7[i] = A8[i], i ∈ {1, 2, 3, 5, 10, 11, 14, 29, 39}
A7[i] �= A8[i], i ∈ {13, 20, 47}

A9

A9[45] �= A9[50], A9[33] = A9[44], A9[28] �= A9[34],

A7[i] �= A9[i], i ∈ {0}
A8[i] = A9[i], i ∈ {1, 2, 6, 12, 17, 18, 19, 25, 30, 32, 33, 36, 38, 46, 48, 52, 53, 54, 62}
A8[i] �= A9[i], i ∈ {4, 51, 55, 28}

A10

A10[27] �= A10[33], A10[45] = A10[56], A10[31] �= A10[36], A10[59] �= A10[6],

A10[40] �= A10[46], A10[19] = A10[30], A10[45] = A10[50], A10[58] = A10[5],

A10[14] �= A10[21], A10[55] �= A10[61], A10[44] = A10[49], A10[12] = A10[7],

A10[54] = A10[60], A10[33] = A10[44], A10[53] = A10[59], A10[13] �= A10[8],

A10[32] �= A10[43], A10[28] = A10[34], A10[57] = A10[62], A10[6] = A10[11],

A10[60] �= A10[7].

A11
A9[i] �= A11[i], i ∈ {25, 38, 51}
A9[i] = A11[i], i ∈ {0, 1, 2}

A12
A11[i] �= A12[i], i ∈ {39}
A11[i] = A12[i], i ∈ {0, 1, 2, 25, 38, 39, 51}

The First Practical Collision for 31-Step SHA-256 263

Table 11. The E5 − E14 conditions for SHA-512

conditions

E3
E3[47] = E4[47], E3[41] = E4[41], E3[40] = E4[40], E3[34] = E4[34],

E3[28] = E4[28], E3[5] = E4[5].

E4 E4[48] = E5[48].

E9 E9[44] = E9[3], E9[31] �= E9[54].

E11

E11[57] = E11[16], E11[56] �= E11[15], E11[48] = E11[11], E11[50] = E11[9],

E11[45] = E11[8], E11[44] �= E11[48], E11[30] �= E11[57], E11[29] = E11[56],

E11[32] = E11[55], E11[31] = E11[54], E11[21] �= E11[48], E11[16] �= E11[43].

E12 E12[11] = E12[15], E12[55] = E12[14], E12[21] �= E12[48].

E14

E14[11] = E14[15], E14[4] = E14[27], E14[62] = E14[2], E14[60] = E14[23],

E14[55] = E14[14], E14[47] = E14[10], E14[42] = E14[1], E14[37] = E14[41],

E14[34] = E14[61], E14[29] = E14[52], E14[24] = E14[28], E14[21] = E14[48].

start backtracking. In this way, the searching space can be significantly reduced
compared with the naive method to directly exhaust all possible E4 or W8.

For each obtained valid (E4,W8), we then compute A0 with the following
equation:

A4 = E4 � A0 � Σ0(A3) � MAJ(A3, A2, A1).

Then, we need to enumerate valid (E3,W7) satisfying their differential conditions
and the following equation:

E7 = A3 � E3 � Σ1(E6) � IF(E6, E5, E4) � K7 � W7.

This is indeed the same as enumerating (E4,W8), which can also be efficiently
done with the depth-first search.

In our collision attack on 31-step SHA-512, we have used this method to
efficiently enumerate all (A−1, A0, E3, E4,W7,W8) for all the 4 starting points,
and it takes less than 2 h on a single core. It is found that the size of TAB2 is
41826648064 ≈ 235.2 for our attack on SHA-512, which is much larger than the
expected value 4 × 229 = 231.

Consequently, the time complexity of our collision attacks on 31-step SHA-512
is dominated by the matching phase, and the best time complexity is

264+65+0.9

235.2
= 294.7.

while the corresponding memory complexity of this attack is 235.2. Compared
with the previous attack published at EUROCRYPT 2024, the time and memory
complexity have been improved by a factor of 220.9 and 242.1, respectively.

264 Y. Li et al.

6 Conclusion

By exploiting the sparsity of the SHA-2 differential characteristics, we present
novel memory-efficient collision attacks on 31-step SHA-256 and SHA-512, which
can significantly improve the time and memory complexity over state-of-the-art.
In particular, after more than a decade, we can eventually improve the practical
collision attack on SHA-256 from 28 steps to 31 steps. We hope this is not the
end of the (practical) collision attacks on step-reduced SHA-256, and we expect
that more advanced attacks can be found in the near future with the open-
source MILP/SAT/SMT-based automatic tools to search for signed differential
characteristics.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful comments. Yingxin Li and Gaoli Wang are supported by the National Key
Research and Development Program of China (2022YFB2701900), the National Nat-
ural Science Foundation of China (Nos. 62472172, 62072181, 62202017), Shanghai
Trusted Industry Internet Software Collaborative Innovation Center. Fukang Liu is
supported by JSPS KAKENHI Grant Numbers JP22K21282, JP24K20733.

References

1. A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir. Improved key
recovery attacks on reduced-round AES with practical data and memory com-
plexities. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2018, Proceedings, Part II, volume 10992 of Lecture
Notes in Computer Science, pages 185–212. Springer, 2018.

2. C. D. Cannière and C. Rechberger. Finding SHA-1 characteristics: General results
and applications. In X. Lai and K. Chen, editors, Advances in Cryptology - ASI-
ACRYPT 2006, 12th International Conference on the Theory and Application of
Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Pro-
ceedings, volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

3. I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of
Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

4. C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of SHA-512/224 and SHA-
512/256. In T. Iwata and J. H. Cheon, editors, Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 612–630. Springer, 2015.

5. F. Draft. Public comments on the draft federal information processing standard
(fips) draft fips 180-2, secure hash standard (shs).

The First Practical Collision for 31-Step SHA-256 265

6. O. Dunkelman, N. Keller, E. Ronen, and A. Shamir. The retracing boomerang
attack. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceed-
ings, Part I, volume 12105 of Lecture Notes in Computer Science, pages 280–309.
Springer, 2020.

7. M. Eichlseder, F. Mendel, and M. Schläffer. Branching heuristics in differential
collision search with applications to SHA-512. In C. Cid and C. Rechberger, edi-
tors, Fast Software Encryption - 21st International Workshop, FSE 2014, London,
UK, March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes in
Computer Science, pages 473–488. Springer, 2014.

8. L. Grassi, C. Rechberger, and S. Rønjom. A new structural-differential property
of 5-round AES. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages
289–317, 2017.

9. S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger. Collisions and other non-
random properties for step-reduced SHA-256. In R. M. Avanzi, L. Keliher, and
F. Sica, editors, Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers,
volume 5381 of Lecture Notes in Computer Science, pages 276–293. Springer, 2008.

10. D. Khovratovich, C. Rechberger, and A. Savelieva. Bicliques for preimages: Attacks
on Skein-512 and the SHA-2 family. In A. Canteaut, editor, Fast Software Encryp-
tion - 19th International Workshop, FSE 2012, Washington, DC, USA, March
19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in Computer
Science, pages 244–263. Springer, 2012.

11. Y. Li, F. Liu, and G. Wang. New records in collision attacks on SHA-2. In M. Joye
and G. Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part I, volume
14651 of Lecture Notes in Computer Science, pages 158–186. Springer, 2024.

12. F. Liu, W. Meier, S. Sarkar, G. Wang, R. Ito, and T. Isobe. New cryptanaly-
sis of ZUC-256 initialization using modular differences. IACR Trans. Symmetric
Cryptol., 2022(3):152–190, 2022.

13. F. Liu, G. Wang, S. Sarkar, R. Anand, W. Meier, Y. Li, and T. Isobe. Analysis
of RIPEMD-160: new collision attacks and finding characteristics with MILP. In
C. Hazay and M. Stam, editors, Advances in Cryptology - EUROCRYPT 2023 -
42nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part IV, volume
14007 of Lecture Notes in Computer Science, pages 189–219. Springer, 2023.

14. F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In D. H. Lee and X. Wang, editors, Advances
in Cryptology - ASIACRYPT 2011 - 17th International Conference on the The-
ory and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Sci-
ence, pages 288–307. Springer, 2011.

266 Y. Li et al.

15. F. Mendel, T. Nad, and M. Schläffer. Improving local collisions: New attacks on
reduced SHA-256. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 262–278.
Springer, 2013.

16. R. C. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of
Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

17. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions
MD4 and RIPEMD. In R. Cramer, editor, Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, vol-
ume 3494 of Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

18. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceed-
ings, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer,
2005.

19. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Com-
puter Science, pages 19–35. Springer, 2005.

20. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In
V. Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2005.

Key Collisions on AES and Its
Applications

Kodai Taiyama1, Kosei Sakamoto2, Ryoma Ito3, Kazuma Taka1,
and Takanori Isobe1,3(B)

1 University of Hyogo, Kobe, Japan
ad23x032@guh.u-hyogo.ac.jp, takanori.isobe@ai.u-hyogo.ac.jp

2 Mitsubishi Electric Corporation, Kamakura, Japan
3 NICT, Koganei, Japan

itorym@nict.go.jp

Abstract. In this paper, we explore a new type of key collisions called
target-plaintext key collisions of AES, which emerge as an open problem
in the key committing security and are directly converted into single-
block collision attacks on Davies-Meyer (DM) hashing mode. For this key
collision, a ciphertext collision is uniquely observed when a specific plain-
text is encrypted under two distinct keys. We introduce an efficient auto-
matic search tool that leverages bit-wise behaviors of differential charac-
teristics and dependencies among operations and internal variables. As a
result, we demonstrate single-block collision attacks on 2/5/6-round AES-
128/192/256-DM and semi-free-start collision attacks on 5/7/9-round
AES-128/192/256-DM, respectively. Furthermore, by exploiting a specific
class of free-start collisions with our tool, we present two-block collision
attacks on 3/9-round AES-128/256-DM, respectively.

Keywords: AES · Davies-Meyer mode · collision · rebound attacks

1 Introduction

1.1 Background

In block ciphers, a key collision is defined as two distinct keys that produce iden-
tical subkeys through the key scheduling function. When such colliding keys are
used, any plaintext can be encrypted into the same ciphertext. Such key collisions
are known for several ciphers [2,6,18,21,24]. Recently, the importance of a new
variant of key collisions has been demonstrated in the domain of the key com-
mitting security. Albertini et al. [1] revealed that standard AE (Authenticated
Encryption) schemes such as AES-GCM and ChaCha20-Poly1305 lack this type
of security and introduce a simple countermeasure, referred to as the padding
fix. This method involves prepending an �-bit string of 0’s, denoted as X, to the
message M for each encryption, resulting in Enc(K,N,A,X||M), and check for
the presence of X at the start of the message after decryption; decryption fails if
X is not present. This countermeasure leads to the following open problem [1].
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 267–300, 2025.
https://doi.org/10.1007/978-981-96-0941-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_9&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_9

268 K. Taiyama et al.

“In particular, the padding fix with AES-GCM assumes an ideal cipher, and
therefore raises the following interesting problem: Is it possible to find two
keys k1 and k2 such that AESk1(0) = AESk2(0) in less than 264 trials. If
the key size is larger than the block size, then such a pair of keys must
exist. While there has been some work on the chosen-key setting [13] or
using AES in a hashing mode [25], we are not aware of any results on this
specific problem.”

Compared to existing key collisions [2,6,18,21,24], a ciphertext collision is
uniquely observed when a specific plaintext is encrypted under two distinct
keys. In this paper, we refer to this as a target-plaintext key collision. Such
collisions can be further categorized into two variants based on whether the
target plaintext is predetermined: fixed-target-plaintext key collision and free-
target-plaintext key collision. These key collisions can be directly converted into
single-block collisions or semi-free-start collisions on the Davies-Meyer (DM)
hashing mode with AES.

Despite its significance, to the best of our knowledge, this type of attack
has not yet been investigated for AES over the past 20 years. In fact, there
are no results on collision and semi-free-start collision attacks on DM mode
with AES over the significant number of rounds. On the other hand, there are
numerous results of free-start collisions on DM hashing with AES [4,17,22], as
well as collisions on Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP)
modes [10–12].

1.2 Difficulties for Finding Target-Plaintext Key Collisions

Here, we discuss the technical obstacles for finding target-plaintext key collisions
and (semi-free) collision attacks on DM mode with AES by existing approaches.

– First of all, as far as we know, no differential characteristics of AES where a
difference is inserted into only key, not into plaintext, leading to a ciphertext
collision, have been demonstrated in the literature. Compared to the search
for best related-key differential characteristics for AES [5,9,13,14], this search
requires strict conditions such that key differences should be canceled out
by themselves without the help of plaintext differences. Consequently, the
weights of target differential characteristics become quite high, resulting in
time-consuming tasks.

– Even if differential characteristics for key collisions are identified, effi-
ciently mounting rebound attacks [23] in DM remains non-trivial. This dif-
ficulty arises because the core techniques of rebound attacks, e.g. super S-
box [15,16,20], non-full-active super S-box [11,12,26], and super inbound [10]
techniques, face limitations in controlling plaintext values. These techniques
rely on exploiting the degrees of freedom (DoF) in the plaintext of an under-
lying block cipher, which is a message domain that the adversary can manip-
ulate in MMO and MP, while in DM, this is a chaining value domain.

Key Collisions on AES and Its Applications 269

1.3 Our Contribution

In this paper, we introduce an efficient automatic search tool designed to find
target-plaintext key collisions of AES, and then apply it to AES-128/192/256
and its DM hashing mode.

New Tool for Finding Key Collision on AES. To address the limita-
tions of existing approaches, we first utilize bit-wise differential characteristics,
which lead to a ciphertext collision resulting solely from key differences, by
SAT method [29] with state-of-the-art SAT solver and encoding methods. In
contrast, existing collision attacks on AES utilize truncated differential charac-
teristics [4,10,11,11,12,17,22]. Bit-wise differential characteristics enable us to
exploit the bit-level relationship between the DoF of the inbound phase and the
differential probability of the outbound phase in rebound attacks.

Specifically, we convert bit-wise differential characteristics into a graphical
expression to leverage the DoF information of each vertex, dependencies between
each vertex, and grouping based on these relationships. We then use a depth-first
search in graph theory to generate a DoF tree, illustrating the optimal strategy
for selecting inbound vertices, which are vertices categorized in the inbound
phase, and determining the sequence for identifying outbound vertices, which
are vertices categorized in outbound phase, from a given inbound vertex.

This DoF tree allows us to mount new rebound-type attacks, which hierarchi-
cally perform inbound and outbound phases across several groups categorized by
vertex dependencies. As a result, our tool can efficiently mount rebound attacks
for very complex differential characteristics, including those of the key scheduling
function under the strict conditions of key collisions.

Application Results. We present fixed-target-plaintext key collisions on
2/5/6-round AES-128/192/256 and free-target-plaintext key collisions on 5/7/9-
round AES-128/192/256. These are directly converted into single-block colli-
sion attacks on 2/5/6-round AES-128/192/256-DM and semi-free-start collision
attacks on 5/7/9-round AES-128/192/256-DM, respectively. Table 1 summarizes
our application results. To show the validity of our attacks, we provide an exam-
ple of the fixed-target-plaintext key collision on AES-256 or semi-free-start col-
lisions on 9-round AES-256-DM. Furthermore, by exploiting a specific class of
free-start collisions, we present two-block collision attacks on 3/9-round AES-
128/256-DM, respectively. As far as we know, these are the first results of col-
lisions and semi-free start collisions of AES-DM over a significant number of
rounds.

2 Preliminaries

2.1 Description of AES

AES [8] is a block cipher that supports a block size of 128 bits. It has three
variants called AES-128, AES-192, and AES-256, depending on the combina-
tion of a key size of Klen bits and the number of rounds Nr. More specifically,

270 K. Taiyama et al.

Table 1. Summary of our application results.

Target Attack Round Time Memory Ref.

AES-128-DM

Collision 2 249 Negligible Sect. 5.3
Collision∗ 3 260 252 Sect. 6.4

Semi-free-start 5 257 Negligible Sect. 5.3
Free-start 5 256 232 [22]
Free-start 6 232 216 [17]

AES-192-DM
Collision 5 261 Negligible Sect. 5.3

Semi-free-start 7 262 Negligible Sect. 5.3

AES-256-DM

Collision 6 261 Negligible Sect. 5.1
Collision∗ 9 258 255 Sect. 6.3

Semi-free-start 9 230 Negligible Sect. 5.2
q pseudo-collision† 14 (full) q · 267 Negligible [4]

∗ It is a two-block collision. † The q pseudo-collision attack is syn-
onymous with the q free-start collision attack. Kim et al. [19] claimed
that this attack [4] is insufficient for a free-start collision attack on
AES-256-DM, as it is inferior to the birthday attack in terms of the
generic notion of collision attacks.

(Klen, Nr) = (128, 10), (192, 12), and (256, 14) for AES-128, AES-192, and AES-
256, respectively. The internal state can be viewed as a 4 × 4 array of bytes.

Round Function. The round function consists of the following four operations:

– SubBytes (SB) is a parallel execution of 8-bit S-boxes. Due to page limitation,
we do not give the specific table of the S-box.

– ShiftRows (SR) is a row-wise shuffle operation. Specifically, the i-th row of the
state is cyclically shifted by i-bytes to the left.

– MixColumns (MC) is a column-wise 4×4 matrix multiplication over the finite
field F

8
2 with the irreducible polynomial x8 + x4 + x3 + x + 1.

– AddRoundKey (AK) is the application of the round key. The 128-bit round
key is XORed to the internal state.

The round function of AES is denoted by f = AK ◦MC ◦ SR ◦ SB; the i-th round
internal state before the SB, SR, MC, and AK operations are denoted by xi, yi,
zi, and wi, respectively; and the i-th round key is denoted by ki, as depicted in
Fig. 1. After an initial state w0 is initialized with the initial round key k0 by the
AK operation, the internal state is updated by iterating the round function Nr

times. Note that the MC operation is omitted for the final round.

Key Schedules. The key schedule algorithm takes the master key K and performs
the key expansion function to generate the round keys ki for 0 ≤ i ≤ Nr. The

Key Collisions on AES and Its Applications 271

Fig. 1. The round function of AES.

resulting round keys consist of a linear array of 4-byte words, denoted by vj with
the range of 0 ≤ j < 4 · (Nr + 1); namely, ki[j mod 4] = v4i+j .

The key expansion function consists of two steps. The first step is to initialize
vj for 0 ≤ j < Nk with K, where Nk = 4, 6, and 8 for AES-128, AES-192, and
AES-256, respectively. The second step is to compute the remaining round keys,
i.e., vi for Nk ≤ j < 4 · (Nr + 1), as the following procedure (see Fig. 2):

vj =

⎧
⎪⎨

⎪⎩

vj−Nk
⊕ SW(RW(vj−1)) ⊕ RC(i/Nk) if j ≡ 0 mod Nk,

vj−Nk
⊕ SW(vj−1) if Nk = 8 and j ≡ 4 mod Nk,

vj−Nk
⊕ vi−1 otherwise,

where SW is the SubWord function that takes a 4-byte input word and applies
the SB operation to each of four bytes to produce a 4-byte output word, RW is
the RotWord function that takes a 4-byte input word [u0, u1, u2, u3], performs
the cyclic shift operation, and returns a 4-byte output word [u1, u2, u3, u0], and
RC(i/Nk) is the round constant.

2.2 Rebound Attack

The rebound attack, proposed by Mendel et al. at FSE 2009 [23], is a generic
tool for cryptanalysis of hash functions, especially on AES-like hashing. The
basic idea of the attack is to obtain a specific differential characteristic in the
underlying primitive (e.g., a block cipher or a cryptographic permutation) of
the target hash function. More specifically, the rebound attack consists of an
inbound phase and an outbound phase by decomposing the target primitive E
into three parts so that E = Efw ◦ Ein ◦ Ebw, as depicted in Fig. 3.

– The inbound phase aims to find a differential characteristic with a lower
probability in Ein of the target primitive. To achieve this, an attacker must
carefully control an input/output differential pair of the non-linear layers in
Ein and determine an input/output differential pair in Ein that maximizes

272 K. Taiyama et al.

Fig. 2. Key schedules of AES-128, AES-192, and AES-256. The SubWord and RotWord
functions are denoted by S and R, respectively. Note that the round constant operation
is omitted.

the differential probability in the following outbound phase. Searching for
such a pair enables us to obtain many available solutions, which are the
starting points for the outbound phase. It becomes the degree of freedom in
the inbound phase.

– The outbound phase aims to obtain a valid differential characteristic in
both forward and backward direction through Efw and Ebw to find a desired
collision. If the obtained differential characteristic has a sufficient probabil-
ity of violating the security of collision attacks, the rebound attack can be
considered successful. Otherwise, the attacker repeats the inbound phase to
obtain more starting points for the outbound phase.

2.3 Collision Attacks and Its Variant

Given a hash function H, a collision is to identify message pair (m,m′) satisfies
H(IV,m) = H(IV,m′), where the initial vector IV is a fixed initial value. Let
v be the chaining value that is equal to the output of the previous block. A
semi-free-start collision is to find a pair (v,m) and (v,m′), such that H(v,m) =
H(v,m′), where (v �= IV). A free-start collision is to find a pair (v,mi−1) and
(v′,m′

i−1), so that H(v′,m) = H(v′,m′), where (v �= v′). When the hash function

Key Collisions on AES and Its Applications 273

Fig. 3. A schematic view of the rebound attack.

H is built by iterating the compression function (CF) with the Merkle-Damgård
construction, we can similarly define the semi-free-start and free-start collision
attacks on the compression function.

3 Key Collision

In block ciphers, a key collision is defined as two distinct keys that produce iden-
tical subkeys through the key scheduling function. When such colliding keys are
used, any plaintext can be encrypted into the same ciphertext. The existence of
such keys is known for a few ciphers. For instance, Robshaw [24] has shown that
the CRYPTREC candidate, the block cipher CIPHERUNICORN-A, has colliding
keys. Kelsey et al. [18] have found colliding keys for the Tiny Encryption Algo-
rithm (TEA) block cipher. Furthermore, Aumasson et al. [2] have discovered that
the ISDB Scrambling Algorithm, the cipher MULTI2, allows such keys as well.
Biryukov and Nikolic [6] have found colliding keys of SC2000-256 by exploiting
the weakness of the key scheduling function. For stream ciphers, Matsui [21] has
investigated the behavior of colliding key pairs for the stream cipher RC4, in
which, two distinct keys generate the same key stream.

3.1 New Variants of Key Collision

In this paper, we introduce new variants of key collisions, termed target-plaintext
key collision, defined as follows.

Definition 1 (Target-Plaintext Key Collision). It is two distinct keys that
generate the same ciphertext for a single target plaintext.

Compared to existing key collisions, particularly the subkey collision in the key
scheduling function, a ciphertext collision occurs exclusively with a specific plain-
text under two distinct keys. Identifying such a collision can be classified into
two different problems depending on whether a single target plaintext is prede-
termined or not, illustrated in Fig. 4.

Problem 1 (Fixed-Target-Plaintext Key Collision). Given a single target
plaintext, find a key pair that generates the same ciphertext.

274 K. Taiyama et al.

Fig. 4. Variants of key collisions.

Problem 2 (Free-Target-Plaintext Key Collision). Find a key pair and
a corresponding single plaintext that generates the same ciphertext.

In Problem 1, given a predetermined target plaintext, the adversary must
identify two distinct keys that yield the same ciphertext. In contrast, Problem 2
allows the adversary to choose the target plaintext and find colliding key pairs
freely. Clearly, Problem 1 is more challenging than Problem 2.

The time complexity for solving these problems by generic attack (assuming
an underlying block cipher is an ideal cipher) depends on the size of the cipher-
text. Specifically, for an n-bit ciphertext, such pairs can be found within a time
complexity of 2n/2, owing to the birthday paradox.

3.2 Applications of Target-Plaintext Key Collisions

We explore the implications and significance of target-plaintext key collisions in
theoretical and practical domains with several applications.

Collision Attack on DM Hashing Mode. The DM hashing mode is used to
construct a cryptographic hash function from a block cipher. In this mode, as
shown in Fig. 5, the key in the block cipher is treated as the message input for
the hash function, and the plaintext is the initial vector or chaining value.

A fixed-target-plaintext key collision, where two keys produce the same
ciphertext for a predetermined plaintext, corresponds to a single-block collision
in DM mode. This implies that two different messages (keys) result in the same
hash output (ciphertext) for a given initial state (plaintext). Similarly, a free-
target-plaintext key collision, where the adversary can choose the plaintext and
find two keys that produce the same ciphertext, correlates with a semi-free-start
collision in DM mode. In this scenario, the attacker has the freedom to select the
initial state (plaintext) and find two different messages (keys) that lead to the
same hash output (ciphertext). This flexibility makes the semi-free-start colli-
sion less constrained and potentially attacks on more rounds than a single-block
collision.

Open Problem of Padding Fix for Key Committing Security. Recently,
the key committing security has garnered significant attention. In this line of
research, Albertini et al. [1] revealed that standard AE schemes such as AES-GCM
and ChaCha20-Poly1305 lack this type of security. In their paper, the authors

Key Collisions on AES and Its Applications 275

Fig. 5. A schematic view of the Davies-Meyer (DM) hashing mode.

introduce a simple countermeasure, referred to as the padding fix. This method
involves prepending an �-bit string of 0’s, denoted as X, to the message M for
each encryption, resulting in Enc(K,N,A,X||M), and check for the presence
of X at the start of the message after decryption; decryption fails if X is not
present. This countermeasure leads to the following open problem [1].

“In particular, the padding fix with AES-GCM assumes an ideal cipher, and
therefore raises the following interesting problem: Is it possible to find two
keys k1 and k2 such that AESk1(0) = AESk2(0) in less than 264 trials. If
the key size is larger than the block size, then such a pair of keys must
exist. While there has been some work on the chosen-key setting [13] or
using AES in a hashing mode [25], we are not aware of any results on this
specific problem.”

This issue is equivalent to the task of identifying target-plaintext key collisions
in AES. To the best of our knowledge, this type of attack has not yet been
investigated for AES over the past 20 years.

Embedded Device Keys by Malicious Factory. Regarding other appli-
cations of target-plaintext key collisions, consider the scenario of a malicious
factory setting in which a device-specific key is embedded at an untrustwor-
thy factory. This situation is akin to the context of a hardware trojan [3], with
Original Equipment Manufacturing (OEM) serving as an illustrative example.

In such cases, there exists a significant risk when the fixed key is utilized for
generating session keys via key derivation functions based on block ciphers for
each device [7]. If the factory puts in specific key pairs meant for key collisions
in two distinct devices, it may result in identical session keys for certain inputs.
Consequently, an adversary possessing one device might be able to decrypt mes-
sages intended for another.

Moreover, the adversary could feasibly impersonate another device in sys-
tems where devices authenticate their identities by responding to a challenge
computed using a block cipher with a device-fixed key. This is because their
responses, which are generated using colliding key pairs, would be identical.

4 Automatic Tools for Key Collision on AES

In this section, we propose a new automatic tool designed to efficiently identify
key collisions. This tool is comprised of six steps, and we describe them step

276 K. Taiyama et al.

Algorithm 1: The Proposed Rebound-type Attack
Data: b, rounds, LT
Result: Tcomp

1 cnf ← GenCNF(b, rounds);
2 path ← SAT(cnf) ; // Step1
3 G ← GenGraph(path) ; // Step2
4 starts ← GetStarts(rounds) ; // Step3
5 forall S in starts do
6 DoFtree ← GenTree(S,G) ; // Step4 and Step5
7 Tcomp ← CalcTime(DoFtree) ; // Step6

by step. The overview of our attack procedure is shown in Algorithm 1. Our
rebound-type attack consists of the inbound and outbound phases as well as the
standard rebound attack, but they have complex structures. Therefore, we call
the internal states classified to the inbound phase (resp. outbound phase) as the
inbound vertex (resp. outbound vertex).

Step 1: Searching for Differential Characteristics for Key Collisions.
We employ the SAT-based automatic search method proposed by Sun et al. [29]
to find good differential characteristics applied to our rebound-type attack. We
only give an overview of this method and our environment for evaluation. For
more information about the modeling method, please refer to [29].

In the SAT-based approach, we express a differential propagation in a prim-
itive and its weight caused by non-linear operations into CNF (Conjunctive
Normal Form). For linear operations, such as an XOR and a permutation, their
CNFs are shown in the previous works [27–29]. In contrast, for a non-linear
operation, such as an S-box, we can derive their CNF expression by some algo-
rithms used to simplify the Boolean function. Then, we employ Espresso logic
minimizer1 to derive CNF of an S-box. In addition to linear and non-linear oper-
ations, it is necessary to model the output such that the output difference is
zero in order to discover a differential characteristic that leads to a collision.
After converting differential propagation and its weight into CNF expression,
we set the target weight k by Boolean cardinality constraints expressed in CNF
and give the created CNF to a SAT solver. If an SAT solver returns “SAT”, we
can find differential characteristics with a weight of ≤ k. Otherwise, we increase
k and repeat this procedure until a SAT solver returns “SAT”. In this work,
we utilize ParKissat-RS2 and totalizer as a SAT solver and Boolean cardinal-
ity constraints, respectively. GenCNF() in Algorithm 1 accepts the number of
rounds, rounds, that we attempt to find the key collision as the input and out-
puts a CNF, cnf , to find a differential characteristic. Then, SAT() accepts the

1 https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.
htm.

2 https://github.com/shaowei-cai-group/ParKissat-RS.

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://github.com/shaowei-cai-group/ParKissat-RS

Key Collisions on AES and Its Applications 277

CNF generated by GenCNF() and outputs the found differential characteristic,
path, with its probability. In the standard situation where we attempt to identify
optimal differential characteristics, we solve SAT models with a target weight
k in ascending order. In contrast, we do not need to find optimal differential
characteristics but good differential characteristics for our rebound-type attack.

In our attack, the probability of an underlying differential characteristic is
constrained by the maximum DoF in each attack for successful attacks. A fixed-
target-plaintext key collision can utilize the DoF of the key, while the free-
target-plaintext key collision can utilize the DoF of both the key and plain-
text. Thus, fixed-target-plaintext key collision requires a differential characteris-
tic with probability of more than 2−128/2−192/2−256 on AES-128/192/256 while
it is 2−256/2−320/2−384 on AES-128/192/256 for the free-target-plaintext colli-
sion, respectively.

Step 2: Converting Differential Characteristics into Graphical Expres-
sion. Since our rebound-type attack consists of the complex structure of the
inbound and outbound vertices, we need to efficiently calculate the available DoF
for fulfilling the differential characteristics found in Step 1. To this end, we first
convert the differential characteristics into the graphical expression, including a
set of vertices and edges, and utilize depth-first search to calculate the available
DoF. GenGraph() in Algorithm 1 accepts the differential characteristic found
in Step 1 as the input and generates the corresponding graph.

Let G = (V,E) be the graph of the differential characteristic where V and
E denote a set of vertices and edges, respectively. V and E are determined as
following rules:

Degree of the Graph. We first determine how the degree of bit-wise we convert
differential characteristics into a set of vertices and edges. It significantly
influences the efficiency of the later steps in our tool; the smaller the degree
will be, the more complex constructing the attack will be. In this paper, we
generate the graph in 32-bit wise for AES. Therefore, we treat a 32-bit word
as a single unit on AES.

A set of vertices V . V is a set of vertices v, representing a unit of internal
states that we can independently determine the values. Each vertex holds
information about its weight and the available DoF.

A set of edges E. E is a set of edges e, representing vertices to which a
particular vertex is connected. For example, if the vertex vα is connected to
the vertices vβ , and vγ , we hold the edge evα

[vβ , vγ] in E. We can interact
with the available DoF in each connected vertex via the edge.

After creating the graph of the differential characteristic, we classify each SB
and SW layer depending on in which v they belong. It can allow us to add infor-
mation about the total probability in each vertex, helping us determine which
vertices will be set to inbound or outbound vertices. It should be mentioned that
the shape of the graph is determined by a specification of a primitive and the
number of analysed rounds while available DoF in each vertex corresponds to a
differential characteristic.

278 K. Taiyama et al.

Fig. 6. Example of the graphical expression of round functions of AES.

Example. For a better understanding, we take Fig. 6 as an example, which shows
the round function and key scheduling function of the 2-round AES. First, as
shown in Fig. 6, we convert the internal state into a set of vertices in 32-bit wise
as follows:

V = {vIV [i], vs1[i], vMC1[i], vs2[i], vSR2[i], vOUT [i], vK0[i], vK1[i], vK2[i]},

where i ∈ {0, 1, 2, 3}, each of which can independently determine their values.
From a set of vertices, we can obtain a set of edges corresponding to the

vertices vIV [i] and vK0[i] where i ∈ {0, 1, 2, 3} as follows:

E = {evIV [i] [vK0[i], vS1[i]], ev
K0[0]

[vIV [0], vS1[0], vK0[3], vK1[0]], ev
K0[1]

[vIV [1], vS1[1], vK1[0], vK1[1]],

ev
K0[2]

[vIV [2], vS1[2], vK1[1], vK1[2]], ev
K0[3]

[vIV [3], vS1[3], vK0[0], vK1[2], vK1[3]]},

where i ∈ {0, 1, 2, 3}, each of which connects vertices. We can obtain the remain-
ing edges in the same manner. For simplicity, we depict edges in a part of the
2-round AES in Fig. 6.

Step 3: Determining the Starting Points. In the inbound phase of rebound
attacks, we can determine the values following the differential characteristics by
leveraging the DoF in the internal state. Specifically, by properly choosing values
of internal state, we ensure that the probability of differential transition through
an SB layer is one. This operation is executed for multiple vertices, depending
on the available DoF. We call such a set of vertices as the starting points and
vertices in the starting points as inbound vertices. The total number of inbound
vertices is determined by the maximum available DoF in the target primitive
and setting. For example, to find the fixed-target-plaintext key collision of the
r-round AES-128, we can choose four vertices including SB or SW layers as the
inbound vertices because the maximum available DoF is 2128. In that case, since
each round includes a total of 5 vertices, including SB and SW, the number of

Key Collisions on AES and Its Applications 279

combinations for inbound vertices is
(
5r
4

)
, which will be too expensive to evaluate

all combinations as r becomes large. Therefore, we restrict the number of rounds
that include inbound vertices to the minimum in our evaluation.

We conduct the depth-first search from the inbound vertices to efficiently
obtain the value pairs following the differential characteristics in the later steps.
Hereafter, we call a vertex not belonging to the starting points as an outbound
vertex. Once we determine the starting point, the outbound vertices, which con-
sists of all the vertices not belonging to the starting point, is also determined
simultaneously. GetStarts() in Algorithm 1 accepts the number of rounds that
we attempt to find the key collisions as the input and outputs all combinations
of starting points.

Step 4: Calculating the Degrees of Freedom in the Starting Points.
After determining the starting point, we calculate DoF derived from the given
individual inbound vertices. This calculation is equivalent to determining the
number of valid values within the starting point that fulfills the corresponding
differential characteristics.

Available Degrees of Freedom. Suppose that the total size of inbound vertices in
the given starting point is b bits, and the probability of its differential propaga-
tion is 2−P1 , we can obtain the DoF of 2b−P1 . It should be emphasized that we
can independently calculate the DoF derived from each inbound vertex. There-
fore, the time complexity in a starting point will not be 2b−P1 but can be much
smaller than it. Inbound() in Algorithm 2 accepts an starting point as the input
and outputs this starting point with its DoF if the starting point is valid. Note
that any choice of starting points does not always lead to the valid collision
attacks, meaning that some choices of starting point cannot bring the colliding
pairs due to their structures. In that case, Inbound() outputs NULL.

Example. Suppose that we choose the vertex vS1[0] in Fig. 6 as one of inbound
vertices and its probability is 2−14, the available DoF derived from vS1[0] is
estimated 218(= 232−14). Note that we must derive the DoF from all those states
if there are multiple states over the non-linear operation in an inbound vertex.

Step 5: Finding Value Pairs Fulfilling the Outbound Vertices. After
determining the starting point, we proceed to derive the value pairs fulfilling the
entire differential characteristics for key collisions. To derive such pairs efficiently,
we categorize inbound and outbound vertices using the depth-first search. During
this depth-first search, we classify them based on their ability to calculate the
values independently using the available DoF. This categorization allows us to
derive the value pairs independently in each category, thereby minimizing the
time complexity. For a better understanding, we give a simple example of how
to categorize the inbound and outbound vertices.

280 K. Taiyama et al.

Algorithm 2: GenTree

Data: S,G
Result: DoFtree

1 if Inbound(S,G) = NULL then // Step4
2 break;

3 else
4 DoFtree ← Grouping(S,G) // Step5

Fig. 7. The illustration of the depth-first search to categorize outbound vertices.

Categorizing Vertices by Depth-First Search. Figure 7 illustrates the overview
of the depth-first search with a simple example. In this example, we have a set
of vertices V = {vin1 , vin2 , vin3 , vout1 , vout2 , vout3} where (vin1 , vin2 , vin3) and
(vout1 , vout2 , vout3) are inbound and outbound vertices, respectively. Besides,
according to Fig. 7, we also have a set of edges

E = {evin1
[vin2 , vout1], evin2

[vin1 , vin3 , vout1 , vout2], evin3
[vin2 , vin3]

evout1
[vin1 , vin2 , vout2 , vout3], evout2

[vin2 , vin3 , vout1 , vout3], evout3
[vout1 , vout2]}

Then, we attempt to categorize outbound vertices based on the inbound vertices.
This search starts from all inbound vertices in the inbound node. The proce-

dure of our depth-first search is as follows:

Search 1. Start the depth-first search from vin1 . According to evin1
[vin2 , vout1],

we know that vin1 is connected to vin2 and vout1 , but value pairs of both
vertices have not been determined yet. Therefore, only the value pairs of in1

can be determined in the first invocation of the depth-first search, and the
corresponding vertices from vin1 are only vin1 .

Search 2. Start the depth-first search from vin2 . According to evin2
[vin1 ,

vin3 , vout1 , vout2], we know that vin2 is connected to vin1 and the value pairs
of vin1 have been already determined in Search 1. In other words, we have
already conducted the inbound phase for vin1 (or the outbound phase for the

Key Collisions on AES and Its Applications 281

Table 2. Categorizing outbound vertices. The outbound vertices are highlighted in
red.

Step Start points Corresponding inbound vertices Groups
1 vin1 {vin1} g{vin1}
2 vin2 {vin2} g{vin2}
3 vout1 {vin1 , vin2} g{vin1 ,vin2}
4 vin3 {vin3} g{vin3}
5 vout2 {vin1 , vin2 , vin3} g{vin1 ,vin2 ,vin3}
6 vout3 {vin1 , vin2 , vin3} g{vin1 ,vin2 ,vin3}

outbound vertices). However, the corresponding vertex of vin2 is only vin2

because we can determine the value pairs of vin2 independently.
Search 3. After Search 2, we know that value pairs of vout1 can be deter-

mined because the value pairs of vin1 and vin2 have been already determined.
Besides, according to evout1

[vin1 , vin2 , vout2 , vout3], vout1 is also connected to
vout2 and vout3 , but we cannot determine their value pairs yet. Therefore, the
corresponding vertices of vout1 are vin1 and vin2 .

Search 4. Start the depth-first search from vin3 . For the same reason as
Searches 1 and 2, the corresponding vertex of vin3 is only vin3 .

Search 5. After Search 4, we know that vout2 can be determined. The value
pairs of vin3 can be determined independently, but the value pairs of vin2

have already been determined depending on the value pairs of vin1 to obtain
the value pairs of vout1 . Therefore, the value pairs of vout2 must correspond
to the value pairs of vin1 , and the corresponding vertices of vout2 are vin1 ,
vin2 , and vin3 .

Search 6. We determine the value pairs of the remaining vertex vout3 . According
to evout3

[vout1 , vout2], vout3 is connected to vout1 and vout2 , and their corre-
sponding vertices contain vin1 , vin2 , and vin3 . Therefore, the corresponding
vertices of vout3 are also vin1 , vin2 , and vin3 .

Then, we obtain Table 2 that shows which inbound vertices each vertex corre-
sponds to. After categorizing them, we generate a tree construction of vertices,
called a DoF tree, which allows us to calculate the value pairs of each ver-
tex with a minimum time complexity. Figure 8 shows the DoF tree based on
Table 2. In Fig. 8, each surrounded vertex by the black square can be calcu-
lated from their value pairs independently. For g{vin1 ,vin2}, we can use DoFvin1

and DoFvin2
to find the value pairs of g{vin1 ,vin2 ,vin3} while we can also cal-

culate the value pairs of g{vin1 ,vin2 ,vin3} using DoFvin3
at the same time. If

Prob.(vout2 , vout3)
−1 > DoFvin3 , we use DoFvin1

and DoFvin2
via g{vin1 ,vin2}.

Hence, in that case, we can partly calculate the value pairs of g{vin1 ,vin2 ,vin3}
independently. The detailed attack complexity will be calculated in Step 6.
Grouping() in Algorithm 2 accepts the starting point and the graph expression
of the differential characteristic as the input and outputs the DoF tree.

282 K. Taiyama et al.

Fig. 8. Overview of the DoF tree. Prob.(vout1) and Prob.(vout2 , vout3) denote the
probability of the outbound groups g{vin1 ,vin2} and g{vin1 ,vin2 ,vin3}, respectively.
(DoFvin1

, DoFvin2
, DoFvin3

) denote the available DoF of (vin1 , vin2 , vin3), respec-
tively. (IN1, IN2, IN3, OUT1) denote the DoF used to find the value pairs of the con-
nected outbound groups.

Step 6: Estimating Attack Complexity. We check whether the total avail-
able DoF is enough to find the value pairs fulfilling the differential characteristic
and its time complexity. We use MILP (Mixed-Integer Linear Programming) to
check those and minimize the time complexity. During an MILP modeling, we
assign DoF derived from each outbound group, highlighted red color in Table 2,
as the linear constraints. For a better understanding, we give all constraints as
the product of the probability and DoF, but we can express them by the lin-
ear inequalities by the weight and give them to an MILP solver. Let DoFOUTi

,
DoFCj

, and Prob.(OUTi) be DoF derived from outbound group OUTi, the DoF
used to calculate the value pairs in each connected group cj , and the probabil-
ity of outbound group OUTi, respectively. The DoF derived from the outbound
group OUTi is calculated as follows:

DoFOUTi
=

⎛

⎝
n∏

j=1

DoFCj

⎞

⎠ · Prob.(OUTi), (1)

where n denotes the number of connected groups to OUTi. We assign Eq. (1) for
all outbound groups as the linear constraints in an MILP model. For inbound
groups, the black colored groups in Table 2, DoF used to calculate the value pairs
of the connected outbound groups must be smaller than DoF derived from this
inbound group. Thus, we assign such constraints as follows:

INk ≤ DoFINk
, (2)

where INk and DoFINk
denote the DoF used to calculate the value pairs of

the connected outbound groups and DoF derived from this inbound group INk,

Key Collisions on AES and Its Applications 283

respectively. We assign Eq. (2) for all inbound groups as the linear constraints
in an MILP model.

Besides, for each outbound group, we need to ensure that the time complexity
is smaller than the birthday bound as follows:

T i
max ≥

m∏

j=1

INj ·
n∏

k=1

OUTk (3)

where T i
max, m, and n denote the objective variables, the number of outbound

groups, and the number of inbound groups connected to the target outbound
group, respectively. We assign Eq. (3) for all outbound groups as the linear
constraints in an MILP model.

Then, we need to set the objective function, which minimizes the time com-
plexity. In the field of symmetric-key cryptography, we often assign one objective
function, such as the number of active S-boxes and the total weight in primitives,
and minimize it, equivalent to solving the minimization problem. In contrast, the
time complexity of our attack is dominated by the maximum T i

max, but there
is no way to know which T i

max will be maximum in the standard MILP model.
Therefore, we solve the MIN-MAX problem, a class of problems where the objec-
tive is to minimize the maximum value of a set of variables and functions, instead
of the minimization problem. Hence, we assign a set of all T i

max as the objective
function as follows:

(T 1
max, T 2

max, . . . , Tm
max). (4)

Then, we minimize the maximum variables in Eq. (4) by an MILP solver. In this
work, we use SageMath3 as an MILP solver. Our attack is successful if the max-
imum value in Eq. (4) will be smaller than the birthday bound. Otherwise, we
conduct the same procedure for another DoF tree. CalcTime() in Algorithm 1
accepts the DoF tree as the input and outputs the time complexity of this attack.

5 Key Collisions on AES-128/192/256

In this section, we show fixed-target-plaintext key collisions on 2/5/6-round
AES-128/192/256 and free-target-plaintext key collisions on 5/7/9-round AES-
128/192/256, which are found by our automatic tool provided in Sect. 4.

Notations. We use the following notations for our attacks. For i ∈ {1, . . . , 12},
let ini be the inbound vertices; let INi be the assigned degrees of freedom in
the attack; let INMi

be the available degrees of freedom from a given differ-
ential characteristic; and let P (ini) be a differential probability of ini in the
corresponding SB operation.

Moreover, the internal states of AES are treated here as a column-wise array
of 4-byte words, with columns numbered from the left. For example, xi[0] and
3 https://www.sagemath.org.

https://www.sagemath.org

284 K. Taiyama et al.

xi[3] are represented as 4-byte words in the leftmost and rightmost columns in
the i-th round internal state before the SB operation, respectively. In the same
manner, the i-th round internal state before the AK operation is represented as
wi[3] and wi[0], respectively, and the i-th round key is denoted by ki. Besides, all
inbound vertices are written in the same color since it is clear that their values
are obtained independently.

5.1 Fixed-Target-Plaintext Key Collision on 6-Round AES-256

Figure 9 illustrates an underlying differential characteristic for a fixed-target-
plaintext key collision for 6-round AES-256 with a probability of 2−179. Assum-
ing that the 1st and 2nd rounds in the data processing part are an inbound
phase (i.e., {in1, . . . , in8} = {x1[3], . . . , x1[0], x2[3], . . . , x2[0]}), and the remain-
ing part, including the key scheduling part, is an outbound phase, the probability
of inbound and outbound phases are 2−118 and 2−61, respectively. After applying
our tool, we can obtain the DoF tree as shown in Fig. 10 for collision attacks. By
using this tree, we can construct a fixed-target-plaintext key collision on 6-round
AES-256.

Degree of Freedom in the Inbound Phase. In our attacks, we exploit the
degrees of freedom of each inbound vertex as follows: IN1 = 217, IN2 = 217,
IN3 = 217, IN4 = 20, IN5 = 211, IN6 = 211, IN7 = 211, and IN8 = 212.

By using our automatic tool, we have obtained the differential probability
of each inbound vertex as follows: P (in1) = 2−7, P (in2) = 2−0, P (in3) =
2−0, P (in4) = 2−28, P (in5) = 2−21, P (in6) = 2−21, P (in7) = 2−21, and
P (in8) = 2−20. Based on these results, the maximum degrees of freedom in
each vertex are estimated as INM1 = 225(=32−7), INM2 = 232(=32−0), INM3 =
232(=32−0), INM4 = 24(=32−28), INM5 = 211(=32−21), INM6 = 211(=32−21),
INM7 = 211(=32−21), and INM8 = 212(=32−20). Thus, the degrees of freedom of
each inbound vertex, which is required for the attack, are sufficiently available.

Attack Procedures

1. Start with 251(=17+17+17+0) sets of {in1, . . . , in4} = {x1[3], . . . , x1[0]} and
the fixed initial value sets of {w0[3], . . . , w0[0]} (red part in Fig. 11); then,
obtain 251 sets of {w1[0], . . . , w1[3], k0[0], . . . , k0[3]} ((blue, (purple, (green,
and (orange parts in Fig. 11).

2. Prepare 211 values of in5 = x2[3] ((red part in Fig. 11); then, obtain
262(=51+11) sets of {k1[3], k2[0], . . . , k2[3], k3[0]} ((turquoise part in Fig. 11).
As the differential probability of the corresponding two SW functions in the
key schedule part is 2−35(=−28−7), there exist 227(=62−35) values that fulfill
the differential characteristic ((turquoise part in Fig. 11).

3. Prepare 222(11+11) sets of {in6, in7} = {x2[2], x2[1]} ((red part in Fig. 11);
then, obtain 249(=27+22) sets of {k1[2], k1[1]} ((yellow and (brown parts in
Fig. 11).

Key Collisions on AES and Its Applications 285

Fig. 9. Differential characteristic for a fixed-target-plaintext collision attack on 6-round
AES-256.

286 K. Taiyama et al.

Fig. 10. DoF tree for a fixed-target-plaintext collision attack on 6-round AES-256.

4. Prepare 212 values of in8 = x2[0] ((red part in Fig. 11); then, obtain
261(=49+12) values of the remaining data processing and key scheduling parts
((gray part in Fig. 11). As the differential probability of the remaining parts
is 2−61, there exists 1 = 20(=61−61) value that fulfills the differential charac-
teristic ((gray part in Fig. 11).

Attack Complexity. Following the above attack procedures, the attack com-
plexity for Step 2 appears to be dominant, which requires approximately 262

computations of the 1-round AES-256 key schedule. However, the attack com-
plexity for Step 4 requires approximately 261 computations of the partial (at
least 4-round) AES-256 encryption; thus, from the perspective of a fair com-
plexity estimation, it can be considered that the attack complexity for Step 4
is dominant. Therefore, total complexity is bounded by 261 computations of
6-round AES-256.

Key Collisions on AES and Its Applications 287

Fig. 11. Fixed-target-plaintext collision attack on 6-round AES-256. (Color figure
online)

As in the actual execution of the attack, it is not necessary to store a complete
set of values at each outbound vertices. For example, in Step 3, rather than
storing 249(=27+22) sets of {k1[2], k1[1]}, we can proceed to evaluate the next
outbound vertices for a single value of the previous outbound vertices. Thus, our
attacks in this section can be done with negligible memory. This is confirmed by
our experiment for the semi-free start collision attack on 9-round AES-256.

5.2 Free-Target-Plaintext Key Collision on 9-Round AES-256

Figure 12 illustrates an underlying differential characteristic for a free-target-
plaintext key collision for 9-round AES-256 with a probability of 2−193. Assuming

288 K. Taiyama et al.

that the 7th, 8th, and 9th rounds in the data processing part are an inbound
phase (i.e., {in1, . . . , in12} = {x7[3], . . . , x7[0], x8[3], . . . , x8[0], x9[3], . . . , x9[0]}),
and the remaining part, including the key scheduling part, is an outbound phase,
the probability of inbound and outbound phases are 2−102 and 2−91, respectively.
After applying our tool, we can obtain the DoF tree as shown in Fig. 13 for
collision attacks. By using this tree, we can construct a free-target-plaintext key
collision on 9-round AES-256.

Degree of Freedom in the Inbound Phase. In our attacks, we exploit the
degrees of freedom of each inbound vertex as follows: IN1 = 21, IN2 = 20,
IN3 = 20, IN4 = 20, IN5 = 226, IN6 = 20, IN7 = 20, IN8 = 29, IN9 = 219,
IN10 = 26, IN11 = 211 and IN12 = 219.

By using our automatic tool, we have obtained the differential probability
of each inbound vertex as follows: P (in1) = 2−6, P (in2) = 2−6, P (in3) = 2−6,
P (in4) = 2−6, P (in5) = 2−6, P (in6) = 2−7, P (in7) = 2−6, P (in8) = 2−7,
P (in9) = 2−13, P (in10) = 2−13, P (in11) = 2−13, and P (in12) = 2−13. Based
on these results, the maximum degrees of freedom in each vertex are esti-
mated as INM1 = 226(=32−6), INM2 = 226(=32−6), INM3 = 226(=32−6), INM4 =
226(=32−6), INM5 = 226(=32−6), INM6 = 225(=32−7), INM7 = 226(=32−6),
INM8 = 225(=32−7), INM9 = 219(=32−13), INM10 = 219(=32−13), INM11 =
219(=32−13) and INM12 = 219(=32−13). Thus, the degrees of freedom of each
inbound vertex, which is required for the attack, are sufficiently available.

Attack Procedures

1. Start with 21(=1+0+0+0) sets of {in1, . . . , in4} = {x7[0], . . . , x7[3]} (red part
in Fig. 14); then, obtain 21 sets of {w7[3], . . . , w7[0]} (blue part in Fig. 14).

2. Prepare 226 values of in5 = x8[3] (red part in Fig. 14); then, obtain 227(=26+1)

values of k7[3] (purple part in Fig. 14). As the differential probability of the
corresponding SW function in the key schedule part is 2−27, there exist
20(=27−27) values that fulfill the differential characteristic (purple part in
Fig. 14).

3. Prepare 20 values of in6 = x8[2] (red part in Fig. 14); then, obtain 20(=0+0)

values of k7[2] (green part in Fig. 14). As the differential probability of the
corresponding key schedule part is 20, there exist 2(=0−0) values that fulfill
the differential characteristic (green part in Fig. 14).

4. Prepare 20 values of in7 = x8[1] (red part in Fig. 14); then, obtain 20(=0+0)

values of k7[1] (orange part in Fig. 14). As the differential probability of the
corresponding key schedule part is 20, there exist 20(=0−0) values that fulfill
the differential characteristic (orange part in Fig. 14).

5. Prepare 29 values of in8 = x8[0] (red part in Fig. 14); then, obtain 29(=9+0)

values of k7[0] (turquoise part in Fig. 14). As the differential probability of
the corresponding key schedule part is 20, there exists 1 = 29(=9−0) value that
fulfills the differential characteristic (turquoise part in Fig. 14).

6. Prepare 219 values of in9 = x9[3] (red part in Fig. 14); then, obtain 228(=19+9)

values of k8[3] (yellow part in Fig. 14). As the differential probability of the

Key Collisions on AES and Its Applications 289

Fig. 12. Differential characteristic for a free-target-plaintext collision attack on 9-round
AES-256.

290 K. Taiyama et al.

Fig. 13. DoF tree for a free-target-plaintext collision attack on 9-round AES-256.

corresponding key schedule part is 2−28, there exist 20(=28−28) values that
fulfill the differential characteristic (yellow part in Fig. 14).

7. Prepare 26 values of in10 = x9[2] (red part in Fig. 14); then, obtain 26(=0+6)

values of k8[2] (brown part in Fig. 14). As the differential probability of the
corresponding key schedule part is 2−6, there exist 20(=6−6) values that fulfill
the differential characteristic (brown part in Fig. 14).

8. Prepare 211 values of in11 = x9[1] (red part in Fig. 14); then, obtain 211(=0+11)

values of k8[1] (gray part in Fig. 14). As the differential probability of the
corresponding key schedule part is 20, there exist 211(=11−0) values that fulfill
the differential characteristic (gray part in Fig. 14).

9. Prepare 219 values of in12 = x9[0] (red part in Fig. 14); then, obtain
230(=11+19) values of k8[0] (violet part in Fig. 14). As the differential prob-
ability of the remaining parts is 2−30, there exists 1 = 20(=30−30) value that
fulfills the differential characteristic (violet part in Fig. 14).

Key Collisions on AES and Its Applications 291

Fig. 14. Free-target-plaintext collision attack on 9-round AES-256. (Color figure online)

292 K. Taiyama et al.

Table 3. An example input and output values of a free-target-plaintext key collision
for 9-round AES-256. It is directly converted into a semi-free start collision attack on
9-round AES-256-DM by adding the feedword operation.

i P laintexti Keyi Ciphertexti

1

83 66 63 dc ca 45 20 ea 26 11 ac 9c 7f ea d8 40
b1 bc 61 82 30 3c c2 06 7c 39 55 e2 c0 59 30 d5
30 38 ab f7 7e 2f d9 46 84 1f b2 3e 11 29 07 d0
14 c3 d4 6a 96 2a 82 ef 21 00 57 6c 39 08 5a 65

2

83 66 63 dc 35 45 20 ea 26 11 ac 9c 7f ea d8 40
b1 bc 61 82 cf 3c c2 06 7c 39 55 e2 c0 59 30 d5
30 38 ab f7 94 5a ac d9 84 1f b2 3e 11 29 07 d0
14 c3 d4 6a 7c 5f f7 70 21 00 57 6c 39 08 5a 65

Attack Complexity. Following the above attack procedures, it is obvious that
the attack complexity for Step 9 is dominant, which requires approximately 230

computations of the partial AES-256 encryption. Therefore, total complexity is
bounded by 230 computations of 9-round AES-256.

Experimental Verification. We experimentally verify the validity of the pro-
posed attack, especially of the free-target-plaintext collision attack on 9-round
AES-256. Our experiment was executed on AMD Ryzen ThreadripperTMPRO
5995WX @2.7GHz (64C/128T) with 512GB RAM; then, it was completed in
12 h. As a result, we have practically found the value at which such a key colli-
sion occurs. Table 3 shows an example case of a free-target-plaintext key collision
for 9-round AES-256, and the values with differences in the keys are shown in
red.

5.3 Key Collisions on AES-128/192

Due to the page limitation, we only show the results and omit the detailed pro-
cedures of finding fixed-target-plaintext key collision on 2/5-round AES-128/192
and free-target-plaintext key collisions on 5/7-round AES-128/192 in this pro-
ceeding version. The results are summarized in Table 14. It should be mentioned
that these collisions on AES-128/192 can be found by the same procedure for
the fixed/free-target-plaintext key collision attacks on AES-256, described in
Sects. 5.1 and 5.2.

4 The results are shown as (semi-free-start) collision attacks on AES-128/192-DM. As
described in Sect. 6.1, fixed-target-plaintext key collisions and free-target-plaintext
key collisions on AES-128/192 are naturally converted into one-block collision and
semi-free collision attacks on AES-128/192-DM.

Key Collisions on AES and Its Applications 293

6 Application to AES-DM

In this section, we present single-block (semi-free-start) collision attacks on AES-
DM, which are based on the fixed/free-target-plaintext key collision attacks on
AES provided in Sect. 5. Moreover, we show two-block collision attacks on AES-
128-DM and AES-256-DM, also found by our automatic tool in Sect. 4.

Notations. Unlike the notations in Sect. 5, the internal states of AES are treated
here as a byte-wise array. Then, we denote the i-th round of the state array at
the m-th row from the left and the n-th column from the top by xi[4m + n] for
m,n ∈ {0, 1, 2, 3}. For example, xi[6] is represented as the i-th round state array
at the 1st row from the left and the 2nd column from the top.

6.1 Single-Block (Semi-free-Start) Collision Attacks on AES-DM

As discussed in Sect. 3.2, fixed-target-plaintext key collisions and free-target-
plaintext key collisions on AES-128/192/256 are naturally converted into one-
block collision and semi-free collision attacks on AES-DM, respectively. Thus, we
can construct collision attacks on 2/5/6 round AES-DM-128/192/256 and semi-
free-start collision attacks on 5/7/9 round AES-DM-128/192/256, respectively.

6.2 How to Find Two-Block Collision Attack on AES-DM

We show that a class of single-block free-start collision attacks on AES-DM is
converted into 2-block collision attacks. Specifically, in the second block, we
prepare a specific class of free-start collision attacks in which an input chaining
values could have any difference Δhi, but its value hi is predetermined, while
in the setting of the standard free-start collision, both of value and difference
of input chaining values are freely chosen by the adversary. We call this type of
collision free-differential-start collision, defined as follows.

Definition 2 (Free-Differential-Start Collision). Given a compression
function CF , it finds a pair (v,m) and (v′,m′), so that CF (v,m) = CF (v′,m′),
where v is a fixed value and (v �= v′).

Basic Idea. Suppose that a free-differential-start collision in the second
block can be found with a time complexity of T2 < 264. Furthermore, we
assume that such collisions can be obtained, along with N different input dif-
ferences of Δh

(1)
1 ,Δh

(2)
1 , . . . ,Δh

(N)
1 with corresponding message differences of

Δm
(1)
1 ,Δm

(2)
1 , . . . , Δm

(N)
1 , and each of them can be found with the same com-

plexity of T2 < 264. It is expressed as follows:

ΔCF (Δh
(1)
1 ,Δm

(1)
1) = ΔCF (Δh

(2)
1 ,Δm

(2)
1) = · · · = ΔCF (Δh

(N)
1 ,Δm

(N)
1) = 0.

We first compute the first block by randomly choosing a pair of input mes-
sages m0. Suppose we obtain a pair of h1 having a difference that is equal to

294 K. Taiyama et al.

Fig. 15. Overview of the proposed two-block collision attack.

one of N patterns of Δh
(1)
1 ,Δh

(2)
1 , . . . ,Δh

(N)
1 . In that case, we mount a free-

differential-start collision attack on the second block where a pair of input h1

is fixed to the value identified in the search in the first block, and Δh1 corre-
sponds to one of N candidates. Consequently, this approach enables us to connect
between the first and second blocks, thereby finding a collision in a two-block
AES-DM as shown in Fig. 15.

Attack Complexity. The probability that Δh1 coincides with one of N spec-
ified patterns of Δh

(1)
1 ,Δh

(2)
1 , . . . ,Δh

(N)
1 is estimated to be N/2128. There-

fore, upon collecting 2128/N pairs of h1, we can find such a pair with high
probability. Due to the birthday paradox, 2128/N pairs can be prepared from√
2128/N = 264/N

1
2 values of hi. Thus, the total complexity is estimated as

264/N
1
2 one block comp. + T2 one block comp.

For example, if N = 4 and T2 = 262, the time complexity is estimated as

263 one block comp. + 262 one block comp. < 263 two block comp.

The memory requirements of 264/N
1
2 in the first block.

6.3 Two-Block Collision Attacks on 9-Round AES-256-DM

Using our automatic tool, we can develop a 9-round free-differential-start col-
lision in the second block with a time complexity of 258 as shown in Fig. 16.
To convert it into a two-block collision attack, we need to construct multiple
attacks with N distinct input differences Δhi and the same time complexity.

Key Collisions on AES and Its Applications 295

Fig. 16. Free-differential-start collision on 9-round AES-256-DM.

296 K. Taiyama et al.

Fig. 17. Differential characteristic for the free-differential-start collision on 9-round
AES-256-DM.

How to Find N Distinct Inputs. We can easily obtain such attacks by
exploiting the differential characteristics in Fig. 17 and 18. It is well known that
given a fixed input and output difference of Δx and Δy, the probability of
(Δy = Sbox(Δx)) is approximately 1/2 where Sbox() is an operation of S-box
of AES [23].

This property indicates that there are about 128 distinct differences of
Δx0[7], which result in Δy0[7] = 0x33 through S-box. It means that Δh1[7](=
Δx0[7] ⊕ Δk0[7]) also has 128 possible values, which lead to differential charac-
teristics of y0.

Δh1[7] is forwarded to the output, and Δy8[7] is computed as Δy8[7] =
Δk9[7]⊕Δh1[7]. Once Δh1[7] is chosen out of 128 candidates, the corresponding
Δy8[7] is determined. The probability that (Δy8[7] = Sbox(Δx8[7] = 0xfd)) is
1/2. Thus, there exists 128/2 = 64 possible Δh1[7], which follow the character-
istics for collision with time complexity of 258. As Δh1[5] and Δh1[6] also have
64 possible candidates, respectively, with the same reason, in total, there are
N = (64)3 = 218 distinct inputs with the same time complexity.

Attack Complexity. For N = 218 and T2 = 258, the time complexity for
2-block collision attack is estimated as

255 one block comp. + 258 one block comp. < 258 two block comp.

The memory requirements of 255 in the first block.

6.4 Two-Block Collision Attacks on 3-Round AES-128-DM

Due to the page limitation, we only show the result and omit the detailed attack
procedure of two-block collision attacks on the 3-round AES-128-DM. The result
is shown in Table 1. The detailed attack procedure is based on the same approach
as that of two-block collision attacks on the 9-round AES-256-DM, described in
Sect. 6.2

Key Collisions on AES and Its Applications 297

Fig. 18. The detailed differential characteristic for a free-differential-start collision on
9-round AES-256-DM.

298 K. Taiyama et al.

7 Conclusion

In this paper, we investigated the new type of key collisions called target-
plaintext key collisions of AES, which arise as an open problem in the key
committing security and are directly converted into collision attacks on Davies-
Meyer (DM) hashing mode. This key collision is such that a ciphertext collision
is uniquely observed when a specific plaintext is encrypted under two distinct
keys. We introduced an efficient automatic search tool designed to find target-
plaintext key collisions. As a result, we demonstrated collision attacks on 2/5/6-
round AES-128/192/256-DM and semi-free-start collision attacks on 5/7/9-round
AES-128/192/256-DM, respectively. Furthermore, by exploiting a specific class of
free-start collisions, we present collision attacks on 3/9-round AES-128/256-DM,
respectively.

For further directions, it would be interesting to optimize how to determine
the best choice of inbound vertices. Also, efficiently identifying invalid starting
points would be promising to improve the efficiency of our method.

Acknowledgements. This result is obtained from the commissioned research
(JPJ012368C05801) by the National Institute of Information and Communications
Technology (NICT), Japan. This work was also supported by JSPS KAKENHI Grant
Number JP24H00696.

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. In: Butler,
K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, August 10-12, 2022. pp. 3291–3308. USENIX Associ-
ation (2022), https://www.usenix.org/conference/usenixsecurity22/presentation/
albertini

2. Aumasson, J., Jr., J.N., Sepehrdad, P.: Cryptanalysis of the ISDB scrambling algo-
rithm (MULTI2). In: Dunkelman, O. (ed.) Fast Software Encryption, 16th Inter-
national Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 5665, pp. 296–307.
Springer (2009). https://doi.org/10.1007/978-3-642-03317-9_18, https://doi.org/
10.1007/978-3-642-03317-9_18

3. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware trojans: extended version. J. Cryptogr. Eng. 4(1), 19–31 (2014). https://doi.
org/10.1007/S13389-013-0068-0, https://doi.org/10.1007/s13389-013-0068-0

4. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack
on the full AES-256. In: CRYPTO. Lecture Notes in Computer Science, vol. 5677,
pp. 231–249. Springer (2009)

5. Biryukov, A., Nikolic, I.: Automatic search for related-key differential characteris-
tics in byte-oriented block ciphers: Application to aes, camellia, khazad and others.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 6110, pp. 322–344.
Springer (2010)

https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://doi.org/10.1007/978-3-642-03317-9_18
https://doi.org/10.1007/978-3-642-03317-9_18
https://doi.org/10.1007/978-3-642-03317-9_18
https://doi.org/10.1007/S13389-013-0068-0
https://doi.org/10.1007/S13389-013-0068-0
https://doi.org/10.1007/s13389-013-0068-0

Key Collisions on AES and Its Applications 299

6. Biryukov, A., Nikolic, I.: Colliding keys for SC2000-256. In: Joux, A., Youssef,
A.M. (eds.) Selected Areas in Cryptography - SAC 2014 - 21st International Con-
ference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 8781, pp. 77–91. Springer (2014). https://doi.
org/10.1007/978-3-319-13051-4_5, https://doi.org/10.1007/978-3-319-13051-4_5

7. Chen, L.: Recommendation for key derivation using pseudorandom functions. NIST
SP 800-108r1 (2022)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

9. Derbez, P., Euler, M., Fouque, P., Nguyen, P.H.: Revisiting related-key boomerang
attacks on AES using computer-aided tool. In: ASIACRYPT (3). Lecture Notes in
Computer Science, vol. 13793, pp. 68–88. Springer (2022)

10. Dong, X., Guo, J., Li, S., Pham, P.: Triangulating rebound attack on aes-like
hashing. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 13507, pp.
94–124. Springer (2022)

11. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks
on aes-like hashing with low quantum random access memories. In: ASIACRYPT
(2). Lecture Notes in Computer Science, vol. 12492, pp. 727–757. Springer (2020)

12. Dong, X., Zhang, Z., Sun, S., Wei, C., Wang, X., Hu, L.: Automatic classical and
quantum rebound attacks on aes-like hashing by exploiting related-key differentials.
In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 13090, pp. 241–271.
Springer (2021)

13. Fouque, P., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: CRYPTO (1). Lecture Notes in Computer
Science, vol. 8042, pp. 183–203. Springer (2013)

14. Gérault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key
differential cryptanalysis. In: CP. Lecture Notes in Computer Science, vol. 9892,
pp. 584–601. Springer (2016)

15. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for aes-like
permutations. In: FSE. Lecture Notes in Computer Science, vol. 6147, pp. 365–
383. Springer (2010)

16. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: EURO-
CRYPT (2). Lecture Notes in Computer Science, vol. 12106, pp. 249–279. Springer
(2020)

17. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 8282, pp. 533–550. Springer (2013)

18. Kelsey, J., Schneier, B., Wagner, D.A.: Key-schedule cryptanalysis of idea, g-
des, gost, safer, and triple-des. In: Koblitz, N. (ed.) Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer
Science, vol. 1109, pp. 237–251. Springer (1996). https://doi.org/10.1007/3-540-
68697-5_19, https://doi.org/10.1007/3-540-68697-5_19

19. Kim, H., Park, M., Cho, J., Kim, J., Kim, J.: Weaknesses of some lightweight
blockciphers suitable for iot systems and their applications in hash modes. Peer-
to-Peer Netw. Appl. 13(2), 489–513 (2020)

20. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: Results on the full whirlpool compression function. In: ASIACRYPT.
Lecture Notes in Computer Science, vol. 5912, pp. 126–143. Springer (2009)

https://doi.org/10.1007/978-3-319-13051-4_5
https://doi.org/10.1007/978-3-319-13051-4_5
https://doi.org/10.1007/978-3-319-13051-4_5
https://doi.org/10.1007/3-540-68697-5_19
https://doi.org/10.1007/3-540-68697-5_19
https://doi.org/10.1007/3-540-68697-5_19

300 K. Taiyama et al.

21. Matsui, M.: Key collisions of the RC4 stream cipher. In: Dunkelman, O. (ed.) Fast
Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5665, pp. 38–50. Springer (2009). https://doi.org/10.1007/978-3-642-03317-
9_3, https://doi.org/10.1007/978-3-642-03317-9_3

22. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced grøstl compression function, ECHO permutation and AES block cipher.
In: Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867,
pp. 16–35. Springer (2009)

23. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced whirlpool and grøstl. In: FSE. Lecture Notes in Computer
Science, vol. 5665, pp. 260–276. Springer (2009)

24. Robshaw, M.: A cryptographic review of cipherunicorn-a. CRYPTRECT Technical
report (2001)

25. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: Joux, A. (ed.) Fast Software Encryption - 18th Inter-
national Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 6733, pp. 378–396.
Springer (2011). https://doi.org/10.1007/978-3-642-21702-9_22, https://doi.org/
10.1007/978-3-642-21702-9_22

26. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active super-sbox
analysis: Applications to ECHO and grøstl. In: ASIACRYPT. Lecture Notes in
Computer Science, vol. 6477, pp. 38–55. Springer (2010)

27. Sun, L., Wang, M.: Sok: Modeling for large s-boxes oriented to differential proba-
bilities and linear correlations. IACR Trans. Symmetric Cryptol. 2023(1), 111–151
(2023)

28. Sun, L., Wang, W., Wang, M.: More Accurate Differential Properties of LED64
and Midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)

29. Sun, L., Wang, W., Wang, M.: Accelerating the Search of Differential and Linear
Characteristics with the SAT Method. IACR Cryptol. ePrint Arch. p. 213 (2021)

https://doi.org/10.1007/978-3-642-03317-9_3
https://doi.org/10.1007/978-3-642-03317-9_3
https://doi.org/10.1007/978-3-642-03317-9_3
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-21702-9_22

The Boomerang Chain Distinguishers:
New Record for 6-Round AES

Xueping Yan, Lin Tan(B), Hong Xu, and Wenfeng Qi

Information Engineering University, Zhengzhou, China
yanxueping163@163.com,tanlin100@163.com

Abstract. AES is the most used block cipher, and its round-reduced
variants are popular underlying components to design cryptographic
schemes. How to effectively distinguish round-reduced AES from random
permutations has always been a hot research topic. Currently, the longest
rounds of AES can be distinguished is 6 rounds, where the best result
is the 6-round exchange distinguisher with the data complexity 284. In
this paper, we extend the classical boomerang distinguisher which uses
only one boomerang property to use two or more related boomerangs
and the technique of ‘friend pairs’ to enhance the distinguishing effect.
We propose the frameworks of the re-boomerang and boomerang chain
distinguishers and apply them to 6-round AES. The re-boomerang distin-
guisher uses two related boomerangs sequentially, which have the same
upper truncated differential trail in the forward direction. A plaintext
pair is called a right pair if it follows this truncated differential trail. By
the first boomerang, a target set of plaintext pairs containing one right
pair can be obtained. Then for each pair in the target set, construct
its ‘friend pairs’ as the input of the second boomerang to distinguish
the cipher. Due to the dependence of the two boomerangs, all ‘friend
pairs’ of the right pair are right pairs, so the probability of the second
boomerang is increased. To further improve the complexity, we insert
a new boomerang in the middle of the re-boomerang and repeat it to
reduce the target set. Combining the strategies of using more data in
each boomerang and repeating the distinguishing process several times,
we give a boomerang chain distinguisher on 6-round AES with success
probability 60% and complexity 276.57, reduced by a factor of 172 com-
pared with the previous best result. This is a new record for the secret-key
distinguisher on 6-round AES.

Keywords: AES · Distinguisher · Boomerang · Boomerang Chain

1 Introduction

The Advanced Encryption Standard (AES) [16] is the most widely used block
cipher and its security has been studied worldwide in the last twenty years. There
is no known attack on full AES faster than exhaustive search. The security eval-
uation on round-reduced AES is also an important problem. Many ciphers use
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 301–329, 2025.
https://doi.org/10.1007/978-981-96-0941-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_10&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_10

302 X. Yan et al.

round-reduced AES as their core components, such as Hound [22] and WEM [13]
which use 5-round AES, and TNT-AES [1] which uses 6-round AES. Many crypt-
analysis techniques have been applied on round-reduced AES, such as integral
[21], impossible differential [29], zero-correlation linear [27,34], subspace trail
[25], mixture differential [3,24,26], meet-in-the-middle [18], yoyo [32], exchange
[5] and boomerang [6,19,31].

The distinguishing attack and key recovery attack are two different aspects
on the security evaluation of a cipher. The secret-key distinguisher can be used
to evaluate the randomness of the cipher for any key, and has the potential to
be developed to a key recovery attack. Studying the distinguishers for round-
reduced AES is an important field and has attracted much attention of scholars.
Before 2016, distinguishers on AES cover at most 4 rounds, including integral
[21], impossible differential [8,38] and zero-correlation linear [11]. In [23,27,34],
researchers exploited the properties of MixColumns matrix of AES to present
key-dependent 5-round distinguishers. In EUROCRYPT 2017, Grassi et al. [26]
discovered a new structural non-random property and proposed the first secret-
key distinguisher on 5-round AES with complexity 232, called multiple-of-8 dis-
tinguisher. In FSE 2019, Boura et al. [12] gave a general proof of multiple-of-8
property for 5-round AES-like ciphers. The best 5-round distinguisher with com-
plexity 230 was given by exchange attacks in [5].

The first secret-key distinguisher for 6-round AES was proposed by Rønjom
et al. [32], which used yoyo tricks in the adaptively chosen plaintexts and cipher-
texts setting. In [30], the 6-round yoyo distinguisher is shown to be ineffective
with the proposed data complexity. In ASIACRYPT 2019, Bardeh et al. [5]
proposed the exchange attacks, and gave a 6-round distinguisher on AES with
data and time complexities 288.2. In [4], Bardeh studied the exchange attacks
in the adaptively chosen ciphertexts setting and gave the best distinguisher for
6-round AES with data complexity of 284 and time complexity of 283. In [2],
Bao et al. showed a truncated differential distinguisher on 6-round AES with
data complexity 289.4 and time complexity 296.5 memory accesses. In EURO-
CRYPT 2023, Bariant et al. [6] gave a truncated boomerang distinguisher on
6-round AES in the adaptively chosen ciphertexts setting with data and time
complexities of 287.
Motivation. Based on previous work, we have the following consideration.

-Compared with the distinguishers on 5-round AES [5,26,30] having the data
complexity less than 232, the previous distinguishers on 6-round AES [2,4–6] have
much high complexities. The best result is the exchange distinguisher [4] with
the data complexity 284. How to shorten this gap or improve the data complexity
of the secret-key distinguisher on 6-round AES? It is a challenging problem in
the academic research.

-By the observation of current techniques of distinguishers on 6-round AES
including yoyo tricks [32], exchange [4,5] and boomerang [6], it is shown that
the attacker is provided a wider space in the adaptively chosen plaintexts and
ciphertexts setting. How to fully utilize the advantage of this setting to develop
new cryptanalysis techniques?

The Boomerang Chain Distinguishers: New Record for 6-Round AES 303

-Boomerang and its variants have shown the power of cryptanalysis for round-
reduced AES and AES-like ciphers [6,19,31]. The classical boomerang distin-
guisher usually uses only one boomerang property. Whether we can use two or
more boomerangs to enhance the distinguishing effect, especially combined with
the techniques of ‘friend pairs’ and exchange due to the structural property of
AES.
Contributions. Fully utilizing the advantage of the adaptively chosen plain-
texts and ciphertexts attack setting, we extend the classical boomerang to pro-
pose the re-boomerang and boomerang chain distinguishers, combined with the
techniques of ‘friend pairs’ [7] and exchange attack [4,5]. Application to 6-round
AES, we present the best secret-key distinguisher with the success probability
60% and complexity of 276.57, which is a new record.

-Re-boomerang Distinguisher. We extend the classical boomerang dis-
tinguisher which uses only one boomerang property to combine two related
boomerangs to enhance the distinguishing effect. The two boomerangs are con-
structed by combining truncated boomerangs with exchange technique, where
the probability of the lower trail in E1 is 1. The two boomerangs have the same
upper truncated differential trail for E0 in the forward direction, of which the
probability is −→p = 2−22. A plaintext pair is called a right pair if it follows this
truncated differential trail. By the first boomerang, we can obtain a target set
L of 212 plaintext pairs containing one right pair on average. Then for each pair
in L, construct its ‘friend pairs’ as the input of the second boomerang to distin-
guish the cipher. Due to the dependence of the two boomerangs, all ‘friend pairs’
of the right pair are right pairs, so the probability of the second boomerang is
increased by a factor of −→p −1 = 222. Compared with the size of L, we still have
a gain of 210. The re-boomerang distinguisher on 6-round AES has the data and
time complexities of 282.33.

-Boomerang Chain Distinguisher. To improve the complexity, we insert
a new boomerang in the middle of the re-boomerang and repeat it to reduce
the size of the target set L, which forms the boomerang chain distinguisher.
The wrong pairs in L are filtered gradually, then the input data of the last
boomerang is reduced and the total attack complexity is improved. To increase
the success probability of the boomerang chain distinguisher, we consider the two
strategies of using more data in each boomerang and repeating the distinguishing
process several times, and their combination. For the optimal strategy, we get
a boomerang chain distinguisher on 6-round AES with success probability 60%
and complexity of 276.57, reduced by a factor of 172 compared with the previous
best result [4].
Comparison with Previous Work. Compared with the truncated boomerang
distinguisher for 6-round AES in [6], we generate new ciphertext pairs by
exchanging inverse diagonals of original ciphertext pairs instead of adding a
fixed truncated difference. The properties of the lower part E1 in this paper and
[6] are different. The probability of E1 in this paper is q = 1, while q = 2−22 in
[6]. Compared with 6-round exchange attacks in [4], our first boomerang uses a
larger returned truncated difference set, which increases the boomerang probabil-

304 X. Yan et al.

ity. Based on the first boomerang and technique of ‘friend pairs’ we propose the
re-boomerang and boomerang chain distinguishers for 6-round AES. Our lowest
data complexity is 276.57, compared with the 6-round exchange attacks [4] of data
complexity 284. Compared with the retracing boomerang in [19], we increase the
boomerang probability by a factor of −→p −1 in E0, using the techniques of related
boomerangs and ‘friend pairs’. The retracing boomerang requires some relations
of ciphertexts in E1 such that the probability is increased by a factor of q−1.

The current secret-key distinguishers for 5 and 6 rounds of AES are shown in
Table 1. Data complexity is measured in chosen plaintexts (CP), adaptively cho-
sen ciphertexts (ACC) or adaptively chosen plaintexts and ciphertexts (ACPC).
Time complexity is measured in equivalent number of AES encryptions (E) or
memory accesses (M).

Table 1. Secret-key distinguishers for 5 and 6 rounds of AES

Property Rounds Data Time Success Probability Ref.

Multiple-of-8 5 232 CP 235.6 M 100% [26]

Exchange Attack 5 230 CP 230 E 63% [5]

yoyo 5 229.95 ACPC 229.95 M 55% [30]

yoyo 5 230.65 ACPC 230.65 M 81% [30]

Truncated Differential 6 289.4 CP 296.5 M 95% [2]

Exchange Attack 6 288.2 CP 288.2 E 73% [5]

Truncated Boomerang 6 287 ACC 287 E 84% [6]

Exchange Attack 6 284 ACC 283 E 63% [4]

Re-boomerang 6 282.33 ACPC 282.33 E 64% Sect. 3

Triple Boomerangs 6 277.82 ACPC 277.82 E 66% Subsect. 4.1

Boomerang Chain 6 276.57 ACPC 276.57 E 60% Subsect. 4.2

Organization. This paper is organized as follows. In Sect. 2 we briefly describe
AES and the previous related work. In Sect. 3 we introduce the re-boomerang
distinguisher for 6-round AES. In Sect. 4 we improve the re-boomerang distin-
guisher and propose the boomerang chain distinguisher. Conclusion is given in
Sect. 5. The source codes of the experiments in this paper are available online1.

2 Preliminaries

2.1 Brief Description of AES

AES [16] is a Substitution-Permutation Network cipher which has 128-bit block
and 128-bit, 192-bit or 256-bit keys. The 128-bit state of AES can be described

1 https://github.com/XuepingYan/The-Boomerang-Chain-Distinguishers.

https://github.com/XuepingYan/The-Boomerang-Chain-Distinguishers

The Boomerang Chain Distinguishers: New Record for 6-Round AES 305

as a 4 × 4 matrix over the finite field F28 . The round transformation of AES
consists of the following four operations.

-SubBytes (SB) : applying the same 8-bit S-box on each byte of the state.
-ShiftRows (SR) : cyclic shift of the i-th row by i bytes to the left for i =

0, 1, 2, 3.
-MixColumns (MC) : multiplication of each column by an MDS matrix over

F28 .
-AddRoundKey (AK) : XORing the state with a 128-bit round key.
Before the first round, an additional AK is used and in the last round the

MC is omitted. Depending on the master key length of AES, Nr rounds are
applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256, respectively.

In this paper, denote by Col(i) the i-th column of the state, denote by
SR(Col(i)) the result of applying SR operation on the i-th column, and denote
by SR−1(Col(i)) the result of applying SR−1 operation on the i-th column,
0 ≤ i ≤ 3. In other words, SR−1(Col(i)) denotes the i-th diagonal of the state,
and SR(Col(i)) denotes the i-th inverse diagonal of the state, 0 ≤ i ≤ 3. If a
pair (X1,X2) of states satisfies that SR−1(Col(i)) of X1+X2 is nonzero, we call
(X1,X2) is active in the i-th diagonal. If SR(Col(i)) of X1 + X2 is nonzero, we
call (X1,X2) is active in the i-th inverse diagonal, 0 ≤ i ≤ 3.

2.2 Differentials and Truncated Differentials

Differential cryptanalysis [9] is a powerful cryptanalysis approach for block
ciphers. A differential of the cipher E is defined by an input difference α ∈ {0, 1}n

and an output difference β ∈ {0, 1}n, denoted by α
E−→ β. The probability of

α
E−→ β is defined as

Pr(α E−→ β) =
1
2n

{P ∈ {0, 1}n | E(P) + E(P + α) = β} .

Since E is a permutation, Pr(α E−→ β) = Pr(β E−1

−−−→ α).
A truncated differential [28] is defined by a set of input differences Din and

a set of output differences Dout, denoted by Din
E−→ Dout. The probability of

Din
E−→ Dout is defined as

Pr(Din
E−→ Dout) =

∑

α∈Din,β∈Dout

Pr(α E−→ β)

|Din| .

In general, Pr(Din
E−→ Dout) and Pr(Dout

E−1

−−−→ Din) are different, and related
as follows:

Pr(Din
E−→ Dout)

|Dout| =
Pr(Dout

E−1

−−−→ Din)
|Din| .

306 X. Yan et al.

2.3 Boomerang Attacks

In 1999, Wagner [35] introduced the boomerang attack which makes use of two
differential trails to construct a boomerang trail spanning over a large number of
rounds. Then [10] showed a minor change on the boomerang attack. As is shown
in the left of Fig. 1, the cipher E is decomposed as two parts: E = E1 ◦ E0. For
the upper part E0, there exists a differential trail α

E0−−→ β with probability −→p
in the forward direction and a differential trail β

E−1
0−−−→ α∗ with probability ←−p

in the backward direction. For the lower part E1, there exists a differential trail
γ

E1−−→ δ with probability q in the forward direction. The boomerang process is
as follows:

1. Choose plaintext pairs (P1, P2) such that P1 + P2 = α, and ask for the corre-
sponding ciphertext pairs (C1, C2).

2. Compute C3 = C1+δ and C4 = C2+δ, and ask for the decryption of (C3, C4)
to obtain (P3, P4).

3. Count the number of pairs (P3, P4) such that P3 + P4 = α∗.

Fig. 1. The boomerang attack (left) and the sandwich attack (right)

Denote that Xi = E0(Pi), i = 1, 2, 3, 4. Since P1 + P2 = α, we have

X1 + X2 = β (1)

with probability −→p . The differential trail δ
E−1

1−−−→ γ holds with probability q, thus
C1 + C3 = C2 + C4 = δ implies

X1 + X3 = X2 + X4 = γ (2)

The Boomerang Chain Distinguishers: New Record for 6-Round AES 307

with probability q2. If Eqs. (1) and (2) hold, we have

X3 + X4 = X1 + X2 = β

with probability 1, and then P3 + P4 = α∗ holds with probability ←−p . Assuming
that all these events are independent, the probability of the boomerang trail
is PB = −→p ←−p q2. For a random permutation, denote by PR the probability of
P3 + P4 = α∗. If PB > PR, we take P−1

B plaintext pairs (P1, P2) such that
P1 + P2 = α to distinguish E from a random permutation. If the number of
(P3, P4) such that P3 + P4 = α∗ is greater than 0, the distinguishing result is
“E”, otherwise it is “a random permutation”. The distinguisher succeeds if there
is one plaintext pair following the boomerang trail, of which the probability is
1 − (1 − PB)P −1

B ≈ 1 − e−1 ≈ 63%.
Sandwich Attack. To further study the dependence and the connectivity of
upper and lower differentials in the boomerang attack, Dunkelman et al. [20]
proposed the sandwich attack. As is shown in the right of Fig. 1, the cipher E is
split into three parts E = E1 ◦ Em ◦ E0, and the connection probability r of Em

is introduced:

r =
(
E−1

m (Em(X1) + γ) + E−1
m (Em (X1 + β) + γ) = β

)
.

Then the probability of the boomerang trail is PB = −→p ←−p q2r. The connection
probability r can be estimated theoretically and experimentally. In [14], Cid et
al. used the Boomerang Connectivity Table (BCT) to analyze the case where
Em is a single S-Box layer. In [17,33,36], researchers studied the case where
Em is composed of several rounds. In [37], Yang et al. introduced the Double
Boomerang Connectivity Table (DBCT) and showed that the relation between
neighboring rounds cannot be ignored.
Retracing Boomerang Attack. In EUROCRYPT 2020, Dunkelman et al.
[19] changed the way of generating ciphertext pairs in boomerang attacks and
presented the retracing boomerang attack. Instead of adding a fixed difference δ
to (C1, C2) to obtain (C3, C4), they constructed (C3, C4) depended on (C1, C2)
such that if (C1, C2) follows the differential trail for E1, (C3, C4) follows it too.
This reduces the boomerang probability by a factor of q, from −→p ←−p q2r to −→p ←−p qr.
Truncated Boomerang Attack. In EUROCRYPT 2023, Bariant et al. [6]
replaced all differential trails in boomerang attacks by truncated differential
trails to propose truncated boomerang attacks. Truncated boomerang attacks
use structures on both plaintext and ciphertext sides, which can reduce the
complexity effectively. Applied to 6-round AES, the truncated boomerang dis-
tinguisher has data and time complexities 287.

2.4 Exchange Attacks

In ASIACRYPT 2019, Bardeh et al. [5] used the 4-round exchange-difference
relation of AES given in [32] to propose exchange attacks and showed the best
5- and 6-round secret-key chosen-plaintext distinguishers for AES. The 4-round

308 X. Yan et al.

exchange-difference relation shows that when exchanging one or more diagonals
of a plaintext pair to obtain another plaintext pair, two corresponding cipher-
text pairs after 4-round AES encryption have the same zero-difference inverse
diagonals. Bardeh et al. analyzed the probability that exchanging one or more
diagonals between a plaintext pair will result in the exchange of diagonals after
one-round AES encryption. Combined 4-round exchange-difference relation with
the probability analysis, Bardeh et al. presented a chosen-plaintext exchange dis-
tinguisher on 5-round AES with complexity 230. The 6-round exchange attack
for AES is a straight-forward extension of 5-round attack by adding one round
at the end and has complexity 288.2.

In decryption direction 4-round exchange-difference relation holds as well by
applying an appropriate exchange operation considering the corresponding lin-
ear layer. In [4], Bardeh transformed the chosen-plaintext exchange attacks into
attacks in the adaptively chosen ciphertexts setting by performing the appro-
priate exchange operation on the ciphertext sides. Besides, Bardeh added the
limitation on ciphertext differences. The 5-round exchange attack in the adap-
tively chosen ciphers setting has data complexity of 239 and time complexity of
235.5, and the 6-round attack has data complexity of 284 and time complexity of
283.

3 The Re-boomerang Distinguisher

In this section, we extend the classical boomerang distinguisher which uses only
one boomerang property to combine two related boomerangs to enhance the
distinguishing effect, which is called the re-boomerang distinguisher. By the
first boomerang, a small target set of plaintext pairs containing one right pair
can be obtained. Then for each pair in the target set, construct its ‘friend pairs’
and input to the second boomerang to distinguish the cipher from a random
permutation. A framework of the re-boomerang distinguisher is given in Subsect.
3.1. Two exchanged boomerang trails of 6-round AES are introduced in Subsect.
3.2, then the re-boomerang distinguisher for 6-round AES with the complexity
of 282.33 is given in Subsect. 3.3.

3.1 Framework of the Re-boomerang Distinguisher

Assume the cipher E is decomposed as E = E1 ◦ Em ◦ E0, and there exist
two truncated boomerang trails B1 and B2, with probabilities of PB1 and PB2

respectively. For the upper part E0, B1 and B2 have the same truncated dif-
ferential trail in the forward direction Din

E0−−→ Dout, of which the probability
is denoted by −→p . A plaintext pair (P1, P2) is called a right pair if it satisfies
P1 + P2 ∈ Din and E0(P1) + E0(P2) ∈ Dout. Denote by PR1 and PR2 the prob-
abilities that a random pair satisfies the boomerang properties of B1 and B2,
respectively. If PB2 > PR2 , we can use B2 to distinguish the cipher E from a
random permutation with P−1

B2
plaintext pairs. We will show that by the related

boomerang B1 and the technique of ‘friend pairs’, PB2 can be increased by a

The Boomerang Chain Distinguishers: New Record for 6-Round AES 309

factor of −→p −1. Then plaintext pairs needed to distinguish the cipher E will be
reduced to l·−→p ·P−1

B2
, where l is the size of the target set containing one right pair

by the boomerang B1. We need l < −→p −1 in order to ensure l · −→p · P−1
B2

< P−1
B2

.

Fig. 2. Framework of the re-boomerang distinguisher

The framework of the re-boomerang distinguisher is shown in Fig. 2, and
involves the following two steps.

Step 1: Use the boomerang B1 to obtain a target set L of size
l < −→p −1, containing one right pair on average.

Choose P−1
B1

plaintext pairs (P1, P2) such that P1 + P2 ∈ Din. For each pair
perform the first boomerang B1 to obtain the returned plaintext pairs (P3, P4).
If (P3, P4) satisfies the boomerang property of B1, then save the corresponding
(P1, P2) to the target set L. There will exist one right pair saved in L on average.
Since the probability of a random pair satisfying the boomerang property of B1

is PR1 , the expected number of plaintext pairs in L is l = P−1
B1

· (PB1 + PR1) =
1 + P−1

B1
PR1 .

Step 2: For each plaintext pair in L, construct its ‘friend pairs’ and
input to the boomerang B2 to distinguish the cipher.

For each plaintext pair (P1, P2) in the target set L, construct its −→p P−1
B2

‘friend pairs’ (P ′
1, P

′
2) in the following way. For the i-th byte, if P1,i + P2,i �= 0,

then take P ′
1,i = P1,i and P ′

2,i = P2,i; if P1,i + P2,i = 0, then take P ′
1,i = P ′

2,i

for any value except P1,i. Input all l · −→p P−1
B2

pairs to the boomerang B2. If
there is a pair satisfying the boomerang property of B2, then it is the cipher E.
Otherwise, it is a random permutation. Note that in general there is an upper
bound for the number of active bytes of P1 + P2 so that the required −→p P−1

B2

friend pairs can be constructed. For example, if a pair of AES plaintexts (P1, P2)
is active in m bytes, then the number of its all friend pairs is (28 − 1)16−m. To
make (28 − 1)16−m ≥ −→p P−1

B2
, we have m ≤ 16 − 8−1log2

−→p P−1
B2

. ‘Friend pairs’
(P ′

1, P
′
2) have the same truncated differential trail with (P1, P2) in the forward

direction of E0. If (P1, P2) is a right pair, then all its ‘friend pairs’ (P ′
1, P

′
2) are

right pairs. The probability of right pairs satisfying B2 is increased from PB2

to −→p −1PB2 . Since L contains one right pair on average, there will be −→p P−1
B2

right pairs obtained by the construction of ‘friend pairs’. Thus there exists one
pair (P ′

1, P
′
2) satisfying the boomerang property of B2 on average. For a random

permutation, the number of pairs satisfying the boomerang property of B2 is
l · −→p P−1

B2
PR2 < 1.

310 X. Yan et al.

Complexity. The data and time complexities of Step 1 are 4P−1
B1

, which may
be reduced by using plaintext structure. The data and time complexities of Step
2 are 4 · l · −→p P−1

B2
= 4 · (

1 + P−1
B1

PR1

) · −→p P−1
B2

.

3.2 Exchanged Boomerangs for 6-Round AES

We combine the truncated boomerang [6] with exchange technique [4,5] to con-
struct new boomerangs, and present two boomerang trails of 6-round AES which
will be used in the re-boomerang distinguisher. Decompose 6-round AES as three
parts E1 ◦ Em ◦ E0, where

E0 = SR ◦ SB ◦ AK ◦ MC ◦ SR ◦ SB ◦ AK ◦ MC ◦ SR ◦ SB ◦ AK

is the upper 2.5 rounds before MC of the third round,

Em = AK ◦ MC ◦ SR ◦ SB ◦ AK ◦ MC

is the middle 1.5 rounds, and

E1 = AK ◦ SR ◦ SB ◦ AK ◦ MC ◦ SR ◦ SB

is the final 2 rounds, as shown in Fig. 3. Let (P1, P2) be a pair of plaintexts and
(C1, C2) the corresponding ciphertexts encrypted by 6-round AES. Denote by
(Cj

3 , C
j
4), 1 ≤ j ≤ 4, ciphertext pairs generated from (C1, C2), and (P j

3 , P j
4) their

corresponding plaintext pairs. Denote by X the intermediate state after E0, and
Y the intermediate state after Em.

Fig. 3. Exchanged boomerang for 6-round AES

The Boomerang Chain Distinguishers: New Record for 6-Round AES 311

Truncated Boomerang for E0. In the forward direction, let Din be the input
truncated difference, and Dout the output truncated difference of E0. Denote
by −→p the probability of Din

E0−−→ Dout. In the backward direction we consider a
different truncated difference D∗

in for returned plaintext pairs and denote by ←−p
the probability of Dout

E−1
0−−−→ D∗

in.
Exchange Ciphertexts in E1. We exchange the inverse diagonal of cipher-
text pairs so that the probability q = 1 for E1. Choose ciphertext pair (C1, C2)
such that C1 + C2 has t inactive inverse diagonals, t = 0 or 1, where the prob-
ability is

(
4
t

)
2−32t. Then exchange one active inverse diagonal of (C1, C2) to

obtain 4 − t ciphertext pairs (Cj
3 , C

j
4), j ∈ {1, 2, ..., 4 − t}. Note that E1 can

be seen as four super S-boxes applied in parallel. If (Cj
3 , C

j
4) is obtained by

exchanging SR(Col(i)) of (C1, C2), then (Y j
3 , Y j

4) can be regarded as exchang-
ing SR−1(Col(i)) of (Y1, Y2), 0 ≤ i ≤ 3, and Y j

3 + Y j
4 have the same t inactive

diagonals as Y1 + Y2, j ∈ {1, 2, ..., 4 − t}.
Connection Probability for Em. The connection probability r is the proba-
bility that there exists j ∈ {1, 2, ..., 4 − t} such that Xj

3 + Xj
4 ∈ Dout. Theorem

1 gives the lower bound of r, and its proof is shown in Appendix.

Theorem 1. Let Em and Dout be defined as above, (X1,X2) an input pair of
Em such that X1 + X2 ∈ Dout, and (Y1, Y2) the corresponding output pair such
that Y1 + Y2 is inactive in t diagonals, t = 0 or 1. Let (Y j

3 , Y j
4) be the pairs

by exchanging one active diagonal of (Y1, Y2), and (Xj
3 ,X

j
4) the corresponding

output pairs after E−1
m , j ∈ {1, 2, ..., 4 − t}. Then the probability r that there

exists j ∈ {1, 2, ..., 4 − t} such that Xj
3 + Xj

4 ∈ Dout satisfies

r ≥ (4 − t) ·
3∑

d=1

(
4
d

)

· (2−8)4+(2−t)·d.

The process of the exchanged boomerang is as follows:

1. Choose plaintext pairs (P1, P2) such that P1 + P2 ∈ Din, and ask for the
corresponding ciphertext pairs (C1, C2).

2. Filter the ciphertext pairs (C1, C2) such that C1 + C2 is inactive in t inverse
diagonals, and then exchange one active inverse diagonal of (C1, C2) to obtain
4 − t ciphertext pairs (Cj

3 , C
j
4), 0 ≤ t ≤ 1, j ∈ {1, 2, ..., 4 − t}.

3. Ask for the decryption of (Cj
3 , C

j
4) to obtain returned plaintext pairs (P j

3 , P j
4),

and check whether there exists j ∈ {1, 2, ..., 4 − t} such that P j
3 + P j

4 ∈ D∗
in.

The probability of the exchanged boomerang is PB = −→p ←−p r · (4t
)
2−32t, where

−→p is the probability of Din
E0−−→ Dout, ←−p is the probability of Dout

E−1
0−−−→ D∗

in, r
is the connection probability of Em, and

(
4
t

)
2−32t is the probability that C1 +C2

is inactive in t inverse diagonals, 0 ≤ t ≤ 1. The following are two exchanged
boomerang trails of 6-round AES, which will be used in the re-boomerang dis-
tinguisher.

312 X. Yan et al.

The First Boomerang Trail B1. For the upper part E0, the input truncated
difference Din is active only in SR−1(Col(0)), the output truncated difference
Dout is active in only one inverse diagonal, and the truncated difference for
returned plaintext pairs D∗

in is active in only two diagonals, as shown in Fig. 4.
The probability of Din

E0−−→ Dout is −→p = 4 × 2−24 = 2−22, since it holds if and
only if the difference before MC of the first round is active in only one byte.

The probability of Dout
E−1

0−−−→ D∗
in is ←−p = 6 × 2−16 = 2−13.42, since it holds if

and only if the difference before MC−1 of the second round is active in only
two bytes. For the lower part E1, the trail in the backward direction is shown in
Fig. 5. We filter ciphertext pairs (C1, C2) such that C1 + C2 have t = 1 inactive
inverse diagonal, of which the probability is

(
4
t

)
2−32t = 4 × 2−32 = 2−30, and

then exchange one of the other three inverse diagonals of (C1, C2) to obtain
ciphertext pairs (Cj

3 , C
j
4), j ∈ {1, 2, 3}. For the middle part Em, we have r ≥

(4 − t) · ∑3
d=1

(
4
d

) · (2−8)4+(2−t)·d ≈ 2−36.42 from Theorem 1. The probability of
the first boomerang trail B1 is PB1 = −→p ←−p r · (

4
t

)
2−32t ≈ 2−101.84.

Fig. 4. The truncated boomerang for E0 in the first boomerang

Fig. 5. The trail for E1 in the first boomerang

The Second Boomerang Trail B2. For the upper part E0, the truncated
differences Din and Dout are the same as them in the first boomerang trail B1,

The Boomerang Chain Distinguishers: New Record for 6-Round AES 313

and the probability of Din
E0−−→ Dout is −→p = 2−22. The truncated difference for

returned pairs D∗
in is active in only one diagonal. The probability of Dout

E−1
0−−−→

D∗
in is ←−p = 4 × 2−24 = 2−22, since it holds if and only if the difference before

MC−1 of the second round is active in only one byte. For the lower part E1,
we take t = 0. For each (C1, C2), exchange one active inverse diagonal to obtain
ciphertext pairs (Cj

3 , C
j
4), j ∈ {1, 2, 3, 4}. For the middle part Em, we have

r ≥ (4 − t) · ∑3
d=1

(
4
d

) · (2−8)4+(2−t)·d ≈ 2−44 from Theorem 1. The probability
of the second boomerang trail B2 is PB2 = −→p ←−p r ≈ 2−88.
Experimental Verification. We mounted an experiment to verify the connec-
tion probability r in the second boomerang trail B2. Randomly take 3 × 245

pairs of states (X1,X2) such that X1 + X2 are active in SR(Col(0)). Calculate
Y1 = Em(X1) and Y2 = Em(X2) and exchange one active diagonal of (Y1, Y2)
to obtain (Y j

3 , Y j
4), j ∈ {1, 2, 3, 4}. Calculate Xj

3 = E−1
m (Y j

3), Xj
4 = E−1

m (Y j
4)

and check whether Xj
3 + Xj

4 = X1 + X2 holds. There exist 6 pairs satisfying the
condition, so the experimental probability of r is 2−44, which matches the the-
oretical estimation. The program is written in C++ including the Intel AES-NI
instruction set, which is partitioned to 24 subprograms and was performed on
PC about 36 days. The CPU is Intel(R) Core(TM) i7-9700@3.00 GHz and the
RAM is 32 GB.

3.3 The Re-boomerang Distinguisher for 6-Round AES

We show the detailed process of re-boomerang distinguisher for 6-round AES in
this subsection. The distinguisher has the data complexity and time complexity
of 282.33 and success probability 64%.

For the first boomerang B1, we need (PB1)
−1 ≈ 2101.84 plaintext pairs to

obtain a target set L containing one right pair. Choosing 238.84 plaintext struc-
tures in which the four bytes in SR−1(Col(0)) take all possible values and the rest
bytes are any constants, we can obtain 238.84×232×231 = 2101.84 plaintext pairs.
Note that B1 requires that C1 + C2 is inactive in one inverse diagonal and there
exists a returned pair (P3, P4) active in only two diagonals. The probability for
a random pair satisfying the requirement is PR1 = 2−30 ×3×6×2−64 ≈ 2−89.84.
So the number of plaintext pairs (P1, P2) in L is l = 1 + P−1

B1
PR1 ≈ 1 + 212. For

each pair (P1, P2) in L, we construct its −→p P−1
B2

= 2−22 × 288 = 266 ‘friend pairs’
(P ′

1, P
′
2). Then the number of pairs inputted to B2 is l · 266 ≈ 278. For 6-round

AES, there exists one pair satisfying B2. The probability of a random pair sat-
isfying the boomerang property of B2 is PR2 = 4 × 4 × 2−96 = 2−92. So for a
random permutation, there are 278 × 2−92 = 2−14 < 1 pairs satisfying B2. The
re-boomerang distinguisher for 6-round AES is as follows, and the pseudocode
is given in Algorithm 1.

1. Choose 238.84 plaintext structures of size 232 in which the four bytes in
SR−1(Col(0)) take all possible values and the rest bytes are any constants,
and ask for the corresponding ciphertexts.

314 X. Yan et al.

2. For each structure, insert 232 ciphertexts into a hash table indexed by
SR(Col(i)), and extract all ciphertext pairs (C1, C2) such that (C1 +
C2)SR(Col(i)) = 0, i = 0, 1, 2, 3.

3. For each j ∈ {0, 1, 2, 3} \ i, exchange the j-th inverse diagonal of (C1, C2) to
obtain (C3, C4), and ask for the decryption of (C3, C4) to obtain (P3, P4). If
there exists one (P3, P4) such that P3 +P4 is active in only two diagonals, we
store the corresponding plaintext pairs (P1, P2) to the set L.

4. For each (P1, P2) in L, construct 266 ‘friend pairs’ (P ′
1, P

′
2) such that

P ′
1,SR−1(Col(0))=P1,SR−1(Col(0)), P ′

2,SR−1(Col(0))=P2,SR−1(Col(0)), and in the
other bytes P ′

1 and P ′
2 take any equal values except the value of P1. Ask

for the encryption of (P ′
1, P

′
2) to obtain (C ′

1, C
′
2).

5. Filter (C ′
1, C

′
2) such that C ′

1 + C ′
2 are active in four inverse diagonals. For

each (C ′
1, C

′
2) and each j ∈ {0, 1, 2, 3}, we exchange the j-th inverse diago-

nal of (C ′
1, C

′
2) to obtain (C ′

3, C
′
4), and decrypt (C ′

3, C
′
4) to obtain (P ′

3, P
′
4).

If there exists one pair (P ′
3, P

′
4) such that P ′

3 + P ′
4 is active in only one diag-

onal, the distinguishing result is “6-round AES”, otherwise it is “a random
permutation”.

Complexity Analysis. In step 1, we need 238.84×232 = 270.84 chosen plaintexts.
In step 2, the time complexity is 238.84 × 232 × 4 + 238.84 × 263 × 2−30 ≈ 273.42

memory accesses, and the number of (C1, C2) which are inactive in one inverse
diagonal is 238.84 × 263 × 2−30 = 271.84. In step 3 we need 271.84 × 3 × 2 ≈ 274.42

adaptively chosen ciphertexts. In step 4, we need (1 + 212) × 266 × 2 ≈ 279

adaptively chosen plaintexts. In step 5, filtering (C ′
1, C

′
2) needs (1+212)×266×4 ≈

280 comparisons. The probability that a pair (C ′
1, C

′
2) is active in four inverse

diagonals is (1−2−32)4, which is close to 1, then we need (1+212)×266×4×2 ≈ 281

adaptively chosen ciphertexts. Therefore, the data complexity of a distinguishing
process is 270.84 CP +274.42 ACC +279 ACP +281 ACC ≈ 281.33 ACPC, and the
time complexity is 281.33.

The distinguisher succeeds if two boomerangs B1 and B2 are both satisfied.
The probability of B1 being satisfied is

ps1 = 1 − (1 − PB1)
P −1

B1 ≈ 1 − e−1,

and the probability of B2 being satisfied is

ps2 = 1 − (1 − −→p −1PB2)
−→p P −1

B2 ≈ 1 − e−1.

Then the success probability of a re-boomerang distinguisher is ps1 · ps2 ≈
(1−e−1)2 ≈ 40%. To improve the success probability, we can repeat this process
twice. Once there exists one output result of “6-round AES”, the final distin-
guishing result is “6-round AES”. In this way the success probability of the
distinguisher can be improved to Ps = 1− (1−ps1 ·ps2)2 ≈ 64%. Then the total
data and time complexities of the distinguisher are both 281.33 × 2 = 282.33. The
type-II error probability (the probability to wrongfully accept a random per-
mutation as 6-round AES) is the probability that there exists one pair (P ′

1, P
′
2)

The Boomerang Chain Distinguishers: New Record for 6-Round AES 315

Algorithm 1: The re-boomerang distinguisher for 6-round AES
/* the re-boomerang process is repeated 2 times */
for 1 ≤ t ≤ 2 do

/* the first boomerang begins */
Ask for the encryption of 238.84 plaintext structures in which the four bytes
in SR−1(Col(0)) take all possible values and the rest bytes are any
constants;
for each plaintext structure do

for each i ∈ {0, 1, 2, 3} do
Insert 232 ciphertexts C into a hash table indexed by CSR(Col(i));
for each ciphertext pair (C1, C2) such that (C1 + C2)SR(Col(i)) = 0
do

Exchange the j-th inverse diagonal of (C1, C2) to obtain 3 pairs
(C3, C4), j ∈ {0, 1, 2, 3} \ i;
Decrypt 3 pairs (C3, C4) to obtain 3 pairs (P3, P4);
if there exists one (P3, P4) such that P3 + P4 is active in only
two diagonals then

Save the corresponding (P1, P2) to the set L.
end

end

end

end
/* the second boomerang begins */
for each plaintext pair (P1, P2) in L do

for 1 ≤ k ≤ 266 do
Construct one ‘friend pair’ (P ′

1, P
′
2) of (P1, P2);

Ask for the encryption of (P ′
1, P

′
2) to obtain (C′

1, C
′
2);

Exchange one active inverse diagonal of (C′
1, C

′
2) to obtain 4 pairs

(C′
3, C

′
4);

Decrypt 4 pairs (C′
3, C

′
4) to obtain 4 pairs (P ′

3, P
′
4);

if there exists one (P ′
3, P

′
4) such that P ′

3 + P ′
4 is active in only one

diagonal then
Return: This is 6-round AES.

end

end

end

end
Return: This is a random permutation.

satisfying the boomerang property of B2, which is

1 − (1 − 2−92)2
78×2 ≈ 1 − e−2−13 ≈ 2−13.

4 The Boomerang Chain Distinguishers

In this section, We improve the re-boomerang distinguisher by inserting a new
boomerang trail Bm of 6-round AES in the middle of B1 and B2, and repeating

316 X. Yan et al.

it to form the boomerang chain distinguisher. After obtaining the target set L
of plaintext pairs by B1, we use Bm to filter the wrong pairs in L gradually.
Then the input data of B2 is reduced and the complexity is improved. The triple
boomerangs distinguisher, which is the simplest boomerang chain distinguisher,
is presented in Subsect. 4.1. The general boomerang chain distinguisher is intro-
duced in Subsect. 4.2. We give a 6-round distinguisher with success probability
60% and complexity 276.57. This is a new record in distinguishers on 6-round
AES.

4.1 The Triple Boomerangs Distinguisher

The Middle Boomerang Trail Bm. For the upper part E0, the truncated
boomerang trail of Bm is the same as it in B1. For the middle part Em and
lower part E1, the trail of Bm is the same as it in B2. The probability of Bm is
PBm

= −→p ←−p r ≈ 2−22 × 2−13.42 × 2−44 = 2−79.42.
We insert Bm between B1 and B2 to obtain the triple boomerangs distin-

guisher for 6-round AES, as shown in Fig. 6. The pseudocode is given in Algo-
rithm 2.

Fig. 6. Framework of the triple boomerangs distinguisher

For each plaintext pair (P1, P2) in L, construct its −→p P−1
Bm

= 257.42 ‘friend
pairs’ (P ′

1, P
′
2) as the input of Bm and perform the middle boomerang to obtain

returned plaintext pairs (P ′
3, P

′
4). For one plaintext pair (P ′

1, P
′
2) there are 4

returned pairs (P ′
3, P

′
4). If there is no (P ′

3, P
′
4) which is active in only two diago-

nals, we delete the corresponding plaintext pair (P1, P2) from the set L. When
(P1, P2) is a right pair, its ‘friend pairs’ (P ′

1, P
′
2) are all right pairs, and among

these ‘friend pairs’ the probability of the middle boomerang trail Bm is increased
by a factor of −→p = 2−22, from PBm

= 2−79.42 to −→p −1PBm
= 2−57.42. Then for

the right pair (P1, P2), there exists one ‘friend pairs’ following Bm on aver-
age and the right pair will be kept in L. The probability of a random pair
satisfying the boomerang property of Bm is PRm

= 4 × 6 × 2−64 ≈ 2−59.42.
When (P1, P2) is a wrong pair, the expected number of (P ′

3, P
′
4) active in

only two diagonals is 257.42 × 2−59.42 = 2−2 < 1, then some wrong pairs
will be filtered. A wrong pair (P1, P2) will be kept in L with probability

The Boomerang Chain Distinguishers: New Record for 6-Round AES 317

1 − (1 − 2−59.42)2
57.42 ≈ 1 − e−2−2 ≈ 2−2.18, then after the middle boomerang

Bm the size of L is l = 1 + 212 × 2−2.18 = 1 + 29.82.
To further improve the filtering probability of Bm, we increase the number of

‘friend pairs’ (P ′
1, P

′
2) constructed in the middle boomerang. For each plaintext

pair (P1, P2) in L, construct n · (−→p P−1
Bm

)
= 257.42n ‘friend pairs’ (P ′

1, P
′
2) and

perform the middle boomerang to obtain returned plaintext pairs (P ′
3, P

′
4), n ≥ 1.

If the number of pairs (P ′
3, P

′
4) active in only two diagonals is less than n, we

delete the corresponding plaintext pair (P1, P2) from the target set L. For the
right pair (P1, P2), the probability that a returned pair (P ′

3, P
′
4) is active in two

diagonals is 2−57.42 +2−59.42 = 2−57.10. Since 257.42n · 2−57.10 ≈ 1.25n > n, then
the right pair will be kept. For a wrong pair (P1, P2), the expected number of
returned pairs (P ′

3, P
′
4) active in two diagonals is 257.42n · 2−59.42 = 0.25n < n.

A wrong pair (P1, P2) will be kept in L with probability

pf (n) = 1 −
n−1∑

k=0

(
257.42n

k

)

· (2−59.42)k · (1 − 2−59.42)2
57.42n−k. (3)

Then after filtering the size of L is 1 + 212pf (n).
The middle boomerang process is as follows, which can be inserted between

step 3 and step 4 of the re-boomerang process in Subsect. 3.3 to obtain the triple
boomerangs distinguisher.

1. For each plaintext pair (P1, P2) in L, construct its 257.42n ‘friend pairs’
(P ′

1, P
′
2), and ask for the encryption of (P ′

1, P
′
2) to obtain (C ′

1, C
′
2).

2. For each j ∈ {0, 1, 2, 3}, exchange the j-th inverse diagonal of (C ′
1, C

′
2) to

obtain (C ′
3, C

′
4), and ask for the decryption of (C ′

3, C
′
4) to obtain (P ′

3, P
′
4). If

the number of (P ′
3, P

′
4) active in only two diagonals is less than n, we delete

the corresponding plaintext pair (P1, P2) from L.

Complexity Analysis. We recall that the data complexity of the first
boomerang is D1 = 271.84+274.42 ≈ 274.64. In the middle boomerang process, the
data complexity is D2 = (1+212) ·257.42n ·2 · (1+4) ≈ 272.74n. After the middle
boomerang process, the number of plaintext pairs in L is 1+212pf (n). Then the
complexity of the second boomerang is D3 =

(
1 + 212pf (n)

) · 266 · 2 · (1 + 4) ≈(
1 + 212pf (n)

) · 269.32. The time and data complexities of the triple boomerangs
distinguishing process is T = D = D1 + D2 + D3. The triple boomerangs pro-
cess can distinguish 6-round AES successfully if the boomerangs B1, Bm and B2

are all satisfied. B1 and B2 are satisfied with probabilities ps1 ≈ 1 − e−1 and
ps2 ≈ 1− e−1 respectively. The probability that Bm is satisfied with probability

psm(n) = 1 −
n−1∑

k=0

(
257.42n

k

)

· (2−57.10)k · (1 − 2−57.10)2
57.42n−k. (4)

The success probability of the triple boomerangs process is ps1·psm(n)·ps2 ≈ (1−
e−1)2 ·psm(n) ≤ (1−e−1)2 ≈ 40%. To improve the success probability, we repeat
the triple boomerangs process several times in a distinguisher. Once there exists

318 X. Yan et al.

one output of “6-round AES”, the final distinguishing result is “6-round AES”.
Denote by w the number of times the triple boomerangs process is repeated in a
distinguisher. The time and data complexities of the distinguisher are T = D =
w · (D1 + D2 + D3). The success probability of the distinguisher is

Ps = 1 −
[
1 − (

1 − e−1
)2 · psm(n)

]w

,

where psm(n) is given by Eqs. (4). When the triple boomerangs process is
repeated w times, the number of input plaintext pairs (P ′

1, P
′
2) in the second

boomerang is w · (
1 + 212pf (n)

) · 266 totally. The type-II error probability of
the triple boomerang distinguisher is the probability that there exists one pair
(P ′

1, P
′
2) satisfying the boomerang property of B2, which is

1 − (1 − 2−92)w·(1+212pf (n))·266 < 1 − (
1 − 2−92

)278w ≈ 1 − e−2−14w.

In general, we have w < 6, then the type-II error probability can be ignored.
For n = 1, 2, ..., 16, we calculate the values of w such that the correspond-

ing success probability Ps > 60%, and the data and time complexities by PC
program. The results are shown in Table 2. When n = 6, we repeat the triple
boomerangs process 3 times to obtain the distinguisher with data and time com-
plexities of 277.82, and the success probability Ps = 66%.

Table 2. The parameter w, complexities and success probability of the triple
boomerangs distinguisher

n w D = T Success Probability n w D = T Success Probability

1 3 280.81 63% 2 3 279.65 63%

3 3 278.79 64% 4 3 278.21 65%

5 3 277.91 65% 6 3 277.82 66%

7 3 277.83 67% 8 3 277.90 67%

9 3 278.00 68% 10 3 278.10 68%

11 3 278.20 69% 12 3 278.28 69%

13 3 278.37 70% 14 3 278.46 70%

15 3 278.54 71% 16 3 278.61 71%

4.2 The General Boomerang Chain Distinguisher

We extend the triple boomerangs distinguisher to the general boomerang chain
distinguisher by the following improvements.

- The middle boomerang trail Bm is repeated several times in the middle so
that the size of the target set L can be further reduced and the complexity can
be improved.

The Boomerang Chain Distinguishers: New Record for 6-Round AES 319

Algorithm 2: The triple boomerangs distinguisher for 6-round AES
Determine the parameter n;
Determine the parameter w, w ≥ 1;
/* the triple boomerangs process is repeated w times */
for 1 ≤ t ≤ w do

/* the first boomerang begins */
Ask for the encryption of 238.84 plaintext structures in which the four bytes in

SR−1(Col(0)) take all possible values and the rest bytes are any constants;
for each plaintext structure do

for each i ∈ {0, 1, 2, 3} do
Insert 232 ciphertexts C into a hash table indexed by CSR(Col(i));

for each ciphertext pair (C1, C2) such that (C1 + C2)SR(Col(i)) = 0 do
Exchange the j-th inverse diagonal of (C1, C2) to obtain 3 pairs
(C3, C4), j ∈ {0, 1, 2, 3} \ i;
Decrypt 3 pairs (C3, C4) to obtain 3 pairs (P3, P4);
if there exists one (P3, P4) such that P3 + P4 is active in only two
diagonals then

Save the corresponding (P1, P2) to the set L.
end

end

end

end
/* the middle boomerang begins */
for each plaintext pair (P1, P2) in L do

for 1 ≤ k ≤ 257.42n do
Construct one ‘friend pair’ (P ′

1, P
′
2) of (P1, P2);

Ask for the encryption of (P ′
1, P

′
2) to obtain (C′

1, C
′
2);

Exchange one active inverse diagonal of (C′
1, C

′
2) to obtain 4 pairs (C′

3,
C′

4);
Decrypt 4 pairs (C′

3, C
′
4) to obtain 4 pairs (P ′

3, P
′
4);

end
if the total number of (P ′

3, P
′
4) active in only two diagonals is less than n then

Delete the corresponding plaintext pair (P1, P2) from the set L.
end

end
/* the second boomerang begins */
for each plaintext pair (P1, P2) in L do

for 1 ≤ k ≤ 266 do
Construct one ‘friend pair’ (P ′

1, P
′
2) of (P1, P2);

Ask for the encryption of (P ′
1, P

′
2) to obtain (C′

1, C
′
2);

Exchange one active inverse diagonal of (C′
1, C

′
2) to obtain 4 pairs (C′

3,
C′

4);
Decrypt 4 pairs (C′

3, C
′
4) to obtain 4 pairs (P ′

3, P
′
4);

if there exists one (P ′
3, P

′
4) such that P ′

3 + P ′
4 is active in only one

diagonal then
Return: This is 6-round AES.

end

end

end

end
Return: This is a random permutation.

320 X. Yan et al.

- Besides middle boomerangs, we increase the data size in the first and second
boomerangs B1 and B2 to increase the success probability of the distinguisher.

The framework of the general boomerang chain distinguisher is shown in
Fig. 7. Denote by s the number of times Bm is repeated, then a boomerang
chain consists of s+2 boomerang trails, starting from B1, repeating Bm s times,
and ending with B2. The boomerang chain distinguisher contains the following
steps and the pseudocode is given in Algorithm 3.

Fig. 7. Framework of the general boomerang chain distinguisher

1. Choose 238.84n1 plaintext structures to form 2101.84n1 plaintext pairs and
perform the first boomerang B1. Then we obtain the target set L of size
(1+212)n1. The probability ps1 that there exists one plaintext pair following
B1 is increased from 1 − e−1 to 1 − (1 − PB1)

P −1
B1

n1 ≈ 1 − e−n1 . The data
complexity of this step is D1 = 271.84n1 + 274.42n1 ≈ 274.64n1.

2. For each plaintext pair in L construct its 257.42n2 ‘friend pairs’ and
perform the middle boomerang Bm. Then the size of L is reduced to(
1 + 212pf (n2)

)
n1, where pf (n) is given by Eqs. (3). The right pair will

be kept in L with probability psm(n2), where psm(n) is given by Eqs. (4).
The data complexity of this step is D2 = (1 + 212) n1·257.42n2·2 · (1 + 4) ≈
260.74n1n2 · (

1 + 212
)
.

3. When 3 ≤ i ≤ s + 1, for each plaintext pair in L construct its 257.42ni

‘friend pairs’ and perform the middle boomerang Bm. Then the size of
L is reduced to

(
1 + 212pf (n2)pf (n3) · · · pf (ni)

)
n1. The right pair will be

kept in L with probability psm(ni). The data complexity of this step is
Di = (1 + 212pf (n2)pf (n3) · · · pf (ni−1)) n1·257.42ni·2 · (1 + 4) ≈ 260.74n1ni ·(
1 + 212pf (n2)pf (n3) · · · pf (ni−1)

)
.

The Boomerang Chain Distinguishers: New Record for 6-Round AES 321

4. For each plaintext pair in L, construct 266ns+2 ‘friend pairs’ and per-
form the second boomerang B2 to distinguish 6-round AES. The prob-
ability ps2 that B2 is satisfied is increased from 1 − e−1 to 1 −
(1 − −→p −1PB2)

−→p P −1
B2

ns+2 ≈ 1 − e−ns+2 . The data complexity of this step
is Ds+2 = (1 + 212pf (n2)pf (n3) · · · pf (ns+1))n1·266ns+2·2 · (1 + 4) ≈
269.32n1ns+2 · (

1 + 212pf (n2)pf (n3) · · · pf (ns+1)
)
.

The data and time complexities of the boomerang chain distinguishing pro-
cess are T = D =

∑s+2
i=1 Di, and the success probability is ps1 · psm(n2) ·

psm(n3) · · · psm(ns+1) · ps2. Besides using more data in each boomerang, we
also consider repeating the boomerang chain process several times to increase
the success probability of attacks. Denote that the boomerang chain process is
repeated w times to form a distinguisher. The time and data complexities of
the distinguisher are T = D = w · ∑s+2

i=1 Di. The success probability of the
distinguisher is

Ps = 1 − [1 − ps1 · psm(n2) · psm(n3) · · · psm(ns+1) · ps2]
w

,

where psm(n) is given by Eqs. (4). We can obtain that the type-II error proba-
bility can be ignored from a similar analysis with Subsect. 4.1.

When s = 1, 2, 3, 4 and ni = 1, 2, ..., 128, 1 ≤ i ≤ s+2, we calculate the times
w the boomerang chain process is repeated such that the success probability
Ps ≥ 60%, and the data and time complexities by PC program. Table 3 shows the
lowest complexities of the distinguishers as well as the corresponding parameters
n1, n2, ..., ns+2, w and the success probability Ps for s = 1, 2, 3, 4. When s = 2,
n1 = 1, n2 = 2, n3 = 13 and n4 = 5, the boomerang chain process is repeated
w = 2 times to form the distinguisher, the data and time complexities of the
distinguisher are 276.57, and the corresponding success probability Ps = 60%.

Table 3. The parameters n1, n2, ..., ns+2, w, complexities and success probability of
the boomerang chain distinguisher

s n1, n2, ..., ns+2 w D = T Success Probability

1 1,7,2 2 277.36 66%

2 1,2,13,5 2 276.57 60%

3 1,2,15,110,4 2 276.59 60%

4 1,2,14,116,122,5 2 276.60 60%

Experimental Simulation on Small-Scale AES. To verify our boomerang
chain technique, we mounted an experiment to the small-scale variant of AES
with 64-bit block proposed in [15]. For 6-round small-scale AES, the probabil-
ities of B1, Bm and B2 are PB1 = 2−47.42, PBm

= 2−37.42 and PB2 = 2−42

respectively, and the probability of Din → Dout is −→p = 2−10. We construct
a 6-round boomerang chain distinguisher with the parameters in the second

322 X. Yan et al.

row of Table 3. The boomerang chain is composed of 4 boomerangs, that is
B1 → Bm → Bm → B2. We take 214.83 plaintext structures in which the four
nibbles in SR−1(Col(0)) take all possible values and the rest nibbles are any
constants. In the 2-nd, 3-rd and 4-th boomerangs, for each pair in the target set
L, 226.42, 229.12 and 232.32 ‘friend pairs’ are constructed respectively. The com-
plexities of four boomerangs are 234.53, 233.82, 234.02 and 235.64 respectively. The
distinguisher is performed twice, then the overall data and time complexities
are both 237.69. We implement 500 experiments for random keys and plain-
text structures. There are 346 results returning “6-round small-scale AES”. The
experimental success probability on small-scale AES is about 69%. The program
is written in C++, which is partitioned to 25 subprograms and was performed
on PC about 10 days.

Key Recovery Attack. Our techniques can be directly used in the key recov-
ery attacks for 6-round AES with the lowest complexity of 278.15, higher than
the previous attacks. It is shown that the advantage of our techniques lies in
distinguishing attacks not key recovery attacks. The key recovery process is as
follows.

1. Execute the distinguishing attack and obtain a quartet (P ′
1, P

′
2, P

′
3, P

′
4) which

satisfies B2, where (P ′
1, P

′
2) is active in the 0-th diagonal SR−1(Col(0)) and

(P ′
3, P

′
4) is active in the i-th diagonal SR−1(Col(i)), 0 ≤ i ≤ 3.

2. Guess and filter K0 according to the fact that the differences of (P ′
1, P

′
2) and

(P ′
3, P

′
4) after MC of the first round are active in one byte. When i = 0, the key

guesses of SR−1(Col(0)) of K0 is reduced from 232 to 232×2−22×2−22 = 2−12

and we obtain the right value of SR−1(Col(0)) of K0. When 1 ≤ i ≤ 3, the key
guesses of SR−1(Col(0, i)) of K0 are both reduced from 232 to 232 × 2−22 =
210.

3. Repeat the above two steps three times so that each diagonal of K0 is guessed
and filtered.

4. We obtain no more than (210)4 = 240 possible values of K0 and check them
by trial encryption.

The Boomerang Chain Distinguisher Without B2. Without B2, we can
also design the 6-round boomerang chain distinguisher only using B1 and Bm.
But the lowest complexity of the distinguisher without B2 is 277.86, which is
higher than the complexity of the distinguisher using B2. Because the power
of Bm to distinguish AES from a random permutation is smaller than B2, we
must increase the input data size of Bm to decrease the type-II error probability
of judging the random permutation as 6-round AES. Here gives a brief intro-
duction of the boomerang chain distinguisher with only B1 and Bm. In such a
distinguisher, B1 is used to generate the target set L, and Bm is repeated several
times to delete wrong pairs in L. By choosing appropriate times of repetition of
Bm and appropriate data size in each boomerang, all wrong pairs in L will be
deleted by Bm. If there is still a plaintext pair left in L, that pair is considered
as a right pair and the distinguishing result is “6-round AES”, otherwise it is
“a random permutation”. Following the parameters above, when s = 1, 2, 3, 4

The Boomerang Chain Distinguishers: New Record for 6-Round AES 323

Algorithm 3: The boomerang chain distinguisher for 6-round AES
Determine the parameter s, s ≥ 1;

Determine the parameters n1, n2, · · · , ns+2;

Determine the parameter w, w ≥ 1;

/* the boomerang chain process is repeated w times */

for 1 ≤ t ≤ w do
/* the first boomerang begins */

Ask for the encryption of 238.84n1 plaintext structures in which the four bytes in

SR−1(Col(0)) take all possible values and the rest bytes are any constants;

for each plaintext structure do

for each i ∈ {0, 1, 2, 3} do

Insert 232 ciphertexts C into a hash table indexed by CSR(Col(i));

for each ciphertext pair (C1, C2) such that (C1 + C2)SR(Col(i)) = 0 do
Exchange the j-th inverse diagonal of (C1, C2) to obtain 3 pairs (C3, C4),

j ∈ {0, 1, 2, 3} \ i;

Decrypt 3 pairs (C3, C4) to obtain 3 pairs (P3, P4);

if there exists one (P3, P4) such that P3 + P4 is active in only two

diagonals then
Save the corresponding (P1, P2) to the set L.

end

end

end

end

/* the middle boomerangs begin */

for 1 ≤ i ≤ s do

for each plaintext pair (P1, P2) in L do

for 1 ≤ k ≤ 257.42ni+1 do
Construct one ‘friend pair’ (P ′

1, P ′
2) of (P1, P2);

Ask for the encryption of (P ′
1, P ′

2) to obtain (C′
1, C′

2);

Exchange one active inverse diagonal of (C′
1, C′

2) to obtain 4 pairs (C′
3,

C′
4);

Decrypt 4 pairs (C′
3, C′

4) to obtain 4 pairs (P ′
3, P ′

4);

end

if the total number of (P ′
3, P ′

4) active in only two diagonals is less than ni+1

then
Delete the corresponding plaintext pair (P1, P2) from L.

end

end

end

/* the second boomerang begins */

for each plaintext pair (P1, P2) in L do

for 1 ≤ k ≤ 266ns+2 do
Construct one ‘friend pair’ (P ′

1, P ′
2) of (P1, P2);

Ask for the encryption of (P ′
1, P ′

2) to obtain (C′
1, C′

2);

Exchange one active inverse diagonal of (C′
1, C′

2) to obtain 4 pairs (C′
3, C′

4);

Decrypt 4 pairs (C′
3, C′

4) to obtain 4 pairs (P ′
3, P ′

4);

if there exists one (P ′
3, P ′

4) such that P ′
3 + P ′

4 is active in only one diagonal

then
Return: This is 6-round AES.

end

end

end

end

Return: This is a random permutation.

324 X. Yan et al.

and ni = 1, 2, ..., 128, 1 ≤ i ≤ s + 1, we calculate the times w the boomerang
chain process without B2 is repeated such that the success probability Ps ≥ 60%
and the type-II error probability is lower than 5%, and the data and time com-
plexities by PC program. For s = 1, there exist no parameters satisfying the
requirement. For s = 2, 3, 4, Table 4 shows the lowest complexities of the distin-
guisher as well as the corresponding parameters n1, n2, ..., ns+1, w, the success
probability Ps and the type-II error probability.

Table 4. The parameters n1, n2, ..., ns+1, w, complexities, success probability and the
type-II error probability of the boomerang chain distinguisher without B2

s n1, n2, ..., ns+1 w D = T Success Probability Type-II Error Probability

2 1,14,1 2 277.86 61% 4%

3 1,14,1,79 2 277.87 60% 4%

4 1,14,1,97,105 2 277.87 60% 4%

5 Conclusion

In this paper, we make use of the advantage of adaptively chosen plaintexts
and ciphertexts setting and propose the re-boomerang and boomerang chain
distinguishers for 6-round AES. We extend the classical boomerang distinguisher
to combine two or more related boomerangs with the technique of ‘friend pairs’ to
enhance the distinguishing effect. The re-boomerang distinguisher for 6-round
AES has the data and time complexities 282.33 and success probability 64%.
The boomerang chain distinguisher has the data and time complexities 276.57

and success probability 60%. Compared with the previous best result, the data
complexity is reduced by a factor of 172, which is a new record for 6-round
distinguisher on AES. The boomerang chain distinguisher is easily generalized to
other AES-like block ciphers. How to combine the boomerang chain with other
cryptanalysis techniques to further improve 6-round distinguishers for AES is
worth studying in the future. It is also an open problem that whether 7-round
AES can be distinguished with the boomerang chain technique.

Appendix: Proof of Theorem 1

The proof is similar with that of Theorem 5 in [5]. Note that Em = AK ◦ MC ◦
SR ◦ SB ◦ AK ◦ MC, (X1,X2) is an input pair such that X1 + X2 ∈ Dout,
and (Y1, Y2) are the corresponding output pair such that Y1 + Y2 is inactive in t
diagonals, t = 0 or 1. (Y j

3 , Y j
4) are the pairs by exchanging one active diagonal of

(Y1, Y2), and (Xj
3 ,X

j
4) are the corresponding pairs after E−1

m , j ∈ {1, 2, ..., 4− t}.
It needs to be proved that the probability r that there exists j ∈ {1, 2, ..., 4 − t}
such that Xj

3 + Xj
4 ∈ Dout satisfies r ≥ (4 − t) · ∑3

d=1

(
4
d

) · (2−8)4+(2−t)·d.

The Boomerang Chain Distinguishers: New Record for 6-Round AES 325

Change the order of SB and SR in Em, as shown in Fig. 8. Denote by Z the
intermediate state after the first MC of Em, and denote by W the intermediate
state before AK ◦MC ◦SB of Em. We consider a special case here. Assume there
exist j ∈ {1, 2, ..., 4−t} and J ⊂ {0, 1, 2, 3} such that (Y j

3 , Y j
4) can be obtained by

exchanging Col(J) of (Y1, Y2). Since the operation AK ◦ MC ◦ SB is applied on
each column independently, then (W j

3 ,W j
4) can be seen the result of exchanging

Col(J) of (W1,W2). After the operation AK−1 ◦ SR−1, (Zj
3 , Z

j
4) is the result of

exchanging SR−1(Col(J)) of (Z1, Z2), which implies that Zj
3 + Zj

4 = Z1 + Z2.

Since MC−1 is linear, we have Xj
3 + Xj

4 = X1 + X2, then Xj
3 + Xj

4 ∈ Dout.
Therefore, the lower bound of the probability r is the probability that there
exist j ∈ {1, 2, ..., 4 − t} and J ⊂ {0, 1, 2, 3} such that (Y j

3 , Y j
4) can be obtained

by exchanging Col(J) of (Y1, Y2).

Fig. 8. The backward trail in Em

In the following we prove that for each j ∈ {1, 2, ..., 4−t} and J ⊂ {0, 1, 2, 3},
the probability that (Y j

3 , Y j
4) can be obtained by exchanging Col(J) of (Y1, Y2)

is
(
2−8

)4+(2−t)|J|. Denote that the i-th diagonal SR−1(Col(i)) of (Y1, Y2) is
exchanged to obtain (Y j

3 , Y j
4), i ∈ {0, 1, 2, 3}. Denote by S the set of all bytes

in
(
SR−1 (Col(i)) ∪ Col(J)

) \ (
SR−1 (Col(i)) ∩ Col(J)

)
and denote by |S| the

number of bytes in S. Since
∣
∣SR−1 (Col(i)) ∩ Col(J)

∣
∣ = |J |, then |SR−1 (Col(i))

∪ Col(J)| = 4 (1 + |J |) − |J | = 4 + 3|J |, and |S| = 4 + 2|J |. When exchanging
SR−1 (Col(i)) results in the exchange of Col(J), 4 + 2|J | bytes in S of Y1 + Y2

need to be all inactive. Since the difference Y1 + Y2 is inactive in t diagonals,
then t · |J | bytes have been inactive among 4 + 2|J | bytes in S. Therefore, the
required probability is

(
2−8

)4+(2−t)|J|
.

Taking all possible j ∈ {1, 2, ..., 4 − t} and J ⊂ {0, 1, 2, 3}, we obtain the
probability r ≥ (4 − t) · ∑3

d=1

(
4
d

) · (2−8)4+(2−t)·d.

References

1. Bao, Z., Guo, C., Guo, J., Song, L.: TNT: How to tweak a block cipher. In: Can-
teaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020, Part II.
Lecture Notes in Computer Science, vol. 12106, pp. 641–673. Springer, Heidelberg,
Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-3-030-
45724-2 22

https://doi.org/10.1007/978-3-030-45724-2_22
https://doi.org/10.1007/978-3-030-45724-2_22

326 X. Yan et al.

2. Bao, Z., Guo, J., List, E.: Extended truncated-differential distinguishers on round-
reduced AES. IACR Transactions on Symmetric Cryptology 2020(3), 197–261
(2020). https://doi.org/10.13154/tosc.v2020.i3.197-261

3. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part II. Lecture Notes in Computer Science, vol. 10992, pp. 185–212. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.
org/10.1007/978-3-319-96881-0 7

4. Bardeh, N.G.: A key-independent distinguisher for 6-round AES in an adaptive
setting. Cryptology ePrint Archive, Report 2019/945 (2019), https://eprint.iacr.
org/2019/945

5. Bardeh, N.G., Rønjom, S.: The exchange attack: How to distinguish six rounds of
AES with 288.2 chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology – ASIACRYPT 2019, Part III. Lecture Notes in Computer Science,
vol. 11923, pp. 347–370. Springer, Heidelberg, Germany, Kobe, Japan (Dec 8–12,
2019). https://doi.org/10.1007/978-3-030-34618-8 12

6. Bariant, A., Leurent, G.: Truncated boomerang attacks and application to AES-
based ciphers. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2023, Part IV. Lecture Notes in Computer Science, vol. 14007, pp. 3–35.
Springer, Heidelberg, Germany, Lyon, France (Apr 23–27, 2023). https://doi.org/
10.1007/978-3-031-30634-1 1

7. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with appli-
cations to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryp-
tology – CRYPTO 2020, Part III. Lecture Notes in Computer Science, vol. 12172,
pp. 329–358. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020). https://doi.org/10.1007/978-3-030-56877-1 12

8. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael (2000), in
third AES Conference

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology – CRYPTO’90. Lec-
ture Notes in Computer Science, vol. 537, pp. 2–21. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 11–15, 1991). https://doi.org/10.1007/3-
540-38424-3 1

10. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dobbertin,
H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard – AES. pp. 11–
15. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/
11506447 2

11. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanal-
ysis of block ciphers. Designs, Codes and Cryptography 70, 369–383 (Mar 2014).
https://doi.org/10.1007/s10623-012-9697-z

12. Boura, C., Canteaut, A., Coggia, D.: A general proof framework for recent AES
distinguishers. IACR Transactions on Symmetric Cryptology 2019(1), 170–191
(2019). https://doi.org/10.13154/tosc.v2019.i1.170-191

13. Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg, A.:
WEM: A new family of white-box block ciphers based on the Even-Mansour con-
struction. In: Handschuh, H. (ed.) Topics in Cryptology – CT-RSA 2017. Lecture
Notes in Computer Science, vol. 10159, pp. 293–308. Springer, Heidelberg, Ger-
many, San Francisco, CA, USA (Feb 14–17, 2017).https://doi.org/10.1007/978-3-
319-52153-4 17

https://doi.org/10.13154/tosc.v2020.i3.197-261
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-319-96881-0_7
https://eprint.iacr.org/2019/945
https://eprint.iacr.org/2019/945
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-031-30634-1_1
https://doi.org/10.1007/978-3-031-30634-1_1
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/11506447_2
https://doi.org/10.1007/11506447_2
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.13154/tosc.v2019.i1.170-191
https://doi.org/10.1007/978-3-319-52153-4_17
https://doi.org/10.1007/978-3-319-52153-4_17

The Boomerang Chain Distinguishers: New Record for 6-Round AES 327

14. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
A new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryp-
tology – EUROCRYPT 2018, Part II. Lecture Notes in Computer Science, vol.
10821, pp. 683–714. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 –
May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8 22

15. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) Fast Software Encryption – FSE 2005. Lecture Notes in
Computer Science, vol. 3557, pp. 145–162. Springer, Heidelberg, Germany, Paris,
France (Feb 21–23, 2005). https://doi.org/10.1007/11502760 10

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, Heidelberg, Germany
(2002). https://doi.org/10.1007/978-3-662-04722-4

17. Delaune, S., Derbez, P., Vavrille, M.: Catching the fastest boomerangs applica-
tion to SKINNY. IACR Transactions on Symmetric Cryptology 2020(4), 104–129
(2020). https://doi.org/10.46586/tosc.v2020.i4.104-129

18. Derbez, P., Fouque, P.A., Jean, J.: Improved key recovery attacks on reduced-round
AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881,
pp. 371–387. Springer, Heidelberg, Germany, Athens, Greece (May 26–30, 2013).
https://doi.org/10.1007/978-3-642-38348-9 23

19. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack.
In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020,
Part I. Lecture Notes in Computer Science, vol. 12105, pp. 280–309. Springer, Hei-
delberg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/
978-3-030-45721-1 11

20. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. Journal of Cryptology
27(4), 824–849 (Oct 2014). https://doi.org/10.1007/s00145-013-9154-9

21. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) Fast Software Encryption
– FSE 2000. Lecture Notes in Computer Science, vol. 1978, pp. 213–230. Springer,
Heidelberg, Germany, New York, NY, USA (Apr 10–12, 2001). https://doi.org/10.
1007/3-540-44706-7 15

22. Fouque, P.A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 159–188.
Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8, 2016). https://doi.org/
10.1007/978-3-662-53887-6 6

23. Grassi, L.: MixColumns properties and attacks on (round-reduced) AES with a
single secret S-box. In: Smart, N.P. (ed.) Topics in Cryptology – CT-RSA 2018.
Lecture Notes in Computer Science, vol. 10808, pp. 243–263. Springer, Heidelberg,
Germany, San Francisco, CA, USA (Apr 16–20, 2018). https://doi.org/10.1007/
978-3-319-76953-0 13

24. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Transactions on Symmetric Cryptology
2018(2), 133–160 (2018). https://doi.org/10.13154/tosc.v2018.i2.133-160

25. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Transactions on Symmetric Cryptology 2016(2), 192–
225 (2016). https://doi.org/10.13154/tosc.v2016.i2.192-225, https://tosc.iacr.org/
index.php/ToSC/article/view/571

https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.46586/tosc.v2020.i4.104-129
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/s00145-013-9154-9
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://tosc.iacr.org/index.php/ToSC/article/view/571
https://tosc.iacr.org/index.php/ToSC/article/view/571

328 X. Yan et al.

26. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EURO-
CRYPT 2017, Part II. Lecture Notes in Computer Science, vol. 10211, pp. 289–317.
Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017). https://doi.
org/10.1007/978-3-319-56614-6 10

27. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impos-
sible differential distinguishers on 5-round AES. In: Cid, C., Jacobson Jr:, M.J.
(eds.) SAC 2018: 25th Annual International Workshop on Selected Areas in Cryp-
tography. Lecture Notes in Computer Science, vol. 11349, pp. 139–162. Springer,
Heidelberg, Germany, Calgary, AB, Canada (Aug 15–17, 2019). https://doi.org/
10.1007/978-3-030-10970-7 7

28. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast
Software Encryption – FSE’94. Lecture Notes in Computer Science, vol. 1008,
pp. 196–211. Springer, Heidelberg, Germany, Leuven, Belgium (Dec 14–16, 1995).
https://doi.org/10.1007/3-540-60590-8 16

29. Leurent, G., Pernot, C.: New representations of the AES key schedule. In: Can-
teaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021,
Part I. Lecture Notes in Computer Science, vol. 12696, pp. 54–84. Springer, Heidel-
berg, Germany, Zagreb, Croatia (Oct 17–21, 2021). https://doi.org/10.1007/978-
3-030-77870-5 3

30. Mondal, S.K., Rahman, M., Sarkar, S., Adhikari, A.: Revisiting yoyo tricks on AES.
IACR Transactions on Symmetric Cryptology 2023(4), 28–57 (2023). https://doi.
org/10.46586/tosc.v2023.i4.28-57

31. Rahman, M., Saha, D., Paul, G.: Boomeyong: Embedding yoyo within boomerang
and its applications to key recovery attacks on AES and Pholkos. IACR Trans-
actions on Symmetric Cryptology 2021(3), 137–169 (2021).https://doi.org/10.
46586/tosc.v2021.i3.137-169

32. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017, Part I. Lec-
ture Notes in Computer Science, vol. 10624, pp. 217–243. Springer, Heidelberg,
Germany, Hong Kong, China (Dec 3–7, 2017).https://doi.org/10.1007/978-3-319-
70694-8 8

33. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. IACR Trans-
actions on Symmetric Cryptology 2019(1), 118–141 (2019). https://doi.org/10.
13154/tosc.v2019.i1.118-141

34. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016,
Part I. Lecture Notes in Computer Science, vol. 9814, pp. 605–624. Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016). https://doi.org/
10.1007/978-3-662-53018-4 22

35. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) Fast Software Encryp-
tion – FSE’99. Lecture Notes in Computer Science, vol. 1636, pp. 156–170.
Springer, Heidelberg, Germany, Rome, Italy (Mar 24–26, 1999). https://doi.org/
10.1007/3-540-48519-8 12

36. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. IACR Transactions on
Symmetric Cryptology 2019(1), 142–169 (2019). https://doi.org/10.13154/tosc.
v2019.i1.142-169

https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.46586/tosc.v2023.i4.28-57
https://doi.org/10.46586/tosc.v2023.i4.28-57
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://doi.org/10.13154/tosc.v2019.i1.142-169

The Boomerang Chain Distinguishers: New Record for 6-Round AES 329

37. Yang, Q., Song, L., Sun, S., Shi, D., Hu, L.: New properties of the double
boomerang connectivity table. IACR Transactions on Symmetric Cryptology
2022(4), 208–242 (2022). https://doi.org/10.46586/tosc.v2022.i4.208-242

38. Zhang, W., Wu, W., Feng, D.: New results on impossible differential cryptanal-
ysis of reduced AES. In: Nam, K.H., Rhee, G. (eds.) ICISC 07: 10th Interna-
tional Conference on Information Security and Cryptology. Lecture Notes in Com-
puter Science, vol. 4817, pp. 239–250. Springer, Heidelberg, Germany, Seoul, Korea
(Nov 29–30, 2007)

https://doi.org/10.46586/tosc.v2022.i4.208-242

Multiple-Tweak Differential Attack
Against SCARF

Christina Boura1(B), Shahram Rasoolzadeh2, Dhiman Saha3,
and Yosuke Todo4(B)

1 IRIF, Université Paris Cité, Paris, France
christina.boura@irif.fr

2 Ruhr University Bochum, Bochum, Germany
shahram.rasoolzadeh@rub.de

3 de.ci.phe.red Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Bhilai, Bhilai 491001, India

dhiman@iitbhilai.ac.in
4 NTT Social Informatics Laboratories, Tokyo, Japan

yosuke.todo@ntt.com

Abstract. In this paper, we present the first third-party cryptanaly-
sis of SCARF, a tweakable low-latency block cipher designed to thwart
contention-based cache attacks through cache randomization. We focus
on multiple-tweak differential attacks, exploiting biases across multiple
tweaks. We establish a theoretical framework explaining biases for any
number of rounds and verify this framework experimentally. Then, we
use these properties to develop a key recovery attack on 7-round SCARF
with a time complexity of 276, achieving a 98.9% success rate in recov-
ering the 240-bit secret key. Additionally, we introduce a distinguishing
attack on the full 8-round SCARF in a multi-key setting, with a com-
plexity of c× 267.55, demonstrating that SCARF does not provide 80-bit
security under these conditions. We also explore whether our approach
could be extended to the single-key model and discuss the implications
of different S-box choices on the attack success.

Keywords: SCARF · cache randomization · low latency · differential
cryptanalysis · multiple-tweak differential attack

1 Introduction

Due to the significant disparity in performance between the CPU and main mem-
ory, a strategy used in modern CPUs is to store frequently accessed data within
fast and compact memory modules, situated physically close to the cores. This
form of memory, referred to as cache, has been the target of several devastating
attacks in recent years. Among these attacks, those known as contention-based,
exploit the internal architecture of caches and are particularly hard to prevent.
A common countermeasure against them consists in randomizing the address-
to-cache-index mapping by some randomization function. Such a function needs
to have extremely low latency while also ensuring security.
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 330–360, 2025.
https://doi.org/10.1007/978-981-96-0941-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_11&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_11

Multiple-Tweak Differential Attack Against SCARF 331

With this objective in mind, Canale et al. designed SCARF in 2023 [11],
the first dedicated cache randomization cipher that achieves low latency and
is cryptographically secure in the cache attacker model. Given its particular
application scenario, SCARF differs significantly from traditional ciphers like
the AES [1], as well as from previous low-latency designs such as PRINCE [9] or
MANTIS [3]. Notably, SCARF is an 8-round tweakable block cipher that operates
on blocks of only 10 bits, whereas traditional block ciphers utilize much larger
blocks. Additionally, it employs a large 240-bit key, which is integrated into
the state within a few rounds through a nonlinear key schedule and a unique
function, i.e., the G function.

A particularly interesting aspect of SCARF, making its security analysis a
very challenging task, is its specific security model. Due to the way SCARF
is meant to be employed, an attacker is able to choose the plaintexts (index
part of the address) and tweaks (tag part of the address) to be encrypted, but
cannot observe the ciphertexts computed. The only information an attacker can
obtain is whether two ciphertexts collide. This led the designers to state a first
security requirement for SCARF: If an attacker queries an oracle with message-
tweak inputs (P1, T1), (P2, T2) and gets as a response 1 if the ciphertext of P1

encrypted with the tweak T1 equals the ciphertext of P2 encrypted with the tweak
T2 and 0 otherwise, he cannot tell if the ciphertexts were produced with SCARF
parametrized with some secret key or by a tweakable random permutation with
the same input/tweak/output lengths to SCARF with at most 240 queries and
at most 280 running time.

The issue with this first security requirement, is that it does not allow crypt-
analysts to use common and well-understood security arguments and techniques
to assess the security of the cipher. For this reason, the designers provided a
second security requirement by observing that whenever two plaintexts P1 and
P2 and two tweaks T1 and T2 lead to the same ciphertext and hence satisfy
ET1(P1) = ET2(P2) then the attacker can learn the evaluation of the function
E−1

T2
◦ET1(P1) = P2 in case of a collision and can learn that E−1

T2
◦ET1(P1) �= P2

otherwise. Therefore, the second security requirement states that an attacker
that asks for the computation of C = E−1

T2
◦ET1(P) for a plaintext P and a pair

of tweaks T1, T2 and that is limited to 240 queries and 280 running time, can-
not tell if the computation was done with SCARF or with a tweakable random
permutation with the same input/tweak/output lengths to SCARF.

The designers of SCARF provided an extended security analysis of ET and
ẼT1,T2 = E−1

T2
◦ET1 against different cryptanalysis techniques such as differential

[6] or linear [16] cryptanalysis. The small block size of SCARF, particularly
facilitates the analysis against those classical attacks, especially statistical ones,
as one can easily study the distribution of the different statistical properties by
simply computing the relevant tables such as the Difference Distribution Table
(DDT), the Linear Approximation Table (LAT) or the Boomerang Connectivity
Table (BCT) [12]. This is not possible for traditional ciphers with larger blocks.
However, the designers’ initial analysis did not identify any distinguishing attack
or key-recovery attack on the full cipher. Among the different techniques against

332 C. Boura et al.

reduced-round versions of SCARF, the ones that were identified by the designers
to be the most promising ones were the multiple-tweak attacks.

The objective of these attacks is to exploit the fact that the block length
of SCARF is smaller than the tweak length and significantly smaller than the
security level. This allows for the potential observation of a bias across multiple
tweaks, indicating a property that occurs with a probability of 1

2n−1 + ε, where
n represents the block size, even if ε is much smaller than 1

2n−1 . The designers of
SCARF analyzed such biases occurring in the case of differential properties. For
example, they observed the existence of multiple-tweak differentials for (5 + 5)-
round SCARF with biases of approximately 2−30, and they also predicted the
existence of multiple-tweak differentials for (6 + 6)-round SCARF with biases
of about 2−40. However, these biases were only determined experimentally or
through analogical reasoning, and no theoretical analysis was provided. Addi-
tionally, the designers did not propose any key recovery procedure based on these
distinguishing properties.

Our Contributions. In this work, we provide the first third-party cryptanal-
ysis of SCARF by focusing on multiple-tweak differential attacks for E−1

T2
◦ ET1 .

We first provide a theoretical framework to explain the biases for any num-
ber of rounds. Our framework is based on an efficient method to compute the
expected differential probability (EDP). We also show that the experimentally
observed biases perfectly match the theoretical analysis for up to 5+5 rounds.
Using these properties as a distinguisher, we present a key recovery attack on
7-round SCARF with a time complexity of 276. This attack allows the recovery
of the 240-bit secret key with a success probability of 98.9%. Next, we provide
a distinguishing attack for the full 8-round SCARF in the multi-key setting.
Our distinguishing attack has a complexity of c × 267.55 for some constant c
and demonstrates that SCARF does not provide 80-bit security in this setting.
Whether our approach leads to a distinguishing attack in the single-key model
is an interesting open question. Answering this requires a deep understanding of
the definition of bit security [17,23,24], which we discuss extensively later in this
work. Finally, we examine the impact of the choice of S-box on this attack and
compare the success of the attack when the actual S-box is replaced by other
relevant permutations.

The rest of the article is organized as follows. In Sect. 2, the specifications of
SCARF and its security requirements are provided together with a brief introduc-
tion to differential cryptanalysis. Section 3 presents in detail the idea of multiple-
tweak differential attacks and discusses different related works. Section 4 is ded-
icated to analyzing the bias theoretically, while Sect. 5 presents our key recovery
on 7-round SCARF. Section 6 discusses multi-key distinguishing attacks on full
SCARF, and finally, Sect. 7 provides an analysis of the impact of the S-box choice
on this attack.

Multiple-Tweak Differential Attack Against SCARF 333

2 Preliminaries

We start this section by first describing SCARF and then discussing its security
requirements as stated by the designers. At the end, we briefly discuss how to
compute the differential probability of a differential transition over several rounds
by recalling notably the notion of excepted differential probability (EDP).

2.1 SCARF

SCARF (Secure CAche Randomization Function) is a tweakable block cipher
designed by Canale, Güneysu, Leander, Thoma, Todo and Ueno [11]. SCARF
was designed to be the first dedicated cache randomization cipher to threaten a
particular class of cache attacks. It processes blocks of 10 bits and uses a 48-bit
tweak and a 240-bit secret key. Its design, composed of a tweakey schedule and
a data encryption part, can be visualised in Fig. 1.

Data Encryption Part. This part takes as input a plaintext block P ∈ F
10
2

and produces a ciphertext block C ∈ F
10
2 by first iterating 7 times a round

function R1 and then applying once a different round function R2, as seen in
Fig. 1. Each round function is parametrized by a 30-bit subkey k generated by
the tweakey schedule.

Fig. 1. The structure of SCARF together with its two round functions R1 and R2.

334 C. Boura et al.

Round Functions. R1 and R2. Both round functions follow a Feistel-like struc-
ture and take as input a 10-bit value x and a 30-bit subkey k. The subkey k can
be seen as a concatenation of six 5-bit values, i.e., k = k6||k5||k4||k3||k2||k1. The
value x is also divided into two 5-bit halves, i.e. x = xL||xR. We further denote
by τi the left rotation of x by i positions, i.e., τi(x) = x ≪ i. The function R1

updates x by applying the following steps:

y = G(xL, k1, k2, k3, k4, k5) ⊕ xR,

xR = S(xL ⊕ k6),
xL = y,

where G is

G(x, k1, k2, k3, k4, k5) =

[
4⊕

i=0

(τi(x) ∧ ki+1)

]
⊕ (τ1(x) ∧ τ2(x))

and S is a 5-bit S-box defined as

S(x) =
(
(τ0(x) ∨ τ1(x)) ∧ (τ3(x) ∨ τ4(x))

)
⊕

(
(τ0(x) ∨ τ2(x)) ∧ (τ2(x) ∨ τ3(x))

)
.

The S-box S was chosen with low-latency criteria in mind by following the
framework of Rasoolzadeh [22]. It has an algebraic degree 4, a differential uni-
formity of 4 and a linearity of 12.

The final round function R2 is very similar to R1. Indeed, the only differences
in R2 is that the order of applying the S-box and the key addition with k6 is
swapped with respect to R1 and the swap of the branches is omitted:

xR = G(xL, k1, k2, k3, k4, k5) ⊕ xR,

xL = S(xL) ⊕ k6.

Both round functions are depicted in Fig. 1.

Tweakey Schedule. The tweakey schedule takes as input a 48-bit tweak T
and a 240-bit secret key K = K1||K2||K3||K4, where Ki ∈ F

60
2 , i = 1, 2, 3, 4

and produces four tweakey values T 1, T 2, T 3, T 4 of 60 bits each by applying the
following algorithm:

T 1 = expansion(T) ⊕ K1,

T 2 = Σ(SL(T 1)) ⊕ K2,

T 3 = SL(π(SL(T 2) ⊕ K3)),

T 4 = SL(Σ(T 3) ⊕ K4).

The role of the expansion function is to extend the 48-bit tweak to a 60-bit
value as follows:

expansion(T) = 0 || T [48] || T [47] || T [46] || T [45] ||
0 || T [44] || T [43] || T [42] || T [41] || · · · ||
0 || T [4] || T [3] || T [2] || T [1].

Multiple-Tweak Differential Attack Against SCARF 335

The function Σ is a linear function defined as

Σ(x) = x ⊕ τ6(x) ⊕ τ12(x) ⊕ τ19(x) ⊕ τ29(x) ⊕ τ43(x) ⊕ τ51(x).

The function SL is just the application six times in parallel of the S-box S defined
above. Finally, π is a bit-permutation, mapping xi to xP [i], where P is given by

P = 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56,

2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57,

3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58,

4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59,

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.

Once the four tweakeys T 1, T 2, T 3 and T 4 have been computed, each of them
is split into two equal parts and each part forms a 30-bit subkey rki, for the i-th
round (i = 1, . . . , 8):

rk2 || rk1 = T1, rk4 || rk3 = T2, rk6 || rk5 = T3, rk8 || rk7 = T4.

2.2 Security Claims

Because of the specific application scenario SCARF was designed for, the
attacker model is very different from the models cryptanalysts have tradition-
ally dealt with for more classical ciphers and applications. In particular, while an
attacker can choose the message and the tweak, he can never observe the cipher-
text produced. The only thing an attacker can observe is whether a cache hit or
a cache miss occurred, which corresponds to detecting ciphertext collisions.

The first security requirement stated by the designers for SCARF, given
below, specifies that if an attacker can choose plaintexts and tweaks and can
observe whether a collision in the ciphertexts occurs, he should not be able to
distinguish between SCARF and a tweakable random permutation of the same
dimensions. This is under the condition that the attacker is allowed at most 240

queries and his computation time does not exceed 280.

Security Requirement 1 [11]. Let Oreal be the oracle in the real world that
takes addresses (x1, T1) and (x2, T2), and returns 1 if ET1(x1) = ET2(x2) and
0 otherwise, where E is SCARF. Let Oideal be the oracle in the ideal world
that takes addresses (x1, T1) and (x2, T2), and returns 1 if ΠT1(x1) = ΠT2(x2)
and 0 otherwise, where Π is a tweakable random permutation with the same
input/tweak/output lengths to SCARF. An adversary is allowed to make at most
240 queries. Then, the adversary running in time at most 280 cannot distinguish
the real from the ideal world.

The above security requirement is quite uncommon compared to the security
requirements for more traditional ciphers. Furthermore, it is not clear how crypt-
analysts can use well-known methods and tools to assess the security of SCARF

336 C. Boura et al.

under this requirement. For this reason, the designers transformed the problem
of collision detection into a problem that is easier to study from a cryptanalytic
point of view. Indeed, if the attacker detects that for two plaintexts P1 and P2

and for two tweaks T1 and T2, the corresponding ciphertexts C1 = ET1(P1) and
C2 = ET2(P2) collide, then this equivalently means that P2 is the decryption of
C1 = C2 under T2, that is P2 = E−1

T2
◦ ET1(P1).

So we can now suppose that an attacker can query

ẼT1,T2(P) := E−1
T2

◦ ET1(P) = C,

for a chosen plaintext P and for two chosen tweaks T1, T2. The second security
requirement stated by the designers is that an attacker that can do at most
240 queries and whose computation time is bounded by 280 cannot distinguish
whether he is interacting with SCARF or with a tweakable random permutation
with the same length parameters as SCARF.

Security Requirement 2 [11]. Let Õreal be the oracle in the real world that
takes a plaintext P and a pair of tweaks T1, T2 as input and returns C such that
C = E−1

T2
◦ ET1(P), where E is SCARF. Let Õideal be the oracle in the ideal

world that takes a plaintext P and a pair of tweaks T1, T2 as input and returns
C such that C = Π−1

T2
◦ ΠT1(P), where Π is a tweakable random permutation

with the same input/tweak/output lengths to SCARF. An adversary is allowed
to make at most 240 queries. Then, the adversary running in time at most 280

cannot distinguish the real from the ideal world.
Our analysis tackles mainly this second security requirement but we will even-

tually discuss the impact of our distinguishers and attacks on the first security
requirement too.

2.3 Differential Cryptanalysis and Expected Differential Probability

Differential cryptanalysis exploits the existence of high-probability differentials
for a reduced-round version of the target cipher. Let Ek be a n-bit block cipher
parametrized by a secret key k. We will write α

Ek−−→ β to denote that an input
difference α propagates to an output difference β through Ek. The couple (α, β)
is called a differential for Ek.

We now define the notions of differential probability and expected differential
probability (EDP) for Ek.

Definition 1 (Differential Probability). Let Ek be a n-bit block cipher and
let α, β ∈ F

n
2 . The (fixed-key) differential probability of the differential (α, β)

over Ek is defined as

DP[a Ek−−→ b] :=
|{x ∈ F

n
2 : Ek(x) ⊕ Ek(x ⊕ α) = β}|

2n
.

As the key is unknown to the attacker, what he is aiming to compute is
what is called the expected differential probability (EDP) which is defined as
the average of the probabilities, taken over all keys, of a differential (α, β).

Multiple-Tweak Differential Attack Against SCARF 337

Definition 2 (Expected Differential Probability). Let E be a n-bit block
cipher and let α, β ∈ F

n
2 . The expected differential probability of the differential

(α, β) over E is defined as

EDP[α E−→ β] := 2−κ ×
∑
k∈F

κ
2

DP[a Ek−−→ b],

which is the average over all keys k ∈ F
κ
2 , where it is assumed that the keys are

uniformly distributed.

If the block size is sufficiently small, it is possible to compute the EDP
over a single round of the cipher, for all possible input differences α and all
possible output differences β and store these values in a 2n×2n matrix. Then, by
considering each round key to be independent, one can compute the probability
of any transition over several rounds, by simply computing the powers of this
EDP matrix [15].

3 Multiple-Tweak Differential Attack

The designers of SCARF identified the multiple-tweak differential cryptanalysis
as being one of the most powerful attack strategies against this design. The idea
is to observe for some well-chosen differences α and β, a bias ε such that

Pr
x,T1,T2

(
ẼT1,T2(x) ⊕ ẼT1,T2(x ⊕ α) = β

)
= p + ε,

where p = 1
2n−1 , e.g., p = 1

1023 for SCARF. When we use M pairs, assuming a
binomial distribution, the average of the empirical number of pairs satisfying the
differential is M ×(p+ε), and the variance is M ×(p + ε) (1 − (p + ε)). The main
focus of the multiple-tweak differential attack is the case where ε 	 p. Then, the
variance is approximated by M × 2−n. To distinguish from the ideal case, i.e.,
ε = 0, we need to use at least ε−2 × 2−n pairs. Moreover, we approximate the
binomial distribution to the normal distribution to estimate the distinguishing
advantage, similar to what is done in linear cryptanalysis. Namely, we use the
following distributions.{

N (M (p + ε) , M × 2−n), real
N (M × p, M × 2−n), ideal.

The designers of SCARF developed an efficient algorithm that constructs(
NT

2

)2 × 29 pairs with a query/time complexity of NT × 210 and 220 memory
only. They used NT = 223, i.e., M = 255 pairs, and experimentally observed
the bias up to 5+5 rounds, where this notation means that the cipher ẼT1,T2 is
restricted to 5 rounds for ET1 and 5 rounds for E−1

T2
. In particular, for α = β =

(0x001, 0x001), the observed bias for each round (r + r), r = 2, 3, 4, 5 was:

338 C. Boura et al.

Round Bias ε

2+2 2−9.6792

3+3 2−14.6761

4+4 2−24.8467

5+5 2−29.8025

The designers did not provide a theoretical explanation for the observed bias.
They expected the bias to be close to 2−40 in 6+6 rounds, but their experiments
could not permit to observe a differential bias due to the extremely high com-
putational complexity. One of the goals in this paper is to provide a theoretical
explanation for the experimentally observed differential bias for any number of
rounds and in particular to estimate the bias for more than 6+6 rounds.

3.1 LLR Statistic

A multiple-tweak multiple-differential attack is a natural extension of a multiple-
tweak differential attack. The idea is to exploit multiple differences instead of a
single one. Nowadays, we have substantial knowledge about this type of extension
in the context of linear cryptanalysis [2] or differential cryptanalysis [8].

The Log-Likelihood Ratio (LLR) is a classical approach to hypothesis testing.
It is used to compare the goodness of fit between two competing hypotheses.
Specifically, it compares the likelihood of the data under one hypothesis (usually
the null hypothesis) to the likelihood of the data under an alternative hypothesis.

We assume that each differential bias is statistically independent for each
pair of α and β. Let V be a set of pairs of input and output differences. Then,
the LLR statistic in the case of a multiple-tweak multiple-differential attack can
be computed as:

LLR =
∑

(α,β)∈V

N(α, β) × log
p + εα,β

p
≈

∑
(α,β)∈V

N(α, β) × εα,β

p
,

where N(a, b) denotes the number of pairs satisfying the differential transition
from α to β.

Definition 3 (KL Divergence). Let q and q′ be two probability distribution
vectors over V . The Kullback-Leibler divergence between q and q′ is defined as

D(q‖q′) :=
∑
v∈V

qv × log
(

qv

q′
v

)

We also define the following metrics

D2(q‖q′) :=
∑
v∈V

qv × log2
(

qv

q′
v

)
and ΔD(q‖q′) := D2(q‖q′) − D(q‖q′)2

Multiple-Tweak Differential Attack Against SCARF 339

In our case, q = p + ε and q′ = p. The notion of KL divergence can be used to
prove that the LLR statistic asymptotically tends towards a normal distribution.
The mean and variance exhibit the following properties.

Proposition 1 (Proposition 3 in [2]). The distributions of LLR asymptoti-
cally tend toward a normal distribution as the number of samples M increases.
If samples are obtained from the real (resp. ideal) distribution, the LLR statistic
tends toward N (Mμ0,Mσ2

0) (resp. N (Mμ1,Mσ2
1)), where

μ0 = D(q‖q′) =
∑

(α,β)∈V

(p + εα,β) × log
p + εα,β

p
,

μ1 = −D(q′‖q) =
∑

(α,β)∈V

p × log
p + εα,β

p
,

σ2
0 = ΔD(q‖q′) =

⎛
⎝ ∑

(α,β)∈V

(p + εα,β) × log2
p + εα,β

p

⎞
⎠ − μ2

0,

σ2
1 = ΔD(q′‖q) =

⎛
⎝ ∑

(α,β)∈V

p × log2
p + εα,β

p

⎞
⎠ − μ2

1.

In our case, |εα,β | 	 p and (
∑

εα,β)2 	 p−1×∑
ε2α,β hold. Then approximately,

we have
μ0 − μ1 ≈ σ2

0 ≈ σ2
1 ≈ 1

p
×

∑
(α,β)∈V

ε2α,β .

We sometimes refer to the quantity 1
p × ∑

(α,β)∈V ε2α,β as capacity. Roughly, the
number of required samples, M , must be at least the inverse of the capacity to
be able to distinguish between two distributions using the LLR statistic.

3.2 Related Works

The concept of a multiple-tweak differential attack is not entirely novel. Patarin,
in particular, discussed this in the context of Feistel ciphers using several per-
mutations [19–21]. A similar attack was also discussed against format-preserving
encryption [14].

Generic Attacks against the Luby-Rackoff Construction. Patarin’s work provides
a precise differential bias of the so-called Luby-Rackoff construction, which is a
Feistel cipher instantiated with pseudo-random functions. However, SCARF is
not a Feistel cipher and contains an S-box. Moreover, the G function and the
S-box are fully specified, and cannot be regarded as pseudo-random functions.
Therefore, we cannot directly use Patarin’s approach in our work.

Attack against Feistel-Based Format-Preserving Encryption. Dunkelman et al.
discussed the same attack in [14]. They provided a more straightforward method

340 C. Boura et al.

to estimate the differential bias. First, similar to traditional differential attacks,
they focused on the following two-round iterative trail

(δ, 0) 1 round−−−−−−−→
prob.=2−n

(0, δ) 1 round−−−−−→
prob.=1

(δ, 0).

Assuming that pairs that do not satisfy this trail behave randomly, the proba-
bility such that (0, δ) transits to (0, δ) by 2r rounds is estimated as 2−2n +2−nr.
A truncated differential allows for extension by additional two rounds as

(0, δ) 1 round−−−−−→
prob.=1

(δ, 0) 2r rounds−−−−−−−→
prob.=2−n

(δ, 0) 1 round−−−−−→
prob.=1

(∗, δ),

and they estimated this probability to be 2−n + 2−nr. In conclusion, while their
estimation requires assumptions, the result is almost identical to Patarin’s result.

Since the estimation focusing on the trail provides a good estimation for
Feistel ciphers, we tried to estimate the bias of SCARF by using this method.
Unfortunately, such an estimation leads to completely inaccurate results.

4 Efficient Estimation of the Differential Bias of SCARF

Because of the heavy tweakey-schedule, it is natural to assume that each round
function of SCARF is independent. Then, the expected differential probability
(EDP) can be computed as the power of the so-called EDP matrix [4,15] (see
Sect. 2.3). For n-bit block ciphers, one constructs an 2n × 2n matrix, and the
EDP is evaluated as a power of this matrix. This computation can be done with
complexity 23n.

Usually, this method is not computationally feasible for common block
ciphers with typical block sizes of 64, 128, or 256 bits. However, the block size
of SCARF is 10 bits, so the above computation requires only 230 operations
and can thus be performed in practice. Nevertheless, we propose a more effi-
cient algorithm for this computation, as 230 operations, while feasible, remain
inefficient.

We focus on differential transitions from α = (αL, αR) to β = (βL, βR) on
Ẽ. We write

α
R+R′
−−−−→ β

where Ẽ is the enc-then-dec structure whose encryption and decryption are
composed of R and R′ rounds, respectively. Moreover,

EDP[α R+R′
−−−−→ β]

denotes the expected differential probability of the differential transition.
When the round numbers R and R′ are explicit from the context, we will

simply write pα,β to denote the expected differential probability of the transition
from α to β. Let εα,β be the differential bias, i.e., pα,β = 1

1023 + εα,β .
To evaluate the EDP efficiently, we fully exploit the structure of SCARF,

particularly the property of the G function. As a result, we show that we can

Multiple-Tweak Differential Attack Against SCARF 341

Fig. 2. Differential transitions for R1

evaluate the EDP from all α to all β with a complexity of 215. This complexity
improvement is important as, in Sect. 7, we discuss how the use of an alternative
S-box could improve the security against the proposed attacks. To find the S-box
that would provide the higher resistance, we need to estimate the EDP for many
S-box candidates. This is the reason why the efficiency of this computation is
important, as we need to repeat it several times.

4.1 Some Unique Properties of SCARF

Before analyzing SCARF in detail, we first describe the differential properties
of the G function. By averaging on the keys, the differential probability of the
G function is

EDP[α G−→ β] =

⎧⎪⎨
⎪⎩

2−5, if α �= 0, β = ∗,

1, if α = 0, β = 0,

0, if α = 0, β �= 0,

where ∗ denotes an arbitrary difference (including the zero difference). Therefore,
the differential probability for R1 from α = (αL, αR) to β = (βL, βR) is

EDP[α R1−−→ β] =

⎧⎪⎨
⎪⎩

PS [αL, βR] × 2−5, if αL �= 0,

1, if αL = 0 and (βL, βR) = (αR, 0),
0, if αL = 0 and (βL, βR) �= (αR, 0),

where PS [αL, βR] denotes the differential probability for the S-box.
Figure 2 shows each differential transition. Interestingly, when αL �= 0, the

differential probability is independent of αR and βL.
More importantly, when considering the composition of R1 with some arbi-

trary permutation F , the EDP of F ◦ R1 does not depend on αR in the case
αL �= 0. This is demonstrated in the following lemma.

342 C. Boura et al.

Lemma 1. Let F denote an arbitrary permutation from F
10
2 to F

10
2 . Then, the

EDP of the differential transition from α = (αL, αR) to β = (βL, βR) for F ◦R1

does not depend on αR in the case αL �= 0.

Proof. Suppose αL �= 0. Then,

EDP[α F◦R1−−−→ β] =
∑

γ

EDP[α R1−−→ γ] × EDP[γ F−→ β]

=
∑

γ

2−5 × PS [αL, γR] × EDP[γ F−→ β].

We see indeed from the above formula that αR is not involved in the evaluation
of the EDP of α

F◦R1−−−→ β. �
In Lemma 1, R1 is applied before F . However, a similar property holds if R−1

1 is
applied after F . Then, the EDP of the differential transition from α = (αL, αR)
to β = (βL, βR) for R−1

1 ◦ F does not depend on βR in the case βL �= 0.

4.2 Analysis for 1+1 Rounds

Although it is straightforward, we begin our discussion with this case. For any
non-zero α and β, it holds that

EDP[α
1+1−−→ β] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, α = (0, αR), β = (0, βR), αR = βR,

0, α = (0, ∗), β = (βL, ∗), βL �= 0,

0, α = (αL, ∗), β = (0, ∗), αL �= 0,

PS̃ [αL, βL] × 2−5, α = (αL, ∗), β = (βL, ∗), αL �= 0, βL �= 0,

where ∗ denotes an arbitrary difference (including the zero difference). The first
three cases are trivial.

For the last equation, since k8,6 ⊕ k′
8,6 is a variable depending on the tweak

value in the multiple-tweak differential attack, the EDP from αL to βL is

PS̃(αL, βL) =
#{(x, k) ∈ F

5
2 × F

5
2 | S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ αL) ⊕ k) = βL}

25 × 25
.

Table 7 in Appendix A shows the number of solutions of the equation

#{(x, k) ∈ F
5
2 × F

5
2 | S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ αL) ⊕ k) = βL}

for all possible differences αL and βL. This table can be seen as a special form
of DDT for S̃ = S−1 ◦ S(· ⊕ k) that takes the values of the key into account.

The probability that R′
7 (see Fig. 3) has zero difference, i.e., ΔR′

7 = 0, is∑
γ∈F

5
2

EDP[αL G−→ γ] × EDP[βL G−→ γ].

Due to the property of the G function, by averaging on the keys, the expected
differential probability of any non-zero input difference to any output difference
(including the zero difference) is 2−5. Therefore, the probability is 25−5−5 = 2−5.

Multiple-Tweak Differential Attack Against SCARF 343

Fig. 3. Differential transitions from α to β through 1+1 rounds.

4.3 Analysis for R + R′ Rounds

Recall Lemma 1. The EDP from α to β through F ◦ R1 is determined inde-
pendently of αR when αL �= 0. Similarly, the EDP from α to β for R−1

1 ◦ F
is determined independently of βR when βL �= 0. Taking these properties into
account, we obtain the following proposition, since SCARF is represented as
R−1

1 ◦ F ◦ R1.

Proposition 2. When αL �= 0, the EDP[(αL, αR) R+R′
−−−−→ (βL, βR)] does not

depend on αR. Similarly, when βL �= 0, the EDP[(αL, αR) R+R′
−−−−→ (βL, βR)] does

not depend on βR.

The proof of Proposition 2 is trivial due to Lemma 1. Proposition 2 implies that
instead of computing all EDPs from α → β, considering the following four cases
is enough:

EDP[(0, αR) R+R′
−−−−→ (0, βR)], EDP[(0, αR) R+R′

−−−−→ (βL, ∗)],

EDP[(αL, ∗) R+R′
−−−−→ (0, βR)], EDP[(αL, ∗) R+R′

−−−−→ (βL, ∗)].

Here, ∗ denotes any arbitrary difference, and Proposition 2 shows that these
EDPs are determined independently of the value of ∗. While the size of the full
EDP matrix is 1023 × 1023, considering only four 31 × 31 matrices is enough to
compute each EDP.

Note that EDP[α 1+1−−→ β] also satisfies the same property. Namely,

EDP[(0, αR) 1+1−−→ (0, βR)] = 1, if αR = βR

EDP[(0, αR) 1+1−−→ (βL, ∗)] = 0

EDP[(αL, ∗) 1+1−−→ (0, βR)] = 0

EDP[(αL, ∗) 1+1−−→ (βL, ∗)] = PS̃ [αL, βL] × 2−5.

Given four EDP matrices for R + R′ rounds, it is easy to compute four EDP
matrices for R+(R′ +1) rounds or (R+1)+R′ rounds. Specifically, to compute
four EDP matrices for (R + 1) + R′ rounds, we have

EDP[(0, αR)
R+(R′+1)−−−−−−−→ (0, βR)] = EDP[(0, αR)

R+R′
−−−−→ (βR, 0)],

344 C. Boura et al.

Table 1. Summary of differential bias for 2+2 rounds. Each element of this table
corresponds to − log2(|ε|) for a differential bias ε. The elements colored in light-blue
have a negative bias, i.e., ε < 0.

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

01 9.68 12.9911.4113.0113.0120.0020.0013.0111.4112.0113.0120.0011.9912.0112.9912.9920.0012.0112.9913.0112.9911.9920.0020.0012.0120.0012.9913.0112.0111.9920.00

02 12.99 9.68 20.0012.9912.0111.4112.9913.0113.0113.0112.9920.0011.9920.0020.0013.0120.0011.4112.0112.0120.0013.0112.9920.0013.0111.9912.0112.0111.9912.9920.00

03 11.4120.00 9.68 20.0012.9912.0111.9920.0012.9911.9920.0011.4220.0012.0120.0020.0012.0120.0013.0111.9920.0020.0011.4211.4220.0020.0020.0012.9911.9912.9911.41

04 13.0112.9920.00 9.68 11.4120.0012.0112.9912.0112.0120.0011.4113.0112.9912.9913.0120.0013.0113.0113.0111.9912.9912.0120.0012.0111.9911.9920.0012.9920.0020.00

05 13.0112.0112.9911.41 9.68 20.0011.9913.0120.0012.9912.9912.9912.0113.0111.9912.0111.9912.9920.0020.0011.0012.9913.0111.9911.9920.0020.0013.0112.9912.0113.01

06 20.0011.4112.0120.0020.00 9.68 13.0120.0011.9912.9920.0012.0120.0011.9911.4220.0011.4212.9920.0011.9920.0020.0020.0011.4212.9920.0011.9912.0112.9920.0011.41

07 20.0012.9911.9912.0111.9913.01 9.42 13.0113.0120.0012.9920.0012.9912.0111.9912.0112.0113.0112.0111.9911.4120.0020.0012.9911.9911.4113.0111.9913.0111.9911.00

08 13.0113.0120.0012.9913.0120.0013.01 9.68 13.0111.4111.9920.0012.9912.0112.0112.9920.0012.0112.0112.0111.9920.0011.9911.4120.0013.0112.9912.9920.0012.9920.00

09 11.4113.0112.9912.0120.0011.9913.0113.01 9.68 20.0012.0111.9911.0011.9912.9912.0120.0012.9913.0112.9912.9920.0012.0112.9911.9912.9911.9920.0013.0120.0013.01

0A 12.0113.0111.9912.0112.9912.9920.0011.4120.00 9.68 11.0020.0012.9911.9913.0113.0111.9920.0011.9912.9920.0012.9920.0012.9913.0112.0112.9913.0112.0111.9913.01

0B 13.0112.9920.0020.0012.9920.0012.9911.9912.0111.00 9.42 20.0011.9911.4113.0111.9920.0012.9920.0020.0012.0112.0113.0120.0012.9911.9912.0111.4111.0011.9911.99

0C 20.0020.0011.4211.4112.9912.0120.0020.0011.9920.0020.00 9.68 20.0013.0120.0020.0011.4211.9912.9912.9920.0020.0011.9912.0112.0120.0012.9911.9920.0011.4211.41

0D 11.9911.9920.0013.0112.0120.0012.9912.9911.0012.9911.9920.00 9.42 20.0012.0120.0020.0020.0011.4112.9911.9912.0111.0020.0011.4112.0111.9912.9913.0113.0111.99

0E 12.0120.0012.0112.9913.0111.9912.0112.0111.9911.9911.4113.0120.00 9.42 20.0013.0112.9913.0111.9920.0011.4112.9913.0120.0011.9912.9913.0112.0111.9911.9911.00

0F 12.9920.0020.0012.9911.9911.4211.9912.0112.9913.0113.0120.0012.0120.00 9.68 11.9912.9912.0111.9920.0011.9913.0112.9911.9913.0111.0020.0013.0120.0012.9911.99

10 12.9913.0120.0013.0112.0120.0012.0112.9912.0113.0111.9920.0020.0013.0111.99 9.68 11.4113.0120.0011.4113.0111.9912.9920.0012.9912.9920.0012.0112.9912.0120.00

11 20.0020.0012.0120.0011.9911.4212.0120.0020.0011.9920.0011.4220.0012.9912.9911.41 9.68 12.9911.9912.9920.0020.0020.0012.0113.0120.0011.4220.0020.0011.9911.41

12 12.0111.4120.0013.0112.9912.9913.0112.0112.9920.0012.9911.9920.0013.0112.0113.0112.99 9.68 11.9920.0012.9912.0111.9911.9920.0011.0013.0111.9920.0012.9913.01

13 12.9912.0113.0113.0120.0020.0012.0112.0113.0111.9920.0012.9911.4111.9911.9920.0011.9911.99 9.42 13.0112.9912.9911.9912.0112.0111.4120.0011.9913.0113.0111.00

14 13.0112.0111.9913.0120.0011.9911.9912.0112.9912.9920.0012.9912.9920.0020.0011.4112.9920.0013.01 9.68 12.0111.0012.9920.0013.0112.9912.0111.9911.9913.0113.01

15 12.9920.0020.0011.9911.0020.0011.4111.9912.9920.0012.0120.0011.9911.4111.9913.0120.0012.9912.9912.01 9.42 11.9913.0120.0020.0012.0113.0112.9912.0111.0011.99

16 11.9913.0120.0012.9912.9920.0020.0020.0020.0012.9912.0120.0012.0112.9913.0111.9920.0012.0112.9911.0011.99 9.42 12.0120.0011.4111.9911.0011.4111.9913.0111.99

17 20.0012.9911.4212.0113.0120.0020.0011.9912.0120.0013.0111.9911.0013.0112.9912.9920.0011.9911.9912.9913.0112.01 9.68 12.9911.9911.9912.9913.0120.0020.0011.99

18 20.0020.0011.4220.0011.9911.4212.9911.4112.9912.9920.0012.0120.0020.0011.9920.0012.0111.9912.0120.0020.0020.0012.99 9.68 11.9920.0020.0013.0111.4220.0011.41

19 12.0113.0120.0012.0111.9912.9911.9920.0011.9913.0112.9912.0111.4111.9913.0112.9913.0120.0012.0113.0120.0011.4111.9911.99 9.42 12.9911.9912.0120.0013.0111.00

1A 20.0011.9920.0011.9920.0020.0011.4113.0112.9912.0111.9920.0012.0112.9911.0012.9920.0011.0011.4112.9912.0111.9911.9920.0012.99 9.42 13.0120.0013.0112.0111.99

1B 12.9912.0120.0011.9920.0011.9913.0112.9911.9912.9912.0112.9911.9913.0120.0020.0011.4213.0120.0012.0113.0111.0012.9920.0011.9913.01 9.68 11.9912.9920.0011.99

1C 13.0112.0112.9920.0013.0112.0111.9912.9920.0013.0111.4111.9912.9912.0113.0112.0120.0011.9911.9911.9912.9911.4113.0113.0112.0120.0011.99 9.42 11.9920.0011.00

1D 12.0111.9911.9912.9912.9912.9913.0120.0013.0112.0111.0020.0013.0111.9920.0012.9920.0020.0013.0111.9912.0111.9920.0011.4220.0013.0112.9911.99 9.68 12.9911.99

1E 11.9912.9912.9920.0012.0120.0011.9912.9920.0011.9911.9911.4213.0111.9912.9912.0111.9912.9913.0113.0111.0013.0120.0020.0013.0112.0120.0020.0012.99 9.68 11.99

1F 20.0020.0011.4120.0013.0111.4111.0020.0013.0113.0111.9911.4111.9911.0011.9920.0011.4113.0111.0013.0111.9911.9911.9911.4111.0011.9911.9911.0011.9911.99 8.83

EDP[(0, αR)
R+(R′+1)−−−−−−−→ (βL, ∗)] =

∑

γR �=0

2−5 × PS [β
L, γR] × EDP[(0, αR)

R+R′
−−−−→ (0, γR)]

+
∑

γL �=0

2−5 × EDP[(0, αR)
R+R′
−−−−→ (γL, ∗)],

EDP[(αL, ∗) R+(R′+1)−−−−−−−→ (0, βR)] = EDP[(αL, ∗) R+R′
−−−−→ (βR, 0)],

EDP[(αL, ∗) R+(R′+1)−−−−−−−→ (βL, ∗)] =
∑

γR �=0

2−5 × PS [β
L, γR] × EDP[(αL, ∗) R+R′

−−−−→ (0, γR)]

+
∑

γL �=0

2−5 × EDP[(αL, ∗) R+R′
−−−−→ (γL, ∗)].

In a similar way, we can compute the EDP[α
(R+1)+R′
−−−−−−−→ β]. Given α, β, and four

EDP matrices for R + R′ rounds, the complexity to update four EDP matrices
as above is approximately 4 × 215.

For an arbitrary number of rounds R, we can obtain the EDP for R+R rounds
very efficiently. On the other hand, we notice that EDP[(0, αR) R+R−−−→ (0, βR)] is
significantly more biased than the others. This is not surprising, as their EDPs

are equal to EDP[(αR, 0)
(R−1)+(R−1)−−−−−−−−−→ (βR, 0)].

Tables 1 and 2 summarize differential biases computed by EDPs for 2+2 and
3+3 rounds, respectively. Each row corresponds to a value of αR and each column

Multiple-Tweak Differential Attack Against SCARF 345

Table 2. Summary of differential bias for 3+3 rounds. Each element of this table
corresponds to − log2(|ε|) for a differential bias ε. The elements colored in light-blue
have a negative bias, i.e., ε < 0.

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

01 14.7117.6816.3018.4218.4220.0020.0018.4216.3017.1918.4220.0016.8317.1917.6817.6820.0017.1917.6818.4217.6816.8320.0020.0017.1920.0017.6818.4217.1916.8320.00

02 17.6814.7120.0017.6817.1916.3017.6818.4218.4218.4217.6820.0016.8320.0020.0018.4220.0016.3017.1917.1920.0018.4217.6820.0018.4216.8317.1917.1916.8317.6820.00

03 16.3020.0014.7120.0017.6817.1916.8320.0017.6816.8320.0016.5420.0017.1920.0020.0017.1920.0018.4216.8320.0020.0016.5416.5420.0020.0020.0017.6816.8317.6816.30

04 18.4217.6820.0014.7116.3020.0017.1917.6817.1917.1920.0016.3018.4217.6817.6818.4220.0018.4218.4218.4216.8317.6817.1920.0017.1916.8316.8320.0017.6820.0020.00

05 18.4217.1917.6816.3014.7120.0016.8318.4220.0017.6817.6817.6817.1918.4216.8317.1916.8317.6820.0020.0016.0917.6818.4216.8316.8320.0020.0018.4217.6817.1918.42

06 20.0016.3017.1920.0020.0014.7118.4220.0016.8317.6820.0017.1920.0016.8316.5420.0016.5417.6820.0016.8320.0020.0020.0016.5417.6820.0016.8317.1917.6820.0016.30

07 20.0017.6816.8317.1916.8318.4214.4518.4218.4220.0017.6820.0017.6817.1916.8317.1917.1918.4217.1916.8316.3020.0020.0017.6816.8316.3018.4216.8318.4216.8316.09

08 18.4218.4220.0017.6818.4220.0018.4214.7118.4216.3016.8320.0017.6817.1917.1917.6820.0017.1917.1917.1916.8320.0016.8316.3020.0018.4217.6817.6820.0017.6820.00

09 16.3018.4217.6817.1920.0016.8318.4218.4214.7120.0017.1916.8316.0916.8317.6817.1920.0017.6818.4217.6817.6820.0017.1917.6816.8317.6816.8320.0018.4220.0018.42

0A 17.1918.4216.8317.1917.6817.6820.0016.3020.0014.7116.0920.0017.6816.8318.4218.4216.8320.0016.8317.6820.0017.6820.0017.6818.4217.1917.6818.4217.1916.8318.42

0B 18.4217.6820.0020.0017.6820.0017.6816.8317.1916.0914.4520.0016.8316.3018.4216.8320.0017.6820.0020.0017.1917.1918.4220.0017.6816.8317.1916.3016.0916.8316.83

0C 20.0020.0016.5416.3017.6817.1920.0020.0016.8320.0020.0014.7120.0018.4220.0020.0016.5416.8317.6817.6820.0020.0016.8317.1917.1920.0017.6816.8320.0016.5416.30

0D 16.8316.8320.0018.4217.1920.0017.6817.6816.0917.6816.8320.0014.4520.0017.1920.0020.0020.0016.3017.6816.8317.1916.0920.0016.3017.1916.8317.6818.4218.4216.83

0E 17.1920.0017.1917.6818.4216.8317.1917.1916.8316.8316.3018.4220.0014.4520.0018.4217.6818.4216.8320.0016.3017.6818.4220.0016.8317.6818.4217.1916.8316.8316.09

0F 17.6820.0020.0017.6816.8316.5416.8317.1917.6818.4218.4220.0017.1920.0014.7116.8317.6817.1916.8320.0016.8318.4217.6816.8318.4216.0920.0018.4220.0017.6816.83

10 17.6818.4220.0018.4217.1920.0017.1917.6817.1918.4216.8320.0020.0018.4216.8314.7116.3018.4220.0016.3018.4216.8317.6820.0017.6817.6820.0017.1917.6817.1920.00

11 20.0020.0017.1920.0016.8316.5417.1920.0020.0016.8320.0016.5420.0017.6817.6816.3014.7117.6816.8317.6820.0020.0020.0017.1918.4220.0016.5420.0020.0016.8316.30

12 17.1916.3020.0018.4217.6817.6818.4217.1917.6820.0017.6816.8320.0018.4217.1918.4217.6814.7116.8320.0017.6817.1916.8316.8320.0016.0918.4216.8320.0017.6818.42

13 17.6817.1918.4218.4220.0020.0017.1917.1918.4216.8320.0017.6816.3016.8316.8320.0016.8316.8314.4518.4217.6817.6816.8317.1917.1916.3020.0016.8318.4218.4216.09

14 18.4217.1916.8318.4220.0016.8316.8317.1917.6817.6820.0017.6817.6820.0020.0016.3017.6820.0018.4214.7117.1916.0917.6820.0018.4217.6817.1916.8316.8318.4218.42

15 17.6820.0020.0016.8316.0920.0016.3016.8317.6820.0017.1920.0016.8316.3016.8318.4220.0017.6817.6817.1914.4516.8318.4220.0020.0017.1918.4217.6817.1916.0916.83

16 16.8318.4220.0017.6817.6820.0020.0020.0020.0017.6817.1920.0017.1917.6818.4216.8320.0017.1917.6816.0916.8314.4517.1920.0016.3016.8316.0916.3016.8318.4216.83

17 20.0017.6816.5417.1918.4220.0020.0016.8317.1920.0018.4216.8316.0918.4217.6817.6820.0016.8316.8317.6818.4217.1914.7117.6816.8316.8317.6818.4220.0020.0016.83

18 20.0020.0016.5420.0016.8316.5417.6816.3017.6817.6820.0017.1920.0020.0016.8320.0017.1916.8317.1920.0020.0020.0017.6814.7116.8320.0020.0018.4216.5420.0016.30

19 17.1918.4220.0017.1916.8317.6816.8320.0016.8318.4217.6817.1916.3016.8318.4217.6818.4220.0017.1918.4220.0016.3016.8316.8314.4517.6816.8317.1920.0018.4216.09

1A 20.0016.8320.0016.8320.0020.0016.3018.4217.6817.1916.8320.0017.1917.6816.0917.6820.0016.0916.3017.6817.1916.8316.8320.0017.6814.4518.4220.0018.4217.1916.83

1B 17.6817.1920.0016.8320.0016.8318.4217.6816.8317.6817.1917.6816.8318.4220.0020.0016.5418.4220.0017.1918.4216.0917.6820.0016.8318.4214.7116.8317.6820.0016.83

1C 18.4217.1917.6820.0018.4217.1916.8317.6820.0018.4216.3016.8317.6817.1918.4217.1920.0016.8316.8316.8317.6816.3018.4218.4217.1920.0016.8314.4516.8320.0016.09

1D 17.1916.8316.8317.6817.6817.6818.4220.0018.4217.1916.0920.0018.4216.8320.0017.6820.0020.0018.4216.8317.1916.8320.0016.5420.0018.4217.6816.8314.7117.6816.83

1E 16.8317.6817.6820.0017.1920.0016.8317.6820.0016.8316.8316.5418.4216.8317.6817.1916.8317.6818.4218.4216.0918.4220.0020.0018.4217.1920.0020.0017.6814.7116.83

1F 20.0020.0016.3020.0018.4216.3016.0920.0018.4218.4216.8316.3016.8316.0916.8320.0016.3018.4216.0918.4216.8316.8316.8316.3016.0916.8316.8316.0916.8316.8313.85

Table 3. Theoretical capacity of differential biases for each number of rounds.

capacity 2+2 3+3 4+4 5+5 6+6 7+7 8+8

− log2(C) 3.37 13.39 32.20 42.20 60.89 70.89 88.95

− log2(Call) 2.38 13.38 31.20 42.19 59.89 70.88 87.95

to a value of βR. The values of αL and βL are fixed to 0. Differential biases for
other number of rounds are summarized in the full version.

Table 3 summarizes the capacity of the differential biases for different num-
bers of rounds. Note that, the capacities C and Call are estimated as

C = 1023 ×
∑

αR �=0

∑
βR �=0

ε2(0,αR),(0,βR), (1)

Call = 1023 ×
∑
α�=0

∑
β �=0

ε2α,β . (2)

Of course, Call has a higher capacity, but it is computed on almost twice as many
biases. Because of the cost increase for computing the LLR statistics exploiting
1023 × 1023 input and output differences, we only focus on the cases for which
αL = βL = 0.

346 C. Boura et al.

Fig. 4. Comparison between the theoretical estimations and the experimental results
of LLR statistics for 4+4 rounds and the ideal distribution.

Experimental Verification

2+2 Rounds. To verify the Markov assumption in practice, we experimentally
computed each differential bias for 2+2 rounds by using 215 tweaks Ti and 215

tweaks Tj . In total, our experiments use 215 × 215 × 29 = 239 pairs. Table 1
summarizes the differential biases computed by each EDP. Some differential
biases are as low as −2−20.00, but 239 pairs are still enough to confirm such a
low bias experimentally. Here, we just focus on some concrete cases of interest.

– When (αR, βR) = (0x01, 0x01), the theoretical bias is estimated as +2−9.68.
Experimentally, we also obtain the same bias.

– When (αR, βR) = (0x02, 0x1F), the theoretical bias is estimated as −2−20.00.
The same bias is also obtained experimentally for those differences.

3+3 Rounds. We next verify experimentally the differential bias for 3+3 rounds,
and Table 2 summarizes these results. To experimentally verify each differential
bias, we used 217 tweaks Ti and 217 tweaks Tj . In total, our experiments use
217 × 217 × 29 = 243 pairs. Here, we depict some concrete cases of interest.

– When (δi, δj) = (0x01, 0x01), the theoretical bias is estimated as +2−14.71.
Experimentally, we obtain that this bias equals 2−17.68.

– When (δi, δj) = (0x02, 0x1E), the theoretical bias is estimated as −2−17.68.
Experimentally, we obtain that this bias equals −2−17.66.

4+4 Rounds and LLR Statistics. Besides the Markov assumption, we need an
independent assumption for the LLR statistics. To verify the statistically inde-
pendent assumption, we experimentally compared the LLR statistics for 4+4
rounds and the ideal case. The experiments used 213 × 213 × 29 = 235 pairs and
were repeated 5000 times. According to Proposition 1, each distribution tends
toward the following distributions

Real ∼ N (965.43, 6.98) Ideal ∼ N (958.45, 6.98). (3)

Multiple-Tweak Differential Attack Against SCARF 347

Figure 4 compares the theoretical estimation and experimental frequencies,
which justifies the correctness of our theoretical estimation.

5+5 Rounds and LLR Statistics. Similar to the experiment for 4+4 rounds,
we experimentally compared the LLR statistics for 5+5 rounds and the ideal
case. The experiments used 218 × 218 × 29 = 245 pairs and were repeated 5000
times. When we use 245 pairs, each distribution tends towards the same distri-
bution as Eq. (3). Figure 5 compares the theoretical estimation and experimental
frequencies.

5 Key-Recovery Attack on 7-Round SCARF

In this section, we propose a key-recovery attack on 7-round SCARF.
First of all, we define a proper “reduced-round SCARF” version. To reduce

SCARF to 7 rounds, we decided to remove the first round function, R1. Of
course, another choice would have been to remove the last round, R2, but R2 was
designed to prevent that the last S-box is always canceled. Such a reduced-round
version would change the security property of SCARF significantly. Therefore,
we believe that removing the first round is more meaningful for discussing the
security margin of the full cipher. The tweakey schedule is also nonlinear, and it
has a block-cipher-like structure. In our 7-round SCARF, we decided to take the
most conservative choice and to use the same tweakey schedule as the original
one. Therefore, the secret key size is still 60 × 4 = 240 bits even after removing
the first round.

Fig. 5. Comparison between the theoretical estimations and the experimental results
of LLR statistics for 5+5 rounds and the ideal distribution.

5.1 Attack Procedure on Security Requirement 2

Step 1: Partial Key Recovery Using the (6+6)-Round Multiple Differ-
ential Distinguisher. We first collect data by using the enc-then-dec oracle, Ẽ.

348 C. Boura et al.

Algorithm 1. Algorithm to recover the top 30 bits of K1

Input: 230 tweaks Ti, a tweak T ′, differential probability pδin,δout , a threshold θ.
Output: The top 30 bits of K1.

Prepare two two-dimensional arrays A[][] and B[][], of size 31 × 220.
for K1 ∈ F

30
2 ‖030 do

for i = 0 to 229 − 1 do
Derive rk2 from K1 and Ti.
for all δ ∈ F

5
2 \ {0} do

for all x1 ∈ F
10
2 do

x0 = R−1
1 (x1, rk2).

x′
0 = R−1

1 (x1 ⊕ 05‖δ, rk2).
if ẼTi,T ′(x0) < ẼTi,T ′(x′

0) then
y = ẼTi,T ′(x0)‖ẼTi,T ′(x′

0)
A[δ][y] = A[δ][y] + 1

Repeat the same procedure as above for i = 229 to 230 − 1 and get B[δ][y].
s = 0.
for all δin ∈ F

5
2 \ {0} do

for all δout ∈ F
5
2 \ {0} do

n = 0.
for all y ∈ F

20
2 do

n = n + A[δin][y] × B[δout][y]

s = s + n × log(
pδin,δout
1/1023

)

if s > θ then
Return K1

We use 230 tweaks Ti, where the bottom 30 bits of Ti are active, i.e., Ti := 018‖i.
In the security requirement 2, the oracle accepts a plaintext and a pair of tweaks.
Therefore, we choose another fixed tweak, T ′, different from any of the Ti, e.g.,
T ′ = 148. We query the full code book for the 230 Ti and a fixed tweak T ′ and
store ẼTi,T ′(x) for all x ∈ F

10
2 . From these plaintext-ciphertext pairs, we have

ẼTi,Tj
= Ẽ−1

Tj ,T ′ ◦ ẼTi,T ′ and can construct M = 229+29+9 = 267 pairs1.
The initial goal is to recover the top 30 bits of K1 by using the (6+6)-

round distinguisher. The highest differential bias is 2−38.19, which is not always
sufficient to filter key candidates with a reasonable success probability. Therefore,
we use multiple differentials and the LLR statistic. According to Proposition 1,
we compute μ0, μ1, σ2

0 , and σ2
1 . Then, (μ0 − μ1) ≈ σ2

0 ≈ σ2
1 ≈ 2−60.8887. When

we use 267 pairs, each distribution tends towards the following distribution

Real ∼ N (34.56, 69.13) Ideal ∼ N (−34.56, 69.13),

where, from each average, we subtract (μ0 +μ1)/2 in the sake of readability, i.e.,
Real ∼ N (M × (

μ0 − μ0+μ1
2

)
,Mσ2

0) and Ideal ∼ N (M × (
μ1 − μ0+μ1

2

)
,Mσ2

1)

1 It is also possible to construct
(
230

2

)
29 ≈ 268 pairs by considering all combinations

of tweaks. However, if we do this, we have a critical problem with the independence
of every pair. Indeed, when we observe the differential property by E−1

T2
◦ ET1 and

E−1
T3

◦ ET1 , we cannot include E−1
T3

◦ ET2 as a statistically independent sample.

Multiple-Tweak Differential Attack Against SCARF 349

here. We can construct a 30-bit filter with a success probability of 98.9 %. In
other words, we can uniquely recover the key candidates for the last 30 bits of
K1 with a high probability.

Algorithm 1 shows the detailed attack procedure. The algorithm requires
2 × 31 × 220 memory and 2 × 230 × 229 × 31 × 210 = 274.95 time.

Step 2: Partial Key Recovery Using (5S+5S)-Round Differential Dis-
tinguisher. We next recover the bottom 30 bits of K1 and the 5 bits of K2.
Note that we already know the top 30 bits of K1 from Step 1.

Instead of the (6+6)-round distinguisher, we introduce a (5S+5S)-round dis-
tinguisher, where the S-box layer is added to the (5+5)-round distinguisher. By
applying the S-box transition probability from the EDPs of 5+5 rounds, we can
estimate these biases. As a result, for any δ with Hamming weight 1, we have

Prob[(δ, 0) 5S+5S−−−−→ (δ, 0)] =
1

1023
+ 2−34.17. (4)

When the Hamming weight of δ is 1, the G function in the 3rd round involves
only 5 bits of the subkey, and they are computed by guessing the 30-bit K1 and
the 5-bit K2 when the tweak is active. Using 267 pairs is enough to construct
a 35-bit filter with a success probability of almost one. The time complexity is
235 × 240 = 275.

We experimentally verified the differential bias of Eq. (4) by using 226×226×
29 = 261 pairs and were repeated 10 times. As a result, we observed 2−34.29 of
differential bias experimentally.

Step 3: Full Key Recovery. A single δ in Step 2 is enough to recover the entire
K1. Therefore, we can compute the first Σ◦SL layer in the tweakey schedule for
arbitrary tweaks. This implies that the first two rounds, including the tweakey
schedule, are peeled off. While we do not explicitly show the procedure to recover
K2, K3, and K4, we can recover these keys by auxiliary procedures because it
should be easier than recovering K1.

In summary, with a complexity of about 276, we can recover the 240-bit key
with a success probability of 98.9 %.

5.2 The Case of the Security Requirement 1

When we consider the security requirement 1 instead of the security require-
ment 2, the number of available pairs is further limited. As discussed in [11],
we need approximately 218 queries to collect the full-code book data. Therefore,
240 queries allow us to collect the full code book for 222 different tweaks. As a
result, we only have 221+21+9 = 251 pairs. The distinguishing advantage of the
attacker is not enough in this case to filter the wrong keys.

350 C. Boura et al.

6 Multi-key Distinguishing Attacks on Full SCARF

The highest differential bias for full-round SCARF is 2−52.34. To detect this bias,
252.34×2/1024 = 294.68 pairs are needed. As the security requirements for SCARF
restrict the number of queries, it is unlikely to collect such a large number of
pairs. If we instead use the LLR statistic, the capacity is 2−88.95. This means
that the number of needed pairs is approximately 288.95, and it is still unlikely
to collect them due to the restriction on the number of queries.

Nevertheless, in this section, we discuss the advantage of the distinguishing
algorithm against the full-round SCARF. This discussion is motivated by the
state-of-the-art theory regarding the definition of bit security [17,23,24], which
defines bit security based on the adversary’s time and advantage.

6.1 Time and Advantage of the Distinguishing Algorithm

When we compute the LLR statistic on the full-round SCARF, we do not need
to guess the key. Therefore, a simplification of Algorithm 1 allows us to compute
the LLR statistic with a time complexity of 31 × 240 ≈ 244.95. The capacity of
the differential bias for the full-round SCARF is 2−88.95. When we compute the
LLR statistic using 267 pairs, after adjusting the average by subtracting from it
(μ0 + μ1)/2, each distribution has

Real ∼ N (2−22.95, 2−21.95) Ideal ∼ N (−2−22.95, 2−21.95).

It is unlikely to distinguish these two worlds in practice because σ0 ∼ σ1 �
μ0 − μ1. However, we do have a non-negligible distinguishing advantage. When
we estimate the probability that the statistic is higher than −2−22.95, it is 0.5 in
the ideal case but 0.5001982 in the real case. This implies that the (traditional)
distinguishing advantage is

0.5001982 − 0.5 = 0.0001982 ≈ 2−12.30.

Micciancio and Walter defined the notion of bit security from the adversary’s
time, T (A), and advantage, advA [17].

Definition 4 (Bit Security of a Primitive [17]). Let T (A) be the time com-
plexity of the algorithm A, that is linear under repetition. For any primitive, its
bit security is defined as minA log T (A)

advA .

Here, advA is defined by the Shannon entropy and mutual information. In
our attack scenario, advA = (2 × (0.5 + 2−12.30) − 1)2 = 2−22.60. Therefore, the
bit security of SCARF is defined as

44.95 + 22.60 = 67.55.

It is significantly less than 80. Therefore, we can conclude that SCARF does not
provide an 80-bit security in the context of [17].

Watanabe and Yasunaga also defined a notion of bit security as the computa-
tional cost of winning the game [23]. Later, they showed that the two definitions
are equivalent [24].

Multiple-Tweak Differential Attack Against SCARF 351

6.2 Multi-key Distinguisher

On the other hand, it is not easy to conclude that the above observation implies
a security claim break. The definition of [17] does not provide an explicit attack
algorithm that wins a distinguishing game with high probability by the compu-
tational cost of the bit security. The definition in [23] provides an explicit attack
algorithm, but their distinguishing game accesses multiple encryption oracles
while re-keying the oracle. Finally, the adversary wins the distinguishing game
by combining all knowledge gained from the oracles with multiple keys. Such
an attack setting can be classified as a multi-key model rather than a single-key
model. Indeed, we have the following concrete attack procedure to distinguish
the full SCARF in the multi-key setting.

1. The attacker accesses an oracle and evaluates the LLR statistic. If it is higher
than μ1, the score is increased. Otherwise, the score remains unchanged.

2. The attacker re-keys the oracle and repeats Step 1, c × 222.60 times, for some
constant c.

3. Check the score. If it is significantly higher than c×221.60, the attacker returns
1. Otherwise, he returns 0.

The procedure above distinguishes SCARF from the ideal with a complexity of
c × 244.95+22.60 = c × 267.55. It is clear that SCARF does not provide a 80-bit
security in the multi-key setting2.

On the contrary, to the best of our knowledge, we do not have an explicit algo-
rithm to win the distinguishing game with this bit security notion in a single-key
model. This is different from a key-recovery attack with a low success probability.
In a key-recovery attack with a success probability p, we might repeat the attack
procedure p−1 times while re-keying. However, unlike the multi-key attack, we
do not need to combine all knowledge from the re-keyed oracles.

The Case of the Security Requirement 1. When we consider the Secu-
rity Requirement 1, the number of available pairs is reduced to 251. Then, the
traditional distinguishing advantage is

0.500000774 − 0.5 = 0.000000774 ≈ 2−20.30.

The adversary needs at least 240 times as the query complexity. The time to
compute the LLR statistics is negligible because it is 2 × 221 × 31 × 210 ≈ 236.95.
Therefore, the bit security is 40+19.30×2 = 78.6. Even for Security Requirement
1, SCARF does not provide an 80-bit security in the multi-key setting.

2 We also have another procedure, where instead of computing the LLR statistics
every time, we collect pairs while re-keying. We have 267 pairs for each key. Therefore,
roughly, 288.95−67 = 221.95 re-keys are enough to collect 288.95 pairs. As a result, both
procedures successfully distinguish the full SCARF with almost the same complexity
on the multi-key setting.

352 C. Boura et al.

6.3 Discussion and Open Questions

The existing definition of bit security and our multi-key distinguishing attack
prompt several discussions and open questions in both practice and theory.

First, should we distinguish between the single-key and multi-key models?
Currently, the existing definition of bit security [17,23,24] does not make this
distinction. However, these two attack models are regarded as different in prac-
tice [18]. We presented one such example. Bridging this gap between theory and
practice is an interesting open question.

From a practical perspective, the question is whether we have an explicit
distinguishing attack in the single-key model with even a slight advantage. If
such an attack is found, it would imply that the security requirements of SCARF
would be broken. It may be beneficial to redefine bit security by distinguishing
between the single-key and multi-key models. This redefinition would be useful
for primitives whose claimed security level exceeds the block length and where
the number of queries is limited.

Finally, does our conclusion that SCARF does not provide 80-bit security
in the multi-key setting pose a practical problem for its use case? SCARF is
used to counter (contention-based) cache attacks. With each exhaustion of the
limited queries, the key is re-keyed, creating an environment where a multi-key
distinguishing attack could be executed in practice. However, the attacker’s true
goal is to efficiently construct a victim set to mount the cache attack. Whether
the existence of a multi-key distinguisher aids in constructing these victim sets
remains an open question.

7 Impact of the S-Box Choice on the Differential Bias

The differential properties of the S-box play an important role in the multiple-
tweak differential attack and influence the magnitude of the differential bias.
The goal of this section is to provide a deeper understanding of the role that the
S-box plays in the attack and to discuss the impact of choosing a different S-box
would have on the bias.

7.1 Impact of the S-Box on the Bias for 2+2 and 3+3 Rounds

As shown in Sect. 4, the differential bias for 1+1 rounds depends on the properties
of the function S−1 ◦ S(· ⊕ k). More precisely, for a couple of differences (α, β),
the bias depends on the number of solutions of the equation :

S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = β, (5)

for all couples (x, k) ∈ F
5
2 × F

5
2. This number of solutions for all possible differ-

ences α and β is given in Table 7 of Appendix A.
We provide now an analysis of the number of solutions of Eq. (5) in the case

α = β. Then, we analyze the more general case α �= β.

Multiple-Tweak Differential Attack Against SCARF 353

Case α = β. We show that in the case where α = β the elements of Table 7, are
directly related to a classical table, called the Boomerang Connectivity Table
(BCT) [12], used to estimate the power of boomerang attacks at the S-box level.

For an n-bit invertible S-box S, the BCT of S is a 2n × 2n table, denoted by
BS and defined as follows:

BS(α, β) = #{x ∈ F
n
2 : S−1(S(x) ⊕ β) ⊕ S−1(S(x ⊕ α) ⊕ β) = α}.

Let’s see how the number of solutions of Eq. (5) is related to the BCT of S in
the case where α = β:

#{(x, k) ∈ F
5
2 × F

5
2 : S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = α}

=
25−1∑
k=0

#{x ∈ F
5
2 : S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = α} =

25−1∑
k=0

BS(α, k).

The above computation shows that for a given α the number of solutions of
Eq. (5) is just the sum of all the elements of the BCT of S on the row α.

Case α �= β. We define for any k ∈ F
5
2, the permutation Sk that maps x to

S−1(S(x) + k). Then,

#{(x, k) ∈ F
5
2 × F

5
2 : S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = β}

=#{(x, k) ∈ F
5
2 × F

5
2 : Sk(x) ⊕ Sk(x ⊕ α) = β}

=
25−1∑
k=0

DDTSk
(α, β).

We see from the above equation, that in the case α �= β we obtain a quite
different interpretation for the elements in Table 7. Indeed, the elements of this
table that are not on the diagonal can be interpreted as the sum, for all the 25

different functions k of the Sk’s Difference Distribution Table (DDT) coefficient
at row α and column β.

We can observe from Table 7 that the coefficients on the diagonal (corre-
sponding to the case α = β) have much higher values than the other coefficients.
This could be potentially explained by the fact that in general, BCTs have higher
coefficients than DDTs. However, obtaining a more precise explanation is hard,
as the correlation between the DDTs of the different functions Sk and their
relation to the BCT of S is unclear.

We investigate now the role that plays the S-box in the biases for 2+2 and
3+3 rounds. For this, we explicitly provide the EDPs for this number of rounds
by using the formulas given in Sect. 4.3.

For any non-zero α and β from F
5
2, we have for 2+2 rounds:

EDP[(0, α) 2+2−−→ (0, β)] = 2−5 × PS̃(α, β)

The formulas for 3+3 rounds are as follows:

EDP[(0, α) 3+3−−→ (0, β)] = 2−10 × (1 − 2−5) + 2−10 × PS̃(α, β),

354 C. Boura et al.

It can be seen from the above formulas that the differential properties of the
function S−1◦S(·⊕k) influence the bias for 2+2 and 3+3 rounds. More precisely,
as in the analysis of 1+1 rounds, the BCT of S plays a role in the case where
α = β. The higher the boomerang uniformity (the maximal non-trivial value
in a BCT), the higher the bias is expected to be in the differential transitions
(0, α) R+R−−−→ (0, β), for R = 1, 2, 3.

Other S-Boxes. It is interesting to see at this point, what the bias would
have been if a different S-box than the original one of SCARF had been used
instead. It is important to notice that contrary to the more classical 4-bit or
8-bit S-boxes, very few 5-bit S-boxes are used in the literature. However, in odd
dimension, and contrary to the 4-bit and 8-bit cases, there exist S-boxes that
ensure optimal resistance to differential cryptanalysis. Such S-boxes are called
Almost Perfect Nonlinear (APN). These are S-boxes that have only 0 and 2 in
their Difference Distribution Table (DDT). What is also known about these S-
boxes is that their BCT is also optimal which means it also has only the elements
0 and 2 inside (see for example [12] or [10]). Further, we know that the sum of
all elements in the BCT of an n-bit APN S-box equals 2n+1. This explains why
in the case of a 5-bit APN S-box, in the case α = β, the number of solutions of
Eq. (5) is always equal to 25+1 = 64.

As can be seen from Table 7, the values on the diagonal for the SCARF
S-box are higher than 64, which means that if an APN S-box had been used
instead of the original SCARF S-box, this would have led to much lower biases
for 2+2 and 3+3 rounds in the case of α = β. On the other hand, there are other
popular choices for a 5-bit S-box that would have produced for some values a
much higher bias than the one observed for SCARF. This is notably the case of
the 5-bit S-box used in Ascon [13], which is affine equivalent to the χ-mapping
used in Keccak [5]. The Ascon S-box has a differential uniformity of 8 (maximal
non-trivial coefficient in the DDT) and a boomerang uniformity of 16 (maximal
non-trivial coefficient in the BCT). In comparison, the same numbers for the
SCARF S-box are 4 and 6 respectively. Table 4 provides the theoretical bias
obtained by the corresponding EDPs for all differences α = β = (0, δ) for the
original S-box of SCARF, the S-box of Ascon and a 5-bit APN S-box.

7.2 Analysis for a Higher Number of Rounds

For a higher number of rounds, we expect that the difference distribution
table (DDT) of the S-box and specifically its interaction with the properties
of S−1 ◦ S(· ⊕ k) plays an important role in the estimation of the bias. This
can be seen from the formulas given in Sect. 4.3 where the probabilities of dif-
ferential transitions over S clearly appear and are multiplied with the EDP for
the transition over a smaller number of rounds, where we showed the function
S−1 ◦ S(· ⊕ k) to play a role.

Understanding better the interaction of the differential properties of those
two functions and their influence on the bias is an interesting open question.

We computed the theoretical bias for up to 8+8 rounds for the original
SCARF S-box, the Ascon S-box and the 5-bit APN used inside the cipher

Multiple-Tweak Differential Attack Against SCARF 355

Table 4. Bias (in log2 representation) for 3 + 3 rounds of SCARF with an APN S-box,
with the ASCON S-box and the original S-box. All biases appear with the (+) sign.

δ APN ASCON SCARF δ APN ASCON SCARF

0x1 -15.046-13.430-14.715 0x11 -15.046-12.199-14.715

0x2 -15.046-13.430-14.715 0x12 -15.046-15.046-14.715

0x3 -15.046-13.430-14.715 0x13 -15.046-12.199-14.445

0x4 -15.046-12.199-14.715 0x14 -15.046-13.430-14.715

0x5 -15.046-13.430-14.715 0x15 -15.046-13.430-14.445

0x6 -15.046-15.046-14.715 0x16 -15.046-15.046-14.445

0x7 -15.046-13.430-14.445 0x17 -15.046-13.430-14.715

0x8 -15.046-13.430-14.715 0x18 -15.046-15.046-14.715

0x9 -15.046-15.046-14.715 0x19 -15.046-13.430-14.445

0xa -15.046-15.046-14.715 0x1a -15.046-15.046-14.445

0xb -15.046-15.046-14.445 0x1b -15.046-15.046-14.715

0xc -15.046-12.199-14.715 0x1c -15.046-13.430-14.445

0xd -15.046-15.046-14.445 0x1d -15.046-13.430-14.715

0xe -15.046-13.430-14.445 0x1e -15.046-15.046-14.715

0xf -15.046-13.430-14.715 0x1f -15.046-13.430-13.850

0x10 -15.046-12.199-14.715

Table 5. Theoretical capacity for each number of rounds when we replace the S-box
by Salt, where C and Call are computed as in Eq. (1) and Eq. ((2), respectively.

capacity 2+2 3+3 4+4 5+5 6+6 7+7 8+8

log2(C) −3.29−13.30−32.43−42.43−63.29−73.29−93.49

log2(Call) −2.30−13.30−31.43−42.43−62.29−73.29−92.49

Fides [7]. We observed that for these computations for many difference values,
the bias was higher for Ascon than for SCARF and the APN S-box. This can be
explained by the fact that the differential spectrum of the S-box of Ascon (the
set of all the elements in the DDT) has much higher values than the differential
spectrum of the SCARF S-box and of course of any APN S-box.

7.3 Searching for Alternative S-Boxes for SCARF

An interesting question is whether we can replace the original SCARF S-box
with a different 5-bit S-box such that the bias after 8+8 rounds is lower than
for the original SCARF. Of course, the new S-box has to follow the same design
criteria as the original one. More precisely, it must ensure the low latency of
the global design, i.e., the maximum gate depth using 2-bit NAND, 2-bit NOR and
INV gates should be 4. It must also have the same cryptographic properties as

356 C. Boura et al.

Table 6. Experimental comparison for 4+4 rounds with four S-boxes. We obtained
these results using 235 pairs with 5000 repetitions. Note that to compute μ1, we did
experiments using a random 10-bit tweakable block cipher.

capacity theoretical estimations experimental results

μ1 − μ0 σ2
1 μ1 − μ0 σ2

1

Sorig. 2−32.20 6.98 6.98 7.18 7.09

SFides 2−35.09 0.94 0.94 1.00 0.96

SAscon 2−25.89 533.75 533.82 553.12 682.20

Salt. 2−32.43 5.95 5.95 5.85 5.92

the original S-box, which means having a differential uniformity of at most 4, a
linearity of at most 12 and a maximal algebraic degree, i.e., 4.

Using the tool of [22], given the above criteria and a restriction on the coor-
dinate functions to be extended bit-permutation equivalent of each other, we
found 1016 S-box representatives up to equivalence. Note that in the SCARF
original S-box, all the coordinates are the same function and the inputs for each
coordinate is just a rotation of the inputs for the first coordinate. However, in
this search, by fixing all the coordinates to use the same function, we allow the
inputs to be any permutation of the inputs for the first coordinate along with a
constant addition.

Applying bit-permutations, one at the input and one at the output of an S-
box, does not change the aforementioned criteria, but it can affect the capacity.
However, using two bit-permutations, P0 and P1, on either side of the S-box will
result in the same capacity as using the combined bit-permutation P0◦P1 on just
one side of the S-box. Therefore, we explored 1016 × 5! S-boxes and estimated
the capacity using our tool as described in Sect. 4. Among them, the one with
table representation

Salt =[00, 01, 03, 0D, 06, 13, 16, 0F, 19, 10, 0B, 17, 09, 1D, 1A, 1C,
1E, 0C, 15, 04, 08, 1B, 11, 0A, 1F, 14, 12, 02, 05, 07, 18, 0E]

achieves the best security against the multiple-tweak differential attack in 8+8
rounds. Table 5 summarizes C and Call when we replace the S-box with Salt.
Interestingly, Salt is worse than the original S-box up to 3+3 rounds but improves
the security from 4+4 rounds. Finally, the theoretical capacity reaches 2−93.49

for 8+8 rounds, which is better than 2−88.9514 for the original S-box.
We finally revisit the bit security when we replace the S-box. On the security

requirement 2, we can collect 229×229×29 = 267 pairs. Then, the distinguishing
advantage is about 2−14.57. Therefore, the bit security is 44.95 + 13.57 × 2 =
72.09. Although it is improved, the bit security is still lower than 80. In other
words, the multi-key distinguishing attack still works even if we replace the S-
box with Salt. The security requirement 1 limits the number of pairs that can
be collected by 251. Then, the distinguishing advantage is 22.57. Thus, we have
40 + 21.57 × 2 = 83.14, which is larger than 80.

Multiple-Tweak Differential Attack Against SCARF 357

7.4 Experiments

We provide an experimental verification for our discussion. We compared dif-
ferential capacities for 4+4 rounds among four S-boxes, Sorig., Salt., SAscon, and
SFides, where SAscon and SFides are

SAscon =[04, 0b, 1f, 14, 1a, 15, 09, 02, 1b, 05, 08, 12, 1d, 03, 06, 1c,
1e, 13, 07, 0e, 00, 0d, 11, 18, 10, 0c, 01, 19, 16, 0a, 0f, 17],

SFides =[01, 00, 19, 1a, 11, 1d, 15, 1b, 14, 05, 04, 17, 0e, 12, 02, 1c,
0f, 08, 06, 03, 0d, 07, 18, 10, 1e, 09, 1f, 0a, 16, 0c, 0b, 13].

For all S-boxes, our experimental results almost match the theoretical estima-
tions based on the EDP. As expected, SFides is the most secure, SAscon is weak,
and Salt is superior to the original S-box, Sorig. (Table 6).

8 Conclusion

In this work, we provided the first third-party cryptanalysis of the tweakable
block cipher SCARF, by means of multiple-tweak differential cryptanalysis. We
first provided a theoretical framework to compute the bias of the differential
transitions for any number of rounds and confirmed the theory by experimental
verification for up to 5 rounds. We then mounted a key recovery attack on 7 out
of 8 rounds of the cipher. In parallel, we showed distinguishing attacks on full
8-round SCARF in the multi-key setting that demonstrate that in this particu-
lar scenario the cipher does not offer the claimed 80-bit security. An interesting
open question is what could be said in the single-key model, and to answer this
question the actual notion of bit security should probably be re-defined. Finally,
the practical impact of SCARF’s vulnerabilities in real-world applications, such
as its effectiveness against cache attacks under realistic conditions, needs further
exploration to understand whether there is a true risk posed by multi-key dis-
tinguishers in constructing victim sets for cache attacks. Last, we analyzed the
role that the differential properties of the S-box play in this attack. We showed
in particular that it is possible to replace the original S-box of SCARF with a
different one that follows the same design criteria as the S-box of SCARF but
that offers a higher resistance against multiple-tweak differential attacks. How-
ever, we also showed that the replacement of the S-box with the best possible
variant would still not prevent the distinguisher on 8+8 rounds in the multi-key
setting.

Acknowledgements. Christina Boura was partially supported by the French Agence
Nationale de la Recherche through the SWAP project under Contract ANR-21-CE39-
0012 and through the France 2030 program under grant agreement No. ANR-22-
PECY-0010. Besides, Shahram Rasoolzadeh is funded by the ERC project 101097056
(SYMTRUST) and Dhiman Saha was supported by the Science and Engineering
Research Board (SERB), Department of Science and Technology, Government of India,
under MATRICS scheme File No. MTR/2023/001161. Finally, the authors would like
to thank the Dagstuhl Seminar 24041 on Symmetric Cryptography that gave the oppor-
tunity to the authors to initiate this collaboration.

358 C. Boura et al.

A Special DDT for S−1 ◦ S

Table 7 provides the number of solutions of the equation #{(x, k) ∈ F
5
2 ×

F
5
2 | S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = β}. It can be seen as a special

form of DDT for the function S−1 ◦ S, where the key is taken into account.

Table 7. #{(x, k) ∈ F
5
2 × F

5
2 | S−1(S(x) ⊕ k) ⊕ S−1(S(x ⊕ α) ⊕ k) = β}

00 0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E 1F

00 210 0

01 0 722820363632323620403632244028283240283628243232403228364024 32

02 0 287232284020283636362832243232363220404032362832362440402428 32

03 0 203272322840243228243244324032324032362432324444323232282428 20

04 0 362832722032402840403220362828363236363624284032402424322832 32

05 0 364028207232243632282828403624402428323248283624243232362840 36

06 0 322040323272363224283240322444324428322432323244283224402832 20

07 0 322824402436803636322832284024404036402420323228242036243624 48

08 0 363632283632367236202432284040283240404024322420323628283228 32

09 0 203628403224363672324024482428403228362828324028242824323632 36

0A 0 403624402828322032724832282436362432242832283228364028364024 36

0B 0 362832322832282440488032242036243228323240403632282440204824 24

0C 0 323244202840323224323272323632324424282832322440403228243244 20

0D 0 242432364032282848282432803240323232202824404832204024283636 24

0E 0 403240283624404024242036328032362836243220283632242836402424 48

0F 0 283232282444244028363632403272242840243224362824364832363228 24

10 0 283632364032402840362432323624722036322036242832282832402840 32

11 0 323240322444403232243244322828207228242832323240363244323224 20

12 0 402032362828364028322824323640362872243228402424324836243228 36

13 0 284036363232404036243228202424322424803628282440402032243636 48

14 0 364024363224244028283228283232202832367240482832362840242436 36

15 0 283232244832202428324032242024363228284080243632324036284048 24

16 0 243632282832323232284032402836243240284824804032202448202436 24

17 0 322844403632322440323624483628283224242836407228242428363232 24

18 0 323244322444282028283240323224324024403232322872243232364432 20

19 0 403632402428243224362840202436283632403632202424802824403236 48

1A 0 322432243232203628402432402848283248202840242432288036323640 24

1B 0 284032243224362824284028243632324436324036482832243672242832 24

1C 0 364028323640242832362024284036403224242428203636403224802432 48

1D 0 402424282828363236404832362432283232362440243244323628247228 24

1E 0 242828324032242832242444362428402428363648363232364032322872 24

1F 0 323220323620483236362420244824322036483624242420482424482424104

Multiple-Tweak Differential Attack Against SCARF 359

References

1. Advanced encryption standard (AES). National Institute of Standards and Tech-
nology. NIST FIPS PUB 197, U.S. Department of Commerce (2001)

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanal-
ysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. Lecture Notes in Computer Science,
vol. 3329, pp. 432–450. Springer (2004)

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. Lecture
Notes in Computer Science, vol. 9815, pp. 123–153. Springer (2016)

4. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: BipBip: A
low-latency tweakable block cipher with small dimensions. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023(1), 326–368 (2023)

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference. Sub-
mission to NIST (Round 3) (2011), https://keccak.team

6. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90. Lecture Notes in Computer Sci-
ence, vol. 537, pp. 2–21. Springer (1990). https://doi.org/10.1007/3-540-38424-3 1,
https://doi.org/10.1007/3-540-38424-3 1

7. Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: Fides: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J. (eds.) CHES 2013. Lecture Notes in Computer Science,
vol. 8086, pp. 142–158. Springer (2013)

8. Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis using
LLR and χ 2 statistics. In: Visconti, I., Prisco, R.D. (eds.) SCN 2012. Lecture
Notes in Computer Science, vol. 7485, pp. 343–360. Springer (2012)

9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
Lecture Notes in Computer Science, vol. 7658, pp. 208–225. Springer (2012)

10. Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic Sboxes.
IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018)

11. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.: SCARF
- A low-latency block cipher for secure cache-randomization. In: Calandrino, J.A.,
Troncoso, C. (eds.) USENIX 2023. pp. 1937–1954. USENIX Association (2023)

12. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
A new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. Lecture Notes in Computer Science, vol. 10821, pp. 683–714. Springer
(2018)

13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)

14. Dunkelman, O., Kumar, A., Lambooij, E., Sanadhya, S.K.: Cryptanalysis of Feistel-
based format-preserving encryption. IACR Cryptol. ePrint Arch. p. 1311 (2020),
https://eprint.iacr.org/2020/1311

15. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT ’91. Lecture Notes in Computer Science,
vol. 547, pp. 17–38. Springer (1991)

https://keccak.team
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://eprint.iacr.org/2020/1311

360 C. Boura et al.

16. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT ’93. Lecture Notes in Computer Science, vol. 765, pp. 386–397.
Springer (1993). https://doi.org/10.1007/3-540-48285-7 33

17. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. Lecture Notes in
Computer Science, vol. 10820, pp. 3–28. Springer (2018)

18. Mouha, N., Luykx, A.: Multi-key security: The Even-Mansour construction revis-
ited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. Lecture Notes
in Computer Science, vol. 9215, pp. 209–223. Springer (2015)

19. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. Lecture Notes in Computer Science, vol. 2248, pp. 222–238. Springer (2001)

20. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M.K. (ed.) CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp. 106–
122. Springer (2004)

21. Patarin, J.: Generic attacks on Feistel schemes. IACR Cryptol. ePrint Arch. p. 36
(2008), http://eprint.iacr.org/2008/036

22. Rasoolzadeh, S.: Low-latency Boolean functions and bijective S-boxes. IACR
Trans. Symmetric Cryptol. 2022(3), 403–447 (2022)

23. Watanabe, S., Yasunaga, K.: Bit security as computational cost for winning games
with high probability. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part
III. Lecture Notes in Computer Science, vol. 13092, pp. 161–188. Springer (2021)

24. Watanabe, S., Yasunaga, K.: Unified view for notions of bit security. In: Guo,
J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VI. Lecture Notes in Computer
Science, vol. 14443, pp. 361–389. Springer (2023)

https://doi.org/10.1007/3-540-48285-7_33
http://eprint.iacr.org/2008/036

Generic Differential Key Recovery
Attacks and Beyond

Ling Song1 , Huimin Liu1 , Qianqian Yang2,3(B) , Yincen Chen1 ,
Lei Hu2,3 , and Jian Weng1

1 College of Cyber Security, Jinan University, Guangzhou, China
2 Key Laboratory of Cyberspace Security Defense, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
{yangqianqian,hulei}@iie.ac.cn

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. At Asiacrypt 2022, a holistic key guessing strategy was pro-
posed to yield the most efficient key recovery for the rectangle attack.
Recently, at Crypto 2023, a new cryptanalysis technique–the differential
meet-in-the-middle (MITM) attack–was introduced. Inspired by these
two previous works, we present three generic key recovery attacks in
this paper. First, we extend the holistic key guessing strategy from the
rectangle to the differential attack, proposing the generic classical differ-
ential attack (GCDA). Next, we combine the holistic key guessing strategy
with the differential MITM attack, resulting in the generalized differen-
tial MITM attack (GDMA). Finally, we apply the MITM technique to the
rectangle attack, creating the generic rectangle MITM attack (GRMA). In
terms of applications, we improve 12/13-round attacks on AES-256. For
12-round AES-256, by using the GDMA, we reduce the time complexity by a
factor of 262; by employing the GCDA, we reduce both the time and mem-
ory complexities by factors of 261 and 256, respectively. For 13-round
AES-256, we present a new differential attack with data and time com-
plexities of 289 and 2240, where the data complexity is 237 times lower
than previously published results. These are currently the best attacks
on AES-256 using only two related keys. For KATAN-32, we increase the
number of rounds covered by the differential attack from 115 to 151 in
the single-key setting using the basic differential MITM attack (BDMA)
and GDMA. Furthermore, we achieve the first 38-round rectangle attack
on SKINNYe-64-256 v2 by using the GRMA.

Keywords: Differential cryptanalysis · Rectangle attack ·
Meet-in-the-middle · Key recovery · AES · KATAN · SKINNYe

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS90,
BS91], is one of the most powerful cryptanalytic approaches for assessing the
security of block ciphers. The basic idea is to exploit non-random propagation of
input difference to output difference, i.e., high-probability differentials. The first
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 361–391, 2025.
https://doi.org/10.1007/978-981-96-0941-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_12&domain=pdf
http://orcid.org/0000-0001-9298-7313
http://orcid.org/0000-0003-2187-0817
http://orcid.org/0000-0002-2062-1344
http://orcid.org/0000-0003-3830-8169
http://orcid.org/0000-0002-9920-5342
http://orcid.org/0000-0003-4067-8230
https://doi.org/10.1007/978-981-96-0941-3_12

362 L. Song et al.

step in mounting a differential attack is to find a high-probability differential
covering a large number of rounds. This procedure has been extensively studied,
and many approaches have been proposed [Mat94,MWGP11,MP13,SHW+14,
SWW21]. Once an r-round high-probability differential of a certain cipher has
been found, one could add some outer rounds and restrict the possible values of
key bits in the outer rounds. Indeed, the right key of the outer rounds will reveal
the non-randomness of the differential.

Since the introduction of differential cryptanalysis, many improvements have
been proposed for the key recovery: structures of data [BS92], conditional dif-
ferentials [KMN10], probabilistic neutral bits [AFK+08], the early abort tech-
nique [LKKD08], the probabilistic extensions [SYC+24] and so on. Among the
techniques for key recovery, the key guessing strategy has received considerable
attention. A common approach is to guess key bits corresponding to S-boxes in a
default order as in [SWW21]. To improve complexity, the dynamic key-guessing
technique [WWJZ18] and a delicate key-guessing technique [BCF+21] that takes
advantage of the structure of the S-box have been introduced. In [BDD+24], an
automated tool was developed for the first time to find the best key guessing
order for block ciphers that use a bit-permutation as the linear layer. Recently,
significant progress was made on the differential key recovery in [BDD+23] where
the key is recovered in a meet-in-the-middle (MITM) manner, and the new attack
is called the differential MITM attack. In classical differential attacks, pairs of
data are constructed first, and for each pair, the attacker identifies the keys,
under which the differential is respected. In the differential MITM attack, pairs
of data are constructed together with the keys it suggests. The new attack has
produced favorable results on block ciphers SKINNY-128-384 and AES-256. Later,
this attack was extended to truncated differentials in [AKM+24].

The rectangle attack [BDK01], which is a variant of the differential attack,
combines two differentials and utilizes the non-randomness of quartets. There
have been a series of works on the key recovery of rectangle attacks [BDK01,
BDK02,ZDM+20,DQSW21], each employing a different key guessing strategy.
In [SZY+22,YSZ+24], the previous key recovery attacks are unified into a
generic rectangle key recovery attack. Notably, the generic rectangle attack sup-
ports any key guessing strategy and can optimize complexity by selecting the
most appropriate one.

Motivations. Even though the key guessing strategy received great attention in
both differential attacks and rectangle attacks, the strategies differ. In the rect-
angle attack, it means guessing some key bits before any pairs or quartets are
generated, which allows for filtering out some wrong pairs without even generat-
ing them. This is a natural approach. Under the guessed key some conditions of
the distinguisher can be checked. In rectangle attacks, the number of conditions
or filters is doubled as there are two pairs. Therefore, guessing some key bits ini-
tially is likely to be advantageous. The key guessing strategy lies in determining
which part of the key bits to guess in advance. In contrast, in the differential
attack, the attacker first generates the pairs that potentially satisfy the differ-
ential and then guesses some key bits. Here, the strategy focuses on the order in
which the key bits are guessed.

Generic Differential Key Recovery Attacks and Beyond 363

From now on, let the key guessing strategy refer to the one from the rect-
angle attack. Although in the differential attack the number of filters under the
guessed key bits is not doubled, it is interesting to investigate whether guessing
some key bits in advance affects the time complexity of the differential attack.
Second, the differential MITM attack employs a fixed key guessing strategy, can
it be generalized to support any key guessing strategy? Further, can the MITM
technique be integrated into the generic rectangle attack [SZY+22,YSZ+24]?
These questions form the starting point of this paper.

Our Contributions. Guessing some key bits in advance before any pairs of data
are generated is a technique that has been used in the rectangle attack. It plays
a core role in optimizing the time complexity. In this paper, we introduce the
key guessing strategy from the rectangle attack to the differential attack and
also introduce the MITM key recovery to the rectangle attack, resulting in three
generic key recovery attacks as follows.

GCDA A generic classical differential attack is proposed that first considers the
key guessing strategy. Notably, the key guessing strategy can be any, as in
the generic rectangle attack [SZY+22,YSZ+24]. Therefore, the GCDA encom-
passes the previous differential attack with no key bits guessed in advance.

GDMA A generalized differential meet-in-the-middle attack is proposed that
extends the basic differential meet-in-the-middle attack (BDMA) [BDD+23]
and allows a flexible key guessing strategy.

GRMA A generic rectangle meet-in-the-middle attack is proposed that incorporates
the MITM technique into the rectangle key recovery.

To demonstrate the efficiency of these attacks, we revisit the attacks on AES-
256, KATAN-32, and SKINNYe-64-256 v2 using previously published distinguishers.
The following results are obtained and comparisons of the results with previous
ones are summarized in Table 1.

– Using the GCDA and GDMA, the time complexity of the 12-round attack on AES-
256 in the related-key setting can be optimized to 2144. Notably, using the
BDMA, the time complexity cannot be reduced below 2206. This improvement
is primarily due to the flexible key guessing strategy. Additionally, we extend
the attack to 13 rounds, achieving lower data and time complexities than
previous works. Specifically, the data complexity is reduced by a factor of
237. These are the best attacks so far on AES-256 using only two related keys.

– We add various numbers of rounds to a 42-round differential of KATAN-32 and
compare the three attacks, i.e., BDMA, GCDA, and GDMA. We confirm some
properties of the time complexity of these attacks: the GDMA encompasses the
BDMA; GDMA outperforms GCDA under certain conditions (see Sect. 3.3). Using
a 91-round differential from the literature, we improve the differential attack
on KATAN-32 from 115 rounds to 151 rounds, marking the best differential
attack on KATAN-32 to date.

– We apply the GRMA to SKINNYe-64-256 v2 and extend the rectangle attack
by one round. This is the best attack on SKINNYe-64-256 v2 so far. Note
that, using the same distinguisher, the generic rectangle attack in [SZY+22,

364 L. Song et al.

Table 1. Summary of the cryptanalytic results. RK: related-key. SK: single-key.

Cipher Rounds Data Time Memory Setting Type

AES-256

12 289

2214 289 RK BDMA [BDD+23]

2206 2184 RK BDMA [BDD+23]

2185 289 RK GCDA (Sect. 4.1)

2144 2184 RK GDMA (Sect. 4.1)

2145 2128 RK GCDA (Sect. 4.1)

13

2126 2253 289 RK BDMA [BDF23]

2126 2250 2231 RK BDMA [BDF23]

289 2248 289 RK GCDA (Sect. 4.1)

289 2240 2144 RK GCDA (App. A.3 [SLY+24])

KATAN-32
115

232 279.98 − SK Differential [AL13]

151 279.98 238 SK BDMA (Sect. 4.2)

SKINNYe-64-256 v2
37 262.8 2240.03 262.8 RK Rectangle [QDW+22]

38 265.4 2251.07 2254.8 RK GRMA (Sect. 4.3)

YSZ+24] cannot cover as many rounds. This confirms the advantage of the
MITM technique in certain cases of the rectangle key recovery.

Our work demonstrates that guessing key bits in advance is an excellent
complement to existing techniques for differential attacks. Furthermore, allowing
flexible key guessing strategies enhances the power of the differential MITM
attack. Finally, the MITM technique can be extended to the key recovery of the
rectangle attack.

Organization. The rest of the paper is organized as follows. In Sect. 2, we recall
the generic rectangle attack and the differential MITM attack. In Sect. 3, we
introduce three generic key recovery attacks, i.e., the generic classical differential
attack (GCDA), the generalized differential MITM attack (GDMA), and the generic
rectangle MITM attack (GRMA). In Sect. 4, we provide new cryptanalytic results
on AES-256, KATAN-32, and SKINNYe-64-256 v2 using the newly proposed key
recovery attacks. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Notations

E The block cipher E = Ef ◦ Em ◦ Eb with a distinguisher over Em

n The block size
k The key size
kb (resp. kf) The subset of subkey bits that are employed in Eb (resp. Ef)

Generic Differential Key Recovery Attacks and Beyond 365

k′
b (resp. k′

f) The part of kb (resp. kf) guessed in advance
k∗
b (resp. k∗

f) k∗
b = kb \ k′

b (resp. k∗
f = kf \ k′

f)
| · | The size of an object
rb (resp. rf) The dimension of the space spanned by all possible plaintext (resp.

ciphertext) differences
r′
b (resp. r′

f) The number of conditions that can be verified under k′
b (resp. k′

f)
r∗
b (resp. r∗

f) r∗
b = rb − r′

b (resp. r∗
f = rf − r′

f)
GCRA The generic classical rectangle attack [SZY+22]
GCDA The generic classical differential attack
BDMA The basic differential MITM attack [BDD+23]
GDMA The generalized differential MITM attack
GRMA The generic rectangle MITM attack

2.2 The Generic Rectangle Key Recovery Attack

At Asiacrypt 2022, a generic rectangle key recovery attack was proposed by Song
et al. [SZY+22]. It contains a generic key recovery algorithm and a strategy for
finding the best attack. To make a distinction, we call the key recovery attacks
that do not use the MITM technique classical attacks, and then the attack in
[SZY+22] is called the generic classical rectangle attack (GCRA).

As shown in Fig. 1, given a block cipher E, we treat it as the composition of
three sub-ciphers: E = Ef ◦ Em ◦ Eb. Suppose the probability of the boomerang
distinguisher over Em is Pr = 2−2p. When we extend the differential outwards
with probability 1, Δx will propagate to the plaintext difference ΔP over E−1

b

and Δy will propagate to the ciphertext difference ΔC over Ef . Let all possible
ΔP span a space of dimension rb. Similarly, let all possible ΔC span a space
with dimension rf . Suppose that it requires subkey information kb (resp. kf) to
verify the difference Δx (resp. Δy) for plaintext (resp. ciphertext) pairs.

In the GCRA, some key bits may be guessed in advance to sieve the data faster.
Suppose a part of kb and kf , denoted by k′

b, k′
f , is guessed at first, 0 ≤ |k′

b| ≤
|kb|, 0 ≤ |k′

f | ≤ |kf |. With the guessed subkey bits, an r′
b-bit condition on the top

and an r′
f -bit condition on the bottom can be verified. Finally, let r∗

b = rb − r′
b

and r∗
f = rf − r′

f . The specific steps for the algorithm are as follows.

1. Phase of data collection. Collect and store y structures of 2rb plaintexts. The
time complexity of this step is T0.

2. Phase of extracting key candidates.
(a) Subkeys guessed. For each data (P1,C1), partially encrypt P1 and partially

decrypt C1 under the guessed subkey bits. There are y∗ = y · 2r
′
b sub-

structures of 2rb∗ = 2rb−r′
b plaintexts. The time complexity of this step is

T1.
(b) Pairs constructed. Insert all the obtained (P ∗

1 , C∗
1) into a hash table by the

inactive bits of P ∗
1 or C∗

1 to construct a set of pairs S = {(P ∗
1 , C∗

1 , P ∗
2 , C∗

2)}
or S = {(P ∗

1 , C∗
1 , P ∗

3 , C∗
3)}. The time complexity is T2.

(c) Quartets generated. Insert S into a hash table by the inactive bits of C∗
1

and C∗
2 or P ∗

1 and P ∗
3 . Then, generate the quartet for each index.

366 L. Song et al.

Fig. 1. A high-level description of the rectangle/differential MITM attack

(d) Quartets processed and key information extracted. Determine the key
candidates involved in Eb and Ef and increase the corresponding coun-
ters. The time complexity of this step is T3.

3. Phase of exhaustive search. Guess the remaining unknown key bits according
to the key schedule algorithm and exhaustively search over them to recover
the correct key. The time complexity of this step is T4.

Complexities. The data complexity is D = y · 2rb =
√

s2n+1+p where s is the
expected number of right quartets and y =

√
s2n/2−rb+p. The memory complex-

ity is M = fM (D, k′
b, k

′
f) = D+min{D ·2r∗

b −1,D2 ·2r∗
f−n−1}+2t+|kb∪kf |−|k′

b∪k′
f |

for storing the data, the pairs and the key counters, where 0 ≤ t ≤ |k′
b ∪ k′

f |.
The time complexity T = fT (D, k′

b, k
′
f) is composed of four parts. The time

complexity of collecting data is T0 = D, the time complexity of doing partial
encryption and decryption under guessed key bits is

T1 = 2|k′
b∪k′

f | · D,

the time complexity of generating pairs is

T2 = 2|k′
b∪k′

f | · D · min{2r
∗
b −1,D · 2r

∗
f−n−1},

the time complexity of generating and processing quartet candidates is

T3 = 2|kb∪kf | · D2 · 2−2n−2 · ε,

where ε ≥ 1 and its value depends on the concrete situation, and the time com-
plexity of the exhaustive search is T4 = 2k−h, where h ≤ t + |kb ∪ kf | − |k′

b ∪ k′
f |.

It can be seen that the time complexities are affected by the key guessing
strategy k′

b, k
′
f . Given a distinguisher, different strategies for guessing key bits

may lead to different time complexities. The GCRA, which supports any strategy,
is supposed to find an optimal attack with the lowest time complexity using a
holistic key guessing strategy.

Generic Differential Key Recovery Attacks and Beyond 367

2.3 The Basic Differential MITM Attack

The basic differential meet-in-the-middle (MITM) attack was first proposed by
Boura et al. [BDD+23] at Crypto 2023, as depicted in Fig. 1. Suppose the prob-
ability of the differential distinguisher over Em is Pr = 2−p. The differential
MITM attack can be divided into two phases.

1. MITM phase.
Choose 2p plaintexts. For each one:
(a) Given the plaintext P , for each guess i for kb, compute the associated

˜P i that ensures Eb(P) ⊕ Eb(˜P i) = Δx. There are 2|kb| possible (i, ˜P i).
Acquire the associated ciphertexts ̂Ci = E(˜P i) and store (̂Ci, i) in a hash
table H.

(b) Given C = E(P), for each guess j for kf , we can compute the associated
˜Cj that ensures E−1

f (C)⊕E−1
f (˜Cj) = Δy. There are 2|kf | possible (j, ˜Cj).

(c) Match ˜Cj with ̂Ci by looking up the table H. Each collision of (̂Ci, ˜Cj)
suggests an associated key kb = i, kf = j, that we will consider as
a candidate. The number of expected collisions for one plaintext P is
2|kb|+|kf |−|kb∩kf |−n.

2. Exhaustive search phase.
(a) Guess the remaining key bits (if there are) and test the guess with addi-

tional pairs.

Complexities. The time complexity of this attack can be estimated as

T = 2p ×
(

2|kb| + 2|kf |
)

+ 2|kb∪kf |−n+p + 2k−n+p, (1)

where the first term corresponds to the computations done in the upper part Eb

and the lower part Ef , the second one to the number of expected key candidates
for kb ∪ kf and the last one to the exhaustive search.

The data complexity of the attack can be roughly estimated as D = min{2n,
2p+min(|kb|,|kf |)}, which may be improved using data structures. The mem-
ory complexity is given by M = 2min(|kb|,|kf |), but it can be improved to
2min(|kb|,|kf |)−|kb∩kf | by guessing the common key material at the beginning. In
particular, [BDD+23] claimed the attack can become much more efficient when
the key size of the cipher is bigger than the state size.

3 New Generic Key Recovery Attacks

Inspired by the holistic key guessing strategy of the GCRA [SZY+22], we propose
counterparts for the differential attack, i.e., a generic classical differential attack
(GCDA) and a generalized differential MITM attack (GDMA). Our core idea is to
enhance key recovery attacks using the holistic key guessing strategy and the
MITM technique. By selecting an appropriate strategy (including the type of
key recovery attacks, key guessing strategy, etc.), the different terms of the time

368 L. Song et al.

complexity can be more balanced, resulting in a lower overall time complexity.
Further, upon the techniques used in GDMA, we combine the MITM technique
with the rectangle attack and propose a generic rectangle MITM attack (GRMA)
in return.

3.1 The Generic Classical Differential Attack

In [SZY+22], it was demonstrated for rectangle attacks that guessing some key
bits in advance affects the time complexity and that any key guessing strategies
should be allowed to find the best attack in terms of the time complexity. Since
the rectangle attack is a variant of the differential attack, it is interesting to
explore how these strategies can be applied back to the differential attack.

Suppose the differential Δx → Δy used in the attack has probability 2−p.
Then the data complexity for the attack is D = 2p+1 if one right pair satisfying
the differential is expected1. Other parameters for the key recovery are the same
as introduced in Sect. 2.1 and Fig. 1. The attacker first guesses k′

b, k
′
f , a part of

the involved key kb and kf , where 0 ≤ |k′
b| ≤ |kb|, 0 ≤ |k′

f | ≤ |kf |. Suppose
there are additional r′

b and r′
f filtering bits under the guess of k′

b and k′
f . Let

k∗
b = kb \ k′

b, k∗
f = kf \ k′

f , r∗
b = rb − r′

b, r∗
f = rf − r′

f .
Like the rectangle key recovery algorithm in [SZY+22], a generic differential

attack can be given in Algorithm 1. In this algorithm, it is assumed that rb−1 ≤
p, so multiple plaintext structures [BS92] are used. However, when rb − 1 > p, a
partial structure is enough, and this can be handled similarly. For conciseness,
Algorithm 1 focuses on the former case.

Complexities. The time complexity of Algorithm 1 contains five parts:

– T0 = D for getting the data;
– T1 = 2|k′

b∪k′
f | ·D for partial encryption and decryption under the guessed key

bits;
– T2 = 2|k′

b∪k′
f | · D · 2rb−1+rf−n−r′

b−r′
f for getting the pairs that satisfy the

specific filtering conditions;
– T3 = 2|kb∪kf |+p−n · ε = D · 2|kb∪kf |−n−1 · ε for extracting all the 2|kb∪kf |+p−n

key candidates, where ε depends on the concrete situation;
– T4 = 2k−h for the exhaustive search, where n−p ≤ h ≤ |kb∪kf | when Line 10

uses the counting method while h = n − p when enumerating all candidates
is chosen.

As there will be 2|kb∪kf |+p−n key candidates on average, T3 is at least
2|kb∪kf |+p−n and thus ε ≥ 1.

1 If a bit more right pairs are needed, then D should be increased by a factor.

Generic Differential Key Recovery Attacks and Beyond 369

Algorithm 1: The generic classical differential attack (GCDA)
1 S ← 2p−rb+1 structures, each of 2rb messages.
2 for each possible k′

b and k′
f , 0 ≤ |k′

b| ≤ |kb|, 0 ≤ |k′
f | ≤ |kf |, do

3 for structure S[i], 0 ≤ i < |S| do
4 Do partial encryption and decryption for elements in S[i] if k′

b ∪ k′
f �= ∅.

// Additional r′
b, r′

f filtering bits are obtained,

respectively.

5 Store the data into a hash table indexed by the filtering bits.

6 Get 22rb−1+rf−n−r′
b−r′

f pairs having fixed differences on the filtering
bits.

7 for each of such pairs do

8 Extract 2|k∗
b |−r∗

b candidates for k∗
b , under which Δx can be reached.

9 Extract 2|k∗
f |−r∗

f candidates for k∗
f , under which Δy can be reached.

10 Update the key counters or test directly.

The data should be stored. In addition, key counters consume mem-
ory if the counting method is used. Thus, the memory complexity is M =
max{2|k∗

b∪k∗
f |,D} or M = min{2rb ,D} depending on Line 10.

Remark 1. We check if the key guessing strategy makes a difference in the time
complexity. First, the time complexity depends on the guessed key bits k′

b, k
′
f .

Additionally, we can compare two typical cases: guessing no key bits and guessing
k′
b, k

′
f in advance. From the data, N = 2rb+p−(n−rf) pairs can be constructed,

satisfying the n − rf bits of the ciphertext difference. If the common guess-
and-filter method is then used, it takes a time complexity of N · 2|k′

b∪k′
f | to get

N · 2|k′
b∪k′

f | · 2−r′
b−r′

f pairs which satisfy r′
b + r′

f additional bit conditions. Since
N · 2|k′

b∪k′
f | is higher than T1 when rb + rf > n, the key guessing strategy may

matter in certain cases. In Sect. 4.1, we will see that using different key guessing
strategies results in different time complexities for attacks on 12-round AES-256.

3.2 The Generalized Differential MITM Attack

In the original differential MITM attack [BDD+23], i.e., the BDMA, a fixed key
guessing strategy is used. Namely, the attacker separately guesses all the kb and
kf in the MITM phase. Similar to the GCDA, it is beneficial to allow all possible
key guessing strategies for the differential MITM attack.

Note that there are n − rf filtering bits from the fixed ciphertext difference,
which are available at no extra cost. However, the BDMA cannot exploit these
filtering bits until two sets are matched. When n − rf is large, whether these
filtering bits can be exploited early or not makes a significant difference. The
attacks on 12-round AES-256 in Sect. 4.1 are typical examples to confirm this.

370 L. Song et al.

Storing Pairs Instead of Single Messages. To exploit the n − rf filtering bits
earlier, we propose to store pairs instead of single messages in the MITM stages,
as these filtering bits can only be used for pairs. Then, it is more efficient to
perform the MITM stages for all data together in a structure rather than for
each single (P,C) one by one when pairs are considered.

The Detailed GDMA. In Algorithm 2, we propose our generalized differential
MITM attack (GDMA), which allows any possible key guessing strategies and
exploits the filtering bits of ciphertext difference early. The notations showed
in Algorithm 2 are defined similarly. The attacker first guesses k′

b, k
′
f , a part of

the involved key kb and kf , respectively. Let k′
∩ = k′

b ∩ k′
f . Suppose there are

additional r′
b and r′

f filtering bits under the guessed key bits for the upper and
lower parts. Let k∗

b = kb \ k′
b, k∗

f = kf \ k′
f , r∗

b = rb − r′
b, r∗

f = rf − r′
f . For

conciseness, Algorithm 2 also focuses on the case rb − 1 ≤ p where multiple data
structures are used.

Algorithm 2: The generalized differential MITM attack (GDMA)
1 S ← 2p−rb+1 structures, each of 2rb messages.
2 for each possible v∩ for k′

∩ do
3 for structure S[i], 0 ≤ i < |S| do
4 for each possible vb for k′

b \ k′
∩ do

5 Do partial encryption for data in S[i].

6 Get 22rb−1+rf−n−r′
b pairs (P, P̃) satisfying n − rf + r′

b filtering bits.

7 Store the corresponding
(
C, C̃, vb

)
in a table H.

8 for each possible vf for k′
f \ k′

∩ do
9 Do partial decryption for data in S[i].

10 Get 22rb−1+rf−n−r′
f pairs

(
C, Ĉ

)
satisfying n− rf + r′

f filtering bits.

11 for each vb ∈ H(C, C̃) do

12 Get (P, P̃) and (v∩, vb, vf).

13 Extract 2|k∗
b ∪k∗

f |−r∗
b −r∗

f candidates for k∗
b ∪ k∗

f for each pair.
14 Update the key counters or test directly.

Complexities. Without the pivot (P,C), both ciphertexts
(

C, C̃
)

are stored
in Line 7. Given two random pairs from the same structure, they will match
with probability 2−2rb+1 as there are 22rb−1 pairs in a structure. Therefore, in
Line 12, there will be D · 2|k′

b∪k′
f | · 2rb−1+rf−n−r′

b−r′
f pairs2, the same as T2 of

the GCDA. Like the GCDA, it may need to take further actions to extract the

2 2|k′
∩| · 2p−rb+1 · 2|k′

b∪k′
f |−|k′

∩| · 22rb−1−r′
b · 22rb−1+rf−n−r′

f · 2−2rb+1 = D · 2|k′
b∪k′

f | ·
2rb−1+rf−n−r′

b−r′
f .

Generic Differential Key Recovery Attacks and Beyond 371

remaining information of kin ∪ kout using the remaining filters. Similarly, the
time complexity of the whole attack has five parts:

– T0 = D for getting the data;
– T1 = (2|k′

b|+2|k′
f |) ·D for partial encryption and decryption under the guessed

key bits;
– T2 = D · 2|k′

b| · 2rb−1+rf−n−r′
b + D · 2|k′

f | · 2rb−1+rf−n−r′
f + D · 2|k′

b∪k′
f | ·

2rb−1+rf−n−r′
b−r′

f for getting pairs that satisfy the specific filtering condi-
tions;

– T3 = 2|kb∪kf |+p−n · ε = D · 2|kb∪kf |−n−1 · ε for extracting all the 2|kb∪kf |+p−n

key candidates, where ε depends on the concrete situation;
– T4 = 2k−h for the exhaustive search, where n−p ≤ h ≤ |kb∪kf | when Line 14

uses the counting method while h = n − p when enumerating all candidates
is chosen.

The data complexity is D = 2p+1, the same as the GCDA. The memory
complexity comes from the storage of the data, the pairs, and key counters
if needed. To save the memory for storing the counters of k′

∩, we store the
whole data and count candidates for (kb ∪ kf) \ k′

∩. However, we can also do
it the other way around, i.e., store one structure each time and count candi-
dates for kb ∪ kf , if it is more beneficial. Therefore, the memory complexity is

M = min
{

max
{

D, 2|kb∪kf |−|k′
∩|} ,max

{

2rb , 2|kb∪kf |}
}

if the counting method

is used or M = max
{

2rb , 22rb−1+rf−n−|k′
∩| · min

{

2|k′
b|−r′

b , 2|k′
f |−r′

f

}}

if the enu-
meration method is used.

3.3 Comparison

GDMA versus BDMA. Let k′
b = kb and k′

f = kf . Then the GDMA turns out to be
almost identical to the BDMA: the time complexities are exactly the same, while
the formulas for the memory and data complexities are different. Since D = 2p+1

is already minimal, the data complexity of GDMA is not larger than that of BDMA.
The memory complexity of GDMA depends on the key guessing strategy, so it is
hard to compare the memory complexity of two attacks. Hence, Algorithm 2
can be seen as a generalization of BDMA if the time complexity is of the greatest
concern.

GDMA versus GCDA. If the same key guessing strategy is used, then GDMA and GCDA
share the same time complexity parts T0, T3 and T4. Let us look into T1 and T2

which are rewritten in Table 2. Using the GDMA, the time complexity T1 of partial
encryption and decryption gets lower. For T2, however, it depends but GDMA’s T2

is at least the one of GCDA. On the one hand, if the GDMA outperforms the GCDA,
then T1 must be dominant for the GCDA. It is the case for the differential attack
on KATAN-32 in Sect. 4.2 when a 42-round differential is used.

On the other hand, if r′
b ≤ |k′

b| and r′
f ≤ |k′

b|, GDMA will not be worse than
GCDA. Usually, this is the case when a relatively large number of rounds are added
around the distinguisher.

372 L. Song et al.

Table 2. Time Complexity Comparison of GCDA and GDMA

GCDA GDMA

T1 2|k′
b∪k′

f | · D (2|k′
b| + 2|k′

f |) · D

- D · 2|k′
b| · 2rb−1+rf−n−r′

b

T2 - D · 2|k′
f | · 2rb−1+rf−n−r′

f

D · 2|k′
b∪k′

f | · 2rb−1+rf−n−r′
b−r′

f D · 2|k′
b∪k′

f | · 2rb−1+rf−n−r′
b−r′

f

BDMA, GCDA , and GDMA. As there will be 2|kb∪kf |+p−n key candidates on average
in any way, the following property can be obtained for differential attacks.

Property 1. When the overall time complexity reaches 2|kb∪kf |+p−n, the differen-
tial key recovery attack cannot be further improved in terms of time complexity.

If the time complexity of a certain stage exceeds this term 2|kb∪kf |+p−n, there
are ways to balance.

– If the time complexity T4 of the exhaustive search is high, the counting
method can be used to select the most likely candidates to test. This reduces
T4 at the cost of increasing the data by a small factor, say 4.

– The holistic key guessing strategy can balance T1 and T2.
– If T3 is large due to a large ε, precomputed tables may help to reduce ε.

In a nutshell, balancing the different components of the time complexity
makes the attack more efficient.

3.4 The Generic Rectangle MITM Attack

From the comparison of the GCDA and the GDMA, it is known that when a signifi-
cant number of rounds is added around the distinguisher, the MITM technique is
likely to be beneficial. Then, a natural question arises: can the MITM technique
enhance the rectangle attack so that more rounds can be attacked in certain
cases? Next, we study the combination of the MITM technique with the rectan-
gle attack.

Suppose the boomerang distinguisher has a probability of P 2 = 2−2p and y

structures of plaintexts are needed. Note y structures can constitute 2 · (y2rb−1

2

)

3

quartets that satisfy the input difference. Then y = 2n/2−rb+1+p and the data
complexity D = y2rb = 2n/2+p+1. Other notations are similar to the ones in
GDMA. The only difference is that two differentials are used in the rectangle attack.
Can we do MITM for pairs of data as in the GDMA? Since pairs on the upper
and lower parts of the rectangle attack are constructed in different directions,
we cannot perform MITM on pairs but on quartets. The generalized rectangle
MITM attack is given below with this taken into account.
3 If both (P1, P2) and (P3, P4) satisfy the input difference of the distinguisher, then

we can form two quartets: (P1, P2, P3, P4) and (P1, P2, P4, P3).

Generic Differential Key Recovery Attacks and Beyond 373

Algorithm 3: The generic rectangle MITM attack (GRMA)

1 S ← y = 2n/2−rb+1+p structures, each of 2rb messages.
2 for each possible v∩ for k′

∩ do
3 for each possible vb for k′

b \ k′
∩ do

4 Do partial encryption for data in S.

5 Get D · 2r∗
b −1 pairs (P, P̃) satisfying r′

b filtering bits.

6 Generate D2 · 22r∗
b −2 quartets (C1, C2, C3, C4, vb).

7 Store the quartets in a table H.

8 for each possible vf for k′
f \ k′

∩ do
9 Do partial decryption for data in S.

10 Get D2 · 2r∗
f−n−1 pairs

(
C, C̃

)
satisfying n − rf + r′

f filtering bits.

11 Generate D4 · 22r∗
f−2n−2 · y−2 quartets (C1, C2, C3, C4, vb).

12 for each vb ∈ H(C1, C2, C3, C4) do
13 Get (P1, P2, P3, P4) and (v∩, vb, vf).

14 Extract 2|k∗
b ∪k∗

f |−2r∗
b −2r∗

f candidates for k∗
b ∪ k∗

f for each quartet.
15 Update the key counters or test directly.

In Line 13 of Algorithm 3, there are 2|k′
b∪k′

f | · D2 · 22r
∗
b+2r∗

f−2n−2 matches4.
In Line 14, further actions may be needed to get the other key bits. Similarly,
the time complexity of the whole attack has five parts:

– T0 = D for getting the data;
– T1 = (2|k′

b|+2|k′
f |) ·D for partial encryption and decryption under the guessed

key bits;
– T2 = D2 ·2|k′

b|+2r∗
b −2+D4 ·2|k′

f |+2r∗
f−2n−2 ·y−2 for getting quartets that satisfy

the specific filtering conditions on one side, where y−2 is the probability of
both pairs falling in the same structure;

– T3 = 2|kb∪kf | · D2 · 2−2n−2 · ε for extracting all the 2|kb∪kf | · D2 · 2−2n−2 key
candidates, where ε ≥ 1 and its value depends on the concrete situation;

– T4 = 2k−h for the exhaustive search, where n − 2p ≤ h ≤ |kb ∪ kf | when
Line 15 uses the counting method while h = n − 2p when enumerating all
candidates is chosen.

The data, the quartets on one side, and the key counters should be stored,
so the memory complexity is M = max{D,min{D2 · 2|k′

b|+2r∗
b −2+2rf−2n,D4 ·

2|k′
f |+2r∗

f−2n−2 · y−2}, 2k
∗
b∪k∗

f } when the counting method is used and M =
max{D,min{D2 · 2|k′

b|+2r∗
b −2+2rf−2n,D4 · 2|k′

f |+2r∗
f−2n−2 · y−2}} when the enu-

meration method is used in Line 15. Like BDMA, the GRMA is usually more effective
when the ratio k/n is large, which is the inherent limitation of the differential
MITM attack itself.
4 From the set of D plaintexts, there are D222rb−2 quartets, so a match happens

with probability D−222−2rb and 2|k′
b∪k′

f | · D222rb−2−2r′
b · D422rf−2n−2r′

f−2y−2 ·
D−222−2rb = 2|k′

b∪k′
f | · D2 · 22r∗

b+2r∗
f−2n−2.

374 L. Song et al.

In Sect. 4.3, we will show with application to SKINNYe-64-256 v2 that when
a large number of rounds are added to the distinguished, the GRMA can help to
attack more rounds.

4 Applications

In this section, we analyze three block ciphers: AES-256, KATAN-32, and SKINNYe-
64-256 using generic key recovery attacks proposed in Sect. 3. First, we provide
improved attacks on 12/13-round AES-256 using the GCDA and GDMA in the related-
key setting, which are the best attacks on AES-256 to date using only 2 related
keys. Then, for KATAN-32, we use the GDMA and BDMA to extend the attack from
115 rounds to 151 rounds. These improved results demonstrate the advantage of
our new key recovery attacks that enjoy the flexibility of key guessing strategies.
Lastly, we apply the GRMA to SKINNYe-64-256 and extend the rectangle attack
by 1 round, confirming the advantage of the GRMA in certain cases.

4.1 Application to AES-256

In this subsection, we give a brief description of AES-256 and recall the differential
MITM attack on 12-round AES-256. We then propose improved attacks on 12-
/13-round AES-256 using the GCDA and the GDMA.

Description of AES. The Advanced Encryption Standard (AES) [DR02] is a
block cipher that encrypts 128-bit plaintext with the secret key of sizes 128,
192, or 256 bits. Its internal state can be represented by a 4 × 4 matrix whose
elements are byte values in the finite field of GF (28). As shown in Fig. 2, the
round function consists of four basic transformations in the following order:

– SubBytes (SB) is a nonlinear substitution that applies the same S-box to each
byte of the internal state.

– ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

– MixColumns (MC) is a multiplication of each column with a Maximum Distance
Separable (MDS) matrix over GF (28).

– AddRoundKey (AK) is an exclusive-or with the round key.

Fig. 2. AES round function and the ordering of bytes

At the beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns. AES-128, AES-192,

Generic Differential Key Recovery Attacks and Beyond 375

and AES-256 share the same round function with a different number of rounds:
10, 12, and 14, respectively. AES-256 has a 256-bit key, which is twice as large as
the internal state and derives round keys from the master key based on the key
schedule illustrated in Fig. 3. Please refer to [DR02] for more details.

Fig. 3. Key schedule of AES-256

Distinguisher. Our differential attacks below are all based on the distinguisher
proposed in [BDD+23], as shown in Fig. 4. The attacks require a pair of related
keys. The attacker chooses two bytes a and b such that the differential transition
b → a through the S-box happens with probability 2−6. The attacker then injects
the difference b on the first byte of the round key k8 and MC(a, 0, 0, 0) to the first
column of the round key k9. Figure 4 displays the attacks on AES-256, where
ui, 0 ≤ i ≤ 14 are unknown key differences. The differential used for the attacks
starts from columns 0 and 3 of the state w0 and columns 1 and 2 of z1 and
stops at state x11. The differential holds with a probability of 0.25. If it does,
the probability of the distinguisher is 2−86. Moreover, the differential in the red
dashed rectangle represents a 13-round attack on AES-256. The key difference
propagation is depicted in Appendix A.1 in the full version of the paper.

Attacks on AES-256 Reduced to 12 Rounds. In [BDD+23], to show the
power of the differential MITM attack, a 12-round attack on AES-256 was pro-
posed. To verify the input difference of the differential, it involves 15 key bytes,
namely, kb contains k0[0, 2, 3, 4, 7, 8, 9, 13, 14], k1[5, 10] and k3[12, 13, 14, 15]. Sim-
ilarly, to verify the output difference of the differential, it requires the information
of 8 key bytes, i.e., kf consists of k11[12, 13, 14, 15] and k12[0, 4, 8, 12], from which
an extra key byte k10[12] can also be derived. These key bytes are highlighted
as red squares in Fig. 4. The remaining information of the master key contains
9 bytes. Applying the differential MITM attack presented in Sect. 2.3, one can
have an attack of data, memory, and time5 complexities D = 289, M = 289 and
T = 2214, as

5 We contacted the authors of [BDD+23] and confirmed that they mistook the time
complexity 2p · max{2120, 264} + 2p+56+72 = 2214 for 2p · max{2120, 264, 272} = 2206.

376 L. Song et al.

Fig. 4. Differential attacks on 12-round and 13-round AES-256 where a, b are chosen
and known and the bottom part of the 13-round attack is shown in the dashed square.

T = 2p ×
(

2|kin| + 2|kout|
)

+ 2|kin∪kout|−n+p + 2k−n+p

= 286 × (

2120 + 264
)

+ 2120+64−128+86 + 2256−128+86 (2)

= 2206 + 2150 + 2142 + 2214 ≈ 2214.

From Eq. (2), it is evident that the time for the exhaustive search dominates the
overall time complexity. We could turn to the counting method to reduce the
time complexity of the exhaustive search. However, the time complexity cannot
be reduced below 2206, primarily due to the large kb in the upper part of the

Generic Differential Key Recovery Attacks and Beyond 377

MITM phase. To further reduce the time complexity, it is worthwhile to explore
different key guessing strategies.

The First GCDA on 12-round AES -256. We apply the GCDA to AES-256 and put
forward the following attack using the same differential trail. The plaintext dif-
ference falls in a space of dimension 11×8 since Δk0[1] = Δk0[5], i.e., rb = 11×8.
Since the bottom three bytes of the columns of Δk12 are the same, 9 bytes of
the ciphertext difference are known, i.e., rf = 7 × 8. We choose to guess 4 bytes
of kb and 3 bytes of kf in advance. The attack starts with preparing a structure
of 288 plaintexts under both related keys, respectively.

1. Guess k3[12, 13, 14, 15],k11[13], and k12[8, 12]:
(a) Compute

differences (u0, u1, u2, u3) from k3[12, 13, 14, 15] and (2a, a, a, 3a); com-
pute u5 from b and k10[12] = k12[8] ⊕ k12[12]; compute u6 from a and
k11[13].

(b) Initialize counters for all possible values of k∗
b , k

∗
f , i.e., k0[0, 2, 3,

4, 7, 8, 9, 13, 14], k1[5, 10] and k11[12, 14, 15], k12[0, 4].
(c) Do partial encryption and decryption. There are 2 additional byte filters

on both sides, i.e., r′
b = r′

f = 8 × 2.
(d) Construct 288×2−(2+2+9)×8 = 272 pairs of data. Each pair has i) fixed

differences on 7 x0 bytes at positions 1, 5, 6, 10, 11, 12, 15, ii) the last three
rows of Δz11 satisfy the pattern of Δk12 and iii) Δx11[8, 12] are u5.

(e) For each pair of data, extract the other bytes of kb by guessing Δw0[5, 10]:
– Compute the two middle columns of Δz0. From Δx0 and Δz0, derive

x0 at the 9 active bytes as well as k0[0, 2, 3, 4, 7, 8, 9, 13, 14]. Compute
w0[5, 10].

– Among the bytes of Δz1[0, 1, 2, 3] and Δw1[0, 1, 2, 3], four bytes are
known. From them, compute Δz1[1, 2]. From Δx1[5, 10] and Δz1[1, 2],
recover x1[5, 10] and k1[5, 10] = w0[5, 10] ⊕ x1[5, 10].

(f) For each pair of data, extract the other bytes of kf :
– As Δk12[0] = u6 + b, Δk12[4] = u6, and Δx11[0] = Δx11[4] = u5,

compute Δz11[0, 4] and derive z11[0, 4], k12[0, 4].
– Let (u7, u8, u9) = ΔC[1, 2, 3]. As Δk11[14, 15, 12] S−→ (u7, u8, u9),

derive k11[14, 15, 12].
(g) Update the counters.
(h) Select the key values with the top 214 counters. Together with the guessed

key bytes and all possible values for another 9 bytes outside kb ∪ kf , test
exhaustively to find the right master key.

The data complexity is still 289. The data and the counters should be stored,
so the memory complexity is max{289, 216×8} = 2128. The time complexity is

T = 256 × (289 + 272 + 288) + 2142 ≈ 2145,

which is much smaller than the time complexity 2206 by the BDMA. The expected
number of right pairs from the data is 4, so the right key ranks first with a high
probability.

378 L. Song et al.

The Second GCDA on 12-round AES -256. However, the memory complexity
of the above attack is higher than that of the BDMA. If we guess more key
bytes in advance, the memory consumption for the counters decreases. Sup-
pose k0[0], k12[0, 4] and k0[8, 13] are also guessed. Then more filters Δz0[0] =
a, 11 · Δz0[8] = 13 · Δz0[9], and Δx11[0, 4] are u5, i.e., r′

b, r
′
f now are both 4

bytes. Consequently, the time complexity becomes

T = 296 × (289 + 240 + 248) + 2182 ≈ 2185,

and the memory complexity decreases to max{289, 211×8} = 289. This attack has
the same data and memory complexities as the BDMA but a lower time complexity.

The GDMA on 12-round AES -256. Using the GDMA, let k′
b = k3[12, 13, 14, 15], k′

b =
(k11[13], k12[8, 12]), and we have k′

∩ = 0, r′
b = 16, r′

f = 16, M = 2|kb∪kf | = 2184

and T = D(232 +232−1 +224 +224−1)+2128 +2144 = 2144. Now the overall time
complexity is as good as the time complexity of GCDA. If in the attack only single
messages are stored instead of pairs, then the n − rf = 72 bit filters cannot be
used early and the time complexity is T = D(232 + 232−1+72 + 224 + 224−1) +
2128 + 2144 = 2192. Even though this attack is more efficient than the BDMA, it is
less efficient than the GDMA which stores pairs.

Remark 2. According to Property 1, when the overall time complexity of the
attack on 12-round AES-256 based on the differential trail in Fig. 4 reaches 2144,
there is no room for further improvement. That is, both the GCDA and the GDMA
can lead to attacks with the optimal time complexity. However, using the BDMA,
the time complexity cannot be lower than 2206. This confirms that allowing
flexible key guessing strategies is critical for finding the best attack.

Extending the Attack to 13 Rounds. We use the same differential in
Fig. 4 and add one more round to the end. In this case, kb remains the same
as in the 12-round attacks, while kf becomes large. kf involves 28 round
key bytes: k10[12], k11[12, 13, 14, 15], k12[12, 13, 14, 15], k12[0, 4, 8] and k13 where
k12 = MC−1(k12). Now kb ∪ kf covers the whole key information. In addition,
rb = 88, rf = 128.

The BDMA fails due to a large kf in this case. Again, the flexible key guessing
strategy shows its advantage with the following attack. Similar to the GCDA attack
on 12-round AES, we also construct a structure of 288 plaintexts under the two
related keys, respectively.

1. Let k′
b be k3[14, 15] and k′

f be k10[12], k11[12 ∼ 15], k12[12 ∼ 15] and k13[8 ∼
11]. Guess k′

b, k
′
f :

(a) Initialize counters for all possible values for k∗
b and k∗

f .
(b) Derive the difference for partial kb and the whole kf : From Δk3[14, 15]

and k3[14, 15], compute u1, u2 so Δk0[1, 2, 5, 6] is known; from k10[12] and
b compute u5 so Δk11[0, 4, 8, 12] are known; from k11[12 ∼ 15], compute
u6 ∼ u9 and then Δk12 is known; from k12[12 ∼ 15], compute u10 ∼ u14

so now Δk13 is known. From k13[8 ∼ 11] and k12[12 ∼ 15] compute
k13[12 ∼ 15].

Generic Differential Key Recovery Attacks and Beyond 379

(c) Do partial encryption and decryption and then construct pairs of data
satisfying 6 filtering bytes: Δx0[5, 6] = 0, i.e., r′

b = 16, and Δx12[1] =
Δx12[2],Δx12[6] = Δx12[7],Δx12[8] = Δx12[11],Δx12[12] = Δx12[13]
due to the MDS property of MC, i.e., r′

f = 32. There will be 288×2−6×8 =
2128 pairs of data.

(d) Derive other key bytes k13[0 ∼ 7],k12[0, 4], k12[8 ∼ 11], k3[12, 13] and
k0[0]. Now, Δz11 and Δx12 are determined. Given the input and the
output difference of the S-box, there is one solution on average. Therefore,
for each pair, we can get one solution for k13[0 ∼ 7], k12[0, 4, 8, 12] and
k0[0]. As k12[12] must match with the guessed k12[12 ∼ 15], this is a 1-
byte filter and the number of pairs becomes 2120.
From the key schedule, k3[14] = S(k12[10] ⊕ k12[14]) ⊕ k11[14], so we can
get k12[10]. Similarly, we can get k12[11]. And k12[8] = k12[12]⊕k10[12]. As
k12[8] is also known, we can get k12[9]. From the known bytes of k11, k12,
we can compute k3[12, 13].

(e) For each pair of data, guess Δw0[10] and recover the remaining key bytes
of kb, kf .
i. From Δw0[10], get the difference of the third column of z0. For the

S-boxes of that column, the input difference and the output difference
are known, so we can get k0[8, 13, 2, 7]. Similarly, k1[10] can be known
as Δz1[3] is known from u1, u2, u3.
According to the relation of key bytes, as shown in Appendix A.2 in
the full version of the paper, from k0[0, 2, 7, 8, 13] and k1[10], we can
get k12[0, 2, 5, 6, 7] and a redundant relation which acts as a 1-byte
filter.
From k12[5, 6, 7] and k12[4], compute k12[4]. From k12[4, 6], derive
k0[4, 14] which helps to compute Δz0[4, 6]. This is a 1-byte filter
due to the MDS property. Also, Δz0[5, 7] and Δw0[5] can be known
now, so we can derive k0[3, 9] and k1[5]. From these three bytes, we
can derive k12[1, 3] and one redundant relation which is also a 1-byte
filter. From k12[0 ∼ 3] and k12[0], we get the last 1-byte filter.
Now the whole k12 and k13 are determined.

ii. Test the key candidates exhaustively to find the right master key.

Complexities. The data complexity is D = 289. The memory complexity is also
289. Since |k′

b| = 16, |k′
f | = 104, we have T1 = D · 2120 = 2209, T2 = 2120+128 =

2248. In Step (e), from 2240 pairs of data, we guess one byte more and get the
other 4 filtering bytes. Therefore, 2216 key candidates will be suggested finally
in a time complexity of 2248. Since T4 = 2216 is not dominant, the overall time
complexity is 2248.

13-Round Attack with an Improved Time Complexity. In the above attack, sev-
eral filters are used in the last steps. If some of these filters can be used earlier, the
number of pairs may not reach 2248 and hopefully the time complexity is lower.
We then propose an adapted attack that guesses fewer key bytes in advance and
utilizes two precomputed tables so that the number of pairs is at most 2240.

380 L. Song et al.

This attack has the same data complexity. The time complexity is 2240 while
the memory complexity is increased to 2120 due to the precomputed tables. The
detailed attack is given in Appendix A.3 in the full version of the paper.

Comparison and Discussion. On an existing differential, we analyze AES-256
reduced to 12 and 13 rounds using the GCDA and GDMA in the related-key setting.
The results are summarized as follows.

– On 12-round AES-256, both the GCDA and GDMA can achieve attacks with the
optimal time complexity, which is 262 times lower than that of BDMA.

– Using the GCDA, the attack can be extended to 13 rounds. In this attack,
r′
b ≤ |k′

b| and r′
f ≤ |k′

b|, so the GDMA is not worse (not better as well in this
case) under the same key guessing strategy, as explained in Sect. 3.3.

– Using the same differential, the BDMA cannot cover 13 rounds, because of
2p+|kf | > 2k due to a large kf . In [BDF23], the authors modified the differen-
tial to make kf smaller, thus enabling a differential MITM attack. However,
the differential probability decreased from 2−86 to 2−126.

All these results show that allowing flexible key guessing strategies is critical
for mounting key recovery attacks efficiently. Choosing between the counting
method and the enumerating method for the exhaustive search also impacts
the overall efficiency. The attacks on AES-256 illustrate that by combining these
methods, we can balance the time complexities of the attack steps to get more
efficient attacks.

However, the time complexity of the 13-round attack does not reach
2|kb∪kf |+p−n. The major reason lies in the nonlinear key schedule. kb and kf
share some common information, but it is difficult to utilize them early on due
to their complex nonlinear relationship. The 13-round attack with a lower time
complexity highlights the challenge of effectively leveraging the shared key infor-
mation.

4.2 Application to KATAN-32

For most block ciphers, a few rounds can be added around a differential in the
key recovery attack. However, the block cipher KATAN-32 is an exception. Since
it updates only 2 bits in each round, a relatively large number of rounds can be
added. In attacks on KATAN-32, we can observe how the BDMA, GCDA, and GDMA
perform when the number of rounds increases, and more importantly, whether
there is any discernible trend. Additionally, any improvement in its differential
attack is of particular interest. We start by recalling the description of the KATAN-
32.

Description of KATAN. The KATAN family is composed of three variants with
32-, 48-, and 64-bit block sizes denoted as KATAN-n, n = 32, 48, 64, respectively.
Here, we briefly revisit the KATAN-32, which is analyzed in the next. The KATAN-
32 iterates 254 rounds using two non-linear feedback shift registers (NLFSR) to
store and update the plaintext.

Generic Differential Key Recovery Attacks and Beyond 381

Key Schedule. The 80-bit master key K = (k0, k1, · · · , k78, k79) uses the linear
feedback register to generate the new round keys.

ki+80 = ki ⊕ ki+19 ⊕ ki+30 ⊕ ki+67, 0 ≤ i ≤ 427. (3)

Fig. 5. The round function of KATAN-32.

Round Function. A 32-bit plaintext X = (x0, x1, · · · , x30, x31) is divided into two
parts with 13 and 19 bits, respectively. At round t, the two parts are denoted
by St = (st, st + 1, · · · , st+11, st+12) and Lt = (lt, lt + 1, · · · , lt+17, lt+18). When
t = 0, the plaintext is loaded as si = xi, 0 ≤ i ≤ 12 and li = x13+i, 0 ≤ i ≤ 18.
When 0 ≤ t ≤ 253, the round function depicted in Fig. 5 is defined as follows:

st+13 = lt ⊕ lt+11 ⊕ lt+6 · lt+8 ⊕ lt+10 · lt+15 ⊕ k2t+1,
lt+19 = st ⊕ st+5 ⊕ st+4 · st+7 ⊕ st+9at ⊕ k2t,

(4)

where at is a round constant updated by the relation equation at = at − 3 ⊕
at−5 ⊕ at−7 ⊕ at−8, (t ≥ 8) with the initial value (a0, a1, a2, a3, a4, a5, a6, a7) =
(1, 1, 1, 1, 1, 1, 1, 0). According to the Eq. 4, we can get the expression of lt, st in
the decryption direction:

lt = st+13 ⊕ lt+11 ⊕ lt+6lt+8 ⊕ lt+10lt+15 ⊕ k2t+1,
st = lt+19 ⊕ st+5 ⊕ st+4st+7 ⊕ st+9at ⊕ k2t.

(5)

Distinguisher. Our attacks are based on the 42-round and the 91-round dis-
tinguishers proposed in [JRS22] and [AL13] with probability 2−12 and 2−31.98:

Δ42
in = 0x08020040, Δ42

out = 0x00200420,

Δ91
in = 0x1006a880, Δ91

out = 0x00400000.

When the attacker conducts a key attack on KATAN, it is very time-consuming
to determine the best key guessing strategy manually. It becomes even harder
when the added rounds increase. Therefore, we build a MILP model to find the
best key guessing strategy automatically. This model follows the same modules
as [SZY+22], and its detailed description is postponed to Appendix B.1 in the

382 L. Song et al.

full version of the paper. Given a differential, the number of rounds before the
differential, the number of rounds after the differential, and the type of attack
(i.e., BDMA, GCDA, or GDMA), the model outputs the minimal time complexity of
the attack and the parameters that lead to the attack.

Comparison and Discussion. Using the key recovery model, we can change
the objective function according to the key recovery algorithm to find the best-
attacking parameters such that the time complexity of the attack is optimal.
Based on the key recovery model and the 42-round distinguisher, we apply the
GCDA, GDMA, and BDMA to KATAN-32 from 94 to 137 rounds and compare their time
complexities. The results are illustrated in Fig. 6 and analyzed as follows.

Fig. 6. The time complexity of three attacks.

– From attacks on KATAN-32 reduced to 94 to 97 rounds before the pink dashed
line as shown in Fig. 6, both GCDA and GDMA have a better performance than
the BDMA. The last part 2k−n+p of the BDMA’s time complexity is dominated,
while the GCDA and GDMA can use the counting method mentioned in Sect. 3.3
to reduce the exhaustive search complexity.

– Between the pink and orange dashed lines, T1 becomes a large one in the
GCDA’s time complexity as the key guessed increases. So, the GCDA is worse
than the GDMA and BDMA. When |kb∪kf | is not the full key space, the GDMA has
a lower time complexity than the BDMA. As the number of rounds increases,
|kb ∪ kf | = 80, which reaches the full key space. The dominant terms of the
BDMA and GDMA are the same.

– After the orange dashed line, the first term (2|kb| + 2|kf |) · 2p of BDMA and
T1 = (2|k′

b| + 2|k′
f |) · D of the GDMA turn to dominant terms. The GDMA has

a lower time complexity than the BDMA. Because the key guessing strategy

Generic Differential Key Recovery Attacks and Beyond 383

of the BDMA is fixed and the GDMA allows the attacker to guess a part of key
information.

– The GDMA always performs better than the GCDA in every round of attacks on
KATAN-32. As explained in Sect. 3.3, T1 of the GCDA is a dominant one. The
partial encryption and decryption time complexity T1 of the GDMA is lower
than that of GCDA.

Attacks on KATAN-32 Reduced to 151 Rounds. We apply the BDMA and GDMA
to attack 151-round KATAN-32 based on the 91-round distinguisher with 29-round
Eb and 31-round Ef , as shown in Table 3. In Table 3, ? denotes a bit with the
unknown difference, 0 and 1 represent the specific difference value.

BDMA. The parameters are p = 31.98, n = 32, |kb| = 41, |kf | = 38. The key
information is listed as follows:

kb = k0, k1, · · · , k36, k37, k40, k44, k45,

kf = k252, k260, k262, k264, k266, k268, k269, k270, k272, k273, · · · , k300, k301.

The time complexity is

T = 231.98+41 + 231.98+38 + 241+38−0.02 + 280−32+31.98

= 272.98 + 269.98 + 278.98 + 279.98 ≈ 279.98

with data and memory complexities D = 232,M = 238.

GDMA . The best guessing parameters are |k′
b| = 33, |k′

f | = 29, r′
b = 25, r′

f = 22
and rb = rf = 32. Namely, guessing 33-bit k′

b and 29-bit k′
f obtains 25 and

22 filters, respectively. The filtering bits in the backward and forward extended
rounds are marked in blue and red in Table 3. The subkey bits guessed are:

k′
b = k0, k1, · · · , k24, k25, k27, k28, k29, k30, k32, k33, k36,

k′
f = k264, k268, k272, k274, k275, k276, k278, k279, k280, k282, k283, · · · , k300, k301.

The data complexity and memory complexity are D = 232,M = 270. The time
complexity is

T = 232+33 + 232+33+32−25−1 + 232+29 + 232+29+32−22−1

+ 232+33+29+32−25−22−1 + 279−0.02 + 280+31.98−32

= 265 + 271 + 261 + 270 + 278 + 278.98 + 279.98 ≈ 279.98.

Although the GDMA and BDMA have a slight advantage over traversing all keys,
our attacks primarily demonstrate that using new generic differential attacks
can significantly increase the number of rounds attacked, from 115 to 151. In
the attack, the time complexity of the exhaustive search is dominant. Since the
differential has a probability slightly larger than 2−n, there is no opportunity to
trade data for time by using the counting method. Consequently, BDMA and GDMA
share the same overall time complexity.

384 L. Song et al.

In addition, we present alternative 151-round attacks on KATAN-32 by extend-
ing 33 before and 27 rounds after the differential, respectively. More details are
provided in Appendix B.2 in the full version of the paper. In this setting, the
GDMA still recovers the key with a time complexity of 279.98, while the BDMA fails.
This outcome underscores the importance of flexibly guessing key information
for successful key recovery attacks, highlighting the greater applicability of the
GDMA.

Table 3. The 151(29 + 91 + 31)-round attack on the KATAN-32. For round t, Δt is the
t-th round difference, 0 ≤ t ≤ 151. The blue and red denote the filters by guessing a
part of key information k′

b and k′
f .

Δ0 ???? ???? ???? ???? ???? ???? ???? ???? Δout 0000 0000 0100 0000 0000 0000 0000 0000

Δ1 ???? ???? ???? ???? ???? ???? ???? ???? Δ121 0000 0000 1000 0000 0000 0000 0000 0001

Δ2 ???? ???? ???? ???? ???? ???? ???? ???? Δ122 0000 0001 0000 0000 0000 0000 0000 0010

Δ3 ???? ???? ???? ???? ???? ???? ???? ???? Δ123 0000 0010 0000 0000 0000 0000 0000 010?

Δ4 ???? ???? ???? ???? ???? ???? ???? ???? Δ124 0000 0100 0000 0000 0000 0000 0000 10?0

Δ5 ???? ???? ???? ???? ???? ???? ???? ???? Δ125 0000 1000 0000 ?000 0000 0000 0001 0?01

Δ6 ???? ???? ???? ???? ???? ???? ???? ???? Δ126 0001 0000 000? 0000 0000 0000 0010 ?01?

Δ7 ???? ???? ???? ???? ???? ???? ???? ???? Δ127 0010 0000 00?0 ?000 0000 0000 010? 01?0

Δ8 ???? ???? ???? ???? ???? ???? ???? ???? Δ128 0100 0000 0?0? 0000 0000 0000 10?0 1?00

Δ9 ???? ???? ???? ???? ???? ???? ???? ???0 Δ129 1000 0000 ?0?0 ?000 0000 0001 0?01 ?000

Δ10 ???? ???? ???? 1??? ???? ???? ???? ??0? Δ130 0000 000? 0?0? ?000 0000 0010 ?01? 0001

Δ11 ???? ???? ???1 ???? ???? ???? ???? ?0?1 Δ131 0000 00?0 ?0?? ?000 0000 010? 01?0 001?

Δ12 ???? ???? ??1? ???? ???? ???? ???? 0?11 Δ132 0000 0?0? 0??? ?000 0000 10?0 1?00 01?0

Δ13 ???? ???? ?1?? ???? ???? ???? ???0 ?110 Δ133 0000 ?0?0 ???? 1000 0001 0?01 ?000 1?0?

Δ14 ???? ???? 1??? 0??? ???? ???? ??0? 1101 Δ134 000? 0?0? ???1 ?000 0010 ?01? 0001 ?0??

Δ15 ???? ???1 ???0 1??? ???? ???? ?0?1 1010 Δ135 00?0 ?0?? ??1? ?000 010? 01?0 001? 0???

Δ16 ???? ??1? ??01 ???? ???? ???? 0?11 0101 Δ136 0?0? 0??? ?1?? ?000 10?0 1?00 01?0 ????

Δ17 ???? ?1?? ?01? 0??? ???? ???0 ?110 1010 Δ137 ?0?0 ???? 1??? ?001 0?01 ?000 1?0? ????

Δ18 ???? 1??? 01?0 0??? ???? ??0? 1101 0101 Δ138 0?0? ???1 ???? ?010 ?01? 0001 ?0?? ????

Δ19 ???1 ???0 1?00 0??? ???? ?0?1 1010 1010 Δ139 ?0?? ??1? ???? ?10? 01?0 001? 0??? ????

Δ20 ??1? ??01 ?000 1??? ???? 0?11 0101 0100 Δ140 0??? ?1?? ???? ?0?0 1?00 01?0 ???? ????

Δ21 ?1?? ?01? 0001 0??? ???0 ?110 1010 1000 Δ141 ???? 1??? ???? ??01 ?000 1?0? ???? ????

Δ22 1??? 01?0 0010 0??? ??0? 1101 0101 0001 Δ142 ???1 ???? ???? ?01? 0001 ?0?? ???? ????

Δ23 ???0 1?00 0100 0??? ?0?1 1010 1010 0010 Δ143 ??1? ???? ???? ?1?0 001? 0??? ???? ????

Δ24 ??01 ?000 1000 0??? 0?11 0101 0100 0100 Δ144 ?1?? ???? ???? ??00 01?0 ???? ???? ????

Δ25 ?01? 0001 0000 0??0 ?110 1010 1000 1000 Δ145 1??? ???? ???? ?000 1?0? ???? ???? ????

Δ26 01?0 0010 0000 0?0? 1101 0101 0001 0000 Δ146 ???? ???? ???? ?001 ?0?? ???? ???? ????

Δ27 1?00 0100 0000 00?1 1010 1010 0010 0000 Δ147 ???? ???? ???? ?01? 0??? ???? ???? ????

Δ28 ?000 1000 0000 0?11 0101 0100 0100 0000 Δ148 ???? ???? ???? ?1?0 ???? ???? ???? ????

Δin 0001 0000 0000 0110 1010 1000 1000 0000 Δ149 ???? ???? ???? ??0? ???? ???? ???? ????

.. Δ150 ???? ???? ???? ?0?? ???? ???? ???? ????

.. Δ151 ???? ???? ???? ???? ???? ???? ???? ????

Generic Differential Key Recovery Attacks and Beyond 385

4.3 Application on SKINNYe-64-256 V2

In this subsection, we apply our GRMA to SKINNYe-64-256 v2 to obtain a 38-round
rectangle attack.

Description of SKINNYe -64-256 v2. SKINNYe-64-256 v2 [NSS20a] is one of the
variants of SKINNY [BJK+16]. Similar to SKINNY, SKINNYe-64-256 v2 employs the
TWEAKEY framework and the STK construction [JNP14], with modifications to the
f function in STK. SKINNY supports block sizes n ∈ {64, 128}, and for n = 64,
the tweakey sizes tk ∈ {64, 128, 192}. To support TI-friendly AE modes, Naito et
al. extended SKINNY-64 to create SKINNYe-64-256, which features a 256-bit
tweakey and a similar tweakey schedule [NSS20b]. Due to security concerns raised
by Thomas Peyrin, an updated version, SKINNYe-64-256 v2, was proposed in
2020 [NSS20a].

SKINNY, SKINNYe-64-256, and SKINNYe-64-256 v2 share the same round func-
tion, applying five transformations:

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by the

matrix M whose branch number is only 2.

Tweakey Schedule of SKINNYe -64-256 v2. The 256-bit tweakey state is viewed as
4× 4 square arrays of nibbles, denoted as (TK1, TK2, TK3, TK4). The tweakey
arrays in round r (r ≥ 0) are represented as TK1

r , TK2
r , TK3

r , and TK4
r , where

TKm
0 = TKm (1 ≤ m ≤ 4). For r ≥ 1, TKm

r is generated in two steps:

– First, apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]
to each nibble of all tweakey arrays: TKm,i

r ← TK
m,P [i]
(r−1) , where 1 ≤ m ≤

4, 0 ≤ i ≤ 15 and r ≥ 1.
– Then, apply LFSRr to update each nibble of the first and second rows of

TKm
r for 2 ≤ m ≤ 4. For the details, please refer to [NSS20a].

Distinguisher of SKINNYe-64-256 v2. At Asiacrypt 2022, Qin et al.
[QDW+22] proposed a 26-round related-key rectangle distinguisher of SKINNYe-
64-256 v2 with a probability of 2−57.6. The distinguisher is detailed in Appendix
C in the full version of the paper. By modifying this distinguisher, we obtain a
new version that is more suitable for GRMA. Specifically, we allow b → 3 in the
SC operation in round 5 with a probability of 2−2. Therefore, the probability of
this modified distinguisher is P 2 = 2−57.6−4 = 2−61.6.

We add 6 rounds forward and backward to attack the 38-round SKINNYe-64-
256 v2, as shown in Fig. 7. The corresponding parameters are: rb = rf = 16×4 =
64, |kb| = (8 × 3 + 6 + 2) × 4 = 128, and |kf | = (2 + 6 + 8 × 3) × 4 = 128.

386 L. Song et al.

Fig. 7. Rectangle meet-in-the-middle attack on 38-round SKINNYe-64-256 v2

Generic Differential Key Recovery Attacks and Beyond 387

Parameters and Complexities. We apply GRMA to the above distinguisher.
The attack is illustrated in Fig. 7, and the parameters of this attack are |k′

b| =
|kb| = 128 and |k′

f | = |kf | = 128. Therefore, all the involved keys are guessed,
and all the unknown differentials in Eb and Ef can be determined.

Given a boomerang distinguisher with probability P 2, the number of quartets
satisfying the input difference of the distinguisher should be at least P−22n. For
the sake of clarity, we denote 2−2p = P 2, then p = 30.8. In our attack, rb = n,
so we use partial structures of plaintexts for data collection. By collecting D
plaintext-ciphertext pairs, (D2)2×2−2n quartets will satisfy the input difference.
Therefore, D = 23n/4 · 2p/2 = 263.4.

Under the related-key setting, the calculation of time complexity is slightly
different from that in the single-key setting introduced in Sect. 3.4. Additionally,
the data of our attack will always belong to the same partial structure, so y−2 is
omitted in T2. We use DR to represent the data required under the related-key
setting. The complexities of our new attack are as follows:

– The data complexity is DR = 4 · D = 23n/4+p/2+2 = 265.4.
– The memory complexity is M = D2 · 2|kb|+2rf−2n = 2254.8.
– The time complexity:

T0 = 4 · DR,

T1 = (2|kb| + 2|kf |) · DR = 2194.4,

T2 = D2 · 2|kb| + D4 · 2|kf |−2n = 2255.32,

T3 = 2|kb∪kf | · D2 · 2−2n = 2254.8,

T4 = 2k−h = 2256−(n−2p) = 2253.6.

The time complexity of our attack is 1
38 × (T0 + T1 + T2 + T3 + T4) ≈ 2251.07

38-round encryption.

Comparison and Discussion. In our rectangle MITM attack, we modify one
cell in the input difference. Compared with the original rectangle key recovery,
the probability of the distinguisher is reduced by 2−4, and the kb has two fewer
cells in Eb.

According to the GRMA algorithm, MITM attacks are more effective in sit-
uations where subkey bits are balanced on both sides. Therefore, the modified
distinguisher is more suitable for the GRMA. By adding 6 rounds on both sides
of the distinguisher, the number of the subkey bits is: |kb| = |kf | = 128. Using
the GRMA, we achieve a 38-round rectangle attack on SKINNYe-64-256 v2, which
is one more round than the previous attack. It is worth noting that for this
distinguisher, the GCRA could not provide an effective 38-round rectangle attack.

5 Conclusion

In this paper, we revisit the generic rectangle key recovery attack [SZY+22] and
the differential MITM attack recently proposed in [BDD+23]. Inspired by the

388 L. Song et al.

holistic strategy and the MITM technique, we propose three new generic key
recovery attacks: the classical differential attack, the differential MITM attack,
and the rectangle MITM attack, respectively denoted as GCDA, GDMA, and GRMA.
By selecting an appropriate strategy (including the type of key recovery attacks,
key guessing strategy, etc.), the different terms of the time complexity can be
more balanced, resulting in a lower overall time complexity. For application, we
apply our new key recovery algorithms to the AES-256, KATAN-32, and SKINNYe-
64-256 v2 block ciphers. For AES-256, we provide better results on a 12-round
differential attack using the GCDA and the GDMA, and introduce a new 13-round
differential attack with reduced data and time complexities. We apply the GDMA,
GCDA, and BDMA to KATAN-32, building a dedicated model for key guessing with
MILP. With the aid of MILP-based tools, we improve the differential attacks
on KATAN-32 from 115 rounds to 151 rounds. For SKINNYe-64-256 v2, we achieve
the first 38-round rectangle attack using the GRMA, which extends the previous
attack by 1 round.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was supported by the
National Natural Science Foundation of China (Grants 62132008, 62372213, 62202460,
62332007 and U22B2028). Jian Weng is also supported by the Major Program of
Guangdong Basic and Applied Research Project under Grant No. 2019B030302008,
Science and Technology Major Project of Tibetan Autonomous Region of China under
Grant No. XZ202201ZD0006G, Guangdong Provincial Science and Technology Project
under Grant No. 2021A0505030033, National Joint Engineering Research Center of
Network Security Detection and Protection Technology, Guangdong Key Laboratory
of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for
Data Security and Privacy Protection, and Engineering Research Center of Trustwor-
thy AI, Ministry of Education.

References

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: Analysis of Salsa,
ChaCha, and Rumba.In Kaisa Nyberg, editor, Fast Software Encryption,
15th International Workshop, FSE 2008, Lausanne, Switzerland, Febru-
ary 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes
in Computer Science, pages 470–488. Springer, 2008.

[AKM+24] Zahra Ahmadian, Akram Khalesi, Dounia M’foukh, Hossein Moghimi,
and Maŕıa Naya-Plasencia. Improved differential meet-in-the-middle
cryptanalysis.In Marc Joye and Gregor Leander, editors, Advances in
Cryptology - EUROCRYPT 2024 - 43rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zurich,
Switzerland, May 26-30, 2024, Proceedings, Part I, volume 14651 of Lec-
ture Notes in Computer Science, pages 280–309. Springer, 2024.

Generic Differential Key Recovery Attacks and Beyond 389

[AL13] Martin R Albrecht and Gregor Leander. An all-in-one approach to differ-
ential cryptanalysis for small block ciphers. In Selected Areas in Cryptog-
raphy: 19th International Conference, SAC 2012, Windsor, ON, Canada,
August 15-16, 2012, Revised Selected Papers 19, pages 1–15. Springer,
2013.

[BCF+21] Marek Broll, Federico Canale, Antonio Flórez-Gutiérrez, Gregor Leander,
and Maŕıa Naya-Plasencia. Generic framework for key-guessing improve-
ments. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singa-
pore, December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture
Notes in Computer Science, pages 453–483. Springer, 2021.

[BDD+23] Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and
Maŕıa Naya-Plasencia. Differential meet-in-the-middle cryptanalysis. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceed-
ings, Part III, volume 14083 of Lecture Notes in Computer Science, pages
240–272. Springer, 2023.

[BDD+24] Christina Boura, Nicolas David, Patrick Derbez, Rachelle Heim Boissier,
and Maŕıa Naya-Plasencia. A generic algorithm for efficient key recov-
ery in differential attacks - and its associated tool. In Marc Joye and
Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024
- 43rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Pro-
ceedings, Part I, volume 14651 of Lecture Notes in Computer Science,
pages 217–248. Springer, 2024.

[BDF23] Christina Boura, Patrick Derbez, and Margot Funk. Related-key differ-
ential analysis of the aes. IACR Transactions on Symmetric Cryptology,
2023(4):215–243, 2023.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack–
rectangling the Serpent. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 340–357. Springer, 2001.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on
boomerang and rectangle attacks. In International Workshop on Fast
Software Encryption, pages 1–16. Springer, 2002.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In Annual International Cryptology Conference, pages 123–153.
Springer, 2016.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in
Cryptology - CRYPTO ’90, 10th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. J. Cryptol., 4(1):3–72, 1991.

390 L. Song et al.

[BS92] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round
DES. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO
’92, 12th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture
Notes in Computer Science, pages 487–496. Springer, 1992.

[DQSW21] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guess-
ing strategies for linear key-schedule algorithms in rectangle attacks.IACR
Cryptol. ePrint Arch., page 856, 2021.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for
block ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 274–288. Springer, 2014.

[JRS22] Amit Jana, Mostafizar Rahman, and Dhiman Saha. Deepand: In-depth
modeling of correlated and gates for nlfsr-based lightweight block ciphers.
Cryptology ePrint Archive, Paper 2022/1123, 2022. https://eprint.iacr.
org/2022/1123. https://eprint.iacr.org/2022/1123.

[KMN10] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia.Conditional dif-
ferential cryptanalysis of NLFSR-based cryptosystems. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, Singapore, December 5-9, 2010. Proceedings, volume 6477
of Lecture Notes in Computer Science, pages 130–145. Springer, 2010.

[LKKD08] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improv-
ing the efficiency of impossible differential cryptanalysis of reduced
Camellia and MISTY1. In Tal Malkin, editor, Topics in Cryptology -
CT-RSA 2008, The Cryptographers’ Track at the RSA Conference 2008,
San Francisco, CA, USA, April 8-11, 2008. Proceedings, volume 4964 of
Lecture Notes in Computer Science, pages 370–386. Springer, 2008.

[Mat94] Mitsuru Matsui. On correlation between the order of S-boxes and the
strength of DES. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume
950 of Lecture Notes in Computer Science, pages 366–375. Springer, 1994.

[MP13] Nicky Mouha and Bart Preneel. A proof that the ARX cipher Salsa20
is secure against differential cryptanalysis. IACR Cryptol. ePrint Arch.,
page 328, 2013.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differen-
tial and linear cryptanalysis using mixed-integer linear programming. In
Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Secu-
rity and Cryptology - 7th International Conference, Inscrypt 2011, Bei-
jing, China, November 30 - December 3, 2011. Revised Selected Papers,
volume 7537 of Lecture Notes in Computer Science, pages 57–76. Springer,
2011.

https://eprint.iacr.org/2022/1123
https://eprint.iacr.org/2022/1123
https://eprint.iacr.org/2022/1123

Generic Differential Key Recovery Attacks and Beyond 391

[NSS20a] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenti-
cated encryption mode suitable for threshold implementation. Cryptology
ePrint Archive, Paper 2020/542, 2020. https://eprint.iacr.org/2020/542.

[NSS20b] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenti-
cated encryption mode suitable for threshold implementation. In Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 705–735. Springer, 2020.

[QDW+22] Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, and Xiaoyun
Wang. Mind the tweakey schedule: cryptanalysis on skinnye-64-256. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 287–317. Springer, 2022.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential char-
acteristic search: Application to SIMON, PRESENT, LBlock, DES(L)
and other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 158–178.
Springer, 2014.

[SLY+24] Ling Song, Huimin Liu, Qianqian Yang, Yincen Chen, Lei Hu, and Jian
Weng. Generic differential key recovery attacks and beyond. Cryptology
ePrint Archive, Paper 2024/1447, 2024.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of dif-
ferential and linear characteristics with the SAT method. IACR Trans.
Symmetric Cryptol., 2021(1):269–315, 2021.

[SYC+24] Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian Weng. Proba-
bilistic extensions: a one-step framework for finding rectangle attacks and
beyond.In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 339–367. Springer, 2024.

[SZY+22] Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei
Hu, and Jian Weng. Optimizing rectangle attacks: A unified and generic
framework for key recovery. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology - ASIACRYPT 2022 - 28th International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume
13791 of Lecture Notes in Computer Science, pages 410–440. Springer,
2022.

[WWJZ18] Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differen-
tial attacks on reduced SIMON versions with dynamic key-guessing tech-
niques. Sci. China Inf. Sci., 61(9):098103:1–098103:3, 2018.

[YSZ+24] Qianqian Yang, Ling Song, Nana Zhang, Danping Shi, Libo Wang, Jia-
hao Zhao, Lei Hu, and Jian Weng. Optimizing rectangle and boomerang
attacks: A unified and generic framework for key recovery. Journal of
Cryptology, 37(2):1–62, 2024.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
Generalized related-key rectangle attacks on block ciphers with linear
key schedule: applications to SKINNY and GIFT. Designs, Codes and
Cryptography, 88(6):1103–1126, 2020.

https://eprint.iacr.org/2020/542

Ultrametric Integral Cryptanalysis

Tim Beyne(B) and Michiel Verbauwhede

COSIC, KU Leuven, Leuven, Belgium
{tim.beyne,michiel.verbauwhede}@esat.kuleuven.be

Abstract. A systematic method to analyze divisibility properties is
proposed. In integral cryptanalysis, divisibility properties interpolate
between bits that sum to zero (divisibility by two) and saturated bits
(divisibility by 2n−1 for 2n inputs). From a theoretical point of view, we
construct a new cryptanalytic technique that is a non-Archimedean mul-
tiplicative analogue of linear cryptanalysis. It lifts integral cryptanalysis
to characteristic zero in the sense that, if all quantities are reduced mod-
ulo two, then one recovers the algebraic theory of integral cryptanalysis.
The new technique leads to a theory of trails. We develop a tool based
on off-the-shelf solvers that automates the analysis of these trails and
use it to show that many integral distinguishers on present and simon
are stronger than expected.

Keywords: Geometric approach · Integral cryptanalysis · Division
property

1 Introduction

Integral cryptanalysis can be approached from two opposing directions. The
structural approach was formalized by Knudsen and Wagner [24] and stems from
the ‘Square attack’ [15]. It is based on propagating plaintexts with some con-
stant and some saturated parts through a cipher, ultimately resulting in a set
of ciphertexts with a saturated part, or some bits that sum to zero. A part of
the state is called saturated if all its possible values occur an equal number of
times. The algebraic approach was introduced by Knudsen [23], based on the
observation that the (d + 1)st derivative of a function of degree d is zero. This
yields zero sums, but not saturation properties.

Todo [29] partially consolidated the two approaches by introducing the divi-
sion property, which characterizes structured sets algebraically. More generally,
it was shown by Boura and Canteaut at Crypto 2016 [10] that every set has an
equivalent parity set representation. The parity set of a set X is the set of all
exponents of monomials that sum to one on X.

However, as the division property is based on arithmetic over F2, it can
describe zero sums but not saturation. The gap is significant: the probability
that a uniform random Boolean function sums to zero on a set of size 2n is 1/2,

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 392–423, 2025.
https://doi.org/10.1007/978-981-96-0941-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_13&domain=pdf
http://orcid.org/0000-0001-5638-9885
http://orcid.org/0000-0002-5982-1984
https://doi.org/10.1007/978-981-96-0941-3_13

Ultrametric Integral Cryptanalysis 393

but it is saturated with probability approximately1 2−n/2/
√

π. A saturation
property consequently corresponds to a stronger filter, which is beneficial for
the data and time requirements of key-recovery attacks. In spite of this, the
difference is sometimes overlooked.

Thus, one might wonder if there can exist a theory of integral cryptanalysis
over a field of characteristic zero rather than over F2, so that both zero sums and
saturation properties can be described by it. In practice, zero sums are found
by automated analysis of trails – there are several variants including division
trails [32], monomial trails [21] and algebraic trails [4]. These concepts are more-
or-less similar to trails in linear cryptanalysis, but the analogy is leaky because
the ‘correlations’ are binary. Optimistically, a theory defined in characteristic
zero might strengthen the analogy by allowing correlations ‘in between’ zero
and one.

Contribution. We introduce the theory of ultrametric integral cryptanalysis, a
non-Archimedean multiplicative analogue of linear cryptanalysis. Inspired by the
idea that linear cryptanalysis simplifies additions (exclusive or), we construct an
analogous theory that simplifies multiplications (bitwise and). Like linear crypt-
analysis, it is defined in characteristic zero (over Q), but to obtain a useful
theory, we have to change the way distances are measured: we replace the regu-
lar (Archimedean) absolute value | · | on Q with the (non-Archimedean) 2-adic
absolute value | · |2. Ultrametric integral cryptanalysis lifts integral cryptanalysis
to characteristic zero, in the sense that if all quantities are reduced modulo two,
then one obtains the algebraic theory of integral cryptanalysis over F2 – more
precisely, its description using algebraic trails that was recently introduced in
ToSC 2023 [4]. Some consequences of the analogy between linear and ultrametric
integral cryptanalysis are illustrated in Table 1.

In practical terms, ultrametric integral cryptanalysis provides a systematic
way to analyze divisibility properties. For example, one can use it show that the
number of times a ciphertext bit equals one, is divisible by 2ν . In our theory,
this can be proven by showing that one or more correlations have 2-adic abso-
lute value at most 2−ν . Divisibility properties interpolate between zero sums
(divisibility by two) and saturation (divisibility by 2n−1 for an input space of
dimension n). We believe that these properties occur naturally in cryptanalysis,
as their existence is essentially an unexplained folklore observation. For example,
in Todo’s invited talk at FSE 2023, divisibility by four pops up at 43:302.

The construction of our theory follows the geometric approach [1], which was
introduced at Asiacrypt 2021 as a general description of linear cryptanalysis. In
particular, we express the ‘pushforward operators’ that describe the propagation
of states through functions as matrices relative to a carefully chosen basis. The
basis is constructed in Sect. 4, and is uniquely defined by the property that it
diagonalizes the matrices corresponding to multiplications x �→ x ∧ k. This is
analogous to linear cryptanalysis, which diagonalizes the matrices corresponding

1 The exact probability is equal to
(

2n

2n−1

)
/22n .

2 https://www.youtube.com/watch?v=hgHJu6Qr0Us&t=2610s.

https://www.youtube.com/watch?v=hgHJu6Qr0Us&t=2610s

394 T. Beyne and M. Verbauwhede

Table 1. The analogy between linear and ultrametric integral cryptanalysis.

Linear cryptanalysis Ultrametric integral cryptanalysis

Field of
definition

Q or R Q or Q2

Archimedean non-Archimedean

ordinary absolute value | · | 2-adic absolute value | · |2

Geometric
theory

‘diagonalizes’ additions
x �→ x + k

‘diagonalizes’ multiplications
x �→ x ∧ k

additive characters χu multiplicative characters μu

Fourier transformation F ultrametric integral change-of-basis U

CF = FT FF−1 AF = U T FU −1

Theory of
trails

masks u1, u2, . . . exponents u1, u2, . . .

correlation
∏r

i=1 C
Fi
ui+1,ui

correlation
∏r

i=1 A
Fi
ui+1,ui

linear functions multiplicative functions

linear diffusion, nonlinear confusion nonlinear diffusion, linear confusion

u u

u u v

u + v u u

u u v

u ∨ v

to additions x �→ x+k. Our choice of basis leads to ultrametric integral transition
matrices, which are analogous to correlation matrices in linear cryptanalysis.
We show that these matrices are closely related to the numerical normal form
of Boolean functions. Like for correlation matrices, composition of functions
corresponds to multiplication of ultrametric integral transition matrices.

Section 5 develops the theory of ultrametric integral trails. Properties can be
evaluated by summing the correlations of trails, and this can be made practical
using dominant trails (Theorem 8). Unlike in linear cryptanalysis, the dominant
trail approximation is not heuristic in the ultrametric setting because the sum
of many small numbers in a non-Archimedean field is always small.

Section 6 investigates the properties of ultrametric integral transition matri-
ces. The main result in this section is Theorem 9, which characterizes the ultra-
metric integral transition matrices of low-degree functions. This result implies
the Ax-Katz theorem [22] (over F2), which states that the number of solutions of
a system of m equations of degree d in n variables is divisible by 2�n/d�−m. Inter-
estingly, our proof is cryptanalytic: the result follows by analyzing ultrametric
integral trails in a generic function of degree d. We also show that ultrametric
integral transition matrices can be computed in time proportional to their size
(up to logarithmic factors), and propagation rules for copy and xor operations are
derived. Theorem 10 relates correlation matrices and ultrametric integral transi-

Ultrametric Integral Cryptanalysis 395

tion matrices, explaining and strengthening a result that was used by Canteaut
and Videau [11] and Boura and Canteaut [9] to bound degrees.

Finally, in Sects. 7 and 8, we develop an automated tool to analyze ultramet-
ric integral trails using off-the-shelf solvers and apply it to present and simon.
Our analysis shows that the distinguishers for reduced-round present presented
by Boura and Canteaut at Crypto 2016 [10] and by Wang et al. at Asiacrypt
2019 [31] are stronger than previously believed. For many output bits, we find
divisibility by higher powers of two (ranging from 22 to 29). We also demonstrate
that ultrametric integral cryptanalysis can be used to find zero-correlation lin-
ear approximations, and illustrate how divisibility properties are useful to reduce
the data-complexity of key-recovery attacks. For simon, we reconsider the distin-
guishers found by Todo [29], Todo and Morii [30] and Xiang et al. [32] and prove
higher divisibility. In addition, we slightly improve the modelling of simon based
on the analogy between linear and multiplicative functions. This observation is
also applicable to ordinary integral cryptanalysis. The source code of our tool
can be found at https://github.com/MichielVerbauwhede/ultrametric-integral-
cryptanalysis and an extended version of this work is available on https://ia.cr/
2024/722 [5].

Future Work. Ultrametric integral cryptanalysis can be extended to all primes p
and all commutative inverse monoids, including F

n
q with multiplication. However,

this requires more technical background because the theory must be defined over
the p-adic numbers Qp when p ≥ 5. Nevertheless, our results generalize to this
setting. In the interest of simplicity, we focus on the case p = q = 2 in this paper.

2 Background

The theory of ultrametric integral cryptanalysis is based on the geometric app-
roach, which we present (for the one-dimensional case) in Sect. 2.1 in slightly
modified form. Section 2.2 describes linear cryptanalysis from this point of view,
and integral cryptanalysis is discussed in Sect. 2.3.

2.1 Geometric Approach

The geometric approach to symmetric-key cryptanalysis was introduced at Asi-
acrypt 2021 [1] as an alternative description of linear cryptanalysis. In a sub-
sequent paper at Crypto 2022 [3], the same approach was used to construct a
fixed-key theory of differential cryptanalysis. The role of the geometric approach
in this paper is similar to that in the latter work: it is used to construct a new
cryptanalytic theory, analogous to the theory of linear cryptanalysis.

Let k be a field – in [1,3], k is either R or C. The free k-vector space on
F

n
2 consists of all formal k-linear combinations of elements of Fn

2 , with addition
defined coordinate-wise. That is, every element a of k[Fn

2] is of the form

a =
∑

x∈F
n
2

ax δx ,

https://github.com/MichielVerbauwhede/ultrametric-integral-cryptanalysis
https://github.com/MichielVerbauwhede/ultrametric-integral-cryptanalysis
https://ia.cr/2024/722
https://ia.cr/2024/722

396 T. Beyne and M. Verbauwhede

where the values ax are arbitrary elements of k and δx is the formal basis vector
corresponding to x. Cryptanalytically, a represents an assignment of weights
(elements of k) to the elements of Fn

2 . For example, a subset X ⊆ F
n
2 corresponds

to a vector δX =
∑

x∈X δx in k[Fn
2]. Applying a function F : Fn

2 → F
m
2 to the

state transforms the assignment of weights on F
n
2 to an assignment of weights

on F
m
2 . The relation is given by a linear operator.

Definition 1. Let F : Fn
2 → F

m
2 be a function. The pushforward operator of F

is the linear map T F : k[Fn
2] → k[Fm

2] defined by T F δx = δF(x) for all x in F
n
2 .

The matrix representation of T F with respect to the standard basis will be
called the transition matrix of F. Its rows and columns are indexed by elements
of F

m
2 and F

n
2 respectively. Depending on the context, the notation T F either

refers to the pushforward operator of F or to its transition matrix.
Transition matrices satisfy several properties, two of which are summarized

in Theorem 1. In this theorem,
⊗

denotes the Kronecker product of matrices.
That is, (A ⊗ B)y1‖y2,x1‖x2 = Ay1,x1By2,x2 , where ‖ denotes concatenation.

Theorem 1. For the transition matrix of a function F : Fn
2 → F

m
2 :

(1) If F(x1‖ · · · ‖xl) = F1(x1)‖ · · · ‖Fl(xl), then T F =
⊗l

i=1 T Fi .
(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then T F = T Fr · · · T F2T F1 .

A dual way to assign weights to the elements of Fn
2 is using functions. Let

kF
n
2 be the vector space of k-valued functions on F

n
2 . Every function in kF

n
2 can

be extended to a function on k[Fn
2] by linearity. Conversely, every linear function

on k[Fn
2] is uniquely determined by its image on the basis vectors δx with x in

F
n
2 . Hence, we identify kF

n
2 with the dual vector space3 of k[Fn

2]. The functions
δx with δx(δx) = δx(x) = 1 and δx(δy) = δx(y) = 0 for y
= x are a basis for kF

n
2 .

A cryptanalytic property of a function F : Fn
2 → F

m
2 is a pair (a, b) with a

in k[Fn
2] and b in kF

m
2 . The evaluation of a property (a, b) is defined as b(T Fa).

This is typically a combinatorial quantity of interest, such as the correlation of
a linear approximation.

Example 1. Let X and Y be subsets of Fn
2 and F

m
2 respectively. The evaluation

of (δX , δY), with δY =
∑

y∈Y δy the indicator function of Y , is equal to

δY
(
T FδX

)
=

∑

x∈X

δY
(
δF(x)

)
= |{x ∈ X | F(x) ∈ Y }| .

If F is a permutation, then the property evaluates to |Y ∩ F(X)|. �

If we apply a function F : F
n
2 → F

m
2 , then functions on F

m
2 transform to

functions on F
n
2 . The relation is given by the pullback operator T F∨

, which is
the adjoint4 of the pushforward operator. That is, T F∨

f = f ◦ F. Its standard

3 The dual vector space of k[Fn
2] is the space of all linear functions from k[Fn

2] to k.
4 The adjoint of L : k[Fn

2] → k[Fm
2] is a map L∨ : kF

m
2 → kF

n
2 s.t.

(
L∨b

)
(a) = b

(
La

)
.

Ultrametric Integral Cryptanalysis 397

basis matrix representation is the transpose of the transition matrix. Pullback
operators also satisfy the properties listed in Theorem 1, with the order of mul-
tiplication reversed for property (2).

Different cryptanalytic theories are obtained by expressing cryptanalytic
properties with respect to different pairs of dual bases for k[Fn

2] and kF
m
2 . A

pair of bases for k[Fn
2] and kF

m
2 consisting of vectors βu and βu, labeled by u in

F
n
2 , is called dual if βu(βu) = 1 and βv(βu) = 0 for all u
= v.

If B : k[Fn
2] → k[Fn

2] is the change-of-basis transformation defined by B βu =
δu, then B−∨ βv = δv. That is, B−∨ is the change-of-basis transformation for
the dual basis. Let Bn and Bm be change-of-basis transformations on k[Fn

2]
and k[Fm

2] respectively. For a cryptanalytic property (a, b), set a∧ = Bn a and
b∧ = B−∨

m b. The evaluation of (a, b) can then be expressed as

b
(
T F a

)
= b∧

(
Bm T F B−1

n a∧
)

.

Hence, if properties are expressed in the new basis, their propagation is described
by the matrix Bm T F B−1

n . Since this matrix is similar to T F, it also satisfies the
properties listed in Theorem 1.

Example 2. The vectors (δ0 + δ1)/2 and (δ0 − δ1)/2 form a basis for k[F2]. The
dual basis vectors are given by δ0 + δ1 and δ0 − δ1 and form a basis for kF2 .
Hence, the change-of-basis transformation B and its dual B−∨ are given by

B =
[

1 1
1 −1

]
and B−∨ =

1
2

[
1 1
1 −1

]
.

For the function F : x �→ x + 1, the matrix B T FB−∨ is equal to

B T FB−∨ =
1
2

[
1 1
1 −1

] [
0 1
1 0

] [
1 1
1 −1

]
=

[
1 0
0 −1

]
.

The matrix B−∨ T F∨ (
B−∨)−1 is the transpose of the above matrix, which hap-

pens to be the same in this example. �

2.2 Linear Cryptanalysis

In linear cryptanalysis, the field k is chosen as R or C and one works in a basis
of group characters and its dual. The characters of the additive group F

n
2 are the

homomorphisms χu : Fn
2 → R with χu(x) = (−1)uTx. The dual basis consists of

the vectors χu in R[Fn
2] with δx(χu) = χu(x)/2n. The corresponding change-of-

basis transformation Fn : R[Fn
2] → R[Fn

2] is called the Fourier transformation.
The Fourier transformation simultaneously diagonalizes the transition matri-

ces T F of all translations F(x) = x + t. In fact, as shown in [1, §2.2], this is by
construction: the character basis is the only basis with this property. The Fourier
transformation of the transition matrix of a function F is its correlation matrix
CF = FmT FF−1

n . These matrices were introduced by Daemen [14], motivated by

398 T. Beyne and M. Verbauwhede

the fact that the coordinates CF
v,u are the correlations of linear approximations

with input mask u and output mask v over F:

CF
v,u = χv

(
T F χu

)
= 2Pr

x

[
vTF(x) = uTx

] − 1 ,

with x uniform random on F
n
2 .

The properties listed in Theorem 1 carry over to correlation matrices. In
particular, if F = Fr ◦ · · · ◦ F2 ◦ F1, then CF = CFr · · · CF2CF1 . If one defines
a linear trail as a tuple of r + 1 masks, then Theorem 1 (2) implies that the
correlation of a linear approximation is equal to the sum of the correlations of
all linear trails with matching input and output masks:

CF
ur+1,u1

=
∑

u2,...,ur

r∏

i=1

CFi
ui+1,ui

,

where the product
∏r

i=1 CFi
ui+1,ui

is called the correlation of the trail
(u1, . . . , ur+1). This result is usually used in the form of the principle of dominant
trails.

Theorem 2 (Dominant trails). Let F = Fr ◦ · · · ◦ F2 ◦ F1. For all subsets Λ
of the set Ω of all linear trails from u1 to ur+1,

∣∣∣∣∣C
F
ur+1,u1

−
∑

u∈Λ

r∏

i=1

CFi
ui+1,ui

∣∣∣∣∣ =

∣∣∣∣∣
∑

u∈Ω\Λ

r∏

i=1

CFi
ui+1,ui

∣∣∣∣∣ ,

where u = (u1, u2, . . . , ur+1).

The idea of Theorem 2 is that the trails in Ω\Λ contribute little to CF
ur+1,u1

. In
practice, Theorem 2 is used heuristically: one assumes that if the absolute values
of the correlations of trails in Ω\Λ are small, then so is the absolute value of their
sum. This approach is useful for linear approximations (u, v) with large absolute
correlation |CF

v,u|. Contrary to this, zero-correlation linear cryptanalysis [8] relies
on linear approximations with CF

v,u = 0. Such approximations can be found using
Theorem 2, but with Λ = ∅ and by showing that all trails in Ω have correlation
zero. Bogdanov et al. [7] have shown that zero-correlation linear approximations
and saturation properties are closely related. Following Sun et al. [28, Corollary
4], if U is a vector space of masks such that CF

v,u = 0 for all u in U , then
the restriction of vTF to a coset of U⊥ is a balanced Boolean function. This
means that the linear combination of output bits corresponding to the mask v
is saturated when the input set is a coset of U⊥.

2.3 Integral Cryptanalysis

Traditionally, integral cryptanalysis is used to find affine subspaces X such that∑
x∈X f(x) = 0 for a coordinate function f of a cryptographic primitive. As

mentioned in the introduction, such properties can be approached in two different

Ultrametric Integral Cryptanalysis 399

ways. Wagner and Knudsen [24] describe the propagation of structured sets with
some constant and some saturated parts. In earlier work, Knudsen [23] proposed
a purely algebraic approach based on higher-order derivatives.

The algebraic point of view is best understood using the algebraic normal
form. This is the unique representation of a Boolean function as a polynomial
in F2[x1, . . . , xn]/(x2

1 − x1, . . . , x
2
n − xn). If the algebraic normal form of f does

not contain any monomials xu =
∏n

i=1 xui
i such that

∑
x∈X xu = 1, then f sums

to zero on X. The relation with the properties of X and the structural point
of view of Wagner and Knudsen was poorly understood before the introduction
of the division property by Todo [29]. The division property characterizes X by
the set of exponents u such that

∑
x∈X xu = 1. This set was called the parity

set of X by Boura and Canteaut [10].
A recent paper in ToSC 2023 [4] shows that it is possible to construct a theory

of integral cryptanalysis based on the geometric approach. It describes crypt-
analytic properties (a, b) over the field k = F2. If a = δX , then the evaluation
b(T Fa) of (a, b) is equal to the sum

∑
x∈X f(x) with f = b◦F. Since b is a Boolean

function, there exists a change-of-basis transformation Mm so that (Mmb)(u)
is the coefficient of xu in the algebraic normal form of b. The transformation
Mm is the binary Möbius transformation. Relative to this change-of-basis, (a, b)
evaluates to

b
(
T Fa

)
= b∧

(
PmT FP−1

n a∧
)

,

with a∧ = Pna and Pn = M−∨
n . It was shown in [4] that PnδX = δY with Y

the parity set of X.
The matrix AF = PmT FP−1

n is called the algebraic transition matrix of F
and it satisfies the usual properties from Theorem 1. It holds that AF

v,u = 1
if and only if xu occurs in the algebraic normal form of Fv. In particular, if
F = Fr ◦ · · · ◦ F1, then AF =

∏r
i=1 AFi . This leads to a theory of algebraic trails

(u1, . . . , ur+1) with correlation
∏r

i=1 AFi
ui+1,ui

such that

AF
ur+1,u1

=
∑

u2,...,ur

r∏

i=1

AFi
ui+1,ui

.

This yields an alternative explanation of division trails [32], monomial predic-
tion [21] and the three-subset division property without unknown subset [19].

However, the theory of algebraic trails is not completely satisfactory. The
motivation of the division property was to combine the best of the structural
and algebraic approaches to integral cryptanalysis, but this was only partially
achieved because saturation properties cannot be described over F2. For example,
if zero-correlation linear cryptanalysis shows that the restriction of f = vTF to
a coset X of U⊥ is a balanced Boolean function, then

∑
x∈X f(x) = 0. However,

one actually has the stronger property that f(x) = 1 has |X|/2 solutions for x
in X. Hence, useful information is lost by reducing |X|/2 modulo two.

400 T. Beyne and M. Verbauwhede

3 Divisibility Properties

Suppose that one of the coordinate functions f of a primitive is saturated for an
affine input space X of dimension d. This implies that the number of values x in
X such that f(x) = 1 is divisible by 2d−1. If f sums to zero, then the number of
such values is only divisible by two. This raises a natural question: can we find
zero sums so that the number of solutions to f(x) = 1 in X is actually divisible
by a larger power of two?

This turns out to be common. Section 3.1 describes one instance, to be used
as a running example. Section 3.2 explains how divisibility properties can be
described using the geometric approach.

3.1 Example for present

In their work introducing parity sets, Boura and Canteaut [10] describe the
following integral property for four rounds of the block cipher present [6]. For
a set of 16 plaintexts obtained by saturating the input of the rightmost S-box,
every ciphertext bit sums to zero. Using zero-correlation linear cryptanalysis,
one can show that first ciphertext bit is saturated, so we focus on the second bit
instead.

Figure 1 shows a histogram of the number of times the second output bit is
equal to one for different choices of the key. This bit is clearly not saturated,
since for some keys the number of ones differs from 8 = 16/2. The feature of
interest to us are the gaps in the histogram. Indeed, the number of ones is always
a multiple of four. The analysis of Boura and Canteaut explains the divisibility
by two, but integral cryptanalysis cannot prove divisibility by four.

The second bit is not the only one exhibiting divisibility by four or more;
some experimental results for the other bits are summarized in Appendix F of
the extended version. In the remainder of this work, we develop the necessary
techniques to systematically find and prove such properties. The observation in
Fig. 1 will be used as a running example; a complete explanation is given in
Sect. 5.2. Further results on present are contained in Sect. 7.

Fig. 1. Number of keys (log scale) so that the second output bit of four-round present
is equal to one N times. The experiment was performed for 216 keys.

Ultrametric Integral Cryptanalysis 401

3.2 Description Using the Geometric Approach

To describe arbitrary divisibility properties, one should work over the integers
rather than over F2. Since the rational numbers are the smallest field containing
the integers, let us apply the geometric approach with k = Q for now.

Let X be an input set, and set a = δX in Q
[
F

n
2

]
. Furthermore, let b in

Q
F
m
2 be a function that maps the relevant bit (the second, for Fig. 1) to its

integer value. For a function F : Fn
2 → F

m
2 , divisibility by 2ν can be expressed as

b(T Fa) =
∑

x∈X b(F(x)) ≡ 0 (mod 2ν).
Alternatively, divisibility by 2ν is equivalent to |b(T F a)|2 ≤ 2−ν with | · |2

the 2-adic absolute value on Q. The 2-adic absolute value of a rational number
x = 2ν r

s , with r and s odd integers, is equal to 2−ν . One advantage of expressing
divisibility using the 2-adic absolute value is that we do not need to worry about
whether or not the coordinates of a and b are integers. More importantly, it
suggests a strong analogy with linear cryptanalysis. Most of the time, it is not
possible to evaluate cryptanalytic properties exactly. Instead, we estimate its
evaluation as follows:

b
(
T Fa

)
= c + ε ,

where c is the estimate and ε is an error. In linear cryptanalysis, the estimate is
accurate if |ε| is small. For divisibility properties, the accuracy of the estimate
is instead measured by |ε|2. Although the discussion above focused on the case
c = 0, there is no reason not to consider c
= 0. Indeed, integral cryptanalysis
can also be used to deduce constant sums modulo two and cube attacks.

Despite the analogy, the metric structure on Q defined by | · |2 is completely
different from that defined by | · |. This is because | · |2 satisfies the ultrametric
triangle inequality:

|x + y|2 ≤ max
{|x|2, |y|2

}
.

The fact that this inequality is stronger than the usual triangle inequality
|x + y| ≤ |x| + |y| plays an essential role in the theory of ultrametric integral
cryptanalysis that is developed in the next sections. However, this is only one
aspect of the theory. Another issue is the choice of basis, and this is addressed
in Sect. 4.

Remark 1. As mentioned in Sect. 2.2, linear cryptanalysis is typically described
over R. For most applications Q is actually sufficient, but the geometry of R is
nicer because it is metrically complete with respect to |·|. The metric completion
of Q with respect to | · |2 is the field of 2-adic numbers Q2. Hence, working with
properties defined over Q2 would be somewhat nicer. However, for simplicity, we
continue to work over Q throughout this paper. �

4 Lifting Integral Cryptanalysis

This section defines a suitable basis to analyze divisibility properties such as
the observation from Sect. 3. Section 4.1 motivates the choice of basis by analogy
with linear cryptanalysis. Whereas linear cryptanalysis simplifies addition in F

n
2 ,

402 T. Beyne and M. Verbauwhede

the new basis simplifies multiplication i.e. bitwise and. The basis and its dual
are constructed in Sect. 4.2. In Sect. 4.3, we express the pushforward operator
of a function relative to the new basis. This leads to an analogue of correla-
tion matrices that we call ultrametric integral transition matrices. The algebraic
transition matrix of a function turns out to be the reduction of its ultramet-
ric integral transition matrix modulo two. Hence, the theory we construct lifts
integral cryptanalysis from F2 to Q, or more generally Q2.

4.1 Motivation

From the viewpoint of the geometric approach, linear cryptanalysis is successful
because it diagonalizes the transition matrices of translations (including key
additions). This is achieved by working relative to the basis of characters of the
additive group F

n
2 . However, Fn

2 also has multiplicative structure with the bitwise
and operation ∧.

Although ciphers rarely use bitwise and with constants, nonlinear layers can
often be expressed in terms of a small number of and gates. Hence, choosing
a basis that maximally simplifies bitwise and is still of interest. Note, though,
that (Fn

2 ,∧) is a monoid but not a group, because only 11 · · · 1 has an inverse.
Nevertheless, the definition of characters can be extended to monoids.

Definition 2. Let k be a field. A character of a monoid M is a homomorphism
of monoids χ : M → k. That is, χ(1) = 1 and χ(xy) = χ(x)χ(y) for all x and y
in M .

For convenience, for m in M , denote the pushforward operator of the function
x �→ m·x by Tm. Theorem 3 shows that, like in the case of groups, the characters
of M are eigenvectors of Tm∨

. Hence, diagonalizing Tm∨
amounts to finding a

basis of characters for the vector space of k-valued functions on M .

Theorem 3. Let χ be a character of a finite monoid M . For all m in M , χ is
an eigenvector of Tm∨

with eigenvalue χ(m).

Proof. For all x in M , we have (Tm∨
χ)(x) = χ(m · x) = χ(m)χ(x). That is,

Tm∨
χ = χ(m)χ. Hence, χ is an eigenvector with eigenvalue χ(m). ��

By a theorem of Dedekind [16, §44], characters are linearly independent.
The question of whether or not there are enough characters to obtain a basis
is answered by representation theory. This is possible for all finite commutative
inverse5 monoids, provided that k has characteristic zero and contains enough
roots of unity [27, §5.2]. The monoid (Fn

2 ,∧) is commutative and inverse.
Having found the basis of characters χ1, . . . , χ|M |, we can construct its dual

basis χ1, . . . , χ|M | in k[M]. It is not difficult to see that χ1, . . . , χ|M | are eigen-
vectors of Tm. Indeed, we have that

Tmχj =
|M |∑

i=1

χi
(
Tmχj

)
χi =

|M |∑

i=1

(
Tm∨

χi
)
(χj)︸ ︷︷ ︸

χi(m) χi(χj)

χi = χj(m)χj .

5 A monoid M is inverse if for all x in M , there exists a y such that xyx = x.

Ultrametric Integral Cryptanalysis 403

In Sect. 4.2, we explicitly construct the basis of characters and its dual for the
monoid (Fn

2 ,∧) and the field Q.

4.2 Ultrametric Integral Basis

Theorem 4 below shows that the characters of the monoid (Fn
2 ,∧) are given by

the lifted monomial functions μv : F
n
2 → Q with μv(x) = τ

(
xv
)

for v in F
n
2 .

Here, τ : F2 → Q is the embedding6 defined by τ(0) = 0 and τ(1) = 1.

Theorem 4. Every character of (Fn
2 ,∧) is equal to μv for some v in F

n
2 .

Proof. The unit of (Fn
2 ,∧) is equal to 11 · · · 1. From the definition of μv, it is

clear that μv(11 · · · 1) = 1 for all v. The multiplicativity of μv follows from the
multiplicativity of τ and of monomials over F2. There are no other characters,
because the functions μv are distinct, the dimension of QF

n
2 is 2n, and characters

are linearly independent. Hence, the functions of the form μv form a complete
set of characters. ��

Like in the case of finite groups, the characters of a finite commutative inverse
monoid themselves form a monoid under pointwise multiplication [27, Exercise
9.1]. This is called the dual monoid. The dual monoid of (Fn

2 ,∧) is essentially
(Fn

2 ,∨), where ∨ denotes bitwise-or. Indeed, μuμv = μu∨v.
Following Sect. 4.1, to find the eigenvectors of the pushforward operators Tm

with m in F
n
2 , we construct the dual of the character basis. Theorem 5 shows

that the dual basis consists of the vectors μv in Q
[
F

n
2

]
, with v in F

n
2 and

μv =
∑

x � v

(−1)wt(x+v) δx ,

where wt(x) is the Hamming weight of x and the sum is over x � v (bitwise
order) in F

n
2 . The set of vectors μv will be called the ultrametric integral basis.

Theorem 5. The ultrametric integral basis {μv | v ∈ F
n
2} is dual to the char-

acter basis {μv | v ∈ F
n
2}, with in particular μv(μv) = 1.

Proof. If b =
∑

x∈F
n
2

bx δx is one of the dual basis vectors, then there exists a v

in F
n
2 such that μv(b) = 1 and μu(b) = 0 for all u
= v. By linearity,

μu(b) =
∑

x∈F
n
2

bx μu(x) =
∑

x∈F
n
2

bx τ(xu) =
∑

x � u

bx .

The sum on the right-hand side is over all elements greater than u in the par-
tially ordered set F

n
2 . Such sums can be inverted using the Möbius inversion

formula [26, Prop. 2], which is just the inclusion-exclusion principle for F
n
2 :

bx =
∑

u � x

(−1)wt(x+u)μu(b) =

{
(−1)wt(x+v) if v � x ,

0 else .

It follows that b = μv. ��
6 The symbol τ refers to the fact that τ : F2 → Q2 is a Teichmüller character of F2.

404 T. Beyne and M. Verbauwhede

Section 4.3 relies on the change-of-basis transformation Un from the standard
basis of Q

[
F

n
2

]
to the ultrametric integral basis. The subscript n will be dropped

when the context resolves the ambiguity. This transformation maps μv to δv for
all v in F

n
2 . That is, U : Q

[
F

n
2

] → Q
[
F

n
2

]
is defined by extending U μv = δv

linearly to all of Q
[
F

n
2

]
. From the definition of μv and μv, one can see that

Un =
[

1 1
0 1

]⊗n

and U −1
n =

[
1 −1
0 1

]⊗n

. (1)

A similar change-of-basis transformation can be defined on Q
F
n
2 for the character

basis, mapping μv to δv. As explained in Sect. 2.1, this transformation is equal
to U −∨. Lemma 1 gives an analytic expression for U and its inverse.

Lemma 1. Let a in Q
[
F

n
2

]
be a vector and let a∧ = U a. It holds that

a∧
v =

∑

x�v

ax and ax =
∑

v�x

(−1)wt(x+v) a∧
v .

Proof. Immediate from (1). An alternative proof is given in Appendix A.2 of the
extended version. ��

Similar formulas can be given for the change-of-basis transformation U −∨

from the standard basis to the basis of monoid characters. For every cryptana-
lytic property (a, b), we can express a in the ultrametric integral basis and b in
the basis of characters. A concrete example is worked out below.

Example 3. The indicator of the input set for the experimental property on
present from Sect. 3.2 is δu∧F

n
2
, with u ∧ F

n
2 = {u ∧ x | x ∈ F

n
2}. In particular,

u = 00 · · · 01111. Using Lemma 1, we can express δu∧F
n
2

as a linear combination
of the ultrametric integral basis vectors:

[
U δu∧F

n
2

]
v

=
∑

v�x�u

1 =

{
2wt(u)−wt(v) if v � u ,

0 else .

Hence,
δu∧F

n
2

=
∑

v�u

2wt(u)−wt(v) μv .

Note that δu∧F
n
2

≡ μu (mod 2). �

The change-of-basis transformation U is the multiplicative analogue of the
Fourier transformation F . However, because (Fn

2 ,∧) is not a group, there are
several important differences. Although the additive characters of Fn

2 are orthog-
onal, the multiplicative characters μv are not. If we identify R[Fn

2] and R
F
n
2 using

the standard inner product, then orthogonality implies that F and F−∨ are the
same up to multiplication by 2n. This fails in the multiplicative case. Since U
and U −∨ are quite different, identifying Q

[
F

n
2

]
and Q

F
n
2 would lead to confu-

sion. Nevertheless, the fact that F preserves the Euclidean norm does have an
analogue in terms of the norm ‖a‖∞ = max

{|ax|2 | x ∈ F
n
2

}
. The proof is given

in Appendix A.1 of the extended version.

Ultrametric Integral Cryptanalysis 405

Theorem 6. The ultrametric integral change-of-basis transformation U is an
isometry with respect to the 2-adic maximum norm ‖ · ‖∞. That is, for all a in
Q
[
F

n
2

]
, ‖U a‖∞ = ‖a‖∞.

The transformations U and U −∨ are closely related to integral cryptanalysis.
Indeed, the characters are monomials when reduced modulo two: μv(x) ≡ xv

(mod 2). Hence, applying U −∨ ≡ M (mod 2) to a Boolean function yields a
vector containing the coefficients of its algebraic normal form. Furthermore, for
a set X, the support of U δX (mod 2) is the parity set of X. Indeed,

[
U δX

]
v

≡
∑

x∈X
x�v

1 ≡
∑

x∈X

xv (mod 2) .

Hence, U ≡ P (mod 2) and U δX generalizes the parity set of X.

Example 4. Let X be the set {00, 01, 11} ⊆ F
2
2. The representation of the indi-

cator vector of X in the ultrametric integral basis can be computed as
⎡

⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎣

1
1
0
1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

3
2
1
1

⎤

⎥⎥⎦ .

The support of this representation reduced modulo two is the parity set of X,
that is U(X) = {00, 10, 11}. �

4.3 Ultrametric Integral Transition Matrices

The ultrametric integral transition matrix of a function is the matrix represen-
tation of the pushforward operator relative to the ultrametric integral basis.
Alternatively, one can represent the pullback operator relative to the character
basis. This results in the transpose of the ultrametric transition matrix.

Definition 3 (Ultrametric integral transition matrix). For a function F :
F

n
2 → F

m
2 , let AF = Um T F U −1

n . The ultrametric transition matrix of F is the
coordinate representation of AF with respect to the standard bases of Q

[
F

n
2

]
and

Q
[
F

m
2

]
respectively.

Like for correlation matrices, we will use the notation AF for both the opera-
tor and its standard basis matrix representation. The notation AF collides with
the notation for algebraic transition matrices introduced in Sect. 2.3, but the
following expression shows that this is reasonable. The coordinates of AF are

AF
v,u = δv

(
AF δu

)
= μv

(
T Fμu

)
=

∑

x�u

(−1)wt(x+u)τ(Fv(x)) . (2)

Row v of AF contains the coefficients of the numerical normal form of the Boolean
function Fv [13, §2.2.4]. This is the unique multivariate integer polynomial that

406 T. Beyne and M. Verbauwhede

interpolates Fv on {0, 1}n ⊆ Z
n, and reduces to the algebraic normal form mod-

ulo two. This implies that the reduction of AF modulo two is the algebraic
transition matrix of F. Indeed, [4, Theorem 6] shows that row v of the algebraic
transition matrix of F contains the coefficients of the algebraic normal form of
Fv. A more elegant proof is given in Appendix B.1 of the extended version.

Two different extensions of the numerical normal form to vectorial Boolean
functions have been proposed in the Boolean functions literature. Carlet [13,
§2.2.4] considers the numerical normal form of the indicator function of the graph
of F. This is not the right notion for cryptanalysis, as it is not based on a pair of
dual bases. Still motivated by interpolation, Dravie et al. [17] define polynomial
matrices by a formula similar to (2). Polynomial matrices are equal to ultrametric
integral transition matrices, but it is unclear if this was actually intended. Indeed,
[17, Proposition 7] relates the polynomial matrix to the adjacency matrix of the
graph of F when n = m. However, this result is incorrect and correcting it would
require changing the definition of polynomial matrices.

The relation between ultrametric integral transition matrices and the numer-
ical normal form could be of independent interest, as the motivation for the
ultrametric change-of-basis is quite different (diagonalization of bitwise and).
The interpretation in terms of interpolating polynomials over the integers does
not play a role in this paper.

Example 5 (Translation). Let F : F2 → F2 be defined by F(x) = x + k, for some
constant k in F2. The ultrametric integral transition matrix of F is

AF =
[

1 0
τ(k) (−1)k

]

If k = 0, then this is just the identity matrix. �

The following properties are immediate consequences of the properties of
transition matrices (Theorem 1, as they are invariant under change of basis.

Corollary 1. The ultrametric transition matrix AF of F : F
n
2 → F

m
2 has the

following properties:

(1) If F(x1‖ · · · ‖xl) = F1(x1)‖ · · · ‖Fl(xl), then AF =
⊗l

i=1 AFi .
(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then AF = AFr · · · AF2AF1 .

Proof. Both of these properties follow from Theorem 1. For the proof of prop-
erty (1) , we use the fact that Un = U ⊗n

1 . Indeed,

AF =
(⊗l

i=1 U
)(⊗l

i=1 T Fi

)(⊗l
i=1 U

−1
)

=
⊗l

i=1 U T Fi U −1 =
⊗l

i=1 AFi .

For the proof of property (2) , we use Theorem 1: T F = T Fr · · · T F2T F1 . Hence,

U T FU −1 =
(
U T FrU −1

) · · · (U T F2U −1
)(
U T F1U −1

)
.

The result follows by substituting AFi = U T FiU −1. ��

Ultrametric Integral Cryptanalysis 407

Example 6 (Translation). Let F : Fn
2 → F

n
2 with F(x) = x+k, for some constant

k in F
n
2 . If ki denotes the ith bit of k, then F can be expressed as

F(x1‖ · · · ‖xn) = F1(x1)‖ · · · ‖Fn(xn) ,

where Fi(xi) = xi + ki is the function that was discussed in Example 5.
Hence, by Corollary 1 (1) ,

AF =
n⊗

i=1

AFi =
n⊗

i=1

[
1 0

τ(ki) (−1)ki

]
.

More explicitly, AF is a lower-triangular 2n × 2n matrix with coordinate in row
v and column u � v equal to (−1)uTk τ(ku+v), and zero elsewhere. �

The following properties are specific to ultrametric transition matrices.

Theorem 7. The ultrametric transition matrix AF of F : F
n
2 → F

m
2 has the

following properties:

(1) If F is a bijection, then AF is an isometry.
(2) If F is a monoid homomorphism, then AF

v,u = 1 if μv ◦ F = μu and 0 else.
(3) If F(x) = m ∧ x with m in F

n
2 , then AF is diagonal with AF

u,u = μu(m).

Proof. For the first property, note that if F is a bijection, then T F is an isometry.
By Lemma 1, the ultrametric change-of-basis transformation is an isometry.
Since a composition of isometries is again an isometry, AF is an isometry.

If F is a monoid homomorphism, then μv ◦ F is a character of (Fn
2 ,∧). If

μw = μv ◦ F, then AF
v,u = μv(T Fμu) = μw(μu). The result follows from the

duality between μu and μw.
The third property is true by construction of the ultrametric change-of-basis

transformation, Indeed, AF
v,u = μv(T Fμu) = μu(m)μv(μu) since μu is an eigen-

vector of T F. The result follows from the duality between μu and μv. ��
Example 7. The function and : F

2n
2 → F

n
2 defined by and(x‖y) = x ∧ y is a

monoid homomorphism. It follows from Theorem 7 (2) that

Aand
w,u‖v =

{
1 if w = u = v ,

0 else .

The fact that only 2n coordinates of this matrix are non-zero is no coinci-
dence. The expression above is identical to that for the correlation matrix of
the xor function. That is, Aand = Cxor. This is by construction, since ultrametric
integral cryptanalysis is the multiplicative analogue of linear cryptanalysis. �

By the results of [4], algebraic transition matrices lead to a theory of trails
for integral cryptanalysis (algebraic, division or monomial trails). In Sect. 5, we
show how ultrametric integral transition matrices lead to a similar theory that
reduces to ordinary integral cryptanalysis modulo two.

408 T. Beyne and M. Verbauwhede

5 Ultrametric Integral Trails

Let F : Fn
2 → F

m
2 be a function. A pair of exponents (u, v) ∈ F

n
2 ×F

m
2 will be called

an ultrametric integral approximation for F. The correlation of an ultrametric
integral approximation is defined as

AF
v,u = μv

(
T F μu

)
.

In other words, there is a one-to-one correspondence between ultrametric integral
approximations (u, v) and properties (μu, μv) defined by basis vectors. As shown
in Sect. 4.2, the evaluation of every property can in principle be expressed as a
linear combination of the evaluations of these properties. Hence, it is sufficient
to compute the correlations of ultrametric integral approximations. If F is a
composition of functions F1, . . . ,Fr with enough structure so that the coordinates
of the matrices AF1 , . . . , AFr can be determined efficiently, then correlations can
be estimated (in the 2-adic sense) using ultrametric integral trails.

Definition 4. An ultrametric integral trail for a function F = Fr ◦ · · · ◦ F2 ◦ F1

is a sequence u1, . . . , ur+1 of exponents. The correlation of this trail is defined
as

∏r
i=1 AFi

ui+1,ui
.

5.1 Dominant Trail Approximation

In Corollary 1 (2) , it was shown that AF = AFr · · · AF2AF1 . Writing out this
matrix product in terms of coordinates leads to the expression

AF
ur+1,u1

=
∑

u2,...,ur

r∏

i=1

AFi
ui+1,ui

.

That is, the correlation of the ultrametric integral approximation (u1, ur+1) is
equal to the sum of the correlations of all trails with input and output exponent
u1 and ur+1 respectively. However, this result will not be used in practice because
the number of trails is generally too large. Instead, similar to Theorem 2 in the
case of linear cryptanalysis, we rely on a set of dominant trails to estimate the
correlation.

Theorem 8 (Dominant trails, cf. Theorem 2). Let F = Fr ◦ · · · ◦ F2 ◦ F1.
For all subsets Λ of the set Ω of all trails from u1 to ur+1,
∣∣∣∣∣A

F
ur+1,u1

−
∑

u∈Λ

r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣
2

=

∣∣∣∣∣
∑

u∈Ω\Λ

r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣
2

≤ max
u∈Ω\Λ

∣∣∣∣∣

r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣
2

,

where u = (u1, u2, . . . , ur+1).

Proof. The result follows from the following decomposition:

AF
ur+1,u1

=
∑

u2,...,ur

r∏

i=1

AFi
ui+1,ui

=
∑

u∈Λ

r∏

i=1

AFi
ui+1,ui

+
∑

u∈Ω\Λ

r∏

i=1

AFi
ui+1,ui

.

Ultrametric Integral Cryptanalysis 409

In particular, the equality follows by rearranging the terms and taking the abso-
lute value of both sides of the equality. The inequality follows from the ultra-
metric triangle inequality. ��

Theorems 2 and 8 are conceptually the same, but Theorem 8 is based on the
2-adic rather than the ordinary absolute value function. This difference has far-
reaching implications. In particular, to upper bound the error term in Theorem
8, it is sufficient to bound the 2-adic absolute value of the correlation of every
trails in Ω\Λ. This reflects the fact that, in Q2, the sum of many small numbers is
always small. In contrast, Theorem 2 is used heuristically in linear cryptanalysis,
because it is difficult to upper bound the error term. Indeed, in R, the sum of
many small numbers may be large.

In practice, we will use Theorem 8 as follows. If the 2-adic absolute value of
the correlations of all trails in Ω \ Λ is at most 2−t, then

AF
ur+1,u1

≡
∑

u∈Λ

r∏

i=1

AFi
ui+1,ui

(mod 2t) .

If Λ = ∅, then this shows that AF
ur+1,u1

is divisible by 2t. This corresponds to an
approximate zero-correlation approximation.

5.2 Example

As a first example of ultrametric integral trails, we explain and prove the prop-
erty that we observed in Sect. 3.1. Throughout the analysis, we ignore the first
S-box layer. Indeed, up to constant additions that can be combined with the
key addition of the next round, the input set is invariant under the S-box layer.
Hence, let F denote three rounds of present without the final bit-permutation,
as shown in Fig. 2. As explained in Sect. 3.2, the observation corresponds to
μv

(
T F δX

) ≡ 0 (mod 4), where the input set X consists of all values 00 · · · 0‖x
with x in F

4
2, and the output exponent v is equal to 0000 0000 0001 0000 in

hexadecimal notation. Equivalently,
∣∣μv

(
T F δX

)∣∣
2

≤ 1/4.
The vector δX is not equal to one of the basis vectors μu. Nevertheless, the

property can be analyzed using ultrametric integral trails by writing δX as a
linear combination of the ultrametric integral basis vectors. In particular, it was
shown in Example 3 that

δX =
∑

u∈F
4
2

24−wt(u) μ00···0‖u .

Hence, the evaluation μv(T FδX) of the property (δX , μv) is equal to

μv
(
T F δX

)
=

∑

u∈F
4
2

24−wt(u) μv
(
T Fμ00···0‖u

)
=

∑

u∈F
4
2

24−wt(u) AF
v,00···0‖u .

410 T. Beyne and M. Verbauwhede

Fig. 2. Miss-in-the-middle using ultrametric integral trails for present. (Color figure
online)

In particular, the 2-adic absolute value is bounded by

∣∣μv
(
T F δX

)∣∣
2

≤ max
u∈F

4
2

2wt(u)−4
∣∣AF

v,00···0‖u

∣∣
2
.

Hence, it suffices to show that AF
v,0···0‖u is divisible by two if wt(u) = 3 and

by four if wt(u) = 4. To prove this, we use Theorem 8 with Λ = ∅.
Figure 2 illustrates the structure of ultrametric integral trails with nonzero

correlation. As explained below, the colors correspond to conditions on exponent
bits.

The blue lines in Fig. 2 correspond to exponent bits that are equal to zero.
The orange lines correspond to a group of four bits that must have weight equal
to wt(u). The analysis is based on a variant of the miss-in-the-middle principle:
we propagate the orange set forward and the blue set backwards, in order to rule
out trails with high absolute correlation.

The propagation of exponents through a bit-permutation P is straightfor-
ward. Since bit-permutations are monoid homomorphisms, Theorem 7 (2) shows
that AP

v,u
= 0 if and only if v = P(u). For K(x) = x+k, it was shown in Example
6 that AK

v,u
= 0 for at least one key k if and only if u � v. For the S-box layer,
we need Theorem 7 (2) and the ultrametric integral transition matrix of the
present S-box:

Ultrametric Integral Cryptanalysis 411

AS =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −2 −1 2 1 −2 0 0 −2 4 2 −4
0 0 1 0 0 0 0 −1 1 0 −1 −1 −1 1 0 2
0 0 0 1 0 0 0 −1 1 −1 0 −1 −1 2 0 0
1 0 0 −1 −1 0 0 2 −1 1 1 −1 2 −1 −2 0
0 1 0 −1 0 −1 0 2 0 −1 1 0 0 2 −1 −2
0 0 1 −1 0 0 −1 1 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 1 −1 0
1 −1 −1 2 0 0 1 −1 −1 2 2 −3 0 −1 −2 2
0 0 0 1 1 −1 −1 1 0 0 1 −2 −1 1 0 0
0 0 0 1 0 0 1 −2 0 1 1 −3 0 −1 −2 4
0 0 0 1 0 0 0 −1 0 0 1 −2 0 0 −1 2
1 −1 −1 1 −1 1 1 0 −1 2 2 −3 1 −2 −2 2
0 0 0 0 0 0 0 1 0 0 1 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 1 −2 0 −1 −1 2
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The row that we use in the analysis is indicated in bold.

Backward Propagation. Since AS
0,w
= 0 if and only if w = 0, the bits of the expo-

nent before the last S-box layer are zero except for bits 16 up to 19. Nevertheless,
bits 16–19 are not arbitrary. In particular, |AS

1,f|2 = 1/4 and |AS
1,w|2 ≤ 1/2 if

wt(w) = 3. In Fig. 2, these four bits are indicated in green.
If a bit of the output exponent for the key addition operation is zero, then

the corresponding bit of the input exponent must be zero as well. Propagation
through the bit-permutation layer is straightforward. Hence, at the input of the
third S-box layer, all exponent bits except 16–19 must be zero. Propagating this
information through the middle bit-permutation, we find that every nibble of
the exponent at the output of the second S-box layer must be 0 or 2.

Forward Propagation. Like in the backward direction, propagation through the
first bit-permutation is straightforward. For the key-addition layer, for every bit
of the input exponent equal to one, the corresponding bit of the output exponent
is also equal to one. It was shown above that the output exponents on the S-
boxes are either 0 or 2. Hence, since the output exponent must be nonzero if
the input exponent is nonzero, the four nonzero output bits of the rightmost
superbox must have weight wt(u). Propagating this information through the
bit-permutation is straightforward.

Conclusion. To upper bound the correlation, we focus on the framed superbox
in Fig. 2. Since the weight of the set of orange-colored exponent bits is wt(u),
at least three of the first layer of four S-boxes are active. If all four S-boxes are
active, then the absolute correlation is at most 1/4. If only three S-boxes are
active, then the absolute correlation is at most 1/2. That is, the correlation is
divisible by two if wt(u) = 3 and divisible by four if wt(u) = 4. This is what we
set out to prove.

412 T. Beyne and M. Verbauwhede

5.3 Trail Enumeration

A manual analysis of trails like in Sect. 5.2 is instructive, but it becomes tedious
for larger problems. Hence, like in linear and ordinary integral cryptanalysis, we
will use automated methods to find trails. This will be discussed in more detail
in Sects. 7 and 8.

Theorem 8 shows that it is sufficient to upper bound the absolute correlation
of every non-dominant trail, but this does not necessarily result in the best
possible bound. Indeed, the absolute value of the sum of two correlations can be
strictly less than the sum of their absolute values. To take into account these
‘cancellations’, one can try to enumerate all trails and compute

∣∣∣∣∣
∑

u∈Ω\Λ

r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣
2

.

In practice, this is often infeasible. Nevertheless, in Sect. 7, we will encounter
several properties that we can only explain using trail enumeration.

The distinction between bounding correlations of individual trails and trail
enumeration also exists in ordinary integral cryptanalysis. This can be made
precise using algebraic trails. As explained in Sect. 4.3, the algebraic transition
matrix of F is the reduction of AF modulo two. Hence, every ultrametric integral
trail reduces to an algebraic trail with correlation in F2. The method of bounding
trail correlations then amounts to showing that all algebraic trails in Ω \ Λ
have correlation zero. Bit-based division property and parity sets both follow
this approach. The three-subset division property without unknown subset and
monomial prediction additionally take into account the parity of the number
of trails with nonzero correlation. This corresponds to trail enumeration. An
overview of different methods can be found in [4, §4.1] and in the survey [20].

6 Properties of Ultrametric Integral Transition Matrices

The purpose of this section is to introduce additional properties of ultrametric
integral transition matrices. Some of these properties are mainly of theoretical
interest, others will play an important role in Sects. 7 and 8.

6.1 Computation

The ultrametric integral transition matrix of a function F : Fn
2 → F

m
2 can be

computed in O((n + m)2n+m) time. This is the same time-complexity as for
computing the correlation matrix of F, and the underlying algorithm is analo-
gous. In particular, it exploits the fact that Un = U ⊗n

1 – see (1) on page 404.
This tensor product structure leads to an O(n2n) time algorithm for computing
Un a and U −1

n a, for a in Q
[
F

n
2

]
. Since AF = Un T FU −1

n , applying this algorithm
to the rows and columns of T F leads to an O((n + m)2n+m) time algorithm for
computing AF. A reference implementation is provided in the example in our
code repository.

Ultrametric Integral Cryptanalysis 413

6.2 Linear Functions

Since the nonlinear functions used in most primitives only depend on a small
number of state bits, it is often the linear functions that pose most difficulties
in (ultrametric) integral cryptanalysis.

If the linear layer is a bit-permutation, its ultrametric integral transition
matrix is easy to compute. Indeed, bit-permutations are monoid isomorphisms,
so Theorem 7 (2) can be used. For most other linear functions, there is no
simple formula. However, every linear function can be decomposed as a network
of forking (or ‘copy’) and addition (or ‘xor’) operations. For these two operations,
simple exponent propagation rules can be obtained – they are illustrated in Fig. 3
and discussed below.

Fig. 3. Propagation rules for copy and xor operations.

Since copy and xor operations are bitwise operations, their ultrametric inte-
gral transition matrix can be computed using Corollary 1 (1) . As the derivation
is essentially just a calculation, it is given in Appendix B.2 of the extended ver-
sion. The copy operation is the function copy : Fn

2 → F
2n
2 with copy(x) = x‖x.

The coordinates of its ultrametric integral transition matrix are

Acopy
u‖v,w =

{
1 if w = u ∨ v ,

0 otherwise .

This result implies the following propagation rule: if the output exponent is
u‖v, then the input exponent must be u ∨ v. In this case, the correlation is one.
This rule is illustrated in Fig. 3a.

The xor operation is the function xorn : F2n
2 → F2 defined by xor(x‖y) = x+y.

The coordinates of its ultrametric integral transition matrix are

Axor
w,u‖v =

{
(−2)wt(u∧v) if w = u ∨ v ,

0 otherwise .

This result can be summarized as the propagation rule that an input exponent
u‖v goes to output exponent u∨v with correlation (−2)wt(u∧v). This is illustrated
in Fig. 3b.

It is worth mentioning that there are downsides to decomposing linear func-
tions into copy and xor operations. Copy operations often introduce many high-
correlation trails, reducing the accuracy of the principle of dominant trails and

414 T. Beyne and M. Verbauwhede

making trail enumeration more difficult. Hence, whenever dedicated formulas
are available, they are usually preferable.

Finally, the propagation rules in Fig. 3 imply an interesting theoretical result:
if L : Fn

2 → F
m
2 is a linear function, then |AL

v,u|2 ≤ 2wt(v)−wt(u). Every output
bit of L can be written as a network of copy and xor operations. For a copy
operation, the weight of the output exponent is always greater than the weight
of the input exponent. For an xor operation, the output exponent weight can
be lower than the input exponent weight, but if the weight decreases by Δ
then the correlation is (−2)Δ. Hence, the correlation of an approximation (u, v)
over L must be divisible by 2wt(u)−wt(v). In Sect. 6.3, we generalize this result to
nonlinear functions.

6.3 Low-Degree Functions

Recall from Example 7 that the propagation rule for the and : F2n
2 → F

n
2 function

is identical to that of xor in linear cryptanalysis. This extends to the bitwise and
of more than two variables, which is still a monoid homomorphism. Based on
this property, the following result shows that the ultrametric integral transition
matrix of a function with low algebraic degree is sparse.

Theorem 9. If F : Fn
2 → F

m
2 is a function with algebraic degree d, then

− log2

∣∣AF
v,u

∣∣
2

≥
⌈
wt(u)

d

⌉
− wt(v) .

Equivalently,
∣∣AF

v,u

∣∣
2

≥ 2−ν only if wt(v) ≥ �wt(u)/d� − ν.

Proof. The result can be proven by a somewhat technical calculation, for exam-
ple using Equation (2) and splitting up the sum according to the monomials
that occur in Fv by using the additive characters of F2. Instead, we give a more
insightful ‘cryptanalytic’ proof based on ultrametric integral trails.

Every degree d function can be represented as a three-layer circuit, consisting
of a layer of copy operations, a layer of and gates with d or fewer inputs each,
and a layer of xor operations. This is illustrated in Fig. 4. Although it is not
shown in Fig. 4, we allow for an exclusive-or with a constant at the output.

Fig. 4. One of the coordinates of a function of degree d.

Ultrametric Integral Cryptanalysis 415

Figure 4 only depicts one coordinate of F, but in general we have to take into
account the coordinate functions corresponding to all wt(v) nonzero bits in the
output exponent v.

If |AF
v,u|2 ≥ 2−ν , then there must exist an ultrametric integral trail with

correlation divisible by a power of two less than or equal to 2ν . By the propa-
gation rules for xor operations from Sect. 6.2, this implies that the weight of the
exponent at the output of the and-layer is at most wt(v) + ν. An and operation
with d inputs is a monoid homomorphism from F

d
2 to F2. By Theorem 7 (2) ,

the input exponent is 00 · · · 0 if the output exponent is zero and 11 · · · 1 if it is
one. Hence, using the properties of bricklayer maps, the weight of the exponent
at the input of the and-layer is at most d(wt(v) + ν). As shown in Sect. 2.2, the
weight of the output exponent for a copy is always greater than the weight of
its input exponent. Hence,

wt(u) ≤ d(wt(v) + ν) .

It follows that wt(v) ≥ �wt(u)/d� − ν. ��
The main propagation rule for the word-based division property [29, Propo-

sition 1] is a special case of Theorem 9. This rule states that if a multiset X has
the division property of order k, then F(X) has the division property of order
�k/d�. Indeed, by Theorem 9, |AF

v,u|2 = 1 only if wt(v) ≥ �wt(u)/d�. Recall that
X has the division property of order k if and only if [U δX]u is divisible by two
for all u with wt(u) < k.

Theorem 9 is mostly of theoretical interest. To obtain our results in Sects. 7
and 8, more fine-grained models of nonlinear functions are necessary. Neverthe-
less, Theorem 9 has some interesting theoretical applications. For example, it
implies the Ax-Katz theorem over F2.

Corollary 2 (Ax-Katz [22]). The number of solutions of a system of m equa-
tions of degree d in n variables is divisible by 2�n/d�−m.

Proof. The system of equations can be written as F(x) = 11 · · · 1, where F :
F

n
2 → F

m
2 is a function of degree d. That is,

μ11···1(T FδFn
2

)
= δ11···1(AF U δFn

2

)
=

∑

u∈F
n
2

2n−wt(u)AF
11···1,u .

By Theorem 9, the right-hand side is divisible by 2ν , where

ν ≥ min
u∈F

n
2

n − wt(u) +
⌈
wt(u)

d

⌉
− wt(11 · · · 1) ≥

⌈n

d

⌉
− m .

For the second inequality, we use that the minimum is reached for wt(u) = n. ��
There is a variant of Corollary 2 that takes into account the degrees of the

individual equations. This result is given in Corollary B.1 of Appendix B of the
extended version. The proof uses a variant of Theorem 9.

Finally, it is worth mentioning that Corollary 2 implies a well-known weight
divisibility property of Reed-Muller codes. McWilliams and Sloane deduce this
result from McEliece’s theorem [25, Corollary 13].

416 T. Beyne and M. Verbauwhede

Corollary 3. The weights of codewords in the Reed-Muller code R(d, n) are
divisible by 2�n/d�−1.

Proof. The codewords in R(d, n) are truth-tables of Boolean functions of degree
d. Hence, the weight of a codeword is the number of solutions of an equation of
degree d in n variables. By Corollary 2, this is divisible by 2�n/d�−1. ��

6.4 Relation with Correlation Matrices

A number of results in the Boolean functions literature relate the algebraic
degree of a function to the divisibility of the coordinates of its correlation matrix
(equivalently, Walsh-Hadamard transformation). Theorem 10 generalizes these
results in terms of the ultrametric integral transition matrix. In doing so, we
hope to clarify why such results are to be expected.

The correlation matrix CF and the ultrametric integral transition matrix AF

of a function are both matrix representations of the pushforward operator T F.
In particular, CF can be expressed in terms of AF (and conversely):

CF = F T FF−1 =
(
F U −1

)
AF

(
F U −1

)−1
.

Since the reduction of AF modulo two is the algebraic transition matrix of F,
it is not surprising that the divisibility of coordinates of CF can be related
to the algebraic degree. However, in general, looking at the divisibility of the
coordinates of AF provides finer results. The following results make this precise.

Lemma 2. For the matrix T = FU −1 and its inverse T −1, we have

Tv,u =

{
(−2)wt(u) if u � v ,

0 else ,
and T −1

v,u =

{
(−1)wt(u) 2−wt(v) if u � v ,

0 else .

Proof. The matrix T = FU −1 and its inverse are given by:

T =
[

1 1
1 −1

]⊗n [1 −1
0 1

]⊗n

=
[

1 0
1 −2

]⊗n

and T −1 =
[

1 0
1
2 − 1

2

]⊗n

.

That is, Tv,u is equal to (−2)wt(u) if u � v and zero otherwise. For the inverse,
note that T −1

v,u is equal to (−1)wt(u) 2−wt(v) if u � v and zero otherwise. ��
Together with the relation between AF and CF, Lemma 2 implies the following

two bounds. As shown below, these bounds refine existing results about the
divisibility of correlations. A comparable but different result is given for the
numerical normal form of the graph indicator of a function by Carlet [13, §2.3].

Theorem 10. Let F : Fn
2 → F

m
2 be a function with correlation matrix CF and

ultrametric integral transition matrix AF. For all u in F
n
2 and v in F

m
2 ,

∣∣CF
v,u

∣∣
2

≤ max
s�u
t�v

2wt(s)−wt(t)
∣∣AF

t,s

∣∣
2

and
∣∣AF

v,u

∣∣
2

≤ max
s�u
t�v

2wt(v)−wt(u)
∣∣CF

t,s

∣∣
2
.

Ultrametric Integral Cryptanalysis 417

Proof. For brevity, let T = FU −1. By the ultrametric triangle inequality,
∣∣CF

v,u

∣∣
2

=
∣∣(T AF T −1

)
v,u

∣∣
2

≤ max
s,t

∣∣Tv,t

∣∣
2

∣∣AF
t,s

∣∣
2

∣∣T −1
s,u

∣∣
2
.

The result then follows from Lemma 2. Similarly, we have
∣∣AF

v,u

∣∣
2

=
∣∣(T −1 CF T

)
v,u

∣∣
2

≤ max
s,t

∣∣T −1
v,t

∣∣
2

∣∣CF
t,s

∣∣
2

∣∣Ts,u

∣∣
2
.

Again, the result follows from Lemma 2. ��
Theorem 10 implies the well-known result that

∣∣CF
v,u

∣∣
2

≤ 2n−�n/d� if F is of
degree d. The details are worked out in Appendix B.4 of the extended version.
More interestingly, Theorem 10 also yields the following converse result. A weaker
version of Corollary 4 (without the condition wt(u) ≥ d + 1) was proven by
Carlet [12, Lemma 3] and used by Canteaut and Videau [11, Proposition 2] at
Eurocrypt 2002 and by Boura and Canteaut in 2013 [9] to upper bound the
degree of a composition of two functions7.

Corollary 4. If F : Fn
2 → F

m
2 is a function with

∣∣CF
v,u

∣∣
2

≤ 2d−1 for all u and v
with wt(u) ≥ d + 1 and wt(v) = 1, then F has algebraic degree at most d.

Proof. To show that F has degree at most d, it suffices to prove that |AF
v,u|2 ≤ 1/2

for all u and v with wt(u) ≥ d + 1 and wt(v) = 1. This readily follows from the
second inequality of Theorem 10:

∣∣AF
v,u

∣∣
2

≤ 2wt(v)−wt(u) 2d−1 ≤ 2d 2d−1 = 1/2 ,

where we have used
∣∣CF

t,s

∣∣
2

≤ 2d−1 for all t and s with wt(t) ≤ wt(v) = 1 and
wt(s) ≥ wt(u) ≥ d + 1 ��

Another application of Theorem 10 is discussed in Sect. 7.3.

7 Application to present

In this section, we apply ultrametric integral cryptanalysis to present. The
analysis is automated using off-the-shelf SAT solvers. The choice of present is
didactical. Indeed, integral attacks on present cover a small number of rounds
compared to other methods such as linear cryptanalysis. Nevertheless, present
has often served as a test-case for new ideas in integral cryptanalysis such as the
division property [29, §5.3] and parity sets [10, §6].

7.1 Modelling

To automate the analysis of ultrametric trails, we construct a formula in con-
junctive normal form so that each satisfying assignment corresponds to a trail
with absolute correlation 2−ν . The construction of the conjunctive normal form
formula follows from the discussion in Sects. 5 and 6. The analysis of trails is
based on the dominant trail approximation in Theorem 8, but with nontrivial
optimizations to avoid enumerating redundant trails when analyzing properties
of the form (δu0∧F

n
2
, μur+1) rather than (μu1 , μ

ur+1). The details are described in
the extended version of this work.
7 It is now understood that these bounds can be proven using integral cryptanalysis.

418 T. Beyne and M. Verbauwhede

7.2 Revisiting the Distinguishers of Boura and Canteaut

In this section we revisit the integral distinguishers on present proposed by
Boura and Canteaut [10] at Crypto 2016. They showed that, for the input sets
u ∧F

64
2 listed in Table 2 and 4–8 rounds of present, every bit of the state sums

to zero in F2. For the second output bit of four-round present, we already
observed divisibility by four in Sect. 3.1 and this was proven in Sect. 5.2.

To validate the efficacy of the model, we compare our results for four and
five rounds with experimental results, which can be found in Appendix F of the
extended version. In most cases, the divisibility predicted by our model without
trail enumeration is tight. For a few bits, an additional factor of two or four was
gained by enumerating trails. For this reason, trail enumeration was not used to
evaluate the 6–9 round properties.

Table 2 lists our results for the first 16 output bits for the input sets chosen
by Boura and Canteaut. The results for the remaining 48 bits can be found in
Appendix D of the extended version. The first 16 bits give the most interesting
results, though the remaining bits are not far off for six rounds and more. We
also consider the eight round input set for nine rounds of present. It was shown
by Wang et al. [31] that this results in 28 bits that sum to zero in F2. Our results
show that four of these bits exhibit divisibility by four.

Table 2. Divisibility for the distinguishers of Boura and Canteaut [10] and Wang et
al. [31], with input set u ∧ F

64
2 . The ith output bit exhibits divisibility by 2νi . Bold

numbers were obtained using trail enumeration.

rounds u log2(data)
νi for bit i

1 2 3 4 5 6 7 8 910111213141516

4 000000000000000f 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 000000000000fff0 12 5 5 5 5 3 2 2 2 3 3 3 3 3 2 2 2

6 00000000ffffffff 32 7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1

7 fffffffffffff000 52 9 5 5 5 4 2 2 2 5 2 2 2 4 2 2 2

8 fffffffffffffffe 63 8 5 5 5 5 2 2 2 5 3 3 3 5 2 2 2

9 fffffffffffffffe 63 2 1 1 1 2 0 0 0 2 0 0 0 2 0 0 0

7.3 Finding Zero-Correlation Distinguishers

Traditionally, zero-correlation linear approximations are found by showing that
all linear trails have correlation zero. Due to the theoretical links from Sect. 6.4,
the same properties can be analyzed from the point of view of ultrametric integral
cryptanalysis.

To demonstrate that ultrametric integral cryptanalysis provides an alter-
native way to find zero-correlation linear approximations, we analyze the

Ultrametric Integral Cryptanalysis 419

zero-correlation distinguishers for five and six rounds of present given by
Hadipour et al. [18]. These zero-correlation linear approximations depend on
the details of the S-box, so propagating the ‘all’ property as described by Knud-
sen and Wagner [24] is not sufficient to explain them. However, they can be
obtained by propagating the ‘all’ property at the level of individual bits. Hence,
these are properties that one would expect integral cryptanalysis to be able to
detect, but most of the result is lost when working over F2.

The extended version of this work goes into more detail on the modelling of
these properties. The result is that all 248 −1 output masks with correlation zero
for 5-round present reported by Hadipour et al. can be found using ultrametric
integral cryptanalysis. The zero-correlation approximation (u, v) on six rounds
of present in [18, Figure 49d] follows from the five round property. Indeed, the
support of the product AF∨

T ∨ δv with F the last round function lies in the
set of output exponents that were analyzed for the 5-round property. The same
argument can be made using linear cryptanalysis.

7.4 Improving Key Recovery Attacks

Integral distinguishers can be turned into key-recovery attacks using the last-
round trick. An important parameter is then the number of incorrect candidate
keys that can be filtered out based on a single input set. A single zero-sum bit
filters out half of the incorrect candidate keys, but a bit with divisibility by 2ν

provides a filter of (approximately) 2−ν . To illustrate this, a key-recovery attack
on eight round present-80 using 212 data and time equivalent to 260 encryptions
is worked out below. The time-complexity is not fully optimized.

Integral distinguishers on six round present require at least 28 data, for
example when the input set is a coset of 0 · · · 0ff0 ∧ F

64
2 . Since this only gives

a 1-bit filter, 20 sets would be necessary to append two rounds. However, using
ultrametric integral cryptanalysis, we find that every coset of 0 · · · 0eff0∧F

64
2 –

eight sets of the minimum-data property – leads to divisibility by four on the first
bit. By combining both properties, every set of 211 data provides a 9-bit filter.
Using two such sets, one can evaluate the cipher on a coset of 0 · · · 0fff0 ∧ F

64
2 .

In this case, one has divisibility by 16, 2, 4 and 2 on the first four ciphertext
bits. This results in a 2−18−(4−2)−1−2−1 = 2−24 filter. Hence, a single set of 212

data suffices. Without using ultrametric integral cryptanalysis, one would only
have a 19-bit filter. Hence, one would need 28 additional plaintexts.

The gain is relatively small in this example, but this is in part because only
20 key bits are guessed. If a stronger filter is required, divisibility properties
become more useful.

8 Application to simon

Section 7 demonstrates that the ultrametric integral cryptanalysis of substitution-
permutation networks such as present can be automated. The purpose of this
section is to show that this also applies to ciphers with a different structure.

420 T. Beyne and M. Verbauwhede

We use the block cipher family simon as an example because, like present, it
has been important in the development of integral cryptanalysis [29,30,32]. As
a side result, we propose a small but interesting improvement to the modelling
of simon’s round function. It also applies to ordinary integral cryptanalysis.

8.1 Modelling

Although propagation through the operations that compose simon is described
in Sects. 6.2 and 6.3, it is worthwhile to take a closer look at the part of the simon
round function shown in Fig. 5, corresponding to F(x) = (x ≪ 1) ∧ (x ≪ 8)
with ≪ a rotation to the left. In previous work on simon [29,30,32], propagation
through this function has been modeled by decomposing it into a copy and a
bitwise and operation.

Fig. 5. A part of the round function of simon-32.

However, F is actually a monoid homomorphism. Hence, from the point of
view of ultrametric integral cryptanalysis, it is no more difficult to handle than
linear functions are in linear cryptanalysis. By Theorem 7 (2) , the input expo-
nent is uniquely determined by the output exponent. More precisely, if the output
exponent is u, then the input exponent is F∗(u) = (u ≫ 1) ∨ (u ≫ 8). The
same is clear from Fig. 5, which depicts the unique trail with output exponent
u. This reduces the number of variables in the model. The function F∗ is dual
to F in the sense that ∧ is replaced by ∨. This is analogous to how, in linear
cryptanalysis, the output mask for a linear function x �→ Mx propagates to the
input mask by u �→ MTu.

8.2 Results

The results of our analysis of simon are given in Table 3 and Appendix E of the
extended version. The input sets are those proposed by Todo [29] and Todo and
Morii [30], as well as Xiang et al. [32]. We find divisibility by four and higher
for many of the output bits, but not for the maximum number of rounds. This
is not unexpected, as previous work has focused on distinguishing a maximal
number of rounds with minimal data. This is a natural goal from the point of
view of ordinary integral cryptanalysis, but it does not necessarily result in the
most useful properties in any given situation (such as for a key-recovery attack).

Ultrametric Integral Cryptanalysis 421

An interesting conclusion from our results is that using the same input set on
a smaller number of rounds, does not just yield properties that are universally
worse, as can be seen for respectively 10–13 rounds of simon-32 and 12–15 rounds
of simon-48. Indeed, as one would expect, reducing the number of rounds does
lead to higher divisibility.

Table 3. Divisibility for simon-{32, 48} distinguishers with input set R−1(u∧F
{32,48}
2),

where R is the round function of simon-{32, 48} without key-addition.

simon-32

rounds u log2(data)maxi νi

7 0001ffff 17 7

8 01ffffff 25 7

9 1fffffff 29 5

10 7fffffff 31 4

11 7fffffff 31 3

12 7fffffff 31 2

13 7fffffff 31 1

14 7fffffff 31 1

15 7fffffff 31 1

simon-48

rounds u log2(data)maxi νi

7 00000001ffff 17 10

8 00001fffffff 29 10

9 007fffffffff 39 8

10 0fffffffffff 44 6

11 3fffffffffff 46 5

12 7fffffffffff 47 4

13 7fffffffffff 47 3

14 7fffffffffff 47 2

15 7fffffffffff 47 1

16 7fffffffffff 47 1

Acknowledgments. Some of the results in this paper were previously published in
the PhD thesis of Tim Beyne [2]. This work was partially supported by the Research
Council KU Leuven, C16/18/004 through the C1 on New Block Cipher Structures. In
addition, this work was supported by CyberSecurity Research Flanders with reference
number VR20192203. Tim Beyne is supported by a junior postdoctoral fellowship from
the Research Foundation - Flanders (FWO) with reference number 1274724N.

References

1. Tim Beyne. A geometric approach to linear cryptanalysis. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages
36–66. Springer, Cham, December 2021.

2. Tim Beyne. A geometric approach to symmetric-key cryptanalysis. PhD thesis, KU
Leuven, June 2023.

3. Tim Beyne and Vincent Rijmen. Differential cryptanalysis in the fixed-key model.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, vol-
ume 13509 of LNCS, pages 687–716. Springer, Cham, August 2022.

4. Tim Beyne and Michiel Verbauwhede. Integral cryptanalysis using algebraic tran-
sition matrices. IACR Transactions on Symmetric Cryptology, 2023(4):244–269,
Dec. 2023.

422 T. Beyne and M. Verbauwhede

5. Tim Beyne and Michiel Verbauwhede. Ultrametric integral cryptanalysis. Cryptol-
ogy ePrint Archive, Report 2024/722, 2024.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466. Springer,
Berlin, Heidelberg, September 2007.

7. Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. Integral and
multidimensional linear distinguishers with correlation zero. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 244–261.
Springer, Berlin, Heidelberg, December 2012.

8. Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. DCC, 70(3):369–383, 2014.

9. Christina Boura and Anne Canteaut. On the influence of the algebraic degree of
f−1 on the algebraic degree of g ◦ f . IEEE Transactions on Information Theory,
59(1):691–702, 2012.

10. Christina Boura and Anne Canteaut. Another view of the division property. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 654–682. Springer, Berlin, Heidelberg, August 2016.

11. Anne Canteaut and Marion Videau. Degree of composition of highly nonlinear func-
tions and applications to higher order differential cryptanalysis. In Lars R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 518–533. Springer,
Berlin, Heidelberg, April / May 2002.

12. Claude Carlet. Two new classes of Bent functions. In Tor Helleseth, editor, EURO-
CRYPT’93, volume 765 of LNCS, pages 77–101. Springer, Berlin, Heidelberg, May
1994.

13. Claude Carlet. Boolean functions for cryptography and coding theory.Cambridge
University Press, 2021.

14. Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation matrices. In Bart
Preneel, editor, FSE’94, volume 1008 of LNCS, pages 275–285. Springer, Berlin,
Heidelberg, December 1995.

15. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 149–165. Springer, Berlin,
Heidelberg, January 1997.

16. Richard Dedekind. Ideale in Normalkörpern. In Robert Fricke, Emmy Noether,
and Øystein Ore, editors, Gesammelte mathematische Werke. 1930.

17. Brandon Dravie, Jérémy Parriaux, Philippe Guillot, and Gilles Millérioux.Matrix
representations of vectorial boolean functions and eigenanalysis.Cryptography and
Communications, 8:555–577, 2016.

18. Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder.
Improved search for integral, impossible-differential and zero-correlation attacks:
Application to Ascon, ForkSKINNY, SKINNY, MANTIS, PRESENT and QAR-
MAv2. Cryptology ePrint Archive, Paper 2023/1701, 2023. https://eprint.iacr.org/
2023/1701. https://eprint.iacr.org/2023/1701.

19. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube
attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 466–495.
Springer, Cham, May 2020.

20. Phil Hebborn, Gregor Leander, and Aleksei Udovenko. Mathematical aspects of
division property. Cryptography and Communications, pages 1–44, 2023.

https://eprint.iacr.org/2023/1701
https://eprint.iacr.org/2023/1701
https://eprint.iacr.org/2023/1701

Ultrametric Integral Cryptanalysis 423

21. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formula-
tion of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, Cham,
December 2020.

22. Nicholas M. Katz. On a theorem of Ax. American Journal of Mathematics,
93(2):485–499, 1971.

23. Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel, edi-
tor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Berlin, Heidelberg,
December 1995.

24. Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and
Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127. Springer,
Berlin, Heidelberg, February 2002.

25. Florence J. MacWilliams and Neil J. A. Sloane. The theory of error-correcting
codes, volume 16. Elsevier, 1977.

26. Gian Carlo Rota. On the foundations of combinatorial theory I. Theory of
Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebi-
ete, 2(4):340–368, Jan 1964.

27. Benjamin Steinberg. Representation theory of finite monoids. Springer Cham, 2016.
28. Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang, Hoda

AlKhzaimi, and Chao Li. Links among impossible differential, integral and zero
correlation linear cryptanalysis. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 95–115. Springer,
Berlin, Heidelberg, August 2015.

29. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 287–314. Springer, Berlin, Heidelberg, April 2015.

30. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, Berlin, Heidelberg, March 2016.

31. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, vol-
ume 11923 of LNCS, pages 398–427. Springer, Cham, December 2019.

32. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers.In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678. Springer, Berlin,
Heidelberg, December 2016.

Modelling Ciphers with Overdefined
Systems of Quadratic Equations:

Application to Friday, Vision, RAIN
and Biscuit

Fukang Liu1(B), Mohammad Mahzoun2, and Willi Meier3

1 Institute of Science Tokyo, Tokyo, Japan
liu.f.ad@m.titech.ac.jp

2 Eindhoven University of Technology, Eindhoven, Netherlands
mail@mahzoun.me

3 FHNW, Windisch, Switzerland

Abstract. Overdefined polynomial systems have the potential to lead
to reduced complexity in solving procedures. In this work, we study how
to overdefine the system of equations to describe the arithmetic ori-
ented (AO) ciphers Friday, Vision, and RAIN, as well as a special sys-
tem of quadratic equations over F2� used in the post-quantum signa-
ture scheme Biscuit. Our method is inspired by Courtois-Pieprzyk’s and
Murphy-Robshaw’s methods to model AES with overdefined systems of
quadratic equations over F2 and F28 , respectively. However, our method
is more refined and much simplified compared with Murphy-Robshaw’s
method, since it can take full advantage of the low-degree F2-linearized
affine polynomials used in Friday and Vision, and the overdefined system
of equations over F2� can be described in a clean way with our method.
For RAIN, we instead consider quadratic Boolean equations rather than
equations over large finite fields F2� . Specifically, we demonstrate that
the special structure of RAIN allows us to set up much more linearly
independent quadratic Boolean equations than those obtained only with
Courtois-Pieprzyk’s method. Moreover, we further demonstrate that the
underlying key-recovery problem in Biscuit (NIST PQC Round 1 Addi-
tional Signatures) can also be described by solving a much overdefined
system of quadratic equations over F2� . On the downside, the constructed
systems of quadratic equations for these ciphers cannot be viewed as
semi-regular, which makes it challenging to upper bound the complexity
of the Gröbner basis attack. However, such a new modelling method can
significantly improve the lower bound of the complexity of the Gröbner
basis attacks on these ciphers, i.e., we view the complexity of solving
a random system of quadratic equations of the same scale as the lower
bound. How to better estimate the upper and lower bounds of the Gröb-
ner basis attacks on these ciphers based on our modelling method is left
as an open problem.

Keywords: Friday · Vision · RAIN · Biscuit · overdefined system ·
algebraic attack · Gröbner basis

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 424–456, 2025.
https://doi.org/10.1007/978-981-96-0941-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_14&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_14

Modelling Ciphers with Overdefined Systems of Quadratic Equations 425

1 Introduction

In 2002, Courtois and Pieprzyk presented the first algebraic attack on AES in [22]
by modelling it with an overdefined system of quadratic equations over F2 based
on their observation on the inverse function y = x−1 over F2� . Subsequently
at CRYPTO 2002, Murphy and Robshaw presented a similar method to model
AES with an overdefined system of quadratic equations directly over F28 [40].
To solve such a special system of equations, Courtois and Pieprzyk proposed
the so-called XSL algorithm [22], which is a variant of the XL algorithm [21].
However, it has been pointed out in [20,37] that the assumptions on the XSL
algorithm are too optimistic, and that the claimed successful algebraic attacks
on full-round AES in [22,40] are flawed. By these results, the community seems
to have reached a consensus that AES [23] is secure against algebraic attacks.

After the seminal papers [22,40], however, there seems to be no other progress
on such modelling methods. A closely related technique may be Buchmann-
Pyshkin-Weinmann’s modelling method proposed at FSE 2006, where AES-128
could be modelled with 200 polynomial equations of degree 254 and 152 lin-
ear equations [16]. Although this method allows them to obtain the Gröbner
basis under a suitable monomial ordering directly, converting the Gröbner basis
into a lexicographical order or an elimination order [8] will be too costly, and
hence it cannot affect the security of AES-128. As conjectured by Buchmann-
Pyshkin-Weinmann, this modelling method can be applied to various iterated
block ciphers especially with rich algebraic structures. This has been confirmed
by some Gröbner basis attacks [3,7,35] on AO ciphers including MiMC, Grif-
fin, Arion, Anemoi, whose degree of the nonlinear function (a power map) or its
inverse is usually low.

In this work, we will instead follow Murphy-Robshaw’s main idea since
Buchmann-Pyshkin-Weinmann’s method is too inefficient for the inverse func-
tion, i.e., its inverse is itself and it is still of extremely high degree. Our main
goal is to shed new insight into ciphers with rich algebraic structures over F2� .
In particular, we aim to take full advantage of the used nonlinear and linear
cryptographic components to improve the modelling method.

Motivation of this Work. A number of AO ciphers have been proposed during
these years [3–5,14,19,24,32,34], and some of them were also broken due to the
insufficient understanding of such designs [2,11,25,38,39,43]. Almost all these
successful attacks are algebraic attacks with a clever method to exploit the inner
algebraic structures, while such a strategy does not usually work well for conven-
tional block ciphers. The very first algebraic attacks on block ciphers date back
to Courtois-Pieprzyk’s and Murphy-Robshaw’s attacks on AES by exploiting its
rich algebraic structure. Unfortunately, the two attacks are flawed due to the
incorrect estimation of the time complexity of the XLS algorithm. Since then,
no similar attacks have been proposed for symmetric-key primitives.

Since there are some AO ciphers resembling AES, e.g., Friday [5], Vision [4] and
RAIN [24], it seems important to revisit the modelling techniques to construct
an overdefined system of quadratic equations describing these ciphers, and check

426 F. Liu et al.

whether some unexpected properties have been neglected by the designers. Such
a work is meaningful as these AO ciphers are less studied and any potential
weakness may lead to a fatal attack in the future. Therefore, we are motivated
to dive into the algebraic structures of Friday, Vision and RAIN, and see whether
some neglected properties can be identified.

Although Friday has been broken in [2], the same attack cannot apply to its
successor Vision. It is thus meaningful to develop a more general algebraic method
that can better capture their common underlying algebraic structures, e.g., the
low-degree F2-linearized affine polynomials. Studying Friday is also important to
this work since it is the simplest example to explain our new modelling method,
though it has been broken.

For the cipher RAIN, it is designed to be friendly to the post-quantum sig-
nature scheme Rainier [24] built upon the MPC-in-the-head technique, whose
security relies on the difficulty of the key-recovery attack on RAIN from a sin-
gle plaintext-ciphertext pair. In particular, RAIN has a very small number of
rounds, i.e., 3 rounds are sufficient and 4 rounds can be used for higher security.
Currently, the best attacks could only reach 2 rounds [39,43], so attacking 3 or
4 rounds is on demand.

In addition to the above 3 symmetric-key primitives, we also find that the
candidate Biscuit [10] in NIST PQC Round 1 Additional Signatures may be
prone to our attacks, though the inverse function is not used here. Specifically,
it is also built with the MPC-in-the-head technique and relies on the difficulty
to solve m structured quadratic equations in n variables over F2� , which is called
the powAff2 problem. As a candidate in NIST PQC project, studying Biscuit is
meaningful.

Our Contributions. We propose a new method to overdefine the polynomial
systems describing Friday, Vision, RAIN and Biscuit. Solving such systems will
either help find the preimage (e.g., Friday and Vision), or solve the secret key
(e.g., RAIN and Biscuit). Specifically, we have the following new results:

1. The preimage attack on r rounds of Friday is reduced to solving 7r quadratic
equations in 4r variables over F2� .

2. The preimage attack on r rounds of Vision with s ≥ 2 state words is reduced
to solving 5s + 14s(r − 1) quadratic equations in 3s + 6s(r − 1) variables over
F2� .

3. The key-recovery attack on r ≥ 3 rounds of RAIN is reduced to solving
(5r+5)� quadratic Boolean equations in r� variables. In Gröbner basis attack,
the field equation for each variable x ∈ F2, i.e., x2 = x, is also useful, and
hence we indeed need to consider the problem to solve (6r + 5)� quadratic
equations in r� variables with Gröbner basis. Moreover, we further reveal that
the problem can also be reduced to solving (6r + 5)� quadratic equations in
r� variables over F2� .

4. The powAff2 problem used in Biscuit with m quadratic equations in n variables
over F2� can be overdefined as 4m + n quadratic equations in 2n variables
over F2� .

Modelling Ciphers with Overdefined Systems of Quadratic Equations 427

However, the constructed systems of quadratic equations {f1(x1, . . . , xn) =
0, . . . , fm(x1, . . . , xn) = 0} are not semi-regular, since there are many nontrivial
syzygies, e.g., there exists a linear polynomial1 li,j(x1, . . . , xn) =

∑n
i=1 uixi such

that li,j · fi = fj , though both fi and fj are quadratic. Note that the trivial
syzygies are caused by fi · fj = fj · fi, which can then generate many other
trivial syzygies at a higher degree. Hence, the solving degree computed from the
Hilbert series based on the assumption that {f1, . . . , fm} are semi-regular is just
a lower bound on the actual solving degree for solving our constructed system
of equations. Intuitively speaking, there are many more rows reduced to zero as
the degree of the Macaulay matrix increases (see the definition in Sect. 2) for
our equation system, and hence we need to consider a higher degree compared
with the case when only trivial syzygies exist.

Indeed, there has been a study [6] on the cost to compute the Gröbner basis
for polynomials over F2 where extra syzygies are taken in account, as detailed
in Appendix A. We recommend to read it and believe that the lower bound
on the solving degree is still meaningful and the difference between the actual
solving degree and the one computed based on the semi-regular assumption
is small for polynomial systems we study in this work. Additionally, we have
experimentally verified that such lower bounds are indeed tight for small-scale
equation systems, yet we cannot claim the same for higher dimensions as it lacks
theoretic support. If using such lower bounds to estimate the complexity of the
Gröbner basis attack, we obtain the following results:

1. As the first third-party analysis of Vision, we can improve the designers’ attack
by up to 7 rounds.

2. Using 3 rounds of RAIN with the 256-bit key is insecure, and we thus recom-
mend to use 4 rounds.

3. All parameters of Biscuit are vulnerable to Gröbner basis attacks, and there-
fore they do not meet the security requirement by NIST.

Organization. We first briefly recall the Gröbner basis in Sect. 2, and then recall
how to model AES with an overdefined system of quadratic equations over F2 and
F28 in Sect. 3. Next, we present our new algebraic modelling methods for Friday,
Vision and RAIN, Biscuit in Sect. 4, Sect. 5, Sect. 6, and Sect. 7, respectively, and
give the corresponding analysis of the time complexity as well as the experimental
simulation. Finally in Sect. 8, we conclude this paper by summarizing our new
insight into these ciphers with our modelling method.

2 Preliminaries

Let K = Fq be a finite field and K [x1, . . . , xn] be a polynomial ring defined over
K with x1, . . . , xn as variables. A multivariate polynomial system is defined as
F = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}.

1 This is just an example. A formal definition of syzygy can be referred to Sect. 2.

428 F. Liu et al.

Let I = 〈f1, . . . , fm〉 be the ideal generated by the set of polynomials
{f1, . . . , fm}, and V (I) be its corresponding variety. The polynomial systems
describing cryptographic primitives usually generate zero-dimensional ideals. In
other words, the set of points in their corresponding variety over the algebraic
closure of the field is finite. Finding the corresponding variety of an ideal is an
NP-hard problem and is used as a security argument in the design of many
primitives. The variety V (I) can be computed with the help of a special type of
basis for the ideal I called Gröbner basis.

Definition 1 (Gröbner Basis [15]). The set G = {g1, . . . , gt} is a Gröbner
basis for I = 〈f1, . . . , fm〉 if and only if 〈G〉 = I and 〈lm(G)〉 = 〈lm(I)〉 where
〈lm(G)〉 is the ideal generated by the leading monomials of the set G.

For a monomial ordering ≺ and polynomial system F , the Macaulay matrix
of F with degree d is denoted by M≺[d](F). Columns of M≺[d](F) are labeled
by monomials of degree at most d, and sorted in ≺-descending order from left to
right. Each row of M≺[d](F) is labeled by a polynomial mjfi where deg(mj) ≤
d − deg(fi) and mj is a monomial in x1, . . . , xn.

For example, let F = {f1, f2} = {x2 + xy, 4x + 3y}. Then M≺[2](F) for
degrevlex order is defined as:

M[2](F) =

x2 xy y2 x y 1
⎛

⎜
⎝

⎞

⎟
⎠

1 1 0 0 0 0 f1
0 0 0 4 3 0 f2
4 3 0 0 0 0 xf2
0 4 3 0 0 0 yf2

In [36], it was shown that for a large enough d, the row-echelon form of
M≺[d](F) gives a Gröbner basis of F . Later, F4 [26] and F5 [27] were published
as more efficient algorithms to compute a Gröbner basis, which can efficiently
avoid rows reduced to zero when computing M≺[d](F). Using F4/F5, the com-
plexity of computing the Gröbner basis in grevlex order is as follows:

O
((

n + Dreg

Dreg

)ω
)

, (1)

where n is the number of variables in the polynomial system, Dreg is the degree
of regularity of the system, and ω is the linear algebra constant for Gaussian
elimination.

When the polynomial system is not defined over F2, the Gröbner basis in
grevlex order must be converted to a Gröbner basis in the lex order which has
triangular form and can be solved efficiently. To convert the Gröbner basis in
grevlex order to lex order, the FGLM [28] algorithm is applied and its complexity
is detailed as below.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 429

Proposition 1 (Complexity of the FGLM algorithm [9]). Given a Gröb-
ner basis G1 ⊂ K[x1, . . . , xn] w.r.t. a monomial ordering ≺1 of a zero-
dimensional system, the complexity of computing a Gröbner basis G2 ⊂
K[x1, . . . , xn] w.r.t. a monomial ordering ≺2 with FGLM is

O(n · Dω),

where D is the degree of the ideal generated by G1, i.e., the number of solutions
counted with multiplicity in the algebraic closure of K.

As commented in [9], the cost of changing monomial ordering is cheaper than
computing the Gröbner basis when the system has very few solutions. In our
attacks, we also use the same assumption. Indeed, this is also widely used in the
literature, e.g., solving the LWE problem with algebraic techniques [1], algebraic
attacks on cryptographic schemes like Friday [2], Biscuit [13], UOV [9,29], and
the designers’ estimation of the resistance against Gröbner basis attacks [4,14,
19,24,32,34], just to name a few. The reason why the Gröbner basis attack on
AES-128 [16] does not fall into this category is that the constructed polynomials
are too special, i.e., they directly form a special Gröbner basis G1 where each
polynomial in G1 has a univariate leading monomial of the same degree as of
the nonlinear component, which results in an extremely high degree of the ideal
generated by this G1 according to Corollary 1 in [16]. Finally, we also mention
that there is an improved variant of the FGLM algorithm called the sparse FGLM
algorithm [28] with complexity O(D(N1 + n log D)) where N1 is the number of
non-zero elements in a sparse multiplication matrix.

After performing the FGLM algorithm, solving the triangular system to
retrieve the solutions to the system is done via factoring polynomials of degree
D defined over the finite field Fq using the Cantor-Zassenhaus’s algorithm [17]
with complexity [41]:

O(D2(log2 D log2 log2 D)(log2 q + log2 D)),

which is also viewed as less costly than computing the Gröbner basis in our
attacks.
Degree of Regularity. Computing the complexity of a Gröbner basis in Eq. 1
is difficult in general because computing the degree of regularity Dreg is chal-
lenging. The complexity of computing a Gröbner basis is upper bounded by the
solving degree of the system, which we denote by Dsol. The solving degree of
a polynomial system is the smallest integer d, such that a row-reduced echelon
form of M[d](F) results in a Gröbner basis for F . Unfortunately, computing Dsol

without computing the Gröbner basis itself is a hard task. However, if the poly-
nomial system F is semi-regular2, i.e., m ≥ n, Dreg can be upper bounded by
the index of the first non-positive coefficient in the Hilbert series Sm,n(z) [6,31]:

Sm,n(z) =
∏m

i=1(1 − zdeg(fi))
(1 − z)n

, (2)

2 It is conjectured that this holds for most cases [30].

430 F. Liu et al.

where deg(fi) denotes the degree of the polynomial fi. However, as far as we
know, no polynomial system can be proved to be semi-regular in Gröbner basis
attacks on cryptographic primitives. It is mostly conjectured that the system
is semi-regular and then experiments are run on small-scale ciphers in order to
compare the theoretic solving degree derived from the Hilbert series and the
actual solving degree.

Although we could also rely on a similar conjecture, this may not hold for
our constructed polynomial system. To understand this, it is necessary to intro-
duce the concept called syzygy. A syzygy on F is an m-tuple (g1, . . . , gm) ∈
K

m[x1, . . . , xn] such that

g1f1 + . . . + gmfm = 0.

When constructing the Macaulay matrix using the naive method, i.e., multiply-
ing all monomials mj of degree smaller than d − deg(fi) with fi, there will be
many syzygies generated, i.e., many rows will be reduced to 0. If the syzygies are
mainly caused by the trivial ones3 fi ·fj = fj ·fi, we can use the Hilbert series to
upper bound the solving degree. However, if there are many non-trivial syzygies
on F , for the same degree d, much more rows of M≺[d](F) will be reduced to
zero, and hence we may need to use a larger d. Hence, we conjecture that for our
constructed polynomial system, the solving degree is lower bounded by the index
of the first non-positive coefficient in the Hilbert series Sm,n(z). The reader can
also refer to Appendix A to better understand the above statement.

On the Algebra Constant ω. In the context of Gröbner basis attacks using
F4/F5, due to the sparsity of the Macaulay matrix, some practical experiments
in the literature suggest that using ω = 2 to estimate the time complexity is real-
istic, e.g., the Gröbner basis attacks on UOV [9] and Friday [2]. Our experiments
for Friday, Vision and RAIN also support ω = 2. Moreover, it is also common for
designers to choose ω = 2 to estimate the resistance against the Gröbner basis
attack [4,14,19,24,32,34].

3 Overdefined Systems of Quadratic Equations for AES

Denote the polynomial basis of the finite field F2� by {1, t, t2, . . . , t�−1}. Then,
each element z ∈ F2� can be written as z =

∑�−1
i=0 zit

i where (z0, . . . , z�−1) ∈ F
�
2.

In this way, it is sufficient to only use −→z = (z0, . . . , z�−1) ∈ F
�
2 to represent the

element z in the field F2� .
In the polynomial ring F2� [x], the following polynomial denoted by B�(x) is

called an F2-linearized affine polynomial:

B�(x) = λ0 +
�−1∑

i=0
λi+1x2i

. (3)

3 At a higher degree, i.e., as d of M≺[d](F) increases, we then have many other trivial
syzygies caused by p · fi · fj = p · fj · fi for ∀p ∈ K[x1, . . . , xn].

Modelling Ciphers with Overdefined Systems of Quadratic Equations 431

In particular, it corresponds to an affine transform on −→x . It is clear that this
univariate polynomial is uniquely represented by its coefficients (λ0, . . . , λ�) ∈
F

�+1
2� . Especially, when it is invertible, we can find its inverse denoted by B−1

� (x),
which is also of the form:

B−1
� (x) = λ′

0 +
�−1∑

i=0
λ′

i+1x2i

. (4)

As the inverse function y = x−1 over F2� cannot take 0 as the input, it is
common to use it to construct an S-box denoted by I�(x) in the following way:

I�(x) =
{

x−1, for x
= 0,

0, for x = 0.
(5)

For convenience, we use % to denote the modular operation, and use [i0, i1]
to denote the set of integers i satisfying i0 ≤ i ≤ i1 throughout this paper.

3.1 The AES Round Function

We will not give the full description of the AES algorithm [23] here. Instead, we
only focus on its round function, as it is more relevant to the algebraic modelling
methods in [22,40].

The AES state is a vector of 16 words in F28 and the used irreducible poly-
nomial for F28 [x] is x8 + x4 + x3 + x + 1. For simplicity, denote the AES state by
(a0, . . . , a15) ∈ F

16
28 , and denote its binary representation by (−→a0, . . . , −→a15) ∈ F

128
2 .

The round function denoted by RA can be written as

RA = MA ◦ LinA ◦ IA(a0, . . . , a15),

where LinA ◦ IA forms the S-box layer of AES, and MA is the affine transform
layer, i.e., the composition of ShiftRows, MixColumns, round constant additions
and round key additions. In particular, LinA ◦ IA(a0, . . . , a15) is defined as fol-
lows:

(I8(a0), . . . , I8(a15)) = IA(a0, . . . , a15),
(B8(a0), . . . , B8(a15)) = LinA(a0, . . . , a15),

where the coefficients of B8(x), i.e., (λ0, . . . , λ8), satisfy λi
= 0 for i ∈ [0, 8].

3.2 Courtois-Pieprzyk’s Algebraic Modelling Method

We first describe Courtois-Pieprzyk’s method to construct an overdefined sys-
tem of quadratic Boolean equations for AES. According to [22], the following 5
equations over F2� hold for y = x−1:

xy = 1, x2y = x, xy2 = y, x4y = x3, xy4 = y3.

432 F. Liu et al.

If we consider these 5 equations over F2� , their degrees are obviously 2, 3, 3,
5 and 5, respectively. However, if using the isomorphism between F2� and F

�
2,

these 5 equations can be transformed into 5n quadratic Boolean equations in 2n
Boolean variables (−→x , −→y). The reason is that the map x �→ x2i over F2� for a
positive integer i corresponds to a linear transform in the elements in −→x over
F2. In particular, it has been proved that these 5n quadratic Boolean equations
are linearly independent [18].

With this observation in mind, it is then trivial to construct an overdefined
system of quadratic Boolean equations to describe AES by introducing interme-
diate variables for all outputs of I8(x). Note that except I8(x), all the remaining
operations in AES are linear (or affine).

3.3 Murphy-Robshaw’s Algebraic Modelling Method

In Murphy-Robshaw’s method, they proposed the so-called Big Encryption Sys-
tem (BES), where the BES state is defined by a vector of 16 × 8 = 128 elements
over F28 . Note that the AES state is a vector of 16 elements over F28 . Denote
the BES state by (a0,0, . . . , a0,7, a1,0, . . . , a1,7, . . . , a15,7) ∈ F

128
28 , and there will be

additional conditions4 on such an enlarged state such that it is finally equivalent
to AES, as specified below:

∀i ∈ [0, 15], j ∈ [0, 7] : ai,(j+1)%8 = a2
i,j . (6)

Or alternatively, ∀i ∈ [0, 15], there are

(ai,0, ai,1, ai,2, ai,3, ai,4, ai,5, ai,6, ai,7) = (ai,0, a2
i,0, a22

i,0, a23
i,0, a24

i,0, a25
i,0, a26

i,0, a27
i,0).

The round function of BES denoted by RB is then defined as

RB = MB ◦ LinB ◦ IB(a0,0, . . . , a15,7),

where MB is an affine transform in the BES state words. For IB, it is simply
defined as:

(I8(a0,0), . . . , I8(a15,7)) = IA(a0,0, . . . , a15,7).
As for LinB , it is a bit more technical, and it is a block diagonal matrix with 16
identical blocks LB , i.e., LinB = Diag16(LB), where

LB =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(λ1)20 (λ2)20 (λ3)20 (λ4)20 (λ5)20 (λ6)20 (λ7)20 (λ8)20

(λ8)21 (λ1)21 (λ2)21 (λ3)21 (λ4)21 (λ5)21 (λ6)21 (λ7)21

(λ7)22 (λ8)22 (λ1)22 (λ2)22 (λ3)22 (λ4)22 (λ5)22 (λ6)22

(λ6)23 (λ7)23 (λ8)23 (λ1)23 (λ2)23 (λ3)23 (λ4)23 (λ5)23

(λ5)24 (λ6)24 (λ7)24 (λ8)24 (λ1)24 (λ2)24 (λ3)24 (λ4)24

(λ4)25 (λ5)25 (λ6)25 (λ7)25 (λ8)25 (λ1)25 (λ2)25 (λ3)25

(λ3)26 (λ4)26 (λ5)26 (λ6)26 (λ7)26 (λ8)26 (λ1)26 (λ2)26

(λ2)27 (λ3)27 (λ4)27 (λ5)27 (λ6)27 (λ7)27 (λ8)27 (λ1)27

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

4 Indeed, the round function of BES is constructed in such a way that these conditions
can hold.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 433

In other words, LinB is also a linear transform5 in the BES state words. In this
way, MB ◦ LinB forms an affine transform in the BES state words, and IB is the
only nonlinear operation in BES. The above can be similarly performed for the
key schedule, and we omit the details as these are less relevant.

In a word, the internal states and round keys will become vectors of 128
elements in F28 . Then, represent the input state of each I8 by an intermediate
variable over F28 . In this way, each output state of I8 is also affine in these
variables. Moreover, due to the conditions specified in Eq. 6 on the BES state,
the input denoted by Lin and output denoted by Lout of each I8 can be expressed
as linear functions of the following forms:

Lin = α0,0 +
∑

j=1

7∑

i=0
αj,ivj,i, Lout = α′

0,0 +
∑

j=1

7∑

i=0
α′

j,ivj,i, (8)

where vj,i are those introduced intermediate variables satisfying vj,(i+1)%8 = v2
j,i

for 0 ≤ i ≤ 7, and (αj,i, α′
j,i) are constant coefficients.

For the inverse function y = x−1 over F2� , according to Courtois-Pieprzyk’s
observation, there are

xy = 1, x2y = x, xy2 = y, x4y = x3, xy4 = y3,

which imply the following 5n quadratic equations over F2� if x2i and y2i for
0 ≤ i ≤ � − 1 are renamed as independent variables xi and yi, respectively:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xy)2
i

= 1, → xiyi = 1

(x2y)2
i

= x2i → x(i+1)%�yi = xi,

(xy2)2
i

= y2i → xiy(i+1)%� = yi, ,

(x4y)2
i

= (x3)2
i → x(i+2)%�yi = xix(i+1)%�,

(xy4)2
i

= (y3)2
i → xiy(i+2)%� = yiy(i+1)%�,

for ∀i ∈ [0, � − 1]. (9)

Compared with the Boolean case, it is much easier to observe that these 5n
equations are linearly independent as each equation contains one term that never
appears in other equations.

According to the expressions of the input and output of each I8 in BES shown
in Eq. 8, and the fact that (x2j0 + y2j1)2i = x2(i+j0)%� + y2(i+j1)%� holds over F2�

for ∀i, j0, j1 ∈ N, we can set up 5n quadratic equations for each I8, resulting in
an overdefined system of quadratic equations over F28 to describe BES.

Remark 1. The above explanation of BES is rather simplified. In our following
new attacks on Friday and Vision, although we exploit a similar method, we never
need to construct an equivalent cipher with an enlarged state, nor redefine the
5 While there is a constant term λ0 in B8(x) of AES, the authors do not consider it

here when defining LinA for BES. This is because it can be moved to the definition
of the affine transform MB .

434 F. Liu et al.

round functions. Instead, our method is much simpler and easier to understand,
i.e., we will show how to construct overdefined systems of quadratic equations
over F2� directly based on the ciphers’ original descriptions.

4 New Algebraic Modelling Method for Friday

In this section, we present the first application of our new modelling method
inspired by Murphy-Robshaw’s method. As can be observed on the application
to Friday, our method is much simpler and can take full advantage of the details
of B�(x).

4.1 Description of Friday

Friday [5] is a ZK-friendly hash function over F2� (� ≥ 128) based on the MP
(Miyaguchi-Preneel) construction. The round function denoted by RF of the
underlying permutation denoted by Per(x, key) is defined as follows:

Rf (x) = ki + C ◦ B−1 ◦ I�(x),

where ki ∈ F2� is the i-th (i ≥ 1) round key generated with the master key key,
and both B(x) and C(x) are F2-linearized affine polynomials defined as below:

B(x) = x4 + b2x2 + b1x + b0, C(x) = x4 + c2x2 + c1x + c0.

By the MP (Miyaguchi-Preneel) construction, the compression function of Fri-
day is

hi+1 = Per(x, hi) + x + hi.

It should be mentioned that Friday was soon broken with Gröbner basis at
ASIACRYPT 2019 [2], where a smart algebraic modelling method was proposed.
Specifically, it is found that for r rounds of Friday where r is an even number,
the preimage attack can be reduced to solving r

2 equations of degree 36 in r
2

variables over F2� .

4.2 New Algebraic Modelling Method for Friday

It is found that the efficiency of the model proposed in [2] comes from a relatively
small number of variables, though the degree of equations is high. However, our
new modelling method is not related to it. Instead, it is more like Murphy-
Robshaw’s idea for AES, but it is improved in order to exploit the low degree (or
sparsity) of the F2-linearized affine polynomials B(x) and C(x). Observe that all
coefficients in B8(x) of AES are nonzero, while the B�(x) used in Friday satisfies
λi = 0 for i ∈ [4, �].

As shown in Fig. 1, let us consider the preimage attack on r rounds of Friday
using a single block, i.e., the goal is to find x satisfying h1 = Per(x, h0) + x + h0

Modelling Ciphers with Overdefined Systems of Quadratic Equations 435

Fig. 1. Preimage attack on Friday using a single block

for a given (h0, h1). As shown in Fig. 2, introduce the variable xi to denote the
input of C(x) at the i-th round. Then, there will be

∀i ∈ [1, r − 1] : (C(xi) + ki) · B(xi+1) = 1,

B(x1) · (C(xr) + kr + h1 + h0) = 1,

where the last equation is to capture the relation between the input and output
of the compression function.

Fig. 2. Modelling the round function of Friday

In more details, these r equations are specified as follows:

∀i ∈ [1, r − 1] : (x4
i + c2x2

i + c1xi + c0 + ki)(x4
i+1 + b2x2

i+1 + b1xi+1 + b0) = 1,

(x4
1 + b2x2

1 + b1x1 + b0)(x4
r + c2x2

r + c1xr + c0 + kr + h1 + h0) = 1.

As can be observed, each of them is of the following form:

(y4 + c2y2 + c1y + β1)(z4 + b2z2 + b1z + β2) = 1, (10)

where β1, β2 are known constants, and y, z are variables over F2� .

Overdefining the Polynomial System. For an equation of the form as in
Eq. 10, it is feasible to set up more quadratic equations by introducing additional
variables. Specifically, let us introduce variables in the following way:

∀i ∈ [0, i�] : yi = y2i

, zi = z2i

.

By definition, we have the following 2i� quadratic equations:

∀i ∈ [0, i� − 1] : y(i+1)%� = y2
i , z(i+1)%� = z2

i .

First, let us consider i� = 2. In this case, Eq. 10 becomes

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2) = 1.

436 F. Liu et al.

Unfortunately, it is still a single equation and more quadratic equations cannot
be generated.

However, this is not the case if i� = 3. In this case, Eq. 10 is still

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2) = 1.

Meanwhile, due to the extra variables (y3, z3), we indeed can set up 3 additional
quadratic equations:

(y2 + c2y1 + c1y0 + β1)2(z2 + b2z1 + b1z0 + β2)
= (y3 + c22y2 + c21y1 + β2

1)(z2 + b2z1 + b1z0 + β2)
= (y2 + c2y1 + c1y0 + β1),

(y2 + c2y1 + c1y0 + β1)(z2 + b2z1 + b1z0 + β2)2

= (y2 + c2y1 + c1y0 + β1)(z3 + b22z2 + b21z1 + β2
2)

= (z2 + b2z1 + b1z0 + β2),

(y2 + c2y1 + c1y0 + β1)2(z2 + b2z1 + b1z0 + β2)2

= (y3 + c22y2 + c21y1 + β2
1)(z3 + b22z2 + b21z1 + β2

2)
= 1.

Therefore, for r rounds of Friday, by introducing 4r variables xi,j to represent
x2j

i for i ∈ [1, r] and j ∈ [0, 3], we can set up (1 + 3)r = 4r quadratic equations
in these variables according to the above method, and 3r quadratic equations
by definition, i.e.,

∀i ∈ [1, r], j ∈ [0, 2] : xi,(j+1)%� = x2
i,j .

In total, r rounds of Friday can be modelling as 4r +3r = 7r quadratic equations
in 4r variables over F2� .

4.3 Comparison and Experiments

Indeed, analyzing Friday is less interesting as it has been broken in [2], but it
is a good starting point to understand our new insight into such designs with
low-degree B�(x). Especially, the method in [2] will no longer be feasible for
Vision, while our new method can still apply, even though Vision is the successor
of Friday and shares a very similar structure.

For completeness, we give a comparison between the estimated time com-
plexity to compute Gröbner basis for the two methods, as shown in Table 1. As
already stated, the estimated time complexity for our modelling method is just
a lower bound.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 437

Table 1. Comparison between the time complexity of Gröbner basis attacks on Friday
with different algebraic modelling methods, where the time complexity (# field oper-
ations in logarithm base 2) is estimated under ω ∈ {2.8, 2} and the complexity with
ω = 2.8 is given in parenthesis.

r 6 8 10 12 14 16 18 20
The algebraic modelling method in [2]

#variables 3 4 5 6 7 8 9 10
#equations 3 4 5 6 7 8 9 10

Dreg 94 125 156 187 218 249 280 311
Complexity 34 (48) 47 (65) 59 (83) 72 (101) 85 (118) 97 (136) 110 (154) 123 (172)

Our new algebraic modelling method
#variables 24 32 40 48 56 64 72 80
#equations 42 56 70 84 98 112 126 140

Dreg 6 7 8 9 10 11 12 13
Complexity 39 (54) 48 (67) 57 (80) 67 (93) 76 (106) 85 (119) 94 (131) 103 (144)

Experimental Verification. To verify the complexity of our new Gröbner basis
attack, we implemented it on Friday using MAGMA [12] on a Linux cluster. As
shown in Table 2, as r increases, the practical solving degree Dsol is the same
with Dreg derived from the Hilbert series, which indicates that the lower bound
is indeed tight for small-scale ciphers. Moreover, the practical running time also
implies that using ω = 2 to estimate the time complexity is reasonable.

Table 2. Experimental verification of the Gröbner basis attack on Friday, where the
complexity (# field operations in logarithm base 2) is calculated with ω = 2.

Rounds (r) #variables #equations Dsol Dreg Time(s) Complexity
2 8 14 3 4 0.01 15
3 12 21 4 4 0.02 22
4 16 28 5 5 1.88 29
5 20 35 5 6 40.35 32
6 24 42 6 6 3437 39

5 New Algebraic Modelling Method for Vision

After Jarvis and Friday were broken in [2], another two ciphers called Vision and
Rescue were proposed for the Marvellous family in [4]. Although Rescue is more
popular than Vision, we only focus on Vision in this work as it is very similar to
Friday, and our technique can be efficiently applied. As Vision is mainly used for

438 F. Liu et al.

constructing the ZK-friendly hash function, we will no more consider the key-
recovery attack as it is less meaningful. Instead, we only consider hash functions
built on Vision. We find that the designers suggest to use the sponge construction
to build the hash function, and the rate of the sponge construction as well as the
length of the hash value are both set as half of the state size. In the following,
we will focus on the preimage attack on such hash functions built on Vision.

5.1 Description of the Unkeyed Vision Permutation

It has been explicitly stated in [4] that the master key will be set to zero and
the corresponding generated round keys are treated as round constants when a
Marvellous design is used as an unkeyed permutation. As our target is the hash
function, we omit the description of the keyed Vision permutation, and only focus
on the unkeyed permutation.

The round function of the unkeyed permutation Vision follows the common
SPN structure. The Vision state is composed of s words (a1, . . . , as) ∈ F

s
2� where

s > 1, which makes it different from Friday as the Friday state is simply one word
over F2� . For the round function of Vision at the i-th round, the Vision state will
pass through 8 operations, as shown below:

aj = I�(aj), ∀j ∈ [1, s]
aj = B−1

3 (aj), ∀j ∈ [1, s]
(a1, . . . , as)T = M · (a1, . . . , as)T ,

aj = aj + σi,j , ∀j ∈ [1, s]

aj = I�(aj), ∀j ∈ [1, s]
aj = B3(wj), ∀j ∈ [1, s]

(a1, . . . , as)T = M · (a1, . . . , as)T ,

ai = ai + εi,j , ∀j ∈ [1, s],

where M = (M [i][j])1≤i,j≤s ∈ F
s×s
2� is an MDS matrix, σi = (σi,1, . . . , σi,s) ∈

F
s
2� , εi = (εi,1, . . . , εi,s) ∈ F

s
2� are round constants, and the definitions of B3(x)

and I�(x) can be referred to Eq. 4 and Eq. 5, respectively. For convenience, we
denote the total number of rounds of Vision by r.

As can be observed, the round function is similar to Friday, i.e., they both
use the inverse function, a degree-4 F2-linear affine polynomial and its inverse.
However, the state size is increased, and thus a mixing layer M is introduced.
Moreover, I�(x) is applied twice in each round. In particular, the degree-4 affine
polynomial and its inverse will be applied after the second and first I�(x) lay-
ers, respectively. Such changes make the advanced algebraic modelling method
proposed in [2] infeasible, as stated in [2]. This also implies that the advanced
algebraic modelling method in [2] highly relies on the special structure of Friday,
and cannot work well for a more general design.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 439

5.2 Modelling Vision with a Polynomial System

Let us consider r rounds of Vision. As shown in Fig. 3, at the i-th round where
(2 ≤ i ≤ r), we introduce 2s variables (wi,1, . . . , wi,s) and (zi,1, . . . , zi,s) to
represent the outputs of the B−1

3 (x) layer and the second I�(x) layer, respectively.

Fig. 3. Modelling the round function of Vision

Equations from the First and Second I�(x) in the Last r − 1 Rounds.
According to the above way to introduce intermediate variables, we can derive
the following s equations according to the first I�(x) layer at the i-th round
(2 ≤ i ≤ r):

∀k ∈ [1, s] : B3(wi,k) ·
(s∑

j=1
M [k][j] · B3(zi−1,j) + εi−1,k

)

= 1. (11)

For the second I�(x) layer at the i-th round (2 ≤ i ≤ r), we similarly derive
the following s equations:

∀k ∈ [1, s] : zi,k · (
s∑

j=1
M [k][j] · wi,j + σi,k) = 1. (12)

In other words, we can set up 2s equations for each round after the 1st round.
Of course, it is always assumed that the input to each I�(x) is nonzero.

Dealing with the First Round. Let us consider the case of the sponge con-
struction where the rate part and truncated part are both composed of h state
words. The generic preimage attack on such a sponge-based hash function has
time complexity min(2h�, 2

(s−h)�
2).

For the preimage attack, we can simply skip the first I�(x) layer and the
B−1

3 (x) layer, and only introduce h variables (w1,1, . . . , w1,h). For the second
I�(x) layer, we still introduce variables (z1,1, . . . , z1,s) to denote the output. In
this way, we can set up s equations derived from the second I�(x) layer at the
1st round.

∀k ∈ [1, s] : z1,k · (
h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k

)
= 1, (13)

440 F. Liu et al.

where (β3,1, . . . , β3,s) are known constants computed from the capacity part of
the input.

Equations to Match the Hash Value. In addition to the above equations,
we will also have h equations to match the hash value denoted by (ι1, . . . , ιh),
as shown below:

∀k ∈ [1, h] :
s∑

j=1
M [k][j] · B3(zr,j) + εr,k = ιk. (14)

Total Number of Equations and Variables. In total, we have introduced
2s(r − 1) + h + s variables, and set up 2s(r − 1) + s + h equations.

5.3 Overdefining the Polynomial System for Vision

According to the above analysis, we mainly have the two forms of equations
when describing the last r − 1 rounds of Vision with a system of equations in
intermediate variables (wi,k, zi,k, zi−1,k) where 1 ≤ k ≤ s, as shown in Eq. 11
and Eq. 12, respectively.

Dealing with Eq. 11. For Eq. 11, it can be written in the following form:

B3(v1) ·
(

α1B3(u1) + . . . + αsB3(us) + β4

)

= 1, (15)

where v1, u1, . . . , us are variables, and β4, α1, . . . , αs are known constants. There-
fore, we can introduce the following intermediate variables:

v1,i = v2i

1 , uk,i = u2i

k , for ∀k ∈ [1, s], i ∈ [0, i�].

Let i� = 2, according to the definition of B3(x), Eq. 15 can be written as

(λ3v1,2 + λ2v1,1 + λ1v1,0 + λ0)(
s∑

j=1

2∑

i=0
λj,iuj,i + β5) = 1,

where λj , λj,i, β5 are known constants. Similar to the case in Friday, it is impos-
sible to overdefine this quadratic equation without increasing i�. However, in the
case of Vision, we show that even with i� = 2, it is still possible to construct an
overdefined polynomial system, which comes from Eq. 12.

Dealing with Eq. 12. Abusing notation, for Eq. 12, it can be written in the
following form:

u1 ·
(

α1v1 + . . . + αsvs + β6

)

= 1,

Modelling Ciphers with Overdefined Systems of Quadratic Equations 441

where u1, v1, . . . , vs are variables, and β6, α1, . . . , αs are known constants. Hence,
we also have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 · (α1v1,0 + . . . + αsvs,0 + β6) = 1,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = 1,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = 1,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6) = u1,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = u2

1,

u1 · (α1v1,0 + . . . + αsvs,0 + β6)2 = α1v1,0 + . . . + αsvs,0 + β6,

u2
1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = (α1v1,0 + . . . + αsvs,0 + β6)2,

u4
1 · (α1v1,0 + . . . + αsvs,0 + β6) = u2

1 · u1,

u1 · (α1v1,0 + . . . + αsvs,0 + β6)4 = (α1v1,0 + . . . + αsvs,0 + β6)2+1.

(16)

Let us introduce the following intermediate variables:

u1,i = u2i

1 , vk,i = v2i

k , for ∀k ∈ [1, s], i ∈ [0, 2].

According to

∀i ∈ [0, 2] : u1,i = u2i

1 , (α1v1,0+ . . .+αsvs,0+β6)2
i

= α2i

1 v1,i + . . .+α2i

s vs,i +β2i

6 .

Equation 16 indeed is a system of 9 quadratic equations in the introduced inter-
mediate variables: (u1,0, u1,1, u1,2, v1,0, v1,1, v1,2, . . . , vs,0, vs,1, vs,2).

Putting all Together. According to the above analysis, if we introduce 6s(r −
1) intermediate variables (wi,k,j , zi,k,j) as follows:

∀i ∈ [2, r], ∀k ∈ [1, s], ∀j ∈ [0, 2] : wi,k,j = w2j

i,k, zi,k,j = z2j

i,k,

there will be (9+1)(r −1)s = 10s(r −1) quadratic equations to describe the last
r −1 rounds, as well as the following 4s(r −1) quadratic equations by definition:

∀i ∈ [2, r], ∀k ∈ [1, s], ∀j ∈ [0, 1] : wi,k,j+1 = w2
i,k,j , zi,k,j+1 = z2

i,k,j .

Moreover, for the first round, we only introduce h + 3s variables
(w1,1, . . . , w1,h) and (z1,1,0, . . . , z1,s,2) where

∀k ∈ [1, s], ∀j ∈ [0, 1] : z1,k,j+1 = z2
1,k,j , z1,k,0 = z1,k,

442 F. Liu et al.

i.e., by definition, there are 2s quadratic equations. Then, we can generate 3s
quadratic equations in these variables from Eq. 13 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1,k · (
h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k) = 1,

z2
1,k · (

h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k) = z1,k,

z4
1,k · (

h∑

j=1
M [k][j] · w1,j + σ1,k + β3,k) = z2

1,k · z1,k.

(17)

At last, we need to consider h equations specified in Eq. 14 to match the
hash value, which now becomes h linear equations in the introduced variables
(zr,1,0, . . . , zr,s,2).

Total Number of Quadratic Equations and Variables. According to the
above analysis, finding the preimage of r rounds of Vision can be modelled as
solving 10s(r−1)+4s(r−1)+2s+3s quadratic equations and h linear equations
in 6s(r−1)+h+3s variables. This is equivalent to solving 5s+14s(r−1) quadratic
equations in 3s + 6s(r − 1) variables.

Remark 2. It should be noted that the main reason why we could overdefine
the polynomial system for Vision with only 3s + 6s(r − 1) variables are due to
its special structure. More specifically, with these variables, we indeed cannot
overdefine the equations describing the first inverse function in the round func-
tion, while it becomes feasible for the second inverse function. Hence, this may
be an exploitable weakness for attackers to devise advanced attacks on Vision in
the future.

5.4 Complexity Analysis and Experiments

Our algebraic modelling method becomes less effective if s is too large as there
will be too many variables. Hence, we only focus on the small s = {2, 4} and
h = s

2 . For this sponge construction, the generic time complexity to find the
preimage is 2 s�

2 . The time complexity to compute the Gröbner basis for our
modelling method is shown in Table 3. Note that the estimated complexity is
still a lower bound.

New Insight into the Security Margin of Vision. The designers of Vision
choose the secure number of rounds providing l bits of security based on the
following formula:

max(10, 2 × � l + s + 8
8s

�),

which provides 100% security margin. Indeed, the number l+s+8
8s is related to

their estimation of the time complexity of the Gröbner basis attack under ω = 2,

Modelling Ciphers with Overdefined Systems of Quadratic Equations 443

i.e., the minimal number of rounds6 that can resist the Gröbner basis attack
under ω = 2. Note that in the hash function Rescue-Prime [42], the security
margin is reduced to only 50%, though nothing was mentioned for Vision in [42].

If the lower bound is tight, we shed new insight into the security margin of
Vision. For (l, s) = (128, 2), we could break up to 10 rounds under the same
assumption that ω = 2, while the claimed secure number of rounds is 18. For
(l, s) = (256, 2), we could break up to 24 rounds, while the claimed secure number
of rounds is 34. In particular, for the instance with (l, s) = (256, 2), if we consider
only 50% security margin, the secure number of rounds will be 17+9 = 26, while
we could attack 24 out of 26 rounds. These results have significantly advanced
the understanding of the security of the Vision, and have also demonstrated the
effectiveness of our new algebraic modelling method.

Table 3. The time complexity (# field operations in logarithm base 2) of Gröbner
basis attacks on Vision using ω = 2, where those marked with “−” are less interesting
as the corresponding time complexity is too high.

s N 2 4 6 8 10 12 14 16 18 20 22 24 26
2 #variables 18 42 66 90 114 138 162 186 210 234 258 282 306

#equations 38 94 150 206 262 318 374 430 486 542 598 654 710
Dreg 5 7 9 11 13 15 17 19 21 23 25 26 28

Complexity 31 53 74 95 115 136 156 176 197 217 237 250 271
4 #variables 36 84 132 180 228 276 324 − − − − − −

#equations 76 188 300 412 524 636 748 − − − − − −
Dreg 7 11 15 19 22 26 30 − − − − − −

Complexity 50 93 134 175 208 249 289 − − − − − −

Experimental Verification. Our experimental results verify the correctness
of Table 3 for s = 2 and r ∈ {2, 3}. Note that 1 round of Vision is almost equal
to 2 rounds of Friday, and hence we could only practically verify the Gröbner
basis attack on up to 3 rounds of Vision due to the limitations on the compu-
tational resources. The results of the experiments are summarized in Table 4.
These experimental data indicate that the estimated lower bound is tight.

6 Gröbner Basis Attack on 3-Round RAIN

RAIN [24] is a symmetric-key primitive proposed at ACM CCS 2022, and it is
tailored to the post-quantum signature scheme called Rainier constructed with
the MPC-in-the-head technique [33]. To improve the performance of Rainier, the

6 Note that there is not a matching attack as the designers also made a conjecture on
the solving degree according to their experimental results.

444 F. Liu et al.

Table 4. Experimental verification of the Gröbner basis attack on Vision, where the
complexity (# field operations in logarithm base 2) is calculated with ω = 2.

Rounds (N) s #variables #equations Dsol Dreg Time(s) Complexity
2 2 18 38 5 5 1.38 31
3 2 30 66 6 6 100311 42

designers made an aggressive choice of the secure number of rounds for RAIN,
i.e., 3 or 4 rounds. Specifically, it is claimed that 3 rounds are sufficient to resist
algebraic attacks, and 4 rounds can be used to further increase the security
margin.

It should be emphasized that the security of Rainier is based on the difficulty
to recover the secret key of RAIN from a single known plaintext-ciphertext pair.
In this attack setting, 2 rounds of RAIN have been shown to be insecure in [39,43].
In this section, we present new attacks on 3-round RAIN with our algebraic
modelling method.

Fig. 4. Illustration of 3-round RAIN

6.1 Description of 3-Round RAIN

Similar to Friday, the RAIN state is simply one word over F2� . As shown in
Fig. 4, we denote the input and output of 3-round RAIN by (x0, x3). Moreover,
we denote the output of the first I�(x) and the input of the last I�(x) by x1 and
x2, respectively. In addition, the secret key is denoted by κ ∈ F2� , and the round
constants are denoted by e0, . . . , e3 ∈ F2� . For the two linear transformations
denoted by M1(x) and M2(x), abusing notation, they are defined as follows:

M1(x) =
�−1∑

j=0
λ1,jx2j

, M2(x) =
�−1∑

j=0
λ2,jx2j

,

where λ1,j
= 0, λ2,j
= 0 are known constants for 0 ≤ j ≤ � − 1. Hence, both
M1(x) and M2(x) can also be viewed as multiplying a binary matrix of size �× �
with x.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 445

By these notations, 3-round RAIN can be described with the following 3
equations: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = I�(x0 + κ + e0),

x2 = M2

(

I�

(
(M1(x1) + κ + e1)

)
)

+ κ + e2,

x3 = I�(x2) + κ + e3.

If all inputs to I�(x) are nonzero, these 3 equations can also be rewritten as
⎧
⎪⎨

⎪⎩

x1 · (x0 + κ + e0) = 1,

M−1
2 (x2 + κ + e2) · (M1(x1) + κ + e1) = 1,

x2 · (x3 + κ + e3) = 1,

(18)

where M−1
2 (x) is the inverse of M2(x).

6.2 Direct Application of Existing Modelling Methods
A Direct Application of Courtois-Pieprzyk’s Modelling Method. Using
Courtois-Pieprzyk’s observation on xy = 1 over F2� , we can directly set up
in total 3 · 5� = 15� quadratic Boolean equations in 3� Boolean unknowns
(−→κ , −→x1, −→x2) ∈ F

3�
2 according to Eq. 18.

A Direct Application of Murphy-Robshaw Modelling Method. If we
want to construct a polynomial system directly over F2� as in our attacks on
Friday and Vision, we can introduce the following 3� intermediate variables:

∀i ∈ [0, � − 1] : x1,i = x2i

1 , x2,j = x2i

2 , κi = κ2i

,

Then, based on Eq. 9, we can set up 3 · 5� = 15� quadratic equations over F2�

according to Eq. 18. In addition, there are 3� quadratic equations over F2� by
definition:

∀i ∈ [0, � − 1] : x1,(i+1)%� = x2
1,i, x2,(i+1)%� = x2

2,i, κ(i+1)%� = κ2
i .

Hence, we have in total 18� quadratic equations in 3� variables over F2� .
Do we Really have Advantages Using Equations over F2�? At the first
glance, there seem to be 3� more quadratic equations if we overdefine Eq. 18
directly over F2� . However, in the case of Gröbner basis attack, the field equations
are also useful if they are of low degree. For Courtois-Pieprzyk’s method, as they
are over F2, there are indeed 3� quadratic field equations neglected, i.e., the field
equation for a Boolean variable x ∈ F2 is x2 = x. In the case of Murphy-
Robshaw’s method, although the field equation x2� = x for a variable x ∈ F2� is
of high degree, it has been implicitly used. Specifically, we have implicitly used

x1,i = x2�

1,i = (x2�−1

1,i)2 = x2
1,(�−1+i)%� = x2

1,(i−1)%�,

x2,i = x2�

2,i = (x2�−1

2,i)2 = x2
2,(�−1+i)%� = x2

2,(i−1)%�,

κi = κ2�

i = (κ2�−1

i)2 = κ2
(�−1+i)%� = κ2

(i−1)%�.

446 F. Liu et al.

In other words, if we include the field equations for Courtois-Pieprzyk’s method,
the two constructed polynomial systems are of the same scale, i.e., the same
number of variables and equations. However, one field operation over F2� is
much more expensive than that over F2 for large �. For this perspective, it seems
that using Boolean equations for RAIN is a better choice. In our experiments,
we have also confirmed this.

Gröbner Basis Attack on 3-round RAIN. Indeed, the application of
Courtois-Pieprzyk’s method to RAIN has been observed by the designers of AIM,
another symmetric-key primitive tailored for the post-quantum signature scheme
AIMer proposed at ACM CCS 2023 [34]. By including all field equations, i.e.,
in total 15� + 3� quadratic equations in 3� variables, they have given the cor-
responding time complexity to attack different parameters of 3-round RAIN, as
shown in Table 5. Note that the complexity is not necessarily accurate, as the
modelling method suffers a similar problem, i.e., the polynomial system cannot
be viewed as semi-regular. However, these numbers are still valuable for design-
ers, as they could even claim the security or do comparisons under an optimistic
assumption.

Table 5. The time complexity (# field operations in logarithm base 2) of the Gröbner
basis attack on 3-round RAIN under ω = 2 given in in [34]

� #variables #equations Dreg Complexity
128 384 2304 14 169
192 576 3456 19 236
256 768 4608 24 304

6.3 Finding More Quadratic Equations Exploiting the Structure

We still follow Courtois-Pieprzyk’s method for 3-round RAIN. However, we show
that 5� quadratic Boolean equations have been completely neglected if we only
focus on equations from I�(x). Indeed, it will be clear that these 5� additional
equations are indeed caused by the special structure of 3-round RAIN, i.e., there
is no linear transform before the first I�(x) nor after the last I�(x).

Specifically, let us consider the first and last equations in Eq. 18:

x1 · (x0 + κ + e0) = 1, x2 · (x3 + κ + e3) = 1.

It is easy to deduce the following equation only in the unknowns (x1, x2):

1
x1

+ x0 + e0 = 1
x2

+ x3 + e3.

Let
θ = x0 + e0 + x3 + e3,

Modelling Ciphers with Overdefined Systems of Quadratic Equations 447

which is a known constant to attackers, and we will have

x1 + x2 + θx1x2 = 0. (19)

Similar to Courtois-Pieprzyk’s idea, Eq. 19 can be overdefined as follows:
{

x2
1 + x1x2 + θx2

1x2 = 0,

x1x2 + x2
2 + θx1x2

2 = 0.
(20)

In this way, we can obtain 3� new quadratic Boolean equations only in (−→x1, −→x2),
which have been neglected if only focusing on equations from I�(x).

One may observe that we do not multiply the cubic monomial x3
1 or x3

2 with
x1 +x2 +θx1x2 as in Courtois-Pieprzyk’s idea. The reason is simple. If doing so,
the term x3

1x2 or x1x3
2 will appear, and the corresponding equation can only be

converted into cubic Boolean equations in (−→x1, −→x2), while we only need quadratic
Boolean equations. To obtain more quadratic equations, our crucial observation
is that we can multiply a more complex polynomial with both sides of Eq. 19
such that the terms like x3

1x2 or x1x3
2 can be eliminated. With this idea in mind,

we find the following 2 new equations:
{

(θx3
1 + x2

1)(x1 + x2 + θx1x2) = θx4
1 + θ2x4

1x2 + x3
1 + x2

1x2 = 0,

(θx3
2 + x2

2)(x1 + x2 + θx1x2) = θx4
2 + θ2x1x4

2 + x1x2
2 + x3

2 = 0.
(21)

Hence, the 2 new equations can be converted into 2� new quadratic Boolean
equations in (−→x1, −→x2).

In summary, compared with the direct application of Courtois-Pieprzyk’s
method, we can set up 5� more quadratic Boolean equations. Hence, recovering
the secret key κ from (x0, x3) is reduced to solving in total 15� + 3� + 5� = 23�
quadratic equations in 3� variables with Gröbner basis.

Remark 3. Note that the 5 new equations in Eq. 19, Eq. 20, Eq. 21 can be easily
overdefined to 5� quadratic equations over F2� if we similarly introduce variables

∀i ∈ [0, � − 1] : x1,i = x2i

1 , x2,j = x2i

2 , κi = κ2i

.

Specifically, for each such equation f(x1, x2) = 0, we can have f2i(x1, x2) = 0
for i ∈ [0, � − 1].

A Trivial Extension to 4-round RAIN. The 4 rounds of RAIN simply appends
another linear transform M3(x) and In(x), as well as another key addition and
round constant addition to 3 rounds of RAIN. Our analysis can thus be trivially
applied. Specifically, there are always 5� new quadratic Boolean equations com-
pared with the direct usage of Courtois-Pieprzyk’s method. Hence, recovering
the secret key is reduced to solving 20� + 4� + 5� = 29� quadratic equations in
4� variables with Gröbner basis.

448 F. Liu et al.

6.4 Experiments and Discussions

For 3 rounds of RAIN, the key-recovery attack is equivalent to solving 23�
Boolean equations in 3� Boolean variables for � ∈ {128, 192, 256}. We have veri-
fied that these 23� quadratic equations are linearly independent for � ≤ 20, and
hence there should be no structural linear dependency. With this polynomial
system, our estimation of the time complexity of the Gröbner basis attack on
3 rounds of RAIN is shown in Table 6. Moreover, we have also considered esti-
mating the solving degree with a different Hilbert series dedicated to Boolean
polynomials [6], which is detailed in Appendix A, and find that the estimated
solving degree remains the same. As already stated, we conjecture that it is a
lower bound on the actual complexity. Based on these results, using 3 rounds
for 256-bit security may be too aggressive, though the complexity 2252 is just a
lower bound. However, such a method cannot attack 4-round RAIN according to
our calculations.

Table 6. The time complexity of Gröbner basis attacks on 3-round RAIN, where the
time complexity (# field operations in logarithm base 2) is estimated under ω ∈ {2.8, 2}
and the complexity with ω = 2.8 is given in parenthesis.

Rounds (N) � #variables #equations Dreg Complexity
3 128 384 2944 11 139 (195)

192 576 4416 15 196 (274)
256 768 5888 19 252 (352)

Experimental Verification. To verify our estimation of the time complexity
of the 3-round Gröbner basis attack using 23� quadratic equations, we have
performed experiments for � ≤ 20, as shown in Table 7. For comparison, we also
performed the experiments for the Gröbner basis attack using only 18� quadratic
equations by excluding our newly observed 5� quadratic equations, as shown in
Table 7. It is interesting to observe from Table 7 the following facts:

1. The actual solving degree is always the same under the same � in the two
experiments, which indicates that the performance of the actual 3-round
Gröbner basis attack using 18� and 23� quadratic equations may be the
same. A possible explanation is that the additional 5� quadratic equations
can be automatically discovered when computing the Gröbner basis of the
18� quadratic polynomials. However, this also indicates that there will be a
degree fall when computing the Gröbner basis of the 18� quadratic equations,
and the solving degree will become smaller than that derived from the Hilbert
series S18�,3�(z) shown in Eq. 2, which will result in an over-estimation of the
complexity of the attack and wrong security claims.

Modelling Ciphers with Overdefined Systems of Quadratic Equations 449

2. As � increases, the solving degree derived from the Hilbert series S23�,3�(z)
becomes tighter. For example, when � = 20, we have Dsol = Ddeg = 4 for 23�
equations, while it is Dsol = 4 < Dreg = 5 for 18� equations. In some sense, it
supports the above conclusion i.e., the actual solving degree is over-estimated
using only 18� quadratic equations.

3. In the cases � ∈ {13, 14}, it supports our claim that Dreg computed from the
Hilbert series is a lower bound on the actual solving degree Dsol.

Since it is unclear when cases like � ∈ {13, 14} will happen again, we cannot
conclude that our estimated time complexity of the Gröbner basis attack on
3-round RAIN must be correct by using 23� quadratic equations. However, our
experiments also indicate that the time complexity must be underestimated as
� increases if only considering 18� quadratic equations. We thus believe that the
newly observed 5� quadratic equations do help better estimate the actual solving
degree, though finding a theoretic tight upper bound on the actual solving degree
looks challenging.

Table 7. Experimental results for the Gröbner basis attack on 3-round RAIN, where
we choose ω = 2 to estimate the time complexity (# field operations in logarithm base
2).

(a) (23� equations, 3� variables)

� Dreg Dsol Time(s) Complexity

12 3 3 0.99 27

13 3 4 4.72 34

14 3 4 9.9 35

15 4 4 17.09 36

16 4 4 33.26 37

17 4 4 62.59 37

18 4 4 121.57 38

19 4 4 262.76 38

20 4 4 2625 39

(b) (18� equations, 3� variables)

� Dreg Dsol Time(s) Complexity

12 4 3 1.06 27

13 4 4 5.88 34

14 4 4 10.8 35

15 4 4 18.75 36

16 4 4 34.56 37

17 4 4 64.02 37

18 4 4 125.44 38

19 4 4 640.27 38

20 5 4 2911 45

7 New Algebraic Modelling Method for Biscuit

Biscuit [10] is a post-quantum signature scheme proposed at ACNS 2024, and it
is also one candidate in NIST PQC Round 1 Additional Signatures. Similar to
Rainier and AIMer, Biscuit is built with the MPC-in-the-head technique. However,

450 F. Liu et al.

its security relies on the hardness of the so-called powAff2 problem defined below,
which is a structured variant of the MQ problem.

Definition 2 (PowAff2 Problem). Let di, ai,j , bi,j , ci,j be known elements
over Fq where i ∈ [1, m] and j ∈ [1, n]. Given m quadratic equations
{f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0} in n variables (x1, . . . , xn) ∈ F

n
q ,

where each fi is of the following form:

fi(x1, . . . , xn) = di +
n∑

j=1
ai,jxj +

n∑

j=1
bi,jxj ×

n∑

j=1
ci,jxj ,

find the solution of (x1, . . . , xn).

Specifically, if the attacker can solve the powAff2 problem, the secret key of
Biscuit will be recovered and Biscuit will become insecure. In particular, q = 28 is
chosen in Biscuit. We should mention that q = 24 was used in its first version, but
it soon got broken by a guess-and-determine (GnD) attack with time complexity
O(n3qn/2) [13]. In this work, we only consider the later version, i.e., q = 28.
Parameters for Biscuit. Biscuit can provide 128, 192, and 256 bits of security,
respectively. The choices of (n, m) for 128/192/256-bit security can be referred
to Table 8. In particular, the designers have checked that these parameters are
secure against the Gröbner basis attack under ω = 2 and the GnD attack in [13].

7.1 New Insight Into the PowAff2 Problem over F2�

Let us introduce intermediate variables xi+n to represent x2
i , i.e., xi+n = x2

i for
i ∈ [1, n]. In this way, we can overdefine each fi (1 ≤ i ≤ m) with 4 quadratic
equations in (x1, . . . , x2n), as shown below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di +
n∑

j=1
ai,jxj +

n∑

j=1
bi,jxj ×

n∑

j=1
ci,jxj = 0,

(di +
n∑

j=1
ai,jxj) ×

n∑

j=1
bi,jxj +

n∑

j=1
b2i,jxj+n ×

n∑

j=1
ci,jxj = 0,

(di +
n∑

j=1
ai,jxj) ×

n∑

j=1
ci,jxj +

n∑

j=1
bi,jxj ×

n∑

j=1
c2i,jxj+n = 0,

d2
i +

n∑

j=1
a2

i,jxj+n +
n∑

j=1
b2i,jxj+n ×

n∑

j=1
c2i,jxj+n = 0.

(22)

By the definition that xi+n = x2
i for i ∈ [1, n], we have n quadratic equations

in (x1, . . . , x2n). Moreover, from each fi = 0, we can derive 4 quadratic equations
in (x1, . . . , x2n). As there are m equations fi = 0, we can set up in total 4m + n
quadratic equations in 2n variables. In other words, solving PowAff2 over F2� is
reduced to solving 4m + n quadratic equations in 2n variables over F2� .

Modelling Ciphers with Overdefined Systems of Quadratic Equations 451

To verify that the polynomials are indeed linearly independent, we per-
formed experimental verification. We sampled 50 different polynomial systems
with (n, m) = (50, 52), and formed the system with 2n variables and 4m + n
equations. In all 50 cases, the polynomials are indeed linearly independent. The
same also holds for the parameters (n, m) = (89, 92) and (n, m) = (127, 130).

Complexity and Experiments. Similarly, we rely on the Hilbert series to
compute the time complexity to solve 4m+n quadratic equations in 2n variables
with Gröbner basis, as shown in Table 8. As already stated, it is conjectured that
the estimated time complexity is a lower bound. However, we also emphasize that
in our experiments on small (n, m), the solving degree computed from Hilbert
series S4m+n,2n(z) is tight. Since 1 field multiplication over F2� is roughly equal
to �2 bit operations, according to Table 8, we claim that the lower bounds are
2104/2159/2221 bits operations for 128/192/256-bit security levels, respectively.

Table 8. The time complexity (# field operations in logarithm base 2) of Gröbner
basis attacks on Biscuit, which is estimated under ω = 2.

Security (n, m) #variables #equations Dsol Complexity
128 (50, 52) 100 258 11 98
192 (89, 92) 178 457 16 153
256 (127, 130) 254 647 22 215

In Table 9, the experimental result for computing the Gröbner basis for toy
parameters is depicted. These experimental data indicate that Dsol ≤ Dreg for
all cases, and hence our time complexity evaluation is tight for the small-scale
powAff2 problem. Moreover, the running time of our experiments also indicates
that using ω = 2 is reasonable.

Table 9. Experimental results for Biscuit over F28 , where the time complexity (#
field operations in logarithm base 2) is computed under ω = 2. The complexity of our
approach is compared with the complexity of solving the polynomial system with n
variables and m equations described in [10]

n m #variables #equations Dsol Dreg Complexity Complexity [10] Time(s)
11 13 22 63 4 4 28 27 2.03
12 14 24 68 4 4 29 31 19.4
13 15 26 73 5 5 35 34 471.8
14 16 28 78 5 5 36 34 3034.2
15 17 30 83 5 5 37 38 12530
16 18 32 88 5 5 37 39 48562

452 F. Liu et al.

8 Conclusion

This study aims to deepen the understanding of how to overdefine a polynomial
system with Courtois-Pieprzyk’s and Murphy-Robshaw’s ideas. In particular, it
is found that the polynomial systems for Friday, Vision, RAIN and Biscuit can
all be overdefined for different reasons. For Friday and Vision, it is mainly due
to the low-degree F2-linearized affine polynomial. For RAIN, the system can be
much more overdefined for its special structure, i.e., no linear mixing layers exist
before the first nonlinear layer and after the last nonlinear layer defined by the
inverse function over F2� . For Biscuit, by exploiting the special structure of the
powAff2 problem over F2� , i.e., all quadratic terms in each quadratic equation
are produced by the multiplication of two linear polynomials, an overdefined
polynomial system can be efficiently set up by introducing additional variables.
However, how to estimate the time complexity to solve these polynomial systems
is challenging, since they are not semi-regular. We leave this as an open problem,
and believe that it will have many applications in algebraic attacks.

Acknowledgment. We thank the anonymous reviewers for their insightful comments.
We also thank Morten Øygarden for discussing some ideas at the early stage of this
work. Fukang Liu is supported by JSPS KAKENHI Grant Numbers JP22K21282,
JP24K20733. He is also funded by the commissioned research (No. JPJ012368C05801)
by National Institute of Information and Communications Technology (NICT).

A Computing Gröbner Basis for Polynomials over F2

To compute the Gröbner basis for polynomials

{f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}
over F2, the field equations, x2

i = xi for ∀i ∈ [1, n], should also be con-
sidered. In our paper, for m quadratic Boolean equations in n Boolean vari-
ables, by including the n field equations, we indeed consider m + n polynomials
{f1, . . . , fm, fm+1, . . . , fm+n} where fm+i = x2

i − xi for i ∈ [1, n], and esti-
mate Dsol as the first non-positive coefficient in the following Hilbert series:
(1−z2)m+n

(1−z)n . As explained before, this holds only when trivial syzygies are caused
by fi · fj = fj · fi where i, j ∈ [1, m + n]. However, for polynomials over F2,
including the field equations implies new syzygies, i.e., there will be new syzy-
gies caused by f2

i = fi for i ∈ [1, m]. Hence, the assumption that only trivial
syzygies exist for this polynomial system does not hold in practice. If taking such
new syzygies into account, it has been studied in [6] that the solving degree to
compute the Gröbner basis of {f1, . . . , fm} over F2 can be estimated as the first
non-positive coefficient in the following new Hilbert series: (1+z)n

(1+z2)m .

For convenience, we call the first method to compute Dsol Method 1 where
only trivial syzygies fi · fj = fj · fi are considered and call the second method
Method 2 where new syzygies formed by field equations are also considered.
We tested the degree of regularity using both Method 1 and Method 2 for all

Modelling Ciphers with Overdefined Systems of Quadratic Equations 453

n < m < 500 and observed that 1) the two methods give the same Dsol when
the system does not involve too many variables; 2) the difference between Dsol

obtained with the two methods tends to be the same if the system is much
overdefined; 3) the gap is still small, i.e., 1 or 2, when the two methods give
different Dsol. These may be evidence that the gap will be smaller as the system
becomes much more overdefined. The difference of the degree of regularity for
the two different methods is depicted in Fig. 5.

Fig. 5. The difference of Dsol using Method 1 and Method 2. The green points show a
difference of 1, while the red points show a difference of 2. The white area represents
the points with the same solving degree using both methods. (Color figure online)

The motivation to explain the above fact is to analyze the impact of newly
defined syzygy relations on the solving degree of the polynomial system, as in
our constructed overdefined polynomial systems (not necessarily over F2), there
are also many new syzygies. A natural question is when the estimated solving
degree Dsol based on the assumption that the system is semi-regular will be
much larger than the actual solving degree. This is difficult to verify in practice
as computing the actual solving degree is equivalent to computing the Gröbner
basis. By the above fact, we may see the evidence that even if there are some new
syzygies, estimating the solving degree based on the assumption that the system
is semi-regular is still reliable because the difference in the estimated solving
degree using the semi-regularity assumption, and the actual solving degree of
the system is small, or even zero, for the polynomial systems that we study.

454 F. Liu et al.

References

1. M. R. Albrecht, C. Cid, J. Faugère, R. Fitzpatrick, and L. Perret. Algebraic algo-
rithms for LWE problems. ACM Commun. Comput. Algebra, 49(2):62, 2015.

2. M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,
and M. Schofnegger. Algebraic Cryptanalysis of STARK-Friendly Designs: Appli-
cation to MARVELlous and MiMC. In ASIACRYPT (3), volume 11923 of Lecture
Notes in Computer Science, pages 371–397. Springer, 2019.

3. M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In ASIACRYPT (1), volume 10031 of Lecture Notes in Computer Science, pages
191–219, 2016.

4. A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans.
Symmetric Cryptol., 2020(3):1–45, 2020.

5. T. Ashur and S. Dhooghe. MARVELlous: a STARK-Friendly Family of Crypto-
graphic Primitives. Cryptology ePrint Archive, Paper 2018/1098, 2018. https://
eprint.iacr.org/2018/1098.

6. M. Bardet, J.-C. Faugère, and B. Salvy. Asymptotic Behaviour of the Index of
Regularity of Semi-Regular Quadratic Polynomial Systems. In MEGA 2005 - 8th
International Symposium on Effective Methods in Algebraic Geometry, pages 1–17,
Porto Conte, Alghero, Sardinia, Italy, May 2005.

7. A. Bariant, A. Boeuf, A. Lemoine, I. M. Ayala, M. Øygarden, L. Perrin, and
H. Raddum. The Algebraic Freelunch Efficient Gröbner Basis Attacks Against
Arithmetization-Oriented Primitives. Cryptology ePrint Archive, Paper 2024/347,
2024. https://eprint.iacr.org/2024/347.

8. D. Bayer and M. E. Stillman. On the Complexity of Computing Syzygies. J. Symb.
Comput., 6:135–147, 1988.

9. L. Bettale, J. Faugère, and L. Perret. Hybrid Approach for Solving Multivariate
Systems over Finite Fields. J. Math. Cryptol., 3(3):177–197, 2009.

10. L. Bettale, D. Kahrobaei, L. Perret, and J. A. Verbel. Biscuit: New MPCitH Sig-
nature Scheme from Structured Multivariate Polynomials. In ACNS (1), volume
14583 of Lecture Notes in Computer Science, pages 457–486. Springer, 2024.

11. T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. Naya-
Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. Out of Oddity - New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In CRYPTO (3), volume 12172 of Lecture Notes in Computer
Science, pages 299–328. Springer, 2020.

12. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

13. C. Bouillaguet and J. Sauvage. Preliminary cryptanalysis of the biscuit signature
scheme. IACR Communications in Cryptology, 1(1), 2024.

14. C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov, and
D. Willems. New Design Techniques for Efficient Arithmetization-Oriented Hash
Functions: Anemoi Permutations and Jive Compression Mode. In CRYPTO (3),
volume 14083 of Lecture Notes in Computer Science, pages 507–539. Springer,
2023.

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2024/347

Modelling Ciphers with Overdefined Systems of Quadratic Equations 455

15. B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation, 41(3):475–511, 2006. Logic, Mathematics and
Computer Science: Interactions in honor of Bruno Buchberger (60th birthday).

16. J. Buchmann, A. Pyshkin, and R. Weinmann. A Zero-Dimensional Gröbner Basis
for AES-128. In FSE, volume 4047 of Lecture Notes in Computer Science, pages
78–88. Springer, 2006.

17. D. G. Cantor and H. Zassenhaus. A New Algorithm for Factoring Polynomials
Over Finite Fields. Mathematics of Computation, 36(154):587–592, 1981.

18. J. H. Cheon and D. H. Lee. Resistance of S-Boxes against Algebraic Attacks. In
FSE, volume 3017 of Lecture Notes in Computer Science, pages 83–94. Springer,
2004.

19. J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transci-
phering Framework for Approximate Homomorphic Encryption. In ASIACRYPT
(3), volume 13092 of Lecture Notes in Computer Science, pages 640–669. Springer,
2021.

20. C. Cid and G. Leurent. An Analysis of the XSL Algorithm. In ASIACRYPT,
volume 3788 of Lecture Notes in Computer Science, pages 333–352. Springer, 2005.

21. N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. In EUROCRYPT,
volume 1807 of Lecture Notes in Computer Science, pages 392–407. Springer, 2000.

22. N. T. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In ASIACRYPT, volume 2501 of Lecture Notes in Computer
Science, pages 267–287. Springer, 2002.

23. J. Daemen and V. Rijmen. AES and the Wide Trail Design Strategy. In EURO-
CRYPT, volume 2332 of Lecture Notes in Computer Science, pages 108–109.
Springer, 2002.

24. C. Dobraunig, D. Kales, C. Rechberger, M. Schofnegger, and G. Zaverucha. Shorter
Signatures Based on Tailor-Made Minimalist Symmetric-Key Crypto. In CCS,
pages 843–857. ACM, 2022.

25. M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger,
M. Schofnegger, and Q. Wang. An Algebraic Attack on Ciphers with Low-Degree
Round Functions: Application to Full MiMC. In ASIACRYPT (1), volume 12491
of Lecture Notes in Computer Science, pages 477–506. Springer, 2020.

26. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra, 139:61–88, 1999.

27. J.-C. Faugère. A new Efficient Algorithm for Computing Grobner Bases without
Reduction to Zero (F5). ISSAC ’02 : Proceedings of the 2002 international sympo-
sium on Symbolic and algebraic computation, New York, NY, USA, pages 75–83,
2002.

28. J.-C. Faugère and C. Mou. Sparse FGLM Algorithms. Journal of Symbolic Com-
putation, 80:538–569, 2017.

29. J.-C. Faugère and L. Perret. On the Security of UOV. Cryptology ePrint Archive,
Paper 2009/483, 2009. https://eprint.iacr.org/2009/483.

30. R. Fröberg. An Inequality for Hilbert Series of Graded Algebras. Mathematica
Scandinavica, 56(2):117–144, 1985.

31. R. Fröberg. An inequality for hilbert series of graded algebras. Mathematica Scan-
dinavica, 56, December 1985.

32. L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:
A New Hash Function for Zero-Knowledge Proof Systems. In USENIX Security
Symposium, pages 519–535. USENIX Association, 2021.

https://eprint.iacr.org/2009/483

456 F. Liu et al.

33. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In STOC, pages 21–30. ACM, 2007.

34. S. Kim, J. Ha, M. Son, B. Lee, D. Moon, J. Lee, S. Lee, J. Kwon, J. Cho, H. Yoon,
and J. Lee. AIM: Symmetric Primitive for Shorter Signatures with Stronger Secu-
rity. In CCS, pages 401–415. ACM, 2023.

35. K. Koschatko, R. Lüftenegger, and C. Rechberger. Exploring the Six Worlds of
Gröbner Basis Cryptanalysis: Application to Anemoi. Cryptology ePrint Archive,
Paper 2024/250, 2024. https://eprint.iacr.org/2024/250.

36. D. Lazard. Gröbner bases, gaussian elimination and resolution of systems of alge-
braic equations. In J. A. van Hulzen, editor, Computer Algebra, pages 146–156,
Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.

37. C. Lim and K. Khoo. An Analysis of XSL Applied to BES. In FSE, volume 4593
of Lecture Notes in Computer Science, pages 242–253. Springer, 2007.

38. F. Liu, R. Anand, L. Wang, W. Meier, and T. Isobe. Coefficient Grouping: Break-
ing Chaghri and More. In EUROCRYPT (4), volume 14007 of Lecture Notes in
Computer Science, pages 287–317. Springer, 2023.

39. F. Liu, M. Mahzoun, M. Øygarden, and W. Meier. Algebraic Attacks on RAIN
and AIM Using Equivalent Representations. IACR Trans. Symmetric Cryptol.,
2023(4):166–186, 2023.

40. S. Murphy and M. J. B. Robshaw. Essential Algebraic Structure within the AES.
In CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2002.

41. V. Shoup. Factoring Polynomials over Finite Fields: Asymptotic Complexity vs.
Reality. 1993.

42. A. Szepieniec, T. Ashur, and S. Dhooghe. Rescue-Prime: a Standard Specification
(SoK). Cryptology ePrint Archive, Paper 2020/1143, 2020. https://eprint.iacr.org/
2020/1143.

43. K. Zhang, Q. Wang, Y. Yu, C. Guo, and H. Cui. Algebraic Attacks on Round-
Reduced Rain and Full AIM-III. In ASIACRYPT (3), volume 14440 of Lecture
Notes in Computer Science, pages 285–310. Springer, 2023.

https://eprint.iacr.org/2024/250
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143

A New Security Evaluation Method Based
on Resultant for Arithmetic-Oriented

Algorithms

Hong-Sen Yang1, Qun-Xiong Zheng1(B), Jing Yang1(B), Quan-Feng Liu1,
and Deng Tang2(B)

1 Information Engineering University, Zhengzhou 450001, China
qunxiong_zheng@163.com, yangjingfi@163.com

2 Shanghai Jiao Tong University, Shanghai 200240, China
dengtang@sjtu.edu.cn

Abstract. The rapid development of advanced cryptographic applica-
tions like multi-party computation (MPC), fully homomorphic encryp-
tion (FHE), and zero-knowledge (ZK) proofs have motivated the designs
of the so-called arithmetic-oriented (AO) primitives. Efficient AO prim-
itives typically build over large fields and use large S-boxes. Such design
philosophy brings difficulties in the cryptanalysis of these primitives as
classical cryptanalysis methods do not apply well. The generally recog-
nized attacks against these primitives are algebraic attacks, especially
Gröbner basis attacks. Thus, the numbers of security rounds are usu-
ally derived through the complexity of solving the system of algebraic
equations using Gröbner bases. In this paper, we propose a novel frame-
work for algebraic attacks against AO primitives. Instead of using Gröb-
ner basis, we use resultants to solve a system of multivariate equations
that can better exploit the algebraic structures of AO primitives. We
employ several techniques to reduce the dimensions of the resultants and
avoid rapid increases in degrees, including start-from-the-middle model-
ing, variable substitutions, and fast Lagrange interpolation. We apply our
attack to three mainstream AO cryptographic primitives: Rescue-Prime,
Anemoi, and Jarvis. For Rescue-Prime, we theoretically prove that the
final univariate equation has a degree of at most a specific power of three
and practically attack five rounds for the first time. We attack the full-
round Anemoi with complexity 2110.10, which has been claimed to provide
127 bits of security. We also give the first practical attack against eight
rounds of Anemoi over a 55-bit prime field. For Jarvis, we improve the
existing practical attack of six rounds by a factor of 100 and practically
attack eight rounds for the first time. Therefore, we point out that our
analysis framework can be used as a new evaluation method for AO
designs.

Keywords: Resultant · arithmetic-oriented primitives ·
Rescue-Prime · Anemoi · Jarvis · new evaluation method

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 457–489, 2025.
https://doi.org/10.1007/978-981-96-0941-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_15&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_15

458 H.-S. Yang et al.

1 Introduction

In recent years, with multi-party computation (MPC), fully homomorphic
encryption (FHE), zero-knowledge (ZK) proofs, and other privacy comput-
ing techniques having been applied on the ground, many underlying privacy
computing-friendly symmetric cryptographic primitives have emerged. While
traditional symmetric ciphers like AES [25] and SHA-3 [18] are often designed
and optimized for efficient software or hardware implementations, these con-
structions, usually referred to as arithmetic-oriented (AO), mainly focus on min-
imizing the number of non-linear arithmetic operations [23]. This is because
non-linear operations pose the largest performance bottleneck in those advanced
protocols, while linear computations are much cheaper compared to the former.

Till now, quite a few AO primitives have been proposed. LowMC [3] and
MiMC [1] can be regarded as the first generation of AO primitives. LowMC uses
partial S-box layers while MiMC works over large fields to decrease the num-
ber of multiplications. In July 2018, the Ethereum Foundation gave StarkWare
a 2-year milestone-based grant to select a STARK-friendly hash (SFH) func-
tion [9]. STARK is one of the most efficient and recognized ZK proof systems.
Two families of primitives received much attention in the evaluation, which are:
MARVELlous – a family that includes Jarvis [5], Vision (over the binary
field), Pepper, and Rescue (over prime fields) [4]; and HadesMiMC – a family
that includes Starkad (over the binary field) and Poseidon (over prime fields)
[22].

After the evaluation of security and efficiency, Rescue122 was recommended
as the SFH candidate for standardization by the Ethereum Foundation. Sev-
eral other AO primitives have been proposed afterwards, e.g., Ciminion [17] and
Anemoi [11]. Most of these primitives are constructed over Fp (p is typically a
large prime number) to be consistent with many MPC/FHE/ZK-protocols that
natively support operations in Fp to improve implementation performance. To
reduce the computation overhead of nonlinear operations, many AO primitives
use low-degree round functions. This introduces the most significant difference
to classical symmetric ciphers that these AO primitives typically work with large
S-boxes over the whole states instead of individual bytes or cells.

Cryptanalysis. Compared to the wide attention in the design of efficient AO
primitives, the security analysis methods of these primitives are not mature.
Classical cryptanalysis techniques, like linear and differential cryptanalysis, do
not apply well to these primitives due to the adoption of large prime fields and
S-boxes. To better understand the security of AO hash functions, in November
2021, the Ethereum Foundation initiated bounties1 rewarding the best practical
attacks against four round-reduced AO hash functions. These four hash func-
tions are all sponge-based, which are Reinforced Concrete [21], Feistel–MiMC
[1], Poseidon [22], and Rescue-Prime [28].

1 These bounties were published at https://www.zkhashbounties.info/.

https://www.zkhashbounties.info/

A New Security Evaluation Method Based on Resultant 459

The security of AO primitives typically relies on the hardness of solving the
constrained-input constrained-output (CICO) problem. Due to their native alge-
braic properties, algebraic attacks typically outperform other known cryptana-
lytic techniques against AO primitives. One example is the Gröbner basis attacks,
which model the underlying primitive as a system of multivariate equations and
solve it using off-the-shelf Gröbner basis algorithms. For instance, Gröbner basis
attacks against Jarvis and Friday [5] were presented in [2], illustrating that
AO primitives for MPC/FHE/ZK applications may be particularly vulnerable
to algebraic attacks. The authors proposed a smart way of constructing equa-
tions that made the solving step much more efficient than initially thought and
further broke the security claim of Jarvis. Therefore, the number and qual-
ity of constructed equations greatly influence the attack complexity. For some
AO primitives based on the Substitution-Permutation Network (SPN) structure,
authors in [8] proposed a technique that can remove all the equation modeling of
the first two layers of S-boxes. Such a technique is used to analyze the security of
the four AO hash functions considered in the Ethereum Foundation challenge.
Recently, a new type of algebraic attack named FreeLunch was proposed in
[7], which chose the monomial ordering so that the natural polynomial system
encoding the CICO problem is already a Gröbner basis. The authors claimed
that the FreeLunch approach challenges the security of full-round instances of
Anemoi [11], Arion [26], and Griffin [20]. Other attacks include integral attacks
against GMiMC and HadesMiMC [10], higher order differential cryptanalysis of
Ciminion [30], etc.

Contributions. Since the Gröbner basis algorithms are generic solving methods
that usually ignore some specific algebraic properties of a cryptographic primi-
tive, using them to evaluate the attack complexities may overestimate the secu-
rity of a certain primitive. In this paper, we propose a new analysis framework
for algebraic attacks against typical AO primitives, which makes full use of the
algebraic properties and employs the resultant tool to solve the system of multi-
variate equations. Compared to Gröbner basis attacks, our attack is much more
efficient and accurate. Table 1 presents a comparison of our algebraic attacks
with existing ones on three AO primitives, where the theoretical complexities
are measured by numbers of basic arithmetic operations in a finite field. Our
main contributions are as below.

1. We develop a novel analysis framework for analyzing the security of AO prim-
itives. We note that typical AO primitives have special algebraic structures
that are not considered in Gröbner basis attacks. We make full use of such
algebraic structures and propose to use the resultant to solve the system
of multivariate equations. To avoid a rapid increase in the degrees of vari-
ables when computing the resultants, we propose the substitution theory to
deal with the non-linear operations, and the dimensions of the resultants are
much reduced. Such substitutions also enable us to accurately estimate the
degrees of variables and equations, thus the estimation of the attack com-
plexity is much more accurate than that in Gröbner basis attacks. We also

460 H.-S. Yang et al.

propose to use the start-from-the-middle (SFTM) modeling technique to fur-
ther simplify the resultants and use fast Lagrange interpolation to parallelize
the computation. Therefore, our algebraic attack is a comprehensive analysis
framework that is much more efficient than existing ones. Besides, the path
of variable elimination is quite clear compared to that when using Gröbner
bases, which helps to better understand the security of an AO primitive. We
think the analysis framework can be used as an efficient evaluation method
for new AO designs.

2. We apply the new analysis framework and techniques to the AO primitive
Rescue-Prime. We propose the cubic substitution theory for Rescue-Prime
and theoretically prove that the final univariate equation has a degree of at
most a specific power of three. With the cubic substitution theory, we can
control the degree of the equation at each step and give a more accurate
security evaluation of Rescue-Prime. We find a 5-round collision which was
originally thought to be “hard” in the Ethereum Foundation challenge. We
also achieve a 100-fold increase in finding the 4-round collision of Rescue-
Prime over the results in [8].

3. We attack the full-round of an specific instantiation of Anemoi with complex-
ity 2110.10, while the version is claimed to provide 127 bits of security. We
also provide an practical attack against 7-round Anemoi which improves the
best-known practical attack by a factor of fifty [7]. Moreover, we propose a
practical attack against eight rounds for the first time.

4. We further apply our attack to six rounds of Jarvis and provide a 100-fold
increase in practically solving the equation system compared to the results in
[2]. Moreover, we practically attack eight rounds of Jarvis for the first time.

Organization. We start by introducing the necessary mathematical back-
ground and security definitions in Sect. 2. In Sect. 3, we give an introduction
to Rescue-Prime and review the work in [8]. We propose our analysis framework
and instantiate it on Rescue-Prime in detail in Sect. 4. After that, we apply
our attack to Anemoi and Jarvis in Sect. 5 and Sect. 6, respectively. We finally
conclude the paper in Sect. 7 by discussing some shortcomings and potential
improvements in the current design of AO primitives.

2 Preliminaries

Let Fq be the finite field with q elements and Fq[x1, x2, . . . , xs] the polynomial
ring over Fq with indeterminates x1, x2, . . . , xs, where q is a prime power and
s is a positive integer. Any polynomial f(x1, x2, . . . , xs) ∈ Fq[x1, x2, . . . , xs] can
be represented in the form

f(x1, x2, . . . , xs) =
∑

(k1,k2,...,ks)∈K

ck1,k2,...,ks
xk1
1 xk2

2 · · · xks
s ,

where K is a set of finitely many s-tuples (k1, k2, . . . , ks) of nonnegative integers
and ck1,k2,...,ks

∈ Fq. If ck1,k2,...,ks
�= 0, then xk1

1 xk2
2 · · · xks

s is called a term of f

A New Security Evaluation Method Based on Resultant 461

Table 1. Comparison of the algebraic attacks against Rescue-Prime, Anemoi, and
Jarvis

Primitives Attacked rounds Running time Theoretical Complexities∗ References

Rescue-Prime

4 258500s - [8]
4 885.5s - Sect.4
5 - 255 [8]
5 ≈ one day - Sect.4
6 - 259.96 Sect.4

Anemoi

7 167201s - [7]
7 2968.55s - Sect.5
8 10575.61s∗∗ - [12]
8 38749.182s - Sect.5
21 - 2118 [7]
21 - 2110.10 Sect.5

Jarvis
6 99989s - [2]
6 368.96s - Sect.6
8 455650.53s - Sect.6

* The unit of complexities throughout the paper is one basic arithmetic operation
in a finite field.
** The practical attack was performed over F216+1 in [12], while our attacks are
performed over the same 55-bit prime field as that in [7].

and its degree is k1 + k2 + · · ·+ ks. The set of all terms of f is denoted by T (f).
For f �= 0, the degree of f , denoted by deg (f), is the maximum of the degrees
of the terms of f , that is,

deg (f) = max

⎧
⎨

⎩

s∑

j=1

kj | xk1
1 xk2

2 · · · xks
s ∈ T (f)

⎫
⎬

⎭ .

2.1 CICO Problem

The so-called CICO (constrained-input constrained-output) problem, which is
usually used to evaluate the security of AO algorithms, is defined as below.

Definition 1 (CICO problem). Let s > 1 be an integer and u a given positive
integer smaller than s. Let F : Fs

q → F
s
q be a permutation. The CICO problem

of F is to find a vector (x1, . . . , xs−u, y1, . . . , ys−u) ∈ F
2(s−u)
q such that

F

⎛

⎝x1, . . . , xs−u, 0, . . . , 0︸ ︷︷ ︸
u

⎞

⎠ =

⎛

⎝y1, . . . , ys−u, 0, . . . , 0︸ ︷︷ ︸
u

⎞

⎠ .

462 H.-S. Yang et al.

2.2 Resultant

The resultant is a powerful tool for solving systems of polynomial equations.
As it will be seen in Sect. 4–6, the polynomial equations modeled in algebraic
attacks against AO algorithms (such as Rescue-Prime, Anemoi, and Jarvis) are
particularly suitable to be solved through the resultant-based method. Compared
with the Gröbner basis method, using resultants tends to give a more precise
estimation of the time complexity.

Definition 2 (Resultant). Let f(x, y), g(x, y) ∈ Fq[x, y] with x = (x1, . . . ,
xs). The resultant of f(x, y) and g(x, y) with respect to the indeterminant y,
denoted by R(f, g, y), is defined as the determinant of the Sylvester matrix of
f(x, y) and g(x, y) when considered as polynomials in the single indeterminate
y. That is, if f(x, y) =

∑m
i=0 fiy

i and g(x, y) =
∑n

i=0 giy
i, where fi, gi ∈ Fq [x],

then

R(f, g, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f0
fm fm−1 · · · f0

.
.

fm fm−1 · · · f0
gn gn−1 · · · · · · g0

gn gn−1 · · · · · · g0
.

gn gn−1 · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is well-known that the resultant is non-zero if and only if the two poly-
nomials are algebraically independent. In this case, the resultant yields a new
polynomial h(x), such that if (x0, y0) is a root of both f(x, y) and g(x, y), then
h(x0) = 0. In this way, we can remove one variable from two polynomials while
retaining information about the roots of the original polynomials. Given � poly-
nomials in s variables, we can repeatedly compute resultants of the polynomials
until we get a univariate polynomial. Solving for the roots of that polynomial and
repeatedly substituting them back, we can derive the roots that the polynomials
have in common.

The computation of a resultant involves multiplications of multivariate poly-
nomials over Fq. Lemma 1 can be used to give an estimation of the running time
of the resultant-based method, of which the proof is omitted as it is clearly true.

Lemma 1. Let f, g ∈ Fq[x1, x2, . . . , xs] with

f =
∑

0≤iu≤nu
u=1,2,...,s

ai1,i2,...,isx
i1
1 xi2

2 · · · xis
s , g =

∑

0≤ju≤mu
u=1,2,...,s

bj1,j2,...,jsx
j1
1 xj2

2 · · · xjs
s ,

A New Security Evaluation Method Based on Resultant 463

where n1, n2, . . . , ns and m1,m2, . . . ,ms are positive integers. Then the multipli-
cation fg can be computed in O (d1d2) field operations, where d1 =

∏s
u=1(nu+1)

and d2 =
∏s

u=1(mu + 1).

It can be easily seen that when using the resultant-based method to solve a
system of multivariate equations, each time we eliminate a variable by computing
a resultant, the degrees of other variables will increase. Repeatedly computing
resultants of the polynomials, we will finally get two polynomials, say f(x, y)
and g(x, y). The degrees of x and y in f(x, y) and g(x, y) will inevitably be
very high, especially when attacking a high-round AO algorithm. To get a uni-
variate polynomial, one can directly compute the resultant R(f, g, y) of f(x, y)
and g(x, y). However, the degree of x may become extremely high, which intro-
duces unaffordable memory consumption in practical attacks. To solve that, we
propose to use Lagrange interpolation to compute R(f, g, y), which also enables
parallelization. We note that an upper bound on the degree of x in R(f, g, y)
can always be estimated in advance.

One can use interpolation to compute polynomial resultants as suggested by
Collins [14]. We give a brief introduction to fast Lagrange interpolation based
on fast multi-point evaluation in the full version in [29, Sect. 2.3] and refer to
[19, Chapter 10] for more details.

3 Review of Rescue-Prime and a Recent Algebraic
Attack

3.1 Description of Rescue-Prime

Rescue-Prime [28] is a family of AO hash functions of which the round func-
tion is shown in Fig. 1, where x2i, y2i, . . . and x2i+2, y2i+2, . . . are the inputs and
outputs of the i-th round, respectively. Each round of Rescue-Prime consists of
two similar steps: the first step involves low-degree S-boxes S, an MDS (Max-
imum Distance Separable) matrix M , and the addition of the round constants
AddC; the second step differs in replacing S by S−1 and using other round con-
stants. There is an additional AddC operation before the first round. Denote t
the number of S-boxes involved in each step. The challenges from the Ethereum
Foundation use t = 3 or t = 2 and S : x �→ x3 (and so S−1 : x �→ x1/3). Let F
: F3

q → F
3
q be the permutation representing the r-round Rescue-Prime, the chal-

lenge initiated by Ethereum Foundation for Rescue-Prime with t = 3 is to find
two pairs (X1,X2) , (Y1, Y2) ∈ F

2
q satisfying F (X1,X2, 0) = (Y1, Y2, 0). In this

paper, we mainly focus on t = 3.

3.2 The Algebraic Attack Against Rescue-Prime in [8]

The authors of [8] introduce a smart technique to bypass the first two layers of
S-boxes (two steps) of Rescue-Prime with little or even no overhead. We now
give a brief review of this work.

464 H.-S. Yang et al.

AddCMDS MDS AddC

Fig. 1. The i-th round function of Rescue-Prime

Construction of Equations. There are 2r steps for solving the CICO problem
of a r-round Rescue-Prime, which are referred to as the 0-th step, the 1-th step,
. . . , the (2r−1)-th step. Since the MDS matrix is the same in each step, it can be
uniformly denoted by M . Let AddCk be the addition of the round constants in
the k-th step and Lk = AddCk ◦ M be the composition of M and AddCk, where
0 ≤ k ≤ 2r − 1. Let Lk,j be the j-th output of Lk with 0 ≤ j ≤ t − 1. Since S−1

and S have high degrees in the forward and backward directions, respectively,
some intermediate variables can be introduced to build low-degree equations.
More concretely, let x2i, y2i, z2i and x2i+2, y2i+2, z2i+2 be the input and output
of the i-th round, respectively, where 0 ≤ i ≤ r − 1. They can be connected
through the equations below as shown in Fig. 2:

L2i,j(x3
2i, y

3
2i, z

3
2i) −

(
L−1
2i+1,j(x2i+2, y2i+2, z2i+2)

)3
= 0, j ∈ {0, 1, 2}, (1)

where L−1
2i+1,j is the j-th output of the inverse of the affine transformation L2i+1.

It is clear that each equation in Eq. (1) is of degree three since both L2i,j and
L−1
2i+1 are of degree one. The variables z0 and z2r are both set to zero in the

CICO problem, i.e. z0 = z2r = 0. Therefore, a system of 3r equations in 3r + 1
variables is derived.

Bypassing the First Two S-Box Layers. As having been observed in [8],
the first two nonlinear layers can be skipped when launching an algebraic attack
against Rescue-Prime. The main reason for this is the lack of a linear dif-
fusion layer before the S-box layer. More specifically, as shown in Fig. 3, let
C−1,0, C−1,1, C−1,2 be the three constants of the additional AddC operation
before the first round, and let C0,0, C0,1, C0,2 be the three constants of AddC0,
and let X,Y,Z be the outputs of S-boxes in the 1-th step. To satisfy the CICO
problem, the output of the third S-box in the 0-th step is (C−1,2)3, which yields

(C−1,2)3 = α2,0(X3 − C0,0) + α2,1(Y 3 − C0,1) + α2,2(Z3 − C0,2), (2)

where M−1 = (αi,j)0≤i≤2,0≤j≤2. It is easy to see that there are many three
tuples (X,Y,Z) satisfying Eq. (2). For example, if one sets Z = c, where

c3 = α−1
2,2(α2,0C0,0 + α2,1C0,1 + α2,2C0,2 + (C−1,2)3), (3)

A New Security Evaluation Method Based on Resultant 465

Fig. 2. One round of Rescue-Prime with t = 3

then Eq. (2) is simplified as α2,0X
3 +α2,1Y

3 = 0, and so Y = (−α2,0
α2,1

)1/3X. The
analysis above implies that if one sets

(X,Y,Z) = (X, (−α2,0

α2,1
)1/3X, c), (4)

then the inputs of Rescue-Prime naturally have the form (∗, ∗, 0). As a result, if
there exists X ∈ Fq such that the image of (X, (−α2,0

α2,1
)1/3X, c) through (r − 1)-

round Rescue-Prime is equal to (∗, ∗, 0), then it is able to deduce an original
input (∗, ∗, 0) of r-round Rescue-Prime with an image of the form (∗, ∗, 0).

MDS

Fig. 3. Main idea of [8] on how to bypass the first round of Rescue-Prime.

466 H.-S. Yang et al.

Remark 1. It is worth noting that such X does not always exist since the map-
ping from X to the third output of r-round Rescue-Prime is not necessarily
one-to-one. Then one may instead assign a value c to X (or Y), and similarly
deduce a linear relation for the other two variables, say Y = αZ (or X = αZ).
Finally, find Z ∈ Fq such that the image of (c, αZ,Z) (or (αZ, c, Z)) through
(r − 1)-round Rescue-Prime is equal to (∗, ∗, 0). However, the existence of such
X or Z is closely related to the constants used in Rescue-Prime. Moreover, there
do exist constants (constructable) such that desired X or Z are nonexistent.

Solving a System of Equations. With the technique of bypassing the first
round, Rescue-Prime can usually be attacked one more step (the first layer of
S-boxes can be skipped naturally) with little to no cost. For r-round Rescue-
Prime, the authors of [8] obtain a system of 3(r − 1) equations of degrees 3 in
3(r−1) variables. Theoretically, the system can be solved using the F5 and FGLM
algorithms together, and the complexity can be estimated. Moreover, practical
attacks on 3-round and 4-round Rescue-Prime are implemented with Magma in
[8] (using F4 algorithm, not F5 algorithm, to find the grevlex Gröbner basis),
which take 9.18 s and 258500 s, respectively. The time complexity for attacking
5-round Rescue-Prime is roughly estimated as 257 while the memory complexity
is unknown. We refer to [8, Section 3.2 and Table 3] for more details. The authors
also found that the final univariate polynomial has a degree of 33(r−1) but did
not give a proof. We will fill in the gap in the next section.

4 Optimized Algebraic Attacks Against Rescue-Prime
Based on Resultant

In this section, we will give optimized algebraic attacks against Rescue-Prime
based on resultant. We note that previous algebraic attacks against Rescue-
Prime primarily relied on the Gröbner basis method. Compared with the Gröb-
ner basis method, the resultant-based method tends to give more precise esti-
mation of the time complexity. As it will be seen, the system of equations con-
structed in an algebraic attack has a very special structure, which clearly indi-
cates a path for eliminating the variables by computing corresponding resultants.
Based on this special structure, we propose the cubic substitution theory, with
which the degrees of all but two variables at most in a multivariate polynomial
derived by each resultant can be forced to remain at most equal to 2. The ben-
efits of this are at least twofold: (1) most of the resultants can be computed
with determinants of 5 by 5 matrices; (2) a tight upper bound on the degree
of a multivariate polynomial obtained by each resultant can be clearly given,
which together make the estimation of the time complexity more accurate. More
importantly, when combining resultants with the cubic substitution theory and
the fast Lagrange interpolation, practical algebraic attacks on higher rounds of
Rescue-Prime become possible. For example, the existing best-known practical
attack was against 4-round Rescue-Prime (with t = 3), which took 258500 s

A New Security Evaluation Method Based on Resultant 467

[8]. However, with the resultant-based method, we can successfully attack 4-
round Rescue-Prime (with t = 3) in 885.5 s. Moreover, we can practically attack
5-round Rescue-Prime in about one day, which was originally thought to be
“hard” in the Ethereum Foundation challenge. For details, see the comparison in
Table 5.

4.1 Algebraic Attack with Forward Modeling

As done in Sect. 3.2, the 2r steps of r-round Rescue-Prime are referred to as the
0-th step, the 1-th step, . . . , the (2r − 1)-th step.

Construction of Equations. The construction of equations roughly follows
the method introduced in [8], but with the variables set at different locations
(see Fig. 2 and Fig. 4 for a comparison). For 0 ≤ i ≤ r − 1, let x2i+1, y2i+1, z2i+1

be the outputs of the three S-boxes (S−1) in the (2i+ 1)-th step. We denote by
SSS the three S-boxes arranged in parallel—that is,

SSS(x, y, z) = (S(x), S(y), S(z)) = (x3, y3, z3).

Then it can be seen from Fig. 4 that
⎧
⎨

⎩

x3
2i+3 = L2i+2,0 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)

y3
2i+3 = L2i+2,1 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)

z32i+3 = L2i+2,2 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)
for i ∈ {0, 1, . . . , r − 2},

(5)
where “◦” denotes the composition of mappings and L2i+2,j is the j-th output
of L2i+2 with j ∈ {0, 1, 2}.

Fig. 4. Forward modeling of Rescue-Prime

Remark 2. There are
(
6
3

)
= 20 terms at most in the expansion of

L2i+2,j ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1).

468 H.-S. Yang et al.

Next, we use the technique of bypassing the first round of Rescue-Prime
reviewed in Sect. 3.2 to construct two more equations. Specifically, as shown in
Eq. (4), to make the inputs of Rescue-Prime are of the form (∗, ∗, 0),

(x1, y1, z1) = (X, (−α2,0

α2,1
)1/3X, c),

where c is some fixed element in Fq and X is any element in Fq. Then, we get

y1 = (−α2,0

α2,1
)1/3x1 and z1 = c. (6)

Finally, the output of the r-round Rescue-Prime should be of the form (∗, ∗, 0)
in the CICO problem, so there is one more equation, which is

L2r−1,2 (x2r−1, y2r−1, z2r−1) = 0. (7)

Solving the System of Equations with the Resultant-Based Method.
It can be seen from Eqs. (5)–(7) that the system of equations has 3r−2 equations
in 3r − 2 unknowns (here we omit z1 and y1 since z1 = c is known and y1 =
(−α2,0

α2,1
)1/3x1): 3r − 3 equations are of degree 3 and one equations is of degree 1.

Such a system of equations has a special structure: (1) it can be seen from Eq. (5)
that the variable x2i+3 (or y2i+3, or z2i+3) is only associated with three other
lower-subscript variables x2i+1, y2i+1, z2i+1; (2) the variable x2r−1 (or y2r−1, or
z2r−1) are involved only in Eq. (5) for the case i = r−2 and Eq. (7). This special
structure makes the system of equations especially suitable for solving by the
resultant-based method, since it clearly indicates a path for elimination of the
variables. Specifically, let

fx2i+3 = x3
2i+3 − L2i+2,0 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

fy2i+3 = y3
2i+3 − L2i+2,1 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

fz2i+3 = z32i+3 − L2i+2,2 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

for i ∈ {0, 1, . . . , r − 2}, and let

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .

Only fh and fz2r−1 contain the variable z2r−1, and it can be eliminated by com-
puting the resultant R(fh, fz2r−1 , z2r−1). Update fh with R(fh, fz2r−1 , z2r−1),
then only the updated fh and fy2r−1 contain the variable y2r−1. Then y2r−1 can
be eliminated in the same way. Generally, following Algorithm 1, we can elim-
inate one variable in each computation of a resultant, and derive a univariate
polynomial in Fq[x1] in the end. Solving the roots of the derived univariate poly-

A New Security Evaluation Method Based on Resultant 469

nomial and substituting back, the roots of the original system of equations will
be found.
Algorithm 1: Get the univariate polynomail for r-round Rescue-Prime
Input: fx2i+3 , fy2i+3 , fz2i+3 , fh with i ∈ {0, 1, . . . , r − 2}.
Output: a univariate polynomial in Fq[x1].

1 i ← r − 2;
2 while i ≥ 1 do
3 fh ← R(fh, fz2i+3 , z2i+3);
4 apply the cubic substitution to fh;
5 fh ← R(fh, fy2i+3 , y2i+3);
6 apply the cubic substitution to fh;
7 fh ← R(fh, fx2i+3 , x2i+3);
8 apply the cubic substitution to fh;
9 i ← i − 1;

10 end
11 fh ← R(fh, fz2i+3 , z3);
12 apply the cubic substitution to fh;
13 fh ← R(fh, fy2i+3 , y3);
14 apply the cubic substitution to fh;
15 fh ← R(fh, fy2i+3 , x3);
16 return fh.

Cubic Substitution Theory. We note that the degrees of variables in the
multivariate polynomial obtained by each resultant in Algorithm 1 will increase.
However, by making use of the special structure in Eq. (5), the degrees of all vari-
ables except x1 can be forced to remain at most equal to 2. In fact, Eq. (5) has
two properties: (1) the variables x2i+3, y2i+3, z2i+3 are separated in the sense
that they are not mixed with the lower-subscript variables x2i+1, y2i+1, z2i+1;
(2) the degree of x2i+3 (or y2i+3, or z2i+3) is exactly 3. For the first resul-
tant R(fh, fz2r−1 , z2r−1) in Algorithm 1, it is a multivariate polynomial in
y2r−1, x2r−1, x2r−3, y2r−3, z2r−3 with the degree of each variable at most 3. By
using the following substitutions in order, i.e.,

y3
2r−1 = L2r−2,1 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3),

x3
2r−1 = L2r−2,0 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3),

z32r−3 = L2r−4,2 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

y3
2r−3 = L2r−4,1 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

x3
2r−3 = L2r−4,0 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

. . .

z33 = L2,2 ◦ SSS ◦ L1(x1, kx1, c),

y3
3 = L2,1 ◦ SSS ◦ L1(x1, kx1, c),

470 H.-S. Yang et al.

x3
3 = L2,0 ◦ SSS ◦ L1(x1, kx1, c),

where c and k = (−α2,0
α2,1

)1/3 are two fixed elements in Fq as defined in Eq. (3)
and Eq. (4), respectively, R(fh, fz2r−1 , z2r−1) is transformed into a multivariate
polynomial in y2r−1, x2r−1, z2r−3, y2r−3, x2r−3, . . ., z3, y3, x3, x1 with the degree
of each variable except x1 less than 3. The substitutions above are called cubic
substitutions for convenience.

Remark 3. We note that if there is a variable, say x2i+1, of which the degree
is larger than 3, then we may need to use multiple substitutions of the form
x3
2i+1 = L2i,0 ◦ SSS ◦ L2i−1(x2i−1, y2i−1, z2i−1) to reduce its degree less than

3. For example, let fh = x7
2i+1 + x3

2i+1 + 1 and x3
2i+1 = x3

2i−1 + y3
2i−1 + z32i−1,

then we need two substitutions for x7
2i+1 and one for x3

2i+1, and derive fh =
(x3

2i−1 + y3
2i−1 + z32i−1)

2 ∗ x2i+1 + x3
2i−1 + y3

2i−1 + z32i−1 + 1. The degree of x2i+1

in fh now becomes less than 3.

Now we consider the second resultant R(fh, fy2r−1 , y2r−1) in Algorithm 1.
Since the degree of y2r−1 in fh is less than 3 after the cubic substitutions, the
resultant R(fh, fy2r−1 , y2r−1) can be computed with the determinant of a 5 by 5
matrix. By cubic substitutions, R(fh, fy2r−1 , y2r−1) is changed into a multivari-
ate polynomial in x2r−1, z2r−3, y2r−3, x2r−3, . . . , z3, y3, x3, x1 with the degree
of each variable less than 3 except x1. Similarly, when applying cubic substi-
tutions to all the other resultants, the resultants are changed into multivariate
polynomials with the degree of each variable less than 3 except x1.

The cubic substitution has the following basic properties, which are useful
for getting a tight upper bound on the degree of a polynomial obtained by each
resultant.

Lemma 2. With the notations defined above, let f ′
h be the polynomial obtained

by cubic substitutions of fh such that the degree of each variable in f ′
h is less

than 3 except x1, then we have deg(f ′
h) ≤ deg(fh).

Proof. From the cubic substitutions of the first resultant R(fh, fz2r−1 , z2r−1), it
can be seen that a term of degree 3 (say y3

2r−1) is substituted by a polynomial
(say L2r−2,1 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3)) of degree at most 3 in each
substitution, so deg(f ′

h) ≤ deg(fh).

Remark 4. We note that the base field of Rescue-Prime is a large finite field,
therefore, deg(f ′

h) = deg(fh) holds with a high probability. Moreover, we have
experimentally verified that deg(f ′

h) = deg(fh) always holds for the parameters
used in Rescue-Prime.

Lemma 3. Let Rk be the multivariate polynomial computed from the k-th
resultant in Algorithm 1 with 1 ≤ k ≤ 3(r − 1). Then deg(Rk) ≤ 3k.

Proof. Let ωk be the variable to be eliminated by the k-th resultant in Algorithm
1 for 1 ≤ k ≤ 3(r − 1), for example, ω1 = z2r−1, ω2 = y2r−1, ω4 = z2r−3, and

A New Security Evaluation Method Based on Resultant 471

so on. Now we consider the k-th resultant R(fh, fωk
, ωk) in Algorithm 1. As the

degree of ωk in fh after cubic substitutions is less than 3, we can assume that

fh = u2ω
2
k + u1ωk + u0, fωk

= ω3
k − u3,

where u0, u1, u2, u3 ∈ Fq[ωk+1, . . . , ω3r−3, x1] with

deg(u0) ≤ deg(fh), deg(u1) ≤ deg(fh) − 1, deg(u2) ≤ deg(fh) − 2, and deg(u3) ≤ 3.

Then, it is clear that

Rk = R (fh, fωk
, ωk) =

∣∣∣∣∣∣∣∣∣∣

u2 u1 u0 0 0
0 u2 u1 u0 0
0 0 u2 u1 u0

1 0 0 −u3 0
0 1 0 0 −u3

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

u0 u2u3 u1u3

u1 u0 u2u3

u2 u1 u0

∣∣∣∣∣∣
, (8)

and so Rk = u3
2u

2
3 − 3u0u1u2u3 + u3

1u3 + u3
0. It is easy to check that

deg(Rk) ≤ 3 deg(fh). (9)

Together with Lemma 2, this implies that the degree of fh in Algorithm 1 after
each update is increased over the original fh by a factor of three. Since the input
polynomial fh of Algorithm 1 is L2r−1,2 (x2r−1, y2r−1, z2r−1), which is of degree
1, the desired result immediately follows from (9) and Lemma 2.

Remark 5. Since the base field of Rescue-Prime is a large finite field, it follows
that deg(Rk) = 3k with high probability. We have also experimentally verified
that deg(Rk) = 3k always holds for the parameters used in Rescue-Prime.

Combining Lemmas 2 and 3, it is clear that the output of Algorithm 1 is a
univariate polynomial over Fq[x1] with a degree at most 33r−3. In our practical
attack against round-reduced Rescue-Prime, the maximum possible degree 33r−3

is always achievable. We note that a similar result has been found by experiments
(without proof) in [8, Page 87], which says “In our experiments, the system
behaves like a generic system and has d = 33(r−1) solutions in the algebraic
closure of the field.”

Complexity Analysis. It can be seen from Algorithm 1 that the time com-
plexity of our attack consists of three parts: (1) the cubic substitutions; (2) the
computations of resultants; (3) finding roots of univariate polynomials. The unit
of the time complexity is one basic arithmetic operation in the finite field, which
is a widely used metric for evaluating complexities for attacking AO primitives.

The Cubic Substitution. For r-round Rescue-Prime, Algorithm 1 involves a total
of 3r − 3 computations of resultants and 3r − 4 cubic substitutions (we note
that some cubic substitutions may involve multiple substitutions as explained in
Remark 3). Let ωk be the variable to be eliminated by the k-th resultant Rk in

472 H.-S. Yang et al.

Algorithm 1 for 1 ≤ k ≤ 3(r −1). Recall that Rk ∈ Fq[ωk+1, ωk+2, . . . , ω3r−3, x1]
and the purpose of performing cubic substitutions for Rk is to reduce the degrees
of ωk+1, ωk+2, . . . , ω3r−3 to less than 3. The time complexity of all cubic substi-
tutions in Algorithm 1 is given in Theorem 1.

Theorem 1. The time complexity of performing all the cubic substitutions in
Algorithm 1 is

O
(

3r−4∑

k=1

10 ·
(
133 ·

(
dk+3r−k−4

3r−k−3

)
· (3k + 1) + 121745

)
· (3r − k − 3)

)
,

where dk = min(3k − 12, 18r − 6k − 24).

Proof. Detailed proof can be found in the full version [29, Theorem 1].

Computation of the Resultant. We have the following Theorem 2 to estimate the
time complexities of all the computations of resultants in Algorithm 1.

Theorem 2. The time complexity of the computation of all the resultants in
Algorithm 1 is

O
(

3r−3∑

k=1

15 · max
(
(3k + 1) · 73r−k, (2 · 3k−1 + 1)(3k−1 + 1) · 153r−3−k

)
)

.

Proof. Detailed proof can be found in the full version [29, Theorem 2].

Finding Roots of a Univariate Polynomial. Since the output of Algorithm 1 is
a univariate polynomial over Fq[x1] with degree d ≤ 33r−3, all the roots of such
a univariate polynomial can be found in O(d log(d)(log(d)+ log(q)) log(log(d))),
see [8, Sect. 3.1] for details. Once a root of x1 is found, the corresponding CICO
problem is solved.

The time complexities of the different steps of our attack against Rescue-
Prime under forward modeling are presented in Table 2.

Table 2. Time complexities of our attack against Rescue-Prime under forward mod-
eling, where fh is the output of Algorithm 1.

r Complexity of Complexity of deg(fh)Complexity of Complexity of
resultants cubic substitutions roots solving forward modeling

4 238.45 240.09 39 226.12 240.49

5 250.17 252.77 312 231.45 252.99

6 261.90 265.47 315 236.65 265.58

7 273.62 276.51 318 241.76 276.69

8 285.34 288.10 321 246.82 288.30

A New Security Evaluation Method Based on Resultant 473

4.2 Algebraic Attack with SFTM Modeling

We use the SFTM (start-from-the-middle) modeling to build a system of equa-
tions for r-round (consists of 2r steps) Rescue-Prime. The SFTM modeling can
be regarded as a reverse application of the meet-in-the-middle (MITM) model-
ing. The MITM technique is a generic cryptanalytic approach for symmetric-key
primitives, which was first introduced by Diffie and Hellman in 1977 [16] for the
cryptanalysis of DES. Different from the MITM modeling that starts from the
two sides and meets in the middle, the SFTM modeling starts from the middle
and models the constraints on the input and output as actual equations.

Since the case of r = 1 is trivial, we always assume that r ≥ 2. It is clear that
the S-boxes involved in the i-th step are S−1 if i is odd and S if i is even. Note
that S−1 has a very high degree in the forward direction while S has a very high
degree in the backward direction. To build low-degree equations, the main idea
is to balance the number of S−1 layers in the forward direction and the number
of S layers in the backward direction. Therefore, the constructed equations are
categorized into two cases: one for odd r and the others for even r. We only take
the odd r as an illustration and the modeling for even r is presented in the full
version [29, Sect. 4.2].

Fig. 5. SFTM modeling for odd r

474 H.-S. Yang et al.

As shown in Fig. 5a, let xr, yr, zr be the outputs of the three S-boxes (S−1)
in the r-th step. Now we will construct equations from the backward direction
and the forward direction, respectively.

In the backward direction, for each even i with 0 < i ≤ r − 1, let xi, yi, zi be
the inputs of the three S-boxes (S) in the i-th step. Then it can be seen from
Fig. 5b and Fig. 5a that

⎧
⎨

⎩

x3
i = L−1

i,0 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

y3
i = L−1

i,1 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

z3i = L−1
i,2 ◦ SSS ◦ L−1

i+1(xi+2, yi+2, zi+2)
for i ∈ {2, 4, . . . , r − 3}, (10)

⎧
⎨

⎩

x3
r−1 = L−1

r−1,0(x
3
r, y

3
r , z3r)

y3
r−1 = L−1

r−1,1(x
3
r, y

3
r , z3r)

z3r−1 = L−1
r−1,2(x

3
r, y

3
r , z3r)

, (11)

where L−1
i is the inverse of the affine transformation Li, and L−1

i,j is the j-th
output of L−1

i with j ∈ {0, 1, 2}.
Similarly, in the forward direction, for each odd i with r < i ≤ 2r − 1, let

xi, yi, zi be the outputs of the three S-boxes (S−1) in the i-th step. Then it can
be seen from Fig. 5c that
⎧
⎨

⎩

x3
i = Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

y3
i = Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

z3i = Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
for i ∈ {r + 2, r + 4, . . . , 2r − 1}.

(12)
The inputs and outputs of r-round Rescue-Prime are of the form (∗, ∗, 0) in

the CICO problem, with the same notations defined above, there are two more
equations,

(C−1,2)3 = L−1
0,2 ◦ SSS ◦ L−1

1 (x2, y2, z2), (13)

L2r−1,2 (x2r−1, y2r−1, z2r−1) = 0, (14)

where C−1,2 is the third constant of the additional AddC operation before the
first round of Rescue-Prime.

Solving the System of Equations with the Resultant-Based Method.
It can be seen from Eqs. (10)–(14) that the system of equations has 3r − 1
equations (3r − 2 equations are of degree 3 and one equation is of degree 1) in
3r unknowns in total. Since the number of unknowns is one more than that of
equations, the system of equations always has solutions. We can then randomly
assign a value to one of the variables, say xr, and solve the remaining variables
to speed up the solving process in a practical attack. If the system has no solu-
tions for this assignment, we can repeatedly (usually not too many times) assign
another random value to xr until we can get a solution. Similar to the case in
Sect. 4.1, such a system of equations also has a special structure that clearly gives
a path for the elimination of variables when solved by resultants. As presented in

A New Security Evaluation Method Based on Resultant 475

Algorithm 2, we will get two bivariate polynomials fl, fh ∈ Fq[yr, zr] and further
use them to compute R(fl, fh, zr) to eliminate zr. When the number of rounds
is high, the two polynomials would be quite complicated and directly comput-
ing the resultant R(fl, fh, zr) usually suffers from memory overflow. Instead, we
can assign a number of values to the variable yr and get many interpolation
pairs, and further use the fast Lagrange interpolation to recover the univariate
polynomial. Another benefit of using the fast Lagrange interpolation is that it
can be computed in parallel, which can further reduce the attack time if there
are enough threads. Once a root of the final univariate polynomial is found, the
corresponding CICO problem can be solved by substituting back.

Table 3. The polynomials in SFTM modeling

r is odd
⎧
⎪⎨

⎪⎩

fxi = x3
i − L−1

i,0 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fyi = y3
i − L−1

i,1 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fzi = z3
i − L−1

i,2 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

for i ∈ {2, 4, . . . , r − 3},

⎧
⎪⎨

⎪⎩

fxr−1 = x3
r−1 − L−1

r−1,0(x
3
r, y

3
r , z3

r)

fyr−1 = y3
r−1 − L−1

r−1,1(x
3
r, y

3
r , z3

r)

fzr−1 = z3
r−1 − L−1

r−1,2(x
3
r, y

3
r , z3

r)

,

⎧
⎪⎨

⎪⎩

fxi = x3
i − Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

fyi = y3
i − Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

fzi = z3
i − Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 2, r + 4, . . . , 2r − 1},

fl = (C−1,2)
3 − L−1

0,2 ◦ SSS ◦ L−1
1 (x2, y2, z2),

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .

r is even
⎧
⎪⎨

⎪⎩

fxi = x3
i − L−1

i,0 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fyi = y3
i − L−1

i,1 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fzi = z3
i − L−1

i,2 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

for i ∈ {2, 4, . . . , r − 2},

⎧
⎪⎨

⎪⎩

fxr+1 = x3
r+1 − Lr,0(x

3
r, y

3
r , z3

r)

fyr+1 = y3
r+1 − Lr,1(x

3
r, y

3
r , z3

r)

fzr+1 = z3
r+1 − Lr,2(x

3
r, y

3
r , z3

r)

,

⎧
⎪⎨

⎪⎩

fxi = x3
i − Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

fyi = y3
i − Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

fzi = z3
i − Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 3, r + 5, . . . , 2r − 1},

fl = (C−1,2)
3 − L−1

0,2 ◦ SSS ◦ L−1
1 (x2, y2, z2),

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .

Complexity Analysis. Similar to the case under forward modeling, the time
complexity of solving the CICO problem under SFTM modeling consists of four

476 H.-S. Yang et al.

parts: (1) the cubic substitutions in Algorithm 2; (2) the computations of resul-
tants in Algorithm 2; (3) the computation of the final resultant R(fl, fh, zr); (4)
finding roots of univariate polynomials.

It can be seen from Algorithm 2 that, for r-round Rescue-Prime, there are
at most 3 · �r/2� variables to be eliminated in the first (lines 2–10) or the second
(lines 12–20) loop. Similar to the case under forward modeling, the degree of
fl (resp. fh) in Algorithm 2 after each update is increased over the original fl

(resp. fh) by a factor of three. The time complexities of the first two parts are
given in Theorems 3 and 4. As the deduction and proof are pretty similar to
those for Theorems 1 and 2, we omit the proof here.
Algorithm 2: Get two bivariate polynomials for r-round Rescue-Prime
Input: fl, fh, fxi

, fyi
, fzi

as defined in Table 3.
Output: two bivariate polynomials.

1 i ← 2r − 1;
2 while i > r do
3 fh ← R(fh, fzi

, zi);
4 apply the cubic substitution to fh;
5 fh ← R(fh, fyi

, yi);
6 apply the cubic substitution to fh;
7 fh ← R(fh, fxi

, xi);
8 apply the cubic substitution to fh;
9 i ← i − 2;

10 end
11 i ← 2;
12 while i < r do
13 fl ← R(fl, fzi

, zi);
14 apply the cubic substitution to fl;
15 fl ← R(fl, fyi

, yi);
16 apply the cubic substitution to fl;
17 fl ← R(fl, fxi

, xi);
18 apply the cubic substitution to fl;
19 i ← i + 2;
20 end
21 return fh, fl.

Theorem 3. The time complexity of performing all the cubic substitutions in
Algorithm 2 is

O
(

λ∑

k=1

20 ·
(
133 ·

(
dk+λ−k−1

λ−k

)
· (3k + 1)2 + 121745

)
· (λ − k)

)
,

where λ = 3 · �r/2� and dk = min
(
3k − 12, 6 · (λ − k − 1)

)
.

A New Security Evaluation Method Based on Resultant 477

Theorem 4. The time complexity of the computation of all the resultants in
Algorithm 2 is

O
(

λ∑

k=1

30 · max
(
(3k + 1)2 · 7λ−k+3, (2 · 3k−1 + 1)2(3k−1 + 1)2 · 15λ−k

)
)

,

where λ = 3 · �r/2�.

For the third part of computing the final resultant R(fl, fh, zr), the situation
is slightly different. Theorem 5 gives the time complexity of this part with a
proof.

Theorem 5. Let fl and fh be the output polynomials of Algorithm 2 of which
the degrees are denoted as dl and dh, respectively. Then the time complexity of
computing the resultant R(fl, fh, zr) is

O (dldh · (T1 + T2) + T3) ,

where T1 =
(
d2l log(dl) + d2h log(dh)

)
, T2 = (dl +dh)ω, T3 = (dldh log(dldh)), and

ω is the linear algebra exponent2.

Proof. Detailed proof can be found in the full version [29, Theorem 5].

The time complexities of the different steps of our attack against Rescue-
Prime under SFTM modeling are presented in Table 4.

Table 4. Time complexities of algebraic attacks under SFTM modeling against Rescue-
Prime and the degrees of fl, fh, and f .

r Complexity of Complexity of dl dh deg(f) Complexity of
resultants cubic substitutions SFTM attacks

4 238.94 235.62 34 36 310 240.31

5 238.94 235.62 37 36 313 248.37

6 257.92 247.84 37 39 316 259.96

7 257.92 247.84 310 39 319 268.95

8 276.94 260.77 310 312 322 280.57

2 A result of Coppersmith and Winograd [15] yields ω = 2.376, which is asymptotic
since it involves extremely large constant overheads. From a practical point-of-view,
the best achievable result for ω is given by Strassen’s algorithm [27], where ω = 2.807.

478 H.-S. Yang et al.

4.3 Summary of the Resultant-Based Method

Now we give a summary about the proposed algebraic attack on AO primitives,
which consists of four ingredients with the following four steps.

1. Construct a system of equations using forward modeling or SFTM modeling.
2. Combine the resultant and the substitution theory to eliminate variables in

a specific order and finally get two bivariate polynomials.
3. When the number of rounds is small, one can directly compute the resultant

of the last two bivariate polynomials to derive the ultimate univariate polyno-
mial. While when the number of rounds is high, the resultant of the last two
bivariate polynomials is usually hard to compute directly. Instead, one can
assign several values to one of the two variables and get many interpolation
pairs. Then, the fast Lagrange interpolation is used to recover the univariate
polynomial.

4. Find all the roots of the derived univariate polynomial and then substitute
the root values back to the original system of equations to find the collision
of the algorithm.

4.4 Experimental Results

In this section, we present the experimental results of our algebraic attack on
Rescue-Prime. The experiments were performed on a workstation: the operating
system is Windows 10, the CPU circuit is Intel(R) Xeon(R) Gold 6248R CPU
3.00GHz with 48 cores, and the maximum memory is 256G. We use SageMath
9.2 to construct equations for Rescue-Prime and use Maple 2023 to solve the
system of equations. Finally, we use the “FpX_halfgcd” command of PARI/GP
to find all the roots of a univariate polynomial.

Table 5. Attack complexities of Rescue-Prime

Ethereum Best Time Time Best Practical Practical
r Foundation’s theoretical complexitycomplexitypractical time time of

time complexity of forward time in of forward
complexity SFTM modeling [8] SFTM modeling

4 237.5 243 243.02 240.49 258500s 2256.7s 885.5s
5 245 257 252.93 252.99 - ≈ one day -

As mentioned, we mainly focus on the instance of t = 3 and the total number
of rounds in this case is 11, which is derived using the code in [28, page 9,
Algorithm 7]. We mainly compare our results to the benchmark results in [8],
so we also use the challenge parameters published by the Ethereum foundation
with

p = 18446744073709551557 = 264 − 59.

A New Security Evaluation Method Based on Resultant 479

We succeed to solve the CICO problem of 4-round Rescue-Prime, in which two
models (forward modeling and SFTM modeling) are considered to construct
the equations. Practical attacks under SFTM modeling and forward modeling
take 2256.7 s and 885.5 s, respectively, introducing 100-fold improvement over
the results in [8]. We also find a 5-round collision of Rescue-Prime under SFTM
modeling which was originally thought as “hard” in the Ethereum Foundation
challenge. For 5-round Rescue-Prime, the system of equations constructed under
SFTM modeling has 14 equations in total. The 14 polynomials involved in the
system are fl, fx2 , fy2 , fz2 ,fx4 , fy4 , fz4 , fx7 , fy7 , fz7 , fx9 , fy9 , fz9 , and fh. Using
Algorithm 2, we get two bivariate polynomials fl and fh, of which the degrees
are 37 and 36, respectively. Since the memory cost of computing R(fl, fh, z5)
is too high, we use 16 threads to compute Lagrange interpolation points. Each
thread computes 100,000 points, which takes an average of 70,000 s. We use
32 threads and combine a fast multi-point evaluation algorithm to finish the
precomputation, which takes 9385.285 s. Recovering the univariate polynomial
using the fast Lagrange interpolation takes 2486.71 s. It takes less than 10 s to
solve the final single-variable equation of degree 313. Experimental results are
shown in Table 5.

5 Application to Anemoi

We now apply our methods to a new class of AO primitives Anemoi [11], and
provide better cryptanalysis results than existing ones.

5.1 Design Description of Anemoi

Anemoi is a new family of ZK-friendly permutations that works over F
2l
q (l ≥ 1),

where q is either a prime number or q = 2n with n being an odd positive
integer. Different choices of parameters would affect how Anemoi works, and
we mainly focus on the version of l = 1 and q being a prime number p. The
original paper [11] gives two hash function instances based on Anemoi with l = 1:
AnemoiSponge-BN-254, with a 254-bit prime p, and AnemoiSponge-BLS12-381,
with a 381-bit prime p. Both instances are claimed to achieve 127 bits of security.

The round function of Anemoi has the structure of a classical substitution-
permutation network, which consists of three components: the constant addition
A, the linear layer M, and the nonlinear layer H. The linear layer includes
a diffusion layer and a pseudo-Hadamard transform, while for the version we
considered (l = 1), there is a unique column in the internal state, and the
diffusion layer can be removed. For given q, number of rounds r, and l = 1, the
Anemoi permutation over F

2
q is described as

Anemoi = M ◦ Rr−1 ◦ · · · ◦ R0,

where Ri = H◦M◦Ai for 0 ≤ i ≤ r−1. The i-th round of Anemoi is illustrated
in Fig. 6 and we below give more details about Ai,M, and H.

480 H.-S. Yang et al.

1. Constant Additions Ai. The operation adds round constants (ci, di) to the
input vector (xi, yi) of the i-th round.

2. Linear Layer M: The Pseudo-Hadamard transform is applied to destroy some
undesirable involutive patterns in the nonlinear layer, which is defined as
M(x, y) = (2x + y, x + y).

3. Nonlinear Layer H. The schematic of H is illustrated in Fig. 7. Let ui, vi ∈ Fq

and xi+1, yi+1 ∈ Fq be the inputs and outputs of H, respectively. Then the
nonlinear layer H can be expressed as

H(ui, vi) = (ui + gz2i − 2gvizi − g−1, vi − zi), (15)

where g is a generator of the multiplicative subgroup of the field Fq and zi is
an intermediate variable output of the operation x1/α (α usually takes values
3, 5, 7, or 11 if q is an odd prime number).

The CICO problem of Anemoi, which is denoted by PCICO in [12], consisting
of finding (yin, yout) ∈ F

2
q such that Anemoi(0, yin) = (0, yout).

Fig. 6. Illustration of the i-th round of Anemoi

5.2 SFTM Attack Against Anemoi

We mainly focus on the Anemoi instance of α = 3 with r rounds. Let the notations
xi, yi, ci, di, ui, vi, zi, xi+1, yi+1 be as in Sect. 5.1 for 0 ≤ i ≤ r − 1, then

(ui, vi) = M ◦ Ai(xi, yi) = (2xi + yi + 2ci + di, xi + yi + ci + di).

Since (xi+1, yi+1) = (ui+gz2i −2gvizi−g−1, vi−zi), a simple computation yields
⎧
⎨

⎩

xi+1 = 2xi + yi + gz2i − 2gzi · (xi + yi + ci + di) + δi

yi+1 = xi + yi − zi + ci + di

z3i = 2xi + yi − g · (xi + yi + ci + di)2 + δi

, (16)

A New Security Evaluation Method Based on Resultant 481

Fig. 7. The H function of Anemoi (q is
odd).

Fig. 8. The H−1 function of Anemoi (q
is odd)

where δi = 2ci + di − g−1 is a constant. Since the functions Ai, M, and H (the
schematic of H−1 is illustrated in Fig. 8) in Anemoi are all invertible, with a
similar discussion as above, we can get that

⎧
⎨

⎩

xi = xi+1 + gz2i + 2gziyi+1 + g−1 − zi − yi+1 − ci

yi = 2zi + 2yi+1 − xi+1 − gz2i − 2gziyi+1 − g−1 − di

z3i = xi+1 − gy2
i+1

. (17)

Construction of Equations. Inspired by the analysis of Rescue-Prime, we
still use the SFTM technique to construct the equations of the CICO prob-
lem of Anemoi. Due to the x → x

1
3 operation in H, the cubic substitution

method is also applicable. For r-round Anemoi, we set intermediate variables
x�r/2� = x, y�r/2� = y as illustrated in Fig. 9. If i > �r/2�, then by repeatedly
using (16), those variables xi, yi, zi can be repeatedly expressed by intermedi-
ate variables of the lower rounds, and in the end can be expressed in variables
x, y, z�r/2�, z�r/2�+1, . . . , zr−1. On the other hand, if i < �r/2�, then by repeatedly
using (17), those variables xi, yi, zi can be repeatedly expressed by intermedi-
ate variables of the higher rounds, and in the end can be expressed in variables
x, y, z0, z1, . . . , z�r/2�−1.

To solve the CICO problem of Anemoi, we need to find (yin, yout) ∈ F
2
q such

that Anemoi(0, yin) = (0, yout), which immediately follows that x0 = 0. Since

Anemoi(0, yin) = M(xr, yr) = (2xr + yr, xr + yr),

it follows that 2xr + yr = 0. The above discussion implies that x0

and 2xr + yr can be expressed in variables x, y, z0, z1, . . . , z�r/2�−1 and
x, y, z�r/2�, z�r/2�+1, . . . , zr−1, respectively. For convenience, let us denote

x0 � fl(x, y, z0, z1, . . . , z�r/2�−1),

2xr + yr � fh(x, y, z�r/2�, z�r/2�+1, . . . , zr−1).

482 H.-S. Yang et al.

Fig. 9. SFTM modeling for Anemoi

Similarly, let us denote

z3i − xi+1 + gy2
i+1 � gi(x, y, zi, zi+1, . . . , z�r/2�−1)

for 0 ≤ i ≤ �r/2� − 1, and

z3i − (2xi + yi − g · (xi + yi + ci + di)2 + δi) � gi(x, y, z�r/2�, z�r/2�+1, . . . , zi)

for �r/2� < i ≤ r − 1. Then the CICO problem of Anemoi can be modeled with
the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fl(x, y, z0, z1, . . . , z�r/2�−1) = 0
g0(x, y, z0, z1, . . . , z�r/2�−1) = 0
g1(x, y, z1, z2, . . . , z�r/2�−1) = 0

· · ·
g�r/2�−1(x, y, z�r/2�−1) = 0
g�r/2�(x, y, z�r/2�) = 0

· · ·
gr−2(x, y, z�r/2�, z�r/2�+1, . . . , zr−2) = 0
gr−1(x, y, z�r/2�, z�r/2�+1, . . . , zr−1) = 0
fh(x, y, z�r/2�, z�r/2�+1, . . . , zr−1) = 0

, (18)

which has r + 2 equations with r + 2 unknowns in total.

Solving the System of Equations with Resultant-Based Method. Equa-
tions in Eq. (18) indicate a path for eliminating the intermediate variables by
the resultant. After computing a series of resultants, we can get two bivariate
polynomials fl and fh only in variables x and y in the end. Then, we compute
the roots of the univariate polynomial R(fl, fh, y), and the CICO problem is
solved.

Complexity Analysis. As computing R(fl, fh, y) takes far more time than
the other resultants, we take its time complexity as the main time complexity.

A New Security Evaluation Method Based on Resultant 483

Table 6. Time complexities of our attack against Anemoi using SFTM modeling and
the degrees of fl, fh, and f .

Number Highest Highest Degree of
r of degree ofdegree of a single Time complexity

equations fl fh f

3 5 51 52 53 219.56

4 6 52 52 54 223.32

5 7 52 53 55 229.60

6 8 53 53 56 233.38

7 9 53 54 57 239.58

8 10 54 54 58 243.42

9 11 54 55 59 249.57

10 12 55 55 510 253.46

11 13 55 56 511 259.59

12 14 56 56 512 263.53

13 15 56 57 513 269.64

14 16 57 57 514 273.63

15 17 57 58 515 279.72

16 18 58 58 516 283.74

17 19 58 59 517 289.83

18 20 59 59 518 293.87

19 21 59 510 519 299.96

20 22 510 510 520 2104.01

21 23 510 511 521 2110.10

Authors in [13] proved that the degree of the ideal induced by PCICO of r-
round Anemoi is (α + 2)r. For the case α = 3, we have a similar observation
that deg(fl) = 5�r/2� and deg(fh) = 5�r/2	, which is also confirmed by our
experiments. By Theorem 5, the time complexities of our attacks are presented
in Table 6.

5.3 Experimental Results for Anemoi

The experiment environment for Anemoi is exactly the same to that for Rescue-
Prime. We use the same prime number p = 0x64ec6dd0392073 as that in [7]. For
8-round Anemoi, the system of equations constructed under SFTM modeling in
total has 10 equations in 10 unknowns. The 10 polynomials corresponding to the
system are fl, g0, . . . , g7, fh. We compute the resultants of fl with g0, g1, g2, g3 in
turn and fh with g7, g6, g5, g4 in turn. After the computations of above resultants,
deg(fl) = deg(fh) = 34, and then the univariate polynomial obtained by the final
resultant R(fl, fh, y) is of degree 58. We use four threads to compute Lagrange

484 H.-S. Yang et al.

interpolation points, each of which computes 100,000 points. The running time of
the four threads is 29642.521 s, 27547.542 s, 27853.072 s, and 27785.910 s, respec-
tively. We use eight threads and combine a fast multi-point evaluation algorithm
to finish the precomputation, which takes 9535.405 s. Recovering the univariate
polynomial using the fast Lagrange interpolation takes 1006.516 s. The practical
attack time is presented in Table 7, which greatly improves the running time
compared to that in [7].

Table 7. Comparison with [7] in practical attack time of Anemoi

r The attacks in [7] Our attacks

3 < 0.04s 0.423s
4 0.58s 0.973s
5 30.97s 7.113s
6 2421.52s 296.568s
7 167201s 2968.55s
8 − 38749.182s

6 Application to JARVIS

In this section, we apply our algebraic attack on the block cipher Jarvis, which
is one member of the MARVELlous family of cryptographic primitives that are
specifically designed for STARK efficiency [5]. Detailed descriptions of Jarvis
and the attack in [2] can be found in the full version [29, Sect. 6] and we only
give the attack results here.

The experiment environment for Jarvis is the same to that for Rescue-Prime,
except that we use Magma V2.28-3 to solve the system of equations. We use the
same finite field F2128 = F2[y]/(p(y)) of Jarvis-128 as defined in [5], where
p(y) = y128 + y7 + y2 + y + 1. We construct the equations using the method
given in [5] but use the resultant-based method instead of the Gröbner basis
method to solve the system of equations. For the practical attack on six rounds

Table 8. Comparison with [5] in practical attack time of Jarvis

r Time for other Time for the Total practical time Time in [5]
resultants final resultant

6 11.2s 357.76s 368.96s 99989.0s
8 606.76s 455043.77s 455650.53s −

A New Security Evaluation Method Based on Resultant 485

of Jarvis, a 100-fold increase in the running time is achieved over that in [2]. We
also practically attack eight rounds of Jarvis for the first time, which consumes
about 5.27 days (the memory consumption is about 68 GB). The comparison of
the running time with that in [5] is presented in Table 8.

7 Conclusions and Discussions

This paper presents a novel analysis framework of algebraic attacks against AO
primitives that we think can serve as a new evaluation method. We make full
use of the algebraic properties of AO primitives and propose to use resultants to
solve systems of multivariate equations. We further use SFTM modeling, vari-
able substitutions, and the fast Lagrange interpolation to simplify the derived
multivariate system and accelerate the solving procedure. We apply the anal-
ysis framework to analyze the security of Rescue-Prime, Anemoi, and Jarvis,
and achieve much faster practical attacks than existing ones for all the three
primitives. Besides, the estimation of time complexity is more accurate than
that in Gröbner basis attacks as the degrees of variables can be estimated more
accurately and the elimination path for variables is definite. Based on our anal-
ysis and experiments, we have the following discussions that may deserve some
attention.

7.1 Why SFTM Modeling Is Better Than Forward Modeling

We take the 4-round Rescue-Prime as an example. In SFTM modeling, the resul-
tant of the final two bivariate polynomials takes up most of the time (about
99.8%), but in forward modeling, the time spent for the cubic substitutions is
the major cost (about 76.4%). In forward modeling, there are a total of 10 vari-
ables in the system of equations, and to get a univariate polynomial, 9 resultant
computations and 36 cubic substitutions are required. However, each operation
involves all the uneliminated variables that will increase memory and time con-
sumption. It is the memory overflow problem that hinders higher-round attacks
against Rescue-Prime under forward modeling even if it can bypass one round
with no cost. Under SFTM modeling, it takes 3 resultant computations and 3
cubic substitutions to get fl, 6 resultant computations and 15 cubic substitu-
tions to get fh. Each operation involves fewer variables than that under the
forward modeling. For the most difficult part to compute R(fl, fh, z4), it can be
parallelized using the fast Lagrange interpolation. Therefore, memory and time
consumption are reduced, making practical higher-round attacks possible.

7.2 Why not Combine SFTM Modeling with First-Round
Bypassing

We now show how to do it if we want to combine SFTM modeling with the idea
of bypassing the first round. We use the notations defined in Sect. 3 and take
the SFTM modeling for 4-round Rescue-Prime as an example, in which case we

486 H.-S. Yang et al.

have 12 variables xi, yi, zi, i ∈ [2, 4, 5, 7]. As shown in Fig. 3 and Eq. 4, to bypass
the first round, the output of the x1/3 operations, denoted as (X,Y,Z), should
have the following form,

(X,Y,Z) = (X, (−α2,0

α2,1
)1/3X, c). (19)

The variables X,Y,Z also denote the input of the L1 operation, i.e., X =
L−1
1,0(x2, y2, z2), Y = L−1

1,1(x2, y2, z2), and Z = L−1
1,2(x2, y2, z2). Then we can get

two polynomials fl1 and fl2 defined as

fl1 = L−1
1,1(x2, y2, z2)/L−1

1,0(x2, y2, z2) − (−α2,0

α2,1
)1/3,

fl2 = L−1
1,2(x2, y2, z2) − c.

To get the final univariate polynomial, we need to first get three polynomials
fh, fl1, fl2 in variables x4, y4, z4. For fh, we repeatedly use resultants to eliminate
z7, y7, x7, z5, y5, x5 in order and fh turns into a polynomial in the three variables.
Each resultant computation will eliminate one variable. While for fl1 and fl2,
we need to first compute R(fl1, fz2 , z2) and R(fl2, fz2 , z2) to eliminate z2 (one
can also eliminate y2 or x2 instead), which takes two resultant computations.
Therefore, the first disadvantage of combining the two methods is the increase in
resultant computations.

Now, we target to get the univariate polynomial based on fh, fl1, and fl2.
In the original SFTM modeling, we have two bivariate polynomials and use
fast Lagrange interpolation to get the univariate polynomial. But here, we need
to perform one more resultant computation to eliminate one more variable of
x4, y4, z4 to get the bivariate polynomials. What is worse, the degrees of x4, y4, z4
are all high and the resultant computation involves high overhead, and this
gives the second reason for not combining the SFTM modeling with the idea of
bypassing the first round.

7.3 Discussion on Our Attack

We present some potential weaknesses of AO primitives that are susceptible to
our attacks and give some potential improvements.

1. The time complexities of different steps in SFTM modeling are not bal-
anced. For example, in our resultant-based attack, the most challenging part
of attacking the algorithm is to compute the final resultant. However, the
fast Lagrange interpolation can parallelize this step, and the practical result
can be better than the theoretical estimation if there are enough threads in
parallel.

2. The variable isolation and substitution are very critical techniques in our
attack, AO primitives that do not suffer from such problems can potentially
resist our attack. Using nonlinear structures that do not result in variable iso-
lation and substitution, e.g., Toffoli-like gates [17], big S-boxes over extension
finite fields [6] and the unified structure [24], may be a feasible design idea
that deserves further investigation.

A New Security Evaluation Method Based on Resultant 487

3. The round constant add operation + can be replaced by ⊕, which will add
difficulties in establishing and solving equations.

Acknowledgements. We would like to thank the anonymous reviewers for their pos-
itive reviews, valuable comments and questions. We would like to thank Topsec Tech-
nologies Group Inc for organizing the National Crypto-Math Challenge and Jiamin
Cui from Shandong University for bringing us into the field of Arithmetic-Oriented
algorithms. Thanks also go to Zhongxiao Wang and Ruijie Wang for their inspiration
of interpolation ideas. This work was supported by the National Natural Science Foun-
dation of China (Nos. 12371526, 62202492, and 62272303) and by the National Key
Research and Development Program of China (No. 2024YFB4504700).

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
International Conference on the Theory and Application of Cryptology and Infor-
mation Security. pp. 191–219. Springer (2016)

2. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic cryptanalysis of stark-friendly designs: application
to marvellous and mimc. In: Advances in Cryptology–ASIACRYPT 2019: 25th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part III 25. pp.
371–397. Springer (2019)

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
mpc and fhe. In: Advances in Cryptology–EUROCRYPT 2015: 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34. pp. 430–454. Springer
(2015)

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Transac-
tions on Symmetric Cryptology pp. 1–45 (2020)

5. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic prim-
itives. Cryptology ePrint Archive (2018)

6. Ashur, T., Kindi, A., Mahzoun, M., Bhati, A.S.: Xhash8 and xhash12: Efficient
stark-friendly hash functions. Cryptology ePrint Archive (2023)

7. Bariant, A., Boeuf, A., Lemoine, A., Ayala, I.M., Øygarden, M., Perrin, L.,
Raddum, H.: The algebraic freelunch efficient gröbner basis attacks against
arithmetization-oriented primitives. Annual International Cryptology Conference,
CRYPTO 2024, accepted (2024), https://eprint.iacr.org/2024/347, https://crypto.
iacr.org/2024/acceptedpapers.php

8. Bariant, A., Bouvier, C., Leurent, G., Perrin, L.: Algebraic attacks against some
arithmetization-oriented primitives. IACR Transactions on Symmetric Cryptology
pp. 73–101 (2022)

9. Ben-Sasson, E., Goldberg, L., Levit, D.: Stark friendly hash–survey and recom-
mendation. Cryptology ePrint Archive (2020)

https://eprint.iacr.org/2024/347
https://crypto.iacr.org/2024/acceptedpapers.php
https://crypto.iacr.org/2024/acceptedpapers.php

488 H.-S. Yang et al.

10. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., et al.: Out of oddity–new cryptana-
lytic techniques against symmetric primitives optimized for integrity proof systems.
In: Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptol-
ogy Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020,
Proceedings, Part III 40. pp. 299–328. Springer (2020)

11. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems,
D.: New design techniques for efficient arithmetization-oriented hash functions:
anemoi permutations and jive compression mode. In: Annual International Cryp-
tology Conference. pp. 507–539. Springer (2023)

12. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V.,
Willems, D.: New design techniques for efficient arithmetization-oriented hash func-
tions:anemoi permutations and jive compression mode. Cryptology ePrint Archive,
Paper 2022/840 (2022), https://eprint.iacr.org/2022/840

13. Briaud, P.: A note of Anemoi gröbner bases. Cryptology ePrint Archive (2024)
14. Collins, G.E.: The calculation of multivariate polynomial resultants. Journal of the

Acm 18(4), 515–532 (1971)
15. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.

In: Proceedings of the nineteenth annual ACM symposium on Theory of computing.
pp. 1–6 (1987)

16. Diffie, W., Hellman, M.: Special feature exhaustive cryptanalysis of the nbs data
encryption standard. Computer 10(6), 74–84 (1977). https://doi.org/10.1109/C-
M.1977.217750

17. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on toffoli-gates over large finite fields. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 3–34.
Springer (2021)

18. Dworkin, M.J.: Sha-3 standard: Permutation-based hash and extendable-output
functions (2015)

19. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge: Cambridge
University Press, 2nd ed. edn. (2003)

20. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst
meets fluid-spn: Griffin for zero-knowledge applications. In: Annual International
Cryptology Conference. pp. 573–606. Springer (2023)

21. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: a fast hash function for verifiable computation. In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 1323–1335 (2022)

22. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A
new hash function for {Zero-Knowledge} proof systems. In: 30th USENIX Security
Symposium (USENIX Security 21). pp. 519–535 (2021)

23. Grassi, L., Khovratovich, D., Schofnegger, M.: Poseidon2: A faster version of the
poseidon hash function. In: International Conference on Cryptology in Africa. pp.
177–203. Springer (2023)

24. Liu, J., Sun, B., Liu, G., Dong, X., Liu, L., Zhang, H., Li, C.: New wine old bottles:
Feistel structure revised. IEEE Transactions on Information Theory 69(3), 2000–
2008 (2023https://doi.org/10.1109/TIT.2022.3223139

25. Rijmen, V., Daemen, J.: Advanced encryption standard. Proceedings of federal
information processing standards publications, national institute of standards and
technology 19, 22 (2001)

https://eprint.iacr.org/2022/840
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/TIT.2022.3223139

A New Security Evaluation Method Based on Resultant 489

26. Roy, A., Steiner, M.J., Trevisani, S.: Arion: Arithmetization-oriented permutation
and hashing from generalized triangular dynamical systems (2023)

27. Strassen, V.: Gaussian elimination is not optimal. Numerische mathematik 13(4),
354–356 (1969)

28. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification
(sok). Cryptology ePrint Archive, Paper 2020/1143 (2020), https://eprint.iacr.org/
2020/1143

29. Yang, H.S., Zheng, Q.X., Yang, J., feng Liu, Q., Tang, D.: A new security evaluation
method based on resultant for arithmetic-oriented algorithms. Cryptology ePrint
Archive, Paper 2024/886 (2024), https://eprint.iacr.org/2024/886

30. Zhang, L., Liu, M., Li, S., Lin, D.: Cryptanalysis of ciminion. In: International
Conference on Information Security and Cryptology. pp. 234–251. Springer (2022)

https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2024/886

Author Index

A
Abadi, Aydin 129
Anilkumar, Hari Krishnan P. 36

B
Belaïd, Sonia 167
Beyne, Tim 392
Bhushan, Kaartik 201
Boura, Christina 330

C
Cascudo, Ignacio 100
Chen, Yincen 361
Cozzo, Daniele 100

D
Dong, Xiaoyang 237

F
Feldtkeller, Jakob 167
Francati, Danilo 69

G
Giunta, Emanuele 100
Goyal, Rishab 201
Guinet, Anna 167
Güneysu, Tim 167

H
Hu, Lei 361

I
Isobe, Takanori 267
Ito, Ryoma 267

J
Ji, Keyu 3
Jovanovic, Philipp 129

K
Kavousi, Alireza 129
Koppula, Venkata 201

L
Li, Yingxin 237
Liu, Fukang 237, 424
Liu, Huimin 361
Liu, Quan-Feng 457

M
Mahzoun, Mohammad 424
Meier, Willi 424

N
Narayanan, Varun 36, 201

P
Prabhakaran, Manoj 36, 201
Prabhakaran, Vinod M. 36

Q
Qi, Wenfeng 301

R
Rajasree, Mahesh Sreekumar 201
Rasoolzadeh, Shahram 330
Ren, Kui 3
Richter-Brockmann, Jan 167
Rivain, Matthieu 167

S
Saha, Dhiman 330
Sakamoto, Kosei 267
Sasdrich, Pascal 167
Song, Ling 361
Sun, Siwei 237

T
Taiyama, Kodai 267
Taka, Kazuma 267
Taleb, Abdul Rahman 167
Tan, Lin 301
Tang, Deng 457
Todo, Yosuke 330

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 491–492, 2025.
https://doi.org/10.1007/978-981-96-0941-3

https://doi.org/10.1007/978-981-96-0941-3

492 Author Index

V
Venturi, Daniele 69
Verbauwhede, Michiel 392

W
Wang, Gaoli 237
Wang, Taiyu 3
Wang, Xin 3
Weng, Jian 361

X
Xu, Hong 301

Y
Yan, Xueping 301
Yang, Hong-Sen 457
Yang, Jing 457
Yang, Qianqian 361

Z
Zhang, Bingsheng 3
Zhang, Cong 3
Zheng, Qun-Xiong 457
Zhou, Hong-Sheng 3

	 Preface
	 Organization
	 Contents – Part VII
	Information-Theoretic Cryptography
	On the Complexity of Cryptographic Groups and Generic Group Models
	1 Introduction
	1.1 Our Results
	1.2 Interpretation
	1.3 Technical Overview
	1.4 Organization

	2 Preliminaries
	2.1 Primitives, Idealized Models, and Reduction Notions
	2.2 Indifferentiability

	3 Separation Between Cryptographic Groups
	4 The Hierarchy of GGMs
	4.1 GN,m1 Statistically Implies GN,m2
	4.2 GN,m2 Does Not Computationally Imply GN,m1

	References

	Randomness in Private Sequential Stateless Protocols
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Branching Programs and Private Sequential Stateless Protocols
	2.2 A Protocol Idea for Branching Programs
	2.3 Strongly Regular Branching Programs
	2.4 Beyond Read-Once Branching Programs
	2.5 Private Computation of AND

	3 Preliminaries
	4 Private Sequential Stateless Protocols
	4.1 PSS Protocols to Branching Programs

	5 PSS Protocols From Branching Programs
	5.1 PSS Protocols From 1-SRBP
	5.2 PSS Protocols From k-SRBP

	6 Private Computation of AND
	6.1 uPSS Protocol for 1-SRBP
	6.2 Lower Bound on Randomness Complexity of AND for 3 Parties

	References

	Secret Sharing
	Evolving Secret Sharing Made Short
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Additional Related Work

	2 Projective Pseudorandom Generators
	2.1 Unbounded Polynomial Stretch

	3 Computational Evolving Secret Sharing
	3.1 Defining Computational Privacy
	3.2 Rigid Access Structures

	4 Construction for General Access Structures
	4.1 Exponential-Time Construction
	4.2 Polynomial-Time Instantiation

	5 Constructions for Specific Access Structures
	5.1 Dynamic Threshold Access Structure
	5.2 Graphs
	5.3 Monotone Circuits

	6 Conclusions
	References

	Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic Complexity
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Adversarial and Communication Model
	2.3 Vector Commitments
	2.4 Distributed Zero-Knowledge Proofs
	2.5 Interpolation and Shamir Secret Sharing over Rings
	2.6 Verifiable Secret Sharing Scheme

	3 Distributed Low-Degree Proofs
	3.1 Interactive (non-ZK) Distributed Low-Degree Proof
	3.2 Improvements for Specific Rings
	3.3 Zero-Knowledge Compiler
	3.4 Removing Interaction in the ROM
	3.5 Efficiency
	3.6 Dealing with Any Degree d
	3.7 Soundness Amplification

	4 Verifiable Secret Sharing
	4.1 Verifiable Secret Sharing Scheme
	4.2 Optimizations
	4.3 Efficiency

	References

	Timed Secret Sharing
	1 Introduction
	1.1 Technical Overview
	1.2 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Threat Model and Assumptions
	3.2 Secret Sharing
	3.3 Time-Lock Puzzles (TLPs)
	3.4 Timed Commitment
	3.5 Sigma Protocols
	3.6 Short-Lived Proofs

	4 Timed Secret Sharing (TSS)
	4.1 TSS Definition
	4.2 TSS Construction

	5 Secret Sharing with Additional Shares
	5.1 Decrementing-Threshold Timed Secret Sharing (DTSS)
	5.2 DTSS Definition
	5.3 DTSS Construction

	6 Verifiable Timed Secret Sharing (VTSS)
	6.1 VTSS Definition
	6.2 VTSS Construction

	7 Publicly Verifiable Timed Secret Sharing (PVTSS)
	7.1 PVTSS Definition
	7.2 PVTSS Construction

	8 Discussion
	A Cryptographic Primitives and Definitions
	A.1 Time-Lock Puzzles (TLP)
	A.2 Homomorphic Time-Lock Puzzles (HTLP)
	A.3 Multi-instance Time-Lock Puzzle (MTLP)
	A.4 Verifiable Delay Function
	A.5 Verifiable Timed Commitment
	A.6 Sigma Protocols
	A.7 Short-Lived Proofs

	References

	Security Against Physical Attacks
	Formal Definition and Verification for Combined Random Fault and Random Probing Security
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Circuit Model
	2.3 Countermeasures
	2.4 Security Proofs via Simulation

	3 Security Model
	3.1 General Random Probing Security
	3.2 General Random Fault Security
	3.3 General Random Combined Security

	4 Compositional Notions
	4.1 Composition in the Random Fault Model
	4.2 Composition in the Random Combined Model

	5 Automatic Verification of Protected Implementations
	5.1 Verification of the Generalized Security Models
	5.2 Extension of VERICA Verification
	5.3 Extension of IronMask Verification

	6 Evaluation
	6.1 Results on VERICA+
	6.2 Results on IronMask+
	6.3 Tool Comparison

	7 Conclusion
	References

	Leakage-Resilient Incompressible Cryptography: Constructions and Barriers
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Impossibility Results
	2.2 Positive Results

	3 Preliminaries
	3.1 Extractors
	3.2 Incompressible Public Key Encryption

	4 Leakage-Resilient Incompressible and Non-committing Schemes: Definitions
	4.1 Leakage-Resilient Incompressible Encryption
	4.2 Leakage-Resilient Non-committing Key Encapsulation Mechanism
	4.3 Leakage-Resilient Incompressible Signatures

	5 Leakage-Resilient Incompressible SKE Against Unbounded Adversaries
	5.1 Information-Theoretic Incompressible SKE with Ciphertext-Rate 1/2
	5.2 Generic Transformation

	6 Leakage-Resilient NC-KEM from Hash Proof Systems
	7 Leakage-Resilient Incompressible PKE
	8 Impossibility Results for Rate-1 Leakage-Resilient Incompressible Encryption Schemes
	8.1 Impossibility Result for Incompressible PKE with Short Keys
	8.2 Impossibility Result for Leakage-Resilient Incompressible SKE

	References

	Cryptanalysis on Symmetric-Key Schemes
	The First Practical Collision for 31-Step SHA-256
	1 Introduction
	1.1 Brief Description of SHA-256 and SHA-512
	1.2 Technical Overview of Our New Attack

	2 Preliminaries
	2.1 Signed Difference
	2.2 Finding Collisions Using Signed Differential Characteristics

	3 Previous Collision Attacks on 31-Step SHA-256 and SHA-512
	3.1 Finding Collisions with the MitM Technique ch8DBLP:confspseurocryptspsMendelNS13
	3.2 More Details for Step 1
	3.3 More Details for Step 4
	3.4 Complexity Analysis

	4 New Memory-Efficient Collision Attacks
	4.1 New Pre-processing Phase
	4.2 New Matching Phase
	4.3 Complexity Analysis
	4.4 A Practical Colliding Message Pair for 31-Step SHA-256

	5 Improved Collision Attack on 31-Step SHA-512
	6 Conclusion
	References

	Key Collisions on AES and Its Applications
	1 Introduction
	1.1 Background
	1.2 Difficulties for Finding Target-Plaintext Key Collisions
	1.3 Our Contribution

	2 Preliminaries
	2.1 Description of AES
	2.2 Rebound Attack
	2.3 Collision Attacks and Its Variant

	3 Key Collision
	3.1 New Variants of Key Collision
	3.2 Applications of Target-Plaintext Key Collisions

	4 Automatic Tools for Key Collision on AES
	5 Key Collisions on AES-128/192/256
	5.1 Fixed-Target-Plaintext Key Collision on 6-Round AES-256
	5.2 Free-Target-Plaintext Key Collision on 9-Round AES-256
	5.3 Key Collisions on AES-128/192

	6 Application to AES-DM
	6.1 Single-Block (Semi-free-Start) Collision Attacks on AES-DM
	6.2 How to Find Two-Block Collision Attack on AES-DM
	6.3 Two-Block Collision Attacks on 9-Round AES-256-DM
	6.4 Two-Block Collision Attacks on 3-Round AES-128-DM

	7 Conclusion
	References

	The Boomerang Chain Distinguishers: New Record for 6-Round AES
	1 Introduction
	2 Preliminaries
	2.1 Brief Description of AES
	2.2 Differentials and Truncated Differentials
	2.3 Boomerang Attacks
	2.4 Exchange Attacks

	3 The Re-boomerang Distinguisher
	3.1 Framework of the Re-boomerang Distinguisher
	3.2 Exchanged Boomerangs for 6-Round AES
	3.3 The Re-boomerang Distinguisher for 6-Round AES

	4 The Boomerang Chain Distinguishers
	4.1 The Triple Boomerangs Distinguisher
	4.2 The General Boomerang Chain Distinguisher

	5 Conclusion
	References

	Multiple-Tweak Differential Attack Against SCARF
	1 Introduction
	2 Preliminaries
	2.1 SCARF
	2.2 Security Claims
	2.3 Differential Cryptanalysis and Expected Differential Probability

	3 Multiple-Tweak Differential Attack
	3.1 LLR Statistic
	3.2 Related Works

	4 Efficient Estimation of the Differential Bias of SCARF
	4.1 Some Unique Properties of SCARF
	4.2 Analysis for 1+1 Rounds
	4.3 Analysis for R+R' Rounds

	5 Key-Recovery Attack on 7-Round SCARF
	5.1 Attack Procedure on Security Requirement 2
	5.2 The Case of the Security Requirement 1

	6 Multi-key Distinguishing Attacks on Full SCARF
	6.1 Time and Advantage of the Distinguishing Algorithm
	6.2 Multi-key Distinguisher
	6.3 Discussion and Open Questions

	7 Impact of the S-Box Choice on the Differential Bias
	7.1 Impact of the S-Box on the Bias for 2+2 and 3+3 Rounds
	7.2 Analysis for a Higher Number of Rounds
	7.3 Searching for Alternative S-Boxes for SCARF
	7.4 Experiments

	8 Conclusion
	A Special DDT for S-1 S
	References

	Generic Differential Key Recovery Attacks and Beyond
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 The Generic Rectangle Key Recovery Attack
	2.3 The Basic Differential MITM Attack

	3 New Generic Key Recovery Attacks
	3.1 The Generic Classical Differential Attack
	3.2 The Generalized Differential MITM Attack
	3.3 Comparison
	3.4 The Generic Rectangle MITM Attack

	4 Applications
	4.1 Application to AES-256
	4.2 Application to KATAN-32
	4.3 Application on SKINNYe-64-256 V2

	5 Conclusion
	References

	Ultrametric Integral Cryptanalysis
	1 Introduction
	2 Background
	2.1 Geometric Approach
	2.2 Linear Cryptanalysis
	2.3 Integral Cryptanalysis

	3 Divisibility Properties
	3.1 Example for present
	3.2 Description Using the Geometric Approach

	4 Lifting Integral Cryptanalysis
	4.1 Motivation
	4.2 Ultrametric Integral Basis
	4.3 Ultrametric Integral Transition Matrices

	5 Ultrametric Integral Trails
	5.1 Dominant Trail Approximation
	5.2 Example
	5.3 Trail Enumeration

	6 Properties of Ultrametric Integral Transition Matrices
	6.1 Computation
	6.2 Linear Functions
	6.3 Low-Degree Functions
	6.4 Relation with Correlation Matrices

	7 Application to present
	7.1 Modelling
	7.2 Revisiting the Distinguishers of Boura and Canteaut
	7.3 Finding Zero-Correlation Distinguishers
	7.4 Improving Key Recovery Attacks

	8 Application to simon
	8.1 Modelling
	8.2 Results

	References

	Modelling Ciphers with Overdefined Systems of Quadratic Equations: Application to Friday, Vision, RAIN and Biscuit
	1 Introduction
	2 Preliminaries
	3 Overdefined Systems of Quadratic Equations for AES
	3.1 The AES Round Function
	3.2 Courtois-Pieprzyk's Algebraic Modelling Method
	3.3 Murphy-Robshaw's Algebraic Modelling Method

	4 New Algebraic Modelling Method for Friday
	4.1 Description of Friday
	4.2 New Algebraic Modelling Method for Friday
	4.3 Comparison and Experiments

	5 New Algebraic Modelling Method for Vision
	5.1 Description of the Unkeyed Vision Permutation
	5.2 Modelling Vision with a Polynomial System
	5.3 Overdefining the Polynomial System for Vision
	5.4 Complexity Analysis and Experiments

	6 Gröbner Basis Attack on 3-Round RAIN
	6.1 Description of 3-Round RAIN
	6.2 Direct Application of Existing Modelling Methods
	6.3 Finding More Quadratic Equations Exploiting the Structure
	6.4 Experiments and Discussions

	7 New Algebraic Modelling Method for Biscuit
	7.1 New Insight Into the PowAff2 Problem over F2

	8 Conclusion
	A Computing Gröbner Basis for Polynomials over F2
	References

	A New Security Evaluation Method Based on Resultant for Arithmetic-Oriented Algorithms
	1 Introduction
	2 Preliminaries
	2.1 CICO Problem
	2.2 Resultant

	3 Review of Rescue-Prime and a Recent Algebraic Attack
	3.1 Description of Rescue-Prime
	3.2 The Algebraic Attack Against Rescue-Prime in ch15bariant2022algebraic

	4 Optimized Algebraic Attacks Against Rescue-Prime Based on Resultant
	4.1 Algebraic Attack with Forward Modeling
	4.2 Algebraic Attack with SFTM Modeling
	4.3 Summary of the Resultant-Based Method
	4.4 Experimental Results

	5 Application to Anemoi
	5.1 Design Description of Anemoi
	5.2 SFTM Attack Against Anemoi
	5.3 Experimental Results for Anemoi

	6 Application to Jarvis
	7 Conclusions and Discussions
	7.1 Why SFTM Modeling Is Better Than Forward Modeling
	7.2 Why not Combine SFTM Modeling with First-Round Bypassing
	7.3 Discussion on Our Attack

	References

	Author Index

